xref: /linux/fs/btrfs/volumes.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37 
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39 					 BTRFS_BLOCK_GROUP_RAID10 | \
40 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41 
42 struct btrfs_io_geometry {
43 	u32 stripe_index;
44 	u32 stripe_nr;
45 	int mirror_num;
46 	int num_stripes;
47 	u64 stripe_offset;
48 	u64 raid56_full_stripe_start;
49 	int max_errors;
50 	enum btrfs_map_op op;
51 };
52 
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 	[BTRFS_RAID_RAID10] = {
55 		.sub_stripes	= 2,
56 		.dev_stripes	= 1,
57 		.devs_max	= 0,	/* 0 == as many as possible */
58 		.devs_min	= 2,
59 		.tolerated_failures = 1,
60 		.devs_increment	= 2,
61 		.ncopies	= 2,
62 		.nparity        = 0,
63 		.raid_name	= "raid10",
64 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 	},
67 	[BTRFS_RAID_RAID1] = {
68 		.sub_stripes	= 1,
69 		.dev_stripes	= 1,
70 		.devs_max	= 2,
71 		.devs_min	= 2,
72 		.tolerated_failures = 1,
73 		.devs_increment	= 2,
74 		.ncopies	= 2,
75 		.nparity        = 0,
76 		.raid_name	= "raid1",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 	},
80 	[BTRFS_RAID_RAID1C3] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 3,
84 		.devs_min	= 3,
85 		.tolerated_failures = 2,
86 		.devs_increment	= 3,
87 		.ncopies	= 3,
88 		.nparity        = 0,
89 		.raid_name	= "raid1c3",
90 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 	},
93 	[BTRFS_RAID_RAID1C4] = {
94 		.sub_stripes	= 1,
95 		.dev_stripes	= 1,
96 		.devs_max	= 4,
97 		.devs_min	= 4,
98 		.tolerated_failures = 3,
99 		.devs_increment	= 4,
100 		.ncopies	= 4,
101 		.nparity        = 0,
102 		.raid_name	= "raid1c4",
103 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 	},
106 	[BTRFS_RAID_DUP] = {
107 		.sub_stripes	= 1,
108 		.dev_stripes	= 2,
109 		.devs_max	= 1,
110 		.devs_min	= 1,
111 		.tolerated_failures = 0,
112 		.devs_increment	= 1,
113 		.ncopies	= 2,
114 		.nparity        = 0,
115 		.raid_name	= "dup",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117 		.mindev_error	= 0,
118 	},
119 	[BTRFS_RAID_RAID0] = {
120 		.sub_stripes	= 1,
121 		.dev_stripes	= 1,
122 		.devs_max	= 0,
123 		.devs_min	= 1,
124 		.tolerated_failures = 0,
125 		.devs_increment	= 1,
126 		.ncopies	= 1,
127 		.nparity        = 0,
128 		.raid_name	= "raid0",
129 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130 		.mindev_error	= 0,
131 	},
132 	[BTRFS_RAID_SINGLE] = {
133 		.sub_stripes	= 1,
134 		.dev_stripes	= 1,
135 		.devs_max	= 1,
136 		.devs_min	= 1,
137 		.tolerated_failures = 0,
138 		.devs_increment	= 1,
139 		.ncopies	= 1,
140 		.nparity        = 0,
141 		.raid_name	= "single",
142 		.bg_flag	= 0,
143 		.mindev_error	= 0,
144 	},
145 	[BTRFS_RAID_RAID5] = {
146 		.sub_stripes	= 1,
147 		.dev_stripes	= 1,
148 		.devs_max	= 0,
149 		.devs_min	= 2,
150 		.tolerated_failures = 1,
151 		.devs_increment	= 1,
152 		.ncopies	= 1,
153 		.nparity        = 1,
154 		.raid_name	= "raid5",
155 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 	},
158 	[BTRFS_RAID_RAID6] = {
159 		.sub_stripes	= 1,
160 		.dev_stripes	= 1,
161 		.devs_max	= 0,
162 		.devs_min	= 3,
163 		.tolerated_failures = 2,
164 		.devs_increment	= 1,
165 		.ncopies	= 1,
166 		.nparity        = 2,
167 		.raid_name	= "raid6",
168 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 	},
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181 	if (!profile)
182 		return BTRFS_RAID_SINGLE;
183 
184 	return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201 	return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 	int i;
211 	int ret;
212 	char *bp = buf;
213 	u64 flags = bg_flags;
214 	u32 size_bp = size_buf;
215 
216 	if (!flags) {
217 		strcpy(bp, "NONE");
218 		return;
219 	}
220 
221 #define DESCRIBE_FLAG(flag, desc)						\
222 	do {								\
223 		if (flags & (flag)) {					\
224 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225 			if (ret < 0 || ret >= size_bp)			\
226 				goto out_overflow;			\
227 			size_bp -= ret;					\
228 			bp += ret;					\
229 			flags &= ~(flag);				\
230 		}							\
231 	} while (0)
232 
233 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 			      btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243 	if (flags) {
244 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 		size_bp -= ret;
246 	}
247 
248 	if (size_bp < size_buf)
249 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251 	/*
252 	 * The text is trimmed, it's up to the caller to provide sufficiently
253 	 * large buffer
254 	 */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 	return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 	struct btrfs_fs_devices *fs_devs;
382 
383 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 	if (!fs_devs)
385 		return ERR_PTR(-ENOMEM);
386 
387 	mutex_init(&fs_devs->device_list_mutex);
388 
389 	INIT_LIST_HEAD(&fs_devs->devices);
390 	INIT_LIST_HEAD(&fs_devs->alloc_list);
391 	INIT_LIST_HEAD(&fs_devs->fs_list);
392 	INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394 	if (fsid) {
395 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 	}
398 
399 	return fs_devs;
400 }
401 
402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 	WARN_ON(!list_empty(&device->post_commit_list));
405 	rcu_string_free(device->name);
406 	extent_io_tree_release(&device->alloc_state);
407 	btrfs_destroy_dev_zone_info(device);
408 	kfree(device);
409 }
410 
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 	struct btrfs_device *device;
414 
415 	WARN_ON(fs_devices->opened);
416 	while (!list_empty(&fs_devices->devices)) {
417 		device = list_entry(fs_devices->devices.next,
418 				    struct btrfs_device, dev_list);
419 		list_del(&device->dev_list);
420 		btrfs_free_device(device);
421 	}
422 	kfree(fs_devices);
423 }
424 
425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 	struct btrfs_fs_devices *fs_devices;
428 
429 	while (!list_empty(&fs_uuids)) {
430 		fs_devices = list_entry(fs_uuids.next,
431 					struct btrfs_fs_devices, fs_list);
432 		list_del(&fs_devices->fs_list);
433 		free_fs_devices(fs_devices);
434 	}
435 }
436 
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 				  const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 		return false;
442 
443 	if (!metadata_fsid)
444 		return true;
445 
446 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 		return false;
448 
449 	return true;
450 }
451 
452 static noinline struct btrfs_fs_devices *find_fsid(
453 		const u8 *fsid, const u8 *metadata_fsid)
454 {
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	ASSERT(fsid);
458 
459 	/* Handle non-split brain cases */
460 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 			return fs_devices;
463 	}
464 	return NULL;
465 }
466 
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 		      int flush, struct file **bdev_file,
470 		      struct btrfs_super_block **disk_super)
471 {
472 	struct block_device *bdev;
473 	int ret;
474 
475 	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477 	if (IS_ERR(*bdev_file)) {
478 		ret = PTR_ERR(*bdev_file);
479 		btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 			  device_path, flags, ret);
481 		goto error;
482 	}
483 	bdev = file_bdev(*bdev_file);
484 
485 	if (flush)
486 		sync_blockdev(bdev);
487 	if (holder) {
488 		ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 		if (ret) {
490 			fput(*bdev_file);
491 			goto error;
492 		}
493 	}
494 	invalidate_bdev(bdev);
495 	*disk_super = btrfs_read_dev_super(bdev);
496 	if (IS_ERR(*disk_super)) {
497 		ret = PTR_ERR(*disk_super);
498 		fput(*bdev_file);
499 		goto error;
500 	}
501 
502 	return 0;
503 
504 error:
505 	*disk_super = NULL;
506 	*bdev_file = NULL;
507 	return ret;
508 }
509 
510 /*
511  *  Search and remove all stale devices (which are not mounted).  When both
512  *  inputs are NULL, it will search and release all stale devices.
513  *
514  *  @devt:         Optional. When provided will it release all unmounted devices
515  *                 matching this devt only.
516  *  @skip_device:  Optional. Will skip this device when searching for the stale
517  *                 devices.
518  *
519  *  Return:	0 for success or if @devt is 0.
520  *		-EBUSY if @devt is a mounted device.
521  *		-ENOENT if @devt does not match any device in the list.
522  */
523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524 {
525 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 	struct btrfs_device *device, *tmp_device;
527 	int ret;
528 	bool freed = false;
529 
530 	lockdep_assert_held(&uuid_mutex);
531 
532 	/* Return good status if there is no instance of devt. */
533 	ret = 0;
534 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535 
536 		mutex_lock(&fs_devices->device_list_mutex);
537 		list_for_each_entry_safe(device, tmp_device,
538 					 &fs_devices->devices, dev_list) {
539 			if (skip_device && skip_device == device)
540 				continue;
541 			if (devt && devt != device->devt)
542 				continue;
543 			if (fs_devices->opened) {
544 				if (devt)
545 					ret = -EBUSY;
546 				break;
547 			}
548 
549 			/* delete the stale device */
550 			fs_devices->num_devices--;
551 			list_del(&device->dev_list);
552 			btrfs_free_device(device);
553 
554 			freed = true;
555 		}
556 		mutex_unlock(&fs_devices->device_list_mutex);
557 
558 		if (fs_devices->num_devices == 0) {
559 			btrfs_sysfs_remove_fsid(fs_devices);
560 			list_del(&fs_devices->fs_list);
561 			free_fs_devices(fs_devices);
562 		}
563 	}
564 
565 	/* If there is at least one freed device return 0. */
566 	if (freed)
567 		return 0;
568 
569 	return ret;
570 }
571 
572 static struct btrfs_fs_devices *find_fsid_by_device(
573 					struct btrfs_super_block *disk_super,
574 					dev_t devt, bool *same_fsid_diff_dev)
575 {
576 	struct btrfs_fs_devices *fsid_fs_devices;
577 	struct btrfs_fs_devices *devt_fs_devices;
578 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 	bool found_by_devt = false;
581 
582 	/* Find the fs_device by the usual method, if found use it. */
583 	fsid_fs_devices = find_fsid(disk_super->fsid,
584 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585 
586 	/* The temp_fsid feature is supported only with single device filesystem. */
587 	if (btrfs_super_num_devices(disk_super) != 1)
588 		return fsid_fs_devices;
589 
590 	/*
591 	 * A seed device is an integral component of the sprout device, which
592 	 * functions as a multi-device filesystem. So, temp-fsid feature is
593 	 * not supported.
594 	 */
595 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 		return fsid_fs_devices;
597 
598 	/* Try to find a fs_devices by matching devt. */
599 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 		struct btrfs_device *device;
601 
602 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 			if (device->devt == devt) {
604 				found_by_devt = true;
605 				break;
606 			}
607 		}
608 		if (found_by_devt)
609 			break;
610 	}
611 
612 	if (found_by_devt) {
613 		/* Existing device. */
614 		if (fsid_fs_devices == NULL) {
615 			if (devt_fs_devices->opened == 0) {
616 				/* Stale device. */
617 				return NULL;
618 			} else {
619 				/* temp_fsid is mounting a subvol. */
620 				return devt_fs_devices;
621 			}
622 		} else {
623 			/* Regular or temp_fsid device mounting a subvol. */
624 			return devt_fs_devices;
625 		}
626 	} else {
627 		/* New device. */
628 		if (fsid_fs_devices == NULL) {
629 			return NULL;
630 		} else {
631 			/* sb::fsid is already used create a new temp_fsid. */
632 			*same_fsid_diff_dev = true;
633 			return NULL;
634 		}
635 	}
636 
637 	/* Not reached. */
638 }
639 
640 /*
641  * This is only used on mount, and we are protected from competing things
642  * messing with our fs_devices by the uuid_mutex, thus we do not need the
643  * fs_devices->device_list_mutex here.
644  */
645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 			struct btrfs_device *device, blk_mode_t flags,
647 			void *holder)
648 {
649 	struct file *bdev_file;
650 	struct btrfs_super_block *disk_super;
651 	u64 devid;
652 	int ret;
653 
654 	if (device->bdev)
655 		return -EINVAL;
656 	if (!device->name)
657 		return -EINVAL;
658 
659 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 				    &bdev_file, &disk_super);
661 	if (ret)
662 		return ret;
663 
664 	devid = btrfs_stack_device_id(&disk_super->dev_item);
665 	if (devid != device->devid)
666 		goto error_free_page;
667 
668 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 		goto error_free_page;
670 
671 	device->generation = btrfs_super_generation(disk_super);
672 
673 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 		if (btrfs_super_incompat_flags(disk_super) &
675 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 			pr_err(
677 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
678 			goto error_free_page;
679 		}
680 
681 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 		fs_devices->seeding = true;
683 	} else {
684 		if (bdev_read_only(file_bdev(bdev_file)))
685 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 		else
687 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 	}
689 
690 	if (!bdev_nonrot(file_bdev(bdev_file)))
691 		fs_devices->rotating = true;
692 
693 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 		fs_devices->discardable = true;
695 
696 	device->bdev_file = bdev_file;
697 	device->bdev = file_bdev(bdev_file);
698 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699 
700 	if (device->devt != device->bdev->bd_dev) {
701 		btrfs_warn(NULL,
702 			   "device %s maj:min changed from %d:%d to %d:%d",
703 			   device->name->str, MAJOR(device->devt),
704 			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 			   MINOR(device->bdev->bd_dev));
706 
707 		device->devt = device->bdev->bd_dev;
708 	}
709 
710 	fs_devices->open_devices++;
711 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 		fs_devices->rw_devices++;
714 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 	}
716 	btrfs_release_disk_super(disk_super);
717 
718 	return 0;
719 
720 error_free_page:
721 	btrfs_release_disk_super(disk_super);
722 	fput(bdev_file);
723 
724 	return -EINVAL;
725 }
726 
727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728 {
729 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731 
732 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733 }
734 
735 /*
736  * We can have very weird soft links passed in.
737  * One example is "/proc/self/fd/<fd>", which can be a soft link to
738  * a block device.
739  *
740  * But it's never a good idea to use those weird names.
741  * Here we check if the path (not following symlinks) is a good one inside
742  * "/dev/".
743  */
744 static bool is_good_dev_path(const char *dev_path)
745 {
746 	struct path path = { .mnt = NULL, .dentry = NULL };
747 	char *path_buf = NULL;
748 	char *resolved_path;
749 	bool is_good = false;
750 	int ret;
751 
752 	if (!dev_path)
753 		goto out;
754 
755 	path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
756 	if (!path_buf)
757 		goto out;
758 
759 	/*
760 	 * Do not follow soft link, just check if the original path is inside
761 	 * "/dev/".
762 	 */
763 	ret = kern_path(dev_path, 0, &path);
764 	if (ret)
765 		goto out;
766 	resolved_path = d_path(&path, path_buf, PATH_MAX);
767 	if (IS_ERR(resolved_path))
768 		goto out;
769 	if (strncmp(resolved_path, "/dev/", strlen("/dev/")))
770 		goto out;
771 	is_good = true;
772 out:
773 	kfree(path_buf);
774 	path_put(&path);
775 	return is_good;
776 }
777 
778 static int get_canonical_dev_path(const char *dev_path, char *canonical)
779 {
780 	struct path path = { .mnt = NULL, .dentry = NULL };
781 	char *path_buf = NULL;
782 	char *resolved_path;
783 	int ret;
784 
785 	if (!dev_path) {
786 		ret = -EINVAL;
787 		goto out;
788 	}
789 
790 	path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
791 	if (!path_buf) {
792 		ret = -ENOMEM;
793 		goto out;
794 	}
795 
796 	ret = kern_path(dev_path, LOOKUP_FOLLOW, &path);
797 	if (ret)
798 		goto out;
799 	resolved_path = d_path(&path, path_buf, PATH_MAX);
800 	ret = strscpy(canonical, resolved_path, PATH_MAX);
801 out:
802 	kfree(path_buf);
803 	path_put(&path);
804 	return ret;
805 }
806 
807 static bool is_same_device(struct btrfs_device *device, const char *new_path)
808 {
809 	struct path old = { .mnt = NULL, .dentry = NULL };
810 	struct path new = { .mnt = NULL, .dentry = NULL };
811 	char *old_path = NULL;
812 	bool is_same = false;
813 	int ret;
814 
815 	if (!device->name)
816 		goto out;
817 
818 	old_path = kzalloc(PATH_MAX, GFP_NOFS);
819 	if (!old_path)
820 		goto out;
821 
822 	rcu_read_lock();
823 	ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
824 	rcu_read_unlock();
825 	if (ret < 0)
826 		goto out;
827 
828 	ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
829 	if (ret)
830 		goto out;
831 	ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
832 	if (ret)
833 		goto out;
834 	if (path_equal(&old, &new))
835 		is_same = true;
836 out:
837 	kfree(old_path);
838 	path_put(&old);
839 	path_put(&new);
840 	return is_same;
841 }
842 
843 /*
844  * Add new device to list of registered devices
845  *
846  * Returns:
847  * device pointer which was just added or updated when successful
848  * error pointer when failed
849  */
850 static noinline struct btrfs_device *device_list_add(const char *path,
851 			   struct btrfs_super_block *disk_super,
852 			   bool *new_device_added)
853 {
854 	struct btrfs_device *device;
855 	struct btrfs_fs_devices *fs_devices = NULL;
856 	struct rcu_string *name;
857 	u64 found_transid = btrfs_super_generation(disk_super);
858 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
859 	dev_t path_devt;
860 	int error;
861 	bool same_fsid_diff_dev = false;
862 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
863 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
864 
865 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
866 		btrfs_err(NULL,
867 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
868 			  path);
869 		return ERR_PTR(-EAGAIN);
870 	}
871 
872 	error = lookup_bdev(path, &path_devt);
873 	if (error) {
874 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
875 			  path, error);
876 		return ERR_PTR(error);
877 	}
878 
879 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
880 
881 	if (!fs_devices) {
882 		fs_devices = alloc_fs_devices(disk_super->fsid);
883 		if (IS_ERR(fs_devices))
884 			return ERR_CAST(fs_devices);
885 
886 		if (has_metadata_uuid)
887 			memcpy(fs_devices->metadata_uuid,
888 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
889 
890 		if (same_fsid_diff_dev) {
891 			generate_random_uuid(fs_devices->fsid);
892 			fs_devices->temp_fsid = true;
893 		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
894 				path, MAJOR(path_devt), MINOR(path_devt),
895 				fs_devices->fsid);
896 		}
897 
898 		mutex_lock(&fs_devices->device_list_mutex);
899 		list_add(&fs_devices->fs_list, &fs_uuids);
900 
901 		device = NULL;
902 	} else {
903 		struct btrfs_dev_lookup_args args = {
904 			.devid = devid,
905 			.uuid = disk_super->dev_item.uuid,
906 		};
907 
908 		mutex_lock(&fs_devices->device_list_mutex);
909 		device = btrfs_find_device(fs_devices, &args);
910 
911 		if (found_transid > fs_devices->latest_generation) {
912 			memcpy(fs_devices->fsid, disk_super->fsid,
913 					BTRFS_FSID_SIZE);
914 			memcpy(fs_devices->metadata_uuid,
915 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
916 		}
917 	}
918 
919 	if (!device) {
920 		unsigned int nofs_flag;
921 
922 		if (fs_devices->opened) {
923 			btrfs_err(NULL,
924 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
925 				  path, MAJOR(path_devt), MINOR(path_devt),
926 				  fs_devices->fsid, current->comm,
927 				  task_pid_nr(current));
928 			mutex_unlock(&fs_devices->device_list_mutex);
929 			return ERR_PTR(-EBUSY);
930 		}
931 
932 		nofs_flag = memalloc_nofs_save();
933 		device = btrfs_alloc_device(NULL, &devid,
934 					    disk_super->dev_item.uuid, path);
935 		memalloc_nofs_restore(nofs_flag);
936 		if (IS_ERR(device)) {
937 			mutex_unlock(&fs_devices->device_list_mutex);
938 			/* we can safely leave the fs_devices entry around */
939 			return device;
940 		}
941 
942 		device->devt = path_devt;
943 
944 		list_add_rcu(&device->dev_list, &fs_devices->devices);
945 		fs_devices->num_devices++;
946 
947 		device->fs_devices = fs_devices;
948 		*new_device_added = true;
949 
950 		if (disk_super->label[0])
951 			pr_info(
952 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
953 				disk_super->label, devid, found_transid, path,
954 				MAJOR(path_devt), MINOR(path_devt),
955 				current->comm, task_pid_nr(current));
956 		else
957 			pr_info(
958 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
959 				disk_super->fsid, devid, found_transid, path,
960 				MAJOR(path_devt), MINOR(path_devt),
961 				current->comm, task_pid_nr(current));
962 
963 	} else if (!device->name || !is_same_device(device, path)) {
964 		/*
965 		 * When FS is already mounted.
966 		 * 1. If you are here and if the device->name is NULL that
967 		 *    means this device was missing at time of FS mount.
968 		 * 2. If you are here and if the device->name is different
969 		 *    from 'path' that means either
970 		 *      a. The same device disappeared and reappeared with
971 		 *         different name. or
972 		 *      b. The missing-disk-which-was-replaced, has
973 		 *         reappeared now.
974 		 *
975 		 * We must allow 1 and 2a above. But 2b would be a spurious
976 		 * and unintentional.
977 		 *
978 		 * Further in case of 1 and 2a above, the disk at 'path'
979 		 * would have missed some transaction when it was away and
980 		 * in case of 2a the stale bdev has to be updated as well.
981 		 * 2b must not be allowed at all time.
982 		 */
983 
984 		/*
985 		 * For now, we do allow update to btrfs_fs_device through the
986 		 * btrfs dev scan cli after FS has been mounted.  We're still
987 		 * tracking a problem where systems fail mount by subvolume id
988 		 * when we reject replacement on a mounted FS.
989 		 */
990 		if (!fs_devices->opened && found_transid < device->generation) {
991 			/*
992 			 * That is if the FS is _not_ mounted and if you
993 			 * are here, that means there is more than one
994 			 * disk with same uuid and devid.We keep the one
995 			 * with larger generation number or the last-in if
996 			 * generation are equal.
997 			 */
998 			mutex_unlock(&fs_devices->device_list_mutex);
999 			btrfs_err(NULL,
1000 "device %s already registered with a higher generation, found %llu expect %llu",
1001 				  path, found_transid, device->generation);
1002 			return ERR_PTR(-EEXIST);
1003 		}
1004 
1005 		/*
1006 		 * We are going to replace the device path for a given devid,
1007 		 * make sure it's the same device if the device is mounted
1008 		 *
1009 		 * NOTE: the device->fs_info may not be reliable here so pass
1010 		 * in a NULL to message helpers instead. This avoids a possible
1011 		 * use-after-free when the fs_info and fs_info->sb are already
1012 		 * torn down.
1013 		 */
1014 		if (device->bdev) {
1015 			if (device->devt != path_devt) {
1016 				mutex_unlock(&fs_devices->device_list_mutex);
1017 				btrfs_warn_in_rcu(NULL,
1018 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
1019 						  path, devid, found_transid,
1020 						  current->comm,
1021 						  task_pid_nr(current));
1022 				return ERR_PTR(-EEXIST);
1023 			}
1024 			btrfs_info_in_rcu(NULL,
1025 	"devid %llu device path %s changed to %s scanned by %s (%d)",
1026 					  devid, btrfs_dev_name(device),
1027 					  path, current->comm,
1028 					  task_pid_nr(current));
1029 		}
1030 
1031 		name = rcu_string_strdup(path, GFP_NOFS);
1032 		if (!name) {
1033 			mutex_unlock(&fs_devices->device_list_mutex);
1034 			return ERR_PTR(-ENOMEM);
1035 		}
1036 		rcu_string_free(device->name);
1037 		rcu_assign_pointer(device->name, name);
1038 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1039 			fs_devices->missing_devices--;
1040 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1041 		}
1042 		device->devt = path_devt;
1043 	}
1044 
1045 	/*
1046 	 * Unmount does not free the btrfs_device struct but would zero
1047 	 * generation along with most of the other members. So just update
1048 	 * it back. We need it to pick the disk with largest generation
1049 	 * (as above).
1050 	 */
1051 	if (!fs_devices->opened) {
1052 		device->generation = found_transid;
1053 		fs_devices->latest_generation = max_t(u64, found_transid,
1054 						fs_devices->latest_generation);
1055 	}
1056 
1057 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1058 
1059 	mutex_unlock(&fs_devices->device_list_mutex);
1060 	return device;
1061 }
1062 
1063 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1064 {
1065 	struct btrfs_fs_devices *fs_devices;
1066 	struct btrfs_device *device;
1067 	struct btrfs_device *orig_dev;
1068 	int ret = 0;
1069 
1070 	lockdep_assert_held(&uuid_mutex);
1071 
1072 	fs_devices = alloc_fs_devices(orig->fsid);
1073 	if (IS_ERR(fs_devices))
1074 		return fs_devices;
1075 
1076 	fs_devices->total_devices = orig->total_devices;
1077 
1078 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1079 		const char *dev_path = NULL;
1080 
1081 		/*
1082 		 * This is ok to do without RCU read locked because we hold the
1083 		 * uuid mutex so nothing we touch in here is going to disappear.
1084 		 */
1085 		if (orig_dev->name)
1086 			dev_path = orig_dev->name->str;
1087 
1088 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1089 					    orig_dev->uuid, dev_path);
1090 		if (IS_ERR(device)) {
1091 			ret = PTR_ERR(device);
1092 			goto error;
1093 		}
1094 
1095 		if (orig_dev->zone_info) {
1096 			struct btrfs_zoned_device_info *zone_info;
1097 
1098 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1099 			if (!zone_info) {
1100 				btrfs_free_device(device);
1101 				ret = -ENOMEM;
1102 				goto error;
1103 			}
1104 			device->zone_info = zone_info;
1105 		}
1106 
1107 		list_add(&device->dev_list, &fs_devices->devices);
1108 		device->fs_devices = fs_devices;
1109 		fs_devices->num_devices++;
1110 	}
1111 	return fs_devices;
1112 error:
1113 	free_fs_devices(fs_devices);
1114 	return ERR_PTR(ret);
1115 }
1116 
1117 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1118 				      struct btrfs_device **latest_dev)
1119 {
1120 	struct btrfs_device *device, *next;
1121 
1122 	/* This is the initialized path, it is safe to release the devices. */
1123 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1124 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1125 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1126 				      &device->dev_state) &&
1127 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1128 				      &device->dev_state) &&
1129 			    (!*latest_dev ||
1130 			     device->generation > (*latest_dev)->generation)) {
1131 				*latest_dev = device;
1132 			}
1133 			continue;
1134 		}
1135 
1136 		/*
1137 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1138 		 * in btrfs_init_dev_replace() so just continue.
1139 		 */
1140 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1141 			continue;
1142 
1143 		if (device->bdev_file) {
1144 			fput(device->bdev_file);
1145 			device->bdev = NULL;
1146 			device->bdev_file = NULL;
1147 			fs_devices->open_devices--;
1148 		}
1149 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1150 			list_del_init(&device->dev_alloc_list);
1151 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1152 			fs_devices->rw_devices--;
1153 		}
1154 		list_del_init(&device->dev_list);
1155 		fs_devices->num_devices--;
1156 		btrfs_free_device(device);
1157 	}
1158 
1159 }
1160 
1161 /*
1162  * After we have read the system tree and know devids belonging to this
1163  * filesystem, remove the device which does not belong there.
1164  */
1165 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1166 {
1167 	struct btrfs_device *latest_dev = NULL;
1168 	struct btrfs_fs_devices *seed_dev;
1169 
1170 	mutex_lock(&uuid_mutex);
1171 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1172 
1173 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1174 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1175 
1176 	fs_devices->latest_dev = latest_dev;
1177 
1178 	mutex_unlock(&uuid_mutex);
1179 }
1180 
1181 static void btrfs_close_bdev(struct btrfs_device *device)
1182 {
1183 	if (!device->bdev)
1184 		return;
1185 
1186 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1187 		sync_blockdev(device->bdev);
1188 		invalidate_bdev(device->bdev);
1189 	}
1190 
1191 	fput(device->bdev_file);
1192 }
1193 
1194 static void btrfs_close_one_device(struct btrfs_device *device)
1195 {
1196 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1197 
1198 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1199 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1200 		list_del_init(&device->dev_alloc_list);
1201 		fs_devices->rw_devices--;
1202 	}
1203 
1204 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1205 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1206 
1207 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1208 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1209 		fs_devices->missing_devices--;
1210 	}
1211 
1212 	btrfs_close_bdev(device);
1213 	if (device->bdev) {
1214 		fs_devices->open_devices--;
1215 		device->bdev = NULL;
1216 		device->bdev_file = NULL;
1217 	}
1218 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1219 	btrfs_destroy_dev_zone_info(device);
1220 
1221 	device->fs_info = NULL;
1222 	atomic_set(&device->dev_stats_ccnt, 0);
1223 	extent_io_tree_release(&device->alloc_state);
1224 
1225 	/*
1226 	 * Reset the flush error record. We might have a transient flush error
1227 	 * in this mount, and if so we aborted the current transaction and set
1228 	 * the fs to an error state, guaranteeing no super blocks can be further
1229 	 * committed. However that error might be transient and if we unmount the
1230 	 * filesystem and mount it again, we should allow the mount to succeed
1231 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1232 	 * filesystem again we still get flush errors, then we will again abort
1233 	 * any transaction and set the error state, guaranteeing no commits of
1234 	 * unsafe super blocks.
1235 	 */
1236 	device->last_flush_error = 0;
1237 
1238 	/* Verify the device is back in a pristine state  */
1239 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1240 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1241 	WARN_ON(!list_empty(&device->dev_alloc_list));
1242 	WARN_ON(!list_empty(&device->post_commit_list));
1243 }
1244 
1245 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1246 {
1247 	struct btrfs_device *device, *tmp;
1248 
1249 	lockdep_assert_held(&uuid_mutex);
1250 
1251 	if (--fs_devices->opened > 0)
1252 		return;
1253 
1254 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1255 		btrfs_close_one_device(device);
1256 
1257 	WARN_ON(fs_devices->open_devices);
1258 	WARN_ON(fs_devices->rw_devices);
1259 	fs_devices->opened = 0;
1260 	fs_devices->seeding = false;
1261 	fs_devices->fs_info = NULL;
1262 }
1263 
1264 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1265 {
1266 	LIST_HEAD(list);
1267 	struct btrfs_fs_devices *tmp;
1268 
1269 	mutex_lock(&uuid_mutex);
1270 	close_fs_devices(fs_devices);
1271 	if (!fs_devices->opened) {
1272 		list_splice_init(&fs_devices->seed_list, &list);
1273 
1274 		/*
1275 		 * If the struct btrfs_fs_devices is not assembled with any
1276 		 * other device, it can be re-initialized during the next mount
1277 		 * without the needing device-scan step. Therefore, it can be
1278 		 * fully freed.
1279 		 */
1280 		if (fs_devices->num_devices == 1) {
1281 			list_del(&fs_devices->fs_list);
1282 			free_fs_devices(fs_devices);
1283 		}
1284 	}
1285 
1286 
1287 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1288 		close_fs_devices(fs_devices);
1289 		list_del(&fs_devices->seed_list);
1290 		free_fs_devices(fs_devices);
1291 	}
1292 	mutex_unlock(&uuid_mutex);
1293 }
1294 
1295 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1296 				blk_mode_t flags, void *holder)
1297 {
1298 	struct btrfs_device *device;
1299 	struct btrfs_device *latest_dev = NULL;
1300 	struct btrfs_device *tmp_device;
1301 	int ret = 0;
1302 
1303 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1304 				 dev_list) {
1305 		int ret2;
1306 
1307 		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1308 		if (ret2 == 0 &&
1309 		    (!latest_dev || device->generation > latest_dev->generation)) {
1310 			latest_dev = device;
1311 		} else if (ret2 == -ENODATA) {
1312 			fs_devices->num_devices--;
1313 			list_del(&device->dev_list);
1314 			btrfs_free_device(device);
1315 		}
1316 		if (ret == 0 && ret2 != 0)
1317 			ret = ret2;
1318 	}
1319 
1320 	if (fs_devices->open_devices == 0) {
1321 		if (ret)
1322 			return ret;
1323 		return -EINVAL;
1324 	}
1325 
1326 	fs_devices->opened = 1;
1327 	fs_devices->latest_dev = latest_dev;
1328 	fs_devices->total_rw_bytes = 0;
1329 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1330 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1331 
1332 	return 0;
1333 }
1334 
1335 static int devid_cmp(void *priv, const struct list_head *a,
1336 		     const struct list_head *b)
1337 {
1338 	const struct btrfs_device *dev1, *dev2;
1339 
1340 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1341 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1342 
1343 	if (dev1->devid < dev2->devid)
1344 		return -1;
1345 	else if (dev1->devid > dev2->devid)
1346 		return 1;
1347 	return 0;
1348 }
1349 
1350 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1351 		       blk_mode_t flags, void *holder)
1352 {
1353 	int ret;
1354 
1355 	lockdep_assert_held(&uuid_mutex);
1356 	/*
1357 	 * The device_list_mutex cannot be taken here in case opening the
1358 	 * underlying device takes further locks like open_mutex.
1359 	 *
1360 	 * We also don't need the lock here as this is called during mount and
1361 	 * exclusion is provided by uuid_mutex
1362 	 */
1363 
1364 	if (fs_devices->opened) {
1365 		fs_devices->opened++;
1366 		ret = 0;
1367 	} else {
1368 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1369 		ret = open_fs_devices(fs_devices, flags, holder);
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 void btrfs_release_disk_super(struct btrfs_super_block *super)
1376 {
1377 	struct page *page = virt_to_page(super);
1378 
1379 	put_page(page);
1380 }
1381 
1382 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1383 						       u64 bytenr, u64 bytenr_orig)
1384 {
1385 	struct btrfs_super_block *disk_super;
1386 	struct page *page;
1387 	void *p;
1388 	pgoff_t index;
1389 
1390 	/* make sure our super fits in the device */
1391 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1392 		return ERR_PTR(-EINVAL);
1393 
1394 	/* make sure our super fits in the page */
1395 	if (sizeof(*disk_super) > PAGE_SIZE)
1396 		return ERR_PTR(-EINVAL);
1397 
1398 	/* make sure our super doesn't straddle pages on disk */
1399 	index = bytenr >> PAGE_SHIFT;
1400 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1401 		return ERR_PTR(-EINVAL);
1402 
1403 	/* pull in the page with our super */
1404 	page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1405 
1406 	if (IS_ERR(page))
1407 		return ERR_CAST(page);
1408 
1409 	p = page_address(page);
1410 
1411 	/* align our pointer to the offset of the super block */
1412 	disk_super = p + offset_in_page(bytenr);
1413 
1414 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1415 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1416 		btrfs_release_disk_super(p);
1417 		return ERR_PTR(-EINVAL);
1418 	}
1419 
1420 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1421 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1422 
1423 	return disk_super;
1424 }
1425 
1426 int btrfs_forget_devices(dev_t devt)
1427 {
1428 	int ret;
1429 
1430 	mutex_lock(&uuid_mutex);
1431 	ret = btrfs_free_stale_devices(devt, NULL);
1432 	mutex_unlock(&uuid_mutex);
1433 
1434 	return ret;
1435 }
1436 
1437 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1438 				    const char *path, dev_t devt,
1439 				    bool mount_arg_dev)
1440 {
1441 	struct btrfs_fs_devices *fs_devices;
1442 
1443 	/*
1444 	 * Do not skip device registration for mounted devices with matching
1445 	 * maj:min but different paths. Booting without initrd relies on
1446 	 * /dev/root initially, later replaced with the actual root device.
1447 	 * A successful scan ensures grub2-probe selects the correct device.
1448 	 */
1449 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1450 		struct btrfs_device *device;
1451 
1452 		mutex_lock(&fs_devices->device_list_mutex);
1453 
1454 		if (!fs_devices->opened) {
1455 			mutex_unlock(&fs_devices->device_list_mutex);
1456 			continue;
1457 		}
1458 
1459 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1460 			if (device->bdev && (device->bdev->bd_dev == devt) &&
1461 			    strcmp(device->name->str, path) != 0) {
1462 				mutex_unlock(&fs_devices->device_list_mutex);
1463 
1464 				/* Do not skip registration. */
1465 				return false;
1466 			}
1467 		}
1468 		mutex_unlock(&fs_devices->device_list_mutex);
1469 	}
1470 
1471 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1472 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1473 		return true;
1474 
1475 	return false;
1476 }
1477 
1478 /*
1479  * Look for a btrfs signature on a device. This may be called out of the mount path
1480  * and we are not allowed to call set_blocksize during the scan. The superblock
1481  * is read via pagecache.
1482  *
1483  * With @mount_arg_dev it's a scan during mount time that will always register
1484  * the device or return an error. Multi-device and seeding devices are registered
1485  * in both cases.
1486  */
1487 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1488 					   bool mount_arg_dev)
1489 {
1490 	struct btrfs_super_block *disk_super;
1491 	bool new_device_added = false;
1492 	struct btrfs_device *device = NULL;
1493 	struct file *bdev_file;
1494 	char *canonical_path = NULL;
1495 	u64 bytenr;
1496 	dev_t devt;
1497 	int ret;
1498 
1499 	lockdep_assert_held(&uuid_mutex);
1500 
1501 	if (!is_good_dev_path(path)) {
1502 		canonical_path = kmalloc(PATH_MAX, GFP_KERNEL);
1503 		if (canonical_path) {
1504 			ret = get_canonical_dev_path(path, canonical_path);
1505 			if (ret < 0) {
1506 				kfree(canonical_path);
1507 				canonical_path = NULL;
1508 			}
1509 		}
1510 	}
1511 	/*
1512 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1513 	 * device scan which may race with the user's mount or mkfs command,
1514 	 * resulting in failure.
1515 	 * Since the device scan is solely for reading purposes, there is no
1516 	 * need for an exclusive open. Additionally, the devices are read again
1517 	 * during the mount process. It is ok to get some inconsistent
1518 	 * values temporarily, as the device paths of the fsid are the only
1519 	 * required information for assembling the volume.
1520 	 */
1521 	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1522 	if (IS_ERR(bdev_file))
1523 		return ERR_CAST(bdev_file);
1524 
1525 	/*
1526 	 * We would like to check all the super blocks, but doing so would
1527 	 * allow a mount to succeed after a mkfs from a different filesystem.
1528 	 * Currently, recovery from a bad primary btrfs superblock is done
1529 	 * using the userspace command 'btrfs check --super'.
1530 	 */
1531 	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1532 	if (ret) {
1533 		device = ERR_PTR(ret);
1534 		goto error_bdev_put;
1535 	}
1536 
1537 	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1538 					   btrfs_sb_offset(0));
1539 	if (IS_ERR(disk_super)) {
1540 		device = ERR_CAST(disk_super);
1541 		goto error_bdev_put;
1542 	}
1543 
1544 	devt = file_bdev(bdev_file)->bd_dev;
1545 	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1546 		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1547 			  path, MAJOR(devt), MINOR(devt));
1548 
1549 		btrfs_free_stale_devices(devt, NULL);
1550 
1551 		device = NULL;
1552 		goto free_disk_super;
1553 	}
1554 
1555 	device = device_list_add(canonical_path ? : path, disk_super,
1556 				 &new_device_added);
1557 	if (!IS_ERR(device) && new_device_added)
1558 		btrfs_free_stale_devices(device->devt, device);
1559 
1560 free_disk_super:
1561 	btrfs_release_disk_super(disk_super);
1562 
1563 error_bdev_put:
1564 	fput(bdev_file);
1565 	kfree(canonical_path);
1566 
1567 	return device;
1568 }
1569 
1570 /*
1571  * Try to find a chunk that intersects [start, start + len] range and when one
1572  * such is found, record the end of it in *start
1573  */
1574 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1575 				    u64 len)
1576 {
1577 	u64 physical_start, physical_end;
1578 
1579 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1580 
1581 	if (find_first_extent_bit(&device->alloc_state, *start,
1582 				  &physical_start, &physical_end,
1583 				  CHUNK_ALLOCATED, NULL)) {
1584 
1585 		if (in_range(physical_start, *start, len) ||
1586 		    in_range(*start, physical_start,
1587 			     physical_end + 1 - physical_start)) {
1588 			*start = physical_end + 1;
1589 			return true;
1590 		}
1591 	}
1592 	return false;
1593 }
1594 
1595 static u64 dev_extent_search_start(struct btrfs_device *device)
1596 {
1597 	switch (device->fs_devices->chunk_alloc_policy) {
1598 	case BTRFS_CHUNK_ALLOC_REGULAR:
1599 		return BTRFS_DEVICE_RANGE_RESERVED;
1600 	case BTRFS_CHUNK_ALLOC_ZONED:
1601 		/*
1602 		 * We don't care about the starting region like regular
1603 		 * allocator, because we anyway use/reserve the first two zones
1604 		 * for superblock logging.
1605 		 */
1606 		return 0;
1607 	default:
1608 		BUG();
1609 	}
1610 }
1611 
1612 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1613 					u64 *hole_start, u64 *hole_size,
1614 					u64 num_bytes)
1615 {
1616 	u64 zone_size = device->zone_info->zone_size;
1617 	u64 pos;
1618 	int ret;
1619 	bool changed = false;
1620 
1621 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1622 
1623 	while (*hole_size > 0) {
1624 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1625 						   *hole_start + *hole_size,
1626 						   num_bytes);
1627 		if (pos != *hole_start) {
1628 			*hole_size = *hole_start + *hole_size - pos;
1629 			*hole_start = pos;
1630 			changed = true;
1631 			if (*hole_size < num_bytes)
1632 				break;
1633 		}
1634 
1635 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1636 
1637 		/* Range is ensured to be empty */
1638 		if (!ret)
1639 			return changed;
1640 
1641 		/* Given hole range was invalid (outside of device) */
1642 		if (ret == -ERANGE) {
1643 			*hole_start += *hole_size;
1644 			*hole_size = 0;
1645 			return true;
1646 		}
1647 
1648 		*hole_start += zone_size;
1649 		*hole_size -= zone_size;
1650 		changed = true;
1651 	}
1652 
1653 	return changed;
1654 }
1655 
1656 /*
1657  * Check if specified hole is suitable for allocation.
1658  *
1659  * @device:	the device which we have the hole
1660  * @hole_start: starting position of the hole
1661  * @hole_size:	the size of the hole
1662  * @num_bytes:	the size of the free space that we need
1663  *
1664  * This function may modify @hole_start and @hole_size to reflect the suitable
1665  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1666  */
1667 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1668 				  u64 *hole_size, u64 num_bytes)
1669 {
1670 	bool changed = false;
1671 	u64 hole_end = *hole_start + *hole_size;
1672 
1673 	for (;;) {
1674 		/*
1675 		 * Check before we set max_hole_start, otherwise we could end up
1676 		 * sending back this offset anyway.
1677 		 */
1678 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1679 			if (hole_end >= *hole_start)
1680 				*hole_size = hole_end - *hole_start;
1681 			else
1682 				*hole_size = 0;
1683 			changed = true;
1684 		}
1685 
1686 		switch (device->fs_devices->chunk_alloc_policy) {
1687 		case BTRFS_CHUNK_ALLOC_REGULAR:
1688 			/* No extra check */
1689 			break;
1690 		case BTRFS_CHUNK_ALLOC_ZONED:
1691 			if (dev_extent_hole_check_zoned(device, hole_start,
1692 							hole_size, num_bytes)) {
1693 				changed = true;
1694 				/*
1695 				 * The changed hole can contain pending extent.
1696 				 * Loop again to check that.
1697 				 */
1698 				continue;
1699 			}
1700 			break;
1701 		default:
1702 			BUG();
1703 		}
1704 
1705 		break;
1706 	}
1707 
1708 	return changed;
1709 }
1710 
1711 /*
1712  * Find free space in the specified device.
1713  *
1714  * @device:	  the device which we search the free space in
1715  * @num_bytes:	  the size of the free space that we need
1716  * @search_start: the position from which to begin the search
1717  * @start:	  store the start of the free space.
1718  * @len:	  the size of the free space. that we find, or the size
1719  *		  of the max free space if we don't find suitable free space
1720  *
1721  * This does a pretty simple search, the expectation is that it is called very
1722  * infrequently and that a given device has a small number of extents.
1723  *
1724  * @start is used to store the start of the free space if we find. But if we
1725  * don't find suitable free space, it will be used to store the start position
1726  * of the max free space.
1727  *
1728  * @len is used to store the size of the free space that we find.
1729  * But if we don't find suitable free space, it is used to store the size of
1730  * the max free space.
1731  *
1732  * NOTE: This function will search *commit* root of device tree, and does extra
1733  * check to ensure dev extents are not double allocated.
1734  * This makes the function safe to allocate dev extents but may not report
1735  * correct usable device space, as device extent freed in current transaction
1736  * is not reported as available.
1737  */
1738 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1739 				u64 *start, u64 *len)
1740 {
1741 	struct btrfs_fs_info *fs_info = device->fs_info;
1742 	struct btrfs_root *root = fs_info->dev_root;
1743 	struct btrfs_key key;
1744 	struct btrfs_dev_extent *dev_extent;
1745 	struct btrfs_path *path;
1746 	u64 search_start;
1747 	u64 hole_size;
1748 	u64 max_hole_start;
1749 	u64 max_hole_size = 0;
1750 	u64 extent_end;
1751 	u64 search_end = device->total_bytes;
1752 	int ret;
1753 	int slot;
1754 	struct extent_buffer *l;
1755 
1756 	search_start = dev_extent_search_start(device);
1757 	max_hole_start = search_start;
1758 
1759 	WARN_ON(device->zone_info &&
1760 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1761 
1762 	path = btrfs_alloc_path();
1763 	if (!path) {
1764 		ret = -ENOMEM;
1765 		goto out;
1766 	}
1767 again:
1768 	if (search_start >= search_end ||
1769 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1770 		ret = -ENOSPC;
1771 		goto out;
1772 	}
1773 
1774 	path->reada = READA_FORWARD;
1775 	path->search_commit_root = 1;
1776 	path->skip_locking = 1;
1777 
1778 	key.objectid = device->devid;
1779 	key.offset = search_start;
1780 	key.type = BTRFS_DEV_EXTENT_KEY;
1781 
1782 	ret = btrfs_search_backwards(root, &key, path);
1783 	if (ret < 0)
1784 		goto out;
1785 
1786 	while (search_start < search_end) {
1787 		l = path->nodes[0];
1788 		slot = path->slots[0];
1789 		if (slot >= btrfs_header_nritems(l)) {
1790 			ret = btrfs_next_leaf(root, path);
1791 			if (ret == 0)
1792 				continue;
1793 			if (ret < 0)
1794 				goto out;
1795 
1796 			break;
1797 		}
1798 		btrfs_item_key_to_cpu(l, &key, slot);
1799 
1800 		if (key.objectid < device->devid)
1801 			goto next;
1802 
1803 		if (key.objectid > device->devid)
1804 			break;
1805 
1806 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1807 			goto next;
1808 
1809 		if (key.offset > search_end)
1810 			break;
1811 
1812 		if (key.offset > search_start) {
1813 			hole_size = key.offset - search_start;
1814 			dev_extent_hole_check(device, &search_start, &hole_size,
1815 					      num_bytes);
1816 
1817 			if (hole_size > max_hole_size) {
1818 				max_hole_start = search_start;
1819 				max_hole_size = hole_size;
1820 			}
1821 
1822 			/*
1823 			 * If this free space is greater than which we need,
1824 			 * it must be the max free space that we have found
1825 			 * until now, so max_hole_start must point to the start
1826 			 * of this free space and the length of this free space
1827 			 * is stored in max_hole_size. Thus, we return
1828 			 * max_hole_start and max_hole_size and go back to the
1829 			 * caller.
1830 			 */
1831 			if (hole_size >= num_bytes) {
1832 				ret = 0;
1833 				goto out;
1834 			}
1835 		}
1836 
1837 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1838 		extent_end = key.offset + btrfs_dev_extent_length(l,
1839 								  dev_extent);
1840 		if (extent_end > search_start)
1841 			search_start = extent_end;
1842 next:
1843 		path->slots[0]++;
1844 		cond_resched();
1845 	}
1846 
1847 	/*
1848 	 * At this point, search_start should be the end of
1849 	 * allocated dev extents, and when shrinking the device,
1850 	 * search_end may be smaller than search_start.
1851 	 */
1852 	if (search_end > search_start) {
1853 		hole_size = search_end - search_start;
1854 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1855 					  num_bytes)) {
1856 			btrfs_release_path(path);
1857 			goto again;
1858 		}
1859 
1860 		if (hole_size > max_hole_size) {
1861 			max_hole_start = search_start;
1862 			max_hole_size = hole_size;
1863 		}
1864 	}
1865 
1866 	/* See above. */
1867 	if (max_hole_size < num_bytes)
1868 		ret = -ENOSPC;
1869 	else
1870 		ret = 0;
1871 
1872 	ASSERT(max_hole_start + max_hole_size <= search_end);
1873 out:
1874 	btrfs_free_path(path);
1875 	*start = max_hole_start;
1876 	if (len)
1877 		*len = max_hole_size;
1878 	return ret;
1879 }
1880 
1881 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1882 			  struct btrfs_device *device,
1883 			  u64 start, u64 *dev_extent_len)
1884 {
1885 	struct btrfs_fs_info *fs_info = device->fs_info;
1886 	struct btrfs_root *root = fs_info->dev_root;
1887 	int ret;
1888 	struct btrfs_path *path;
1889 	struct btrfs_key key;
1890 	struct btrfs_key found_key;
1891 	struct extent_buffer *leaf = NULL;
1892 	struct btrfs_dev_extent *extent = NULL;
1893 
1894 	path = btrfs_alloc_path();
1895 	if (!path)
1896 		return -ENOMEM;
1897 
1898 	key.objectid = device->devid;
1899 	key.offset = start;
1900 	key.type = BTRFS_DEV_EXTENT_KEY;
1901 again:
1902 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1903 	if (ret > 0) {
1904 		ret = btrfs_previous_item(root, path, key.objectid,
1905 					  BTRFS_DEV_EXTENT_KEY);
1906 		if (ret)
1907 			goto out;
1908 		leaf = path->nodes[0];
1909 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1910 		extent = btrfs_item_ptr(leaf, path->slots[0],
1911 					struct btrfs_dev_extent);
1912 		BUG_ON(found_key.offset > start || found_key.offset +
1913 		       btrfs_dev_extent_length(leaf, extent) < start);
1914 		key = found_key;
1915 		btrfs_release_path(path);
1916 		goto again;
1917 	} else if (ret == 0) {
1918 		leaf = path->nodes[0];
1919 		extent = btrfs_item_ptr(leaf, path->slots[0],
1920 					struct btrfs_dev_extent);
1921 	} else {
1922 		goto out;
1923 	}
1924 
1925 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1926 
1927 	ret = btrfs_del_item(trans, root, path);
1928 	if (ret == 0)
1929 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1930 out:
1931 	btrfs_free_path(path);
1932 	return ret;
1933 }
1934 
1935 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1936 {
1937 	struct rb_node *n;
1938 	u64 ret = 0;
1939 
1940 	read_lock(&fs_info->mapping_tree_lock);
1941 	n = rb_last(&fs_info->mapping_tree.rb_root);
1942 	if (n) {
1943 		struct btrfs_chunk_map *map;
1944 
1945 		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1946 		ret = map->start + map->chunk_len;
1947 	}
1948 	read_unlock(&fs_info->mapping_tree_lock);
1949 
1950 	return ret;
1951 }
1952 
1953 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1954 				    u64 *devid_ret)
1955 {
1956 	int ret;
1957 	struct btrfs_key key;
1958 	struct btrfs_key found_key;
1959 	struct btrfs_path *path;
1960 
1961 	path = btrfs_alloc_path();
1962 	if (!path)
1963 		return -ENOMEM;
1964 
1965 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1966 	key.type = BTRFS_DEV_ITEM_KEY;
1967 	key.offset = (u64)-1;
1968 
1969 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1970 	if (ret < 0)
1971 		goto error;
1972 
1973 	if (ret == 0) {
1974 		/* Corruption */
1975 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1976 		ret = -EUCLEAN;
1977 		goto error;
1978 	}
1979 
1980 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1981 				  BTRFS_DEV_ITEMS_OBJECTID,
1982 				  BTRFS_DEV_ITEM_KEY);
1983 	if (ret) {
1984 		*devid_ret = 1;
1985 	} else {
1986 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1987 				      path->slots[0]);
1988 		*devid_ret = found_key.offset + 1;
1989 	}
1990 	ret = 0;
1991 error:
1992 	btrfs_free_path(path);
1993 	return ret;
1994 }
1995 
1996 /*
1997  * the device information is stored in the chunk root
1998  * the btrfs_device struct should be fully filled in
1999  */
2000 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
2001 			    struct btrfs_device *device)
2002 {
2003 	int ret;
2004 	struct btrfs_path *path;
2005 	struct btrfs_dev_item *dev_item;
2006 	struct extent_buffer *leaf;
2007 	struct btrfs_key key;
2008 	unsigned long ptr;
2009 
2010 	path = btrfs_alloc_path();
2011 	if (!path)
2012 		return -ENOMEM;
2013 
2014 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2015 	key.type = BTRFS_DEV_ITEM_KEY;
2016 	key.offset = device->devid;
2017 
2018 	btrfs_reserve_chunk_metadata(trans, true);
2019 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
2020 				      &key, sizeof(*dev_item));
2021 	btrfs_trans_release_chunk_metadata(trans);
2022 	if (ret)
2023 		goto out;
2024 
2025 	leaf = path->nodes[0];
2026 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2027 
2028 	btrfs_set_device_id(leaf, dev_item, device->devid);
2029 	btrfs_set_device_generation(leaf, dev_item, 0);
2030 	btrfs_set_device_type(leaf, dev_item, device->type);
2031 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2032 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2033 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2034 	btrfs_set_device_total_bytes(leaf, dev_item,
2035 				     btrfs_device_get_disk_total_bytes(device));
2036 	btrfs_set_device_bytes_used(leaf, dev_item,
2037 				    btrfs_device_get_bytes_used(device));
2038 	btrfs_set_device_group(leaf, dev_item, 0);
2039 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
2040 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
2041 	btrfs_set_device_start_offset(leaf, dev_item, 0);
2042 
2043 	ptr = btrfs_device_uuid(dev_item);
2044 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2045 	ptr = btrfs_device_fsid(dev_item);
2046 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
2047 			    ptr, BTRFS_FSID_SIZE);
2048 	btrfs_mark_buffer_dirty(trans, leaf);
2049 
2050 	ret = 0;
2051 out:
2052 	btrfs_free_path(path);
2053 	return ret;
2054 }
2055 
2056 /*
2057  * Function to update ctime/mtime for a given device path.
2058  * Mainly used for ctime/mtime based probe like libblkid.
2059  *
2060  * We don't care about errors here, this is just to be kind to userspace.
2061  */
2062 static void update_dev_time(const char *device_path)
2063 {
2064 	struct path path;
2065 	int ret;
2066 
2067 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2068 	if (ret)
2069 		return;
2070 
2071 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2072 	path_put(&path);
2073 }
2074 
2075 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2076 			     struct btrfs_device *device)
2077 {
2078 	struct btrfs_root *root = device->fs_info->chunk_root;
2079 	int ret;
2080 	struct btrfs_path *path;
2081 	struct btrfs_key key;
2082 
2083 	path = btrfs_alloc_path();
2084 	if (!path)
2085 		return -ENOMEM;
2086 
2087 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2088 	key.type = BTRFS_DEV_ITEM_KEY;
2089 	key.offset = device->devid;
2090 
2091 	btrfs_reserve_chunk_metadata(trans, false);
2092 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2093 	btrfs_trans_release_chunk_metadata(trans);
2094 	if (ret) {
2095 		if (ret > 0)
2096 			ret = -ENOENT;
2097 		goto out;
2098 	}
2099 
2100 	ret = btrfs_del_item(trans, root, path);
2101 out:
2102 	btrfs_free_path(path);
2103 	return ret;
2104 }
2105 
2106 /*
2107  * Verify that @num_devices satisfies the RAID profile constraints in the whole
2108  * filesystem. It's up to the caller to adjust that number regarding eg. device
2109  * replace.
2110  */
2111 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2112 		u64 num_devices)
2113 {
2114 	u64 all_avail;
2115 	unsigned seq;
2116 	int i;
2117 
2118 	do {
2119 		seq = read_seqbegin(&fs_info->profiles_lock);
2120 
2121 		all_avail = fs_info->avail_data_alloc_bits |
2122 			    fs_info->avail_system_alloc_bits |
2123 			    fs_info->avail_metadata_alloc_bits;
2124 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2125 
2126 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2127 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2128 			continue;
2129 
2130 		if (num_devices < btrfs_raid_array[i].devs_min)
2131 			return btrfs_raid_array[i].mindev_error;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static struct btrfs_device * btrfs_find_next_active_device(
2138 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2139 {
2140 	struct btrfs_device *next_device;
2141 
2142 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2143 		if (next_device != device &&
2144 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2145 		    && next_device->bdev)
2146 			return next_device;
2147 	}
2148 
2149 	return NULL;
2150 }
2151 
2152 /*
2153  * Helper function to check if the given device is part of s_bdev / latest_dev
2154  * and replace it with the provided or the next active device, in the context
2155  * where this function called, there should be always be another device (or
2156  * this_dev) which is active.
2157  */
2158 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2159 					    struct btrfs_device *next_device)
2160 {
2161 	struct btrfs_fs_info *fs_info = device->fs_info;
2162 
2163 	if (!next_device)
2164 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2165 							    device);
2166 	ASSERT(next_device);
2167 
2168 	if (fs_info->sb->s_bdev &&
2169 			(fs_info->sb->s_bdev == device->bdev))
2170 		fs_info->sb->s_bdev = next_device->bdev;
2171 
2172 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2173 		fs_info->fs_devices->latest_dev = next_device;
2174 }
2175 
2176 /*
2177  * Return btrfs_fs_devices::num_devices excluding the device that's being
2178  * currently replaced.
2179  */
2180 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2181 {
2182 	u64 num_devices = fs_info->fs_devices->num_devices;
2183 
2184 	down_read(&fs_info->dev_replace.rwsem);
2185 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2186 		ASSERT(num_devices > 1);
2187 		num_devices--;
2188 	}
2189 	up_read(&fs_info->dev_replace.rwsem);
2190 
2191 	return num_devices;
2192 }
2193 
2194 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2195 				     struct block_device *bdev, int copy_num)
2196 {
2197 	struct btrfs_super_block *disk_super;
2198 	const size_t len = sizeof(disk_super->magic);
2199 	const u64 bytenr = btrfs_sb_offset(copy_num);
2200 	int ret;
2201 
2202 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2203 	if (IS_ERR(disk_super))
2204 		return;
2205 
2206 	memset(&disk_super->magic, 0, len);
2207 	folio_mark_dirty(virt_to_folio(disk_super));
2208 	btrfs_release_disk_super(disk_super);
2209 
2210 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2211 	if (ret)
2212 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2213 			copy_num, ret);
2214 }
2215 
2216 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2217 {
2218 	int copy_num;
2219 	struct block_device *bdev = device->bdev;
2220 
2221 	if (!bdev)
2222 		return;
2223 
2224 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2225 		if (bdev_is_zoned(bdev))
2226 			btrfs_reset_sb_log_zones(bdev, copy_num);
2227 		else
2228 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2229 	}
2230 
2231 	/* Notify udev that device has changed */
2232 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2233 
2234 	/* Update ctime/mtime for device path for libblkid */
2235 	update_dev_time(device->name->str);
2236 }
2237 
2238 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2239 		    struct btrfs_dev_lookup_args *args,
2240 		    struct file **bdev_file)
2241 {
2242 	struct btrfs_trans_handle *trans;
2243 	struct btrfs_device *device;
2244 	struct btrfs_fs_devices *cur_devices;
2245 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2246 	u64 num_devices;
2247 	int ret = 0;
2248 
2249 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2250 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2251 		return -EINVAL;
2252 	}
2253 
2254 	/*
2255 	 * The device list in fs_devices is accessed without locks (neither
2256 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2257 	 * filesystem and another device rm cannot run.
2258 	 */
2259 	num_devices = btrfs_num_devices(fs_info);
2260 
2261 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2262 	if (ret)
2263 		return ret;
2264 
2265 	device = btrfs_find_device(fs_info->fs_devices, args);
2266 	if (!device) {
2267 		if (args->missing)
2268 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2269 		else
2270 			ret = -ENOENT;
2271 		return ret;
2272 	}
2273 
2274 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2275 		btrfs_warn_in_rcu(fs_info,
2276 		  "cannot remove device %s (devid %llu) due to active swapfile",
2277 				  btrfs_dev_name(device), device->devid);
2278 		return -ETXTBSY;
2279 	}
2280 
2281 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2282 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2283 
2284 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2285 	    fs_info->fs_devices->rw_devices == 1)
2286 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2287 
2288 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2289 		mutex_lock(&fs_info->chunk_mutex);
2290 		list_del_init(&device->dev_alloc_list);
2291 		device->fs_devices->rw_devices--;
2292 		mutex_unlock(&fs_info->chunk_mutex);
2293 	}
2294 
2295 	ret = btrfs_shrink_device(device, 0);
2296 	if (ret)
2297 		goto error_undo;
2298 
2299 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2300 	if (IS_ERR(trans)) {
2301 		ret = PTR_ERR(trans);
2302 		goto error_undo;
2303 	}
2304 
2305 	ret = btrfs_rm_dev_item(trans, device);
2306 	if (ret) {
2307 		/* Any error in dev item removal is critical */
2308 		btrfs_crit(fs_info,
2309 			   "failed to remove device item for devid %llu: %d",
2310 			   device->devid, ret);
2311 		btrfs_abort_transaction(trans, ret);
2312 		btrfs_end_transaction(trans);
2313 		return ret;
2314 	}
2315 
2316 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2317 	btrfs_scrub_cancel_dev(device);
2318 
2319 	/*
2320 	 * the device list mutex makes sure that we don't change
2321 	 * the device list while someone else is writing out all
2322 	 * the device supers. Whoever is writing all supers, should
2323 	 * lock the device list mutex before getting the number of
2324 	 * devices in the super block (super_copy). Conversely,
2325 	 * whoever updates the number of devices in the super block
2326 	 * (super_copy) should hold the device list mutex.
2327 	 */
2328 
2329 	/*
2330 	 * In normal cases the cur_devices == fs_devices. But in case
2331 	 * of deleting a seed device, the cur_devices should point to
2332 	 * its own fs_devices listed under the fs_devices->seed_list.
2333 	 */
2334 	cur_devices = device->fs_devices;
2335 	mutex_lock(&fs_devices->device_list_mutex);
2336 	list_del_rcu(&device->dev_list);
2337 
2338 	cur_devices->num_devices--;
2339 	cur_devices->total_devices--;
2340 	/* Update total_devices of the parent fs_devices if it's seed */
2341 	if (cur_devices != fs_devices)
2342 		fs_devices->total_devices--;
2343 
2344 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2345 		cur_devices->missing_devices--;
2346 
2347 	btrfs_assign_next_active_device(device, NULL);
2348 
2349 	if (device->bdev_file) {
2350 		cur_devices->open_devices--;
2351 		/* remove sysfs entry */
2352 		btrfs_sysfs_remove_device(device);
2353 	}
2354 
2355 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2356 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2357 	mutex_unlock(&fs_devices->device_list_mutex);
2358 
2359 	/*
2360 	 * At this point, the device is zero sized and detached from the
2361 	 * devices list.  All that's left is to zero out the old supers and
2362 	 * free the device.
2363 	 *
2364 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2365 	 * write lock, and fput() on the block device will pull in the
2366 	 * ->open_mutex on the block device and it's dependencies.  Instead
2367 	 *  just flush the device and let the caller do the final bdev_release.
2368 	 */
2369 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2370 		btrfs_scratch_superblocks(fs_info, device);
2371 		if (device->bdev) {
2372 			sync_blockdev(device->bdev);
2373 			invalidate_bdev(device->bdev);
2374 		}
2375 	}
2376 
2377 	*bdev_file = device->bdev_file;
2378 	synchronize_rcu();
2379 	btrfs_free_device(device);
2380 
2381 	/*
2382 	 * This can happen if cur_devices is the private seed devices list.  We
2383 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2384 	 * to be held, but in fact we don't need that for the private
2385 	 * seed_devices, we can simply decrement cur_devices->opened and then
2386 	 * remove it from our list and free the fs_devices.
2387 	 */
2388 	if (cur_devices->num_devices == 0) {
2389 		list_del_init(&cur_devices->seed_list);
2390 		ASSERT(cur_devices->opened == 1);
2391 		cur_devices->opened--;
2392 		free_fs_devices(cur_devices);
2393 	}
2394 
2395 	ret = btrfs_commit_transaction(trans);
2396 
2397 	return ret;
2398 
2399 error_undo:
2400 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2401 		mutex_lock(&fs_info->chunk_mutex);
2402 		list_add(&device->dev_alloc_list,
2403 			 &fs_devices->alloc_list);
2404 		device->fs_devices->rw_devices++;
2405 		mutex_unlock(&fs_info->chunk_mutex);
2406 	}
2407 	return ret;
2408 }
2409 
2410 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2411 {
2412 	struct btrfs_fs_devices *fs_devices;
2413 
2414 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2415 
2416 	/*
2417 	 * in case of fs with no seed, srcdev->fs_devices will point
2418 	 * to fs_devices of fs_info. However when the dev being replaced is
2419 	 * a seed dev it will point to the seed's local fs_devices. In short
2420 	 * srcdev will have its correct fs_devices in both the cases.
2421 	 */
2422 	fs_devices = srcdev->fs_devices;
2423 
2424 	list_del_rcu(&srcdev->dev_list);
2425 	list_del(&srcdev->dev_alloc_list);
2426 	fs_devices->num_devices--;
2427 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2428 		fs_devices->missing_devices--;
2429 
2430 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2431 		fs_devices->rw_devices--;
2432 
2433 	if (srcdev->bdev)
2434 		fs_devices->open_devices--;
2435 }
2436 
2437 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2438 {
2439 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2440 
2441 	mutex_lock(&uuid_mutex);
2442 
2443 	btrfs_close_bdev(srcdev);
2444 	synchronize_rcu();
2445 	btrfs_free_device(srcdev);
2446 
2447 	/* if this is no devs we rather delete the fs_devices */
2448 	if (!fs_devices->num_devices) {
2449 		/*
2450 		 * On a mounted FS, num_devices can't be zero unless it's a
2451 		 * seed. In case of a seed device being replaced, the replace
2452 		 * target added to the sprout FS, so there will be no more
2453 		 * device left under the seed FS.
2454 		 */
2455 		ASSERT(fs_devices->seeding);
2456 
2457 		list_del_init(&fs_devices->seed_list);
2458 		close_fs_devices(fs_devices);
2459 		free_fs_devices(fs_devices);
2460 	}
2461 	mutex_unlock(&uuid_mutex);
2462 }
2463 
2464 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2465 {
2466 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2467 
2468 	mutex_lock(&fs_devices->device_list_mutex);
2469 
2470 	btrfs_sysfs_remove_device(tgtdev);
2471 
2472 	if (tgtdev->bdev)
2473 		fs_devices->open_devices--;
2474 
2475 	fs_devices->num_devices--;
2476 
2477 	btrfs_assign_next_active_device(tgtdev, NULL);
2478 
2479 	list_del_rcu(&tgtdev->dev_list);
2480 
2481 	mutex_unlock(&fs_devices->device_list_mutex);
2482 
2483 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2484 
2485 	btrfs_close_bdev(tgtdev);
2486 	synchronize_rcu();
2487 	btrfs_free_device(tgtdev);
2488 }
2489 
2490 /*
2491  * Populate args from device at path.
2492  *
2493  * @fs_info:	the filesystem
2494  * @args:	the args to populate
2495  * @path:	the path to the device
2496  *
2497  * This will read the super block of the device at @path and populate @args with
2498  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2499  * lookup a device to operate on, but need to do it before we take any locks.
2500  * This properly handles the special case of "missing" that a user may pass in,
2501  * and does some basic sanity checks.  The caller must make sure that @path is
2502  * properly NUL terminated before calling in, and must call
2503  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2504  * uuid buffers.
2505  *
2506  * Return: 0 for success, -errno for failure
2507  */
2508 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2509 				 struct btrfs_dev_lookup_args *args,
2510 				 const char *path)
2511 {
2512 	struct btrfs_super_block *disk_super;
2513 	struct file *bdev_file;
2514 	int ret;
2515 
2516 	if (!path || !path[0])
2517 		return -EINVAL;
2518 	if (!strcmp(path, "missing")) {
2519 		args->missing = true;
2520 		return 0;
2521 	}
2522 
2523 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2524 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2525 	if (!args->uuid || !args->fsid) {
2526 		btrfs_put_dev_args_from_path(args);
2527 		return -ENOMEM;
2528 	}
2529 
2530 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2531 				    &bdev_file, &disk_super);
2532 	if (ret) {
2533 		btrfs_put_dev_args_from_path(args);
2534 		return ret;
2535 	}
2536 
2537 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2538 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2539 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2540 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2541 	else
2542 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2543 	btrfs_release_disk_super(disk_super);
2544 	fput(bdev_file);
2545 	return 0;
2546 }
2547 
2548 /*
2549  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2550  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2551  * that don't need to be freed.
2552  */
2553 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2554 {
2555 	kfree(args->uuid);
2556 	kfree(args->fsid);
2557 	args->uuid = NULL;
2558 	args->fsid = NULL;
2559 }
2560 
2561 struct btrfs_device *btrfs_find_device_by_devspec(
2562 		struct btrfs_fs_info *fs_info, u64 devid,
2563 		const char *device_path)
2564 {
2565 	BTRFS_DEV_LOOKUP_ARGS(args);
2566 	struct btrfs_device *device;
2567 	int ret;
2568 
2569 	if (devid) {
2570 		args.devid = devid;
2571 		device = btrfs_find_device(fs_info->fs_devices, &args);
2572 		if (!device)
2573 			return ERR_PTR(-ENOENT);
2574 		return device;
2575 	}
2576 
2577 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2578 	if (ret)
2579 		return ERR_PTR(ret);
2580 	device = btrfs_find_device(fs_info->fs_devices, &args);
2581 	btrfs_put_dev_args_from_path(&args);
2582 	if (!device)
2583 		return ERR_PTR(-ENOENT);
2584 	return device;
2585 }
2586 
2587 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2588 {
2589 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2590 	struct btrfs_fs_devices *old_devices;
2591 	struct btrfs_fs_devices *seed_devices;
2592 
2593 	lockdep_assert_held(&uuid_mutex);
2594 	if (!fs_devices->seeding)
2595 		return ERR_PTR(-EINVAL);
2596 
2597 	/*
2598 	 * Private copy of the seed devices, anchored at
2599 	 * fs_info->fs_devices->seed_list
2600 	 */
2601 	seed_devices = alloc_fs_devices(NULL);
2602 	if (IS_ERR(seed_devices))
2603 		return seed_devices;
2604 
2605 	/*
2606 	 * It's necessary to retain a copy of the original seed fs_devices in
2607 	 * fs_uuids so that filesystems which have been seeded can successfully
2608 	 * reference the seed device from open_seed_devices. This also supports
2609 	 * multiple fs seed.
2610 	 */
2611 	old_devices = clone_fs_devices(fs_devices);
2612 	if (IS_ERR(old_devices)) {
2613 		kfree(seed_devices);
2614 		return old_devices;
2615 	}
2616 
2617 	list_add(&old_devices->fs_list, &fs_uuids);
2618 
2619 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2620 	seed_devices->opened = 1;
2621 	INIT_LIST_HEAD(&seed_devices->devices);
2622 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2623 	mutex_init(&seed_devices->device_list_mutex);
2624 
2625 	return seed_devices;
2626 }
2627 
2628 /*
2629  * Splice seed devices into the sprout fs_devices.
2630  * Generate a new fsid for the sprouted read-write filesystem.
2631  */
2632 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2633 			       struct btrfs_fs_devices *seed_devices)
2634 {
2635 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2636 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2637 	struct btrfs_device *device;
2638 	u64 super_flags;
2639 
2640 	/*
2641 	 * We are updating the fsid, the thread leading to device_list_add()
2642 	 * could race, so uuid_mutex is needed.
2643 	 */
2644 	lockdep_assert_held(&uuid_mutex);
2645 
2646 	/*
2647 	 * The threads listed below may traverse dev_list but can do that without
2648 	 * device_list_mutex:
2649 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2650 	 * - Various dev_list readers - are using RCU.
2651 	 * - btrfs_ioctl_fitrim() - is using RCU.
2652 	 *
2653 	 * For-read threads as below are using device_list_mutex:
2654 	 * - Readonly scrub btrfs_scrub_dev()
2655 	 * - Readonly scrub btrfs_scrub_progress()
2656 	 * - btrfs_get_dev_stats()
2657 	 */
2658 	lockdep_assert_held(&fs_devices->device_list_mutex);
2659 
2660 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2661 			      synchronize_rcu);
2662 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2663 		device->fs_devices = seed_devices;
2664 
2665 	fs_devices->seeding = false;
2666 	fs_devices->num_devices = 0;
2667 	fs_devices->open_devices = 0;
2668 	fs_devices->missing_devices = 0;
2669 	fs_devices->rotating = false;
2670 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2671 
2672 	generate_random_uuid(fs_devices->fsid);
2673 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2674 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2675 
2676 	super_flags = btrfs_super_flags(disk_super) &
2677 		      ~BTRFS_SUPER_FLAG_SEEDING;
2678 	btrfs_set_super_flags(disk_super, super_flags);
2679 }
2680 
2681 /*
2682  * Store the expected generation for seed devices in device items.
2683  */
2684 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2685 {
2686 	BTRFS_DEV_LOOKUP_ARGS(args);
2687 	struct btrfs_fs_info *fs_info = trans->fs_info;
2688 	struct btrfs_root *root = fs_info->chunk_root;
2689 	struct btrfs_path *path;
2690 	struct extent_buffer *leaf;
2691 	struct btrfs_dev_item *dev_item;
2692 	struct btrfs_device *device;
2693 	struct btrfs_key key;
2694 	u8 fs_uuid[BTRFS_FSID_SIZE];
2695 	u8 dev_uuid[BTRFS_UUID_SIZE];
2696 	int ret;
2697 
2698 	path = btrfs_alloc_path();
2699 	if (!path)
2700 		return -ENOMEM;
2701 
2702 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2703 	key.offset = 0;
2704 	key.type = BTRFS_DEV_ITEM_KEY;
2705 
2706 	while (1) {
2707 		btrfs_reserve_chunk_metadata(trans, false);
2708 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2709 		btrfs_trans_release_chunk_metadata(trans);
2710 		if (ret < 0)
2711 			goto error;
2712 
2713 		leaf = path->nodes[0];
2714 next_slot:
2715 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2716 			ret = btrfs_next_leaf(root, path);
2717 			if (ret > 0)
2718 				break;
2719 			if (ret < 0)
2720 				goto error;
2721 			leaf = path->nodes[0];
2722 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2723 			btrfs_release_path(path);
2724 			continue;
2725 		}
2726 
2727 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2728 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2729 		    key.type != BTRFS_DEV_ITEM_KEY)
2730 			break;
2731 
2732 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2733 					  struct btrfs_dev_item);
2734 		args.devid = btrfs_device_id(leaf, dev_item);
2735 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2736 				   BTRFS_UUID_SIZE);
2737 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2738 				   BTRFS_FSID_SIZE);
2739 		args.uuid = dev_uuid;
2740 		args.fsid = fs_uuid;
2741 		device = btrfs_find_device(fs_info->fs_devices, &args);
2742 		BUG_ON(!device); /* Logic error */
2743 
2744 		if (device->fs_devices->seeding) {
2745 			btrfs_set_device_generation(leaf, dev_item,
2746 						    device->generation);
2747 			btrfs_mark_buffer_dirty(trans, leaf);
2748 		}
2749 
2750 		path->slots[0]++;
2751 		goto next_slot;
2752 	}
2753 	ret = 0;
2754 error:
2755 	btrfs_free_path(path);
2756 	return ret;
2757 }
2758 
2759 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2760 {
2761 	struct btrfs_root *root = fs_info->dev_root;
2762 	struct btrfs_trans_handle *trans;
2763 	struct btrfs_device *device;
2764 	struct file *bdev_file;
2765 	struct super_block *sb = fs_info->sb;
2766 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2767 	struct btrfs_fs_devices *seed_devices = NULL;
2768 	u64 orig_super_total_bytes;
2769 	u64 orig_super_num_devices;
2770 	int ret = 0;
2771 	bool seeding_dev = false;
2772 	bool locked = false;
2773 
2774 	if (sb_rdonly(sb) && !fs_devices->seeding)
2775 		return -EROFS;
2776 
2777 	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2778 					fs_info->bdev_holder, NULL);
2779 	if (IS_ERR(bdev_file))
2780 		return PTR_ERR(bdev_file);
2781 
2782 	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2783 		ret = -EINVAL;
2784 		goto error;
2785 	}
2786 
2787 	if (fs_devices->seeding) {
2788 		seeding_dev = true;
2789 		down_write(&sb->s_umount);
2790 		mutex_lock(&uuid_mutex);
2791 		locked = true;
2792 	}
2793 
2794 	sync_blockdev(file_bdev(bdev_file));
2795 
2796 	rcu_read_lock();
2797 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2798 		if (device->bdev == file_bdev(bdev_file)) {
2799 			ret = -EEXIST;
2800 			rcu_read_unlock();
2801 			goto error;
2802 		}
2803 	}
2804 	rcu_read_unlock();
2805 
2806 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2807 	if (IS_ERR(device)) {
2808 		/* we can safely leave the fs_devices entry around */
2809 		ret = PTR_ERR(device);
2810 		goto error;
2811 	}
2812 
2813 	device->fs_info = fs_info;
2814 	device->bdev_file = bdev_file;
2815 	device->bdev = file_bdev(bdev_file);
2816 	ret = lookup_bdev(device_path, &device->devt);
2817 	if (ret)
2818 		goto error_free_device;
2819 
2820 	ret = btrfs_get_dev_zone_info(device, false);
2821 	if (ret)
2822 		goto error_free_device;
2823 
2824 	trans = btrfs_start_transaction(root, 0);
2825 	if (IS_ERR(trans)) {
2826 		ret = PTR_ERR(trans);
2827 		goto error_free_zone;
2828 	}
2829 
2830 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2831 	device->generation = trans->transid;
2832 	device->io_width = fs_info->sectorsize;
2833 	device->io_align = fs_info->sectorsize;
2834 	device->sector_size = fs_info->sectorsize;
2835 	device->total_bytes =
2836 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2837 	device->disk_total_bytes = device->total_bytes;
2838 	device->commit_total_bytes = device->total_bytes;
2839 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2840 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2841 	device->dev_stats_valid = 1;
2842 	set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2843 
2844 	if (seeding_dev) {
2845 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2846 		seed_devices = btrfs_init_sprout(fs_info);
2847 		if (IS_ERR(seed_devices)) {
2848 			ret = PTR_ERR(seed_devices);
2849 			btrfs_abort_transaction(trans, ret);
2850 			goto error_trans;
2851 		}
2852 	}
2853 
2854 	mutex_lock(&fs_devices->device_list_mutex);
2855 	if (seeding_dev) {
2856 		btrfs_setup_sprout(fs_info, seed_devices);
2857 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2858 						device);
2859 	}
2860 
2861 	device->fs_devices = fs_devices;
2862 
2863 	mutex_lock(&fs_info->chunk_mutex);
2864 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2865 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2866 	fs_devices->num_devices++;
2867 	fs_devices->open_devices++;
2868 	fs_devices->rw_devices++;
2869 	fs_devices->total_devices++;
2870 	fs_devices->total_rw_bytes += device->total_bytes;
2871 
2872 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2873 
2874 	if (!bdev_nonrot(device->bdev))
2875 		fs_devices->rotating = true;
2876 
2877 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2878 	btrfs_set_super_total_bytes(fs_info->super_copy,
2879 		round_down(orig_super_total_bytes + device->total_bytes,
2880 			   fs_info->sectorsize));
2881 
2882 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2883 	btrfs_set_super_num_devices(fs_info->super_copy,
2884 				    orig_super_num_devices + 1);
2885 
2886 	/*
2887 	 * we've got more storage, clear any full flags on the space
2888 	 * infos
2889 	 */
2890 	btrfs_clear_space_info_full(fs_info);
2891 
2892 	mutex_unlock(&fs_info->chunk_mutex);
2893 
2894 	/* Add sysfs device entry */
2895 	btrfs_sysfs_add_device(device);
2896 
2897 	mutex_unlock(&fs_devices->device_list_mutex);
2898 
2899 	if (seeding_dev) {
2900 		mutex_lock(&fs_info->chunk_mutex);
2901 		ret = init_first_rw_device(trans);
2902 		mutex_unlock(&fs_info->chunk_mutex);
2903 		if (ret) {
2904 			btrfs_abort_transaction(trans, ret);
2905 			goto error_sysfs;
2906 		}
2907 	}
2908 
2909 	ret = btrfs_add_dev_item(trans, device);
2910 	if (ret) {
2911 		btrfs_abort_transaction(trans, ret);
2912 		goto error_sysfs;
2913 	}
2914 
2915 	if (seeding_dev) {
2916 		ret = btrfs_finish_sprout(trans);
2917 		if (ret) {
2918 			btrfs_abort_transaction(trans, ret);
2919 			goto error_sysfs;
2920 		}
2921 
2922 		/*
2923 		 * fs_devices now represents the newly sprouted filesystem and
2924 		 * its fsid has been changed by btrfs_sprout_splice().
2925 		 */
2926 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2927 	}
2928 
2929 	ret = btrfs_commit_transaction(trans);
2930 
2931 	if (seeding_dev) {
2932 		mutex_unlock(&uuid_mutex);
2933 		up_write(&sb->s_umount);
2934 		locked = false;
2935 
2936 		if (ret) /* transaction commit */
2937 			return ret;
2938 
2939 		ret = btrfs_relocate_sys_chunks(fs_info);
2940 		if (ret < 0)
2941 			btrfs_handle_fs_error(fs_info, ret,
2942 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2943 		trans = btrfs_attach_transaction(root);
2944 		if (IS_ERR(trans)) {
2945 			if (PTR_ERR(trans) == -ENOENT)
2946 				return 0;
2947 			ret = PTR_ERR(trans);
2948 			trans = NULL;
2949 			goto error_sysfs;
2950 		}
2951 		ret = btrfs_commit_transaction(trans);
2952 	}
2953 
2954 	/*
2955 	 * Now that we have written a new super block to this device, check all
2956 	 * other fs_devices list if device_path alienates any other scanned
2957 	 * device.
2958 	 * We can ignore the return value as it typically returns -EINVAL and
2959 	 * only succeeds if the device was an alien.
2960 	 */
2961 	btrfs_forget_devices(device->devt);
2962 
2963 	/* Update ctime/mtime for blkid or udev */
2964 	update_dev_time(device_path);
2965 
2966 	return ret;
2967 
2968 error_sysfs:
2969 	btrfs_sysfs_remove_device(device);
2970 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2971 	mutex_lock(&fs_info->chunk_mutex);
2972 	list_del_rcu(&device->dev_list);
2973 	list_del(&device->dev_alloc_list);
2974 	fs_info->fs_devices->num_devices--;
2975 	fs_info->fs_devices->open_devices--;
2976 	fs_info->fs_devices->rw_devices--;
2977 	fs_info->fs_devices->total_devices--;
2978 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2979 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2980 	btrfs_set_super_total_bytes(fs_info->super_copy,
2981 				    orig_super_total_bytes);
2982 	btrfs_set_super_num_devices(fs_info->super_copy,
2983 				    orig_super_num_devices);
2984 	mutex_unlock(&fs_info->chunk_mutex);
2985 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986 error_trans:
2987 	if (trans)
2988 		btrfs_end_transaction(trans);
2989 error_free_zone:
2990 	btrfs_destroy_dev_zone_info(device);
2991 error_free_device:
2992 	btrfs_free_device(device);
2993 error:
2994 	fput(bdev_file);
2995 	if (locked) {
2996 		mutex_unlock(&uuid_mutex);
2997 		up_write(&sb->s_umount);
2998 	}
2999 	return ret;
3000 }
3001 
3002 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
3003 					struct btrfs_device *device)
3004 {
3005 	int ret;
3006 	struct btrfs_path *path;
3007 	struct btrfs_root *root = device->fs_info->chunk_root;
3008 	struct btrfs_dev_item *dev_item;
3009 	struct extent_buffer *leaf;
3010 	struct btrfs_key key;
3011 
3012 	path = btrfs_alloc_path();
3013 	if (!path)
3014 		return -ENOMEM;
3015 
3016 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3017 	key.type = BTRFS_DEV_ITEM_KEY;
3018 	key.offset = device->devid;
3019 
3020 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3021 	if (ret < 0)
3022 		goto out;
3023 
3024 	if (ret > 0) {
3025 		ret = -ENOENT;
3026 		goto out;
3027 	}
3028 
3029 	leaf = path->nodes[0];
3030 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
3031 
3032 	btrfs_set_device_id(leaf, dev_item, device->devid);
3033 	btrfs_set_device_type(leaf, dev_item, device->type);
3034 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
3035 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
3036 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
3037 	btrfs_set_device_total_bytes(leaf, dev_item,
3038 				     btrfs_device_get_disk_total_bytes(device));
3039 	btrfs_set_device_bytes_used(leaf, dev_item,
3040 				    btrfs_device_get_bytes_used(device));
3041 	btrfs_mark_buffer_dirty(trans, leaf);
3042 
3043 out:
3044 	btrfs_free_path(path);
3045 	return ret;
3046 }
3047 
3048 int btrfs_grow_device(struct btrfs_trans_handle *trans,
3049 		      struct btrfs_device *device, u64 new_size)
3050 {
3051 	struct btrfs_fs_info *fs_info = device->fs_info;
3052 	struct btrfs_super_block *super_copy = fs_info->super_copy;
3053 	u64 old_total;
3054 	u64 diff;
3055 	int ret;
3056 
3057 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
3058 		return -EACCES;
3059 
3060 	new_size = round_down(new_size, fs_info->sectorsize);
3061 
3062 	mutex_lock(&fs_info->chunk_mutex);
3063 	old_total = btrfs_super_total_bytes(super_copy);
3064 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3065 
3066 	if (new_size <= device->total_bytes ||
3067 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3068 		mutex_unlock(&fs_info->chunk_mutex);
3069 		return -EINVAL;
3070 	}
3071 
3072 	btrfs_set_super_total_bytes(super_copy,
3073 			round_down(old_total + diff, fs_info->sectorsize));
3074 	device->fs_devices->total_rw_bytes += diff;
3075 	atomic64_add(diff, &fs_info->free_chunk_space);
3076 
3077 	btrfs_device_set_total_bytes(device, new_size);
3078 	btrfs_device_set_disk_total_bytes(device, new_size);
3079 	btrfs_clear_space_info_full(device->fs_info);
3080 	if (list_empty(&device->post_commit_list))
3081 		list_add_tail(&device->post_commit_list,
3082 			      &trans->transaction->dev_update_list);
3083 	mutex_unlock(&fs_info->chunk_mutex);
3084 
3085 	btrfs_reserve_chunk_metadata(trans, false);
3086 	ret = btrfs_update_device(trans, device);
3087 	btrfs_trans_release_chunk_metadata(trans);
3088 
3089 	return ret;
3090 }
3091 
3092 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3093 {
3094 	struct btrfs_fs_info *fs_info = trans->fs_info;
3095 	struct btrfs_root *root = fs_info->chunk_root;
3096 	int ret;
3097 	struct btrfs_path *path;
3098 	struct btrfs_key key;
3099 
3100 	path = btrfs_alloc_path();
3101 	if (!path)
3102 		return -ENOMEM;
3103 
3104 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3105 	key.offset = chunk_offset;
3106 	key.type = BTRFS_CHUNK_ITEM_KEY;
3107 
3108 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3109 	if (ret < 0)
3110 		goto out;
3111 	else if (ret > 0) { /* Logic error or corruption */
3112 		btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3113 			  chunk_offset);
3114 		btrfs_abort_transaction(trans, -ENOENT);
3115 		ret = -EUCLEAN;
3116 		goto out;
3117 	}
3118 
3119 	ret = btrfs_del_item(trans, root, path);
3120 	if (ret < 0) {
3121 		btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3122 		btrfs_abort_transaction(trans, ret);
3123 		goto out;
3124 	}
3125 out:
3126 	btrfs_free_path(path);
3127 	return ret;
3128 }
3129 
3130 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3131 {
3132 	struct btrfs_super_block *super_copy = fs_info->super_copy;
3133 	struct btrfs_disk_key *disk_key;
3134 	struct btrfs_chunk *chunk;
3135 	u8 *ptr;
3136 	int ret = 0;
3137 	u32 num_stripes;
3138 	u32 array_size;
3139 	u32 len = 0;
3140 	u32 cur;
3141 	struct btrfs_key key;
3142 
3143 	lockdep_assert_held(&fs_info->chunk_mutex);
3144 	array_size = btrfs_super_sys_array_size(super_copy);
3145 
3146 	ptr = super_copy->sys_chunk_array;
3147 	cur = 0;
3148 
3149 	while (cur < array_size) {
3150 		disk_key = (struct btrfs_disk_key *)ptr;
3151 		btrfs_disk_key_to_cpu(&key, disk_key);
3152 
3153 		len = sizeof(*disk_key);
3154 
3155 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3156 			chunk = (struct btrfs_chunk *)(ptr + len);
3157 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3158 			len += btrfs_chunk_item_size(num_stripes);
3159 		} else {
3160 			ret = -EIO;
3161 			break;
3162 		}
3163 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3164 		    key.offset == chunk_offset) {
3165 			memmove(ptr, ptr + len, array_size - (cur + len));
3166 			array_size -= len;
3167 			btrfs_set_super_sys_array_size(super_copy, array_size);
3168 		} else {
3169 			ptr += len;
3170 			cur += len;
3171 		}
3172 	}
3173 	return ret;
3174 }
3175 
3176 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3177 						    u64 logical, u64 length)
3178 {
3179 	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3180 	struct rb_node *prev = NULL;
3181 	struct rb_node *orig_prev;
3182 	struct btrfs_chunk_map *map;
3183 	struct btrfs_chunk_map *prev_map = NULL;
3184 
3185 	while (node) {
3186 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3187 		prev = node;
3188 		prev_map = map;
3189 
3190 		if (logical < map->start) {
3191 			node = node->rb_left;
3192 		} else if (logical >= map->start + map->chunk_len) {
3193 			node = node->rb_right;
3194 		} else {
3195 			refcount_inc(&map->refs);
3196 			return map;
3197 		}
3198 	}
3199 
3200 	if (!prev)
3201 		return NULL;
3202 
3203 	orig_prev = prev;
3204 	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3205 		prev = rb_next(prev);
3206 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3207 	}
3208 
3209 	if (!prev) {
3210 		prev = orig_prev;
3211 		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3212 		while (prev && logical < prev_map->start) {
3213 			prev = rb_prev(prev);
3214 			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3215 		}
3216 	}
3217 
3218 	if (prev) {
3219 		u64 end = logical + length;
3220 
3221 		/*
3222 		 * Caller can pass a U64_MAX length when it wants to get any
3223 		 * chunk starting at an offset of 'logical' or higher, so deal
3224 		 * with underflow by resetting the end offset to U64_MAX.
3225 		 */
3226 		if (end < logical)
3227 			end = U64_MAX;
3228 
3229 		if (end > prev_map->start &&
3230 		    logical < prev_map->start + prev_map->chunk_len) {
3231 			refcount_inc(&prev_map->refs);
3232 			return prev_map;
3233 		}
3234 	}
3235 
3236 	return NULL;
3237 }
3238 
3239 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3240 					     u64 logical, u64 length)
3241 {
3242 	struct btrfs_chunk_map *map;
3243 
3244 	read_lock(&fs_info->mapping_tree_lock);
3245 	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3246 	read_unlock(&fs_info->mapping_tree_lock);
3247 
3248 	return map;
3249 }
3250 
3251 /*
3252  * Find the mapping containing the given logical extent.
3253  *
3254  * @logical: Logical block offset in bytes.
3255  * @length: Length of extent in bytes.
3256  *
3257  * Return: Chunk mapping or ERR_PTR.
3258  */
3259 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3260 					    u64 logical, u64 length)
3261 {
3262 	struct btrfs_chunk_map *map;
3263 
3264 	map = btrfs_find_chunk_map(fs_info, logical, length);
3265 
3266 	if (unlikely(!map)) {
3267 		btrfs_crit(fs_info,
3268 			   "unable to find chunk map for logical %llu length %llu",
3269 			   logical, length);
3270 		return ERR_PTR(-EINVAL);
3271 	}
3272 
3273 	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3274 		btrfs_crit(fs_info,
3275 			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3276 			   logical, logical + length, map->start,
3277 			   map->start + map->chunk_len);
3278 		btrfs_free_chunk_map(map);
3279 		return ERR_PTR(-EINVAL);
3280 	}
3281 
3282 	/* Callers are responsible for dropping the reference. */
3283 	return map;
3284 }
3285 
3286 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3287 			     struct btrfs_chunk_map *map, u64 chunk_offset)
3288 {
3289 	int i;
3290 
3291 	/*
3292 	 * Removing chunk items and updating the device items in the chunks btree
3293 	 * requires holding the chunk_mutex.
3294 	 * See the comment at btrfs_chunk_alloc() for the details.
3295 	 */
3296 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3297 
3298 	for (i = 0; i < map->num_stripes; i++) {
3299 		int ret;
3300 
3301 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3302 		if (ret)
3303 			return ret;
3304 	}
3305 
3306 	return btrfs_free_chunk(trans, chunk_offset);
3307 }
3308 
3309 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3310 {
3311 	struct btrfs_fs_info *fs_info = trans->fs_info;
3312 	struct btrfs_chunk_map *map;
3313 	u64 dev_extent_len = 0;
3314 	int i, ret = 0;
3315 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3316 
3317 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3318 	if (IS_ERR(map)) {
3319 		/*
3320 		 * This is a logic error, but we don't want to just rely on the
3321 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3322 		 * do anything we still error out.
3323 		 */
3324 		ASSERT(0);
3325 		return PTR_ERR(map);
3326 	}
3327 
3328 	/*
3329 	 * First delete the device extent items from the devices btree.
3330 	 * We take the device_list_mutex to avoid racing with the finishing phase
3331 	 * of a device replace operation. See the comment below before acquiring
3332 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3333 	 * because that can result in a deadlock when deleting the device extent
3334 	 * items from the devices btree - COWing an extent buffer from the btree
3335 	 * may result in allocating a new metadata chunk, which would attempt to
3336 	 * lock again fs_info->chunk_mutex.
3337 	 */
3338 	mutex_lock(&fs_devices->device_list_mutex);
3339 	for (i = 0; i < map->num_stripes; i++) {
3340 		struct btrfs_device *device = map->stripes[i].dev;
3341 		ret = btrfs_free_dev_extent(trans, device,
3342 					    map->stripes[i].physical,
3343 					    &dev_extent_len);
3344 		if (ret) {
3345 			mutex_unlock(&fs_devices->device_list_mutex);
3346 			btrfs_abort_transaction(trans, ret);
3347 			goto out;
3348 		}
3349 
3350 		if (device->bytes_used > 0) {
3351 			mutex_lock(&fs_info->chunk_mutex);
3352 			btrfs_device_set_bytes_used(device,
3353 					device->bytes_used - dev_extent_len);
3354 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3355 			btrfs_clear_space_info_full(fs_info);
3356 			mutex_unlock(&fs_info->chunk_mutex);
3357 		}
3358 	}
3359 	mutex_unlock(&fs_devices->device_list_mutex);
3360 
3361 	/*
3362 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3363 	 *
3364 	 * 1) Just like with the first phase of the chunk allocation, we must
3365 	 *    reserve system space, do all chunk btree updates and deletions, and
3366 	 *    update the system chunk array in the superblock while holding this
3367 	 *    mutex. This is for similar reasons as explained on the comment at
3368 	 *    the top of btrfs_chunk_alloc();
3369 	 *
3370 	 * 2) Prevent races with the final phase of a device replace operation
3371 	 *    that replaces the device object associated with the map's stripes,
3372 	 *    because the device object's id can change at any time during that
3373 	 *    final phase of the device replace operation
3374 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3375 	 *    replaced device and then see it with an ID of
3376 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3377 	 *    the device item, which does not exists on the chunk btree.
3378 	 *    The finishing phase of device replace acquires both the
3379 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3380 	 *    safe by just acquiring the chunk_mutex.
3381 	 */
3382 	trans->removing_chunk = true;
3383 	mutex_lock(&fs_info->chunk_mutex);
3384 
3385 	check_system_chunk(trans, map->type);
3386 
3387 	ret = remove_chunk_item(trans, map, chunk_offset);
3388 	/*
3389 	 * Normally we should not get -ENOSPC since we reserved space before
3390 	 * through the call to check_system_chunk().
3391 	 *
3392 	 * Despite our system space_info having enough free space, we may not
3393 	 * be able to allocate extents from its block groups, because all have
3394 	 * an incompatible profile, which will force us to allocate a new system
3395 	 * block group with the right profile, or right after we called
3396 	 * check_system_space() above, a scrub turned the only system block group
3397 	 * with enough free space into RO mode.
3398 	 * This is explained with more detail at do_chunk_alloc().
3399 	 *
3400 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3401 	 */
3402 	if (ret == -ENOSPC) {
3403 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3404 		struct btrfs_block_group *sys_bg;
3405 
3406 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3407 		if (IS_ERR(sys_bg)) {
3408 			ret = PTR_ERR(sys_bg);
3409 			btrfs_abort_transaction(trans, ret);
3410 			goto out;
3411 		}
3412 
3413 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3414 		if (ret) {
3415 			btrfs_abort_transaction(trans, ret);
3416 			goto out;
3417 		}
3418 
3419 		ret = remove_chunk_item(trans, map, chunk_offset);
3420 		if (ret) {
3421 			btrfs_abort_transaction(trans, ret);
3422 			goto out;
3423 		}
3424 	} else if (ret) {
3425 		btrfs_abort_transaction(trans, ret);
3426 		goto out;
3427 	}
3428 
3429 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3430 
3431 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3432 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3433 		if (ret) {
3434 			btrfs_abort_transaction(trans, ret);
3435 			goto out;
3436 		}
3437 	}
3438 
3439 	mutex_unlock(&fs_info->chunk_mutex);
3440 	trans->removing_chunk = false;
3441 
3442 	/*
3443 	 * We are done with chunk btree updates and deletions, so release the
3444 	 * system space we previously reserved (with check_system_chunk()).
3445 	 */
3446 	btrfs_trans_release_chunk_metadata(trans);
3447 
3448 	ret = btrfs_remove_block_group(trans, map);
3449 	if (ret) {
3450 		btrfs_abort_transaction(trans, ret);
3451 		goto out;
3452 	}
3453 
3454 out:
3455 	if (trans->removing_chunk) {
3456 		mutex_unlock(&fs_info->chunk_mutex);
3457 		trans->removing_chunk = false;
3458 	}
3459 	/* once for us */
3460 	btrfs_free_chunk_map(map);
3461 	return ret;
3462 }
3463 
3464 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3465 {
3466 	struct btrfs_root *root = fs_info->chunk_root;
3467 	struct btrfs_trans_handle *trans;
3468 	struct btrfs_block_group *block_group;
3469 	u64 length;
3470 	int ret;
3471 
3472 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3473 		btrfs_err(fs_info,
3474 			  "relocate: not supported on extent tree v2 yet");
3475 		return -EINVAL;
3476 	}
3477 
3478 	/*
3479 	 * Prevent races with automatic removal of unused block groups.
3480 	 * After we relocate and before we remove the chunk with offset
3481 	 * chunk_offset, automatic removal of the block group can kick in,
3482 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3483 	 *
3484 	 * Make sure to acquire this mutex before doing a tree search (dev
3485 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3486 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3487 	 * we release the path used to search the chunk/dev tree and before
3488 	 * the current task acquires this mutex and calls us.
3489 	 */
3490 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3491 
3492 	/* step one, relocate all the extents inside this chunk */
3493 	btrfs_scrub_pause(fs_info);
3494 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3495 	btrfs_scrub_continue(fs_info);
3496 	if (ret) {
3497 		/*
3498 		 * If we had a transaction abort, stop all running scrubs.
3499 		 * See transaction.c:cleanup_transaction() why we do it here.
3500 		 */
3501 		if (BTRFS_FS_ERROR(fs_info))
3502 			btrfs_scrub_cancel(fs_info);
3503 		return ret;
3504 	}
3505 
3506 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3507 	if (!block_group)
3508 		return -ENOENT;
3509 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3510 	length = block_group->length;
3511 	btrfs_put_block_group(block_group);
3512 
3513 	/*
3514 	 * On a zoned file system, discard the whole block group, this will
3515 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3516 	 * resetting the zone fails, don't treat it as a fatal problem from the
3517 	 * filesystem's point of view.
3518 	 */
3519 	if (btrfs_is_zoned(fs_info)) {
3520 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3521 		if (ret)
3522 			btrfs_info(fs_info,
3523 				"failed to reset zone %llu after relocation",
3524 				chunk_offset);
3525 	}
3526 
3527 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3528 						     chunk_offset);
3529 	if (IS_ERR(trans)) {
3530 		ret = PTR_ERR(trans);
3531 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3532 		return ret;
3533 	}
3534 
3535 	/*
3536 	 * step two, delete the device extents and the
3537 	 * chunk tree entries
3538 	 */
3539 	ret = btrfs_remove_chunk(trans, chunk_offset);
3540 	btrfs_end_transaction(trans);
3541 	return ret;
3542 }
3543 
3544 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3545 {
3546 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3547 	struct btrfs_path *path;
3548 	struct extent_buffer *leaf;
3549 	struct btrfs_chunk *chunk;
3550 	struct btrfs_key key;
3551 	struct btrfs_key found_key;
3552 	u64 chunk_type;
3553 	bool retried = false;
3554 	int failed = 0;
3555 	int ret;
3556 
3557 	path = btrfs_alloc_path();
3558 	if (!path)
3559 		return -ENOMEM;
3560 
3561 again:
3562 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3563 	key.offset = (u64)-1;
3564 	key.type = BTRFS_CHUNK_ITEM_KEY;
3565 
3566 	while (1) {
3567 		mutex_lock(&fs_info->reclaim_bgs_lock);
3568 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3569 		if (ret < 0) {
3570 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3571 			goto error;
3572 		}
3573 		if (ret == 0) {
3574 			/*
3575 			 * On the first search we would find chunk tree with
3576 			 * offset -1, which is not possible. On subsequent
3577 			 * loops this would find an existing item on an invalid
3578 			 * offset (one less than the previous one, wrong
3579 			 * alignment and size).
3580 			 */
3581 			ret = -EUCLEAN;
3582 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3583 			goto error;
3584 		}
3585 
3586 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3587 					  key.type);
3588 		if (ret)
3589 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3590 		if (ret < 0)
3591 			goto error;
3592 		if (ret > 0)
3593 			break;
3594 
3595 		leaf = path->nodes[0];
3596 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3597 
3598 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3599 				       struct btrfs_chunk);
3600 		chunk_type = btrfs_chunk_type(leaf, chunk);
3601 		btrfs_release_path(path);
3602 
3603 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3604 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3605 			if (ret == -ENOSPC)
3606 				failed++;
3607 			else
3608 				BUG_ON(ret);
3609 		}
3610 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3611 
3612 		if (found_key.offset == 0)
3613 			break;
3614 		key.offset = found_key.offset - 1;
3615 	}
3616 	ret = 0;
3617 	if (failed && !retried) {
3618 		failed = 0;
3619 		retried = true;
3620 		goto again;
3621 	} else if (WARN_ON(failed && retried)) {
3622 		ret = -ENOSPC;
3623 	}
3624 error:
3625 	btrfs_free_path(path);
3626 	return ret;
3627 }
3628 
3629 /*
3630  * return 1 : allocate a data chunk successfully,
3631  * return <0: errors during allocating a data chunk,
3632  * return 0 : no need to allocate a data chunk.
3633  */
3634 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3635 				      u64 chunk_offset)
3636 {
3637 	struct btrfs_block_group *cache;
3638 	u64 bytes_used;
3639 	u64 chunk_type;
3640 
3641 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3642 	ASSERT(cache);
3643 	chunk_type = cache->flags;
3644 	btrfs_put_block_group(cache);
3645 
3646 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3647 		return 0;
3648 
3649 	spin_lock(&fs_info->data_sinfo->lock);
3650 	bytes_used = fs_info->data_sinfo->bytes_used;
3651 	spin_unlock(&fs_info->data_sinfo->lock);
3652 
3653 	if (!bytes_used) {
3654 		struct btrfs_trans_handle *trans;
3655 		int ret;
3656 
3657 		trans =	btrfs_join_transaction(fs_info->tree_root);
3658 		if (IS_ERR(trans))
3659 			return PTR_ERR(trans);
3660 
3661 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3662 		btrfs_end_transaction(trans);
3663 		if (ret < 0)
3664 			return ret;
3665 		return 1;
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3672 					   const struct btrfs_disk_balance_args *disk)
3673 {
3674 	memset(cpu, 0, sizeof(*cpu));
3675 
3676 	cpu->profiles = le64_to_cpu(disk->profiles);
3677 	cpu->usage = le64_to_cpu(disk->usage);
3678 	cpu->devid = le64_to_cpu(disk->devid);
3679 	cpu->pstart = le64_to_cpu(disk->pstart);
3680 	cpu->pend = le64_to_cpu(disk->pend);
3681 	cpu->vstart = le64_to_cpu(disk->vstart);
3682 	cpu->vend = le64_to_cpu(disk->vend);
3683 	cpu->target = le64_to_cpu(disk->target);
3684 	cpu->flags = le64_to_cpu(disk->flags);
3685 	cpu->limit = le64_to_cpu(disk->limit);
3686 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3687 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3688 }
3689 
3690 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3691 					   const struct btrfs_balance_args *cpu)
3692 {
3693 	memset(disk, 0, sizeof(*disk));
3694 
3695 	disk->profiles = cpu_to_le64(cpu->profiles);
3696 	disk->usage = cpu_to_le64(cpu->usage);
3697 	disk->devid = cpu_to_le64(cpu->devid);
3698 	disk->pstart = cpu_to_le64(cpu->pstart);
3699 	disk->pend = cpu_to_le64(cpu->pend);
3700 	disk->vstart = cpu_to_le64(cpu->vstart);
3701 	disk->vend = cpu_to_le64(cpu->vend);
3702 	disk->target = cpu_to_le64(cpu->target);
3703 	disk->flags = cpu_to_le64(cpu->flags);
3704 	disk->limit = cpu_to_le64(cpu->limit);
3705 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3706 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3707 }
3708 
3709 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3710 			       struct btrfs_balance_control *bctl)
3711 {
3712 	struct btrfs_root *root = fs_info->tree_root;
3713 	struct btrfs_trans_handle *trans;
3714 	struct btrfs_balance_item *item;
3715 	struct btrfs_disk_balance_args disk_bargs;
3716 	struct btrfs_path *path;
3717 	struct extent_buffer *leaf;
3718 	struct btrfs_key key;
3719 	int ret, err;
3720 
3721 	path = btrfs_alloc_path();
3722 	if (!path)
3723 		return -ENOMEM;
3724 
3725 	trans = btrfs_start_transaction(root, 0);
3726 	if (IS_ERR(trans)) {
3727 		btrfs_free_path(path);
3728 		return PTR_ERR(trans);
3729 	}
3730 
3731 	key.objectid = BTRFS_BALANCE_OBJECTID;
3732 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3733 	key.offset = 0;
3734 
3735 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3736 				      sizeof(*item));
3737 	if (ret)
3738 		goto out;
3739 
3740 	leaf = path->nodes[0];
3741 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3742 
3743 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3744 
3745 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3746 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3747 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3748 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3749 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3750 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3751 
3752 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3753 
3754 	btrfs_mark_buffer_dirty(trans, leaf);
3755 out:
3756 	btrfs_free_path(path);
3757 	err = btrfs_commit_transaction(trans);
3758 	if (err && !ret)
3759 		ret = err;
3760 	return ret;
3761 }
3762 
3763 static int del_balance_item(struct btrfs_fs_info *fs_info)
3764 {
3765 	struct btrfs_root *root = fs_info->tree_root;
3766 	struct btrfs_trans_handle *trans;
3767 	struct btrfs_path *path;
3768 	struct btrfs_key key;
3769 	int ret, err;
3770 
3771 	path = btrfs_alloc_path();
3772 	if (!path)
3773 		return -ENOMEM;
3774 
3775 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3776 	if (IS_ERR(trans)) {
3777 		btrfs_free_path(path);
3778 		return PTR_ERR(trans);
3779 	}
3780 
3781 	key.objectid = BTRFS_BALANCE_OBJECTID;
3782 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3783 	key.offset = 0;
3784 
3785 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3786 	if (ret < 0)
3787 		goto out;
3788 	if (ret > 0) {
3789 		ret = -ENOENT;
3790 		goto out;
3791 	}
3792 
3793 	ret = btrfs_del_item(trans, root, path);
3794 out:
3795 	btrfs_free_path(path);
3796 	err = btrfs_commit_transaction(trans);
3797 	if (err && !ret)
3798 		ret = err;
3799 	return ret;
3800 }
3801 
3802 /*
3803  * This is a heuristic used to reduce the number of chunks balanced on
3804  * resume after balance was interrupted.
3805  */
3806 static void update_balance_args(struct btrfs_balance_control *bctl)
3807 {
3808 	/*
3809 	 * Turn on soft mode for chunk types that were being converted.
3810 	 */
3811 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3812 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3813 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3814 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3815 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3816 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3817 
3818 	/*
3819 	 * Turn on usage filter if is not already used.  The idea is
3820 	 * that chunks that we have already balanced should be
3821 	 * reasonably full.  Don't do it for chunks that are being
3822 	 * converted - that will keep us from relocating unconverted
3823 	 * (albeit full) chunks.
3824 	 */
3825 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3826 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3827 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3828 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3829 		bctl->data.usage = 90;
3830 	}
3831 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3832 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3833 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3834 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3835 		bctl->sys.usage = 90;
3836 	}
3837 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3838 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3839 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3840 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3841 		bctl->meta.usage = 90;
3842 	}
3843 }
3844 
3845 /*
3846  * Clear the balance status in fs_info and delete the balance item from disk.
3847  */
3848 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3849 {
3850 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3851 	int ret;
3852 
3853 	ASSERT(fs_info->balance_ctl);
3854 
3855 	spin_lock(&fs_info->balance_lock);
3856 	fs_info->balance_ctl = NULL;
3857 	spin_unlock(&fs_info->balance_lock);
3858 
3859 	kfree(bctl);
3860 	ret = del_balance_item(fs_info);
3861 	if (ret)
3862 		btrfs_handle_fs_error(fs_info, ret, NULL);
3863 }
3864 
3865 /*
3866  * Balance filters.  Return 1 if chunk should be filtered out
3867  * (should not be balanced).
3868  */
3869 static int chunk_profiles_filter(u64 chunk_type,
3870 				 struct btrfs_balance_args *bargs)
3871 {
3872 	chunk_type = chunk_to_extended(chunk_type) &
3873 				BTRFS_EXTENDED_PROFILE_MASK;
3874 
3875 	if (bargs->profiles & chunk_type)
3876 		return 0;
3877 
3878 	return 1;
3879 }
3880 
3881 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3882 			      struct btrfs_balance_args *bargs)
3883 {
3884 	struct btrfs_block_group *cache;
3885 	u64 chunk_used;
3886 	u64 user_thresh_min;
3887 	u64 user_thresh_max;
3888 	int ret = 1;
3889 
3890 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3891 	chunk_used = cache->used;
3892 
3893 	if (bargs->usage_min == 0)
3894 		user_thresh_min = 0;
3895 	else
3896 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3897 
3898 	if (bargs->usage_max == 0)
3899 		user_thresh_max = 1;
3900 	else if (bargs->usage_max > 100)
3901 		user_thresh_max = cache->length;
3902 	else
3903 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3904 
3905 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3906 		ret = 0;
3907 
3908 	btrfs_put_block_group(cache);
3909 	return ret;
3910 }
3911 
3912 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3913 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3914 {
3915 	struct btrfs_block_group *cache;
3916 	u64 chunk_used, user_thresh;
3917 	int ret = 1;
3918 
3919 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3920 	chunk_used = cache->used;
3921 
3922 	if (bargs->usage_min == 0)
3923 		user_thresh = 1;
3924 	else if (bargs->usage > 100)
3925 		user_thresh = cache->length;
3926 	else
3927 		user_thresh = mult_perc(cache->length, bargs->usage);
3928 
3929 	if (chunk_used < user_thresh)
3930 		ret = 0;
3931 
3932 	btrfs_put_block_group(cache);
3933 	return ret;
3934 }
3935 
3936 static int chunk_devid_filter(struct extent_buffer *leaf,
3937 			      struct btrfs_chunk *chunk,
3938 			      struct btrfs_balance_args *bargs)
3939 {
3940 	struct btrfs_stripe *stripe;
3941 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3942 	int i;
3943 
3944 	for (i = 0; i < num_stripes; i++) {
3945 		stripe = btrfs_stripe_nr(chunk, i);
3946 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3947 			return 0;
3948 	}
3949 
3950 	return 1;
3951 }
3952 
3953 static u64 calc_data_stripes(u64 type, int num_stripes)
3954 {
3955 	const int index = btrfs_bg_flags_to_raid_index(type);
3956 	const int ncopies = btrfs_raid_array[index].ncopies;
3957 	const int nparity = btrfs_raid_array[index].nparity;
3958 
3959 	return (num_stripes - nparity) / ncopies;
3960 }
3961 
3962 /* [pstart, pend) */
3963 static int chunk_drange_filter(struct extent_buffer *leaf,
3964 			       struct btrfs_chunk *chunk,
3965 			       struct btrfs_balance_args *bargs)
3966 {
3967 	struct btrfs_stripe *stripe;
3968 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3969 	u64 stripe_offset;
3970 	u64 stripe_length;
3971 	u64 type;
3972 	int factor;
3973 	int i;
3974 
3975 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3976 		return 0;
3977 
3978 	type = btrfs_chunk_type(leaf, chunk);
3979 	factor = calc_data_stripes(type, num_stripes);
3980 
3981 	for (i = 0; i < num_stripes; i++) {
3982 		stripe = btrfs_stripe_nr(chunk, i);
3983 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3984 			continue;
3985 
3986 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3987 		stripe_length = btrfs_chunk_length(leaf, chunk);
3988 		stripe_length = div_u64(stripe_length, factor);
3989 
3990 		if (stripe_offset < bargs->pend &&
3991 		    stripe_offset + stripe_length > bargs->pstart)
3992 			return 0;
3993 	}
3994 
3995 	return 1;
3996 }
3997 
3998 /* [vstart, vend) */
3999 static int chunk_vrange_filter(struct extent_buffer *leaf,
4000 			       struct btrfs_chunk *chunk,
4001 			       u64 chunk_offset,
4002 			       struct btrfs_balance_args *bargs)
4003 {
4004 	if (chunk_offset < bargs->vend &&
4005 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
4006 		/* at least part of the chunk is inside this vrange */
4007 		return 0;
4008 
4009 	return 1;
4010 }
4011 
4012 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
4013 			       struct btrfs_chunk *chunk,
4014 			       struct btrfs_balance_args *bargs)
4015 {
4016 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4017 
4018 	if (bargs->stripes_min <= num_stripes
4019 			&& num_stripes <= bargs->stripes_max)
4020 		return 0;
4021 
4022 	return 1;
4023 }
4024 
4025 static int chunk_soft_convert_filter(u64 chunk_type,
4026 				     struct btrfs_balance_args *bargs)
4027 {
4028 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4029 		return 0;
4030 
4031 	chunk_type = chunk_to_extended(chunk_type) &
4032 				BTRFS_EXTENDED_PROFILE_MASK;
4033 
4034 	if (bargs->target == chunk_type)
4035 		return 1;
4036 
4037 	return 0;
4038 }
4039 
4040 static int should_balance_chunk(struct extent_buffer *leaf,
4041 				struct btrfs_chunk *chunk, u64 chunk_offset)
4042 {
4043 	struct btrfs_fs_info *fs_info = leaf->fs_info;
4044 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4045 	struct btrfs_balance_args *bargs = NULL;
4046 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
4047 
4048 	/* type filter */
4049 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
4050 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
4051 		return 0;
4052 	}
4053 
4054 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4055 		bargs = &bctl->data;
4056 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4057 		bargs = &bctl->sys;
4058 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4059 		bargs = &bctl->meta;
4060 
4061 	/* profiles filter */
4062 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4063 	    chunk_profiles_filter(chunk_type, bargs)) {
4064 		return 0;
4065 	}
4066 
4067 	/* usage filter */
4068 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4069 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4070 		return 0;
4071 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4072 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4073 		return 0;
4074 	}
4075 
4076 	/* devid filter */
4077 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4078 	    chunk_devid_filter(leaf, chunk, bargs)) {
4079 		return 0;
4080 	}
4081 
4082 	/* drange filter, makes sense only with devid filter */
4083 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4084 	    chunk_drange_filter(leaf, chunk, bargs)) {
4085 		return 0;
4086 	}
4087 
4088 	/* vrange filter */
4089 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4090 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4091 		return 0;
4092 	}
4093 
4094 	/* stripes filter */
4095 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4096 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
4097 		return 0;
4098 	}
4099 
4100 	/* soft profile changing mode */
4101 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4102 	    chunk_soft_convert_filter(chunk_type, bargs)) {
4103 		return 0;
4104 	}
4105 
4106 	/*
4107 	 * limited by count, must be the last filter
4108 	 */
4109 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4110 		if (bargs->limit == 0)
4111 			return 0;
4112 		else
4113 			bargs->limit--;
4114 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4115 		/*
4116 		 * Same logic as the 'limit' filter; the minimum cannot be
4117 		 * determined here because we do not have the global information
4118 		 * about the count of all chunks that satisfy the filters.
4119 		 */
4120 		if (bargs->limit_max == 0)
4121 			return 0;
4122 		else
4123 			bargs->limit_max--;
4124 	}
4125 
4126 	return 1;
4127 }
4128 
4129 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4130 {
4131 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4132 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4133 	u64 chunk_type;
4134 	struct btrfs_chunk *chunk;
4135 	struct btrfs_path *path = NULL;
4136 	struct btrfs_key key;
4137 	struct btrfs_key found_key;
4138 	struct extent_buffer *leaf;
4139 	int slot;
4140 	int ret;
4141 	int enospc_errors = 0;
4142 	bool counting = true;
4143 	/* The single value limit and min/max limits use the same bytes in the */
4144 	u64 limit_data = bctl->data.limit;
4145 	u64 limit_meta = bctl->meta.limit;
4146 	u64 limit_sys = bctl->sys.limit;
4147 	u32 count_data = 0;
4148 	u32 count_meta = 0;
4149 	u32 count_sys = 0;
4150 	int chunk_reserved = 0;
4151 
4152 	path = btrfs_alloc_path();
4153 	if (!path) {
4154 		ret = -ENOMEM;
4155 		goto error;
4156 	}
4157 
4158 	/* zero out stat counters */
4159 	spin_lock(&fs_info->balance_lock);
4160 	memset(&bctl->stat, 0, sizeof(bctl->stat));
4161 	spin_unlock(&fs_info->balance_lock);
4162 again:
4163 	if (!counting) {
4164 		/*
4165 		 * The single value limit and min/max limits use the same bytes
4166 		 * in the
4167 		 */
4168 		bctl->data.limit = limit_data;
4169 		bctl->meta.limit = limit_meta;
4170 		bctl->sys.limit = limit_sys;
4171 	}
4172 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4173 	key.offset = (u64)-1;
4174 	key.type = BTRFS_CHUNK_ITEM_KEY;
4175 
4176 	while (1) {
4177 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4178 		    atomic_read(&fs_info->balance_cancel_req)) {
4179 			ret = -ECANCELED;
4180 			goto error;
4181 		}
4182 
4183 		mutex_lock(&fs_info->reclaim_bgs_lock);
4184 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4185 		if (ret < 0) {
4186 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4187 			goto error;
4188 		}
4189 
4190 		/*
4191 		 * this shouldn't happen, it means the last relocate
4192 		 * failed
4193 		 */
4194 		if (ret == 0)
4195 			BUG(); /* FIXME break ? */
4196 
4197 		ret = btrfs_previous_item(chunk_root, path, 0,
4198 					  BTRFS_CHUNK_ITEM_KEY);
4199 		if (ret) {
4200 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4201 			ret = 0;
4202 			break;
4203 		}
4204 
4205 		leaf = path->nodes[0];
4206 		slot = path->slots[0];
4207 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4208 
4209 		if (found_key.objectid != key.objectid) {
4210 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4211 			break;
4212 		}
4213 
4214 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4215 		chunk_type = btrfs_chunk_type(leaf, chunk);
4216 
4217 		if (!counting) {
4218 			spin_lock(&fs_info->balance_lock);
4219 			bctl->stat.considered++;
4220 			spin_unlock(&fs_info->balance_lock);
4221 		}
4222 
4223 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4224 
4225 		btrfs_release_path(path);
4226 		if (!ret) {
4227 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4228 			goto loop;
4229 		}
4230 
4231 		if (counting) {
4232 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4233 			spin_lock(&fs_info->balance_lock);
4234 			bctl->stat.expected++;
4235 			spin_unlock(&fs_info->balance_lock);
4236 
4237 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4238 				count_data++;
4239 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4240 				count_sys++;
4241 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4242 				count_meta++;
4243 
4244 			goto loop;
4245 		}
4246 
4247 		/*
4248 		 * Apply limit_min filter, no need to check if the LIMITS
4249 		 * filter is used, limit_min is 0 by default
4250 		 */
4251 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4252 					count_data < bctl->data.limit_min)
4253 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4254 					count_meta < bctl->meta.limit_min)
4255 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4256 					count_sys < bctl->sys.limit_min)) {
4257 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4258 			goto loop;
4259 		}
4260 
4261 		if (!chunk_reserved) {
4262 			/*
4263 			 * We may be relocating the only data chunk we have,
4264 			 * which could potentially end up with losing data's
4265 			 * raid profile, so lets allocate an empty one in
4266 			 * advance.
4267 			 */
4268 			ret = btrfs_may_alloc_data_chunk(fs_info,
4269 							 found_key.offset);
4270 			if (ret < 0) {
4271 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4272 				goto error;
4273 			} else if (ret == 1) {
4274 				chunk_reserved = 1;
4275 			}
4276 		}
4277 
4278 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4279 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4280 		if (ret == -ENOSPC) {
4281 			enospc_errors++;
4282 		} else if (ret == -ETXTBSY) {
4283 			btrfs_info(fs_info,
4284 	   "skipping relocation of block group %llu due to active swapfile",
4285 				   found_key.offset);
4286 			ret = 0;
4287 		} else if (ret) {
4288 			goto error;
4289 		} else {
4290 			spin_lock(&fs_info->balance_lock);
4291 			bctl->stat.completed++;
4292 			spin_unlock(&fs_info->balance_lock);
4293 		}
4294 loop:
4295 		if (found_key.offset == 0)
4296 			break;
4297 		key.offset = found_key.offset - 1;
4298 	}
4299 
4300 	if (counting) {
4301 		btrfs_release_path(path);
4302 		counting = false;
4303 		goto again;
4304 	}
4305 error:
4306 	btrfs_free_path(path);
4307 	if (enospc_errors) {
4308 		btrfs_info(fs_info, "%d enospc errors during balance",
4309 			   enospc_errors);
4310 		if (!ret)
4311 			ret = -ENOSPC;
4312 	}
4313 
4314 	return ret;
4315 }
4316 
4317 /*
4318  * See if a given profile is valid and reduced.
4319  *
4320  * @flags:     profile to validate
4321  * @extended:  if true @flags is treated as an extended profile
4322  */
4323 static int alloc_profile_is_valid(u64 flags, int extended)
4324 {
4325 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4326 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4327 
4328 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4329 
4330 	/* 1) check that all other bits are zeroed */
4331 	if (flags & ~mask)
4332 		return 0;
4333 
4334 	/* 2) see if profile is reduced */
4335 	if (flags == 0)
4336 		return !extended; /* "0" is valid for usual profiles */
4337 
4338 	return has_single_bit_set(flags);
4339 }
4340 
4341 /*
4342  * Validate target profile against allowed profiles and return true if it's OK.
4343  * Otherwise print the error message and return false.
4344  */
4345 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4346 		const struct btrfs_balance_args *bargs,
4347 		u64 allowed, const char *type)
4348 {
4349 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4350 		return true;
4351 
4352 	/* Profile is valid and does not have bits outside of the allowed set */
4353 	if (alloc_profile_is_valid(bargs->target, 1) &&
4354 	    (bargs->target & ~allowed) == 0)
4355 		return true;
4356 
4357 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4358 			type, btrfs_bg_type_to_raid_name(bargs->target));
4359 	return false;
4360 }
4361 
4362 /*
4363  * Fill @buf with textual description of balance filter flags @bargs, up to
4364  * @size_buf including the terminating null. The output may be trimmed if it
4365  * does not fit into the provided buffer.
4366  */
4367 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4368 				 u32 size_buf)
4369 {
4370 	int ret;
4371 	u32 size_bp = size_buf;
4372 	char *bp = buf;
4373 	u64 flags = bargs->flags;
4374 	char tmp_buf[128] = {'\0'};
4375 
4376 	if (!flags)
4377 		return;
4378 
4379 #define CHECK_APPEND_NOARG(a)						\
4380 	do {								\
4381 		ret = snprintf(bp, size_bp, (a));			\
4382 		if (ret < 0 || ret >= size_bp)				\
4383 			goto out_overflow;				\
4384 		size_bp -= ret;						\
4385 		bp += ret;						\
4386 	} while (0)
4387 
4388 #define CHECK_APPEND_1ARG(a, v1)					\
4389 	do {								\
4390 		ret = snprintf(bp, size_bp, (a), (v1));			\
4391 		if (ret < 0 || ret >= size_bp)				\
4392 			goto out_overflow;				\
4393 		size_bp -= ret;						\
4394 		bp += ret;						\
4395 	} while (0)
4396 
4397 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4398 	do {								\
4399 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4400 		if (ret < 0 || ret >= size_bp)				\
4401 			goto out_overflow;				\
4402 		size_bp -= ret;						\
4403 		bp += ret;						\
4404 	} while (0)
4405 
4406 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4407 		CHECK_APPEND_1ARG("convert=%s,",
4408 				  btrfs_bg_type_to_raid_name(bargs->target));
4409 
4410 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4411 		CHECK_APPEND_NOARG("soft,");
4412 
4413 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4414 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4415 					    sizeof(tmp_buf));
4416 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4417 	}
4418 
4419 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4420 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4421 
4422 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4423 		CHECK_APPEND_2ARG("usage=%u..%u,",
4424 				  bargs->usage_min, bargs->usage_max);
4425 
4426 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4427 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4428 
4429 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4430 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4431 				  bargs->pstart, bargs->pend);
4432 
4433 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4434 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4435 				  bargs->vstart, bargs->vend);
4436 
4437 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4438 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4439 
4440 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4441 		CHECK_APPEND_2ARG("limit=%u..%u,",
4442 				bargs->limit_min, bargs->limit_max);
4443 
4444 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4445 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4446 				  bargs->stripes_min, bargs->stripes_max);
4447 
4448 #undef CHECK_APPEND_2ARG
4449 #undef CHECK_APPEND_1ARG
4450 #undef CHECK_APPEND_NOARG
4451 
4452 out_overflow:
4453 
4454 	if (size_bp < size_buf)
4455 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4456 	else
4457 		buf[0] = '\0';
4458 }
4459 
4460 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4461 {
4462 	u32 size_buf = 1024;
4463 	char tmp_buf[192] = {'\0'};
4464 	char *buf;
4465 	char *bp;
4466 	u32 size_bp = size_buf;
4467 	int ret;
4468 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4469 
4470 	buf = kzalloc(size_buf, GFP_KERNEL);
4471 	if (!buf)
4472 		return;
4473 
4474 	bp = buf;
4475 
4476 #define CHECK_APPEND_1ARG(a, v1)					\
4477 	do {								\
4478 		ret = snprintf(bp, size_bp, (a), (v1));			\
4479 		if (ret < 0 || ret >= size_bp)				\
4480 			goto out_overflow;				\
4481 		size_bp -= ret;						\
4482 		bp += ret;						\
4483 	} while (0)
4484 
4485 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4486 		CHECK_APPEND_1ARG("%s", "-f ");
4487 
4488 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4489 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4490 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4491 	}
4492 
4493 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4494 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4495 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4496 	}
4497 
4498 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4499 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4500 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4501 	}
4502 
4503 #undef CHECK_APPEND_1ARG
4504 
4505 out_overflow:
4506 
4507 	if (size_bp < size_buf)
4508 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4509 	btrfs_info(fs_info, "balance: %s %s",
4510 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4511 		   "resume" : "start", buf);
4512 
4513 	kfree(buf);
4514 }
4515 
4516 /*
4517  * Should be called with balance mutexe held
4518  */
4519 int btrfs_balance(struct btrfs_fs_info *fs_info,
4520 		  struct btrfs_balance_control *bctl,
4521 		  struct btrfs_ioctl_balance_args *bargs)
4522 {
4523 	u64 meta_target, data_target;
4524 	u64 allowed;
4525 	int mixed = 0;
4526 	int ret;
4527 	u64 num_devices;
4528 	unsigned seq;
4529 	bool reducing_redundancy;
4530 	bool paused = false;
4531 	int i;
4532 
4533 	if (btrfs_fs_closing(fs_info) ||
4534 	    atomic_read(&fs_info->balance_pause_req) ||
4535 	    btrfs_should_cancel_balance(fs_info)) {
4536 		ret = -EINVAL;
4537 		goto out;
4538 	}
4539 
4540 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4541 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4542 		mixed = 1;
4543 
4544 	/*
4545 	 * In case of mixed groups both data and meta should be picked,
4546 	 * and identical options should be given for both of them.
4547 	 */
4548 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4549 	if (mixed && (bctl->flags & allowed)) {
4550 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4551 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4552 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4553 			btrfs_err(fs_info,
4554 	  "balance: mixed groups data and metadata options must be the same");
4555 			ret = -EINVAL;
4556 			goto out;
4557 		}
4558 	}
4559 
4560 	/*
4561 	 * rw_devices will not change at the moment, device add/delete/replace
4562 	 * are exclusive
4563 	 */
4564 	num_devices = fs_info->fs_devices->rw_devices;
4565 
4566 	/*
4567 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4568 	 * special bit for it, to make it easier to distinguish.  Thus we need
4569 	 * to set it manually, or balance would refuse the profile.
4570 	 */
4571 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4572 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4573 		if (num_devices >= btrfs_raid_array[i].devs_min)
4574 			allowed |= btrfs_raid_array[i].bg_flag;
4575 
4576 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4577 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4578 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4579 		ret = -EINVAL;
4580 		goto out;
4581 	}
4582 
4583 	/*
4584 	 * Allow to reduce metadata or system integrity only if force set for
4585 	 * profiles with redundancy (copies, parity)
4586 	 */
4587 	allowed = 0;
4588 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4589 		if (btrfs_raid_array[i].ncopies >= 2 ||
4590 		    btrfs_raid_array[i].tolerated_failures >= 1)
4591 			allowed |= btrfs_raid_array[i].bg_flag;
4592 	}
4593 	do {
4594 		seq = read_seqbegin(&fs_info->profiles_lock);
4595 
4596 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4597 		     (fs_info->avail_system_alloc_bits & allowed) &&
4598 		     !(bctl->sys.target & allowed)) ||
4599 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4600 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4601 		     !(bctl->meta.target & allowed)))
4602 			reducing_redundancy = true;
4603 		else
4604 			reducing_redundancy = false;
4605 
4606 		/* if we're not converting, the target field is uninitialized */
4607 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4608 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4609 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4610 			bctl->data.target : fs_info->avail_data_alloc_bits;
4611 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4612 
4613 	if (reducing_redundancy) {
4614 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4615 			btrfs_info(fs_info,
4616 			   "balance: force reducing metadata redundancy");
4617 		} else {
4618 			btrfs_err(fs_info,
4619 	"balance: reduces metadata redundancy, use --force if you want this");
4620 			ret = -EINVAL;
4621 			goto out;
4622 		}
4623 	}
4624 
4625 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4626 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4627 		btrfs_warn(fs_info,
4628 	"balance: metadata profile %s has lower redundancy than data profile %s",
4629 				btrfs_bg_type_to_raid_name(meta_target),
4630 				btrfs_bg_type_to_raid_name(data_target));
4631 	}
4632 
4633 	ret = insert_balance_item(fs_info, bctl);
4634 	if (ret && ret != -EEXIST)
4635 		goto out;
4636 
4637 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4638 		BUG_ON(ret == -EEXIST);
4639 		BUG_ON(fs_info->balance_ctl);
4640 		spin_lock(&fs_info->balance_lock);
4641 		fs_info->balance_ctl = bctl;
4642 		spin_unlock(&fs_info->balance_lock);
4643 	} else {
4644 		BUG_ON(ret != -EEXIST);
4645 		spin_lock(&fs_info->balance_lock);
4646 		update_balance_args(bctl);
4647 		spin_unlock(&fs_info->balance_lock);
4648 	}
4649 
4650 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4651 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4652 	describe_balance_start_or_resume(fs_info);
4653 	mutex_unlock(&fs_info->balance_mutex);
4654 
4655 	ret = __btrfs_balance(fs_info);
4656 
4657 	mutex_lock(&fs_info->balance_mutex);
4658 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4659 		btrfs_info(fs_info, "balance: paused");
4660 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4661 		paused = true;
4662 	}
4663 	/*
4664 	 * Balance can be canceled by:
4665 	 *
4666 	 * - Regular cancel request
4667 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4668 	 *
4669 	 * - Fatal signal to "btrfs" process
4670 	 *   Either the signal caught by wait_reserve_ticket() and callers
4671 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4672 	 *   got -ECANCELED.
4673 	 *   Either way, in this case balance_cancel_req = 0, and
4674 	 *   ret == -EINTR or ret == -ECANCELED.
4675 	 *
4676 	 * So here we only check the return value to catch canceled balance.
4677 	 */
4678 	else if (ret == -ECANCELED || ret == -EINTR)
4679 		btrfs_info(fs_info, "balance: canceled");
4680 	else
4681 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4682 
4683 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4684 
4685 	if (bargs) {
4686 		memset(bargs, 0, sizeof(*bargs));
4687 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4688 	}
4689 
4690 	/* We didn't pause, we can clean everything up. */
4691 	if (!paused) {
4692 		reset_balance_state(fs_info);
4693 		btrfs_exclop_finish(fs_info);
4694 	}
4695 
4696 	wake_up(&fs_info->balance_wait_q);
4697 
4698 	return ret;
4699 out:
4700 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4701 		reset_balance_state(fs_info);
4702 	else
4703 		kfree(bctl);
4704 	btrfs_exclop_finish(fs_info);
4705 
4706 	return ret;
4707 }
4708 
4709 static int balance_kthread(void *data)
4710 {
4711 	struct btrfs_fs_info *fs_info = data;
4712 	int ret = 0;
4713 
4714 	sb_start_write(fs_info->sb);
4715 	mutex_lock(&fs_info->balance_mutex);
4716 	if (fs_info->balance_ctl)
4717 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4718 	mutex_unlock(&fs_info->balance_mutex);
4719 	sb_end_write(fs_info->sb);
4720 
4721 	return ret;
4722 }
4723 
4724 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4725 {
4726 	struct task_struct *tsk;
4727 
4728 	mutex_lock(&fs_info->balance_mutex);
4729 	if (!fs_info->balance_ctl) {
4730 		mutex_unlock(&fs_info->balance_mutex);
4731 		return 0;
4732 	}
4733 	mutex_unlock(&fs_info->balance_mutex);
4734 
4735 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4736 		btrfs_info(fs_info, "balance: resume skipped");
4737 		return 0;
4738 	}
4739 
4740 	spin_lock(&fs_info->super_lock);
4741 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4742 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4743 	spin_unlock(&fs_info->super_lock);
4744 	/*
4745 	 * A ro->rw remount sequence should continue with the paused balance
4746 	 * regardless of who pauses it, system or the user as of now, so set
4747 	 * the resume flag.
4748 	 */
4749 	spin_lock(&fs_info->balance_lock);
4750 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4751 	spin_unlock(&fs_info->balance_lock);
4752 
4753 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4754 	return PTR_ERR_OR_ZERO(tsk);
4755 }
4756 
4757 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4758 {
4759 	struct btrfs_balance_control *bctl;
4760 	struct btrfs_balance_item *item;
4761 	struct btrfs_disk_balance_args disk_bargs;
4762 	struct btrfs_path *path;
4763 	struct extent_buffer *leaf;
4764 	struct btrfs_key key;
4765 	int ret;
4766 
4767 	path = btrfs_alloc_path();
4768 	if (!path)
4769 		return -ENOMEM;
4770 
4771 	key.objectid = BTRFS_BALANCE_OBJECTID;
4772 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4773 	key.offset = 0;
4774 
4775 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4776 	if (ret < 0)
4777 		goto out;
4778 	if (ret > 0) { /* ret = -ENOENT; */
4779 		ret = 0;
4780 		goto out;
4781 	}
4782 
4783 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4784 	if (!bctl) {
4785 		ret = -ENOMEM;
4786 		goto out;
4787 	}
4788 
4789 	leaf = path->nodes[0];
4790 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4791 
4792 	bctl->flags = btrfs_balance_flags(leaf, item);
4793 	bctl->flags |= BTRFS_BALANCE_RESUME;
4794 
4795 	btrfs_balance_data(leaf, item, &disk_bargs);
4796 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4797 	btrfs_balance_meta(leaf, item, &disk_bargs);
4798 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4799 	btrfs_balance_sys(leaf, item, &disk_bargs);
4800 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4801 
4802 	/*
4803 	 * This should never happen, as the paused balance state is recovered
4804 	 * during mount without any chance of other exclusive ops to collide.
4805 	 *
4806 	 * This gives the exclusive op status to balance and keeps in paused
4807 	 * state until user intervention (cancel or umount). If the ownership
4808 	 * cannot be assigned, show a message but do not fail. The balance
4809 	 * is in a paused state and must have fs_info::balance_ctl properly
4810 	 * set up.
4811 	 */
4812 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4813 		btrfs_warn(fs_info,
4814 	"balance: cannot set exclusive op status, resume manually");
4815 
4816 	btrfs_release_path(path);
4817 
4818 	mutex_lock(&fs_info->balance_mutex);
4819 	BUG_ON(fs_info->balance_ctl);
4820 	spin_lock(&fs_info->balance_lock);
4821 	fs_info->balance_ctl = bctl;
4822 	spin_unlock(&fs_info->balance_lock);
4823 	mutex_unlock(&fs_info->balance_mutex);
4824 out:
4825 	btrfs_free_path(path);
4826 	return ret;
4827 }
4828 
4829 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4830 {
4831 	int ret = 0;
4832 
4833 	mutex_lock(&fs_info->balance_mutex);
4834 	if (!fs_info->balance_ctl) {
4835 		mutex_unlock(&fs_info->balance_mutex);
4836 		return -ENOTCONN;
4837 	}
4838 
4839 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4840 		atomic_inc(&fs_info->balance_pause_req);
4841 		mutex_unlock(&fs_info->balance_mutex);
4842 
4843 		wait_event(fs_info->balance_wait_q,
4844 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4845 
4846 		mutex_lock(&fs_info->balance_mutex);
4847 		/* we are good with balance_ctl ripped off from under us */
4848 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4849 		atomic_dec(&fs_info->balance_pause_req);
4850 	} else {
4851 		ret = -ENOTCONN;
4852 	}
4853 
4854 	mutex_unlock(&fs_info->balance_mutex);
4855 	return ret;
4856 }
4857 
4858 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4859 {
4860 	mutex_lock(&fs_info->balance_mutex);
4861 	if (!fs_info->balance_ctl) {
4862 		mutex_unlock(&fs_info->balance_mutex);
4863 		return -ENOTCONN;
4864 	}
4865 
4866 	/*
4867 	 * A paused balance with the item stored on disk can be resumed at
4868 	 * mount time if the mount is read-write. Otherwise it's still paused
4869 	 * and we must not allow cancelling as it deletes the item.
4870 	 */
4871 	if (sb_rdonly(fs_info->sb)) {
4872 		mutex_unlock(&fs_info->balance_mutex);
4873 		return -EROFS;
4874 	}
4875 
4876 	atomic_inc(&fs_info->balance_cancel_req);
4877 	/*
4878 	 * if we are running just wait and return, balance item is
4879 	 * deleted in btrfs_balance in this case
4880 	 */
4881 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4882 		mutex_unlock(&fs_info->balance_mutex);
4883 		wait_event(fs_info->balance_wait_q,
4884 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4885 		mutex_lock(&fs_info->balance_mutex);
4886 	} else {
4887 		mutex_unlock(&fs_info->balance_mutex);
4888 		/*
4889 		 * Lock released to allow other waiters to continue, we'll
4890 		 * reexamine the status again.
4891 		 */
4892 		mutex_lock(&fs_info->balance_mutex);
4893 
4894 		if (fs_info->balance_ctl) {
4895 			reset_balance_state(fs_info);
4896 			btrfs_exclop_finish(fs_info);
4897 			btrfs_info(fs_info, "balance: canceled");
4898 		}
4899 	}
4900 
4901 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4902 	atomic_dec(&fs_info->balance_cancel_req);
4903 	mutex_unlock(&fs_info->balance_mutex);
4904 	return 0;
4905 }
4906 
4907 /*
4908  * shrinking a device means finding all of the device extents past
4909  * the new size, and then following the back refs to the chunks.
4910  * The chunk relocation code actually frees the device extent
4911  */
4912 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4913 {
4914 	struct btrfs_fs_info *fs_info = device->fs_info;
4915 	struct btrfs_root *root = fs_info->dev_root;
4916 	struct btrfs_trans_handle *trans;
4917 	struct btrfs_dev_extent *dev_extent = NULL;
4918 	struct btrfs_path *path;
4919 	u64 length;
4920 	u64 chunk_offset;
4921 	int ret;
4922 	int slot;
4923 	int failed = 0;
4924 	bool retried = false;
4925 	struct extent_buffer *l;
4926 	struct btrfs_key key;
4927 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4928 	u64 old_total = btrfs_super_total_bytes(super_copy);
4929 	u64 old_size = btrfs_device_get_total_bytes(device);
4930 	u64 diff;
4931 	u64 start;
4932 	u64 free_diff = 0;
4933 
4934 	new_size = round_down(new_size, fs_info->sectorsize);
4935 	start = new_size;
4936 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4937 
4938 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4939 		return -EINVAL;
4940 
4941 	path = btrfs_alloc_path();
4942 	if (!path)
4943 		return -ENOMEM;
4944 
4945 	path->reada = READA_BACK;
4946 
4947 	trans = btrfs_start_transaction(root, 0);
4948 	if (IS_ERR(trans)) {
4949 		btrfs_free_path(path);
4950 		return PTR_ERR(trans);
4951 	}
4952 
4953 	mutex_lock(&fs_info->chunk_mutex);
4954 
4955 	btrfs_device_set_total_bytes(device, new_size);
4956 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4957 		device->fs_devices->total_rw_bytes -= diff;
4958 
4959 		/*
4960 		 * The new free_chunk_space is new_size - used, so we have to
4961 		 * subtract the delta of the old free_chunk_space which included
4962 		 * old_size - used.  If used > new_size then just subtract this
4963 		 * entire device's free space.
4964 		 */
4965 		if (device->bytes_used < new_size)
4966 			free_diff = (old_size - device->bytes_used) -
4967 				    (new_size - device->bytes_used);
4968 		else
4969 			free_diff = old_size - device->bytes_used;
4970 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4971 	}
4972 
4973 	/*
4974 	 * Once the device's size has been set to the new size, ensure all
4975 	 * in-memory chunks are synced to disk so that the loop below sees them
4976 	 * and relocates them accordingly.
4977 	 */
4978 	if (contains_pending_extent(device, &start, diff)) {
4979 		mutex_unlock(&fs_info->chunk_mutex);
4980 		ret = btrfs_commit_transaction(trans);
4981 		if (ret)
4982 			goto done;
4983 	} else {
4984 		mutex_unlock(&fs_info->chunk_mutex);
4985 		btrfs_end_transaction(trans);
4986 	}
4987 
4988 again:
4989 	key.objectid = device->devid;
4990 	key.offset = (u64)-1;
4991 	key.type = BTRFS_DEV_EXTENT_KEY;
4992 
4993 	do {
4994 		mutex_lock(&fs_info->reclaim_bgs_lock);
4995 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4996 		if (ret < 0) {
4997 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4998 			goto done;
4999 		}
5000 
5001 		ret = btrfs_previous_item(root, path, 0, key.type);
5002 		if (ret) {
5003 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5004 			if (ret < 0)
5005 				goto done;
5006 			ret = 0;
5007 			btrfs_release_path(path);
5008 			break;
5009 		}
5010 
5011 		l = path->nodes[0];
5012 		slot = path->slots[0];
5013 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5014 
5015 		if (key.objectid != device->devid) {
5016 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5017 			btrfs_release_path(path);
5018 			break;
5019 		}
5020 
5021 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5022 		length = btrfs_dev_extent_length(l, dev_extent);
5023 
5024 		if (key.offset + length <= new_size) {
5025 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5026 			btrfs_release_path(path);
5027 			break;
5028 		}
5029 
5030 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5031 		btrfs_release_path(path);
5032 
5033 		/*
5034 		 * We may be relocating the only data chunk we have,
5035 		 * which could potentially end up with losing data's
5036 		 * raid profile, so lets allocate an empty one in
5037 		 * advance.
5038 		 */
5039 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5040 		if (ret < 0) {
5041 			mutex_unlock(&fs_info->reclaim_bgs_lock);
5042 			goto done;
5043 		}
5044 
5045 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5046 		mutex_unlock(&fs_info->reclaim_bgs_lock);
5047 		if (ret == -ENOSPC) {
5048 			failed++;
5049 		} else if (ret) {
5050 			if (ret == -ETXTBSY) {
5051 				btrfs_warn(fs_info,
5052 		   "could not shrink block group %llu due to active swapfile",
5053 					   chunk_offset);
5054 			}
5055 			goto done;
5056 		}
5057 	} while (key.offset-- > 0);
5058 
5059 	if (failed && !retried) {
5060 		failed = 0;
5061 		retried = true;
5062 		goto again;
5063 	} else if (failed && retried) {
5064 		ret = -ENOSPC;
5065 		goto done;
5066 	}
5067 
5068 	/* Shrinking succeeded, else we would be at "done". */
5069 	trans = btrfs_start_transaction(root, 0);
5070 	if (IS_ERR(trans)) {
5071 		ret = PTR_ERR(trans);
5072 		goto done;
5073 	}
5074 
5075 	mutex_lock(&fs_info->chunk_mutex);
5076 	/* Clear all state bits beyond the shrunk device size */
5077 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5078 			  CHUNK_STATE_MASK);
5079 
5080 	btrfs_device_set_disk_total_bytes(device, new_size);
5081 	if (list_empty(&device->post_commit_list))
5082 		list_add_tail(&device->post_commit_list,
5083 			      &trans->transaction->dev_update_list);
5084 
5085 	WARN_ON(diff > old_total);
5086 	btrfs_set_super_total_bytes(super_copy,
5087 			round_down(old_total - diff, fs_info->sectorsize));
5088 	mutex_unlock(&fs_info->chunk_mutex);
5089 
5090 	btrfs_reserve_chunk_metadata(trans, false);
5091 	/* Now btrfs_update_device() will change the on-disk size. */
5092 	ret = btrfs_update_device(trans, device);
5093 	btrfs_trans_release_chunk_metadata(trans);
5094 	if (ret < 0) {
5095 		btrfs_abort_transaction(trans, ret);
5096 		btrfs_end_transaction(trans);
5097 	} else {
5098 		ret = btrfs_commit_transaction(trans);
5099 	}
5100 done:
5101 	btrfs_free_path(path);
5102 	if (ret) {
5103 		mutex_lock(&fs_info->chunk_mutex);
5104 		btrfs_device_set_total_bytes(device, old_size);
5105 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5106 			device->fs_devices->total_rw_bytes += diff;
5107 			atomic64_add(free_diff, &fs_info->free_chunk_space);
5108 		}
5109 		mutex_unlock(&fs_info->chunk_mutex);
5110 	}
5111 	return ret;
5112 }
5113 
5114 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5115 			   struct btrfs_key *key,
5116 			   struct btrfs_chunk *chunk, int item_size)
5117 {
5118 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5119 	struct btrfs_disk_key disk_key;
5120 	u32 array_size;
5121 	u8 *ptr;
5122 
5123 	lockdep_assert_held(&fs_info->chunk_mutex);
5124 
5125 	array_size = btrfs_super_sys_array_size(super_copy);
5126 	if (array_size + item_size + sizeof(disk_key)
5127 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5128 		return -EFBIG;
5129 
5130 	ptr = super_copy->sys_chunk_array + array_size;
5131 	btrfs_cpu_key_to_disk(&disk_key, key);
5132 	memcpy(ptr, &disk_key, sizeof(disk_key));
5133 	ptr += sizeof(disk_key);
5134 	memcpy(ptr, chunk, item_size);
5135 	item_size += sizeof(disk_key);
5136 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5137 
5138 	return 0;
5139 }
5140 
5141 /*
5142  * sort the devices in descending order by max_avail, total_avail
5143  */
5144 static int btrfs_cmp_device_info(const void *a, const void *b)
5145 {
5146 	const struct btrfs_device_info *di_a = a;
5147 	const struct btrfs_device_info *di_b = b;
5148 
5149 	if (di_a->max_avail > di_b->max_avail)
5150 		return -1;
5151 	if (di_a->max_avail < di_b->max_avail)
5152 		return 1;
5153 	if (di_a->total_avail > di_b->total_avail)
5154 		return -1;
5155 	if (di_a->total_avail < di_b->total_avail)
5156 		return 1;
5157 	return 0;
5158 }
5159 
5160 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5161 {
5162 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5163 		return;
5164 
5165 	btrfs_set_fs_incompat(info, RAID56);
5166 }
5167 
5168 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5169 {
5170 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5171 		return;
5172 
5173 	btrfs_set_fs_incompat(info, RAID1C34);
5174 }
5175 
5176 /*
5177  * Structure used internally for btrfs_create_chunk() function.
5178  * Wraps needed parameters.
5179  */
5180 struct alloc_chunk_ctl {
5181 	u64 start;
5182 	u64 type;
5183 	/* Total number of stripes to allocate */
5184 	int num_stripes;
5185 	/* sub_stripes info for map */
5186 	int sub_stripes;
5187 	/* Stripes per device */
5188 	int dev_stripes;
5189 	/* Maximum number of devices to use */
5190 	int devs_max;
5191 	/* Minimum number of devices to use */
5192 	int devs_min;
5193 	/* ndevs has to be a multiple of this */
5194 	int devs_increment;
5195 	/* Number of copies */
5196 	int ncopies;
5197 	/* Number of stripes worth of bytes to store parity information */
5198 	int nparity;
5199 	u64 max_stripe_size;
5200 	u64 max_chunk_size;
5201 	u64 dev_extent_min;
5202 	u64 stripe_size;
5203 	u64 chunk_size;
5204 	int ndevs;
5205 };
5206 
5207 static void init_alloc_chunk_ctl_policy_regular(
5208 				struct btrfs_fs_devices *fs_devices,
5209 				struct alloc_chunk_ctl *ctl)
5210 {
5211 	struct btrfs_space_info *space_info;
5212 
5213 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5214 	ASSERT(space_info);
5215 
5216 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5217 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5218 
5219 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5220 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5221 
5222 	/* We don't want a chunk larger than 10% of writable space */
5223 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5224 				  ctl->max_chunk_size);
5225 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5226 }
5227 
5228 static void init_alloc_chunk_ctl_policy_zoned(
5229 				      struct btrfs_fs_devices *fs_devices,
5230 				      struct alloc_chunk_ctl *ctl)
5231 {
5232 	u64 zone_size = fs_devices->fs_info->zone_size;
5233 	u64 limit;
5234 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5235 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5236 	u64 min_chunk_size = min_data_stripes * zone_size;
5237 	u64 type = ctl->type;
5238 
5239 	ctl->max_stripe_size = zone_size;
5240 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5241 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5242 						 zone_size);
5243 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5244 		ctl->max_chunk_size = ctl->max_stripe_size;
5245 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5246 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5247 		ctl->devs_max = min_t(int, ctl->devs_max,
5248 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5249 	} else {
5250 		BUG();
5251 	}
5252 
5253 	/* We don't want a chunk larger than 10% of writable space */
5254 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5255 			       zone_size),
5256 		    min_chunk_size);
5257 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5258 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5259 }
5260 
5261 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5262 				 struct alloc_chunk_ctl *ctl)
5263 {
5264 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5265 
5266 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5267 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5268 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5269 	if (!ctl->devs_max)
5270 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5271 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5272 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5273 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5274 	ctl->nparity = btrfs_raid_array[index].nparity;
5275 	ctl->ndevs = 0;
5276 
5277 	switch (fs_devices->chunk_alloc_policy) {
5278 	case BTRFS_CHUNK_ALLOC_REGULAR:
5279 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5280 		break;
5281 	case BTRFS_CHUNK_ALLOC_ZONED:
5282 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5283 		break;
5284 	default:
5285 		BUG();
5286 	}
5287 }
5288 
5289 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5290 			      struct alloc_chunk_ctl *ctl,
5291 			      struct btrfs_device_info *devices_info)
5292 {
5293 	struct btrfs_fs_info *info = fs_devices->fs_info;
5294 	struct btrfs_device *device;
5295 	u64 total_avail;
5296 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5297 	int ret;
5298 	int ndevs = 0;
5299 	u64 max_avail;
5300 	u64 dev_offset;
5301 
5302 	/*
5303 	 * in the first pass through the devices list, we gather information
5304 	 * about the available holes on each device.
5305 	 */
5306 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5307 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5308 			WARN(1, KERN_ERR
5309 			       "BTRFS: read-only device in alloc_list\n");
5310 			continue;
5311 		}
5312 
5313 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5314 					&device->dev_state) ||
5315 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5316 			continue;
5317 
5318 		if (device->total_bytes > device->bytes_used)
5319 			total_avail = device->total_bytes - device->bytes_used;
5320 		else
5321 			total_avail = 0;
5322 
5323 		/* If there is no space on this device, skip it. */
5324 		if (total_avail < ctl->dev_extent_min)
5325 			continue;
5326 
5327 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5328 					   &max_avail);
5329 		if (ret && ret != -ENOSPC)
5330 			return ret;
5331 
5332 		if (ret == 0)
5333 			max_avail = dev_extent_want;
5334 
5335 		if (max_avail < ctl->dev_extent_min) {
5336 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5337 				btrfs_debug(info,
5338 			"%s: devid %llu has no free space, have=%llu want=%llu",
5339 					    __func__, device->devid, max_avail,
5340 					    ctl->dev_extent_min);
5341 			continue;
5342 		}
5343 
5344 		if (ndevs == fs_devices->rw_devices) {
5345 			WARN(1, "%s: found more than %llu devices\n",
5346 			     __func__, fs_devices->rw_devices);
5347 			break;
5348 		}
5349 		devices_info[ndevs].dev_offset = dev_offset;
5350 		devices_info[ndevs].max_avail = max_avail;
5351 		devices_info[ndevs].total_avail = total_avail;
5352 		devices_info[ndevs].dev = device;
5353 		++ndevs;
5354 	}
5355 	ctl->ndevs = ndevs;
5356 
5357 	/*
5358 	 * now sort the devices by hole size / available space
5359 	 */
5360 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5361 	     btrfs_cmp_device_info, NULL);
5362 
5363 	return 0;
5364 }
5365 
5366 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5367 				      struct btrfs_device_info *devices_info)
5368 {
5369 	/* Number of stripes that count for block group size */
5370 	int data_stripes;
5371 
5372 	/*
5373 	 * The primary goal is to maximize the number of stripes, so use as
5374 	 * many devices as possible, even if the stripes are not maximum sized.
5375 	 *
5376 	 * The DUP profile stores more than one stripe per device, the
5377 	 * max_avail is the total size so we have to adjust.
5378 	 */
5379 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5380 				   ctl->dev_stripes);
5381 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5382 
5383 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5384 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5385 
5386 	/*
5387 	 * Use the number of data stripes to figure out how big this chunk is
5388 	 * really going to be in terms of logical address space, and compare
5389 	 * that answer with the max chunk size. If it's higher, we try to
5390 	 * reduce stripe_size.
5391 	 */
5392 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5393 		/*
5394 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5395 		 * then use it, unless it ends up being even bigger than the
5396 		 * previous value we had already.
5397 		 */
5398 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5399 							data_stripes), SZ_16M),
5400 				       ctl->stripe_size);
5401 	}
5402 
5403 	/* Stripe size should not go beyond 1G. */
5404 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5405 
5406 	/* Align to BTRFS_STRIPE_LEN */
5407 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5408 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5409 
5410 	return 0;
5411 }
5412 
5413 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5414 				    struct btrfs_device_info *devices_info)
5415 {
5416 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5417 	/* Number of stripes that count for block group size */
5418 	int data_stripes;
5419 
5420 	/*
5421 	 * It should hold because:
5422 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5423 	 */
5424 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5425 
5426 	ctl->stripe_size = zone_size;
5427 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5428 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5429 
5430 	/* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5431 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5432 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5433 					     ctl->stripe_size) + ctl->nparity,
5434 				     ctl->dev_stripes);
5435 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5436 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5437 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5438 	}
5439 
5440 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5441 
5442 	return 0;
5443 }
5444 
5445 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5446 			      struct alloc_chunk_ctl *ctl,
5447 			      struct btrfs_device_info *devices_info)
5448 {
5449 	struct btrfs_fs_info *info = fs_devices->fs_info;
5450 
5451 	/*
5452 	 * Round down to number of usable stripes, devs_increment can be any
5453 	 * number so we can't use round_down() that requires power of 2, while
5454 	 * rounddown is safe.
5455 	 */
5456 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5457 
5458 	if (ctl->ndevs < ctl->devs_min) {
5459 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5460 			btrfs_debug(info,
5461 	"%s: not enough devices with free space: have=%d minimum required=%d",
5462 				    __func__, ctl->ndevs, ctl->devs_min);
5463 		}
5464 		return -ENOSPC;
5465 	}
5466 
5467 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5468 
5469 	switch (fs_devices->chunk_alloc_policy) {
5470 	case BTRFS_CHUNK_ALLOC_REGULAR:
5471 		return decide_stripe_size_regular(ctl, devices_info);
5472 	case BTRFS_CHUNK_ALLOC_ZONED:
5473 		return decide_stripe_size_zoned(ctl, devices_info);
5474 	default:
5475 		BUG();
5476 	}
5477 }
5478 
5479 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5480 {
5481 	for (int i = 0; i < map->num_stripes; i++) {
5482 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5483 		struct btrfs_device *device = stripe->dev;
5484 
5485 		set_extent_bit(&device->alloc_state, stripe->physical,
5486 			       stripe->physical + map->stripe_size - 1,
5487 			       bits | EXTENT_NOWAIT, NULL);
5488 	}
5489 }
5490 
5491 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5492 {
5493 	for (int i = 0; i < map->num_stripes; i++) {
5494 		struct btrfs_io_stripe *stripe = &map->stripes[i];
5495 		struct btrfs_device *device = stripe->dev;
5496 
5497 		__clear_extent_bit(&device->alloc_state, stripe->physical,
5498 				   stripe->physical + map->stripe_size - 1,
5499 				   bits | EXTENT_NOWAIT,
5500 				   NULL, NULL);
5501 	}
5502 }
5503 
5504 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5505 {
5506 	write_lock(&fs_info->mapping_tree_lock);
5507 	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5508 	RB_CLEAR_NODE(&map->rb_node);
5509 	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5510 	write_unlock(&fs_info->mapping_tree_lock);
5511 
5512 	/* Once for the tree reference. */
5513 	btrfs_free_chunk_map(map);
5514 }
5515 
5516 EXPORT_FOR_TESTS
5517 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5518 {
5519 	struct rb_node **p;
5520 	struct rb_node *parent = NULL;
5521 	bool leftmost = true;
5522 
5523 	write_lock(&fs_info->mapping_tree_lock);
5524 	p = &fs_info->mapping_tree.rb_root.rb_node;
5525 	while (*p) {
5526 		struct btrfs_chunk_map *entry;
5527 
5528 		parent = *p;
5529 		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5530 
5531 		if (map->start < entry->start) {
5532 			p = &(*p)->rb_left;
5533 		} else if (map->start > entry->start) {
5534 			p = &(*p)->rb_right;
5535 			leftmost = false;
5536 		} else {
5537 			write_unlock(&fs_info->mapping_tree_lock);
5538 			return -EEXIST;
5539 		}
5540 	}
5541 	rb_link_node(&map->rb_node, parent, p);
5542 	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5543 	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5544 	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5545 	write_unlock(&fs_info->mapping_tree_lock);
5546 
5547 	return 0;
5548 }
5549 
5550 EXPORT_FOR_TESTS
5551 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5552 {
5553 	struct btrfs_chunk_map *map;
5554 
5555 	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5556 	if (!map)
5557 		return NULL;
5558 
5559 	refcount_set(&map->refs, 1);
5560 	RB_CLEAR_NODE(&map->rb_node);
5561 
5562 	return map;
5563 }
5564 
5565 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5566 			struct alloc_chunk_ctl *ctl,
5567 			struct btrfs_device_info *devices_info)
5568 {
5569 	struct btrfs_fs_info *info = trans->fs_info;
5570 	struct btrfs_chunk_map *map;
5571 	struct btrfs_block_group *block_group;
5572 	u64 start = ctl->start;
5573 	u64 type = ctl->type;
5574 	int ret;
5575 
5576 	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5577 	if (!map)
5578 		return ERR_PTR(-ENOMEM);
5579 
5580 	map->start = start;
5581 	map->chunk_len = ctl->chunk_size;
5582 	map->stripe_size = ctl->stripe_size;
5583 	map->type = type;
5584 	map->io_align = BTRFS_STRIPE_LEN;
5585 	map->io_width = BTRFS_STRIPE_LEN;
5586 	map->sub_stripes = ctl->sub_stripes;
5587 	map->num_stripes = ctl->num_stripes;
5588 
5589 	for (int i = 0; i < ctl->ndevs; i++) {
5590 		for (int j = 0; j < ctl->dev_stripes; j++) {
5591 			int s = i * ctl->dev_stripes + j;
5592 			map->stripes[s].dev = devices_info[i].dev;
5593 			map->stripes[s].physical = devices_info[i].dev_offset +
5594 						   j * ctl->stripe_size;
5595 		}
5596 	}
5597 
5598 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5599 
5600 	ret = btrfs_add_chunk_map(info, map);
5601 	if (ret) {
5602 		btrfs_free_chunk_map(map);
5603 		return ERR_PTR(ret);
5604 	}
5605 
5606 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5607 	if (IS_ERR(block_group)) {
5608 		btrfs_remove_chunk_map(info, map);
5609 		return block_group;
5610 	}
5611 
5612 	for (int i = 0; i < map->num_stripes; i++) {
5613 		struct btrfs_device *dev = map->stripes[i].dev;
5614 
5615 		btrfs_device_set_bytes_used(dev,
5616 					    dev->bytes_used + ctl->stripe_size);
5617 		if (list_empty(&dev->post_commit_list))
5618 			list_add_tail(&dev->post_commit_list,
5619 				      &trans->transaction->dev_update_list);
5620 	}
5621 
5622 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5623 		     &info->free_chunk_space);
5624 
5625 	check_raid56_incompat_flag(info, type);
5626 	check_raid1c34_incompat_flag(info, type);
5627 
5628 	return block_group;
5629 }
5630 
5631 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5632 					    u64 type)
5633 {
5634 	struct btrfs_fs_info *info = trans->fs_info;
5635 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5636 	struct btrfs_device_info *devices_info = NULL;
5637 	struct alloc_chunk_ctl ctl;
5638 	struct btrfs_block_group *block_group;
5639 	int ret;
5640 
5641 	lockdep_assert_held(&info->chunk_mutex);
5642 
5643 	if (!alloc_profile_is_valid(type, 0)) {
5644 		ASSERT(0);
5645 		return ERR_PTR(-EINVAL);
5646 	}
5647 
5648 	if (list_empty(&fs_devices->alloc_list)) {
5649 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5650 			btrfs_debug(info, "%s: no writable device", __func__);
5651 		return ERR_PTR(-ENOSPC);
5652 	}
5653 
5654 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5655 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5656 		ASSERT(0);
5657 		return ERR_PTR(-EINVAL);
5658 	}
5659 
5660 	ctl.start = find_next_chunk(info);
5661 	ctl.type = type;
5662 	init_alloc_chunk_ctl(fs_devices, &ctl);
5663 
5664 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5665 			       GFP_NOFS);
5666 	if (!devices_info)
5667 		return ERR_PTR(-ENOMEM);
5668 
5669 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5670 	if (ret < 0) {
5671 		block_group = ERR_PTR(ret);
5672 		goto out;
5673 	}
5674 
5675 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5676 	if (ret < 0) {
5677 		block_group = ERR_PTR(ret);
5678 		goto out;
5679 	}
5680 
5681 	block_group = create_chunk(trans, &ctl, devices_info);
5682 
5683 out:
5684 	kfree(devices_info);
5685 	return block_group;
5686 }
5687 
5688 /*
5689  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5690  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5691  * chunks.
5692  *
5693  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5694  * phases.
5695  */
5696 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5697 				     struct btrfs_block_group *bg)
5698 {
5699 	struct btrfs_fs_info *fs_info = trans->fs_info;
5700 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5701 	struct btrfs_key key;
5702 	struct btrfs_chunk *chunk;
5703 	struct btrfs_stripe *stripe;
5704 	struct btrfs_chunk_map *map;
5705 	size_t item_size;
5706 	int i;
5707 	int ret;
5708 
5709 	/*
5710 	 * We take the chunk_mutex for 2 reasons:
5711 	 *
5712 	 * 1) Updates and insertions in the chunk btree must be done while holding
5713 	 *    the chunk_mutex, as well as updating the system chunk array in the
5714 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5715 	 *    details;
5716 	 *
5717 	 * 2) To prevent races with the final phase of a device replace operation
5718 	 *    that replaces the device object associated with the map's stripes,
5719 	 *    because the device object's id can change at any time during that
5720 	 *    final phase of the device replace operation
5721 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5722 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5723 	 *    which would cause a failure when updating the device item, which does
5724 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5725 	 *    Here we can't use the device_list_mutex because our caller already
5726 	 *    has locked the chunk_mutex, and the final phase of device replace
5727 	 *    acquires both mutexes - first the device_list_mutex and then the
5728 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5729 	 *    concurrent device replace.
5730 	 */
5731 	lockdep_assert_held(&fs_info->chunk_mutex);
5732 
5733 	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5734 	if (IS_ERR(map)) {
5735 		ret = PTR_ERR(map);
5736 		btrfs_abort_transaction(trans, ret);
5737 		return ret;
5738 	}
5739 
5740 	item_size = btrfs_chunk_item_size(map->num_stripes);
5741 
5742 	chunk = kzalloc(item_size, GFP_NOFS);
5743 	if (!chunk) {
5744 		ret = -ENOMEM;
5745 		btrfs_abort_transaction(trans, ret);
5746 		goto out;
5747 	}
5748 
5749 	for (i = 0; i < map->num_stripes; i++) {
5750 		struct btrfs_device *device = map->stripes[i].dev;
5751 
5752 		ret = btrfs_update_device(trans, device);
5753 		if (ret)
5754 			goto out;
5755 	}
5756 
5757 	stripe = &chunk->stripe;
5758 	for (i = 0; i < map->num_stripes; i++) {
5759 		struct btrfs_device *device = map->stripes[i].dev;
5760 		const u64 dev_offset = map->stripes[i].physical;
5761 
5762 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5763 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5764 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5765 		stripe++;
5766 	}
5767 
5768 	btrfs_set_stack_chunk_length(chunk, bg->length);
5769 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5770 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5771 	btrfs_set_stack_chunk_type(chunk, map->type);
5772 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5773 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5774 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5775 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5776 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5777 
5778 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5779 	key.type = BTRFS_CHUNK_ITEM_KEY;
5780 	key.offset = bg->start;
5781 
5782 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5783 	if (ret)
5784 		goto out;
5785 
5786 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5787 
5788 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5789 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5790 		if (ret)
5791 			goto out;
5792 	}
5793 
5794 out:
5795 	kfree(chunk);
5796 	btrfs_free_chunk_map(map);
5797 	return ret;
5798 }
5799 
5800 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5801 {
5802 	struct btrfs_fs_info *fs_info = trans->fs_info;
5803 	u64 alloc_profile;
5804 	struct btrfs_block_group *meta_bg;
5805 	struct btrfs_block_group *sys_bg;
5806 
5807 	/*
5808 	 * When adding a new device for sprouting, the seed device is read-only
5809 	 * so we must first allocate a metadata and a system chunk. But before
5810 	 * adding the block group items to the extent, device and chunk btrees,
5811 	 * we must first:
5812 	 *
5813 	 * 1) Create both chunks without doing any changes to the btrees, as
5814 	 *    otherwise we would get -ENOSPC since the block groups from the
5815 	 *    seed device are read-only;
5816 	 *
5817 	 * 2) Add the device item for the new sprout device - finishing the setup
5818 	 *    of a new block group requires updating the device item in the chunk
5819 	 *    btree, so it must exist when we attempt to do it. The previous step
5820 	 *    ensures this does not fail with -ENOSPC.
5821 	 *
5822 	 * After that we can add the block group items to their btrees:
5823 	 * update existing device item in the chunk btree, add a new block group
5824 	 * item to the extent btree, add a new chunk item to the chunk btree and
5825 	 * finally add the new device extent items to the devices btree.
5826 	 */
5827 
5828 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5829 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5830 	if (IS_ERR(meta_bg))
5831 		return PTR_ERR(meta_bg);
5832 
5833 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5834 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5835 	if (IS_ERR(sys_bg))
5836 		return PTR_ERR(sys_bg);
5837 
5838 	return 0;
5839 }
5840 
5841 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5842 {
5843 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5844 
5845 	return btrfs_raid_array[index].tolerated_failures;
5846 }
5847 
5848 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5849 {
5850 	struct btrfs_chunk_map *map;
5851 	int miss_ndevs = 0;
5852 	int i;
5853 	bool ret = true;
5854 
5855 	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5856 	if (IS_ERR(map))
5857 		return false;
5858 
5859 	for (i = 0; i < map->num_stripes; i++) {
5860 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5861 					&map->stripes[i].dev->dev_state)) {
5862 			miss_ndevs++;
5863 			continue;
5864 		}
5865 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5866 					&map->stripes[i].dev->dev_state)) {
5867 			ret = false;
5868 			goto end;
5869 		}
5870 	}
5871 
5872 	/*
5873 	 * If the number of missing devices is larger than max errors, we can
5874 	 * not write the data into that chunk successfully.
5875 	 */
5876 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5877 		ret = false;
5878 end:
5879 	btrfs_free_chunk_map(map);
5880 	return ret;
5881 }
5882 
5883 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5884 {
5885 	write_lock(&fs_info->mapping_tree_lock);
5886 	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5887 		struct btrfs_chunk_map *map;
5888 		struct rb_node *node;
5889 
5890 		node = rb_first_cached(&fs_info->mapping_tree);
5891 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5892 		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5893 		RB_CLEAR_NODE(&map->rb_node);
5894 		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5895 		/* Once for the tree ref. */
5896 		btrfs_free_chunk_map(map);
5897 		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5898 	}
5899 	write_unlock(&fs_info->mapping_tree_lock);
5900 }
5901 
5902 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5903 {
5904 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5905 
5906 	if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5907 		return 2;
5908 
5909 	/*
5910 	 * There could be two corrupted data stripes, we need to loop retry in
5911 	 * order to rebuild the correct data.
5912 	 *
5913 	 * Fail a stripe at a time on every retry except the stripe under
5914 	 * reconstruction.
5915 	 */
5916 	if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5917 		return map->num_stripes;
5918 
5919 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5920 	return btrfs_raid_array[index].ncopies;
5921 }
5922 
5923 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5924 {
5925 	struct btrfs_chunk_map *map;
5926 	int ret;
5927 
5928 	map = btrfs_get_chunk_map(fs_info, logical, len);
5929 	if (IS_ERR(map))
5930 		/*
5931 		 * We could return errors for these cases, but that could get
5932 		 * ugly and we'd probably do the same thing which is just not do
5933 		 * anything else and exit, so return 1 so the callers don't try
5934 		 * to use other copies.
5935 		 */
5936 		return 1;
5937 
5938 	ret = btrfs_chunk_map_num_copies(map);
5939 	btrfs_free_chunk_map(map);
5940 	return ret;
5941 }
5942 
5943 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5944 				    u64 logical)
5945 {
5946 	struct btrfs_chunk_map *map;
5947 	unsigned long len = fs_info->sectorsize;
5948 
5949 	if (!btrfs_fs_incompat(fs_info, RAID56))
5950 		return len;
5951 
5952 	map = btrfs_get_chunk_map(fs_info, logical, len);
5953 
5954 	if (!WARN_ON(IS_ERR(map))) {
5955 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5956 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5957 		btrfs_free_chunk_map(map);
5958 	}
5959 	return len;
5960 }
5961 
5962 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5963 			    struct btrfs_chunk_map *map, int first,
5964 			    int dev_replace_is_ongoing)
5965 {
5966 	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5967 	int i;
5968 	int num_stripes;
5969 	int preferred_mirror;
5970 	int tolerance;
5971 	struct btrfs_device *srcdev;
5972 
5973 	ASSERT((map->type &
5974 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5975 
5976 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5977 		num_stripes = map->sub_stripes;
5978 	else
5979 		num_stripes = map->num_stripes;
5980 
5981 	switch (policy) {
5982 	default:
5983 		/* Shouldn't happen, just warn and use pid instead of failing */
5984 		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5985 			      policy);
5986 		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5987 		fallthrough;
5988 	case BTRFS_READ_POLICY_PID:
5989 		preferred_mirror = first + (current->pid % num_stripes);
5990 		break;
5991 	}
5992 
5993 	if (dev_replace_is_ongoing &&
5994 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5995 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5996 		srcdev = fs_info->dev_replace.srcdev;
5997 	else
5998 		srcdev = NULL;
5999 
6000 	/*
6001 	 * try to avoid the drive that is the source drive for a
6002 	 * dev-replace procedure, only choose it if no other non-missing
6003 	 * mirror is available
6004 	 */
6005 	for (tolerance = 0; tolerance < 2; tolerance++) {
6006 		if (map->stripes[preferred_mirror].dev->bdev &&
6007 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6008 			return preferred_mirror;
6009 		for (i = first; i < first + num_stripes; i++) {
6010 			if (map->stripes[i].dev->bdev &&
6011 			    (tolerance || map->stripes[i].dev != srcdev))
6012 				return i;
6013 		}
6014 	}
6015 
6016 	/* we couldn't find one that doesn't fail.  Just return something
6017 	 * and the io error handling code will clean up eventually
6018 	 */
6019 	return preferred_mirror;
6020 }
6021 
6022 EXPORT_FOR_TESTS
6023 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6024 						u64 logical, u16 total_stripes)
6025 {
6026 	struct btrfs_io_context *bioc;
6027 
6028 	bioc = kzalloc(
6029 		 /* The size of btrfs_io_context */
6030 		sizeof(struct btrfs_io_context) +
6031 		/* Plus the variable array for the stripes */
6032 		sizeof(struct btrfs_io_stripe) * (total_stripes),
6033 		GFP_NOFS);
6034 
6035 	if (!bioc)
6036 		return NULL;
6037 
6038 	refcount_set(&bioc->refs, 1);
6039 
6040 	bioc->fs_info = fs_info;
6041 	bioc->replace_stripe_src = -1;
6042 	bioc->full_stripe_logical = (u64)-1;
6043 	bioc->logical = logical;
6044 
6045 	return bioc;
6046 }
6047 
6048 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6049 {
6050 	WARN_ON(!refcount_read(&bioc->refs));
6051 	refcount_inc(&bioc->refs);
6052 }
6053 
6054 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6055 {
6056 	if (!bioc)
6057 		return;
6058 	if (refcount_dec_and_test(&bioc->refs))
6059 		kfree(bioc);
6060 }
6061 
6062 /*
6063  * Please note that, discard won't be sent to target device of device
6064  * replace.
6065  */
6066 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6067 					       u64 logical, u64 *length_ret,
6068 					       u32 *num_stripes)
6069 {
6070 	struct btrfs_chunk_map *map;
6071 	struct btrfs_discard_stripe *stripes;
6072 	u64 length = *length_ret;
6073 	u64 offset;
6074 	u32 stripe_nr;
6075 	u32 stripe_nr_end;
6076 	u32 stripe_cnt;
6077 	u64 stripe_end_offset;
6078 	u64 stripe_offset;
6079 	u32 stripe_index;
6080 	u32 factor = 0;
6081 	u32 sub_stripes = 0;
6082 	u32 stripes_per_dev = 0;
6083 	u32 remaining_stripes = 0;
6084 	u32 last_stripe = 0;
6085 	int ret;
6086 	int i;
6087 
6088 	map = btrfs_get_chunk_map(fs_info, logical, length);
6089 	if (IS_ERR(map))
6090 		return ERR_CAST(map);
6091 
6092 	/* we don't discard raid56 yet */
6093 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6094 		ret = -EOPNOTSUPP;
6095 		goto out_free_map;
6096 	}
6097 
6098 	offset = logical - map->start;
6099 	length = min_t(u64, map->start + map->chunk_len - logical, length);
6100 	*length_ret = length;
6101 
6102 	/*
6103 	 * stripe_nr counts the total number of stripes we have to stride
6104 	 * to get to this block
6105 	 */
6106 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6107 
6108 	/* stripe_offset is the offset of this block in its stripe */
6109 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6110 
6111 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6112 			BTRFS_STRIPE_LEN_SHIFT;
6113 	stripe_cnt = stripe_nr_end - stripe_nr;
6114 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6115 			    (offset + length);
6116 	/*
6117 	 * after this, stripe_nr is the number of stripes on this
6118 	 * device we have to walk to find the data, and stripe_index is
6119 	 * the number of our device in the stripe array
6120 	 */
6121 	*num_stripes = 1;
6122 	stripe_index = 0;
6123 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6124 			 BTRFS_BLOCK_GROUP_RAID10)) {
6125 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6126 			sub_stripes = 1;
6127 		else
6128 			sub_stripes = map->sub_stripes;
6129 
6130 		factor = map->num_stripes / sub_stripes;
6131 		*num_stripes = min_t(u64, map->num_stripes,
6132 				    sub_stripes * stripe_cnt);
6133 		stripe_index = stripe_nr % factor;
6134 		stripe_nr /= factor;
6135 		stripe_index *= sub_stripes;
6136 
6137 		remaining_stripes = stripe_cnt % factor;
6138 		stripes_per_dev = stripe_cnt / factor;
6139 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6140 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6141 				BTRFS_BLOCK_GROUP_DUP)) {
6142 		*num_stripes = map->num_stripes;
6143 	} else {
6144 		stripe_index = stripe_nr % map->num_stripes;
6145 		stripe_nr /= map->num_stripes;
6146 	}
6147 
6148 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6149 	if (!stripes) {
6150 		ret = -ENOMEM;
6151 		goto out_free_map;
6152 	}
6153 
6154 	for (i = 0; i < *num_stripes; i++) {
6155 		stripes[i].physical =
6156 			map->stripes[stripe_index].physical +
6157 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6158 		stripes[i].dev = map->stripes[stripe_index].dev;
6159 
6160 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6161 				 BTRFS_BLOCK_GROUP_RAID10)) {
6162 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6163 
6164 			if (i / sub_stripes < remaining_stripes)
6165 				stripes[i].length += BTRFS_STRIPE_LEN;
6166 
6167 			/*
6168 			 * Special for the first stripe and
6169 			 * the last stripe:
6170 			 *
6171 			 * |-------|...|-------|
6172 			 *     |----------|
6173 			 *    off     end_off
6174 			 */
6175 			if (i < sub_stripes)
6176 				stripes[i].length -= stripe_offset;
6177 
6178 			if (stripe_index >= last_stripe &&
6179 			    stripe_index <= (last_stripe +
6180 					     sub_stripes - 1))
6181 				stripes[i].length -= stripe_end_offset;
6182 
6183 			if (i == sub_stripes - 1)
6184 				stripe_offset = 0;
6185 		} else {
6186 			stripes[i].length = length;
6187 		}
6188 
6189 		stripe_index++;
6190 		if (stripe_index == map->num_stripes) {
6191 			stripe_index = 0;
6192 			stripe_nr++;
6193 		}
6194 	}
6195 
6196 	btrfs_free_chunk_map(map);
6197 	return stripes;
6198 out_free_map:
6199 	btrfs_free_chunk_map(map);
6200 	return ERR_PTR(ret);
6201 }
6202 
6203 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6204 {
6205 	struct btrfs_block_group *cache;
6206 	bool ret;
6207 
6208 	/* Non zoned filesystem does not use "to_copy" flag */
6209 	if (!btrfs_is_zoned(fs_info))
6210 		return false;
6211 
6212 	cache = btrfs_lookup_block_group(fs_info, logical);
6213 
6214 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6215 
6216 	btrfs_put_block_group(cache);
6217 	return ret;
6218 }
6219 
6220 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6221 				      struct btrfs_dev_replace *dev_replace,
6222 				      u64 logical,
6223 				      struct btrfs_io_geometry *io_geom)
6224 {
6225 	u64 srcdev_devid = dev_replace->srcdev->devid;
6226 	/*
6227 	 * At this stage, num_stripes is still the real number of stripes,
6228 	 * excluding the duplicated stripes.
6229 	 */
6230 	int num_stripes = io_geom->num_stripes;
6231 	int max_errors = io_geom->max_errors;
6232 	int nr_extra_stripes = 0;
6233 	int i;
6234 
6235 	/*
6236 	 * A block group which has "to_copy" set will eventually be copied by
6237 	 * the dev-replace process. We can avoid cloning IO here.
6238 	 */
6239 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6240 		return;
6241 
6242 	/*
6243 	 * Duplicate the write operations while the dev-replace procedure is
6244 	 * running. Since the copying of the old disk to the new disk takes
6245 	 * place at run time while the filesystem is mounted writable, the
6246 	 * regular write operations to the old disk have to be duplicated to go
6247 	 * to the new disk as well.
6248 	 *
6249 	 * Note that device->missing is handled by the caller, and that the
6250 	 * write to the old disk is already set up in the stripes array.
6251 	 */
6252 	for (i = 0; i < num_stripes; i++) {
6253 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6254 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6255 
6256 		if (old->dev->devid != srcdev_devid)
6257 			continue;
6258 
6259 		new->physical = old->physical;
6260 		new->dev = dev_replace->tgtdev;
6261 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6262 			bioc->replace_stripe_src = i;
6263 		nr_extra_stripes++;
6264 	}
6265 
6266 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6267 	ASSERT(nr_extra_stripes <= 2);
6268 	/*
6269 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6270 	 * replace.
6271 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6272 	 */
6273 	if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6274 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6275 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6276 
6277 		/* Only DUP can have two extra stripes. */
6278 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6279 
6280 		/*
6281 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6282 		 * The extra stripe would still be there, but won't be accessed.
6283 		 */
6284 		if (first->physical > second->physical) {
6285 			swap(second->physical, first->physical);
6286 			swap(second->dev, first->dev);
6287 			nr_extra_stripes--;
6288 		}
6289 	}
6290 
6291 	io_geom->num_stripes = num_stripes + nr_extra_stripes;
6292 	io_geom->max_errors = max_errors + nr_extra_stripes;
6293 	bioc->replace_nr_stripes = nr_extra_stripes;
6294 }
6295 
6296 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6297 			    struct btrfs_io_geometry *io_geom)
6298 {
6299 	/*
6300 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6301 	 * the offset of this block in its stripe.
6302 	 */
6303 	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6304 	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6305 	ASSERT(io_geom->stripe_offset < U32_MAX);
6306 
6307 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6308 		unsigned long full_stripe_len =
6309 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6310 
6311 		/*
6312 		 * For full stripe start, we use previously calculated
6313 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6314 		 * STRIPE_LEN.
6315 		 *
6316 		 * By this we can avoid u64 division completely.  And we have
6317 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6318 		 * not ensured to be power of 2.
6319 		 */
6320 		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6321 			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6322 
6323 		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6324 		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6325 		/*
6326 		 * For writes to RAID56, allow to write a full stripe set, but
6327 		 * no straddling of stripe sets.
6328 		 */
6329 		if (io_geom->op == BTRFS_MAP_WRITE)
6330 			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6331 	}
6332 
6333 	/*
6334 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6335 	 * a single disk).
6336 	 */
6337 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6338 		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6339 	return U64_MAX;
6340 }
6341 
6342 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6343 			 u64 *length, struct btrfs_io_stripe *dst,
6344 			 struct btrfs_chunk_map *map,
6345 			 struct btrfs_io_geometry *io_geom)
6346 {
6347 	dst->dev = map->stripes[io_geom->stripe_index].dev;
6348 
6349 	if (io_geom->op == BTRFS_MAP_READ &&
6350 	    btrfs_need_stripe_tree_update(fs_info, map->type))
6351 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6352 						    map->type,
6353 						    io_geom->stripe_index, dst);
6354 
6355 	dst->physical = map->stripes[io_geom->stripe_index].physical +
6356 			io_geom->stripe_offset +
6357 			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6358 	return 0;
6359 }
6360 
6361 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6362 				const struct btrfs_io_stripe *smap,
6363 				const struct btrfs_chunk_map *map,
6364 				int num_alloc_stripes,
6365 				enum btrfs_map_op op, int mirror_num)
6366 {
6367 	if (!smap)
6368 		return false;
6369 
6370 	if (num_alloc_stripes != 1)
6371 		return false;
6372 
6373 	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6374 		return false;
6375 
6376 	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6377 		return false;
6378 
6379 	return true;
6380 }
6381 
6382 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6383 			     struct btrfs_io_geometry *io_geom)
6384 {
6385 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6386 	io_geom->stripe_nr /= map->num_stripes;
6387 	if (io_geom->op == BTRFS_MAP_READ)
6388 		io_geom->mirror_num = 1;
6389 }
6390 
6391 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6392 			     struct btrfs_chunk_map *map,
6393 			     struct btrfs_io_geometry *io_geom,
6394 			     bool dev_replace_is_ongoing)
6395 {
6396 	if (io_geom->op != BTRFS_MAP_READ) {
6397 		io_geom->num_stripes = map->num_stripes;
6398 		return;
6399 	}
6400 
6401 	if (io_geom->mirror_num) {
6402 		io_geom->stripe_index = io_geom->mirror_num - 1;
6403 		return;
6404 	}
6405 
6406 	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6407 						 dev_replace_is_ongoing);
6408 	io_geom->mirror_num = io_geom->stripe_index + 1;
6409 }
6410 
6411 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6412 			   struct btrfs_io_geometry *io_geom)
6413 {
6414 	if (io_geom->op != BTRFS_MAP_READ) {
6415 		io_geom->num_stripes = map->num_stripes;
6416 		return;
6417 	}
6418 
6419 	if (io_geom->mirror_num) {
6420 		io_geom->stripe_index = io_geom->mirror_num - 1;
6421 		return;
6422 	}
6423 
6424 	io_geom->mirror_num = 1;
6425 }
6426 
6427 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6428 			      struct btrfs_chunk_map *map,
6429 			      struct btrfs_io_geometry *io_geom,
6430 			      bool dev_replace_is_ongoing)
6431 {
6432 	u32 factor = map->num_stripes / map->sub_stripes;
6433 	int old_stripe_index;
6434 
6435 	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6436 	io_geom->stripe_nr /= factor;
6437 
6438 	if (io_geom->op != BTRFS_MAP_READ) {
6439 		io_geom->num_stripes = map->sub_stripes;
6440 		return;
6441 	}
6442 
6443 	if (io_geom->mirror_num) {
6444 		io_geom->stripe_index += io_geom->mirror_num - 1;
6445 		return;
6446 	}
6447 
6448 	old_stripe_index = io_geom->stripe_index;
6449 	io_geom->stripe_index = find_live_mirror(fs_info, map,
6450 						 io_geom->stripe_index,
6451 						 dev_replace_is_ongoing);
6452 	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6453 }
6454 
6455 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6456 				    struct btrfs_io_geometry *io_geom,
6457 				    u64 logical, u64 *length)
6458 {
6459 	int data_stripes = nr_data_stripes(map);
6460 
6461 	/*
6462 	 * Needs full stripe mapping.
6463 	 *
6464 	 * Push stripe_nr back to the start of the full stripe For those cases
6465 	 * needing a full stripe, @stripe_nr is the full stripe number.
6466 	 *
6467 	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6468 	 * that can be expensive.  Here we just divide @stripe_nr with
6469 	 * @data_stripes.
6470 	 */
6471 	io_geom->stripe_nr /= data_stripes;
6472 
6473 	/* RAID[56] write or recovery. Return all stripes */
6474 	io_geom->num_stripes = map->num_stripes;
6475 	io_geom->max_errors = btrfs_chunk_max_errors(map);
6476 
6477 	/* Return the length to the full stripe end. */
6478 	*length = min(logical + *length,
6479 		      io_geom->raid56_full_stripe_start + map->start +
6480 		      btrfs_stripe_nr_to_offset(data_stripes)) -
6481 		logical;
6482 	io_geom->stripe_index = 0;
6483 	io_geom->stripe_offset = 0;
6484 }
6485 
6486 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6487 				   struct btrfs_io_geometry *io_geom)
6488 {
6489 	int data_stripes = nr_data_stripes(map);
6490 
6491 	ASSERT(io_geom->mirror_num <= 1);
6492 	/* Just grab the data stripe directly. */
6493 	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6494 	io_geom->stripe_nr /= data_stripes;
6495 
6496 	/* We distribute the parity blocks across stripes. */
6497 	io_geom->stripe_index =
6498 		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6499 
6500 	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6501 		io_geom->mirror_num = 1;
6502 }
6503 
6504 static void map_blocks_single(const struct btrfs_chunk_map *map,
6505 			      struct btrfs_io_geometry *io_geom)
6506 {
6507 	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6508 	io_geom->stripe_nr /= map->num_stripes;
6509 	io_geom->mirror_num = io_geom->stripe_index + 1;
6510 }
6511 
6512 /*
6513  * Map one logical range to one or more physical ranges.
6514  *
6515  * @length:		(Mandatory) mapped length of this run.
6516  *			One logical range can be split into different segments
6517  *			due to factors like zones and RAID0/5/6/10 stripe
6518  *			boundaries.
6519  *
6520  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6521  *			which has one or more physical ranges (btrfs_io_stripe)
6522  *			recorded inside.
6523  *			Caller should call btrfs_put_bioc() to free it after use.
6524  *
6525  * @smap:		(Optional) single physical range optimization.
6526  *			If the map request can be fulfilled by one single
6527  *			physical range, and this is parameter is not NULL,
6528  *			then @bioc_ret would be NULL, and @smap would be
6529  *			updated.
6530  *
6531  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6532  *			value is 0.
6533  *
6534  *			Mirror number 0 means to choose any live mirrors.
6535  *
6536  *			For non-RAID56 profiles, non-zero mirror_num means
6537  *			the Nth mirror. (e.g. mirror_num 1 means the first
6538  *			copy).
6539  *
6540  *			For RAID56 profile, mirror 1 means rebuild from P and
6541  *			the remaining data stripes.
6542  *
6543  *			For RAID6 profile, mirror > 2 means mark another
6544  *			data/P stripe error and rebuild from the remaining
6545  *			stripes..
6546  */
6547 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6548 		    u64 logical, u64 *length,
6549 		    struct btrfs_io_context **bioc_ret,
6550 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6551 {
6552 	struct btrfs_chunk_map *map;
6553 	struct btrfs_io_geometry io_geom = { 0 };
6554 	u64 map_offset;
6555 	int ret = 0;
6556 	int num_copies;
6557 	struct btrfs_io_context *bioc = NULL;
6558 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6559 	int dev_replace_is_ongoing = 0;
6560 	u16 num_alloc_stripes;
6561 	u64 max_len;
6562 
6563 	ASSERT(bioc_ret);
6564 
6565 	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6566 	io_geom.num_stripes = 1;
6567 	io_geom.stripe_index = 0;
6568 	io_geom.op = op;
6569 
6570 	map = btrfs_get_chunk_map(fs_info, logical, *length);
6571 	if (IS_ERR(map))
6572 		return PTR_ERR(map);
6573 
6574 	num_copies = btrfs_chunk_map_num_copies(map);
6575 	if (io_geom.mirror_num > num_copies)
6576 		return -EINVAL;
6577 
6578 	map_offset = logical - map->start;
6579 	io_geom.raid56_full_stripe_start = (u64)-1;
6580 	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6581 	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6582 
6583 	if (dev_replace->replace_task != current)
6584 		down_read(&dev_replace->rwsem);
6585 
6586 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6587 	/*
6588 	 * Hold the semaphore for read during the whole operation, write is
6589 	 * requested at commit time but must wait.
6590 	 */
6591 	if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6592 		up_read(&dev_replace->rwsem);
6593 
6594 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6595 	case BTRFS_BLOCK_GROUP_RAID0:
6596 		map_blocks_raid0(map, &io_geom);
6597 		break;
6598 	case BTRFS_BLOCK_GROUP_RAID1:
6599 	case BTRFS_BLOCK_GROUP_RAID1C3:
6600 	case BTRFS_BLOCK_GROUP_RAID1C4:
6601 		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6602 		break;
6603 	case BTRFS_BLOCK_GROUP_DUP:
6604 		map_blocks_dup(map, &io_geom);
6605 		break;
6606 	case BTRFS_BLOCK_GROUP_RAID10:
6607 		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6608 		break;
6609 	case BTRFS_BLOCK_GROUP_RAID5:
6610 	case BTRFS_BLOCK_GROUP_RAID6:
6611 		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6612 			map_blocks_raid56_write(map, &io_geom, logical, length);
6613 		else
6614 			map_blocks_raid56_read(map, &io_geom);
6615 		break;
6616 	default:
6617 		/*
6618 		 * After this, stripe_nr is the number of stripes on this
6619 		 * device we have to walk to find the data, and stripe_index is
6620 		 * the number of our device in the stripe array
6621 		 */
6622 		map_blocks_single(map, &io_geom);
6623 		break;
6624 	}
6625 	if (io_geom.stripe_index >= map->num_stripes) {
6626 		btrfs_crit(fs_info,
6627 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6628 			   io_geom.stripe_index, map->num_stripes);
6629 		ret = -EINVAL;
6630 		goto out;
6631 	}
6632 
6633 	num_alloc_stripes = io_geom.num_stripes;
6634 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6635 	    op != BTRFS_MAP_READ)
6636 		/*
6637 		 * For replace case, we need to add extra stripes for extra
6638 		 * duplicated stripes.
6639 		 *
6640 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6641 		 * 2 more stripes (DUP types, otherwise 1).
6642 		 */
6643 		num_alloc_stripes += 2;
6644 
6645 	/*
6646 	 * If this I/O maps to a single device, try to return the device and
6647 	 * physical block information on the stack instead of allocating an
6648 	 * I/O context structure.
6649 	 */
6650 	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6651 				io_geom.mirror_num)) {
6652 		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6653 		if (mirror_num_ret)
6654 			*mirror_num_ret = io_geom.mirror_num;
6655 		*bioc_ret = NULL;
6656 		goto out;
6657 	}
6658 
6659 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6660 	if (!bioc) {
6661 		ret = -ENOMEM;
6662 		goto out;
6663 	}
6664 	bioc->map_type = map->type;
6665 
6666 	/*
6667 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6668 	 * rule that data stripes are all ordered, then followed with P and Q
6669 	 * (if we have).
6670 	 *
6671 	 * It's still mostly the same as other profiles, just with extra rotation.
6672 	 */
6673 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6674 	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6675 		/*
6676 		 * For RAID56 @stripe_nr is already the number of full stripes
6677 		 * before us, which is also the rotation value (needs to modulo
6678 		 * with num_stripes).
6679 		 *
6680 		 * In this case, we just add @stripe_nr with @i, then do the
6681 		 * modulo, to reduce one modulo call.
6682 		 */
6683 		bioc->full_stripe_logical = map->start +
6684 			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6685 						  nr_data_stripes(map));
6686 		for (int i = 0; i < io_geom.num_stripes; i++) {
6687 			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6688 			u32 stripe_index;
6689 
6690 			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6691 			dst->dev = map->stripes[stripe_index].dev;
6692 			dst->physical =
6693 				map->stripes[stripe_index].physical +
6694 				io_geom.stripe_offset +
6695 				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6696 		}
6697 	} else {
6698 		/*
6699 		 * For all other non-RAID56 profiles, just copy the target
6700 		 * stripe into the bioc.
6701 		 */
6702 		for (int i = 0; i < io_geom.num_stripes; i++) {
6703 			ret = set_io_stripe(fs_info, logical, length,
6704 					    &bioc->stripes[i], map, &io_geom);
6705 			if (ret < 0)
6706 				break;
6707 			io_geom.stripe_index++;
6708 		}
6709 	}
6710 
6711 	if (ret) {
6712 		*bioc_ret = NULL;
6713 		btrfs_put_bioc(bioc);
6714 		goto out;
6715 	}
6716 
6717 	if (op != BTRFS_MAP_READ)
6718 		io_geom.max_errors = btrfs_chunk_max_errors(map);
6719 
6720 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6721 	    op != BTRFS_MAP_READ) {
6722 		handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6723 	}
6724 
6725 	*bioc_ret = bioc;
6726 	bioc->num_stripes = io_geom.num_stripes;
6727 	bioc->max_errors = io_geom.max_errors;
6728 	bioc->mirror_num = io_geom.mirror_num;
6729 
6730 out:
6731 	if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6732 		lockdep_assert_held(&dev_replace->rwsem);
6733 		/* Unlock and let waiting writers proceed */
6734 		up_read(&dev_replace->rwsem);
6735 	}
6736 	btrfs_free_chunk_map(map);
6737 	return ret;
6738 }
6739 
6740 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6741 				      const struct btrfs_fs_devices *fs_devices)
6742 {
6743 	if (args->fsid == NULL)
6744 		return true;
6745 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6746 		return true;
6747 	return false;
6748 }
6749 
6750 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6751 				  const struct btrfs_device *device)
6752 {
6753 	if (args->missing) {
6754 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6755 		    !device->bdev)
6756 			return true;
6757 		return false;
6758 	}
6759 
6760 	if (device->devid != args->devid)
6761 		return false;
6762 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6763 		return false;
6764 	return true;
6765 }
6766 
6767 /*
6768  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6769  * return NULL.
6770  *
6771  * If devid and uuid are both specified, the match must be exact, otherwise
6772  * only devid is used.
6773  */
6774 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6775 				       const struct btrfs_dev_lookup_args *args)
6776 {
6777 	struct btrfs_device *device;
6778 	struct btrfs_fs_devices *seed_devs;
6779 
6780 	if (dev_args_match_fs_devices(args, fs_devices)) {
6781 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6782 			if (dev_args_match_device(args, device))
6783 				return device;
6784 		}
6785 	}
6786 
6787 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6788 		if (!dev_args_match_fs_devices(args, seed_devs))
6789 			continue;
6790 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6791 			if (dev_args_match_device(args, device))
6792 				return device;
6793 		}
6794 	}
6795 
6796 	return NULL;
6797 }
6798 
6799 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6800 					    u64 devid, u8 *dev_uuid)
6801 {
6802 	struct btrfs_device *device;
6803 	unsigned int nofs_flag;
6804 
6805 	/*
6806 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6807 	 * allocation, however we don't want to change btrfs_alloc_device() to
6808 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6809 	 * places.
6810 	 */
6811 
6812 	nofs_flag = memalloc_nofs_save();
6813 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6814 	memalloc_nofs_restore(nofs_flag);
6815 	if (IS_ERR(device))
6816 		return device;
6817 
6818 	list_add(&device->dev_list, &fs_devices->devices);
6819 	device->fs_devices = fs_devices;
6820 	fs_devices->num_devices++;
6821 
6822 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6823 	fs_devices->missing_devices++;
6824 
6825 	return device;
6826 }
6827 
6828 /*
6829  * Allocate new device struct, set up devid and UUID.
6830  *
6831  * @fs_info:	used only for generating a new devid, can be NULL if
6832  *		devid is provided (i.e. @devid != NULL).
6833  * @devid:	a pointer to devid for this device.  If NULL a new devid
6834  *		is generated.
6835  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6836  *		is generated.
6837  * @path:	a pointer to device path if available, NULL otherwise.
6838  *
6839  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6840  * on error.  Returned struct is not linked onto any lists and must be
6841  * destroyed with btrfs_free_device.
6842  */
6843 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6844 					const u64 *devid, const u8 *uuid,
6845 					const char *path)
6846 {
6847 	struct btrfs_device *dev;
6848 	u64 tmp;
6849 
6850 	if (WARN_ON(!devid && !fs_info))
6851 		return ERR_PTR(-EINVAL);
6852 
6853 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6854 	if (!dev)
6855 		return ERR_PTR(-ENOMEM);
6856 
6857 	INIT_LIST_HEAD(&dev->dev_list);
6858 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6859 	INIT_LIST_HEAD(&dev->post_commit_list);
6860 
6861 	atomic_set(&dev->dev_stats_ccnt, 0);
6862 	btrfs_device_data_ordered_init(dev);
6863 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6864 
6865 	if (devid)
6866 		tmp = *devid;
6867 	else {
6868 		int ret;
6869 
6870 		ret = find_next_devid(fs_info, &tmp);
6871 		if (ret) {
6872 			btrfs_free_device(dev);
6873 			return ERR_PTR(ret);
6874 		}
6875 	}
6876 	dev->devid = tmp;
6877 
6878 	if (uuid)
6879 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6880 	else
6881 		generate_random_uuid(dev->uuid);
6882 
6883 	if (path) {
6884 		struct rcu_string *name;
6885 
6886 		name = rcu_string_strdup(path, GFP_KERNEL);
6887 		if (!name) {
6888 			btrfs_free_device(dev);
6889 			return ERR_PTR(-ENOMEM);
6890 		}
6891 		rcu_assign_pointer(dev->name, name);
6892 	}
6893 
6894 	return dev;
6895 }
6896 
6897 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6898 					u64 devid, u8 *uuid, bool error)
6899 {
6900 	if (error)
6901 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6902 			      devid, uuid);
6903 	else
6904 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6905 			      devid, uuid);
6906 }
6907 
6908 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6909 {
6910 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6911 
6912 	return div_u64(map->chunk_len, data_stripes);
6913 }
6914 
6915 #if BITS_PER_LONG == 32
6916 /*
6917  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6918  * can't be accessed on 32bit systems.
6919  *
6920  * This function do mount time check to reject the fs if it already has
6921  * metadata chunk beyond that limit.
6922  */
6923 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6924 				  u64 logical, u64 length, u64 type)
6925 {
6926 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6927 		return 0;
6928 
6929 	if (logical + length < MAX_LFS_FILESIZE)
6930 		return 0;
6931 
6932 	btrfs_err_32bit_limit(fs_info);
6933 	return -EOVERFLOW;
6934 }
6935 
6936 /*
6937  * This is to give early warning for any metadata chunk reaching
6938  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6939  * Although we can still access the metadata, it's not going to be possible
6940  * once the limit is reached.
6941  */
6942 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6943 				  u64 logical, u64 length, u64 type)
6944 {
6945 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6946 		return;
6947 
6948 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6949 		return;
6950 
6951 	btrfs_warn_32bit_limit(fs_info);
6952 }
6953 #endif
6954 
6955 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6956 						  u64 devid, u8 *uuid)
6957 {
6958 	struct btrfs_device *dev;
6959 
6960 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6961 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6962 		return ERR_PTR(-ENOENT);
6963 	}
6964 
6965 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6966 	if (IS_ERR(dev)) {
6967 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6968 			  devid, PTR_ERR(dev));
6969 		return dev;
6970 	}
6971 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6972 
6973 	return dev;
6974 }
6975 
6976 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6977 			  struct btrfs_chunk *chunk)
6978 {
6979 	BTRFS_DEV_LOOKUP_ARGS(args);
6980 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6981 	struct btrfs_chunk_map *map;
6982 	u64 logical;
6983 	u64 length;
6984 	u64 devid;
6985 	u64 type;
6986 	u8 uuid[BTRFS_UUID_SIZE];
6987 	int index;
6988 	int num_stripes;
6989 	int ret;
6990 	int i;
6991 
6992 	logical = key->offset;
6993 	length = btrfs_chunk_length(leaf, chunk);
6994 	type = btrfs_chunk_type(leaf, chunk);
6995 	index = btrfs_bg_flags_to_raid_index(type);
6996 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6997 
6998 #if BITS_PER_LONG == 32
6999 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7000 	if (ret < 0)
7001 		return ret;
7002 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7003 #endif
7004 
7005 	/*
7006 	 * Only need to verify chunk item if we're reading from sys chunk array,
7007 	 * as chunk item in tree block is already verified by tree-checker.
7008 	 */
7009 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7010 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7011 		if (ret)
7012 			return ret;
7013 	}
7014 
7015 	map = btrfs_find_chunk_map(fs_info, logical, 1);
7016 
7017 	/* already mapped? */
7018 	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7019 		btrfs_free_chunk_map(map);
7020 		return 0;
7021 	} else if (map) {
7022 		btrfs_free_chunk_map(map);
7023 	}
7024 
7025 	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7026 	if (!map)
7027 		return -ENOMEM;
7028 
7029 	map->start = logical;
7030 	map->chunk_len = length;
7031 	map->num_stripes = num_stripes;
7032 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7033 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7034 	map->type = type;
7035 	/*
7036 	 * We can't use the sub_stripes value, as for profiles other than
7037 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7038 	 * older mkfs (<v5.4).
7039 	 * In that case, it can cause divide-by-zero errors later.
7040 	 * Since currently sub_stripes is fixed for each profile, let's
7041 	 * use the trusted value instead.
7042 	 */
7043 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7044 	map->verified_stripes = 0;
7045 	map->stripe_size = btrfs_calc_stripe_length(map);
7046 	for (i = 0; i < num_stripes; i++) {
7047 		map->stripes[i].physical =
7048 			btrfs_stripe_offset_nr(leaf, chunk, i);
7049 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7050 		args.devid = devid;
7051 		read_extent_buffer(leaf, uuid, (unsigned long)
7052 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7053 				   BTRFS_UUID_SIZE);
7054 		args.uuid = uuid;
7055 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7056 		if (!map->stripes[i].dev) {
7057 			map->stripes[i].dev = handle_missing_device(fs_info,
7058 								    devid, uuid);
7059 			if (IS_ERR(map->stripes[i].dev)) {
7060 				ret = PTR_ERR(map->stripes[i].dev);
7061 				btrfs_free_chunk_map(map);
7062 				return ret;
7063 			}
7064 		}
7065 
7066 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7067 				&(map->stripes[i].dev->dev_state));
7068 	}
7069 
7070 	ret = btrfs_add_chunk_map(fs_info, map);
7071 	if (ret < 0) {
7072 		btrfs_err(fs_info,
7073 			  "failed to add chunk map, start=%llu len=%llu: %d",
7074 			  map->start, map->chunk_len, ret);
7075 	}
7076 
7077 	return ret;
7078 }
7079 
7080 static void fill_device_from_item(struct extent_buffer *leaf,
7081 				 struct btrfs_dev_item *dev_item,
7082 				 struct btrfs_device *device)
7083 {
7084 	unsigned long ptr;
7085 
7086 	device->devid = btrfs_device_id(leaf, dev_item);
7087 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7088 	device->total_bytes = device->disk_total_bytes;
7089 	device->commit_total_bytes = device->disk_total_bytes;
7090 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7091 	device->commit_bytes_used = device->bytes_used;
7092 	device->type = btrfs_device_type(leaf, dev_item);
7093 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7094 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7095 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7096 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7097 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7098 
7099 	ptr = btrfs_device_uuid(dev_item);
7100 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7101 }
7102 
7103 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7104 						  u8 *fsid)
7105 {
7106 	struct btrfs_fs_devices *fs_devices;
7107 	int ret;
7108 
7109 	lockdep_assert_held(&uuid_mutex);
7110 	ASSERT(fsid);
7111 
7112 	/* This will match only for multi-device seed fs */
7113 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7114 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7115 			return fs_devices;
7116 
7117 
7118 	fs_devices = find_fsid(fsid, NULL);
7119 	if (!fs_devices) {
7120 		if (!btrfs_test_opt(fs_info, DEGRADED))
7121 			return ERR_PTR(-ENOENT);
7122 
7123 		fs_devices = alloc_fs_devices(fsid);
7124 		if (IS_ERR(fs_devices))
7125 			return fs_devices;
7126 
7127 		fs_devices->seeding = true;
7128 		fs_devices->opened = 1;
7129 		return fs_devices;
7130 	}
7131 
7132 	/*
7133 	 * Upon first call for a seed fs fsid, just create a private copy of the
7134 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7135 	 */
7136 	fs_devices = clone_fs_devices(fs_devices);
7137 	if (IS_ERR(fs_devices))
7138 		return fs_devices;
7139 
7140 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7141 	if (ret) {
7142 		free_fs_devices(fs_devices);
7143 		return ERR_PTR(ret);
7144 	}
7145 
7146 	if (!fs_devices->seeding) {
7147 		close_fs_devices(fs_devices);
7148 		free_fs_devices(fs_devices);
7149 		return ERR_PTR(-EINVAL);
7150 	}
7151 
7152 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7153 
7154 	return fs_devices;
7155 }
7156 
7157 static int read_one_dev(struct extent_buffer *leaf,
7158 			struct btrfs_dev_item *dev_item)
7159 {
7160 	BTRFS_DEV_LOOKUP_ARGS(args);
7161 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7162 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7163 	struct btrfs_device *device;
7164 	u64 devid;
7165 	int ret;
7166 	u8 fs_uuid[BTRFS_FSID_SIZE];
7167 	u8 dev_uuid[BTRFS_UUID_SIZE];
7168 
7169 	devid = btrfs_device_id(leaf, dev_item);
7170 	args.devid = devid;
7171 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7172 			   BTRFS_UUID_SIZE);
7173 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7174 			   BTRFS_FSID_SIZE);
7175 	args.uuid = dev_uuid;
7176 	args.fsid = fs_uuid;
7177 
7178 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7179 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7180 		if (IS_ERR(fs_devices))
7181 			return PTR_ERR(fs_devices);
7182 	}
7183 
7184 	device = btrfs_find_device(fs_info->fs_devices, &args);
7185 	if (!device) {
7186 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7187 			btrfs_report_missing_device(fs_info, devid,
7188 							dev_uuid, true);
7189 			return -ENOENT;
7190 		}
7191 
7192 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7193 		if (IS_ERR(device)) {
7194 			btrfs_err(fs_info,
7195 				"failed to add missing dev %llu: %ld",
7196 				devid, PTR_ERR(device));
7197 			return PTR_ERR(device);
7198 		}
7199 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7200 	} else {
7201 		if (!device->bdev) {
7202 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7203 				btrfs_report_missing_device(fs_info,
7204 						devid, dev_uuid, true);
7205 				return -ENOENT;
7206 			}
7207 			btrfs_report_missing_device(fs_info, devid,
7208 							dev_uuid, false);
7209 		}
7210 
7211 		if (!device->bdev &&
7212 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7213 			/*
7214 			 * this happens when a device that was properly setup
7215 			 * in the device info lists suddenly goes bad.
7216 			 * device->bdev is NULL, and so we have to set
7217 			 * device->missing to one here
7218 			 */
7219 			device->fs_devices->missing_devices++;
7220 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7221 		}
7222 
7223 		/* Move the device to its own fs_devices */
7224 		if (device->fs_devices != fs_devices) {
7225 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7226 							&device->dev_state));
7227 
7228 			list_move(&device->dev_list, &fs_devices->devices);
7229 			device->fs_devices->num_devices--;
7230 			fs_devices->num_devices++;
7231 
7232 			device->fs_devices->missing_devices--;
7233 			fs_devices->missing_devices++;
7234 
7235 			device->fs_devices = fs_devices;
7236 		}
7237 	}
7238 
7239 	if (device->fs_devices != fs_info->fs_devices) {
7240 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7241 		if (device->generation !=
7242 		    btrfs_device_generation(leaf, dev_item))
7243 			return -EINVAL;
7244 	}
7245 
7246 	fill_device_from_item(leaf, dev_item, device);
7247 	if (device->bdev) {
7248 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7249 
7250 		if (device->total_bytes > max_total_bytes) {
7251 			btrfs_err(fs_info,
7252 			"device total_bytes should be at most %llu but found %llu",
7253 				  max_total_bytes, device->total_bytes);
7254 			return -EINVAL;
7255 		}
7256 	}
7257 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7258 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7259 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7260 		device->fs_devices->total_rw_bytes += device->total_bytes;
7261 		atomic64_add(device->total_bytes - device->bytes_used,
7262 				&fs_info->free_chunk_space);
7263 	}
7264 	ret = 0;
7265 	return ret;
7266 }
7267 
7268 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7269 {
7270 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7271 	struct extent_buffer *sb;
7272 	struct btrfs_disk_key *disk_key;
7273 	struct btrfs_chunk *chunk;
7274 	u8 *array_ptr;
7275 	unsigned long sb_array_offset;
7276 	int ret = 0;
7277 	u32 num_stripes;
7278 	u32 array_size;
7279 	u32 len = 0;
7280 	u32 cur_offset;
7281 	u64 type;
7282 	struct btrfs_key key;
7283 
7284 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7285 
7286 	/*
7287 	 * We allocated a dummy extent, just to use extent buffer accessors.
7288 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7289 	 * that's fine, we will not go beyond system chunk array anyway.
7290 	 */
7291 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7292 	if (!sb)
7293 		return -ENOMEM;
7294 	set_extent_buffer_uptodate(sb);
7295 
7296 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7297 	array_size = btrfs_super_sys_array_size(super_copy);
7298 
7299 	array_ptr = super_copy->sys_chunk_array;
7300 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7301 	cur_offset = 0;
7302 
7303 	while (cur_offset < array_size) {
7304 		disk_key = (struct btrfs_disk_key *)array_ptr;
7305 		len = sizeof(*disk_key);
7306 		if (cur_offset + len > array_size)
7307 			goto out_short_read;
7308 
7309 		btrfs_disk_key_to_cpu(&key, disk_key);
7310 
7311 		array_ptr += len;
7312 		sb_array_offset += len;
7313 		cur_offset += len;
7314 
7315 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7316 			btrfs_err(fs_info,
7317 			    "unexpected item type %u in sys_array at offset %u",
7318 				  (u32)key.type, cur_offset);
7319 			ret = -EIO;
7320 			break;
7321 		}
7322 
7323 		chunk = (struct btrfs_chunk *)sb_array_offset;
7324 		/*
7325 		 * At least one btrfs_chunk with one stripe must be present,
7326 		 * exact stripe count check comes afterwards
7327 		 */
7328 		len = btrfs_chunk_item_size(1);
7329 		if (cur_offset + len > array_size)
7330 			goto out_short_read;
7331 
7332 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7333 		if (!num_stripes) {
7334 			btrfs_err(fs_info,
7335 			"invalid number of stripes %u in sys_array at offset %u",
7336 				  num_stripes, cur_offset);
7337 			ret = -EIO;
7338 			break;
7339 		}
7340 
7341 		type = btrfs_chunk_type(sb, chunk);
7342 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7343 			btrfs_err(fs_info,
7344 			"invalid chunk type %llu in sys_array at offset %u",
7345 				  type, cur_offset);
7346 			ret = -EIO;
7347 			break;
7348 		}
7349 
7350 		len = btrfs_chunk_item_size(num_stripes);
7351 		if (cur_offset + len > array_size)
7352 			goto out_short_read;
7353 
7354 		ret = read_one_chunk(&key, sb, chunk);
7355 		if (ret)
7356 			break;
7357 
7358 		array_ptr += len;
7359 		sb_array_offset += len;
7360 		cur_offset += len;
7361 	}
7362 	clear_extent_buffer_uptodate(sb);
7363 	free_extent_buffer_stale(sb);
7364 	return ret;
7365 
7366 out_short_read:
7367 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7368 			len, cur_offset);
7369 	clear_extent_buffer_uptodate(sb);
7370 	free_extent_buffer_stale(sb);
7371 	return -EIO;
7372 }
7373 
7374 /*
7375  * Check if all chunks in the fs are OK for read-write degraded mount
7376  *
7377  * If the @failing_dev is specified, it's accounted as missing.
7378  *
7379  * Return true if all chunks meet the minimal RW mount requirements.
7380  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7381  */
7382 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7383 					struct btrfs_device *failing_dev)
7384 {
7385 	struct btrfs_chunk_map *map;
7386 	u64 next_start;
7387 	bool ret = true;
7388 
7389 	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7390 	/* No chunk at all? Return false anyway */
7391 	if (!map) {
7392 		ret = false;
7393 		goto out;
7394 	}
7395 	while (map) {
7396 		int missing = 0;
7397 		int max_tolerated;
7398 		int i;
7399 
7400 		max_tolerated =
7401 			btrfs_get_num_tolerated_disk_barrier_failures(
7402 					map->type);
7403 		for (i = 0; i < map->num_stripes; i++) {
7404 			struct btrfs_device *dev = map->stripes[i].dev;
7405 
7406 			if (!dev || !dev->bdev ||
7407 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7408 			    dev->last_flush_error)
7409 				missing++;
7410 			else if (failing_dev && failing_dev == dev)
7411 				missing++;
7412 		}
7413 		if (missing > max_tolerated) {
7414 			if (!failing_dev)
7415 				btrfs_warn(fs_info,
7416 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7417 				   map->start, missing, max_tolerated);
7418 			btrfs_free_chunk_map(map);
7419 			ret = false;
7420 			goto out;
7421 		}
7422 		next_start = map->start + map->chunk_len;
7423 		btrfs_free_chunk_map(map);
7424 
7425 		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7426 	}
7427 out:
7428 	return ret;
7429 }
7430 
7431 static void readahead_tree_node_children(struct extent_buffer *node)
7432 {
7433 	int i;
7434 	const int nr_items = btrfs_header_nritems(node);
7435 
7436 	for (i = 0; i < nr_items; i++)
7437 		btrfs_readahead_node_child(node, i);
7438 }
7439 
7440 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7441 {
7442 	struct btrfs_root *root = fs_info->chunk_root;
7443 	struct btrfs_path *path;
7444 	struct extent_buffer *leaf;
7445 	struct btrfs_key key;
7446 	struct btrfs_key found_key;
7447 	int ret;
7448 	int slot;
7449 	int iter_ret = 0;
7450 	u64 total_dev = 0;
7451 	u64 last_ra_node = 0;
7452 
7453 	path = btrfs_alloc_path();
7454 	if (!path)
7455 		return -ENOMEM;
7456 
7457 	/*
7458 	 * uuid_mutex is needed only if we are mounting a sprout FS
7459 	 * otherwise we don't need it.
7460 	 */
7461 	mutex_lock(&uuid_mutex);
7462 
7463 	/*
7464 	 * It is possible for mount and umount to race in such a way that
7465 	 * we execute this code path, but open_fs_devices failed to clear
7466 	 * total_rw_bytes. We certainly want it cleared before reading the
7467 	 * device items, so clear it here.
7468 	 */
7469 	fs_info->fs_devices->total_rw_bytes = 0;
7470 
7471 	/*
7472 	 * Lockdep complains about possible circular locking dependency between
7473 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7474 	 * used for freeze procection of a fs (struct super_block.s_writers),
7475 	 * which we take when starting a transaction, and extent buffers of the
7476 	 * chunk tree if we call read_one_dev() while holding a lock on an
7477 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7478 	 * and at this point there can't be any concurrent task modifying the
7479 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7480 	 */
7481 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7482 	path->skip_locking = 1;
7483 
7484 	/*
7485 	 * Read all device items, and then all the chunk items. All
7486 	 * device items are found before any chunk item (their object id
7487 	 * is smaller than the lowest possible object id for a chunk
7488 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7489 	 */
7490 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7491 	key.offset = 0;
7492 	key.type = 0;
7493 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7494 		struct extent_buffer *node = path->nodes[1];
7495 
7496 		leaf = path->nodes[0];
7497 		slot = path->slots[0];
7498 
7499 		if (node) {
7500 			if (last_ra_node != node->start) {
7501 				readahead_tree_node_children(node);
7502 				last_ra_node = node->start;
7503 			}
7504 		}
7505 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7506 			struct btrfs_dev_item *dev_item;
7507 			dev_item = btrfs_item_ptr(leaf, slot,
7508 						  struct btrfs_dev_item);
7509 			ret = read_one_dev(leaf, dev_item);
7510 			if (ret)
7511 				goto error;
7512 			total_dev++;
7513 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7514 			struct btrfs_chunk *chunk;
7515 
7516 			/*
7517 			 * We are only called at mount time, so no need to take
7518 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7519 			 * we always lock first fs_info->chunk_mutex before
7520 			 * acquiring any locks on the chunk tree. This is a
7521 			 * requirement for chunk allocation, see the comment on
7522 			 * top of btrfs_chunk_alloc() for details.
7523 			 */
7524 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7525 			ret = read_one_chunk(&found_key, leaf, chunk);
7526 			if (ret)
7527 				goto error;
7528 		}
7529 	}
7530 	/* Catch error found during iteration */
7531 	if (iter_ret < 0) {
7532 		ret = iter_ret;
7533 		goto error;
7534 	}
7535 
7536 	/*
7537 	 * After loading chunk tree, we've got all device information,
7538 	 * do another round of validation checks.
7539 	 */
7540 	if (total_dev != fs_info->fs_devices->total_devices) {
7541 		btrfs_warn(fs_info,
7542 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7543 			  btrfs_super_num_devices(fs_info->super_copy),
7544 			  total_dev);
7545 		fs_info->fs_devices->total_devices = total_dev;
7546 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7547 	}
7548 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7549 	    fs_info->fs_devices->total_rw_bytes) {
7550 		btrfs_err(fs_info,
7551 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7552 			  btrfs_super_total_bytes(fs_info->super_copy),
7553 			  fs_info->fs_devices->total_rw_bytes);
7554 		ret = -EINVAL;
7555 		goto error;
7556 	}
7557 	ret = 0;
7558 error:
7559 	mutex_unlock(&uuid_mutex);
7560 
7561 	btrfs_free_path(path);
7562 	return ret;
7563 }
7564 
7565 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7566 {
7567 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7568 	struct btrfs_device *device;
7569 	int ret = 0;
7570 
7571 	fs_devices->fs_info = fs_info;
7572 
7573 	mutex_lock(&fs_devices->device_list_mutex);
7574 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7575 		device->fs_info = fs_info;
7576 
7577 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7578 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7579 			device->fs_info = fs_info;
7580 			ret = btrfs_get_dev_zone_info(device, false);
7581 			if (ret)
7582 				break;
7583 		}
7584 
7585 		seed_devs->fs_info = fs_info;
7586 	}
7587 	mutex_unlock(&fs_devices->device_list_mutex);
7588 
7589 	return ret;
7590 }
7591 
7592 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7593 				 const struct btrfs_dev_stats_item *ptr,
7594 				 int index)
7595 {
7596 	u64 val;
7597 
7598 	read_extent_buffer(eb, &val,
7599 			   offsetof(struct btrfs_dev_stats_item, values) +
7600 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7601 			   sizeof(val));
7602 	return val;
7603 }
7604 
7605 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7606 				      struct btrfs_dev_stats_item *ptr,
7607 				      int index, u64 val)
7608 {
7609 	write_extent_buffer(eb, &val,
7610 			    offsetof(struct btrfs_dev_stats_item, values) +
7611 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7612 			    sizeof(val));
7613 }
7614 
7615 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7616 				       struct btrfs_path *path)
7617 {
7618 	struct btrfs_dev_stats_item *ptr;
7619 	struct extent_buffer *eb;
7620 	struct btrfs_key key;
7621 	int item_size;
7622 	int i, ret, slot;
7623 
7624 	if (!device->fs_info->dev_root)
7625 		return 0;
7626 
7627 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7628 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7629 	key.offset = device->devid;
7630 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7631 	if (ret) {
7632 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7633 			btrfs_dev_stat_set(device, i, 0);
7634 		device->dev_stats_valid = 1;
7635 		btrfs_release_path(path);
7636 		return ret < 0 ? ret : 0;
7637 	}
7638 	slot = path->slots[0];
7639 	eb = path->nodes[0];
7640 	item_size = btrfs_item_size(eb, slot);
7641 
7642 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7643 
7644 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7645 		if (item_size >= (1 + i) * sizeof(__le64))
7646 			btrfs_dev_stat_set(device, i,
7647 					   btrfs_dev_stats_value(eb, ptr, i));
7648 		else
7649 			btrfs_dev_stat_set(device, i, 0);
7650 	}
7651 
7652 	device->dev_stats_valid = 1;
7653 	btrfs_dev_stat_print_on_load(device);
7654 	btrfs_release_path(path);
7655 
7656 	return 0;
7657 }
7658 
7659 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7660 {
7661 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7662 	struct btrfs_device *device;
7663 	struct btrfs_path *path = NULL;
7664 	int ret = 0;
7665 
7666 	path = btrfs_alloc_path();
7667 	if (!path)
7668 		return -ENOMEM;
7669 
7670 	mutex_lock(&fs_devices->device_list_mutex);
7671 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7672 		ret = btrfs_device_init_dev_stats(device, path);
7673 		if (ret)
7674 			goto out;
7675 	}
7676 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7677 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7678 			ret = btrfs_device_init_dev_stats(device, path);
7679 			if (ret)
7680 				goto out;
7681 		}
7682 	}
7683 out:
7684 	mutex_unlock(&fs_devices->device_list_mutex);
7685 
7686 	btrfs_free_path(path);
7687 	return ret;
7688 }
7689 
7690 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7691 				struct btrfs_device *device)
7692 {
7693 	struct btrfs_fs_info *fs_info = trans->fs_info;
7694 	struct btrfs_root *dev_root = fs_info->dev_root;
7695 	struct btrfs_path *path;
7696 	struct btrfs_key key;
7697 	struct extent_buffer *eb;
7698 	struct btrfs_dev_stats_item *ptr;
7699 	int ret;
7700 	int i;
7701 
7702 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7703 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7704 	key.offset = device->devid;
7705 
7706 	path = btrfs_alloc_path();
7707 	if (!path)
7708 		return -ENOMEM;
7709 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7710 	if (ret < 0) {
7711 		btrfs_warn_in_rcu(fs_info,
7712 			"error %d while searching for dev_stats item for device %s",
7713 				  ret, btrfs_dev_name(device));
7714 		goto out;
7715 	}
7716 
7717 	if (ret == 0 &&
7718 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7719 		/* need to delete old one and insert a new one */
7720 		ret = btrfs_del_item(trans, dev_root, path);
7721 		if (ret != 0) {
7722 			btrfs_warn_in_rcu(fs_info,
7723 				"delete too small dev_stats item for device %s failed %d",
7724 					  btrfs_dev_name(device), ret);
7725 			goto out;
7726 		}
7727 		ret = 1;
7728 	}
7729 
7730 	if (ret == 1) {
7731 		/* need to insert a new item */
7732 		btrfs_release_path(path);
7733 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7734 					      &key, sizeof(*ptr));
7735 		if (ret < 0) {
7736 			btrfs_warn_in_rcu(fs_info,
7737 				"insert dev_stats item for device %s failed %d",
7738 				btrfs_dev_name(device), ret);
7739 			goto out;
7740 		}
7741 	}
7742 
7743 	eb = path->nodes[0];
7744 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7745 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7746 		btrfs_set_dev_stats_value(eb, ptr, i,
7747 					  btrfs_dev_stat_read(device, i));
7748 	btrfs_mark_buffer_dirty(trans, eb);
7749 
7750 out:
7751 	btrfs_free_path(path);
7752 	return ret;
7753 }
7754 
7755 /*
7756  * called from commit_transaction. Writes all changed device stats to disk.
7757  */
7758 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7759 {
7760 	struct btrfs_fs_info *fs_info = trans->fs_info;
7761 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7762 	struct btrfs_device *device;
7763 	int stats_cnt;
7764 	int ret = 0;
7765 
7766 	mutex_lock(&fs_devices->device_list_mutex);
7767 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7768 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7769 		if (!device->dev_stats_valid || stats_cnt == 0)
7770 			continue;
7771 
7772 
7773 		/*
7774 		 * There is a LOAD-LOAD control dependency between the value of
7775 		 * dev_stats_ccnt and updating the on-disk values which requires
7776 		 * reading the in-memory counters. Such control dependencies
7777 		 * require explicit read memory barriers.
7778 		 *
7779 		 * This memory barriers pairs with smp_mb__before_atomic in
7780 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7781 		 * barrier implied by atomic_xchg in
7782 		 * btrfs_dev_stats_read_and_reset
7783 		 */
7784 		smp_rmb();
7785 
7786 		ret = update_dev_stat_item(trans, device);
7787 		if (!ret)
7788 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7789 	}
7790 	mutex_unlock(&fs_devices->device_list_mutex);
7791 
7792 	return ret;
7793 }
7794 
7795 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7796 {
7797 	btrfs_dev_stat_inc(dev, index);
7798 
7799 	if (!dev->dev_stats_valid)
7800 		return;
7801 	btrfs_err_rl_in_rcu(dev->fs_info,
7802 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7803 			   btrfs_dev_name(dev),
7804 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7805 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7806 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7807 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7808 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7809 }
7810 
7811 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7812 {
7813 	int i;
7814 
7815 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7816 		if (btrfs_dev_stat_read(dev, i) != 0)
7817 			break;
7818 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7819 		return; /* all values == 0, suppress message */
7820 
7821 	btrfs_info_in_rcu(dev->fs_info,
7822 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7823 	       btrfs_dev_name(dev),
7824 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7825 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7826 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7827 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7828 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7829 }
7830 
7831 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7832 			struct btrfs_ioctl_get_dev_stats *stats)
7833 {
7834 	BTRFS_DEV_LOOKUP_ARGS(args);
7835 	struct btrfs_device *dev;
7836 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7837 	int i;
7838 
7839 	mutex_lock(&fs_devices->device_list_mutex);
7840 	args.devid = stats->devid;
7841 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7842 	mutex_unlock(&fs_devices->device_list_mutex);
7843 
7844 	if (!dev) {
7845 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7846 		return -ENODEV;
7847 	} else if (!dev->dev_stats_valid) {
7848 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7849 		return -ENODEV;
7850 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7851 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7852 			if (stats->nr_items > i)
7853 				stats->values[i] =
7854 					btrfs_dev_stat_read_and_reset(dev, i);
7855 			else
7856 				btrfs_dev_stat_set(dev, i, 0);
7857 		}
7858 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7859 			   current->comm, task_pid_nr(current));
7860 	} else {
7861 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7862 			if (stats->nr_items > i)
7863 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7864 	}
7865 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7866 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7867 	return 0;
7868 }
7869 
7870 /*
7871  * Update the size and bytes used for each device where it changed.  This is
7872  * delayed since we would otherwise get errors while writing out the
7873  * superblocks.
7874  *
7875  * Must be invoked during transaction commit.
7876  */
7877 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7878 {
7879 	struct btrfs_device *curr, *next;
7880 
7881 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7882 
7883 	if (list_empty(&trans->dev_update_list))
7884 		return;
7885 
7886 	/*
7887 	 * We don't need the device_list_mutex here.  This list is owned by the
7888 	 * transaction and the transaction must complete before the device is
7889 	 * released.
7890 	 */
7891 	mutex_lock(&trans->fs_info->chunk_mutex);
7892 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7893 				 post_commit_list) {
7894 		list_del_init(&curr->post_commit_list);
7895 		curr->commit_total_bytes = curr->disk_total_bytes;
7896 		curr->commit_bytes_used = curr->bytes_used;
7897 	}
7898 	mutex_unlock(&trans->fs_info->chunk_mutex);
7899 }
7900 
7901 /*
7902  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7903  */
7904 int btrfs_bg_type_to_factor(u64 flags)
7905 {
7906 	const int index = btrfs_bg_flags_to_raid_index(flags);
7907 
7908 	return btrfs_raid_array[index].ncopies;
7909 }
7910 
7911 
7912 
7913 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7914 				 u64 chunk_offset, u64 devid,
7915 				 u64 physical_offset, u64 physical_len)
7916 {
7917 	struct btrfs_dev_lookup_args args = { .devid = devid };
7918 	struct btrfs_chunk_map *map;
7919 	struct btrfs_device *dev;
7920 	u64 stripe_len;
7921 	bool found = false;
7922 	int ret = 0;
7923 	int i;
7924 
7925 	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7926 	if (!map) {
7927 		btrfs_err(fs_info,
7928 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7929 			  physical_offset, devid);
7930 		ret = -EUCLEAN;
7931 		goto out;
7932 	}
7933 
7934 	stripe_len = btrfs_calc_stripe_length(map);
7935 	if (physical_len != stripe_len) {
7936 		btrfs_err(fs_info,
7937 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7938 			  physical_offset, devid, map->start, physical_len,
7939 			  stripe_len);
7940 		ret = -EUCLEAN;
7941 		goto out;
7942 	}
7943 
7944 	/*
7945 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7946 	 * space. Although kernel can handle it without problem, better to warn
7947 	 * the users.
7948 	 */
7949 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7950 		btrfs_warn(fs_info,
7951 		"devid %llu physical %llu len %llu inside the reserved space",
7952 			   devid, physical_offset, physical_len);
7953 
7954 	for (i = 0; i < map->num_stripes; i++) {
7955 		if (map->stripes[i].dev->devid == devid &&
7956 		    map->stripes[i].physical == physical_offset) {
7957 			found = true;
7958 			if (map->verified_stripes >= map->num_stripes) {
7959 				btrfs_err(fs_info,
7960 				"too many dev extents for chunk %llu found",
7961 					  map->start);
7962 				ret = -EUCLEAN;
7963 				goto out;
7964 			}
7965 			map->verified_stripes++;
7966 			break;
7967 		}
7968 	}
7969 	if (!found) {
7970 		btrfs_err(fs_info,
7971 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7972 			physical_offset, devid);
7973 		ret = -EUCLEAN;
7974 	}
7975 
7976 	/* Make sure no dev extent is beyond device boundary */
7977 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7978 	if (!dev) {
7979 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7980 		ret = -EUCLEAN;
7981 		goto out;
7982 	}
7983 
7984 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7985 		btrfs_err(fs_info,
7986 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7987 			  devid, physical_offset, physical_len,
7988 			  dev->disk_total_bytes);
7989 		ret = -EUCLEAN;
7990 		goto out;
7991 	}
7992 
7993 	if (dev->zone_info) {
7994 		u64 zone_size = dev->zone_info->zone_size;
7995 
7996 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7997 		    !IS_ALIGNED(physical_len, zone_size)) {
7998 			btrfs_err(fs_info,
7999 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8000 				  devid, physical_offset, physical_len);
8001 			ret = -EUCLEAN;
8002 			goto out;
8003 		}
8004 	}
8005 
8006 out:
8007 	btrfs_free_chunk_map(map);
8008 	return ret;
8009 }
8010 
8011 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8012 {
8013 	struct rb_node *node;
8014 	int ret = 0;
8015 
8016 	read_lock(&fs_info->mapping_tree_lock);
8017 	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8018 		struct btrfs_chunk_map *map;
8019 
8020 		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8021 		if (map->num_stripes != map->verified_stripes) {
8022 			btrfs_err(fs_info,
8023 			"chunk %llu has missing dev extent, have %d expect %d",
8024 				  map->start, map->verified_stripes, map->num_stripes);
8025 			ret = -EUCLEAN;
8026 			goto out;
8027 		}
8028 	}
8029 out:
8030 	read_unlock(&fs_info->mapping_tree_lock);
8031 	return ret;
8032 }
8033 
8034 /*
8035  * Ensure that all dev extents are mapped to correct chunk, otherwise
8036  * later chunk allocation/free would cause unexpected behavior.
8037  *
8038  * NOTE: This will iterate through the whole device tree, which should be of
8039  * the same size level as the chunk tree.  This slightly increases mount time.
8040  */
8041 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8042 {
8043 	struct btrfs_path *path;
8044 	struct btrfs_root *root = fs_info->dev_root;
8045 	struct btrfs_key key;
8046 	u64 prev_devid = 0;
8047 	u64 prev_dev_ext_end = 0;
8048 	int ret = 0;
8049 
8050 	/*
8051 	 * We don't have a dev_root because we mounted with ignorebadroots and
8052 	 * failed to load the root, so we want to skip the verification in this
8053 	 * case for sure.
8054 	 *
8055 	 * However if the dev root is fine, but the tree itself is corrupted
8056 	 * we'd still fail to mount.  This verification is only to make sure
8057 	 * writes can happen safely, so instead just bypass this check
8058 	 * completely in the case of IGNOREBADROOTS.
8059 	 */
8060 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8061 		return 0;
8062 
8063 	key.objectid = 1;
8064 	key.type = BTRFS_DEV_EXTENT_KEY;
8065 	key.offset = 0;
8066 
8067 	path = btrfs_alloc_path();
8068 	if (!path)
8069 		return -ENOMEM;
8070 
8071 	path->reada = READA_FORWARD;
8072 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8073 	if (ret < 0)
8074 		goto out;
8075 
8076 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8077 		ret = btrfs_next_leaf(root, path);
8078 		if (ret < 0)
8079 			goto out;
8080 		/* No dev extents at all? Not good */
8081 		if (ret > 0) {
8082 			ret = -EUCLEAN;
8083 			goto out;
8084 		}
8085 	}
8086 	while (1) {
8087 		struct extent_buffer *leaf = path->nodes[0];
8088 		struct btrfs_dev_extent *dext;
8089 		int slot = path->slots[0];
8090 		u64 chunk_offset;
8091 		u64 physical_offset;
8092 		u64 physical_len;
8093 		u64 devid;
8094 
8095 		btrfs_item_key_to_cpu(leaf, &key, slot);
8096 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8097 			break;
8098 		devid = key.objectid;
8099 		physical_offset = key.offset;
8100 
8101 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8102 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8103 		physical_len = btrfs_dev_extent_length(leaf, dext);
8104 
8105 		/* Check if this dev extent overlaps with the previous one */
8106 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8107 			btrfs_err(fs_info,
8108 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8109 				  devid, physical_offset, prev_dev_ext_end);
8110 			ret = -EUCLEAN;
8111 			goto out;
8112 		}
8113 
8114 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8115 					    physical_offset, physical_len);
8116 		if (ret < 0)
8117 			goto out;
8118 		prev_devid = devid;
8119 		prev_dev_ext_end = physical_offset + physical_len;
8120 
8121 		ret = btrfs_next_item(root, path);
8122 		if (ret < 0)
8123 			goto out;
8124 		if (ret > 0) {
8125 			ret = 0;
8126 			break;
8127 		}
8128 	}
8129 
8130 	/* Ensure all chunks have corresponding dev extents */
8131 	ret = verify_chunk_dev_extent_mapping(fs_info);
8132 out:
8133 	btrfs_free_path(path);
8134 	return ret;
8135 }
8136 
8137 /*
8138  * Check whether the given block group or device is pinned by any inode being
8139  * used as a swapfile.
8140  */
8141 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8142 {
8143 	struct btrfs_swapfile_pin *sp;
8144 	struct rb_node *node;
8145 
8146 	spin_lock(&fs_info->swapfile_pins_lock);
8147 	node = fs_info->swapfile_pins.rb_node;
8148 	while (node) {
8149 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8150 		if (ptr < sp->ptr)
8151 			node = node->rb_left;
8152 		else if (ptr > sp->ptr)
8153 			node = node->rb_right;
8154 		else
8155 			break;
8156 	}
8157 	spin_unlock(&fs_info->swapfile_pins_lock);
8158 	return node != NULL;
8159 }
8160 
8161 static int relocating_repair_kthread(void *data)
8162 {
8163 	struct btrfs_block_group *cache = data;
8164 	struct btrfs_fs_info *fs_info = cache->fs_info;
8165 	u64 target;
8166 	int ret = 0;
8167 
8168 	target = cache->start;
8169 	btrfs_put_block_group(cache);
8170 
8171 	sb_start_write(fs_info->sb);
8172 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8173 		btrfs_info(fs_info,
8174 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8175 			   target);
8176 		sb_end_write(fs_info->sb);
8177 		return -EBUSY;
8178 	}
8179 
8180 	mutex_lock(&fs_info->reclaim_bgs_lock);
8181 
8182 	/* Ensure block group still exists */
8183 	cache = btrfs_lookup_block_group(fs_info, target);
8184 	if (!cache)
8185 		goto out;
8186 
8187 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8188 		goto out;
8189 
8190 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8191 	if (ret < 0)
8192 		goto out;
8193 
8194 	btrfs_info(fs_info,
8195 		   "zoned: relocating block group %llu to repair IO failure",
8196 		   target);
8197 	ret = btrfs_relocate_chunk(fs_info, target);
8198 
8199 out:
8200 	if (cache)
8201 		btrfs_put_block_group(cache);
8202 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8203 	btrfs_exclop_finish(fs_info);
8204 	sb_end_write(fs_info->sb);
8205 
8206 	return ret;
8207 }
8208 
8209 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8210 {
8211 	struct btrfs_block_group *cache;
8212 
8213 	if (!btrfs_is_zoned(fs_info))
8214 		return false;
8215 
8216 	/* Do not attempt to repair in degraded state */
8217 	if (btrfs_test_opt(fs_info, DEGRADED))
8218 		return true;
8219 
8220 	cache = btrfs_lookup_block_group(fs_info, logical);
8221 	if (!cache)
8222 		return true;
8223 
8224 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8225 		btrfs_put_block_group(cache);
8226 		return true;
8227 	}
8228 
8229 	kthread_run(relocating_repair_kthread, cache,
8230 		    "btrfs-relocating-repair");
8231 
8232 	return true;
8233 }
8234 
8235 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8236 				    struct btrfs_io_stripe *smap,
8237 				    u64 logical)
8238 {
8239 	int data_stripes = nr_bioc_data_stripes(bioc);
8240 	int i;
8241 
8242 	for (i = 0; i < data_stripes; i++) {
8243 		u64 stripe_start = bioc->full_stripe_logical +
8244 				   btrfs_stripe_nr_to_offset(i);
8245 
8246 		if (logical >= stripe_start &&
8247 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8248 			break;
8249 	}
8250 	ASSERT(i < data_stripes);
8251 	smap->dev = bioc->stripes[i].dev;
8252 	smap->physical = bioc->stripes[i].physical +
8253 			((logical - bioc->full_stripe_logical) &
8254 			 BTRFS_STRIPE_LEN_MASK);
8255 }
8256 
8257 /*
8258  * Map a repair write into a single device.
8259  *
8260  * A repair write is triggered by read time repair or scrub, which would only
8261  * update the contents of a single device.
8262  * Not update any other mirrors nor go through RMW path.
8263  *
8264  * Callers should ensure:
8265  *
8266  * - Call btrfs_bio_counter_inc_blocked() first
8267  * - The range does not cross stripe boundary
8268  * - Has a valid @mirror_num passed in.
8269  */
8270 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8271 			   struct btrfs_io_stripe *smap, u64 logical,
8272 			   u32 length, int mirror_num)
8273 {
8274 	struct btrfs_io_context *bioc = NULL;
8275 	u64 map_length = length;
8276 	int mirror_ret = mirror_num;
8277 	int ret;
8278 
8279 	ASSERT(mirror_num > 0);
8280 
8281 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8282 			      &bioc, smap, &mirror_ret);
8283 	if (ret < 0)
8284 		return ret;
8285 
8286 	/* The map range should not cross stripe boundary. */
8287 	ASSERT(map_length >= length);
8288 
8289 	/* Already mapped to single stripe. */
8290 	if (!bioc)
8291 		goto out;
8292 
8293 	/* Map the RAID56 multi-stripe writes to a single one. */
8294 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8295 		map_raid56_repair_block(bioc, smap, logical);
8296 		goto out;
8297 	}
8298 
8299 	ASSERT(mirror_num <= bioc->num_stripes);
8300 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8301 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8302 out:
8303 	btrfs_put_bioc(bioc);
8304 	ASSERT(smap->dev);
8305 	return 0;
8306 }
8307