xref: /linux/fs/btrfs/volumes.c (revision 3da3cc1b5f47115b16b5ffeeb4bf09ec331b0164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35 
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 	[BTRFS_RAID_RAID10] = {
38 		.sub_stripes	= 2,
39 		.dev_stripes	= 1,
40 		.devs_max	= 0,	/* 0 == as many as possible */
41 		.devs_min	= 4,
42 		.tolerated_failures = 1,
43 		.devs_increment	= 2,
44 		.ncopies	= 2,
45 		.nparity        = 0,
46 		.raid_name	= "raid10",
47 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
48 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 	},
50 	[BTRFS_RAID_RAID1] = {
51 		.sub_stripes	= 1,
52 		.dev_stripes	= 1,
53 		.devs_max	= 2,
54 		.devs_min	= 2,
55 		.tolerated_failures = 1,
56 		.devs_increment	= 2,
57 		.ncopies	= 2,
58 		.nparity        = 0,
59 		.raid_name	= "raid1",
60 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
61 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 	},
63 	[BTRFS_RAID_RAID1C3] = {
64 		.sub_stripes	= 1,
65 		.dev_stripes	= 1,
66 		.devs_max	= 3,
67 		.devs_min	= 3,
68 		.tolerated_failures = 2,
69 		.devs_increment	= 3,
70 		.ncopies	= 3,
71 		.nparity        = 0,
72 		.raid_name	= "raid1c3",
73 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
74 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 	},
76 	[BTRFS_RAID_RAID1C4] = {
77 		.sub_stripes	= 1,
78 		.dev_stripes	= 1,
79 		.devs_max	= 4,
80 		.devs_min	= 4,
81 		.tolerated_failures = 3,
82 		.devs_increment	= 4,
83 		.ncopies	= 4,
84 		.nparity        = 0,
85 		.raid_name	= "raid1c4",
86 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
87 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 	},
89 	[BTRFS_RAID_DUP] = {
90 		.sub_stripes	= 1,
91 		.dev_stripes	= 2,
92 		.devs_max	= 1,
93 		.devs_min	= 1,
94 		.tolerated_failures = 0,
95 		.devs_increment	= 1,
96 		.ncopies	= 2,
97 		.nparity        = 0,
98 		.raid_name	= "dup",
99 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
100 		.mindev_error	= 0,
101 	},
102 	[BTRFS_RAID_RAID0] = {
103 		.sub_stripes	= 1,
104 		.dev_stripes	= 1,
105 		.devs_max	= 0,
106 		.devs_min	= 2,
107 		.tolerated_failures = 0,
108 		.devs_increment	= 1,
109 		.ncopies	= 1,
110 		.nparity        = 0,
111 		.raid_name	= "raid0",
112 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
113 		.mindev_error	= 0,
114 	},
115 	[BTRFS_RAID_SINGLE] = {
116 		.sub_stripes	= 1,
117 		.dev_stripes	= 1,
118 		.devs_max	= 1,
119 		.devs_min	= 1,
120 		.tolerated_failures = 0,
121 		.devs_increment	= 1,
122 		.ncopies	= 1,
123 		.nparity        = 0,
124 		.raid_name	= "single",
125 		.bg_flag	= 0,
126 		.mindev_error	= 0,
127 	},
128 	[BTRFS_RAID_RAID5] = {
129 		.sub_stripes	= 1,
130 		.dev_stripes	= 1,
131 		.devs_max	= 0,
132 		.devs_min	= 2,
133 		.tolerated_failures = 1,
134 		.devs_increment	= 1,
135 		.ncopies	= 1,
136 		.nparity        = 1,
137 		.raid_name	= "raid5",
138 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
139 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 	},
141 	[BTRFS_RAID_RAID6] = {
142 		.sub_stripes	= 1,
143 		.dev_stripes	= 1,
144 		.devs_max	= 0,
145 		.devs_min	= 3,
146 		.tolerated_failures = 2,
147 		.devs_increment	= 1,
148 		.ncopies	= 1,
149 		.nparity        = 2,
150 		.raid_name	= "raid6",
151 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
152 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 	},
154 };
155 
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158 	const int index = btrfs_bg_flags_to_raid_index(flags);
159 
160 	if (index >= BTRFS_NR_RAID_TYPES)
161 		return NULL;
162 
163 	return btrfs_raid_array[index].raid_name;
164 }
165 
166 /*
167  * Fill @buf with textual description of @bg_flags, no more than @size_buf
168  * bytes including terminating null byte.
169  */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172 	int i;
173 	int ret;
174 	char *bp = buf;
175 	u64 flags = bg_flags;
176 	u32 size_bp = size_buf;
177 
178 	if (!flags) {
179 		strcpy(bp, "NONE");
180 		return;
181 	}
182 
183 #define DESCRIBE_FLAG(flag, desc)						\
184 	do {								\
185 		if (flags & (flag)) {					\
186 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
187 			if (ret < 0 || ret >= size_bp)			\
188 				goto out_overflow;			\
189 			size_bp -= ret;					\
190 			bp += ret;					\
191 			flags &= ~(flag);				\
192 		}							\
193 	} while (0)
194 
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198 
199 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 			      btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204 
205 	if (flags) {
206 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
207 		size_bp -= ret;
208 	}
209 
210 	if (size_bp < size_buf)
211 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212 
213 	/*
214 	 * The text is trimmed, it's up to the caller to provide sufficiently
215 	 * large buffer
216 	 */
217 out_overflow:;
218 }
219 
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 			     enum btrfs_map_op op,
226 			     u64 logical, u64 *length,
227 			     struct btrfs_bio **bbio_ret,
228 			     int mirror_num, int need_raid_map);
229 
230 /*
231  * Device locking
232  * ==============
233  *
234  * There are several mutexes that protect manipulation of devices and low-level
235  * structures like chunks but not block groups, extents or files
236  *
237  * uuid_mutex (global lock)
238  * ------------------------
239  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241  * device) or requested by the device= mount option
242  *
243  * the mutex can be very coarse and can cover long-running operations
244  *
245  * protects: updates to fs_devices counters like missing devices, rw devices,
246  * seeding, structure cloning, opening/closing devices at mount/umount time
247  *
248  * global::fs_devs - add, remove, updates to the global list
249  *
250  * does not protect: manipulation of the fs_devices::devices list in general
251  * but in mount context it could be used to exclude list modifications by eg.
252  * scan ioctl
253  *
254  * btrfs_device::name - renames (write side), read is RCU
255  *
256  * fs_devices::device_list_mutex (per-fs, with RCU)
257  * ------------------------------------------------
258  * protects updates to fs_devices::devices, ie. adding and deleting
259  *
260  * simple list traversal with read-only actions can be done with RCU protection
261  *
262  * may be used to exclude some operations from running concurrently without any
263  * modifications to the list (see write_all_supers)
264  *
265  * Is not required at mount and close times, because our device list is
266  * protected by the uuid_mutex at that point.
267  *
268  * balance_mutex
269  * -------------
270  * protects balance structures (status, state) and context accessed from
271  * several places (internally, ioctl)
272  *
273  * chunk_mutex
274  * -----------
275  * protects chunks, adding or removing during allocation, trim or when a new
276  * device is added/removed. Additionally it also protects post_commit_list of
277  * individual devices, since they can be added to the transaction's
278  * post_commit_list only with chunk_mutex held.
279  *
280  * cleaner_mutex
281  * -------------
282  * a big lock that is held by the cleaner thread and prevents running subvolume
283  * cleaning together with relocation or delayed iputs
284  *
285  *
286  * Lock nesting
287  * ============
288  *
289  * uuid_mutex
290  *   device_list_mutex
291  *     chunk_mutex
292  *   balance_mutex
293  *
294  *
295  * Exclusive operations
296  * ====================
297  *
298  * Maintains the exclusivity of the following operations that apply to the
299  * whole filesystem and cannot run in parallel.
300  *
301  * - Balance (*)
302  * - Device add
303  * - Device remove
304  * - Device replace (*)
305  * - Resize
306  *
307  * The device operations (as above) can be in one of the following states:
308  *
309  * - Running state
310  * - Paused state
311  * - Completed state
312  *
313  * Only device operations marked with (*) can go into the Paused state for the
314  * following reasons:
315  *
316  * - ioctl (only Balance can be Paused through ioctl)
317  * - filesystem remounted as read-only
318  * - filesystem unmounted and mounted as read-only
319  * - system power-cycle and filesystem mounted as read-only
320  * - filesystem or device errors leading to forced read-only
321  *
322  * The status of exclusive operation is set and cleared atomically.
323  * During the course of Paused state, fs_info::exclusive_operation remains set.
324  * A device operation in Paused or Running state can be canceled or resumed
325  * either by ioctl (Balance only) or when remounted as read-write.
326  * The exclusive status is cleared when the device operation is canceled or
327  * completed.
328  */
329 
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334 	return &fs_uuids;
335 }
336 
337 /*
338  * alloc_fs_devices - allocate struct btrfs_fs_devices
339  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
340  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
341  *
342  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343  * The returned struct is not linked onto any lists and can be destroyed with
344  * kfree() right away.
345  */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 						 const u8 *metadata_fsid)
348 {
349 	struct btrfs_fs_devices *fs_devs;
350 
351 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352 	if (!fs_devs)
353 		return ERR_PTR(-ENOMEM);
354 
355 	mutex_init(&fs_devs->device_list_mutex);
356 
357 	INIT_LIST_HEAD(&fs_devs->devices);
358 	INIT_LIST_HEAD(&fs_devs->alloc_list);
359 	INIT_LIST_HEAD(&fs_devs->fs_list);
360 	INIT_LIST_HEAD(&fs_devs->seed_list);
361 	if (fsid)
362 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363 
364 	if (metadata_fsid)
365 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366 	else if (fsid)
367 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368 
369 	return fs_devs;
370 }
371 
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374 	WARN_ON(!list_empty(&device->post_commit_list));
375 	rcu_string_free(device->name);
376 	extent_io_tree_release(&device->alloc_state);
377 	bio_put(device->flush_bio);
378 	btrfs_destroy_dev_zone_info(device);
379 	kfree(device);
380 }
381 
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384 	struct btrfs_device *device;
385 	WARN_ON(fs_devices->opened);
386 	while (!list_empty(&fs_devices->devices)) {
387 		device = list_entry(fs_devices->devices.next,
388 				    struct btrfs_device, dev_list);
389 		list_del(&device->dev_list);
390 		btrfs_free_device(device);
391 	}
392 	kfree(fs_devices);
393 }
394 
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397 	struct btrfs_fs_devices *fs_devices;
398 
399 	while (!list_empty(&fs_uuids)) {
400 		fs_devices = list_entry(fs_uuids.next,
401 					struct btrfs_fs_devices, fs_list);
402 		list_del(&fs_devices->fs_list);
403 		free_fs_devices(fs_devices);
404 	}
405 }
406 
407 /*
408  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409  * Returned struct is not linked onto any lists and must be destroyed using
410  * btrfs_free_device.
411  */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414 	struct btrfs_device *dev;
415 
416 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417 	if (!dev)
418 		return ERR_PTR(-ENOMEM);
419 
420 	/*
421 	 * Preallocate a bio that's always going to be used for flushing device
422 	 * barriers and matches the device lifespan
423 	 */
424 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
425 	if (!dev->flush_bio) {
426 		kfree(dev);
427 		return ERR_PTR(-ENOMEM);
428 	}
429 
430 	INIT_LIST_HEAD(&dev->dev_list);
431 	INIT_LIST_HEAD(&dev->dev_alloc_list);
432 	INIT_LIST_HEAD(&dev->post_commit_list);
433 
434 	atomic_set(&dev->reada_in_flight, 0);
435 	atomic_set(&dev->dev_stats_ccnt, 0);
436 	btrfs_device_data_ordered_init(dev);
437 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439 	extent_io_tree_init(fs_info, &dev->alloc_state,
440 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
441 
442 	return dev;
443 }
444 
445 static noinline struct btrfs_fs_devices *find_fsid(
446 		const u8 *fsid, const u8 *metadata_fsid)
447 {
448 	struct btrfs_fs_devices *fs_devices;
449 
450 	ASSERT(fsid);
451 
452 	/* Handle non-split brain cases */
453 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 		if (metadata_fsid) {
455 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 				      BTRFS_FSID_SIZE) == 0)
458 				return fs_devices;
459 		} else {
460 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 				return fs_devices;
462 		}
463 	}
464 	return NULL;
465 }
466 
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468 				struct btrfs_super_block *disk_super)
469 {
470 
471 	struct btrfs_fs_devices *fs_devices;
472 
473 	/*
474 	 * Handle scanned device having completed its fsid change but
475 	 * belonging to a fs_devices that was created by first scanning
476 	 * a device which didn't have its fsid/metadata_uuid changed
477 	 * at all and the CHANGING_FSID_V2 flag set.
478 	 */
479 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480 		if (fs_devices->fsid_change &&
481 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482 			   BTRFS_FSID_SIZE) == 0 &&
483 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484 			   BTRFS_FSID_SIZE) == 0) {
485 			return fs_devices;
486 		}
487 	}
488 	/*
489 	 * Handle scanned device having completed its fsid change but
490 	 * belonging to a fs_devices that was created by a device that
491 	 * has an outdated pair of fsid/metadata_uuid and
492 	 * CHANGING_FSID_V2 flag set.
493 	 */
494 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495 		if (fs_devices->fsid_change &&
496 		    memcmp(fs_devices->metadata_uuid,
497 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499 			   BTRFS_FSID_SIZE) == 0) {
500 			return fs_devices;
501 		}
502 	}
503 
504 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506 
507 
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510 		      int flush, struct block_device **bdev,
511 		      struct btrfs_super_block **disk_super)
512 {
513 	int ret;
514 
515 	*bdev = blkdev_get_by_path(device_path, flags, holder);
516 
517 	if (IS_ERR(*bdev)) {
518 		ret = PTR_ERR(*bdev);
519 		goto error;
520 	}
521 
522 	if (flush)
523 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525 	if (ret) {
526 		blkdev_put(*bdev, flags);
527 		goto error;
528 	}
529 	invalidate_bdev(*bdev);
530 	*disk_super = btrfs_read_dev_super(*bdev);
531 	if (IS_ERR(*disk_super)) {
532 		ret = PTR_ERR(*disk_super);
533 		blkdev_put(*bdev, flags);
534 		goto error;
535 	}
536 
537 	return 0;
538 
539 error:
540 	*bdev = NULL;
541 	return ret;
542 }
543 
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546 	int found;
547 
548 	rcu_read_lock();
549 	found = strcmp(rcu_str_deref(device->name), path);
550 	rcu_read_unlock();
551 
552 	return found == 0;
553 }
554 
555 /*
556  *  Search and remove all stale (devices which are not mounted) devices.
557  *  When both inputs are NULL, it will search and release all stale devices.
558  *  path:	Optional. When provided will it release all unmounted devices
559  *		matching this path only.
560  *  skip_dev:	Optional. Will skip this device when searching for the stale
561  *		devices.
562  *  Return:	0 for success or if @path is NULL.
563  * 		-EBUSY if @path is a mounted device.
564  * 		-ENOENT if @path does not match any device in the list.
565  */
566 static int btrfs_free_stale_devices(const char *path,
567 				     struct btrfs_device *skip_device)
568 {
569 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570 	struct btrfs_device *device, *tmp_device;
571 	int ret = 0;
572 
573 	if (path)
574 		ret = -ENOENT;
575 
576 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577 
578 		mutex_lock(&fs_devices->device_list_mutex);
579 		list_for_each_entry_safe(device, tmp_device,
580 					 &fs_devices->devices, dev_list) {
581 			if (skip_device && skip_device == device)
582 				continue;
583 			if (path && !device->name)
584 				continue;
585 			if (path && !device_path_matched(path, device))
586 				continue;
587 			if (fs_devices->opened) {
588 				/* for an already deleted device return 0 */
589 				if (path && ret != 0)
590 					ret = -EBUSY;
591 				break;
592 			}
593 
594 			/* delete the stale device */
595 			fs_devices->num_devices--;
596 			list_del(&device->dev_list);
597 			btrfs_free_device(device);
598 
599 			ret = 0;
600 		}
601 		mutex_unlock(&fs_devices->device_list_mutex);
602 
603 		if (fs_devices->num_devices == 0) {
604 			btrfs_sysfs_remove_fsid(fs_devices);
605 			list_del(&fs_devices->fs_list);
606 			free_fs_devices(fs_devices);
607 		}
608 	}
609 
610 	return ret;
611 }
612 
613 /*
614  * This is only used on mount, and we are protected from competing things
615  * messing with our fs_devices by the uuid_mutex, thus we do not need the
616  * fs_devices->device_list_mutex here.
617  */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619 			struct btrfs_device *device, fmode_t flags,
620 			void *holder)
621 {
622 	struct request_queue *q;
623 	struct block_device *bdev;
624 	struct btrfs_super_block *disk_super;
625 	u64 devid;
626 	int ret;
627 
628 	if (device->bdev)
629 		return -EINVAL;
630 	if (!device->name)
631 		return -EINVAL;
632 
633 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634 				    &bdev, &disk_super);
635 	if (ret)
636 		return ret;
637 
638 	devid = btrfs_stack_device_id(&disk_super->dev_item);
639 	if (devid != device->devid)
640 		goto error_free_page;
641 
642 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643 		goto error_free_page;
644 
645 	device->generation = btrfs_super_generation(disk_super);
646 
647 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 		if (btrfs_super_incompat_flags(disk_super) &
649 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650 			pr_err(
651 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
652 			goto error_free_page;
653 		}
654 
655 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 		fs_devices->seeding = true;
657 	} else {
658 		if (bdev_read_only(bdev))
659 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 		else
661 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 	}
663 
664 	q = bdev_get_queue(bdev);
665 	if (!blk_queue_nonrot(q))
666 		fs_devices->rotating = true;
667 
668 	device->bdev = bdev;
669 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 	device->mode = flags;
671 
672 	ret = btrfs_get_dev_zone_info(device);
673 	if (ret != 0)
674 		goto error_free_page;
675 
676 	fs_devices->open_devices++;
677 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
678 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
679 		fs_devices->rw_devices++;
680 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
681 	}
682 	btrfs_release_disk_super(disk_super);
683 
684 	return 0;
685 
686 error_free_page:
687 	btrfs_release_disk_super(disk_super);
688 	blkdev_put(bdev, flags);
689 
690 	return -EINVAL;
691 }
692 
693 /*
694  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
695  * being created with a disk that has already completed its fsid change. Such
696  * disk can belong to an fs which has its FSID changed or to one which doesn't.
697  * Handle both cases here.
698  */
699 static struct btrfs_fs_devices *find_fsid_inprogress(
700 					struct btrfs_super_block *disk_super)
701 {
702 	struct btrfs_fs_devices *fs_devices;
703 
704 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
705 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706 			   BTRFS_FSID_SIZE) != 0 &&
707 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
708 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
709 			return fs_devices;
710 		}
711 	}
712 
713 	return find_fsid(disk_super->fsid, NULL);
714 }
715 
716 
717 static struct btrfs_fs_devices *find_fsid_changed(
718 					struct btrfs_super_block *disk_super)
719 {
720 	struct btrfs_fs_devices *fs_devices;
721 
722 	/*
723 	 * Handles the case where scanned device is part of an fs that had
724 	 * multiple successful changes of FSID but curently device didn't
725 	 * observe it. Meaning our fsid will be different than theirs. We need
726 	 * to handle two subcases :
727 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
728 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
729 	 *  are equal).
730 	 */
731 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
732 		/* Changed UUIDs */
733 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
734 			   BTRFS_FSID_SIZE) != 0 &&
735 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
736 			   BTRFS_FSID_SIZE) == 0 &&
737 		    memcmp(fs_devices->fsid, disk_super->fsid,
738 			   BTRFS_FSID_SIZE) != 0)
739 			return fs_devices;
740 
741 		/* Unchanged UUIDs */
742 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
743 			   BTRFS_FSID_SIZE) == 0 &&
744 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
745 			   BTRFS_FSID_SIZE) == 0)
746 			return fs_devices;
747 	}
748 
749 	return NULL;
750 }
751 
752 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
753 				struct btrfs_super_block *disk_super)
754 {
755 	struct btrfs_fs_devices *fs_devices;
756 
757 	/*
758 	 * Handle the case where the scanned device is part of an fs whose last
759 	 * metadata UUID change reverted it to the original FSID. At the same
760 	 * time * fs_devices was first created by another constitutent device
761 	 * which didn't fully observe the operation. This results in an
762 	 * btrfs_fs_devices created with metadata/fsid different AND
763 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
764 	 * fs_devices equal to the FSID of the disk.
765 	 */
766 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
767 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
768 			   BTRFS_FSID_SIZE) != 0 &&
769 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
770 			   BTRFS_FSID_SIZE) == 0 &&
771 		    fs_devices->fsid_change)
772 			return fs_devices;
773 	}
774 
775 	return NULL;
776 }
777 /*
778  * Add new device to list of registered devices
779  *
780  * Returns:
781  * device pointer which was just added or updated when successful
782  * error pointer when failed
783  */
784 static noinline struct btrfs_device *device_list_add(const char *path,
785 			   struct btrfs_super_block *disk_super,
786 			   bool *new_device_added)
787 {
788 	struct btrfs_device *device;
789 	struct btrfs_fs_devices *fs_devices = NULL;
790 	struct rcu_string *name;
791 	u64 found_transid = btrfs_super_generation(disk_super);
792 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
793 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
794 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
795 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
796 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
797 
798 	if (fsid_change_in_progress) {
799 		if (!has_metadata_uuid)
800 			fs_devices = find_fsid_inprogress(disk_super);
801 		else
802 			fs_devices = find_fsid_changed(disk_super);
803 	} else if (has_metadata_uuid) {
804 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
805 	} else {
806 		fs_devices = find_fsid_reverted_metadata(disk_super);
807 		if (!fs_devices)
808 			fs_devices = find_fsid(disk_super->fsid, NULL);
809 	}
810 
811 
812 	if (!fs_devices) {
813 		if (has_metadata_uuid)
814 			fs_devices = alloc_fs_devices(disk_super->fsid,
815 						      disk_super->metadata_uuid);
816 		else
817 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
818 
819 		if (IS_ERR(fs_devices))
820 			return ERR_CAST(fs_devices);
821 
822 		fs_devices->fsid_change = fsid_change_in_progress;
823 
824 		mutex_lock(&fs_devices->device_list_mutex);
825 		list_add(&fs_devices->fs_list, &fs_uuids);
826 
827 		device = NULL;
828 	} else {
829 		mutex_lock(&fs_devices->device_list_mutex);
830 		device = btrfs_find_device(fs_devices, devid,
831 				disk_super->dev_item.uuid, NULL);
832 
833 		/*
834 		 * If this disk has been pulled into an fs devices created by
835 		 * a device which had the CHANGING_FSID_V2 flag then replace the
836 		 * metadata_uuid/fsid values of the fs_devices.
837 		 */
838 		if (fs_devices->fsid_change &&
839 		    found_transid > fs_devices->latest_generation) {
840 			memcpy(fs_devices->fsid, disk_super->fsid,
841 					BTRFS_FSID_SIZE);
842 
843 			if (has_metadata_uuid)
844 				memcpy(fs_devices->metadata_uuid,
845 				       disk_super->metadata_uuid,
846 				       BTRFS_FSID_SIZE);
847 			else
848 				memcpy(fs_devices->metadata_uuid,
849 				       disk_super->fsid, BTRFS_FSID_SIZE);
850 
851 			fs_devices->fsid_change = false;
852 		}
853 	}
854 
855 	if (!device) {
856 		if (fs_devices->opened) {
857 			mutex_unlock(&fs_devices->device_list_mutex);
858 			return ERR_PTR(-EBUSY);
859 		}
860 
861 		device = btrfs_alloc_device(NULL, &devid,
862 					    disk_super->dev_item.uuid);
863 		if (IS_ERR(device)) {
864 			mutex_unlock(&fs_devices->device_list_mutex);
865 			/* we can safely leave the fs_devices entry around */
866 			return device;
867 		}
868 
869 		name = rcu_string_strdup(path, GFP_NOFS);
870 		if (!name) {
871 			btrfs_free_device(device);
872 			mutex_unlock(&fs_devices->device_list_mutex);
873 			return ERR_PTR(-ENOMEM);
874 		}
875 		rcu_assign_pointer(device->name, name);
876 
877 		list_add_rcu(&device->dev_list, &fs_devices->devices);
878 		fs_devices->num_devices++;
879 
880 		device->fs_devices = fs_devices;
881 		*new_device_added = true;
882 
883 		if (disk_super->label[0])
884 			pr_info(
885 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
886 				disk_super->label, devid, found_transid, path,
887 				current->comm, task_pid_nr(current));
888 		else
889 			pr_info(
890 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
891 				disk_super->fsid, devid, found_transid, path,
892 				current->comm, task_pid_nr(current));
893 
894 	} else if (!device->name || strcmp(device->name->str, path)) {
895 		/*
896 		 * When FS is already mounted.
897 		 * 1. If you are here and if the device->name is NULL that
898 		 *    means this device was missing at time of FS mount.
899 		 * 2. If you are here and if the device->name is different
900 		 *    from 'path' that means either
901 		 *      a. The same device disappeared and reappeared with
902 		 *         different name. or
903 		 *      b. The missing-disk-which-was-replaced, has
904 		 *         reappeared now.
905 		 *
906 		 * We must allow 1 and 2a above. But 2b would be a spurious
907 		 * and unintentional.
908 		 *
909 		 * Further in case of 1 and 2a above, the disk at 'path'
910 		 * would have missed some transaction when it was away and
911 		 * in case of 2a the stale bdev has to be updated as well.
912 		 * 2b must not be allowed at all time.
913 		 */
914 
915 		/*
916 		 * For now, we do allow update to btrfs_fs_device through the
917 		 * btrfs dev scan cli after FS has been mounted.  We're still
918 		 * tracking a problem where systems fail mount by subvolume id
919 		 * when we reject replacement on a mounted FS.
920 		 */
921 		if (!fs_devices->opened && found_transid < device->generation) {
922 			/*
923 			 * That is if the FS is _not_ mounted and if you
924 			 * are here, that means there is more than one
925 			 * disk with same uuid and devid.We keep the one
926 			 * with larger generation number or the last-in if
927 			 * generation are equal.
928 			 */
929 			mutex_unlock(&fs_devices->device_list_mutex);
930 			return ERR_PTR(-EEXIST);
931 		}
932 
933 		/*
934 		 * We are going to replace the device path for a given devid,
935 		 * make sure it's the same device if the device is mounted
936 		 */
937 		if (device->bdev) {
938 			int error;
939 			dev_t path_dev;
940 
941 			error = lookup_bdev(path, &path_dev);
942 			if (error) {
943 				mutex_unlock(&fs_devices->device_list_mutex);
944 				return ERR_PTR(error);
945 			}
946 
947 			if (device->bdev->bd_dev != path_dev) {
948 				mutex_unlock(&fs_devices->device_list_mutex);
949 				/*
950 				 * device->fs_info may not be reliable here, so
951 				 * pass in a NULL instead. This avoids a
952 				 * possible use-after-free when the fs_info and
953 				 * fs_info->sb are already torn down.
954 				 */
955 				btrfs_warn_in_rcu(NULL,
956 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
957 						  path, devid, found_transid,
958 						  current->comm,
959 						  task_pid_nr(current));
960 				return ERR_PTR(-EEXIST);
961 			}
962 			btrfs_info_in_rcu(device->fs_info,
963 	"devid %llu device path %s changed to %s scanned by %s (%d)",
964 					  devid, rcu_str_deref(device->name),
965 					  path, current->comm,
966 					  task_pid_nr(current));
967 		}
968 
969 		name = rcu_string_strdup(path, GFP_NOFS);
970 		if (!name) {
971 			mutex_unlock(&fs_devices->device_list_mutex);
972 			return ERR_PTR(-ENOMEM);
973 		}
974 		rcu_string_free(device->name);
975 		rcu_assign_pointer(device->name, name);
976 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
977 			fs_devices->missing_devices--;
978 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
979 		}
980 	}
981 
982 	/*
983 	 * Unmount does not free the btrfs_device struct but would zero
984 	 * generation along with most of the other members. So just update
985 	 * it back. We need it to pick the disk with largest generation
986 	 * (as above).
987 	 */
988 	if (!fs_devices->opened) {
989 		device->generation = found_transid;
990 		fs_devices->latest_generation = max_t(u64, found_transid,
991 						fs_devices->latest_generation);
992 	}
993 
994 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
995 
996 	mutex_unlock(&fs_devices->device_list_mutex);
997 	return device;
998 }
999 
1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1001 {
1002 	struct btrfs_fs_devices *fs_devices;
1003 	struct btrfs_device *device;
1004 	struct btrfs_device *orig_dev;
1005 	int ret = 0;
1006 
1007 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1008 	if (IS_ERR(fs_devices))
1009 		return fs_devices;
1010 
1011 	mutex_lock(&orig->device_list_mutex);
1012 	fs_devices->total_devices = orig->total_devices;
1013 
1014 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1015 		struct rcu_string *name;
1016 
1017 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1018 					    orig_dev->uuid);
1019 		if (IS_ERR(device)) {
1020 			ret = PTR_ERR(device);
1021 			goto error;
1022 		}
1023 
1024 		/*
1025 		 * This is ok to do without rcu read locked because we hold the
1026 		 * uuid mutex so nothing we touch in here is going to disappear.
1027 		 */
1028 		if (orig_dev->name) {
1029 			name = rcu_string_strdup(orig_dev->name->str,
1030 					GFP_KERNEL);
1031 			if (!name) {
1032 				btrfs_free_device(device);
1033 				ret = -ENOMEM;
1034 				goto error;
1035 			}
1036 			rcu_assign_pointer(device->name, name);
1037 		}
1038 
1039 		list_add(&device->dev_list, &fs_devices->devices);
1040 		device->fs_devices = fs_devices;
1041 		fs_devices->num_devices++;
1042 	}
1043 	mutex_unlock(&orig->device_list_mutex);
1044 	return fs_devices;
1045 error:
1046 	mutex_unlock(&orig->device_list_mutex);
1047 	free_fs_devices(fs_devices);
1048 	return ERR_PTR(ret);
1049 }
1050 
1051 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1052 				      struct btrfs_device **latest_dev)
1053 {
1054 	struct btrfs_device *device, *next;
1055 
1056 	/* This is the initialized path, it is safe to release the devices. */
1057 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1058 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1059 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1060 				      &device->dev_state) &&
1061 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1062 				      &device->dev_state) &&
1063 			    (!*latest_dev ||
1064 			     device->generation > (*latest_dev)->generation)) {
1065 				*latest_dev = device;
1066 			}
1067 			continue;
1068 		}
1069 
1070 		/*
1071 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1072 		 * in btrfs_init_dev_replace() so just continue.
1073 		 */
1074 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1075 			continue;
1076 
1077 		if (device->bdev) {
1078 			blkdev_put(device->bdev, device->mode);
1079 			device->bdev = NULL;
1080 			fs_devices->open_devices--;
1081 		}
1082 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1083 			list_del_init(&device->dev_alloc_list);
1084 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1085 		}
1086 		list_del_init(&device->dev_list);
1087 		fs_devices->num_devices--;
1088 		btrfs_free_device(device);
1089 	}
1090 
1091 }
1092 
1093 /*
1094  * After we have read the system tree and know devids belonging to this
1095  * filesystem, remove the device which does not belong there.
1096  */
1097 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1098 {
1099 	struct btrfs_device *latest_dev = NULL;
1100 	struct btrfs_fs_devices *seed_dev;
1101 
1102 	mutex_lock(&uuid_mutex);
1103 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1104 
1105 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1106 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1107 
1108 	fs_devices->latest_bdev = latest_dev->bdev;
1109 
1110 	mutex_unlock(&uuid_mutex);
1111 }
1112 
1113 static void btrfs_close_bdev(struct btrfs_device *device)
1114 {
1115 	if (!device->bdev)
1116 		return;
1117 
1118 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1119 		sync_blockdev(device->bdev);
1120 		invalidate_bdev(device->bdev);
1121 	}
1122 
1123 	blkdev_put(device->bdev, device->mode);
1124 }
1125 
1126 static void btrfs_close_one_device(struct btrfs_device *device)
1127 {
1128 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1129 
1130 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1131 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1132 		list_del_init(&device->dev_alloc_list);
1133 		fs_devices->rw_devices--;
1134 	}
1135 
1136 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1137 		fs_devices->missing_devices--;
1138 
1139 	btrfs_close_bdev(device);
1140 	if (device->bdev) {
1141 		fs_devices->open_devices--;
1142 		device->bdev = NULL;
1143 	}
1144 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 	btrfs_destroy_dev_zone_info(device);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/* Verify the device is back in a pristine state  */
1152 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 	ASSERT(list_empty(&device->dev_alloc_list));
1155 	ASSERT(list_empty(&device->post_commit_list));
1156 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 }
1158 
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161 	struct btrfs_device *device, *tmp;
1162 
1163 	lockdep_assert_held(&uuid_mutex);
1164 
1165 	if (--fs_devices->opened > 0)
1166 		return;
1167 
1168 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 		btrfs_close_one_device(device);
1170 
1171 	WARN_ON(fs_devices->open_devices);
1172 	WARN_ON(fs_devices->rw_devices);
1173 	fs_devices->opened = 0;
1174 	fs_devices->seeding = false;
1175 	fs_devices->fs_info = NULL;
1176 }
1177 
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180 	LIST_HEAD(list);
1181 	struct btrfs_fs_devices *tmp;
1182 
1183 	mutex_lock(&uuid_mutex);
1184 	close_fs_devices(fs_devices);
1185 	if (!fs_devices->opened)
1186 		list_splice_init(&fs_devices->seed_list, &list);
1187 
1188 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189 		close_fs_devices(fs_devices);
1190 		list_del(&fs_devices->seed_list);
1191 		free_fs_devices(fs_devices);
1192 	}
1193 	mutex_unlock(&uuid_mutex);
1194 }
1195 
1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1197 				fmode_t flags, void *holder)
1198 {
1199 	struct btrfs_device *device;
1200 	struct btrfs_device *latest_dev = NULL;
1201 	struct btrfs_device *tmp_device;
1202 
1203 	flags |= FMODE_EXCL;
1204 
1205 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206 				 dev_list) {
1207 		int ret;
1208 
1209 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1210 		if (ret == 0 &&
1211 		    (!latest_dev || device->generation > latest_dev->generation)) {
1212 			latest_dev = device;
1213 		} else if (ret == -ENODATA) {
1214 			fs_devices->num_devices--;
1215 			list_del(&device->dev_list);
1216 			btrfs_free_device(device);
1217 		}
1218 	}
1219 	if (fs_devices->open_devices == 0)
1220 		return -EINVAL;
1221 
1222 	fs_devices->opened = 1;
1223 	fs_devices->latest_bdev = latest_dev->bdev;
1224 	fs_devices->total_rw_bytes = 0;
1225 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1227 
1228 	return 0;
1229 }
1230 
1231 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1232 {
1233 	struct btrfs_device *dev1, *dev2;
1234 
1235 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1236 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1237 
1238 	if (dev1->devid < dev2->devid)
1239 		return -1;
1240 	else if (dev1->devid > dev2->devid)
1241 		return 1;
1242 	return 0;
1243 }
1244 
1245 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1246 		       fmode_t flags, void *holder)
1247 {
1248 	int ret;
1249 
1250 	lockdep_assert_held(&uuid_mutex);
1251 	/*
1252 	 * The device_list_mutex cannot be taken here in case opening the
1253 	 * underlying device takes further locks like bd_mutex.
1254 	 *
1255 	 * We also don't need the lock here as this is called during mount and
1256 	 * exclusion is provided by uuid_mutex
1257 	 */
1258 
1259 	if (fs_devices->opened) {
1260 		fs_devices->opened++;
1261 		ret = 0;
1262 	} else {
1263 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1264 		ret = open_fs_devices(fs_devices, flags, holder);
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 void btrfs_release_disk_super(struct btrfs_super_block *super)
1271 {
1272 	struct page *page = virt_to_page(super);
1273 
1274 	put_page(page);
1275 }
1276 
1277 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1278 						       u64 bytenr, u64 bytenr_orig)
1279 {
1280 	struct btrfs_super_block *disk_super;
1281 	struct page *page;
1282 	void *p;
1283 	pgoff_t index;
1284 
1285 	/* make sure our super fits in the device */
1286 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1287 		return ERR_PTR(-EINVAL);
1288 
1289 	/* make sure our super fits in the page */
1290 	if (sizeof(*disk_super) > PAGE_SIZE)
1291 		return ERR_PTR(-EINVAL);
1292 
1293 	/* make sure our super doesn't straddle pages on disk */
1294 	index = bytenr >> PAGE_SHIFT;
1295 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1296 		return ERR_PTR(-EINVAL);
1297 
1298 	/* pull in the page with our super */
1299 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1300 
1301 	if (IS_ERR(page))
1302 		return ERR_CAST(page);
1303 
1304 	p = page_address(page);
1305 
1306 	/* align our pointer to the offset of the super block */
1307 	disk_super = p + offset_in_page(bytenr);
1308 
1309 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1310 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1311 		btrfs_release_disk_super(p);
1312 		return ERR_PTR(-EINVAL);
1313 	}
1314 
1315 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1316 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1317 
1318 	return disk_super;
1319 }
1320 
1321 int btrfs_forget_devices(const char *path)
1322 {
1323 	int ret;
1324 
1325 	mutex_lock(&uuid_mutex);
1326 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1327 	mutex_unlock(&uuid_mutex);
1328 
1329 	return ret;
1330 }
1331 
1332 /*
1333  * Look for a btrfs signature on a device. This may be called out of the mount path
1334  * and we are not allowed to call set_blocksize during the scan. The superblock
1335  * is read via pagecache
1336  */
1337 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1338 					   void *holder)
1339 {
1340 	struct btrfs_super_block *disk_super;
1341 	bool new_device_added = false;
1342 	struct btrfs_device *device = NULL;
1343 	struct block_device *bdev;
1344 	u64 bytenr, bytenr_orig;
1345 	int ret;
1346 
1347 	lockdep_assert_held(&uuid_mutex);
1348 
1349 	/*
1350 	 * we would like to check all the supers, but that would make
1351 	 * a btrfs mount succeed after a mkfs from a different FS.
1352 	 * So, we need to add a special mount option to scan for
1353 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1354 	 */
1355 	flags |= FMODE_EXCL;
1356 
1357 	bdev = blkdev_get_by_path(path, flags, holder);
1358 	if (IS_ERR(bdev))
1359 		return ERR_CAST(bdev);
1360 
1361 	bytenr_orig = btrfs_sb_offset(0);
1362 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1363 	if (ret)
1364 		return ERR_PTR(ret);
1365 
1366 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1367 	if (IS_ERR(disk_super)) {
1368 		device = ERR_CAST(disk_super);
1369 		goto error_bdev_put;
1370 	}
1371 
1372 	device = device_list_add(path, disk_super, &new_device_added);
1373 	if (!IS_ERR(device)) {
1374 		if (new_device_added)
1375 			btrfs_free_stale_devices(path, device);
1376 	}
1377 
1378 	btrfs_release_disk_super(disk_super);
1379 
1380 error_bdev_put:
1381 	blkdev_put(bdev, flags);
1382 
1383 	return device;
1384 }
1385 
1386 /*
1387  * Try to find a chunk that intersects [start, start + len] range and when one
1388  * such is found, record the end of it in *start
1389  */
1390 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1391 				    u64 len)
1392 {
1393 	u64 physical_start, physical_end;
1394 
1395 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1396 
1397 	if (!find_first_extent_bit(&device->alloc_state, *start,
1398 				   &physical_start, &physical_end,
1399 				   CHUNK_ALLOCATED, NULL)) {
1400 
1401 		if (in_range(physical_start, *start, len) ||
1402 		    in_range(*start, physical_start,
1403 			     physical_end - physical_start)) {
1404 			*start = physical_end + 1;
1405 			return true;
1406 		}
1407 	}
1408 	return false;
1409 }
1410 
1411 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1412 {
1413 	switch (device->fs_devices->chunk_alloc_policy) {
1414 	case BTRFS_CHUNK_ALLOC_REGULAR:
1415 		/*
1416 		 * We don't want to overwrite the superblock on the drive nor
1417 		 * any area used by the boot loader (grub for example), so we
1418 		 * make sure to start at an offset of at least 1MB.
1419 		 */
1420 		return max_t(u64, start, SZ_1M);
1421 	default:
1422 		BUG();
1423 	}
1424 }
1425 
1426 /**
1427  * dev_extent_hole_check - check if specified hole is suitable for allocation
1428  * @device:	the device which we have the hole
1429  * @hole_start: starting position of the hole
1430  * @hole_size:	the size of the hole
1431  * @num_bytes:	the size of the free space that we need
1432  *
1433  * This function may modify @hole_start and @hole_end to reflect the suitable
1434  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1435  */
1436 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1437 				  u64 *hole_size, u64 num_bytes)
1438 {
1439 	bool changed = false;
1440 	u64 hole_end = *hole_start + *hole_size;
1441 
1442 	/*
1443 	 * Check before we set max_hole_start, otherwise we could end up
1444 	 * sending back this offset anyway.
1445 	 */
1446 	if (contains_pending_extent(device, hole_start, *hole_size)) {
1447 		if (hole_end >= *hole_start)
1448 			*hole_size = hole_end - *hole_start;
1449 		else
1450 			*hole_size = 0;
1451 		changed = true;
1452 	}
1453 
1454 	switch (device->fs_devices->chunk_alloc_policy) {
1455 	case BTRFS_CHUNK_ALLOC_REGULAR:
1456 		/* No extra check */
1457 		break;
1458 	default:
1459 		BUG();
1460 	}
1461 
1462 	return changed;
1463 }
1464 
1465 /*
1466  * find_free_dev_extent_start - find free space in the specified device
1467  * @device:	  the device which we search the free space in
1468  * @num_bytes:	  the size of the free space that we need
1469  * @search_start: the position from which to begin the search
1470  * @start:	  store the start of the free space.
1471  * @len:	  the size of the free space. that we find, or the size
1472  *		  of the max free space if we don't find suitable free space
1473  *
1474  * this uses a pretty simple search, the expectation is that it is
1475  * called very infrequently and that a given device has a small number
1476  * of extents
1477  *
1478  * @start is used to store the start of the free space if we find. But if we
1479  * don't find suitable free space, it will be used to store the start position
1480  * of the max free space.
1481  *
1482  * @len is used to store the size of the free space that we find.
1483  * But if we don't find suitable free space, it is used to store the size of
1484  * the max free space.
1485  *
1486  * NOTE: This function will search *commit* root of device tree, and does extra
1487  * check to ensure dev extents are not double allocated.
1488  * This makes the function safe to allocate dev extents but may not report
1489  * correct usable device space, as device extent freed in current transaction
1490  * is not reported as avaiable.
1491  */
1492 static int find_free_dev_extent_start(struct btrfs_device *device,
1493 				u64 num_bytes, u64 search_start, u64 *start,
1494 				u64 *len)
1495 {
1496 	struct btrfs_fs_info *fs_info = device->fs_info;
1497 	struct btrfs_root *root = fs_info->dev_root;
1498 	struct btrfs_key key;
1499 	struct btrfs_dev_extent *dev_extent;
1500 	struct btrfs_path *path;
1501 	u64 hole_size;
1502 	u64 max_hole_start;
1503 	u64 max_hole_size;
1504 	u64 extent_end;
1505 	u64 search_end = device->total_bytes;
1506 	int ret;
1507 	int slot;
1508 	struct extent_buffer *l;
1509 
1510 	search_start = dev_extent_search_start(device, search_start);
1511 
1512 	path = btrfs_alloc_path();
1513 	if (!path)
1514 		return -ENOMEM;
1515 
1516 	max_hole_start = search_start;
1517 	max_hole_size = 0;
1518 
1519 again:
1520 	if (search_start >= search_end ||
1521 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1522 		ret = -ENOSPC;
1523 		goto out;
1524 	}
1525 
1526 	path->reada = READA_FORWARD;
1527 	path->search_commit_root = 1;
1528 	path->skip_locking = 1;
1529 
1530 	key.objectid = device->devid;
1531 	key.offset = search_start;
1532 	key.type = BTRFS_DEV_EXTENT_KEY;
1533 
1534 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1535 	if (ret < 0)
1536 		goto out;
1537 	if (ret > 0) {
1538 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1539 		if (ret < 0)
1540 			goto out;
1541 	}
1542 
1543 	while (1) {
1544 		l = path->nodes[0];
1545 		slot = path->slots[0];
1546 		if (slot >= btrfs_header_nritems(l)) {
1547 			ret = btrfs_next_leaf(root, path);
1548 			if (ret == 0)
1549 				continue;
1550 			if (ret < 0)
1551 				goto out;
1552 
1553 			break;
1554 		}
1555 		btrfs_item_key_to_cpu(l, &key, slot);
1556 
1557 		if (key.objectid < device->devid)
1558 			goto next;
1559 
1560 		if (key.objectid > device->devid)
1561 			break;
1562 
1563 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1564 			goto next;
1565 
1566 		if (key.offset > search_start) {
1567 			hole_size = key.offset - search_start;
1568 			dev_extent_hole_check(device, &search_start, &hole_size,
1569 					      num_bytes);
1570 
1571 			if (hole_size > max_hole_size) {
1572 				max_hole_start = search_start;
1573 				max_hole_size = hole_size;
1574 			}
1575 
1576 			/*
1577 			 * If this free space is greater than which we need,
1578 			 * it must be the max free space that we have found
1579 			 * until now, so max_hole_start must point to the start
1580 			 * of this free space and the length of this free space
1581 			 * is stored in max_hole_size. Thus, we return
1582 			 * max_hole_start and max_hole_size and go back to the
1583 			 * caller.
1584 			 */
1585 			if (hole_size >= num_bytes) {
1586 				ret = 0;
1587 				goto out;
1588 			}
1589 		}
1590 
1591 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1592 		extent_end = key.offset + btrfs_dev_extent_length(l,
1593 								  dev_extent);
1594 		if (extent_end > search_start)
1595 			search_start = extent_end;
1596 next:
1597 		path->slots[0]++;
1598 		cond_resched();
1599 	}
1600 
1601 	/*
1602 	 * At this point, search_start should be the end of
1603 	 * allocated dev extents, and when shrinking the device,
1604 	 * search_end may be smaller than search_start.
1605 	 */
1606 	if (search_end > search_start) {
1607 		hole_size = search_end - search_start;
1608 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1609 					  num_bytes)) {
1610 			btrfs_release_path(path);
1611 			goto again;
1612 		}
1613 
1614 		if (hole_size > max_hole_size) {
1615 			max_hole_start = search_start;
1616 			max_hole_size = hole_size;
1617 		}
1618 	}
1619 
1620 	/* See above. */
1621 	if (max_hole_size < num_bytes)
1622 		ret = -ENOSPC;
1623 	else
1624 		ret = 0;
1625 
1626 out:
1627 	btrfs_free_path(path);
1628 	*start = max_hole_start;
1629 	if (len)
1630 		*len = max_hole_size;
1631 	return ret;
1632 }
1633 
1634 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1635 			 u64 *start, u64 *len)
1636 {
1637 	/* FIXME use last free of some kind */
1638 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1639 }
1640 
1641 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1642 			  struct btrfs_device *device,
1643 			  u64 start, u64 *dev_extent_len)
1644 {
1645 	struct btrfs_fs_info *fs_info = device->fs_info;
1646 	struct btrfs_root *root = fs_info->dev_root;
1647 	int ret;
1648 	struct btrfs_path *path;
1649 	struct btrfs_key key;
1650 	struct btrfs_key found_key;
1651 	struct extent_buffer *leaf = NULL;
1652 	struct btrfs_dev_extent *extent = NULL;
1653 
1654 	path = btrfs_alloc_path();
1655 	if (!path)
1656 		return -ENOMEM;
1657 
1658 	key.objectid = device->devid;
1659 	key.offset = start;
1660 	key.type = BTRFS_DEV_EXTENT_KEY;
1661 again:
1662 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1663 	if (ret > 0) {
1664 		ret = btrfs_previous_item(root, path, key.objectid,
1665 					  BTRFS_DEV_EXTENT_KEY);
1666 		if (ret)
1667 			goto out;
1668 		leaf = path->nodes[0];
1669 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1670 		extent = btrfs_item_ptr(leaf, path->slots[0],
1671 					struct btrfs_dev_extent);
1672 		BUG_ON(found_key.offset > start || found_key.offset +
1673 		       btrfs_dev_extent_length(leaf, extent) < start);
1674 		key = found_key;
1675 		btrfs_release_path(path);
1676 		goto again;
1677 	} else if (ret == 0) {
1678 		leaf = path->nodes[0];
1679 		extent = btrfs_item_ptr(leaf, path->slots[0],
1680 					struct btrfs_dev_extent);
1681 	} else {
1682 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1683 		goto out;
1684 	}
1685 
1686 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1687 
1688 	ret = btrfs_del_item(trans, root, path);
1689 	if (ret) {
1690 		btrfs_handle_fs_error(fs_info, ret,
1691 				      "Failed to remove dev extent item");
1692 	} else {
1693 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1694 	}
1695 out:
1696 	btrfs_free_path(path);
1697 	return ret;
1698 }
1699 
1700 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1701 				  struct btrfs_device *device,
1702 				  u64 chunk_offset, u64 start, u64 num_bytes)
1703 {
1704 	int ret;
1705 	struct btrfs_path *path;
1706 	struct btrfs_fs_info *fs_info = device->fs_info;
1707 	struct btrfs_root *root = fs_info->dev_root;
1708 	struct btrfs_dev_extent *extent;
1709 	struct extent_buffer *leaf;
1710 	struct btrfs_key key;
1711 
1712 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1713 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1714 	path = btrfs_alloc_path();
1715 	if (!path)
1716 		return -ENOMEM;
1717 
1718 	key.objectid = device->devid;
1719 	key.offset = start;
1720 	key.type = BTRFS_DEV_EXTENT_KEY;
1721 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1722 				      sizeof(*extent));
1723 	if (ret)
1724 		goto out;
1725 
1726 	leaf = path->nodes[0];
1727 	extent = btrfs_item_ptr(leaf, path->slots[0],
1728 				struct btrfs_dev_extent);
1729 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1730 					BTRFS_CHUNK_TREE_OBJECTID);
1731 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1732 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1733 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1734 
1735 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1736 	btrfs_mark_buffer_dirty(leaf);
1737 out:
1738 	btrfs_free_path(path);
1739 	return ret;
1740 }
1741 
1742 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1743 {
1744 	struct extent_map_tree *em_tree;
1745 	struct extent_map *em;
1746 	struct rb_node *n;
1747 	u64 ret = 0;
1748 
1749 	em_tree = &fs_info->mapping_tree;
1750 	read_lock(&em_tree->lock);
1751 	n = rb_last(&em_tree->map.rb_root);
1752 	if (n) {
1753 		em = rb_entry(n, struct extent_map, rb_node);
1754 		ret = em->start + em->len;
1755 	}
1756 	read_unlock(&em_tree->lock);
1757 
1758 	return ret;
1759 }
1760 
1761 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1762 				    u64 *devid_ret)
1763 {
1764 	int ret;
1765 	struct btrfs_key key;
1766 	struct btrfs_key found_key;
1767 	struct btrfs_path *path;
1768 
1769 	path = btrfs_alloc_path();
1770 	if (!path)
1771 		return -ENOMEM;
1772 
1773 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774 	key.type = BTRFS_DEV_ITEM_KEY;
1775 	key.offset = (u64)-1;
1776 
1777 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1778 	if (ret < 0)
1779 		goto error;
1780 
1781 	if (ret == 0) {
1782 		/* Corruption */
1783 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1784 		ret = -EUCLEAN;
1785 		goto error;
1786 	}
1787 
1788 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1789 				  BTRFS_DEV_ITEMS_OBJECTID,
1790 				  BTRFS_DEV_ITEM_KEY);
1791 	if (ret) {
1792 		*devid_ret = 1;
1793 	} else {
1794 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1795 				      path->slots[0]);
1796 		*devid_ret = found_key.offset + 1;
1797 	}
1798 	ret = 0;
1799 error:
1800 	btrfs_free_path(path);
1801 	return ret;
1802 }
1803 
1804 /*
1805  * the device information is stored in the chunk root
1806  * the btrfs_device struct should be fully filled in
1807  */
1808 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1809 			    struct btrfs_device *device)
1810 {
1811 	int ret;
1812 	struct btrfs_path *path;
1813 	struct btrfs_dev_item *dev_item;
1814 	struct extent_buffer *leaf;
1815 	struct btrfs_key key;
1816 	unsigned long ptr;
1817 
1818 	path = btrfs_alloc_path();
1819 	if (!path)
1820 		return -ENOMEM;
1821 
1822 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1823 	key.type = BTRFS_DEV_ITEM_KEY;
1824 	key.offset = device->devid;
1825 
1826 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1827 				      &key, sizeof(*dev_item));
1828 	if (ret)
1829 		goto out;
1830 
1831 	leaf = path->nodes[0];
1832 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1833 
1834 	btrfs_set_device_id(leaf, dev_item, device->devid);
1835 	btrfs_set_device_generation(leaf, dev_item, 0);
1836 	btrfs_set_device_type(leaf, dev_item, device->type);
1837 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1838 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1839 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1840 	btrfs_set_device_total_bytes(leaf, dev_item,
1841 				     btrfs_device_get_disk_total_bytes(device));
1842 	btrfs_set_device_bytes_used(leaf, dev_item,
1843 				    btrfs_device_get_bytes_used(device));
1844 	btrfs_set_device_group(leaf, dev_item, 0);
1845 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1846 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1847 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1848 
1849 	ptr = btrfs_device_uuid(dev_item);
1850 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1851 	ptr = btrfs_device_fsid(dev_item);
1852 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1853 			    ptr, BTRFS_FSID_SIZE);
1854 	btrfs_mark_buffer_dirty(leaf);
1855 
1856 	ret = 0;
1857 out:
1858 	btrfs_free_path(path);
1859 	return ret;
1860 }
1861 
1862 /*
1863  * Function to update ctime/mtime for a given device path.
1864  * Mainly used for ctime/mtime based probe like libblkid.
1865  */
1866 static void update_dev_time(const char *path_name)
1867 {
1868 	struct file *filp;
1869 
1870 	filp = filp_open(path_name, O_RDWR, 0);
1871 	if (IS_ERR(filp))
1872 		return;
1873 	file_update_time(filp);
1874 	filp_close(filp, NULL);
1875 }
1876 
1877 static int btrfs_rm_dev_item(struct btrfs_device *device)
1878 {
1879 	struct btrfs_root *root = device->fs_info->chunk_root;
1880 	int ret;
1881 	struct btrfs_path *path;
1882 	struct btrfs_key key;
1883 	struct btrfs_trans_handle *trans;
1884 
1885 	path = btrfs_alloc_path();
1886 	if (!path)
1887 		return -ENOMEM;
1888 
1889 	trans = btrfs_start_transaction(root, 0);
1890 	if (IS_ERR(trans)) {
1891 		btrfs_free_path(path);
1892 		return PTR_ERR(trans);
1893 	}
1894 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895 	key.type = BTRFS_DEV_ITEM_KEY;
1896 	key.offset = device->devid;
1897 
1898 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1899 	if (ret) {
1900 		if (ret > 0)
1901 			ret = -ENOENT;
1902 		btrfs_abort_transaction(trans, ret);
1903 		btrfs_end_transaction(trans);
1904 		goto out;
1905 	}
1906 
1907 	ret = btrfs_del_item(trans, root, path);
1908 	if (ret) {
1909 		btrfs_abort_transaction(trans, ret);
1910 		btrfs_end_transaction(trans);
1911 	}
1912 
1913 out:
1914 	btrfs_free_path(path);
1915 	if (!ret)
1916 		ret = btrfs_commit_transaction(trans);
1917 	return ret;
1918 }
1919 
1920 /*
1921  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1922  * filesystem. It's up to the caller to adjust that number regarding eg. device
1923  * replace.
1924  */
1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1926 		u64 num_devices)
1927 {
1928 	u64 all_avail;
1929 	unsigned seq;
1930 	int i;
1931 
1932 	do {
1933 		seq = read_seqbegin(&fs_info->profiles_lock);
1934 
1935 		all_avail = fs_info->avail_data_alloc_bits |
1936 			    fs_info->avail_system_alloc_bits |
1937 			    fs_info->avail_metadata_alloc_bits;
1938 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1939 
1940 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1941 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1942 			continue;
1943 
1944 		if (num_devices < btrfs_raid_array[i].devs_min) {
1945 			int ret = btrfs_raid_array[i].mindev_error;
1946 
1947 			if (ret)
1948 				return ret;
1949 		}
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 static struct btrfs_device * btrfs_find_next_active_device(
1956 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1957 {
1958 	struct btrfs_device *next_device;
1959 
1960 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1961 		if (next_device != device &&
1962 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1963 		    && next_device->bdev)
1964 			return next_device;
1965 	}
1966 
1967 	return NULL;
1968 }
1969 
1970 /*
1971  * Helper function to check if the given device is part of s_bdev / latest_bdev
1972  * and replace it with the provided or the next active device, in the context
1973  * where this function called, there should be always be another device (or
1974  * this_dev) which is active.
1975  */
1976 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1977 					    struct btrfs_device *next_device)
1978 {
1979 	struct btrfs_fs_info *fs_info = device->fs_info;
1980 
1981 	if (!next_device)
1982 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1983 							    device);
1984 	ASSERT(next_device);
1985 
1986 	if (fs_info->sb->s_bdev &&
1987 			(fs_info->sb->s_bdev == device->bdev))
1988 		fs_info->sb->s_bdev = next_device->bdev;
1989 
1990 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1991 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1992 }
1993 
1994 /*
1995  * Return btrfs_fs_devices::num_devices excluding the device that's being
1996  * currently replaced.
1997  */
1998 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1999 {
2000 	u64 num_devices = fs_info->fs_devices->num_devices;
2001 
2002 	down_read(&fs_info->dev_replace.rwsem);
2003 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2004 		ASSERT(num_devices > 1);
2005 		num_devices--;
2006 	}
2007 	up_read(&fs_info->dev_replace.rwsem);
2008 
2009 	return num_devices;
2010 }
2011 
2012 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2013 			       struct block_device *bdev,
2014 			       const char *device_path)
2015 {
2016 	struct btrfs_super_block *disk_super;
2017 	int copy_num;
2018 
2019 	if (!bdev)
2020 		return;
2021 
2022 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2023 		struct page *page;
2024 		int ret;
2025 
2026 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2027 		if (IS_ERR(disk_super))
2028 			continue;
2029 
2030 		if (bdev_is_zoned(bdev)) {
2031 			btrfs_reset_sb_log_zones(bdev, copy_num);
2032 			continue;
2033 		}
2034 
2035 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2036 
2037 		page = virt_to_page(disk_super);
2038 		set_page_dirty(page);
2039 		lock_page(page);
2040 		/* write_on_page() unlocks the page */
2041 		ret = write_one_page(page);
2042 		if (ret)
2043 			btrfs_warn(fs_info,
2044 				"error clearing superblock number %d (%d)",
2045 				copy_num, ret);
2046 		btrfs_release_disk_super(disk_super);
2047 
2048 	}
2049 
2050 	/* Notify udev that device has changed */
2051 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2052 
2053 	/* Update ctime/mtime for device path for libblkid */
2054 	update_dev_time(device_path);
2055 }
2056 
2057 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2058 		    u64 devid)
2059 {
2060 	struct btrfs_device *device;
2061 	struct btrfs_fs_devices *cur_devices;
2062 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2063 	u64 num_devices;
2064 	int ret = 0;
2065 
2066 	mutex_lock(&uuid_mutex);
2067 
2068 	num_devices = btrfs_num_devices(fs_info);
2069 
2070 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2071 	if (ret)
2072 		goto out;
2073 
2074 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2075 
2076 	if (IS_ERR(device)) {
2077 		if (PTR_ERR(device) == -ENOENT &&
2078 		    strcmp(device_path, "missing") == 0)
2079 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2080 		else
2081 			ret = PTR_ERR(device);
2082 		goto out;
2083 	}
2084 
2085 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2086 		btrfs_warn_in_rcu(fs_info,
2087 		  "cannot remove device %s (devid %llu) due to active swapfile",
2088 				  rcu_str_deref(device->name), device->devid);
2089 		ret = -ETXTBSY;
2090 		goto out;
2091 	}
2092 
2093 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2094 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2095 		goto out;
2096 	}
2097 
2098 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2099 	    fs_info->fs_devices->rw_devices == 1) {
2100 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2101 		goto out;
2102 	}
2103 
2104 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2105 		mutex_lock(&fs_info->chunk_mutex);
2106 		list_del_init(&device->dev_alloc_list);
2107 		device->fs_devices->rw_devices--;
2108 		mutex_unlock(&fs_info->chunk_mutex);
2109 	}
2110 
2111 	mutex_unlock(&uuid_mutex);
2112 	ret = btrfs_shrink_device(device, 0);
2113 	if (!ret)
2114 		btrfs_reada_remove_dev(device);
2115 	mutex_lock(&uuid_mutex);
2116 	if (ret)
2117 		goto error_undo;
2118 
2119 	/*
2120 	 * TODO: the superblock still includes this device in its num_devices
2121 	 * counter although write_all_supers() is not locked out. This
2122 	 * could give a filesystem state which requires a degraded mount.
2123 	 */
2124 	ret = btrfs_rm_dev_item(device);
2125 	if (ret)
2126 		goto error_undo;
2127 
2128 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2129 	btrfs_scrub_cancel_dev(device);
2130 
2131 	/*
2132 	 * the device list mutex makes sure that we don't change
2133 	 * the device list while someone else is writing out all
2134 	 * the device supers. Whoever is writing all supers, should
2135 	 * lock the device list mutex before getting the number of
2136 	 * devices in the super block (super_copy). Conversely,
2137 	 * whoever updates the number of devices in the super block
2138 	 * (super_copy) should hold the device list mutex.
2139 	 */
2140 
2141 	/*
2142 	 * In normal cases the cur_devices == fs_devices. But in case
2143 	 * of deleting a seed device, the cur_devices should point to
2144 	 * its own fs_devices listed under the fs_devices->seed.
2145 	 */
2146 	cur_devices = device->fs_devices;
2147 	mutex_lock(&fs_devices->device_list_mutex);
2148 	list_del_rcu(&device->dev_list);
2149 
2150 	cur_devices->num_devices--;
2151 	cur_devices->total_devices--;
2152 	/* Update total_devices of the parent fs_devices if it's seed */
2153 	if (cur_devices != fs_devices)
2154 		fs_devices->total_devices--;
2155 
2156 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2157 		cur_devices->missing_devices--;
2158 
2159 	btrfs_assign_next_active_device(device, NULL);
2160 
2161 	if (device->bdev) {
2162 		cur_devices->open_devices--;
2163 		/* remove sysfs entry */
2164 		btrfs_sysfs_remove_device(device);
2165 	}
2166 
2167 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2168 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2169 	mutex_unlock(&fs_devices->device_list_mutex);
2170 
2171 	/*
2172 	 * at this point, the device is zero sized and detached from
2173 	 * the devices list.  All that's left is to zero out the old
2174 	 * supers and free the device.
2175 	 */
2176 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2177 		btrfs_scratch_superblocks(fs_info, device->bdev,
2178 					  device->name->str);
2179 
2180 	btrfs_close_bdev(device);
2181 	synchronize_rcu();
2182 	btrfs_free_device(device);
2183 
2184 	if (cur_devices->open_devices == 0) {
2185 		list_del_init(&cur_devices->seed_list);
2186 		close_fs_devices(cur_devices);
2187 		free_fs_devices(cur_devices);
2188 	}
2189 
2190 out:
2191 	mutex_unlock(&uuid_mutex);
2192 	return ret;
2193 
2194 error_undo:
2195 	btrfs_reada_undo_remove_dev(device);
2196 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2197 		mutex_lock(&fs_info->chunk_mutex);
2198 		list_add(&device->dev_alloc_list,
2199 			 &fs_devices->alloc_list);
2200 		device->fs_devices->rw_devices++;
2201 		mutex_unlock(&fs_info->chunk_mutex);
2202 	}
2203 	goto out;
2204 }
2205 
2206 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2207 {
2208 	struct btrfs_fs_devices *fs_devices;
2209 
2210 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2211 
2212 	/*
2213 	 * in case of fs with no seed, srcdev->fs_devices will point
2214 	 * to fs_devices of fs_info. However when the dev being replaced is
2215 	 * a seed dev it will point to the seed's local fs_devices. In short
2216 	 * srcdev will have its correct fs_devices in both the cases.
2217 	 */
2218 	fs_devices = srcdev->fs_devices;
2219 
2220 	list_del_rcu(&srcdev->dev_list);
2221 	list_del(&srcdev->dev_alloc_list);
2222 	fs_devices->num_devices--;
2223 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2224 		fs_devices->missing_devices--;
2225 
2226 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2227 		fs_devices->rw_devices--;
2228 
2229 	if (srcdev->bdev)
2230 		fs_devices->open_devices--;
2231 }
2232 
2233 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2234 {
2235 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2236 
2237 	mutex_lock(&uuid_mutex);
2238 
2239 	btrfs_close_bdev(srcdev);
2240 	synchronize_rcu();
2241 	btrfs_free_device(srcdev);
2242 
2243 	/* if this is no devs we rather delete the fs_devices */
2244 	if (!fs_devices->num_devices) {
2245 		/*
2246 		 * On a mounted FS, num_devices can't be zero unless it's a
2247 		 * seed. In case of a seed device being replaced, the replace
2248 		 * target added to the sprout FS, so there will be no more
2249 		 * device left under the seed FS.
2250 		 */
2251 		ASSERT(fs_devices->seeding);
2252 
2253 		list_del_init(&fs_devices->seed_list);
2254 		close_fs_devices(fs_devices);
2255 		free_fs_devices(fs_devices);
2256 	}
2257 	mutex_unlock(&uuid_mutex);
2258 }
2259 
2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2261 {
2262 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2263 
2264 	mutex_lock(&fs_devices->device_list_mutex);
2265 
2266 	btrfs_sysfs_remove_device(tgtdev);
2267 
2268 	if (tgtdev->bdev)
2269 		fs_devices->open_devices--;
2270 
2271 	fs_devices->num_devices--;
2272 
2273 	btrfs_assign_next_active_device(tgtdev, NULL);
2274 
2275 	list_del_rcu(&tgtdev->dev_list);
2276 
2277 	mutex_unlock(&fs_devices->device_list_mutex);
2278 
2279 	/*
2280 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2281 	 * may lead to a call to btrfs_show_devname() which will try
2282 	 * to hold device_list_mutex. And here this device
2283 	 * is already out of device list, so we don't have to hold
2284 	 * the device_list_mutex lock.
2285 	 */
2286 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2287 				  tgtdev->name->str);
2288 
2289 	btrfs_close_bdev(tgtdev);
2290 	synchronize_rcu();
2291 	btrfs_free_device(tgtdev);
2292 }
2293 
2294 static struct btrfs_device *btrfs_find_device_by_path(
2295 		struct btrfs_fs_info *fs_info, const char *device_path)
2296 {
2297 	int ret = 0;
2298 	struct btrfs_super_block *disk_super;
2299 	u64 devid;
2300 	u8 *dev_uuid;
2301 	struct block_device *bdev;
2302 	struct btrfs_device *device;
2303 
2304 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2305 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2306 	if (ret)
2307 		return ERR_PTR(ret);
2308 
2309 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2310 	dev_uuid = disk_super->dev_item.uuid;
2311 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2312 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2313 					   disk_super->metadata_uuid);
2314 	else
2315 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316 					   disk_super->fsid);
2317 
2318 	btrfs_release_disk_super(disk_super);
2319 	if (!device)
2320 		device = ERR_PTR(-ENOENT);
2321 	blkdev_put(bdev, FMODE_READ);
2322 	return device;
2323 }
2324 
2325 /*
2326  * Lookup a device given by device id, or the path if the id is 0.
2327  */
2328 struct btrfs_device *btrfs_find_device_by_devspec(
2329 		struct btrfs_fs_info *fs_info, u64 devid,
2330 		const char *device_path)
2331 {
2332 	struct btrfs_device *device;
2333 
2334 	if (devid) {
2335 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2336 					   NULL);
2337 		if (!device)
2338 			return ERR_PTR(-ENOENT);
2339 		return device;
2340 	}
2341 
2342 	if (!device_path || !device_path[0])
2343 		return ERR_PTR(-EINVAL);
2344 
2345 	if (strcmp(device_path, "missing") == 0) {
2346 		/* Find first missing device */
2347 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2348 				    dev_list) {
2349 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2350 				     &device->dev_state) && !device->bdev)
2351 				return device;
2352 		}
2353 		return ERR_PTR(-ENOENT);
2354 	}
2355 
2356 	return btrfs_find_device_by_path(fs_info, device_path);
2357 }
2358 
2359 /*
2360  * does all the dirty work required for changing file system's UUID.
2361  */
2362 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2363 {
2364 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2365 	struct btrfs_fs_devices *old_devices;
2366 	struct btrfs_fs_devices *seed_devices;
2367 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2368 	struct btrfs_device *device;
2369 	u64 super_flags;
2370 
2371 	lockdep_assert_held(&uuid_mutex);
2372 	if (!fs_devices->seeding)
2373 		return -EINVAL;
2374 
2375 	/*
2376 	 * Private copy of the seed devices, anchored at
2377 	 * fs_info->fs_devices->seed_list
2378 	 */
2379 	seed_devices = alloc_fs_devices(NULL, NULL);
2380 	if (IS_ERR(seed_devices))
2381 		return PTR_ERR(seed_devices);
2382 
2383 	/*
2384 	 * It's necessary to retain a copy of the original seed fs_devices in
2385 	 * fs_uuids so that filesystems which have been seeded can successfully
2386 	 * reference the seed device from open_seed_devices. This also supports
2387 	 * multiple fs seed.
2388 	 */
2389 	old_devices = clone_fs_devices(fs_devices);
2390 	if (IS_ERR(old_devices)) {
2391 		kfree(seed_devices);
2392 		return PTR_ERR(old_devices);
2393 	}
2394 
2395 	list_add(&old_devices->fs_list, &fs_uuids);
2396 
2397 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2398 	seed_devices->opened = 1;
2399 	INIT_LIST_HEAD(&seed_devices->devices);
2400 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2401 	mutex_init(&seed_devices->device_list_mutex);
2402 
2403 	mutex_lock(&fs_devices->device_list_mutex);
2404 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2405 			      synchronize_rcu);
2406 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2407 		device->fs_devices = seed_devices;
2408 
2409 	fs_devices->seeding = false;
2410 	fs_devices->num_devices = 0;
2411 	fs_devices->open_devices = 0;
2412 	fs_devices->missing_devices = 0;
2413 	fs_devices->rotating = false;
2414 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2415 
2416 	generate_random_uuid(fs_devices->fsid);
2417 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2418 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2419 	mutex_unlock(&fs_devices->device_list_mutex);
2420 
2421 	super_flags = btrfs_super_flags(disk_super) &
2422 		      ~BTRFS_SUPER_FLAG_SEEDING;
2423 	btrfs_set_super_flags(disk_super, super_flags);
2424 
2425 	return 0;
2426 }
2427 
2428 /*
2429  * Store the expected generation for seed devices in device items.
2430  */
2431 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2432 {
2433 	struct btrfs_fs_info *fs_info = trans->fs_info;
2434 	struct btrfs_root *root = fs_info->chunk_root;
2435 	struct btrfs_path *path;
2436 	struct extent_buffer *leaf;
2437 	struct btrfs_dev_item *dev_item;
2438 	struct btrfs_device *device;
2439 	struct btrfs_key key;
2440 	u8 fs_uuid[BTRFS_FSID_SIZE];
2441 	u8 dev_uuid[BTRFS_UUID_SIZE];
2442 	u64 devid;
2443 	int ret;
2444 
2445 	path = btrfs_alloc_path();
2446 	if (!path)
2447 		return -ENOMEM;
2448 
2449 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2450 	key.offset = 0;
2451 	key.type = BTRFS_DEV_ITEM_KEY;
2452 
2453 	while (1) {
2454 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2455 		if (ret < 0)
2456 			goto error;
2457 
2458 		leaf = path->nodes[0];
2459 next_slot:
2460 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2461 			ret = btrfs_next_leaf(root, path);
2462 			if (ret > 0)
2463 				break;
2464 			if (ret < 0)
2465 				goto error;
2466 			leaf = path->nodes[0];
2467 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2468 			btrfs_release_path(path);
2469 			continue;
2470 		}
2471 
2472 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2473 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2474 		    key.type != BTRFS_DEV_ITEM_KEY)
2475 			break;
2476 
2477 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2478 					  struct btrfs_dev_item);
2479 		devid = btrfs_device_id(leaf, dev_item);
2480 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2481 				   BTRFS_UUID_SIZE);
2482 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2483 				   BTRFS_FSID_SIZE);
2484 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2485 					   fs_uuid);
2486 		BUG_ON(!device); /* Logic error */
2487 
2488 		if (device->fs_devices->seeding) {
2489 			btrfs_set_device_generation(leaf, dev_item,
2490 						    device->generation);
2491 			btrfs_mark_buffer_dirty(leaf);
2492 		}
2493 
2494 		path->slots[0]++;
2495 		goto next_slot;
2496 	}
2497 	ret = 0;
2498 error:
2499 	btrfs_free_path(path);
2500 	return ret;
2501 }
2502 
2503 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2504 {
2505 	struct btrfs_root *root = fs_info->dev_root;
2506 	struct request_queue *q;
2507 	struct btrfs_trans_handle *trans;
2508 	struct btrfs_device *device;
2509 	struct block_device *bdev;
2510 	struct super_block *sb = fs_info->sb;
2511 	struct rcu_string *name;
2512 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2513 	u64 orig_super_total_bytes;
2514 	u64 orig_super_num_devices;
2515 	int seeding_dev = 0;
2516 	int ret = 0;
2517 	bool locked = false;
2518 
2519 	if (sb_rdonly(sb) && !fs_devices->seeding)
2520 		return -EROFS;
2521 
2522 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2523 				  fs_info->bdev_holder);
2524 	if (IS_ERR(bdev))
2525 		return PTR_ERR(bdev);
2526 
2527 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2528 		ret = -EINVAL;
2529 		goto error;
2530 	}
2531 
2532 	if (fs_devices->seeding) {
2533 		seeding_dev = 1;
2534 		down_write(&sb->s_umount);
2535 		mutex_lock(&uuid_mutex);
2536 		locked = true;
2537 	}
2538 
2539 	sync_blockdev(bdev);
2540 
2541 	rcu_read_lock();
2542 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2543 		if (device->bdev == bdev) {
2544 			ret = -EEXIST;
2545 			rcu_read_unlock();
2546 			goto error;
2547 		}
2548 	}
2549 	rcu_read_unlock();
2550 
2551 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2552 	if (IS_ERR(device)) {
2553 		/* we can safely leave the fs_devices entry around */
2554 		ret = PTR_ERR(device);
2555 		goto error;
2556 	}
2557 
2558 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2559 	if (!name) {
2560 		ret = -ENOMEM;
2561 		goto error_free_device;
2562 	}
2563 	rcu_assign_pointer(device->name, name);
2564 
2565 	device->fs_info = fs_info;
2566 	device->bdev = bdev;
2567 
2568 	ret = btrfs_get_dev_zone_info(device);
2569 	if (ret)
2570 		goto error_free_device;
2571 
2572 	trans = btrfs_start_transaction(root, 0);
2573 	if (IS_ERR(trans)) {
2574 		ret = PTR_ERR(trans);
2575 		goto error_free_zone;
2576 	}
2577 
2578 	q = bdev_get_queue(bdev);
2579 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2580 	device->generation = trans->transid;
2581 	device->io_width = fs_info->sectorsize;
2582 	device->io_align = fs_info->sectorsize;
2583 	device->sector_size = fs_info->sectorsize;
2584 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2585 					 fs_info->sectorsize);
2586 	device->disk_total_bytes = device->total_bytes;
2587 	device->commit_total_bytes = device->total_bytes;
2588 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2589 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2590 	device->mode = FMODE_EXCL;
2591 	device->dev_stats_valid = 1;
2592 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2593 
2594 	if (seeding_dev) {
2595 		btrfs_clear_sb_rdonly(sb);
2596 		ret = btrfs_prepare_sprout(fs_info);
2597 		if (ret) {
2598 			btrfs_abort_transaction(trans, ret);
2599 			goto error_trans;
2600 		}
2601 	}
2602 
2603 	device->fs_devices = fs_devices;
2604 
2605 	mutex_lock(&fs_devices->device_list_mutex);
2606 	mutex_lock(&fs_info->chunk_mutex);
2607 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2608 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2609 	fs_devices->num_devices++;
2610 	fs_devices->open_devices++;
2611 	fs_devices->rw_devices++;
2612 	fs_devices->total_devices++;
2613 	fs_devices->total_rw_bytes += device->total_bytes;
2614 
2615 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2616 
2617 	if (!blk_queue_nonrot(q))
2618 		fs_devices->rotating = true;
2619 
2620 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2621 	btrfs_set_super_total_bytes(fs_info->super_copy,
2622 		round_down(orig_super_total_bytes + device->total_bytes,
2623 			   fs_info->sectorsize));
2624 
2625 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2626 	btrfs_set_super_num_devices(fs_info->super_copy,
2627 				    orig_super_num_devices + 1);
2628 
2629 	/*
2630 	 * we've got more storage, clear any full flags on the space
2631 	 * infos
2632 	 */
2633 	btrfs_clear_space_info_full(fs_info);
2634 
2635 	mutex_unlock(&fs_info->chunk_mutex);
2636 
2637 	/* Add sysfs device entry */
2638 	btrfs_sysfs_add_device(device);
2639 
2640 	mutex_unlock(&fs_devices->device_list_mutex);
2641 
2642 	if (seeding_dev) {
2643 		mutex_lock(&fs_info->chunk_mutex);
2644 		ret = init_first_rw_device(trans);
2645 		mutex_unlock(&fs_info->chunk_mutex);
2646 		if (ret) {
2647 			btrfs_abort_transaction(trans, ret);
2648 			goto error_sysfs;
2649 		}
2650 	}
2651 
2652 	ret = btrfs_add_dev_item(trans, device);
2653 	if (ret) {
2654 		btrfs_abort_transaction(trans, ret);
2655 		goto error_sysfs;
2656 	}
2657 
2658 	if (seeding_dev) {
2659 		ret = btrfs_finish_sprout(trans);
2660 		if (ret) {
2661 			btrfs_abort_transaction(trans, ret);
2662 			goto error_sysfs;
2663 		}
2664 
2665 		/*
2666 		 * fs_devices now represents the newly sprouted filesystem and
2667 		 * its fsid has been changed by btrfs_prepare_sprout
2668 		 */
2669 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2670 	}
2671 
2672 	ret = btrfs_commit_transaction(trans);
2673 
2674 	if (seeding_dev) {
2675 		mutex_unlock(&uuid_mutex);
2676 		up_write(&sb->s_umount);
2677 		locked = false;
2678 
2679 		if (ret) /* transaction commit */
2680 			return ret;
2681 
2682 		ret = btrfs_relocate_sys_chunks(fs_info);
2683 		if (ret < 0)
2684 			btrfs_handle_fs_error(fs_info, ret,
2685 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2686 		trans = btrfs_attach_transaction(root);
2687 		if (IS_ERR(trans)) {
2688 			if (PTR_ERR(trans) == -ENOENT)
2689 				return 0;
2690 			ret = PTR_ERR(trans);
2691 			trans = NULL;
2692 			goto error_sysfs;
2693 		}
2694 		ret = btrfs_commit_transaction(trans);
2695 	}
2696 
2697 	/*
2698 	 * Now that we have written a new super block to this device, check all
2699 	 * other fs_devices list if device_path alienates any other scanned
2700 	 * device.
2701 	 * We can ignore the return value as it typically returns -EINVAL and
2702 	 * only succeeds if the device was an alien.
2703 	 */
2704 	btrfs_forget_devices(device_path);
2705 
2706 	/* Update ctime/mtime for blkid or udev */
2707 	update_dev_time(device_path);
2708 
2709 	return ret;
2710 
2711 error_sysfs:
2712 	btrfs_sysfs_remove_device(device);
2713 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2714 	mutex_lock(&fs_info->chunk_mutex);
2715 	list_del_rcu(&device->dev_list);
2716 	list_del(&device->dev_alloc_list);
2717 	fs_info->fs_devices->num_devices--;
2718 	fs_info->fs_devices->open_devices--;
2719 	fs_info->fs_devices->rw_devices--;
2720 	fs_info->fs_devices->total_devices--;
2721 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2722 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2723 	btrfs_set_super_total_bytes(fs_info->super_copy,
2724 				    orig_super_total_bytes);
2725 	btrfs_set_super_num_devices(fs_info->super_copy,
2726 				    orig_super_num_devices);
2727 	mutex_unlock(&fs_info->chunk_mutex);
2728 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2729 error_trans:
2730 	if (seeding_dev)
2731 		btrfs_set_sb_rdonly(sb);
2732 	if (trans)
2733 		btrfs_end_transaction(trans);
2734 error_free_zone:
2735 	btrfs_destroy_dev_zone_info(device);
2736 error_free_device:
2737 	btrfs_free_device(device);
2738 error:
2739 	blkdev_put(bdev, FMODE_EXCL);
2740 	if (locked) {
2741 		mutex_unlock(&uuid_mutex);
2742 		up_write(&sb->s_umount);
2743 	}
2744 	return ret;
2745 }
2746 
2747 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2748 					struct btrfs_device *device)
2749 {
2750 	int ret;
2751 	struct btrfs_path *path;
2752 	struct btrfs_root *root = device->fs_info->chunk_root;
2753 	struct btrfs_dev_item *dev_item;
2754 	struct extent_buffer *leaf;
2755 	struct btrfs_key key;
2756 
2757 	path = btrfs_alloc_path();
2758 	if (!path)
2759 		return -ENOMEM;
2760 
2761 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2762 	key.type = BTRFS_DEV_ITEM_KEY;
2763 	key.offset = device->devid;
2764 
2765 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2766 	if (ret < 0)
2767 		goto out;
2768 
2769 	if (ret > 0) {
2770 		ret = -ENOENT;
2771 		goto out;
2772 	}
2773 
2774 	leaf = path->nodes[0];
2775 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2776 
2777 	btrfs_set_device_id(leaf, dev_item, device->devid);
2778 	btrfs_set_device_type(leaf, dev_item, device->type);
2779 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2780 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2781 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2782 	btrfs_set_device_total_bytes(leaf, dev_item,
2783 				     btrfs_device_get_disk_total_bytes(device));
2784 	btrfs_set_device_bytes_used(leaf, dev_item,
2785 				    btrfs_device_get_bytes_used(device));
2786 	btrfs_mark_buffer_dirty(leaf);
2787 
2788 out:
2789 	btrfs_free_path(path);
2790 	return ret;
2791 }
2792 
2793 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2794 		      struct btrfs_device *device, u64 new_size)
2795 {
2796 	struct btrfs_fs_info *fs_info = device->fs_info;
2797 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2798 	u64 old_total;
2799 	u64 diff;
2800 
2801 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2802 		return -EACCES;
2803 
2804 	new_size = round_down(new_size, fs_info->sectorsize);
2805 
2806 	mutex_lock(&fs_info->chunk_mutex);
2807 	old_total = btrfs_super_total_bytes(super_copy);
2808 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2809 
2810 	if (new_size <= device->total_bytes ||
2811 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2812 		mutex_unlock(&fs_info->chunk_mutex);
2813 		return -EINVAL;
2814 	}
2815 
2816 	btrfs_set_super_total_bytes(super_copy,
2817 			round_down(old_total + diff, fs_info->sectorsize));
2818 	device->fs_devices->total_rw_bytes += diff;
2819 
2820 	btrfs_device_set_total_bytes(device, new_size);
2821 	btrfs_device_set_disk_total_bytes(device, new_size);
2822 	btrfs_clear_space_info_full(device->fs_info);
2823 	if (list_empty(&device->post_commit_list))
2824 		list_add_tail(&device->post_commit_list,
2825 			      &trans->transaction->dev_update_list);
2826 	mutex_unlock(&fs_info->chunk_mutex);
2827 
2828 	return btrfs_update_device(trans, device);
2829 }
2830 
2831 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2832 {
2833 	struct btrfs_fs_info *fs_info = trans->fs_info;
2834 	struct btrfs_root *root = fs_info->chunk_root;
2835 	int ret;
2836 	struct btrfs_path *path;
2837 	struct btrfs_key key;
2838 
2839 	path = btrfs_alloc_path();
2840 	if (!path)
2841 		return -ENOMEM;
2842 
2843 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2844 	key.offset = chunk_offset;
2845 	key.type = BTRFS_CHUNK_ITEM_KEY;
2846 
2847 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2848 	if (ret < 0)
2849 		goto out;
2850 	else if (ret > 0) { /* Logic error or corruption */
2851 		btrfs_handle_fs_error(fs_info, -ENOENT,
2852 				      "Failed lookup while freeing chunk.");
2853 		ret = -ENOENT;
2854 		goto out;
2855 	}
2856 
2857 	ret = btrfs_del_item(trans, root, path);
2858 	if (ret < 0)
2859 		btrfs_handle_fs_error(fs_info, ret,
2860 				      "Failed to delete chunk item.");
2861 out:
2862 	btrfs_free_path(path);
2863 	return ret;
2864 }
2865 
2866 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2867 {
2868 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2869 	struct btrfs_disk_key *disk_key;
2870 	struct btrfs_chunk *chunk;
2871 	u8 *ptr;
2872 	int ret = 0;
2873 	u32 num_stripes;
2874 	u32 array_size;
2875 	u32 len = 0;
2876 	u32 cur;
2877 	struct btrfs_key key;
2878 
2879 	mutex_lock(&fs_info->chunk_mutex);
2880 	array_size = btrfs_super_sys_array_size(super_copy);
2881 
2882 	ptr = super_copy->sys_chunk_array;
2883 	cur = 0;
2884 
2885 	while (cur < array_size) {
2886 		disk_key = (struct btrfs_disk_key *)ptr;
2887 		btrfs_disk_key_to_cpu(&key, disk_key);
2888 
2889 		len = sizeof(*disk_key);
2890 
2891 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2892 			chunk = (struct btrfs_chunk *)(ptr + len);
2893 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2894 			len += btrfs_chunk_item_size(num_stripes);
2895 		} else {
2896 			ret = -EIO;
2897 			break;
2898 		}
2899 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2900 		    key.offset == chunk_offset) {
2901 			memmove(ptr, ptr + len, array_size - (cur + len));
2902 			array_size -= len;
2903 			btrfs_set_super_sys_array_size(super_copy, array_size);
2904 		} else {
2905 			ptr += len;
2906 			cur += len;
2907 		}
2908 	}
2909 	mutex_unlock(&fs_info->chunk_mutex);
2910 	return ret;
2911 }
2912 
2913 /*
2914  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2915  * @logical: Logical block offset in bytes.
2916  * @length: Length of extent in bytes.
2917  *
2918  * Return: Chunk mapping or ERR_PTR.
2919  */
2920 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2921 				       u64 logical, u64 length)
2922 {
2923 	struct extent_map_tree *em_tree;
2924 	struct extent_map *em;
2925 
2926 	em_tree = &fs_info->mapping_tree;
2927 	read_lock(&em_tree->lock);
2928 	em = lookup_extent_mapping(em_tree, logical, length);
2929 	read_unlock(&em_tree->lock);
2930 
2931 	if (!em) {
2932 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2933 			   logical, length);
2934 		return ERR_PTR(-EINVAL);
2935 	}
2936 
2937 	if (em->start > logical || em->start + em->len < logical) {
2938 		btrfs_crit(fs_info,
2939 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2940 			   logical, length, em->start, em->start + em->len);
2941 		free_extent_map(em);
2942 		return ERR_PTR(-EINVAL);
2943 	}
2944 
2945 	/* callers are responsible for dropping em's ref. */
2946 	return em;
2947 }
2948 
2949 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2950 {
2951 	struct btrfs_fs_info *fs_info = trans->fs_info;
2952 	struct extent_map *em;
2953 	struct map_lookup *map;
2954 	u64 dev_extent_len = 0;
2955 	int i, ret = 0;
2956 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2957 
2958 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2959 	if (IS_ERR(em)) {
2960 		/*
2961 		 * This is a logic error, but we don't want to just rely on the
2962 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2963 		 * do anything we still error out.
2964 		 */
2965 		ASSERT(0);
2966 		return PTR_ERR(em);
2967 	}
2968 	map = em->map_lookup;
2969 	mutex_lock(&fs_info->chunk_mutex);
2970 	check_system_chunk(trans, map->type);
2971 	mutex_unlock(&fs_info->chunk_mutex);
2972 
2973 	/*
2974 	 * Take the device list mutex to prevent races with the final phase of
2975 	 * a device replace operation that replaces the device object associated
2976 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2977 	 */
2978 	mutex_lock(&fs_devices->device_list_mutex);
2979 	for (i = 0; i < map->num_stripes; i++) {
2980 		struct btrfs_device *device = map->stripes[i].dev;
2981 		ret = btrfs_free_dev_extent(trans, device,
2982 					    map->stripes[i].physical,
2983 					    &dev_extent_len);
2984 		if (ret) {
2985 			mutex_unlock(&fs_devices->device_list_mutex);
2986 			btrfs_abort_transaction(trans, ret);
2987 			goto out;
2988 		}
2989 
2990 		if (device->bytes_used > 0) {
2991 			mutex_lock(&fs_info->chunk_mutex);
2992 			btrfs_device_set_bytes_used(device,
2993 					device->bytes_used - dev_extent_len);
2994 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2995 			btrfs_clear_space_info_full(fs_info);
2996 			mutex_unlock(&fs_info->chunk_mutex);
2997 		}
2998 
2999 		ret = btrfs_update_device(trans, device);
3000 		if (ret) {
3001 			mutex_unlock(&fs_devices->device_list_mutex);
3002 			btrfs_abort_transaction(trans, ret);
3003 			goto out;
3004 		}
3005 	}
3006 	mutex_unlock(&fs_devices->device_list_mutex);
3007 
3008 	ret = btrfs_free_chunk(trans, chunk_offset);
3009 	if (ret) {
3010 		btrfs_abort_transaction(trans, ret);
3011 		goto out;
3012 	}
3013 
3014 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3015 
3016 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3017 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3018 		if (ret) {
3019 			btrfs_abort_transaction(trans, ret);
3020 			goto out;
3021 		}
3022 	}
3023 
3024 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3025 	if (ret) {
3026 		btrfs_abort_transaction(trans, ret);
3027 		goto out;
3028 	}
3029 
3030 out:
3031 	/* once for us */
3032 	free_extent_map(em);
3033 	return ret;
3034 }
3035 
3036 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3037 {
3038 	struct btrfs_root *root = fs_info->chunk_root;
3039 	struct btrfs_trans_handle *trans;
3040 	struct btrfs_block_group *block_group;
3041 	int ret;
3042 
3043 	/*
3044 	 * Prevent races with automatic removal of unused block groups.
3045 	 * After we relocate and before we remove the chunk with offset
3046 	 * chunk_offset, automatic removal of the block group can kick in,
3047 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3048 	 *
3049 	 * Make sure to acquire this mutex before doing a tree search (dev
3050 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3051 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3052 	 * we release the path used to search the chunk/dev tree and before
3053 	 * the current task acquires this mutex and calls us.
3054 	 */
3055 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3056 
3057 	/* step one, relocate all the extents inside this chunk */
3058 	btrfs_scrub_pause(fs_info);
3059 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3060 	btrfs_scrub_continue(fs_info);
3061 	if (ret)
3062 		return ret;
3063 
3064 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3065 	if (!block_group)
3066 		return -ENOENT;
3067 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3068 	btrfs_put_block_group(block_group);
3069 
3070 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3071 						     chunk_offset);
3072 	if (IS_ERR(trans)) {
3073 		ret = PTR_ERR(trans);
3074 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3075 		return ret;
3076 	}
3077 
3078 	/*
3079 	 * step two, delete the device extents and the
3080 	 * chunk tree entries
3081 	 */
3082 	ret = btrfs_remove_chunk(trans, chunk_offset);
3083 	btrfs_end_transaction(trans);
3084 	return ret;
3085 }
3086 
3087 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3088 {
3089 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3090 	struct btrfs_path *path;
3091 	struct extent_buffer *leaf;
3092 	struct btrfs_chunk *chunk;
3093 	struct btrfs_key key;
3094 	struct btrfs_key found_key;
3095 	u64 chunk_type;
3096 	bool retried = false;
3097 	int failed = 0;
3098 	int ret;
3099 
3100 	path = btrfs_alloc_path();
3101 	if (!path)
3102 		return -ENOMEM;
3103 
3104 again:
3105 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3106 	key.offset = (u64)-1;
3107 	key.type = BTRFS_CHUNK_ITEM_KEY;
3108 
3109 	while (1) {
3110 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3111 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3112 		if (ret < 0) {
3113 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3114 			goto error;
3115 		}
3116 		BUG_ON(ret == 0); /* Corruption */
3117 
3118 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3119 					  key.type);
3120 		if (ret)
3121 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3122 		if (ret < 0)
3123 			goto error;
3124 		if (ret > 0)
3125 			break;
3126 
3127 		leaf = path->nodes[0];
3128 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3129 
3130 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3131 				       struct btrfs_chunk);
3132 		chunk_type = btrfs_chunk_type(leaf, chunk);
3133 		btrfs_release_path(path);
3134 
3135 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3136 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3137 			if (ret == -ENOSPC)
3138 				failed++;
3139 			else
3140 				BUG_ON(ret);
3141 		}
3142 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3143 
3144 		if (found_key.offset == 0)
3145 			break;
3146 		key.offset = found_key.offset - 1;
3147 	}
3148 	ret = 0;
3149 	if (failed && !retried) {
3150 		failed = 0;
3151 		retried = true;
3152 		goto again;
3153 	} else if (WARN_ON(failed && retried)) {
3154 		ret = -ENOSPC;
3155 	}
3156 error:
3157 	btrfs_free_path(path);
3158 	return ret;
3159 }
3160 
3161 /*
3162  * return 1 : allocate a data chunk successfully,
3163  * return <0: errors during allocating a data chunk,
3164  * return 0 : no need to allocate a data chunk.
3165  */
3166 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3167 				      u64 chunk_offset)
3168 {
3169 	struct btrfs_block_group *cache;
3170 	u64 bytes_used;
3171 	u64 chunk_type;
3172 
3173 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3174 	ASSERT(cache);
3175 	chunk_type = cache->flags;
3176 	btrfs_put_block_group(cache);
3177 
3178 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3179 		return 0;
3180 
3181 	spin_lock(&fs_info->data_sinfo->lock);
3182 	bytes_used = fs_info->data_sinfo->bytes_used;
3183 	spin_unlock(&fs_info->data_sinfo->lock);
3184 
3185 	if (!bytes_used) {
3186 		struct btrfs_trans_handle *trans;
3187 		int ret;
3188 
3189 		trans =	btrfs_join_transaction(fs_info->tree_root);
3190 		if (IS_ERR(trans))
3191 			return PTR_ERR(trans);
3192 
3193 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3194 		btrfs_end_transaction(trans);
3195 		if (ret < 0)
3196 			return ret;
3197 		return 1;
3198 	}
3199 
3200 	return 0;
3201 }
3202 
3203 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3204 			       struct btrfs_balance_control *bctl)
3205 {
3206 	struct btrfs_root *root = fs_info->tree_root;
3207 	struct btrfs_trans_handle *trans;
3208 	struct btrfs_balance_item *item;
3209 	struct btrfs_disk_balance_args disk_bargs;
3210 	struct btrfs_path *path;
3211 	struct extent_buffer *leaf;
3212 	struct btrfs_key key;
3213 	int ret, err;
3214 
3215 	path = btrfs_alloc_path();
3216 	if (!path)
3217 		return -ENOMEM;
3218 
3219 	trans = btrfs_start_transaction(root, 0);
3220 	if (IS_ERR(trans)) {
3221 		btrfs_free_path(path);
3222 		return PTR_ERR(trans);
3223 	}
3224 
3225 	key.objectid = BTRFS_BALANCE_OBJECTID;
3226 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3227 	key.offset = 0;
3228 
3229 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3230 				      sizeof(*item));
3231 	if (ret)
3232 		goto out;
3233 
3234 	leaf = path->nodes[0];
3235 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3236 
3237 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3238 
3239 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3240 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3241 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3242 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3243 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3244 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3245 
3246 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3247 
3248 	btrfs_mark_buffer_dirty(leaf);
3249 out:
3250 	btrfs_free_path(path);
3251 	err = btrfs_commit_transaction(trans);
3252 	if (err && !ret)
3253 		ret = err;
3254 	return ret;
3255 }
3256 
3257 static int del_balance_item(struct btrfs_fs_info *fs_info)
3258 {
3259 	struct btrfs_root *root = fs_info->tree_root;
3260 	struct btrfs_trans_handle *trans;
3261 	struct btrfs_path *path;
3262 	struct btrfs_key key;
3263 	int ret, err;
3264 
3265 	path = btrfs_alloc_path();
3266 	if (!path)
3267 		return -ENOMEM;
3268 
3269 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3270 	if (IS_ERR(trans)) {
3271 		btrfs_free_path(path);
3272 		return PTR_ERR(trans);
3273 	}
3274 
3275 	key.objectid = BTRFS_BALANCE_OBJECTID;
3276 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3277 	key.offset = 0;
3278 
3279 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3280 	if (ret < 0)
3281 		goto out;
3282 	if (ret > 0) {
3283 		ret = -ENOENT;
3284 		goto out;
3285 	}
3286 
3287 	ret = btrfs_del_item(trans, root, path);
3288 out:
3289 	btrfs_free_path(path);
3290 	err = btrfs_commit_transaction(trans);
3291 	if (err && !ret)
3292 		ret = err;
3293 	return ret;
3294 }
3295 
3296 /*
3297  * This is a heuristic used to reduce the number of chunks balanced on
3298  * resume after balance was interrupted.
3299  */
3300 static void update_balance_args(struct btrfs_balance_control *bctl)
3301 {
3302 	/*
3303 	 * Turn on soft mode for chunk types that were being converted.
3304 	 */
3305 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3306 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3307 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3308 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3309 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3310 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3311 
3312 	/*
3313 	 * Turn on usage filter if is not already used.  The idea is
3314 	 * that chunks that we have already balanced should be
3315 	 * reasonably full.  Don't do it for chunks that are being
3316 	 * converted - that will keep us from relocating unconverted
3317 	 * (albeit full) chunks.
3318 	 */
3319 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3320 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3321 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3322 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3323 		bctl->data.usage = 90;
3324 	}
3325 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3326 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3327 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3328 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3329 		bctl->sys.usage = 90;
3330 	}
3331 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3332 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3333 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3334 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3335 		bctl->meta.usage = 90;
3336 	}
3337 }
3338 
3339 /*
3340  * Clear the balance status in fs_info and delete the balance item from disk.
3341  */
3342 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3343 {
3344 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3345 	int ret;
3346 
3347 	BUG_ON(!fs_info->balance_ctl);
3348 
3349 	spin_lock(&fs_info->balance_lock);
3350 	fs_info->balance_ctl = NULL;
3351 	spin_unlock(&fs_info->balance_lock);
3352 
3353 	kfree(bctl);
3354 	ret = del_balance_item(fs_info);
3355 	if (ret)
3356 		btrfs_handle_fs_error(fs_info, ret, NULL);
3357 }
3358 
3359 /*
3360  * Balance filters.  Return 1 if chunk should be filtered out
3361  * (should not be balanced).
3362  */
3363 static int chunk_profiles_filter(u64 chunk_type,
3364 				 struct btrfs_balance_args *bargs)
3365 {
3366 	chunk_type = chunk_to_extended(chunk_type) &
3367 				BTRFS_EXTENDED_PROFILE_MASK;
3368 
3369 	if (bargs->profiles & chunk_type)
3370 		return 0;
3371 
3372 	return 1;
3373 }
3374 
3375 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3376 			      struct btrfs_balance_args *bargs)
3377 {
3378 	struct btrfs_block_group *cache;
3379 	u64 chunk_used;
3380 	u64 user_thresh_min;
3381 	u64 user_thresh_max;
3382 	int ret = 1;
3383 
3384 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3385 	chunk_used = cache->used;
3386 
3387 	if (bargs->usage_min == 0)
3388 		user_thresh_min = 0;
3389 	else
3390 		user_thresh_min = div_factor_fine(cache->length,
3391 						  bargs->usage_min);
3392 
3393 	if (bargs->usage_max == 0)
3394 		user_thresh_max = 1;
3395 	else if (bargs->usage_max > 100)
3396 		user_thresh_max = cache->length;
3397 	else
3398 		user_thresh_max = div_factor_fine(cache->length,
3399 						  bargs->usage_max);
3400 
3401 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3402 		ret = 0;
3403 
3404 	btrfs_put_block_group(cache);
3405 	return ret;
3406 }
3407 
3408 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3409 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3410 {
3411 	struct btrfs_block_group *cache;
3412 	u64 chunk_used, user_thresh;
3413 	int ret = 1;
3414 
3415 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3416 	chunk_used = cache->used;
3417 
3418 	if (bargs->usage_min == 0)
3419 		user_thresh = 1;
3420 	else if (bargs->usage > 100)
3421 		user_thresh = cache->length;
3422 	else
3423 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3424 
3425 	if (chunk_used < user_thresh)
3426 		ret = 0;
3427 
3428 	btrfs_put_block_group(cache);
3429 	return ret;
3430 }
3431 
3432 static int chunk_devid_filter(struct extent_buffer *leaf,
3433 			      struct btrfs_chunk *chunk,
3434 			      struct btrfs_balance_args *bargs)
3435 {
3436 	struct btrfs_stripe *stripe;
3437 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3438 	int i;
3439 
3440 	for (i = 0; i < num_stripes; i++) {
3441 		stripe = btrfs_stripe_nr(chunk, i);
3442 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3443 			return 0;
3444 	}
3445 
3446 	return 1;
3447 }
3448 
3449 static u64 calc_data_stripes(u64 type, int num_stripes)
3450 {
3451 	const int index = btrfs_bg_flags_to_raid_index(type);
3452 	const int ncopies = btrfs_raid_array[index].ncopies;
3453 	const int nparity = btrfs_raid_array[index].nparity;
3454 
3455 	if (nparity)
3456 		return num_stripes - nparity;
3457 	else
3458 		return num_stripes / ncopies;
3459 }
3460 
3461 /* [pstart, pend) */
3462 static int chunk_drange_filter(struct extent_buffer *leaf,
3463 			       struct btrfs_chunk *chunk,
3464 			       struct btrfs_balance_args *bargs)
3465 {
3466 	struct btrfs_stripe *stripe;
3467 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3468 	u64 stripe_offset;
3469 	u64 stripe_length;
3470 	u64 type;
3471 	int factor;
3472 	int i;
3473 
3474 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3475 		return 0;
3476 
3477 	type = btrfs_chunk_type(leaf, chunk);
3478 	factor = calc_data_stripes(type, num_stripes);
3479 
3480 	for (i = 0; i < num_stripes; i++) {
3481 		stripe = btrfs_stripe_nr(chunk, i);
3482 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3483 			continue;
3484 
3485 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3486 		stripe_length = btrfs_chunk_length(leaf, chunk);
3487 		stripe_length = div_u64(stripe_length, factor);
3488 
3489 		if (stripe_offset < bargs->pend &&
3490 		    stripe_offset + stripe_length > bargs->pstart)
3491 			return 0;
3492 	}
3493 
3494 	return 1;
3495 }
3496 
3497 /* [vstart, vend) */
3498 static int chunk_vrange_filter(struct extent_buffer *leaf,
3499 			       struct btrfs_chunk *chunk,
3500 			       u64 chunk_offset,
3501 			       struct btrfs_balance_args *bargs)
3502 {
3503 	if (chunk_offset < bargs->vend &&
3504 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3505 		/* at least part of the chunk is inside this vrange */
3506 		return 0;
3507 
3508 	return 1;
3509 }
3510 
3511 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3512 			       struct btrfs_chunk *chunk,
3513 			       struct btrfs_balance_args *bargs)
3514 {
3515 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3516 
3517 	if (bargs->stripes_min <= num_stripes
3518 			&& num_stripes <= bargs->stripes_max)
3519 		return 0;
3520 
3521 	return 1;
3522 }
3523 
3524 static int chunk_soft_convert_filter(u64 chunk_type,
3525 				     struct btrfs_balance_args *bargs)
3526 {
3527 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3528 		return 0;
3529 
3530 	chunk_type = chunk_to_extended(chunk_type) &
3531 				BTRFS_EXTENDED_PROFILE_MASK;
3532 
3533 	if (bargs->target == chunk_type)
3534 		return 1;
3535 
3536 	return 0;
3537 }
3538 
3539 static int should_balance_chunk(struct extent_buffer *leaf,
3540 				struct btrfs_chunk *chunk, u64 chunk_offset)
3541 {
3542 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3543 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3544 	struct btrfs_balance_args *bargs = NULL;
3545 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3546 
3547 	/* type filter */
3548 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3549 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3550 		return 0;
3551 	}
3552 
3553 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3554 		bargs = &bctl->data;
3555 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3556 		bargs = &bctl->sys;
3557 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3558 		bargs = &bctl->meta;
3559 
3560 	/* profiles filter */
3561 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3562 	    chunk_profiles_filter(chunk_type, bargs)) {
3563 		return 0;
3564 	}
3565 
3566 	/* usage filter */
3567 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3568 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3569 		return 0;
3570 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3571 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3572 		return 0;
3573 	}
3574 
3575 	/* devid filter */
3576 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3577 	    chunk_devid_filter(leaf, chunk, bargs)) {
3578 		return 0;
3579 	}
3580 
3581 	/* drange filter, makes sense only with devid filter */
3582 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3583 	    chunk_drange_filter(leaf, chunk, bargs)) {
3584 		return 0;
3585 	}
3586 
3587 	/* vrange filter */
3588 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3589 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3590 		return 0;
3591 	}
3592 
3593 	/* stripes filter */
3594 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3595 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3596 		return 0;
3597 	}
3598 
3599 	/* soft profile changing mode */
3600 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3601 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3602 		return 0;
3603 	}
3604 
3605 	/*
3606 	 * limited by count, must be the last filter
3607 	 */
3608 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3609 		if (bargs->limit == 0)
3610 			return 0;
3611 		else
3612 			bargs->limit--;
3613 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3614 		/*
3615 		 * Same logic as the 'limit' filter; the minimum cannot be
3616 		 * determined here because we do not have the global information
3617 		 * about the count of all chunks that satisfy the filters.
3618 		 */
3619 		if (bargs->limit_max == 0)
3620 			return 0;
3621 		else
3622 			bargs->limit_max--;
3623 	}
3624 
3625 	return 1;
3626 }
3627 
3628 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3629 {
3630 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3631 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3632 	u64 chunk_type;
3633 	struct btrfs_chunk *chunk;
3634 	struct btrfs_path *path = NULL;
3635 	struct btrfs_key key;
3636 	struct btrfs_key found_key;
3637 	struct extent_buffer *leaf;
3638 	int slot;
3639 	int ret;
3640 	int enospc_errors = 0;
3641 	bool counting = true;
3642 	/* The single value limit and min/max limits use the same bytes in the */
3643 	u64 limit_data = bctl->data.limit;
3644 	u64 limit_meta = bctl->meta.limit;
3645 	u64 limit_sys = bctl->sys.limit;
3646 	u32 count_data = 0;
3647 	u32 count_meta = 0;
3648 	u32 count_sys = 0;
3649 	int chunk_reserved = 0;
3650 
3651 	path = btrfs_alloc_path();
3652 	if (!path) {
3653 		ret = -ENOMEM;
3654 		goto error;
3655 	}
3656 
3657 	/* zero out stat counters */
3658 	spin_lock(&fs_info->balance_lock);
3659 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3660 	spin_unlock(&fs_info->balance_lock);
3661 again:
3662 	if (!counting) {
3663 		/*
3664 		 * The single value limit and min/max limits use the same bytes
3665 		 * in the
3666 		 */
3667 		bctl->data.limit = limit_data;
3668 		bctl->meta.limit = limit_meta;
3669 		bctl->sys.limit = limit_sys;
3670 	}
3671 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3672 	key.offset = (u64)-1;
3673 	key.type = BTRFS_CHUNK_ITEM_KEY;
3674 
3675 	while (1) {
3676 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3677 		    atomic_read(&fs_info->balance_cancel_req)) {
3678 			ret = -ECANCELED;
3679 			goto error;
3680 		}
3681 
3682 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3683 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3684 		if (ret < 0) {
3685 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3686 			goto error;
3687 		}
3688 
3689 		/*
3690 		 * this shouldn't happen, it means the last relocate
3691 		 * failed
3692 		 */
3693 		if (ret == 0)
3694 			BUG(); /* FIXME break ? */
3695 
3696 		ret = btrfs_previous_item(chunk_root, path, 0,
3697 					  BTRFS_CHUNK_ITEM_KEY);
3698 		if (ret) {
3699 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700 			ret = 0;
3701 			break;
3702 		}
3703 
3704 		leaf = path->nodes[0];
3705 		slot = path->slots[0];
3706 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707 
3708 		if (found_key.objectid != key.objectid) {
3709 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3710 			break;
3711 		}
3712 
3713 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3714 		chunk_type = btrfs_chunk_type(leaf, chunk);
3715 
3716 		if (!counting) {
3717 			spin_lock(&fs_info->balance_lock);
3718 			bctl->stat.considered++;
3719 			spin_unlock(&fs_info->balance_lock);
3720 		}
3721 
3722 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3723 
3724 		btrfs_release_path(path);
3725 		if (!ret) {
3726 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3727 			goto loop;
3728 		}
3729 
3730 		if (counting) {
3731 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3732 			spin_lock(&fs_info->balance_lock);
3733 			bctl->stat.expected++;
3734 			spin_unlock(&fs_info->balance_lock);
3735 
3736 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3737 				count_data++;
3738 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3739 				count_sys++;
3740 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3741 				count_meta++;
3742 
3743 			goto loop;
3744 		}
3745 
3746 		/*
3747 		 * Apply limit_min filter, no need to check if the LIMITS
3748 		 * filter is used, limit_min is 0 by default
3749 		 */
3750 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3751 					count_data < bctl->data.limit_min)
3752 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3753 					count_meta < bctl->meta.limit_min)
3754 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3755 					count_sys < bctl->sys.limit_min)) {
3756 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757 			goto loop;
3758 		}
3759 
3760 		if (!chunk_reserved) {
3761 			/*
3762 			 * We may be relocating the only data chunk we have,
3763 			 * which could potentially end up with losing data's
3764 			 * raid profile, so lets allocate an empty one in
3765 			 * advance.
3766 			 */
3767 			ret = btrfs_may_alloc_data_chunk(fs_info,
3768 							 found_key.offset);
3769 			if (ret < 0) {
3770 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3771 				goto error;
3772 			} else if (ret == 1) {
3773 				chunk_reserved = 1;
3774 			}
3775 		}
3776 
3777 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3778 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3779 		if (ret == -ENOSPC) {
3780 			enospc_errors++;
3781 		} else if (ret == -ETXTBSY) {
3782 			btrfs_info(fs_info,
3783 	   "skipping relocation of block group %llu due to active swapfile",
3784 				   found_key.offset);
3785 			ret = 0;
3786 		} else if (ret) {
3787 			goto error;
3788 		} else {
3789 			spin_lock(&fs_info->balance_lock);
3790 			bctl->stat.completed++;
3791 			spin_unlock(&fs_info->balance_lock);
3792 		}
3793 loop:
3794 		if (found_key.offset == 0)
3795 			break;
3796 		key.offset = found_key.offset - 1;
3797 	}
3798 
3799 	if (counting) {
3800 		btrfs_release_path(path);
3801 		counting = false;
3802 		goto again;
3803 	}
3804 error:
3805 	btrfs_free_path(path);
3806 	if (enospc_errors) {
3807 		btrfs_info(fs_info, "%d enospc errors during balance",
3808 			   enospc_errors);
3809 		if (!ret)
3810 			ret = -ENOSPC;
3811 	}
3812 
3813 	return ret;
3814 }
3815 
3816 /**
3817  * alloc_profile_is_valid - see if a given profile is valid and reduced
3818  * @flags: profile to validate
3819  * @extended: if true @flags is treated as an extended profile
3820  */
3821 static int alloc_profile_is_valid(u64 flags, int extended)
3822 {
3823 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3824 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3825 
3826 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3827 
3828 	/* 1) check that all other bits are zeroed */
3829 	if (flags & ~mask)
3830 		return 0;
3831 
3832 	/* 2) see if profile is reduced */
3833 	if (flags == 0)
3834 		return !extended; /* "0" is valid for usual profiles */
3835 
3836 	return has_single_bit_set(flags);
3837 }
3838 
3839 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3840 {
3841 	/* cancel requested || normal exit path */
3842 	return atomic_read(&fs_info->balance_cancel_req) ||
3843 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3844 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3845 }
3846 
3847 /*
3848  * Validate target profile against allowed profiles and return true if it's OK.
3849  * Otherwise print the error message and return false.
3850  */
3851 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3852 		const struct btrfs_balance_args *bargs,
3853 		u64 allowed, const char *type)
3854 {
3855 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3856 		return true;
3857 
3858 	/* Profile is valid and does not have bits outside of the allowed set */
3859 	if (alloc_profile_is_valid(bargs->target, 1) &&
3860 	    (bargs->target & ~allowed) == 0)
3861 		return true;
3862 
3863 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3864 			type, btrfs_bg_type_to_raid_name(bargs->target));
3865 	return false;
3866 }
3867 
3868 /*
3869  * Fill @buf with textual description of balance filter flags @bargs, up to
3870  * @size_buf including the terminating null. The output may be trimmed if it
3871  * does not fit into the provided buffer.
3872  */
3873 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3874 				 u32 size_buf)
3875 {
3876 	int ret;
3877 	u32 size_bp = size_buf;
3878 	char *bp = buf;
3879 	u64 flags = bargs->flags;
3880 	char tmp_buf[128] = {'\0'};
3881 
3882 	if (!flags)
3883 		return;
3884 
3885 #define CHECK_APPEND_NOARG(a)						\
3886 	do {								\
3887 		ret = snprintf(bp, size_bp, (a));			\
3888 		if (ret < 0 || ret >= size_bp)				\
3889 			goto out_overflow;				\
3890 		size_bp -= ret;						\
3891 		bp += ret;						\
3892 	} while (0)
3893 
3894 #define CHECK_APPEND_1ARG(a, v1)					\
3895 	do {								\
3896 		ret = snprintf(bp, size_bp, (a), (v1));			\
3897 		if (ret < 0 || ret >= size_bp)				\
3898 			goto out_overflow;				\
3899 		size_bp -= ret;						\
3900 		bp += ret;						\
3901 	} while (0)
3902 
3903 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3904 	do {								\
3905 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3906 		if (ret < 0 || ret >= size_bp)				\
3907 			goto out_overflow;				\
3908 		size_bp -= ret;						\
3909 		bp += ret;						\
3910 	} while (0)
3911 
3912 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3913 		CHECK_APPEND_1ARG("convert=%s,",
3914 				  btrfs_bg_type_to_raid_name(bargs->target));
3915 
3916 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3917 		CHECK_APPEND_NOARG("soft,");
3918 
3919 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3920 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3921 					    sizeof(tmp_buf));
3922 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3923 	}
3924 
3925 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3926 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3927 
3928 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3929 		CHECK_APPEND_2ARG("usage=%u..%u,",
3930 				  bargs->usage_min, bargs->usage_max);
3931 
3932 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3933 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3934 
3935 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3936 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3937 				  bargs->pstart, bargs->pend);
3938 
3939 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3940 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3941 				  bargs->vstart, bargs->vend);
3942 
3943 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3944 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3945 
3946 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3947 		CHECK_APPEND_2ARG("limit=%u..%u,",
3948 				bargs->limit_min, bargs->limit_max);
3949 
3950 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3951 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3952 				  bargs->stripes_min, bargs->stripes_max);
3953 
3954 #undef CHECK_APPEND_2ARG
3955 #undef CHECK_APPEND_1ARG
3956 #undef CHECK_APPEND_NOARG
3957 
3958 out_overflow:
3959 
3960 	if (size_bp < size_buf)
3961 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3962 	else
3963 		buf[0] = '\0';
3964 }
3965 
3966 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3967 {
3968 	u32 size_buf = 1024;
3969 	char tmp_buf[192] = {'\0'};
3970 	char *buf;
3971 	char *bp;
3972 	u32 size_bp = size_buf;
3973 	int ret;
3974 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3975 
3976 	buf = kzalloc(size_buf, GFP_KERNEL);
3977 	if (!buf)
3978 		return;
3979 
3980 	bp = buf;
3981 
3982 #define CHECK_APPEND_1ARG(a, v1)					\
3983 	do {								\
3984 		ret = snprintf(bp, size_bp, (a), (v1));			\
3985 		if (ret < 0 || ret >= size_bp)				\
3986 			goto out_overflow;				\
3987 		size_bp -= ret;						\
3988 		bp += ret;						\
3989 	} while (0)
3990 
3991 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3992 		CHECK_APPEND_1ARG("%s", "-f ");
3993 
3994 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3995 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3996 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3997 	}
3998 
3999 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4000 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4001 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4002 	}
4003 
4004 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4005 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4006 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4007 	}
4008 
4009 #undef CHECK_APPEND_1ARG
4010 
4011 out_overflow:
4012 
4013 	if (size_bp < size_buf)
4014 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4015 	btrfs_info(fs_info, "balance: %s %s",
4016 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4017 		   "resume" : "start", buf);
4018 
4019 	kfree(buf);
4020 }
4021 
4022 /*
4023  * Should be called with balance mutexe held
4024  */
4025 int btrfs_balance(struct btrfs_fs_info *fs_info,
4026 		  struct btrfs_balance_control *bctl,
4027 		  struct btrfs_ioctl_balance_args *bargs)
4028 {
4029 	u64 meta_target, data_target;
4030 	u64 allowed;
4031 	int mixed = 0;
4032 	int ret;
4033 	u64 num_devices;
4034 	unsigned seq;
4035 	bool reducing_redundancy;
4036 	int i;
4037 
4038 	if (btrfs_fs_closing(fs_info) ||
4039 	    atomic_read(&fs_info->balance_pause_req) ||
4040 	    btrfs_should_cancel_balance(fs_info)) {
4041 		ret = -EINVAL;
4042 		goto out;
4043 	}
4044 
4045 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4046 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4047 		mixed = 1;
4048 
4049 	/*
4050 	 * In case of mixed groups both data and meta should be picked,
4051 	 * and identical options should be given for both of them.
4052 	 */
4053 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4054 	if (mixed && (bctl->flags & allowed)) {
4055 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4056 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4057 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4058 			btrfs_err(fs_info,
4059 	  "balance: mixed groups data and metadata options must be the same");
4060 			ret = -EINVAL;
4061 			goto out;
4062 		}
4063 	}
4064 
4065 	/*
4066 	 * rw_devices will not change at the moment, device add/delete/replace
4067 	 * are exclusive
4068 	 */
4069 	num_devices = fs_info->fs_devices->rw_devices;
4070 
4071 	/*
4072 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073 	 * special bit for it, to make it easier to distinguish.  Thus we need
4074 	 * to set it manually, or balance would refuse the profile.
4075 	 */
4076 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078 		if (num_devices >= btrfs_raid_array[i].devs_min)
4079 			allowed |= btrfs_raid_array[i].bg_flag;
4080 
4081 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4082 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4083 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4084 		ret = -EINVAL;
4085 		goto out;
4086 	}
4087 
4088 	/*
4089 	 * Allow to reduce metadata or system integrity only if force set for
4090 	 * profiles with redundancy (copies, parity)
4091 	 */
4092 	allowed = 0;
4093 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4094 		if (btrfs_raid_array[i].ncopies >= 2 ||
4095 		    btrfs_raid_array[i].tolerated_failures >= 1)
4096 			allowed |= btrfs_raid_array[i].bg_flag;
4097 	}
4098 	do {
4099 		seq = read_seqbegin(&fs_info->profiles_lock);
4100 
4101 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4102 		     (fs_info->avail_system_alloc_bits & allowed) &&
4103 		     !(bctl->sys.target & allowed)) ||
4104 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4105 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4106 		     !(bctl->meta.target & allowed)))
4107 			reducing_redundancy = true;
4108 		else
4109 			reducing_redundancy = false;
4110 
4111 		/* if we're not converting, the target field is uninitialized */
4112 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4113 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4114 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4115 			bctl->data.target : fs_info->avail_data_alloc_bits;
4116 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4117 
4118 	if (reducing_redundancy) {
4119 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4120 			btrfs_info(fs_info,
4121 			   "balance: force reducing metadata redundancy");
4122 		} else {
4123 			btrfs_err(fs_info,
4124 	"balance: reduces metadata redundancy, use --force if you want this");
4125 			ret = -EINVAL;
4126 			goto out;
4127 		}
4128 	}
4129 
4130 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4131 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4132 		btrfs_warn(fs_info,
4133 	"balance: metadata profile %s has lower redundancy than data profile %s",
4134 				btrfs_bg_type_to_raid_name(meta_target),
4135 				btrfs_bg_type_to_raid_name(data_target));
4136 	}
4137 
4138 	if (fs_info->send_in_progress) {
4139 		btrfs_warn_rl(fs_info,
4140 "cannot run balance while send operations are in progress (%d in progress)",
4141 			      fs_info->send_in_progress);
4142 		ret = -EAGAIN;
4143 		goto out;
4144 	}
4145 
4146 	ret = insert_balance_item(fs_info, bctl);
4147 	if (ret && ret != -EEXIST)
4148 		goto out;
4149 
4150 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4151 		BUG_ON(ret == -EEXIST);
4152 		BUG_ON(fs_info->balance_ctl);
4153 		spin_lock(&fs_info->balance_lock);
4154 		fs_info->balance_ctl = bctl;
4155 		spin_unlock(&fs_info->balance_lock);
4156 	} else {
4157 		BUG_ON(ret != -EEXIST);
4158 		spin_lock(&fs_info->balance_lock);
4159 		update_balance_args(bctl);
4160 		spin_unlock(&fs_info->balance_lock);
4161 	}
4162 
4163 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4164 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4165 	describe_balance_start_or_resume(fs_info);
4166 	mutex_unlock(&fs_info->balance_mutex);
4167 
4168 	ret = __btrfs_balance(fs_info);
4169 
4170 	mutex_lock(&fs_info->balance_mutex);
4171 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4172 		btrfs_info(fs_info, "balance: paused");
4173 	/*
4174 	 * Balance can be canceled by:
4175 	 *
4176 	 * - Regular cancel request
4177 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4178 	 *
4179 	 * - Fatal signal to "btrfs" process
4180 	 *   Either the signal caught by wait_reserve_ticket() and callers
4181 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4182 	 *   got -ECANCELED.
4183 	 *   Either way, in this case balance_cancel_req = 0, and
4184 	 *   ret == -EINTR or ret == -ECANCELED.
4185 	 *
4186 	 * So here we only check the return value to catch canceled balance.
4187 	 */
4188 	else if (ret == -ECANCELED || ret == -EINTR)
4189 		btrfs_info(fs_info, "balance: canceled");
4190 	else
4191 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192 
4193 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194 
4195 	if (bargs) {
4196 		memset(bargs, 0, sizeof(*bargs));
4197 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4198 	}
4199 
4200 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201 	    balance_need_close(fs_info)) {
4202 		reset_balance_state(fs_info);
4203 		btrfs_exclop_finish(fs_info);
4204 	}
4205 
4206 	wake_up(&fs_info->balance_wait_q);
4207 
4208 	return ret;
4209 out:
4210 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4211 		reset_balance_state(fs_info);
4212 	else
4213 		kfree(bctl);
4214 	btrfs_exclop_finish(fs_info);
4215 
4216 	return ret;
4217 }
4218 
4219 static int balance_kthread(void *data)
4220 {
4221 	struct btrfs_fs_info *fs_info = data;
4222 	int ret = 0;
4223 
4224 	mutex_lock(&fs_info->balance_mutex);
4225 	if (fs_info->balance_ctl)
4226 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227 	mutex_unlock(&fs_info->balance_mutex);
4228 
4229 	return ret;
4230 }
4231 
4232 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233 {
4234 	struct task_struct *tsk;
4235 
4236 	mutex_lock(&fs_info->balance_mutex);
4237 	if (!fs_info->balance_ctl) {
4238 		mutex_unlock(&fs_info->balance_mutex);
4239 		return 0;
4240 	}
4241 	mutex_unlock(&fs_info->balance_mutex);
4242 
4243 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244 		btrfs_info(fs_info, "balance: resume skipped");
4245 		return 0;
4246 	}
4247 
4248 	/*
4249 	 * A ro->rw remount sequence should continue with the paused balance
4250 	 * regardless of who pauses it, system or the user as of now, so set
4251 	 * the resume flag.
4252 	 */
4253 	spin_lock(&fs_info->balance_lock);
4254 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255 	spin_unlock(&fs_info->balance_lock);
4256 
4257 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258 	return PTR_ERR_OR_ZERO(tsk);
4259 }
4260 
4261 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262 {
4263 	struct btrfs_balance_control *bctl;
4264 	struct btrfs_balance_item *item;
4265 	struct btrfs_disk_balance_args disk_bargs;
4266 	struct btrfs_path *path;
4267 	struct extent_buffer *leaf;
4268 	struct btrfs_key key;
4269 	int ret;
4270 
4271 	path = btrfs_alloc_path();
4272 	if (!path)
4273 		return -ENOMEM;
4274 
4275 	key.objectid = BTRFS_BALANCE_OBJECTID;
4276 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277 	key.offset = 0;
4278 
4279 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280 	if (ret < 0)
4281 		goto out;
4282 	if (ret > 0) { /* ret = -ENOENT; */
4283 		ret = 0;
4284 		goto out;
4285 	}
4286 
4287 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288 	if (!bctl) {
4289 		ret = -ENOMEM;
4290 		goto out;
4291 	}
4292 
4293 	leaf = path->nodes[0];
4294 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295 
4296 	bctl->flags = btrfs_balance_flags(leaf, item);
4297 	bctl->flags |= BTRFS_BALANCE_RESUME;
4298 
4299 	btrfs_balance_data(leaf, item, &disk_bargs);
4300 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301 	btrfs_balance_meta(leaf, item, &disk_bargs);
4302 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303 	btrfs_balance_sys(leaf, item, &disk_bargs);
4304 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305 
4306 	/*
4307 	 * This should never happen, as the paused balance state is recovered
4308 	 * during mount without any chance of other exclusive ops to collide.
4309 	 *
4310 	 * This gives the exclusive op status to balance and keeps in paused
4311 	 * state until user intervention (cancel or umount). If the ownership
4312 	 * cannot be assigned, show a message but do not fail. The balance
4313 	 * is in a paused state and must have fs_info::balance_ctl properly
4314 	 * set up.
4315 	 */
4316 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4317 		btrfs_warn(fs_info,
4318 	"balance: cannot set exclusive op status, resume manually");
4319 
4320 	btrfs_release_path(path);
4321 
4322 	mutex_lock(&fs_info->balance_mutex);
4323 	BUG_ON(fs_info->balance_ctl);
4324 	spin_lock(&fs_info->balance_lock);
4325 	fs_info->balance_ctl = bctl;
4326 	spin_unlock(&fs_info->balance_lock);
4327 	mutex_unlock(&fs_info->balance_mutex);
4328 out:
4329 	btrfs_free_path(path);
4330 	return ret;
4331 }
4332 
4333 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4334 {
4335 	int ret = 0;
4336 
4337 	mutex_lock(&fs_info->balance_mutex);
4338 	if (!fs_info->balance_ctl) {
4339 		mutex_unlock(&fs_info->balance_mutex);
4340 		return -ENOTCONN;
4341 	}
4342 
4343 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4344 		atomic_inc(&fs_info->balance_pause_req);
4345 		mutex_unlock(&fs_info->balance_mutex);
4346 
4347 		wait_event(fs_info->balance_wait_q,
4348 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4349 
4350 		mutex_lock(&fs_info->balance_mutex);
4351 		/* we are good with balance_ctl ripped off from under us */
4352 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4353 		atomic_dec(&fs_info->balance_pause_req);
4354 	} else {
4355 		ret = -ENOTCONN;
4356 	}
4357 
4358 	mutex_unlock(&fs_info->balance_mutex);
4359 	return ret;
4360 }
4361 
4362 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4363 {
4364 	mutex_lock(&fs_info->balance_mutex);
4365 	if (!fs_info->balance_ctl) {
4366 		mutex_unlock(&fs_info->balance_mutex);
4367 		return -ENOTCONN;
4368 	}
4369 
4370 	/*
4371 	 * A paused balance with the item stored on disk can be resumed at
4372 	 * mount time if the mount is read-write. Otherwise it's still paused
4373 	 * and we must not allow cancelling as it deletes the item.
4374 	 */
4375 	if (sb_rdonly(fs_info->sb)) {
4376 		mutex_unlock(&fs_info->balance_mutex);
4377 		return -EROFS;
4378 	}
4379 
4380 	atomic_inc(&fs_info->balance_cancel_req);
4381 	/*
4382 	 * if we are running just wait and return, balance item is
4383 	 * deleted in btrfs_balance in this case
4384 	 */
4385 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4386 		mutex_unlock(&fs_info->balance_mutex);
4387 		wait_event(fs_info->balance_wait_q,
4388 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4389 		mutex_lock(&fs_info->balance_mutex);
4390 	} else {
4391 		mutex_unlock(&fs_info->balance_mutex);
4392 		/*
4393 		 * Lock released to allow other waiters to continue, we'll
4394 		 * reexamine the status again.
4395 		 */
4396 		mutex_lock(&fs_info->balance_mutex);
4397 
4398 		if (fs_info->balance_ctl) {
4399 			reset_balance_state(fs_info);
4400 			btrfs_exclop_finish(fs_info);
4401 			btrfs_info(fs_info, "balance: canceled");
4402 		}
4403 	}
4404 
4405 	BUG_ON(fs_info->balance_ctl ||
4406 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4407 	atomic_dec(&fs_info->balance_cancel_req);
4408 	mutex_unlock(&fs_info->balance_mutex);
4409 	return 0;
4410 }
4411 
4412 int btrfs_uuid_scan_kthread(void *data)
4413 {
4414 	struct btrfs_fs_info *fs_info = data;
4415 	struct btrfs_root *root = fs_info->tree_root;
4416 	struct btrfs_key key;
4417 	struct btrfs_path *path = NULL;
4418 	int ret = 0;
4419 	struct extent_buffer *eb;
4420 	int slot;
4421 	struct btrfs_root_item root_item;
4422 	u32 item_size;
4423 	struct btrfs_trans_handle *trans = NULL;
4424 	bool closing = false;
4425 
4426 	path = btrfs_alloc_path();
4427 	if (!path) {
4428 		ret = -ENOMEM;
4429 		goto out;
4430 	}
4431 
4432 	key.objectid = 0;
4433 	key.type = BTRFS_ROOT_ITEM_KEY;
4434 	key.offset = 0;
4435 
4436 	while (1) {
4437 		if (btrfs_fs_closing(fs_info)) {
4438 			closing = true;
4439 			break;
4440 		}
4441 		ret = btrfs_search_forward(root, &key, path,
4442 				BTRFS_OLDEST_GENERATION);
4443 		if (ret) {
4444 			if (ret > 0)
4445 				ret = 0;
4446 			break;
4447 		}
4448 
4449 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4450 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4451 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4452 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4453 			goto skip;
4454 
4455 		eb = path->nodes[0];
4456 		slot = path->slots[0];
4457 		item_size = btrfs_item_size_nr(eb, slot);
4458 		if (item_size < sizeof(root_item))
4459 			goto skip;
4460 
4461 		read_extent_buffer(eb, &root_item,
4462 				   btrfs_item_ptr_offset(eb, slot),
4463 				   (int)sizeof(root_item));
4464 		if (btrfs_root_refs(&root_item) == 0)
4465 			goto skip;
4466 
4467 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4468 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4469 			if (trans)
4470 				goto update_tree;
4471 
4472 			btrfs_release_path(path);
4473 			/*
4474 			 * 1 - subvol uuid item
4475 			 * 1 - received_subvol uuid item
4476 			 */
4477 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4478 			if (IS_ERR(trans)) {
4479 				ret = PTR_ERR(trans);
4480 				break;
4481 			}
4482 			continue;
4483 		} else {
4484 			goto skip;
4485 		}
4486 update_tree:
4487 		btrfs_release_path(path);
4488 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4489 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4490 						  BTRFS_UUID_KEY_SUBVOL,
4491 						  key.objectid);
4492 			if (ret < 0) {
4493 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4494 					ret);
4495 				break;
4496 			}
4497 		}
4498 
4499 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4500 			ret = btrfs_uuid_tree_add(trans,
4501 						  root_item.received_uuid,
4502 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4503 						  key.objectid);
4504 			if (ret < 0) {
4505 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4506 					ret);
4507 				break;
4508 			}
4509 		}
4510 
4511 skip:
4512 		btrfs_release_path(path);
4513 		if (trans) {
4514 			ret = btrfs_end_transaction(trans);
4515 			trans = NULL;
4516 			if (ret)
4517 				break;
4518 		}
4519 
4520 		if (key.offset < (u64)-1) {
4521 			key.offset++;
4522 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4523 			key.offset = 0;
4524 			key.type = BTRFS_ROOT_ITEM_KEY;
4525 		} else if (key.objectid < (u64)-1) {
4526 			key.offset = 0;
4527 			key.type = BTRFS_ROOT_ITEM_KEY;
4528 			key.objectid++;
4529 		} else {
4530 			break;
4531 		}
4532 		cond_resched();
4533 	}
4534 
4535 out:
4536 	btrfs_free_path(path);
4537 	if (trans && !IS_ERR(trans))
4538 		btrfs_end_transaction(trans);
4539 	if (ret)
4540 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4541 	else if (!closing)
4542 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4543 	up(&fs_info->uuid_tree_rescan_sem);
4544 	return 0;
4545 }
4546 
4547 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4548 {
4549 	struct btrfs_trans_handle *trans;
4550 	struct btrfs_root *tree_root = fs_info->tree_root;
4551 	struct btrfs_root *uuid_root;
4552 	struct task_struct *task;
4553 	int ret;
4554 
4555 	/*
4556 	 * 1 - root node
4557 	 * 1 - root item
4558 	 */
4559 	trans = btrfs_start_transaction(tree_root, 2);
4560 	if (IS_ERR(trans))
4561 		return PTR_ERR(trans);
4562 
4563 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4564 	if (IS_ERR(uuid_root)) {
4565 		ret = PTR_ERR(uuid_root);
4566 		btrfs_abort_transaction(trans, ret);
4567 		btrfs_end_transaction(trans);
4568 		return ret;
4569 	}
4570 
4571 	fs_info->uuid_root = uuid_root;
4572 
4573 	ret = btrfs_commit_transaction(trans);
4574 	if (ret)
4575 		return ret;
4576 
4577 	down(&fs_info->uuid_tree_rescan_sem);
4578 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4579 	if (IS_ERR(task)) {
4580 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4581 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4582 		up(&fs_info->uuid_tree_rescan_sem);
4583 		return PTR_ERR(task);
4584 	}
4585 
4586 	return 0;
4587 }
4588 
4589 /*
4590  * shrinking a device means finding all of the device extents past
4591  * the new size, and then following the back refs to the chunks.
4592  * The chunk relocation code actually frees the device extent
4593  */
4594 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4595 {
4596 	struct btrfs_fs_info *fs_info = device->fs_info;
4597 	struct btrfs_root *root = fs_info->dev_root;
4598 	struct btrfs_trans_handle *trans;
4599 	struct btrfs_dev_extent *dev_extent = NULL;
4600 	struct btrfs_path *path;
4601 	u64 length;
4602 	u64 chunk_offset;
4603 	int ret;
4604 	int slot;
4605 	int failed = 0;
4606 	bool retried = false;
4607 	struct extent_buffer *l;
4608 	struct btrfs_key key;
4609 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4610 	u64 old_total = btrfs_super_total_bytes(super_copy);
4611 	u64 old_size = btrfs_device_get_total_bytes(device);
4612 	u64 diff;
4613 	u64 start;
4614 
4615 	new_size = round_down(new_size, fs_info->sectorsize);
4616 	start = new_size;
4617 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4618 
4619 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4620 		return -EINVAL;
4621 
4622 	path = btrfs_alloc_path();
4623 	if (!path)
4624 		return -ENOMEM;
4625 
4626 	path->reada = READA_BACK;
4627 
4628 	trans = btrfs_start_transaction(root, 0);
4629 	if (IS_ERR(trans)) {
4630 		btrfs_free_path(path);
4631 		return PTR_ERR(trans);
4632 	}
4633 
4634 	mutex_lock(&fs_info->chunk_mutex);
4635 
4636 	btrfs_device_set_total_bytes(device, new_size);
4637 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4638 		device->fs_devices->total_rw_bytes -= diff;
4639 		atomic64_sub(diff, &fs_info->free_chunk_space);
4640 	}
4641 
4642 	/*
4643 	 * Once the device's size has been set to the new size, ensure all
4644 	 * in-memory chunks are synced to disk so that the loop below sees them
4645 	 * and relocates them accordingly.
4646 	 */
4647 	if (contains_pending_extent(device, &start, diff)) {
4648 		mutex_unlock(&fs_info->chunk_mutex);
4649 		ret = btrfs_commit_transaction(trans);
4650 		if (ret)
4651 			goto done;
4652 	} else {
4653 		mutex_unlock(&fs_info->chunk_mutex);
4654 		btrfs_end_transaction(trans);
4655 	}
4656 
4657 again:
4658 	key.objectid = device->devid;
4659 	key.offset = (u64)-1;
4660 	key.type = BTRFS_DEV_EXTENT_KEY;
4661 
4662 	do {
4663 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4664 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4665 		if (ret < 0) {
4666 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4667 			goto done;
4668 		}
4669 
4670 		ret = btrfs_previous_item(root, path, 0, key.type);
4671 		if (ret)
4672 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4673 		if (ret < 0)
4674 			goto done;
4675 		if (ret) {
4676 			ret = 0;
4677 			btrfs_release_path(path);
4678 			break;
4679 		}
4680 
4681 		l = path->nodes[0];
4682 		slot = path->slots[0];
4683 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4684 
4685 		if (key.objectid != device->devid) {
4686 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4687 			btrfs_release_path(path);
4688 			break;
4689 		}
4690 
4691 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4692 		length = btrfs_dev_extent_length(l, dev_extent);
4693 
4694 		if (key.offset + length <= new_size) {
4695 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4696 			btrfs_release_path(path);
4697 			break;
4698 		}
4699 
4700 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4701 		btrfs_release_path(path);
4702 
4703 		/*
4704 		 * We may be relocating the only data chunk we have,
4705 		 * which could potentially end up with losing data's
4706 		 * raid profile, so lets allocate an empty one in
4707 		 * advance.
4708 		 */
4709 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4710 		if (ret < 0) {
4711 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4712 			goto done;
4713 		}
4714 
4715 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4716 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4717 		if (ret == -ENOSPC) {
4718 			failed++;
4719 		} else if (ret) {
4720 			if (ret == -ETXTBSY) {
4721 				btrfs_warn(fs_info,
4722 		   "could not shrink block group %llu due to active swapfile",
4723 					   chunk_offset);
4724 			}
4725 			goto done;
4726 		}
4727 	} while (key.offset-- > 0);
4728 
4729 	if (failed && !retried) {
4730 		failed = 0;
4731 		retried = true;
4732 		goto again;
4733 	} else if (failed && retried) {
4734 		ret = -ENOSPC;
4735 		goto done;
4736 	}
4737 
4738 	/* Shrinking succeeded, else we would be at "done". */
4739 	trans = btrfs_start_transaction(root, 0);
4740 	if (IS_ERR(trans)) {
4741 		ret = PTR_ERR(trans);
4742 		goto done;
4743 	}
4744 
4745 	mutex_lock(&fs_info->chunk_mutex);
4746 	/* Clear all state bits beyond the shrunk device size */
4747 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4748 			  CHUNK_STATE_MASK);
4749 
4750 	btrfs_device_set_disk_total_bytes(device, new_size);
4751 	if (list_empty(&device->post_commit_list))
4752 		list_add_tail(&device->post_commit_list,
4753 			      &trans->transaction->dev_update_list);
4754 
4755 	WARN_ON(diff > old_total);
4756 	btrfs_set_super_total_bytes(super_copy,
4757 			round_down(old_total - diff, fs_info->sectorsize));
4758 	mutex_unlock(&fs_info->chunk_mutex);
4759 
4760 	/* Now btrfs_update_device() will change the on-disk size. */
4761 	ret = btrfs_update_device(trans, device);
4762 	if (ret < 0) {
4763 		btrfs_abort_transaction(trans, ret);
4764 		btrfs_end_transaction(trans);
4765 	} else {
4766 		ret = btrfs_commit_transaction(trans);
4767 	}
4768 done:
4769 	btrfs_free_path(path);
4770 	if (ret) {
4771 		mutex_lock(&fs_info->chunk_mutex);
4772 		btrfs_device_set_total_bytes(device, old_size);
4773 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4774 			device->fs_devices->total_rw_bytes += diff;
4775 		atomic64_add(diff, &fs_info->free_chunk_space);
4776 		mutex_unlock(&fs_info->chunk_mutex);
4777 	}
4778 	return ret;
4779 }
4780 
4781 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4782 			   struct btrfs_key *key,
4783 			   struct btrfs_chunk *chunk, int item_size)
4784 {
4785 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4786 	struct btrfs_disk_key disk_key;
4787 	u32 array_size;
4788 	u8 *ptr;
4789 
4790 	mutex_lock(&fs_info->chunk_mutex);
4791 	array_size = btrfs_super_sys_array_size(super_copy);
4792 	if (array_size + item_size + sizeof(disk_key)
4793 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4794 		mutex_unlock(&fs_info->chunk_mutex);
4795 		return -EFBIG;
4796 	}
4797 
4798 	ptr = super_copy->sys_chunk_array + array_size;
4799 	btrfs_cpu_key_to_disk(&disk_key, key);
4800 	memcpy(ptr, &disk_key, sizeof(disk_key));
4801 	ptr += sizeof(disk_key);
4802 	memcpy(ptr, chunk, item_size);
4803 	item_size += sizeof(disk_key);
4804 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4805 	mutex_unlock(&fs_info->chunk_mutex);
4806 
4807 	return 0;
4808 }
4809 
4810 /*
4811  * sort the devices in descending order by max_avail, total_avail
4812  */
4813 static int btrfs_cmp_device_info(const void *a, const void *b)
4814 {
4815 	const struct btrfs_device_info *di_a = a;
4816 	const struct btrfs_device_info *di_b = b;
4817 
4818 	if (di_a->max_avail > di_b->max_avail)
4819 		return -1;
4820 	if (di_a->max_avail < di_b->max_avail)
4821 		return 1;
4822 	if (di_a->total_avail > di_b->total_avail)
4823 		return -1;
4824 	if (di_a->total_avail < di_b->total_avail)
4825 		return 1;
4826 	return 0;
4827 }
4828 
4829 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4830 {
4831 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4832 		return;
4833 
4834 	btrfs_set_fs_incompat(info, RAID56);
4835 }
4836 
4837 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4838 {
4839 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4840 		return;
4841 
4842 	btrfs_set_fs_incompat(info, RAID1C34);
4843 }
4844 
4845 /*
4846  * Structure used internally for __btrfs_alloc_chunk() function.
4847  * Wraps needed parameters.
4848  */
4849 struct alloc_chunk_ctl {
4850 	u64 start;
4851 	u64 type;
4852 	/* Total number of stripes to allocate */
4853 	int num_stripes;
4854 	/* sub_stripes info for map */
4855 	int sub_stripes;
4856 	/* Stripes per device */
4857 	int dev_stripes;
4858 	/* Maximum number of devices to use */
4859 	int devs_max;
4860 	/* Minimum number of devices to use */
4861 	int devs_min;
4862 	/* ndevs has to be a multiple of this */
4863 	int devs_increment;
4864 	/* Number of copies */
4865 	int ncopies;
4866 	/* Number of stripes worth of bytes to store parity information */
4867 	int nparity;
4868 	u64 max_stripe_size;
4869 	u64 max_chunk_size;
4870 	u64 dev_extent_min;
4871 	u64 stripe_size;
4872 	u64 chunk_size;
4873 	int ndevs;
4874 };
4875 
4876 static void init_alloc_chunk_ctl_policy_regular(
4877 				struct btrfs_fs_devices *fs_devices,
4878 				struct alloc_chunk_ctl *ctl)
4879 {
4880 	u64 type = ctl->type;
4881 
4882 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4883 		ctl->max_stripe_size = SZ_1G;
4884 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4885 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4886 		/* For larger filesystems, use larger metadata chunks */
4887 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4888 			ctl->max_stripe_size = SZ_1G;
4889 		else
4890 			ctl->max_stripe_size = SZ_256M;
4891 		ctl->max_chunk_size = ctl->max_stripe_size;
4892 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4893 		ctl->max_stripe_size = SZ_32M;
4894 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4895 		ctl->devs_max = min_t(int, ctl->devs_max,
4896 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4897 	} else {
4898 		BUG();
4899 	}
4900 
4901 	/* We don't want a chunk larger than 10% of writable space */
4902 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4903 				  ctl->max_chunk_size);
4904 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4905 }
4906 
4907 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4908 				 struct alloc_chunk_ctl *ctl)
4909 {
4910 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4911 
4912 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4913 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4914 	ctl->devs_max = btrfs_raid_array[index].devs_max;
4915 	if (!ctl->devs_max)
4916 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4917 	ctl->devs_min = btrfs_raid_array[index].devs_min;
4918 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4919 	ctl->ncopies = btrfs_raid_array[index].ncopies;
4920 	ctl->nparity = btrfs_raid_array[index].nparity;
4921 	ctl->ndevs = 0;
4922 
4923 	switch (fs_devices->chunk_alloc_policy) {
4924 	case BTRFS_CHUNK_ALLOC_REGULAR:
4925 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4926 		break;
4927 	default:
4928 		BUG();
4929 	}
4930 }
4931 
4932 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4933 			      struct alloc_chunk_ctl *ctl,
4934 			      struct btrfs_device_info *devices_info)
4935 {
4936 	struct btrfs_fs_info *info = fs_devices->fs_info;
4937 	struct btrfs_device *device;
4938 	u64 total_avail;
4939 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4940 	int ret;
4941 	int ndevs = 0;
4942 	u64 max_avail;
4943 	u64 dev_offset;
4944 
4945 	/*
4946 	 * in the first pass through the devices list, we gather information
4947 	 * about the available holes on each device.
4948 	 */
4949 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4950 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4951 			WARN(1, KERN_ERR
4952 			       "BTRFS: read-only device in alloc_list\n");
4953 			continue;
4954 		}
4955 
4956 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4957 					&device->dev_state) ||
4958 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4959 			continue;
4960 
4961 		if (device->total_bytes > device->bytes_used)
4962 			total_avail = device->total_bytes - device->bytes_used;
4963 		else
4964 			total_avail = 0;
4965 
4966 		/* If there is no space on this device, skip it. */
4967 		if (total_avail < ctl->dev_extent_min)
4968 			continue;
4969 
4970 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4971 					   &max_avail);
4972 		if (ret && ret != -ENOSPC)
4973 			return ret;
4974 
4975 		if (ret == 0)
4976 			max_avail = dev_extent_want;
4977 
4978 		if (max_avail < ctl->dev_extent_min) {
4979 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4980 				btrfs_debug(info,
4981 			"%s: devid %llu has no free space, have=%llu want=%llu",
4982 					    __func__, device->devid, max_avail,
4983 					    ctl->dev_extent_min);
4984 			continue;
4985 		}
4986 
4987 		if (ndevs == fs_devices->rw_devices) {
4988 			WARN(1, "%s: found more than %llu devices\n",
4989 			     __func__, fs_devices->rw_devices);
4990 			break;
4991 		}
4992 		devices_info[ndevs].dev_offset = dev_offset;
4993 		devices_info[ndevs].max_avail = max_avail;
4994 		devices_info[ndevs].total_avail = total_avail;
4995 		devices_info[ndevs].dev = device;
4996 		++ndevs;
4997 	}
4998 	ctl->ndevs = ndevs;
4999 
5000 	/*
5001 	 * now sort the devices by hole size / available space
5002 	 */
5003 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5004 	     btrfs_cmp_device_info, NULL);
5005 
5006 	return 0;
5007 }
5008 
5009 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5010 				      struct btrfs_device_info *devices_info)
5011 {
5012 	/* Number of stripes that count for block group size */
5013 	int data_stripes;
5014 
5015 	/*
5016 	 * The primary goal is to maximize the number of stripes, so use as
5017 	 * many devices as possible, even if the stripes are not maximum sized.
5018 	 *
5019 	 * The DUP profile stores more than one stripe per device, the
5020 	 * max_avail is the total size so we have to adjust.
5021 	 */
5022 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5023 				   ctl->dev_stripes);
5024 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5025 
5026 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5027 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5028 
5029 	/*
5030 	 * Use the number of data stripes to figure out how big this chunk is
5031 	 * really going to be in terms of logical address space, and compare
5032 	 * that answer with the max chunk size. If it's higher, we try to
5033 	 * reduce stripe_size.
5034 	 */
5035 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5036 		/*
5037 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5038 		 * then use it, unless it ends up being even bigger than the
5039 		 * previous value we had already.
5040 		 */
5041 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5042 							data_stripes), SZ_16M),
5043 				       ctl->stripe_size);
5044 	}
5045 
5046 	/* Align to BTRFS_STRIPE_LEN */
5047 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5048 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5049 
5050 	return 0;
5051 }
5052 
5053 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5054 			      struct alloc_chunk_ctl *ctl,
5055 			      struct btrfs_device_info *devices_info)
5056 {
5057 	struct btrfs_fs_info *info = fs_devices->fs_info;
5058 
5059 	/*
5060 	 * Round down to number of usable stripes, devs_increment can be any
5061 	 * number so we can't use round_down() that requires power of 2, while
5062 	 * rounddown is safe.
5063 	 */
5064 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5065 
5066 	if (ctl->ndevs < ctl->devs_min) {
5067 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5068 			btrfs_debug(info,
5069 	"%s: not enough devices with free space: have=%d minimum required=%d",
5070 				    __func__, ctl->ndevs, ctl->devs_min);
5071 		}
5072 		return -ENOSPC;
5073 	}
5074 
5075 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5076 
5077 	switch (fs_devices->chunk_alloc_policy) {
5078 	case BTRFS_CHUNK_ALLOC_REGULAR:
5079 		return decide_stripe_size_regular(ctl, devices_info);
5080 	default:
5081 		BUG();
5082 	}
5083 }
5084 
5085 static int create_chunk(struct btrfs_trans_handle *trans,
5086 			struct alloc_chunk_ctl *ctl,
5087 			struct btrfs_device_info *devices_info)
5088 {
5089 	struct btrfs_fs_info *info = trans->fs_info;
5090 	struct map_lookup *map = NULL;
5091 	struct extent_map_tree *em_tree;
5092 	struct extent_map *em;
5093 	u64 start = ctl->start;
5094 	u64 type = ctl->type;
5095 	int ret;
5096 	int i;
5097 	int j;
5098 
5099 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5100 	if (!map)
5101 		return -ENOMEM;
5102 	map->num_stripes = ctl->num_stripes;
5103 
5104 	for (i = 0; i < ctl->ndevs; ++i) {
5105 		for (j = 0; j < ctl->dev_stripes; ++j) {
5106 			int s = i * ctl->dev_stripes + j;
5107 			map->stripes[s].dev = devices_info[i].dev;
5108 			map->stripes[s].physical = devices_info[i].dev_offset +
5109 						   j * ctl->stripe_size;
5110 		}
5111 	}
5112 	map->stripe_len = BTRFS_STRIPE_LEN;
5113 	map->io_align = BTRFS_STRIPE_LEN;
5114 	map->io_width = BTRFS_STRIPE_LEN;
5115 	map->type = type;
5116 	map->sub_stripes = ctl->sub_stripes;
5117 
5118 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5119 
5120 	em = alloc_extent_map();
5121 	if (!em) {
5122 		kfree(map);
5123 		return -ENOMEM;
5124 	}
5125 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5126 	em->map_lookup = map;
5127 	em->start = start;
5128 	em->len = ctl->chunk_size;
5129 	em->block_start = 0;
5130 	em->block_len = em->len;
5131 	em->orig_block_len = ctl->stripe_size;
5132 
5133 	em_tree = &info->mapping_tree;
5134 	write_lock(&em_tree->lock);
5135 	ret = add_extent_mapping(em_tree, em, 0);
5136 	if (ret) {
5137 		write_unlock(&em_tree->lock);
5138 		free_extent_map(em);
5139 		return ret;
5140 	}
5141 	write_unlock(&em_tree->lock);
5142 
5143 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5144 	if (ret)
5145 		goto error_del_extent;
5146 
5147 	for (i = 0; i < map->num_stripes; i++) {
5148 		struct btrfs_device *dev = map->stripes[i].dev;
5149 
5150 		btrfs_device_set_bytes_used(dev,
5151 					    dev->bytes_used + ctl->stripe_size);
5152 		if (list_empty(&dev->post_commit_list))
5153 			list_add_tail(&dev->post_commit_list,
5154 				      &trans->transaction->dev_update_list);
5155 	}
5156 
5157 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5158 		     &info->free_chunk_space);
5159 
5160 	free_extent_map(em);
5161 	check_raid56_incompat_flag(info, type);
5162 	check_raid1c34_incompat_flag(info, type);
5163 
5164 	return 0;
5165 
5166 error_del_extent:
5167 	write_lock(&em_tree->lock);
5168 	remove_extent_mapping(em_tree, em);
5169 	write_unlock(&em_tree->lock);
5170 
5171 	/* One for our allocation */
5172 	free_extent_map(em);
5173 	/* One for the tree reference */
5174 	free_extent_map(em);
5175 
5176 	return ret;
5177 }
5178 
5179 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5180 {
5181 	struct btrfs_fs_info *info = trans->fs_info;
5182 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5183 	struct btrfs_device_info *devices_info = NULL;
5184 	struct alloc_chunk_ctl ctl;
5185 	int ret;
5186 
5187 	lockdep_assert_held(&info->chunk_mutex);
5188 
5189 	if (!alloc_profile_is_valid(type, 0)) {
5190 		ASSERT(0);
5191 		return -EINVAL;
5192 	}
5193 
5194 	if (list_empty(&fs_devices->alloc_list)) {
5195 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5196 			btrfs_debug(info, "%s: no writable device", __func__);
5197 		return -ENOSPC;
5198 	}
5199 
5200 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5201 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5202 		ASSERT(0);
5203 		return -EINVAL;
5204 	}
5205 
5206 	ctl.start = find_next_chunk(info);
5207 	ctl.type = type;
5208 	init_alloc_chunk_ctl(fs_devices, &ctl);
5209 
5210 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5211 			       GFP_NOFS);
5212 	if (!devices_info)
5213 		return -ENOMEM;
5214 
5215 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5216 	if (ret < 0)
5217 		goto out;
5218 
5219 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5220 	if (ret < 0)
5221 		goto out;
5222 
5223 	ret = create_chunk(trans, &ctl, devices_info);
5224 
5225 out:
5226 	kfree(devices_info);
5227 	return ret;
5228 }
5229 
5230 /*
5231  * Chunk allocation falls into two parts. The first part does work
5232  * that makes the new allocated chunk usable, but does not do any operation
5233  * that modifies the chunk tree. The second part does the work that
5234  * requires modifying the chunk tree. This division is important for the
5235  * bootstrap process of adding storage to a seed btrfs.
5236  */
5237 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5238 			     u64 chunk_offset, u64 chunk_size)
5239 {
5240 	struct btrfs_fs_info *fs_info = trans->fs_info;
5241 	struct btrfs_root *extent_root = fs_info->extent_root;
5242 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5243 	struct btrfs_key key;
5244 	struct btrfs_device *device;
5245 	struct btrfs_chunk *chunk;
5246 	struct btrfs_stripe *stripe;
5247 	struct extent_map *em;
5248 	struct map_lookup *map;
5249 	size_t item_size;
5250 	u64 dev_offset;
5251 	u64 stripe_size;
5252 	int i = 0;
5253 	int ret = 0;
5254 
5255 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5256 	if (IS_ERR(em))
5257 		return PTR_ERR(em);
5258 
5259 	map = em->map_lookup;
5260 	item_size = btrfs_chunk_item_size(map->num_stripes);
5261 	stripe_size = em->orig_block_len;
5262 
5263 	chunk = kzalloc(item_size, GFP_NOFS);
5264 	if (!chunk) {
5265 		ret = -ENOMEM;
5266 		goto out;
5267 	}
5268 
5269 	/*
5270 	 * Take the device list mutex to prevent races with the final phase of
5271 	 * a device replace operation that replaces the device object associated
5272 	 * with the map's stripes, because the device object's id can change
5273 	 * at any time during that final phase of the device replace operation
5274 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5275 	 */
5276 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5277 	for (i = 0; i < map->num_stripes; i++) {
5278 		device = map->stripes[i].dev;
5279 		dev_offset = map->stripes[i].physical;
5280 
5281 		ret = btrfs_update_device(trans, device);
5282 		if (ret)
5283 			break;
5284 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5285 					     dev_offset, stripe_size);
5286 		if (ret)
5287 			break;
5288 	}
5289 	if (ret) {
5290 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5291 		goto out;
5292 	}
5293 
5294 	stripe = &chunk->stripe;
5295 	for (i = 0; i < map->num_stripes; i++) {
5296 		device = map->stripes[i].dev;
5297 		dev_offset = map->stripes[i].physical;
5298 
5299 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5300 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5301 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5302 		stripe++;
5303 	}
5304 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5305 
5306 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5307 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5308 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5309 	btrfs_set_stack_chunk_type(chunk, map->type);
5310 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5311 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5312 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5313 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5314 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5315 
5316 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5317 	key.type = BTRFS_CHUNK_ITEM_KEY;
5318 	key.offset = chunk_offset;
5319 
5320 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5321 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5322 		/*
5323 		 * TODO: Cleanup of inserted chunk root in case of
5324 		 * failure.
5325 		 */
5326 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5327 	}
5328 
5329 out:
5330 	kfree(chunk);
5331 	free_extent_map(em);
5332 	return ret;
5333 }
5334 
5335 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5336 {
5337 	struct btrfs_fs_info *fs_info = trans->fs_info;
5338 	u64 alloc_profile;
5339 	int ret;
5340 
5341 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5342 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5343 	if (ret)
5344 		return ret;
5345 
5346 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5347 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5348 	return ret;
5349 }
5350 
5351 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5352 {
5353 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5354 
5355 	return btrfs_raid_array[index].tolerated_failures;
5356 }
5357 
5358 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5359 {
5360 	struct extent_map *em;
5361 	struct map_lookup *map;
5362 	int readonly = 0;
5363 	int miss_ndevs = 0;
5364 	int i;
5365 
5366 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5367 	if (IS_ERR(em))
5368 		return 1;
5369 
5370 	map = em->map_lookup;
5371 	for (i = 0; i < map->num_stripes; i++) {
5372 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5373 					&map->stripes[i].dev->dev_state)) {
5374 			miss_ndevs++;
5375 			continue;
5376 		}
5377 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5378 					&map->stripes[i].dev->dev_state)) {
5379 			readonly = 1;
5380 			goto end;
5381 		}
5382 	}
5383 
5384 	/*
5385 	 * If the number of missing devices is larger than max errors,
5386 	 * we can not write the data into that chunk successfully, so
5387 	 * set it readonly.
5388 	 */
5389 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5390 		readonly = 1;
5391 end:
5392 	free_extent_map(em);
5393 	return readonly;
5394 }
5395 
5396 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5397 {
5398 	struct extent_map *em;
5399 
5400 	while (1) {
5401 		write_lock(&tree->lock);
5402 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5403 		if (em)
5404 			remove_extent_mapping(tree, em);
5405 		write_unlock(&tree->lock);
5406 		if (!em)
5407 			break;
5408 		/* once for us */
5409 		free_extent_map(em);
5410 		/* once for the tree */
5411 		free_extent_map(em);
5412 	}
5413 }
5414 
5415 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5416 {
5417 	struct extent_map *em;
5418 	struct map_lookup *map;
5419 	int ret;
5420 
5421 	em = btrfs_get_chunk_map(fs_info, logical, len);
5422 	if (IS_ERR(em))
5423 		/*
5424 		 * We could return errors for these cases, but that could get
5425 		 * ugly and we'd probably do the same thing which is just not do
5426 		 * anything else and exit, so return 1 so the callers don't try
5427 		 * to use other copies.
5428 		 */
5429 		return 1;
5430 
5431 	map = em->map_lookup;
5432 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5433 		ret = map->num_stripes;
5434 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5435 		ret = map->sub_stripes;
5436 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5437 		ret = 2;
5438 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5439 		/*
5440 		 * There could be two corrupted data stripes, we need
5441 		 * to loop retry in order to rebuild the correct data.
5442 		 *
5443 		 * Fail a stripe at a time on every retry except the
5444 		 * stripe under reconstruction.
5445 		 */
5446 		ret = map->num_stripes;
5447 	else
5448 		ret = 1;
5449 	free_extent_map(em);
5450 
5451 	down_read(&fs_info->dev_replace.rwsem);
5452 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5453 	    fs_info->dev_replace.tgtdev)
5454 		ret++;
5455 	up_read(&fs_info->dev_replace.rwsem);
5456 
5457 	return ret;
5458 }
5459 
5460 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5461 				    u64 logical)
5462 {
5463 	struct extent_map *em;
5464 	struct map_lookup *map;
5465 	unsigned long len = fs_info->sectorsize;
5466 
5467 	em = btrfs_get_chunk_map(fs_info, logical, len);
5468 
5469 	if (!WARN_ON(IS_ERR(em))) {
5470 		map = em->map_lookup;
5471 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5472 			len = map->stripe_len * nr_data_stripes(map);
5473 		free_extent_map(em);
5474 	}
5475 	return len;
5476 }
5477 
5478 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5479 {
5480 	struct extent_map *em;
5481 	struct map_lookup *map;
5482 	int ret = 0;
5483 
5484 	em = btrfs_get_chunk_map(fs_info, logical, len);
5485 
5486 	if(!WARN_ON(IS_ERR(em))) {
5487 		map = em->map_lookup;
5488 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5489 			ret = 1;
5490 		free_extent_map(em);
5491 	}
5492 	return ret;
5493 }
5494 
5495 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5496 			    struct map_lookup *map, int first,
5497 			    int dev_replace_is_ongoing)
5498 {
5499 	int i;
5500 	int num_stripes;
5501 	int preferred_mirror;
5502 	int tolerance;
5503 	struct btrfs_device *srcdev;
5504 
5505 	ASSERT((map->type &
5506 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5507 
5508 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5509 		num_stripes = map->sub_stripes;
5510 	else
5511 		num_stripes = map->num_stripes;
5512 
5513 	switch (fs_info->fs_devices->read_policy) {
5514 	default:
5515 		/* Shouldn't happen, just warn and use pid instead of failing */
5516 		btrfs_warn_rl(fs_info,
5517 			      "unknown read_policy type %u, reset to pid",
5518 			      fs_info->fs_devices->read_policy);
5519 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5520 		fallthrough;
5521 	case BTRFS_READ_POLICY_PID:
5522 		preferred_mirror = first + (current->pid % num_stripes);
5523 		break;
5524 	}
5525 
5526 	if (dev_replace_is_ongoing &&
5527 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5528 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5529 		srcdev = fs_info->dev_replace.srcdev;
5530 	else
5531 		srcdev = NULL;
5532 
5533 	/*
5534 	 * try to avoid the drive that is the source drive for a
5535 	 * dev-replace procedure, only choose it if no other non-missing
5536 	 * mirror is available
5537 	 */
5538 	for (tolerance = 0; tolerance < 2; tolerance++) {
5539 		if (map->stripes[preferred_mirror].dev->bdev &&
5540 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5541 			return preferred_mirror;
5542 		for (i = first; i < first + num_stripes; i++) {
5543 			if (map->stripes[i].dev->bdev &&
5544 			    (tolerance || map->stripes[i].dev != srcdev))
5545 				return i;
5546 		}
5547 	}
5548 
5549 	/* we couldn't find one that doesn't fail.  Just return something
5550 	 * and the io error handling code will clean up eventually
5551 	 */
5552 	return preferred_mirror;
5553 }
5554 
5555 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5556 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5557 {
5558 	int i;
5559 	int again = 1;
5560 
5561 	while (again) {
5562 		again = 0;
5563 		for (i = 0; i < num_stripes - 1; i++) {
5564 			/* Swap if parity is on a smaller index */
5565 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5566 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5567 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5568 				again = 1;
5569 			}
5570 		}
5571 	}
5572 }
5573 
5574 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5575 {
5576 	struct btrfs_bio *bbio = kzalloc(
5577 		 /* the size of the btrfs_bio */
5578 		sizeof(struct btrfs_bio) +
5579 		/* plus the variable array for the stripes */
5580 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5581 		/* plus the variable array for the tgt dev */
5582 		sizeof(int) * (real_stripes) +
5583 		/*
5584 		 * plus the raid_map, which includes both the tgt dev
5585 		 * and the stripes
5586 		 */
5587 		sizeof(u64) * (total_stripes),
5588 		GFP_NOFS|__GFP_NOFAIL);
5589 
5590 	atomic_set(&bbio->error, 0);
5591 	refcount_set(&bbio->refs, 1);
5592 
5593 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5594 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5595 
5596 	return bbio;
5597 }
5598 
5599 void btrfs_get_bbio(struct btrfs_bio *bbio)
5600 {
5601 	WARN_ON(!refcount_read(&bbio->refs));
5602 	refcount_inc(&bbio->refs);
5603 }
5604 
5605 void btrfs_put_bbio(struct btrfs_bio *bbio)
5606 {
5607 	if (!bbio)
5608 		return;
5609 	if (refcount_dec_and_test(&bbio->refs))
5610 		kfree(bbio);
5611 }
5612 
5613 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5614 /*
5615  * Please note that, discard won't be sent to target device of device
5616  * replace.
5617  */
5618 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5619 					 u64 logical, u64 *length_ret,
5620 					 struct btrfs_bio **bbio_ret)
5621 {
5622 	struct extent_map *em;
5623 	struct map_lookup *map;
5624 	struct btrfs_bio *bbio;
5625 	u64 length = *length_ret;
5626 	u64 offset;
5627 	u64 stripe_nr;
5628 	u64 stripe_nr_end;
5629 	u64 stripe_end_offset;
5630 	u64 stripe_cnt;
5631 	u64 stripe_len;
5632 	u64 stripe_offset;
5633 	u64 num_stripes;
5634 	u32 stripe_index;
5635 	u32 factor = 0;
5636 	u32 sub_stripes = 0;
5637 	u64 stripes_per_dev = 0;
5638 	u32 remaining_stripes = 0;
5639 	u32 last_stripe = 0;
5640 	int ret = 0;
5641 	int i;
5642 
5643 	/* discard always return a bbio */
5644 	ASSERT(bbio_ret);
5645 
5646 	em = btrfs_get_chunk_map(fs_info, logical, length);
5647 	if (IS_ERR(em))
5648 		return PTR_ERR(em);
5649 
5650 	map = em->map_lookup;
5651 	/* we don't discard raid56 yet */
5652 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5653 		ret = -EOPNOTSUPP;
5654 		goto out;
5655 	}
5656 
5657 	offset = logical - em->start;
5658 	length = min_t(u64, em->start + em->len - logical, length);
5659 	*length_ret = length;
5660 
5661 	stripe_len = map->stripe_len;
5662 	/*
5663 	 * stripe_nr counts the total number of stripes we have to stride
5664 	 * to get to this block
5665 	 */
5666 	stripe_nr = div64_u64(offset, stripe_len);
5667 
5668 	/* stripe_offset is the offset of this block in its stripe */
5669 	stripe_offset = offset - stripe_nr * stripe_len;
5670 
5671 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5672 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5673 	stripe_cnt = stripe_nr_end - stripe_nr;
5674 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5675 			    (offset + length);
5676 	/*
5677 	 * after this, stripe_nr is the number of stripes on this
5678 	 * device we have to walk to find the data, and stripe_index is
5679 	 * the number of our device in the stripe array
5680 	 */
5681 	num_stripes = 1;
5682 	stripe_index = 0;
5683 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5684 			 BTRFS_BLOCK_GROUP_RAID10)) {
5685 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5686 			sub_stripes = 1;
5687 		else
5688 			sub_stripes = map->sub_stripes;
5689 
5690 		factor = map->num_stripes / sub_stripes;
5691 		num_stripes = min_t(u64, map->num_stripes,
5692 				    sub_stripes * stripe_cnt);
5693 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5694 		stripe_index *= sub_stripes;
5695 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5696 					      &remaining_stripes);
5697 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5698 		last_stripe *= sub_stripes;
5699 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5700 				BTRFS_BLOCK_GROUP_DUP)) {
5701 		num_stripes = map->num_stripes;
5702 	} else {
5703 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5704 					&stripe_index);
5705 	}
5706 
5707 	bbio = alloc_btrfs_bio(num_stripes, 0);
5708 	if (!bbio) {
5709 		ret = -ENOMEM;
5710 		goto out;
5711 	}
5712 
5713 	for (i = 0; i < num_stripes; i++) {
5714 		bbio->stripes[i].physical =
5715 			map->stripes[stripe_index].physical +
5716 			stripe_offset + stripe_nr * map->stripe_len;
5717 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5718 
5719 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5720 				 BTRFS_BLOCK_GROUP_RAID10)) {
5721 			bbio->stripes[i].length = stripes_per_dev *
5722 				map->stripe_len;
5723 
5724 			if (i / sub_stripes < remaining_stripes)
5725 				bbio->stripes[i].length +=
5726 					map->stripe_len;
5727 
5728 			/*
5729 			 * Special for the first stripe and
5730 			 * the last stripe:
5731 			 *
5732 			 * |-------|...|-------|
5733 			 *     |----------|
5734 			 *    off     end_off
5735 			 */
5736 			if (i < sub_stripes)
5737 				bbio->stripes[i].length -=
5738 					stripe_offset;
5739 
5740 			if (stripe_index >= last_stripe &&
5741 			    stripe_index <= (last_stripe +
5742 					     sub_stripes - 1))
5743 				bbio->stripes[i].length -=
5744 					stripe_end_offset;
5745 
5746 			if (i == sub_stripes - 1)
5747 				stripe_offset = 0;
5748 		} else {
5749 			bbio->stripes[i].length = length;
5750 		}
5751 
5752 		stripe_index++;
5753 		if (stripe_index == map->num_stripes) {
5754 			stripe_index = 0;
5755 			stripe_nr++;
5756 		}
5757 	}
5758 
5759 	*bbio_ret = bbio;
5760 	bbio->map_type = map->type;
5761 	bbio->num_stripes = num_stripes;
5762 out:
5763 	free_extent_map(em);
5764 	return ret;
5765 }
5766 
5767 /*
5768  * In dev-replace case, for repair case (that's the only case where the mirror
5769  * is selected explicitly when calling btrfs_map_block), blocks left of the
5770  * left cursor can also be read from the target drive.
5771  *
5772  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5773  * array of stripes.
5774  * For READ, it also needs to be supported using the same mirror number.
5775  *
5776  * If the requested block is not left of the left cursor, EIO is returned. This
5777  * can happen because btrfs_num_copies() returns one more in the dev-replace
5778  * case.
5779  */
5780 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5781 					 u64 logical, u64 length,
5782 					 u64 srcdev_devid, int *mirror_num,
5783 					 u64 *physical)
5784 {
5785 	struct btrfs_bio *bbio = NULL;
5786 	int num_stripes;
5787 	int index_srcdev = 0;
5788 	int found = 0;
5789 	u64 physical_of_found = 0;
5790 	int i;
5791 	int ret = 0;
5792 
5793 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5794 				logical, &length, &bbio, 0, 0);
5795 	if (ret) {
5796 		ASSERT(bbio == NULL);
5797 		return ret;
5798 	}
5799 
5800 	num_stripes = bbio->num_stripes;
5801 	if (*mirror_num > num_stripes) {
5802 		/*
5803 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5804 		 * that means that the requested area is not left of the left
5805 		 * cursor
5806 		 */
5807 		btrfs_put_bbio(bbio);
5808 		return -EIO;
5809 	}
5810 
5811 	/*
5812 	 * process the rest of the function using the mirror_num of the source
5813 	 * drive. Therefore look it up first.  At the end, patch the device
5814 	 * pointer to the one of the target drive.
5815 	 */
5816 	for (i = 0; i < num_stripes; i++) {
5817 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5818 			continue;
5819 
5820 		/*
5821 		 * In case of DUP, in order to keep it simple, only add the
5822 		 * mirror with the lowest physical address
5823 		 */
5824 		if (found &&
5825 		    physical_of_found <= bbio->stripes[i].physical)
5826 			continue;
5827 
5828 		index_srcdev = i;
5829 		found = 1;
5830 		physical_of_found = bbio->stripes[i].physical;
5831 	}
5832 
5833 	btrfs_put_bbio(bbio);
5834 
5835 	ASSERT(found);
5836 	if (!found)
5837 		return -EIO;
5838 
5839 	*mirror_num = index_srcdev + 1;
5840 	*physical = physical_of_found;
5841 	return ret;
5842 }
5843 
5844 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5845 				      struct btrfs_bio **bbio_ret,
5846 				      struct btrfs_dev_replace *dev_replace,
5847 				      int *num_stripes_ret, int *max_errors_ret)
5848 {
5849 	struct btrfs_bio *bbio = *bbio_ret;
5850 	u64 srcdev_devid = dev_replace->srcdev->devid;
5851 	int tgtdev_indexes = 0;
5852 	int num_stripes = *num_stripes_ret;
5853 	int max_errors = *max_errors_ret;
5854 	int i;
5855 
5856 	if (op == BTRFS_MAP_WRITE) {
5857 		int index_where_to_add;
5858 
5859 		/*
5860 		 * duplicate the write operations while the dev replace
5861 		 * procedure is running. Since the copying of the old disk to
5862 		 * the new disk takes place at run time while the filesystem is
5863 		 * mounted writable, the regular write operations to the old
5864 		 * disk have to be duplicated to go to the new disk as well.
5865 		 *
5866 		 * Note that device->missing is handled by the caller, and that
5867 		 * the write to the old disk is already set up in the stripes
5868 		 * array.
5869 		 */
5870 		index_where_to_add = num_stripes;
5871 		for (i = 0; i < num_stripes; i++) {
5872 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5873 				/* write to new disk, too */
5874 				struct btrfs_bio_stripe *new =
5875 					bbio->stripes + index_where_to_add;
5876 				struct btrfs_bio_stripe *old =
5877 					bbio->stripes + i;
5878 
5879 				new->physical = old->physical;
5880 				new->length = old->length;
5881 				new->dev = dev_replace->tgtdev;
5882 				bbio->tgtdev_map[i] = index_where_to_add;
5883 				index_where_to_add++;
5884 				max_errors++;
5885 				tgtdev_indexes++;
5886 			}
5887 		}
5888 		num_stripes = index_where_to_add;
5889 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5890 		int index_srcdev = 0;
5891 		int found = 0;
5892 		u64 physical_of_found = 0;
5893 
5894 		/*
5895 		 * During the dev-replace procedure, the target drive can also
5896 		 * be used to read data in case it is needed to repair a corrupt
5897 		 * block elsewhere. This is possible if the requested area is
5898 		 * left of the left cursor. In this area, the target drive is a
5899 		 * full copy of the source drive.
5900 		 */
5901 		for (i = 0; i < num_stripes; i++) {
5902 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5903 				/*
5904 				 * In case of DUP, in order to keep it simple,
5905 				 * only add the mirror with the lowest physical
5906 				 * address
5907 				 */
5908 				if (found &&
5909 				    physical_of_found <=
5910 				     bbio->stripes[i].physical)
5911 					continue;
5912 				index_srcdev = i;
5913 				found = 1;
5914 				physical_of_found = bbio->stripes[i].physical;
5915 			}
5916 		}
5917 		if (found) {
5918 			struct btrfs_bio_stripe *tgtdev_stripe =
5919 				bbio->stripes + num_stripes;
5920 
5921 			tgtdev_stripe->physical = physical_of_found;
5922 			tgtdev_stripe->length =
5923 				bbio->stripes[index_srcdev].length;
5924 			tgtdev_stripe->dev = dev_replace->tgtdev;
5925 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5926 
5927 			tgtdev_indexes++;
5928 			num_stripes++;
5929 		}
5930 	}
5931 
5932 	*num_stripes_ret = num_stripes;
5933 	*max_errors_ret = max_errors;
5934 	bbio->num_tgtdevs = tgtdev_indexes;
5935 	*bbio_ret = bbio;
5936 }
5937 
5938 static bool need_full_stripe(enum btrfs_map_op op)
5939 {
5940 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5941 }
5942 
5943 /*
5944  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5945  *		       tuple. This information is used to calculate how big a
5946  *		       particular bio can get before it straddles a stripe.
5947  *
5948  * @fs_info - the filesystem
5949  * @logical - address that we want to figure out the geometry of
5950  * @len	    - the length of IO we are going to perform, starting at @logical
5951  * @op      - type of operation - write or read
5952  * @io_geom - pointer used to return values
5953  *
5954  * Returns < 0 in case a chunk for the given logical address cannot be found,
5955  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5956  */
5957 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5958 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5959 {
5960 	struct extent_map *em;
5961 	struct map_lookup *map;
5962 	u64 offset;
5963 	u64 stripe_offset;
5964 	u64 stripe_nr;
5965 	u64 stripe_len;
5966 	u64 raid56_full_stripe_start = (u64)-1;
5967 	int data_stripes;
5968 	int ret = 0;
5969 
5970 	ASSERT(op != BTRFS_MAP_DISCARD);
5971 
5972 	em = btrfs_get_chunk_map(fs_info, logical, len);
5973 	if (IS_ERR(em))
5974 		return PTR_ERR(em);
5975 
5976 	map = em->map_lookup;
5977 	/* Offset of this logical address in the chunk */
5978 	offset = logical - em->start;
5979 	/* Len of a stripe in a chunk */
5980 	stripe_len = map->stripe_len;
5981 	/* Stripe wher this block falls in */
5982 	stripe_nr = div64_u64(offset, stripe_len);
5983 	/* Offset of stripe in the chunk */
5984 	stripe_offset = stripe_nr * stripe_len;
5985 	if (offset < stripe_offset) {
5986 		btrfs_crit(fs_info,
5987 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5988 			stripe_offset, offset, em->start, logical, stripe_len);
5989 		ret = -EINVAL;
5990 		goto out;
5991 	}
5992 
5993 	/* stripe_offset is the offset of this block in its stripe */
5994 	stripe_offset = offset - stripe_offset;
5995 	data_stripes = nr_data_stripes(map);
5996 
5997 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5998 		u64 max_len = stripe_len - stripe_offset;
5999 
6000 		/*
6001 		 * In case of raid56, we need to know the stripe aligned start
6002 		 */
6003 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6004 			unsigned long full_stripe_len = stripe_len * data_stripes;
6005 			raid56_full_stripe_start = offset;
6006 
6007 			/*
6008 			 * Allow a write of a full stripe, but make sure we
6009 			 * don't allow straddling of stripes
6010 			 */
6011 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6012 					full_stripe_len);
6013 			raid56_full_stripe_start *= full_stripe_len;
6014 
6015 			/*
6016 			 * For writes to RAID[56], allow a full stripeset across
6017 			 * all disks. For other RAID types and for RAID[56]
6018 			 * reads, just allow a single stripe (on a single disk).
6019 			 */
6020 			if (op == BTRFS_MAP_WRITE) {
6021 				max_len = stripe_len * data_stripes -
6022 					  (offset - raid56_full_stripe_start);
6023 			}
6024 		}
6025 		len = min_t(u64, em->len - offset, max_len);
6026 	} else {
6027 		len = em->len - offset;
6028 	}
6029 
6030 	io_geom->len = len;
6031 	io_geom->offset = offset;
6032 	io_geom->stripe_len = stripe_len;
6033 	io_geom->stripe_nr = stripe_nr;
6034 	io_geom->stripe_offset = stripe_offset;
6035 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6036 
6037 out:
6038 	/* once for us */
6039 	free_extent_map(em);
6040 	return ret;
6041 }
6042 
6043 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6044 			     enum btrfs_map_op op,
6045 			     u64 logical, u64 *length,
6046 			     struct btrfs_bio **bbio_ret,
6047 			     int mirror_num, int need_raid_map)
6048 {
6049 	struct extent_map *em;
6050 	struct map_lookup *map;
6051 	u64 stripe_offset;
6052 	u64 stripe_nr;
6053 	u64 stripe_len;
6054 	u32 stripe_index;
6055 	int data_stripes;
6056 	int i;
6057 	int ret = 0;
6058 	int num_stripes;
6059 	int max_errors = 0;
6060 	int tgtdev_indexes = 0;
6061 	struct btrfs_bio *bbio = NULL;
6062 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6063 	int dev_replace_is_ongoing = 0;
6064 	int num_alloc_stripes;
6065 	int patch_the_first_stripe_for_dev_replace = 0;
6066 	u64 physical_to_patch_in_first_stripe = 0;
6067 	u64 raid56_full_stripe_start = (u64)-1;
6068 	struct btrfs_io_geometry geom;
6069 
6070 	ASSERT(bbio_ret);
6071 	ASSERT(op != BTRFS_MAP_DISCARD);
6072 
6073 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6074 	if (ret < 0)
6075 		return ret;
6076 
6077 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6078 	ASSERT(!IS_ERR(em));
6079 	map = em->map_lookup;
6080 
6081 	*length = geom.len;
6082 	stripe_len = geom.stripe_len;
6083 	stripe_nr = geom.stripe_nr;
6084 	stripe_offset = geom.stripe_offset;
6085 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6086 	data_stripes = nr_data_stripes(map);
6087 
6088 	down_read(&dev_replace->rwsem);
6089 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6090 	/*
6091 	 * Hold the semaphore for read during the whole operation, write is
6092 	 * requested at commit time but must wait.
6093 	 */
6094 	if (!dev_replace_is_ongoing)
6095 		up_read(&dev_replace->rwsem);
6096 
6097 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6098 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6099 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6100 						    dev_replace->srcdev->devid,
6101 						    &mirror_num,
6102 					    &physical_to_patch_in_first_stripe);
6103 		if (ret)
6104 			goto out;
6105 		else
6106 			patch_the_first_stripe_for_dev_replace = 1;
6107 	} else if (mirror_num > map->num_stripes) {
6108 		mirror_num = 0;
6109 	}
6110 
6111 	num_stripes = 1;
6112 	stripe_index = 0;
6113 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6114 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6115 				&stripe_index);
6116 		if (!need_full_stripe(op))
6117 			mirror_num = 1;
6118 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6119 		if (need_full_stripe(op))
6120 			num_stripes = map->num_stripes;
6121 		else if (mirror_num)
6122 			stripe_index = mirror_num - 1;
6123 		else {
6124 			stripe_index = find_live_mirror(fs_info, map, 0,
6125 					    dev_replace_is_ongoing);
6126 			mirror_num = stripe_index + 1;
6127 		}
6128 
6129 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6130 		if (need_full_stripe(op)) {
6131 			num_stripes = map->num_stripes;
6132 		} else if (mirror_num) {
6133 			stripe_index = mirror_num - 1;
6134 		} else {
6135 			mirror_num = 1;
6136 		}
6137 
6138 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6139 		u32 factor = map->num_stripes / map->sub_stripes;
6140 
6141 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6142 		stripe_index *= map->sub_stripes;
6143 
6144 		if (need_full_stripe(op))
6145 			num_stripes = map->sub_stripes;
6146 		else if (mirror_num)
6147 			stripe_index += mirror_num - 1;
6148 		else {
6149 			int old_stripe_index = stripe_index;
6150 			stripe_index = find_live_mirror(fs_info, map,
6151 					      stripe_index,
6152 					      dev_replace_is_ongoing);
6153 			mirror_num = stripe_index - old_stripe_index + 1;
6154 		}
6155 
6156 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6157 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6158 			/* push stripe_nr back to the start of the full stripe */
6159 			stripe_nr = div64_u64(raid56_full_stripe_start,
6160 					stripe_len * data_stripes);
6161 
6162 			/* RAID[56] write or recovery. Return all stripes */
6163 			num_stripes = map->num_stripes;
6164 			max_errors = nr_parity_stripes(map);
6165 
6166 			*length = map->stripe_len;
6167 			stripe_index = 0;
6168 			stripe_offset = 0;
6169 		} else {
6170 			/*
6171 			 * Mirror #0 or #1 means the original data block.
6172 			 * Mirror #2 is RAID5 parity block.
6173 			 * Mirror #3 is RAID6 Q block.
6174 			 */
6175 			stripe_nr = div_u64_rem(stripe_nr,
6176 					data_stripes, &stripe_index);
6177 			if (mirror_num > 1)
6178 				stripe_index = data_stripes + mirror_num - 2;
6179 
6180 			/* We distribute the parity blocks across stripes */
6181 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6182 					&stripe_index);
6183 			if (!need_full_stripe(op) && mirror_num <= 1)
6184 				mirror_num = 1;
6185 		}
6186 	} else {
6187 		/*
6188 		 * after this, stripe_nr is the number of stripes on this
6189 		 * device we have to walk to find the data, and stripe_index is
6190 		 * the number of our device in the stripe array
6191 		 */
6192 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6193 				&stripe_index);
6194 		mirror_num = stripe_index + 1;
6195 	}
6196 	if (stripe_index >= map->num_stripes) {
6197 		btrfs_crit(fs_info,
6198 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6199 			   stripe_index, map->num_stripes);
6200 		ret = -EINVAL;
6201 		goto out;
6202 	}
6203 
6204 	num_alloc_stripes = num_stripes;
6205 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6206 		if (op == BTRFS_MAP_WRITE)
6207 			num_alloc_stripes <<= 1;
6208 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6209 			num_alloc_stripes++;
6210 		tgtdev_indexes = num_stripes;
6211 	}
6212 
6213 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6214 	if (!bbio) {
6215 		ret = -ENOMEM;
6216 		goto out;
6217 	}
6218 
6219 	for (i = 0; i < num_stripes; i++) {
6220 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6221 			stripe_offset + stripe_nr * map->stripe_len;
6222 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6223 		stripe_index++;
6224 	}
6225 
6226 	/* build raid_map */
6227 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6228 	    (need_full_stripe(op) || mirror_num > 1)) {
6229 		u64 tmp;
6230 		unsigned rot;
6231 
6232 		/* Work out the disk rotation on this stripe-set */
6233 		div_u64_rem(stripe_nr, num_stripes, &rot);
6234 
6235 		/* Fill in the logical address of each stripe */
6236 		tmp = stripe_nr * data_stripes;
6237 		for (i = 0; i < data_stripes; i++)
6238 			bbio->raid_map[(i+rot) % num_stripes] =
6239 				em->start + (tmp + i) * map->stripe_len;
6240 
6241 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6242 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6243 			bbio->raid_map[(i+rot+1) % num_stripes] =
6244 				RAID6_Q_STRIPE;
6245 
6246 		sort_parity_stripes(bbio, num_stripes);
6247 	}
6248 
6249 	if (need_full_stripe(op))
6250 		max_errors = btrfs_chunk_max_errors(map);
6251 
6252 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6253 	    need_full_stripe(op)) {
6254 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6255 					  &max_errors);
6256 	}
6257 
6258 	*bbio_ret = bbio;
6259 	bbio->map_type = map->type;
6260 	bbio->num_stripes = num_stripes;
6261 	bbio->max_errors = max_errors;
6262 	bbio->mirror_num = mirror_num;
6263 
6264 	/*
6265 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6266 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6267 	 * available as a mirror
6268 	 */
6269 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6270 		WARN_ON(num_stripes > 1);
6271 		bbio->stripes[0].dev = dev_replace->tgtdev;
6272 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6273 		bbio->mirror_num = map->num_stripes + 1;
6274 	}
6275 out:
6276 	if (dev_replace_is_ongoing) {
6277 		lockdep_assert_held(&dev_replace->rwsem);
6278 		/* Unlock and let waiting writers proceed */
6279 		up_read(&dev_replace->rwsem);
6280 	}
6281 	free_extent_map(em);
6282 	return ret;
6283 }
6284 
6285 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6286 		      u64 logical, u64 *length,
6287 		      struct btrfs_bio **bbio_ret, int mirror_num)
6288 {
6289 	if (op == BTRFS_MAP_DISCARD)
6290 		return __btrfs_map_block_for_discard(fs_info, logical,
6291 						     length, bbio_ret);
6292 
6293 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6294 				 mirror_num, 0);
6295 }
6296 
6297 /* For Scrub/replace */
6298 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6299 		     u64 logical, u64 *length,
6300 		     struct btrfs_bio **bbio_ret)
6301 {
6302 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6303 }
6304 
6305 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6306 {
6307 	bio->bi_private = bbio->private;
6308 	bio->bi_end_io = bbio->end_io;
6309 	bio_endio(bio);
6310 
6311 	btrfs_put_bbio(bbio);
6312 }
6313 
6314 static void btrfs_end_bio(struct bio *bio)
6315 {
6316 	struct btrfs_bio *bbio = bio->bi_private;
6317 	int is_orig_bio = 0;
6318 
6319 	if (bio->bi_status) {
6320 		atomic_inc(&bbio->error);
6321 		if (bio->bi_status == BLK_STS_IOERR ||
6322 		    bio->bi_status == BLK_STS_TARGET) {
6323 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6324 
6325 			ASSERT(dev->bdev);
6326 			if (bio_op(bio) == REQ_OP_WRITE)
6327 				btrfs_dev_stat_inc_and_print(dev,
6328 						BTRFS_DEV_STAT_WRITE_ERRS);
6329 			else if (!(bio->bi_opf & REQ_RAHEAD))
6330 				btrfs_dev_stat_inc_and_print(dev,
6331 						BTRFS_DEV_STAT_READ_ERRS);
6332 			if (bio->bi_opf & REQ_PREFLUSH)
6333 				btrfs_dev_stat_inc_and_print(dev,
6334 						BTRFS_DEV_STAT_FLUSH_ERRS);
6335 		}
6336 	}
6337 
6338 	if (bio == bbio->orig_bio)
6339 		is_orig_bio = 1;
6340 
6341 	btrfs_bio_counter_dec(bbio->fs_info);
6342 
6343 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6344 		if (!is_orig_bio) {
6345 			bio_put(bio);
6346 			bio = bbio->orig_bio;
6347 		}
6348 
6349 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6350 		/* only send an error to the higher layers if it is
6351 		 * beyond the tolerance of the btrfs bio
6352 		 */
6353 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6354 			bio->bi_status = BLK_STS_IOERR;
6355 		} else {
6356 			/*
6357 			 * this bio is actually up to date, we didn't
6358 			 * go over the max number of errors
6359 			 */
6360 			bio->bi_status = BLK_STS_OK;
6361 		}
6362 
6363 		btrfs_end_bbio(bbio, bio);
6364 	} else if (!is_orig_bio) {
6365 		bio_put(bio);
6366 	}
6367 }
6368 
6369 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6370 			      u64 physical, struct btrfs_device *dev)
6371 {
6372 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6373 
6374 	bio->bi_private = bbio;
6375 	btrfs_io_bio(bio)->device = dev;
6376 	bio->bi_end_io = btrfs_end_bio;
6377 	bio->bi_iter.bi_sector = physical >> 9;
6378 	btrfs_debug_in_rcu(fs_info,
6379 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6380 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6381 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6382 		dev->devid, bio->bi_iter.bi_size);
6383 	bio_set_dev(bio, dev->bdev);
6384 
6385 	btrfs_bio_counter_inc_noblocked(fs_info);
6386 
6387 	btrfsic_submit_bio(bio);
6388 }
6389 
6390 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6391 {
6392 	atomic_inc(&bbio->error);
6393 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394 		/* Should be the original bio. */
6395 		WARN_ON(bio != bbio->orig_bio);
6396 
6397 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6398 		bio->bi_iter.bi_sector = logical >> 9;
6399 		if (atomic_read(&bbio->error) > bbio->max_errors)
6400 			bio->bi_status = BLK_STS_IOERR;
6401 		else
6402 			bio->bi_status = BLK_STS_OK;
6403 		btrfs_end_bbio(bbio, bio);
6404 	}
6405 }
6406 
6407 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6408 			   int mirror_num)
6409 {
6410 	struct btrfs_device *dev;
6411 	struct bio *first_bio = bio;
6412 	u64 logical = bio->bi_iter.bi_sector << 9;
6413 	u64 length = 0;
6414 	u64 map_length;
6415 	int ret;
6416 	int dev_nr;
6417 	int total_devs;
6418 	struct btrfs_bio *bbio = NULL;
6419 
6420 	length = bio->bi_iter.bi_size;
6421 	map_length = length;
6422 
6423 	btrfs_bio_counter_inc_blocked(fs_info);
6424 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6425 				&map_length, &bbio, mirror_num, 1);
6426 	if (ret) {
6427 		btrfs_bio_counter_dec(fs_info);
6428 		return errno_to_blk_status(ret);
6429 	}
6430 
6431 	total_devs = bbio->num_stripes;
6432 	bbio->orig_bio = first_bio;
6433 	bbio->private = first_bio->bi_private;
6434 	bbio->end_io = first_bio->bi_end_io;
6435 	bbio->fs_info = fs_info;
6436 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6437 
6438 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6439 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6440 		/* In this case, map_length has been set to the length of
6441 		   a single stripe; not the whole write */
6442 		if (bio_op(bio) == REQ_OP_WRITE) {
6443 			ret = raid56_parity_write(fs_info, bio, bbio,
6444 						  map_length);
6445 		} else {
6446 			ret = raid56_parity_recover(fs_info, bio, bbio,
6447 						    map_length, mirror_num, 1);
6448 		}
6449 
6450 		btrfs_bio_counter_dec(fs_info);
6451 		return errno_to_blk_status(ret);
6452 	}
6453 
6454 	if (map_length < length) {
6455 		btrfs_crit(fs_info,
6456 			   "mapping failed logical %llu bio len %llu len %llu",
6457 			   logical, length, map_length);
6458 		BUG();
6459 	}
6460 
6461 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6462 		dev = bbio->stripes[dev_nr].dev;
6463 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6464 						   &dev->dev_state) ||
6465 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6466 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6467 			bbio_error(bbio, first_bio, logical);
6468 			continue;
6469 		}
6470 
6471 		if (dev_nr < total_devs - 1)
6472 			bio = btrfs_bio_clone(first_bio);
6473 		else
6474 			bio = first_bio;
6475 
6476 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6477 	}
6478 	btrfs_bio_counter_dec(fs_info);
6479 	return BLK_STS_OK;
6480 }
6481 
6482 /*
6483  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6484  * return NULL.
6485  *
6486  * If devid and uuid are both specified, the match must be exact, otherwise
6487  * only devid is used.
6488  *
6489  * If @seed is true, traverse through the seed devices.
6490  */
6491 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6492 				       u64 devid, u8 *uuid, u8 *fsid)
6493 {
6494 	struct btrfs_device *device;
6495 	struct btrfs_fs_devices *seed_devs;
6496 
6497 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6498 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6499 			if (device->devid == devid &&
6500 			    (!uuid || memcmp(device->uuid, uuid,
6501 					     BTRFS_UUID_SIZE) == 0))
6502 				return device;
6503 		}
6504 	}
6505 
6506 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6507 		if (!fsid ||
6508 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6509 			list_for_each_entry(device, &seed_devs->devices,
6510 					    dev_list) {
6511 				if (device->devid == devid &&
6512 				    (!uuid || memcmp(device->uuid, uuid,
6513 						     BTRFS_UUID_SIZE) == 0))
6514 					return device;
6515 			}
6516 		}
6517 	}
6518 
6519 	return NULL;
6520 }
6521 
6522 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6523 					    u64 devid, u8 *dev_uuid)
6524 {
6525 	struct btrfs_device *device;
6526 	unsigned int nofs_flag;
6527 
6528 	/*
6529 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6530 	 * allocation, however we don't want to change btrfs_alloc_device() to
6531 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6532 	 * places.
6533 	 */
6534 	nofs_flag = memalloc_nofs_save();
6535 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6536 	memalloc_nofs_restore(nofs_flag);
6537 	if (IS_ERR(device))
6538 		return device;
6539 
6540 	list_add(&device->dev_list, &fs_devices->devices);
6541 	device->fs_devices = fs_devices;
6542 	fs_devices->num_devices++;
6543 
6544 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6545 	fs_devices->missing_devices++;
6546 
6547 	return device;
6548 }
6549 
6550 /**
6551  * btrfs_alloc_device - allocate struct btrfs_device
6552  * @fs_info:	used only for generating a new devid, can be NULL if
6553  *		devid is provided (i.e. @devid != NULL).
6554  * @devid:	a pointer to devid for this device.  If NULL a new devid
6555  *		is generated.
6556  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6557  *		is generated.
6558  *
6559  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6560  * on error.  Returned struct is not linked onto any lists and must be
6561  * destroyed with btrfs_free_device.
6562  */
6563 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6564 					const u64 *devid,
6565 					const u8 *uuid)
6566 {
6567 	struct btrfs_device *dev;
6568 	u64 tmp;
6569 
6570 	if (WARN_ON(!devid && !fs_info))
6571 		return ERR_PTR(-EINVAL);
6572 
6573 	dev = __alloc_device(fs_info);
6574 	if (IS_ERR(dev))
6575 		return dev;
6576 
6577 	if (devid)
6578 		tmp = *devid;
6579 	else {
6580 		int ret;
6581 
6582 		ret = find_next_devid(fs_info, &tmp);
6583 		if (ret) {
6584 			btrfs_free_device(dev);
6585 			return ERR_PTR(ret);
6586 		}
6587 	}
6588 	dev->devid = tmp;
6589 
6590 	if (uuid)
6591 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6592 	else
6593 		generate_random_uuid(dev->uuid);
6594 
6595 	return dev;
6596 }
6597 
6598 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6599 					u64 devid, u8 *uuid, bool error)
6600 {
6601 	if (error)
6602 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6603 			      devid, uuid);
6604 	else
6605 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6606 			      devid, uuid);
6607 }
6608 
6609 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6610 {
6611 	int index = btrfs_bg_flags_to_raid_index(type);
6612 	int ncopies = btrfs_raid_array[index].ncopies;
6613 	const int nparity = btrfs_raid_array[index].nparity;
6614 	int data_stripes;
6615 
6616 	if (nparity)
6617 		data_stripes = num_stripes - nparity;
6618 	else
6619 		data_stripes = num_stripes / ncopies;
6620 
6621 	return div_u64(chunk_len, data_stripes);
6622 }
6623 
6624 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6625 			  struct btrfs_chunk *chunk)
6626 {
6627 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6628 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6629 	struct map_lookup *map;
6630 	struct extent_map *em;
6631 	u64 logical;
6632 	u64 length;
6633 	u64 devid;
6634 	u8 uuid[BTRFS_UUID_SIZE];
6635 	int num_stripes;
6636 	int ret;
6637 	int i;
6638 
6639 	logical = key->offset;
6640 	length = btrfs_chunk_length(leaf, chunk);
6641 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6642 
6643 	/*
6644 	 * Only need to verify chunk item if we're reading from sys chunk array,
6645 	 * as chunk item in tree block is already verified by tree-checker.
6646 	 */
6647 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6648 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6649 		if (ret)
6650 			return ret;
6651 	}
6652 
6653 	read_lock(&map_tree->lock);
6654 	em = lookup_extent_mapping(map_tree, logical, 1);
6655 	read_unlock(&map_tree->lock);
6656 
6657 	/* already mapped? */
6658 	if (em && em->start <= logical && em->start + em->len > logical) {
6659 		free_extent_map(em);
6660 		return 0;
6661 	} else if (em) {
6662 		free_extent_map(em);
6663 	}
6664 
6665 	em = alloc_extent_map();
6666 	if (!em)
6667 		return -ENOMEM;
6668 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6669 	if (!map) {
6670 		free_extent_map(em);
6671 		return -ENOMEM;
6672 	}
6673 
6674 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6675 	em->map_lookup = map;
6676 	em->start = logical;
6677 	em->len = length;
6678 	em->orig_start = 0;
6679 	em->block_start = 0;
6680 	em->block_len = em->len;
6681 
6682 	map->num_stripes = num_stripes;
6683 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6684 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6685 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6686 	map->type = btrfs_chunk_type(leaf, chunk);
6687 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6688 	map->verified_stripes = 0;
6689 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6690 						map->num_stripes);
6691 	for (i = 0; i < num_stripes; i++) {
6692 		map->stripes[i].physical =
6693 			btrfs_stripe_offset_nr(leaf, chunk, i);
6694 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6695 		read_extent_buffer(leaf, uuid, (unsigned long)
6696 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6697 				   BTRFS_UUID_SIZE);
6698 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6699 							devid, uuid, NULL);
6700 		if (!map->stripes[i].dev &&
6701 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6702 			free_extent_map(em);
6703 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6704 			return -ENOENT;
6705 		}
6706 		if (!map->stripes[i].dev) {
6707 			map->stripes[i].dev =
6708 				add_missing_dev(fs_info->fs_devices, devid,
6709 						uuid);
6710 			if (IS_ERR(map->stripes[i].dev)) {
6711 				free_extent_map(em);
6712 				btrfs_err(fs_info,
6713 					"failed to init missing dev %llu: %ld",
6714 					devid, PTR_ERR(map->stripes[i].dev));
6715 				return PTR_ERR(map->stripes[i].dev);
6716 			}
6717 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6718 		}
6719 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6720 				&(map->stripes[i].dev->dev_state));
6721 
6722 	}
6723 
6724 	write_lock(&map_tree->lock);
6725 	ret = add_extent_mapping(map_tree, em, 0);
6726 	write_unlock(&map_tree->lock);
6727 	if (ret < 0) {
6728 		btrfs_err(fs_info,
6729 			  "failed to add chunk map, start=%llu len=%llu: %d",
6730 			  em->start, em->len, ret);
6731 	}
6732 	free_extent_map(em);
6733 
6734 	return ret;
6735 }
6736 
6737 static void fill_device_from_item(struct extent_buffer *leaf,
6738 				 struct btrfs_dev_item *dev_item,
6739 				 struct btrfs_device *device)
6740 {
6741 	unsigned long ptr;
6742 
6743 	device->devid = btrfs_device_id(leaf, dev_item);
6744 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6745 	device->total_bytes = device->disk_total_bytes;
6746 	device->commit_total_bytes = device->disk_total_bytes;
6747 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6748 	device->commit_bytes_used = device->bytes_used;
6749 	device->type = btrfs_device_type(leaf, dev_item);
6750 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6751 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6752 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6753 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6754 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6755 
6756 	ptr = btrfs_device_uuid(dev_item);
6757 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6758 }
6759 
6760 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6761 						  u8 *fsid)
6762 {
6763 	struct btrfs_fs_devices *fs_devices;
6764 	int ret;
6765 
6766 	lockdep_assert_held(&uuid_mutex);
6767 	ASSERT(fsid);
6768 
6769 	/* This will match only for multi-device seed fs */
6770 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6771 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6772 			return fs_devices;
6773 
6774 
6775 	fs_devices = find_fsid(fsid, NULL);
6776 	if (!fs_devices) {
6777 		if (!btrfs_test_opt(fs_info, DEGRADED))
6778 			return ERR_PTR(-ENOENT);
6779 
6780 		fs_devices = alloc_fs_devices(fsid, NULL);
6781 		if (IS_ERR(fs_devices))
6782 			return fs_devices;
6783 
6784 		fs_devices->seeding = true;
6785 		fs_devices->opened = 1;
6786 		return fs_devices;
6787 	}
6788 
6789 	/*
6790 	 * Upon first call for a seed fs fsid, just create a private copy of the
6791 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6792 	 */
6793 	fs_devices = clone_fs_devices(fs_devices);
6794 	if (IS_ERR(fs_devices))
6795 		return fs_devices;
6796 
6797 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6798 	if (ret) {
6799 		free_fs_devices(fs_devices);
6800 		return ERR_PTR(ret);
6801 	}
6802 
6803 	if (!fs_devices->seeding) {
6804 		close_fs_devices(fs_devices);
6805 		free_fs_devices(fs_devices);
6806 		return ERR_PTR(-EINVAL);
6807 	}
6808 
6809 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6810 
6811 	return fs_devices;
6812 }
6813 
6814 static int read_one_dev(struct extent_buffer *leaf,
6815 			struct btrfs_dev_item *dev_item)
6816 {
6817 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6818 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6819 	struct btrfs_device *device;
6820 	u64 devid;
6821 	int ret;
6822 	u8 fs_uuid[BTRFS_FSID_SIZE];
6823 	u8 dev_uuid[BTRFS_UUID_SIZE];
6824 
6825 	devid = btrfs_device_id(leaf, dev_item);
6826 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6827 			   BTRFS_UUID_SIZE);
6828 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6829 			   BTRFS_FSID_SIZE);
6830 
6831 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6832 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6833 		if (IS_ERR(fs_devices))
6834 			return PTR_ERR(fs_devices);
6835 	}
6836 
6837 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6838 				   fs_uuid);
6839 	if (!device) {
6840 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6841 			btrfs_report_missing_device(fs_info, devid,
6842 							dev_uuid, true);
6843 			return -ENOENT;
6844 		}
6845 
6846 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6847 		if (IS_ERR(device)) {
6848 			btrfs_err(fs_info,
6849 				"failed to add missing dev %llu: %ld",
6850 				devid, PTR_ERR(device));
6851 			return PTR_ERR(device);
6852 		}
6853 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6854 	} else {
6855 		if (!device->bdev) {
6856 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6857 				btrfs_report_missing_device(fs_info,
6858 						devid, dev_uuid, true);
6859 				return -ENOENT;
6860 			}
6861 			btrfs_report_missing_device(fs_info, devid,
6862 							dev_uuid, false);
6863 		}
6864 
6865 		if (!device->bdev &&
6866 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6867 			/*
6868 			 * this happens when a device that was properly setup
6869 			 * in the device info lists suddenly goes bad.
6870 			 * device->bdev is NULL, and so we have to set
6871 			 * device->missing to one here
6872 			 */
6873 			device->fs_devices->missing_devices++;
6874 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6875 		}
6876 
6877 		/* Move the device to its own fs_devices */
6878 		if (device->fs_devices != fs_devices) {
6879 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6880 							&device->dev_state));
6881 
6882 			list_move(&device->dev_list, &fs_devices->devices);
6883 			device->fs_devices->num_devices--;
6884 			fs_devices->num_devices++;
6885 
6886 			device->fs_devices->missing_devices--;
6887 			fs_devices->missing_devices++;
6888 
6889 			device->fs_devices = fs_devices;
6890 		}
6891 	}
6892 
6893 	if (device->fs_devices != fs_info->fs_devices) {
6894 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6895 		if (device->generation !=
6896 		    btrfs_device_generation(leaf, dev_item))
6897 			return -EINVAL;
6898 	}
6899 
6900 	fill_device_from_item(leaf, dev_item, device);
6901 	if (device->bdev) {
6902 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
6903 
6904 		if (device->total_bytes > max_total_bytes) {
6905 			btrfs_err(fs_info,
6906 			"device total_bytes should be at most %llu but found %llu",
6907 				  max_total_bytes, device->total_bytes);
6908 			return -EINVAL;
6909 		}
6910 	}
6911 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6912 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6913 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6914 		device->fs_devices->total_rw_bytes += device->total_bytes;
6915 		atomic64_add(device->total_bytes - device->bytes_used,
6916 				&fs_info->free_chunk_space);
6917 	}
6918 	ret = 0;
6919 	return ret;
6920 }
6921 
6922 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6923 {
6924 	struct btrfs_root *root = fs_info->tree_root;
6925 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6926 	struct extent_buffer *sb;
6927 	struct btrfs_disk_key *disk_key;
6928 	struct btrfs_chunk *chunk;
6929 	u8 *array_ptr;
6930 	unsigned long sb_array_offset;
6931 	int ret = 0;
6932 	u32 num_stripes;
6933 	u32 array_size;
6934 	u32 len = 0;
6935 	u32 cur_offset;
6936 	u64 type;
6937 	struct btrfs_key key;
6938 
6939 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6940 	/*
6941 	 * This will create extent buffer of nodesize, superblock size is
6942 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6943 	 * overallocate but we can keep it as-is, only the first page is used.
6944 	 */
6945 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
6946 					  root->root_key.objectid, 0);
6947 	if (IS_ERR(sb))
6948 		return PTR_ERR(sb);
6949 	set_extent_buffer_uptodate(sb);
6950 	/*
6951 	 * The sb extent buffer is artificial and just used to read the system array.
6952 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6953 	 * pages up-to-date when the page is larger: extent does not cover the
6954 	 * whole page and consequently check_page_uptodate does not find all
6955 	 * the page's extents up-to-date (the hole beyond sb),
6956 	 * write_extent_buffer then triggers a WARN_ON.
6957 	 *
6958 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6959 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6960 	 * to silence the warning eg. on PowerPC 64.
6961 	 */
6962 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6963 		SetPageUptodate(sb->pages[0]);
6964 
6965 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6966 	array_size = btrfs_super_sys_array_size(super_copy);
6967 
6968 	array_ptr = super_copy->sys_chunk_array;
6969 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6970 	cur_offset = 0;
6971 
6972 	while (cur_offset < array_size) {
6973 		disk_key = (struct btrfs_disk_key *)array_ptr;
6974 		len = sizeof(*disk_key);
6975 		if (cur_offset + len > array_size)
6976 			goto out_short_read;
6977 
6978 		btrfs_disk_key_to_cpu(&key, disk_key);
6979 
6980 		array_ptr += len;
6981 		sb_array_offset += len;
6982 		cur_offset += len;
6983 
6984 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6985 			btrfs_err(fs_info,
6986 			    "unexpected item type %u in sys_array at offset %u",
6987 				  (u32)key.type, cur_offset);
6988 			ret = -EIO;
6989 			break;
6990 		}
6991 
6992 		chunk = (struct btrfs_chunk *)sb_array_offset;
6993 		/*
6994 		 * At least one btrfs_chunk with one stripe must be present,
6995 		 * exact stripe count check comes afterwards
6996 		 */
6997 		len = btrfs_chunk_item_size(1);
6998 		if (cur_offset + len > array_size)
6999 			goto out_short_read;
7000 
7001 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7002 		if (!num_stripes) {
7003 			btrfs_err(fs_info,
7004 			"invalid number of stripes %u in sys_array at offset %u",
7005 				  num_stripes, cur_offset);
7006 			ret = -EIO;
7007 			break;
7008 		}
7009 
7010 		type = btrfs_chunk_type(sb, chunk);
7011 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7012 			btrfs_err(fs_info,
7013 			"invalid chunk type %llu in sys_array at offset %u",
7014 				  type, cur_offset);
7015 			ret = -EIO;
7016 			break;
7017 		}
7018 
7019 		len = btrfs_chunk_item_size(num_stripes);
7020 		if (cur_offset + len > array_size)
7021 			goto out_short_read;
7022 
7023 		ret = read_one_chunk(&key, sb, chunk);
7024 		if (ret)
7025 			break;
7026 
7027 		array_ptr += len;
7028 		sb_array_offset += len;
7029 		cur_offset += len;
7030 	}
7031 	clear_extent_buffer_uptodate(sb);
7032 	free_extent_buffer_stale(sb);
7033 	return ret;
7034 
7035 out_short_read:
7036 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7037 			len, cur_offset);
7038 	clear_extent_buffer_uptodate(sb);
7039 	free_extent_buffer_stale(sb);
7040 	return -EIO;
7041 }
7042 
7043 /*
7044  * Check if all chunks in the fs are OK for read-write degraded mount
7045  *
7046  * If the @failing_dev is specified, it's accounted as missing.
7047  *
7048  * Return true if all chunks meet the minimal RW mount requirements.
7049  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7050  */
7051 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7052 					struct btrfs_device *failing_dev)
7053 {
7054 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7055 	struct extent_map *em;
7056 	u64 next_start = 0;
7057 	bool ret = true;
7058 
7059 	read_lock(&map_tree->lock);
7060 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7061 	read_unlock(&map_tree->lock);
7062 	/* No chunk at all? Return false anyway */
7063 	if (!em) {
7064 		ret = false;
7065 		goto out;
7066 	}
7067 	while (em) {
7068 		struct map_lookup *map;
7069 		int missing = 0;
7070 		int max_tolerated;
7071 		int i;
7072 
7073 		map = em->map_lookup;
7074 		max_tolerated =
7075 			btrfs_get_num_tolerated_disk_barrier_failures(
7076 					map->type);
7077 		for (i = 0; i < map->num_stripes; i++) {
7078 			struct btrfs_device *dev = map->stripes[i].dev;
7079 
7080 			if (!dev || !dev->bdev ||
7081 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7082 			    dev->last_flush_error)
7083 				missing++;
7084 			else if (failing_dev && failing_dev == dev)
7085 				missing++;
7086 		}
7087 		if (missing > max_tolerated) {
7088 			if (!failing_dev)
7089 				btrfs_warn(fs_info,
7090 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7091 				   em->start, missing, max_tolerated);
7092 			free_extent_map(em);
7093 			ret = false;
7094 			goto out;
7095 		}
7096 		next_start = extent_map_end(em);
7097 		free_extent_map(em);
7098 
7099 		read_lock(&map_tree->lock);
7100 		em = lookup_extent_mapping(map_tree, next_start,
7101 					   (u64)(-1) - next_start);
7102 		read_unlock(&map_tree->lock);
7103 	}
7104 out:
7105 	return ret;
7106 }
7107 
7108 static void readahead_tree_node_children(struct extent_buffer *node)
7109 {
7110 	int i;
7111 	const int nr_items = btrfs_header_nritems(node);
7112 
7113 	for (i = 0; i < nr_items; i++)
7114 		btrfs_readahead_node_child(node, i);
7115 }
7116 
7117 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7118 {
7119 	struct btrfs_root *root = fs_info->chunk_root;
7120 	struct btrfs_path *path;
7121 	struct extent_buffer *leaf;
7122 	struct btrfs_key key;
7123 	struct btrfs_key found_key;
7124 	int ret;
7125 	int slot;
7126 	u64 total_dev = 0;
7127 	u64 last_ra_node = 0;
7128 
7129 	path = btrfs_alloc_path();
7130 	if (!path)
7131 		return -ENOMEM;
7132 
7133 	/*
7134 	 * uuid_mutex is needed only if we are mounting a sprout FS
7135 	 * otherwise we don't need it.
7136 	 */
7137 	mutex_lock(&uuid_mutex);
7138 
7139 	/*
7140 	 * It is possible for mount and umount to race in such a way that
7141 	 * we execute this code path, but open_fs_devices failed to clear
7142 	 * total_rw_bytes. We certainly want it cleared before reading the
7143 	 * device items, so clear it here.
7144 	 */
7145 	fs_info->fs_devices->total_rw_bytes = 0;
7146 
7147 	/*
7148 	 * Read all device items, and then all the chunk items. All
7149 	 * device items are found before any chunk item (their object id
7150 	 * is smaller than the lowest possible object id for a chunk
7151 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7152 	 */
7153 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7154 	key.offset = 0;
7155 	key.type = 0;
7156 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7157 	if (ret < 0)
7158 		goto error;
7159 	while (1) {
7160 		struct extent_buffer *node;
7161 
7162 		leaf = path->nodes[0];
7163 		slot = path->slots[0];
7164 		if (slot >= btrfs_header_nritems(leaf)) {
7165 			ret = btrfs_next_leaf(root, path);
7166 			if (ret == 0)
7167 				continue;
7168 			if (ret < 0)
7169 				goto error;
7170 			break;
7171 		}
7172 		/*
7173 		 * The nodes on level 1 are not locked but we don't need to do
7174 		 * that during mount time as nothing else can access the tree
7175 		 */
7176 		node = path->nodes[1];
7177 		if (node) {
7178 			if (last_ra_node != node->start) {
7179 				readahead_tree_node_children(node);
7180 				last_ra_node = node->start;
7181 			}
7182 		}
7183 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7184 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7185 			struct btrfs_dev_item *dev_item;
7186 			dev_item = btrfs_item_ptr(leaf, slot,
7187 						  struct btrfs_dev_item);
7188 			ret = read_one_dev(leaf, dev_item);
7189 			if (ret)
7190 				goto error;
7191 			total_dev++;
7192 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7193 			struct btrfs_chunk *chunk;
7194 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7195 			mutex_lock(&fs_info->chunk_mutex);
7196 			ret = read_one_chunk(&found_key, leaf, chunk);
7197 			mutex_unlock(&fs_info->chunk_mutex);
7198 			if (ret)
7199 				goto error;
7200 		}
7201 		path->slots[0]++;
7202 	}
7203 
7204 	/*
7205 	 * After loading chunk tree, we've got all device information,
7206 	 * do another round of validation checks.
7207 	 */
7208 	if (total_dev != fs_info->fs_devices->total_devices) {
7209 		btrfs_err(fs_info,
7210 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7211 			  btrfs_super_num_devices(fs_info->super_copy),
7212 			  total_dev);
7213 		ret = -EINVAL;
7214 		goto error;
7215 	}
7216 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7217 	    fs_info->fs_devices->total_rw_bytes) {
7218 		btrfs_err(fs_info,
7219 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7220 			  btrfs_super_total_bytes(fs_info->super_copy),
7221 			  fs_info->fs_devices->total_rw_bytes);
7222 		ret = -EINVAL;
7223 		goto error;
7224 	}
7225 	ret = 0;
7226 error:
7227 	mutex_unlock(&uuid_mutex);
7228 
7229 	btrfs_free_path(path);
7230 	return ret;
7231 }
7232 
7233 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7234 {
7235 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7236 	struct btrfs_device *device;
7237 
7238 	fs_devices->fs_info = fs_info;
7239 
7240 	mutex_lock(&fs_devices->device_list_mutex);
7241 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7242 		device->fs_info = fs_info;
7243 
7244 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7245 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7246 			device->fs_info = fs_info;
7247 
7248 		seed_devs->fs_info = fs_info;
7249 	}
7250 	mutex_unlock(&fs_devices->device_list_mutex);
7251 }
7252 
7253 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7254 				 const struct btrfs_dev_stats_item *ptr,
7255 				 int index)
7256 {
7257 	u64 val;
7258 
7259 	read_extent_buffer(eb, &val,
7260 			   offsetof(struct btrfs_dev_stats_item, values) +
7261 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7262 			   sizeof(val));
7263 	return val;
7264 }
7265 
7266 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7267 				      struct btrfs_dev_stats_item *ptr,
7268 				      int index, u64 val)
7269 {
7270 	write_extent_buffer(eb, &val,
7271 			    offsetof(struct btrfs_dev_stats_item, values) +
7272 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7273 			    sizeof(val));
7274 }
7275 
7276 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7277 				       struct btrfs_path *path)
7278 {
7279 	struct btrfs_dev_stats_item *ptr;
7280 	struct extent_buffer *eb;
7281 	struct btrfs_key key;
7282 	int item_size;
7283 	int i, ret, slot;
7284 
7285 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7286 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7287 	key.offset = device->devid;
7288 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7289 	if (ret) {
7290 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7291 			btrfs_dev_stat_set(device, i, 0);
7292 		device->dev_stats_valid = 1;
7293 		btrfs_release_path(path);
7294 		return ret < 0 ? ret : 0;
7295 	}
7296 	slot = path->slots[0];
7297 	eb = path->nodes[0];
7298 	item_size = btrfs_item_size_nr(eb, slot);
7299 
7300 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7301 
7302 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7303 		if (item_size >= (1 + i) * sizeof(__le64))
7304 			btrfs_dev_stat_set(device, i,
7305 					   btrfs_dev_stats_value(eb, ptr, i));
7306 		else
7307 			btrfs_dev_stat_set(device, i, 0);
7308 	}
7309 
7310 	device->dev_stats_valid = 1;
7311 	btrfs_dev_stat_print_on_load(device);
7312 	btrfs_release_path(path);
7313 
7314 	return 0;
7315 }
7316 
7317 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7318 {
7319 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7320 	struct btrfs_device *device;
7321 	struct btrfs_path *path = NULL;
7322 	int ret = 0;
7323 
7324 	path = btrfs_alloc_path();
7325 	if (!path)
7326 		return -ENOMEM;
7327 
7328 	mutex_lock(&fs_devices->device_list_mutex);
7329 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7330 		ret = btrfs_device_init_dev_stats(device, path);
7331 		if (ret)
7332 			goto out;
7333 	}
7334 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7335 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7336 			ret = btrfs_device_init_dev_stats(device, path);
7337 			if (ret)
7338 				goto out;
7339 		}
7340 	}
7341 out:
7342 	mutex_unlock(&fs_devices->device_list_mutex);
7343 
7344 	btrfs_free_path(path);
7345 	return ret;
7346 }
7347 
7348 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7349 				struct btrfs_device *device)
7350 {
7351 	struct btrfs_fs_info *fs_info = trans->fs_info;
7352 	struct btrfs_root *dev_root = fs_info->dev_root;
7353 	struct btrfs_path *path;
7354 	struct btrfs_key key;
7355 	struct extent_buffer *eb;
7356 	struct btrfs_dev_stats_item *ptr;
7357 	int ret;
7358 	int i;
7359 
7360 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7361 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7362 	key.offset = device->devid;
7363 
7364 	path = btrfs_alloc_path();
7365 	if (!path)
7366 		return -ENOMEM;
7367 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7368 	if (ret < 0) {
7369 		btrfs_warn_in_rcu(fs_info,
7370 			"error %d while searching for dev_stats item for device %s",
7371 			      ret, rcu_str_deref(device->name));
7372 		goto out;
7373 	}
7374 
7375 	if (ret == 0 &&
7376 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7377 		/* need to delete old one and insert a new one */
7378 		ret = btrfs_del_item(trans, dev_root, path);
7379 		if (ret != 0) {
7380 			btrfs_warn_in_rcu(fs_info,
7381 				"delete too small dev_stats item for device %s failed %d",
7382 				      rcu_str_deref(device->name), ret);
7383 			goto out;
7384 		}
7385 		ret = 1;
7386 	}
7387 
7388 	if (ret == 1) {
7389 		/* need to insert a new item */
7390 		btrfs_release_path(path);
7391 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7392 					      &key, sizeof(*ptr));
7393 		if (ret < 0) {
7394 			btrfs_warn_in_rcu(fs_info,
7395 				"insert dev_stats item for device %s failed %d",
7396 				rcu_str_deref(device->name), ret);
7397 			goto out;
7398 		}
7399 	}
7400 
7401 	eb = path->nodes[0];
7402 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7403 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7404 		btrfs_set_dev_stats_value(eb, ptr, i,
7405 					  btrfs_dev_stat_read(device, i));
7406 	btrfs_mark_buffer_dirty(eb);
7407 
7408 out:
7409 	btrfs_free_path(path);
7410 	return ret;
7411 }
7412 
7413 /*
7414  * called from commit_transaction. Writes all changed device stats to disk.
7415  */
7416 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7417 {
7418 	struct btrfs_fs_info *fs_info = trans->fs_info;
7419 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7420 	struct btrfs_device *device;
7421 	int stats_cnt;
7422 	int ret = 0;
7423 
7424 	mutex_lock(&fs_devices->device_list_mutex);
7425 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7426 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7427 		if (!device->dev_stats_valid || stats_cnt == 0)
7428 			continue;
7429 
7430 
7431 		/*
7432 		 * There is a LOAD-LOAD control dependency between the value of
7433 		 * dev_stats_ccnt and updating the on-disk values which requires
7434 		 * reading the in-memory counters. Such control dependencies
7435 		 * require explicit read memory barriers.
7436 		 *
7437 		 * This memory barriers pairs with smp_mb__before_atomic in
7438 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7439 		 * barrier implied by atomic_xchg in
7440 		 * btrfs_dev_stats_read_and_reset
7441 		 */
7442 		smp_rmb();
7443 
7444 		ret = update_dev_stat_item(trans, device);
7445 		if (!ret)
7446 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7447 	}
7448 	mutex_unlock(&fs_devices->device_list_mutex);
7449 
7450 	return ret;
7451 }
7452 
7453 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7454 {
7455 	btrfs_dev_stat_inc(dev, index);
7456 	btrfs_dev_stat_print_on_error(dev);
7457 }
7458 
7459 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7460 {
7461 	if (!dev->dev_stats_valid)
7462 		return;
7463 	btrfs_err_rl_in_rcu(dev->fs_info,
7464 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7465 			   rcu_str_deref(dev->name),
7466 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7467 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7468 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7469 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7470 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7471 }
7472 
7473 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7474 {
7475 	int i;
7476 
7477 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7478 		if (btrfs_dev_stat_read(dev, i) != 0)
7479 			break;
7480 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7481 		return; /* all values == 0, suppress message */
7482 
7483 	btrfs_info_in_rcu(dev->fs_info,
7484 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7485 	       rcu_str_deref(dev->name),
7486 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7487 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7488 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7489 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7490 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7491 }
7492 
7493 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7494 			struct btrfs_ioctl_get_dev_stats *stats)
7495 {
7496 	struct btrfs_device *dev;
7497 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7498 	int i;
7499 
7500 	mutex_lock(&fs_devices->device_list_mutex);
7501 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7502 	mutex_unlock(&fs_devices->device_list_mutex);
7503 
7504 	if (!dev) {
7505 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7506 		return -ENODEV;
7507 	} else if (!dev->dev_stats_valid) {
7508 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7509 		return -ENODEV;
7510 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7511 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7512 			if (stats->nr_items > i)
7513 				stats->values[i] =
7514 					btrfs_dev_stat_read_and_reset(dev, i);
7515 			else
7516 				btrfs_dev_stat_set(dev, i, 0);
7517 		}
7518 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7519 			   current->comm, task_pid_nr(current));
7520 	} else {
7521 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7522 			if (stats->nr_items > i)
7523 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7524 	}
7525 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7526 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7527 	return 0;
7528 }
7529 
7530 /*
7531  * Update the size and bytes used for each device where it changed.  This is
7532  * delayed since we would otherwise get errors while writing out the
7533  * superblocks.
7534  *
7535  * Must be invoked during transaction commit.
7536  */
7537 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7538 {
7539 	struct btrfs_device *curr, *next;
7540 
7541 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7542 
7543 	if (list_empty(&trans->dev_update_list))
7544 		return;
7545 
7546 	/*
7547 	 * We don't need the device_list_mutex here.  This list is owned by the
7548 	 * transaction and the transaction must complete before the device is
7549 	 * released.
7550 	 */
7551 	mutex_lock(&trans->fs_info->chunk_mutex);
7552 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7553 				 post_commit_list) {
7554 		list_del_init(&curr->post_commit_list);
7555 		curr->commit_total_bytes = curr->disk_total_bytes;
7556 		curr->commit_bytes_used = curr->bytes_used;
7557 	}
7558 	mutex_unlock(&trans->fs_info->chunk_mutex);
7559 }
7560 
7561 /*
7562  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7563  */
7564 int btrfs_bg_type_to_factor(u64 flags)
7565 {
7566 	const int index = btrfs_bg_flags_to_raid_index(flags);
7567 
7568 	return btrfs_raid_array[index].ncopies;
7569 }
7570 
7571 
7572 
7573 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7574 				 u64 chunk_offset, u64 devid,
7575 				 u64 physical_offset, u64 physical_len)
7576 {
7577 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7578 	struct extent_map *em;
7579 	struct map_lookup *map;
7580 	struct btrfs_device *dev;
7581 	u64 stripe_len;
7582 	bool found = false;
7583 	int ret = 0;
7584 	int i;
7585 
7586 	read_lock(&em_tree->lock);
7587 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7588 	read_unlock(&em_tree->lock);
7589 
7590 	if (!em) {
7591 		btrfs_err(fs_info,
7592 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7593 			  physical_offset, devid);
7594 		ret = -EUCLEAN;
7595 		goto out;
7596 	}
7597 
7598 	map = em->map_lookup;
7599 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7600 	if (physical_len != stripe_len) {
7601 		btrfs_err(fs_info,
7602 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7603 			  physical_offset, devid, em->start, physical_len,
7604 			  stripe_len);
7605 		ret = -EUCLEAN;
7606 		goto out;
7607 	}
7608 
7609 	for (i = 0; i < map->num_stripes; i++) {
7610 		if (map->stripes[i].dev->devid == devid &&
7611 		    map->stripes[i].physical == physical_offset) {
7612 			found = true;
7613 			if (map->verified_stripes >= map->num_stripes) {
7614 				btrfs_err(fs_info,
7615 				"too many dev extents for chunk %llu found",
7616 					  em->start);
7617 				ret = -EUCLEAN;
7618 				goto out;
7619 			}
7620 			map->verified_stripes++;
7621 			break;
7622 		}
7623 	}
7624 	if (!found) {
7625 		btrfs_err(fs_info,
7626 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7627 			physical_offset, devid);
7628 		ret = -EUCLEAN;
7629 	}
7630 
7631 	/* Make sure no dev extent is beyond device bondary */
7632 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7633 	if (!dev) {
7634 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7635 		ret = -EUCLEAN;
7636 		goto out;
7637 	}
7638 
7639 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7640 		btrfs_err(fs_info,
7641 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7642 			  devid, physical_offset, physical_len,
7643 			  dev->disk_total_bytes);
7644 		ret = -EUCLEAN;
7645 		goto out;
7646 	}
7647 out:
7648 	free_extent_map(em);
7649 	return ret;
7650 }
7651 
7652 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7653 {
7654 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7655 	struct extent_map *em;
7656 	struct rb_node *node;
7657 	int ret = 0;
7658 
7659 	read_lock(&em_tree->lock);
7660 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7661 		em = rb_entry(node, struct extent_map, rb_node);
7662 		if (em->map_lookup->num_stripes !=
7663 		    em->map_lookup->verified_stripes) {
7664 			btrfs_err(fs_info,
7665 			"chunk %llu has missing dev extent, have %d expect %d",
7666 				  em->start, em->map_lookup->verified_stripes,
7667 				  em->map_lookup->num_stripes);
7668 			ret = -EUCLEAN;
7669 			goto out;
7670 		}
7671 	}
7672 out:
7673 	read_unlock(&em_tree->lock);
7674 	return ret;
7675 }
7676 
7677 /*
7678  * Ensure that all dev extents are mapped to correct chunk, otherwise
7679  * later chunk allocation/free would cause unexpected behavior.
7680  *
7681  * NOTE: This will iterate through the whole device tree, which should be of
7682  * the same size level as the chunk tree.  This slightly increases mount time.
7683  */
7684 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7685 {
7686 	struct btrfs_path *path;
7687 	struct btrfs_root *root = fs_info->dev_root;
7688 	struct btrfs_key key;
7689 	u64 prev_devid = 0;
7690 	u64 prev_dev_ext_end = 0;
7691 	int ret = 0;
7692 
7693 	/*
7694 	 * We don't have a dev_root because we mounted with ignorebadroots and
7695 	 * failed to load the root, so we want to skip the verification in this
7696 	 * case for sure.
7697 	 *
7698 	 * However if the dev root is fine, but the tree itself is corrupted
7699 	 * we'd still fail to mount.  This verification is only to make sure
7700 	 * writes can happen safely, so instead just bypass this check
7701 	 * completely in the case of IGNOREBADROOTS.
7702 	 */
7703 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7704 		return 0;
7705 
7706 	key.objectid = 1;
7707 	key.type = BTRFS_DEV_EXTENT_KEY;
7708 	key.offset = 0;
7709 
7710 	path = btrfs_alloc_path();
7711 	if (!path)
7712 		return -ENOMEM;
7713 
7714 	path->reada = READA_FORWARD;
7715 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7716 	if (ret < 0)
7717 		goto out;
7718 
7719 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7720 		ret = btrfs_next_item(root, path);
7721 		if (ret < 0)
7722 			goto out;
7723 		/* No dev extents at all? Not good */
7724 		if (ret > 0) {
7725 			ret = -EUCLEAN;
7726 			goto out;
7727 		}
7728 	}
7729 	while (1) {
7730 		struct extent_buffer *leaf = path->nodes[0];
7731 		struct btrfs_dev_extent *dext;
7732 		int slot = path->slots[0];
7733 		u64 chunk_offset;
7734 		u64 physical_offset;
7735 		u64 physical_len;
7736 		u64 devid;
7737 
7738 		btrfs_item_key_to_cpu(leaf, &key, slot);
7739 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7740 			break;
7741 		devid = key.objectid;
7742 		physical_offset = key.offset;
7743 
7744 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7745 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7746 		physical_len = btrfs_dev_extent_length(leaf, dext);
7747 
7748 		/* Check if this dev extent overlaps with the previous one */
7749 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7750 			btrfs_err(fs_info,
7751 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7752 				  devid, physical_offset, prev_dev_ext_end);
7753 			ret = -EUCLEAN;
7754 			goto out;
7755 		}
7756 
7757 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7758 					    physical_offset, physical_len);
7759 		if (ret < 0)
7760 			goto out;
7761 		prev_devid = devid;
7762 		prev_dev_ext_end = physical_offset + physical_len;
7763 
7764 		ret = btrfs_next_item(root, path);
7765 		if (ret < 0)
7766 			goto out;
7767 		if (ret > 0) {
7768 			ret = 0;
7769 			break;
7770 		}
7771 	}
7772 
7773 	/* Ensure all chunks have corresponding dev extents */
7774 	ret = verify_chunk_dev_extent_mapping(fs_info);
7775 out:
7776 	btrfs_free_path(path);
7777 	return ret;
7778 }
7779 
7780 /*
7781  * Check whether the given block group or device is pinned by any inode being
7782  * used as a swapfile.
7783  */
7784 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7785 {
7786 	struct btrfs_swapfile_pin *sp;
7787 	struct rb_node *node;
7788 
7789 	spin_lock(&fs_info->swapfile_pins_lock);
7790 	node = fs_info->swapfile_pins.rb_node;
7791 	while (node) {
7792 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7793 		if (ptr < sp->ptr)
7794 			node = node->rb_left;
7795 		else if (ptr > sp->ptr)
7796 			node = node->rb_right;
7797 		else
7798 			break;
7799 	}
7800 	spin_unlock(&fs_info->swapfile_pins_lock);
7801 	return node != NULL;
7802 }
7803