1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <asm/div64.h> 29 #include "compat.h" 30 #include "ctree.h" 31 #include "extent_map.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "async-thread.h" 37 #include "check-integrity.h" 38 #include "rcu-string.h" 39 40 static int init_first_rw_device(struct btrfs_trans_handle *trans, 41 struct btrfs_root *root, 42 struct btrfs_device *device); 43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 46 47 static DEFINE_MUTEX(uuid_mutex); 48 static LIST_HEAD(fs_uuids); 49 50 static void lock_chunks(struct btrfs_root *root) 51 { 52 mutex_lock(&root->fs_info->chunk_mutex); 53 } 54 55 static void unlock_chunks(struct btrfs_root *root) 56 { 57 mutex_unlock(&root->fs_info->chunk_mutex); 58 } 59 60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 61 { 62 struct btrfs_device *device; 63 WARN_ON(fs_devices->opened); 64 while (!list_empty(&fs_devices->devices)) { 65 device = list_entry(fs_devices->devices.next, 66 struct btrfs_device, dev_list); 67 list_del(&device->dev_list); 68 rcu_string_free(device->name); 69 kfree(device); 70 } 71 kfree(fs_devices); 72 } 73 74 void btrfs_cleanup_fs_uuids(void) 75 { 76 struct btrfs_fs_devices *fs_devices; 77 78 while (!list_empty(&fs_uuids)) { 79 fs_devices = list_entry(fs_uuids.next, 80 struct btrfs_fs_devices, list); 81 list_del(&fs_devices->list); 82 free_fs_devices(fs_devices); 83 } 84 } 85 86 static noinline struct btrfs_device *__find_device(struct list_head *head, 87 u64 devid, u8 *uuid) 88 { 89 struct btrfs_device *dev; 90 91 list_for_each_entry(dev, head, dev_list) { 92 if (dev->devid == devid && 93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 94 return dev; 95 } 96 } 97 return NULL; 98 } 99 100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 101 { 102 struct btrfs_fs_devices *fs_devices; 103 104 list_for_each_entry(fs_devices, &fs_uuids, list) { 105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 106 return fs_devices; 107 } 108 return NULL; 109 } 110 111 static void requeue_list(struct btrfs_pending_bios *pending_bios, 112 struct bio *head, struct bio *tail) 113 { 114 115 struct bio *old_head; 116 117 old_head = pending_bios->head; 118 pending_bios->head = head; 119 if (pending_bios->tail) 120 tail->bi_next = old_head; 121 else 122 pending_bios->tail = tail; 123 } 124 125 /* 126 * we try to collect pending bios for a device so we don't get a large 127 * number of procs sending bios down to the same device. This greatly 128 * improves the schedulers ability to collect and merge the bios. 129 * 130 * But, it also turns into a long list of bios to process and that is sure 131 * to eventually make the worker thread block. The solution here is to 132 * make some progress and then put this work struct back at the end of 133 * the list if the block device is congested. This way, multiple devices 134 * can make progress from a single worker thread. 135 */ 136 static noinline void run_scheduled_bios(struct btrfs_device *device) 137 { 138 struct bio *pending; 139 struct backing_dev_info *bdi; 140 struct btrfs_fs_info *fs_info; 141 struct btrfs_pending_bios *pending_bios; 142 struct bio *tail; 143 struct bio *cur; 144 int again = 0; 145 unsigned long num_run; 146 unsigned long batch_run = 0; 147 unsigned long limit; 148 unsigned long last_waited = 0; 149 int force_reg = 0; 150 int sync_pending = 0; 151 struct blk_plug plug; 152 153 /* 154 * this function runs all the bios we've collected for 155 * a particular device. We don't want to wander off to 156 * another device without first sending all of these down. 157 * So, setup a plug here and finish it off before we return 158 */ 159 blk_start_plug(&plug); 160 161 bdi = blk_get_backing_dev_info(device->bdev); 162 fs_info = device->dev_root->fs_info; 163 limit = btrfs_async_submit_limit(fs_info); 164 limit = limit * 2 / 3; 165 166 loop: 167 spin_lock(&device->io_lock); 168 169 loop_lock: 170 num_run = 0; 171 172 /* take all the bios off the list at once and process them 173 * later on (without the lock held). But, remember the 174 * tail and other pointers so the bios can be properly reinserted 175 * into the list if we hit congestion 176 */ 177 if (!force_reg && device->pending_sync_bios.head) { 178 pending_bios = &device->pending_sync_bios; 179 force_reg = 1; 180 } else { 181 pending_bios = &device->pending_bios; 182 force_reg = 0; 183 } 184 185 pending = pending_bios->head; 186 tail = pending_bios->tail; 187 WARN_ON(pending && !tail); 188 189 /* 190 * if pending was null this time around, no bios need processing 191 * at all and we can stop. Otherwise it'll loop back up again 192 * and do an additional check so no bios are missed. 193 * 194 * device->running_pending is used to synchronize with the 195 * schedule_bio code. 196 */ 197 if (device->pending_sync_bios.head == NULL && 198 device->pending_bios.head == NULL) { 199 again = 0; 200 device->running_pending = 0; 201 } else { 202 again = 1; 203 device->running_pending = 1; 204 } 205 206 pending_bios->head = NULL; 207 pending_bios->tail = NULL; 208 209 spin_unlock(&device->io_lock); 210 211 while (pending) { 212 213 rmb(); 214 /* we want to work on both lists, but do more bios on the 215 * sync list than the regular list 216 */ 217 if ((num_run > 32 && 218 pending_bios != &device->pending_sync_bios && 219 device->pending_sync_bios.head) || 220 (num_run > 64 && pending_bios == &device->pending_sync_bios && 221 device->pending_bios.head)) { 222 spin_lock(&device->io_lock); 223 requeue_list(pending_bios, pending, tail); 224 goto loop_lock; 225 } 226 227 cur = pending; 228 pending = pending->bi_next; 229 cur->bi_next = NULL; 230 atomic_dec(&fs_info->nr_async_bios); 231 232 if (atomic_read(&fs_info->nr_async_bios) < limit && 233 waitqueue_active(&fs_info->async_submit_wait)) 234 wake_up(&fs_info->async_submit_wait); 235 236 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 237 238 /* 239 * if we're doing the sync list, record that our 240 * plug has some sync requests on it 241 * 242 * If we're doing the regular list and there are 243 * sync requests sitting around, unplug before 244 * we add more 245 */ 246 if (pending_bios == &device->pending_sync_bios) { 247 sync_pending = 1; 248 } else if (sync_pending) { 249 blk_finish_plug(&plug); 250 blk_start_plug(&plug); 251 sync_pending = 0; 252 } 253 254 btrfsic_submit_bio(cur->bi_rw, cur); 255 num_run++; 256 batch_run++; 257 if (need_resched()) 258 cond_resched(); 259 260 /* 261 * we made progress, there is more work to do and the bdi 262 * is now congested. Back off and let other work structs 263 * run instead 264 */ 265 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 266 fs_info->fs_devices->open_devices > 1) { 267 struct io_context *ioc; 268 269 ioc = current->io_context; 270 271 /* 272 * the main goal here is that we don't want to 273 * block if we're going to be able to submit 274 * more requests without blocking. 275 * 276 * This code does two great things, it pokes into 277 * the elevator code from a filesystem _and_ 278 * it makes assumptions about how batching works. 279 */ 280 if (ioc && ioc->nr_batch_requests > 0 && 281 time_before(jiffies, ioc->last_waited + HZ/50UL) && 282 (last_waited == 0 || 283 ioc->last_waited == last_waited)) { 284 /* 285 * we want to go through our batch of 286 * requests and stop. So, we copy out 287 * the ioc->last_waited time and test 288 * against it before looping 289 */ 290 last_waited = ioc->last_waited; 291 if (need_resched()) 292 cond_resched(); 293 continue; 294 } 295 spin_lock(&device->io_lock); 296 requeue_list(pending_bios, pending, tail); 297 device->running_pending = 1; 298 299 spin_unlock(&device->io_lock); 300 btrfs_requeue_work(&device->work); 301 goto done; 302 } 303 /* unplug every 64 requests just for good measure */ 304 if (batch_run % 64 == 0) { 305 blk_finish_plug(&plug); 306 blk_start_plug(&plug); 307 sync_pending = 0; 308 } 309 } 310 311 cond_resched(); 312 if (again) 313 goto loop; 314 315 spin_lock(&device->io_lock); 316 if (device->pending_bios.head || device->pending_sync_bios.head) 317 goto loop_lock; 318 spin_unlock(&device->io_lock); 319 320 done: 321 blk_finish_plug(&plug); 322 } 323 324 static void pending_bios_fn(struct btrfs_work *work) 325 { 326 struct btrfs_device *device; 327 328 device = container_of(work, struct btrfs_device, work); 329 run_scheduled_bios(device); 330 } 331 332 static noinline int device_list_add(const char *path, 333 struct btrfs_super_block *disk_super, 334 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 335 { 336 struct btrfs_device *device; 337 struct btrfs_fs_devices *fs_devices; 338 struct rcu_string *name; 339 u64 found_transid = btrfs_super_generation(disk_super); 340 341 fs_devices = find_fsid(disk_super->fsid); 342 if (!fs_devices) { 343 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 344 if (!fs_devices) 345 return -ENOMEM; 346 INIT_LIST_HEAD(&fs_devices->devices); 347 INIT_LIST_HEAD(&fs_devices->alloc_list); 348 list_add(&fs_devices->list, &fs_uuids); 349 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 350 fs_devices->latest_devid = devid; 351 fs_devices->latest_trans = found_transid; 352 mutex_init(&fs_devices->device_list_mutex); 353 device = NULL; 354 } else { 355 device = __find_device(&fs_devices->devices, devid, 356 disk_super->dev_item.uuid); 357 } 358 if (!device) { 359 if (fs_devices->opened) 360 return -EBUSY; 361 362 device = kzalloc(sizeof(*device), GFP_NOFS); 363 if (!device) { 364 /* we can safely leave the fs_devices entry around */ 365 return -ENOMEM; 366 } 367 device->devid = devid; 368 device->dev_stats_valid = 0; 369 device->work.func = pending_bios_fn; 370 memcpy(device->uuid, disk_super->dev_item.uuid, 371 BTRFS_UUID_SIZE); 372 spin_lock_init(&device->io_lock); 373 374 name = rcu_string_strdup(path, GFP_NOFS); 375 if (!name) { 376 kfree(device); 377 return -ENOMEM; 378 } 379 rcu_assign_pointer(device->name, name); 380 INIT_LIST_HEAD(&device->dev_alloc_list); 381 382 /* init readahead state */ 383 spin_lock_init(&device->reada_lock); 384 device->reada_curr_zone = NULL; 385 atomic_set(&device->reada_in_flight, 0); 386 device->reada_next = 0; 387 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT); 388 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT); 389 390 mutex_lock(&fs_devices->device_list_mutex); 391 list_add_rcu(&device->dev_list, &fs_devices->devices); 392 mutex_unlock(&fs_devices->device_list_mutex); 393 394 device->fs_devices = fs_devices; 395 fs_devices->num_devices++; 396 } else if (!device->name || strcmp(device->name->str, path)) { 397 name = rcu_string_strdup(path, GFP_NOFS); 398 if (!name) 399 return -ENOMEM; 400 rcu_string_free(device->name); 401 rcu_assign_pointer(device->name, name); 402 if (device->missing) { 403 fs_devices->missing_devices--; 404 device->missing = 0; 405 } 406 } 407 408 if (found_transid > fs_devices->latest_trans) { 409 fs_devices->latest_devid = devid; 410 fs_devices->latest_trans = found_transid; 411 } 412 *fs_devices_ret = fs_devices; 413 return 0; 414 } 415 416 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 417 { 418 struct btrfs_fs_devices *fs_devices; 419 struct btrfs_device *device; 420 struct btrfs_device *orig_dev; 421 422 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 423 if (!fs_devices) 424 return ERR_PTR(-ENOMEM); 425 426 INIT_LIST_HEAD(&fs_devices->devices); 427 INIT_LIST_HEAD(&fs_devices->alloc_list); 428 INIT_LIST_HEAD(&fs_devices->list); 429 mutex_init(&fs_devices->device_list_mutex); 430 fs_devices->latest_devid = orig->latest_devid; 431 fs_devices->latest_trans = orig->latest_trans; 432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); 433 434 /* We have held the volume lock, it is safe to get the devices. */ 435 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 436 struct rcu_string *name; 437 438 device = kzalloc(sizeof(*device), GFP_NOFS); 439 if (!device) 440 goto error; 441 442 /* 443 * This is ok to do without rcu read locked because we hold the 444 * uuid mutex so nothing we touch in here is going to disappear. 445 */ 446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 447 if (!name) { 448 kfree(device); 449 goto error; 450 } 451 rcu_assign_pointer(device->name, name); 452 453 device->devid = orig_dev->devid; 454 device->work.func = pending_bios_fn; 455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); 456 spin_lock_init(&device->io_lock); 457 INIT_LIST_HEAD(&device->dev_list); 458 INIT_LIST_HEAD(&device->dev_alloc_list); 459 460 list_add(&device->dev_list, &fs_devices->devices); 461 device->fs_devices = fs_devices; 462 fs_devices->num_devices++; 463 } 464 return fs_devices; 465 error: 466 free_fs_devices(fs_devices); 467 return ERR_PTR(-ENOMEM); 468 } 469 470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) 471 { 472 struct btrfs_device *device, *next; 473 474 struct block_device *latest_bdev = NULL; 475 u64 latest_devid = 0; 476 u64 latest_transid = 0; 477 478 mutex_lock(&uuid_mutex); 479 again: 480 /* This is the initialized path, it is safe to release the devices. */ 481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 482 if (device->in_fs_metadata) { 483 if (!latest_transid || 484 device->generation > latest_transid) { 485 latest_devid = device->devid; 486 latest_transid = device->generation; 487 latest_bdev = device->bdev; 488 } 489 continue; 490 } 491 492 if (device->bdev) { 493 blkdev_put(device->bdev, device->mode); 494 device->bdev = NULL; 495 fs_devices->open_devices--; 496 } 497 if (device->writeable) { 498 list_del_init(&device->dev_alloc_list); 499 device->writeable = 0; 500 fs_devices->rw_devices--; 501 } 502 list_del_init(&device->dev_list); 503 fs_devices->num_devices--; 504 rcu_string_free(device->name); 505 kfree(device); 506 } 507 508 if (fs_devices->seed) { 509 fs_devices = fs_devices->seed; 510 goto again; 511 } 512 513 fs_devices->latest_bdev = latest_bdev; 514 fs_devices->latest_devid = latest_devid; 515 fs_devices->latest_trans = latest_transid; 516 517 mutex_unlock(&uuid_mutex); 518 } 519 520 static void __free_device(struct work_struct *work) 521 { 522 struct btrfs_device *device; 523 524 device = container_of(work, struct btrfs_device, rcu_work); 525 526 if (device->bdev) 527 blkdev_put(device->bdev, device->mode); 528 529 rcu_string_free(device->name); 530 kfree(device); 531 } 532 533 static void free_device(struct rcu_head *head) 534 { 535 struct btrfs_device *device; 536 537 device = container_of(head, struct btrfs_device, rcu); 538 539 INIT_WORK(&device->rcu_work, __free_device); 540 schedule_work(&device->rcu_work); 541 } 542 543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 544 { 545 struct btrfs_device *device; 546 547 if (--fs_devices->opened > 0) 548 return 0; 549 550 mutex_lock(&fs_devices->device_list_mutex); 551 list_for_each_entry(device, &fs_devices->devices, dev_list) { 552 struct btrfs_device *new_device; 553 struct rcu_string *name; 554 555 if (device->bdev) 556 fs_devices->open_devices--; 557 558 if (device->writeable) { 559 list_del_init(&device->dev_alloc_list); 560 fs_devices->rw_devices--; 561 } 562 563 if (device->can_discard) 564 fs_devices->num_can_discard--; 565 566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS); 567 BUG_ON(!new_device); /* -ENOMEM */ 568 memcpy(new_device, device, sizeof(*new_device)); 569 570 /* Safe because we are under uuid_mutex */ 571 name = rcu_string_strdup(device->name->str, GFP_NOFS); 572 BUG_ON(device->name && !name); /* -ENOMEM */ 573 rcu_assign_pointer(new_device->name, name); 574 new_device->bdev = NULL; 575 new_device->writeable = 0; 576 new_device->in_fs_metadata = 0; 577 new_device->can_discard = 0; 578 list_replace_rcu(&device->dev_list, &new_device->dev_list); 579 580 call_rcu(&device->rcu, free_device); 581 } 582 mutex_unlock(&fs_devices->device_list_mutex); 583 584 WARN_ON(fs_devices->open_devices); 585 WARN_ON(fs_devices->rw_devices); 586 fs_devices->opened = 0; 587 fs_devices->seeding = 0; 588 589 return 0; 590 } 591 592 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 593 { 594 struct btrfs_fs_devices *seed_devices = NULL; 595 int ret; 596 597 mutex_lock(&uuid_mutex); 598 ret = __btrfs_close_devices(fs_devices); 599 if (!fs_devices->opened) { 600 seed_devices = fs_devices->seed; 601 fs_devices->seed = NULL; 602 } 603 mutex_unlock(&uuid_mutex); 604 605 while (seed_devices) { 606 fs_devices = seed_devices; 607 seed_devices = fs_devices->seed; 608 __btrfs_close_devices(fs_devices); 609 free_fs_devices(fs_devices); 610 } 611 return ret; 612 } 613 614 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 615 fmode_t flags, void *holder) 616 { 617 struct request_queue *q; 618 struct block_device *bdev; 619 struct list_head *head = &fs_devices->devices; 620 struct btrfs_device *device; 621 struct block_device *latest_bdev = NULL; 622 struct buffer_head *bh; 623 struct btrfs_super_block *disk_super; 624 u64 latest_devid = 0; 625 u64 latest_transid = 0; 626 u64 devid; 627 int seeding = 1; 628 int ret = 0; 629 630 flags |= FMODE_EXCL; 631 632 list_for_each_entry(device, head, dev_list) { 633 if (device->bdev) 634 continue; 635 if (!device->name) 636 continue; 637 638 bdev = blkdev_get_by_path(device->name->str, flags, holder); 639 if (IS_ERR(bdev)) { 640 printk(KERN_INFO "open %s failed\n", device->name->str); 641 goto error; 642 } 643 filemap_write_and_wait(bdev->bd_inode->i_mapping); 644 invalidate_bdev(bdev); 645 set_blocksize(bdev, 4096); 646 647 bh = btrfs_read_dev_super(bdev); 648 if (!bh) 649 goto error_close; 650 651 disk_super = (struct btrfs_super_block *)bh->b_data; 652 devid = btrfs_stack_device_id(&disk_super->dev_item); 653 if (devid != device->devid) 654 goto error_brelse; 655 656 if (memcmp(device->uuid, disk_super->dev_item.uuid, 657 BTRFS_UUID_SIZE)) 658 goto error_brelse; 659 660 device->generation = btrfs_super_generation(disk_super); 661 if (!latest_transid || device->generation > latest_transid) { 662 latest_devid = devid; 663 latest_transid = device->generation; 664 latest_bdev = bdev; 665 } 666 667 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 668 device->writeable = 0; 669 } else { 670 device->writeable = !bdev_read_only(bdev); 671 seeding = 0; 672 } 673 674 q = bdev_get_queue(bdev); 675 if (blk_queue_discard(q)) { 676 device->can_discard = 1; 677 fs_devices->num_can_discard++; 678 } 679 680 device->bdev = bdev; 681 device->in_fs_metadata = 0; 682 device->mode = flags; 683 684 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 685 fs_devices->rotating = 1; 686 687 fs_devices->open_devices++; 688 if (device->writeable) { 689 fs_devices->rw_devices++; 690 list_add(&device->dev_alloc_list, 691 &fs_devices->alloc_list); 692 } 693 brelse(bh); 694 continue; 695 696 error_brelse: 697 brelse(bh); 698 error_close: 699 blkdev_put(bdev, flags); 700 error: 701 continue; 702 } 703 if (fs_devices->open_devices == 0) { 704 ret = -EINVAL; 705 goto out; 706 } 707 fs_devices->seeding = seeding; 708 fs_devices->opened = 1; 709 fs_devices->latest_bdev = latest_bdev; 710 fs_devices->latest_devid = latest_devid; 711 fs_devices->latest_trans = latest_transid; 712 fs_devices->total_rw_bytes = 0; 713 out: 714 return ret; 715 } 716 717 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 718 fmode_t flags, void *holder) 719 { 720 int ret; 721 722 mutex_lock(&uuid_mutex); 723 if (fs_devices->opened) { 724 fs_devices->opened++; 725 ret = 0; 726 } else { 727 ret = __btrfs_open_devices(fs_devices, flags, holder); 728 } 729 mutex_unlock(&uuid_mutex); 730 return ret; 731 } 732 733 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 734 struct btrfs_fs_devices **fs_devices_ret) 735 { 736 struct btrfs_super_block *disk_super; 737 struct block_device *bdev; 738 struct buffer_head *bh; 739 int ret; 740 u64 devid; 741 u64 transid; 742 743 flags |= FMODE_EXCL; 744 bdev = blkdev_get_by_path(path, flags, holder); 745 746 if (IS_ERR(bdev)) { 747 ret = PTR_ERR(bdev); 748 goto error; 749 } 750 751 mutex_lock(&uuid_mutex); 752 ret = set_blocksize(bdev, 4096); 753 if (ret) 754 goto error_close; 755 bh = btrfs_read_dev_super(bdev); 756 if (!bh) { 757 ret = -EINVAL; 758 goto error_close; 759 } 760 disk_super = (struct btrfs_super_block *)bh->b_data; 761 devid = btrfs_stack_device_id(&disk_super->dev_item); 762 transid = btrfs_super_generation(disk_super); 763 if (disk_super->label[0]) 764 printk(KERN_INFO "device label %s ", disk_super->label); 765 else 766 printk(KERN_INFO "device fsid %pU ", disk_super->fsid); 767 printk(KERN_CONT "devid %llu transid %llu %s\n", 768 (unsigned long long)devid, (unsigned long long)transid, path); 769 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 770 771 brelse(bh); 772 error_close: 773 mutex_unlock(&uuid_mutex); 774 blkdev_put(bdev, flags); 775 error: 776 return ret; 777 } 778 779 /* helper to account the used device space in the range */ 780 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 781 u64 end, u64 *length) 782 { 783 struct btrfs_key key; 784 struct btrfs_root *root = device->dev_root; 785 struct btrfs_dev_extent *dev_extent; 786 struct btrfs_path *path; 787 u64 extent_end; 788 int ret; 789 int slot; 790 struct extent_buffer *l; 791 792 *length = 0; 793 794 if (start >= device->total_bytes) 795 return 0; 796 797 path = btrfs_alloc_path(); 798 if (!path) 799 return -ENOMEM; 800 path->reada = 2; 801 802 key.objectid = device->devid; 803 key.offset = start; 804 key.type = BTRFS_DEV_EXTENT_KEY; 805 806 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 807 if (ret < 0) 808 goto out; 809 if (ret > 0) { 810 ret = btrfs_previous_item(root, path, key.objectid, key.type); 811 if (ret < 0) 812 goto out; 813 } 814 815 while (1) { 816 l = path->nodes[0]; 817 slot = path->slots[0]; 818 if (slot >= btrfs_header_nritems(l)) { 819 ret = btrfs_next_leaf(root, path); 820 if (ret == 0) 821 continue; 822 if (ret < 0) 823 goto out; 824 825 break; 826 } 827 btrfs_item_key_to_cpu(l, &key, slot); 828 829 if (key.objectid < device->devid) 830 goto next; 831 832 if (key.objectid > device->devid) 833 break; 834 835 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 836 goto next; 837 838 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 839 extent_end = key.offset + btrfs_dev_extent_length(l, 840 dev_extent); 841 if (key.offset <= start && extent_end > end) { 842 *length = end - start + 1; 843 break; 844 } else if (key.offset <= start && extent_end > start) 845 *length += extent_end - start; 846 else if (key.offset > start && extent_end <= end) 847 *length += extent_end - key.offset; 848 else if (key.offset > start && key.offset <= end) { 849 *length += end - key.offset + 1; 850 break; 851 } else if (key.offset > end) 852 break; 853 854 next: 855 path->slots[0]++; 856 } 857 ret = 0; 858 out: 859 btrfs_free_path(path); 860 return ret; 861 } 862 863 /* 864 * find_free_dev_extent - find free space in the specified device 865 * @device: the device which we search the free space in 866 * @num_bytes: the size of the free space that we need 867 * @start: store the start of the free space. 868 * @len: the size of the free space. that we find, or the size of the max 869 * free space if we don't find suitable free space 870 * 871 * this uses a pretty simple search, the expectation is that it is 872 * called very infrequently and that a given device has a small number 873 * of extents 874 * 875 * @start is used to store the start of the free space if we find. But if we 876 * don't find suitable free space, it will be used to store the start position 877 * of the max free space. 878 * 879 * @len is used to store the size of the free space that we find. 880 * But if we don't find suitable free space, it is used to store the size of 881 * the max free space. 882 */ 883 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 884 u64 *start, u64 *len) 885 { 886 struct btrfs_key key; 887 struct btrfs_root *root = device->dev_root; 888 struct btrfs_dev_extent *dev_extent; 889 struct btrfs_path *path; 890 u64 hole_size; 891 u64 max_hole_start; 892 u64 max_hole_size; 893 u64 extent_end; 894 u64 search_start; 895 u64 search_end = device->total_bytes; 896 int ret; 897 int slot; 898 struct extent_buffer *l; 899 900 /* FIXME use last free of some kind */ 901 902 /* we don't want to overwrite the superblock on the drive, 903 * so we make sure to start at an offset of at least 1MB 904 */ 905 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 906 907 max_hole_start = search_start; 908 max_hole_size = 0; 909 hole_size = 0; 910 911 if (search_start >= search_end) { 912 ret = -ENOSPC; 913 goto error; 914 } 915 916 path = btrfs_alloc_path(); 917 if (!path) { 918 ret = -ENOMEM; 919 goto error; 920 } 921 path->reada = 2; 922 923 key.objectid = device->devid; 924 key.offset = search_start; 925 key.type = BTRFS_DEV_EXTENT_KEY; 926 927 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 928 if (ret < 0) 929 goto out; 930 if (ret > 0) { 931 ret = btrfs_previous_item(root, path, key.objectid, key.type); 932 if (ret < 0) 933 goto out; 934 } 935 936 while (1) { 937 l = path->nodes[0]; 938 slot = path->slots[0]; 939 if (slot >= btrfs_header_nritems(l)) { 940 ret = btrfs_next_leaf(root, path); 941 if (ret == 0) 942 continue; 943 if (ret < 0) 944 goto out; 945 946 break; 947 } 948 btrfs_item_key_to_cpu(l, &key, slot); 949 950 if (key.objectid < device->devid) 951 goto next; 952 953 if (key.objectid > device->devid) 954 break; 955 956 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 957 goto next; 958 959 if (key.offset > search_start) { 960 hole_size = key.offset - search_start; 961 962 if (hole_size > max_hole_size) { 963 max_hole_start = search_start; 964 max_hole_size = hole_size; 965 } 966 967 /* 968 * If this free space is greater than which we need, 969 * it must be the max free space that we have found 970 * until now, so max_hole_start must point to the start 971 * of this free space and the length of this free space 972 * is stored in max_hole_size. Thus, we return 973 * max_hole_start and max_hole_size and go back to the 974 * caller. 975 */ 976 if (hole_size >= num_bytes) { 977 ret = 0; 978 goto out; 979 } 980 } 981 982 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 983 extent_end = key.offset + btrfs_dev_extent_length(l, 984 dev_extent); 985 if (extent_end > search_start) 986 search_start = extent_end; 987 next: 988 path->slots[0]++; 989 cond_resched(); 990 } 991 992 /* 993 * At this point, search_start should be the end of 994 * allocated dev extents, and when shrinking the device, 995 * search_end may be smaller than search_start. 996 */ 997 if (search_end > search_start) 998 hole_size = search_end - search_start; 999 1000 if (hole_size > max_hole_size) { 1001 max_hole_start = search_start; 1002 max_hole_size = hole_size; 1003 } 1004 1005 /* See above. */ 1006 if (hole_size < num_bytes) 1007 ret = -ENOSPC; 1008 else 1009 ret = 0; 1010 1011 out: 1012 btrfs_free_path(path); 1013 error: 1014 *start = max_hole_start; 1015 if (len) 1016 *len = max_hole_size; 1017 return ret; 1018 } 1019 1020 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1021 struct btrfs_device *device, 1022 u64 start) 1023 { 1024 int ret; 1025 struct btrfs_path *path; 1026 struct btrfs_root *root = device->dev_root; 1027 struct btrfs_key key; 1028 struct btrfs_key found_key; 1029 struct extent_buffer *leaf = NULL; 1030 struct btrfs_dev_extent *extent = NULL; 1031 1032 path = btrfs_alloc_path(); 1033 if (!path) 1034 return -ENOMEM; 1035 1036 key.objectid = device->devid; 1037 key.offset = start; 1038 key.type = BTRFS_DEV_EXTENT_KEY; 1039 again: 1040 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1041 if (ret > 0) { 1042 ret = btrfs_previous_item(root, path, key.objectid, 1043 BTRFS_DEV_EXTENT_KEY); 1044 if (ret) 1045 goto out; 1046 leaf = path->nodes[0]; 1047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1048 extent = btrfs_item_ptr(leaf, path->slots[0], 1049 struct btrfs_dev_extent); 1050 BUG_ON(found_key.offset > start || found_key.offset + 1051 btrfs_dev_extent_length(leaf, extent) < start); 1052 key = found_key; 1053 btrfs_release_path(path); 1054 goto again; 1055 } else if (ret == 0) { 1056 leaf = path->nodes[0]; 1057 extent = btrfs_item_ptr(leaf, path->slots[0], 1058 struct btrfs_dev_extent); 1059 } else { 1060 btrfs_error(root->fs_info, ret, "Slot search failed"); 1061 goto out; 1062 } 1063 1064 if (device->bytes_used > 0) { 1065 u64 len = btrfs_dev_extent_length(leaf, extent); 1066 device->bytes_used -= len; 1067 spin_lock(&root->fs_info->free_chunk_lock); 1068 root->fs_info->free_chunk_space += len; 1069 spin_unlock(&root->fs_info->free_chunk_lock); 1070 } 1071 ret = btrfs_del_item(trans, root, path); 1072 if (ret) { 1073 btrfs_error(root->fs_info, ret, 1074 "Failed to remove dev extent item"); 1075 } 1076 out: 1077 btrfs_free_path(path); 1078 return ret; 1079 } 1080 1081 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1082 struct btrfs_device *device, 1083 u64 chunk_tree, u64 chunk_objectid, 1084 u64 chunk_offset, u64 start, u64 num_bytes) 1085 { 1086 int ret; 1087 struct btrfs_path *path; 1088 struct btrfs_root *root = device->dev_root; 1089 struct btrfs_dev_extent *extent; 1090 struct extent_buffer *leaf; 1091 struct btrfs_key key; 1092 1093 WARN_ON(!device->in_fs_metadata); 1094 path = btrfs_alloc_path(); 1095 if (!path) 1096 return -ENOMEM; 1097 1098 key.objectid = device->devid; 1099 key.offset = start; 1100 key.type = BTRFS_DEV_EXTENT_KEY; 1101 ret = btrfs_insert_empty_item(trans, root, path, &key, 1102 sizeof(*extent)); 1103 if (ret) 1104 goto out; 1105 1106 leaf = path->nodes[0]; 1107 extent = btrfs_item_ptr(leaf, path->slots[0], 1108 struct btrfs_dev_extent); 1109 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1110 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1111 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1112 1113 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1114 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), 1115 BTRFS_UUID_SIZE); 1116 1117 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1118 btrfs_mark_buffer_dirty(leaf); 1119 out: 1120 btrfs_free_path(path); 1121 return ret; 1122 } 1123 1124 static noinline int find_next_chunk(struct btrfs_root *root, 1125 u64 objectid, u64 *offset) 1126 { 1127 struct btrfs_path *path; 1128 int ret; 1129 struct btrfs_key key; 1130 struct btrfs_chunk *chunk; 1131 struct btrfs_key found_key; 1132 1133 path = btrfs_alloc_path(); 1134 if (!path) 1135 return -ENOMEM; 1136 1137 key.objectid = objectid; 1138 key.offset = (u64)-1; 1139 key.type = BTRFS_CHUNK_ITEM_KEY; 1140 1141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1142 if (ret < 0) 1143 goto error; 1144 1145 BUG_ON(ret == 0); /* Corruption */ 1146 1147 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); 1148 if (ret) { 1149 *offset = 0; 1150 } else { 1151 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1152 path->slots[0]); 1153 if (found_key.objectid != objectid) 1154 *offset = 0; 1155 else { 1156 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], 1157 struct btrfs_chunk); 1158 *offset = found_key.offset + 1159 btrfs_chunk_length(path->nodes[0], chunk); 1160 } 1161 } 1162 ret = 0; 1163 error: 1164 btrfs_free_path(path); 1165 return ret; 1166 } 1167 1168 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) 1169 { 1170 int ret; 1171 struct btrfs_key key; 1172 struct btrfs_key found_key; 1173 struct btrfs_path *path; 1174 1175 root = root->fs_info->chunk_root; 1176 1177 path = btrfs_alloc_path(); 1178 if (!path) 1179 return -ENOMEM; 1180 1181 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1182 key.type = BTRFS_DEV_ITEM_KEY; 1183 key.offset = (u64)-1; 1184 1185 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1186 if (ret < 0) 1187 goto error; 1188 1189 BUG_ON(ret == 0); /* Corruption */ 1190 1191 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, 1192 BTRFS_DEV_ITEM_KEY); 1193 if (ret) { 1194 *objectid = 1; 1195 } else { 1196 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1197 path->slots[0]); 1198 *objectid = found_key.offset + 1; 1199 } 1200 ret = 0; 1201 error: 1202 btrfs_free_path(path); 1203 return ret; 1204 } 1205 1206 /* 1207 * the device information is stored in the chunk root 1208 * the btrfs_device struct should be fully filled in 1209 */ 1210 int btrfs_add_device(struct btrfs_trans_handle *trans, 1211 struct btrfs_root *root, 1212 struct btrfs_device *device) 1213 { 1214 int ret; 1215 struct btrfs_path *path; 1216 struct btrfs_dev_item *dev_item; 1217 struct extent_buffer *leaf; 1218 struct btrfs_key key; 1219 unsigned long ptr; 1220 1221 root = root->fs_info->chunk_root; 1222 1223 path = btrfs_alloc_path(); 1224 if (!path) 1225 return -ENOMEM; 1226 1227 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1228 key.type = BTRFS_DEV_ITEM_KEY; 1229 key.offset = device->devid; 1230 1231 ret = btrfs_insert_empty_item(trans, root, path, &key, 1232 sizeof(*dev_item)); 1233 if (ret) 1234 goto out; 1235 1236 leaf = path->nodes[0]; 1237 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1238 1239 btrfs_set_device_id(leaf, dev_item, device->devid); 1240 btrfs_set_device_generation(leaf, dev_item, 0); 1241 btrfs_set_device_type(leaf, dev_item, device->type); 1242 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1243 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1244 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1245 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1246 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1247 btrfs_set_device_group(leaf, dev_item, 0); 1248 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1249 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1250 btrfs_set_device_start_offset(leaf, dev_item, 0); 1251 1252 ptr = (unsigned long)btrfs_device_uuid(dev_item); 1253 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1254 ptr = (unsigned long)btrfs_device_fsid(dev_item); 1255 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1256 btrfs_mark_buffer_dirty(leaf); 1257 1258 ret = 0; 1259 out: 1260 btrfs_free_path(path); 1261 return ret; 1262 } 1263 1264 static int btrfs_rm_dev_item(struct btrfs_root *root, 1265 struct btrfs_device *device) 1266 { 1267 int ret; 1268 struct btrfs_path *path; 1269 struct btrfs_key key; 1270 struct btrfs_trans_handle *trans; 1271 1272 root = root->fs_info->chunk_root; 1273 1274 path = btrfs_alloc_path(); 1275 if (!path) 1276 return -ENOMEM; 1277 1278 trans = btrfs_start_transaction(root, 0); 1279 if (IS_ERR(trans)) { 1280 btrfs_free_path(path); 1281 return PTR_ERR(trans); 1282 } 1283 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1284 key.type = BTRFS_DEV_ITEM_KEY; 1285 key.offset = device->devid; 1286 lock_chunks(root); 1287 1288 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1289 if (ret < 0) 1290 goto out; 1291 1292 if (ret > 0) { 1293 ret = -ENOENT; 1294 goto out; 1295 } 1296 1297 ret = btrfs_del_item(trans, root, path); 1298 if (ret) 1299 goto out; 1300 out: 1301 btrfs_free_path(path); 1302 unlock_chunks(root); 1303 btrfs_commit_transaction(trans, root); 1304 return ret; 1305 } 1306 1307 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1308 { 1309 struct btrfs_device *device; 1310 struct btrfs_device *next_device; 1311 struct block_device *bdev; 1312 struct buffer_head *bh = NULL; 1313 struct btrfs_super_block *disk_super; 1314 struct btrfs_fs_devices *cur_devices; 1315 u64 all_avail; 1316 u64 devid; 1317 u64 num_devices; 1318 u8 *dev_uuid; 1319 int ret = 0; 1320 bool clear_super = false; 1321 1322 mutex_lock(&uuid_mutex); 1323 1324 all_avail = root->fs_info->avail_data_alloc_bits | 1325 root->fs_info->avail_system_alloc_bits | 1326 root->fs_info->avail_metadata_alloc_bits; 1327 1328 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && 1329 root->fs_info->fs_devices->num_devices <= 4) { 1330 printk(KERN_ERR "btrfs: unable to go below four devices " 1331 "on raid10\n"); 1332 ret = -EINVAL; 1333 goto out; 1334 } 1335 1336 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && 1337 root->fs_info->fs_devices->num_devices <= 2) { 1338 printk(KERN_ERR "btrfs: unable to go below two " 1339 "devices on raid1\n"); 1340 ret = -EINVAL; 1341 goto out; 1342 } 1343 1344 if (strcmp(device_path, "missing") == 0) { 1345 struct list_head *devices; 1346 struct btrfs_device *tmp; 1347 1348 device = NULL; 1349 devices = &root->fs_info->fs_devices->devices; 1350 /* 1351 * It is safe to read the devices since the volume_mutex 1352 * is held. 1353 */ 1354 list_for_each_entry(tmp, devices, dev_list) { 1355 if (tmp->in_fs_metadata && !tmp->bdev) { 1356 device = tmp; 1357 break; 1358 } 1359 } 1360 bdev = NULL; 1361 bh = NULL; 1362 disk_super = NULL; 1363 if (!device) { 1364 printk(KERN_ERR "btrfs: no missing devices found to " 1365 "remove\n"); 1366 goto out; 1367 } 1368 } else { 1369 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL, 1370 root->fs_info->bdev_holder); 1371 if (IS_ERR(bdev)) { 1372 ret = PTR_ERR(bdev); 1373 goto out; 1374 } 1375 1376 set_blocksize(bdev, 4096); 1377 invalidate_bdev(bdev); 1378 bh = btrfs_read_dev_super(bdev); 1379 if (!bh) { 1380 ret = -EINVAL; 1381 goto error_close; 1382 } 1383 disk_super = (struct btrfs_super_block *)bh->b_data; 1384 devid = btrfs_stack_device_id(&disk_super->dev_item); 1385 dev_uuid = disk_super->dev_item.uuid; 1386 device = btrfs_find_device(root, devid, dev_uuid, 1387 disk_super->fsid); 1388 if (!device) { 1389 ret = -ENOENT; 1390 goto error_brelse; 1391 } 1392 } 1393 1394 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1395 printk(KERN_ERR "btrfs: unable to remove the only writeable " 1396 "device\n"); 1397 ret = -EINVAL; 1398 goto error_brelse; 1399 } 1400 1401 if (device->writeable) { 1402 lock_chunks(root); 1403 list_del_init(&device->dev_alloc_list); 1404 unlock_chunks(root); 1405 root->fs_info->fs_devices->rw_devices--; 1406 clear_super = true; 1407 } 1408 1409 ret = btrfs_shrink_device(device, 0); 1410 if (ret) 1411 goto error_undo; 1412 1413 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1414 if (ret) 1415 goto error_undo; 1416 1417 spin_lock(&root->fs_info->free_chunk_lock); 1418 root->fs_info->free_chunk_space = device->total_bytes - 1419 device->bytes_used; 1420 spin_unlock(&root->fs_info->free_chunk_lock); 1421 1422 device->in_fs_metadata = 0; 1423 btrfs_scrub_cancel_dev(root, device); 1424 1425 /* 1426 * the device list mutex makes sure that we don't change 1427 * the device list while someone else is writing out all 1428 * the device supers. 1429 */ 1430 1431 cur_devices = device->fs_devices; 1432 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1433 list_del_rcu(&device->dev_list); 1434 1435 device->fs_devices->num_devices--; 1436 1437 if (device->missing) 1438 root->fs_info->fs_devices->missing_devices--; 1439 1440 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1441 struct btrfs_device, dev_list); 1442 if (device->bdev == root->fs_info->sb->s_bdev) 1443 root->fs_info->sb->s_bdev = next_device->bdev; 1444 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1445 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1446 1447 if (device->bdev) 1448 device->fs_devices->open_devices--; 1449 1450 call_rcu(&device->rcu, free_device); 1451 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1452 1453 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1454 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1455 1456 if (cur_devices->open_devices == 0) { 1457 struct btrfs_fs_devices *fs_devices; 1458 fs_devices = root->fs_info->fs_devices; 1459 while (fs_devices) { 1460 if (fs_devices->seed == cur_devices) 1461 break; 1462 fs_devices = fs_devices->seed; 1463 } 1464 fs_devices->seed = cur_devices->seed; 1465 cur_devices->seed = NULL; 1466 lock_chunks(root); 1467 __btrfs_close_devices(cur_devices); 1468 unlock_chunks(root); 1469 free_fs_devices(cur_devices); 1470 } 1471 1472 /* 1473 * at this point, the device is zero sized. We want to 1474 * remove it from the devices list and zero out the old super 1475 */ 1476 if (clear_super) { 1477 /* make sure this device isn't detected as part of 1478 * the FS anymore 1479 */ 1480 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1481 set_buffer_dirty(bh); 1482 sync_dirty_buffer(bh); 1483 } 1484 1485 ret = 0; 1486 1487 error_brelse: 1488 brelse(bh); 1489 error_close: 1490 if (bdev) 1491 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1492 out: 1493 mutex_unlock(&uuid_mutex); 1494 return ret; 1495 error_undo: 1496 if (device->writeable) { 1497 lock_chunks(root); 1498 list_add(&device->dev_alloc_list, 1499 &root->fs_info->fs_devices->alloc_list); 1500 unlock_chunks(root); 1501 root->fs_info->fs_devices->rw_devices++; 1502 } 1503 goto error_brelse; 1504 } 1505 1506 /* 1507 * does all the dirty work required for changing file system's UUID. 1508 */ 1509 static int btrfs_prepare_sprout(struct btrfs_root *root) 1510 { 1511 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1512 struct btrfs_fs_devices *old_devices; 1513 struct btrfs_fs_devices *seed_devices; 1514 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1515 struct btrfs_device *device; 1516 u64 super_flags; 1517 1518 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1519 if (!fs_devices->seeding) 1520 return -EINVAL; 1521 1522 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 1523 if (!seed_devices) 1524 return -ENOMEM; 1525 1526 old_devices = clone_fs_devices(fs_devices); 1527 if (IS_ERR(old_devices)) { 1528 kfree(seed_devices); 1529 return PTR_ERR(old_devices); 1530 } 1531 1532 list_add(&old_devices->list, &fs_uuids); 1533 1534 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1535 seed_devices->opened = 1; 1536 INIT_LIST_HEAD(&seed_devices->devices); 1537 INIT_LIST_HEAD(&seed_devices->alloc_list); 1538 mutex_init(&seed_devices->device_list_mutex); 1539 1540 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1541 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1542 synchronize_rcu); 1543 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1544 1545 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1546 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1547 device->fs_devices = seed_devices; 1548 } 1549 1550 fs_devices->seeding = 0; 1551 fs_devices->num_devices = 0; 1552 fs_devices->open_devices = 0; 1553 fs_devices->seed = seed_devices; 1554 1555 generate_random_uuid(fs_devices->fsid); 1556 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1557 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1558 super_flags = btrfs_super_flags(disk_super) & 1559 ~BTRFS_SUPER_FLAG_SEEDING; 1560 btrfs_set_super_flags(disk_super, super_flags); 1561 1562 return 0; 1563 } 1564 1565 /* 1566 * strore the expected generation for seed devices in device items. 1567 */ 1568 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1569 struct btrfs_root *root) 1570 { 1571 struct btrfs_path *path; 1572 struct extent_buffer *leaf; 1573 struct btrfs_dev_item *dev_item; 1574 struct btrfs_device *device; 1575 struct btrfs_key key; 1576 u8 fs_uuid[BTRFS_UUID_SIZE]; 1577 u8 dev_uuid[BTRFS_UUID_SIZE]; 1578 u64 devid; 1579 int ret; 1580 1581 path = btrfs_alloc_path(); 1582 if (!path) 1583 return -ENOMEM; 1584 1585 root = root->fs_info->chunk_root; 1586 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1587 key.offset = 0; 1588 key.type = BTRFS_DEV_ITEM_KEY; 1589 1590 while (1) { 1591 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1592 if (ret < 0) 1593 goto error; 1594 1595 leaf = path->nodes[0]; 1596 next_slot: 1597 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1598 ret = btrfs_next_leaf(root, path); 1599 if (ret > 0) 1600 break; 1601 if (ret < 0) 1602 goto error; 1603 leaf = path->nodes[0]; 1604 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1605 btrfs_release_path(path); 1606 continue; 1607 } 1608 1609 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1610 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1611 key.type != BTRFS_DEV_ITEM_KEY) 1612 break; 1613 1614 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1615 struct btrfs_dev_item); 1616 devid = btrfs_device_id(leaf, dev_item); 1617 read_extent_buffer(leaf, dev_uuid, 1618 (unsigned long)btrfs_device_uuid(dev_item), 1619 BTRFS_UUID_SIZE); 1620 read_extent_buffer(leaf, fs_uuid, 1621 (unsigned long)btrfs_device_fsid(dev_item), 1622 BTRFS_UUID_SIZE); 1623 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 1624 BUG_ON(!device); /* Logic error */ 1625 1626 if (device->fs_devices->seeding) { 1627 btrfs_set_device_generation(leaf, dev_item, 1628 device->generation); 1629 btrfs_mark_buffer_dirty(leaf); 1630 } 1631 1632 path->slots[0]++; 1633 goto next_slot; 1634 } 1635 ret = 0; 1636 error: 1637 btrfs_free_path(path); 1638 return ret; 1639 } 1640 1641 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1642 { 1643 struct request_queue *q; 1644 struct btrfs_trans_handle *trans; 1645 struct btrfs_device *device; 1646 struct block_device *bdev; 1647 struct list_head *devices; 1648 struct super_block *sb = root->fs_info->sb; 1649 struct rcu_string *name; 1650 u64 total_bytes; 1651 int seeding_dev = 0; 1652 int ret = 0; 1653 1654 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1655 return -EROFS; 1656 1657 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1658 root->fs_info->bdev_holder); 1659 if (IS_ERR(bdev)) 1660 return PTR_ERR(bdev); 1661 1662 if (root->fs_info->fs_devices->seeding) { 1663 seeding_dev = 1; 1664 down_write(&sb->s_umount); 1665 mutex_lock(&uuid_mutex); 1666 } 1667 1668 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1669 1670 devices = &root->fs_info->fs_devices->devices; 1671 /* 1672 * we have the volume lock, so we don't need the extra 1673 * device list mutex while reading the list here. 1674 */ 1675 list_for_each_entry(device, devices, dev_list) { 1676 if (device->bdev == bdev) { 1677 ret = -EEXIST; 1678 goto error; 1679 } 1680 } 1681 1682 device = kzalloc(sizeof(*device), GFP_NOFS); 1683 if (!device) { 1684 /* we can safely leave the fs_devices entry around */ 1685 ret = -ENOMEM; 1686 goto error; 1687 } 1688 1689 name = rcu_string_strdup(device_path, GFP_NOFS); 1690 if (!name) { 1691 kfree(device); 1692 ret = -ENOMEM; 1693 goto error; 1694 } 1695 rcu_assign_pointer(device->name, name); 1696 1697 ret = find_next_devid(root, &device->devid); 1698 if (ret) { 1699 rcu_string_free(device->name); 1700 kfree(device); 1701 goto error; 1702 } 1703 1704 trans = btrfs_start_transaction(root, 0); 1705 if (IS_ERR(trans)) { 1706 rcu_string_free(device->name); 1707 kfree(device); 1708 ret = PTR_ERR(trans); 1709 goto error; 1710 } 1711 1712 lock_chunks(root); 1713 1714 q = bdev_get_queue(bdev); 1715 if (blk_queue_discard(q)) 1716 device->can_discard = 1; 1717 device->writeable = 1; 1718 device->work.func = pending_bios_fn; 1719 generate_random_uuid(device->uuid); 1720 spin_lock_init(&device->io_lock); 1721 device->generation = trans->transid; 1722 device->io_width = root->sectorsize; 1723 device->io_align = root->sectorsize; 1724 device->sector_size = root->sectorsize; 1725 device->total_bytes = i_size_read(bdev->bd_inode); 1726 device->disk_total_bytes = device->total_bytes; 1727 device->dev_root = root->fs_info->dev_root; 1728 device->bdev = bdev; 1729 device->in_fs_metadata = 1; 1730 device->mode = FMODE_EXCL; 1731 set_blocksize(device->bdev, 4096); 1732 1733 if (seeding_dev) { 1734 sb->s_flags &= ~MS_RDONLY; 1735 ret = btrfs_prepare_sprout(root); 1736 BUG_ON(ret); /* -ENOMEM */ 1737 } 1738 1739 device->fs_devices = root->fs_info->fs_devices; 1740 1741 /* 1742 * we don't want write_supers to jump in here with our device 1743 * half setup 1744 */ 1745 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1746 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 1747 list_add(&device->dev_alloc_list, 1748 &root->fs_info->fs_devices->alloc_list); 1749 root->fs_info->fs_devices->num_devices++; 1750 root->fs_info->fs_devices->open_devices++; 1751 root->fs_info->fs_devices->rw_devices++; 1752 if (device->can_discard) 1753 root->fs_info->fs_devices->num_can_discard++; 1754 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 1755 1756 spin_lock(&root->fs_info->free_chunk_lock); 1757 root->fs_info->free_chunk_space += device->total_bytes; 1758 spin_unlock(&root->fs_info->free_chunk_lock); 1759 1760 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1761 root->fs_info->fs_devices->rotating = 1; 1762 1763 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 1764 btrfs_set_super_total_bytes(root->fs_info->super_copy, 1765 total_bytes + device->total_bytes); 1766 1767 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 1768 btrfs_set_super_num_devices(root->fs_info->super_copy, 1769 total_bytes + 1); 1770 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1771 1772 if (seeding_dev) { 1773 ret = init_first_rw_device(trans, root, device); 1774 if (ret) 1775 goto error_trans; 1776 ret = btrfs_finish_sprout(trans, root); 1777 if (ret) 1778 goto error_trans; 1779 } else { 1780 ret = btrfs_add_device(trans, root, device); 1781 if (ret) 1782 goto error_trans; 1783 } 1784 1785 /* 1786 * we've got more storage, clear any full flags on the space 1787 * infos 1788 */ 1789 btrfs_clear_space_info_full(root->fs_info); 1790 1791 unlock_chunks(root); 1792 ret = btrfs_commit_transaction(trans, root); 1793 1794 if (seeding_dev) { 1795 mutex_unlock(&uuid_mutex); 1796 up_write(&sb->s_umount); 1797 1798 if (ret) /* transaction commit */ 1799 return ret; 1800 1801 ret = btrfs_relocate_sys_chunks(root); 1802 if (ret < 0) 1803 btrfs_error(root->fs_info, ret, 1804 "Failed to relocate sys chunks after " 1805 "device initialization. This can be fixed " 1806 "using the \"btrfs balance\" command."); 1807 } 1808 1809 return ret; 1810 1811 error_trans: 1812 unlock_chunks(root); 1813 btrfs_abort_transaction(trans, root, ret); 1814 btrfs_end_transaction(trans, root); 1815 rcu_string_free(device->name); 1816 kfree(device); 1817 error: 1818 blkdev_put(bdev, FMODE_EXCL); 1819 if (seeding_dev) { 1820 mutex_unlock(&uuid_mutex); 1821 up_write(&sb->s_umount); 1822 } 1823 return ret; 1824 } 1825 1826 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 1827 struct btrfs_device *device) 1828 { 1829 int ret; 1830 struct btrfs_path *path; 1831 struct btrfs_root *root; 1832 struct btrfs_dev_item *dev_item; 1833 struct extent_buffer *leaf; 1834 struct btrfs_key key; 1835 1836 root = device->dev_root->fs_info->chunk_root; 1837 1838 path = btrfs_alloc_path(); 1839 if (!path) 1840 return -ENOMEM; 1841 1842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1843 key.type = BTRFS_DEV_ITEM_KEY; 1844 key.offset = device->devid; 1845 1846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1847 if (ret < 0) 1848 goto out; 1849 1850 if (ret > 0) { 1851 ret = -ENOENT; 1852 goto out; 1853 } 1854 1855 leaf = path->nodes[0]; 1856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1857 1858 btrfs_set_device_id(leaf, dev_item, device->devid); 1859 btrfs_set_device_type(leaf, dev_item, device->type); 1860 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1861 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1863 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 1864 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1865 btrfs_mark_buffer_dirty(leaf); 1866 1867 out: 1868 btrfs_free_path(path); 1869 return ret; 1870 } 1871 1872 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 1873 struct btrfs_device *device, u64 new_size) 1874 { 1875 struct btrfs_super_block *super_copy = 1876 device->dev_root->fs_info->super_copy; 1877 u64 old_total = btrfs_super_total_bytes(super_copy); 1878 u64 diff = new_size - device->total_bytes; 1879 1880 if (!device->writeable) 1881 return -EACCES; 1882 if (new_size <= device->total_bytes) 1883 return -EINVAL; 1884 1885 btrfs_set_super_total_bytes(super_copy, old_total + diff); 1886 device->fs_devices->total_rw_bytes += diff; 1887 1888 device->total_bytes = new_size; 1889 device->disk_total_bytes = new_size; 1890 btrfs_clear_space_info_full(device->dev_root->fs_info); 1891 1892 return btrfs_update_device(trans, device); 1893 } 1894 1895 int btrfs_grow_device(struct btrfs_trans_handle *trans, 1896 struct btrfs_device *device, u64 new_size) 1897 { 1898 int ret; 1899 lock_chunks(device->dev_root); 1900 ret = __btrfs_grow_device(trans, device, new_size); 1901 unlock_chunks(device->dev_root); 1902 return ret; 1903 } 1904 1905 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 1906 struct btrfs_root *root, 1907 u64 chunk_tree, u64 chunk_objectid, 1908 u64 chunk_offset) 1909 { 1910 int ret; 1911 struct btrfs_path *path; 1912 struct btrfs_key key; 1913 1914 root = root->fs_info->chunk_root; 1915 path = btrfs_alloc_path(); 1916 if (!path) 1917 return -ENOMEM; 1918 1919 key.objectid = chunk_objectid; 1920 key.offset = chunk_offset; 1921 key.type = BTRFS_CHUNK_ITEM_KEY; 1922 1923 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1924 if (ret < 0) 1925 goto out; 1926 else if (ret > 0) { /* Logic error or corruption */ 1927 btrfs_error(root->fs_info, -ENOENT, 1928 "Failed lookup while freeing chunk."); 1929 ret = -ENOENT; 1930 goto out; 1931 } 1932 1933 ret = btrfs_del_item(trans, root, path); 1934 if (ret < 0) 1935 btrfs_error(root->fs_info, ret, 1936 "Failed to delete chunk item."); 1937 out: 1938 btrfs_free_path(path); 1939 return ret; 1940 } 1941 1942 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 1943 chunk_offset) 1944 { 1945 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 1946 struct btrfs_disk_key *disk_key; 1947 struct btrfs_chunk *chunk; 1948 u8 *ptr; 1949 int ret = 0; 1950 u32 num_stripes; 1951 u32 array_size; 1952 u32 len = 0; 1953 u32 cur; 1954 struct btrfs_key key; 1955 1956 array_size = btrfs_super_sys_array_size(super_copy); 1957 1958 ptr = super_copy->sys_chunk_array; 1959 cur = 0; 1960 1961 while (cur < array_size) { 1962 disk_key = (struct btrfs_disk_key *)ptr; 1963 btrfs_disk_key_to_cpu(&key, disk_key); 1964 1965 len = sizeof(*disk_key); 1966 1967 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 1968 chunk = (struct btrfs_chunk *)(ptr + len); 1969 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 1970 len += btrfs_chunk_item_size(num_stripes); 1971 } else { 1972 ret = -EIO; 1973 break; 1974 } 1975 if (key.objectid == chunk_objectid && 1976 key.offset == chunk_offset) { 1977 memmove(ptr, ptr + len, array_size - (cur + len)); 1978 array_size -= len; 1979 btrfs_set_super_sys_array_size(super_copy, array_size); 1980 } else { 1981 ptr += len; 1982 cur += len; 1983 } 1984 } 1985 return ret; 1986 } 1987 1988 static int btrfs_relocate_chunk(struct btrfs_root *root, 1989 u64 chunk_tree, u64 chunk_objectid, 1990 u64 chunk_offset) 1991 { 1992 struct extent_map_tree *em_tree; 1993 struct btrfs_root *extent_root; 1994 struct btrfs_trans_handle *trans; 1995 struct extent_map *em; 1996 struct map_lookup *map; 1997 int ret; 1998 int i; 1999 2000 root = root->fs_info->chunk_root; 2001 extent_root = root->fs_info->extent_root; 2002 em_tree = &root->fs_info->mapping_tree.map_tree; 2003 2004 ret = btrfs_can_relocate(extent_root, chunk_offset); 2005 if (ret) 2006 return -ENOSPC; 2007 2008 /* step one, relocate all the extents inside this chunk */ 2009 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2010 if (ret) 2011 return ret; 2012 2013 trans = btrfs_start_transaction(root, 0); 2014 BUG_ON(IS_ERR(trans)); 2015 2016 lock_chunks(root); 2017 2018 /* 2019 * step two, delete the device extents and the 2020 * chunk tree entries 2021 */ 2022 read_lock(&em_tree->lock); 2023 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2024 read_unlock(&em_tree->lock); 2025 2026 BUG_ON(!em || em->start > chunk_offset || 2027 em->start + em->len < chunk_offset); 2028 map = (struct map_lookup *)em->bdev; 2029 2030 for (i = 0; i < map->num_stripes; i++) { 2031 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2032 map->stripes[i].physical); 2033 BUG_ON(ret); 2034 2035 if (map->stripes[i].dev) { 2036 ret = btrfs_update_device(trans, map->stripes[i].dev); 2037 BUG_ON(ret); 2038 } 2039 } 2040 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2041 chunk_offset); 2042 2043 BUG_ON(ret); 2044 2045 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2046 2047 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2048 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2049 BUG_ON(ret); 2050 } 2051 2052 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2053 BUG_ON(ret); 2054 2055 write_lock(&em_tree->lock); 2056 remove_extent_mapping(em_tree, em); 2057 write_unlock(&em_tree->lock); 2058 2059 kfree(map); 2060 em->bdev = NULL; 2061 2062 /* once for the tree */ 2063 free_extent_map(em); 2064 /* once for us */ 2065 free_extent_map(em); 2066 2067 unlock_chunks(root); 2068 btrfs_end_transaction(trans, root); 2069 return 0; 2070 } 2071 2072 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2073 { 2074 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2075 struct btrfs_path *path; 2076 struct extent_buffer *leaf; 2077 struct btrfs_chunk *chunk; 2078 struct btrfs_key key; 2079 struct btrfs_key found_key; 2080 u64 chunk_tree = chunk_root->root_key.objectid; 2081 u64 chunk_type; 2082 bool retried = false; 2083 int failed = 0; 2084 int ret; 2085 2086 path = btrfs_alloc_path(); 2087 if (!path) 2088 return -ENOMEM; 2089 2090 again: 2091 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2092 key.offset = (u64)-1; 2093 key.type = BTRFS_CHUNK_ITEM_KEY; 2094 2095 while (1) { 2096 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2097 if (ret < 0) 2098 goto error; 2099 BUG_ON(ret == 0); /* Corruption */ 2100 2101 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2102 key.type); 2103 if (ret < 0) 2104 goto error; 2105 if (ret > 0) 2106 break; 2107 2108 leaf = path->nodes[0]; 2109 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2110 2111 chunk = btrfs_item_ptr(leaf, path->slots[0], 2112 struct btrfs_chunk); 2113 chunk_type = btrfs_chunk_type(leaf, chunk); 2114 btrfs_release_path(path); 2115 2116 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2117 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2118 found_key.objectid, 2119 found_key.offset); 2120 if (ret == -ENOSPC) 2121 failed++; 2122 else if (ret) 2123 BUG(); 2124 } 2125 2126 if (found_key.offset == 0) 2127 break; 2128 key.offset = found_key.offset - 1; 2129 } 2130 ret = 0; 2131 if (failed && !retried) { 2132 failed = 0; 2133 retried = true; 2134 goto again; 2135 } else if (failed && retried) { 2136 WARN_ON(1); 2137 ret = -ENOSPC; 2138 } 2139 error: 2140 btrfs_free_path(path); 2141 return ret; 2142 } 2143 2144 static int insert_balance_item(struct btrfs_root *root, 2145 struct btrfs_balance_control *bctl) 2146 { 2147 struct btrfs_trans_handle *trans; 2148 struct btrfs_balance_item *item; 2149 struct btrfs_disk_balance_args disk_bargs; 2150 struct btrfs_path *path; 2151 struct extent_buffer *leaf; 2152 struct btrfs_key key; 2153 int ret, err; 2154 2155 path = btrfs_alloc_path(); 2156 if (!path) 2157 return -ENOMEM; 2158 2159 trans = btrfs_start_transaction(root, 0); 2160 if (IS_ERR(trans)) { 2161 btrfs_free_path(path); 2162 return PTR_ERR(trans); 2163 } 2164 2165 key.objectid = BTRFS_BALANCE_OBJECTID; 2166 key.type = BTRFS_BALANCE_ITEM_KEY; 2167 key.offset = 0; 2168 2169 ret = btrfs_insert_empty_item(trans, root, path, &key, 2170 sizeof(*item)); 2171 if (ret) 2172 goto out; 2173 2174 leaf = path->nodes[0]; 2175 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2176 2177 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2178 2179 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2180 btrfs_set_balance_data(leaf, item, &disk_bargs); 2181 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2182 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2183 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2184 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2185 2186 btrfs_set_balance_flags(leaf, item, bctl->flags); 2187 2188 btrfs_mark_buffer_dirty(leaf); 2189 out: 2190 btrfs_free_path(path); 2191 err = btrfs_commit_transaction(trans, root); 2192 if (err && !ret) 2193 ret = err; 2194 return ret; 2195 } 2196 2197 static int del_balance_item(struct btrfs_root *root) 2198 { 2199 struct btrfs_trans_handle *trans; 2200 struct btrfs_path *path; 2201 struct btrfs_key key; 2202 int ret, err; 2203 2204 path = btrfs_alloc_path(); 2205 if (!path) 2206 return -ENOMEM; 2207 2208 trans = btrfs_start_transaction(root, 0); 2209 if (IS_ERR(trans)) { 2210 btrfs_free_path(path); 2211 return PTR_ERR(trans); 2212 } 2213 2214 key.objectid = BTRFS_BALANCE_OBJECTID; 2215 key.type = BTRFS_BALANCE_ITEM_KEY; 2216 key.offset = 0; 2217 2218 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2219 if (ret < 0) 2220 goto out; 2221 if (ret > 0) { 2222 ret = -ENOENT; 2223 goto out; 2224 } 2225 2226 ret = btrfs_del_item(trans, root, path); 2227 out: 2228 btrfs_free_path(path); 2229 err = btrfs_commit_transaction(trans, root); 2230 if (err && !ret) 2231 ret = err; 2232 return ret; 2233 } 2234 2235 /* 2236 * This is a heuristic used to reduce the number of chunks balanced on 2237 * resume after balance was interrupted. 2238 */ 2239 static void update_balance_args(struct btrfs_balance_control *bctl) 2240 { 2241 /* 2242 * Turn on soft mode for chunk types that were being converted. 2243 */ 2244 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2245 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2246 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2247 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2248 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2249 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2250 2251 /* 2252 * Turn on usage filter if is not already used. The idea is 2253 * that chunks that we have already balanced should be 2254 * reasonably full. Don't do it for chunks that are being 2255 * converted - that will keep us from relocating unconverted 2256 * (albeit full) chunks. 2257 */ 2258 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2259 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2260 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2261 bctl->data.usage = 90; 2262 } 2263 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2264 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2265 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2266 bctl->sys.usage = 90; 2267 } 2268 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2269 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2270 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2271 bctl->meta.usage = 90; 2272 } 2273 } 2274 2275 /* 2276 * Should be called with both balance and volume mutexes held to 2277 * serialize other volume operations (add_dev/rm_dev/resize) with 2278 * restriper. Same goes for unset_balance_control. 2279 */ 2280 static void set_balance_control(struct btrfs_balance_control *bctl) 2281 { 2282 struct btrfs_fs_info *fs_info = bctl->fs_info; 2283 2284 BUG_ON(fs_info->balance_ctl); 2285 2286 spin_lock(&fs_info->balance_lock); 2287 fs_info->balance_ctl = bctl; 2288 spin_unlock(&fs_info->balance_lock); 2289 } 2290 2291 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2292 { 2293 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2294 2295 BUG_ON(!fs_info->balance_ctl); 2296 2297 spin_lock(&fs_info->balance_lock); 2298 fs_info->balance_ctl = NULL; 2299 spin_unlock(&fs_info->balance_lock); 2300 2301 kfree(bctl); 2302 } 2303 2304 /* 2305 * Balance filters. Return 1 if chunk should be filtered out 2306 * (should not be balanced). 2307 */ 2308 static int chunk_profiles_filter(u64 chunk_type, 2309 struct btrfs_balance_args *bargs) 2310 { 2311 chunk_type = chunk_to_extended(chunk_type) & 2312 BTRFS_EXTENDED_PROFILE_MASK; 2313 2314 if (bargs->profiles & chunk_type) 2315 return 0; 2316 2317 return 1; 2318 } 2319 2320 static u64 div_factor_fine(u64 num, int factor) 2321 { 2322 if (factor <= 0) 2323 return 0; 2324 if (factor >= 100) 2325 return num; 2326 2327 num *= factor; 2328 do_div(num, 100); 2329 return num; 2330 } 2331 2332 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2333 struct btrfs_balance_args *bargs) 2334 { 2335 struct btrfs_block_group_cache *cache; 2336 u64 chunk_used, user_thresh; 2337 int ret = 1; 2338 2339 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2340 chunk_used = btrfs_block_group_used(&cache->item); 2341 2342 user_thresh = div_factor_fine(cache->key.offset, bargs->usage); 2343 if (chunk_used < user_thresh) 2344 ret = 0; 2345 2346 btrfs_put_block_group(cache); 2347 return ret; 2348 } 2349 2350 static int chunk_devid_filter(struct extent_buffer *leaf, 2351 struct btrfs_chunk *chunk, 2352 struct btrfs_balance_args *bargs) 2353 { 2354 struct btrfs_stripe *stripe; 2355 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2356 int i; 2357 2358 for (i = 0; i < num_stripes; i++) { 2359 stripe = btrfs_stripe_nr(chunk, i); 2360 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2361 return 0; 2362 } 2363 2364 return 1; 2365 } 2366 2367 /* [pstart, pend) */ 2368 static int chunk_drange_filter(struct extent_buffer *leaf, 2369 struct btrfs_chunk *chunk, 2370 u64 chunk_offset, 2371 struct btrfs_balance_args *bargs) 2372 { 2373 struct btrfs_stripe *stripe; 2374 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2375 u64 stripe_offset; 2376 u64 stripe_length; 2377 int factor; 2378 int i; 2379 2380 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2381 return 0; 2382 2383 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2384 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) 2385 factor = 2; 2386 else 2387 factor = 1; 2388 factor = num_stripes / factor; 2389 2390 for (i = 0; i < num_stripes; i++) { 2391 stripe = btrfs_stripe_nr(chunk, i); 2392 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2393 continue; 2394 2395 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2396 stripe_length = btrfs_chunk_length(leaf, chunk); 2397 do_div(stripe_length, factor); 2398 2399 if (stripe_offset < bargs->pend && 2400 stripe_offset + stripe_length > bargs->pstart) 2401 return 0; 2402 } 2403 2404 return 1; 2405 } 2406 2407 /* [vstart, vend) */ 2408 static int chunk_vrange_filter(struct extent_buffer *leaf, 2409 struct btrfs_chunk *chunk, 2410 u64 chunk_offset, 2411 struct btrfs_balance_args *bargs) 2412 { 2413 if (chunk_offset < bargs->vend && 2414 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2415 /* at least part of the chunk is inside this vrange */ 2416 return 0; 2417 2418 return 1; 2419 } 2420 2421 static int chunk_soft_convert_filter(u64 chunk_type, 2422 struct btrfs_balance_args *bargs) 2423 { 2424 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2425 return 0; 2426 2427 chunk_type = chunk_to_extended(chunk_type) & 2428 BTRFS_EXTENDED_PROFILE_MASK; 2429 2430 if (bargs->target == chunk_type) 2431 return 1; 2432 2433 return 0; 2434 } 2435 2436 static int should_balance_chunk(struct btrfs_root *root, 2437 struct extent_buffer *leaf, 2438 struct btrfs_chunk *chunk, u64 chunk_offset) 2439 { 2440 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2441 struct btrfs_balance_args *bargs = NULL; 2442 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2443 2444 /* type filter */ 2445 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2446 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2447 return 0; 2448 } 2449 2450 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2451 bargs = &bctl->data; 2452 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2453 bargs = &bctl->sys; 2454 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2455 bargs = &bctl->meta; 2456 2457 /* profiles filter */ 2458 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2459 chunk_profiles_filter(chunk_type, bargs)) { 2460 return 0; 2461 } 2462 2463 /* usage filter */ 2464 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2465 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2466 return 0; 2467 } 2468 2469 /* devid filter */ 2470 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2471 chunk_devid_filter(leaf, chunk, bargs)) { 2472 return 0; 2473 } 2474 2475 /* drange filter, makes sense only with devid filter */ 2476 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2477 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2478 return 0; 2479 } 2480 2481 /* vrange filter */ 2482 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2483 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2484 return 0; 2485 } 2486 2487 /* soft profile changing mode */ 2488 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2489 chunk_soft_convert_filter(chunk_type, bargs)) { 2490 return 0; 2491 } 2492 2493 return 1; 2494 } 2495 2496 static u64 div_factor(u64 num, int factor) 2497 { 2498 if (factor == 10) 2499 return num; 2500 num *= factor; 2501 do_div(num, 10); 2502 return num; 2503 } 2504 2505 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2506 { 2507 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2508 struct btrfs_root *chunk_root = fs_info->chunk_root; 2509 struct btrfs_root *dev_root = fs_info->dev_root; 2510 struct list_head *devices; 2511 struct btrfs_device *device; 2512 u64 old_size; 2513 u64 size_to_free; 2514 struct btrfs_chunk *chunk; 2515 struct btrfs_path *path; 2516 struct btrfs_key key; 2517 struct btrfs_key found_key; 2518 struct btrfs_trans_handle *trans; 2519 struct extent_buffer *leaf; 2520 int slot; 2521 int ret; 2522 int enospc_errors = 0; 2523 bool counting = true; 2524 2525 /* step one make some room on all the devices */ 2526 devices = &fs_info->fs_devices->devices; 2527 list_for_each_entry(device, devices, dev_list) { 2528 old_size = device->total_bytes; 2529 size_to_free = div_factor(old_size, 1); 2530 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2531 if (!device->writeable || 2532 device->total_bytes - device->bytes_used > size_to_free) 2533 continue; 2534 2535 ret = btrfs_shrink_device(device, old_size - size_to_free); 2536 if (ret == -ENOSPC) 2537 break; 2538 BUG_ON(ret); 2539 2540 trans = btrfs_start_transaction(dev_root, 0); 2541 BUG_ON(IS_ERR(trans)); 2542 2543 ret = btrfs_grow_device(trans, device, old_size); 2544 BUG_ON(ret); 2545 2546 btrfs_end_transaction(trans, dev_root); 2547 } 2548 2549 /* step two, relocate all the chunks */ 2550 path = btrfs_alloc_path(); 2551 if (!path) { 2552 ret = -ENOMEM; 2553 goto error; 2554 } 2555 2556 /* zero out stat counters */ 2557 spin_lock(&fs_info->balance_lock); 2558 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2559 spin_unlock(&fs_info->balance_lock); 2560 again: 2561 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2562 key.offset = (u64)-1; 2563 key.type = BTRFS_CHUNK_ITEM_KEY; 2564 2565 while (1) { 2566 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2567 atomic_read(&fs_info->balance_cancel_req)) { 2568 ret = -ECANCELED; 2569 goto error; 2570 } 2571 2572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2573 if (ret < 0) 2574 goto error; 2575 2576 /* 2577 * this shouldn't happen, it means the last relocate 2578 * failed 2579 */ 2580 if (ret == 0) 2581 BUG(); /* FIXME break ? */ 2582 2583 ret = btrfs_previous_item(chunk_root, path, 0, 2584 BTRFS_CHUNK_ITEM_KEY); 2585 if (ret) { 2586 ret = 0; 2587 break; 2588 } 2589 2590 leaf = path->nodes[0]; 2591 slot = path->slots[0]; 2592 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2593 2594 if (found_key.objectid != key.objectid) 2595 break; 2596 2597 /* chunk zero is special */ 2598 if (found_key.offset == 0) 2599 break; 2600 2601 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 2602 2603 if (!counting) { 2604 spin_lock(&fs_info->balance_lock); 2605 bctl->stat.considered++; 2606 spin_unlock(&fs_info->balance_lock); 2607 } 2608 2609 ret = should_balance_chunk(chunk_root, leaf, chunk, 2610 found_key.offset); 2611 btrfs_release_path(path); 2612 if (!ret) 2613 goto loop; 2614 2615 if (counting) { 2616 spin_lock(&fs_info->balance_lock); 2617 bctl->stat.expected++; 2618 spin_unlock(&fs_info->balance_lock); 2619 goto loop; 2620 } 2621 2622 ret = btrfs_relocate_chunk(chunk_root, 2623 chunk_root->root_key.objectid, 2624 found_key.objectid, 2625 found_key.offset); 2626 if (ret && ret != -ENOSPC) 2627 goto error; 2628 if (ret == -ENOSPC) { 2629 enospc_errors++; 2630 } else { 2631 spin_lock(&fs_info->balance_lock); 2632 bctl->stat.completed++; 2633 spin_unlock(&fs_info->balance_lock); 2634 } 2635 loop: 2636 key.offset = found_key.offset - 1; 2637 } 2638 2639 if (counting) { 2640 btrfs_release_path(path); 2641 counting = false; 2642 goto again; 2643 } 2644 error: 2645 btrfs_free_path(path); 2646 if (enospc_errors) { 2647 printk(KERN_INFO "btrfs: %d enospc errors during balance\n", 2648 enospc_errors); 2649 if (!ret) 2650 ret = -ENOSPC; 2651 } 2652 2653 return ret; 2654 } 2655 2656 /** 2657 * alloc_profile_is_valid - see if a given profile is valid and reduced 2658 * @flags: profile to validate 2659 * @extended: if true @flags is treated as an extended profile 2660 */ 2661 static int alloc_profile_is_valid(u64 flags, int extended) 2662 { 2663 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 2664 BTRFS_BLOCK_GROUP_PROFILE_MASK); 2665 2666 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 2667 2668 /* 1) check that all other bits are zeroed */ 2669 if (flags & ~mask) 2670 return 0; 2671 2672 /* 2) see if profile is reduced */ 2673 if (flags == 0) 2674 return !extended; /* "0" is valid for usual profiles */ 2675 2676 /* true if exactly one bit set */ 2677 return (flags & (flags - 1)) == 0; 2678 } 2679 2680 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 2681 { 2682 /* cancel requested || normal exit path */ 2683 return atomic_read(&fs_info->balance_cancel_req) || 2684 (atomic_read(&fs_info->balance_pause_req) == 0 && 2685 atomic_read(&fs_info->balance_cancel_req) == 0); 2686 } 2687 2688 static void __cancel_balance(struct btrfs_fs_info *fs_info) 2689 { 2690 int ret; 2691 2692 unset_balance_control(fs_info); 2693 ret = del_balance_item(fs_info->tree_root); 2694 BUG_ON(ret); 2695 } 2696 2697 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 2698 struct btrfs_ioctl_balance_args *bargs); 2699 2700 /* 2701 * Should be called with both balance and volume mutexes held 2702 */ 2703 int btrfs_balance(struct btrfs_balance_control *bctl, 2704 struct btrfs_ioctl_balance_args *bargs) 2705 { 2706 struct btrfs_fs_info *fs_info = bctl->fs_info; 2707 u64 allowed; 2708 int mixed = 0; 2709 int ret; 2710 2711 if (btrfs_fs_closing(fs_info) || 2712 atomic_read(&fs_info->balance_pause_req) || 2713 atomic_read(&fs_info->balance_cancel_req)) { 2714 ret = -EINVAL; 2715 goto out; 2716 } 2717 2718 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 2719 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 2720 mixed = 1; 2721 2722 /* 2723 * In case of mixed groups both data and meta should be picked, 2724 * and identical options should be given for both of them. 2725 */ 2726 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 2727 if (mixed && (bctl->flags & allowed)) { 2728 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 2729 !(bctl->flags & BTRFS_BALANCE_METADATA) || 2730 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 2731 printk(KERN_ERR "btrfs: with mixed groups data and " 2732 "metadata balance options must be the same\n"); 2733 ret = -EINVAL; 2734 goto out; 2735 } 2736 } 2737 2738 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 2739 if (fs_info->fs_devices->num_devices == 1) 2740 allowed |= BTRFS_BLOCK_GROUP_DUP; 2741 else if (fs_info->fs_devices->num_devices < 4) 2742 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 2743 else 2744 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | 2745 BTRFS_BLOCK_GROUP_RAID10); 2746 2747 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2748 (!alloc_profile_is_valid(bctl->data.target, 1) || 2749 (bctl->data.target & ~allowed))) { 2750 printk(KERN_ERR "btrfs: unable to start balance with target " 2751 "data profile %llu\n", 2752 (unsigned long long)bctl->data.target); 2753 ret = -EINVAL; 2754 goto out; 2755 } 2756 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2757 (!alloc_profile_is_valid(bctl->meta.target, 1) || 2758 (bctl->meta.target & ~allowed))) { 2759 printk(KERN_ERR "btrfs: unable to start balance with target " 2760 "metadata profile %llu\n", 2761 (unsigned long long)bctl->meta.target); 2762 ret = -EINVAL; 2763 goto out; 2764 } 2765 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2766 (!alloc_profile_is_valid(bctl->sys.target, 1) || 2767 (bctl->sys.target & ~allowed))) { 2768 printk(KERN_ERR "btrfs: unable to start balance with target " 2769 "system profile %llu\n", 2770 (unsigned long long)bctl->sys.target); 2771 ret = -EINVAL; 2772 goto out; 2773 } 2774 2775 /* allow dup'ed data chunks only in mixed mode */ 2776 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2777 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 2778 printk(KERN_ERR "btrfs: dup for data is not allowed\n"); 2779 ret = -EINVAL; 2780 goto out; 2781 } 2782 2783 /* allow to reduce meta or sys integrity only if force set */ 2784 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2785 BTRFS_BLOCK_GROUP_RAID10; 2786 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2787 (fs_info->avail_system_alloc_bits & allowed) && 2788 !(bctl->sys.target & allowed)) || 2789 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2790 (fs_info->avail_metadata_alloc_bits & allowed) && 2791 !(bctl->meta.target & allowed))) { 2792 if (bctl->flags & BTRFS_BALANCE_FORCE) { 2793 printk(KERN_INFO "btrfs: force reducing metadata " 2794 "integrity\n"); 2795 } else { 2796 printk(KERN_ERR "btrfs: balance will reduce metadata " 2797 "integrity, use force if you want this\n"); 2798 ret = -EINVAL; 2799 goto out; 2800 } 2801 } 2802 2803 ret = insert_balance_item(fs_info->tree_root, bctl); 2804 if (ret && ret != -EEXIST) 2805 goto out; 2806 2807 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 2808 BUG_ON(ret == -EEXIST); 2809 set_balance_control(bctl); 2810 } else { 2811 BUG_ON(ret != -EEXIST); 2812 spin_lock(&fs_info->balance_lock); 2813 update_balance_args(bctl); 2814 spin_unlock(&fs_info->balance_lock); 2815 } 2816 2817 atomic_inc(&fs_info->balance_running); 2818 mutex_unlock(&fs_info->balance_mutex); 2819 2820 ret = __btrfs_balance(fs_info); 2821 2822 mutex_lock(&fs_info->balance_mutex); 2823 atomic_dec(&fs_info->balance_running); 2824 2825 if (bargs) { 2826 memset(bargs, 0, sizeof(*bargs)); 2827 update_ioctl_balance_args(fs_info, 0, bargs); 2828 } 2829 2830 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 2831 balance_need_close(fs_info)) { 2832 __cancel_balance(fs_info); 2833 } 2834 2835 wake_up(&fs_info->balance_wait_q); 2836 2837 return ret; 2838 out: 2839 if (bctl->flags & BTRFS_BALANCE_RESUME) 2840 __cancel_balance(fs_info); 2841 else 2842 kfree(bctl); 2843 return ret; 2844 } 2845 2846 static int balance_kthread(void *data) 2847 { 2848 struct btrfs_fs_info *fs_info = data; 2849 int ret = 0; 2850 2851 mutex_lock(&fs_info->volume_mutex); 2852 mutex_lock(&fs_info->balance_mutex); 2853 2854 if (fs_info->balance_ctl) { 2855 printk(KERN_INFO "btrfs: continuing balance\n"); 2856 ret = btrfs_balance(fs_info->balance_ctl, NULL); 2857 } 2858 2859 mutex_unlock(&fs_info->balance_mutex); 2860 mutex_unlock(&fs_info->volume_mutex); 2861 2862 return ret; 2863 } 2864 2865 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 2866 { 2867 struct task_struct *tsk; 2868 2869 spin_lock(&fs_info->balance_lock); 2870 if (!fs_info->balance_ctl) { 2871 spin_unlock(&fs_info->balance_lock); 2872 return 0; 2873 } 2874 spin_unlock(&fs_info->balance_lock); 2875 2876 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 2877 printk(KERN_INFO "btrfs: force skipping balance\n"); 2878 return 0; 2879 } 2880 2881 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 2882 if (IS_ERR(tsk)) 2883 return PTR_ERR(tsk); 2884 2885 return 0; 2886 } 2887 2888 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 2889 { 2890 struct btrfs_balance_control *bctl; 2891 struct btrfs_balance_item *item; 2892 struct btrfs_disk_balance_args disk_bargs; 2893 struct btrfs_path *path; 2894 struct extent_buffer *leaf; 2895 struct btrfs_key key; 2896 int ret; 2897 2898 path = btrfs_alloc_path(); 2899 if (!path) 2900 return -ENOMEM; 2901 2902 key.objectid = BTRFS_BALANCE_OBJECTID; 2903 key.type = BTRFS_BALANCE_ITEM_KEY; 2904 key.offset = 0; 2905 2906 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2907 if (ret < 0) 2908 goto out; 2909 if (ret > 0) { /* ret = -ENOENT; */ 2910 ret = 0; 2911 goto out; 2912 } 2913 2914 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 2915 if (!bctl) { 2916 ret = -ENOMEM; 2917 goto out; 2918 } 2919 2920 leaf = path->nodes[0]; 2921 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2922 2923 bctl->fs_info = fs_info; 2924 bctl->flags = btrfs_balance_flags(leaf, item); 2925 bctl->flags |= BTRFS_BALANCE_RESUME; 2926 2927 btrfs_balance_data(leaf, item, &disk_bargs); 2928 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 2929 btrfs_balance_meta(leaf, item, &disk_bargs); 2930 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 2931 btrfs_balance_sys(leaf, item, &disk_bargs); 2932 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 2933 2934 mutex_lock(&fs_info->volume_mutex); 2935 mutex_lock(&fs_info->balance_mutex); 2936 2937 set_balance_control(bctl); 2938 2939 mutex_unlock(&fs_info->balance_mutex); 2940 mutex_unlock(&fs_info->volume_mutex); 2941 out: 2942 btrfs_free_path(path); 2943 return ret; 2944 } 2945 2946 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 2947 { 2948 int ret = 0; 2949 2950 mutex_lock(&fs_info->balance_mutex); 2951 if (!fs_info->balance_ctl) { 2952 mutex_unlock(&fs_info->balance_mutex); 2953 return -ENOTCONN; 2954 } 2955 2956 if (atomic_read(&fs_info->balance_running)) { 2957 atomic_inc(&fs_info->balance_pause_req); 2958 mutex_unlock(&fs_info->balance_mutex); 2959 2960 wait_event(fs_info->balance_wait_q, 2961 atomic_read(&fs_info->balance_running) == 0); 2962 2963 mutex_lock(&fs_info->balance_mutex); 2964 /* we are good with balance_ctl ripped off from under us */ 2965 BUG_ON(atomic_read(&fs_info->balance_running)); 2966 atomic_dec(&fs_info->balance_pause_req); 2967 } else { 2968 ret = -ENOTCONN; 2969 } 2970 2971 mutex_unlock(&fs_info->balance_mutex); 2972 return ret; 2973 } 2974 2975 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 2976 { 2977 mutex_lock(&fs_info->balance_mutex); 2978 if (!fs_info->balance_ctl) { 2979 mutex_unlock(&fs_info->balance_mutex); 2980 return -ENOTCONN; 2981 } 2982 2983 atomic_inc(&fs_info->balance_cancel_req); 2984 /* 2985 * if we are running just wait and return, balance item is 2986 * deleted in btrfs_balance in this case 2987 */ 2988 if (atomic_read(&fs_info->balance_running)) { 2989 mutex_unlock(&fs_info->balance_mutex); 2990 wait_event(fs_info->balance_wait_q, 2991 atomic_read(&fs_info->balance_running) == 0); 2992 mutex_lock(&fs_info->balance_mutex); 2993 } else { 2994 /* __cancel_balance needs volume_mutex */ 2995 mutex_unlock(&fs_info->balance_mutex); 2996 mutex_lock(&fs_info->volume_mutex); 2997 mutex_lock(&fs_info->balance_mutex); 2998 2999 if (fs_info->balance_ctl) 3000 __cancel_balance(fs_info); 3001 3002 mutex_unlock(&fs_info->volume_mutex); 3003 } 3004 3005 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3006 atomic_dec(&fs_info->balance_cancel_req); 3007 mutex_unlock(&fs_info->balance_mutex); 3008 return 0; 3009 } 3010 3011 /* 3012 * shrinking a device means finding all of the device extents past 3013 * the new size, and then following the back refs to the chunks. 3014 * The chunk relocation code actually frees the device extent 3015 */ 3016 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3017 { 3018 struct btrfs_trans_handle *trans; 3019 struct btrfs_root *root = device->dev_root; 3020 struct btrfs_dev_extent *dev_extent = NULL; 3021 struct btrfs_path *path; 3022 u64 length; 3023 u64 chunk_tree; 3024 u64 chunk_objectid; 3025 u64 chunk_offset; 3026 int ret; 3027 int slot; 3028 int failed = 0; 3029 bool retried = false; 3030 struct extent_buffer *l; 3031 struct btrfs_key key; 3032 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3033 u64 old_total = btrfs_super_total_bytes(super_copy); 3034 u64 old_size = device->total_bytes; 3035 u64 diff = device->total_bytes - new_size; 3036 3037 if (new_size >= device->total_bytes) 3038 return -EINVAL; 3039 3040 path = btrfs_alloc_path(); 3041 if (!path) 3042 return -ENOMEM; 3043 3044 path->reada = 2; 3045 3046 lock_chunks(root); 3047 3048 device->total_bytes = new_size; 3049 if (device->writeable) { 3050 device->fs_devices->total_rw_bytes -= diff; 3051 spin_lock(&root->fs_info->free_chunk_lock); 3052 root->fs_info->free_chunk_space -= diff; 3053 spin_unlock(&root->fs_info->free_chunk_lock); 3054 } 3055 unlock_chunks(root); 3056 3057 again: 3058 key.objectid = device->devid; 3059 key.offset = (u64)-1; 3060 key.type = BTRFS_DEV_EXTENT_KEY; 3061 3062 do { 3063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3064 if (ret < 0) 3065 goto done; 3066 3067 ret = btrfs_previous_item(root, path, 0, key.type); 3068 if (ret < 0) 3069 goto done; 3070 if (ret) { 3071 ret = 0; 3072 btrfs_release_path(path); 3073 break; 3074 } 3075 3076 l = path->nodes[0]; 3077 slot = path->slots[0]; 3078 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3079 3080 if (key.objectid != device->devid) { 3081 btrfs_release_path(path); 3082 break; 3083 } 3084 3085 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3086 length = btrfs_dev_extent_length(l, dev_extent); 3087 3088 if (key.offset + length <= new_size) { 3089 btrfs_release_path(path); 3090 break; 3091 } 3092 3093 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3094 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3095 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3096 btrfs_release_path(path); 3097 3098 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3099 chunk_offset); 3100 if (ret && ret != -ENOSPC) 3101 goto done; 3102 if (ret == -ENOSPC) 3103 failed++; 3104 } while (key.offset-- > 0); 3105 3106 if (failed && !retried) { 3107 failed = 0; 3108 retried = true; 3109 goto again; 3110 } else if (failed && retried) { 3111 ret = -ENOSPC; 3112 lock_chunks(root); 3113 3114 device->total_bytes = old_size; 3115 if (device->writeable) 3116 device->fs_devices->total_rw_bytes += diff; 3117 spin_lock(&root->fs_info->free_chunk_lock); 3118 root->fs_info->free_chunk_space += diff; 3119 spin_unlock(&root->fs_info->free_chunk_lock); 3120 unlock_chunks(root); 3121 goto done; 3122 } 3123 3124 /* Shrinking succeeded, else we would be at "done". */ 3125 trans = btrfs_start_transaction(root, 0); 3126 if (IS_ERR(trans)) { 3127 ret = PTR_ERR(trans); 3128 goto done; 3129 } 3130 3131 lock_chunks(root); 3132 3133 device->disk_total_bytes = new_size; 3134 /* Now btrfs_update_device() will change the on-disk size. */ 3135 ret = btrfs_update_device(trans, device); 3136 if (ret) { 3137 unlock_chunks(root); 3138 btrfs_end_transaction(trans, root); 3139 goto done; 3140 } 3141 WARN_ON(diff > old_total); 3142 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3143 unlock_chunks(root); 3144 btrfs_end_transaction(trans, root); 3145 done: 3146 btrfs_free_path(path); 3147 return ret; 3148 } 3149 3150 static int btrfs_add_system_chunk(struct btrfs_root *root, 3151 struct btrfs_key *key, 3152 struct btrfs_chunk *chunk, int item_size) 3153 { 3154 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3155 struct btrfs_disk_key disk_key; 3156 u32 array_size; 3157 u8 *ptr; 3158 3159 array_size = btrfs_super_sys_array_size(super_copy); 3160 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3161 return -EFBIG; 3162 3163 ptr = super_copy->sys_chunk_array + array_size; 3164 btrfs_cpu_key_to_disk(&disk_key, key); 3165 memcpy(ptr, &disk_key, sizeof(disk_key)); 3166 ptr += sizeof(disk_key); 3167 memcpy(ptr, chunk, item_size); 3168 item_size += sizeof(disk_key); 3169 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3170 return 0; 3171 } 3172 3173 /* 3174 * sort the devices in descending order by max_avail, total_avail 3175 */ 3176 static int btrfs_cmp_device_info(const void *a, const void *b) 3177 { 3178 const struct btrfs_device_info *di_a = a; 3179 const struct btrfs_device_info *di_b = b; 3180 3181 if (di_a->max_avail > di_b->max_avail) 3182 return -1; 3183 if (di_a->max_avail < di_b->max_avail) 3184 return 1; 3185 if (di_a->total_avail > di_b->total_avail) 3186 return -1; 3187 if (di_a->total_avail < di_b->total_avail) 3188 return 1; 3189 return 0; 3190 } 3191 3192 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3193 struct btrfs_root *extent_root, 3194 struct map_lookup **map_ret, 3195 u64 *num_bytes_out, u64 *stripe_size_out, 3196 u64 start, u64 type) 3197 { 3198 struct btrfs_fs_info *info = extent_root->fs_info; 3199 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3200 struct list_head *cur; 3201 struct map_lookup *map = NULL; 3202 struct extent_map_tree *em_tree; 3203 struct extent_map *em; 3204 struct btrfs_device_info *devices_info = NULL; 3205 u64 total_avail; 3206 int num_stripes; /* total number of stripes to allocate */ 3207 int sub_stripes; /* sub_stripes info for map */ 3208 int dev_stripes; /* stripes per dev */ 3209 int devs_max; /* max devs to use */ 3210 int devs_min; /* min devs needed */ 3211 int devs_increment; /* ndevs has to be a multiple of this */ 3212 int ncopies; /* how many copies to data has */ 3213 int ret; 3214 u64 max_stripe_size; 3215 u64 max_chunk_size; 3216 u64 stripe_size; 3217 u64 num_bytes; 3218 int ndevs; 3219 int i; 3220 int j; 3221 3222 BUG_ON(!alloc_profile_is_valid(type, 0)); 3223 3224 if (list_empty(&fs_devices->alloc_list)) 3225 return -ENOSPC; 3226 3227 sub_stripes = 1; 3228 dev_stripes = 1; 3229 devs_increment = 1; 3230 ncopies = 1; 3231 devs_max = 0; /* 0 == as many as possible */ 3232 devs_min = 1; 3233 3234 /* 3235 * define the properties of each RAID type. 3236 * FIXME: move this to a global table and use it in all RAID 3237 * calculation code 3238 */ 3239 if (type & (BTRFS_BLOCK_GROUP_DUP)) { 3240 dev_stripes = 2; 3241 ncopies = 2; 3242 devs_max = 1; 3243 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) { 3244 devs_min = 2; 3245 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) { 3246 devs_increment = 2; 3247 ncopies = 2; 3248 devs_max = 2; 3249 devs_min = 2; 3250 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) { 3251 sub_stripes = 2; 3252 devs_increment = 2; 3253 ncopies = 2; 3254 devs_min = 4; 3255 } else { 3256 devs_max = 1; 3257 } 3258 3259 if (type & BTRFS_BLOCK_GROUP_DATA) { 3260 max_stripe_size = 1024 * 1024 * 1024; 3261 max_chunk_size = 10 * max_stripe_size; 3262 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 3263 /* for larger filesystems, use larger metadata chunks */ 3264 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 3265 max_stripe_size = 1024 * 1024 * 1024; 3266 else 3267 max_stripe_size = 256 * 1024 * 1024; 3268 max_chunk_size = max_stripe_size; 3269 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 3270 max_stripe_size = 32 * 1024 * 1024; 3271 max_chunk_size = 2 * max_stripe_size; 3272 } else { 3273 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", 3274 type); 3275 BUG_ON(1); 3276 } 3277 3278 /* we don't want a chunk larger than 10% of writeable space */ 3279 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 3280 max_chunk_size); 3281 3282 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 3283 GFP_NOFS); 3284 if (!devices_info) 3285 return -ENOMEM; 3286 3287 cur = fs_devices->alloc_list.next; 3288 3289 /* 3290 * in the first pass through the devices list, we gather information 3291 * about the available holes on each device. 3292 */ 3293 ndevs = 0; 3294 while (cur != &fs_devices->alloc_list) { 3295 struct btrfs_device *device; 3296 u64 max_avail; 3297 u64 dev_offset; 3298 3299 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 3300 3301 cur = cur->next; 3302 3303 if (!device->writeable) { 3304 printk(KERN_ERR 3305 "btrfs: read-only device in alloc_list\n"); 3306 WARN_ON(1); 3307 continue; 3308 } 3309 3310 if (!device->in_fs_metadata) 3311 continue; 3312 3313 if (device->total_bytes > device->bytes_used) 3314 total_avail = device->total_bytes - device->bytes_used; 3315 else 3316 total_avail = 0; 3317 3318 /* If there is no space on this device, skip it. */ 3319 if (total_avail == 0) 3320 continue; 3321 3322 ret = find_free_dev_extent(device, 3323 max_stripe_size * dev_stripes, 3324 &dev_offset, &max_avail); 3325 if (ret && ret != -ENOSPC) 3326 goto error; 3327 3328 if (ret == 0) 3329 max_avail = max_stripe_size * dev_stripes; 3330 3331 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 3332 continue; 3333 3334 devices_info[ndevs].dev_offset = dev_offset; 3335 devices_info[ndevs].max_avail = max_avail; 3336 devices_info[ndevs].total_avail = total_avail; 3337 devices_info[ndevs].dev = device; 3338 ++ndevs; 3339 } 3340 3341 /* 3342 * now sort the devices by hole size / available space 3343 */ 3344 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 3345 btrfs_cmp_device_info, NULL); 3346 3347 /* round down to number of usable stripes */ 3348 ndevs -= ndevs % devs_increment; 3349 3350 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 3351 ret = -ENOSPC; 3352 goto error; 3353 } 3354 3355 if (devs_max && ndevs > devs_max) 3356 ndevs = devs_max; 3357 /* 3358 * the primary goal is to maximize the number of stripes, so use as many 3359 * devices as possible, even if the stripes are not maximum sized. 3360 */ 3361 stripe_size = devices_info[ndevs-1].max_avail; 3362 num_stripes = ndevs * dev_stripes; 3363 3364 if (stripe_size * ndevs > max_chunk_size * ncopies) { 3365 stripe_size = max_chunk_size * ncopies; 3366 do_div(stripe_size, ndevs); 3367 } 3368 3369 do_div(stripe_size, dev_stripes); 3370 3371 /* align to BTRFS_STRIPE_LEN */ 3372 do_div(stripe_size, BTRFS_STRIPE_LEN); 3373 stripe_size *= BTRFS_STRIPE_LEN; 3374 3375 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 3376 if (!map) { 3377 ret = -ENOMEM; 3378 goto error; 3379 } 3380 map->num_stripes = num_stripes; 3381 3382 for (i = 0; i < ndevs; ++i) { 3383 for (j = 0; j < dev_stripes; ++j) { 3384 int s = i * dev_stripes + j; 3385 map->stripes[s].dev = devices_info[i].dev; 3386 map->stripes[s].physical = devices_info[i].dev_offset + 3387 j * stripe_size; 3388 } 3389 } 3390 map->sector_size = extent_root->sectorsize; 3391 map->stripe_len = BTRFS_STRIPE_LEN; 3392 map->io_align = BTRFS_STRIPE_LEN; 3393 map->io_width = BTRFS_STRIPE_LEN; 3394 map->type = type; 3395 map->sub_stripes = sub_stripes; 3396 3397 *map_ret = map; 3398 num_bytes = stripe_size * (num_stripes / ncopies); 3399 3400 *stripe_size_out = stripe_size; 3401 *num_bytes_out = num_bytes; 3402 3403 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 3404 3405 em = alloc_extent_map(); 3406 if (!em) { 3407 ret = -ENOMEM; 3408 goto error; 3409 } 3410 em->bdev = (struct block_device *)map; 3411 em->start = start; 3412 em->len = num_bytes; 3413 em->block_start = 0; 3414 em->block_len = em->len; 3415 3416 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 3417 write_lock(&em_tree->lock); 3418 ret = add_extent_mapping(em_tree, em); 3419 write_unlock(&em_tree->lock); 3420 free_extent_map(em); 3421 if (ret) 3422 goto error; 3423 3424 ret = btrfs_make_block_group(trans, extent_root, 0, type, 3425 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3426 start, num_bytes); 3427 if (ret) 3428 goto error; 3429 3430 for (i = 0; i < map->num_stripes; ++i) { 3431 struct btrfs_device *device; 3432 u64 dev_offset; 3433 3434 device = map->stripes[i].dev; 3435 dev_offset = map->stripes[i].physical; 3436 3437 ret = btrfs_alloc_dev_extent(trans, device, 3438 info->chunk_root->root_key.objectid, 3439 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3440 start, dev_offset, stripe_size); 3441 if (ret) { 3442 btrfs_abort_transaction(trans, extent_root, ret); 3443 goto error; 3444 } 3445 } 3446 3447 kfree(devices_info); 3448 return 0; 3449 3450 error: 3451 kfree(map); 3452 kfree(devices_info); 3453 return ret; 3454 } 3455 3456 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, 3457 struct btrfs_root *extent_root, 3458 struct map_lookup *map, u64 chunk_offset, 3459 u64 chunk_size, u64 stripe_size) 3460 { 3461 u64 dev_offset; 3462 struct btrfs_key key; 3463 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3464 struct btrfs_device *device; 3465 struct btrfs_chunk *chunk; 3466 struct btrfs_stripe *stripe; 3467 size_t item_size = btrfs_chunk_item_size(map->num_stripes); 3468 int index = 0; 3469 int ret; 3470 3471 chunk = kzalloc(item_size, GFP_NOFS); 3472 if (!chunk) 3473 return -ENOMEM; 3474 3475 index = 0; 3476 while (index < map->num_stripes) { 3477 device = map->stripes[index].dev; 3478 device->bytes_used += stripe_size; 3479 ret = btrfs_update_device(trans, device); 3480 if (ret) 3481 goto out_free; 3482 index++; 3483 } 3484 3485 spin_lock(&extent_root->fs_info->free_chunk_lock); 3486 extent_root->fs_info->free_chunk_space -= (stripe_size * 3487 map->num_stripes); 3488 spin_unlock(&extent_root->fs_info->free_chunk_lock); 3489 3490 index = 0; 3491 stripe = &chunk->stripe; 3492 while (index < map->num_stripes) { 3493 device = map->stripes[index].dev; 3494 dev_offset = map->stripes[index].physical; 3495 3496 btrfs_set_stack_stripe_devid(stripe, device->devid); 3497 btrfs_set_stack_stripe_offset(stripe, dev_offset); 3498 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 3499 stripe++; 3500 index++; 3501 } 3502 3503 btrfs_set_stack_chunk_length(chunk, chunk_size); 3504 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 3505 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 3506 btrfs_set_stack_chunk_type(chunk, map->type); 3507 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 3508 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 3509 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 3510 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 3511 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 3512 3513 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3514 key.type = BTRFS_CHUNK_ITEM_KEY; 3515 key.offset = chunk_offset; 3516 3517 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 3518 3519 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3520 /* 3521 * TODO: Cleanup of inserted chunk root in case of 3522 * failure. 3523 */ 3524 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 3525 item_size); 3526 } 3527 3528 out_free: 3529 kfree(chunk); 3530 return ret; 3531 } 3532 3533 /* 3534 * Chunk allocation falls into two parts. The first part does works 3535 * that make the new allocated chunk useable, but not do any operation 3536 * that modifies the chunk tree. The second part does the works that 3537 * require modifying the chunk tree. This division is important for the 3538 * bootstrap process of adding storage to a seed btrfs. 3539 */ 3540 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3541 struct btrfs_root *extent_root, u64 type) 3542 { 3543 u64 chunk_offset; 3544 u64 chunk_size; 3545 u64 stripe_size; 3546 struct map_lookup *map; 3547 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3548 int ret; 3549 3550 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3551 &chunk_offset); 3552 if (ret) 3553 return ret; 3554 3555 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3556 &stripe_size, chunk_offset, type); 3557 if (ret) 3558 return ret; 3559 3560 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3561 chunk_size, stripe_size); 3562 if (ret) 3563 return ret; 3564 return 0; 3565 } 3566 3567 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 3568 struct btrfs_root *root, 3569 struct btrfs_device *device) 3570 { 3571 u64 chunk_offset; 3572 u64 sys_chunk_offset; 3573 u64 chunk_size; 3574 u64 sys_chunk_size; 3575 u64 stripe_size; 3576 u64 sys_stripe_size; 3577 u64 alloc_profile; 3578 struct map_lookup *map; 3579 struct map_lookup *sys_map; 3580 struct btrfs_fs_info *fs_info = root->fs_info; 3581 struct btrfs_root *extent_root = fs_info->extent_root; 3582 int ret; 3583 3584 ret = find_next_chunk(fs_info->chunk_root, 3585 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); 3586 if (ret) 3587 return ret; 3588 3589 alloc_profile = BTRFS_BLOCK_GROUP_METADATA | 3590 fs_info->avail_metadata_alloc_bits; 3591 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3592 3593 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3594 &stripe_size, chunk_offset, alloc_profile); 3595 if (ret) 3596 return ret; 3597 3598 sys_chunk_offset = chunk_offset + chunk_size; 3599 3600 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | 3601 fs_info->avail_system_alloc_bits; 3602 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3603 3604 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, 3605 &sys_chunk_size, &sys_stripe_size, 3606 sys_chunk_offset, alloc_profile); 3607 if (ret) 3608 goto abort; 3609 3610 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 3611 if (ret) 3612 goto abort; 3613 3614 /* 3615 * Modifying chunk tree needs allocating new blocks from both 3616 * system block group and metadata block group. So we only can 3617 * do operations require modifying the chunk tree after both 3618 * block groups were created. 3619 */ 3620 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3621 chunk_size, stripe_size); 3622 if (ret) 3623 goto abort; 3624 3625 ret = __finish_chunk_alloc(trans, extent_root, sys_map, 3626 sys_chunk_offset, sys_chunk_size, 3627 sys_stripe_size); 3628 if (ret) 3629 goto abort; 3630 3631 return 0; 3632 3633 abort: 3634 btrfs_abort_transaction(trans, root, ret); 3635 return ret; 3636 } 3637 3638 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 3639 { 3640 struct extent_map *em; 3641 struct map_lookup *map; 3642 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 3643 int readonly = 0; 3644 int i; 3645 3646 read_lock(&map_tree->map_tree.lock); 3647 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3648 read_unlock(&map_tree->map_tree.lock); 3649 if (!em) 3650 return 1; 3651 3652 if (btrfs_test_opt(root, DEGRADED)) { 3653 free_extent_map(em); 3654 return 0; 3655 } 3656 3657 map = (struct map_lookup *)em->bdev; 3658 for (i = 0; i < map->num_stripes; i++) { 3659 if (!map->stripes[i].dev->writeable) { 3660 readonly = 1; 3661 break; 3662 } 3663 } 3664 free_extent_map(em); 3665 return readonly; 3666 } 3667 3668 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 3669 { 3670 extent_map_tree_init(&tree->map_tree); 3671 } 3672 3673 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 3674 { 3675 struct extent_map *em; 3676 3677 while (1) { 3678 write_lock(&tree->map_tree.lock); 3679 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 3680 if (em) 3681 remove_extent_mapping(&tree->map_tree, em); 3682 write_unlock(&tree->map_tree.lock); 3683 if (!em) 3684 break; 3685 kfree(em->bdev); 3686 /* once for us */ 3687 free_extent_map(em); 3688 /* once for the tree */ 3689 free_extent_map(em); 3690 } 3691 } 3692 3693 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) 3694 { 3695 struct extent_map *em; 3696 struct map_lookup *map; 3697 struct extent_map_tree *em_tree = &map_tree->map_tree; 3698 int ret; 3699 3700 read_lock(&em_tree->lock); 3701 em = lookup_extent_mapping(em_tree, logical, len); 3702 read_unlock(&em_tree->lock); 3703 BUG_ON(!em); 3704 3705 BUG_ON(em->start > logical || em->start + em->len < logical); 3706 map = (struct map_lookup *)em->bdev; 3707 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 3708 ret = map->num_stripes; 3709 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 3710 ret = map->sub_stripes; 3711 else 3712 ret = 1; 3713 free_extent_map(em); 3714 return ret; 3715 } 3716 3717 static int find_live_mirror(struct map_lookup *map, int first, int num, 3718 int optimal) 3719 { 3720 int i; 3721 if (map->stripes[optimal].dev->bdev) 3722 return optimal; 3723 for (i = first; i < first + num; i++) { 3724 if (map->stripes[i].dev->bdev) 3725 return i; 3726 } 3727 /* we couldn't find one that doesn't fail. Just return something 3728 * and the io error handling code will clean up eventually 3729 */ 3730 return optimal; 3731 } 3732 3733 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3734 u64 logical, u64 *length, 3735 struct btrfs_bio **bbio_ret, 3736 int mirror_num) 3737 { 3738 struct extent_map *em; 3739 struct map_lookup *map; 3740 struct extent_map_tree *em_tree = &map_tree->map_tree; 3741 u64 offset; 3742 u64 stripe_offset; 3743 u64 stripe_end_offset; 3744 u64 stripe_nr; 3745 u64 stripe_nr_orig; 3746 u64 stripe_nr_end; 3747 int stripe_index; 3748 int i; 3749 int ret = 0; 3750 int num_stripes; 3751 int max_errors = 0; 3752 struct btrfs_bio *bbio = NULL; 3753 3754 read_lock(&em_tree->lock); 3755 em = lookup_extent_mapping(em_tree, logical, *length); 3756 read_unlock(&em_tree->lock); 3757 3758 if (!em) { 3759 printk(KERN_CRIT "unable to find logical %llu len %llu\n", 3760 (unsigned long long)logical, 3761 (unsigned long long)*length); 3762 BUG(); 3763 } 3764 3765 BUG_ON(em->start > logical || em->start + em->len < logical); 3766 map = (struct map_lookup *)em->bdev; 3767 offset = logical - em->start; 3768 3769 if (mirror_num > map->num_stripes) 3770 mirror_num = 0; 3771 3772 stripe_nr = offset; 3773 /* 3774 * stripe_nr counts the total number of stripes we have to stride 3775 * to get to this block 3776 */ 3777 do_div(stripe_nr, map->stripe_len); 3778 3779 stripe_offset = stripe_nr * map->stripe_len; 3780 BUG_ON(offset < stripe_offset); 3781 3782 /* stripe_offset is the offset of this block in its stripe*/ 3783 stripe_offset = offset - stripe_offset; 3784 3785 if (rw & REQ_DISCARD) 3786 *length = min_t(u64, em->len - offset, *length); 3787 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 3788 /* we limit the length of each bio to what fits in a stripe */ 3789 *length = min_t(u64, em->len - offset, 3790 map->stripe_len - stripe_offset); 3791 } else { 3792 *length = em->len - offset; 3793 } 3794 3795 if (!bbio_ret) 3796 goto out; 3797 3798 num_stripes = 1; 3799 stripe_index = 0; 3800 stripe_nr_orig = stripe_nr; 3801 stripe_nr_end = (offset + *length + map->stripe_len - 1) & 3802 (~(map->stripe_len - 1)); 3803 do_div(stripe_nr_end, map->stripe_len); 3804 stripe_end_offset = stripe_nr_end * map->stripe_len - 3805 (offset + *length); 3806 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3807 if (rw & REQ_DISCARD) 3808 num_stripes = min_t(u64, map->num_stripes, 3809 stripe_nr_end - stripe_nr_orig); 3810 stripe_index = do_div(stripe_nr, map->num_stripes); 3811 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3812 if (rw & (REQ_WRITE | REQ_DISCARD)) 3813 num_stripes = map->num_stripes; 3814 else if (mirror_num) 3815 stripe_index = mirror_num - 1; 3816 else { 3817 stripe_index = find_live_mirror(map, 0, 3818 map->num_stripes, 3819 current->pid % map->num_stripes); 3820 mirror_num = stripe_index + 1; 3821 } 3822 3823 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3824 if (rw & (REQ_WRITE | REQ_DISCARD)) { 3825 num_stripes = map->num_stripes; 3826 } else if (mirror_num) { 3827 stripe_index = mirror_num - 1; 3828 } else { 3829 mirror_num = 1; 3830 } 3831 3832 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3833 int factor = map->num_stripes / map->sub_stripes; 3834 3835 stripe_index = do_div(stripe_nr, factor); 3836 stripe_index *= map->sub_stripes; 3837 3838 if (rw & REQ_WRITE) 3839 num_stripes = map->sub_stripes; 3840 else if (rw & REQ_DISCARD) 3841 num_stripes = min_t(u64, map->sub_stripes * 3842 (stripe_nr_end - stripe_nr_orig), 3843 map->num_stripes); 3844 else if (mirror_num) 3845 stripe_index += mirror_num - 1; 3846 else { 3847 int old_stripe_index = stripe_index; 3848 stripe_index = find_live_mirror(map, stripe_index, 3849 map->sub_stripes, stripe_index + 3850 current->pid % map->sub_stripes); 3851 mirror_num = stripe_index - old_stripe_index + 1; 3852 } 3853 } else { 3854 /* 3855 * after this do_div call, stripe_nr is the number of stripes 3856 * on this device we have to walk to find the data, and 3857 * stripe_index is the number of our device in the stripe array 3858 */ 3859 stripe_index = do_div(stripe_nr, map->num_stripes); 3860 mirror_num = stripe_index + 1; 3861 } 3862 BUG_ON(stripe_index >= map->num_stripes); 3863 3864 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS); 3865 if (!bbio) { 3866 ret = -ENOMEM; 3867 goto out; 3868 } 3869 atomic_set(&bbio->error, 0); 3870 3871 if (rw & REQ_DISCARD) { 3872 int factor = 0; 3873 int sub_stripes = 0; 3874 u64 stripes_per_dev = 0; 3875 u32 remaining_stripes = 0; 3876 u32 last_stripe = 0; 3877 3878 if (map->type & 3879 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3880 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 3881 sub_stripes = 1; 3882 else 3883 sub_stripes = map->sub_stripes; 3884 3885 factor = map->num_stripes / sub_stripes; 3886 stripes_per_dev = div_u64_rem(stripe_nr_end - 3887 stripe_nr_orig, 3888 factor, 3889 &remaining_stripes); 3890 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 3891 last_stripe *= sub_stripes; 3892 } 3893 3894 for (i = 0; i < num_stripes; i++) { 3895 bbio->stripes[i].physical = 3896 map->stripes[stripe_index].physical + 3897 stripe_offset + stripe_nr * map->stripe_len; 3898 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 3899 3900 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3901 BTRFS_BLOCK_GROUP_RAID10)) { 3902 bbio->stripes[i].length = stripes_per_dev * 3903 map->stripe_len; 3904 3905 if (i / sub_stripes < remaining_stripes) 3906 bbio->stripes[i].length += 3907 map->stripe_len; 3908 3909 /* 3910 * Special for the first stripe and 3911 * the last stripe: 3912 * 3913 * |-------|...|-------| 3914 * |----------| 3915 * off end_off 3916 */ 3917 if (i < sub_stripes) 3918 bbio->stripes[i].length -= 3919 stripe_offset; 3920 3921 if (stripe_index >= last_stripe && 3922 stripe_index <= (last_stripe + 3923 sub_stripes - 1)) 3924 bbio->stripes[i].length -= 3925 stripe_end_offset; 3926 3927 if (i == sub_stripes - 1) 3928 stripe_offset = 0; 3929 } else 3930 bbio->stripes[i].length = *length; 3931 3932 stripe_index++; 3933 if (stripe_index == map->num_stripes) { 3934 /* This could only happen for RAID0/10 */ 3935 stripe_index = 0; 3936 stripe_nr++; 3937 } 3938 } 3939 } else { 3940 for (i = 0; i < num_stripes; i++) { 3941 bbio->stripes[i].physical = 3942 map->stripes[stripe_index].physical + 3943 stripe_offset + 3944 stripe_nr * map->stripe_len; 3945 bbio->stripes[i].dev = 3946 map->stripes[stripe_index].dev; 3947 stripe_index++; 3948 } 3949 } 3950 3951 if (rw & REQ_WRITE) { 3952 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 3953 BTRFS_BLOCK_GROUP_RAID10 | 3954 BTRFS_BLOCK_GROUP_DUP)) { 3955 max_errors = 1; 3956 } 3957 } 3958 3959 *bbio_ret = bbio; 3960 bbio->num_stripes = num_stripes; 3961 bbio->max_errors = max_errors; 3962 bbio->mirror_num = mirror_num; 3963 out: 3964 free_extent_map(em); 3965 return ret; 3966 } 3967 3968 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3969 u64 logical, u64 *length, 3970 struct btrfs_bio **bbio_ret, int mirror_num) 3971 { 3972 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret, 3973 mirror_num); 3974 } 3975 3976 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 3977 u64 chunk_start, u64 physical, u64 devid, 3978 u64 **logical, int *naddrs, int *stripe_len) 3979 { 3980 struct extent_map_tree *em_tree = &map_tree->map_tree; 3981 struct extent_map *em; 3982 struct map_lookup *map; 3983 u64 *buf; 3984 u64 bytenr; 3985 u64 length; 3986 u64 stripe_nr; 3987 int i, j, nr = 0; 3988 3989 read_lock(&em_tree->lock); 3990 em = lookup_extent_mapping(em_tree, chunk_start, 1); 3991 read_unlock(&em_tree->lock); 3992 3993 BUG_ON(!em || em->start != chunk_start); 3994 map = (struct map_lookup *)em->bdev; 3995 3996 length = em->len; 3997 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 3998 do_div(length, map->num_stripes / map->sub_stripes); 3999 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 4000 do_div(length, map->num_stripes); 4001 4002 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 4003 BUG_ON(!buf); /* -ENOMEM */ 4004 4005 for (i = 0; i < map->num_stripes; i++) { 4006 if (devid && map->stripes[i].dev->devid != devid) 4007 continue; 4008 if (map->stripes[i].physical > physical || 4009 map->stripes[i].physical + length <= physical) 4010 continue; 4011 4012 stripe_nr = physical - map->stripes[i].physical; 4013 do_div(stripe_nr, map->stripe_len); 4014 4015 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 4016 stripe_nr = stripe_nr * map->num_stripes + i; 4017 do_div(stripe_nr, map->sub_stripes); 4018 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 4019 stripe_nr = stripe_nr * map->num_stripes + i; 4020 } 4021 bytenr = chunk_start + stripe_nr * map->stripe_len; 4022 WARN_ON(nr >= map->num_stripes); 4023 for (j = 0; j < nr; j++) { 4024 if (buf[j] == bytenr) 4025 break; 4026 } 4027 if (j == nr) { 4028 WARN_ON(nr >= map->num_stripes); 4029 buf[nr++] = bytenr; 4030 } 4031 } 4032 4033 *logical = buf; 4034 *naddrs = nr; 4035 *stripe_len = map->stripe_len; 4036 4037 free_extent_map(em); 4038 return 0; 4039 } 4040 4041 static void *merge_stripe_index_into_bio_private(void *bi_private, 4042 unsigned int stripe_index) 4043 { 4044 /* 4045 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is 4046 * at most 1. 4047 * The alternative solution (instead of stealing bits from the 4048 * pointer) would be to allocate an intermediate structure 4049 * that contains the old private pointer plus the stripe_index. 4050 */ 4051 BUG_ON((((uintptr_t)bi_private) & 3) != 0); 4052 BUG_ON(stripe_index > 3); 4053 return (void *)(((uintptr_t)bi_private) | stripe_index); 4054 } 4055 4056 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private) 4057 { 4058 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3)); 4059 } 4060 4061 static unsigned int extract_stripe_index_from_bio_private(void *bi_private) 4062 { 4063 return (unsigned int)((uintptr_t)bi_private) & 3; 4064 } 4065 4066 static void btrfs_end_bio(struct bio *bio, int err) 4067 { 4068 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private); 4069 int is_orig_bio = 0; 4070 4071 if (err) { 4072 atomic_inc(&bbio->error); 4073 if (err == -EIO || err == -EREMOTEIO) { 4074 unsigned int stripe_index = 4075 extract_stripe_index_from_bio_private( 4076 bio->bi_private); 4077 struct btrfs_device *dev; 4078 4079 BUG_ON(stripe_index >= bbio->num_stripes); 4080 dev = bbio->stripes[stripe_index].dev; 4081 if (dev->bdev) { 4082 if (bio->bi_rw & WRITE) 4083 btrfs_dev_stat_inc(dev, 4084 BTRFS_DEV_STAT_WRITE_ERRS); 4085 else 4086 btrfs_dev_stat_inc(dev, 4087 BTRFS_DEV_STAT_READ_ERRS); 4088 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 4089 btrfs_dev_stat_inc(dev, 4090 BTRFS_DEV_STAT_FLUSH_ERRS); 4091 btrfs_dev_stat_print_on_error(dev); 4092 } 4093 } 4094 } 4095 4096 if (bio == bbio->orig_bio) 4097 is_orig_bio = 1; 4098 4099 if (atomic_dec_and_test(&bbio->stripes_pending)) { 4100 if (!is_orig_bio) { 4101 bio_put(bio); 4102 bio = bbio->orig_bio; 4103 } 4104 bio->bi_private = bbio->private; 4105 bio->bi_end_io = bbio->end_io; 4106 bio->bi_bdev = (struct block_device *) 4107 (unsigned long)bbio->mirror_num; 4108 /* only send an error to the higher layers if it is 4109 * beyond the tolerance of the multi-bio 4110 */ 4111 if (atomic_read(&bbio->error) > bbio->max_errors) { 4112 err = -EIO; 4113 } else { 4114 /* 4115 * this bio is actually up to date, we didn't 4116 * go over the max number of errors 4117 */ 4118 set_bit(BIO_UPTODATE, &bio->bi_flags); 4119 err = 0; 4120 } 4121 kfree(bbio); 4122 4123 bio_endio(bio, err); 4124 } else if (!is_orig_bio) { 4125 bio_put(bio); 4126 } 4127 } 4128 4129 struct async_sched { 4130 struct bio *bio; 4131 int rw; 4132 struct btrfs_fs_info *info; 4133 struct btrfs_work work; 4134 }; 4135 4136 /* 4137 * see run_scheduled_bios for a description of why bios are collected for 4138 * async submit. 4139 * 4140 * This will add one bio to the pending list for a device and make sure 4141 * the work struct is scheduled. 4142 */ 4143 static noinline void schedule_bio(struct btrfs_root *root, 4144 struct btrfs_device *device, 4145 int rw, struct bio *bio) 4146 { 4147 int should_queue = 1; 4148 struct btrfs_pending_bios *pending_bios; 4149 4150 /* don't bother with additional async steps for reads, right now */ 4151 if (!(rw & REQ_WRITE)) { 4152 bio_get(bio); 4153 btrfsic_submit_bio(rw, bio); 4154 bio_put(bio); 4155 return; 4156 } 4157 4158 /* 4159 * nr_async_bios allows us to reliably return congestion to the 4160 * higher layers. Otherwise, the async bio makes it appear we have 4161 * made progress against dirty pages when we've really just put it 4162 * on a queue for later 4163 */ 4164 atomic_inc(&root->fs_info->nr_async_bios); 4165 WARN_ON(bio->bi_next); 4166 bio->bi_next = NULL; 4167 bio->bi_rw |= rw; 4168 4169 spin_lock(&device->io_lock); 4170 if (bio->bi_rw & REQ_SYNC) 4171 pending_bios = &device->pending_sync_bios; 4172 else 4173 pending_bios = &device->pending_bios; 4174 4175 if (pending_bios->tail) 4176 pending_bios->tail->bi_next = bio; 4177 4178 pending_bios->tail = bio; 4179 if (!pending_bios->head) 4180 pending_bios->head = bio; 4181 if (device->running_pending) 4182 should_queue = 0; 4183 4184 spin_unlock(&device->io_lock); 4185 4186 if (should_queue) 4187 btrfs_queue_worker(&root->fs_info->submit_workers, 4188 &device->work); 4189 } 4190 4191 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 4192 int mirror_num, int async_submit) 4193 { 4194 struct btrfs_mapping_tree *map_tree; 4195 struct btrfs_device *dev; 4196 struct bio *first_bio = bio; 4197 u64 logical = (u64)bio->bi_sector << 9; 4198 u64 length = 0; 4199 u64 map_length; 4200 int ret; 4201 int dev_nr = 0; 4202 int total_devs = 1; 4203 struct btrfs_bio *bbio = NULL; 4204 4205 length = bio->bi_size; 4206 map_tree = &root->fs_info->mapping_tree; 4207 map_length = length; 4208 4209 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio, 4210 mirror_num); 4211 if (ret) /* -ENOMEM */ 4212 return ret; 4213 4214 total_devs = bbio->num_stripes; 4215 if (map_length < length) { 4216 printk(KERN_CRIT "mapping failed logical %llu bio len %llu " 4217 "len %llu\n", (unsigned long long)logical, 4218 (unsigned long long)length, 4219 (unsigned long long)map_length); 4220 BUG(); 4221 } 4222 4223 bbio->orig_bio = first_bio; 4224 bbio->private = first_bio->bi_private; 4225 bbio->end_io = first_bio->bi_end_io; 4226 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 4227 4228 while (dev_nr < total_devs) { 4229 if (dev_nr < total_devs - 1) { 4230 bio = bio_clone(first_bio, GFP_NOFS); 4231 BUG_ON(!bio); /* -ENOMEM */ 4232 } else { 4233 bio = first_bio; 4234 } 4235 bio->bi_private = bbio; 4236 bio->bi_private = merge_stripe_index_into_bio_private( 4237 bio->bi_private, (unsigned int)dev_nr); 4238 bio->bi_end_io = btrfs_end_bio; 4239 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9; 4240 dev = bbio->stripes[dev_nr].dev; 4241 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { 4242 #ifdef DEBUG 4243 struct rcu_string *name; 4244 4245 rcu_read_lock(); 4246 name = rcu_dereference(dev->name); 4247 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu " 4248 "(%s id %llu), size=%u\n", rw, 4249 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 4250 name->str, dev->devid, bio->bi_size); 4251 rcu_read_unlock(); 4252 #endif 4253 bio->bi_bdev = dev->bdev; 4254 if (async_submit) 4255 schedule_bio(root, dev, rw, bio); 4256 else 4257 btrfsic_submit_bio(rw, bio); 4258 } else { 4259 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; 4260 bio->bi_sector = logical >> 9; 4261 bio_endio(bio, -EIO); 4262 } 4263 dev_nr++; 4264 } 4265 return 0; 4266 } 4267 4268 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, 4269 u8 *uuid, u8 *fsid) 4270 { 4271 struct btrfs_device *device; 4272 struct btrfs_fs_devices *cur_devices; 4273 4274 cur_devices = root->fs_info->fs_devices; 4275 while (cur_devices) { 4276 if (!fsid || 4277 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4278 device = __find_device(&cur_devices->devices, 4279 devid, uuid); 4280 if (device) 4281 return device; 4282 } 4283 cur_devices = cur_devices->seed; 4284 } 4285 return NULL; 4286 } 4287 4288 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 4289 u64 devid, u8 *dev_uuid) 4290 { 4291 struct btrfs_device *device; 4292 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4293 4294 device = kzalloc(sizeof(*device), GFP_NOFS); 4295 if (!device) 4296 return NULL; 4297 list_add(&device->dev_list, 4298 &fs_devices->devices); 4299 device->dev_root = root->fs_info->dev_root; 4300 device->devid = devid; 4301 device->work.func = pending_bios_fn; 4302 device->fs_devices = fs_devices; 4303 device->missing = 1; 4304 fs_devices->num_devices++; 4305 fs_devices->missing_devices++; 4306 spin_lock_init(&device->io_lock); 4307 INIT_LIST_HEAD(&device->dev_alloc_list); 4308 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); 4309 return device; 4310 } 4311 4312 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 4313 struct extent_buffer *leaf, 4314 struct btrfs_chunk *chunk) 4315 { 4316 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4317 struct map_lookup *map; 4318 struct extent_map *em; 4319 u64 logical; 4320 u64 length; 4321 u64 devid; 4322 u8 uuid[BTRFS_UUID_SIZE]; 4323 int num_stripes; 4324 int ret; 4325 int i; 4326 4327 logical = key->offset; 4328 length = btrfs_chunk_length(leaf, chunk); 4329 4330 read_lock(&map_tree->map_tree.lock); 4331 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 4332 read_unlock(&map_tree->map_tree.lock); 4333 4334 /* already mapped? */ 4335 if (em && em->start <= logical && em->start + em->len > logical) { 4336 free_extent_map(em); 4337 return 0; 4338 } else if (em) { 4339 free_extent_map(em); 4340 } 4341 4342 em = alloc_extent_map(); 4343 if (!em) 4344 return -ENOMEM; 4345 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4346 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4347 if (!map) { 4348 free_extent_map(em); 4349 return -ENOMEM; 4350 } 4351 4352 em->bdev = (struct block_device *)map; 4353 em->start = logical; 4354 em->len = length; 4355 em->block_start = 0; 4356 em->block_len = em->len; 4357 4358 map->num_stripes = num_stripes; 4359 map->io_width = btrfs_chunk_io_width(leaf, chunk); 4360 map->io_align = btrfs_chunk_io_align(leaf, chunk); 4361 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 4362 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 4363 map->type = btrfs_chunk_type(leaf, chunk); 4364 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 4365 for (i = 0; i < num_stripes; i++) { 4366 map->stripes[i].physical = 4367 btrfs_stripe_offset_nr(leaf, chunk, i); 4368 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 4369 read_extent_buffer(leaf, uuid, (unsigned long) 4370 btrfs_stripe_dev_uuid_nr(chunk, i), 4371 BTRFS_UUID_SIZE); 4372 map->stripes[i].dev = btrfs_find_device(root, devid, uuid, 4373 NULL); 4374 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 4375 kfree(map); 4376 free_extent_map(em); 4377 return -EIO; 4378 } 4379 if (!map->stripes[i].dev) { 4380 map->stripes[i].dev = 4381 add_missing_dev(root, devid, uuid); 4382 if (!map->stripes[i].dev) { 4383 kfree(map); 4384 free_extent_map(em); 4385 return -EIO; 4386 } 4387 } 4388 map->stripes[i].dev->in_fs_metadata = 1; 4389 } 4390 4391 write_lock(&map_tree->map_tree.lock); 4392 ret = add_extent_mapping(&map_tree->map_tree, em); 4393 write_unlock(&map_tree->map_tree.lock); 4394 BUG_ON(ret); /* Tree corruption */ 4395 free_extent_map(em); 4396 4397 return 0; 4398 } 4399 4400 static void fill_device_from_item(struct extent_buffer *leaf, 4401 struct btrfs_dev_item *dev_item, 4402 struct btrfs_device *device) 4403 { 4404 unsigned long ptr; 4405 4406 device->devid = btrfs_device_id(leaf, dev_item); 4407 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 4408 device->total_bytes = device->disk_total_bytes; 4409 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 4410 device->type = btrfs_device_type(leaf, dev_item); 4411 device->io_align = btrfs_device_io_align(leaf, dev_item); 4412 device->io_width = btrfs_device_io_width(leaf, dev_item); 4413 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 4414 4415 ptr = (unsigned long)btrfs_device_uuid(dev_item); 4416 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 4417 } 4418 4419 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 4420 { 4421 struct btrfs_fs_devices *fs_devices; 4422 int ret; 4423 4424 BUG_ON(!mutex_is_locked(&uuid_mutex)); 4425 4426 fs_devices = root->fs_info->fs_devices->seed; 4427 while (fs_devices) { 4428 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4429 ret = 0; 4430 goto out; 4431 } 4432 fs_devices = fs_devices->seed; 4433 } 4434 4435 fs_devices = find_fsid(fsid); 4436 if (!fs_devices) { 4437 ret = -ENOENT; 4438 goto out; 4439 } 4440 4441 fs_devices = clone_fs_devices(fs_devices); 4442 if (IS_ERR(fs_devices)) { 4443 ret = PTR_ERR(fs_devices); 4444 goto out; 4445 } 4446 4447 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 4448 root->fs_info->bdev_holder); 4449 if (ret) { 4450 free_fs_devices(fs_devices); 4451 goto out; 4452 } 4453 4454 if (!fs_devices->seeding) { 4455 __btrfs_close_devices(fs_devices); 4456 free_fs_devices(fs_devices); 4457 ret = -EINVAL; 4458 goto out; 4459 } 4460 4461 fs_devices->seed = root->fs_info->fs_devices->seed; 4462 root->fs_info->fs_devices->seed = fs_devices; 4463 out: 4464 return ret; 4465 } 4466 4467 static int read_one_dev(struct btrfs_root *root, 4468 struct extent_buffer *leaf, 4469 struct btrfs_dev_item *dev_item) 4470 { 4471 struct btrfs_device *device; 4472 u64 devid; 4473 int ret; 4474 u8 fs_uuid[BTRFS_UUID_SIZE]; 4475 u8 dev_uuid[BTRFS_UUID_SIZE]; 4476 4477 devid = btrfs_device_id(leaf, dev_item); 4478 read_extent_buffer(leaf, dev_uuid, 4479 (unsigned long)btrfs_device_uuid(dev_item), 4480 BTRFS_UUID_SIZE); 4481 read_extent_buffer(leaf, fs_uuid, 4482 (unsigned long)btrfs_device_fsid(dev_item), 4483 BTRFS_UUID_SIZE); 4484 4485 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 4486 ret = open_seed_devices(root, fs_uuid); 4487 if (ret && !btrfs_test_opt(root, DEGRADED)) 4488 return ret; 4489 } 4490 4491 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 4492 if (!device || !device->bdev) { 4493 if (!btrfs_test_opt(root, DEGRADED)) 4494 return -EIO; 4495 4496 if (!device) { 4497 printk(KERN_WARNING "warning devid %llu missing\n", 4498 (unsigned long long)devid); 4499 device = add_missing_dev(root, devid, dev_uuid); 4500 if (!device) 4501 return -ENOMEM; 4502 } else if (!device->missing) { 4503 /* 4504 * this happens when a device that was properly setup 4505 * in the device info lists suddenly goes bad. 4506 * device->bdev is NULL, and so we have to set 4507 * device->missing to one here 4508 */ 4509 root->fs_info->fs_devices->missing_devices++; 4510 device->missing = 1; 4511 } 4512 } 4513 4514 if (device->fs_devices != root->fs_info->fs_devices) { 4515 BUG_ON(device->writeable); 4516 if (device->generation != 4517 btrfs_device_generation(leaf, dev_item)) 4518 return -EINVAL; 4519 } 4520 4521 fill_device_from_item(leaf, dev_item, device); 4522 device->dev_root = root->fs_info->dev_root; 4523 device->in_fs_metadata = 1; 4524 if (device->writeable) { 4525 device->fs_devices->total_rw_bytes += device->total_bytes; 4526 spin_lock(&root->fs_info->free_chunk_lock); 4527 root->fs_info->free_chunk_space += device->total_bytes - 4528 device->bytes_used; 4529 spin_unlock(&root->fs_info->free_chunk_lock); 4530 } 4531 ret = 0; 4532 return ret; 4533 } 4534 4535 int btrfs_read_sys_array(struct btrfs_root *root) 4536 { 4537 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4538 struct extent_buffer *sb; 4539 struct btrfs_disk_key *disk_key; 4540 struct btrfs_chunk *chunk; 4541 u8 *ptr; 4542 unsigned long sb_ptr; 4543 int ret = 0; 4544 u32 num_stripes; 4545 u32 array_size; 4546 u32 len = 0; 4547 u32 cur; 4548 struct btrfs_key key; 4549 4550 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 4551 BTRFS_SUPER_INFO_SIZE); 4552 if (!sb) 4553 return -ENOMEM; 4554 btrfs_set_buffer_uptodate(sb); 4555 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 4556 /* 4557 * The sb extent buffer is artifical and just used to read the system array. 4558 * btrfs_set_buffer_uptodate() call does not properly mark all it's 4559 * pages up-to-date when the page is larger: extent does not cover the 4560 * whole page and consequently check_page_uptodate does not find all 4561 * the page's extents up-to-date (the hole beyond sb), 4562 * write_extent_buffer then triggers a WARN_ON. 4563 * 4564 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 4565 * but sb spans only this function. Add an explicit SetPageUptodate call 4566 * to silence the warning eg. on PowerPC 64. 4567 */ 4568 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 4569 SetPageUptodate(sb->pages[0]); 4570 4571 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 4572 array_size = btrfs_super_sys_array_size(super_copy); 4573 4574 ptr = super_copy->sys_chunk_array; 4575 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 4576 cur = 0; 4577 4578 while (cur < array_size) { 4579 disk_key = (struct btrfs_disk_key *)ptr; 4580 btrfs_disk_key_to_cpu(&key, disk_key); 4581 4582 len = sizeof(*disk_key); ptr += len; 4583 sb_ptr += len; 4584 cur += len; 4585 4586 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 4587 chunk = (struct btrfs_chunk *)sb_ptr; 4588 ret = read_one_chunk(root, &key, sb, chunk); 4589 if (ret) 4590 break; 4591 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 4592 len = btrfs_chunk_item_size(num_stripes); 4593 } else { 4594 ret = -EIO; 4595 break; 4596 } 4597 ptr += len; 4598 sb_ptr += len; 4599 cur += len; 4600 } 4601 free_extent_buffer(sb); 4602 return ret; 4603 } 4604 4605 struct btrfs_device *btrfs_find_device_for_logical(struct btrfs_root *root, 4606 u64 logical, int mirror_num) 4607 { 4608 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4609 int ret; 4610 u64 map_length = 0; 4611 struct btrfs_bio *bbio = NULL; 4612 struct btrfs_device *device; 4613 4614 BUG_ON(mirror_num == 0); 4615 ret = btrfs_map_block(map_tree, WRITE, logical, &map_length, &bbio, 4616 mirror_num); 4617 if (ret) { 4618 BUG_ON(bbio != NULL); 4619 return NULL; 4620 } 4621 BUG_ON(mirror_num != bbio->mirror_num); 4622 device = bbio->stripes[mirror_num - 1].dev; 4623 kfree(bbio); 4624 return device; 4625 } 4626 4627 int btrfs_read_chunk_tree(struct btrfs_root *root) 4628 { 4629 struct btrfs_path *path; 4630 struct extent_buffer *leaf; 4631 struct btrfs_key key; 4632 struct btrfs_key found_key; 4633 int ret; 4634 int slot; 4635 4636 root = root->fs_info->chunk_root; 4637 4638 path = btrfs_alloc_path(); 4639 if (!path) 4640 return -ENOMEM; 4641 4642 mutex_lock(&uuid_mutex); 4643 lock_chunks(root); 4644 4645 /* first we search for all of the device items, and then we 4646 * read in all of the chunk items. This way we can create chunk 4647 * mappings that reference all of the devices that are afound 4648 */ 4649 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 4650 key.offset = 0; 4651 key.type = 0; 4652 again: 4653 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4654 if (ret < 0) 4655 goto error; 4656 while (1) { 4657 leaf = path->nodes[0]; 4658 slot = path->slots[0]; 4659 if (slot >= btrfs_header_nritems(leaf)) { 4660 ret = btrfs_next_leaf(root, path); 4661 if (ret == 0) 4662 continue; 4663 if (ret < 0) 4664 goto error; 4665 break; 4666 } 4667 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4668 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4669 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) 4670 break; 4671 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 4672 struct btrfs_dev_item *dev_item; 4673 dev_item = btrfs_item_ptr(leaf, slot, 4674 struct btrfs_dev_item); 4675 ret = read_one_dev(root, leaf, dev_item); 4676 if (ret) 4677 goto error; 4678 } 4679 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 4680 struct btrfs_chunk *chunk; 4681 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4682 ret = read_one_chunk(root, &found_key, leaf, chunk); 4683 if (ret) 4684 goto error; 4685 } 4686 path->slots[0]++; 4687 } 4688 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4689 key.objectid = 0; 4690 btrfs_release_path(path); 4691 goto again; 4692 } 4693 ret = 0; 4694 error: 4695 unlock_chunks(root); 4696 mutex_unlock(&uuid_mutex); 4697 4698 btrfs_free_path(path); 4699 return ret; 4700 } 4701 4702 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 4703 { 4704 int i; 4705 4706 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4707 btrfs_dev_stat_reset(dev, i); 4708 } 4709 4710 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 4711 { 4712 struct btrfs_key key; 4713 struct btrfs_key found_key; 4714 struct btrfs_root *dev_root = fs_info->dev_root; 4715 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4716 struct extent_buffer *eb; 4717 int slot; 4718 int ret = 0; 4719 struct btrfs_device *device; 4720 struct btrfs_path *path = NULL; 4721 int i; 4722 4723 path = btrfs_alloc_path(); 4724 if (!path) { 4725 ret = -ENOMEM; 4726 goto out; 4727 } 4728 4729 mutex_lock(&fs_devices->device_list_mutex); 4730 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4731 int item_size; 4732 struct btrfs_dev_stats_item *ptr; 4733 4734 key.objectid = 0; 4735 key.type = BTRFS_DEV_STATS_KEY; 4736 key.offset = device->devid; 4737 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 4738 if (ret) { 4739 printk_in_rcu(KERN_WARNING "btrfs: no dev_stats entry found for device %s (devid %llu) (OK on first mount after mkfs)\n", 4740 rcu_str_deref(device->name), 4741 (unsigned long long)device->devid); 4742 __btrfs_reset_dev_stats(device); 4743 device->dev_stats_valid = 1; 4744 btrfs_release_path(path); 4745 continue; 4746 } 4747 slot = path->slots[0]; 4748 eb = path->nodes[0]; 4749 btrfs_item_key_to_cpu(eb, &found_key, slot); 4750 item_size = btrfs_item_size_nr(eb, slot); 4751 4752 ptr = btrfs_item_ptr(eb, slot, 4753 struct btrfs_dev_stats_item); 4754 4755 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4756 if (item_size >= (1 + i) * sizeof(__le64)) 4757 btrfs_dev_stat_set(device, i, 4758 btrfs_dev_stats_value(eb, ptr, i)); 4759 else 4760 btrfs_dev_stat_reset(device, i); 4761 } 4762 4763 device->dev_stats_valid = 1; 4764 btrfs_dev_stat_print_on_load(device); 4765 btrfs_release_path(path); 4766 } 4767 mutex_unlock(&fs_devices->device_list_mutex); 4768 4769 out: 4770 btrfs_free_path(path); 4771 return ret < 0 ? ret : 0; 4772 } 4773 4774 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 4775 struct btrfs_root *dev_root, 4776 struct btrfs_device *device) 4777 { 4778 struct btrfs_path *path; 4779 struct btrfs_key key; 4780 struct extent_buffer *eb; 4781 struct btrfs_dev_stats_item *ptr; 4782 int ret; 4783 int i; 4784 4785 key.objectid = 0; 4786 key.type = BTRFS_DEV_STATS_KEY; 4787 key.offset = device->devid; 4788 4789 path = btrfs_alloc_path(); 4790 BUG_ON(!path); 4791 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 4792 if (ret < 0) { 4793 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n", 4794 ret, rcu_str_deref(device->name)); 4795 goto out; 4796 } 4797 4798 if (ret == 0 && 4799 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 4800 /* need to delete old one and insert a new one */ 4801 ret = btrfs_del_item(trans, dev_root, path); 4802 if (ret != 0) { 4803 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n", 4804 rcu_str_deref(device->name), ret); 4805 goto out; 4806 } 4807 ret = 1; 4808 } 4809 4810 if (ret == 1) { 4811 /* need to insert a new item */ 4812 btrfs_release_path(path); 4813 ret = btrfs_insert_empty_item(trans, dev_root, path, 4814 &key, sizeof(*ptr)); 4815 if (ret < 0) { 4816 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n", 4817 rcu_str_deref(device->name), ret); 4818 goto out; 4819 } 4820 } 4821 4822 eb = path->nodes[0]; 4823 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 4824 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4825 btrfs_set_dev_stats_value(eb, ptr, i, 4826 btrfs_dev_stat_read(device, i)); 4827 btrfs_mark_buffer_dirty(eb); 4828 4829 out: 4830 btrfs_free_path(path); 4831 return ret; 4832 } 4833 4834 /* 4835 * called from commit_transaction. Writes all changed device stats to disk. 4836 */ 4837 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 4838 struct btrfs_fs_info *fs_info) 4839 { 4840 struct btrfs_root *dev_root = fs_info->dev_root; 4841 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4842 struct btrfs_device *device; 4843 int ret = 0; 4844 4845 mutex_lock(&fs_devices->device_list_mutex); 4846 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4847 if (!device->dev_stats_valid || !device->dev_stats_dirty) 4848 continue; 4849 4850 ret = update_dev_stat_item(trans, dev_root, device); 4851 if (!ret) 4852 device->dev_stats_dirty = 0; 4853 } 4854 mutex_unlock(&fs_devices->device_list_mutex); 4855 4856 return ret; 4857 } 4858 4859 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 4860 { 4861 btrfs_dev_stat_inc(dev, index); 4862 btrfs_dev_stat_print_on_error(dev); 4863 } 4864 4865 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 4866 { 4867 if (!dev->dev_stats_valid) 4868 return; 4869 printk_ratelimited_in_rcu(KERN_ERR 4870 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4871 rcu_str_deref(dev->name), 4872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4875 btrfs_dev_stat_read(dev, 4876 BTRFS_DEV_STAT_CORRUPTION_ERRS), 4877 btrfs_dev_stat_read(dev, 4878 BTRFS_DEV_STAT_GENERATION_ERRS)); 4879 } 4880 4881 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 4882 { 4883 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4884 rcu_str_deref(dev->name), 4885 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4886 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4887 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4888 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 4889 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 4890 } 4891 4892 int btrfs_get_dev_stats(struct btrfs_root *root, 4893 struct btrfs_ioctl_get_dev_stats *stats, 4894 int reset_after_read) 4895 { 4896 struct btrfs_device *dev; 4897 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4898 int i; 4899 4900 mutex_lock(&fs_devices->device_list_mutex); 4901 dev = btrfs_find_device(root, stats->devid, NULL, NULL); 4902 mutex_unlock(&fs_devices->device_list_mutex); 4903 4904 if (!dev) { 4905 printk(KERN_WARNING 4906 "btrfs: get dev_stats failed, device not found\n"); 4907 return -ENODEV; 4908 } else if (!dev->dev_stats_valid) { 4909 printk(KERN_WARNING 4910 "btrfs: get dev_stats failed, not yet valid\n"); 4911 return -ENODEV; 4912 } else if (reset_after_read) { 4913 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4914 if (stats->nr_items > i) 4915 stats->values[i] = 4916 btrfs_dev_stat_read_and_reset(dev, i); 4917 else 4918 btrfs_dev_stat_reset(dev, i); 4919 } 4920 } else { 4921 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4922 if (stats->nr_items > i) 4923 stats->values[i] = btrfs_dev_stat_read(dev, i); 4924 } 4925 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 4926 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 4927 return 0; 4928 } 4929