xref: /linux/fs/btrfs/volumes.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 	[BTRFS_RAID_RAID10] = {
37 		.sub_stripes	= 2,
38 		.dev_stripes	= 1,
39 		.devs_max	= 0,	/* 0 == as many as possible */
40 		.devs_min	= 4,
41 		.tolerated_failures = 1,
42 		.devs_increment	= 2,
43 		.ncopies	= 2,
44 		.nparity        = 0,
45 		.raid_name	= "raid10",
46 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 	},
49 	[BTRFS_RAID_RAID1] = {
50 		.sub_stripes	= 1,
51 		.dev_stripes	= 1,
52 		.devs_max	= 2,
53 		.devs_min	= 2,
54 		.tolerated_failures = 1,
55 		.devs_increment	= 2,
56 		.ncopies	= 2,
57 		.nparity        = 0,
58 		.raid_name	= "raid1",
59 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 	},
62 	[BTRFS_RAID_RAID1C3] = {
63 		.sub_stripes	= 1,
64 		.dev_stripes	= 1,
65 		.devs_max	= 3,
66 		.devs_min	= 3,
67 		.tolerated_failures = 2,
68 		.devs_increment	= 3,
69 		.ncopies	= 3,
70 		.nparity        = 0,
71 		.raid_name	= "raid1c3",
72 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
73 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 	},
75 	[BTRFS_RAID_RAID1C4] = {
76 		.sub_stripes	= 1,
77 		.dev_stripes	= 1,
78 		.devs_max	= 4,
79 		.devs_min	= 4,
80 		.tolerated_failures = 3,
81 		.devs_increment	= 4,
82 		.ncopies	= 4,
83 		.nparity        = 0,
84 		.raid_name	= "raid1c4",
85 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
86 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 	},
88 	[BTRFS_RAID_DUP] = {
89 		.sub_stripes	= 1,
90 		.dev_stripes	= 2,
91 		.devs_max	= 1,
92 		.devs_min	= 1,
93 		.tolerated_failures = 0,
94 		.devs_increment	= 1,
95 		.ncopies	= 2,
96 		.nparity        = 0,
97 		.raid_name	= "dup",
98 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99 		.mindev_error	= 0,
100 	},
101 	[BTRFS_RAID_RAID0] = {
102 		.sub_stripes	= 1,
103 		.dev_stripes	= 1,
104 		.devs_max	= 0,
105 		.devs_min	= 2,
106 		.tolerated_failures = 0,
107 		.devs_increment	= 1,
108 		.ncopies	= 1,
109 		.nparity        = 0,
110 		.raid_name	= "raid0",
111 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112 		.mindev_error	= 0,
113 	},
114 	[BTRFS_RAID_SINGLE] = {
115 		.sub_stripes	= 1,
116 		.dev_stripes	= 1,
117 		.devs_max	= 1,
118 		.devs_min	= 1,
119 		.tolerated_failures = 0,
120 		.devs_increment	= 1,
121 		.ncopies	= 1,
122 		.nparity        = 0,
123 		.raid_name	= "single",
124 		.bg_flag	= 0,
125 		.mindev_error	= 0,
126 	},
127 	[BTRFS_RAID_RAID5] = {
128 		.sub_stripes	= 1,
129 		.dev_stripes	= 1,
130 		.devs_max	= 0,
131 		.devs_min	= 2,
132 		.tolerated_failures = 1,
133 		.devs_increment	= 1,
134 		.ncopies	= 1,
135 		.nparity        = 1,
136 		.raid_name	= "raid5",
137 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 	},
140 	[BTRFS_RAID_RAID6] = {
141 		.sub_stripes	= 1,
142 		.dev_stripes	= 1,
143 		.devs_max	= 0,
144 		.devs_min	= 3,
145 		.tolerated_failures = 2,
146 		.devs_increment	= 1,
147 		.ncopies	= 1,
148 		.nparity        = 2,
149 		.raid_name	= "raid6",
150 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 	},
153 };
154 
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 	const int index = btrfs_bg_flags_to_raid_index(flags);
158 
159 	if (index >= BTRFS_NR_RAID_TYPES)
160 		return NULL;
161 
162 	return btrfs_raid_array[index].raid_name;
163 }
164 
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 	int i;
172 	int ret;
173 	char *bp = buf;
174 	u64 flags = bg_flags;
175 	u32 size_bp = size_buf;
176 
177 	if (!flags) {
178 		strcpy(bp, "NONE");
179 		return;
180 	}
181 
182 #define DESCRIBE_FLAG(flag, desc)						\
183 	do {								\
184 		if (flags & (flag)) {					\
185 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
186 			if (ret < 0 || ret >= size_bp)			\
187 				goto out_overflow;			\
188 			size_bp -= ret;					\
189 			bp += ret;					\
190 			flags &= ~(flag);				\
191 		}							\
192 	} while (0)
193 
194 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197 
198 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 			      btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203 
204 	if (flags) {
205 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 		size_bp -= ret;
207 	}
208 
209 	if (size_bp < size_buf)
210 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211 
212 	/*
213 	 * The text is trimmed, it's up to the caller to provide sufficiently
214 	 * large buffer
215 	 */
216 out_overflow:;
217 }
218 
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 			     enum btrfs_map_op op,
225 			     u64 logical, u64 *length,
226 			     struct btrfs_bio **bbio_ret,
227 			     int mirror_num, int need_raid_map);
228 
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list in general
250  * but in mount context it could be used to exclude list modifications by eg.
251  * scan ioctl
252  *
253  * btrfs_device::name - renames (write side), read is RCU
254  *
255  * fs_devices::device_list_mutex (per-fs, with RCU)
256  * ------------------------------------------------
257  * protects updates to fs_devices::devices, ie. adding and deleting
258  *
259  * simple list traversal with read-only actions can be done with RCU protection
260  *
261  * may be used to exclude some operations from running concurrently without any
262  * modifications to the list (see write_all_supers)
263  *
264  * Is not required at mount and close times, because our device list is
265  * protected by the uuid_mutex at that point.
266  *
267  * balance_mutex
268  * -------------
269  * protects balance structures (status, state) and context accessed from
270  * several places (internally, ioctl)
271  *
272  * chunk_mutex
273  * -----------
274  * protects chunks, adding or removing during allocation, trim or when a new
275  * device is added/removed. Additionally it also protects post_commit_list of
276  * individual devices, since they can be added to the transaction's
277  * post_commit_list only with chunk_mutex held.
278  *
279  * cleaner_mutex
280  * -------------
281  * a big lock that is held by the cleaner thread and prevents running subvolume
282  * cleaning together with relocation or delayed iputs
283  *
284  *
285  * Lock nesting
286  * ============
287  *
288  * uuid_mutex
289  *   device_list_mutex
290  *     chunk_mutex
291  *   balance_mutex
292  *
293  *
294  * Exclusive operations, BTRFS_FS_EXCL_OP
295  * ======================================
296  *
297  * Maintains the exclusivity of the following operations that apply to the
298  * whole filesystem and cannot run in parallel.
299  *
300  * - Balance (*)
301  * - Device add
302  * - Device remove
303  * - Device replace (*)
304  * - Resize
305  *
306  * The device operations (as above) can be in one of the following states:
307  *
308  * - Running state
309  * - Paused state
310  * - Completed state
311  *
312  * Only device operations marked with (*) can go into the Paused state for the
313  * following reasons:
314  *
315  * - ioctl (only Balance can be Paused through ioctl)
316  * - filesystem remounted as read-only
317  * - filesystem unmounted and mounted as read-only
318  * - system power-cycle and filesystem mounted as read-only
319  * - filesystem or device errors leading to forced read-only
320  *
321  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
322  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
323  * A device operation in Paused or Running state can be canceled or resumed
324  * either by ioctl (Balance only) or when remounted as read-write.
325  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
326  * completed.
327  */
328 
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 	return &fs_uuids;
334 }
335 
336 /*
337  * alloc_fs_devices - allocate struct btrfs_fs_devices
338  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
339  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
340  *
341  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342  * The returned struct is not linked onto any lists and can be destroyed with
343  * kfree() right away.
344  */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 						 const u8 *metadata_fsid)
347 {
348 	struct btrfs_fs_devices *fs_devs;
349 
350 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 	if (!fs_devs)
352 		return ERR_PTR(-ENOMEM);
353 
354 	mutex_init(&fs_devs->device_list_mutex);
355 
356 	INIT_LIST_HEAD(&fs_devs->devices);
357 	INIT_LIST_HEAD(&fs_devs->alloc_list);
358 	INIT_LIST_HEAD(&fs_devs->fs_list);
359 	if (fsid)
360 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
361 
362 	if (metadata_fsid)
363 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
364 	else if (fsid)
365 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
366 
367 	return fs_devs;
368 }
369 
370 void btrfs_free_device(struct btrfs_device *device)
371 {
372 	WARN_ON(!list_empty(&device->post_commit_list));
373 	rcu_string_free(device->name);
374 	extent_io_tree_release(&device->alloc_state);
375 	bio_put(device->flush_bio);
376 	kfree(device);
377 }
378 
379 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
380 {
381 	struct btrfs_device *device;
382 	WARN_ON(fs_devices->opened);
383 	while (!list_empty(&fs_devices->devices)) {
384 		device = list_entry(fs_devices->devices.next,
385 				    struct btrfs_device, dev_list);
386 		list_del(&device->dev_list);
387 		btrfs_free_device(device);
388 	}
389 	kfree(fs_devices);
390 }
391 
392 void __exit btrfs_cleanup_fs_uuids(void)
393 {
394 	struct btrfs_fs_devices *fs_devices;
395 
396 	while (!list_empty(&fs_uuids)) {
397 		fs_devices = list_entry(fs_uuids.next,
398 					struct btrfs_fs_devices, fs_list);
399 		list_del(&fs_devices->fs_list);
400 		free_fs_devices(fs_devices);
401 	}
402 }
403 
404 /*
405  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
406  * Returned struct is not linked onto any lists and must be destroyed using
407  * btrfs_free_device.
408  */
409 static struct btrfs_device *__alloc_device(void)
410 {
411 	struct btrfs_device *dev;
412 
413 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
414 	if (!dev)
415 		return ERR_PTR(-ENOMEM);
416 
417 	/*
418 	 * Preallocate a bio that's always going to be used for flushing device
419 	 * barriers and matches the device lifespan
420 	 */
421 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
422 	if (!dev->flush_bio) {
423 		kfree(dev);
424 		return ERR_PTR(-ENOMEM);
425 	}
426 
427 	INIT_LIST_HEAD(&dev->dev_list);
428 	INIT_LIST_HEAD(&dev->dev_alloc_list);
429 	INIT_LIST_HEAD(&dev->post_commit_list);
430 
431 	atomic_set(&dev->reada_in_flight, 0);
432 	atomic_set(&dev->dev_stats_ccnt, 0);
433 	btrfs_device_data_ordered_init(dev);
434 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
435 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
437 
438 	return dev;
439 }
440 
441 static noinline struct btrfs_fs_devices *find_fsid(
442 		const u8 *fsid, const u8 *metadata_fsid)
443 {
444 	struct btrfs_fs_devices *fs_devices;
445 
446 	ASSERT(fsid);
447 
448 	/* Handle non-split brain cases */
449 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450 		if (metadata_fsid) {
451 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
452 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
453 				      BTRFS_FSID_SIZE) == 0)
454 				return fs_devices;
455 		} else {
456 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
457 				return fs_devices;
458 		}
459 	}
460 	return NULL;
461 }
462 
463 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
464 				struct btrfs_super_block *disk_super)
465 {
466 
467 	struct btrfs_fs_devices *fs_devices;
468 
469 	/*
470 	 * Handle scanned device having completed its fsid change but
471 	 * belonging to a fs_devices that was created by first scanning
472 	 * a device which didn't have its fsid/metadata_uuid changed
473 	 * at all and the CHANGING_FSID_V2 flag set.
474 	 */
475 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
476 		if (fs_devices->fsid_change &&
477 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
478 			   BTRFS_FSID_SIZE) == 0 &&
479 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
480 			   BTRFS_FSID_SIZE) == 0) {
481 			return fs_devices;
482 		}
483 	}
484 	/*
485 	 * Handle scanned device having completed its fsid change but
486 	 * belonging to a fs_devices that was created by a device that
487 	 * has an outdated pair of fsid/metadata_uuid and
488 	 * CHANGING_FSID_V2 flag set.
489 	 */
490 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
491 		if (fs_devices->fsid_change &&
492 		    memcmp(fs_devices->metadata_uuid,
493 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
494 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
495 			   BTRFS_FSID_SIZE) == 0) {
496 			return fs_devices;
497 		}
498 	}
499 
500 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
501 }
502 
503 
504 static int
505 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
506 		      int flush, struct block_device **bdev,
507 		      struct btrfs_super_block **disk_super)
508 {
509 	int ret;
510 
511 	*bdev = blkdev_get_by_path(device_path, flags, holder);
512 
513 	if (IS_ERR(*bdev)) {
514 		ret = PTR_ERR(*bdev);
515 		goto error;
516 	}
517 
518 	if (flush)
519 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
520 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
521 	if (ret) {
522 		blkdev_put(*bdev, flags);
523 		goto error;
524 	}
525 	invalidate_bdev(*bdev);
526 	*disk_super = btrfs_read_dev_super(*bdev);
527 	if (IS_ERR(*disk_super)) {
528 		ret = PTR_ERR(*disk_super);
529 		blkdev_put(*bdev, flags);
530 		goto error;
531 	}
532 
533 	return 0;
534 
535 error:
536 	*bdev = NULL;
537 	return ret;
538 }
539 
540 static bool device_path_matched(const char *path, struct btrfs_device *device)
541 {
542 	int found;
543 
544 	rcu_read_lock();
545 	found = strcmp(rcu_str_deref(device->name), path);
546 	rcu_read_unlock();
547 
548 	return found == 0;
549 }
550 
551 /*
552  *  Search and remove all stale (devices which are not mounted) devices.
553  *  When both inputs are NULL, it will search and release all stale devices.
554  *  path:	Optional. When provided will it release all unmounted devices
555  *		matching this path only.
556  *  skip_dev:	Optional. Will skip this device when searching for the stale
557  *		devices.
558  *  Return:	0 for success or if @path is NULL.
559  * 		-EBUSY if @path is a mounted device.
560  * 		-ENOENT if @path does not match any device in the list.
561  */
562 static int btrfs_free_stale_devices(const char *path,
563 				     struct btrfs_device *skip_device)
564 {
565 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
566 	struct btrfs_device *device, *tmp_device;
567 	int ret = 0;
568 
569 	if (path)
570 		ret = -ENOENT;
571 
572 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573 
574 		mutex_lock(&fs_devices->device_list_mutex);
575 		list_for_each_entry_safe(device, tmp_device,
576 					 &fs_devices->devices, dev_list) {
577 			if (skip_device && skip_device == device)
578 				continue;
579 			if (path && !device->name)
580 				continue;
581 			if (path && !device_path_matched(path, device))
582 				continue;
583 			if (fs_devices->opened) {
584 				/* for an already deleted device return 0 */
585 				if (path && ret != 0)
586 					ret = -EBUSY;
587 				break;
588 			}
589 
590 			/* delete the stale device */
591 			fs_devices->num_devices--;
592 			list_del(&device->dev_list);
593 			btrfs_free_device(device);
594 
595 			ret = 0;
596 			if (fs_devices->num_devices == 0)
597 				break;
598 		}
599 		mutex_unlock(&fs_devices->device_list_mutex);
600 
601 		if (fs_devices->num_devices == 0) {
602 			btrfs_sysfs_remove_fsid(fs_devices);
603 			list_del(&fs_devices->fs_list);
604 			free_fs_devices(fs_devices);
605 		}
606 	}
607 
608 	return ret;
609 }
610 
611 /*
612  * This is only used on mount, and we are protected from competing things
613  * messing with our fs_devices by the uuid_mutex, thus we do not need the
614  * fs_devices->device_list_mutex here.
615  */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 			struct btrfs_device *device, fmode_t flags,
618 			void *holder)
619 {
620 	struct request_queue *q;
621 	struct block_device *bdev;
622 	struct btrfs_super_block *disk_super;
623 	u64 devid;
624 	int ret;
625 
626 	if (device->bdev)
627 		return -EINVAL;
628 	if (!device->name)
629 		return -EINVAL;
630 
631 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 				    &bdev, &disk_super);
633 	if (ret)
634 		return ret;
635 
636 	devid = btrfs_stack_device_id(&disk_super->dev_item);
637 	if (devid != device->devid)
638 		goto error_free_page;
639 
640 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 		goto error_free_page;
642 
643 	device->generation = btrfs_super_generation(disk_super);
644 
645 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 		if (btrfs_super_incompat_flags(disk_super) &
647 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 			pr_err(
649 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650 			goto error_free_page;
651 		}
652 
653 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 		fs_devices->seeding = true;
655 	} else {
656 		if (bdev_read_only(bdev))
657 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 		else
659 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 	}
661 
662 	q = bdev_get_queue(bdev);
663 	if (!blk_queue_nonrot(q))
664 		fs_devices->rotating = true;
665 
666 	device->bdev = bdev;
667 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 	device->mode = flags;
669 
670 	fs_devices->open_devices++;
671 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 		fs_devices->rw_devices++;
674 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 	}
676 	btrfs_release_disk_super(disk_super);
677 
678 	return 0;
679 
680 error_free_page:
681 	btrfs_release_disk_super(disk_super);
682 	blkdev_put(bdev, flags);
683 
684 	return -EINVAL;
685 }
686 
687 /*
688  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689  * being created with a disk that has already completed its fsid change. Such
690  * disk can belong to an fs which has its FSID changed or to one which doesn't.
691  * Handle both cases here.
692  */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 					struct btrfs_super_block *disk_super)
695 {
696 	struct btrfs_fs_devices *fs_devices;
697 
698 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 			   BTRFS_FSID_SIZE) != 0 &&
701 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 			return fs_devices;
704 		}
705 	}
706 
707 	return find_fsid(disk_super->fsid, NULL);
708 }
709 
710 
711 static struct btrfs_fs_devices *find_fsid_changed(
712 					struct btrfs_super_block *disk_super)
713 {
714 	struct btrfs_fs_devices *fs_devices;
715 
716 	/*
717 	 * Handles the case where scanned device is part of an fs that had
718 	 * multiple successful changes of FSID but curently device didn't
719 	 * observe it. Meaning our fsid will be different than theirs. We need
720 	 * to handle two subcases :
721 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
722 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
723 	 *  are equal).
724 	 */
725 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 		/* Changed UUIDs */
727 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 			   BTRFS_FSID_SIZE) != 0 &&
729 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time * fs_devices was first created by another constitutent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 			   BTRFS_FSID_SIZE) != 0 &&
763 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 			   BTRFS_FSID_SIZE) == 0 &&
765 		    fs_devices->fsid_change)
766 			return fs_devices;
767 	}
768 
769 	return NULL;
770 }
771 /*
772  * Add new device to list of registered devices
773  *
774  * Returns:
775  * device pointer which was just added or updated when successful
776  * error pointer when failed
777  */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779 			   struct btrfs_super_block *disk_super,
780 			   bool *new_device_added)
781 {
782 	struct btrfs_device *device;
783 	struct btrfs_fs_devices *fs_devices = NULL;
784 	struct rcu_string *name;
785 	u64 found_transid = btrfs_super_generation(disk_super);
786 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791 
792 	if (fsid_change_in_progress) {
793 		if (!has_metadata_uuid)
794 			fs_devices = find_fsid_inprogress(disk_super);
795 		else
796 			fs_devices = find_fsid_changed(disk_super);
797 	} else if (has_metadata_uuid) {
798 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 	} else {
800 		fs_devices = find_fsid_reverted_metadata(disk_super);
801 		if (!fs_devices)
802 			fs_devices = find_fsid(disk_super->fsid, NULL);
803 	}
804 
805 
806 	if (!fs_devices) {
807 		if (has_metadata_uuid)
808 			fs_devices = alloc_fs_devices(disk_super->fsid,
809 						      disk_super->metadata_uuid);
810 		else
811 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812 
813 		if (IS_ERR(fs_devices))
814 			return ERR_CAST(fs_devices);
815 
816 		fs_devices->fsid_change = fsid_change_in_progress;
817 
818 		mutex_lock(&fs_devices->device_list_mutex);
819 		list_add(&fs_devices->fs_list, &fs_uuids);
820 
821 		device = NULL;
822 	} else {
823 		mutex_lock(&fs_devices->device_list_mutex);
824 		device = btrfs_find_device(fs_devices, devid,
825 				disk_super->dev_item.uuid, NULL, false);
826 
827 		/*
828 		 * If this disk has been pulled into an fs devices created by
829 		 * a device which had the CHANGING_FSID_V2 flag then replace the
830 		 * metadata_uuid/fsid values of the fs_devices.
831 		 */
832 		if (fs_devices->fsid_change &&
833 		    found_transid > fs_devices->latest_generation) {
834 			memcpy(fs_devices->fsid, disk_super->fsid,
835 					BTRFS_FSID_SIZE);
836 
837 			if (has_metadata_uuid)
838 				memcpy(fs_devices->metadata_uuid,
839 				       disk_super->metadata_uuid,
840 				       BTRFS_FSID_SIZE);
841 			else
842 				memcpy(fs_devices->metadata_uuid,
843 				       disk_super->fsid, BTRFS_FSID_SIZE);
844 
845 			fs_devices->fsid_change = false;
846 		}
847 	}
848 
849 	if (!device) {
850 		if (fs_devices->opened) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			return ERR_PTR(-EBUSY);
853 		}
854 
855 		device = btrfs_alloc_device(NULL, &devid,
856 					    disk_super->dev_item.uuid);
857 		if (IS_ERR(device)) {
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			/* we can safely leave the fs_devices entry around */
860 			return device;
861 		}
862 
863 		name = rcu_string_strdup(path, GFP_NOFS);
864 		if (!name) {
865 			btrfs_free_device(device);
866 			mutex_unlock(&fs_devices->device_list_mutex);
867 			return ERR_PTR(-ENOMEM);
868 		}
869 		rcu_assign_pointer(device->name, name);
870 
871 		list_add_rcu(&device->dev_list, &fs_devices->devices);
872 		fs_devices->num_devices++;
873 
874 		device->fs_devices = fs_devices;
875 		*new_device_added = true;
876 
877 		if (disk_super->label[0])
878 			pr_info(
879 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 				disk_super->label, devid, found_transid, path,
881 				current->comm, task_pid_nr(current));
882 		else
883 			pr_info(
884 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 				disk_super->fsid, devid, found_transid, path,
886 				current->comm, task_pid_nr(current));
887 
888 	} else if (!device->name || strcmp(device->name->str, path)) {
889 		/*
890 		 * When FS is already mounted.
891 		 * 1. If you are here and if the device->name is NULL that
892 		 *    means this device was missing at time of FS mount.
893 		 * 2. If you are here and if the device->name is different
894 		 *    from 'path' that means either
895 		 *      a. The same device disappeared and reappeared with
896 		 *         different name. or
897 		 *      b. The missing-disk-which-was-replaced, has
898 		 *         reappeared now.
899 		 *
900 		 * We must allow 1 and 2a above. But 2b would be a spurious
901 		 * and unintentional.
902 		 *
903 		 * Further in case of 1 and 2a above, the disk at 'path'
904 		 * would have missed some transaction when it was away and
905 		 * in case of 2a the stale bdev has to be updated as well.
906 		 * 2b must not be allowed at all time.
907 		 */
908 
909 		/*
910 		 * For now, we do allow update to btrfs_fs_device through the
911 		 * btrfs dev scan cli after FS has been mounted.  We're still
912 		 * tracking a problem where systems fail mount by subvolume id
913 		 * when we reject replacement on a mounted FS.
914 		 */
915 		if (!fs_devices->opened && found_transid < device->generation) {
916 			/*
917 			 * That is if the FS is _not_ mounted and if you
918 			 * are here, that means there is more than one
919 			 * disk with same uuid and devid.We keep the one
920 			 * with larger generation number or the last-in if
921 			 * generation are equal.
922 			 */
923 			mutex_unlock(&fs_devices->device_list_mutex);
924 			return ERR_PTR(-EEXIST);
925 		}
926 
927 		/*
928 		 * We are going to replace the device path for a given devid,
929 		 * make sure it's the same device if the device is mounted
930 		 */
931 		if (device->bdev) {
932 			struct block_device *path_bdev;
933 
934 			path_bdev = lookup_bdev(path);
935 			if (IS_ERR(path_bdev)) {
936 				mutex_unlock(&fs_devices->device_list_mutex);
937 				return ERR_CAST(path_bdev);
938 			}
939 
940 			if (device->bdev != path_bdev) {
941 				bdput(path_bdev);
942 				mutex_unlock(&fs_devices->device_list_mutex);
943 				btrfs_warn_in_rcu(device->fs_info,
944 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
945 					disk_super->fsid, devid,
946 					rcu_str_deref(device->name), path);
947 				return ERR_PTR(-EEXIST);
948 			}
949 			bdput(path_bdev);
950 			btrfs_info_in_rcu(device->fs_info,
951 				"device fsid %pU devid %llu moved old:%s new:%s",
952 				disk_super->fsid, devid,
953 				rcu_str_deref(device->name), path);
954 		}
955 
956 		name = rcu_string_strdup(path, GFP_NOFS);
957 		if (!name) {
958 			mutex_unlock(&fs_devices->device_list_mutex);
959 			return ERR_PTR(-ENOMEM);
960 		}
961 		rcu_string_free(device->name);
962 		rcu_assign_pointer(device->name, name);
963 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964 			fs_devices->missing_devices--;
965 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966 		}
967 	}
968 
969 	/*
970 	 * Unmount does not free the btrfs_device struct but would zero
971 	 * generation along with most of the other members. So just update
972 	 * it back. We need it to pick the disk with largest generation
973 	 * (as above).
974 	 */
975 	if (!fs_devices->opened) {
976 		device->generation = found_transid;
977 		fs_devices->latest_generation = max_t(u64, found_transid,
978 						fs_devices->latest_generation);
979 	}
980 
981 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982 
983 	mutex_unlock(&fs_devices->device_list_mutex);
984 	return device;
985 }
986 
987 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 {
989 	struct btrfs_fs_devices *fs_devices;
990 	struct btrfs_device *device;
991 	struct btrfs_device *orig_dev;
992 	int ret = 0;
993 
994 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
995 	if (IS_ERR(fs_devices))
996 		return fs_devices;
997 
998 	mutex_lock(&orig->device_list_mutex);
999 	fs_devices->total_devices = orig->total_devices;
1000 
1001 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 		struct rcu_string *name;
1003 
1004 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 					    orig_dev->uuid);
1006 		if (IS_ERR(device)) {
1007 			ret = PTR_ERR(device);
1008 			goto error;
1009 		}
1010 
1011 		/*
1012 		 * This is ok to do without rcu read locked because we hold the
1013 		 * uuid mutex so nothing we touch in here is going to disappear.
1014 		 */
1015 		if (orig_dev->name) {
1016 			name = rcu_string_strdup(orig_dev->name->str,
1017 					GFP_KERNEL);
1018 			if (!name) {
1019 				btrfs_free_device(device);
1020 				ret = -ENOMEM;
1021 				goto error;
1022 			}
1023 			rcu_assign_pointer(device->name, name);
1024 		}
1025 
1026 		list_add(&device->dev_list, &fs_devices->devices);
1027 		device->fs_devices = fs_devices;
1028 		fs_devices->num_devices++;
1029 	}
1030 	mutex_unlock(&orig->device_list_mutex);
1031 	return fs_devices;
1032 error:
1033 	mutex_unlock(&orig->device_list_mutex);
1034 	free_fs_devices(fs_devices);
1035 	return ERR_PTR(ret);
1036 }
1037 
1038 /*
1039  * After we have read the system tree and know devids belonging to
1040  * this filesystem, remove the device which does not belong there.
1041  */
1042 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1043 {
1044 	struct btrfs_device *device, *next;
1045 	struct btrfs_device *latest_dev = NULL;
1046 
1047 	mutex_lock(&uuid_mutex);
1048 again:
1049 	/* This is the initialized path, it is safe to release the devices. */
1050 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1051 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1052 							&device->dev_state)) {
1053 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 			     &device->dev_state) &&
1055 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056 				      &device->dev_state) &&
1057 			     (!latest_dev ||
1058 			      device->generation > latest_dev->generation)) {
1059 				latest_dev = device;
1060 			}
1061 			continue;
1062 		}
1063 
1064 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1065 			/*
1066 			 * In the first step, keep the device which has
1067 			 * the correct fsid and the devid that is used
1068 			 * for the dev_replace procedure.
1069 			 * In the second step, the dev_replace state is
1070 			 * read from the device tree and it is known
1071 			 * whether the procedure is really active or
1072 			 * not, which means whether this device is
1073 			 * used or whether it should be removed.
1074 			 */
1075 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1076 						  &device->dev_state)) {
1077 				continue;
1078 			}
1079 		}
1080 		if (device->bdev) {
1081 			blkdev_put(device->bdev, device->mode);
1082 			device->bdev = NULL;
1083 			fs_devices->open_devices--;
1084 		}
1085 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1086 			list_del_init(&device->dev_alloc_list);
1087 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1088 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1089 				      &device->dev_state))
1090 				fs_devices->rw_devices--;
1091 		}
1092 		list_del_init(&device->dev_list);
1093 		fs_devices->num_devices--;
1094 		btrfs_free_device(device);
1095 	}
1096 
1097 	if (fs_devices->seed) {
1098 		fs_devices = fs_devices->seed;
1099 		goto again;
1100 	}
1101 
1102 	fs_devices->latest_bdev = latest_dev->bdev;
1103 
1104 	mutex_unlock(&uuid_mutex);
1105 }
1106 
1107 static void btrfs_close_bdev(struct btrfs_device *device)
1108 {
1109 	if (!device->bdev)
1110 		return;
1111 
1112 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1113 		sync_blockdev(device->bdev);
1114 		invalidate_bdev(device->bdev);
1115 	}
1116 
1117 	blkdev_put(device->bdev, device->mode);
1118 }
1119 
1120 static void btrfs_close_one_device(struct btrfs_device *device)
1121 {
1122 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1123 
1124 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1125 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1126 		list_del_init(&device->dev_alloc_list);
1127 		fs_devices->rw_devices--;
1128 	}
1129 
1130 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1131 		fs_devices->missing_devices--;
1132 
1133 	btrfs_close_bdev(device);
1134 	if (device->bdev) {
1135 		fs_devices->open_devices--;
1136 		device->bdev = NULL;
1137 	}
1138 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1139 
1140 	device->fs_info = NULL;
1141 	atomic_set(&device->dev_stats_ccnt, 0);
1142 	extent_io_tree_release(&device->alloc_state);
1143 
1144 	/* Verify the device is back in a pristine state  */
1145 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1146 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1147 	ASSERT(list_empty(&device->dev_alloc_list));
1148 	ASSERT(list_empty(&device->post_commit_list));
1149 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1150 }
1151 
1152 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1153 {
1154 	struct btrfs_device *device, *tmp;
1155 
1156 	if (--fs_devices->opened > 0)
1157 		return 0;
1158 
1159 	mutex_lock(&fs_devices->device_list_mutex);
1160 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1161 		btrfs_close_one_device(device);
1162 	}
1163 	mutex_unlock(&fs_devices->device_list_mutex);
1164 
1165 	WARN_ON(fs_devices->open_devices);
1166 	WARN_ON(fs_devices->rw_devices);
1167 	fs_devices->opened = 0;
1168 	fs_devices->seeding = false;
1169 
1170 	return 0;
1171 }
1172 
1173 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1174 {
1175 	struct btrfs_fs_devices *seed_devices = NULL;
1176 	int ret;
1177 
1178 	mutex_lock(&uuid_mutex);
1179 	ret = close_fs_devices(fs_devices);
1180 	if (!fs_devices->opened) {
1181 		seed_devices = fs_devices->seed;
1182 		fs_devices->seed = NULL;
1183 	}
1184 	mutex_unlock(&uuid_mutex);
1185 
1186 	while (seed_devices) {
1187 		fs_devices = seed_devices;
1188 		seed_devices = fs_devices->seed;
1189 		close_fs_devices(fs_devices);
1190 		free_fs_devices(fs_devices);
1191 	}
1192 	return ret;
1193 }
1194 
1195 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1196 				fmode_t flags, void *holder)
1197 {
1198 	struct btrfs_device *device;
1199 	struct btrfs_device *latest_dev = NULL;
1200 
1201 	flags |= FMODE_EXCL;
1202 
1203 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1204 		/* Just open everything we can; ignore failures here */
1205 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1206 			continue;
1207 
1208 		if (!latest_dev ||
1209 		    device->generation > latest_dev->generation)
1210 			latest_dev = device;
1211 	}
1212 	if (fs_devices->open_devices == 0)
1213 		return -EINVAL;
1214 
1215 	fs_devices->opened = 1;
1216 	fs_devices->latest_bdev = latest_dev->bdev;
1217 	fs_devices->total_rw_bytes = 0;
1218 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219 
1220 	return 0;
1221 }
1222 
1223 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1224 {
1225 	struct btrfs_device *dev1, *dev2;
1226 
1227 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1228 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1229 
1230 	if (dev1->devid < dev2->devid)
1231 		return -1;
1232 	else if (dev1->devid > dev2->devid)
1233 		return 1;
1234 	return 0;
1235 }
1236 
1237 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1238 		       fmode_t flags, void *holder)
1239 {
1240 	int ret;
1241 
1242 	lockdep_assert_held(&uuid_mutex);
1243 	/*
1244 	 * The device_list_mutex cannot be taken here in case opening the
1245 	 * underlying device takes further locks like bd_mutex.
1246 	 *
1247 	 * We also don't need the lock here as this is called during mount and
1248 	 * exclusion is provided by uuid_mutex
1249 	 */
1250 
1251 	if (fs_devices->opened) {
1252 		fs_devices->opened++;
1253 		ret = 0;
1254 	} else {
1255 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1256 		ret = open_fs_devices(fs_devices, flags, holder);
1257 	}
1258 
1259 	return ret;
1260 }
1261 
1262 void btrfs_release_disk_super(struct btrfs_super_block *super)
1263 {
1264 	struct page *page = virt_to_page(super);
1265 
1266 	put_page(page);
1267 }
1268 
1269 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1270 						       u64 bytenr)
1271 {
1272 	struct btrfs_super_block *disk_super;
1273 	struct page *page;
1274 	void *p;
1275 	pgoff_t index;
1276 
1277 	/* make sure our super fits in the device */
1278 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1279 		return ERR_PTR(-EINVAL);
1280 
1281 	/* make sure our super fits in the page */
1282 	if (sizeof(*disk_super) > PAGE_SIZE)
1283 		return ERR_PTR(-EINVAL);
1284 
1285 	/* make sure our super doesn't straddle pages on disk */
1286 	index = bytenr >> PAGE_SHIFT;
1287 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	/* pull in the page with our super */
1291 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1292 
1293 	if (IS_ERR(page))
1294 		return ERR_CAST(page);
1295 
1296 	p = page_address(page);
1297 
1298 	/* align our pointer to the offset of the super block */
1299 	disk_super = p + offset_in_page(bytenr);
1300 
1301 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1302 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1303 		btrfs_release_disk_super(p);
1304 		return ERR_PTR(-EINVAL);
1305 	}
1306 
1307 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1308 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1309 
1310 	return disk_super;
1311 }
1312 
1313 int btrfs_forget_devices(const char *path)
1314 {
1315 	int ret;
1316 
1317 	mutex_lock(&uuid_mutex);
1318 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1319 	mutex_unlock(&uuid_mutex);
1320 
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Look for a btrfs signature on a device. This may be called out of the mount path
1326  * and we are not allowed to call set_blocksize during the scan. The superblock
1327  * is read via pagecache
1328  */
1329 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1330 					   void *holder)
1331 {
1332 	struct btrfs_super_block *disk_super;
1333 	bool new_device_added = false;
1334 	struct btrfs_device *device = NULL;
1335 	struct block_device *bdev;
1336 	u64 bytenr;
1337 
1338 	lockdep_assert_held(&uuid_mutex);
1339 
1340 	/*
1341 	 * we would like to check all the supers, but that would make
1342 	 * a btrfs mount succeed after a mkfs from a different FS.
1343 	 * So, we need to add a special mount option to scan for
1344 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1345 	 */
1346 	bytenr = btrfs_sb_offset(0);
1347 	flags |= FMODE_EXCL;
1348 
1349 	bdev = blkdev_get_by_path(path, flags, holder);
1350 	if (IS_ERR(bdev))
1351 		return ERR_CAST(bdev);
1352 
1353 	disk_super = btrfs_read_disk_super(bdev, bytenr);
1354 	if (IS_ERR(disk_super)) {
1355 		device = ERR_CAST(disk_super);
1356 		goto error_bdev_put;
1357 	}
1358 
1359 	device = device_list_add(path, disk_super, &new_device_added);
1360 	if (!IS_ERR(device)) {
1361 		if (new_device_added)
1362 			btrfs_free_stale_devices(path, device);
1363 	}
1364 
1365 	btrfs_release_disk_super(disk_super);
1366 
1367 error_bdev_put:
1368 	blkdev_put(bdev, flags);
1369 
1370 	return device;
1371 }
1372 
1373 /*
1374  * Try to find a chunk that intersects [start, start + len] range and when one
1375  * such is found, record the end of it in *start
1376  */
1377 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1378 				    u64 len)
1379 {
1380 	u64 physical_start, physical_end;
1381 
1382 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1383 
1384 	if (!find_first_extent_bit(&device->alloc_state, *start,
1385 				   &physical_start, &physical_end,
1386 				   CHUNK_ALLOCATED, NULL)) {
1387 
1388 		if (in_range(physical_start, *start, len) ||
1389 		    in_range(*start, physical_start,
1390 			     physical_end - physical_start)) {
1391 			*start = physical_end + 1;
1392 			return true;
1393 		}
1394 	}
1395 	return false;
1396 }
1397 
1398 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1399 {
1400 	switch (device->fs_devices->chunk_alloc_policy) {
1401 	case BTRFS_CHUNK_ALLOC_REGULAR:
1402 		/*
1403 		 * We don't want to overwrite the superblock on the drive nor
1404 		 * any area used by the boot loader (grub for example), so we
1405 		 * make sure to start at an offset of at least 1MB.
1406 		 */
1407 		return max_t(u64, start, SZ_1M);
1408 	default:
1409 		BUG();
1410 	}
1411 }
1412 
1413 /**
1414  * dev_extent_hole_check - check if specified hole is suitable for allocation
1415  * @device:	the device which we have the hole
1416  * @hole_start: starting position of the hole
1417  * @hole_size:	the size of the hole
1418  * @num_bytes:	the size of the free space that we need
1419  *
1420  * This function may modify @hole_start and @hole_end to reflect the suitable
1421  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1422  */
1423 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1424 				  u64 *hole_size, u64 num_bytes)
1425 {
1426 	bool changed = false;
1427 	u64 hole_end = *hole_start + *hole_size;
1428 
1429 	/*
1430 	 * Check before we set max_hole_start, otherwise we could end up
1431 	 * sending back this offset anyway.
1432 	 */
1433 	if (contains_pending_extent(device, hole_start, *hole_size)) {
1434 		if (hole_end >= *hole_start)
1435 			*hole_size = hole_end - *hole_start;
1436 		else
1437 			*hole_size = 0;
1438 		changed = true;
1439 	}
1440 
1441 	switch (device->fs_devices->chunk_alloc_policy) {
1442 	case BTRFS_CHUNK_ALLOC_REGULAR:
1443 		/* No extra check */
1444 		break;
1445 	default:
1446 		BUG();
1447 	}
1448 
1449 	return changed;
1450 }
1451 
1452 /*
1453  * find_free_dev_extent_start - find free space in the specified device
1454  * @device:	  the device which we search the free space in
1455  * @num_bytes:	  the size of the free space that we need
1456  * @search_start: the position from which to begin the search
1457  * @start:	  store the start of the free space.
1458  * @len:	  the size of the free space. that we find, or the size
1459  *		  of the max free space if we don't find suitable free space
1460  *
1461  * this uses a pretty simple search, the expectation is that it is
1462  * called very infrequently and that a given device has a small number
1463  * of extents
1464  *
1465  * @start is used to store the start of the free space if we find. But if we
1466  * don't find suitable free space, it will be used to store the start position
1467  * of the max free space.
1468  *
1469  * @len is used to store the size of the free space that we find.
1470  * But if we don't find suitable free space, it is used to store the size of
1471  * the max free space.
1472  *
1473  * NOTE: This function will search *commit* root of device tree, and does extra
1474  * check to ensure dev extents are not double allocated.
1475  * This makes the function safe to allocate dev extents but may not report
1476  * correct usable device space, as device extent freed in current transaction
1477  * is not reported as avaiable.
1478  */
1479 static int find_free_dev_extent_start(struct btrfs_device *device,
1480 				u64 num_bytes, u64 search_start, u64 *start,
1481 				u64 *len)
1482 {
1483 	struct btrfs_fs_info *fs_info = device->fs_info;
1484 	struct btrfs_root *root = fs_info->dev_root;
1485 	struct btrfs_key key;
1486 	struct btrfs_dev_extent *dev_extent;
1487 	struct btrfs_path *path;
1488 	u64 hole_size;
1489 	u64 max_hole_start;
1490 	u64 max_hole_size;
1491 	u64 extent_end;
1492 	u64 search_end = device->total_bytes;
1493 	int ret;
1494 	int slot;
1495 	struct extent_buffer *l;
1496 
1497 	search_start = dev_extent_search_start(device, search_start);
1498 
1499 	path = btrfs_alloc_path();
1500 	if (!path)
1501 		return -ENOMEM;
1502 
1503 	max_hole_start = search_start;
1504 	max_hole_size = 0;
1505 
1506 again:
1507 	if (search_start >= search_end ||
1508 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1509 		ret = -ENOSPC;
1510 		goto out;
1511 	}
1512 
1513 	path->reada = READA_FORWARD;
1514 	path->search_commit_root = 1;
1515 	path->skip_locking = 1;
1516 
1517 	key.objectid = device->devid;
1518 	key.offset = search_start;
1519 	key.type = BTRFS_DEV_EXTENT_KEY;
1520 
1521 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1522 	if (ret < 0)
1523 		goto out;
1524 	if (ret > 0) {
1525 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1526 		if (ret < 0)
1527 			goto out;
1528 	}
1529 
1530 	while (1) {
1531 		l = path->nodes[0];
1532 		slot = path->slots[0];
1533 		if (slot >= btrfs_header_nritems(l)) {
1534 			ret = btrfs_next_leaf(root, path);
1535 			if (ret == 0)
1536 				continue;
1537 			if (ret < 0)
1538 				goto out;
1539 
1540 			break;
1541 		}
1542 		btrfs_item_key_to_cpu(l, &key, slot);
1543 
1544 		if (key.objectid < device->devid)
1545 			goto next;
1546 
1547 		if (key.objectid > device->devid)
1548 			break;
1549 
1550 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1551 			goto next;
1552 
1553 		if (key.offset > search_start) {
1554 			hole_size = key.offset - search_start;
1555 			dev_extent_hole_check(device, &search_start, &hole_size,
1556 					      num_bytes);
1557 
1558 			if (hole_size > max_hole_size) {
1559 				max_hole_start = search_start;
1560 				max_hole_size = hole_size;
1561 			}
1562 
1563 			/*
1564 			 * If this free space is greater than which we need,
1565 			 * it must be the max free space that we have found
1566 			 * until now, so max_hole_start must point to the start
1567 			 * of this free space and the length of this free space
1568 			 * is stored in max_hole_size. Thus, we return
1569 			 * max_hole_start and max_hole_size and go back to the
1570 			 * caller.
1571 			 */
1572 			if (hole_size >= num_bytes) {
1573 				ret = 0;
1574 				goto out;
1575 			}
1576 		}
1577 
1578 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1579 		extent_end = key.offset + btrfs_dev_extent_length(l,
1580 								  dev_extent);
1581 		if (extent_end > search_start)
1582 			search_start = extent_end;
1583 next:
1584 		path->slots[0]++;
1585 		cond_resched();
1586 	}
1587 
1588 	/*
1589 	 * At this point, search_start should be the end of
1590 	 * allocated dev extents, and when shrinking the device,
1591 	 * search_end may be smaller than search_start.
1592 	 */
1593 	if (search_end > search_start) {
1594 		hole_size = search_end - search_start;
1595 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1596 					  num_bytes)) {
1597 			btrfs_release_path(path);
1598 			goto again;
1599 		}
1600 
1601 		if (hole_size > max_hole_size) {
1602 			max_hole_start = search_start;
1603 			max_hole_size = hole_size;
1604 		}
1605 	}
1606 
1607 	/* See above. */
1608 	if (max_hole_size < num_bytes)
1609 		ret = -ENOSPC;
1610 	else
1611 		ret = 0;
1612 
1613 out:
1614 	btrfs_free_path(path);
1615 	*start = max_hole_start;
1616 	if (len)
1617 		*len = max_hole_size;
1618 	return ret;
1619 }
1620 
1621 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1622 			 u64 *start, u64 *len)
1623 {
1624 	/* FIXME use last free of some kind */
1625 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1626 }
1627 
1628 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1629 			  struct btrfs_device *device,
1630 			  u64 start, u64 *dev_extent_len)
1631 {
1632 	struct btrfs_fs_info *fs_info = device->fs_info;
1633 	struct btrfs_root *root = fs_info->dev_root;
1634 	int ret;
1635 	struct btrfs_path *path;
1636 	struct btrfs_key key;
1637 	struct btrfs_key found_key;
1638 	struct extent_buffer *leaf = NULL;
1639 	struct btrfs_dev_extent *extent = NULL;
1640 
1641 	path = btrfs_alloc_path();
1642 	if (!path)
1643 		return -ENOMEM;
1644 
1645 	key.objectid = device->devid;
1646 	key.offset = start;
1647 	key.type = BTRFS_DEV_EXTENT_KEY;
1648 again:
1649 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1650 	if (ret > 0) {
1651 		ret = btrfs_previous_item(root, path, key.objectid,
1652 					  BTRFS_DEV_EXTENT_KEY);
1653 		if (ret)
1654 			goto out;
1655 		leaf = path->nodes[0];
1656 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1657 		extent = btrfs_item_ptr(leaf, path->slots[0],
1658 					struct btrfs_dev_extent);
1659 		BUG_ON(found_key.offset > start || found_key.offset +
1660 		       btrfs_dev_extent_length(leaf, extent) < start);
1661 		key = found_key;
1662 		btrfs_release_path(path);
1663 		goto again;
1664 	} else if (ret == 0) {
1665 		leaf = path->nodes[0];
1666 		extent = btrfs_item_ptr(leaf, path->slots[0],
1667 					struct btrfs_dev_extent);
1668 	} else {
1669 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1670 		goto out;
1671 	}
1672 
1673 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1674 
1675 	ret = btrfs_del_item(trans, root, path);
1676 	if (ret) {
1677 		btrfs_handle_fs_error(fs_info, ret,
1678 				      "Failed to remove dev extent item");
1679 	} else {
1680 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1681 	}
1682 out:
1683 	btrfs_free_path(path);
1684 	return ret;
1685 }
1686 
1687 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1688 				  struct btrfs_device *device,
1689 				  u64 chunk_offset, u64 start, u64 num_bytes)
1690 {
1691 	int ret;
1692 	struct btrfs_path *path;
1693 	struct btrfs_fs_info *fs_info = device->fs_info;
1694 	struct btrfs_root *root = fs_info->dev_root;
1695 	struct btrfs_dev_extent *extent;
1696 	struct extent_buffer *leaf;
1697 	struct btrfs_key key;
1698 
1699 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1700 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1701 	path = btrfs_alloc_path();
1702 	if (!path)
1703 		return -ENOMEM;
1704 
1705 	key.objectid = device->devid;
1706 	key.offset = start;
1707 	key.type = BTRFS_DEV_EXTENT_KEY;
1708 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1709 				      sizeof(*extent));
1710 	if (ret)
1711 		goto out;
1712 
1713 	leaf = path->nodes[0];
1714 	extent = btrfs_item_ptr(leaf, path->slots[0],
1715 				struct btrfs_dev_extent);
1716 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1717 					BTRFS_CHUNK_TREE_OBJECTID);
1718 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1719 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1720 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1721 
1722 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1723 	btrfs_mark_buffer_dirty(leaf);
1724 out:
1725 	btrfs_free_path(path);
1726 	return ret;
1727 }
1728 
1729 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1730 {
1731 	struct extent_map_tree *em_tree;
1732 	struct extent_map *em;
1733 	struct rb_node *n;
1734 	u64 ret = 0;
1735 
1736 	em_tree = &fs_info->mapping_tree;
1737 	read_lock(&em_tree->lock);
1738 	n = rb_last(&em_tree->map.rb_root);
1739 	if (n) {
1740 		em = rb_entry(n, struct extent_map, rb_node);
1741 		ret = em->start + em->len;
1742 	}
1743 	read_unlock(&em_tree->lock);
1744 
1745 	return ret;
1746 }
1747 
1748 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1749 				    u64 *devid_ret)
1750 {
1751 	int ret;
1752 	struct btrfs_key key;
1753 	struct btrfs_key found_key;
1754 	struct btrfs_path *path;
1755 
1756 	path = btrfs_alloc_path();
1757 	if (!path)
1758 		return -ENOMEM;
1759 
1760 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761 	key.type = BTRFS_DEV_ITEM_KEY;
1762 	key.offset = (u64)-1;
1763 
1764 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1765 	if (ret < 0)
1766 		goto error;
1767 
1768 	if (ret == 0) {
1769 		/* Corruption */
1770 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1771 		ret = -EUCLEAN;
1772 		goto error;
1773 	}
1774 
1775 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1776 				  BTRFS_DEV_ITEMS_OBJECTID,
1777 				  BTRFS_DEV_ITEM_KEY);
1778 	if (ret) {
1779 		*devid_ret = 1;
1780 	} else {
1781 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1782 				      path->slots[0]);
1783 		*devid_ret = found_key.offset + 1;
1784 	}
1785 	ret = 0;
1786 error:
1787 	btrfs_free_path(path);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * the device information is stored in the chunk root
1793  * the btrfs_device struct should be fully filled in
1794  */
1795 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1796 			    struct btrfs_device *device)
1797 {
1798 	int ret;
1799 	struct btrfs_path *path;
1800 	struct btrfs_dev_item *dev_item;
1801 	struct extent_buffer *leaf;
1802 	struct btrfs_key key;
1803 	unsigned long ptr;
1804 
1805 	path = btrfs_alloc_path();
1806 	if (!path)
1807 		return -ENOMEM;
1808 
1809 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1810 	key.type = BTRFS_DEV_ITEM_KEY;
1811 	key.offset = device->devid;
1812 
1813 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1814 				      &key, sizeof(*dev_item));
1815 	if (ret)
1816 		goto out;
1817 
1818 	leaf = path->nodes[0];
1819 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1820 
1821 	btrfs_set_device_id(leaf, dev_item, device->devid);
1822 	btrfs_set_device_generation(leaf, dev_item, 0);
1823 	btrfs_set_device_type(leaf, dev_item, device->type);
1824 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1825 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1826 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1827 	btrfs_set_device_total_bytes(leaf, dev_item,
1828 				     btrfs_device_get_disk_total_bytes(device));
1829 	btrfs_set_device_bytes_used(leaf, dev_item,
1830 				    btrfs_device_get_bytes_used(device));
1831 	btrfs_set_device_group(leaf, dev_item, 0);
1832 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1833 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1834 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1835 
1836 	ptr = btrfs_device_uuid(dev_item);
1837 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1838 	ptr = btrfs_device_fsid(dev_item);
1839 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1840 			    ptr, BTRFS_FSID_SIZE);
1841 	btrfs_mark_buffer_dirty(leaf);
1842 
1843 	ret = 0;
1844 out:
1845 	btrfs_free_path(path);
1846 	return ret;
1847 }
1848 
1849 /*
1850  * Function to update ctime/mtime for a given device path.
1851  * Mainly used for ctime/mtime based probe like libblkid.
1852  */
1853 static void update_dev_time(const char *path_name)
1854 {
1855 	struct file *filp;
1856 
1857 	filp = filp_open(path_name, O_RDWR, 0);
1858 	if (IS_ERR(filp))
1859 		return;
1860 	file_update_time(filp);
1861 	filp_close(filp, NULL);
1862 }
1863 
1864 static int btrfs_rm_dev_item(struct btrfs_device *device)
1865 {
1866 	struct btrfs_root *root = device->fs_info->chunk_root;
1867 	int ret;
1868 	struct btrfs_path *path;
1869 	struct btrfs_key key;
1870 	struct btrfs_trans_handle *trans;
1871 
1872 	path = btrfs_alloc_path();
1873 	if (!path)
1874 		return -ENOMEM;
1875 
1876 	trans = btrfs_start_transaction(root, 0);
1877 	if (IS_ERR(trans)) {
1878 		btrfs_free_path(path);
1879 		return PTR_ERR(trans);
1880 	}
1881 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882 	key.type = BTRFS_DEV_ITEM_KEY;
1883 	key.offset = device->devid;
1884 
1885 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1886 	if (ret) {
1887 		if (ret > 0)
1888 			ret = -ENOENT;
1889 		btrfs_abort_transaction(trans, ret);
1890 		btrfs_end_transaction(trans);
1891 		goto out;
1892 	}
1893 
1894 	ret = btrfs_del_item(trans, root, path);
1895 	if (ret) {
1896 		btrfs_abort_transaction(trans, ret);
1897 		btrfs_end_transaction(trans);
1898 	}
1899 
1900 out:
1901 	btrfs_free_path(path);
1902 	if (!ret)
1903 		ret = btrfs_commit_transaction(trans);
1904 	return ret;
1905 }
1906 
1907 /*
1908  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1909  * filesystem. It's up to the caller to adjust that number regarding eg. device
1910  * replace.
1911  */
1912 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1913 		u64 num_devices)
1914 {
1915 	u64 all_avail;
1916 	unsigned seq;
1917 	int i;
1918 
1919 	do {
1920 		seq = read_seqbegin(&fs_info->profiles_lock);
1921 
1922 		all_avail = fs_info->avail_data_alloc_bits |
1923 			    fs_info->avail_system_alloc_bits |
1924 			    fs_info->avail_metadata_alloc_bits;
1925 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1926 
1927 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1928 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1929 			continue;
1930 
1931 		if (num_devices < btrfs_raid_array[i].devs_min) {
1932 			int ret = btrfs_raid_array[i].mindev_error;
1933 
1934 			if (ret)
1935 				return ret;
1936 		}
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 static struct btrfs_device * btrfs_find_next_active_device(
1943 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1944 {
1945 	struct btrfs_device *next_device;
1946 
1947 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1948 		if (next_device != device &&
1949 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1950 		    && next_device->bdev)
1951 			return next_device;
1952 	}
1953 
1954 	return NULL;
1955 }
1956 
1957 /*
1958  * Helper function to check if the given device is part of s_bdev / latest_bdev
1959  * and replace it with the provided or the next active device, in the context
1960  * where this function called, there should be always be another device (or
1961  * this_dev) which is active.
1962  */
1963 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1964 				     struct btrfs_device *this_dev)
1965 {
1966 	struct btrfs_fs_info *fs_info = device->fs_info;
1967 	struct btrfs_device *next_device;
1968 
1969 	if (this_dev)
1970 		next_device = this_dev;
1971 	else
1972 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1973 								device);
1974 	ASSERT(next_device);
1975 
1976 	if (fs_info->sb->s_bdev &&
1977 			(fs_info->sb->s_bdev == device->bdev))
1978 		fs_info->sb->s_bdev = next_device->bdev;
1979 
1980 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1981 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1982 }
1983 
1984 /*
1985  * Return btrfs_fs_devices::num_devices excluding the device that's being
1986  * currently replaced.
1987  */
1988 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1989 {
1990 	u64 num_devices = fs_info->fs_devices->num_devices;
1991 
1992 	down_read(&fs_info->dev_replace.rwsem);
1993 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1994 		ASSERT(num_devices > 1);
1995 		num_devices--;
1996 	}
1997 	up_read(&fs_info->dev_replace.rwsem);
1998 
1999 	return num_devices;
2000 }
2001 
2002 static void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2003 				      struct block_device *bdev,
2004 				      const char *device_path)
2005 {
2006 	struct btrfs_super_block *disk_super;
2007 	int copy_num;
2008 
2009 	if (!bdev)
2010 		return;
2011 
2012 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2013 		struct page *page;
2014 		int ret;
2015 
2016 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2017 		if (IS_ERR(disk_super))
2018 			continue;
2019 
2020 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2021 
2022 		page = virt_to_page(disk_super);
2023 		set_page_dirty(page);
2024 		lock_page(page);
2025 		/* write_on_page() unlocks the page */
2026 		ret = write_one_page(page);
2027 		if (ret)
2028 			btrfs_warn(fs_info,
2029 				"error clearing superblock number %d (%d)",
2030 				copy_num, ret);
2031 		btrfs_release_disk_super(disk_super);
2032 
2033 	}
2034 
2035 	/* Notify udev that device has changed */
2036 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2037 
2038 	/* Update ctime/mtime for device path for libblkid */
2039 	update_dev_time(device_path);
2040 }
2041 
2042 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2043 		u64 devid)
2044 {
2045 	struct btrfs_device *device;
2046 	struct btrfs_fs_devices *cur_devices;
2047 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2048 	u64 num_devices;
2049 	int ret = 0;
2050 
2051 	mutex_lock(&uuid_mutex);
2052 
2053 	num_devices = btrfs_num_devices(fs_info);
2054 
2055 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2056 	if (ret)
2057 		goto out;
2058 
2059 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2060 
2061 	if (IS_ERR(device)) {
2062 		if (PTR_ERR(device) == -ENOENT &&
2063 		    strcmp(device_path, "missing") == 0)
2064 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2065 		else
2066 			ret = PTR_ERR(device);
2067 		goto out;
2068 	}
2069 
2070 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2071 		btrfs_warn_in_rcu(fs_info,
2072 		  "cannot remove device %s (devid %llu) due to active swapfile",
2073 				  rcu_str_deref(device->name), device->devid);
2074 		ret = -ETXTBSY;
2075 		goto out;
2076 	}
2077 
2078 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2079 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2080 		goto out;
2081 	}
2082 
2083 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2084 	    fs_info->fs_devices->rw_devices == 1) {
2085 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2086 		goto out;
2087 	}
2088 
2089 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2090 		mutex_lock(&fs_info->chunk_mutex);
2091 		list_del_init(&device->dev_alloc_list);
2092 		device->fs_devices->rw_devices--;
2093 		mutex_unlock(&fs_info->chunk_mutex);
2094 	}
2095 
2096 	mutex_unlock(&uuid_mutex);
2097 	ret = btrfs_shrink_device(device, 0);
2098 	mutex_lock(&uuid_mutex);
2099 	if (ret)
2100 		goto error_undo;
2101 
2102 	/*
2103 	 * TODO: the superblock still includes this device in its num_devices
2104 	 * counter although write_all_supers() is not locked out. This
2105 	 * could give a filesystem state which requires a degraded mount.
2106 	 */
2107 	ret = btrfs_rm_dev_item(device);
2108 	if (ret)
2109 		goto error_undo;
2110 
2111 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2112 	btrfs_scrub_cancel_dev(device);
2113 
2114 	/*
2115 	 * the device list mutex makes sure that we don't change
2116 	 * the device list while someone else is writing out all
2117 	 * the device supers. Whoever is writing all supers, should
2118 	 * lock the device list mutex before getting the number of
2119 	 * devices in the super block (super_copy). Conversely,
2120 	 * whoever updates the number of devices in the super block
2121 	 * (super_copy) should hold the device list mutex.
2122 	 */
2123 
2124 	/*
2125 	 * In normal cases the cur_devices == fs_devices. But in case
2126 	 * of deleting a seed device, the cur_devices should point to
2127 	 * its own fs_devices listed under the fs_devices->seed.
2128 	 */
2129 	cur_devices = device->fs_devices;
2130 	mutex_lock(&fs_devices->device_list_mutex);
2131 	list_del_rcu(&device->dev_list);
2132 
2133 	cur_devices->num_devices--;
2134 	cur_devices->total_devices--;
2135 	/* Update total_devices of the parent fs_devices if it's seed */
2136 	if (cur_devices != fs_devices)
2137 		fs_devices->total_devices--;
2138 
2139 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2140 		cur_devices->missing_devices--;
2141 
2142 	btrfs_assign_next_active_device(device, NULL);
2143 
2144 	if (device->bdev) {
2145 		cur_devices->open_devices--;
2146 		/* remove sysfs entry */
2147 		btrfs_sysfs_remove_devices_dir(fs_devices, device);
2148 	}
2149 
2150 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2151 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2152 	mutex_unlock(&fs_devices->device_list_mutex);
2153 
2154 	/*
2155 	 * at this point, the device is zero sized and detached from
2156 	 * the devices list.  All that's left is to zero out the old
2157 	 * supers and free the device.
2158 	 */
2159 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2160 		btrfs_scratch_superblocks(fs_info, device->bdev,
2161 					  device->name->str);
2162 
2163 	btrfs_close_bdev(device);
2164 	synchronize_rcu();
2165 	btrfs_free_device(device);
2166 
2167 	if (cur_devices->open_devices == 0) {
2168 		while (fs_devices) {
2169 			if (fs_devices->seed == cur_devices) {
2170 				fs_devices->seed = cur_devices->seed;
2171 				break;
2172 			}
2173 			fs_devices = fs_devices->seed;
2174 		}
2175 		cur_devices->seed = NULL;
2176 		close_fs_devices(cur_devices);
2177 		free_fs_devices(cur_devices);
2178 	}
2179 
2180 out:
2181 	mutex_unlock(&uuid_mutex);
2182 	return ret;
2183 
2184 error_undo:
2185 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186 		mutex_lock(&fs_info->chunk_mutex);
2187 		list_add(&device->dev_alloc_list,
2188 			 &fs_devices->alloc_list);
2189 		device->fs_devices->rw_devices++;
2190 		mutex_unlock(&fs_info->chunk_mutex);
2191 	}
2192 	goto out;
2193 }
2194 
2195 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2196 {
2197 	struct btrfs_fs_devices *fs_devices;
2198 
2199 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2200 
2201 	/*
2202 	 * in case of fs with no seed, srcdev->fs_devices will point
2203 	 * to fs_devices of fs_info. However when the dev being replaced is
2204 	 * a seed dev it will point to the seed's local fs_devices. In short
2205 	 * srcdev will have its correct fs_devices in both the cases.
2206 	 */
2207 	fs_devices = srcdev->fs_devices;
2208 
2209 	list_del_rcu(&srcdev->dev_list);
2210 	list_del(&srcdev->dev_alloc_list);
2211 	fs_devices->num_devices--;
2212 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2213 		fs_devices->missing_devices--;
2214 
2215 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2216 		fs_devices->rw_devices--;
2217 
2218 	if (srcdev->bdev)
2219 		fs_devices->open_devices--;
2220 }
2221 
2222 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2223 {
2224 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2225 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2226 
2227 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2228 		/* zero out the old super if it is writable */
2229 		btrfs_scratch_superblocks(fs_info, srcdev->bdev,
2230 					  srcdev->name->str);
2231 	}
2232 
2233 	btrfs_close_bdev(srcdev);
2234 	synchronize_rcu();
2235 	btrfs_free_device(srcdev);
2236 
2237 	/* if this is no devs we rather delete the fs_devices */
2238 	if (!fs_devices->num_devices) {
2239 		struct btrfs_fs_devices *tmp_fs_devices;
2240 
2241 		/*
2242 		 * On a mounted FS, num_devices can't be zero unless it's a
2243 		 * seed. In case of a seed device being replaced, the replace
2244 		 * target added to the sprout FS, so there will be no more
2245 		 * device left under the seed FS.
2246 		 */
2247 		ASSERT(fs_devices->seeding);
2248 
2249 		tmp_fs_devices = fs_info->fs_devices;
2250 		while (tmp_fs_devices) {
2251 			if (tmp_fs_devices->seed == fs_devices) {
2252 				tmp_fs_devices->seed = fs_devices->seed;
2253 				break;
2254 			}
2255 			tmp_fs_devices = tmp_fs_devices->seed;
2256 		}
2257 		fs_devices->seed = NULL;
2258 		close_fs_devices(fs_devices);
2259 		free_fs_devices(fs_devices);
2260 	}
2261 }
2262 
2263 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2264 {
2265 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2266 
2267 	mutex_lock(&fs_devices->device_list_mutex);
2268 
2269 	btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2270 
2271 	if (tgtdev->bdev)
2272 		fs_devices->open_devices--;
2273 
2274 	fs_devices->num_devices--;
2275 
2276 	btrfs_assign_next_active_device(tgtdev, NULL);
2277 
2278 	list_del_rcu(&tgtdev->dev_list);
2279 
2280 	mutex_unlock(&fs_devices->device_list_mutex);
2281 
2282 	/*
2283 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2284 	 * may lead to a call to btrfs_show_devname() which will try
2285 	 * to hold device_list_mutex. And here this device
2286 	 * is already out of device list, so we don't have to hold
2287 	 * the device_list_mutex lock.
2288 	 */
2289 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2290 				  tgtdev->name->str);
2291 
2292 	btrfs_close_bdev(tgtdev);
2293 	synchronize_rcu();
2294 	btrfs_free_device(tgtdev);
2295 }
2296 
2297 static struct btrfs_device *btrfs_find_device_by_path(
2298 		struct btrfs_fs_info *fs_info, const char *device_path)
2299 {
2300 	int ret = 0;
2301 	struct btrfs_super_block *disk_super;
2302 	u64 devid;
2303 	u8 *dev_uuid;
2304 	struct block_device *bdev;
2305 	struct btrfs_device *device;
2306 
2307 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2308 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2309 	if (ret)
2310 		return ERR_PTR(ret);
2311 
2312 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2313 	dev_uuid = disk_super->dev_item.uuid;
2314 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2315 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316 					   disk_super->metadata_uuid, true);
2317 	else
2318 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2319 					   disk_super->fsid, true);
2320 
2321 	btrfs_release_disk_super(disk_super);
2322 	if (!device)
2323 		device = ERR_PTR(-ENOENT);
2324 	blkdev_put(bdev, FMODE_READ);
2325 	return device;
2326 }
2327 
2328 /*
2329  * Lookup a device given by device id, or the path if the id is 0.
2330  */
2331 struct btrfs_device *btrfs_find_device_by_devspec(
2332 		struct btrfs_fs_info *fs_info, u64 devid,
2333 		const char *device_path)
2334 {
2335 	struct btrfs_device *device;
2336 
2337 	if (devid) {
2338 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2339 					   NULL, true);
2340 		if (!device)
2341 			return ERR_PTR(-ENOENT);
2342 		return device;
2343 	}
2344 
2345 	if (!device_path || !device_path[0])
2346 		return ERR_PTR(-EINVAL);
2347 
2348 	if (strcmp(device_path, "missing") == 0) {
2349 		/* Find first missing device */
2350 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2351 				    dev_list) {
2352 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2353 				     &device->dev_state) && !device->bdev)
2354 				return device;
2355 		}
2356 		return ERR_PTR(-ENOENT);
2357 	}
2358 
2359 	return btrfs_find_device_by_path(fs_info, device_path);
2360 }
2361 
2362 /*
2363  * does all the dirty work required for changing file system's UUID.
2364  */
2365 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2366 {
2367 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2368 	struct btrfs_fs_devices *old_devices;
2369 	struct btrfs_fs_devices *seed_devices;
2370 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2371 	struct btrfs_device *device;
2372 	u64 super_flags;
2373 
2374 	lockdep_assert_held(&uuid_mutex);
2375 	if (!fs_devices->seeding)
2376 		return -EINVAL;
2377 
2378 	seed_devices = alloc_fs_devices(NULL, NULL);
2379 	if (IS_ERR(seed_devices))
2380 		return PTR_ERR(seed_devices);
2381 
2382 	old_devices = clone_fs_devices(fs_devices);
2383 	if (IS_ERR(old_devices)) {
2384 		kfree(seed_devices);
2385 		return PTR_ERR(old_devices);
2386 	}
2387 
2388 	list_add(&old_devices->fs_list, &fs_uuids);
2389 
2390 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2391 	seed_devices->opened = 1;
2392 	INIT_LIST_HEAD(&seed_devices->devices);
2393 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2394 	mutex_init(&seed_devices->device_list_mutex);
2395 
2396 	mutex_lock(&fs_devices->device_list_mutex);
2397 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2398 			      synchronize_rcu);
2399 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2400 		device->fs_devices = seed_devices;
2401 
2402 	mutex_lock(&fs_info->chunk_mutex);
2403 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2404 	mutex_unlock(&fs_info->chunk_mutex);
2405 
2406 	fs_devices->seeding = false;
2407 	fs_devices->num_devices = 0;
2408 	fs_devices->open_devices = 0;
2409 	fs_devices->missing_devices = 0;
2410 	fs_devices->rotating = false;
2411 	fs_devices->seed = seed_devices;
2412 
2413 	generate_random_uuid(fs_devices->fsid);
2414 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2415 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2416 	mutex_unlock(&fs_devices->device_list_mutex);
2417 
2418 	super_flags = btrfs_super_flags(disk_super) &
2419 		      ~BTRFS_SUPER_FLAG_SEEDING;
2420 	btrfs_set_super_flags(disk_super, super_flags);
2421 
2422 	return 0;
2423 }
2424 
2425 /*
2426  * Store the expected generation for seed devices in device items.
2427  */
2428 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2429 {
2430 	struct btrfs_fs_info *fs_info = trans->fs_info;
2431 	struct btrfs_root *root = fs_info->chunk_root;
2432 	struct btrfs_path *path;
2433 	struct extent_buffer *leaf;
2434 	struct btrfs_dev_item *dev_item;
2435 	struct btrfs_device *device;
2436 	struct btrfs_key key;
2437 	u8 fs_uuid[BTRFS_FSID_SIZE];
2438 	u8 dev_uuid[BTRFS_UUID_SIZE];
2439 	u64 devid;
2440 	int ret;
2441 
2442 	path = btrfs_alloc_path();
2443 	if (!path)
2444 		return -ENOMEM;
2445 
2446 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2447 	key.offset = 0;
2448 	key.type = BTRFS_DEV_ITEM_KEY;
2449 
2450 	while (1) {
2451 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2452 		if (ret < 0)
2453 			goto error;
2454 
2455 		leaf = path->nodes[0];
2456 next_slot:
2457 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2458 			ret = btrfs_next_leaf(root, path);
2459 			if (ret > 0)
2460 				break;
2461 			if (ret < 0)
2462 				goto error;
2463 			leaf = path->nodes[0];
2464 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2465 			btrfs_release_path(path);
2466 			continue;
2467 		}
2468 
2469 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2470 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2471 		    key.type != BTRFS_DEV_ITEM_KEY)
2472 			break;
2473 
2474 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2475 					  struct btrfs_dev_item);
2476 		devid = btrfs_device_id(leaf, dev_item);
2477 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2478 				   BTRFS_UUID_SIZE);
2479 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2480 				   BTRFS_FSID_SIZE);
2481 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2482 					   fs_uuid, true);
2483 		BUG_ON(!device); /* Logic error */
2484 
2485 		if (device->fs_devices->seeding) {
2486 			btrfs_set_device_generation(leaf, dev_item,
2487 						    device->generation);
2488 			btrfs_mark_buffer_dirty(leaf);
2489 		}
2490 
2491 		path->slots[0]++;
2492 		goto next_slot;
2493 	}
2494 	ret = 0;
2495 error:
2496 	btrfs_free_path(path);
2497 	return ret;
2498 }
2499 
2500 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2501 {
2502 	struct btrfs_root *root = fs_info->dev_root;
2503 	struct request_queue *q;
2504 	struct btrfs_trans_handle *trans;
2505 	struct btrfs_device *device;
2506 	struct block_device *bdev;
2507 	struct super_block *sb = fs_info->sb;
2508 	struct rcu_string *name;
2509 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2510 	u64 orig_super_total_bytes;
2511 	u64 orig_super_num_devices;
2512 	int seeding_dev = 0;
2513 	int ret = 0;
2514 	bool unlocked = false;
2515 
2516 	if (sb_rdonly(sb) && !fs_devices->seeding)
2517 		return -EROFS;
2518 
2519 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2520 				  fs_info->bdev_holder);
2521 	if (IS_ERR(bdev))
2522 		return PTR_ERR(bdev);
2523 
2524 	if (fs_devices->seeding) {
2525 		seeding_dev = 1;
2526 		down_write(&sb->s_umount);
2527 		mutex_lock(&uuid_mutex);
2528 	}
2529 
2530 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2531 
2532 	mutex_lock(&fs_devices->device_list_mutex);
2533 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2534 		if (device->bdev == bdev) {
2535 			ret = -EEXIST;
2536 			mutex_unlock(
2537 				&fs_devices->device_list_mutex);
2538 			goto error;
2539 		}
2540 	}
2541 	mutex_unlock(&fs_devices->device_list_mutex);
2542 
2543 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2544 	if (IS_ERR(device)) {
2545 		/* we can safely leave the fs_devices entry around */
2546 		ret = PTR_ERR(device);
2547 		goto error;
2548 	}
2549 
2550 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2551 	if (!name) {
2552 		ret = -ENOMEM;
2553 		goto error_free_device;
2554 	}
2555 	rcu_assign_pointer(device->name, name);
2556 
2557 	trans = btrfs_start_transaction(root, 0);
2558 	if (IS_ERR(trans)) {
2559 		ret = PTR_ERR(trans);
2560 		goto error_free_device;
2561 	}
2562 
2563 	q = bdev_get_queue(bdev);
2564 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2565 	device->generation = trans->transid;
2566 	device->io_width = fs_info->sectorsize;
2567 	device->io_align = fs_info->sectorsize;
2568 	device->sector_size = fs_info->sectorsize;
2569 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2570 					 fs_info->sectorsize);
2571 	device->disk_total_bytes = device->total_bytes;
2572 	device->commit_total_bytes = device->total_bytes;
2573 	device->fs_info = fs_info;
2574 	device->bdev = bdev;
2575 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2576 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2577 	device->mode = FMODE_EXCL;
2578 	device->dev_stats_valid = 1;
2579 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2580 
2581 	if (seeding_dev) {
2582 		sb->s_flags &= ~SB_RDONLY;
2583 		ret = btrfs_prepare_sprout(fs_info);
2584 		if (ret) {
2585 			btrfs_abort_transaction(trans, ret);
2586 			goto error_trans;
2587 		}
2588 	}
2589 
2590 	device->fs_devices = fs_devices;
2591 
2592 	mutex_lock(&fs_devices->device_list_mutex);
2593 	mutex_lock(&fs_info->chunk_mutex);
2594 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2595 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2596 	fs_devices->num_devices++;
2597 	fs_devices->open_devices++;
2598 	fs_devices->rw_devices++;
2599 	fs_devices->total_devices++;
2600 	fs_devices->total_rw_bytes += device->total_bytes;
2601 
2602 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2603 
2604 	if (!blk_queue_nonrot(q))
2605 		fs_devices->rotating = true;
2606 
2607 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2608 	btrfs_set_super_total_bytes(fs_info->super_copy,
2609 		round_down(orig_super_total_bytes + device->total_bytes,
2610 			   fs_info->sectorsize));
2611 
2612 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2613 	btrfs_set_super_num_devices(fs_info->super_copy,
2614 				    orig_super_num_devices + 1);
2615 
2616 	/* add sysfs device entry */
2617 	btrfs_sysfs_add_devices_dir(fs_devices, device);
2618 
2619 	/*
2620 	 * we've got more storage, clear any full flags on the space
2621 	 * infos
2622 	 */
2623 	btrfs_clear_space_info_full(fs_info);
2624 
2625 	mutex_unlock(&fs_info->chunk_mutex);
2626 	mutex_unlock(&fs_devices->device_list_mutex);
2627 
2628 	if (seeding_dev) {
2629 		mutex_lock(&fs_info->chunk_mutex);
2630 		ret = init_first_rw_device(trans);
2631 		mutex_unlock(&fs_info->chunk_mutex);
2632 		if (ret) {
2633 			btrfs_abort_transaction(trans, ret);
2634 			goto error_sysfs;
2635 		}
2636 	}
2637 
2638 	ret = btrfs_add_dev_item(trans, device);
2639 	if (ret) {
2640 		btrfs_abort_transaction(trans, ret);
2641 		goto error_sysfs;
2642 	}
2643 
2644 	if (seeding_dev) {
2645 		ret = btrfs_finish_sprout(trans);
2646 		if (ret) {
2647 			btrfs_abort_transaction(trans, ret);
2648 			goto error_sysfs;
2649 		}
2650 
2651 		btrfs_sysfs_update_sprout_fsid(fs_devices,
2652 				fs_info->fs_devices->fsid);
2653 	}
2654 
2655 	ret = btrfs_commit_transaction(trans);
2656 
2657 	if (seeding_dev) {
2658 		mutex_unlock(&uuid_mutex);
2659 		up_write(&sb->s_umount);
2660 		unlocked = true;
2661 
2662 		if (ret) /* transaction commit */
2663 			return ret;
2664 
2665 		ret = btrfs_relocate_sys_chunks(fs_info);
2666 		if (ret < 0)
2667 			btrfs_handle_fs_error(fs_info, ret,
2668 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2669 		trans = btrfs_attach_transaction(root);
2670 		if (IS_ERR(trans)) {
2671 			if (PTR_ERR(trans) == -ENOENT)
2672 				return 0;
2673 			ret = PTR_ERR(trans);
2674 			trans = NULL;
2675 			goto error_sysfs;
2676 		}
2677 		ret = btrfs_commit_transaction(trans);
2678 	}
2679 
2680 	/*
2681 	 * Now that we have written a new super block to this device, check all
2682 	 * other fs_devices list if device_path alienates any other scanned
2683 	 * device.
2684 	 * We can ignore the return value as it typically returns -EINVAL and
2685 	 * only succeeds if the device was an alien.
2686 	 */
2687 	btrfs_forget_devices(device_path);
2688 
2689 	/* Update ctime/mtime for blkid or udev */
2690 	update_dev_time(device_path);
2691 
2692 	return ret;
2693 
2694 error_sysfs:
2695 	btrfs_sysfs_remove_devices_dir(fs_devices, device);
2696 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2697 	mutex_lock(&fs_info->chunk_mutex);
2698 	list_del_rcu(&device->dev_list);
2699 	list_del(&device->dev_alloc_list);
2700 	fs_info->fs_devices->num_devices--;
2701 	fs_info->fs_devices->open_devices--;
2702 	fs_info->fs_devices->rw_devices--;
2703 	fs_info->fs_devices->total_devices--;
2704 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2705 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2706 	btrfs_set_super_total_bytes(fs_info->super_copy,
2707 				    orig_super_total_bytes);
2708 	btrfs_set_super_num_devices(fs_info->super_copy,
2709 				    orig_super_num_devices);
2710 	mutex_unlock(&fs_info->chunk_mutex);
2711 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2712 error_trans:
2713 	if (seeding_dev)
2714 		sb->s_flags |= SB_RDONLY;
2715 	if (trans)
2716 		btrfs_end_transaction(trans);
2717 error_free_device:
2718 	btrfs_free_device(device);
2719 error:
2720 	blkdev_put(bdev, FMODE_EXCL);
2721 	if (seeding_dev && !unlocked) {
2722 		mutex_unlock(&uuid_mutex);
2723 		up_write(&sb->s_umount);
2724 	}
2725 	return ret;
2726 }
2727 
2728 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2729 					struct btrfs_device *device)
2730 {
2731 	int ret;
2732 	struct btrfs_path *path;
2733 	struct btrfs_root *root = device->fs_info->chunk_root;
2734 	struct btrfs_dev_item *dev_item;
2735 	struct extent_buffer *leaf;
2736 	struct btrfs_key key;
2737 
2738 	path = btrfs_alloc_path();
2739 	if (!path)
2740 		return -ENOMEM;
2741 
2742 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2743 	key.type = BTRFS_DEV_ITEM_KEY;
2744 	key.offset = device->devid;
2745 
2746 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2747 	if (ret < 0)
2748 		goto out;
2749 
2750 	if (ret > 0) {
2751 		ret = -ENOENT;
2752 		goto out;
2753 	}
2754 
2755 	leaf = path->nodes[0];
2756 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2757 
2758 	btrfs_set_device_id(leaf, dev_item, device->devid);
2759 	btrfs_set_device_type(leaf, dev_item, device->type);
2760 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2761 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2762 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2763 	btrfs_set_device_total_bytes(leaf, dev_item,
2764 				     btrfs_device_get_disk_total_bytes(device));
2765 	btrfs_set_device_bytes_used(leaf, dev_item,
2766 				    btrfs_device_get_bytes_used(device));
2767 	btrfs_mark_buffer_dirty(leaf);
2768 
2769 out:
2770 	btrfs_free_path(path);
2771 	return ret;
2772 }
2773 
2774 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2775 		      struct btrfs_device *device, u64 new_size)
2776 {
2777 	struct btrfs_fs_info *fs_info = device->fs_info;
2778 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2779 	u64 old_total;
2780 	u64 diff;
2781 
2782 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2783 		return -EACCES;
2784 
2785 	new_size = round_down(new_size, fs_info->sectorsize);
2786 
2787 	mutex_lock(&fs_info->chunk_mutex);
2788 	old_total = btrfs_super_total_bytes(super_copy);
2789 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2790 
2791 	if (new_size <= device->total_bytes ||
2792 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2793 		mutex_unlock(&fs_info->chunk_mutex);
2794 		return -EINVAL;
2795 	}
2796 
2797 	btrfs_set_super_total_bytes(super_copy,
2798 			round_down(old_total + diff, fs_info->sectorsize));
2799 	device->fs_devices->total_rw_bytes += diff;
2800 
2801 	btrfs_device_set_total_bytes(device, new_size);
2802 	btrfs_device_set_disk_total_bytes(device, new_size);
2803 	btrfs_clear_space_info_full(device->fs_info);
2804 	if (list_empty(&device->post_commit_list))
2805 		list_add_tail(&device->post_commit_list,
2806 			      &trans->transaction->dev_update_list);
2807 	mutex_unlock(&fs_info->chunk_mutex);
2808 
2809 	return btrfs_update_device(trans, device);
2810 }
2811 
2812 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2813 {
2814 	struct btrfs_fs_info *fs_info = trans->fs_info;
2815 	struct btrfs_root *root = fs_info->chunk_root;
2816 	int ret;
2817 	struct btrfs_path *path;
2818 	struct btrfs_key key;
2819 
2820 	path = btrfs_alloc_path();
2821 	if (!path)
2822 		return -ENOMEM;
2823 
2824 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2825 	key.offset = chunk_offset;
2826 	key.type = BTRFS_CHUNK_ITEM_KEY;
2827 
2828 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2829 	if (ret < 0)
2830 		goto out;
2831 	else if (ret > 0) { /* Logic error or corruption */
2832 		btrfs_handle_fs_error(fs_info, -ENOENT,
2833 				      "Failed lookup while freeing chunk.");
2834 		ret = -ENOENT;
2835 		goto out;
2836 	}
2837 
2838 	ret = btrfs_del_item(trans, root, path);
2839 	if (ret < 0)
2840 		btrfs_handle_fs_error(fs_info, ret,
2841 				      "Failed to delete chunk item.");
2842 out:
2843 	btrfs_free_path(path);
2844 	return ret;
2845 }
2846 
2847 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2848 {
2849 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2850 	struct btrfs_disk_key *disk_key;
2851 	struct btrfs_chunk *chunk;
2852 	u8 *ptr;
2853 	int ret = 0;
2854 	u32 num_stripes;
2855 	u32 array_size;
2856 	u32 len = 0;
2857 	u32 cur;
2858 	struct btrfs_key key;
2859 
2860 	mutex_lock(&fs_info->chunk_mutex);
2861 	array_size = btrfs_super_sys_array_size(super_copy);
2862 
2863 	ptr = super_copy->sys_chunk_array;
2864 	cur = 0;
2865 
2866 	while (cur < array_size) {
2867 		disk_key = (struct btrfs_disk_key *)ptr;
2868 		btrfs_disk_key_to_cpu(&key, disk_key);
2869 
2870 		len = sizeof(*disk_key);
2871 
2872 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2873 			chunk = (struct btrfs_chunk *)(ptr + len);
2874 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2875 			len += btrfs_chunk_item_size(num_stripes);
2876 		} else {
2877 			ret = -EIO;
2878 			break;
2879 		}
2880 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2881 		    key.offset == chunk_offset) {
2882 			memmove(ptr, ptr + len, array_size - (cur + len));
2883 			array_size -= len;
2884 			btrfs_set_super_sys_array_size(super_copy, array_size);
2885 		} else {
2886 			ptr += len;
2887 			cur += len;
2888 		}
2889 	}
2890 	mutex_unlock(&fs_info->chunk_mutex);
2891 	return ret;
2892 }
2893 
2894 /*
2895  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2896  * @logical: Logical block offset in bytes.
2897  * @length: Length of extent in bytes.
2898  *
2899  * Return: Chunk mapping or ERR_PTR.
2900  */
2901 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2902 				       u64 logical, u64 length)
2903 {
2904 	struct extent_map_tree *em_tree;
2905 	struct extent_map *em;
2906 
2907 	em_tree = &fs_info->mapping_tree;
2908 	read_lock(&em_tree->lock);
2909 	em = lookup_extent_mapping(em_tree, logical, length);
2910 	read_unlock(&em_tree->lock);
2911 
2912 	if (!em) {
2913 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2914 			   logical, length);
2915 		return ERR_PTR(-EINVAL);
2916 	}
2917 
2918 	if (em->start > logical || em->start + em->len < logical) {
2919 		btrfs_crit(fs_info,
2920 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2921 			   logical, length, em->start, em->start + em->len);
2922 		free_extent_map(em);
2923 		return ERR_PTR(-EINVAL);
2924 	}
2925 
2926 	/* callers are responsible for dropping em's ref. */
2927 	return em;
2928 }
2929 
2930 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2931 {
2932 	struct btrfs_fs_info *fs_info = trans->fs_info;
2933 	struct extent_map *em;
2934 	struct map_lookup *map;
2935 	u64 dev_extent_len = 0;
2936 	int i, ret = 0;
2937 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2938 
2939 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2940 	if (IS_ERR(em)) {
2941 		/*
2942 		 * This is a logic error, but we don't want to just rely on the
2943 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2944 		 * do anything we still error out.
2945 		 */
2946 		ASSERT(0);
2947 		return PTR_ERR(em);
2948 	}
2949 	map = em->map_lookup;
2950 	mutex_lock(&fs_info->chunk_mutex);
2951 	check_system_chunk(trans, map->type);
2952 	mutex_unlock(&fs_info->chunk_mutex);
2953 
2954 	/*
2955 	 * Take the device list mutex to prevent races with the final phase of
2956 	 * a device replace operation that replaces the device object associated
2957 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2958 	 */
2959 	mutex_lock(&fs_devices->device_list_mutex);
2960 	for (i = 0; i < map->num_stripes; i++) {
2961 		struct btrfs_device *device = map->stripes[i].dev;
2962 		ret = btrfs_free_dev_extent(trans, device,
2963 					    map->stripes[i].physical,
2964 					    &dev_extent_len);
2965 		if (ret) {
2966 			mutex_unlock(&fs_devices->device_list_mutex);
2967 			btrfs_abort_transaction(trans, ret);
2968 			goto out;
2969 		}
2970 
2971 		if (device->bytes_used > 0) {
2972 			mutex_lock(&fs_info->chunk_mutex);
2973 			btrfs_device_set_bytes_used(device,
2974 					device->bytes_used - dev_extent_len);
2975 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2976 			btrfs_clear_space_info_full(fs_info);
2977 			mutex_unlock(&fs_info->chunk_mutex);
2978 		}
2979 
2980 		ret = btrfs_update_device(trans, device);
2981 		if (ret) {
2982 			mutex_unlock(&fs_devices->device_list_mutex);
2983 			btrfs_abort_transaction(trans, ret);
2984 			goto out;
2985 		}
2986 	}
2987 	mutex_unlock(&fs_devices->device_list_mutex);
2988 
2989 	ret = btrfs_free_chunk(trans, chunk_offset);
2990 	if (ret) {
2991 		btrfs_abort_transaction(trans, ret);
2992 		goto out;
2993 	}
2994 
2995 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2996 
2997 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2998 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2999 		if (ret) {
3000 			btrfs_abort_transaction(trans, ret);
3001 			goto out;
3002 		}
3003 	}
3004 
3005 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3006 	if (ret) {
3007 		btrfs_abort_transaction(trans, ret);
3008 		goto out;
3009 	}
3010 
3011 out:
3012 	/* once for us */
3013 	free_extent_map(em);
3014 	return ret;
3015 }
3016 
3017 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3018 {
3019 	struct btrfs_root *root = fs_info->chunk_root;
3020 	struct btrfs_trans_handle *trans;
3021 	struct btrfs_block_group *block_group;
3022 	int ret;
3023 
3024 	/*
3025 	 * Prevent races with automatic removal of unused block groups.
3026 	 * After we relocate and before we remove the chunk with offset
3027 	 * chunk_offset, automatic removal of the block group can kick in,
3028 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3029 	 *
3030 	 * Make sure to acquire this mutex before doing a tree search (dev
3031 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3032 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3033 	 * we release the path used to search the chunk/dev tree and before
3034 	 * the current task acquires this mutex and calls us.
3035 	 */
3036 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3037 
3038 	/* step one, relocate all the extents inside this chunk */
3039 	btrfs_scrub_pause(fs_info);
3040 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3041 	btrfs_scrub_continue(fs_info);
3042 	if (ret)
3043 		return ret;
3044 
3045 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3046 	if (!block_group)
3047 		return -ENOENT;
3048 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3049 	btrfs_put_block_group(block_group);
3050 
3051 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3052 						     chunk_offset);
3053 	if (IS_ERR(trans)) {
3054 		ret = PTR_ERR(trans);
3055 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3056 		return ret;
3057 	}
3058 
3059 	/*
3060 	 * step two, delete the device extents and the
3061 	 * chunk tree entries
3062 	 */
3063 	ret = btrfs_remove_chunk(trans, chunk_offset);
3064 	btrfs_end_transaction(trans);
3065 	return ret;
3066 }
3067 
3068 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3069 {
3070 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3071 	struct btrfs_path *path;
3072 	struct extent_buffer *leaf;
3073 	struct btrfs_chunk *chunk;
3074 	struct btrfs_key key;
3075 	struct btrfs_key found_key;
3076 	u64 chunk_type;
3077 	bool retried = false;
3078 	int failed = 0;
3079 	int ret;
3080 
3081 	path = btrfs_alloc_path();
3082 	if (!path)
3083 		return -ENOMEM;
3084 
3085 again:
3086 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3087 	key.offset = (u64)-1;
3088 	key.type = BTRFS_CHUNK_ITEM_KEY;
3089 
3090 	while (1) {
3091 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3092 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3093 		if (ret < 0) {
3094 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3095 			goto error;
3096 		}
3097 		BUG_ON(ret == 0); /* Corruption */
3098 
3099 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3100 					  key.type);
3101 		if (ret)
3102 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3103 		if (ret < 0)
3104 			goto error;
3105 		if (ret > 0)
3106 			break;
3107 
3108 		leaf = path->nodes[0];
3109 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3110 
3111 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3112 				       struct btrfs_chunk);
3113 		chunk_type = btrfs_chunk_type(leaf, chunk);
3114 		btrfs_release_path(path);
3115 
3116 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3117 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3118 			if (ret == -ENOSPC)
3119 				failed++;
3120 			else
3121 				BUG_ON(ret);
3122 		}
3123 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3124 
3125 		if (found_key.offset == 0)
3126 			break;
3127 		key.offset = found_key.offset - 1;
3128 	}
3129 	ret = 0;
3130 	if (failed && !retried) {
3131 		failed = 0;
3132 		retried = true;
3133 		goto again;
3134 	} else if (WARN_ON(failed && retried)) {
3135 		ret = -ENOSPC;
3136 	}
3137 error:
3138 	btrfs_free_path(path);
3139 	return ret;
3140 }
3141 
3142 /*
3143  * return 1 : allocate a data chunk successfully,
3144  * return <0: errors during allocating a data chunk,
3145  * return 0 : no need to allocate a data chunk.
3146  */
3147 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3148 				      u64 chunk_offset)
3149 {
3150 	struct btrfs_block_group *cache;
3151 	u64 bytes_used;
3152 	u64 chunk_type;
3153 
3154 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3155 	ASSERT(cache);
3156 	chunk_type = cache->flags;
3157 	btrfs_put_block_group(cache);
3158 
3159 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3160 		return 0;
3161 
3162 	spin_lock(&fs_info->data_sinfo->lock);
3163 	bytes_used = fs_info->data_sinfo->bytes_used;
3164 	spin_unlock(&fs_info->data_sinfo->lock);
3165 
3166 	if (!bytes_used) {
3167 		struct btrfs_trans_handle *trans;
3168 		int ret;
3169 
3170 		trans =	btrfs_join_transaction(fs_info->tree_root);
3171 		if (IS_ERR(trans))
3172 			return PTR_ERR(trans);
3173 
3174 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3175 		btrfs_end_transaction(trans);
3176 		if (ret < 0)
3177 			return ret;
3178 		return 1;
3179 	}
3180 
3181 	return 0;
3182 }
3183 
3184 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3185 			       struct btrfs_balance_control *bctl)
3186 {
3187 	struct btrfs_root *root = fs_info->tree_root;
3188 	struct btrfs_trans_handle *trans;
3189 	struct btrfs_balance_item *item;
3190 	struct btrfs_disk_balance_args disk_bargs;
3191 	struct btrfs_path *path;
3192 	struct extent_buffer *leaf;
3193 	struct btrfs_key key;
3194 	int ret, err;
3195 
3196 	path = btrfs_alloc_path();
3197 	if (!path)
3198 		return -ENOMEM;
3199 
3200 	trans = btrfs_start_transaction(root, 0);
3201 	if (IS_ERR(trans)) {
3202 		btrfs_free_path(path);
3203 		return PTR_ERR(trans);
3204 	}
3205 
3206 	key.objectid = BTRFS_BALANCE_OBJECTID;
3207 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3208 	key.offset = 0;
3209 
3210 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3211 				      sizeof(*item));
3212 	if (ret)
3213 		goto out;
3214 
3215 	leaf = path->nodes[0];
3216 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3217 
3218 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3219 
3220 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3221 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3222 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3223 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3224 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3225 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3226 
3227 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3228 
3229 	btrfs_mark_buffer_dirty(leaf);
3230 out:
3231 	btrfs_free_path(path);
3232 	err = btrfs_commit_transaction(trans);
3233 	if (err && !ret)
3234 		ret = err;
3235 	return ret;
3236 }
3237 
3238 static int del_balance_item(struct btrfs_fs_info *fs_info)
3239 {
3240 	struct btrfs_root *root = fs_info->tree_root;
3241 	struct btrfs_trans_handle *trans;
3242 	struct btrfs_path *path;
3243 	struct btrfs_key key;
3244 	int ret, err;
3245 
3246 	path = btrfs_alloc_path();
3247 	if (!path)
3248 		return -ENOMEM;
3249 
3250 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3251 	if (IS_ERR(trans)) {
3252 		btrfs_free_path(path);
3253 		return PTR_ERR(trans);
3254 	}
3255 
3256 	key.objectid = BTRFS_BALANCE_OBJECTID;
3257 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3258 	key.offset = 0;
3259 
3260 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3261 	if (ret < 0)
3262 		goto out;
3263 	if (ret > 0) {
3264 		ret = -ENOENT;
3265 		goto out;
3266 	}
3267 
3268 	ret = btrfs_del_item(trans, root, path);
3269 out:
3270 	btrfs_free_path(path);
3271 	err = btrfs_commit_transaction(trans);
3272 	if (err && !ret)
3273 		ret = err;
3274 	return ret;
3275 }
3276 
3277 /*
3278  * This is a heuristic used to reduce the number of chunks balanced on
3279  * resume after balance was interrupted.
3280  */
3281 static void update_balance_args(struct btrfs_balance_control *bctl)
3282 {
3283 	/*
3284 	 * Turn on soft mode for chunk types that were being converted.
3285 	 */
3286 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3287 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3288 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3289 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3290 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3291 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3292 
3293 	/*
3294 	 * Turn on usage filter if is not already used.  The idea is
3295 	 * that chunks that we have already balanced should be
3296 	 * reasonably full.  Don't do it for chunks that are being
3297 	 * converted - that will keep us from relocating unconverted
3298 	 * (albeit full) chunks.
3299 	 */
3300 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3301 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3302 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3303 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3304 		bctl->data.usage = 90;
3305 	}
3306 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3307 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3308 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3309 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3310 		bctl->sys.usage = 90;
3311 	}
3312 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3313 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3314 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3315 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3316 		bctl->meta.usage = 90;
3317 	}
3318 }
3319 
3320 /*
3321  * Clear the balance status in fs_info and delete the balance item from disk.
3322  */
3323 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3324 {
3325 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3326 	int ret;
3327 
3328 	BUG_ON(!fs_info->balance_ctl);
3329 
3330 	spin_lock(&fs_info->balance_lock);
3331 	fs_info->balance_ctl = NULL;
3332 	spin_unlock(&fs_info->balance_lock);
3333 
3334 	kfree(bctl);
3335 	ret = del_balance_item(fs_info);
3336 	if (ret)
3337 		btrfs_handle_fs_error(fs_info, ret, NULL);
3338 }
3339 
3340 /*
3341  * Balance filters.  Return 1 if chunk should be filtered out
3342  * (should not be balanced).
3343  */
3344 static int chunk_profiles_filter(u64 chunk_type,
3345 				 struct btrfs_balance_args *bargs)
3346 {
3347 	chunk_type = chunk_to_extended(chunk_type) &
3348 				BTRFS_EXTENDED_PROFILE_MASK;
3349 
3350 	if (bargs->profiles & chunk_type)
3351 		return 0;
3352 
3353 	return 1;
3354 }
3355 
3356 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3357 			      struct btrfs_balance_args *bargs)
3358 {
3359 	struct btrfs_block_group *cache;
3360 	u64 chunk_used;
3361 	u64 user_thresh_min;
3362 	u64 user_thresh_max;
3363 	int ret = 1;
3364 
3365 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3366 	chunk_used = cache->used;
3367 
3368 	if (bargs->usage_min == 0)
3369 		user_thresh_min = 0;
3370 	else
3371 		user_thresh_min = div_factor_fine(cache->length,
3372 						  bargs->usage_min);
3373 
3374 	if (bargs->usage_max == 0)
3375 		user_thresh_max = 1;
3376 	else if (bargs->usage_max > 100)
3377 		user_thresh_max = cache->length;
3378 	else
3379 		user_thresh_max = div_factor_fine(cache->length,
3380 						  bargs->usage_max);
3381 
3382 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3383 		ret = 0;
3384 
3385 	btrfs_put_block_group(cache);
3386 	return ret;
3387 }
3388 
3389 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3390 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3391 {
3392 	struct btrfs_block_group *cache;
3393 	u64 chunk_used, user_thresh;
3394 	int ret = 1;
3395 
3396 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 	chunk_used = cache->used;
3398 
3399 	if (bargs->usage_min == 0)
3400 		user_thresh = 1;
3401 	else if (bargs->usage > 100)
3402 		user_thresh = cache->length;
3403 	else
3404 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3405 
3406 	if (chunk_used < user_thresh)
3407 		ret = 0;
3408 
3409 	btrfs_put_block_group(cache);
3410 	return ret;
3411 }
3412 
3413 static int chunk_devid_filter(struct extent_buffer *leaf,
3414 			      struct btrfs_chunk *chunk,
3415 			      struct btrfs_balance_args *bargs)
3416 {
3417 	struct btrfs_stripe *stripe;
3418 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3419 	int i;
3420 
3421 	for (i = 0; i < num_stripes; i++) {
3422 		stripe = btrfs_stripe_nr(chunk, i);
3423 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3424 			return 0;
3425 	}
3426 
3427 	return 1;
3428 }
3429 
3430 static u64 calc_data_stripes(u64 type, int num_stripes)
3431 {
3432 	const int index = btrfs_bg_flags_to_raid_index(type);
3433 	const int ncopies = btrfs_raid_array[index].ncopies;
3434 	const int nparity = btrfs_raid_array[index].nparity;
3435 
3436 	if (nparity)
3437 		return num_stripes - nparity;
3438 	else
3439 		return num_stripes / ncopies;
3440 }
3441 
3442 /* [pstart, pend) */
3443 static int chunk_drange_filter(struct extent_buffer *leaf,
3444 			       struct btrfs_chunk *chunk,
3445 			       struct btrfs_balance_args *bargs)
3446 {
3447 	struct btrfs_stripe *stripe;
3448 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449 	u64 stripe_offset;
3450 	u64 stripe_length;
3451 	u64 type;
3452 	int factor;
3453 	int i;
3454 
3455 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3456 		return 0;
3457 
3458 	type = btrfs_chunk_type(leaf, chunk);
3459 	factor = calc_data_stripes(type, num_stripes);
3460 
3461 	for (i = 0; i < num_stripes; i++) {
3462 		stripe = btrfs_stripe_nr(chunk, i);
3463 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3464 			continue;
3465 
3466 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3467 		stripe_length = btrfs_chunk_length(leaf, chunk);
3468 		stripe_length = div_u64(stripe_length, factor);
3469 
3470 		if (stripe_offset < bargs->pend &&
3471 		    stripe_offset + stripe_length > bargs->pstart)
3472 			return 0;
3473 	}
3474 
3475 	return 1;
3476 }
3477 
3478 /* [vstart, vend) */
3479 static int chunk_vrange_filter(struct extent_buffer *leaf,
3480 			       struct btrfs_chunk *chunk,
3481 			       u64 chunk_offset,
3482 			       struct btrfs_balance_args *bargs)
3483 {
3484 	if (chunk_offset < bargs->vend &&
3485 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3486 		/* at least part of the chunk is inside this vrange */
3487 		return 0;
3488 
3489 	return 1;
3490 }
3491 
3492 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3493 			       struct btrfs_chunk *chunk,
3494 			       struct btrfs_balance_args *bargs)
3495 {
3496 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3497 
3498 	if (bargs->stripes_min <= num_stripes
3499 			&& num_stripes <= bargs->stripes_max)
3500 		return 0;
3501 
3502 	return 1;
3503 }
3504 
3505 static int chunk_soft_convert_filter(u64 chunk_type,
3506 				     struct btrfs_balance_args *bargs)
3507 {
3508 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3509 		return 0;
3510 
3511 	chunk_type = chunk_to_extended(chunk_type) &
3512 				BTRFS_EXTENDED_PROFILE_MASK;
3513 
3514 	if (bargs->target == chunk_type)
3515 		return 1;
3516 
3517 	return 0;
3518 }
3519 
3520 static int should_balance_chunk(struct extent_buffer *leaf,
3521 				struct btrfs_chunk *chunk, u64 chunk_offset)
3522 {
3523 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3524 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3525 	struct btrfs_balance_args *bargs = NULL;
3526 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3527 
3528 	/* type filter */
3529 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3530 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3531 		return 0;
3532 	}
3533 
3534 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3535 		bargs = &bctl->data;
3536 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3537 		bargs = &bctl->sys;
3538 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3539 		bargs = &bctl->meta;
3540 
3541 	/* profiles filter */
3542 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3543 	    chunk_profiles_filter(chunk_type, bargs)) {
3544 		return 0;
3545 	}
3546 
3547 	/* usage filter */
3548 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3550 		return 0;
3551 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3552 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3553 		return 0;
3554 	}
3555 
3556 	/* devid filter */
3557 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3558 	    chunk_devid_filter(leaf, chunk, bargs)) {
3559 		return 0;
3560 	}
3561 
3562 	/* drange filter, makes sense only with devid filter */
3563 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3564 	    chunk_drange_filter(leaf, chunk, bargs)) {
3565 		return 0;
3566 	}
3567 
3568 	/* vrange filter */
3569 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3570 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3571 		return 0;
3572 	}
3573 
3574 	/* stripes filter */
3575 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3576 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3577 		return 0;
3578 	}
3579 
3580 	/* soft profile changing mode */
3581 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3582 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3583 		return 0;
3584 	}
3585 
3586 	/*
3587 	 * limited by count, must be the last filter
3588 	 */
3589 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3590 		if (bargs->limit == 0)
3591 			return 0;
3592 		else
3593 			bargs->limit--;
3594 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3595 		/*
3596 		 * Same logic as the 'limit' filter; the minimum cannot be
3597 		 * determined here because we do not have the global information
3598 		 * about the count of all chunks that satisfy the filters.
3599 		 */
3600 		if (bargs->limit_max == 0)
3601 			return 0;
3602 		else
3603 			bargs->limit_max--;
3604 	}
3605 
3606 	return 1;
3607 }
3608 
3609 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3610 {
3611 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3612 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3613 	u64 chunk_type;
3614 	struct btrfs_chunk *chunk;
3615 	struct btrfs_path *path = NULL;
3616 	struct btrfs_key key;
3617 	struct btrfs_key found_key;
3618 	struct extent_buffer *leaf;
3619 	int slot;
3620 	int ret;
3621 	int enospc_errors = 0;
3622 	bool counting = true;
3623 	/* The single value limit and min/max limits use the same bytes in the */
3624 	u64 limit_data = bctl->data.limit;
3625 	u64 limit_meta = bctl->meta.limit;
3626 	u64 limit_sys = bctl->sys.limit;
3627 	u32 count_data = 0;
3628 	u32 count_meta = 0;
3629 	u32 count_sys = 0;
3630 	int chunk_reserved = 0;
3631 
3632 	path = btrfs_alloc_path();
3633 	if (!path) {
3634 		ret = -ENOMEM;
3635 		goto error;
3636 	}
3637 
3638 	/* zero out stat counters */
3639 	spin_lock(&fs_info->balance_lock);
3640 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3641 	spin_unlock(&fs_info->balance_lock);
3642 again:
3643 	if (!counting) {
3644 		/*
3645 		 * The single value limit and min/max limits use the same bytes
3646 		 * in the
3647 		 */
3648 		bctl->data.limit = limit_data;
3649 		bctl->meta.limit = limit_meta;
3650 		bctl->sys.limit = limit_sys;
3651 	}
3652 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3653 	key.offset = (u64)-1;
3654 	key.type = BTRFS_CHUNK_ITEM_KEY;
3655 
3656 	while (1) {
3657 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3658 		    atomic_read(&fs_info->balance_cancel_req)) {
3659 			ret = -ECANCELED;
3660 			goto error;
3661 		}
3662 
3663 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3664 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3665 		if (ret < 0) {
3666 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667 			goto error;
3668 		}
3669 
3670 		/*
3671 		 * this shouldn't happen, it means the last relocate
3672 		 * failed
3673 		 */
3674 		if (ret == 0)
3675 			BUG(); /* FIXME break ? */
3676 
3677 		ret = btrfs_previous_item(chunk_root, path, 0,
3678 					  BTRFS_CHUNK_ITEM_KEY);
3679 		if (ret) {
3680 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3681 			ret = 0;
3682 			break;
3683 		}
3684 
3685 		leaf = path->nodes[0];
3686 		slot = path->slots[0];
3687 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3688 
3689 		if (found_key.objectid != key.objectid) {
3690 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3691 			break;
3692 		}
3693 
3694 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3695 		chunk_type = btrfs_chunk_type(leaf, chunk);
3696 
3697 		if (!counting) {
3698 			spin_lock(&fs_info->balance_lock);
3699 			bctl->stat.considered++;
3700 			spin_unlock(&fs_info->balance_lock);
3701 		}
3702 
3703 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3704 
3705 		btrfs_release_path(path);
3706 		if (!ret) {
3707 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3708 			goto loop;
3709 		}
3710 
3711 		if (counting) {
3712 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3713 			spin_lock(&fs_info->balance_lock);
3714 			bctl->stat.expected++;
3715 			spin_unlock(&fs_info->balance_lock);
3716 
3717 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3718 				count_data++;
3719 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3720 				count_sys++;
3721 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3722 				count_meta++;
3723 
3724 			goto loop;
3725 		}
3726 
3727 		/*
3728 		 * Apply limit_min filter, no need to check if the LIMITS
3729 		 * filter is used, limit_min is 0 by default
3730 		 */
3731 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3732 					count_data < bctl->data.limit_min)
3733 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3734 					count_meta < bctl->meta.limit_min)
3735 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3736 					count_sys < bctl->sys.limit_min)) {
3737 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738 			goto loop;
3739 		}
3740 
3741 		if (!chunk_reserved) {
3742 			/*
3743 			 * We may be relocating the only data chunk we have,
3744 			 * which could potentially end up with losing data's
3745 			 * raid profile, so lets allocate an empty one in
3746 			 * advance.
3747 			 */
3748 			ret = btrfs_may_alloc_data_chunk(fs_info,
3749 							 found_key.offset);
3750 			if (ret < 0) {
3751 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3752 				goto error;
3753 			} else if (ret == 1) {
3754 				chunk_reserved = 1;
3755 			}
3756 		}
3757 
3758 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3759 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760 		if (ret == -ENOSPC) {
3761 			enospc_errors++;
3762 		} else if (ret == -ETXTBSY) {
3763 			btrfs_info(fs_info,
3764 	   "skipping relocation of block group %llu due to active swapfile",
3765 				   found_key.offset);
3766 			ret = 0;
3767 		} else if (ret) {
3768 			goto error;
3769 		} else {
3770 			spin_lock(&fs_info->balance_lock);
3771 			bctl->stat.completed++;
3772 			spin_unlock(&fs_info->balance_lock);
3773 		}
3774 loop:
3775 		if (found_key.offset == 0)
3776 			break;
3777 		key.offset = found_key.offset - 1;
3778 	}
3779 
3780 	if (counting) {
3781 		btrfs_release_path(path);
3782 		counting = false;
3783 		goto again;
3784 	}
3785 error:
3786 	btrfs_free_path(path);
3787 	if (enospc_errors) {
3788 		btrfs_info(fs_info, "%d enospc errors during balance",
3789 			   enospc_errors);
3790 		if (!ret)
3791 			ret = -ENOSPC;
3792 	}
3793 
3794 	return ret;
3795 }
3796 
3797 /**
3798  * alloc_profile_is_valid - see if a given profile is valid and reduced
3799  * @flags: profile to validate
3800  * @extended: if true @flags is treated as an extended profile
3801  */
3802 static int alloc_profile_is_valid(u64 flags, int extended)
3803 {
3804 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3805 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3806 
3807 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3808 
3809 	/* 1) check that all other bits are zeroed */
3810 	if (flags & ~mask)
3811 		return 0;
3812 
3813 	/* 2) see if profile is reduced */
3814 	if (flags == 0)
3815 		return !extended; /* "0" is valid for usual profiles */
3816 
3817 	return has_single_bit_set(flags);
3818 }
3819 
3820 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3821 {
3822 	/* cancel requested || normal exit path */
3823 	return atomic_read(&fs_info->balance_cancel_req) ||
3824 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3825 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3826 }
3827 
3828 /*
3829  * Validate target profile against allowed profiles and return true if it's OK.
3830  * Otherwise print the error message and return false.
3831  */
3832 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3833 		const struct btrfs_balance_args *bargs,
3834 		u64 allowed, const char *type)
3835 {
3836 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3837 		return true;
3838 
3839 	/* Profile is valid and does not have bits outside of the allowed set */
3840 	if (alloc_profile_is_valid(bargs->target, 1) &&
3841 	    (bargs->target & ~allowed) == 0)
3842 		return true;
3843 
3844 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3845 			type, btrfs_bg_type_to_raid_name(bargs->target));
3846 	return false;
3847 }
3848 
3849 /*
3850  * Fill @buf with textual description of balance filter flags @bargs, up to
3851  * @size_buf including the terminating null. The output may be trimmed if it
3852  * does not fit into the provided buffer.
3853  */
3854 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3855 				 u32 size_buf)
3856 {
3857 	int ret;
3858 	u32 size_bp = size_buf;
3859 	char *bp = buf;
3860 	u64 flags = bargs->flags;
3861 	char tmp_buf[128] = {'\0'};
3862 
3863 	if (!flags)
3864 		return;
3865 
3866 #define CHECK_APPEND_NOARG(a)						\
3867 	do {								\
3868 		ret = snprintf(bp, size_bp, (a));			\
3869 		if (ret < 0 || ret >= size_bp)				\
3870 			goto out_overflow;				\
3871 		size_bp -= ret;						\
3872 		bp += ret;						\
3873 	} while (0)
3874 
3875 #define CHECK_APPEND_1ARG(a, v1)					\
3876 	do {								\
3877 		ret = snprintf(bp, size_bp, (a), (v1));			\
3878 		if (ret < 0 || ret >= size_bp)				\
3879 			goto out_overflow;				\
3880 		size_bp -= ret;						\
3881 		bp += ret;						\
3882 	} while (0)
3883 
3884 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3885 	do {								\
3886 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3887 		if (ret < 0 || ret >= size_bp)				\
3888 			goto out_overflow;				\
3889 		size_bp -= ret;						\
3890 		bp += ret;						\
3891 	} while (0)
3892 
3893 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3894 		CHECK_APPEND_1ARG("convert=%s,",
3895 				  btrfs_bg_type_to_raid_name(bargs->target));
3896 
3897 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3898 		CHECK_APPEND_NOARG("soft,");
3899 
3900 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3901 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3902 					    sizeof(tmp_buf));
3903 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3904 	}
3905 
3906 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3907 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3908 
3909 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3910 		CHECK_APPEND_2ARG("usage=%u..%u,",
3911 				  bargs->usage_min, bargs->usage_max);
3912 
3913 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3914 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3915 
3916 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3917 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3918 				  bargs->pstart, bargs->pend);
3919 
3920 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3921 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3922 				  bargs->vstart, bargs->vend);
3923 
3924 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3925 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3926 
3927 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3928 		CHECK_APPEND_2ARG("limit=%u..%u,",
3929 				bargs->limit_min, bargs->limit_max);
3930 
3931 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3932 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3933 				  bargs->stripes_min, bargs->stripes_max);
3934 
3935 #undef CHECK_APPEND_2ARG
3936 #undef CHECK_APPEND_1ARG
3937 #undef CHECK_APPEND_NOARG
3938 
3939 out_overflow:
3940 
3941 	if (size_bp < size_buf)
3942 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3943 	else
3944 		buf[0] = '\0';
3945 }
3946 
3947 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3948 {
3949 	u32 size_buf = 1024;
3950 	char tmp_buf[192] = {'\0'};
3951 	char *buf;
3952 	char *bp;
3953 	u32 size_bp = size_buf;
3954 	int ret;
3955 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3956 
3957 	buf = kzalloc(size_buf, GFP_KERNEL);
3958 	if (!buf)
3959 		return;
3960 
3961 	bp = buf;
3962 
3963 #define CHECK_APPEND_1ARG(a, v1)					\
3964 	do {								\
3965 		ret = snprintf(bp, size_bp, (a), (v1));			\
3966 		if (ret < 0 || ret >= size_bp)				\
3967 			goto out_overflow;				\
3968 		size_bp -= ret;						\
3969 		bp += ret;						\
3970 	} while (0)
3971 
3972 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3973 		CHECK_APPEND_1ARG("%s", "-f ");
3974 
3975 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3976 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3977 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3978 	}
3979 
3980 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3981 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3982 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3983 	}
3984 
3985 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3986 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3987 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3988 	}
3989 
3990 #undef CHECK_APPEND_1ARG
3991 
3992 out_overflow:
3993 
3994 	if (size_bp < size_buf)
3995 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3996 	btrfs_info(fs_info, "balance: %s %s",
3997 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3998 		   "resume" : "start", buf);
3999 
4000 	kfree(buf);
4001 }
4002 
4003 /*
4004  * Should be called with balance mutexe held
4005  */
4006 int btrfs_balance(struct btrfs_fs_info *fs_info,
4007 		  struct btrfs_balance_control *bctl,
4008 		  struct btrfs_ioctl_balance_args *bargs)
4009 {
4010 	u64 meta_target, data_target;
4011 	u64 allowed;
4012 	int mixed = 0;
4013 	int ret;
4014 	u64 num_devices;
4015 	unsigned seq;
4016 	bool reducing_redundancy;
4017 	int i;
4018 
4019 	if (btrfs_fs_closing(fs_info) ||
4020 	    atomic_read(&fs_info->balance_pause_req) ||
4021 	    btrfs_should_cancel_balance(fs_info)) {
4022 		ret = -EINVAL;
4023 		goto out;
4024 	}
4025 
4026 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4027 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4028 		mixed = 1;
4029 
4030 	/*
4031 	 * In case of mixed groups both data and meta should be picked,
4032 	 * and identical options should be given for both of them.
4033 	 */
4034 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4035 	if (mixed && (bctl->flags & allowed)) {
4036 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4037 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4038 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4039 			btrfs_err(fs_info,
4040 	  "balance: mixed groups data and metadata options must be the same");
4041 			ret = -EINVAL;
4042 			goto out;
4043 		}
4044 	}
4045 
4046 	/*
4047 	 * rw_devices will not change at the moment, device add/delete/replace
4048 	 * are excluded by EXCL_OP
4049 	 */
4050 	num_devices = fs_info->fs_devices->rw_devices;
4051 
4052 	/*
4053 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4054 	 * special bit for it, to make it easier to distinguish.  Thus we need
4055 	 * to set it manually, or balance would refuse the profile.
4056 	 */
4057 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4058 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4059 		if (num_devices >= btrfs_raid_array[i].devs_min)
4060 			allowed |= btrfs_raid_array[i].bg_flag;
4061 
4062 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4063 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4064 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4065 		ret = -EINVAL;
4066 		goto out;
4067 	}
4068 
4069 	/*
4070 	 * Allow to reduce metadata or system integrity only if force set for
4071 	 * profiles with redundancy (copies, parity)
4072 	 */
4073 	allowed = 0;
4074 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4075 		if (btrfs_raid_array[i].ncopies >= 2 ||
4076 		    btrfs_raid_array[i].tolerated_failures >= 1)
4077 			allowed |= btrfs_raid_array[i].bg_flag;
4078 	}
4079 	do {
4080 		seq = read_seqbegin(&fs_info->profiles_lock);
4081 
4082 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4083 		     (fs_info->avail_system_alloc_bits & allowed) &&
4084 		     !(bctl->sys.target & allowed)) ||
4085 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4086 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4087 		     !(bctl->meta.target & allowed)))
4088 			reducing_redundancy = true;
4089 		else
4090 			reducing_redundancy = false;
4091 
4092 		/* if we're not converting, the target field is uninitialized */
4093 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4094 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4095 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4096 			bctl->data.target : fs_info->avail_data_alloc_bits;
4097 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4098 
4099 	if (reducing_redundancy) {
4100 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4101 			btrfs_info(fs_info,
4102 			   "balance: force reducing metadata redundancy");
4103 		} else {
4104 			btrfs_err(fs_info,
4105 	"balance: reduces metadata redundancy, use --force if you want this");
4106 			ret = -EINVAL;
4107 			goto out;
4108 		}
4109 	}
4110 
4111 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4112 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4113 		btrfs_warn(fs_info,
4114 	"balance: metadata profile %s has lower redundancy than data profile %s",
4115 				btrfs_bg_type_to_raid_name(meta_target),
4116 				btrfs_bg_type_to_raid_name(data_target));
4117 	}
4118 
4119 	if (fs_info->send_in_progress) {
4120 		btrfs_warn_rl(fs_info,
4121 "cannot run balance while send operations are in progress (%d in progress)",
4122 			      fs_info->send_in_progress);
4123 		ret = -EAGAIN;
4124 		goto out;
4125 	}
4126 
4127 	ret = insert_balance_item(fs_info, bctl);
4128 	if (ret && ret != -EEXIST)
4129 		goto out;
4130 
4131 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4132 		BUG_ON(ret == -EEXIST);
4133 		BUG_ON(fs_info->balance_ctl);
4134 		spin_lock(&fs_info->balance_lock);
4135 		fs_info->balance_ctl = bctl;
4136 		spin_unlock(&fs_info->balance_lock);
4137 	} else {
4138 		BUG_ON(ret != -EEXIST);
4139 		spin_lock(&fs_info->balance_lock);
4140 		update_balance_args(bctl);
4141 		spin_unlock(&fs_info->balance_lock);
4142 	}
4143 
4144 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4145 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4146 	describe_balance_start_or_resume(fs_info);
4147 	mutex_unlock(&fs_info->balance_mutex);
4148 
4149 	ret = __btrfs_balance(fs_info);
4150 
4151 	mutex_lock(&fs_info->balance_mutex);
4152 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4153 		btrfs_info(fs_info, "balance: paused");
4154 	/*
4155 	 * Balance can be canceled by:
4156 	 *
4157 	 * - Regular cancel request
4158 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4159 	 *
4160 	 * - Fatal signal to "btrfs" process
4161 	 *   Either the signal caught by wait_reserve_ticket() and callers
4162 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4163 	 *   got -ECANCELED.
4164 	 *   Either way, in this case balance_cancel_req = 0, and
4165 	 *   ret == -EINTR or ret == -ECANCELED.
4166 	 *
4167 	 * So here we only check the return value to catch canceled balance.
4168 	 */
4169 	else if (ret == -ECANCELED || ret == -EINTR)
4170 		btrfs_info(fs_info, "balance: canceled");
4171 	else
4172 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4173 
4174 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4175 
4176 	if (bargs) {
4177 		memset(bargs, 0, sizeof(*bargs));
4178 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4179 	}
4180 
4181 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4182 	    balance_need_close(fs_info)) {
4183 		reset_balance_state(fs_info);
4184 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4185 	}
4186 
4187 	wake_up(&fs_info->balance_wait_q);
4188 
4189 	return ret;
4190 out:
4191 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4192 		reset_balance_state(fs_info);
4193 	else
4194 		kfree(bctl);
4195 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4196 
4197 	return ret;
4198 }
4199 
4200 static int balance_kthread(void *data)
4201 {
4202 	struct btrfs_fs_info *fs_info = data;
4203 	int ret = 0;
4204 
4205 	mutex_lock(&fs_info->balance_mutex);
4206 	if (fs_info->balance_ctl)
4207 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4208 	mutex_unlock(&fs_info->balance_mutex);
4209 
4210 	return ret;
4211 }
4212 
4213 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4214 {
4215 	struct task_struct *tsk;
4216 
4217 	mutex_lock(&fs_info->balance_mutex);
4218 	if (!fs_info->balance_ctl) {
4219 		mutex_unlock(&fs_info->balance_mutex);
4220 		return 0;
4221 	}
4222 	mutex_unlock(&fs_info->balance_mutex);
4223 
4224 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4225 		btrfs_info(fs_info, "balance: resume skipped");
4226 		return 0;
4227 	}
4228 
4229 	/*
4230 	 * A ro->rw remount sequence should continue with the paused balance
4231 	 * regardless of who pauses it, system or the user as of now, so set
4232 	 * the resume flag.
4233 	 */
4234 	spin_lock(&fs_info->balance_lock);
4235 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4236 	spin_unlock(&fs_info->balance_lock);
4237 
4238 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4239 	return PTR_ERR_OR_ZERO(tsk);
4240 }
4241 
4242 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4243 {
4244 	struct btrfs_balance_control *bctl;
4245 	struct btrfs_balance_item *item;
4246 	struct btrfs_disk_balance_args disk_bargs;
4247 	struct btrfs_path *path;
4248 	struct extent_buffer *leaf;
4249 	struct btrfs_key key;
4250 	int ret;
4251 
4252 	path = btrfs_alloc_path();
4253 	if (!path)
4254 		return -ENOMEM;
4255 
4256 	key.objectid = BTRFS_BALANCE_OBJECTID;
4257 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4258 	key.offset = 0;
4259 
4260 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4261 	if (ret < 0)
4262 		goto out;
4263 	if (ret > 0) { /* ret = -ENOENT; */
4264 		ret = 0;
4265 		goto out;
4266 	}
4267 
4268 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4269 	if (!bctl) {
4270 		ret = -ENOMEM;
4271 		goto out;
4272 	}
4273 
4274 	leaf = path->nodes[0];
4275 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4276 
4277 	bctl->flags = btrfs_balance_flags(leaf, item);
4278 	bctl->flags |= BTRFS_BALANCE_RESUME;
4279 
4280 	btrfs_balance_data(leaf, item, &disk_bargs);
4281 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4282 	btrfs_balance_meta(leaf, item, &disk_bargs);
4283 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4284 	btrfs_balance_sys(leaf, item, &disk_bargs);
4285 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4286 
4287 	/*
4288 	 * This should never happen, as the paused balance state is recovered
4289 	 * during mount without any chance of other exclusive ops to collide.
4290 	 *
4291 	 * This gives the exclusive op status to balance and keeps in paused
4292 	 * state until user intervention (cancel or umount). If the ownership
4293 	 * cannot be assigned, show a message but do not fail. The balance
4294 	 * is in a paused state and must have fs_info::balance_ctl properly
4295 	 * set up.
4296 	 */
4297 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4298 		btrfs_warn(fs_info,
4299 	"balance: cannot set exclusive op status, resume manually");
4300 
4301 	mutex_lock(&fs_info->balance_mutex);
4302 	BUG_ON(fs_info->balance_ctl);
4303 	spin_lock(&fs_info->balance_lock);
4304 	fs_info->balance_ctl = bctl;
4305 	spin_unlock(&fs_info->balance_lock);
4306 	mutex_unlock(&fs_info->balance_mutex);
4307 out:
4308 	btrfs_free_path(path);
4309 	return ret;
4310 }
4311 
4312 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4313 {
4314 	int ret = 0;
4315 
4316 	mutex_lock(&fs_info->balance_mutex);
4317 	if (!fs_info->balance_ctl) {
4318 		mutex_unlock(&fs_info->balance_mutex);
4319 		return -ENOTCONN;
4320 	}
4321 
4322 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4323 		atomic_inc(&fs_info->balance_pause_req);
4324 		mutex_unlock(&fs_info->balance_mutex);
4325 
4326 		wait_event(fs_info->balance_wait_q,
4327 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4328 
4329 		mutex_lock(&fs_info->balance_mutex);
4330 		/* we are good with balance_ctl ripped off from under us */
4331 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4332 		atomic_dec(&fs_info->balance_pause_req);
4333 	} else {
4334 		ret = -ENOTCONN;
4335 	}
4336 
4337 	mutex_unlock(&fs_info->balance_mutex);
4338 	return ret;
4339 }
4340 
4341 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4342 {
4343 	mutex_lock(&fs_info->balance_mutex);
4344 	if (!fs_info->balance_ctl) {
4345 		mutex_unlock(&fs_info->balance_mutex);
4346 		return -ENOTCONN;
4347 	}
4348 
4349 	/*
4350 	 * A paused balance with the item stored on disk can be resumed at
4351 	 * mount time if the mount is read-write. Otherwise it's still paused
4352 	 * and we must not allow cancelling as it deletes the item.
4353 	 */
4354 	if (sb_rdonly(fs_info->sb)) {
4355 		mutex_unlock(&fs_info->balance_mutex);
4356 		return -EROFS;
4357 	}
4358 
4359 	atomic_inc(&fs_info->balance_cancel_req);
4360 	/*
4361 	 * if we are running just wait and return, balance item is
4362 	 * deleted in btrfs_balance in this case
4363 	 */
4364 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4365 		mutex_unlock(&fs_info->balance_mutex);
4366 		wait_event(fs_info->balance_wait_q,
4367 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4368 		mutex_lock(&fs_info->balance_mutex);
4369 	} else {
4370 		mutex_unlock(&fs_info->balance_mutex);
4371 		/*
4372 		 * Lock released to allow other waiters to continue, we'll
4373 		 * reexamine the status again.
4374 		 */
4375 		mutex_lock(&fs_info->balance_mutex);
4376 
4377 		if (fs_info->balance_ctl) {
4378 			reset_balance_state(fs_info);
4379 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4380 			btrfs_info(fs_info, "balance: canceled");
4381 		}
4382 	}
4383 
4384 	BUG_ON(fs_info->balance_ctl ||
4385 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386 	atomic_dec(&fs_info->balance_cancel_req);
4387 	mutex_unlock(&fs_info->balance_mutex);
4388 	return 0;
4389 }
4390 
4391 int btrfs_uuid_scan_kthread(void *data)
4392 {
4393 	struct btrfs_fs_info *fs_info = data;
4394 	struct btrfs_root *root = fs_info->tree_root;
4395 	struct btrfs_key key;
4396 	struct btrfs_path *path = NULL;
4397 	int ret = 0;
4398 	struct extent_buffer *eb;
4399 	int slot;
4400 	struct btrfs_root_item root_item;
4401 	u32 item_size;
4402 	struct btrfs_trans_handle *trans = NULL;
4403 	bool closing = false;
4404 
4405 	path = btrfs_alloc_path();
4406 	if (!path) {
4407 		ret = -ENOMEM;
4408 		goto out;
4409 	}
4410 
4411 	key.objectid = 0;
4412 	key.type = BTRFS_ROOT_ITEM_KEY;
4413 	key.offset = 0;
4414 
4415 	while (1) {
4416 		if (btrfs_fs_closing(fs_info)) {
4417 			closing = true;
4418 			break;
4419 		}
4420 		ret = btrfs_search_forward(root, &key, path,
4421 				BTRFS_OLDEST_GENERATION);
4422 		if (ret) {
4423 			if (ret > 0)
4424 				ret = 0;
4425 			break;
4426 		}
4427 
4428 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4429 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4430 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4431 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4432 			goto skip;
4433 
4434 		eb = path->nodes[0];
4435 		slot = path->slots[0];
4436 		item_size = btrfs_item_size_nr(eb, slot);
4437 		if (item_size < sizeof(root_item))
4438 			goto skip;
4439 
4440 		read_extent_buffer(eb, &root_item,
4441 				   btrfs_item_ptr_offset(eb, slot),
4442 				   (int)sizeof(root_item));
4443 		if (btrfs_root_refs(&root_item) == 0)
4444 			goto skip;
4445 
4446 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4447 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4448 			if (trans)
4449 				goto update_tree;
4450 
4451 			btrfs_release_path(path);
4452 			/*
4453 			 * 1 - subvol uuid item
4454 			 * 1 - received_subvol uuid item
4455 			 */
4456 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4457 			if (IS_ERR(trans)) {
4458 				ret = PTR_ERR(trans);
4459 				break;
4460 			}
4461 			continue;
4462 		} else {
4463 			goto skip;
4464 		}
4465 update_tree:
4466 		btrfs_release_path(path);
4467 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4468 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4469 						  BTRFS_UUID_KEY_SUBVOL,
4470 						  key.objectid);
4471 			if (ret < 0) {
4472 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4473 					ret);
4474 				break;
4475 			}
4476 		}
4477 
4478 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4479 			ret = btrfs_uuid_tree_add(trans,
4480 						  root_item.received_uuid,
4481 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4482 						  key.objectid);
4483 			if (ret < 0) {
4484 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4485 					ret);
4486 				break;
4487 			}
4488 		}
4489 
4490 skip:
4491 		btrfs_release_path(path);
4492 		if (trans) {
4493 			ret = btrfs_end_transaction(trans);
4494 			trans = NULL;
4495 			if (ret)
4496 				break;
4497 		}
4498 
4499 		if (key.offset < (u64)-1) {
4500 			key.offset++;
4501 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4502 			key.offset = 0;
4503 			key.type = BTRFS_ROOT_ITEM_KEY;
4504 		} else if (key.objectid < (u64)-1) {
4505 			key.offset = 0;
4506 			key.type = BTRFS_ROOT_ITEM_KEY;
4507 			key.objectid++;
4508 		} else {
4509 			break;
4510 		}
4511 		cond_resched();
4512 	}
4513 
4514 out:
4515 	btrfs_free_path(path);
4516 	if (trans && !IS_ERR(trans))
4517 		btrfs_end_transaction(trans);
4518 	if (ret)
4519 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4520 	else if (!closing)
4521 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4522 	up(&fs_info->uuid_tree_rescan_sem);
4523 	return 0;
4524 }
4525 
4526 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4527 {
4528 	struct btrfs_trans_handle *trans;
4529 	struct btrfs_root *tree_root = fs_info->tree_root;
4530 	struct btrfs_root *uuid_root;
4531 	struct task_struct *task;
4532 	int ret;
4533 
4534 	/*
4535 	 * 1 - root node
4536 	 * 1 - root item
4537 	 */
4538 	trans = btrfs_start_transaction(tree_root, 2);
4539 	if (IS_ERR(trans))
4540 		return PTR_ERR(trans);
4541 
4542 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4543 	if (IS_ERR(uuid_root)) {
4544 		ret = PTR_ERR(uuid_root);
4545 		btrfs_abort_transaction(trans, ret);
4546 		btrfs_end_transaction(trans);
4547 		return ret;
4548 	}
4549 
4550 	fs_info->uuid_root = uuid_root;
4551 
4552 	ret = btrfs_commit_transaction(trans);
4553 	if (ret)
4554 		return ret;
4555 
4556 	down(&fs_info->uuid_tree_rescan_sem);
4557 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4558 	if (IS_ERR(task)) {
4559 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4560 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4561 		up(&fs_info->uuid_tree_rescan_sem);
4562 		return PTR_ERR(task);
4563 	}
4564 
4565 	return 0;
4566 }
4567 
4568 /*
4569  * shrinking a device means finding all of the device extents past
4570  * the new size, and then following the back refs to the chunks.
4571  * The chunk relocation code actually frees the device extent
4572  */
4573 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4574 {
4575 	struct btrfs_fs_info *fs_info = device->fs_info;
4576 	struct btrfs_root *root = fs_info->dev_root;
4577 	struct btrfs_trans_handle *trans;
4578 	struct btrfs_dev_extent *dev_extent = NULL;
4579 	struct btrfs_path *path;
4580 	u64 length;
4581 	u64 chunk_offset;
4582 	int ret;
4583 	int slot;
4584 	int failed = 0;
4585 	bool retried = false;
4586 	struct extent_buffer *l;
4587 	struct btrfs_key key;
4588 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4589 	u64 old_total = btrfs_super_total_bytes(super_copy);
4590 	u64 old_size = btrfs_device_get_total_bytes(device);
4591 	u64 diff;
4592 	u64 start;
4593 
4594 	new_size = round_down(new_size, fs_info->sectorsize);
4595 	start = new_size;
4596 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4597 
4598 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4599 		return -EINVAL;
4600 
4601 	path = btrfs_alloc_path();
4602 	if (!path)
4603 		return -ENOMEM;
4604 
4605 	path->reada = READA_BACK;
4606 
4607 	trans = btrfs_start_transaction(root, 0);
4608 	if (IS_ERR(trans)) {
4609 		btrfs_free_path(path);
4610 		return PTR_ERR(trans);
4611 	}
4612 
4613 	mutex_lock(&fs_info->chunk_mutex);
4614 
4615 	btrfs_device_set_total_bytes(device, new_size);
4616 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4617 		device->fs_devices->total_rw_bytes -= diff;
4618 		atomic64_sub(diff, &fs_info->free_chunk_space);
4619 	}
4620 
4621 	/*
4622 	 * Once the device's size has been set to the new size, ensure all
4623 	 * in-memory chunks are synced to disk so that the loop below sees them
4624 	 * and relocates them accordingly.
4625 	 */
4626 	if (contains_pending_extent(device, &start, diff)) {
4627 		mutex_unlock(&fs_info->chunk_mutex);
4628 		ret = btrfs_commit_transaction(trans);
4629 		if (ret)
4630 			goto done;
4631 	} else {
4632 		mutex_unlock(&fs_info->chunk_mutex);
4633 		btrfs_end_transaction(trans);
4634 	}
4635 
4636 again:
4637 	key.objectid = device->devid;
4638 	key.offset = (u64)-1;
4639 	key.type = BTRFS_DEV_EXTENT_KEY;
4640 
4641 	do {
4642 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4643 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4644 		if (ret < 0) {
4645 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4646 			goto done;
4647 		}
4648 
4649 		ret = btrfs_previous_item(root, path, 0, key.type);
4650 		if (ret)
4651 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4652 		if (ret < 0)
4653 			goto done;
4654 		if (ret) {
4655 			ret = 0;
4656 			btrfs_release_path(path);
4657 			break;
4658 		}
4659 
4660 		l = path->nodes[0];
4661 		slot = path->slots[0];
4662 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4663 
4664 		if (key.objectid != device->devid) {
4665 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4666 			btrfs_release_path(path);
4667 			break;
4668 		}
4669 
4670 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4671 		length = btrfs_dev_extent_length(l, dev_extent);
4672 
4673 		if (key.offset + length <= new_size) {
4674 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4675 			btrfs_release_path(path);
4676 			break;
4677 		}
4678 
4679 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4680 		btrfs_release_path(path);
4681 
4682 		/*
4683 		 * We may be relocating the only data chunk we have,
4684 		 * which could potentially end up with losing data's
4685 		 * raid profile, so lets allocate an empty one in
4686 		 * advance.
4687 		 */
4688 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4689 		if (ret < 0) {
4690 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4691 			goto done;
4692 		}
4693 
4694 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4695 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4696 		if (ret == -ENOSPC) {
4697 			failed++;
4698 		} else if (ret) {
4699 			if (ret == -ETXTBSY) {
4700 				btrfs_warn(fs_info,
4701 		   "could not shrink block group %llu due to active swapfile",
4702 					   chunk_offset);
4703 			}
4704 			goto done;
4705 		}
4706 	} while (key.offset-- > 0);
4707 
4708 	if (failed && !retried) {
4709 		failed = 0;
4710 		retried = true;
4711 		goto again;
4712 	} else if (failed && retried) {
4713 		ret = -ENOSPC;
4714 		goto done;
4715 	}
4716 
4717 	/* Shrinking succeeded, else we would be at "done". */
4718 	trans = btrfs_start_transaction(root, 0);
4719 	if (IS_ERR(trans)) {
4720 		ret = PTR_ERR(trans);
4721 		goto done;
4722 	}
4723 
4724 	mutex_lock(&fs_info->chunk_mutex);
4725 	/* Clear all state bits beyond the shrunk device size */
4726 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4727 			  CHUNK_STATE_MASK);
4728 
4729 	btrfs_device_set_disk_total_bytes(device, new_size);
4730 	if (list_empty(&device->post_commit_list))
4731 		list_add_tail(&device->post_commit_list,
4732 			      &trans->transaction->dev_update_list);
4733 
4734 	WARN_ON(diff > old_total);
4735 	btrfs_set_super_total_bytes(super_copy,
4736 			round_down(old_total - diff, fs_info->sectorsize));
4737 	mutex_unlock(&fs_info->chunk_mutex);
4738 
4739 	/* Now btrfs_update_device() will change the on-disk size. */
4740 	ret = btrfs_update_device(trans, device);
4741 	if (ret < 0) {
4742 		btrfs_abort_transaction(trans, ret);
4743 		btrfs_end_transaction(trans);
4744 	} else {
4745 		ret = btrfs_commit_transaction(trans);
4746 	}
4747 done:
4748 	btrfs_free_path(path);
4749 	if (ret) {
4750 		mutex_lock(&fs_info->chunk_mutex);
4751 		btrfs_device_set_total_bytes(device, old_size);
4752 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4753 			device->fs_devices->total_rw_bytes += diff;
4754 		atomic64_add(diff, &fs_info->free_chunk_space);
4755 		mutex_unlock(&fs_info->chunk_mutex);
4756 	}
4757 	return ret;
4758 }
4759 
4760 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4761 			   struct btrfs_key *key,
4762 			   struct btrfs_chunk *chunk, int item_size)
4763 {
4764 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4765 	struct btrfs_disk_key disk_key;
4766 	u32 array_size;
4767 	u8 *ptr;
4768 
4769 	mutex_lock(&fs_info->chunk_mutex);
4770 	array_size = btrfs_super_sys_array_size(super_copy);
4771 	if (array_size + item_size + sizeof(disk_key)
4772 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4773 		mutex_unlock(&fs_info->chunk_mutex);
4774 		return -EFBIG;
4775 	}
4776 
4777 	ptr = super_copy->sys_chunk_array + array_size;
4778 	btrfs_cpu_key_to_disk(&disk_key, key);
4779 	memcpy(ptr, &disk_key, sizeof(disk_key));
4780 	ptr += sizeof(disk_key);
4781 	memcpy(ptr, chunk, item_size);
4782 	item_size += sizeof(disk_key);
4783 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4784 	mutex_unlock(&fs_info->chunk_mutex);
4785 
4786 	return 0;
4787 }
4788 
4789 /*
4790  * sort the devices in descending order by max_avail, total_avail
4791  */
4792 static int btrfs_cmp_device_info(const void *a, const void *b)
4793 {
4794 	const struct btrfs_device_info *di_a = a;
4795 	const struct btrfs_device_info *di_b = b;
4796 
4797 	if (di_a->max_avail > di_b->max_avail)
4798 		return -1;
4799 	if (di_a->max_avail < di_b->max_avail)
4800 		return 1;
4801 	if (di_a->total_avail > di_b->total_avail)
4802 		return -1;
4803 	if (di_a->total_avail < di_b->total_avail)
4804 		return 1;
4805 	return 0;
4806 }
4807 
4808 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4809 {
4810 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4811 		return;
4812 
4813 	btrfs_set_fs_incompat(info, RAID56);
4814 }
4815 
4816 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4817 {
4818 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4819 		return;
4820 
4821 	btrfs_set_fs_incompat(info, RAID1C34);
4822 }
4823 
4824 /*
4825  * Structure used internally for __btrfs_alloc_chunk() function.
4826  * Wraps needed parameters.
4827  */
4828 struct alloc_chunk_ctl {
4829 	u64 start;
4830 	u64 type;
4831 	/* Total number of stripes to allocate */
4832 	int num_stripes;
4833 	/* sub_stripes info for map */
4834 	int sub_stripes;
4835 	/* Stripes per device */
4836 	int dev_stripes;
4837 	/* Maximum number of devices to use */
4838 	int devs_max;
4839 	/* Minimum number of devices to use */
4840 	int devs_min;
4841 	/* ndevs has to be a multiple of this */
4842 	int devs_increment;
4843 	/* Number of copies */
4844 	int ncopies;
4845 	/* Number of stripes worth of bytes to store parity information */
4846 	int nparity;
4847 	u64 max_stripe_size;
4848 	u64 max_chunk_size;
4849 	u64 dev_extent_min;
4850 	u64 stripe_size;
4851 	u64 chunk_size;
4852 	int ndevs;
4853 };
4854 
4855 static void init_alloc_chunk_ctl_policy_regular(
4856 				struct btrfs_fs_devices *fs_devices,
4857 				struct alloc_chunk_ctl *ctl)
4858 {
4859 	u64 type = ctl->type;
4860 
4861 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4862 		ctl->max_stripe_size = SZ_1G;
4863 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4864 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4865 		/* For larger filesystems, use larger metadata chunks */
4866 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4867 			ctl->max_stripe_size = SZ_1G;
4868 		else
4869 			ctl->max_stripe_size = SZ_256M;
4870 		ctl->max_chunk_size = ctl->max_stripe_size;
4871 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4872 		ctl->max_stripe_size = SZ_32M;
4873 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4874 		ctl->devs_max = min_t(int, ctl->devs_max,
4875 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4876 	} else {
4877 		BUG();
4878 	}
4879 
4880 	/* We don't want a chunk larger than 10% of writable space */
4881 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4882 				  ctl->max_chunk_size);
4883 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4884 }
4885 
4886 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4887 				 struct alloc_chunk_ctl *ctl)
4888 {
4889 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4890 
4891 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4892 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4893 	ctl->devs_max = btrfs_raid_array[index].devs_max;
4894 	if (!ctl->devs_max)
4895 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4896 	ctl->devs_min = btrfs_raid_array[index].devs_min;
4897 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4898 	ctl->ncopies = btrfs_raid_array[index].ncopies;
4899 	ctl->nparity = btrfs_raid_array[index].nparity;
4900 	ctl->ndevs = 0;
4901 
4902 	switch (fs_devices->chunk_alloc_policy) {
4903 	case BTRFS_CHUNK_ALLOC_REGULAR:
4904 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4905 		break;
4906 	default:
4907 		BUG();
4908 	}
4909 }
4910 
4911 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4912 			      struct alloc_chunk_ctl *ctl,
4913 			      struct btrfs_device_info *devices_info)
4914 {
4915 	struct btrfs_fs_info *info = fs_devices->fs_info;
4916 	struct btrfs_device *device;
4917 	u64 total_avail;
4918 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4919 	int ret;
4920 	int ndevs = 0;
4921 	u64 max_avail;
4922 	u64 dev_offset;
4923 
4924 	/*
4925 	 * in the first pass through the devices list, we gather information
4926 	 * about the available holes on each device.
4927 	 */
4928 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4929 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4930 			WARN(1, KERN_ERR
4931 			       "BTRFS: read-only device in alloc_list\n");
4932 			continue;
4933 		}
4934 
4935 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4936 					&device->dev_state) ||
4937 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4938 			continue;
4939 
4940 		if (device->total_bytes > device->bytes_used)
4941 			total_avail = device->total_bytes - device->bytes_used;
4942 		else
4943 			total_avail = 0;
4944 
4945 		/* If there is no space on this device, skip it. */
4946 		if (total_avail < ctl->dev_extent_min)
4947 			continue;
4948 
4949 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4950 					   &max_avail);
4951 		if (ret && ret != -ENOSPC)
4952 			return ret;
4953 
4954 		if (ret == 0)
4955 			max_avail = dev_extent_want;
4956 
4957 		if (max_avail < ctl->dev_extent_min) {
4958 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4959 				btrfs_debug(info,
4960 			"%s: devid %llu has no free space, have=%llu want=%llu",
4961 					    __func__, device->devid, max_avail,
4962 					    ctl->dev_extent_min);
4963 			continue;
4964 		}
4965 
4966 		if (ndevs == fs_devices->rw_devices) {
4967 			WARN(1, "%s: found more than %llu devices\n",
4968 			     __func__, fs_devices->rw_devices);
4969 			break;
4970 		}
4971 		devices_info[ndevs].dev_offset = dev_offset;
4972 		devices_info[ndevs].max_avail = max_avail;
4973 		devices_info[ndevs].total_avail = total_avail;
4974 		devices_info[ndevs].dev = device;
4975 		++ndevs;
4976 	}
4977 	ctl->ndevs = ndevs;
4978 
4979 	/*
4980 	 * now sort the devices by hole size / available space
4981 	 */
4982 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4983 	     btrfs_cmp_device_info, NULL);
4984 
4985 	return 0;
4986 }
4987 
4988 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4989 				      struct btrfs_device_info *devices_info)
4990 {
4991 	/* Number of stripes that count for block group size */
4992 	int data_stripes;
4993 
4994 	/*
4995 	 * The primary goal is to maximize the number of stripes, so use as
4996 	 * many devices as possible, even if the stripes are not maximum sized.
4997 	 *
4998 	 * The DUP profile stores more than one stripe per device, the
4999 	 * max_avail is the total size so we have to adjust.
5000 	 */
5001 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5002 				   ctl->dev_stripes);
5003 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5004 
5005 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5006 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5007 
5008 	/*
5009 	 * Use the number of data stripes to figure out how big this chunk is
5010 	 * really going to be in terms of logical address space, and compare
5011 	 * that answer with the max chunk size. If it's higher, we try to
5012 	 * reduce stripe_size.
5013 	 */
5014 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5015 		/*
5016 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5017 		 * then use it, unless it ends up being even bigger than the
5018 		 * previous value we had already.
5019 		 */
5020 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5021 							data_stripes), SZ_16M),
5022 				       ctl->stripe_size);
5023 	}
5024 
5025 	/* Align to BTRFS_STRIPE_LEN */
5026 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5027 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5028 
5029 	return 0;
5030 }
5031 
5032 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5033 			      struct alloc_chunk_ctl *ctl,
5034 			      struct btrfs_device_info *devices_info)
5035 {
5036 	struct btrfs_fs_info *info = fs_devices->fs_info;
5037 
5038 	/*
5039 	 * Round down to number of usable stripes, devs_increment can be any
5040 	 * number so we can't use round_down() that requires power of 2, while
5041 	 * rounddown is safe.
5042 	 */
5043 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5044 
5045 	if (ctl->ndevs < ctl->devs_min) {
5046 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5047 			btrfs_debug(info,
5048 	"%s: not enough devices with free space: have=%d minimum required=%d",
5049 				    __func__, ctl->ndevs, ctl->devs_min);
5050 		}
5051 		return -ENOSPC;
5052 	}
5053 
5054 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5055 
5056 	switch (fs_devices->chunk_alloc_policy) {
5057 	case BTRFS_CHUNK_ALLOC_REGULAR:
5058 		return decide_stripe_size_regular(ctl, devices_info);
5059 	default:
5060 		BUG();
5061 	}
5062 }
5063 
5064 static int create_chunk(struct btrfs_trans_handle *trans,
5065 			struct alloc_chunk_ctl *ctl,
5066 			struct btrfs_device_info *devices_info)
5067 {
5068 	struct btrfs_fs_info *info = trans->fs_info;
5069 	struct map_lookup *map = NULL;
5070 	struct extent_map_tree *em_tree;
5071 	struct extent_map *em;
5072 	u64 start = ctl->start;
5073 	u64 type = ctl->type;
5074 	int ret;
5075 	int i;
5076 	int j;
5077 
5078 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5079 	if (!map)
5080 		return -ENOMEM;
5081 	map->num_stripes = ctl->num_stripes;
5082 
5083 	for (i = 0; i < ctl->ndevs; ++i) {
5084 		for (j = 0; j < ctl->dev_stripes; ++j) {
5085 			int s = i * ctl->dev_stripes + j;
5086 			map->stripes[s].dev = devices_info[i].dev;
5087 			map->stripes[s].physical = devices_info[i].dev_offset +
5088 						   j * ctl->stripe_size;
5089 		}
5090 	}
5091 	map->stripe_len = BTRFS_STRIPE_LEN;
5092 	map->io_align = BTRFS_STRIPE_LEN;
5093 	map->io_width = BTRFS_STRIPE_LEN;
5094 	map->type = type;
5095 	map->sub_stripes = ctl->sub_stripes;
5096 
5097 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5098 
5099 	em = alloc_extent_map();
5100 	if (!em) {
5101 		kfree(map);
5102 		return -ENOMEM;
5103 	}
5104 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5105 	em->map_lookup = map;
5106 	em->start = start;
5107 	em->len = ctl->chunk_size;
5108 	em->block_start = 0;
5109 	em->block_len = em->len;
5110 	em->orig_block_len = ctl->stripe_size;
5111 
5112 	em_tree = &info->mapping_tree;
5113 	write_lock(&em_tree->lock);
5114 	ret = add_extent_mapping(em_tree, em, 0);
5115 	if (ret) {
5116 		write_unlock(&em_tree->lock);
5117 		free_extent_map(em);
5118 		return ret;
5119 	}
5120 	write_unlock(&em_tree->lock);
5121 
5122 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5123 	if (ret)
5124 		goto error_del_extent;
5125 
5126 	for (i = 0; i < map->num_stripes; i++) {
5127 		struct btrfs_device *dev = map->stripes[i].dev;
5128 
5129 		btrfs_device_set_bytes_used(dev,
5130 					    dev->bytes_used + ctl->stripe_size);
5131 		if (list_empty(&dev->post_commit_list))
5132 			list_add_tail(&dev->post_commit_list,
5133 				      &trans->transaction->dev_update_list);
5134 	}
5135 
5136 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5137 		     &info->free_chunk_space);
5138 
5139 	free_extent_map(em);
5140 	check_raid56_incompat_flag(info, type);
5141 	check_raid1c34_incompat_flag(info, type);
5142 
5143 	return 0;
5144 
5145 error_del_extent:
5146 	write_lock(&em_tree->lock);
5147 	remove_extent_mapping(em_tree, em);
5148 	write_unlock(&em_tree->lock);
5149 
5150 	/* One for our allocation */
5151 	free_extent_map(em);
5152 	/* One for the tree reference */
5153 	free_extent_map(em);
5154 
5155 	return ret;
5156 }
5157 
5158 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5159 {
5160 	struct btrfs_fs_info *info = trans->fs_info;
5161 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5162 	struct btrfs_device_info *devices_info = NULL;
5163 	struct alloc_chunk_ctl ctl;
5164 	int ret;
5165 
5166 	lockdep_assert_held(&info->chunk_mutex);
5167 
5168 	if (!alloc_profile_is_valid(type, 0)) {
5169 		ASSERT(0);
5170 		return -EINVAL;
5171 	}
5172 
5173 	if (list_empty(&fs_devices->alloc_list)) {
5174 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5175 			btrfs_debug(info, "%s: no writable device", __func__);
5176 		return -ENOSPC;
5177 	}
5178 
5179 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5180 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5181 		ASSERT(0);
5182 		return -EINVAL;
5183 	}
5184 
5185 	ctl.start = find_next_chunk(info);
5186 	ctl.type = type;
5187 	init_alloc_chunk_ctl(fs_devices, &ctl);
5188 
5189 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5190 			       GFP_NOFS);
5191 	if (!devices_info)
5192 		return -ENOMEM;
5193 
5194 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5195 	if (ret < 0)
5196 		goto out;
5197 
5198 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5199 	if (ret < 0)
5200 		goto out;
5201 
5202 	ret = create_chunk(trans, &ctl, devices_info);
5203 
5204 out:
5205 	kfree(devices_info);
5206 	return ret;
5207 }
5208 
5209 /*
5210  * Chunk allocation falls into two parts. The first part does work
5211  * that makes the new allocated chunk usable, but does not do any operation
5212  * that modifies the chunk tree. The second part does the work that
5213  * requires modifying the chunk tree. This division is important for the
5214  * bootstrap process of adding storage to a seed btrfs.
5215  */
5216 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5217 			     u64 chunk_offset, u64 chunk_size)
5218 {
5219 	struct btrfs_fs_info *fs_info = trans->fs_info;
5220 	struct btrfs_root *extent_root = fs_info->extent_root;
5221 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5222 	struct btrfs_key key;
5223 	struct btrfs_device *device;
5224 	struct btrfs_chunk *chunk;
5225 	struct btrfs_stripe *stripe;
5226 	struct extent_map *em;
5227 	struct map_lookup *map;
5228 	size_t item_size;
5229 	u64 dev_offset;
5230 	u64 stripe_size;
5231 	int i = 0;
5232 	int ret = 0;
5233 
5234 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5235 	if (IS_ERR(em))
5236 		return PTR_ERR(em);
5237 
5238 	map = em->map_lookup;
5239 	item_size = btrfs_chunk_item_size(map->num_stripes);
5240 	stripe_size = em->orig_block_len;
5241 
5242 	chunk = kzalloc(item_size, GFP_NOFS);
5243 	if (!chunk) {
5244 		ret = -ENOMEM;
5245 		goto out;
5246 	}
5247 
5248 	/*
5249 	 * Take the device list mutex to prevent races with the final phase of
5250 	 * a device replace operation that replaces the device object associated
5251 	 * with the map's stripes, because the device object's id can change
5252 	 * at any time during that final phase of the device replace operation
5253 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5254 	 */
5255 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5256 	for (i = 0; i < map->num_stripes; i++) {
5257 		device = map->stripes[i].dev;
5258 		dev_offset = map->stripes[i].physical;
5259 
5260 		ret = btrfs_update_device(trans, device);
5261 		if (ret)
5262 			break;
5263 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5264 					     dev_offset, stripe_size);
5265 		if (ret)
5266 			break;
5267 	}
5268 	if (ret) {
5269 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5270 		goto out;
5271 	}
5272 
5273 	stripe = &chunk->stripe;
5274 	for (i = 0; i < map->num_stripes; i++) {
5275 		device = map->stripes[i].dev;
5276 		dev_offset = map->stripes[i].physical;
5277 
5278 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5279 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5280 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5281 		stripe++;
5282 	}
5283 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5284 
5285 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5286 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5287 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5288 	btrfs_set_stack_chunk_type(chunk, map->type);
5289 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5290 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5291 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5292 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5293 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5294 
5295 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5296 	key.type = BTRFS_CHUNK_ITEM_KEY;
5297 	key.offset = chunk_offset;
5298 
5299 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5300 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5301 		/*
5302 		 * TODO: Cleanup of inserted chunk root in case of
5303 		 * failure.
5304 		 */
5305 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5306 	}
5307 
5308 out:
5309 	kfree(chunk);
5310 	free_extent_map(em);
5311 	return ret;
5312 }
5313 
5314 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5315 {
5316 	struct btrfs_fs_info *fs_info = trans->fs_info;
5317 	u64 alloc_profile;
5318 	int ret;
5319 
5320 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5321 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5322 	if (ret)
5323 		return ret;
5324 
5325 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5326 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5327 	return ret;
5328 }
5329 
5330 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5331 {
5332 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5333 
5334 	return btrfs_raid_array[index].tolerated_failures;
5335 }
5336 
5337 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5338 {
5339 	struct extent_map *em;
5340 	struct map_lookup *map;
5341 	int readonly = 0;
5342 	int miss_ndevs = 0;
5343 	int i;
5344 
5345 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5346 	if (IS_ERR(em))
5347 		return 1;
5348 
5349 	map = em->map_lookup;
5350 	for (i = 0; i < map->num_stripes; i++) {
5351 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5352 					&map->stripes[i].dev->dev_state)) {
5353 			miss_ndevs++;
5354 			continue;
5355 		}
5356 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5357 					&map->stripes[i].dev->dev_state)) {
5358 			readonly = 1;
5359 			goto end;
5360 		}
5361 	}
5362 
5363 	/*
5364 	 * If the number of missing devices is larger than max errors,
5365 	 * we can not write the data into that chunk successfully, so
5366 	 * set it readonly.
5367 	 */
5368 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5369 		readonly = 1;
5370 end:
5371 	free_extent_map(em);
5372 	return readonly;
5373 }
5374 
5375 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5376 {
5377 	struct extent_map *em;
5378 
5379 	while (1) {
5380 		write_lock(&tree->lock);
5381 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5382 		if (em)
5383 			remove_extent_mapping(tree, em);
5384 		write_unlock(&tree->lock);
5385 		if (!em)
5386 			break;
5387 		/* once for us */
5388 		free_extent_map(em);
5389 		/* once for the tree */
5390 		free_extent_map(em);
5391 	}
5392 }
5393 
5394 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5395 {
5396 	struct extent_map *em;
5397 	struct map_lookup *map;
5398 	int ret;
5399 
5400 	em = btrfs_get_chunk_map(fs_info, logical, len);
5401 	if (IS_ERR(em))
5402 		/*
5403 		 * We could return errors for these cases, but that could get
5404 		 * ugly and we'd probably do the same thing which is just not do
5405 		 * anything else and exit, so return 1 so the callers don't try
5406 		 * to use other copies.
5407 		 */
5408 		return 1;
5409 
5410 	map = em->map_lookup;
5411 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5412 		ret = map->num_stripes;
5413 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5414 		ret = map->sub_stripes;
5415 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5416 		ret = 2;
5417 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5418 		/*
5419 		 * There could be two corrupted data stripes, we need
5420 		 * to loop retry in order to rebuild the correct data.
5421 		 *
5422 		 * Fail a stripe at a time on every retry except the
5423 		 * stripe under reconstruction.
5424 		 */
5425 		ret = map->num_stripes;
5426 	else
5427 		ret = 1;
5428 	free_extent_map(em);
5429 
5430 	down_read(&fs_info->dev_replace.rwsem);
5431 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5432 	    fs_info->dev_replace.tgtdev)
5433 		ret++;
5434 	up_read(&fs_info->dev_replace.rwsem);
5435 
5436 	return ret;
5437 }
5438 
5439 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5440 				    u64 logical)
5441 {
5442 	struct extent_map *em;
5443 	struct map_lookup *map;
5444 	unsigned long len = fs_info->sectorsize;
5445 
5446 	em = btrfs_get_chunk_map(fs_info, logical, len);
5447 
5448 	if (!WARN_ON(IS_ERR(em))) {
5449 		map = em->map_lookup;
5450 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5451 			len = map->stripe_len * nr_data_stripes(map);
5452 		free_extent_map(em);
5453 	}
5454 	return len;
5455 }
5456 
5457 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5458 {
5459 	struct extent_map *em;
5460 	struct map_lookup *map;
5461 	int ret = 0;
5462 
5463 	em = btrfs_get_chunk_map(fs_info, logical, len);
5464 
5465 	if(!WARN_ON(IS_ERR(em))) {
5466 		map = em->map_lookup;
5467 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5468 			ret = 1;
5469 		free_extent_map(em);
5470 	}
5471 	return ret;
5472 }
5473 
5474 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5475 			    struct map_lookup *map, int first,
5476 			    int dev_replace_is_ongoing)
5477 {
5478 	int i;
5479 	int num_stripes;
5480 	int preferred_mirror;
5481 	int tolerance;
5482 	struct btrfs_device *srcdev;
5483 
5484 	ASSERT((map->type &
5485 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5486 
5487 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5488 		num_stripes = map->sub_stripes;
5489 	else
5490 		num_stripes = map->num_stripes;
5491 
5492 	preferred_mirror = first + current->pid % num_stripes;
5493 
5494 	if (dev_replace_is_ongoing &&
5495 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5496 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5497 		srcdev = fs_info->dev_replace.srcdev;
5498 	else
5499 		srcdev = NULL;
5500 
5501 	/*
5502 	 * try to avoid the drive that is the source drive for a
5503 	 * dev-replace procedure, only choose it if no other non-missing
5504 	 * mirror is available
5505 	 */
5506 	for (tolerance = 0; tolerance < 2; tolerance++) {
5507 		if (map->stripes[preferred_mirror].dev->bdev &&
5508 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5509 			return preferred_mirror;
5510 		for (i = first; i < first + num_stripes; i++) {
5511 			if (map->stripes[i].dev->bdev &&
5512 			    (tolerance || map->stripes[i].dev != srcdev))
5513 				return i;
5514 		}
5515 	}
5516 
5517 	/* we couldn't find one that doesn't fail.  Just return something
5518 	 * and the io error handling code will clean up eventually
5519 	 */
5520 	return preferred_mirror;
5521 }
5522 
5523 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5524 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5525 {
5526 	int i;
5527 	int again = 1;
5528 
5529 	while (again) {
5530 		again = 0;
5531 		for (i = 0; i < num_stripes - 1; i++) {
5532 			/* Swap if parity is on a smaller index */
5533 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5534 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5535 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5536 				again = 1;
5537 			}
5538 		}
5539 	}
5540 }
5541 
5542 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5543 {
5544 	struct btrfs_bio *bbio = kzalloc(
5545 		 /* the size of the btrfs_bio */
5546 		sizeof(struct btrfs_bio) +
5547 		/* plus the variable array for the stripes */
5548 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5549 		/* plus the variable array for the tgt dev */
5550 		sizeof(int) * (real_stripes) +
5551 		/*
5552 		 * plus the raid_map, which includes both the tgt dev
5553 		 * and the stripes
5554 		 */
5555 		sizeof(u64) * (total_stripes),
5556 		GFP_NOFS|__GFP_NOFAIL);
5557 
5558 	atomic_set(&bbio->error, 0);
5559 	refcount_set(&bbio->refs, 1);
5560 
5561 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5562 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5563 
5564 	return bbio;
5565 }
5566 
5567 void btrfs_get_bbio(struct btrfs_bio *bbio)
5568 {
5569 	WARN_ON(!refcount_read(&bbio->refs));
5570 	refcount_inc(&bbio->refs);
5571 }
5572 
5573 void btrfs_put_bbio(struct btrfs_bio *bbio)
5574 {
5575 	if (!bbio)
5576 		return;
5577 	if (refcount_dec_and_test(&bbio->refs))
5578 		kfree(bbio);
5579 }
5580 
5581 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5582 /*
5583  * Please note that, discard won't be sent to target device of device
5584  * replace.
5585  */
5586 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5587 					 u64 logical, u64 *length_ret,
5588 					 struct btrfs_bio **bbio_ret)
5589 {
5590 	struct extent_map *em;
5591 	struct map_lookup *map;
5592 	struct btrfs_bio *bbio;
5593 	u64 length = *length_ret;
5594 	u64 offset;
5595 	u64 stripe_nr;
5596 	u64 stripe_nr_end;
5597 	u64 stripe_end_offset;
5598 	u64 stripe_cnt;
5599 	u64 stripe_len;
5600 	u64 stripe_offset;
5601 	u64 num_stripes;
5602 	u32 stripe_index;
5603 	u32 factor = 0;
5604 	u32 sub_stripes = 0;
5605 	u64 stripes_per_dev = 0;
5606 	u32 remaining_stripes = 0;
5607 	u32 last_stripe = 0;
5608 	int ret = 0;
5609 	int i;
5610 
5611 	/* discard always return a bbio */
5612 	ASSERT(bbio_ret);
5613 
5614 	em = btrfs_get_chunk_map(fs_info, logical, length);
5615 	if (IS_ERR(em))
5616 		return PTR_ERR(em);
5617 
5618 	map = em->map_lookup;
5619 	/* we don't discard raid56 yet */
5620 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5621 		ret = -EOPNOTSUPP;
5622 		goto out;
5623 	}
5624 
5625 	offset = logical - em->start;
5626 	length = min_t(u64, em->start + em->len - logical, length);
5627 	*length_ret = length;
5628 
5629 	stripe_len = map->stripe_len;
5630 	/*
5631 	 * stripe_nr counts the total number of stripes we have to stride
5632 	 * to get to this block
5633 	 */
5634 	stripe_nr = div64_u64(offset, stripe_len);
5635 
5636 	/* stripe_offset is the offset of this block in its stripe */
5637 	stripe_offset = offset - stripe_nr * stripe_len;
5638 
5639 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5640 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5641 	stripe_cnt = stripe_nr_end - stripe_nr;
5642 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5643 			    (offset + length);
5644 	/*
5645 	 * after this, stripe_nr is the number of stripes on this
5646 	 * device we have to walk to find the data, and stripe_index is
5647 	 * the number of our device in the stripe array
5648 	 */
5649 	num_stripes = 1;
5650 	stripe_index = 0;
5651 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5652 			 BTRFS_BLOCK_GROUP_RAID10)) {
5653 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5654 			sub_stripes = 1;
5655 		else
5656 			sub_stripes = map->sub_stripes;
5657 
5658 		factor = map->num_stripes / sub_stripes;
5659 		num_stripes = min_t(u64, map->num_stripes,
5660 				    sub_stripes * stripe_cnt);
5661 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5662 		stripe_index *= sub_stripes;
5663 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5664 					      &remaining_stripes);
5665 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5666 		last_stripe *= sub_stripes;
5667 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5668 				BTRFS_BLOCK_GROUP_DUP)) {
5669 		num_stripes = map->num_stripes;
5670 	} else {
5671 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5672 					&stripe_index);
5673 	}
5674 
5675 	bbio = alloc_btrfs_bio(num_stripes, 0);
5676 	if (!bbio) {
5677 		ret = -ENOMEM;
5678 		goto out;
5679 	}
5680 
5681 	for (i = 0; i < num_stripes; i++) {
5682 		bbio->stripes[i].physical =
5683 			map->stripes[stripe_index].physical +
5684 			stripe_offset + stripe_nr * map->stripe_len;
5685 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5686 
5687 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5688 				 BTRFS_BLOCK_GROUP_RAID10)) {
5689 			bbio->stripes[i].length = stripes_per_dev *
5690 				map->stripe_len;
5691 
5692 			if (i / sub_stripes < remaining_stripes)
5693 				bbio->stripes[i].length +=
5694 					map->stripe_len;
5695 
5696 			/*
5697 			 * Special for the first stripe and
5698 			 * the last stripe:
5699 			 *
5700 			 * |-------|...|-------|
5701 			 *     |----------|
5702 			 *    off     end_off
5703 			 */
5704 			if (i < sub_stripes)
5705 				bbio->stripes[i].length -=
5706 					stripe_offset;
5707 
5708 			if (stripe_index >= last_stripe &&
5709 			    stripe_index <= (last_stripe +
5710 					     sub_stripes - 1))
5711 				bbio->stripes[i].length -=
5712 					stripe_end_offset;
5713 
5714 			if (i == sub_stripes - 1)
5715 				stripe_offset = 0;
5716 		} else {
5717 			bbio->stripes[i].length = length;
5718 		}
5719 
5720 		stripe_index++;
5721 		if (stripe_index == map->num_stripes) {
5722 			stripe_index = 0;
5723 			stripe_nr++;
5724 		}
5725 	}
5726 
5727 	*bbio_ret = bbio;
5728 	bbio->map_type = map->type;
5729 	bbio->num_stripes = num_stripes;
5730 out:
5731 	free_extent_map(em);
5732 	return ret;
5733 }
5734 
5735 /*
5736  * In dev-replace case, for repair case (that's the only case where the mirror
5737  * is selected explicitly when calling btrfs_map_block), blocks left of the
5738  * left cursor can also be read from the target drive.
5739  *
5740  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5741  * array of stripes.
5742  * For READ, it also needs to be supported using the same mirror number.
5743  *
5744  * If the requested block is not left of the left cursor, EIO is returned. This
5745  * can happen because btrfs_num_copies() returns one more in the dev-replace
5746  * case.
5747  */
5748 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5749 					 u64 logical, u64 length,
5750 					 u64 srcdev_devid, int *mirror_num,
5751 					 u64 *physical)
5752 {
5753 	struct btrfs_bio *bbio = NULL;
5754 	int num_stripes;
5755 	int index_srcdev = 0;
5756 	int found = 0;
5757 	u64 physical_of_found = 0;
5758 	int i;
5759 	int ret = 0;
5760 
5761 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5762 				logical, &length, &bbio, 0, 0);
5763 	if (ret) {
5764 		ASSERT(bbio == NULL);
5765 		return ret;
5766 	}
5767 
5768 	num_stripes = bbio->num_stripes;
5769 	if (*mirror_num > num_stripes) {
5770 		/*
5771 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5772 		 * that means that the requested area is not left of the left
5773 		 * cursor
5774 		 */
5775 		btrfs_put_bbio(bbio);
5776 		return -EIO;
5777 	}
5778 
5779 	/*
5780 	 * process the rest of the function using the mirror_num of the source
5781 	 * drive. Therefore look it up first.  At the end, patch the device
5782 	 * pointer to the one of the target drive.
5783 	 */
5784 	for (i = 0; i < num_stripes; i++) {
5785 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5786 			continue;
5787 
5788 		/*
5789 		 * In case of DUP, in order to keep it simple, only add the
5790 		 * mirror with the lowest physical address
5791 		 */
5792 		if (found &&
5793 		    physical_of_found <= bbio->stripes[i].physical)
5794 			continue;
5795 
5796 		index_srcdev = i;
5797 		found = 1;
5798 		physical_of_found = bbio->stripes[i].physical;
5799 	}
5800 
5801 	btrfs_put_bbio(bbio);
5802 
5803 	ASSERT(found);
5804 	if (!found)
5805 		return -EIO;
5806 
5807 	*mirror_num = index_srcdev + 1;
5808 	*physical = physical_of_found;
5809 	return ret;
5810 }
5811 
5812 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5813 				      struct btrfs_bio **bbio_ret,
5814 				      struct btrfs_dev_replace *dev_replace,
5815 				      int *num_stripes_ret, int *max_errors_ret)
5816 {
5817 	struct btrfs_bio *bbio = *bbio_ret;
5818 	u64 srcdev_devid = dev_replace->srcdev->devid;
5819 	int tgtdev_indexes = 0;
5820 	int num_stripes = *num_stripes_ret;
5821 	int max_errors = *max_errors_ret;
5822 	int i;
5823 
5824 	if (op == BTRFS_MAP_WRITE) {
5825 		int index_where_to_add;
5826 
5827 		/*
5828 		 * duplicate the write operations while the dev replace
5829 		 * procedure is running. Since the copying of the old disk to
5830 		 * the new disk takes place at run time while the filesystem is
5831 		 * mounted writable, the regular write operations to the old
5832 		 * disk have to be duplicated to go to the new disk as well.
5833 		 *
5834 		 * Note that device->missing is handled by the caller, and that
5835 		 * the write to the old disk is already set up in the stripes
5836 		 * array.
5837 		 */
5838 		index_where_to_add = num_stripes;
5839 		for (i = 0; i < num_stripes; i++) {
5840 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5841 				/* write to new disk, too */
5842 				struct btrfs_bio_stripe *new =
5843 					bbio->stripes + index_where_to_add;
5844 				struct btrfs_bio_stripe *old =
5845 					bbio->stripes + i;
5846 
5847 				new->physical = old->physical;
5848 				new->length = old->length;
5849 				new->dev = dev_replace->tgtdev;
5850 				bbio->tgtdev_map[i] = index_where_to_add;
5851 				index_where_to_add++;
5852 				max_errors++;
5853 				tgtdev_indexes++;
5854 			}
5855 		}
5856 		num_stripes = index_where_to_add;
5857 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5858 		int index_srcdev = 0;
5859 		int found = 0;
5860 		u64 physical_of_found = 0;
5861 
5862 		/*
5863 		 * During the dev-replace procedure, the target drive can also
5864 		 * be used to read data in case it is needed to repair a corrupt
5865 		 * block elsewhere. This is possible if the requested area is
5866 		 * left of the left cursor. In this area, the target drive is a
5867 		 * full copy of the source drive.
5868 		 */
5869 		for (i = 0; i < num_stripes; i++) {
5870 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5871 				/*
5872 				 * In case of DUP, in order to keep it simple,
5873 				 * only add the mirror with the lowest physical
5874 				 * address
5875 				 */
5876 				if (found &&
5877 				    physical_of_found <=
5878 				     bbio->stripes[i].physical)
5879 					continue;
5880 				index_srcdev = i;
5881 				found = 1;
5882 				physical_of_found = bbio->stripes[i].physical;
5883 			}
5884 		}
5885 		if (found) {
5886 			struct btrfs_bio_stripe *tgtdev_stripe =
5887 				bbio->stripes + num_stripes;
5888 
5889 			tgtdev_stripe->physical = physical_of_found;
5890 			tgtdev_stripe->length =
5891 				bbio->stripes[index_srcdev].length;
5892 			tgtdev_stripe->dev = dev_replace->tgtdev;
5893 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5894 
5895 			tgtdev_indexes++;
5896 			num_stripes++;
5897 		}
5898 	}
5899 
5900 	*num_stripes_ret = num_stripes;
5901 	*max_errors_ret = max_errors;
5902 	bbio->num_tgtdevs = tgtdev_indexes;
5903 	*bbio_ret = bbio;
5904 }
5905 
5906 static bool need_full_stripe(enum btrfs_map_op op)
5907 {
5908 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5909 }
5910 
5911 /*
5912  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5913  *		       tuple. This information is used to calculate how big a
5914  *		       particular bio can get before it straddles a stripe.
5915  *
5916  * @fs_info - the filesystem
5917  * @logical - address that we want to figure out the geometry of
5918  * @len	    - the length of IO we are going to perform, starting at @logical
5919  * @op      - type of operation - write or read
5920  * @io_geom - pointer used to return values
5921  *
5922  * Returns < 0 in case a chunk for the given logical address cannot be found,
5923  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5924  */
5925 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5926 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5927 {
5928 	struct extent_map *em;
5929 	struct map_lookup *map;
5930 	u64 offset;
5931 	u64 stripe_offset;
5932 	u64 stripe_nr;
5933 	u64 stripe_len;
5934 	u64 raid56_full_stripe_start = (u64)-1;
5935 	int data_stripes;
5936 	int ret = 0;
5937 
5938 	ASSERT(op != BTRFS_MAP_DISCARD);
5939 
5940 	em = btrfs_get_chunk_map(fs_info, logical, len);
5941 	if (IS_ERR(em))
5942 		return PTR_ERR(em);
5943 
5944 	map = em->map_lookup;
5945 	/* Offset of this logical address in the chunk */
5946 	offset = logical - em->start;
5947 	/* Len of a stripe in a chunk */
5948 	stripe_len = map->stripe_len;
5949 	/* Stripe wher this block falls in */
5950 	stripe_nr = div64_u64(offset, stripe_len);
5951 	/* Offset of stripe in the chunk */
5952 	stripe_offset = stripe_nr * stripe_len;
5953 	if (offset < stripe_offset) {
5954 		btrfs_crit(fs_info,
5955 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5956 			stripe_offset, offset, em->start, logical, stripe_len);
5957 		ret = -EINVAL;
5958 		goto out;
5959 	}
5960 
5961 	/* stripe_offset is the offset of this block in its stripe */
5962 	stripe_offset = offset - stripe_offset;
5963 	data_stripes = nr_data_stripes(map);
5964 
5965 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5966 		u64 max_len = stripe_len - stripe_offset;
5967 
5968 		/*
5969 		 * In case of raid56, we need to know the stripe aligned start
5970 		 */
5971 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5972 			unsigned long full_stripe_len = stripe_len * data_stripes;
5973 			raid56_full_stripe_start = offset;
5974 
5975 			/*
5976 			 * Allow a write of a full stripe, but make sure we
5977 			 * don't allow straddling of stripes
5978 			 */
5979 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5980 					full_stripe_len);
5981 			raid56_full_stripe_start *= full_stripe_len;
5982 
5983 			/*
5984 			 * For writes to RAID[56], allow a full stripeset across
5985 			 * all disks. For other RAID types and for RAID[56]
5986 			 * reads, just allow a single stripe (on a single disk).
5987 			 */
5988 			if (op == BTRFS_MAP_WRITE) {
5989 				max_len = stripe_len * data_stripes -
5990 					  (offset - raid56_full_stripe_start);
5991 			}
5992 		}
5993 		len = min_t(u64, em->len - offset, max_len);
5994 	} else {
5995 		len = em->len - offset;
5996 	}
5997 
5998 	io_geom->len = len;
5999 	io_geom->offset = offset;
6000 	io_geom->stripe_len = stripe_len;
6001 	io_geom->stripe_nr = stripe_nr;
6002 	io_geom->stripe_offset = stripe_offset;
6003 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6004 
6005 out:
6006 	/* once for us */
6007 	free_extent_map(em);
6008 	return ret;
6009 }
6010 
6011 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6012 			     enum btrfs_map_op op,
6013 			     u64 logical, u64 *length,
6014 			     struct btrfs_bio **bbio_ret,
6015 			     int mirror_num, int need_raid_map)
6016 {
6017 	struct extent_map *em;
6018 	struct map_lookup *map;
6019 	u64 stripe_offset;
6020 	u64 stripe_nr;
6021 	u64 stripe_len;
6022 	u32 stripe_index;
6023 	int data_stripes;
6024 	int i;
6025 	int ret = 0;
6026 	int num_stripes;
6027 	int max_errors = 0;
6028 	int tgtdev_indexes = 0;
6029 	struct btrfs_bio *bbio = NULL;
6030 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6031 	int dev_replace_is_ongoing = 0;
6032 	int num_alloc_stripes;
6033 	int patch_the_first_stripe_for_dev_replace = 0;
6034 	u64 physical_to_patch_in_first_stripe = 0;
6035 	u64 raid56_full_stripe_start = (u64)-1;
6036 	struct btrfs_io_geometry geom;
6037 
6038 	ASSERT(bbio_ret);
6039 	ASSERT(op != BTRFS_MAP_DISCARD);
6040 
6041 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6042 	if (ret < 0)
6043 		return ret;
6044 
6045 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6046 	ASSERT(!IS_ERR(em));
6047 	map = em->map_lookup;
6048 
6049 	*length = geom.len;
6050 	stripe_len = geom.stripe_len;
6051 	stripe_nr = geom.stripe_nr;
6052 	stripe_offset = geom.stripe_offset;
6053 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6054 	data_stripes = nr_data_stripes(map);
6055 
6056 	down_read(&dev_replace->rwsem);
6057 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058 	/*
6059 	 * Hold the semaphore for read during the whole operation, write is
6060 	 * requested at commit time but must wait.
6061 	 */
6062 	if (!dev_replace_is_ongoing)
6063 		up_read(&dev_replace->rwsem);
6064 
6065 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6068 						    dev_replace->srcdev->devid,
6069 						    &mirror_num,
6070 					    &physical_to_patch_in_first_stripe);
6071 		if (ret)
6072 			goto out;
6073 		else
6074 			patch_the_first_stripe_for_dev_replace = 1;
6075 	} else if (mirror_num > map->num_stripes) {
6076 		mirror_num = 0;
6077 	}
6078 
6079 	num_stripes = 1;
6080 	stripe_index = 0;
6081 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6083 				&stripe_index);
6084 		if (!need_full_stripe(op))
6085 			mirror_num = 1;
6086 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087 		if (need_full_stripe(op))
6088 			num_stripes = map->num_stripes;
6089 		else if (mirror_num)
6090 			stripe_index = mirror_num - 1;
6091 		else {
6092 			stripe_index = find_live_mirror(fs_info, map, 0,
6093 					    dev_replace_is_ongoing);
6094 			mirror_num = stripe_index + 1;
6095 		}
6096 
6097 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098 		if (need_full_stripe(op)) {
6099 			num_stripes = map->num_stripes;
6100 		} else if (mirror_num) {
6101 			stripe_index = mirror_num - 1;
6102 		} else {
6103 			mirror_num = 1;
6104 		}
6105 
6106 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107 		u32 factor = map->num_stripes / map->sub_stripes;
6108 
6109 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6110 		stripe_index *= map->sub_stripes;
6111 
6112 		if (need_full_stripe(op))
6113 			num_stripes = map->sub_stripes;
6114 		else if (mirror_num)
6115 			stripe_index += mirror_num - 1;
6116 		else {
6117 			int old_stripe_index = stripe_index;
6118 			stripe_index = find_live_mirror(fs_info, map,
6119 					      stripe_index,
6120 					      dev_replace_is_ongoing);
6121 			mirror_num = stripe_index - old_stripe_index + 1;
6122 		}
6123 
6124 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6125 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6126 			/* push stripe_nr back to the start of the full stripe */
6127 			stripe_nr = div64_u64(raid56_full_stripe_start,
6128 					stripe_len * data_stripes);
6129 
6130 			/* RAID[56] write or recovery. Return all stripes */
6131 			num_stripes = map->num_stripes;
6132 			max_errors = nr_parity_stripes(map);
6133 
6134 			*length = map->stripe_len;
6135 			stripe_index = 0;
6136 			stripe_offset = 0;
6137 		} else {
6138 			/*
6139 			 * Mirror #0 or #1 means the original data block.
6140 			 * Mirror #2 is RAID5 parity block.
6141 			 * Mirror #3 is RAID6 Q block.
6142 			 */
6143 			stripe_nr = div_u64_rem(stripe_nr,
6144 					data_stripes, &stripe_index);
6145 			if (mirror_num > 1)
6146 				stripe_index = data_stripes + mirror_num - 2;
6147 
6148 			/* We distribute the parity blocks across stripes */
6149 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6150 					&stripe_index);
6151 			if (!need_full_stripe(op) && mirror_num <= 1)
6152 				mirror_num = 1;
6153 		}
6154 	} else {
6155 		/*
6156 		 * after this, stripe_nr is the number of stripes on this
6157 		 * device we have to walk to find the data, and stripe_index is
6158 		 * the number of our device in the stripe array
6159 		 */
6160 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6161 				&stripe_index);
6162 		mirror_num = stripe_index + 1;
6163 	}
6164 	if (stripe_index >= map->num_stripes) {
6165 		btrfs_crit(fs_info,
6166 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167 			   stripe_index, map->num_stripes);
6168 		ret = -EINVAL;
6169 		goto out;
6170 	}
6171 
6172 	num_alloc_stripes = num_stripes;
6173 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174 		if (op == BTRFS_MAP_WRITE)
6175 			num_alloc_stripes <<= 1;
6176 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177 			num_alloc_stripes++;
6178 		tgtdev_indexes = num_stripes;
6179 	}
6180 
6181 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6182 	if (!bbio) {
6183 		ret = -ENOMEM;
6184 		goto out;
6185 	}
6186 
6187 	for (i = 0; i < num_stripes; i++) {
6188 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6189 			stripe_offset + stripe_nr * map->stripe_len;
6190 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6191 		stripe_index++;
6192 	}
6193 
6194 	/* build raid_map */
6195 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6196 	    (need_full_stripe(op) || mirror_num > 1)) {
6197 		u64 tmp;
6198 		unsigned rot;
6199 
6200 		/* Work out the disk rotation on this stripe-set */
6201 		div_u64_rem(stripe_nr, num_stripes, &rot);
6202 
6203 		/* Fill in the logical address of each stripe */
6204 		tmp = stripe_nr * data_stripes;
6205 		for (i = 0; i < data_stripes; i++)
6206 			bbio->raid_map[(i+rot) % num_stripes] =
6207 				em->start + (tmp + i) * map->stripe_len;
6208 
6209 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6210 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6211 			bbio->raid_map[(i+rot+1) % num_stripes] =
6212 				RAID6_Q_STRIPE;
6213 
6214 		sort_parity_stripes(bbio, num_stripes);
6215 	}
6216 
6217 	if (need_full_stripe(op))
6218 		max_errors = btrfs_chunk_max_errors(map);
6219 
6220 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6221 	    need_full_stripe(op)) {
6222 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6223 					  &max_errors);
6224 	}
6225 
6226 	*bbio_ret = bbio;
6227 	bbio->map_type = map->type;
6228 	bbio->num_stripes = num_stripes;
6229 	bbio->max_errors = max_errors;
6230 	bbio->mirror_num = mirror_num;
6231 
6232 	/*
6233 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6234 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6235 	 * available as a mirror
6236 	 */
6237 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6238 		WARN_ON(num_stripes > 1);
6239 		bbio->stripes[0].dev = dev_replace->tgtdev;
6240 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6241 		bbio->mirror_num = map->num_stripes + 1;
6242 	}
6243 out:
6244 	if (dev_replace_is_ongoing) {
6245 		lockdep_assert_held(&dev_replace->rwsem);
6246 		/* Unlock and let waiting writers proceed */
6247 		up_read(&dev_replace->rwsem);
6248 	}
6249 	free_extent_map(em);
6250 	return ret;
6251 }
6252 
6253 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6254 		      u64 logical, u64 *length,
6255 		      struct btrfs_bio **bbio_ret, int mirror_num)
6256 {
6257 	if (op == BTRFS_MAP_DISCARD)
6258 		return __btrfs_map_block_for_discard(fs_info, logical,
6259 						     length, bbio_ret);
6260 
6261 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6262 				 mirror_num, 0);
6263 }
6264 
6265 /* For Scrub/replace */
6266 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6267 		     u64 logical, u64 *length,
6268 		     struct btrfs_bio **bbio_ret)
6269 {
6270 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6271 }
6272 
6273 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6274 {
6275 	bio->bi_private = bbio->private;
6276 	bio->bi_end_io = bbio->end_io;
6277 	bio_endio(bio);
6278 
6279 	btrfs_put_bbio(bbio);
6280 }
6281 
6282 static void btrfs_end_bio(struct bio *bio)
6283 {
6284 	struct btrfs_bio *bbio = bio->bi_private;
6285 	int is_orig_bio = 0;
6286 
6287 	if (bio->bi_status) {
6288 		atomic_inc(&bbio->error);
6289 		if (bio->bi_status == BLK_STS_IOERR ||
6290 		    bio->bi_status == BLK_STS_TARGET) {
6291 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6292 
6293 			ASSERT(dev->bdev);
6294 			if (bio_op(bio) == REQ_OP_WRITE)
6295 				btrfs_dev_stat_inc_and_print(dev,
6296 						BTRFS_DEV_STAT_WRITE_ERRS);
6297 			else if (!(bio->bi_opf & REQ_RAHEAD))
6298 				btrfs_dev_stat_inc_and_print(dev,
6299 						BTRFS_DEV_STAT_READ_ERRS);
6300 			if (bio->bi_opf & REQ_PREFLUSH)
6301 				btrfs_dev_stat_inc_and_print(dev,
6302 						BTRFS_DEV_STAT_FLUSH_ERRS);
6303 		}
6304 	}
6305 
6306 	if (bio == bbio->orig_bio)
6307 		is_orig_bio = 1;
6308 
6309 	btrfs_bio_counter_dec(bbio->fs_info);
6310 
6311 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6312 		if (!is_orig_bio) {
6313 			bio_put(bio);
6314 			bio = bbio->orig_bio;
6315 		}
6316 
6317 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6318 		/* only send an error to the higher layers if it is
6319 		 * beyond the tolerance of the btrfs bio
6320 		 */
6321 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6322 			bio->bi_status = BLK_STS_IOERR;
6323 		} else {
6324 			/*
6325 			 * this bio is actually up to date, we didn't
6326 			 * go over the max number of errors
6327 			 */
6328 			bio->bi_status = BLK_STS_OK;
6329 		}
6330 
6331 		btrfs_end_bbio(bbio, bio);
6332 	} else if (!is_orig_bio) {
6333 		bio_put(bio);
6334 	}
6335 }
6336 
6337 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6338 			      u64 physical, struct btrfs_device *dev)
6339 {
6340 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6341 
6342 	bio->bi_private = bbio;
6343 	btrfs_io_bio(bio)->device = dev;
6344 	bio->bi_end_io = btrfs_end_bio;
6345 	bio->bi_iter.bi_sector = physical >> 9;
6346 	btrfs_debug_in_rcu(fs_info,
6347 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6348 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6349 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6350 		dev->devid, bio->bi_iter.bi_size);
6351 	bio_set_dev(bio, dev->bdev);
6352 
6353 	btrfs_bio_counter_inc_noblocked(fs_info);
6354 
6355 	btrfsic_submit_bio(bio);
6356 }
6357 
6358 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6359 {
6360 	atomic_inc(&bbio->error);
6361 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6362 		/* Should be the original bio. */
6363 		WARN_ON(bio != bbio->orig_bio);
6364 
6365 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6366 		bio->bi_iter.bi_sector = logical >> 9;
6367 		if (atomic_read(&bbio->error) > bbio->max_errors)
6368 			bio->bi_status = BLK_STS_IOERR;
6369 		else
6370 			bio->bi_status = BLK_STS_OK;
6371 		btrfs_end_bbio(bbio, bio);
6372 	}
6373 }
6374 
6375 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6376 			   int mirror_num)
6377 {
6378 	struct btrfs_device *dev;
6379 	struct bio *first_bio = bio;
6380 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6381 	u64 length = 0;
6382 	u64 map_length;
6383 	int ret;
6384 	int dev_nr;
6385 	int total_devs;
6386 	struct btrfs_bio *bbio = NULL;
6387 
6388 	length = bio->bi_iter.bi_size;
6389 	map_length = length;
6390 
6391 	btrfs_bio_counter_inc_blocked(fs_info);
6392 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6393 				&map_length, &bbio, mirror_num, 1);
6394 	if (ret) {
6395 		btrfs_bio_counter_dec(fs_info);
6396 		return errno_to_blk_status(ret);
6397 	}
6398 
6399 	total_devs = bbio->num_stripes;
6400 	bbio->orig_bio = first_bio;
6401 	bbio->private = first_bio->bi_private;
6402 	bbio->end_io = first_bio->bi_end_io;
6403 	bbio->fs_info = fs_info;
6404 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6405 
6406 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6407 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6408 		/* In this case, map_length has been set to the length of
6409 		   a single stripe; not the whole write */
6410 		if (bio_op(bio) == REQ_OP_WRITE) {
6411 			ret = raid56_parity_write(fs_info, bio, bbio,
6412 						  map_length);
6413 		} else {
6414 			ret = raid56_parity_recover(fs_info, bio, bbio,
6415 						    map_length, mirror_num, 1);
6416 		}
6417 
6418 		btrfs_bio_counter_dec(fs_info);
6419 		return errno_to_blk_status(ret);
6420 	}
6421 
6422 	if (map_length < length) {
6423 		btrfs_crit(fs_info,
6424 			   "mapping failed logical %llu bio len %llu len %llu",
6425 			   logical, length, map_length);
6426 		BUG();
6427 	}
6428 
6429 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6430 		dev = bbio->stripes[dev_nr].dev;
6431 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6432 						   &dev->dev_state) ||
6433 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6434 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6435 			bbio_error(bbio, first_bio, logical);
6436 			continue;
6437 		}
6438 
6439 		if (dev_nr < total_devs - 1)
6440 			bio = btrfs_bio_clone(first_bio);
6441 		else
6442 			bio = first_bio;
6443 
6444 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6445 	}
6446 	btrfs_bio_counter_dec(fs_info);
6447 	return BLK_STS_OK;
6448 }
6449 
6450 /*
6451  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6452  * return NULL.
6453  *
6454  * If devid and uuid are both specified, the match must be exact, otherwise
6455  * only devid is used.
6456  *
6457  * If @seed is true, traverse through the seed devices.
6458  */
6459 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6460 				       u64 devid, u8 *uuid, u8 *fsid,
6461 				       bool seed)
6462 {
6463 	struct btrfs_device *device;
6464 
6465 	while (fs_devices) {
6466 		if (!fsid ||
6467 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6468 			list_for_each_entry(device, &fs_devices->devices,
6469 					    dev_list) {
6470 				if (device->devid == devid &&
6471 				    (!uuid || memcmp(device->uuid, uuid,
6472 						     BTRFS_UUID_SIZE) == 0))
6473 					return device;
6474 			}
6475 		}
6476 		if (seed)
6477 			fs_devices = fs_devices->seed;
6478 		else
6479 			return NULL;
6480 	}
6481 	return NULL;
6482 }
6483 
6484 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6485 					    u64 devid, u8 *dev_uuid)
6486 {
6487 	struct btrfs_device *device;
6488 	unsigned int nofs_flag;
6489 
6490 	/*
6491 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6492 	 * allocation, however we don't want to change btrfs_alloc_device() to
6493 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6494 	 * places.
6495 	 */
6496 	nofs_flag = memalloc_nofs_save();
6497 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6498 	memalloc_nofs_restore(nofs_flag);
6499 	if (IS_ERR(device))
6500 		return device;
6501 
6502 	list_add(&device->dev_list, &fs_devices->devices);
6503 	device->fs_devices = fs_devices;
6504 	fs_devices->num_devices++;
6505 
6506 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6507 	fs_devices->missing_devices++;
6508 
6509 	return device;
6510 }
6511 
6512 /**
6513  * btrfs_alloc_device - allocate struct btrfs_device
6514  * @fs_info:	used only for generating a new devid, can be NULL if
6515  *		devid is provided (i.e. @devid != NULL).
6516  * @devid:	a pointer to devid for this device.  If NULL a new devid
6517  *		is generated.
6518  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6519  *		is generated.
6520  *
6521  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6522  * on error.  Returned struct is not linked onto any lists and must be
6523  * destroyed with btrfs_free_device.
6524  */
6525 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6526 					const u64 *devid,
6527 					const u8 *uuid)
6528 {
6529 	struct btrfs_device *dev;
6530 	u64 tmp;
6531 
6532 	if (WARN_ON(!devid && !fs_info))
6533 		return ERR_PTR(-EINVAL);
6534 
6535 	dev = __alloc_device();
6536 	if (IS_ERR(dev))
6537 		return dev;
6538 
6539 	if (devid)
6540 		tmp = *devid;
6541 	else {
6542 		int ret;
6543 
6544 		ret = find_next_devid(fs_info, &tmp);
6545 		if (ret) {
6546 			btrfs_free_device(dev);
6547 			return ERR_PTR(ret);
6548 		}
6549 	}
6550 	dev->devid = tmp;
6551 
6552 	if (uuid)
6553 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6554 	else
6555 		generate_random_uuid(dev->uuid);
6556 
6557 	return dev;
6558 }
6559 
6560 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6561 					u64 devid, u8 *uuid, bool error)
6562 {
6563 	if (error)
6564 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6565 			      devid, uuid);
6566 	else
6567 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6568 			      devid, uuid);
6569 }
6570 
6571 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6572 {
6573 	int index = btrfs_bg_flags_to_raid_index(type);
6574 	int ncopies = btrfs_raid_array[index].ncopies;
6575 	const int nparity = btrfs_raid_array[index].nparity;
6576 	int data_stripes;
6577 
6578 	if (nparity)
6579 		data_stripes = num_stripes - nparity;
6580 	else
6581 		data_stripes = num_stripes / ncopies;
6582 
6583 	return div_u64(chunk_len, data_stripes);
6584 }
6585 
6586 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6587 			  struct btrfs_chunk *chunk)
6588 {
6589 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6590 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6591 	struct map_lookup *map;
6592 	struct extent_map *em;
6593 	u64 logical;
6594 	u64 length;
6595 	u64 devid;
6596 	u8 uuid[BTRFS_UUID_SIZE];
6597 	int num_stripes;
6598 	int ret;
6599 	int i;
6600 
6601 	logical = key->offset;
6602 	length = btrfs_chunk_length(leaf, chunk);
6603 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6604 
6605 	/*
6606 	 * Only need to verify chunk item if we're reading from sys chunk array,
6607 	 * as chunk item in tree block is already verified by tree-checker.
6608 	 */
6609 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6610 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6611 		if (ret)
6612 			return ret;
6613 	}
6614 
6615 	read_lock(&map_tree->lock);
6616 	em = lookup_extent_mapping(map_tree, logical, 1);
6617 	read_unlock(&map_tree->lock);
6618 
6619 	/* already mapped? */
6620 	if (em && em->start <= logical && em->start + em->len > logical) {
6621 		free_extent_map(em);
6622 		return 0;
6623 	} else if (em) {
6624 		free_extent_map(em);
6625 	}
6626 
6627 	em = alloc_extent_map();
6628 	if (!em)
6629 		return -ENOMEM;
6630 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6631 	if (!map) {
6632 		free_extent_map(em);
6633 		return -ENOMEM;
6634 	}
6635 
6636 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6637 	em->map_lookup = map;
6638 	em->start = logical;
6639 	em->len = length;
6640 	em->orig_start = 0;
6641 	em->block_start = 0;
6642 	em->block_len = em->len;
6643 
6644 	map->num_stripes = num_stripes;
6645 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6646 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6647 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6648 	map->type = btrfs_chunk_type(leaf, chunk);
6649 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6650 	map->verified_stripes = 0;
6651 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6652 						map->num_stripes);
6653 	for (i = 0; i < num_stripes; i++) {
6654 		map->stripes[i].physical =
6655 			btrfs_stripe_offset_nr(leaf, chunk, i);
6656 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6657 		read_extent_buffer(leaf, uuid, (unsigned long)
6658 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6659 				   BTRFS_UUID_SIZE);
6660 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6661 							devid, uuid, NULL, true);
6662 		if (!map->stripes[i].dev &&
6663 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6664 			free_extent_map(em);
6665 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6666 			return -ENOENT;
6667 		}
6668 		if (!map->stripes[i].dev) {
6669 			map->stripes[i].dev =
6670 				add_missing_dev(fs_info->fs_devices, devid,
6671 						uuid);
6672 			if (IS_ERR(map->stripes[i].dev)) {
6673 				free_extent_map(em);
6674 				btrfs_err(fs_info,
6675 					"failed to init missing dev %llu: %ld",
6676 					devid, PTR_ERR(map->stripes[i].dev));
6677 				return PTR_ERR(map->stripes[i].dev);
6678 			}
6679 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6680 		}
6681 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6682 				&(map->stripes[i].dev->dev_state));
6683 
6684 	}
6685 
6686 	write_lock(&map_tree->lock);
6687 	ret = add_extent_mapping(map_tree, em, 0);
6688 	write_unlock(&map_tree->lock);
6689 	if (ret < 0) {
6690 		btrfs_err(fs_info,
6691 			  "failed to add chunk map, start=%llu len=%llu: %d",
6692 			  em->start, em->len, ret);
6693 	}
6694 	free_extent_map(em);
6695 
6696 	return ret;
6697 }
6698 
6699 static void fill_device_from_item(struct extent_buffer *leaf,
6700 				 struct btrfs_dev_item *dev_item,
6701 				 struct btrfs_device *device)
6702 {
6703 	unsigned long ptr;
6704 
6705 	device->devid = btrfs_device_id(leaf, dev_item);
6706 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6707 	device->total_bytes = device->disk_total_bytes;
6708 	device->commit_total_bytes = device->disk_total_bytes;
6709 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6710 	device->commit_bytes_used = device->bytes_used;
6711 	device->type = btrfs_device_type(leaf, dev_item);
6712 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6713 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6714 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6715 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6716 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6717 
6718 	ptr = btrfs_device_uuid(dev_item);
6719 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6720 }
6721 
6722 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6723 						  u8 *fsid)
6724 {
6725 	struct btrfs_fs_devices *fs_devices;
6726 	int ret;
6727 
6728 	lockdep_assert_held(&uuid_mutex);
6729 	ASSERT(fsid);
6730 
6731 	fs_devices = fs_info->fs_devices->seed;
6732 	while (fs_devices) {
6733 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6734 			return fs_devices;
6735 
6736 		fs_devices = fs_devices->seed;
6737 	}
6738 
6739 	fs_devices = find_fsid(fsid, NULL);
6740 	if (!fs_devices) {
6741 		if (!btrfs_test_opt(fs_info, DEGRADED))
6742 			return ERR_PTR(-ENOENT);
6743 
6744 		fs_devices = alloc_fs_devices(fsid, NULL);
6745 		if (IS_ERR(fs_devices))
6746 			return fs_devices;
6747 
6748 		fs_devices->seeding = true;
6749 		fs_devices->opened = 1;
6750 		return fs_devices;
6751 	}
6752 
6753 	fs_devices = clone_fs_devices(fs_devices);
6754 	if (IS_ERR(fs_devices))
6755 		return fs_devices;
6756 
6757 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6758 	if (ret) {
6759 		free_fs_devices(fs_devices);
6760 		fs_devices = ERR_PTR(ret);
6761 		goto out;
6762 	}
6763 
6764 	if (!fs_devices->seeding) {
6765 		close_fs_devices(fs_devices);
6766 		free_fs_devices(fs_devices);
6767 		fs_devices = ERR_PTR(-EINVAL);
6768 		goto out;
6769 	}
6770 
6771 	fs_devices->seed = fs_info->fs_devices->seed;
6772 	fs_info->fs_devices->seed = fs_devices;
6773 out:
6774 	return fs_devices;
6775 }
6776 
6777 static int read_one_dev(struct extent_buffer *leaf,
6778 			struct btrfs_dev_item *dev_item)
6779 {
6780 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6781 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6782 	struct btrfs_device *device;
6783 	u64 devid;
6784 	int ret;
6785 	u8 fs_uuid[BTRFS_FSID_SIZE];
6786 	u8 dev_uuid[BTRFS_UUID_SIZE];
6787 
6788 	devid = btrfs_device_id(leaf, dev_item);
6789 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6790 			   BTRFS_UUID_SIZE);
6791 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6792 			   BTRFS_FSID_SIZE);
6793 
6794 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6795 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6796 		if (IS_ERR(fs_devices))
6797 			return PTR_ERR(fs_devices);
6798 	}
6799 
6800 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6801 				   fs_uuid, true);
6802 	if (!device) {
6803 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6804 			btrfs_report_missing_device(fs_info, devid,
6805 							dev_uuid, true);
6806 			return -ENOENT;
6807 		}
6808 
6809 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6810 		if (IS_ERR(device)) {
6811 			btrfs_err(fs_info,
6812 				"failed to add missing dev %llu: %ld",
6813 				devid, PTR_ERR(device));
6814 			return PTR_ERR(device);
6815 		}
6816 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6817 	} else {
6818 		if (!device->bdev) {
6819 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6820 				btrfs_report_missing_device(fs_info,
6821 						devid, dev_uuid, true);
6822 				return -ENOENT;
6823 			}
6824 			btrfs_report_missing_device(fs_info, devid,
6825 							dev_uuid, false);
6826 		}
6827 
6828 		if (!device->bdev &&
6829 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6830 			/*
6831 			 * this happens when a device that was properly setup
6832 			 * in the device info lists suddenly goes bad.
6833 			 * device->bdev is NULL, and so we have to set
6834 			 * device->missing to one here
6835 			 */
6836 			device->fs_devices->missing_devices++;
6837 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6838 		}
6839 
6840 		/* Move the device to its own fs_devices */
6841 		if (device->fs_devices != fs_devices) {
6842 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6843 							&device->dev_state));
6844 
6845 			list_move(&device->dev_list, &fs_devices->devices);
6846 			device->fs_devices->num_devices--;
6847 			fs_devices->num_devices++;
6848 
6849 			device->fs_devices->missing_devices--;
6850 			fs_devices->missing_devices++;
6851 
6852 			device->fs_devices = fs_devices;
6853 		}
6854 	}
6855 
6856 	if (device->fs_devices != fs_info->fs_devices) {
6857 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6858 		if (device->generation !=
6859 		    btrfs_device_generation(leaf, dev_item))
6860 			return -EINVAL;
6861 	}
6862 
6863 	fill_device_from_item(leaf, dev_item, device);
6864 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6865 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6866 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6867 		device->fs_devices->total_rw_bytes += device->total_bytes;
6868 		atomic64_add(device->total_bytes - device->bytes_used,
6869 				&fs_info->free_chunk_space);
6870 	}
6871 	ret = 0;
6872 	return ret;
6873 }
6874 
6875 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6876 {
6877 	struct btrfs_root *root = fs_info->tree_root;
6878 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6879 	struct extent_buffer *sb;
6880 	struct btrfs_disk_key *disk_key;
6881 	struct btrfs_chunk *chunk;
6882 	u8 *array_ptr;
6883 	unsigned long sb_array_offset;
6884 	int ret = 0;
6885 	u32 num_stripes;
6886 	u32 array_size;
6887 	u32 len = 0;
6888 	u32 cur_offset;
6889 	u64 type;
6890 	struct btrfs_key key;
6891 
6892 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6893 	/*
6894 	 * This will create extent buffer of nodesize, superblock size is
6895 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6896 	 * overallocate but we can keep it as-is, only the first page is used.
6897 	 */
6898 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6899 	if (IS_ERR(sb))
6900 		return PTR_ERR(sb);
6901 	set_extent_buffer_uptodate(sb);
6902 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6903 	/*
6904 	 * The sb extent buffer is artificial and just used to read the system array.
6905 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6906 	 * pages up-to-date when the page is larger: extent does not cover the
6907 	 * whole page and consequently check_page_uptodate does not find all
6908 	 * the page's extents up-to-date (the hole beyond sb),
6909 	 * write_extent_buffer then triggers a WARN_ON.
6910 	 *
6911 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6912 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6913 	 * to silence the warning eg. on PowerPC 64.
6914 	 */
6915 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6916 		SetPageUptodate(sb->pages[0]);
6917 
6918 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6919 	array_size = btrfs_super_sys_array_size(super_copy);
6920 
6921 	array_ptr = super_copy->sys_chunk_array;
6922 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6923 	cur_offset = 0;
6924 
6925 	while (cur_offset < array_size) {
6926 		disk_key = (struct btrfs_disk_key *)array_ptr;
6927 		len = sizeof(*disk_key);
6928 		if (cur_offset + len > array_size)
6929 			goto out_short_read;
6930 
6931 		btrfs_disk_key_to_cpu(&key, disk_key);
6932 
6933 		array_ptr += len;
6934 		sb_array_offset += len;
6935 		cur_offset += len;
6936 
6937 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6938 			btrfs_err(fs_info,
6939 			    "unexpected item type %u in sys_array at offset %u",
6940 				  (u32)key.type, cur_offset);
6941 			ret = -EIO;
6942 			break;
6943 		}
6944 
6945 		chunk = (struct btrfs_chunk *)sb_array_offset;
6946 		/*
6947 		 * At least one btrfs_chunk with one stripe must be present,
6948 		 * exact stripe count check comes afterwards
6949 		 */
6950 		len = btrfs_chunk_item_size(1);
6951 		if (cur_offset + len > array_size)
6952 			goto out_short_read;
6953 
6954 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6955 		if (!num_stripes) {
6956 			btrfs_err(fs_info,
6957 			"invalid number of stripes %u in sys_array at offset %u",
6958 				  num_stripes, cur_offset);
6959 			ret = -EIO;
6960 			break;
6961 		}
6962 
6963 		type = btrfs_chunk_type(sb, chunk);
6964 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6965 			btrfs_err(fs_info,
6966 			"invalid chunk type %llu in sys_array at offset %u",
6967 				  type, cur_offset);
6968 			ret = -EIO;
6969 			break;
6970 		}
6971 
6972 		len = btrfs_chunk_item_size(num_stripes);
6973 		if (cur_offset + len > array_size)
6974 			goto out_short_read;
6975 
6976 		ret = read_one_chunk(&key, sb, chunk);
6977 		if (ret)
6978 			break;
6979 
6980 		array_ptr += len;
6981 		sb_array_offset += len;
6982 		cur_offset += len;
6983 	}
6984 	clear_extent_buffer_uptodate(sb);
6985 	free_extent_buffer_stale(sb);
6986 	return ret;
6987 
6988 out_short_read:
6989 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6990 			len, cur_offset);
6991 	clear_extent_buffer_uptodate(sb);
6992 	free_extent_buffer_stale(sb);
6993 	return -EIO;
6994 }
6995 
6996 /*
6997  * Check if all chunks in the fs are OK for read-write degraded mount
6998  *
6999  * If the @failing_dev is specified, it's accounted as missing.
7000  *
7001  * Return true if all chunks meet the minimal RW mount requirements.
7002  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7003  */
7004 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7005 					struct btrfs_device *failing_dev)
7006 {
7007 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7008 	struct extent_map *em;
7009 	u64 next_start = 0;
7010 	bool ret = true;
7011 
7012 	read_lock(&map_tree->lock);
7013 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7014 	read_unlock(&map_tree->lock);
7015 	/* No chunk at all? Return false anyway */
7016 	if (!em) {
7017 		ret = false;
7018 		goto out;
7019 	}
7020 	while (em) {
7021 		struct map_lookup *map;
7022 		int missing = 0;
7023 		int max_tolerated;
7024 		int i;
7025 
7026 		map = em->map_lookup;
7027 		max_tolerated =
7028 			btrfs_get_num_tolerated_disk_barrier_failures(
7029 					map->type);
7030 		for (i = 0; i < map->num_stripes; i++) {
7031 			struct btrfs_device *dev = map->stripes[i].dev;
7032 
7033 			if (!dev || !dev->bdev ||
7034 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7035 			    dev->last_flush_error)
7036 				missing++;
7037 			else if (failing_dev && failing_dev == dev)
7038 				missing++;
7039 		}
7040 		if (missing > max_tolerated) {
7041 			if (!failing_dev)
7042 				btrfs_warn(fs_info,
7043 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7044 				   em->start, missing, max_tolerated);
7045 			free_extent_map(em);
7046 			ret = false;
7047 			goto out;
7048 		}
7049 		next_start = extent_map_end(em);
7050 		free_extent_map(em);
7051 
7052 		read_lock(&map_tree->lock);
7053 		em = lookup_extent_mapping(map_tree, next_start,
7054 					   (u64)(-1) - next_start);
7055 		read_unlock(&map_tree->lock);
7056 	}
7057 out:
7058 	return ret;
7059 }
7060 
7061 static void readahead_tree_node_children(struct extent_buffer *node)
7062 {
7063 	int i;
7064 	const int nr_items = btrfs_header_nritems(node);
7065 
7066 	for (i = 0; i < nr_items; i++) {
7067 		u64 start;
7068 
7069 		start = btrfs_node_blockptr(node, i);
7070 		readahead_tree_block(node->fs_info, start);
7071 	}
7072 }
7073 
7074 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7075 {
7076 	struct btrfs_root *root = fs_info->chunk_root;
7077 	struct btrfs_path *path;
7078 	struct extent_buffer *leaf;
7079 	struct btrfs_key key;
7080 	struct btrfs_key found_key;
7081 	int ret;
7082 	int slot;
7083 	u64 total_dev = 0;
7084 	u64 last_ra_node = 0;
7085 
7086 	path = btrfs_alloc_path();
7087 	if (!path)
7088 		return -ENOMEM;
7089 
7090 	/*
7091 	 * uuid_mutex is needed only if we are mounting a sprout FS
7092 	 * otherwise we don't need it.
7093 	 */
7094 	mutex_lock(&uuid_mutex);
7095 
7096 	/*
7097 	 * It is possible for mount and umount to race in such a way that
7098 	 * we execute this code path, but open_fs_devices failed to clear
7099 	 * total_rw_bytes. We certainly want it cleared before reading the
7100 	 * device items, so clear it here.
7101 	 */
7102 	fs_info->fs_devices->total_rw_bytes = 0;
7103 
7104 	/*
7105 	 * Read all device items, and then all the chunk items. All
7106 	 * device items are found before any chunk item (their object id
7107 	 * is smaller than the lowest possible object id for a chunk
7108 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7109 	 */
7110 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7111 	key.offset = 0;
7112 	key.type = 0;
7113 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7114 	if (ret < 0)
7115 		goto error;
7116 	while (1) {
7117 		struct extent_buffer *node;
7118 
7119 		leaf = path->nodes[0];
7120 		slot = path->slots[0];
7121 		if (slot >= btrfs_header_nritems(leaf)) {
7122 			ret = btrfs_next_leaf(root, path);
7123 			if (ret == 0)
7124 				continue;
7125 			if (ret < 0)
7126 				goto error;
7127 			break;
7128 		}
7129 		/*
7130 		 * The nodes on level 1 are not locked but we don't need to do
7131 		 * that during mount time as nothing else can access the tree
7132 		 */
7133 		node = path->nodes[1];
7134 		if (node) {
7135 			if (last_ra_node != node->start) {
7136 				readahead_tree_node_children(node);
7137 				last_ra_node = node->start;
7138 			}
7139 		}
7140 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7141 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7142 			struct btrfs_dev_item *dev_item;
7143 			dev_item = btrfs_item_ptr(leaf, slot,
7144 						  struct btrfs_dev_item);
7145 			ret = read_one_dev(leaf, dev_item);
7146 			if (ret)
7147 				goto error;
7148 			total_dev++;
7149 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7150 			struct btrfs_chunk *chunk;
7151 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7152 			mutex_lock(&fs_info->chunk_mutex);
7153 			ret = read_one_chunk(&found_key, leaf, chunk);
7154 			mutex_unlock(&fs_info->chunk_mutex);
7155 			if (ret)
7156 				goto error;
7157 		}
7158 		path->slots[0]++;
7159 	}
7160 
7161 	/*
7162 	 * After loading chunk tree, we've got all device information,
7163 	 * do another round of validation checks.
7164 	 */
7165 	if (total_dev != fs_info->fs_devices->total_devices) {
7166 		btrfs_err(fs_info,
7167 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7168 			  btrfs_super_num_devices(fs_info->super_copy),
7169 			  total_dev);
7170 		ret = -EINVAL;
7171 		goto error;
7172 	}
7173 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7174 	    fs_info->fs_devices->total_rw_bytes) {
7175 		btrfs_err(fs_info,
7176 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7177 			  btrfs_super_total_bytes(fs_info->super_copy),
7178 			  fs_info->fs_devices->total_rw_bytes);
7179 		ret = -EINVAL;
7180 		goto error;
7181 	}
7182 	ret = 0;
7183 error:
7184 	mutex_unlock(&uuid_mutex);
7185 
7186 	btrfs_free_path(path);
7187 	return ret;
7188 }
7189 
7190 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7191 {
7192 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7193 	struct btrfs_device *device;
7194 
7195 	while (fs_devices) {
7196 		mutex_lock(&fs_devices->device_list_mutex);
7197 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7198 			device->fs_info = fs_info;
7199 		mutex_unlock(&fs_devices->device_list_mutex);
7200 
7201 		fs_devices = fs_devices->seed;
7202 	}
7203 }
7204 
7205 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7206 				 const struct btrfs_dev_stats_item *ptr,
7207 				 int index)
7208 {
7209 	u64 val;
7210 
7211 	read_extent_buffer(eb, &val,
7212 			   offsetof(struct btrfs_dev_stats_item, values) +
7213 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7214 			   sizeof(val));
7215 	return val;
7216 }
7217 
7218 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7219 				      struct btrfs_dev_stats_item *ptr,
7220 				      int index, u64 val)
7221 {
7222 	write_extent_buffer(eb, &val,
7223 			    offsetof(struct btrfs_dev_stats_item, values) +
7224 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7225 			    sizeof(val));
7226 }
7227 
7228 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7229 {
7230 	struct btrfs_key key;
7231 	struct btrfs_root *dev_root = fs_info->dev_root;
7232 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7233 	struct extent_buffer *eb;
7234 	int slot;
7235 	int ret = 0;
7236 	struct btrfs_device *device;
7237 	struct btrfs_path *path = NULL;
7238 	int i;
7239 
7240 	path = btrfs_alloc_path();
7241 	if (!path)
7242 		return -ENOMEM;
7243 
7244 	mutex_lock(&fs_devices->device_list_mutex);
7245 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7246 		int item_size;
7247 		struct btrfs_dev_stats_item *ptr;
7248 
7249 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7250 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7251 		key.offset = device->devid;
7252 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7253 		if (ret) {
7254 			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7255 				btrfs_dev_stat_set(device, i, 0);
7256 			device->dev_stats_valid = 1;
7257 			btrfs_release_path(path);
7258 			continue;
7259 		}
7260 		slot = path->slots[0];
7261 		eb = path->nodes[0];
7262 		item_size = btrfs_item_size_nr(eb, slot);
7263 
7264 		ptr = btrfs_item_ptr(eb, slot,
7265 				     struct btrfs_dev_stats_item);
7266 
7267 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7268 			if (item_size >= (1 + i) * sizeof(__le64))
7269 				btrfs_dev_stat_set(device, i,
7270 					btrfs_dev_stats_value(eb, ptr, i));
7271 			else
7272 				btrfs_dev_stat_set(device, i, 0);
7273 		}
7274 
7275 		device->dev_stats_valid = 1;
7276 		btrfs_dev_stat_print_on_load(device);
7277 		btrfs_release_path(path);
7278 	}
7279 	mutex_unlock(&fs_devices->device_list_mutex);
7280 
7281 	btrfs_free_path(path);
7282 	return ret < 0 ? ret : 0;
7283 }
7284 
7285 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7286 				struct btrfs_device *device)
7287 {
7288 	struct btrfs_fs_info *fs_info = trans->fs_info;
7289 	struct btrfs_root *dev_root = fs_info->dev_root;
7290 	struct btrfs_path *path;
7291 	struct btrfs_key key;
7292 	struct extent_buffer *eb;
7293 	struct btrfs_dev_stats_item *ptr;
7294 	int ret;
7295 	int i;
7296 
7297 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7298 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7299 	key.offset = device->devid;
7300 
7301 	path = btrfs_alloc_path();
7302 	if (!path)
7303 		return -ENOMEM;
7304 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7305 	if (ret < 0) {
7306 		btrfs_warn_in_rcu(fs_info,
7307 			"error %d while searching for dev_stats item for device %s",
7308 			      ret, rcu_str_deref(device->name));
7309 		goto out;
7310 	}
7311 
7312 	if (ret == 0 &&
7313 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7314 		/* need to delete old one and insert a new one */
7315 		ret = btrfs_del_item(trans, dev_root, path);
7316 		if (ret != 0) {
7317 			btrfs_warn_in_rcu(fs_info,
7318 				"delete too small dev_stats item for device %s failed %d",
7319 				      rcu_str_deref(device->name), ret);
7320 			goto out;
7321 		}
7322 		ret = 1;
7323 	}
7324 
7325 	if (ret == 1) {
7326 		/* need to insert a new item */
7327 		btrfs_release_path(path);
7328 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7329 					      &key, sizeof(*ptr));
7330 		if (ret < 0) {
7331 			btrfs_warn_in_rcu(fs_info,
7332 				"insert dev_stats item for device %s failed %d",
7333 				rcu_str_deref(device->name), ret);
7334 			goto out;
7335 		}
7336 	}
7337 
7338 	eb = path->nodes[0];
7339 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7340 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7341 		btrfs_set_dev_stats_value(eb, ptr, i,
7342 					  btrfs_dev_stat_read(device, i));
7343 	btrfs_mark_buffer_dirty(eb);
7344 
7345 out:
7346 	btrfs_free_path(path);
7347 	return ret;
7348 }
7349 
7350 /*
7351  * called from commit_transaction. Writes all changed device stats to disk.
7352  */
7353 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7354 {
7355 	struct btrfs_fs_info *fs_info = trans->fs_info;
7356 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7357 	struct btrfs_device *device;
7358 	int stats_cnt;
7359 	int ret = 0;
7360 
7361 	mutex_lock(&fs_devices->device_list_mutex);
7362 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7363 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7364 		if (!device->dev_stats_valid || stats_cnt == 0)
7365 			continue;
7366 
7367 
7368 		/*
7369 		 * There is a LOAD-LOAD control dependency between the value of
7370 		 * dev_stats_ccnt and updating the on-disk values which requires
7371 		 * reading the in-memory counters. Such control dependencies
7372 		 * require explicit read memory barriers.
7373 		 *
7374 		 * This memory barriers pairs with smp_mb__before_atomic in
7375 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7376 		 * barrier implied by atomic_xchg in
7377 		 * btrfs_dev_stats_read_and_reset
7378 		 */
7379 		smp_rmb();
7380 
7381 		ret = update_dev_stat_item(trans, device);
7382 		if (!ret)
7383 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7384 	}
7385 	mutex_unlock(&fs_devices->device_list_mutex);
7386 
7387 	return ret;
7388 }
7389 
7390 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7391 {
7392 	btrfs_dev_stat_inc(dev, index);
7393 	btrfs_dev_stat_print_on_error(dev);
7394 }
7395 
7396 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7397 {
7398 	if (!dev->dev_stats_valid)
7399 		return;
7400 	btrfs_err_rl_in_rcu(dev->fs_info,
7401 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7402 			   rcu_str_deref(dev->name),
7403 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7404 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7405 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7406 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7407 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7408 }
7409 
7410 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7411 {
7412 	int i;
7413 
7414 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7415 		if (btrfs_dev_stat_read(dev, i) != 0)
7416 			break;
7417 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7418 		return; /* all values == 0, suppress message */
7419 
7420 	btrfs_info_in_rcu(dev->fs_info,
7421 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7422 	       rcu_str_deref(dev->name),
7423 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7424 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7425 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7426 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7427 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7428 }
7429 
7430 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7431 			struct btrfs_ioctl_get_dev_stats *stats)
7432 {
7433 	struct btrfs_device *dev;
7434 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7435 	int i;
7436 
7437 	mutex_lock(&fs_devices->device_list_mutex);
7438 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7439 				true);
7440 	mutex_unlock(&fs_devices->device_list_mutex);
7441 
7442 	if (!dev) {
7443 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7444 		return -ENODEV;
7445 	} else if (!dev->dev_stats_valid) {
7446 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7447 		return -ENODEV;
7448 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7449 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7450 			if (stats->nr_items > i)
7451 				stats->values[i] =
7452 					btrfs_dev_stat_read_and_reset(dev, i);
7453 			else
7454 				btrfs_dev_stat_set(dev, i, 0);
7455 		}
7456 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7457 			   current->comm, task_pid_nr(current));
7458 	} else {
7459 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7460 			if (stats->nr_items > i)
7461 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7462 	}
7463 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7464 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7465 	return 0;
7466 }
7467 
7468 /*
7469  * Update the size and bytes used for each device where it changed.  This is
7470  * delayed since we would otherwise get errors while writing out the
7471  * superblocks.
7472  *
7473  * Must be invoked during transaction commit.
7474  */
7475 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7476 {
7477 	struct btrfs_device *curr, *next;
7478 
7479 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7480 
7481 	if (list_empty(&trans->dev_update_list))
7482 		return;
7483 
7484 	/*
7485 	 * We don't need the device_list_mutex here.  This list is owned by the
7486 	 * transaction and the transaction must complete before the device is
7487 	 * released.
7488 	 */
7489 	mutex_lock(&trans->fs_info->chunk_mutex);
7490 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7491 				 post_commit_list) {
7492 		list_del_init(&curr->post_commit_list);
7493 		curr->commit_total_bytes = curr->disk_total_bytes;
7494 		curr->commit_bytes_used = curr->bytes_used;
7495 	}
7496 	mutex_unlock(&trans->fs_info->chunk_mutex);
7497 }
7498 
7499 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7500 {
7501 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7502 	while (fs_devices) {
7503 		fs_devices->fs_info = fs_info;
7504 		fs_devices = fs_devices->seed;
7505 	}
7506 }
7507 
7508 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7509 {
7510 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7511 	while (fs_devices) {
7512 		fs_devices->fs_info = NULL;
7513 		fs_devices = fs_devices->seed;
7514 	}
7515 }
7516 
7517 /*
7518  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7519  */
7520 int btrfs_bg_type_to_factor(u64 flags)
7521 {
7522 	const int index = btrfs_bg_flags_to_raid_index(flags);
7523 
7524 	return btrfs_raid_array[index].ncopies;
7525 }
7526 
7527 
7528 
7529 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7530 				 u64 chunk_offset, u64 devid,
7531 				 u64 physical_offset, u64 physical_len)
7532 {
7533 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7534 	struct extent_map *em;
7535 	struct map_lookup *map;
7536 	struct btrfs_device *dev;
7537 	u64 stripe_len;
7538 	bool found = false;
7539 	int ret = 0;
7540 	int i;
7541 
7542 	read_lock(&em_tree->lock);
7543 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7544 	read_unlock(&em_tree->lock);
7545 
7546 	if (!em) {
7547 		btrfs_err(fs_info,
7548 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7549 			  physical_offset, devid);
7550 		ret = -EUCLEAN;
7551 		goto out;
7552 	}
7553 
7554 	map = em->map_lookup;
7555 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7556 	if (physical_len != stripe_len) {
7557 		btrfs_err(fs_info,
7558 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7559 			  physical_offset, devid, em->start, physical_len,
7560 			  stripe_len);
7561 		ret = -EUCLEAN;
7562 		goto out;
7563 	}
7564 
7565 	for (i = 0; i < map->num_stripes; i++) {
7566 		if (map->stripes[i].dev->devid == devid &&
7567 		    map->stripes[i].physical == physical_offset) {
7568 			found = true;
7569 			if (map->verified_stripes >= map->num_stripes) {
7570 				btrfs_err(fs_info,
7571 				"too many dev extents for chunk %llu found",
7572 					  em->start);
7573 				ret = -EUCLEAN;
7574 				goto out;
7575 			}
7576 			map->verified_stripes++;
7577 			break;
7578 		}
7579 	}
7580 	if (!found) {
7581 		btrfs_err(fs_info,
7582 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7583 			physical_offset, devid);
7584 		ret = -EUCLEAN;
7585 	}
7586 
7587 	/* Make sure no dev extent is beyond device bondary */
7588 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7589 	if (!dev) {
7590 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7591 		ret = -EUCLEAN;
7592 		goto out;
7593 	}
7594 
7595 	/* It's possible this device is a dummy for seed device */
7596 	if (dev->disk_total_bytes == 0) {
7597 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7598 					NULL, false);
7599 		if (!dev) {
7600 			btrfs_err(fs_info, "failed to find seed devid %llu",
7601 				  devid);
7602 			ret = -EUCLEAN;
7603 			goto out;
7604 		}
7605 	}
7606 
7607 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7608 		btrfs_err(fs_info,
7609 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7610 			  devid, physical_offset, physical_len,
7611 			  dev->disk_total_bytes);
7612 		ret = -EUCLEAN;
7613 		goto out;
7614 	}
7615 out:
7616 	free_extent_map(em);
7617 	return ret;
7618 }
7619 
7620 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7621 {
7622 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7623 	struct extent_map *em;
7624 	struct rb_node *node;
7625 	int ret = 0;
7626 
7627 	read_lock(&em_tree->lock);
7628 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7629 		em = rb_entry(node, struct extent_map, rb_node);
7630 		if (em->map_lookup->num_stripes !=
7631 		    em->map_lookup->verified_stripes) {
7632 			btrfs_err(fs_info,
7633 			"chunk %llu has missing dev extent, have %d expect %d",
7634 				  em->start, em->map_lookup->verified_stripes,
7635 				  em->map_lookup->num_stripes);
7636 			ret = -EUCLEAN;
7637 			goto out;
7638 		}
7639 	}
7640 out:
7641 	read_unlock(&em_tree->lock);
7642 	return ret;
7643 }
7644 
7645 /*
7646  * Ensure that all dev extents are mapped to correct chunk, otherwise
7647  * later chunk allocation/free would cause unexpected behavior.
7648  *
7649  * NOTE: This will iterate through the whole device tree, which should be of
7650  * the same size level as the chunk tree.  This slightly increases mount time.
7651  */
7652 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7653 {
7654 	struct btrfs_path *path;
7655 	struct btrfs_root *root = fs_info->dev_root;
7656 	struct btrfs_key key;
7657 	u64 prev_devid = 0;
7658 	u64 prev_dev_ext_end = 0;
7659 	int ret = 0;
7660 
7661 	key.objectid = 1;
7662 	key.type = BTRFS_DEV_EXTENT_KEY;
7663 	key.offset = 0;
7664 
7665 	path = btrfs_alloc_path();
7666 	if (!path)
7667 		return -ENOMEM;
7668 
7669 	path->reada = READA_FORWARD;
7670 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7671 	if (ret < 0)
7672 		goto out;
7673 
7674 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7675 		ret = btrfs_next_item(root, path);
7676 		if (ret < 0)
7677 			goto out;
7678 		/* No dev extents at all? Not good */
7679 		if (ret > 0) {
7680 			ret = -EUCLEAN;
7681 			goto out;
7682 		}
7683 	}
7684 	while (1) {
7685 		struct extent_buffer *leaf = path->nodes[0];
7686 		struct btrfs_dev_extent *dext;
7687 		int slot = path->slots[0];
7688 		u64 chunk_offset;
7689 		u64 physical_offset;
7690 		u64 physical_len;
7691 		u64 devid;
7692 
7693 		btrfs_item_key_to_cpu(leaf, &key, slot);
7694 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7695 			break;
7696 		devid = key.objectid;
7697 		physical_offset = key.offset;
7698 
7699 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7700 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7701 		physical_len = btrfs_dev_extent_length(leaf, dext);
7702 
7703 		/* Check if this dev extent overlaps with the previous one */
7704 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7705 			btrfs_err(fs_info,
7706 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7707 				  devid, physical_offset, prev_dev_ext_end);
7708 			ret = -EUCLEAN;
7709 			goto out;
7710 		}
7711 
7712 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7713 					    physical_offset, physical_len);
7714 		if (ret < 0)
7715 			goto out;
7716 		prev_devid = devid;
7717 		prev_dev_ext_end = physical_offset + physical_len;
7718 
7719 		ret = btrfs_next_item(root, path);
7720 		if (ret < 0)
7721 			goto out;
7722 		if (ret > 0) {
7723 			ret = 0;
7724 			break;
7725 		}
7726 	}
7727 
7728 	/* Ensure all chunks have corresponding dev extents */
7729 	ret = verify_chunk_dev_extent_mapping(fs_info);
7730 out:
7731 	btrfs_free_path(path);
7732 	return ret;
7733 }
7734 
7735 /*
7736  * Check whether the given block group or device is pinned by any inode being
7737  * used as a swapfile.
7738  */
7739 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7740 {
7741 	struct btrfs_swapfile_pin *sp;
7742 	struct rb_node *node;
7743 
7744 	spin_lock(&fs_info->swapfile_pins_lock);
7745 	node = fs_info->swapfile_pins.rb_node;
7746 	while (node) {
7747 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7748 		if (ptr < sp->ptr)
7749 			node = node->rb_left;
7750 		else if (ptr > sp->ptr)
7751 			node = node->rb_right;
7752 		else
7753 			break;
7754 	}
7755 	spin_unlock(&fs_info->swapfile_pins_lock);
7756 	return node != NULL;
7757 }
7758