xref: /linux/fs/btrfs/volumes.c (revision 2bc46b3ad3c15165f91459b07ff8682478683194)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_root *root,
138 				struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 static void btrfs_close_one_device(struct btrfs_device *device);
144 
145 DEFINE_MUTEX(uuid_mutex);
146 static LIST_HEAD(fs_uuids);
147 struct list_head *btrfs_get_fs_uuids(void)
148 {
149 	return &fs_uuids;
150 }
151 
152 static struct btrfs_fs_devices *__alloc_fs_devices(void)
153 {
154 	struct btrfs_fs_devices *fs_devs;
155 
156 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
157 	if (!fs_devs)
158 		return ERR_PTR(-ENOMEM);
159 
160 	mutex_init(&fs_devs->device_list_mutex);
161 
162 	INIT_LIST_HEAD(&fs_devs->devices);
163 	INIT_LIST_HEAD(&fs_devs->resized_devices);
164 	INIT_LIST_HEAD(&fs_devs->alloc_list);
165 	INIT_LIST_HEAD(&fs_devs->list);
166 
167 	return fs_devs;
168 }
169 
170 /**
171  * alloc_fs_devices - allocate struct btrfs_fs_devices
172  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
173  *		generated.
174  *
175  * Return: a pointer to a new &struct btrfs_fs_devices on success;
176  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
177  * can be destroyed with kfree() right away.
178  */
179 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
180 {
181 	struct btrfs_fs_devices *fs_devs;
182 
183 	fs_devs = __alloc_fs_devices();
184 	if (IS_ERR(fs_devs))
185 		return fs_devs;
186 
187 	if (fsid)
188 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
189 	else
190 		generate_random_uuid(fs_devs->fsid);
191 
192 	return fs_devs;
193 }
194 
195 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
196 {
197 	struct btrfs_device *device;
198 	WARN_ON(fs_devices->opened);
199 	while (!list_empty(&fs_devices->devices)) {
200 		device = list_entry(fs_devices->devices.next,
201 				    struct btrfs_device, dev_list);
202 		list_del(&device->dev_list);
203 		rcu_string_free(device->name);
204 		kfree(device);
205 	}
206 	kfree(fs_devices);
207 }
208 
209 static void btrfs_kobject_uevent(struct block_device *bdev,
210 				 enum kobject_action action)
211 {
212 	int ret;
213 
214 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
215 	if (ret)
216 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 			action,
218 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
219 			&disk_to_dev(bdev->bd_disk)->kobj);
220 }
221 
222 void btrfs_cleanup_fs_uuids(void)
223 {
224 	struct btrfs_fs_devices *fs_devices;
225 
226 	while (!list_empty(&fs_uuids)) {
227 		fs_devices = list_entry(fs_uuids.next,
228 					struct btrfs_fs_devices, list);
229 		list_del(&fs_devices->list);
230 		free_fs_devices(fs_devices);
231 	}
232 }
233 
234 static struct btrfs_device *__alloc_device(void)
235 {
236 	struct btrfs_device *dev;
237 
238 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
239 	if (!dev)
240 		return ERR_PTR(-ENOMEM);
241 
242 	INIT_LIST_HEAD(&dev->dev_list);
243 	INIT_LIST_HEAD(&dev->dev_alloc_list);
244 	INIT_LIST_HEAD(&dev->resized_list);
245 
246 	spin_lock_init(&dev->io_lock);
247 
248 	spin_lock_init(&dev->reada_lock);
249 	atomic_set(&dev->reada_in_flight, 0);
250 	atomic_set(&dev->dev_stats_ccnt, 0);
251 	btrfs_device_data_ordered_init(dev);
252 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
254 
255 	return dev;
256 }
257 
258 static noinline struct btrfs_device *__find_device(struct list_head *head,
259 						   u64 devid, u8 *uuid)
260 {
261 	struct btrfs_device *dev;
262 
263 	list_for_each_entry(dev, head, dev_list) {
264 		if (dev->devid == devid &&
265 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
266 			return dev;
267 		}
268 	}
269 	return NULL;
270 }
271 
272 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
273 {
274 	struct btrfs_fs_devices *fs_devices;
275 
276 	list_for_each_entry(fs_devices, &fs_uuids, list) {
277 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
278 			return fs_devices;
279 	}
280 	return NULL;
281 }
282 
283 static int
284 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
285 		      int flush, struct block_device **bdev,
286 		      struct buffer_head **bh)
287 {
288 	int ret;
289 
290 	*bdev = blkdev_get_by_path(device_path, flags, holder);
291 
292 	if (IS_ERR(*bdev)) {
293 		ret = PTR_ERR(*bdev);
294 		goto error;
295 	}
296 
297 	if (flush)
298 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
299 	ret = set_blocksize(*bdev, 4096);
300 	if (ret) {
301 		blkdev_put(*bdev, flags);
302 		goto error;
303 	}
304 	invalidate_bdev(*bdev);
305 	*bh = btrfs_read_dev_super(*bdev);
306 	if (IS_ERR(*bh)) {
307 		ret = PTR_ERR(*bh);
308 		blkdev_put(*bdev, flags);
309 		goto error;
310 	}
311 
312 	return 0;
313 
314 error:
315 	*bdev = NULL;
316 	*bh = NULL;
317 	return ret;
318 }
319 
320 static void requeue_list(struct btrfs_pending_bios *pending_bios,
321 			struct bio *head, struct bio *tail)
322 {
323 
324 	struct bio *old_head;
325 
326 	old_head = pending_bios->head;
327 	pending_bios->head = head;
328 	if (pending_bios->tail)
329 		tail->bi_next = old_head;
330 	else
331 		pending_bios->tail = tail;
332 }
333 
334 /*
335  * we try to collect pending bios for a device so we don't get a large
336  * number of procs sending bios down to the same device.  This greatly
337  * improves the schedulers ability to collect and merge the bios.
338  *
339  * But, it also turns into a long list of bios to process and that is sure
340  * to eventually make the worker thread block.  The solution here is to
341  * make some progress and then put this work struct back at the end of
342  * the list if the block device is congested.  This way, multiple devices
343  * can make progress from a single worker thread.
344  */
345 static noinline void run_scheduled_bios(struct btrfs_device *device)
346 {
347 	struct bio *pending;
348 	struct backing_dev_info *bdi;
349 	struct btrfs_fs_info *fs_info;
350 	struct btrfs_pending_bios *pending_bios;
351 	struct bio *tail;
352 	struct bio *cur;
353 	int again = 0;
354 	unsigned long num_run;
355 	unsigned long batch_run = 0;
356 	unsigned long limit;
357 	unsigned long last_waited = 0;
358 	int force_reg = 0;
359 	int sync_pending = 0;
360 	struct blk_plug plug;
361 
362 	/*
363 	 * this function runs all the bios we've collected for
364 	 * a particular device.  We don't want to wander off to
365 	 * another device without first sending all of these down.
366 	 * So, setup a plug here and finish it off before we return
367 	 */
368 	blk_start_plug(&plug);
369 
370 	bdi = blk_get_backing_dev_info(device->bdev);
371 	fs_info = device->dev_root->fs_info;
372 	limit = btrfs_async_submit_limit(fs_info);
373 	limit = limit * 2 / 3;
374 
375 loop:
376 	spin_lock(&device->io_lock);
377 
378 loop_lock:
379 	num_run = 0;
380 
381 	/* take all the bios off the list at once and process them
382 	 * later on (without the lock held).  But, remember the
383 	 * tail and other pointers so the bios can be properly reinserted
384 	 * into the list if we hit congestion
385 	 */
386 	if (!force_reg && device->pending_sync_bios.head) {
387 		pending_bios = &device->pending_sync_bios;
388 		force_reg = 1;
389 	} else {
390 		pending_bios = &device->pending_bios;
391 		force_reg = 0;
392 	}
393 
394 	pending = pending_bios->head;
395 	tail = pending_bios->tail;
396 	WARN_ON(pending && !tail);
397 
398 	/*
399 	 * if pending was null this time around, no bios need processing
400 	 * at all and we can stop.  Otherwise it'll loop back up again
401 	 * and do an additional check so no bios are missed.
402 	 *
403 	 * device->running_pending is used to synchronize with the
404 	 * schedule_bio code.
405 	 */
406 	if (device->pending_sync_bios.head == NULL &&
407 	    device->pending_bios.head == NULL) {
408 		again = 0;
409 		device->running_pending = 0;
410 	} else {
411 		again = 1;
412 		device->running_pending = 1;
413 	}
414 
415 	pending_bios->head = NULL;
416 	pending_bios->tail = NULL;
417 
418 	spin_unlock(&device->io_lock);
419 
420 	while (pending) {
421 
422 		rmb();
423 		/* we want to work on both lists, but do more bios on the
424 		 * sync list than the regular list
425 		 */
426 		if ((num_run > 32 &&
427 		    pending_bios != &device->pending_sync_bios &&
428 		    device->pending_sync_bios.head) ||
429 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
430 		    device->pending_bios.head)) {
431 			spin_lock(&device->io_lock);
432 			requeue_list(pending_bios, pending, tail);
433 			goto loop_lock;
434 		}
435 
436 		cur = pending;
437 		pending = pending->bi_next;
438 		cur->bi_next = NULL;
439 
440 		/*
441 		 * atomic_dec_return implies a barrier for waitqueue_active
442 		 */
443 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
444 		    waitqueue_active(&fs_info->async_submit_wait))
445 			wake_up(&fs_info->async_submit_wait);
446 
447 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
448 
449 		/*
450 		 * if we're doing the sync list, record that our
451 		 * plug has some sync requests on it
452 		 *
453 		 * If we're doing the regular list and there are
454 		 * sync requests sitting around, unplug before
455 		 * we add more
456 		 */
457 		if (pending_bios == &device->pending_sync_bios) {
458 			sync_pending = 1;
459 		} else if (sync_pending) {
460 			blk_finish_plug(&plug);
461 			blk_start_plug(&plug);
462 			sync_pending = 0;
463 		}
464 
465 		btrfsic_submit_bio(cur->bi_rw, cur);
466 		num_run++;
467 		batch_run++;
468 
469 		cond_resched();
470 
471 		/*
472 		 * we made progress, there is more work to do and the bdi
473 		 * is now congested.  Back off and let other work structs
474 		 * run instead
475 		 */
476 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
477 		    fs_info->fs_devices->open_devices > 1) {
478 			struct io_context *ioc;
479 
480 			ioc = current->io_context;
481 
482 			/*
483 			 * the main goal here is that we don't want to
484 			 * block if we're going to be able to submit
485 			 * more requests without blocking.
486 			 *
487 			 * This code does two great things, it pokes into
488 			 * the elevator code from a filesystem _and_
489 			 * it makes assumptions about how batching works.
490 			 */
491 			if (ioc && ioc->nr_batch_requests > 0 &&
492 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
493 			    (last_waited == 0 ||
494 			     ioc->last_waited == last_waited)) {
495 				/*
496 				 * we want to go through our batch of
497 				 * requests and stop.  So, we copy out
498 				 * the ioc->last_waited time and test
499 				 * against it before looping
500 				 */
501 				last_waited = ioc->last_waited;
502 				cond_resched();
503 				continue;
504 			}
505 			spin_lock(&device->io_lock);
506 			requeue_list(pending_bios, pending, tail);
507 			device->running_pending = 1;
508 
509 			spin_unlock(&device->io_lock);
510 			btrfs_queue_work(fs_info->submit_workers,
511 					 &device->work);
512 			goto done;
513 		}
514 		/* unplug every 64 requests just for good measure */
515 		if (batch_run % 64 == 0) {
516 			blk_finish_plug(&plug);
517 			blk_start_plug(&plug);
518 			sync_pending = 0;
519 		}
520 	}
521 
522 	cond_resched();
523 	if (again)
524 		goto loop;
525 
526 	spin_lock(&device->io_lock);
527 	if (device->pending_bios.head || device->pending_sync_bios.head)
528 		goto loop_lock;
529 	spin_unlock(&device->io_lock);
530 
531 done:
532 	blk_finish_plug(&plug);
533 }
534 
535 static void pending_bios_fn(struct btrfs_work *work)
536 {
537 	struct btrfs_device *device;
538 
539 	device = container_of(work, struct btrfs_device, work);
540 	run_scheduled_bios(device);
541 }
542 
543 
544 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
545 {
546 	struct btrfs_fs_devices *fs_devs;
547 	struct btrfs_device *dev;
548 
549 	if (!cur_dev->name)
550 		return;
551 
552 	list_for_each_entry(fs_devs, &fs_uuids, list) {
553 		int del = 1;
554 
555 		if (fs_devs->opened)
556 			continue;
557 		if (fs_devs->seeding)
558 			continue;
559 
560 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
561 
562 			if (dev == cur_dev)
563 				continue;
564 			if (!dev->name)
565 				continue;
566 
567 			/*
568 			 * Todo: This won't be enough. What if the same device
569 			 * comes back (with new uuid and) with its mapper path?
570 			 * But for now, this does help as mostly an admin will
571 			 * either use mapper or non mapper path throughout.
572 			 */
573 			rcu_read_lock();
574 			del = strcmp(rcu_str_deref(dev->name),
575 						rcu_str_deref(cur_dev->name));
576 			rcu_read_unlock();
577 			if (!del)
578 				break;
579 		}
580 
581 		if (!del) {
582 			/* delete the stale device */
583 			if (fs_devs->num_devices == 1) {
584 				btrfs_sysfs_remove_fsid(fs_devs);
585 				list_del(&fs_devs->list);
586 				free_fs_devices(fs_devs);
587 			} else {
588 				fs_devs->num_devices--;
589 				list_del(&dev->dev_list);
590 				rcu_string_free(dev->name);
591 				kfree(dev);
592 			}
593 			break;
594 		}
595 	}
596 }
597 
598 /*
599  * Add new device to list of registered devices
600  *
601  * Returns:
602  * 1   - first time device is seen
603  * 0   - device already known
604  * < 0 - error
605  */
606 static noinline int device_list_add(const char *path,
607 			   struct btrfs_super_block *disk_super,
608 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
609 {
610 	struct btrfs_device *device;
611 	struct btrfs_fs_devices *fs_devices;
612 	struct rcu_string *name;
613 	int ret = 0;
614 	u64 found_transid = btrfs_super_generation(disk_super);
615 
616 	fs_devices = find_fsid(disk_super->fsid);
617 	if (!fs_devices) {
618 		fs_devices = alloc_fs_devices(disk_super->fsid);
619 		if (IS_ERR(fs_devices))
620 			return PTR_ERR(fs_devices);
621 
622 		list_add(&fs_devices->list, &fs_uuids);
623 
624 		device = NULL;
625 	} else {
626 		device = __find_device(&fs_devices->devices, devid,
627 				       disk_super->dev_item.uuid);
628 	}
629 
630 	if (!device) {
631 		if (fs_devices->opened)
632 			return -EBUSY;
633 
634 		device = btrfs_alloc_device(NULL, &devid,
635 					    disk_super->dev_item.uuid);
636 		if (IS_ERR(device)) {
637 			/* we can safely leave the fs_devices entry around */
638 			return PTR_ERR(device);
639 		}
640 
641 		name = rcu_string_strdup(path, GFP_NOFS);
642 		if (!name) {
643 			kfree(device);
644 			return -ENOMEM;
645 		}
646 		rcu_assign_pointer(device->name, name);
647 
648 		mutex_lock(&fs_devices->device_list_mutex);
649 		list_add_rcu(&device->dev_list, &fs_devices->devices);
650 		fs_devices->num_devices++;
651 		mutex_unlock(&fs_devices->device_list_mutex);
652 
653 		ret = 1;
654 		device->fs_devices = fs_devices;
655 	} else if (!device->name || strcmp(device->name->str, path)) {
656 		/*
657 		 * When FS is already mounted.
658 		 * 1. If you are here and if the device->name is NULL that
659 		 *    means this device was missing at time of FS mount.
660 		 * 2. If you are here and if the device->name is different
661 		 *    from 'path' that means either
662 		 *      a. The same device disappeared and reappeared with
663 		 *         different name. or
664 		 *      b. The missing-disk-which-was-replaced, has
665 		 *         reappeared now.
666 		 *
667 		 * We must allow 1 and 2a above. But 2b would be a spurious
668 		 * and unintentional.
669 		 *
670 		 * Further in case of 1 and 2a above, the disk at 'path'
671 		 * would have missed some transaction when it was away and
672 		 * in case of 2a the stale bdev has to be updated as well.
673 		 * 2b must not be allowed at all time.
674 		 */
675 
676 		/*
677 		 * For now, we do allow update to btrfs_fs_device through the
678 		 * btrfs dev scan cli after FS has been mounted.  We're still
679 		 * tracking a problem where systems fail mount by subvolume id
680 		 * when we reject replacement on a mounted FS.
681 		 */
682 		if (!fs_devices->opened && found_transid < device->generation) {
683 			/*
684 			 * That is if the FS is _not_ mounted and if you
685 			 * are here, that means there is more than one
686 			 * disk with same uuid and devid.We keep the one
687 			 * with larger generation number or the last-in if
688 			 * generation are equal.
689 			 */
690 			return -EEXIST;
691 		}
692 
693 		name = rcu_string_strdup(path, GFP_NOFS);
694 		if (!name)
695 			return -ENOMEM;
696 		rcu_string_free(device->name);
697 		rcu_assign_pointer(device->name, name);
698 		if (device->missing) {
699 			fs_devices->missing_devices--;
700 			device->missing = 0;
701 		}
702 	}
703 
704 	/*
705 	 * Unmount does not free the btrfs_device struct but would zero
706 	 * generation along with most of the other members. So just update
707 	 * it back. We need it to pick the disk with largest generation
708 	 * (as above).
709 	 */
710 	if (!fs_devices->opened)
711 		device->generation = found_transid;
712 
713 	/*
714 	 * if there is new btrfs on an already registered device,
715 	 * then remove the stale device entry.
716 	 */
717 	if (ret > 0)
718 		btrfs_free_stale_device(device);
719 
720 	*fs_devices_ret = fs_devices;
721 
722 	return ret;
723 }
724 
725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
726 {
727 	struct btrfs_fs_devices *fs_devices;
728 	struct btrfs_device *device;
729 	struct btrfs_device *orig_dev;
730 
731 	fs_devices = alloc_fs_devices(orig->fsid);
732 	if (IS_ERR(fs_devices))
733 		return fs_devices;
734 
735 	mutex_lock(&orig->device_list_mutex);
736 	fs_devices->total_devices = orig->total_devices;
737 
738 	/* We have held the volume lock, it is safe to get the devices. */
739 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
740 		struct rcu_string *name;
741 
742 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
743 					    orig_dev->uuid);
744 		if (IS_ERR(device))
745 			goto error;
746 
747 		/*
748 		 * This is ok to do without rcu read locked because we hold the
749 		 * uuid mutex so nothing we touch in here is going to disappear.
750 		 */
751 		if (orig_dev->name) {
752 			name = rcu_string_strdup(orig_dev->name->str,
753 					GFP_KERNEL);
754 			if (!name) {
755 				kfree(device);
756 				goto error;
757 			}
758 			rcu_assign_pointer(device->name, name);
759 		}
760 
761 		list_add(&device->dev_list, &fs_devices->devices);
762 		device->fs_devices = fs_devices;
763 		fs_devices->num_devices++;
764 	}
765 	mutex_unlock(&orig->device_list_mutex);
766 	return fs_devices;
767 error:
768 	mutex_unlock(&orig->device_list_mutex);
769 	free_fs_devices(fs_devices);
770 	return ERR_PTR(-ENOMEM);
771 }
772 
773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
774 {
775 	struct btrfs_device *device, *next;
776 	struct btrfs_device *latest_dev = NULL;
777 
778 	mutex_lock(&uuid_mutex);
779 again:
780 	/* This is the initialized path, it is safe to release the devices. */
781 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
782 		if (device->in_fs_metadata) {
783 			if (!device->is_tgtdev_for_dev_replace &&
784 			    (!latest_dev ||
785 			     device->generation > latest_dev->generation)) {
786 				latest_dev = device;
787 			}
788 			continue;
789 		}
790 
791 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
792 			/*
793 			 * In the first step, keep the device which has
794 			 * the correct fsid and the devid that is used
795 			 * for the dev_replace procedure.
796 			 * In the second step, the dev_replace state is
797 			 * read from the device tree and it is known
798 			 * whether the procedure is really active or
799 			 * not, which means whether this device is
800 			 * used or whether it should be removed.
801 			 */
802 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
803 				continue;
804 			}
805 		}
806 		if (device->bdev) {
807 			blkdev_put(device->bdev, device->mode);
808 			device->bdev = NULL;
809 			fs_devices->open_devices--;
810 		}
811 		if (device->writeable) {
812 			list_del_init(&device->dev_alloc_list);
813 			device->writeable = 0;
814 			if (!device->is_tgtdev_for_dev_replace)
815 				fs_devices->rw_devices--;
816 		}
817 		list_del_init(&device->dev_list);
818 		fs_devices->num_devices--;
819 		rcu_string_free(device->name);
820 		kfree(device);
821 	}
822 
823 	if (fs_devices->seed) {
824 		fs_devices = fs_devices->seed;
825 		goto again;
826 	}
827 
828 	fs_devices->latest_bdev = latest_dev->bdev;
829 
830 	mutex_unlock(&uuid_mutex);
831 }
832 
833 static void __free_device(struct work_struct *work)
834 {
835 	struct btrfs_device *device;
836 
837 	device = container_of(work, struct btrfs_device, rcu_work);
838 
839 	if (device->bdev)
840 		blkdev_put(device->bdev, device->mode);
841 
842 	rcu_string_free(device->name);
843 	kfree(device);
844 }
845 
846 static void free_device(struct rcu_head *head)
847 {
848 	struct btrfs_device *device;
849 
850 	device = container_of(head, struct btrfs_device, rcu);
851 
852 	INIT_WORK(&device->rcu_work, __free_device);
853 	schedule_work(&device->rcu_work);
854 }
855 
856 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
857 {
858 	struct btrfs_device *device, *tmp;
859 
860 	if (--fs_devices->opened > 0)
861 		return 0;
862 
863 	mutex_lock(&fs_devices->device_list_mutex);
864 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
865 		btrfs_close_one_device(device);
866 	}
867 	mutex_unlock(&fs_devices->device_list_mutex);
868 
869 	WARN_ON(fs_devices->open_devices);
870 	WARN_ON(fs_devices->rw_devices);
871 	fs_devices->opened = 0;
872 	fs_devices->seeding = 0;
873 
874 	return 0;
875 }
876 
877 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
878 {
879 	struct btrfs_fs_devices *seed_devices = NULL;
880 	int ret;
881 
882 	mutex_lock(&uuid_mutex);
883 	ret = __btrfs_close_devices(fs_devices);
884 	if (!fs_devices->opened) {
885 		seed_devices = fs_devices->seed;
886 		fs_devices->seed = NULL;
887 	}
888 	mutex_unlock(&uuid_mutex);
889 
890 	while (seed_devices) {
891 		fs_devices = seed_devices;
892 		seed_devices = fs_devices->seed;
893 		__btrfs_close_devices(fs_devices);
894 		free_fs_devices(fs_devices);
895 	}
896 	/*
897 	 * Wait for rcu kworkers under __btrfs_close_devices
898 	 * to finish all blkdev_puts so device is really
899 	 * free when umount is done.
900 	 */
901 	rcu_barrier();
902 	return ret;
903 }
904 
905 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
906 				fmode_t flags, void *holder)
907 {
908 	struct request_queue *q;
909 	struct block_device *bdev;
910 	struct list_head *head = &fs_devices->devices;
911 	struct btrfs_device *device;
912 	struct btrfs_device *latest_dev = NULL;
913 	struct buffer_head *bh;
914 	struct btrfs_super_block *disk_super;
915 	u64 devid;
916 	int seeding = 1;
917 	int ret = 0;
918 
919 	flags |= FMODE_EXCL;
920 
921 	list_for_each_entry(device, head, dev_list) {
922 		if (device->bdev)
923 			continue;
924 		if (!device->name)
925 			continue;
926 
927 		/* Just open everything we can; ignore failures here */
928 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
929 					    &bdev, &bh))
930 			continue;
931 
932 		disk_super = (struct btrfs_super_block *)bh->b_data;
933 		devid = btrfs_stack_device_id(&disk_super->dev_item);
934 		if (devid != device->devid)
935 			goto error_brelse;
936 
937 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
938 			   BTRFS_UUID_SIZE))
939 			goto error_brelse;
940 
941 		device->generation = btrfs_super_generation(disk_super);
942 		if (!latest_dev ||
943 		    device->generation > latest_dev->generation)
944 			latest_dev = device;
945 
946 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
947 			device->writeable = 0;
948 		} else {
949 			device->writeable = !bdev_read_only(bdev);
950 			seeding = 0;
951 		}
952 
953 		q = bdev_get_queue(bdev);
954 		if (blk_queue_discard(q))
955 			device->can_discard = 1;
956 
957 		device->bdev = bdev;
958 		device->in_fs_metadata = 0;
959 		device->mode = flags;
960 
961 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
962 			fs_devices->rotating = 1;
963 
964 		fs_devices->open_devices++;
965 		if (device->writeable &&
966 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
967 			fs_devices->rw_devices++;
968 			list_add(&device->dev_alloc_list,
969 				 &fs_devices->alloc_list);
970 		}
971 		brelse(bh);
972 		continue;
973 
974 error_brelse:
975 		brelse(bh);
976 		blkdev_put(bdev, flags);
977 		continue;
978 	}
979 	if (fs_devices->open_devices == 0) {
980 		ret = -EINVAL;
981 		goto out;
982 	}
983 	fs_devices->seeding = seeding;
984 	fs_devices->opened = 1;
985 	fs_devices->latest_bdev = latest_dev->bdev;
986 	fs_devices->total_rw_bytes = 0;
987 out:
988 	return ret;
989 }
990 
991 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
992 		       fmode_t flags, void *holder)
993 {
994 	int ret;
995 
996 	mutex_lock(&uuid_mutex);
997 	if (fs_devices->opened) {
998 		fs_devices->opened++;
999 		ret = 0;
1000 	} else {
1001 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1002 	}
1003 	mutex_unlock(&uuid_mutex);
1004 	return ret;
1005 }
1006 
1007 void btrfs_release_disk_super(struct page *page)
1008 {
1009 	kunmap(page);
1010 	put_page(page);
1011 }
1012 
1013 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1014 		struct page **page, struct btrfs_super_block **disk_super)
1015 {
1016 	void *p;
1017 	pgoff_t index;
1018 
1019 	/* make sure our super fits in the device */
1020 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1021 		return 1;
1022 
1023 	/* make sure our super fits in the page */
1024 	if (sizeof(**disk_super) > PAGE_SIZE)
1025 		return 1;
1026 
1027 	/* make sure our super doesn't straddle pages on disk */
1028 	index = bytenr >> PAGE_SHIFT;
1029 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1030 		return 1;
1031 
1032 	/* pull in the page with our super */
1033 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1034 				   index, GFP_KERNEL);
1035 
1036 	if (IS_ERR_OR_NULL(*page))
1037 		return 1;
1038 
1039 	p = kmap(*page);
1040 
1041 	/* align our pointer to the offset of the super block */
1042 	*disk_super = p + (bytenr & ~PAGE_MASK);
1043 
1044 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1045 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1046 		btrfs_release_disk_super(*page);
1047 		return 1;
1048 	}
1049 
1050 	if ((*disk_super)->label[0] &&
1051 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1052 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1053 
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Look for a btrfs signature on a device. This may be called out of the mount path
1059  * and we are not allowed to call set_blocksize during the scan. The superblock
1060  * is read via pagecache
1061  */
1062 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1063 			  struct btrfs_fs_devices **fs_devices_ret)
1064 {
1065 	struct btrfs_super_block *disk_super;
1066 	struct block_device *bdev;
1067 	struct page *page;
1068 	int ret = -EINVAL;
1069 	u64 devid;
1070 	u64 transid;
1071 	u64 total_devices;
1072 	u64 bytenr;
1073 
1074 	/*
1075 	 * we would like to check all the supers, but that would make
1076 	 * a btrfs mount succeed after a mkfs from a different FS.
1077 	 * So, we need to add a special mount option to scan for
1078 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1079 	 */
1080 	bytenr = btrfs_sb_offset(0);
1081 	flags |= FMODE_EXCL;
1082 	mutex_lock(&uuid_mutex);
1083 
1084 	bdev = blkdev_get_by_path(path, flags, holder);
1085 	if (IS_ERR(bdev)) {
1086 		ret = PTR_ERR(bdev);
1087 		goto error;
1088 	}
1089 
1090 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1091 		goto error_bdev_put;
1092 
1093 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1094 	transid = btrfs_super_generation(disk_super);
1095 	total_devices = btrfs_super_num_devices(disk_super);
1096 
1097 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1098 	if (ret > 0) {
1099 		if (disk_super->label[0]) {
1100 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1101 		} else {
1102 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1103 		}
1104 
1105 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1106 		ret = 0;
1107 	}
1108 	if (!ret && fs_devices_ret)
1109 		(*fs_devices_ret)->total_devices = total_devices;
1110 
1111 	btrfs_release_disk_super(page);
1112 
1113 error_bdev_put:
1114 	blkdev_put(bdev, flags);
1115 error:
1116 	mutex_unlock(&uuid_mutex);
1117 	return ret;
1118 }
1119 
1120 /* helper to account the used device space in the range */
1121 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1122 				   u64 end, u64 *length)
1123 {
1124 	struct btrfs_key key;
1125 	struct btrfs_root *root = device->dev_root;
1126 	struct btrfs_dev_extent *dev_extent;
1127 	struct btrfs_path *path;
1128 	u64 extent_end;
1129 	int ret;
1130 	int slot;
1131 	struct extent_buffer *l;
1132 
1133 	*length = 0;
1134 
1135 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1136 		return 0;
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path)
1140 		return -ENOMEM;
1141 	path->reada = READA_FORWARD;
1142 
1143 	key.objectid = device->devid;
1144 	key.offset = start;
1145 	key.type = BTRFS_DEV_EXTENT_KEY;
1146 
1147 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1148 	if (ret < 0)
1149 		goto out;
1150 	if (ret > 0) {
1151 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1152 		if (ret < 0)
1153 			goto out;
1154 	}
1155 
1156 	while (1) {
1157 		l = path->nodes[0];
1158 		slot = path->slots[0];
1159 		if (slot >= btrfs_header_nritems(l)) {
1160 			ret = btrfs_next_leaf(root, path);
1161 			if (ret == 0)
1162 				continue;
1163 			if (ret < 0)
1164 				goto out;
1165 
1166 			break;
1167 		}
1168 		btrfs_item_key_to_cpu(l, &key, slot);
1169 
1170 		if (key.objectid < device->devid)
1171 			goto next;
1172 
1173 		if (key.objectid > device->devid)
1174 			break;
1175 
1176 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1177 			goto next;
1178 
1179 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1180 		extent_end = key.offset + btrfs_dev_extent_length(l,
1181 								  dev_extent);
1182 		if (key.offset <= start && extent_end > end) {
1183 			*length = end - start + 1;
1184 			break;
1185 		} else if (key.offset <= start && extent_end > start)
1186 			*length += extent_end - start;
1187 		else if (key.offset > start && extent_end <= end)
1188 			*length += extent_end - key.offset;
1189 		else if (key.offset > start && key.offset <= end) {
1190 			*length += end - key.offset + 1;
1191 			break;
1192 		} else if (key.offset > end)
1193 			break;
1194 
1195 next:
1196 		path->slots[0]++;
1197 	}
1198 	ret = 0;
1199 out:
1200 	btrfs_free_path(path);
1201 	return ret;
1202 }
1203 
1204 static int contains_pending_extent(struct btrfs_transaction *transaction,
1205 				   struct btrfs_device *device,
1206 				   u64 *start, u64 len)
1207 {
1208 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1209 	struct extent_map *em;
1210 	struct list_head *search_list = &fs_info->pinned_chunks;
1211 	int ret = 0;
1212 	u64 physical_start = *start;
1213 
1214 	if (transaction)
1215 		search_list = &transaction->pending_chunks;
1216 again:
1217 	list_for_each_entry(em, search_list, list) {
1218 		struct map_lookup *map;
1219 		int i;
1220 
1221 		map = em->map_lookup;
1222 		for (i = 0; i < map->num_stripes; i++) {
1223 			u64 end;
1224 
1225 			if (map->stripes[i].dev != device)
1226 				continue;
1227 			if (map->stripes[i].physical >= physical_start + len ||
1228 			    map->stripes[i].physical + em->orig_block_len <=
1229 			    physical_start)
1230 				continue;
1231 			/*
1232 			 * Make sure that while processing the pinned list we do
1233 			 * not override our *start with a lower value, because
1234 			 * we can have pinned chunks that fall within this
1235 			 * device hole and that have lower physical addresses
1236 			 * than the pending chunks we processed before. If we
1237 			 * do not take this special care we can end up getting
1238 			 * 2 pending chunks that start at the same physical
1239 			 * device offsets because the end offset of a pinned
1240 			 * chunk can be equal to the start offset of some
1241 			 * pending chunk.
1242 			 */
1243 			end = map->stripes[i].physical + em->orig_block_len;
1244 			if (end > *start) {
1245 				*start = end;
1246 				ret = 1;
1247 			}
1248 		}
1249 	}
1250 	if (search_list != &fs_info->pinned_chunks) {
1251 		search_list = &fs_info->pinned_chunks;
1252 		goto again;
1253 	}
1254 
1255 	return ret;
1256 }
1257 
1258 
1259 /*
1260  * find_free_dev_extent_start - find free space in the specified device
1261  * @device:	  the device which we search the free space in
1262  * @num_bytes:	  the size of the free space that we need
1263  * @search_start: the position from which to begin the search
1264  * @start:	  store the start of the free space.
1265  * @len:	  the size of the free space. that we find, or the size
1266  *		  of the max free space if we don't find suitable free space
1267  *
1268  * this uses a pretty simple search, the expectation is that it is
1269  * called very infrequently and that a given device has a small number
1270  * of extents
1271  *
1272  * @start is used to store the start of the free space if we find. But if we
1273  * don't find suitable free space, it will be used to store the start position
1274  * of the max free space.
1275  *
1276  * @len is used to store the size of the free space that we find.
1277  * But if we don't find suitable free space, it is used to store the size of
1278  * the max free space.
1279  */
1280 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1281 			       struct btrfs_device *device, u64 num_bytes,
1282 			       u64 search_start, u64 *start, u64 *len)
1283 {
1284 	struct btrfs_key key;
1285 	struct btrfs_root *root = device->dev_root;
1286 	struct btrfs_dev_extent *dev_extent;
1287 	struct btrfs_path *path;
1288 	u64 hole_size;
1289 	u64 max_hole_start;
1290 	u64 max_hole_size;
1291 	u64 extent_end;
1292 	u64 search_end = device->total_bytes;
1293 	int ret;
1294 	int slot;
1295 	struct extent_buffer *l;
1296 	u64 min_search_start;
1297 
1298 	/*
1299 	 * We don't want to overwrite the superblock on the drive nor any area
1300 	 * used by the boot loader (grub for example), so we make sure to start
1301 	 * at an offset of at least 1MB.
1302 	 */
1303 	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1304 	search_start = max(search_start, min_search_start);
1305 
1306 	path = btrfs_alloc_path();
1307 	if (!path)
1308 		return -ENOMEM;
1309 
1310 	max_hole_start = search_start;
1311 	max_hole_size = 0;
1312 
1313 again:
1314 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1315 		ret = -ENOSPC;
1316 		goto out;
1317 	}
1318 
1319 	path->reada = READA_FORWARD;
1320 	path->search_commit_root = 1;
1321 	path->skip_locking = 1;
1322 
1323 	key.objectid = device->devid;
1324 	key.offset = search_start;
1325 	key.type = BTRFS_DEV_EXTENT_KEY;
1326 
1327 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 	if (ret < 0)
1329 		goto out;
1330 	if (ret > 0) {
1331 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1332 		if (ret < 0)
1333 			goto out;
1334 	}
1335 
1336 	while (1) {
1337 		l = path->nodes[0];
1338 		slot = path->slots[0];
1339 		if (slot >= btrfs_header_nritems(l)) {
1340 			ret = btrfs_next_leaf(root, path);
1341 			if (ret == 0)
1342 				continue;
1343 			if (ret < 0)
1344 				goto out;
1345 
1346 			break;
1347 		}
1348 		btrfs_item_key_to_cpu(l, &key, slot);
1349 
1350 		if (key.objectid < device->devid)
1351 			goto next;
1352 
1353 		if (key.objectid > device->devid)
1354 			break;
1355 
1356 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1357 			goto next;
1358 
1359 		if (key.offset > search_start) {
1360 			hole_size = key.offset - search_start;
1361 
1362 			/*
1363 			 * Have to check before we set max_hole_start, otherwise
1364 			 * we could end up sending back this offset anyway.
1365 			 */
1366 			if (contains_pending_extent(transaction, device,
1367 						    &search_start,
1368 						    hole_size)) {
1369 				if (key.offset >= search_start) {
1370 					hole_size = key.offset - search_start;
1371 				} else {
1372 					WARN_ON_ONCE(1);
1373 					hole_size = 0;
1374 				}
1375 			}
1376 
1377 			if (hole_size > max_hole_size) {
1378 				max_hole_start = search_start;
1379 				max_hole_size = hole_size;
1380 			}
1381 
1382 			/*
1383 			 * If this free space is greater than which we need,
1384 			 * it must be the max free space that we have found
1385 			 * until now, so max_hole_start must point to the start
1386 			 * of this free space and the length of this free space
1387 			 * is stored in max_hole_size. Thus, we return
1388 			 * max_hole_start and max_hole_size and go back to the
1389 			 * caller.
1390 			 */
1391 			if (hole_size >= num_bytes) {
1392 				ret = 0;
1393 				goto out;
1394 			}
1395 		}
1396 
1397 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1398 		extent_end = key.offset + btrfs_dev_extent_length(l,
1399 								  dev_extent);
1400 		if (extent_end > search_start)
1401 			search_start = extent_end;
1402 next:
1403 		path->slots[0]++;
1404 		cond_resched();
1405 	}
1406 
1407 	/*
1408 	 * At this point, search_start should be the end of
1409 	 * allocated dev extents, and when shrinking the device,
1410 	 * search_end may be smaller than search_start.
1411 	 */
1412 	if (search_end > search_start) {
1413 		hole_size = search_end - search_start;
1414 
1415 		if (contains_pending_extent(transaction, device, &search_start,
1416 					    hole_size)) {
1417 			btrfs_release_path(path);
1418 			goto again;
1419 		}
1420 
1421 		if (hole_size > max_hole_size) {
1422 			max_hole_start = search_start;
1423 			max_hole_size = hole_size;
1424 		}
1425 	}
1426 
1427 	/* See above. */
1428 	if (max_hole_size < num_bytes)
1429 		ret = -ENOSPC;
1430 	else
1431 		ret = 0;
1432 
1433 out:
1434 	btrfs_free_path(path);
1435 	*start = max_hole_start;
1436 	if (len)
1437 		*len = max_hole_size;
1438 	return ret;
1439 }
1440 
1441 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1442 			 struct btrfs_device *device, u64 num_bytes,
1443 			 u64 *start, u64 *len)
1444 {
1445 	/* FIXME use last free of some kind */
1446 	return find_free_dev_extent_start(trans->transaction, device,
1447 					  num_bytes, 0, start, len);
1448 }
1449 
1450 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1451 			  struct btrfs_device *device,
1452 			  u64 start, u64 *dev_extent_len)
1453 {
1454 	int ret;
1455 	struct btrfs_path *path;
1456 	struct btrfs_root *root = device->dev_root;
1457 	struct btrfs_key key;
1458 	struct btrfs_key found_key;
1459 	struct extent_buffer *leaf = NULL;
1460 	struct btrfs_dev_extent *extent = NULL;
1461 
1462 	path = btrfs_alloc_path();
1463 	if (!path)
1464 		return -ENOMEM;
1465 
1466 	key.objectid = device->devid;
1467 	key.offset = start;
1468 	key.type = BTRFS_DEV_EXTENT_KEY;
1469 again:
1470 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1471 	if (ret > 0) {
1472 		ret = btrfs_previous_item(root, path, key.objectid,
1473 					  BTRFS_DEV_EXTENT_KEY);
1474 		if (ret)
1475 			goto out;
1476 		leaf = path->nodes[0];
1477 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1478 		extent = btrfs_item_ptr(leaf, path->slots[0],
1479 					struct btrfs_dev_extent);
1480 		BUG_ON(found_key.offset > start || found_key.offset +
1481 		       btrfs_dev_extent_length(leaf, extent) < start);
1482 		key = found_key;
1483 		btrfs_release_path(path);
1484 		goto again;
1485 	} else if (ret == 0) {
1486 		leaf = path->nodes[0];
1487 		extent = btrfs_item_ptr(leaf, path->slots[0],
1488 					struct btrfs_dev_extent);
1489 	} else {
1490 		btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1491 		goto out;
1492 	}
1493 
1494 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1495 
1496 	ret = btrfs_del_item(trans, root, path);
1497 	if (ret) {
1498 		btrfs_handle_fs_error(root->fs_info, ret,
1499 			    "Failed to remove dev extent item");
1500 	} else {
1501 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1502 	}
1503 out:
1504 	btrfs_free_path(path);
1505 	return ret;
1506 }
1507 
1508 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1509 				  struct btrfs_device *device,
1510 				  u64 chunk_tree, u64 chunk_objectid,
1511 				  u64 chunk_offset, u64 start, u64 num_bytes)
1512 {
1513 	int ret;
1514 	struct btrfs_path *path;
1515 	struct btrfs_root *root = device->dev_root;
1516 	struct btrfs_dev_extent *extent;
1517 	struct extent_buffer *leaf;
1518 	struct btrfs_key key;
1519 
1520 	WARN_ON(!device->in_fs_metadata);
1521 	WARN_ON(device->is_tgtdev_for_dev_replace);
1522 	path = btrfs_alloc_path();
1523 	if (!path)
1524 		return -ENOMEM;
1525 
1526 	key.objectid = device->devid;
1527 	key.offset = start;
1528 	key.type = BTRFS_DEV_EXTENT_KEY;
1529 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1530 				      sizeof(*extent));
1531 	if (ret)
1532 		goto out;
1533 
1534 	leaf = path->nodes[0];
1535 	extent = btrfs_item_ptr(leaf, path->slots[0],
1536 				struct btrfs_dev_extent);
1537 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1538 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1539 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1540 
1541 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1542 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1543 
1544 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1545 	btrfs_mark_buffer_dirty(leaf);
1546 out:
1547 	btrfs_free_path(path);
1548 	return ret;
1549 }
1550 
1551 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1552 {
1553 	struct extent_map_tree *em_tree;
1554 	struct extent_map *em;
1555 	struct rb_node *n;
1556 	u64 ret = 0;
1557 
1558 	em_tree = &fs_info->mapping_tree.map_tree;
1559 	read_lock(&em_tree->lock);
1560 	n = rb_last(&em_tree->map);
1561 	if (n) {
1562 		em = rb_entry(n, struct extent_map, rb_node);
1563 		ret = em->start + em->len;
1564 	}
1565 	read_unlock(&em_tree->lock);
1566 
1567 	return ret;
1568 }
1569 
1570 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1571 				    u64 *devid_ret)
1572 {
1573 	int ret;
1574 	struct btrfs_key key;
1575 	struct btrfs_key found_key;
1576 	struct btrfs_path *path;
1577 
1578 	path = btrfs_alloc_path();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1583 	key.type = BTRFS_DEV_ITEM_KEY;
1584 	key.offset = (u64)-1;
1585 
1586 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1587 	if (ret < 0)
1588 		goto error;
1589 
1590 	BUG_ON(ret == 0); /* Corruption */
1591 
1592 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1593 				  BTRFS_DEV_ITEMS_OBJECTID,
1594 				  BTRFS_DEV_ITEM_KEY);
1595 	if (ret) {
1596 		*devid_ret = 1;
1597 	} else {
1598 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1599 				      path->slots[0]);
1600 		*devid_ret = found_key.offset + 1;
1601 	}
1602 	ret = 0;
1603 error:
1604 	btrfs_free_path(path);
1605 	return ret;
1606 }
1607 
1608 /*
1609  * the device information is stored in the chunk root
1610  * the btrfs_device struct should be fully filled in
1611  */
1612 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1613 			    struct btrfs_root *root,
1614 			    struct btrfs_device *device)
1615 {
1616 	int ret;
1617 	struct btrfs_path *path;
1618 	struct btrfs_dev_item *dev_item;
1619 	struct extent_buffer *leaf;
1620 	struct btrfs_key key;
1621 	unsigned long ptr;
1622 
1623 	root = root->fs_info->chunk_root;
1624 
1625 	path = btrfs_alloc_path();
1626 	if (!path)
1627 		return -ENOMEM;
1628 
1629 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1630 	key.type = BTRFS_DEV_ITEM_KEY;
1631 	key.offset = device->devid;
1632 
1633 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1634 				      sizeof(*dev_item));
1635 	if (ret)
1636 		goto out;
1637 
1638 	leaf = path->nodes[0];
1639 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1640 
1641 	btrfs_set_device_id(leaf, dev_item, device->devid);
1642 	btrfs_set_device_generation(leaf, dev_item, 0);
1643 	btrfs_set_device_type(leaf, dev_item, device->type);
1644 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1645 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1646 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1647 	btrfs_set_device_total_bytes(leaf, dev_item,
1648 				     btrfs_device_get_disk_total_bytes(device));
1649 	btrfs_set_device_bytes_used(leaf, dev_item,
1650 				    btrfs_device_get_bytes_used(device));
1651 	btrfs_set_device_group(leaf, dev_item, 0);
1652 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1653 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1654 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1655 
1656 	ptr = btrfs_device_uuid(dev_item);
1657 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1658 	ptr = btrfs_device_fsid(dev_item);
1659 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1660 	btrfs_mark_buffer_dirty(leaf);
1661 
1662 	ret = 0;
1663 out:
1664 	btrfs_free_path(path);
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Function to update ctime/mtime for a given device path.
1670  * Mainly used for ctime/mtime based probe like libblkid.
1671  */
1672 static void update_dev_time(char *path_name)
1673 {
1674 	struct file *filp;
1675 
1676 	filp = filp_open(path_name, O_RDWR, 0);
1677 	if (IS_ERR(filp))
1678 		return;
1679 	file_update_time(filp);
1680 	filp_close(filp, NULL);
1681 }
1682 
1683 static int btrfs_rm_dev_item(struct btrfs_root *root,
1684 			     struct btrfs_device *device)
1685 {
1686 	int ret;
1687 	struct btrfs_path *path;
1688 	struct btrfs_key key;
1689 	struct btrfs_trans_handle *trans;
1690 
1691 	root = root->fs_info->chunk_root;
1692 
1693 	path = btrfs_alloc_path();
1694 	if (!path)
1695 		return -ENOMEM;
1696 
1697 	trans = btrfs_start_transaction(root, 0);
1698 	if (IS_ERR(trans)) {
1699 		btrfs_free_path(path);
1700 		return PTR_ERR(trans);
1701 	}
1702 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1703 	key.type = BTRFS_DEV_ITEM_KEY;
1704 	key.offset = device->devid;
1705 
1706 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1707 	if (ret < 0)
1708 		goto out;
1709 
1710 	if (ret > 0) {
1711 		ret = -ENOENT;
1712 		goto out;
1713 	}
1714 
1715 	ret = btrfs_del_item(trans, root, path);
1716 	if (ret)
1717 		goto out;
1718 out:
1719 	btrfs_free_path(path);
1720 	btrfs_commit_transaction(trans, root);
1721 	return ret;
1722 }
1723 
1724 /*
1725  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1726  * filesystem. It's up to the caller to adjust that number regarding eg. device
1727  * replace.
1728  */
1729 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1730 		u64 num_devices)
1731 {
1732 	u64 all_avail;
1733 	unsigned seq;
1734 	int i;
1735 
1736 	do {
1737 		seq = read_seqbegin(&fs_info->profiles_lock);
1738 
1739 		all_avail = fs_info->avail_data_alloc_bits |
1740 			    fs_info->avail_system_alloc_bits |
1741 			    fs_info->avail_metadata_alloc_bits;
1742 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1743 
1744 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1745 		if (!(all_avail & btrfs_raid_group[i]))
1746 			continue;
1747 
1748 		if (num_devices < btrfs_raid_array[i].devs_min) {
1749 			int ret = btrfs_raid_mindev_error[i];
1750 
1751 			if (ret)
1752 				return ret;
1753 		}
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1760 					struct btrfs_device *device)
1761 {
1762 	struct btrfs_device *next_device;
1763 
1764 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1765 		if (next_device != device &&
1766 			!next_device->missing && next_device->bdev)
1767 			return next_device;
1768 	}
1769 
1770 	return NULL;
1771 }
1772 
1773 /*
1774  * Helper function to check if the given device is part of s_bdev / latest_bdev
1775  * and replace it with the provided or the next active device, in the context
1776  * where this function called, there should be always be another device (or
1777  * this_dev) which is active.
1778  */
1779 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1780 		struct btrfs_device *device, struct btrfs_device *this_dev)
1781 {
1782 	struct btrfs_device *next_device;
1783 
1784 	if (this_dev)
1785 		next_device = this_dev;
1786 	else
1787 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1788 								device);
1789 	ASSERT(next_device);
1790 
1791 	if (fs_info->sb->s_bdev &&
1792 			(fs_info->sb->s_bdev == device->bdev))
1793 		fs_info->sb->s_bdev = next_device->bdev;
1794 
1795 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1796 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1797 }
1798 
1799 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1800 {
1801 	struct btrfs_device *device;
1802 	struct btrfs_fs_devices *cur_devices;
1803 	u64 num_devices;
1804 	int ret = 0;
1805 	bool clear_super = false;
1806 	char *dev_name = NULL;
1807 
1808 	mutex_lock(&uuid_mutex);
1809 
1810 	num_devices = root->fs_info->fs_devices->num_devices;
1811 	btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1812 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1813 		WARN_ON(num_devices < 1);
1814 		num_devices--;
1815 	}
1816 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1817 
1818 	ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1819 	if (ret)
1820 		goto out;
1821 
1822 	ret = btrfs_find_device_by_devspec(root, devid, device_path,
1823 				&device);
1824 	if (ret)
1825 		goto out;
1826 
1827 	if (device->is_tgtdev_for_dev_replace) {
1828 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1829 		goto out;
1830 	}
1831 
1832 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1833 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1834 		goto out;
1835 	}
1836 
1837 	if (device->writeable) {
1838 		lock_chunks(root);
1839 		list_del_init(&device->dev_alloc_list);
1840 		device->fs_devices->rw_devices--;
1841 		unlock_chunks(root);
1842 		dev_name = kstrdup(device->name->str, GFP_KERNEL);
1843 		if (!dev_name) {
1844 			ret = -ENOMEM;
1845 			goto error_undo;
1846 		}
1847 		clear_super = true;
1848 	}
1849 
1850 	mutex_unlock(&uuid_mutex);
1851 	ret = btrfs_shrink_device(device, 0);
1852 	mutex_lock(&uuid_mutex);
1853 	if (ret)
1854 		goto error_undo;
1855 
1856 	/*
1857 	 * TODO: the superblock still includes this device in its num_devices
1858 	 * counter although write_all_supers() is not locked out. This
1859 	 * could give a filesystem state which requires a degraded mount.
1860 	 */
1861 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1862 	if (ret)
1863 		goto error_undo;
1864 
1865 	device->in_fs_metadata = 0;
1866 	btrfs_scrub_cancel_dev(root->fs_info, device);
1867 
1868 	/*
1869 	 * the device list mutex makes sure that we don't change
1870 	 * the device list while someone else is writing out all
1871 	 * the device supers. Whoever is writing all supers, should
1872 	 * lock the device list mutex before getting the number of
1873 	 * devices in the super block (super_copy). Conversely,
1874 	 * whoever updates the number of devices in the super block
1875 	 * (super_copy) should hold the device list mutex.
1876 	 */
1877 
1878 	cur_devices = device->fs_devices;
1879 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1880 	list_del_rcu(&device->dev_list);
1881 
1882 	device->fs_devices->num_devices--;
1883 	device->fs_devices->total_devices--;
1884 
1885 	if (device->missing)
1886 		device->fs_devices->missing_devices--;
1887 
1888 	btrfs_assign_next_active_device(root->fs_info, device, NULL);
1889 
1890 	if (device->bdev) {
1891 		device->fs_devices->open_devices--;
1892 		/* remove sysfs entry */
1893 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1894 	}
1895 
1896 	call_rcu(&device->rcu, free_device);
1897 
1898 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1899 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1900 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1901 
1902 	if (cur_devices->open_devices == 0) {
1903 		struct btrfs_fs_devices *fs_devices;
1904 		fs_devices = root->fs_info->fs_devices;
1905 		while (fs_devices) {
1906 			if (fs_devices->seed == cur_devices) {
1907 				fs_devices->seed = cur_devices->seed;
1908 				break;
1909 			}
1910 			fs_devices = fs_devices->seed;
1911 		}
1912 		cur_devices->seed = NULL;
1913 		__btrfs_close_devices(cur_devices);
1914 		free_fs_devices(cur_devices);
1915 	}
1916 
1917 	root->fs_info->num_tolerated_disk_barrier_failures =
1918 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1919 
1920 	/*
1921 	 * at this point, the device is zero sized.  We want to
1922 	 * remove it from the devices list and zero out the old super
1923 	 */
1924 	if (clear_super) {
1925 		struct block_device *bdev;
1926 
1927 		bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1928 						root->fs_info->bdev_holder);
1929 		if (!IS_ERR(bdev)) {
1930 			btrfs_scratch_superblocks(bdev, dev_name);
1931 			blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1932 		}
1933 	}
1934 
1935 out:
1936 	kfree(dev_name);
1937 
1938 	mutex_unlock(&uuid_mutex);
1939 	return ret;
1940 
1941 error_undo:
1942 	if (device->writeable) {
1943 		lock_chunks(root);
1944 		list_add(&device->dev_alloc_list,
1945 			 &root->fs_info->fs_devices->alloc_list);
1946 		device->fs_devices->rw_devices++;
1947 		unlock_chunks(root);
1948 	}
1949 	goto out;
1950 }
1951 
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1953 					struct btrfs_device *srcdev)
1954 {
1955 	struct btrfs_fs_devices *fs_devices;
1956 
1957 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1958 
1959 	/*
1960 	 * in case of fs with no seed, srcdev->fs_devices will point
1961 	 * to fs_devices of fs_info. However when the dev being replaced is
1962 	 * a seed dev it will point to the seed's local fs_devices. In short
1963 	 * srcdev will have its correct fs_devices in both the cases.
1964 	 */
1965 	fs_devices = srcdev->fs_devices;
1966 
1967 	list_del_rcu(&srcdev->dev_list);
1968 	list_del_rcu(&srcdev->dev_alloc_list);
1969 	fs_devices->num_devices--;
1970 	if (srcdev->missing)
1971 		fs_devices->missing_devices--;
1972 
1973 	if (srcdev->writeable)
1974 		fs_devices->rw_devices--;
1975 
1976 	if (srcdev->bdev)
1977 		fs_devices->open_devices--;
1978 }
1979 
1980 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1981 				      struct btrfs_device *srcdev)
1982 {
1983 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1984 
1985 	if (srcdev->writeable) {
1986 		/* zero out the old super if it is writable */
1987 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1988 	}
1989 	call_rcu(&srcdev->rcu, free_device);
1990 
1991 	/*
1992 	 * unless fs_devices is seed fs, num_devices shouldn't go
1993 	 * zero
1994 	 */
1995 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1996 
1997 	/* if this is no devs we rather delete the fs_devices */
1998 	if (!fs_devices->num_devices) {
1999 		struct btrfs_fs_devices *tmp_fs_devices;
2000 
2001 		tmp_fs_devices = fs_info->fs_devices;
2002 		while (tmp_fs_devices) {
2003 			if (tmp_fs_devices->seed == fs_devices) {
2004 				tmp_fs_devices->seed = fs_devices->seed;
2005 				break;
2006 			}
2007 			tmp_fs_devices = tmp_fs_devices->seed;
2008 		}
2009 		fs_devices->seed = NULL;
2010 		__btrfs_close_devices(fs_devices);
2011 		free_fs_devices(fs_devices);
2012 	}
2013 }
2014 
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 				      struct btrfs_device *tgtdev)
2017 {
2018 	mutex_lock(&uuid_mutex);
2019 	WARN_ON(!tgtdev);
2020 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2021 
2022 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2023 
2024 	if (tgtdev->bdev)
2025 		fs_info->fs_devices->open_devices--;
2026 
2027 	fs_info->fs_devices->num_devices--;
2028 
2029 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2030 
2031 	list_del_rcu(&tgtdev->dev_list);
2032 
2033 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2034 	mutex_unlock(&uuid_mutex);
2035 
2036 	/*
2037 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2038 	 * may lead to a call to btrfs_show_devname() which will try
2039 	 * to hold device_list_mutex. And here this device
2040 	 * is already out of device list, so we don't have to hold
2041 	 * the device_list_mutex lock.
2042 	 */
2043 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2044 	call_rcu(&tgtdev->rcu, free_device);
2045 }
2046 
2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 				     struct btrfs_device **device)
2049 {
2050 	int ret = 0;
2051 	struct btrfs_super_block *disk_super;
2052 	u64 devid;
2053 	u8 *dev_uuid;
2054 	struct block_device *bdev;
2055 	struct buffer_head *bh;
2056 
2057 	*device = NULL;
2058 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 	if (ret)
2061 		return ret;
2062 	disk_super = (struct btrfs_super_block *)bh->b_data;
2063 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 	dev_uuid = disk_super->dev_item.uuid;
2065 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 				    disk_super->fsid);
2067 	brelse(bh);
2068 	if (!*device)
2069 		ret = -ENOENT;
2070 	blkdev_put(bdev, FMODE_READ);
2071 	return ret;
2072 }
2073 
2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 					 char *device_path,
2076 					 struct btrfs_device **device)
2077 {
2078 	*device = NULL;
2079 	if (strcmp(device_path, "missing") == 0) {
2080 		struct list_head *devices;
2081 		struct btrfs_device *tmp;
2082 
2083 		devices = &root->fs_info->fs_devices->devices;
2084 		/*
2085 		 * It is safe to read the devices since the volume_mutex
2086 		 * is held by the caller.
2087 		 */
2088 		list_for_each_entry(tmp, devices, dev_list) {
2089 			if (tmp->in_fs_metadata && !tmp->bdev) {
2090 				*device = tmp;
2091 				break;
2092 			}
2093 		}
2094 
2095 		if (!*device)
2096 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097 
2098 		return 0;
2099 	} else {
2100 		return btrfs_find_device_by_path(root, device_path, device);
2101 	}
2102 }
2103 
2104 /*
2105  * Lookup a device given by device id, or the path if the id is 0.
2106  */
2107 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2108 					 char *devpath,
2109 					 struct btrfs_device **device)
2110 {
2111 	int ret;
2112 
2113 	if (devid) {
2114 		ret = 0;
2115 		*device = btrfs_find_device(root->fs_info, devid, NULL,
2116 					    NULL);
2117 		if (!*device)
2118 			ret = -ENOENT;
2119 	} else {
2120 		if (!devpath || !devpath[0])
2121 			return -EINVAL;
2122 
2123 		ret = btrfs_find_device_missing_or_by_path(root, devpath,
2124 							   device);
2125 	}
2126 	return ret;
2127 }
2128 
2129 /*
2130  * does all the dirty work required for changing file system's UUID.
2131  */
2132 static int btrfs_prepare_sprout(struct btrfs_root *root)
2133 {
2134 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2135 	struct btrfs_fs_devices *old_devices;
2136 	struct btrfs_fs_devices *seed_devices;
2137 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2138 	struct btrfs_device *device;
2139 	u64 super_flags;
2140 
2141 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2142 	if (!fs_devices->seeding)
2143 		return -EINVAL;
2144 
2145 	seed_devices = __alloc_fs_devices();
2146 	if (IS_ERR(seed_devices))
2147 		return PTR_ERR(seed_devices);
2148 
2149 	old_devices = clone_fs_devices(fs_devices);
2150 	if (IS_ERR(old_devices)) {
2151 		kfree(seed_devices);
2152 		return PTR_ERR(old_devices);
2153 	}
2154 
2155 	list_add(&old_devices->list, &fs_uuids);
2156 
2157 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2158 	seed_devices->opened = 1;
2159 	INIT_LIST_HEAD(&seed_devices->devices);
2160 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2161 	mutex_init(&seed_devices->device_list_mutex);
2162 
2163 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2164 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2165 			      synchronize_rcu);
2166 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2167 		device->fs_devices = seed_devices;
2168 
2169 	lock_chunks(root);
2170 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2171 	unlock_chunks(root);
2172 
2173 	fs_devices->seeding = 0;
2174 	fs_devices->num_devices = 0;
2175 	fs_devices->open_devices = 0;
2176 	fs_devices->missing_devices = 0;
2177 	fs_devices->rotating = 0;
2178 	fs_devices->seed = seed_devices;
2179 
2180 	generate_random_uuid(fs_devices->fsid);
2181 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2182 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2183 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2184 
2185 	super_flags = btrfs_super_flags(disk_super) &
2186 		      ~BTRFS_SUPER_FLAG_SEEDING;
2187 	btrfs_set_super_flags(disk_super, super_flags);
2188 
2189 	return 0;
2190 }
2191 
2192 /*
2193  * Store the expected generation for seed devices in device items.
2194  */
2195 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2196 			       struct btrfs_root *root)
2197 {
2198 	struct btrfs_path *path;
2199 	struct extent_buffer *leaf;
2200 	struct btrfs_dev_item *dev_item;
2201 	struct btrfs_device *device;
2202 	struct btrfs_key key;
2203 	u8 fs_uuid[BTRFS_UUID_SIZE];
2204 	u8 dev_uuid[BTRFS_UUID_SIZE];
2205 	u64 devid;
2206 	int ret;
2207 
2208 	path = btrfs_alloc_path();
2209 	if (!path)
2210 		return -ENOMEM;
2211 
2212 	root = root->fs_info->chunk_root;
2213 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2214 	key.offset = 0;
2215 	key.type = BTRFS_DEV_ITEM_KEY;
2216 
2217 	while (1) {
2218 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2219 		if (ret < 0)
2220 			goto error;
2221 
2222 		leaf = path->nodes[0];
2223 next_slot:
2224 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2225 			ret = btrfs_next_leaf(root, path);
2226 			if (ret > 0)
2227 				break;
2228 			if (ret < 0)
2229 				goto error;
2230 			leaf = path->nodes[0];
2231 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2232 			btrfs_release_path(path);
2233 			continue;
2234 		}
2235 
2236 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2237 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2238 		    key.type != BTRFS_DEV_ITEM_KEY)
2239 			break;
2240 
2241 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2242 					  struct btrfs_dev_item);
2243 		devid = btrfs_device_id(leaf, dev_item);
2244 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2245 				   BTRFS_UUID_SIZE);
2246 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2247 				   BTRFS_UUID_SIZE);
2248 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2249 					   fs_uuid);
2250 		BUG_ON(!device); /* Logic error */
2251 
2252 		if (device->fs_devices->seeding) {
2253 			btrfs_set_device_generation(leaf, dev_item,
2254 						    device->generation);
2255 			btrfs_mark_buffer_dirty(leaf);
2256 		}
2257 
2258 		path->slots[0]++;
2259 		goto next_slot;
2260 	}
2261 	ret = 0;
2262 error:
2263 	btrfs_free_path(path);
2264 	return ret;
2265 }
2266 
2267 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2268 {
2269 	struct request_queue *q;
2270 	struct btrfs_trans_handle *trans;
2271 	struct btrfs_device *device;
2272 	struct block_device *bdev;
2273 	struct list_head *devices;
2274 	struct super_block *sb = root->fs_info->sb;
2275 	struct rcu_string *name;
2276 	u64 tmp;
2277 	int seeding_dev = 0;
2278 	int ret = 0;
2279 
2280 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2281 		return -EROFS;
2282 
2283 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2284 				  root->fs_info->bdev_holder);
2285 	if (IS_ERR(bdev))
2286 		return PTR_ERR(bdev);
2287 
2288 	if (root->fs_info->fs_devices->seeding) {
2289 		seeding_dev = 1;
2290 		down_write(&sb->s_umount);
2291 		mutex_lock(&uuid_mutex);
2292 	}
2293 
2294 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2295 
2296 	devices = &root->fs_info->fs_devices->devices;
2297 
2298 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2299 	list_for_each_entry(device, devices, dev_list) {
2300 		if (device->bdev == bdev) {
2301 			ret = -EEXIST;
2302 			mutex_unlock(
2303 				&root->fs_info->fs_devices->device_list_mutex);
2304 			goto error;
2305 		}
2306 	}
2307 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308 
2309 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2310 	if (IS_ERR(device)) {
2311 		/* we can safely leave the fs_devices entry around */
2312 		ret = PTR_ERR(device);
2313 		goto error;
2314 	}
2315 
2316 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2317 	if (!name) {
2318 		kfree(device);
2319 		ret = -ENOMEM;
2320 		goto error;
2321 	}
2322 	rcu_assign_pointer(device->name, name);
2323 
2324 	trans = btrfs_start_transaction(root, 0);
2325 	if (IS_ERR(trans)) {
2326 		rcu_string_free(device->name);
2327 		kfree(device);
2328 		ret = PTR_ERR(trans);
2329 		goto error;
2330 	}
2331 
2332 	q = bdev_get_queue(bdev);
2333 	if (blk_queue_discard(q))
2334 		device->can_discard = 1;
2335 	device->writeable = 1;
2336 	device->generation = trans->transid;
2337 	device->io_width = root->sectorsize;
2338 	device->io_align = root->sectorsize;
2339 	device->sector_size = root->sectorsize;
2340 	device->total_bytes = i_size_read(bdev->bd_inode);
2341 	device->disk_total_bytes = device->total_bytes;
2342 	device->commit_total_bytes = device->total_bytes;
2343 	device->dev_root = root->fs_info->dev_root;
2344 	device->bdev = bdev;
2345 	device->in_fs_metadata = 1;
2346 	device->is_tgtdev_for_dev_replace = 0;
2347 	device->mode = FMODE_EXCL;
2348 	device->dev_stats_valid = 1;
2349 	set_blocksize(device->bdev, 4096);
2350 
2351 	if (seeding_dev) {
2352 		sb->s_flags &= ~MS_RDONLY;
2353 		ret = btrfs_prepare_sprout(root);
2354 		BUG_ON(ret); /* -ENOMEM */
2355 	}
2356 
2357 	device->fs_devices = root->fs_info->fs_devices;
2358 
2359 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2360 	lock_chunks(root);
2361 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2362 	list_add(&device->dev_alloc_list,
2363 		 &root->fs_info->fs_devices->alloc_list);
2364 	root->fs_info->fs_devices->num_devices++;
2365 	root->fs_info->fs_devices->open_devices++;
2366 	root->fs_info->fs_devices->rw_devices++;
2367 	root->fs_info->fs_devices->total_devices++;
2368 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2369 
2370 	spin_lock(&root->fs_info->free_chunk_lock);
2371 	root->fs_info->free_chunk_space += device->total_bytes;
2372 	spin_unlock(&root->fs_info->free_chunk_lock);
2373 
2374 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2375 		root->fs_info->fs_devices->rotating = 1;
2376 
2377 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2378 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2379 				    tmp + device->total_bytes);
2380 
2381 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2382 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2383 				    tmp + 1);
2384 
2385 	/* add sysfs device entry */
2386 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2387 
2388 	/*
2389 	 * we've got more storage, clear any full flags on the space
2390 	 * infos
2391 	 */
2392 	btrfs_clear_space_info_full(root->fs_info);
2393 
2394 	unlock_chunks(root);
2395 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2396 
2397 	if (seeding_dev) {
2398 		lock_chunks(root);
2399 		ret = init_first_rw_device(trans, root, device);
2400 		unlock_chunks(root);
2401 		if (ret) {
2402 			btrfs_abort_transaction(trans, root, ret);
2403 			goto error_trans;
2404 		}
2405 	}
2406 
2407 	ret = btrfs_add_device(trans, root, device);
2408 	if (ret) {
2409 		btrfs_abort_transaction(trans, root, ret);
2410 		goto error_trans;
2411 	}
2412 
2413 	if (seeding_dev) {
2414 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2415 
2416 		ret = btrfs_finish_sprout(trans, root);
2417 		if (ret) {
2418 			btrfs_abort_transaction(trans, root, ret);
2419 			goto error_trans;
2420 		}
2421 
2422 		/* Sprouting would change fsid of the mounted root,
2423 		 * so rename the fsid on the sysfs
2424 		 */
2425 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2426 						root->fs_info->fsid);
2427 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2428 								fsid_buf))
2429 			btrfs_warn(root->fs_info,
2430 				"sysfs: failed to create fsid for sprout");
2431 	}
2432 
2433 	root->fs_info->num_tolerated_disk_barrier_failures =
2434 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2435 	ret = btrfs_commit_transaction(trans, root);
2436 
2437 	if (seeding_dev) {
2438 		mutex_unlock(&uuid_mutex);
2439 		up_write(&sb->s_umount);
2440 
2441 		if (ret) /* transaction commit */
2442 			return ret;
2443 
2444 		ret = btrfs_relocate_sys_chunks(root);
2445 		if (ret < 0)
2446 			btrfs_handle_fs_error(root->fs_info, ret,
2447 				    "Failed to relocate sys chunks after "
2448 				    "device initialization. This can be fixed "
2449 				    "using the \"btrfs balance\" command.");
2450 		trans = btrfs_attach_transaction(root);
2451 		if (IS_ERR(trans)) {
2452 			if (PTR_ERR(trans) == -ENOENT)
2453 				return 0;
2454 			return PTR_ERR(trans);
2455 		}
2456 		ret = btrfs_commit_transaction(trans, root);
2457 	}
2458 
2459 	/* Update ctime/mtime for libblkid */
2460 	update_dev_time(device_path);
2461 	return ret;
2462 
2463 error_trans:
2464 	btrfs_end_transaction(trans, root);
2465 	rcu_string_free(device->name);
2466 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2467 	kfree(device);
2468 error:
2469 	blkdev_put(bdev, FMODE_EXCL);
2470 	if (seeding_dev) {
2471 		mutex_unlock(&uuid_mutex);
2472 		up_write(&sb->s_umount);
2473 	}
2474 	return ret;
2475 }
2476 
2477 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2478 				  struct btrfs_device *srcdev,
2479 				  struct btrfs_device **device_out)
2480 {
2481 	struct request_queue *q;
2482 	struct btrfs_device *device;
2483 	struct block_device *bdev;
2484 	struct btrfs_fs_info *fs_info = root->fs_info;
2485 	struct list_head *devices;
2486 	struct rcu_string *name;
2487 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2488 	int ret = 0;
2489 
2490 	*device_out = NULL;
2491 	if (fs_info->fs_devices->seeding) {
2492 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2493 		return -EINVAL;
2494 	}
2495 
2496 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2497 				  fs_info->bdev_holder);
2498 	if (IS_ERR(bdev)) {
2499 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2500 		return PTR_ERR(bdev);
2501 	}
2502 
2503 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2504 
2505 	devices = &fs_info->fs_devices->devices;
2506 	list_for_each_entry(device, devices, dev_list) {
2507 		if (device->bdev == bdev) {
2508 			btrfs_err(fs_info, "target device is in the filesystem!");
2509 			ret = -EEXIST;
2510 			goto error;
2511 		}
2512 	}
2513 
2514 
2515 	if (i_size_read(bdev->bd_inode) <
2516 	    btrfs_device_get_total_bytes(srcdev)) {
2517 		btrfs_err(fs_info, "target device is smaller than source device!");
2518 		ret = -EINVAL;
2519 		goto error;
2520 	}
2521 
2522 
2523 	device = btrfs_alloc_device(NULL, &devid, NULL);
2524 	if (IS_ERR(device)) {
2525 		ret = PTR_ERR(device);
2526 		goto error;
2527 	}
2528 
2529 	name = rcu_string_strdup(device_path, GFP_NOFS);
2530 	if (!name) {
2531 		kfree(device);
2532 		ret = -ENOMEM;
2533 		goto error;
2534 	}
2535 	rcu_assign_pointer(device->name, name);
2536 
2537 	q = bdev_get_queue(bdev);
2538 	if (blk_queue_discard(q))
2539 		device->can_discard = 1;
2540 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2541 	device->writeable = 1;
2542 	device->generation = 0;
2543 	device->io_width = root->sectorsize;
2544 	device->io_align = root->sectorsize;
2545 	device->sector_size = root->sectorsize;
2546 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2547 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2548 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2549 	ASSERT(list_empty(&srcdev->resized_list));
2550 	device->commit_total_bytes = srcdev->commit_total_bytes;
2551 	device->commit_bytes_used = device->bytes_used;
2552 	device->dev_root = fs_info->dev_root;
2553 	device->bdev = bdev;
2554 	device->in_fs_metadata = 1;
2555 	device->is_tgtdev_for_dev_replace = 1;
2556 	device->mode = FMODE_EXCL;
2557 	device->dev_stats_valid = 1;
2558 	set_blocksize(device->bdev, 4096);
2559 	device->fs_devices = fs_info->fs_devices;
2560 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2561 	fs_info->fs_devices->num_devices++;
2562 	fs_info->fs_devices->open_devices++;
2563 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2564 
2565 	*device_out = device;
2566 	return ret;
2567 
2568 error:
2569 	blkdev_put(bdev, FMODE_EXCL);
2570 	return ret;
2571 }
2572 
2573 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2574 					      struct btrfs_device *tgtdev)
2575 {
2576 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2577 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2578 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2579 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2580 	tgtdev->dev_root = fs_info->dev_root;
2581 	tgtdev->in_fs_metadata = 1;
2582 }
2583 
2584 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2585 					struct btrfs_device *device)
2586 {
2587 	int ret;
2588 	struct btrfs_path *path;
2589 	struct btrfs_root *root;
2590 	struct btrfs_dev_item *dev_item;
2591 	struct extent_buffer *leaf;
2592 	struct btrfs_key key;
2593 
2594 	root = device->dev_root->fs_info->chunk_root;
2595 
2596 	path = btrfs_alloc_path();
2597 	if (!path)
2598 		return -ENOMEM;
2599 
2600 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2601 	key.type = BTRFS_DEV_ITEM_KEY;
2602 	key.offset = device->devid;
2603 
2604 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2605 	if (ret < 0)
2606 		goto out;
2607 
2608 	if (ret > 0) {
2609 		ret = -ENOENT;
2610 		goto out;
2611 	}
2612 
2613 	leaf = path->nodes[0];
2614 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2615 
2616 	btrfs_set_device_id(leaf, dev_item, device->devid);
2617 	btrfs_set_device_type(leaf, dev_item, device->type);
2618 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2619 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2620 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2621 	btrfs_set_device_total_bytes(leaf, dev_item,
2622 				     btrfs_device_get_disk_total_bytes(device));
2623 	btrfs_set_device_bytes_used(leaf, dev_item,
2624 				    btrfs_device_get_bytes_used(device));
2625 	btrfs_mark_buffer_dirty(leaf);
2626 
2627 out:
2628 	btrfs_free_path(path);
2629 	return ret;
2630 }
2631 
2632 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2633 		      struct btrfs_device *device, u64 new_size)
2634 {
2635 	struct btrfs_super_block *super_copy =
2636 		device->dev_root->fs_info->super_copy;
2637 	struct btrfs_fs_devices *fs_devices;
2638 	u64 old_total;
2639 	u64 diff;
2640 
2641 	if (!device->writeable)
2642 		return -EACCES;
2643 
2644 	lock_chunks(device->dev_root);
2645 	old_total = btrfs_super_total_bytes(super_copy);
2646 	diff = new_size - device->total_bytes;
2647 
2648 	if (new_size <= device->total_bytes ||
2649 	    device->is_tgtdev_for_dev_replace) {
2650 		unlock_chunks(device->dev_root);
2651 		return -EINVAL;
2652 	}
2653 
2654 	fs_devices = device->dev_root->fs_info->fs_devices;
2655 
2656 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2657 	device->fs_devices->total_rw_bytes += diff;
2658 
2659 	btrfs_device_set_total_bytes(device, new_size);
2660 	btrfs_device_set_disk_total_bytes(device, new_size);
2661 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2662 	if (list_empty(&device->resized_list))
2663 		list_add_tail(&device->resized_list,
2664 			      &fs_devices->resized_devices);
2665 	unlock_chunks(device->dev_root);
2666 
2667 	return btrfs_update_device(trans, device);
2668 }
2669 
2670 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2671 			    struct btrfs_root *root, u64 chunk_objectid,
2672 			    u64 chunk_offset)
2673 {
2674 	int ret;
2675 	struct btrfs_path *path;
2676 	struct btrfs_key key;
2677 
2678 	root = root->fs_info->chunk_root;
2679 	path = btrfs_alloc_path();
2680 	if (!path)
2681 		return -ENOMEM;
2682 
2683 	key.objectid = chunk_objectid;
2684 	key.offset = chunk_offset;
2685 	key.type = BTRFS_CHUNK_ITEM_KEY;
2686 
2687 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2688 	if (ret < 0)
2689 		goto out;
2690 	else if (ret > 0) { /* Logic error or corruption */
2691 		btrfs_handle_fs_error(root->fs_info, -ENOENT,
2692 			    "Failed lookup while freeing chunk.");
2693 		ret = -ENOENT;
2694 		goto out;
2695 	}
2696 
2697 	ret = btrfs_del_item(trans, root, path);
2698 	if (ret < 0)
2699 		btrfs_handle_fs_error(root->fs_info, ret,
2700 			    "Failed to delete chunk item.");
2701 out:
2702 	btrfs_free_path(path);
2703 	return ret;
2704 }
2705 
2706 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2707 			chunk_offset)
2708 {
2709 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2710 	struct btrfs_disk_key *disk_key;
2711 	struct btrfs_chunk *chunk;
2712 	u8 *ptr;
2713 	int ret = 0;
2714 	u32 num_stripes;
2715 	u32 array_size;
2716 	u32 len = 0;
2717 	u32 cur;
2718 	struct btrfs_key key;
2719 
2720 	lock_chunks(root);
2721 	array_size = btrfs_super_sys_array_size(super_copy);
2722 
2723 	ptr = super_copy->sys_chunk_array;
2724 	cur = 0;
2725 
2726 	while (cur < array_size) {
2727 		disk_key = (struct btrfs_disk_key *)ptr;
2728 		btrfs_disk_key_to_cpu(&key, disk_key);
2729 
2730 		len = sizeof(*disk_key);
2731 
2732 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2733 			chunk = (struct btrfs_chunk *)(ptr + len);
2734 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2735 			len += btrfs_chunk_item_size(num_stripes);
2736 		} else {
2737 			ret = -EIO;
2738 			break;
2739 		}
2740 		if (key.objectid == chunk_objectid &&
2741 		    key.offset == chunk_offset) {
2742 			memmove(ptr, ptr + len, array_size - (cur + len));
2743 			array_size -= len;
2744 			btrfs_set_super_sys_array_size(super_copy, array_size);
2745 		} else {
2746 			ptr += len;
2747 			cur += len;
2748 		}
2749 	}
2750 	unlock_chunks(root);
2751 	return ret;
2752 }
2753 
2754 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2755 		       struct btrfs_root *root, u64 chunk_offset)
2756 {
2757 	struct extent_map_tree *em_tree;
2758 	struct extent_map *em;
2759 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2760 	struct map_lookup *map;
2761 	u64 dev_extent_len = 0;
2762 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2763 	int i, ret = 0;
2764 
2765 	/* Just in case */
2766 	root = root->fs_info->chunk_root;
2767 	em_tree = &root->fs_info->mapping_tree.map_tree;
2768 
2769 	read_lock(&em_tree->lock);
2770 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2771 	read_unlock(&em_tree->lock);
2772 
2773 	if (!em || em->start > chunk_offset ||
2774 	    em->start + em->len < chunk_offset) {
2775 		/*
2776 		 * This is a logic error, but we don't want to just rely on the
2777 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2778 		 * do anything we still error out.
2779 		 */
2780 		ASSERT(0);
2781 		if (em)
2782 			free_extent_map(em);
2783 		return -EINVAL;
2784 	}
2785 	map = em->map_lookup;
2786 	lock_chunks(root->fs_info->chunk_root);
2787 	check_system_chunk(trans, extent_root, map->type);
2788 	unlock_chunks(root->fs_info->chunk_root);
2789 
2790 	for (i = 0; i < map->num_stripes; i++) {
2791 		struct btrfs_device *device = map->stripes[i].dev;
2792 		ret = btrfs_free_dev_extent(trans, device,
2793 					    map->stripes[i].physical,
2794 					    &dev_extent_len);
2795 		if (ret) {
2796 			btrfs_abort_transaction(trans, root, ret);
2797 			goto out;
2798 		}
2799 
2800 		if (device->bytes_used > 0) {
2801 			lock_chunks(root);
2802 			btrfs_device_set_bytes_used(device,
2803 					device->bytes_used - dev_extent_len);
2804 			spin_lock(&root->fs_info->free_chunk_lock);
2805 			root->fs_info->free_chunk_space += dev_extent_len;
2806 			spin_unlock(&root->fs_info->free_chunk_lock);
2807 			btrfs_clear_space_info_full(root->fs_info);
2808 			unlock_chunks(root);
2809 		}
2810 
2811 		if (map->stripes[i].dev) {
2812 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2813 			if (ret) {
2814 				btrfs_abort_transaction(trans, root, ret);
2815 				goto out;
2816 			}
2817 		}
2818 	}
2819 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2820 	if (ret) {
2821 		btrfs_abort_transaction(trans, root, ret);
2822 		goto out;
2823 	}
2824 
2825 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2826 
2827 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2828 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2829 		if (ret) {
2830 			btrfs_abort_transaction(trans, root, ret);
2831 			goto out;
2832 		}
2833 	}
2834 
2835 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2836 	if (ret) {
2837 		btrfs_abort_transaction(trans, extent_root, ret);
2838 		goto out;
2839 	}
2840 
2841 out:
2842 	/* once for us */
2843 	free_extent_map(em);
2844 	return ret;
2845 }
2846 
2847 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2848 {
2849 	struct btrfs_root *extent_root;
2850 	struct btrfs_trans_handle *trans;
2851 	int ret;
2852 
2853 	root = root->fs_info->chunk_root;
2854 	extent_root = root->fs_info->extent_root;
2855 
2856 	/*
2857 	 * Prevent races with automatic removal of unused block groups.
2858 	 * After we relocate and before we remove the chunk with offset
2859 	 * chunk_offset, automatic removal of the block group can kick in,
2860 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2861 	 *
2862 	 * Make sure to acquire this mutex before doing a tree search (dev
2863 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2864 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2865 	 * we release the path used to search the chunk/dev tree and before
2866 	 * the current task acquires this mutex and calls us.
2867 	 */
2868 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2869 
2870 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2871 	if (ret)
2872 		return -ENOSPC;
2873 
2874 	/* step one, relocate all the extents inside this chunk */
2875 	btrfs_scrub_pause(root);
2876 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2877 	btrfs_scrub_continue(root);
2878 	if (ret)
2879 		return ret;
2880 
2881 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2882 						     chunk_offset);
2883 	if (IS_ERR(trans)) {
2884 		ret = PTR_ERR(trans);
2885 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2886 		return ret;
2887 	}
2888 
2889 	/*
2890 	 * step two, delete the device extents and the
2891 	 * chunk tree entries
2892 	 */
2893 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2894 	btrfs_end_transaction(trans, root);
2895 	return ret;
2896 }
2897 
2898 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2899 {
2900 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2901 	struct btrfs_path *path;
2902 	struct extent_buffer *leaf;
2903 	struct btrfs_chunk *chunk;
2904 	struct btrfs_key key;
2905 	struct btrfs_key found_key;
2906 	u64 chunk_type;
2907 	bool retried = false;
2908 	int failed = 0;
2909 	int ret;
2910 
2911 	path = btrfs_alloc_path();
2912 	if (!path)
2913 		return -ENOMEM;
2914 
2915 again:
2916 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2917 	key.offset = (u64)-1;
2918 	key.type = BTRFS_CHUNK_ITEM_KEY;
2919 
2920 	while (1) {
2921 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2922 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2923 		if (ret < 0) {
2924 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2925 			goto error;
2926 		}
2927 		BUG_ON(ret == 0); /* Corruption */
2928 
2929 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2930 					  key.type);
2931 		if (ret)
2932 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2933 		if (ret < 0)
2934 			goto error;
2935 		if (ret > 0)
2936 			break;
2937 
2938 		leaf = path->nodes[0];
2939 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2940 
2941 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2942 				       struct btrfs_chunk);
2943 		chunk_type = btrfs_chunk_type(leaf, chunk);
2944 		btrfs_release_path(path);
2945 
2946 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2947 			ret = btrfs_relocate_chunk(chunk_root,
2948 						   found_key.offset);
2949 			if (ret == -ENOSPC)
2950 				failed++;
2951 			else
2952 				BUG_ON(ret);
2953 		}
2954 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2955 
2956 		if (found_key.offset == 0)
2957 			break;
2958 		key.offset = found_key.offset - 1;
2959 	}
2960 	ret = 0;
2961 	if (failed && !retried) {
2962 		failed = 0;
2963 		retried = true;
2964 		goto again;
2965 	} else if (WARN_ON(failed && retried)) {
2966 		ret = -ENOSPC;
2967 	}
2968 error:
2969 	btrfs_free_path(path);
2970 	return ret;
2971 }
2972 
2973 static int insert_balance_item(struct btrfs_root *root,
2974 			       struct btrfs_balance_control *bctl)
2975 {
2976 	struct btrfs_trans_handle *trans;
2977 	struct btrfs_balance_item *item;
2978 	struct btrfs_disk_balance_args disk_bargs;
2979 	struct btrfs_path *path;
2980 	struct extent_buffer *leaf;
2981 	struct btrfs_key key;
2982 	int ret, err;
2983 
2984 	path = btrfs_alloc_path();
2985 	if (!path)
2986 		return -ENOMEM;
2987 
2988 	trans = btrfs_start_transaction(root, 0);
2989 	if (IS_ERR(trans)) {
2990 		btrfs_free_path(path);
2991 		return PTR_ERR(trans);
2992 	}
2993 
2994 	key.objectid = BTRFS_BALANCE_OBJECTID;
2995 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
2996 	key.offset = 0;
2997 
2998 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2999 				      sizeof(*item));
3000 	if (ret)
3001 		goto out;
3002 
3003 	leaf = path->nodes[0];
3004 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3005 
3006 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3007 
3008 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3009 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3010 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3011 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3012 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3013 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3014 
3015 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3016 
3017 	btrfs_mark_buffer_dirty(leaf);
3018 out:
3019 	btrfs_free_path(path);
3020 	err = btrfs_commit_transaction(trans, root);
3021 	if (err && !ret)
3022 		ret = err;
3023 	return ret;
3024 }
3025 
3026 static int del_balance_item(struct btrfs_root *root)
3027 {
3028 	struct btrfs_trans_handle *trans;
3029 	struct btrfs_path *path;
3030 	struct btrfs_key key;
3031 	int ret, err;
3032 
3033 	path = btrfs_alloc_path();
3034 	if (!path)
3035 		return -ENOMEM;
3036 
3037 	trans = btrfs_start_transaction(root, 0);
3038 	if (IS_ERR(trans)) {
3039 		btrfs_free_path(path);
3040 		return PTR_ERR(trans);
3041 	}
3042 
3043 	key.objectid = BTRFS_BALANCE_OBJECTID;
3044 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3045 	key.offset = 0;
3046 
3047 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3048 	if (ret < 0)
3049 		goto out;
3050 	if (ret > 0) {
3051 		ret = -ENOENT;
3052 		goto out;
3053 	}
3054 
3055 	ret = btrfs_del_item(trans, root, path);
3056 out:
3057 	btrfs_free_path(path);
3058 	err = btrfs_commit_transaction(trans, root);
3059 	if (err && !ret)
3060 		ret = err;
3061 	return ret;
3062 }
3063 
3064 /*
3065  * This is a heuristic used to reduce the number of chunks balanced on
3066  * resume after balance was interrupted.
3067  */
3068 static void update_balance_args(struct btrfs_balance_control *bctl)
3069 {
3070 	/*
3071 	 * Turn on soft mode for chunk types that were being converted.
3072 	 */
3073 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3074 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3075 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3076 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3077 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3078 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3079 
3080 	/*
3081 	 * Turn on usage filter if is not already used.  The idea is
3082 	 * that chunks that we have already balanced should be
3083 	 * reasonably full.  Don't do it for chunks that are being
3084 	 * converted - that will keep us from relocating unconverted
3085 	 * (albeit full) chunks.
3086 	 */
3087 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3088 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3089 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3090 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3091 		bctl->data.usage = 90;
3092 	}
3093 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3094 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3095 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3096 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3097 		bctl->sys.usage = 90;
3098 	}
3099 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3100 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3101 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3102 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3103 		bctl->meta.usage = 90;
3104 	}
3105 }
3106 
3107 /*
3108  * Should be called with both balance and volume mutexes held to
3109  * serialize other volume operations (add_dev/rm_dev/resize) with
3110  * restriper.  Same goes for unset_balance_control.
3111  */
3112 static void set_balance_control(struct btrfs_balance_control *bctl)
3113 {
3114 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3115 
3116 	BUG_ON(fs_info->balance_ctl);
3117 
3118 	spin_lock(&fs_info->balance_lock);
3119 	fs_info->balance_ctl = bctl;
3120 	spin_unlock(&fs_info->balance_lock);
3121 }
3122 
3123 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3124 {
3125 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3126 
3127 	BUG_ON(!fs_info->balance_ctl);
3128 
3129 	spin_lock(&fs_info->balance_lock);
3130 	fs_info->balance_ctl = NULL;
3131 	spin_unlock(&fs_info->balance_lock);
3132 
3133 	kfree(bctl);
3134 }
3135 
3136 /*
3137  * Balance filters.  Return 1 if chunk should be filtered out
3138  * (should not be balanced).
3139  */
3140 static int chunk_profiles_filter(u64 chunk_type,
3141 				 struct btrfs_balance_args *bargs)
3142 {
3143 	chunk_type = chunk_to_extended(chunk_type) &
3144 				BTRFS_EXTENDED_PROFILE_MASK;
3145 
3146 	if (bargs->profiles & chunk_type)
3147 		return 0;
3148 
3149 	return 1;
3150 }
3151 
3152 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3153 			      struct btrfs_balance_args *bargs)
3154 {
3155 	struct btrfs_block_group_cache *cache;
3156 	u64 chunk_used;
3157 	u64 user_thresh_min;
3158 	u64 user_thresh_max;
3159 	int ret = 1;
3160 
3161 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3162 	chunk_used = btrfs_block_group_used(&cache->item);
3163 
3164 	if (bargs->usage_min == 0)
3165 		user_thresh_min = 0;
3166 	else
3167 		user_thresh_min = div_factor_fine(cache->key.offset,
3168 					bargs->usage_min);
3169 
3170 	if (bargs->usage_max == 0)
3171 		user_thresh_max = 1;
3172 	else if (bargs->usage_max > 100)
3173 		user_thresh_max = cache->key.offset;
3174 	else
3175 		user_thresh_max = div_factor_fine(cache->key.offset,
3176 					bargs->usage_max);
3177 
3178 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3179 		ret = 0;
3180 
3181 	btrfs_put_block_group(cache);
3182 	return ret;
3183 }
3184 
3185 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3186 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3187 {
3188 	struct btrfs_block_group_cache *cache;
3189 	u64 chunk_used, user_thresh;
3190 	int ret = 1;
3191 
3192 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3193 	chunk_used = btrfs_block_group_used(&cache->item);
3194 
3195 	if (bargs->usage_min == 0)
3196 		user_thresh = 1;
3197 	else if (bargs->usage > 100)
3198 		user_thresh = cache->key.offset;
3199 	else
3200 		user_thresh = div_factor_fine(cache->key.offset,
3201 					      bargs->usage);
3202 
3203 	if (chunk_used < user_thresh)
3204 		ret = 0;
3205 
3206 	btrfs_put_block_group(cache);
3207 	return ret;
3208 }
3209 
3210 static int chunk_devid_filter(struct extent_buffer *leaf,
3211 			      struct btrfs_chunk *chunk,
3212 			      struct btrfs_balance_args *bargs)
3213 {
3214 	struct btrfs_stripe *stripe;
3215 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3216 	int i;
3217 
3218 	for (i = 0; i < num_stripes; i++) {
3219 		stripe = btrfs_stripe_nr(chunk, i);
3220 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3221 			return 0;
3222 	}
3223 
3224 	return 1;
3225 }
3226 
3227 /* [pstart, pend) */
3228 static int chunk_drange_filter(struct extent_buffer *leaf,
3229 			       struct btrfs_chunk *chunk,
3230 			       u64 chunk_offset,
3231 			       struct btrfs_balance_args *bargs)
3232 {
3233 	struct btrfs_stripe *stripe;
3234 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3235 	u64 stripe_offset;
3236 	u64 stripe_length;
3237 	int factor;
3238 	int i;
3239 
3240 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3241 		return 0;
3242 
3243 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3244 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3245 		factor = num_stripes / 2;
3246 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3247 		factor = num_stripes - 1;
3248 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3249 		factor = num_stripes - 2;
3250 	} else {
3251 		factor = num_stripes;
3252 	}
3253 
3254 	for (i = 0; i < num_stripes; i++) {
3255 		stripe = btrfs_stripe_nr(chunk, i);
3256 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3257 			continue;
3258 
3259 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3260 		stripe_length = btrfs_chunk_length(leaf, chunk);
3261 		stripe_length = div_u64(stripe_length, factor);
3262 
3263 		if (stripe_offset < bargs->pend &&
3264 		    stripe_offset + stripe_length > bargs->pstart)
3265 			return 0;
3266 	}
3267 
3268 	return 1;
3269 }
3270 
3271 /* [vstart, vend) */
3272 static int chunk_vrange_filter(struct extent_buffer *leaf,
3273 			       struct btrfs_chunk *chunk,
3274 			       u64 chunk_offset,
3275 			       struct btrfs_balance_args *bargs)
3276 {
3277 	if (chunk_offset < bargs->vend &&
3278 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3279 		/* at least part of the chunk is inside this vrange */
3280 		return 0;
3281 
3282 	return 1;
3283 }
3284 
3285 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3286 			       struct btrfs_chunk *chunk,
3287 			       struct btrfs_balance_args *bargs)
3288 {
3289 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3290 
3291 	if (bargs->stripes_min <= num_stripes
3292 			&& num_stripes <= bargs->stripes_max)
3293 		return 0;
3294 
3295 	return 1;
3296 }
3297 
3298 static int chunk_soft_convert_filter(u64 chunk_type,
3299 				     struct btrfs_balance_args *bargs)
3300 {
3301 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3302 		return 0;
3303 
3304 	chunk_type = chunk_to_extended(chunk_type) &
3305 				BTRFS_EXTENDED_PROFILE_MASK;
3306 
3307 	if (bargs->target == chunk_type)
3308 		return 1;
3309 
3310 	return 0;
3311 }
3312 
3313 static int should_balance_chunk(struct btrfs_root *root,
3314 				struct extent_buffer *leaf,
3315 				struct btrfs_chunk *chunk, u64 chunk_offset)
3316 {
3317 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3318 	struct btrfs_balance_args *bargs = NULL;
3319 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3320 
3321 	/* type filter */
3322 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3323 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3324 		return 0;
3325 	}
3326 
3327 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3328 		bargs = &bctl->data;
3329 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3330 		bargs = &bctl->sys;
3331 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3332 		bargs = &bctl->meta;
3333 
3334 	/* profiles filter */
3335 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3336 	    chunk_profiles_filter(chunk_type, bargs)) {
3337 		return 0;
3338 	}
3339 
3340 	/* usage filter */
3341 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3342 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3343 		return 0;
3344 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3345 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3346 		return 0;
3347 	}
3348 
3349 	/* devid filter */
3350 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3351 	    chunk_devid_filter(leaf, chunk, bargs)) {
3352 		return 0;
3353 	}
3354 
3355 	/* drange filter, makes sense only with devid filter */
3356 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3357 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3358 		return 0;
3359 	}
3360 
3361 	/* vrange filter */
3362 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3363 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3364 		return 0;
3365 	}
3366 
3367 	/* stripes filter */
3368 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3369 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3370 		return 0;
3371 	}
3372 
3373 	/* soft profile changing mode */
3374 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3375 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3376 		return 0;
3377 	}
3378 
3379 	/*
3380 	 * limited by count, must be the last filter
3381 	 */
3382 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3383 		if (bargs->limit == 0)
3384 			return 0;
3385 		else
3386 			bargs->limit--;
3387 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3388 		/*
3389 		 * Same logic as the 'limit' filter; the minimum cannot be
3390 		 * determined here because we do not have the global information
3391 		 * about the count of all chunks that satisfy the filters.
3392 		 */
3393 		if (bargs->limit_max == 0)
3394 			return 0;
3395 		else
3396 			bargs->limit_max--;
3397 	}
3398 
3399 	return 1;
3400 }
3401 
3402 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3403 {
3404 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3405 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3406 	struct btrfs_root *dev_root = fs_info->dev_root;
3407 	struct list_head *devices;
3408 	struct btrfs_device *device;
3409 	u64 old_size;
3410 	u64 size_to_free;
3411 	u64 chunk_type;
3412 	struct btrfs_chunk *chunk;
3413 	struct btrfs_path *path;
3414 	struct btrfs_key key;
3415 	struct btrfs_key found_key;
3416 	struct btrfs_trans_handle *trans;
3417 	struct extent_buffer *leaf;
3418 	int slot;
3419 	int ret;
3420 	int enospc_errors = 0;
3421 	bool counting = true;
3422 	/* The single value limit and min/max limits use the same bytes in the */
3423 	u64 limit_data = bctl->data.limit;
3424 	u64 limit_meta = bctl->meta.limit;
3425 	u64 limit_sys = bctl->sys.limit;
3426 	u32 count_data = 0;
3427 	u32 count_meta = 0;
3428 	u32 count_sys = 0;
3429 	int chunk_reserved = 0;
3430 	u64 bytes_used = 0;
3431 
3432 	/* step one make some room on all the devices */
3433 	devices = &fs_info->fs_devices->devices;
3434 	list_for_each_entry(device, devices, dev_list) {
3435 		old_size = btrfs_device_get_total_bytes(device);
3436 		size_to_free = div_factor(old_size, 1);
3437 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3438 		if (!device->writeable ||
3439 		    btrfs_device_get_total_bytes(device) -
3440 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3441 		    device->is_tgtdev_for_dev_replace)
3442 			continue;
3443 
3444 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3445 		if (ret == -ENOSPC)
3446 			break;
3447 		BUG_ON(ret);
3448 
3449 		trans = btrfs_start_transaction(dev_root, 0);
3450 		BUG_ON(IS_ERR(trans));
3451 
3452 		ret = btrfs_grow_device(trans, device, old_size);
3453 		BUG_ON(ret);
3454 
3455 		btrfs_end_transaction(trans, dev_root);
3456 	}
3457 
3458 	/* step two, relocate all the chunks */
3459 	path = btrfs_alloc_path();
3460 	if (!path) {
3461 		ret = -ENOMEM;
3462 		goto error;
3463 	}
3464 
3465 	/* zero out stat counters */
3466 	spin_lock(&fs_info->balance_lock);
3467 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3468 	spin_unlock(&fs_info->balance_lock);
3469 again:
3470 	if (!counting) {
3471 		/*
3472 		 * The single value limit and min/max limits use the same bytes
3473 		 * in the
3474 		 */
3475 		bctl->data.limit = limit_data;
3476 		bctl->meta.limit = limit_meta;
3477 		bctl->sys.limit = limit_sys;
3478 	}
3479 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3480 	key.offset = (u64)-1;
3481 	key.type = BTRFS_CHUNK_ITEM_KEY;
3482 
3483 	while (1) {
3484 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3485 		    atomic_read(&fs_info->balance_cancel_req)) {
3486 			ret = -ECANCELED;
3487 			goto error;
3488 		}
3489 
3490 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3491 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3492 		if (ret < 0) {
3493 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3494 			goto error;
3495 		}
3496 
3497 		/*
3498 		 * this shouldn't happen, it means the last relocate
3499 		 * failed
3500 		 */
3501 		if (ret == 0)
3502 			BUG(); /* FIXME break ? */
3503 
3504 		ret = btrfs_previous_item(chunk_root, path, 0,
3505 					  BTRFS_CHUNK_ITEM_KEY);
3506 		if (ret) {
3507 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3508 			ret = 0;
3509 			break;
3510 		}
3511 
3512 		leaf = path->nodes[0];
3513 		slot = path->slots[0];
3514 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3515 
3516 		if (found_key.objectid != key.objectid) {
3517 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3518 			break;
3519 		}
3520 
3521 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3522 		chunk_type = btrfs_chunk_type(leaf, chunk);
3523 
3524 		if (!counting) {
3525 			spin_lock(&fs_info->balance_lock);
3526 			bctl->stat.considered++;
3527 			spin_unlock(&fs_info->balance_lock);
3528 		}
3529 
3530 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3531 					   found_key.offset);
3532 
3533 		btrfs_release_path(path);
3534 		if (!ret) {
3535 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3536 			goto loop;
3537 		}
3538 
3539 		if (counting) {
3540 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3541 			spin_lock(&fs_info->balance_lock);
3542 			bctl->stat.expected++;
3543 			spin_unlock(&fs_info->balance_lock);
3544 
3545 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3546 				count_data++;
3547 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3548 				count_sys++;
3549 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3550 				count_meta++;
3551 
3552 			goto loop;
3553 		}
3554 
3555 		/*
3556 		 * Apply limit_min filter, no need to check if the LIMITS
3557 		 * filter is used, limit_min is 0 by default
3558 		 */
3559 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3560 					count_data < bctl->data.limit_min)
3561 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3562 					count_meta < bctl->meta.limit_min)
3563 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3564 					count_sys < bctl->sys.limit_min)) {
3565 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3566 			goto loop;
3567 		}
3568 
3569 		ASSERT(fs_info->data_sinfo);
3570 		spin_lock(&fs_info->data_sinfo->lock);
3571 		bytes_used = fs_info->data_sinfo->bytes_used;
3572 		spin_unlock(&fs_info->data_sinfo->lock);
3573 
3574 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3575 		    !chunk_reserved && !bytes_used) {
3576 			trans = btrfs_start_transaction(chunk_root, 0);
3577 			if (IS_ERR(trans)) {
3578 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 				ret = PTR_ERR(trans);
3580 				goto error;
3581 			}
3582 
3583 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3584 						      BTRFS_BLOCK_GROUP_DATA);
3585 			btrfs_end_transaction(trans, chunk_root);
3586 			if (ret < 0) {
3587 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 				goto error;
3589 			}
3590 			chunk_reserved = 1;
3591 		}
3592 
3593 		ret = btrfs_relocate_chunk(chunk_root,
3594 					   found_key.offset);
3595 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3596 		if (ret && ret != -ENOSPC)
3597 			goto error;
3598 		if (ret == -ENOSPC) {
3599 			enospc_errors++;
3600 		} else {
3601 			spin_lock(&fs_info->balance_lock);
3602 			bctl->stat.completed++;
3603 			spin_unlock(&fs_info->balance_lock);
3604 		}
3605 loop:
3606 		if (found_key.offset == 0)
3607 			break;
3608 		key.offset = found_key.offset - 1;
3609 	}
3610 
3611 	if (counting) {
3612 		btrfs_release_path(path);
3613 		counting = false;
3614 		goto again;
3615 	}
3616 error:
3617 	btrfs_free_path(path);
3618 	if (enospc_errors) {
3619 		btrfs_info(fs_info, "%d enospc errors during balance",
3620 		       enospc_errors);
3621 		if (!ret)
3622 			ret = -ENOSPC;
3623 	}
3624 
3625 	return ret;
3626 }
3627 
3628 /**
3629  * alloc_profile_is_valid - see if a given profile is valid and reduced
3630  * @flags: profile to validate
3631  * @extended: if true @flags is treated as an extended profile
3632  */
3633 static int alloc_profile_is_valid(u64 flags, int extended)
3634 {
3635 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3636 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3637 
3638 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3639 
3640 	/* 1) check that all other bits are zeroed */
3641 	if (flags & ~mask)
3642 		return 0;
3643 
3644 	/* 2) see if profile is reduced */
3645 	if (flags == 0)
3646 		return !extended; /* "0" is valid for usual profiles */
3647 
3648 	/* true if exactly one bit set */
3649 	return (flags & (flags - 1)) == 0;
3650 }
3651 
3652 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3653 {
3654 	/* cancel requested || normal exit path */
3655 	return atomic_read(&fs_info->balance_cancel_req) ||
3656 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3657 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3658 }
3659 
3660 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3661 {
3662 	int ret;
3663 
3664 	unset_balance_control(fs_info);
3665 	ret = del_balance_item(fs_info->tree_root);
3666 	if (ret)
3667 		btrfs_handle_fs_error(fs_info, ret, NULL);
3668 
3669 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3670 }
3671 
3672 /* Non-zero return value signifies invalidity */
3673 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3674 		u64 allowed)
3675 {
3676 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3677 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3678 		 (bctl_arg->target & ~allowed)));
3679 }
3680 
3681 /*
3682  * Should be called with both balance and volume mutexes held
3683  */
3684 int btrfs_balance(struct btrfs_balance_control *bctl,
3685 		  struct btrfs_ioctl_balance_args *bargs)
3686 {
3687 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3688 	u64 allowed;
3689 	int mixed = 0;
3690 	int ret;
3691 	u64 num_devices;
3692 	unsigned seq;
3693 
3694 	if (btrfs_fs_closing(fs_info) ||
3695 	    atomic_read(&fs_info->balance_pause_req) ||
3696 	    atomic_read(&fs_info->balance_cancel_req)) {
3697 		ret = -EINVAL;
3698 		goto out;
3699 	}
3700 
3701 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3702 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3703 		mixed = 1;
3704 
3705 	/*
3706 	 * In case of mixed groups both data and meta should be picked,
3707 	 * and identical options should be given for both of them.
3708 	 */
3709 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3710 	if (mixed && (bctl->flags & allowed)) {
3711 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3712 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3713 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3714 			btrfs_err(fs_info, "with mixed groups data and "
3715 				   "metadata balance options must be the same");
3716 			ret = -EINVAL;
3717 			goto out;
3718 		}
3719 	}
3720 
3721 	num_devices = fs_info->fs_devices->num_devices;
3722 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3723 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3724 		BUG_ON(num_devices < 1);
3725 		num_devices--;
3726 	}
3727 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3728 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3729 	if (num_devices > 1)
3730 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3731 	if (num_devices > 2)
3732 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3733 	if (num_devices > 3)
3734 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3735 			    BTRFS_BLOCK_GROUP_RAID6);
3736 	if (validate_convert_profile(&bctl->data, allowed)) {
3737 		btrfs_err(fs_info, "unable to start balance with target "
3738 			   "data profile %llu",
3739 		       bctl->data.target);
3740 		ret = -EINVAL;
3741 		goto out;
3742 	}
3743 	if (validate_convert_profile(&bctl->meta, allowed)) {
3744 		btrfs_err(fs_info,
3745 			   "unable to start balance with target metadata profile %llu",
3746 		       bctl->meta.target);
3747 		ret = -EINVAL;
3748 		goto out;
3749 	}
3750 	if (validate_convert_profile(&bctl->sys, allowed)) {
3751 		btrfs_err(fs_info,
3752 			   "unable to start balance with target system profile %llu",
3753 		       bctl->sys.target);
3754 		ret = -EINVAL;
3755 		goto out;
3756 	}
3757 
3758 	/* allow to reduce meta or sys integrity only if force set */
3759 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3760 			BTRFS_BLOCK_GROUP_RAID10 |
3761 			BTRFS_BLOCK_GROUP_RAID5 |
3762 			BTRFS_BLOCK_GROUP_RAID6;
3763 	do {
3764 		seq = read_seqbegin(&fs_info->profiles_lock);
3765 
3766 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3767 		     (fs_info->avail_system_alloc_bits & allowed) &&
3768 		     !(bctl->sys.target & allowed)) ||
3769 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3770 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3771 		     !(bctl->meta.target & allowed))) {
3772 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3773 				btrfs_info(fs_info, "force reducing metadata integrity");
3774 			} else {
3775 				btrfs_err(fs_info, "balance will reduce metadata "
3776 					   "integrity, use force if you want this");
3777 				ret = -EINVAL;
3778 				goto out;
3779 			}
3780 		}
3781 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3782 
3783 	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3784 		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3785 		btrfs_warn(fs_info,
3786 	"metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3787 			bctl->meta.target, bctl->data.target);
3788 	}
3789 
3790 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3791 		fs_info->num_tolerated_disk_barrier_failures = min(
3792 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3793 			btrfs_get_num_tolerated_disk_barrier_failures(
3794 				bctl->sys.target));
3795 	}
3796 
3797 	ret = insert_balance_item(fs_info->tree_root, bctl);
3798 	if (ret && ret != -EEXIST)
3799 		goto out;
3800 
3801 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3802 		BUG_ON(ret == -EEXIST);
3803 		set_balance_control(bctl);
3804 	} else {
3805 		BUG_ON(ret != -EEXIST);
3806 		spin_lock(&fs_info->balance_lock);
3807 		update_balance_args(bctl);
3808 		spin_unlock(&fs_info->balance_lock);
3809 	}
3810 
3811 	atomic_inc(&fs_info->balance_running);
3812 	mutex_unlock(&fs_info->balance_mutex);
3813 
3814 	ret = __btrfs_balance(fs_info);
3815 
3816 	mutex_lock(&fs_info->balance_mutex);
3817 	atomic_dec(&fs_info->balance_running);
3818 
3819 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3820 		fs_info->num_tolerated_disk_barrier_failures =
3821 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3822 	}
3823 
3824 	if (bargs) {
3825 		memset(bargs, 0, sizeof(*bargs));
3826 		update_ioctl_balance_args(fs_info, 0, bargs);
3827 	}
3828 
3829 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3830 	    balance_need_close(fs_info)) {
3831 		__cancel_balance(fs_info);
3832 	}
3833 
3834 	wake_up(&fs_info->balance_wait_q);
3835 
3836 	return ret;
3837 out:
3838 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3839 		__cancel_balance(fs_info);
3840 	else {
3841 		kfree(bctl);
3842 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3843 	}
3844 	return ret;
3845 }
3846 
3847 static int balance_kthread(void *data)
3848 {
3849 	struct btrfs_fs_info *fs_info = data;
3850 	int ret = 0;
3851 
3852 	mutex_lock(&fs_info->volume_mutex);
3853 	mutex_lock(&fs_info->balance_mutex);
3854 
3855 	if (fs_info->balance_ctl) {
3856 		btrfs_info(fs_info, "continuing balance");
3857 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3858 	}
3859 
3860 	mutex_unlock(&fs_info->balance_mutex);
3861 	mutex_unlock(&fs_info->volume_mutex);
3862 
3863 	return ret;
3864 }
3865 
3866 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3867 {
3868 	struct task_struct *tsk;
3869 
3870 	spin_lock(&fs_info->balance_lock);
3871 	if (!fs_info->balance_ctl) {
3872 		spin_unlock(&fs_info->balance_lock);
3873 		return 0;
3874 	}
3875 	spin_unlock(&fs_info->balance_lock);
3876 
3877 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3878 		btrfs_info(fs_info, "force skipping balance");
3879 		return 0;
3880 	}
3881 
3882 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3883 	return PTR_ERR_OR_ZERO(tsk);
3884 }
3885 
3886 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3887 {
3888 	struct btrfs_balance_control *bctl;
3889 	struct btrfs_balance_item *item;
3890 	struct btrfs_disk_balance_args disk_bargs;
3891 	struct btrfs_path *path;
3892 	struct extent_buffer *leaf;
3893 	struct btrfs_key key;
3894 	int ret;
3895 
3896 	path = btrfs_alloc_path();
3897 	if (!path)
3898 		return -ENOMEM;
3899 
3900 	key.objectid = BTRFS_BALANCE_OBJECTID;
3901 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3902 	key.offset = 0;
3903 
3904 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3905 	if (ret < 0)
3906 		goto out;
3907 	if (ret > 0) { /* ret = -ENOENT; */
3908 		ret = 0;
3909 		goto out;
3910 	}
3911 
3912 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3913 	if (!bctl) {
3914 		ret = -ENOMEM;
3915 		goto out;
3916 	}
3917 
3918 	leaf = path->nodes[0];
3919 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3920 
3921 	bctl->fs_info = fs_info;
3922 	bctl->flags = btrfs_balance_flags(leaf, item);
3923 	bctl->flags |= BTRFS_BALANCE_RESUME;
3924 
3925 	btrfs_balance_data(leaf, item, &disk_bargs);
3926 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3927 	btrfs_balance_meta(leaf, item, &disk_bargs);
3928 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3929 	btrfs_balance_sys(leaf, item, &disk_bargs);
3930 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3931 
3932 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3933 
3934 	mutex_lock(&fs_info->volume_mutex);
3935 	mutex_lock(&fs_info->balance_mutex);
3936 
3937 	set_balance_control(bctl);
3938 
3939 	mutex_unlock(&fs_info->balance_mutex);
3940 	mutex_unlock(&fs_info->volume_mutex);
3941 out:
3942 	btrfs_free_path(path);
3943 	return ret;
3944 }
3945 
3946 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3947 {
3948 	int ret = 0;
3949 
3950 	mutex_lock(&fs_info->balance_mutex);
3951 	if (!fs_info->balance_ctl) {
3952 		mutex_unlock(&fs_info->balance_mutex);
3953 		return -ENOTCONN;
3954 	}
3955 
3956 	if (atomic_read(&fs_info->balance_running)) {
3957 		atomic_inc(&fs_info->balance_pause_req);
3958 		mutex_unlock(&fs_info->balance_mutex);
3959 
3960 		wait_event(fs_info->balance_wait_q,
3961 			   atomic_read(&fs_info->balance_running) == 0);
3962 
3963 		mutex_lock(&fs_info->balance_mutex);
3964 		/* we are good with balance_ctl ripped off from under us */
3965 		BUG_ON(atomic_read(&fs_info->balance_running));
3966 		atomic_dec(&fs_info->balance_pause_req);
3967 	} else {
3968 		ret = -ENOTCONN;
3969 	}
3970 
3971 	mutex_unlock(&fs_info->balance_mutex);
3972 	return ret;
3973 }
3974 
3975 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3976 {
3977 	if (fs_info->sb->s_flags & MS_RDONLY)
3978 		return -EROFS;
3979 
3980 	mutex_lock(&fs_info->balance_mutex);
3981 	if (!fs_info->balance_ctl) {
3982 		mutex_unlock(&fs_info->balance_mutex);
3983 		return -ENOTCONN;
3984 	}
3985 
3986 	atomic_inc(&fs_info->balance_cancel_req);
3987 	/*
3988 	 * if we are running just wait and return, balance item is
3989 	 * deleted in btrfs_balance in this case
3990 	 */
3991 	if (atomic_read(&fs_info->balance_running)) {
3992 		mutex_unlock(&fs_info->balance_mutex);
3993 		wait_event(fs_info->balance_wait_q,
3994 			   atomic_read(&fs_info->balance_running) == 0);
3995 		mutex_lock(&fs_info->balance_mutex);
3996 	} else {
3997 		/* __cancel_balance needs volume_mutex */
3998 		mutex_unlock(&fs_info->balance_mutex);
3999 		mutex_lock(&fs_info->volume_mutex);
4000 		mutex_lock(&fs_info->balance_mutex);
4001 
4002 		if (fs_info->balance_ctl)
4003 			__cancel_balance(fs_info);
4004 
4005 		mutex_unlock(&fs_info->volume_mutex);
4006 	}
4007 
4008 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4009 	atomic_dec(&fs_info->balance_cancel_req);
4010 	mutex_unlock(&fs_info->balance_mutex);
4011 	return 0;
4012 }
4013 
4014 static int btrfs_uuid_scan_kthread(void *data)
4015 {
4016 	struct btrfs_fs_info *fs_info = data;
4017 	struct btrfs_root *root = fs_info->tree_root;
4018 	struct btrfs_key key;
4019 	struct btrfs_key max_key;
4020 	struct btrfs_path *path = NULL;
4021 	int ret = 0;
4022 	struct extent_buffer *eb;
4023 	int slot;
4024 	struct btrfs_root_item root_item;
4025 	u32 item_size;
4026 	struct btrfs_trans_handle *trans = NULL;
4027 
4028 	path = btrfs_alloc_path();
4029 	if (!path) {
4030 		ret = -ENOMEM;
4031 		goto out;
4032 	}
4033 
4034 	key.objectid = 0;
4035 	key.type = BTRFS_ROOT_ITEM_KEY;
4036 	key.offset = 0;
4037 
4038 	max_key.objectid = (u64)-1;
4039 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4040 	max_key.offset = (u64)-1;
4041 
4042 	while (1) {
4043 		ret = btrfs_search_forward(root, &key, path, 0);
4044 		if (ret) {
4045 			if (ret > 0)
4046 				ret = 0;
4047 			break;
4048 		}
4049 
4050 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4051 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4052 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4053 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4054 			goto skip;
4055 
4056 		eb = path->nodes[0];
4057 		slot = path->slots[0];
4058 		item_size = btrfs_item_size_nr(eb, slot);
4059 		if (item_size < sizeof(root_item))
4060 			goto skip;
4061 
4062 		read_extent_buffer(eb, &root_item,
4063 				   btrfs_item_ptr_offset(eb, slot),
4064 				   (int)sizeof(root_item));
4065 		if (btrfs_root_refs(&root_item) == 0)
4066 			goto skip;
4067 
4068 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4069 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4070 			if (trans)
4071 				goto update_tree;
4072 
4073 			btrfs_release_path(path);
4074 			/*
4075 			 * 1 - subvol uuid item
4076 			 * 1 - received_subvol uuid item
4077 			 */
4078 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4079 			if (IS_ERR(trans)) {
4080 				ret = PTR_ERR(trans);
4081 				break;
4082 			}
4083 			continue;
4084 		} else {
4085 			goto skip;
4086 		}
4087 update_tree:
4088 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4089 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4090 						  root_item.uuid,
4091 						  BTRFS_UUID_KEY_SUBVOL,
4092 						  key.objectid);
4093 			if (ret < 0) {
4094 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4095 					ret);
4096 				break;
4097 			}
4098 		}
4099 
4100 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4101 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4102 						  root_item.received_uuid,
4103 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4104 						  key.objectid);
4105 			if (ret < 0) {
4106 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4107 					ret);
4108 				break;
4109 			}
4110 		}
4111 
4112 skip:
4113 		if (trans) {
4114 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4115 			trans = NULL;
4116 			if (ret)
4117 				break;
4118 		}
4119 
4120 		btrfs_release_path(path);
4121 		if (key.offset < (u64)-1) {
4122 			key.offset++;
4123 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4124 			key.offset = 0;
4125 			key.type = BTRFS_ROOT_ITEM_KEY;
4126 		} else if (key.objectid < (u64)-1) {
4127 			key.offset = 0;
4128 			key.type = BTRFS_ROOT_ITEM_KEY;
4129 			key.objectid++;
4130 		} else {
4131 			break;
4132 		}
4133 		cond_resched();
4134 	}
4135 
4136 out:
4137 	btrfs_free_path(path);
4138 	if (trans && !IS_ERR(trans))
4139 		btrfs_end_transaction(trans, fs_info->uuid_root);
4140 	if (ret)
4141 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4142 	else
4143 		fs_info->update_uuid_tree_gen = 1;
4144 	up(&fs_info->uuid_tree_rescan_sem);
4145 	return 0;
4146 }
4147 
4148 /*
4149  * Callback for btrfs_uuid_tree_iterate().
4150  * returns:
4151  * 0	check succeeded, the entry is not outdated.
4152  * < 0	if an error occurred.
4153  * > 0	if the check failed, which means the caller shall remove the entry.
4154  */
4155 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4156 				       u8 *uuid, u8 type, u64 subid)
4157 {
4158 	struct btrfs_key key;
4159 	int ret = 0;
4160 	struct btrfs_root *subvol_root;
4161 
4162 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4163 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4164 		goto out;
4165 
4166 	key.objectid = subid;
4167 	key.type = BTRFS_ROOT_ITEM_KEY;
4168 	key.offset = (u64)-1;
4169 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4170 	if (IS_ERR(subvol_root)) {
4171 		ret = PTR_ERR(subvol_root);
4172 		if (ret == -ENOENT)
4173 			ret = 1;
4174 		goto out;
4175 	}
4176 
4177 	switch (type) {
4178 	case BTRFS_UUID_KEY_SUBVOL:
4179 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4180 			ret = 1;
4181 		break;
4182 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4183 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4184 			   BTRFS_UUID_SIZE))
4185 			ret = 1;
4186 		break;
4187 	}
4188 
4189 out:
4190 	return ret;
4191 }
4192 
4193 static int btrfs_uuid_rescan_kthread(void *data)
4194 {
4195 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4196 	int ret;
4197 
4198 	/*
4199 	 * 1st step is to iterate through the existing UUID tree and
4200 	 * to delete all entries that contain outdated data.
4201 	 * 2nd step is to add all missing entries to the UUID tree.
4202 	 */
4203 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4204 	if (ret < 0) {
4205 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4206 		up(&fs_info->uuid_tree_rescan_sem);
4207 		return ret;
4208 	}
4209 	return btrfs_uuid_scan_kthread(data);
4210 }
4211 
4212 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4213 {
4214 	struct btrfs_trans_handle *trans;
4215 	struct btrfs_root *tree_root = fs_info->tree_root;
4216 	struct btrfs_root *uuid_root;
4217 	struct task_struct *task;
4218 	int ret;
4219 
4220 	/*
4221 	 * 1 - root node
4222 	 * 1 - root item
4223 	 */
4224 	trans = btrfs_start_transaction(tree_root, 2);
4225 	if (IS_ERR(trans))
4226 		return PTR_ERR(trans);
4227 
4228 	uuid_root = btrfs_create_tree(trans, fs_info,
4229 				      BTRFS_UUID_TREE_OBJECTID);
4230 	if (IS_ERR(uuid_root)) {
4231 		ret = PTR_ERR(uuid_root);
4232 		btrfs_abort_transaction(trans, tree_root, ret);
4233 		return ret;
4234 	}
4235 
4236 	fs_info->uuid_root = uuid_root;
4237 
4238 	ret = btrfs_commit_transaction(trans, tree_root);
4239 	if (ret)
4240 		return ret;
4241 
4242 	down(&fs_info->uuid_tree_rescan_sem);
4243 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4244 	if (IS_ERR(task)) {
4245 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4246 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4247 		up(&fs_info->uuid_tree_rescan_sem);
4248 		return PTR_ERR(task);
4249 	}
4250 
4251 	return 0;
4252 }
4253 
4254 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4255 {
4256 	struct task_struct *task;
4257 
4258 	down(&fs_info->uuid_tree_rescan_sem);
4259 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4260 	if (IS_ERR(task)) {
4261 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4262 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4263 		up(&fs_info->uuid_tree_rescan_sem);
4264 		return PTR_ERR(task);
4265 	}
4266 
4267 	return 0;
4268 }
4269 
4270 /*
4271  * shrinking a device means finding all of the device extents past
4272  * the new size, and then following the back refs to the chunks.
4273  * The chunk relocation code actually frees the device extent
4274  */
4275 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4276 {
4277 	struct btrfs_trans_handle *trans;
4278 	struct btrfs_root *root = device->dev_root;
4279 	struct btrfs_dev_extent *dev_extent = NULL;
4280 	struct btrfs_path *path;
4281 	u64 length;
4282 	u64 chunk_offset;
4283 	int ret;
4284 	int slot;
4285 	int failed = 0;
4286 	bool retried = false;
4287 	bool checked_pending_chunks = false;
4288 	struct extent_buffer *l;
4289 	struct btrfs_key key;
4290 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4291 	u64 old_total = btrfs_super_total_bytes(super_copy);
4292 	u64 old_size = btrfs_device_get_total_bytes(device);
4293 	u64 diff = old_size - new_size;
4294 
4295 	if (device->is_tgtdev_for_dev_replace)
4296 		return -EINVAL;
4297 
4298 	path = btrfs_alloc_path();
4299 	if (!path)
4300 		return -ENOMEM;
4301 
4302 	path->reada = READA_FORWARD;
4303 
4304 	lock_chunks(root);
4305 
4306 	btrfs_device_set_total_bytes(device, new_size);
4307 	if (device->writeable) {
4308 		device->fs_devices->total_rw_bytes -= diff;
4309 		spin_lock(&root->fs_info->free_chunk_lock);
4310 		root->fs_info->free_chunk_space -= diff;
4311 		spin_unlock(&root->fs_info->free_chunk_lock);
4312 	}
4313 	unlock_chunks(root);
4314 
4315 again:
4316 	key.objectid = device->devid;
4317 	key.offset = (u64)-1;
4318 	key.type = BTRFS_DEV_EXTENT_KEY;
4319 
4320 	do {
4321 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4322 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4323 		if (ret < 0) {
4324 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4325 			goto done;
4326 		}
4327 
4328 		ret = btrfs_previous_item(root, path, 0, key.type);
4329 		if (ret)
4330 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4331 		if (ret < 0)
4332 			goto done;
4333 		if (ret) {
4334 			ret = 0;
4335 			btrfs_release_path(path);
4336 			break;
4337 		}
4338 
4339 		l = path->nodes[0];
4340 		slot = path->slots[0];
4341 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4342 
4343 		if (key.objectid != device->devid) {
4344 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4345 			btrfs_release_path(path);
4346 			break;
4347 		}
4348 
4349 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4350 		length = btrfs_dev_extent_length(l, dev_extent);
4351 
4352 		if (key.offset + length <= new_size) {
4353 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4354 			btrfs_release_path(path);
4355 			break;
4356 		}
4357 
4358 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4359 		btrfs_release_path(path);
4360 
4361 		ret = btrfs_relocate_chunk(root, chunk_offset);
4362 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4363 		if (ret && ret != -ENOSPC)
4364 			goto done;
4365 		if (ret == -ENOSPC)
4366 			failed++;
4367 	} while (key.offset-- > 0);
4368 
4369 	if (failed && !retried) {
4370 		failed = 0;
4371 		retried = true;
4372 		goto again;
4373 	} else if (failed && retried) {
4374 		ret = -ENOSPC;
4375 		goto done;
4376 	}
4377 
4378 	/* Shrinking succeeded, else we would be at "done". */
4379 	trans = btrfs_start_transaction(root, 0);
4380 	if (IS_ERR(trans)) {
4381 		ret = PTR_ERR(trans);
4382 		goto done;
4383 	}
4384 
4385 	lock_chunks(root);
4386 
4387 	/*
4388 	 * We checked in the above loop all device extents that were already in
4389 	 * the device tree. However before we have updated the device's
4390 	 * total_bytes to the new size, we might have had chunk allocations that
4391 	 * have not complete yet (new block groups attached to transaction
4392 	 * handles), and therefore their device extents were not yet in the
4393 	 * device tree and we missed them in the loop above. So if we have any
4394 	 * pending chunk using a device extent that overlaps the device range
4395 	 * that we can not use anymore, commit the current transaction and
4396 	 * repeat the search on the device tree - this way we guarantee we will
4397 	 * not have chunks using device extents that end beyond 'new_size'.
4398 	 */
4399 	if (!checked_pending_chunks) {
4400 		u64 start = new_size;
4401 		u64 len = old_size - new_size;
4402 
4403 		if (contains_pending_extent(trans->transaction, device,
4404 					    &start, len)) {
4405 			unlock_chunks(root);
4406 			checked_pending_chunks = true;
4407 			failed = 0;
4408 			retried = false;
4409 			ret = btrfs_commit_transaction(trans, root);
4410 			if (ret)
4411 				goto done;
4412 			goto again;
4413 		}
4414 	}
4415 
4416 	btrfs_device_set_disk_total_bytes(device, new_size);
4417 	if (list_empty(&device->resized_list))
4418 		list_add_tail(&device->resized_list,
4419 			      &root->fs_info->fs_devices->resized_devices);
4420 
4421 	WARN_ON(diff > old_total);
4422 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4423 	unlock_chunks(root);
4424 
4425 	/* Now btrfs_update_device() will change the on-disk size. */
4426 	ret = btrfs_update_device(trans, device);
4427 	btrfs_end_transaction(trans, root);
4428 done:
4429 	btrfs_free_path(path);
4430 	if (ret) {
4431 		lock_chunks(root);
4432 		btrfs_device_set_total_bytes(device, old_size);
4433 		if (device->writeable)
4434 			device->fs_devices->total_rw_bytes += diff;
4435 		spin_lock(&root->fs_info->free_chunk_lock);
4436 		root->fs_info->free_chunk_space += diff;
4437 		spin_unlock(&root->fs_info->free_chunk_lock);
4438 		unlock_chunks(root);
4439 	}
4440 	return ret;
4441 }
4442 
4443 static int btrfs_add_system_chunk(struct btrfs_root *root,
4444 			   struct btrfs_key *key,
4445 			   struct btrfs_chunk *chunk, int item_size)
4446 {
4447 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4448 	struct btrfs_disk_key disk_key;
4449 	u32 array_size;
4450 	u8 *ptr;
4451 
4452 	lock_chunks(root);
4453 	array_size = btrfs_super_sys_array_size(super_copy);
4454 	if (array_size + item_size + sizeof(disk_key)
4455 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4456 		unlock_chunks(root);
4457 		return -EFBIG;
4458 	}
4459 
4460 	ptr = super_copy->sys_chunk_array + array_size;
4461 	btrfs_cpu_key_to_disk(&disk_key, key);
4462 	memcpy(ptr, &disk_key, sizeof(disk_key));
4463 	ptr += sizeof(disk_key);
4464 	memcpy(ptr, chunk, item_size);
4465 	item_size += sizeof(disk_key);
4466 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4467 	unlock_chunks(root);
4468 
4469 	return 0;
4470 }
4471 
4472 /*
4473  * sort the devices in descending order by max_avail, total_avail
4474  */
4475 static int btrfs_cmp_device_info(const void *a, const void *b)
4476 {
4477 	const struct btrfs_device_info *di_a = a;
4478 	const struct btrfs_device_info *di_b = b;
4479 
4480 	if (di_a->max_avail > di_b->max_avail)
4481 		return -1;
4482 	if (di_a->max_avail < di_b->max_avail)
4483 		return 1;
4484 	if (di_a->total_avail > di_b->total_avail)
4485 		return -1;
4486 	if (di_a->total_avail < di_b->total_avail)
4487 		return 1;
4488 	return 0;
4489 }
4490 
4491 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4492 {
4493 	/* TODO allow them to set a preferred stripe size */
4494 	return SZ_64K;
4495 }
4496 
4497 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4498 {
4499 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4500 		return;
4501 
4502 	btrfs_set_fs_incompat(info, RAID56);
4503 }
4504 
4505 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4506 			- sizeof(struct btrfs_item)		\
4507 			- sizeof(struct btrfs_chunk))		\
4508 			/ sizeof(struct btrfs_stripe) + 1)
4509 
4510 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4511 				- 2 * sizeof(struct btrfs_disk_key)	\
4512 				- 2 * sizeof(struct btrfs_chunk))	\
4513 				/ sizeof(struct btrfs_stripe) + 1)
4514 
4515 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4516 			       struct btrfs_root *extent_root, u64 start,
4517 			       u64 type)
4518 {
4519 	struct btrfs_fs_info *info = extent_root->fs_info;
4520 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4521 	struct list_head *cur;
4522 	struct map_lookup *map = NULL;
4523 	struct extent_map_tree *em_tree;
4524 	struct extent_map *em;
4525 	struct btrfs_device_info *devices_info = NULL;
4526 	u64 total_avail;
4527 	int num_stripes;	/* total number of stripes to allocate */
4528 	int data_stripes;	/* number of stripes that count for
4529 				   block group size */
4530 	int sub_stripes;	/* sub_stripes info for map */
4531 	int dev_stripes;	/* stripes per dev */
4532 	int devs_max;		/* max devs to use */
4533 	int devs_min;		/* min devs needed */
4534 	int devs_increment;	/* ndevs has to be a multiple of this */
4535 	int ncopies;		/* how many copies to data has */
4536 	int ret;
4537 	u64 max_stripe_size;
4538 	u64 max_chunk_size;
4539 	u64 stripe_size;
4540 	u64 num_bytes;
4541 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4542 	int ndevs;
4543 	int i;
4544 	int j;
4545 	int index;
4546 
4547 	BUG_ON(!alloc_profile_is_valid(type, 0));
4548 
4549 	if (list_empty(&fs_devices->alloc_list))
4550 		return -ENOSPC;
4551 
4552 	index = __get_raid_index(type);
4553 
4554 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4555 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4556 	devs_max = btrfs_raid_array[index].devs_max;
4557 	devs_min = btrfs_raid_array[index].devs_min;
4558 	devs_increment = btrfs_raid_array[index].devs_increment;
4559 	ncopies = btrfs_raid_array[index].ncopies;
4560 
4561 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4562 		max_stripe_size = SZ_1G;
4563 		max_chunk_size = 10 * max_stripe_size;
4564 		if (!devs_max)
4565 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4566 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4567 		/* for larger filesystems, use larger metadata chunks */
4568 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4569 			max_stripe_size = SZ_1G;
4570 		else
4571 			max_stripe_size = SZ_256M;
4572 		max_chunk_size = max_stripe_size;
4573 		if (!devs_max)
4574 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4575 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4576 		max_stripe_size = SZ_32M;
4577 		max_chunk_size = 2 * max_stripe_size;
4578 		if (!devs_max)
4579 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4580 	} else {
4581 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4582 		       type);
4583 		BUG_ON(1);
4584 	}
4585 
4586 	/* we don't want a chunk larger than 10% of writeable space */
4587 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4588 			     max_chunk_size);
4589 
4590 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4591 			       GFP_NOFS);
4592 	if (!devices_info)
4593 		return -ENOMEM;
4594 
4595 	cur = fs_devices->alloc_list.next;
4596 
4597 	/*
4598 	 * in the first pass through the devices list, we gather information
4599 	 * about the available holes on each device.
4600 	 */
4601 	ndevs = 0;
4602 	while (cur != &fs_devices->alloc_list) {
4603 		struct btrfs_device *device;
4604 		u64 max_avail;
4605 		u64 dev_offset;
4606 
4607 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4608 
4609 		cur = cur->next;
4610 
4611 		if (!device->writeable) {
4612 			WARN(1, KERN_ERR
4613 			       "BTRFS: read-only device in alloc_list\n");
4614 			continue;
4615 		}
4616 
4617 		if (!device->in_fs_metadata ||
4618 		    device->is_tgtdev_for_dev_replace)
4619 			continue;
4620 
4621 		if (device->total_bytes > device->bytes_used)
4622 			total_avail = device->total_bytes - device->bytes_used;
4623 		else
4624 			total_avail = 0;
4625 
4626 		/* If there is no space on this device, skip it. */
4627 		if (total_avail == 0)
4628 			continue;
4629 
4630 		ret = find_free_dev_extent(trans, device,
4631 					   max_stripe_size * dev_stripes,
4632 					   &dev_offset, &max_avail);
4633 		if (ret && ret != -ENOSPC)
4634 			goto error;
4635 
4636 		if (ret == 0)
4637 			max_avail = max_stripe_size * dev_stripes;
4638 
4639 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4640 			continue;
4641 
4642 		if (ndevs == fs_devices->rw_devices) {
4643 			WARN(1, "%s: found more than %llu devices\n",
4644 			     __func__, fs_devices->rw_devices);
4645 			break;
4646 		}
4647 		devices_info[ndevs].dev_offset = dev_offset;
4648 		devices_info[ndevs].max_avail = max_avail;
4649 		devices_info[ndevs].total_avail = total_avail;
4650 		devices_info[ndevs].dev = device;
4651 		++ndevs;
4652 	}
4653 
4654 	/*
4655 	 * now sort the devices by hole size / available space
4656 	 */
4657 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4658 	     btrfs_cmp_device_info, NULL);
4659 
4660 	/* round down to number of usable stripes */
4661 	ndevs -= ndevs % devs_increment;
4662 
4663 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4664 		ret = -ENOSPC;
4665 		goto error;
4666 	}
4667 
4668 	if (devs_max && ndevs > devs_max)
4669 		ndevs = devs_max;
4670 	/*
4671 	 * the primary goal is to maximize the number of stripes, so use as many
4672 	 * devices as possible, even if the stripes are not maximum sized.
4673 	 */
4674 	stripe_size = devices_info[ndevs-1].max_avail;
4675 	num_stripes = ndevs * dev_stripes;
4676 
4677 	/*
4678 	 * this will have to be fixed for RAID1 and RAID10 over
4679 	 * more drives
4680 	 */
4681 	data_stripes = num_stripes / ncopies;
4682 
4683 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4684 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4685 				 btrfs_super_stripesize(info->super_copy));
4686 		data_stripes = num_stripes - 1;
4687 	}
4688 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4689 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4690 				 btrfs_super_stripesize(info->super_copy));
4691 		data_stripes = num_stripes - 2;
4692 	}
4693 
4694 	/*
4695 	 * Use the number of data stripes to figure out how big this chunk
4696 	 * is really going to be in terms of logical address space,
4697 	 * and compare that answer with the max chunk size
4698 	 */
4699 	if (stripe_size * data_stripes > max_chunk_size) {
4700 		u64 mask = (1ULL << 24) - 1;
4701 
4702 		stripe_size = div_u64(max_chunk_size, data_stripes);
4703 
4704 		/* bump the answer up to a 16MB boundary */
4705 		stripe_size = (stripe_size + mask) & ~mask;
4706 
4707 		/* but don't go higher than the limits we found
4708 		 * while searching for free extents
4709 		 */
4710 		if (stripe_size > devices_info[ndevs-1].max_avail)
4711 			stripe_size = devices_info[ndevs-1].max_avail;
4712 	}
4713 
4714 	stripe_size = div_u64(stripe_size, dev_stripes);
4715 
4716 	/* align to BTRFS_STRIPE_LEN */
4717 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4718 	stripe_size *= raid_stripe_len;
4719 
4720 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4721 	if (!map) {
4722 		ret = -ENOMEM;
4723 		goto error;
4724 	}
4725 	map->num_stripes = num_stripes;
4726 
4727 	for (i = 0; i < ndevs; ++i) {
4728 		for (j = 0; j < dev_stripes; ++j) {
4729 			int s = i * dev_stripes + j;
4730 			map->stripes[s].dev = devices_info[i].dev;
4731 			map->stripes[s].physical = devices_info[i].dev_offset +
4732 						   j * stripe_size;
4733 		}
4734 	}
4735 	map->sector_size = extent_root->sectorsize;
4736 	map->stripe_len = raid_stripe_len;
4737 	map->io_align = raid_stripe_len;
4738 	map->io_width = raid_stripe_len;
4739 	map->type = type;
4740 	map->sub_stripes = sub_stripes;
4741 
4742 	num_bytes = stripe_size * data_stripes;
4743 
4744 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4745 
4746 	em = alloc_extent_map();
4747 	if (!em) {
4748 		kfree(map);
4749 		ret = -ENOMEM;
4750 		goto error;
4751 	}
4752 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4753 	em->map_lookup = map;
4754 	em->start = start;
4755 	em->len = num_bytes;
4756 	em->block_start = 0;
4757 	em->block_len = em->len;
4758 	em->orig_block_len = stripe_size;
4759 
4760 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4761 	write_lock(&em_tree->lock);
4762 	ret = add_extent_mapping(em_tree, em, 0);
4763 	if (!ret) {
4764 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4765 		atomic_inc(&em->refs);
4766 	}
4767 	write_unlock(&em_tree->lock);
4768 	if (ret) {
4769 		free_extent_map(em);
4770 		goto error;
4771 	}
4772 
4773 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4774 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4775 				     start, num_bytes);
4776 	if (ret)
4777 		goto error_del_extent;
4778 
4779 	for (i = 0; i < map->num_stripes; i++) {
4780 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4781 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4782 	}
4783 
4784 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4785 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4786 						   map->num_stripes);
4787 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4788 
4789 	free_extent_map(em);
4790 	check_raid56_incompat_flag(extent_root->fs_info, type);
4791 
4792 	kfree(devices_info);
4793 	return 0;
4794 
4795 error_del_extent:
4796 	write_lock(&em_tree->lock);
4797 	remove_extent_mapping(em_tree, em);
4798 	write_unlock(&em_tree->lock);
4799 
4800 	/* One for our allocation */
4801 	free_extent_map(em);
4802 	/* One for the tree reference */
4803 	free_extent_map(em);
4804 	/* One for the pending_chunks list reference */
4805 	free_extent_map(em);
4806 error:
4807 	kfree(devices_info);
4808 	return ret;
4809 }
4810 
4811 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4812 				struct btrfs_root *extent_root,
4813 				u64 chunk_offset, u64 chunk_size)
4814 {
4815 	struct btrfs_key key;
4816 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4817 	struct btrfs_device *device;
4818 	struct btrfs_chunk *chunk;
4819 	struct btrfs_stripe *stripe;
4820 	struct extent_map_tree *em_tree;
4821 	struct extent_map *em;
4822 	struct map_lookup *map;
4823 	size_t item_size;
4824 	u64 dev_offset;
4825 	u64 stripe_size;
4826 	int i = 0;
4827 	int ret = 0;
4828 
4829 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4830 	read_lock(&em_tree->lock);
4831 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4832 	read_unlock(&em_tree->lock);
4833 
4834 	if (!em) {
4835 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4836 			   "%Lu len %Lu", chunk_offset, chunk_size);
4837 		return -EINVAL;
4838 	}
4839 
4840 	if (em->start != chunk_offset || em->len != chunk_size) {
4841 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4842 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4843 			  chunk_size, em->start, em->len);
4844 		free_extent_map(em);
4845 		return -EINVAL;
4846 	}
4847 
4848 	map = em->map_lookup;
4849 	item_size = btrfs_chunk_item_size(map->num_stripes);
4850 	stripe_size = em->orig_block_len;
4851 
4852 	chunk = kzalloc(item_size, GFP_NOFS);
4853 	if (!chunk) {
4854 		ret = -ENOMEM;
4855 		goto out;
4856 	}
4857 
4858 	/*
4859 	 * Take the device list mutex to prevent races with the final phase of
4860 	 * a device replace operation that replaces the device object associated
4861 	 * with the map's stripes, because the device object's id can change
4862 	 * at any time during that final phase of the device replace operation
4863 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4864 	 */
4865 	mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4866 	for (i = 0; i < map->num_stripes; i++) {
4867 		device = map->stripes[i].dev;
4868 		dev_offset = map->stripes[i].physical;
4869 
4870 		ret = btrfs_update_device(trans, device);
4871 		if (ret)
4872 			break;
4873 		ret = btrfs_alloc_dev_extent(trans, device,
4874 					     chunk_root->root_key.objectid,
4875 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4876 					     chunk_offset, dev_offset,
4877 					     stripe_size);
4878 		if (ret)
4879 			break;
4880 	}
4881 	if (ret) {
4882 		mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4883 		goto out;
4884 	}
4885 
4886 	stripe = &chunk->stripe;
4887 	for (i = 0; i < map->num_stripes; i++) {
4888 		device = map->stripes[i].dev;
4889 		dev_offset = map->stripes[i].physical;
4890 
4891 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4892 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4893 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4894 		stripe++;
4895 	}
4896 	mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4897 
4898 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4899 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4900 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4901 	btrfs_set_stack_chunk_type(chunk, map->type);
4902 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4903 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4904 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4905 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4906 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4907 
4908 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4909 	key.type = BTRFS_CHUNK_ITEM_KEY;
4910 	key.offset = chunk_offset;
4911 
4912 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4913 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4914 		/*
4915 		 * TODO: Cleanup of inserted chunk root in case of
4916 		 * failure.
4917 		 */
4918 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4919 					     item_size);
4920 	}
4921 
4922 out:
4923 	kfree(chunk);
4924 	free_extent_map(em);
4925 	return ret;
4926 }
4927 
4928 /*
4929  * Chunk allocation falls into two parts. The first part does works
4930  * that make the new allocated chunk useable, but not do any operation
4931  * that modifies the chunk tree. The second part does the works that
4932  * require modifying the chunk tree. This division is important for the
4933  * bootstrap process of adding storage to a seed btrfs.
4934  */
4935 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4936 		      struct btrfs_root *extent_root, u64 type)
4937 {
4938 	u64 chunk_offset;
4939 
4940 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4941 	chunk_offset = find_next_chunk(extent_root->fs_info);
4942 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4943 }
4944 
4945 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4946 					 struct btrfs_root *root,
4947 					 struct btrfs_device *device)
4948 {
4949 	u64 chunk_offset;
4950 	u64 sys_chunk_offset;
4951 	u64 alloc_profile;
4952 	struct btrfs_fs_info *fs_info = root->fs_info;
4953 	struct btrfs_root *extent_root = fs_info->extent_root;
4954 	int ret;
4955 
4956 	chunk_offset = find_next_chunk(fs_info);
4957 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4958 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4959 				  alloc_profile);
4960 	if (ret)
4961 		return ret;
4962 
4963 	sys_chunk_offset = find_next_chunk(root->fs_info);
4964 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4965 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4966 				  alloc_profile);
4967 	return ret;
4968 }
4969 
4970 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4971 {
4972 	int max_errors;
4973 
4974 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4975 			 BTRFS_BLOCK_GROUP_RAID10 |
4976 			 BTRFS_BLOCK_GROUP_RAID5 |
4977 			 BTRFS_BLOCK_GROUP_DUP)) {
4978 		max_errors = 1;
4979 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4980 		max_errors = 2;
4981 	} else {
4982 		max_errors = 0;
4983 	}
4984 
4985 	return max_errors;
4986 }
4987 
4988 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4989 {
4990 	struct extent_map *em;
4991 	struct map_lookup *map;
4992 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4993 	int readonly = 0;
4994 	int miss_ndevs = 0;
4995 	int i;
4996 
4997 	read_lock(&map_tree->map_tree.lock);
4998 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4999 	read_unlock(&map_tree->map_tree.lock);
5000 	if (!em)
5001 		return 1;
5002 
5003 	map = em->map_lookup;
5004 	for (i = 0; i < map->num_stripes; i++) {
5005 		if (map->stripes[i].dev->missing) {
5006 			miss_ndevs++;
5007 			continue;
5008 		}
5009 
5010 		if (!map->stripes[i].dev->writeable) {
5011 			readonly = 1;
5012 			goto end;
5013 		}
5014 	}
5015 
5016 	/*
5017 	 * If the number of missing devices is larger than max errors,
5018 	 * we can not write the data into that chunk successfully, so
5019 	 * set it readonly.
5020 	 */
5021 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5022 		readonly = 1;
5023 end:
5024 	free_extent_map(em);
5025 	return readonly;
5026 }
5027 
5028 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5029 {
5030 	extent_map_tree_init(&tree->map_tree);
5031 }
5032 
5033 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5034 {
5035 	struct extent_map *em;
5036 
5037 	while (1) {
5038 		write_lock(&tree->map_tree.lock);
5039 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5040 		if (em)
5041 			remove_extent_mapping(&tree->map_tree, em);
5042 		write_unlock(&tree->map_tree.lock);
5043 		if (!em)
5044 			break;
5045 		/* once for us */
5046 		free_extent_map(em);
5047 		/* once for the tree */
5048 		free_extent_map(em);
5049 	}
5050 }
5051 
5052 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5053 {
5054 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5055 	struct extent_map *em;
5056 	struct map_lookup *map;
5057 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5058 	int ret;
5059 
5060 	read_lock(&em_tree->lock);
5061 	em = lookup_extent_mapping(em_tree, logical, len);
5062 	read_unlock(&em_tree->lock);
5063 
5064 	/*
5065 	 * We could return errors for these cases, but that could get ugly and
5066 	 * we'd probably do the same thing which is just not do anything else
5067 	 * and exit, so return 1 so the callers don't try to use other copies.
5068 	 */
5069 	if (!em) {
5070 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5071 			    logical+len);
5072 		return 1;
5073 	}
5074 
5075 	if (em->start > logical || em->start + em->len < logical) {
5076 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5077 			    "%Lu-%Lu", logical, logical+len, em->start,
5078 			    em->start + em->len);
5079 		free_extent_map(em);
5080 		return 1;
5081 	}
5082 
5083 	map = em->map_lookup;
5084 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5085 		ret = map->num_stripes;
5086 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5087 		ret = map->sub_stripes;
5088 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5089 		ret = 2;
5090 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5091 		ret = 3;
5092 	else
5093 		ret = 1;
5094 	free_extent_map(em);
5095 
5096 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5097 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5098 		ret++;
5099 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5100 
5101 	return ret;
5102 }
5103 
5104 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5105 				    struct btrfs_mapping_tree *map_tree,
5106 				    u64 logical)
5107 {
5108 	struct extent_map *em;
5109 	struct map_lookup *map;
5110 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5111 	unsigned long len = root->sectorsize;
5112 
5113 	read_lock(&em_tree->lock);
5114 	em = lookup_extent_mapping(em_tree, logical, len);
5115 	read_unlock(&em_tree->lock);
5116 	BUG_ON(!em);
5117 
5118 	BUG_ON(em->start > logical || em->start + em->len < logical);
5119 	map = em->map_lookup;
5120 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5121 		len = map->stripe_len * nr_data_stripes(map);
5122 	free_extent_map(em);
5123 	return len;
5124 }
5125 
5126 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5127 			   u64 logical, u64 len, int mirror_num)
5128 {
5129 	struct extent_map *em;
5130 	struct map_lookup *map;
5131 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5132 	int ret = 0;
5133 
5134 	read_lock(&em_tree->lock);
5135 	em = lookup_extent_mapping(em_tree, logical, len);
5136 	read_unlock(&em_tree->lock);
5137 	BUG_ON(!em);
5138 
5139 	BUG_ON(em->start > logical || em->start + em->len < logical);
5140 	map = em->map_lookup;
5141 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5142 		ret = 1;
5143 	free_extent_map(em);
5144 	return ret;
5145 }
5146 
5147 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5148 			    struct map_lookup *map, int first, int num,
5149 			    int optimal, int dev_replace_is_ongoing)
5150 {
5151 	int i;
5152 	int tolerance;
5153 	struct btrfs_device *srcdev;
5154 
5155 	if (dev_replace_is_ongoing &&
5156 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5157 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5158 		srcdev = fs_info->dev_replace.srcdev;
5159 	else
5160 		srcdev = NULL;
5161 
5162 	/*
5163 	 * try to avoid the drive that is the source drive for a
5164 	 * dev-replace procedure, only choose it if no other non-missing
5165 	 * mirror is available
5166 	 */
5167 	for (tolerance = 0; tolerance < 2; tolerance++) {
5168 		if (map->stripes[optimal].dev->bdev &&
5169 		    (tolerance || map->stripes[optimal].dev != srcdev))
5170 			return optimal;
5171 		for (i = first; i < first + num; i++) {
5172 			if (map->stripes[i].dev->bdev &&
5173 			    (tolerance || map->stripes[i].dev != srcdev))
5174 				return i;
5175 		}
5176 	}
5177 
5178 	/* we couldn't find one that doesn't fail.  Just return something
5179 	 * and the io error handling code will clean up eventually
5180 	 */
5181 	return optimal;
5182 }
5183 
5184 static inline int parity_smaller(u64 a, u64 b)
5185 {
5186 	return a > b;
5187 }
5188 
5189 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5190 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5191 {
5192 	struct btrfs_bio_stripe s;
5193 	int i;
5194 	u64 l;
5195 	int again = 1;
5196 
5197 	while (again) {
5198 		again = 0;
5199 		for (i = 0; i < num_stripes - 1; i++) {
5200 			if (parity_smaller(bbio->raid_map[i],
5201 					   bbio->raid_map[i+1])) {
5202 				s = bbio->stripes[i];
5203 				l = bbio->raid_map[i];
5204 				bbio->stripes[i] = bbio->stripes[i+1];
5205 				bbio->raid_map[i] = bbio->raid_map[i+1];
5206 				bbio->stripes[i+1] = s;
5207 				bbio->raid_map[i+1] = l;
5208 
5209 				again = 1;
5210 			}
5211 		}
5212 	}
5213 }
5214 
5215 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5216 {
5217 	struct btrfs_bio *bbio = kzalloc(
5218 		 /* the size of the btrfs_bio */
5219 		sizeof(struct btrfs_bio) +
5220 		/* plus the variable array for the stripes */
5221 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5222 		/* plus the variable array for the tgt dev */
5223 		sizeof(int) * (real_stripes) +
5224 		/*
5225 		 * plus the raid_map, which includes both the tgt dev
5226 		 * and the stripes
5227 		 */
5228 		sizeof(u64) * (total_stripes),
5229 		GFP_NOFS|__GFP_NOFAIL);
5230 
5231 	atomic_set(&bbio->error, 0);
5232 	atomic_set(&bbio->refs, 1);
5233 
5234 	return bbio;
5235 }
5236 
5237 void btrfs_get_bbio(struct btrfs_bio *bbio)
5238 {
5239 	WARN_ON(!atomic_read(&bbio->refs));
5240 	atomic_inc(&bbio->refs);
5241 }
5242 
5243 void btrfs_put_bbio(struct btrfs_bio *bbio)
5244 {
5245 	if (!bbio)
5246 		return;
5247 	if (atomic_dec_and_test(&bbio->refs))
5248 		kfree(bbio);
5249 }
5250 
5251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5252 			     u64 logical, u64 *length,
5253 			     struct btrfs_bio **bbio_ret,
5254 			     int mirror_num, int need_raid_map)
5255 {
5256 	struct extent_map *em;
5257 	struct map_lookup *map;
5258 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5259 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5260 	u64 offset;
5261 	u64 stripe_offset;
5262 	u64 stripe_end_offset;
5263 	u64 stripe_nr;
5264 	u64 stripe_nr_orig;
5265 	u64 stripe_nr_end;
5266 	u64 stripe_len;
5267 	u32 stripe_index;
5268 	int i;
5269 	int ret = 0;
5270 	int num_stripes;
5271 	int max_errors = 0;
5272 	int tgtdev_indexes = 0;
5273 	struct btrfs_bio *bbio = NULL;
5274 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5275 	int dev_replace_is_ongoing = 0;
5276 	int num_alloc_stripes;
5277 	int patch_the_first_stripe_for_dev_replace = 0;
5278 	u64 physical_to_patch_in_first_stripe = 0;
5279 	u64 raid56_full_stripe_start = (u64)-1;
5280 
5281 	read_lock(&em_tree->lock);
5282 	em = lookup_extent_mapping(em_tree, logical, *length);
5283 	read_unlock(&em_tree->lock);
5284 
5285 	if (!em) {
5286 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5287 			logical, *length);
5288 		return -EINVAL;
5289 	}
5290 
5291 	if (em->start > logical || em->start + em->len < logical) {
5292 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5293 			   "found %Lu-%Lu", logical, em->start,
5294 			   em->start + em->len);
5295 		free_extent_map(em);
5296 		return -EINVAL;
5297 	}
5298 
5299 	map = em->map_lookup;
5300 	offset = logical - em->start;
5301 
5302 	stripe_len = map->stripe_len;
5303 	stripe_nr = offset;
5304 	/*
5305 	 * stripe_nr counts the total number of stripes we have to stride
5306 	 * to get to this block
5307 	 */
5308 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5309 
5310 	stripe_offset = stripe_nr * stripe_len;
5311 	if (offset < stripe_offset) {
5312 		btrfs_crit(fs_info, "stripe math has gone wrong, "
5313 			   "stripe_offset=%llu, offset=%llu, start=%llu, "
5314 			   "logical=%llu, stripe_len=%llu",
5315 			   stripe_offset, offset, em->start, logical,
5316 			   stripe_len);
5317 		free_extent_map(em);
5318 		return -EINVAL;
5319 	}
5320 
5321 	/* stripe_offset is the offset of this block in its stripe*/
5322 	stripe_offset = offset - stripe_offset;
5323 
5324 	/* if we're here for raid56, we need to know the stripe aligned start */
5325 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5326 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5327 		raid56_full_stripe_start = offset;
5328 
5329 		/* allow a write of a full stripe, but make sure we don't
5330 		 * allow straddling of stripes
5331 		 */
5332 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5333 				full_stripe_len);
5334 		raid56_full_stripe_start *= full_stripe_len;
5335 	}
5336 
5337 	if (rw & REQ_DISCARD) {
5338 		/* we don't discard raid56 yet */
5339 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5340 			ret = -EOPNOTSUPP;
5341 			goto out;
5342 		}
5343 		*length = min_t(u64, em->len - offset, *length);
5344 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5345 		u64 max_len;
5346 		/* For writes to RAID[56], allow a full stripeset across all disks.
5347 		   For other RAID types and for RAID[56] reads, just allow a single
5348 		   stripe (on a single disk). */
5349 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5350 		    (rw & REQ_WRITE)) {
5351 			max_len = stripe_len * nr_data_stripes(map) -
5352 				(offset - raid56_full_stripe_start);
5353 		} else {
5354 			/* we limit the length of each bio to what fits in a stripe */
5355 			max_len = stripe_len - stripe_offset;
5356 		}
5357 		*length = min_t(u64, em->len - offset, max_len);
5358 	} else {
5359 		*length = em->len - offset;
5360 	}
5361 
5362 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5363 	   it cares about is the length */
5364 	if (!bbio_ret)
5365 		goto out;
5366 
5367 	btrfs_dev_replace_lock(dev_replace, 0);
5368 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5369 	if (!dev_replace_is_ongoing)
5370 		btrfs_dev_replace_unlock(dev_replace, 0);
5371 	else
5372 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5373 
5374 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5375 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5376 	    dev_replace->tgtdev != NULL) {
5377 		/*
5378 		 * in dev-replace case, for repair case (that's the only
5379 		 * case where the mirror is selected explicitly when
5380 		 * calling btrfs_map_block), blocks left of the left cursor
5381 		 * can also be read from the target drive.
5382 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5383 		 * the last one to the array of stripes. For READ, it also
5384 		 * needs to be supported using the same mirror number.
5385 		 * If the requested block is not left of the left cursor,
5386 		 * EIO is returned. This can happen because btrfs_num_copies()
5387 		 * returns one more in the dev-replace case.
5388 		 */
5389 		u64 tmp_length = *length;
5390 		struct btrfs_bio *tmp_bbio = NULL;
5391 		int tmp_num_stripes;
5392 		u64 srcdev_devid = dev_replace->srcdev->devid;
5393 		int index_srcdev = 0;
5394 		int found = 0;
5395 		u64 physical_of_found = 0;
5396 
5397 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5398 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5399 		if (ret) {
5400 			WARN_ON(tmp_bbio != NULL);
5401 			goto out;
5402 		}
5403 
5404 		tmp_num_stripes = tmp_bbio->num_stripes;
5405 		if (mirror_num > tmp_num_stripes) {
5406 			/*
5407 			 * REQ_GET_READ_MIRRORS does not contain this
5408 			 * mirror, that means that the requested area
5409 			 * is not left of the left cursor
5410 			 */
5411 			ret = -EIO;
5412 			btrfs_put_bbio(tmp_bbio);
5413 			goto out;
5414 		}
5415 
5416 		/*
5417 		 * process the rest of the function using the mirror_num
5418 		 * of the source drive. Therefore look it up first.
5419 		 * At the end, patch the device pointer to the one of the
5420 		 * target drive.
5421 		 */
5422 		for (i = 0; i < tmp_num_stripes; i++) {
5423 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5424 				continue;
5425 
5426 			/*
5427 			 * In case of DUP, in order to keep it simple, only add
5428 			 * the mirror with the lowest physical address
5429 			 */
5430 			if (found &&
5431 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5432 				continue;
5433 
5434 			index_srcdev = i;
5435 			found = 1;
5436 			physical_of_found = tmp_bbio->stripes[i].physical;
5437 		}
5438 
5439 		btrfs_put_bbio(tmp_bbio);
5440 
5441 		if (!found) {
5442 			WARN_ON(1);
5443 			ret = -EIO;
5444 			goto out;
5445 		}
5446 
5447 		mirror_num = index_srcdev + 1;
5448 		patch_the_first_stripe_for_dev_replace = 1;
5449 		physical_to_patch_in_first_stripe = physical_of_found;
5450 	} else if (mirror_num > map->num_stripes) {
5451 		mirror_num = 0;
5452 	}
5453 
5454 	num_stripes = 1;
5455 	stripe_index = 0;
5456 	stripe_nr_orig = stripe_nr;
5457 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5458 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5459 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5460 			    (offset + *length);
5461 
5462 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5463 		if (rw & REQ_DISCARD)
5464 			num_stripes = min_t(u64, map->num_stripes,
5465 					    stripe_nr_end - stripe_nr_orig);
5466 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5467 				&stripe_index);
5468 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5469 			mirror_num = 1;
5470 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5471 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5472 			num_stripes = map->num_stripes;
5473 		else if (mirror_num)
5474 			stripe_index = mirror_num - 1;
5475 		else {
5476 			stripe_index = find_live_mirror(fs_info, map, 0,
5477 					    map->num_stripes,
5478 					    current->pid % map->num_stripes,
5479 					    dev_replace_is_ongoing);
5480 			mirror_num = stripe_index + 1;
5481 		}
5482 
5483 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5484 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5485 			num_stripes = map->num_stripes;
5486 		} else if (mirror_num) {
5487 			stripe_index = mirror_num - 1;
5488 		} else {
5489 			mirror_num = 1;
5490 		}
5491 
5492 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5493 		u32 factor = map->num_stripes / map->sub_stripes;
5494 
5495 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5496 		stripe_index *= map->sub_stripes;
5497 
5498 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5499 			num_stripes = map->sub_stripes;
5500 		else if (rw & REQ_DISCARD)
5501 			num_stripes = min_t(u64, map->sub_stripes *
5502 					    (stripe_nr_end - stripe_nr_orig),
5503 					    map->num_stripes);
5504 		else if (mirror_num)
5505 			stripe_index += mirror_num - 1;
5506 		else {
5507 			int old_stripe_index = stripe_index;
5508 			stripe_index = find_live_mirror(fs_info, map,
5509 					      stripe_index,
5510 					      map->sub_stripes, stripe_index +
5511 					      current->pid % map->sub_stripes,
5512 					      dev_replace_is_ongoing);
5513 			mirror_num = stripe_index - old_stripe_index + 1;
5514 		}
5515 
5516 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5517 		if (need_raid_map &&
5518 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5519 		     mirror_num > 1)) {
5520 			/* push stripe_nr back to the start of the full stripe */
5521 			stripe_nr = div_u64(raid56_full_stripe_start,
5522 					stripe_len * nr_data_stripes(map));
5523 
5524 			/* RAID[56] write or recovery. Return all stripes */
5525 			num_stripes = map->num_stripes;
5526 			max_errors = nr_parity_stripes(map);
5527 
5528 			*length = map->stripe_len;
5529 			stripe_index = 0;
5530 			stripe_offset = 0;
5531 		} else {
5532 			/*
5533 			 * Mirror #0 or #1 means the original data block.
5534 			 * Mirror #2 is RAID5 parity block.
5535 			 * Mirror #3 is RAID6 Q block.
5536 			 */
5537 			stripe_nr = div_u64_rem(stripe_nr,
5538 					nr_data_stripes(map), &stripe_index);
5539 			if (mirror_num > 1)
5540 				stripe_index = nr_data_stripes(map) +
5541 						mirror_num - 2;
5542 
5543 			/* We distribute the parity blocks across stripes */
5544 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5545 					&stripe_index);
5546 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5547 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5548 				mirror_num = 1;
5549 		}
5550 	} else {
5551 		/*
5552 		 * after this, stripe_nr is the number of stripes on this
5553 		 * device we have to walk to find the data, and stripe_index is
5554 		 * the number of our device in the stripe array
5555 		 */
5556 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5557 				&stripe_index);
5558 		mirror_num = stripe_index + 1;
5559 	}
5560 	if (stripe_index >= map->num_stripes) {
5561 		btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5562 			   "got stripe_index=%u, num_stripes=%u",
5563 			   stripe_index, map->num_stripes);
5564 		ret = -EINVAL;
5565 		goto out;
5566 	}
5567 
5568 	num_alloc_stripes = num_stripes;
5569 	if (dev_replace_is_ongoing) {
5570 		if (rw & (REQ_WRITE | REQ_DISCARD))
5571 			num_alloc_stripes <<= 1;
5572 		if (rw & REQ_GET_READ_MIRRORS)
5573 			num_alloc_stripes++;
5574 		tgtdev_indexes = num_stripes;
5575 	}
5576 
5577 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5578 	if (!bbio) {
5579 		ret = -ENOMEM;
5580 		goto out;
5581 	}
5582 	if (dev_replace_is_ongoing)
5583 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5584 
5585 	/* build raid_map */
5586 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5587 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5588 	    mirror_num > 1)) {
5589 		u64 tmp;
5590 		unsigned rot;
5591 
5592 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5593 				 sizeof(struct btrfs_bio_stripe) *
5594 				 num_alloc_stripes +
5595 				 sizeof(int) * tgtdev_indexes);
5596 
5597 		/* Work out the disk rotation on this stripe-set */
5598 		div_u64_rem(stripe_nr, num_stripes, &rot);
5599 
5600 		/* Fill in the logical address of each stripe */
5601 		tmp = stripe_nr * nr_data_stripes(map);
5602 		for (i = 0; i < nr_data_stripes(map); i++)
5603 			bbio->raid_map[(i+rot) % num_stripes] =
5604 				em->start + (tmp + i) * map->stripe_len;
5605 
5606 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5607 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5608 			bbio->raid_map[(i+rot+1) % num_stripes] =
5609 				RAID6_Q_STRIPE;
5610 	}
5611 
5612 	if (rw & REQ_DISCARD) {
5613 		u32 factor = 0;
5614 		u32 sub_stripes = 0;
5615 		u64 stripes_per_dev = 0;
5616 		u32 remaining_stripes = 0;
5617 		u32 last_stripe = 0;
5618 
5619 		if (map->type &
5620 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5621 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5622 				sub_stripes = 1;
5623 			else
5624 				sub_stripes = map->sub_stripes;
5625 
5626 			factor = map->num_stripes / sub_stripes;
5627 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5628 						      stripe_nr_orig,
5629 						      factor,
5630 						      &remaining_stripes);
5631 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5632 			last_stripe *= sub_stripes;
5633 		}
5634 
5635 		for (i = 0; i < num_stripes; i++) {
5636 			bbio->stripes[i].physical =
5637 				map->stripes[stripe_index].physical +
5638 				stripe_offset + stripe_nr * map->stripe_len;
5639 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5640 
5641 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5642 					 BTRFS_BLOCK_GROUP_RAID10)) {
5643 				bbio->stripes[i].length = stripes_per_dev *
5644 							  map->stripe_len;
5645 
5646 				if (i / sub_stripes < remaining_stripes)
5647 					bbio->stripes[i].length +=
5648 						map->stripe_len;
5649 
5650 				/*
5651 				 * Special for the first stripe and
5652 				 * the last stripe:
5653 				 *
5654 				 * |-------|...|-------|
5655 				 *     |----------|
5656 				 *    off     end_off
5657 				 */
5658 				if (i < sub_stripes)
5659 					bbio->stripes[i].length -=
5660 						stripe_offset;
5661 
5662 				if (stripe_index >= last_stripe &&
5663 				    stripe_index <= (last_stripe +
5664 						     sub_stripes - 1))
5665 					bbio->stripes[i].length -=
5666 						stripe_end_offset;
5667 
5668 				if (i == sub_stripes - 1)
5669 					stripe_offset = 0;
5670 			} else
5671 				bbio->stripes[i].length = *length;
5672 
5673 			stripe_index++;
5674 			if (stripe_index == map->num_stripes) {
5675 				/* This could only happen for RAID0/10 */
5676 				stripe_index = 0;
5677 				stripe_nr++;
5678 			}
5679 		}
5680 	} else {
5681 		for (i = 0; i < num_stripes; i++) {
5682 			bbio->stripes[i].physical =
5683 				map->stripes[stripe_index].physical +
5684 				stripe_offset +
5685 				stripe_nr * map->stripe_len;
5686 			bbio->stripes[i].dev =
5687 				map->stripes[stripe_index].dev;
5688 			stripe_index++;
5689 		}
5690 	}
5691 
5692 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5693 		max_errors = btrfs_chunk_max_errors(map);
5694 
5695 	if (bbio->raid_map)
5696 		sort_parity_stripes(bbio, num_stripes);
5697 
5698 	tgtdev_indexes = 0;
5699 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5700 	    dev_replace->tgtdev != NULL) {
5701 		int index_where_to_add;
5702 		u64 srcdev_devid = dev_replace->srcdev->devid;
5703 
5704 		/*
5705 		 * duplicate the write operations while the dev replace
5706 		 * procedure is running. Since the copying of the old disk
5707 		 * to the new disk takes place at run time while the
5708 		 * filesystem is mounted writable, the regular write
5709 		 * operations to the old disk have to be duplicated to go
5710 		 * to the new disk as well.
5711 		 * Note that device->missing is handled by the caller, and
5712 		 * that the write to the old disk is already set up in the
5713 		 * stripes array.
5714 		 */
5715 		index_where_to_add = num_stripes;
5716 		for (i = 0; i < num_stripes; i++) {
5717 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5718 				/* write to new disk, too */
5719 				struct btrfs_bio_stripe *new =
5720 					bbio->stripes + index_where_to_add;
5721 				struct btrfs_bio_stripe *old =
5722 					bbio->stripes + i;
5723 
5724 				new->physical = old->physical;
5725 				new->length = old->length;
5726 				new->dev = dev_replace->tgtdev;
5727 				bbio->tgtdev_map[i] = index_where_to_add;
5728 				index_where_to_add++;
5729 				max_errors++;
5730 				tgtdev_indexes++;
5731 			}
5732 		}
5733 		num_stripes = index_where_to_add;
5734 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5735 		   dev_replace->tgtdev != NULL) {
5736 		u64 srcdev_devid = dev_replace->srcdev->devid;
5737 		int index_srcdev = 0;
5738 		int found = 0;
5739 		u64 physical_of_found = 0;
5740 
5741 		/*
5742 		 * During the dev-replace procedure, the target drive can
5743 		 * also be used to read data in case it is needed to repair
5744 		 * a corrupt block elsewhere. This is possible if the
5745 		 * requested area is left of the left cursor. In this area,
5746 		 * the target drive is a full copy of the source drive.
5747 		 */
5748 		for (i = 0; i < num_stripes; i++) {
5749 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5750 				/*
5751 				 * In case of DUP, in order to keep it
5752 				 * simple, only add the mirror with the
5753 				 * lowest physical address
5754 				 */
5755 				if (found &&
5756 				    physical_of_found <=
5757 				     bbio->stripes[i].physical)
5758 					continue;
5759 				index_srcdev = i;
5760 				found = 1;
5761 				physical_of_found = bbio->stripes[i].physical;
5762 			}
5763 		}
5764 		if (found) {
5765 			if (physical_of_found + map->stripe_len <=
5766 			    dev_replace->cursor_left) {
5767 				struct btrfs_bio_stripe *tgtdev_stripe =
5768 					bbio->stripes + num_stripes;
5769 
5770 				tgtdev_stripe->physical = physical_of_found;
5771 				tgtdev_stripe->length =
5772 					bbio->stripes[index_srcdev].length;
5773 				tgtdev_stripe->dev = dev_replace->tgtdev;
5774 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5775 
5776 				tgtdev_indexes++;
5777 				num_stripes++;
5778 			}
5779 		}
5780 	}
5781 
5782 	*bbio_ret = bbio;
5783 	bbio->map_type = map->type;
5784 	bbio->num_stripes = num_stripes;
5785 	bbio->max_errors = max_errors;
5786 	bbio->mirror_num = mirror_num;
5787 	bbio->num_tgtdevs = tgtdev_indexes;
5788 
5789 	/*
5790 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5791 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5792 	 * available as a mirror
5793 	 */
5794 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5795 		WARN_ON(num_stripes > 1);
5796 		bbio->stripes[0].dev = dev_replace->tgtdev;
5797 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5798 		bbio->mirror_num = map->num_stripes + 1;
5799 	}
5800 out:
5801 	if (dev_replace_is_ongoing) {
5802 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5803 		btrfs_dev_replace_unlock(dev_replace, 0);
5804 	}
5805 	free_extent_map(em);
5806 	return ret;
5807 }
5808 
5809 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5810 		      u64 logical, u64 *length,
5811 		      struct btrfs_bio **bbio_ret, int mirror_num)
5812 {
5813 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5814 				 mirror_num, 0);
5815 }
5816 
5817 /* For Scrub/replace */
5818 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5819 		     u64 logical, u64 *length,
5820 		     struct btrfs_bio **bbio_ret, int mirror_num,
5821 		     int need_raid_map)
5822 {
5823 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5824 				 mirror_num, need_raid_map);
5825 }
5826 
5827 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5828 		     u64 chunk_start, u64 physical, u64 devid,
5829 		     u64 **logical, int *naddrs, int *stripe_len)
5830 {
5831 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5832 	struct extent_map *em;
5833 	struct map_lookup *map;
5834 	u64 *buf;
5835 	u64 bytenr;
5836 	u64 length;
5837 	u64 stripe_nr;
5838 	u64 rmap_len;
5839 	int i, j, nr = 0;
5840 
5841 	read_lock(&em_tree->lock);
5842 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5843 	read_unlock(&em_tree->lock);
5844 
5845 	if (!em) {
5846 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5847 		       chunk_start);
5848 		return -EIO;
5849 	}
5850 
5851 	if (em->start != chunk_start) {
5852 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5853 		       em->start, chunk_start);
5854 		free_extent_map(em);
5855 		return -EIO;
5856 	}
5857 	map = em->map_lookup;
5858 
5859 	length = em->len;
5860 	rmap_len = map->stripe_len;
5861 
5862 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5863 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5864 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5865 		length = div_u64(length, map->num_stripes);
5866 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5867 		length = div_u64(length, nr_data_stripes(map));
5868 		rmap_len = map->stripe_len * nr_data_stripes(map);
5869 	}
5870 
5871 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5872 	BUG_ON(!buf); /* -ENOMEM */
5873 
5874 	for (i = 0; i < map->num_stripes; i++) {
5875 		if (devid && map->stripes[i].dev->devid != devid)
5876 			continue;
5877 		if (map->stripes[i].physical > physical ||
5878 		    map->stripes[i].physical + length <= physical)
5879 			continue;
5880 
5881 		stripe_nr = physical - map->stripes[i].physical;
5882 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5883 
5884 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5885 			stripe_nr = stripe_nr * map->num_stripes + i;
5886 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5887 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5888 			stripe_nr = stripe_nr * map->num_stripes + i;
5889 		} /* else if RAID[56], multiply by nr_data_stripes().
5890 		   * Alternatively, just use rmap_len below instead of
5891 		   * map->stripe_len */
5892 
5893 		bytenr = chunk_start + stripe_nr * rmap_len;
5894 		WARN_ON(nr >= map->num_stripes);
5895 		for (j = 0; j < nr; j++) {
5896 			if (buf[j] == bytenr)
5897 				break;
5898 		}
5899 		if (j == nr) {
5900 			WARN_ON(nr >= map->num_stripes);
5901 			buf[nr++] = bytenr;
5902 		}
5903 	}
5904 
5905 	*logical = buf;
5906 	*naddrs = nr;
5907 	*stripe_len = rmap_len;
5908 
5909 	free_extent_map(em);
5910 	return 0;
5911 }
5912 
5913 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5914 {
5915 	bio->bi_private = bbio->private;
5916 	bio->bi_end_io = bbio->end_io;
5917 	bio_endio(bio);
5918 
5919 	btrfs_put_bbio(bbio);
5920 }
5921 
5922 static void btrfs_end_bio(struct bio *bio)
5923 {
5924 	struct btrfs_bio *bbio = bio->bi_private;
5925 	int is_orig_bio = 0;
5926 
5927 	if (bio->bi_error) {
5928 		atomic_inc(&bbio->error);
5929 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5930 			unsigned int stripe_index =
5931 				btrfs_io_bio(bio)->stripe_index;
5932 			struct btrfs_device *dev;
5933 
5934 			BUG_ON(stripe_index >= bbio->num_stripes);
5935 			dev = bbio->stripes[stripe_index].dev;
5936 			if (dev->bdev) {
5937 				if (bio->bi_rw & WRITE)
5938 					btrfs_dev_stat_inc(dev,
5939 						BTRFS_DEV_STAT_WRITE_ERRS);
5940 				else
5941 					btrfs_dev_stat_inc(dev,
5942 						BTRFS_DEV_STAT_READ_ERRS);
5943 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5944 					btrfs_dev_stat_inc(dev,
5945 						BTRFS_DEV_STAT_FLUSH_ERRS);
5946 				btrfs_dev_stat_print_on_error(dev);
5947 			}
5948 		}
5949 	}
5950 
5951 	if (bio == bbio->orig_bio)
5952 		is_orig_bio = 1;
5953 
5954 	btrfs_bio_counter_dec(bbio->fs_info);
5955 
5956 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5957 		if (!is_orig_bio) {
5958 			bio_put(bio);
5959 			bio = bbio->orig_bio;
5960 		}
5961 
5962 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5963 		/* only send an error to the higher layers if it is
5964 		 * beyond the tolerance of the btrfs bio
5965 		 */
5966 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5967 			bio->bi_error = -EIO;
5968 		} else {
5969 			/*
5970 			 * this bio is actually up to date, we didn't
5971 			 * go over the max number of errors
5972 			 */
5973 			bio->bi_error = 0;
5974 		}
5975 
5976 		btrfs_end_bbio(bbio, bio);
5977 	} else if (!is_orig_bio) {
5978 		bio_put(bio);
5979 	}
5980 }
5981 
5982 /*
5983  * see run_scheduled_bios for a description of why bios are collected for
5984  * async submit.
5985  *
5986  * This will add one bio to the pending list for a device and make sure
5987  * the work struct is scheduled.
5988  */
5989 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5990 					struct btrfs_device *device,
5991 					int rw, struct bio *bio)
5992 {
5993 	int should_queue = 1;
5994 	struct btrfs_pending_bios *pending_bios;
5995 
5996 	if (device->missing || !device->bdev) {
5997 		bio_io_error(bio);
5998 		return;
5999 	}
6000 
6001 	/* don't bother with additional async steps for reads, right now */
6002 	if (!(rw & REQ_WRITE)) {
6003 		bio_get(bio);
6004 		btrfsic_submit_bio(rw, bio);
6005 		bio_put(bio);
6006 		return;
6007 	}
6008 
6009 	/*
6010 	 * nr_async_bios allows us to reliably return congestion to the
6011 	 * higher layers.  Otherwise, the async bio makes it appear we have
6012 	 * made progress against dirty pages when we've really just put it
6013 	 * on a queue for later
6014 	 */
6015 	atomic_inc(&root->fs_info->nr_async_bios);
6016 	WARN_ON(bio->bi_next);
6017 	bio->bi_next = NULL;
6018 	bio->bi_rw |= rw;
6019 
6020 	spin_lock(&device->io_lock);
6021 	if (bio->bi_rw & REQ_SYNC)
6022 		pending_bios = &device->pending_sync_bios;
6023 	else
6024 		pending_bios = &device->pending_bios;
6025 
6026 	if (pending_bios->tail)
6027 		pending_bios->tail->bi_next = bio;
6028 
6029 	pending_bios->tail = bio;
6030 	if (!pending_bios->head)
6031 		pending_bios->head = bio;
6032 	if (device->running_pending)
6033 		should_queue = 0;
6034 
6035 	spin_unlock(&device->io_lock);
6036 
6037 	if (should_queue)
6038 		btrfs_queue_work(root->fs_info->submit_workers,
6039 				 &device->work);
6040 }
6041 
6042 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6043 			      struct bio *bio, u64 physical, int dev_nr,
6044 			      int rw, int async)
6045 {
6046 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6047 
6048 	bio->bi_private = bbio;
6049 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6050 	bio->bi_end_io = btrfs_end_bio;
6051 	bio->bi_iter.bi_sector = physical >> 9;
6052 #ifdef DEBUG
6053 	{
6054 		struct rcu_string *name;
6055 
6056 		rcu_read_lock();
6057 		name = rcu_dereference(dev->name);
6058 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6059 			 "(%s id %llu), size=%u\n", rw,
6060 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6061 			 name->str, dev->devid, bio->bi_iter.bi_size);
6062 		rcu_read_unlock();
6063 	}
6064 #endif
6065 	bio->bi_bdev = dev->bdev;
6066 
6067 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6068 
6069 	if (async)
6070 		btrfs_schedule_bio(root, dev, rw, bio);
6071 	else
6072 		btrfsic_submit_bio(rw, bio);
6073 }
6074 
6075 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6076 {
6077 	atomic_inc(&bbio->error);
6078 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6079 		/* Should be the original bio. */
6080 		WARN_ON(bio != bbio->orig_bio);
6081 
6082 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6083 		bio->bi_iter.bi_sector = logical >> 9;
6084 		bio->bi_error = -EIO;
6085 		btrfs_end_bbio(bbio, bio);
6086 	}
6087 }
6088 
6089 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6090 		  int mirror_num, int async_submit)
6091 {
6092 	struct btrfs_device *dev;
6093 	struct bio *first_bio = bio;
6094 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6095 	u64 length = 0;
6096 	u64 map_length;
6097 	int ret;
6098 	int dev_nr;
6099 	int total_devs;
6100 	struct btrfs_bio *bbio = NULL;
6101 
6102 	length = bio->bi_iter.bi_size;
6103 	map_length = length;
6104 
6105 	btrfs_bio_counter_inc_blocked(root->fs_info);
6106 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6107 			      mirror_num, 1);
6108 	if (ret) {
6109 		btrfs_bio_counter_dec(root->fs_info);
6110 		return ret;
6111 	}
6112 
6113 	total_devs = bbio->num_stripes;
6114 	bbio->orig_bio = first_bio;
6115 	bbio->private = first_bio->bi_private;
6116 	bbio->end_io = first_bio->bi_end_io;
6117 	bbio->fs_info = root->fs_info;
6118 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6119 
6120 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6121 	    ((rw & WRITE) || (mirror_num > 1))) {
6122 		/* In this case, map_length has been set to the length of
6123 		   a single stripe; not the whole write */
6124 		if (rw & WRITE) {
6125 			ret = raid56_parity_write(root, bio, bbio, map_length);
6126 		} else {
6127 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6128 						    mirror_num, 1);
6129 		}
6130 
6131 		btrfs_bio_counter_dec(root->fs_info);
6132 		return ret;
6133 	}
6134 
6135 	if (map_length < length) {
6136 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6137 			logical, length, map_length);
6138 		BUG();
6139 	}
6140 
6141 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6142 		dev = bbio->stripes[dev_nr].dev;
6143 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6144 			bbio_error(bbio, first_bio, logical);
6145 			continue;
6146 		}
6147 
6148 		if (dev_nr < total_devs - 1) {
6149 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6150 			BUG_ON(!bio); /* -ENOMEM */
6151 		} else
6152 			bio = first_bio;
6153 
6154 		submit_stripe_bio(root, bbio, bio,
6155 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
6156 				  async_submit);
6157 	}
6158 	btrfs_bio_counter_dec(root->fs_info);
6159 	return 0;
6160 }
6161 
6162 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6163 				       u8 *uuid, u8 *fsid)
6164 {
6165 	struct btrfs_device *device;
6166 	struct btrfs_fs_devices *cur_devices;
6167 
6168 	cur_devices = fs_info->fs_devices;
6169 	while (cur_devices) {
6170 		if (!fsid ||
6171 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6172 			device = __find_device(&cur_devices->devices,
6173 					       devid, uuid);
6174 			if (device)
6175 				return device;
6176 		}
6177 		cur_devices = cur_devices->seed;
6178 	}
6179 	return NULL;
6180 }
6181 
6182 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6183 					    struct btrfs_fs_devices *fs_devices,
6184 					    u64 devid, u8 *dev_uuid)
6185 {
6186 	struct btrfs_device *device;
6187 
6188 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6189 	if (IS_ERR(device))
6190 		return NULL;
6191 
6192 	list_add(&device->dev_list, &fs_devices->devices);
6193 	device->fs_devices = fs_devices;
6194 	fs_devices->num_devices++;
6195 
6196 	device->missing = 1;
6197 	fs_devices->missing_devices++;
6198 
6199 	return device;
6200 }
6201 
6202 /**
6203  * btrfs_alloc_device - allocate struct btrfs_device
6204  * @fs_info:	used only for generating a new devid, can be NULL if
6205  *		devid is provided (i.e. @devid != NULL).
6206  * @devid:	a pointer to devid for this device.  If NULL a new devid
6207  *		is generated.
6208  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6209  *		is generated.
6210  *
6211  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6212  * on error.  Returned struct is not linked onto any lists and can be
6213  * destroyed with kfree() right away.
6214  */
6215 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6216 					const u64 *devid,
6217 					const u8 *uuid)
6218 {
6219 	struct btrfs_device *dev;
6220 	u64 tmp;
6221 
6222 	if (WARN_ON(!devid && !fs_info))
6223 		return ERR_PTR(-EINVAL);
6224 
6225 	dev = __alloc_device();
6226 	if (IS_ERR(dev))
6227 		return dev;
6228 
6229 	if (devid)
6230 		tmp = *devid;
6231 	else {
6232 		int ret;
6233 
6234 		ret = find_next_devid(fs_info, &tmp);
6235 		if (ret) {
6236 			kfree(dev);
6237 			return ERR_PTR(ret);
6238 		}
6239 	}
6240 	dev->devid = tmp;
6241 
6242 	if (uuid)
6243 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6244 	else
6245 		generate_random_uuid(dev->uuid);
6246 
6247 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6248 			pending_bios_fn, NULL, NULL);
6249 
6250 	return dev;
6251 }
6252 
6253 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6254 			  struct extent_buffer *leaf,
6255 			  struct btrfs_chunk *chunk)
6256 {
6257 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6258 	struct map_lookup *map;
6259 	struct extent_map *em;
6260 	u64 logical;
6261 	u64 length;
6262 	u64 stripe_len;
6263 	u64 devid;
6264 	u8 uuid[BTRFS_UUID_SIZE];
6265 	int num_stripes;
6266 	int ret;
6267 	int i;
6268 
6269 	logical = key->offset;
6270 	length = btrfs_chunk_length(leaf, chunk);
6271 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6272 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6273 	/* Validation check */
6274 	if (!num_stripes) {
6275 		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6276 			  num_stripes);
6277 		return -EIO;
6278 	}
6279 	if (!IS_ALIGNED(logical, root->sectorsize)) {
6280 		btrfs_err(root->fs_info,
6281 			  "invalid chunk logical %llu", logical);
6282 		return -EIO;
6283 	}
6284 	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6285 		btrfs_err(root->fs_info,
6286 			"invalid chunk length %llu", length);
6287 		return -EIO;
6288 	}
6289 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6290 		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6291 			  stripe_len);
6292 		return -EIO;
6293 	}
6294 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6295 	    btrfs_chunk_type(leaf, chunk)) {
6296 		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6297 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6298 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6299 			  btrfs_chunk_type(leaf, chunk));
6300 		return -EIO;
6301 	}
6302 
6303 	read_lock(&map_tree->map_tree.lock);
6304 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6305 	read_unlock(&map_tree->map_tree.lock);
6306 
6307 	/* already mapped? */
6308 	if (em && em->start <= logical && em->start + em->len > logical) {
6309 		free_extent_map(em);
6310 		return 0;
6311 	} else if (em) {
6312 		free_extent_map(em);
6313 	}
6314 
6315 	em = alloc_extent_map();
6316 	if (!em)
6317 		return -ENOMEM;
6318 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6319 	if (!map) {
6320 		free_extent_map(em);
6321 		return -ENOMEM;
6322 	}
6323 
6324 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6325 	em->map_lookup = map;
6326 	em->start = logical;
6327 	em->len = length;
6328 	em->orig_start = 0;
6329 	em->block_start = 0;
6330 	em->block_len = em->len;
6331 
6332 	map->num_stripes = num_stripes;
6333 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6334 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6335 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6336 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6337 	map->type = btrfs_chunk_type(leaf, chunk);
6338 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6339 	for (i = 0; i < num_stripes; i++) {
6340 		map->stripes[i].physical =
6341 			btrfs_stripe_offset_nr(leaf, chunk, i);
6342 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6343 		read_extent_buffer(leaf, uuid, (unsigned long)
6344 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6345 				   BTRFS_UUID_SIZE);
6346 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6347 							uuid, NULL);
6348 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6349 			free_extent_map(em);
6350 			return -EIO;
6351 		}
6352 		if (!map->stripes[i].dev) {
6353 			map->stripes[i].dev =
6354 				add_missing_dev(root, root->fs_info->fs_devices,
6355 						devid, uuid);
6356 			if (!map->stripes[i].dev) {
6357 				free_extent_map(em);
6358 				return -EIO;
6359 			}
6360 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6361 						devid, uuid);
6362 		}
6363 		map->stripes[i].dev->in_fs_metadata = 1;
6364 	}
6365 
6366 	write_lock(&map_tree->map_tree.lock);
6367 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6368 	write_unlock(&map_tree->map_tree.lock);
6369 	BUG_ON(ret); /* Tree corruption */
6370 	free_extent_map(em);
6371 
6372 	return 0;
6373 }
6374 
6375 static void fill_device_from_item(struct extent_buffer *leaf,
6376 				 struct btrfs_dev_item *dev_item,
6377 				 struct btrfs_device *device)
6378 {
6379 	unsigned long ptr;
6380 
6381 	device->devid = btrfs_device_id(leaf, dev_item);
6382 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6383 	device->total_bytes = device->disk_total_bytes;
6384 	device->commit_total_bytes = device->disk_total_bytes;
6385 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6386 	device->commit_bytes_used = device->bytes_used;
6387 	device->type = btrfs_device_type(leaf, dev_item);
6388 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6389 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6390 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6391 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6392 	device->is_tgtdev_for_dev_replace = 0;
6393 
6394 	ptr = btrfs_device_uuid(dev_item);
6395 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6396 }
6397 
6398 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6399 						  u8 *fsid)
6400 {
6401 	struct btrfs_fs_devices *fs_devices;
6402 	int ret;
6403 
6404 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6405 
6406 	fs_devices = root->fs_info->fs_devices->seed;
6407 	while (fs_devices) {
6408 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6409 			return fs_devices;
6410 
6411 		fs_devices = fs_devices->seed;
6412 	}
6413 
6414 	fs_devices = find_fsid(fsid);
6415 	if (!fs_devices) {
6416 		if (!btrfs_test_opt(root, DEGRADED))
6417 			return ERR_PTR(-ENOENT);
6418 
6419 		fs_devices = alloc_fs_devices(fsid);
6420 		if (IS_ERR(fs_devices))
6421 			return fs_devices;
6422 
6423 		fs_devices->seeding = 1;
6424 		fs_devices->opened = 1;
6425 		return fs_devices;
6426 	}
6427 
6428 	fs_devices = clone_fs_devices(fs_devices);
6429 	if (IS_ERR(fs_devices))
6430 		return fs_devices;
6431 
6432 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6433 				   root->fs_info->bdev_holder);
6434 	if (ret) {
6435 		free_fs_devices(fs_devices);
6436 		fs_devices = ERR_PTR(ret);
6437 		goto out;
6438 	}
6439 
6440 	if (!fs_devices->seeding) {
6441 		__btrfs_close_devices(fs_devices);
6442 		free_fs_devices(fs_devices);
6443 		fs_devices = ERR_PTR(-EINVAL);
6444 		goto out;
6445 	}
6446 
6447 	fs_devices->seed = root->fs_info->fs_devices->seed;
6448 	root->fs_info->fs_devices->seed = fs_devices;
6449 out:
6450 	return fs_devices;
6451 }
6452 
6453 static int read_one_dev(struct btrfs_root *root,
6454 			struct extent_buffer *leaf,
6455 			struct btrfs_dev_item *dev_item)
6456 {
6457 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6458 	struct btrfs_device *device;
6459 	u64 devid;
6460 	int ret;
6461 	u8 fs_uuid[BTRFS_UUID_SIZE];
6462 	u8 dev_uuid[BTRFS_UUID_SIZE];
6463 
6464 	devid = btrfs_device_id(leaf, dev_item);
6465 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6466 			   BTRFS_UUID_SIZE);
6467 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6468 			   BTRFS_UUID_SIZE);
6469 
6470 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6471 		fs_devices = open_seed_devices(root, fs_uuid);
6472 		if (IS_ERR(fs_devices))
6473 			return PTR_ERR(fs_devices);
6474 	}
6475 
6476 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6477 	if (!device) {
6478 		if (!btrfs_test_opt(root, DEGRADED))
6479 			return -EIO;
6480 
6481 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6482 		if (!device)
6483 			return -ENOMEM;
6484 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6485 				devid, dev_uuid);
6486 	} else {
6487 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6488 			return -EIO;
6489 
6490 		if(!device->bdev && !device->missing) {
6491 			/*
6492 			 * this happens when a device that was properly setup
6493 			 * in the device info lists suddenly goes bad.
6494 			 * device->bdev is NULL, and so we have to set
6495 			 * device->missing to one here
6496 			 */
6497 			device->fs_devices->missing_devices++;
6498 			device->missing = 1;
6499 		}
6500 
6501 		/* Move the device to its own fs_devices */
6502 		if (device->fs_devices != fs_devices) {
6503 			ASSERT(device->missing);
6504 
6505 			list_move(&device->dev_list, &fs_devices->devices);
6506 			device->fs_devices->num_devices--;
6507 			fs_devices->num_devices++;
6508 
6509 			device->fs_devices->missing_devices--;
6510 			fs_devices->missing_devices++;
6511 
6512 			device->fs_devices = fs_devices;
6513 		}
6514 	}
6515 
6516 	if (device->fs_devices != root->fs_info->fs_devices) {
6517 		BUG_ON(device->writeable);
6518 		if (device->generation !=
6519 		    btrfs_device_generation(leaf, dev_item))
6520 			return -EINVAL;
6521 	}
6522 
6523 	fill_device_from_item(leaf, dev_item, device);
6524 	device->in_fs_metadata = 1;
6525 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6526 		device->fs_devices->total_rw_bytes += device->total_bytes;
6527 		spin_lock(&root->fs_info->free_chunk_lock);
6528 		root->fs_info->free_chunk_space += device->total_bytes -
6529 			device->bytes_used;
6530 		spin_unlock(&root->fs_info->free_chunk_lock);
6531 	}
6532 	ret = 0;
6533 	return ret;
6534 }
6535 
6536 int btrfs_read_sys_array(struct btrfs_root *root)
6537 {
6538 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6539 	struct extent_buffer *sb;
6540 	struct btrfs_disk_key *disk_key;
6541 	struct btrfs_chunk *chunk;
6542 	u8 *array_ptr;
6543 	unsigned long sb_array_offset;
6544 	int ret = 0;
6545 	u32 num_stripes;
6546 	u32 array_size;
6547 	u32 len = 0;
6548 	u32 cur_offset;
6549 	struct btrfs_key key;
6550 
6551 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6552 	/*
6553 	 * This will create extent buffer of nodesize, superblock size is
6554 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6555 	 * overallocate but we can keep it as-is, only the first page is used.
6556 	 */
6557 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6558 	if (!sb)
6559 		return -ENOMEM;
6560 	set_extent_buffer_uptodate(sb);
6561 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6562 	/*
6563 	 * The sb extent buffer is artificial and just used to read the system array.
6564 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6565 	 * pages up-to-date when the page is larger: extent does not cover the
6566 	 * whole page and consequently check_page_uptodate does not find all
6567 	 * the page's extents up-to-date (the hole beyond sb),
6568 	 * write_extent_buffer then triggers a WARN_ON.
6569 	 *
6570 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6571 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6572 	 * to silence the warning eg. on PowerPC 64.
6573 	 */
6574 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6575 		SetPageUptodate(sb->pages[0]);
6576 
6577 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6578 	array_size = btrfs_super_sys_array_size(super_copy);
6579 
6580 	array_ptr = super_copy->sys_chunk_array;
6581 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6582 	cur_offset = 0;
6583 
6584 	while (cur_offset < array_size) {
6585 		disk_key = (struct btrfs_disk_key *)array_ptr;
6586 		len = sizeof(*disk_key);
6587 		if (cur_offset + len > array_size)
6588 			goto out_short_read;
6589 
6590 		btrfs_disk_key_to_cpu(&key, disk_key);
6591 
6592 		array_ptr += len;
6593 		sb_array_offset += len;
6594 		cur_offset += len;
6595 
6596 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6597 			chunk = (struct btrfs_chunk *)sb_array_offset;
6598 			/*
6599 			 * At least one btrfs_chunk with one stripe must be
6600 			 * present, exact stripe count check comes afterwards
6601 			 */
6602 			len = btrfs_chunk_item_size(1);
6603 			if (cur_offset + len > array_size)
6604 				goto out_short_read;
6605 
6606 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6607 			if (!num_stripes) {
6608 				printk(KERN_ERR
6609 	    "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6610 					num_stripes, cur_offset);
6611 				ret = -EIO;
6612 				break;
6613 			}
6614 
6615 			len = btrfs_chunk_item_size(num_stripes);
6616 			if (cur_offset + len > array_size)
6617 				goto out_short_read;
6618 
6619 			ret = read_one_chunk(root, &key, sb, chunk);
6620 			if (ret)
6621 				break;
6622 		} else {
6623 			printk(KERN_ERR
6624 		"BTRFS: unexpected item type %u in sys_array at offset %u\n",
6625 				(u32)key.type, cur_offset);
6626 			ret = -EIO;
6627 			break;
6628 		}
6629 		array_ptr += len;
6630 		sb_array_offset += len;
6631 		cur_offset += len;
6632 	}
6633 	free_extent_buffer_stale(sb);
6634 	return ret;
6635 
6636 out_short_read:
6637 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6638 			len, cur_offset);
6639 	free_extent_buffer_stale(sb);
6640 	return -EIO;
6641 }
6642 
6643 int btrfs_read_chunk_tree(struct btrfs_root *root)
6644 {
6645 	struct btrfs_path *path;
6646 	struct extent_buffer *leaf;
6647 	struct btrfs_key key;
6648 	struct btrfs_key found_key;
6649 	int ret;
6650 	int slot;
6651 
6652 	root = root->fs_info->chunk_root;
6653 
6654 	path = btrfs_alloc_path();
6655 	if (!path)
6656 		return -ENOMEM;
6657 
6658 	mutex_lock(&uuid_mutex);
6659 	lock_chunks(root);
6660 
6661 	/*
6662 	 * Read all device items, and then all the chunk items. All
6663 	 * device items are found before any chunk item (their object id
6664 	 * is smaller than the lowest possible object id for a chunk
6665 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6666 	 */
6667 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6668 	key.offset = 0;
6669 	key.type = 0;
6670 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6671 	if (ret < 0)
6672 		goto error;
6673 	while (1) {
6674 		leaf = path->nodes[0];
6675 		slot = path->slots[0];
6676 		if (slot >= btrfs_header_nritems(leaf)) {
6677 			ret = btrfs_next_leaf(root, path);
6678 			if (ret == 0)
6679 				continue;
6680 			if (ret < 0)
6681 				goto error;
6682 			break;
6683 		}
6684 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6685 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6686 			struct btrfs_dev_item *dev_item;
6687 			dev_item = btrfs_item_ptr(leaf, slot,
6688 						  struct btrfs_dev_item);
6689 			ret = read_one_dev(root, leaf, dev_item);
6690 			if (ret)
6691 				goto error;
6692 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6693 			struct btrfs_chunk *chunk;
6694 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6695 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6696 			if (ret)
6697 				goto error;
6698 		}
6699 		path->slots[0]++;
6700 	}
6701 	ret = 0;
6702 error:
6703 	unlock_chunks(root);
6704 	mutex_unlock(&uuid_mutex);
6705 
6706 	btrfs_free_path(path);
6707 	return ret;
6708 }
6709 
6710 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6711 {
6712 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6713 	struct btrfs_device *device;
6714 
6715 	while (fs_devices) {
6716 		mutex_lock(&fs_devices->device_list_mutex);
6717 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6718 			device->dev_root = fs_info->dev_root;
6719 		mutex_unlock(&fs_devices->device_list_mutex);
6720 
6721 		fs_devices = fs_devices->seed;
6722 	}
6723 }
6724 
6725 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6726 {
6727 	int i;
6728 
6729 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6730 		btrfs_dev_stat_reset(dev, i);
6731 }
6732 
6733 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6734 {
6735 	struct btrfs_key key;
6736 	struct btrfs_key found_key;
6737 	struct btrfs_root *dev_root = fs_info->dev_root;
6738 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6739 	struct extent_buffer *eb;
6740 	int slot;
6741 	int ret = 0;
6742 	struct btrfs_device *device;
6743 	struct btrfs_path *path = NULL;
6744 	int i;
6745 
6746 	path = btrfs_alloc_path();
6747 	if (!path) {
6748 		ret = -ENOMEM;
6749 		goto out;
6750 	}
6751 
6752 	mutex_lock(&fs_devices->device_list_mutex);
6753 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6754 		int item_size;
6755 		struct btrfs_dev_stats_item *ptr;
6756 
6757 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6758 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6759 		key.offset = device->devid;
6760 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6761 		if (ret) {
6762 			__btrfs_reset_dev_stats(device);
6763 			device->dev_stats_valid = 1;
6764 			btrfs_release_path(path);
6765 			continue;
6766 		}
6767 		slot = path->slots[0];
6768 		eb = path->nodes[0];
6769 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6770 		item_size = btrfs_item_size_nr(eb, slot);
6771 
6772 		ptr = btrfs_item_ptr(eb, slot,
6773 				     struct btrfs_dev_stats_item);
6774 
6775 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6776 			if (item_size >= (1 + i) * sizeof(__le64))
6777 				btrfs_dev_stat_set(device, i,
6778 					btrfs_dev_stats_value(eb, ptr, i));
6779 			else
6780 				btrfs_dev_stat_reset(device, i);
6781 		}
6782 
6783 		device->dev_stats_valid = 1;
6784 		btrfs_dev_stat_print_on_load(device);
6785 		btrfs_release_path(path);
6786 	}
6787 	mutex_unlock(&fs_devices->device_list_mutex);
6788 
6789 out:
6790 	btrfs_free_path(path);
6791 	return ret < 0 ? ret : 0;
6792 }
6793 
6794 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6795 				struct btrfs_root *dev_root,
6796 				struct btrfs_device *device)
6797 {
6798 	struct btrfs_path *path;
6799 	struct btrfs_key key;
6800 	struct extent_buffer *eb;
6801 	struct btrfs_dev_stats_item *ptr;
6802 	int ret;
6803 	int i;
6804 
6805 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6806 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6807 	key.offset = device->devid;
6808 
6809 	path = btrfs_alloc_path();
6810 	BUG_ON(!path);
6811 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6812 	if (ret < 0) {
6813 		btrfs_warn_in_rcu(dev_root->fs_info,
6814 			"error %d while searching for dev_stats item for device %s",
6815 			      ret, rcu_str_deref(device->name));
6816 		goto out;
6817 	}
6818 
6819 	if (ret == 0 &&
6820 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6821 		/* need to delete old one and insert a new one */
6822 		ret = btrfs_del_item(trans, dev_root, path);
6823 		if (ret != 0) {
6824 			btrfs_warn_in_rcu(dev_root->fs_info,
6825 				"delete too small dev_stats item for device %s failed %d",
6826 				      rcu_str_deref(device->name), ret);
6827 			goto out;
6828 		}
6829 		ret = 1;
6830 	}
6831 
6832 	if (ret == 1) {
6833 		/* need to insert a new item */
6834 		btrfs_release_path(path);
6835 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6836 					      &key, sizeof(*ptr));
6837 		if (ret < 0) {
6838 			btrfs_warn_in_rcu(dev_root->fs_info,
6839 				"insert dev_stats item for device %s failed %d",
6840 				rcu_str_deref(device->name), ret);
6841 			goto out;
6842 		}
6843 	}
6844 
6845 	eb = path->nodes[0];
6846 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6847 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6848 		btrfs_set_dev_stats_value(eb, ptr, i,
6849 					  btrfs_dev_stat_read(device, i));
6850 	btrfs_mark_buffer_dirty(eb);
6851 
6852 out:
6853 	btrfs_free_path(path);
6854 	return ret;
6855 }
6856 
6857 /*
6858  * called from commit_transaction. Writes all changed device stats to disk.
6859  */
6860 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6861 			struct btrfs_fs_info *fs_info)
6862 {
6863 	struct btrfs_root *dev_root = fs_info->dev_root;
6864 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6865 	struct btrfs_device *device;
6866 	int stats_cnt;
6867 	int ret = 0;
6868 
6869 	mutex_lock(&fs_devices->device_list_mutex);
6870 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6871 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6872 			continue;
6873 
6874 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6875 		ret = update_dev_stat_item(trans, dev_root, device);
6876 		if (!ret)
6877 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6878 	}
6879 	mutex_unlock(&fs_devices->device_list_mutex);
6880 
6881 	return ret;
6882 }
6883 
6884 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6885 {
6886 	btrfs_dev_stat_inc(dev, index);
6887 	btrfs_dev_stat_print_on_error(dev);
6888 }
6889 
6890 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6891 {
6892 	if (!dev->dev_stats_valid)
6893 		return;
6894 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6895 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6896 			   rcu_str_deref(dev->name),
6897 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6898 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6899 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6900 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6901 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6902 }
6903 
6904 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6905 {
6906 	int i;
6907 
6908 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6909 		if (btrfs_dev_stat_read(dev, i) != 0)
6910 			break;
6911 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6912 		return; /* all values == 0, suppress message */
6913 
6914 	btrfs_info_in_rcu(dev->dev_root->fs_info,
6915 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6916 	       rcu_str_deref(dev->name),
6917 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6918 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6919 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6920 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6921 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6922 }
6923 
6924 int btrfs_get_dev_stats(struct btrfs_root *root,
6925 			struct btrfs_ioctl_get_dev_stats *stats)
6926 {
6927 	struct btrfs_device *dev;
6928 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6929 	int i;
6930 
6931 	mutex_lock(&fs_devices->device_list_mutex);
6932 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6933 	mutex_unlock(&fs_devices->device_list_mutex);
6934 
6935 	if (!dev) {
6936 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6937 		return -ENODEV;
6938 	} else if (!dev->dev_stats_valid) {
6939 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6940 		return -ENODEV;
6941 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6942 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6943 			if (stats->nr_items > i)
6944 				stats->values[i] =
6945 					btrfs_dev_stat_read_and_reset(dev, i);
6946 			else
6947 				btrfs_dev_stat_reset(dev, i);
6948 		}
6949 	} else {
6950 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6951 			if (stats->nr_items > i)
6952 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6953 	}
6954 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6955 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6956 	return 0;
6957 }
6958 
6959 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6960 {
6961 	struct buffer_head *bh;
6962 	struct btrfs_super_block *disk_super;
6963 	int copy_num;
6964 
6965 	if (!bdev)
6966 		return;
6967 
6968 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6969 		copy_num++) {
6970 
6971 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6972 			continue;
6973 
6974 		disk_super = (struct btrfs_super_block *)bh->b_data;
6975 
6976 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6977 		set_buffer_dirty(bh);
6978 		sync_dirty_buffer(bh);
6979 		brelse(bh);
6980 	}
6981 
6982 	/* Notify udev that device has changed */
6983 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6984 
6985 	/* Update ctime/mtime for device path for libblkid */
6986 	update_dev_time(device_path);
6987 }
6988 
6989 /*
6990  * Update the size of all devices, which is used for writing out the
6991  * super blocks.
6992  */
6993 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6994 {
6995 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996 	struct btrfs_device *curr, *next;
6997 
6998 	if (list_empty(&fs_devices->resized_devices))
6999 		return;
7000 
7001 	mutex_lock(&fs_devices->device_list_mutex);
7002 	lock_chunks(fs_info->dev_root);
7003 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7004 				 resized_list) {
7005 		list_del_init(&curr->resized_list);
7006 		curr->commit_total_bytes = curr->disk_total_bytes;
7007 	}
7008 	unlock_chunks(fs_info->dev_root);
7009 	mutex_unlock(&fs_devices->device_list_mutex);
7010 }
7011 
7012 /* Must be invoked during the transaction commit */
7013 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7014 					struct btrfs_transaction *transaction)
7015 {
7016 	struct extent_map *em;
7017 	struct map_lookup *map;
7018 	struct btrfs_device *dev;
7019 	int i;
7020 
7021 	if (list_empty(&transaction->pending_chunks))
7022 		return;
7023 
7024 	/* In order to kick the device replace finish process */
7025 	lock_chunks(root);
7026 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7027 		map = em->map_lookup;
7028 
7029 		for (i = 0; i < map->num_stripes; i++) {
7030 			dev = map->stripes[i].dev;
7031 			dev->commit_bytes_used = dev->bytes_used;
7032 		}
7033 	}
7034 	unlock_chunks(root);
7035 }
7036 
7037 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7038 {
7039 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7040 	while (fs_devices) {
7041 		fs_devices->fs_info = fs_info;
7042 		fs_devices = fs_devices->seed;
7043 	}
7044 }
7045 
7046 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7047 {
7048 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7049 	while (fs_devices) {
7050 		fs_devices->fs_info = NULL;
7051 		fs_devices = fs_devices->seed;
7052 	}
7053 }
7054 
7055 static void btrfs_close_one_device(struct btrfs_device *device)
7056 {
7057 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
7058 	struct btrfs_device *new_device;
7059 	struct rcu_string *name;
7060 
7061 	if (device->bdev)
7062 		fs_devices->open_devices--;
7063 
7064 	if (device->writeable &&
7065 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
7066 		list_del_init(&device->dev_alloc_list);
7067 		fs_devices->rw_devices--;
7068 	}
7069 
7070 	if (device->missing)
7071 		fs_devices->missing_devices--;
7072 
7073 	new_device = btrfs_alloc_device(NULL, &device->devid,
7074 					device->uuid);
7075 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7076 
7077 	/* Safe because we are under uuid_mutex */
7078 	if (device->name) {
7079 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
7080 		BUG_ON(!name); /* -ENOMEM */
7081 		rcu_assign_pointer(new_device->name, name);
7082 	}
7083 
7084 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
7085 	new_device->fs_devices = device->fs_devices;
7086 
7087 	call_rcu(&device->rcu, free_device);
7088 }
7089