xref: /linux/fs/btrfs/volumes.c (revision 4232da23d75d173195c6766729e51947b64f83cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37 
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39 					 BTRFS_BLOCK_GROUP_RAID10 | \
40 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41 
42 struct btrfs_io_geometry {
43 	u32 stripe_index;
44 	u32 stripe_nr;
45 	int mirror_num;
46 	int num_stripes;
47 	u64 stripe_offset;
48 	u64 raid56_full_stripe_start;
49 	int max_errors;
50 	enum btrfs_map_op op;
51 };
52 
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 	[BTRFS_RAID_RAID10] = {
55 		.sub_stripes	= 2,
56 		.dev_stripes	= 1,
57 		.devs_max	= 0,	/* 0 == as many as possible */
58 		.devs_min	= 2,
59 		.tolerated_failures = 1,
60 		.devs_increment	= 2,
61 		.ncopies	= 2,
62 		.nparity        = 0,
63 		.raid_name	= "raid10",
64 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 	},
67 	[BTRFS_RAID_RAID1] = {
68 		.sub_stripes	= 1,
69 		.dev_stripes	= 1,
70 		.devs_max	= 2,
71 		.devs_min	= 2,
72 		.tolerated_failures = 1,
73 		.devs_increment	= 2,
74 		.ncopies	= 2,
75 		.nparity        = 0,
76 		.raid_name	= "raid1",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 	},
80 	[BTRFS_RAID_RAID1C3] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 3,
84 		.devs_min	= 3,
85 		.tolerated_failures = 2,
86 		.devs_increment	= 3,
87 		.ncopies	= 3,
88 		.nparity        = 0,
89 		.raid_name	= "raid1c3",
90 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 	},
93 	[BTRFS_RAID_RAID1C4] = {
94 		.sub_stripes	= 1,
95 		.dev_stripes	= 1,
96 		.devs_max	= 4,
97 		.devs_min	= 4,
98 		.tolerated_failures = 3,
99 		.devs_increment	= 4,
100 		.ncopies	= 4,
101 		.nparity        = 0,
102 		.raid_name	= "raid1c4",
103 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 	},
106 	[BTRFS_RAID_DUP] = {
107 		.sub_stripes	= 1,
108 		.dev_stripes	= 2,
109 		.devs_max	= 1,
110 		.devs_min	= 1,
111 		.tolerated_failures = 0,
112 		.devs_increment	= 1,
113 		.ncopies	= 2,
114 		.nparity        = 0,
115 		.raid_name	= "dup",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117 		.mindev_error	= 0,
118 	},
119 	[BTRFS_RAID_RAID0] = {
120 		.sub_stripes	= 1,
121 		.dev_stripes	= 1,
122 		.devs_max	= 0,
123 		.devs_min	= 1,
124 		.tolerated_failures = 0,
125 		.devs_increment	= 1,
126 		.ncopies	= 1,
127 		.nparity        = 0,
128 		.raid_name	= "raid0",
129 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130 		.mindev_error	= 0,
131 	},
132 	[BTRFS_RAID_SINGLE] = {
133 		.sub_stripes	= 1,
134 		.dev_stripes	= 1,
135 		.devs_max	= 1,
136 		.devs_min	= 1,
137 		.tolerated_failures = 0,
138 		.devs_increment	= 1,
139 		.ncopies	= 1,
140 		.nparity        = 0,
141 		.raid_name	= "single",
142 		.bg_flag	= 0,
143 		.mindev_error	= 0,
144 	},
145 	[BTRFS_RAID_RAID5] = {
146 		.sub_stripes	= 1,
147 		.dev_stripes	= 1,
148 		.devs_max	= 0,
149 		.devs_min	= 2,
150 		.tolerated_failures = 1,
151 		.devs_increment	= 1,
152 		.ncopies	= 1,
153 		.nparity        = 1,
154 		.raid_name	= "raid5",
155 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 	},
158 	[BTRFS_RAID_RAID6] = {
159 		.sub_stripes	= 1,
160 		.dev_stripes	= 1,
161 		.devs_max	= 0,
162 		.devs_min	= 3,
163 		.tolerated_failures = 2,
164 		.devs_increment	= 1,
165 		.ncopies	= 1,
166 		.nparity        = 2,
167 		.raid_name	= "raid6",
168 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 	},
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181 	if (!profile)
182 		return BTRFS_RAID_SINGLE;
183 
184 	return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201 	return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 	int i;
211 	int ret;
212 	char *bp = buf;
213 	u64 flags = bg_flags;
214 	u32 size_bp = size_buf;
215 
216 	if (!flags) {
217 		strcpy(bp, "NONE");
218 		return;
219 	}
220 
221 #define DESCRIBE_FLAG(flag, desc)						\
222 	do {								\
223 		if (flags & (flag)) {					\
224 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225 			if (ret < 0 || ret >= size_bp)			\
226 				goto out_overflow;			\
227 			size_bp -= ret;					\
228 			bp += ret;					\
229 			flags &= ~(flag);				\
230 		}							\
231 	} while (0)
232 
233 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 			      btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243 	if (flags) {
244 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 		size_bp -= ret;
246 	}
247 
248 	if (size_bp < size_buf)
249 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251 	/*
252 	 * The text is trimmed, it's up to the caller to provide sufficiently
253 	 * large buffer
254 	 */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 	return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 	struct btrfs_fs_devices *fs_devs;
382 
383 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 	if (!fs_devs)
385 		return ERR_PTR(-ENOMEM);
386 
387 	mutex_init(&fs_devs->device_list_mutex);
388 
389 	INIT_LIST_HEAD(&fs_devs->devices);
390 	INIT_LIST_HEAD(&fs_devs->alloc_list);
391 	INIT_LIST_HEAD(&fs_devs->fs_list);
392 	INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394 	if (fsid) {
395 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 	}
398 
399 	return fs_devs;
400 }
401 
402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 	WARN_ON(!list_empty(&device->post_commit_list));
405 	rcu_string_free(device->name);
406 	extent_io_tree_release(&device->alloc_state);
407 	btrfs_destroy_dev_zone_info(device);
408 	kfree(device);
409 }
410 
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 	struct btrfs_device *device;
414 
415 	WARN_ON(fs_devices->opened);
416 	while (!list_empty(&fs_devices->devices)) {
417 		device = list_entry(fs_devices->devices.next,
418 				    struct btrfs_device, dev_list);
419 		list_del(&device->dev_list);
420 		btrfs_free_device(device);
421 	}
422 	kfree(fs_devices);
423 }
424 
425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 	struct btrfs_fs_devices *fs_devices;
428 
429 	while (!list_empty(&fs_uuids)) {
430 		fs_devices = list_entry(fs_uuids.next,
431 					struct btrfs_fs_devices, fs_list);
432 		list_del(&fs_devices->fs_list);
433 		free_fs_devices(fs_devices);
434 	}
435 }
436 
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 				  const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 		return false;
442 
443 	if (!metadata_fsid)
444 		return true;
445 
446 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 		return false;
448 
449 	return true;
450 }
451 
452 static noinline struct btrfs_fs_devices *find_fsid(
453 		const u8 *fsid, const u8 *metadata_fsid)
454 {
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	ASSERT(fsid);
458 
459 	/* Handle non-split brain cases */
460 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 			return fs_devices;
463 	}
464 	return NULL;
465 }
466 
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 		      int flush, struct file **bdev_file,
470 		      struct btrfs_super_block **disk_super)
471 {
472 	struct block_device *bdev;
473 	int ret;
474 
475 	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477 	if (IS_ERR(*bdev_file)) {
478 		ret = PTR_ERR(*bdev_file);
479 		goto error;
480 	}
481 	bdev = file_bdev(*bdev_file);
482 
483 	if (flush)
484 		sync_blockdev(bdev);
485 	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
486 	if (ret) {
487 		fput(*bdev_file);
488 		goto error;
489 	}
490 	invalidate_bdev(bdev);
491 	*disk_super = btrfs_read_dev_super(bdev);
492 	if (IS_ERR(*disk_super)) {
493 		ret = PTR_ERR(*disk_super);
494 		fput(*bdev_file);
495 		goto error;
496 	}
497 
498 	return 0;
499 
500 error:
501 	*bdev_file = NULL;
502 	return ret;
503 }
504 
505 /*
506  *  Search and remove all stale devices (which are not mounted).  When both
507  *  inputs are NULL, it will search and release all stale devices.
508  *
509  *  @devt:         Optional. When provided will it release all unmounted devices
510  *                 matching this devt only.
511  *  @skip_device:  Optional. Will skip this device when searching for the stale
512  *                 devices.
513  *
514  *  Return:	0 for success or if @devt is 0.
515  *		-EBUSY if @devt is a mounted device.
516  *		-ENOENT if @devt does not match any device in the list.
517  */
518 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
519 {
520 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
521 	struct btrfs_device *device, *tmp_device;
522 	int ret;
523 	bool freed = false;
524 
525 	lockdep_assert_held(&uuid_mutex);
526 
527 	/* Return good status if there is no instance of devt. */
528 	ret = 0;
529 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
530 
531 		mutex_lock(&fs_devices->device_list_mutex);
532 		list_for_each_entry_safe(device, tmp_device,
533 					 &fs_devices->devices, dev_list) {
534 			if (skip_device && skip_device == device)
535 				continue;
536 			if (devt && devt != device->devt)
537 				continue;
538 			if (fs_devices->opened) {
539 				if (devt)
540 					ret = -EBUSY;
541 				break;
542 			}
543 
544 			/* delete the stale device */
545 			fs_devices->num_devices--;
546 			list_del(&device->dev_list);
547 			btrfs_free_device(device);
548 
549 			freed = true;
550 		}
551 		mutex_unlock(&fs_devices->device_list_mutex);
552 
553 		if (fs_devices->num_devices == 0) {
554 			btrfs_sysfs_remove_fsid(fs_devices);
555 			list_del(&fs_devices->fs_list);
556 			free_fs_devices(fs_devices);
557 		}
558 	}
559 
560 	/* If there is at least one freed device return 0. */
561 	if (freed)
562 		return 0;
563 
564 	return ret;
565 }
566 
567 static struct btrfs_fs_devices *find_fsid_by_device(
568 					struct btrfs_super_block *disk_super,
569 					dev_t devt, bool *same_fsid_diff_dev)
570 {
571 	struct btrfs_fs_devices *fsid_fs_devices;
572 	struct btrfs_fs_devices *devt_fs_devices;
573 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
574 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
575 	bool found_by_devt = false;
576 
577 	/* Find the fs_device by the usual method, if found use it. */
578 	fsid_fs_devices = find_fsid(disk_super->fsid,
579 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
580 
581 	/* The temp_fsid feature is supported only with single device filesystem. */
582 	if (btrfs_super_num_devices(disk_super) != 1)
583 		return fsid_fs_devices;
584 
585 	/*
586 	 * A seed device is an integral component of the sprout device, which
587 	 * functions as a multi-device filesystem. So, temp-fsid feature is
588 	 * not supported.
589 	 */
590 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
591 		return fsid_fs_devices;
592 
593 	/* Try to find a fs_devices by matching devt. */
594 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
595 		struct btrfs_device *device;
596 
597 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
598 			if (device->devt == devt) {
599 				found_by_devt = true;
600 				break;
601 			}
602 		}
603 		if (found_by_devt)
604 			break;
605 	}
606 
607 	if (found_by_devt) {
608 		/* Existing device. */
609 		if (fsid_fs_devices == NULL) {
610 			if (devt_fs_devices->opened == 0) {
611 				/* Stale device. */
612 				return NULL;
613 			} else {
614 				/* temp_fsid is mounting a subvol. */
615 				return devt_fs_devices;
616 			}
617 		} else {
618 			/* Regular or temp_fsid device mounting a subvol. */
619 			return devt_fs_devices;
620 		}
621 	} else {
622 		/* New device. */
623 		if (fsid_fs_devices == NULL) {
624 			return NULL;
625 		} else {
626 			/* sb::fsid is already used create a new temp_fsid. */
627 			*same_fsid_diff_dev = true;
628 			return NULL;
629 		}
630 	}
631 
632 	/* Not reached. */
633 }
634 
635 /*
636  * This is only used on mount, and we are protected from competing things
637  * messing with our fs_devices by the uuid_mutex, thus we do not need the
638  * fs_devices->device_list_mutex here.
639  */
640 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
641 			struct btrfs_device *device, blk_mode_t flags,
642 			void *holder)
643 {
644 	struct file *bdev_file;
645 	struct btrfs_super_block *disk_super;
646 	u64 devid;
647 	int ret;
648 
649 	if (device->bdev)
650 		return -EINVAL;
651 	if (!device->name)
652 		return -EINVAL;
653 
654 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
655 				    &bdev_file, &disk_super);
656 	if (ret)
657 		return ret;
658 
659 	devid = btrfs_stack_device_id(&disk_super->dev_item);
660 	if (devid != device->devid)
661 		goto error_free_page;
662 
663 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
664 		goto error_free_page;
665 
666 	device->generation = btrfs_super_generation(disk_super);
667 
668 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 		if (btrfs_super_incompat_flags(disk_super) &
670 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
671 			pr_err(
672 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
673 			goto error_free_page;
674 		}
675 
676 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
677 		fs_devices->seeding = true;
678 	} else {
679 		if (bdev_read_only(file_bdev(bdev_file)))
680 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
681 		else
682 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 	}
684 
685 	if (!bdev_nonrot(file_bdev(bdev_file)))
686 		fs_devices->rotating = true;
687 
688 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
689 		fs_devices->discardable = true;
690 
691 	device->bdev_file = bdev_file;
692 	device->bdev = file_bdev(bdev_file);
693 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694 
695 	if (device->devt != device->bdev->bd_dev) {
696 		btrfs_warn(NULL,
697 			   "device %s maj:min changed from %d:%d to %d:%d",
698 			   device->name->str, MAJOR(device->devt),
699 			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
700 			   MINOR(device->bdev->bd_dev));
701 
702 		device->devt = device->bdev->bd_dev;
703 	}
704 
705 	fs_devices->open_devices++;
706 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
707 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
708 		fs_devices->rw_devices++;
709 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
710 	}
711 	btrfs_release_disk_super(disk_super);
712 
713 	return 0;
714 
715 error_free_page:
716 	btrfs_release_disk_super(disk_super);
717 	fput(bdev_file);
718 
719 	return -EINVAL;
720 }
721 
722 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
723 {
724 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
725 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
726 
727 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
728 }
729 
730 /*
731  * Add new device to list of registered devices
732  *
733  * Returns:
734  * device pointer which was just added or updated when successful
735  * error pointer when failed
736  */
737 static noinline struct btrfs_device *device_list_add(const char *path,
738 			   struct btrfs_super_block *disk_super,
739 			   bool *new_device_added)
740 {
741 	struct btrfs_device *device;
742 	struct btrfs_fs_devices *fs_devices = NULL;
743 	struct rcu_string *name;
744 	u64 found_transid = btrfs_super_generation(disk_super);
745 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
746 	dev_t path_devt;
747 	int error;
748 	bool same_fsid_diff_dev = false;
749 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
750 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
751 
752 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
753 		btrfs_err(NULL,
754 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
755 			  path);
756 		return ERR_PTR(-EAGAIN);
757 	}
758 
759 	error = lookup_bdev(path, &path_devt);
760 	if (error) {
761 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
762 			  path, error);
763 		return ERR_PTR(error);
764 	}
765 
766 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
767 
768 	if (!fs_devices) {
769 		fs_devices = alloc_fs_devices(disk_super->fsid);
770 		if (IS_ERR(fs_devices))
771 			return ERR_CAST(fs_devices);
772 
773 		if (has_metadata_uuid)
774 			memcpy(fs_devices->metadata_uuid,
775 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
776 
777 		if (same_fsid_diff_dev) {
778 			generate_random_uuid(fs_devices->fsid);
779 			fs_devices->temp_fsid = true;
780 		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
781 				path, MAJOR(path_devt), MINOR(path_devt),
782 				fs_devices->fsid);
783 		}
784 
785 		mutex_lock(&fs_devices->device_list_mutex);
786 		list_add(&fs_devices->fs_list, &fs_uuids);
787 
788 		device = NULL;
789 	} else {
790 		struct btrfs_dev_lookup_args args = {
791 			.devid = devid,
792 			.uuid = disk_super->dev_item.uuid,
793 		};
794 
795 		mutex_lock(&fs_devices->device_list_mutex);
796 		device = btrfs_find_device(fs_devices, &args);
797 
798 		if (found_transid > fs_devices->latest_generation) {
799 			memcpy(fs_devices->fsid, disk_super->fsid,
800 					BTRFS_FSID_SIZE);
801 			memcpy(fs_devices->metadata_uuid,
802 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
803 		}
804 	}
805 
806 	if (!device) {
807 		unsigned int nofs_flag;
808 
809 		if (fs_devices->opened) {
810 			btrfs_err(NULL,
811 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
812 				  path, MAJOR(path_devt), MINOR(path_devt),
813 				  fs_devices->fsid, current->comm,
814 				  task_pid_nr(current));
815 			mutex_unlock(&fs_devices->device_list_mutex);
816 			return ERR_PTR(-EBUSY);
817 		}
818 
819 		nofs_flag = memalloc_nofs_save();
820 		device = btrfs_alloc_device(NULL, &devid,
821 					    disk_super->dev_item.uuid, path);
822 		memalloc_nofs_restore(nofs_flag);
823 		if (IS_ERR(device)) {
824 			mutex_unlock(&fs_devices->device_list_mutex);
825 			/* we can safely leave the fs_devices entry around */
826 			return device;
827 		}
828 
829 		device->devt = path_devt;
830 
831 		list_add_rcu(&device->dev_list, &fs_devices->devices);
832 		fs_devices->num_devices++;
833 
834 		device->fs_devices = fs_devices;
835 		*new_device_added = true;
836 
837 		if (disk_super->label[0])
838 			pr_info(
839 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
840 				disk_super->label, devid, found_transid, path,
841 				MAJOR(path_devt), MINOR(path_devt),
842 				current->comm, task_pid_nr(current));
843 		else
844 			pr_info(
845 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
846 				disk_super->fsid, devid, found_transid, path,
847 				MAJOR(path_devt), MINOR(path_devt),
848 				current->comm, task_pid_nr(current));
849 
850 	} else if (!device->name || strcmp(device->name->str, path)) {
851 		/*
852 		 * When FS is already mounted.
853 		 * 1. If you are here and if the device->name is NULL that
854 		 *    means this device was missing at time of FS mount.
855 		 * 2. If you are here and if the device->name is different
856 		 *    from 'path' that means either
857 		 *      a. The same device disappeared and reappeared with
858 		 *         different name. or
859 		 *      b. The missing-disk-which-was-replaced, has
860 		 *         reappeared now.
861 		 *
862 		 * We must allow 1 and 2a above. But 2b would be a spurious
863 		 * and unintentional.
864 		 *
865 		 * Further in case of 1 and 2a above, the disk at 'path'
866 		 * would have missed some transaction when it was away and
867 		 * in case of 2a the stale bdev has to be updated as well.
868 		 * 2b must not be allowed at all time.
869 		 */
870 
871 		/*
872 		 * For now, we do allow update to btrfs_fs_device through the
873 		 * btrfs dev scan cli after FS has been mounted.  We're still
874 		 * tracking a problem where systems fail mount by subvolume id
875 		 * when we reject replacement on a mounted FS.
876 		 */
877 		if (!fs_devices->opened && found_transid < device->generation) {
878 			/*
879 			 * That is if the FS is _not_ mounted and if you
880 			 * are here, that means there is more than one
881 			 * disk with same uuid and devid.We keep the one
882 			 * with larger generation number or the last-in if
883 			 * generation are equal.
884 			 */
885 			mutex_unlock(&fs_devices->device_list_mutex);
886 			btrfs_err(NULL,
887 "device %s already registered with a higher generation, found %llu expect %llu",
888 				  path, found_transid, device->generation);
889 			return ERR_PTR(-EEXIST);
890 		}
891 
892 		/*
893 		 * We are going to replace the device path for a given devid,
894 		 * make sure it's the same device if the device is mounted
895 		 *
896 		 * NOTE: the device->fs_info may not be reliable here so pass
897 		 * in a NULL to message helpers instead. This avoids a possible
898 		 * use-after-free when the fs_info and fs_info->sb are already
899 		 * torn down.
900 		 */
901 		if (device->bdev) {
902 			if (device->devt != path_devt) {
903 				mutex_unlock(&fs_devices->device_list_mutex);
904 				btrfs_warn_in_rcu(NULL,
905 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
906 						  path, devid, found_transid,
907 						  current->comm,
908 						  task_pid_nr(current));
909 				return ERR_PTR(-EEXIST);
910 			}
911 			btrfs_info_in_rcu(NULL,
912 	"devid %llu device path %s changed to %s scanned by %s (%d)",
913 					  devid, btrfs_dev_name(device),
914 					  path, current->comm,
915 					  task_pid_nr(current));
916 		}
917 
918 		name = rcu_string_strdup(path, GFP_NOFS);
919 		if (!name) {
920 			mutex_unlock(&fs_devices->device_list_mutex);
921 			return ERR_PTR(-ENOMEM);
922 		}
923 		rcu_string_free(device->name);
924 		rcu_assign_pointer(device->name, name);
925 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
926 			fs_devices->missing_devices--;
927 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
928 		}
929 		device->devt = path_devt;
930 	}
931 
932 	/*
933 	 * Unmount does not free the btrfs_device struct but would zero
934 	 * generation along with most of the other members. So just update
935 	 * it back. We need it to pick the disk with largest generation
936 	 * (as above).
937 	 */
938 	if (!fs_devices->opened) {
939 		device->generation = found_transid;
940 		fs_devices->latest_generation = max_t(u64, found_transid,
941 						fs_devices->latest_generation);
942 	}
943 
944 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
945 
946 	mutex_unlock(&fs_devices->device_list_mutex);
947 	return device;
948 }
949 
950 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
951 {
952 	struct btrfs_fs_devices *fs_devices;
953 	struct btrfs_device *device;
954 	struct btrfs_device *orig_dev;
955 	int ret = 0;
956 
957 	lockdep_assert_held(&uuid_mutex);
958 
959 	fs_devices = alloc_fs_devices(orig->fsid);
960 	if (IS_ERR(fs_devices))
961 		return fs_devices;
962 
963 	fs_devices->total_devices = orig->total_devices;
964 
965 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
966 		const char *dev_path = NULL;
967 
968 		/*
969 		 * This is ok to do without RCU read locked because we hold the
970 		 * uuid mutex so nothing we touch in here is going to disappear.
971 		 */
972 		if (orig_dev->name)
973 			dev_path = orig_dev->name->str;
974 
975 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
976 					    orig_dev->uuid, dev_path);
977 		if (IS_ERR(device)) {
978 			ret = PTR_ERR(device);
979 			goto error;
980 		}
981 
982 		if (orig_dev->zone_info) {
983 			struct btrfs_zoned_device_info *zone_info;
984 
985 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
986 			if (!zone_info) {
987 				btrfs_free_device(device);
988 				ret = -ENOMEM;
989 				goto error;
990 			}
991 			device->zone_info = zone_info;
992 		}
993 
994 		list_add(&device->dev_list, &fs_devices->devices);
995 		device->fs_devices = fs_devices;
996 		fs_devices->num_devices++;
997 	}
998 	return fs_devices;
999 error:
1000 	free_fs_devices(fs_devices);
1001 	return ERR_PTR(ret);
1002 }
1003 
1004 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005 				      struct btrfs_device **latest_dev)
1006 {
1007 	struct btrfs_device *device, *next;
1008 
1009 	/* This is the initialized path, it is safe to release the devices. */
1010 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013 				      &device->dev_state) &&
1014 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1015 				      &device->dev_state) &&
1016 			    (!*latest_dev ||
1017 			     device->generation > (*latest_dev)->generation)) {
1018 				*latest_dev = device;
1019 			}
1020 			continue;
1021 		}
1022 
1023 		/*
1024 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025 		 * in btrfs_init_dev_replace() so just continue.
1026 		 */
1027 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028 			continue;
1029 
1030 		if (device->bdev_file) {
1031 			fput(device->bdev_file);
1032 			device->bdev = NULL;
1033 			device->bdev_file = NULL;
1034 			fs_devices->open_devices--;
1035 		}
1036 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037 			list_del_init(&device->dev_alloc_list);
1038 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039 			fs_devices->rw_devices--;
1040 		}
1041 		list_del_init(&device->dev_list);
1042 		fs_devices->num_devices--;
1043 		btrfs_free_device(device);
1044 	}
1045 
1046 }
1047 
1048 /*
1049  * After we have read the system tree and know devids belonging to this
1050  * filesystem, remove the device which does not belong there.
1051  */
1052 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053 {
1054 	struct btrfs_device *latest_dev = NULL;
1055 	struct btrfs_fs_devices *seed_dev;
1056 
1057 	mutex_lock(&uuid_mutex);
1058 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1059 
1060 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1062 
1063 	fs_devices->latest_dev = latest_dev;
1064 
1065 	mutex_unlock(&uuid_mutex);
1066 }
1067 
1068 static void btrfs_close_bdev(struct btrfs_device *device)
1069 {
1070 	if (!device->bdev)
1071 		return;
1072 
1073 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074 		sync_blockdev(device->bdev);
1075 		invalidate_bdev(device->bdev);
1076 	}
1077 
1078 	fput(device->bdev_file);
1079 }
1080 
1081 static void btrfs_close_one_device(struct btrfs_device *device)
1082 {
1083 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084 
1085 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087 		list_del_init(&device->dev_alloc_list);
1088 		fs_devices->rw_devices--;
1089 	}
1090 
1091 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093 
1094 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096 		fs_devices->missing_devices--;
1097 	}
1098 
1099 	btrfs_close_bdev(device);
1100 	if (device->bdev) {
1101 		fs_devices->open_devices--;
1102 		device->bdev = NULL;
1103 	}
1104 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105 	btrfs_destroy_dev_zone_info(device);
1106 
1107 	device->fs_info = NULL;
1108 	atomic_set(&device->dev_stats_ccnt, 0);
1109 	extent_io_tree_release(&device->alloc_state);
1110 
1111 	/*
1112 	 * Reset the flush error record. We might have a transient flush error
1113 	 * in this mount, and if so we aborted the current transaction and set
1114 	 * the fs to an error state, guaranteeing no super blocks can be further
1115 	 * committed. However that error might be transient and if we unmount the
1116 	 * filesystem and mount it again, we should allow the mount to succeed
1117 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118 	 * filesystem again we still get flush errors, then we will again abort
1119 	 * any transaction and set the error state, guaranteeing no commits of
1120 	 * unsafe super blocks.
1121 	 */
1122 	device->last_flush_error = 0;
1123 
1124 	/* Verify the device is back in a pristine state  */
1125 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127 	WARN_ON(!list_empty(&device->dev_alloc_list));
1128 	WARN_ON(!list_empty(&device->post_commit_list));
1129 }
1130 
1131 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132 {
1133 	struct btrfs_device *device, *tmp;
1134 
1135 	lockdep_assert_held(&uuid_mutex);
1136 
1137 	if (--fs_devices->opened > 0)
1138 		return;
1139 
1140 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141 		btrfs_close_one_device(device);
1142 
1143 	WARN_ON(fs_devices->open_devices);
1144 	WARN_ON(fs_devices->rw_devices);
1145 	fs_devices->opened = 0;
1146 	fs_devices->seeding = false;
1147 	fs_devices->fs_info = NULL;
1148 }
1149 
1150 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151 {
1152 	LIST_HEAD(list);
1153 	struct btrfs_fs_devices *tmp;
1154 
1155 	mutex_lock(&uuid_mutex);
1156 	close_fs_devices(fs_devices);
1157 	if (!fs_devices->opened) {
1158 		list_splice_init(&fs_devices->seed_list, &list);
1159 
1160 		/*
1161 		 * If the struct btrfs_fs_devices is not assembled with any
1162 		 * other device, it can be re-initialized during the next mount
1163 		 * without the needing device-scan step. Therefore, it can be
1164 		 * fully freed.
1165 		 */
1166 		if (fs_devices->num_devices == 1) {
1167 			list_del(&fs_devices->fs_list);
1168 			free_fs_devices(fs_devices);
1169 		}
1170 	}
1171 
1172 
1173 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174 		close_fs_devices(fs_devices);
1175 		list_del(&fs_devices->seed_list);
1176 		free_fs_devices(fs_devices);
1177 	}
1178 	mutex_unlock(&uuid_mutex);
1179 }
1180 
1181 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182 				blk_mode_t flags, void *holder)
1183 {
1184 	struct btrfs_device *device;
1185 	struct btrfs_device *latest_dev = NULL;
1186 	struct btrfs_device *tmp_device;
1187 	int ret = 0;
1188 
1189 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190 				 dev_list) {
1191 		int ret2;
1192 
1193 		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194 		if (ret2 == 0 &&
1195 		    (!latest_dev || device->generation > latest_dev->generation)) {
1196 			latest_dev = device;
1197 		} else if (ret2 == -ENODATA) {
1198 			fs_devices->num_devices--;
1199 			list_del(&device->dev_list);
1200 			btrfs_free_device(device);
1201 		}
1202 		if (ret == 0 && ret2 != 0)
1203 			ret = ret2;
1204 	}
1205 
1206 	if (fs_devices->open_devices == 0) {
1207 		if (ret)
1208 			return ret;
1209 		return -EINVAL;
1210 	}
1211 
1212 	fs_devices->opened = 1;
1213 	fs_devices->latest_dev = latest_dev;
1214 	fs_devices->total_rw_bytes = 0;
1215 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217 
1218 	return 0;
1219 }
1220 
1221 static int devid_cmp(void *priv, const struct list_head *a,
1222 		     const struct list_head *b)
1223 {
1224 	const struct btrfs_device *dev1, *dev2;
1225 
1226 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1227 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1228 
1229 	if (dev1->devid < dev2->devid)
1230 		return -1;
1231 	else if (dev1->devid > dev2->devid)
1232 		return 1;
1233 	return 0;
1234 }
1235 
1236 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237 		       blk_mode_t flags, void *holder)
1238 {
1239 	int ret;
1240 
1241 	lockdep_assert_held(&uuid_mutex);
1242 	/*
1243 	 * The device_list_mutex cannot be taken here in case opening the
1244 	 * underlying device takes further locks like open_mutex.
1245 	 *
1246 	 * We also don't need the lock here as this is called during mount and
1247 	 * exclusion is provided by uuid_mutex
1248 	 */
1249 
1250 	if (fs_devices->opened) {
1251 		fs_devices->opened++;
1252 		ret = 0;
1253 	} else {
1254 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1255 		ret = open_fs_devices(fs_devices, flags, holder);
1256 	}
1257 
1258 	return ret;
1259 }
1260 
1261 void btrfs_release_disk_super(struct btrfs_super_block *super)
1262 {
1263 	struct page *page = virt_to_page(super);
1264 
1265 	put_page(page);
1266 }
1267 
1268 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269 						       u64 bytenr, u64 bytenr_orig)
1270 {
1271 	struct btrfs_super_block *disk_super;
1272 	struct page *page;
1273 	void *p;
1274 	pgoff_t index;
1275 
1276 	/* make sure our super fits in the device */
1277 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278 		return ERR_PTR(-EINVAL);
1279 
1280 	/* make sure our super fits in the page */
1281 	if (sizeof(*disk_super) > PAGE_SIZE)
1282 		return ERR_PTR(-EINVAL);
1283 
1284 	/* make sure our super doesn't straddle pages on disk */
1285 	index = bytenr >> PAGE_SHIFT;
1286 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287 		return ERR_PTR(-EINVAL);
1288 
1289 	/* pull in the page with our super */
1290 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291 
1292 	if (IS_ERR(page))
1293 		return ERR_CAST(page);
1294 
1295 	p = page_address(page);
1296 
1297 	/* align our pointer to the offset of the super block */
1298 	disk_super = p + offset_in_page(bytenr);
1299 
1300 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302 		btrfs_release_disk_super(p);
1303 		return ERR_PTR(-EINVAL);
1304 	}
1305 
1306 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308 
1309 	return disk_super;
1310 }
1311 
1312 int btrfs_forget_devices(dev_t devt)
1313 {
1314 	int ret;
1315 
1316 	mutex_lock(&uuid_mutex);
1317 	ret = btrfs_free_stale_devices(devt, NULL);
1318 	mutex_unlock(&uuid_mutex);
1319 
1320 	return ret;
1321 }
1322 
1323 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324 				    const char *path, dev_t devt,
1325 				    bool mount_arg_dev)
1326 {
1327 	struct btrfs_fs_devices *fs_devices;
1328 
1329 	/*
1330 	 * Do not skip device registration for mounted devices with matching
1331 	 * maj:min but different paths. Booting without initrd relies on
1332 	 * /dev/root initially, later replaced with the actual root device.
1333 	 * A successful scan ensures grub2-probe selects the correct device.
1334 	 */
1335 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336 		struct btrfs_device *device;
1337 
1338 		mutex_lock(&fs_devices->device_list_mutex);
1339 
1340 		if (!fs_devices->opened) {
1341 			mutex_unlock(&fs_devices->device_list_mutex);
1342 			continue;
1343 		}
1344 
1345 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346 			if (device->bdev && (device->bdev->bd_dev == devt) &&
1347 			    strcmp(device->name->str, path) != 0) {
1348 				mutex_unlock(&fs_devices->device_list_mutex);
1349 
1350 				/* Do not skip registration. */
1351 				return false;
1352 			}
1353 		}
1354 		mutex_unlock(&fs_devices->device_list_mutex);
1355 	}
1356 
1357 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359 		return true;
1360 
1361 	return false;
1362 }
1363 
1364 /*
1365  * Look for a btrfs signature on a device. This may be called out of the mount path
1366  * and we are not allowed to call set_blocksize during the scan. The superblock
1367  * is read via pagecache.
1368  *
1369  * With @mount_arg_dev it's a scan during mount time that will always register
1370  * the device or return an error. Multi-device and seeding devices are registered
1371  * in both cases.
1372  */
1373 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374 					   bool mount_arg_dev)
1375 {
1376 	struct btrfs_super_block *disk_super;
1377 	bool new_device_added = false;
1378 	struct btrfs_device *device = NULL;
1379 	struct file *bdev_file;
1380 	u64 bytenr, bytenr_orig;
1381 	dev_t devt;
1382 	int ret;
1383 
1384 	lockdep_assert_held(&uuid_mutex);
1385 
1386 	/*
1387 	 * we would like to check all the supers, but that would make
1388 	 * a btrfs mount succeed after a mkfs from a different FS.
1389 	 * So, we need to add a special mount option to scan for
1390 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391 	 */
1392 
1393 	/*
1394 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395 	 * device scan which may race with the user's mount or mkfs command,
1396 	 * resulting in failure.
1397 	 * Since the device scan is solely for reading purposes, there is no
1398 	 * need for an exclusive open. Additionally, the devices are read again
1399 	 * during the mount process. It is ok to get some inconsistent
1400 	 * values temporarily, as the device paths of the fsid are the only
1401 	 * required information for assembling the volume.
1402 	 */
1403 	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404 	if (IS_ERR(bdev_file))
1405 		return ERR_CAST(bdev_file);
1406 
1407 	bytenr_orig = btrfs_sb_offset(0);
1408 	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409 	if (ret) {
1410 		device = ERR_PTR(ret);
1411 		goto error_bdev_put;
1412 	}
1413 
1414 	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415 					   bytenr_orig);
1416 	if (IS_ERR(disk_super)) {
1417 		device = ERR_CAST(disk_super);
1418 		goto error_bdev_put;
1419 	}
1420 
1421 	devt = file_bdev(bdev_file)->bd_dev;
1422 	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423 		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424 			  path, MAJOR(devt), MINOR(devt));
1425 
1426 		btrfs_free_stale_devices(devt, NULL);
1427 
1428 		device = NULL;
1429 		goto free_disk_super;
1430 	}
1431 
1432 	device = device_list_add(path, disk_super, &new_device_added);
1433 	if (!IS_ERR(device) && new_device_added)
1434 		btrfs_free_stale_devices(device->devt, device);
1435 
1436 free_disk_super:
1437 	btrfs_release_disk_super(disk_super);
1438 
1439 error_bdev_put:
1440 	fput(bdev_file);
1441 
1442 	return device;
1443 }
1444 
1445 /*
1446  * Try to find a chunk that intersects [start, start + len] range and when one
1447  * such is found, record the end of it in *start
1448  */
1449 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450 				    u64 len)
1451 {
1452 	u64 physical_start, physical_end;
1453 
1454 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1455 
1456 	if (find_first_extent_bit(&device->alloc_state, *start,
1457 				  &physical_start, &physical_end,
1458 				  CHUNK_ALLOCATED, NULL)) {
1459 
1460 		if (in_range(physical_start, *start, len) ||
1461 		    in_range(*start, physical_start,
1462 			     physical_end + 1 - physical_start)) {
1463 			*start = physical_end + 1;
1464 			return true;
1465 		}
1466 	}
1467 	return false;
1468 }
1469 
1470 static u64 dev_extent_search_start(struct btrfs_device *device)
1471 {
1472 	switch (device->fs_devices->chunk_alloc_policy) {
1473 	case BTRFS_CHUNK_ALLOC_REGULAR:
1474 		return BTRFS_DEVICE_RANGE_RESERVED;
1475 	case BTRFS_CHUNK_ALLOC_ZONED:
1476 		/*
1477 		 * We don't care about the starting region like regular
1478 		 * allocator, because we anyway use/reserve the first two zones
1479 		 * for superblock logging.
1480 		 */
1481 		return 0;
1482 	default:
1483 		BUG();
1484 	}
1485 }
1486 
1487 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488 					u64 *hole_start, u64 *hole_size,
1489 					u64 num_bytes)
1490 {
1491 	u64 zone_size = device->zone_info->zone_size;
1492 	u64 pos;
1493 	int ret;
1494 	bool changed = false;
1495 
1496 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497 
1498 	while (*hole_size > 0) {
1499 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1500 						   *hole_start + *hole_size,
1501 						   num_bytes);
1502 		if (pos != *hole_start) {
1503 			*hole_size = *hole_start + *hole_size - pos;
1504 			*hole_start = pos;
1505 			changed = true;
1506 			if (*hole_size < num_bytes)
1507 				break;
1508 		}
1509 
1510 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511 
1512 		/* Range is ensured to be empty */
1513 		if (!ret)
1514 			return changed;
1515 
1516 		/* Given hole range was invalid (outside of device) */
1517 		if (ret == -ERANGE) {
1518 			*hole_start += *hole_size;
1519 			*hole_size = 0;
1520 			return true;
1521 		}
1522 
1523 		*hole_start += zone_size;
1524 		*hole_size -= zone_size;
1525 		changed = true;
1526 	}
1527 
1528 	return changed;
1529 }
1530 
1531 /*
1532  * Check if specified hole is suitable for allocation.
1533  *
1534  * @device:	the device which we have the hole
1535  * @hole_start: starting position of the hole
1536  * @hole_size:	the size of the hole
1537  * @num_bytes:	the size of the free space that we need
1538  *
1539  * This function may modify @hole_start and @hole_size to reflect the suitable
1540  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541  */
1542 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543 				  u64 *hole_size, u64 num_bytes)
1544 {
1545 	bool changed = false;
1546 	u64 hole_end = *hole_start + *hole_size;
1547 
1548 	for (;;) {
1549 		/*
1550 		 * Check before we set max_hole_start, otherwise we could end up
1551 		 * sending back this offset anyway.
1552 		 */
1553 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1554 			if (hole_end >= *hole_start)
1555 				*hole_size = hole_end - *hole_start;
1556 			else
1557 				*hole_size = 0;
1558 			changed = true;
1559 		}
1560 
1561 		switch (device->fs_devices->chunk_alloc_policy) {
1562 		case BTRFS_CHUNK_ALLOC_REGULAR:
1563 			/* No extra check */
1564 			break;
1565 		case BTRFS_CHUNK_ALLOC_ZONED:
1566 			if (dev_extent_hole_check_zoned(device, hole_start,
1567 							hole_size, num_bytes)) {
1568 				changed = true;
1569 				/*
1570 				 * The changed hole can contain pending extent.
1571 				 * Loop again to check that.
1572 				 */
1573 				continue;
1574 			}
1575 			break;
1576 		default:
1577 			BUG();
1578 		}
1579 
1580 		break;
1581 	}
1582 
1583 	return changed;
1584 }
1585 
1586 /*
1587  * Find free space in the specified device.
1588  *
1589  * @device:	  the device which we search the free space in
1590  * @num_bytes:	  the size of the free space that we need
1591  * @search_start: the position from which to begin the search
1592  * @start:	  store the start of the free space.
1593  * @len:	  the size of the free space. that we find, or the size
1594  *		  of the max free space if we don't find suitable free space
1595  *
1596  * This does a pretty simple search, the expectation is that it is called very
1597  * infrequently and that a given device has a small number of extents.
1598  *
1599  * @start is used to store the start of the free space if we find. But if we
1600  * don't find suitable free space, it will be used to store the start position
1601  * of the max free space.
1602  *
1603  * @len is used to store the size of the free space that we find.
1604  * But if we don't find suitable free space, it is used to store the size of
1605  * the max free space.
1606  *
1607  * NOTE: This function will search *commit* root of device tree, and does extra
1608  * check to ensure dev extents are not double allocated.
1609  * This makes the function safe to allocate dev extents but may not report
1610  * correct usable device space, as device extent freed in current transaction
1611  * is not reported as available.
1612  */
1613 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614 				u64 *start, u64 *len)
1615 {
1616 	struct btrfs_fs_info *fs_info = device->fs_info;
1617 	struct btrfs_root *root = fs_info->dev_root;
1618 	struct btrfs_key key;
1619 	struct btrfs_dev_extent *dev_extent;
1620 	struct btrfs_path *path;
1621 	u64 search_start;
1622 	u64 hole_size;
1623 	u64 max_hole_start;
1624 	u64 max_hole_size = 0;
1625 	u64 extent_end;
1626 	u64 search_end = device->total_bytes;
1627 	int ret;
1628 	int slot;
1629 	struct extent_buffer *l;
1630 
1631 	search_start = dev_extent_search_start(device);
1632 	max_hole_start = search_start;
1633 
1634 	WARN_ON(device->zone_info &&
1635 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636 
1637 	path = btrfs_alloc_path();
1638 	if (!path) {
1639 		ret = -ENOMEM;
1640 		goto out;
1641 	}
1642 again:
1643 	if (search_start >= search_end ||
1644 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645 		ret = -ENOSPC;
1646 		goto out;
1647 	}
1648 
1649 	path->reada = READA_FORWARD;
1650 	path->search_commit_root = 1;
1651 	path->skip_locking = 1;
1652 
1653 	key.objectid = device->devid;
1654 	key.offset = search_start;
1655 	key.type = BTRFS_DEV_EXTENT_KEY;
1656 
1657 	ret = btrfs_search_backwards(root, &key, path);
1658 	if (ret < 0)
1659 		goto out;
1660 
1661 	while (search_start < search_end) {
1662 		l = path->nodes[0];
1663 		slot = path->slots[0];
1664 		if (slot >= btrfs_header_nritems(l)) {
1665 			ret = btrfs_next_leaf(root, path);
1666 			if (ret == 0)
1667 				continue;
1668 			if (ret < 0)
1669 				goto out;
1670 
1671 			break;
1672 		}
1673 		btrfs_item_key_to_cpu(l, &key, slot);
1674 
1675 		if (key.objectid < device->devid)
1676 			goto next;
1677 
1678 		if (key.objectid > device->devid)
1679 			break;
1680 
1681 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1682 			goto next;
1683 
1684 		if (key.offset > search_end)
1685 			break;
1686 
1687 		if (key.offset > search_start) {
1688 			hole_size = key.offset - search_start;
1689 			dev_extent_hole_check(device, &search_start, &hole_size,
1690 					      num_bytes);
1691 
1692 			if (hole_size > max_hole_size) {
1693 				max_hole_start = search_start;
1694 				max_hole_size = hole_size;
1695 			}
1696 
1697 			/*
1698 			 * If this free space is greater than which we need,
1699 			 * it must be the max free space that we have found
1700 			 * until now, so max_hole_start must point to the start
1701 			 * of this free space and the length of this free space
1702 			 * is stored in max_hole_size. Thus, we return
1703 			 * max_hole_start and max_hole_size and go back to the
1704 			 * caller.
1705 			 */
1706 			if (hole_size >= num_bytes) {
1707 				ret = 0;
1708 				goto out;
1709 			}
1710 		}
1711 
1712 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713 		extent_end = key.offset + btrfs_dev_extent_length(l,
1714 								  dev_extent);
1715 		if (extent_end > search_start)
1716 			search_start = extent_end;
1717 next:
1718 		path->slots[0]++;
1719 		cond_resched();
1720 	}
1721 
1722 	/*
1723 	 * At this point, search_start should be the end of
1724 	 * allocated dev extents, and when shrinking the device,
1725 	 * search_end may be smaller than search_start.
1726 	 */
1727 	if (search_end > search_start) {
1728 		hole_size = search_end - search_start;
1729 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1730 					  num_bytes)) {
1731 			btrfs_release_path(path);
1732 			goto again;
1733 		}
1734 
1735 		if (hole_size > max_hole_size) {
1736 			max_hole_start = search_start;
1737 			max_hole_size = hole_size;
1738 		}
1739 	}
1740 
1741 	/* See above. */
1742 	if (max_hole_size < num_bytes)
1743 		ret = -ENOSPC;
1744 	else
1745 		ret = 0;
1746 
1747 	ASSERT(max_hole_start + max_hole_size <= search_end);
1748 out:
1749 	btrfs_free_path(path);
1750 	*start = max_hole_start;
1751 	if (len)
1752 		*len = max_hole_size;
1753 	return ret;
1754 }
1755 
1756 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757 			  struct btrfs_device *device,
1758 			  u64 start, u64 *dev_extent_len)
1759 {
1760 	struct btrfs_fs_info *fs_info = device->fs_info;
1761 	struct btrfs_root *root = fs_info->dev_root;
1762 	int ret;
1763 	struct btrfs_path *path;
1764 	struct btrfs_key key;
1765 	struct btrfs_key found_key;
1766 	struct extent_buffer *leaf = NULL;
1767 	struct btrfs_dev_extent *extent = NULL;
1768 
1769 	path = btrfs_alloc_path();
1770 	if (!path)
1771 		return -ENOMEM;
1772 
1773 	key.objectid = device->devid;
1774 	key.offset = start;
1775 	key.type = BTRFS_DEV_EXTENT_KEY;
1776 again:
1777 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778 	if (ret > 0) {
1779 		ret = btrfs_previous_item(root, path, key.objectid,
1780 					  BTRFS_DEV_EXTENT_KEY);
1781 		if (ret)
1782 			goto out;
1783 		leaf = path->nodes[0];
1784 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785 		extent = btrfs_item_ptr(leaf, path->slots[0],
1786 					struct btrfs_dev_extent);
1787 		BUG_ON(found_key.offset > start || found_key.offset +
1788 		       btrfs_dev_extent_length(leaf, extent) < start);
1789 		key = found_key;
1790 		btrfs_release_path(path);
1791 		goto again;
1792 	} else if (ret == 0) {
1793 		leaf = path->nodes[0];
1794 		extent = btrfs_item_ptr(leaf, path->slots[0],
1795 					struct btrfs_dev_extent);
1796 	} else {
1797 		goto out;
1798 	}
1799 
1800 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801 
1802 	ret = btrfs_del_item(trans, root, path);
1803 	if (ret == 0)
1804 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805 out:
1806 	btrfs_free_path(path);
1807 	return ret;
1808 }
1809 
1810 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811 {
1812 	struct rb_node *n;
1813 	u64 ret = 0;
1814 
1815 	read_lock(&fs_info->mapping_tree_lock);
1816 	n = rb_last(&fs_info->mapping_tree.rb_root);
1817 	if (n) {
1818 		struct btrfs_chunk_map *map;
1819 
1820 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821 		ret = map->start + map->chunk_len;
1822 	}
1823 	read_unlock(&fs_info->mapping_tree_lock);
1824 
1825 	return ret;
1826 }
1827 
1828 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829 				    u64 *devid_ret)
1830 {
1831 	int ret;
1832 	struct btrfs_key key;
1833 	struct btrfs_key found_key;
1834 	struct btrfs_path *path;
1835 
1836 	path = btrfs_alloc_path();
1837 	if (!path)
1838 		return -ENOMEM;
1839 
1840 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841 	key.type = BTRFS_DEV_ITEM_KEY;
1842 	key.offset = (u64)-1;
1843 
1844 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845 	if (ret < 0)
1846 		goto error;
1847 
1848 	if (ret == 0) {
1849 		/* Corruption */
1850 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851 		ret = -EUCLEAN;
1852 		goto error;
1853 	}
1854 
1855 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1856 				  BTRFS_DEV_ITEMS_OBJECTID,
1857 				  BTRFS_DEV_ITEM_KEY);
1858 	if (ret) {
1859 		*devid_ret = 1;
1860 	} else {
1861 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862 				      path->slots[0]);
1863 		*devid_ret = found_key.offset + 1;
1864 	}
1865 	ret = 0;
1866 error:
1867 	btrfs_free_path(path);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * the device information is stored in the chunk root
1873  * the btrfs_device struct should be fully filled in
1874  */
1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876 			    struct btrfs_device *device)
1877 {
1878 	int ret;
1879 	struct btrfs_path *path;
1880 	struct btrfs_dev_item *dev_item;
1881 	struct extent_buffer *leaf;
1882 	struct btrfs_key key;
1883 	unsigned long ptr;
1884 
1885 	path = btrfs_alloc_path();
1886 	if (!path)
1887 		return -ENOMEM;
1888 
1889 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890 	key.type = BTRFS_DEV_ITEM_KEY;
1891 	key.offset = device->devid;
1892 
1893 	btrfs_reserve_chunk_metadata(trans, true);
1894 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895 				      &key, sizeof(*dev_item));
1896 	btrfs_trans_release_chunk_metadata(trans);
1897 	if (ret)
1898 		goto out;
1899 
1900 	leaf = path->nodes[0];
1901 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902 
1903 	btrfs_set_device_id(leaf, dev_item, device->devid);
1904 	btrfs_set_device_generation(leaf, dev_item, 0);
1905 	btrfs_set_device_type(leaf, dev_item, device->type);
1906 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909 	btrfs_set_device_total_bytes(leaf, dev_item,
1910 				     btrfs_device_get_disk_total_bytes(device));
1911 	btrfs_set_device_bytes_used(leaf, dev_item,
1912 				    btrfs_device_get_bytes_used(device));
1913 	btrfs_set_device_group(leaf, dev_item, 0);
1914 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1917 
1918 	ptr = btrfs_device_uuid(dev_item);
1919 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920 	ptr = btrfs_device_fsid(dev_item);
1921 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922 			    ptr, BTRFS_FSID_SIZE);
1923 	btrfs_mark_buffer_dirty(trans, leaf);
1924 
1925 	ret = 0;
1926 out:
1927 	btrfs_free_path(path);
1928 	return ret;
1929 }
1930 
1931 /*
1932  * Function to update ctime/mtime for a given device path.
1933  * Mainly used for ctime/mtime based probe like libblkid.
1934  *
1935  * We don't care about errors here, this is just to be kind to userspace.
1936  */
1937 static void update_dev_time(const char *device_path)
1938 {
1939 	struct path path;
1940 	int ret;
1941 
1942 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943 	if (ret)
1944 		return;
1945 
1946 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1947 	path_put(&path);
1948 }
1949 
1950 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951 			     struct btrfs_device *device)
1952 {
1953 	struct btrfs_root *root = device->fs_info->chunk_root;
1954 	int ret;
1955 	struct btrfs_path *path;
1956 	struct btrfs_key key;
1957 
1958 	path = btrfs_alloc_path();
1959 	if (!path)
1960 		return -ENOMEM;
1961 
1962 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963 	key.type = BTRFS_DEV_ITEM_KEY;
1964 	key.offset = device->devid;
1965 
1966 	btrfs_reserve_chunk_metadata(trans, false);
1967 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968 	btrfs_trans_release_chunk_metadata(trans);
1969 	if (ret) {
1970 		if (ret > 0)
1971 			ret = -ENOENT;
1972 		goto out;
1973 	}
1974 
1975 	ret = btrfs_del_item(trans, root, path);
1976 out:
1977 	btrfs_free_path(path);
1978 	return ret;
1979 }
1980 
1981 /*
1982  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983  * filesystem. It's up to the caller to adjust that number regarding eg. device
1984  * replace.
1985  */
1986 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987 		u64 num_devices)
1988 {
1989 	u64 all_avail;
1990 	unsigned seq;
1991 	int i;
1992 
1993 	do {
1994 		seq = read_seqbegin(&fs_info->profiles_lock);
1995 
1996 		all_avail = fs_info->avail_data_alloc_bits |
1997 			    fs_info->avail_system_alloc_bits |
1998 			    fs_info->avail_metadata_alloc_bits;
1999 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2000 
2001 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003 			continue;
2004 
2005 		if (num_devices < btrfs_raid_array[i].devs_min)
2006 			return btrfs_raid_array[i].mindev_error;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static struct btrfs_device * btrfs_find_next_active_device(
2013 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014 {
2015 	struct btrfs_device *next_device;
2016 
2017 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018 		if (next_device != device &&
2019 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020 		    && next_device->bdev)
2021 			return next_device;
2022 	}
2023 
2024 	return NULL;
2025 }
2026 
2027 /*
2028  * Helper function to check if the given device is part of s_bdev / latest_dev
2029  * and replace it with the provided or the next active device, in the context
2030  * where this function called, there should be always be another device (or
2031  * this_dev) which is active.
2032  */
2033 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034 					    struct btrfs_device *next_device)
2035 {
2036 	struct btrfs_fs_info *fs_info = device->fs_info;
2037 
2038 	if (!next_device)
2039 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040 							    device);
2041 	ASSERT(next_device);
2042 
2043 	if (fs_info->sb->s_bdev &&
2044 			(fs_info->sb->s_bdev == device->bdev))
2045 		fs_info->sb->s_bdev = next_device->bdev;
2046 
2047 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048 		fs_info->fs_devices->latest_dev = next_device;
2049 }
2050 
2051 /*
2052  * Return btrfs_fs_devices::num_devices excluding the device that's being
2053  * currently replaced.
2054  */
2055 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056 {
2057 	u64 num_devices = fs_info->fs_devices->num_devices;
2058 
2059 	down_read(&fs_info->dev_replace.rwsem);
2060 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061 		ASSERT(num_devices > 1);
2062 		num_devices--;
2063 	}
2064 	up_read(&fs_info->dev_replace.rwsem);
2065 
2066 	return num_devices;
2067 }
2068 
2069 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070 				     struct block_device *bdev, int copy_num)
2071 {
2072 	struct btrfs_super_block *disk_super;
2073 	const size_t len = sizeof(disk_super->magic);
2074 	const u64 bytenr = btrfs_sb_offset(copy_num);
2075 	int ret;
2076 
2077 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078 	if (IS_ERR(disk_super))
2079 		return;
2080 
2081 	memset(&disk_super->magic, 0, len);
2082 	folio_mark_dirty(virt_to_folio(disk_super));
2083 	btrfs_release_disk_super(disk_super);
2084 
2085 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086 	if (ret)
2087 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088 			copy_num, ret);
2089 }
2090 
2091 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2092 {
2093 	int copy_num;
2094 	struct block_device *bdev = device->bdev;
2095 
2096 	if (!bdev)
2097 		return;
2098 
2099 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100 		if (bdev_is_zoned(bdev))
2101 			btrfs_reset_sb_log_zones(bdev, copy_num);
2102 		else
2103 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104 	}
2105 
2106 	/* Notify udev that device has changed */
2107 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108 
2109 	/* Update ctime/mtime for device path for libblkid */
2110 	update_dev_time(device->name->str);
2111 }
2112 
2113 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114 		    struct btrfs_dev_lookup_args *args,
2115 		    struct file **bdev_file)
2116 {
2117 	struct btrfs_trans_handle *trans;
2118 	struct btrfs_device *device;
2119 	struct btrfs_fs_devices *cur_devices;
2120 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121 	u64 num_devices;
2122 	int ret = 0;
2123 
2124 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126 		return -EINVAL;
2127 	}
2128 
2129 	/*
2130 	 * The device list in fs_devices is accessed without locks (neither
2131 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132 	 * filesystem and another device rm cannot run.
2133 	 */
2134 	num_devices = btrfs_num_devices(fs_info);
2135 
2136 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137 	if (ret)
2138 		return ret;
2139 
2140 	device = btrfs_find_device(fs_info->fs_devices, args);
2141 	if (!device) {
2142 		if (args->missing)
2143 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144 		else
2145 			ret = -ENOENT;
2146 		return ret;
2147 	}
2148 
2149 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150 		btrfs_warn_in_rcu(fs_info,
2151 		  "cannot remove device %s (devid %llu) due to active swapfile",
2152 				  btrfs_dev_name(device), device->devid);
2153 		return -ETXTBSY;
2154 	}
2155 
2156 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2158 
2159 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160 	    fs_info->fs_devices->rw_devices == 1)
2161 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162 
2163 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164 		mutex_lock(&fs_info->chunk_mutex);
2165 		list_del_init(&device->dev_alloc_list);
2166 		device->fs_devices->rw_devices--;
2167 		mutex_unlock(&fs_info->chunk_mutex);
2168 	}
2169 
2170 	ret = btrfs_shrink_device(device, 0);
2171 	if (ret)
2172 		goto error_undo;
2173 
2174 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175 	if (IS_ERR(trans)) {
2176 		ret = PTR_ERR(trans);
2177 		goto error_undo;
2178 	}
2179 
2180 	ret = btrfs_rm_dev_item(trans, device);
2181 	if (ret) {
2182 		/* Any error in dev item removal is critical */
2183 		btrfs_crit(fs_info,
2184 			   "failed to remove device item for devid %llu: %d",
2185 			   device->devid, ret);
2186 		btrfs_abort_transaction(trans, ret);
2187 		btrfs_end_transaction(trans);
2188 		return ret;
2189 	}
2190 
2191 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192 	btrfs_scrub_cancel_dev(device);
2193 
2194 	/*
2195 	 * the device list mutex makes sure that we don't change
2196 	 * the device list while someone else is writing out all
2197 	 * the device supers. Whoever is writing all supers, should
2198 	 * lock the device list mutex before getting the number of
2199 	 * devices in the super block (super_copy). Conversely,
2200 	 * whoever updates the number of devices in the super block
2201 	 * (super_copy) should hold the device list mutex.
2202 	 */
2203 
2204 	/*
2205 	 * In normal cases the cur_devices == fs_devices. But in case
2206 	 * of deleting a seed device, the cur_devices should point to
2207 	 * its own fs_devices listed under the fs_devices->seed_list.
2208 	 */
2209 	cur_devices = device->fs_devices;
2210 	mutex_lock(&fs_devices->device_list_mutex);
2211 	list_del_rcu(&device->dev_list);
2212 
2213 	cur_devices->num_devices--;
2214 	cur_devices->total_devices--;
2215 	/* Update total_devices of the parent fs_devices if it's seed */
2216 	if (cur_devices != fs_devices)
2217 		fs_devices->total_devices--;
2218 
2219 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220 		cur_devices->missing_devices--;
2221 
2222 	btrfs_assign_next_active_device(device, NULL);
2223 
2224 	if (device->bdev_file) {
2225 		cur_devices->open_devices--;
2226 		/* remove sysfs entry */
2227 		btrfs_sysfs_remove_device(device);
2228 	}
2229 
2230 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232 	mutex_unlock(&fs_devices->device_list_mutex);
2233 
2234 	/*
2235 	 * At this point, the device is zero sized and detached from the
2236 	 * devices list.  All that's left is to zero out the old supers and
2237 	 * free the device.
2238 	 *
2239 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240 	 * write lock, and fput() on the block device will pull in the
2241 	 * ->open_mutex on the block device and it's dependencies.  Instead
2242 	 *  just flush the device and let the caller do the final bdev_release.
2243 	 */
2244 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 		btrfs_scratch_superblocks(fs_info, device);
2246 		if (device->bdev) {
2247 			sync_blockdev(device->bdev);
2248 			invalidate_bdev(device->bdev);
2249 		}
2250 	}
2251 
2252 	*bdev_file = device->bdev_file;
2253 	synchronize_rcu();
2254 	btrfs_free_device(device);
2255 
2256 	/*
2257 	 * This can happen if cur_devices is the private seed devices list.  We
2258 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259 	 * to be held, but in fact we don't need that for the private
2260 	 * seed_devices, we can simply decrement cur_devices->opened and then
2261 	 * remove it from our list and free the fs_devices.
2262 	 */
2263 	if (cur_devices->num_devices == 0) {
2264 		list_del_init(&cur_devices->seed_list);
2265 		ASSERT(cur_devices->opened == 1);
2266 		cur_devices->opened--;
2267 		free_fs_devices(cur_devices);
2268 	}
2269 
2270 	ret = btrfs_commit_transaction(trans);
2271 
2272 	return ret;
2273 
2274 error_undo:
2275 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276 		mutex_lock(&fs_info->chunk_mutex);
2277 		list_add(&device->dev_alloc_list,
2278 			 &fs_devices->alloc_list);
2279 		device->fs_devices->rw_devices++;
2280 		mutex_unlock(&fs_info->chunk_mutex);
2281 	}
2282 	return ret;
2283 }
2284 
2285 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286 {
2287 	struct btrfs_fs_devices *fs_devices;
2288 
2289 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290 
2291 	/*
2292 	 * in case of fs with no seed, srcdev->fs_devices will point
2293 	 * to fs_devices of fs_info. However when the dev being replaced is
2294 	 * a seed dev it will point to the seed's local fs_devices. In short
2295 	 * srcdev will have its correct fs_devices in both the cases.
2296 	 */
2297 	fs_devices = srcdev->fs_devices;
2298 
2299 	list_del_rcu(&srcdev->dev_list);
2300 	list_del(&srcdev->dev_alloc_list);
2301 	fs_devices->num_devices--;
2302 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303 		fs_devices->missing_devices--;
2304 
2305 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306 		fs_devices->rw_devices--;
2307 
2308 	if (srcdev->bdev)
2309 		fs_devices->open_devices--;
2310 }
2311 
2312 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313 {
2314 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315 
2316 	mutex_lock(&uuid_mutex);
2317 
2318 	btrfs_close_bdev(srcdev);
2319 	synchronize_rcu();
2320 	btrfs_free_device(srcdev);
2321 
2322 	/* if this is no devs we rather delete the fs_devices */
2323 	if (!fs_devices->num_devices) {
2324 		/*
2325 		 * On a mounted FS, num_devices can't be zero unless it's a
2326 		 * seed. In case of a seed device being replaced, the replace
2327 		 * target added to the sprout FS, so there will be no more
2328 		 * device left under the seed FS.
2329 		 */
2330 		ASSERT(fs_devices->seeding);
2331 
2332 		list_del_init(&fs_devices->seed_list);
2333 		close_fs_devices(fs_devices);
2334 		free_fs_devices(fs_devices);
2335 	}
2336 	mutex_unlock(&uuid_mutex);
2337 }
2338 
2339 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340 {
2341 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342 
2343 	mutex_lock(&fs_devices->device_list_mutex);
2344 
2345 	btrfs_sysfs_remove_device(tgtdev);
2346 
2347 	if (tgtdev->bdev)
2348 		fs_devices->open_devices--;
2349 
2350 	fs_devices->num_devices--;
2351 
2352 	btrfs_assign_next_active_device(tgtdev, NULL);
2353 
2354 	list_del_rcu(&tgtdev->dev_list);
2355 
2356 	mutex_unlock(&fs_devices->device_list_mutex);
2357 
2358 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2359 
2360 	btrfs_close_bdev(tgtdev);
2361 	synchronize_rcu();
2362 	btrfs_free_device(tgtdev);
2363 }
2364 
2365 /*
2366  * Populate args from device at path.
2367  *
2368  * @fs_info:	the filesystem
2369  * @args:	the args to populate
2370  * @path:	the path to the device
2371  *
2372  * This will read the super block of the device at @path and populate @args with
2373  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2374  * lookup a device to operate on, but need to do it before we take any locks.
2375  * This properly handles the special case of "missing" that a user may pass in,
2376  * and does some basic sanity checks.  The caller must make sure that @path is
2377  * properly NUL terminated before calling in, and must call
2378  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379  * uuid buffers.
2380  *
2381  * Return: 0 for success, -errno for failure
2382  */
2383 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384 				 struct btrfs_dev_lookup_args *args,
2385 				 const char *path)
2386 {
2387 	struct btrfs_super_block *disk_super;
2388 	struct file *bdev_file;
2389 	int ret;
2390 
2391 	if (!path || !path[0])
2392 		return -EINVAL;
2393 	if (!strcmp(path, "missing")) {
2394 		args->missing = true;
2395 		return 0;
2396 	}
2397 
2398 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400 	if (!args->uuid || !args->fsid) {
2401 		btrfs_put_dev_args_from_path(args);
2402 		return -ENOMEM;
2403 	}
2404 
2405 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406 				    &bdev_file, &disk_super);
2407 	if (ret) {
2408 		btrfs_put_dev_args_from_path(args);
2409 		return ret;
2410 	}
2411 
2412 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416 	else
2417 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418 	btrfs_release_disk_super(disk_super);
2419 	fput(bdev_file);
2420 	return 0;
2421 }
2422 
2423 /*
2424  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426  * that don't need to be freed.
2427  */
2428 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429 {
2430 	kfree(args->uuid);
2431 	kfree(args->fsid);
2432 	args->uuid = NULL;
2433 	args->fsid = NULL;
2434 }
2435 
2436 struct btrfs_device *btrfs_find_device_by_devspec(
2437 		struct btrfs_fs_info *fs_info, u64 devid,
2438 		const char *device_path)
2439 {
2440 	BTRFS_DEV_LOOKUP_ARGS(args);
2441 	struct btrfs_device *device;
2442 	int ret;
2443 
2444 	if (devid) {
2445 		args.devid = devid;
2446 		device = btrfs_find_device(fs_info->fs_devices, &args);
2447 		if (!device)
2448 			return ERR_PTR(-ENOENT);
2449 		return device;
2450 	}
2451 
2452 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453 	if (ret)
2454 		return ERR_PTR(ret);
2455 	device = btrfs_find_device(fs_info->fs_devices, &args);
2456 	btrfs_put_dev_args_from_path(&args);
2457 	if (!device)
2458 		return ERR_PTR(-ENOENT);
2459 	return device;
2460 }
2461 
2462 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463 {
2464 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465 	struct btrfs_fs_devices *old_devices;
2466 	struct btrfs_fs_devices *seed_devices;
2467 
2468 	lockdep_assert_held(&uuid_mutex);
2469 	if (!fs_devices->seeding)
2470 		return ERR_PTR(-EINVAL);
2471 
2472 	/*
2473 	 * Private copy of the seed devices, anchored at
2474 	 * fs_info->fs_devices->seed_list
2475 	 */
2476 	seed_devices = alloc_fs_devices(NULL);
2477 	if (IS_ERR(seed_devices))
2478 		return seed_devices;
2479 
2480 	/*
2481 	 * It's necessary to retain a copy of the original seed fs_devices in
2482 	 * fs_uuids so that filesystems which have been seeded can successfully
2483 	 * reference the seed device from open_seed_devices. This also supports
2484 	 * multiple fs seed.
2485 	 */
2486 	old_devices = clone_fs_devices(fs_devices);
2487 	if (IS_ERR(old_devices)) {
2488 		kfree(seed_devices);
2489 		return old_devices;
2490 	}
2491 
2492 	list_add(&old_devices->fs_list, &fs_uuids);
2493 
2494 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495 	seed_devices->opened = 1;
2496 	INIT_LIST_HEAD(&seed_devices->devices);
2497 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2498 	mutex_init(&seed_devices->device_list_mutex);
2499 
2500 	return seed_devices;
2501 }
2502 
2503 /*
2504  * Splice seed devices into the sprout fs_devices.
2505  * Generate a new fsid for the sprouted read-write filesystem.
2506  */
2507 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508 			       struct btrfs_fs_devices *seed_devices)
2509 {
2510 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2512 	struct btrfs_device *device;
2513 	u64 super_flags;
2514 
2515 	/*
2516 	 * We are updating the fsid, the thread leading to device_list_add()
2517 	 * could race, so uuid_mutex is needed.
2518 	 */
2519 	lockdep_assert_held(&uuid_mutex);
2520 
2521 	/*
2522 	 * The threads listed below may traverse dev_list but can do that without
2523 	 * device_list_mutex:
2524 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2525 	 * - Various dev_list readers - are using RCU.
2526 	 * - btrfs_ioctl_fitrim() - is using RCU.
2527 	 *
2528 	 * For-read threads as below are using device_list_mutex:
2529 	 * - Readonly scrub btrfs_scrub_dev()
2530 	 * - Readonly scrub btrfs_scrub_progress()
2531 	 * - btrfs_get_dev_stats()
2532 	 */
2533 	lockdep_assert_held(&fs_devices->device_list_mutex);
2534 
2535 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536 			      synchronize_rcu);
2537 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2538 		device->fs_devices = seed_devices;
2539 
2540 	fs_devices->seeding = false;
2541 	fs_devices->num_devices = 0;
2542 	fs_devices->open_devices = 0;
2543 	fs_devices->missing_devices = 0;
2544 	fs_devices->rotating = false;
2545 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546 
2547 	generate_random_uuid(fs_devices->fsid);
2548 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550 
2551 	super_flags = btrfs_super_flags(disk_super) &
2552 		      ~BTRFS_SUPER_FLAG_SEEDING;
2553 	btrfs_set_super_flags(disk_super, super_flags);
2554 }
2555 
2556 /*
2557  * Store the expected generation for seed devices in device items.
2558  */
2559 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560 {
2561 	BTRFS_DEV_LOOKUP_ARGS(args);
2562 	struct btrfs_fs_info *fs_info = trans->fs_info;
2563 	struct btrfs_root *root = fs_info->chunk_root;
2564 	struct btrfs_path *path;
2565 	struct extent_buffer *leaf;
2566 	struct btrfs_dev_item *dev_item;
2567 	struct btrfs_device *device;
2568 	struct btrfs_key key;
2569 	u8 fs_uuid[BTRFS_FSID_SIZE];
2570 	u8 dev_uuid[BTRFS_UUID_SIZE];
2571 	int ret;
2572 
2573 	path = btrfs_alloc_path();
2574 	if (!path)
2575 		return -ENOMEM;
2576 
2577 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578 	key.offset = 0;
2579 	key.type = BTRFS_DEV_ITEM_KEY;
2580 
2581 	while (1) {
2582 		btrfs_reserve_chunk_metadata(trans, false);
2583 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584 		btrfs_trans_release_chunk_metadata(trans);
2585 		if (ret < 0)
2586 			goto error;
2587 
2588 		leaf = path->nodes[0];
2589 next_slot:
2590 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591 			ret = btrfs_next_leaf(root, path);
2592 			if (ret > 0)
2593 				break;
2594 			if (ret < 0)
2595 				goto error;
2596 			leaf = path->nodes[0];
2597 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598 			btrfs_release_path(path);
2599 			continue;
2600 		}
2601 
2602 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604 		    key.type != BTRFS_DEV_ITEM_KEY)
2605 			break;
2606 
2607 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608 					  struct btrfs_dev_item);
2609 		args.devid = btrfs_device_id(leaf, dev_item);
2610 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611 				   BTRFS_UUID_SIZE);
2612 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613 				   BTRFS_FSID_SIZE);
2614 		args.uuid = dev_uuid;
2615 		args.fsid = fs_uuid;
2616 		device = btrfs_find_device(fs_info->fs_devices, &args);
2617 		BUG_ON(!device); /* Logic error */
2618 
2619 		if (device->fs_devices->seeding) {
2620 			btrfs_set_device_generation(leaf, dev_item,
2621 						    device->generation);
2622 			btrfs_mark_buffer_dirty(trans, leaf);
2623 		}
2624 
2625 		path->slots[0]++;
2626 		goto next_slot;
2627 	}
2628 	ret = 0;
2629 error:
2630 	btrfs_free_path(path);
2631 	return ret;
2632 }
2633 
2634 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635 {
2636 	struct btrfs_root *root = fs_info->dev_root;
2637 	struct btrfs_trans_handle *trans;
2638 	struct btrfs_device *device;
2639 	struct file *bdev_file;
2640 	struct super_block *sb = fs_info->sb;
2641 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642 	struct btrfs_fs_devices *seed_devices = NULL;
2643 	u64 orig_super_total_bytes;
2644 	u64 orig_super_num_devices;
2645 	int ret = 0;
2646 	bool seeding_dev = false;
2647 	bool locked = false;
2648 
2649 	if (sb_rdonly(sb) && !fs_devices->seeding)
2650 		return -EROFS;
2651 
2652 	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653 					fs_info->bdev_holder, NULL);
2654 	if (IS_ERR(bdev_file))
2655 		return PTR_ERR(bdev_file);
2656 
2657 	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658 		ret = -EINVAL;
2659 		goto error;
2660 	}
2661 
2662 	if (fs_devices->seeding) {
2663 		seeding_dev = true;
2664 		down_write(&sb->s_umount);
2665 		mutex_lock(&uuid_mutex);
2666 		locked = true;
2667 	}
2668 
2669 	sync_blockdev(file_bdev(bdev_file));
2670 
2671 	rcu_read_lock();
2672 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673 		if (device->bdev == file_bdev(bdev_file)) {
2674 			ret = -EEXIST;
2675 			rcu_read_unlock();
2676 			goto error;
2677 		}
2678 	}
2679 	rcu_read_unlock();
2680 
2681 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682 	if (IS_ERR(device)) {
2683 		/* we can safely leave the fs_devices entry around */
2684 		ret = PTR_ERR(device);
2685 		goto error;
2686 	}
2687 
2688 	device->fs_info = fs_info;
2689 	device->bdev_file = bdev_file;
2690 	device->bdev = file_bdev(bdev_file);
2691 	ret = lookup_bdev(device_path, &device->devt);
2692 	if (ret)
2693 		goto error_free_device;
2694 
2695 	ret = btrfs_get_dev_zone_info(device, false);
2696 	if (ret)
2697 		goto error_free_device;
2698 
2699 	trans = btrfs_start_transaction(root, 0);
2700 	if (IS_ERR(trans)) {
2701 		ret = PTR_ERR(trans);
2702 		goto error_free_zone;
2703 	}
2704 
2705 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706 	device->generation = trans->transid;
2707 	device->io_width = fs_info->sectorsize;
2708 	device->io_align = fs_info->sectorsize;
2709 	device->sector_size = fs_info->sectorsize;
2710 	device->total_bytes =
2711 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712 	device->disk_total_bytes = device->total_bytes;
2713 	device->commit_total_bytes = device->total_bytes;
2714 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2716 	device->dev_stats_valid = 1;
2717 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718 
2719 	if (seeding_dev) {
2720 		btrfs_clear_sb_rdonly(sb);
2721 
2722 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2723 		seed_devices = btrfs_init_sprout(fs_info);
2724 		if (IS_ERR(seed_devices)) {
2725 			ret = PTR_ERR(seed_devices);
2726 			btrfs_abort_transaction(trans, ret);
2727 			goto error_trans;
2728 		}
2729 	}
2730 
2731 	mutex_lock(&fs_devices->device_list_mutex);
2732 	if (seeding_dev) {
2733 		btrfs_setup_sprout(fs_info, seed_devices);
2734 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735 						device);
2736 	}
2737 
2738 	device->fs_devices = fs_devices;
2739 
2740 	mutex_lock(&fs_info->chunk_mutex);
2741 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2742 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743 	fs_devices->num_devices++;
2744 	fs_devices->open_devices++;
2745 	fs_devices->rw_devices++;
2746 	fs_devices->total_devices++;
2747 	fs_devices->total_rw_bytes += device->total_bytes;
2748 
2749 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750 
2751 	if (!bdev_nonrot(device->bdev))
2752 		fs_devices->rotating = true;
2753 
2754 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755 	btrfs_set_super_total_bytes(fs_info->super_copy,
2756 		round_down(orig_super_total_bytes + device->total_bytes,
2757 			   fs_info->sectorsize));
2758 
2759 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760 	btrfs_set_super_num_devices(fs_info->super_copy,
2761 				    orig_super_num_devices + 1);
2762 
2763 	/*
2764 	 * we've got more storage, clear any full flags on the space
2765 	 * infos
2766 	 */
2767 	btrfs_clear_space_info_full(fs_info);
2768 
2769 	mutex_unlock(&fs_info->chunk_mutex);
2770 
2771 	/* Add sysfs device entry */
2772 	btrfs_sysfs_add_device(device);
2773 
2774 	mutex_unlock(&fs_devices->device_list_mutex);
2775 
2776 	if (seeding_dev) {
2777 		mutex_lock(&fs_info->chunk_mutex);
2778 		ret = init_first_rw_device(trans);
2779 		mutex_unlock(&fs_info->chunk_mutex);
2780 		if (ret) {
2781 			btrfs_abort_transaction(trans, ret);
2782 			goto error_sysfs;
2783 		}
2784 	}
2785 
2786 	ret = btrfs_add_dev_item(trans, device);
2787 	if (ret) {
2788 		btrfs_abort_transaction(trans, ret);
2789 		goto error_sysfs;
2790 	}
2791 
2792 	if (seeding_dev) {
2793 		ret = btrfs_finish_sprout(trans);
2794 		if (ret) {
2795 			btrfs_abort_transaction(trans, ret);
2796 			goto error_sysfs;
2797 		}
2798 
2799 		/*
2800 		 * fs_devices now represents the newly sprouted filesystem and
2801 		 * its fsid has been changed by btrfs_sprout_splice().
2802 		 */
2803 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2804 	}
2805 
2806 	ret = btrfs_commit_transaction(trans);
2807 
2808 	if (seeding_dev) {
2809 		mutex_unlock(&uuid_mutex);
2810 		up_write(&sb->s_umount);
2811 		locked = false;
2812 
2813 		if (ret) /* transaction commit */
2814 			return ret;
2815 
2816 		ret = btrfs_relocate_sys_chunks(fs_info);
2817 		if (ret < 0)
2818 			btrfs_handle_fs_error(fs_info, ret,
2819 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820 		trans = btrfs_attach_transaction(root);
2821 		if (IS_ERR(trans)) {
2822 			if (PTR_ERR(trans) == -ENOENT)
2823 				return 0;
2824 			ret = PTR_ERR(trans);
2825 			trans = NULL;
2826 			goto error_sysfs;
2827 		}
2828 		ret = btrfs_commit_transaction(trans);
2829 	}
2830 
2831 	/*
2832 	 * Now that we have written a new super block to this device, check all
2833 	 * other fs_devices list if device_path alienates any other scanned
2834 	 * device.
2835 	 * We can ignore the return value as it typically returns -EINVAL and
2836 	 * only succeeds if the device was an alien.
2837 	 */
2838 	btrfs_forget_devices(device->devt);
2839 
2840 	/* Update ctime/mtime for blkid or udev */
2841 	update_dev_time(device_path);
2842 
2843 	return ret;
2844 
2845 error_sysfs:
2846 	btrfs_sysfs_remove_device(device);
2847 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848 	mutex_lock(&fs_info->chunk_mutex);
2849 	list_del_rcu(&device->dev_list);
2850 	list_del(&device->dev_alloc_list);
2851 	fs_info->fs_devices->num_devices--;
2852 	fs_info->fs_devices->open_devices--;
2853 	fs_info->fs_devices->rw_devices--;
2854 	fs_info->fs_devices->total_devices--;
2855 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857 	btrfs_set_super_total_bytes(fs_info->super_copy,
2858 				    orig_super_total_bytes);
2859 	btrfs_set_super_num_devices(fs_info->super_copy,
2860 				    orig_super_num_devices);
2861 	mutex_unlock(&fs_info->chunk_mutex);
2862 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863 error_trans:
2864 	if (seeding_dev)
2865 		btrfs_set_sb_rdonly(sb);
2866 	if (trans)
2867 		btrfs_end_transaction(trans);
2868 error_free_zone:
2869 	btrfs_destroy_dev_zone_info(device);
2870 error_free_device:
2871 	btrfs_free_device(device);
2872 error:
2873 	fput(bdev_file);
2874 	if (locked) {
2875 		mutex_unlock(&uuid_mutex);
2876 		up_write(&sb->s_umount);
2877 	}
2878 	return ret;
2879 }
2880 
2881 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882 					struct btrfs_device *device)
2883 {
2884 	int ret;
2885 	struct btrfs_path *path;
2886 	struct btrfs_root *root = device->fs_info->chunk_root;
2887 	struct btrfs_dev_item *dev_item;
2888 	struct extent_buffer *leaf;
2889 	struct btrfs_key key;
2890 
2891 	path = btrfs_alloc_path();
2892 	if (!path)
2893 		return -ENOMEM;
2894 
2895 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896 	key.type = BTRFS_DEV_ITEM_KEY;
2897 	key.offset = device->devid;
2898 
2899 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900 	if (ret < 0)
2901 		goto out;
2902 
2903 	if (ret > 0) {
2904 		ret = -ENOENT;
2905 		goto out;
2906 	}
2907 
2908 	leaf = path->nodes[0];
2909 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910 
2911 	btrfs_set_device_id(leaf, dev_item, device->devid);
2912 	btrfs_set_device_type(leaf, dev_item, device->type);
2913 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916 	btrfs_set_device_total_bytes(leaf, dev_item,
2917 				     btrfs_device_get_disk_total_bytes(device));
2918 	btrfs_set_device_bytes_used(leaf, dev_item,
2919 				    btrfs_device_get_bytes_used(device));
2920 	btrfs_mark_buffer_dirty(trans, leaf);
2921 
2922 out:
2923 	btrfs_free_path(path);
2924 	return ret;
2925 }
2926 
2927 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928 		      struct btrfs_device *device, u64 new_size)
2929 {
2930 	struct btrfs_fs_info *fs_info = device->fs_info;
2931 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2932 	u64 old_total;
2933 	u64 diff;
2934 	int ret;
2935 
2936 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937 		return -EACCES;
2938 
2939 	new_size = round_down(new_size, fs_info->sectorsize);
2940 
2941 	mutex_lock(&fs_info->chunk_mutex);
2942 	old_total = btrfs_super_total_bytes(super_copy);
2943 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944 
2945 	if (new_size <= device->total_bytes ||
2946 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947 		mutex_unlock(&fs_info->chunk_mutex);
2948 		return -EINVAL;
2949 	}
2950 
2951 	btrfs_set_super_total_bytes(super_copy,
2952 			round_down(old_total + diff, fs_info->sectorsize));
2953 	device->fs_devices->total_rw_bytes += diff;
2954 	atomic64_add(diff, &fs_info->free_chunk_space);
2955 
2956 	btrfs_device_set_total_bytes(device, new_size);
2957 	btrfs_device_set_disk_total_bytes(device, new_size);
2958 	btrfs_clear_space_info_full(device->fs_info);
2959 	if (list_empty(&device->post_commit_list))
2960 		list_add_tail(&device->post_commit_list,
2961 			      &trans->transaction->dev_update_list);
2962 	mutex_unlock(&fs_info->chunk_mutex);
2963 
2964 	btrfs_reserve_chunk_metadata(trans, false);
2965 	ret = btrfs_update_device(trans, device);
2966 	btrfs_trans_release_chunk_metadata(trans);
2967 
2968 	return ret;
2969 }
2970 
2971 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972 {
2973 	struct btrfs_fs_info *fs_info = trans->fs_info;
2974 	struct btrfs_root *root = fs_info->chunk_root;
2975 	int ret;
2976 	struct btrfs_path *path;
2977 	struct btrfs_key key;
2978 
2979 	path = btrfs_alloc_path();
2980 	if (!path)
2981 		return -ENOMEM;
2982 
2983 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984 	key.offset = chunk_offset;
2985 	key.type = BTRFS_CHUNK_ITEM_KEY;
2986 
2987 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988 	if (ret < 0)
2989 		goto out;
2990 	else if (ret > 0) { /* Logic error or corruption */
2991 		btrfs_handle_fs_error(fs_info, -ENOENT,
2992 				      "Failed lookup while freeing chunk.");
2993 		ret = -ENOENT;
2994 		goto out;
2995 	}
2996 
2997 	ret = btrfs_del_item(trans, root, path);
2998 	if (ret < 0)
2999 		btrfs_handle_fs_error(fs_info, ret,
3000 				      "Failed to delete chunk item.");
3001 out:
3002 	btrfs_free_path(path);
3003 	return ret;
3004 }
3005 
3006 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007 {
3008 	struct btrfs_super_block *super_copy = fs_info->super_copy;
3009 	struct btrfs_disk_key *disk_key;
3010 	struct btrfs_chunk *chunk;
3011 	u8 *ptr;
3012 	int ret = 0;
3013 	u32 num_stripes;
3014 	u32 array_size;
3015 	u32 len = 0;
3016 	u32 cur;
3017 	struct btrfs_key key;
3018 
3019 	lockdep_assert_held(&fs_info->chunk_mutex);
3020 	array_size = btrfs_super_sys_array_size(super_copy);
3021 
3022 	ptr = super_copy->sys_chunk_array;
3023 	cur = 0;
3024 
3025 	while (cur < array_size) {
3026 		disk_key = (struct btrfs_disk_key *)ptr;
3027 		btrfs_disk_key_to_cpu(&key, disk_key);
3028 
3029 		len = sizeof(*disk_key);
3030 
3031 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032 			chunk = (struct btrfs_chunk *)(ptr + len);
3033 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034 			len += btrfs_chunk_item_size(num_stripes);
3035 		} else {
3036 			ret = -EIO;
3037 			break;
3038 		}
3039 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040 		    key.offset == chunk_offset) {
3041 			memmove(ptr, ptr + len, array_size - (cur + len));
3042 			array_size -= len;
3043 			btrfs_set_super_sys_array_size(super_copy, array_size);
3044 		} else {
3045 			ptr += len;
3046 			cur += len;
3047 		}
3048 	}
3049 	return ret;
3050 }
3051 
3052 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053 						    u64 logical, u64 length)
3054 {
3055 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056 	struct rb_node *prev = NULL;
3057 	struct rb_node *orig_prev;
3058 	struct btrfs_chunk_map *map;
3059 	struct btrfs_chunk_map *prev_map = NULL;
3060 
3061 	while (node) {
3062 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063 		prev = node;
3064 		prev_map = map;
3065 
3066 		if (logical < map->start) {
3067 			node = node->rb_left;
3068 		} else if (logical >= map->start + map->chunk_len) {
3069 			node = node->rb_right;
3070 		} else {
3071 			refcount_inc(&map->refs);
3072 			return map;
3073 		}
3074 	}
3075 
3076 	if (!prev)
3077 		return NULL;
3078 
3079 	orig_prev = prev;
3080 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081 		prev = rb_next(prev);
3082 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083 	}
3084 
3085 	if (!prev) {
3086 		prev = orig_prev;
3087 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088 		while (prev && logical < prev_map->start) {
3089 			prev = rb_prev(prev);
3090 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091 		}
3092 	}
3093 
3094 	if (prev) {
3095 		u64 end = logical + length;
3096 
3097 		/*
3098 		 * Caller can pass a U64_MAX length when it wants to get any
3099 		 * chunk starting at an offset of 'logical' or higher, so deal
3100 		 * with underflow by resetting the end offset to U64_MAX.
3101 		 */
3102 		if (end < logical)
3103 			end = U64_MAX;
3104 
3105 		if (end > prev_map->start &&
3106 		    logical < prev_map->start + prev_map->chunk_len) {
3107 			refcount_inc(&prev_map->refs);
3108 			return prev_map;
3109 		}
3110 	}
3111 
3112 	return NULL;
3113 }
3114 
3115 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116 					     u64 logical, u64 length)
3117 {
3118 	struct btrfs_chunk_map *map;
3119 
3120 	read_lock(&fs_info->mapping_tree_lock);
3121 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122 	read_unlock(&fs_info->mapping_tree_lock);
3123 
3124 	return map;
3125 }
3126 
3127 /*
3128  * Find the mapping containing the given logical extent.
3129  *
3130  * @logical: Logical block offset in bytes.
3131  * @length: Length of extent in bytes.
3132  *
3133  * Return: Chunk mapping or ERR_PTR.
3134  */
3135 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136 					    u64 logical, u64 length)
3137 {
3138 	struct btrfs_chunk_map *map;
3139 
3140 	map = btrfs_find_chunk_map(fs_info, logical, length);
3141 
3142 	if (unlikely(!map)) {
3143 		btrfs_crit(fs_info,
3144 			   "unable to find chunk map for logical %llu length %llu",
3145 			   logical, length);
3146 		return ERR_PTR(-EINVAL);
3147 	}
3148 
3149 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150 		btrfs_crit(fs_info,
3151 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152 			   logical, logical + length, map->start,
3153 			   map->start + map->chunk_len);
3154 		btrfs_free_chunk_map(map);
3155 		return ERR_PTR(-EINVAL);
3156 	}
3157 
3158 	/* Callers are responsible for dropping the reference. */
3159 	return map;
3160 }
3161 
3162 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3164 {
3165 	int i;
3166 
3167 	/*
3168 	 * Removing chunk items and updating the device items in the chunks btree
3169 	 * requires holding the chunk_mutex.
3170 	 * See the comment at btrfs_chunk_alloc() for the details.
3171 	 */
3172 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173 
3174 	for (i = 0; i < map->num_stripes; i++) {
3175 		int ret;
3176 
3177 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3178 		if (ret)
3179 			return ret;
3180 	}
3181 
3182 	return btrfs_free_chunk(trans, chunk_offset);
3183 }
3184 
3185 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186 {
3187 	struct btrfs_fs_info *fs_info = trans->fs_info;
3188 	struct btrfs_chunk_map *map;
3189 	u64 dev_extent_len = 0;
3190 	int i, ret = 0;
3191 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192 
3193 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194 	if (IS_ERR(map)) {
3195 		/*
3196 		 * This is a logic error, but we don't want to just rely on the
3197 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3198 		 * do anything we still error out.
3199 		 */
3200 		ASSERT(0);
3201 		return PTR_ERR(map);
3202 	}
3203 
3204 	/*
3205 	 * First delete the device extent items from the devices btree.
3206 	 * We take the device_list_mutex to avoid racing with the finishing phase
3207 	 * of a device replace operation. See the comment below before acquiring
3208 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209 	 * because that can result in a deadlock when deleting the device extent
3210 	 * items from the devices btree - COWing an extent buffer from the btree
3211 	 * may result in allocating a new metadata chunk, which would attempt to
3212 	 * lock again fs_info->chunk_mutex.
3213 	 */
3214 	mutex_lock(&fs_devices->device_list_mutex);
3215 	for (i = 0; i < map->num_stripes; i++) {
3216 		struct btrfs_device *device = map->stripes[i].dev;
3217 		ret = btrfs_free_dev_extent(trans, device,
3218 					    map->stripes[i].physical,
3219 					    &dev_extent_len);
3220 		if (ret) {
3221 			mutex_unlock(&fs_devices->device_list_mutex);
3222 			btrfs_abort_transaction(trans, ret);
3223 			goto out;
3224 		}
3225 
3226 		if (device->bytes_used > 0) {
3227 			mutex_lock(&fs_info->chunk_mutex);
3228 			btrfs_device_set_bytes_used(device,
3229 					device->bytes_used - dev_extent_len);
3230 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231 			btrfs_clear_space_info_full(fs_info);
3232 			mutex_unlock(&fs_info->chunk_mutex);
3233 		}
3234 	}
3235 	mutex_unlock(&fs_devices->device_list_mutex);
3236 
3237 	/*
3238 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3239 	 *
3240 	 * 1) Just like with the first phase of the chunk allocation, we must
3241 	 *    reserve system space, do all chunk btree updates and deletions, and
3242 	 *    update the system chunk array in the superblock while holding this
3243 	 *    mutex. This is for similar reasons as explained on the comment at
3244 	 *    the top of btrfs_chunk_alloc();
3245 	 *
3246 	 * 2) Prevent races with the final phase of a device replace operation
3247 	 *    that replaces the device object associated with the map's stripes,
3248 	 *    because the device object's id can change at any time during that
3249 	 *    final phase of the device replace operation
3250 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251 	 *    replaced device and then see it with an ID of
3252 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253 	 *    the device item, which does not exists on the chunk btree.
3254 	 *    The finishing phase of device replace acquires both the
3255 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3256 	 *    safe by just acquiring the chunk_mutex.
3257 	 */
3258 	trans->removing_chunk = true;
3259 	mutex_lock(&fs_info->chunk_mutex);
3260 
3261 	check_system_chunk(trans, map->type);
3262 
3263 	ret = remove_chunk_item(trans, map, chunk_offset);
3264 	/*
3265 	 * Normally we should not get -ENOSPC since we reserved space before
3266 	 * through the call to check_system_chunk().
3267 	 *
3268 	 * Despite our system space_info having enough free space, we may not
3269 	 * be able to allocate extents from its block groups, because all have
3270 	 * an incompatible profile, which will force us to allocate a new system
3271 	 * block group with the right profile, or right after we called
3272 	 * check_system_space() above, a scrub turned the only system block group
3273 	 * with enough free space into RO mode.
3274 	 * This is explained with more detail at do_chunk_alloc().
3275 	 *
3276 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277 	 */
3278 	if (ret == -ENOSPC) {
3279 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280 		struct btrfs_block_group *sys_bg;
3281 
3282 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3283 		if (IS_ERR(sys_bg)) {
3284 			ret = PTR_ERR(sys_bg);
3285 			btrfs_abort_transaction(trans, ret);
3286 			goto out;
3287 		}
3288 
3289 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290 		if (ret) {
3291 			btrfs_abort_transaction(trans, ret);
3292 			goto out;
3293 		}
3294 
3295 		ret = remove_chunk_item(trans, map, chunk_offset);
3296 		if (ret) {
3297 			btrfs_abort_transaction(trans, ret);
3298 			goto out;
3299 		}
3300 	} else if (ret) {
3301 		btrfs_abort_transaction(trans, ret);
3302 		goto out;
3303 	}
3304 
3305 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306 
3307 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309 		if (ret) {
3310 			btrfs_abort_transaction(trans, ret);
3311 			goto out;
3312 		}
3313 	}
3314 
3315 	mutex_unlock(&fs_info->chunk_mutex);
3316 	trans->removing_chunk = false;
3317 
3318 	/*
3319 	 * We are done with chunk btree updates and deletions, so release the
3320 	 * system space we previously reserved (with check_system_chunk()).
3321 	 */
3322 	btrfs_trans_release_chunk_metadata(trans);
3323 
3324 	ret = btrfs_remove_block_group(trans, map);
3325 	if (ret) {
3326 		btrfs_abort_transaction(trans, ret);
3327 		goto out;
3328 	}
3329 
3330 out:
3331 	if (trans->removing_chunk) {
3332 		mutex_unlock(&fs_info->chunk_mutex);
3333 		trans->removing_chunk = false;
3334 	}
3335 	/* once for us */
3336 	btrfs_free_chunk_map(map);
3337 	return ret;
3338 }
3339 
3340 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341 {
3342 	struct btrfs_root *root = fs_info->chunk_root;
3343 	struct btrfs_trans_handle *trans;
3344 	struct btrfs_block_group *block_group;
3345 	u64 length;
3346 	int ret;
3347 
3348 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349 		btrfs_err(fs_info,
3350 			  "relocate: not supported on extent tree v2 yet");
3351 		return -EINVAL;
3352 	}
3353 
3354 	/*
3355 	 * Prevent races with automatic removal of unused block groups.
3356 	 * After we relocate and before we remove the chunk with offset
3357 	 * chunk_offset, automatic removal of the block group can kick in,
3358 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3359 	 *
3360 	 * Make sure to acquire this mutex before doing a tree search (dev
3361 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363 	 * we release the path used to search the chunk/dev tree and before
3364 	 * the current task acquires this mutex and calls us.
3365 	 */
3366 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367 
3368 	/* step one, relocate all the extents inside this chunk */
3369 	btrfs_scrub_pause(fs_info);
3370 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371 	btrfs_scrub_continue(fs_info);
3372 	if (ret) {
3373 		/*
3374 		 * If we had a transaction abort, stop all running scrubs.
3375 		 * See transaction.c:cleanup_transaction() why we do it here.
3376 		 */
3377 		if (BTRFS_FS_ERROR(fs_info))
3378 			btrfs_scrub_cancel(fs_info);
3379 		return ret;
3380 	}
3381 
3382 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383 	if (!block_group)
3384 		return -ENOENT;
3385 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386 	length = block_group->length;
3387 	btrfs_put_block_group(block_group);
3388 
3389 	/*
3390 	 * On a zoned file system, discard the whole block group, this will
3391 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392 	 * resetting the zone fails, don't treat it as a fatal problem from the
3393 	 * filesystem's point of view.
3394 	 */
3395 	if (btrfs_is_zoned(fs_info)) {
3396 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397 		if (ret)
3398 			btrfs_info(fs_info,
3399 				"failed to reset zone %llu after relocation",
3400 				chunk_offset);
3401 	}
3402 
3403 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404 						     chunk_offset);
3405 	if (IS_ERR(trans)) {
3406 		ret = PTR_ERR(trans);
3407 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408 		return ret;
3409 	}
3410 
3411 	/*
3412 	 * step two, delete the device extents and the
3413 	 * chunk tree entries
3414 	 */
3415 	ret = btrfs_remove_chunk(trans, chunk_offset);
3416 	btrfs_end_transaction(trans);
3417 	return ret;
3418 }
3419 
3420 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421 {
3422 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3423 	struct btrfs_path *path;
3424 	struct extent_buffer *leaf;
3425 	struct btrfs_chunk *chunk;
3426 	struct btrfs_key key;
3427 	struct btrfs_key found_key;
3428 	u64 chunk_type;
3429 	bool retried = false;
3430 	int failed = 0;
3431 	int ret;
3432 
3433 	path = btrfs_alloc_path();
3434 	if (!path)
3435 		return -ENOMEM;
3436 
3437 again:
3438 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439 	key.offset = (u64)-1;
3440 	key.type = BTRFS_CHUNK_ITEM_KEY;
3441 
3442 	while (1) {
3443 		mutex_lock(&fs_info->reclaim_bgs_lock);
3444 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445 		if (ret < 0) {
3446 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3447 			goto error;
3448 		}
3449 		if (ret == 0) {
3450 			/*
3451 			 * On the first search we would find chunk tree with
3452 			 * offset -1, which is not possible. On subsequent
3453 			 * loops this would find an existing item on an invalid
3454 			 * offset (one less than the previous one, wrong
3455 			 * alignment and size).
3456 			 */
3457 			ret = -EUCLEAN;
3458 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3459 			goto error;
3460 		}
3461 
3462 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3463 					  key.type);
3464 		if (ret)
3465 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3466 		if (ret < 0)
3467 			goto error;
3468 		if (ret > 0)
3469 			break;
3470 
3471 		leaf = path->nodes[0];
3472 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3473 
3474 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3475 				       struct btrfs_chunk);
3476 		chunk_type = btrfs_chunk_type(leaf, chunk);
3477 		btrfs_release_path(path);
3478 
3479 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3480 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3481 			if (ret == -ENOSPC)
3482 				failed++;
3483 			else
3484 				BUG_ON(ret);
3485 		}
3486 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3487 
3488 		if (found_key.offset == 0)
3489 			break;
3490 		key.offset = found_key.offset - 1;
3491 	}
3492 	ret = 0;
3493 	if (failed && !retried) {
3494 		failed = 0;
3495 		retried = true;
3496 		goto again;
3497 	} else if (WARN_ON(failed && retried)) {
3498 		ret = -ENOSPC;
3499 	}
3500 error:
3501 	btrfs_free_path(path);
3502 	return ret;
3503 }
3504 
3505 /*
3506  * return 1 : allocate a data chunk successfully,
3507  * return <0: errors during allocating a data chunk,
3508  * return 0 : no need to allocate a data chunk.
3509  */
3510 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3511 				      u64 chunk_offset)
3512 {
3513 	struct btrfs_block_group *cache;
3514 	u64 bytes_used;
3515 	u64 chunk_type;
3516 
3517 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3518 	ASSERT(cache);
3519 	chunk_type = cache->flags;
3520 	btrfs_put_block_group(cache);
3521 
3522 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3523 		return 0;
3524 
3525 	spin_lock(&fs_info->data_sinfo->lock);
3526 	bytes_used = fs_info->data_sinfo->bytes_used;
3527 	spin_unlock(&fs_info->data_sinfo->lock);
3528 
3529 	if (!bytes_used) {
3530 		struct btrfs_trans_handle *trans;
3531 		int ret;
3532 
3533 		trans =	btrfs_join_transaction(fs_info->tree_root);
3534 		if (IS_ERR(trans))
3535 			return PTR_ERR(trans);
3536 
3537 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3538 		btrfs_end_transaction(trans);
3539 		if (ret < 0)
3540 			return ret;
3541 		return 1;
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3548 					   const struct btrfs_disk_balance_args *disk)
3549 {
3550 	memset(cpu, 0, sizeof(*cpu));
3551 
3552 	cpu->profiles = le64_to_cpu(disk->profiles);
3553 	cpu->usage = le64_to_cpu(disk->usage);
3554 	cpu->devid = le64_to_cpu(disk->devid);
3555 	cpu->pstart = le64_to_cpu(disk->pstart);
3556 	cpu->pend = le64_to_cpu(disk->pend);
3557 	cpu->vstart = le64_to_cpu(disk->vstart);
3558 	cpu->vend = le64_to_cpu(disk->vend);
3559 	cpu->target = le64_to_cpu(disk->target);
3560 	cpu->flags = le64_to_cpu(disk->flags);
3561 	cpu->limit = le64_to_cpu(disk->limit);
3562 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3563 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3564 }
3565 
3566 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3567 					   const struct btrfs_balance_args *cpu)
3568 {
3569 	memset(disk, 0, sizeof(*disk));
3570 
3571 	disk->profiles = cpu_to_le64(cpu->profiles);
3572 	disk->usage = cpu_to_le64(cpu->usage);
3573 	disk->devid = cpu_to_le64(cpu->devid);
3574 	disk->pstart = cpu_to_le64(cpu->pstart);
3575 	disk->pend = cpu_to_le64(cpu->pend);
3576 	disk->vstart = cpu_to_le64(cpu->vstart);
3577 	disk->vend = cpu_to_le64(cpu->vend);
3578 	disk->target = cpu_to_le64(cpu->target);
3579 	disk->flags = cpu_to_le64(cpu->flags);
3580 	disk->limit = cpu_to_le64(cpu->limit);
3581 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3582 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3583 }
3584 
3585 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3586 			       struct btrfs_balance_control *bctl)
3587 {
3588 	struct btrfs_root *root = fs_info->tree_root;
3589 	struct btrfs_trans_handle *trans;
3590 	struct btrfs_balance_item *item;
3591 	struct btrfs_disk_balance_args disk_bargs;
3592 	struct btrfs_path *path;
3593 	struct extent_buffer *leaf;
3594 	struct btrfs_key key;
3595 	int ret, err;
3596 
3597 	path = btrfs_alloc_path();
3598 	if (!path)
3599 		return -ENOMEM;
3600 
3601 	trans = btrfs_start_transaction(root, 0);
3602 	if (IS_ERR(trans)) {
3603 		btrfs_free_path(path);
3604 		return PTR_ERR(trans);
3605 	}
3606 
3607 	key.objectid = BTRFS_BALANCE_OBJECTID;
3608 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3609 	key.offset = 0;
3610 
3611 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3612 				      sizeof(*item));
3613 	if (ret)
3614 		goto out;
3615 
3616 	leaf = path->nodes[0];
3617 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3618 
3619 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3620 
3621 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3622 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3623 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3624 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3625 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3626 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3627 
3628 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3629 
3630 	btrfs_mark_buffer_dirty(trans, leaf);
3631 out:
3632 	btrfs_free_path(path);
3633 	err = btrfs_commit_transaction(trans);
3634 	if (err && !ret)
3635 		ret = err;
3636 	return ret;
3637 }
3638 
3639 static int del_balance_item(struct btrfs_fs_info *fs_info)
3640 {
3641 	struct btrfs_root *root = fs_info->tree_root;
3642 	struct btrfs_trans_handle *trans;
3643 	struct btrfs_path *path;
3644 	struct btrfs_key key;
3645 	int ret, err;
3646 
3647 	path = btrfs_alloc_path();
3648 	if (!path)
3649 		return -ENOMEM;
3650 
3651 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3652 	if (IS_ERR(trans)) {
3653 		btrfs_free_path(path);
3654 		return PTR_ERR(trans);
3655 	}
3656 
3657 	key.objectid = BTRFS_BALANCE_OBJECTID;
3658 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3659 	key.offset = 0;
3660 
3661 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3662 	if (ret < 0)
3663 		goto out;
3664 	if (ret > 0) {
3665 		ret = -ENOENT;
3666 		goto out;
3667 	}
3668 
3669 	ret = btrfs_del_item(trans, root, path);
3670 out:
3671 	btrfs_free_path(path);
3672 	err = btrfs_commit_transaction(trans);
3673 	if (err && !ret)
3674 		ret = err;
3675 	return ret;
3676 }
3677 
3678 /*
3679  * This is a heuristic used to reduce the number of chunks balanced on
3680  * resume after balance was interrupted.
3681  */
3682 static void update_balance_args(struct btrfs_balance_control *bctl)
3683 {
3684 	/*
3685 	 * Turn on soft mode for chunk types that were being converted.
3686 	 */
3687 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3688 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3689 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3690 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3691 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693 
3694 	/*
3695 	 * Turn on usage filter if is not already used.  The idea is
3696 	 * that chunks that we have already balanced should be
3697 	 * reasonably full.  Don't do it for chunks that are being
3698 	 * converted - that will keep us from relocating unconverted
3699 	 * (albeit full) chunks.
3700 	 */
3701 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3703 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3704 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3705 		bctl->data.usage = 90;
3706 	}
3707 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711 		bctl->sys.usage = 90;
3712 	}
3713 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717 		bctl->meta.usage = 90;
3718 	}
3719 }
3720 
3721 /*
3722  * Clear the balance status in fs_info and delete the balance item from disk.
3723  */
3724 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3725 {
3726 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727 	int ret;
3728 
3729 	ASSERT(fs_info->balance_ctl);
3730 
3731 	spin_lock(&fs_info->balance_lock);
3732 	fs_info->balance_ctl = NULL;
3733 	spin_unlock(&fs_info->balance_lock);
3734 
3735 	kfree(bctl);
3736 	ret = del_balance_item(fs_info);
3737 	if (ret)
3738 		btrfs_handle_fs_error(fs_info, ret, NULL);
3739 }
3740 
3741 /*
3742  * Balance filters.  Return 1 if chunk should be filtered out
3743  * (should not be balanced).
3744  */
3745 static int chunk_profiles_filter(u64 chunk_type,
3746 				 struct btrfs_balance_args *bargs)
3747 {
3748 	chunk_type = chunk_to_extended(chunk_type) &
3749 				BTRFS_EXTENDED_PROFILE_MASK;
3750 
3751 	if (bargs->profiles & chunk_type)
3752 		return 0;
3753 
3754 	return 1;
3755 }
3756 
3757 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3758 			      struct btrfs_balance_args *bargs)
3759 {
3760 	struct btrfs_block_group *cache;
3761 	u64 chunk_used;
3762 	u64 user_thresh_min;
3763 	u64 user_thresh_max;
3764 	int ret = 1;
3765 
3766 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3767 	chunk_used = cache->used;
3768 
3769 	if (bargs->usage_min == 0)
3770 		user_thresh_min = 0;
3771 	else
3772 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3773 
3774 	if (bargs->usage_max == 0)
3775 		user_thresh_max = 1;
3776 	else if (bargs->usage_max > 100)
3777 		user_thresh_max = cache->length;
3778 	else
3779 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3780 
3781 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3782 		ret = 0;
3783 
3784 	btrfs_put_block_group(cache);
3785 	return ret;
3786 }
3787 
3788 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3789 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3790 {
3791 	struct btrfs_block_group *cache;
3792 	u64 chunk_used, user_thresh;
3793 	int ret = 1;
3794 
3795 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3796 	chunk_used = cache->used;
3797 
3798 	if (bargs->usage_min == 0)
3799 		user_thresh = 1;
3800 	else if (bargs->usage > 100)
3801 		user_thresh = cache->length;
3802 	else
3803 		user_thresh = mult_perc(cache->length, bargs->usage);
3804 
3805 	if (chunk_used < user_thresh)
3806 		ret = 0;
3807 
3808 	btrfs_put_block_group(cache);
3809 	return ret;
3810 }
3811 
3812 static int chunk_devid_filter(struct extent_buffer *leaf,
3813 			      struct btrfs_chunk *chunk,
3814 			      struct btrfs_balance_args *bargs)
3815 {
3816 	struct btrfs_stripe *stripe;
3817 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3818 	int i;
3819 
3820 	for (i = 0; i < num_stripes; i++) {
3821 		stripe = btrfs_stripe_nr(chunk, i);
3822 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3823 			return 0;
3824 	}
3825 
3826 	return 1;
3827 }
3828 
3829 static u64 calc_data_stripes(u64 type, int num_stripes)
3830 {
3831 	const int index = btrfs_bg_flags_to_raid_index(type);
3832 	const int ncopies = btrfs_raid_array[index].ncopies;
3833 	const int nparity = btrfs_raid_array[index].nparity;
3834 
3835 	return (num_stripes - nparity) / ncopies;
3836 }
3837 
3838 /* [pstart, pend) */
3839 static int chunk_drange_filter(struct extent_buffer *leaf,
3840 			       struct btrfs_chunk *chunk,
3841 			       struct btrfs_balance_args *bargs)
3842 {
3843 	struct btrfs_stripe *stripe;
3844 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3845 	u64 stripe_offset;
3846 	u64 stripe_length;
3847 	u64 type;
3848 	int factor;
3849 	int i;
3850 
3851 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3852 		return 0;
3853 
3854 	type = btrfs_chunk_type(leaf, chunk);
3855 	factor = calc_data_stripes(type, num_stripes);
3856 
3857 	for (i = 0; i < num_stripes; i++) {
3858 		stripe = btrfs_stripe_nr(chunk, i);
3859 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3860 			continue;
3861 
3862 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3863 		stripe_length = btrfs_chunk_length(leaf, chunk);
3864 		stripe_length = div_u64(stripe_length, factor);
3865 
3866 		if (stripe_offset < bargs->pend &&
3867 		    stripe_offset + stripe_length > bargs->pstart)
3868 			return 0;
3869 	}
3870 
3871 	return 1;
3872 }
3873 
3874 /* [vstart, vend) */
3875 static int chunk_vrange_filter(struct extent_buffer *leaf,
3876 			       struct btrfs_chunk *chunk,
3877 			       u64 chunk_offset,
3878 			       struct btrfs_balance_args *bargs)
3879 {
3880 	if (chunk_offset < bargs->vend &&
3881 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3882 		/* at least part of the chunk is inside this vrange */
3883 		return 0;
3884 
3885 	return 1;
3886 }
3887 
3888 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3889 			       struct btrfs_chunk *chunk,
3890 			       struct btrfs_balance_args *bargs)
3891 {
3892 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3893 
3894 	if (bargs->stripes_min <= num_stripes
3895 			&& num_stripes <= bargs->stripes_max)
3896 		return 0;
3897 
3898 	return 1;
3899 }
3900 
3901 static int chunk_soft_convert_filter(u64 chunk_type,
3902 				     struct btrfs_balance_args *bargs)
3903 {
3904 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3905 		return 0;
3906 
3907 	chunk_type = chunk_to_extended(chunk_type) &
3908 				BTRFS_EXTENDED_PROFILE_MASK;
3909 
3910 	if (bargs->target == chunk_type)
3911 		return 1;
3912 
3913 	return 0;
3914 }
3915 
3916 static int should_balance_chunk(struct extent_buffer *leaf,
3917 				struct btrfs_chunk *chunk, u64 chunk_offset)
3918 {
3919 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3920 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3921 	struct btrfs_balance_args *bargs = NULL;
3922 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3923 
3924 	/* type filter */
3925 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3926 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3927 		return 0;
3928 	}
3929 
3930 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931 		bargs = &bctl->data;
3932 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933 		bargs = &bctl->sys;
3934 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935 		bargs = &bctl->meta;
3936 
3937 	/* profiles filter */
3938 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3939 	    chunk_profiles_filter(chunk_type, bargs)) {
3940 		return 0;
3941 	}
3942 
3943 	/* usage filter */
3944 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3945 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3946 		return 0;
3947 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3948 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3949 		return 0;
3950 	}
3951 
3952 	/* devid filter */
3953 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3954 	    chunk_devid_filter(leaf, chunk, bargs)) {
3955 		return 0;
3956 	}
3957 
3958 	/* drange filter, makes sense only with devid filter */
3959 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3960 	    chunk_drange_filter(leaf, chunk, bargs)) {
3961 		return 0;
3962 	}
3963 
3964 	/* vrange filter */
3965 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3966 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3967 		return 0;
3968 	}
3969 
3970 	/* stripes filter */
3971 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3972 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3973 		return 0;
3974 	}
3975 
3976 	/* soft profile changing mode */
3977 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3978 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3979 		return 0;
3980 	}
3981 
3982 	/*
3983 	 * limited by count, must be the last filter
3984 	 */
3985 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3986 		if (bargs->limit == 0)
3987 			return 0;
3988 		else
3989 			bargs->limit--;
3990 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3991 		/*
3992 		 * Same logic as the 'limit' filter; the minimum cannot be
3993 		 * determined here because we do not have the global information
3994 		 * about the count of all chunks that satisfy the filters.
3995 		 */
3996 		if (bargs->limit_max == 0)
3997 			return 0;
3998 		else
3999 			bargs->limit_max--;
4000 	}
4001 
4002 	return 1;
4003 }
4004 
4005 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4006 {
4007 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4008 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4009 	u64 chunk_type;
4010 	struct btrfs_chunk *chunk;
4011 	struct btrfs_path *path = NULL;
4012 	struct btrfs_key key;
4013 	struct btrfs_key found_key;
4014 	struct extent_buffer *leaf;
4015 	int slot;
4016 	int ret;
4017 	int enospc_errors = 0;
4018 	bool counting = true;
4019 	/* The single value limit and min/max limits use the same bytes in the */
4020 	u64 limit_data = bctl->data.limit;
4021 	u64 limit_meta = bctl->meta.limit;
4022 	u64 limit_sys = bctl->sys.limit;
4023 	u32 count_data = 0;
4024 	u32 count_meta = 0;
4025 	u32 count_sys = 0;
4026 	int chunk_reserved = 0;
4027 
4028 	path = btrfs_alloc_path();
4029 	if (!path) {
4030 		ret = -ENOMEM;
4031 		goto error;
4032 	}
4033 
4034 	/* zero out stat counters */
4035 	spin_lock(&fs_info->balance_lock);
4036 	memset(&bctl->stat, 0, sizeof(bctl->stat));
4037 	spin_unlock(&fs_info->balance_lock);
4038 again:
4039 	if (!counting) {
4040 		/*
4041 		 * The single value limit and min/max limits use the same bytes
4042 		 * in the
4043 		 */
4044 		bctl->data.limit = limit_data;
4045 		bctl->meta.limit = limit_meta;
4046 		bctl->sys.limit = limit_sys;
4047 	}
4048 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4049 	key.offset = (u64)-1;
4050 	key.type = BTRFS_CHUNK_ITEM_KEY;
4051 
4052 	while (1) {
4053 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4054 		    atomic_read(&fs_info->balance_cancel_req)) {
4055 			ret = -ECANCELED;
4056 			goto error;
4057 		}
4058 
4059 		mutex_lock(&fs_info->reclaim_bgs_lock);
4060 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4061 		if (ret < 0) {
4062 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4063 			goto error;
4064 		}
4065 
4066 		/*
4067 		 * this shouldn't happen, it means the last relocate
4068 		 * failed
4069 		 */
4070 		if (ret == 0)
4071 			BUG(); /* FIXME break ? */
4072 
4073 		ret = btrfs_previous_item(chunk_root, path, 0,
4074 					  BTRFS_CHUNK_ITEM_KEY);
4075 		if (ret) {
4076 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4077 			ret = 0;
4078 			break;
4079 		}
4080 
4081 		leaf = path->nodes[0];
4082 		slot = path->slots[0];
4083 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4084 
4085 		if (found_key.objectid != key.objectid) {
4086 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4087 			break;
4088 		}
4089 
4090 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4091 		chunk_type = btrfs_chunk_type(leaf, chunk);
4092 
4093 		if (!counting) {
4094 			spin_lock(&fs_info->balance_lock);
4095 			bctl->stat.considered++;
4096 			spin_unlock(&fs_info->balance_lock);
4097 		}
4098 
4099 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4100 
4101 		btrfs_release_path(path);
4102 		if (!ret) {
4103 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4104 			goto loop;
4105 		}
4106 
4107 		if (counting) {
4108 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4109 			spin_lock(&fs_info->balance_lock);
4110 			bctl->stat.expected++;
4111 			spin_unlock(&fs_info->balance_lock);
4112 
4113 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4114 				count_data++;
4115 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4116 				count_sys++;
4117 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4118 				count_meta++;
4119 
4120 			goto loop;
4121 		}
4122 
4123 		/*
4124 		 * Apply limit_min filter, no need to check if the LIMITS
4125 		 * filter is used, limit_min is 0 by default
4126 		 */
4127 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4128 					count_data < bctl->data.limit_min)
4129 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4130 					count_meta < bctl->meta.limit_min)
4131 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4132 					count_sys < bctl->sys.limit_min)) {
4133 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4134 			goto loop;
4135 		}
4136 
4137 		if (!chunk_reserved) {
4138 			/*
4139 			 * We may be relocating the only data chunk we have,
4140 			 * which could potentially end up with losing data's
4141 			 * raid profile, so lets allocate an empty one in
4142 			 * advance.
4143 			 */
4144 			ret = btrfs_may_alloc_data_chunk(fs_info,
4145 							 found_key.offset);
4146 			if (ret < 0) {
4147 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4148 				goto error;
4149 			} else if (ret == 1) {
4150 				chunk_reserved = 1;
4151 			}
4152 		}
4153 
4154 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4155 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4156 		if (ret == -ENOSPC) {
4157 			enospc_errors++;
4158 		} else if (ret == -ETXTBSY) {
4159 			btrfs_info(fs_info,
4160 	   "skipping relocation of block group %llu due to active swapfile",
4161 				   found_key.offset);
4162 			ret = 0;
4163 		} else if (ret) {
4164 			goto error;
4165 		} else {
4166 			spin_lock(&fs_info->balance_lock);
4167 			bctl->stat.completed++;
4168 			spin_unlock(&fs_info->balance_lock);
4169 		}
4170 loop:
4171 		if (found_key.offset == 0)
4172 			break;
4173 		key.offset = found_key.offset - 1;
4174 	}
4175 
4176 	if (counting) {
4177 		btrfs_release_path(path);
4178 		counting = false;
4179 		goto again;
4180 	}
4181 error:
4182 	btrfs_free_path(path);
4183 	if (enospc_errors) {
4184 		btrfs_info(fs_info, "%d enospc errors during balance",
4185 			   enospc_errors);
4186 		if (!ret)
4187 			ret = -ENOSPC;
4188 	}
4189 
4190 	return ret;
4191 }
4192 
4193 /*
4194  * See if a given profile is valid and reduced.
4195  *
4196  * @flags:     profile to validate
4197  * @extended:  if true @flags is treated as an extended profile
4198  */
4199 static int alloc_profile_is_valid(u64 flags, int extended)
4200 {
4201 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4202 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4203 
4204 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4205 
4206 	/* 1) check that all other bits are zeroed */
4207 	if (flags & ~mask)
4208 		return 0;
4209 
4210 	/* 2) see if profile is reduced */
4211 	if (flags == 0)
4212 		return !extended; /* "0" is valid for usual profiles */
4213 
4214 	return has_single_bit_set(flags);
4215 }
4216 
4217 /*
4218  * Validate target profile against allowed profiles and return true if it's OK.
4219  * Otherwise print the error message and return false.
4220  */
4221 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4222 		const struct btrfs_balance_args *bargs,
4223 		u64 allowed, const char *type)
4224 {
4225 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4226 		return true;
4227 
4228 	/* Profile is valid and does not have bits outside of the allowed set */
4229 	if (alloc_profile_is_valid(bargs->target, 1) &&
4230 	    (bargs->target & ~allowed) == 0)
4231 		return true;
4232 
4233 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4234 			type, btrfs_bg_type_to_raid_name(bargs->target));
4235 	return false;
4236 }
4237 
4238 /*
4239  * Fill @buf with textual description of balance filter flags @bargs, up to
4240  * @size_buf including the terminating null. The output may be trimmed if it
4241  * does not fit into the provided buffer.
4242  */
4243 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4244 				 u32 size_buf)
4245 {
4246 	int ret;
4247 	u32 size_bp = size_buf;
4248 	char *bp = buf;
4249 	u64 flags = bargs->flags;
4250 	char tmp_buf[128] = {'\0'};
4251 
4252 	if (!flags)
4253 		return;
4254 
4255 #define CHECK_APPEND_NOARG(a)						\
4256 	do {								\
4257 		ret = snprintf(bp, size_bp, (a));			\
4258 		if (ret < 0 || ret >= size_bp)				\
4259 			goto out_overflow;				\
4260 		size_bp -= ret;						\
4261 		bp += ret;						\
4262 	} while (0)
4263 
4264 #define CHECK_APPEND_1ARG(a, v1)					\
4265 	do {								\
4266 		ret = snprintf(bp, size_bp, (a), (v1));			\
4267 		if (ret < 0 || ret >= size_bp)				\
4268 			goto out_overflow;				\
4269 		size_bp -= ret;						\
4270 		bp += ret;						\
4271 	} while (0)
4272 
4273 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4274 	do {								\
4275 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4276 		if (ret < 0 || ret >= size_bp)				\
4277 			goto out_overflow;				\
4278 		size_bp -= ret;						\
4279 		bp += ret;						\
4280 	} while (0)
4281 
4282 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4283 		CHECK_APPEND_1ARG("convert=%s,",
4284 				  btrfs_bg_type_to_raid_name(bargs->target));
4285 
4286 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4287 		CHECK_APPEND_NOARG("soft,");
4288 
4289 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4290 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4291 					    sizeof(tmp_buf));
4292 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4293 	}
4294 
4295 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4296 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4297 
4298 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4299 		CHECK_APPEND_2ARG("usage=%u..%u,",
4300 				  bargs->usage_min, bargs->usage_max);
4301 
4302 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4303 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4304 
4305 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4306 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4307 				  bargs->pstart, bargs->pend);
4308 
4309 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4310 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4311 				  bargs->vstart, bargs->vend);
4312 
4313 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4314 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4315 
4316 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4317 		CHECK_APPEND_2ARG("limit=%u..%u,",
4318 				bargs->limit_min, bargs->limit_max);
4319 
4320 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4321 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4322 				  bargs->stripes_min, bargs->stripes_max);
4323 
4324 #undef CHECK_APPEND_2ARG
4325 #undef CHECK_APPEND_1ARG
4326 #undef CHECK_APPEND_NOARG
4327 
4328 out_overflow:
4329 
4330 	if (size_bp < size_buf)
4331 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4332 	else
4333 		buf[0] = '\0';
4334 }
4335 
4336 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4337 {
4338 	u32 size_buf = 1024;
4339 	char tmp_buf[192] = {'\0'};
4340 	char *buf;
4341 	char *bp;
4342 	u32 size_bp = size_buf;
4343 	int ret;
4344 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4345 
4346 	buf = kzalloc(size_buf, GFP_KERNEL);
4347 	if (!buf)
4348 		return;
4349 
4350 	bp = buf;
4351 
4352 #define CHECK_APPEND_1ARG(a, v1)					\
4353 	do {								\
4354 		ret = snprintf(bp, size_bp, (a), (v1));			\
4355 		if (ret < 0 || ret >= size_bp)				\
4356 			goto out_overflow;				\
4357 		size_bp -= ret;						\
4358 		bp += ret;						\
4359 	} while (0)
4360 
4361 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4362 		CHECK_APPEND_1ARG("%s", "-f ");
4363 
4364 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4365 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4366 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4367 	}
4368 
4369 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4370 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4371 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4372 	}
4373 
4374 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4375 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4376 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4377 	}
4378 
4379 #undef CHECK_APPEND_1ARG
4380 
4381 out_overflow:
4382 
4383 	if (size_bp < size_buf)
4384 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4385 	btrfs_info(fs_info, "balance: %s %s",
4386 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4387 		   "resume" : "start", buf);
4388 
4389 	kfree(buf);
4390 }
4391 
4392 /*
4393  * Should be called with balance mutexe held
4394  */
4395 int btrfs_balance(struct btrfs_fs_info *fs_info,
4396 		  struct btrfs_balance_control *bctl,
4397 		  struct btrfs_ioctl_balance_args *bargs)
4398 {
4399 	u64 meta_target, data_target;
4400 	u64 allowed;
4401 	int mixed = 0;
4402 	int ret;
4403 	u64 num_devices;
4404 	unsigned seq;
4405 	bool reducing_redundancy;
4406 	bool paused = false;
4407 	int i;
4408 
4409 	if (btrfs_fs_closing(fs_info) ||
4410 	    atomic_read(&fs_info->balance_pause_req) ||
4411 	    btrfs_should_cancel_balance(fs_info)) {
4412 		ret = -EINVAL;
4413 		goto out;
4414 	}
4415 
4416 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4417 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4418 		mixed = 1;
4419 
4420 	/*
4421 	 * In case of mixed groups both data and meta should be picked,
4422 	 * and identical options should be given for both of them.
4423 	 */
4424 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4425 	if (mixed && (bctl->flags & allowed)) {
4426 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4427 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4428 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4429 			btrfs_err(fs_info,
4430 	  "balance: mixed groups data and metadata options must be the same");
4431 			ret = -EINVAL;
4432 			goto out;
4433 		}
4434 	}
4435 
4436 	/*
4437 	 * rw_devices will not change at the moment, device add/delete/replace
4438 	 * are exclusive
4439 	 */
4440 	num_devices = fs_info->fs_devices->rw_devices;
4441 
4442 	/*
4443 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4444 	 * special bit for it, to make it easier to distinguish.  Thus we need
4445 	 * to set it manually, or balance would refuse the profile.
4446 	 */
4447 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4448 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4449 		if (num_devices >= btrfs_raid_array[i].devs_min)
4450 			allowed |= btrfs_raid_array[i].bg_flag;
4451 
4452 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4453 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4454 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4455 		ret = -EINVAL;
4456 		goto out;
4457 	}
4458 
4459 	/*
4460 	 * Allow to reduce metadata or system integrity only if force set for
4461 	 * profiles with redundancy (copies, parity)
4462 	 */
4463 	allowed = 0;
4464 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4465 		if (btrfs_raid_array[i].ncopies >= 2 ||
4466 		    btrfs_raid_array[i].tolerated_failures >= 1)
4467 			allowed |= btrfs_raid_array[i].bg_flag;
4468 	}
4469 	do {
4470 		seq = read_seqbegin(&fs_info->profiles_lock);
4471 
4472 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4473 		     (fs_info->avail_system_alloc_bits & allowed) &&
4474 		     !(bctl->sys.target & allowed)) ||
4475 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4476 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4477 		     !(bctl->meta.target & allowed)))
4478 			reducing_redundancy = true;
4479 		else
4480 			reducing_redundancy = false;
4481 
4482 		/* if we're not converting, the target field is uninitialized */
4483 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4484 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4485 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4486 			bctl->data.target : fs_info->avail_data_alloc_bits;
4487 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4488 
4489 	if (reducing_redundancy) {
4490 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4491 			btrfs_info(fs_info,
4492 			   "balance: force reducing metadata redundancy");
4493 		} else {
4494 			btrfs_err(fs_info,
4495 	"balance: reduces metadata redundancy, use --force if you want this");
4496 			ret = -EINVAL;
4497 			goto out;
4498 		}
4499 	}
4500 
4501 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4502 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4503 		btrfs_warn(fs_info,
4504 	"balance: metadata profile %s has lower redundancy than data profile %s",
4505 				btrfs_bg_type_to_raid_name(meta_target),
4506 				btrfs_bg_type_to_raid_name(data_target));
4507 	}
4508 
4509 	ret = insert_balance_item(fs_info, bctl);
4510 	if (ret && ret != -EEXIST)
4511 		goto out;
4512 
4513 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4514 		BUG_ON(ret == -EEXIST);
4515 		BUG_ON(fs_info->balance_ctl);
4516 		spin_lock(&fs_info->balance_lock);
4517 		fs_info->balance_ctl = bctl;
4518 		spin_unlock(&fs_info->balance_lock);
4519 	} else {
4520 		BUG_ON(ret != -EEXIST);
4521 		spin_lock(&fs_info->balance_lock);
4522 		update_balance_args(bctl);
4523 		spin_unlock(&fs_info->balance_lock);
4524 	}
4525 
4526 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4528 	describe_balance_start_or_resume(fs_info);
4529 	mutex_unlock(&fs_info->balance_mutex);
4530 
4531 	ret = __btrfs_balance(fs_info);
4532 
4533 	mutex_lock(&fs_info->balance_mutex);
4534 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4535 		btrfs_info(fs_info, "balance: paused");
4536 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4537 		paused = true;
4538 	}
4539 	/*
4540 	 * Balance can be canceled by:
4541 	 *
4542 	 * - Regular cancel request
4543 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4544 	 *
4545 	 * - Fatal signal to "btrfs" process
4546 	 *   Either the signal caught by wait_reserve_ticket() and callers
4547 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4548 	 *   got -ECANCELED.
4549 	 *   Either way, in this case balance_cancel_req = 0, and
4550 	 *   ret == -EINTR or ret == -ECANCELED.
4551 	 *
4552 	 * So here we only check the return value to catch canceled balance.
4553 	 */
4554 	else if (ret == -ECANCELED || ret == -EINTR)
4555 		btrfs_info(fs_info, "balance: canceled");
4556 	else
4557 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4558 
4559 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4560 
4561 	if (bargs) {
4562 		memset(bargs, 0, sizeof(*bargs));
4563 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4564 	}
4565 
4566 	/* We didn't pause, we can clean everything up. */
4567 	if (!paused) {
4568 		reset_balance_state(fs_info);
4569 		btrfs_exclop_finish(fs_info);
4570 	}
4571 
4572 	wake_up(&fs_info->balance_wait_q);
4573 
4574 	return ret;
4575 out:
4576 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4577 		reset_balance_state(fs_info);
4578 	else
4579 		kfree(bctl);
4580 	btrfs_exclop_finish(fs_info);
4581 
4582 	return ret;
4583 }
4584 
4585 static int balance_kthread(void *data)
4586 {
4587 	struct btrfs_fs_info *fs_info = data;
4588 	int ret = 0;
4589 
4590 	sb_start_write(fs_info->sb);
4591 	mutex_lock(&fs_info->balance_mutex);
4592 	if (fs_info->balance_ctl)
4593 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4594 	mutex_unlock(&fs_info->balance_mutex);
4595 	sb_end_write(fs_info->sb);
4596 
4597 	return ret;
4598 }
4599 
4600 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4601 {
4602 	struct task_struct *tsk;
4603 
4604 	mutex_lock(&fs_info->balance_mutex);
4605 	if (!fs_info->balance_ctl) {
4606 		mutex_unlock(&fs_info->balance_mutex);
4607 		return 0;
4608 	}
4609 	mutex_unlock(&fs_info->balance_mutex);
4610 
4611 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4612 		btrfs_info(fs_info, "balance: resume skipped");
4613 		return 0;
4614 	}
4615 
4616 	spin_lock(&fs_info->super_lock);
4617 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4618 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4619 	spin_unlock(&fs_info->super_lock);
4620 	/*
4621 	 * A ro->rw remount sequence should continue with the paused balance
4622 	 * regardless of who pauses it, system or the user as of now, so set
4623 	 * the resume flag.
4624 	 */
4625 	spin_lock(&fs_info->balance_lock);
4626 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4627 	spin_unlock(&fs_info->balance_lock);
4628 
4629 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4630 	return PTR_ERR_OR_ZERO(tsk);
4631 }
4632 
4633 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4634 {
4635 	struct btrfs_balance_control *bctl;
4636 	struct btrfs_balance_item *item;
4637 	struct btrfs_disk_balance_args disk_bargs;
4638 	struct btrfs_path *path;
4639 	struct extent_buffer *leaf;
4640 	struct btrfs_key key;
4641 	int ret;
4642 
4643 	path = btrfs_alloc_path();
4644 	if (!path)
4645 		return -ENOMEM;
4646 
4647 	key.objectid = BTRFS_BALANCE_OBJECTID;
4648 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4649 	key.offset = 0;
4650 
4651 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4652 	if (ret < 0)
4653 		goto out;
4654 	if (ret > 0) { /* ret = -ENOENT; */
4655 		ret = 0;
4656 		goto out;
4657 	}
4658 
4659 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4660 	if (!bctl) {
4661 		ret = -ENOMEM;
4662 		goto out;
4663 	}
4664 
4665 	leaf = path->nodes[0];
4666 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4667 
4668 	bctl->flags = btrfs_balance_flags(leaf, item);
4669 	bctl->flags |= BTRFS_BALANCE_RESUME;
4670 
4671 	btrfs_balance_data(leaf, item, &disk_bargs);
4672 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4673 	btrfs_balance_meta(leaf, item, &disk_bargs);
4674 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4675 	btrfs_balance_sys(leaf, item, &disk_bargs);
4676 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4677 
4678 	/*
4679 	 * This should never happen, as the paused balance state is recovered
4680 	 * during mount without any chance of other exclusive ops to collide.
4681 	 *
4682 	 * This gives the exclusive op status to balance and keeps in paused
4683 	 * state until user intervention (cancel or umount). If the ownership
4684 	 * cannot be assigned, show a message but do not fail. The balance
4685 	 * is in a paused state and must have fs_info::balance_ctl properly
4686 	 * set up.
4687 	 */
4688 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4689 		btrfs_warn(fs_info,
4690 	"balance: cannot set exclusive op status, resume manually");
4691 
4692 	btrfs_release_path(path);
4693 
4694 	mutex_lock(&fs_info->balance_mutex);
4695 	BUG_ON(fs_info->balance_ctl);
4696 	spin_lock(&fs_info->balance_lock);
4697 	fs_info->balance_ctl = bctl;
4698 	spin_unlock(&fs_info->balance_lock);
4699 	mutex_unlock(&fs_info->balance_mutex);
4700 out:
4701 	btrfs_free_path(path);
4702 	return ret;
4703 }
4704 
4705 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4706 {
4707 	int ret = 0;
4708 
4709 	mutex_lock(&fs_info->balance_mutex);
4710 	if (!fs_info->balance_ctl) {
4711 		mutex_unlock(&fs_info->balance_mutex);
4712 		return -ENOTCONN;
4713 	}
4714 
4715 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4716 		atomic_inc(&fs_info->balance_pause_req);
4717 		mutex_unlock(&fs_info->balance_mutex);
4718 
4719 		wait_event(fs_info->balance_wait_q,
4720 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4721 
4722 		mutex_lock(&fs_info->balance_mutex);
4723 		/* we are good with balance_ctl ripped off from under us */
4724 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725 		atomic_dec(&fs_info->balance_pause_req);
4726 	} else {
4727 		ret = -ENOTCONN;
4728 	}
4729 
4730 	mutex_unlock(&fs_info->balance_mutex);
4731 	return ret;
4732 }
4733 
4734 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4735 {
4736 	mutex_lock(&fs_info->balance_mutex);
4737 	if (!fs_info->balance_ctl) {
4738 		mutex_unlock(&fs_info->balance_mutex);
4739 		return -ENOTCONN;
4740 	}
4741 
4742 	/*
4743 	 * A paused balance with the item stored on disk can be resumed at
4744 	 * mount time if the mount is read-write. Otherwise it's still paused
4745 	 * and we must not allow cancelling as it deletes the item.
4746 	 */
4747 	if (sb_rdonly(fs_info->sb)) {
4748 		mutex_unlock(&fs_info->balance_mutex);
4749 		return -EROFS;
4750 	}
4751 
4752 	atomic_inc(&fs_info->balance_cancel_req);
4753 	/*
4754 	 * if we are running just wait and return, balance item is
4755 	 * deleted in btrfs_balance in this case
4756 	 */
4757 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4758 		mutex_unlock(&fs_info->balance_mutex);
4759 		wait_event(fs_info->balance_wait_q,
4760 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4761 		mutex_lock(&fs_info->balance_mutex);
4762 	} else {
4763 		mutex_unlock(&fs_info->balance_mutex);
4764 		/*
4765 		 * Lock released to allow other waiters to continue, we'll
4766 		 * reexamine the status again.
4767 		 */
4768 		mutex_lock(&fs_info->balance_mutex);
4769 
4770 		if (fs_info->balance_ctl) {
4771 			reset_balance_state(fs_info);
4772 			btrfs_exclop_finish(fs_info);
4773 			btrfs_info(fs_info, "balance: canceled");
4774 		}
4775 	}
4776 
4777 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4778 	atomic_dec(&fs_info->balance_cancel_req);
4779 	mutex_unlock(&fs_info->balance_mutex);
4780 	return 0;
4781 }
4782 
4783 int btrfs_uuid_scan_kthread(void *data)
4784 {
4785 	struct btrfs_fs_info *fs_info = data;
4786 	struct btrfs_root *root = fs_info->tree_root;
4787 	struct btrfs_key key;
4788 	struct btrfs_path *path = NULL;
4789 	int ret = 0;
4790 	struct extent_buffer *eb;
4791 	int slot;
4792 	struct btrfs_root_item root_item;
4793 	u32 item_size;
4794 	struct btrfs_trans_handle *trans = NULL;
4795 	bool closing = false;
4796 
4797 	path = btrfs_alloc_path();
4798 	if (!path) {
4799 		ret = -ENOMEM;
4800 		goto out;
4801 	}
4802 
4803 	key.objectid = 0;
4804 	key.type = BTRFS_ROOT_ITEM_KEY;
4805 	key.offset = 0;
4806 
4807 	while (1) {
4808 		if (btrfs_fs_closing(fs_info)) {
4809 			closing = true;
4810 			break;
4811 		}
4812 		ret = btrfs_search_forward(root, &key, path,
4813 				BTRFS_OLDEST_GENERATION);
4814 		if (ret) {
4815 			if (ret > 0)
4816 				ret = 0;
4817 			break;
4818 		}
4819 
4820 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4821 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4822 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4823 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4824 			goto skip;
4825 
4826 		eb = path->nodes[0];
4827 		slot = path->slots[0];
4828 		item_size = btrfs_item_size(eb, slot);
4829 		if (item_size < sizeof(root_item))
4830 			goto skip;
4831 
4832 		read_extent_buffer(eb, &root_item,
4833 				   btrfs_item_ptr_offset(eb, slot),
4834 				   (int)sizeof(root_item));
4835 		if (btrfs_root_refs(&root_item) == 0)
4836 			goto skip;
4837 
4838 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4839 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4840 			if (trans)
4841 				goto update_tree;
4842 
4843 			btrfs_release_path(path);
4844 			/*
4845 			 * 1 - subvol uuid item
4846 			 * 1 - received_subvol uuid item
4847 			 */
4848 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4849 			if (IS_ERR(trans)) {
4850 				ret = PTR_ERR(trans);
4851 				break;
4852 			}
4853 			continue;
4854 		} else {
4855 			goto skip;
4856 		}
4857 update_tree:
4858 		btrfs_release_path(path);
4859 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4860 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4861 						  BTRFS_UUID_KEY_SUBVOL,
4862 						  key.objectid);
4863 			if (ret < 0) {
4864 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4865 					ret);
4866 				break;
4867 			}
4868 		}
4869 
4870 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4871 			ret = btrfs_uuid_tree_add(trans,
4872 						  root_item.received_uuid,
4873 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4874 						  key.objectid);
4875 			if (ret < 0) {
4876 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4877 					ret);
4878 				break;
4879 			}
4880 		}
4881 
4882 skip:
4883 		btrfs_release_path(path);
4884 		if (trans) {
4885 			ret = btrfs_end_transaction(trans);
4886 			trans = NULL;
4887 			if (ret)
4888 				break;
4889 		}
4890 
4891 		if (key.offset < (u64)-1) {
4892 			key.offset++;
4893 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4894 			key.offset = 0;
4895 			key.type = BTRFS_ROOT_ITEM_KEY;
4896 		} else if (key.objectid < (u64)-1) {
4897 			key.offset = 0;
4898 			key.type = BTRFS_ROOT_ITEM_KEY;
4899 			key.objectid++;
4900 		} else {
4901 			break;
4902 		}
4903 		cond_resched();
4904 	}
4905 
4906 out:
4907 	btrfs_free_path(path);
4908 	if (trans && !IS_ERR(trans))
4909 		btrfs_end_transaction(trans);
4910 	if (ret)
4911 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4912 	else if (!closing)
4913 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4914 	up(&fs_info->uuid_tree_rescan_sem);
4915 	return 0;
4916 }
4917 
4918 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4919 {
4920 	struct btrfs_trans_handle *trans;
4921 	struct btrfs_root *tree_root = fs_info->tree_root;
4922 	struct btrfs_root *uuid_root;
4923 	struct task_struct *task;
4924 	int ret;
4925 
4926 	/*
4927 	 * 1 - root node
4928 	 * 1 - root item
4929 	 */
4930 	trans = btrfs_start_transaction(tree_root, 2);
4931 	if (IS_ERR(trans))
4932 		return PTR_ERR(trans);
4933 
4934 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4935 	if (IS_ERR(uuid_root)) {
4936 		ret = PTR_ERR(uuid_root);
4937 		btrfs_abort_transaction(trans, ret);
4938 		btrfs_end_transaction(trans);
4939 		return ret;
4940 	}
4941 
4942 	fs_info->uuid_root = uuid_root;
4943 
4944 	ret = btrfs_commit_transaction(trans);
4945 	if (ret)
4946 		return ret;
4947 
4948 	down(&fs_info->uuid_tree_rescan_sem);
4949 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4950 	if (IS_ERR(task)) {
4951 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4952 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4953 		up(&fs_info->uuid_tree_rescan_sem);
4954 		return PTR_ERR(task);
4955 	}
4956 
4957 	return 0;
4958 }
4959 
4960 /*
4961  * shrinking a device means finding all of the device extents past
4962  * the new size, and then following the back refs to the chunks.
4963  * The chunk relocation code actually frees the device extent
4964  */
4965 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4966 {
4967 	struct btrfs_fs_info *fs_info = device->fs_info;
4968 	struct btrfs_root *root = fs_info->dev_root;
4969 	struct btrfs_trans_handle *trans;
4970 	struct btrfs_dev_extent *dev_extent = NULL;
4971 	struct btrfs_path *path;
4972 	u64 length;
4973 	u64 chunk_offset;
4974 	int ret;
4975 	int slot;
4976 	int failed = 0;
4977 	bool retried = false;
4978 	struct extent_buffer *l;
4979 	struct btrfs_key key;
4980 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4981 	u64 old_total = btrfs_super_total_bytes(super_copy);
4982 	u64 old_size = btrfs_device_get_total_bytes(device);
4983 	u64 diff;
4984 	u64 start;
4985 	u64 free_diff = 0;
4986 
4987 	new_size = round_down(new_size, fs_info->sectorsize);
4988 	start = new_size;
4989 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4990 
4991 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4992 		return -EINVAL;
4993 
4994 	path = btrfs_alloc_path();
4995 	if (!path)
4996 		return -ENOMEM;
4997 
4998 	path->reada = READA_BACK;
4999 
5000 	trans = btrfs_start_transaction(root, 0);
5001 	if (IS_ERR(trans)) {
5002 		btrfs_free_path(path);
5003 		return PTR_ERR(trans);
5004 	}
5005 
5006 	mutex_lock(&fs_info->chunk_mutex);
5007 
5008 	btrfs_device_set_total_bytes(device, new_size);
5009 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5010 		device->fs_devices->total_rw_bytes -= diff;
5011 
5012 		/*
5013 		 * The new free_chunk_space is new_size - used, so we have to
5014 		 * subtract the delta of the old free_chunk_space which included
5015 		 * old_size - used.  If used > new_size then just subtract this
5016 		 * entire device's free space.
5017 		 */
5018 		if (device->bytes_used < new_size)
5019 			free_diff = (old_size - device->bytes_used) -
5020 				    (new_size - device->bytes_used);
5021 		else
5022 			free_diff = old_size - device->bytes_used;
5023 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
5024 	}
5025 
5026 	/*
5027 	 * Once the device's size has been set to the new size, ensure all
5028 	 * in-memory chunks are synced to disk so that the loop below sees them
5029 	 * and relocates them accordingly.
5030 	 */
5031 	if (contains_pending_extent(device, &start, diff)) {
5032 		mutex_unlock(&fs_info->chunk_mutex);
5033 		ret = btrfs_commit_transaction(trans);
5034 		if (ret)
5035 			goto done;
5036 	} else {
5037 		mutex_unlock(&fs_info->chunk_mutex);
5038 		btrfs_end_transaction(trans);
5039 	}
5040 
5041 again:
5042 	key.objectid = device->devid;
5043 	key.offset = (u64)-1;
5044 	key.type = BTRFS_DEV_EXTENT_KEY;
5045 
5046 	do {
5047 		mutex_lock(&fs_info->reclaim_bgs_lock);
5048 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5049 		if (ret < 0) {
5050 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5051 			goto done;
5052 		}
5053 
5054 		ret = btrfs_previous_item(root, path, 0, key.type);
5055 		if (ret) {
5056 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5057 			if (ret < 0)
5058 				goto done;
5059 			ret = 0;
5060 			btrfs_release_path(path);
5061 			break;
5062 		}
5063 
5064 		l = path->nodes[0];
5065 		slot = path->slots[0];
5066 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5067 
5068 		if (key.objectid != device->devid) {
5069 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5070 			btrfs_release_path(path);
5071 			break;
5072 		}
5073 
5074 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5075 		length = btrfs_dev_extent_length(l, dev_extent);
5076 
5077 		if (key.offset + length <= new_size) {
5078 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5079 			btrfs_release_path(path);
5080 			break;
5081 		}
5082 
5083 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5084 		btrfs_release_path(path);
5085 
5086 		/*
5087 		 * We may be relocating the only data chunk we have,
5088 		 * which could potentially end up with losing data's
5089 		 * raid profile, so lets allocate an empty one in
5090 		 * advance.
5091 		 */
5092 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5093 		if (ret < 0) {
5094 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5095 			goto done;
5096 		}
5097 
5098 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5099 		mutex_unlock(&fs_info->reclaim_bgs_lock);
5100 		if (ret == -ENOSPC) {
5101 			failed++;
5102 		} else if (ret) {
5103 			if (ret == -ETXTBSY) {
5104 				btrfs_warn(fs_info,
5105 		   "could not shrink block group %llu due to active swapfile",
5106 					   chunk_offset);
5107 			}
5108 			goto done;
5109 		}
5110 	} while (key.offset-- > 0);
5111 
5112 	if (failed && !retried) {
5113 		failed = 0;
5114 		retried = true;
5115 		goto again;
5116 	} else if (failed && retried) {
5117 		ret = -ENOSPC;
5118 		goto done;
5119 	}
5120 
5121 	/* Shrinking succeeded, else we would be at "done". */
5122 	trans = btrfs_start_transaction(root, 0);
5123 	if (IS_ERR(trans)) {
5124 		ret = PTR_ERR(trans);
5125 		goto done;
5126 	}
5127 
5128 	mutex_lock(&fs_info->chunk_mutex);
5129 	/* Clear all state bits beyond the shrunk device size */
5130 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5131 			  CHUNK_STATE_MASK);
5132 
5133 	btrfs_device_set_disk_total_bytes(device, new_size);
5134 	if (list_empty(&device->post_commit_list))
5135 		list_add_tail(&device->post_commit_list,
5136 			      &trans->transaction->dev_update_list);
5137 
5138 	WARN_ON(diff > old_total);
5139 	btrfs_set_super_total_bytes(super_copy,
5140 			round_down(old_total - diff, fs_info->sectorsize));
5141 	mutex_unlock(&fs_info->chunk_mutex);
5142 
5143 	btrfs_reserve_chunk_metadata(trans, false);
5144 	/* Now btrfs_update_device() will change the on-disk size. */
5145 	ret = btrfs_update_device(trans, device);
5146 	btrfs_trans_release_chunk_metadata(trans);
5147 	if (ret < 0) {
5148 		btrfs_abort_transaction(trans, ret);
5149 		btrfs_end_transaction(trans);
5150 	} else {
5151 		ret = btrfs_commit_transaction(trans);
5152 	}
5153 done:
5154 	btrfs_free_path(path);
5155 	if (ret) {
5156 		mutex_lock(&fs_info->chunk_mutex);
5157 		btrfs_device_set_total_bytes(device, old_size);
5158 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5159 			device->fs_devices->total_rw_bytes += diff;
5160 			atomic64_add(free_diff, &fs_info->free_chunk_space);
5161 		}
5162 		mutex_unlock(&fs_info->chunk_mutex);
5163 	}
5164 	return ret;
5165 }
5166 
5167 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5168 			   struct btrfs_key *key,
5169 			   struct btrfs_chunk *chunk, int item_size)
5170 {
5171 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5172 	struct btrfs_disk_key disk_key;
5173 	u32 array_size;
5174 	u8 *ptr;
5175 
5176 	lockdep_assert_held(&fs_info->chunk_mutex);
5177 
5178 	array_size = btrfs_super_sys_array_size(super_copy);
5179 	if (array_size + item_size + sizeof(disk_key)
5180 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5181 		return -EFBIG;
5182 
5183 	ptr = super_copy->sys_chunk_array + array_size;
5184 	btrfs_cpu_key_to_disk(&disk_key, key);
5185 	memcpy(ptr, &disk_key, sizeof(disk_key));
5186 	ptr += sizeof(disk_key);
5187 	memcpy(ptr, chunk, item_size);
5188 	item_size += sizeof(disk_key);
5189 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5190 
5191 	return 0;
5192 }
5193 
5194 /*
5195  * sort the devices in descending order by max_avail, total_avail
5196  */
5197 static int btrfs_cmp_device_info(const void *a, const void *b)
5198 {
5199 	const struct btrfs_device_info *di_a = a;
5200 	const struct btrfs_device_info *di_b = b;
5201 
5202 	if (di_a->max_avail > di_b->max_avail)
5203 		return -1;
5204 	if (di_a->max_avail < di_b->max_avail)
5205 		return 1;
5206 	if (di_a->total_avail > di_b->total_avail)
5207 		return -1;
5208 	if (di_a->total_avail < di_b->total_avail)
5209 		return 1;
5210 	return 0;
5211 }
5212 
5213 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5214 {
5215 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5216 		return;
5217 
5218 	btrfs_set_fs_incompat(info, RAID56);
5219 }
5220 
5221 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5222 {
5223 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5224 		return;
5225 
5226 	btrfs_set_fs_incompat(info, RAID1C34);
5227 }
5228 
5229 /*
5230  * Structure used internally for btrfs_create_chunk() function.
5231  * Wraps needed parameters.
5232  */
5233 struct alloc_chunk_ctl {
5234 	u64 start;
5235 	u64 type;
5236 	/* Total number of stripes to allocate */
5237 	int num_stripes;
5238 	/* sub_stripes info for map */
5239 	int sub_stripes;
5240 	/* Stripes per device */
5241 	int dev_stripes;
5242 	/* Maximum number of devices to use */
5243 	int devs_max;
5244 	/* Minimum number of devices to use */
5245 	int devs_min;
5246 	/* ndevs has to be a multiple of this */
5247 	int devs_increment;
5248 	/* Number of copies */
5249 	int ncopies;
5250 	/* Number of stripes worth of bytes to store parity information */
5251 	int nparity;
5252 	u64 max_stripe_size;
5253 	u64 max_chunk_size;
5254 	u64 dev_extent_min;
5255 	u64 stripe_size;
5256 	u64 chunk_size;
5257 	int ndevs;
5258 };
5259 
5260 static void init_alloc_chunk_ctl_policy_regular(
5261 				struct btrfs_fs_devices *fs_devices,
5262 				struct alloc_chunk_ctl *ctl)
5263 {
5264 	struct btrfs_space_info *space_info;
5265 
5266 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5267 	ASSERT(space_info);
5268 
5269 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5270 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5271 
5272 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5273 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5274 
5275 	/* We don't want a chunk larger than 10% of writable space */
5276 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5277 				  ctl->max_chunk_size);
5278 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5279 }
5280 
5281 static void init_alloc_chunk_ctl_policy_zoned(
5282 				      struct btrfs_fs_devices *fs_devices,
5283 				      struct alloc_chunk_ctl *ctl)
5284 {
5285 	u64 zone_size = fs_devices->fs_info->zone_size;
5286 	u64 limit;
5287 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5288 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5289 	u64 min_chunk_size = min_data_stripes * zone_size;
5290 	u64 type = ctl->type;
5291 
5292 	ctl->max_stripe_size = zone_size;
5293 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5294 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5295 						 zone_size);
5296 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5297 		ctl->max_chunk_size = ctl->max_stripe_size;
5298 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5299 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5300 		ctl->devs_max = min_t(int, ctl->devs_max,
5301 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5302 	} else {
5303 		BUG();
5304 	}
5305 
5306 	/* We don't want a chunk larger than 10% of writable space */
5307 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5308 			       zone_size),
5309 		    min_chunk_size);
5310 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5311 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5312 }
5313 
5314 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5315 				 struct alloc_chunk_ctl *ctl)
5316 {
5317 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5318 
5319 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5320 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5321 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5322 	if (!ctl->devs_max)
5323 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5324 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5325 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5326 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5327 	ctl->nparity = btrfs_raid_array[index].nparity;
5328 	ctl->ndevs = 0;
5329 
5330 	switch (fs_devices->chunk_alloc_policy) {
5331 	case BTRFS_CHUNK_ALLOC_REGULAR:
5332 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5333 		break;
5334 	case BTRFS_CHUNK_ALLOC_ZONED:
5335 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5336 		break;
5337 	default:
5338 		BUG();
5339 	}
5340 }
5341 
5342 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5343 			      struct alloc_chunk_ctl *ctl,
5344 			      struct btrfs_device_info *devices_info)
5345 {
5346 	struct btrfs_fs_info *info = fs_devices->fs_info;
5347 	struct btrfs_device *device;
5348 	u64 total_avail;
5349 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5350 	int ret;
5351 	int ndevs = 0;
5352 	u64 max_avail;
5353 	u64 dev_offset;
5354 
5355 	/*
5356 	 * in the first pass through the devices list, we gather information
5357 	 * about the available holes on each device.
5358 	 */
5359 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5360 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5361 			WARN(1, KERN_ERR
5362 			       "BTRFS: read-only device in alloc_list\n");
5363 			continue;
5364 		}
5365 
5366 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5367 					&device->dev_state) ||
5368 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5369 			continue;
5370 
5371 		if (device->total_bytes > device->bytes_used)
5372 			total_avail = device->total_bytes - device->bytes_used;
5373 		else
5374 			total_avail = 0;
5375 
5376 		/* If there is no space on this device, skip it. */
5377 		if (total_avail < ctl->dev_extent_min)
5378 			continue;
5379 
5380 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5381 					   &max_avail);
5382 		if (ret && ret != -ENOSPC)
5383 			return ret;
5384 
5385 		if (ret == 0)
5386 			max_avail = dev_extent_want;
5387 
5388 		if (max_avail < ctl->dev_extent_min) {
5389 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5390 				btrfs_debug(info,
5391 			"%s: devid %llu has no free space, have=%llu want=%llu",
5392 					    __func__, device->devid, max_avail,
5393 					    ctl->dev_extent_min);
5394 			continue;
5395 		}
5396 
5397 		if (ndevs == fs_devices->rw_devices) {
5398 			WARN(1, "%s: found more than %llu devices\n",
5399 			     __func__, fs_devices->rw_devices);
5400 			break;
5401 		}
5402 		devices_info[ndevs].dev_offset = dev_offset;
5403 		devices_info[ndevs].max_avail = max_avail;
5404 		devices_info[ndevs].total_avail = total_avail;
5405 		devices_info[ndevs].dev = device;
5406 		++ndevs;
5407 	}
5408 	ctl->ndevs = ndevs;
5409 
5410 	/*
5411 	 * now sort the devices by hole size / available space
5412 	 */
5413 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5414 	     btrfs_cmp_device_info, NULL);
5415 
5416 	return 0;
5417 }
5418 
5419 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5420 				      struct btrfs_device_info *devices_info)
5421 {
5422 	/* Number of stripes that count for block group size */
5423 	int data_stripes;
5424 
5425 	/*
5426 	 * The primary goal is to maximize the number of stripes, so use as
5427 	 * many devices as possible, even if the stripes are not maximum sized.
5428 	 *
5429 	 * The DUP profile stores more than one stripe per device, the
5430 	 * max_avail is the total size so we have to adjust.
5431 	 */
5432 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5433 				   ctl->dev_stripes);
5434 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5435 
5436 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5437 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5438 
5439 	/*
5440 	 * Use the number of data stripes to figure out how big this chunk is
5441 	 * really going to be in terms of logical address space, and compare
5442 	 * that answer with the max chunk size. If it's higher, we try to
5443 	 * reduce stripe_size.
5444 	 */
5445 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5446 		/*
5447 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5448 		 * then use it, unless it ends up being even bigger than the
5449 		 * previous value we had already.
5450 		 */
5451 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5452 							data_stripes), SZ_16M),
5453 				       ctl->stripe_size);
5454 	}
5455 
5456 	/* Stripe size should not go beyond 1G. */
5457 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5458 
5459 	/* Align to BTRFS_STRIPE_LEN */
5460 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5461 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5462 
5463 	return 0;
5464 }
5465 
5466 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5467 				    struct btrfs_device_info *devices_info)
5468 {
5469 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5470 	/* Number of stripes that count for block group size */
5471 	int data_stripes;
5472 
5473 	/*
5474 	 * It should hold because:
5475 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5476 	 */
5477 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5478 
5479 	ctl->stripe_size = zone_size;
5480 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5481 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5482 
5483 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5484 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5485 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5486 					     ctl->stripe_size) + ctl->nparity,
5487 				     ctl->dev_stripes);
5488 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5489 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5490 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5491 	}
5492 
5493 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5494 
5495 	return 0;
5496 }
5497 
5498 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5499 			      struct alloc_chunk_ctl *ctl,
5500 			      struct btrfs_device_info *devices_info)
5501 {
5502 	struct btrfs_fs_info *info = fs_devices->fs_info;
5503 
5504 	/*
5505 	 * Round down to number of usable stripes, devs_increment can be any
5506 	 * number so we can't use round_down() that requires power of 2, while
5507 	 * rounddown is safe.
5508 	 */
5509 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5510 
5511 	if (ctl->ndevs < ctl->devs_min) {
5512 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5513 			btrfs_debug(info,
5514 	"%s: not enough devices with free space: have=%d minimum required=%d",
5515 				    __func__, ctl->ndevs, ctl->devs_min);
5516 		}
5517 		return -ENOSPC;
5518 	}
5519 
5520 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5521 
5522 	switch (fs_devices->chunk_alloc_policy) {
5523 	case BTRFS_CHUNK_ALLOC_REGULAR:
5524 		return decide_stripe_size_regular(ctl, devices_info);
5525 	case BTRFS_CHUNK_ALLOC_ZONED:
5526 		return decide_stripe_size_zoned(ctl, devices_info);
5527 	default:
5528 		BUG();
5529 	}
5530 }
5531 
5532 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5533 {
5534 	for (int i = 0; i < map->num_stripes; i++) {
5535 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5536 		struct btrfs_device *device = stripe->dev;
5537 
5538 		set_extent_bit(&device->alloc_state, stripe->physical,
5539 			       stripe->physical + map->stripe_size - 1,
5540 			       bits | EXTENT_NOWAIT, NULL);
5541 	}
5542 }
5543 
5544 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5545 {
5546 	for (int i = 0; i < map->num_stripes; i++) {
5547 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5548 		struct btrfs_device *device = stripe->dev;
5549 
5550 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5551 				   stripe->physical + map->stripe_size - 1,
5552 				   bits | EXTENT_NOWAIT,
5553 				   NULL, NULL);
5554 	}
5555 }
5556 
5557 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5558 {
5559 	write_lock(&fs_info->mapping_tree_lock);
5560 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5561 	RB_CLEAR_NODE(&map->rb_node);
5562 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5563 	write_unlock(&fs_info->mapping_tree_lock);
5564 
5565 	/* Once for the tree reference. */
5566 	btrfs_free_chunk_map(map);
5567 }
5568 
5569 EXPORT_FOR_TESTS
5570 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5571 {
5572 	struct rb_node **p;
5573 	struct rb_node *parent = NULL;
5574 	bool leftmost = true;
5575 
5576 	write_lock(&fs_info->mapping_tree_lock);
5577 	p = &fs_info->mapping_tree.rb_root.rb_node;
5578 	while (*p) {
5579 		struct btrfs_chunk_map *entry;
5580 
5581 		parent = *p;
5582 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5583 
5584 		if (map->start < entry->start) {
5585 			p = &(*p)->rb_left;
5586 		} else if (map->start > entry->start) {
5587 			p = &(*p)->rb_right;
5588 			leftmost = false;
5589 		} else {
5590 			write_unlock(&fs_info->mapping_tree_lock);
5591 			return -EEXIST;
5592 		}
5593 	}
5594 	rb_link_node(&map->rb_node, parent, p);
5595 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5596 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5597 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5598 	write_unlock(&fs_info->mapping_tree_lock);
5599 
5600 	return 0;
5601 }
5602 
5603 EXPORT_FOR_TESTS
5604 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5605 {
5606 	struct btrfs_chunk_map *map;
5607 
5608 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5609 	if (!map)
5610 		return NULL;
5611 
5612 	refcount_set(&map->refs, 1);
5613 	RB_CLEAR_NODE(&map->rb_node);
5614 
5615 	return map;
5616 }
5617 
5618 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5619 {
5620 	const int size = btrfs_chunk_map_size(map->num_stripes);
5621 	struct btrfs_chunk_map *clone;
5622 
5623 	clone = kmemdup(map, size, gfp);
5624 	if (!clone)
5625 		return NULL;
5626 
5627 	refcount_set(&clone->refs, 1);
5628 	RB_CLEAR_NODE(&clone->rb_node);
5629 
5630 	return clone;
5631 }
5632 
5633 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5634 			struct alloc_chunk_ctl *ctl,
5635 			struct btrfs_device_info *devices_info)
5636 {
5637 	struct btrfs_fs_info *info = trans->fs_info;
5638 	struct btrfs_chunk_map *map;
5639 	struct btrfs_block_group *block_group;
5640 	u64 start = ctl->start;
5641 	u64 type = ctl->type;
5642 	int ret;
5643 	int i;
5644 	int j;
5645 
5646 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5647 	if (!map)
5648 		return ERR_PTR(-ENOMEM);
5649 
5650 	map->start = start;
5651 	map->chunk_len = ctl->chunk_size;
5652 	map->stripe_size = ctl->stripe_size;
5653 	map->type = type;
5654 	map->io_align = BTRFS_STRIPE_LEN;
5655 	map->io_width = BTRFS_STRIPE_LEN;
5656 	map->sub_stripes = ctl->sub_stripes;
5657 	map->num_stripes = ctl->num_stripes;
5658 
5659 	for (i = 0; i < ctl->ndevs; ++i) {
5660 		for (j = 0; j < ctl->dev_stripes; ++j) {
5661 			int s = i * ctl->dev_stripes + j;
5662 			map->stripes[s].dev = devices_info[i].dev;
5663 			map->stripes[s].physical = devices_info[i].dev_offset +
5664 						   j * ctl->stripe_size;
5665 		}
5666 	}
5667 
5668 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5669 
5670 	ret = btrfs_add_chunk_map(info, map);
5671 	if (ret) {
5672 		btrfs_free_chunk_map(map);
5673 		return ERR_PTR(ret);
5674 	}
5675 
5676 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5677 	if (IS_ERR(block_group)) {
5678 		btrfs_remove_chunk_map(info, map);
5679 		return block_group;
5680 	}
5681 
5682 	for (int i = 0; i < map->num_stripes; i++) {
5683 		struct btrfs_device *dev = map->stripes[i].dev;
5684 
5685 		btrfs_device_set_bytes_used(dev,
5686 					    dev->bytes_used + ctl->stripe_size);
5687 		if (list_empty(&dev->post_commit_list))
5688 			list_add_tail(&dev->post_commit_list,
5689 				      &trans->transaction->dev_update_list);
5690 	}
5691 
5692 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5693 		     &info->free_chunk_space);
5694 
5695 	check_raid56_incompat_flag(info, type);
5696 	check_raid1c34_incompat_flag(info, type);
5697 
5698 	return block_group;
5699 }
5700 
5701 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5702 					    u64 type)
5703 {
5704 	struct btrfs_fs_info *info = trans->fs_info;
5705 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5706 	struct btrfs_device_info *devices_info = NULL;
5707 	struct alloc_chunk_ctl ctl;
5708 	struct btrfs_block_group *block_group;
5709 	int ret;
5710 
5711 	lockdep_assert_held(&info->chunk_mutex);
5712 
5713 	if (!alloc_profile_is_valid(type, 0)) {
5714 		ASSERT(0);
5715 		return ERR_PTR(-EINVAL);
5716 	}
5717 
5718 	if (list_empty(&fs_devices->alloc_list)) {
5719 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5720 			btrfs_debug(info, "%s: no writable device", __func__);
5721 		return ERR_PTR(-ENOSPC);
5722 	}
5723 
5724 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5725 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5726 		ASSERT(0);
5727 		return ERR_PTR(-EINVAL);
5728 	}
5729 
5730 	ctl.start = find_next_chunk(info);
5731 	ctl.type = type;
5732 	init_alloc_chunk_ctl(fs_devices, &ctl);
5733 
5734 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5735 			       GFP_NOFS);
5736 	if (!devices_info)
5737 		return ERR_PTR(-ENOMEM);
5738 
5739 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5740 	if (ret < 0) {
5741 		block_group = ERR_PTR(ret);
5742 		goto out;
5743 	}
5744 
5745 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5746 	if (ret < 0) {
5747 		block_group = ERR_PTR(ret);
5748 		goto out;
5749 	}
5750 
5751 	block_group = create_chunk(trans, &ctl, devices_info);
5752 
5753 out:
5754 	kfree(devices_info);
5755 	return block_group;
5756 }
5757 
5758 /*
5759  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5760  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5761  * chunks.
5762  *
5763  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5764  * phases.
5765  */
5766 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5767 				     struct btrfs_block_group *bg)
5768 {
5769 	struct btrfs_fs_info *fs_info = trans->fs_info;
5770 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5771 	struct btrfs_key key;
5772 	struct btrfs_chunk *chunk;
5773 	struct btrfs_stripe *stripe;
5774 	struct btrfs_chunk_map *map;
5775 	size_t item_size;
5776 	int i;
5777 	int ret;
5778 
5779 	/*
5780 	 * We take the chunk_mutex for 2 reasons:
5781 	 *
5782 	 * 1) Updates and insertions in the chunk btree must be done while holding
5783 	 *    the chunk_mutex, as well as updating the system chunk array in the
5784 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5785 	 *    details;
5786 	 *
5787 	 * 2) To prevent races with the final phase of a device replace operation
5788 	 *    that replaces the device object associated with the map's stripes,
5789 	 *    because the device object's id can change at any time during that
5790 	 *    final phase of the device replace operation
5791 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5792 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5793 	 *    which would cause a failure when updating the device item, which does
5794 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5795 	 *    Here we can't use the device_list_mutex because our caller already
5796 	 *    has locked the chunk_mutex, and the final phase of device replace
5797 	 *    acquires both mutexes - first the device_list_mutex and then the
5798 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5799 	 *    concurrent device replace.
5800 	 */
5801 	lockdep_assert_held(&fs_info->chunk_mutex);
5802 
5803 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5804 	if (IS_ERR(map)) {
5805 		ret = PTR_ERR(map);
5806 		btrfs_abort_transaction(trans, ret);
5807 		return ret;
5808 	}
5809 
5810 	item_size = btrfs_chunk_item_size(map->num_stripes);
5811 
5812 	chunk = kzalloc(item_size, GFP_NOFS);
5813 	if (!chunk) {
5814 		ret = -ENOMEM;
5815 		btrfs_abort_transaction(trans, ret);
5816 		goto out;
5817 	}
5818 
5819 	for (i = 0; i < map->num_stripes; i++) {
5820 		struct btrfs_device *device = map->stripes[i].dev;
5821 
5822 		ret = btrfs_update_device(trans, device);
5823 		if (ret)
5824 			goto out;
5825 	}
5826 
5827 	stripe = &chunk->stripe;
5828 	for (i = 0; i < map->num_stripes; i++) {
5829 		struct btrfs_device *device = map->stripes[i].dev;
5830 		const u64 dev_offset = map->stripes[i].physical;
5831 
5832 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5833 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5834 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5835 		stripe++;
5836 	}
5837 
5838 	btrfs_set_stack_chunk_length(chunk, bg->length);
5839 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5840 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5841 	btrfs_set_stack_chunk_type(chunk, map->type);
5842 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5843 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5844 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5845 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5846 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5847 
5848 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5849 	key.type = BTRFS_CHUNK_ITEM_KEY;
5850 	key.offset = bg->start;
5851 
5852 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5853 	if (ret)
5854 		goto out;
5855 
5856 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5857 
5858 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5859 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5860 		if (ret)
5861 			goto out;
5862 	}
5863 
5864 out:
5865 	kfree(chunk);
5866 	btrfs_free_chunk_map(map);
5867 	return ret;
5868 }
5869 
5870 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5871 {
5872 	struct btrfs_fs_info *fs_info = trans->fs_info;
5873 	u64 alloc_profile;
5874 	struct btrfs_block_group *meta_bg;
5875 	struct btrfs_block_group *sys_bg;
5876 
5877 	/*
5878 	 * When adding a new device for sprouting, the seed device is read-only
5879 	 * so we must first allocate a metadata and a system chunk. But before
5880 	 * adding the block group items to the extent, device and chunk btrees,
5881 	 * we must first:
5882 	 *
5883 	 * 1) Create both chunks without doing any changes to the btrees, as
5884 	 *    otherwise we would get -ENOSPC since the block groups from the
5885 	 *    seed device are read-only;
5886 	 *
5887 	 * 2) Add the device item for the new sprout device - finishing the setup
5888 	 *    of a new block group requires updating the device item in the chunk
5889 	 *    btree, so it must exist when we attempt to do it. The previous step
5890 	 *    ensures this does not fail with -ENOSPC.
5891 	 *
5892 	 * After that we can add the block group items to their btrees:
5893 	 * update existing device item in the chunk btree, add a new block group
5894 	 * item to the extent btree, add a new chunk item to the chunk btree and
5895 	 * finally add the new device extent items to the devices btree.
5896 	 */
5897 
5898 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5899 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5900 	if (IS_ERR(meta_bg))
5901 		return PTR_ERR(meta_bg);
5902 
5903 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5904 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5905 	if (IS_ERR(sys_bg))
5906 		return PTR_ERR(sys_bg);
5907 
5908 	return 0;
5909 }
5910 
5911 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5912 {
5913 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5914 
5915 	return btrfs_raid_array[index].tolerated_failures;
5916 }
5917 
5918 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5919 {
5920 	struct btrfs_chunk_map *map;
5921 	int miss_ndevs = 0;
5922 	int i;
5923 	bool ret = true;
5924 
5925 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5926 	if (IS_ERR(map))
5927 		return false;
5928 
5929 	for (i = 0; i < map->num_stripes; i++) {
5930 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5931 					&map->stripes[i].dev->dev_state)) {
5932 			miss_ndevs++;
5933 			continue;
5934 		}
5935 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5936 					&map->stripes[i].dev->dev_state)) {
5937 			ret = false;
5938 			goto end;
5939 		}
5940 	}
5941 
5942 	/*
5943 	 * If the number of missing devices is larger than max errors, we can
5944 	 * not write the data into that chunk successfully.
5945 	 */
5946 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5947 		ret = false;
5948 end:
5949 	btrfs_free_chunk_map(map);
5950 	return ret;
5951 }
5952 
5953 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5954 {
5955 	write_lock(&fs_info->mapping_tree_lock);
5956 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5957 		struct btrfs_chunk_map *map;
5958 		struct rb_node *node;
5959 
5960 		node = rb_first_cached(&fs_info->mapping_tree);
5961 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5962 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5963 		RB_CLEAR_NODE(&map->rb_node);
5964 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5965 		/* Once for the tree ref. */
5966 		btrfs_free_chunk_map(map);
5967 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5968 	}
5969 	write_unlock(&fs_info->mapping_tree_lock);
5970 }
5971 
5972 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5973 {
5974 	struct btrfs_chunk_map *map;
5975 	enum btrfs_raid_types index;
5976 	int ret = 1;
5977 
5978 	map = btrfs_get_chunk_map(fs_info, logical, len);
5979 	if (IS_ERR(map))
5980 		/*
5981 		 * We could return errors for these cases, but that could get
5982 		 * ugly and we'd probably do the same thing which is just not do
5983 		 * anything else and exit, so return 1 so the callers don't try
5984 		 * to use other copies.
5985 		 */
5986 		return 1;
5987 
5988 	index = btrfs_bg_flags_to_raid_index(map->type);
5989 
5990 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5991 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5992 		ret = btrfs_raid_array[index].ncopies;
5993 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5994 		ret = 2;
5995 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5996 		/*
5997 		 * There could be two corrupted data stripes, we need
5998 		 * to loop retry in order to rebuild the correct data.
5999 		 *
6000 		 * Fail a stripe at a time on every retry except the
6001 		 * stripe under reconstruction.
6002 		 */
6003 		ret = map->num_stripes;
6004 	btrfs_free_chunk_map(map);
6005 	return ret;
6006 }
6007 
6008 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
6009 				    u64 logical)
6010 {
6011 	struct btrfs_chunk_map *map;
6012 	unsigned long len = fs_info->sectorsize;
6013 
6014 	if (!btrfs_fs_incompat(fs_info, RAID56))
6015 		return len;
6016 
6017 	map = btrfs_get_chunk_map(fs_info, logical, len);
6018 
6019 	if (!WARN_ON(IS_ERR(map))) {
6020 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6021 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6022 		btrfs_free_chunk_map(map);
6023 	}
6024 	return len;
6025 }
6026 
6027 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6028 {
6029 	struct btrfs_chunk_map *map;
6030 	int ret = 0;
6031 
6032 	if (!btrfs_fs_incompat(fs_info, RAID56))
6033 		return 0;
6034 
6035 	map = btrfs_get_chunk_map(fs_info, logical, len);
6036 
6037 	if (!WARN_ON(IS_ERR(map))) {
6038 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6039 			ret = 1;
6040 		btrfs_free_chunk_map(map);
6041 	}
6042 	return ret;
6043 }
6044 
6045 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6046 			    struct btrfs_chunk_map *map, int first,
6047 			    int dev_replace_is_ongoing)
6048 {
6049 	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6050 	int i;
6051 	int num_stripes;
6052 	int preferred_mirror;
6053 	int tolerance;
6054 	struct btrfs_device *srcdev;
6055 
6056 	ASSERT((map->type &
6057 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6058 
6059 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6060 		num_stripes = map->sub_stripes;
6061 	else
6062 		num_stripes = map->num_stripes;
6063 
6064 	switch (policy) {
6065 	default:
6066 		/* Shouldn't happen, just warn and use pid instead of failing */
6067 		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6068 			      policy);
6069 		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6070 		fallthrough;
6071 	case BTRFS_READ_POLICY_PID:
6072 		preferred_mirror = first + (current->pid % num_stripes);
6073 		break;
6074 	}
6075 
6076 	if (dev_replace_is_ongoing &&
6077 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6078 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6079 		srcdev = fs_info->dev_replace.srcdev;
6080 	else
6081 		srcdev = NULL;
6082 
6083 	/*
6084 	 * try to avoid the drive that is the source drive for a
6085 	 * dev-replace procedure, only choose it if no other non-missing
6086 	 * mirror is available
6087 	 */
6088 	for (tolerance = 0; tolerance < 2; tolerance++) {
6089 		if (map->stripes[preferred_mirror].dev->bdev &&
6090 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6091 			return preferred_mirror;
6092 		for (i = first; i < first + num_stripes; i++) {
6093 			if (map->stripes[i].dev->bdev &&
6094 			    (tolerance || map->stripes[i].dev != srcdev))
6095 				return i;
6096 		}
6097 	}
6098 
6099 	/* we couldn't find one that doesn't fail.  Just return something
6100 	 * and the io error handling code will clean up eventually
6101 	 */
6102 	return preferred_mirror;
6103 }
6104 
6105 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6106 						       u64 logical,
6107 						       u16 total_stripes)
6108 {
6109 	struct btrfs_io_context *bioc;
6110 
6111 	bioc = kzalloc(
6112 		 /* The size of btrfs_io_context */
6113 		sizeof(struct btrfs_io_context) +
6114 		/* Plus the variable array for the stripes */
6115 		sizeof(struct btrfs_io_stripe) * (total_stripes),
6116 		GFP_NOFS);
6117 
6118 	if (!bioc)
6119 		return NULL;
6120 
6121 	refcount_set(&bioc->refs, 1);
6122 
6123 	bioc->fs_info = fs_info;
6124 	bioc->replace_stripe_src = -1;
6125 	bioc->full_stripe_logical = (u64)-1;
6126 	bioc->logical = logical;
6127 
6128 	return bioc;
6129 }
6130 
6131 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6132 {
6133 	WARN_ON(!refcount_read(&bioc->refs));
6134 	refcount_inc(&bioc->refs);
6135 }
6136 
6137 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6138 {
6139 	if (!bioc)
6140 		return;
6141 	if (refcount_dec_and_test(&bioc->refs))
6142 		kfree(bioc);
6143 }
6144 
6145 /*
6146  * Please note that, discard won't be sent to target device of device
6147  * replace.
6148  */
6149 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6150 					       u64 logical, u64 *length_ret,
6151 					       u32 *num_stripes)
6152 {
6153 	struct btrfs_chunk_map *map;
6154 	struct btrfs_discard_stripe *stripes;
6155 	u64 length = *length_ret;
6156 	u64 offset;
6157 	u32 stripe_nr;
6158 	u32 stripe_nr_end;
6159 	u32 stripe_cnt;
6160 	u64 stripe_end_offset;
6161 	u64 stripe_offset;
6162 	u32 stripe_index;
6163 	u32 factor = 0;
6164 	u32 sub_stripes = 0;
6165 	u32 stripes_per_dev = 0;
6166 	u32 remaining_stripes = 0;
6167 	u32 last_stripe = 0;
6168 	int ret;
6169 	int i;
6170 
6171 	map = btrfs_get_chunk_map(fs_info, logical, length);
6172 	if (IS_ERR(map))
6173 		return ERR_CAST(map);
6174 
6175 	/* we don't discard raid56 yet */
6176 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6177 		ret = -EOPNOTSUPP;
6178 		goto out_free_map;
6179 	}
6180 
6181 	offset = logical - map->start;
6182 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6183 	*length_ret = length;
6184 
6185 	/*
6186 	 * stripe_nr counts the total number of stripes we have to stride
6187 	 * to get to this block
6188 	 */
6189 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6190 
6191 	/* stripe_offset is the offset of this block in its stripe */
6192 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6193 
6194 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6195 			BTRFS_STRIPE_LEN_SHIFT;
6196 	stripe_cnt = stripe_nr_end - stripe_nr;
6197 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6198 			    (offset + length);
6199 	/*
6200 	 * after this, stripe_nr is the number of stripes on this
6201 	 * device we have to walk to find the data, and stripe_index is
6202 	 * the number of our device in the stripe array
6203 	 */
6204 	*num_stripes = 1;
6205 	stripe_index = 0;
6206 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6207 			 BTRFS_BLOCK_GROUP_RAID10)) {
6208 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6209 			sub_stripes = 1;
6210 		else
6211 			sub_stripes = map->sub_stripes;
6212 
6213 		factor = map->num_stripes / sub_stripes;
6214 		*num_stripes = min_t(u64, map->num_stripes,
6215 				    sub_stripes * stripe_cnt);
6216 		stripe_index = stripe_nr % factor;
6217 		stripe_nr /= factor;
6218 		stripe_index *= sub_stripes;
6219 
6220 		remaining_stripes = stripe_cnt % factor;
6221 		stripes_per_dev = stripe_cnt / factor;
6222 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6223 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6224 				BTRFS_BLOCK_GROUP_DUP)) {
6225 		*num_stripes = map->num_stripes;
6226 	} else {
6227 		stripe_index = stripe_nr % map->num_stripes;
6228 		stripe_nr /= map->num_stripes;
6229 	}
6230 
6231 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6232 	if (!stripes) {
6233 		ret = -ENOMEM;
6234 		goto out_free_map;
6235 	}
6236 
6237 	for (i = 0; i < *num_stripes; i++) {
6238 		stripes[i].physical =
6239 			map->stripes[stripe_index].physical +
6240 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6241 		stripes[i].dev = map->stripes[stripe_index].dev;
6242 
6243 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6244 				 BTRFS_BLOCK_GROUP_RAID10)) {
6245 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6246 
6247 			if (i / sub_stripes < remaining_stripes)
6248 				stripes[i].length += BTRFS_STRIPE_LEN;
6249 
6250 			/*
6251 			 * Special for the first stripe and
6252 			 * the last stripe:
6253 			 *
6254 			 * |-------|...|-------|
6255 			 *     |----------|
6256 			 *    off     end_off
6257 			 */
6258 			if (i < sub_stripes)
6259 				stripes[i].length -= stripe_offset;
6260 
6261 			if (stripe_index >= last_stripe &&
6262 			    stripe_index <= (last_stripe +
6263 					     sub_stripes - 1))
6264 				stripes[i].length -= stripe_end_offset;
6265 
6266 			if (i == sub_stripes - 1)
6267 				stripe_offset = 0;
6268 		} else {
6269 			stripes[i].length = length;
6270 		}
6271 
6272 		stripe_index++;
6273 		if (stripe_index == map->num_stripes) {
6274 			stripe_index = 0;
6275 			stripe_nr++;
6276 		}
6277 	}
6278 
6279 	btrfs_free_chunk_map(map);
6280 	return stripes;
6281 out_free_map:
6282 	btrfs_free_chunk_map(map);
6283 	return ERR_PTR(ret);
6284 }
6285 
6286 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6287 {
6288 	struct btrfs_block_group *cache;
6289 	bool ret;
6290 
6291 	/* Non zoned filesystem does not use "to_copy" flag */
6292 	if (!btrfs_is_zoned(fs_info))
6293 		return false;
6294 
6295 	cache = btrfs_lookup_block_group(fs_info, logical);
6296 
6297 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6298 
6299 	btrfs_put_block_group(cache);
6300 	return ret;
6301 }
6302 
6303 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6304 				      struct btrfs_io_context *bioc,
6305 				      struct btrfs_dev_replace *dev_replace,
6306 				      u64 logical,
6307 				      int *num_stripes_ret, int *max_errors_ret)
6308 {
6309 	u64 srcdev_devid = dev_replace->srcdev->devid;
6310 	/*
6311 	 * At this stage, num_stripes is still the real number of stripes,
6312 	 * excluding the duplicated stripes.
6313 	 */
6314 	int num_stripes = *num_stripes_ret;
6315 	int nr_extra_stripes = 0;
6316 	int max_errors = *max_errors_ret;
6317 	int i;
6318 
6319 	/*
6320 	 * A block group which has "to_copy" set will eventually be copied by
6321 	 * the dev-replace process. We can avoid cloning IO here.
6322 	 */
6323 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6324 		return;
6325 
6326 	/*
6327 	 * Duplicate the write operations while the dev-replace procedure is
6328 	 * running. Since the copying of the old disk to the new disk takes
6329 	 * place at run time while the filesystem is mounted writable, the
6330 	 * regular write operations to the old disk have to be duplicated to go
6331 	 * to the new disk as well.
6332 	 *
6333 	 * Note that device->missing is handled by the caller, and that the
6334 	 * write to the old disk is already set up in the stripes array.
6335 	 */
6336 	for (i = 0; i < num_stripes; i++) {
6337 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6338 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6339 
6340 		if (old->dev->devid != srcdev_devid)
6341 			continue;
6342 
6343 		new->physical = old->physical;
6344 		new->dev = dev_replace->tgtdev;
6345 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6346 			bioc->replace_stripe_src = i;
6347 		nr_extra_stripes++;
6348 	}
6349 
6350 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6351 	ASSERT(nr_extra_stripes <= 2);
6352 	/*
6353 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6354 	 * replace.
6355 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6356 	 */
6357 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6358 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6359 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6360 
6361 		/* Only DUP can have two extra stripes. */
6362 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6363 
6364 		/*
6365 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6366 		 * The extra stripe would still be there, but won't be accessed.
6367 		 */
6368 		if (first->physical > second->physical) {
6369 			swap(second->physical, first->physical);
6370 			swap(second->dev, first->dev);
6371 			nr_extra_stripes--;
6372 		}
6373 	}
6374 
6375 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6376 	*max_errors_ret = max_errors + nr_extra_stripes;
6377 	bioc->replace_nr_stripes = nr_extra_stripes;
6378 }
6379 
6380 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6381 			    struct btrfs_io_geometry *io_geom)
6382 {
6383 	/*
6384 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6385 	 * the offset of this block in its stripe.
6386 	 */
6387 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6388 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6389 	ASSERT(io_geom->stripe_offset < U32_MAX);
6390 
6391 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6392 		unsigned long full_stripe_len =
6393 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6394 
6395 		/*
6396 		 * For full stripe start, we use previously calculated
6397 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6398 		 * STRIPE_LEN.
6399 		 *
6400 		 * By this we can avoid u64 division completely.  And we have
6401 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6402 		 * not ensured to be power of 2.
6403 		 */
6404 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6405 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6406 
6407 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6408 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6409 		/*
6410 		 * For writes to RAID56, allow to write a full stripe set, but
6411 		 * no straddling of stripe sets.
6412 		 */
6413 		if (io_geom->op == BTRFS_MAP_WRITE)
6414 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6415 	}
6416 
6417 	/*
6418 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6419 	 * a single disk).
6420 	 */
6421 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6422 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6423 	return U64_MAX;
6424 }
6425 
6426 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6427 			 u64 *length, struct btrfs_io_stripe *dst,
6428 			 struct btrfs_chunk_map *map,
6429 			 struct btrfs_io_geometry *io_geom)
6430 {
6431 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6432 
6433 	if (io_geom->op == BTRFS_MAP_READ &&
6434 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6435 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6436 						    map->type,
6437 						    io_geom->stripe_index, dst);
6438 
6439 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6440 			io_geom->stripe_offset +
6441 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6442 	return 0;
6443 }
6444 
6445 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6446 				const struct btrfs_io_stripe *smap,
6447 				const struct btrfs_chunk_map *map,
6448 				int num_alloc_stripes,
6449 				enum btrfs_map_op op, int mirror_num)
6450 {
6451 	if (!smap)
6452 		return false;
6453 
6454 	if (num_alloc_stripes != 1)
6455 		return false;
6456 
6457 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6458 		return false;
6459 
6460 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6461 		return false;
6462 
6463 	return true;
6464 }
6465 
6466 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6467 			     struct btrfs_io_geometry *io_geom)
6468 {
6469 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6470 	io_geom->stripe_nr /= map->num_stripes;
6471 	if (io_geom->op == BTRFS_MAP_READ)
6472 		io_geom->mirror_num = 1;
6473 }
6474 
6475 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6476 			     struct btrfs_chunk_map *map,
6477 			     struct btrfs_io_geometry *io_geom,
6478 			     bool dev_replace_is_ongoing)
6479 {
6480 	if (io_geom->op != BTRFS_MAP_READ) {
6481 		io_geom->num_stripes = map->num_stripes;
6482 		return;
6483 	}
6484 
6485 	if (io_geom->mirror_num) {
6486 		io_geom->stripe_index = io_geom->mirror_num - 1;
6487 		return;
6488 	}
6489 
6490 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6491 						 dev_replace_is_ongoing);
6492 	io_geom->mirror_num = io_geom->stripe_index + 1;
6493 }
6494 
6495 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6496 			   struct btrfs_io_geometry *io_geom)
6497 {
6498 	if (io_geom->op != BTRFS_MAP_READ) {
6499 		io_geom->num_stripes = map->num_stripes;
6500 		return;
6501 	}
6502 
6503 	if (io_geom->mirror_num) {
6504 		io_geom->stripe_index = io_geom->mirror_num - 1;
6505 		return;
6506 	}
6507 
6508 	io_geom->mirror_num = 1;
6509 }
6510 
6511 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6512 			      struct btrfs_chunk_map *map,
6513 			      struct btrfs_io_geometry *io_geom,
6514 			      bool dev_replace_is_ongoing)
6515 {
6516 	u32 factor = map->num_stripes / map->sub_stripes;
6517 	int old_stripe_index;
6518 
6519 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6520 	io_geom->stripe_nr /= factor;
6521 
6522 	if (io_geom->op != BTRFS_MAP_READ) {
6523 		io_geom->num_stripes = map->sub_stripes;
6524 		return;
6525 	}
6526 
6527 	if (io_geom->mirror_num) {
6528 		io_geom->stripe_index += io_geom->mirror_num - 1;
6529 		return;
6530 	}
6531 
6532 	old_stripe_index = io_geom->stripe_index;
6533 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6534 						 io_geom->stripe_index,
6535 						 dev_replace_is_ongoing);
6536 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6537 }
6538 
6539 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6540 				    struct btrfs_io_geometry *io_geom,
6541 				    u64 logical, u64 *length)
6542 {
6543 	int data_stripes = nr_data_stripes(map);
6544 
6545 	/*
6546 	 * Needs full stripe mapping.
6547 	 *
6548 	 * Push stripe_nr back to the start of the full stripe For those cases
6549 	 * needing a full stripe, @stripe_nr is the full stripe number.
6550 	 *
6551 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6552 	 * that can be expensive.  Here we just divide @stripe_nr with
6553 	 * @data_stripes.
6554 	 */
6555 	io_geom->stripe_nr /= data_stripes;
6556 
6557 	/* RAID[56] write or recovery. Return all stripes */
6558 	io_geom->num_stripes = map->num_stripes;
6559 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6560 
6561 	/* Return the length to the full stripe end. */
6562 	*length = min(logical + *length,
6563 		      io_geom->raid56_full_stripe_start + map->start +
6564 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6565 		logical;
6566 	io_geom->stripe_index = 0;
6567 	io_geom->stripe_offset = 0;
6568 }
6569 
6570 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6571 				   struct btrfs_io_geometry *io_geom)
6572 {
6573 	int data_stripes = nr_data_stripes(map);
6574 
6575 	ASSERT(io_geom->mirror_num <= 1);
6576 	/* Just grab the data stripe directly. */
6577 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6578 	io_geom->stripe_nr /= data_stripes;
6579 
6580 	/* We distribute the parity blocks across stripes. */
6581 	io_geom->stripe_index =
6582 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6583 
6584 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6585 		io_geom->mirror_num = 1;
6586 }
6587 
6588 static void map_blocks_single(const struct btrfs_chunk_map *map,
6589 			      struct btrfs_io_geometry *io_geom)
6590 {
6591 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6592 	io_geom->stripe_nr /= map->num_stripes;
6593 	io_geom->mirror_num = io_geom->stripe_index + 1;
6594 }
6595 
6596 /*
6597  * Map one logical range to one or more physical ranges.
6598  *
6599  * @length:		(Mandatory) mapped length of this run.
6600  *			One logical range can be split into different segments
6601  *			due to factors like zones and RAID0/5/6/10 stripe
6602  *			boundaries.
6603  *
6604  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6605  *			which has one or more physical ranges (btrfs_io_stripe)
6606  *			recorded inside.
6607  *			Caller should call btrfs_put_bioc() to free it after use.
6608  *
6609  * @smap:		(Optional) single physical range optimization.
6610  *			If the map request can be fulfilled by one single
6611  *			physical range, and this is parameter is not NULL,
6612  *			then @bioc_ret would be NULL, and @smap would be
6613  *			updated.
6614  *
6615  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6616  *			value is 0.
6617  *
6618  *			Mirror number 0 means to choose any live mirrors.
6619  *
6620  *			For non-RAID56 profiles, non-zero mirror_num means
6621  *			the Nth mirror. (e.g. mirror_num 1 means the first
6622  *			copy).
6623  *
6624  *			For RAID56 profile, mirror 1 means rebuild from P and
6625  *			the remaining data stripes.
6626  *
6627  *			For RAID6 profile, mirror > 2 means mark another
6628  *			data/P stripe error and rebuild from the remaining
6629  *			stripes..
6630  */
6631 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6632 		    u64 logical, u64 *length,
6633 		    struct btrfs_io_context **bioc_ret,
6634 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6635 {
6636 	struct btrfs_chunk_map *map;
6637 	struct btrfs_io_geometry io_geom = { 0 };
6638 	u64 map_offset;
6639 	int i;
6640 	int ret = 0;
6641 	int num_copies;
6642 	struct btrfs_io_context *bioc = NULL;
6643 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6644 	int dev_replace_is_ongoing = 0;
6645 	u16 num_alloc_stripes;
6646 	u64 max_len;
6647 
6648 	ASSERT(bioc_ret);
6649 
6650 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6651 	io_geom.num_stripes = 1;
6652 	io_geom.stripe_index = 0;
6653 	io_geom.op = op;
6654 
6655 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6656 	if (io_geom.mirror_num > num_copies)
6657 		return -EINVAL;
6658 
6659 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6660 	if (IS_ERR(map))
6661 		return PTR_ERR(map);
6662 
6663 	map_offset = logical - map->start;
6664 	io_geom.raid56_full_stripe_start = (u64)-1;
6665 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6666 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6667 
6668 	down_read(&dev_replace->rwsem);
6669 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6670 	/*
6671 	 * Hold the semaphore for read during the whole operation, write is
6672 	 * requested at commit time but must wait.
6673 	 */
6674 	if (!dev_replace_is_ongoing)
6675 		up_read(&dev_replace->rwsem);
6676 
6677 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6678 	case BTRFS_BLOCK_GROUP_RAID0:
6679 		map_blocks_raid0(map, &io_geom);
6680 		break;
6681 	case BTRFS_BLOCK_GROUP_RAID1:
6682 	case BTRFS_BLOCK_GROUP_RAID1C3:
6683 	case BTRFS_BLOCK_GROUP_RAID1C4:
6684 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6685 		break;
6686 	case BTRFS_BLOCK_GROUP_DUP:
6687 		map_blocks_dup(map, &io_geom);
6688 		break;
6689 	case BTRFS_BLOCK_GROUP_RAID10:
6690 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6691 		break;
6692 	case BTRFS_BLOCK_GROUP_RAID5:
6693 	case BTRFS_BLOCK_GROUP_RAID6:
6694 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6695 			map_blocks_raid56_write(map, &io_geom, logical, length);
6696 		else
6697 			map_blocks_raid56_read(map, &io_geom);
6698 		break;
6699 	default:
6700 		/*
6701 		 * After this, stripe_nr is the number of stripes on this
6702 		 * device we have to walk to find the data, and stripe_index is
6703 		 * the number of our device in the stripe array
6704 		 */
6705 		map_blocks_single(map, &io_geom);
6706 		break;
6707 	}
6708 	if (io_geom.stripe_index >= map->num_stripes) {
6709 		btrfs_crit(fs_info,
6710 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6711 			   io_geom.stripe_index, map->num_stripes);
6712 		ret = -EINVAL;
6713 		goto out;
6714 	}
6715 
6716 	num_alloc_stripes = io_geom.num_stripes;
6717 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6718 	    op != BTRFS_MAP_READ)
6719 		/*
6720 		 * For replace case, we need to add extra stripes for extra
6721 		 * duplicated stripes.
6722 		 *
6723 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6724 		 * 2 more stripes (DUP types, otherwise 1).
6725 		 */
6726 		num_alloc_stripes += 2;
6727 
6728 	/*
6729 	 * If this I/O maps to a single device, try to return the device and
6730 	 * physical block information on the stack instead of allocating an
6731 	 * I/O context structure.
6732 	 */
6733 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6734 				io_geom.mirror_num)) {
6735 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6736 		if (mirror_num_ret)
6737 			*mirror_num_ret = io_geom.mirror_num;
6738 		*bioc_ret = NULL;
6739 		goto out;
6740 	}
6741 
6742 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6743 	if (!bioc) {
6744 		ret = -ENOMEM;
6745 		goto out;
6746 	}
6747 	bioc->map_type = map->type;
6748 
6749 	/*
6750 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6751 	 * rule that data stripes are all ordered, then followed with P and Q
6752 	 * (if we have).
6753 	 *
6754 	 * It's still mostly the same as other profiles, just with extra rotation.
6755 	 */
6756 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6757 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6758 		/*
6759 		 * For RAID56 @stripe_nr is already the number of full stripes
6760 		 * before us, which is also the rotation value (needs to modulo
6761 		 * with num_stripes).
6762 		 *
6763 		 * In this case, we just add @stripe_nr with @i, then do the
6764 		 * modulo, to reduce one modulo call.
6765 		 */
6766 		bioc->full_stripe_logical = map->start +
6767 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6768 						  nr_data_stripes(map));
6769 		for (int i = 0; i < io_geom.num_stripes; i++) {
6770 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6771 			u32 stripe_index;
6772 
6773 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6774 			dst->dev = map->stripes[stripe_index].dev;
6775 			dst->physical =
6776 				map->stripes[stripe_index].physical +
6777 				io_geom.stripe_offset +
6778 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6779 		}
6780 	} else {
6781 		/*
6782 		 * For all other non-RAID56 profiles, just copy the target
6783 		 * stripe into the bioc.
6784 		 */
6785 		for (i = 0; i < io_geom.num_stripes; i++) {
6786 			ret = set_io_stripe(fs_info, logical, length,
6787 					    &bioc->stripes[i], map, &io_geom);
6788 			if (ret < 0)
6789 				break;
6790 			io_geom.stripe_index++;
6791 		}
6792 	}
6793 
6794 	if (ret) {
6795 		*bioc_ret = NULL;
6796 		btrfs_put_bioc(bioc);
6797 		goto out;
6798 	}
6799 
6800 	if (op != BTRFS_MAP_READ)
6801 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6802 
6803 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6804 	    op != BTRFS_MAP_READ) {
6805 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6806 					  &io_geom.num_stripes, &io_geom.max_errors);
6807 	}
6808 
6809 	*bioc_ret = bioc;
6810 	bioc->num_stripes = io_geom.num_stripes;
6811 	bioc->max_errors = io_geom.max_errors;
6812 	bioc->mirror_num = io_geom.mirror_num;
6813 
6814 out:
6815 	if (dev_replace_is_ongoing) {
6816 		lockdep_assert_held(&dev_replace->rwsem);
6817 		/* Unlock and let waiting writers proceed */
6818 		up_read(&dev_replace->rwsem);
6819 	}
6820 	btrfs_free_chunk_map(map);
6821 	return ret;
6822 }
6823 
6824 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6825 				      const struct btrfs_fs_devices *fs_devices)
6826 {
6827 	if (args->fsid == NULL)
6828 		return true;
6829 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6830 		return true;
6831 	return false;
6832 }
6833 
6834 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6835 				  const struct btrfs_device *device)
6836 {
6837 	if (args->missing) {
6838 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6839 		    !device->bdev)
6840 			return true;
6841 		return false;
6842 	}
6843 
6844 	if (device->devid != args->devid)
6845 		return false;
6846 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6847 		return false;
6848 	return true;
6849 }
6850 
6851 /*
6852  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6853  * return NULL.
6854  *
6855  * If devid and uuid are both specified, the match must be exact, otherwise
6856  * only devid is used.
6857  */
6858 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6859 				       const struct btrfs_dev_lookup_args *args)
6860 {
6861 	struct btrfs_device *device;
6862 	struct btrfs_fs_devices *seed_devs;
6863 
6864 	if (dev_args_match_fs_devices(args, fs_devices)) {
6865 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6866 			if (dev_args_match_device(args, device))
6867 				return device;
6868 		}
6869 	}
6870 
6871 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6872 		if (!dev_args_match_fs_devices(args, seed_devs))
6873 			continue;
6874 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6875 			if (dev_args_match_device(args, device))
6876 				return device;
6877 		}
6878 	}
6879 
6880 	return NULL;
6881 }
6882 
6883 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6884 					    u64 devid, u8 *dev_uuid)
6885 {
6886 	struct btrfs_device *device;
6887 	unsigned int nofs_flag;
6888 
6889 	/*
6890 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6891 	 * allocation, however we don't want to change btrfs_alloc_device() to
6892 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6893 	 * places.
6894 	 */
6895 
6896 	nofs_flag = memalloc_nofs_save();
6897 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6898 	memalloc_nofs_restore(nofs_flag);
6899 	if (IS_ERR(device))
6900 		return device;
6901 
6902 	list_add(&device->dev_list, &fs_devices->devices);
6903 	device->fs_devices = fs_devices;
6904 	fs_devices->num_devices++;
6905 
6906 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6907 	fs_devices->missing_devices++;
6908 
6909 	return device;
6910 }
6911 
6912 /*
6913  * Allocate new device struct, set up devid and UUID.
6914  *
6915  * @fs_info:	used only for generating a new devid, can be NULL if
6916  *		devid is provided (i.e. @devid != NULL).
6917  * @devid:	a pointer to devid for this device.  If NULL a new devid
6918  *		is generated.
6919  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6920  *		is generated.
6921  * @path:	a pointer to device path if available, NULL otherwise.
6922  *
6923  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6924  * on error.  Returned struct is not linked onto any lists and must be
6925  * destroyed with btrfs_free_device.
6926  */
6927 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6928 					const u64 *devid, const u8 *uuid,
6929 					const char *path)
6930 {
6931 	struct btrfs_device *dev;
6932 	u64 tmp;
6933 
6934 	if (WARN_ON(!devid && !fs_info))
6935 		return ERR_PTR(-EINVAL);
6936 
6937 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6938 	if (!dev)
6939 		return ERR_PTR(-ENOMEM);
6940 
6941 	INIT_LIST_HEAD(&dev->dev_list);
6942 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6943 	INIT_LIST_HEAD(&dev->post_commit_list);
6944 
6945 	atomic_set(&dev->dev_stats_ccnt, 0);
6946 	btrfs_device_data_ordered_init(dev);
6947 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6948 
6949 	if (devid)
6950 		tmp = *devid;
6951 	else {
6952 		int ret;
6953 
6954 		ret = find_next_devid(fs_info, &tmp);
6955 		if (ret) {
6956 			btrfs_free_device(dev);
6957 			return ERR_PTR(ret);
6958 		}
6959 	}
6960 	dev->devid = tmp;
6961 
6962 	if (uuid)
6963 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6964 	else
6965 		generate_random_uuid(dev->uuid);
6966 
6967 	if (path) {
6968 		struct rcu_string *name;
6969 
6970 		name = rcu_string_strdup(path, GFP_KERNEL);
6971 		if (!name) {
6972 			btrfs_free_device(dev);
6973 			return ERR_PTR(-ENOMEM);
6974 		}
6975 		rcu_assign_pointer(dev->name, name);
6976 	}
6977 
6978 	return dev;
6979 }
6980 
6981 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982 					u64 devid, u8 *uuid, bool error)
6983 {
6984 	if (error)
6985 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986 			      devid, uuid);
6987 	else
6988 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989 			      devid, uuid);
6990 }
6991 
6992 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6993 {
6994 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6995 
6996 	return div_u64(map->chunk_len, data_stripes);
6997 }
6998 
6999 #if BITS_PER_LONG == 32
7000 /*
7001  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7002  * can't be accessed on 32bit systems.
7003  *
7004  * This function do mount time check to reject the fs if it already has
7005  * metadata chunk beyond that limit.
7006  */
7007 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7008 				  u64 logical, u64 length, u64 type)
7009 {
7010 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7011 		return 0;
7012 
7013 	if (logical + length < MAX_LFS_FILESIZE)
7014 		return 0;
7015 
7016 	btrfs_err_32bit_limit(fs_info);
7017 	return -EOVERFLOW;
7018 }
7019 
7020 /*
7021  * This is to give early warning for any metadata chunk reaching
7022  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7023  * Although we can still access the metadata, it's not going to be possible
7024  * once the limit is reached.
7025  */
7026 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7027 				  u64 logical, u64 length, u64 type)
7028 {
7029 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7030 		return;
7031 
7032 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7033 		return;
7034 
7035 	btrfs_warn_32bit_limit(fs_info);
7036 }
7037 #endif
7038 
7039 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7040 						  u64 devid, u8 *uuid)
7041 {
7042 	struct btrfs_device *dev;
7043 
7044 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7045 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7046 		return ERR_PTR(-ENOENT);
7047 	}
7048 
7049 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7050 	if (IS_ERR(dev)) {
7051 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7052 			  devid, PTR_ERR(dev));
7053 		return dev;
7054 	}
7055 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7056 
7057 	return dev;
7058 }
7059 
7060 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7061 			  struct btrfs_chunk *chunk)
7062 {
7063 	BTRFS_DEV_LOOKUP_ARGS(args);
7064 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7065 	struct btrfs_chunk_map *map;
7066 	u64 logical;
7067 	u64 length;
7068 	u64 devid;
7069 	u64 type;
7070 	u8 uuid[BTRFS_UUID_SIZE];
7071 	int index;
7072 	int num_stripes;
7073 	int ret;
7074 	int i;
7075 
7076 	logical = key->offset;
7077 	length = btrfs_chunk_length(leaf, chunk);
7078 	type = btrfs_chunk_type(leaf, chunk);
7079 	index = btrfs_bg_flags_to_raid_index(type);
7080 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081 
7082 #if BITS_PER_LONG == 32
7083 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084 	if (ret < 0)
7085 		return ret;
7086 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7087 #endif
7088 
7089 	/*
7090 	 * Only need to verify chunk item if we're reading from sys chunk array,
7091 	 * as chunk item in tree block is already verified by tree-checker.
7092 	 */
7093 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7094 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7095 		if (ret)
7096 			return ret;
7097 	}
7098 
7099 	map = btrfs_find_chunk_map(fs_info, logical, 1);
7100 
7101 	/* already mapped? */
7102 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7103 		btrfs_free_chunk_map(map);
7104 		return 0;
7105 	} else if (map) {
7106 		btrfs_free_chunk_map(map);
7107 	}
7108 
7109 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7110 	if (!map)
7111 		return -ENOMEM;
7112 
7113 	map->start = logical;
7114 	map->chunk_len = length;
7115 	map->num_stripes = num_stripes;
7116 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7117 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7118 	map->type = type;
7119 	/*
7120 	 * We can't use the sub_stripes value, as for profiles other than
7121 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7122 	 * older mkfs (<v5.4).
7123 	 * In that case, it can cause divide-by-zero errors later.
7124 	 * Since currently sub_stripes is fixed for each profile, let's
7125 	 * use the trusted value instead.
7126 	 */
7127 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7128 	map->verified_stripes = 0;
7129 	map->stripe_size = btrfs_calc_stripe_length(map);
7130 	for (i = 0; i < num_stripes; i++) {
7131 		map->stripes[i].physical =
7132 			btrfs_stripe_offset_nr(leaf, chunk, i);
7133 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7134 		args.devid = devid;
7135 		read_extent_buffer(leaf, uuid, (unsigned long)
7136 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7137 				   BTRFS_UUID_SIZE);
7138 		args.uuid = uuid;
7139 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7140 		if (!map->stripes[i].dev) {
7141 			map->stripes[i].dev = handle_missing_device(fs_info,
7142 								    devid, uuid);
7143 			if (IS_ERR(map->stripes[i].dev)) {
7144 				ret = PTR_ERR(map->stripes[i].dev);
7145 				btrfs_free_chunk_map(map);
7146 				return ret;
7147 			}
7148 		}
7149 
7150 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7151 				&(map->stripes[i].dev->dev_state));
7152 	}
7153 
7154 	ret = btrfs_add_chunk_map(fs_info, map);
7155 	if (ret < 0) {
7156 		btrfs_err(fs_info,
7157 			  "failed to add chunk map, start=%llu len=%llu: %d",
7158 			  map->start, map->chunk_len, ret);
7159 	}
7160 
7161 	return ret;
7162 }
7163 
7164 static void fill_device_from_item(struct extent_buffer *leaf,
7165 				 struct btrfs_dev_item *dev_item,
7166 				 struct btrfs_device *device)
7167 {
7168 	unsigned long ptr;
7169 
7170 	device->devid = btrfs_device_id(leaf, dev_item);
7171 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7172 	device->total_bytes = device->disk_total_bytes;
7173 	device->commit_total_bytes = device->disk_total_bytes;
7174 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7175 	device->commit_bytes_used = device->bytes_used;
7176 	device->type = btrfs_device_type(leaf, dev_item);
7177 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7178 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7179 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7180 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7181 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7182 
7183 	ptr = btrfs_device_uuid(dev_item);
7184 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7185 }
7186 
7187 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7188 						  u8 *fsid)
7189 {
7190 	struct btrfs_fs_devices *fs_devices;
7191 	int ret;
7192 
7193 	lockdep_assert_held(&uuid_mutex);
7194 	ASSERT(fsid);
7195 
7196 	/* This will match only for multi-device seed fs */
7197 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7198 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7199 			return fs_devices;
7200 
7201 
7202 	fs_devices = find_fsid(fsid, NULL);
7203 	if (!fs_devices) {
7204 		if (!btrfs_test_opt(fs_info, DEGRADED))
7205 			return ERR_PTR(-ENOENT);
7206 
7207 		fs_devices = alloc_fs_devices(fsid);
7208 		if (IS_ERR(fs_devices))
7209 			return fs_devices;
7210 
7211 		fs_devices->seeding = true;
7212 		fs_devices->opened = 1;
7213 		return fs_devices;
7214 	}
7215 
7216 	/*
7217 	 * Upon first call for a seed fs fsid, just create a private copy of the
7218 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7219 	 */
7220 	fs_devices = clone_fs_devices(fs_devices);
7221 	if (IS_ERR(fs_devices))
7222 		return fs_devices;
7223 
7224 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7225 	if (ret) {
7226 		free_fs_devices(fs_devices);
7227 		return ERR_PTR(ret);
7228 	}
7229 
7230 	if (!fs_devices->seeding) {
7231 		close_fs_devices(fs_devices);
7232 		free_fs_devices(fs_devices);
7233 		return ERR_PTR(-EINVAL);
7234 	}
7235 
7236 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7237 
7238 	return fs_devices;
7239 }
7240 
7241 static int read_one_dev(struct extent_buffer *leaf,
7242 			struct btrfs_dev_item *dev_item)
7243 {
7244 	BTRFS_DEV_LOOKUP_ARGS(args);
7245 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7246 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247 	struct btrfs_device *device;
7248 	u64 devid;
7249 	int ret;
7250 	u8 fs_uuid[BTRFS_FSID_SIZE];
7251 	u8 dev_uuid[BTRFS_UUID_SIZE];
7252 
7253 	devid = btrfs_device_id(leaf, dev_item);
7254 	args.devid = devid;
7255 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7256 			   BTRFS_UUID_SIZE);
7257 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7258 			   BTRFS_FSID_SIZE);
7259 	args.uuid = dev_uuid;
7260 	args.fsid = fs_uuid;
7261 
7262 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7263 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7264 		if (IS_ERR(fs_devices))
7265 			return PTR_ERR(fs_devices);
7266 	}
7267 
7268 	device = btrfs_find_device(fs_info->fs_devices, &args);
7269 	if (!device) {
7270 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271 			btrfs_report_missing_device(fs_info, devid,
7272 							dev_uuid, true);
7273 			return -ENOENT;
7274 		}
7275 
7276 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7277 		if (IS_ERR(device)) {
7278 			btrfs_err(fs_info,
7279 				"failed to add missing dev %llu: %ld",
7280 				devid, PTR_ERR(device));
7281 			return PTR_ERR(device);
7282 		}
7283 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7284 	} else {
7285 		if (!device->bdev) {
7286 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7287 				btrfs_report_missing_device(fs_info,
7288 						devid, dev_uuid, true);
7289 				return -ENOENT;
7290 			}
7291 			btrfs_report_missing_device(fs_info, devid,
7292 							dev_uuid, false);
7293 		}
7294 
7295 		if (!device->bdev &&
7296 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7297 			/*
7298 			 * this happens when a device that was properly setup
7299 			 * in the device info lists suddenly goes bad.
7300 			 * device->bdev is NULL, and so we have to set
7301 			 * device->missing to one here
7302 			 */
7303 			device->fs_devices->missing_devices++;
7304 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7305 		}
7306 
7307 		/* Move the device to its own fs_devices */
7308 		if (device->fs_devices != fs_devices) {
7309 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7310 							&device->dev_state));
7311 
7312 			list_move(&device->dev_list, &fs_devices->devices);
7313 			device->fs_devices->num_devices--;
7314 			fs_devices->num_devices++;
7315 
7316 			device->fs_devices->missing_devices--;
7317 			fs_devices->missing_devices++;
7318 
7319 			device->fs_devices = fs_devices;
7320 		}
7321 	}
7322 
7323 	if (device->fs_devices != fs_info->fs_devices) {
7324 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7325 		if (device->generation !=
7326 		    btrfs_device_generation(leaf, dev_item))
7327 			return -EINVAL;
7328 	}
7329 
7330 	fill_device_from_item(leaf, dev_item, device);
7331 	if (device->bdev) {
7332 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7333 
7334 		if (device->total_bytes > max_total_bytes) {
7335 			btrfs_err(fs_info,
7336 			"device total_bytes should be at most %llu but found %llu",
7337 				  max_total_bytes, device->total_bytes);
7338 			return -EINVAL;
7339 		}
7340 	}
7341 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7342 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7343 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7344 		device->fs_devices->total_rw_bytes += device->total_bytes;
7345 		atomic64_add(device->total_bytes - device->bytes_used,
7346 				&fs_info->free_chunk_space);
7347 	}
7348 	ret = 0;
7349 	return ret;
7350 }
7351 
7352 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7353 {
7354 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7355 	struct extent_buffer *sb;
7356 	struct btrfs_disk_key *disk_key;
7357 	struct btrfs_chunk *chunk;
7358 	u8 *array_ptr;
7359 	unsigned long sb_array_offset;
7360 	int ret = 0;
7361 	u32 num_stripes;
7362 	u32 array_size;
7363 	u32 len = 0;
7364 	u32 cur_offset;
7365 	u64 type;
7366 	struct btrfs_key key;
7367 
7368 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7369 
7370 	/*
7371 	 * We allocated a dummy extent, just to use extent buffer accessors.
7372 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7373 	 * that's fine, we will not go beyond system chunk array anyway.
7374 	 */
7375 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7376 	if (!sb)
7377 		return -ENOMEM;
7378 	set_extent_buffer_uptodate(sb);
7379 
7380 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7381 	array_size = btrfs_super_sys_array_size(super_copy);
7382 
7383 	array_ptr = super_copy->sys_chunk_array;
7384 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7385 	cur_offset = 0;
7386 
7387 	while (cur_offset < array_size) {
7388 		disk_key = (struct btrfs_disk_key *)array_ptr;
7389 		len = sizeof(*disk_key);
7390 		if (cur_offset + len > array_size)
7391 			goto out_short_read;
7392 
7393 		btrfs_disk_key_to_cpu(&key, disk_key);
7394 
7395 		array_ptr += len;
7396 		sb_array_offset += len;
7397 		cur_offset += len;
7398 
7399 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7400 			btrfs_err(fs_info,
7401 			    "unexpected item type %u in sys_array at offset %u",
7402 				  (u32)key.type, cur_offset);
7403 			ret = -EIO;
7404 			break;
7405 		}
7406 
7407 		chunk = (struct btrfs_chunk *)sb_array_offset;
7408 		/*
7409 		 * At least one btrfs_chunk with one stripe must be present,
7410 		 * exact stripe count check comes afterwards
7411 		 */
7412 		len = btrfs_chunk_item_size(1);
7413 		if (cur_offset + len > array_size)
7414 			goto out_short_read;
7415 
7416 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7417 		if (!num_stripes) {
7418 			btrfs_err(fs_info,
7419 			"invalid number of stripes %u in sys_array at offset %u",
7420 				  num_stripes, cur_offset);
7421 			ret = -EIO;
7422 			break;
7423 		}
7424 
7425 		type = btrfs_chunk_type(sb, chunk);
7426 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7427 			btrfs_err(fs_info,
7428 			"invalid chunk type %llu in sys_array at offset %u",
7429 				  type, cur_offset);
7430 			ret = -EIO;
7431 			break;
7432 		}
7433 
7434 		len = btrfs_chunk_item_size(num_stripes);
7435 		if (cur_offset + len > array_size)
7436 			goto out_short_read;
7437 
7438 		ret = read_one_chunk(&key, sb, chunk);
7439 		if (ret)
7440 			break;
7441 
7442 		array_ptr += len;
7443 		sb_array_offset += len;
7444 		cur_offset += len;
7445 	}
7446 	clear_extent_buffer_uptodate(sb);
7447 	free_extent_buffer_stale(sb);
7448 	return ret;
7449 
7450 out_short_read:
7451 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7452 			len, cur_offset);
7453 	clear_extent_buffer_uptodate(sb);
7454 	free_extent_buffer_stale(sb);
7455 	return -EIO;
7456 }
7457 
7458 /*
7459  * Check if all chunks in the fs are OK for read-write degraded mount
7460  *
7461  * If the @failing_dev is specified, it's accounted as missing.
7462  *
7463  * Return true if all chunks meet the minimal RW mount requirements.
7464  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7465  */
7466 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7467 					struct btrfs_device *failing_dev)
7468 {
7469 	struct btrfs_chunk_map *map;
7470 	u64 next_start;
7471 	bool ret = true;
7472 
7473 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7474 	/* No chunk at all? Return false anyway */
7475 	if (!map) {
7476 		ret = false;
7477 		goto out;
7478 	}
7479 	while (map) {
7480 		int missing = 0;
7481 		int max_tolerated;
7482 		int i;
7483 
7484 		max_tolerated =
7485 			btrfs_get_num_tolerated_disk_barrier_failures(
7486 					map->type);
7487 		for (i = 0; i < map->num_stripes; i++) {
7488 			struct btrfs_device *dev = map->stripes[i].dev;
7489 
7490 			if (!dev || !dev->bdev ||
7491 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7492 			    dev->last_flush_error)
7493 				missing++;
7494 			else if (failing_dev && failing_dev == dev)
7495 				missing++;
7496 		}
7497 		if (missing > max_tolerated) {
7498 			if (!failing_dev)
7499 				btrfs_warn(fs_info,
7500 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7501 				   map->start, missing, max_tolerated);
7502 			btrfs_free_chunk_map(map);
7503 			ret = false;
7504 			goto out;
7505 		}
7506 		next_start = map->start + map->chunk_len;
7507 		btrfs_free_chunk_map(map);
7508 
7509 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7510 	}
7511 out:
7512 	return ret;
7513 }
7514 
7515 static void readahead_tree_node_children(struct extent_buffer *node)
7516 {
7517 	int i;
7518 	const int nr_items = btrfs_header_nritems(node);
7519 
7520 	for (i = 0; i < nr_items; i++)
7521 		btrfs_readahead_node_child(node, i);
7522 }
7523 
7524 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7525 {
7526 	struct btrfs_root *root = fs_info->chunk_root;
7527 	struct btrfs_path *path;
7528 	struct extent_buffer *leaf;
7529 	struct btrfs_key key;
7530 	struct btrfs_key found_key;
7531 	int ret;
7532 	int slot;
7533 	int iter_ret = 0;
7534 	u64 total_dev = 0;
7535 	u64 last_ra_node = 0;
7536 
7537 	path = btrfs_alloc_path();
7538 	if (!path)
7539 		return -ENOMEM;
7540 
7541 	/*
7542 	 * uuid_mutex is needed only if we are mounting a sprout FS
7543 	 * otherwise we don't need it.
7544 	 */
7545 	mutex_lock(&uuid_mutex);
7546 
7547 	/*
7548 	 * It is possible for mount and umount to race in such a way that
7549 	 * we execute this code path, but open_fs_devices failed to clear
7550 	 * total_rw_bytes. We certainly want it cleared before reading the
7551 	 * device items, so clear it here.
7552 	 */
7553 	fs_info->fs_devices->total_rw_bytes = 0;
7554 
7555 	/*
7556 	 * Lockdep complains about possible circular locking dependency between
7557 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7558 	 * used for freeze procection of a fs (struct super_block.s_writers),
7559 	 * which we take when starting a transaction, and extent buffers of the
7560 	 * chunk tree if we call read_one_dev() while holding a lock on an
7561 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7562 	 * and at this point there can't be any concurrent task modifying the
7563 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7564 	 */
7565 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7566 	path->skip_locking = 1;
7567 
7568 	/*
7569 	 * Read all device items, and then all the chunk items. All
7570 	 * device items are found before any chunk item (their object id
7571 	 * is smaller than the lowest possible object id for a chunk
7572 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7573 	 */
7574 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7575 	key.offset = 0;
7576 	key.type = 0;
7577 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7578 		struct extent_buffer *node = path->nodes[1];
7579 
7580 		leaf = path->nodes[0];
7581 		slot = path->slots[0];
7582 
7583 		if (node) {
7584 			if (last_ra_node != node->start) {
7585 				readahead_tree_node_children(node);
7586 				last_ra_node = node->start;
7587 			}
7588 		}
7589 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7590 			struct btrfs_dev_item *dev_item;
7591 			dev_item = btrfs_item_ptr(leaf, slot,
7592 						  struct btrfs_dev_item);
7593 			ret = read_one_dev(leaf, dev_item);
7594 			if (ret)
7595 				goto error;
7596 			total_dev++;
7597 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7598 			struct btrfs_chunk *chunk;
7599 
7600 			/*
7601 			 * We are only called at mount time, so no need to take
7602 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7603 			 * we always lock first fs_info->chunk_mutex before
7604 			 * acquiring any locks on the chunk tree. This is a
7605 			 * requirement for chunk allocation, see the comment on
7606 			 * top of btrfs_chunk_alloc() for details.
7607 			 */
7608 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7609 			ret = read_one_chunk(&found_key, leaf, chunk);
7610 			if (ret)
7611 				goto error;
7612 		}
7613 	}
7614 	/* Catch error found during iteration */
7615 	if (iter_ret < 0) {
7616 		ret = iter_ret;
7617 		goto error;
7618 	}
7619 
7620 	/*
7621 	 * After loading chunk tree, we've got all device information,
7622 	 * do another round of validation checks.
7623 	 */
7624 	if (total_dev != fs_info->fs_devices->total_devices) {
7625 		btrfs_warn(fs_info,
7626 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7627 			  btrfs_super_num_devices(fs_info->super_copy),
7628 			  total_dev);
7629 		fs_info->fs_devices->total_devices = total_dev;
7630 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7631 	}
7632 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7633 	    fs_info->fs_devices->total_rw_bytes) {
7634 		btrfs_err(fs_info,
7635 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7636 			  btrfs_super_total_bytes(fs_info->super_copy),
7637 			  fs_info->fs_devices->total_rw_bytes);
7638 		ret = -EINVAL;
7639 		goto error;
7640 	}
7641 	ret = 0;
7642 error:
7643 	mutex_unlock(&uuid_mutex);
7644 
7645 	btrfs_free_path(path);
7646 	return ret;
7647 }
7648 
7649 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7650 {
7651 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7652 	struct btrfs_device *device;
7653 	int ret = 0;
7654 
7655 	fs_devices->fs_info = fs_info;
7656 
7657 	mutex_lock(&fs_devices->device_list_mutex);
7658 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7659 		device->fs_info = fs_info;
7660 
7661 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7662 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7663 			device->fs_info = fs_info;
7664 			ret = btrfs_get_dev_zone_info(device, false);
7665 			if (ret)
7666 				break;
7667 		}
7668 
7669 		seed_devs->fs_info = fs_info;
7670 	}
7671 	mutex_unlock(&fs_devices->device_list_mutex);
7672 
7673 	return ret;
7674 }
7675 
7676 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7677 				 const struct btrfs_dev_stats_item *ptr,
7678 				 int index)
7679 {
7680 	u64 val;
7681 
7682 	read_extent_buffer(eb, &val,
7683 			   offsetof(struct btrfs_dev_stats_item, values) +
7684 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7685 			   sizeof(val));
7686 	return val;
7687 }
7688 
7689 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7690 				      struct btrfs_dev_stats_item *ptr,
7691 				      int index, u64 val)
7692 {
7693 	write_extent_buffer(eb, &val,
7694 			    offsetof(struct btrfs_dev_stats_item, values) +
7695 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7696 			    sizeof(val));
7697 }
7698 
7699 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7700 				       struct btrfs_path *path)
7701 {
7702 	struct btrfs_dev_stats_item *ptr;
7703 	struct extent_buffer *eb;
7704 	struct btrfs_key key;
7705 	int item_size;
7706 	int i, ret, slot;
7707 
7708 	if (!device->fs_info->dev_root)
7709 		return 0;
7710 
7711 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7712 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7713 	key.offset = device->devid;
7714 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7715 	if (ret) {
7716 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7717 			btrfs_dev_stat_set(device, i, 0);
7718 		device->dev_stats_valid = 1;
7719 		btrfs_release_path(path);
7720 		return ret < 0 ? ret : 0;
7721 	}
7722 	slot = path->slots[0];
7723 	eb = path->nodes[0];
7724 	item_size = btrfs_item_size(eb, slot);
7725 
7726 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7727 
7728 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7729 		if (item_size >= (1 + i) * sizeof(__le64))
7730 			btrfs_dev_stat_set(device, i,
7731 					   btrfs_dev_stats_value(eb, ptr, i));
7732 		else
7733 			btrfs_dev_stat_set(device, i, 0);
7734 	}
7735 
7736 	device->dev_stats_valid = 1;
7737 	btrfs_dev_stat_print_on_load(device);
7738 	btrfs_release_path(path);
7739 
7740 	return 0;
7741 }
7742 
7743 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7744 {
7745 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7746 	struct btrfs_device *device;
7747 	struct btrfs_path *path = NULL;
7748 	int ret = 0;
7749 
7750 	path = btrfs_alloc_path();
7751 	if (!path)
7752 		return -ENOMEM;
7753 
7754 	mutex_lock(&fs_devices->device_list_mutex);
7755 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7756 		ret = btrfs_device_init_dev_stats(device, path);
7757 		if (ret)
7758 			goto out;
7759 	}
7760 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7761 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7762 			ret = btrfs_device_init_dev_stats(device, path);
7763 			if (ret)
7764 				goto out;
7765 		}
7766 	}
7767 out:
7768 	mutex_unlock(&fs_devices->device_list_mutex);
7769 
7770 	btrfs_free_path(path);
7771 	return ret;
7772 }
7773 
7774 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7775 				struct btrfs_device *device)
7776 {
7777 	struct btrfs_fs_info *fs_info = trans->fs_info;
7778 	struct btrfs_root *dev_root = fs_info->dev_root;
7779 	struct btrfs_path *path;
7780 	struct btrfs_key key;
7781 	struct extent_buffer *eb;
7782 	struct btrfs_dev_stats_item *ptr;
7783 	int ret;
7784 	int i;
7785 
7786 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7787 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7788 	key.offset = device->devid;
7789 
7790 	path = btrfs_alloc_path();
7791 	if (!path)
7792 		return -ENOMEM;
7793 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7794 	if (ret < 0) {
7795 		btrfs_warn_in_rcu(fs_info,
7796 			"error %d while searching for dev_stats item for device %s",
7797 				  ret, btrfs_dev_name(device));
7798 		goto out;
7799 	}
7800 
7801 	if (ret == 0 &&
7802 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7803 		/* need to delete old one and insert a new one */
7804 		ret = btrfs_del_item(trans, dev_root, path);
7805 		if (ret != 0) {
7806 			btrfs_warn_in_rcu(fs_info,
7807 				"delete too small dev_stats item for device %s failed %d",
7808 					  btrfs_dev_name(device), ret);
7809 			goto out;
7810 		}
7811 		ret = 1;
7812 	}
7813 
7814 	if (ret == 1) {
7815 		/* need to insert a new item */
7816 		btrfs_release_path(path);
7817 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7818 					      &key, sizeof(*ptr));
7819 		if (ret < 0) {
7820 			btrfs_warn_in_rcu(fs_info,
7821 				"insert dev_stats item for device %s failed %d",
7822 				btrfs_dev_name(device), ret);
7823 			goto out;
7824 		}
7825 	}
7826 
7827 	eb = path->nodes[0];
7828 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7829 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7830 		btrfs_set_dev_stats_value(eb, ptr, i,
7831 					  btrfs_dev_stat_read(device, i));
7832 	btrfs_mark_buffer_dirty(trans, eb);
7833 
7834 out:
7835 	btrfs_free_path(path);
7836 	return ret;
7837 }
7838 
7839 /*
7840  * called from commit_transaction. Writes all changed device stats to disk.
7841  */
7842 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7843 {
7844 	struct btrfs_fs_info *fs_info = trans->fs_info;
7845 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7846 	struct btrfs_device *device;
7847 	int stats_cnt;
7848 	int ret = 0;
7849 
7850 	mutex_lock(&fs_devices->device_list_mutex);
7851 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7852 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7853 		if (!device->dev_stats_valid || stats_cnt == 0)
7854 			continue;
7855 
7856 
7857 		/*
7858 		 * There is a LOAD-LOAD control dependency between the value of
7859 		 * dev_stats_ccnt and updating the on-disk values which requires
7860 		 * reading the in-memory counters. Such control dependencies
7861 		 * require explicit read memory barriers.
7862 		 *
7863 		 * This memory barriers pairs with smp_mb__before_atomic in
7864 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7865 		 * barrier implied by atomic_xchg in
7866 		 * btrfs_dev_stats_read_and_reset
7867 		 */
7868 		smp_rmb();
7869 
7870 		ret = update_dev_stat_item(trans, device);
7871 		if (!ret)
7872 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7873 	}
7874 	mutex_unlock(&fs_devices->device_list_mutex);
7875 
7876 	return ret;
7877 }
7878 
7879 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7880 {
7881 	btrfs_dev_stat_inc(dev, index);
7882 
7883 	if (!dev->dev_stats_valid)
7884 		return;
7885 	btrfs_err_rl_in_rcu(dev->fs_info,
7886 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7887 			   btrfs_dev_name(dev),
7888 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7889 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7890 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7891 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7892 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7893 }
7894 
7895 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7896 {
7897 	int i;
7898 
7899 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7900 		if (btrfs_dev_stat_read(dev, i) != 0)
7901 			break;
7902 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7903 		return; /* all values == 0, suppress message */
7904 
7905 	btrfs_info_in_rcu(dev->fs_info,
7906 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7907 	       btrfs_dev_name(dev),
7908 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7909 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7910 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7911 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7912 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7913 }
7914 
7915 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7916 			struct btrfs_ioctl_get_dev_stats *stats)
7917 {
7918 	BTRFS_DEV_LOOKUP_ARGS(args);
7919 	struct btrfs_device *dev;
7920 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7921 	int i;
7922 
7923 	mutex_lock(&fs_devices->device_list_mutex);
7924 	args.devid = stats->devid;
7925 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7926 	mutex_unlock(&fs_devices->device_list_mutex);
7927 
7928 	if (!dev) {
7929 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7930 		return -ENODEV;
7931 	} else if (!dev->dev_stats_valid) {
7932 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7933 		return -ENODEV;
7934 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7935 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7936 			if (stats->nr_items > i)
7937 				stats->values[i] =
7938 					btrfs_dev_stat_read_and_reset(dev, i);
7939 			else
7940 				btrfs_dev_stat_set(dev, i, 0);
7941 		}
7942 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7943 			   current->comm, task_pid_nr(current));
7944 	} else {
7945 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7946 			if (stats->nr_items > i)
7947 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7948 	}
7949 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7950 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7951 	return 0;
7952 }
7953 
7954 /*
7955  * Update the size and bytes used for each device where it changed.  This is
7956  * delayed since we would otherwise get errors while writing out the
7957  * superblocks.
7958  *
7959  * Must be invoked during transaction commit.
7960  */
7961 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7962 {
7963 	struct btrfs_device *curr, *next;
7964 
7965 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7966 
7967 	if (list_empty(&trans->dev_update_list))
7968 		return;
7969 
7970 	/*
7971 	 * We don't need the device_list_mutex here.  This list is owned by the
7972 	 * transaction and the transaction must complete before the device is
7973 	 * released.
7974 	 */
7975 	mutex_lock(&trans->fs_info->chunk_mutex);
7976 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7977 				 post_commit_list) {
7978 		list_del_init(&curr->post_commit_list);
7979 		curr->commit_total_bytes = curr->disk_total_bytes;
7980 		curr->commit_bytes_used = curr->bytes_used;
7981 	}
7982 	mutex_unlock(&trans->fs_info->chunk_mutex);
7983 }
7984 
7985 /*
7986  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7987  */
7988 int btrfs_bg_type_to_factor(u64 flags)
7989 {
7990 	const int index = btrfs_bg_flags_to_raid_index(flags);
7991 
7992 	return btrfs_raid_array[index].ncopies;
7993 }
7994 
7995 
7996 
7997 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7998 				 u64 chunk_offset, u64 devid,
7999 				 u64 physical_offset, u64 physical_len)
8000 {
8001 	struct btrfs_dev_lookup_args args = { .devid = devid };
8002 	struct btrfs_chunk_map *map;
8003 	struct btrfs_device *dev;
8004 	u64 stripe_len;
8005 	bool found = false;
8006 	int ret = 0;
8007 	int i;
8008 
8009 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
8010 	if (!map) {
8011 		btrfs_err(fs_info,
8012 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8013 			  physical_offset, devid);
8014 		ret = -EUCLEAN;
8015 		goto out;
8016 	}
8017 
8018 	stripe_len = btrfs_calc_stripe_length(map);
8019 	if (physical_len != stripe_len) {
8020 		btrfs_err(fs_info,
8021 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8022 			  physical_offset, devid, map->start, physical_len,
8023 			  stripe_len);
8024 		ret = -EUCLEAN;
8025 		goto out;
8026 	}
8027 
8028 	/*
8029 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8030 	 * space. Although kernel can handle it without problem, better to warn
8031 	 * the users.
8032 	 */
8033 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8034 		btrfs_warn(fs_info,
8035 		"devid %llu physical %llu len %llu inside the reserved space",
8036 			   devid, physical_offset, physical_len);
8037 
8038 	for (i = 0; i < map->num_stripes; i++) {
8039 		if (map->stripes[i].dev->devid == devid &&
8040 		    map->stripes[i].physical == physical_offset) {
8041 			found = true;
8042 			if (map->verified_stripes >= map->num_stripes) {
8043 				btrfs_err(fs_info,
8044 				"too many dev extents for chunk %llu found",
8045 					  map->start);
8046 				ret = -EUCLEAN;
8047 				goto out;
8048 			}
8049 			map->verified_stripes++;
8050 			break;
8051 		}
8052 	}
8053 	if (!found) {
8054 		btrfs_err(fs_info,
8055 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8056 			physical_offset, devid);
8057 		ret = -EUCLEAN;
8058 	}
8059 
8060 	/* Make sure no dev extent is beyond device boundary */
8061 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8062 	if (!dev) {
8063 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8064 		ret = -EUCLEAN;
8065 		goto out;
8066 	}
8067 
8068 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8069 		btrfs_err(fs_info,
8070 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8071 			  devid, physical_offset, physical_len,
8072 			  dev->disk_total_bytes);
8073 		ret = -EUCLEAN;
8074 		goto out;
8075 	}
8076 
8077 	if (dev->zone_info) {
8078 		u64 zone_size = dev->zone_info->zone_size;
8079 
8080 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8081 		    !IS_ALIGNED(physical_len, zone_size)) {
8082 			btrfs_err(fs_info,
8083 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8084 				  devid, physical_offset, physical_len);
8085 			ret = -EUCLEAN;
8086 			goto out;
8087 		}
8088 	}
8089 
8090 out:
8091 	btrfs_free_chunk_map(map);
8092 	return ret;
8093 }
8094 
8095 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8096 {
8097 	struct rb_node *node;
8098 	int ret = 0;
8099 
8100 	read_lock(&fs_info->mapping_tree_lock);
8101 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8102 		struct btrfs_chunk_map *map;
8103 
8104 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8105 		if (map->num_stripes != map->verified_stripes) {
8106 			btrfs_err(fs_info,
8107 			"chunk %llu has missing dev extent, have %d expect %d",
8108 				  map->start, map->verified_stripes, map->num_stripes);
8109 			ret = -EUCLEAN;
8110 			goto out;
8111 		}
8112 	}
8113 out:
8114 	read_unlock(&fs_info->mapping_tree_lock);
8115 	return ret;
8116 }
8117 
8118 /*
8119  * Ensure that all dev extents are mapped to correct chunk, otherwise
8120  * later chunk allocation/free would cause unexpected behavior.
8121  *
8122  * NOTE: This will iterate through the whole device tree, which should be of
8123  * the same size level as the chunk tree.  This slightly increases mount time.
8124  */
8125 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8126 {
8127 	struct btrfs_path *path;
8128 	struct btrfs_root *root = fs_info->dev_root;
8129 	struct btrfs_key key;
8130 	u64 prev_devid = 0;
8131 	u64 prev_dev_ext_end = 0;
8132 	int ret = 0;
8133 
8134 	/*
8135 	 * We don't have a dev_root because we mounted with ignorebadroots and
8136 	 * failed to load the root, so we want to skip the verification in this
8137 	 * case for sure.
8138 	 *
8139 	 * However if the dev root is fine, but the tree itself is corrupted
8140 	 * we'd still fail to mount.  This verification is only to make sure
8141 	 * writes can happen safely, so instead just bypass this check
8142 	 * completely in the case of IGNOREBADROOTS.
8143 	 */
8144 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8145 		return 0;
8146 
8147 	key.objectid = 1;
8148 	key.type = BTRFS_DEV_EXTENT_KEY;
8149 	key.offset = 0;
8150 
8151 	path = btrfs_alloc_path();
8152 	if (!path)
8153 		return -ENOMEM;
8154 
8155 	path->reada = READA_FORWARD;
8156 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8157 	if (ret < 0)
8158 		goto out;
8159 
8160 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8161 		ret = btrfs_next_leaf(root, path);
8162 		if (ret < 0)
8163 			goto out;
8164 		/* No dev extents at all? Not good */
8165 		if (ret > 0) {
8166 			ret = -EUCLEAN;
8167 			goto out;
8168 		}
8169 	}
8170 	while (1) {
8171 		struct extent_buffer *leaf = path->nodes[0];
8172 		struct btrfs_dev_extent *dext;
8173 		int slot = path->slots[0];
8174 		u64 chunk_offset;
8175 		u64 physical_offset;
8176 		u64 physical_len;
8177 		u64 devid;
8178 
8179 		btrfs_item_key_to_cpu(leaf, &key, slot);
8180 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8181 			break;
8182 		devid = key.objectid;
8183 		physical_offset = key.offset;
8184 
8185 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8186 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8187 		physical_len = btrfs_dev_extent_length(leaf, dext);
8188 
8189 		/* Check if this dev extent overlaps with the previous one */
8190 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8191 			btrfs_err(fs_info,
8192 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8193 				  devid, physical_offset, prev_dev_ext_end);
8194 			ret = -EUCLEAN;
8195 			goto out;
8196 		}
8197 
8198 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8199 					    physical_offset, physical_len);
8200 		if (ret < 0)
8201 			goto out;
8202 		prev_devid = devid;
8203 		prev_dev_ext_end = physical_offset + physical_len;
8204 
8205 		ret = btrfs_next_item(root, path);
8206 		if (ret < 0)
8207 			goto out;
8208 		if (ret > 0) {
8209 			ret = 0;
8210 			break;
8211 		}
8212 	}
8213 
8214 	/* Ensure all chunks have corresponding dev extents */
8215 	ret = verify_chunk_dev_extent_mapping(fs_info);
8216 out:
8217 	btrfs_free_path(path);
8218 	return ret;
8219 }
8220 
8221 /*
8222  * Check whether the given block group or device is pinned by any inode being
8223  * used as a swapfile.
8224  */
8225 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8226 {
8227 	struct btrfs_swapfile_pin *sp;
8228 	struct rb_node *node;
8229 
8230 	spin_lock(&fs_info->swapfile_pins_lock);
8231 	node = fs_info->swapfile_pins.rb_node;
8232 	while (node) {
8233 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8234 		if (ptr < sp->ptr)
8235 			node = node->rb_left;
8236 		else if (ptr > sp->ptr)
8237 			node = node->rb_right;
8238 		else
8239 			break;
8240 	}
8241 	spin_unlock(&fs_info->swapfile_pins_lock);
8242 	return node != NULL;
8243 }
8244 
8245 static int relocating_repair_kthread(void *data)
8246 {
8247 	struct btrfs_block_group *cache = data;
8248 	struct btrfs_fs_info *fs_info = cache->fs_info;
8249 	u64 target;
8250 	int ret = 0;
8251 
8252 	target = cache->start;
8253 	btrfs_put_block_group(cache);
8254 
8255 	sb_start_write(fs_info->sb);
8256 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8257 		btrfs_info(fs_info,
8258 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8259 			   target);
8260 		sb_end_write(fs_info->sb);
8261 		return -EBUSY;
8262 	}
8263 
8264 	mutex_lock(&fs_info->reclaim_bgs_lock);
8265 
8266 	/* Ensure block group still exists */
8267 	cache = btrfs_lookup_block_group(fs_info, target);
8268 	if (!cache)
8269 		goto out;
8270 
8271 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8272 		goto out;
8273 
8274 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8275 	if (ret < 0)
8276 		goto out;
8277 
8278 	btrfs_info(fs_info,
8279 		   "zoned: relocating block group %llu to repair IO failure",
8280 		   target);
8281 	ret = btrfs_relocate_chunk(fs_info, target);
8282 
8283 out:
8284 	if (cache)
8285 		btrfs_put_block_group(cache);
8286 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8287 	btrfs_exclop_finish(fs_info);
8288 	sb_end_write(fs_info->sb);
8289 
8290 	return ret;
8291 }
8292 
8293 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8294 {
8295 	struct btrfs_block_group *cache;
8296 
8297 	if (!btrfs_is_zoned(fs_info))
8298 		return false;
8299 
8300 	/* Do not attempt to repair in degraded state */
8301 	if (btrfs_test_opt(fs_info, DEGRADED))
8302 		return true;
8303 
8304 	cache = btrfs_lookup_block_group(fs_info, logical);
8305 	if (!cache)
8306 		return true;
8307 
8308 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8309 		btrfs_put_block_group(cache);
8310 		return true;
8311 	}
8312 
8313 	kthread_run(relocating_repair_kthread, cache,
8314 		    "btrfs-relocating-repair");
8315 
8316 	return true;
8317 }
8318 
8319 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8320 				    struct btrfs_io_stripe *smap,
8321 				    u64 logical)
8322 {
8323 	int data_stripes = nr_bioc_data_stripes(bioc);
8324 	int i;
8325 
8326 	for (i = 0; i < data_stripes; i++) {
8327 		u64 stripe_start = bioc->full_stripe_logical +
8328 				   btrfs_stripe_nr_to_offset(i);
8329 
8330 		if (logical >= stripe_start &&
8331 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8332 			break;
8333 	}
8334 	ASSERT(i < data_stripes);
8335 	smap->dev = bioc->stripes[i].dev;
8336 	smap->physical = bioc->stripes[i].physical +
8337 			((logical - bioc->full_stripe_logical) &
8338 			 BTRFS_STRIPE_LEN_MASK);
8339 }
8340 
8341 /*
8342  * Map a repair write into a single device.
8343  *
8344  * A repair write is triggered by read time repair or scrub, which would only
8345  * update the contents of a single device.
8346  * Not update any other mirrors nor go through RMW path.
8347  *
8348  * Callers should ensure:
8349  *
8350  * - Call btrfs_bio_counter_inc_blocked() first
8351  * - The range does not cross stripe boundary
8352  * - Has a valid @mirror_num passed in.
8353  */
8354 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8355 			   struct btrfs_io_stripe *smap, u64 logical,
8356 			   u32 length, int mirror_num)
8357 {
8358 	struct btrfs_io_context *bioc = NULL;
8359 	u64 map_length = length;
8360 	int mirror_ret = mirror_num;
8361 	int ret;
8362 
8363 	ASSERT(mirror_num > 0);
8364 
8365 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8366 			      &bioc, smap, &mirror_ret);
8367 	if (ret < 0)
8368 		return ret;
8369 
8370 	/* The map range should not cross stripe boundary. */
8371 	ASSERT(map_length >= length);
8372 
8373 	/* Already mapped to single stripe. */
8374 	if (!bioc)
8375 		goto out;
8376 
8377 	/* Map the RAID56 multi-stripe writes to a single one. */
8378 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8379 		map_raid56_repair_block(bioc, smap, logical);
8380 		goto out;
8381 	}
8382 
8383 	ASSERT(mirror_num <= bioc->num_stripes);
8384 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8385 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8386 out:
8387 	btrfs_put_bioc(bioc);
8388 	ASSERT(smap->dev);
8389 	return 0;
8390 }
8391