1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "dev-replace.h" 22 #include "sysfs.h" 23 #include "tree-checker.h" 24 #include "space-info.h" 25 #include "block-group.h" 26 #include "discard.h" 27 #include "zoned.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "uuid-tree.h" 31 #include "ioctl.h" 32 #include "relocation.h" 33 #include "scrub.h" 34 #include "super.h" 35 #include "raid-stripe-tree.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 struct btrfs_io_geometry { 42 u32 stripe_index; 43 u32 stripe_nr; 44 int mirror_num; 45 int num_stripes; 46 u64 stripe_offset; 47 u64 raid56_full_stripe_start; 48 int max_errors; 49 enum btrfs_map_op op; 50 bool use_rst; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) 217 return; 218 219 #define DESCRIBE_FLAG(flag, desc) \ 220 do { \ 221 if (flags & (flag)) { \ 222 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 223 if (ret < 0 || ret >= size_bp) \ 224 goto out_overflow; \ 225 size_bp -= ret; \ 226 bp += ret; \ 227 flags &= ~(flag); \ 228 } \ 229 } while (0) 230 231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 234 235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 238 btrfs_raid_array[i].raid_name); 239 #undef DESCRIBE_FLAG 240 241 if (flags) { 242 ret = snprintf(bp, size_bp, "0x%llx|", flags); 243 size_bp -= ret; 244 } 245 246 if (size_bp < size_buf) 247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 248 249 /* 250 * The text is trimmed, it's up to the caller to provide sufficiently 251 * large buffer 252 */ 253 out_overflow:; 254 } 255 256 static int init_first_rw_device(struct btrfs_trans_handle *trans); 257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 259 260 /* 261 * Device locking 262 * ============== 263 * 264 * There are several mutexes that protect manipulation of devices and low-level 265 * structures like chunks but not block groups, extents or files 266 * 267 * uuid_mutex (global lock) 268 * ------------------------ 269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 271 * device) or requested by the device= mount option 272 * 273 * the mutex can be very coarse and can cover long-running operations 274 * 275 * protects: updates to fs_devices counters like missing devices, rw devices, 276 * seeding, structure cloning, opening/closing devices at mount/umount time 277 * 278 * global::fs_devs - add, remove, updates to the global list 279 * 280 * does not protect: manipulation of the fs_devices::devices list in general 281 * but in mount context it could be used to exclude list modifications by eg. 282 * scan ioctl 283 * 284 * btrfs_device::name - renames (write side), read is RCU 285 * 286 * fs_devices::device_list_mutex (per-fs, with RCU) 287 * ------------------------------------------------ 288 * protects updates to fs_devices::devices, ie. adding and deleting 289 * 290 * simple list traversal with read-only actions can be done with RCU protection 291 * 292 * may be used to exclude some operations from running concurrently without any 293 * modifications to the list (see write_all_supers) 294 * 295 * Is not required at mount and close times, because our device list is 296 * protected by the uuid_mutex at that point. 297 * 298 * balance_mutex 299 * ------------- 300 * protects balance structures (status, state) and context accessed from 301 * several places (internally, ioctl) 302 * 303 * chunk_mutex 304 * ----------- 305 * protects chunks, adding or removing during allocation, trim or when a new 306 * device is added/removed. Additionally it also protects post_commit_list of 307 * individual devices, since they can be added to the transaction's 308 * post_commit_list only with chunk_mutex held. 309 * 310 * cleaner_mutex 311 * ------------- 312 * a big lock that is held by the cleaner thread and prevents running subvolume 313 * cleaning together with relocation or delayed iputs 314 * 315 * 316 * Lock nesting 317 * ============ 318 * 319 * uuid_mutex 320 * device_list_mutex 321 * chunk_mutex 322 * balance_mutex 323 * 324 * 325 * Exclusive operations 326 * ==================== 327 * 328 * Maintains the exclusivity of the following operations that apply to the 329 * whole filesystem and cannot run in parallel. 330 * 331 * - Balance (*) 332 * - Device add 333 * - Device remove 334 * - Device replace (*) 335 * - Resize 336 * 337 * The device operations (as above) can be in one of the following states: 338 * 339 * - Running state 340 * - Paused state 341 * - Completed state 342 * 343 * Only device operations marked with (*) can go into the Paused state for the 344 * following reasons: 345 * 346 * - ioctl (only Balance can be Paused through ioctl) 347 * - filesystem remounted as read-only 348 * - filesystem unmounted and mounted as read-only 349 * - system power-cycle and filesystem mounted as read-only 350 * - filesystem or device errors leading to forced read-only 351 * 352 * The status of exclusive operation is set and cleared atomically. 353 * During the course of Paused state, fs_info::exclusive_operation remains set. 354 * A device operation in Paused or Running state can be canceled or resumed 355 * either by ioctl (Balance only) or when remounted as read-write. 356 * The exclusive status is cleared when the device operation is canceled or 357 * completed. 358 */ 359 360 DEFINE_MUTEX(uuid_mutex); 361 static LIST_HEAD(fs_uuids); 362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 363 { 364 return &fs_uuids; 365 } 366 367 /* 368 * Allocate new btrfs_fs_devices structure identified by a fsid. 369 * 370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 371 * fs_devices::metadata_fsid 372 * 373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 374 * The returned struct is not linked onto any lists and can be destroyed with 375 * kfree() right away. 376 */ 377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 378 { 379 struct btrfs_fs_devices *fs_devs; 380 381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 382 if (!fs_devs) 383 return ERR_PTR(-ENOMEM); 384 385 mutex_init(&fs_devs->device_list_mutex); 386 387 INIT_LIST_HEAD(&fs_devs->devices); 388 INIT_LIST_HEAD(&fs_devs->alloc_list); 389 INIT_LIST_HEAD(&fs_devs->fs_list); 390 INIT_LIST_HEAD(&fs_devs->seed_list); 391 392 if (fsid) { 393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 395 } 396 397 return fs_devs; 398 } 399 400 static void btrfs_free_device(struct btrfs_device *device) 401 { 402 WARN_ON(!list_empty(&device->post_commit_list)); 403 /* 404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is 405 * reading the device name. 406 */ 407 kfree(rcu_dereference_raw(device->name)); 408 btrfs_extent_io_tree_release(&device->alloc_state); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 417 WARN_ON(fs_devices->opened); 418 WARN_ON(fs_devices->holding); 419 while (!list_empty(&fs_devices->devices)) { 420 device = list_first_entry(&fs_devices->devices, 421 struct btrfs_device, dev_list); 422 list_del(&device->dev_list); 423 btrfs_free_device(device); 424 } 425 kfree(fs_devices); 426 } 427 428 void __exit btrfs_cleanup_fs_uuids(void) 429 { 430 struct btrfs_fs_devices *fs_devices; 431 432 while (!list_empty(&fs_uuids)) { 433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 434 fs_list); 435 list_del(&fs_devices->fs_list); 436 free_fs_devices(fs_devices); 437 } 438 } 439 440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 441 const u8 *fsid, const u8 *metadata_fsid) 442 { 443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 444 return false; 445 446 if (!metadata_fsid) 447 return true; 448 449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 450 return false; 451 452 return true; 453 } 454 455 static noinline struct btrfs_fs_devices *find_fsid( 456 const u8 *fsid, const u8 *metadata_fsid) 457 { 458 struct btrfs_fs_devices *fs_devices; 459 460 ASSERT(fsid); 461 462 /* Handle non-split brain cases */ 463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 465 return fs_devices; 466 } 467 return NULL; 468 } 469 470 static int 471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 472 int flush, struct file **bdev_file, 473 struct btrfs_super_block **disk_super) 474 { 475 struct block_device *bdev; 476 int ret; 477 478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops); 479 480 if (IS_ERR(*bdev_file)) { 481 ret = PTR_ERR(*bdev_file); 482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 483 device_path, flags, ret); 484 goto error; 485 } 486 bdev = file_bdev(*bdev_file); 487 488 if (flush) 489 sync_blockdev(bdev); 490 if (holder) { 491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 492 if (ret) { 493 bdev_fput(*bdev_file); 494 goto error; 495 } 496 } 497 invalidate_bdev(bdev); 498 *disk_super = btrfs_read_disk_super(bdev, 0, false); 499 if (IS_ERR(*disk_super)) { 500 ret = PTR_ERR(*disk_super); 501 bdev_fput(*bdev_file); 502 goto error; 503 } 504 505 return 0; 506 507 error: 508 *disk_super = NULL; 509 *bdev_file = NULL; 510 return ret; 511 } 512 513 /* 514 * Search and remove all stale devices (which are not mounted). When both 515 * inputs are NULL, it will search and release all stale devices. 516 * 517 * @devt: Optional. When provided will it release all unmounted devices 518 * matching this devt only. 519 * @skip_device: Optional. Will skip this device when searching for the stale 520 * devices. 521 * 522 * Return: 0 for success or if @devt is 0. 523 * -EBUSY if @devt is a mounted device. 524 * -ENOENT if @devt does not match any device in the list. 525 */ 526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 527 { 528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 529 struct btrfs_device *device, *tmp_device; 530 int ret; 531 bool freed = false; 532 533 lockdep_assert_held(&uuid_mutex); 534 535 /* Return good status if there is no instance of devt. */ 536 ret = 0; 537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 538 539 mutex_lock(&fs_devices->device_list_mutex); 540 list_for_each_entry_safe(device, tmp_device, 541 &fs_devices->devices, dev_list) { 542 if (skip_device && skip_device == device) 543 continue; 544 if (devt && devt != device->devt) 545 continue; 546 if (fs_devices->opened || fs_devices->holding) { 547 if (devt) 548 ret = -EBUSY; 549 break; 550 } 551 552 /* delete the stale device */ 553 fs_devices->num_devices--; 554 list_del(&device->dev_list); 555 btrfs_free_device(device); 556 557 freed = true; 558 } 559 mutex_unlock(&fs_devices->device_list_mutex); 560 561 if (fs_devices->num_devices == 0) { 562 btrfs_sysfs_remove_fsid(fs_devices); 563 list_del(&fs_devices->fs_list); 564 free_fs_devices(fs_devices); 565 } 566 } 567 568 /* If there is at least one freed device return 0. */ 569 if (freed) 570 return 0; 571 572 return ret; 573 } 574 575 static struct btrfs_fs_devices *find_fsid_by_device( 576 struct btrfs_super_block *disk_super, 577 dev_t devt, bool *same_fsid_diff_dev) 578 { 579 struct btrfs_fs_devices *fsid_fs_devices; 580 struct btrfs_fs_devices *devt_fs_devices; 581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 583 bool found_by_devt = false; 584 585 /* Find the fs_device by the usual method, if found use it. */ 586 fsid_fs_devices = find_fsid(disk_super->fsid, 587 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 588 589 /* The temp_fsid feature is supported only with single device filesystem. */ 590 if (btrfs_super_num_devices(disk_super) != 1) 591 return fsid_fs_devices; 592 593 /* 594 * A seed device is an integral component of the sprout device, which 595 * functions as a multi-device filesystem. So, temp-fsid feature is 596 * not supported. 597 */ 598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 599 return fsid_fs_devices; 600 601 /* Try to find a fs_devices by matching devt. */ 602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 603 struct btrfs_device *device; 604 605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 606 if (device->devt == devt) { 607 found_by_devt = true; 608 break; 609 } 610 } 611 if (found_by_devt) 612 break; 613 } 614 615 if (found_by_devt) { 616 /* Existing device. */ 617 if (fsid_fs_devices == NULL) { 618 if (devt_fs_devices->opened == 0) { 619 /* Stale device. */ 620 return NULL; 621 } else { 622 /* temp_fsid is mounting a subvol. */ 623 return devt_fs_devices; 624 } 625 } else { 626 /* Regular or temp_fsid device mounting a subvol. */ 627 return devt_fs_devices; 628 } 629 } else { 630 /* New device. */ 631 if (fsid_fs_devices == NULL) { 632 return NULL; 633 } else { 634 /* sb::fsid is already used create a new temp_fsid. */ 635 *same_fsid_diff_dev = true; 636 return NULL; 637 } 638 } 639 640 /* Not reached. */ 641 } 642 643 /* 644 * This is only used on mount, and we are protected from competing things 645 * messing with our fs_devices by the uuid_mutex, thus we do not need the 646 * fs_devices->device_list_mutex here. 647 */ 648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 649 struct btrfs_device *device, blk_mode_t flags, 650 void *holder) 651 { 652 struct file *bdev_file; 653 struct btrfs_super_block *disk_super; 654 u64 devid; 655 int ret; 656 657 if (device->bdev) 658 return -EINVAL; 659 if (!device->name) 660 return -EINVAL; 661 662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1, 663 &bdev_file, &disk_super); 664 if (ret) 665 return ret; 666 667 devid = btrfs_stack_device_id(&disk_super->dev_item); 668 if (devid != device->devid) 669 goto error_free_page; 670 671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 672 goto error_free_page; 673 674 device->generation = btrfs_super_generation(disk_super); 675 676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 677 if (btrfs_super_incompat_flags(disk_super) & 678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 679 btrfs_err(NULL, 680 "invalid seeding and uuid-changed device detected"); 681 goto error_free_page; 682 } 683 684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 685 fs_devices->seeding = true; 686 } else { 687 if (bdev_read_only(file_bdev(bdev_file))) 688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 else 690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 691 } 692 693 if (!bdev_nonrot(file_bdev(bdev_file))) 694 fs_devices->rotating = true; 695 696 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 697 fs_devices->discardable = true; 698 699 device->bdev_file = bdev_file; 700 device->bdev = file_bdev(bdev_file); 701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 702 703 if (device->devt != device->bdev->bd_dev) { 704 btrfs_warn(NULL, 705 "device %s maj:min changed from %d:%d to %d:%d", 706 rcu_dereference_raw(device->name), MAJOR(device->devt), 707 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 708 MINOR(device->bdev->bd_dev)); 709 710 device->devt = device->bdev->bd_dev; 711 } 712 713 fs_devices->open_devices++; 714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 715 device->devid != BTRFS_DEV_REPLACE_DEVID) { 716 fs_devices->rw_devices++; 717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 718 } 719 btrfs_release_disk_super(disk_super); 720 721 return 0; 722 723 error_free_page: 724 btrfs_release_disk_super(disk_super); 725 bdev_fput(bdev_file); 726 727 return -EINVAL; 728 } 729 730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 731 { 732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 734 735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 736 } 737 738 static bool is_same_device(struct btrfs_device *device, const char *new_path) 739 { 740 struct path old = { .mnt = NULL, .dentry = NULL }; 741 struct path new = { .mnt = NULL, .dentry = NULL }; 742 char *old_path = NULL; 743 bool is_same = false; 744 int ret; 745 746 if (!device->name) 747 goto out; 748 749 old_path = kzalloc(PATH_MAX, GFP_NOFS); 750 if (!old_path) 751 goto out; 752 753 rcu_read_lock(); 754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX); 755 rcu_read_unlock(); 756 if (ret < 0) 757 goto out; 758 759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 760 if (ret) 761 goto out; 762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 763 if (ret) 764 goto out; 765 if (path_equal(&old, &new)) 766 is_same = true; 767 out: 768 kfree(old_path); 769 path_put(&old); 770 path_put(&new); 771 return is_same; 772 } 773 774 /* 775 * Add new device to list of registered devices 776 * 777 * Returns: 778 * device pointer which was just added or updated when successful 779 * error pointer when failed 780 */ 781 static noinline struct btrfs_device *device_list_add(const char *path, 782 struct btrfs_super_block *disk_super, 783 bool *new_device_added) 784 { 785 struct btrfs_device *device; 786 struct btrfs_fs_devices *fs_devices = NULL; 787 const char *name; 788 u64 found_transid = btrfs_super_generation(disk_super); 789 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 790 dev_t path_devt; 791 int ret; 792 bool same_fsid_diff_dev = false; 793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 795 796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 797 btrfs_err(NULL, 798 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 799 path); 800 return ERR_PTR(-EAGAIN); 801 } 802 803 ret = lookup_bdev(path, &path_devt); 804 if (ret) { 805 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 806 path, ret); 807 return ERR_PTR(ret); 808 } 809 810 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 811 812 if (!fs_devices) { 813 fs_devices = alloc_fs_devices(disk_super->fsid); 814 if (IS_ERR(fs_devices)) 815 return ERR_CAST(fs_devices); 816 817 if (has_metadata_uuid) 818 memcpy(fs_devices->metadata_uuid, 819 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 820 821 if (same_fsid_diff_dev) { 822 generate_random_uuid(fs_devices->fsid); 823 fs_devices->temp_fsid = true; 824 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU", 825 path, MAJOR(path_devt), MINOR(path_devt), 826 fs_devices->fsid); 827 } 828 829 mutex_lock(&fs_devices->device_list_mutex); 830 list_add(&fs_devices->fs_list, &fs_uuids); 831 832 device = NULL; 833 } else { 834 struct btrfs_dev_lookup_args args = { 835 .devid = devid, 836 .uuid = disk_super->dev_item.uuid, 837 }; 838 839 mutex_lock(&fs_devices->device_list_mutex); 840 device = btrfs_find_device(fs_devices, &args); 841 842 if (found_transid > fs_devices->latest_generation) { 843 memcpy(fs_devices->fsid, disk_super->fsid, 844 BTRFS_FSID_SIZE); 845 memcpy(fs_devices->metadata_uuid, 846 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 847 } 848 } 849 850 if (!device) { 851 unsigned int nofs_flag; 852 853 if (fs_devices->opened) { 854 btrfs_err(NULL, 855 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 856 path, MAJOR(path_devt), MINOR(path_devt), 857 fs_devices->fsid, current->comm, 858 task_pid_nr(current)); 859 mutex_unlock(&fs_devices->device_list_mutex); 860 return ERR_PTR(-EBUSY); 861 } 862 863 nofs_flag = memalloc_nofs_save(); 864 device = btrfs_alloc_device(NULL, &devid, 865 disk_super->dev_item.uuid, path); 866 memalloc_nofs_restore(nofs_flag); 867 if (IS_ERR(device)) { 868 mutex_unlock(&fs_devices->device_list_mutex); 869 /* we can safely leave the fs_devices entry around */ 870 return device; 871 } 872 873 device->devt = path_devt; 874 875 list_add_rcu(&device->dev_list, &fs_devices->devices); 876 fs_devices->num_devices++; 877 878 device->fs_devices = fs_devices; 879 *new_device_added = true; 880 881 if (disk_super->label[0]) 882 pr_info( 883 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 884 disk_super->label, devid, found_transid, path, 885 MAJOR(path_devt), MINOR(path_devt), 886 current->comm, task_pid_nr(current)); 887 else 888 pr_info( 889 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 890 disk_super->fsid, devid, found_transid, path, 891 MAJOR(path_devt), MINOR(path_devt), 892 current->comm, task_pid_nr(current)); 893 894 } else if (!device->name || !is_same_device(device, path)) { 895 const char *old_name; 896 897 /* 898 * When FS is already mounted. 899 * 1. If you are here and if the device->name is NULL that 900 * means this device was missing at time of FS mount. 901 * 2. If you are here and if the device->name is different 902 * from 'path' that means either 903 * a. The same device disappeared and reappeared with 904 * different name. or 905 * b. The missing-disk-which-was-replaced, has 906 * reappeared now. 907 * 908 * We must allow 1 and 2a above. But 2b would be a spurious 909 * and unintentional. 910 * 911 * Further in case of 1 and 2a above, the disk at 'path' 912 * would have missed some transaction when it was away and 913 * in case of 2a the stale bdev has to be updated as well. 914 * 2b must not be allowed at all time. 915 */ 916 917 /* 918 * For now, we do allow update to btrfs_fs_device through the 919 * btrfs dev scan cli after FS has been mounted. We're still 920 * tracking a problem where systems fail mount by subvolume id 921 * when we reject replacement on a mounted FS. 922 */ 923 if (!fs_devices->opened && found_transid < device->generation) { 924 /* 925 * That is if the FS is _not_ mounted and if you 926 * are here, that means there is more than one 927 * disk with same uuid and devid.We keep the one 928 * with larger generation number or the last-in if 929 * generation are equal. 930 */ 931 mutex_unlock(&fs_devices->device_list_mutex); 932 btrfs_err(NULL, 933 "device %s already registered with a higher generation, found %llu expect %llu", 934 path, found_transid, device->generation); 935 return ERR_PTR(-EEXIST); 936 } 937 938 /* 939 * We are going to replace the device path for a given devid, 940 * make sure it's the same device if the device is mounted 941 * 942 * NOTE: the device->fs_info may not be reliable here so pass 943 * in a NULL to message helpers instead. This avoids a possible 944 * use-after-free when the fs_info and fs_info->sb are already 945 * torn down. 946 */ 947 if (device->bdev) { 948 if (device->devt != path_devt) { 949 mutex_unlock(&fs_devices->device_list_mutex); 950 btrfs_warn(NULL, 951 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 952 path, devid, found_transid, 953 current->comm, 954 task_pid_nr(current)); 955 return ERR_PTR(-EEXIST); 956 } 957 btrfs_info(NULL, 958 "devid %llu device path %s changed to %s scanned by %s (%d)", 959 devid, btrfs_dev_name(device), 960 path, current->comm, 961 task_pid_nr(current)); 962 } 963 964 name = kstrdup(path, GFP_NOFS); 965 if (!name) { 966 mutex_unlock(&fs_devices->device_list_mutex); 967 return ERR_PTR(-ENOMEM); 968 } 969 rcu_read_lock(); 970 old_name = rcu_dereference(device->name); 971 rcu_read_unlock(); 972 rcu_assign_pointer(device->name, name); 973 kfree_rcu_mightsleep(old_name); 974 975 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 976 fs_devices->missing_devices--; 977 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 978 } 979 device->devt = path_devt; 980 } 981 982 /* 983 * Unmount does not free the btrfs_device struct but would zero 984 * generation along with most of the other members. So just update 985 * it back. We need it to pick the disk with largest generation 986 * (as above). 987 */ 988 if (!fs_devices->opened) { 989 device->generation = found_transid; 990 fs_devices->latest_generation = max_t(u64, found_transid, 991 fs_devices->latest_generation); 992 } 993 994 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 995 996 mutex_unlock(&fs_devices->device_list_mutex); 997 return device; 998 } 999 1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1001 { 1002 struct btrfs_fs_devices *fs_devices; 1003 struct btrfs_device *device; 1004 struct btrfs_device *orig_dev; 1005 int ret = 0; 1006 1007 lockdep_assert_held(&uuid_mutex); 1008 1009 fs_devices = alloc_fs_devices(orig->fsid); 1010 if (IS_ERR(fs_devices)) 1011 return fs_devices; 1012 1013 fs_devices->total_devices = orig->total_devices; 1014 1015 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1016 const char *dev_path = NULL; 1017 1018 /* 1019 * This is ok to do without RCU read locked because we hold the 1020 * uuid mutex so nothing we touch in here is going to disappear. 1021 */ 1022 if (orig_dev->name) 1023 dev_path = rcu_dereference_raw(orig_dev->name); 1024 1025 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1026 orig_dev->uuid, dev_path); 1027 if (IS_ERR(device)) { 1028 ret = PTR_ERR(device); 1029 goto error; 1030 } 1031 1032 if (orig_dev->zone_info) { 1033 struct btrfs_zoned_device_info *zone_info; 1034 1035 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1036 if (!zone_info) { 1037 btrfs_free_device(device); 1038 ret = -ENOMEM; 1039 goto error; 1040 } 1041 device->zone_info = zone_info; 1042 } 1043 1044 list_add(&device->dev_list, &fs_devices->devices); 1045 device->fs_devices = fs_devices; 1046 fs_devices->num_devices++; 1047 } 1048 return fs_devices; 1049 error: 1050 free_fs_devices(fs_devices); 1051 return ERR_PTR(ret); 1052 } 1053 1054 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1055 struct btrfs_device **latest_dev) 1056 { 1057 struct btrfs_device *device, *next; 1058 1059 /* This is the initialized path, it is safe to release the devices. */ 1060 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1061 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1062 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1063 &device->dev_state) && 1064 !test_bit(BTRFS_DEV_STATE_MISSING, 1065 &device->dev_state) && 1066 (!*latest_dev || 1067 device->generation > (*latest_dev)->generation)) { 1068 *latest_dev = device; 1069 } 1070 continue; 1071 } 1072 1073 /* 1074 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1075 * in btrfs_init_dev_replace() so just continue. 1076 */ 1077 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1078 continue; 1079 1080 if (device->bdev_file) { 1081 bdev_fput(device->bdev_file); 1082 device->bdev = NULL; 1083 device->bdev_file = NULL; 1084 fs_devices->open_devices--; 1085 } 1086 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1087 list_del_init(&device->dev_alloc_list); 1088 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1089 fs_devices->rw_devices--; 1090 } 1091 list_del_init(&device->dev_list); 1092 fs_devices->num_devices--; 1093 btrfs_free_device(device); 1094 } 1095 1096 } 1097 1098 /* 1099 * After we have read the system tree and know devids belonging to this 1100 * filesystem, remove the device which does not belong there. 1101 */ 1102 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1103 { 1104 struct btrfs_device *latest_dev = NULL; 1105 struct btrfs_fs_devices *seed_dev; 1106 1107 mutex_lock(&uuid_mutex); 1108 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1109 1110 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1111 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1112 1113 fs_devices->latest_dev = latest_dev; 1114 1115 mutex_unlock(&uuid_mutex); 1116 } 1117 1118 static void btrfs_close_bdev(struct btrfs_device *device) 1119 { 1120 if (!device->bdev) 1121 return; 1122 1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1124 sync_blockdev(device->bdev); 1125 invalidate_bdev(device->bdev); 1126 } 1127 1128 bdev_fput(device->bdev_file); 1129 } 1130 1131 static void btrfs_close_one_device(struct btrfs_device *device) 1132 { 1133 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1134 1135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1136 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1137 list_del_init(&device->dev_alloc_list); 1138 fs_devices->rw_devices--; 1139 } 1140 1141 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1143 1144 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1145 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1146 fs_devices->missing_devices--; 1147 } 1148 1149 btrfs_close_bdev(device); 1150 if (device->bdev) { 1151 fs_devices->open_devices--; 1152 device->bdev = NULL; 1153 device->bdev_file = NULL; 1154 } 1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1156 btrfs_destroy_dev_zone_info(device); 1157 1158 device->fs_info = NULL; 1159 atomic_set(&device->dev_stats_ccnt, 0); 1160 btrfs_extent_io_tree_release(&device->alloc_state); 1161 1162 /* 1163 * Reset the flush error record. We might have a transient flush error 1164 * in this mount, and if so we aborted the current transaction and set 1165 * the fs to an error state, guaranteeing no super blocks can be further 1166 * committed. However that error might be transient and if we unmount the 1167 * filesystem and mount it again, we should allow the mount to succeed 1168 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1169 * filesystem again we still get flush errors, then we will again abort 1170 * any transaction and set the error state, guaranteeing no commits of 1171 * unsafe super blocks. 1172 */ 1173 device->last_flush_error = 0; 1174 1175 /* Verify the device is back in a pristine state */ 1176 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1177 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1178 WARN_ON(!list_empty(&device->dev_alloc_list)); 1179 WARN_ON(!list_empty(&device->post_commit_list)); 1180 } 1181 1182 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1183 { 1184 struct btrfs_device *device, *tmp; 1185 1186 lockdep_assert_held(&uuid_mutex); 1187 1188 if (--fs_devices->opened > 0) 1189 return; 1190 1191 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1192 btrfs_close_one_device(device); 1193 1194 WARN_ON(fs_devices->open_devices); 1195 WARN_ON(fs_devices->rw_devices); 1196 fs_devices->opened = 0; 1197 fs_devices->seeding = false; 1198 fs_devices->fs_info = NULL; 1199 } 1200 1201 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1202 { 1203 LIST_HEAD(list); 1204 struct btrfs_fs_devices *tmp; 1205 1206 mutex_lock(&uuid_mutex); 1207 close_fs_devices(fs_devices); 1208 if (!fs_devices->opened && !fs_devices->holding) { 1209 list_splice_init(&fs_devices->seed_list, &list); 1210 1211 /* 1212 * If the struct btrfs_fs_devices is not assembled with any 1213 * other device, it can be re-initialized during the next mount 1214 * without the needing device-scan step. Therefore, it can be 1215 * fully freed. 1216 */ 1217 if (fs_devices->num_devices == 1) { 1218 list_del(&fs_devices->fs_list); 1219 free_fs_devices(fs_devices); 1220 } 1221 } 1222 1223 1224 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1225 close_fs_devices(fs_devices); 1226 list_del(&fs_devices->seed_list); 1227 free_fs_devices(fs_devices); 1228 } 1229 mutex_unlock(&uuid_mutex); 1230 } 1231 1232 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1233 blk_mode_t flags, void *holder) 1234 { 1235 struct btrfs_device *device; 1236 struct btrfs_device *latest_dev = NULL; 1237 struct btrfs_device *tmp_device; 1238 s64 __maybe_unused value = 0; 1239 int ret = 0; 1240 1241 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1242 dev_list) { 1243 int ret2; 1244 1245 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1246 if (ret2 == 0 && 1247 (!latest_dev || device->generation > latest_dev->generation)) { 1248 latest_dev = device; 1249 } else if (ret2 == -ENODATA) { 1250 fs_devices->num_devices--; 1251 list_del(&device->dev_list); 1252 btrfs_free_device(device); 1253 } 1254 if (ret == 0 && ret2 != 0) 1255 ret = ret2; 1256 } 1257 1258 if (fs_devices->open_devices == 0) { 1259 if (ret) 1260 return ret; 1261 return -EINVAL; 1262 } 1263 1264 fs_devices->opened = 1; 1265 fs_devices->latest_dev = latest_dev; 1266 fs_devices->total_rw_bytes = 0; 1267 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1268 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1269 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1270 fs_devices->read_devid = latest_dev->devid; 1271 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1272 &value); 1273 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1274 fs_devices->collect_fs_stats = true; 1275 1276 if (value) { 1277 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1278 fs_devices->rr_min_contig_read = value; 1279 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1280 fs_devices->read_devid = value; 1281 } 1282 #else 1283 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1284 #endif 1285 1286 return 0; 1287 } 1288 1289 static int devid_cmp(void *priv, const struct list_head *a, 1290 const struct list_head *b) 1291 { 1292 const struct btrfs_device *dev1, *dev2; 1293 1294 dev1 = list_entry(a, struct btrfs_device, dev_list); 1295 dev2 = list_entry(b, struct btrfs_device, dev_list); 1296 1297 if (dev1->devid < dev2->devid) 1298 return -1; 1299 else if (dev1->devid > dev2->devid) 1300 return 1; 1301 return 0; 1302 } 1303 1304 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1305 blk_mode_t flags, void *holder) 1306 { 1307 int ret; 1308 1309 lockdep_assert_held(&uuid_mutex); 1310 /* 1311 * The device_list_mutex cannot be taken here in case opening the 1312 * underlying device takes further locks like open_mutex. 1313 * 1314 * We also don't need the lock here as this is called during mount and 1315 * exclusion is provided by uuid_mutex 1316 */ 1317 1318 if (fs_devices->opened) { 1319 fs_devices->opened++; 1320 ret = 0; 1321 } else { 1322 list_sort(NULL, &fs_devices->devices, devid_cmp); 1323 ret = open_fs_devices(fs_devices, flags, holder); 1324 } 1325 1326 return ret; 1327 } 1328 1329 void btrfs_release_disk_super(struct btrfs_super_block *super) 1330 { 1331 struct page *page = virt_to_page(super); 1332 1333 put_page(page); 1334 } 1335 1336 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1337 int copy_num, bool drop_cache) 1338 { 1339 struct btrfs_super_block *super; 1340 struct page *page; 1341 u64 bytenr, bytenr_orig; 1342 struct address_space *mapping = bdev->bd_mapping; 1343 int ret; 1344 1345 bytenr_orig = btrfs_sb_offset(copy_num); 1346 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1347 if (ret < 0) { 1348 if (ret == -ENOENT) 1349 ret = -EINVAL; 1350 return ERR_PTR(ret); 1351 } 1352 1353 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1354 return ERR_PTR(-EINVAL); 1355 1356 if (drop_cache) { 1357 /* This should only be called with the primary sb. */ 1358 ASSERT(copy_num == 0); 1359 1360 /* 1361 * Drop the page of the primary superblock, so later read will 1362 * always read from the device. 1363 */ 1364 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1365 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1366 } 1367 1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1369 if (IS_ERR(page)) 1370 return ERR_CAST(page); 1371 1372 super = page_address(page); 1373 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1374 btrfs_super_bytenr(super) != bytenr_orig) { 1375 btrfs_release_disk_super(super); 1376 return ERR_PTR(-EINVAL); 1377 } 1378 1379 /* 1380 * Make sure the last byte of label is properly NUL termiated. We use 1381 * '%s' to print the label, if not properly NUL termiated we can access 1382 * beyond the label. 1383 */ 1384 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1385 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1386 1387 return super; 1388 } 1389 1390 int btrfs_forget_devices(dev_t devt) 1391 { 1392 int ret; 1393 1394 mutex_lock(&uuid_mutex); 1395 ret = btrfs_free_stale_devices(devt, NULL); 1396 mutex_unlock(&uuid_mutex); 1397 1398 return ret; 1399 } 1400 1401 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1402 const char *path, dev_t devt, 1403 bool mount_arg_dev) 1404 { 1405 struct btrfs_fs_devices *fs_devices; 1406 1407 /* 1408 * Do not skip device registration for mounted devices with matching 1409 * maj:min but different paths. Booting without initrd relies on 1410 * /dev/root initially, later replaced with the actual root device. 1411 * A successful scan ensures grub2-probe selects the correct device. 1412 */ 1413 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1414 struct btrfs_device *device; 1415 1416 mutex_lock(&fs_devices->device_list_mutex); 1417 1418 if (!fs_devices->opened) { 1419 mutex_unlock(&fs_devices->device_list_mutex); 1420 continue; 1421 } 1422 1423 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1424 if (device->bdev && (device->bdev->bd_dev == devt) && 1425 strcmp(rcu_dereference_raw(device->name), path) != 0) { 1426 mutex_unlock(&fs_devices->device_list_mutex); 1427 1428 /* Do not skip registration. */ 1429 return false; 1430 } 1431 } 1432 mutex_unlock(&fs_devices->device_list_mutex); 1433 } 1434 1435 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1436 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1437 return true; 1438 1439 return false; 1440 } 1441 1442 /* 1443 * Look for a btrfs signature on a device. This may be called out of the mount path 1444 * and we are not allowed to call set_blocksize during the scan. The superblock 1445 * is read via pagecache. 1446 * 1447 * With @mount_arg_dev it's a scan during mount time that will always register 1448 * the device or return an error. Multi-device and seeding devices are registered 1449 * in both cases. 1450 */ 1451 struct btrfs_device *btrfs_scan_one_device(const char *path, 1452 bool mount_arg_dev) 1453 { 1454 struct btrfs_super_block *disk_super; 1455 bool new_device_added = false; 1456 struct btrfs_device *device = NULL; 1457 struct file *bdev_file; 1458 dev_t devt; 1459 1460 lockdep_assert_held(&uuid_mutex); 1461 1462 /* 1463 * Avoid an exclusive open here, as the systemd-udev may initiate the 1464 * device scan which may race with the user's mount or mkfs command, 1465 * resulting in failure. 1466 * Since the device scan is solely for reading purposes, there is no 1467 * need for an exclusive open. Additionally, the devices are read again 1468 * during the mount process. It is ok to get some inconsistent 1469 * values temporarily, as the device paths of the fsid are the only 1470 * required information for assembling the volume. 1471 */ 1472 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL); 1473 if (IS_ERR(bdev_file)) 1474 return ERR_CAST(bdev_file); 1475 1476 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1477 if (IS_ERR(disk_super)) { 1478 device = ERR_CAST(disk_super); 1479 goto error_bdev_put; 1480 } 1481 1482 devt = file_bdev(bdev_file)->bd_dev; 1483 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1484 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)", 1485 path, MAJOR(devt), MINOR(devt)); 1486 1487 btrfs_free_stale_devices(devt, NULL); 1488 1489 device = NULL; 1490 goto free_disk_super; 1491 } 1492 1493 device = device_list_add(path, disk_super, &new_device_added); 1494 if (!IS_ERR(device) && new_device_added) 1495 btrfs_free_stale_devices(device->devt, device); 1496 1497 free_disk_super: 1498 btrfs_release_disk_super(disk_super); 1499 1500 error_bdev_put: 1501 bdev_fput(bdev_file); 1502 1503 return device; 1504 } 1505 1506 /* 1507 * Try to find a chunk that intersects [start, start + len] range and when one 1508 * such is found, record the end of it in *start 1509 */ 1510 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1511 u64 len) 1512 { 1513 u64 physical_start, physical_end; 1514 1515 lockdep_assert_held(&device->fs_info->chunk_mutex); 1516 1517 if (btrfs_find_first_extent_bit(&device->alloc_state, *start, 1518 &physical_start, &physical_end, 1519 CHUNK_ALLOCATED, NULL)) { 1520 1521 if (in_range(physical_start, *start, len) || 1522 in_range(*start, physical_start, 1523 physical_end + 1 - physical_start)) { 1524 *start = physical_end + 1; 1525 return true; 1526 } 1527 } 1528 return false; 1529 } 1530 1531 static u64 dev_extent_search_start(struct btrfs_device *device) 1532 { 1533 switch (device->fs_devices->chunk_alloc_policy) { 1534 default: 1535 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1536 fallthrough; 1537 case BTRFS_CHUNK_ALLOC_REGULAR: 1538 return BTRFS_DEVICE_RANGE_RESERVED; 1539 case BTRFS_CHUNK_ALLOC_ZONED: 1540 /* 1541 * We don't care about the starting region like regular 1542 * allocator, because we anyway use/reserve the first two zones 1543 * for superblock logging. 1544 */ 1545 return 0; 1546 } 1547 } 1548 1549 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1550 u64 *hole_start, u64 *hole_size, 1551 u64 num_bytes) 1552 { 1553 u64 zone_size = device->zone_info->zone_size; 1554 u64 pos; 1555 int ret; 1556 bool changed = false; 1557 1558 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1559 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1560 1561 while (*hole_size > 0) { 1562 pos = btrfs_find_allocatable_zones(device, *hole_start, 1563 *hole_start + *hole_size, 1564 num_bytes); 1565 if (pos != *hole_start) { 1566 *hole_size = *hole_start + *hole_size - pos; 1567 *hole_start = pos; 1568 changed = true; 1569 if (*hole_size < num_bytes) 1570 break; 1571 } 1572 1573 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1574 1575 /* Range is ensured to be empty */ 1576 if (!ret) 1577 return changed; 1578 1579 /* Given hole range was invalid (outside of device) */ 1580 if (ret == -ERANGE) { 1581 *hole_start += *hole_size; 1582 *hole_size = 0; 1583 return true; 1584 } 1585 1586 *hole_start += zone_size; 1587 *hole_size -= zone_size; 1588 changed = true; 1589 } 1590 1591 return changed; 1592 } 1593 1594 /* 1595 * Check if specified hole is suitable for allocation. 1596 * 1597 * @device: the device which we have the hole 1598 * @hole_start: starting position of the hole 1599 * @hole_size: the size of the hole 1600 * @num_bytes: the size of the free space that we need 1601 * 1602 * This function may modify @hole_start and @hole_size to reflect the suitable 1603 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1604 */ 1605 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1606 u64 *hole_size, u64 num_bytes) 1607 { 1608 bool changed = false; 1609 u64 hole_end = *hole_start + *hole_size; 1610 1611 for (;;) { 1612 /* 1613 * Check before we set max_hole_start, otherwise we could end up 1614 * sending back this offset anyway. 1615 */ 1616 if (contains_pending_extent(device, hole_start, *hole_size)) { 1617 if (hole_end >= *hole_start) 1618 *hole_size = hole_end - *hole_start; 1619 else 1620 *hole_size = 0; 1621 changed = true; 1622 } 1623 1624 switch (device->fs_devices->chunk_alloc_policy) { 1625 default: 1626 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1627 fallthrough; 1628 case BTRFS_CHUNK_ALLOC_REGULAR: 1629 /* No extra check */ 1630 break; 1631 case BTRFS_CHUNK_ALLOC_ZONED: 1632 if (dev_extent_hole_check_zoned(device, hole_start, 1633 hole_size, num_bytes)) { 1634 changed = true; 1635 /* 1636 * The changed hole can contain pending extent. 1637 * Loop again to check that. 1638 */ 1639 continue; 1640 } 1641 break; 1642 } 1643 1644 break; 1645 } 1646 1647 return changed; 1648 } 1649 1650 /* 1651 * Find free space in the specified device. 1652 * 1653 * @device: the device which we search the free space in 1654 * @num_bytes: the size of the free space that we need 1655 * @search_start: the position from which to begin the search 1656 * @start: store the start of the free space. 1657 * @len: the size of the free space. that we find, or the size 1658 * of the max free space if we don't find suitable free space 1659 * 1660 * This does a pretty simple search, the expectation is that it is called very 1661 * infrequently and that a given device has a small number of extents. 1662 * 1663 * @start is used to store the start of the free space if we find. But if we 1664 * don't find suitable free space, it will be used to store the start position 1665 * of the max free space. 1666 * 1667 * @len is used to store the size of the free space that we find. 1668 * But if we don't find suitable free space, it is used to store the size of 1669 * the max free space. 1670 * 1671 * NOTE: This function will search *commit* root of device tree, and does extra 1672 * check to ensure dev extents are not double allocated. 1673 * This makes the function safe to allocate dev extents but may not report 1674 * correct usable device space, as device extent freed in current transaction 1675 * is not reported as available. 1676 */ 1677 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1678 u64 *start, u64 *len) 1679 { 1680 struct btrfs_fs_info *fs_info = device->fs_info; 1681 struct btrfs_root *root = fs_info->dev_root; 1682 struct btrfs_key key; 1683 struct btrfs_dev_extent *dev_extent; 1684 struct btrfs_path *path; 1685 u64 search_start; 1686 u64 hole_size; 1687 u64 max_hole_start; 1688 u64 max_hole_size = 0; 1689 u64 extent_end; 1690 u64 search_end = device->total_bytes; 1691 int ret; 1692 int slot; 1693 struct extent_buffer *l; 1694 1695 search_start = dev_extent_search_start(device); 1696 max_hole_start = search_start; 1697 1698 WARN_ON(device->zone_info && 1699 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1700 1701 path = btrfs_alloc_path(); 1702 if (!path) { 1703 ret = -ENOMEM; 1704 goto out; 1705 } 1706 again: 1707 if (search_start >= search_end || 1708 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1709 ret = -ENOSPC; 1710 goto out; 1711 } 1712 1713 path->reada = READA_FORWARD; 1714 path->search_commit_root = 1; 1715 path->skip_locking = 1; 1716 1717 key.objectid = device->devid; 1718 key.type = BTRFS_DEV_EXTENT_KEY; 1719 key.offset = search_start; 1720 1721 ret = btrfs_search_backwards(root, &key, path); 1722 if (ret < 0) 1723 goto out; 1724 1725 while (search_start < search_end) { 1726 l = path->nodes[0]; 1727 slot = path->slots[0]; 1728 if (slot >= btrfs_header_nritems(l)) { 1729 ret = btrfs_next_leaf(root, path); 1730 if (ret == 0) 1731 continue; 1732 if (ret < 0) 1733 goto out; 1734 1735 break; 1736 } 1737 btrfs_item_key_to_cpu(l, &key, slot); 1738 1739 if (key.objectid < device->devid) 1740 goto next; 1741 1742 if (key.objectid > device->devid) 1743 break; 1744 1745 if (key.type != BTRFS_DEV_EXTENT_KEY) 1746 goto next; 1747 1748 if (key.offset > search_end) 1749 break; 1750 1751 if (key.offset > search_start) { 1752 hole_size = key.offset - search_start; 1753 dev_extent_hole_check(device, &search_start, &hole_size, 1754 num_bytes); 1755 1756 if (hole_size > max_hole_size) { 1757 max_hole_start = search_start; 1758 max_hole_size = hole_size; 1759 } 1760 1761 /* 1762 * If this free space is greater than which we need, 1763 * it must be the max free space that we have found 1764 * until now, so max_hole_start must point to the start 1765 * of this free space and the length of this free space 1766 * is stored in max_hole_size. Thus, we return 1767 * max_hole_start and max_hole_size and go back to the 1768 * caller. 1769 */ 1770 if (hole_size >= num_bytes) { 1771 ret = 0; 1772 goto out; 1773 } 1774 } 1775 1776 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1777 extent_end = key.offset + btrfs_dev_extent_length(l, 1778 dev_extent); 1779 if (extent_end > search_start) 1780 search_start = extent_end; 1781 next: 1782 path->slots[0]++; 1783 cond_resched(); 1784 } 1785 1786 /* 1787 * At this point, search_start should be the end of 1788 * allocated dev extents, and when shrinking the device, 1789 * search_end may be smaller than search_start. 1790 */ 1791 if (search_end > search_start) { 1792 hole_size = search_end - search_start; 1793 if (dev_extent_hole_check(device, &search_start, &hole_size, 1794 num_bytes)) { 1795 btrfs_release_path(path); 1796 goto again; 1797 } 1798 1799 if (hole_size > max_hole_size) { 1800 max_hole_start = search_start; 1801 max_hole_size = hole_size; 1802 } 1803 } 1804 1805 /* See above. */ 1806 if (max_hole_size < num_bytes) 1807 ret = -ENOSPC; 1808 else 1809 ret = 0; 1810 1811 ASSERT(max_hole_start + max_hole_size <= search_end, 1812 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1813 max_hole_start, max_hole_size, search_end); 1814 out: 1815 btrfs_free_path(path); 1816 *start = max_hole_start; 1817 if (len) 1818 *len = max_hole_size; 1819 return ret; 1820 } 1821 1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1823 struct btrfs_device *device, 1824 u64 start, u64 *dev_extent_len) 1825 { 1826 struct btrfs_fs_info *fs_info = device->fs_info; 1827 struct btrfs_root *root = fs_info->dev_root; 1828 int ret; 1829 struct btrfs_path *path; 1830 struct btrfs_key key; 1831 struct btrfs_key found_key; 1832 struct extent_buffer *leaf = NULL; 1833 struct btrfs_dev_extent *extent = NULL; 1834 1835 path = btrfs_alloc_path(); 1836 if (!path) 1837 return -ENOMEM; 1838 1839 key.objectid = device->devid; 1840 key.type = BTRFS_DEV_EXTENT_KEY; 1841 key.offset = start; 1842 again: 1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1844 if (ret > 0) { 1845 ret = btrfs_previous_item(root, path, key.objectid, 1846 BTRFS_DEV_EXTENT_KEY); 1847 if (ret) 1848 goto out; 1849 leaf = path->nodes[0]; 1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1851 extent = btrfs_item_ptr(leaf, path->slots[0], 1852 struct btrfs_dev_extent); 1853 BUG_ON(found_key.offset > start || found_key.offset + 1854 btrfs_dev_extent_length(leaf, extent) < start); 1855 key = found_key; 1856 btrfs_release_path(path); 1857 goto again; 1858 } else if (ret == 0) { 1859 leaf = path->nodes[0]; 1860 extent = btrfs_item_ptr(leaf, path->slots[0], 1861 struct btrfs_dev_extent); 1862 } else { 1863 goto out; 1864 } 1865 1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1867 1868 ret = btrfs_del_item(trans, root, path); 1869 if (ret == 0) 1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1871 out: 1872 btrfs_free_path(path); 1873 return ret; 1874 } 1875 1876 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1877 { 1878 struct rb_node *n; 1879 u64 ret = 0; 1880 1881 read_lock(&fs_info->mapping_tree_lock); 1882 n = rb_last(&fs_info->mapping_tree.rb_root); 1883 if (n) { 1884 struct btrfs_chunk_map *map; 1885 1886 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1887 ret = map->start + map->chunk_len; 1888 } 1889 read_unlock(&fs_info->mapping_tree_lock); 1890 1891 return ret; 1892 } 1893 1894 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1895 u64 *devid_ret) 1896 { 1897 int ret; 1898 struct btrfs_key key; 1899 struct btrfs_key found_key; 1900 struct btrfs_path *path; 1901 1902 path = btrfs_alloc_path(); 1903 if (!path) 1904 return -ENOMEM; 1905 1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1907 key.type = BTRFS_DEV_ITEM_KEY; 1908 key.offset = (u64)-1; 1909 1910 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1911 if (ret < 0) 1912 goto error; 1913 1914 if (ret == 0) { 1915 /* Corruption */ 1916 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1917 ret = -EUCLEAN; 1918 goto error; 1919 } 1920 1921 ret = btrfs_previous_item(fs_info->chunk_root, path, 1922 BTRFS_DEV_ITEMS_OBJECTID, 1923 BTRFS_DEV_ITEM_KEY); 1924 if (ret) { 1925 *devid_ret = 1; 1926 } else { 1927 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1928 path->slots[0]); 1929 *devid_ret = found_key.offset + 1; 1930 } 1931 ret = 0; 1932 error: 1933 btrfs_free_path(path); 1934 return ret; 1935 } 1936 1937 /* 1938 * the device information is stored in the chunk root 1939 * the btrfs_device struct should be fully filled in 1940 */ 1941 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1942 struct btrfs_device *device) 1943 { 1944 int ret; 1945 struct btrfs_path *path; 1946 struct btrfs_dev_item *dev_item; 1947 struct extent_buffer *leaf; 1948 struct btrfs_key key; 1949 unsigned long ptr; 1950 1951 path = btrfs_alloc_path(); 1952 if (!path) 1953 return -ENOMEM; 1954 1955 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1956 key.type = BTRFS_DEV_ITEM_KEY; 1957 key.offset = device->devid; 1958 1959 btrfs_reserve_chunk_metadata(trans, true); 1960 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1961 &key, sizeof(*dev_item)); 1962 btrfs_trans_release_chunk_metadata(trans); 1963 if (ret) 1964 goto out; 1965 1966 leaf = path->nodes[0]; 1967 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1968 1969 btrfs_set_device_id(leaf, dev_item, device->devid); 1970 btrfs_set_device_generation(leaf, dev_item, 0); 1971 btrfs_set_device_type(leaf, dev_item, device->type); 1972 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1973 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1975 btrfs_set_device_total_bytes(leaf, dev_item, 1976 btrfs_device_get_disk_total_bytes(device)); 1977 btrfs_set_device_bytes_used(leaf, dev_item, 1978 btrfs_device_get_bytes_used(device)); 1979 btrfs_set_device_group(leaf, dev_item, 0); 1980 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1981 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1982 btrfs_set_device_start_offset(leaf, dev_item, 0); 1983 1984 ptr = btrfs_device_uuid(dev_item); 1985 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1986 ptr = btrfs_device_fsid(dev_item); 1987 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1988 ptr, BTRFS_FSID_SIZE); 1989 1990 ret = 0; 1991 out: 1992 btrfs_free_path(path); 1993 return ret; 1994 } 1995 1996 /* 1997 * Function to update ctime/mtime for a given device path. 1998 * Mainly used for ctime/mtime based probe like libblkid. 1999 * 2000 * We don't care about errors here, this is just to be kind to userspace. 2001 */ 2002 static void update_dev_time(const char *device_path) 2003 { 2004 struct path path; 2005 int ret; 2006 2007 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 2008 if (ret) 2009 return; 2010 2011 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 2012 path_put(&path); 2013 } 2014 2015 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2016 struct btrfs_device *device) 2017 { 2018 struct btrfs_root *root = device->fs_info->chunk_root; 2019 int ret; 2020 struct btrfs_path *path; 2021 struct btrfs_key key; 2022 2023 path = btrfs_alloc_path(); 2024 if (!path) 2025 return -ENOMEM; 2026 2027 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2028 key.type = BTRFS_DEV_ITEM_KEY; 2029 key.offset = device->devid; 2030 2031 btrfs_reserve_chunk_metadata(trans, false); 2032 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2033 btrfs_trans_release_chunk_metadata(trans); 2034 if (ret) { 2035 if (ret > 0) 2036 ret = -ENOENT; 2037 goto out; 2038 } 2039 2040 ret = btrfs_del_item(trans, root, path); 2041 out: 2042 btrfs_free_path(path); 2043 return ret; 2044 } 2045 2046 /* 2047 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2048 * filesystem. It's up to the caller to adjust that number regarding eg. device 2049 * replace. 2050 */ 2051 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2052 u64 num_devices) 2053 { 2054 u64 all_avail; 2055 unsigned seq; 2056 int i; 2057 2058 do { 2059 seq = read_seqbegin(&fs_info->profiles_lock); 2060 2061 all_avail = fs_info->avail_data_alloc_bits | 2062 fs_info->avail_system_alloc_bits | 2063 fs_info->avail_metadata_alloc_bits; 2064 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2065 2066 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2067 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2068 continue; 2069 2070 if (num_devices < btrfs_raid_array[i].devs_min) 2071 return btrfs_raid_array[i].mindev_error; 2072 } 2073 2074 return 0; 2075 } 2076 2077 static struct btrfs_device * btrfs_find_next_active_device( 2078 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2079 { 2080 struct btrfs_device *next_device; 2081 2082 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2083 if (next_device != device && 2084 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2085 && next_device->bdev) 2086 return next_device; 2087 } 2088 2089 return NULL; 2090 } 2091 2092 /* 2093 * Helper function to check if the given device is part of s_bdev / latest_dev 2094 * and replace it with the provided or the next active device, in the context 2095 * where this function called, there should be always be another device (or 2096 * this_dev) which is active. 2097 */ 2098 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2099 struct btrfs_device *next_device) 2100 { 2101 struct btrfs_fs_info *fs_info = device->fs_info; 2102 2103 if (!next_device) 2104 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2105 device); 2106 ASSERT(next_device); 2107 2108 if (fs_info->sb->s_bdev && 2109 (fs_info->sb->s_bdev == device->bdev)) 2110 fs_info->sb->s_bdev = next_device->bdev; 2111 2112 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2113 fs_info->fs_devices->latest_dev = next_device; 2114 } 2115 2116 /* 2117 * Return btrfs_fs_devices::num_devices excluding the device that's being 2118 * currently replaced. 2119 */ 2120 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2121 { 2122 u64 num_devices = fs_info->fs_devices->num_devices; 2123 2124 down_read(&fs_info->dev_replace.rwsem); 2125 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2126 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2127 num_devices--; 2128 } 2129 up_read(&fs_info->dev_replace.rwsem); 2130 2131 return num_devices; 2132 } 2133 2134 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2135 struct block_device *bdev, int copy_num) 2136 { 2137 struct btrfs_super_block *disk_super; 2138 const size_t len = sizeof(disk_super->magic); 2139 const u64 bytenr = btrfs_sb_offset(copy_num); 2140 int ret; 2141 2142 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2143 if (IS_ERR(disk_super)) 2144 return; 2145 2146 memset(&disk_super->magic, 0, len); 2147 folio_mark_dirty(virt_to_folio(disk_super)); 2148 btrfs_release_disk_super(disk_super); 2149 2150 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2151 if (ret) 2152 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2153 copy_num, ret); 2154 } 2155 2156 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2157 { 2158 int copy_num; 2159 struct block_device *bdev = device->bdev; 2160 2161 if (!bdev) 2162 return; 2163 2164 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2165 if (bdev_is_zoned(bdev)) 2166 btrfs_reset_sb_log_zones(bdev, copy_num); 2167 else 2168 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2169 } 2170 2171 /* Notify udev that device has changed */ 2172 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2173 2174 /* Update ctime/mtime for device path for libblkid */ 2175 update_dev_time(rcu_dereference_raw(device->name)); 2176 } 2177 2178 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2179 struct btrfs_dev_lookup_args *args, 2180 struct file **bdev_file) 2181 { 2182 struct btrfs_trans_handle *trans; 2183 struct btrfs_device *device; 2184 struct btrfs_fs_devices *cur_devices; 2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2186 u64 num_devices; 2187 int ret = 0; 2188 2189 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2190 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2191 return -EINVAL; 2192 } 2193 2194 /* 2195 * The device list in fs_devices is accessed without locks (neither 2196 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2197 * filesystem and another device rm cannot run. 2198 */ 2199 num_devices = btrfs_num_devices(fs_info); 2200 2201 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2202 if (ret) 2203 return ret; 2204 2205 device = btrfs_find_device(fs_info->fs_devices, args); 2206 if (!device) { 2207 if (args->missing) 2208 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2209 else 2210 ret = -ENOENT; 2211 return ret; 2212 } 2213 2214 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2215 btrfs_warn(fs_info, 2216 "cannot remove device %s (devid %llu) due to active swapfile", 2217 btrfs_dev_name(device), device->devid); 2218 return -ETXTBSY; 2219 } 2220 2221 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2222 return BTRFS_ERROR_DEV_TGT_REPLACE; 2223 2224 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2225 fs_info->fs_devices->rw_devices == 1) 2226 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2227 2228 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2229 mutex_lock(&fs_info->chunk_mutex); 2230 list_del_init(&device->dev_alloc_list); 2231 device->fs_devices->rw_devices--; 2232 mutex_unlock(&fs_info->chunk_mutex); 2233 } 2234 2235 ret = btrfs_shrink_device(device, 0); 2236 if (ret) 2237 goto error_undo; 2238 2239 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2240 if (IS_ERR(trans)) { 2241 ret = PTR_ERR(trans); 2242 goto error_undo; 2243 } 2244 2245 ret = btrfs_rm_dev_item(trans, device); 2246 if (ret) { 2247 /* Any error in dev item removal is critical */ 2248 btrfs_crit(fs_info, 2249 "failed to remove device item for devid %llu: %d", 2250 device->devid, ret); 2251 btrfs_abort_transaction(trans, ret); 2252 btrfs_end_transaction(trans); 2253 return ret; 2254 } 2255 2256 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2257 btrfs_scrub_cancel_dev(device); 2258 2259 /* 2260 * the device list mutex makes sure that we don't change 2261 * the device list while someone else is writing out all 2262 * the device supers. Whoever is writing all supers, should 2263 * lock the device list mutex before getting the number of 2264 * devices in the super block (super_copy). Conversely, 2265 * whoever updates the number of devices in the super block 2266 * (super_copy) should hold the device list mutex. 2267 */ 2268 2269 /* 2270 * In normal cases the cur_devices == fs_devices. But in case 2271 * of deleting a seed device, the cur_devices should point to 2272 * its own fs_devices listed under the fs_devices->seed_list. 2273 */ 2274 cur_devices = device->fs_devices; 2275 mutex_lock(&fs_devices->device_list_mutex); 2276 list_del_rcu(&device->dev_list); 2277 2278 cur_devices->num_devices--; 2279 cur_devices->total_devices--; 2280 /* Update total_devices of the parent fs_devices if it's seed */ 2281 if (cur_devices != fs_devices) 2282 fs_devices->total_devices--; 2283 2284 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2285 cur_devices->missing_devices--; 2286 2287 btrfs_assign_next_active_device(device, NULL); 2288 2289 if (device->bdev_file) { 2290 cur_devices->open_devices--; 2291 /* remove sysfs entry */ 2292 btrfs_sysfs_remove_device(device); 2293 } 2294 2295 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2296 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2297 mutex_unlock(&fs_devices->device_list_mutex); 2298 2299 /* 2300 * At this point, the device is zero sized and detached from the 2301 * devices list. All that's left is to zero out the old supers and 2302 * free the device. 2303 * 2304 * We cannot call btrfs_close_bdev() here because we're holding the sb 2305 * write lock, and bdev_fput() on the block device will pull in the 2306 * ->open_mutex on the block device and it's dependencies. Instead 2307 * just flush the device and let the caller do the final bdev_release. 2308 */ 2309 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2310 btrfs_scratch_superblocks(fs_info, device); 2311 if (device->bdev) { 2312 sync_blockdev(device->bdev); 2313 invalidate_bdev(device->bdev); 2314 } 2315 } 2316 2317 *bdev_file = device->bdev_file; 2318 synchronize_rcu(); 2319 btrfs_free_device(device); 2320 2321 /* 2322 * This can happen if cur_devices is the private seed devices list. We 2323 * cannot call close_fs_devices() here because it expects the uuid_mutex 2324 * to be held, but in fact we don't need that for the private 2325 * seed_devices, we can simply decrement cur_devices->opened and then 2326 * remove it from our list and free the fs_devices. 2327 */ 2328 if (cur_devices->num_devices == 0) { 2329 list_del_init(&cur_devices->seed_list); 2330 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2331 cur_devices->opened--; 2332 free_fs_devices(cur_devices); 2333 } 2334 2335 ret = btrfs_commit_transaction(trans); 2336 2337 return ret; 2338 2339 error_undo: 2340 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2341 mutex_lock(&fs_info->chunk_mutex); 2342 list_add(&device->dev_alloc_list, 2343 &fs_devices->alloc_list); 2344 device->fs_devices->rw_devices++; 2345 mutex_unlock(&fs_info->chunk_mutex); 2346 } 2347 return ret; 2348 } 2349 2350 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2351 { 2352 struct btrfs_fs_devices *fs_devices; 2353 2354 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2355 2356 /* 2357 * in case of fs with no seed, srcdev->fs_devices will point 2358 * to fs_devices of fs_info. However when the dev being replaced is 2359 * a seed dev it will point to the seed's local fs_devices. In short 2360 * srcdev will have its correct fs_devices in both the cases. 2361 */ 2362 fs_devices = srcdev->fs_devices; 2363 2364 list_del_rcu(&srcdev->dev_list); 2365 list_del(&srcdev->dev_alloc_list); 2366 fs_devices->num_devices--; 2367 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2368 fs_devices->missing_devices--; 2369 2370 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2371 fs_devices->rw_devices--; 2372 2373 if (srcdev->bdev) 2374 fs_devices->open_devices--; 2375 } 2376 2377 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2378 { 2379 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2380 2381 mutex_lock(&uuid_mutex); 2382 2383 btrfs_close_bdev(srcdev); 2384 synchronize_rcu(); 2385 btrfs_free_device(srcdev); 2386 2387 /* if this is no devs we rather delete the fs_devices */ 2388 if (!fs_devices->num_devices) { 2389 /* 2390 * On a mounted FS, num_devices can't be zero unless it's a 2391 * seed. In case of a seed device being replaced, the replace 2392 * target added to the sprout FS, so there will be no more 2393 * device left under the seed FS. 2394 */ 2395 ASSERT(fs_devices->seeding); 2396 2397 list_del_init(&fs_devices->seed_list); 2398 close_fs_devices(fs_devices); 2399 free_fs_devices(fs_devices); 2400 } 2401 mutex_unlock(&uuid_mutex); 2402 } 2403 2404 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2405 { 2406 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2407 2408 mutex_lock(&fs_devices->device_list_mutex); 2409 2410 btrfs_sysfs_remove_device(tgtdev); 2411 2412 if (tgtdev->bdev) 2413 fs_devices->open_devices--; 2414 2415 fs_devices->num_devices--; 2416 2417 btrfs_assign_next_active_device(tgtdev, NULL); 2418 2419 list_del_rcu(&tgtdev->dev_list); 2420 2421 mutex_unlock(&fs_devices->device_list_mutex); 2422 2423 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2424 2425 btrfs_close_bdev(tgtdev); 2426 synchronize_rcu(); 2427 btrfs_free_device(tgtdev); 2428 } 2429 2430 /* 2431 * Populate args from device at path. 2432 * 2433 * @fs_info: the filesystem 2434 * @args: the args to populate 2435 * @path: the path to the device 2436 * 2437 * This will read the super block of the device at @path and populate @args with 2438 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2439 * lookup a device to operate on, but need to do it before we take any locks. 2440 * This properly handles the special case of "missing" that a user may pass in, 2441 * and does some basic sanity checks. The caller must make sure that @path is 2442 * properly NUL terminated before calling in, and must call 2443 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2444 * uuid buffers. 2445 * 2446 * Return: 0 for success, -errno for failure 2447 */ 2448 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2449 struct btrfs_dev_lookup_args *args, 2450 const char *path) 2451 { 2452 struct btrfs_super_block *disk_super; 2453 struct file *bdev_file; 2454 int ret; 2455 2456 if (!path || !path[0]) 2457 return -EINVAL; 2458 if (!strcmp(path, "missing")) { 2459 args->missing = true; 2460 return 0; 2461 } 2462 2463 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2464 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2465 if (!args->uuid || !args->fsid) { 2466 btrfs_put_dev_args_from_path(args); 2467 return -ENOMEM; 2468 } 2469 2470 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2471 &bdev_file, &disk_super); 2472 if (ret) { 2473 btrfs_put_dev_args_from_path(args); 2474 return ret; 2475 } 2476 2477 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2478 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2479 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2480 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2481 else 2482 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2483 btrfs_release_disk_super(disk_super); 2484 bdev_fput(bdev_file); 2485 return 0; 2486 } 2487 2488 /* 2489 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2490 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2491 * that don't need to be freed. 2492 */ 2493 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2494 { 2495 kfree(args->uuid); 2496 kfree(args->fsid); 2497 args->uuid = NULL; 2498 args->fsid = NULL; 2499 } 2500 2501 struct btrfs_device *btrfs_find_device_by_devspec( 2502 struct btrfs_fs_info *fs_info, u64 devid, 2503 const char *device_path) 2504 { 2505 BTRFS_DEV_LOOKUP_ARGS(args); 2506 struct btrfs_device *device; 2507 int ret; 2508 2509 if (devid) { 2510 args.devid = devid; 2511 device = btrfs_find_device(fs_info->fs_devices, &args); 2512 if (!device) 2513 return ERR_PTR(-ENOENT); 2514 return device; 2515 } 2516 2517 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2518 if (ret) 2519 return ERR_PTR(ret); 2520 device = btrfs_find_device(fs_info->fs_devices, &args); 2521 btrfs_put_dev_args_from_path(&args); 2522 if (!device) 2523 return ERR_PTR(-ENOENT); 2524 return device; 2525 } 2526 2527 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2528 { 2529 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2530 struct btrfs_fs_devices *old_devices; 2531 struct btrfs_fs_devices *seed_devices; 2532 2533 lockdep_assert_held(&uuid_mutex); 2534 if (!fs_devices->seeding) 2535 return ERR_PTR(-EINVAL); 2536 2537 /* 2538 * Private copy of the seed devices, anchored at 2539 * fs_info->fs_devices->seed_list 2540 */ 2541 seed_devices = alloc_fs_devices(NULL); 2542 if (IS_ERR(seed_devices)) 2543 return seed_devices; 2544 2545 /* 2546 * It's necessary to retain a copy of the original seed fs_devices in 2547 * fs_uuids so that filesystems which have been seeded can successfully 2548 * reference the seed device from open_seed_devices. This also supports 2549 * multiple fs seed. 2550 */ 2551 old_devices = clone_fs_devices(fs_devices); 2552 if (IS_ERR(old_devices)) { 2553 kfree(seed_devices); 2554 return old_devices; 2555 } 2556 2557 list_add(&old_devices->fs_list, &fs_uuids); 2558 2559 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2560 seed_devices->opened = 1; 2561 INIT_LIST_HEAD(&seed_devices->devices); 2562 INIT_LIST_HEAD(&seed_devices->alloc_list); 2563 mutex_init(&seed_devices->device_list_mutex); 2564 2565 return seed_devices; 2566 } 2567 2568 /* 2569 * Splice seed devices into the sprout fs_devices. 2570 * Generate a new fsid for the sprouted read-write filesystem. 2571 */ 2572 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2573 struct btrfs_fs_devices *seed_devices) 2574 { 2575 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2576 struct btrfs_super_block *disk_super = fs_info->super_copy; 2577 struct btrfs_device *device; 2578 u64 super_flags; 2579 2580 /* 2581 * We are updating the fsid, the thread leading to device_list_add() 2582 * could race, so uuid_mutex is needed. 2583 */ 2584 lockdep_assert_held(&uuid_mutex); 2585 2586 /* 2587 * The threads listed below may traverse dev_list but can do that without 2588 * device_list_mutex: 2589 * - All device ops and balance - as we are in btrfs_exclop_start. 2590 * - Various dev_list readers - are using RCU. 2591 * - btrfs_ioctl_fitrim() - is using RCU. 2592 * 2593 * For-read threads as below are using device_list_mutex: 2594 * - Readonly scrub btrfs_scrub_dev() 2595 * - Readonly scrub btrfs_scrub_progress() 2596 * - btrfs_get_dev_stats() 2597 */ 2598 lockdep_assert_held(&fs_devices->device_list_mutex); 2599 2600 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2601 synchronize_rcu); 2602 list_for_each_entry(device, &seed_devices->devices, dev_list) 2603 device->fs_devices = seed_devices; 2604 2605 fs_devices->seeding = false; 2606 fs_devices->num_devices = 0; 2607 fs_devices->open_devices = 0; 2608 fs_devices->missing_devices = 0; 2609 fs_devices->rotating = false; 2610 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2611 2612 generate_random_uuid(fs_devices->fsid); 2613 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2614 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2615 2616 super_flags = btrfs_super_flags(disk_super) & 2617 ~BTRFS_SUPER_FLAG_SEEDING; 2618 btrfs_set_super_flags(disk_super, super_flags); 2619 } 2620 2621 /* 2622 * Store the expected generation for seed devices in device items. 2623 */ 2624 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2625 { 2626 BTRFS_DEV_LOOKUP_ARGS(args); 2627 struct btrfs_fs_info *fs_info = trans->fs_info; 2628 struct btrfs_root *root = fs_info->chunk_root; 2629 struct btrfs_path *path; 2630 struct extent_buffer *leaf; 2631 struct btrfs_dev_item *dev_item; 2632 struct btrfs_device *device; 2633 struct btrfs_key key; 2634 u8 fs_uuid[BTRFS_FSID_SIZE]; 2635 u8 dev_uuid[BTRFS_UUID_SIZE]; 2636 int ret; 2637 2638 path = btrfs_alloc_path(); 2639 if (!path) 2640 return -ENOMEM; 2641 2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2643 key.type = BTRFS_DEV_ITEM_KEY; 2644 key.offset = 0; 2645 2646 while (1) { 2647 btrfs_reserve_chunk_metadata(trans, false); 2648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2649 btrfs_trans_release_chunk_metadata(trans); 2650 if (ret < 0) 2651 goto error; 2652 2653 leaf = path->nodes[0]; 2654 next_slot: 2655 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2656 ret = btrfs_next_leaf(root, path); 2657 if (ret > 0) 2658 break; 2659 if (ret < 0) 2660 goto error; 2661 leaf = path->nodes[0]; 2662 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2663 btrfs_release_path(path); 2664 continue; 2665 } 2666 2667 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2668 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2669 key.type != BTRFS_DEV_ITEM_KEY) 2670 break; 2671 2672 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2673 struct btrfs_dev_item); 2674 args.devid = btrfs_device_id(leaf, dev_item); 2675 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2676 BTRFS_UUID_SIZE); 2677 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2678 BTRFS_FSID_SIZE); 2679 args.uuid = dev_uuid; 2680 args.fsid = fs_uuid; 2681 device = btrfs_find_device(fs_info->fs_devices, &args); 2682 BUG_ON(!device); /* Logic error */ 2683 2684 if (device->fs_devices->seeding) 2685 btrfs_set_device_generation(leaf, dev_item, 2686 device->generation); 2687 2688 path->slots[0]++; 2689 goto next_slot; 2690 } 2691 ret = 0; 2692 error: 2693 btrfs_free_path(path); 2694 return ret; 2695 } 2696 2697 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2698 { 2699 struct btrfs_root *root = fs_info->dev_root; 2700 struct btrfs_trans_handle *trans; 2701 struct btrfs_device *device; 2702 struct file *bdev_file; 2703 struct super_block *sb = fs_info->sb; 2704 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2705 struct btrfs_fs_devices *seed_devices = NULL; 2706 u64 orig_super_total_bytes; 2707 u64 orig_super_num_devices; 2708 int ret = 0; 2709 bool seeding_dev = false; 2710 bool locked = false; 2711 2712 if (sb_rdonly(sb) && !fs_devices->seeding) 2713 return -EROFS; 2714 2715 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2716 fs_info->sb, &fs_holder_ops); 2717 if (IS_ERR(bdev_file)) 2718 return PTR_ERR(bdev_file); 2719 2720 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2721 ret = -EINVAL; 2722 goto error; 2723 } 2724 2725 if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) { 2726 ret = -EINVAL; 2727 goto error; 2728 } 2729 2730 if (fs_devices->seeding) { 2731 seeding_dev = true; 2732 down_write(&sb->s_umount); 2733 mutex_lock(&uuid_mutex); 2734 locked = true; 2735 } 2736 2737 sync_blockdev(file_bdev(bdev_file)); 2738 2739 rcu_read_lock(); 2740 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2741 if (device->bdev == file_bdev(bdev_file)) { 2742 ret = -EEXIST; 2743 rcu_read_unlock(); 2744 goto error; 2745 } 2746 } 2747 rcu_read_unlock(); 2748 2749 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2750 if (IS_ERR(device)) { 2751 /* we can safely leave the fs_devices entry around */ 2752 ret = PTR_ERR(device); 2753 goto error; 2754 } 2755 2756 device->fs_info = fs_info; 2757 device->bdev_file = bdev_file; 2758 device->bdev = file_bdev(bdev_file); 2759 ret = lookup_bdev(device_path, &device->devt); 2760 if (ret) 2761 goto error_free_device; 2762 2763 ret = btrfs_get_dev_zone_info(device, false); 2764 if (ret) 2765 goto error_free_device; 2766 2767 trans = btrfs_start_transaction(root, 0); 2768 if (IS_ERR(trans)) { 2769 ret = PTR_ERR(trans); 2770 goto error_free_zone; 2771 } 2772 2773 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2774 device->generation = trans->transid; 2775 device->io_width = fs_info->sectorsize; 2776 device->io_align = fs_info->sectorsize; 2777 device->sector_size = fs_info->sectorsize; 2778 device->total_bytes = 2779 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2780 device->disk_total_bytes = device->total_bytes; 2781 device->commit_total_bytes = device->total_bytes; 2782 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2783 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2784 device->dev_stats_valid = 1; 2785 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2786 2787 if (seeding_dev) { 2788 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2789 seed_devices = btrfs_init_sprout(fs_info); 2790 if (IS_ERR(seed_devices)) { 2791 ret = PTR_ERR(seed_devices); 2792 btrfs_abort_transaction(trans, ret); 2793 goto error_trans; 2794 } 2795 } 2796 2797 mutex_lock(&fs_devices->device_list_mutex); 2798 if (seeding_dev) { 2799 btrfs_setup_sprout(fs_info, seed_devices); 2800 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2801 device); 2802 } 2803 2804 device->fs_devices = fs_devices; 2805 2806 mutex_lock(&fs_info->chunk_mutex); 2807 list_add_rcu(&device->dev_list, &fs_devices->devices); 2808 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2809 fs_devices->num_devices++; 2810 fs_devices->open_devices++; 2811 fs_devices->rw_devices++; 2812 fs_devices->total_devices++; 2813 fs_devices->total_rw_bytes += device->total_bytes; 2814 2815 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2816 2817 if (!bdev_nonrot(device->bdev)) 2818 fs_devices->rotating = true; 2819 2820 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2821 btrfs_set_super_total_bytes(fs_info->super_copy, 2822 round_down(orig_super_total_bytes + device->total_bytes, 2823 fs_info->sectorsize)); 2824 2825 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2826 btrfs_set_super_num_devices(fs_info->super_copy, 2827 orig_super_num_devices + 1); 2828 2829 /* 2830 * we've got more storage, clear any full flags on the space 2831 * infos 2832 */ 2833 btrfs_clear_space_info_full(fs_info); 2834 2835 mutex_unlock(&fs_info->chunk_mutex); 2836 2837 /* Add sysfs device entry */ 2838 btrfs_sysfs_add_device(device); 2839 2840 mutex_unlock(&fs_devices->device_list_mutex); 2841 2842 if (seeding_dev) { 2843 mutex_lock(&fs_info->chunk_mutex); 2844 ret = init_first_rw_device(trans); 2845 mutex_unlock(&fs_info->chunk_mutex); 2846 if (ret) { 2847 btrfs_abort_transaction(trans, ret); 2848 goto error_sysfs; 2849 } 2850 } 2851 2852 ret = btrfs_add_dev_item(trans, device); 2853 if (ret) { 2854 btrfs_abort_transaction(trans, ret); 2855 goto error_sysfs; 2856 } 2857 2858 if (seeding_dev) { 2859 ret = btrfs_finish_sprout(trans); 2860 if (ret) { 2861 btrfs_abort_transaction(trans, ret); 2862 goto error_sysfs; 2863 } 2864 2865 /* 2866 * fs_devices now represents the newly sprouted filesystem and 2867 * its fsid has been changed by btrfs_sprout_splice(). 2868 */ 2869 btrfs_sysfs_update_sprout_fsid(fs_devices); 2870 } 2871 2872 ret = btrfs_commit_transaction(trans); 2873 2874 if (seeding_dev) { 2875 mutex_unlock(&uuid_mutex); 2876 up_write(&sb->s_umount); 2877 locked = false; 2878 2879 if (ret) /* transaction commit */ 2880 return ret; 2881 2882 ret = btrfs_relocate_sys_chunks(fs_info); 2883 if (ret < 0) 2884 btrfs_handle_fs_error(fs_info, ret, 2885 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2886 trans = btrfs_attach_transaction(root); 2887 if (IS_ERR(trans)) { 2888 if (PTR_ERR(trans) == -ENOENT) 2889 return 0; 2890 ret = PTR_ERR(trans); 2891 trans = NULL; 2892 goto error_sysfs; 2893 } 2894 ret = btrfs_commit_transaction(trans); 2895 } 2896 2897 /* 2898 * Now that we have written a new super block to this device, check all 2899 * other fs_devices list if device_path alienates any other scanned 2900 * device. 2901 * We can ignore the return value as it typically returns -EINVAL and 2902 * only succeeds if the device was an alien. 2903 */ 2904 btrfs_forget_devices(device->devt); 2905 2906 /* Update ctime/mtime for blkid or udev */ 2907 update_dev_time(device_path); 2908 2909 return ret; 2910 2911 error_sysfs: 2912 btrfs_sysfs_remove_device(device); 2913 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2914 mutex_lock(&fs_info->chunk_mutex); 2915 list_del_rcu(&device->dev_list); 2916 list_del(&device->dev_alloc_list); 2917 fs_info->fs_devices->num_devices--; 2918 fs_info->fs_devices->open_devices--; 2919 fs_info->fs_devices->rw_devices--; 2920 fs_info->fs_devices->total_devices--; 2921 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2922 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2923 btrfs_set_super_total_bytes(fs_info->super_copy, 2924 orig_super_total_bytes); 2925 btrfs_set_super_num_devices(fs_info->super_copy, 2926 orig_super_num_devices); 2927 mutex_unlock(&fs_info->chunk_mutex); 2928 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2929 error_trans: 2930 if (trans) 2931 btrfs_end_transaction(trans); 2932 error_free_zone: 2933 btrfs_destroy_dev_zone_info(device); 2934 error_free_device: 2935 btrfs_free_device(device); 2936 error: 2937 bdev_fput(bdev_file); 2938 if (locked) { 2939 mutex_unlock(&uuid_mutex); 2940 up_write(&sb->s_umount); 2941 } 2942 return ret; 2943 } 2944 2945 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2946 struct btrfs_device *device) 2947 { 2948 int ret; 2949 struct btrfs_path *path; 2950 struct btrfs_root *root = device->fs_info->chunk_root; 2951 struct btrfs_dev_item *dev_item; 2952 struct extent_buffer *leaf; 2953 struct btrfs_key key; 2954 2955 path = btrfs_alloc_path(); 2956 if (!path) 2957 return -ENOMEM; 2958 2959 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2960 key.type = BTRFS_DEV_ITEM_KEY; 2961 key.offset = device->devid; 2962 2963 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2964 if (ret < 0) 2965 goto out; 2966 2967 if (ret > 0) { 2968 ret = -ENOENT; 2969 goto out; 2970 } 2971 2972 leaf = path->nodes[0]; 2973 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2974 2975 btrfs_set_device_id(leaf, dev_item, device->devid); 2976 btrfs_set_device_type(leaf, dev_item, device->type); 2977 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2978 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2979 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2980 btrfs_set_device_total_bytes(leaf, dev_item, 2981 btrfs_device_get_disk_total_bytes(device)); 2982 btrfs_set_device_bytes_used(leaf, dev_item, 2983 btrfs_device_get_bytes_used(device)); 2984 out: 2985 btrfs_free_path(path); 2986 return ret; 2987 } 2988 2989 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2990 struct btrfs_device *device, u64 new_size) 2991 { 2992 struct btrfs_fs_info *fs_info = device->fs_info; 2993 struct btrfs_super_block *super_copy = fs_info->super_copy; 2994 u64 old_total; 2995 u64 diff; 2996 int ret; 2997 2998 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2999 return -EACCES; 3000 3001 new_size = round_down(new_size, fs_info->sectorsize); 3002 3003 mutex_lock(&fs_info->chunk_mutex); 3004 old_total = btrfs_super_total_bytes(super_copy); 3005 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 3006 3007 if (new_size <= device->total_bytes || 3008 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 3009 mutex_unlock(&fs_info->chunk_mutex); 3010 return -EINVAL; 3011 } 3012 3013 btrfs_set_super_total_bytes(super_copy, 3014 round_down(old_total + diff, fs_info->sectorsize)); 3015 device->fs_devices->total_rw_bytes += diff; 3016 atomic64_add(diff, &fs_info->free_chunk_space); 3017 3018 btrfs_device_set_total_bytes(device, new_size); 3019 btrfs_device_set_disk_total_bytes(device, new_size); 3020 btrfs_clear_space_info_full(device->fs_info); 3021 if (list_empty(&device->post_commit_list)) 3022 list_add_tail(&device->post_commit_list, 3023 &trans->transaction->dev_update_list); 3024 mutex_unlock(&fs_info->chunk_mutex); 3025 3026 btrfs_reserve_chunk_metadata(trans, false); 3027 ret = btrfs_update_device(trans, device); 3028 btrfs_trans_release_chunk_metadata(trans); 3029 3030 return ret; 3031 } 3032 3033 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3034 { 3035 struct btrfs_fs_info *fs_info = trans->fs_info; 3036 struct btrfs_root *root = fs_info->chunk_root; 3037 int ret; 3038 struct btrfs_path *path; 3039 struct btrfs_key key; 3040 3041 path = btrfs_alloc_path(); 3042 if (!path) 3043 return -ENOMEM; 3044 3045 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3046 key.type = BTRFS_CHUNK_ITEM_KEY; 3047 key.offset = chunk_offset; 3048 3049 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3050 if (ret < 0) 3051 goto out; 3052 else if (ret > 0) { /* Logic error or corruption */ 3053 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3054 chunk_offset); 3055 btrfs_abort_transaction(trans, -ENOENT); 3056 ret = -EUCLEAN; 3057 goto out; 3058 } 3059 3060 ret = btrfs_del_item(trans, root, path); 3061 if (ret < 0) { 3062 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3063 btrfs_abort_transaction(trans, ret); 3064 goto out; 3065 } 3066 out: 3067 btrfs_free_path(path); 3068 return ret; 3069 } 3070 3071 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3072 { 3073 struct btrfs_super_block *super_copy = fs_info->super_copy; 3074 struct btrfs_disk_key *disk_key; 3075 struct btrfs_chunk *chunk; 3076 u8 *ptr; 3077 int ret = 0; 3078 u32 num_stripes; 3079 u32 array_size; 3080 u32 len = 0; 3081 u32 cur; 3082 struct btrfs_key key; 3083 3084 lockdep_assert_held(&fs_info->chunk_mutex); 3085 array_size = btrfs_super_sys_array_size(super_copy); 3086 3087 ptr = super_copy->sys_chunk_array; 3088 cur = 0; 3089 3090 while (cur < array_size) { 3091 disk_key = (struct btrfs_disk_key *)ptr; 3092 btrfs_disk_key_to_cpu(&key, disk_key); 3093 3094 len = sizeof(*disk_key); 3095 3096 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3097 chunk = (struct btrfs_chunk *)(ptr + len); 3098 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3099 len += btrfs_chunk_item_size(num_stripes); 3100 } else { 3101 ret = -EIO; 3102 break; 3103 } 3104 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3105 key.offset == chunk_offset) { 3106 memmove(ptr, ptr + len, array_size - (cur + len)); 3107 array_size -= len; 3108 btrfs_set_super_sys_array_size(super_copy, array_size); 3109 } else { 3110 ptr += len; 3111 cur += len; 3112 } 3113 } 3114 return ret; 3115 } 3116 3117 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3118 u64 logical, u64 length) 3119 { 3120 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3121 struct rb_node *prev = NULL; 3122 struct rb_node *orig_prev; 3123 struct btrfs_chunk_map *map; 3124 struct btrfs_chunk_map *prev_map = NULL; 3125 3126 while (node) { 3127 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3128 prev = node; 3129 prev_map = map; 3130 3131 if (logical < map->start) { 3132 node = node->rb_left; 3133 } else if (logical >= map->start + map->chunk_len) { 3134 node = node->rb_right; 3135 } else { 3136 refcount_inc(&map->refs); 3137 return map; 3138 } 3139 } 3140 3141 if (!prev) 3142 return NULL; 3143 3144 orig_prev = prev; 3145 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3146 prev = rb_next(prev); 3147 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3148 } 3149 3150 if (!prev) { 3151 prev = orig_prev; 3152 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3153 while (prev && logical < prev_map->start) { 3154 prev = rb_prev(prev); 3155 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3156 } 3157 } 3158 3159 if (prev) { 3160 u64 end = logical + length; 3161 3162 /* 3163 * Caller can pass a U64_MAX length when it wants to get any 3164 * chunk starting at an offset of 'logical' or higher, so deal 3165 * with underflow by resetting the end offset to U64_MAX. 3166 */ 3167 if (end < logical) 3168 end = U64_MAX; 3169 3170 if (end > prev_map->start && 3171 logical < prev_map->start + prev_map->chunk_len) { 3172 refcount_inc(&prev_map->refs); 3173 return prev_map; 3174 } 3175 } 3176 3177 return NULL; 3178 } 3179 3180 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3181 u64 logical, u64 length) 3182 { 3183 struct btrfs_chunk_map *map; 3184 3185 read_lock(&fs_info->mapping_tree_lock); 3186 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3187 read_unlock(&fs_info->mapping_tree_lock); 3188 3189 return map; 3190 } 3191 3192 /* 3193 * Find the mapping containing the given logical extent. 3194 * 3195 * @logical: Logical block offset in bytes. 3196 * @length: Length of extent in bytes. 3197 * 3198 * Return: Chunk mapping or ERR_PTR. 3199 */ 3200 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3201 u64 logical, u64 length) 3202 { 3203 struct btrfs_chunk_map *map; 3204 3205 map = btrfs_find_chunk_map(fs_info, logical, length); 3206 3207 if (unlikely(!map)) { 3208 btrfs_crit(fs_info, 3209 "unable to find chunk map for logical %llu length %llu", 3210 logical, length); 3211 return ERR_PTR(-EINVAL); 3212 } 3213 3214 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3215 btrfs_crit(fs_info, 3216 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3217 logical, logical + length, map->start, 3218 map->start + map->chunk_len); 3219 btrfs_free_chunk_map(map); 3220 return ERR_PTR(-EINVAL); 3221 } 3222 3223 /* Callers are responsible for dropping the reference. */ 3224 return map; 3225 } 3226 3227 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3228 struct btrfs_chunk_map *map, u64 chunk_offset) 3229 { 3230 int i; 3231 3232 /* 3233 * Removing chunk items and updating the device items in the chunks btree 3234 * requires holding the chunk_mutex. 3235 * See the comment at btrfs_chunk_alloc() for the details. 3236 */ 3237 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3238 3239 for (i = 0; i < map->num_stripes; i++) { 3240 int ret; 3241 3242 ret = btrfs_update_device(trans, map->stripes[i].dev); 3243 if (ret) 3244 return ret; 3245 } 3246 3247 return btrfs_free_chunk(trans, chunk_offset); 3248 } 3249 3250 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3251 { 3252 struct btrfs_fs_info *fs_info = trans->fs_info; 3253 struct btrfs_chunk_map *map; 3254 u64 dev_extent_len = 0; 3255 int i, ret = 0; 3256 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3257 3258 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3259 if (IS_ERR(map)) { 3260 /* 3261 * This is a logic error, but we don't want to just rely on the 3262 * user having built with ASSERT enabled, so if ASSERT doesn't 3263 * do anything we still error out. 3264 */ 3265 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3266 PTR_ERR(map), chunk_offset); 3267 return PTR_ERR(map); 3268 } 3269 3270 /* 3271 * First delete the device extent items from the devices btree. 3272 * We take the device_list_mutex to avoid racing with the finishing phase 3273 * of a device replace operation. See the comment below before acquiring 3274 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3275 * because that can result in a deadlock when deleting the device extent 3276 * items from the devices btree - COWing an extent buffer from the btree 3277 * may result in allocating a new metadata chunk, which would attempt to 3278 * lock again fs_info->chunk_mutex. 3279 */ 3280 mutex_lock(&fs_devices->device_list_mutex); 3281 for (i = 0; i < map->num_stripes; i++) { 3282 struct btrfs_device *device = map->stripes[i].dev; 3283 ret = btrfs_free_dev_extent(trans, device, 3284 map->stripes[i].physical, 3285 &dev_extent_len); 3286 if (ret) { 3287 mutex_unlock(&fs_devices->device_list_mutex); 3288 btrfs_abort_transaction(trans, ret); 3289 goto out; 3290 } 3291 3292 if (device->bytes_used > 0) { 3293 mutex_lock(&fs_info->chunk_mutex); 3294 btrfs_device_set_bytes_used(device, 3295 device->bytes_used - dev_extent_len); 3296 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3297 btrfs_clear_space_info_full(fs_info); 3298 3299 if (list_empty(&device->post_commit_list)) { 3300 list_add_tail(&device->post_commit_list, 3301 &trans->transaction->dev_update_list); 3302 } 3303 3304 mutex_unlock(&fs_info->chunk_mutex); 3305 } 3306 } 3307 mutex_unlock(&fs_devices->device_list_mutex); 3308 3309 /* 3310 * We acquire fs_info->chunk_mutex for 2 reasons: 3311 * 3312 * 1) Just like with the first phase of the chunk allocation, we must 3313 * reserve system space, do all chunk btree updates and deletions, and 3314 * update the system chunk array in the superblock while holding this 3315 * mutex. This is for similar reasons as explained on the comment at 3316 * the top of btrfs_chunk_alloc(); 3317 * 3318 * 2) Prevent races with the final phase of a device replace operation 3319 * that replaces the device object associated with the map's stripes, 3320 * because the device object's id can change at any time during that 3321 * final phase of the device replace operation 3322 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3323 * replaced device and then see it with an ID of 3324 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3325 * the device item, which does not exists on the chunk btree. 3326 * The finishing phase of device replace acquires both the 3327 * device_list_mutex and the chunk_mutex, in that order, so we are 3328 * safe by just acquiring the chunk_mutex. 3329 */ 3330 trans->removing_chunk = true; 3331 mutex_lock(&fs_info->chunk_mutex); 3332 3333 check_system_chunk(trans, map->type); 3334 3335 ret = remove_chunk_item(trans, map, chunk_offset); 3336 /* 3337 * Normally we should not get -ENOSPC since we reserved space before 3338 * through the call to check_system_chunk(). 3339 * 3340 * Despite our system space_info having enough free space, we may not 3341 * be able to allocate extents from its block groups, because all have 3342 * an incompatible profile, which will force us to allocate a new system 3343 * block group with the right profile, or right after we called 3344 * check_system_space() above, a scrub turned the only system block group 3345 * with enough free space into RO mode. 3346 * This is explained with more detail at do_chunk_alloc(). 3347 * 3348 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3349 */ 3350 if (ret == -ENOSPC) { 3351 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3352 struct btrfs_block_group *sys_bg; 3353 struct btrfs_space_info *space_info; 3354 3355 space_info = btrfs_find_space_info(fs_info, sys_flags); 3356 if (!space_info) { 3357 ret = -EINVAL; 3358 btrfs_abort_transaction(trans, ret); 3359 goto out; 3360 } 3361 3362 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3363 if (IS_ERR(sys_bg)) { 3364 ret = PTR_ERR(sys_bg); 3365 btrfs_abort_transaction(trans, ret); 3366 goto out; 3367 } 3368 3369 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3370 if (ret) { 3371 btrfs_abort_transaction(trans, ret); 3372 goto out; 3373 } 3374 3375 ret = remove_chunk_item(trans, map, chunk_offset); 3376 if (ret) { 3377 btrfs_abort_transaction(trans, ret); 3378 goto out; 3379 } 3380 } else if (ret) { 3381 btrfs_abort_transaction(trans, ret); 3382 goto out; 3383 } 3384 3385 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3386 3387 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3388 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3389 if (ret) { 3390 btrfs_abort_transaction(trans, ret); 3391 goto out; 3392 } 3393 } 3394 3395 mutex_unlock(&fs_info->chunk_mutex); 3396 trans->removing_chunk = false; 3397 3398 /* 3399 * We are done with chunk btree updates and deletions, so release the 3400 * system space we previously reserved (with check_system_chunk()). 3401 */ 3402 btrfs_trans_release_chunk_metadata(trans); 3403 3404 ret = btrfs_remove_block_group(trans, map); 3405 if (ret) { 3406 btrfs_abort_transaction(trans, ret); 3407 goto out; 3408 } 3409 3410 out: 3411 if (trans->removing_chunk) { 3412 mutex_unlock(&fs_info->chunk_mutex); 3413 trans->removing_chunk = false; 3414 } 3415 /* once for us */ 3416 btrfs_free_chunk_map(map); 3417 return ret; 3418 } 3419 3420 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3421 bool verbose) 3422 { 3423 struct btrfs_root *root = fs_info->chunk_root; 3424 struct btrfs_trans_handle *trans; 3425 struct btrfs_block_group *block_group; 3426 u64 length; 3427 int ret; 3428 3429 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3430 btrfs_err(fs_info, 3431 "relocate: not supported on extent tree v2 yet"); 3432 return -EINVAL; 3433 } 3434 3435 /* 3436 * Prevent races with automatic removal of unused block groups. 3437 * After we relocate and before we remove the chunk with offset 3438 * chunk_offset, automatic removal of the block group can kick in, 3439 * resulting in a failure when calling btrfs_remove_chunk() below. 3440 * 3441 * Make sure to acquire this mutex before doing a tree search (dev 3442 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3443 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3444 * we release the path used to search the chunk/dev tree and before 3445 * the current task acquires this mutex and calls us. 3446 */ 3447 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3448 3449 /* step one, relocate all the extents inside this chunk */ 3450 btrfs_scrub_pause(fs_info); 3451 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true); 3452 btrfs_scrub_continue(fs_info); 3453 if (ret) { 3454 /* 3455 * If we had a transaction abort, stop all running scrubs. 3456 * See transaction.c:cleanup_transaction() why we do it here. 3457 */ 3458 if (BTRFS_FS_ERROR(fs_info)) 3459 btrfs_scrub_cancel(fs_info); 3460 return ret; 3461 } 3462 3463 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3464 if (!block_group) 3465 return -ENOENT; 3466 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3467 length = block_group->length; 3468 btrfs_put_block_group(block_group); 3469 3470 /* 3471 * On a zoned file system, discard the whole block group, this will 3472 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3473 * resetting the zone fails, don't treat it as a fatal problem from the 3474 * filesystem's point of view. 3475 */ 3476 if (btrfs_is_zoned(fs_info)) { 3477 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3478 if (ret) 3479 btrfs_info(fs_info, 3480 "failed to reset zone %llu after relocation", 3481 chunk_offset); 3482 } 3483 3484 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3485 chunk_offset); 3486 if (IS_ERR(trans)) { 3487 ret = PTR_ERR(trans); 3488 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3489 return ret; 3490 } 3491 3492 /* 3493 * step two, delete the device extents and the 3494 * chunk tree entries 3495 */ 3496 ret = btrfs_remove_chunk(trans, chunk_offset); 3497 btrfs_end_transaction(trans); 3498 return ret; 3499 } 3500 3501 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3502 { 3503 struct btrfs_root *chunk_root = fs_info->chunk_root; 3504 struct btrfs_path *path; 3505 struct extent_buffer *leaf; 3506 struct btrfs_chunk *chunk; 3507 struct btrfs_key key; 3508 struct btrfs_key found_key; 3509 u64 chunk_type; 3510 bool retried = false; 3511 int failed = 0; 3512 int ret; 3513 3514 path = btrfs_alloc_path(); 3515 if (!path) 3516 return -ENOMEM; 3517 3518 again: 3519 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3520 key.type = BTRFS_CHUNK_ITEM_KEY; 3521 key.offset = (u64)-1; 3522 3523 while (1) { 3524 mutex_lock(&fs_info->reclaim_bgs_lock); 3525 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3526 if (ret < 0) { 3527 mutex_unlock(&fs_info->reclaim_bgs_lock); 3528 goto error; 3529 } 3530 if (ret == 0) { 3531 /* 3532 * On the first search we would find chunk tree with 3533 * offset -1, which is not possible. On subsequent 3534 * loops this would find an existing item on an invalid 3535 * offset (one less than the previous one, wrong 3536 * alignment and size). 3537 */ 3538 ret = -EUCLEAN; 3539 mutex_unlock(&fs_info->reclaim_bgs_lock); 3540 goto error; 3541 } 3542 3543 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3544 key.type); 3545 if (ret) 3546 mutex_unlock(&fs_info->reclaim_bgs_lock); 3547 if (ret < 0) 3548 goto error; 3549 if (ret > 0) 3550 break; 3551 3552 leaf = path->nodes[0]; 3553 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3554 3555 chunk = btrfs_item_ptr(leaf, path->slots[0], 3556 struct btrfs_chunk); 3557 chunk_type = btrfs_chunk_type(leaf, chunk); 3558 btrfs_release_path(path); 3559 3560 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3561 ret = btrfs_relocate_chunk(fs_info, found_key.offset, 3562 true); 3563 if (ret == -ENOSPC) 3564 failed++; 3565 else 3566 BUG_ON(ret); 3567 } 3568 mutex_unlock(&fs_info->reclaim_bgs_lock); 3569 3570 if (found_key.offset == 0) 3571 break; 3572 key.offset = found_key.offset - 1; 3573 } 3574 ret = 0; 3575 if (failed && !retried) { 3576 failed = 0; 3577 retried = true; 3578 goto again; 3579 } else if (WARN_ON(failed && retried)) { 3580 ret = -ENOSPC; 3581 } 3582 error: 3583 btrfs_free_path(path); 3584 return ret; 3585 } 3586 3587 /* 3588 * return 1 : allocate a data chunk successfully, 3589 * return <0: errors during allocating a data chunk, 3590 * return 0 : no need to allocate a data chunk. 3591 */ 3592 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3593 u64 chunk_offset) 3594 { 3595 struct btrfs_block_group *cache; 3596 u64 bytes_used; 3597 u64 chunk_type; 3598 3599 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3600 ASSERT(cache); 3601 chunk_type = cache->flags; 3602 btrfs_put_block_group(cache); 3603 3604 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3605 return 0; 3606 3607 spin_lock(&fs_info->data_sinfo->lock); 3608 bytes_used = fs_info->data_sinfo->bytes_used; 3609 spin_unlock(&fs_info->data_sinfo->lock); 3610 3611 if (!bytes_used) { 3612 struct btrfs_trans_handle *trans; 3613 int ret; 3614 3615 trans = btrfs_join_transaction(fs_info->tree_root); 3616 if (IS_ERR(trans)) 3617 return PTR_ERR(trans); 3618 3619 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3620 btrfs_end_transaction(trans); 3621 if (ret < 0) 3622 return ret; 3623 return 1; 3624 } 3625 3626 return 0; 3627 } 3628 3629 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3630 const struct btrfs_disk_balance_args *disk) 3631 { 3632 memset(cpu, 0, sizeof(*cpu)); 3633 3634 cpu->profiles = le64_to_cpu(disk->profiles); 3635 cpu->usage = le64_to_cpu(disk->usage); 3636 cpu->devid = le64_to_cpu(disk->devid); 3637 cpu->pstart = le64_to_cpu(disk->pstart); 3638 cpu->pend = le64_to_cpu(disk->pend); 3639 cpu->vstart = le64_to_cpu(disk->vstart); 3640 cpu->vend = le64_to_cpu(disk->vend); 3641 cpu->target = le64_to_cpu(disk->target); 3642 cpu->flags = le64_to_cpu(disk->flags); 3643 cpu->limit = le64_to_cpu(disk->limit); 3644 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3645 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3646 } 3647 3648 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3649 const struct btrfs_balance_args *cpu) 3650 { 3651 memset(disk, 0, sizeof(*disk)); 3652 3653 disk->profiles = cpu_to_le64(cpu->profiles); 3654 disk->usage = cpu_to_le64(cpu->usage); 3655 disk->devid = cpu_to_le64(cpu->devid); 3656 disk->pstart = cpu_to_le64(cpu->pstart); 3657 disk->pend = cpu_to_le64(cpu->pend); 3658 disk->vstart = cpu_to_le64(cpu->vstart); 3659 disk->vend = cpu_to_le64(cpu->vend); 3660 disk->target = cpu_to_le64(cpu->target); 3661 disk->flags = cpu_to_le64(cpu->flags); 3662 disk->limit = cpu_to_le64(cpu->limit); 3663 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3664 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3665 } 3666 3667 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3668 struct btrfs_balance_control *bctl) 3669 { 3670 struct btrfs_root *root = fs_info->tree_root; 3671 struct btrfs_trans_handle *trans; 3672 struct btrfs_balance_item *item; 3673 struct btrfs_disk_balance_args disk_bargs; 3674 struct btrfs_path *path; 3675 struct extent_buffer *leaf; 3676 struct btrfs_key key; 3677 int ret, err; 3678 3679 path = btrfs_alloc_path(); 3680 if (!path) 3681 return -ENOMEM; 3682 3683 trans = btrfs_start_transaction(root, 0); 3684 if (IS_ERR(trans)) { 3685 btrfs_free_path(path); 3686 return PTR_ERR(trans); 3687 } 3688 3689 key.objectid = BTRFS_BALANCE_OBJECTID; 3690 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3691 key.offset = 0; 3692 3693 ret = btrfs_insert_empty_item(trans, root, path, &key, 3694 sizeof(*item)); 3695 if (ret) 3696 goto out; 3697 3698 leaf = path->nodes[0]; 3699 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3700 3701 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3702 3703 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3704 btrfs_set_balance_data(leaf, item, &disk_bargs); 3705 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3706 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3707 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3708 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3709 btrfs_set_balance_flags(leaf, item, bctl->flags); 3710 out: 3711 btrfs_free_path(path); 3712 err = btrfs_commit_transaction(trans); 3713 if (err && !ret) 3714 ret = err; 3715 return ret; 3716 } 3717 3718 static int del_balance_item(struct btrfs_fs_info *fs_info) 3719 { 3720 struct btrfs_root *root = fs_info->tree_root; 3721 struct btrfs_trans_handle *trans; 3722 struct btrfs_path *path; 3723 struct btrfs_key key; 3724 int ret, err; 3725 3726 path = btrfs_alloc_path(); 3727 if (!path) 3728 return -ENOMEM; 3729 3730 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3731 if (IS_ERR(trans)) { 3732 btrfs_free_path(path); 3733 return PTR_ERR(trans); 3734 } 3735 3736 key.objectid = BTRFS_BALANCE_OBJECTID; 3737 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3738 key.offset = 0; 3739 3740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3741 if (ret < 0) 3742 goto out; 3743 if (ret > 0) { 3744 ret = -ENOENT; 3745 goto out; 3746 } 3747 3748 ret = btrfs_del_item(trans, root, path); 3749 out: 3750 btrfs_free_path(path); 3751 err = btrfs_commit_transaction(trans); 3752 if (err && !ret) 3753 ret = err; 3754 return ret; 3755 } 3756 3757 /* 3758 * This is a heuristic used to reduce the number of chunks balanced on 3759 * resume after balance was interrupted. 3760 */ 3761 static void update_balance_args(struct btrfs_balance_control *bctl) 3762 { 3763 /* 3764 * Turn on soft mode for chunk types that were being converted. 3765 */ 3766 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3767 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3768 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3769 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3770 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3771 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3772 3773 /* 3774 * Turn on usage filter if is not already used. The idea is 3775 * that chunks that we have already balanced should be 3776 * reasonably full. Don't do it for chunks that are being 3777 * converted - that will keep us from relocating unconverted 3778 * (albeit full) chunks. 3779 */ 3780 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3781 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3782 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3783 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3784 bctl->data.usage = 90; 3785 } 3786 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3787 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3788 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3789 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3790 bctl->sys.usage = 90; 3791 } 3792 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3793 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3794 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3795 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3796 bctl->meta.usage = 90; 3797 } 3798 } 3799 3800 /* 3801 * Clear the balance status in fs_info and delete the balance item from disk. 3802 */ 3803 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3804 { 3805 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3806 int ret; 3807 3808 ASSERT(fs_info->balance_ctl); 3809 3810 spin_lock(&fs_info->balance_lock); 3811 fs_info->balance_ctl = NULL; 3812 spin_unlock(&fs_info->balance_lock); 3813 3814 kfree(bctl); 3815 ret = del_balance_item(fs_info); 3816 if (ret) 3817 btrfs_handle_fs_error(fs_info, ret, NULL); 3818 } 3819 3820 /* 3821 * Balance filters. Return 1 if chunk should be filtered out 3822 * (should not be balanced). 3823 */ 3824 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3825 { 3826 chunk_type = chunk_to_extended(chunk_type) & 3827 BTRFS_EXTENDED_PROFILE_MASK; 3828 3829 if (bargs->profiles & chunk_type) 3830 return false; 3831 3832 return true; 3833 } 3834 3835 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3836 struct btrfs_balance_args *bargs) 3837 { 3838 struct btrfs_block_group *cache; 3839 u64 chunk_used; 3840 u64 user_thresh_min; 3841 u64 user_thresh_max; 3842 bool ret = true; 3843 3844 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3845 chunk_used = cache->used; 3846 3847 if (bargs->usage_min == 0) 3848 user_thresh_min = 0; 3849 else 3850 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3851 3852 if (bargs->usage_max == 0) 3853 user_thresh_max = 1; 3854 else if (bargs->usage_max > 100) 3855 user_thresh_max = cache->length; 3856 else 3857 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3858 3859 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3860 ret = false; 3861 3862 btrfs_put_block_group(cache); 3863 return ret; 3864 } 3865 3866 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3867 struct btrfs_balance_args *bargs) 3868 { 3869 struct btrfs_block_group *cache; 3870 u64 chunk_used, user_thresh; 3871 bool ret = true; 3872 3873 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3874 chunk_used = cache->used; 3875 3876 if (bargs->usage_min == 0) 3877 user_thresh = 1; 3878 else if (bargs->usage > 100) 3879 user_thresh = cache->length; 3880 else 3881 user_thresh = mult_perc(cache->length, bargs->usage); 3882 3883 if (chunk_used < user_thresh) 3884 ret = false; 3885 3886 btrfs_put_block_group(cache); 3887 return ret; 3888 } 3889 3890 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3891 struct btrfs_balance_args *bargs) 3892 { 3893 struct btrfs_stripe *stripe; 3894 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3895 int i; 3896 3897 for (i = 0; i < num_stripes; i++) { 3898 stripe = btrfs_stripe_nr(chunk, i); 3899 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3900 return false; 3901 } 3902 3903 return true; 3904 } 3905 3906 static u64 calc_data_stripes(u64 type, int num_stripes) 3907 { 3908 const int index = btrfs_bg_flags_to_raid_index(type); 3909 const int ncopies = btrfs_raid_array[index].ncopies; 3910 const int nparity = btrfs_raid_array[index].nparity; 3911 3912 return (num_stripes - nparity) / ncopies; 3913 } 3914 3915 /* [pstart, pend) */ 3916 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3917 struct btrfs_balance_args *bargs) 3918 { 3919 struct btrfs_stripe *stripe; 3920 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3921 u64 stripe_offset; 3922 u64 stripe_length; 3923 u64 type; 3924 int factor; 3925 int i; 3926 3927 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3928 return false; 3929 3930 type = btrfs_chunk_type(leaf, chunk); 3931 factor = calc_data_stripes(type, num_stripes); 3932 3933 for (i = 0; i < num_stripes; i++) { 3934 stripe = btrfs_stripe_nr(chunk, i); 3935 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3936 continue; 3937 3938 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3939 stripe_length = btrfs_chunk_length(leaf, chunk); 3940 stripe_length = div_u64(stripe_length, factor); 3941 3942 if (stripe_offset < bargs->pend && 3943 stripe_offset + stripe_length > bargs->pstart) 3944 return false; 3945 } 3946 3947 return true; 3948 } 3949 3950 /* [vstart, vend) */ 3951 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3952 u64 chunk_offset, struct btrfs_balance_args *bargs) 3953 { 3954 if (chunk_offset < bargs->vend && 3955 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3956 /* at least part of the chunk is inside this vrange */ 3957 return false; 3958 3959 return true; 3960 } 3961 3962 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 3963 struct btrfs_chunk *chunk, 3964 struct btrfs_balance_args *bargs) 3965 { 3966 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3967 3968 if (bargs->stripes_min <= num_stripes 3969 && num_stripes <= bargs->stripes_max) 3970 return false; 3971 3972 return true; 3973 } 3974 3975 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3976 { 3977 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3978 return false; 3979 3980 chunk_type = chunk_to_extended(chunk_type) & 3981 BTRFS_EXTENDED_PROFILE_MASK; 3982 3983 if (bargs->target == chunk_type) 3984 return true; 3985 3986 return false; 3987 } 3988 3989 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3990 u64 chunk_offset) 3991 { 3992 struct btrfs_fs_info *fs_info = leaf->fs_info; 3993 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3994 struct btrfs_balance_args *bargs = NULL; 3995 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3996 3997 /* type filter */ 3998 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3999 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 4000 return false; 4001 } 4002 4003 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4004 bargs = &bctl->data; 4005 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4006 bargs = &bctl->sys; 4007 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4008 bargs = &bctl->meta; 4009 4010 /* profiles filter */ 4011 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 4012 chunk_profiles_filter(chunk_type, bargs)) { 4013 return false; 4014 } 4015 4016 /* usage filter */ 4017 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 4018 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 4019 return false; 4020 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4021 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4022 return false; 4023 } 4024 4025 /* devid filter */ 4026 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4027 chunk_devid_filter(leaf, chunk, bargs)) { 4028 return false; 4029 } 4030 4031 /* drange filter, makes sense only with devid filter */ 4032 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4033 chunk_drange_filter(leaf, chunk, bargs)) { 4034 return false; 4035 } 4036 4037 /* vrange filter */ 4038 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4039 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4040 return false; 4041 } 4042 4043 /* stripes filter */ 4044 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4045 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4046 return false; 4047 } 4048 4049 /* soft profile changing mode */ 4050 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4051 chunk_soft_convert_filter(chunk_type, bargs)) { 4052 return false; 4053 } 4054 4055 /* 4056 * limited by count, must be the last filter 4057 */ 4058 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4059 if (bargs->limit == 0) 4060 return false; 4061 else 4062 bargs->limit--; 4063 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4064 /* 4065 * Same logic as the 'limit' filter; the minimum cannot be 4066 * determined here because we do not have the global information 4067 * about the count of all chunks that satisfy the filters. 4068 */ 4069 if (bargs->limit_max == 0) 4070 return false; 4071 else 4072 bargs->limit_max--; 4073 } 4074 4075 return true; 4076 } 4077 4078 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4079 { 4080 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4081 struct btrfs_root *chunk_root = fs_info->chunk_root; 4082 u64 chunk_type; 4083 struct btrfs_chunk *chunk; 4084 struct btrfs_path *path = NULL; 4085 struct btrfs_key key; 4086 struct btrfs_key found_key; 4087 struct extent_buffer *leaf; 4088 int slot; 4089 int ret; 4090 int enospc_errors = 0; 4091 bool counting = true; 4092 /* The single value limit and min/max limits use the same bytes in the */ 4093 u64 limit_data = bctl->data.limit; 4094 u64 limit_meta = bctl->meta.limit; 4095 u64 limit_sys = bctl->sys.limit; 4096 u32 count_data = 0; 4097 u32 count_meta = 0; 4098 u32 count_sys = 0; 4099 int chunk_reserved = 0; 4100 4101 path = btrfs_alloc_path(); 4102 if (!path) { 4103 ret = -ENOMEM; 4104 goto error; 4105 } 4106 4107 /* zero out stat counters */ 4108 spin_lock(&fs_info->balance_lock); 4109 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4110 spin_unlock(&fs_info->balance_lock); 4111 again: 4112 if (!counting) { 4113 /* 4114 * The single value limit and min/max limits use the same bytes 4115 * in the 4116 */ 4117 bctl->data.limit = limit_data; 4118 bctl->meta.limit = limit_meta; 4119 bctl->sys.limit = limit_sys; 4120 } 4121 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4122 key.type = BTRFS_CHUNK_ITEM_KEY; 4123 key.offset = (u64)-1; 4124 4125 while (1) { 4126 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4127 atomic_read(&fs_info->balance_cancel_req)) { 4128 ret = -ECANCELED; 4129 goto error; 4130 } 4131 4132 mutex_lock(&fs_info->reclaim_bgs_lock); 4133 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4134 if (ret < 0) { 4135 mutex_unlock(&fs_info->reclaim_bgs_lock); 4136 goto error; 4137 } 4138 4139 /* 4140 * this shouldn't happen, it means the last relocate 4141 * failed 4142 */ 4143 if (ret == 0) 4144 BUG(); /* FIXME break ? */ 4145 4146 ret = btrfs_previous_item(chunk_root, path, 0, 4147 BTRFS_CHUNK_ITEM_KEY); 4148 if (ret) { 4149 mutex_unlock(&fs_info->reclaim_bgs_lock); 4150 ret = 0; 4151 break; 4152 } 4153 4154 leaf = path->nodes[0]; 4155 slot = path->slots[0]; 4156 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4157 4158 if (found_key.objectid != key.objectid) { 4159 mutex_unlock(&fs_info->reclaim_bgs_lock); 4160 break; 4161 } 4162 4163 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4164 chunk_type = btrfs_chunk_type(leaf, chunk); 4165 4166 if (!counting) { 4167 spin_lock(&fs_info->balance_lock); 4168 bctl->stat.considered++; 4169 spin_unlock(&fs_info->balance_lock); 4170 } 4171 4172 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4173 4174 btrfs_release_path(path); 4175 if (!ret) { 4176 mutex_unlock(&fs_info->reclaim_bgs_lock); 4177 goto loop; 4178 } 4179 4180 if (counting) { 4181 mutex_unlock(&fs_info->reclaim_bgs_lock); 4182 spin_lock(&fs_info->balance_lock); 4183 bctl->stat.expected++; 4184 spin_unlock(&fs_info->balance_lock); 4185 4186 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4187 count_data++; 4188 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4189 count_sys++; 4190 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4191 count_meta++; 4192 4193 goto loop; 4194 } 4195 4196 /* 4197 * Apply limit_min filter, no need to check if the LIMITS 4198 * filter is used, limit_min is 0 by default 4199 */ 4200 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4201 count_data < bctl->data.limit_min) 4202 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4203 count_meta < bctl->meta.limit_min) 4204 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4205 count_sys < bctl->sys.limit_min)) { 4206 mutex_unlock(&fs_info->reclaim_bgs_lock); 4207 goto loop; 4208 } 4209 4210 if (!chunk_reserved) { 4211 /* 4212 * We may be relocating the only data chunk we have, 4213 * which could potentially end up with losing data's 4214 * raid profile, so lets allocate an empty one in 4215 * advance. 4216 */ 4217 ret = btrfs_may_alloc_data_chunk(fs_info, 4218 found_key.offset); 4219 if (ret < 0) { 4220 mutex_unlock(&fs_info->reclaim_bgs_lock); 4221 goto error; 4222 } else if (ret == 1) { 4223 chunk_reserved = 1; 4224 } 4225 } 4226 4227 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true); 4228 mutex_unlock(&fs_info->reclaim_bgs_lock); 4229 if (ret == -ENOSPC) { 4230 enospc_errors++; 4231 } else if (ret == -ETXTBSY) { 4232 btrfs_info(fs_info, 4233 "skipping relocation of block group %llu due to active swapfile", 4234 found_key.offset); 4235 ret = 0; 4236 } else if (ret) { 4237 goto error; 4238 } else { 4239 spin_lock(&fs_info->balance_lock); 4240 bctl->stat.completed++; 4241 spin_unlock(&fs_info->balance_lock); 4242 } 4243 loop: 4244 if (found_key.offset == 0) 4245 break; 4246 key.offset = found_key.offset - 1; 4247 } 4248 4249 if (counting) { 4250 btrfs_release_path(path); 4251 counting = false; 4252 goto again; 4253 } 4254 error: 4255 btrfs_free_path(path); 4256 if (enospc_errors) { 4257 btrfs_info(fs_info, "%d enospc errors during balance", 4258 enospc_errors); 4259 if (!ret) 4260 ret = -ENOSPC; 4261 } 4262 4263 return ret; 4264 } 4265 4266 /* 4267 * See if a given profile is valid and reduced. 4268 * 4269 * @flags: profile to validate 4270 * @extended: if true @flags is treated as an extended profile 4271 */ 4272 static int alloc_profile_is_valid(u64 flags, int extended) 4273 { 4274 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4275 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4276 4277 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4278 4279 /* 1) check that all other bits are zeroed */ 4280 if (flags & ~mask) 4281 return 0; 4282 4283 /* 2) see if profile is reduced */ 4284 if (flags == 0) 4285 return !extended; /* "0" is valid for usual profiles */ 4286 4287 return has_single_bit_set(flags); 4288 } 4289 4290 /* 4291 * Validate target profile against allowed profiles and return true if it's OK. 4292 * Otherwise print the error message and return false. 4293 */ 4294 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4295 const struct btrfs_balance_args *bargs, 4296 u64 allowed, const char *type) 4297 { 4298 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4299 return true; 4300 4301 /* Profile is valid and does not have bits outside of the allowed set */ 4302 if (alloc_profile_is_valid(bargs->target, 1) && 4303 (bargs->target & ~allowed) == 0) 4304 return true; 4305 4306 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4307 type, btrfs_bg_type_to_raid_name(bargs->target)); 4308 return false; 4309 } 4310 4311 /* 4312 * Fill @buf with textual description of balance filter flags @bargs, up to 4313 * @size_buf including the terminating null. The output may be trimmed if it 4314 * does not fit into the provided buffer. 4315 */ 4316 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4317 u32 size_buf) 4318 { 4319 int ret; 4320 u32 size_bp = size_buf; 4321 char *bp = buf; 4322 u64 flags = bargs->flags; 4323 char tmp_buf[128] = {'\0'}; 4324 4325 if (!flags) 4326 return; 4327 4328 #define CHECK_APPEND_NOARG(a) \ 4329 do { \ 4330 ret = snprintf(bp, size_bp, (a)); \ 4331 if (ret < 0 || ret >= size_bp) \ 4332 goto out_overflow; \ 4333 size_bp -= ret; \ 4334 bp += ret; \ 4335 } while (0) 4336 4337 #define CHECK_APPEND_1ARG(a, v1) \ 4338 do { \ 4339 ret = snprintf(bp, size_bp, (a), (v1)); \ 4340 if (ret < 0 || ret >= size_bp) \ 4341 goto out_overflow; \ 4342 size_bp -= ret; \ 4343 bp += ret; \ 4344 } while (0) 4345 4346 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4347 do { \ 4348 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4349 if (ret < 0 || ret >= size_bp) \ 4350 goto out_overflow; \ 4351 size_bp -= ret; \ 4352 bp += ret; \ 4353 } while (0) 4354 4355 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4356 CHECK_APPEND_1ARG("convert=%s,", 4357 btrfs_bg_type_to_raid_name(bargs->target)); 4358 4359 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4360 CHECK_APPEND_NOARG("soft,"); 4361 4362 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4363 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4364 sizeof(tmp_buf)); 4365 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4366 } 4367 4368 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4369 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4370 4371 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4372 CHECK_APPEND_2ARG("usage=%u..%u,", 4373 bargs->usage_min, bargs->usage_max); 4374 4375 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4376 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4377 4378 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4379 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4380 bargs->pstart, bargs->pend); 4381 4382 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4383 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4384 bargs->vstart, bargs->vend); 4385 4386 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4387 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4388 4389 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4390 CHECK_APPEND_2ARG("limit=%u..%u,", 4391 bargs->limit_min, bargs->limit_max); 4392 4393 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4394 CHECK_APPEND_2ARG("stripes=%u..%u,", 4395 bargs->stripes_min, bargs->stripes_max); 4396 4397 #undef CHECK_APPEND_2ARG 4398 #undef CHECK_APPEND_1ARG 4399 #undef CHECK_APPEND_NOARG 4400 4401 out_overflow: 4402 4403 if (size_bp < size_buf) 4404 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4405 else 4406 buf[0] = '\0'; 4407 } 4408 4409 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4410 { 4411 u32 size_buf = 1024; 4412 char tmp_buf[192] = {'\0'}; 4413 char *buf; 4414 char *bp; 4415 u32 size_bp = size_buf; 4416 int ret; 4417 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4418 4419 buf = kzalloc(size_buf, GFP_KERNEL); 4420 if (!buf) 4421 return; 4422 4423 bp = buf; 4424 4425 #define CHECK_APPEND_1ARG(a, v1) \ 4426 do { \ 4427 ret = snprintf(bp, size_bp, (a), (v1)); \ 4428 if (ret < 0 || ret >= size_bp) \ 4429 goto out_overflow; \ 4430 size_bp -= ret; \ 4431 bp += ret; \ 4432 } while (0) 4433 4434 if (bctl->flags & BTRFS_BALANCE_FORCE) 4435 CHECK_APPEND_1ARG("%s", "-f "); 4436 4437 if (bctl->flags & BTRFS_BALANCE_DATA) { 4438 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4439 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4440 } 4441 4442 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4443 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4444 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4445 } 4446 4447 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4448 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4449 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4450 } 4451 4452 #undef CHECK_APPEND_1ARG 4453 4454 out_overflow: 4455 4456 if (size_bp < size_buf) 4457 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4458 btrfs_info(fs_info, "balance: %s %s", 4459 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4460 "resume" : "start", buf); 4461 4462 kfree(buf); 4463 } 4464 4465 /* 4466 * Should be called with balance mutexe held 4467 */ 4468 int btrfs_balance(struct btrfs_fs_info *fs_info, 4469 struct btrfs_balance_control *bctl, 4470 struct btrfs_ioctl_balance_args *bargs) 4471 { 4472 u64 meta_target, data_target; 4473 u64 allowed; 4474 int mixed = 0; 4475 int ret; 4476 u64 num_devices; 4477 unsigned seq; 4478 bool reducing_redundancy; 4479 bool paused = false; 4480 int i; 4481 4482 if (btrfs_fs_closing(fs_info) || 4483 atomic_read(&fs_info->balance_pause_req) || 4484 btrfs_should_cancel_balance(fs_info)) { 4485 ret = -EINVAL; 4486 goto out; 4487 } 4488 4489 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4490 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4491 mixed = 1; 4492 4493 /* 4494 * In case of mixed groups both data and meta should be picked, 4495 * and identical options should be given for both of them. 4496 */ 4497 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4498 if (mixed && (bctl->flags & allowed)) { 4499 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4500 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4501 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4502 btrfs_err(fs_info, 4503 "balance: mixed groups data and metadata options must be the same"); 4504 ret = -EINVAL; 4505 goto out; 4506 } 4507 } 4508 4509 /* 4510 * rw_devices will not change at the moment, device add/delete/replace 4511 * are exclusive 4512 */ 4513 num_devices = fs_info->fs_devices->rw_devices; 4514 4515 /* 4516 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4517 * special bit for it, to make it easier to distinguish. Thus we need 4518 * to set it manually, or balance would refuse the profile. 4519 */ 4520 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4521 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4522 if (num_devices >= btrfs_raid_array[i].devs_min) 4523 allowed |= btrfs_raid_array[i].bg_flag; 4524 4525 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4526 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4527 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4528 ret = -EINVAL; 4529 goto out; 4530 } 4531 4532 /* 4533 * Allow to reduce metadata or system integrity only if force set for 4534 * profiles with redundancy (copies, parity) 4535 */ 4536 allowed = 0; 4537 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4538 if (btrfs_raid_array[i].ncopies >= 2 || 4539 btrfs_raid_array[i].tolerated_failures >= 1) 4540 allowed |= btrfs_raid_array[i].bg_flag; 4541 } 4542 do { 4543 seq = read_seqbegin(&fs_info->profiles_lock); 4544 4545 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4546 (fs_info->avail_system_alloc_bits & allowed) && 4547 !(bctl->sys.target & allowed)) || 4548 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4549 (fs_info->avail_metadata_alloc_bits & allowed) && 4550 !(bctl->meta.target & allowed))) 4551 reducing_redundancy = true; 4552 else 4553 reducing_redundancy = false; 4554 4555 /* if we're not converting, the target field is uninitialized */ 4556 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4557 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4558 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4559 bctl->data.target : fs_info->avail_data_alloc_bits; 4560 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4561 4562 if (reducing_redundancy) { 4563 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4564 btrfs_info(fs_info, 4565 "balance: force reducing metadata redundancy"); 4566 } else { 4567 btrfs_err(fs_info, 4568 "balance: reduces metadata redundancy, use --force if you want this"); 4569 ret = -EINVAL; 4570 goto out; 4571 } 4572 } 4573 4574 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4575 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4576 btrfs_warn(fs_info, 4577 "balance: metadata profile %s has lower redundancy than data profile %s", 4578 btrfs_bg_type_to_raid_name(meta_target), 4579 btrfs_bg_type_to_raid_name(data_target)); 4580 } 4581 4582 ret = insert_balance_item(fs_info, bctl); 4583 if (ret && ret != -EEXIST) 4584 goto out; 4585 4586 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4587 BUG_ON(ret == -EEXIST); 4588 BUG_ON(fs_info->balance_ctl); 4589 spin_lock(&fs_info->balance_lock); 4590 fs_info->balance_ctl = bctl; 4591 spin_unlock(&fs_info->balance_lock); 4592 } else { 4593 BUG_ON(ret != -EEXIST); 4594 spin_lock(&fs_info->balance_lock); 4595 update_balance_args(bctl); 4596 spin_unlock(&fs_info->balance_lock); 4597 } 4598 4599 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4600 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4601 describe_balance_start_or_resume(fs_info); 4602 mutex_unlock(&fs_info->balance_mutex); 4603 4604 ret = __btrfs_balance(fs_info); 4605 4606 mutex_lock(&fs_info->balance_mutex); 4607 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4608 btrfs_info(fs_info, "balance: paused"); 4609 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4610 paused = true; 4611 } 4612 /* 4613 * Balance can be canceled by: 4614 * 4615 * - Regular cancel request 4616 * Then ret == -ECANCELED and balance_cancel_req > 0 4617 * 4618 * - Fatal signal to "btrfs" process 4619 * Either the signal caught by wait_reserve_ticket() and callers 4620 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4621 * got -ECANCELED. 4622 * Either way, in this case balance_cancel_req = 0, and 4623 * ret == -EINTR or ret == -ECANCELED. 4624 * 4625 * So here we only check the return value to catch canceled balance. 4626 */ 4627 else if (ret == -ECANCELED || ret == -EINTR) 4628 btrfs_info(fs_info, "balance: canceled"); 4629 else 4630 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4631 4632 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4633 4634 if (bargs) { 4635 memset(bargs, 0, sizeof(*bargs)); 4636 btrfs_update_ioctl_balance_args(fs_info, bargs); 4637 } 4638 4639 /* We didn't pause, we can clean everything up. */ 4640 if (!paused) { 4641 reset_balance_state(fs_info); 4642 btrfs_exclop_finish(fs_info); 4643 } 4644 4645 wake_up(&fs_info->balance_wait_q); 4646 4647 return ret; 4648 out: 4649 if (bctl->flags & BTRFS_BALANCE_RESUME) 4650 reset_balance_state(fs_info); 4651 else 4652 kfree(bctl); 4653 btrfs_exclop_finish(fs_info); 4654 4655 return ret; 4656 } 4657 4658 static int balance_kthread(void *data) 4659 { 4660 struct btrfs_fs_info *fs_info = data; 4661 int ret = 0; 4662 4663 sb_start_write(fs_info->sb); 4664 mutex_lock(&fs_info->balance_mutex); 4665 if (fs_info->balance_ctl) 4666 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4667 mutex_unlock(&fs_info->balance_mutex); 4668 sb_end_write(fs_info->sb); 4669 4670 return ret; 4671 } 4672 4673 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4674 { 4675 struct task_struct *tsk; 4676 4677 mutex_lock(&fs_info->balance_mutex); 4678 if (!fs_info->balance_ctl) { 4679 mutex_unlock(&fs_info->balance_mutex); 4680 return 0; 4681 } 4682 mutex_unlock(&fs_info->balance_mutex); 4683 4684 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4685 btrfs_info(fs_info, "balance: resume skipped"); 4686 return 0; 4687 } 4688 4689 spin_lock(&fs_info->super_lock); 4690 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4691 "exclusive_operation=%d", fs_info->exclusive_operation); 4692 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4693 spin_unlock(&fs_info->super_lock); 4694 /* 4695 * A ro->rw remount sequence should continue with the paused balance 4696 * regardless of who pauses it, system or the user as of now, so set 4697 * the resume flag. 4698 */ 4699 spin_lock(&fs_info->balance_lock); 4700 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4701 spin_unlock(&fs_info->balance_lock); 4702 4703 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4704 return PTR_ERR_OR_ZERO(tsk); 4705 } 4706 4707 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4708 { 4709 struct btrfs_balance_control *bctl; 4710 struct btrfs_balance_item *item; 4711 struct btrfs_disk_balance_args disk_bargs; 4712 struct btrfs_path *path; 4713 struct extent_buffer *leaf; 4714 struct btrfs_key key; 4715 int ret; 4716 4717 path = btrfs_alloc_path(); 4718 if (!path) 4719 return -ENOMEM; 4720 4721 key.objectid = BTRFS_BALANCE_OBJECTID; 4722 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4723 key.offset = 0; 4724 4725 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4726 if (ret < 0) 4727 goto out; 4728 if (ret > 0) { /* ret = -ENOENT; */ 4729 ret = 0; 4730 goto out; 4731 } 4732 4733 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4734 if (!bctl) { 4735 ret = -ENOMEM; 4736 goto out; 4737 } 4738 4739 leaf = path->nodes[0]; 4740 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4741 4742 bctl->flags = btrfs_balance_flags(leaf, item); 4743 bctl->flags |= BTRFS_BALANCE_RESUME; 4744 4745 btrfs_balance_data(leaf, item, &disk_bargs); 4746 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4747 btrfs_balance_meta(leaf, item, &disk_bargs); 4748 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4749 btrfs_balance_sys(leaf, item, &disk_bargs); 4750 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4751 4752 /* 4753 * This should never happen, as the paused balance state is recovered 4754 * during mount without any chance of other exclusive ops to collide. 4755 * 4756 * This gives the exclusive op status to balance and keeps in paused 4757 * state until user intervention (cancel or umount). If the ownership 4758 * cannot be assigned, show a message but do not fail. The balance 4759 * is in a paused state and must have fs_info::balance_ctl properly 4760 * set up. 4761 */ 4762 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4763 btrfs_warn(fs_info, 4764 "balance: cannot set exclusive op status, resume manually"); 4765 4766 btrfs_release_path(path); 4767 4768 mutex_lock(&fs_info->balance_mutex); 4769 BUG_ON(fs_info->balance_ctl); 4770 spin_lock(&fs_info->balance_lock); 4771 fs_info->balance_ctl = bctl; 4772 spin_unlock(&fs_info->balance_lock); 4773 mutex_unlock(&fs_info->balance_mutex); 4774 out: 4775 btrfs_free_path(path); 4776 return ret; 4777 } 4778 4779 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4780 { 4781 int ret = 0; 4782 4783 mutex_lock(&fs_info->balance_mutex); 4784 if (!fs_info->balance_ctl) { 4785 mutex_unlock(&fs_info->balance_mutex); 4786 return -ENOTCONN; 4787 } 4788 4789 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4790 atomic_inc(&fs_info->balance_pause_req); 4791 mutex_unlock(&fs_info->balance_mutex); 4792 4793 wait_event(fs_info->balance_wait_q, 4794 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4795 4796 mutex_lock(&fs_info->balance_mutex); 4797 /* we are good with balance_ctl ripped off from under us */ 4798 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4799 atomic_dec(&fs_info->balance_pause_req); 4800 } else { 4801 ret = -ENOTCONN; 4802 } 4803 4804 mutex_unlock(&fs_info->balance_mutex); 4805 return ret; 4806 } 4807 4808 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4809 { 4810 mutex_lock(&fs_info->balance_mutex); 4811 if (!fs_info->balance_ctl) { 4812 mutex_unlock(&fs_info->balance_mutex); 4813 return -ENOTCONN; 4814 } 4815 4816 /* 4817 * A paused balance with the item stored on disk can be resumed at 4818 * mount time if the mount is read-write. Otherwise it's still paused 4819 * and we must not allow cancelling as it deletes the item. 4820 */ 4821 if (sb_rdonly(fs_info->sb)) { 4822 mutex_unlock(&fs_info->balance_mutex); 4823 return -EROFS; 4824 } 4825 4826 atomic_inc(&fs_info->balance_cancel_req); 4827 /* 4828 * if we are running just wait and return, balance item is 4829 * deleted in btrfs_balance in this case 4830 */ 4831 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4832 mutex_unlock(&fs_info->balance_mutex); 4833 wait_event(fs_info->balance_wait_q, 4834 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4835 mutex_lock(&fs_info->balance_mutex); 4836 } else { 4837 mutex_unlock(&fs_info->balance_mutex); 4838 /* 4839 * Lock released to allow other waiters to continue, we'll 4840 * reexamine the status again. 4841 */ 4842 mutex_lock(&fs_info->balance_mutex); 4843 4844 if (fs_info->balance_ctl) { 4845 reset_balance_state(fs_info); 4846 btrfs_exclop_finish(fs_info); 4847 btrfs_info(fs_info, "balance: canceled"); 4848 } 4849 } 4850 4851 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4852 atomic_dec(&fs_info->balance_cancel_req); 4853 mutex_unlock(&fs_info->balance_mutex); 4854 return 0; 4855 } 4856 4857 /* 4858 * shrinking a device means finding all of the device extents past 4859 * the new size, and then following the back refs to the chunks. 4860 * The chunk relocation code actually frees the device extent 4861 */ 4862 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4863 { 4864 struct btrfs_fs_info *fs_info = device->fs_info; 4865 struct btrfs_root *root = fs_info->dev_root; 4866 struct btrfs_trans_handle *trans; 4867 struct btrfs_dev_extent *dev_extent = NULL; 4868 struct btrfs_path *path; 4869 u64 length; 4870 u64 chunk_offset; 4871 int ret; 4872 int slot; 4873 int failed = 0; 4874 bool retried = false; 4875 struct extent_buffer *l; 4876 struct btrfs_key key; 4877 struct btrfs_super_block *super_copy = fs_info->super_copy; 4878 u64 old_total = btrfs_super_total_bytes(super_copy); 4879 u64 old_size = btrfs_device_get_total_bytes(device); 4880 u64 diff; 4881 u64 start; 4882 u64 free_diff = 0; 4883 4884 new_size = round_down(new_size, fs_info->sectorsize); 4885 start = new_size; 4886 diff = round_down(old_size - new_size, fs_info->sectorsize); 4887 4888 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4889 return -EINVAL; 4890 4891 path = btrfs_alloc_path(); 4892 if (!path) 4893 return -ENOMEM; 4894 4895 path->reada = READA_BACK; 4896 4897 trans = btrfs_start_transaction(root, 0); 4898 if (IS_ERR(trans)) { 4899 btrfs_free_path(path); 4900 return PTR_ERR(trans); 4901 } 4902 4903 mutex_lock(&fs_info->chunk_mutex); 4904 4905 btrfs_device_set_total_bytes(device, new_size); 4906 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4907 device->fs_devices->total_rw_bytes -= diff; 4908 4909 /* 4910 * The new free_chunk_space is new_size - used, so we have to 4911 * subtract the delta of the old free_chunk_space which included 4912 * old_size - used. If used > new_size then just subtract this 4913 * entire device's free space. 4914 */ 4915 if (device->bytes_used < new_size) 4916 free_diff = (old_size - device->bytes_used) - 4917 (new_size - device->bytes_used); 4918 else 4919 free_diff = old_size - device->bytes_used; 4920 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4921 } 4922 4923 /* 4924 * Once the device's size has been set to the new size, ensure all 4925 * in-memory chunks are synced to disk so that the loop below sees them 4926 * and relocates them accordingly. 4927 */ 4928 if (contains_pending_extent(device, &start, diff)) { 4929 mutex_unlock(&fs_info->chunk_mutex); 4930 ret = btrfs_commit_transaction(trans); 4931 if (ret) 4932 goto done; 4933 } else { 4934 mutex_unlock(&fs_info->chunk_mutex); 4935 btrfs_end_transaction(trans); 4936 } 4937 4938 again: 4939 key.objectid = device->devid; 4940 key.type = BTRFS_DEV_EXTENT_KEY; 4941 key.offset = (u64)-1; 4942 4943 do { 4944 mutex_lock(&fs_info->reclaim_bgs_lock); 4945 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4946 if (ret < 0) { 4947 mutex_unlock(&fs_info->reclaim_bgs_lock); 4948 goto done; 4949 } 4950 4951 ret = btrfs_previous_item(root, path, 0, key.type); 4952 if (ret) { 4953 mutex_unlock(&fs_info->reclaim_bgs_lock); 4954 if (ret < 0) 4955 goto done; 4956 ret = 0; 4957 btrfs_release_path(path); 4958 break; 4959 } 4960 4961 l = path->nodes[0]; 4962 slot = path->slots[0]; 4963 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4964 4965 if (key.objectid != device->devid) { 4966 mutex_unlock(&fs_info->reclaim_bgs_lock); 4967 btrfs_release_path(path); 4968 break; 4969 } 4970 4971 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4972 length = btrfs_dev_extent_length(l, dev_extent); 4973 4974 if (key.offset + length <= new_size) { 4975 mutex_unlock(&fs_info->reclaim_bgs_lock); 4976 btrfs_release_path(path); 4977 break; 4978 } 4979 4980 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4981 btrfs_release_path(path); 4982 4983 /* 4984 * We may be relocating the only data chunk we have, 4985 * which could potentially end up with losing data's 4986 * raid profile, so lets allocate an empty one in 4987 * advance. 4988 */ 4989 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4990 if (ret < 0) { 4991 mutex_unlock(&fs_info->reclaim_bgs_lock); 4992 goto done; 4993 } 4994 4995 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true); 4996 mutex_unlock(&fs_info->reclaim_bgs_lock); 4997 if (ret == -ENOSPC) { 4998 failed++; 4999 } else if (ret) { 5000 if (ret == -ETXTBSY) { 5001 btrfs_warn(fs_info, 5002 "could not shrink block group %llu due to active swapfile", 5003 chunk_offset); 5004 } 5005 goto done; 5006 } 5007 } while (key.offset-- > 0); 5008 5009 if (failed && !retried) { 5010 failed = 0; 5011 retried = true; 5012 goto again; 5013 } else if (failed && retried) { 5014 ret = -ENOSPC; 5015 goto done; 5016 } 5017 5018 /* Shrinking succeeded, else we would be at "done". */ 5019 trans = btrfs_start_transaction(root, 0); 5020 if (IS_ERR(trans)) { 5021 ret = PTR_ERR(trans); 5022 goto done; 5023 } 5024 5025 mutex_lock(&fs_info->chunk_mutex); 5026 /* Clear all state bits beyond the shrunk device size */ 5027 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1, 5028 CHUNK_STATE_MASK, NULL); 5029 5030 btrfs_device_set_disk_total_bytes(device, new_size); 5031 if (list_empty(&device->post_commit_list)) 5032 list_add_tail(&device->post_commit_list, 5033 &trans->transaction->dev_update_list); 5034 5035 WARN_ON(diff > old_total); 5036 btrfs_set_super_total_bytes(super_copy, 5037 round_down(old_total - diff, fs_info->sectorsize)); 5038 mutex_unlock(&fs_info->chunk_mutex); 5039 5040 btrfs_reserve_chunk_metadata(trans, false); 5041 /* Now btrfs_update_device() will change the on-disk size. */ 5042 ret = btrfs_update_device(trans, device); 5043 btrfs_trans_release_chunk_metadata(trans); 5044 if (ret < 0) { 5045 btrfs_abort_transaction(trans, ret); 5046 btrfs_end_transaction(trans); 5047 } else { 5048 ret = btrfs_commit_transaction(trans); 5049 } 5050 done: 5051 btrfs_free_path(path); 5052 if (ret) { 5053 mutex_lock(&fs_info->chunk_mutex); 5054 btrfs_device_set_total_bytes(device, old_size); 5055 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5056 device->fs_devices->total_rw_bytes += diff; 5057 atomic64_add(free_diff, &fs_info->free_chunk_space); 5058 } 5059 mutex_unlock(&fs_info->chunk_mutex); 5060 } 5061 return ret; 5062 } 5063 5064 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5065 struct btrfs_key *key, 5066 struct btrfs_chunk *chunk, int item_size) 5067 { 5068 struct btrfs_super_block *super_copy = fs_info->super_copy; 5069 struct btrfs_disk_key disk_key; 5070 u32 array_size; 5071 u8 *ptr; 5072 5073 lockdep_assert_held(&fs_info->chunk_mutex); 5074 5075 array_size = btrfs_super_sys_array_size(super_copy); 5076 if (array_size + item_size + sizeof(disk_key) 5077 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5078 return -EFBIG; 5079 5080 ptr = super_copy->sys_chunk_array + array_size; 5081 btrfs_cpu_key_to_disk(&disk_key, key); 5082 memcpy(ptr, &disk_key, sizeof(disk_key)); 5083 ptr += sizeof(disk_key); 5084 memcpy(ptr, chunk, item_size); 5085 item_size += sizeof(disk_key); 5086 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5087 5088 return 0; 5089 } 5090 5091 /* 5092 * sort the devices in descending order by max_avail, total_avail 5093 */ 5094 static int btrfs_cmp_device_info(const void *a, const void *b) 5095 { 5096 const struct btrfs_device_info *di_a = a; 5097 const struct btrfs_device_info *di_b = b; 5098 5099 if (di_a->max_avail > di_b->max_avail) 5100 return -1; 5101 if (di_a->max_avail < di_b->max_avail) 5102 return 1; 5103 if (di_a->total_avail > di_b->total_avail) 5104 return -1; 5105 if (di_a->total_avail < di_b->total_avail) 5106 return 1; 5107 return 0; 5108 } 5109 5110 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5111 { 5112 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5113 return; 5114 5115 btrfs_set_fs_incompat(info, RAID56); 5116 } 5117 5118 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5119 { 5120 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5121 return; 5122 5123 btrfs_set_fs_incompat(info, RAID1C34); 5124 } 5125 5126 /* 5127 * Structure used internally for btrfs_create_chunk() function. 5128 * Wraps needed parameters. 5129 */ 5130 struct alloc_chunk_ctl { 5131 u64 start; 5132 u64 type; 5133 /* Total number of stripes to allocate */ 5134 int num_stripes; 5135 /* sub_stripes info for map */ 5136 int sub_stripes; 5137 /* Stripes per device */ 5138 int dev_stripes; 5139 /* Maximum number of devices to use */ 5140 int devs_max; 5141 /* Minimum number of devices to use */ 5142 int devs_min; 5143 /* ndevs has to be a multiple of this */ 5144 int devs_increment; 5145 /* Number of copies */ 5146 int ncopies; 5147 /* Number of stripes worth of bytes to store parity information */ 5148 int nparity; 5149 u64 max_stripe_size; 5150 u64 max_chunk_size; 5151 u64 dev_extent_min; 5152 u64 stripe_size; 5153 u64 chunk_size; 5154 int ndevs; 5155 /* Space_info the block group is going to belong. */ 5156 struct btrfs_space_info *space_info; 5157 }; 5158 5159 static void init_alloc_chunk_ctl_policy_regular( 5160 struct btrfs_fs_devices *fs_devices, 5161 struct alloc_chunk_ctl *ctl) 5162 { 5163 struct btrfs_space_info *space_info; 5164 5165 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5166 ASSERT(space_info); 5167 5168 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5169 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5170 5171 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5172 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5173 5174 /* We don't want a chunk larger than 10% of writable space */ 5175 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5176 ctl->max_chunk_size); 5177 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5178 } 5179 5180 static void init_alloc_chunk_ctl_policy_zoned( 5181 struct btrfs_fs_devices *fs_devices, 5182 struct alloc_chunk_ctl *ctl) 5183 { 5184 u64 zone_size = fs_devices->fs_info->zone_size; 5185 u64 limit; 5186 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5187 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5188 u64 min_chunk_size = min_data_stripes * zone_size; 5189 u64 type = ctl->type; 5190 5191 ctl->max_stripe_size = zone_size; 5192 if (type & BTRFS_BLOCK_GROUP_DATA) { 5193 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5194 zone_size); 5195 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5196 ctl->max_chunk_size = ctl->max_stripe_size; 5197 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5198 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5199 ctl->devs_max = min_t(int, ctl->devs_max, 5200 BTRFS_MAX_DEVS_SYS_CHUNK); 5201 } else { 5202 BUG(); 5203 } 5204 5205 /* We don't want a chunk larger than 10% of writable space */ 5206 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5207 zone_size), 5208 min_chunk_size); 5209 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5210 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5211 } 5212 5213 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5214 struct alloc_chunk_ctl *ctl) 5215 { 5216 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5217 5218 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5219 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5220 ctl->devs_max = btrfs_raid_array[index].devs_max; 5221 if (!ctl->devs_max) 5222 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5223 ctl->devs_min = btrfs_raid_array[index].devs_min; 5224 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5225 ctl->ncopies = btrfs_raid_array[index].ncopies; 5226 ctl->nparity = btrfs_raid_array[index].nparity; 5227 ctl->ndevs = 0; 5228 5229 switch (fs_devices->chunk_alloc_policy) { 5230 default: 5231 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5232 fallthrough; 5233 case BTRFS_CHUNK_ALLOC_REGULAR: 5234 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5235 break; 5236 case BTRFS_CHUNK_ALLOC_ZONED: 5237 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5238 break; 5239 } 5240 } 5241 5242 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5243 struct alloc_chunk_ctl *ctl, 5244 struct btrfs_device_info *devices_info) 5245 { 5246 struct btrfs_fs_info *info = fs_devices->fs_info; 5247 struct btrfs_device *device; 5248 u64 total_avail; 5249 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5250 int ret; 5251 int ndevs = 0; 5252 u64 max_avail; 5253 u64 dev_offset; 5254 5255 /* 5256 * in the first pass through the devices list, we gather information 5257 * about the available holes on each device. 5258 */ 5259 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5260 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5261 WARN(1, KERN_ERR 5262 "BTRFS: read-only device in alloc_list\n"); 5263 continue; 5264 } 5265 5266 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5267 &device->dev_state) || 5268 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5269 continue; 5270 5271 if (device->total_bytes > device->bytes_used) 5272 total_avail = device->total_bytes - device->bytes_used; 5273 else 5274 total_avail = 0; 5275 5276 /* If there is no space on this device, skip it. */ 5277 if (total_avail < ctl->dev_extent_min) 5278 continue; 5279 5280 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5281 &max_avail); 5282 if (ret && ret != -ENOSPC) 5283 return ret; 5284 5285 if (ret == 0) 5286 max_avail = dev_extent_want; 5287 5288 if (max_avail < ctl->dev_extent_min) { 5289 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5290 btrfs_debug(info, 5291 "%s: devid %llu has no free space, have=%llu want=%llu", 5292 __func__, device->devid, max_avail, 5293 ctl->dev_extent_min); 5294 continue; 5295 } 5296 5297 if (ndevs == fs_devices->rw_devices) { 5298 WARN(1, "%s: found more than %llu devices\n", 5299 __func__, fs_devices->rw_devices); 5300 break; 5301 } 5302 devices_info[ndevs].dev_offset = dev_offset; 5303 devices_info[ndevs].max_avail = max_avail; 5304 devices_info[ndevs].total_avail = total_avail; 5305 devices_info[ndevs].dev = device; 5306 ++ndevs; 5307 } 5308 ctl->ndevs = ndevs; 5309 5310 /* 5311 * now sort the devices by hole size / available space 5312 */ 5313 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5314 btrfs_cmp_device_info, NULL); 5315 5316 return 0; 5317 } 5318 5319 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5320 struct btrfs_device_info *devices_info) 5321 { 5322 /* Number of stripes that count for block group size */ 5323 int data_stripes; 5324 5325 /* 5326 * The primary goal is to maximize the number of stripes, so use as 5327 * many devices as possible, even if the stripes are not maximum sized. 5328 * 5329 * The DUP profile stores more than one stripe per device, the 5330 * max_avail is the total size so we have to adjust. 5331 */ 5332 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5333 ctl->dev_stripes); 5334 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5335 5336 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5337 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5338 5339 /* 5340 * Use the number of data stripes to figure out how big this chunk is 5341 * really going to be in terms of logical address space, and compare 5342 * that answer with the max chunk size. If it's higher, we try to 5343 * reduce stripe_size. 5344 */ 5345 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5346 /* 5347 * Reduce stripe_size, round it up to a 16MB boundary again and 5348 * then use it, unless it ends up being even bigger than the 5349 * previous value we had already. 5350 */ 5351 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5352 data_stripes), SZ_16M), 5353 ctl->stripe_size); 5354 } 5355 5356 /* Stripe size should not go beyond 1G. */ 5357 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5358 5359 /* Align to BTRFS_STRIPE_LEN */ 5360 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5361 ctl->chunk_size = ctl->stripe_size * data_stripes; 5362 5363 return 0; 5364 } 5365 5366 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5367 struct btrfs_device_info *devices_info) 5368 { 5369 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5370 /* Number of stripes that count for block group size */ 5371 int data_stripes; 5372 5373 /* 5374 * It should hold because: 5375 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5376 */ 5377 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5378 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5379 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5380 5381 ctl->stripe_size = zone_size; 5382 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5383 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5384 5385 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5386 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5387 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5388 ctl->stripe_size) + ctl->nparity, 5389 ctl->dev_stripes); 5390 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5391 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5392 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5393 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5394 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5395 } 5396 5397 ctl->chunk_size = ctl->stripe_size * data_stripes; 5398 5399 return 0; 5400 } 5401 5402 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5403 struct alloc_chunk_ctl *ctl, 5404 struct btrfs_device_info *devices_info) 5405 { 5406 struct btrfs_fs_info *info = fs_devices->fs_info; 5407 5408 /* 5409 * Round down to number of usable stripes, devs_increment can be any 5410 * number so we can't use round_down() that requires power of 2, while 5411 * rounddown is safe. 5412 */ 5413 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5414 5415 if (ctl->ndevs < ctl->devs_min) { 5416 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5417 btrfs_debug(info, 5418 "%s: not enough devices with free space: have=%d minimum required=%d", 5419 __func__, ctl->ndevs, ctl->devs_min); 5420 } 5421 return -ENOSPC; 5422 } 5423 5424 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5425 5426 switch (fs_devices->chunk_alloc_policy) { 5427 default: 5428 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5429 fallthrough; 5430 case BTRFS_CHUNK_ALLOC_REGULAR: 5431 return decide_stripe_size_regular(ctl, devices_info); 5432 case BTRFS_CHUNK_ALLOC_ZONED: 5433 return decide_stripe_size_zoned(ctl, devices_info); 5434 } 5435 } 5436 5437 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5438 { 5439 for (int i = 0; i < map->num_stripes; i++) { 5440 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5441 struct btrfs_device *device = stripe->dev; 5442 5443 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5444 stripe->physical + map->stripe_size - 1, 5445 bits | EXTENT_NOWAIT, NULL); 5446 } 5447 } 5448 5449 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5450 { 5451 for (int i = 0; i < map->num_stripes; i++) { 5452 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5453 struct btrfs_device *device = stripe->dev; 5454 5455 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical, 5456 stripe->physical + map->stripe_size - 1, 5457 bits | EXTENT_NOWAIT, NULL); 5458 } 5459 } 5460 5461 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5462 { 5463 write_lock(&fs_info->mapping_tree_lock); 5464 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5465 RB_CLEAR_NODE(&map->rb_node); 5466 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5467 write_unlock(&fs_info->mapping_tree_lock); 5468 5469 /* Once for the tree reference. */ 5470 btrfs_free_chunk_map(map); 5471 } 5472 5473 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5474 const struct rb_node *exist) 5475 { 5476 const struct btrfs_chunk_map *new_map = 5477 rb_entry(new, struct btrfs_chunk_map, rb_node); 5478 const struct btrfs_chunk_map *exist_map = 5479 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5480 5481 if (new_map->start == exist_map->start) 5482 return 0; 5483 if (new_map->start < exist_map->start) 5484 return -1; 5485 return 1; 5486 } 5487 5488 EXPORT_FOR_TESTS 5489 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5490 { 5491 struct rb_node *exist; 5492 5493 write_lock(&fs_info->mapping_tree_lock); 5494 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5495 btrfs_chunk_map_cmp); 5496 5497 if (exist) { 5498 write_unlock(&fs_info->mapping_tree_lock); 5499 return -EEXIST; 5500 } 5501 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5502 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5503 write_unlock(&fs_info->mapping_tree_lock); 5504 5505 return 0; 5506 } 5507 5508 EXPORT_FOR_TESTS 5509 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5510 { 5511 struct btrfs_chunk_map *map; 5512 5513 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5514 if (!map) 5515 return NULL; 5516 5517 refcount_set(&map->refs, 1); 5518 RB_CLEAR_NODE(&map->rb_node); 5519 5520 return map; 5521 } 5522 5523 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5524 struct alloc_chunk_ctl *ctl, 5525 struct btrfs_device_info *devices_info) 5526 { 5527 struct btrfs_fs_info *info = trans->fs_info; 5528 struct btrfs_chunk_map *map; 5529 struct btrfs_block_group *block_group; 5530 u64 start = ctl->start; 5531 u64 type = ctl->type; 5532 int ret; 5533 5534 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5535 if (!map) 5536 return ERR_PTR(-ENOMEM); 5537 5538 map->start = start; 5539 map->chunk_len = ctl->chunk_size; 5540 map->stripe_size = ctl->stripe_size; 5541 map->type = type; 5542 map->io_align = BTRFS_STRIPE_LEN; 5543 map->io_width = BTRFS_STRIPE_LEN; 5544 map->sub_stripes = ctl->sub_stripes; 5545 map->num_stripes = ctl->num_stripes; 5546 5547 for (int i = 0; i < ctl->ndevs; i++) { 5548 for (int j = 0; j < ctl->dev_stripes; j++) { 5549 int s = i * ctl->dev_stripes + j; 5550 map->stripes[s].dev = devices_info[i].dev; 5551 map->stripes[s].physical = devices_info[i].dev_offset + 5552 j * ctl->stripe_size; 5553 } 5554 } 5555 5556 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5557 5558 ret = btrfs_add_chunk_map(info, map); 5559 if (ret) { 5560 btrfs_free_chunk_map(map); 5561 return ERR_PTR(ret); 5562 } 5563 5564 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5565 ctl->chunk_size); 5566 if (IS_ERR(block_group)) { 5567 btrfs_remove_chunk_map(info, map); 5568 return block_group; 5569 } 5570 5571 for (int i = 0; i < map->num_stripes; i++) { 5572 struct btrfs_device *dev = map->stripes[i].dev; 5573 5574 btrfs_device_set_bytes_used(dev, 5575 dev->bytes_used + ctl->stripe_size); 5576 if (list_empty(&dev->post_commit_list)) 5577 list_add_tail(&dev->post_commit_list, 5578 &trans->transaction->dev_update_list); 5579 } 5580 5581 atomic64_sub(ctl->stripe_size * map->num_stripes, 5582 &info->free_chunk_space); 5583 5584 check_raid56_incompat_flag(info, type); 5585 check_raid1c34_incompat_flag(info, type); 5586 5587 return block_group; 5588 } 5589 5590 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5591 struct btrfs_space_info *space_info, 5592 u64 type) 5593 { 5594 struct btrfs_fs_info *info = trans->fs_info; 5595 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5596 struct btrfs_device_info *devices_info = NULL; 5597 struct alloc_chunk_ctl ctl; 5598 struct btrfs_block_group *block_group; 5599 int ret; 5600 5601 lockdep_assert_held(&info->chunk_mutex); 5602 5603 if (!alloc_profile_is_valid(type, 0)) { 5604 DEBUG_WARN("invalid alloc profile for type %llu", type); 5605 return ERR_PTR(-EINVAL); 5606 } 5607 5608 if (list_empty(&fs_devices->alloc_list)) { 5609 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5610 btrfs_debug(info, "%s: no writable device", __func__); 5611 return ERR_PTR(-ENOSPC); 5612 } 5613 5614 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5615 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5616 DEBUG_WARN(); 5617 return ERR_PTR(-EINVAL); 5618 } 5619 5620 ctl.start = find_next_chunk(info); 5621 ctl.type = type; 5622 ctl.space_info = space_info; 5623 init_alloc_chunk_ctl(fs_devices, &ctl); 5624 5625 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5626 GFP_NOFS); 5627 if (!devices_info) 5628 return ERR_PTR(-ENOMEM); 5629 5630 ret = gather_device_info(fs_devices, &ctl, devices_info); 5631 if (ret < 0) { 5632 block_group = ERR_PTR(ret); 5633 goto out; 5634 } 5635 5636 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5637 if (ret < 0) { 5638 block_group = ERR_PTR(ret); 5639 goto out; 5640 } 5641 5642 block_group = create_chunk(trans, &ctl, devices_info); 5643 5644 out: 5645 kfree(devices_info); 5646 return block_group; 5647 } 5648 5649 /* 5650 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5651 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5652 * chunks. 5653 * 5654 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5655 * phases. 5656 */ 5657 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5658 struct btrfs_block_group *bg) 5659 { 5660 struct btrfs_fs_info *fs_info = trans->fs_info; 5661 struct btrfs_root *chunk_root = fs_info->chunk_root; 5662 struct btrfs_key key; 5663 struct btrfs_chunk *chunk; 5664 struct btrfs_stripe *stripe; 5665 struct btrfs_chunk_map *map; 5666 size_t item_size; 5667 int i; 5668 int ret; 5669 5670 /* 5671 * We take the chunk_mutex for 2 reasons: 5672 * 5673 * 1) Updates and insertions in the chunk btree must be done while holding 5674 * the chunk_mutex, as well as updating the system chunk array in the 5675 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5676 * details; 5677 * 5678 * 2) To prevent races with the final phase of a device replace operation 5679 * that replaces the device object associated with the map's stripes, 5680 * because the device object's id can change at any time during that 5681 * final phase of the device replace operation 5682 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5683 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5684 * which would cause a failure when updating the device item, which does 5685 * not exists, or persisting a stripe of the chunk item with such ID. 5686 * Here we can't use the device_list_mutex because our caller already 5687 * has locked the chunk_mutex, and the final phase of device replace 5688 * acquires both mutexes - first the device_list_mutex and then the 5689 * chunk_mutex. Using any of those two mutexes protects us from a 5690 * concurrent device replace. 5691 */ 5692 lockdep_assert_held(&fs_info->chunk_mutex); 5693 5694 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5695 if (IS_ERR(map)) { 5696 ret = PTR_ERR(map); 5697 btrfs_abort_transaction(trans, ret); 5698 return ret; 5699 } 5700 5701 item_size = btrfs_chunk_item_size(map->num_stripes); 5702 5703 chunk = kzalloc(item_size, GFP_NOFS); 5704 if (!chunk) { 5705 ret = -ENOMEM; 5706 btrfs_abort_transaction(trans, ret); 5707 goto out; 5708 } 5709 5710 for (i = 0; i < map->num_stripes; i++) { 5711 struct btrfs_device *device = map->stripes[i].dev; 5712 5713 ret = btrfs_update_device(trans, device); 5714 if (ret) 5715 goto out; 5716 } 5717 5718 stripe = &chunk->stripe; 5719 for (i = 0; i < map->num_stripes; i++) { 5720 struct btrfs_device *device = map->stripes[i].dev; 5721 const u64 dev_offset = map->stripes[i].physical; 5722 5723 btrfs_set_stack_stripe_devid(stripe, device->devid); 5724 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5725 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5726 stripe++; 5727 } 5728 5729 btrfs_set_stack_chunk_length(chunk, bg->length); 5730 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5731 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5732 btrfs_set_stack_chunk_type(chunk, map->type); 5733 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5734 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5735 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5736 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5737 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5738 5739 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5740 key.type = BTRFS_CHUNK_ITEM_KEY; 5741 key.offset = bg->start; 5742 5743 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5744 if (ret) 5745 goto out; 5746 5747 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5748 5749 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5750 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5751 if (ret) 5752 goto out; 5753 } 5754 5755 out: 5756 kfree(chunk); 5757 btrfs_free_chunk_map(map); 5758 return ret; 5759 } 5760 5761 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5762 { 5763 struct btrfs_fs_info *fs_info = trans->fs_info; 5764 u64 alloc_profile; 5765 struct btrfs_block_group *meta_bg; 5766 struct btrfs_space_info *meta_space_info; 5767 struct btrfs_block_group *sys_bg; 5768 struct btrfs_space_info *sys_space_info; 5769 5770 /* 5771 * When adding a new device for sprouting, the seed device is read-only 5772 * so we must first allocate a metadata and a system chunk. But before 5773 * adding the block group items to the extent, device and chunk btrees, 5774 * we must first: 5775 * 5776 * 1) Create both chunks without doing any changes to the btrees, as 5777 * otherwise we would get -ENOSPC since the block groups from the 5778 * seed device are read-only; 5779 * 5780 * 2) Add the device item for the new sprout device - finishing the setup 5781 * of a new block group requires updating the device item in the chunk 5782 * btree, so it must exist when we attempt to do it. The previous step 5783 * ensures this does not fail with -ENOSPC. 5784 * 5785 * After that we can add the block group items to their btrees: 5786 * update existing device item in the chunk btree, add a new block group 5787 * item to the extent btree, add a new chunk item to the chunk btree and 5788 * finally add the new device extent items to the devices btree. 5789 */ 5790 5791 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5792 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5793 if (!meta_space_info) { 5794 DEBUG_WARN(); 5795 return -EINVAL; 5796 } 5797 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 5798 if (IS_ERR(meta_bg)) 5799 return PTR_ERR(meta_bg); 5800 5801 alloc_profile = btrfs_system_alloc_profile(fs_info); 5802 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5803 if (!sys_space_info) { 5804 DEBUG_WARN(); 5805 return -EINVAL; 5806 } 5807 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 5808 if (IS_ERR(sys_bg)) 5809 return PTR_ERR(sys_bg); 5810 5811 return 0; 5812 } 5813 5814 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5815 { 5816 const int index = btrfs_bg_flags_to_raid_index(map->type); 5817 5818 return btrfs_raid_array[index].tolerated_failures; 5819 } 5820 5821 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5822 { 5823 struct btrfs_chunk_map *map; 5824 int miss_ndevs = 0; 5825 int i; 5826 bool ret = true; 5827 5828 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5829 if (IS_ERR(map)) 5830 return false; 5831 5832 for (i = 0; i < map->num_stripes; i++) { 5833 if (test_bit(BTRFS_DEV_STATE_MISSING, 5834 &map->stripes[i].dev->dev_state)) { 5835 miss_ndevs++; 5836 continue; 5837 } 5838 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5839 &map->stripes[i].dev->dev_state)) { 5840 ret = false; 5841 goto end; 5842 } 5843 } 5844 5845 /* 5846 * If the number of missing devices is larger than max errors, we can 5847 * not write the data into that chunk successfully. 5848 */ 5849 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5850 ret = false; 5851 end: 5852 btrfs_free_chunk_map(map); 5853 return ret; 5854 } 5855 5856 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5857 { 5858 write_lock(&fs_info->mapping_tree_lock); 5859 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5860 struct btrfs_chunk_map *map; 5861 struct rb_node *node; 5862 5863 node = rb_first_cached(&fs_info->mapping_tree); 5864 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5865 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5866 RB_CLEAR_NODE(&map->rb_node); 5867 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5868 /* Once for the tree ref. */ 5869 btrfs_free_chunk_map(map); 5870 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5871 } 5872 write_unlock(&fs_info->mapping_tree_lock); 5873 } 5874 5875 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5876 { 5877 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5878 5879 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5880 return 2; 5881 5882 /* 5883 * There could be two corrupted data stripes, we need to loop retry in 5884 * order to rebuild the correct data. 5885 * 5886 * Fail a stripe at a time on every retry except the stripe under 5887 * reconstruction. 5888 */ 5889 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5890 return map->num_stripes; 5891 5892 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5893 return btrfs_raid_array[index].ncopies; 5894 } 5895 5896 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5897 { 5898 struct btrfs_chunk_map *map; 5899 int ret; 5900 5901 map = btrfs_get_chunk_map(fs_info, logical, len); 5902 if (IS_ERR(map)) 5903 /* 5904 * We could return errors for these cases, but that could get 5905 * ugly and we'd probably do the same thing which is just not do 5906 * anything else and exit, so return 1 so the callers don't try 5907 * to use other copies. 5908 */ 5909 return 1; 5910 5911 ret = btrfs_chunk_map_num_copies(map); 5912 btrfs_free_chunk_map(map); 5913 return ret; 5914 } 5915 5916 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5917 u64 logical) 5918 { 5919 struct btrfs_chunk_map *map; 5920 unsigned long len = fs_info->sectorsize; 5921 5922 if (!btrfs_fs_incompat(fs_info, RAID56)) 5923 return len; 5924 5925 map = btrfs_get_chunk_map(fs_info, logical, len); 5926 5927 if (!WARN_ON(IS_ERR(map))) { 5928 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5929 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5930 btrfs_free_chunk_map(map); 5931 } 5932 return len; 5933 } 5934 5935 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5936 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5937 { 5938 for (int index = first; index < first + num_stripes; index++) { 5939 const struct btrfs_device *device = map->stripes[index].dev; 5940 5941 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5942 return index; 5943 } 5944 5945 /* If no read-preferred device is set use the first stripe. */ 5946 return first; 5947 } 5948 5949 struct stripe_mirror { 5950 u64 devid; 5951 int num; 5952 }; 5953 5954 static int btrfs_cmp_devid(const void *a, const void *b) 5955 { 5956 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5957 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5958 5959 if (s1->devid < s2->devid) 5960 return -1; 5961 if (s1->devid > s2->devid) 5962 return 1; 5963 return 0; 5964 } 5965 5966 /* 5967 * Select a stripe for reading using the round-robin algorithm. 5968 * 5969 * 1. Compute the read cycle as the total sectors read divided by the minimum 5970 * sectors per device. 5971 * 2. Determine the stripe number for the current read by taking the modulus 5972 * of the read cycle with the total number of stripes: 5973 * 5974 * stripe index = (total sectors / min sectors per dev) % num stripes 5975 * 5976 * The calculated stripe index is then used to select the corresponding device 5977 * from the list of devices, which is ordered by devid. 5978 */ 5979 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5980 { 5981 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5982 struct btrfs_device *device = map->stripes[first].dev; 5983 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5984 unsigned int read_cycle; 5985 unsigned int total_reads; 5986 unsigned int min_reads_per_dev; 5987 5988 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5989 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5990 fs_info->sectorsize_bits; 5991 5992 for (int index = 0, i = first; i < first + num_stripes; i++) { 5993 stripes[index].devid = map->stripes[i].dev->devid; 5994 stripes[index].num = i; 5995 index++; 5996 } 5997 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5998 btrfs_cmp_devid, NULL); 5999 6000 read_cycle = total_reads / min_reads_per_dev; 6001 return stripes[read_cycle % num_stripes].num; 6002 } 6003 #endif 6004 6005 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6006 struct btrfs_chunk_map *map, int first, 6007 bool dev_replace_is_ongoing) 6008 { 6009 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6010 int i; 6011 int num_stripes; 6012 int preferred_mirror; 6013 int tolerance; 6014 struct btrfs_device *srcdev; 6015 6016 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 6017 "type=%llu", map->type); 6018 6019 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6020 num_stripes = map->sub_stripes; 6021 else 6022 num_stripes = map->num_stripes; 6023 6024 switch (policy) { 6025 default: 6026 /* Shouldn't happen, just warn and use pid instead of failing */ 6027 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6028 policy); 6029 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6030 fallthrough; 6031 case BTRFS_READ_POLICY_PID: 6032 preferred_mirror = first + (current->pid % num_stripes); 6033 break; 6034 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6035 case BTRFS_READ_POLICY_RR: 6036 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 6037 break; 6038 case BTRFS_READ_POLICY_DEVID: 6039 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 6040 break; 6041 #endif 6042 } 6043 6044 if (dev_replace_is_ongoing && 6045 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6046 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6047 srcdev = fs_info->dev_replace.srcdev; 6048 else 6049 srcdev = NULL; 6050 6051 /* 6052 * try to avoid the drive that is the source drive for a 6053 * dev-replace procedure, only choose it if no other non-missing 6054 * mirror is available 6055 */ 6056 for (tolerance = 0; tolerance < 2; tolerance++) { 6057 if (map->stripes[preferred_mirror].dev->bdev && 6058 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6059 return preferred_mirror; 6060 for (i = first; i < first + num_stripes; i++) { 6061 if (map->stripes[i].dev->bdev && 6062 (tolerance || map->stripes[i].dev != srcdev)) 6063 return i; 6064 } 6065 } 6066 6067 /* we couldn't find one that doesn't fail. Just return something 6068 * and the io error handling code will clean up eventually 6069 */ 6070 return preferred_mirror; 6071 } 6072 6073 EXPORT_FOR_TESTS 6074 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6075 u64 logical, u16 total_stripes) 6076 { 6077 struct btrfs_io_context *bioc; 6078 6079 bioc = kzalloc( 6080 /* The size of btrfs_io_context */ 6081 sizeof(struct btrfs_io_context) + 6082 /* Plus the variable array for the stripes */ 6083 sizeof(struct btrfs_io_stripe) * (total_stripes), 6084 GFP_NOFS); 6085 6086 if (!bioc) 6087 return NULL; 6088 6089 refcount_set(&bioc->refs, 1); 6090 6091 bioc->fs_info = fs_info; 6092 bioc->replace_stripe_src = -1; 6093 bioc->full_stripe_logical = (u64)-1; 6094 bioc->logical = logical; 6095 6096 return bioc; 6097 } 6098 6099 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6100 { 6101 WARN_ON(!refcount_read(&bioc->refs)); 6102 refcount_inc(&bioc->refs); 6103 } 6104 6105 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6106 { 6107 if (!bioc) 6108 return; 6109 if (refcount_dec_and_test(&bioc->refs)) 6110 kfree(bioc); 6111 } 6112 6113 /* 6114 * Please note that, discard won't be sent to target device of device 6115 * replace. 6116 */ 6117 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6118 u64 logical, u64 *length_ret, 6119 u32 *num_stripes) 6120 { 6121 struct btrfs_chunk_map *map; 6122 struct btrfs_discard_stripe *stripes; 6123 u64 length = *length_ret; 6124 u64 offset; 6125 u32 stripe_nr; 6126 u32 stripe_nr_end; 6127 u32 stripe_cnt; 6128 u64 stripe_end_offset; 6129 u64 stripe_offset; 6130 u32 stripe_index; 6131 u32 factor = 0; 6132 u32 sub_stripes = 0; 6133 u32 stripes_per_dev = 0; 6134 u32 remaining_stripes = 0; 6135 u32 last_stripe = 0; 6136 int ret; 6137 int i; 6138 6139 map = btrfs_get_chunk_map(fs_info, logical, length); 6140 if (IS_ERR(map)) 6141 return ERR_CAST(map); 6142 6143 /* we don't discard raid56 yet */ 6144 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6145 ret = -EOPNOTSUPP; 6146 goto out_free_map; 6147 } 6148 6149 offset = logical - map->start; 6150 length = min_t(u64, map->start + map->chunk_len - logical, length); 6151 *length_ret = length; 6152 6153 /* 6154 * stripe_nr counts the total number of stripes we have to stride 6155 * to get to this block 6156 */ 6157 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6158 6159 /* stripe_offset is the offset of this block in its stripe */ 6160 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6161 6162 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6163 BTRFS_STRIPE_LEN_SHIFT; 6164 stripe_cnt = stripe_nr_end - stripe_nr; 6165 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6166 (offset + length); 6167 /* 6168 * after this, stripe_nr is the number of stripes on this 6169 * device we have to walk to find the data, and stripe_index is 6170 * the number of our device in the stripe array 6171 */ 6172 *num_stripes = 1; 6173 stripe_index = 0; 6174 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6175 BTRFS_BLOCK_GROUP_RAID10)) { 6176 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6177 sub_stripes = 1; 6178 else 6179 sub_stripes = map->sub_stripes; 6180 6181 factor = map->num_stripes / sub_stripes; 6182 *num_stripes = min_t(u64, map->num_stripes, 6183 sub_stripes * stripe_cnt); 6184 stripe_index = stripe_nr % factor; 6185 stripe_nr /= factor; 6186 stripe_index *= sub_stripes; 6187 6188 remaining_stripes = stripe_cnt % factor; 6189 stripes_per_dev = stripe_cnt / factor; 6190 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6191 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6192 BTRFS_BLOCK_GROUP_DUP)) { 6193 *num_stripes = map->num_stripes; 6194 } else { 6195 stripe_index = stripe_nr % map->num_stripes; 6196 stripe_nr /= map->num_stripes; 6197 } 6198 6199 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6200 if (!stripes) { 6201 ret = -ENOMEM; 6202 goto out_free_map; 6203 } 6204 6205 for (i = 0; i < *num_stripes; i++) { 6206 stripes[i].physical = 6207 map->stripes[stripe_index].physical + 6208 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6209 stripes[i].dev = map->stripes[stripe_index].dev; 6210 6211 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6212 BTRFS_BLOCK_GROUP_RAID10)) { 6213 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6214 6215 if (i / sub_stripes < remaining_stripes) 6216 stripes[i].length += BTRFS_STRIPE_LEN; 6217 6218 /* 6219 * Special for the first stripe and 6220 * the last stripe: 6221 * 6222 * |-------|...|-------| 6223 * |----------| 6224 * off end_off 6225 */ 6226 if (i < sub_stripes) 6227 stripes[i].length -= stripe_offset; 6228 6229 if (stripe_index >= last_stripe && 6230 stripe_index <= (last_stripe + 6231 sub_stripes - 1)) 6232 stripes[i].length -= stripe_end_offset; 6233 6234 if (i == sub_stripes - 1) 6235 stripe_offset = 0; 6236 } else { 6237 stripes[i].length = length; 6238 } 6239 6240 stripe_index++; 6241 if (stripe_index == map->num_stripes) { 6242 stripe_index = 0; 6243 stripe_nr++; 6244 } 6245 } 6246 6247 btrfs_free_chunk_map(map); 6248 return stripes; 6249 out_free_map: 6250 btrfs_free_chunk_map(map); 6251 return ERR_PTR(ret); 6252 } 6253 6254 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6255 { 6256 struct btrfs_block_group *cache; 6257 bool ret; 6258 6259 /* Non zoned filesystem does not use "to_copy" flag */ 6260 if (!btrfs_is_zoned(fs_info)) 6261 return false; 6262 6263 cache = btrfs_lookup_block_group(fs_info, logical); 6264 6265 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6266 6267 btrfs_put_block_group(cache); 6268 return ret; 6269 } 6270 6271 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6272 struct btrfs_dev_replace *dev_replace, 6273 u64 logical, 6274 struct btrfs_io_geometry *io_geom) 6275 { 6276 u64 srcdev_devid = dev_replace->srcdev->devid; 6277 /* 6278 * At this stage, num_stripes is still the real number of stripes, 6279 * excluding the duplicated stripes. 6280 */ 6281 int num_stripes = io_geom->num_stripes; 6282 int max_errors = io_geom->max_errors; 6283 int nr_extra_stripes = 0; 6284 int i; 6285 6286 /* 6287 * A block group which has "to_copy" set will eventually be copied by 6288 * the dev-replace process. We can avoid cloning IO here. 6289 */ 6290 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6291 return; 6292 6293 /* 6294 * Duplicate the write operations while the dev-replace procedure is 6295 * running. Since the copying of the old disk to the new disk takes 6296 * place at run time while the filesystem is mounted writable, the 6297 * regular write operations to the old disk have to be duplicated to go 6298 * to the new disk as well. 6299 * 6300 * Note that device->missing is handled by the caller, and that the 6301 * write to the old disk is already set up in the stripes array. 6302 */ 6303 for (i = 0; i < num_stripes; i++) { 6304 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6305 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6306 6307 if (old->dev->devid != srcdev_devid) 6308 continue; 6309 6310 new->physical = old->physical; 6311 new->dev = dev_replace->tgtdev; 6312 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6313 bioc->replace_stripe_src = i; 6314 nr_extra_stripes++; 6315 } 6316 6317 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6318 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6319 /* 6320 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6321 * replace. 6322 * If we have 2 extra stripes, only choose the one with smaller physical. 6323 */ 6324 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6325 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6326 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6327 6328 /* Only DUP can have two extra stripes. */ 6329 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6330 "map_type=%llu", bioc->map_type); 6331 6332 /* 6333 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6334 * The extra stripe would still be there, but won't be accessed. 6335 */ 6336 if (first->physical > second->physical) { 6337 swap(second->physical, first->physical); 6338 swap(second->dev, first->dev); 6339 nr_extra_stripes--; 6340 } 6341 } 6342 6343 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6344 io_geom->max_errors = max_errors + nr_extra_stripes; 6345 bioc->replace_nr_stripes = nr_extra_stripes; 6346 } 6347 6348 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6349 struct btrfs_io_geometry *io_geom) 6350 { 6351 /* 6352 * Stripe_nr is the stripe where this block falls. stripe_offset is 6353 * the offset of this block in its stripe. 6354 */ 6355 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6356 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6357 ASSERT(io_geom->stripe_offset < U32_MAX, 6358 "stripe_offset=%llu", io_geom->stripe_offset); 6359 6360 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6361 unsigned long full_stripe_len = 6362 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6363 6364 /* 6365 * For full stripe start, we use previously calculated 6366 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6367 * STRIPE_LEN. 6368 * 6369 * By this we can avoid u64 division completely. And we have 6370 * to go rounddown(), not round_down(), as nr_data_stripes is 6371 * not ensured to be power of 2. 6372 */ 6373 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6374 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6375 6376 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6377 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6378 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6379 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6380 "raid56_full_stripe_start=%llu offset=%llu", 6381 io_geom->raid56_full_stripe_start, offset); 6382 /* 6383 * For writes to RAID56, allow to write a full stripe set, but 6384 * no straddling of stripe sets. 6385 */ 6386 if (io_geom->op == BTRFS_MAP_WRITE) 6387 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6388 } 6389 6390 /* 6391 * For other RAID types and for RAID56 reads, allow a single stripe (on 6392 * a single disk). 6393 */ 6394 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6395 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6396 return U64_MAX; 6397 } 6398 6399 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6400 u64 *length, struct btrfs_io_stripe *dst, 6401 struct btrfs_chunk_map *map, 6402 struct btrfs_io_geometry *io_geom) 6403 { 6404 dst->dev = map->stripes[io_geom->stripe_index].dev; 6405 6406 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6407 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6408 map->type, 6409 io_geom->stripe_index, dst); 6410 6411 dst->physical = map->stripes[io_geom->stripe_index].physical + 6412 io_geom->stripe_offset + 6413 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6414 return 0; 6415 } 6416 6417 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6418 const struct btrfs_io_stripe *smap, 6419 const struct btrfs_chunk_map *map, 6420 int num_alloc_stripes, 6421 struct btrfs_io_geometry *io_geom) 6422 { 6423 if (!smap) 6424 return false; 6425 6426 if (num_alloc_stripes != 1) 6427 return false; 6428 6429 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6430 return false; 6431 6432 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6433 return false; 6434 6435 return true; 6436 } 6437 6438 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6439 struct btrfs_io_geometry *io_geom) 6440 { 6441 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6442 io_geom->stripe_nr /= map->num_stripes; 6443 if (io_geom->op == BTRFS_MAP_READ) 6444 io_geom->mirror_num = 1; 6445 } 6446 6447 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6448 struct btrfs_chunk_map *map, 6449 struct btrfs_io_geometry *io_geom, 6450 bool dev_replace_is_ongoing) 6451 { 6452 if (io_geom->op != BTRFS_MAP_READ) { 6453 io_geom->num_stripes = map->num_stripes; 6454 return; 6455 } 6456 6457 if (io_geom->mirror_num) { 6458 io_geom->stripe_index = io_geom->mirror_num - 1; 6459 return; 6460 } 6461 6462 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6463 dev_replace_is_ongoing); 6464 io_geom->mirror_num = io_geom->stripe_index + 1; 6465 } 6466 6467 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6468 struct btrfs_io_geometry *io_geom) 6469 { 6470 if (io_geom->op != BTRFS_MAP_READ) { 6471 io_geom->num_stripes = map->num_stripes; 6472 return; 6473 } 6474 6475 if (io_geom->mirror_num) { 6476 io_geom->stripe_index = io_geom->mirror_num - 1; 6477 return; 6478 } 6479 6480 io_geom->mirror_num = 1; 6481 } 6482 6483 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6484 struct btrfs_chunk_map *map, 6485 struct btrfs_io_geometry *io_geom, 6486 bool dev_replace_is_ongoing) 6487 { 6488 u32 factor = map->num_stripes / map->sub_stripes; 6489 int old_stripe_index; 6490 6491 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6492 io_geom->stripe_nr /= factor; 6493 6494 if (io_geom->op != BTRFS_MAP_READ) { 6495 io_geom->num_stripes = map->sub_stripes; 6496 return; 6497 } 6498 6499 if (io_geom->mirror_num) { 6500 io_geom->stripe_index += io_geom->mirror_num - 1; 6501 return; 6502 } 6503 6504 old_stripe_index = io_geom->stripe_index; 6505 io_geom->stripe_index = find_live_mirror(fs_info, map, 6506 io_geom->stripe_index, 6507 dev_replace_is_ongoing); 6508 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6509 } 6510 6511 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6512 struct btrfs_io_geometry *io_geom, 6513 u64 logical, u64 *length) 6514 { 6515 int data_stripes = nr_data_stripes(map); 6516 6517 /* 6518 * Needs full stripe mapping. 6519 * 6520 * Push stripe_nr back to the start of the full stripe For those cases 6521 * needing a full stripe, @stripe_nr is the full stripe number. 6522 * 6523 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6524 * that can be expensive. Here we just divide @stripe_nr with 6525 * @data_stripes. 6526 */ 6527 io_geom->stripe_nr /= data_stripes; 6528 6529 /* RAID[56] write or recovery. Return all stripes */ 6530 io_geom->num_stripes = map->num_stripes; 6531 io_geom->max_errors = btrfs_chunk_max_errors(map); 6532 6533 /* Return the length to the full stripe end. */ 6534 *length = min(logical + *length, 6535 io_geom->raid56_full_stripe_start + map->start + 6536 btrfs_stripe_nr_to_offset(data_stripes)) - 6537 logical; 6538 io_geom->stripe_index = 0; 6539 io_geom->stripe_offset = 0; 6540 } 6541 6542 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6543 struct btrfs_io_geometry *io_geom) 6544 { 6545 int data_stripes = nr_data_stripes(map); 6546 6547 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6548 /* Just grab the data stripe directly. */ 6549 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6550 io_geom->stripe_nr /= data_stripes; 6551 6552 /* We distribute the parity blocks across stripes. */ 6553 io_geom->stripe_index = 6554 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6555 6556 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6557 io_geom->mirror_num = 1; 6558 } 6559 6560 static void map_blocks_single(const struct btrfs_chunk_map *map, 6561 struct btrfs_io_geometry *io_geom) 6562 { 6563 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6564 io_geom->stripe_nr /= map->num_stripes; 6565 io_geom->mirror_num = io_geom->stripe_index + 1; 6566 } 6567 6568 /* 6569 * Map one logical range to one or more physical ranges. 6570 * 6571 * @length: (Mandatory) mapped length of this run. 6572 * One logical range can be split into different segments 6573 * due to factors like zones and RAID0/5/6/10 stripe 6574 * boundaries. 6575 * 6576 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6577 * which has one or more physical ranges (btrfs_io_stripe) 6578 * recorded inside. 6579 * Caller should call btrfs_put_bioc() to free it after use. 6580 * 6581 * @smap: (Optional) single physical range optimization. 6582 * If the map request can be fulfilled by one single 6583 * physical range, and this is parameter is not NULL, 6584 * then @bioc_ret would be NULL, and @smap would be 6585 * updated. 6586 * 6587 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6588 * value is 0. 6589 * 6590 * Mirror number 0 means to choose any live mirrors. 6591 * 6592 * For non-RAID56 profiles, non-zero mirror_num means 6593 * the Nth mirror. (e.g. mirror_num 1 means the first 6594 * copy). 6595 * 6596 * For RAID56 profile, mirror 1 means rebuild from P and 6597 * the remaining data stripes. 6598 * 6599 * For RAID6 profile, mirror > 2 means mark another 6600 * data/P stripe error and rebuild from the remaining 6601 * stripes.. 6602 */ 6603 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6604 u64 logical, u64 *length, 6605 struct btrfs_io_context **bioc_ret, 6606 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6607 { 6608 struct btrfs_chunk_map *map; 6609 struct btrfs_io_geometry io_geom = { 0 }; 6610 u64 map_offset; 6611 int ret = 0; 6612 int num_copies; 6613 struct btrfs_io_context *bioc = NULL; 6614 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6615 bool dev_replace_is_ongoing = false; 6616 u16 num_alloc_stripes; 6617 u64 max_len; 6618 6619 ASSERT(bioc_ret); 6620 6621 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6622 io_geom.num_stripes = 1; 6623 io_geom.stripe_index = 0; 6624 io_geom.op = op; 6625 6626 map = btrfs_get_chunk_map(fs_info, logical, *length); 6627 if (IS_ERR(map)) 6628 return PTR_ERR(map); 6629 6630 num_copies = btrfs_chunk_map_num_copies(map); 6631 if (io_geom.mirror_num > num_copies) 6632 return -EINVAL; 6633 6634 map_offset = logical - map->start; 6635 io_geom.raid56_full_stripe_start = (u64)-1; 6636 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6637 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6638 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6639 6640 if (dev_replace->replace_task != current) 6641 down_read(&dev_replace->rwsem); 6642 6643 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6644 /* 6645 * Hold the semaphore for read during the whole operation, write is 6646 * requested at commit time but must wait. 6647 */ 6648 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6649 up_read(&dev_replace->rwsem); 6650 6651 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6652 case BTRFS_BLOCK_GROUP_RAID0: 6653 map_blocks_raid0(map, &io_geom); 6654 break; 6655 case BTRFS_BLOCK_GROUP_RAID1: 6656 case BTRFS_BLOCK_GROUP_RAID1C3: 6657 case BTRFS_BLOCK_GROUP_RAID1C4: 6658 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6659 break; 6660 case BTRFS_BLOCK_GROUP_DUP: 6661 map_blocks_dup(map, &io_geom); 6662 break; 6663 case BTRFS_BLOCK_GROUP_RAID10: 6664 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6665 break; 6666 case BTRFS_BLOCK_GROUP_RAID5: 6667 case BTRFS_BLOCK_GROUP_RAID6: 6668 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6669 map_blocks_raid56_write(map, &io_geom, logical, length); 6670 else 6671 map_blocks_raid56_read(map, &io_geom); 6672 break; 6673 default: 6674 /* 6675 * After this, stripe_nr is the number of stripes on this 6676 * device we have to walk to find the data, and stripe_index is 6677 * the number of our device in the stripe array 6678 */ 6679 map_blocks_single(map, &io_geom); 6680 break; 6681 } 6682 if (io_geom.stripe_index >= map->num_stripes) { 6683 btrfs_crit(fs_info, 6684 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6685 io_geom.stripe_index, map->num_stripes); 6686 ret = -EINVAL; 6687 goto out; 6688 } 6689 6690 num_alloc_stripes = io_geom.num_stripes; 6691 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6692 op != BTRFS_MAP_READ) 6693 /* 6694 * For replace case, we need to add extra stripes for extra 6695 * duplicated stripes. 6696 * 6697 * For both WRITE and GET_READ_MIRRORS, we may have at most 6698 * 2 more stripes (DUP types, otherwise 1). 6699 */ 6700 num_alloc_stripes += 2; 6701 6702 /* 6703 * If this I/O maps to a single device, try to return the device and 6704 * physical block information on the stack instead of allocating an 6705 * I/O context structure. 6706 */ 6707 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6708 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6709 if (mirror_num_ret) 6710 *mirror_num_ret = io_geom.mirror_num; 6711 *bioc_ret = NULL; 6712 goto out; 6713 } 6714 6715 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6716 if (!bioc) { 6717 ret = -ENOMEM; 6718 goto out; 6719 } 6720 bioc->map_type = map->type; 6721 bioc->use_rst = io_geom.use_rst; 6722 6723 /* 6724 * For RAID56 full map, we need to make sure the stripes[] follows the 6725 * rule that data stripes are all ordered, then followed with P and Q 6726 * (if we have). 6727 * 6728 * It's still mostly the same as other profiles, just with extra rotation. 6729 */ 6730 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6731 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6732 /* 6733 * For RAID56 @stripe_nr is already the number of full stripes 6734 * before us, which is also the rotation value (needs to modulo 6735 * with num_stripes). 6736 * 6737 * In this case, we just add @stripe_nr with @i, then do the 6738 * modulo, to reduce one modulo call. 6739 */ 6740 bioc->full_stripe_logical = map->start + 6741 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6742 nr_data_stripes(map)); 6743 for (int i = 0; i < io_geom.num_stripes; i++) { 6744 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6745 u32 stripe_index; 6746 6747 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6748 dst->dev = map->stripes[stripe_index].dev; 6749 dst->physical = 6750 map->stripes[stripe_index].physical + 6751 io_geom.stripe_offset + 6752 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6753 } 6754 } else { 6755 /* 6756 * For all other non-RAID56 profiles, just copy the target 6757 * stripe into the bioc. 6758 */ 6759 for (int i = 0; i < io_geom.num_stripes; i++) { 6760 ret = set_io_stripe(fs_info, logical, length, 6761 &bioc->stripes[i], map, &io_geom); 6762 if (ret < 0) 6763 break; 6764 io_geom.stripe_index++; 6765 } 6766 } 6767 6768 if (ret) { 6769 *bioc_ret = NULL; 6770 btrfs_put_bioc(bioc); 6771 goto out; 6772 } 6773 6774 if (op != BTRFS_MAP_READ) 6775 io_geom.max_errors = btrfs_chunk_max_errors(map); 6776 6777 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6778 op != BTRFS_MAP_READ) { 6779 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6780 } 6781 6782 *bioc_ret = bioc; 6783 bioc->num_stripes = io_geom.num_stripes; 6784 bioc->max_errors = io_geom.max_errors; 6785 bioc->mirror_num = io_geom.mirror_num; 6786 6787 out: 6788 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6789 lockdep_assert_held(&dev_replace->rwsem); 6790 /* Unlock and let waiting writers proceed */ 6791 up_read(&dev_replace->rwsem); 6792 } 6793 btrfs_free_chunk_map(map); 6794 return ret; 6795 } 6796 6797 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6798 const struct btrfs_fs_devices *fs_devices) 6799 { 6800 if (args->fsid == NULL) 6801 return true; 6802 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6803 return true; 6804 return false; 6805 } 6806 6807 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6808 const struct btrfs_device *device) 6809 { 6810 if (args->missing) { 6811 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6812 !device->bdev) 6813 return true; 6814 return false; 6815 } 6816 6817 if (device->devid != args->devid) 6818 return false; 6819 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6820 return false; 6821 return true; 6822 } 6823 6824 /* 6825 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6826 * return NULL. 6827 * 6828 * If devid and uuid are both specified, the match must be exact, otherwise 6829 * only devid is used. 6830 */ 6831 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6832 const struct btrfs_dev_lookup_args *args) 6833 { 6834 struct btrfs_device *device; 6835 struct btrfs_fs_devices *seed_devs; 6836 6837 if (dev_args_match_fs_devices(args, fs_devices)) { 6838 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6839 if (dev_args_match_device(args, device)) 6840 return device; 6841 } 6842 } 6843 6844 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6845 if (!dev_args_match_fs_devices(args, seed_devs)) 6846 continue; 6847 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6848 if (dev_args_match_device(args, device)) 6849 return device; 6850 } 6851 } 6852 6853 return NULL; 6854 } 6855 6856 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6857 u64 devid, u8 *dev_uuid) 6858 { 6859 struct btrfs_device *device; 6860 unsigned int nofs_flag; 6861 6862 /* 6863 * We call this under the chunk_mutex, so we want to use NOFS for this 6864 * allocation, however we don't want to change btrfs_alloc_device() to 6865 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6866 * places. 6867 */ 6868 6869 nofs_flag = memalloc_nofs_save(); 6870 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6871 memalloc_nofs_restore(nofs_flag); 6872 if (IS_ERR(device)) 6873 return device; 6874 6875 list_add(&device->dev_list, &fs_devices->devices); 6876 device->fs_devices = fs_devices; 6877 fs_devices->num_devices++; 6878 6879 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6880 fs_devices->missing_devices++; 6881 6882 return device; 6883 } 6884 6885 /* 6886 * Allocate new device struct, set up devid and UUID. 6887 * 6888 * @fs_info: used only for generating a new devid, can be NULL if 6889 * devid is provided (i.e. @devid != NULL). 6890 * @devid: a pointer to devid for this device. If NULL a new devid 6891 * is generated. 6892 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6893 * is generated. 6894 * @path: a pointer to device path if available, NULL otherwise. 6895 * 6896 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6897 * on error. Returned struct is not linked onto any lists and must be 6898 * destroyed with btrfs_free_device. 6899 */ 6900 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6901 const u64 *devid, const u8 *uuid, 6902 const char *path) 6903 { 6904 struct btrfs_device *dev; 6905 u64 tmp; 6906 6907 if (WARN_ON(!devid && !fs_info)) 6908 return ERR_PTR(-EINVAL); 6909 6910 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6911 if (!dev) 6912 return ERR_PTR(-ENOMEM); 6913 6914 INIT_LIST_HEAD(&dev->dev_list); 6915 INIT_LIST_HEAD(&dev->dev_alloc_list); 6916 INIT_LIST_HEAD(&dev->post_commit_list); 6917 6918 atomic_set(&dev->dev_stats_ccnt, 0); 6919 btrfs_device_data_ordered_init(dev); 6920 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6921 6922 if (devid) 6923 tmp = *devid; 6924 else { 6925 int ret; 6926 6927 ret = find_next_devid(fs_info, &tmp); 6928 if (ret) { 6929 btrfs_free_device(dev); 6930 return ERR_PTR(ret); 6931 } 6932 } 6933 dev->devid = tmp; 6934 6935 if (uuid) 6936 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6937 else 6938 generate_random_uuid(dev->uuid); 6939 6940 if (path) { 6941 const char *name; 6942 6943 name = kstrdup(path, GFP_KERNEL); 6944 if (!name) { 6945 btrfs_free_device(dev); 6946 return ERR_PTR(-ENOMEM); 6947 } 6948 rcu_assign_pointer(dev->name, name); 6949 } 6950 6951 return dev; 6952 } 6953 6954 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6955 u64 devid, u8 *uuid, bool error) 6956 { 6957 if (error) 6958 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6959 devid, uuid); 6960 else 6961 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6962 devid, uuid); 6963 } 6964 6965 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6966 { 6967 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6968 6969 return div_u64(map->chunk_len, data_stripes); 6970 } 6971 6972 #if BITS_PER_LONG == 32 6973 /* 6974 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6975 * can't be accessed on 32bit systems. 6976 * 6977 * This function do mount time check to reject the fs if it already has 6978 * metadata chunk beyond that limit. 6979 */ 6980 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6981 u64 logical, u64 length, u64 type) 6982 { 6983 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6984 return 0; 6985 6986 if (logical + length < MAX_LFS_FILESIZE) 6987 return 0; 6988 6989 btrfs_err_32bit_limit(fs_info); 6990 return -EOVERFLOW; 6991 } 6992 6993 /* 6994 * This is to give early warning for any metadata chunk reaching 6995 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6996 * Although we can still access the metadata, it's not going to be possible 6997 * once the limit is reached. 6998 */ 6999 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7000 u64 logical, u64 length, u64 type) 7001 { 7002 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7003 return; 7004 7005 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7006 return; 7007 7008 btrfs_warn_32bit_limit(fs_info); 7009 } 7010 #endif 7011 7012 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7013 u64 devid, u8 *uuid) 7014 { 7015 struct btrfs_device *dev; 7016 7017 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7018 btrfs_report_missing_device(fs_info, devid, uuid, true); 7019 return ERR_PTR(-ENOENT); 7020 } 7021 7022 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7023 if (IS_ERR(dev)) { 7024 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7025 devid, PTR_ERR(dev)); 7026 return dev; 7027 } 7028 btrfs_report_missing_device(fs_info, devid, uuid, false); 7029 7030 return dev; 7031 } 7032 7033 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7034 struct btrfs_chunk *chunk) 7035 { 7036 BTRFS_DEV_LOOKUP_ARGS(args); 7037 struct btrfs_fs_info *fs_info = leaf->fs_info; 7038 struct btrfs_chunk_map *map; 7039 u64 logical; 7040 u64 length; 7041 u64 devid; 7042 u64 type; 7043 u8 uuid[BTRFS_UUID_SIZE]; 7044 int index; 7045 int num_stripes; 7046 int ret; 7047 int i; 7048 7049 logical = key->offset; 7050 length = btrfs_chunk_length(leaf, chunk); 7051 type = btrfs_chunk_type(leaf, chunk); 7052 index = btrfs_bg_flags_to_raid_index(type); 7053 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7054 7055 #if BITS_PER_LONG == 32 7056 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7057 if (ret < 0) 7058 return ret; 7059 warn_32bit_meta_chunk(fs_info, logical, length, type); 7060 #endif 7061 7062 map = btrfs_find_chunk_map(fs_info, logical, 1); 7063 7064 /* already mapped? */ 7065 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7066 btrfs_free_chunk_map(map); 7067 return 0; 7068 } else if (map) { 7069 btrfs_free_chunk_map(map); 7070 } 7071 7072 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7073 if (!map) 7074 return -ENOMEM; 7075 7076 map->start = logical; 7077 map->chunk_len = length; 7078 map->num_stripes = num_stripes; 7079 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7080 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7081 map->type = type; 7082 /* 7083 * We can't use the sub_stripes value, as for profiles other than 7084 * RAID10, they may have 0 as sub_stripes for filesystems created by 7085 * older mkfs (<v5.4). 7086 * In that case, it can cause divide-by-zero errors later. 7087 * Since currently sub_stripes is fixed for each profile, let's 7088 * use the trusted value instead. 7089 */ 7090 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7091 map->verified_stripes = 0; 7092 map->stripe_size = btrfs_calc_stripe_length(map); 7093 for (i = 0; i < num_stripes; i++) { 7094 map->stripes[i].physical = 7095 btrfs_stripe_offset_nr(leaf, chunk, i); 7096 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7097 args.devid = devid; 7098 read_extent_buffer(leaf, uuid, (unsigned long) 7099 btrfs_stripe_dev_uuid_nr(chunk, i), 7100 BTRFS_UUID_SIZE); 7101 args.uuid = uuid; 7102 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7103 if (!map->stripes[i].dev) { 7104 map->stripes[i].dev = handle_missing_device(fs_info, 7105 devid, uuid); 7106 if (IS_ERR(map->stripes[i].dev)) { 7107 ret = PTR_ERR(map->stripes[i].dev); 7108 btrfs_free_chunk_map(map); 7109 return ret; 7110 } 7111 } 7112 7113 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7114 &(map->stripes[i].dev->dev_state)); 7115 } 7116 7117 ret = btrfs_add_chunk_map(fs_info, map); 7118 if (ret < 0) { 7119 btrfs_err(fs_info, 7120 "failed to add chunk map, start=%llu len=%llu: %d", 7121 map->start, map->chunk_len, ret); 7122 btrfs_free_chunk_map(map); 7123 } 7124 7125 return ret; 7126 } 7127 7128 static void fill_device_from_item(struct extent_buffer *leaf, 7129 struct btrfs_dev_item *dev_item, 7130 struct btrfs_device *device) 7131 { 7132 unsigned long ptr; 7133 7134 device->devid = btrfs_device_id(leaf, dev_item); 7135 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7136 device->total_bytes = device->disk_total_bytes; 7137 device->commit_total_bytes = device->disk_total_bytes; 7138 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7139 device->commit_bytes_used = device->bytes_used; 7140 device->type = btrfs_device_type(leaf, dev_item); 7141 device->io_align = btrfs_device_io_align(leaf, dev_item); 7142 device->io_width = btrfs_device_io_width(leaf, dev_item); 7143 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7144 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7145 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7146 7147 ptr = btrfs_device_uuid(dev_item); 7148 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7149 } 7150 7151 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7152 u8 *fsid) 7153 { 7154 struct btrfs_fs_devices *fs_devices; 7155 int ret; 7156 7157 lockdep_assert_held(&uuid_mutex); 7158 ASSERT(fsid); 7159 7160 /* This will match only for multi-device seed fs */ 7161 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7162 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7163 return fs_devices; 7164 7165 7166 fs_devices = find_fsid(fsid, NULL); 7167 if (!fs_devices) { 7168 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7169 btrfs_err(fs_info, 7170 "failed to find fsid %pU when attempting to open seed devices", 7171 fsid); 7172 return ERR_PTR(-ENOENT); 7173 } 7174 7175 fs_devices = alloc_fs_devices(fsid); 7176 if (IS_ERR(fs_devices)) 7177 return fs_devices; 7178 7179 fs_devices->seeding = true; 7180 fs_devices->opened = 1; 7181 return fs_devices; 7182 } 7183 7184 /* 7185 * Upon first call for a seed fs fsid, just create a private copy of the 7186 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7187 */ 7188 fs_devices = clone_fs_devices(fs_devices); 7189 if (IS_ERR(fs_devices)) 7190 return fs_devices; 7191 7192 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb); 7193 if (ret) { 7194 free_fs_devices(fs_devices); 7195 return ERR_PTR(ret); 7196 } 7197 7198 if (!fs_devices->seeding) { 7199 close_fs_devices(fs_devices); 7200 free_fs_devices(fs_devices); 7201 return ERR_PTR(-EINVAL); 7202 } 7203 7204 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7205 7206 return fs_devices; 7207 } 7208 7209 static int read_one_dev(struct extent_buffer *leaf, 7210 struct btrfs_dev_item *dev_item) 7211 { 7212 BTRFS_DEV_LOOKUP_ARGS(args); 7213 struct btrfs_fs_info *fs_info = leaf->fs_info; 7214 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7215 struct btrfs_device *device; 7216 u64 devid; 7217 int ret; 7218 u8 fs_uuid[BTRFS_FSID_SIZE]; 7219 u8 dev_uuid[BTRFS_UUID_SIZE]; 7220 7221 devid = btrfs_device_id(leaf, dev_item); 7222 args.devid = devid; 7223 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7224 BTRFS_UUID_SIZE); 7225 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7226 BTRFS_FSID_SIZE); 7227 args.uuid = dev_uuid; 7228 args.fsid = fs_uuid; 7229 7230 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7231 fs_devices = open_seed_devices(fs_info, fs_uuid); 7232 if (IS_ERR(fs_devices)) 7233 return PTR_ERR(fs_devices); 7234 } 7235 7236 device = btrfs_find_device(fs_info->fs_devices, &args); 7237 if (!device) { 7238 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7239 btrfs_report_missing_device(fs_info, devid, 7240 dev_uuid, true); 7241 return -ENOENT; 7242 } 7243 7244 device = add_missing_dev(fs_devices, devid, dev_uuid); 7245 if (IS_ERR(device)) { 7246 btrfs_err(fs_info, 7247 "failed to add missing dev %llu: %ld", 7248 devid, PTR_ERR(device)); 7249 return PTR_ERR(device); 7250 } 7251 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7252 } else { 7253 if (!device->bdev) { 7254 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7255 btrfs_report_missing_device(fs_info, 7256 devid, dev_uuid, true); 7257 return -ENOENT; 7258 } 7259 btrfs_report_missing_device(fs_info, devid, 7260 dev_uuid, false); 7261 } 7262 7263 if (!device->bdev && 7264 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7265 /* 7266 * this happens when a device that was properly setup 7267 * in the device info lists suddenly goes bad. 7268 * device->bdev is NULL, and so we have to set 7269 * device->missing to one here 7270 */ 7271 device->fs_devices->missing_devices++; 7272 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7273 } 7274 7275 /* Move the device to its own fs_devices */ 7276 if (device->fs_devices != fs_devices) { 7277 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7278 &device->dev_state)); 7279 7280 list_move(&device->dev_list, &fs_devices->devices); 7281 device->fs_devices->num_devices--; 7282 fs_devices->num_devices++; 7283 7284 device->fs_devices->missing_devices--; 7285 fs_devices->missing_devices++; 7286 7287 device->fs_devices = fs_devices; 7288 } 7289 } 7290 7291 if (device->fs_devices != fs_info->fs_devices) { 7292 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7293 if (device->generation != 7294 btrfs_device_generation(leaf, dev_item)) 7295 return -EINVAL; 7296 } 7297 7298 fill_device_from_item(leaf, dev_item, device); 7299 if (device->bdev) { 7300 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7301 7302 if (device->total_bytes > max_total_bytes) { 7303 btrfs_err(fs_info, 7304 "device total_bytes should be at most %llu but found %llu", 7305 max_total_bytes, device->total_bytes); 7306 return -EINVAL; 7307 } 7308 } 7309 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7310 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7311 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7312 device->fs_devices->total_rw_bytes += device->total_bytes; 7313 atomic64_add(device->total_bytes - device->bytes_used, 7314 &fs_info->free_chunk_space); 7315 } 7316 ret = 0; 7317 return ret; 7318 } 7319 7320 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7321 { 7322 struct btrfs_super_block *super_copy = fs_info->super_copy; 7323 struct extent_buffer *sb; 7324 u8 *array_ptr; 7325 unsigned long sb_array_offset; 7326 int ret = 0; 7327 u32 array_size; 7328 u32 cur_offset; 7329 struct btrfs_key key; 7330 7331 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7332 7333 /* 7334 * We allocated a dummy extent, just to use extent buffer accessors. 7335 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7336 * that's fine, we will not go beyond system chunk array anyway. 7337 */ 7338 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7339 if (!sb) 7340 return -ENOMEM; 7341 set_extent_buffer_uptodate(sb); 7342 7343 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7344 array_size = btrfs_super_sys_array_size(super_copy); 7345 7346 array_ptr = super_copy->sys_chunk_array; 7347 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7348 cur_offset = 0; 7349 7350 while (cur_offset < array_size) { 7351 struct btrfs_chunk *chunk; 7352 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7353 u32 len = sizeof(*disk_key); 7354 7355 /* 7356 * The sys_chunk_array has been already verified at super block 7357 * read time. Only do ASSERT()s for basic checks. 7358 */ 7359 ASSERT(cur_offset + len <= array_size); 7360 7361 btrfs_disk_key_to_cpu(&key, disk_key); 7362 7363 array_ptr += len; 7364 sb_array_offset += len; 7365 cur_offset += len; 7366 7367 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7368 7369 chunk = (struct btrfs_chunk *)sb_array_offset; 7370 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7371 7372 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7373 7374 ASSERT(cur_offset + len <= array_size); 7375 7376 ret = read_one_chunk(&key, sb, chunk); 7377 if (ret) 7378 break; 7379 7380 array_ptr += len; 7381 sb_array_offset += len; 7382 cur_offset += len; 7383 } 7384 clear_extent_buffer_uptodate(sb); 7385 free_extent_buffer_stale(sb); 7386 return ret; 7387 } 7388 7389 /* 7390 * Check if all chunks in the fs are OK for read-write degraded mount 7391 * 7392 * If the @failing_dev is specified, it's accounted as missing. 7393 * 7394 * Return true if all chunks meet the minimal RW mount requirements. 7395 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7396 */ 7397 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7398 struct btrfs_device *failing_dev) 7399 { 7400 struct btrfs_chunk_map *map; 7401 u64 next_start; 7402 bool ret = true; 7403 7404 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7405 /* No chunk at all? Return false anyway */ 7406 if (!map) { 7407 ret = false; 7408 goto out; 7409 } 7410 while (map) { 7411 int missing = 0; 7412 int max_tolerated; 7413 int i; 7414 7415 max_tolerated = 7416 btrfs_get_num_tolerated_disk_barrier_failures( 7417 map->type); 7418 for (i = 0; i < map->num_stripes; i++) { 7419 struct btrfs_device *dev = map->stripes[i].dev; 7420 7421 if (!dev || !dev->bdev || 7422 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7423 dev->last_flush_error) 7424 missing++; 7425 else if (failing_dev && failing_dev == dev) 7426 missing++; 7427 } 7428 if (missing > max_tolerated) { 7429 if (!failing_dev) 7430 btrfs_warn(fs_info, 7431 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7432 map->start, missing, max_tolerated); 7433 btrfs_free_chunk_map(map); 7434 ret = false; 7435 goto out; 7436 } 7437 next_start = map->start + map->chunk_len; 7438 btrfs_free_chunk_map(map); 7439 7440 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7441 } 7442 out: 7443 return ret; 7444 } 7445 7446 static void readahead_tree_node_children(struct extent_buffer *node) 7447 { 7448 int i; 7449 const int nr_items = btrfs_header_nritems(node); 7450 7451 for (i = 0; i < nr_items; i++) 7452 btrfs_readahead_node_child(node, i); 7453 } 7454 7455 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7456 { 7457 struct btrfs_root *root = fs_info->chunk_root; 7458 struct btrfs_path *path; 7459 struct extent_buffer *leaf; 7460 struct btrfs_key key; 7461 struct btrfs_key found_key; 7462 int ret; 7463 int slot; 7464 int iter_ret = 0; 7465 u64 total_dev = 0; 7466 u64 last_ra_node = 0; 7467 7468 path = btrfs_alloc_path(); 7469 if (!path) 7470 return -ENOMEM; 7471 7472 /* 7473 * uuid_mutex is needed only if we are mounting a sprout FS 7474 * otherwise we don't need it. 7475 */ 7476 mutex_lock(&uuid_mutex); 7477 7478 /* 7479 * It is possible for mount and umount to race in such a way that 7480 * we execute this code path, but open_fs_devices failed to clear 7481 * total_rw_bytes. We certainly want it cleared before reading the 7482 * device items, so clear it here. 7483 */ 7484 fs_info->fs_devices->total_rw_bytes = 0; 7485 7486 /* 7487 * Lockdep complains about possible circular locking dependency between 7488 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7489 * used for freeze procection of a fs (struct super_block.s_writers), 7490 * which we take when starting a transaction, and extent buffers of the 7491 * chunk tree if we call read_one_dev() while holding a lock on an 7492 * extent buffer of the chunk tree. Since we are mounting the filesystem 7493 * and at this point there can't be any concurrent task modifying the 7494 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7495 */ 7496 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7497 path->skip_locking = 1; 7498 7499 /* 7500 * Read all device items, and then all the chunk items. All 7501 * device items are found before any chunk item (their object id 7502 * is smaller than the lowest possible object id for a chunk 7503 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7504 */ 7505 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7506 key.type = 0; 7507 key.offset = 0; 7508 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7509 struct extent_buffer *node = path->nodes[1]; 7510 7511 leaf = path->nodes[0]; 7512 slot = path->slots[0]; 7513 7514 if (node) { 7515 if (last_ra_node != node->start) { 7516 readahead_tree_node_children(node); 7517 last_ra_node = node->start; 7518 } 7519 } 7520 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7521 struct btrfs_dev_item *dev_item; 7522 dev_item = btrfs_item_ptr(leaf, slot, 7523 struct btrfs_dev_item); 7524 ret = read_one_dev(leaf, dev_item); 7525 if (ret) 7526 goto error; 7527 total_dev++; 7528 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7529 struct btrfs_chunk *chunk; 7530 7531 /* 7532 * We are only called at mount time, so no need to take 7533 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7534 * we always lock first fs_info->chunk_mutex before 7535 * acquiring any locks on the chunk tree. This is a 7536 * requirement for chunk allocation, see the comment on 7537 * top of btrfs_chunk_alloc() for details. 7538 */ 7539 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7540 ret = read_one_chunk(&found_key, leaf, chunk); 7541 if (ret) 7542 goto error; 7543 } 7544 } 7545 /* Catch error found during iteration */ 7546 if (iter_ret < 0) { 7547 ret = iter_ret; 7548 goto error; 7549 } 7550 7551 /* 7552 * After loading chunk tree, we've got all device information, 7553 * do another round of validation checks. 7554 */ 7555 if (total_dev != fs_info->fs_devices->total_devices) { 7556 btrfs_warn(fs_info, 7557 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7558 btrfs_super_num_devices(fs_info->super_copy), 7559 total_dev); 7560 fs_info->fs_devices->total_devices = total_dev; 7561 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7562 } 7563 if (btrfs_super_total_bytes(fs_info->super_copy) < 7564 fs_info->fs_devices->total_rw_bytes) { 7565 btrfs_err(fs_info, 7566 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7567 btrfs_super_total_bytes(fs_info->super_copy), 7568 fs_info->fs_devices->total_rw_bytes); 7569 ret = -EINVAL; 7570 goto error; 7571 } 7572 ret = 0; 7573 error: 7574 mutex_unlock(&uuid_mutex); 7575 7576 btrfs_free_path(path); 7577 return ret; 7578 } 7579 7580 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7581 { 7582 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7583 struct btrfs_device *device; 7584 int ret = 0; 7585 7586 mutex_lock(&fs_devices->device_list_mutex); 7587 list_for_each_entry(device, &fs_devices->devices, dev_list) 7588 device->fs_info = fs_info; 7589 7590 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7591 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7592 device->fs_info = fs_info; 7593 ret = btrfs_get_dev_zone_info(device, false); 7594 if (ret) 7595 break; 7596 } 7597 7598 seed_devs->fs_info = fs_info; 7599 } 7600 mutex_unlock(&fs_devices->device_list_mutex); 7601 7602 return ret; 7603 } 7604 7605 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7606 const struct btrfs_dev_stats_item *ptr, 7607 int index) 7608 { 7609 u64 val; 7610 7611 read_extent_buffer(eb, &val, 7612 offsetof(struct btrfs_dev_stats_item, values) + 7613 ((unsigned long)ptr) + (index * sizeof(u64)), 7614 sizeof(val)); 7615 return val; 7616 } 7617 7618 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7619 struct btrfs_dev_stats_item *ptr, 7620 int index, u64 val) 7621 { 7622 write_extent_buffer(eb, &val, 7623 offsetof(struct btrfs_dev_stats_item, values) + 7624 ((unsigned long)ptr) + (index * sizeof(u64)), 7625 sizeof(val)); 7626 } 7627 7628 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7629 struct btrfs_path *path) 7630 { 7631 struct btrfs_dev_stats_item *ptr; 7632 struct extent_buffer *eb; 7633 struct btrfs_key key; 7634 int item_size; 7635 int i, ret, slot; 7636 7637 if (!device->fs_info->dev_root) 7638 return 0; 7639 7640 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7641 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7642 key.offset = device->devid; 7643 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7644 if (ret) { 7645 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7646 btrfs_dev_stat_set(device, i, 0); 7647 device->dev_stats_valid = 1; 7648 btrfs_release_path(path); 7649 return ret < 0 ? ret : 0; 7650 } 7651 slot = path->slots[0]; 7652 eb = path->nodes[0]; 7653 item_size = btrfs_item_size(eb, slot); 7654 7655 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7656 7657 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7658 if (item_size >= (1 + i) * sizeof(__le64)) 7659 btrfs_dev_stat_set(device, i, 7660 btrfs_dev_stats_value(eb, ptr, i)); 7661 else 7662 btrfs_dev_stat_set(device, i, 0); 7663 } 7664 7665 device->dev_stats_valid = 1; 7666 btrfs_dev_stat_print_on_load(device); 7667 btrfs_release_path(path); 7668 7669 return 0; 7670 } 7671 7672 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7673 { 7674 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7675 struct btrfs_device *device; 7676 struct btrfs_path *path = NULL; 7677 int ret = 0; 7678 7679 path = btrfs_alloc_path(); 7680 if (!path) 7681 return -ENOMEM; 7682 7683 mutex_lock(&fs_devices->device_list_mutex); 7684 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7685 ret = btrfs_device_init_dev_stats(device, path); 7686 if (ret) 7687 goto out; 7688 } 7689 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7690 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7691 ret = btrfs_device_init_dev_stats(device, path); 7692 if (ret) 7693 goto out; 7694 } 7695 } 7696 out: 7697 mutex_unlock(&fs_devices->device_list_mutex); 7698 7699 btrfs_free_path(path); 7700 return ret; 7701 } 7702 7703 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7704 struct btrfs_device *device) 7705 { 7706 struct btrfs_fs_info *fs_info = trans->fs_info; 7707 struct btrfs_root *dev_root = fs_info->dev_root; 7708 struct btrfs_path *path; 7709 struct btrfs_key key; 7710 struct extent_buffer *eb; 7711 struct btrfs_dev_stats_item *ptr; 7712 int ret; 7713 int i; 7714 7715 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7716 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7717 key.offset = device->devid; 7718 7719 path = btrfs_alloc_path(); 7720 if (!path) 7721 return -ENOMEM; 7722 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7723 if (ret < 0) { 7724 btrfs_warn(fs_info, 7725 "error %d while searching for dev_stats item for device %s", 7726 ret, btrfs_dev_name(device)); 7727 goto out; 7728 } 7729 7730 if (ret == 0 && 7731 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7732 /* need to delete old one and insert a new one */ 7733 ret = btrfs_del_item(trans, dev_root, path); 7734 if (ret != 0) { 7735 btrfs_warn(fs_info, 7736 "delete too small dev_stats item for device %s failed %d", 7737 btrfs_dev_name(device), ret); 7738 goto out; 7739 } 7740 ret = 1; 7741 } 7742 7743 if (ret == 1) { 7744 /* need to insert a new item */ 7745 btrfs_release_path(path); 7746 ret = btrfs_insert_empty_item(trans, dev_root, path, 7747 &key, sizeof(*ptr)); 7748 if (ret < 0) { 7749 btrfs_warn(fs_info, 7750 "insert dev_stats item for device %s failed %d", 7751 btrfs_dev_name(device), ret); 7752 goto out; 7753 } 7754 } 7755 7756 eb = path->nodes[0]; 7757 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7759 btrfs_set_dev_stats_value(eb, ptr, i, 7760 btrfs_dev_stat_read(device, i)); 7761 out: 7762 btrfs_free_path(path); 7763 return ret; 7764 } 7765 7766 /* 7767 * called from commit_transaction. Writes all changed device stats to disk. 7768 */ 7769 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7770 { 7771 struct btrfs_fs_info *fs_info = trans->fs_info; 7772 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7773 struct btrfs_device *device; 7774 int stats_cnt; 7775 int ret = 0; 7776 7777 mutex_lock(&fs_devices->device_list_mutex); 7778 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7779 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7780 if (!device->dev_stats_valid || stats_cnt == 0) 7781 continue; 7782 7783 7784 /* 7785 * There is a LOAD-LOAD control dependency between the value of 7786 * dev_stats_ccnt and updating the on-disk values which requires 7787 * reading the in-memory counters. Such control dependencies 7788 * require explicit read memory barriers. 7789 * 7790 * This memory barriers pairs with smp_mb__before_atomic in 7791 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7792 * barrier implied by atomic_xchg in 7793 * btrfs_dev_stats_read_and_reset 7794 */ 7795 smp_rmb(); 7796 7797 ret = update_dev_stat_item(trans, device); 7798 if (!ret) 7799 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7800 } 7801 mutex_unlock(&fs_devices->device_list_mutex); 7802 7803 return ret; 7804 } 7805 7806 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7807 { 7808 btrfs_dev_stat_inc(dev, index); 7809 7810 if (!dev->dev_stats_valid) 7811 return; 7812 btrfs_err_rl(dev->fs_info, 7813 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7814 btrfs_dev_name(dev), 7815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7819 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7820 } 7821 7822 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7823 { 7824 int i; 7825 7826 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7827 if (btrfs_dev_stat_read(dev, i) != 0) 7828 break; 7829 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7830 return; /* all values == 0, suppress message */ 7831 7832 btrfs_info(dev->fs_info, 7833 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7834 btrfs_dev_name(dev), 7835 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7836 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7837 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7838 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7839 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7840 } 7841 7842 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7843 struct btrfs_ioctl_get_dev_stats *stats) 7844 { 7845 BTRFS_DEV_LOOKUP_ARGS(args); 7846 struct btrfs_device *dev; 7847 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7848 int i; 7849 7850 mutex_lock(&fs_devices->device_list_mutex); 7851 args.devid = stats->devid; 7852 dev = btrfs_find_device(fs_info->fs_devices, &args); 7853 mutex_unlock(&fs_devices->device_list_mutex); 7854 7855 if (!dev) { 7856 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7857 return -ENODEV; 7858 } else if (!dev->dev_stats_valid) { 7859 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7860 return -ENODEV; 7861 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7862 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7863 if (stats->nr_items > i) 7864 stats->values[i] = 7865 btrfs_dev_stat_read_and_reset(dev, i); 7866 else 7867 btrfs_dev_stat_set(dev, i, 0); 7868 } 7869 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7870 current->comm, task_pid_nr(current)); 7871 } else { 7872 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7873 if (stats->nr_items > i) 7874 stats->values[i] = btrfs_dev_stat_read(dev, i); 7875 } 7876 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7877 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7878 return 0; 7879 } 7880 7881 /* 7882 * Update the size and bytes used for each device where it changed. This is 7883 * delayed since we would otherwise get errors while writing out the 7884 * superblocks. 7885 * 7886 * Must be invoked during transaction commit. 7887 */ 7888 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7889 { 7890 struct btrfs_device *curr, *next; 7891 7892 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 7893 7894 if (list_empty(&trans->dev_update_list)) 7895 return; 7896 7897 /* 7898 * We don't need the device_list_mutex here. This list is owned by the 7899 * transaction and the transaction must complete before the device is 7900 * released. 7901 */ 7902 mutex_lock(&trans->fs_info->chunk_mutex); 7903 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7904 post_commit_list) { 7905 list_del_init(&curr->post_commit_list); 7906 curr->commit_total_bytes = curr->disk_total_bytes; 7907 curr->commit_bytes_used = curr->bytes_used; 7908 } 7909 mutex_unlock(&trans->fs_info->chunk_mutex); 7910 } 7911 7912 /* 7913 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7914 */ 7915 int btrfs_bg_type_to_factor(u64 flags) 7916 { 7917 const int index = btrfs_bg_flags_to_raid_index(flags); 7918 7919 return btrfs_raid_array[index].ncopies; 7920 } 7921 7922 7923 7924 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7925 u64 chunk_offset, u64 devid, 7926 u64 physical_offset, u64 physical_len) 7927 { 7928 struct btrfs_dev_lookup_args args = { .devid = devid }; 7929 struct btrfs_chunk_map *map; 7930 struct btrfs_device *dev; 7931 u64 stripe_len; 7932 bool found = false; 7933 int ret = 0; 7934 int i; 7935 7936 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7937 if (!map) { 7938 btrfs_err(fs_info, 7939 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7940 physical_offset, devid); 7941 ret = -EUCLEAN; 7942 goto out; 7943 } 7944 7945 stripe_len = btrfs_calc_stripe_length(map); 7946 if (physical_len != stripe_len) { 7947 btrfs_err(fs_info, 7948 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7949 physical_offset, devid, map->start, physical_len, 7950 stripe_len); 7951 ret = -EUCLEAN; 7952 goto out; 7953 } 7954 7955 /* 7956 * Very old mkfs.btrfs (before v4.15) will not respect the reserved 7957 * space. Although kernel can handle it without problem, better to warn 7958 * the users. 7959 */ 7960 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7961 btrfs_warn(fs_info, 7962 "devid %llu physical %llu len %llu inside the reserved space", 7963 devid, physical_offset, physical_len); 7964 7965 for (i = 0; i < map->num_stripes; i++) { 7966 if (map->stripes[i].dev->devid == devid && 7967 map->stripes[i].physical == physical_offset) { 7968 found = true; 7969 if (map->verified_stripes >= map->num_stripes) { 7970 btrfs_err(fs_info, 7971 "too many dev extents for chunk %llu found", 7972 map->start); 7973 ret = -EUCLEAN; 7974 goto out; 7975 } 7976 map->verified_stripes++; 7977 break; 7978 } 7979 } 7980 if (!found) { 7981 btrfs_err(fs_info, 7982 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7983 physical_offset, devid); 7984 ret = -EUCLEAN; 7985 } 7986 7987 /* Make sure no dev extent is beyond device boundary */ 7988 dev = btrfs_find_device(fs_info->fs_devices, &args); 7989 if (!dev) { 7990 btrfs_err(fs_info, "failed to find devid %llu", devid); 7991 ret = -EUCLEAN; 7992 goto out; 7993 } 7994 7995 if (physical_offset + physical_len > dev->disk_total_bytes) { 7996 btrfs_err(fs_info, 7997 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7998 devid, physical_offset, physical_len, 7999 dev->disk_total_bytes); 8000 ret = -EUCLEAN; 8001 goto out; 8002 } 8003 8004 if (dev->zone_info) { 8005 u64 zone_size = dev->zone_info->zone_size; 8006 8007 if (!IS_ALIGNED(physical_offset, zone_size) || 8008 !IS_ALIGNED(physical_len, zone_size)) { 8009 btrfs_err(fs_info, 8010 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8011 devid, physical_offset, physical_len); 8012 ret = -EUCLEAN; 8013 goto out; 8014 } 8015 } 8016 8017 out: 8018 btrfs_free_chunk_map(map); 8019 return ret; 8020 } 8021 8022 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8023 { 8024 struct rb_node *node; 8025 int ret = 0; 8026 8027 read_lock(&fs_info->mapping_tree_lock); 8028 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8029 struct btrfs_chunk_map *map; 8030 8031 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8032 if (map->num_stripes != map->verified_stripes) { 8033 btrfs_err(fs_info, 8034 "chunk %llu has missing dev extent, have %d expect %d", 8035 map->start, map->verified_stripes, map->num_stripes); 8036 ret = -EUCLEAN; 8037 goto out; 8038 } 8039 } 8040 out: 8041 read_unlock(&fs_info->mapping_tree_lock); 8042 return ret; 8043 } 8044 8045 /* 8046 * Ensure that all dev extents are mapped to correct chunk, otherwise 8047 * later chunk allocation/free would cause unexpected behavior. 8048 * 8049 * NOTE: This will iterate through the whole device tree, which should be of 8050 * the same size level as the chunk tree. This slightly increases mount time. 8051 */ 8052 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8053 { 8054 struct btrfs_path *path; 8055 struct btrfs_root *root = fs_info->dev_root; 8056 struct btrfs_key key; 8057 u64 prev_devid = 0; 8058 u64 prev_dev_ext_end = 0; 8059 int ret = 0; 8060 8061 /* 8062 * We don't have a dev_root because we mounted with ignorebadroots and 8063 * failed to load the root, so we want to skip the verification in this 8064 * case for sure. 8065 * 8066 * However if the dev root is fine, but the tree itself is corrupted 8067 * we'd still fail to mount. This verification is only to make sure 8068 * writes can happen safely, so instead just bypass this check 8069 * completely in the case of IGNOREBADROOTS. 8070 */ 8071 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8072 return 0; 8073 8074 key.objectid = 1; 8075 key.type = BTRFS_DEV_EXTENT_KEY; 8076 key.offset = 0; 8077 8078 path = btrfs_alloc_path(); 8079 if (!path) 8080 return -ENOMEM; 8081 8082 path->reada = READA_FORWARD; 8083 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8084 if (ret < 0) 8085 goto out; 8086 8087 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8088 ret = btrfs_next_leaf(root, path); 8089 if (ret < 0) 8090 goto out; 8091 /* No dev extents at all? Not good */ 8092 if (ret > 0) { 8093 ret = -EUCLEAN; 8094 goto out; 8095 } 8096 } 8097 while (1) { 8098 struct extent_buffer *leaf = path->nodes[0]; 8099 struct btrfs_dev_extent *dext; 8100 int slot = path->slots[0]; 8101 u64 chunk_offset; 8102 u64 physical_offset; 8103 u64 physical_len; 8104 u64 devid; 8105 8106 btrfs_item_key_to_cpu(leaf, &key, slot); 8107 if (key.type != BTRFS_DEV_EXTENT_KEY) 8108 break; 8109 devid = key.objectid; 8110 physical_offset = key.offset; 8111 8112 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8113 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8114 physical_len = btrfs_dev_extent_length(leaf, dext); 8115 8116 /* Check if this dev extent overlaps with the previous one */ 8117 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8118 btrfs_err(fs_info, 8119 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8120 devid, physical_offset, prev_dev_ext_end); 8121 ret = -EUCLEAN; 8122 goto out; 8123 } 8124 8125 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8126 physical_offset, physical_len); 8127 if (ret < 0) 8128 goto out; 8129 prev_devid = devid; 8130 prev_dev_ext_end = physical_offset + physical_len; 8131 8132 ret = btrfs_next_item(root, path); 8133 if (ret < 0) 8134 goto out; 8135 if (ret > 0) { 8136 ret = 0; 8137 break; 8138 } 8139 } 8140 8141 /* Ensure all chunks have corresponding dev extents */ 8142 ret = verify_chunk_dev_extent_mapping(fs_info); 8143 out: 8144 btrfs_free_path(path); 8145 return ret; 8146 } 8147 8148 /* 8149 * Check whether the given block group or device is pinned by any inode being 8150 * used as a swapfile. 8151 */ 8152 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8153 { 8154 struct btrfs_swapfile_pin *sp; 8155 struct rb_node *node; 8156 8157 spin_lock(&fs_info->swapfile_pins_lock); 8158 node = fs_info->swapfile_pins.rb_node; 8159 while (node) { 8160 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8161 if (ptr < sp->ptr) 8162 node = node->rb_left; 8163 else if (ptr > sp->ptr) 8164 node = node->rb_right; 8165 else 8166 break; 8167 } 8168 spin_unlock(&fs_info->swapfile_pins_lock); 8169 return node != NULL; 8170 } 8171 8172 static int relocating_repair_kthread(void *data) 8173 { 8174 struct btrfs_block_group *cache = data; 8175 struct btrfs_fs_info *fs_info = cache->fs_info; 8176 u64 target; 8177 int ret = 0; 8178 8179 target = cache->start; 8180 btrfs_put_block_group(cache); 8181 8182 sb_start_write(fs_info->sb); 8183 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8184 btrfs_info(fs_info, 8185 "zoned: skip relocating block group %llu to repair: EBUSY", 8186 target); 8187 sb_end_write(fs_info->sb); 8188 return -EBUSY; 8189 } 8190 8191 mutex_lock(&fs_info->reclaim_bgs_lock); 8192 8193 /* Ensure block group still exists */ 8194 cache = btrfs_lookup_block_group(fs_info, target); 8195 if (!cache) 8196 goto out; 8197 8198 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8199 goto out; 8200 8201 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8202 if (ret < 0) 8203 goto out; 8204 8205 btrfs_info(fs_info, 8206 "zoned: relocating block group %llu to repair IO failure", 8207 target); 8208 ret = btrfs_relocate_chunk(fs_info, target, true); 8209 8210 out: 8211 if (cache) 8212 btrfs_put_block_group(cache); 8213 mutex_unlock(&fs_info->reclaim_bgs_lock); 8214 btrfs_exclop_finish(fs_info); 8215 sb_end_write(fs_info->sb); 8216 8217 return ret; 8218 } 8219 8220 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8221 { 8222 struct btrfs_block_group *cache; 8223 8224 if (!btrfs_is_zoned(fs_info)) 8225 return false; 8226 8227 /* Do not attempt to repair in degraded state */ 8228 if (btrfs_test_opt(fs_info, DEGRADED)) 8229 return true; 8230 8231 cache = btrfs_lookup_block_group(fs_info, logical); 8232 if (!cache) 8233 return true; 8234 8235 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8236 btrfs_put_block_group(cache); 8237 return true; 8238 } 8239 8240 kthread_run(relocating_repair_kthread, cache, 8241 "btrfs-relocating-repair"); 8242 8243 return true; 8244 } 8245 8246 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8247 struct btrfs_io_stripe *smap, 8248 u64 logical) 8249 { 8250 int data_stripes = nr_bioc_data_stripes(bioc); 8251 int i; 8252 8253 for (i = 0; i < data_stripes; i++) { 8254 u64 stripe_start = bioc->full_stripe_logical + 8255 btrfs_stripe_nr_to_offset(i); 8256 8257 if (logical >= stripe_start && 8258 logical < stripe_start + BTRFS_STRIPE_LEN) 8259 break; 8260 } 8261 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8262 smap->dev = bioc->stripes[i].dev; 8263 smap->physical = bioc->stripes[i].physical + 8264 ((logical - bioc->full_stripe_logical) & 8265 BTRFS_STRIPE_LEN_MASK); 8266 } 8267 8268 /* 8269 * Map a repair write into a single device. 8270 * 8271 * A repair write is triggered by read time repair or scrub, which would only 8272 * update the contents of a single device. 8273 * Not update any other mirrors nor go through RMW path. 8274 * 8275 * Callers should ensure: 8276 * 8277 * - Call btrfs_bio_counter_inc_blocked() first 8278 * - The range does not cross stripe boundary 8279 * - Has a valid @mirror_num passed in. 8280 */ 8281 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8282 struct btrfs_io_stripe *smap, u64 logical, 8283 u32 length, int mirror_num) 8284 { 8285 struct btrfs_io_context *bioc = NULL; 8286 u64 map_length = length; 8287 int mirror_ret = mirror_num; 8288 int ret; 8289 8290 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8291 8292 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8293 &bioc, smap, &mirror_ret); 8294 if (ret < 0) 8295 return ret; 8296 8297 /* The map range should not cross stripe boundary. */ 8298 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8299 8300 /* Already mapped to single stripe. */ 8301 if (!bioc) 8302 goto out; 8303 8304 /* Map the RAID56 multi-stripe writes to a single one. */ 8305 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8306 map_raid56_repair_block(bioc, smap, logical); 8307 goto out; 8308 } 8309 8310 ASSERT(mirror_num <= bioc->num_stripes, 8311 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8312 smap->dev = bioc->stripes[mirror_num - 1].dev; 8313 smap->physical = bioc->stripes[mirror_num - 1].physical; 8314 out: 8315 btrfs_put_bioc(bioc); 8316 ASSERT(smap->dev); 8317 return 0; 8318 } 8319