xref: /linux/fs/btrfs/volumes.c (revision 4877fc92142f635be418d8c915eb48ef87681108)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 #include "raid-stripe-tree.h"
39 
40 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
41 					 BTRFS_BLOCK_GROUP_RAID10 | \
42 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
43 
44 struct btrfs_io_geometry {
45 	u32 stripe_index;
46 	u32 stripe_nr;
47 	int mirror_num;
48 	int num_stripes;
49 	u64 stripe_offset;
50 	u64 raid56_full_stripe_start;
51 	int max_errors;
52 	enum btrfs_map_op op;
53 };
54 
55 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
56 	[BTRFS_RAID_RAID10] = {
57 		.sub_stripes	= 2,
58 		.dev_stripes	= 1,
59 		.devs_max	= 0,	/* 0 == as many as possible */
60 		.devs_min	= 2,
61 		.tolerated_failures = 1,
62 		.devs_increment	= 2,
63 		.ncopies	= 2,
64 		.nparity        = 0,
65 		.raid_name	= "raid10",
66 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
67 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
68 	},
69 	[BTRFS_RAID_RAID1] = {
70 		.sub_stripes	= 1,
71 		.dev_stripes	= 1,
72 		.devs_max	= 2,
73 		.devs_min	= 2,
74 		.tolerated_failures = 1,
75 		.devs_increment	= 2,
76 		.ncopies	= 2,
77 		.nparity        = 0,
78 		.raid_name	= "raid1",
79 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
80 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
81 	},
82 	[BTRFS_RAID_RAID1C3] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 3,
86 		.devs_min	= 3,
87 		.tolerated_failures = 2,
88 		.devs_increment	= 3,
89 		.ncopies	= 3,
90 		.nparity        = 0,
91 		.raid_name	= "raid1c3",
92 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
93 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
94 	},
95 	[BTRFS_RAID_RAID1C4] = {
96 		.sub_stripes	= 1,
97 		.dev_stripes	= 1,
98 		.devs_max	= 4,
99 		.devs_min	= 4,
100 		.tolerated_failures = 3,
101 		.devs_increment	= 4,
102 		.ncopies	= 4,
103 		.nparity        = 0,
104 		.raid_name	= "raid1c4",
105 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
106 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
107 	},
108 	[BTRFS_RAID_DUP] = {
109 		.sub_stripes	= 1,
110 		.dev_stripes	= 2,
111 		.devs_max	= 1,
112 		.devs_min	= 1,
113 		.tolerated_failures = 0,
114 		.devs_increment	= 1,
115 		.ncopies	= 2,
116 		.nparity        = 0,
117 		.raid_name	= "dup",
118 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
119 		.mindev_error	= 0,
120 	},
121 	[BTRFS_RAID_RAID0] = {
122 		.sub_stripes	= 1,
123 		.dev_stripes	= 1,
124 		.devs_max	= 0,
125 		.devs_min	= 1,
126 		.tolerated_failures = 0,
127 		.devs_increment	= 1,
128 		.ncopies	= 1,
129 		.nparity        = 0,
130 		.raid_name	= "raid0",
131 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
132 		.mindev_error	= 0,
133 	},
134 	[BTRFS_RAID_SINGLE] = {
135 		.sub_stripes	= 1,
136 		.dev_stripes	= 1,
137 		.devs_max	= 1,
138 		.devs_min	= 1,
139 		.tolerated_failures = 0,
140 		.devs_increment	= 1,
141 		.ncopies	= 1,
142 		.nparity        = 0,
143 		.raid_name	= "single",
144 		.bg_flag	= 0,
145 		.mindev_error	= 0,
146 	},
147 	[BTRFS_RAID_RAID5] = {
148 		.sub_stripes	= 1,
149 		.dev_stripes	= 1,
150 		.devs_max	= 0,
151 		.devs_min	= 2,
152 		.tolerated_failures = 1,
153 		.devs_increment	= 1,
154 		.ncopies	= 1,
155 		.nparity        = 1,
156 		.raid_name	= "raid5",
157 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
158 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
159 	},
160 	[BTRFS_RAID_RAID6] = {
161 		.sub_stripes	= 1,
162 		.dev_stripes	= 1,
163 		.devs_max	= 0,
164 		.devs_min	= 3,
165 		.tolerated_failures = 2,
166 		.devs_increment	= 1,
167 		.ncopies	= 1,
168 		.nparity        = 2,
169 		.raid_name	= "raid6",
170 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
171 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
172 	},
173 };
174 
175 /*
176  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
177  * can be used as index to access btrfs_raid_array[].
178  */
179 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
180 {
181 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
182 
183 	if (!profile)
184 		return BTRFS_RAID_SINGLE;
185 
186 	return BTRFS_BG_FLAG_TO_INDEX(profile);
187 }
188 
189 const char *btrfs_bg_type_to_raid_name(u64 flags)
190 {
191 	const int index = btrfs_bg_flags_to_raid_index(flags);
192 
193 	if (index >= BTRFS_NR_RAID_TYPES)
194 		return NULL;
195 
196 	return btrfs_raid_array[index].raid_name;
197 }
198 
199 int btrfs_nr_parity_stripes(u64 type)
200 {
201 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
202 
203 	return btrfs_raid_array[index].nparity;
204 }
205 
206 /*
207  * Fill @buf with textual description of @bg_flags, no more than @size_buf
208  * bytes including terminating null byte.
209  */
210 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
211 {
212 	int i;
213 	int ret;
214 	char *bp = buf;
215 	u64 flags = bg_flags;
216 	u32 size_bp = size_buf;
217 
218 	if (!flags) {
219 		strcpy(bp, "NONE");
220 		return;
221 	}
222 
223 #define DESCRIBE_FLAG(flag, desc)						\
224 	do {								\
225 		if (flags & (flag)) {					\
226 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
227 			if (ret < 0 || ret >= size_bp)			\
228 				goto out_overflow;			\
229 			size_bp -= ret;					\
230 			bp += ret;					\
231 			flags &= ~(flag);				\
232 		}							\
233 	} while (0)
234 
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
236 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
237 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
238 
239 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
240 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
242 			      btrfs_raid_array[i].raid_name);
243 #undef DESCRIBE_FLAG
244 
245 	if (flags) {
246 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
247 		size_bp -= ret;
248 	}
249 
250 	if (size_bp < size_buf)
251 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
252 
253 	/*
254 	 * The text is trimmed, it's up to the caller to provide sufficiently
255 	 * large buffer
256 	 */
257 out_overflow:;
258 }
259 
260 static int init_first_rw_device(struct btrfs_trans_handle *trans);
261 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
263 
264 /*
265  * Device locking
266  * ==============
267  *
268  * There are several mutexes that protect manipulation of devices and low-level
269  * structures like chunks but not block groups, extents or files
270  *
271  * uuid_mutex (global lock)
272  * ------------------------
273  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
274  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
275  * device) or requested by the device= mount option
276  *
277  * the mutex can be very coarse and can cover long-running operations
278  *
279  * protects: updates to fs_devices counters like missing devices, rw devices,
280  * seeding, structure cloning, opening/closing devices at mount/umount time
281  *
282  * global::fs_devs - add, remove, updates to the global list
283  *
284  * does not protect: manipulation of the fs_devices::devices list in general
285  * but in mount context it could be used to exclude list modifications by eg.
286  * scan ioctl
287  *
288  * btrfs_device::name - renames (write side), read is RCU
289  *
290  * fs_devices::device_list_mutex (per-fs, with RCU)
291  * ------------------------------------------------
292  * protects updates to fs_devices::devices, ie. adding and deleting
293  *
294  * simple list traversal with read-only actions can be done with RCU protection
295  *
296  * may be used to exclude some operations from running concurrently without any
297  * modifications to the list (see write_all_supers)
298  *
299  * Is not required at mount and close times, because our device list is
300  * protected by the uuid_mutex at that point.
301  *
302  * balance_mutex
303  * -------------
304  * protects balance structures (status, state) and context accessed from
305  * several places (internally, ioctl)
306  *
307  * chunk_mutex
308  * -----------
309  * protects chunks, adding or removing during allocation, trim or when a new
310  * device is added/removed. Additionally it also protects post_commit_list of
311  * individual devices, since they can be added to the transaction's
312  * post_commit_list only with chunk_mutex held.
313  *
314  * cleaner_mutex
315  * -------------
316  * a big lock that is held by the cleaner thread and prevents running subvolume
317  * cleaning together with relocation or delayed iputs
318  *
319  *
320  * Lock nesting
321  * ============
322  *
323  * uuid_mutex
324  *   device_list_mutex
325  *     chunk_mutex
326  *   balance_mutex
327  *
328  *
329  * Exclusive operations
330  * ====================
331  *
332  * Maintains the exclusivity of the following operations that apply to the
333  * whole filesystem and cannot run in parallel.
334  *
335  * - Balance (*)
336  * - Device add
337  * - Device remove
338  * - Device replace (*)
339  * - Resize
340  *
341  * The device operations (as above) can be in one of the following states:
342  *
343  * - Running state
344  * - Paused state
345  * - Completed state
346  *
347  * Only device operations marked with (*) can go into the Paused state for the
348  * following reasons:
349  *
350  * - ioctl (only Balance can be Paused through ioctl)
351  * - filesystem remounted as read-only
352  * - filesystem unmounted and mounted as read-only
353  * - system power-cycle and filesystem mounted as read-only
354  * - filesystem or device errors leading to forced read-only
355  *
356  * The status of exclusive operation is set and cleared atomically.
357  * During the course of Paused state, fs_info::exclusive_operation remains set.
358  * A device operation in Paused or Running state can be canceled or resumed
359  * either by ioctl (Balance only) or when remounted as read-write.
360  * The exclusive status is cleared when the device operation is canceled or
361  * completed.
362  */
363 
364 DEFINE_MUTEX(uuid_mutex);
365 static LIST_HEAD(fs_uuids);
366 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
367 {
368 	return &fs_uuids;
369 }
370 
371 /*
372  * Allocate new btrfs_fs_devices structure identified by a fsid.
373  *
374  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
375  *           fs_devices::metadata_fsid
376  *
377  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
378  * The returned struct is not linked onto any lists and can be destroyed with
379  * kfree() right away.
380  */
381 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
382 {
383 	struct btrfs_fs_devices *fs_devs;
384 
385 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
386 	if (!fs_devs)
387 		return ERR_PTR(-ENOMEM);
388 
389 	mutex_init(&fs_devs->device_list_mutex);
390 
391 	INIT_LIST_HEAD(&fs_devs->devices);
392 	INIT_LIST_HEAD(&fs_devs->alloc_list);
393 	INIT_LIST_HEAD(&fs_devs->fs_list);
394 	INIT_LIST_HEAD(&fs_devs->seed_list);
395 
396 	if (fsid) {
397 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
398 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 	}
400 
401 	return fs_devs;
402 }
403 
404 static void btrfs_free_device(struct btrfs_device *device)
405 {
406 	WARN_ON(!list_empty(&device->post_commit_list));
407 	rcu_string_free(device->name);
408 	extent_io_tree_release(&device->alloc_state);
409 	btrfs_destroy_dev_zone_info(device);
410 	kfree(device);
411 }
412 
413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 	struct btrfs_device *device;
416 
417 	WARN_ON(fs_devices->opened);
418 	while (!list_empty(&fs_devices->devices)) {
419 		device = list_entry(fs_devices->devices.next,
420 				    struct btrfs_device, dev_list);
421 		list_del(&device->dev_list);
422 		btrfs_free_device(device);
423 	}
424 	kfree(fs_devices);
425 }
426 
427 void __exit btrfs_cleanup_fs_uuids(void)
428 {
429 	struct btrfs_fs_devices *fs_devices;
430 
431 	while (!list_empty(&fs_uuids)) {
432 		fs_devices = list_entry(fs_uuids.next,
433 					struct btrfs_fs_devices, fs_list);
434 		list_del(&fs_devices->fs_list);
435 		free_fs_devices(fs_devices);
436 	}
437 }
438 
439 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
440 				  const u8 *fsid, const u8 *metadata_fsid)
441 {
442 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
443 		return false;
444 
445 	if (!metadata_fsid)
446 		return true;
447 
448 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
449 		return false;
450 
451 	return true;
452 }
453 
454 static noinline struct btrfs_fs_devices *find_fsid(
455 		const u8 *fsid, const u8 *metadata_fsid)
456 {
457 	struct btrfs_fs_devices *fs_devices;
458 
459 	ASSERT(fsid);
460 
461 	/* Handle non-split brain cases */
462 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
464 			return fs_devices;
465 	}
466 	return NULL;
467 }
468 
469 static int
470 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
471 		      int flush, struct bdev_handle **bdev_handle,
472 		      struct btrfs_super_block **disk_super)
473 {
474 	struct block_device *bdev;
475 	int ret;
476 
477 	*bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
478 
479 	if (IS_ERR(*bdev_handle)) {
480 		ret = PTR_ERR(*bdev_handle);
481 		goto error;
482 	}
483 	bdev = (*bdev_handle)->bdev;
484 
485 	if (flush)
486 		sync_blockdev(bdev);
487 	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
488 	if (ret) {
489 		bdev_release(*bdev_handle);
490 		goto error;
491 	}
492 	invalidate_bdev(bdev);
493 	*disk_super = btrfs_read_dev_super(bdev);
494 	if (IS_ERR(*disk_super)) {
495 		ret = PTR_ERR(*disk_super);
496 		bdev_release(*bdev_handle);
497 		goto error;
498 	}
499 
500 	return 0;
501 
502 error:
503 	*bdev_handle = NULL;
504 	return ret;
505 }
506 
507 /*
508  *  Search and remove all stale devices (which are not mounted).  When both
509  *  inputs are NULL, it will search and release all stale devices.
510  *
511  *  @devt:         Optional. When provided will it release all unmounted devices
512  *                 matching this devt only.
513  *  @skip_device:  Optional. Will skip this device when searching for the stale
514  *                 devices.
515  *
516  *  Return:	0 for success or if @devt is 0.
517  *		-EBUSY if @devt is a mounted device.
518  *		-ENOENT if @devt does not match any device in the list.
519  */
520 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
521 {
522 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
523 	struct btrfs_device *device, *tmp_device;
524 	int ret;
525 	bool freed = false;
526 
527 	lockdep_assert_held(&uuid_mutex);
528 
529 	/* Return good status if there is no instance of devt. */
530 	ret = 0;
531 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
532 
533 		mutex_lock(&fs_devices->device_list_mutex);
534 		list_for_each_entry_safe(device, tmp_device,
535 					 &fs_devices->devices, dev_list) {
536 			if (skip_device && skip_device == device)
537 				continue;
538 			if (devt && devt != device->devt)
539 				continue;
540 			if (fs_devices->opened) {
541 				if (devt)
542 					ret = -EBUSY;
543 				break;
544 			}
545 
546 			/* delete the stale device */
547 			fs_devices->num_devices--;
548 			list_del(&device->dev_list);
549 			btrfs_free_device(device);
550 
551 			freed = true;
552 		}
553 		mutex_unlock(&fs_devices->device_list_mutex);
554 
555 		if (fs_devices->num_devices == 0) {
556 			btrfs_sysfs_remove_fsid(fs_devices);
557 			list_del(&fs_devices->fs_list);
558 			free_fs_devices(fs_devices);
559 		}
560 	}
561 
562 	/* If there is at least one freed device return 0. */
563 	if (freed)
564 		return 0;
565 
566 	return ret;
567 }
568 
569 static struct btrfs_fs_devices *find_fsid_by_device(
570 					struct btrfs_super_block *disk_super,
571 					dev_t devt, bool *same_fsid_diff_dev)
572 {
573 	struct btrfs_fs_devices *fsid_fs_devices;
574 	struct btrfs_fs_devices *devt_fs_devices;
575 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
576 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
577 	bool found_by_devt = false;
578 
579 	/* Find the fs_device by the usual method, if found use it. */
580 	fsid_fs_devices = find_fsid(disk_super->fsid,
581 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
582 
583 	/* The temp_fsid feature is supported only with single device filesystem. */
584 	if (btrfs_super_num_devices(disk_super) != 1)
585 		return fsid_fs_devices;
586 
587 	/*
588 	 * A seed device is an integral component of the sprout device, which
589 	 * functions as a multi-device filesystem. So, temp-fsid feature is
590 	 * not supported.
591 	 */
592 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
593 		return fsid_fs_devices;
594 
595 	/* Try to find a fs_devices by matching devt. */
596 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
597 		struct btrfs_device *device;
598 
599 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
600 			if (device->devt == devt) {
601 				found_by_devt = true;
602 				break;
603 			}
604 		}
605 		if (found_by_devt)
606 			break;
607 	}
608 
609 	if (found_by_devt) {
610 		/* Existing device. */
611 		if (fsid_fs_devices == NULL) {
612 			if (devt_fs_devices->opened == 0) {
613 				/* Stale device. */
614 				return NULL;
615 			} else {
616 				/* temp_fsid is mounting a subvol. */
617 				return devt_fs_devices;
618 			}
619 		} else {
620 			/* Regular or temp_fsid device mounting a subvol. */
621 			return devt_fs_devices;
622 		}
623 	} else {
624 		/* New device. */
625 		if (fsid_fs_devices == NULL) {
626 			return NULL;
627 		} else {
628 			/* sb::fsid is already used create a new temp_fsid. */
629 			*same_fsid_diff_dev = true;
630 			return NULL;
631 		}
632 	}
633 
634 	/* Not reached. */
635 }
636 
637 /*
638  * This is only used on mount, and we are protected from competing things
639  * messing with our fs_devices by the uuid_mutex, thus we do not need the
640  * fs_devices->device_list_mutex here.
641  */
642 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
643 			struct btrfs_device *device, blk_mode_t flags,
644 			void *holder)
645 {
646 	struct bdev_handle *bdev_handle;
647 	struct btrfs_super_block *disk_super;
648 	u64 devid;
649 	int ret;
650 
651 	if (device->bdev)
652 		return -EINVAL;
653 	if (!device->name)
654 		return -EINVAL;
655 
656 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
657 				    &bdev_handle, &disk_super);
658 	if (ret)
659 		return ret;
660 
661 	devid = btrfs_stack_device_id(&disk_super->dev_item);
662 	if (devid != device->devid)
663 		goto error_free_page;
664 
665 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
666 		goto error_free_page;
667 
668 	device->generation = btrfs_super_generation(disk_super);
669 
670 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
671 		if (btrfs_super_incompat_flags(disk_super) &
672 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
673 			pr_err(
674 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
675 			goto error_free_page;
676 		}
677 
678 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
679 		fs_devices->seeding = true;
680 	} else {
681 		if (bdev_read_only(bdev_handle->bdev))
682 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 		else
684 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 	}
686 
687 	if (!bdev_nonrot(bdev_handle->bdev))
688 		fs_devices->rotating = true;
689 
690 	if (bdev_max_discard_sectors(bdev_handle->bdev))
691 		fs_devices->discardable = true;
692 
693 	device->bdev_handle = bdev_handle;
694 	device->bdev = bdev_handle->bdev;
695 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
696 
697 	fs_devices->open_devices++;
698 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
699 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
700 		fs_devices->rw_devices++;
701 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
702 	}
703 	btrfs_release_disk_super(disk_super);
704 
705 	return 0;
706 
707 error_free_page:
708 	btrfs_release_disk_super(disk_super);
709 	bdev_release(bdev_handle);
710 
711 	return -EINVAL;
712 }
713 
714 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
715 {
716 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
717 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
718 
719 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
720 }
721 
722 /*
723  * Add new device to list of registered devices
724  *
725  * Returns:
726  * device pointer which was just added or updated when successful
727  * error pointer when failed
728  */
729 static noinline struct btrfs_device *device_list_add(const char *path,
730 			   struct btrfs_super_block *disk_super,
731 			   bool *new_device_added)
732 {
733 	struct btrfs_device *device;
734 	struct btrfs_fs_devices *fs_devices = NULL;
735 	struct rcu_string *name;
736 	u64 found_transid = btrfs_super_generation(disk_super);
737 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
738 	dev_t path_devt;
739 	int error;
740 	bool same_fsid_diff_dev = false;
741 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
742 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
743 
744 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
745 		btrfs_err(NULL,
746 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
747 			  path);
748 		return ERR_PTR(-EAGAIN);
749 	}
750 
751 	error = lookup_bdev(path, &path_devt);
752 	if (error) {
753 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
754 			  path, error);
755 		return ERR_PTR(error);
756 	}
757 
758 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
759 
760 	if (!fs_devices) {
761 		fs_devices = alloc_fs_devices(disk_super->fsid);
762 		if (IS_ERR(fs_devices))
763 			return ERR_CAST(fs_devices);
764 
765 		if (has_metadata_uuid)
766 			memcpy(fs_devices->metadata_uuid,
767 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
768 
769 		if (same_fsid_diff_dev) {
770 			generate_random_uuid(fs_devices->fsid);
771 			fs_devices->temp_fsid = true;
772 			pr_info("BTRFS: device %s using temp-fsid %pU\n",
773 				path, fs_devices->fsid);
774 		}
775 
776 		mutex_lock(&fs_devices->device_list_mutex);
777 		list_add(&fs_devices->fs_list, &fs_uuids);
778 
779 		device = NULL;
780 	} else {
781 		struct btrfs_dev_lookup_args args = {
782 			.devid = devid,
783 			.uuid = disk_super->dev_item.uuid,
784 		};
785 
786 		mutex_lock(&fs_devices->device_list_mutex);
787 		device = btrfs_find_device(fs_devices, &args);
788 
789 		if (found_transid > fs_devices->latest_generation) {
790 			memcpy(fs_devices->fsid, disk_super->fsid,
791 					BTRFS_FSID_SIZE);
792 			memcpy(fs_devices->metadata_uuid,
793 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
794 		}
795 	}
796 
797 	if (!device) {
798 		unsigned int nofs_flag;
799 
800 		if (fs_devices->opened) {
801 			btrfs_err(NULL,
802 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
803 				  path, fs_devices->fsid, current->comm,
804 				  task_pid_nr(current));
805 			mutex_unlock(&fs_devices->device_list_mutex);
806 			return ERR_PTR(-EBUSY);
807 		}
808 
809 		nofs_flag = memalloc_nofs_save();
810 		device = btrfs_alloc_device(NULL, &devid,
811 					    disk_super->dev_item.uuid, path);
812 		memalloc_nofs_restore(nofs_flag);
813 		if (IS_ERR(device)) {
814 			mutex_unlock(&fs_devices->device_list_mutex);
815 			/* we can safely leave the fs_devices entry around */
816 			return device;
817 		}
818 
819 		device->devt = path_devt;
820 
821 		list_add_rcu(&device->dev_list, &fs_devices->devices);
822 		fs_devices->num_devices++;
823 
824 		device->fs_devices = fs_devices;
825 		*new_device_added = true;
826 
827 		if (disk_super->label[0])
828 			pr_info(
829 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
830 				disk_super->label, devid, found_transid, path,
831 				current->comm, task_pid_nr(current));
832 		else
833 			pr_info(
834 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
835 				disk_super->fsid, devid, found_transid, path,
836 				current->comm, task_pid_nr(current));
837 
838 	} else if (!device->name || strcmp(device->name->str, path)) {
839 		/*
840 		 * When FS is already mounted.
841 		 * 1. If you are here and if the device->name is NULL that
842 		 *    means this device was missing at time of FS mount.
843 		 * 2. If you are here and if the device->name is different
844 		 *    from 'path' that means either
845 		 *      a. The same device disappeared and reappeared with
846 		 *         different name. or
847 		 *      b. The missing-disk-which-was-replaced, has
848 		 *         reappeared now.
849 		 *
850 		 * We must allow 1 and 2a above. But 2b would be a spurious
851 		 * and unintentional.
852 		 *
853 		 * Further in case of 1 and 2a above, the disk at 'path'
854 		 * would have missed some transaction when it was away and
855 		 * in case of 2a the stale bdev has to be updated as well.
856 		 * 2b must not be allowed at all time.
857 		 */
858 
859 		/*
860 		 * For now, we do allow update to btrfs_fs_device through the
861 		 * btrfs dev scan cli after FS has been mounted.  We're still
862 		 * tracking a problem where systems fail mount by subvolume id
863 		 * when we reject replacement on a mounted FS.
864 		 */
865 		if (!fs_devices->opened && found_transid < device->generation) {
866 			/*
867 			 * That is if the FS is _not_ mounted and if you
868 			 * are here, that means there is more than one
869 			 * disk with same uuid and devid.We keep the one
870 			 * with larger generation number or the last-in if
871 			 * generation are equal.
872 			 */
873 			mutex_unlock(&fs_devices->device_list_mutex);
874 			btrfs_err(NULL,
875 "device %s already registered with a higher generation, found %llu expect %llu",
876 				  path, found_transid, device->generation);
877 			return ERR_PTR(-EEXIST);
878 		}
879 
880 		/*
881 		 * We are going to replace the device path for a given devid,
882 		 * make sure it's the same device if the device is mounted
883 		 *
884 		 * NOTE: the device->fs_info may not be reliable here so pass
885 		 * in a NULL to message helpers instead. This avoids a possible
886 		 * use-after-free when the fs_info and fs_info->sb are already
887 		 * torn down.
888 		 */
889 		if (device->bdev) {
890 			if (device->devt != path_devt) {
891 				mutex_unlock(&fs_devices->device_list_mutex);
892 				btrfs_warn_in_rcu(NULL,
893 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
894 						  path, devid, found_transid,
895 						  current->comm,
896 						  task_pid_nr(current));
897 				return ERR_PTR(-EEXIST);
898 			}
899 			btrfs_info_in_rcu(NULL,
900 	"devid %llu device path %s changed to %s scanned by %s (%d)",
901 					  devid, btrfs_dev_name(device),
902 					  path, current->comm,
903 					  task_pid_nr(current));
904 		}
905 
906 		name = rcu_string_strdup(path, GFP_NOFS);
907 		if (!name) {
908 			mutex_unlock(&fs_devices->device_list_mutex);
909 			return ERR_PTR(-ENOMEM);
910 		}
911 		rcu_string_free(device->name);
912 		rcu_assign_pointer(device->name, name);
913 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
914 			fs_devices->missing_devices--;
915 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
916 		}
917 		device->devt = path_devt;
918 	}
919 
920 	/*
921 	 * Unmount does not free the btrfs_device struct but would zero
922 	 * generation along with most of the other members. So just update
923 	 * it back. We need it to pick the disk with largest generation
924 	 * (as above).
925 	 */
926 	if (!fs_devices->opened) {
927 		device->generation = found_transid;
928 		fs_devices->latest_generation = max_t(u64, found_transid,
929 						fs_devices->latest_generation);
930 	}
931 
932 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
933 
934 	mutex_unlock(&fs_devices->device_list_mutex);
935 	return device;
936 }
937 
938 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
939 {
940 	struct btrfs_fs_devices *fs_devices;
941 	struct btrfs_device *device;
942 	struct btrfs_device *orig_dev;
943 	int ret = 0;
944 
945 	lockdep_assert_held(&uuid_mutex);
946 
947 	fs_devices = alloc_fs_devices(orig->fsid);
948 	if (IS_ERR(fs_devices))
949 		return fs_devices;
950 
951 	fs_devices->total_devices = orig->total_devices;
952 
953 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
954 		const char *dev_path = NULL;
955 
956 		/*
957 		 * This is ok to do without RCU read locked because we hold the
958 		 * uuid mutex so nothing we touch in here is going to disappear.
959 		 */
960 		if (orig_dev->name)
961 			dev_path = orig_dev->name->str;
962 
963 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
964 					    orig_dev->uuid, dev_path);
965 		if (IS_ERR(device)) {
966 			ret = PTR_ERR(device);
967 			goto error;
968 		}
969 
970 		if (orig_dev->zone_info) {
971 			struct btrfs_zoned_device_info *zone_info;
972 
973 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
974 			if (!zone_info) {
975 				btrfs_free_device(device);
976 				ret = -ENOMEM;
977 				goto error;
978 			}
979 			device->zone_info = zone_info;
980 		}
981 
982 		list_add(&device->dev_list, &fs_devices->devices);
983 		device->fs_devices = fs_devices;
984 		fs_devices->num_devices++;
985 	}
986 	return fs_devices;
987 error:
988 	free_fs_devices(fs_devices);
989 	return ERR_PTR(ret);
990 }
991 
992 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
993 				      struct btrfs_device **latest_dev)
994 {
995 	struct btrfs_device *device, *next;
996 
997 	/* This is the initialized path, it is safe to release the devices. */
998 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
999 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001 				      &device->dev_state) &&
1002 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1003 				      &device->dev_state) &&
1004 			    (!*latest_dev ||
1005 			     device->generation > (*latest_dev)->generation)) {
1006 				*latest_dev = device;
1007 			}
1008 			continue;
1009 		}
1010 
1011 		/*
1012 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013 		 * in btrfs_init_dev_replace() so just continue.
1014 		 */
1015 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016 			continue;
1017 
1018 		if (device->bdev_handle) {
1019 			bdev_release(device->bdev_handle);
1020 			device->bdev = NULL;
1021 			device->bdev_handle = NULL;
1022 			fs_devices->open_devices--;
1023 		}
1024 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025 			list_del_init(&device->dev_alloc_list);
1026 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027 			fs_devices->rw_devices--;
1028 		}
1029 		list_del_init(&device->dev_list);
1030 		fs_devices->num_devices--;
1031 		btrfs_free_device(device);
1032 	}
1033 
1034 }
1035 
1036 /*
1037  * After we have read the system tree and know devids belonging to this
1038  * filesystem, remove the device which does not belong there.
1039  */
1040 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1041 {
1042 	struct btrfs_device *latest_dev = NULL;
1043 	struct btrfs_fs_devices *seed_dev;
1044 
1045 	mutex_lock(&uuid_mutex);
1046 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1047 
1048 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1050 
1051 	fs_devices->latest_dev = latest_dev;
1052 
1053 	mutex_unlock(&uuid_mutex);
1054 }
1055 
1056 static void btrfs_close_bdev(struct btrfs_device *device)
1057 {
1058 	if (!device->bdev)
1059 		return;
1060 
1061 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062 		sync_blockdev(device->bdev);
1063 		invalidate_bdev(device->bdev);
1064 	}
1065 
1066 	bdev_release(device->bdev_handle);
1067 }
1068 
1069 static void btrfs_close_one_device(struct btrfs_device *device)
1070 {
1071 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1072 
1073 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 		list_del_init(&device->dev_alloc_list);
1076 		fs_devices->rw_devices--;
1077 	}
1078 
1079 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081 
1082 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084 		fs_devices->missing_devices--;
1085 	}
1086 
1087 	btrfs_close_bdev(device);
1088 	if (device->bdev) {
1089 		fs_devices->open_devices--;
1090 		device->bdev = NULL;
1091 	}
1092 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093 	btrfs_destroy_dev_zone_info(device);
1094 
1095 	device->fs_info = NULL;
1096 	atomic_set(&device->dev_stats_ccnt, 0);
1097 	extent_io_tree_release(&device->alloc_state);
1098 
1099 	/*
1100 	 * Reset the flush error record. We might have a transient flush error
1101 	 * in this mount, and if so we aborted the current transaction and set
1102 	 * the fs to an error state, guaranteeing no super blocks can be further
1103 	 * committed. However that error might be transient and if we unmount the
1104 	 * filesystem and mount it again, we should allow the mount to succeed
1105 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106 	 * filesystem again we still get flush errors, then we will again abort
1107 	 * any transaction and set the error state, guaranteeing no commits of
1108 	 * unsafe super blocks.
1109 	 */
1110 	device->last_flush_error = 0;
1111 
1112 	/* Verify the device is back in a pristine state  */
1113 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115 	WARN_ON(!list_empty(&device->dev_alloc_list));
1116 	WARN_ON(!list_empty(&device->post_commit_list));
1117 }
1118 
1119 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1120 {
1121 	struct btrfs_device *device, *tmp;
1122 
1123 	lockdep_assert_held(&uuid_mutex);
1124 
1125 	if (--fs_devices->opened > 0)
1126 		return;
1127 
1128 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129 		btrfs_close_one_device(device);
1130 
1131 	WARN_ON(fs_devices->open_devices);
1132 	WARN_ON(fs_devices->rw_devices);
1133 	fs_devices->opened = 0;
1134 	fs_devices->seeding = false;
1135 	fs_devices->fs_info = NULL;
1136 }
1137 
1138 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1139 {
1140 	LIST_HEAD(list);
1141 	struct btrfs_fs_devices *tmp;
1142 
1143 	mutex_lock(&uuid_mutex);
1144 	close_fs_devices(fs_devices);
1145 	if (!fs_devices->opened) {
1146 		list_splice_init(&fs_devices->seed_list, &list);
1147 
1148 		/*
1149 		 * If the struct btrfs_fs_devices is not assembled with any
1150 		 * other device, it can be re-initialized during the next mount
1151 		 * without the needing device-scan step. Therefore, it can be
1152 		 * fully freed.
1153 		 */
1154 		if (fs_devices->num_devices == 1) {
1155 			list_del(&fs_devices->fs_list);
1156 			free_fs_devices(fs_devices);
1157 		}
1158 	}
1159 
1160 
1161 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162 		close_fs_devices(fs_devices);
1163 		list_del(&fs_devices->seed_list);
1164 		free_fs_devices(fs_devices);
1165 	}
1166 	mutex_unlock(&uuid_mutex);
1167 }
1168 
1169 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170 				blk_mode_t flags, void *holder)
1171 {
1172 	struct btrfs_device *device;
1173 	struct btrfs_device *latest_dev = NULL;
1174 	struct btrfs_device *tmp_device;
1175 
1176 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177 				 dev_list) {
1178 		int ret;
1179 
1180 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181 		if (ret == 0 &&
1182 		    (!latest_dev || device->generation > latest_dev->generation)) {
1183 			latest_dev = device;
1184 		} else if (ret == -ENODATA) {
1185 			fs_devices->num_devices--;
1186 			list_del(&device->dev_list);
1187 			btrfs_free_device(device);
1188 		}
1189 	}
1190 	if (fs_devices->open_devices == 0)
1191 		return -EINVAL;
1192 
1193 	fs_devices->opened = 1;
1194 	fs_devices->latest_dev = latest_dev;
1195 	fs_devices->total_rw_bytes = 0;
1196 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1198 
1199 	return 0;
1200 }
1201 
1202 static int devid_cmp(void *priv, const struct list_head *a,
1203 		     const struct list_head *b)
1204 {
1205 	const struct btrfs_device *dev1, *dev2;
1206 
1207 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1208 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1209 
1210 	if (dev1->devid < dev2->devid)
1211 		return -1;
1212 	else if (dev1->devid > dev2->devid)
1213 		return 1;
1214 	return 0;
1215 }
1216 
1217 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218 		       blk_mode_t flags, void *holder)
1219 {
1220 	int ret;
1221 
1222 	lockdep_assert_held(&uuid_mutex);
1223 	/*
1224 	 * The device_list_mutex cannot be taken here in case opening the
1225 	 * underlying device takes further locks like open_mutex.
1226 	 *
1227 	 * We also don't need the lock here as this is called during mount and
1228 	 * exclusion is provided by uuid_mutex
1229 	 */
1230 
1231 	if (fs_devices->opened) {
1232 		fs_devices->opened++;
1233 		ret = 0;
1234 	} else {
1235 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1236 		ret = open_fs_devices(fs_devices, flags, holder);
1237 	}
1238 
1239 	return ret;
1240 }
1241 
1242 void btrfs_release_disk_super(struct btrfs_super_block *super)
1243 {
1244 	struct page *page = virt_to_page(super);
1245 
1246 	put_page(page);
1247 }
1248 
1249 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250 						       u64 bytenr, u64 bytenr_orig)
1251 {
1252 	struct btrfs_super_block *disk_super;
1253 	struct page *page;
1254 	void *p;
1255 	pgoff_t index;
1256 
1257 	/* make sure our super fits in the device */
1258 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259 		return ERR_PTR(-EINVAL);
1260 
1261 	/* make sure our super fits in the page */
1262 	if (sizeof(*disk_super) > PAGE_SIZE)
1263 		return ERR_PTR(-EINVAL);
1264 
1265 	/* make sure our super doesn't straddle pages on disk */
1266 	index = bytenr >> PAGE_SHIFT;
1267 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268 		return ERR_PTR(-EINVAL);
1269 
1270 	/* pull in the page with our super */
1271 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1272 
1273 	if (IS_ERR(page))
1274 		return ERR_CAST(page);
1275 
1276 	p = page_address(page);
1277 
1278 	/* align our pointer to the offset of the super block */
1279 	disk_super = p + offset_in_page(bytenr);
1280 
1281 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283 		btrfs_release_disk_super(p);
1284 		return ERR_PTR(-EINVAL);
1285 	}
1286 
1287 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1289 
1290 	return disk_super;
1291 }
1292 
1293 int btrfs_forget_devices(dev_t devt)
1294 {
1295 	int ret;
1296 
1297 	mutex_lock(&uuid_mutex);
1298 	ret = btrfs_free_stale_devices(devt, NULL);
1299 	mutex_unlock(&uuid_mutex);
1300 
1301 	return ret;
1302 }
1303 
1304 /*
1305  * Look for a btrfs signature on a device. This may be called out of the mount path
1306  * and we are not allowed to call set_blocksize during the scan. The superblock
1307  * is read via pagecache.
1308  *
1309  * With @mount_arg_dev it's a scan during mount time that will always register
1310  * the device or return an error. Multi-device and seeding devices are registered
1311  * in both cases.
1312  */
1313 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314 					   bool mount_arg_dev)
1315 {
1316 	struct btrfs_super_block *disk_super;
1317 	bool new_device_added = false;
1318 	struct btrfs_device *device = NULL;
1319 	struct bdev_handle *bdev_handle;
1320 	u64 bytenr, bytenr_orig;
1321 	int ret;
1322 
1323 	lockdep_assert_held(&uuid_mutex);
1324 
1325 	/*
1326 	 * we would like to check all the supers, but that would make
1327 	 * a btrfs mount succeed after a mkfs from a different FS.
1328 	 * So, we need to add a special mount option to scan for
1329 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330 	 */
1331 
1332 	/*
1333 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334 	 * device scan which may race with the user's mount or mkfs command,
1335 	 * resulting in failure.
1336 	 * Since the device scan is solely for reading purposes, there is no
1337 	 * need for an exclusive open. Additionally, the devices are read again
1338 	 * during the mount process. It is ok to get some inconsistent
1339 	 * values temporarily, as the device paths of the fsid are the only
1340 	 * required information for assembling the volume.
1341 	 */
1342 	bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1343 	if (IS_ERR(bdev_handle))
1344 		return ERR_CAST(bdev_handle);
1345 
1346 	bytenr_orig = btrfs_sb_offset(0);
1347 	ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1348 	if (ret) {
1349 		device = ERR_PTR(ret);
1350 		goto error_bdev_put;
1351 	}
1352 
1353 	disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1354 					   bytenr_orig);
1355 	if (IS_ERR(disk_super)) {
1356 		device = ERR_CAST(disk_super);
1357 		goto error_bdev_put;
1358 	}
1359 
1360 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362 		dev_t devt;
1363 
1364 		ret = lookup_bdev(path, &devt);
1365 		if (ret)
1366 			btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367 				   path, ret);
1368 		else
1369 			btrfs_free_stale_devices(devt, NULL);
1370 
1371 		pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372 		device = NULL;
1373 		goto free_disk_super;
1374 	}
1375 
1376 	device = device_list_add(path, disk_super, &new_device_added);
1377 	if (!IS_ERR(device) && new_device_added)
1378 		btrfs_free_stale_devices(device->devt, device);
1379 
1380 free_disk_super:
1381 	btrfs_release_disk_super(disk_super);
1382 
1383 error_bdev_put:
1384 	bdev_release(bdev_handle);
1385 
1386 	return device;
1387 }
1388 
1389 /*
1390  * Try to find a chunk that intersects [start, start + len] range and when one
1391  * such is found, record the end of it in *start
1392  */
1393 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 				    u64 len)
1395 {
1396 	u64 physical_start, physical_end;
1397 
1398 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1399 
1400 	if (find_first_extent_bit(&device->alloc_state, *start,
1401 				  &physical_start, &physical_end,
1402 				  CHUNK_ALLOCATED, NULL)) {
1403 
1404 		if (in_range(physical_start, *start, len) ||
1405 		    in_range(*start, physical_start,
1406 			     physical_end - physical_start)) {
1407 			*start = physical_end + 1;
1408 			return true;
1409 		}
1410 	}
1411 	return false;
1412 }
1413 
1414 static u64 dev_extent_search_start(struct btrfs_device *device)
1415 {
1416 	switch (device->fs_devices->chunk_alloc_policy) {
1417 	case BTRFS_CHUNK_ALLOC_REGULAR:
1418 		return BTRFS_DEVICE_RANGE_RESERVED;
1419 	case BTRFS_CHUNK_ALLOC_ZONED:
1420 		/*
1421 		 * We don't care about the starting region like regular
1422 		 * allocator, because we anyway use/reserve the first two zones
1423 		 * for superblock logging.
1424 		 */
1425 		return 0;
1426 	default:
1427 		BUG();
1428 	}
1429 }
1430 
1431 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 					u64 *hole_start, u64 *hole_size,
1433 					u64 num_bytes)
1434 {
1435 	u64 zone_size = device->zone_info->zone_size;
1436 	u64 pos;
1437 	int ret;
1438 	bool changed = false;
1439 
1440 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441 
1442 	while (*hole_size > 0) {
1443 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 						   *hole_start + *hole_size,
1445 						   num_bytes);
1446 		if (pos != *hole_start) {
1447 			*hole_size = *hole_start + *hole_size - pos;
1448 			*hole_start = pos;
1449 			changed = true;
1450 			if (*hole_size < num_bytes)
1451 				break;
1452 		}
1453 
1454 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455 
1456 		/* Range is ensured to be empty */
1457 		if (!ret)
1458 			return changed;
1459 
1460 		/* Given hole range was invalid (outside of device) */
1461 		if (ret == -ERANGE) {
1462 			*hole_start += *hole_size;
1463 			*hole_size = 0;
1464 			return true;
1465 		}
1466 
1467 		*hole_start += zone_size;
1468 		*hole_size -= zone_size;
1469 		changed = true;
1470 	}
1471 
1472 	return changed;
1473 }
1474 
1475 /*
1476  * Check if specified hole is suitable for allocation.
1477  *
1478  * @device:	the device which we have the hole
1479  * @hole_start: starting position of the hole
1480  * @hole_size:	the size of the hole
1481  * @num_bytes:	the size of the free space that we need
1482  *
1483  * This function may modify @hole_start and @hole_size to reflect the suitable
1484  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485  */
1486 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 				  u64 *hole_size, u64 num_bytes)
1488 {
1489 	bool changed = false;
1490 	u64 hole_end = *hole_start + *hole_size;
1491 
1492 	for (;;) {
1493 		/*
1494 		 * Check before we set max_hole_start, otherwise we could end up
1495 		 * sending back this offset anyway.
1496 		 */
1497 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 			if (hole_end >= *hole_start)
1499 				*hole_size = hole_end - *hole_start;
1500 			else
1501 				*hole_size = 0;
1502 			changed = true;
1503 		}
1504 
1505 		switch (device->fs_devices->chunk_alloc_policy) {
1506 		case BTRFS_CHUNK_ALLOC_REGULAR:
1507 			/* No extra check */
1508 			break;
1509 		case BTRFS_CHUNK_ALLOC_ZONED:
1510 			if (dev_extent_hole_check_zoned(device, hole_start,
1511 							hole_size, num_bytes)) {
1512 				changed = true;
1513 				/*
1514 				 * The changed hole can contain pending extent.
1515 				 * Loop again to check that.
1516 				 */
1517 				continue;
1518 			}
1519 			break;
1520 		default:
1521 			BUG();
1522 		}
1523 
1524 		break;
1525 	}
1526 
1527 	return changed;
1528 }
1529 
1530 /*
1531  * Find free space in the specified device.
1532  *
1533  * @device:	  the device which we search the free space in
1534  * @num_bytes:	  the size of the free space that we need
1535  * @search_start: the position from which to begin the search
1536  * @start:	  store the start of the free space.
1537  * @len:	  the size of the free space. that we find, or the size
1538  *		  of the max free space if we don't find suitable free space
1539  *
1540  * This does a pretty simple search, the expectation is that it is called very
1541  * infrequently and that a given device has a small number of extents.
1542  *
1543  * @start is used to store the start of the free space if we find. But if we
1544  * don't find suitable free space, it will be used to store the start position
1545  * of the max free space.
1546  *
1547  * @len is used to store the size of the free space that we find.
1548  * But if we don't find suitable free space, it is used to store the size of
1549  * the max free space.
1550  *
1551  * NOTE: This function will search *commit* root of device tree, and does extra
1552  * check to ensure dev extents are not double allocated.
1553  * This makes the function safe to allocate dev extents but may not report
1554  * correct usable device space, as device extent freed in current transaction
1555  * is not reported as available.
1556  */
1557 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558 				u64 *start, u64 *len)
1559 {
1560 	struct btrfs_fs_info *fs_info = device->fs_info;
1561 	struct btrfs_root *root = fs_info->dev_root;
1562 	struct btrfs_key key;
1563 	struct btrfs_dev_extent *dev_extent;
1564 	struct btrfs_path *path;
1565 	u64 search_start;
1566 	u64 hole_size;
1567 	u64 max_hole_start;
1568 	u64 max_hole_size = 0;
1569 	u64 extent_end;
1570 	u64 search_end = device->total_bytes;
1571 	int ret;
1572 	int slot;
1573 	struct extent_buffer *l;
1574 
1575 	search_start = dev_extent_search_start(device);
1576 	max_hole_start = search_start;
1577 
1578 	WARN_ON(device->zone_info &&
1579 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1580 
1581 	path = btrfs_alloc_path();
1582 	if (!path) {
1583 		ret = -ENOMEM;
1584 		goto out;
1585 	}
1586 again:
1587 	if (search_start >= search_end ||
1588 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 		ret = -ENOSPC;
1590 		goto out;
1591 	}
1592 
1593 	path->reada = READA_FORWARD;
1594 	path->search_commit_root = 1;
1595 	path->skip_locking = 1;
1596 
1597 	key.objectid = device->devid;
1598 	key.offset = search_start;
1599 	key.type = BTRFS_DEV_EXTENT_KEY;
1600 
1601 	ret = btrfs_search_backwards(root, &key, path);
1602 	if (ret < 0)
1603 		goto out;
1604 
1605 	while (search_start < search_end) {
1606 		l = path->nodes[0];
1607 		slot = path->slots[0];
1608 		if (slot >= btrfs_header_nritems(l)) {
1609 			ret = btrfs_next_leaf(root, path);
1610 			if (ret == 0)
1611 				continue;
1612 			if (ret < 0)
1613 				goto out;
1614 
1615 			break;
1616 		}
1617 		btrfs_item_key_to_cpu(l, &key, slot);
1618 
1619 		if (key.objectid < device->devid)
1620 			goto next;
1621 
1622 		if (key.objectid > device->devid)
1623 			break;
1624 
1625 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1626 			goto next;
1627 
1628 		if (key.offset > search_end)
1629 			break;
1630 
1631 		if (key.offset > search_start) {
1632 			hole_size = key.offset - search_start;
1633 			dev_extent_hole_check(device, &search_start, &hole_size,
1634 					      num_bytes);
1635 
1636 			if (hole_size > max_hole_size) {
1637 				max_hole_start = search_start;
1638 				max_hole_size = hole_size;
1639 			}
1640 
1641 			/*
1642 			 * If this free space is greater than which we need,
1643 			 * it must be the max free space that we have found
1644 			 * until now, so max_hole_start must point to the start
1645 			 * of this free space and the length of this free space
1646 			 * is stored in max_hole_size. Thus, we return
1647 			 * max_hole_start and max_hole_size and go back to the
1648 			 * caller.
1649 			 */
1650 			if (hole_size >= num_bytes) {
1651 				ret = 0;
1652 				goto out;
1653 			}
1654 		}
1655 
1656 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657 		extent_end = key.offset + btrfs_dev_extent_length(l,
1658 								  dev_extent);
1659 		if (extent_end > search_start)
1660 			search_start = extent_end;
1661 next:
1662 		path->slots[0]++;
1663 		cond_resched();
1664 	}
1665 
1666 	/*
1667 	 * At this point, search_start should be the end of
1668 	 * allocated dev extents, and when shrinking the device,
1669 	 * search_end may be smaller than search_start.
1670 	 */
1671 	if (search_end > search_start) {
1672 		hole_size = search_end - search_start;
1673 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1674 					  num_bytes)) {
1675 			btrfs_release_path(path);
1676 			goto again;
1677 		}
1678 
1679 		if (hole_size > max_hole_size) {
1680 			max_hole_start = search_start;
1681 			max_hole_size = hole_size;
1682 		}
1683 	}
1684 
1685 	/* See above. */
1686 	if (max_hole_size < num_bytes)
1687 		ret = -ENOSPC;
1688 	else
1689 		ret = 0;
1690 
1691 	ASSERT(max_hole_start + max_hole_size <= search_end);
1692 out:
1693 	btrfs_free_path(path);
1694 	*start = max_hole_start;
1695 	if (len)
1696 		*len = max_hole_size;
1697 	return ret;
1698 }
1699 
1700 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701 			  struct btrfs_device *device,
1702 			  u64 start, u64 *dev_extent_len)
1703 {
1704 	struct btrfs_fs_info *fs_info = device->fs_info;
1705 	struct btrfs_root *root = fs_info->dev_root;
1706 	int ret;
1707 	struct btrfs_path *path;
1708 	struct btrfs_key key;
1709 	struct btrfs_key found_key;
1710 	struct extent_buffer *leaf = NULL;
1711 	struct btrfs_dev_extent *extent = NULL;
1712 
1713 	path = btrfs_alloc_path();
1714 	if (!path)
1715 		return -ENOMEM;
1716 
1717 	key.objectid = device->devid;
1718 	key.offset = start;
1719 	key.type = BTRFS_DEV_EXTENT_KEY;
1720 again:
1721 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1722 	if (ret > 0) {
1723 		ret = btrfs_previous_item(root, path, key.objectid,
1724 					  BTRFS_DEV_EXTENT_KEY);
1725 		if (ret)
1726 			goto out;
1727 		leaf = path->nodes[0];
1728 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729 		extent = btrfs_item_ptr(leaf, path->slots[0],
1730 					struct btrfs_dev_extent);
1731 		BUG_ON(found_key.offset > start || found_key.offset +
1732 		       btrfs_dev_extent_length(leaf, extent) < start);
1733 		key = found_key;
1734 		btrfs_release_path(path);
1735 		goto again;
1736 	} else if (ret == 0) {
1737 		leaf = path->nodes[0];
1738 		extent = btrfs_item_ptr(leaf, path->slots[0],
1739 					struct btrfs_dev_extent);
1740 	} else {
1741 		goto out;
1742 	}
1743 
1744 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745 
1746 	ret = btrfs_del_item(trans, root, path);
1747 	if (ret == 0)
1748 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1749 out:
1750 	btrfs_free_path(path);
1751 	return ret;
1752 }
1753 
1754 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1755 {
1756 	struct rb_node *n;
1757 	u64 ret = 0;
1758 
1759 	read_lock(&fs_info->mapping_tree_lock);
1760 	n = rb_last(&fs_info->mapping_tree.rb_root);
1761 	if (n) {
1762 		struct btrfs_chunk_map *map;
1763 
1764 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765 		ret = map->start + map->chunk_len;
1766 	}
1767 	read_unlock(&fs_info->mapping_tree_lock);
1768 
1769 	return ret;
1770 }
1771 
1772 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773 				    u64 *devid_ret)
1774 {
1775 	int ret;
1776 	struct btrfs_key key;
1777 	struct btrfs_key found_key;
1778 	struct btrfs_path *path;
1779 
1780 	path = btrfs_alloc_path();
1781 	if (!path)
1782 		return -ENOMEM;
1783 
1784 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785 	key.type = BTRFS_DEV_ITEM_KEY;
1786 	key.offset = (u64)-1;
1787 
1788 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1789 	if (ret < 0)
1790 		goto error;
1791 
1792 	if (ret == 0) {
1793 		/* Corruption */
1794 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795 		ret = -EUCLEAN;
1796 		goto error;
1797 	}
1798 
1799 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1800 				  BTRFS_DEV_ITEMS_OBJECTID,
1801 				  BTRFS_DEV_ITEM_KEY);
1802 	if (ret) {
1803 		*devid_ret = 1;
1804 	} else {
1805 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806 				      path->slots[0]);
1807 		*devid_ret = found_key.offset + 1;
1808 	}
1809 	ret = 0;
1810 error:
1811 	btrfs_free_path(path);
1812 	return ret;
1813 }
1814 
1815 /*
1816  * the device information is stored in the chunk root
1817  * the btrfs_device struct should be fully filled in
1818  */
1819 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820 			    struct btrfs_device *device)
1821 {
1822 	int ret;
1823 	struct btrfs_path *path;
1824 	struct btrfs_dev_item *dev_item;
1825 	struct extent_buffer *leaf;
1826 	struct btrfs_key key;
1827 	unsigned long ptr;
1828 
1829 	path = btrfs_alloc_path();
1830 	if (!path)
1831 		return -ENOMEM;
1832 
1833 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834 	key.type = BTRFS_DEV_ITEM_KEY;
1835 	key.offset = device->devid;
1836 
1837 	btrfs_reserve_chunk_metadata(trans, true);
1838 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839 				      &key, sizeof(*dev_item));
1840 	btrfs_trans_release_chunk_metadata(trans);
1841 	if (ret)
1842 		goto out;
1843 
1844 	leaf = path->nodes[0];
1845 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846 
1847 	btrfs_set_device_id(leaf, dev_item, device->devid);
1848 	btrfs_set_device_generation(leaf, dev_item, 0);
1849 	btrfs_set_device_type(leaf, dev_item, device->type);
1850 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853 	btrfs_set_device_total_bytes(leaf, dev_item,
1854 				     btrfs_device_get_disk_total_bytes(device));
1855 	btrfs_set_device_bytes_used(leaf, dev_item,
1856 				    btrfs_device_get_bytes_used(device));
1857 	btrfs_set_device_group(leaf, dev_item, 0);
1858 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1861 
1862 	ptr = btrfs_device_uuid(dev_item);
1863 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864 	ptr = btrfs_device_fsid(dev_item);
1865 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866 			    ptr, BTRFS_FSID_SIZE);
1867 	btrfs_mark_buffer_dirty(trans, leaf);
1868 
1869 	ret = 0;
1870 out:
1871 	btrfs_free_path(path);
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Function to update ctime/mtime for a given device path.
1877  * Mainly used for ctime/mtime based probe like libblkid.
1878  *
1879  * We don't care about errors here, this is just to be kind to userspace.
1880  */
1881 static void update_dev_time(const char *device_path)
1882 {
1883 	struct path path;
1884 	int ret;
1885 
1886 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887 	if (ret)
1888 		return;
1889 
1890 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1891 	path_put(&path);
1892 }
1893 
1894 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895 			     struct btrfs_device *device)
1896 {
1897 	struct btrfs_root *root = device->fs_info->chunk_root;
1898 	int ret;
1899 	struct btrfs_path *path;
1900 	struct btrfs_key key;
1901 
1902 	path = btrfs_alloc_path();
1903 	if (!path)
1904 		return -ENOMEM;
1905 
1906 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 	key.type = BTRFS_DEV_ITEM_KEY;
1908 	key.offset = device->devid;
1909 
1910 	btrfs_reserve_chunk_metadata(trans, false);
1911 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912 	btrfs_trans_release_chunk_metadata(trans);
1913 	if (ret) {
1914 		if (ret > 0)
1915 			ret = -ENOENT;
1916 		goto out;
1917 	}
1918 
1919 	ret = btrfs_del_item(trans, root, path);
1920 out:
1921 	btrfs_free_path(path);
1922 	return ret;
1923 }
1924 
1925 /*
1926  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927  * filesystem. It's up to the caller to adjust that number regarding eg. device
1928  * replace.
1929  */
1930 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931 		u64 num_devices)
1932 {
1933 	u64 all_avail;
1934 	unsigned seq;
1935 	int i;
1936 
1937 	do {
1938 		seq = read_seqbegin(&fs_info->profiles_lock);
1939 
1940 		all_avail = fs_info->avail_data_alloc_bits |
1941 			    fs_info->avail_system_alloc_bits |
1942 			    fs_info->avail_metadata_alloc_bits;
1943 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1944 
1945 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1947 			continue;
1948 
1949 		if (num_devices < btrfs_raid_array[i].devs_min)
1950 			return btrfs_raid_array[i].mindev_error;
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 static struct btrfs_device * btrfs_find_next_active_device(
1957 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1958 {
1959 	struct btrfs_device *next_device;
1960 
1961 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962 		if (next_device != device &&
1963 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964 		    && next_device->bdev)
1965 			return next_device;
1966 	}
1967 
1968 	return NULL;
1969 }
1970 
1971 /*
1972  * Helper function to check if the given device is part of s_bdev / latest_dev
1973  * and replace it with the provided or the next active device, in the context
1974  * where this function called, there should be always be another device (or
1975  * this_dev) which is active.
1976  */
1977 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978 					    struct btrfs_device *next_device)
1979 {
1980 	struct btrfs_fs_info *fs_info = device->fs_info;
1981 
1982 	if (!next_device)
1983 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1984 							    device);
1985 	ASSERT(next_device);
1986 
1987 	if (fs_info->sb->s_bdev &&
1988 			(fs_info->sb->s_bdev == device->bdev))
1989 		fs_info->sb->s_bdev = next_device->bdev;
1990 
1991 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992 		fs_info->fs_devices->latest_dev = next_device;
1993 }
1994 
1995 /*
1996  * Return btrfs_fs_devices::num_devices excluding the device that's being
1997  * currently replaced.
1998  */
1999 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000 {
2001 	u64 num_devices = fs_info->fs_devices->num_devices;
2002 
2003 	down_read(&fs_info->dev_replace.rwsem);
2004 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005 		ASSERT(num_devices > 1);
2006 		num_devices--;
2007 	}
2008 	up_read(&fs_info->dev_replace.rwsem);
2009 
2010 	return num_devices;
2011 }
2012 
2013 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014 				     struct block_device *bdev, int copy_num)
2015 {
2016 	struct btrfs_super_block *disk_super;
2017 	const size_t len = sizeof(disk_super->magic);
2018 	const u64 bytenr = btrfs_sb_offset(copy_num);
2019 	int ret;
2020 
2021 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022 	if (IS_ERR(disk_super))
2023 		return;
2024 
2025 	memset(&disk_super->magic, 0, len);
2026 	folio_mark_dirty(virt_to_folio(disk_super));
2027 	btrfs_release_disk_super(disk_super);
2028 
2029 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2030 	if (ret)
2031 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032 			copy_num, ret);
2033 }
2034 
2035 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036 			       struct block_device *bdev,
2037 			       const char *device_path)
2038 {
2039 	int copy_num;
2040 
2041 	if (!bdev)
2042 		return;
2043 
2044 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045 		if (bdev_is_zoned(bdev))
2046 			btrfs_reset_sb_log_zones(bdev, copy_num);
2047 		else
2048 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2049 	}
2050 
2051 	/* Notify udev that device has changed */
2052 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053 
2054 	/* Update ctime/mtime for device path for libblkid */
2055 	update_dev_time(device_path);
2056 }
2057 
2058 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059 		    struct btrfs_dev_lookup_args *args,
2060 		    struct bdev_handle **bdev_handle)
2061 {
2062 	struct btrfs_trans_handle *trans;
2063 	struct btrfs_device *device;
2064 	struct btrfs_fs_devices *cur_devices;
2065 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2066 	u64 num_devices;
2067 	int ret = 0;
2068 
2069 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071 		return -EINVAL;
2072 	}
2073 
2074 	/*
2075 	 * The device list in fs_devices is accessed without locks (neither
2076 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077 	 * filesystem and another device rm cannot run.
2078 	 */
2079 	num_devices = btrfs_num_devices(fs_info);
2080 
2081 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2082 	if (ret)
2083 		return ret;
2084 
2085 	device = btrfs_find_device(fs_info->fs_devices, args);
2086 	if (!device) {
2087 		if (args->missing)
2088 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089 		else
2090 			ret = -ENOENT;
2091 		return ret;
2092 	}
2093 
2094 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095 		btrfs_warn_in_rcu(fs_info,
2096 		  "cannot remove device %s (devid %llu) due to active swapfile",
2097 				  btrfs_dev_name(device), device->devid);
2098 		return -ETXTBSY;
2099 	}
2100 
2101 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2103 
2104 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105 	    fs_info->fs_devices->rw_devices == 1)
2106 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2107 
2108 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109 		mutex_lock(&fs_info->chunk_mutex);
2110 		list_del_init(&device->dev_alloc_list);
2111 		device->fs_devices->rw_devices--;
2112 		mutex_unlock(&fs_info->chunk_mutex);
2113 	}
2114 
2115 	ret = btrfs_shrink_device(device, 0);
2116 	if (ret)
2117 		goto error_undo;
2118 
2119 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120 	if (IS_ERR(trans)) {
2121 		ret = PTR_ERR(trans);
2122 		goto error_undo;
2123 	}
2124 
2125 	ret = btrfs_rm_dev_item(trans, device);
2126 	if (ret) {
2127 		/* Any error in dev item removal is critical */
2128 		btrfs_crit(fs_info,
2129 			   "failed to remove device item for devid %llu: %d",
2130 			   device->devid, ret);
2131 		btrfs_abort_transaction(trans, ret);
2132 		btrfs_end_transaction(trans);
2133 		return ret;
2134 	}
2135 
2136 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137 	btrfs_scrub_cancel_dev(device);
2138 
2139 	/*
2140 	 * the device list mutex makes sure that we don't change
2141 	 * the device list while someone else is writing out all
2142 	 * the device supers. Whoever is writing all supers, should
2143 	 * lock the device list mutex before getting the number of
2144 	 * devices in the super block (super_copy). Conversely,
2145 	 * whoever updates the number of devices in the super block
2146 	 * (super_copy) should hold the device list mutex.
2147 	 */
2148 
2149 	/*
2150 	 * In normal cases the cur_devices == fs_devices. But in case
2151 	 * of deleting a seed device, the cur_devices should point to
2152 	 * its own fs_devices listed under the fs_devices->seed_list.
2153 	 */
2154 	cur_devices = device->fs_devices;
2155 	mutex_lock(&fs_devices->device_list_mutex);
2156 	list_del_rcu(&device->dev_list);
2157 
2158 	cur_devices->num_devices--;
2159 	cur_devices->total_devices--;
2160 	/* Update total_devices of the parent fs_devices if it's seed */
2161 	if (cur_devices != fs_devices)
2162 		fs_devices->total_devices--;
2163 
2164 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165 		cur_devices->missing_devices--;
2166 
2167 	btrfs_assign_next_active_device(device, NULL);
2168 
2169 	if (device->bdev_handle) {
2170 		cur_devices->open_devices--;
2171 		/* remove sysfs entry */
2172 		btrfs_sysfs_remove_device(device);
2173 	}
2174 
2175 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177 	mutex_unlock(&fs_devices->device_list_mutex);
2178 
2179 	/*
2180 	 * At this point, the device is zero sized and detached from the
2181 	 * devices list.  All that's left is to zero out the old supers and
2182 	 * free the device.
2183 	 *
2184 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185 	 * write lock, and bdev_release() will pull in the ->open_mutex on
2186 	 * the block device and it's dependencies.  Instead just flush the
2187 	 * device and let the caller do the final bdev_release.
2188 	 */
2189 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190 		btrfs_scratch_superblocks(fs_info, device->bdev,
2191 					  device->name->str);
2192 		if (device->bdev) {
2193 			sync_blockdev(device->bdev);
2194 			invalidate_bdev(device->bdev);
2195 		}
2196 	}
2197 
2198 	*bdev_handle = device->bdev_handle;
2199 	synchronize_rcu();
2200 	btrfs_free_device(device);
2201 
2202 	/*
2203 	 * This can happen if cur_devices is the private seed devices list.  We
2204 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205 	 * to be held, but in fact we don't need that for the private
2206 	 * seed_devices, we can simply decrement cur_devices->opened and then
2207 	 * remove it from our list and free the fs_devices.
2208 	 */
2209 	if (cur_devices->num_devices == 0) {
2210 		list_del_init(&cur_devices->seed_list);
2211 		ASSERT(cur_devices->opened == 1);
2212 		cur_devices->opened--;
2213 		free_fs_devices(cur_devices);
2214 	}
2215 
2216 	ret = btrfs_commit_transaction(trans);
2217 
2218 	return ret;
2219 
2220 error_undo:
2221 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222 		mutex_lock(&fs_info->chunk_mutex);
2223 		list_add(&device->dev_alloc_list,
2224 			 &fs_devices->alloc_list);
2225 		device->fs_devices->rw_devices++;
2226 		mutex_unlock(&fs_info->chunk_mutex);
2227 	}
2228 	return ret;
2229 }
2230 
2231 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2232 {
2233 	struct btrfs_fs_devices *fs_devices;
2234 
2235 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2236 
2237 	/*
2238 	 * in case of fs with no seed, srcdev->fs_devices will point
2239 	 * to fs_devices of fs_info. However when the dev being replaced is
2240 	 * a seed dev it will point to the seed's local fs_devices. In short
2241 	 * srcdev will have its correct fs_devices in both the cases.
2242 	 */
2243 	fs_devices = srcdev->fs_devices;
2244 
2245 	list_del_rcu(&srcdev->dev_list);
2246 	list_del(&srcdev->dev_alloc_list);
2247 	fs_devices->num_devices--;
2248 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249 		fs_devices->missing_devices--;
2250 
2251 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252 		fs_devices->rw_devices--;
2253 
2254 	if (srcdev->bdev)
2255 		fs_devices->open_devices--;
2256 }
2257 
2258 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2259 {
2260 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2261 
2262 	mutex_lock(&uuid_mutex);
2263 
2264 	btrfs_close_bdev(srcdev);
2265 	synchronize_rcu();
2266 	btrfs_free_device(srcdev);
2267 
2268 	/* if this is no devs we rather delete the fs_devices */
2269 	if (!fs_devices->num_devices) {
2270 		/*
2271 		 * On a mounted FS, num_devices can't be zero unless it's a
2272 		 * seed. In case of a seed device being replaced, the replace
2273 		 * target added to the sprout FS, so there will be no more
2274 		 * device left under the seed FS.
2275 		 */
2276 		ASSERT(fs_devices->seeding);
2277 
2278 		list_del_init(&fs_devices->seed_list);
2279 		close_fs_devices(fs_devices);
2280 		free_fs_devices(fs_devices);
2281 	}
2282 	mutex_unlock(&uuid_mutex);
2283 }
2284 
2285 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2286 {
2287 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2288 
2289 	mutex_lock(&fs_devices->device_list_mutex);
2290 
2291 	btrfs_sysfs_remove_device(tgtdev);
2292 
2293 	if (tgtdev->bdev)
2294 		fs_devices->open_devices--;
2295 
2296 	fs_devices->num_devices--;
2297 
2298 	btrfs_assign_next_active_device(tgtdev, NULL);
2299 
2300 	list_del_rcu(&tgtdev->dev_list);
2301 
2302 	mutex_unlock(&fs_devices->device_list_mutex);
2303 
2304 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305 				  tgtdev->name->str);
2306 
2307 	btrfs_close_bdev(tgtdev);
2308 	synchronize_rcu();
2309 	btrfs_free_device(tgtdev);
2310 }
2311 
2312 /*
2313  * Populate args from device at path.
2314  *
2315  * @fs_info:	the filesystem
2316  * @args:	the args to populate
2317  * @path:	the path to the device
2318  *
2319  * This will read the super block of the device at @path and populate @args with
2320  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2321  * lookup a device to operate on, but need to do it before we take any locks.
2322  * This properly handles the special case of "missing" that a user may pass in,
2323  * and does some basic sanity checks.  The caller must make sure that @path is
2324  * properly NUL terminated before calling in, and must call
2325  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326  * uuid buffers.
2327  *
2328  * Return: 0 for success, -errno for failure
2329  */
2330 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 				 struct btrfs_dev_lookup_args *args,
2332 				 const char *path)
2333 {
2334 	struct btrfs_super_block *disk_super;
2335 	struct bdev_handle *bdev_handle;
2336 	int ret;
2337 
2338 	if (!path || !path[0])
2339 		return -EINVAL;
2340 	if (!strcmp(path, "missing")) {
2341 		args->missing = true;
2342 		return 0;
2343 	}
2344 
2345 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 	if (!args->uuid || !args->fsid) {
2348 		btrfs_put_dev_args_from_path(args);
2349 		return -ENOMEM;
2350 	}
2351 
2352 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353 				    &bdev_handle, &disk_super);
2354 	if (ret) {
2355 		btrfs_put_dev_args_from_path(args);
2356 		return ret;
2357 	}
2358 
2359 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363 	else
2364 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365 	btrfs_release_disk_super(disk_super);
2366 	bdev_release(bdev_handle);
2367 	return 0;
2368 }
2369 
2370 /*
2371  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373  * that don't need to be freed.
2374  */
2375 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376 {
2377 	kfree(args->uuid);
2378 	kfree(args->fsid);
2379 	args->uuid = NULL;
2380 	args->fsid = NULL;
2381 }
2382 
2383 struct btrfs_device *btrfs_find_device_by_devspec(
2384 		struct btrfs_fs_info *fs_info, u64 devid,
2385 		const char *device_path)
2386 {
2387 	BTRFS_DEV_LOOKUP_ARGS(args);
2388 	struct btrfs_device *device;
2389 	int ret;
2390 
2391 	if (devid) {
2392 		args.devid = devid;
2393 		device = btrfs_find_device(fs_info->fs_devices, &args);
2394 		if (!device)
2395 			return ERR_PTR(-ENOENT);
2396 		return device;
2397 	}
2398 
2399 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400 	if (ret)
2401 		return ERR_PTR(ret);
2402 	device = btrfs_find_device(fs_info->fs_devices, &args);
2403 	btrfs_put_dev_args_from_path(&args);
2404 	if (!device)
2405 		return ERR_PTR(-ENOENT);
2406 	return device;
2407 }
2408 
2409 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410 {
2411 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 	struct btrfs_fs_devices *old_devices;
2413 	struct btrfs_fs_devices *seed_devices;
2414 
2415 	lockdep_assert_held(&uuid_mutex);
2416 	if (!fs_devices->seeding)
2417 		return ERR_PTR(-EINVAL);
2418 
2419 	/*
2420 	 * Private copy of the seed devices, anchored at
2421 	 * fs_info->fs_devices->seed_list
2422 	 */
2423 	seed_devices = alloc_fs_devices(NULL);
2424 	if (IS_ERR(seed_devices))
2425 		return seed_devices;
2426 
2427 	/*
2428 	 * It's necessary to retain a copy of the original seed fs_devices in
2429 	 * fs_uuids so that filesystems which have been seeded can successfully
2430 	 * reference the seed device from open_seed_devices. This also supports
2431 	 * multiple fs seed.
2432 	 */
2433 	old_devices = clone_fs_devices(fs_devices);
2434 	if (IS_ERR(old_devices)) {
2435 		kfree(seed_devices);
2436 		return old_devices;
2437 	}
2438 
2439 	list_add(&old_devices->fs_list, &fs_uuids);
2440 
2441 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 	seed_devices->opened = 1;
2443 	INIT_LIST_HEAD(&seed_devices->devices);
2444 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2445 	mutex_init(&seed_devices->device_list_mutex);
2446 
2447 	return seed_devices;
2448 }
2449 
2450 /*
2451  * Splice seed devices into the sprout fs_devices.
2452  * Generate a new fsid for the sprouted read-write filesystem.
2453  */
2454 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 			       struct btrfs_fs_devices *seed_devices)
2456 {
2457 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 	struct btrfs_device *device;
2460 	u64 super_flags;
2461 
2462 	/*
2463 	 * We are updating the fsid, the thread leading to device_list_add()
2464 	 * could race, so uuid_mutex is needed.
2465 	 */
2466 	lockdep_assert_held(&uuid_mutex);
2467 
2468 	/*
2469 	 * The threads listed below may traverse dev_list but can do that without
2470 	 * device_list_mutex:
2471 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 	 * - Various dev_list readers - are using RCU.
2473 	 * - btrfs_ioctl_fitrim() - is using RCU.
2474 	 *
2475 	 * For-read threads as below are using device_list_mutex:
2476 	 * - Readonly scrub btrfs_scrub_dev()
2477 	 * - Readonly scrub btrfs_scrub_progress()
2478 	 * - btrfs_get_dev_stats()
2479 	 */
2480 	lockdep_assert_held(&fs_devices->device_list_mutex);
2481 
2482 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 			      synchronize_rcu);
2484 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 		device->fs_devices = seed_devices;
2486 
2487 	fs_devices->seeding = false;
2488 	fs_devices->num_devices = 0;
2489 	fs_devices->open_devices = 0;
2490 	fs_devices->missing_devices = 0;
2491 	fs_devices->rotating = false;
2492 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493 
2494 	generate_random_uuid(fs_devices->fsid);
2495 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497 
2498 	super_flags = btrfs_super_flags(disk_super) &
2499 		      ~BTRFS_SUPER_FLAG_SEEDING;
2500 	btrfs_set_super_flags(disk_super, super_flags);
2501 }
2502 
2503 /*
2504  * Store the expected generation for seed devices in device items.
2505  */
2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507 {
2508 	BTRFS_DEV_LOOKUP_ARGS(args);
2509 	struct btrfs_fs_info *fs_info = trans->fs_info;
2510 	struct btrfs_root *root = fs_info->chunk_root;
2511 	struct btrfs_path *path;
2512 	struct extent_buffer *leaf;
2513 	struct btrfs_dev_item *dev_item;
2514 	struct btrfs_device *device;
2515 	struct btrfs_key key;
2516 	u8 fs_uuid[BTRFS_FSID_SIZE];
2517 	u8 dev_uuid[BTRFS_UUID_SIZE];
2518 	int ret;
2519 
2520 	path = btrfs_alloc_path();
2521 	if (!path)
2522 		return -ENOMEM;
2523 
2524 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 	key.offset = 0;
2526 	key.type = BTRFS_DEV_ITEM_KEY;
2527 
2528 	while (1) {
2529 		btrfs_reserve_chunk_metadata(trans, false);
2530 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 		btrfs_trans_release_chunk_metadata(trans);
2532 		if (ret < 0)
2533 			goto error;
2534 
2535 		leaf = path->nodes[0];
2536 next_slot:
2537 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 			ret = btrfs_next_leaf(root, path);
2539 			if (ret > 0)
2540 				break;
2541 			if (ret < 0)
2542 				goto error;
2543 			leaf = path->nodes[0];
2544 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 			btrfs_release_path(path);
2546 			continue;
2547 		}
2548 
2549 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 		    key.type != BTRFS_DEV_ITEM_KEY)
2552 			break;
2553 
2554 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 					  struct btrfs_dev_item);
2556 		args.devid = btrfs_device_id(leaf, dev_item);
2557 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 				   BTRFS_UUID_SIZE);
2559 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 				   BTRFS_FSID_SIZE);
2561 		args.uuid = dev_uuid;
2562 		args.fsid = fs_uuid;
2563 		device = btrfs_find_device(fs_info->fs_devices, &args);
2564 		BUG_ON(!device); /* Logic error */
2565 
2566 		if (device->fs_devices->seeding) {
2567 			btrfs_set_device_generation(leaf, dev_item,
2568 						    device->generation);
2569 			btrfs_mark_buffer_dirty(trans, leaf);
2570 		}
2571 
2572 		path->slots[0]++;
2573 		goto next_slot;
2574 	}
2575 	ret = 0;
2576 error:
2577 	btrfs_free_path(path);
2578 	return ret;
2579 }
2580 
2581 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582 {
2583 	struct btrfs_root *root = fs_info->dev_root;
2584 	struct btrfs_trans_handle *trans;
2585 	struct btrfs_device *device;
2586 	struct bdev_handle *bdev_handle;
2587 	struct super_block *sb = fs_info->sb;
2588 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 	struct btrfs_fs_devices *seed_devices = NULL;
2590 	u64 orig_super_total_bytes;
2591 	u64 orig_super_num_devices;
2592 	int ret = 0;
2593 	bool seeding_dev = false;
2594 	bool locked = false;
2595 
2596 	if (sb_rdonly(sb) && !fs_devices->seeding)
2597 		return -EROFS;
2598 
2599 	bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2600 					fs_info->bdev_holder, NULL);
2601 	if (IS_ERR(bdev_handle))
2602 		return PTR_ERR(bdev_handle);
2603 
2604 	if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2605 		ret = -EINVAL;
2606 		goto error;
2607 	}
2608 
2609 	if (fs_devices->seeding) {
2610 		seeding_dev = true;
2611 		down_write(&sb->s_umount);
2612 		mutex_lock(&uuid_mutex);
2613 		locked = true;
2614 	}
2615 
2616 	sync_blockdev(bdev_handle->bdev);
2617 
2618 	rcu_read_lock();
2619 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620 		if (device->bdev == bdev_handle->bdev) {
2621 			ret = -EEXIST;
2622 			rcu_read_unlock();
2623 			goto error;
2624 		}
2625 	}
2626 	rcu_read_unlock();
2627 
2628 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629 	if (IS_ERR(device)) {
2630 		/* we can safely leave the fs_devices entry around */
2631 		ret = PTR_ERR(device);
2632 		goto error;
2633 	}
2634 
2635 	device->fs_info = fs_info;
2636 	device->bdev_handle = bdev_handle;
2637 	device->bdev = bdev_handle->bdev;
2638 	ret = lookup_bdev(device_path, &device->devt);
2639 	if (ret)
2640 		goto error_free_device;
2641 
2642 	ret = btrfs_get_dev_zone_info(device, false);
2643 	if (ret)
2644 		goto error_free_device;
2645 
2646 	trans = btrfs_start_transaction(root, 0);
2647 	if (IS_ERR(trans)) {
2648 		ret = PTR_ERR(trans);
2649 		goto error_free_zone;
2650 	}
2651 
2652 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653 	device->generation = trans->transid;
2654 	device->io_width = fs_info->sectorsize;
2655 	device->io_align = fs_info->sectorsize;
2656 	device->sector_size = fs_info->sectorsize;
2657 	device->total_bytes =
2658 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659 	device->disk_total_bytes = device->total_bytes;
2660 	device->commit_total_bytes = device->total_bytes;
2661 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663 	device->dev_stats_valid = 1;
2664 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665 
2666 	if (seeding_dev) {
2667 		btrfs_clear_sb_rdonly(sb);
2668 
2669 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2670 		seed_devices = btrfs_init_sprout(fs_info);
2671 		if (IS_ERR(seed_devices)) {
2672 			ret = PTR_ERR(seed_devices);
2673 			btrfs_abort_transaction(trans, ret);
2674 			goto error_trans;
2675 		}
2676 	}
2677 
2678 	mutex_lock(&fs_devices->device_list_mutex);
2679 	if (seeding_dev) {
2680 		btrfs_setup_sprout(fs_info, seed_devices);
2681 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682 						device);
2683 	}
2684 
2685 	device->fs_devices = fs_devices;
2686 
2687 	mutex_lock(&fs_info->chunk_mutex);
2688 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 	fs_devices->num_devices++;
2691 	fs_devices->open_devices++;
2692 	fs_devices->rw_devices++;
2693 	fs_devices->total_devices++;
2694 	fs_devices->total_rw_bytes += device->total_bytes;
2695 
2696 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697 
2698 	if (!bdev_nonrot(device->bdev))
2699 		fs_devices->rotating = true;
2700 
2701 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702 	btrfs_set_super_total_bytes(fs_info->super_copy,
2703 		round_down(orig_super_total_bytes + device->total_bytes,
2704 			   fs_info->sectorsize));
2705 
2706 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 	btrfs_set_super_num_devices(fs_info->super_copy,
2708 				    orig_super_num_devices + 1);
2709 
2710 	/*
2711 	 * we've got more storage, clear any full flags on the space
2712 	 * infos
2713 	 */
2714 	btrfs_clear_space_info_full(fs_info);
2715 
2716 	mutex_unlock(&fs_info->chunk_mutex);
2717 
2718 	/* Add sysfs device entry */
2719 	btrfs_sysfs_add_device(device);
2720 
2721 	mutex_unlock(&fs_devices->device_list_mutex);
2722 
2723 	if (seeding_dev) {
2724 		mutex_lock(&fs_info->chunk_mutex);
2725 		ret = init_first_rw_device(trans);
2726 		mutex_unlock(&fs_info->chunk_mutex);
2727 		if (ret) {
2728 			btrfs_abort_transaction(trans, ret);
2729 			goto error_sysfs;
2730 		}
2731 	}
2732 
2733 	ret = btrfs_add_dev_item(trans, device);
2734 	if (ret) {
2735 		btrfs_abort_transaction(trans, ret);
2736 		goto error_sysfs;
2737 	}
2738 
2739 	if (seeding_dev) {
2740 		ret = btrfs_finish_sprout(trans);
2741 		if (ret) {
2742 			btrfs_abort_transaction(trans, ret);
2743 			goto error_sysfs;
2744 		}
2745 
2746 		/*
2747 		 * fs_devices now represents the newly sprouted filesystem and
2748 		 * its fsid has been changed by btrfs_sprout_splice().
2749 		 */
2750 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2751 	}
2752 
2753 	ret = btrfs_commit_transaction(trans);
2754 
2755 	if (seeding_dev) {
2756 		mutex_unlock(&uuid_mutex);
2757 		up_write(&sb->s_umount);
2758 		locked = false;
2759 
2760 		if (ret) /* transaction commit */
2761 			return ret;
2762 
2763 		ret = btrfs_relocate_sys_chunks(fs_info);
2764 		if (ret < 0)
2765 			btrfs_handle_fs_error(fs_info, ret,
2766 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767 		trans = btrfs_attach_transaction(root);
2768 		if (IS_ERR(trans)) {
2769 			if (PTR_ERR(trans) == -ENOENT)
2770 				return 0;
2771 			ret = PTR_ERR(trans);
2772 			trans = NULL;
2773 			goto error_sysfs;
2774 		}
2775 		ret = btrfs_commit_transaction(trans);
2776 	}
2777 
2778 	/*
2779 	 * Now that we have written a new super block to this device, check all
2780 	 * other fs_devices list if device_path alienates any other scanned
2781 	 * device.
2782 	 * We can ignore the return value as it typically returns -EINVAL and
2783 	 * only succeeds if the device was an alien.
2784 	 */
2785 	btrfs_forget_devices(device->devt);
2786 
2787 	/* Update ctime/mtime for blkid or udev */
2788 	update_dev_time(device_path);
2789 
2790 	return ret;
2791 
2792 error_sysfs:
2793 	btrfs_sysfs_remove_device(device);
2794 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 	mutex_lock(&fs_info->chunk_mutex);
2796 	list_del_rcu(&device->dev_list);
2797 	list_del(&device->dev_alloc_list);
2798 	fs_info->fs_devices->num_devices--;
2799 	fs_info->fs_devices->open_devices--;
2800 	fs_info->fs_devices->rw_devices--;
2801 	fs_info->fs_devices->total_devices--;
2802 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 	btrfs_set_super_total_bytes(fs_info->super_copy,
2805 				    orig_super_total_bytes);
2806 	btrfs_set_super_num_devices(fs_info->super_copy,
2807 				    orig_super_num_devices);
2808 	mutex_unlock(&fs_info->chunk_mutex);
2809 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810 error_trans:
2811 	if (seeding_dev)
2812 		btrfs_set_sb_rdonly(sb);
2813 	if (trans)
2814 		btrfs_end_transaction(trans);
2815 error_free_zone:
2816 	btrfs_destroy_dev_zone_info(device);
2817 error_free_device:
2818 	btrfs_free_device(device);
2819 error:
2820 	bdev_release(bdev_handle);
2821 	if (locked) {
2822 		mutex_unlock(&uuid_mutex);
2823 		up_write(&sb->s_umount);
2824 	}
2825 	return ret;
2826 }
2827 
2828 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 					struct btrfs_device *device)
2830 {
2831 	int ret;
2832 	struct btrfs_path *path;
2833 	struct btrfs_root *root = device->fs_info->chunk_root;
2834 	struct btrfs_dev_item *dev_item;
2835 	struct extent_buffer *leaf;
2836 	struct btrfs_key key;
2837 
2838 	path = btrfs_alloc_path();
2839 	if (!path)
2840 		return -ENOMEM;
2841 
2842 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 	key.type = BTRFS_DEV_ITEM_KEY;
2844 	key.offset = device->devid;
2845 
2846 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847 	if (ret < 0)
2848 		goto out;
2849 
2850 	if (ret > 0) {
2851 		ret = -ENOENT;
2852 		goto out;
2853 	}
2854 
2855 	leaf = path->nodes[0];
2856 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857 
2858 	btrfs_set_device_id(leaf, dev_item, device->devid);
2859 	btrfs_set_device_type(leaf, dev_item, device->type);
2860 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863 	btrfs_set_device_total_bytes(leaf, dev_item,
2864 				     btrfs_device_get_disk_total_bytes(device));
2865 	btrfs_set_device_bytes_used(leaf, dev_item,
2866 				    btrfs_device_get_bytes_used(device));
2867 	btrfs_mark_buffer_dirty(trans, leaf);
2868 
2869 out:
2870 	btrfs_free_path(path);
2871 	return ret;
2872 }
2873 
2874 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875 		      struct btrfs_device *device, u64 new_size)
2876 {
2877 	struct btrfs_fs_info *fs_info = device->fs_info;
2878 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2879 	u64 old_total;
2880 	u64 diff;
2881 	int ret;
2882 
2883 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884 		return -EACCES;
2885 
2886 	new_size = round_down(new_size, fs_info->sectorsize);
2887 
2888 	mutex_lock(&fs_info->chunk_mutex);
2889 	old_total = btrfs_super_total_bytes(super_copy);
2890 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891 
2892 	if (new_size <= device->total_bytes ||
2893 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894 		mutex_unlock(&fs_info->chunk_mutex);
2895 		return -EINVAL;
2896 	}
2897 
2898 	btrfs_set_super_total_bytes(super_copy,
2899 			round_down(old_total + diff, fs_info->sectorsize));
2900 	device->fs_devices->total_rw_bytes += diff;
2901 	atomic64_add(diff, &fs_info->free_chunk_space);
2902 
2903 	btrfs_device_set_total_bytes(device, new_size);
2904 	btrfs_device_set_disk_total_bytes(device, new_size);
2905 	btrfs_clear_space_info_full(device->fs_info);
2906 	if (list_empty(&device->post_commit_list))
2907 		list_add_tail(&device->post_commit_list,
2908 			      &trans->transaction->dev_update_list);
2909 	mutex_unlock(&fs_info->chunk_mutex);
2910 
2911 	btrfs_reserve_chunk_metadata(trans, false);
2912 	ret = btrfs_update_device(trans, device);
2913 	btrfs_trans_release_chunk_metadata(trans);
2914 
2915 	return ret;
2916 }
2917 
2918 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2919 {
2920 	struct btrfs_fs_info *fs_info = trans->fs_info;
2921 	struct btrfs_root *root = fs_info->chunk_root;
2922 	int ret;
2923 	struct btrfs_path *path;
2924 	struct btrfs_key key;
2925 
2926 	path = btrfs_alloc_path();
2927 	if (!path)
2928 		return -ENOMEM;
2929 
2930 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931 	key.offset = chunk_offset;
2932 	key.type = BTRFS_CHUNK_ITEM_KEY;
2933 
2934 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935 	if (ret < 0)
2936 		goto out;
2937 	else if (ret > 0) { /* Logic error or corruption */
2938 		btrfs_handle_fs_error(fs_info, -ENOENT,
2939 				      "Failed lookup while freeing chunk.");
2940 		ret = -ENOENT;
2941 		goto out;
2942 	}
2943 
2944 	ret = btrfs_del_item(trans, root, path);
2945 	if (ret < 0)
2946 		btrfs_handle_fs_error(fs_info, ret,
2947 				      "Failed to delete chunk item.");
2948 out:
2949 	btrfs_free_path(path);
2950 	return ret;
2951 }
2952 
2953 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2954 {
2955 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2956 	struct btrfs_disk_key *disk_key;
2957 	struct btrfs_chunk *chunk;
2958 	u8 *ptr;
2959 	int ret = 0;
2960 	u32 num_stripes;
2961 	u32 array_size;
2962 	u32 len = 0;
2963 	u32 cur;
2964 	struct btrfs_key key;
2965 
2966 	lockdep_assert_held(&fs_info->chunk_mutex);
2967 	array_size = btrfs_super_sys_array_size(super_copy);
2968 
2969 	ptr = super_copy->sys_chunk_array;
2970 	cur = 0;
2971 
2972 	while (cur < array_size) {
2973 		disk_key = (struct btrfs_disk_key *)ptr;
2974 		btrfs_disk_key_to_cpu(&key, disk_key);
2975 
2976 		len = sizeof(*disk_key);
2977 
2978 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 			chunk = (struct btrfs_chunk *)(ptr + len);
2980 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 			len += btrfs_chunk_item_size(num_stripes);
2982 		} else {
2983 			ret = -EIO;
2984 			break;
2985 		}
2986 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987 		    key.offset == chunk_offset) {
2988 			memmove(ptr, ptr + len, array_size - (cur + len));
2989 			array_size -= len;
2990 			btrfs_set_super_sys_array_size(super_copy, array_size);
2991 		} else {
2992 			ptr += len;
2993 			cur += len;
2994 		}
2995 	}
2996 	return ret;
2997 }
2998 
2999 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 						    u64 logical, u64 length)
3001 {
3002 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 	struct rb_node *prev = NULL;
3004 	struct rb_node *orig_prev;
3005 	struct btrfs_chunk_map *map;
3006 	struct btrfs_chunk_map *prev_map = NULL;
3007 
3008 	while (node) {
3009 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010 		prev = node;
3011 		prev_map = map;
3012 
3013 		if (logical < map->start) {
3014 			node = node->rb_left;
3015 		} else if (logical >= map->start + map->chunk_len) {
3016 			node = node->rb_right;
3017 		} else {
3018 			refcount_inc(&map->refs);
3019 			return map;
3020 		}
3021 	}
3022 
3023 	if (!prev)
3024 		return NULL;
3025 
3026 	orig_prev = prev;
3027 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 		prev = rb_next(prev);
3029 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030 	}
3031 
3032 	if (!prev) {
3033 		prev = orig_prev;
3034 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 		while (prev && logical < prev_map->start) {
3036 			prev = rb_prev(prev);
3037 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038 		}
3039 	}
3040 
3041 	if (prev) {
3042 		u64 end = logical + length;
3043 
3044 		/*
3045 		 * Caller can pass a U64_MAX length when it wants to get any
3046 		 * chunk starting at an offset of 'logical' or higher, so deal
3047 		 * with underflow by resetting the end offset to U64_MAX.
3048 		 */
3049 		if (end < logical)
3050 			end = U64_MAX;
3051 
3052 		if (end > prev_map->start &&
3053 		    logical < prev_map->start + prev_map->chunk_len) {
3054 			refcount_inc(&prev_map->refs);
3055 			return prev_map;
3056 		}
3057 	}
3058 
3059 	return NULL;
3060 }
3061 
3062 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 					     u64 logical, u64 length)
3064 {
3065 	struct btrfs_chunk_map *map;
3066 
3067 	read_lock(&fs_info->mapping_tree_lock);
3068 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 	read_unlock(&fs_info->mapping_tree_lock);
3070 
3071 	return map;
3072 }
3073 
3074 /*
3075  * Find the mapping containing the given logical extent.
3076  *
3077  * @logical: Logical block offset in bytes.
3078  * @length: Length of extent in bytes.
3079  *
3080  * Return: Chunk mapping or ERR_PTR.
3081  */
3082 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 					    u64 logical, u64 length)
3084 {
3085 	struct btrfs_chunk_map *map;
3086 
3087 	map = btrfs_find_chunk_map(fs_info, logical, length);
3088 
3089 	if (unlikely(!map)) {
3090 		read_unlock(&fs_info->mapping_tree_lock);
3091 		btrfs_crit(fs_info,
3092 			   "unable to find chunk map for logical %llu length %llu",
3093 			   logical, length);
3094 		return ERR_PTR(-EINVAL);
3095 	}
3096 
3097 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3098 		read_unlock(&fs_info->mapping_tree_lock);
3099 		btrfs_crit(fs_info,
3100 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3101 			   logical, logical + length, map->start,
3102 			   map->start + map->chunk_len);
3103 		btrfs_free_chunk_map(map);
3104 		return ERR_PTR(-EINVAL);
3105 	}
3106 
3107 	/* Callers are responsible for dropping the reference. */
3108 	return map;
3109 }
3110 
3111 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3112 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3113 {
3114 	int i;
3115 
3116 	/*
3117 	 * Removing chunk items and updating the device items in the chunks btree
3118 	 * requires holding the chunk_mutex.
3119 	 * See the comment at btrfs_chunk_alloc() for the details.
3120 	 */
3121 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3122 
3123 	for (i = 0; i < map->num_stripes; i++) {
3124 		int ret;
3125 
3126 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3127 		if (ret)
3128 			return ret;
3129 	}
3130 
3131 	return btrfs_free_chunk(trans, chunk_offset);
3132 }
3133 
3134 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3135 {
3136 	struct btrfs_fs_info *fs_info = trans->fs_info;
3137 	struct btrfs_chunk_map *map;
3138 	u64 dev_extent_len = 0;
3139 	int i, ret = 0;
3140 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3141 
3142 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3143 	if (IS_ERR(map)) {
3144 		/*
3145 		 * This is a logic error, but we don't want to just rely on the
3146 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3147 		 * do anything we still error out.
3148 		 */
3149 		ASSERT(0);
3150 		return PTR_ERR(map);
3151 	}
3152 
3153 	/*
3154 	 * First delete the device extent items from the devices btree.
3155 	 * We take the device_list_mutex to avoid racing with the finishing phase
3156 	 * of a device replace operation. See the comment below before acquiring
3157 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3158 	 * because that can result in a deadlock when deleting the device extent
3159 	 * items from the devices btree - COWing an extent buffer from the btree
3160 	 * may result in allocating a new metadata chunk, which would attempt to
3161 	 * lock again fs_info->chunk_mutex.
3162 	 */
3163 	mutex_lock(&fs_devices->device_list_mutex);
3164 	for (i = 0; i < map->num_stripes; i++) {
3165 		struct btrfs_device *device = map->stripes[i].dev;
3166 		ret = btrfs_free_dev_extent(trans, device,
3167 					    map->stripes[i].physical,
3168 					    &dev_extent_len);
3169 		if (ret) {
3170 			mutex_unlock(&fs_devices->device_list_mutex);
3171 			btrfs_abort_transaction(trans, ret);
3172 			goto out;
3173 		}
3174 
3175 		if (device->bytes_used > 0) {
3176 			mutex_lock(&fs_info->chunk_mutex);
3177 			btrfs_device_set_bytes_used(device,
3178 					device->bytes_used - dev_extent_len);
3179 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3180 			btrfs_clear_space_info_full(fs_info);
3181 			mutex_unlock(&fs_info->chunk_mutex);
3182 		}
3183 	}
3184 	mutex_unlock(&fs_devices->device_list_mutex);
3185 
3186 	/*
3187 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3188 	 *
3189 	 * 1) Just like with the first phase of the chunk allocation, we must
3190 	 *    reserve system space, do all chunk btree updates and deletions, and
3191 	 *    update the system chunk array in the superblock while holding this
3192 	 *    mutex. This is for similar reasons as explained on the comment at
3193 	 *    the top of btrfs_chunk_alloc();
3194 	 *
3195 	 * 2) Prevent races with the final phase of a device replace operation
3196 	 *    that replaces the device object associated with the map's stripes,
3197 	 *    because the device object's id can change at any time during that
3198 	 *    final phase of the device replace operation
3199 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3200 	 *    replaced device and then see it with an ID of
3201 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3202 	 *    the device item, which does not exists on the chunk btree.
3203 	 *    The finishing phase of device replace acquires both the
3204 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3205 	 *    safe by just acquiring the chunk_mutex.
3206 	 */
3207 	trans->removing_chunk = true;
3208 	mutex_lock(&fs_info->chunk_mutex);
3209 
3210 	check_system_chunk(trans, map->type);
3211 
3212 	ret = remove_chunk_item(trans, map, chunk_offset);
3213 	/*
3214 	 * Normally we should not get -ENOSPC since we reserved space before
3215 	 * through the call to check_system_chunk().
3216 	 *
3217 	 * Despite our system space_info having enough free space, we may not
3218 	 * be able to allocate extents from its block groups, because all have
3219 	 * an incompatible profile, which will force us to allocate a new system
3220 	 * block group with the right profile, or right after we called
3221 	 * check_system_space() above, a scrub turned the only system block group
3222 	 * with enough free space into RO mode.
3223 	 * This is explained with more detail at do_chunk_alloc().
3224 	 *
3225 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3226 	 */
3227 	if (ret == -ENOSPC) {
3228 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3229 		struct btrfs_block_group *sys_bg;
3230 
3231 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3232 		if (IS_ERR(sys_bg)) {
3233 			ret = PTR_ERR(sys_bg);
3234 			btrfs_abort_transaction(trans, ret);
3235 			goto out;
3236 		}
3237 
3238 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3239 		if (ret) {
3240 			btrfs_abort_transaction(trans, ret);
3241 			goto out;
3242 		}
3243 
3244 		ret = remove_chunk_item(trans, map, chunk_offset);
3245 		if (ret) {
3246 			btrfs_abort_transaction(trans, ret);
3247 			goto out;
3248 		}
3249 	} else if (ret) {
3250 		btrfs_abort_transaction(trans, ret);
3251 		goto out;
3252 	}
3253 
3254 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3255 
3256 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3257 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3258 		if (ret) {
3259 			btrfs_abort_transaction(trans, ret);
3260 			goto out;
3261 		}
3262 	}
3263 
3264 	mutex_unlock(&fs_info->chunk_mutex);
3265 	trans->removing_chunk = false;
3266 
3267 	/*
3268 	 * We are done with chunk btree updates and deletions, so release the
3269 	 * system space we previously reserved (with check_system_chunk()).
3270 	 */
3271 	btrfs_trans_release_chunk_metadata(trans);
3272 
3273 	ret = btrfs_remove_block_group(trans, map);
3274 	if (ret) {
3275 		btrfs_abort_transaction(trans, ret);
3276 		goto out;
3277 	}
3278 
3279 out:
3280 	if (trans->removing_chunk) {
3281 		mutex_unlock(&fs_info->chunk_mutex);
3282 		trans->removing_chunk = false;
3283 	}
3284 	/* once for us */
3285 	btrfs_free_chunk_map(map);
3286 	return ret;
3287 }
3288 
3289 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3290 {
3291 	struct btrfs_root *root = fs_info->chunk_root;
3292 	struct btrfs_trans_handle *trans;
3293 	struct btrfs_block_group *block_group;
3294 	u64 length;
3295 	int ret;
3296 
3297 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3298 		btrfs_err(fs_info,
3299 			  "relocate: not supported on extent tree v2 yet");
3300 		return -EINVAL;
3301 	}
3302 
3303 	/*
3304 	 * Prevent races with automatic removal of unused block groups.
3305 	 * After we relocate and before we remove the chunk with offset
3306 	 * chunk_offset, automatic removal of the block group can kick in,
3307 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3308 	 *
3309 	 * Make sure to acquire this mutex before doing a tree search (dev
3310 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3311 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3312 	 * we release the path used to search the chunk/dev tree and before
3313 	 * the current task acquires this mutex and calls us.
3314 	 */
3315 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3316 
3317 	/* step one, relocate all the extents inside this chunk */
3318 	btrfs_scrub_pause(fs_info);
3319 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3320 	btrfs_scrub_continue(fs_info);
3321 	if (ret) {
3322 		/*
3323 		 * If we had a transaction abort, stop all running scrubs.
3324 		 * See transaction.c:cleanup_transaction() why we do it here.
3325 		 */
3326 		if (BTRFS_FS_ERROR(fs_info))
3327 			btrfs_scrub_cancel(fs_info);
3328 		return ret;
3329 	}
3330 
3331 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3332 	if (!block_group)
3333 		return -ENOENT;
3334 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3335 	length = block_group->length;
3336 	btrfs_put_block_group(block_group);
3337 
3338 	/*
3339 	 * On a zoned file system, discard the whole block group, this will
3340 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3341 	 * resetting the zone fails, don't treat it as a fatal problem from the
3342 	 * filesystem's point of view.
3343 	 */
3344 	if (btrfs_is_zoned(fs_info)) {
3345 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3346 		if (ret)
3347 			btrfs_info(fs_info,
3348 				"failed to reset zone %llu after relocation",
3349 				chunk_offset);
3350 	}
3351 
3352 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3353 						     chunk_offset);
3354 	if (IS_ERR(trans)) {
3355 		ret = PTR_ERR(trans);
3356 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3357 		return ret;
3358 	}
3359 
3360 	/*
3361 	 * step two, delete the device extents and the
3362 	 * chunk tree entries
3363 	 */
3364 	ret = btrfs_remove_chunk(trans, chunk_offset);
3365 	btrfs_end_transaction(trans);
3366 	return ret;
3367 }
3368 
3369 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3370 {
3371 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3372 	struct btrfs_path *path;
3373 	struct extent_buffer *leaf;
3374 	struct btrfs_chunk *chunk;
3375 	struct btrfs_key key;
3376 	struct btrfs_key found_key;
3377 	u64 chunk_type;
3378 	bool retried = false;
3379 	int failed = 0;
3380 	int ret;
3381 
3382 	path = btrfs_alloc_path();
3383 	if (!path)
3384 		return -ENOMEM;
3385 
3386 again:
3387 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3388 	key.offset = (u64)-1;
3389 	key.type = BTRFS_CHUNK_ITEM_KEY;
3390 
3391 	while (1) {
3392 		mutex_lock(&fs_info->reclaim_bgs_lock);
3393 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3394 		if (ret < 0) {
3395 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3396 			goto error;
3397 		}
3398 		BUG_ON(ret == 0); /* Corruption */
3399 
3400 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3401 					  key.type);
3402 		if (ret)
3403 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3404 		if (ret < 0)
3405 			goto error;
3406 		if (ret > 0)
3407 			break;
3408 
3409 		leaf = path->nodes[0];
3410 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3411 
3412 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3413 				       struct btrfs_chunk);
3414 		chunk_type = btrfs_chunk_type(leaf, chunk);
3415 		btrfs_release_path(path);
3416 
3417 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3418 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3419 			if (ret == -ENOSPC)
3420 				failed++;
3421 			else
3422 				BUG_ON(ret);
3423 		}
3424 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3425 
3426 		if (found_key.offset == 0)
3427 			break;
3428 		key.offset = found_key.offset - 1;
3429 	}
3430 	ret = 0;
3431 	if (failed && !retried) {
3432 		failed = 0;
3433 		retried = true;
3434 		goto again;
3435 	} else if (WARN_ON(failed && retried)) {
3436 		ret = -ENOSPC;
3437 	}
3438 error:
3439 	btrfs_free_path(path);
3440 	return ret;
3441 }
3442 
3443 /*
3444  * return 1 : allocate a data chunk successfully,
3445  * return <0: errors during allocating a data chunk,
3446  * return 0 : no need to allocate a data chunk.
3447  */
3448 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3449 				      u64 chunk_offset)
3450 {
3451 	struct btrfs_block_group *cache;
3452 	u64 bytes_used;
3453 	u64 chunk_type;
3454 
3455 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3456 	ASSERT(cache);
3457 	chunk_type = cache->flags;
3458 	btrfs_put_block_group(cache);
3459 
3460 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3461 		return 0;
3462 
3463 	spin_lock(&fs_info->data_sinfo->lock);
3464 	bytes_used = fs_info->data_sinfo->bytes_used;
3465 	spin_unlock(&fs_info->data_sinfo->lock);
3466 
3467 	if (!bytes_used) {
3468 		struct btrfs_trans_handle *trans;
3469 		int ret;
3470 
3471 		trans =	btrfs_join_transaction(fs_info->tree_root);
3472 		if (IS_ERR(trans))
3473 			return PTR_ERR(trans);
3474 
3475 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3476 		btrfs_end_transaction(trans);
3477 		if (ret < 0)
3478 			return ret;
3479 		return 1;
3480 	}
3481 
3482 	return 0;
3483 }
3484 
3485 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3486 			       struct btrfs_balance_control *bctl)
3487 {
3488 	struct btrfs_root *root = fs_info->tree_root;
3489 	struct btrfs_trans_handle *trans;
3490 	struct btrfs_balance_item *item;
3491 	struct btrfs_disk_balance_args disk_bargs;
3492 	struct btrfs_path *path;
3493 	struct extent_buffer *leaf;
3494 	struct btrfs_key key;
3495 	int ret, err;
3496 
3497 	path = btrfs_alloc_path();
3498 	if (!path)
3499 		return -ENOMEM;
3500 
3501 	trans = btrfs_start_transaction(root, 0);
3502 	if (IS_ERR(trans)) {
3503 		btrfs_free_path(path);
3504 		return PTR_ERR(trans);
3505 	}
3506 
3507 	key.objectid = BTRFS_BALANCE_OBJECTID;
3508 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3509 	key.offset = 0;
3510 
3511 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3512 				      sizeof(*item));
3513 	if (ret)
3514 		goto out;
3515 
3516 	leaf = path->nodes[0];
3517 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3518 
3519 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3520 
3521 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3522 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3523 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3524 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3525 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3526 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3527 
3528 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3529 
3530 	btrfs_mark_buffer_dirty(trans, leaf);
3531 out:
3532 	btrfs_free_path(path);
3533 	err = btrfs_commit_transaction(trans);
3534 	if (err && !ret)
3535 		ret = err;
3536 	return ret;
3537 }
3538 
3539 static int del_balance_item(struct btrfs_fs_info *fs_info)
3540 {
3541 	struct btrfs_root *root = fs_info->tree_root;
3542 	struct btrfs_trans_handle *trans;
3543 	struct btrfs_path *path;
3544 	struct btrfs_key key;
3545 	int ret, err;
3546 
3547 	path = btrfs_alloc_path();
3548 	if (!path)
3549 		return -ENOMEM;
3550 
3551 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3552 	if (IS_ERR(trans)) {
3553 		btrfs_free_path(path);
3554 		return PTR_ERR(trans);
3555 	}
3556 
3557 	key.objectid = BTRFS_BALANCE_OBJECTID;
3558 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3559 	key.offset = 0;
3560 
3561 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3562 	if (ret < 0)
3563 		goto out;
3564 	if (ret > 0) {
3565 		ret = -ENOENT;
3566 		goto out;
3567 	}
3568 
3569 	ret = btrfs_del_item(trans, root, path);
3570 out:
3571 	btrfs_free_path(path);
3572 	err = btrfs_commit_transaction(trans);
3573 	if (err && !ret)
3574 		ret = err;
3575 	return ret;
3576 }
3577 
3578 /*
3579  * This is a heuristic used to reduce the number of chunks balanced on
3580  * resume after balance was interrupted.
3581  */
3582 static void update_balance_args(struct btrfs_balance_control *bctl)
3583 {
3584 	/*
3585 	 * Turn on soft mode for chunk types that were being converted.
3586 	 */
3587 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3592 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3593 
3594 	/*
3595 	 * Turn on usage filter if is not already used.  The idea is
3596 	 * that chunks that we have already balanced should be
3597 	 * reasonably full.  Don't do it for chunks that are being
3598 	 * converted - that will keep us from relocating unconverted
3599 	 * (albeit full) chunks.
3600 	 */
3601 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3602 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3603 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3604 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3605 		bctl->data.usage = 90;
3606 	}
3607 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3608 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3609 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3610 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3611 		bctl->sys.usage = 90;
3612 	}
3613 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3614 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3615 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3616 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3617 		bctl->meta.usage = 90;
3618 	}
3619 }
3620 
3621 /*
3622  * Clear the balance status in fs_info and delete the balance item from disk.
3623  */
3624 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3625 {
3626 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3627 	int ret;
3628 
3629 	BUG_ON(!fs_info->balance_ctl);
3630 
3631 	spin_lock(&fs_info->balance_lock);
3632 	fs_info->balance_ctl = NULL;
3633 	spin_unlock(&fs_info->balance_lock);
3634 
3635 	kfree(bctl);
3636 	ret = del_balance_item(fs_info);
3637 	if (ret)
3638 		btrfs_handle_fs_error(fs_info, ret, NULL);
3639 }
3640 
3641 /*
3642  * Balance filters.  Return 1 if chunk should be filtered out
3643  * (should not be balanced).
3644  */
3645 static int chunk_profiles_filter(u64 chunk_type,
3646 				 struct btrfs_balance_args *bargs)
3647 {
3648 	chunk_type = chunk_to_extended(chunk_type) &
3649 				BTRFS_EXTENDED_PROFILE_MASK;
3650 
3651 	if (bargs->profiles & chunk_type)
3652 		return 0;
3653 
3654 	return 1;
3655 }
3656 
3657 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3658 			      struct btrfs_balance_args *bargs)
3659 {
3660 	struct btrfs_block_group *cache;
3661 	u64 chunk_used;
3662 	u64 user_thresh_min;
3663 	u64 user_thresh_max;
3664 	int ret = 1;
3665 
3666 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3667 	chunk_used = cache->used;
3668 
3669 	if (bargs->usage_min == 0)
3670 		user_thresh_min = 0;
3671 	else
3672 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3673 
3674 	if (bargs->usage_max == 0)
3675 		user_thresh_max = 1;
3676 	else if (bargs->usage_max > 100)
3677 		user_thresh_max = cache->length;
3678 	else
3679 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3680 
3681 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3682 		ret = 0;
3683 
3684 	btrfs_put_block_group(cache);
3685 	return ret;
3686 }
3687 
3688 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3689 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3690 {
3691 	struct btrfs_block_group *cache;
3692 	u64 chunk_used, user_thresh;
3693 	int ret = 1;
3694 
3695 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3696 	chunk_used = cache->used;
3697 
3698 	if (bargs->usage_min == 0)
3699 		user_thresh = 1;
3700 	else if (bargs->usage > 100)
3701 		user_thresh = cache->length;
3702 	else
3703 		user_thresh = mult_perc(cache->length, bargs->usage);
3704 
3705 	if (chunk_used < user_thresh)
3706 		ret = 0;
3707 
3708 	btrfs_put_block_group(cache);
3709 	return ret;
3710 }
3711 
3712 static int chunk_devid_filter(struct extent_buffer *leaf,
3713 			      struct btrfs_chunk *chunk,
3714 			      struct btrfs_balance_args *bargs)
3715 {
3716 	struct btrfs_stripe *stripe;
3717 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3718 	int i;
3719 
3720 	for (i = 0; i < num_stripes; i++) {
3721 		stripe = btrfs_stripe_nr(chunk, i);
3722 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3723 			return 0;
3724 	}
3725 
3726 	return 1;
3727 }
3728 
3729 static u64 calc_data_stripes(u64 type, int num_stripes)
3730 {
3731 	const int index = btrfs_bg_flags_to_raid_index(type);
3732 	const int ncopies = btrfs_raid_array[index].ncopies;
3733 	const int nparity = btrfs_raid_array[index].nparity;
3734 
3735 	return (num_stripes - nparity) / ncopies;
3736 }
3737 
3738 /* [pstart, pend) */
3739 static int chunk_drange_filter(struct extent_buffer *leaf,
3740 			       struct btrfs_chunk *chunk,
3741 			       struct btrfs_balance_args *bargs)
3742 {
3743 	struct btrfs_stripe *stripe;
3744 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3745 	u64 stripe_offset;
3746 	u64 stripe_length;
3747 	u64 type;
3748 	int factor;
3749 	int i;
3750 
3751 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3752 		return 0;
3753 
3754 	type = btrfs_chunk_type(leaf, chunk);
3755 	factor = calc_data_stripes(type, num_stripes);
3756 
3757 	for (i = 0; i < num_stripes; i++) {
3758 		stripe = btrfs_stripe_nr(chunk, i);
3759 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3760 			continue;
3761 
3762 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3763 		stripe_length = btrfs_chunk_length(leaf, chunk);
3764 		stripe_length = div_u64(stripe_length, factor);
3765 
3766 		if (stripe_offset < bargs->pend &&
3767 		    stripe_offset + stripe_length > bargs->pstart)
3768 			return 0;
3769 	}
3770 
3771 	return 1;
3772 }
3773 
3774 /* [vstart, vend) */
3775 static int chunk_vrange_filter(struct extent_buffer *leaf,
3776 			       struct btrfs_chunk *chunk,
3777 			       u64 chunk_offset,
3778 			       struct btrfs_balance_args *bargs)
3779 {
3780 	if (chunk_offset < bargs->vend &&
3781 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3782 		/* at least part of the chunk is inside this vrange */
3783 		return 0;
3784 
3785 	return 1;
3786 }
3787 
3788 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3789 			       struct btrfs_chunk *chunk,
3790 			       struct btrfs_balance_args *bargs)
3791 {
3792 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3793 
3794 	if (bargs->stripes_min <= num_stripes
3795 			&& num_stripes <= bargs->stripes_max)
3796 		return 0;
3797 
3798 	return 1;
3799 }
3800 
3801 static int chunk_soft_convert_filter(u64 chunk_type,
3802 				     struct btrfs_balance_args *bargs)
3803 {
3804 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3805 		return 0;
3806 
3807 	chunk_type = chunk_to_extended(chunk_type) &
3808 				BTRFS_EXTENDED_PROFILE_MASK;
3809 
3810 	if (bargs->target == chunk_type)
3811 		return 1;
3812 
3813 	return 0;
3814 }
3815 
3816 static int should_balance_chunk(struct extent_buffer *leaf,
3817 				struct btrfs_chunk *chunk, u64 chunk_offset)
3818 {
3819 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3820 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3821 	struct btrfs_balance_args *bargs = NULL;
3822 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3823 
3824 	/* type filter */
3825 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3826 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3827 		return 0;
3828 	}
3829 
3830 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3831 		bargs = &bctl->data;
3832 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3833 		bargs = &bctl->sys;
3834 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3835 		bargs = &bctl->meta;
3836 
3837 	/* profiles filter */
3838 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3839 	    chunk_profiles_filter(chunk_type, bargs)) {
3840 		return 0;
3841 	}
3842 
3843 	/* usage filter */
3844 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3845 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3846 		return 0;
3847 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3848 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3849 		return 0;
3850 	}
3851 
3852 	/* devid filter */
3853 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3854 	    chunk_devid_filter(leaf, chunk, bargs)) {
3855 		return 0;
3856 	}
3857 
3858 	/* drange filter, makes sense only with devid filter */
3859 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3860 	    chunk_drange_filter(leaf, chunk, bargs)) {
3861 		return 0;
3862 	}
3863 
3864 	/* vrange filter */
3865 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3866 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3867 		return 0;
3868 	}
3869 
3870 	/* stripes filter */
3871 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3872 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3873 		return 0;
3874 	}
3875 
3876 	/* soft profile changing mode */
3877 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3878 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3879 		return 0;
3880 	}
3881 
3882 	/*
3883 	 * limited by count, must be the last filter
3884 	 */
3885 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3886 		if (bargs->limit == 0)
3887 			return 0;
3888 		else
3889 			bargs->limit--;
3890 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3891 		/*
3892 		 * Same logic as the 'limit' filter; the minimum cannot be
3893 		 * determined here because we do not have the global information
3894 		 * about the count of all chunks that satisfy the filters.
3895 		 */
3896 		if (bargs->limit_max == 0)
3897 			return 0;
3898 		else
3899 			bargs->limit_max--;
3900 	}
3901 
3902 	return 1;
3903 }
3904 
3905 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3906 {
3907 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3908 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3909 	u64 chunk_type;
3910 	struct btrfs_chunk *chunk;
3911 	struct btrfs_path *path = NULL;
3912 	struct btrfs_key key;
3913 	struct btrfs_key found_key;
3914 	struct extent_buffer *leaf;
3915 	int slot;
3916 	int ret;
3917 	int enospc_errors = 0;
3918 	bool counting = true;
3919 	/* The single value limit and min/max limits use the same bytes in the */
3920 	u64 limit_data = bctl->data.limit;
3921 	u64 limit_meta = bctl->meta.limit;
3922 	u64 limit_sys = bctl->sys.limit;
3923 	u32 count_data = 0;
3924 	u32 count_meta = 0;
3925 	u32 count_sys = 0;
3926 	int chunk_reserved = 0;
3927 
3928 	path = btrfs_alloc_path();
3929 	if (!path) {
3930 		ret = -ENOMEM;
3931 		goto error;
3932 	}
3933 
3934 	/* zero out stat counters */
3935 	spin_lock(&fs_info->balance_lock);
3936 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3937 	spin_unlock(&fs_info->balance_lock);
3938 again:
3939 	if (!counting) {
3940 		/*
3941 		 * The single value limit and min/max limits use the same bytes
3942 		 * in the
3943 		 */
3944 		bctl->data.limit = limit_data;
3945 		bctl->meta.limit = limit_meta;
3946 		bctl->sys.limit = limit_sys;
3947 	}
3948 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3949 	key.offset = (u64)-1;
3950 	key.type = BTRFS_CHUNK_ITEM_KEY;
3951 
3952 	while (1) {
3953 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3954 		    atomic_read(&fs_info->balance_cancel_req)) {
3955 			ret = -ECANCELED;
3956 			goto error;
3957 		}
3958 
3959 		mutex_lock(&fs_info->reclaim_bgs_lock);
3960 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3961 		if (ret < 0) {
3962 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3963 			goto error;
3964 		}
3965 
3966 		/*
3967 		 * this shouldn't happen, it means the last relocate
3968 		 * failed
3969 		 */
3970 		if (ret == 0)
3971 			BUG(); /* FIXME break ? */
3972 
3973 		ret = btrfs_previous_item(chunk_root, path, 0,
3974 					  BTRFS_CHUNK_ITEM_KEY);
3975 		if (ret) {
3976 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3977 			ret = 0;
3978 			break;
3979 		}
3980 
3981 		leaf = path->nodes[0];
3982 		slot = path->slots[0];
3983 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3984 
3985 		if (found_key.objectid != key.objectid) {
3986 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3987 			break;
3988 		}
3989 
3990 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3991 		chunk_type = btrfs_chunk_type(leaf, chunk);
3992 
3993 		if (!counting) {
3994 			spin_lock(&fs_info->balance_lock);
3995 			bctl->stat.considered++;
3996 			spin_unlock(&fs_info->balance_lock);
3997 		}
3998 
3999 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4000 
4001 		btrfs_release_path(path);
4002 		if (!ret) {
4003 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4004 			goto loop;
4005 		}
4006 
4007 		if (counting) {
4008 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4009 			spin_lock(&fs_info->balance_lock);
4010 			bctl->stat.expected++;
4011 			spin_unlock(&fs_info->balance_lock);
4012 
4013 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4014 				count_data++;
4015 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4016 				count_sys++;
4017 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4018 				count_meta++;
4019 
4020 			goto loop;
4021 		}
4022 
4023 		/*
4024 		 * Apply limit_min filter, no need to check if the LIMITS
4025 		 * filter is used, limit_min is 0 by default
4026 		 */
4027 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4028 					count_data < bctl->data.limit_min)
4029 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4030 					count_meta < bctl->meta.limit_min)
4031 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4032 					count_sys < bctl->sys.limit_min)) {
4033 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4034 			goto loop;
4035 		}
4036 
4037 		if (!chunk_reserved) {
4038 			/*
4039 			 * We may be relocating the only data chunk we have,
4040 			 * which could potentially end up with losing data's
4041 			 * raid profile, so lets allocate an empty one in
4042 			 * advance.
4043 			 */
4044 			ret = btrfs_may_alloc_data_chunk(fs_info,
4045 							 found_key.offset);
4046 			if (ret < 0) {
4047 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4048 				goto error;
4049 			} else if (ret == 1) {
4050 				chunk_reserved = 1;
4051 			}
4052 		}
4053 
4054 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4055 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4056 		if (ret == -ENOSPC) {
4057 			enospc_errors++;
4058 		} else if (ret == -ETXTBSY) {
4059 			btrfs_info(fs_info,
4060 	   "skipping relocation of block group %llu due to active swapfile",
4061 				   found_key.offset);
4062 			ret = 0;
4063 		} else if (ret) {
4064 			goto error;
4065 		} else {
4066 			spin_lock(&fs_info->balance_lock);
4067 			bctl->stat.completed++;
4068 			spin_unlock(&fs_info->balance_lock);
4069 		}
4070 loop:
4071 		if (found_key.offset == 0)
4072 			break;
4073 		key.offset = found_key.offset - 1;
4074 	}
4075 
4076 	if (counting) {
4077 		btrfs_release_path(path);
4078 		counting = false;
4079 		goto again;
4080 	}
4081 error:
4082 	btrfs_free_path(path);
4083 	if (enospc_errors) {
4084 		btrfs_info(fs_info, "%d enospc errors during balance",
4085 			   enospc_errors);
4086 		if (!ret)
4087 			ret = -ENOSPC;
4088 	}
4089 
4090 	return ret;
4091 }
4092 
4093 /*
4094  * See if a given profile is valid and reduced.
4095  *
4096  * @flags:     profile to validate
4097  * @extended:  if true @flags is treated as an extended profile
4098  */
4099 static int alloc_profile_is_valid(u64 flags, int extended)
4100 {
4101 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4102 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4103 
4104 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4105 
4106 	/* 1) check that all other bits are zeroed */
4107 	if (flags & ~mask)
4108 		return 0;
4109 
4110 	/* 2) see if profile is reduced */
4111 	if (flags == 0)
4112 		return !extended; /* "0" is valid for usual profiles */
4113 
4114 	return has_single_bit_set(flags);
4115 }
4116 
4117 /*
4118  * Validate target profile against allowed profiles and return true if it's OK.
4119  * Otherwise print the error message and return false.
4120  */
4121 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4122 		const struct btrfs_balance_args *bargs,
4123 		u64 allowed, const char *type)
4124 {
4125 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4126 		return true;
4127 
4128 	/* Profile is valid and does not have bits outside of the allowed set */
4129 	if (alloc_profile_is_valid(bargs->target, 1) &&
4130 	    (bargs->target & ~allowed) == 0)
4131 		return true;
4132 
4133 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4134 			type, btrfs_bg_type_to_raid_name(bargs->target));
4135 	return false;
4136 }
4137 
4138 /*
4139  * Fill @buf with textual description of balance filter flags @bargs, up to
4140  * @size_buf including the terminating null. The output may be trimmed if it
4141  * does not fit into the provided buffer.
4142  */
4143 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4144 				 u32 size_buf)
4145 {
4146 	int ret;
4147 	u32 size_bp = size_buf;
4148 	char *bp = buf;
4149 	u64 flags = bargs->flags;
4150 	char tmp_buf[128] = {'\0'};
4151 
4152 	if (!flags)
4153 		return;
4154 
4155 #define CHECK_APPEND_NOARG(a)						\
4156 	do {								\
4157 		ret = snprintf(bp, size_bp, (a));			\
4158 		if (ret < 0 || ret >= size_bp)				\
4159 			goto out_overflow;				\
4160 		size_bp -= ret;						\
4161 		bp += ret;						\
4162 	} while (0)
4163 
4164 #define CHECK_APPEND_1ARG(a, v1)					\
4165 	do {								\
4166 		ret = snprintf(bp, size_bp, (a), (v1));			\
4167 		if (ret < 0 || ret >= size_bp)				\
4168 			goto out_overflow;				\
4169 		size_bp -= ret;						\
4170 		bp += ret;						\
4171 	} while (0)
4172 
4173 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4174 	do {								\
4175 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4176 		if (ret < 0 || ret >= size_bp)				\
4177 			goto out_overflow;				\
4178 		size_bp -= ret;						\
4179 		bp += ret;						\
4180 	} while (0)
4181 
4182 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4183 		CHECK_APPEND_1ARG("convert=%s,",
4184 				  btrfs_bg_type_to_raid_name(bargs->target));
4185 
4186 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4187 		CHECK_APPEND_NOARG("soft,");
4188 
4189 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4190 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4191 					    sizeof(tmp_buf));
4192 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4193 	}
4194 
4195 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4196 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4197 
4198 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4199 		CHECK_APPEND_2ARG("usage=%u..%u,",
4200 				  bargs->usage_min, bargs->usage_max);
4201 
4202 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4203 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4204 
4205 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4206 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4207 				  bargs->pstart, bargs->pend);
4208 
4209 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4210 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4211 				  bargs->vstart, bargs->vend);
4212 
4213 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4214 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4215 
4216 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4217 		CHECK_APPEND_2ARG("limit=%u..%u,",
4218 				bargs->limit_min, bargs->limit_max);
4219 
4220 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4221 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4222 				  bargs->stripes_min, bargs->stripes_max);
4223 
4224 #undef CHECK_APPEND_2ARG
4225 #undef CHECK_APPEND_1ARG
4226 #undef CHECK_APPEND_NOARG
4227 
4228 out_overflow:
4229 
4230 	if (size_bp < size_buf)
4231 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4232 	else
4233 		buf[0] = '\0';
4234 }
4235 
4236 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4237 {
4238 	u32 size_buf = 1024;
4239 	char tmp_buf[192] = {'\0'};
4240 	char *buf;
4241 	char *bp;
4242 	u32 size_bp = size_buf;
4243 	int ret;
4244 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4245 
4246 	buf = kzalloc(size_buf, GFP_KERNEL);
4247 	if (!buf)
4248 		return;
4249 
4250 	bp = buf;
4251 
4252 #define CHECK_APPEND_1ARG(a, v1)					\
4253 	do {								\
4254 		ret = snprintf(bp, size_bp, (a), (v1));			\
4255 		if (ret < 0 || ret >= size_bp)				\
4256 			goto out_overflow;				\
4257 		size_bp -= ret;						\
4258 		bp += ret;						\
4259 	} while (0)
4260 
4261 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4262 		CHECK_APPEND_1ARG("%s", "-f ");
4263 
4264 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4265 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4266 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4267 	}
4268 
4269 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4270 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4271 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4272 	}
4273 
4274 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4275 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4276 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4277 	}
4278 
4279 #undef CHECK_APPEND_1ARG
4280 
4281 out_overflow:
4282 
4283 	if (size_bp < size_buf)
4284 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4285 	btrfs_info(fs_info, "balance: %s %s",
4286 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4287 		   "resume" : "start", buf);
4288 
4289 	kfree(buf);
4290 }
4291 
4292 /*
4293  * Should be called with balance mutexe held
4294  */
4295 int btrfs_balance(struct btrfs_fs_info *fs_info,
4296 		  struct btrfs_balance_control *bctl,
4297 		  struct btrfs_ioctl_balance_args *bargs)
4298 {
4299 	u64 meta_target, data_target;
4300 	u64 allowed;
4301 	int mixed = 0;
4302 	int ret;
4303 	u64 num_devices;
4304 	unsigned seq;
4305 	bool reducing_redundancy;
4306 	bool paused = false;
4307 	int i;
4308 
4309 	if (btrfs_fs_closing(fs_info) ||
4310 	    atomic_read(&fs_info->balance_pause_req) ||
4311 	    btrfs_should_cancel_balance(fs_info)) {
4312 		ret = -EINVAL;
4313 		goto out;
4314 	}
4315 
4316 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4317 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4318 		mixed = 1;
4319 
4320 	/*
4321 	 * In case of mixed groups both data and meta should be picked,
4322 	 * and identical options should be given for both of them.
4323 	 */
4324 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4325 	if (mixed && (bctl->flags & allowed)) {
4326 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4327 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4328 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4329 			btrfs_err(fs_info,
4330 	  "balance: mixed groups data and metadata options must be the same");
4331 			ret = -EINVAL;
4332 			goto out;
4333 		}
4334 	}
4335 
4336 	/*
4337 	 * rw_devices will not change at the moment, device add/delete/replace
4338 	 * are exclusive
4339 	 */
4340 	num_devices = fs_info->fs_devices->rw_devices;
4341 
4342 	/*
4343 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4344 	 * special bit for it, to make it easier to distinguish.  Thus we need
4345 	 * to set it manually, or balance would refuse the profile.
4346 	 */
4347 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4348 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4349 		if (num_devices >= btrfs_raid_array[i].devs_min)
4350 			allowed |= btrfs_raid_array[i].bg_flag;
4351 
4352 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4353 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4354 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4355 		ret = -EINVAL;
4356 		goto out;
4357 	}
4358 
4359 	/*
4360 	 * Allow to reduce metadata or system integrity only if force set for
4361 	 * profiles with redundancy (copies, parity)
4362 	 */
4363 	allowed = 0;
4364 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4365 		if (btrfs_raid_array[i].ncopies >= 2 ||
4366 		    btrfs_raid_array[i].tolerated_failures >= 1)
4367 			allowed |= btrfs_raid_array[i].bg_flag;
4368 	}
4369 	do {
4370 		seq = read_seqbegin(&fs_info->profiles_lock);
4371 
4372 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4373 		     (fs_info->avail_system_alloc_bits & allowed) &&
4374 		     !(bctl->sys.target & allowed)) ||
4375 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4376 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4377 		     !(bctl->meta.target & allowed)))
4378 			reducing_redundancy = true;
4379 		else
4380 			reducing_redundancy = false;
4381 
4382 		/* if we're not converting, the target field is uninitialized */
4383 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4385 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4386 			bctl->data.target : fs_info->avail_data_alloc_bits;
4387 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4388 
4389 	if (reducing_redundancy) {
4390 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4391 			btrfs_info(fs_info,
4392 			   "balance: force reducing metadata redundancy");
4393 		} else {
4394 			btrfs_err(fs_info,
4395 	"balance: reduces metadata redundancy, use --force if you want this");
4396 			ret = -EINVAL;
4397 			goto out;
4398 		}
4399 	}
4400 
4401 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4402 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4403 		btrfs_warn(fs_info,
4404 	"balance: metadata profile %s has lower redundancy than data profile %s",
4405 				btrfs_bg_type_to_raid_name(meta_target),
4406 				btrfs_bg_type_to_raid_name(data_target));
4407 	}
4408 
4409 	ret = insert_balance_item(fs_info, bctl);
4410 	if (ret && ret != -EEXIST)
4411 		goto out;
4412 
4413 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4414 		BUG_ON(ret == -EEXIST);
4415 		BUG_ON(fs_info->balance_ctl);
4416 		spin_lock(&fs_info->balance_lock);
4417 		fs_info->balance_ctl = bctl;
4418 		spin_unlock(&fs_info->balance_lock);
4419 	} else {
4420 		BUG_ON(ret != -EEXIST);
4421 		spin_lock(&fs_info->balance_lock);
4422 		update_balance_args(bctl);
4423 		spin_unlock(&fs_info->balance_lock);
4424 	}
4425 
4426 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4427 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4428 	describe_balance_start_or_resume(fs_info);
4429 	mutex_unlock(&fs_info->balance_mutex);
4430 
4431 	ret = __btrfs_balance(fs_info);
4432 
4433 	mutex_lock(&fs_info->balance_mutex);
4434 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4435 		btrfs_info(fs_info, "balance: paused");
4436 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4437 		paused = true;
4438 	}
4439 	/*
4440 	 * Balance can be canceled by:
4441 	 *
4442 	 * - Regular cancel request
4443 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4444 	 *
4445 	 * - Fatal signal to "btrfs" process
4446 	 *   Either the signal caught by wait_reserve_ticket() and callers
4447 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4448 	 *   got -ECANCELED.
4449 	 *   Either way, in this case balance_cancel_req = 0, and
4450 	 *   ret == -EINTR or ret == -ECANCELED.
4451 	 *
4452 	 * So here we only check the return value to catch canceled balance.
4453 	 */
4454 	else if (ret == -ECANCELED || ret == -EINTR)
4455 		btrfs_info(fs_info, "balance: canceled");
4456 	else
4457 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4458 
4459 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4460 
4461 	if (bargs) {
4462 		memset(bargs, 0, sizeof(*bargs));
4463 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4464 	}
4465 
4466 	/* We didn't pause, we can clean everything up. */
4467 	if (!paused) {
4468 		reset_balance_state(fs_info);
4469 		btrfs_exclop_finish(fs_info);
4470 	}
4471 
4472 	wake_up(&fs_info->balance_wait_q);
4473 
4474 	return ret;
4475 out:
4476 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4477 		reset_balance_state(fs_info);
4478 	else
4479 		kfree(bctl);
4480 	btrfs_exclop_finish(fs_info);
4481 
4482 	return ret;
4483 }
4484 
4485 static int balance_kthread(void *data)
4486 {
4487 	struct btrfs_fs_info *fs_info = data;
4488 	int ret = 0;
4489 
4490 	sb_start_write(fs_info->sb);
4491 	mutex_lock(&fs_info->balance_mutex);
4492 	if (fs_info->balance_ctl)
4493 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4494 	mutex_unlock(&fs_info->balance_mutex);
4495 	sb_end_write(fs_info->sb);
4496 
4497 	return ret;
4498 }
4499 
4500 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4501 {
4502 	struct task_struct *tsk;
4503 
4504 	mutex_lock(&fs_info->balance_mutex);
4505 	if (!fs_info->balance_ctl) {
4506 		mutex_unlock(&fs_info->balance_mutex);
4507 		return 0;
4508 	}
4509 	mutex_unlock(&fs_info->balance_mutex);
4510 
4511 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4512 		btrfs_info(fs_info, "balance: resume skipped");
4513 		return 0;
4514 	}
4515 
4516 	spin_lock(&fs_info->super_lock);
4517 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4518 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4519 	spin_unlock(&fs_info->super_lock);
4520 	/*
4521 	 * A ro->rw remount sequence should continue with the paused balance
4522 	 * regardless of who pauses it, system or the user as of now, so set
4523 	 * the resume flag.
4524 	 */
4525 	spin_lock(&fs_info->balance_lock);
4526 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4527 	spin_unlock(&fs_info->balance_lock);
4528 
4529 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4530 	return PTR_ERR_OR_ZERO(tsk);
4531 }
4532 
4533 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4534 {
4535 	struct btrfs_balance_control *bctl;
4536 	struct btrfs_balance_item *item;
4537 	struct btrfs_disk_balance_args disk_bargs;
4538 	struct btrfs_path *path;
4539 	struct extent_buffer *leaf;
4540 	struct btrfs_key key;
4541 	int ret;
4542 
4543 	path = btrfs_alloc_path();
4544 	if (!path)
4545 		return -ENOMEM;
4546 
4547 	key.objectid = BTRFS_BALANCE_OBJECTID;
4548 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4549 	key.offset = 0;
4550 
4551 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4552 	if (ret < 0)
4553 		goto out;
4554 	if (ret > 0) { /* ret = -ENOENT; */
4555 		ret = 0;
4556 		goto out;
4557 	}
4558 
4559 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4560 	if (!bctl) {
4561 		ret = -ENOMEM;
4562 		goto out;
4563 	}
4564 
4565 	leaf = path->nodes[0];
4566 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4567 
4568 	bctl->flags = btrfs_balance_flags(leaf, item);
4569 	bctl->flags |= BTRFS_BALANCE_RESUME;
4570 
4571 	btrfs_balance_data(leaf, item, &disk_bargs);
4572 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4573 	btrfs_balance_meta(leaf, item, &disk_bargs);
4574 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4575 	btrfs_balance_sys(leaf, item, &disk_bargs);
4576 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4577 
4578 	/*
4579 	 * This should never happen, as the paused balance state is recovered
4580 	 * during mount without any chance of other exclusive ops to collide.
4581 	 *
4582 	 * This gives the exclusive op status to balance and keeps in paused
4583 	 * state until user intervention (cancel or umount). If the ownership
4584 	 * cannot be assigned, show a message but do not fail. The balance
4585 	 * is in a paused state and must have fs_info::balance_ctl properly
4586 	 * set up.
4587 	 */
4588 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4589 		btrfs_warn(fs_info,
4590 	"balance: cannot set exclusive op status, resume manually");
4591 
4592 	btrfs_release_path(path);
4593 
4594 	mutex_lock(&fs_info->balance_mutex);
4595 	BUG_ON(fs_info->balance_ctl);
4596 	spin_lock(&fs_info->balance_lock);
4597 	fs_info->balance_ctl = bctl;
4598 	spin_unlock(&fs_info->balance_lock);
4599 	mutex_unlock(&fs_info->balance_mutex);
4600 out:
4601 	btrfs_free_path(path);
4602 	return ret;
4603 }
4604 
4605 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4606 {
4607 	int ret = 0;
4608 
4609 	mutex_lock(&fs_info->balance_mutex);
4610 	if (!fs_info->balance_ctl) {
4611 		mutex_unlock(&fs_info->balance_mutex);
4612 		return -ENOTCONN;
4613 	}
4614 
4615 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4616 		atomic_inc(&fs_info->balance_pause_req);
4617 		mutex_unlock(&fs_info->balance_mutex);
4618 
4619 		wait_event(fs_info->balance_wait_q,
4620 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4621 
4622 		mutex_lock(&fs_info->balance_mutex);
4623 		/* we are good with balance_ctl ripped off from under us */
4624 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4625 		atomic_dec(&fs_info->balance_pause_req);
4626 	} else {
4627 		ret = -ENOTCONN;
4628 	}
4629 
4630 	mutex_unlock(&fs_info->balance_mutex);
4631 	return ret;
4632 }
4633 
4634 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4635 {
4636 	mutex_lock(&fs_info->balance_mutex);
4637 	if (!fs_info->balance_ctl) {
4638 		mutex_unlock(&fs_info->balance_mutex);
4639 		return -ENOTCONN;
4640 	}
4641 
4642 	/*
4643 	 * A paused balance with the item stored on disk can be resumed at
4644 	 * mount time if the mount is read-write. Otherwise it's still paused
4645 	 * and we must not allow cancelling as it deletes the item.
4646 	 */
4647 	if (sb_rdonly(fs_info->sb)) {
4648 		mutex_unlock(&fs_info->balance_mutex);
4649 		return -EROFS;
4650 	}
4651 
4652 	atomic_inc(&fs_info->balance_cancel_req);
4653 	/*
4654 	 * if we are running just wait and return, balance item is
4655 	 * deleted in btrfs_balance in this case
4656 	 */
4657 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4658 		mutex_unlock(&fs_info->balance_mutex);
4659 		wait_event(fs_info->balance_wait_q,
4660 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4661 		mutex_lock(&fs_info->balance_mutex);
4662 	} else {
4663 		mutex_unlock(&fs_info->balance_mutex);
4664 		/*
4665 		 * Lock released to allow other waiters to continue, we'll
4666 		 * reexamine the status again.
4667 		 */
4668 		mutex_lock(&fs_info->balance_mutex);
4669 
4670 		if (fs_info->balance_ctl) {
4671 			reset_balance_state(fs_info);
4672 			btrfs_exclop_finish(fs_info);
4673 			btrfs_info(fs_info, "balance: canceled");
4674 		}
4675 	}
4676 
4677 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4678 	atomic_dec(&fs_info->balance_cancel_req);
4679 	mutex_unlock(&fs_info->balance_mutex);
4680 	return 0;
4681 }
4682 
4683 int btrfs_uuid_scan_kthread(void *data)
4684 {
4685 	struct btrfs_fs_info *fs_info = data;
4686 	struct btrfs_root *root = fs_info->tree_root;
4687 	struct btrfs_key key;
4688 	struct btrfs_path *path = NULL;
4689 	int ret = 0;
4690 	struct extent_buffer *eb;
4691 	int slot;
4692 	struct btrfs_root_item root_item;
4693 	u32 item_size;
4694 	struct btrfs_trans_handle *trans = NULL;
4695 	bool closing = false;
4696 
4697 	path = btrfs_alloc_path();
4698 	if (!path) {
4699 		ret = -ENOMEM;
4700 		goto out;
4701 	}
4702 
4703 	key.objectid = 0;
4704 	key.type = BTRFS_ROOT_ITEM_KEY;
4705 	key.offset = 0;
4706 
4707 	while (1) {
4708 		if (btrfs_fs_closing(fs_info)) {
4709 			closing = true;
4710 			break;
4711 		}
4712 		ret = btrfs_search_forward(root, &key, path,
4713 				BTRFS_OLDEST_GENERATION);
4714 		if (ret) {
4715 			if (ret > 0)
4716 				ret = 0;
4717 			break;
4718 		}
4719 
4720 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4721 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4722 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4723 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4724 			goto skip;
4725 
4726 		eb = path->nodes[0];
4727 		slot = path->slots[0];
4728 		item_size = btrfs_item_size(eb, slot);
4729 		if (item_size < sizeof(root_item))
4730 			goto skip;
4731 
4732 		read_extent_buffer(eb, &root_item,
4733 				   btrfs_item_ptr_offset(eb, slot),
4734 				   (int)sizeof(root_item));
4735 		if (btrfs_root_refs(&root_item) == 0)
4736 			goto skip;
4737 
4738 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4739 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4740 			if (trans)
4741 				goto update_tree;
4742 
4743 			btrfs_release_path(path);
4744 			/*
4745 			 * 1 - subvol uuid item
4746 			 * 1 - received_subvol uuid item
4747 			 */
4748 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4749 			if (IS_ERR(trans)) {
4750 				ret = PTR_ERR(trans);
4751 				break;
4752 			}
4753 			continue;
4754 		} else {
4755 			goto skip;
4756 		}
4757 update_tree:
4758 		btrfs_release_path(path);
4759 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4760 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4761 						  BTRFS_UUID_KEY_SUBVOL,
4762 						  key.objectid);
4763 			if (ret < 0) {
4764 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4765 					ret);
4766 				break;
4767 			}
4768 		}
4769 
4770 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4771 			ret = btrfs_uuid_tree_add(trans,
4772 						  root_item.received_uuid,
4773 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4774 						  key.objectid);
4775 			if (ret < 0) {
4776 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4777 					ret);
4778 				break;
4779 			}
4780 		}
4781 
4782 skip:
4783 		btrfs_release_path(path);
4784 		if (trans) {
4785 			ret = btrfs_end_transaction(trans);
4786 			trans = NULL;
4787 			if (ret)
4788 				break;
4789 		}
4790 
4791 		if (key.offset < (u64)-1) {
4792 			key.offset++;
4793 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4794 			key.offset = 0;
4795 			key.type = BTRFS_ROOT_ITEM_KEY;
4796 		} else if (key.objectid < (u64)-1) {
4797 			key.offset = 0;
4798 			key.type = BTRFS_ROOT_ITEM_KEY;
4799 			key.objectid++;
4800 		} else {
4801 			break;
4802 		}
4803 		cond_resched();
4804 	}
4805 
4806 out:
4807 	btrfs_free_path(path);
4808 	if (trans && !IS_ERR(trans))
4809 		btrfs_end_transaction(trans);
4810 	if (ret)
4811 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4812 	else if (!closing)
4813 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4814 	up(&fs_info->uuid_tree_rescan_sem);
4815 	return 0;
4816 }
4817 
4818 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4819 {
4820 	struct btrfs_trans_handle *trans;
4821 	struct btrfs_root *tree_root = fs_info->tree_root;
4822 	struct btrfs_root *uuid_root;
4823 	struct task_struct *task;
4824 	int ret;
4825 
4826 	/*
4827 	 * 1 - root node
4828 	 * 1 - root item
4829 	 */
4830 	trans = btrfs_start_transaction(tree_root, 2);
4831 	if (IS_ERR(trans))
4832 		return PTR_ERR(trans);
4833 
4834 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4835 	if (IS_ERR(uuid_root)) {
4836 		ret = PTR_ERR(uuid_root);
4837 		btrfs_abort_transaction(trans, ret);
4838 		btrfs_end_transaction(trans);
4839 		return ret;
4840 	}
4841 
4842 	fs_info->uuid_root = uuid_root;
4843 
4844 	ret = btrfs_commit_transaction(trans);
4845 	if (ret)
4846 		return ret;
4847 
4848 	down(&fs_info->uuid_tree_rescan_sem);
4849 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4850 	if (IS_ERR(task)) {
4851 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4852 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4853 		up(&fs_info->uuid_tree_rescan_sem);
4854 		return PTR_ERR(task);
4855 	}
4856 
4857 	return 0;
4858 }
4859 
4860 /*
4861  * shrinking a device means finding all of the device extents past
4862  * the new size, and then following the back refs to the chunks.
4863  * The chunk relocation code actually frees the device extent
4864  */
4865 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4866 {
4867 	struct btrfs_fs_info *fs_info = device->fs_info;
4868 	struct btrfs_root *root = fs_info->dev_root;
4869 	struct btrfs_trans_handle *trans;
4870 	struct btrfs_dev_extent *dev_extent = NULL;
4871 	struct btrfs_path *path;
4872 	u64 length;
4873 	u64 chunk_offset;
4874 	int ret;
4875 	int slot;
4876 	int failed = 0;
4877 	bool retried = false;
4878 	struct extent_buffer *l;
4879 	struct btrfs_key key;
4880 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4881 	u64 old_total = btrfs_super_total_bytes(super_copy);
4882 	u64 old_size = btrfs_device_get_total_bytes(device);
4883 	u64 diff;
4884 	u64 start;
4885 	u64 free_diff = 0;
4886 
4887 	new_size = round_down(new_size, fs_info->sectorsize);
4888 	start = new_size;
4889 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4890 
4891 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4892 		return -EINVAL;
4893 
4894 	path = btrfs_alloc_path();
4895 	if (!path)
4896 		return -ENOMEM;
4897 
4898 	path->reada = READA_BACK;
4899 
4900 	trans = btrfs_start_transaction(root, 0);
4901 	if (IS_ERR(trans)) {
4902 		btrfs_free_path(path);
4903 		return PTR_ERR(trans);
4904 	}
4905 
4906 	mutex_lock(&fs_info->chunk_mutex);
4907 
4908 	btrfs_device_set_total_bytes(device, new_size);
4909 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4910 		device->fs_devices->total_rw_bytes -= diff;
4911 
4912 		/*
4913 		 * The new free_chunk_space is new_size - used, so we have to
4914 		 * subtract the delta of the old free_chunk_space which included
4915 		 * old_size - used.  If used > new_size then just subtract this
4916 		 * entire device's free space.
4917 		 */
4918 		if (device->bytes_used < new_size)
4919 			free_diff = (old_size - device->bytes_used) -
4920 				    (new_size - device->bytes_used);
4921 		else
4922 			free_diff = old_size - device->bytes_used;
4923 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4924 	}
4925 
4926 	/*
4927 	 * Once the device's size has been set to the new size, ensure all
4928 	 * in-memory chunks are synced to disk so that the loop below sees them
4929 	 * and relocates them accordingly.
4930 	 */
4931 	if (contains_pending_extent(device, &start, diff)) {
4932 		mutex_unlock(&fs_info->chunk_mutex);
4933 		ret = btrfs_commit_transaction(trans);
4934 		if (ret)
4935 			goto done;
4936 	} else {
4937 		mutex_unlock(&fs_info->chunk_mutex);
4938 		btrfs_end_transaction(trans);
4939 	}
4940 
4941 again:
4942 	key.objectid = device->devid;
4943 	key.offset = (u64)-1;
4944 	key.type = BTRFS_DEV_EXTENT_KEY;
4945 
4946 	do {
4947 		mutex_lock(&fs_info->reclaim_bgs_lock);
4948 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4949 		if (ret < 0) {
4950 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4951 			goto done;
4952 		}
4953 
4954 		ret = btrfs_previous_item(root, path, 0, key.type);
4955 		if (ret) {
4956 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4957 			if (ret < 0)
4958 				goto done;
4959 			ret = 0;
4960 			btrfs_release_path(path);
4961 			break;
4962 		}
4963 
4964 		l = path->nodes[0];
4965 		slot = path->slots[0];
4966 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4967 
4968 		if (key.objectid != device->devid) {
4969 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4970 			btrfs_release_path(path);
4971 			break;
4972 		}
4973 
4974 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4975 		length = btrfs_dev_extent_length(l, dev_extent);
4976 
4977 		if (key.offset + length <= new_size) {
4978 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4979 			btrfs_release_path(path);
4980 			break;
4981 		}
4982 
4983 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4984 		btrfs_release_path(path);
4985 
4986 		/*
4987 		 * We may be relocating the only data chunk we have,
4988 		 * which could potentially end up with losing data's
4989 		 * raid profile, so lets allocate an empty one in
4990 		 * advance.
4991 		 */
4992 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4993 		if (ret < 0) {
4994 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4995 			goto done;
4996 		}
4997 
4998 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4999 		mutex_unlock(&fs_info->reclaim_bgs_lock);
5000 		if (ret == -ENOSPC) {
5001 			failed++;
5002 		} else if (ret) {
5003 			if (ret == -ETXTBSY) {
5004 				btrfs_warn(fs_info,
5005 		   "could not shrink block group %llu due to active swapfile",
5006 					   chunk_offset);
5007 			}
5008 			goto done;
5009 		}
5010 	} while (key.offset-- > 0);
5011 
5012 	if (failed && !retried) {
5013 		failed = 0;
5014 		retried = true;
5015 		goto again;
5016 	} else if (failed && retried) {
5017 		ret = -ENOSPC;
5018 		goto done;
5019 	}
5020 
5021 	/* Shrinking succeeded, else we would be at "done". */
5022 	trans = btrfs_start_transaction(root, 0);
5023 	if (IS_ERR(trans)) {
5024 		ret = PTR_ERR(trans);
5025 		goto done;
5026 	}
5027 
5028 	mutex_lock(&fs_info->chunk_mutex);
5029 	/* Clear all state bits beyond the shrunk device size */
5030 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5031 			  CHUNK_STATE_MASK);
5032 
5033 	btrfs_device_set_disk_total_bytes(device, new_size);
5034 	if (list_empty(&device->post_commit_list))
5035 		list_add_tail(&device->post_commit_list,
5036 			      &trans->transaction->dev_update_list);
5037 
5038 	WARN_ON(diff > old_total);
5039 	btrfs_set_super_total_bytes(super_copy,
5040 			round_down(old_total - diff, fs_info->sectorsize));
5041 	mutex_unlock(&fs_info->chunk_mutex);
5042 
5043 	btrfs_reserve_chunk_metadata(trans, false);
5044 	/* Now btrfs_update_device() will change the on-disk size. */
5045 	ret = btrfs_update_device(trans, device);
5046 	btrfs_trans_release_chunk_metadata(trans);
5047 	if (ret < 0) {
5048 		btrfs_abort_transaction(trans, ret);
5049 		btrfs_end_transaction(trans);
5050 	} else {
5051 		ret = btrfs_commit_transaction(trans);
5052 	}
5053 done:
5054 	btrfs_free_path(path);
5055 	if (ret) {
5056 		mutex_lock(&fs_info->chunk_mutex);
5057 		btrfs_device_set_total_bytes(device, old_size);
5058 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5059 			device->fs_devices->total_rw_bytes += diff;
5060 			atomic64_add(free_diff, &fs_info->free_chunk_space);
5061 		}
5062 		mutex_unlock(&fs_info->chunk_mutex);
5063 	}
5064 	return ret;
5065 }
5066 
5067 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5068 			   struct btrfs_key *key,
5069 			   struct btrfs_chunk *chunk, int item_size)
5070 {
5071 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5072 	struct btrfs_disk_key disk_key;
5073 	u32 array_size;
5074 	u8 *ptr;
5075 
5076 	lockdep_assert_held(&fs_info->chunk_mutex);
5077 
5078 	array_size = btrfs_super_sys_array_size(super_copy);
5079 	if (array_size + item_size + sizeof(disk_key)
5080 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5081 		return -EFBIG;
5082 
5083 	ptr = super_copy->sys_chunk_array + array_size;
5084 	btrfs_cpu_key_to_disk(&disk_key, key);
5085 	memcpy(ptr, &disk_key, sizeof(disk_key));
5086 	ptr += sizeof(disk_key);
5087 	memcpy(ptr, chunk, item_size);
5088 	item_size += sizeof(disk_key);
5089 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5090 
5091 	return 0;
5092 }
5093 
5094 /*
5095  * sort the devices in descending order by max_avail, total_avail
5096  */
5097 static int btrfs_cmp_device_info(const void *a, const void *b)
5098 {
5099 	const struct btrfs_device_info *di_a = a;
5100 	const struct btrfs_device_info *di_b = b;
5101 
5102 	if (di_a->max_avail > di_b->max_avail)
5103 		return -1;
5104 	if (di_a->max_avail < di_b->max_avail)
5105 		return 1;
5106 	if (di_a->total_avail > di_b->total_avail)
5107 		return -1;
5108 	if (di_a->total_avail < di_b->total_avail)
5109 		return 1;
5110 	return 0;
5111 }
5112 
5113 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5114 {
5115 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5116 		return;
5117 
5118 	btrfs_set_fs_incompat(info, RAID56);
5119 }
5120 
5121 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5122 {
5123 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5124 		return;
5125 
5126 	btrfs_set_fs_incompat(info, RAID1C34);
5127 }
5128 
5129 /*
5130  * Structure used internally for btrfs_create_chunk() function.
5131  * Wraps needed parameters.
5132  */
5133 struct alloc_chunk_ctl {
5134 	u64 start;
5135 	u64 type;
5136 	/* Total number of stripes to allocate */
5137 	int num_stripes;
5138 	/* sub_stripes info for map */
5139 	int sub_stripes;
5140 	/* Stripes per device */
5141 	int dev_stripes;
5142 	/* Maximum number of devices to use */
5143 	int devs_max;
5144 	/* Minimum number of devices to use */
5145 	int devs_min;
5146 	/* ndevs has to be a multiple of this */
5147 	int devs_increment;
5148 	/* Number of copies */
5149 	int ncopies;
5150 	/* Number of stripes worth of bytes to store parity information */
5151 	int nparity;
5152 	u64 max_stripe_size;
5153 	u64 max_chunk_size;
5154 	u64 dev_extent_min;
5155 	u64 stripe_size;
5156 	u64 chunk_size;
5157 	int ndevs;
5158 };
5159 
5160 static void init_alloc_chunk_ctl_policy_regular(
5161 				struct btrfs_fs_devices *fs_devices,
5162 				struct alloc_chunk_ctl *ctl)
5163 {
5164 	struct btrfs_space_info *space_info;
5165 
5166 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5167 	ASSERT(space_info);
5168 
5169 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5170 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5171 
5172 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5173 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5174 
5175 	/* We don't want a chunk larger than 10% of writable space */
5176 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5177 				  ctl->max_chunk_size);
5178 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5179 }
5180 
5181 static void init_alloc_chunk_ctl_policy_zoned(
5182 				      struct btrfs_fs_devices *fs_devices,
5183 				      struct alloc_chunk_ctl *ctl)
5184 {
5185 	u64 zone_size = fs_devices->fs_info->zone_size;
5186 	u64 limit;
5187 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5188 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5189 	u64 min_chunk_size = min_data_stripes * zone_size;
5190 	u64 type = ctl->type;
5191 
5192 	ctl->max_stripe_size = zone_size;
5193 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5194 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5195 						 zone_size);
5196 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5197 		ctl->max_chunk_size = ctl->max_stripe_size;
5198 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5199 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5200 		ctl->devs_max = min_t(int, ctl->devs_max,
5201 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5202 	} else {
5203 		BUG();
5204 	}
5205 
5206 	/* We don't want a chunk larger than 10% of writable space */
5207 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5208 			       zone_size),
5209 		    min_chunk_size);
5210 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5211 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5212 }
5213 
5214 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5215 				 struct alloc_chunk_ctl *ctl)
5216 {
5217 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5218 
5219 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5220 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5221 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5222 	if (!ctl->devs_max)
5223 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5224 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5225 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5226 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5227 	ctl->nparity = btrfs_raid_array[index].nparity;
5228 	ctl->ndevs = 0;
5229 
5230 	switch (fs_devices->chunk_alloc_policy) {
5231 	case BTRFS_CHUNK_ALLOC_REGULAR:
5232 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5233 		break;
5234 	case BTRFS_CHUNK_ALLOC_ZONED:
5235 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5236 		break;
5237 	default:
5238 		BUG();
5239 	}
5240 }
5241 
5242 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5243 			      struct alloc_chunk_ctl *ctl,
5244 			      struct btrfs_device_info *devices_info)
5245 {
5246 	struct btrfs_fs_info *info = fs_devices->fs_info;
5247 	struct btrfs_device *device;
5248 	u64 total_avail;
5249 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5250 	int ret;
5251 	int ndevs = 0;
5252 	u64 max_avail;
5253 	u64 dev_offset;
5254 
5255 	/*
5256 	 * in the first pass through the devices list, we gather information
5257 	 * about the available holes on each device.
5258 	 */
5259 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5260 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5261 			WARN(1, KERN_ERR
5262 			       "BTRFS: read-only device in alloc_list\n");
5263 			continue;
5264 		}
5265 
5266 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5267 					&device->dev_state) ||
5268 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5269 			continue;
5270 
5271 		if (device->total_bytes > device->bytes_used)
5272 			total_avail = device->total_bytes - device->bytes_used;
5273 		else
5274 			total_avail = 0;
5275 
5276 		/* If there is no space on this device, skip it. */
5277 		if (total_avail < ctl->dev_extent_min)
5278 			continue;
5279 
5280 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5281 					   &max_avail);
5282 		if (ret && ret != -ENOSPC)
5283 			return ret;
5284 
5285 		if (ret == 0)
5286 			max_avail = dev_extent_want;
5287 
5288 		if (max_avail < ctl->dev_extent_min) {
5289 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5290 				btrfs_debug(info,
5291 			"%s: devid %llu has no free space, have=%llu want=%llu",
5292 					    __func__, device->devid, max_avail,
5293 					    ctl->dev_extent_min);
5294 			continue;
5295 		}
5296 
5297 		if (ndevs == fs_devices->rw_devices) {
5298 			WARN(1, "%s: found more than %llu devices\n",
5299 			     __func__, fs_devices->rw_devices);
5300 			break;
5301 		}
5302 		devices_info[ndevs].dev_offset = dev_offset;
5303 		devices_info[ndevs].max_avail = max_avail;
5304 		devices_info[ndevs].total_avail = total_avail;
5305 		devices_info[ndevs].dev = device;
5306 		++ndevs;
5307 	}
5308 	ctl->ndevs = ndevs;
5309 
5310 	/*
5311 	 * now sort the devices by hole size / available space
5312 	 */
5313 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5314 	     btrfs_cmp_device_info, NULL);
5315 
5316 	return 0;
5317 }
5318 
5319 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5320 				      struct btrfs_device_info *devices_info)
5321 {
5322 	/* Number of stripes that count for block group size */
5323 	int data_stripes;
5324 
5325 	/*
5326 	 * The primary goal is to maximize the number of stripes, so use as
5327 	 * many devices as possible, even if the stripes are not maximum sized.
5328 	 *
5329 	 * The DUP profile stores more than one stripe per device, the
5330 	 * max_avail is the total size so we have to adjust.
5331 	 */
5332 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5333 				   ctl->dev_stripes);
5334 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5335 
5336 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5337 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5338 
5339 	/*
5340 	 * Use the number of data stripes to figure out how big this chunk is
5341 	 * really going to be in terms of logical address space, and compare
5342 	 * that answer with the max chunk size. If it's higher, we try to
5343 	 * reduce stripe_size.
5344 	 */
5345 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5346 		/*
5347 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5348 		 * then use it, unless it ends up being even bigger than the
5349 		 * previous value we had already.
5350 		 */
5351 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5352 							data_stripes), SZ_16M),
5353 				       ctl->stripe_size);
5354 	}
5355 
5356 	/* Stripe size should not go beyond 1G. */
5357 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5358 
5359 	/* Align to BTRFS_STRIPE_LEN */
5360 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5361 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5362 
5363 	return 0;
5364 }
5365 
5366 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5367 				    struct btrfs_device_info *devices_info)
5368 {
5369 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5370 	/* Number of stripes that count for block group size */
5371 	int data_stripes;
5372 
5373 	/*
5374 	 * It should hold because:
5375 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5376 	 */
5377 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5378 
5379 	ctl->stripe_size = zone_size;
5380 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5381 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5382 
5383 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5384 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5385 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5386 					     ctl->stripe_size) + ctl->nparity,
5387 				     ctl->dev_stripes);
5388 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5389 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5390 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5391 	}
5392 
5393 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5394 
5395 	return 0;
5396 }
5397 
5398 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5399 			      struct alloc_chunk_ctl *ctl,
5400 			      struct btrfs_device_info *devices_info)
5401 {
5402 	struct btrfs_fs_info *info = fs_devices->fs_info;
5403 
5404 	/*
5405 	 * Round down to number of usable stripes, devs_increment can be any
5406 	 * number so we can't use round_down() that requires power of 2, while
5407 	 * rounddown is safe.
5408 	 */
5409 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5410 
5411 	if (ctl->ndevs < ctl->devs_min) {
5412 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5413 			btrfs_debug(info,
5414 	"%s: not enough devices with free space: have=%d minimum required=%d",
5415 				    __func__, ctl->ndevs, ctl->devs_min);
5416 		}
5417 		return -ENOSPC;
5418 	}
5419 
5420 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5421 
5422 	switch (fs_devices->chunk_alloc_policy) {
5423 	case BTRFS_CHUNK_ALLOC_REGULAR:
5424 		return decide_stripe_size_regular(ctl, devices_info);
5425 	case BTRFS_CHUNK_ALLOC_ZONED:
5426 		return decide_stripe_size_zoned(ctl, devices_info);
5427 	default:
5428 		BUG();
5429 	}
5430 }
5431 
5432 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5433 {
5434 	for (int i = 0; i < map->num_stripes; i++) {
5435 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5436 		struct btrfs_device *device = stripe->dev;
5437 
5438 		set_extent_bit(&device->alloc_state, stripe->physical,
5439 			       stripe->physical + map->stripe_size - 1,
5440 			       bits | EXTENT_NOWAIT, NULL);
5441 	}
5442 }
5443 
5444 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5445 {
5446 	for (int i = 0; i < map->num_stripes; i++) {
5447 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5448 		struct btrfs_device *device = stripe->dev;
5449 
5450 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5451 				   stripe->physical + map->stripe_size - 1,
5452 				   bits | EXTENT_NOWAIT,
5453 				   NULL, NULL);
5454 	}
5455 }
5456 
5457 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5458 {
5459 	write_lock(&fs_info->mapping_tree_lock);
5460 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5461 	RB_CLEAR_NODE(&map->rb_node);
5462 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5463 	write_unlock(&fs_info->mapping_tree_lock);
5464 
5465 	/* Once for the tree reference. */
5466 	btrfs_free_chunk_map(map);
5467 }
5468 
5469 EXPORT_FOR_TESTS
5470 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5471 {
5472 	struct rb_node **p;
5473 	struct rb_node *parent = NULL;
5474 	bool leftmost = true;
5475 
5476 	write_lock(&fs_info->mapping_tree_lock);
5477 	p = &fs_info->mapping_tree.rb_root.rb_node;
5478 	while (*p) {
5479 		struct btrfs_chunk_map *entry;
5480 
5481 		parent = *p;
5482 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5483 
5484 		if (map->start < entry->start) {
5485 			p = &(*p)->rb_left;
5486 		} else if (map->start > entry->start) {
5487 			p = &(*p)->rb_right;
5488 			leftmost = false;
5489 		} else {
5490 			write_unlock(&fs_info->mapping_tree_lock);
5491 			return -EEXIST;
5492 		}
5493 	}
5494 	rb_link_node(&map->rb_node, parent, p);
5495 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5496 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5497 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5498 	write_unlock(&fs_info->mapping_tree_lock);
5499 
5500 	return 0;
5501 }
5502 
5503 EXPORT_FOR_TESTS
5504 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5505 {
5506 	struct btrfs_chunk_map *map;
5507 
5508 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5509 	if (!map)
5510 		return NULL;
5511 
5512 	refcount_set(&map->refs, 1);
5513 	RB_CLEAR_NODE(&map->rb_node);
5514 
5515 	return map;
5516 }
5517 
5518 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5519 {
5520 	const int size = btrfs_chunk_map_size(map->num_stripes);
5521 	struct btrfs_chunk_map *clone;
5522 
5523 	clone = kmemdup(map, size, gfp);
5524 	if (!clone)
5525 		return NULL;
5526 
5527 	refcount_set(&clone->refs, 1);
5528 	RB_CLEAR_NODE(&clone->rb_node);
5529 
5530 	return clone;
5531 }
5532 
5533 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5534 			struct alloc_chunk_ctl *ctl,
5535 			struct btrfs_device_info *devices_info)
5536 {
5537 	struct btrfs_fs_info *info = trans->fs_info;
5538 	struct btrfs_chunk_map *map;
5539 	struct btrfs_block_group *block_group;
5540 	u64 start = ctl->start;
5541 	u64 type = ctl->type;
5542 	int ret;
5543 	int i;
5544 	int j;
5545 
5546 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5547 	if (!map)
5548 		return ERR_PTR(-ENOMEM);
5549 
5550 	map->start = start;
5551 	map->chunk_len = ctl->chunk_size;
5552 	map->stripe_size = ctl->stripe_size;
5553 	map->type = type;
5554 	map->io_align = BTRFS_STRIPE_LEN;
5555 	map->io_width = BTRFS_STRIPE_LEN;
5556 	map->sub_stripes = ctl->sub_stripes;
5557 	map->num_stripes = ctl->num_stripes;
5558 
5559 	for (i = 0; i < ctl->ndevs; ++i) {
5560 		for (j = 0; j < ctl->dev_stripes; ++j) {
5561 			int s = i * ctl->dev_stripes + j;
5562 			map->stripes[s].dev = devices_info[i].dev;
5563 			map->stripes[s].physical = devices_info[i].dev_offset +
5564 						   j * ctl->stripe_size;
5565 		}
5566 	}
5567 
5568 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5569 
5570 	ret = btrfs_add_chunk_map(info, map);
5571 	if (ret) {
5572 		btrfs_free_chunk_map(map);
5573 		return ERR_PTR(ret);
5574 	}
5575 
5576 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5577 	if (IS_ERR(block_group)) {
5578 		btrfs_remove_chunk_map(info, map);
5579 		return block_group;
5580 	}
5581 
5582 	for (int i = 0; i < map->num_stripes; i++) {
5583 		struct btrfs_device *dev = map->stripes[i].dev;
5584 
5585 		btrfs_device_set_bytes_used(dev,
5586 					    dev->bytes_used + ctl->stripe_size);
5587 		if (list_empty(&dev->post_commit_list))
5588 			list_add_tail(&dev->post_commit_list,
5589 				      &trans->transaction->dev_update_list);
5590 	}
5591 
5592 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5593 		     &info->free_chunk_space);
5594 
5595 	check_raid56_incompat_flag(info, type);
5596 	check_raid1c34_incompat_flag(info, type);
5597 
5598 	return block_group;
5599 }
5600 
5601 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5602 					    u64 type)
5603 {
5604 	struct btrfs_fs_info *info = trans->fs_info;
5605 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5606 	struct btrfs_device_info *devices_info = NULL;
5607 	struct alloc_chunk_ctl ctl;
5608 	struct btrfs_block_group *block_group;
5609 	int ret;
5610 
5611 	lockdep_assert_held(&info->chunk_mutex);
5612 
5613 	if (!alloc_profile_is_valid(type, 0)) {
5614 		ASSERT(0);
5615 		return ERR_PTR(-EINVAL);
5616 	}
5617 
5618 	if (list_empty(&fs_devices->alloc_list)) {
5619 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5620 			btrfs_debug(info, "%s: no writable device", __func__);
5621 		return ERR_PTR(-ENOSPC);
5622 	}
5623 
5624 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5625 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5626 		ASSERT(0);
5627 		return ERR_PTR(-EINVAL);
5628 	}
5629 
5630 	ctl.start = find_next_chunk(info);
5631 	ctl.type = type;
5632 	init_alloc_chunk_ctl(fs_devices, &ctl);
5633 
5634 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5635 			       GFP_NOFS);
5636 	if (!devices_info)
5637 		return ERR_PTR(-ENOMEM);
5638 
5639 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5640 	if (ret < 0) {
5641 		block_group = ERR_PTR(ret);
5642 		goto out;
5643 	}
5644 
5645 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5646 	if (ret < 0) {
5647 		block_group = ERR_PTR(ret);
5648 		goto out;
5649 	}
5650 
5651 	block_group = create_chunk(trans, &ctl, devices_info);
5652 
5653 out:
5654 	kfree(devices_info);
5655 	return block_group;
5656 }
5657 
5658 /*
5659  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5660  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5661  * chunks.
5662  *
5663  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5664  * phases.
5665  */
5666 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5667 				     struct btrfs_block_group *bg)
5668 {
5669 	struct btrfs_fs_info *fs_info = trans->fs_info;
5670 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5671 	struct btrfs_key key;
5672 	struct btrfs_chunk *chunk;
5673 	struct btrfs_stripe *stripe;
5674 	struct btrfs_chunk_map *map;
5675 	size_t item_size;
5676 	int i;
5677 	int ret;
5678 
5679 	/*
5680 	 * We take the chunk_mutex for 2 reasons:
5681 	 *
5682 	 * 1) Updates and insertions in the chunk btree must be done while holding
5683 	 *    the chunk_mutex, as well as updating the system chunk array in the
5684 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5685 	 *    details;
5686 	 *
5687 	 * 2) To prevent races with the final phase of a device replace operation
5688 	 *    that replaces the device object associated with the map's stripes,
5689 	 *    because the device object's id can change at any time during that
5690 	 *    final phase of the device replace operation
5691 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5692 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5693 	 *    which would cause a failure when updating the device item, which does
5694 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5695 	 *    Here we can't use the device_list_mutex because our caller already
5696 	 *    has locked the chunk_mutex, and the final phase of device replace
5697 	 *    acquires both mutexes - first the device_list_mutex and then the
5698 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5699 	 *    concurrent device replace.
5700 	 */
5701 	lockdep_assert_held(&fs_info->chunk_mutex);
5702 
5703 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5704 	if (IS_ERR(map)) {
5705 		ret = PTR_ERR(map);
5706 		btrfs_abort_transaction(trans, ret);
5707 		return ret;
5708 	}
5709 
5710 	item_size = btrfs_chunk_item_size(map->num_stripes);
5711 
5712 	chunk = kzalloc(item_size, GFP_NOFS);
5713 	if (!chunk) {
5714 		ret = -ENOMEM;
5715 		btrfs_abort_transaction(trans, ret);
5716 		goto out;
5717 	}
5718 
5719 	for (i = 0; i < map->num_stripes; i++) {
5720 		struct btrfs_device *device = map->stripes[i].dev;
5721 
5722 		ret = btrfs_update_device(trans, device);
5723 		if (ret)
5724 			goto out;
5725 	}
5726 
5727 	stripe = &chunk->stripe;
5728 	for (i = 0; i < map->num_stripes; i++) {
5729 		struct btrfs_device *device = map->stripes[i].dev;
5730 		const u64 dev_offset = map->stripes[i].physical;
5731 
5732 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5733 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5734 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5735 		stripe++;
5736 	}
5737 
5738 	btrfs_set_stack_chunk_length(chunk, bg->length);
5739 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5740 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5741 	btrfs_set_stack_chunk_type(chunk, map->type);
5742 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5743 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5744 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5745 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5746 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5747 
5748 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5749 	key.type = BTRFS_CHUNK_ITEM_KEY;
5750 	key.offset = bg->start;
5751 
5752 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5753 	if (ret)
5754 		goto out;
5755 
5756 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5757 
5758 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5759 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5760 		if (ret)
5761 			goto out;
5762 	}
5763 
5764 out:
5765 	kfree(chunk);
5766 	btrfs_free_chunk_map(map);
5767 	return ret;
5768 }
5769 
5770 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5771 {
5772 	struct btrfs_fs_info *fs_info = trans->fs_info;
5773 	u64 alloc_profile;
5774 	struct btrfs_block_group *meta_bg;
5775 	struct btrfs_block_group *sys_bg;
5776 
5777 	/*
5778 	 * When adding a new device for sprouting, the seed device is read-only
5779 	 * so we must first allocate a metadata and a system chunk. But before
5780 	 * adding the block group items to the extent, device and chunk btrees,
5781 	 * we must first:
5782 	 *
5783 	 * 1) Create both chunks without doing any changes to the btrees, as
5784 	 *    otherwise we would get -ENOSPC since the block groups from the
5785 	 *    seed device are read-only;
5786 	 *
5787 	 * 2) Add the device item for the new sprout device - finishing the setup
5788 	 *    of a new block group requires updating the device item in the chunk
5789 	 *    btree, so it must exist when we attempt to do it. The previous step
5790 	 *    ensures this does not fail with -ENOSPC.
5791 	 *
5792 	 * After that we can add the block group items to their btrees:
5793 	 * update existing device item in the chunk btree, add a new block group
5794 	 * item to the extent btree, add a new chunk item to the chunk btree and
5795 	 * finally add the new device extent items to the devices btree.
5796 	 */
5797 
5798 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5799 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5800 	if (IS_ERR(meta_bg))
5801 		return PTR_ERR(meta_bg);
5802 
5803 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5804 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5805 	if (IS_ERR(sys_bg))
5806 		return PTR_ERR(sys_bg);
5807 
5808 	return 0;
5809 }
5810 
5811 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5812 {
5813 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5814 
5815 	return btrfs_raid_array[index].tolerated_failures;
5816 }
5817 
5818 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5819 {
5820 	struct btrfs_chunk_map *map;
5821 	int miss_ndevs = 0;
5822 	int i;
5823 	bool ret = true;
5824 
5825 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5826 	if (IS_ERR(map))
5827 		return false;
5828 
5829 	for (i = 0; i < map->num_stripes; i++) {
5830 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5831 					&map->stripes[i].dev->dev_state)) {
5832 			miss_ndevs++;
5833 			continue;
5834 		}
5835 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5836 					&map->stripes[i].dev->dev_state)) {
5837 			ret = false;
5838 			goto end;
5839 		}
5840 	}
5841 
5842 	/*
5843 	 * If the number of missing devices is larger than max errors, we can
5844 	 * not write the data into that chunk successfully.
5845 	 */
5846 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5847 		ret = false;
5848 end:
5849 	btrfs_free_chunk_map(map);
5850 	return ret;
5851 }
5852 
5853 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5854 {
5855 	write_lock(&fs_info->mapping_tree_lock);
5856 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5857 		struct btrfs_chunk_map *map;
5858 		struct rb_node *node;
5859 
5860 		node = rb_first_cached(&fs_info->mapping_tree);
5861 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5862 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5863 		RB_CLEAR_NODE(&map->rb_node);
5864 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5865 		/* Once for the tree ref. */
5866 		btrfs_free_chunk_map(map);
5867 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5868 	}
5869 	write_unlock(&fs_info->mapping_tree_lock);
5870 }
5871 
5872 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5873 {
5874 	struct btrfs_chunk_map *map;
5875 	enum btrfs_raid_types index;
5876 	int ret = 1;
5877 
5878 	map = btrfs_get_chunk_map(fs_info, logical, len);
5879 	if (IS_ERR(map))
5880 		/*
5881 		 * We could return errors for these cases, but that could get
5882 		 * ugly and we'd probably do the same thing which is just not do
5883 		 * anything else and exit, so return 1 so the callers don't try
5884 		 * to use other copies.
5885 		 */
5886 		return 1;
5887 
5888 	index = btrfs_bg_flags_to_raid_index(map->type);
5889 
5890 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5891 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5892 		ret = btrfs_raid_array[index].ncopies;
5893 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5894 		ret = 2;
5895 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5896 		/*
5897 		 * There could be two corrupted data stripes, we need
5898 		 * to loop retry in order to rebuild the correct data.
5899 		 *
5900 		 * Fail a stripe at a time on every retry except the
5901 		 * stripe under reconstruction.
5902 		 */
5903 		ret = map->num_stripes;
5904 	btrfs_free_chunk_map(map);
5905 	return ret;
5906 }
5907 
5908 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5909 				    u64 logical)
5910 {
5911 	struct btrfs_chunk_map *map;
5912 	unsigned long len = fs_info->sectorsize;
5913 
5914 	if (!btrfs_fs_incompat(fs_info, RAID56))
5915 		return len;
5916 
5917 	map = btrfs_get_chunk_map(fs_info, logical, len);
5918 
5919 	if (!WARN_ON(IS_ERR(map))) {
5920 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5921 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5922 		btrfs_free_chunk_map(map);
5923 	}
5924 	return len;
5925 }
5926 
5927 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5928 {
5929 	struct btrfs_chunk_map *map;
5930 	int ret = 0;
5931 
5932 	if (!btrfs_fs_incompat(fs_info, RAID56))
5933 		return 0;
5934 
5935 	map = btrfs_get_chunk_map(fs_info, logical, len);
5936 
5937 	if (!WARN_ON(IS_ERR(map))) {
5938 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5939 			ret = 1;
5940 		btrfs_free_chunk_map(map);
5941 	}
5942 	return ret;
5943 }
5944 
5945 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5946 			    struct btrfs_chunk_map *map, int first,
5947 			    int dev_replace_is_ongoing)
5948 {
5949 	int i;
5950 	int num_stripes;
5951 	int preferred_mirror;
5952 	int tolerance;
5953 	struct btrfs_device *srcdev;
5954 
5955 	ASSERT((map->type &
5956 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5957 
5958 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5959 		num_stripes = map->sub_stripes;
5960 	else
5961 		num_stripes = map->num_stripes;
5962 
5963 	switch (fs_info->fs_devices->read_policy) {
5964 	default:
5965 		/* Shouldn't happen, just warn and use pid instead of failing */
5966 		btrfs_warn_rl(fs_info,
5967 			      "unknown read_policy type %u, reset to pid",
5968 			      fs_info->fs_devices->read_policy);
5969 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5970 		fallthrough;
5971 	case BTRFS_READ_POLICY_PID:
5972 		preferred_mirror = first + (current->pid % num_stripes);
5973 		break;
5974 	}
5975 
5976 	if (dev_replace_is_ongoing &&
5977 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5978 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5979 		srcdev = fs_info->dev_replace.srcdev;
5980 	else
5981 		srcdev = NULL;
5982 
5983 	/*
5984 	 * try to avoid the drive that is the source drive for a
5985 	 * dev-replace procedure, only choose it if no other non-missing
5986 	 * mirror is available
5987 	 */
5988 	for (tolerance = 0; tolerance < 2; tolerance++) {
5989 		if (map->stripes[preferred_mirror].dev->bdev &&
5990 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5991 			return preferred_mirror;
5992 		for (i = first; i < first + num_stripes; i++) {
5993 			if (map->stripes[i].dev->bdev &&
5994 			    (tolerance || map->stripes[i].dev != srcdev))
5995 				return i;
5996 		}
5997 	}
5998 
5999 	/* we couldn't find one that doesn't fail.  Just return something
6000 	 * and the io error handling code will clean up eventually
6001 	 */
6002 	return preferred_mirror;
6003 }
6004 
6005 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6006 						       u64 logical,
6007 						       u16 total_stripes)
6008 {
6009 	struct btrfs_io_context *bioc;
6010 
6011 	bioc = kzalloc(
6012 		 /* The size of btrfs_io_context */
6013 		sizeof(struct btrfs_io_context) +
6014 		/* Plus the variable array for the stripes */
6015 		sizeof(struct btrfs_io_stripe) * (total_stripes),
6016 		GFP_NOFS);
6017 
6018 	if (!bioc)
6019 		return NULL;
6020 
6021 	refcount_set(&bioc->refs, 1);
6022 
6023 	bioc->fs_info = fs_info;
6024 	bioc->replace_stripe_src = -1;
6025 	bioc->full_stripe_logical = (u64)-1;
6026 	bioc->logical = logical;
6027 
6028 	return bioc;
6029 }
6030 
6031 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6032 {
6033 	WARN_ON(!refcount_read(&bioc->refs));
6034 	refcount_inc(&bioc->refs);
6035 }
6036 
6037 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6038 {
6039 	if (!bioc)
6040 		return;
6041 	if (refcount_dec_and_test(&bioc->refs))
6042 		kfree(bioc);
6043 }
6044 
6045 /*
6046  * Please note that, discard won't be sent to target device of device
6047  * replace.
6048  */
6049 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6050 					       u64 logical, u64 *length_ret,
6051 					       u32 *num_stripes)
6052 {
6053 	struct btrfs_chunk_map *map;
6054 	struct btrfs_discard_stripe *stripes;
6055 	u64 length = *length_ret;
6056 	u64 offset;
6057 	u32 stripe_nr;
6058 	u32 stripe_nr_end;
6059 	u32 stripe_cnt;
6060 	u64 stripe_end_offset;
6061 	u64 stripe_offset;
6062 	u32 stripe_index;
6063 	u32 factor = 0;
6064 	u32 sub_stripes = 0;
6065 	u32 stripes_per_dev = 0;
6066 	u32 remaining_stripes = 0;
6067 	u32 last_stripe = 0;
6068 	int ret;
6069 	int i;
6070 
6071 	map = btrfs_get_chunk_map(fs_info, logical, length);
6072 	if (IS_ERR(map))
6073 		return ERR_CAST(map);
6074 
6075 	/* we don't discard raid56 yet */
6076 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6077 		ret = -EOPNOTSUPP;
6078 		goto out_free_map;
6079 	}
6080 
6081 	offset = logical - map->start;
6082 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6083 	*length_ret = length;
6084 
6085 	/*
6086 	 * stripe_nr counts the total number of stripes we have to stride
6087 	 * to get to this block
6088 	 */
6089 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6090 
6091 	/* stripe_offset is the offset of this block in its stripe */
6092 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6093 
6094 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6095 			BTRFS_STRIPE_LEN_SHIFT;
6096 	stripe_cnt = stripe_nr_end - stripe_nr;
6097 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6098 			    (offset + length);
6099 	/*
6100 	 * after this, stripe_nr is the number of stripes on this
6101 	 * device we have to walk to find the data, and stripe_index is
6102 	 * the number of our device in the stripe array
6103 	 */
6104 	*num_stripes = 1;
6105 	stripe_index = 0;
6106 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6107 			 BTRFS_BLOCK_GROUP_RAID10)) {
6108 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6109 			sub_stripes = 1;
6110 		else
6111 			sub_stripes = map->sub_stripes;
6112 
6113 		factor = map->num_stripes / sub_stripes;
6114 		*num_stripes = min_t(u64, map->num_stripes,
6115 				    sub_stripes * stripe_cnt);
6116 		stripe_index = stripe_nr % factor;
6117 		stripe_nr /= factor;
6118 		stripe_index *= sub_stripes;
6119 
6120 		remaining_stripes = stripe_cnt % factor;
6121 		stripes_per_dev = stripe_cnt / factor;
6122 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6123 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6124 				BTRFS_BLOCK_GROUP_DUP)) {
6125 		*num_stripes = map->num_stripes;
6126 	} else {
6127 		stripe_index = stripe_nr % map->num_stripes;
6128 		stripe_nr /= map->num_stripes;
6129 	}
6130 
6131 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6132 	if (!stripes) {
6133 		ret = -ENOMEM;
6134 		goto out_free_map;
6135 	}
6136 
6137 	for (i = 0; i < *num_stripes; i++) {
6138 		stripes[i].physical =
6139 			map->stripes[stripe_index].physical +
6140 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6141 		stripes[i].dev = map->stripes[stripe_index].dev;
6142 
6143 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6144 				 BTRFS_BLOCK_GROUP_RAID10)) {
6145 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6146 
6147 			if (i / sub_stripes < remaining_stripes)
6148 				stripes[i].length += BTRFS_STRIPE_LEN;
6149 
6150 			/*
6151 			 * Special for the first stripe and
6152 			 * the last stripe:
6153 			 *
6154 			 * |-------|...|-------|
6155 			 *     |----------|
6156 			 *    off     end_off
6157 			 */
6158 			if (i < sub_stripes)
6159 				stripes[i].length -= stripe_offset;
6160 
6161 			if (stripe_index >= last_stripe &&
6162 			    stripe_index <= (last_stripe +
6163 					     sub_stripes - 1))
6164 				stripes[i].length -= stripe_end_offset;
6165 
6166 			if (i == sub_stripes - 1)
6167 				stripe_offset = 0;
6168 		} else {
6169 			stripes[i].length = length;
6170 		}
6171 
6172 		stripe_index++;
6173 		if (stripe_index == map->num_stripes) {
6174 			stripe_index = 0;
6175 			stripe_nr++;
6176 		}
6177 	}
6178 
6179 	btrfs_free_chunk_map(map);
6180 	return stripes;
6181 out_free_map:
6182 	btrfs_free_chunk_map(map);
6183 	return ERR_PTR(ret);
6184 }
6185 
6186 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6187 {
6188 	struct btrfs_block_group *cache;
6189 	bool ret;
6190 
6191 	/* Non zoned filesystem does not use "to_copy" flag */
6192 	if (!btrfs_is_zoned(fs_info))
6193 		return false;
6194 
6195 	cache = btrfs_lookup_block_group(fs_info, logical);
6196 
6197 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6198 
6199 	btrfs_put_block_group(cache);
6200 	return ret;
6201 }
6202 
6203 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6204 				      struct btrfs_io_context *bioc,
6205 				      struct btrfs_dev_replace *dev_replace,
6206 				      u64 logical,
6207 				      int *num_stripes_ret, int *max_errors_ret)
6208 {
6209 	u64 srcdev_devid = dev_replace->srcdev->devid;
6210 	/*
6211 	 * At this stage, num_stripes is still the real number of stripes,
6212 	 * excluding the duplicated stripes.
6213 	 */
6214 	int num_stripes = *num_stripes_ret;
6215 	int nr_extra_stripes = 0;
6216 	int max_errors = *max_errors_ret;
6217 	int i;
6218 
6219 	/*
6220 	 * A block group which has "to_copy" set will eventually be copied by
6221 	 * the dev-replace process. We can avoid cloning IO here.
6222 	 */
6223 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6224 		return;
6225 
6226 	/*
6227 	 * Duplicate the write operations while the dev-replace procedure is
6228 	 * running. Since the copying of the old disk to the new disk takes
6229 	 * place at run time while the filesystem is mounted writable, the
6230 	 * regular write operations to the old disk have to be duplicated to go
6231 	 * to the new disk as well.
6232 	 *
6233 	 * Note that device->missing is handled by the caller, and that the
6234 	 * write to the old disk is already set up in the stripes array.
6235 	 */
6236 	for (i = 0; i < num_stripes; i++) {
6237 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6238 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6239 
6240 		if (old->dev->devid != srcdev_devid)
6241 			continue;
6242 
6243 		new->physical = old->physical;
6244 		new->dev = dev_replace->tgtdev;
6245 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6246 			bioc->replace_stripe_src = i;
6247 		nr_extra_stripes++;
6248 	}
6249 
6250 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6251 	ASSERT(nr_extra_stripes <= 2);
6252 	/*
6253 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6254 	 * replace.
6255 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6256 	 */
6257 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6258 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6259 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6260 
6261 		/* Only DUP can have two extra stripes. */
6262 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6263 
6264 		/*
6265 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6266 		 * The extra stripe would still be there, but won't be accessed.
6267 		 */
6268 		if (first->physical > second->physical) {
6269 			swap(second->physical, first->physical);
6270 			swap(second->dev, first->dev);
6271 			nr_extra_stripes--;
6272 		}
6273 	}
6274 
6275 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6276 	*max_errors_ret = max_errors + nr_extra_stripes;
6277 	bioc->replace_nr_stripes = nr_extra_stripes;
6278 }
6279 
6280 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6281 			    struct btrfs_io_geometry *io_geom)
6282 {
6283 	/*
6284 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6285 	 * the offset of this block in its stripe.
6286 	 */
6287 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6288 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6289 	ASSERT(io_geom->stripe_offset < U32_MAX);
6290 
6291 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6292 		unsigned long full_stripe_len =
6293 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6294 
6295 		/*
6296 		 * For full stripe start, we use previously calculated
6297 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6298 		 * STRIPE_LEN.
6299 		 *
6300 		 * By this we can avoid u64 division completely.  And we have
6301 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6302 		 * not ensured to be power of 2.
6303 		 */
6304 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6305 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6306 
6307 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6308 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6309 		/*
6310 		 * For writes to RAID56, allow to write a full stripe set, but
6311 		 * no straddling of stripe sets.
6312 		 */
6313 		if (io_geom->op == BTRFS_MAP_WRITE)
6314 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6315 	}
6316 
6317 	/*
6318 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6319 	 * a single disk).
6320 	 */
6321 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6322 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6323 	return U64_MAX;
6324 }
6325 
6326 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6327 			 u64 *length, struct btrfs_io_stripe *dst,
6328 			 struct btrfs_chunk_map *map,
6329 			 struct btrfs_io_geometry *io_geom)
6330 {
6331 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6332 
6333 	if (io_geom->op == BTRFS_MAP_READ &&
6334 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6335 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6336 						    map->type,
6337 						    io_geom->stripe_index, dst);
6338 
6339 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6340 			io_geom->stripe_offset +
6341 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6342 	return 0;
6343 }
6344 
6345 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6346 				const struct btrfs_io_stripe *smap,
6347 				const struct btrfs_chunk_map *map,
6348 				int num_alloc_stripes,
6349 				enum btrfs_map_op op, int mirror_num)
6350 {
6351 	if (!smap)
6352 		return false;
6353 
6354 	if (num_alloc_stripes != 1)
6355 		return false;
6356 
6357 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6358 		return false;
6359 
6360 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6361 		return false;
6362 
6363 	return true;
6364 }
6365 
6366 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6367 			     struct btrfs_io_geometry *io_geom)
6368 {
6369 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6370 	io_geom->stripe_nr /= map->num_stripes;
6371 	if (io_geom->op == BTRFS_MAP_READ)
6372 		io_geom->mirror_num = 1;
6373 }
6374 
6375 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6376 			     struct btrfs_chunk_map *map,
6377 			     struct btrfs_io_geometry *io_geom,
6378 			     bool dev_replace_is_ongoing)
6379 {
6380 	if (io_geom->op != BTRFS_MAP_READ) {
6381 		io_geom->num_stripes = map->num_stripes;
6382 		return;
6383 	}
6384 
6385 	if (io_geom->mirror_num) {
6386 		io_geom->stripe_index = io_geom->mirror_num - 1;
6387 		return;
6388 	}
6389 
6390 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6391 						 dev_replace_is_ongoing);
6392 	io_geom->mirror_num = io_geom->stripe_index + 1;
6393 }
6394 
6395 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6396 			   struct btrfs_io_geometry *io_geom)
6397 {
6398 	if (io_geom->op != BTRFS_MAP_READ) {
6399 		io_geom->num_stripes = map->num_stripes;
6400 		return;
6401 	}
6402 
6403 	if (io_geom->mirror_num) {
6404 		io_geom->stripe_index = io_geom->mirror_num - 1;
6405 		return;
6406 	}
6407 
6408 	io_geom->mirror_num = 1;
6409 }
6410 
6411 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6412 			      struct btrfs_chunk_map *map,
6413 			      struct btrfs_io_geometry *io_geom,
6414 			      bool dev_replace_is_ongoing)
6415 {
6416 	u32 factor = map->num_stripes / map->sub_stripes;
6417 	int old_stripe_index;
6418 
6419 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6420 	io_geom->stripe_nr /= factor;
6421 
6422 	if (io_geom->op != BTRFS_MAP_READ) {
6423 		io_geom->num_stripes = map->sub_stripes;
6424 		return;
6425 	}
6426 
6427 	if (io_geom->mirror_num) {
6428 		io_geom->stripe_index += io_geom->mirror_num - 1;
6429 		return;
6430 	}
6431 
6432 	old_stripe_index = io_geom->stripe_index;
6433 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6434 						 io_geom->stripe_index,
6435 						 dev_replace_is_ongoing);
6436 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6437 }
6438 
6439 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6440 				    struct btrfs_io_geometry *io_geom,
6441 				    u64 logical, u64 *length)
6442 {
6443 	int data_stripes = nr_data_stripes(map);
6444 
6445 	/*
6446 	 * Needs full stripe mapping.
6447 	 *
6448 	 * Push stripe_nr back to the start of the full stripe For those cases
6449 	 * needing a full stripe, @stripe_nr is the full stripe number.
6450 	 *
6451 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6452 	 * that can be expensive.  Here we just divide @stripe_nr with
6453 	 * @data_stripes.
6454 	 */
6455 	io_geom->stripe_nr /= data_stripes;
6456 
6457 	/* RAID[56] write or recovery. Return all stripes */
6458 	io_geom->num_stripes = map->num_stripes;
6459 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6460 
6461 	/* Return the length to the full stripe end. */
6462 	*length = min(logical + *length,
6463 		      io_geom->raid56_full_stripe_start + map->start +
6464 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6465 		logical;
6466 	io_geom->stripe_index = 0;
6467 	io_geom->stripe_offset = 0;
6468 }
6469 
6470 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6471 				   struct btrfs_io_geometry *io_geom)
6472 {
6473 	int data_stripes = nr_data_stripes(map);
6474 
6475 	ASSERT(io_geom->mirror_num <= 1);
6476 	/* Just grab the data stripe directly. */
6477 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6478 	io_geom->stripe_nr /= data_stripes;
6479 
6480 	/* We distribute the parity blocks across stripes. */
6481 	io_geom->stripe_index =
6482 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6483 
6484 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6485 		io_geom->mirror_num = 1;
6486 }
6487 
6488 static void map_blocks_single(const struct btrfs_chunk_map *map,
6489 			      struct btrfs_io_geometry *io_geom)
6490 {
6491 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6492 	io_geom->stripe_nr /= map->num_stripes;
6493 	io_geom->mirror_num = io_geom->stripe_index + 1;
6494 }
6495 
6496 /*
6497  * Map one logical range to one or more physical ranges.
6498  *
6499  * @length:		(Mandatory) mapped length of this run.
6500  *			One logical range can be split into different segments
6501  *			due to factors like zones and RAID0/5/6/10 stripe
6502  *			boundaries.
6503  *
6504  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6505  *			which has one or more physical ranges (btrfs_io_stripe)
6506  *			recorded inside.
6507  *			Caller should call btrfs_put_bioc() to free it after use.
6508  *
6509  * @smap:		(Optional) single physical range optimization.
6510  *			If the map request can be fulfilled by one single
6511  *			physical range, and this is parameter is not NULL,
6512  *			then @bioc_ret would be NULL, and @smap would be
6513  *			updated.
6514  *
6515  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6516  *			value is 0.
6517  *
6518  *			Mirror number 0 means to choose any live mirrors.
6519  *
6520  *			For non-RAID56 profiles, non-zero mirror_num means
6521  *			the Nth mirror. (e.g. mirror_num 1 means the first
6522  *			copy).
6523  *
6524  *			For RAID56 profile, mirror 1 means rebuild from P and
6525  *			the remaining data stripes.
6526  *
6527  *			For RAID6 profile, mirror > 2 means mark another
6528  *			data/P stripe error and rebuild from the remaining
6529  *			stripes..
6530  */
6531 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6532 		    u64 logical, u64 *length,
6533 		    struct btrfs_io_context **bioc_ret,
6534 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6535 {
6536 	struct btrfs_chunk_map *map;
6537 	struct btrfs_io_geometry io_geom = { 0 };
6538 	u64 map_offset;
6539 	int i;
6540 	int ret = 0;
6541 	int num_copies;
6542 	struct btrfs_io_context *bioc = NULL;
6543 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6544 	int dev_replace_is_ongoing = 0;
6545 	u16 num_alloc_stripes;
6546 	u64 max_len;
6547 
6548 	ASSERT(bioc_ret);
6549 
6550 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6551 	io_geom.num_stripes = 1;
6552 	io_geom.stripe_index = 0;
6553 	io_geom.op = op;
6554 
6555 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6556 	if (io_geom.mirror_num > num_copies)
6557 		return -EINVAL;
6558 
6559 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6560 	if (IS_ERR(map))
6561 		return PTR_ERR(map);
6562 
6563 	map_offset = logical - map->start;
6564 	io_geom.raid56_full_stripe_start = (u64)-1;
6565 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6566 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6567 
6568 	down_read(&dev_replace->rwsem);
6569 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6570 	/*
6571 	 * Hold the semaphore for read during the whole operation, write is
6572 	 * requested at commit time but must wait.
6573 	 */
6574 	if (!dev_replace_is_ongoing)
6575 		up_read(&dev_replace->rwsem);
6576 
6577 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6578 	case BTRFS_BLOCK_GROUP_RAID0:
6579 		map_blocks_raid0(map, &io_geom);
6580 		break;
6581 	case BTRFS_BLOCK_GROUP_RAID1:
6582 	case BTRFS_BLOCK_GROUP_RAID1C3:
6583 	case BTRFS_BLOCK_GROUP_RAID1C4:
6584 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6585 		break;
6586 	case BTRFS_BLOCK_GROUP_DUP:
6587 		map_blocks_dup(map, &io_geom);
6588 		break;
6589 	case BTRFS_BLOCK_GROUP_RAID10:
6590 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6591 		break;
6592 	case BTRFS_BLOCK_GROUP_RAID5:
6593 	case BTRFS_BLOCK_GROUP_RAID6:
6594 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6595 			map_blocks_raid56_write(map, &io_geom, logical, length);
6596 		else
6597 			map_blocks_raid56_read(map, &io_geom);
6598 		break;
6599 	default:
6600 		/*
6601 		 * After this, stripe_nr is the number of stripes on this
6602 		 * device we have to walk to find the data, and stripe_index is
6603 		 * the number of our device in the stripe array
6604 		 */
6605 		map_blocks_single(map, &io_geom);
6606 		break;
6607 	}
6608 	if (io_geom.stripe_index >= map->num_stripes) {
6609 		btrfs_crit(fs_info,
6610 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6611 			   io_geom.stripe_index, map->num_stripes);
6612 		ret = -EINVAL;
6613 		goto out;
6614 	}
6615 
6616 	num_alloc_stripes = io_geom.num_stripes;
6617 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6618 	    op != BTRFS_MAP_READ)
6619 		/*
6620 		 * For replace case, we need to add extra stripes for extra
6621 		 * duplicated stripes.
6622 		 *
6623 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6624 		 * 2 more stripes (DUP types, otherwise 1).
6625 		 */
6626 		num_alloc_stripes += 2;
6627 
6628 	/*
6629 	 * If this I/O maps to a single device, try to return the device and
6630 	 * physical block information on the stack instead of allocating an
6631 	 * I/O context structure.
6632 	 */
6633 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6634 				io_geom.mirror_num)) {
6635 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6636 		if (mirror_num_ret)
6637 			*mirror_num_ret = io_geom.mirror_num;
6638 		*bioc_ret = NULL;
6639 		goto out;
6640 	}
6641 
6642 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6643 	if (!bioc) {
6644 		ret = -ENOMEM;
6645 		goto out;
6646 	}
6647 	bioc->map_type = map->type;
6648 
6649 	/*
6650 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6651 	 * rule that data stripes are all ordered, then followed with P and Q
6652 	 * (if we have).
6653 	 *
6654 	 * It's still mostly the same as other profiles, just with extra rotation.
6655 	 */
6656 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6657 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6658 		/*
6659 		 * For RAID56 @stripe_nr is already the number of full stripes
6660 		 * before us, which is also the rotation value (needs to modulo
6661 		 * with num_stripes).
6662 		 *
6663 		 * In this case, we just add @stripe_nr with @i, then do the
6664 		 * modulo, to reduce one modulo call.
6665 		 */
6666 		bioc->full_stripe_logical = map->start +
6667 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6668 						  nr_data_stripes(map));
6669 		for (int i = 0; i < io_geom.num_stripes; i++) {
6670 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6671 			u32 stripe_index;
6672 
6673 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6674 			dst->dev = map->stripes[stripe_index].dev;
6675 			dst->physical =
6676 				map->stripes[stripe_index].physical +
6677 				io_geom.stripe_offset +
6678 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6679 		}
6680 	} else {
6681 		/*
6682 		 * For all other non-RAID56 profiles, just copy the target
6683 		 * stripe into the bioc.
6684 		 */
6685 		for (i = 0; i < io_geom.num_stripes; i++) {
6686 			ret = set_io_stripe(fs_info, logical, length,
6687 					    &bioc->stripes[i], map, &io_geom);
6688 			if (ret < 0)
6689 				break;
6690 			io_geom.stripe_index++;
6691 		}
6692 	}
6693 
6694 	if (ret) {
6695 		*bioc_ret = NULL;
6696 		btrfs_put_bioc(bioc);
6697 		goto out;
6698 	}
6699 
6700 	if (op != BTRFS_MAP_READ)
6701 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6702 
6703 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6704 	    op != BTRFS_MAP_READ) {
6705 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6706 					  &io_geom.num_stripes, &io_geom.max_errors);
6707 	}
6708 
6709 	*bioc_ret = bioc;
6710 	bioc->num_stripes = io_geom.num_stripes;
6711 	bioc->max_errors = io_geom.max_errors;
6712 	bioc->mirror_num = io_geom.mirror_num;
6713 
6714 out:
6715 	if (dev_replace_is_ongoing) {
6716 		lockdep_assert_held(&dev_replace->rwsem);
6717 		/* Unlock and let waiting writers proceed */
6718 		up_read(&dev_replace->rwsem);
6719 	}
6720 	btrfs_free_chunk_map(map);
6721 	return ret;
6722 }
6723 
6724 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6725 				      const struct btrfs_fs_devices *fs_devices)
6726 {
6727 	if (args->fsid == NULL)
6728 		return true;
6729 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6730 		return true;
6731 	return false;
6732 }
6733 
6734 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6735 				  const struct btrfs_device *device)
6736 {
6737 	if (args->missing) {
6738 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6739 		    !device->bdev)
6740 			return true;
6741 		return false;
6742 	}
6743 
6744 	if (device->devid != args->devid)
6745 		return false;
6746 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6747 		return false;
6748 	return true;
6749 }
6750 
6751 /*
6752  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6753  * return NULL.
6754  *
6755  * If devid and uuid are both specified, the match must be exact, otherwise
6756  * only devid is used.
6757  */
6758 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6759 				       const struct btrfs_dev_lookup_args *args)
6760 {
6761 	struct btrfs_device *device;
6762 	struct btrfs_fs_devices *seed_devs;
6763 
6764 	if (dev_args_match_fs_devices(args, fs_devices)) {
6765 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6766 			if (dev_args_match_device(args, device))
6767 				return device;
6768 		}
6769 	}
6770 
6771 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6772 		if (!dev_args_match_fs_devices(args, seed_devs))
6773 			continue;
6774 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6775 			if (dev_args_match_device(args, device))
6776 				return device;
6777 		}
6778 	}
6779 
6780 	return NULL;
6781 }
6782 
6783 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6784 					    u64 devid, u8 *dev_uuid)
6785 {
6786 	struct btrfs_device *device;
6787 	unsigned int nofs_flag;
6788 
6789 	/*
6790 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6791 	 * allocation, however we don't want to change btrfs_alloc_device() to
6792 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6793 	 * places.
6794 	 */
6795 
6796 	nofs_flag = memalloc_nofs_save();
6797 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6798 	memalloc_nofs_restore(nofs_flag);
6799 	if (IS_ERR(device))
6800 		return device;
6801 
6802 	list_add(&device->dev_list, &fs_devices->devices);
6803 	device->fs_devices = fs_devices;
6804 	fs_devices->num_devices++;
6805 
6806 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6807 	fs_devices->missing_devices++;
6808 
6809 	return device;
6810 }
6811 
6812 /*
6813  * Allocate new device struct, set up devid and UUID.
6814  *
6815  * @fs_info:	used only for generating a new devid, can be NULL if
6816  *		devid is provided (i.e. @devid != NULL).
6817  * @devid:	a pointer to devid for this device.  If NULL a new devid
6818  *		is generated.
6819  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6820  *		is generated.
6821  * @path:	a pointer to device path if available, NULL otherwise.
6822  *
6823  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6824  * on error.  Returned struct is not linked onto any lists and must be
6825  * destroyed with btrfs_free_device.
6826  */
6827 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6828 					const u64 *devid, const u8 *uuid,
6829 					const char *path)
6830 {
6831 	struct btrfs_device *dev;
6832 	u64 tmp;
6833 
6834 	if (WARN_ON(!devid && !fs_info))
6835 		return ERR_PTR(-EINVAL);
6836 
6837 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6838 	if (!dev)
6839 		return ERR_PTR(-ENOMEM);
6840 
6841 	INIT_LIST_HEAD(&dev->dev_list);
6842 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6843 	INIT_LIST_HEAD(&dev->post_commit_list);
6844 
6845 	atomic_set(&dev->dev_stats_ccnt, 0);
6846 	btrfs_device_data_ordered_init(dev);
6847 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6848 
6849 	if (devid)
6850 		tmp = *devid;
6851 	else {
6852 		int ret;
6853 
6854 		ret = find_next_devid(fs_info, &tmp);
6855 		if (ret) {
6856 			btrfs_free_device(dev);
6857 			return ERR_PTR(ret);
6858 		}
6859 	}
6860 	dev->devid = tmp;
6861 
6862 	if (uuid)
6863 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6864 	else
6865 		generate_random_uuid(dev->uuid);
6866 
6867 	if (path) {
6868 		struct rcu_string *name;
6869 
6870 		name = rcu_string_strdup(path, GFP_KERNEL);
6871 		if (!name) {
6872 			btrfs_free_device(dev);
6873 			return ERR_PTR(-ENOMEM);
6874 		}
6875 		rcu_assign_pointer(dev->name, name);
6876 	}
6877 
6878 	return dev;
6879 }
6880 
6881 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6882 					u64 devid, u8 *uuid, bool error)
6883 {
6884 	if (error)
6885 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6886 			      devid, uuid);
6887 	else
6888 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6889 			      devid, uuid);
6890 }
6891 
6892 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6893 {
6894 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6895 
6896 	return div_u64(map->chunk_len, data_stripes);
6897 }
6898 
6899 #if BITS_PER_LONG == 32
6900 /*
6901  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6902  * can't be accessed on 32bit systems.
6903  *
6904  * This function do mount time check to reject the fs if it already has
6905  * metadata chunk beyond that limit.
6906  */
6907 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6908 				  u64 logical, u64 length, u64 type)
6909 {
6910 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6911 		return 0;
6912 
6913 	if (logical + length < MAX_LFS_FILESIZE)
6914 		return 0;
6915 
6916 	btrfs_err_32bit_limit(fs_info);
6917 	return -EOVERFLOW;
6918 }
6919 
6920 /*
6921  * This is to give early warning for any metadata chunk reaching
6922  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6923  * Although we can still access the metadata, it's not going to be possible
6924  * once the limit is reached.
6925  */
6926 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6927 				  u64 logical, u64 length, u64 type)
6928 {
6929 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6930 		return;
6931 
6932 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6933 		return;
6934 
6935 	btrfs_warn_32bit_limit(fs_info);
6936 }
6937 #endif
6938 
6939 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6940 						  u64 devid, u8 *uuid)
6941 {
6942 	struct btrfs_device *dev;
6943 
6944 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6945 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6946 		return ERR_PTR(-ENOENT);
6947 	}
6948 
6949 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6950 	if (IS_ERR(dev)) {
6951 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6952 			  devid, PTR_ERR(dev));
6953 		return dev;
6954 	}
6955 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6956 
6957 	return dev;
6958 }
6959 
6960 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6961 			  struct btrfs_chunk *chunk)
6962 {
6963 	BTRFS_DEV_LOOKUP_ARGS(args);
6964 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6965 	struct btrfs_chunk_map *map;
6966 	u64 logical;
6967 	u64 length;
6968 	u64 devid;
6969 	u64 type;
6970 	u8 uuid[BTRFS_UUID_SIZE];
6971 	int index;
6972 	int num_stripes;
6973 	int ret;
6974 	int i;
6975 
6976 	logical = key->offset;
6977 	length = btrfs_chunk_length(leaf, chunk);
6978 	type = btrfs_chunk_type(leaf, chunk);
6979 	index = btrfs_bg_flags_to_raid_index(type);
6980 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6981 
6982 #if BITS_PER_LONG == 32
6983 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6984 	if (ret < 0)
6985 		return ret;
6986 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6987 #endif
6988 
6989 	/*
6990 	 * Only need to verify chunk item if we're reading from sys chunk array,
6991 	 * as chunk item in tree block is already verified by tree-checker.
6992 	 */
6993 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6994 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6995 		if (ret)
6996 			return ret;
6997 	}
6998 
6999 	map = btrfs_find_chunk_map(fs_info, logical, 1);
7000 
7001 	/* already mapped? */
7002 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7003 		btrfs_free_chunk_map(map);
7004 		return 0;
7005 	} else if (map) {
7006 		btrfs_free_chunk_map(map);
7007 	}
7008 
7009 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7010 	if (!map)
7011 		return -ENOMEM;
7012 
7013 	map->start = logical;
7014 	map->chunk_len = length;
7015 	map->num_stripes = num_stripes;
7016 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7017 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7018 	map->type = type;
7019 	/*
7020 	 * We can't use the sub_stripes value, as for profiles other than
7021 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7022 	 * older mkfs (<v5.4).
7023 	 * In that case, it can cause divide-by-zero errors later.
7024 	 * Since currently sub_stripes is fixed for each profile, let's
7025 	 * use the trusted value instead.
7026 	 */
7027 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7028 	map->verified_stripes = 0;
7029 	map->stripe_size = btrfs_calc_stripe_length(map);
7030 	for (i = 0; i < num_stripes; i++) {
7031 		map->stripes[i].physical =
7032 			btrfs_stripe_offset_nr(leaf, chunk, i);
7033 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7034 		args.devid = devid;
7035 		read_extent_buffer(leaf, uuid, (unsigned long)
7036 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7037 				   BTRFS_UUID_SIZE);
7038 		args.uuid = uuid;
7039 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7040 		if (!map->stripes[i].dev) {
7041 			map->stripes[i].dev = handle_missing_device(fs_info,
7042 								    devid, uuid);
7043 			if (IS_ERR(map->stripes[i].dev)) {
7044 				ret = PTR_ERR(map->stripes[i].dev);
7045 				btrfs_free_chunk_map(map);
7046 				return ret;
7047 			}
7048 		}
7049 
7050 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7051 				&(map->stripes[i].dev->dev_state));
7052 	}
7053 
7054 	ret = btrfs_add_chunk_map(fs_info, map);
7055 	if (ret < 0) {
7056 		btrfs_err(fs_info,
7057 			  "failed to add chunk map, start=%llu len=%llu: %d",
7058 			  map->start, map->chunk_len, ret);
7059 	}
7060 
7061 	return ret;
7062 }
7063 
7064 static void fill_device_from_item(struct extent_buffer *leaf,
7065 				 struct btrfs_dev_item *dev_item,
7066 				 struct btrfs_device *device)
7067 {
7068 	unsigned long ptr;
7069 
7070 	device->devid = btrfs_device_id(leaf, dev_item);
7071 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7072 	device->total_bytes = device->disk_total_bytes;
7073 	device->commit_total_bytes = device->disk_total_bytes;
7074 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7075 	device->commit_bytes_used = device->bytes_used;
7076 	device->type = btrfs_device_type(leaf, dev_item);
7077 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7078 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7079 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7080 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7081 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7082 
7083 	ptr = btrfs_device_uuid(dev_item);
7084 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7085 }
7086 
7087 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7088 						  u8 *fsid)
7089 {
7090 	struct btrfs_fs_devices *fs_devices;
7091 	int ret;
7092 
7093 	lockdep_assert_held(&uuid_mutex);
7094 	ASSERT(fsid);
7095 
7096 	/* This will match only for multi-device seed fs */
7097 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7098 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7099 			return fs_devices;
7100 
7101 
7102 	fs_devices = find_fsid(fsid, NULL);
7103 	if (!fs_devices) {
7104 		if (!btrfs_test_opt(fs_info, DEGRADED))
7105 			return ERR_PTR(-ENOENT);
7106 
7107 		fs_devices = alloc_fs_devices(fsid);
7108 		if (IS_ERR(fs_devices))
7109 			return fs_devices;
7110 
7111 		fs_devices->seeding = true;
7112 		fs_devices->opened = 1;
7113 		return fs_devices;
7114 	}
7115 
7116 	/*
7117 	 * Upon first call for a seed fs fsid, just create a private copy of the
7118 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7119 	 */
7120 	fs_devices = clone_fs_devices(fs_devices);
7121 	if (IS_ERR(fs_devices))
7122 		return fs_devices;
7123 
7124 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7125 	if (ret) {
7126 		free_fs_devices(fs_devices);
7127 		return ERR_PTR(ret);
7128 	}
7129 
7130 	if (!fs_devices->seeding) {
7131 		close_fs_devices(fs_devices);
7132 		free_fs_devices(fs_devices);
7133 		return ERR_PTR(-EINVAL);
7134 	}
7135 
7136 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7137 
7138 	return fs_devices;
7139 }
7140 
7141 static int read_one_dev(struct extent_buffer *leaf,
7142 			struct btrfs_dev_item *dev_item)
7143 {
7144 	BTRFS_DEV_LOOKUP_ARGS(args);
7145 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7146 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7147 	struct btrfs_device *device;
7148 	u64 devid;
7149 	int ret;
7150 	u8 fs_uuid[BTRFS_FSID_SIZE];
7151 	u8 dev_uuid[BTRFS_UUID_SIZE];
7152 
7153 	devid = btrfs_device_id(leaf, dev_item);
7154 	args.devid = devid;
7155 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7156 			   BTRFS_UUID_SIZE);
7157 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7158 			   BTRFS_FSID_SIZE);
7159 	args.uuid = dev_uuid;
7160 	args.fsid = fs_uuid;
7161 
7162 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7163 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7164 		if (IS_ERR(fs_devices))
7165 			return PTR_ERR(fs_devices);
7166 	}
7167 
7168 	device = btrfs_find_device(fs_info->fs_devices, &args);
7169 	if (!device) {
7170 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7171 			btrfs_report_missing_device(fs_info, devid,
7172 							dev_uuid, true);
7173 			return -ENOENT;
7174 		}
7175 
7176 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7177 		if (IS_ERR(device)) {
7178 			btrfs_err(fs_info,
7179 				"failed to add missing dev %llu: %ld",
7180 				devid, PTR_ERR(device));
7181 			return PTR_ERR(device);
7182 		}
7183 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7184 	} else {
7185 		if (!device->bdev) {
7186 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7187 				btrfs_report_missing_device(fs_info,
7188 						devid, dev_uuid, true);
7189 				return -ENOENT;
7190 			}
7191 			btrfs_report_missing_device(fs_info, devid,
7192 							dev_uuid, false);
7193 		}
7194 
7195 		if (!device->bdev &&
7196 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7197 			/*
7198 			 * this happens when a device that was properly setup
7199 			 * in the device info lists suddenly goes bad.
7200 			 * device->bdev is NULL, and so we have to set
7201 			 * device->missing to one here
7202 			 */
7203 			device->fs_devices->missing_devices++;
7204 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7205 		}
7206 
7207 		/* Move the device to its own fs_devices */
7208 		if (device->fs_devices != fs_devices) {
7209 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7210 							&device->dev_state));
7211 
7212 			list_move(&device->dev_list, &fs_devices->devices);
7213 			device->fs_devices->num_devices--;
7214 			fs_devices->num_devices++;
7215 
7216 			device->fs_devices->missing_devices--;
7217 			fs_devices->missing_devices++;
7218 
7219 			device->fs_devices = fs_devices;
7220 		}
7221 	}
7222 
7223 	if (device->fs_devices != fs_info->fs_devices) {
7224 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7225 		if (device->generation !=
7226 		    btrfs_device_generation(leaf, dev_item))
7227 			return -EINVAL;
7228 	}
7229 
7230 	fill_device_from_item(leaf, dev_item, device);
7231 	if (device->bdev) {
7232 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7233 
7234 		if (device->total_bytes > max_total_bytes) {
7235 			btrfs_err(fs_info,
7236 			"device total_bytes should be at most %llu but found %llu",
7237 				  max_total_bytes, device->total_bytes);
7238 			return -EINVAL;
7239 		}
7240 	}
7241 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7242 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7243 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7244 		device->fs_devices->total_rw_bytes += device->total_bytes;
7245 		atomic64_add(device->total_bytes - device->bytes_used,
7246 				&fs_info->free_chunk_space);
7247 	}
7248 	ret = 0;
7249 	return ret;
7250 }
7251 
7252 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7253 {
7254 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7255 	struct extent_buffer *sb;
7256 	struct btrfs_disk_key *disk_key;
7257 	struct btrfs_chunk *chunk;
7258 	u8 *array_ptr;
7259 	unsigned long sb_array_offset;
7260 	int ret = 0;
7261 	u32 num_stripes;
7262 	u32 array_size;
7263 	u32 len = 0;
7264 	u32 cur_offset;
7265 	u64 type;
7266 	struct btrfs_key key;
7267 
7268 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7269 
7270 	/*
7271 	 * We allocated a dummy extent, just to use extent buffer accessors.
7272 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7273 	 * that's fine, we will not go beyond system chunk array anyway.
7274 	 */
7275 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7276 	if (!sb)
7277 		return -ENOMEM;
7278 	set_extent_buffer_uptodate(sb);
7279 
7280 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7281 	array_size = btrfs_super_sys_array_size(super_copy);
7282 
7283 	array_ptr = super_copy->sys_chunk_array;
7284 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7285 	cur_offset = 0;
7286 
7287 	while (cur_offset < array_size) {
7288 		disk_key = (struct btrfs_disk_key *)array_ptr;
7289 		len = sizeof(*disk_key);
7290 		if (cur_offset + len > array_size)
7291 			goto out_short_read;
7292 
7293 		btrfs_disk_key_to_cpu(&key, disk_key);
7294 
7295 		array_ptr += len;
7296 		sb_array_offset += len;
7297 		cur_offset += len;
7298 
7299 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7300 			btrfs_err(fs_info,
7301 			    "unexpected item type %u in sys_array at offset %u",
7302 				  (u32)key.type, cur_offset);
7303 			ret = -EIO;
7304 			break;
7305 		}
7306 
7307 		chunk = (struct btrfs_chunk *)sb_array_offset;
7308 		/*
7309 		 * At least one btrfs_chunk with one stripe must be present,
7310 		 * exact stripe count check comes afterwards
7311 		 */
7312 		len = btrfs_chunk_item_size(1);
7313 		if (cur_offset + len > array_size)
7314 			goto out_short_read;
7315 
7316 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7317 		if (!num_stripes) {
7318 			btrfs_err(fs_info,
7319 			"invalid number of stripes %u in sys_array at offset %u",
7320 				  num_stripes, cur_offset);
7321 			ret = -EIO;
7322 			break;
7323 		}
7324 
7325 		type = btrfs_chunk_type(sb, chunk);
7326 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7327 			btrfs_err(fs_info,
7328 			"invalid chunk type %llu in sys_array at offset %u",
7329 				  type, cur_offset);
7330 			ret = -EIO;
7331 			break;
7332 		}
7333 
7334 		len = btrfs_chunk_item_size(num_stripes);
7335 		if (cur_offset + len > array_size)
7336 			goto out_short_read;
7337 
7338 		ret = read_one_chunk(&key, sb, chunk);
7339 		if (ret)
7340 			break;
7341 
7342 		array_ptr += len;
7343 		sb_array_offset += len;
7344 		cur_offset += len;
7345 	}
7346 	clear_extent_buffer_uptodate(sb);
7347 	free_extent_buffer_stale(sb);
7348 	return ret;
7349 
7350 out_short_read:
7351 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7352 			len, cur_offset);
7353 	clear_extent_buffer_uptodate(sb);
7354 	free_extent_buffer_stale(sb);
7355 	return -EIO;
7356 }
7357 
7358 /*
7359  * Check if all chunks in the fs are OK for read-write degraded mount
7360  *
7361  * If the @failing_dev is specified, it's accounted as missing.
7362  *
7363  * Return true if all chunks meet the minimal RW mount requirements.
7364  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7365  */
7366 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7367 					struct btrfs_device *failing_dev)
7368 {
7369 	struct btrfs_chunk_map *map;
7370 	u64 next_start;
7371 	bool ret = true;
7372 
7373 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7374 	/* No chunk at all? Return false anyway */
7375 	if (!map) {
7376 		ret = false;
7377 		goto out;
7378 	}
7379 	while (map) {
7380 		int missing = 0;
7381 		int max_tolerated;
7382 		int i;
7383 
7384 		max_tolerated =
7385 			btrfs_get_num_tolerated_disk_barrier_failures(
7386 					map->type);
7387 		for (i = 0; i < map->num_stripes; i++) {
7388 			struct btrfs_device *dev = map->stripes[i].dev;
7389 
7390 			if (!dev || !dev->bdev ||
7391 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7392 			    dev->last_flush_error)
7393 				missing++;
7394 			else if (failing_dev && failing_dev == dev)
7395 				missing++;
7396 		}
7397 		if (missing > max_tolerated) {
7398 			if (!failing_dev)
7399 				btrfs_warn(fs_info,
7400 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7401 				   map->start, missing, max_tolerated);
7402 			btrfs_free_chunk_map(map);
7403 			ret = false;
7404 			goto out;
7405 		}
7406 		next_start = map->start + map->chunk_len;
7407 		btrfs_free_chunk_map(map);
7408 
7409 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7410 	}
7411 out:
7412 	return ret;
7413 }
7414 
7415 static void readahead_tree_node_children(struct extent_buffer *node)
7416 {
7417 	int i;
7418 	const int nr_items = btrfs_header_nritems(node);
7419 
7420 	for (i = 0; i < nr_items; i++)
7421 		btrfs_readahead_node_child(node, i);
7422 }
7423 
7424 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7425 {
7426 	struct btrfs_root *root = fs_info->chunk_root;
7427 	struct btrfs_path *path;
7428 	struct extent_buffer *leaf;
7429 	struct btrfs_key key;
7430 	struct btrfs_key found_key;
7431 	int ret;
7432 	int slot;
7433 	int iter_ret = 0;
7434 	u64 total_dev = 0;
7435 	u64 last_ra_node = 0;
7436 
7437 	path = btrfs_alloc_path();
7438 	if (!path)
7439 		return -ENOMEM;
7440 
7441 	/*
7442 	 * uuid_mutex is needed only if we are mounting a sprout FS
7443 	 * otherwise we don't need it.
7444 	 */
7445 	mutex_lock(&uuid_mutex);
7446 
7447 	/*
7448 	 * It is possible for mount and umount to race in such a way that
7449 	 * we execute this code path, but open_fs_devices failed to clear
7450 	 * total_rw_bytes. We certainly want it cleared before reading the
7451 	 * device items, so clear it here.
7452 	 */
7453 	fs_info->fs_devices->total_rw_bytes = 0;
7454 
7455 	/*
7456 	 * Lockdep complains about possible circular locking dependency between
7457 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7458 	 * used for freeze procection of a fs (struct super_block.s_writers),
7459 	 * which we take when starting a transaction, and extent buffers of the
7460 	 * chunk tree if we call read_one_dev() while holding a lock on an
7461 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7462 	 * and at this point there can't be any concurrent task modifying the
7463 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7464 	 */
7465 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7466 	path->skip_locking = 1;
7467 
7468 	/*
7469 	 * Read all device items, and then all the chunk items. All
7470 	 * device items are found before any chunk item (their object id
7471 	 * is smaller than the lowest possible object id for a chunk
7472 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7473 	 */
7474 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7475 	key.offset = 0;
7476 	key.type = 0;
7477 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7478 		struct extent_buffer *node = path->nodes[1];
7479 
7480 		leaf = path->nodes[0];
7481 		slot = path->slots[0];
7482 
7483 		if (node) {
7484 			if (last_ra_node != node->start) {
7485 				readahead_tree_node_children(node);
7486 				last_ra_node = node->start;
7487 			}
7488 		}
7489 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7490 			struct btrfs_dev_item *dev_item;
7491 			dev_item = btrfs_item_ptr(leaf, slot,
7492 						  struct btrfs_dev_item);
7493 			ret = read_one_dev(leaf, dev_item);
7494 			if (ret)
7495 				goto error;
7496 			total_dev++;
7497 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7498 			struct btrfs_chunk *chunk;
7499 
7500 			/*
7501 			 * We are only called at mount time, so no need to take
7502 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7503 			 * we always lock first fs_info->chunk_mutex before
7504 			 * acquiring any locks on the chunk tree. This is a
7505 			 * requirement for chunk allocation, see the comment on
7506 			 * top of btrfs_chunk_alloc() for details.
7507 			 */
7508 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7509 			ret = read_one_chunk(&found_key, leaf, chunk);
7510 			if (ret)
7511 				goto error;
7512 		}
7513 	}
7514 	/* Catch error found during iteration */
7515 	if (iter_ret < 0) {
7516 		ret = iter_ret;
7517 		goto error;
7518 	}
7519 
7520 	/*
7521 	 * After loading chunk tree, we've got all device information,
7522 	 * do another round of validation checks.
7523 	 */
7524 	if (total_dev != fs_info->fs_devices->total_devices) {
7525 		btrfs_warn(fs_info,
7526 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7527 			  btrfs_super_num_devices(fs_info->super_copy),
7528 			  total_dev);
7529 		fs_info->fs_devices->total_devices = total_dev;
7530 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7531 	}
7532 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7533 	    fs_info->fs_devices->total_rw_bytes) {
7534 		btrfs_err(fs_info,
7535 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7536 			  btrfs_super_total_bytes(fs_info->super_copy),
7537 			  fs_info->fs_devices->total_rw_bytes);
7538 		ret = -EINVAL;
7539 		goto error;
7540 	}
7541 	ret = 0;
7542 error:
7543 	mutex_unlock(&uuid_mutex);
7544 
7545 	btrfs_free_path(path);
7546 	return ret;
7547 }
7548 
7549 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7550 {
7551 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7552 	struct btrfs_device *device;
7553 	int ret = 0;
7554 
7555 	fs_devices->fs_info = fs_info;
7556 
7557 	mutex_lock(&fs_devices->device_list_mutex);
7558 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7559 		device->fs_info = fs_info;
7560 
7561 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7562 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7563 			device->fs_info = fs_info;
7564 			ret = btrfs_get_dev_zone_info(device, false);
7565 			if (ret)
7566 				break;
7567 		}
7568 
7569 		seed_devs->fs_info = fs_info;
7570 	}
7571 	mutex_unlock(&fs_devices->device_list_mutex);
7572 
7573 	return ret;
7574 }
7575 
7576 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7577 				 const struct btrfs_dev_stats_item *ptr,
7578 				 int index)
7579 {
7580 	u64 val;
7581 
7582 	read_extent_buffer(eb, &val,
7583 			   offsetof(struct btrfs_dev_stats_item, values) +
7584 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7585 			   sizeof(val));
7586 	return val;
7587 }
7588 
7589 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7590 				      struct btrfs_dev_stats_item *ptr,
7591 				      int index, u64 val)
7592 {
7593 	write_extent_buffer(eb, &val,
7594 			    offsetof(struct btrfs_dev_stats_item, values) +
7595 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7596 			    sizeof(val));
7597 }
7598 
7599 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7600 				       struct btrfs_path *path)
7601 {
7602 	struct btrfs_dev_stats_item *ptr;
7603 	struct extent_buffer *eb;
7604 	struct btrfs_key key;
7605 	int item_size;
7606 	int i, ret, slot;
7607 
7608 	if (!device->fs_info->dev_root)
7609 		return 0;
7610 
7611 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7612 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7613 	key.offset = device->devid;
7614 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7615 	if (ret) {
7616 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7617 			btrfs_dev_stat_set(device, i, 0);
7618 		device->dev_stats_valid = 1;
7619 		btrfs_release_path(path);
7620 		return ret < 0 ? ret : 0;
7621 	}
7622 	slot = path->slots[0];
7623 	eb = path->nodes[0];
7624 	item_size = btrfs_item_size(eb, slot);
7625 
7626 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7627 
7628 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7629 		if (item_size >= (1 + i) * sizeof(__le64))
7630 			btrfs_dev_stat_set(device, i,
7631 					   btrfs_dev_stats_value(eb, ptr, i));
7632 		else
7633 			btrfs_dev_stat_set(device, i, 0);
7634 	}
7635 
7636 	device->dev_stats_valid = 1;
7637 	btrfs_dev_stat_print_on_load(device);
7638 	btrfs_release_path(path);
7639 
7640 	return 0;
7641 }
7642 
7643 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7644 {
7645 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7646 	struct btrfs_device *device;
7647 	struct btrfs_path *path = NULL;
7648 	int ret = 0;
7649 
7650 	path = btrfs_alloc_path();
7651 	if (!path)
7652 		return -ENOMEM;
7653 
7654 	mutex_lock(&fs_devices->device_list_mutex);
7655 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7656 		ret = btrfs_device_init_dev_stats(device, path);
7657 		if (ret)
7658 			goto out;
7659 	}
7660 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7661 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7662 			ret = btrfs_device_init_dev_stats(device, path);
7663 			if (ret)
7664 				goto out;
7665 		}
7666 	}
7667 out:
7668 	mutex_unlock(&fs_devices->device_list_mutex);
7669 
7670 	btrfs_free_path(path);
7671 	return ret;
7672 }
7673 
7674 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7675 				struct btrfs_device *device)
7676 {
7677 	struct btrfs_fs_info *fs_info = trans->fs_info;
7678 	struct btrfs_root *dev_root = fs_info->dev_root;
7679 	struct btrfs_path *path;
7680 	struct btrfs_key key;
7681 	struct extent_buffer *eb;
7682 	struct btrfs_dev_stats_item *ptr;
7683 	int ret;
7684 	int i;
7685 
7686 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7687 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7688 	key.offset = device->devid;
7689 
7690 	path = btrfs_alloc_path();
7691 	if (!path)
7692 		return -ENOMEM;
7693 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7694 	if (ret < 0) {
7695 		btrfs_warn_in_rcu(fs_info,
7696 			"error %d while searching for dev_stats item for device %s",
7697 				  ret, btrfs_dev_name(device));
7698 		goto out;
7699 	}
7700 
7701 	if (ret == 0 &&
7702 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7703 		/* need to delete old one and insert a new one */
7704 		ret = btrfs_del_item(trans, dev_root, path);
7705 		if (ret != 0) {
7706 			btrfs_warn_in_rcu(fs_info,
7707 				"delete too small dev_stats item for device %s failed %d",
7708 					  btrfs_dev_name(device), ret);
7709 			goto out;
7710 		}
7711 		ret = 1;
7712 	}
7713 
7714 	if (ret == 1) {
7715 		/* need to insert a new item */
7716 		btrfs_release_path(path);
7717 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7718 					      &key, sizeof(*ptr));
7719 		if (ret < 0) {
7720 			btrfs_warn_in_rcu(fs_info,
7721 				"insert dev_stats item for device %s failed %d",
7722 				btrfs_dev_name(device), ret);
7723 			goto out;
7724 		}
7725 	}
7726 
7727 	eb = path->nodes[0];
7728 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7729 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7730 		btrfs_set_dev_stats_value(eb, ptr, i,
7731 					  btrfs_dev_stat_read(device, i));
7732 	btrfs_mark_buffer_dirty(trans, eb);
7733 
7734 out:
7735 	btrfs_free_path(path);
7736 	return ret;
7737 }
7738 
7739 /*
7740  * called from commit_transaction. Writes all changed device stats to disk.
7741  */
7742 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7743 {
7744 	struct btrfs_fs_info *fs_info = trans->fs_info;
7745 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7746 	struct btrfs_device *device;
7747 	int stats_cnt;
7748 	int ret = 0;
7749 
7750 	mutex_lock(&fs_devices->device_list_mutex);
7751 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7752 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7753 		if (!device->dev_stats_valid || stats_cnt == 0)
7754 			continue;
7755 
7756 
7757 		/*
7758 		 * There is a LOAD-LOAD control dependency between the value of
7759 		 * dev_stats_ccnt and updating the on-disk values which requires
7760 		 * reading the in-memory counters. Such control dependencies
7761 		 * require explicit read memory barriers.
7762 		 *
7763 		 * This memory barriers pairs with smp_mb__before_atomic in
7764 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7765 		 * barrier implied by atomic_xchg in
7766 		 * btrfs_dev_stats_read_and_reset
7767 		 */
7768 		smp_rmb();
7769 
7770 		ret = update_dev_stat_item(trans, device);
7771 		if (!ret)
7772 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7773 	}
7774 	mutex_unlock(&fs_devices->device_list_mutex);
7775 
7776 	return ret;
7777 }
7778 
7779 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7780 {
7781 	btrfs_dev_stat_inc(dev, index);
7782 
7783 	if (!dev->dev_stats_valid)
7784 		return;
7785 	btrfs_err_rl_in_rcu(dev->fs_info,
7786 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7787 			   btrfs_dev_name(dev),
7788 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7789 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7790 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7791 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7792 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7793 }
7794 
7795 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7796 {
7797 	int i;
7798 
7799 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7800 		if (btrfs_dev_stat_read(dev, i) != 0)
7801 			break;
7802 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7803 		return; /* all values == 0, suppress message */
7804 
7805 	btrfs_info_in_rcu(dev->fs_info,
7806 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7807 	       btrfs_dev_name(dev),
7808 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7809 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7810 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7811 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7812 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7813 }
7814 
7815 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7816 			struct btrfs_ioctl_get_dev_stats *stats)
7817 {
7818 	BTRFS_DEV_LOOKUP_ARGS(args);
7819 	struct btrfs_device *dev;
7820 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7821 	int i;
7822 
7823 	mutex_lock(&fs_devices->device_list_mutex);
7824 	args.devid = stats->devid;
7825 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7826 	mutex_unlock(&fs_devices->device_list_mutex);
7827 
7828 	if (!dev) {
7829 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7830 		return -ENODEV;
7831 	} else if (!dev->dev_stats_valid) {
7832 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7833 		return -ENODEV;
7834 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7835 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7836 			if (stats->nr_items > i)
7837 				stats->values[i] =
7838 					btrfs_dev_stat_read_and_reset(dev, i);
7839 			else
7840 				btrfs_dev_stat_set(dev, i, 0);
7841 		}
7842 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7843 			   current->comm, task_pid_nr(current));
7844 	} else {
7845 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7846 			if (stats->nr_items > i)
7847 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7848 	}
7849 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7850 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7851 	return 0;
7852 }
7853 
7854 /*
7855  * Update the size and bytes used for each device where it changed.  This is
7856  * delayed since we would otherwise get errors while writing out the
7857  * superblocks.
7858  *
7859  * Must be invoked during transaction commit.
7860  */
7861 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7862 {
7863 	struct btrfs_device *curr, *next;
7864 
7865 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7866 
7867 	if (list_empty(&trans->dev_update_list))
7868 		return;
7869 
7870 	/*
7871 	 * We don't need the device_list_mutex here.  This list is owned by the
7872 	 * transaction and the transaction must complete before the device is
7873 	 * released.
7874 	 */
7875 	mutex_lock(&trans->fs_info->chunk_mutex);
7876 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7877 				 post_commit_list) {
7878 		list_del_init(&curr->post_commit_list);
7879 		curr->commit_total_bytes = curr->disk_total_bytes;
7880 		curr->commit_bytes_used = curr->bytes_used;
7881 	}
7882 	mutex_unlock(&trans->fs_info->chunk_mutex);
7883 }
7884 
7885 /*
7886  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7887  */
7888 int btrfs_bg_type_to_factor(u64 flags)
7889 {
7890 	const int index = btrfs_bg_flags_to_raid_index(flags);
7891 
7892 	return btrfs_raid_array[index].ncopies;
7893 }
7894 
7895 
7896 
7897 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7898 				 u64 chunk_offset, u64 devid,
7899 				 u64 physical_offset, u64 physical_len)
7900 {
7901 	struct btrfs_dev_lookup_args args = { .devid = devid };
7902 	struct btrfs_chunk_map *map;
7903 	struct btrfs_device *dev;
7904 	u64 stripe_len;
7905 	bool found = false;
7906 	int ret = 0;
7907 	int i;
7908 
7909 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7910 	if (!map) {
7911 		btrfs_err(fs_info,
7912 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7913 			  physical_offset, devid);
7914 		ret = -EUCLEAN;
7915 		goto out;
7916 	}
7917 
7918 	stripe_len = btrfs_calc_stripe_length(map);
7919 	if (physical_len != stripe_len) {
7920 		btrfs_err(fs_info,
7921 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7922 			  physical_offset, devid, map->start, physical_len,
7923 			  stripe_len);
7924 		ret = -EUCLEAN;
7925 		goto out;
7926 	}
7927 
7928 	/*
7929 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7930 	 * space. Although kernel can handle it without problem, better to warn
7931 	 * the users.
7932 	 */
7933 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7934 		btrfs_warn(fs_info,
7935 		"devid %llu physical %llu len %llu inside the reserved space",
7936 			   devid, physical_offset, physical_len);
7937 
7938 	for (i = 0; i < map->num_stripes; i++) {
7939 		if (map->stripes[i].dev->devid == devid &&
7940 		    map->stripes[i].physical == physical_offset) {
7941 			found = true;
7942 			if (map->verified_stripes >= map->num_stripes) {
7943 				btrfs_err(fs_info,
7944 				"too many dev extents for chunk %llu found",
7945 					  map->start);
7946 				ret = -EUCLEAN;
7947 				goto out;
7948 			}
7949 			map->verified_stripes++;
7950 			break;
7951 		}
7952 	}
7953 	if (!found) {
7954 		btrfs_err(fs_info,
7955 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7956 			physical_offset, devid);
7957 		ret = -EUCLEAN;
7958 	}
7959 
7960 	/* Make sure no dev extent is beyond device boundary */
7961 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7962 	if (!dev) {
7963 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7964 		ret = -EUCLEAN;
7965 		goto out;
7966 	}
7967 
7968 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7969 		btrfs_err(fs_info,
7970 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7971 			  devid, physical_offset, physical_len,
7972 			  dev->disk_total_bytes);
7973 		ret = -EUCLEAN;
7974 		goto out;
7975 	}
7976 
7977 	if (dev->zone_info) {
7978 		u64 zone_size = dev->zone_info->zone_size;
7979 
7980 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7981 		    !IS_ALIGNED(physical_len, zone_size)) {
7982 			btrfs_err(fs_info,
7983 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7984 				  devid, physical_offset, physical_len);
7985 			ret = -EUCLEAN;
7986 			goto out;
7987 		}
7988 	}
7989 
7990 out:
7991 	btrfs_free_chunk_map(map);
7992 	return ret;
7993 }
7994 
7995 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7996 {
7997 	struct rb_node *node;
7998 	int ret = 0;
7999 
8000 	read_lock(&fs_info->mapping_tree_lock);
8001 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8002 		struct btrfs_chunk_map *map;
8003 
8004 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8005 		if (map->num_stripes != map->verified_stripes) {
8006 			btrfs_err(fs_info,
8007 			"chunk %llu has missing dev extent, have %d expect %d",
8008 				  map->start, map->verified_stripes, map->num_stripes);
8009 			ret = -EUCLEAN;
8010 			goto out;
8011 		}
8012 	}
8013 out:
8014 	read_unlock(&fs_info->mapping_tree_lock);
8015 	return ret;
8016 }
8017 
8018 /*
8019  * Ensure that all dev extents are mapped to correct chunk, otherwise
8020  * later chunk allocation/free would cause unexpected behavior.
8021  *
8022  * NOTE: This will iterate through the whole device tree, which should be of
8023  * the same size level as the chunk tree.  This slightly increases mount time.
8024  */
8025 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8026 {
8027 	struct btrfs_path *path;
8028 	struct btrfs_root *root = fs_info->dev_root;
8029 	struct btrfs_key key;
8030 	u64 prev_devid = 0;
8031 	u64 prev_dev_ext_end = 0;
8032 	int ret = 0;
8033 
8034 	/*
8035 	 * We don't have a dev_root because we mounted with ignorebadroots and
8036 	 * failed to load the root, so we want to skip the verification in this
8037 	 * case for sure.
8038 	 *
8039 	 * However if the dev root is fine, but the tree itself is corrupted
8040 	 * we'd still fail to mount.  This verification is only to make sure
8041 	 * writes can happen safely, so instead just bypass this check
8042 	 * completely in the case of IGNOREBADROOTS.
8043 	 */
8044 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8045 		return 0;
8046 
8047 	key.objectid = 1;
8048 	key.type = BTRFS_DEV_EXTENT_KEY;
8049 	key.offset = 0;
8050 
8051 	path = btrfs_alloc_path();
8052 	if (!path)
8053 		return -ENOMEM;
8054 
8055 	path->reada = READA_FORWARD;
8056 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8057 	if (ret < 0)
8058 		goto out;
8059 
8060 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8061 		ret = btrfs_next_leaf(root, path);
8062 		if (ret < 0)
8063 			goto out;
8064 		/* No dev extents at all? Not good */
8065 		if (ret > 0) {
8066 			ret = -EUCLEAN;
8067 			goto out;
8068 		}
8069 	}
8070 	while (1) {
8071 		struct extent_buffer *leaf = path->nodes[0];
8072 		struct btrfs_dev_extent *dext;
8073 		int slot = path->slots[0];
8074 		u64 chunk_offset;
8075 		u64 physical_offset;
8076 		u64 physical_len;
8077 		u64 devid;
8078 
8079 		btrfs_item_key_to_cpu(leaf, &key, slot);
8080 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8081 			break;
8082 		devid = key.objectid;
8083 		physical_offset = key.offset;
8084 
8085 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8086 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8087 		physical_len = btrfs_dev_extent_length(leaf, dext);
8088 
8089 		/* Check if this dev extent overlaps with the previous one */
8090 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8091 			btrfs_err(fs_info,
8092 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8093 				  devid, physical_offset, prev_dev_ext_end);
8094 			ret = -EUCLEAN;
8095 			goto out;
8096 		}
8097 
8098 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8099 					    physical_offset, physical_len);
8100 		if (ret < 0)
8101 			goto out;
8102 		prev_devid = devid;
8103 		prev_dev_ext_end = physical_offset + physical_len;
8104 
8105 		ret = btrfs_next_item(root, path);
8106 		if (ret < 0)
8107 			goto out;
8108 		if (ret > 0) {
8109 			ret = 0;
8110 			break;
8111 		}
8112 	}
8113 
8114 	/* Ensure all chunks have corresponding dev extents */
8115 	ret = verify_chunk_dev_extent_mapping(fs_info);
8116 out:
8117 	btrfs_free_path(path);
8118 	return ret;
8119 }
8120 
8121 /*
8122  * Check whether the given block group or device is pinned by any inode being
8123  * used as a swapfile.
8124  */
8125 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8126 {
8127 	struct btrfs_swapfile_pin *sp;
8128 	struct rb_node *node;
8129 
8130 	spin_lock(&fs_info->swapfile_pins_lock);
8131 	node = fs_info->swapfile_pins.rb_node;
8132 	while (node) {
8133 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8134 		if (ptr < sp->ptr)
8135 			node = node->rb_left;
8136 		else if (ptr > sp->ptr)
8137 			node = node->rb_right;
8138 		else
8139 			break;
8140 	}
8141 	spin_unlock(&fs_info->swapfile_pins_lock);
8142 	return node != NULL;
8143 }
8144 
8145 static int relocating_repair_kthread(void *data)
8146 {
8147 	struct btrfs_block_group *cache = data;
8148 	struct btrfs_fs_info *fs_info = cache->fs_info;
8149 	u64 target;
8150 	int ret = 0;
8151 
8152 	target = cache->start;
8153 	btrfs_put_block_group(cache);
8154 
8155 	sb_start_write(fs_info->sb);
8156 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8157 		btrfs_info(fs_info,
8158 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8159 			   target);
8160 		sb_end_write(fs_info->sb);
8161 		return -EBUSY;
8162 	}
8163 
8164 	mutex_lock(&fs_info->reclaim_bgs_lock);
8165 
8166 	/* Ensure block group still exists */
8167 	cache = btrfs_lookup_block_group(fs_info, target);
8168 	if (!cache)
8169 		goto out;
8170 
8171 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8172 		goto out;
8173 
8174 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8175 	if (ret < 0)
8176 		goto out;
8177 
8178 	btrfs_info(fs_info,
8179 		   "zoned: relocating block group %llu to repair IO failure",
8180 		   target);
8181 	ret = btrfs_relocate_chunk(fs_info, target);
8182 
8183 out:
8184 	if (cache)
8185 		btrfs_put_block_group(cache);
8186 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8187 	btrfs_exclop_finish(fs_info);
8188 	sb_end_write(fs_info->sb);
8189 
8190 	return ret;
8191 }
8192 
8193 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8194 {
8195 	struct btrfs_block_group *cache;
8196 
8197 	if (!btrfs_is_zoned(fs_info))
8198 		return false;
8199 
8200 	/* Do not attempt to repair in degraded state */
8201 	if (btrfs_test_opt(fs_info, DEGRADED))
8202 		return true;
8203 
8204 	cache = btrfs_lookup_block_group(fs_info, logical);
8205 	if (!cache)
8206 		return true;
8207 
8208 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8209 		btrfs_put_block_group(cache);
8210 		return true;
8211 	}
8212 
8213 	kthread_run(relocating_repair_kthread, cache,
8214 		    "btrfs-relocating-repair");
8215 
8216 	return true;
8217 }
8218 
8219 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8220 				    struct btrfs_io_stripe *smap,
8221 				    u64 logical)
8222 {
8223 	int data_stripes = nr_bioc_data_stripes(bioc);
8224 	int i;
8225 
8226 	for (i = 0; i < data_stripes; i++) {
8227 		u64 stripe_start = bioc->full_stripe_logical +
8228 				   btrfs_stripe_nr_to_offset(i);
8229 
8230 		if (logical >= stripe_start &&
8231 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8232 			break;
8233 	}
8234 	ASSERT(i < data_stripes);
8235 	smap->dev = bioc->stripes[i].dev;
8236 	smap->physical = bioc->stripes[i].physical +
8237 			((logical - bioc->full_stripe_logical) &
8238 			 BTRFS_STRIPE_LEN_MASK);
8239 }
8240 
8241 /*
8242  * Map a repair write into a single device.
8243  *
8244  * A repair write is triggered by read time repair or scrub, which would only
8245  * update the contents of a single device.
8246  * Not update any other mirrors nor go through RMW path.
8247  *
8248  * Callers should ensure:
8249  *
8250  * - Call btrfs_bio_counter_inc_blocked() first
8251  * - The range does not cross stripe boundary
8252  * - Has a valid @mirror_num passed in.
8253  */
8254 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8255 			   struct btrfs_io_stripe *smap, u64 logical,
8256 			   u32 length, int mirror_num)
8257 {
8258 	struct btrfs_io_context *bioc = NULL;
8259 	u64 map_length = length;
8260 	int mirror_ret = mirror_num;
8261 	int ret;
8262 
8263 	ASSERT(mirror_num > 0);
8264 
8265 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8266 			      &bioc, smap, &mirror_ret);
8267 	if (ret < 0)
8268 		return ret;
8269 
8270 	/* The map range should not cross stripe boundary. */
8271 	ASSERT(map_length >= length);
8272 
8273 	/* Already mapped to single stripe. */
8274 	if (!bioc)
8275 		goto out;
8276 
8277 	/* Map the RAID56 multi-stripe writes to a single one. */
8278 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8279 		map_raid56_repair_block(bioc, smap, logical);
8280 		goto out;
8281 	}
8282 
8283 	ASSERT(mirror_num <= bioc->num_stripes);
8284 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8285 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8286 out:
8287 	btrfs_put_bioc(bioc);
8288 	ASSERT(smap->dev);
8289 	return 0;
8290 }
8291