1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/ratelimit.h> 11 #include <linux/kthread.h> 12 #include <linux/raid/pq.h> 13 #include <linux/semaphore.h> 14 #include <linux/uuid.h> 15 #include <linux/list_sort.h> 16 #include "misc.h" 17 #include "ctree.h" 18 #include "extent_map.h" 19 #include "disk-io.h" 20 #include "transaction.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "async-thread.h" 25 #include "check-integrity.h" 26 #include "rcu-string.h" 27 #include "dev-replace.h" 28 #include "sysfs.h" 29 #include "tree-checker.h" 30 #include "space-info.h" 31 #include "block-group.h" 32 #include "discard.h" 33 34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 35 [BTRFS_RAID_RAID10] = { 36 .sub_stripes = 2, 37 .dev_stripes = 1, 38 .devs_max = 0, /* 0 == as many as possible */ 39 .devs_min = 4, 40 .tolerated_failures = 1, 41 .devs_increment = 2, 42 .ncopies = 2, 43 .nparity = 0, 44 .raid_name = "raid10", 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 47 }, 48 [BTRFS_RAID_RAID1] = { 49 .sub_stripes = 1, 50 .dev_stripes = 1, 51 .devs_max = 2, 52 .devs_min = 2, 53 .tolerated_failures = 1, 54 .devs_increment = 2, 55 .ncopies = 2, 56 .nparity = 0, 57 .raid_name = "raid1", 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 60 }, 61 [BTRFS_RAID_RAID1C3] = { 62 .sub_stripes = 1, 63 .dev_stripes = 1, 64 .devs_max = 3, 65 .devs_min = 3, 66 .tolerated_failures = 2, 67 .devs_increment = 3, 68 .ncopies = 3, 69 .nparity = 0, 70 .raid_name = "raid1c3", 71 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 72 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 73 }, 74 [BTRFS_RAID_RAID1C4] = { 75 .sub_stripes = 1, 76 .dev_stripes = 1, 77 .devs_max = 4, 78 .devs_min = 4, 79 .tolerated_failures = 3, 80 .devs_increment = 4, 81 .ncopies = 4, 82 .nparity = 0, 83 .raid_name = "raid1c4", 84 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 85 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 86 }, 87 [BTRFS_RAID_DUP] = { 88 .sub_stripes = 1, 89 .dev_stripes = 2, 90 .devs_max = 1, 91 .devs_min = 1, 92 .tolerated_failures = 0, 93 .devs_increment = 1, 94 .ncopies = 2, 95 .nparity = 0, 96 .raid_name = "dup", 97 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 98 .mindev_error = 0, 99 }, 100 [BTRFS_RAID_RAID0] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 2, 105 .tolerated_failures = 0, 106 .devs_increment = 1, 107 .ncopies = 1, 108 .nparity = 0, 109 .raid_name = "raid0", 110 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 111 .mindev_error = 0, 112 }, 113 [BTRFS_RAID_SINGLE] = { 114 .sub_stripes = 1, 115 .dev_stripes = 1, 116 .devs_max = 1, 117 .devs_min = 1, 118 .tolerated_failures = 0, 119 .devs_increment = 1, 120 .ncopies = 1, 121 .nparity = 0, 122 .raid_name = "single", 123 .bg_flag = 0, 124 .mindev_error = 0, 125 }, 126 [BTRFS_RAID_RAID5] = { 127 .sub_stripes = 1, 128 .dev_stripes = 1, 129 .devs_max = 0, 130 .devs_min = 2, 131 .tolerated_failures = 1, 132 .devs_increment = 1, 133 .ncopies = 1, 134 .nparity = 1, 135 .raid_name = "raid5", 136 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 137 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 138 }, 139 [BTRFS_RAID_RAID6] = { 140 .sub_stripes = 1, 141 .dev_stripes = 1, 142 .devs_max = 0, 143 .devs_min = 3, 144 .tolerated_failures = 2, 145 .devs_increment = 1, 146 .ncopies = 1, 147 .nparity = 2, 148 .raid_name = "raid6", 149 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 150 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 151 }, 152 }; 153 154 const char *btrfs_bg_type_to_raid_name(u64 flags) 155 { 156 const int index = btrfs_bg_flags_to_raid_index(flags); 157 158 if (index >= BTRFS_NR_RAID_TYPES) 159 return NULL; 160 161 return btrfs_raid_array[index].raid_name; 162 } 163 164 /* 165 * Fill @buf with textual description of @bg_flags, no more than @size_buf 166 * bytes including terminating null byte. 167 */ 168 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 169 { 170 int i; 171 int ret; 172 char *bp = buf; 173 u64 flags = bg_flags; 174 u32 size_bp = size_buf; 175 176 if (!flags) { 177 strcpy(bp, "NONE"); 178 return; 179 } 180 181 #define DESCRIBE_FLAG(flag, desc) \ 182 do { \ 183 if (flags & (flag)) { \ 184 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 185 if (ret < 0 || ret >= size_bp) \ 186 goto out_overflow; \ 187 size_bp -= ret; \ 188 bp += ret; \ 189 flags &= ~(flag); \ 190 } \ 191 } while (0) 192 193 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 196 197 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 198 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 199 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 200 btrfs_raid_array[i].raid_name); 201 #undef DESCRIBE_FLAG 202 203 if (flags) { 204 ret = snprintf(bp, size_bp, "0x%llx|", flags); 205 size_bp -= ret; 206 } 207 208 if (size_bp < size_buf) 209 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 210 211 /* 212 * The text is trimmed, it's up to the caller to provide sufficiently 213 * large buffer 214 */ 215 out_overflow:; 216 } 217 218 static int init_first_rw_device(struct btrfs_trans_handle *trans); 219 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 220 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 221 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 222 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 223 enum btrfs_map_op op, 224 u64 logical, u64 *length, 225 struct btrfs_bio **bbio_ret, 226 int mirror_num, int need_raid_map); 227 228 /* 229 * Device locking 230 * ============== 231 * 232 * There are several mutexes that protect manipulation of devices and low-level 233 * structures like chunks but not block groups, extents or files 234 * 235 * uuid_mutex (global lock) 236 * ------------------------ 237 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 238 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 239 * device) or requested by the device= mount option 240 * 241 * the mutex can be very coarse and can cover long-running operations 242 * 243 * protects: updates to fs_devices counters like missing devices, rw devices, 244 * seeding, structure cloning, opening/closing devices at mount/umount time 245 * 246 * global::fs_devs - add, remove, updates to the global list 247 * 248 * does not protect: manipulation of the fs_devices::devices list! 249 * 250 * btrfs_device::name - renames (write side), read is RCU 251 * 252 * fs_devices::device_list_mutex (per-fs, with RCU) 253 * ------------------------------------------------ 254 * protects updates to fs_devices::devices, ie. adding and deleting 255 * 256 * simple list traversal with read-only actions can be done with RCU protection 257 * 258 * may be used to exclude some operations from running concurrently without any 259 * modifications to the list (see write_all_supers) 260 * 261 * balance_mutex 262 * ------------- 263 * protects balance structures (status, state) and context accessed from 264 * several places (internally, ioctl) 265 * 266 * chunk_mutex 267 * ----------- 268 * protects chunks, adding or removing during allocation, trim or when a new 269 * device is added/removed. Additionally it also protects post_commit_list of 270 * individual devices, since they can be added to the transaction's 271 * post_commit_list only with chunk_mutex held. 272 * 273 * cleaner_mutex 274 * ------------- 275 * a big lock that is held by the cleaner thread and prevents running subvolume 276 * cleaning together with relocation or delayed iputs 277 * 278 * 279 * Lock nesting 280 * ============ 281 * 282 * uuid_mutex 283 * volume_mutex 284 * device_list_mutex 285 * chunk_mutex 286 * balance_mutex 287 * 288 * 289 * Exclusive operations, BTRFS_FS_EXCL_OP 290 * ====================================== 291 * 292 * Maintains the exclusivity of the following operations that apply to the 293 * whole filesystem and cannot run in parallel. 294 * 295 * - Balance (*) 296 * - Device add 297 * - Device remove 298 * - Device replace (*) 299 * - Resize 300 * 301 * The device operations (as above) can be in one of the following states: 302 * 303 * - Running state 304 * - Paused state 305 * - Completed state 306 * 307 * Only device operations marked with (*) can go into the Paused state for the 308 * following reasons: 309 * 310 * - ioctl (only Balance can be Paused through ioctl) 311 * - filesystem remounted as read-only 312 * - filesystem unmounted and mounted as read-only 313 * - system power-cycle and filesystem mounted as read-only 314 * - filesystem or device errors leading to forced read-only 315 * 316 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 317 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 318 * A device operation in Paused or Running state can be canceled or resumed 319 * either by ioctl (Balance only) or when remounted as read-write. 320 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 321 * completed. 322 */ 323 324 DEFINE_MUTEX(uuid_mutex); 325 static LIST_HEAD(fs_uuids); 326 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 327 { 328 return &fs_uuids; 329 } 330 331 /* 332 * alloc_fs_devices - allocate struct btrfs_fs_devices 333 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 334 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 335 * 336 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 337 * The returned struct is not linked onto any lists and can be destroyed with 338 * kfree() right away. 339 */ 340 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 341 const u8 *metadata_fsid) 342 { 343 struct btrfs_fs_devices *fs_devs; 344 345 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 346 if (!fs_devs) 347 return ERR_PTR(-ENOMEM); 348 349 mutex_init(&fs_devs->device_list_mutex); 350 351 INIT_LIST_HEAD(&fs_devs->devices); 352 INIT_LIST_HEAD(&fs_devs->alloc_list); 353 INIT_LIST_HEAD(&fs_devs->fs_list); 354 if (fsid) 355 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 356 357 if (metadata_fsid) 358 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 359 else if (fsid) 360 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 361 362 return fs_devs; 363 } 364 365 void btrfs_free_device(struct btrfs_device *device) 366 { 367 WARN_ON(!list_empty(&device->post_commit_list)); 368 rcu_string_free(device->name); 369 extent_io_tree_release(&device->alloc_state); 370 bio_put(device->flush_bio); 371 kfree(device); 372 } 373 374 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 375 { 376 struct btrfs_device *device; 377 WARN_ON(fs_devices->opened); 378 while (!list_empty(&fs_devices->devices)) { 379 device = list_entry(fs_devices->devices.next, 380 struct btrfs_device, dev_list); 381 list_del(&device->dev_list); 382 btrfs_free_device(device); 383 } 384 kfree(fs_devices); 385 } 386 387 void __exit btrfs_cleanup_fs_uuids(void) 388 { 389 struct btrfs_fs_devices *fs_devices; 390 391 while (!list_empty(&fs_uuids)) { 392 fs_devices = list_entry(fs_uuids.next, 393 struct btrfs_fs_devices, fs_list); 394 list_del(&fs_devices->fs_list); 395 free_fs_devices(fs_devices); 396 } 397 } 398 399 /* 400 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 401 * Returned struct is not linked onto any lists and must be destroyed using 402 * btrfs_free_device. 403 */ 404 static struct btrfs_device *__alloc_device(void) 405 { 406 struct btrfs_device *dev; 407 408 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 409 if (!dev) 410 return ERR_PTR(-ENOMEM); 411 412 /* 413 * Preallocate a bio that's always going to be used for flushing device 414 * barriers and matches the device lifespan 415 */ 416 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 417 if (!dev->flush_bio) { 418 kfree(dev); 419 return ERR_PTR(-ENOMEM); 420 } 421 422 INIT_LIST_HEAD(&dev->dev_list); 423 INIT_LIST_HEAD(&dev->dev_alloc_list); 424 INIT_LIST_HEAD(&dev->post_commit_list); 425 426 atomic_set(&dev->reada_in_flight, 0); 427 atomic_set(&dev->dev_stats_ccnt, 0); 428 btrfs_device_data_ordered_init(dev); 429 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 430 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 431 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 432 433 return dev; 434 } 435 436 static noinline struct btrfs_fs_devices *find_fsid( 437 const u8 *fsid, const u8 *metadata_fsid) 438 { 439 struct btrfs_fs_devices *fs_devices; 440 441 ASSERT(fsid); 442 443 /* Handle non-split brain cases */ 444 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 445 if (metadata_fsid) { 446 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 447 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 448 BTRFS_FSID_SIZE) == 0) 449 return fs_devices; 450 } else { 451 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 452 return fs_devices; 453 } 454 } 455 return NULL; 456 } 457 458 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 459 struct btrfs_super_block *disk_super) 460 { 461 462 struct btrfs_fs_devices *fs_devices; 463 464 /* 465 * Handle scanned device having completed its fsid change but 466 * belonging to a fs_devices that was created by first scanning 467 * a device which didn't have its fsid/metadata_uuid changed 468 * at all and the CHANGING_FSID_V2 flag set. 469 */ 470 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 471 if (fs_devices->fsid_change && 472 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 473 BTRFS_FSID_SIZE) == 0 && 474 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 475 BTRFS_FSID_SIZE) == 0) { 476 return fs_devices; 477 } 478 } 479 /* 480 * Handle scanned device having completed its fsid change but 481 * belonging to a fs_devices that was created by a device that 482 * has an outdated pair of fsid/metadata_uuid and 483 * CHANGING_FSID_V2 flag set. 484 */ 485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 486 if (fs_devices->fsid_change && 487 memcmp(fs_devices->metadata_uuid, 488 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 489 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 490 BTRFS_FSID_SIZE) == 0) { 491 return fs_devices; 492 } 493 } 494 495 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 496 } 497 498 499 static int 500 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 501 int flush, struct block_device **bdev, 502 struct btrfs_super_block **disk_super) 503 { 504 int ret; 505 506 *bdev = blkdev_get_by_path(device_path, flags, holder); 507 508 if (IS_ERR(*bdev)) { 509 ret = PTR_ERR(*bdev); 510 goto error; 511 } 512 513 if (flush) 514 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 515 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 516 if (ret) { 517 blkdev_put(*bdev, flags); 518 goto error; 519 } 520 invalidate_bdev(*bdev); 521 *disk_super = btrfs_read_dev_super(*bdev); 522 if (IS_ERR(*disk_super)) { 523 ret = PTR_ERR(*disk_super); 524 blkdev_put(*bdev, flags); 525 goto error; 526 } 527 528 return 0; 529 530 error: 531 *bdev = NULL; 532 return ret; 533 } 534 535 static bool device_path_matched(const char *path, struct btrfs_device *device) 536 { 537 int found; 538 539 rcu_read_lock(); 540 found = strcmp(rcu_str_deref(device->name), path); 541 rcu_read_unlock(); 542 543 return found == 0; 544 } 545 546 /* 547 * Search and remove all stale (devices which are not mounted) devices. 548 * When both inputs are NULL, it will search and release all stale devices. 549 * path: Optional. When provided will it release all unmounted devices 550 * matching this path only. 551 * skip_dev: Optional. Will skip this device when searching for the stale 552 * devices. 553 * Return: 0 for success or if @path is NULL. 554 * -EBUSY if @path is a mounted device. 555 * -ENOENT if @path does not match any device in the list. 556 */ 557 static int btrfs_free_stale_devices(const char *path, 558 struct btrfs_device *skip_device) 559 { 560 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 561 struct btrfs_device *device, *tmp_device; 562 int ret = 0; 563 564 if (path) 565 ret = -ENOENT; 566 567 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 568 569 mutex_lock(&fs_devices->device_list_mutex); 570 list_for_each_entry_safe(device, tmp_device, 571 &fs_devices->devices, dev_list) { 572 if (skip_device && skip_device == device) 573 continue; 574 if (path && !device->name) 575 continue; 576 if (path && !device_path_matched(path, device)) 577 continue; 578 if (fs_devices->opened) { 579 /* for an already deleted device return 0 */ 580 if (path && ret != 0) 581 ret = -EBUSY; 582 break; 583 } 584 585 /* delete the stale device */ 586 fs_devices->num_devices--; 587 list_del(&device->dev_list); 588 btrfs_free_device(device); 589 590 ret = 0; 591 if (fs_devices->num_devices == 0) 592 break; 593 } 594 mutex_unlock(&fs_devices->device_list_mutex); 595 596 if (fs_devices->num_devices == 0) { 597 btrfs_sysfs_remove_fsid(fs_devices); 598 list_del(&fs_devices->fs_list); 599 free_fs_devices(fs_devices); 600 } 601 } 602 603 return ret; 604 } 605 606 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 607 struct btrfs_device *device, fmode_t flags, 608 void *holder) 609 { 610 struct request_queue *q; 611 struct block_device *bdev; 612 struct btrfs_super_block *disk_super; 613 u64 devid; 614 int ret; 615 616 if (device->bdev) 617 return -EINVAL; 618 if (!device->name) 619 return -EINVAL; 620 621 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 622 &bdev, &disk_super); 623 if (ret) 624 return ret; 625 626 devid = btrfs_stack_device_id(&disk_super->dev_item); 627 if (devid != device->devid) 628 goto error_free_page; 629 630 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 631 goto error_free_page; 632 633 device->generation = btrfs_super_generation(disk_super); 634 635 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 636 if (btrfs_super_incompat_flags(disk_super) & 637 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 638 pr_err( 639 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 640 goto error_free_page; 641 } 642 643 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 644 fs_devices->seeding = true; 645 } else { 646 if (bdev_read_only(bdev)) 647 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 648 else 649 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 650 } 651 652 q = bdev_get_queue(bdev); 653 if (!blk_queue_nonrot(q)) 654 fs_devices->rotating = true; 655 656 device->bdev = bdev; 657 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 658 device->mode = flags; 659 660 fs_devices->open_devices++; 661 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 662 device->devid != BTRFS_DEV_REPLACE_DEVID) { 663 fs_devices->rw_devices++; 664 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 665 } 666 btrfs_release_disk_super(disk_super); 667 668 return 0; 669 670 error_free_page: 671 btrfs_release_disk_super(disk_super); 672 blkdev_put(bdev, flags); 673 674 return -EINVAL; 675 } 676 677 /* 678 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 679 * being created with a disk that has already completed its fsid change. Such 680 * disk can belong to an fs which has its FSID changed or to one which doesn't. 681 * Handle both cases here. 682 */ 683 static struct btrfs_fs_devices *find_fsid_inprogress( 684 struct btrfs_super_block *disk_super) 685 { 686 struct btrfs_fs_devices *fs_devices; 687 688 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 689 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 690 BTRFS_FSID_SIZE) != 0 && 691 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 692 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 693 return fs_devices; 694 } 695 } 696 697 return find_fsid(disk_super->fsid, NULL); 698 } 699 700 701 static struct btrfs_fs_devices *find_fsid_changed( 702 struct btrfs_super_block *disk_super) 703 { 704 struct btrfs_fs_devices *fs_devices; 705 706 /* 707 * Handles the case where scanned device is part of an fs that had 708 * multiple successful changes of FSID but curently device didn't 709 * observe it. Meaning our fsid will be different than theirs. We need 710 * to handle two subcases : 711 * 1 - The fs still continues to have different METADATA/FSID uuids. 712 * 2 - The fs is switched back to its original FSID (METADATA/FSID 713 * are equal). 714 */ 715 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 716 /* Changed UUIDs */ 717 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 718 BTRFS_FSID_SIZE) != 0 && 719 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 720 BTRFS_FSID_SIZE) == 0 && 721 memcmp(fs_devices->fsid, disk_super->fsid, 722 BTRFS_FSID_SIZE) != 0) 723 return fs_devices; 724 725 /* Unchanged UUIDs */ 726 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 727 BTRFS_FSID_SIZE) == 0 && 728 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 729 BTRFS_FSID_SIZE) == 0) 730 return fs_devices; 731 } 732 733 return NULL; 734 } 735 736 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 737 struct btrfs_super_block *disk_super) 738 { 739 struct btrfs_fs_devices *fs_devices; 740 741 /* 742 * Handle the case where the scanned device is part of an fs whose last 743 * metadata UUID change reverted it to the original FSID. At the same 744 * time * fs_devices was first created by another constitutent device 745 * which didn't fully observe the operation. This results in an 746 * btrfs_fs_devices created with metadata/fsid different AND 747 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 748 * fs_devices equal to the FSID of the disk. 749 */ 750 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 751 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 752 BTRFS_FSID_SIZE) != 0 && 753 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 754 BTRFS_FSID_SIZE) == 0 && 755 fs_devices->fsid_change) 756 return fs_devices; 757 } 758 759 return NULL; 760 } 761 /* 762 * Add new device to list of registered devices 763 * 764 * Returns: 765 * device pointer which was just added or updated when successful 766 * error pointer when failed 767 */ 768 static noinline struct btrfs_device *device_list_add(const char *path, 769 struct btrfs_super_block *disk_super, 770 bool *new_device_added) 771 { 772 struct btrfs_device *device; 773 struct btrfs_fs_devices *fs_devices = NULL; 774 struct rcu_string *name; 775 u64 found_transid = btrfs_super_generation(disk_super); 776 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 777 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 778 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 779 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 780 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 781 782 if (fsid_change_in_progress) { 783 if (!has_metadata_uuid) 784 fs_devices = find_fsid_inprogress(disk_super); 785 else 786 fs_devices = find_fsid_changed(disk_super); 787 } else if (has_metadata_uuid) { 788 fs_devices = find_fsid_with_metadata_uuid(disk_super); 789 } else { 790 fs_devices = find_fsid_reverted_metadata(disk_super); 791 if (!fs_devices) 792 fs_devices = find_fsid(disk_super->fsid, NULL); 793 } 794 795 796 if (!fs_devices) { 797 if (has_metadata_uuid) 798 fs_devices = alloc_fs_devices(disk_super->fsid, 799 disk_super->metadata_uuid); 800 else 801 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 802 803 if (IS_ERR(fs_devices)) 804 return ERR_CAST(fs_devices); 805 806 fs_devices->fsid_change = fsid_change_in_progress; 807 808 mutex_lock(&fs_devices->device_list_mutex); 809 list_add(&fs_devices->fs_list, &fs_uuids); 810 811 device = NULL; 812 } else { 813 mutex_lock(&fs_devices->device_list_mutex); 814 device = btrfs_find_device(fs_devices, devid, 815 disk_super->dev_item.uuid, NULL, false); 816 817 /* 818 * If this disk has been pulled into an fs devices created by 819 * a device which had the CHANGING_FSID_V2 flag then replace the 820 * metadata_uuid/fsid values of the fs_devices. 821 */ 822 if (fs_devices->fsid_change && 823 found_transid > fs_devices->latest_generation) { 824 memcpy(fs_devices->fsid, disk_super->fsid, 825 BTRFS_FSID_SIZE); 826 827 if (has_metadata_uuid) 828 memcpy(fs_devices->metadata_uuid, 829 disk_super->metadata_uuid, 830 BTRFS_FSID_SIZE); 831 else 832 memcpy(fs_devices->metadata_uuid, 833 disk_super->fsid, BTRFS_FSID_SIZE); 834 835 fs_devices->fsid_change = false; 836 } 837 } 838 839 if (!device) { 840 if (fs_devices->opened) { 841 mutex_unlock(&fs_devices->device_list_mutex); 842 return ERR_PTR(-EBUSY); 843 } 844 845 device = btrfs_alloc_device(NULL, &devid, 846 disk_super->dev_item.uuid); 847 if (IS_ERR(device)) { 848 mutex_unlock(&fs_devices->device_list_mutex); 849 /* we can safely leave the fs_devices entry around */ 850 return device; 851 } 852 853 name = rcu_string_strdup(path, GFP_NOFS); 854 if (!name) { 855 btrfs_free_device(device); 856 mutex_unlock(&fs_devices->device_list_mutex); 857 return ERR_PTR(-ENOMEM); 858 } 859 rcu_assign_pointer(device->name, name); 860 861 list_add_rcu(&device->dev_list, &fs_devices->devices); 862 fs_devices->num_devices++; 863 864 device->fs_devices = fs_devices; 865 *new_device_added = true; 866 867 if (disk_super->label[0]) 868 pr_info( 869 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 870 disk_super->label, devid, found_transid, path, 871 current->comm, task_pid_nr(current)); 872 else 873 pr_info( 874 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 875 disk_super->fsid, devid, found_transid, path, 876 current->comm, task_pid_nr(current)); 877 878 } else if (!device->name || strcmp(device->name->str, path)) { 879 /* 880 * When FS is already mounted. 881 * 1. If you are here and if the device->name is NULL that 882 * means this device was missing at time of FS mount. 883 * 2. If you are here and if the device->name is different 884 * from 'path' that means either 885 * a. The same device disappeared and reappeared with 886 * different name. or 887 * b. The missing-disk-which-was-replaced, has 888 * reappeared now. 889 * 890 * We must allow 1 and 2a above. But 2b would be a spurious 891 * and unintentional. 892 * 893 * Further in case of 1 and 2a above, the disk at 'path' 894 * would have missed some transaction when it was away and 895 * in case of 2a the stale bdev has to be updated as well. 896 * 2b must not be allowed at all time. 897 */ 898 899 /* 900 * For now, we do allow update to btrfs_fs_device through the 901 * btrfs dev scan cli after FS has been mounted. We're still 902 * tracking a problem where systems fail mount by subvolume id 903 * when we reject replacement on a mounted FS. 904 */ 905 if (!fs_devices->opened && found_transid < device->generation) { 906 /* 907 * That is if the FS is _not_ mounted and if you 908 * are here, that means there is more than one 909 * disk with same uuid and devid.We keep the one 910 * with larger generation number or the last-in if 911 * generation are equal. 912 */ 913 mutex_unlock(&fs_devices->device_list_mutex); 914 return ERR_PTR(-EEXIST); 915 } 916 917 /* 918 * We are going to replace the device path for a given devid, 919 * make sure it's the same device if the device is mounted 920 */ 921 if (device->bdev) { 922 struct block_device *path_bdev; 923 924 path_bdev = lookup_bdev(path); 925 if (IS_ERR(path_bdev)) { 926 mutex_unlock(&fs_devices->device_list_mutex); 927 return ERR_CAST(path_bdev); 928 } 929 930 if (device->bdev != path_bdev) { 931 bdput(path_bdev); 932 mutex_unlock(&fs_devices->device_list_mutex); 933 btrfs_warn_in_rcu(device->fs_info, 934 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 935 disk_super->fsid, devid, 936 rcu_str_deref(device->name), path); 937 return ERR_PTR(-EEXIST); 938 } 939 bdput(path_bdev); 940 btrfs_info_in_rcu(device->fs_info, 941 "device fsid %pU devid %llu moved old:%s new:%s", 942 disk_super->fsid, devid, 943 rcu_str_deref(device->name), path); 944 } 945 946 name = rcu_string_strdup(path, GFP_NOFS); 947 if (!name) { 948 mutex_unlock(&fs_devices->device_list_mutex); 949 return ERR_PTR(-ENOMEM); 950 } 951 rcu_string_free(device->name); 952 rcu_assign_pointer(device->name, name); 953 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 954 fs_devices->missing_devices--; 955 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 956 } 957 } 958 959 /* 960 * Unmount does not free the btrfs_device struct but would zero 961 * generation along with most of the other members. So just update 962 * it back. We need it to pick the disk with largest generation 963 * (as above). 964 */ 965 if (!fs_devices->opened) { 966 device->generation = found_transid; 967 fs_devices->latest_generation = max_t(u64, found_transid, 968 fs_devices->latest_generation); 969 } 970 971 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 972 973 mutex_unlock(&fs_devices->device_list_mutex); 974 return device; 975 } 976 977 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 978 { 979 struct btrfs_fs_devices *fs_devices; 980 struct btrfs_device *device; 981 struct btrfs_device *orig_dev; 982 int ret = 0; 983 984 fs_devices = alloc_fs_devices(orig->fsid, NULL); 985 if (IS_ERR(fs_devices)) 986 return fs_devices; 987 988 mutex_lock(&orig->device_list_mutex); 989 fs_devices->total_devices = orig->total_devices; 990 991 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 992 struct rcu_string *name; 993 994 device = btrfs_alloc_device(NULL, &orig_dev->devid, 995 orig_dev->uuid); 996 if (IS_ERR(device)) { 997 ret = PTR_ERR(device); 998 goto error; 999 } 1000 1001 /* 1002 * This is ok to do without rcu read locked because we hold the 1003 * uuid mutex so nothing we touch in here is going to disappear. 1004 */ 1005 if (orig_dev->name) { 1006 name = rcu_string_strdup(orig_dev->name->str, 1007 GFP_KERNEL); 1008 if (!name) { 1009 btrfs_free_device(device); 1010 ret = -ENOMEM; 1011 goto error; 1012 } 1013 rcu_assign_pointer(device->name, name); 1014 } 1015 1016 list_add(&device->dev_list, &fs_devices->devices); 1017 device->fs_devices = fs_devices; 1018 fs_devices->num_devices++; 1019 } 1020 mutex_unlock(&orig->device_list_mutex); 1021 return fs_devices; 1022 error: 1023 mutex_unlock(&orig->device_list_mutex); 1024 free_fs_devices(fs_devices); 1025 return ERR_PTR(ret); 1026 } 1027 1028 /* 1029 * After we have read the system tree and know devids belonging to 1030 * this filesystem, remove the device which does not belong there. 1031 */ 1032 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1033 { 1034 struct btrfs_device *device, *next; 1035 struct btrfs_device *latest_dev = NULL; 1036 1037 mutex_lock(&uuid_mutex); 1038 again: 1039 /* This is the initialized path, it is safe to release the devices. */ 1040 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1041 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1042 &device->dev_state)) { 1043 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1044 &device->dev_state) && 1045 (!latest_dev || 1046 device->generation > latest_dev->generation)) { 1047 latest_dev = device; 1048 } 1049 continue; 1050 } 1051 1052 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1053 /* 1054 * In the first step, keep the device which has 1055 * the correct fsid and the devid that is used 1056 * for the dev_replace procedure. 1057 * In the second step, the dev_replace state is 1058 * read from the device tree and it is known 1059 * whether the procedure is really active or 1060 * not, which means whether this device is 1061 * used or whether it should be removed. 1062 */ 1063 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1064 &device->dev_state)) { 1065 continue; 1066 } 1067 } 1068 if (device->bdev) { 1069 blkdev_put(device->bdev, device->mode); 1070 device->bdev = NULL; 1071 fs_devices->open_devices--; 1072 } 1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1074 list_del_init(&device->dev_alloc_list); 1075 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1076 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1077 &device->dev_state)) 1078 fs_devices->rw_devices--; 1079 } 1080 list_del_init(&device->dev_list); 1081 fs_devices->num_devices--; 1082 btrfs_free_device(device); 1083 } 1084 1085 if (fs_devices->seed) { 1086 fs_devices = fs_devices->seed; 1087 goto again; 1088 } 1089 1090 fs_devices->latest_bdev = latest_dev->bdev; 1091 1092 mutex_unlock(&uuid_mutex); 1093 } 1094 1095 static void btrfs_close_bdev(struct btrfs_device *device) 1096 { 1097 if (!device->bdev) 1098 return; 1099 1100 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1101 sync_blockdev(device->bdev); 1102 invalidate_bdev(device->bdev); 1103 } 1104 1105 blkdev_put(device->bdev, device->mode); 1106 } 1107 1108 static void btrfs_close_one_device(struct btrfs_device *device) 1109 { 1110 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1111 1112 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1113 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1114 list_del_init(&device->dev_alloc_list); 1115 fs_devices->rw_devices--; 1116 } 1117 1118 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1119 fs_devices->missing_devices--; 1120 1121 btrfs_close_bdev(device); 1122 if (device->bdev) { 1123 fs_devices->open_devices--; 1124 device->bdev = NULL; 1125 } 1126 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1127 1128 device->fs_info = NULL; 1129 atomic_set(&device->dev_stats_ccnt, 0); 1130 extent_io_tree_release(&device->alloc_state); 1131 1132 /* Verify the device is back in a pristine state */ 1133 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1134 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1135 ASSERT(list_empty(&device->dev_alloc_list)); 1136 ASSERT(list_empty(&device->post_commit_list)); 1137 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1138 } 1139 1140 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1141 { 1142 struct btrfs_device *device, *tmp; 1143 1144 if (--fs_devices->opened > 0) 1145 return 0; 1146 1147 mutex_lock(&fs_devices->device_list_mutex); 1148 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1149 btrfs_close_one_device(device); 1150 } 1151 mutex_unlock(&fs_devices->device_list_mutex); 1152 1153 WARN_ON(fs_devices->open_devices); 1154 WARN_ON(fs_devices->rw_devices); 1155 fs_devices->opened = 0; 1156 fs_devices->seeding = false; 1157 1158 return 0; 1159 } 1160 1161 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1162 { 1163 struct btrfs_fs_devices *seed_devices = NULL; 1164 int ret; 1165 1166 mutex_lock(&uuid_mutex); 1167 ret = close_fs_devices(fs_devices); 1168 if (!fs_devices->opened) { 1169 seed_devices = fs_devices->seed; 1170 fs_devices->seed = NULL; 1171 } 1172 mutex_unlock(&uuid_mutex); 1173 1174 while (seed_devices) { 1175 fs_devices = seed_devices; 1176 seed_devices = fs_devices->seed; 1177 close_fs_devices(fs_devices); 1178 free_fs_devices(fs_devices); 1179 } 1180 return ret; 1181 } 1182 1183 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1184 fmode_t flags, void *holder) 1185 { 1186 struct btrfs_device *device; 1187 struct btrfs_device *latest_dev = NULL; 1188 int ret = 0; 1189 1190 flags |= FMODE_EXCL; 1191 1192 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1193 /* Just open everything we can; ignore failures here */ 1194 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1195 continue; 1196 1197 if (!latest_dev || 1198 device->generation > latest_dev->generation) 1199 latest_dev = device; 1200 } 1201 if (fs_devices->open_devices == 0) { 1202 ret = -EINVAL; 1203 goto out; 1204 } 1205 fs_devices->opened = 1; 1206 fs_devices->latest_bdev = latest_dev->bdev; 1207 fs_devices->total_rw_bytes = 0; 1208 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1209 out: 1210 return ret; 1211 } 1212 1213 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1214 { 1215 struct btrfs_device *dev1, *dev2; 1216 1217 dev1 = list_entry(a, struct btrfs_device, dev_list); 1218 dev2 = list_entry(b, struct btrfs_device, dev_list); 1219 1220 if (dev1->devid < dev2->devid) 1221 return -1; 1222 else if (dev1->devid > dev2->devid) 1223 return 1; 1224 return 0; 1225 } 1226 1227 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1228 fmode_t flags, void *holder) 1229 { 1230 int ret; 1231 1232 lockdep_assert_held(&uuid_mutex); 1233 1234 mutex_lock(&fs_devices->device_list_mutex); 1235 if (fs_devices->opened) { 1236 fs_devices->opened++; 1237 ret = 0; 1238 } else { 1239 list_sort(NULL, &fs_devices->devices, devid_cmp); 1240 ret = open_fs_devices(fs_devices, flags, holder); 1241 } 1242 mutex_unlock(&fs_devices->device_list_mutex); 1243 1244 return ret; 1245 } 1246 1247 void btrfs_release_disk_super(struct btrfs_super_block *super) 1248 { 1249 struct page *page = virt_to_page(super); 1250 1251 put_page(page); 1252 } 1253 1254 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1255 struct page **page, 1256 struct btrfs_super_block **disk_super) 1257 { 1258 void *p; 1259 pgoff_t index; 1260 1261 /* make sure our super fits in the device */ 1262 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1263 return 1; 1264 1265 /* make sure our super fits in the page */ 1266 if (sizeof(**disk_super) > PAGE_SIZE) 1267 return 1; 1268 1269 /* make sure our super doesn't straddle pages on disk */ 1270 index = bytenr >> PAGE_SHIFT; 1271 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1272 return 1; 1273 1274 /* pull in the page with our super */ 1275 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1276 index, GFP_KERNEL); 1277 1278 if (IS_ERR(*page)) 1279 return 1; 1280 1281 p = page_address(*page); 1282 1283 /* align our pointer to the offset of the super block */ 1284 *disk_super = p + offset_in_page(bytenr); 1285 1286 if (btrfs_super_bytenr(*disk_super) != bytenr || 1287 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1288 btrfs_release_disk_super(p); 1289 return 1; 1290 } 1291 1292 if ((*disk_super)->label[0] && 1293 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1294 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1295 1296 return 0; 1297 } 1298 1299 int btrfs_forget_devices(const char *path) 1300 { 1301 int ret; 1302 1303 mutex_lock(&uuid_mutex); 1304 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1305 mutex_unlock(&uuid_mutex); 1306 1307 return ret; 1308 } 1309 1310 /* 1311 * Look for a btrfs signature on a device. This may be called out of the mount path 1312 * and we are not allowed to call set_blocksize during the scan. The superblock 1313 * is read via pagecache 1314 */ 1315 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1316 void *holder) 1317 { 1318 struct btrfs_super_block *disk_super; 1319 bool new_device_added = false; 1320 struct btrfs_device *device = NULL; 1321 struct block_device *bdev; 1322 struct page *page; 1323 u64 bytenr; 1324 1325 lockdep_assert_held(&uuid_mutex); 1326 1327 /* 1328 * we would like to check all the supers, but that would make 1329 * a btrfs mount succeed after a mkfs from a different FS. 1330 * So, we need to add a special mount option to scan for 1331 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1332 */ 1333 bytenr = btrfs_sb_offset(0); 1334 flags |= FMODE_EXCL; 1335 1336 bdev = blkdev_get_by_path(path, flags, holder); 1337 if (IS_ERR(bdev)) 1338 return ERR_CAST(bdev); 1339 1340 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1341 device = ERR_PTR(-EINVAL); 1342 goto error_bdev_put; 1343 } 1344 1345 device = device_list_add(path, disk_super, &new_device_added); 1346 if (!IS_ERR(device)) { 1347 if (new_device_added) 1348 btrfs_free_stale_devices(path, device); 1349 } 1350 1351 btrfs_release_disk_super(disk_super); 1352 1353 error_bdev_put: 1354 blkdev_put(bdev, flags); 1355 1356 return device; 1357 } 1358 1359 /* 1360 * Try to find a chunk that intersects [start, start + len] range and when one 1361 * such is found, record the end of it in *start 1362 */ 1363 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1364 u64 len) 1365 { 1366 u64 physical_start, physical_end; 1367 1368 lockdep_assert_held(&device->fs_info->chunk_mutex); 1369 1370 if (!find_first_extent_bit(&device->alloc_state, *start, 1371 &physical_start, &physical_end, 1372 CHUNK_ALLOCATED, NULL)) { 1373 1374 if (in_range(physical_start, *start, len) || 1375 in_range(*start, physical_start, 1376 physical_end - physical_start)) { 1377 *start = physical_end + 1; 1378 return true; 1379 } 1380 } 1381 return false; 1382 } 1383 1384 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1385 { 1386 switch (device->fs_devices->chunk_alloc_policy) { 1387 case BTRFS_CHUNK_ALLOC_REGULAR: 1388 /* 1389 * We don't want to overwrite the superblock on the drive nor 1390 * any area used by the boot loader (grub for example), so we 1391 * make sure to start at an offset of at least 1MB. 1392 */ 1393 return max_t(u64, start, SZ_1M); 1394 default: 1395 BUG(); 1396 } 1397 } 1398 1399 /** 1400 * dev_extent_hole_check - check if specified hole is suitable for allocation 1401 * @device: the device which we have the hole 1402 * @hole_start: starting position of the hole 1403 * @hole_size: the size of the hole 1404 * @num_bytes: the size of the free space that we need 1405 * 1406 * This function may modify @hole_start and @hole_end to reflect the suitable 1407 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1408 */ 1409 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1410 u64 *hole_size, u64 num_bytes) 1411 { 1412 bool changed = false; 1413 u64 hole_end = *hole_start + *hole_size; 1414 1415 /* 1416 * Check before we set max_hole_start, otherwise we could end up 1417 * sending back this offset anyway. 1418 */ 1419 if (contains_pending_extent(device, hole_start, *hole_size)) { 1420 if (hole_end >= *hole_start) 1421 *hole_size = hole_end - *hole_start; 1422 else 1423 *hole_size = 0; 1424 changed = true; 1425 } 1426 1427 switch (device->fs_devices->chunk_alloc_policy) { 1428 case BTRFS_CHUNK_ALLOC_REGULAR: 1429 /* No extra check */ 1430 break; 1431 default: 1432 BUG(); 1433 } 1434 1435 return changed; 1436 } 1437 1438 /* 1439 * find_free_dev_extent_start - find free space in the specified device 1440 * @device: the device which we search the free space in 1441 * @num_bytes: the size of the free space that we need 1442 * @search_start: the position from which to begin the search 1443 * @start: store the start of the free space. 1444 * @len: the size of the free space. that we find, or the size 1445 * of the max free space if we don't find suitable free space 1446 * 1447 * this uses a pretty simple search, the expectation is that it is 1448 * called very infrequently and that a given device has a small number 1449 * of extents 1450 * 1451 * @start is used to store the start of the free space if we find. But if we 1452 * don't find suitable free space, it will be used to store the start position 1453 * of the max free space. 1454 * 1455 * @len is used to store the size of the free space that we find. 1456 * But if we don't find suitable free space, it is used to store the size of 1457 * the max free space. 1458 * 1459 * NOTE: This function will search *commit* root of device tree, and does extra 1460 * check to ensure dev extents are not double allocated. 1461 * This makes the function safe to allocate dev extents but may not report 1462 * correct usable device space, as device extent freed in current transaction 1463 * is not reported as avaiable. 1464 */ 1465 static int find_free_dev_extent_start(struct btrfs_device *device, 1466 u64 num_bytes, u64 search_start, u64 *start, 1467 u64 *len) 1468 { 1469 struct btrfs_fs_info *fs_info = device->fs_info; 1470 struct btrfs_root *root = fs_info->dev_root; 1471 struct btrfs_key key; 1472 struct btrfs_dev_extent *dev_extent; 1473 struct btrfs_path *path; 1474 u64 hole_size; 1475 u64 max_hole_start; 1476 u64 max_hole_size; 1477 u64 extent_end; 1478 u64 search_end = device->total_bytes; 1479 int ret; 1480 int slot; 1481 struct extent_buffer *l; 1482 1483 search_start = dev_extent_search_start(device, search_start); 1484 1485 path = btrfs_alloc_path(); 1486 if (!path) 1487 return -ENOMEM; 1488 1489 max_hole_start = search_start; 1490 max_hole_size = 0; 1491 1492 again: 1493 if (search_start >= search_end || 1494 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1495 ret = -ENOSPC; 1496 goto out; 1497 } 1498 1499 path->reada = READA_FORWARD; 1500 path->search_commit_root = 1; 1501 path->skip_locking = 1; 1502 1503 key.objectid = device->devid; 1504 key.offset = search_start; 1505 key.type = BTRFS_DEV_EXTENT_KEY; 1506 1507 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1508 if (ret < 0) 1509 goto out; 1510 if (ret > 0) { 1511 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1512 if (ret < 0) 1513 goto out; 1514 } 1515 1516 while (1) { 1517 l = path->nodes[0]; 1518 slot = path->slots[0]; 1519 if (slot >= btrfs_header_nritems(l)) { 1520 ret = btrfs_next_leaf(root, path); 1521 if (ret == 0) 1522 continue; 1523 if (ret < 0) 1524 goto out; 1525 1526 break; 1527 } 1528 btrfs_item_key_to_cpu(l, &key, slot); 1529 1530 if (key.objectid < device->devid) 1531 goto next; 1532 1533 if (key.objectid > device->devid) 1534 break; 1535 1536 if (key.type != BTRFS_DEV_EXTENT_KEY) 1537 goto next; 1538 1539 if (key.offset > search_start) { 1540 hole_size = key.offset - search_start; 1541 dev_extent_hole_check(device, &search_start, &hole_size, 1542 num_bytes); 1543 1544 if (hole_size > max_hole_size) { 1545 max_hole_start = search_start; 1546 max_hole_size = hole_size; 1547 } 1548 1549 /* 1550 * If this free space is greater than which we need, 1551 * it must be the max free space that we have found 1552 * until now, so max_hole_start must point to the start 1553 * of this free space and the length of this free space 1554 * is stored in max_hole_size. Thus, we return 1555 * max_hole_start and max_hole_size and go back to the 1556 * caller. 1557 */ 1558 if (hole_size >= num_bytes) { 1559 ret = 0; 1560 goto out; 1561 } 1562 } 1563 1564 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1565 extent_end = key.offset + btrfs_dev_extent_length(l, 1566 dev_extent); 1567 if (extent_end > search_start) 1568 search_start = extent_end; 1569 next: 1570 path->slots[0]++; 1571 cond_resched(); 1572 } 1573 1574 /* 1575 * At this point, search_start should be the end of 1576 * allocated dev extents, and when shrinking the device, 1577 * search_end may be smaller than search_start. 1578 */ 1579 if (search_end > search_start) { 1580 hole_size = search_end - search_start; 1581 if (dev_extent_hole_check(device, &search_start, &hole_size, 1582 num_bytes)) { 1583 btrfs_release_path(path); 1584 goto again; 1585 } 1586 1587 if (hole_size > max_hole_size) { 1588 max_hole_start = search_start; 1589 max_hole_size = hole_size; 1590 } 1591 } 1592 1593 /* See above. */ 1594 if (max_hole_size < num_bytes) 1595 ret = -ENOSPC; 1596 else 1597 ret = 0; 1598 1599 out: 1600 btrfs_free_path(path); 1601 *start = max_hole_start; 1602 if (len) 1603 *len = max_hole_size; 1604 return ret; 1605 } 1606 1607 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1608 u64 *start, u64 *len) 1609 { 1610 /* FIXME use last free of some kind */ 1611 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1612 } 1613 1614 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1615 struct btrfs_device *device, 1616 u64 start, u64 *dev_extent_len) 1617 { 1618 struct btrfs_fs_info *fs_info = device->fs_info; 1619 struct btrfs_root *root = fs_info->dev_root; 1620 int ret; 1621 struct btrfs_path *path; 1622 struct btrfs_key key; 1623 struct btrfs_key found_key; 1624 struct extent_buffer *leaf = NULL; 1625 struct btrfs_dev_extent *extent = NULL; 1626 1627 path = btrfs_alloc_path(); 1628 if (!path) 1629 return -ENOMEM; 1630 1631 key.objectid = device->devid; 1632 key.offset = start; 1633 key.type = BTRFS_DEV_EXTENT_KEY; 1634 again: 1635 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1636 if (ret > 0) { 1637 ret = btrfs_previous_item(root, path, key.objectid, 1638 BTRFS_DEV_EXTENT_KEY); 1639 if (ret) 1640 goto out; 1641 leaf = path->nodes[0]; 1642 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1643 extent = btrfs_item_ptr(leaf, path->slots[0], 1644 struct btrfs_dev_extent); 1645 BUG_ON(found_key.offset > start || found_key.offset + 1646 btrfs_dev_extent_length(leaf, extent) < start); 1647 key = found_key; 1648 btrfs_release_path(path); 1649 goto again; 1650 } else if (ret == 0) { 1651 leaf = path->nodes[0]; 1652 extent = btrfs_item_ptr(leaf, path->slots[0], 1653 struct btrfs_dev_extent); 1654 } else { 1655 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1656 goto out; 1657 } 1658 1659 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1660 1661 ret = btrfs_del_item(trans, root, path); 1662 if (ret) { 1663 btrfs_handle_fs_error(fs_info, ret, 1664 "Failed to remove dev extent item"); 1665 } else { 1666 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1667 } 1668 out: 1669 btrfs_free_path(path); 1670 return ret; 1671 } 1672 1673 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1674 struct btrfs_device *device, 1675 u64 chunk_offset, u64 start, u64 num_bytes) 1676 { 1677 int ret; 1678 struct btrfs_path *path; 1679 struct btrfs_fs_info *fs_info = device->fs_info; 1680 struct btrfs_root *root = fs_info->dev_root; 1681 struct btrfs_dev_extent *extent; 1682 struct extent_buffer *leaf; 1683 struct btrfs_key key; 1684 1685 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1686 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1687 path = btrfs_alloc_path(); 1688 if (!path) 1689 return -ENOMEM; 1690 1691 key.objectid = device->devid; 1692 key.offset = start; 1693 key.type = BTRFS_DEV_EXTENT_KEY; 1694 ret = btrfs_insert_empty_item(trans, root, path, &key, 1695 sizeof(*extent)); 1696 if (ret) 1697 goto out; 1698 1699 leaf = path->nodes[0]; 1700 extent = btrfs_item_ptr(leaf, path->slots[0], 1701 struct btrfs_dev_extent); 1702 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1703 BTRFS_CHUNK_TREE_OBJECTID); 1704 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1705 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1706 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1707 1708 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1709 btrfs_mark_buffer_dirty(leaf); 1710 out: 1711 btrfs_free_path(path); 1712 return ret; 1713 } 1714 1715 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1716 { 1717 struct extent_map_tree *em_tree; 1718 struct extent_map *em; 1719 struct rb_node *n; 1720 u64 ret = 0; 1721 1722 em_tree = &fs_info->mapping_tree; 1723 read_lock(&em_tree->lock); 1724 n = rb_last(&em_tree->map.rb_root); 1725 if (n) { 1726 em = rb_entry(n, struct extent_map, rb_node); 1727 ret = em->start + em->len; 1728 } 1729 read_unlock(&em_tree->lock); 1730 1731 return ret; 1732 } 1733 1734 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1735 u64 *devid_ret) 1736 { 1737 int ret; 1738 struct btrfs_key key; 1739 struct btrfs_key found_key; 1740 struct btrfs_path *path; 1741 1742 path = btrfs_alloc_path(); 1743 if (!path) 1744 return -ENOMEM; 1745 1746 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1747 key.type = BTRFS_DEV_ITEM_KEY; 1748 key.offset = (u64)-1; 1749 1750 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1751 if (ret < 0) 1752 goto error; 1753 1754 if (ret == 0) { 1755 /* Corruption */ 1756 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1757 ret = -EUCLEAN; 1758 goto error; 1759 } 1760 1761 ret = btrfs_previous_item(fs_info->chunk_root, path, 1762 BTRFS_DEV_ITEMS_OBJECTID, 1763 BTRFS_DEV_ITEM_KEY); 1764 if (ret) { 1765 *devid_ret = 1; 1766 } else { 1767 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1768 path->slots[0]); 1769 *devid_ret = found_key.offset + 1; 1770 } 1771 ret = 0; 1772 error: 1773 btrfs_free_path(path); 1774 return ret; 1775 } 1776 1777 /* 1778 * the device information is stored in the chunk root 1779 * the btrfs_device struct should be fully filled in 1780 */ 1781 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1782 struct btrfs_device *device) 1783 { 1784 int ret; 1785 struct btrfs_path *path; 1786 struct btrfs_dev_item *dev_item; 1787 struct extent_buffer *leaf; 1788 struct btrfs_key key; 1789 unsigned long ptr; 1790 1791 path = btrfs_alloc_path(); 1792 if (!path) 1793 return -ENOMEM; 1794 1795 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1796 key.type = BTRFS_DEV_ITEM_KEY; 1797 key.offset = device->devid; 1798 1799 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1800 &key, sizeof(*dev_item)); 1801 if (ret) 1802 goto out; 1803 1804 leaf = path->nodes[0]; 1805 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1806 1807 btrfs_set_device_id(leaf, dev_item, device->devid); 1808 btrfs_set_device_generation(leaf, dev_item, 0); 1809 btrfs_set_device_type(leaf, dev_item, device->type); 1810 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1811 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1812 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1813 btrfs_set_device_total_bytes(leaf, dev_item, 1814 btrfs_device_get_disk_total_bytes(device)); 1815 btrfs_set_device_bytes_used(leaf, dev_item, 1816 btrfs_device_get_bytes_used(device)); 1817 btrfs_set_device_group(leaf, dev_item, 0); 1818 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1819 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1820 btrfs_set_device_start_offset(leaf, dev_item, 0); 1821 1822 ptr = btrfs_device_uuid(dev_item); 1823 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1824 ptr = btrfs_device_fsid(dev_item); 1825 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1826 ptr, BTRFS_FSID_SIZE); 1827 btrfs_mark_buffer_dirty(leaf); 1828 1829 ret = 0; 1830 out: 1831 btrfs_free_path(path); 1832 return ret; 1833 } 1834 1835 /* 1836 * Function to update ctime/mtime for a given device path. 1837 * Mainly used for ctime/mtime based probe like libblkid. 1838 */ 1839 static void update_dev_time(const char *path_name) 1840 { 1841 struct file *filp; 1842 1843 filp = filp_open(path_name, O_RDWR, 0); 1844 if (IS_ERR(filp)) 1845 return; 1846 file_update_time(filp); 1847 filp_close(filp, NULL); 1848 } 1849 1850 static int btrfs_rm_dev_item(struct btrfs_device *device) 1851 { 1852 struct btrfs_root *root = device->fs_info->chunk_root; 1853 int ret; 1854 struct btrfs_path *path; 1855 struct btrfs_key key; 1856 struct btrfs_trans_handle *trans; 1857 1858 path = btrfs_alloc_path(); 1859 if (!path) 1860 return -ENOMEM; 1861 1862 trans = btrfs_start_transaction(root, 0); 1863 if (IS_ERR(trans)) { 1864 btrfs_free_path(path); 1865 return PTR_ERR(trans); 1866 } 1867 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1868 key.type = BTRFS_DEV_ITEM_KEY; 1869 key.offset = device->devid; 1870 1871 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1872 if (ret) { 1873 if (ret > 0) 1874 ret = -ENOENT; 1875 btrfs_abort_transaction(trans, ret); 1876 btrfs_end_transaction(trans); 1877 goto out; 1878 } 1879 1880 ret = btrfs_del_item(trans, root, path); 1881 if (ret) { 1882 btrfs_abort_transaction(trans, ret); 1883 btrfs_end_transaction(trans); 1884 } 1885 1886 out: 1887 btrfs_free_path(path); 1888 if (!ret) 1889 ret = btrfs_commit_transaction(trans); 1890 return ret; 1891 } 1892 1893 /* 1894 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1895 * filesystem. It's up to the caller to adjust that number regarding eg. device 1896 * replace. 1897 */ 1898 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1899 u64 num_devices) 1900 { 1901 u64 all_avail; 1902 unsigned seq; 1903 int i; 1904 1905 do { 1906 seq = read_seqbegin(&fs_info->profiles_lock); 1907 1908 all_avail = fs_info->avail_data_alloc_bits | 1909 fs_info->avail_system_alloc_bits | 1910 fs_info->avail_metadata_alloc_bits; 1911 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1912 1913 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1914 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1915 continue; 1916 1917 if (num_devices < btrfs_raid_array[i].devs_min) { 1918 int ret = btrfs_raid_array[i].mindev_error; 1919 1920 if (ret) 1921 return ret; 1922 } 1923 } 1924 1925 return 0; 1926 } 1927 1928 static struct btrfs_device * btrfs_find_next_active_device( 1929 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1930 { 1931 struct btrfs_device *next_device; 1932 1933 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1934 if (next_device != device && 1935 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1936 && next_device->bdev) 1937 return next_device; 1938 } 1939 1940 return NULL; 1941 } 1942 1943 /* 1944 * Helper function to check if the given device is part of s_bdev / latest_bdev 1945 * and replace it with the provided or the next active device, in the context 1946 * where this function called, there should be always be another device (or 1947 * this_dev) which is active. 1948 */ 1949 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1950 struct btrfs_device *this_dev) 1951 { 1952 struct btrfs_fs_info *fs_info = device->fs_info; 1953 struct btrfs_device *next_device; 1954 1955 if (this_dev) 1956 next_device = this_dev; 1957 else 1958 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1959 device); 1960 ASSERT(next_device); 1961 1962 if (fs_info->sb->s_bdev && 1963 (fs_info->sb->s_bdev == device->bdev)) 1964 fs_info->sb->s_bdev = next_device->bdev; 1965 1966 if (fs_info->fs_devices->latest_bdev == device->bdev) 1967 fs_info->fs_devices->latest_bdev = next_device->bdev; 1968 } 1969 1970 /* 1971 * Return btrfs_fs_devices::num_devices excluding the device that's being 1972 * currently replaced. 1973 */ 1974 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1975 { 1976 u64 num_devices = fs_info->fs_devices->num_devices; 1977 1978 down_read(&fs_info->dev_replace.rwsem); 1979 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1980 ASSERT(num_devices > 1); 1981 num_devices--; 1982 } 1983 up_read(&fs_info->dev_replace.rwsem); 1984 1985 return num_devices; 1986 } 1987 1988 static void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 1989 struct block_device *bdev, 1990 const char *device_path) 1991 { 1992 struct btrfs_super_block *disk_super; 1993 int copy_num; 1994 1995 if (!bdev) 1996 return; 1997 1998 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 1999 struct page *page; 2000 int ret; 2001 2002 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2003 if (IS_ERR(disk_super)) 2004 continue; 2005 2006 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2007 2008 page = virt_to_page(disk_super); 2009 set_page_dirty(page); 2010 lock_page(page); 2011 /* write_on_page() unlocks the page */ 2012 ret = write_one_page(page); 2013 if (ret) 2014 btrfs_warn(fs_info, 2015 "error clearing superblock number %d (%d)", 2016 copy_num, ret); 2017 btrfs_release_disk_super(disk_super); 2018 2019 } 2020 2021 /* Notify udev that device has changed */ 2022 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2023 2024 /* Update ctime/mtime for device path for libblkid */ 2025 update_dev_time(device_path); 2026 } 2027 2028 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2029 u64 devid) 2030 { 2031 struct btrfs_device *device; 2032 struct btrfs_fs_devices *cur_devices; 2033 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2034 u64 num_devices; 2035 int ret = 0; 2036 2037 mutex_lock(&uuid_mutex); 2038 2039 num_devices = btrfs_num_devices(fs_info); 2040 2041 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2042 if (ret) 2043 goto out; 2044 2045 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2046 2047 if (IS_ERR(device)) { 2048 if (PTR_ERR(device) == -ENOENT && 2049 strcmp(device_path, "missing") == 0) 2050 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2051 else 2052 ret = PTR_ERR(device); 2053 goto out; 2054 } 2055 2056 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2057 btrfs_warn_in_rcu(fs_info, 2058 "cannot remove device %s (devid %llu) due to active swapfile", 2059 rcu_str_deref(device->name), device->devid); 2060 ret = -ETXTBSY; 2061 goto out; 2062 } 2063 2064 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2065 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2066 goto out; 2067 } 2068 2069 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2070 fs_info->fs_devices->rw_devices == 1) { 2071 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2072 goto out; 2073 } 2074 2075 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2076 mutex_lock(&fs_info->chunk_mutex); 2077 list_del_init(&device->dev_alloc_list); 2078 device->fs_devices->rw_devices--; 2079 mutex_unlock(&fs_info->chunk_mutex); 2080 } 2081 2082 mutex_unlock(&uuid_mutex); 2083 ret = btrfs_shrink_device(device, 0); 2084 mutex_lock(&uuid_mutex); 2085 if (ret) 2086 goto error_undo; 2087 2088 /* 2089 * TODO: the superblock still includes this device in its num_devices 2090 * counter although write_all_supers() is not locked out. This 2091 * could give a filesystem state which requires a degraded mount. 2092 */ 2093 ret = btrfs_rm_dev_item(device); 2094 if (ret) 2095 goto error_undo; 2096 2097 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2098 btrfs_scrub_cancel_dev(device); 2099 2100 /* 2101 * the device list mutex makes sure that we don't change 2102 * the device list while someone else is writing out all 2103 * the device supers. Whoever is writing all supers, should 2104 * lock the device list mutex before getting the number of 2105 * devices in the super block (super_copy). Conversely, 2106 * whoever updates the number of devices in the super block 2107 * (super_copy) should hold the device list mutex. 2108 */ 2109 2110 /* 2111 * In normal cases the cur_devices == fs_devices. But in case 2112 * of deleting a seed device, the cur_devices should point to 2113 * its own fs_devices listed under the fs_devices->seed. 2114 */ 2115 cur_devices = device->fs_devices; 2116 mutex_lock(&fs_devices->device_list_mutex); 2117 list_del_rcu(&device->dev_list); 2118 2119 cur_devices->num_devices--; 2120 cur_devices->total_devices--; 2121 /* Update total_devices of the parent fs_devices if it's seed */ 2122 if (cur_devices != fs_devices) 2123 fs_devices->total_devices--; 2124 2125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2126 cur_devices->missing_devices--; 2127 2128 btrfs_assign_next_active_device(device, NULL); 2129 2130 if (device->bdev) { 2131 cur_devices->open_devices--; 2132 /* remove sysfs entry */ 2133 btrfs_sysfs_remove_devices_dir(fs_devices, device); 2134 } 2135 2136 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2137 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2138 mutex_unlock(&fs_devices->device_list_mutex); 2139 2140 /* 2141 * at this point, the device is zero sized and detached from 2142 * the devices list. All that's left is to zero out the old 2143 * supers and free the device. 2144 */ 2145 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2146 btrfs_scratch_superblocks(fs_info, device->bdev, 2147 device->name->str); 2148 2149 btrfs_close_bdev(device); 2150 synchronize_rcu(); 2151 btrfs_free_device(device); 2152 2153 if (cur_devices->open_devices == 0) { 2154 while (fs_devices) { 2155 if (fs_devices->seed == cur_devices) { 2156 fs_devices->seed = cur_devices->seed; 2157 break; 2158 } 2159 fs_devices = fs_devices->seed; 2160 } 2161 cur_devices->seed = NULL; 2162 close_fs_devices(cur_devices); 2163 free_fs_devices(cur_devices); 2164 } 2165 2166 out: 2167 mutex_unlock(&uuid_mutex); 2168 return ret; 2169 2170 error_undo: 2171 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2172 mutex_lock(&fs_info->chunk_mutex); 2173 list_add(&device->dev_alloc_list, 2174 &fs_devices->alloc_list); 2175 device->fs_devices->rw_devices++; 2176 mutex_unlock(&fs_info->chunk_mutex); 2177 } 2178 goto out; 2179 } 2180 2181 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2182 { 2183 struct btrfs_fs_devices *fs_devices; 2184 2185 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2186 2187 /* 2188 * in case of fs with no seed, srcdev->fs_devices will point 2189 * to fs_devices of fs_info. However when the dev being replaced is 2190 * a seed dev it will point to the seed's local fs_devices. In short 2191 * srcdev will have its correct fs_devices in both the cases. 2192 */ 2193 fs_devices = srcdev->fs_devices; 2194 2195 list_del_rcu(&srcdev->dev_list); 2196 list_del(&srcdev->dev_alloc_list); 2197 fs_devices->num_devices--; 2198 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2199 fs_devices->missing_devices--; 2200 2201 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2202 fs_devices->rw_devices--; 2203 2204 if (srcdev->bdev) 2205 fs_devices->open_devices--; 2206 } 2207 2208 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2209 { 2210 struct btrfs_fs_info *fs_info = srcdev->fs_info; 2211 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2212 2213 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2214 /* zero out the old super if it is writable */ 2215 btrfs_scratch_superblocks(fs_info, srcdev->bdev, 2216 srcdev->name->str); 2217 } 2218 2219 btrfs_close_bdev(srcdev); 2220 synchronize_rcu(); 2221 btrfs_free_device(srcdev); 2222 2223 /* if this is no devs we rather delete the fs_devices */ 2224 if (!fs_devices->num_devices) { 2225 struct btrfs_fs_devices *tmp_fs_devices; 2226 2227 /* 2228 * On a mounted FS, num_devices can't be zero unless it's a 2229 * seed. In case of a seed device being replaced, the replace 2230 * target added to the sprout FS, so there will be no more 2231 * device left under the seed FS. 2232 */ 2233 ASSERT(fs_devices->seeding); 2234 2235 tmp_fs_devices = fs_info->fs_devices; 2236 while (tmp_fs_devices) { 2237 if (tmp_fs_devices->seed == fs_devices) { 2238 tmp_fs_devices->seed = fs_devices->seed; 2239 break; 2240 } 2241 tmp_fs_devices = tmp_fs_devices->seed; 2242 } 2243 fs_devices->seed = NULL; 2244 close_fs_devices(fs_devices); 2245 free_fs_devices(fs_devices); 2246 } 2247 } 2248 2249 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2250 { 2251 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2252 2253 mutex_lock(&fs_devices->device_list_mutex); 2254 2255 btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev); 2256 2257 if (tgtdev->bdev) 2258 fs_devices->open_devices--; 2259 2260 fs_devices->num_devices--; 2261 2262 btrfs_assign_next_active_device(tgtdev, NULL); 2263 2264 list_del_rcu(&tgtdev->dev_list); 2265 2266 mutex_unlock(&fs_devices->device_list_mutex); 2267 2268 /* 2269 * The update_dev_time() with in btrfs_scratch_superblocks() 2270 * may lead to a call to btrfs_show_devname() which will try 2271 * to hold device_list_mutex. And here this device 2272 * is already out of device list, so we don't have to hold 2273 * the device_list_mutex lock. 2274 */ 2275 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2276 tgtdev->name->str); 2277 2278 btrfs_close_bdev(tgtdev); 2279 synchronize_rcu(); 2280 btrfs_free_device(tgtdev); 2281 } 2282 2283 static struct btrfs_device *btrfs_find_device_by_path( 2284 struct btrfs_fs_info *fs_info, const char *device_path) 2285 { 2286 int ret = 0; 2287 struct btrfs_super_block *disk_super; 2288 u64 devid; 2289 u8 *dev_uuid; 2290 struct block_device *bdev; 2291 struct btrfs_device *device; 2292 2293 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2294 fs_info->bdev_holder, 0, &bdev, &disk_super); 2295 if (ret) 2296 return ERR_PTR(ret); 2297 2298 devid = btrfs_stack_device_id(&disk_super->dev_item); 2299 dev_uuid = disk_super->dev_item.uuid; 2300 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2301 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2302 disk_super->metadata_uuid, true); 2303 else 2304 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2305 disk_super->fsid, true); 2306 2307 btrfs_release_disk_super(disk_super); 2308 if (!device) 2309 device = ERR_PTR(-ENOENT); 2310 blkdev_put(bdev, FMODE_READ); 2311 return device; 2312 } 2313 2314 /* 2315 * Lookup a device given by device id, or the path if the id is 0. 2316 */ 2317 struct btrfs_device *btrfs_find_device_by_devspec( 2318 struct btrfs_fs_info *fs_info, u64 devid, 2319 const char *device_path) 2320 { 2321 struct btrfs_device *device; 2322 2323 if (devid) { 2324 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2325 NULL, true); 2326 if (!device) 2327 return ERR_PTR(-ENOENT); 2328 return device; 2329 } 2330 2331 if (!device_path || !device_path[0]) 2332 return ERR_PTR(-EINVAL); 2333 2334 if (strcmp(device_path, "missing") == 0) { 2335 /* Find first missing device */ 2336 list_for_each_entry(device, &fs_info->fs_devices->devices, 2337 dev_list) { 2338 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2339 &device->dev_state) && !device->bdev) 2340 return device; 2341 } 2342 return ERR_PTR(-ENOENT); 2343 } 2344 2345 return btrfs_find_device_by_path(fs_info, device_path); 2346 } 2347 2348 /* 2349 * does all the dirty work required for changing file system's UUID. 2350 */ 2351 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2352 { 2353 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2354 struct btrfs_fs_devices *old_devices; 2355 struct btrfs_fs_devices *seed_devices; 2356 struct btrfs_super_block *disk_super = fs_info->super_copy; 2357 struct btrfs_device *device; 2358 u64 super_flags; 2359 2360 lockdep_assert_held(&uuid_mutex); 2361 if (!fs_devices->seeding) 2362 return -EINVAL; 2363 2364 seed_devices = alloc_fs_devices(NULL, NULL); 2365 if (IS_ERR(seed_devices)) 2366 return PTR_ERR(seed_devices); 2367 2368 old_devices = clone_fs_devices(fs_devices); 2369 if (IS_ERR(old_devices)) { 2370 kfree(seed_devices); 2371 return PTR_ERR(old_devices); 2372 } 2373 2374 list_add(&old_devices->fs_list, &fs_uuids); 2375 2376 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2377 seed_devices->opened = 1; 2378 INIT_LIST_HEAD(&seed_devices->devices); 2379 INIT_LIST_HEAD(&seed_devices->alloc_list); 2380 mutex_init(&seed_devices->device_list_mutex); 2381 2382 mutex_lock(&fs_devices->device_list_mutex); 2383 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2384 synchronize_rcu); 2385 list_for_each_entry(device, &seed_devices->devices, dev_list) 2386 device->fs_devices = seed_devices; 2387 2388 mutex_lock(&fs_info->chunk_mutex); 2389 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2390 mutex_unlock(&fs_info->chunk_mutex); 2391 2392 fs_devices->seeding = false; 2393 fs_devices->num_devices = 0; 2394 fs_devices->open_devices = 0; 2395 fs_devices->missing_devices = 0; 2396 fs_devices->rotating = false; 2397 fs_devices->seed = seed_devices; 2398 2399 generate_random_uuid(fs_devices->fsid); 2400 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2401 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2402 mutex_unlock(&fs_devices->device_list_mutex); 2403 2404 super_flags = btrfs_super_flags(disk_super) & 2405 ~BTRFS_SUPER_FLAG_SEEDING; 2406 btrfs_set_super_flags(disk_super, super_flags); 2407 2408 return 0; 2409 } 2410 2411 /* 2412 * Store the expected generation for seed devices in device items. 2413 */ 2414 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2415 { 2416 struct btrfs_fs_info *fs_info = trans->fs_info; 2417 struct btrfs_root *root = fs_info->chunk_root; 2418 struct btrfs_path *path; 2419 struct extent_buffer *leaf; 2420 struct btrfs_dev_item *dev_item; 2421 struct btrfs_device *device; 2422 struct btrfs_key key; 2423 u8 fs_uuid[BTRFS_FSID_SIZE]; 2424 u8 dev_uuid[BTRFS_UUID_SIZE]; 2425 u64 devid; 2426 int ret; 2427 2428 path = btrfs_alloc_path(); 2429 if (!path) 2430 return -ENOMEM; 2431 2432 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2433 key.offset = 0; 2434 key.type = BTRFS_DEV_ITEM_KEY; 2435 2436 while (1) { 2437 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2438 if (ret < 0) 2439 goto error; 2440 2441 leaf = path->nodes[0]; 2442 next_slot: 2443 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2444 ret = btrfs_next_leaf(root, path); 2445 if (ret > 0) 2446 break; 2447 if (ret < 0) 2448 goto error; 2449 leaf = path->nodes[0]; 2450 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2451 btrfs_release_path(path); 2452 continue; 2453 } 2454 2455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2456 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2457 key.type != BTRFS_DEV_ITEM_KEY) 2458 break; 2459 2460 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2461 struct btrfs_dev_item); 2462 devid = btrfs_device_id(leaf, dev_item); 2463 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2464 BTRFS_UUID_SIZE); 2465 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2466 BTRFS_FSID_SIZE); 2467 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2468 fs_uuid, true); 2469 BUG_ON(!device); /* Logic error */ 2470 2471 if (device->fs_devices->seeding) { 2472 btrfs_set_device_generation(leaf, dev_item, 2473 device->generation); 2474 btrfs_mark_buffer_dirty(leaf); 2475 } 2476 2477 path->slots[0]++; 2478 goto next_slot; 2479 } 2480 ret = 0; 2481 error: 2482 btrfs_free_path(path); 2483 return ret; 2484 } 2485 2486 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2487 { 2488 struct btrfs_root *root = fs_info->dev_root; 2489 struct request_queue *q; 2490 struct btrfs_trans_handle *trans; 2491 struct btrfs_device *device; 2492 struct block_device *bdev; 2493 struct super_block *sb = fs_info->sb; 2494 struct rcu_string *name; 2495 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2496 u64 orig_super_total_bytes; 2497 u64 orig_super_num_devices; 2498 int seeding_dev = 0; 2499 int ret = 0; 2500 bool unlocked = false; 2501 2502 if (sb_rdonly(sb) && !fs_devices->seeding) 2503 return -EROFS; 2504 2505 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2506 fs_info->bdev_holder); 2507 if (IS_ERR(bdev)) 2508 return PTR_ERR(bdev); 2509 2510 if (fs_devices->seeding) { 2511 seeding_dev = 1; 2512 down_write(&sb->s_umount); 2513 mutex_lock(&uuid_mutex); 2514 } 2515 2516 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2517 2518 mutex_lock(&fs_devices->device_list_mutex); 2519 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2520 if (device->bdev == bdev) { 2521 ret = -EEXIST; 2522 mutex_unlock( 2523 &fs_devices->device_list_mutex); 2524 goto error; 2525 } 2526 } 2527 mutex_unlock(&fs_devices->device_list_mutex); 2528 2529 device = btrfs_alloc_device(fs_info, NULL, NULL); 2530 if (IS_ERR(device)) { 2531 /* we can safely leave the fs_devices entry around */ 2532 ret = PTR_ERR(device); 2533 goto error; 2534 } 2535 2536 name = rcu_string_strdup(device_path, GFP_KERNEL); 2537 if (!name) { 2538 ret = -ENOMEM; 2539 goto error_free_device; 2540 } 2541 rcu_assign_pointer(device->name, name); 2542 2543 trans = btrfs_start_transaction(root, 0); 2544 if (IS_ERR(trans)) { 2545 ret = PTR_ERR(trans); 2546 goto error_free_device; 2547 } 2548 2549 q = bdev_get_queue(bdev); 2550 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2551 device->generation = trans->transid; 2552 device->io_width = fs_info->sectorsize; 2553 device->io_align = fs_info->sectorsize; 2554 device->sector_size = fs_info->sectorsize; 2555 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2556 fs_info->sectorsize); 2557 device->disk_total_bytes = device->total_bytes; 2558 device->commit_total_bytes = device->total_bytes; 2559 device->fs_info = fs_info; 2560 device->bdev = bdev; 2561 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2562 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2563 device->mode = FMODE_EXCL; 2564 device->dev_stats_valid = 1; 2565 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2566 2567 if (seeding_dev) { 2568 sb->s_flags &= ~SB_RDONLY; 2569 ret = btrfs_prepare_sprout(fs_info); 2570 if (ret) { 2571 btrfs_abort_transaction(trans, ret); 2572 goto error_trans; 2573 } 2574 } 2575 2576 device->fs_devices = fs_devices; 2577 2578 mutex_lock(&fs_devices->device_list_mutex); 2579 mutex_lock(&fs_info->chunk_mutex); 2580 list_add_rcu(&device->dev_list, &fs_devices->devices); 2581 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2582 fs_devices->num_devices++; 2583 fs_devices->open_devices++; 2584 fs_devices->rw_devices++; 2585 fs_devices->total_devices++; 2586 fs_devices->total_rw_bytes += device->total_bytes; 2587 2588 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2589 2590 if (!blk_queue_nonrot(q)) 2591 fs_devices->rotating = true; 2592 2593 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2594 btrfs_set_super_total_bytes(fs_info->super_copy, 2595 round_down(orig_super_total_bytes + device->total_bytes, 2596 fs_info->sectorsize)); 2597 2598 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2599 btrfs_set_super_num_devices(fs_info->super_copy, 2600 orig_super_num_devices + 1); 2601 2602 /* add sysfs device entry */ 2603 btrfs_sysfs_add_devices_dir(fs_devices, device); 2604 2605 /* 2606 * we've got more storage, clear any full flags on the space 2607 * infos 2608 */ 2609 btrfs_clear_space_info_full(fs_info); 2610 2611 mutex_unlock(&fs_info->chunk_mutex); 2612 mutex_unlock(&fs_devices->device_list_mutex); 2613 2614 if (seeding_dev) { 2615 mutex_lock(&fs_info->chunk_mutex); 2616 ret = init_first_rw_device(trans); 2617 mutex_unlock(&fs_info->chunk_mutex); 2618 if (ret) { 2619 btrfs_abort_transaction(trans, ret); 2620 goto error_sysfs; 2621 } 2622 } 2623 2624 ret = btrfs_add_dev_item(trans, device); 2625 if (ret) { 2626 btrfs_abort_transaction(trans, ret); 2627 goto error_sysfs; 2628 } 2629 2630 if (seeding_dev) { 2631 ret = btrfs_finish_sprout(trans); 2632 if (ret) { 2633 btrfs_abort_transaction(trans, ret); 2634 goto error_sysfs; 2635 } 2636 2637 btrfs_sysfs_update_sprout_fsid(fs_devices, 2638 fs_info->fs_devices->fsid); 2639 } 2640 2641 ret = btrfs_commit_transaction(trans); 2642 2643 if (seeding_dev) { 2644 mutex_unlock(&uuid_mutex); 2645 up_write(&sb->s_umount); 2646 unlocked = true; 2647 2648 if (ret) /* transaction commit */ 2649 return ret; 2650 2651 ret = btrfs_relocate_sys_chunks(fs_info); 2652 if (ret < 0) 2653 btrfs_handle_fs_error(fs_info, ret, 2654 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2655 trans = btrfs_attach_transaction(root); 2656 if (IS_ERR(trans)) { 2657 if (PTR_ERR(trans) == -ENOENT) 2658 return 0; 2659 ret = PTR_ERR(trans); 2660 trans = NULL; 2661 goto error_sysfs; 2662 } 2663 ret = btrfs_commit_transaction(trans); 2664 } 2665 2666 /* Update ctime/mtime for libblkid */ 2667 update_dev_time(device_path); 2668 return ret; 2669 2670 error_sysfs: 2671 btrfs_sysfs_remove_devices_dir(fs_devices, device); 2672 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2673 mutex_lock(&fs_info->chunk_mutex); 2674 list_del_rcu(&device->dev_list); 2675 list_del(&device->dev_alloc_list); 2676 fs_info->fs_devices->num_devices--; 2677 fs_info->fs_devices->open_devices--; 2678 fs_info->fs_devices->rw_devices--; 2679 fs_info->fs_devices->total_devices--; 2680 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2681 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2682 btrfs_set_super_total_bytes(fs_info->super_copy, 2683 orig_super_total_bytes); 2684 btrfs_set_super_num_devices(fs_info->super_copy, 2685 orig_super_num_devices); 2686 mutex_unlock(&fs_info->chunk_mutex); 2687 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2688 error_trans: 2689 if (seeding_dev) 2690 sb->s_flags |= SB_RDONLY; 2691 if (trans) 2692 btrfs_end_transaction(trans); 2693 error_free_device: 2694 btrfs_free_device(device); 2695 error: 2696 blkdev_put(bdev, FMODE_EXCL); 2697 if (seeding_dev && !unlocked) { 2698 mutex_unlock(&uuid_mutex); 2699 up_write(&sb->s_umount); 2700 } 2701 return ret; 2702 } 2703 2704 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2705 struct btrfs_device *device) 2706 { 2707 int ret; 2708 struct btrfs_path *path; 2709 struct btrfs_root *root = device->fs_info->chunk_root; 2710 struct btrfs_dev_item *dev_item; 2711 struct extent_buffer *leaf; 2712 struct btrfs_key key; 2713 2714 path = btrfs_alloc_path(); 2715 if (!path) 2716 return -ENOMEM; 2717 2718 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2719 key.type = BTRFS_DEV_ITEM_KEY; 2720 key.offset = device->devid; 2721 2722 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2723 if (ret < 0) 2724 goto out; 2725 2726 if (ret > 0) { 2727 ret = -ENOENT; 2728 goto out; 2729 } 2730 2731 leaf = path->nodes[0]; 2732 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2733 2734 btrfs_set_device_id(leaf, dev_item, device->devid); 2735 btrfs_set_device_type(leaf, dev_item, device->type); 2736 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2737 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2738 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2739 btrfs_set_device_total_bytes(leaf, dev_item, 2740 btrfs_device_get_disk_total_bytes(device)); 2741 btrfs_set_device_bytes_used(leaf, dev_item, 2742 btrfs_device_get_bytes_used(device)); 2743 btrfs_mark_buffer_dirty(leaf); 2744 2745 out: 2746 btrfs_free_path(path); 2747 return ret; 2748 } 2749 2750 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2751 struct btrfs_device *device, u64 new_size) 2752 { 2753 struct btrfs_fs_info *fs_info = device->fs_info; 2754 struct btrfs_super_block *super_copy = fs_info->super_copy; 2755 u64 old_total; 2756 u64 diff; 2757 2758 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2759 return -EACCES; 2760 2761 new_size = round_down(new_size, fs_info->sectorsize); 2762 2763 mutex_lock(&fs_info->chunk_mutex); 2764 old_total = btrfs_super_total_bytes(super_copy); 2765 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2766 2767 if (new_size <= device->total_bytes || 2768 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2769 mutex_unlock(&fs_info->chunk_mutex); 2770 return -EINVAL; 2771 } 2772 2773 btrfs_set_super_total_bytes(super_copy, 2774 round_down(old_total + diff, fs_info->sectorsize)); 2775 device->fs_devices->total_rw_bytes += diff; 2776 2777 btrfs_device_set_total_bytes(device, new_size); 2778 btrfs_device_set_disk_total_bytes(device, new_size); 2779 btrfs_clear_space_info_full(device->fs_info); 2780 if (list_empty(&device->post_commit_list)) 2781 list_add_tail(&device->post_commit_list, 2782 &trans->transaction->dev_update_list); 2783 mutex_unlock(&fs_info->chunk_mutex); 2784 2785 return btrfs_update_device(trans, device); 2786 } 2787 2788 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2789 { 2790 struct btrfs_fs_info *fs_info = trans->fs_info; 2791 struct btrfs_root *root = fs_info->chunk_root; 2792 int ret; 2793 struct btrfs_path *path; 2794 struct btrfs_key key; 2795 2796 path = btrfs_alloc_path(); 2797 if (!path) 2798 return -ENOMEM; 2799 2800 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2801 key.offset = chunk_offset; 2802 key.type = BTRFS_CHUNK_ITEM_KEY; 2803 2804 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2805 if (ret < 0) 2806 goto out; 2807 else if (ret > 0) { /* Logic error or corruption */ 2808 btrfs_handle_fs_error(fs_info, -ENOENT, 2809 "Failed lookup while freeing chunk."); 2810 ret = -ENOENT; 2811 goto out; 2812 } 2813 2814 ret = btrfs_del_item(trans, root, path); 2815 if (ret < 0) 2816 btrfs_handle_fs_error(fs_info, ret, 2817 "Failed to delete chunk item."); 2818 out: 2819 btrfs_free_path(path); 2820 return ret; 2821 } 2822 2823 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2824 { 2825 struct btrfs_super_block *super_copy = fs_info->super_copy; 2826 struct btrfs_disk_key *disk_key; 2827 struct btrfs_chunk *chunk; 2828 u8 *ptr; 2829 int ret = 0; 2830 u32 num_stripes; 2831 u32 array_size; 2832 u32 len = 0; 2833 u32 cur; 2834 struct btrfs_key key; 2835 2836 mutex_lock(&fs_info->chunk_mutex); 2837 array_size = btrfs_super_sys_array_size(super_copy); 2838 2839 ptr = super_copy->sys_chunk_array; 2840 cur = 0; 2841 2842 while (cur < array_size) { 2843 disk_key = (struct btrfs_disk_key *)ptr; 2844 btrfs_disk_key_to_cpu(&key, disk_key); 2845 2846 len = sizeof(*disk_key); 2847 2848 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2849 chunk = (struct btrfs_chunk *)(ptr + len); 2850 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2851 len += btrfs_chunk_item_size(num_stripes); 2852 } else { 2853 ret = -EIO; 2854 break; 2855 } 2856 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2857 key.offset == chunk_offset) { 2858 memmove(ptr, ptr + len, array_size - (cur + len)); 2859 array_size -= len; 2860 btrfs_set_super_sys_array_size(super_copy, array_size); 2861 } else { 2862 ptr += len; 2863 cur += len; 2864 } 2865 } 2866 mutex_unlock(&fs_info->chunk_mutex); 2867 return ret; 2868 } 2869 2870 /* 2871 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2872 * @logical: Logical block offset in bytes. 2873 * @length: Length of extent in bytes. 2874 * 2875 * Return: Chunk mapping or ERR_PTR. 2876 */ 2877 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2878 u64 logical, u64 length) 2879 { 2880 struct extent_map_tree *em_tree; 2881 struct extent_map *em; 2882 2883 em_tree = &fs_info->mapping_tree; 2884 read_lock(&em_tree->lock); 2885 em = lookup_extent_mapping(em_tree, logical, length); 2886 read_unlock(&em_tree->lock); 2887 2888 if (!em) { 2889 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2890 logical, length); 2891 return ERR_PTR(-EINVAL); 2892 } 2893 2894 if (em->start > logical || em->start + em->len < logical) { 2895 btrfs_crit(fs_info, 2896 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2897 logical, length, em->start, em->start + em->len); 2898 free_extent_map(em); 2899 return ERR_PTR(-EINVAL); 2900 } 2901 2902 /* callers are responsible for dropping em's ref. */ 2903 return em; 2904 } 2905 2906 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2907 { 2908 struct btrfs_fs_info *fs_info = trans->fs_info; 2909 struct extent_map *em; 2910 struct map_lookup *map; 2911 u64 dev_extent_len = 0; 2912 int i, ret = 0; 2913 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2914 2915 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2916 if (IS_ERR(em)) { 2917 /* 2918 * This is a logic error, but we don't want to just rely on the 2919 * user having built with ASSERT enabled, so if ASSERT doesn't 2920 * do anything we still error out. 2921 */ 2922 ASSERT(0); 2923 return PTR_ERR(em); 2924 } 2925 map = em->map_lookup; 2926 mutex_lock(&fs_info->chunk_mutex); 2927 check_system_chunk(trans, map->type); 2928 mutex_unlock(&fs_info->chunk_mutex); 2929 2930 /* 2931 * Take the device list mutex to prevent races with the final phase of 2932 * a device replace operation that replaces the device object associated 2933 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2934 */ 2935 mutex_lock(&fs_devices->device_list_mutex); 2936 for (i = 0; i < map->num_stripes; i++) { 2937 struct btrfs_device *device = map->stripes[i].dev; 2938 ret = btrfs_free_dev_extent(trans, device, 2939 map->stripes[i].physical, 2940 &dev_extent_len); 2941 if (ret) { 2942 mutex_unlock(&fs_devices->device_list_mutex); 2943 btrfs_abort_transaction(trans, ret); 2944 goto out; 2945 } 2946 2947 if (device->bytes_used > 0) { 2948 mutex_lock(&fs_info->chunk_mutex); 2949 btrfs_device_set_bytes_used(device, 2950 device->bytes_used - dev_extent_len); 2951 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2952 btrfs_clear_space_info_full(fs_info); 2953 mutex_unlock(&fs_info->chunk_mutex); 2954 } 2955 2956 ret = btrfs_update_device(trans, device); 2957 if (ret) { 2958 mutex_unlock(&fs_devices->device_list_mutex); 2959 btrfs_abort_transaction(trans, ret); 2960 goto out; 2961 } 2962 } 2963 mutex_unlock(&fs_devices->device_list_mutex); 2964 2965 ret = btrfs_free_chunk(trans, chunk_offset); 2966 if (ret) { 2967 btrfs_abort_transaction(trans, ret); 2968 goto out; 2969 } 2970 2971 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2972 2973 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2974 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2975 if (ret) { 2976 btrfs_abort_transaction(trans, ret); 2977 goto out; 2978 } 2979 } 2980 2981 ret = btrfs_remove_block_group(trans, chunk_offset, em); 2982 if (ret) { 2983 btrfs_abort_transaction(trans, ret); 2984 goto out; 2985 } 2986 2987 out: 2988 /* once for us */ 2989 free_extent_map(em); 2990 return ret; 2991 } 2992 2993 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2994 { 2995 struct btrfs_root *root = fs_info->chunk_root; 2996 struct btrfs_trans_handle *trans; 2997 struct btrfs_block_group *block_group; 2998 int ret; 2999 3000 /* 3001 * Prevent races with automatic removal of unused block groups. 3002 * After we relocate and before we remove the chunk with offset 3003 * chunk_offset, automatic removal of the block group can kick in, 3004 * resulting in a failure when calling btrfs_remove_chunk() below. 3005 * 3006 * Make sure to acquire this mutex before doing a tree search (dev 3007 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3008 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3009 * we release the path used to search the chunk/dev tree and before 3010 * the current task acquires this mutex and calls us. 3011 */ 3012 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3013 3014 /* step one, relocate all the extents inside this chunk */ 3015 btrfs_scrub_pause(fs_info); 3016 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3017 btrfs_scrub_continue(fs_info); 3018 if (ret) 3019 return ret; 3020 3021 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3022 if (!block_group) 3023 return -ENOENT; 3024 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3025 btrfs_put_block_group(block_group); 3026 3027 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3028 chunk_offset); 3029 if (IS_ERR(trans)) { 3030 ret = PTR_ERR(trans); 3031 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3032 return ret; 3033 } 3034 3035 /* 3036 * step two, delete the device extents and the 3037 * chunk tree entries 3038 */ 3039 ret = btrfs_remove_chunk(trans, chunk_offset); 3040 btrfs_end_transaction(trans); 3041 return ret; 3042 } 3043 3044 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3045 { 3046 struct btrfs_root *chunk_root = fs_info->chunk_root; 3047 struct btrfs_path *path; 3048 struct extent_buffer *leaf; 3049 struct btrfs_chunk *chunk; 3050 struct btrfs_key key; 3051 struct btrfs_key found_key; 3052 u64 chunk_type; 3053 bool retried = false; 3054 int failed = 0; 3055 int ret; 3056 3057 path = btrfs_alloc_path(); 3058 if (!path) 3059 return -ENOMEM; 3060 3061 again: 3062 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3063 key.offset = (u64)-1; 3064 key.type = BTRFS_CHUNK_ITEM_KEY; 3065 3066 while (1) { 3067 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3068 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3069 if (ret < 0) { 3070 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3071 goto error; 3072 } 3073 BUG_ON(ret == 0); /* Corruption */ 3074 3075 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3076 key.type); 3077 if (ret) 3078 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3079 if (ret < 0) 3080 goto error; 3081 if (ret > 0) 3082 break; 3083 3084 leaf = path->nodes[0]; 3085 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3086 3087 chunk = btrfs_item_ptr(leaf, path->slots[0], 3088 struct btrfs_chunk); 3089 chunk_type = btrfs_chunk_type(leaf, chunk); 3090 btrfs_release_path(path); 3091 3092 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3093 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3094 if (ret == -ENOSPC) 3095 failed++; 3096 else 3097 BUG_ON(ret); 3098 } 3099 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3100 3101 if (found_key.offset == 0) 3102 break; 3103 key.offset = found_key.offset - 1; 3104 } 3105 ret = 0; 3106 if (failed && !retried) { 3107 failed = 0; 3108 retried = true; 3109 goto again; 3110 } else if (WARN_ON(failed && retried)) { 3111 ret = -ENOSPC; 3112 } 3113 error: 3114 btrfs_free_path(path); 3115 return ret; 3116 } 3117 3118 /* 3119 * return 1 : allocate a data chunk successfully, 3120 * return <0: errors during allocating a data chunk, 3121 * return 0 : no need to allocate a data chunk. 3122 */ 3123 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3124 u64 chunk_offset) 3125 { 3126 struct btrfs_block_group *cache; 3127 u64 bytes_used; 3128 u64 chunk_type; 3129 3130 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3131 ASSERT(cache); 3132 chunk_type = cache->flags; 3133 btrfs_put_block_group(cache); 3134 3135 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3136 return 0; 3137 3138 spin_lock(&fs_info->data_sinfo->lock); 3139 bytes_used = fs_info->data_sinfo->bytes_used; 3140 spin_unlock(&fs_info->data_sinfo->lock); 3141 3142 if (!bytes_used) { 3143 struct btrfs_trans_handle *trans; 3144 int ret; 3145 3146 trans = btrfs_join_transaction(fs_info->tree_root); 3147 if (IS_ERR(trans)) 3148 return PTR_ERR(trans); 3149 3150 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3151 btrfs_end_transaction(trans); 3152 if (ret < 0) 3153 return ret; 3154 return 1; 3155 } 3156 3157 return 0; 3158 } 3159 3160 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3161 struct btrfs_balance_control *bctl) 3162 { 3163 struct btrfs_root *root = fs_info->tree_root; 3164 struct btrfs_trans_handle *trans; 3165 struct btrfs_balance_item *item; 3166 struct btrfs_disk_balance_args disk_bargs; 3167 struct btrfs_path *path; 3168 struct extent_buffer *leaf; 3169 struct btrfs_key key; 3170 int ret, err; 3171 3172 path = btrfs_alloc_path(); 3173 if (!path) 3174 return -ENOMEM; 3175 3176 trans = btrfs_start_transaction(root, 0); 3177 if (IS_ERR(trans)) { 3178 btrfs_free_path(path); 3179 return PTR_ERR(trans); 3180 } 3181 3182 key.objectid = BTRFS_BALANCE_OBJECTID; 3183 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3184 key.offset = 0; 3185 3186 ret = btrfs_insert_empty_item(trans, root, path, &key, 3187 sizeof(*item)); 3188 if (ret) 3189 goto out; 3190 3191 leaf = path->nodes[0]; 3192 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3193 3194 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3195 3196 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3197 btrfs_set_balance_data(leaf, item, &disk_bargs); 3198 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3199 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3200 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3201 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3202 3203 btrfs_set_balance_flags(leaf, item, bctl->flags); 3204 3205 btrfs_mark_buffer_dirty(leaf); 3206 out: 3207 btrfs_free_path(path); 3208 err = btrfs_commit_transaction(trans); 3209 if (err && !ret) 3210 ret = err; 3211 return ret; 3212 } 3213 3214 static int del_balance_item(struct btrfs_fs_info *fs_info) 3215 { 3216 struct btrfs_root *root = fs_info->tree_root; 3217 struct btrfs_trans_handle *trans; 3218 struct btrfs_path *path; 3219 struct btrfs_key key; 3220 int ret, err; 3221 3222 path = btrfs_alloc_path(); 3223 if (!path) 3224 return -ENOMEM; 3225 3226 trans = btrfs_start_transaction(root, 0); 3227 if (IS_ERR(trans)) { 3228 btrfs_free_path(path); 3229 return PTR_ERR(trans); 3230 } 3231 3232 key.objectid = BTRFS_BALANCE_OBJECTID; 3233 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3234 key.offset = 0; 3235 3236 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3237 if (ret < 0) 3238 goto out; 3239 if (ret > 0) { 3240 ret = -ENOENT; 3241 goto out; 3242 } 3243 3244 ret = btrfs_del_item(trans, root, path); 3245 out: 3246 btrfs_free_path(path); 3247 err = btrfs_commit_transaction(trans); 3248 if (err && !ret) 3249 ret = err; 3250 return ret; 3251 } 3252 3253 /* 3254 * This is a heuristic used to reduce the number of chunks balanced on 3255 * resume after balance was interrupted. 3256 */ 3257 static void update_balance_args(struct btrfs_balance_control *bctl) 3258 { 3259 /* 3260 * Turn on soft mode for chunk types that were being converted. 3261 */ 3262 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3263 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3264 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3265 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3266 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3267 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3268 3269 /* 3270 * Turn on usage filter if is not already used. The idea is 3271 * that chunks that we have already balanced should be 3272 * reasonably full. Don't do it for chunks that are being 3273 * converted - that will keep us from relocating unconverted 3274 * (albeit full) chunks. 3275 */ 3276 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3277 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3278 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3279 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3280 bctl->data.usage = 90; 3281 } 3282 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3283 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3284 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3285 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3286 bctl->sys.usage = 90; 3287 } 3288 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3289 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3290 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3291 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3292 bctl->meta.usage = 90; 3293 } 3294 } 3295 3296 /* 3297 * Clear the balance status in fs_info and delete the balance item from disk. 3298 */ 3299 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3300 { 3301 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3302 int ret; 3303 3304 BUG_ON(!fs_info->balance_ctl); 3305 3306 spin_lock(&fs_info->balance_lock); 3307 fs_info->balance_ctl = NULL; 3308 spin_unlock(&fs_info->balance_lock); 3309 3310 kfree(bctl); 3311 ret = del_balance_item(fs_info); 3312 if (ret) 3313 btrfs_handle_fs_error(fs_info, ret, NULL); 3314 } 3315 3316 /* 3317 * Balance filters. Return 1 if chunk should be filtered out 3318 * (should not be balanced). 3319 */ 3320 static int chunk_profiles_filter(u64 chunk_type, 3321 struct btrfs_balance_args *bargs) 3322 { 3323 chunk_type = chunk_to_extended(chunk_type) & 3324 BTRFS_EXTENDED_PROFILE_MASK; 3325 3326 if (bargs->profiles & chunk_type) 3327 return 0; 3328 3329 return 1; 3330 } 3331 3332 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3333 struct btrfs_balance_args *bargs) 3334 { 3335 struct btrfs_block_group *cache; 3336 u64 chunk_used; 3337 u64 user_thresh_min; 3338 u64 user_thresh_max; 3339 int ret = 1; 3340 3341 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3342 chunk_used = cache->used; 3343 3344 if (bargs->usage_min == 0) 3345 user_thresh_min = 0; 3346 else 3347 user_thresh_min = div_factor_fine(cache->length, 3348 bargs->usage_min); 3349 3350 if (bargs->usage_max == 0) 3351 user_thresh_max = 1; 3352 else if (bargs->usage_max > 100) 3353 user_thresh_max = cache->length; 3354 else 3355 user_thresh_max = div_factor_fine(cache->length, 3356 bargs->usage_max); 3357 3358 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3359 ret = 0; 3360 3361 btrfs_put_block_group(cache); 3362 return ret; 3363 } 3364 3365 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3366 u64 chunk_offset, struct btrfs_balance_args *bargs) 3367 { 3368 struct btrfs_block_group *cache; 3369 u64 chunk_used, user_thresh; 3370 int ret = 1; 3371 3372 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3373 chunk_used = cache->used; 3374 3375 if (bargs->usage_min == 0) 3376 user_thresh = 1; 3377 else if (bargs->usage > 100) 3378 user_thresh = cache->length; 3379 else 3380 user_thresh = div_factor_fine(cache->length, bargs->usage); 3381 3382 if (chunk_used < user_thresh) 3383 ret = 0; 3384 3385 btrfs_put_block_group(cache); 3386 return ret; 3387 } 3388 3389 static int chunk_devid_filter(struct extent_buffer *leaf, 3390 struct btrfs_chunk *chunk, 3391 struct btrfs_balance_args *bargs) 3392 { 3393 struct btrfs_stripe *stripe; 3394 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3395 int i; 3396 3397 for (i = 0; i < num_stripes; i++) { 3398 stripe = btrfs_stripe_nr(chunk, i); 3399 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3400 return 0; 3401 } 3402 3403 return 1; 3404 } 3405 3406 static u64 calc_data_stripes(u64 type, int num_stripes) 3407 { 3408 const int index = btrfs_bg_flags_to_raid_index(type); 3409 const int ncopies = btrfs_raid_array[index].ncopies; 3410 const int nparity = btrfs_raid_array[index].nparity; 3411 3412 if (nparity) 3413 return num_stripes - nparity; 3414 else 3415 return num_stripes / ncopies; 3416 } 3417 3418 /* [pstart, pend) */ 3419 static int chunk_drange_filter(struct extent_buffer *leaf, 3420 struct btrfs_chunk *chunk, 3421 struct btrfs_balance_args *bargs) 3422 { 3423 struct btrfs_stripe *stripe; 3424 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3425 u64 stripe_offset; 3426 u64 stripe_length; 3427 u64 type; 3428 int factor; 3429 int i; 3430 3431 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3432 return 0; 3433 3434 type = btrfs_chunk_type(leaf, chunk); 3435 factor = calc_data_stripes(type, num_stripes); 3436 3437 for (i = 0; i < num_stripes; i++) { 3438 stripe = btrfs_stripe_nr(chunk, i); 3439 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3440 continue; 3441 3442 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3443 stripe_length = btrfs_chunk_length(leaf, chunk); 3444 stripe_length = div_u64(stripe_length, factor); 3445 3446 if (stripe_offset < bargs->pend && 3447 stripe_offset + stripe_length > bargs->pstart) 3448 return 0; 3449 } 3450 3451 return 1; 3452 } 3453 3454 /* [vstart, vend) */ 3455 static int chunk_vrange_filter(struct extent_buffer *leaf, 3456 struct btrfs_chunk *chunk, 3457 u64 chunk_offset, 3458 struct btrfs_balance_args *bargs) 3459 { 3460 if (chunk_offset < bargs->vend && 3461 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3462 /* at least part of the chunk is inside this vrange */ 3463 return 0; 3464 3465 return 1; 3466 } 3467 3468 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3469 struct btrfs_chunk *chunk, 3470 struct btrfs_balance_args *bargs) 3471 { 3472 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3473 3474 if (bargs->stripes_min <= num_stripes 3475 && num_stripes <= bargs->stripes_max) 3476 return 0; 3477 3478 return 1; 3479 } 3480 3481 static int chunk_soft_convert_filter(u64 chunk_type, 3482 struct btrfs_balance_args *bargs) 3483 { 3484 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3485 return 0; 3486 3487 chunk_type = chunk_to_extended(chunk_type) & 3488 BTRFS_EXTENDED_PROFILE_MASK; 3489 3490 if (bargs->target == chunk_type) 3491 return 1; 3492 3493 return 0; 3494 } 3495 3496 static int should_balance_chunk(struct extent_buffer *leaf, 3497 struct btrfs_chunk *chunk, u64 chunk_offset) 3498 { 3499 struct btrfs_fs_info *fs_info = leaf->fs_info; 3500 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3501 struct btrfs_balance_args *bargs = NULL; 3502 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3503 3504 /* type filter */ 3505 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3506 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3507 return 0; 3508 } 3509 3510 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3511 bargs = &bctl->data; 3512 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3513 bargs = &bctl->sys; 3514 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3515 bargs = &bctl->meta; 3516 3517 /* profiles filter */ 3518 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3519 chunk_profiles_filter(chunk_type, bargs)) { 3520 return 0; 3521 } 3522 3523 /* usage filter */ 3524 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3525 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3526 return 0; 3527 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3528 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3529 return 0; 3530 } 3531 3532 /* devid filter */ 3533 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3534 chunk_devid_filter(leaf, chunk, bargs)) { 3535 return 0; 3536 } 3537 3538 /* drange filter, makes sense only with devid filter */ 3539 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3540 chunk_drange_filter(leaf, chunk, bargs)) { 3541 return 0; 3542 } 3543 3544 /* vrange filter */ 3545 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3546 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3547 return 0; 3548 } 3549 3550 /* stripes filter */ 3551 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3552 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3553 return 0; 3554 } 3555 3556 /* soft profile changing mode */ 3557 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3558 chunk_soft_convert_filter(chunk_type, bargs)) { 3559 return 0; 3560 } 3561 3562 /* 3563 * limited by count, must be the last filter 3564 */ 3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3566 if (bargs->limit == 0) 3567 return 0; 3568 else 3569 bargs->limit--; 3570 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3571 /* 3572 * Same logic as the 'limit' filter; the minimum cannot be 3573 * determined here because we do not have the global information 3574 * about the count of all chunks that satisfy the filters. 3575 */ 3576 if (bargs->limit_max == 0) 3577 return 0; 3578 else 3579 bargs->limit_max--; 3580 } 3581 3582 return 1; 3583 } 3584 3585 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3586 { 3587 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3588 struct btrfs_root *chunk_root = fs_info->chunk_root; 3589 u64 chunk_type; 3590 struct btrfs_chunk *chunk; 3591 struct btrfs_path *path = NULL; 3592 struct btrfs_key key; 3593 struct btrfs_key found_key; 3594 struct extent_buffer *leaf; 3595 int slot; 3596 int ret; 3597 int enospc_errors = 0; 3598 bool counting = true; 3599 /* The single value limit and min/max limits use the same bytes in the */ 3600 u64 limit_data = bctl->data.limit; 3601 u64 limit_meta = bctl->meta.limit; 3602 u64 limit_sys = bctl->sys.limit; 3603 u32 count_data = 0; 3604 u32 count_meta = 0; 3605 u32 count_sys = 0; 3606 int chunk_reserved = 0; 3607 3608 path = btrfs_alloc_path(); 3609 if (!path) { 3610 ret = -ENOMEM; 3611 goto error; 3612 } 3613 3614 /* zero out stat counters */ 3615 spin_lock(&fs_info->balance_lock); 3616 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3617 spin_unlock(&fs_info->balance_lock); 3618 again: 3619 if (!counting) { 3620 /* 3621 * The single value limit and min/max limits use the same bytes 3622 * in the 3623 */ 3624 bctl->data.limit = limit_data; 3625 bctl->meta.limit = limit_meta; 3626 bctl->sys.limit = limit_sys; 3627 } 3628 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3629 key.offset = (u64)-1; 3630 key.type = BTRFS_CHUNK_ITEM_KEY; 3631 3632 while (1) { 3633 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3634 atomic_read(&fs_info->balance_cancel_req)) { 3635 ret = -ECANCELED; 3636 goto error; 3637 } 3638 3639 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3640 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3641 if (ret < 0) { 3642 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3643 goto error; 3644 } 3645 3646 /* 3647 * this shouldn't happen, it means the last relocate 3648 * failed 3649 */ 3650 if (ret == 0) 3651 BUG(); /* FIXME break ? */ 3652 3653 ret = btrfs_previous_item(chunk_root, path, 0, 3654 BTRFS_CHUNK_ITEM_KEY); 3655 if (ret) { 3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3657 ret = 0; 3658 break; 3659 } 3660 3661 leaf = path->nodes[0]; 3662 slot = path->slots[0]; 3663 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3664 3665 if (found_key.objectid != key.objectid) { 3666 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3667 break; 3668 } 3669 3670 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3671 chunk_type = btrfs_chunk_type(leaf, chunk); 3672 3673 if (!counting) { 3674 spin_lock(&fs_info->balance_lock); 3675 bctl->stat.considered++; 3676 spin_unlock(&fs_info->balance_lock); 3677 } 3678 3679 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3680 3681 btrfs_release_path(path); 3682 if (!ret) { 3683 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3684 goto loop; 3685 } 3686 3687 if (counting) { 3688 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3689 spin_lock(&fs_info->balance_lock); 3690 bctl->stat.expected++; 3691 spin_unlock(&fs_info->balance_lock); 3692 3693 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3694 count_data++; 3695 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3696 count_sys++; 3697 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3698 count_meta++; 3699 3700 goto loop; 3701 } 3702 3703 /* 3704 * Apply limit_min filter, no need to check if the LIMITS 3705 * filter is used, limit_min is 0 by default 3706 */ 3707 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3708 count_data < bctl->data.limit_min) 3709 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3710 count_meta < bctl->meta.limit_min) 3711 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3712 count_sys < bctl->sys.limit_min)) { 3713 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3714 goto loop; 3715 } 3716 3717 if (!chunk_reserved) { 3718 /* 3719 * We may be relocating the only data chunk we have, 3720 * which could potentially end up with losing data's 3721 * raid profile, so lets allocate an empty one in 3722 * advance. 3723 */ 3724 ret = btrfs_may_alloc_data_chunk(fs_info, 3725 found_key.offset); 3726 if (ret < 0) { 3727 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3728 goto error; 3729 } else if (ret == 1) { 3730 chunk_reserved = 1; 3731 } 3732 } 3733 3734 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3735 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3736 if (ret == -ENOSPC) { 3737 enospc_errors++; 3738 } else if (ret == -ETXTBSY) { 3739 btrfs_info(fs_info, 3740 "skipping relocation of block group %llu due to active swapfile", 3741 found_key.offset); 3742 ret = 0; 3743 } else if (ret) { 3744 goto error; 3745 } else { 3746 spin_lock(&fs_info->balance_lock); 3747 bctl->stat.completed++; 3748 spin_unlock(&fs_info->balance_lock); 3749 } 3750 loop: 3751 if (found_key.offset == 0) 3752 break; 3753 key.offset = found_key.offset - 1; 3754 } 3755 3756 if (counting) { 3757 btrfs_release_path(path); 3758 counting = false; 3759 goto again; 3760 } 3761 error: 3762 btrfs_free_path(path); 3763 if (enospc_errors) { 3764 btrfs_info(fs_info, "%d enospc errors during balance", 3765 enospc_errors); 3766 if (!ret) 3767 ret = -ENOSPC; 3768 } 3769 3770 return ret; 3771 } 3772 3773 /** 3774 * alloc_profile_is_valid - see if a given profile is valid and reduced 3775 * @flags: profile to validate 3776 * @extended: if true @flags is treated as an extended profile 3777 */ 3778 static int alloc_profile_is_valid(u64 flags, int extended) 3779 { 3780 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3781 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3782 3783 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3784 3785 /* 1) check that all other bits are zeroed */ 3786 if (flags & ~mask) 3787 return 0; 3788 3789 /* 2) see if profile is reduced */ 3790 if (flags == 0) 3791 return !extended; /* "0" is valid for usual profiles */ 3792 3793 return has_single_bit_set(flags); 3794 } 3795 3796 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3797 { 3798 /* cancel requested || normal exit path */ 3799 return atomic_read(&fs_info->balance_cancel_req) || 3800 (atomic_read(&fs_info->balance_pause_req) == 0 && 3801 atomic_read(&fs_info->balance_cancel_req) == 0); 3802 } 3803 3804 /* 3805 * Validate target profile against allowed profiles and return true if it's OK. 3806 * Otherwise print the error message and return false. 3807 */ 3808 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3809 const struct btrfs_balance_args *bargs, 3810 u64 allowed, const char *type) 3811 { 3812 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3813 return true; 3814 3815 /* Profile is valid and does not have bits outside of the allowed set */ 3816 if (alloc_profile_is_valid(bargs->target, 1) && 3817 (bargs->target & ~allowed) == 0) 3818 return true; 3819 3820 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3821 type, btrfs_bg_type_to_raid_name(bargs->target)); 3822 return false; 3823 } 3824 3825 /* 3826 * Fill @buf with textual description of balance filter flags @bargs, up to 3827 * @size_buf including the terminating null. The output may be trimmed if it 3828 * does not fit into the provided buffer. 3829 */ 3830 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3831 u32 size_buf) 3832 { 3833 int ret; 3834 u32 size_bp = size_buf; 3835 char *bp = buf; 3836 u64 flags = bargs->flags; 3837 char tmp_buf[128] = {'\0'}; 3838 3839 if (!flags) 3840 return; 3841 3842 #define CHECK_APPEND_NOARG(a) \ 3843 do { \ 3844 ret = snprintf(bp, size_bp, (a)); \ 3845 if (ret < 0 || ret >= size_bp) \ 3846 goto out_overflow; \ 3847 size_bp -= ret; \ 3848 bp += ret; \ 3849 } while (0) 3850 3851 #define CHECK_APPEND_1ARG(a, v1) \ 3852 do { \ 3853 ret = snprintf(bp, size_bp, (a), (v1)); \ 3854 if (ret < 0 || ret >= size_bp) \ 3855 goto out_overflow; \ 3856 size_bp -= ret; \ 3857 bp += ret; \ 3858 } while (0) 3859 3860 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3861 do { \ 3862 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3863 if (ret < 0 || ret >= size_bp) \ 3864 goto out_overflow; \ 3865 size_bp -= ret; \ 3866 bp += ret; \ 3867 } while (0) 3868 3869 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3870 CHECK_APPEND_1ARG("convert=%s,", 3871 btrfs_bg_type_to_raid_name(bargs->target)); 3872 3873 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3874 CHECK_APPEND_NOARG("soft,"); 3875 3876 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3877 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3878 sizeof(tmp_buf)); 3879 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3880 } 3881 3882 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3883 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3884 3885 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3886 CHECK_APPEND_2ARG("usage=%u..%u,", 3887 bargs->usage_min, bargs->usage_max); 3888 3889 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3890 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3891 3892 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3893 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3894 bargs->pstart, bargs->pend); 3895 3896 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3897 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3898 bargs->vstart, bargs->vend); 3899 3900 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3901 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3902 3903 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3904 CHECK_APPEND_2ARG("limit=%u..%u,", 3905 bargs->limit_min, bargs->limit_max); 3906 3907 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3908 CHECK_APPEND_2ARG("stripes=%u..%u,", 3909 bargs->stripes_min, bargs->stripes_max); 3910 3911 #undef CHECK_APPEND_2ARG 3912 #undef CHECK_APPEND_1ARG 3913 #undef CHECK_APPEND_NOARG 3914 3915 out_overflow: 3916 3917 if (size_bp < size_buf) 3918 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3919 else 3920 buf[0] = '\0'; 3921 } 3922 3923 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3924 { 3925 u32 size_buf = 1024; 3926 char tmp_buf[192] = {'\0'}; 3927 char *buf; 3928 char *bp; 3929 u32 size_bp = size_buf; 3930 int ret; 3931 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3932 3933 buf = kzalloc(size_buf, GFP_KERNEL); 3934 if (!buf) 3935 return; 3936 3937 bp = buf; 3938 3939 #define CHECK_APPEND_1ARG(a, v1) \ 3940 do { \ 3941 ret = snprintf(bp, size_bp, (a), (v1)); \ 3942 if (ret < 0 || ret >= size_bp) \ 3943 goto out_overflow; \ 3944 size_bp -= ret; \ 3945 bp += ret; \ 3946 } while (0) 3947 3948 if (bctl->flags & BTRFS_BALANCE_FORCE) 3949 CHECK_APPEND_1ARG("%s", "-f "); 3950 3951 if (bctl->flags & BTRFS_BALANCE_DATA) { 3952 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3953 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3954 } 3955 3956 if (bctl->flags & BTRFS_BALANCE_METADATA) { 3957 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 3958 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 3959 } 3960 3961 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 3962 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 3963 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 3964 } 3965 3966 #undef CHECK_APPEND_1ARG 3967 3968 out_overflow: 3969 3970 if (size_bp < size_buf) 3971 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 3972 btrfs_info(fs_info, "balance: %s %s", 3973 (bctl->flags & BTRFS_BALANCE_RESUME) ? 3974 "resume" : "start", buf); 3975 3976 kfree(buf); 3977 } 3978 3979 /* 3980 * Should be called with balance mutexe held 3981 */ 3982 int btrfs_balance(struct btrfs_fs_info *fs_info, 3983 struct btrfs_balance_control *bctl, 3984 struct btrfs_ioctl_balance_args *bargs) 3985 { 3986 u64 meta_target, data_target; 3987 u64 allowed; 3988 int mixed = 0; 3989 int ret; 3990 u64 num_devices; 3991 unsigned seq; 3992 bool reducing_redundancy; 3993 int i; 3994 3995 if (btrfs_fs_closing(fs_info) || 3996 atomic_read(&fs_info->balance_pause_req) || 3997 btrfs_should_cancel_balance(fs_info)) { 3998 ret = -EINVAL; 3999 goto out; 4000 } 4001 4002 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4003 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4004 mixed = 1; 4005 4006 /* 4007 * In case of mixed groups both data and meta should be picked, 4008 * and identical options should be given for both of them. 4009 */ 4010 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4011 if (mixed && (bctl->flags & allowed)) { 4012 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4013 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4014 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4015 btrfs_err(fs_info, 4016 "balance: mixed groups data and metadata options must be the same"); 4017 ret = -EINVAL; 4018 goto out; 4019 } 4020 } 4021 4022 /* 4023 * rw_devices will not change at the moment, device add/delete/replace 4024 * are excluded by EXCL_OP 4025 */ 4026 num_devices = fs_info->fs_devices->rw_devices; 4027 4028 /* 4029 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4030 * special bit for it, to make it easier to distinguish. Thus we need 4031 * to set it manually, or balance would refuse the profile. 4032 */ 4033 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4034 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4035 if (num_devices >= btrfs_raid_array[i].devs_min) 4036 allowed |= btrfs_raid_array[i].bg_flag; 4037 4038 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4039 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4040 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4041 ret = -EINVAL; 4042 goto out; 4043 } 4044 4045 /* 4046 * Allow to reduce metadata or system integrity only if force set for 4047 * profiles with redundancy (copies, parity) 4048 */ 4049 allowed = 0; 4050 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4051 if (btrfs_raid_array[i].ncopies >= 2 || 4052 btrfs_raid_array[i].tolerated_failures >= 1) 4053 allowed |= btrfs_raid_array[i].bg_flag; 4054 } 4055 do { 4056 seq = read_seqbegin(&fs_info->profiles_lock); 4057 4058 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4059 (fs_info->avail_system_alloc_bits & allowed) && 4060 !(bctl->sys.target & allowed)) || 4061 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4062 (fs_info->avail_metadata_alloc_bits & allowed) && 4063 !(bctl->meta.target & allowed))) 4064 reducing_redundancy = true; 4065 else 4066 reducing_redundancy = false; 4067 4068 /* if we're not converting, the target field is uninitialized */ 4069 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4070 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4071 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4072 bctl->data.target : fs_info->avail_data_alloc_bits; 4073 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4074 4075 if (reducing_redundancy) { 4076 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4077 btrfs_info(fs_info, 4078 "balance: force reducing metadata redundancy"); 4079 } else { 4080 btrfs_err(fs_info, 4081 "balance: reduces metadata redundancy, use --force if you want this"); 4082 ret = -EINVAL; 4083 goto out; 4084 } 4085 } 4086 4087 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4088 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4089 btrfs_warn(fs_info, 4090 "balance: metadata profile %s has lower redundancy than data profile %s", 4091 btrfs_bg_type_to_raid_name(meta_target), 4092 btrfs_bg_type_to_raid_name(data_target)); 4093 } 4094 4095 if (fs_info->send_in_progress) { 4096 btrfs_warn_rl(fs_info, 4097 "cannot run balance while send operations are in progress (%d in progress)", 4098 fs_info->send_in_progress); 4099 ret = -EAGAIN; 4100 goto out; 4101 } 4102 4103 ret = insert_balance_item(fs_info, bctl); 4104 if (ret && ret != -EEXIST) 4105 goto out; 4106 4107 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4108 BUG_ON(ret == -EEXIST); 4109 BUG_ON(fs_info->balance_ctl); 4110 spin_lock(&fs_info->balance_lock); 4111 fs_info->balance_ctl = bctl; 4112 spin_unlock(&fs_info->balance_lock); 4113 } else { 4114 BUG_ON(ret != -EEXIST); 4115 spin_lock(&fs_info->balance_lock); 4116 update_balance_args(bctl); 4117 spin_unlock(&fs_info->balance_lock); 4118 } 4119 4120 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4121 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4122 describe_balance_start_or_resume(fs_info); 4123 mutex_unlock(&fs_info->balance_mutex); 4124 4125 ret = __btrfs_balance(fs_info); 4126 4127 mutex_lock(&fs_info->balance_mutex); 4128 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4129 btrfs_info(fs_info, "balance: paused"); 4130 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4131 btrfs_info(fs_info, "balance: canceled"); 4132 else 4133 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4134 4135 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4136 4137 if (bargs) { 4138 memset(bargs, 0, sizeof(*bargs)); 4139 btrfs_update_ioctl_balance_args(fs_info, bargs); 4140 } 4141 4142 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4143 balance_need_close(fs_info)) { 4144 reset_balance_state(fs_info); 4145 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4146 } 4147 4148 wake_up(&fs_info->balance_wait_q); 4149 4150 return ret; 4151 out: 4152 if (bctl->flags & BTRFS_BALANCE_RESUME) 4153 reset_balance_state(fs_info); 4154 else 4155 kfree(bctl); 4156 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4157 4158 return ret; 4159 } 4160 4161 static int balance_kthread(void *data) 4162 { 4163 struct btrfs_fs_info *fs_info = data; 4164 int ret = 0; 4165 4166 mutex_lock(&fs_info->balance_mutex); 4167 if (fs_info->balance_ctl) 4168 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4169 mutex_unlock(&fs_info->balance_mutex); 4170 4171 return ret; 4172 } 4173 4174 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4175 { 4176 struct task_struct *tsk; 4177 4178 mutex_lock(&fs_info->balance_mutex); 4179 if (!fs_info->balance_ctl) { 4180 mutex_unlock(&fs_info->balance_mutex); 4181 return 0; 4182 } 4183 mutex_unlock(&fs_info->balance_mutex); 4184 4185 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4186 btrfs_info(fs_info, "balance: resume skipped"); 4187 return 0; 4188 } 4189 4190 /* 4191 * A ro->rw remount sequence should continue with the paused balance 4192 * regardless of who pauses it, system or the user as of now, so set 4193 * the resume flag. 4194 */ 4195 spin_lock(&fs_info->balance_lock); 4196 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4197 spin_unlock(&fs_info->balance_lock); 4198 4199 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4200 return PTR_ERR_OR_ZERO(tsk); 4201 } 4202 4203 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4204 { 4205 struct btrfs_balance_control *bctl; 4206 struct btrfs_balance_item *item; 4207 struct btrfs_disk_balance_args disk_bargs; 4208 struct btrfs_path *path; 4209 struct extent_buffer *leaf; 4210 struct btrfs_key key; 4211 int ret; 4212 4213 path = btrfs_alloc_path(); 4214 if (!path) 4215 return -ENOMEM; 4216 4217 key.objectid = BTRFS_BALANCE_OBJECTID; 4218 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4219 key.offset = 0; 4220 4221 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4222 if (ret < 0) 4223 goto out; 4224 if (ret > 0) { /* ret = -ENOENT; */ 4225 ret = 0; 4226 goto out; 4227 } 4228 4229 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4230 if (!bctl) { 4231 ret = -ENOMEM; 4232 goto out; 4233 } 4234 4235 leaf = path->nodes[0]; 4236 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4237 4238 bctl->flags = btrfs_balance_flags(leaf, item); 4239 bctl->flags |= BTRFS_BALANCE_RESUME; 4240 4241 btrfs_balance_data(leaf, item, &disk_bargs); 4242 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4243 btrfs_balance_meta(leaf, item, &disk_bargs); 4244 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4245 btrfs_balance_sys(leaf, item, &disk_bargs); 4246 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4247 4248 /* 4249 * This should never happen, as the paused balance state is recovered 4250 * during mount without any chance of other exclusive ops to collide. 4251 * 4252 * This gives the exclusive op status to balance and keeps in paused 4253 * state until user intervention (cancel or umount). If the ownership 4254 * cannot be assigned, show a message but do not fail. The balance 4255 * is in a paused state and must have fs_info::balance_ctl properly 4256 * set up. 4257 */ 4258 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4259 btrfs_warn(fs_info, 4260 "balance: cannot set exclusive op status, resume manually"); 4261 4262 mutex_lock(&fs_info->balance_mutex); 4263 BUG_ON(fs_info->balance_ctl); 4264 spin_lock(&fs_info->balance_lock); 4265 fs_info->balance_ctl = bctl; 4266 spin_unlock(&fs_info->balance_lock); 4267 mutex_unlock(&fs_info->balance_mutex); 4268 out: 4269 btrfs_free_path(path); 4270 return ret; 4271 } 4272 4273 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4274 { 4275 int ret = 0; 4276 4277 mutex_lock(&fs_info->balance_mutex); 4278 if (!fs_info->balance_ctl) { 4279 mutex_unlock(&fs_info->balance_mutex); 4280 return -ENOTCONN; 4281 } 4282 4283 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4284 atomic_inc(&fs_info->balance_pause_req); 4285 mutex_unlock(&fs_info->balance_mutex); 4286 4287 wait_event(fs_info->balance_wait_q, 4288 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4289 4290 mutex_lock(&fs_info->balance_mutex); 4291 /* we are good with balance_ctl ripped off from under us */ 4292 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4293 atomic_dec(&fs_info->balance_pause_req); 4294 } else { 4295 ret = -ENOTCONN; 4296 } 4297 4298 mutex_unlock(&fs_info->balance_mutex); 4299 return ret; 4300 } 4301 4302 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4303 { 4304 mutex_lock(&fs_info->balance_mutex); 4305 if (!fs_info->balance_ctl) { 4306 mutex_unlock(&fs_info->balance_mutex); 4307 return -ENOTCONN; 4308 } 4309 4310 /* 4311 * A paused balance with the item stored on disk can be resumed at 4312 * mount time if the mount is read-write. Otherwise it's still paused 4313 * and we must not allow cancelling as it deletes the item. 4314 */ 4315 if (sb_rdonly(fs_info->sb)) { 4316 mutex_unlock(&fs_info->balance_mutex); 4317 return -EROFS; 4318 } 4319 4320 atomic_inc(&fs_info->balance_cancel_req); 4321 /* 4322 * if we are running just wait and return, balance item is 4323 * deleted in btrfs_balance in this case 4324 */ 4325 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4326 mutex_unlock(&fs_info->balance_mutex); 4327 wait_event(fs_info->balance_wait_q, 4328 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4329 mutex_lock(&fs_info->balance_mutex); 4330 } else { 4331 mutex_unlock(&fs_info->balance_mutex); 4332 /* 4333 * Lock released to allow other waiters to continue, we'll 4334 * reexamine the status again. 4335 */ 4336 mutex_lock(&fs_info->balance_mutex); 4337 4338 if (fs_info->balance_ctl) { 4339 reset_balance_state(fs_info); 4340 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4341 btrfs_info(fs_info, "balance: canceled"); 4342 } 4343 } 4344 4345 BUG_ON(fs_info->balance_ctl || 4346 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4347 atomic_dec(&fs_info->balance_cancel_req); 4348 mutex_unlock(&fs_info->balance_mutex); 4349 return 0; 4350 } 4351 4352 int btrfs_uuid_scan_kthread(void *data) 4353 { 4354 struct btrfs_fs_info *fs_info = data; 4355 struct btrfs_root *root = fs_info->tree_root; 4356 struct btrfs_key key; 4357 struct btrfs_path *path = NULL; 4358 int ret = 0; 4359 struct extent_buffer *eb; 4360 int slot; 4361 struct btrfs_root_item root_item; 4362 u32 item_size; 4363 struct btrfs_trans_handle *trans = NULL; 4364 bool closing = false; 4365 4366 path = btrfs_alloc_path(); 4367 if (!path) { 4368 ret = -ENOMEM; 4369 goto out; 4370 } 4371 4372 key.objectid = 0; 4373 key.type = BTRFS_ROOT_ITEM_KEY; 4374 key.offset = 0; 4375 4376 while (1) { 4377 if (btrfs_fs_closing(fs_info)) { 4378 closing = true; 4379 break; 4380 } 4381 ret = btrfs_search_forward(root, &key, path, 4382 BTRFS_OLDEST_GENERATION); 4383 if (ret) { 4384 if (ret > 0) 4385 ret = 0; 4386 break; 4387 } 4388 4389 if (key.type != BTRFS_ROOT_ITEM_KEY || 4390 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4391 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4392 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4393 goto skip; 4394 4395 eb = path->nodes[0]; 4396 slot = path->slots[0]; 4397 item_size = btrfs_item_size_nr(eb, slot); 4398 if (item_size < sizeof(root_item)) 4399 goto skip; 4400 4401 read_extent_buffer(eb, &root_item, 4402 btrfs_item_ptr_offset(eb, slot), 4403 (int)sizeof(root_item)); 4404 if (btrfs_root_refs(&root_item) == 0) 4405 goto skip; 4406 4407 if (!btrfs_is_empty_uuid(root_item.uuid) || 4408 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4409 if (trans) 4410 goto update_tree; 4411 4412 btrfs_release_path(path); 4413 /* 4414 * 1 - subvol uuid item 4415 * 1 - received_subvol uuid item 4416 */ 4417 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4418 if (IS_ERR(trans)) { 4419 ret = PTR_ERR(trans); 4420 break; 4421 } 4422 continue; 4423 } else { 4424 goto skip; 4425 } 4426 update_tree: 4427 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4428 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4429 BTRFS_UUID_KEY_SUBVOL, 4430 key.objectid); 4431 if (ret < 0) { 4432 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4433 ret); 4434 break; 4435 } 4436 } 4437 4438 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4439 ret = btrfs_uuid_tree_add(trans, 4440 root_item.received_uuid, 4441 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4442 key.objectid); 4443 if (ret < 0) { 4444 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4445 ret); 4446 break; 4447 } 4448 } 4449 4450 skip: 4451 if (trans) { 4452 ret = btrfs_end_transaction(trans); 4453 trans = NULL; 4454 if (ret) 4455 break; 4456 } 4457 4458 btrfs_release_path(path); 4459 if (key.offset < (u64)-1) { 4460 key.offset++; 4461 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4462 key.offset = 0; 4463 key.type = BTRFS_ROOT_ITEM_KEY; 4464 } else if (key.objectid < (u64)-1) { 4465 key.offset = 0; 4466 key.type = BTRFS_ROOT_ITEM_KEY; 4467 key.objectid++; 4468 } else { 4469 break; 4470 } 4471 cond_resched(); 4472 } 4473 4474 out: 4475 btrfs_free_path(path); 4476 if (trans && !IS_ERR(trans)) 4477 btrfs_end_transaction(trans); 4478 if (ret) 4479 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4480 else if (!closing) 4481 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4482 up(&fs_info->uuid_tree_rescan_sem); 4483 return 0; 4484 } 4485 4486 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4487 { 4488 struct btrfs_trans_handle *trans; 4489 struct btrfs_root *tree_root = fs_info->tree_root; 4490 struct btrfs_root *uuid_root; 4491 struct task_struct *task; 4492 int ret; 4493 4494 /* 4495 * 1 - root node 4496 * 1 - root item 4497 */ 4498 trans = btrfs_start_transaction(tree_root, 2); 4499 if (IS_ERR(trans)) 4500 return PTR_ERR(trans); 4501 4502 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4503 if (IS_ERR(uuid_root)) { 4504 ret = PTR_ERR(uuid_root); 4505 btrfs_abort_transaction(trans, ret); 4506 btrfs_end_transaction(trans); 4507 return ret; 4508 } 4509 4510 fs_info->uuid_root = uuid_root; 4511 4512 ret = btrfs_commit_transaction(trans); 4513 if (ret) 4514 return ret; 4515 4516 down(&fs_info->uuid_tree_rescan_sem); 4517 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4518 if (IS_ERR(task)) { 4519 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4520 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4521 up(&fs_info->uuid_tree_rescan_sem); 4522 return PTR_ERR(task); 4523 } 4524 4525 return 0; 4526 } 4527 4528 /* 4529 * shrinking a device means finding all of the device extents past 4530 * the new size, and then following the back refs to the chunks. 4531 * The chunk relocation code actually frees the device extent 4532 */ 4533 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4534 { 4535 struct btrfs_fs_info *fs_info = device->fs_info; 4536 struct btrfs_root *root = fs_info->dev_root; 4537 struct btrfs_trans_handle *trans; 4538 struct btrfs_dev_extent *dev_extent = NULL; 4539 struct btrfs_path *path; 4540 u64 length; 4541 u64 chunk_offset; 4542 int ret; 4543 int slot; 4544 int failed = 0; 4545 bool retried = false; 4546 struct extent_buffer *l; 4547 struct btrfs_key key; 4548 struct btrfs_super_block *super_copy = fs_info->super_copy; 4549 u64 old_total = btrfs_super_total_bytes(super_copy); 4550 u64 old_size = btrfs_device_get_total_bytes(device); 4551 u64 diff; 4552 u64 start; 4553 4554 new_size = round_down(new_size, fs_info->sectorsize); 4555 start = new_size; 4556 diff = round_down(old_size - new_size, fs_info->sectorsize); 4557 4558 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4559 return -EINVAL; 4560 4561 path = btrfs_alloc_path(); 4562 if (!path) 4563 return -ENOMEM; 4564 4565 path->reada = READA_BACK; 4566 4567 trans = btrfs_start_transaction(root, 0); 4568 if (IS_ERR(trans)) { 4569 btrfs_free_path(path); 4570 return PTR_ERR(trans); 4571 } 4572 4573 mutex_lock(&fs_info->chunk_mutex); 4574 4575 btrfs_device_set_total_bytes(device, new_size); 4576 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4577 device->fs_devices->total_rw_bytes -= diff; 4578 atomic64_sub(diff, &fs_info->free_chunk_space); 4579 } 4580 4581 /* 4582 * Once the device's size has been set to the new size, ensure all 4583 * in-memory chunks are synced to disk so that the loop below sees them 4584 * and relocates them accordingly. 4585 */ 4586 if (contains_pending_extent(device, &start, diff)) { 4587 mutex_unlock(&fs_info->chunk_mutex); 4588 ret = btrfs_commit_transaction(trans); 4589 if (ret) 4590 goto done; 4591 } else { 4592 mutex_unlock(&fs_info->chunk_mutex); 4593 btrfs_end_transaction(trans); 4594 } 4595 4596 again: 4597 key.objectid = device->devid; 4598 key.offset = (u64)-1; 4599 key.type = BTRFS_DEV_EXTENT_KEY; 4600 4601 do { 4602 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4604 if (ret < 0) { 4605 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4606 goto done; 4607 } 4608 4609 ret = btrfs_previous_item(root, path, 0, key.type); 4610 if (ret) 4611 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4612 if (ret < 0) 4613 goto done; 4614 if (ret) { 4615 ret = 0; 4616 btrfs_release_path(path); 4617 break; 4618 } 4619 4620 l = path->nodes[0]; 4621 slot = path->slots[0]; 4622 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4623 4624 if (key.objectid != device->devid) { 4625 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4626 btrfs_release_path(path); 4627 break; 4628 } 4629 4630 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4631 length = btrfs_dev_extent_length(l, dev_extent); 4632 4633 if (key.offset + length <= new_size) { 4634 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4635 btrfs_release_path(path); 4636 break; 4637 } 4638 4639 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4640 btrfs_release_path(path); 4641 4642 /* 4643 * We may be relocating the only data chunk we have, 4644 * which could potentially end up with losing data's 4645 * raid profile, so lets allocate an empty one in 4646 * advance. 4647 */ 4648 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4649 if (ret < 0) { 4650 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4651 goto done; 4652 } 4653 4654 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4655 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4656 if (ret == -ENOSPC) { 4657 failed++; 4658 } else if (ret) { 4659 if (ret == -ETXTBSY) { 4660 btrfs_warn(fs_info, 4661 "could not shrink block group %llu due to active swapfile", 4662 chunk_offset); 4663 } 4664 goto done; 4665 } 4666 } while (key.offset-- > 0); 4667 4668 if (failed && !retried) { 4669 failed = 0; 4670 retried = true; 4671 goto again; 4672 } else if (failed && retried) { 4673 ret = -ENOSPC; 4674 goto done; 4675 } 4676 4677 /* Shrinking succeeded, else we would be at "done". */ 4678 trans = btrfs_start_transaction(root, 0); 4679 if (IS_ERR(trans)) { 4680 ret = PTR_ERR(trans); 4681 goto done; 4682 } 4683 4684 mutex_lock(&fs_info->chunk_mutex); 4685 btrfs_device_set_disk_total_bytes(device, new_size); 4686 if (list_empty(&device->post_commit_list)) 4687 list_add_tail(&device->post_commit_list, 4688 &trans->transaction->dev_update_list); 4689 4690 WARN_ON(diff > old_total); 4691 btrfs_set_super_total_bytes(super_copy, 4692 round_down(old_total - diff, fs_info->sectorsize)); 4693 mutex_unlock(&fs_info->chunk_mutex); 4694 4695 /* Now btrfs_update_device() will change the on-disk size. */ 4696 ret = btrfs_update_device(trans, device); 4697 if (ret < 0) { 4698 btrfs_abort_transaction(trans, ret); 4699 btrfs_end_transaction(trans); 4700 } else { 4701 ret = btrfs_commit_transaction(trans); 4702 } 4703 done: 4704 btrfs_free_path(path); 4705 if (ret) { 4706 mutex_lock(&fs_info->chunk_mutex); 4707 btrfs_device_set_total_bytes(device, old_size); 4708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4709 device->fs_devices->total_rw_bytes += diff; 4710 atomic64_add(diff, &fs_info->free_chunk_space); 4711 mutex_unlock(&fs_info->chunk_mutex); 4712 } 4713 return ret; 4714 } 4715 4716 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4717 struct btrfs_key *key, 4718 struct btrfs_chunk *chunk, int item_size) 4719 { 4720 struct btrfs_super_block *super_copy = fs_info->super_copy; 4721 struct btrfs_disk_key disk_key; 4722 u32 array_size; 4723 u8 *ptr; 4724 4725 mutex_lock(&fs_info->chunk_mutex); 4726 array_size = btrfs_super_sys_array_size(super_copy); 4727 if (array_size + item_size + sizeof(disk_key) 4728 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4729 mutex_unlock(&fs_info->chunk_mutex); 4730 return -EFBIG; 4731 } 4732 4733 ptr = super_copy->sys_chunk_array + array_size; 4734 btrfs_cpu_key_to_disk(&disk_key, key); 4735 memcpy(ptr, &disk_key, sizeof(disk_key)); 4736 ptr += sizeof(disk_key); 4737 memcpy(ptr, chunk, item_size); 4738 item_size += sizeof(disk_key); 4739 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4740 mutex_unlock(&fs_info->chunk_mutex); 4741 4742 return 0; 4743 } 4744 4745 /* 4746 * sort the devices in descending order by max_avail, total_avail 4747 */ 4748 static int btrfs_cmp_device_info(const void *a, const void *b) 4749 { 4750 const struct btrfs_device_info *di_a = a; 4751 const struct btrfs_device_info *di_b = b; 4752 4753 if (di_a->max_avail > di_b->max_avail) 4754 return -1; 4755 if (di_a->max_avail < di_b->max_avail) 4756 return 1; 4757 if (di_a->total_avail > di_b->total_avail) 4758 return -1; 4759 if (di_a->total_avail < di_b->total_avail) 4760 return 1; 4761 return 0; 4762 } 4763 4764 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4765 { 4766 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4767 return; 4768 4769 btrfs_set_fs_incompat(info, RAID56); 4770 } 4771 4772 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4773 { 4774 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4775 return; 4776 4777 btrfs_set_fs_incompat(info, RAID1C34); 4778 } 4779 4780 /* 4781 * Structure used internally for __btrfs_alloc_chunk() function. 4782 * Wraps needed parameters. 4783 */ 4784 struct alloc_chunk_ctl { 4785 u64 start; 4786 u64 type; 4787 /* Total number of stripes to allocate */ 4788 int num_stripes; 4789 /* sub_stripes info for map */ 4790 int sub_stripes; 4791 /* Stripes per device */ 4792 int dev_stripes; 4793 /* Maximum number of devices to use */ 4794 int devs_max; 4795 /* Minimum number of devices to use */ 4796 int devs_min; 4797 /* ndevs has to be a multiple of this */ 4798 int devs_increment; 4799 /* Number of copies */ 4800 int ncopies; 4801 /* Number of stripes worth of bytes to store parity information */ 4802 int nparity; 4803 u64 max_stripe_size; 4804 u64 max_chunk_size; 4805 u64 dev_extent_min; 4806 u64 stripe_size; 4807 u64 chunk_size; 4808 int ndevs; 4809 }; 4810 4811 static void init_alloc_chunk_ctl_policy_regular( 4812 struct btrfs_fs_devices *fs_devices, 4813 struct alloc_chunk_ctl *ctl) 4814 { 4815 u64 type = ctl->type; 4816 4817 if (type & BTRFS_BLOCK_GROUP_DATA) { 4818 ctl->max_stripe_size = SZ_1G; 4819 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4820 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4821 /* For larger filesystems, use larger metadata chunks */ 4822 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4823 ctl->max_stripe_size = SZ_1G; 4824 else 4825 ctl->max_stripe_size = SZ_256M; 4826 ctl->max_chunk_size = ctl->max_stripe_size; 4827 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4828 ctl->max_stripe_size = SZ_32M; 4829 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4830 ctl->devs_max = min_t(int, ctl->devs_max, 4831 BTRFS_MAX_DEVS_SYS_CHUNK); 4832 } else { 4833 BUG(); 4834 } 4835 4836 /* We don't want a chunk larger than 10% of writable space */ 4837 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4838 ctl->max_chunk_size); 4839 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4840 } 4841 4842 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 4843 struct alloc_chunk_ctl *ctl) 4844 { 4845 int index = btrfs_bg_flags_to_raid_index(ctl->type); 4846 4847 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 4848 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 4849 ctl->devs_max = btrfs_raid_array[index].devs_max; 4850 if (!ctl->devs_max) 4851 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 4852 ctl->devs_min = btrfs_raid_array[index].devs_min; 4853 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 4854 ctl->ncopies = btrfs_raid_array[index].ncopies; 4855 ctl->nparity = btrfs_raid_array[index].nparity; 4856 ctl->ndevs = 0; 4857 4858 switch (fs_devices->chunk_alloc_policy) { 4859 case BTRFS_CHUNK_ALLOC_REGULAR: 4860 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 4861 break; 4862 default: 4863 BUG(); 4864 } 4865 } 4866 4867 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 4868 struct alloc_chunk_ctl *ctl, 4869 struct btrfs_device_info *devices_info) 4870 { 4871 struct btrfs_fs_info *info = fs_devices->fs_info; 4872 struct btrfs_device *device; 4873 u64 total_avail; 4874 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 4875 int ret; 4876 int ndevs = 0; 4877 u64 max_avail; 4878 u64 dev_offset; 4879 4880 /* 4881 * in the first pass through the devices list, we gather information 4882 * about the available holes on each device. 4883 */ 4884 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4885 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4886 WARN(1, KERN_ERR 4887 "BTRFS: read-only device in alloc_list\n"); 4888 continue; 4889 } 4890 4891 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4892 &device->dev_state) || 4893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4894 continue; 4895 4896 if (device->total_bytes > device->bytes_used) 4897 total_avail = device->total_bytes - device->bytes_used; 4898 else 4899 total_avail = 0; 4900 4901 /* If there is no space on this device, skip it. */ 4902 if (total_avail < ctl->dev_extent_min) 4903 continue; 4904 4905 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 4906 &max_avail); 4907 if (ret && ret != -ENOSPC) 4908 return ret; 4909 4910 if (ret == 0) 4911 max_avail = dev_extent_want; 4912 4913 if (max_avail < ctl->dev_extent_min) { 4914 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4915 btrfs_debug(info, 4916 "%s: devid %llu has no free space, have=%llu want=%llu", 4917 __func__, device->devid, max_avail, 4918 ctl->dev_extent_min); 4919 continue; 4920 } 4921 4922 if (ndevs == fs_devices->rw_devices) { 4923 WARN(1, "%s: found more than %llu devices\n", 4924 __func__, fs_devices->rw_devices); 4925 break; 4926 } 4927 devices_info[ndevs].dev_offset = dev_offset; 4928 devices_info[ndevs].max_avail = max_avail; 4929 devices_info[ndevs].total_avail = total_avail; 4930 devices_info[ndevs].dev = device; 4931 ++ndevs; 4932 } 4933 ctl->ndevs = ndevs; 4934 4935 /* 4936 * now sort the devices by hole size / available space 4937 */ 4938 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4939 btrfs_cmp_device_info, NULL); 4940 4941 return 0; 4942 } 4943 4944 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 4945 struct btrfs_device_info *devices_info) 4946 { 4947 /* Number of stripes that count for block group size */ 4948 int data_stripes; 4949 4950 /* 4951 * The primary goal is to maximize the number of stripes, so use as 4952 * many devices as possible, even if the stripes are not maximum sized. 4953 * 4954 * The DUP profile stores more than one stripe per device, the 4955 * max_avail is the total size so we have to adjust. 4956 */ 4957 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 4958 ctl->dev_stripes); 4959 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 4960 4961 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 4962 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 4963 4964 /* 4965 * Use the number of data stripes to figure out how big this chunk is 4966 * really going to be in terms of logical address space, and compare 4967 * that answer with the max chunk size. If it's higher, we try to 4968 * reduce stripe_size. 4969 */ 4970 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 4971 /* 4972 * Reduce stripe_size, round it up to a 16MB boundary again and 4973 * then use it, unless it ends up being even bigger than the 4974 * previous value we had already. 4975 */ 4976 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 4977 data_stripes), SZ_16M), 4978 ctl->stripe_size); 4979 } 4980 4981 /* Align to BTRFS_STRIPE_LEN */ 4982 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 4983 ctl->chunk_size = ctl->stripe_size * data_stripes; 4984 4985 return 0; 4986 } 4987 4988 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 4989 struct alloc_chunk_ctl *ctl, 4990 struct btrfs_device_info *devices_info) 4991 { 4992 struct btrfs_fs_info *info = fs_devices->fs_info; 4993 4994 /* 4995 * Round down to number of usable stripes, devs_increment can be any 4996 * number so we can't use round_down() that requires power of 2, while 4997 * rounddown is safe. 4998 */ 4999 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5000 5001 if (ctl->ndevs < ctl->devs_min) { 5002 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5003 btrfs_debug(info, 5004 "%s: not enough devices with free space: have=%d minimum required=%d", 5005 __func__, ctl->ndevs, ctl->devs_min); 5006 } 5007 return -ENOSPC; 5008 } 5009 5010 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5011 5012 switch (fs_devices->chunk_alloc_policy) { 5013 case BTRFS_CHUNK_ALLOC_REGULAR: 5014 return decide_stripe_size_regular(ctl, devices_info); 5015 default: 5016 BUG(); 5017 } 5018 } 5019 5020 static int create_chunk(struct btrfs_trans_handle *trans, 5021 struct alloc_chunk_ctl *ctl, 5022 struct btrfs_device_info *devices_info) 5023 { 5024 struct btrfs_fs_info *info = trans->fs_info; 5025 struct map_lookup *map = NULL; 5026 struct extent_map_tree *em_tree; 5027 struct extent_map *em; 5028 u64 start = ctl->start; 5029 u64 type = ctl->type; 5030 int ret; 5031 int i; 5032 int j; 5033 5034 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5035 if (!map) 5036 return -ENOMEM; 5037 map->num_stripes = ctl->num_stripes; 5038 5039 for (i = 0; i < ctl->ndevs; ++i) { 5040 for (j = 0; j < ctl->dev_stripes; ++j) { 5041 int s = i * ctl->dev_stripes + j; 5042 map->stripes[s].dev = devices_info[i].dev; 5043 map->stripes[s].physical = devices_info[i].dev_offset + 5044 j * ctl->stripe_size; 5045 } 5046 } 5047 map->stripe_len = BTRFS_STRIPE_LEN; 5048 map->io_align = BTRFS_STRIPE_LEN; 5049 map->io_width = BTRFS_STRIPE_LEN; 5050 map->type = type; 5051 map->sub_stripes = ctl->sub_stripes; 5052 5053 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5054 5055 em = alloc_extent_map(); 5056 if (!em) { 5057 kfree(map); 5058 return -ENOMEM; 5059 } 5060 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5061 em->map_lookup = map; 5062 em->start = start; 5063 em->len = ctl->chunk_size; 5064 em->block_start = 0; 5065 em->block_len = em->len; 5066 em->orig_block_len = ctl->stripe_size; 5067 5068 em_tree = &info->mapping_tree; 5069 write_lock(&em_tree->lock); 5070 ret = add_extent_mapping(em_tree, em, 0); 5071 if (ret) { 5072 write_unlock(&em_tree->lock); 5073 free_extent_map(em); 5074 return ret; 5075 } 5076 write_unlock(&em_tree->lock); 5077 5078 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5079 if (ret) 5080 goto error_del_extent; 5081 5082 for (i = 0; i < map->num_stripes; i++) { 5083 struct btrfs_device *dev = map->stripes[i].dev; 5084 5085 btrfs_device_set_bytes_used(dev, 5086 dev->bytes_used + ctl->stripe_size); 5087 if (list_empty(&dev->post_commit_list)) 5088 list_add_tail(&dev->post_commit_list, 5089 &trans->transaction->dev_update_list); 5090 } 5091 5092 atomic64_sub(ctl->stripe_size * map->num_stripes, 5093 &info->free_chunk_space); 5094 5095 free_extent_map(em); 5096 check_raid56_incompat_flag(info, type); 5097 check_raid1c34_incompat_flag(info, type); 5098 5099 return 0; 5100 5101 error_del_extent: 5102 write_lock(&em_tree->lock); 5103 remove_extent_mapping(em_tree, em); 5104 write_unlock(&em_tree->lock); 5105 5106 /* One for our allocation */ 5107 free_extent_map(em); 5108 /* One for the tree reference */ 5109 free_extent_map(em); 5110 5111 return ret; 5112 } 5113 5114 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5115 { 5116 struct btrfs_fs_info *info = trans->fs_info; 5117 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5118 struct btrfs_device_info *devices_info = NULL; 5119 struct alloc_chunk_ctl ctl; 5120 int ret; 5121 5122 lockdep_assert_held(&info->chunk_mutex); 5123 5124 if (!alloc_profile_is_valid(type, 0)) { 5125 ASSERT(0); 5126 return -EINVAL; 5127 } 5128 5129 if (list_empty(&fs_devices->alloc_list)) { 5130 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5131 btrfs_debug(info, "%s: no writable device", __func__); 5132 return -ENOSPC; 5133 } 5134 5135 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5136 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5137 ASSERT(0); 5138 return -EINVAL; 5139 } 5140 5141 ctl.start = find_next_chunk(info); 5142 ctl.type = type; 5143 init_alloc_chunk_ctl(fs_devices, &ctl); 5144 5145 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5146 GFP_NOFS); 5147 if (!devices_info) 5148 return -ENOMEM; 5149 5150 ret = gather_device_info(fs_devices, &ctl, devices_info); 5151 if (ret < 0) 5152 goto out; 5153 5154 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5155 if (ret < 0) 5156 goto out; 5157 5158 ret = create_chunk(trans, &ctl, devices_info); 5159 5160 out: 5161 kfree(devices_info); 5162 return ret; 5163 } 5164 5165 /* 5166 * Chunk allocation falls into two parts. The first part does work 5167 * that makes the new allocated chunk usable, but does not do any operation 5168 * that modifies the chunk tree. The second part does the work that 5169 * requires modifying the chunk tree. This division is important for the 5170 * bootstrap process of adding storage to a seed btrfs. 5171 */ 5172 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5173 u64 chunk_offset, u64 chunk_size) 5174 { 5175 struct btrfs_fs_info *fs_info = trans->fs_info; 5176 struct btrfs_root *extent_root = fs_info->extent_root; 5177 struct btrfs_root *chunk_root = fs_info->chunk_root; 5178 struct btrfs_key key; 5179 struct btrfs_device *device; 5180 struct btrfs_chunk *chunk; 5181 struct btrfs_stripe *stripe; 5182 struct extent_map *em; 5183 struct map_lookup *map; 5184 size_t item_size; 5185 u64 dev_offset; 5186 u64 stripe_size; 5187 int i = 0; 5188 int ret = 0; 5189 5190 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5191 if (IS_ERR(em)) 5192 return PTR_ERR(em); 5193 5194 map = em->map_lookup; 5195 item_size = btrfs_chunk_item_size(map->num_stripes); 5196 stripe_size = em->orig_block_len; 5197 5198 chunk = kzalloc(item_size, GFP_NOFS); 5199 if (!chunk) { 5200 ret = -ENOMEM; 5201 goto out; 5202 } 5203 5204 /* 5205 * Take the device list mutex to prevent races with the final phase of 5206 * a device replace operation that replaces the device object associated 5207 * with the map's stripes, because the device object's id can change 5208 * at any time during that final phase of the device replace operation 5209 * (dev-replace.c:btrfs_dev_replace_finishing()). 5210 */ 5211 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5212 for (i = 0; i < map->num_stripes; i++) { 5213 device = map->stripes[i].dev; 5214 dev_offset = map->stripes[i].physical; 5215 5216 ret = btrfs_update_device(trans, device); 5217 if (ret) 5218 break; 5219 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5220 dev_offset, stripe_size); 5221 if (ret) 5222 break; 5223 } 5224 if (ret) { 5225 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5226 goto out; 5227 } 5228 5229 stripe = &chunk->stripe; 5230 for (i = 0; i < map->num_stripes; i++) { 5231 device = map->stripes[i].dev; 5232 dev_offset = map->stripes[i].physical; 5233 5234 btrfs_set_stack_stripe_devid(stripe, device->devid); 5235 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5236 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5237 stripe++; 5238 } 5239 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5240 5241 btrfs_set_stack_chunk_length(chunk, chunk_size); 5242 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5243 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5244 btrfs_set_stack_chunk_type(chunk, map->type); 5245 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5246 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5247 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5248 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5249 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5250 5251 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5252 key.type = BTRFS_CHUNK_ITEM_KEY; 5253 key.offset = chunk_offset; 5254 5255 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5256 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5257 /* 5258 * TODO: Cleanup of inserted chunk root in case of 5259 * failure. 5260 */ 5261 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5262 } 5263 5264 out: 5265 kfree(chunk); 5266 free_extent_map(em); 5267 return ret; 5268 } 5269 5270 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5271 { 5272 struct btrfs_fs_info *fs_info = trans->fs_info; 5273 u64 alloc_profile; 5274 int ret; 5275 5276 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5277 ret = btrfs_alloc_chunk(trans, alloc_profile); 5278 if (ret) 5279 return ret; 5280 5281 alloc_profile = btrfs_system_alloc_profile(fs_info); 5282 ret = btrfs_alloc_chunk(trans, alloc_profile); 5283 return ret; 5284 } 5285 5286 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5287 { 5288 const int index = btrfs_bg_flags_to_raid_index(map->type); 5289 5290 return btrfs_raid_array[index].tolerated_failures; 5291 } 5292 5293 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5294 { 5295 struct extent_map *em; 5296 struct map_lookup *map; 5297 int readonly = 0; 5298 int miss_ndevs = 0; 5299 int i; 5300 5301 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5302 if (IS_ERR(em)) 5303 return 1; 5304 5305 map = em->map_lookup; 5306 for (i = 0; i < map->num_stripes; i++) { 5307 if (test_bit(BTRFS_DEV_STATE_MISSING, 5308 &map->stripes[i].dev->dev_state)) { 5309 miss_ndevs++; 5310 continue; 5311 } 5312 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5313 &map->stripes[i].dev->dev_state)) { 5314 readonly = 1; 5315 goto end; 5316 } 5317 } 5318 5319 /* 5320 * If the number of missing devices is larger than max errors, 5321 * we can not write the data into that chunk successfully, so 5322 * set it readonly. 5323 */ 5324 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5325 readonly = 1; 5326 end: 5327 free_extent_map(em); 5328 return readonly; 5329 } 5330 5331 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5332 { 5333 struct extent_map *em; 5334 5335 while (1) { 5336 write_lock(&tree->lock); 5337 em = lookup_extent_mapping(tree, 0, (u64)-1); 5338 if (em) 5339 remove_extent_mapping(tree, em); 5340 write_unlock(&tree->lock); 5341 if (!em) 5342 break; 5343 /* once for us */ 5344 free_extent_map(em); 5345 /* once for the tree */ 5346 free_extent_map(em); 5347 } 5348 } 5349 5350 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5351 { 5352 struct extent_map *em; 5353 struct map_lookup *map; 5354 int ret; 5355 5356 em = btrfs_get_chunk_map(fs_info, logical, len); 5357 if (IS_ERR(em)) 5358 /* 5359 * We could return errors for these cases, but that could get 5360 * ugly and we'd probably do the same thing which is just not do 5361 * anything else and exit, so return 1 so the callers don't try 5362 * to use other copies. 5363 */ 5364 return 1; 5365 5366 map = em->map_lookup; 5367 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5368 ret = map->num_stripes; 5369 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5370 ret = map->sub_stripes; 5371 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5372 ret = 2; 5373 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5374 /* 5375 * There could be two corrupted data stripes, we need 5376 * to loop retry in order to rebuild the correct data. 5377 * 5378 * Fail a stripe at a time on every retry except the 5379 * stripe under reconstruction. 5380 */ 5381 ret = map->num_stripes; 5382 else 5383 ret = 1; 5384 free_extent_map(em); 5385 5386 down_read(&fs_info->dev_replace.rwsem); 5387 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5388 fs_info->dev_replace.tgtdev) 5389 ret++; 5390 up_read(&fs_info->dev_replace.rwsem); 5391 5392 return ret; 5393 } 5394 5395 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5396 u64 logical) 5397 { 5398 struct extent_map *em; 5399 struct map_lookup *map; 5400 unsigned long len = fs_info->sectorsize; 5401 5402 em = btrfs_get_chunk_map(fs_info, logical, len); 5403 5404 if (!WARN_ON(IS_ERR(em))) { 5405 map = em->map_lookup; 5406 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5407 len = map->stripe_len * nr_data_stripes(map); 5408 free_extent_map(em); 5409 } 5410 return len; 5411 } 5412 5413 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5414 { 5415 struct extent_map *em; 5416 struct map_lookup *map; 5417 int ret = 0; 5418 5419 em = btrfs_get_chunk_map(fs_info, logical, len); 5420 5421 if(!WARN_ON(IS_ERR(em))) { 5422 map = em->map_lookup; 5423 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5424 ret = 1; 5425 free_extent_map(em); 5426 } 5427 return ret; 5428 } 5429 5430 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5431 struct map_lookup *map, int first, 5432 int dev_replace_is_ongoing) 5433 { 5434 int i; 5435 int num_stripes; 5436 int preferred_mirror; 5437 int tolerance; 5438 struct btrfs_device *srcdev; 5439 5440 ASSERT((map->type & 5441 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5442 5443 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5444 num_stripes = map->sub_stripes; 5445 else 5446 num_stripes = map->num_stripes; 5447 5448 preferred_mirror = first + current->pid % num_stripes; 5449 5450 if (dev_replace_is_ongoing && 5451 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5452 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5453 srcdev = fs_info->dev_replace.srcdev; 5454 else 5455 srcdev = NULL; 5456 5457 /* 5458 * try to avoid the drive that is the source drive for a 5459 * dev-replace procedure, only choose it if no other non-missing 5460 * mirror is available 5461 */ 5462 for (tolerance = 0; tolerance < 2; tolerance++) { 5463 if (map->stripes[preferred_mirror].dev->bdev && 5464 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5465 return preferred_mirror; 5466 for (i = first; i < first + num_stripes; i++) { 5467 if (map->stripes[i].dev->bdev && 5468 (tolerance || map->stripes[i].dev != srcdev)) 5469 return i; 5470 } 5471 } 5472 5473 /* we couldn't find one that doesn't fail. Just return something 5474 * and the io error handling code will clean up eventually 5475 */ 5476 return preferred_mirror; 5477 } 5478 5479 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5480 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5481 { 5482 int i; 5483 int again = 1; 5484 5485 while (again) { 5486 again = 0; 5487 for (i = 0; i < num_stripes - 1; i++) { 5488 /* Swap if parity is on a smaller index */ 5489 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5490 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5491 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5492 again = 1; 5493 } 5494 } 5495 } 5496 } 5497 5498 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5499 { 5500 struct btrfs_bio *bbio = kzalloc( 5501 /* the size of the btrfs_bio */ 5502 sizeof(struct btrfs_bio) + 5503 /* plus the variable array for the stripes */ 5504 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5505 /* plus the variable array for the tgt dev */ 5506 sizeof(int) * (real_stripes) + 5507 /* 5508 * plus the raid_map, which includes both the tgt dev 5509 * and the stripes 5510 */ 5511 sizeof(u64) * (total_stripes), 5512 GFP_NOFS|__GFP_NOFAIL); 5513 5514 atomic_set(&bbio->error, 0); 5515 refcount_set(&bbio->refs, 1); 5516 5517 return bbio; 5518 } 5519 5520 void btrfs_get_bbio(struct btrfs_bio *bbio) 5521 { 5522 WARN_ON(!refcount_read(&bbio->refs)); 5523 refcount_inc(&bbio->refs); 5524 } 5525 5526 void btrfs_put_bbio(struct btrfs_bio *bbio) 5527 { 5528 if (!bbio) 5529 return; 5530 if (refcount_dec_and_test(&bbio->refs)) 5531 kfree(bbio); 5532 } 5533 5534 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5535 /* 5536 * Please note that, discard won't be sent to target device of device 5537 * replace. 5538 */ 5539 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5540 u64 logical, u64 *length_ret, 5541 struct btrfs_bio **bbio_ret) 5542 { 5543 struct extent_map *em; 5544 struct map_lookup *map; 5545 struct btrfs_bio *bbio; 5546 u64 length = *length_ret; 5547 u64 offset; 5548 u64 stripe_nr; 5549 u64 stripe_nr_end; 5550 u64 stripe_end_offset; 5551 u64 stripe_cnt; 5552 u64 stripe_len; 5553 u64 stripe_offset; 5554 u64 num_stripes; 5555 u32 stripe_index; 5556 u32 factor = 0; 5557 u32 sub_stripes = 0; 5558 u64 stripes_per_dev = 0; 5559 u32 remaining_stripes = 0; 5560 u32 last_stripe = 0; 5561 int ret = 0; 5562 int i; 5563 5564 /* discard always return a bbio */ 5565 ASSERT(bbio_ret); 5566 5567 em = btrfs_get_chunk_map(fs_info, logical, length); 5568 if (IS_ERR(em)) 5569 return PTR_ERR(em); 5570 5571 map = em->map_lookup; 5572 /* we don't discard raid56 yet */ 5573 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5574 ret = -EOPNOTSUPP; 5575 goto out; 5576 } 5577 5578 offset = logical - em->start; 5579 length = min_t(u64, em->start + em->len - logical, length); 5580 *length_ret = length; 5581 5582 stripe_len = map->stripe_len; 5583 /* 5584 * stripe_nr counts the total number of stripes we have to stride 5585 * to get to this block 5586 */ 5587 stripe_nr = div64_u64(offset, stripe_len); 5588 5589 /* stripe_offset is the offset of this block in its stripe */ 5590 stripe_offset = offset - stripe_nr * stripe_len; 5591 5592 stripe_nr_end = round_up(offset + length, map->stripe_len); 5593 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5594 stripe_cnt = stripe_nr_end - stripe_nr; 5595 stripe_end_offset = stripe_nr_end * map->stripe_len - 5596 (offset + length); 5597 /* 5598 * after this, stripe_nr is the number of stripes on this 5599 * device we have to walk to find the data, and stripe_index is 5600 * the number of our device in the stripe array 5601 */ 5602 num_stripes = 1; 5603 stripe_index = 0; 5604 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5605 BTRFS_BLOCK_GROUP_RAID10)) { 5606 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5607 sub_stripes = 1; 5608 else 5609 sub_stripes = map->sub_stripes; 5610 5611 factor = map->num_stripes / sub_stripes; 5612 num_stripes = min_t(u64, map->num_stripes, 5613 sub_stripes * stripe_cnt); 5614 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5615 stripe_index *= sub_stripes; 5616 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5617 &remaining_stripes); 5618 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5619 last_stripe *= sub_stripes; 5620 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5621 BTRFS_BLOCK_GROUP_DUP)) { 5622 num_stripes = map->num_stripes; 5623 } else { 5624 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5625 &stripe_index); 5626 } 5627 5628 bbio = alloc_btrfs_bio(num_stripes, 0); 5629 if (!bbio) { 5630 ret = -ENOMEM; 5631 goto out; 5632 } 5633 5634 for (i = 0; i < num_stripes; i++) { 5635 bbio->stripes[i].physical = 5636 map->stripes[stripe_index].physical + 5637 stripe_offset + stripe_nr * map->stripe_len; 5638 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5639 5640 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5641 BTRFS_BLOCK_GROUP_RAID10)) { 5642 bbio->stripes[i].length = stripes_per_dev * 5643 map->stripe_len; 5644 5645 if (i / sub_stripes < remaining_stripes) 5646 bbio->stripes[i].length += 5647 map->stripe_len; 5648 5649 /* 5650 * Special for the first stripe and 5651 * the last stripe: 5652 * 5653 * |-------|...|-------| 5654 * |----------| 5655 * off end_off 5656 */ 5657 if (i < sub_stripes) 5658 bbio->stripes[i].length -= 5659 stripe_offset; 5660 5661 if (stripe_index >= last_stripe && 5662 stripe_index <= (last_stripe + 5663 sub_stripes - 1)) 5664 bbio->stripes[i].length -= 5665 stripe_end_offset; 5666 5667 if (i == sub_stripes - 1) 5668 stripe_offset = 0; 5669 } else { 5670 bbio->stripes[i].length = length; 5671 } 5672 5673 stripe_index++; 5674 if (stripe_index == map->num_stripes) { 5675 stripe_index = 0; 5676 stripe_nr++; 5677 } 5678 } 5679 5680 *bbio_ret = bbio; 5681 bbio->map_type = map->type; 5682 bbio->num_stripes = num_stripes; 5683 out: 5684 free_extent_map(em); 5685 return ret; 5686 } 5687 5688 /* 5689 * In dev-replace case, for repair case (that's the only case where the mirror 5690 * is selected explicitly when calling btrfs_map_block), blocks left of the 5691 * left cursor can also be read from the target drive. 5692 * 5693 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5694 * array of stripes. 5695 * For READ, it also needs to be supported using the same mirror number. 5696 * 5697 * If the requested block is not left of the left cursor, EIO is returned. This 5698 * can happen because btrfs_num_copies() returns one more in the dev-replace 5699 * case. 5700 */ 5701 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5702 u64 logical, u64 length, 5703 u64 srcdev_devid, int *mirror_num, 5704 u64 *physical) 5705 { 5706 struct btrfs_bio *bbio = NULL; 5707 int num_stripes; 5708 int index_srcdev = 0; 5709 int found = 0; 5710 u64 physical_of_found = 0; 5711 int i; 5712 int ret = 0; 5713 5714 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5715 logical, &length, &bbio, 0, 0); 5716 if (ret) { 5717 ASSERT(bbio == NULL); 5718 return ret; 5719 } 5720 5721 num_stripes = bbio->num_stripes; 5722 if (*mirror_num > num_stripes) { 5723 /* 5724 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5725 * that means that the requested area is not left of the left 5726 * cursor 5727 */ 5728 btrfs_put_bbio(bbio); 5729 return -EIO; 5730 } 5731 5732 /* 5733 * process the rest of the function using the mirror_num of the source 5734 * drive. Therefore look it up first. At the end, patch the device 5735 * pointer to the one of the target drive. 5736 */ 5737 for (i = 0; i < num_stripes; i++) { 5738 if (bbio->stripes[i].dev->devid != srcdev_devid) 5739 continue; 5740 5741 /* 5742 * In case of DUP, in order to keep it simple, only add the 5743 * mirror with the lowest physical address 5744 */ 5745 if (found && 5746 physical_of_found <= bbio->stripes[i].physical) 5747 continue; 5748 5749 index_srcdev = i; 5750 found = 1; 5751 physical_of_found = bbio->stripes[i].physical; 5752 } 5753 5754 btrfs_put_bbio(bbio); 5755 5756 ASSERT(found); 5757 if (!found) 5758 return -EIO; 5759 5760 *mirror_num = index_srcdev + 1; 5761 *physical = physical_of_found; 5762 return ret; 5763 } 5764 5765 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5766 struct btrfs_bio **bbio_ret, 5767 struct btrfs_dev_replace *dev_replace, 5768 int *num_stripes_ret, int *max_errors_ret) 5769 { 5770 struct btrfs_bio *bbio = *bbio_ret; 5771 u64 srcdev_devid = dev_replace->srcdev->devid; 5772 int tgtdev_indexes = 0; 5773 int num_stripes = *num_stripes_ret; 5774 int max_errors = *max_errors_ret; 5775 int i; 5776 5777 if (op == BTRFS_MAP_WRITE) { 5778 int index_where_to_add; 5779 5780 /* 5781 * duplicate the write operations while the dev replace 5782 * procedure is running. Since the copying of the old disk to 5783 * the new disk takes place at run time while the filesystem is 5784 * mounted writable, the regular write operations to the old 5785 * disk have to be duplicated to go to the new disk as well. 5786 * 5787 * Note that device->missing is handled by the caller, and that 5788 * the write to the old disk is already set up in the stripes 5789 * array. 5790 */ 5791 index_where_to_add = num_stripes; 5792 for (i = 0; i < num_stripes; i++) { 5793 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5794 /* write to new disk, too */ 5795 struct btrfs_bio_stripe *new = 5796 bbio->stripes + index_where_to_add; 5797 struct btrfs_bio_stripe *old = 5798 bbio->stripes + i; 5799 5800 new->physical = old->physical; 5801 new->length = old->length; 5802 new->dev = dev_replace->tgtdev; 5803 bbio->tgtdev_map[i] = index_where_to_add; 5804 index_where_to_add++; 5805 max_errors++; 5806 tgtdev_indexes++; 5807 } 5808 } 5809 num_stripes = index_where_to_add; 5810 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5811 int index_srcdev = 0; 5812 int found = 0; 5813 u64 physical_of_found = 0; 5814 5815 /* 5816 * During the dev-replace procedure, the target drive can also 5817 * be used to read data in case it is needed to repair a corrupt 5818 * block elsewhere. This is possible if the requested area is 5819 * left of the left cursor. In this area, the target drive is a 5820 * full copy of the source drive. 5821 */ 5822 for (i = 0; i < num_stripes; i++) { 5823 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5824 /* 5825 * In case of DUP, in order to keep it simple, 5826 * only add the mirror with the lowest physical 5827 * address 5828 */ 5829 if (found && 5830 physical_of_found <= 5831 bbio->stripes[i].physical) 5832 continue; 5833 index_srcdev = i; 5834 found = 1; 5835 physical_of_found = bbio->stripes[i].physical; 5836 } 5837 } 5838 if (found) { 5839 struct btrfs_bio_stripe *tgtdev_stripe = 5840 bbio->stripes + num_stripes; 5841 5842 tgtdev_stripe->physical = physical_of_found; 5843 tgtdev_stripe->length = 5844 bbio->stripes[index_srcdev].length; 5845 tgtdev_stripe->dev = dev_replace->tgtdev; 5846 bbio->tgtdev_map[index_srcdev] = num_stripes; 5847 5848 tgtdev_indexes++; 5849 num_stripes++; 5850 } 5851 } 5852 5853 *num_stripes_ret = num_stripes; 5854 *max_errors_ret = max_errors; 5855 bbio->num_tgtdevs = tgtdev_indexes; 5856 *bbio_ret = bbio; 5857 } 5858 5859 static bool need_full_stripe(enum btrfs_map_op op) 5860 { 5861 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5862 } 5863 5864 /* 5865 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5866 * tuple. This information is used to calculate how big a 5867 * particular bio can get before it straddles a stripe. 5868 * 5869 * @fs_info - the filesystem 5870 * @logical - address that we want to figure out the geometry of 5871 * @len - the length of IO we are going to perform, starting at @logical 5872 * @op - type of operation - write or read 5873 * @io_geom - pointer used to return values 5874 * 5875 * Returns < 0 in case a chunk for the given logical address cannot be found, 5876 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5877 */ 5878 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5879 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5880 { 5881 struct extent_map *em; 5882 struct map_lookup *map; 5883 u64 offset; 5884 u64 stripe_offset; 5885 u64 stripe_nr; 5886 u64 stripe_len; 5887 u64 raid56_full_stripe_start = (u64)-1; 5888 int data_stripes; 5889 int ret = 0; 5890 5891 ASSERT(op != BTRFS_MAP_DISCARD); 5892 5893 em = btrfs_get_chunk_map(fs_info, logical, len); 5894 if (IS_ERR(em)) 5895 return PTR_ERR(em); 5896 5897 map = em->map_lookup; 5898 /* Offset of this logical address in the chunk */ 5899 offset = logical - em->start; 5900 /* Len of a stripe in a chunk */ 5901 stripe_len = map->stripe_len; 5902 /* Stripe wher this block falls in */ 5903 stripe_nr = div64_u64(offset, stripe_len); 5904 /* Offset of stripe in the chunk */ 5905 stripe_offset = stripe_nr * stripe_len; 5906 if (offset < stripe_offset) { 5907 btrfs_crit(fs_info, 5908 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5909 stripe_offset, offset, em->start, logical, stripe_len); 5910 ret = -EINVAL; 5911 goto out; 5912 } 5913 5914 /* stripe_offset is the offset of this block in its stripe */ 5915 stripe_offset = offset - stripe_offset; 5916 data_stripes = nr_data_stripes(map); 5917 5918 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5919 u64 max_len = stripe_len - stripe_offset; 5920 5921 /* 5922 * In case of raid56, we need to know the stripe aligned start 5923 */ 5924 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5925 unsigned long full_stripe_len = stripe_len * data_stripes; 5926 raid56_full_stripe_start = offset; 5927 5928 /* 5929 * Allow a write of a full stripe, but make sure we 5930 * don't allow straddling of stripes 5931 */ 5932 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5933 full_stripe_len); 5934 raid56_full_stripe_start *= full_stripe_len; 5935 5936 /* 5937 * For writes to RAID[56], allow a full stripeset across 5938 * all disks. For other RAID types and for RAID[56] 5939 * reads, just allow a single stripe (on a single disk). 5940 */ 5941 if (op == BTRFS_MAP_WRITE) { 5942 max_len = stripe_len * data_stripes - 5943 (offset - raid56_full_stripe_start); 5944 } 5945 } 5946 len = min_t(u64, em->len - offset, max_len); 5947 } else { 5948 len = em->len - offset; 5949 } 5950 5951 io_geom->len = len; 5952 io_geom->offset = offset; 5953 io_geom->stripe_len = stripe_len; 5954 io_geom->stripe_nr = stripe_nr; 5955 io_geom->stripe_offset = stripe_offset; 5956 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5957 5958 out: 5959 /* once for us */ 5960 free_extent_map(em); 5961 return ret; 5962 } 5963 5964 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5965 enum btrfs_map_op op, 5966 u64 logical, u64 *length, 5967 struct btrfs_bio **bbio_ret, 5968 int mirror_num, int need_raid_map) 5969 { 5970 struct extent_map *em; 5971 struct map_lookup *map; 5972 u64 stripe_offset; 5973 u64 stripe_nr; 5974 u64 stripe_len; 5975 u32 stripe_index; 5976 int data_stripes; 5977 int i; 5978 int ret = 0; 5979 int num_stripes; 5980 int max_errors = 0; 5981 int tgtdev_indexes = 0; 5982 struct btrfs_bio *bbio = NULL; 5983 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5984 int dev_replace_is_ongoing = 0; 5985 int num_alloc_stripes; 5986 int patch_the_first_stripe_for_dev_replace = 0; 5987 u64 physical_to_patch_in_first_stripe = 0; 5988 u64 raid56_full_stripe_start = (u64)-1; 5989 struct btrfs_io_geometry geom; 5990 5991 ASSERT(bbio_ret); 5992 ASSERT(op != BTRFS_MAP_DISCARD); 5993 5994 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 5995 if (ret < 0) 5996 return ret; 5997 5998 em = btrfs_get_chunk_map(fs_info, logical, *length); 5999 ASSERT(!IS_ERR(em)); 6000 map = em->map_lookup; 6001 6002 *length = geom.len; 6003 stripe_len = geom.stripe_len; 6004 stripe_nr = geom.stripe_nr; 6005 stripe_offset = geom.stripe_offset; 6006 raid56_full_stripe_start = geom.raid56_stripe_offset; 6007 data_stripes = nr_data_stripes(map); 6008 6009 down_read(&dev_replace->rwsem); 6010 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6011 /* 6012 * Hold the semaphore for read during the whole operation, write is 6013 * requested at commit time but must wait. 6014 */ 6015 if (!dev_replace_is_ongoing) 6016 up_read(&dev_replace->rwsem); 6017 6018 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6019 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6020 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6021 dev_replace->srcdev->devid, 6022 &mirror_num, 6023 &physical_to_patch_in_first_stripe); 6024 if (ret) 6025 goto out; 6026 else 6027 patch_the_first_stripe_for_dev_replace = 1; 6028 } else if (mirror_num > map->num_stripes) { 6029 mirror_num = 0; 6030 } 6031 6032 num_stripes = 1; 6033 stripe_index = 0; 6034 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6035 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6036 &stripe_index); 6037 if (!need_full_stripe(op)) 6038 mirror_num = 1; 6039 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6040 if (need_full_stripe(op)) 6041 num_stripes = map->num_stripes; 6042 else if (mirror_num) 6043 stripe_index = mirror_num - 1; 6044 else { 6045 stripe_index = find_live_mirror(fs_info, map, 0, 6046 dev_replace_is_ongoing); 6047 mirror_num = stripe_index + 1; 6048 } 6049 6050 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6051 if (need_full_stripe(op)) { 6052 num_stripes = map->num_stripes; 6053 } else if (mirror_num) { 6054 stripe_index = mirror_num - 1; 6055 } else { 6056 mirror_num = 1; 6057 } 6058 6059 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6060 u32 factor = map->num_stripes / map->sub_stripes; 6061 6062 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6063 stripe_index *= map->sub_stripes; 6064 6065 if (need_full_stripe(op)) 6066 num_stripes = map->sub_stripes; 6067 else if (mirror_num) 6068 stripe_index += mirror_num - 1; 6069 else { 6070 int old_stripe_index = stripe_index; 6071 stripe_index = find_live_mirror(fs_info, map, 6072 stripe_index, 6073 dev_replace_is_ongoing); 6074 mirror_num = stripe_index - old_stripe_index + 1; 6075 } 6076 6077 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6078 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6079 /* push stripe_nr back to the start of the full stripe */ 6080 stripe_nr = div64_u64(raid56_full_stripe_start, 6081 stripe_len * data_stripes); 6082 6083 /* RAID[56] write or recovery. Return all stripes */ 6084 num_stripes = map->num_stripes; 6085 max_errors = nr_parity_stripes(map); 6086 6087 *length = map->stripe_len; 6088 stripe_index = 0; 6089 stripe_offset = 0; 6090 } else { 6091 /* 6092 * Mirror #0 or #1 means the original data block. 6093 * Mirror #2 is RAID5 parity block. 6094 * Mirror #3 is RAID6 Q block. 6095 */ 6096 stripe_nr = div_u64_rem(stripe_nr, 6097 data_stripes, &stripe_index); 6098 if (mirror_num > 1) 6099 stripe_index = data_stripes + mirror_num - 2; 6100 6101 /* We distribute the parity blocks across stripes */ 6102 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6103 &stripe_index); 6104 if (!need_full_stripe(op) && mirror_num <= 1) 6105 mirror_num = 1; 6106 } 6107 } else { 6108 /* 6109 * after this, stripe_nr is the number of stripes on this 6110 * device we have to walk to find the data, and stripe_index is 6111 * the number of our device in the stripe array 6112 */ 6113 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6114 &stripe_index); 6115 mirror_num = stripe_index + 1; 6116 } 6117 if (stripe_index >= map->num_stripes) { 6118 btrfs_crit(fs_info, 6119 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6120 stripe_index, map->num_stripes); 6121 ret = -EINVAL; 6122 goto out; 6123 } 6124 6125 num_alloc_stripes = num_stripes; 6126 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6127 if (op == BTRFS_MAP_WRITE) 6128 num_alloc_stripes <<= 1; 6129 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6130 num_alloc_stripes++; 6131 tgtdev_indexes = num_stripes; 6132 } 6133 6134 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6135 if (!bbio) { 6136 ret = -ENOMEM; 6137 goto out; 6138 } 6139 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6140 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6141 6142 /* build raid_map */ 6143 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6144 (need_full_stripe(op) || mirror_num > 1)) { 6145 u64 tmp; 6146 unsigned rot; 6147 6148 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6149 sizeof(struct btrfs_bio_stripe) * 6150 num_alloc_stripes + 6151 sizeof(int) * tgtdev_indexes); 6152 6153 /* Work out the disk rotation on this stripe-set */ 6154 div_u64_rem(stripe_nr, num_stripes, &rot); 6155 6156 /* Fill in the logical address of each stripe */ 6157 tmp = stripe_nr * data_stripes; 6158 for (i = 0; i < data_stripes; i++) 6159 bbio->raid_map[(i+rot) % num_stripes] = 6160 em->start + (tmp + i) * map->stripe_len; 6161 6162 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6163 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6164 bbio->raid_map[(i+rot+1) % num_stripes] = 6165 RAID6_Q_STRIPE; 6166 } 6167 6168 6169 for (i = 0; i < num_stripes; i++) { 6170 bbio->stripes[i].physical = 6171 map->stripes[stripe_index].physical + 6172 stripe_offset + 6173 stripe_nr * map->stripe_len; 6174 bbio->stripes[i].dev = 6175 map->stripes[stripe_index].dev; 6176 stripe_index++; 6177 } 6178 6179 if (need_full_stripe(op)) 6180 max_errors = btrfs_chunk_max_errors(map); 6181 6182 if (bbio->raid_map) 6183 sort_parity_stripes(bbio, num_stripes); 6184 6185 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6186 need_full_stripe(op)) { 6187 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6188 &max_errors); 6189 } 6190 6191 *bbio_ret = bbio; 6192 bbio->map_type = map->type; 6193 bbio->num_stripes = num_stripes; 6194 bbio->max_errors = max_errors; 6195 bbio->mirror_num = mirror_num; 6196 6197 /* 6198 * this is the case that REQ_READ && dev_replace_is_ongoing && 6199 * mirror_num == num_stripes + 1 && dev_replace target drive is 6200 * available as a mirror 6201 */ 6202 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6203 WARN_ON(num_stripes > 1); 6204 bbio->stripes[0].dev = dev_replace->tgtdev; 6205 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6206 bbio->mirror_num = map->num_stripes + 1; 6207 } 6208 out: 6209 if (dev_replace_is_ongoing) { 6210 lockdep_assert_held(&dev_replace->rwsem); 6211 /* Unlock and let waiting writers proceed */ 6212 up_read(&dev_replace->rwsem); 6213 } 6214 free_extent_map(em); 6215 return ret; 6216 } 6217 6218 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6219 u64 logical, u64 *length, 6220 struct btrfs_bio **bbio_ret, int mirror_num) 6221 { 6222 if (op == BTRFS_MAP_DISCARD) 6223 return __btrfs_map_block_for_discard(fs_info, logical, 6224 length, bbio_ret); 6225 6226 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6227 mirror_num, 0); 6228 } 6229 6230 /* For Scrub/replace */ 6231 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6232 u64 logical, u64 *length, 6233 struct btrfs_bio **bbio_ret) 6234 { 6235 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6236 } 6237 6238 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6239 { 6240 bio->bi_private = bbio->private; 6241 bio->bi_end_io = bbio->end_io; 6242 bio_endio(bio); 6243 6244 btrfs_put_bbio(bbio); 6245 } 6246 6247 static void btrfs_end_bio(struct bio *bio) 6248 { 6249 struct btrfs_bio *bbio = bio->bi_private; 6250 int is_orig_bio = 0; 6251 6252 if (bio->bi_status) { 6253 atomic_inc(&bbio->error); 6254 if (bio->bi_status == BLK_STS_IOERR || 6255 bio->bi_status == BLK_STS_TARGET) { 6256 unsigned int stripe_index = 6257 btrfs_io_bio(bio)->stripe_index; 6258 struct btrfs_device *dev; 6259 6260 BUG_ON(stripe_index >= bbio->num_stripes); 6261 dev = bbio->stripes[stripe_index].dev; 6262 if (dev->bdev) { 6263 if (bio_op(bio) == REQ_OP_WRITE) 6264 btrfs_dev_stat_inc_and_print(dev, 6265 BTRFS_DEV_STAT_WRITE_ERRS); 6266 else if (!(bio->bi_opf & REQ_RAHEAD)) 6267 btrfs_dev_stat_inc_and_print(dev, 6268 BTRFS_DEV_STAT_READ_ERRS); 6269 if (bio->bi_opf & REQ_PREFLUSH) 6270 btrfs_dev_stat_inc_and_print(dev, 6271 BTRFS_DEV_STAT_FLUSH_ERRS); 6272 } 6273 } 6274 } 6275 6276 if (bio == bbio->orig_bio) 6277 is_orig_bio = 1; 6278 6279 btrfs_bio_counter_dec(bbio->fs_info); 6280 6281 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6282 if (!is_orig_bio) { 6283 bio_put(bio); 6284 bio = bbio->orig_bio; 6285 } 6286 6287 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6288 /* only send an error to the higher layers if it is 6289 * beyond the tolerance of the btrfs bio 6290 */ 6291 if (atomic_read(&bbio->error) > bbio->max_errors) { 6292 bio->bi_status = BLK_STS_IOERR; 6293 } else { 6294 /* 6295 * this bio is actually up to date, we didn't 6296 * go over the max number of errors 6297 */ 6298 bio->bi_status = BLK_STS_OK; 6299 } 6300 6301 btrfs_end_bbio(bbio, bio); 6302 } else if (!is_orig_bio) { 6303 bio_put(bio); 6304 } 6305 } 6306 6307 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6308 u64 physical, int dev_nr) 6309 { 6310 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6311 struct btrfs_fs_info *fs_info = bbio->fs_info; 6312 6313 bio->bi_private = bbio; 6314 btrfs_io_bio(bio)->stripe_index = dev_nr; 6315 bio->bi_end_io = btrfs_end_bio; 6316 bio->bi_iter.bi_sector = physical >> 9; 6317 btrfs_debug_in_rcu(fs_info, 6318 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6319 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6320 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6321 dev->devid, bio->bi_iter.bi_size); 6322 bio_set_dev(bio, dev->bdev); 6323 6324 btrfs_bio_counter_inc_noblocked(fs_info); 6325 6326 btrfsic_submit_bio(bio); 6327 } 6328 6329 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6330 { 6331 atomic_inc(&bbio->error); 6332 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6333 /* Should be the original bio. */ 6334 WARN_ON(bio != bbio->orig_bio); 6335 6336 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6337 bio->bi_iter.bi_sector = logical >> 9; 6338 if (atomic_read(&bbio->error) > bbio->max_errors) 6339 bio->bi_status = BLK_STS_IOERR; 6340 else 6341 bio->bi_status = BLK_STS_OK; 6342 btrfs_end_bbio(bbio, bio); 6343 } 6344 } 6345 6346 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6347 int mirror_num) 6348 { 6349 struct btrfs_device *dev; 6350 struct bio *first_bio = bio; 6351 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6352 u64 length = 0; 6353 u64 map_length; 6354 int ret; 6355 int dev_nr; 6356 int total_devs; 6357 struct btrfs_bio *bbio = NULL; 6358 6359 length = bio->bi_iter.bi_size; 6360 map_length = length; 6361 6362 btrfs_bio_counter_inc_blocked(fs_info); 6363 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6364 &map_length, &bbio, mirror_num, 1); 6365 if (ret) { 6366 btrfs_bio_counter_dec(fs_info); 6367 return errno_to_blk_status(ret); 6368 } 6369 6370 total_devs = bbio->num_stripes; 6371 bbio->orig_bio = first_bio; 6372 bbio->private = first_bio->bi_private; 6373 bbio->end_io = first_bio->bi_end_io; 6374 bbio->fs_info = fs_info; 6375 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6376 6377 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6378 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6379 /* In this case, map_length has been set to the length of 6380 a single stripe; not the whole write */ 6381 if (bio_op(bio) == REQ_OP_WRITE) { 6382 ret = raid56_parity_write(fs_info, bio, bbio, 6383 map_length); 6384 } else { 6385 ret = raid56_parity_recover(fs_info, bio, bbio, 6386 map_length, mirror_num, 1); 6387 } 6388 6389 btrfs_bio_counter_dec(fs_info); 6390 return errno_to_blk_status(ret); 6391 } 6392 6393 if (map_length < length) { 6394 btrfs_crit(fs_info, 6395 "mapping failed logical %llu bio len %llu len %llu", 6396 logical, length, map_length); 6397 BUG(); 6398 } 6399 6400 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6401 dev = bbio->stripes[dev_nr].dev; 6402 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6403 &dev->dev_state) || 6404 (bio_op(first_bio) == REQ_OP_WRITE && 6405 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6406 bbio_error(bbio, first_bio, logical); 6407 continue; 6408 } 6409 6410 if (dev_nr < total_devs - 1) 6411 bio = btrfs_bio_clone(first_bio); 6412 else 6413 bio = first_bio; 6414 6415 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6416 dev_nr); 6417 } 6418 btrfs_bio_counter_dec(fs_info); 6419 return BLK_STS_OK; 6420 } 6421 6422 /* 6423 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6424 * return NULL. 6425 * 6426 * If devid and uuid are both specified, the match must be exact, otherwise 6427 * only devid is used. 6428 * 6429 * If @seed is true, traverse through the seed devices. 6430 */ 6431 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6432 u64 devid, u8 *uuid, u8 *fsid, 6433 bool seed) 6434 { 6435 struct btrfs_device *device; 6436 6437 while (fs_devices) { 6438 if (!fsid || 6439 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6440 list_for_each_entry(device, &fs_devices->devices, 6441 dev_list) { 6442 if (device->devid == devid && 6443 (!uuid || memcmp(device->uuid, uuid, 6444 BTRFS_UUID_SIZE) == 0)) 6445 return device; 6446 } 6447 } 6448 if (seed) 6449 fs_devices = fs_devices->seed; 6450 else 6451 return NULL; 6452 } 6453 return NULL; 6454 } 6455 6456 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6457 u64 devid, u8 *dev_uuid) 6458 { 6459 struct btrfs_device *device; 6460 6461 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6462 if (IS_ERR(device)) 6463 return device; 6464 6465 list_add(&device->dev_list, &fs_devices->devices); 6466 device->fs_devices = fs_devices; 6467 fs_devices->num_devices++; 6468 6469 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6470 fs_devices->missing_devices++; 6471 6472 return device; 6473 } 6474 6475 /** 6476 * btrfs_alloc_device - allocate struct btrfs_device 6477 * @fs_info: used only for generating a new devid, can be NULL if 6478 * devid is provided (i.e. @devid != NULL). 6479 * @devid: a pointer to devid for this device. If NULL a new devid 6480 * is generated. 6481 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6482 * is generated. 6483 * 6484 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6485 * on error. Returned struct is not linked onto any lists and must be 6486 * destroyed with btrfs_free_device. 6487 */ 6488 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6489 const u64 *devid, 6490 const u8 *uuid) 6491 { 6492 struct btrfs_device *dev; 6493 u64 tmp; 6494 6495 if (WARN_ON(!devid && !fs_info)) 6496 return ERR_PTR(-EINVAL); 6497 6498 dev = __alloc_device(); 6499 if (IS_ERR(dev)) 6500 return dev; 6501 6502 if (devid) 6503 tmp = *devid; 6504 else { 6505 int ret; 6506 6507 ret = find_next_devid(fs_info, &tmp); 6508 if (ret) { 6509 btrfs_free_device(dev); 6510 return ERR_PTR(ret); 6511 } 6512 } 6513 dev->devid = tmp; 6514 6515 if (uuid) 6516 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6517 else 6518 generate_random_uuid(dev->uuid); 6519 6520 return dev; 6521 } 6522 6523 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6524 u64 devid, u8 *uuid, bool error) 6525 { 6526 if (error) 6527 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6528 devid, uuid); 6529 else 6530 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6531 devid, uuid); 6532 } 6533 6534 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6535 { 6536 int index = btrfs_bg_flags_to_raid_index(type); 6537 int ncopies = btrfs_raid_array[index].ncopies; 6538 const int nparity = btrfs_raid_array[index].nparity; 6539 int data_stripes; 6540 6541 if (nparity) 6542 data_stripes = num_stripes - nparity; 6543 else 6544 data_stripes = num_stripes / ncopies; 6545 6546 return div_u64(chunk_len, data_stripes); 6547 } 6548 6549 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6550 struct btrfs_chunk *chunk) 6551 { 6552 struct btrfs_fs_info *fs_info = leaf->fs_info; 6553 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6554 struct map_lookup *map; 6555 struct extent_map *em; 6556 u64 logical; 6557 u64 length; 6558 u64 devid; 6559 u8 uuid[BTRFS_UUID_SIZE]; 6560 int num_stripes; 6561 int ret; 6562 int i; 6563 6564 logical = key->offset; 6565 length = btrfs_chunk_length(leaf, chunk); 6566 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6567 6568 /* 6569 * Only need to verify chunk item if we're reading from sys chunk array, 6570 * as chunk item in tree block is already verified by tree-checker. 6571 */ 6572 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6573 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6574 if (ret) 6575 return ret; 6576 } 6577 6578 read_lock(&map_tree->lock); 6579 em = lookup_extent_mapping(map_tree, logical, 1); 6580 read_unlock(&map_tree->lock); 6581 6582 /* already mapped? */ 6583 if (em && em->start <= logical && em->start + em->len > logical) { 6584 free_extent_map(em); 6585 return 0; 6586 } else if (em) { 6587 free_extent_map(em); 6588 } 6589 6590 em = alloc_extent_map(); 6591 if (!em) 6592 return -ENOMEM; 6593 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6594 if (!map) { 6595 free_extent_map(em); 6596 return -ENOMEM; 6597 } 6598 6599 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6600 em->map_lookup = map; 6601 em->start = logical; 6602 em->len = length; 6603 em->orig_start = 0; 6604 em->block_start = 0; 6605 em->block_len = em->len; 6606 6607 map->num_stripes = num_stripes; 6608 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6609 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6610 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6611 map->type = btrfs_chunk_type(leaf, chunk); 6612 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6613 map->verified_stripes = 0; 6614 em->orig_block_len = calc_stripe_length(map->type, em->len, 6615 map->num_stripes); 6616 for (i = 0; i < num_stripes; i++) { 6617 map->stripes[i].physical = 6618 btrfs_stripe_offset_nr(leaf, chunk, i); 6619 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6620 read_extent_buffer(leaf, uuid, (unsigned long) 6621 btrfs_stripe_dev_uuid_nr(chunk, i), 6622 BTRFS_UUID_SIZE); 6623 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6624 devid, uuid, NULL, true); 6625 if (!map->stripes[i].dev && 6626 !btrfs_test_opt(fs_info, DEGRADED)) { 6627 free_extent_map(em); 6628 btrfs_report_missing_device(fs_info, devid, uuid, true); 6629 return -ENOENT; 6630 } 6631 if (!map->stripes[i].dev) { 6632 map->stripes[i].dev = 6633 add_missing_dev(fs_info->fs_devices, devid, 6634 uuid); 6635 if (IS_ERR(map->stripes[i].dev)) { 6636 free_extent_map(em); 6637 btrfs_err(fs_info, 6638 "failed to init missing dev %llu: %ld", 6639 devid, PTR_ERR(map->stripes[i].dev)); 6640 return PTR_ERR(map->stripes[i].dev); 6641 } 6642 btrfs_report_missing_device(fs_info, devid, uuid, false); 6643 } 6644 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6645 &(map->stripes[i].dev->dev_state)); 6646 6647 } 6648 6649 write_lock(&map_tree->lock); 6650 ret = add_extent_mapping(map_tree, em, 0); 6651 write_unlock(&map_tree->lock); 6652 if (ret < 0) { 6653 btrfs_err(fs_info, 6654 "failed to add chunk map, start=%llu len=%llu: %d", 6655 em->start, em->len, ret); 6656 } 6657 free_extent_map(em); 6658 6659 return ret; 6660 } 6661 6662 static void fill_device_from_item(struct extent_buffer *leaf, 6663 struct btrfs_dev_item *dev_item, 6664 struct btrfs_device *device) 6665 { 6666 unsigned long ptr; 6667 6668 device->devid = btrfs_device_id(leaf, dev_item); 6669 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6670 device->total_bytes = device->disk_total_bytes; 6671 device->commit_total_bytes = device->disk_total_bytes; 6672 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6673 device->commit_bytes_used = device->bytes_used; 6674 device->type = btrfs_device_type(leaf, dev_item); 6675 device->io_align = btrfs_device_io_align(leaf, dev_item); 6676 device->io_width = btrfs_device_io_width(leaf, dev_item); 6677 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6678 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6679 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6680 6681 ptr = btrfs_device_uuid(dev_item); 6682 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6683 } 6684 6685 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6686 u8 *fsid) 6687 { 6688 struct btrfs_fs_devices *fs_devices; 6689 int ret; 6690 6691 lockdep_assert_held(&uuid_mutex); 6692 ASSERT(fsid); 6693 6694 fs_devices = fs_info->fs_devices->seed; 6695 while (fs_devices) { 6696 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6697 return fs_devices; 6698 6699 fs_devices = fs_devices->seed; 6700 } 6701 6702 fs_devices = find_fsid(fsid, NULL); 6703 if (!fs_devices) { 6704 if (!btrfs_test_opt(fs_info, DEGRADED)) 6705 return ERR_PTR(-ENOENT); 6706 6707 fs_devices = alloc_fs_devices(fsid, NULL); 6708 if (IS_ERR(fs_devices)) 6709 return fs_devices; 6710 6711 fs_devices->seeding = true; 6712 fs_devices->opened = 1; 6713 return fs_devices; 6714 } 6715 6716 fs_devices = clone_fs_devices(fs_devices); 6717 if (IS_ERR(fs_devices)) 6718 return fs_devices; 6719 6720 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6721 if (ret) { 6722 free_fs_devices(fs_devices); 6723 fs_devices = ERR_PTR(ret); 6724 goto out; 6725 } 6726 6727 if (!fs_devices->seeding) { 6728 close_fs_devices(fs_devices); 6729 free_fs_devices(fs_devices); 6730 fs_devices = ERR_PTR(-EINVAL); 6731 goto out; 6732 } 6733 6734 fs_devices->seed = fs_info->fs_devices->seed; 6735 fs_info->fs_devices->seed = fs_devices; 6736 out: 6737 return fs_devices; 6738 } 6739 6740 static int read_one_dev(struct extent_buffer *leaf, 6741 struct btrfs_dev_item *dev_item) 6742 { 6743 struct btrfs_fs_info *fs_info = leaf->fs_info; 6744 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6745 struct btrfs_device *device; 6746 u64 devid; 6747 int ret; 6748 u8 fs_uuid[BTRFS_FSID_SIZE]; 6749 u8 dev_uuid[BTRFS_UUID_SIZE]; 6750 6751 devid = btrfs_device_id(leaf, dev_item); 6752 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6753 BTRFS_UUID_SIZE); 6754 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6755 BTRFS_FSID_SIZE); 6756 6757 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6758 fs_devices = open_seed_devices(fs_info, fs_uuid); 6759 if (IS_ERR(fs_devices)) 6760 return PTR_ERR(fs_devices); 6761 } 6762 6763 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6764 fs_uuid, true); 6765 if (!device) { 6766 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6767 btrfs_report_missing_device(fs_info, devid, 6768 dev_uuid, true); 6769 return -ENOENT; 6770 } 6771 6772 device = add_missing_dev(fs_devices, devid, dev_uuid); 6773 if (IS_ERR(device)) { 6774 btrfs_err(fs_info, 6775 "failed to add missing dev %llu: %ld", 6776 devid, PTR_ERR(device)); 6777 return PTR_ERR(device); 6778 } 6779 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6780 } else { 6781 if (!device->bdev) { 6782 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6783 btrfs_report_missing_device(fs_info, 6784 devid, dev_uuid, true); 6785 return -ENOENT; 6786 } 6787 btrfs_report_missing_device(fs_info, devid, 6788 dev_uuid, false); 6789 } 6790 6791 if (!device->bdev && 6792 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6793 /* 6794 * this happens when a device that was properly setup 6795 * in the device info lists suddenly goes bad. 6796 * device->bdev is NULL, and so we have to set 6797 * device->missing to one here 6798 */ 6799 device->fs_devices->missing_devices++; 6800 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6801 } 6802 6803 /* Move the device to its own fs_devices */ 6804 if (device->fs_devices != fs_devices) { 6805 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6806 &device->dev_state)); 6807 6808 list_move(&device->dev_list, &fs_devices->devices); 6809 device->fs_devices->num_devices--; 6810 fs_devices->num_devices++; 6811 6812 device->fs_devices->missing_devices--; 6813 fs_devices->missing_devices++; 6814 6815 device->fs_devices = fs_devices; 6816 } 6817 } 6818 6819 if (device->fs_devices != fs_info->fs_devices) { 6820 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6821 if (device->generation != 6822 btrfs_device_generation(leaf, dev_item)) 6823 return -EINVAL; 6824 } 6825 6826 fill_device_from_item(leaf, dev_item, device); 6827 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6828 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6829 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6830 device->fs_devices->total_rw_bytes += device->total_bytes; 6831 atomic64_add(device->total_bytes - device->bytes_used, 6832 &fs_info->free_chunk_space); 6833 } 6834 ret = 0; 6835 return ret; 6836 } 6837 6838 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6839 { 6840 struct btrfs_root *root = fs_info->tree_root; 6841 struct btrfs_super_block *super_copy = fs_info->super_copy; 6842 struct extent_buffer *sb; 6843 struct btrfs_disk_key *disk_key; 6844 struct btrfs_chunk *chunk; 6845 u8 *array_ptr; 6846 unsigned long sb_array_offset; 6847 int ret = 0; 6848 u32 num_stripes; 6849 u32 array_size; 6850 u32 len = 0; 6851 u32 cur_offset; 6852 u64 type; 6853 struct btrfs_key key; 6854 6855 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6856 /* 6857 * This will create extent buffer of nodesize, superblock size is 6858 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6859 * overallocate but we can keep it as-is, only the first page is used. 6860 */ 6861 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6862 if (IS_ERR(sb)) 6863 return PTR_ERR(sb); 6864 set_extent_buffer_uptodate(sb); 6865 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6866 /* 6867 * The sb extent buffer is artificial and just used to read the system array. 6868 * set_extent_buffer_uptodate() call does not properly mark all it's 6869 * pages up-to-date when the page is larger: extent does not cover the 6870 * whole page and consequently check_page_uptodate does not find all 6871 * the page's extents up-to-date (the hole beyond sb), 6872 * write_extent_buffer then triggers a WARN_ON. 6873 * 6874 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6875 * but sb spans only this function. Add an explicit SetPageUptodate call 6876 * to silence the warning eg. on PowerPC 64. 6877 */ 6878 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6879 SetPageUptodate(sb->pages[0]); 6880 6881 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6882 array_size = btrfs_super_sys_array_size(super_copy); 6883 6884 array_ptr = super_copy->sys_chunk_array; 6885 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6886 cur_offset = 0; 6887 6888 while (cur_offset < array_size) { 6889 disk_key = (struct btrfs_disk_key *)array_ptr; 6890 len = sizeof(*disk_key); 6891 if (cur_offset + len > array_size) 6892 goto out_short_read; 6893 6894 btrfs_disk_key_to_cpu(&key, disk_key); 6895 6896 array_ptr += len; 6897 sb_array_offset += len; 6898 cur_offset += len; 6899 6900 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6901 btrfs_err(fs_info, 6902 "unexpected item type %u in sys_array at offset %u", 6903 (u32)key.type, cur_offset); 6904 ret = -EIO; 6905 break; 6906 } 6907 6908 chunk = (struct btrfs_chunk *)sb_array_offset; 6909 /* 6910 * At least one btrfs_chunk with one stripe must be present, 6911 * exact stripe count check comes afterwards 6912 */ 6913 len = btrfs_chunk_item_size(1); 6914 if (cur_offset + len > array_size) 6915 goto out_short_read; 6916 6917 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6918 if (!num_stripes) { 6919 btrfs_err(fs_info, 6920 "invalid number of stripes %u in sys_array at offset %u", 6921 num_stripes, cur_offset); 6922 ret = -EIO; 6923 break; 6924 } 6925 6926 type = btrfs_chunk_type(sb, chunk); 6927 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6928 btrfs_err(fs_info, 6929 "invalid chunk type %llu in sys_array at offset %u", 6930 type, cur_offset); 6931 ret = -EIO; 6932 break; 6933 } 6934 6935 len = btrfs_chunk_item_size(num_stripes); 6936 if (cur_offset + len > array_size) 6937 goto out_short_read; 6938 6939 ret = read_one_chunk(&key, sb, chunk); 6940 if (ret) 6941 break; 6942 6943 array_ptr += len; 6944 sb_array_offset += len; 6945 cur_offset += len; 6946 } 6947 clear_extent_buffer_uptodate(sb); 6948 free_extent_buffer_stale(sb); 6949 return ret; 6950 6951 out_short_read: 6952 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6953 len, cur_offset); 6954 clear_extent_buffer_uptodate(sb); 6955 free_extent_buffer_stale(sb); 6956 return -EIO; 6957 } 6958 6959 /* 6960 * Check if all chunks in the fs are OK for read-write degraded mount 6961 * 6962 * If the @failing_dev is specified, it's accounted as missing. 6963 * 6964 * Return true if all chunks meet the minimal RW mount requirements. 6965 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6966 */ 6967 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 6968 struct btrfs_device *failing_dev) 6969 { 6970 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6971 struct extent_map *em; 6972 u64 next_start = 0; 6973 bool ret = true; 6974 6975 read_lock(&map_tree->lock); 6976 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 6977 read_unlock(&map_tree->lock); 6978 /* No chunk at all? Return false anyway */ 6979 if (!em) { 6980 ret = false; 6981 goto out; 6982 } 6983 while (em) { 6984 struct map_lookup *map; 6985 int missing = 0; 6986 int max_tolerated; 6987 int i; 6988 6989 map = em->map_lookup; 6990 max_tolerated = 6991 btrfs_get_num_tolerated_disk_barrier_failures( 6992 map->type); 6993 for (i = 0; i < map->num_stripes; i++) { 6994 struct btrfs_device *dev = map->stripes[i].dev; 6995 6996 if (!dev || !dev->bdev || 6997 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 6998 dev->last_flush_error) 6999 missing++; 7000 else if (failing_dev && failing_dev == dev) 7001 missing++; 7002 } 7003 if (missing > max_tolerated) { 7004 if (!failing_dev) 7005 btrfs_warn(fs_info, 7006 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7007 em->start, missing, max_tolerated); 7008 free_extent_map(em); 7009 ret = false; 7010 goto out; 7011 } 7012 next_start = extent_map_end(em); 7013 free_extent_map(em); 7014 7015 read_lock(&map_tree->lock); 7016 em = lookup_extent_mapping(map_tree, next_start, 7017 (u64)(-1) - next_start); 7018 read_unlock(&map_tree->lock); 7019 } 7020 out: 7021 return ret; 7022 } 7023 7024 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7025 { 7026 struct btrfs_root *root = fs_info->chunk_root; 7027 struct btrfs_path *path; 7028 struct extent_buffer *leaf; 7029 struct btrfs_key key; 7030 struct btrfs_key found_key; 7031 int ret; 7032 int slot; 7033 u64 total_dev = 0; 7034 7035 path = btrfs_alloc_path(); 7036 if (!path) 7037 return -ENOMEM; 7038 7039 /* 7040 * uuid_mutex is needed only if we are mounting a sprout FS 7041 * otherwise we don't need it. 7042 */ 7043 mutex_lock(&uuid_mutex); 7044 mutex_lock(&fs_info->chunk_mutex); 7045 7046 /* 7047 * Read all device items, and then all the chunk items. All 7048 * device items are found before any chunk item (their object id 7049 * is smaller than the lowest possible object id for a chunk 7050 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7051 */ 7052 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7053 key.offset = 0; 7054 key.type = 0; 7055 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7056 if (ret < 0) 7057 goto error; 7058 while (1) { 7059 leaf = path->nodes[0]; 7060 slot = path->slots[0]; 7061 if (slot >= btrfs_header_nritems(leaf)) { 7062 ret = btrfs_next_leaf(root, path); 7063 if (ret == 0) 7064 continue; 7065 if (ret < 0) 7066 goto error; 7067 break; 7068 } 7069 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7070 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7071 struct btrfs_dev_item *dev_item; 7072 dev_item = btrfs_item_ptr(leaf, slot, 7073 struct btrfs_dev_item); 7074 ret = read_one_dev(leaf, dev_item); 7075 if (ret) 7076 goto error; 7077 total_dev++; 7078 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7079 struct btrfs_chunk *chunk; 7080 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7081 ret = read_one_chunk(&found_key, leaf, chunk); 7082 if (ret) 7083 goto error; 7084 } 7085 path->slots[0]++; 7086 } 7087 7088 /* 7089 * After loading chunk tree, we've got all device information, 7090 * do another round of validation checks. 7091 */ 7092 if (total_dev != fs_info->fs_devices->total_devices) { 7093 btrfs_err(fs_info, 7094 "super_num_devices %llu mismatch with num_devices %llu found here", 7095 btrfs_super_num_devices(fs_info->super_copy), 7096 total_dev); 7097 ret = -EINVAL; 7098 goto error; 7099 } 7100 if (btrfs_super_total_bytes(fs_info->super_copy) < 7101 fs_info->fs_devices->total_rw_bytes) { 7102 btrfs_err(fs_info, 7103 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7104 btrfs_super_total_bytes(fs_info->super_copy), 7105 fs_info->fs_devices->total_rw_bytes); 7106 ret = -EINVAL; 7107 goto error; 7108 } 7109 ret = 0; 7110 error: 7111 mutex_unlock(&fs_info->chunk_mutex); 7112 mutex_unlock(&uuid_mutex); 7113 7114 btrfs_free_path(path); 7115 return ret; 7116 } 7117 7118 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7119 { 7120 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7121 struct btrfs_device *device; 7122 7123 while (fs_devices) { 7124 mutex_lock(&fs_devices->device_list_mutex); 7125 list_for_each_entry(device, &fs_devices->devices, dev_list) 7126 device->fs_info = fs_info; 7127 mutex_unlock(&fs_devices->device_list_mutex); 7128 7129 fs_devices = fs_devices->seed; 7130 } 7131 } 7132 7133 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7134 const struct btrfs_dev_stats_item *ptr, 7135 int index) 7136 { 7137 u64 val; 7138 7139 read_extent_buffer(eb, &val, 7140 offsetof(struct btrfs_dev_stats_item, values) + 7141 ((unsigned long)ptr) + (index * sizeof(u64)), 7142 sizeof(val)); 7143 return val; 7144 } 7145 7146 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7147 struct btrfs_dev_stats_item *ptr, 7148 int index, u64 val) 7149 { 7150 write_extent_buffer(eb, &val, 7151 offsetof(struct btrfs_dev_stats_item, values) + 7152 ((unsigned long)ptr) + (index * sizeof(u64)), 7153 sizeof(val)); 7154 } 7155 7156 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7157 { 7158 struct btrfs_key key; 7159 struct btrfs_root *dev_root = fs_info->dev_root; 7160 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7161 struct extent_buffer *eb; 7162 int slot; 7163 int ret = 0; 7164 struct btrfs_device *device; 7165 struct btrfs_path *path = NULL; 7166 int i; 7167 7168 path = btrfs_alloc_path(); 7169 if (!path) 7170 return -ENOMEM; 7171 7172 mutex_lock(&fs_devices->device_list_mutex); 7173 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7174 int item_size; 7175 struct btrfs_dev_stats_item *ptr; 7176 7177 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7178 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7179 key.offset = device->devid; 7180 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7181 if (ret) { 7182 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7183 btrfs_dev_stat_set(device, i, 0); 7184 device->dev_stats_valid = 1; 7185 btrfs_release_path(path); 7186 continue; 7187 } 7188 slot = path->slots[0]; 7189 eb = path->nodes[0]; 7190 item_size = btrfs_item_size_nr(eb, slot); 7191 7192 ptr = btrfs_item_ptr(eb, slot, 7193 struct btrfs_dev_stats_item); 7194 7195 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7196 if (item_size >= (1 + i) * sizeof(__le64)) 7197 btrfs_dev_stat_set(device, i, 7198 btrfs_dev_stats_value(eb, ptr, i)); 7199 else 7200 btrfs_dev_stat_set(device, i, 0); 7201 } 7202 7203 device->dev_stats_valid = 1; 7204 btrfs_dev_stat_print_on_load(device); 7205 btrfs_release_path(path); 7206 } 7207 mutex_unlock(&fs_devices->device_list_mutex); 7208 7209 btrfs_free_path(path); 7210 return ret < 0 ? ret : 0; 7211 } 7212 7213 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7214 struct btrfs_device *device) 7215 { 7216 struct btrfs_fs_info *fs_info = trans->fs_info; 7217 struct btrfs_root *dev_root = fs_info->dev_root; 7218 struct btrfs_path *path; 7219 struct btrfs_key key; 7220 struct extent_buffer *eb; 7221 struct btrfs_dev_stats_item *ptr; 7222 int ret; 7223 int i; 7224 7225 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7226 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7227 key.offset = device->devid; 7228 7229 path = btrfs_alloc_path(); 7230 if (!path) 7231 return -ENOMEM; 7232 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7233 if (ret < 0) { 7234 btrfs_warn_in_rcu(fs_info, 7235 "error %d while searching for dev_stats item for device %s", 7236 ret, rcu_str_deref(device->name)); 7237 goto out; 7238 } 7239 7240 if (ret == 0 && 7241 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7242 /* need to delete old one and insert a new one */ 7243 ret = btrfs_del_item(trans, dev_root, path); 7244 if (ret != 0) { 7245 btrfs_warn_in_rcu(fs_info, 7246 "delete too small dev_stats item for device %s failed %d", 7247 rcu_str_deref(device->name), ret); 7248 goto out; 7249 } 7250 ret = 1; 7251 } 7252 7253 if (ret == 1) { 7254 /* need to insert a new item */ 7255 btrfs_release_path(path); 7256 ret = btrfs_insert_empty_item(trans, dev_root, path, 7257 &key, sizeof(*ptr)); 7258 if (ret < 0) { 7259 btrfs_warn_in_rcu(fs_info, 7260 "insert dev_stats item for device %s failed %d", 7261 rcu_str_deref(device->name), ret); 7262 goto out; 7263 } 7264 } 7265 7266 eb = path->nodes[0]; 7267 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7268 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7269 btrfs_set_dev_stats_value(eb, ptr, i, 7270 btrfs_dev_stat_read(device, i)); 7271 btrfs_mark_buffer_dirty(eb); 7272 7273 out: 7274 btrfs_free_path(path); 7275 return ret; 7276 } 7277 7278 /* 7279 * called from commit_transaction. Writes all changed device stats to disk. 7280 */ 7281 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7282 { 7283 struct btrfs_fs_info *fs_info = trans->fs_info; 7284 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7285 struct btrfs_device *device; 7286 int stats_cnt; 7287 int ret = 0; 7288 7289 mutex_lock(&fs_devices->device_list_mutex); 7290 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7291 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7292 if (!device->dev_stats_valid || stats_cnt == 0) 7293 continue; 7294 7295 7296 /* 7297 * There is a LOAD-LOAD control dependency between the value of 7298 * dev_stats_ccnt and updating the on-disk values which requires 7299 * reading the in-memory counters. Such control dependencies 7300 * require explicit read memory barriers. 7301 * 7302 * This memory barriers pairs with smp_mb__before_atomic in 7303 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7304 * barrier implied by atomic_xchg in 7305 * btrfs_dev_stats_read_and_reset 7306 */ 7307 smp_rmb(); 7308 7309 ret = update_dev_stat_item(trans, device); 7310 if (!ret) 7311 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7312 } 7313 mutex_unlock(&fs_devices->device_list_mutex); 7314 7315 return ret; 7316 } 7317 7318 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7319 { 7320 btrfs_dev_stat_inc(dev, index); 7321 btrfs_dev_stat_print_on_error(dev); 7322 } 7323 7324 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7325 { 7326 if (!dev->dev_stats_valid) 7327 return; 7328 btrfs_err_rl_in_rcu(dev->fs_info, 7329 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7330 rcu_str_deref(dev->name), 7331 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7332 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7333 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7334 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7335 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7336 } 7337 7338 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7339 { 7340 int i; 7341 7342 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7343 if (btrfs_dev_stat_read(dev, i) != 0) 7344 break; 7345 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7346 return; /* all values == 0, suppress message */ 7347 7348 btrfs_info_in_rcu(dev->fs_info, 7349 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7350 rcu_str_deref(dev->name), 7351 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7352 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7353 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7354 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7355 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7356 } 7357 7358 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7359 struct btrfs_ioctl_get_dev_stats *stats) 7360 { 7361 struct btrfs_device *dev; 7362 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7363 int i; 7364 7365 mutex_lock(&fs_devices->device_list_mutex); 7366 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7367 true); 7368 mutex_unlock(&fs_devices->device_list_mutex); 7369 7370 if (!dev) { 7371 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7372 return -ENODEV; 7373 } else if (!dev->dev_stats_valid) { 7374 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7375 return -ENODEV; 7376 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7377 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7378 if (stats->nr_items > i) 7379 stats->values[i] = 7380 btrfs_dev_stat_read_and_reset(dev, i); 7381 else 7382 btrfs_dev_stat_set(dev, i, 0); 7383 } 7384 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7385 current->comm, task_pid_nr(current)); 7386 } else { 7387 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7388 if (stats->nr_items > i) 7389 stats->values[i] = btrfs_dev_stat_read(dev, i); 7390 } 7391 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7392 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7393 return 0; 7394 } 7395 7396 /* 7397 * Update the size and bytes used for each device where it changed. This is 7398 * delayed since we would otherwise get errors while writing out the 7399 * superblocks. 7400 * 7401 * Must be invoked during transaction commit. 7402 */ 7403 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7404 { 7405 struct btrfs_device *curr, *next; 7406 7407 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7408 7409 if (list_empty(&trans->dev_update_list)) 7410 return; 7411 7412 /* 7413 * We don't need the device_list_mutex here. This list is owned by the 7414 * transaction and the transaction must complete before the device is 7415 * released. 7416 */ 7417 mutex_lock(&trans->fs_info->chunk_mutex); 7418 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7419 post_commit_list) { 7420 list_del_init(&curr->post_commit_list); 7421 curr->commit_total_bytes = curr->disk_total_bytes; 7422 curr->commit_bytes_used = curr->bytes_used; 7423 } 7424 mutex_unlock(&trans->fs_info->chunk_mutex); 7425 } 7426 7427 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7428 { 7429 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7430 while (fs_devices) { 7431 fs_devices->fs_info = fs_info; 7432 fs_devices = fs_devices->seed; 7433 } 7434 } 7435 7436 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7437 { 7438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7439 while (fs_devices) { 7440 fs_devices->fs_info = NULL; 7441 fs_devices = fs_devices->seed; 7442 } 7443 } 7444 7445 /* 7446 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7447 */ 7448 int btrfs_bg_type_to_factor(u64 flags) 7449 { 7450 const int index = btrfs_bg_flags_to_raid_index(flags); 7451 7452 return btrfs_raid_array[index].ncopies; 7453 } 7454 7455 7456 7457 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7458 u64 chunk_offset, u64 devid, 7459 u64 physical_offset, u64 physical_len) 7460 { 7461 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7462 struct extent_map *em; 7463 struct map_lookup *map; 7464 struct btrfs_device *dev; 7465 u64 stripe_len; 7466 bool found = false; 7467 int ret = 0; 7468 int i; 7469 7470 read_lock(&em_tree->lock); 7471 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7472 read_unlock(&em_tree->lock); 7473 7474 if (!em) { 7475 btrfs_err(fs_info, 7476 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7477 physical_offset, devid); 7478 ret = -EUCLEAN; 7479 goto out; 7480 } 7481 7482 map = em->map_lookup; 7483 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7484 if (physical_len != stripe_len) { 7485 btrfs_err(fs_info, 7486 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7487 physical_offset, devid, em->start, physical_len, 7488 stripe_len); 7489 ret = -EUCLEAN; 7490 goto out; 7491 } 7492 7493 for (i = 0; i < map->num_stripes; i++) { 7494 if (map->stripes[i].dev->devid == devid && 7495 map->stripes[i].physical == physical_offset) { 7496 found = true; 7497 if (map->verified_stripes >= map->num_stripes) { 7498 btrfs_err(fs_info, 7499 "too many dev extents for chunk %llu found", 7500 em->start); 7501 ret = -EUCLEAN; 7502 goto out; 7503 } 7504 map->verified_stripes++; 7505 break; 7506 } 7507 } 7508 if (!found) { 7509 btrfs_err(fs_info, 7510 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7511 physical_offset, devid); 7512 ret = -EUCLEAN; 7513 } 7514 7515 /* Make sure no dev extent is beyond device bondary */ 7516 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7517 if (!dev) { 7518 btrfs_err(fs_info, "failed to find devid %llu", devid); 7519 ret = -EUCLEAN; 7520 goto out; 7521 } 7522 7523 /* It's possible this device is a dummy for seed device */ 7524 if (dev->disk_total_bytes == 0) { 7525 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7526 NULL, false); 7527 if (!dev) { 7528 btrfs_err(fs_info, "failed to find seed devid %llu", 7529 devid); 7530 ret = -EUCLEAN; 7531 goto out; 7532 } 7533 } 7534 7535 if (physical_offset + physical_len > dev->disk_total_bytes) { 7536 btrfs_err(fs_info, 7537 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7538 devid, physical_offset, physical_len, 7539 dev->disk_total_bytes); 7540 ret = -EUCLEAN; 7541 goto out; 7542 } 7543 out: 7544 free_extent_map(em); 7545 return ret; 7546 } 7547 7548 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7549 { 7550 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7551 struct extent_map *em; 7552 struct rb_node *node; 7553 int ret = 0; 7554 7555 read_lock(&em_tree->lock); 7556 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7557 em = rb_entry(node, struct extent_map, rb_node); 7558 if (em->map_lookup->num_stripes != 7559 em->map_lookup->verified_stripes) { 7560 btrfs_err(fs_info, 7561 "chunk %llu has missing dev extent, have %d expect %d", 7562 em->start, em->map_lookup->verified_stripes, 7563 em->map_lookup->num_stripes); 7564 ret = -EUCLEAN; 7565 goto out; 7566 } 7567 } 7568 out: 7569 read_unlock(&em_tree->lock); 7570 return ret; 7571 } 7572 7573 /* 7574 * Ensure that all dev extents are mapped to correct chunk, otherwise 7575 * later chunk allocation/free would cause unexpected behavior. 7576 * 7577 * NOTE: This will iterate through the whole device tree, which should be of 7578 * the same size level as the chunk tree. This slightly increases mount time. 7579 */ 7580 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7581 { 7582 struct btrfs_path *path; 7583 struct btrfs_root *root = fs_info->dev_root; 7584 struct btrfs_key key; 7585 u64 prev_devid = 0; 7586 u64 prev_dev_ext_end = 0; 7587 int ret = 0; 7588 7589 key.objectid = 1; 7590 key.type = BTRFS_DEV_EXTENT_KEY; 7591 key.offset = 0; 7592 7593 path = btrfs_alloc_path(); 7594 if (!path) 7595 return -ENOMEM; 7596 7597 path->reada = READA_FORWARD; 7598 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7599 if (ret < 0) 7600 goto out; 7601 7602 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7603 ret = btrfs_next_item(root, path); 7604 if (ret < 0) 7605 goto out; 7606 /* No dev extents at all? Not good */ 7607 if (ret > 0) { 7608 ret = -EUCLEAN; 7609 goto out; 7610 } 7611 } 7612 while (1) { 7613 struct extent_buffer *leaf = path->nodes[0]; 7614 struct btrfs_dev_extent *dext; 7615 int slot = path->slots[0]; 7616 u64 chunk_offset; 7617 u64 physical_offset; 7618 u64 physical_len; 7619 u64 devid; 7620 7621 btrfs_item_key_to_cpu(leaf, &key, slot); 7622 if (key.type != BTRFS_DEV_EXTENT_KEY) 7623 break; 7624 devid = key.objectid; 7625 physical_offset = key.offset; 7626 7627 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7628 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7629 physical_len = btrfs_dev_extent_length(leaf, dext); 7630 7631 /* Check if this dev extent overlaps with the previous one */ 7632 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7633 btrfs_err(fs_info, 7634 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7635 devid, physical_offset, prev_dev_ext_end); 7636 ret = -EUCLEAN; 7637 goto out; 7638 } 7639 7640 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7641 physical_offset, physical_len); 7642 if (ret < 0) 7643 goto out; 7644 prev_devid = devid; 7645 prev_dev_ext_end = physical_offset + physical_len; 7646 7647 ret = btrfs_next_item(root, path); 7648 if (ret < 0) 7649 goto out; 7650 if (ret > 0) { 7651 ret = 0; 7652 break; 7653 } 7654 } 7655 7656 /* Ensure all chunks have corresponding dev extents */ 7657 ret = verify_chunk_dev_extent_mapping(fs_info); 7658 out: 7659 btrfs_free_path(path); 7660 return ret; 7661 } 7662 7663 /* 7664 * Check whether the given block group or device is pinned by any inode being 7665 * used as a swapfile. 7666 */ 7667 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7668 { 7669 struct btrfs_swapfile_pin *sp; 7670 struct rb_node *node; 7671 7672 spin_lock(&fs_info->swapfile_pins_lock); 7673 node = fs_info->swapfile_pins.rb_node; 7674 while (node) { 7675 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7676 if (ptr < sp->ptr) 7677 node = node->rb_left; 7678 else if (ptr > sp->ptr) 7679 node = node->rb_right; 7680 else 7681 break; 7682 } 7683 spin_unlock(&fs_info->swapfile_pins_lock); 7684 return node != NULL; 7685 } 7686