1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 #include "zoned.h" 35 36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 37 [BTRFS_RAID_RAID10] = { 38 .sub_stripes = 2, 39 .dev_stripes = 1, 40 .devs_max = 0, /* 0 == as many as possible */ 41 .devs_min = 4, 42 .tolerated_failures = 1, 43 .devs_increment = 2, 44 .ncopies = 2, 45 .nparity = 0, 46 .raid_name = "raid10", 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 49 }, 50 [BTRFS_RAID_RAID1] = { 51 .sub_stripes = 1, 52 .dev_stripes = 1, 53 .devs_max = 2, 54 .devs_min = 2, 55 .tolerated_failures = 1, 56 .devs_increment = 2, 57 .ncopies = 2, 58 .nparity = 0, 59 .raid_name = "raid1", 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 62 }, 63 [BTRFS_RAID_RAID1C3] = { 64 .sub_stripes = 1, 65 .dev_stripes = 1, 66 .devs_max = 3, 67 .devs_min = 3, 68 .tolerated_failures = 2, 69 .devs_increment = 3, 70 .ncopies = 3, 71 .nparity = 0, 72 .raid_name = "raid1c3", 73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 75 }, 76 [BTRFS_RAID_RAID1C4] = { 77 .sub_stripes = 1, 78 .dev_stripes = 1, 79 .devs_max = 4, 80 .devs_min = 4, 81 .tolerated_failures = 3, 82 .devs_increment = 4, 83 .ncopies = 4, 84 .nparity = 0, 85 .raid_name = "raid1c4", 86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 88 }, 89 [BTRFS_RAID_DUP] = { 90 .sub_stripes = 1, 91 .dev_stripes = 2, 92 .devs_max = 1, 93 .devs_min = 1, 94 .tolerated_failures = 0, 95 .devs_increment = 1, 96 .ncopies = 2, 97 .nparity = 0, 98 .raid_name = "dup", 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 100 .mindev_error = 0, 101 }, 102 [BTRFS_RAID_RAID0] = { 103 .sub_stripes = 1, 104 .dev_stripes = 1, 105 .devs_max = 0, 106 .devs_min = 2, 107 .tolerated_failures = 0, 108 .devs_increment = 1, 109 .ncopies = 1, 110 .nparity = 0, 111 .raid_name = "raid0", 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 113 .mindev_error = 0, 114 }, 115 [BTRFS_RAID_SINGLE] = { 116 .sub_stripes = 1, 117 .dev_stripes = 1, 118 .devs_max = 1, 119 .devs_min = 1, 120 .tolerated_failures = 0, 121 .devs_increment = 1, 122 .ncopies = 1, 123 .nparity = 0, 124 .raid_name = "single", 125 .bg_flag = 0, 126 .mindev_error = 0, 127 }, 128 [BTRFS_RAID_RAID5] = { 129 .sub_stripes = 1, 130 .dev_stripes = 1, 131 .devs_max = 0, 132 .devs_min = 2, 133 .tolerated_failures = 1, 134 .devs_increment = 1, 135 .ncopies = 1, 136 .nparity = 1, 137 .raid_name = "raid5", 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 140 }, 141 [BTRFS_RAID_RAID6] = { 142 .sub_stripes = 1, 143 .dev_stripes = 1, 144 .devs_max = 0, 145 .devs_min = 3, 146 .tolerated_failures = 2, 147 .devs_increment = 1, 148 .ncopies = 1, 149 .nparity = 2, 150 .raid_name = "raid6", 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 153 }, 154 }; 155 156 const char *btrfs_bg_type_to_raid_name(u64 flags) 157 { 158 const int index = btrfs_bg_flags_to_raid_index(flags); 159 160 if (index >= BTRFS_NR_RAID_TYPES) 161 return NULL; 162 163 return btrfs_raid_array[index].raid_name; 164 } 165 166 /* 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf 168 * bytes including terminating null byte. 169 */ 170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 171 { 172 int i; 173 int ret; 174 char *bp = buf; 175 u64 flags = bg_flags; 176 u32 size_bp = size_buf; 177 178 if (!flags) { 179 strcpy(bp, "NONE"); 180 return; 181 } 182 183 #define DESCRIBE_FLAG(flag, desc) \ 184 do { \ 185 if (flags & (flag)) { \ 186 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 187 if (ret < 0 || ret >= size_bp) \ 188 goto out_overflow; \ 189 size_bp -= ret; \ 190 bp += ret; \ 191 flags &= ~(flag); \ 192 } \ 193 } while (0) 194 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 198 199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 202 btrfs_raid_array[i].raid_name); 203 #undef DESCRIBE_FLAG 204 205 if (flags) { 206 ret = snprintf(bp, size_bp, "0x%llx|", flags); 207 size_bp -= ret; 208 } 209 210 if (size_bp < size_buf) 211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 212 213 /* 214 * The text is trimmed, it's up to the caller to provide sufficiently 215 * large buffer 216 */ 217 out_overflow:; 218 } 219 220 static int init_first_rw_device(struct btrfs_trans_handle *trans); 221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 225 enum btrfs_map_op op, 226 u64 logical, u64 *length, 227 struct btrfs_bio **bbio_ret, 228 int mirror_num, int need_raid_map); 229 230 /* 231 * Device locking 232 * ============== 233 * 234 * There are several mutexes that protect manipulation of devices and low-level 235 * structures like chunks but not block groups, extents or files 236 * 237 * uuid_mutex (global lock) 238 * ------------------------ 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 241 * device) or requested by the device= mount option 242 * 243 * the mutex can be very coarse and can cover long-running operations 244 * 245 * protects: updates to fs_devices counters like missing devices, rw devices, 246 * seeding, structure cloning, opening/closing devices at mount/umount time 247 * 248 * global::fs_devs - add, remove, updates to the global list 249 * 250 * does not protect: manipulation of the fs_devices::devices list in general 251 * but in mount context it could be used to exclude list modifications by eg. 252 * scan ioctl 253 * 254 * btrfs_device::name - renames (write side), read is RCU 255 * 256 * fs_devices::device_list_mutex (per-fs, with RCU) 257 * ------------------------------------------------ 258 * protects updates to fs_devices::devices, ie. adding and deleting 259 * 260 * simple list traversal with read-only actions can be done with RCU protection 261 * 262 * may be used to exclude some operations from running concurrently without any 263 * modifications to the list (see write_all_supers) 264 * 265 * Is not required at mount and close times, because our device list is 266 * protected by the uuid_mutex at that point. 267 * 268 * balance_mutex 269 * ------------- 270 * protects balance structures (status, state) and context accessed from 271 * several places (internally, ioctl) 272 * 273 * chunk_mutex 274 * ----------- 275 * protects chunks, adding or removing during allocation, trim or when a new 276 * device is added/removed. Additionally it also protects post_commit_list of 277 * individual devices, since they can be added to the transaction's 278 * post_commit_list only with chunk_mutex held. 279 * 280 * cleaner_mutex 281 * ------------- 282 * a big lock that is held by the cleaner thread and prevents running subvolume 283 * cleaning together with relocation or delayed iputs 284 * 285 * 286 * Lock nesting 287 * ============ 288 * 289 * uuid_mutex 290 * device_list_mutex 291 * chunk_mutex 292 * balance_mutex 293 * 294 * 295 * Exclusive operations 296 * ==================== 297 * 298 * Maintains the exclusivity of the following operations that apply to the 299 * whole filesystem and cannot run in parallel. 300 * 301 * - Balance (*) 302 * - Device add 303 * - Device remove 304 * - Device replace (*) 305 * - Resize 306 * 307 * The device operations (as above) can be in one of the following states: 308 * 309 * - Running state 310 * - Paused state 311 * - Completed state 312 * 313 * Only device operations marked with (*) can go into the Paused state for the 314 * following reasons: 315 * 316 * - ioctl (only Balance can be Paused through ioctl) 317 * - filesystem remounted as read-only 318 * - filesystem unmounted and mounted as read-only 319 * - system power-cycle and filesystem mounted as read-only 320 * - filesystem or device errors leading to forced read-only 321 * 322 * The status of exclusive operation is set and cleared atomically. 323 * During the course of Paused state, fs_info::exclusive_operation remains set. 324 * A device operation in Paused or Running state can be canceled or resumed 325 * either by ioctl (Balance only) or when remounted as read-write. 326 * The exclusive status is cleared when the device operation is canceled or 327 * completed. 328 */ 329 330 DEFINE_MUTEX(uuid_mutex); 331 static LIST_HEAD(fs_uuids); 332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 333 { 334 return &fs_uuids; 335 } 336 337 /* 338 * alloc_fs_devices - allocate struct btrfs_fs_devices 339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 341 * 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 343 * The returned struct is not linked onto any lists and can be destroyed with 344 * kfree() right away. 345 */ 346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 347 const u8 *metadata_fsid) 348 { 349 struct btrfs_fs_devices *fs_devs; 350 351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 352 if (!fs_devs) 353 return ERR_PTR(-ENOMEM); 354 355 mutex_init(&fs_devs->device_list_mutex); 356 357 INIT_LIST_HEAD(&fs_devs->devices); 358 INIT_LIST_HEAD(&fs_devs->alloc_list); 359 INIT_LIST_HEAD(&fs_devs->fs_list); 360 INIT_LIST_HEAD(&fs_devs->seed_list); 361 if (fsid) 362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 363 364 if (metadata_fsid) 365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 366 else if (fsid) 367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 368 369 return fs_devs; 370 } 371 372 void btrfs_free_device(struct btrfs_device *device) 373 { 374 WARN_ON(!list_empty(&device->post_commit_list)); 375 rcu_string_free(device->name); 376 extent_io_tree_release(&device->alloc_state); 377 bio_put(device->flush_bio); 378 btrfs_destroy_dev_zone_info(device); 379 kfree(device); 380 } 381 382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 383 { 384 struct btrfs_device *device; 385 WARN_ON(fs_devices->opened); 386 while (!list_empty(&fs_devices->devices)) { 387 device = list_entry(fs_devices->devices.next, 388 struct btrfs_device, dev_list); 389 list_del(&device->dev_list); 390 btrfs_free_device(device); 391 } 392 kfree(fs_devices); 393 } 394 395 void __exit btrfs_cleanup_fs_uuids(void) 396 { 397 struct btrfs_fs_devices *fs_devices; 398 399 while (!list_empty(&fs_uuids)) { 400 fs_devices = list_entry(fs_uuids.next, 401 struct btrfs_fs_devices, fs_list); 402 list_del(&fs_devices->fs_list); 403 free_fs_devices(fs_devices); 404 } 405 } 406 407 /* 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 409 * Returned struct is not linked onto any lists and must be destroyed using 410 * btrfs_free_device. 411 */ 412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 413 { 414 struct btrfs_device *dev; 415 416 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 417 if (!dev) 418 return ERR_PTR(-ENOMEM); 419 420 /* 421 * Preallocate a bio that's always going to be used for flushing device 422 * barriers and matches the device lifespan 423 */ 424 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 425 if (!dev->flush_bio) { 426 kfree(dev); 427 return ERR_PTR(-ENOMEM); 428 } 429 430 INIT_LIST_HEAD(&dev->dev_list); 431 INIT_LIST_HEAD(&dev->dev_alloc_list); 432 INIT_LIST_HEAD(&dev->post_commit_list); 433 434 atomic_set(&dev->reada_in_flight, 0); 435 atomic_set(&dev->dev_stats_ccnt, 0); 436 btrfs_device_data_ordered_init(dev); 437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 439 extent_io_tree_init(fs_info, &dev->alloc_state, 440 IO_TREE_DEVICE_ALLOC_STATE, NULL); 441 442 return dev; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (metadata_fsid) { 455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 456 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 457 BTRFS_FSID_SIZE) == 0) 458 return fs_devices; 459 } else { 460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 461 return fs_devices; 462 } 463 } 464 return NULL; 465 } 466 467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 468 struct btrfs_super_block *disk_super) 469 { 470 471 struct btrfs_fs_devices *fs_devices; 472 473 /* 474 * Handle scanned device having completed its fsid change but 475 * belonging to a fs_devices that was created by first scanning 476 * a device which didn't have its fsid/metadata_uuid changed 477 * at all and the CHANGING_FSID_V2 flag set. 478 */ 479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 480 if (fs_devices->fsid_change && 481 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 482 BTRFS_FSID_SIZE) == 0 && 483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 484 BTRFS_FSID_SIZE) == 0) { 485 return fs_devices; 486 } 487 } 488 /* 489 * Handle scanned device having completed its fsid change but 490 * belonging to a fs_devices that was created by a device that 491 * has an outdated pair of fsid/metadata_uuid and 492 * CHANGING_FSID_V2 flag set. 493 */ 494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 495 if (fs_devices->fsid_change && 496 memcmp(fs_devices->metadata_uuid, 497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 499 BTRFS_FSID_SIZE) == 0) { 500 return fs_devices; 501 } 502 } 503 504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 505 } 506 507 508 static int 509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 510 int flush, struct block_device **bdev, 511 struct btrfs_super_block **disk_super) 512 { 513 int ret; 514 515 *bdev = blkdev_get_by_path(device_path, flags, holder); 516 517 if (IS_ERR(*bdev)) { 518 ret = PTR_ERR(*bdev); 519 goto error; 520 } 521 522 if (flush) 523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 525 if (ret) { 526 blkdev_put(*bdev, flags); 527 goto error; 528 } 529 invalidate_bdev(*bdev); 530 *disk_super = btrfs_read_dev_super(*bdev); 531 if (IS_ERR(*disk_super)) { 532 ret = PTR_ERR(*disk_super); 533 blkdev_put(*bdev, flags); 534 goto error; 535 } 536 537 return 0; 538 539 error: 540 *bdev = NULL; 541 return ret; 542 } 543 544 static bool device_path_matched(const char *path, struct btrfs_device *device) 545 { 546 int found; 547 548 rcu_read_lock(); 549 found = strcmp(rcu_str_deref(device->name), path); 550 rcu_read_unlock(); 551 552 return found == 0; 553 } 554 555 /* 556 * Search and remove all stale (devices which are not mounted) devices. 557 * When both inputs are NULL, it will search and release all stale devices. 558 * path: Optional. When provided will it release all unmounted devices 559 * matching this path only. 560 * skip_dev: Optional. Will skip this device when searching for the stale 561 * devices. 562 * Return: 0 for success or if @path is NULL. 563 * -EBUSY if @path is a mounted device. 564 * -ENOENT if @path does not match any device in the list. 565 */ 566 static int btrfs_free_stale_devices(const char *path, 567 struct btrfs_device *skip_device) 568 { 569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 570 struct btrfs_device *device, *tmp_device; 571 int ret = 0; 572 573 if (path) 574 ret = -ENOENT; 575 576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 577 578 mutex_lock(&fs_devices->device_list_mutex); 579 list_for_each_entry_safe(device, tmp_device, 580 &fs_devices->devices, dev_list) { 581 if (skip_device && skip_device == device) 582 continue; 583 if (path && !device->name) 584 continue; 585 if (path && !device_path_matched(path, device)) 586 continue; 587 if (fs_devices->opened) { 588 /* for an already deleted device return 0 */ 589 if (path && ret != 0) 590 ret = -EBUSY; 591 break; 592 } 593 594 /* delete the stale device */ 595 fs_devices->num_devices--; 596 list_del(&device->dev_list); 597 btrfs_free_device(device); 598 599 ret = 0; 600 } 601 mutex_unlock(&fs_devices->device_list_mutex); 602 603 if (fs_devices->num_devices == 0) { 604 btrfs_sysfs_remove_fsid(fs_devices); 605 list_del(&fs_devices->fs_list); 606 free_fs_devices(fs_devices); 607 } 608 } 609 610 return ret; 611 } 612 613 /* 614 * This is only used on mount, and we are protected from competing things 615 * messing with our fs_devices by the uuid_mutex, thus we do not need the 616 * fs_devices->device_list_mutex here. 617 */ 618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 619 struct btrfs_device *device, fmode_t flags, 620 void *holder) 621 { 622 struct request_queue *q; 623 struct block_device *bdev; 624 struct btrfs_super_block *disk_super; 625 u64 devid; 626 int ret; 627 628 if (device->bdev) 629 return -EINVAL; 630 if (!device->name) 631 return -EINVAL; 632 633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 634 &bdev, &disk_super); 635 if (ret) 636 return ret; 637 638 devid = btrfs_stack_device_id(&disk_super->dev_item); 639 if (devid != device->devid) 640 goto error_free_page; 641 642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 643 goto error_free_page; 644 645 device->generation = btrfs_super_generation(disk_super); 646 647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 648 if (btrfs_super_incompat_flags(disk_super) & 649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 650 pr_err( 651 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 652 goto error_free_page; 653 } 654 655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 656 fs_devices->seeding = true; 657 } else { 658 if (bdev_read_only(bdev)) 659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 else 661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 662 } 663 664 q = bdev_get_queue(bdev); 665 if (!blk_queue_nonrot(q)) 666 fs_devices->rotating = true; 667 668 device->bdev = bdev; 669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 670 device->mode = flags; 671 672 ret = btrfs_get_dev_zone_info(device); 673 if (ret != 0) 674 goto error_free_page; 675 676 fs_devices->open_devices++; 677 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 678 device->devid != BTRFS_DEV_REPLACE_DEVID) { 679 fs_devices->rw_devices++; 680 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 681 } 682 btrfs_release_disk_super(disk_super); 683 684 return 0; 685 686 error_free_page: 687 btrfs_release_disk_super(disk_super); 688 blkdev_put(bdev, flags); 689 690 return -EINVAL; 691 } 692 693 /* 694 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 695 * being created with a disk that has already completed its fsid change. Such 696 * disk can belong to an fs which has its FSID changed or to one which doesn't. 697 * Handle both cases here. 698 */ 699 static struct btrfs_fs_devices *find_fsid_inprogress( 700 struct btrfs_super_block *disk_super) 701 { 702 struct btrfs_fs_devices *fs_devices; 703 704 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 705 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 706 BTRFS_FSID_SIZE) != 0 && 707 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 708 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 709 return fs_devices; 710 } 711 } 712 713 return find_fsid(disk_super->fsid, NULL); 714 } 715 716 717 static struct btrfs_fs_devices *find_fsid_changed( 718 struct btrfs_super_block *disk_super) 719 { 720 struct btrfs_fs_devices *fs_devices; 721 722 /* 723 * Handles the case where scanned device is part of an fs that had 724 * multiple successful changes of FSID but curently device didn't 725 * observe it. Meaning our fsid will be different than theirs. We need 726 * to handle two subcases : 727 * 1 - The fs still continues to have different METADATA/FSID uuids. 728 * 2 - The fs is switched back to its original FSID (METADATA/FSID 729 * are equal). 730 */ 731 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 732 /* Changed UUIDs */ 733 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 734 BTRFS_FSID_SIZE) != 0 && 735 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 736 BTRFS_FSID_SIZE) == 0 && 737 memcmp(fs_devices->fsid, disk_super->fsid, 738 BTRFS_FSID_SIZE) != 0) 739 return fs_devices; 740 741 /* Unchanged UUIDs */ 742 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 743 BTRFS_FSID_SIZE) == 0 && 744 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 745 BTRFS_FSID_SIZE) == 0) 746 return fs_devices; 747 } 748 749 return NULL; 750 } 751 752 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 753 struct btrfs_super_block *disk_super) 754 { 755 struct btrfs_fs_devices *fs_devices; 756 757 /* 758 * Handle the case where the scanned device is part of an fs whose last 759 * metadata UUID change reverted it to the original FSID. At the same 760 * time * fs_devices was first created by another constitutent device 761 * which didn't fully observe the operation. This results in an 762 * btrfs_fs_devices created with metadata/fsid different AND 763 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 764 * fs_devices equal to the FSID of the disk. 765 */ 766 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 767 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 768 BTRFS_FSID_SIZE) != 0 && 769 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 770 BTRFS_FSID_SIZE) == 0 && 771 fs_devices->fsid_change) 772 return fs_devices; 773 } 774 775 return NULL; 776 } 777 /* 778 * Add new device to list of registered devices 779 * 780 * Returns: 781 * device pointer which was just added or updated when successful 782 * error pointer when failed 783 */ 784 static noinline struct btrfs_device *device_list_add(const char *path, 785 struct btrfs_super_block *disk_super, 786 bool *new_device_added) 787 { 788 struct btrfs_device *device; 789 struct btrfs_fs_devices *fs_devices = NULL; 790 struct rcu_string *name; 791 u64 found_transid = btrfs_super_generation(disk_super); 792 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 795 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 796 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 797 798 if (fsid_change_in_progress) { 799 if (!has_metadata_uuid) 800 fs_devices = find_fsid_inprogress(disk_super); 801 else 802 fs_devices = find_fsid_changed(disk_super); 803 } else if (has_metadata_uuid) { 804 fs_devices = find_fsid_with_metadata_uuid(disk_super); 805 } else { 806 fs_devices = find_fsid_reverted_metadata(disk_super); 807 if (!fs_devices) 808 fs_devices = find_fsid(disk_super->fsid, NULL); 809 } 810 811 812 if (!fs_devices) { 813 if (has_metadata_uuid) 814 fs_devices = alloc_fs_devices(disk_super->fsid, 815 disk_super->metadata_uuid); 816 else 817 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 818 819 if (IS_ERR(fs_devices)) 820 return ERR_CAST(fs_devices); 821 822 fs_devices->fsid_change = fsid_change_in_progress; 823 824 mutex_lock(&fs_devices->device_list_mutex); 825 list_add(&fs_devices->fs_list, &fs_uuids); 826 827 device = NULL; 828 } else { 829 mutex_lock(&fs_devices->device_list_mutex); 830 device = btrfs_find_device(fs_devices, devid, 831 disk_super->dev_item.uuid, NULL); 832 833 /* 834 * If this disk has been pulled into an fs devices created by 835 * a device which had the CHANGING_FSID_V2 flag then replace the 836 * metadata_uuid/fsid values of the fs_devices. 837 */ 838 if (fs_devices->fsid_change && 839 found_transid > fs_devices->latest_generation) { 840 memcpy(fs_devices->fsid, disk_super->fsid, 841 BTRFS_FSID_SIZE); 842 843 if (has_metadata_uuid) 844 memcpy(fs_devices->metadata_uuid, 845 disk_super->metadata_uuid, 846 BTRFS_FSID_SIZE); 847 else 848 memcpy(fs_devices->metadata_uuid, 849 disk_super->fsid, BTRFS_FSID_SIZE); 850 851 fs_devices->fsid_change = false; 852 } 853 } 854 855 if (!device) { 856 if (fs_devices->opened) { 857 mutex_unlock(&fs_devices->device_list_mutex); 858 return ERR_PTR(-EBUSY); 859 } 860 861 device = btrfs_alloc_device(NULL, &devid, 862 disk_super->dev_item.uuid); 863 if (IS_ERR(device)) { 864 mutex_unlock(&fs_devices->device_list_mutex); 865 /* we can safely leave the fs_devices entry around */ 866 return device; 867 } 868 869 name = rcu_string_strdup(path, GFP_NOFS); 870 if (!name) { 871 btrfs_free_device(device); 872 mutex_unlock(&fs_devices->device_list_mutex); 873 return ERR_PTR(-ENOMEM); 874 } 875 rcu_assign_pointer(device->name, name); 876 877 list_add_rcu(&device->dev_list, &fs_devices->devices); 878 fs_devices->num_devices++; 879 880 device->fs_devices = fs_devices; 881 *new_device_added = true; 882 883 if (disk_super->label[0]) 884 pr_info( 885 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 886 disk_super->label, devid, found_transid, path, 887 current->comm, task_pid_nr(current)); 888 else 889 pr_info( 890 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 891 disk_super->fsid, devid, found_transid, path, 892 current->comm, task_pid_nr(current)); 893 894 } else if (!device->name || strcmp(device->name->str, path)) { 895 /* 896 * When FS is already mounted. 897 * 1. If you are here and if the device->name is NULL that 898 * means this device was missing at time of FS mount. 899 * 2. If you are here and if the device->name is different 900 * from 'path' that means either 901 * a. The same device disappeared and reappeared with 902 * different name. or 903 * b. The missing-disk-which-was-replaced, has 904 * reappeared now. 905 * 906 * We must allow 1 and 2a above. But 2b would be a spurious 907 * and unintentional. 908 * 909 * Further in case of 1 and 2a above, the disk at 'path' 910 * would have missed some transaction when it was away and 911 * in case of 2a the stale bdev has to be updated as well. 912 * 2b must not be allowed at all time. 913 */ 914 915 /* 916 * For now, we do allow update to btrfs_fs_device through the 917 * btrfs dev scan cli after FS has been mounted. We're still 918 * tracking a problem where systems fail mount by subvolume id 919 * when we reject replacement on a mounted FS. 920 */ 921 if (!fs_devices->opened && found_transid < device->generation) { 922 /* 923 * That is if the FS is _not_ mounted and if you 924 * are here, that means there is more than one 925 * disk with same uuid and devid.We keep the one 926 * with larger generation number or the last-in if 927 * generation are equal. 928 */ 929 mutex_unlock(&fs_devices->device_list_mutex); 930 return ERR_PTR(-EEXIST); 931 } 932 933 /* 934 * We are going to replace the device path for a given devid, 935 * make sure it's the same device if the device is mounted 936 */ 937 if (device->bdev) { 938 int error; 939 dev_t path_dev; 940 941 error = lookup_bdev(path, &path_dev); 942 if (error) { 943 mutex_unlock(&fs_devices->device_list_mutex); 944 return ERR_PTR(error); 945 } 946 947 if (device->bdev->bd_dev != path_dev) { 948 mutex_unlock(&fs_devices->device_list_mutex); 949 /* 950 * device->fs_info may not be reliable here, so 951 * pass in a NULL instead. This avoids a 952 * possible use-after-free when the fs_info and 953 * fs_info->sb are already torn down. 954 */ 955 btrfs_warn_in_rcu(NULL, 956 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 957 path, devid, found_transid, 958 current->comm, 959 task_pid_nr(current)); 960 return ERR_PTR(-EEXIST); 961 } 962 btrfs_info_in_rcu(device->fs_info, 963 "devid %llu device path %s changed to %s scanned by %s (%d)", 964 devid, rcu_str_deref(device->name), 965 path, current->comm, 966 task_pid_nr(current)); 967 } 968 969 name = rcu_string_strdup(path, GFP_NOFS); 970 if (!name) { 971 mutex_unlock(&fs_devices->device_list_mutex); 972 return ERR_PTR(-ENOMEM); 973 } 974 rcu_string_free(device->name); 975 rcu_assign_pointer(device->name, name); 976 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 977 fs_devices->missing_devices--; 978 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 979 } 980 } 981 982 /* 983 * Unmount does not free the btrfs_device struct but would zero 984 * generation along with most of the other members. So just update 985 * it back. We need it to pick the disk with largest generation 986 * (as above). 987 */ 988 if (!fs_devices->opened) { 989 device->generation = found_transid; 990 fs_devices->latest_generation = max_t(u64, found_transid, 991 fs_devices->latest_generation); 992 } 993 994 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 995 996 mutex_unlock(&fs_devices->device_list_mutex); 997 return device; 998 } 999 1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1001 { 1002 struct btrfs_fs_devices *fs_devices; 1003 struct btrfs_device *device; 1004 struct btrfs_device *orig_dev; 1005 int ret = 0; 1006 1007 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1008 if (IS_ERR(fs_devices)) 1009 return fs_devices; 1010 1011 mutex_lock(&orig->device_list_mutex); 1012 fs_devices->total_devices = orig->total_devices; 1013 1014 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1015 struct rcu_string *name; 1016 1017 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1018 orig_dev->uuid); 1019 if (IS_ERR(device)) { 1020 ret = PTR_ERR(device); 1021 goto error; 1022 } 1023 1024 /* 1025 * This is ok to do without rcu read locked because we hold the 1026 * uuid mutex so nothing we touch in here is going to disappear. 1027 */ 1028 if (orig_dev->name) { 1029 name = rcu_string_strdup(orig_dev->name->str, 1030 GFP_KERNEL); 1031 if (!name) { 1032 btrfs_free_device(device); 1033 ret = -ENOMEM; 1034 goto error; 1035 } 1036 rcu_assign_pointer(device->name, name); 1037 } 1038 1039 list_add(&device->dev_list, &fs_devices->devices); 1040 device->fs_devices = fs_devices; 1041 fs_devices->num_devices++; 1042 } 1043 mutex_unlock(&orig->device_list_mutex); 1044 return fs_devices; 1045 error: 1046 mutex_unlock(&orig->device_list_mutex); 1047 free_fs_devices(fs_devices); 1048 return ERR_PTR(ret); 1049 } 1050 1051 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1052 struct btrfs_device **latest_dev) 1053 { 1054 struct btrfs_device *device, *next; 1055 1056 /* This is the initialized path, it is safe to release the devices. */ 1057 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1058 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1059 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1060 &device->dev_state) && 1061 !test_bit(BTRFS_DEV_STATE_MISSING, 1062 &device->dev_state) && 1063 (!*latest_dev || 1064 device->generation > (*latest_dev)->generation)) { 1065 *latest_dev = device; 1066 } 1067 continue; 1068 } 1069 1070 /* 1071 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1072 * in btrfs_init_dev_replace() so just continue. 1073 */ 1074 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1075 continue; 1076 1077 if (device->bdev) { 1078 blkdev_put(device->bdev, device->mode); 1079 device->bdev = NULL; 1080 fs_devices->open_devices--; 1081 } 1082 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1083 list_del_init(&device->dev_alloc_list); 1084 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1085 } 1086 list_del_init(&device->dev_list); 1087 fs_devices->num_devices--; 1088 btrfs_free_device(device); 1089 } 1090 1091 } 1092 1093 /* 1094 * After we have read the system tree and know devids belonging to this 1095 * filesystem, remove the device which does not belong there. 1096 */ 1097 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1098 { 1099 struct btrfs_device *latest_dev = NULL; 1100 struct btrfs_fs_devices *seed_dev; 1101 1102 mutex_lock(&uuid_mutex); 1103 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1104 1105 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1106 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1107 1108 fs_devices->latest_bdev = latest_dev->bdev; 1109 1110 mutex_unlock(&uuid_mutex); 1111 } 1112 1113 static void btrfs_close_bdev(struct btrfs_device *device) 1114 { 1115 if (!device->bdev) 1116 return; 1117 1118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1119 sync_blockdev(device->bdev); 1120 invalidate_bdev(device->bdev); 1121 } 1122 1123 blkdev_put(device->bdev, device->mode); 1124 } 1125 1126 static void btrfs_close_one_device(struct btrfs_device *device) 1127 { 1128 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1129 1130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1131 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1132 list_del_init(&device->dev_alloc_list); 1133 fs_devices->rw_devices--; 1134 } 1135 1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1137 fs_devices->missing_devices--; 1138 1139 btrfs_close_bdev(device); 1140 if (device->bdev) { 1141 fs_devices->open_devices--; 1142 device->bdev = NULL; 1143 } 1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1145 btrfs_destroy_dev_zone_info(device); 1146 1147 device->fs_info = NULL; 1148 atomic_set(&device->dev_stats_ccnt, 0); 1149 extent_io_tree_release(&device->alloc_state); 1150 1151 /* Verify the device is back in a pristine state */ 1152 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1153 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1154 ASSERT(list_empty(&device->dev_alloc_list)); 1155 ASSERT(list_empty(&device->post_commit_list)); 1156 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1157 } 1158 1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1160 { 1161 struct btrfs_device *device, *tmp; 1162 1163 lockdep_assert_held(&uuid_mutex); 1164 1165 if (--fs_devices->opened > 0) 1166 return; 1167 1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1169 btrfs_close_one_device(device); 1170 1171 WARN_ON(fs_devices->open_devices); 1172 WARN_ON(fs_devices->rw_devices); 1173 fs_devices->opened = 0; 1174 fs_devices->seeding = false; 1175 fs_devices->fs_info = NULL; 1176 } 1177 1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1179 { 1180 LIST_HEAD(list); 1181 struct btrfs_fs_devices *tmp; 1182 1183 mutex_lock(&uuid_mutex); 1184 close_fs_devices(fs_devices); 1185 if (!fs_devices->opened) 1186 list_splice_init(&fs_devices->seed_list, &list); 1187 1188 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1189 close_fs_devices(fs_devices); 1190 list_del(&fs_devices->seed_list); 1191 free_fs_devices(fs_devices); 1192 } 1193 mutex_unlock(&uuid_mutex); 1194 } 1195 1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1197 fmode_t flags, void *holder) 1198 { 1199 struct btrfs_device *device; 1200 struct btrfs_device *latest_dev = NULL; 1201 struct btrfs_device *tmp_device; 1202 1203 flags |= FMODE_EXCL; 1204 1205 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1206 dev_list) { 1207 int ret; 1208 1209 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1210 if (ret == 0 && 1211 (!latest_dev || device->generation > latest_dev->generation)) { 1212 latest_dev = device; 1213 } else if (ret == -ENODATA) { 1214 fs_devices->num_devices--; 1215 list_del(&device->dev_list); 1216 btrfs_free_device(device); 1217 } 1218 } 1219 if (fs_devices->open_devices == 0) 1220 return -EINVAL; 1221 1222 fs_devices->opened = 1; 1223 fs_devices->latest_bdev = latest_dev->bdev; 1224 fs_devices->total_rw_bytes = 0; 1225 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1226 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1227 1228 return 0; 1229 } 1230 1231 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1232 { 1233 struct btrfs_device *dev1, *dev2; 1234 1235 dev1 = list_entry(a, struct btrfs_device, dev_list); 1236 dev2 = list_entry(b, struct btrfs_device, dev_list); 1237 1238 if (dev1->devid < dev2->devid) 1239 return -1; 1240 else if (dev1->devid > dev2->devid) 1241 return 1; 1242 return 0; 1243 } 1244 1245 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1246 fmode_t flags, void *holder) 1247 { 1248 int ret; 1249 1250 lockdep_assert_held(&uuid_mutex); 1251 /* 1252 * The device_list_mutex cannot be taken here in case opening the 1253 * underlying device takes further locks like bd_mutex. 1254 * 1255 * We also don't need the lock here as this is called during mount and 1256 * exclusion is provided by uuid_mutex 1257 */ 1258 1259 if (fs_devices->opened) { 1260 fs_devices->opened++; 1261 ret = 0; 1262 } else { 1263 list_sort(NULL, &fs_devices->devices, devid_cmp); 1264 ret = open_fs_devices(fs_devices, flags, holder); 1265 } 1266 1267 return ret; 1268 } 1269 1270 void btrfs_release_disk_super(struct btrfs_super_block *super) 1271 { 1272 struct page *page = virt_to_page(super); 1273 1274 put_page(page); 1275 } 1276 1277 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1278 u64 bytenr, u64 bytenr_orig) 1279 { 1280 struct btrfs_super_block *disk_super; 1281 struct page *page; 1282 void *p; 1283 pgoff_t index; 1284 1285 /* make sure our super fits in the device */ 1286 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1287 return ERR_PTR(-EINVAL); 1288 1289 /* make sure our super fits in the page */ 1290 if (sizeof(*disk_super) > PAGE_SIZE) 1291 return ERR_PTR(-EINVAL); 1292 1293 /* make sure our super doesn't straddle pages on disk */ 1294 index = bytenr >> PAGE_SHIFT; 1295 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1296 return ERR_PTR(-EINVAL); 1297 1298 /* pull in the page with our super */ 1299 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1300 1301 if (IS_ERR(page)) 1302 return ERR_CAST(page); 1303 1304 p = page_address(page); 1305 1306 /* align our pointer to the offset of the super block */ 1307 disk_super = p + offset_in_page(bytenr); 1308 1309 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1310 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1311 btrfs_release_disk_super(p); 1312 return ERR_PTR(-EINVAL); 1313 } 1314 1315 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1316 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1317 1318 return disk_super; 1319 } 1320 1321 int btrfs_forget_devices(const char *path) 1322 { 1323 int ret; 1324 1325 mutex_lock(&uuid_mutex); 1326 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1327 mutex_unlock(&uuid_mutex); 1328 1329 return ret; 1330 } 1331 1332 /* 1333 * Look for a btrfs signature on a device. This may be called out of the mount path 1334 * and we are not allowed to call set_blocksize during the scan. The superblock 1335 * is read via pagecache 1336 */ 1337 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1338 void *holder) 1339 { 1340 struct btrfs_super_block *disk_super; 1341 bool new_device_added = false; 1342 struct btrfs_device *device = NULL; 1343 struct block_device *bdev; 1344 u64 bytenr, bytenr_orig; 1345 int ret; 1346 1347 lockdep_assert_held(&uuid_mutex); 1348 1349 /* 1350 * we would like to check all the supers, but that would make 1351 * a btrfs mount succeed after a mkfs from a different FS. 1352 * So, we need to add a special mount option to scan for 1353 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1354 */ 1355 flags |= FMODE_EXCL; 1356 1357 bdev = blkdev_get_by_path(path, flags, holder); 1358 if (IS_ERR(bdev)) 1359 return ERR_CAST(bdev); 1360 1361 bytenr_orig = btrfs_sb_offset(0); 1362 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1363 if (ret) 1364 return ERR_PTR(ret); 1365 1366 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1367 if (IS_ERR(disk_super)) { 1368 device = ERR_CAST(disk_super); 1369 goto error_bdev_put; 1370 } 1371 1372 device = device_list_add(path, disk_super, &new_device_added); 1373 if (!IS_ERR(device)) { 1374 if (new_device_added) 1375 btrfs_free_stale_devices(path, device); 1376 } 1377 1378 btrfs_release_disk_super(disk_super); 1379 1380 error_bdev_put: 1381 blkdev_put(bdev, flags); 1382 1383 return device; 1384 } 1385 1386 /* 1387 * Try to find a chunk that intersects [start, start + len] range and when one 1388 * such is found, record the end of it in *start 1389 */ 1390 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1391 u64 len) 1392 { 1393 u64 physical_start, physical_end; 1394 1395 lockdep_assert_held(&device->fs_info->chunk_mutex); 1396 1397 if (!find_first_extent_bit(&device->alloc_state, *start, 1398 &physical_start, &physical_end, 1399 CHUNK_ALLOCATED, NULL)) { 1400 1401 if (in_range(physical_start, *start, len) || 1402 in_range(*start, physical_start, 1403 physical_end - physical_start)) { 1404 *start = physical_end + 1; 1405 return true; 1406 } 1407 } 1408 return false; 1409 } 1410 1411 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1412 { 1413 switch (device->fs_devices->chunk_alloc_policy) { 1414 case BTRFS_CHUNK_ALLOC_REGULAR: 1415 /* 1416 * We don't want to overwrite the superblock on the drive nor 1417 * any area used by the boot loader (grub for example), so we 1418 * make sure to start at an offset of at least 1MB. 1419 */ 1420 return max_t(u64, start, SZ_1M); 1421 default: 1422 BUG(); 1423 } 1424 } 1425 1426 /** 1427 * dev_extent_hole_check - check if specified hole is suitable for allocation 1428 * @device: the device which we have the hole 1429 * @hole_start: starting position of the hole 1430 * @hole_size: the size of the hole 1431 * @num_bytes: the size of the free space that we need 1432 * 1433 * This function may modify @hole_start and @hole_end to reflect the suitable 1434 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1435 */ 1436 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1437 u64 *hole_size, u64 num_bytes) 1438 { 1439 bool changed = false; 1440 u64 hole_end = *hole_start + *hole_size; 1441 1442 /* 1443 * Check before we set max_hole_start, otherwise we could end up 1444 * sending back this offset anyway. 1445 */ 1446 if (contains_pending_extent(device, hole_start, *hole_size)) { 1447 if (hole_end >= *hole_start) 1448 *hole_size = hole_end - *hole_start; 1449 else 1450 *hole_size = 0; 1451 changed = true; 1452 } 1453 1454 switch (device->fs_devices->chunk_alloc_policy) { 1455 case BTRFS_CHUNK_ALLOC_REGULAR: 1456 /* No extra check */ 1457 break; 1458 default: 1459 BUG(); 1460 } 1461 1462 return changed; 1463 } 1464 1465 /* 1466 * find_free_dev_extent_start - find free space in the specified device 1467 * @device: the device which we search the free space in 1468 * @num_bytes: the size of the free space that we need 1469 * @search_start: the position from which to begin the search 1470 * @start: store the start of the free space. 1471 * @len: the size of the free space. that we find, or the size 1472 * of the max free space if we don't find suitable free space 1473 * 1474 * this uses a pretty simple search, the expectation is that it is 1475 * called very infrequently and that a given device has a small number 1476 * of extents 1477 * 1478 * @start is used to store the start of the free space if we find. But if we 1479 * don't find suitable free space, it will be used to store the start position 1480 * of the max free space. 1481 * 1482 * @len is used to store the size of the free space that we find. 1483 * But if we don't find suitable free space, it is used to store the size of 1484 * the max free space. 1485 * 1486 * NOTE: This function will search *commit* root of device tree, and does extra 1487 * check to ensure dev extents are not double allocated. 1488 * This makes the function safe to allocate dev extents but may not report 1489 * correct usable device space, as device extent freed in current transaction 1490 * is not reported as avaiable. 1491 */ 1492 static int find_free_dev_extent_start(struct btrfs_device *device, 1493 u64 num_bytes, u64 search_start, u64 *start, 1494 u64 *len) 1495 { 1496 struct btrfs_fs_info *fs_info = device->fs_info; 1497 struct btrfs_root *root = fs_info->dev_root; 1498 struct btrfs_key key; 1499 struct btrfs_dev_extent *dev_extent; 1500 struct btrfs_path *path; 1501 u64 hole_size; 1502 u64 max_hole_start; 1503 u64 max_hole_size; 1504 u64 extent_end; 1505 u64 search_end = device->total_bytes; 1506 int ret; 1507 int slot; 1508 struct extent_buffer *l; 1509 1510 search_start = dev_extent_search_start(device, search_start); 1511 1512 path = btrfs_alloc_path(); 1513 if (!path) 1514 return -ENOMEM; 1515 1516 max_hole_start = search_start; 1517 max_hole_size = 0; 1518 1519 again: 1520 if (search_start >= search_end || 1521 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1522 ret = -ENOSPC; 1523 goto out; 1524 } 1525 1526 path->reada = READA_FORWARD; 1527 path->search_commit_root = 1; 1528 path->skip_locking = 1; 1529 1530 key.objectid = device->devid; 1531 key.offset = search_start; 1532 key.type = BTRFS_DEV_EXTENT_KEY; 1533 1534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1535 if (ret < 0) 1536 goto out; 1537 if (ret > 0) { 1538 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1539 if (ret < 0) 1540 goto out; 1541 } 1542 1543 while (1) { 1544 l = path->nodes[0]; 1545 slot = path->slots[0]; 1546 if (slot >= btrfs_header_nritems(l)) { 1547 ret = btrfs_next_leaf(root, path); 1548 if (ret == 0) 1549 continue; 1550 if (ret < 0) 1551 goto out; 1552 1553 break; 1554 } 1555 btrfs_item_key_to_cpu(l, &key, slot); 1556 1557 if (key.objectid < device->devid) 1558 goto next; 1559 1560 if (key.objectid > device->devid) 1561 break; 1562 1563 if (key.type != BTRFS_DEV_EXTENT_KEY) 1564 goto next; 1565 1566 if (key.offset > search_start) { 1567 hole_size = key.offset - search_start; 1568 dev_extent_hole_check(device, &search_start, &hole_size, 1569 num_bytes); 1570 1571 if (hole_size > max_hole_size) { 1572 max_hole_start = search_start; 1573 max_hole_size = hole_size; 1574 } 1575 1576 /* 1577 * If this free space is greater than which we need, 1578 * it must be the max free space that we have found 1579 * until now, so max_hole_start must point to the start 1580 * of this free space and the length of this free space 1581 * is stored in max_hole_size. Thus, we return 1582 * max_hole_start and max_hole_size and go back to the 1583 * caller. 1584 */ 1585 if (hole_size >= num_bytes) { 1586 ret = 0; 1587 goto out; 1588 } 1589 } 1590 1591 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1592 extent_end = key.offset + btrfs_dev_extent_length(l, 1593 dev_extent); 1594 if (extent_end > search_start) 1595 search_start = extent_end; 1596 next: 1597 path->slots[0]++; 1598 cond_resched(); 1599 } 1600 1601 /* 1602 * At this point, search_start should be the end of 1603 * allocated dev extents, and when shrinking the device, 1604 * search_end may be smaller than search_start. 1605 */ 1606 if (search_end > search_start) { 1607 hole_size = search_end - search_start; 1608 if (dev_extent_hole_check(device, &search_start, &hole_size, 1609 num_bytes)) { 1610 btrfs_release_path(path); 1611 goto again; 1612 } 1613 1614 if (hole_size > max_hole_size) { 1615 max_hole_start = search_start; 1616 max_hole_size = hole_size; 1617 } 1618 } 1619 1620 /* See above. */ 1621 if (max_hole_size < num_bytes) 1622 ret = -ENOSPC; 1623 else 1624 ret = 0; 1625 1626 out: 1627 btrfs_free_path(path); 1628 *start = max_hole_start; 1629 if (len) 1630 *len = max_hole_size; 1631 return ret; 1632 } 1633 1634 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1635 u64 *start, u64 *len) 1636 { 1637 /* FIXME use last free of some kind */ 1638 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1639 } 1640 1641 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1642 struct btrfs_device *device, 1643 u64 start, u64 *dev_extent_len) 1644 { 1645 struct btrfs_fs_info *fs_info = device->fs_info; 1646 struct btrfs_root *root = fs_info->dev_root; 1647 int ret; 1648 struct btrfs_path *path; 1649 struct btrfs_key key; 1650 struct btrfs_key found_key; 1651 struct extent_buffer *leaf = NULL; 1652 struct btrfs_dev_extent *extent = NULL; 1653 1654 path = btrfs_alloc_path(); 1655 if (!path) 1656 return -ENOMEM; 1657 1658 key.objectid = device->devid; 1659 key.offset = start; 1660 key.type = BTRFS_DEV_EXTENT_KEY; 1661 again: 1662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1663 if (ret > 0) { 1664 ret = btrfs_previous_item(root, path, key.objectid, 1665 BTRFS_DEV_EXTENT_KEY); 1666 if (ret) 1667 goto out; 1668 leaf = path->nodes[0]; 1669 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1670 extent = btrfs_item_ptr(leaf, path->slots[0], 1671 struct btrfs_dev_extent); 1672 BUG_ON(found_key.offset > start || found_key.offset + 1673 btrfs_dev_extent_length(leaf, extent) < start); 1674 key = found_key; 1675 btrfs_release_path(path); 1676 goto again; 1677 } else if (ret == 0) { 1678 leaf = path->nodes[0]; 1679 extent = btrfs_item_ptr(leaf, path->slots[0], 1680 struct btrfs_dev_extent); 1681 } else { 1682 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1683 goto out; 1684 } 1685 1686 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1687 1688 ret = btrfs_del_item(trans, root, path); 1689 if (ret) { 1690 btrfs_handle_fs_error(fs_info, ret, 1691 "Failed to remove dev extent item"); 1692 } else { 1693 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1694 } 1695 out: 1696 btrfs_free_path(path); 1697 return ret; 1698 } 1699 1700 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1701 struct btrfs_device *device, 1702 u64 chunk_offset, u64 start, u64 num_bytes) 1703 { 1704 int ret; 1705 struct btrfs_path *path; 1706 struct btrfs_fs_info *fs_info = device->fs_info; 1707 struct btrfs_root *root = fs_info->dev_root; 1708 struct btrfs_dev_extent *extent; 1709 struct extent_buffer *leaf; 1710 struct btrfs_key key; 1711 1712 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1713 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1714 path = btrfs_alloc_path(); 1715 if (!path) 1716 return -ENOMEM; 1717 1718 key.objectid = device->devid; 1719 key.offset = start; 1720 key.type = BTRFS_DEV_EXTENT_KEY; 1721 ret = btrfs_insert_empty_item(trans, root, path, &key, 1722 sizeof(*extent)); 1723 if (ret) 1724 goto out; 1725 1726 leaf = path->nodes[0]; 1727 extent = btrfs_item_ptr(leaf, path->slots[0], 1728 struct btrfs_dev_extent); 1729 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1730 BTRFS_CHUNK_TREE_OBJECTID); 1731 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1732 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1733 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1734 1735 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1736 btrfs_mark_buffer_dirty(leaf); 1737 out: 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1743 { 1744 struct extent_map_tree *em_tree; 1745 struct extent_map *em; 1746 struct rb_node *n; 1747 u64 ret = 0; 1748 1749 em_tree = &fs_info->mapping_tree; 1750 read_lock(&em_tree->lock); 1751 n = rb_last(&em_tree->map.rb_root); 1752 if (n) { 1753 em = rb_entry(n, struct extent_map, rb_node); 1754 ret = em->start + em->len; 1755 } 1756 read_unlock(&em_tree->lock); 1757 1758 return ret; 1759 } 1760 1761 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1762 u64 *devid_ret) 1763 { 1764 int ret; 1765 struct btrfs_key key; 1766 struct btrfs_key found_key; 1767 struct btrfs_path *path; 1768 1769 path = btrfs_alloc_path(); 1770 if (!path) 1771 return -ENOMEM; 1772 1773 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1774 key.type = BTRFS_DEV_ITEM_KEY; 1775 key.offset = (u64)-1; 1776 1777 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1778 if (ret < 0) 1779 goto error; 1780 1781 if (ret == 0) { 1782 /* Corruption */ 1783 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1784 ret = -EUCLEAN; 1785 goto error; 1786 } 1787 1788 ret = btrfs_previous_item(fs_info->chunk_root, path, 1789 BTRFS_DEV_ITEMS_OBJECTID, 1790 BTRFS_DEV_ITEM_KEY); 1791 if (ret) { 1792 *devid_ret = 1; 1793 } else { 1794 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1795 path->slots[0]); 1796 *devid_ret = found_key.offset + 1; 1797 } 1798 ret = 0; 1799 error: 1800 btrfs_free_path(path); 1801 return ret; 1802 } 1803 1804 /* 1805 * the device information is stored in the chunk root 1806 * the btrfs_device struct should be fully filled in 1807 */ 1808 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1809 struct btrfs_device *device) 1810 { 1811 int ret; 1812 struct btrfs_path *path; 1813 struct btrfs_dev_item *dev_item; 1814 struct extent_buffer *leaf; 1815 struct btrfs_key key; 1816 unsigned long ptr; 1817 1818 path = btrfs_alloc_path(); 1819 if (!path) 1820 return -ENOMEM; 1821 1822 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1823 key.type = BTRFS_DEV_ITEM_KEY; 1824 key.offset = device->devid; 1825 1826 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1827 &key, sizeof(*dev_item)); 1828 if (ret) 1829 goto out; 1830 1831 leaf = path->nodes[0]; 1832 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1833 1834 btrfs_set_device_id(leaf, dev_item, device->devid); 1835 btrfs_set_device_generation(leaf, dev_item, 0); 1836 btrfs_set_device_type(leaf, dev_item, device->type); 1837 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1838 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1839 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1840 btrfs_set_device_total_bytes(leaf, dev_item, 1841 btrfs_device_get_disk_total_bytes(device)); 1842 btrfs_set_device_bytes_used(leaf, dev_item, 1843 btrfs_device_get_bytes_used(device)); 1844 btrfs_set_device_group(leaf, dev_item, 0); 1845 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1846 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1847 btrfs_set_device_start_offset(leaf, dev_item, 0); 1848 1849 ptr = btrfs_device_uuid(dev_item); 1850 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1851 ptr = btrfs_device_fsid(dev_item); 1852 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1853 ptr, BTRFS_FSID_SIZE); 1854 btrfs_mark_buffer_dirty(leaf); 1855 1856 ret = 0; 1857 out: 1858 btrfs_free_path(path); 1859 return ret; 1860 } 1861 1862 /* 1863 * Function to update ctime/mtime for a given device path. 1864 * Mainly used for ctime/mtime based probe like libblkid. 1865 */ 1866 static void update_dev_time(const char *path_name) 1867 { 1868 struct file *filp; 1869 1870 filp = filp_open(path_name, O_RDWR, 0); 1871 if (IS_ERR(filp)) 1872 return; 1873 file_update_time(filp); 1874 filp_close(filp, NULL); 1875 } 1876 1877 static int btrfs_rm_dev_item(struct btrfs_device *device) 1878 { 1879 struct btrfs_root *root = device->fs_info->chunk_root; 1880 int ret; 1881 struct btrfs_path *path; 1882 struct btrfs_key key; 1883 struct btrfs_trans_handle *trans; 1884 1885 path = btrfs_alloc_path(); 1886 if (!path) 1887 return -ENOMEM; 1888 1889 trans = btrfs_start_transaction(root, 0); 1890 if (IS_ERR(trans)) { 1891 btrfs_free_path(path); 1892 return PTR_ERR(trans); 1893 } 1894 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1895 key.type = BTRFS_DEV_ITEM_KEY; 1896 key.offset = device->devid; 1897 1898 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1899 if (ret) { 1900 if (ret > 0) 1901 ret = -ENOENT; 1902 btrfs_abort_transaction(trans, ret); 1903 btrfs_end_transaction(trans); 1904 goto out; 1905 } 1906 1907 ret = btrfs_del_item(trans, root, path); 1908 if (ret) { 1909 btrfs_abort_transaction(trans, ret); 1910 btrfs_end_transaction(trans); 1911 } 1912 1913 out: 1914 btrfs_free_path(path); 1915 if (!ret) 1916 ret = btrfs_commit_transaction(trans); 1917 return ret; 1918 } 1919 1920 /* 1921 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1922 * filesystem. It's up to the caller to adjust that number regarding eg. device 1923 * replace. 1924 */ 1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1926 u64 num_devices) 1927 { 1928 u64 all_avail; 1929 unsigned seq; 1930 int i; 1931 1932 do { 1933 seq = read_seqbegin(&fs_info->profiles_lock); 1934 1935 all_avail = fs_info->avail_data_alloc_bits | 1936 fs_info->avail_system_alloc_bits | 1937 fs_info->avail_metadata_alloc_bits; 1938 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1939 1940 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1941 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1942 continue; 1943 1944 if (num_devices < btrfs_raid_array[i].devs_min) { 1945 int ret = btrfs_raid_array[i].mindev_error; 1946 1947 if (ret) 1948 return ret; 1949 } 1950 } 1951 1952 return 0; 1953 } 1954 1955 static struct btrfs_device * btrfs_find_next_active_device( 1956 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1957 { 1958 struct btrfs_device *next_device; 1959 1960 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1961 if (next_device != device && 1962 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1963 && next_device->bdev) 1964 return next_device; 1965 } 1966 1967 return NULL; 1968 } 1969 1970 /* 1971 * Helper function to check if the given device is part of s_bdev / latest_bdev 1972 * and replace it with the provided or the next active device, in the context 1973 * where this function called, there should be always be another device (or 1974 * this_dev) which is active. 1975 */ 1976 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1977 struct btrfs_device *next_device) 1978 { 1979 struct btrfs_fs_info *fs_info = device->fs_info; 1980 1981 if (!next_device) 1982 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1983 device); 1984 ASSERT(next_device); 1985 1986 if (fs_info->sb->s_bdev && 1987 (fs_info->sb->s_bdev == device->bdev)) 1988 fs_info->sb->s_bdev = next_device->bdev; 1989 1990 if (fs_info->fs_devices->latest_bdev == device->bdev) 1991 fs_info->fs_devices->latest_bdev = next_device->bdev; 1992 } 1993 1994 /* 1995 * Return btrfs_fs_devices::num_devices excluding the device that's being 1996 * currently replaced. 1997 */ 1998 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1999 { 2000 u64 num_devices = fs_info->fs_devices->num_devices; 2001 2002 down_read(&fs_info->dev_replace.rwsem); 2003 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2004 ASSERT(num_devices > 1); 2005 num_devices--; 2006 } 2007 up_read(&fs_info->dev_replace.rwsem); 2008 2009 return num_devices; 2010 } 2011 2012 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2013 struct block_device *bdev, 2014 const char *device_path) 2015 { 2016 struct btrfs_super_block *disk_super; 2017 int copy_num; 2018 2019 if (!bdev) 2020 return; 2021 2022 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2023 struct page *page; 2024 int ret; 2025 2026 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2027 if (IS_ERR(disk_super)) 2028 continue; 2029 2030 if (bdev_is_zoned(bdev)) { 2031 btrfs_reset_sb_log_zones(bdev, copy_num); 2032 continue; 2033 } 2034 2035 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2036 2037 page = virt_to_page(disk_super); 2038 set_page_dirty(page); 2039 lock_page(page); 2040 /* write_on_page() unlocks the page */ 2041 ret = write_one_page(page); 2042 if (ret) 2043 btrfs_warn(fs_info, 2044 "error clearing superblock number %d (%d)", 2045 copy_num, ret); 2046 btrfs_release_disk_super(disk_super); 2047 2048 } 2049 2050 /* Notify udev that device has changed */ 2051 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2052 2053 /* Update ctime/mtime for device path for libblkid */ 2054 update_dev_time(device_path); 2055 } 2056 2057 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2058 u64 devid) 2059 { 2060 struct btrfs_device *device; 2061 struct btrfs_fs_devices *cur_devices; 2062 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2063 u64 num_devices; 2064 int ret = 0; 2065 2066 mutex_lock(&uuid_mutex); 2067 2068 num_devices = btrfs_num_devices(fs_info); 2069 2070 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2071 if (ret) 2072 goto out; 2073 2074 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2075 2076 if (IS_ERR(device)) { 2077 if (PTR_ERR(device) == -ENOENT && 2078 strcmp(device_path, "missing") == 0) 2079 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2080 else 2081 ret = PTR_ERR(device); 2082 goto out; 2083 } 2084 2085 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2086 btrfs_warn_in_rcu(fs_info, 2087 "cannot remove device %s (devid %llu) due to active swapfile", 2088 rcu_str_deref(device->name), device->devid); 2089 ret = -ETXTBSY; 2090 goto out; 2091 } 2092 2093 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2094 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2095 goto out; 2096 } 2097 2098 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2099 fs_info->fs_devices->rw_devices == 1) { 2100 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2101 goto out; 2102 } 2103 2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2105 mutex_lock(&fs_info->chunk_mutex); 2106 list_del_init(&device->dev_alloc_list); 2107 device->fs_devices->rw_devices--; 2108 mutex_unlock(&fs_info->chunk_mutex); 2109 } 2110 2111 mutex_unlock(&uuid_mutex); 2112 ret = btrfs_shrink_device(device, 0); 2113 if (!ret) 2114 btrfs_reada_remove_dev(device); 2115 mutex_lock(&uuid_mutex); 2116 if (ret) 2117 goto error_undo; 2118 2119 /* 2120 * TODO: the superblock still includes this device in its num_devices 2121 * counter although write_all_supers() is not locked out. This 2122 * could give a filesystem state which requires a degraded mount. 2123 */ 2124 ret = btrfs_rm_dev_item(device); 2125 if (ret) 2126 goto error_undo; 2127 2128 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2129 btrfs_scrub_cancel_dev(device); 2130 2131 /* 2132 * the device list mutex makes sure that we don't change 2133 * the device list while someone else is writing out all 2134 * the device supers. Whoever is writing all supers, should 2135 * lock the device list mutex before getting the number of 2136 * devices in the super block (super_copy). Conversely, 2137 * whoever updates the number of devices in the super block 2138 * (super_copy) should hold the device list mutex. 2139 */ 2140 2141 /* 2142 * In normal cases the cur_devices == fs_devices. But in case 2143 * of deleting a seed device, the cur_devices should point to 2144 * its own fs_devices listed under the fs_devices->seed. 2145 */ 2146 cur_devices = device->fs_devices; 2147 mutex_lock(&fs_devices->device_list_mutex); 2148 list_del_rcu(&device->dev_list); 2149 2150 cur_devices->num_devices--; 2151 cur_devices->total_devices--; 2152 /* Update total_devices of the parent fs_devices if it's seed */ 2153 if (cur_devices != fs_devices) 2154 fs_devices->total_devices--; 2155 2156 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2157 cur_devices->missing_devices--; 2158 2159 btrfs_assign_next_active_device(device, NULL); 2160 2161 if (device->bdev) { 2162 cur_devices->open_devices--; 2163 /* remove sysfs entry */ 2164 btrfs_sysfs_remove_device(device); 2165 } 2166 2167 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2168 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2169 mutex_unlock(&fs_devices->device_list_mutex); 2170 2171 /* 2172 * at this point, the device is zero sized and detached from 2173 * the devices list. All that's left is to zero out the old 2174 * supers and free the device. 2175 */ 2176 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2177 btrfs_scratch_superblocks(fs_info, device->bdev, 2178 device->name->str); 2179 2180 btrfs_close_bdev(device); 2181 synchronize_rcu(); 2182 btrfs_free_device(device); 2183 2184 if (cur_devices->open_devices == 0) { 2185 list_del_init(&cur_devices->seed_list); 2186 close_fs_devices(cur_devices); 2187 free_fs_devices(cur_devices); 2188 } 2189 2190 out: 2191 mutex_unlock(&uuid_mutex); 2192 return ret; 2193 2194 error_undo: 2195 btrfs_reada_undo_remove_dev(device); 2196 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2197 mutex_lock(&fs_info->chunk_mutex); 2198 list_add(&device->dev_alloc_list, 2199 &fs_devices->alloc_list); 2200 device->fs_devices->rw_devices++; 2201 mutex_unlock(&fs_info->chunk_mutex); 2202 } 2203 goto out; 2204 } 2205 2206 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2207 { 2208 struct btrfs_fs_devices *fs_devices; 2209 2210 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2211 2212 /* 2213 * in case of fs with no seed, srcdev->fs_devices will point 2214 * to fs_devices of fs_info. However when the dev being replaced is 2215 * a seed dev it will point to the seed's local fs_devices. In short 2216 * srcdev will have its correct fs_devices in both the cases. 2217 */ 2218 fs_devices = srcdev->fs_devices; 2219 2220 list_del_rcu(&srcdev->dev_list); 2221 list_del(&srcdev->dev_alloc_list); 2222 fs_devices->num_devices--; 2223 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2224 fs_devices->missing_devices--; 2225 2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2227 fs_devices->rw_devices--; 2228 2229 if (srcdev->bdev) 2230 fs_devices->open_devices--; 2231 } 2232 2233 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2234 { 2235 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2236 2237 mutex_lock(&uuid_mutex); 2238 2239 btrfs_close_bdev(srcdev); 2240 synchronize_rcu(); 2241 btrfs_free_device(srcdev); 2242 2243 /* if this is no devs we rather delete the fs_devices */ 2244 if (!fs_devices->num_devices) { 2245 /* 2246 * On a mounted FS, num_devices can't be zero unless it's a 2247 * seed. In case of a seed device being replaced, the replace 2248 * target added to the sprout FS, so there will be no more 2249 * device left under the seed FS. 2250 */ 2251 ASSERT(fs_devices->seeding); 2252 2253 list_del_init(&fs_devices->seed_list); 2254 close_fs_devices(fs_devices); 2255 free_fs_devices(fs_devices); 2256 } 2257 mutex_unlock(&uuid_mutex); 2258 } 2259 2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2261 { 2262 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2263 2264 mutex_lock(&fs_devices->device_list_mutex); 2265 2266 btrfs_sysfs_remove_device(tgtdev); 2267 2268 if (tgtdev->bdev) 2269 fs_devices->open_devices--; 2270 2271 fs_devices->num_devices--; 2272 2273 btrfs_assign_next_active_device(tgtdev, NULL); 2274 2275 list_del_rcu(&tgtdev->dev_list); 2276 2277 mutex_unlock(&fs_devices->device_list_mutex); 2278 2279 /* 2280 * The update_dev_time() with in btrfs_scratch_superblocks() 2281 * may lead to a call to btrfs_show_devname() which will try 2282 * to hold device_list_mutex. And here this device 2283 * is already out of device list, so we don't have to hold 2284 * the device_list_mutex lock. 2285 */ 2286 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2287 tgtdev->name->str); 2288 2289 btrfs_close_bdev(tgtdev); 2290 synchronize_rcu(); 2291 btrfs_free_device(tgtdev); 2292 } 2293 2294 static struct btrfs_device *btrfs_find_device_by_path( 2295 struct btrfs_fs_info *fs_info, const char *device_path) 2296 { 2297 int ret = 0; 2298 struct btrfs_super_block *disk_super; 2299 u64 devid; 2300 u8 *dev_uuid; 2301 struct block_device *bdev; 2302 struct btrfs_device *device; 2303 2304 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2305 fs_info->bdev_holder, 0, &bdev, &disk_super); 2306 if (ret) 2307 return ERR_PTR(ret); 2308 2309 devid = btrfs_stack_device_id(&disk_super->dev_item); 2310 dev_uuid = disk_super->dev_item.uuid; 2311 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2312 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2313 disk_super->metadata_uuid); 2314 else 2315 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2316 disk_super->fsid); 2317 2318 btrfs_release_disk_super(disk_super); 2319 if (!device) 2320 device = ERR_PTR(-ENOENT); 2321 blkdev_put(bdev, FMODE_READ); 2322 return device; 2323 } 2324 2325 /* 2326 * Lookup a device given by device id, or the path if the id is 0. 2327 */ 2328 struct btrfs_device *btrfs_find_device_by_devspec( 2329 struct btrfs_fs_info *fs_info, u64 devid, 2330 const char *device_path) 2331 { 2332 struct btrfs_device *device; 2333 2334 if (devid) { 2335 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2336 NULL); 2337 if (!device) 2338 return ERR_PTR(-ENOENT); 2339 return device; 2340 } 2341 2342 if (!device_path || !device_path[0]) 2343 return ERR_PTR(-EINVAL); 2344 2345 if (strcmp(device_path, "missing") == 0) { 2346 /* Find first missing device */ 2347 list_for_each_entry(device, &fs_info->fs_devices->devices, 2348 dev_list) { 2349 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2350 &device->dev_state) && !device->bdev) 2351 return device; 2352 } 2353 return ERR_PTR(-ENOENT); 2354 } 2355 2356 return btrfs_find_device_by_path(fs_info, device_path); 2357 } 2358 2359 /* 2360 * does all the dirty work required for changing file system's UUID. 2361 */ 2362 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2363 { 2364 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2365 struct btrfs_fs_devices *old_devices; 2366 struct btrfs_fs_devices *seed_devices; 2367 struct btrfs_super_block *disk_super = fs_info->super_copy; 2368 struct btrfs_device *device; 2369 u64 super_flags; 2370 2371 lockdep_assert_held(&uuid_mutex); 2372 if (!fs_devices->seeding) 2373 return -EINVAL; 2374 2375 /* 2376 * Private copy of the seed devices, anchored at 2377 * fs_info->fs_devices->seed_list 2378 */ 2379 seed_devices = alloc_fs_devices(NULL, NULL); 2380 if (IS_ERR(seed_devices)) 2381 return PTR_ERR(seed_devices); 2382 2383 /* 2384 * It's necessary to retain a copy of the original seed fs_devices in 2385 * fs_uuids so that filesystems which have been seeded can successfully 2386 * reference the seed device from open_seed_devices. This also supports 2387 * multiple fs seed. 2388 */ 2389 old_devices = clone_fs_devices(fs_devices); 2390 if (IS_ERR(old_devices)) { 2391 kfree(seed_devices); 2392 return PTR_ERR(old_devices); 2393 } 2394 2395 list_add(&old_devices->fs_list, &fs_uuids); 2396 2397 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2398 seed_devices->opened = 1; 2399 INIT_LIST_HEAD(&seed_devices->devices); 2400 INIT_LIST_HEAD(&seed_devices->alloc_list); 2401 mutex_init(&seed_devices->device_list_mutex); 2402 2403 mutex_lock(&fs_devices->device_list_mutex); 2404 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2405 synchronize_rcu); 2406 list_for_each_entry(device, &seed_devices->devices, dev_list) 2407 device->fs_devices = seed_devices; 2408 2409 fs_devices->seeding = false; 2410 fs_devices->num_devices = 0; 2411 fs_devices->open_devices = 0; 2412 fs_devices->missing_devices = 0; 2413 fs_devices->rotating = false; 2414 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2415 2416 generate_random_uuid(fs_devices->fsid); 2417 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2418 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2419 mutex_unlock(&fs_devices->device_list_mutex); 2420 2421 super_flags = btrfs_super_flags(disk_super) & 2422 ~BTRFS_SUPER_FLAG_SEEDING; 2423 btrfs_set_super_flags(disk_super, super_flags); 2424 2425 return 0; 2426 } 2427 2428 /* 2429 * Store the expected generation for seed devices in device items. 2430 */ 2431 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2432 { 2433 struct btrfs_fs_info *fs_info = trans->fs_info; 2434 struct btrfs_root *root = fs_info->chunk_root; 2435 struct btrfs_path *path; 2436 struct extent_buffer *leaf; 2437 struct btrfs_dev_item *dev_item; 2438 struct btrfs_device *device; 2439 struct btrfs_key key; 2440 u8 fs_uuid[BTRFS_FSID_SIZE]; 2441 u8 dev_uuid[BTRFS_UUID_SIZE]; 2442 u64 devid; 2443 int ret; 2444 2445 path = btrfs_alloc_path(); 2446 if (!path) 2447 return -ENOMEM; 2448 2449 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2450 key.offset = 0; 2451 key.type = BTRFS_DEV_ITEM_KEY; 2452 2453 while (1) { 2454 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2455 if (ret < 0) 2456 goto error; 2457 2458 leaf = path->nodes[0]; 2459 next_slot: 2460 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2461 ret = btrfs_next_leaf(root, path); 2462 if (ret > 0) 2463 break; 2464 if (ret < 0) 2465 goto error; 2466 leaf = path->nodes[0]; 2467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2468 btrfs_release_path(path); 2469 continue; 2470 } 2471 2472 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2473 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2474 key.type != BTRFS_DEV_ITEM_KEY) 2475 break; 2476 2477 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2478 struct btrfs_dev_item); 2479 devid = btrfs_device_id(leaf, dev_item); 2480 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2481 BTRFS_UUID_SIZE); 2482 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2483 BTRFS_FSID_SIZE); 2484 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2485 fs_uuid); 2486 BUG_ON(!device); /* Logic error */ 2487 2488 if (device->fs_devices->seeding) { 2489 btrfs_set_device_generation(leaf, dev_item, 2490 device->generation); 2491 btrfs_mark_buffer_dirty(leaf); 2492 } 2493 2494 path->slots[0]++; 2495 goto next_slot; 2496 } 2497 ret = 0; 2498 error: 2499 btrfs_free_path(path); 2500 return ret; 2501 } 2502 2503 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2504 { 2505 struct btrfs_root *root = fs_info->dev_root; 2506 struct request_queue *q; 2507 struct btrfs_trans_handle *trans; 2508 struct btrfs_device *device; 2509 struct block_device *bdev; 2510 struct super_block *sb = fs_info->sb; 2511 struct rcu_string *name; 2512 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2513 u64 orig_super_total_bytes; 2514 u64 orig_super_num_devices; 2515 int seeding_dev = 0; 2516 int ret = 0; 2517 bool locked = false; 2518 2519 if (sb_rdonly(sb) && !fs_devices->seeding) 2520 return -EROFS; 2521 2522 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2523 fs_info->bdev_holder); 2524 if (IS_ERR(bdev)) 2525 return PTR_ERR(bdev); 2526 2527 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2528 ret = -EINVAL; 2529 goto error; 2530 } 2531 2532 if (fs_devices->seeding) { 2533 seeding_dev = 1; 2534 down_write(&sb->s_umount); 2535 mutex_lock(&uuid_mutex); 2536 locked = true; 2537 } 2538 2539 sync_blockdev(bdev); 2540 2541 rcu_read_lock(); 2542 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2543 if (device->bdev == bdev) { 2544 ret = -EEXIST; 2545 rcu_read_unlock(); 2546 goto error; 2547 } 2548 } 2549 rcu_read_unlock(); 2550 2551 device = btrfs_alloc_device(fs_info, NULL, NULL); 2552 if (IS_ERR(device)) { 2553 /* we can safely leave the fs_devices entry around */ 2554 ret = PTR_ERR(device); 2555 goto error; 2556 } 2557 2558 name = rcu_string_strdup(device_path, GFP_KERNEL); 2559 if (!name) { 2560 ret = -ENOMEM; 2561 goto error_free_device; 2562 } 2563 rcu_assign_pointer(device->name, name); 2564 2565 device->fs_info = fs_info; 2566 device->bdev = bdev; 2567 2568 ret = btrfs_get_dev_zone_info(device); 2569 if (ret) 2570 goto error_free_device; 2571 2572 trans = btrfs_start_transaction(root, 0); 2573 if (IS_ERR(trans)) { 2574 ret = PTR_ERR(trans); 2575 goto error_free_zone; 2576 } 2577 2578 q = bdev_get_queue(bdev); 2579 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2580 device->generation = trans->transid; 2581 device->io_width = fs_info->sectorsize; 2582 device->io_align = fs_info->sectorsize; 2583 device->sector_size = fs_info->sectorsize; 2584 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2585 fs_info->sectorsize); 2586 device->disk_total_bytes = device->total_bytes; 2587 device->commit_total_bytes = device->total_bytes; 2588 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2589 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2590 device->mode = FMODE_EXCL; 2591 device->dev_stats_valid = 1; 2592 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2593 2594 if (seeding_dev) { 2595 btrfs_clear_sb_rdonly(sb); 2596 ret = btrfs_prepare_sprout(fs_info); 2597 if (ret) { 2598 btrfs_abort_transaction(trans, ret); 2599 goto error_trans; 2600 } 2601 } 2602 2603 device->fs_devices = fs_devices; 2604 2605 mutex_lock(&fs_devices->device_list_mutex); 2606 mutex_lock(&fs_info->chunk_mutex); 2607 list_add_rcu(&device->dev_list, &fs_devices->devices); 2608 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2609 fs_devices->num_devices++; 2610 fs_devices->open_devices++; 2611 fs_devices->rw_devices++; 2612 fs_devices->total_devices++; 2613 fs_devices->total_rw_bytes += device->total_bytes; 2614 2615 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2616 2617 if (!blk_queue_nonrot(q)) 2618 fs_devices->rotating = true; 2619 2620 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2621 btrfs_set_super_total_bytes(fs_info->super_copy, 2622 round_down(orig_super_total_bytes + device->total_bytes, 2623 fs_info->sectorsize)); 2624 2625 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2626 btrfs_set_super_num_devices(fs_info->super_copy, 2627 orig_super_num_devices + 1); 2628 2629 /* 2630 * we've got more storage, clear any full flags on the space 2631 * infos 2632 */ 2633 btrfs_clear_space_info_full(fs_info); 2634 2635 mutex_unlock(&fs_info->chunk_mutex); 2636 2637 /* Add sysfs device entry */ 2638 btrfs_sysfs_add_device(device); 2639 2640 mutex_unlock(&fs_devices->device_list_mutex); 2641 2642 if (seeding_dev) { 2643 mutex_lock(&fs_info->chunk_mutex); 2644 ret = init_first_rw_device(trans); 2645 mutex_unlock(&fs_info->chunk_mutex); 2646 if (ret) { 2647 btrfs_abort_transaction(trans, ret); 2648 goto error_sysfs; 2649 } 2650 } 2651 2652 ret = btrfs_add_dev_item(trans, device); 2653 if (ret) { 2654 btrfs_abort_transaction(trans, ret); 2655 goto error_sysfs; 2656 } 2657 2658 if (seeding_dev) { 2659 ret = btrfs_finish_sprout(trans); 2660 if (ret) { 2661 btrfs_abort_transaction(trans, ret); 2662 goto error_sysfs; 2663 } 2664 2665 /* 2666 * fs_devices now represents the newly sprouted filesystem and 2667 * its fsid has been changed by btrfs_prepare_sprout 2668 */ 2669 btrfs_sysfs_update_sprout_fsid(fs_devices); 2670 } 2671 2672 ret = btrfs_commit_transaction(trans); 2673 2674 if (seeding_dev) { 2675 mutex_unlock(&uuid_mutex); 2676 up_write(&sb->s_umount); 2677 locked = false; 2678 2679 if (ret) /* transaction commit */ 2680 return ret; 2681 2682 ret = btrfs_relocate_sys_chunks(fs_info); 2683 if (ret < 0) 2684 btrfs_handle_fs_error(fs_info, ret, 2685 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2686 trans = btrfs_attach_transaction(root); 2687 if (IS_ERR(trans)) { 2688 if (PTR_ERR(trans) == -ENOENT) 2689 return 0; 2690 ret = PTR_ERR(trans); 2691 trans = NULL; 2692 goto error_sysfs; 2693 } 2694 ret = btrfs_commit_transaction(trans); 2695 } 2696 2697 /* 2698 * Now that we have written a new super block to this device, check all 2699 * other fs_devices list if device_path alienates any other scanned 2700 * device. 2701 * We can ignore the return value as it typically returns -EINVAL and 2702 * only succeeds if the device was an alien. 2703 */ 2704 btrfs_forget_devices(device_path); 2705 2706 /* Update ctime/mtime for blkid or udev */ 2707 update_dev_time(device_path); 2708 2709 return ret; 2710 2711 error_sysfs: 2712 btrfs_sysfs_remove_device(device); 2713 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2714 mutex_lock(&fs_info->chunk_mutex); 2715 list_del_rcu(&device->dev_list); 2716 list_del(&device->dev_alloc_list); 2717 fs_info->fs_devices->num_devices--; 2718 fs_info->fs_devices->open_devices--; 2719 fs_info->fs_devices->rw_devices--; 2720 fs_info->fs_devices->total_devices--; 2721 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2722 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2723 btrfs_set_super_total_bytes(fs_info->super_copy, 2724 orig_super_total_bytes); 2725 btrfs_set_super_num_devices(fs_info->super_copy, 2726 orig_super_num_devices); 2727 mutex_unlock(&fs_info->chunk_mutex); 2728 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2729 error_trans: 2730 if (seeding_dev) 2731 btrfs_set_sb_rdonly(sb); 2732 if (trans) 2733 btrfs_end_transaction(trans); 2734 error_free_zone: 2735 btrfs_destroy_dev_zone_info(device); 2736 error_free_device: 2737 btrfs_free_device(device); 2738 error: 2739 blkdev_put(bdev, FMODE_EXCL); 2740 if (locked) { 2741 mutex_unlock(&uuid_mutex); 2742 up_write(&sb->s_umount); 2743 } 2744 return ret; 2745 } 2746 2747 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2748 struct btrfs_device *device) 2749 { 2750 int ret; 2751 struct btrfs_path *path; 2752 struct btrfs_root *root = device->fs_info->chunk_root; 2753 struct btrfs_dev_item *dev_item; 2754 struct extent_buffer *leaf; 2755 struct btrfs_key key; 2756 2757 path = btrfs_alloc_path(); 2758 if (!path) 2759 return -ENOMEM; 2760 2761 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2762 key.type = BTRFS_DEV_ITEM_KEY; 2763 key.offset = device->devid; 2764 2765 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2766 if (ret < 0) 2767 goto out; 2768 2769 if (ret > 0) { 2770 ret = -ENOENT; 2771 goto out; 2772 } 2773 2774 leaf = path->nodes[0]; 2775 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2776 2777 btrfs_set_device_id(leaf, dev_item, device->devid); 2778 btrfs_set_device_type(leaf, dev_item, device->type); 2779 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2780 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2781 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2782 btrfs_set_device_total_bytes(leaf, dev_item, 2783 btrfs_device_get_disk_total_bytes(device)); 2784 btrfs_set_device_bytes_used(leaf, dev_item, 2785 btrfs_device_get_bytes_used(device)); 2786 btrfs_mark_buffer_dirty(leaf); 2787 2788 out: 2789 btrfs_free_path(path); 2790 return ret; 2791 } 2792 2793 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2794 struct btrfs_device *device, u64 new_size) 2795 { 2796 struct btrfs_fs_info *fs_info = device->fs_info; 2797 struct btrfs_super_block *super_copy = fs_info->super_copy; 2798 u64 old_total; 2799 u64 diff; 2800 2801 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2802 return -EACCES; 2803 2804 new_size = round_down(new_size, fs_info->sectorsize); 2805 2806 mutex_lock(&fs_info->chunk_mutex); 2807 old_total = btrfs_super_total_bytes(super_copy); 2808 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2809 2810 if (new_size <= device->total_bytes || 2811 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2812 mutex_unlock(&fs_info->chunk_mutex); 2813 return -EINVAL; 2814 } 2815 2816 btrfs_set_super_total_bytes(super_copy, 2817 round_down(old_total + diff, fs_info->sectorsize)); 2818 device->fs_devices->total_rw_bytes += diff; 2819 2820 btrfs_device_set_total_bytes(device, new_size); 2821 btrfs_device_set_disk_total_bytes(device, new_size); 2822 btrfs_clear_space_info_full(device->fs_info); 2823 if (list_empty(&device->post_commit_list)) 2824 list_add_tail(&device->post_commit_list, 2825 &trans->transaction->dev_update_list); 2826 mutex_unlock(&fs_info->chunk_mutex); 2827 2828 return btrfs_update_device(trans, device); 2829 } 2830 2831 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2832 { 2833 struct btrfs_fs_info *fs_info = trans->fs_info; 2834 struct btrfs_root *root = fs_info->chunk_root; 2835 int ret; 2836 struct btrfs_path *path; 2837 struct btrfs_key key; 2838 2839 path = btrfs_alloc_path(); 2840 if (!path) 2841 return -ENOMEM; 2842 2843 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2844 key.offset = chunk_offset; 2845 key.type = BTRFS_CHUNK_ITEM_KEY; 2846 2847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2848 if (ret < 0) 2849 goto out; 2850 else if (ret > 0) { /* Logic error or corruption */ 2851 btrfs_handle_fs_error(fs_info, -ENOENT, 2852 "Failed lookup while freeing chunk."); 2853 ret = -ENOENT; 2854 goto out; 2855 } 2856 2857 ret = btrfs_del_item(trans, root, path); 2858 if (ret < 0) 2859 btrfs_handle_fs_error(fs_info, ret, 2860 "Failed to delete chunk item."); 2861 out: 2862 btrfs_free_path(path); 2863 return ret; 2864 } 2865 2866 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2867 { 2868 struct btrfs_super_block *super_copy = fs_info->super_copy; 2869 struct btrfs_disk_key *disk_key; 2870 struct btrfs_chunk *chunk; 2871 u8 *ptr; 2872 int ret = 0; 2873 u32 num_stripes; 2874 u32 array_size; 2875 u32 len = 0; 2876 u32 cur; 2877 struct btrfs_key key; 2878 2879 mutex_lock(&fs_info->chunk_mutex); 2880 array_size = btrfs_super_sys_array_size(super_copy); 2881 2882 ptr = super_copy->sys_chunk_array; 2883 cur = 0; 2884 2885 while (cur < array_size) { 2886 disk_key = (struct btrfs_disk_key *)ptr; 2887 btrfs_disk_key_to_cpu(&key, disk_key); 2888 2889 len = sizeof(*disk_key); 2890 2891 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2892 chunk = (struct btrfs_chunk *)(ptr + len); 2893 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2894 len += btrfs_chunk_item_size(num_stripes); 2895 } else { 2896 ret = -EIO; 2897 break; 2898 } 2899 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2900 key.offset == chunk_offset) { 2901 memmove(ptr, ptr + len, array_size - (cur + len)); 2902 array_size -= len; 2903 btrfs_set_super_sys_array_size(super_copy, array_size); 2904 } else { 2905 ptr += len; 2906 cur += len; 2907 } 2908 } 2909 mutex_unlock(&fs_info->chunk_mutex); 2910 return ret; 2911 } 2912 2913 /* 2914 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2915 * @logical: Logical block offset in bytes. 2916 * @length: Length of extent in bytes. 2917 * 2918 * Return: Chunk mapping or ERR_PTR. 2919 */ 2920 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2921 u64 logical, u64 length) 2922 { 2923 struct extent_map_tree *em_tree; 2924 struct extent_map *em; 2925 2926 em_tree = &fs_info->mapping_tree; 2927 read_lock(&em_tree->lock); 2928 em = lookup_extent_mapping(em_tree, logical, length); 2929 read_unlock(&em_tree->lock); 2930 2931 if (!em) { 2932 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2933 logical, length); 2934 return ERR_PTR(-EINVAL); 2935 } 2936 2937 if (em->start > logical || em->start + em->len < logical) { 2938 btrfs_crit(fs_info, 2939 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2940 logical, length, em->start, em->start + em->len); 2941 free_extent_map(em); 2942 return ERR_PTR(-EINVAL); 2943 } 2944 2945 /* callers are responsible for dropping em's ref. */ 2946 return em; 2947 } 2948 2949 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2950 { 2951 struct btrfs_fs_info *fs_info = trans->fs_info; 2952 struct extent_map *em; 2953 struct map_lookup *map; 2954 u64 dev_extent_len = 0; 2955 int i, ret = 0; 2956 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2957 2958 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2959 if (IS_ERR(em)) { 2960 /* 2961 * This is a logic error, but we don't want to just rely on the 2962 * user having built with ASSERT enabled, so if ASSERT doesn't 2963 * do anything we still error out. 2964 */ 2965 ASSERT(0); 2966 return PTR_ERR(em); 2967 } 2968 map = em->map_lookup; 2969 mutex_lock(&fs_info->chunk_mutex); 2970 check_system_chunk(trans, map->type); 2971 mutex_unlock(&fs_info->chunk_mutex); 2972 2973 /* 2974 * Take the device list mutex to prevent races with the final phase of 2975 * a device replace operation that replaces the device object associated 2976 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2977 */ 2978 mutex_lock(&fs_devices->device_list_mutex); 2979 for (i = 0; i < map->num_stripes; i++) { 2980 struct btrfs_device *device = map->stripes[i].dev; 2981 ret = btrfs_free_dev_extent(trans, device, 2982 map->stripes[i].physical, 2983 &dev_extent_len); 2984 if (ret) { 2985 mutex_unlock(&fs_devices->device_list_mutex); 2986 btrfs_abort_transaction(trans, ret); 2987 goto out; 2988 } 2989 2990 if (device->bytes_used > 0) { 2991 mutex_lock(&fs_info->chunk_mutex); 2992 btrfs_device_set_bytes_used(device, 2993 device->bytes_used - dev_extent_len); 2994 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2995 btrfs_clear_space_info_full(fs_info); 2996 mutex_unlock(&fs_info->chunk_mutex); 2997 } 2998 2999 ret = btrfs_update_device(trans, device); 3000 if (ret) { 3001 mutex_unlock(&fs_devices->device_list_mutex); 3002 btrfs_abort_transaction(trans, ret); 3003 goto out; 3004 } 3005 } 3006 mutex_unlock(&fs_devices->device_list_mutex); 3007 3008 ret = btrfs_free_chunk(trans, chunk_offset); 3009 if (ret) { 3010 btrfs_abort_transaction(trans, ret); 3011 goto out; 3012 } 3013 3014 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3015 3016 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3017 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3018 if (ret) { 3019 btrfs_abort_transaction(trans, ret); 3020 goto out; 3021 } 3022 } 3023 3024 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3025 if (ret) { 3026 btrfs_abort_transaction(trans, ret); 3027 goto out; 3028 } 3029 3030 out: 3031 /* once for us */ 3032 free_extent_map(em); 3033 return ret; 3034 } 3035 3036 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3037 { 3038 struct btrfs_root *root = fs_info->chunk_root; 3039 struct btrfs_trans_handle *trans; 3040 struct btrfs_block_group *block_group; 3041 int ret; 3042 3043 /* 3044 * Prevent races with automatic removal of unused block groups. 3045 * After we relocate and before we remove the chunk with offset 3046 * chunk_offset, automatic removal of the block group can kick in, 3047 * resulting in a failure when calling btrfs_remove_chunk() below. 3048 * 3049 * Make sure to acquire this mutex before doing a tree search (dev 3050 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3051 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3052 * we release the path used to search the chunk/dev tree and before 3053 * the current task acquires this mutex and calls us. 3054 */ 3055 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3056 3057 /* step one, relocate all the extents inside this chunk */ 3058 btrfs_scrub_pause(fs_info); 3059 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3060 btrfs_scrub_continue(fs_info); 3061 if (ret) 3062 return ret; 3063 3064 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3065 if (!block_group) 3066 return -ENOENT; 3067 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3068 btrfs_put_block_group(block_group); 3069 3070 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3071 chunk_offset); 3072 if (IS_ERR(trans)) { 3073 ret = PTR_ERR(trans); 3074 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3075 return ret; 3076 } 3077 3078 /* 3079 * step two, delete the device extents and the 3080 * chunk tree entries 3081 */ 3082 ret = btrfs_remove_chunk(trans, chunk_offset); 3083 btrfs_end_transaction(trans); 3084 return ret; 3085 } 3086 3087 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3088 { 3089 struct btrfs_root *chunk_root = fs_info->chunk_root; 3090 struct btrfs_path *path; 3091 struct extent_buffer *leaf; 3092 struct btrfs_chunk *chunk; 3093 struct btrfs_key key; 3094 struct btrfs_key found_key; 3095 u64 chunk_type; 3096 bool retried = false; 3097 int failed = 0; 3098 int ret; 3099 3100 path = btrfs_alloc_path(); 3101 if (!path) 3102 return -ENOMEM; 3103 3104 again: 3105 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3106 key.offset = (u64)-1; 3107 key.type = BTRFS_CHUNK_ITEM_KEY; 3108 3109 while (1) { 3110 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3111 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3112 if (ret < 0) { 3113 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3114 goto error; 3115 } 3116 BUG_ON(ret == 0); /* Corruption */ 3117 3118 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3119 key.type); 3120 if (ret) 3121 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3122 if (ret < 0) 3123 goto error; 3124 if (ret > 0) 3125 break; 3126 3127 leaf = path->nodes[0]; 3128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3129 3130 chunk = btrfs_item_ptr(leaf, path->slots[0], 3131 struct btrfs_chunk); 3132 chunk_type = btrfs_chunk_type(leaf, chunk); 3133 btrfs_release_path(path); 3134 3135 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3136 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3137 if (ret == -ENOSPC) 3138 failed++; 3139 else 3140 BUG_ON(ret); 3141 } 3142 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3143 3144 if (found_key.offset == 0) 3145 break; 3146 key.offset = found_key.offset - 1; 3147 } 3148 ret = 0; 3149 if (failed && !retried) { 3150 failed = 0; 3151 retried = true; 3152 goto again; 3153 } else if (WARN_ON(failed && retried)) { 3154 ret = -ENOSPC; 3155 } 3156 error: 3157 btrfs_free_path(path); 3158 return ret; 3159 } 3160 3161 /* 3162 * return 1 : allocate a data chunk successfully, 3163 * return <0: errors during allocating a data chunk, 3164 * return 0 : no need to allocate a data chunk. 3165 */ 3166 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3167 u64 chunk_offset) 3168 { 3169 struct btrfs_block_group *cache; 3170 u64 bytes_used; 3171 u64 chunk_type; 3172 3173 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3174 ASSERT(cache); 3175 chunk_type = cache->flags; 3176 btrfs_put_block_group(cache); 3177 3178 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3179 return 0; 3180 3181 spin_lock(&fs_info->data_sinfo->lock); 3182 bytes_used = fs_info->data_sinfo->bytes_used; 3183 spin_unlock(&fs_info->data_sinfo->lock); 3184 3185 if (!bytes_used) { 3186 struct btrfs_trans_handle *trans; 3187 int ret; 3188 3189 trans = btrfs_join_transaction(fs_info->tree_root); 3190 if (IS_ERR(trans)) 3191 return PTR_ERR(trans); 3192 3193 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3194 btrfs_end_transaction(trans); 3195 if (ret < 0) 3196 return ret; 3197 return 1; 3198 } 3199 3200 return 0; 3201 } 3202 3203 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3204 struct btrfs_balance_control *bctl) 3205 { 3206 struct btrfs_root *root = fs_info->tree_root; 3207 struct btrfs_trans_handle *trans; 3208 struct btrfs_balance_item *item; 3209 struct btrfs_disk_balance_args disk_bargs; 3210 struct btrfs_path *path; 3211 struct extent_buffer *leaf; 3212 struct btrfs_key key; 3213 int ret, err; 3214 3215 path = btrfs_alloc_path(); 3216 if (!path) 3217 return -ENOMEM; 3218 3219 trans = btrfs_start_transaction(root, 0); 3220 if (IS_ERR(trans)) { 3221 btrfs_free_path(path); 3222 return PTR_ERR(trans); 3223 } 3224 3225 key.objectid = BTRFS_BALANCE_OBJECTID; 3226 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3227 key.offset = 0; 3228 3229 ret = btrfs_insert_empty_item(trans, root, path, &key, 3230 sizeof(*item)); 3231 if (ret) 3232 goto out; 3233 3234 leaf = path->nodes[0]; 3235 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3236 3237 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3238 3239 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3240 btrfs_set_balance_data(leaf, item, &disk_bargs); 3241 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3242 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3243 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3244 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3245 3246 btrfs_set_balance_flags(leaf, item, bctl->flags); 3247 3248 btrfs_mark_buffer_dirty(leaf); 3249 out: 3250 btrfs_free_path(path); 3251 err = btrfs_commit_transaction(trans); 3252 if (err && !ret) 3253 ret = err; 3254 return ret; 3255 } 3256 3257 static int del_balance_item(struct btrfs_fs_info *fs_info) 3258 { 3259 struct btrfs_root *root = fs_info->tree_root; 3260 struct btrfs_trans_handle *trans; 3261 struct btrfs_path *path; 3262 struct btrfs_key key; 3263 int ret, err; 3264 3265 path = btrfs_alloc_path(); 3266 if (!path) 3267 return -ENOMEM; 3268 3269 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3270 if (IS_ERR(trans)) { 3271 btrfs_free_path(path); 3272 return PTR_ERR(trans); 3273 } 3274 3275 key.objectid = BTRFS_BALANCE_OBJECTID; 3276 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3277 key.offset = 0; 3278 3279 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3280 if (ret < 0) 3281 goto out; 3282 if (ret > 0) { 3283 ret = -ENOENT; 3284 goto out; 3285 } 3286 3287 ret = btrfs_del_item(trans, root, path); 3288 out: 3289 btrfs_free_path(path); 3290 err = btrfs_commit_transaction(trans); 3291 if (err && !ret) 3292 ret = err; 3293 return ret; 3294 } 3295 3296 /* 3297 * This is a heuristic used to reduce the number of chunks balanced on 3298 * resume after balance was interrupted. 3299 */ 3300 static void update_balance_args(struct btrfs_balance_control *bctl) 3301 { 3302 /* 3303 * Turn on soft mode for chunk types that were being converted. 3304 */ 3305 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3306 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3307 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3308 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3309 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3310 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3311 3312 /* 3313 * Turn on usage filter if is not already used. The idea is 3314 * that chunks that we have already balanced should be 3315 * reasonably full. Don't do it for chunks that are being 3316 * converted - that will keep us from relocating unconverted 3317 * (albeit full) chunks. 3318 */ 3319 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3320 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3321 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3322 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3323 bctl->data.usage = 90; 3324 } 3325 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3326 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3327 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3328 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3329 bctl->sys.usage = 90; 3330 } 3331 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3332 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3333 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3334 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3335 bctl->meta.usage = 90; 3336 } 3337 } 3338 3339 /* 3340 * Clear the balance status in fs_info and delete the balance item from disk. 3341 */ 3342 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3343 { 3344 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3345 int ret; 3346 3347 BUG_ON(!fs_info->balance_ctl); 3348 3349 spin_lock(&fs_info->balance_lock); 3350 fs_info->balance_ctl = NULL; 3351 spin_unlock(&fs_info->balance_lock); 3352 3353 kfree(bctl); 3354 ret = del_balance_item(fs_info); 3355 if (ret) 3356 btrfs_handle_fs_error(fs_info, ret, NULL); 3357 } 3358 3359 /* 3360 * Balance filters. Return 1 if chunk should be filtered out 3361 * (should not be balanced). 3362 */ 3363 static int chunk_profiles_filter(u64 chunk_type, 3364 struct btrfs_balance_args *bargs) 3365 { 3366 chunk_type = chunk_to_extended(chunk_type) & 3367 BTRFS_EXTENDED_PROFILE_MASK; 3368 3369 if (bargs->profiles & chunk_type) 3370 return 0; 3371 3372 return 1; 3373 } 3374 3375 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3376 struct btrfs_balance_args *bargs) 3377 { 3378 struct btrfs_block_group *cache; 3379 u64 chunk_used; 3380 u64 user_thresh_min; 3381 u64 user_thresh_max; 3382 int ret = 1; 3383 3384 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3385 chunk_used = cache->used; 3386 3387 if (bargs->usage_min == 0) 3388 user_thresh_min = 0; 3389 else 3390 user_thresh_min = div_factor_fine(cache->length, 3391 bargs->usage_min); 3392 3393 if (bargs->usage_max == 0) 3394 user_thresh_max = 1; 3395 else if (bargs->usage_max > 100) 3396 user_thresh_max = cache->length; 3397 else 3398 user_thresh_max = div_factor_fine(cache->length, 3399 bargs->usage_max); 3400 3401 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3402 ret = 0; 3403 3404 btrfs_put_block_group(cache); 3405 return ret; 3406 } 3407 3408 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3409 u64 chunk_offset, struct btrfs_balance_args *bargs) 3410 { 3411 struct btrfs_block_group *cache; 3412 u64 chunk_used, user_thresh; 3413 int ret = 1; 3414 3415 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3416 chunk_used = cache->used; 3417 3418 if (bargs->usage_min == 0) 3419 user_thresh = 1; 3420 else if (bargs->usage > 100) 3421 user_thresh = cache->length; 3422 else 3423 user_thresh = div_factor_fine(cache->length, bargs->usage); 3424 3425 if (chunk_used < user_thresh) 3426 ret = 0; 3427 3428 btrfs_put_block_group(cache); 3429 return ret; 3430 } 3431 3432 static int chunk_devid_filter(struct extent_buffer *leaf, 3433 struct btrfs_chunk *chunk, 3434 struct btrfs_balance_args *bargs) 3435 { 3436 struct btrfs_stripe *stripe; 3437 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3438 int i; 3439 3440 for (i = 0; i < num_stripes; i++) { 3441 stripe = btrfs_stripe_nr(chunk, i); 3442 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3443 return 0; 3444 } 3445 3446 return 1; 3447 } 3448 3449 static u64 calc_data_stripes(u64 type, int num_stripes) 3450 { 3451 const int index = btrfs_bg_flags_to_raid_index(type); 3452 const int ncopies = btrfs_raid_array[index].ncopies; 3453 const int nparity = btrfs_raid_array[index].nparity; 3454 3455 if (nparity) 3456 return num_stripes - nparity; 3457 else 3458 return num_stripes / ncopies; 3459 } 3460 3461 /* [pstart, pend) */ 3462 static int chunk_drange_filter(struct extent_buffer *leaf, 3463 struct btrfs_chunk *chunk, 3464 struct btrfs_balance_args *bargs) 3465 { 3466 struct btrfs_stripe *stripe; 3467 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3468 u64 stripe_offset; 3469 u64 stripe_length; 3470 u64 type; 3471 int factor; 3472 int i; 3473 3474 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3475 return 0; 3476 3477 type = btrfs_chunk_type(leaf, chunk); 3478 factor = calc_data_stripes(type, num_stripes); 3479 3480 for (i = 0; i < num_stripes; i++) { 3481 stripe = btrfs_stripe_nr(chunk, i); 3482 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3483 continue; 3484 3485 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3486 stripe_length = btrfs_chunk_length(leaf, chunk); 3487 stripe_length = div_u64(stripe_length, factor); 3488 3489 if (stripe_offset < bargs->pend && 3490 stripe_offset + stripe_length > bargs->pstart) 3491 return 0; 3492 } 3493 3494 return 1; 3495 } 3496 3497 /* [vstart, vend) */ 3498 static int chunk_vrange_filter(struct extent_buffer *leaf, 3499 struct btrfs_chunk *chunk, 3500 u64 chunk_offset, 3501 struct btrfs_balance_args *bargs) 3502 { 3503 if (chunk_offset < bargs->vend && 3504 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3505 /* at least part of the chunk is inside this vrange */ 3506 return 0; 3507 3508 return 1; 3509 } 3510 3511 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3512 struct btrfs_chunk *chunk, 3513 struct btrfs_balance_args *bargs) 3514 { 3515 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3516 3517 if (bargs->stripes_min <= num_stripes 3518 && num_stripes <= bargs->stripes_max) 3519 return 0; 3520 3521 return 1; 3522 } 3523 3524 static int chunk_soft_convert_filter(u64 chunk_type, 3525 struct btrfs_balance_args *bargs) 3526 { 3527 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3528 return 0; 3529 3530 chunk_type = chunk_to_extended(chunk_type) & 3531 BTRFS_EXTENDED_PROFILE_MASK; 3532 3533 if (bargs->target == chunk_type) 3534 return 1; 3535 3536 return 0; 3537 } 3538 3539 static int should_balance_chunk(struct extent_buffer *leaf, 3540 struct btrfs_chunk *chunk, u64 chunk_offset) 3541 { 3542 struct btrfs_fs_info *fs_info = leaf->fs_info; 3543 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3544 struct btrfs_balance_args *bargs = NULL; 3545 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3546 3547 /* type filter */ 3548 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3549 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3550 return 0; 3551 } 3552 3553 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3554 bargs = &bctl->data; 3555 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3556 bargs = &bctl->sys; 3557 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3558 bargs = &bctl->meta; 3559 3560 /* profiles filter */ 3561 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3562 chunk_profiles_filter(chunk_type, bargs)) { 3563 return 0; 3564 } 3565 3566 /* usage filter */ 3567 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3568 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3569 return 0; 3570 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3571 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3572 return 0; 3573 } 3574 3575 /* devid filter */ 3576 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3577 chunk_devid_filter(leaf, chunk, bargs)) { 3578 return 0; 3579 } 3580 3581 /* drange filter, makes sense only with devid filter */ 3582 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3583 chunk_drange_filter(leaf, chunk, bargs)) { 3584 return 0; 3585 } 3586 3587 /* vrange filter */ 3588 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3589 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3590 return 0; 3591 } 3592 3593 /* stripes filter */ 3594 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3595 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3596 return 0; 3597 } 3598 3599 /* soft profile changing mode */ 3600 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3601 chunk_soft_convert_filter(chunk_type, bargs)) { 3602 return 0; 3603 } 3604 3605 /* 3606 * limited by count, must be the last filter 3607 */ 3608 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3609 if (bargs->limit == 0) 3610 return 0; 3611 else 3612 bargs->limit--; 3613 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3614 /* 3615 * Same logic as the 'limit' filter; the minimum cannot be 3616 * determined here because we do not have the global information 3617 * about the count of all chunks that satisfy the filters. 3618 */ 3619 if (bargs->limit_max == 0) 3620 return 0; 3621 else 3622 bargs->limit_max--; 3623 } 3624 3625 return 1; 3626 } 3627 3628 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3629 { 3630 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3631 struct btrfs_root *chunk_root = fs_info->chunk_root; 3632 u64 chunk_type; 3633 struct btrfs_chunk *chunk; 3634 struct btrfs_path *path = NULL; 3635 struct btrfs_key key; 3636 struct btrfs_key found_key; 3637 struct extent_buffer *leaf; 3638 int slot; 3639 int ret; 3640 int enospc_errors = 0; 3641 bool counting = true; 3642 /* The single value limit and min/max limits use the same bytes in the */ 3643 u64 limit_data = bctl->data.limit; 3644 u64 limit_meta = bctl->meta.limit; 3645 u64 limit_sys = bctl->sys.limit; 3646 u32 count_data = 0; 3647 u32 count_meta = 0; 3648 u32 count_sys = 0; 3649 int chunk_reserved = 0; 3650 3651 path = btrfs_alloc_path(); 3652 if (!path) { 3653 ret = -ENOMEM; 3654 goto error; 3655 } 3656 3657 /* zero out stat counters */ 3658 spin_lock(&fs_info->balance_lock); 3659 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3660 spin_unlock(&fs_info->balance_lock); 3661 again: 3662 if (!counting) { 3663 /* 3664 * The single value limit and min/max limits use the same bytes 3665 * in the 3666 */ 3667 bctl->data.limit = limit_data; 3668 bctl->meta.limit = limit_meta; 3669 bctl->sys.limit = limit_sys; 3670 } 3671 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3672 key.offset = (u64)-1; 3673 key.type = BTRFS_CHUNK_ITEM_KEY; 3674 3675 while (1) { 3676 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3677 atomic_read(&fs_info->balance_cancel_req)) { 3678 ret = -ECANCELED; 3679 goto error; 3680 } 3681 3682 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3683 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3684 if (ret < 0) { 3685 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3686 goto error; 3687 } 3688 3689 /* 3690 * this shouldn't happen, it means the last relocate 3691 * failed 3692 */ 3693 if (ret == 0) 3694 BUG(); /* FIXME break ? */ 3695 3696 ret = btrfs_previous_item(chunk_root, path, 0, 3697 BTRFS_CHUNK_ITEM_KEY); 3698 if (ret) { 3699 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3700 ret = 0; 3701 break; 3702 } 3703 3704 leaf = path->nodes[0]; 3705 slot = path->slots[0]; 3706 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3707 3708 if (found_key.objectid != key.objectid) { 3709 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3710 break; 3711 } 3712 3713 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3714 chunk_type = btrfs_chunk_type(leaf, chunk); 3715 3716 if (!counting) { 3717 spin_lock(&fs_info->balance_lock); 3718 bctl->stat.considered++; 3719 spin_unlock(&fs_info->balance_lock); 3720 } 3721 3722 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3723 3724 btrfs_release_path(path); 3725 if (!ret) { 3726 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3727 goto loop; 3728 } 3729 3730 if (counting) { 3731 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3732 spin_lock(&fs_info->balance_lock); 3733 bctl->stat.expected++; 3734 spin_unlock(&fs_info->balance_lock); 3735 3736 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3737 count_data++; 3738 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3739 count_sys++; 3740 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3741 count_meta++; 3742 3743 goto loop; 3744 } 3745 3746 /* 3747 * Apply limit_min filter, no need to check if the LIMITS 3748 * filter is used, limit_min is 0 by default 3749 */ 3750 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3751 count_data < bctl->data.limit_min) 3752 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3753 count_meta < bctl->meta.limit_min) 3754 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3755 count_sys < bctl->sys.limit_min)) { 3756 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3757 goto loop; 3758 } 3759 3760 if (!chunk_reserved) { 3761 /* 3762 * We may be relocating the only data chunk we have, 3763 * which could potentially end up with losing data's 3764 * raid profile, so lets allocate an empty one in 3765 * advance. 3766 */ 3767 ret = btrfs_may_alloc_data_chunk(fs_info, 3768 found_key.offset); 3769 if (ret < 0) { 3770 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3771 goto error; 3772 } else if (ret == 1) { 3773 chunk_reserved = 1; 3774 } 3775 } 3776 3777 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3778 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3779 if (ret == -ENOSPC) { 3780 enospc_errors++; 3781 } else if (ret == -ETXTBSY) { 3782 btrfs_info(fs_info, 3783 "skipping relocation of block group %llu due to active swapfile", 3784 found_key.offset); 3785 ret = 0; 3786 } else if (ret) { 3787 goto error; 3788 } else { 3789 spin_lock(&fs_info->balance_lock); 3790 bctl->stat.completed++; 3791 spin_unlock(&fs_info->balance_lock); 3792 } 3793 loop: 3794 if (found_key.offset == 0) 3795 break; 3796 key.offset = found_key.offset - 1; 3797 } 3798 3799 if (counting) { 3800 btrfs_release_path(path); 3801 counting = false; 3802 goto again; 3803 } 3804 error: 3805 btrfs_free_path(path); 3806 if (enospc_errors) { 3807 btrfs_info(fs_info, "%d enospc errors during balance", 3808 enospc_errors); 3809 if (!ret) 3810 ret = -ENOSPC; 3811 } 3812 3813 return ret; 3814 } 3815 3816 /** 3817 * alloc_profile_is_valid - see if a given profile is valid and reduced 3818 * @flags: profile to validate 3819 * @extended: if true @flags is treated as an extended profile 3820 */ 3821 static int alloc_profile_is_valid(u64 flags, int extended) 3822 { 3823 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3824 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3825 3826 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3827 3828 /* 1) check that all other bits are zeroed */ 3829 if (flags & ~mask) 3830 return 0; 3831 3832 /* 2) see if profile is reduced */ 3833 if (flags == 0) 3834 return !extended; /* "0" is valid for usual profiles */ 3835 3836 return has_single_bit_set(flags); 3837 } 3838 3839 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3840 { 3841 /* cancel requested || normal exit path */ 3842 return atomic_read(&fs_info->balance_cancel_req) || 3843 (atomic_read(&fs_info->balance_pause_req) == 0 && 3844 atomic_read(&fs_info->balance_cancel_req) == 0); 3845 } 3846 3847 /* 3848 * Validate target profile against allowed profiles and return true if it's OK. 3849 * Otherwise print the error message and return false. 3850 */ 3851 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3852 const struct btrfs_balance_args *bargs, 3853 u64 allowed, const char *type) 3854 { 3855 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3856 return true; 3857 3858 /* Profile is valid and does not have bits outside of the allowed set */ 3859 if (alloc_profile_is_valid(bargs->target, 1) && 3860 (bargs->target & ~allowed) == 0) 3861 return true; 3862 3863 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3864 type, btrfs_bg_type_to_raid_name(bargs->target)); 3865 return false; 3866 } 3867 3868 /* 3869 * Fill @buf with textual description of balance filter flags @bargs, up to 3870 * @size_buf including the terminating null. The output may be trimmed if it 3871 * does not fit into the provided buffer. 3872 */ 3873 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3874 u32 size_buf) 3875 { 3876 int ret; 3877 u32 size_bp = size_buf; 3878 char *bp = buf; 3879 u64 flags = bargs->flags; 3880 char tmp_buf[128] = {'\0'}; 3881 3882 if (!flags) 3883 return; 3884 3885 #define CHECK_APPEND_NOARG(a) \ 3886 do { \ 3887 ret = snprintf(bp, size_bp, (a)); \ 3888 if (ret < 0 || ret >= size_bp) \ 3889 goto out_overflow; \ 3890 size_bp -= ret; \ 3891 bp += ret; \ 3892 } while (0) 3893 3894 #define CHECK_APPEND_1ARG(a, v1) \ 3895 do { \ 3896 ret = snprintf(bp, size_bp, (a), (v1)); \ 3897 if (ret < 0 || ret >= size_bp) \ 3898 goto out_overflow; \ 3899 size_bp -= ret; \ 3900 bp += ret; \ 3901 } while (0) 3902 3903 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3904 do { \ 3905 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3906 if (ret < 0 || ret >= size_bp) \ 3907 goto out_overflow; \ 3908 size_bp -= ret; \ 3909 bp += ret; \ 3910 } while (0) 3911 3912 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3913 CHECK_APPEND_1ARG("convert=%s,", 3914 btrfs_bg_type_to_raid_name(bargs->target)); 3915 3916 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3917 CHECK_APPEND_NOARG("soft,"); 3918 3919 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3920 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3921 sizeof(tmp_buf)); 3922 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3923 } 3924 3925 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3926 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3927 3928 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3929 CHECK_APPEND_2ARG("usage=%u..%u,", 3930 bargs->usage_min, bargs->usage_max); 3931 3932 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3933 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3934 3935 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3936 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3937 bargs->pstart, bargs->pend); 3938 3939 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3940 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3941 bargs->vstart, bargs->vend); 3942 3943 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3944 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3945 3946 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3947 CHECK_APPEND_2ARG("limit=%u..%u,", 3948 bargs->limit_min, bargs->limit_max); 3949 3950 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3951 CHECK_APPEND_2ARG("stripes=%u..%u,", 3952 bargs->stripes_min, bargs->stripes_max); 3953 3954 #undef CHECK_APPEND_2ARG 3955 #undef CHECK_APPEND_1ARG 3956 #undef CHECK_APPEND_NOARG 3957 3958 out_overflow: 3959 3960 if (size_bp < size_buf) 3961 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3962 else 3963 buf[0] = '\0'; 3964 } 3965 3966 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3967 { 3968 u32 size_buf = 1024; 3969 char tmp_buf[192] = {'\0'}; 3970 char *buf; 3971 char *bp; 3972 u32 size_bp = size_buf; 3973 int ret; 3974 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3975 3976 buf = kzalloc(size_buf, GFP_KERNEL); 3977 if (!buf) 3978 return; 3979 3980 bp = buf; 3981 3982 #define CHECK_APPEND_1ARG(a, v1) \ 3983 do { \ 3984 ret = snprintf(bp, size_bp, (a), (v1)); \ 3985 if (ret < 0 || ret >= size_bp) \ 3986 goto out_overflow; \ 3987 size_bp -= ret; \ 3988 bp += ret; \ 3989 } while (0) 3990 3991 if (bctl->flags & BTRFS_BALANCE_FORCE) 3992 CHECK_APPEND_1ARG("%s", "-f "); 3993 3994 if (bctl->flags & BTRFS_BALANCE_DATA) { 3995 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3996 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3997 } 3998 3999 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4000 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4001 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4002 } 4003 4004 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4005 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4006 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4007 } 4008 4009 #undef CHECK_APPEND_1ARG 4010 4011 out_overflow: 4012 4013 if (size_bp < size_buf) 4014 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4015 btrfs_info(fs_info, "balance: %s %s", 4016 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4017 "resume" : "start", buf); 4018 4019 kfree(buf); 4020 } 4021 4022 /* 4023 * Should be called with balance mutexe held 4024 */ 4025 int btrfs_balance(struct btrfs_fs_info *fs_info, 4026 struct btrfs_balance_control *bctl, 4027 struct btrfs_ioctl_balance_args *bargs) 4028 { 4029 u64 meta_target, data_target; 4030 u64 allowed; 4031 int mixed = 0; 4032 int ret; 4033 u64 num_devices; 4034 unsigned seq; 4035 bool reducing_redundancy; 4036 int i; 4037 4038 if (btrfs_fs_closing(fs_info) || 4039 atomic_read(&fs_info->balance_pause_req) || 4040 btrfs_should_cancel_balance(fs_info)) { 4041 ret = -EINVAL; 4042 goto out; 4043 } 4044 4045 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4046 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4047 mixed = 1; 4048 4049 /* 4050 * In case of mixed groups both data and meta should be picked, 4051 * and identical options should be given for both of them. 4052 */ 4053 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4054 if (mixed && (bctl->flags & allowed)) { 4055 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4056 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4057 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4058 btrfs_err(fs_info, 4059 "balance: mixed groups data and metadata options must be the same"); 4060 ret = -EINVAL; 4061 goto out; 4062 } 4063 } 4064 4065 /* 4066 * rw_devices will not change at the moment, device add/delete/replace 4067 * are exclusive 4068 */ 4069 num_devices = fs_info->fs_devices->rw_devices; 4070 4071 /* 4072 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4073 * special bit for it, to make it easier to distinguish. Thus we need 4074 * to set it manually, or balance would refuse the profile. 4075 */ 4076 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4077 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4078 if (num_devices >= btrfs_raid_array[i].devs_min) 4079 allowed |= btrfs_raid_array[i].bg_flag; 4080 4081 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4082 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4083 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4084 ret = -EINVAL; 4085 goto out; 4086 } 4087 4088 /* 4089 * Allow to reduce metadata or system integrity only if force set for 4090 * profiles with redundancy (copies, parity) 4091 */ 4092 allowed = 0; 4093 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4094 if (btrfs_raid_array[i].ncopies >= 2 || 4095 btrfs_raid_array[i].tolerated_failures >= 1) 4096 allowed |= btrfs_raid_array[i].bg_flag; 4097 } 4098 do { 4099 seq = read_seqbegin(&fs_info->profiles_lock); 4100 4101 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4102 (fs_info->avail_system_alloc_bits & allowed) && 4103 !(bctl->sys.target & allowed)) || 4104 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4105 (fs_info->avail_metadata_alloc_bits & allowed) && 4106 !(bctl->meta.target & allowed))) 4107 reducing_redundancy = true; 4108 else 4109 reducing_redundancy = false; 4110 4111 /* if we're not converting, the target field is uninitialized */ 4112 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4113 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4114 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4115 bctl->data.target : fs_info->avail_data_alloc_bits; 4116 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4117 4118 if (reducing_redundancy) { 4119 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4120 btrfs_info(fs_info, 4121 "balance: force reducing metadata redundancy"); 4122 } else { 4123 btrfs_err(fs_info, 4124 "balance: reduces metadata redundancy, use --force if you want this"); 4125 ret = -EINVAL; 4126 goto out; 4127 } 4128 } 4129 4130 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4131 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4132 btrfs_warn(fs_info, 4133 "balance: metadata profile %s has lower redundancy than data profile %s", 4134 btrfs_bg_type_to_raid_name(meta_target), 4135 btrfs_bg_type_to_raid_name(data_target)); 4136 } 4137 4138 if (fs_info->send_in_progress) { 4139 btrfs_warn_rl(fs_info, 4140 "cannot run balance while send operations are in progress (%d in progress)", 4141 fs_info->send_in_progress); 4142 ret = -EAGAIN; 4143 goto out; 4144 } 4145 4146 ret = insert_balance_item(fs_info, bctl); 4147 if (ret && ret != -EEXIST) 4148 goto out; 4149 4150 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4151 BUG_ON(ret == -EEXIST); 4152 BUG_ON(fs_info->balance_ctl); 4153 spin_lock(&fs_info->balance_lock); 4154 fs_info->balance_ctl = bctl; 4155 spin_unlock(&fs_info->balance_lock); 4156 } else { 4157 BUG_ON(ret != -EEXIST); 4158 spin_lock(&fs_info->balance_lock); 4159 update_balance_args(bctl); 4160 spin_unlock(&fs_info->balance_lock); 4161 } 4162 4163 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4164 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4165 describe_balance_start_or_resume(fs_info); 4166 mutex_unlock(&fs_info->balance_mutex); 4167 4168 ret = __btrfs_balance(fs_info); 4169 4170 mutex_lock(&fs_info->balance_mutex); 4171 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4172 btrfs_info(fs_info, "balance: paused"); 4173 /* 4174 * Balance can be canceled by: 4175 * 4176 * - Regular cancel request 4177 * Then ret == -ECANCELED and balance_cancel_req > 0 4178 * 4179 * - Fatal signal to "btrfs" process 4180 * Either the signal caught by wait_reserve_ticket() and callers 4181 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4182 * got -ECANCELED. 4183 * Either way, in this case balance_cancel_req = 0, and 4184 * ret == -EINTR or ret == -ECANCELED. 4185 * 4186 * So here we only check the return value to catch canceled balance. 4187 */ 4188 else if (ret == -ECANCELED || ret == -EINTR) 4189 btrfs_info(fs_info, "balance: canceled"); 4190 else 4191 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4192 4193 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4194 4195 if (bargs) { 4196 memset(bargs, 0, sizeof(*bargs)); 4197 btrfs_update_ioctl_balance_args(fs_info, bargs); 4198 } 4199 4200 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4201 balance_need_close(fs_info)) { 4202 reset_balance_state(fs_info); 4203 btrfs_exclop_finish(fs_info); 4204 } 4205 4206 wake_up(&fs_info->balance_wait_q); 4207 4208 return ret; 4209 out: 4210 if (bctl->flags & BTRFS_BALANCE_RESUME) 4211 reset_balance_state(fs_info); 4212 else 4213 kfree(bctl); 4214 btrfs_exclop_finish(fs_info); 4215 4216 return ret; 4217 } 4218 4219 static int balance_kthread(void *data) 4220 { 4221 struct btrfs_fs_info *fs_info = data; 4222 int ret = 0; 4223 4224 mutex_lock(&fs_info->balance_mutex); 4225 if (fs_info->balance_ctl) 4226 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4227 mutex_unlock(&fs_info->balance_mutex); 4228 4229 return ret; 4230 } 4231 4232 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4233 { 4234 struct task_struct *tsk; 4235 4236 mutex_lock(&fs_info->balance_mutex); 4237 if (!fs_info->balance_ctl) { 4238 mutex_unlock(&fs_info->balance_mutex); 4239 return 0; 4240 } 4241 mutex_unlock(&fs_info->balance_mutex); 4242 4243 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4244 btrfs_info(fs_info, "balance: resume skipped"); 4245 return 0; 4246 } 4247 4248 /* 4249 * A ro->rw remount sequence should continue with the paused balance 4250 * regardless of who pauses it, system or the user as of now, so set 4251 * the resume flag. 4252 */ 4253 spin_lock(&fs_info->balance_lock); 4254 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4255 spin_unlock(&fs_info->balance_lock); 4256 4257 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4258 return PTR_ERR_OR_ZERO(tsk); 4259 } 4260 4261 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4262 { 4263 struct btrfs_balance_control *bctl; 4264 struct btrfs_balance_item *item; 4265 struct btrfs_disk_balance_args disk_bargs; 4266 struct btrfs_path *path; 4267 struct extent_buffer *leaf; 4268 struct btrfs_key key; 4269 int ret; 4270 4271 path = btrfs_alloc_path(); 4272 if (!path) 4273 return -ENOMEM; 4274 4275 key.objectid = BTRFS_BALANCE_OBJECTID; 4276 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4277 key.offset = 0; 4278 4279 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4280 if (ret < 0) 4281 goto out; 4282 if (ret > 0) { /* ret = -ENOENT; */ 4283 ret = 0; 4284 goto out; 4285 } 4286 4287 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4288 if (!bctl) { 4289 ret = -ENOMEM; 4290 goto out; 4291 } 4292 4293 leaf = path->nodes[0]; 4294 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4295 4296 bctl->flags = btrfs_balance_flags(leaf, item); 4297 bctl->flags |= BTRFS_BALANCE_RESUME; 4298 4299 btrfs_balance_data(leaf, item, &disk_bargs); 4300 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4301 btrfs_balance_meta(leaf, item, &disk_bargs); 4302 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4303 btrfs_balance_sys(leaf, item, &disk_bargs); 4304 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4305 4306 /* 4307 * This should never happen, as the paused balance state is recovered 4308 * during mount without any chance of other exclusive ops to collide. 4309 * 4310 * This gives the exclusive op status to balance and keeps in paused 4311 * state until user intervention (cancel or umount). If the ownership 4312 * cannot be assigned, show a message but do not fail. The balance 4313 * is in a paused state and must have fs_info::balance_ctl properly 4314 * set up. 4315 */ 4316 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4317 btrfs_warn(fs_info, 4318 "balance: cannot set exclusive op status, resume manually"); 4319 4320 btrfs_release_path(path); 4321 4322 mutex_lock(&fs_info->balance_mutex); 4323 BUG_ON(fs_info->balance_ctl); 4324 spin_lock(&fs_info->balance_lock); 4325 fs_info->balance_ctl = bctl; 4326 spin_unlock(&fs_info->balance_lock); 4327 mutex_unlock(&fs_info->balance_mutex); 4328 out: 4329 btrfs_free_path(path); 4330 return ret; 4331 } 4332 4333 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4334 { 4335 int ret = 0; 4336 4337 mutex_lock(&fs_info->balance_mutex); 4338 if (!fs_info->balance_ctl) { 4339 mutex_unlock(&fs_info->balance_mutex); 4340 return -ENOTCONN; 4341 } 4342 4343 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4344 atomic_inc(&fs_info->balance_pause_req); 4345 mutex_unlock(&fs_info->balance_mutex); 4346 4347 wait_event(fs_info->balance_wait_q, 4348 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4349 4350 mutex_lock(&fs_info->balance_mutex); 4351 /* we are good with balance_ctl ripped off from under us */ 4352 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4353 atomic_dec(&fs_info->balance_pause_req); 4354 } else { 4355 ret = -ENOTCONN; 4356 } 4357 4358 mutex_unlock(&fs_info->balance_mutex); 4359 return ret; 4360 } 4361 4362 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4363 { 4364 mutex_lock(&fs_info->balance_mutex); 4365 if (!fs_info->balance_ctl) { 4366 mutex_unlock(&fs_info->balance_mutex); 4367 return -ENOTCONN; 4368 } 4369 4370 /* 4371 * A paused balance with the item stored on disk can be resumed at 4372 * mount time if the mount is read-write. Otherwise it's still paused 4373 * and we must not allow cancelling as it deletes the item. 4374 */ 4375 if (sb_rdonly(fs_info->sb)) { 4376 mutex_unlock(&fs_info->balance_mutex); 4377 return -EROFS; 4378 } 4379 4380 atomic_inc(&fs_info->balance_cancel_req); 4381 /* 4382 * if we are running just wait and return, balance item is 4383 * deleted in btrfs_balance in this case 4384 */ 4385 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4386 mutex_unlock(&fs_info->balance_mutex); 4387 wait_event(fs_info->balance_wait_q, 4388 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4389 mutex_lock(&fs_info->balance_mutex); 4390 } else { 4391 mutex_unlock(&fs_info->balance_mutex); 4392 /* 4393 * Lock released to allow other waiters to continue, we'll 4394 * reexamine the status again. 4395 */ 4396 mutex_lock(&fs_info->balance_mutex); 4397 4398 if (fs_info->balance_ctl) { 4399 reset_balance_state(fs_info); 4400 btrfs_exclop_finish(fs_info); 4401 btrfs_info(fs_info, "balance: canceled"); 4402 } 4403 } 4404 4405 BUG_ON(fs_info->balance_ctl || 4406 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4407 atomic_dec(&fs_info->balance_cancel_req); 4408 mutex_unlock(&fs_info->balance_mutex); 4409 return 0; 4410 } 4411 4412 int btrfs_uuid_scan_kthread(void *data) 4413 { 4414 struct btrfs_fs_info *fs_info = data; 4415 struct btrfs_root *root = fs_info->tree_root; 4416 struct btrfs_key key; 4417 struct btrfs_path *path = NULL; 4418 int ret = 0; 4419 struct extent_buffer *eb; 4420 int slot; 4421 struct btrfs_root_item root_item; 4422 u32 item_size; 4423 struct btrfs_trans_handle *trans = NULL; 4424 bool closing = false; 4425 4426 path = btrfs_alloc_path(); 4427 if (!path) { 4428 ret = -ENOMEM; 4429 goto out; 4430 } 4431 4432 key.objectid = 0; 4433 key.type = BTRFS_ROOT_ITEM_KEY; 4434 key.offset = 0; 4435 4436 while (1) { 4437 if (btrfs_fs_closing(fs_info)) { 4438 closing = true; 4439 break; 4440 } 4441 ret = btrfs_search_forward(root, &key, path, 4442 BTRFS_OLDEST_GENERATION); 4443 if (ret) { 4444 if (ret > 0) 4445 ret = 0; 4446 break; 4447 } 4448 4449 if (key.type != BTRFS_ROOT_ITEM_KEY || 4450 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4451 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4452 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4453 goto skip; 4454 4455 eb = path->nodes[0]; 4456 slot = path->slots[0]; 4457 item_size = btrfs_item_size_nr(eb, slot); 4458 if (item_size < sizeof(root_item)) 4459 goto skip; 4460 4461 read_extent_buffer(eb, &root_item, 4462 btrfs_item_ptr_offset(eb, slot), 4463 (int)sizeof(root_item)); 4464 if (btrfs_root_refs(&root_item) == 0) 4465 goto skip; 4466 4467 if (!btrfs_is_empty_uuid(root_item.uuid) || 4468 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4469 if (trans) 4470 goto update_tree; 4471 4472 btrfs_release_path(path); 4473 /* 4474 * 1 - subvol uuid item 4475 * 1 - received_subvol uuid item 4476 */ 4477 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4478 if (IS_ERR(trans)) { 4479 ret = PTR_ERR(trans); 4480 break; 4481 } 4482 continue; 4483 } else { 4484 goto skip; 4485 } 4486 update_tree: 4487 btrfs_release_path(path); 4488 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4489 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4490 BTRFS_UUID_KEY_SUBVOL, 4491 key.objectid); 4492 if (ret < 0) { 4493 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4494 ret); 4495 break; 4496 } 4497 } 4498 4499 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4500 ret = btrfs_uuid_tree_add(trans, 4501 root_item.received_uuid, 4502 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4503 key.objectid); 4504 if (ret < 0) { 4505 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4506 ret); 4507 break; 4508 } 4509 } 4510 4511 skip: 4512 btrfs_release_path(path); 4513 if (trans) { 4514 ret = btrfs_end_transaction(trans); 4515 trans = NULL; 4516 if (ret) 4517 break; 4518 } 4519 4520 if (key.offset < (u64)-1) { 4521 key.offset++; 4522 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4523 key.offset = 0; 4524 key.type = BTRFS_ROOT_ITEM_KEY; 4525 } else if (key.objectid < (u64)-1) { 4526 key.offset = 0; 4527 key.type = BTRFS_ROOT_ITEM_KEY; 4528 key.objectid++; 4529 } else { 4530 break; 4531 } 4532 cond_resched(); 4533 } 4534 4535 out: 4536 btrfs_free_path(path); 4537 if (trans && !IS_ERR(trans)) 4538 btrfs_end_transaction(trans); 4539 if (ret) 4540 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4541 else if (!closing) 4542 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4543 up(&fs_info->uuid_tree_rescan_sem); 4544 return 0; 4545 } 4546 4547 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4548 { 4549 struct btrfs_trans_handle *trans; 4550 struct btrfs_root *tree_root = fs_info->tree_root; 4551 struct btrfs_root *uuid_root; 4552 struct task_struct *task; 4553 int ret; 4554 4555 /* 4556 * 1 - root node 4557 * 1 - root item 4558 */ 4559 trans = btrfs_start_transaction(tree_root, 2); 4560 if (IS_ERR(trans)) 4561 return PTR_ERR(trans); 4562 4563 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4564 if (IS_ERR(uuid_root)) { 4565 ret = PTR_ERR(uuid_root); 4566 btrfs_abort_transaction(trans, ret); 4567 btrfs_end_transaction(trans); 4568 return ret; 4569 } 4570 4571 fs_info->uuid_root = uuid_root; 4572 4573 ret = btrfs_commit_transaction(trans); 4574 if (ret) 4575 return ret; 4576 4577 down(&fs_info->uuid_tree_rescan_sem); 4578 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4579 if (IS_ERR(task)) { 4580 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4581 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4582 up(&fs_info->uuid_tree_rescan_sem); 4583 return PTR_ERR(task); 4584 } 4585 4586 return 0; 4587 } 4588 4589 /* 4590 * shrinking a device means finding all of the device extents past 4591 * the new size, and then following the back refs to the chunks. 4592 * The chunk relocation code actually frees the device extent 4593 */ 4594 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4595 { 4596 struct btrfs_fs_info *fs_info = device->fs_info; 4597 struct btrfs_root *root = fs_info->dev_root; 4598 struct btrfs_trans_handle *trans; 4599 struct btrfs_dev_extent *dev_extent = NULL; 4600 struct btrfs_path *path; 4601 u64 length; 4602 u64 chunk_offset; 4603 int ret; 4604 int slot; 4605 int failed = 0; 4606 bool retried = false; 4607 struct extent_buffer *l; 4608 struct btrfs_key key; 4609 struct btrfs_super_block *super_copy = fs_info->super_copy; 4610 u64 old_total = btrfs_super_total_bytes(super_copy); 4611 u64 old_size = btrfs_device_get_total_bytes(device); 4612 u64 diff; 4613 u64 start; 4614 4615 new_size = round_down(new_size, fs_info->sectorsize); 4616 start = new_size; 4617 diff = round_down(old_size - new_size, fs_info->sectorsize); 4618 4619 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4620 return -EINVAL; 4621 4622 path = btrfs_alloc_path(); 4623 if (!path) 4624 return -ENOMEM; 4625 4626 path->reada = READA_BACK; 4627 4628 trans = btrfs_start_transaction(root, 0); 4629 if (IS_ERR(trans)) { 4630 btrfs_free_path(path); 4631 return PTR_ERR(trans); 4632 } 4633 4634 mutex_lock(&fs_info->chunk_mutex); 4635 4636 btrfs_device_set_total_bytes(device, new_size); 4637 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4638 device->fs_devices->total_rw_bytes -= diff; 4639 atomic64_sub(diff, &fs_info->free_chunk_space); 4640 } 4641 4642 /* 4643 * Once the device's size has been set to the new size, ensure all 4644 * in-memory chunks are synced to disk so that the loop below sees them 4645 * and relocates them accordingly. 4646 */ 4647 if (contains_pending_extent(device, &start, diff)) { 4648 mutex_unlock(&fs_info->chunk_mutex); 4649 ret = btrfs_commit_transaction(trans); 4650 if (ret) 4651 goto done; 4652 } else { 4653 mutex_unlock(&fs_info->chunk_mutex); 4654 btrfs_end_transaction(trans); 4655 } 4656 4657 again: 4658 key.objectid = device->devid; 4659 key.offset = (u64)-1; 4660 key.type = BTRFS_DEV_EXTENT_KEY; 4661 4662 do { 4663 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4664 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4665 if (ret < 0) { 4666 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4667 goto done; 4668 } 4669 4670 ret = btrfs_previous_item(root, path, 0, key.type); 4671 if (ret) 4672 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4673 if (ret < 0) 4674 goto done; 4675 if (ret) { 4676 ret = 0; 4677 btrfs_release_path(path); 4678 break; 4679 } 4680 4681 l = path->nodes[0]; 4682 slot = path->slots[0]; 4683 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4684 4685 if (key.objectid != device->devid) { 4686 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4687 btrfs_release_path(path); 4688 break; 4689 } 4690 4691 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4692 length = btrfs_dev_extent_length(l, dev_extent); 4693 4694 if (key.offset + length <= new_size) { 4695 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4696 btrfs_release_path(path); 4697 break; 4698 } 4699 4700 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4701 btrfs_release_path(path); 4702 4703 /* 4704 * We may be relocating the only data chunk we have, 4705 * which could potentially end up with losing data's 4706 * raid profile, so lets allocate an empty one in 4707 * advance. 4708 */ 4709 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4710 if (ret < 0) { 4711 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4712 goto done; 4713 } 4714 4715 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4716 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4717 if (ret == -ENOSPC) { 4718 failed++; 4719 } else if (ret) { 4720 if (ret == -ETXTBSY) { 4721 btrfs_warn(fs_info, 4722 "could not shrink block group %llu due to active swapfile", 4723 chunk_offset); 4724 } 4725 goto done; 4726 } 4727 } while (key.offset-- > 0); 4728 4729 if (failed && !retried) { 4730 failed = 0; 4731 retried = true; 4732 goto again; 4733 } else if (failed && retried) { 4734 ret = -ENOSPC; 4735 goto done; 4736 } 4737 4738 /* Shrinking succeeded, else we would be at "done". */ 4739 trans = btrfs_start_transaction(root, 0); 4740 if (IS_ERR(trans)) { 4741 ret = PTR_ERR(trans); 4742 goto done; 4743 } 4744 4745 mutex_lock(&fs_info->chunk_mutex); 4746 /* Clear all state bits beyond the shrunk device size */ 4747 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4748 CHUNK_STATE_MASK); 4749 4750 btrfs_device_set_disk_total_bytes(device, new_size); 4751 if (list_empty(&device->post_commit_list)) 4752 list_add_tail(&device->post_commit_list, 4753 &trans->transaction->dev_update_list); 4754 4755 WARN_ON(diff > old_total); 4756 btrfs_set_super_total_bytes(super_copy, 4757 round_down(old_total - diff, fs_info->sectorsize)); 4758 mutex_unlock(&fs_info->chunk_mutex); 4759 4760 /* Now btrfs_update_device() will change the on-disk size. */ 4761 ret = btrfs_update_device(trans, device); 4762 if (ret < 0) { 4763 btrfs_abort_transaction(trans, ret); 4764 btrfs_end_transaction(trans); 4765 } else { 4766 ret = btrfs_commit_transaction(trans); 4767 } 4768 done: 4769 btrfs_free_path(path); 4770 if (ret) { 4771 mutex_lock(&fs_info->chunk_mutex); 4772 btrfs_device_set_total_bytes(device, old_size); 4773 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4774 device->fs_devices->total_rw_bytes += diff; 4775 atomic64_add(diff, &fs_info->free_chunk_space); 4776 mutex_unlock(&fs_info->chunk_mutex); 4777 } 4778 return ret; 4779 } 4780 4781 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4782 struct btrfs_key *key, 4783 struct btrfs_chunk *chunk, int item_size) 4784 { 4785 struct btrfs_super_block *super_copy = fs_info->super_copy; 4786 struct btrfs_disk_key disk_key; 4787 u32 array_size; 4788 u8 *ptr; 4789 4790 mutex_lock(&fs_info->chunk_mutex); 4791 array_size = btrfs_super_sys_array_size(super_copy); 4792 if (array_size + item_size + sizeof(disk_key) 4793 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4794 mutex_unlock(&fs_info->chunk_mutex); 4795 return -EFBIG; 4796 } 4797 4798 ptr = super_copy->sys_chunk_array + array_size; 4799 btrfs_cpu_key_to_disk(&disk_key, key); 4800 memcpy(ptr, &disk_key, sizeof(disk_key)); 4801 ptr += sizeof(disk_key); 4802 memcpy(ptr, chunk, item_size); 4803 item_size += sizeof(disk_key); 4804 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4805 mutex_unlock(&fs_info->chunk_mutex); 4806 4807 return 0; 4808 } 4809 4810 /* 4811 * sort the devices in descending order by max_avail, total_avail 4812 */ 4813 static int btrfs_cmp_device_info(const void *a, const void *b) 4814 { 4815 const struct btrfs_device_info *di_a = a; 4816 const struct btrfs_device_info *di_b = b; 4817 4818 if (di_a->max_avail > di_b->max_avail) 4819 return -1; 4820 if (di_a->max_avail < di_b->max_avail) 4821 return 1; 4822 if (di_a->total_avail > di_b->total_avail) 4823 return -1; 4824 if (di_a->total_avail < di_b->total_avail) 4825 return 1; 4826 return 0; 4827 } 4828 4829 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4830 { 4831 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4832 return; 4833 4834 btrfs_set_fs_incompat(info, RAID56); 4835 } 4836 4837 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4838 { 4839 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4840 return; 4841 4842 btrfs_set_fs_incompat(info, RAID1C34); 4843 } 4844 4845 /* 4846 * Structure used internally for __btrfs_alloc_chunk() function. 4847 * Wraps needed parameters. 4848 */ 4849 struct alloc_chunk_ctl { 4850 u64 start; 4851 u64 type; 4852 /* Total number of stripes to allocate */ 4853 int num_stripes; 4854 /* sub_stripes info for map */ 4855 int sub_stripes; 4856 /* Stripes per device */ 4857 int dev_stripes; 4858 /* Maximum number of devices to use */ 4859 int devs_max; 4860 /* Minimum number of devices to use */ 4861 int devs_min; 4862 /* ndevs has to be a multiple of this */ 4863 int devs_increment; 4864 /* Number of copies */ 4865 int ncopies; 4866 /* Number of stripes worth of bytes to store parity information */ 4867 int nparity; 4868 u64 max_stripe_size; 4869 u64 max_chunk_size; 4870 u64 dev_extent_min; 4871 u64 stripe_size; 4872 u64 chunk_size; 4873 int ndevs; 4874 }; 4875 4876 static void init_alloc_chunk_ctl_policy_regular( 4877 struct btrfs_fs_devices *fs_devices, 4878 struct alloc_chunk_ctl *ctl) 4879 { 4880 u64 type = ctl->type; 4881 4882 if (type & BTRFS_BLOCK_GROUP_DATA) { 4883 ctl->max_stripe_size = SZ_1G; 4884 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4885 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4886 /* For larger filesystems, use larger metadata chunks */ 4887 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4888 ctl->max_stripe_size = SZ_1G; 4889 else 4890 ctl->max_stripe_size = SZ_256M; 4891 ctl->max_chunk_size = ctl->max_stripe_size; 4892 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4893 ctl->max_stripe_size = SZ_32M; 4894 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4895 ctl->devs_max = min_t(int, ctl->devs_max, 4896 BTRFS_MAX_DEVS_SYS_CHUNK); 4897 } else { 4898 BUG(); 4899 } 4900 4901 /* We don't want a chunk larger than 10% of writable space */ 4902 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4903 ctl->max_chunk_size); 4904 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4905 } 4906 4907 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 4908 struct alloc_chunk_ctl *ctl) 4909 { 4910 int index = btrfs_bg_flags_to_raid_index(ctl->type); 4911 4912 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 4913 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 4914 ctl->devs_max = btrfs_raid_array[index].devs_max; 4915 if (!ctl->devs_max) 4916 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 4917 ctl->devs_min = btrfs_raid_array[index].devs_min; 4918 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 4919 ctl->ncopies = btrfs_raid_array[index].ncopies; 4920 ctl->nparity = btrfs_raid_array[index].nparity; 4921 ctl->ndevs = 0; 4922 4923 switch (fs_devices->chunk_alloc_policy) { 4924 case BTRFS_CHUNK_ALLOC_REGULAR: 4925 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 4926 break; 4927 default: 4928 BUG(); 4929 } 4930 } 4931 4932 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 4933 struct alloc_chunk_ctl *ctl, 4934 struct btrfs_device_info *devices_info) 4935 { 4936 struct btrfs_fs_info *info = fs_devices->fs_info; 4937 struct btrfs_device *device; 4938 u64 total_avail; 4939 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 4940 int ret; 4941 int ndevs = 0; 4942 u64 max_avail; 4943 u64 dev_offset; 4944 4945 /* 4946 * in the first pass through the devices list, we gather information 4947 * about the available holes on each device. 4948 */ 4949 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4950 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4951 WARN(1, KERN_ERR 4952 "BTRFS: read-only device in alloc_list\n"); 4953 continue; 4954 } 4955 4956 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4957 &device->dev_state) || 4958 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4959 continue; 4960 4961 if (device->total_bytes > device->bytes_used) 4962 total_avail = device->total_bytes - device->bytes_used; 4963 else 4964 total_avail = 0; 4965 4966 /* If there is no space on this device, skip it. */ 4967 if (total_avail < ctl->dev_extent_min) 4968 continue; 4969 4970 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 4971 &max_avail); 4972 if (ret && ret != -ENOSPC) 4973 return ret; 4974 4975 if (ret == 0) 4976 max_avail = dev_extent_want; 4977 4978 if (max_avail < ctl->dev_extent_min) { 4979 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4980 btrfs_debug(info, 4981 "%s: devid %llu has no free space, have=%llu want=%llu", 4982 __func__, device->devid, max_avail, 4983 ctl->dev_extent_min); 4984 continue; 4985 } 4986 4987 if (ndevs == fs_devices->rw_devices) { 4988 WARN(1, "%s: found more than %llu devices\n", 4989 __func__, fs_devices->rw_devices); 4990 break; 4991 } 4992 devices_info[ndevs].dev_offset = dev_offset; 4993 devices_info[ndevs].max_avail = max_avail; 4994 devices_info[ndevs].total_avail = total_avail; 4995 devices_info[ndevs].dev = device; 4996 ++ndevs; 4997 } 4998 ctl->ndevs = ndevs; 4999 5000 /* 5001 * now sort the devices by hole size / available space 5002 */ 5003 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5004 btrfs_cmp_device_info, NULL); 5005 5006 return 0; 5007 } 5008 5009 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5010 struct btrfs_device_info *devices_info) 5011 { 5012 /* Number of stripes that count for block group size */ 5013 int data_stripes; 5014 5015 /* 5016 * The primary goal is to maximize the number of stripes, so use as 5017 * many devices as possible, even if the stripes are not maximum sized. 5018 * 5019 * The DUP profile stores more than one stripe per device, the 5020 * max_avail is the total size so we have to adjust. 5021 */ 5022 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5023 ctl->dev_stripes); 5024 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5025 5026 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5027 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5028 5029 /* 5030 * Use the number of data stripes to figure out how big this chunk is 5031 * really going to be in terms of logical address space, and compare 5032 * that answer with the max chunk size. If it's higher, we try to 5033 * reduce stripe_size. 5034 */ 5035 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5036 /* 5037 * Reduce stripe_size, round it up to a 16MB boundary again and 5038 * then use it, unless it ends up being even bigger than the 5039 * previous value we had already. 5040 */ 5041 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5042 data_stripes), SZ_16M), 5043 ctl->stripe_size); 5044 } 5045 5046 /* Align to BTRFS_STRIPE_LEN */ 5047 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5048 ctl->chunk_size = ctl->stripe_size * data_stripes; 5049 5050 return 0; 5051 } 5052 5053 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5054 struct alloc_chunk_ctl *ctl, 5055 struct btrfs_device_info *devices_info) 5056 { 5057 struct btrfs_fs_info *info = fs_devices->fs_info; 5058 5059 /* 5060 * Round down to number of usable stripes, devs_increment can be any 5061 * number so we can't use round_down() that requires power of 2, while 5062 * rounddown is safe. 5063 */ 5064 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5065 5066 if (ctl->ndevs < ctl->devs_min) { 5067 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5068 btrfs_debug(info, 5069 "%s: not enough devices with free space: have=%d minimum required=%d", 5070 __func__, ctl->ndevs, ctl->devs_min); 5071 } 5072 return -ENOSPC; 5073 } 5074 5075 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5076 5077 switch (fs_devices->chunk_alloc_policy) { 5078 case BTRFS_CHUNK_ALLOC_REGULAR: 5079 return decide_stripe_size_regular(ctl, devices_info); 5080 default: 5081 BUG(); 5082 } 5083 } 5084 5085 static int create_chunk(struct btrfs_trans_handle *trans, 5086 struct alloc_chunk_ctl *ctl, 5087 struct btrfs_device_info *devices_info) 5088 { 5089 struct btrfs_fs_info *info = trans->fs_info; 5090 struct map_lookup *map = NULL; 5091 struct extent_map_tree *em_tree; 5092 struct extent_map *em; 5093 u64 start = ctl->start; 5094 u64 type = ctl->type; 5095 int ret; 5096 int i; 5097 int j; 5098 5099 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5100 if (!map) 5101 return -ENOMEM; 5102 map->num_stripes = ctl->num_stripes; 5103 5104 for (i = 0; i < ctl->ndevs; ++i) { 5105 for (j = 0; j < ctl->dev_stripes; ++j) { 5106 int s = i * ctl->dev_stripes + j; 5107 map->stripes[s].dev = devices_info[i].dev; 5108 map->stripes[s].physical = devices_info[i].dev_offset + 5109 j * ctl->stripe_size; 5110 } 5111 } 5112 map->stripe_len = BTRFS_STRIPE_LEN; 5113 map->io_align = BTRFS_STRIPE_LEN; 5114 map->io_width = BTRFS_STRIPE_LEN; 5115 map->type = type; 5116 map->sub_stripes = ctl->sub_stripes; 5117 5118 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5119 5120 em = alloc_extent_map(); 5121 if (!em) { 5122 kfree(map); 5123 return -ENOMEM; 5124 } 5125 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5126 em->map_lookup = map; 5127 em->start = start; 5128 em->len = ctl->chunk_size; 5129 em->block_start = 0; 5130 em->block_len = em->len; 5131 em->orig_block_len = ctl->stripe_size; 5132 5133 em_tree = &info->mapping_tree; 5134 write_lock(&em_tree->lock); 5135 ret = add_extent_mapping(em_tree, em, 0); 5136 if (ret) { 5137 write_unlock(&em_tree->lock); 5138 free_extent_map(em); 5139 return ret; 5140 } 5141 write_unlock(&em_tree->lock); 5142 5143 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5144 if (ret) 5145 goto error_del_extent; 5146 5147 for (i = 0; i < map->num_stripes; i++) { 5148 struct btrfs_device *dev = map->stripes[i].dev; 5149 5150 btrfs_device_set_bytes_used(dev, 5151 dev->bytes_used + ctl->stripe_size); 5152 if (list_empty(&dev->post_commit_list)) 5153 list_add_tail(&dev->post_commit_list, 5154 &trans->transaction->dev_update_list); 5155 } 5156 5157 atomic64_sub(ctl->stripe_size * map->num_stripes, 5158 &info->free_chunk_space); 5159 5160 free_extent_map(em); 5161 check_raid56_incompat_flag(info, type); 5162 check_raid1c34_incompat_flag(info, type); 5163 5164 return 0; 5165 5166 error_del_extent: 5167 write_lock(&em_tree->lock); 5168 remove_extent_mapping(em_tree, em); 5169 write_unlock(&em_tree->lock); 5170 5171 /* One for our allocation */ 5172 free_extent_map(em); 5173 /* One for the tree reference */ 5174 free_extent_map(em); 5175 5176 return ret; 5177 } 5178 5179 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5180 { 5181 struct btrfs_fs_info *info = trans->fs_info; 5182 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5183 struct btrfs_device_info *devices_info = NULL; 5184 struct alloc_chunk_ctl ctl; 5185 int ret; 5186 5187 lockdep_assert_held(&info->chunk_mutex); 5188 5189 if (!alloc_profile_is_valid(type, 0)) { 5190 ASSERT(0); 5191 return -EINVAL; 5192 } 5193 5194 if (list_empty(&fs_devices->alloc_list)) { 5195 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5196 btrfs_debug(info, "%s: no writable device", __func__); 5197 return -ENOSPC; 5198 } 5199 5200 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5201 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5202 ASSERT(0); 5203 return -EINVAL; 5204 } 5205 5206 ctl.start = find_next_chunk(info); 5207 ctl.type = type; 5208 init_alloc_chunk_ctl(fs_devices, &ctl); 5209 5210 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5211 GFP_NOFS); 5212 if (!devices_info) 5213 return -ENOMEM; 5214 5215 ret = gather_device_info(fs_devices, &ctl, devices_info); 5216 if (ret < 0) 5217 goto out; 5218 5219 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5220 if (ret < 0) 5221 goto out; 5222 5223 ret = create_chunk(trans, &ctl, devices_info); 5224 5225 out: 5226 kfree(devices_info); 5227 return ret; 5228 } 5229 5230 /* 5231 * Chunk allocation falls into two parts. The first part does work 5232 * that makes the new allocated chunk usable, but does not do any operation 5233 * that modifies the chunk tree. The second part does the work that 5234 * requires modifying the chunk tree. This division is important for the 5235 * bootstrap process of adding storage to a seed btrfs. 5236 */ 5237 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5238 u64 chunk_offset, u64 chunk_size) 5239 { 5240 struct btrfs_fs_info *fs_info = trans->fs_info; 5241 struct btrfs_root *extent_root = fs_info->extent_root; 5242 struct btrfs_root *chunk_root = fs_info->chunk_root; 5243 struct btrfs_key key; 5244 struct btrfs_device *device; 5245 struct btrfs_chunk *chunk; 5246 struct btrfs_stripe *stripe; 5247 struct extent_map *em; 5248 struct map_lookup *map; 5249 size_t item_size; 5250 u64 dev_offset; 5251 u64 stripe_size; 5252 int i = 0; 5253 int ret = 0; 5254 5255 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5256 if (IS_ERR(em)) 5257 return PTR_ERR(em); 5258 5259 map = em->map_lookup; 5260 item_size = btrfs_chunk_item_size(map->num_stripes); 5261 stripe_size = em->orig_block_len; 5262 5263 chunk = kzalloc(item_size, GFP_NOFS); 5264 if (!chunk) { 5265 ret = -ENOMEM; 5266 goto out; 5267 } 5268 5269 /* 5270 * Take the device list mutex to prevent races with the final phase of 5271 * a device replace operation that replaces the device object associated 5272 * with the map's stripes, because the device object's id can change 5273 * at any time during that final phase of the device replace operation 5274 * (dev-replace.c:btrfs_dev_replace_finishing()). 5275 */ 5276 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5277 for (i = 0; i < map->num_stripes; i++) { 5278 device = map->stripes[i].dev; 5279 dev_offset = map->stripes[i].physical; 5280 5281 ret = btrfs_update_device(trans, device); 5282 if (ret) 5283 break; 5284 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5285 dev_offset, stripe_size); 5286 if (ret) 5287 break; 5288 } 5289 if (ret) { 5290 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5291 goto out; 5292 } 5293 5294 stripe = &chunk->stripe; 5295 for (i = 0; i < map->num_stripes; i++) { 5296 device = map->stripes[i].dev; 5297 dev_offset = map->stripes[i].physical; 5298 5299 btrfs_set_stack_stripe_devid(stripe, device->devid); 5300 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5301 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5302 stripe++; 5303 } 5304 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5305 5306 btrfs_set_stack_chunk_length(chunk, chunk_size); 5307 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5308 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5309 btrfs_set_stack_chunk_type(chunk, map->type); 5310 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5311 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5312 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5313 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5314 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5315 5316 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5317 key.type = BTRFS_CHUNK_ITEM_KEY; 5318 key.offset = chunk_offset; 5319 5320 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5321 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5322 /* 5323 * TODO: Cleanup of inserted chunk root in case of 5324 * failure. 5325 */ 5326 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5327 } 5328 5329 out: 5330 kfree(chunk); 5331 free_extent_map(em); 5332 return ret; 5333 } 5334 5335 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5336 { 5337 struct btrfs_fs_info *fs_info = trans->fs_info; 5338 u64 alloc_profile; 5339 int ret; 5340 5341 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5342 ret = btrfs_alloc_chunk(trans, alloc_profile); 5343 if (ret) 5344 return ret; 5345 5346 alloc_profile = btrfs_system_alloc_profile(fs_info); 5347 ret = btrfs_alloc_chunk(trans, alloc_profile); 5348 return ret; 5349 } 5350 5351 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5352 { 5353 const int index = btrfs_bg_flags_to_raid_index(map->type); 5354 5355 return btrfs_raid_array[index].tolerated_failures; 5356 } 5357 5358 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5359 { 5360 struct extent_map *em; 5361 struct map_lookup *map; 5362 int readonly = 0; 5363 int miss_ndevs = 0; 5364 int i; 5365 5366 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5367 if (IS_ERR(em)) 5368 return 1; 5369 5370 map = em->map_lookup; 5371 for (i = 0; i < map->num_stripes; i++) { 5372 if (test_bit(BTRFS_DEV_STATE_MISSING, 5373 &map->stripes[i].dev->dev_state)) { 5374 miss_ndevs++; 5375 continue; 5376 } 5377 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5378 &map->stripes[i].dev->dev_state)) { 5379 readonly = 1; 5380 goto end; 5381 } 5382 } 5383 5384 /* 5385 * If the number of missing devices is larger than max errors, 5386 * we can not write the data into that chunk successfully, so 5387 * set it readonly. 5388 */ 5389 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5390 readonly = 1; 5391 end: 5392 free_extent_map(em); 5393 return readonly; 5394 } 5395 5396 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5397 { 5398 struct extent_map *em; 5399 5400 while (1) { 5401 write_lock(&tree->lock); 5402 em = lookup_extent_mapping(tree, 0, (u64)-1); 5403 if (em) 5404 remove_extent_mapping(tree, em); 5405 write_unlock(&tree->lock); 5406 if (!em) 5407 break; 5408 /* once for us */ 5409 free_extent_map(em); 5410 /* once for the tree */ 5411 free_extent_map(em); 5412 } 5413 } 5414 5415 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5416 { 5417 struct extent_map *em; 5418 struct map_lookup *map; 5419 int ret; 5420 5421 em = btrfs_get_chunk_map(fs_info, logical, len); 5422 if (IS_ERR(em)) 5423 /* 5424 * We could return errors for these cases, but that could get 5425 * ugly and we'd probably do the same thing which is just not do 5426 * anything else and exit, so return 1 so the callers don't try 5427 * to use other copies. 5428 */ 5429 return 1; 5430 5431 map = em->map_lookup; 5432 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5433 ret = map->num_stripes; 5434 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5435 ret = map->sub_stripes; 5436 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5437 ret = 2; 5438 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5439 /* 5440 * There could be two corrupted data stripes, we need 5441 * to loop retry in order to rebuild the correct data. 5442 * 5443 * Fail a stripe at a time on every retry except the 5444 * stripe under reconstruction. 5445 */ 5446 ret = map->num_stripes; 5447 else 5448 ret = 1; 5449 free_extent_map(em); 5450 5451 down_read(&fs_info->dev_replace.rwsem); 5452 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5453 fs_info->dev_replace.tgtdev) 5454 ret++; 5455 up_read(&fs_info->dev_replace.rwsem); 5456 5457 return ret; 5458 } 5459 5460 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5461 u64 logical) 5462 { 5463 struct extent_map *em; 5464 struct map_lookup *map; 5465 unsigned long len = fs_info->sectorsize; 5466 5467 em = btrfs_get_chunk_map(fs_info, logical, len); 5468 5469 if (!WARN_ON(IS_ERR(em))) { 5470 map = em->map_lookup; 5471 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5472 len = map->stripe_len * nr_data_stripes(map); 5473 free_extent_map(em); 5474 } 5475 return len; 5476 } 5477 5478 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5479 { 5480 struct extent_map *em; 5481 struct map_lookup *map; 5482 int ret = 0; 5483 5484 em = btrfs_get_chunk_map(fs_info, logical, len); 5485 5486 if(!WARN_ON(IS_ERR(em))) { 5487 map = em->map_lookup; 5488 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5489 ret = 1; 5490 free_extent_map(em); 5491 } 5492 return ret; 5493 } 5494 5495 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5496 struct map_lookup *map, int first, 5497 int dev_replace_is_ongoing) 5498 { 5499 int i; 5500 int num_stripes; 5501 int preferred_mirror; 5502 int tolerance; 5503 struct btrfs_device *srcdev; 5504 5505 ASSERT((map->type & 5506 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5507 5508 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5509 num_stripes = map->sub_stripes; 5510 else 5511 num_stripes = map->num_stripes; 5512 5513 switch (fs_info->fs_devices->read_policy) { 5514 default: 5515 /* Shouldn't happen, just warn and use pid instead of failing */ 5516 btrfs_warn_rl(fs_info, 5517 "unknown read_policy type %u, reset to pid", 5518 fs_info->fs_devices->read_policy); 5519 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5520 fallthrough; 5521 case BTRFS_READ_POLICY_PID: 5522 preferred_mirror = first + (current->pid % num_stripes); 5523 break; 5524 } 5525 5526 if (dev_replace_is_ongoing && 5527 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5528 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5529 srcdev = fs_info->dev_replace.srcdev; 5530 else 5531 srcdev = NULL; 5532 5533 /* 5534 * try to avoid the drive that is the source drive for a 5535 * dev-replace procedure, only choose it if no other non-missing 5536 * mirror is available 5537 */ 5538 for (tolerance = 0; tolerance < 2; tolerance++) { 5539 if (map->stripes[preferred_mirror].dev->bdev && 5540 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5541 return preferred_mirror; 5542 for (i = first; i < first + num_stripes; i++) { 5543 if (map->stripes[i].dev->bdev && 5544 (tolerance || map->stripes[i].dev != srcdev)) 5545 return i; 5546 } 5547 } 5548 5549 /* we couldn't find one that doesn't fail. Just return something 5550 * and the io error handling code will clean up eventually 5551 */ 5552 return preferred_mirror; 5553 } 5554 5555 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5556 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5557 { 5558 int i; 5559 int again = 1; 5560 5561 while (again) { 5562 again = 0; 5563 for (i = 0; i < num_stripes - 1; i++) { 5564 /* Swap if parity is on a smaller index */ 5565 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5566 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5567 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5568 again = 1; 5569 } 5570 } 5571 } 5572 } 5573 5574 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5575 { 5576 struct btrfs_bio *bbio = kzalloc( 5577 /* the size of the btrfs_bio */ 5578 sizeof(struct btrfs_bio) + 5579 /* plus the variable array for the stripes */ 5580 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5581 /* plus the variable array for the tgt dev */ 5582 sizeof(int) * (real_stripes) + 5583 /* 5584 * plus the raid_map, which includes both the tgt dev 5585 * and the stripes 5586 */ 5587 sizeof(u64) * (total_stripes), 5588 GFP_NOFS|__GFP_NOFAIL); 5589 5590 atomic_set(&bbio->error, 0); 5591 refcount_set(&bbio->refs, 1); 5592 5593 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5594 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5595 5596 return bbio; 5597 } 5598 5599 void btrfs_get_bbio(struct btrfs_bio *bbio) 5600 { 5601 WARN_ON(!refcount_read(&bbio->refs)); 5602 refcount_inc(&bbio->refs); 5603 } 5604 5605 void btrfs_put_bbio(struct btrfs_bio *bbio) 5606 { 5607 if (!bbio) 5608 return; 5609 if (refcount_dec_and_test(&bbio->refs)) 5610 kfree(bbio); 5611 } 5612 5613 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5614 /* 5615 * Please note that, discard won't be sent to target device of device 5616 * replace. 5617 */ 5618 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5619 u64 logical, u64 *length_ret, 5620 struct btrfs_bio **bbio_ret) 5621 { 5622 struct extent_map *em; 5623 struct map_lookup *map; 5624 struct btrfs_bio *bbio; 5625 u64 length = *length_ret; 5626 u64 offset; 5627 u64 stripe_nr; 5628 u64 stripe_nr_end; 5629 u64 stripe_end_offset; 5630 u64 stripe_cnt; 5631 u64 stripe_len; 5632 u64 stripe_offset; 5633 u64 num_stripes; 5634 u32 stripe_index; 5635 u32 factor = 0; 5636 u32 sub_stripes = 0; 5637 u64 stripes_per_dev = 0; 5638 u32 remaining_stripes = 0; 5639 u32 last_stripe = 0; 5640 int ret = 0; 5641 int i; 5642 5643 /* discard always return a bbio */ 5644 ASSERT(bbio_ret); 5645 5646 em = btrfs_get_chunk_map(fs_info, logical, length); 5647 if (IS_ERR(em)) 5648 return PTR_ERR(em); 5649 5650 map = em->map_lookup; 5651 /* we don't discard raid56 yet */ 5652 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5653 ret = -EOPNOTSUPP; 5654 goto out; 5655 } 5656 5657 offset = logical - em->start; 5658 length = min_t(u64, em->start + em->len - logical, length); 5659 *length_ret = length; 5660 5661 stripe_len = map->stripe_len; 5662 /* 5663 * stripe_nr counts the total number of stripes we have to stride 5664 * to get to this block 5665 */ 5666 stripe_nr = div64_u64(offset, stripe_len); 5667 5668 /* stripe_offset is the offset of this block in its stripe */ 5669 stripe_offset = offset - stripe_nr * stripe_len; 5670 5671 stripe_nr_end = round_up(offset + length, map->stripe_len); 5672 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5673 stripe_cnt = stripe_nr_end - stripe_nr; 5674 stripe_end_offset = stripe_nr_end * map->stripe_len - 5675 (offset + length); 5676 /* 5677 * after this, stripe_nr is the number of stripes on this 5678 * device we have to walk to find the data, and stripe_index is 5679 * the number of our device in the stripe array 5680 */ 5681 num_stripes = 1; 5682 stripe_index = 0; 5683 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5684 BTRFS_BLOCK_GROUP_RAID10)) { 5685 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5686 sub_stripes = 1; 5687 else 5688 sub_stripes = map->sub_stripes; 5689 5690 factor = map->num_stripes / sub_stripes; 5691 num_stripes = min_t(u64, map->num_stripes, 5692 sub_stripes * stripe_cnt); 5693 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5694 stripe_index *= sub_stripes; 5695 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5696 &remaining_stripes); 5697 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5698 last_stripe *= sub_stripes; 5699 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5700 BTRFS_BLOCK_GROUP_DUP)) { 5701 num_stripes = map->num_stripes; 5702 } else { 5703 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5704 &stripe_index); 5705 } 5706 5707 bbio = alloc_btrfs_bio(num_stripes, 0); 5708 if (!bbio) { 5709 ret = -ENOMEM; 5710 goto out; 5711 } 5712 5713 for (i = 0; i < num_stripes; i++) { 5714 bbio->stripes[i].physical = 5715 map->stripes[stripe_index].physical + 5716 stripe_offset + stripe_nr * map->stripe_len; 5717 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5718 5719 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5720 BTRFS_BLOCK_GROUP_RAID10)) { 5721 bbio->stripes[i].length = stripes_per_dev * 5722 map->stripe_len; 5723 5724 if (i / sub_stripes < remaining_stripes) 5725 bbio->stripes[i].length += 5726 map->stripe_len; 5727 5728 /* 5729 * Special for the first stripe and 5730 * the last stripe: 5731 * 5732 * |-------|...|-------| 5733 * |----------| 5734 * off end_off 5735 */ 5736 if (i < sub_stripes) 5737 bbio->stripes[i].length -= 5738 stripe_offset; 5739 5740 if (stripe_index >= last_stripe && 5741 stripe_index <= (last_stripe + 5742 sub_stripes - 1)) 5743 bbio->stripes[i].length -= 5744 stripe_end_offset; 5745 5746 if (i == sub_stripes - 1) 5747 stripe_offset = 0; 5748 } else { 5749 bbio->stripes[i].length = length; 5750 } 5751 5752 stripe_index++; 5753 if (stripe_index == map->num_stripes) { 5754 stripe_index = 0; 5755 stripe_nr++; 5756 } 5757 } 5758 5759 *bbio_ret = bbio; 5760 bbio->map_type = map->type; 5761 bbio->num_stripes = num_stripes; 5762 out: 5763 free_extent_map(em); 5764 return ret; 5765 } 5766 5767 /* 5768 * In dev-replace case, for repair case (that's the only case where the mirror 5769 * is selected explicitly when calling btrfs_map_block), blocks left of the 5770 * left cursor can also be read from the target drive. 5771 * 5772 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5773 * array of stripes. 5774 * For READ, it also needs to be supported using the same mirror number. 5775 * 5776 * If the requested block is not left of the left cursor, EIO is returned. This 5777 * can happen because btrfs_num_copies() returns one more in the dev-replace 5778 * case. 5779 */ 5780 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5781 u64 logical, u64 length, 5782 u64 srcdev_devid, int *mirror_num, 5783 u64 *physical) 5784 { 5785 struct btrfs_bio *bbio = NULL; 5786 int num_stripes; 5787 int index_srcdev = 0; 5788 int found = 0; 5789 u64 physical_of_found = 0; 5790 int i; 5791 int ret = 0; 5792 5793 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5794 logical, &length, &bbio, 0, 0); 5795 if (ret) { 5796 ASSERT(bbio == NULL); 5797 return ret; 5798 } 5799 5800 num_stripes = bbio->num_stripes; 5801 if (*mirror_num > num_stripes) { 5802 /* 5803 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5804 * that means that the requested area is not left of the left 5805 * cursor 5806 */ 5807 btrfs_put_bbio(bbio); 5808 return -EIO; 5809 } 5810 5811 /* 5812 * process the rest of the function using the mirror_num of the source 5813 * drive. Therefore look it up first. At the end, patch the device 5814 * pointer to the one of the target drive. 5815 */ 5816 for (i = 0; i < num_stripes; i++) { 5817 if (bbio->stripes[i].dev->devid != srcdev_devid) 5818 continue; 5819 5820 /* 5821 * In case of DUP, in order to keep it simple, only add the 5822 * mirror with the lowest physical address 5823 */ 5824 if (found && 5825 physical_of_found <= bbio->stripes[i].physical) 5826 continue; 5827 5828 index_srcdev = i; 5829 found = 1; 5830 physical_of_found = bbio->stripes[i].physical; 5831 } 5832 5833 btrfs_put_bbio(bbio); 5834 5835 ASSERT(found); 5836 if (!found) 5837 return -EIO; 5838 5839 *mirror_num = index_srcdev + 1; 5840 *physical = physical_of_found; 5841 return ret; 5842 } 5843 5844 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5845 struct btrfs_bio **bbio_ret, 5846 struct btrfs_dev_replace *dev_replace, 5847 int *num_stripes_ret, int *max_errors_ret) 5848 { 5849 struct btrfs_bio *bbio = *bbio_ret; 5850 u64 srcdev_devid = dev_replace->srcdev->devid; 5851 int tgtdev_indexes = 0; 5852 int num_stripes = *num_stripes_ret; 5853 int max_errors = *max_errors_ret; 5854 int i; 5855 5856 if (op == BTRFS_MAP_WRITE) { 5857 int index_where_to_add; 5858 5859 /* 5860 * duplicate the write operations while the dev replace 5861 * procedure is running. Since the copying of the old disk to 5862 * the new disk takes place at run time while the filesystem is 5863 * mounted writable, the regular write operations to the old 5864 * disk have to be duplicated to go to the new disk as well. 5865 * 5866 * Note that device->missing is handled by the caller, and that 5867 * the write to the old disk is already set up in the stripes 5868 * array. 5869 */ 5870 index_where_to_add = num_stripes; 5871 for (i = 0; i < num_stripes; i++) { 5872 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5873 /* write to new disk, too */ 5874 struct btrfs_bio_stripe *new = 5875 bbio->stripes + index_where_to_add; 5876 struct btrfs_bio_stripe *old = 5877 bbio->stripes + i; 5878 5879 new->physical = old->physical; 5880 new->length = old->length; 5881 new->dev = dev_replace->tgtdev; 5882 bbio->tgtdev_map[i] = index_where_to_add; 5883 index_where_to_add++; 5884 max_errors++; 5885 tgtdev_indexes++; 5886 } 5887 } 5888 num_stripes = index_where_to_add; 5889 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5890 int index_srcdev = 0; 5891 int found = 0; 5892 u64 physical_of_found = 0; 5893 5894 /* 5895 * During the dev-replace procedure, the target drive can also 5896 * be used to read data in case it is needed to repair a corrupt 5897 * block elsewhere. This is possible if the requested area is 5898 * left of the left cursor. In this area, the target drive is a 5899 * full copy of the source drive. 5900 */ 5901 for (i = 0; i < num_stripes; i++) { 5902 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5903 /* 5904 * In case of DUP, in order to keep it simple, 5905 * only add the mirror with the lowest physical 5906 * address 5907 */ 5908 if (found && 5909 physical_of_found <= 5910 bbio->stripes[i].physical) 5911 continue; 5912 index_srcdev = i; 5913 found = 1; 5914 physical_of_found = bbio->stripes[i].physical; 5915 } 5916 } 5917 if (found) { 5918 struct btrfs_bio_stripe *tgtdev_stripe = 5919 bbio->stripes + num_stripes; 5920 5921 tgtdev_stripe->physical = physical_of_found; 5922 tgtdev_stripe->length = 5923 bbio->stripes[index_srcdev].length; 5924 tgtdev_stripe->dev = dev_replace->tgtdev; 5925 bbio->tgtdev_map[index_srcdev] = num_stripes; 5926 5927 tgtdev_indexes++; 5928 num_stripes++; 5929 } 5930 } 5931 5932 *num_stripes_ret = num_stripes; 5933 *max_errors_ret = max_errors; 5934 bbio->num_tgtdevs = tgtdev_indexes; 5935 *bbio_ret = bbio; 5936 } 5937 5938 static bool need_full_stripe(enum btrfs_map_op op) 5939 { 5940 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5941 } 5942 5943 /* 5944 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5945 * tuple. This information is used to calculate how big a 5946 * particular bio can get before it straddles a stripe. 5947 * 5948 * @fs_info - the filesystem 5949 * @logical - address that we want to figure out the geometry of 5950 * @len - the length of IO we are going to perform, starting at @logical 5951 * @op - type of operation - write or read 5952 * @io_geom - pointer used to return values 5953 * 5954 * Returns < 0 in case a chunk for the given logical address cannot be found, 5955 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5956 */ 5957 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5958 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5959 { 5960 struct extent_map *em; 5961 struct map_lookup *map; 5962 u64 offset; 5963 u64 stripe_offset; 5964 u64 stripe_nr; 5965 u64 stripe_len; 5966 u64 raid56_full_stripe_start = (u64)-1; 5967 int data_stripes; 5968 int ret = 0; 5969 5970 ASSERT(op != BTRFS_MAP_DISCARD); 5971 5972 em = btrfs_get_chunk_map(fs_info, logical, len); 5973 if (IS_ERR(em)) 5974 return PTR_ERR(em); 5975 5976 map = em->map_lookup; 5977 /* Offset of this logical address in the chunk */ 5978 offset = logical - em->start; 5979 /* Len of a stripe in a chunk */ 5980 stripe_len = map->stripe_len; 5981 /* Stripe wher this block falls in */ 5982 stripe_nr = div64_u64(offset, stripe_len); 5983 /* Offset of stripe in the chunk */ 5984 stripe_offset = stripe_nr * stripe_len; 5985 if (offset < stripe_offset) { 5986 btrfs_crit(fs_info, 5987 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5988 stripe_offset, offset, em->start, logical, stripe_len); 5989 ret = -EINVAL; 5990 goto out; 5991 } 5992 5993 /* stripe_offset is the offset of this block in its stripe */ 5994 stripe_offset = offset - stripe_offset; 5995 data_stripes = nr_data_stripes(map); 5996 5997 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5998 u64 max_len = stripe_len - stripe_offset; 5999 6000 /* 6001 * In case of raid56, we need to know the stripe aligned start 6002 */ 6003 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6004 unsigned long full_stripe_len = stripe_len * data_stripes; 6005 raid56_full_stripe_start = offset; 6006 6007 /* 6008 * Allow a write of a full stripe, but make sure we 6009 * don't allow straddling of stripes 6010 */ 6011 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6012 full_stripe_len); 6013 raid56_full_stripe_start *= full_stripe_len; 6014 6015 /* 6016 * For writes to RAID[56], allow a full stripeset across 6017 * all disks. For other RAID types and for RAID[56] 6018 * reads, just allow a single stripe (on a single disk). 6019 */ 6020 if (op == BTRFS_MAP_WRITE) { 6021 max_len = stripe_len * data_stripes - 6022 (offset - raid56_full_stripe_start); 6023 } 6024 } 6025 len = min_t(u64, em->len - offset, max_len); 6026 } else { 6027 len = em->len - offset; 6028 } 6029 6030 io_geom->len = len; 6031 io_geom->offset = offset; 6032 io_geom->stripe_len = stripe_len; 6033 io_geom->stripe_nr = stripe_nr; 6034 io_geom->stripe_offset = stripe_offset; 6035 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6036 6037 out: 6038 /* once for us */ 6039 free_extent_map(em); 6040 return ret; 6041 } 6042 6043 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6044 enum btrfs_map_op op, 6045 u64 logical, u64 *length, 6046 struct btrfs_bio **bbio_ret, 6047 int mirror_num, int need_raid_map) 6048 { 6049 struct extent_map *em; 6050 struct map_lookup *map; 6051 u64 stripe_offset; 6052 u64 stripe_nr; 6053 u64 stripe_len; 6054 u32 stripe_index; 6055 int data_stripes; 6056 int i; 6057 int ret = 0; 6058 int num_stripes; 6059 int max_errors = 0; 6060 int tgtdev_indexes = 0; 6061 struct btrfs_bio *bbio = NULL; 6062 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6063 int dev_replace_is_ongoing = 0; 6064 int num_alloc_stripes; 6065 int patch_the_first_stripe_for_dev_replace = 0; 6066 u64 physical_to_patch_in_first_stripe = 0; 6067 u64 raid56_full_stripe_start = (u64)-1; 6068 struct btrfs_io_geometry geom; 6069 6070 ASSERT(bbio_ret); 6071 ASSERT(op != BTRFS_MAP_DISCARD); 6072 6073 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6074 if (ret < 0) 6075 return ret; 6076 6077 em = btrfs_get_chunk_map(fs_info, logical, *length); 6078 ASSERT(!IS_ERR(em)); 6079 map = em->map_lookup; 6080 6081 *length = geom.len; 6082 stripe_len = geom.stripe_len; 6083 stripe_nr = geom.stripe_nr; 6084 stripe_offset = geom.stripe_offset; 6085 raid56_full_stripe_start = geom.raid56_stripe_offset; 6086 data_stripes = nr_data_stripes(map); 6087 6088 down_read(&dev_replace->rwsem); 6089 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6090 /* 6091 * Hold the semaphore for read during the whole operation, write is 6092 * requested at commit time but must wait. 6093 */ 6094 if (!dev_replace_is_ongoing) 6095 up_read(&dev_replace->rwsem); 6096 6097 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6098 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6099 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6100 dev_replace->srcdev->devid, 6101 &mirror_num, 6102 &physical_to_patch_in_first_stripe); 6103 if (ret) 6104 goto out; 6105 else 6106 patch_the_first_stripe_for_dev_replace = 1; 6107 } else if (mirror_num > map->num_stripes) { 6108 mirror_num = 0; 6109 } 6110 6111 num_stripes = 1; 6112 stripe_index = 0; 6113 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6114 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6115 &stripe_index); 6116 if (!need_full_stripe(op)) 6117 mirror_num = 1; 6118 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6119 if (need_full_stripe(op)) 6120 num_stripes = map->num_stripes; 6121 else if (mirror_num) 6122 stripe_index = mirror_num - 1; 6123 else { 6124 stripe_index = find_live_mirror(fs_info, map, 0, 6125 dev_replace_is_ongoing); 6126 mirror_num = stripe_index + 1; 6127 } 6128 6129 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6130 if (need_full_stripe(op)) { 6131 num_stripes = map->num_stripes; 6132 } else if (mirror_num) { 6133 stripe_index = mirror_num - 1; 6134 } else { 6135 mirror_num = 1; 6136 } 6137 6138 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6139 u32 factor = map->num_stripes / map->sub_stripes; 6140 6141 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6142 stripe_index *= map->sub_stripes; 6143 6144 if (need_full_stripe(op)) 6145 num_stripes = map->sub_stripes; 6146 else if (mirror_num) 6147 stripe_index += mirror_num - 1; 6148 else { 6149 int old_stripe_index = stripe_index; 6150 stripe_index = find_live_mirror(fs_info, map, 6151 stripe_index, 6152 dev_replace_is_ongoing); 6153 mirror_num = stripe_index - old_stripe_index + 1; 6154 } 6155 6156 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6157 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6158 /* push stripe_nr back to the start of the full stripe */ 6159 stripe_nr = div64_u64(raid56_full_stripe_start, 6160 stripe_len * data_stripes); 6161 6162 /* RAID[56] write or recovery. Return all stripes */ 6163 num_stripes = map->num_stripes; 6164 max_errors = nr_parity_stripes(map); 6165 6166 *length = map->stripe_len; 6167 stripe_index = 0; 6168 stripe_offset = 0; 6169 } else { 6170 /* 6171 * Mirror #0 or #1 means the original data block. 6172 * Mirror #2 is RAID5 parity block. 6173 * Mirror #3 is RAID6 Q block. 6174 */ 6175 stripe_nr = div_u64_rem(stripe_nr, 6176 data_stripes, &stripe_index); 6177 if (mirror_num > 1) 6178 stripe_index = data_stripes + mirror_num - 2; 6179 6180 /* We distribute the parity blocks across stripes */ 6181 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6182 &stripe_index); 6183 if (!need_full_stripe(op) && mirror_num <= 1) 6184 mirror_num = 1; 6185 } 6186 } else { 6187 /* 6188 * after this, stripe_nr is the number of stripes on this 6189 * device we have to walk to find the data, and stripe_index is 6190 * the number of our device in the stripe array 6191 */ 6192 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6193 &stripe_index); 6194 mirror_num = stripe_index + 1; 6195 } 6196 if (stripe_index >= map->num_stripes) { 6197 btrfs_crit(fs_info, 6198 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6199 stripe_index, map->num_stripes); 6200 ret = -EINVAL; 6201 goto out; 6202 } 6203 6204 num_alloc_stripes = num_stripes; 6205 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6206 if (op == BTRFS_MAP_WRITE) 6207 num_alloc_stripes <<= 1; 6208 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6209 num_alloc_stripes++; 6210 tgtdev_indexes = num_stripes; 6211 } 6212 6213 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6214 if (!bbio) { 6215 ret = -ENOMEM; 6216 goto out; 6217 } 6218 6219 for (i = 0; i < num_stripes; i++) { 6220 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6221 stripe_offset + stripe_nr * map->stripe_len; 6222 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6223 stripe_index++; 6224 } 6225 6226 /* build raid_map */ 6227 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6228 (need_full_stripe(op) || mirror_num > 1)) { 6229 u64 tmp; 6230 unsigned rot; 6231 6232 /* Work out the disk rotation on this stripe-set */ 6233 div_u64_rem(stripe_nr, num_stripes, &rot); 6234 6235 /* Fill in the logical address of each stripe */ 6236 tmp = stripe_nr * data_stripes; 6237 for (i = 0; i < data_stripes; i++) 6238 bbio->raid_map[(i+rot) % num_stripes] = 6239 em->start + (tmp + i) * map->stripe_len; 6240 6241 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6242 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6243 bbio->raid_map[(i+rot+1) % num_stripes] = 6244 RAID6_Q_STRIPE; 6245 6246 sort_parity_stripes(bbio, num_stripes); 6247 } 6248 6249 if (need_full_stripe(op)) 6250 max_errors = btrfs_chunk_max_errors(map); 6251 6252 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6253 need_full_stripe(op)) { 6254 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6255 &max_errors); 6256 } 6257 6258 *bbio_ret = bbio; 6259 bbio->map_type = map->type; 6260 bbio->num_stripes = num_stripes; 6261 bbio->max_errors = max_errors; 6262 bbio->mirror_num = mirror_num; 6263 6264 /* 6265 * this is the case that REQ_READ && dev_replace_is_ongoing && 6266 * mirror_num == num_stripes + 1 && dev_replace target drive is 6267 * available as a mirror 6268 */ 6269 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6270 WARN_ON(num_stripes > 1); 6271 bbio->stripes[0].dev = dev_replace->tgtdev; 6272 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6273 bbio->mirror_num = map->num_stripes + 1; 6274 } 6275 out: 6276 if (dev_replace_is_ongoing) { 6277 lockdep_assert_held(&dev_replace->rwsem); 6278 /* Unlock and let waiting writers proceed */ 6279 up_read(&dev_replace->rwsem); 6280 } 6281 free_extent_map(em); 6282 return ret; 6283 } 6284 6285 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6286 u64 logical, u64 *length, 6287 struct btrfs_bio **bbio_ret, int mirror_num) 6288 { 6289 if (op == BTRFS_MAP_DISCARD) 6290 return __btrfs_map_block_for_discard(fs_info, logical, 6291 length, bbio_ret); 6292 6293 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6294 mirror_num, 0); 6295 } 6296 6297 /* For Scrub/replace */ 6298 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6299 u64 logical, u64 *length, 6300 struct btrfs_bio **bbio_ret) 6301 { 6302 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6303 } 6304 6305 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6306 { 6307 bio->bi_private = bbio->private; 6308 bio->bi_end_io = bbio->end_io; 6309 bio_endio(bio); 6310 6311 btrfs_put_bbio(bbio); 6312 } 6313 6314 static void btrfs_end_bio(struct bio *bio) 6315 { 6316 struct btrfs_bio *bbio = bio->bi_private; 6317 int is_orig_bio = 0; 6318 6319 if (bio->bi_status) { 6320 atomic_inc(&bbio->error); 6321 if (bio->bi_status == BLK_STS_IOERR || 6322 bio->bi_status == BLK_STS_TARGET) { 6323 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6324 6325 ASSERT(dev->bdev); 6326 if (bio_op(bio) == REQ_OP_WRITE) 6327 btrfs_dev_stat_inc_and_print(dev, 6328 BTRFS_DEV_STAT_WRITE_ERRS); 6329 else if (!(bio->bi_opf & REQ_RAHEAD)) 6330 btrfs_dev_stat_inc_and_print(dev, 6331 BTRFS_DEV_STAT_READ_ERRS); 6332 if (bio->bi_opf & REQ_PREFLUSH) 6333 btrfs_dev_stat_inc_and_print(dev, 6334 BTRFS_DEV_STAT_FLUSH_ERRS); 6335 } 6336 } 6337 6338 if (bio == bbio->orig_bio) 6339 is_orig_bio = 1; 6340 6341 btrfs_bio_counter_dec(bbio->fs_info); 6342 6343 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6344 if (!is_orig_bio) { 6345 bio_put(bio); 6346 bio = bbio->orig_bio; 6347 } 6348 6349 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6350 /* only send an error to the higher layers if it is 6351 * beyond the tolerance of the btrfs bio 6352 */ 6353 if (atomic_read(&bbio->error) > bbio->max_errors) { 6354 bio->bi_status = BLK_STS_IOERR; 6355 } else { 6356 /* 6357 * this bio is actually up to date, we didn't 6358 * go over the max number of errors 6359 */ 6360 bio->bi_status = BLK_STS_OK; 6361 } 6362 6363 btrfs_end_bbio(bbio, bio); 6364 } else if (!is_orig_bio) { 6365 bio_put(bio); 6366 } 6367 } 6368 6369 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6370 u64 physical, struct btrfs_device *dev) 6371 { 6372 struct btrfs_fs_info *fs_info = bbio->fs_info; 6373 6374 bio->bi_private = bbio; 6375 btrfs_io_bio(bio)->device = dev; 6376 bio->bi_end_io = btrfs_end_bio; 6377 bio->bi_iter.bi_sector = physical >> 9; 6378 btrfs_debug_in_rcu(fs_info, 6379 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6380 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6381 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6382 dev->devid, bio->bi_iter.bi_size); 6383 bio_set_dev(bio, dev->bdev); 6384 6385 btrfs_bio_counter_inc_noblocked(fs_info); 6386 6387 btrfsic_submit_bio(bio); 6388 } 6389 6390 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6391 { 6392 atomic_inc(&bbio->error); 6393 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6394 /* Should be the original bio. */ 6395 WARN_ON(bio != bbio->orig_bio); 6396 6397 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6398 bio->bi_iter.bi_sector = logical >> 9; 6399 if (atomic_read(&bbio->error) > bbio->max_errors) 6400 bio->bi_status = BLK_STS_IOERR; 6401 else 6402 bio->bi_status = BLK_STS_OK; 6403 btrfs_end_bbio(bbio, bio); 6404 } 6405 } 6406 6407 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6408 int mirror_num) 6409 { 6410 struct btrfs_device *dev; 6411 struct bio *first_bio = bio; 6412 u64 logical = bio->bi_iter.bi_sector << 9; 6413 u64 length = 0; 6414 u64 map_length; 6415 int ret; 6416 int dev_nr; 6417 int total_devs; 6418 struct btrfs_bio *bbio = NULL; 6419 6420 length = bio->bi_iter.bi_size; 6421 map_length = length; 6422 6423 btrfs_bio_counter_inc_blocked(fs_info); 6424 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6425 &map_length, &bbio, mirror_num, 1); 6426 if (ret) { 6427 btrfs_bio_counter_dec(fs_info); 6428 return errno_to_blk_status(ret); 6429 } 6430 6431 total_devs = bbio->num_stripes; 6432 bbio->orig_bio = first_bio; 6433 bbio->private = first_bio->bi_private; 6434 bbio->end_io = first_bio->bi_end_io; 6435 bbio->fs_info = fs_info; 6436 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6437 6438 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6439 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6440 /* In this case, map_length has been set to the length of 6441 a single stripe; not the whole write */ 6442 if (bio_op(bio) == REQ_OP_WRITE) { 6443 ret = raid56_parity_write(fs_info, bio, bbio, 6444 map_length); 6445 } else { 6446 ret = raid56_parity_recover(fs_info, bio, bbio, 6447 map_length, mirror_num, 1); 6448 } 6449 6450 btrfs_bio_counter_dec(fs_info); 6451 return errno_to_blk_status(ret); 6452 } 6453 6454 if (map_length < length) { 6455 btrfs_crit(fs_info, 6456 "mapping failed logical %llu bio len %llu len %llu", 6457 logical, length, map_length); 6458 BUG(); 6459 } 6460 6461 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6462 dev = bbio->stripes[dev_nr].dev; 6463 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6464 &dev->dev_state) || 6465 (bio_op(first_bio) == REQ_OP_WRITE && 6466 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6467 bbio_error(bbio, first_bio, logical); 6468 continue; 6469 } 6470 6471 if (dev_nr < total_devs - 1) 6472 bio = btrfs_bio_clone(first_bio); 6473 else 6474 bio = first_bio; 6475 6476 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6477 } 6478 btrfs_bio_counter_dec(fs_info); 6479 return BLK_STS_OK; 6480 } 6481 6482 /* 6483 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6484 * return NULL. 6485 * 6486 * If devid and uuid are both specified, the match must be exact, otherwise 6487 * only devid is used. 6488 * 6489 * If @seed is true, traverse through the seed devices. 6490 */ 6491 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6492 u64 devid, u8 *uuid, u8 *fsid) 6493 { 6494 struct btrfs_device *device; 6495 struct btrfs_fs_devices *seed_devs; 6496 6497 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6498 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6499 if (device->devid == devid && 6500 (!uuid || memcmp(device->uuid, uuid, 6501 BTRFS_UUID_SIZE) == 0)) 6502 return device; 6503 } 6504 } 6505 6506 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6507 if (!fsid || 6508 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6509 list_for_each_entry(device, &seed_devs->devices, 6510 dev_list) { 6511 if (device->devid == devid && 6512 (!uuid || memcmp(device->uuid, uuid, 6513 BTRFS_UUID_SIZE) == 0)) 6514 return device; 6515 } 6516 } 6517 } 6518 6519 return NULL; 6520 } 6521 6522 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6523 u64 devid, u8 *dev_uuid) 6524 { 6525 struct btrfs_device *device; 6526 unsigned int nofs_flag; 6527 6528 /* 6529 * We call this under the chunk_mutex, so we want to use NOFS for this 6530 * allocation, however we don't want to change btrfs_alloc_device() to 6531 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6532 * places. 6533 */ 6534 nofs_flag = memalloc_nofs_save(); 6535 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6536 memalloc_nofs_restore(nofs_flag); 6537 if (IS_ERR(device)) 6538 return device; 6539 6540 list_add(&device->dev_list, &fs_devices->devices); 6541 device->fs_devices = fs_devices; 6542 fs_devices->num_devices++; 6543 6544 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6545 fs_devices->missing_devices++; 6546 6547 return device; 6548 } 6549 6550 /** 6551 * btrfs_alloc_device - allocate struct btrfs_device 6552 * @fs_info: used only for generating a new devid, can be NULL if 6553 * devid is provided (i.e. @devid != NULL). 6554 * @devid: a pointer to devid for this device. If NULL a new devid 6555 * is generated. 6556 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6557 * is generated. 6558 * 6559 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6560 * on error. Returned struct is not linked onto any lists and must be 6561 * destroyed with btrfs_free_device. 6562 */ 6563 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6564 const u64 *devid, 6565 const u8 *uuid) 6566 { 6567 struct btrfs_device *dev; 6568 u64 tmp; 6569 6570 if (WARN_ON(!devid && !fs_info)) 6571 return ERR_PTR(-EINVAL); 6572 6573 dev = __alloc_device(fs_info); 6574 if (IS_ERR(dev)) 6575 return dev; 6576 6577 if (devid) 6578 tmp = *devid; 6579 else { 6580 int ret; 6581 6582 ret = find_next_devid(fs_info, &tmp); 6583 if (ret) { 6584 btrfs_free_device(dev); 6585 return ERR_PTR(ret); 6586 } 6587 } 6588 dev->devid = tmp; 6589 6590 if (uuid) 6591 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6592 else 6593 generate_random_uuid(dev->uuid); 6594 6595 return dev; 6596 } 6597 6598 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6599 u64 devid, u8 *uuid, bool error) 6600 { 6601 if (error) 6602 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6603 devid, uuid); 6604 else 6605 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6606 devid, uuid); 6607 } 6608 6609 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6610 { 6611 int index = btrfs_bg_flags_to_raid_index(type); 6612 int ncopies = btrfs_raid_array[index].ncopies; 6613 const int nparity = btrfs_raid_array[index].nparity; 6614 int data_stripes; 6615 6616 if (nparity) 6617 data_stripes = num_stripes - nparity; 6618 else 6619 data_stripes = num_stripes / ncopies; 6620 6621 return div_u64(chunk_len, data_stripes); 6622 } 6623 6624 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6625 struct btrfs_chunk *chunk) 6626 { 6627 struct btrfs_fs_info *fs_info = leaf->fs_info; 6628 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6629 struct map_lookup *map; 6630 struct extent_map *em; 6631 u64 logical; 6632 u64 length; 6633 u64 devid; 6634 u8 uuid[BTRFS_UUID_SIZE]; 6635 int num_stripes; 6636 int ret; 6637 int i; 6638 6639 logical = key->offset; 6640 length = btrfs_chunk_length(leaf, chunk); 6641 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6642 6643 /* 6644 * Only need to verify chunk item if we're reading from sys chunk array, 6645 * as chunk item in tree block is already verified by tree-checker. 6646 */ 6647 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6648 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6649 if (ret) 6650 return ret; 6651 } 6652 6653 read_lock(&map_tree->lock); 6654 em = lookup_extent_mapping(map_tree, logical, 1); 6655 read_unlock(&map_tree->lock); 6656 6657 /* already mapped? */ 6658 if (em && em->start <= logical && em->start + em->len > logical) { 6659 free_extent_map(em); 6660 return 0; 6661 } else if (em) { 6662 free_extent_map(em); 6663 } 6664 6665 em = alloc_extent_map(); 6666 if (!em) 6667 return -ENOMEM; 6668 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6669 if (!map) { 6670 free_extent_map(em); 6671 return -ENOMEM; 6672 } 6673 6674 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6675 em->map_lookup = map; 6676 em->start = logical; 6677 em->len = length; 6678 em->orig_start = 0; 6679 em->block_start = 0; 6680 em->block_len = em->len; 6681 6682 map->num_stripes = num_stripes; 6683 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6684 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6685 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6686 map->type = btrfs_chunk_type(leaf, chunk); 6687 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6688 map->verified_stripes = 0; 6689 em->orig_block_len = calc_stripe_length(map->type, em->len, 6690 map->num_stripes); 6691 for (i = 0; i < num_stripes; i++) { 6692 map->stripes[i].physical = 6693 btrfs_stripe_offset_nr(leaf, chunk, i); 6694 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6695 read_extent_buffer(leaf, uuid, (unsigned long) 6696 btrfs_stripe_dev_uuid_nr(chunk, i), 6697 BTRFS_UUID_SIZE); 6698 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6699 devid, uuid, NULL); 6700 if (!map->stripes[i].dev && 6701 !btrfs_test_opt(fs_info, DEGRADED)) { 6702 free_extent_map(em); 6703 btrfs_report_missing_device(fs_info, devid, uuid, true); 6704 return -ENOENT; 6705 } 6706 if (!map->stripes[i].dev) { 6707 map->stripes[i].dev = 6708 add_missing_dev(fs_info->fs_devices, devid, 6709 uuid); 6710 if (IS_ERR(map->stripes[i].dev)) { 6711 free_extent_map(em); 6712 btrfs_err(fs_info, 6713 "failed to init missing dev %llu: %ld", 6714 devid, PTR_ERR(map->stripes[i].dev)); 6715 return PTR_ERR(map->stripes[i].dev); 6716 } 6717 btrfs_report_missing_device(fs_info, devid, uuid, false); 6718 } 6719 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6720 &(map->stripes[i].dev->dev_state)); 6721 6722 } 6723 6724 write_lock(&map_tree->lock); 6725 ret = add_extent_mapping(map_tree, em, 0); 6726 write_unlock(&map_tree->lock); 6727 if (ret < 0) { 6728 btrfs_err(fs_info, 6729 "failed to add chunk map, start=%llu len=%llu: %d", 6730 em->start, em->len, ret); 6731 } 6732 free_extent_map(em); 6733 6734 return ret; 6735 } 6736 6737 static void fill_device_from_item(struct extent_buffer *leaf, 6738 struct btrfs_dev_item *dev_item, 6739 struct btrfs_device *device) 6740 { 6741 unsigned long ptr; 6742 6743 device->devid = btrfs_device_id(leaf, dev_item); 6744 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6745 device->total_bytes = device->disk_total_bytes; 6746 device->commit_total_bytes = device->disk_total_bytes; 6747 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6748 device->commit_bytes_used = device->bytes_used; 6749 device->type = btrfs_device_type(leaf, dev_item); 6750 device->io_align = btrfs_device_io_align(leaf, dev_item); 6751 device->io_width = btrfs_device_io_width(leaf, dev_item); 6752 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6753 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6754 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6755 6756 ptr = btrfs_device_uuid(dev_item); 6757 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6758 } 6759 6760 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6761 u8 *fsid) 6762 { 6763 struct btrfs_fs_devices *fs_devices; 6764 int ret; 6765 6766 lockdep_assert_held(&uuid_mutex); 6767 ASSERT(fsid); 6768 6769 /* This will match only for multi-device seed fs */ 6770 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6771 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6772 return fs_devices; 6773 6774 6775 fs_devices = find_fsid(fsid, NULL); 6776 if (!fs_devices) { 6777 if (!btrfs_test_opt(fs_info, DEGRADED)) 6778 return ERR_PTR(-ENOENT); 6779 6780 fs_devices = alloc_fs_devices(fsid, NULL); 6781 if (IS_ERR(fs_devices)) 6782 return fs_devices; 6783 6784 fs_devices->seeding = true; 6785 fs_devices->opened = 1; 6786 return fs_devices; 6787 } 6788 6789 /* 6790 * Upon first call for a seed fs fsid, just create a private copy of the 6791 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6792 */ 6793 fs_devices = clone_fs_devices(fs_devices); 6794 if (IS_ERR(fs_devices)) 6795 return fs_devices; 6796 6797 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6798 if (ret) { 6799 free_fs_devices(fs_devices); 6800 return ERR_PTR(ret); 6801 } 6802 6803 if (!fs_devices->seeding) { 6804 close_fs_devices(fs_devices); 6805 free_fs_devices(fs_devices); 6806 return ERR_PTR(-EINVAL); 6807 } 6808 6809 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6810 6811 return fs_devices; 6812 } 6813 6814 static int read_one_dev(struct extent_buffer *leaf, 6815 struct btrfs_dev_item *dev_item) 6816 { 6817 struct btrfs_fs_info *fs_info = leaf->fs_info; 6818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6819 struct btrfs_device *device; 6820 u64 devid; 6821 int ret; 6822 u8 fs_uuid[BTRFS_FSID_SIZE]; 6823 u8 dev_uuid[BTRFS_UUID_SIZE]; 6824 6825 devid = btrfs_device_id(leaf, dev_item); 6826 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6827 BTRFS_UUID_SIZE); 6828 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6829 BTRFS_FSID_SIZE); 6830 6831 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6832 fs_devices = open_seed_devices(fs_info, fs_uuid); 6833 if (IS_ERR(fs_devices)) 6834 return PTR_ERR(fs_devices); 6835 } 6836 6837 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6838 fs_uuid); 6839 if (!device) { 6840 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6841 btrfs_report_missing_device(fs_info, devid, 6842 dev_uuid, true); 6843 return -ENOENT; 6844 } 6845 6846 device = add_missing_dev(fs_devices, devid, dev_uuid); 6847 if (IS_ERR(device)) { 6848 btrfs_err(fs_info, 6849 "failed to add missing dev %llu: %ld", 6850 devid, PTR_ERR(device)); 6851 return PTR_ERR(device); 6852 } 6853 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6854 } else { 6855 if (!device->bdev) { 6856 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6857 btrfs_report_missing_device(fs_info, 6858 devid, dev_uuid, true); 6859 return -ENOENT; 6860 } 6861 btrfs_report_missing_device(fs_info, devid, 6862 dev_uuid, false); 6863 } 6864 6865 if (!device->bdev && 6866 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6867 /* 6868 * this happens when a device that was properly setup 6869 * in the device info lists suddenly goes bad. 6870 * device->bdev is NULL, and so we have to set 6871 * device->missing to one here 6872 */ 6873 device->fs_devices->missing_devices++; 6874 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6875 } 6876 6877 /* Move the device to its own fs_devices */ 6878 if (device->fs_devices != fs_devices) { 6879 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6880 &device->dev_state)); 6881 6882 list_move(&device->dev_list, &fs_devices->devices); 6883 device->fs_devices->num_devices--; 6884 fs_devices->num_devices++; 6885 6886 device->fs_devices->missing_devices--; 6887 fs_devices->missing_devices++; 6888 6889 device->fs_devices = fs_devices; 6890 } 6891 } 6892 6893 if (device->fs_devices != fs_info->fs_devices) { 6894 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6895 if (device->generation != 6896 btrfs_device_generation(leaf, dev_item)) 6897 return -EINVAL; 6898 } 6899 6900 fill_device_from_item(leaf, dev_item, device); 6901 if (device->bdev) { 6902 u64 max_total_bytes = i_size_read(device->bdev->bd_inode); 6903 6904 if (device->total_bytes > max_total_bytes) { 6905 btrfs_err(fs_info, 6906 "device total_bytes should be at most %llu but found %llu", 6907 max_total_bytes, device->total_bytes); 6908 return -EINVAL; 6909 } 6910 } 6911 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6912 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6913 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6914 device->fs_devices->total_rw_bytes += device->total_bytes; 6915 atomic64_add(device->total_bytes - device->bytes_used, 6916 &fs_info->free_chunk_space); 6917 } 6918 ret = 0; 6919 return ret; 6920 } 6921 6922 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6923 { 6924 struct btrfs_root *root = fs_info->tree_root; 6925 struct btrfs_super_block *super_copy = fs_info->super_copy; 6926 struct extent_buffer *sb; 6927 struct btrfs_disk_key *disk_key; 6928 struct btrfs_chunk *chunk; 6929 u8 *array_ptr; 6930 unsigned long sb_array_offset; 6931 int ret = 0; 6932 u32 num_stripes; 6933 u32 array_size; 6934 u32 len = 0; 6935 u32 cur_offset; 6936 u64 type; 6937 struct btrfs_key key; 6938 6939 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6940 /* 6941 * This will create extent buffer of nodesize, superblock size is 6942 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6943 * overallocate but we can keep it as-is, only the first page is used. 6944 */ 6945 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET, 6946 root->root_key.objectid, 0); 6947 if (IS_ERR(sb)) 6948 return PTR_ERR(sb); 6949 set_extent_buffer_uptodate(sb); 6950 /* 6951 * The sb extent buffer is artificial and just used to read the system array. 6952 * set_extent_buffer_uptodate() call does not properly mark all it's 6953 * pages up-to-date when the page is larger: extent does not cover the 6954 * whole page and consequently check_page_uptodate does not find all 6955 * the page's extents up-to-date (the hole beyond sb), 6956 * write_extent_buffer then triggers a WARN_ON. 6957 * 6958 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6959 * but sb spans only this function. Add an explicit SetPageUptodate call 6960 * to silence the warning eg. on PowerPC 64. 6961 */ 6962 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6963 SetPageUptodate(sb->pages[0]); 6964 6965 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6966 array_size = btrfs_super_sys_array_size(super_copy); 6967 6968 array_ptr = super_copy->sys_chunk_array; 6969 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6970 cur_offset = 0; 6971 6972 while (cur_offset < array_size) { 6973 disk_key = (struct btrfs_disk_key *)array_ptr; 6974 len = sizeof(*disk_key); 6975 if (cur_offset + len > array_size) 6976 goto out_short_read; 6977 6978 btrfs_disk_key_to_cpu(&key, disk_key); 6979 6980 array_ptr += len; 6981 sb_array_offset += len; 6982 cur_offset += len; 6983 6984 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6985 btrfs_err(fs_info, 6986 "unexpected item type %u in sys_array at offset %u", 6987 (u32)key.type, cur_offset); 6988 ret = -EIO; 6989 break; 6990 } 6991 6992 chunk = (struct btrfs_chunk *)sb_array_offset; 6993 /* 6994 * At least one btrfs_chunk with one stripe must be present, 6995 * exact stripe count check comes afterwards 6996 */ 6997 len = btrfs_chunk_item_size(1); 6998 if (cur_offset + len > array_size) 6999 goto out_short_read; 7000 7001 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7002 if (!num_stripes) { 7003 btrfs_err(fs_info, 7004 "invalid number of stripes %u in sys_array at offset %u", 7005 num_stripes, cur_offset); 7006 ret = -EIO; 7007 break; 7008 } 7009 7010 type = btrfs_chunk_type(sb, chunk); 7011 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7012 btrfs_err(fs_info, 7013 "invalid chunk type %llu in sys_array at offset %u", 7014 type, cur_offset); 7015 ret = -EIO; 7016 break; 7017 } 7018 7019 len = btrfs_chunk_item_size(num_stripes); 7020 if (cur_offset + len > array_size) 7021 goto out_short_read; 7022 7023 ret = read_one_chunk(&key, sb, chunk); 7024 if (ret) 7025 break; 7026 7027 array_ptr += len; 7028 sb_array_offset += len; 7029 cur_offset += len; 7030 } 7031 clear_extent_buffer_uptodate(sb); 7032 free_extent_buffer_stale(sb); 7033 return ret; 7034 7035 out_short_read: 7036 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7037 len, cur_offset); 7038 clear_extent_buffer_uptodate(sb); 7039 free_extent_buffer_stale(sb); 7040 return -EIO; 7041 } 7042 7043 /* 7044 * Check if all chunks in the fs are OK for read-write degraded mount 7045 * 7046 * If the @failing_dev is specified, it's accounted as missing. 7047 * 7048 * Return true if all chunks meet the minimal RW mount requirements. 7049 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7050 */ 7051 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7052 struct btrfs_device *failing_dev) 7053 { 7054 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7055 struct extent_map *em; 7056 u64 next_start = 0; 7057 bool ret = true; 7058 7059 read_lock(&map_tree->lock); 7060 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7061 read_unlock(&map_tree->lock); 7062 /* No chunk at all? Return false anyway */ 7063 if (!em) { 7064 ret = false; 7065 goto out; 7066 } 7067 while (em) { 7068 struct map_lookup *map; 7069 int missing = 0; 7070 int max_tolerated; 7071 int i; 7072 7073 map = em->map_lookup; 7074 max_tolerated = 7075 btrfs_get_num_tolerated_disk_barrier_failures( 7076 map->type); 7077 for (i = 0; i < map->num_stripes; i++) { 7078 struct btrfs_device *dev = map->stripes[i].dev; 7079 7080 if (!dev || !dev->bdev || 7081 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7082 dev->last_flush_error) 7083 missing++; 7084 else if (failing_dev && failing_dev == dev) 7085 missing++; 7086 } 7087 if (missing > max_tolerated) { 7088 if (!failing_dev) 7089 btrfs_warn(fs_info, 7090 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7091 em->start, missing, max_tolerated); 7092 free_extent_map(em); 7093 ret = false; 7094 goto out; 7095 } 7096 next_start = extent_map_end(em); 7097 free_extent_map(em); 7098 7099 read_lock(&map_tree->lock); 7100 em = lookup_extent_mapping(map_tree, next_start, 7101 (u64)(-1) - next_start); 7102 read_unlock(&map_tree->lock); 7103 } 7104 out: 7105 return ret; 7106 } 7107 7108 static void readahead_tree_node_children(struct extent_buffer *node) 7109 { 7110 int i; 7111 const int nr_items = btrfs_header_nritems(node); 7112 7113 for (i = 0; i < nr_items; i++) 7114 btrfs_readahead_node_child(node, i); 7115 } 7116 7117 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7118 { 7119 struct btrfs_root *root = fs_info->chunk_root; 7120 struct btrfs_path *path; 7121 struct extent_buffer *leaf; 7122 struct btrfs_key key; 7123 struct btrfs_key found_key; 7124 int ret; 7125 int slot; 7126 u64 total_dev = 0; 7127 u64 last_ra_node = 0; 7128 7129 path = btrfs_alloc_path(); 7130 if (!path) 7131 return -ENOMEM; 7132 7133 /* 7134 * uuid_mutex is needed only if we are mounting a sprout FS 7135 * otherwise we don't need it. 7136 */ 7137 mutex_lock(&uuid_mutex); 7138 7139 /* 7140 * It is possible for mount and umount to race in such a way that 7141 * we execute this code path, but open_fs_devices failed to clear 7142 * total_rw_bytes. We certainly want it cleared before reading the 7143 * device items, so clear it here. 7144 */ 7145 fs_info->fs_devices->total_rw_bytes = 0; 7146 7147 /* 7148 * Read all device items, and then all the chunk items. All 7149 * device items are found before any chunk item (their object id 7150 * is smaller than the lowest possible object id for a chunk 7151 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7152 */ 7153 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7154 key.offset = 0; 7155 key.type = 0; 7156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7157 if (ret < 0) 7158 goto error; 7159 while (1) { 7160 struct extent_buffer *node; 7161 7162 leaf = path->nodes[0]; 7163 slot = path->slots[0]; 7164 if (slot >= btrfs_header_nritems(leaf)) { 7165 ret = btrfs_next_leaf(root, path); 7166 if (ret == 0) 7167 continue; 7168 if (ret < 0) 7169 goto error; 7170 break; 7171 } 7172 /* 7173 * The nodes on level 1 are not locked but we don't need to do 7174 * that during mount time as nothing else can access the tree 7175 */ 7176 node = path->nodes[1]; 7177 if (node) { 7178 if (last_ra_node != node->start) { 7179 readahead_tree_node_children(node); 7180 last_ra_node = node->start; 7181 } 7182 } 7183 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7184 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7185 struct btrfs_dev_item *dev_item; 7186 dev_item = btrfs_item_ptr(leaf, slot, 7187 struct btrfs_dev_item); 7188 ret = read_one_dev(leaf, dev_item); 7189 if (ret) 7190 goto error; 7191 total_dev++; 7192 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7193 struct btrfs_chunk *chunk; 7194 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7195 mutex_lock(&fs_info->chunk_mutex); 7196 ret = read_one_chunk(&found_key, leaf, chunk); 7197 mutex_unlock(&fs_info->chunk_mutex); 7198 if (ret) 7199 goto error; 7200 } 7201 path->slots[0]++; 7202 } 7203 7204 /* 7205 * After loading chunk tree, we've got all device information, 7206 * do another round of validation checks. 7207 */ 7208 if (total_dev != fs_info->fs_devices->total_devices) { 7209 btrfs_err(fs_info, 7210 "super_num_devices %llu mismatch with num_devices %llu found here", 7211 btrfs_super_num_devices(fs_info->super_copy), 7212 total_dev); 7213 ret = -EINVAL; 7214 goto error; 7215 } 7216 if (btrfs_super_total_bytes(fs_info->super_copy) < 7217 fs_info->fs_devices->total_rw_bytes) { 7218 btrfs_err(fs_info, 7219 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7220 btrfs_super_total_bytes(fs_info->super_copy), 7221 fs_info->fs_devices->total_rw_bytes); 7222 ret = -EINVAL; 7223 goto error; 7224 } 7225 ret = 0; 7226 error: 7227 mutex_unlock(&uuid_mutex); 7228 7229 btrfs_free_path(path); 7230 return ret; 7231 } 7232 7233 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7234 { 7235 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7236 struct btrfs_device *device; 7237 7238 fs_devices->fs_info = fs_info; 7239 7240 mutex_lock(&fs_devices->device_list_mutex); 7241 list_for_each_entry(device, &fs_devices->devices, dev_list) 7242 device->fs_info = fs_info; 7243 7244 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7245 list_for_each_entry(device, &seed_devs->devices, dev_list) 7246 device->fs_info = fs_info; 7247 7248 seed_devs->fs_info = fs_info; 7249 } 7250 mutex_unlock(&fs_devices->device_list_mutex); 7251 } 7252 7253 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7254 const struct btrfs_dev_stats_item *ptr, 7255 int index) 7256 { 7257 u64 val; 7258 7259 read_extent_buffer(eb, &val, 7260 offsetof(struct btrfs_dev_stats_item, values) + 7261 ((unsigned long)ptr) + (index * sizeof(u64)), 7262 sizeof(val)); 7263 return val; 7264 } 7265 7266 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7267 struct btrfs_dev_stats_item *ptr, 7268 int index, u64 val) 7269 { 7270 write_extent_buffer(eb, &val, 7271 offsetof(struct btrfs_dev_stats_item, values) + 7272 ((unsigned long)ptr) + (index * sizeof(u64)), 7273 sizeof(val)); 7274 } 7275 7276 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7277 struct btrfs_path *path) 7278 { 7279 struct btrfs_dev_stats_item *ptr; 7280 struct extent_buffer *eb; 7281 struct btrfs_key key; 7282 int item_size; 7283 int i, ret, slot; 7284 7285 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7286 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7287 key.offset = device->devid; 7288 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7289 if (ret) { 7290 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7291 btrfs_dev_stat_set(device, i, 0); 7292 device->dev_stats_valid = 1; 7293 btrfs_release_path(path); 7294 return ret < 0 ? ret : 0; 7295 } 7296 slot = path->slots[0]; 7297 eb = path->nodes[0]; 7298 item_size = btrfs_item_size_nr(eb, slot); 7299 7300 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7301 7302 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7303 if (item_size >= (1 + i) * sizeof(__le64)) 7304 btrfs_dev_stat_set(device, i, 7305 btrfs_dev_stats_value(eb, ptr, i)); 7306 else 7307 btrfs_dev_stat_set(device, i, 0); 7308 } 7309 7310 device->dev_stats_valid = 1; 7311 btrfs_dev_stat_print_on_load(device); 7312 btrfs_release_path(path); 7313 7314 return 0; 7315 } 7316 7317 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7318 { 7319 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7320 struct btrfs_device *device; 7321 struct btrfs_path *path = NULL; 7322 int ret = 0; 7323 7324 path = btrfs_alloc_path(); 7325 if (!path) 7326 return -ENOMEM; 7327 7328 mutex_lock(&fs_devices->device_list_mutex); 7329 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7330 ret = btrfs_device_init_dev_stats(device, path); 7331 if (ret) 7332 goto out; 7333 } 7334 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7335 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7336 ret = btrfs_device_init_dev_stats(device, path); 7337 if (ret) 7338 goto out; 7339 } 7340 } 7341 out: 7342 mutex_unlock(&fs_devices->device_list_mutex); 7343 7344 btrfs_free_path(path); 7345 return ret; 7346 } 7347 7348 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7349 struct btrfs_device *device) 7350 { 7351 struct btrfs_fs_info *fs_info = trans->fs_info; 7352 struct btrfs_root *dev_root = fs_info->dev_root; 7353 struct btrfs_path *path; 7354 struct btrfs_key key; 7355 struct extent_buffer *eb; 7356 struct btrfs_dev_stats_item *ptr; 7357 int ret; 7358 int i; 7359 7360 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7361 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7362 key.offset = device->devid; 7363 7364 path = btrfs_alloc_path(); 7365 if (!path) 7366 return -ENOMEM; 7367 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7368 if (ret < 0) { 7369 btrfs_warn_in_rcu(fs_info, 7370 "error %d while searching for dev_stats item for device %s", 7371 ret, rcu_str_deref(device->name)); 7372 goto out; 7373 } 7374 7375 if (ret == 0 && 7376 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7377 /* need to delete old one and insert a new one */ 7378 ret = btrfs_del_item(trans, dev_root, path); 7379 if (ret != 0) { 7380 btrfs_warn_in_rcu(fs_info, 7381 "delete too small dev_stats item for device %s failed %d", 7382 rcu_str_deref(device->name), ret); 7383 goto out; 7384 } 7385 ret = 1; 7386 } 7387 7388 if (ret == 1) { 7389 /* need to insert a new item */ 7390 btrfs_release_path(path); 7391 ret = btrfs_insert_empty_item(trans, dev_root, path, 7392 &key, sizeof(*ptr)); 7393 if (ret < 0) { 7394 btrfs_warn_in_rcu(fs_info, 7395 "insert dev_stats item for device %s failed %d", 7396 rcu_str_deref(device->name), ret); 7397 goto out; 7398 } 7399 } 7400 7401 eb = path->nodes[0]; 7402 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7403 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7404 btrfs_set_dev_stats_value(eb, ptr, i, 7405 btrfs_dev_stat_read(device, i)); 7406 btrfs_mark_buffer_dirty(eb); 7407 7408 out: 7409 btrfs_free_path(path); 7410 return ret; 7411 } 7412 7413 /* 7414 * called from commit_transaction. Writes all changed device stats to disk. 7415 */ 7416 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7417 { 7418 struct btrfs_fs_info *fs_info = trans->fs_info; 7419 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7420 struct btrfs_device *device; 7421 int stats_cnt; 7422 int ret = 0; 7423 7424 mutex_lock(&fs_devices->device_list_mutex); 7425 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7426 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7427 if (!device->dev_stats_valid || stats_cnt == 0) 7428 continue; 7429 7430 7431 /* 7432 * There is a LOAD-LOAD control dependency between the value of 7433 * dev_stats_ccnt and updating the on-disk values which requires 7434 * reading the in-memory counters. Such control dependencies 7435 * require explicit read memory barriers. 7436 * 7437 * This memory barriers pairs with smp_mb__before_atomic in 7438 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7439 * barrier implied by atomic_xchg in 7440 * btrfs_dev_stats_read_and_reset 7441 */ 7442 smp_rmb(); 7443 7444 ret = update_dev_stat_item(trans, device); 7445 if (!ret) 7446 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7447 } 7448 mutex_unlock(&fs_devices->device_list_mutex); 7449 7450 return ret; 7451 } 7452 7453 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7454 { 7455 btrfs_dev_stat_inc(dev, index); 7456 btrfs_dev_stat_print_on_error(dev); 7457 } 7458 7459 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7460 { 7461 if (!dev->dev_stats_valid) 7462 return; 7463 btrfs_err_rl_in_rcu(dev->fs_info, 7464 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7465 rcu_str_deref(dev->name), 7466 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7467 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7468 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7469 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7470 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7471 } 7472 7473 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7474 { 7475 int i; 7476 7477 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7478 if (btrfs_dev_stat_read(dev, i) != 0) 7479 break; 7480 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7481 return; /* all values == 0, suppress message */ 7482 7483 btrfs_info_in_rcu(dev->fs_info, 7484 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7485 rcu_str_deref(dev->name), 7486 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7487 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7488 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7489 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7490 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7491 } 7492 7493 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7494 struct btrfs_ioctl_get_dev_stats *stats) 7495 { 7496 struct btrfs_device *dev; 7497 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7498 int i; 7499 7500 mutex_lock(&fs_devices->device_list_mutex); 7501 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL); 7502 mutex_unlock(&fs_devices->device_list_mutex); 7503 7504 if (!dev) { 7505 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7506 return -ENODEV; 7507 } else if (!dev->dev_stats_valid) { 7508 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7509 return -ENODEV; 7510 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7511 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7512 if (stats->nr_items > i) 7513 stats->values[i] = 7514 btrfs_dev_stat_read_and_reset(dev, i); 7515 else 7516 btrfs_dev_stat_set(dev, i, 0); 7517 } 7518 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7519 current->comm, task_pid_nr(current)); 7520 } else { 7521 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7522 if (stats->nr_items > i) 7523 stats->values[i] = btrfs_dev_stat_read(dev, i); 7524 } 7525 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7526 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7527 return 0; 7528 } 7529 7530 /* 7531 * Update the size and bytes used for each device where it changed. This is 7532 * delayed since we would otherwise get errors while writing out the 7533 * superblocks. 7534 * 7535 * Must be invoked during transaction commit. 7536 */ 7537 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7538 { 7539 struct btrfs_device *curr, *next; 7540 7541 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7542 7543 if (list_empty(&trans->dev_update_list)) 7544 return; 7545 7546 /* 7547 * We don't need the device_list_mutex here. This list is owned by the 7548 * transaction and the transaction must complete before the device is 7549 * released. 7550 */ 7551 mutex_lock(&trans->fs_info->chunk_mutex); 7552 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7553 post_commit_list) { 7554 list_del_init(&curr->post_commit_list); 7555 curr->commit_total_bytes = curr->disk_total_bytes; 7556 curr->commit_bytes_used = curr->bytes_used; 7557 } 7558 mutex_unlock(&trans->fs_info->chunk_mutex); 7559 } 7560 7561 /* 7562 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7563 */ 7564 int btrfs_bg_type_to_factor(u64 flags) 7565 { 7566 const int index = btrfs_bg_flags_to_raid_index(flags); 7567 7568 return btrfs_raid_array[index].ncopies; 7569 } 7570 7571 7572 7573 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7574 u64 chunk_offset, u64 devid, 7575 u64 physical_offset, u64 physical_len) 7576 { 7577 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7578 struct extent_map *em; 7579 struct map_lookup *map; 7580 struct btrfs_device *dev; 7581 u64 stripe_len; 7582 bool found = false; 7583 int ret = 0; 7584 int i; 7585 7586 read_lock(&em_tree->lock); 7587 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7588 read_unlock(&em_tree->lock); 7589 7590 if (!em) { 7591 btrfs_err(fs_info, 7592 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7593 physical_offset, devid); 7594 ret = -EUCLEAN; 7595 goto out; 7596 } 7597 7598 map = em->map_lookup; 7599 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7600 if (physical_len != stripe_len) { 7601 btrfs_err(fs_info, 7602 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7603 physical_offset, devid, em->start, physical_len, 7604 stripe_len); 7605 ret = -EUCLEAN; 7606 goto out; 7607 } 7608 7609 for (i = 0; i < map->num_stripes; i++) { 7610 if (map->stripes[i].dev->devid == devid && 7611 map->stripes[i].physical == physical_offset) { 7612 found = true; 7613 if (map->verified_stripes >= map->num_stripes) { 7614 btrfs_err(fs_info, 7615 "too many dev extents for chunk %llu found", 7616 em->start); 7617 ret = -EUCLEAN; 7618 goto out; 7619 } 7620 map->verified_stripes++; 7621 break; 7622 } 7623 } 7624 if (!found) { 7625 btrfs_err(fs_info, 7626 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7627 physical_offset, devid); 7628 ret = -EUCLEAN; 7629 } 7630 7631 /* Make sure no dev extent is beyond device bondary */ 7632 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 7633 if (!dev) { 7634 btrfs_err(fs_info, "failed to find devid %llu", devid); 7635 ret = -EUCLEAN; 7636 goto out; 7637 } 7638 7639 if (physical_offset + physical_len > dev->disk_total_bytes) { 7640 btrfs_err(fs_info, 7641 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7642 devid, physical_offset, physical_len, 7643 dev->disk_total_bytes); 7644 ret = -EUCLEAN; 7645 goto out; 7646 } 7647 out: 7648 free_extent_map(em); 7649 return ret; 7650 } 7651 7652 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7653 { 7654 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7655 struct extent_map *em; 7656 struct rb_node *node; 7657 int ret = 0; 7658 7659 read_lock(&em_tree->lock); 7660 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7661 em = rb_entry(node, struct extent_map, rb_node); 7662 if (em->map_lookup->num_stripes != 7663 em->map_lookup->verified_stripes) { 7664 btrfs_err(fs_info, 7665 "chunk %llu has missing dev extent, have %d expect %d", 7666 em->start, em->map_lookup->verified_stripes, 7667 em->map_lookup->num_stripes); 7668 ret = -EUCLEAN; 7669 goto out; 7670 } 7671 } 7672 out: 7673 read_unlock(&em_tree->lock); 7674 return ret; 7675 } 7676 7677 /* 7678 * Ensure that all dev extents are mapped to correct chunk, otherwise 7679 * later chunk allocation/free would cause unexpected behavior. 7680 * 7681 * NOTE: This will iterate through the whole device tree, which should be of 7682 * the same size level as the chunk tree. This slightly increases mount time. 7683 */ 7684 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7685 { 7686 struct btrfs_path *path; 7687 struct btrfs_root *root = fs_info->dev_root; 7688 struct btrfs_key key; 7689 u64 prev_devid = 0; 7690 u64 prev_dev_ext_end = 0; 7691 int ret = 0; 7692 7693 /* 7694 * We don't have a dev_root because we mounted with ignorebadroots and 7695 * failed to load the root, so we want to skip the verification in this 7696 * case for sure. 7697 * 7698 * However if the dev root is fine, but the tree itself is corrupted 7699 * we'd still fail to mount. This verification is only to make sure 7700 * writes can happen safely, so instead just bypass this check 7701 * completely in the case of IGNOREBADROOTS. 7702 */ 7703 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7704 return 0; 7705 7706 key.objectid = 1; 7707 key.type = BTRFS_DEV_EXTENT_KEY; 7708 key.offset = 0; 7709 7710 path = btrfs_alloc_path(); 7711 if (!path) 7712 return -ENOMEM; 7713 7714 path->reada = READA_FORWARD; 7715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7716 if (ret < 0) 7717 goto out; 7718 7719 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7720 ret = btrfs_next_item(root, path); 7721 if (ret < 0) 7722 goto out; 7723 /* No dev extents at all? Not good */ 7724 if (ret > 0) { 7725 ret = -EUCLEAN; 7726 goto out; 7727 } 7728 } 7729 while (1) { 7730 struct extent_buffer *leaf = path->nodes[0]; 7731 struct btrfs_dev_extent *dext; 7732 int slot = path->slots[0]; 7733 u64 chunk_offset; 7734 u64 physical_offset; 7735 u64 physical_len; 7736 u64 devid; 7737 7738 btrfs_item_key_to_cpu(leaf, &key, slot); 7739 if (key.type != BTRFS_DEV_EXTENT_KEY) 7740 break; 7741 devid = key.objectid; 7742 physical_offset = key.offset; 7743 7744 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7745 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7746 physical_len = btrfs_dev_extent_length(leaf, dext); 7747 7748 /* Check if this dev extent overlaps with the previous one */ 7749 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7750 btrfs_err(fs_info, 7751 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7752 devid, physical_offset, prev_dev_ext_end); 7753 ret = -EUCLEAN; 7754 goto out; 7755 } 7756 7757 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7758 physical_offset, physical_len); 7759 if (ret < 0) 7760 goto out; 7761 prev_devid = devid; 7762 prev_dev_ext_end = physical_offset + physical_len; 7763 7764 ret = btrfs_next_item(root, path); 7765 if (ret < 0) 7766 goto out; 7767 if (ret > 0) { 7768 ret = 0; 7769 break; 7770 } 7771 } 7772 7773 /* Ensure all chunks have corresponding dev extents */ 7774 ret = verify_chunk_dev_extent_mapping(fs_info); 7775 out: 7776 btrfs_free_path(path); 7777 return ret; 7778 } 7779 7780 /* 7781 * Check whether the given block group or device is pinned by any inode being 7782 * used as a swapfile. 7783 */ 7784 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7785 { 7786 struct btrfs_swapfile_pin *sp; 7787 struct rb_node *node; 7788 7789 spin_lock(&fs_info->swapfile_pins_lock); 7790 node = fs_info->swapfile_pins.rb_node; 7791 while (node) { 7792 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7793 if (ptr < sp->ptr) 7794 node = node->rb_left; 7795 else if (ptr > sp->ptr) 7796 node = node->rb_right; 7797 else 7798 break; 7799 } 7800 spin_unlock(&fs_info->swapfile_pins_lock); 7801 return node != NULL; 7802 } 7803