xref: /linux/fs/btrfs/volumes.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <asm/div64.h>
29 #include "compat.h"
30 #include "ctree.h"
31 #include "extent_map.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "async-thread.h"
37 #include "check-integrity.h"
38 #include "rcu-string.h"
39 
40 static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 				struct btrfs_root *root,
42 				struct btrfs_device *device);
43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
46 
47 static DEFINE_MUTEX(uuid_mutex);
48 static LIST_HEAD(fs_uuids);
49 
50 static void lock_chunks(struct btrfs_root *root)
51 {
52 	mutex_lock(&root->fs_info->chunk_mutex);
53 }
54 
55 static void unlock_chunks(struct btrfs_root *root)
56 {
57 	mutex_unlock(&root->fs_info->chunk_mutex);
58 }
59 
60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61 {
62 	struct btrfs_device *device;
63 	WARN_ON(fs_devices->opened);
64 	while (!list_empty(&fs_devices->devices)) {
65 		device = list_entry(fs_devices->devices.next,
66 				    struct btrfs_device, dev_list);
67 		list_del(&device->dev_list);
68 		rcu_string_free(device->name);
69 		kfree(device);
70 	}
71 	kfree(fs_devices);
72 }
73 
74 void btrfs_cleanup_fs_uuids(void)
75 {
76 	struct btrfs_fs_devices *fs_devices;
77 
78 	while (!list_empty(&fs_uuids)) {
79 		fs_devices = list_entry(fs_uuids.next,
80 					struct btrfs_fs_devices, list);
81 		list_del(&fs_devices->list);
82 		free_fs_devices(fs_devices);
83 	}
84 }
85 
86 static noinline struct btrfs_device *__find_device(struct list_head *head,
87 						   u64 devid, u8 *uuid)
88 {
89 	struct btrfs_device *dev;
90 
91 	list_for_each_entry(dev, head, dev_list) {
92 		if (dev->devid == devid &&
93 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
94 			return dev;
95 		}
96 	}
97 	return NULL;
98 }
99 
100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
101 {
102 	struct btrfs_fs_devices *fs_devices;
103 
104 	list_for_each_entry(fs_devices, &fs_uuids, list) {
105 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106 			return fs_devices;
107 	}
108 	return NULL;
109 }
110 
111 static void requeue_list(struct btrfs_pending_bios *pending_bios,
112 			struct bio *head, struct bio *tail)
113 {
114 
115 	struct bio *old_head;
116 
117 	old_head = pending_bios->head;
118 	pending_bios->head = head;
119 	if (pending_bios->tail)
120 		tail->bi_next = old_head;
121 	else
122 		pending_bios->tail = tail;
123 }
124 
125 /*
126  * we try to collect pending bios for a device so we don't get a large
127  * number of procs sending bios down to the same device.  This greatly
128  * improves the schedulers ability to collect and merge the bios.
129  *
130  * But, it also turns into a long list of bios to process and that is sure
131  * to eventually make the worker thread block.  The solution here is to
132  * make some progress and then put this work struct back at the end of
133  * the list if the block device is congested.  This way, multiple devices
134  * can make progress from a single worker thread.
135  */
136 static noinline void run_scheduled_bios(struct btrfs_device *device)
137 {
138 	struct bio *pending;
139 	struct backing_dev_info *bdi;
140 	struct btrfs_fs_info *fs_info;
141 	struct btrfs_pending_bios *pending_bios;
142 	struct bio *tail;
143 	struct bio *cur;
144 	int again = 0;
145 	unsigned long num_run;
146 	unsigned long batch_run = 0;
147 	unsigned long limit;
148 	unsigned long last_waited = 0;
149 	int force_reg = 0;
150 	int sync_pending = 0;
151 	struct blk_plug plug;
152 
153 	/*
154 	 * this function runs all the bios we've collected for
155 	 * a particular device.  We don't want to wander off to
156 	 * another device without first sending all of these down.
157 	 * So, setup a plug here and finish it off before we return
158 	 */
159 	blk_start_plug(&plug);
160 
161 	bdi = blk_get_backing_dev_info(device->bdev);
162 	fs_info = device->dev_root->fs_info;
163 	limit = btrfs_async_submit_limit(fs_info);
164 	limit = limit * 2 / 3;
165 
166 loop:
167 	spin_lock(&device->io_lock);
168 
169 loop_lock:
170 	num_run = 0;
171 
172 	/* take all the bios off the list at once and process them
173 	 * later on (without the lock held).  But, remember the
174 	 * tail and other pointers so the bios can be properly reinserted
175 	 * into the list if we hit congestion
176 	 */
177 	if (!force_reg && device->pending_sync_bios.head) {
178 		pending_bios = &device->pending_sync_bios;
179 		force_reg = 1;
180 	} else {
181 		pending_bios = &device->pending_bios;
182 		force_reg = 0;
183 	}
184 
185 	pending = pending_bios->head;
186 	tail = pending_bios->tail;
187 	WARN_ON(pending && !tail);
188 
189 	/*
190 	 * if pending was null this time around, no bios need processing
191 	 * at all and we can stop.  Otherwise it'll loop back up again
192 	 * and do an additional check so no bios are missed.
193 	 *
194 	 * device->running_pending is used to synchronize with the
195 	 * schedule_bio code.
196 	 */
197 	if (device->pending_sync_bios.head == NULL &&
198 	    device->pending_bios.head == NULL) {
199 		again = 0;
200 		device->running_pending = 0;
201 	} else {
202 		again = 1;
203 		device->running_pending = 1;
204 	}
205 
206 	pending_bios->head = NULL;
207 	pending_bios->tail = NULL;
208 
209 	spin_unlock(&device->io_lock);
210 
211 	while (pending) {
212 
213 		rmb();
214 		/* we want to work on both lists, but do more bios on the
215 		 * sync list than the regular list
216 		 */
217 		if ((num_run > 32 &&
218 		    pending_bios != &device->pending_sync_bios &&
219 		    device->pending_sync_bios.head) ||
220 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221 		    device->pending_bios.head)) {
222 			spin_lock(&device->io_lock);
223 			requeue_list(pending_bios, pending, tail);
224 			goto loop_lock;
225 		}
226 
227 		cur = pending;
228 		pending = pending->bi_next;
229 		cur->bi_next = NULL;
230 		atomic_dec(&fs_info->nr_async_bios);
231 
232 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
233 		    waitqueue_active(&fs_info->async_submit_wait))
234 			wake_up(&fs_info->async_submit_wait);
235 
236 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
237 
238 		/*
239 		 * if we're doing the sync list, record that our
240 		 * plug has some sync requests on it
241 		 *
242 		 * If we're doing the regular list and there are
243 		 * sync requests sitting around, unplug before
244 		 * we add more
245 		 */
246 		if (pending_bios == &device->pending_sync_bios) {
247 			sync_pending = 1;
248 		} else if (sync_pending) {
249 			blk_finish_plug(&plug);
250 			blk_start_plug(&plug);
251 			sync_pending = 0;
252 		}
253 
254 		btrfsic_submit_bio(cur->bi_rw, cur);
255 		num_run++;
256 		batch_run++;
257 		if (need_resched())
258 			cond_resched();
259 
260 		/*
261 		 * we made progress, there is more work to do and the bdi
262 		 * is now congested.  Back off and let other work structs
263 		 * run instead
264 		 */
265 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
266 		    fs_info->fs_devices->open_devices > 1) {
267 			struct io_context *ioc;
268 
269 			ioc = current->io_context;
270 
271 			/*
272 			 * the main goal here is that we don't want to
273 			 * block if we're going to be able to submit
274 			 * more requests without blocking.
275 			 *
276 			 * This code does two great things, it pokes into
277 			 * the elevator code from a filesystem _and_
278 			 * it makes assumptions about how batching works.
279 			 */
280 			if (ioc && ioc->nr_batch_requests > 0 &&
281 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
282 			    (last_waited == 0 ||
283 			     ioc->last_waited == last_waited)) {
284 				/*
285 				 * we want to go through our batch of
286 				 * requests and stop.  So, we copy out
287 				 * the ioc->last_waited time and test
288 				 * against it before looping
289 				 */
290 				last_waited = ioc->last_waited;
291 				if (need_resched())
292 					cond_resched();
293 				continue;
294 			}
295 			spin_lock(&device->io_lock);
296 			requeue_list(pending_bios, pending, tail);
297 			device->running_pending = 1;
298 
299 			spin_unlock(&device->io_lock);
300 			btrfs_requeue_work(&device->work);
301 			goto done;
302 		}
303 		/* unplug every 64 requests just for good measure */
304 		if (batch_run % 64 == 0) {
305 			blk_finish_plug(&plug);
306 			blk_start_plug(&plug);
307 			sync_pending = 0;
308 		}
309 	}
310 
311 	cond_resched();
312 	if (again)
313 		goto loop;
314 
315 	spin_lock(&device->io_lock);
316 	if (device->pending_bios.head || device->pending_sync_bios.head)
317 		goto loop_lock;
318 	spin_unlock(&device->io_lock);
319 
320 done:
321 	blk_finish_plug(&plug);
322 }
323 
324 static void pending_bios_fn(struct btrfs_work *work)
325 {
326 	struct btrfs_device *device;
327 
328 	device = container_of(work, struct btrfs_device, work);
329 	run_scheduled_bios(device);
330 }
331 
332 static noinline int device_list_add(const char *path,
333 			   struct btrfs_super_block *disk_super,
334 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
335 {
336 	struct btrfs_device *device;
337 	struct btrfs_fs_devices *fs_devices;
338 	struct rcu_string *name;
339 	u64 found_transid = btrfs_super_generation(disk_super);
340 
341 	fs_devices = find_fsid(disk_super->fsid);
342 	if (!fs_devices) {
343 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
344 		if (!fs_devices)
345 			return -ENOMEM;
346 		INIT_LIST_HEAD(&fs_devices->devices);
347 		INIT_LIST_HEAD(&fs_devices->alloc_list);
348 		list_add(&fs_devices->list, &fs_uuids);
349 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
350 		fs_devices->latest_devid = devid;
351 		fs_devices->latest_trans = found_transid;
352 		mutex_init(&fs_devices->device_list_mutex);
353 		device = NULL;
354 	} else {
355 		device = __find_device(&fs_devices->devices, devid,
356 				       disk_super->dev_item.uuid);
357 	}
358 	if (!device) {
359 		if (fs_devices->opened)
360 			return -EBUSY;
361 
362 		device = kzalloc(sizeof(*device), GFP_NOFS);
363 		if (!device) {
364 			/* we can safely leave the fs_devices entry around */
365 			return -ENOMEM;
366 		}
367 		device->devid = devid;
368 		device->dev_stats_valid = 0;
369 		device->work.func = pending_bios_fn;
370 		memcpy(device->uuid, disk_super->dev_item.uuid,
371 		       BTRFS_UUID_SIZE);
372 		spin_lock_init(&device->io_lock);
373 
374 		name = rcu_string_strdup(path, GFP_NOFS);
375 		if (!name) {
376 			kfree(device);
377 			return -ENOMEM;
378 		}
379 		rcu_assign_pointer(device->name, name);
380 		INIT_LIST_HEAD(&device->dev_alloc_list);
381 
382 		/* init readahead state */
383 		spin_lock_init(&device->reada_lock);
384 		device->reada_curr_zone = NULL;
385 		atomic_set(&device->reada_in_flight, 0);
386 		device->reada_next = 0;
387 		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
388 		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
389 
390 		mutex_lock(&fs_devices->device_list_mutex);
391 		list_add_rcu(&device->dev_list, &fs_devices->devices);
392 		mutex_unlock(&fs_devices->device_list_mutex);
393 
394 		device->fs_devices = fs_devices;
395 		fs_devices->num_devices++;
396 	} else if (!device->name || strcmp(device->name->str, path)) {
397 		name = rcu_string_strdup(path, GFP_NOFS);
398 		if (!name)
399 			return -ENOMEM;
400 		rcu_string_free(device->name);
401 		rcu_assign_pointer(device->name, name);
402 		if (device->missing) {
403 			fs_devices->missing_devices--;
404 			device->missing = 0;
405 		}
406 	}
407 
408 	if (found_transid > fs_devices->latest_trans) {
409 		fs_devices->latest_devid = devid;
410 		fs_devices->latest_trans = found_transid;
411 	}
412 	*fs_devices_ret = fs_devices;
413 	return 0;
414 }
415 
416 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
417 {
418 	struct btrfs_fs_devices *fs_devices;
419 	struct btrfs_device *device;
420 	struct btrfs_device *orig_dev;
421 
422 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
423 	if (!fs_devices)
424 		return ERR_PTR(-ENOMEM);
425 
426 	INIT_LIST_HEAD(&fs_devices->devices);
427 	INIT_LIST_HEAD(&fs_devices->alloc_list);
428 	INIT_LIST_HEAD(&fs_devices->list);
429 	mutex_init(&fs_devices->device_list_mutex);
430 	fs_devices->latest_devid = orig->latest_devid;
431 	fs_devices->latest_trans = orig->latest_trans;
432 	fs_devices->total_devices = orig->total_devices;
433 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
434 
435 	/* We have held the volume lock, it is safe to get the devices. */
436 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
437 		struct rcu_string *name;
438 
439 		device = kzalloc(sizeof(*device), GFP_NOFS);
440 		if (!device)
441 			goto error;
442 
443 		/*
444 		 * This is ok to do without rcu read locked because we hold the
445 		 * uuid mutex so nothing we touch in here is going to disappear.
446 		 */
447 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
448 		if (!name) {
449 			kfree(device);
450 			goto error;
451 		}
452 		rcu_assign_pointer(device->name, name);
453 
454 		device->devid = orig_dev->devid;
455 		device->work.func = pending_bios_fn;
456 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
457 		spin_lock_init(&device->io_lock);
458 		INIT_LIST_HEAD(&device->dev_list);
459 		INIT_LIST_HEAD(&device->dev_alloc_list);
460 
461 		list_add(&device->dev_list, &fs_devices->devices);
462 		device->fs_devices = fs_devices;
463 		fs_devices->num_devices++;
464 	}
465 	return fs_devices;
466 error:
467 	free_fs_devices(fs_devices);
468 	return ERR_PTR(-ENOMEM);
469 }
470 
471 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
472 {
473 	struct btrfs_device *device, *next;
474 
475 	struct block_device *latest_bdev = NULL;
476 	u64 latest_devid = 0;
477 	u64 latest_transid = 0;
478 
479 	mutex_lock(&uuid_mutex);
480 again:
481 	/* This is the initialized path, it is safe to release the devices. */
482 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
483 		if (device->in_fs_metadata) {
484 			if (!latest_transid ||
485 			    device->generation > latest_transid) {
486 				latest_devid = device->devid;
487 				latest_transid = device->generation;
488 				latest_bdev = device->bdev;
489 			}
490 			continue;
491 		}
492 
493 		if (device->bdev) {
494 			blkdev_put(device->bdev, device->mode);
495 			device->bdev = NULL;
496 			fs_devices->open_devices--;
497 		}
498 		if (device->writeable) {
499 			list_del_init(&device->dev_alloc_list);
500 			device->writeable = 0;
501 			fs_devices->rw_devices--;
502 		}
503 		list_del_init(&device->dev_list);
504 		fs_devices->num_devices--;
505 		rcu_string_free(device->name);
506 		kfree(device);
507 	}
508 
509 	if (fs_devices->seed) {
510 		fs_devices = fs_devices->seed;
511 		goto again;
512 	}
513 
514 	fs_devices->latest_bdev = latest_bdev;
515 	fs_devices->latest_devid = latest_devid;
516 	fs_devices->latest_trans = latest_transid;
517 
518 	mutex_unlock(&uuid_mutex);
519 }
520 
521 static void __free_device(struct work_struct *work)
522 {
523 	struct btrfs_device *device;
524 
525 	device = container_of(work, struct btrfs_device, rcu_work);
526 
527 	if (device->bdev)
528 		blkdev_put(device->bdev, device->mode);
529 
530 	rcu_string_free(device->name);
531 	kfree(device);
532 }
533 
534 static void free_device(struct rcu_head *head)
535 {
536 	struct btrfs_device *device;
537 
538 	device = container_of(head, struct btrfs_device, rcu);
539 
540 	INIT_WORK(&device->rcu_work, __free_device);
541 	schedule_work(&device->rcu_work);
542 }
543 
544 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
545 {
546 	struct btrfs_device *device;
547 
548 	if (--fs_devices->opened > 0)
549 		return 0;
550 
551 	mutex_lock(&fs_devices->device_list_mutex);
552 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
553 		struct btrfs_device *new_device;
554 		struct rcu_string *name;
555 
556 		if (device->bdev)
557 			fs_devices->open_devices--;
558 
559 		if (device->writeable) {
560 			list_del_init(&device->dev_alloc_list);
561 			fs_devices->rw_devices--;
562 		}
563 
564 		if (device->can_discard)
565 			fs_devices->num_can_discard--;
566 
567 		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
568 		BUG_ON(!new_device); /* -ENOMEM */
569 		memcpy(new_device, device, sizeof(*new_device));
570 
571 		/* Safe because we are under uuid_mutex */
572 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
573 		BUG_ON(device->name && !name); /* -ENOMEM */
574 		rcu_assign_pointer(new_device->name, name);
575 		new_device->bdev = NULL;
576 		new_device->writeable = 0;
577 		new_device->in_fs_metadata = 0;
578 		new_device->can_discard = 0;
579 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
580 
581 		call_rcu(&device->rcu, free_device);
582 	}
583 	mutex_unlock(&fs_devices->device_list_mutex);
584 
585 	WARN_ON(fs_devices->open_devices);
586 	WARN_ON(fs_devices->rw_devices);
587 	fs_devices->opened = 0;
588 	fs_devices->seeding = 0;
589 
590 	return 0;
591 }
592 
593 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
594 {
595 	struct btrfs_fs_devices *seed_devices = NULL;
596 	int ret;
597 
598 	mutex_lock(&uuid_mutex);
599 	ret = __btrfs_close_devices(fs_devices);
600 	if (!fs_devices->opened) {
601 		seed_devices = fs_devices->seed;
602 		fs_devices->seed = NULL;
603 	}
604 	mutex_unlock(&uuid_mutex);
605 
606 	while (seed_devices) {
607 		fs_devices = seed_devices;
608 		seed_devices = fs_devices->seed;
609 		__btrfs_close_devices(fs_devices);
610 		free_fs_devices(fs_devices);
611 	}
612 	return ret;
613 }
614 
615 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
616 				fmode_t flags, void *holder)
617 {
618 	struct request_queue *q;
619 	struct block_device *bdev;
620 	struct list_head *head = &fs_devices->devices;
621 	struct btrfs_device *device;
622 	struct block_device *latest_bdev = NULL;
623 	struct buffer_head *bh;
624 	struct btrfs_super_block *disk_super;
625 	u64 latest_devid = 0;
626 	u64 latest_transid = 0;
627 	u64 devid;
628 	int seeding = 1;
629 	int ret = 0;
630 
631 	flags |= FMODE_EXCL;
632 
633 	list_for_each_entry(device, head, dev_list) {
634 		if (device->bdev)
635 			continue;
636 		if (!device->name)
637 			continue;
638 
639 		bdev = blkdev_get_by_path(device->name->str, flags, holder);
640 		if (IS_ERR(bdev)) {
641 			printk(KERN_INFO "open %s failed\n", device->name->str);
642 			goto error;
643 		}
644 		filemap_write_and_wait(bdev->bd_inode->i_mapping);
645 		invalidate_bdev(bdev);
646 		set_blocksize(bdev, 4096);
647 
648 		bh = btrfs_read_dev_super(bdev);
649 		if (!bh)
650 			goto error_close;
651 
652 		disk_super = (struct btrfs_super_block *)bh->b_data;
653 		devid = btrfs_stack_device_id(&disk_super->dev_item);
654 		if (devid != device->devid)
655 			goto error_brelse;
656 
657 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
658 			   BTRFS_UUID_SIZE))
659 			goto error_brelse;
660 
661 		device->generation = btrfs_super_generation(disk_super);
662 		if (!latest_transid || device->generation > latest_transid) {
663 			latest_devid = devid;
664 			latest_transid = device->generation;
665 			latest_bdev = bdev;
666 		}
667 
668 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 			device->writeable = 0;
670 		} else {
671 			device->writeable = !bdev_read_only(bdev);
672 			seeding = 0;
673 		}
674 
675 		q = bdev_get_queue(bdev);
676 		if (blk_queue_discard(q)) {
677 			device->can_discard = 1;
678 			fs_devices->num_can_discard++;
679 		}
680 
681 		device->bdev = bdev;
682 		device->in_fs_metadata = 0;
683 		device->mode = flags;
684 
685 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
686 			fs_devices->rotating = 1;
687 
688 		fs_devices->open_devices++;
689 		if (device->writeable) {
690 			fs_devices->rw_devices++;
691 			list_add(&device->dev_alloc_list,
692 				 &fs_devices->alloc_list);
693 		}
694 		brelse(bh);
695 		continue;
696 
697 error_brelse:
698 		brelse(bh);
699 error_close:
700 		blkdev_put(bdev, flags);
701 error:
702 		continue;
703 	}
704 	if (fs_devices->open_devices == 0) {
705 		ret = -EINVAL;
706 		goto out;
707 	}
708 	fs_devices->seeding = seeding;
709 	fs_devices->opened = 1;
710 	fs_devices->latest_bdev = latest_bdev;
711 	fs_devices->latest_devid = latest_devid;
712 	fs_devices->latest_trans = latest_transid;
713 	fs_devices->total_rw_bytes = 0;
714 out:
715 	return ret;
716 }
717 
718 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
719 		       fmode_t flags, void *holder)
720 {
721 	int ret;
722 
723 	mutex_lock(&uuid_mutex);
724 	if (fs_devices->opened) {
725 		fs_devices->opened++;
726 		ret = 0;
727 	} else {
728 		ret = __btrfs_open_devices(fs_devices, flags, holder);
729 	}
730 	mutex_unlock(&uuid_mutex);
731 	return ret;
732 }
733 
734 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
735 			  struct btrfs_fs_devices **fs_devices_ret)
736 {
737 	struct btrfs_super_block *disk_super;
738 	struct block_device *bdev;
739 	struct buffer_head *bh;
740 	int ret;
741 	u64 devid;
742 	u64 transid;
743 	u64 total_devices;
744 
745 	flags |= FMODE_EXCL;
746 	bdev = blkdev_get_by_path(path, flags, holder);
747 
748 	if (IS_ERR(bdev)) {
749 		ret = PTR_ERR(bdev);
750 		goto error;
751 	}
752 
753 	mutex_lock(&uuid_mutex);
754 	ret = set_blocksize(bdev, 4096);
755 	if (ret)
756 		goto error_close;
757 	bh = btrfs_read_dev_super(bdev);
758 	if (!bh) {
759 		ret = -EINVAL;
760 		goto error_close;
761 	}
762 	disk_super = (struct btrfs_super_block *)bh->b_data;
763 	devid = btrfs_stack_device_id(&disk_super->dev_item);
764 	transid = btrfs_super_generation(disk_super);
765 	total_devices = btrfs_super_num_devices(disk_super);
766 	if (disk_super->label[0])
767 		printk(KERN_INFO "device label %s ", disk_super->label);
768 	else
769 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
770 	printk(KERN_CONT "devid %llu transid %llu %s\n",
771 	       (unsigned long long)devid, (unsigned long long)transid, path);
772 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
773 	if (!ret && fs_devices_ret)
774 		(*fs_devices_ret)->total_devices = total_devices;
775 	brelse(bh);
776 error_close:
777 	mutex_unlock(&uuid_mutex);
778 	blkdev_put(bdev, flags);
779 error:
780 	return ret;
781 }
782 
783 /* helper to account the used device space in the range */
784 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
785 				   u64 end, u64 *length)
786 {
787 	struct btrfs_key key;
788 	struct btrfs_root *root = device->dev_root;
789 	struct btrfs_dev_extent *dev_extent;
790 	struct btrfs_path *path;
791 	u64 extent_end;
792 	int ret;
793 	int slot;
794 	struct extent_buffer *l;
795 
796 	*length = 0;
797 
798 	if (start >= device->total_bytes)
799 		return 0;
800 
801 	path = btrfs_alloc_path();
802 	if (!path)
803 		return -ENOMEM;
804 	path->reada = 2;
805 
806 	key.objectid = device->devid;
807 	key.offset = start;
808 	key.type = BTRFS_DEV_EXTENT_KEY;
809 
810 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
811 	if (ret < 0)
812 		goto out;
813 	if (ret > 0) {
814 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
815 		if (ret < 0)
816 			goto out;
817 	}
818 
819 	while (1) {
820 		l = path->nodes[0];
821 		slot = path->slots[0];
822 		if (slot >= btrfs_header_nritems(l)) {
823 			ret = btrfs_next_leaf(root, path);
824 			if (ret == 0)
825 				continue;
826 			if (ret < 0)
827 				goto out;
828 
829 			break;
830 		}
831 		btrfs_item_key_to_cpu(l, &key, slot);
832 
833 		if (key.objectid < device->devid)
834 			goto next;
835 
836 		if (key.objectid > device->devid)
837 			break;
838 
839 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
840 			goto next;
841 
842 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
843 		extent_end = key.offset + btrfs_dev_extent_length(l,
844 								  dev_extent);
845 		if (key.offset <= start && extent_end > end) {
846 			*length = end - start + 1;
847 			break;
848 		} else if (key.offset <= start && extent_end > start)
849 			*length += extent_end - start;
850 		else if (key.offset > start && extent_end <= end)
851 			*length += extent_end - key.offset;
852 		else if (key.offset > start && key.offset <= end) {
853 			*length += end - key.offset + 1;
854 			break;
855 		} else if (key.offset > end)
856 			break;
857 
858 next:
859 		path->slots[0]++;
860 	}
861 	ret = 0;
862 out:
863 	btrfs_free_path(path);
864 	return ret;
865 }
866 
867 /*
868  * find_free_dev_extent - find free space in the specified device
869  * @device:	the device which we search the free space in
870  * @num_bytes:	the size of the free space that we need
871  * @start:	store the start of the free space.
872  * @len:	the size of the free space. that we find, or the size of the max
873  * 		free space if we don't find suitable free space
874  *
875  * this uses a pretty simple search, the expectation is that it is
876  * called very infrequently and that a given device has a small number
877  * of extents
878  *
879  * @start is used to store the start of the free space if we find. But if we
880  * don't find suitable free space, it will be used to store the start position
881  * of the max free space.
882  *
883  * @len is used to store the size of the free space that we find.
884  * But if we don't find suitable free space, it is used to store the size of
885  * the max free space.
886  */
887 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
888 			 u64 *start, u64 *len)
889 {
890 	struct btrfs_key key;
891 	struct btrfs_root *root = device->dev_root;
892 	struct btrfs_dev_extent *dev_extent;
893 	struct btrfs_path *path;
894 	u64 hole_size;
895 	u64 max_hole_start;
896 	u64 max_hole_size;
897 	u64 extent_end;
898 	u64 search_start;
899 	u64 search_end = device->total_bytes;
900 	int ret;
901 	int slot;
902 	struct extent_buffer *l;
903 
904 	/* FIXME use last free of some kind */
905 
906 	/* we don't want to overwrite the superblock on the drive,
907 	 * so we make sure to start at an offset of at least 1MB
908 	 */
909 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
910 
911 	max_hole_start = search_start;
912 	max_hole_size = 0;
913 	hole_size = 0;
914 
915 	if (search_start >= search_end) {
916 		ret = -ENOSPC;
917 		goto error;
918 	}
919 
920 	path = btrfs_alloc_path();
921 	if (!path) {
922 		ret = -ENOMEM;
923 		goto error;
924 	}
925 	path->reada = 2;
926 
927 	key.objectid = device->devid;
928 	key.offset = search_start;
929 	key.type = BTRFS_DEV_EXTENT_KEY;
930 
931 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
932 	if (ret < 0)
933 		goto out;
934 	if (ret > 0) {
935 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
936 		if (ret < 0)
937 			goto out;
938 	}
939 
940 	while (1) {
941 		l = path->nodes[0];
942 		slot = path->slots[0];
943 		if (slot >= btrfs_header_nritems(l)) {
944 			ret = btrfs_next_leaf(root, path);
945 			if (ret == 0)
946 				continue;
947 			if (ret < 0)
948 				goto out;
949 
950 			break;
951 		}
952 		btrfs_item_key_to_cpu(l, &key, slot);
953 
954 		if (key.objectid < device->devid)
955 			goto next;
956 
957 		if (key.objectid > device->devid)
958 			break;
959 
960 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
961 			goto next;
962 
963 		if (key.offset > search_start) {
964 			hole_size = key.offset - search_start;
965 
966 			if (hole_size > max_hole_size) {
967 				max_hole_start = search_start;
968 				max_hole_size = hole_size;
969 			}
970 
971 			/*
972 			 * If this free space is greater than which we need,
973 			 * it must be the max free space that we have found
974 			 * until now, so max_hole_start must point to the start
975 			 * of this free space and the length of this free space
976 			 * is stored in max_hole_size. Thus, we return
977 			 * max_hole_start and max_hole_size and go back to the
978 			 * caller.
979 			 */
980 			if (hole_size >= num_bytes) {
981 				ret = 0;
982 				goto out;
983 			}
984 		}
985 
986 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
987 		extent_end = key.offset + btrfs_dev_extent_length(l,
988 								  dev_extent);
989 		if (extent_end > search_start)
990 			search_start = extent_end;
991 next:
992 		path->slots[0]++;
993 		cond_resched();
994 	}
995 
996 	/*
997 	 * At this point, search_start should be the end of
998 	 * allocated dev extents, and when shrinking the device,
999 	 * search_end may be smaller than search_start.
1000 	 */
1001 	if (search_end > search_start)
1002 		hole_size = search_end - search_start;
1003 
1004 	if (hole_size > max_hole_size) {
1005 		max_hole_start = search_start;
1006 		max_hole_size = hole_size;
1007 	}
1008 
1009 	/* See above. */
1010 	if (hole_size < num_bytes)
1011 		ret = -ENOSPC;
1012 	else
1013 		ret = 0;
1014 
1015 out:
1016 	btrfs_free_path(path);
1017 error:
1018 	*start = max_hole_start;
1019 	if (len)
1020 		*len = max_hole_size;
1021 	return ret;
1022 }
1023 
1024 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1025 			  struct btrfs_device *device,
1026 			  u64 start)
1027 {
1028 	int ret;
1029 	struct btrfs_path *path;
1030 	struct btrfs_root *root = device->dev_root;
1031 	struct btrfs_key key;
1032 	struct btrfs_key found_key;
1033 	struct extent_buffer *leaf = NULL;
1034 	struct btrfs_dev_extent *extent = NULL;
1035 
1036 	path = btrfs_alloc_path();
1037 	if (!path)
1038 		return -ENOMEM;
1039 
1040 	key.objectid = device->devid;
1041 	key.offset = start;
1042 	key.type = BTRFS_DEV_EXTENT_KEY;
1043 again:
1044 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1045 	if (ret > 0) {
1046 		ret = btrfs_previous_item(root, path, key.objectid,
1047 					  BTRFS_DEV_EXTENT_KEY);
1048 		if (ret)
1049 			goto out;
1050 		leaf = path->nodes[0];
1051 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1052 		extent = btrfs_item_ptr(leaf, path->slots[0],
1053 					struct btrfs_dev_extent);
1054 		BUG_ON(found_key.offset > start || found_key.offset +
1055 		       btrfs_dev_extent_length(leaf, extent) < start);
1056 		key = found_key;
1057 		btrfs_release_path(path);
1058 		goto again;
1059 	} else if (ret == 0) {
1060 		leaf = path->nodes[0];
1061 		extent = btrfs_item_ptr(leaf, path->slots[0],
1062 					struct btrfs_dev_extent);
1063 	} else {
1064 		btrfs_error(root->fs_info, ret, "Slot search failed");
1065 		goto out;
1066 	}
1067 
1068 	if (device->bytes_used > 0) {
1069 		u64 len = btrfs_dev_extent_length(leaf, extent);
1070 		device->bytes_used -= len;
1071 		spin_lock(&root->fs_info->free_chunk_lock);
1072 		root->fs_info->free_chunk_space += len;
1073 		spin_unlock(&root->fs_info->free_chunk_lock);
1074 	}
1075 	ret = btrfs_del_item(trans, root, path);
1076 	if (ret) {
1077 		btrfs_error(root->fs_info, ret,
1078 			    "Failed to remove dev extent item");
1079 	}
1080 out:
1081 	btrfs_free_path(path);
1082 	return ret;
1083 }
1084 
1085 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1086 			   struct btrfs_device *device,
1087 			   u64 chunk_tree, u64 chunk_objectid,
1088 			   u64 chunk_offset, u64 start, u64 num_bytes)
1089 {
1090 	int ret;
1091 	struct btrfs_path *path;
1092 	struct btrfs_root *root = device->dev_root;
1093 	struct btrfs_dev_extent *extent;
1094 	struct extent_buffer *leaf;
1095 	struct btrfs_key key;
1096 
1097 	WARN_ON(!device->in_fs_metadata);
1098 	path = btrfs_alloc_path();
1099 	if (!path)
1100 		return -ENOMEM;
1101 
1102 	key.objectid = device->devid;
1103 	key.offset = start;
1104 	key.type = BTRFS_DEV_EXTENT_KEY;
1105 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1106 				      sizeof(*extent));
1107 	if (ret)
1108 		goto out;
1109 
1110 	leaf = path->nodes[0];
1111 	extent = btrfs_item_ptr(leaf, path->slots[0],
1112 				struct btrfs_dev_extent);
1113 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1114 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1115 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1116 
1117 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1118 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1119 		    BTRFS_UUID_SIZE);
1120 
1121 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1122 	btrfs_mark_buffer_dirty(leaf);
1123 out:
1124 	btrfs_free_path(path);
1125 	return ret;
1126 }
1127 
1128 static noinline int find_next_chunk(struct btrfs_root *root,
1129 				    u64 objectid, u64 *offset)
1130 {
1131 	struct btrfs_path *path;
1132 	int ret;
1133 	struct btrfs_key key;
1134 	struct btrfs_chunk *chunk;
1135 	struct btrfs_key found_key;
1136 
1137 	path = btrfs_alloc_path();
1138 	if (!path)
1139 		return -ENOMEM;
1140 
1141 	key.objectid = objectid;
1142 	key.offset = (u64)-1;
1143 	key.type = BTRFS_CHUNK_ITEM_KEY;
1144 
1145 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1146 	if (ret < 0)
1147 		goto error;
1148 
1149 	BUG_ON(ret == 0); /* Corruption */
1150 
1151 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1152 	if (ret) {
1153 		*offset = 0;
1154 	} else {
1155 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1156 				      path->slots[0]);
1157 		if (found_key.objectid != objectid)
1158 			*offset = 0;
1159 		else {
1160 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1161 					       struct btrfs_chunk);
1162 			*offset = found_key.offset +
1163 				btrfs_chunk_length(path->nodes[0], chunk);
1164 		}
1165 	}
1166 	ret = 0;
1167 error:
1168 	btrfs_free_path(path);
1169 	return ret;
1170 }
1171 
1172 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1173 {
1174 	int ret;
1175 	struct btrfs_key key;
1176 	struct btrfs_key found_key;
1177 	struct btrfs_path *path;
1178 
1179 	root = root->fs_info->chunk_root;
1180 
1181 	path = btrfs_alloc_path();
1182 	if (!path)
1183 		return -ENOMEM;
1184 
1185 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1186 	key.type = BTRFS_DEV_ITEM_KEY;
1187 	key.offset = (u64)-1;
1188 
1189 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1190 	if (ret < 0)
1191 		goto error;
1192 
1193 	BUG_ON(ret == 0); /* Corruption */
1194 
1195 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1196 				  BTRFS_DEV_ITEM_KEY);
1197 	if (ret) {
1198 		*objectid = 1;
1199 	} else {
1200 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1201 				      path->slots[0]);
1202 		*objectid = found_key.offset + 1;
1203 	}
1204 	ret = 0;
1205 error:
1206 	btrfs_free_path(path);
1207 	return ret;
1208 }
1209 
1210 /*
1211  * the device information is stored in the chunk root
1212  * the btrfs_device struct should be fully filled in
1213  */
1214 int btrfs_add_device(struct btrfs_trans_handle *trans,
1215 		     struct btrfs_root *root,
1216 		     struct btrfs_device *device)
1217 {
1218 	int ret;
1219 	struct btrfs_path *path;
1220 	struct btrfs_dev_item *dev_item;
1221 	struct extent_buffer *leaf;
1222 	struct btrfs_key key;
1223 	unsigned long ptr;
1224 
1225 	root = root->fs_info->chunk_root;
1226 
1227 	path = btrfs_alloc_path();
1228 	if (!path)
1229 		return -ENOMEM;
1230 
1231 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1232 	key.type = BTRFS_DEV_ITEM_KEY;
1233 	key.offset = device->devid;
1234 
1235 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1236 				      sizeof(*dev_item));
1237 	if (ret)
1238 		goto out;
1239 
1240 	leaf = path->nodes[0];
1241 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1242 
1243 	btrfs_set_device_id(leaf, dev_item, device->devid);
1244 	btrfs_set_device_generation(leaf, dev_item, 0);
1245 	btrfs_set_device_type(leaf, dev_item, device->type);
1246 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1247 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1248 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1249 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1250 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1251 	btrfs_set_device_group(leaf, dev_item, 0);
1252 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1253 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1254 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1255 
1256 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1257 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1258 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1259 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1260 	btrfs_mark_buffer_dirty(leaf);
1261 
1262 	ret = 0;
1263 out:
1264 	btrfs_free_path(path);
1265 	return ret;
1266 }
1267 
1268 static int btrfs_rm_dev_item(struct btrfs_root *root,
1269 			     struct btrfs_device *device)
1270 {
1271 	int ret;
1272 	struct btrfs_path *path;
1273 	struct btrfs_key key;
1274 	struct btrfs_trans_handle *trans;
1275 
1276 	root = root->fs_info->chunk_root;
1277 
1278 	path = btrfs_alloc_path();
1279 	if (!path)
1280 		return -ENOMEM;
1281 
1282 	trans = btrfs_start_transaction(root, 0);
1283 	if (IS_ERR(trans)) {
1284 		btrfs_free_path(path);
1285 		return PTR_ERR(trans);
1286 	}
1287 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1288 	key.type = BTRFS_DEV_ITEM_KEY;
1289 	key.offset = device->devid;
1290 	lock_chunks(root);
1291 
1292 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1293 	if (ret < 0)
1294 		goto out;
1295 
1296 	if (ret > 0) {
1297 		ret = -ENOENT;
1298 		goto out;
1299 	}
1300 
1301 	ret = btrfs_del_item(trans, root, path);
1302 	if (ret)
1303 		goto out;
1304 out:
1305 	btrfs_free_path(path);
1306 	unlock_chunks(root);
1307 	btrfs_commit_transaction(trans, root);
1308 	return ret;
1309 }
1310 
1311 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1312 {
1313 	struct btrfs_device *device;
1314 	struct btrfs_device *next_device;
1315 	struct block_device *bdev;
1316 	struct buffer_head *bh = NULL;
1317 	struct btrfs_super_block *disk_super;
1318 	struct btrfs_fs_devices *cur_devices;
1319 	u64 all_avail;
1320 	u64 devid;
1321 	u64 num_devices;
1322 	u8 *dev_uuid;
1323 	int ret = 0;
1324 	bool clear_super = false;
1325 
1326 	mutex_lock(&uuid_mutex);
1327 
1328 	all_avail = root->fs_info->avail_data_alloc_bits |
1329 		root->fs_info->avail_system_alloc_bits |
1330 		root->fs_info->avail_metadata_alloc_bits;
1331 
1332 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1333 	    root->fs_info->fs_devices->num_devices <= 4) {
1334 		printk(KERN_ERR "btrfs: unable to go below four devices "
1335 		       "on raid10\n");
1336 		ret = -EINVAL;
1337 		goto out;
1338 	}
1339 
1340 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1341 	    root->fs_info->fs_devices->num_devices <= 2) {
1342 		printk(KERN_ERR "btrfs: unable to go below two "
1343 		       "devices on raid1\n");
1344 		ret = -EINVAL;
1345 		goto out;
1346 	}
1347 
1348 	if (strcmp(device_path, "missing") == 0) {
1349 		struct list_head *devices;
1350 		struct btrfs_device *tmp;
1351 
1352 		device = NULL;
1353 		devices = &root->fs_info->fs_devices->devices;
1354 		/*
1355 		 * It is safe to read the devices since the volume_mutex
1356 		 * is held.
1357 		 */
1358 		list_for_each_entry(tmp, devices, dev_list) {
1359 			if (tmp->in_fs_metadata && !tmp->bdev) {
1360 				device = tmp;
1361 				break;
1362 			}
1363 		}
1364 		bdev = NULL;
1365 		bh = NULL;
1366 		disk_super = NULL;
1367 		if (!device) {
1368 			printk(KERN_ERR "btrfs: no missing devices found to "
1369 			       "remove\n");
1370 			goto out;
1371 		}
1372 	} else {
1373 		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1374 					  root->fs_info->bdev_holder);
1375 		if (IS_ERR(bdev)) {
1376 			ret = PTR_ERR(bdev);
1377 			goto out;
1378 		}
1379 
1380 		set_blocksize(bdev, 4096);
1381 		invalidate_bdev(bdev);
1382 		bh = btrfs_read_dev_super(bdev);
1383 		if (!bh) {
1384 			ret = -EINVAL;
1385 			goto error_close;
1386 		}
1387 		disk_super = (struct btrfs_super_block *)bh->b_data;
1388 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1389 		dev_uuid = disk_super->dev_item.uuid;
1390 		device = btrfs_find_device(root, devid, dev_uuid,
1391 					   disk_super->fsid);
1392 		if (!device) {
1393 			ret = -ENOENT;
1394 			goto error_brelse;
1395 		}
1396 	}
1397 
1398 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1399 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1400 		       "device\n");
1401 		ret = -EINVAL;
1402 		goto error_brelse;
1403 	}
1404 
1405 	if (device->writeable) {
1406 		lock_chunks(root);
1407 		list_del_init(&device->dev_alloc_list);
1408 		unlock_chunks(root);
1409 		root->fs_info->fs_devices->rw_devices--;
1410 		clear_super = true;
1411 	}
1412 
1413 	ret = btrfs_shrink_device(device, 0);
1414 	if (ret)
1415 		goto error_undo;
1416 
1417 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1418 	if (ret)
1419 		goto error_undo;
1420 
1421 	spin_lock(&root->fs_info->free_chunk_lock);
1422 	root->fs_info->free_chunk_space = device->total_bytes -
1423 		device->bytes_used;
1424 	spin_unlock(&root->fs_info->free_chunk_lock);
1425 
1426 	device->in_fs_metadata = 0;
1427 	btrfs_scrub_cancel_dev(root, device);
1428 
1429 	/*
1430 	 * the device list mutex makes sure that we don't change
1431 	 * the device list while someone else is writing out all
1432 	 * the device supers.
1433 	 */
1434 
1435 	cur_devices = device->fs_devices;
1436 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1437 	list_del_rcu(&device->dev_list);
1438 
1439 	device->fs_devices->num_devices--;
1440 	device->fs_devices->total_devices--;
1441 
1442 	if (device->missing)
1443 		root->fs_info->fs_devices->missing_devices--;
1444 
1445 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1446 				 struct btrfs_device, dev_list);
1447 	if (device->bdev == root->fs_info->sb->s_bdev)
1448 		root->fs_info->sb->s_bdev = next_device->bdev;
1449 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1450 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1451 
1452 	if (device->bdev)
1453 		device->fs_devices->open_devices--;
1454 
1455 	call_rcu(&device->rcu, free_device);
1456 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1457 
1458 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1459 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1460 
1461 	if (cur_devices->open_devices == 0) {
1462 		struct btrfs_fs_devices *fs_devices;
1463 		fs_devices = root->fs_info->fs_devices;
1464 		while (fs_devices) {
1465 			if (fs_devices->seed == cur_devices)
1466 				break;
1467 			fs_devices = fs_devices->seed;
1468 		}
1469 		fs_devices->seed = cur_devices->seed;
1470 		cur_devices->seed = NULL;
1471 		lock_chunks(root);
1472 		__btrfs_close_devices(cur_devices);
1473 		unlock_chunks(root);
1474 		free_fs_devices(cur_devices);
1475 	}
1476 
1477 	/*
1478 	 * at this point, the device is zero sized.  We want to
1479 	 * remove it from the devices list and zero out the old super
1480 	 */
1481 	if (clear_super) {
1482 		/* make sure this device isn't detected as part of
1483 		 * the FS anymore
1484 		 */
1485 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1486 		set_buffer_dirty(bh);
1487 		sync_dirty_buffer(bh);
1488 	}
1489 
1490 	ret = 0;
1491 
1492 error_brelse:
1493 	brelse(bh);
1494 error_close:
1495 	if (bdev)
1496 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1497 out:
1498 	mutex_unlock(&uuid_mutex);
1499 	return ret;
1500 error_undo:
1501 	if (device->writeable) {
1502 		lock_chunks(root);
1503 		list_add(&device->dev_alloc_list,
1504 			 &root->fs_info->fs_devices->alloc_list);
1505 		unlock_chunks(root);
1506 		root->fs_info->fs_devices->rw_devices++;
1507 	}
1508 	goto error_brelse;
1509 }
1510 
1511 /*
1512  * does all the dirty work required for changing file system's UUID.
1513  */
1514 static int btrfs_prepare_sprout(struct btrfs_root *root)
1515 {
1516 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1517 	struct btrfs_fs_devices *old_devices;
1518 	struct btrfs_fs_devices *seed_devices;
1519 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1520 	struct btrfs_device *device;
1521 	u64 super_flags;
1522 
1523 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1524 	if (!fs_devices->seeding)
1525 		return -EINVAL;
1526 
1527 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1528 	if (!seed_devices)
1529 		return -ENOMEM;
1530 
1531 	old_devices = clone_fs_devices(fs_devices);
1532 	if (IS_ERR(old_devices)) {
1533 		kfree(seed_devices);
1534 		return PTR_ERR(old_devices);
1535 	}
1536 
1537 	list_add(&old_devices->list, &fs_uuids);
1538 
1539 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1540 	seed_devices->opened = 1;
1541 	INIT_LIST_HEAD(&seed_devices->devices);
1542 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1543 	mutex_init(&seed_devices->device_list_mutex);
1544 
1545 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1546 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1547 			      synchronize_rcu);
1548 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1549 
1550 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1551 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1552 		device->fs_devices = seed_devices;
1553 	}
1554 
1555 	fs_devices->seeding = 0;
1556 	fs_devices->num_devices = 0;
1557 	fs_devices->open_devices = 0;
1558 	fs_devices->total_devices = 0;
1559 	fs_devices->seed = seed_devices;
1560 
1561 	generate_random_uuid(fs_devices->fsid);
1562 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1563 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1564 	super_flags = btrfs_super_flags(disk_super) &
1565 		      ~BTRFS_SUPER_FLAG_SEEDING;
1566 	btrfs_set_super_flags(disk_super, super_flags);
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * strore the expected generation for seed devices in device items.
1573  */
1574 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1575 			       struct btrfs_root *root)
1576 {
1577 	struct btrfs_path *path;
1578 	struct extent_buffer *leaf;
1579 	struct btrfs_dev_item *dev_item;
1580 	struct btrfs_device *device;
1581 	struct btrfs_key key;
1582 	u8 fs_uuid[BTRFS_UUID_SIZE];
1583 	u8 dev_uuid[BTRFS_UUID_SIZE];
1584 	u64 devid;
1585 	int ret;
1586 
1587 	path = btrfs_alloc_path();
1588 	if (!path)
1589 		return -ENOMEM;
1590 
1591 	root = root->fs_info->chunk_root;
1592 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1593 	key.offset = 0;
1594 	key.type = BTRFS_DEV_ITEM_KEY;
1595 
1596 	while (1) {
1597 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1598 		if (ret < 0)
1599 			goto error;
1600 
1601 		leaf = path->nodes[0];
1602 next_slot:
1603 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1604 			ret = btrfs_next_leaf(root, path);
1605 			if (ret > 0)
1606 				break;
1607 			if (ret < 0)
1608 				goto error;
1609 			leaf = path->nodes[0];
1610 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1611 			btrfs_release_path(path);
1612 			continue;
1613 		}
1614 
1615 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1616 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1617 		    key.type != BTRFS_DEV_ITEM_KEY)
1618 			break;
1619 
1620 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1621 					  struct btrfs_dev_item);
1622 		devid = btrfs_device_id(leaf, dev_item);
1623 		read_extent_buffer(leaf, dev_uuid,
1624 				   (unsigned long)btrfs_device_uuid(dev_item),
1625 				   BTRFS_UUID_SIZE);
1626 		read_extent_buffer(leaf, fs_uuid,
1627 				   (unsigned long)btrfs_device_fsid(dev_item),
1628 				   BTRFS_UUID_SIZE);
1629 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1630 		BUG_ON(!device); /* Logic error */
1631 
1632 		if (device->fs_devices->seeding) {
1633 			btrfs_set_device_generation(leaf, dev_item,
1634 						    device->generation);
1635 			btrfs_mark_buffer_dirty(leaf);
1636 		}
1637 
1638 		path->slots[0]++;
1639 		goto next_slot;
1640 	}
1641 	ret = 0;
1642 error:
1643 	btrfs_free_path(path);
1644 	return ret;
1645 }
1646 
1647 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1648 {
1649 	struct request_queue *q;
1650 	struct btrfs_trans_handle *trans;
1651 	struct btrfs_device *device;
1652 	struct block_device *bdev;
1653 	struct list_head *devices;
1654 	struct super_block *sb = root->fs_info->sb;
1655 	struct rcu_string *name;
1656 	u64 total_bytes;
1657 	int seeding_dev = 0;
1658 	int ret = 0;
1659 
1660 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1661 		return -EROFS;
1662 
1663 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1664 				  root->fs_info->bdev_holder);
1665 	if (IS_ERR(bdev))
1666 		return PTR_ERR(bdev);
1667 
1668 	if (root->fs_info->fs_devices->seeding) {
1669 		seeding_dev = 1;
1670 		down_write(&sb->s_umount);
1671 		mutex_lock(&uuid_mutex);
1672 	}
1673 
1674 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1675 
1676 	devices = &root->fs_info->fs_devices->devices;
1677 	/*
1678 	 * we have the volume lock, so we don't need the extra
1679 	 * device list mutex while reading the list here.
1680 	 */
1681 	list_for_each_entry(device, devices, dev_list) {
1682 		if (device->bdev == bdev) {
1683 			ret = -EEXIST;
1684 			goto error;
1685 		}
1686 	}
1687 
1688 	device = kzalloc(sizeof(*device), GFP_NOFS);
1689 	if (!device) {
1690 		/* we can safely leave the fs_devices entry around */
1691 		ret = -ENOMEM;
1692 		goto error;
1693 	}
1694 
1695 	name = rcu_string_strdup(device_path, GFP_NOFS);
1696 	if (!name) {
1697 		kfree(device);
1698 		ret = -ENOMEM;
1699 		goto error;
1700 	}
1701 	rcu_assign_pointer(device->name, name);
1702 
1703 	ret = find_next_devid(root, &device->devid);
1704 	if (ret) {
1705 		rcu_string_free(device->name);
1706 		kfree(device);
1707 		goto error;
1708 	}
1709 
1710 	trans = btrfs_start_transaction(root, 0);
1711 	if (IS_ERR(trans)) {
1712 		rcu_string_free(device->name);
1713 		kfree(device);
1714 		ret = PTR_ERR(trans);
1715 		goto error;
1716 	}
1717 
1718 	lock_chunks(root);
1719 
1720 	q = bdev_get_queue(bdev);
1721 	if (blk_queue_discard(q))
1722 		device->can_discard = 1;
1723 	device->writeable = 1;
1724 	device->work.func = pending_bios_fn;
1725 	generate_random_uuid(device->uuid);
1726 	spin_lock_init(&device->io_lock);
1727 	device->generation = trans->transid;
1728 	device->io_width = root->sectorsize;
1729 	device->io_align = root->sectorsize;
1730 	device->sector_size = root->sectorsize;
1731 	device->total_bytes = i_size_read(bdev->bd_inode);
1732 	device->disk_total_bytes = device->total_bytes;
1733 	device->dev_root = root->fs_info->dev_root;
1734 	device->bdev = bdev;
1735 	device->in_fs_metadata = 1;
1736 	device->mode = FMODE_EXCL;
1737 	set_blocksize(device->bdev, 4096);
1738 
1739 	if (seeding_dev) {
1740 		sb->s_flags &= ~MS_RDONLY;
1741 		ret = btrfs_prepare_sprout(root);
1742 		BUG_ON(ret); /* -ENOMEM */
1743 	}
1744 
1745 	device->fs_devices = root->fs_info->fs_devices;
1746 
1747 	/*
1748 	 * we don't want write_supers to jump in here with our device
1749 	 * half setup
1750 	 */
1751 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1752 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1753 	list_add(&device->dev_alloc_list,
1754 		 &root->fs_info->fs_devices->alloc_list);
1755 	root->fs_info->fs_devices->num_devices++;
1756 	root->fs_info->fs_devices->open_devices++;
1757 	root->fs_info->fs_devices->rw_devices++;
1758 	root->fs_info->fs_devices->total_devices++;
1759 	if (device->can_discard)
1760 		root->fs_info->fs_devices->num_can_discard++;
1761 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1762 
1763 	spin_lock(&root->fs_info->free_chunk_lock);
1764 	root->fs_info->free_chunk_space += device->total_bytes;
1765 	spin_unlock(&root->fs_info->free_chunk_lock);
1766 
1767 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1768 		root->fs_info->fs_devices->rotating = 1;
1769 
1770 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1771 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
1772 				    total_bytes + device->total_bytes);
1773 
1774 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1775 	btrfs_set_super_num_devices(root->fs_info->super_copy,
1776 				    total_bytes + 1);
1777 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1778 
1779 	if (seeding_dev) {
1780 		ret = init_first_rw_device(trans, root, device);
1781 		if (ret)
1782 			goto error_trans;
1783 		ret = btrfs_finish_sprout(trans, root);
1784 		if (ret)
1785 			goto error_trans;
1786 	} else {
1787 		ret = btrfs_add_device(trans, root, device);
1788 		if (ret)
1789 			goto error_trans;
1790 	}
1791 
1792 	/*
1793 	 * we've got more storage, clear any full flags on the space
1794 	 * infos
1795 	 */
1796 	btrfs_clear_space_info_full(root->fs_info);
1797 
1798 	unlock_chunks(root);
1799 	ret = btrfs_commit_transaction(trans, root);
1800 
1801 	if (seeding_dev) {
1802 		mutex_unlock(&uuid_mutex);
1803 		up_write(&sb->s_umount);
1804 
1805 		if (ret) /* transaction commit */
1806 			return ret;
1807 
1808 		ret = btrfs_relocate_sys_chunks(root);
1809 		if (ret < 0)
1810 			btrfs_error(root->fs_info, ret,
1811 				    "Failed to relocate sys chunks after "
1812 				    "device initialization. This can be fixed "
1813 				    "using the \"btrfs balance\" command.");
1814 	}
1815 
1816 	return ret;
1817 
1818 error_trans:
1819 	unlock_chunks(root);
1820 	btrfs_abort_transaction(trans, root, ret);
1821 	btrfs_end_transaction(trans, root);
1822 	rcu_string_free(device->name);
1823 	kfree(device);
1824 error:
1825 	blkdev_put(bdev, FMODE_EXCL);
1826 	if (seeding_dev) {
1827 		mutex_unlock(&uuid_mutex);
1828 		up_write(&sb->s_umount);
1829 	}
1830 	return ret;
1831 }
1832 
1833 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1834 					struct btrfs_device *device)
1835 {
1836 	int ret;
1837 	struct btrfs_path *path;
1838 	struct btrfs_root *root;
1839 	struct btrfs_dev_item *dev_item;
1840 	struct extent_buffer *leaf;
1841 	struct btrfs_key key;
1842 
1843 	root = device->dev_root->fs_info->chunk_root;
1844 
1845 	path = btrfs_alloc_path();
1846 	if (!path)
1847 		return -ENOMEM;
1848 
1849 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1850 	key.type = BTRFS_DEV_ITEM_KEY;
1851 	key.offset = device->devid;
1852 
1853 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1854 	if (ret < 0)
1855 		goto out;
1856 
1857 	if (ret > 0) {
1858 		ret = -ENOENT;
1859 		goto out;
1860 	}
1861 
1862 	leaf = path->nodes[0];
1863 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1864 
1865 	btrfs_set_device_id(leaf, dev_item, device->devid);
1866 	btrfs_set_device_type(leaf, dev_item, device->type);
1867 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1868 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1869 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1870 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1871 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1872 	btrfs_mark_buffer_dirty(leaf);
1873 
1874 out:
1875 	btrfs_free_path(path);
1876 	return ret;
1877 }
1878 
1879 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1880 		      struct btrfs_device *device, u64 new_size)
1881 {
1882 	struct btrfs_super_block *super_copy =
1883 		device->dev_root->fs_info->super_copy;
1884 	u64 old_total = btrfs_super_total_bytes(super_copy);
1885 	u64 diff = new_size - device->total_bytes;
1886 
1887 	if (!device->writeable)
1888 		return -EACCES;
1889 	if (new_size <= device->total_bytes)
1890 		return -EINVAL;
1891 
1892 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1893 	device->fs_devices->total_rw_bytes += diff;
1894 
1895 	device->total_bytes = new_size;
1896 	device->disk_total_bytes = new_size;
1897 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1898 
1899 	return btrfs_update_device(trans, device);
1900 }
1901 
1902 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1903 		      struct btrfs_device *device, u64 new_size)
1904 {
1905 	int ret;
1906 	lock_chunks(device->dev_root);
1907 	ret = __btrfs_grow_device(trans, device, new_size);
1908 	unlock_chunks(device->dev_root);
1909 	return ret;
1910 }
1911 
1912 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1913 			    struct btrfs_root *root,
1914 			    u64 chunk_tree, u64 chunk_objectid,
1915 			    u64 chunk_offset)
1916 {
1917 	int ret;
1918 	struct btrfs_path *path;
1919 	struct btrfs_key key;
1920 
1921 	root = root->fs_info->chunk_root;
1922 	path = btrfs_alloc_path();
1923 	if (!path)
1924 		return -ENOMEM;
1925 
1926 	key.objectid = chunk_objectid;
1927 	key.offset = chunk_offset;
1928 	key.type = BTRFS_CHUNK_ITEM_KEY;
1929 
1930 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1931 	if (ret < 0)
1932 		goto out;
1933 	else if (ret > 0) { /* Logic error or corruption */
1934 		btrfs_error(root->fs_info, -ENOENT,
1935 			    "Failed lookup while freeing chunk.");
1936 		ret = -ENOENT;
1937 		goto out;
1938 	}
1939 
1940 	ret = btrfs_del_item(trans, root, path);
1941 	if (ret < 0)
1942 		btrfs_error(root->fs_info, ret,
1943 			    "Failed to delete chunk item.");
1944 out:
1945 	btrfs_free_path(path);
1946 	return ret;
1947 }
1948 
1949 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1950 			chunk_offset)
1951 {
1952 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1953 	struct btrfs_disk_key *disk_key;
1954 	struct btrfs_chunk *chunk;
1955 	u8 *ptr;
1956 	int ret = 0;
1957 	u32 num_stripes;
1958 	u32 array_size;
1959 	u32 len = 0;
1960 	u32 cur;
1961 	struct btrfs_key key;
1962 
1963 	array_size = btrfs_super_sys_array_size(super_copy);
1964 
1965 	ptr = super_copy->sys_chunk_array;
1966 	cur = 0;
1967 
1968 	while (cur < array_size) {
1969 		disk_key = (struct btrfs_disk_key *)ptr;
1970 		btrfs_disk_key_to_cpu(&key, disk_key);
1971 
1972 		len = sizeof(*disk_key);
1973 
1974 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1975 			chunk = (struct btrfs_chunk *)(ptr + len);
1976 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1977 			len += btrfs_chunk_item_size(num_stripes);
1978 		} else {
1979 			ret = -EIO;
1980 			break;
1981 		}
1982 		if (key.objectid == chunk_objectid &&
1983 		    key.offset == chunk_offset) {
1984 			memmove(ptr, ptr + len, array_size - (cur + len));
1985 			array_size -= len;
1986 			btrfs_set_super_sys_array_size(super_copy, array_size);
1987 		} else {
1988 			ptr += len;
1989 			cur += len;
1990 		}
1991 	}
1992 	return ret;
1993 }
1994 
1995 static int btrfs_relocate_chunk(struct btrfs_root *root,
1996 			 u64 chunk_tree, u64 chunk_objectid,
1997 			 u64 chunk_offset)
1998 {
1999 	struct extent_map_tree *em_tree;
2000 	struct btrfs_root *extent_root;
2001 	struct btrfs_trans_handle *trans;
2002 	struct extent_map *em;
2003 	struct map_lookup *map;
2004 	int ret;
2005 	int i;
2006 
2007 	root = root->fs_info->chunk_root;
2008 	extent_root = root->fs_info->extent_root;
2009 	em_tree = &root->fs_info->mapping_tree.map_tree;
2010 
2011 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2012 	if (ret)
2013 		return -ENOSPC;
2014 
2015 	/* step one, relocate all the extents inside this chunk */
2016 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2017 	if (ret)
2018 		return ret;
2019 
2020 	trans = btrfs_start_transaction(root, 0);
2021 	BUG_ON(IS_ERR(trans));
2022 
2023 	lock_chunks(root);
2024 
2025 	/*
2026 	 * step two, delete the device extents and the
2027 	 * chunk tree entries
2028 	 */
2029 	read_lock(&em_tree->lock);
2030 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2031 	read_unlock(&em_tree->lock);
2032 
2033 	BUG_ON(!em || em->start > chunk_offset ||
2034 	       em->start + em->len < chunk_offset);
2035 	map = (struct map_lookup *)em->bdev;
2036 
2037 	for (i = 0; i < map->num_stripes; i++) {
2038 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2039 					    map->stripes[i].physical);
2040 		BUG_ON(ret);
2041 
2042 		if (map->stripes[i].dev) {
2043 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2044 			BUG_ON(ret);
2045 		}
2046 	}
2047 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2048 			       chunk_offset);
2049 
2050 	BUG_ON(ret);
2051 
2052 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2053 
2054 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2055 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2056 		BUG_ON(ret);
2057 	}
2058 
2059 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2060 	BUG_ON(ret);
2061 
2062 	write_lock(&em_tree->lock);
2063 	remove_extent_mapping(em_tree, em);
2064 	write_unlock(&em_tree->lock);
2065 
2066 	kfree(map);
2067 	em->bdev = NULL;
2068 
2069 	/* once for the tree */
2070 	free_extent_map(em);
2071 	/* once for us */
2072 	free_extent_map(em);
2073 
2074 	unlock_chunks(root);
2075 	btrfs_end_transaction(trans, root);
2076 	return 0;
2077 }
2078 
2079 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2080 {
2081 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2082 	struct btrfs_path *path;
2083 	struct extent_buffer *leaf;
2084 	struct btrfs_chunk *chunk;
2085 	struct btrfs_key key;
2086 	struct btrfs_key found_key;
2087 	u64 chunk_tree = chunk_root->root_key.objectid;
2088 	u64 chunk_type;
2089 	bool retried = false;
2090 	int failed = 0;
2091 	int ret;
2092 
2093 	path = btrfs_alloc_path();
2094 	if (!path)
2095 		return -ENOMEM;
2096 
2097 again:
2098 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2099 	key.offset = (u64)-1;
2100 	key.type = BTRFS_CHUNK_ITEM_KEY;
2101 
2102 	while (1) {
2103 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2104 		if (ret < 0)
2105 			goto error;
2106 		BUG_ON(ret == 0); /* Corruption */
2107 
2108 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2109 					  key.type);
2110 		if (ret < 0)
2111 			goto error;
2112 		if (ret > 0)
2113 			break;
2114 
2115 		leaf = path->nodes[0];
2116 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2117 
2118 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2119 				       struct btrfs_chunk);
2120 		chunk_type = btrfs_chunk_type(leaf, chunk);
2121 		btrfs_release_path(path);
2122 
2123 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2124 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2125 						   found_key.objectid,
2126 						   found_key.offset);
2127 			if (ret == -ENOSPC)
2128 				failed++;
2129 			else if (ret)
2130 				BUG();
2131 		}
2132 
2133 		if (found_key.offset == 0)
2134 			break;
2135 		key.offset = found_key.offset - 1;
2136 	}
2137 	ret = 0;
2138 	if (failed && !retried) {
2139 		failed = 0;
2140 		retried = true;
2141 		goto again;
2142 	} else if (failed && retried) {
2143 		WARN_ON(1);
2144 		ret = -ENOSPC;
2145 	}
2146 error:
2147 	btrfs_free_path(path);
2148 	return ret;
2149 }
2150 
2151 static int insert_balance_item(struct btrfs_root *root,
2152 			       struct btrfs_balance_control *bctl)
2153 {
2154 	struct btrfs_trans_handle *trans;
2155 	struct btrfs_balance_item *item;
2156 	struct btrfs_disk_balance_args disk_bargs;
2157 	struct btrfs_path *path;
2158 	struct extent_buffer *leaf;
2159 	struct btrfs_key key;
2160 	int ret, err;
2161 
2162 	path = btrfs_alloc_path();
2163 	if (!path)
2164 		return -ENOMEM;
2165 
2166 	trans = btrfs_start_transaction(root, 0);
2167 	if (IS_ERR(trans)) {
2168 		btrfs_free_path(path);
2169 		return PTR_ERR(trans);
2170 	}
2171 
2172 	key.objectid = BTRFS_BALANCE_OBJECTID;
2173 	key.type = BTRFS_BALANCE_ITEM_KEY;
2174 	key.offset = 0;
2175 
2176 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2177 				      sizeof(*item));
2178 	if (ret)
2179 		goto out;
2180 
2181 	leaf = path->nodes[0];
2182 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2183 
2184 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2185 
2186 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2187 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2188 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2189 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2190 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2191 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2192 
2193 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2194 
2195 	btrfs_mark_buffer_dirty(leaf);
2196 out:
2197 	btrfs_free_path(path);
2198 	err = btrfs_commit_transaction(trans, root);
2199 	if (err && !ret)
2200 		ret = err;
2201 	return ret;
2202 }
2203 
2204 static int del_balance_item(struct btrfs_root *root)
2205 {
2206 	struct btrfs_trans_handle *trans;
2207 	struct btrfs_path *path;
2208 	struct btrfs_key key;
2209 	int ret, err;
2210 
2211 	path = btrfs_alloc_path();
2212 	if (!path)
2213 		return -ENOMEM;
2214 
2215 	trans = btrfs_start_transaction(root, 0);
2216 	if (IS_ERR(trans)) {
2217 		btrfs_free_path(path);
2218 		return PTR_ERR(trans);
2219 	}
2220 
2221 	key.objectid = BTRFS_BALANCE_OBJECTID;
2222 	key.type = BTRFS_BALANCE_ITEM_KEY;
2223 	key.offset = 0;
2224 
2225 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2226 	if (ret < 0)
2227 		goto out;
2228 	if (ret > 0) {
2229 		ret = -ENOENT;
2230 		goto out;
2231 	}
2232 
2233 	ret = btrfs_del_item(trans, root, path);
2234 out:
2235 	btrfs_free_path(path);
2236 	err = btrfs_commit_transaction(trans, root);
2237 	if (err && !ret)
2238 		ret = err;
2239 	return ret;
2240 }
2241 
2242 /*
2243  * This is a heuristic used to reduce the number of chunks balanced on
2244  * resume after balance was interrupted.
2245  */
2246 static void update_balance_args(struct btrfs_balance_control *bctl)
2247 {
2248 	/*
2249 	 * Turn on soft mode for chunk types that were being converted.
2250 	 */
2251 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2252 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2253 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2254 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2255 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2256 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2257 
2258 	/*
2259 	 * Turn on usage filter if is not already used.  The idea is
2260 	 * that chunks that we have already balanced should be
2261 	 * reasonably full.  Don't do it for chunks that are being
2262 	 * converted - that will keep us from relocating unconverted
2263 	 * (albeit full) chunks.
2264 	 */
2265 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2266 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2267 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2268 		bctl->data.usage = 90;
2269 	}
2270 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2271 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2272 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2273 		bctl->sys.usage = 90;
2274 	}
2275 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2276 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2277 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2278 		bctl->meta.usage = 90;
2279 	}
2280 }
2281 
2282 /*
2283  * Should be called with both balance and volume mutexes held to
2284  * serialize other volume operations (add_dev/rm_dev/resize) with
2285  * restriper.  Same goes for unset_balance_control.
2286  */
2287 static void set_balance_control(struct btrfs_balance_control *bctl)
2288 {
2289 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2290 
2291 	BUG_ON(fs_info->balance_ctl);
2292 
2293 	spin_lock(&fs_info->balance_lock);
2294 	fs_info->balance_ctl = bctl;
2295 	spin_unlock(&fs_info->balance_lock);
2296 }
2297 
2298 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2299 {
2300 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2301 
2302 	BUG_ON(!fs_info->balance_ctl);
2303 
2304 	spin_lock(&fs_info->balance_lock);
2305 	fs_info->balance_ctl = NULL;
2306 	spin_unlock(&fs_info->balance_lock);
2307 
2308 	kfree(bctl);
2309 }
2310 
2311 /*
2312  * Balance filters.  Return 1 if chunk should be filtered out
2313  * (should not be balanced).
2314  */
2315 static int chunk_profiles_filter(u64 chunk_type,
2316 				 struct btrfs_balance_args *bargs)
2317 {
2318 	chunk_type = chunk_to_extended(chunk_type) &
2319 				BTRFS_EXTENDED_PROFILE_MASK;
2320 
2321 	if (bargs->profiles & chunk_type)
2322 		return 0;
2323 
2324 	return 1;
2325 }
2326 
2327 static u64 div_factor_fine(u64 num, int factor)
2328 {
2329 	if (factor <= 0)
2330 		return 0;
2331 	if (factor >= 100)
2332 		return num;
2333 
2334 	num *= factor;
2335 	do_div(num, 100);
2336 	return num;
2337 }
2338 
2339 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2340 			      struct btrfs_balance_args *bargs)
2341 {
2342 	struct btrfs_block_group_cache *cache;
2343 	u64 chunk_used, user_thresh;
2344 	int ret = 1;
2345 
2346 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2347 	chunk_used = btrfs_block_group_used(&cache->item);
2348 
2349 	user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2350 	if (chunk_used < user_thresh)
2351 		ret = 0;
2352 
2353 	btrfs_put_block_group(cache);
2354 	return ret;
2355 }
2356 
2357 static int chunk_devid_filter(struct extent_buffer *leaf,
2358 			      struct btrfs_chunk *chunk,
2359 			      struct btrfs_balance_args *bargs)
2360 {
2361 	struct btrfs_stripe *stripe;
2362 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2363 	int i;
2364 
2365 	for (i = 0; i < num_stripes; i++) {
2366 		stripe = btrfs_stripe_nr(chunk, i);
2367 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2368 			return 0;
2369 	}
2370 
2371 	return 1;
2372 }
2373 
2374 /* [pstart, pend) */
2375 static int chunk_drange_filter(struct extent_buffer *leaf,
2376 			       struct btrfs_chunk *chunk,
2377 			       u64 chunk_offset,
2378 			       struct btrfs_balance_args *bargs)
2379 {
2380 	struct btrfs_stripe *stripe;
2381 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2382 	u64 stripe_offset;
2383 	u64 stripe_length;
2384 	int factor;
2385 	int i;
2386 
2387 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2388 		return 0;
2389 
2390 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2391 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2392 		factor = 2;
2393 	else
2394 		factor = 1;
2395 	factor = num_stripes / factor;
2396 
2397 	for (i = 0; i < num_stripes; i++) {
2398 		stripe = btrfs_stripe_nr(chunk, i);
2399 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2400 			continue;
2401 
2402 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2403 		stripe_length = btrfs_chunk_length(leaf, chunk);
2404 		do_div(stripe_length, factor);
2405 
2406 		if (stripe_offset < bargs->pend &&
2407 		    stripe_offset + stripe_length > bargs->pstart)
2408 			return 0;
2409 	}
2410 
2411 	return 1;
2412 }
2413 
2414 /* [vstart, vend) */
2415 static int chunk_vrange_filter(struct extent_buffer *leaf,
2416 			       struct btrfs_chunk *chunk,
2417 			       u64 chunk_offset,
2418 			       struct btrfs_balance_args *bargs)
2419 {
2420 	if (chunk_offset < bargs->vend &&
2421 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2422 		/* at least part of the chunk is inside this vrange */
2423 		return 0;
2424 
2425 	return 1;
2426 }
2427 
2428 static int chunk_soft_convert_filter(u64 chunk_type,
2429 				     struct btrfs_balance_args *bargs)
2430 {
2431 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2432 		return 0;
2433 
2434 	chunk_type = chunk_to_extended(chunk_type) &
2435 				BTRFS_EXTENDED_PROFILE_MASK;
2436 
2437 	if (bargs->target == chunk_type)
2438 		return 1;
2439 
2440 	return 0;
2441 }
2442 
2443 static int should_balance_chunk(struct btrfs_root *root,
2444 				struct extent_buffer *leaf,
2445 				struct btrfs_chunk *chunk, u64 chunk_offset)
2446 {
2447 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2448 	struct btrfs_balance_args *bargs = NULL;
2449 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2450 
2451 	/* type filter */
2452 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2453 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2454 		return 0;
2455 	}
2456 
2457 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2458 		bargs = &bctl->data;
2459 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2460 		bargs = &bctl->sys;
2461 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2462 		bargs = &bctl->meta;
2463 
2464 	/* profiles filter */
2465 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2466 	    chunk_profiles_filter(chunk_type, bargs)) {
2467 		return 0;
2468 	}
2469 
2470 	/* usage filter */
2471 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2472 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2473 		return 0;
2474 	}
2475 
2476 	/* devid filter */
2477 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2478 	    chunk_devid_filter(leaf, chunk, bargs)) {
2479 		return 0;
2480 	}
2481 
2482 	/* drange filter, makes sense only with devid filter */
2483 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2484 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2485 		return 0;
2486 	}
2487 
2488 	/* vrange filter */
2489 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2490 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2491 		return 0;
2492 	}
2493 
2494 	/* soft profile changing mode */
2495 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2496 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2497 		return 0;
2498 	}
2499 
2500 	return 1;
2501 }
2502 
2503 static u64 div_factor(u64 num, int factor)
2504 {
2505 	if (factor == 10)
2506 		return num;
2507 	num *= factor;
2508 	do_div(num, 10);
2509 	return num;
2510 }
2511 
2512 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2513 {
2514 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2515 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2516 	struct btrfs_root *dev_root = fs_info->dev_root;
2517 	struct list_head *devices;
2518 	struct btrfs_device *device;
2519 	u64 old_size;
2520 	u64 size_to_free;
2521 	struct btrfs_chunk *chunk;
2522 	struct btrfs_path *path;
2523 	struct btrfs_key key;
2524 	struct btrfs_key found_key;
2525 	struct btrfs_trans_handle *trans;
2526 	struct extent_buffer *leaf;
2527 	int slot;
2528 	int ret;
2529 	int enospc_errors = 0;
2530 	bool counting = true;
2531 
2532 	/* step one make some room on all the devices */
2533 	devices = &fs_info->fs_devices->devices;
2534 	list_for_each_entry(device, devices, dev_list) {
2535 		old_size = device->total_bytes;
2536 		size_to_free = div_factor(old_size, 1);
2537 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2538 		if (!device->writeable ||
2539 		    device->total_bytes - device->bytes_used > size_to_free)
2540 			continue;
2541 
2542 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2543 		if (ret == -ENOSPC)
2544 			break;
2545 		BUG_ON(ret);
2546 
2547 		trans = btrfs_start_transaction(dev_root, 0);
2548 		BUG_ON(IS_ERR(trans));
2549 
2550 		ret = btrfs_grow_device(trans, device, old_size);
2551 		BUG_ON(ret);
2552 
2553 		btrfs_end_transaction(trans, dev_root);
2554 	}
2555 
2556 	/* step two, relocate all the chunks */
2557 	path = btrfs_alloc_path();
2558 	if (!path) {
2559 		ret = -ENOMEM;
2560 		goto error;
2561 	}
2562 
2563 	/* zero out stat counters */
2564 	spin_lock(&fs_info->balance_lock);
2565 	memset(&bctl->stat, 0, sizeof(bctl->stat));
2566 	spin_unlock(&fs_info->balance_lock);
2567 again:
2568 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2569 	key.offset = (u64)-1;
2570 	key.type = BTRFS_CHUNK_ITEM_KEY;
2571 
2572 	while (1) {
2573 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2574 		    atomic_read(&fs_info->balance_cancel_req)) {
2575 			ret = -ECANCELED;
2576 			goto error;
2577 		}
2578 
2579 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2580 		if (ret < 0)
2581 			goto error;
2582 
2583 		/*
2584 		 * this shouldn't happen, it means the last relocate
2585 		 * failed
2586 		 */
2587 		if (ret == 0)
2588 			BUG(); /* FIXME break ? */
2589 
2590 		ret = btrfs_previous_item(chunk_root, path, 0,
2591 					  BTRFS_CHUNK_ITEM_KEY);
2592 		if (ret) {
2593 			ret = 0;
2594 			break;
2595 		}
2596 
2597 		leaf = path->nodes[0];
2598 		slot = path->slots[0];
2599 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2600 
2601 		if (found_key.objectid != key.objectid)
2602 			break;
2603 
2604 		/* chunk zero is special */
2605 		if (found_key.offset == 0)
2606 			break;
2607 
2608 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2609 
2610 		if (!counting) {
2611 			spin_lock(&fs_info->balance_lock);
2612 			bctl->stat.considered++;
2613 			spin_unlock(&fs_info->balance_lock);
2614 		}
2615 
2616 		ret = should_balance_chunk(chunk_root, leaf, chunk,
2617 					   found_key.offset);
2618 		btrfs_release_path(path);
2619 		if (!ret)
2620 			goto loop;
2621 
2622 		if (counting) {
2623 			spin_lock(&fs_info->balance_lock);
2624 			bctl->stat.expected++;
2625 			spin_unlock(&fs_info->balance_lock);
2626 			goto loop;
2627 		}
2628 
2629 		ret = btrfs_relocate_chunk(chunk_root,
2630 					   chunk_root->root_key.objectid,
2631 					   found_key.objectid,
2632 					   found_key.offset);
2633 		if (ret && ret != -ENOSPC)
2634 			goto error;
2635 		if (ret == -ENOSPC) {
2636 			enospc_errors++;
2637 		} else {
2638 			spin_lock(&fs_info->balance_lock);
2639 			bctl->stat.completed++;
2640 			spin_unlock(&fs_info->balance_lock);
2641 		}
2642 loop:
2643 		key.offset = found_key.offset - 1;
2644 	}
2645 
2646 	if (counting) {
2647 		btrfs_release_path(path);
2648 		counting = false;
2649 		goto again;
2650 	}
2651 error:
2652 	btrfs_free_path(path);
2653 	if (enospc_errors) {
2654 		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2655 		       enospc_errors);
2656 		if (!ret)
2657 			ret = -ENOSPC;
2658 	}
2659 
2660 	return ret;
2661 }
2662 
2663 /**
2664  * alloc_profile_is_valid - see if a given profile is valid and reduced
2665  * @flags: profile to validate
2666  * @extended: if true @flags is treated as an extended profile
2667  */
2668 static int alloc_profile_is_valid(u64 flags, int extended)
2669 {
2670 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2671 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
2672 
2673 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2674 
2675 	/* 1) check that all other bits are zeroed */
2676 	if (flags & ~mask)
2677 		return 0;
2678 
2679 	/* 2) see if profile is reduced */
2680 	if (flags == 0)
2681 		return !extended; /* "0" is valid for usual profiles */
2682 
2683 	/* true if exactly one bit set */
2684 	return (flags & (flags - 1)) == 0;
2685 }
2686 
2687 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2688 {
2689 	/* cancel requested || normal exit path */
2690 	return atomic_read(&fs_info->balance_cancel_req) ||
2691 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
2692 		 atomic_read(&fs_info->balance_cancel_req) == 0);
2693 }
2694 
2695 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2696 {
2697 	int ret;
2698 
2699 	unset_balance_control(fs_info);
2700 	ret = del_balance_item(fs_info->tree_root);
2701 	BUG_ON(ret);
2702 }
2703 
2704 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2705 			       struct btrfs_ioctl_balance_args *bargs);
2706 
2707 /*
2708  * Should be called with both balance and volume mutexes held
2709  */
2710 int btrfs_balance(struct btrfs_balance_control *bctl,
2711 		  struct btrfs_ioctl_balance_args *bargs)
2712 {
2713 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2714 	u64 allowed;
2715 	int mixed = 0;
2716 	int ret;
2717 
2718 	if (btrfs_fs_closing(fs_info) ||
2719 	    atomic_read(&fs_info->balance_pause_req) ||
2720 	    atomic_read(&fs_info->balance_cancel_req)) {
2721 		ret = -EINVAL;
2722 		goto out;
2723 	}
2724 
2725 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2726 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2727 		mixed = 1;
2728 
2729 	/*
2730 	 * In case of mixed groups both data and meta should be picked,
2731 	 * and identical options should be given for both of them.
2732 	 */
2733 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2734 	if (mixed && (bctl->flags & allowed)) {
2735 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2736 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2737 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2738 			printk(KERN_ERR "btrfs: with mixed groups data and "
2739 			       "metadata balance options must be the same\n");
2740 			ret = -EINVAL;
2741 			goto out;
2742 		}
2743 	}
2744 
2745 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2746 	if (fs_info->fs_devices->num_devices == 1)
2747 		allowed |= BTRFS_BLOCK_GROUP_DUP;
2748 	else if (fs_info->fs_devices->num_devices < 4)
2749 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2750 	else
2751 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2752 				BTRFS_BLOCK_GROUP_RAID10);
2753 
2754 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2755 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
2756 	     (bctl->data.target & ~allowed))) {
2757 		printk(KERN_ERR "btrfs: unable to start balance with target "
2758 		       "data profile %llu\n",
2759 		       (unsigned long long)bctl->data.target);
2760 		ret = -EINVAL;
2761 		goto out;
2762 	}
2763 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2764 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2765 	     (bctl->meta.target & ~allowed))) {
2766 		printk(KERN_ERR "btrfs: unable to start balance with target "
2767 		       "metadata profile %llu\n",
2768 		       (unsigned long long)bctl->meta.target);
2769 		ret = -EINVAL;
2770 		goto out;
2771 	}
2772 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2773 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2774 	     (bctl->sys.target & ~allowed))) {
2775 		printk(KERN_ERR "btrfs: unable to start balance with target "
2776 		       "system profile %llu\n",
2777 		       (unsigned long long)bctl->sys.target);
2778 		ret = -EINVAL;
2779 		goto out;
2780 	}
2781 
2782 	/* allow dup'ed data chunks only in mixed mode */
2783 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2784 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2785 		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2786 		ret = -EINVAL;
2787 		goto out;
2788 	}
2789 
2790 	/* allow to reduce meta or sys integrity only if force set */
2791 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2792 			BTRFS_BLOCK_GROUP_RAID10;
2793 	if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2794 	     (fs_info->avail_system_alloc_bits & allowed) &&
2795 	     !(bctl->sys.target & allowed)) ||
2796 	    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2797 	     (fs_info->avail_metadata_alloc_bits & allowed) &&
2798 	     !(bctl->meta.target & allowed))) {
2799 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
2800 			printk(KERN_INFO "btrfs: force reducing metadata "
2801 			       "integrity\n");
2802 		} else {
2803 			printk(KERN_ERR "btrfs: balance will reduce metadata "
2804 			       "integrity, use force if you want this\n");
2805 			ret = -EINVAL;
2806 			goto out;
2807 		}
2808 	}
2809 
2810 	ret = insert_balance_item(fs_info->tree_root, bctl);
2811 	if (ret && ret != -EEXIST)
2812 		goto out;
2813 
2814 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2815 		BUG_ON(ret == -EEXIST);
2816 		set_balance_control(bctl);
2817 	} else {
2818 		BUG_ON(ret != -EEXIST);
2819 		spin_lock(&fs_info->balance_lock);
2820 		update_balance_args(bctl);
2821 		spin_unlock(&fs_info->balance_lock);
2822 	}
2823 
2824 	atomic_inc(&fs_info->balance_running);
2825 	mutex_unlock(&fs_info->balance_mutex);
2826 
2827 	ret = __btrfs_balance(fs_info);
2828 
2829 	mutex_lock(&fs_info->balance_mutex);
2830 	atomic_dec(&fs_info->balance_running);
2831 
2832 	if (bargs) {
2833 		memset(bargs, 0, sizeof(*bargs));
2834 		update_ioctl_balance_args(fs_info, 0, bargs);
2835 	}
2836 
2837 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2838 	    balance_need_close(fs_info)) {
2839 		__cancel_balance(fs_info);
2840 	}
2841 
2842 	wake_up(&fs_info->balance_wait_q);
2843 
2844 	return ret;
2845 out:
2846 	if (bctl->flags & BTRFS_BALANCE_RESUME)
2847 		__cancel_balance(fs_info);
2848 	else
2849 		kfree(bctl);
2850 	return ret;
2851 }
2852 
2853 static int balance_kthread(void *data)
2854 {
2855 	struct btrfs_fs_info *fs_info = data;
2856 	int ret = 0;
2857 
2858 	mutex_lock(&fs_info->volume_mutex);
2859 	mutex_lock(&fs_info->balance_mutex);
2860 
2861 	if (fs_info->balance_ctl) {
2862 		printk(KERN_INFO "btrfs: continuing balance\n");
2863 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
2864 	}
2865 
2866 	mutex_unlock(&fs_info->balance_mutex);
2867 	mutex_unlock(&fs_info->volume_mutex);
2868 
2869 	return ret;
2870 }
2871 
2872 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2873 {
2874 	struct task_struct *tsk;
2875 
2876 	spin_lock(&fs_info->balance_lock);
2877 	if (!fs_info->balance_ctl) {
2878 		spin_unlock(&fs_info->balance_lock);
2879 		return 0;
2880 	}
2881 	spin_unlock(&fs_info->balance_lock);
2882 
2883 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2884 		printk(KERN_INFO "btrfs: force skipping balance\n");
2885 		return 0;
2886 	}
2887 
2888 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2889 	if (IS_ERR(tsk))
2890 		return PTR_ERR(tsk);
2891 
2892 	return 0;
2893 }
2894 
2895 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2896 {
2897 	struct btrfs_balance_control *bctl;
2898 	struct btrfs_balance_item *item;
2899 	struct btrfs_disk_balance_args disk_bargs;
2900 	struct btrfs_path *path;
2901 	struct extent_buffer *leaf;
2902 	struct btrfs_key key;
2903 	int ret;
2904 
2905 	path = btrfs_alloc_path();
2906 	if (!path)
2907 		return -ENOMEM;
2908 
2909 	key.objectid = BTRFS_BALANCE_OBJECTID;
2910 	key.type = BTRFS_BALANCE_ITEM_KEY;
2911 	key.offset = 0;
2912 
2913 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2914 	if (ret < 0)
2915 		goto out;
2916 	if (ret > 0) { /* ret = -ENOENT; */
2917 		ret = 0;
2918 		goto out;
2919 	}
2920 
2921 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2922 	if (!bctl) {
2923 		ret = -ENOMEM;
2924 		goto out;
2925 	}
2926 
2927 	leaf = path->nodes[0];
2928 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2929 
2930 	bctl->fs_info = fs_info;
2931 	bctl->flags = btrfs_balance_flags(leaf, item);
2932 	bctl->flags |= BTRFS_BALANCE_RESUME;
2933 
2934 	btrfs_balance_data(leaf, item, &disk_bargs);
2935 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2936 	btrfs_balance_meta(leaf, item, &disk_bargs);
2937 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2938 	btrfs_balance_sys(leaf, item, &disk_bargs);
2939 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2940 
2941 	mutex_lock(&fs_info->volume_mutex);
2942 	mutex_lock(&fs_info->balance_mutex);
2943 
2944 	set_balance_control(bctl);
2945 
2946 	mutex_unlock(&fs_info->balance_mutex);
2947 	mutex_unlock(&fs_info->volume_mutex);
2948 out:
2949 	btrfs_free_path(path);
2950 	return ret;
2951 }
2952 
2953 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2954 {
2955 	int ret = 0;
2956 
2957 	mutex_lock(&fs_info->balance_mutex);
2958 	if (!fs_info->balance_ctl) {
2959 		mutex_unlock(&fs_info->balance_mutex);
2960 		return -ENOTCONN;
2961 	}
2962 
2963 	if (atomic_read(&fs_info->balance_running)) {
2964 		atomic_inc(&fs_info->balance_pause_req);
2965 		mutex_unlock(&fs_info->balance_mutex);
2966 
2967 		wait_event(fs_info->balance_wait_q,
2968 			   atomic_read(&fs_info->balance_running) == 0);
2969 
2970 		mutex_lock(&fs_info->balance_mutex);
2971 		/* we are good with balance_ctl ripped off from under us */
2972 		BUG_ON(atomic_read(&fs_info->balance_running));
2973 		atomic_dec(&fs_info->balance_pause_req);
2974 	} else {
2975 		ret = -ENOTCONN;
2976 	}
2977 
2978 	mutex_unlock(&fs_info->balance_mutex);
2979 	return ret;
2980 }
2981 
2982 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2983 {
2984 	mutex_lock(&fs_info->balance_mutex);
2985 	if (!fs_info->balance_ctl) {
2986 		mutex_unlock(&fs_info->balance_mutex);
2987 		return -ENOTCONN;
2988 	}
2989 
2990 	atomic_inc(&fs_info->balance_cancel_req);
2991 	/*
2992 	 * if we are running just wait and return, balance item is
2993 	 * deleted in btrfs_balance in this case
2994 	 */
2995 	if (atomic_read(&fs_info->balance_running)) {
2996 		mutex_unlock(&fs_info->balance_mutex);
2997 		wait_event(fs_info->balance_wait_q,
2998 			   atomic_read(&fs_info->balance_running) == 0);
2999 		mutex_lock(&fs_info->balance_mutex);
3000 	} else {
3001 		/* __cancel_balance needs volume_mutex */
3002 		mutex_unlock(&fs_info->balance_mutex);
3003 		mutex_lock(&fs_info->volume_mutex);
3004 		mutex_lock(&fs_info->balance_mutex);
3005 
3006 		if (fs_info->balance_ctl)
3007 			__cancel_balance(fs_info);
3008 
3009 		mutex_unlock(&fs_info->volume_mutex);
3010 	}
3011 
3012 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3013 	atomic_dec(&fs_info->balance_cancel_req);
3014 	mutex_unlock(&fs_info->balance_mutex);
3015 	return 0;
3016 }
3017 
3018 /*
3019  * shrinking a device means finding all of the device extents past
3020  * the new size, and then following the back refs to the chunks.
3021  * The chunk relocation code actually frees the device extent
3022  */
3023 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3024 {
3025 	struct btrfs_trans_handle *trans;
3026 	struct btrfs_root *root = device->dev_root;
3027 	struct btrfs_dev_extent *dev_extent = NULL;
3028 	struct btrfs_path *path;
3029 	u64 length;
3030 	u64 chunk_tree;
3031 	u64 chunk_objectid;
3032 	u64 chunk_offset;
3033 	int ret;
3034 	int slot;
3035 	int failed = 0;
3036 	bool retried = false;
3037 	struct extent_buffer *l;
3038 	struct btrfs_key key;
3039 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3040 	u64 old_total = btrfs_super_total_bytes(super_copy);
3041 	u64 old_size = device->total_bytes;
3042 	u64 diff = device->total_bytes - new_size;
3043 
3044 	if (new_size >= device->total_bytes)
3045 		return -EINVAL;
3046 
3047 	path = btrfs_alloc_path();
3048 	if (!path)
3049 		return -ENOMEM;
3050 
3051 	path->reada = 2;
3052 
3053 	lock_chunks(root);
3054 
3055 	device->total_bytes = new_size;
3056 	if (device->writeable) {
3057 		device->fs_devices->total_rw_bytes -= diff;
3058 		spin_lock(&root->fs_info->free_chunk_lock);
3059 		root->fs_info->free_chunk_space -= diff;
3060 		spin_unlock(&root->fs_info->free_chunk_lock);
3061 	}
3062 	unlock_chunks(root);
3063 
3064 again:
3065 	key.objectid = device->devid;
3066 	key.offset = (u64)-1;
3067 	key.type = BTRFS_DEV_EXTENT_KEY;
3068 
3069 	do {
3070 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3071 		if (ret < 0)
3072 			goto done;
3073 
3074 		ret = btrfs_previous_item(root, path, 0, key.type);
3075 		if (ret < 0)
3076 			goto done;
3077 		if (ret) {
3078 			ret = 0;
3079 			btrfs_release_path(path);
3080 			break;
3081 		}
3082 
3083 		l = path->nodes[0];
3084 		slot = path->slots[0];
3085 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3086 
3087 		if (key.objectid != device->devid) {
3088 			btrfs_release_path(path);
3089 			break;
3090 		}
3091 
3092 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3093 		length = btrfs_dev_extent_length(l, dev_extent);
3094 
3095 		if (key.offset + length <= new_size) {
3096 			btrfs_release_path(path);
3097 			break;
3098 		}
3099 
3100 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3101 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3102 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3103 		btrfs_release_path(path);
3104 
3105 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3106 					   chunk_offset);
3107 		if (ret && ret != -ENOSPC)
3108 			goto done;
3109 		if (ret == -ENOSPC)
3110 			failed++;
3111 	} while (key.offset-- > 0);
3112 
3113 	if (failed && !retried) {
3114 		failed = 0;
3115 		retried = true;
3116 		goto again;
3117 	} else if (failed && retried) {
3118 		ret = -ENOSPC;
3119 		lock_chunks(root);
3120 
3121 		device->total_bytes = old_size;
3122 		if (device->writeable)
3123 			device->fs_devices->total_rw_bytes += diff;
3124 		spin_lock(&root->fs_info->free_chunk_lock);
3125 		root->fs_info->free_chunk_space += diff;
3126 		spin_unlock(&root->fs_info->free_chunk_lock);
3127 		unlock_chunks(root);
3128 		goto done;
3129 	}
3130 
3131 	/* Shrinking succeeded, else we would be at "done". */
3132 	trans = btrfs_start_transaction(root, 0);
3133 	if (IS_ERR(trans)) {
3134 		ret = PTR_ERR(trans);
3135 		goto done;
3136 	}
3137 
3138 	lock_chunks(root);
3139 
3140 	device->disk_total_bytes = new_size;
3141 	/* Now btrfs_update_device() will change the on-disk size. */
3142 	ret = btrfs_update_device(trans, device);
3143 	if (ret) {
3144 		unlock_chunks(root);
3145 		btrfs_end_transaction(trans, root);
3146 		goto done;
3147 	}
3148 	WARN_ON(diff > old_total);
3149 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3150 	unlock_chunks(root);
3151 	btrfs_end_transaction(trans, root);
3152 done:
3153 	btrfs_free_path(path);
3154 	return ret;
3155 }
3156 
3157 static int btrfs_add_system_chunk(struct btrfs_root *root,
3158 			   struct btrfs_key *key,
3159 			   struct btrfs_chunk *chunk, int item_size)
3160 {
3161 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3162 	struct btrfs_disk_key disk_key;
3163 	u32 array_size;
3164 	u8 *ptr;
3165 
3166 	array_size = btrfs_super_sys_array_size(super_copy);
3167 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3168 		return -EFBIG;
3169 
3170 	ptr = super_copy->sys_chunk_array + array_size;
3171 	btrfs_cpu_key_to_disk(&disk_key, key);
3172 	memcpy(ptr, &disk_key, sizeof(disk_key));
3173 	ptr += sizeof(disk_key);
3174 	memcpy(ptr, chunk, item_size);
3175 	item_size += sizeof(disk_key);
3176 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3177 	return 0;
3178 }
3179 
3180 /*
3181  * sort the devices in descending order by max_avail, total_avail
3182  */
3183 static int btrfs_cmp_device_info(const void *a, const void *b)
3184 {
3185 	const struct btrfs_device_info *di_a = a;
3186 	const struct btrfs_device_info *di_b = b;
3187 
3188 	if (di_a->max_avail > di_b->max_avail)
3189 		return -1;
3190 	if (di_a->max_avail < di_b->max_avail)
3191 		return 1;
3192 	if (di_a->total_avail > di_b->total_avail)
3193 		return -1;
3194 	if (di_a->total_avail < di_b->total_avail)
3195 		return 1;
3196 	return 0;
3197 }
3198 
3199 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3200 			       struct btrfs_root *extent_root,
3201 			       struct map_lookup **map_ret,
3202 			       u64 *num_bytes_out, u64 *stripe_size_out,
3203 			       u64 start, u64 type)
3204 {
3205 	struct btrfs_fs_info *info = extent_root->fs_info;
3206 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3207 	struct list_head *cur;
3208 	struct map_lookup *map = NULL;
3209 	struct extent_map_tree *em_tree;
3210 	struct extent_map *em;
3211 	struct btrfs_device_info *devices_info = NULL;
3212 	u64 total_avail;
3213 	int num_stripes;	/* total number of stripes to allocate */
3214 	int sub_stripes;	/* sub_stripes info for map */
3215 	int dev_stripes;	/* stripes per dev */
3216 	int devs_max;		/* max devs to use */
3217 	int devs_min;		/* min devs needed */
3218 	int devs_increment;	/* ndevs has to be a multiple of this */
3219 	int ncopies;		/* how many copies to data has */
3220 	int ret;
3221 	u64 max_stripe_size;
3222 	u64 max_chunk_size;
3223 	u64 stripe_size;
3224 	u64 num_bytes;
3225 	int ndevs;
3226 	int i;
3227 	int j;
3228 
3229 	BUG_ON(!alloc_profile_is_valid(type, 0));
3230 
3231 	if (list_empty(&fs_devices->alloc_list))
3232 		return -ENOSPC;
3233 
3234 	sub_stripes = 1;
3235 	dev_stripes = 1;
3236 	devs_increment = 1;
3237 	ncopies = 1;
3238 	devs_max = 0;	/* 0 == as many as possible */
3239 	devs_min = 1;
3240 
3241 	/*
3242 	 * define the properties of each RAID type.
3243 	 * FIXME: move this to a global table and use it in all RAID
3244 	 * calculation code
3245 	 */
3246 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3247 		dev_stripes = 2;
3248 		ncopies = 2;
3249 		devs_max = 1;
3250 	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3251 		devs_min = 2;
3252 	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3253 		devs_increment = 2;
3254 		ncopies = 2;
3255 		devs_max = 2;
3256 		devs_min = 2;
3257 	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3258 		sub_stripes = 2;
3259 		devs_increment = 2;
3260 		ncopies = 2;
3261 		devs_min = 4;
3262 	} else {
3263 		devs_max = 1;
3264 	}
3265 
3266 	if (type & BTRFS_BLOCK_GROUP_DATA) {
3267 		max_stripe_size = 1024 * 1024 * 1024;
3268 		max_chunk_size = 10 * max_stripe_size;
3269 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3270 		/* for larger filesystems, use larger metadata chunks */
3271 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3272 			max_stripe_size = 1024 * 1024 * 1024;
3273 		else
3274 			max_stripe_size = 256 * 1024 * 1024;
3275 		max_chunk_size = max_stripe_size;
3276 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3277 		max_stripe_size = 32 * 1024 * 1024;
3278 		max_chunk_size = 2 * max_stripe_size;
3279 	} else {
3280 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3281 		       type);
3282 		BUG_ON(1);
3283 	}
3284 
3285 	/* we don't want a chunk larger than 10% of writeable space */
3286 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3287 			     max_chunk_size);
3288 
3289 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3290 			       GFP_NOFS);
3291 	if (!devices_info)
3292 		return -ENOMEM;
3293 
3294 	cur = fs_devices->alloc_list.next;
3295 
3296 	/*
3297 	 * in the first pass through the devices list, we gather information
3298 	 * about the available holes on each device.
3299 	 */
3300 	ndevs = 0;
3301 	while (cur != &fs_devices->alloc_list) {
3302 		struct btrfs_device *device;
3303 		u64 max_avail;
3304 		u64 dev_offset;
3305 
3306 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3307 
3308 		cur = cur->next;
3309 
3310 		if (!device->writeable) {
3311 			printk(KERN_ERR
3312 			       "btrfs: read-only device in alloc_list\n");
3313 			WARN_ON(1);
3314 			continue;
3315 		}
3316 
3317 		if (!device->in_fs_metadata)
3318 			continue;
3319 
3320 		if (device->total_bytes > device->bytes_used)
3321 			total_avail = device->total_bytes - device->bytes_used;
3322 		else
3323 			total_avail = 0;
3324 
3325 		/* If there is no space on this device, skip it. */
3326 		if (total_avail == 0)
3327 			continue;
3328 
3329 		ret = find_free_dev_extent(device,
3330 					   max_stripe_size * dev_stripes,
3331 					   &dev_offset, &max_avail);
3332 		if (ret && ret != -ENOSPC)
3333 			goto error;
3334 
3335 		if (ret == 0)
3336 			max_avail = max_stripe_size * dev_stripes;
3337 
3338 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3339 			continue;
3340 
3341 		devices_info[ndevs].dev_offset = dev_offset;
3342 		devices_info[ndevs].max_avail = max_avail;
3343 		devices_info[ndevs].total_avail = total_avail;
3344 		devices_info[ndevs].dev = device;
3345 		++ndevs;
3346 	}
3347 
3348 	/*
3349 	 * now sort the devices by hole size / available space
3350 	 */
3351 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3352 	     btrfs_cmp_device_info, NULL);
3353 
3354 	/* round down to number of usable stripes */
3355 	ndevs -= ndevs % devs_increment;
3356 
3357 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3358 		ret = -ENOSPC;
3359 		goto error;
3360 	}
3361 
3362 	if (devs_max && ndevs > devs_max)
3363 		ndevs = devs_max;
3364 	/*
3365 	 * the primary goal is to maximize the number of stripes, so use as many
3366 	 * devices as possible, even if the stripes are not maximum sized.
3367 	 */
3368 	stripe_size = devices_info[ndevs-1].max_avail;
3369 	num_stripes = ndevs * dev_stripes;
3370 
3371 	if (stripe_size * ndevs > max_chunk_size * ncopies) {
3372 		stripe_size = max_chunk_size * ncopies;
3373 		do_div(stripe_size, ndevs);
3374 	}
3375 
3376 	do_div(stripe_size, dev_stripes);
3377 
3378 	/* align to BTRFS_STRIPE_LEN */
3379 	do_div(stripe_size, BTRFS_STRIPE_LEN);
3380 	stripe_size *= BTRFS_STRIPE_LEN;
3381 
3382 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3383 	if (!map) {
3384 		ret = -ENOMEM;
3385 		goto error;
3386 	}
3387 	map->num_stripes = num_stripes;
3388 
3389 	for (i = 0; i < ndevs; ++i) {
3390 		for (j = 0; j < dev_stripes; ++j) {
3391 			int s = i * dev_stripes + j;
3392 			map->stripes[s].dev = devices_info[i].dev;
3393 			map->stripes[s].physical = devices_info[i].dev_offset +
3394 						   j * stripe_size;
3395 		}
3396 	}
3397 	map->sector_size = extent_root->sectorsize;
3398 	map->stripe_len = BTRFS_STRIPE_LEN;
3399 	map->io_align = BTRFS_STRIPE_LEN;
3400 	map->io_width = BTRFS_STRIPE_LEN;
3401 	map->type = type;
3402 	map->sub_stripes = sub_stripes;
3403 
3404 	*map_ret = map;
3405 	num_bytes = stripe_size * (num_stripes / ncopies);
3406 
3407 	*stripe_size_out = stripe_size;
3408 	*num_bytes_out = num_bytes;
3409 
3410 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3411 
3412 	em = alloc_extent_map();
3413 	if (!em) {
3414 		ret = -ENOMEM;
3415 		goto error;
3416 	}
3417 	em->bdev = (struct block_device *)map;
3418 	em->start = start;
3419 	em->len = num_bytes;
3420 	em->block_start = 0;
3421 	em->block_len = em->len;
3422 
3423 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3424 	write_lock(&em_tree->lock);
3425 	ret = add_extent_mapping(em_tree, em);
3426 	write_unlock(&em_tree->lock);
3427 	free_extent_map(em);
3428 	if (ret)
3429 		goto error;
3430 
3431 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
3432 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3433 				     start, num_bytes);
3434 	if (ret)
3435 		goto error;
3436 
3437 	for (i = 0; i < map->num_stripes; ++i) {
3438 		struct btrfs_device *device;
3439 		u64 dev_offset;
3440 
3441 		device = map->stripes[i].dev;
3442 		dev_offset = map->stripes[i].physical;
3443 
3444 		ret = btrfs_alloc_dev_extent(trans, device,
3445 				info->chunk_root->root_key.objectid,
3446 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3447 				start, dev_offset, stripe_size);
3448 		if (ret) {
3449 			btrfs_abort_transaction(trans, extent_root, ret);
3450 			goto error;
3451 		}
3452 	}
3453 
3454 	kfree(devices_info);
3455 	return 0;
3456 
3457 error:
3458 	kfree(map);
3459 	kfree(devices_info);
3460 	return ret;
3461 }
3462 
3463 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3464 				struct btrfs_root *extent_root,
3465 				struct map_lookup *map, u64 chunk_offset,
3466 				u64 chunk_size, u64 stripe_size)
3467 {
3468 	u64 dev_offset;
3469 	struct btrfs_key key;
3470 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3471 	struct btrfs_device *device;
3472 	struct btrfs_chunk *chunk;
3473 	struct btrfs_stripe *stripe;
3474 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3475 	int index = 0;
3476 	int ret;
3477 
3478 	chunk = kzalloc(item_size, GFP_NOFS);
3479 	if (!chunk)
3480 		return -ENOMEM;
3481 
3482 	index = 0;
3483 	while (index < map->num_stripes) {
3484 		device = map->stripes[index].dev;
3485 		device->bytes_used += stripe_size;
3486 		ret = btrfs_update_device(trans, device);
3487 		if (ret)
3488 			goto out_free;
3489 		index++;
3490 	}
3491 
3492 	spin_lock(&extent_root->fs_info->free_chunk_lock);
3493 	extent_root->fs_info->free_chunk_space -= (stripe_size *
3494 						   map->num_stripes);
3495 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
3496 
3497 	index = 0;
3498 	stripe = &chunk->stripe;
3499 	while (index < map->num_stripes) {
3500 		device = map->stripes[index].dev;
3501 		dev_offset = map->stripes[index].physical;
3502 
3503 		btrfs_set_stack_stripe_devid(stripe, device->devid);
3504 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
3505 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3506 		stripe++;
3507 		index++;
3508 	}
3509 
3510 	btrfs_set_stack_chunk_length(chunk, chunk_size);
3511 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3512 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3513 	btrfs_set_stack_chunk_type(chunk, map->type);
3514 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3515 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3516 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3517 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3518 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3519 
3520 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3521 	key.type = BTRFS_CHUNK_ITEM_KEY;
3522 	key.offset = chunk_offset;
3523 
3524 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3525 
3526 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3527 		/*
3528 		 * TODO: Cleanup of inserted chunk root in case of
3529 		 * failure.
3530 		 */
3531 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3532 					     item_size);
3533 	}
3534 
3535 out_free:
3536 	kfree(chunk);
3537 	return ret;
3538 }
3539 
3540 /*
3541  * Chunk allocation falls into two parts. The first part does works
3542  * that make the new allocated chunk useable, but not do any operation
3543  * that modifies the chunk tree. The second part does the works that
3544  * require modifying the chunk tree. This division is important for the
3545  * bootstrap process of adding storage to a seed btrfs.
3546  */
3547 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3548 		      struct btrfs_root *extent_root, u64 type)
3549 {
3550 	u64 chunk_offset;
3551 	u64 chunk_size;
3552 	u64 stripe_size;
3553 	struct map_lookup *map;
3554 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3555 	int ret;
3556 
3557 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3558 			      &chunk_offset);
3559 	if (ret)
3560 		return ret;
3561 
3562 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3563 				  &stripe_size, chunk_offset, type);
3564 	if (ret)
3565 		return ret;
3566 
3567 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3568 				   chunk_size, stripe_size);
3569 	if (ret)
3570 		return ret;
3571 	return 0;
3572 }
3573 
3574 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3575 					 struct btrfs_root *root,
3576 					 struct btrfs_device *device)
3577 {
3578 	u64 chunk_offset;
3579 	u64 sys_chunk_offset;
3580 	u64 chunk_size;
3581 	u64 sys_chunk_size;
3582 	u64 stripe_size;
3583 	u64 sys_stripe_size;
3584 	u64 alloc_profile;
3585 	struct map_lookup *map;
3586 	struct map_lookup *sys_map;
3587 	struct btrfs_fs_info *fs_info = root->fs_info;
3588 	struct btrfs_root *extent_root = fs_info->extent_root;
3589 	int ret;
3590 
3591 	ret = find_next_chunk(fs_info->chunk_root,
3592 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3593 	if (ret)
3594 		return ret;
3595 
3596 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3597 				fs_info->avail_metadata_alloc_bits;
3598 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3599 
3600 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3601 				  &stripe_size, chunk_offset, alloc_profile);
3602 	if (ret)
3603 		return ret;
3604 
3605 	sys_chunk_offset = chunk_offset + chunk_size;
3606 
3607 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3608 				fs_info->avail_system_alloc_bits;
3609 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3610 
3611 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3612 				  &sys_chunk_size, &sys_stripe_size,
3613 				  sys_chunk_offset, alloc_profile);
3614 	if (ret)
3615 		goto abort;
3616 
3617 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3618 	if (ret)
3619 		goto abort;
3620 
3621 	/*
3622 	 * Modifying chunk tree needs allocating new blocks from both
3623 	 * system block group and metadata block group. So we only can
3624 	 * do operations require modifying the chunk tree after both
3625 	 * block groups were created.
3626 	 */
3627 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3628 				   chunk_size, stripe_size);
3629 	if (ret)
3630 		goto abort;
3631 
3632 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3633 				   sys_chunk_offset, sys_chunk_size,
3634 				   sys_stripe_size);
3635 	if (ret)
3636 		goto abort;
3637 
3638 	return 0;
3639 
3640 abort:
3641 	btrfs_abort_transaction(trans, root, ret);
3642 	return ret;
3643 }
3644 
3645 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3646 {
3647 	struct extent_map *em;
3648 	struct map_lookup *map;
3649 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3650 	int readonly = 0;
3651 	int i;
3652 
3653 	read_lock(&map_tree->map_tree.lock);
3654 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3655 	read_unlock(&map_tree->map_tree.lock);
3656 	if (!em)
3657 		return 1;
3658 
3659 	if (btrfs_test_opt(root, DEGRADED)) {
3660 		free_extent_map(em);
3661 		return 0;
3662 	}
3663 
3664 	map = (struct map_lookup *)em->bdev;
3665 	for (i = 0; i < map->num_stripes; i++) {
3666 		if (!map->stripes[i].dev->writeable) {
3667 			readonly = 1;
3668 			break;
3669 		}
3670 	}
3671 	free_extent_map(em);
3672 	return readonly;
3673 }
3674 
3675 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3676 {
3677 	extent_map_tree_init(&tree->map_tree);
3678 }
3679 
3680 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3681 {
3682 	struct extent_map *em;
3683 
3684 	while (1) {
3685 		write_lock(&tree->map_tree.lock);
3686 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3687 		if (em)
3688 			remove_extent_mapping(&tree->map_tree, em);
3689 		write_unlock(&tree->map_tree.lock);
3690 		if (!em)
3691 			break;
3692 		kfree(em->bdev);
3693 		/* once for us */
3694 		free_extent_map(em);
3695 		/* once for the tree */
3696 		free_extent_map(em);
3697 	}
3698 }
3699 
3700 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3701 {
3702 	struct extent_map *em;
3703 	struct map_lookup *map;
3704 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3705 	int ret;
3706 
3707 	read_lock(&em_tree->lock);
3708 	em = lookup_extent_mapping(em_tree, logical, len);
3709 	read_unlock(&em_tree->lock);
3710 	BUG_ON(!em);
3711 
3712 	BUG_ON(em->start > logical || em->start + em->len < logical);
3713 	map = (struct map_lookup *)em->bdev;
3714 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3715 		ret = map->num_stripes;
3716 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3717 		ret = map->sub_stripes;
3718 	else
3719 		ret = 1;
3720 	free_extent_map(em);
3721 	return ret;
3722 }
3723 
3724 static int find_live_mirror(struct map_lookup *map, int first, int num,
3725 			    int optimal)
3726 {
3727 	int i;
3728 	if (map->stripes[optimal].dev->bdev)
3729 		return optimal;
3730 	for (i = first; i < first + num; i++) {
3731 		if (map->stripes[i].dev->bdev)
3732 			return i;
3733 	}
3734 	/* we couldn't find one that doesn't fail.  Just return something
3735 	 * and the io error handling code will clean up eventually
3736 	 */
3737 	return optimal;
3738 }
3739 
3740 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3741 			     u64 logical, u64 *length,
3742 			     struct btrfs_bio **bbio_ret,
3743 			     int mirror_num)
3744 {
3745 	struct extent_map *em;
3746 	struct map_lookup *map;
3747 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3748 	u64 offset;
3749 	u64 stripe_offset;
3750 	u64 stripe_end_offset;
3751 	u64 stripe_nr;
3752 	u64 stripe_nr_orig;
3753 	u64 stripe_nr_end;
3754 	int stripe_index;
3755 	int i;
3756 	int ret = 0;
3757 	int num_stripes;
3758 	int max_errors = 0;
3759 	struct btrfs_bio *bbio = NULL;
3760 
3761 	read_lock(&em_tree->lock);
3762 	em = lookup_extent_mapping(em_tree, logical, *length);
3763 	read_unlock(&em_tree->lock);
3764 
3765 	if (!em) {
3766 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3767 		       (unsigned long long)logical,
3768 		       (unsigned long long)*length);
3769 		BUG();
3770 	}
3771 
3772 	BUG_ON(em->start > logical || em->start + em->len < logical);
3773 	map = (struct map_lookup *)em->bdev;
3774 	offset = logical - em->start;
3775 
3776 	if (mirror_num > map->num_stripes)
3777 		mirror_num = 0;
3778 
3779 	stripe_nr = offset;
3780 	/*
3781 	 * stripe_nr counts the total number of stripes we have to stride
3782 	 * to get to this block
3783 	 */
3784 	do_div(stripe_nr, map->stripe_len);
3785 
3786 	stripe_offset = stripe_nr * map->stripe_len;
3787 	BUG_ON(offset < stripe_offset);
3788 
3789 	/* stripe_offset is the offset of this block in its stripe*/
3790 	stripe_offset = offset - stripe_offset;
3791 
3792 	if (rw & REQ_DISCARD)
3793 		*length = min_t(u64, em->len - offset, *length);
3794 	else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3795 		/* we limit the length of each bio to what fits in a stripe */
3796 		*length = min_t(u64, em->len - offset,
3797 				map->stripe_len - stripe_offset);
3798 	} else {
3799 		*length = em->len - offset;
3800 	}
3801 
3802 	if (!bbio_ret)
3803 		goto out;
3804 
3805 	num_stripes = 1;
3806 	stripe_index = 0;
3807 	stripe_nr_orig = stripe_nr;
3808 	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3809 			(~(map->stripe_len - 1));
3810 	do_div(stripe_nr_end, map->stripe_len);
3811 	stripe_end_offset = stripe_nr_end * map->stripe_len -
3812 			    (offset + *length);
3813 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3814 		if (rw & REQ_DISCARD)
3815 			num_stripes = min_t(u64, map->num_stripes,
3816 					    stripe_nr_end - stripe_nr_orig);
3817 		stripe_index = do_div(stripe_nr, map->num_stripes);
3818 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3819 		if (rw & (REQ_WRITE | REQ_DISCARD))
3820 			num_stripes = map->num_stripes;
3821 		else if (mirror_num)
3822 			stripe_index = mirror_num - 1;
3823 		else {
3824 			stripe_index = find_live_mirror(map, 0,
3825 					    map->num_stripes,
3826 					    current->pid % map->num_stripes);
3827 			mirror_num = stripe_index + 1;
3828 		}
3829 
3830 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3831 		if (rw & (REQ_WRITE | REQ_DISCARD)) {
3832 			num_stripes = map->num_stripes;
3833 		} else if (mirror_num) {
3834 			stripe_index = mirror_num - 1;
3835 		} else {
3836 			mirror_num = 1;
3837 		}
3838 
3839 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3840 		int factor = map->num_stripes / map->sub_stripes;
3841 
3842 		stripe_index = do_div(stripe_nr, factor);
3843 		stripe_index *= map->sub_stripes;
3844 
3845 		if (rw & REQ_WRITE)
3846 			num_stripes = map->sub_stripes;
3847 		else if (rw & REQ_DISCARD)
3848 			num_stripes = min_t(u64, map->sub_stripes *
3849 					    (stripe_nr_end - stripe_nr_orig),
3850 					    map->num_stripes);
3851 		else if (mirror_num)
3852 			stripe_index += mirror_num - 1;
3853 		else {
3854 			int old_stripe_index = stripe_index;
3855 			stripe_index = find_live_mirror(map, stripe_index,
3856 					      map->sub_stripes, stripe_index +
3857 					      current->pid % map->sub_stripes);
3858 			mirror_num = stripe_index - old_stripe_index + 1;
3859 		}
3860 	} else {
3861 		/*
3862 		 * after this do_div call, stripe_nr is the number of stripes
3863 		 * on this device we have to walk to find the data, and
3864 		 * stripe_index is the number of our device in the stripe array
3865 		 */
3866 		stripe_index = do_div(stripe_nr, map->num_stripes);
3867 		mirror_num = stripe_index + 1;
3868 	}
3869 	BUG_ON(stripe_index >= map->num_stripes);
3870 
3871 	bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3872 	if (!bbio) {
3873 		ret = -ENOMEM;
3874 		goto out;
3875 	}
3876 	atomic_set(&bbio->error, 0);
3877 
3878 	if (rw & REQ_DISCARD) {
3879 		int factor = 0;
3880 		int sub_stripes = 0;
3881 		u64 stripes_per_dev = 0;
3882 		u32 remaining_stripes = 0;
3883 		u32 last_stripe = 0;
3884 
3885 		if (map->type &
3886 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3887 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3888 				sub_stripes = 1;
3889 			else
3890 				sub_stripes = map->sub_stripes;
3891 
3892 			factor = map->num_stripes / sub_stripes;
3893 			stripes_per_dev = div_u64_rem(stripe_nr_end -
3894 						      stripe_nr_orig,
3895 						      factor,
3896 						      &remaining_stripes);
3897 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3898 			last_stripe *= sub_stripes;
3899 		}
3900 
3901 		for (i = 0; i < num_stripes; i++) {
3902 			bbio->stripes[i].physical =
3903 				map->stripes[stripe_index].physical +
3904 				stripe_offset + stripe_nr * map->stripe_len;
3905 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3906 
3907 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3908 					 BTRFS_BLOCK_GROUP_RAID10)) {
3909 				bbio->stripes[i].length = stripes_per_dev *
3910 							  map->stripe_len;
3911 
3912 				if (i / sub_stripes < remaining_stripes)
3913 					bbio->stripes[i].length +=
3914 						map->stripe_len;
3915 
3916 				/*
3917 				 * Special for the first stripe and
3918 				 * the last stripe:
3919 				 *
3920 				 * |-------|...|-------|
3921 				 *     |----------|
3922 				 *    off     end_off
3923 				 */
3924 				if (i < sub_stripes)
3925 					bbio->stripes[i].length -=
3926 						stripe_offset;
3927 
3928 				if (stripe_index >= last_stripe &&
3929 				    stripe_index <= (last_stripe +
3930 						     sub_stripes - 1))
3931 					bbio->stripes[i].length -=
3932 						stripe_end_offset;
3933 
3934 				if (i == sub_stripes - 1)
3935 					stripe_offset = 0;
3936 			} else
3937 				bbio->stripes[i].length = *length;
3938 
3939 			stripe_index++;
3940 			if (stripe_index == map->num_stripes) {
3941 				/* This could only happen for RAID0/10 */
3942 				stripe_index = 0;
3943 				stripe_nr++;
3944 			}
3945 		}
3946 	} else {
3947 		for (i = 0; i < num_stripes; i++) {
3948 			bbio->stripes[i].physical =
3949 				map->stripes[stripe_index].physical +
3950 				stripe_offset +
3951 				stripe_nr * map->stripe_len;
3952 			bbio->stripes[i].dev =
3953 				map->stripes[stripe_index].dev;
3954 			stripe_index++;
3955 		}
3956 	}
3957 
3958 	if (rw & REQ_WRITE) {
3959 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3960 				 BTRFS_BLOCK_GROUP_RAID10 |
3961 				 BTRFS_BLOCK_GROUP_DUP)) {
3962 			max_errors = 1;
3963 		}
3964 	}
3965 
3966 	*bbio_ret = bbio;
3967 	bbio->num_stripes = num_stripes;
3968 	bbio->max_errors = max_errors;
3969 	bbio->mirror_num = mirror_num;
3970 out:
3971 	free_extent_map(em);
3972 	return ret;
3973 }
3974 
3975 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3976 		      u64 logical, u64 *length,
3977 		      struct btrfs_bio **bbio_ret, int mirror_num)
3978 {
3979 	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3980 				 mirror_num);
3981 }
3982 
3983 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3984 		     u64 chunk_start, u64 physical, u64 devid,
3985 		     u64 **logical, int *naddrs, int *stripe_len)
3986 {
3987 	struct extent_map_tree *em_tree = &map_tree->map_tree;
3988 	struct extent_map *em;
3989 	struct map_lookup *map;
3990 	u64 *buf;
3991 	u64 bytenr;
3992 	u64 length;
3993 	u64 stripe_nr;
3994 	int i, j, nr = 0;
3995 
3996 	read_lock(&em_tree->lock);
3997 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3998 	read_unlock(&em_tree->lock);
3999 
4000 	BUG_ON(!em || em->start != chunk_start);
4001 	map = (struct map_lookup *)em->bdev;
4002 
4003 	length = em->len;
4004 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4005 		do_div(length, map->num_stripes / map->sub_stripes);
4006 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4007 		do_div(length, map->num_stripes);
4008 
4009 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4010 	BUG_ON(!buf); /* -ENOMEM */
4011 
4012 	for (i = 0; i < map->num_stripes; i++) {
4013 		if (devid && map->stripes[i].dev->devid != devid)
4014 			continue;
4015 		if (map->stripes[i].physical > physical ||
4016 		    map->stripes[i].physical + length <= physical)
4017 			continue;
4018 
4019 		stripe_nr = physical - map->stripes[i].physical;
4020 		do_div(stripe_nr, map->stripe_len);
4021 
4022 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4023 			stripe_nr = stripe_nr * map->num_stripes + i;
4024 			do_div(stripe_nr, map->sub_stripes);
4025 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4026 			stripe_nr = stripe_nr * map->num_stripes + i;
4027 		}
4028 		bytenr = chunk_start + stripe_nr * map->stripe_len;
4029 		WARN_ON(nr >= map->num_stripes);
4030 		for (j = 0; j < nr; j++) {
4031 			if (buf[j] == bytenr)
4032 				break;
4033 		}
4034 		if (j == nr) {
4035 			WARN_ON(nr >= map->num_stripes);
4036 			buf[nr++] = bytenr;
4037 		}
4038 	}
4039 
4040 	*logical = buf;
4041 	*naddrs = nr;
4042 	*stripe_len = map->stripe_len;
4043 
4044 	free_extent_map(em);
4045 	return 0;
4046 }
4047 
4048 static void *merge_stripe_index_into_bio_private(void *bi_private,
4049 						 unsigned int stripe_index)
4050 {
4051 	/*
4052 	 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4053 	 * at most 1.
4054 	 * The alternative solution (instead of stealing bits from the
4055 	 * pointer) would be to allocate an intermediate structure
4056 	 * that contains the old private pointer plus the stripe_index.
4057 	 */
4058 	BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4059 	BUG_ON(stripe_index > 3);
4060 	return (void *)(((uintptr_t)bi_private) | stripe_index);
4061 }
4062 
4063 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4064 {
4065 	return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4066 }
4067 
4068 static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4069 {
4070 	return (unsigned int)((uintptr_t)bi_private) & 3;
4071 }
4072 
4073 static void btrfs_end_bio(struct bio *bio, int err)
4074 {
4075 	struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4076 	int is_orig_bio = 0;
4077 
4078 	if (err) {
4079 		atomic_inc(&bbio->error);
4080 		if (err == -EIO || err == -EREMOTEIO) {
4081 			unsigned int stripe_index =
4082 				extract_stripe_index_from_bio_private(
4083 					bio->bi_private);
4084 			struct btrfs_device *dev;
4085 
4086 			BUG_ON(stripe_index >= bbio->num_stripes);
4087 			dev = bbio->stripes[stripe_index].dev;
4088 			if (dev->bdev) {
4089 				if (bio->bi_rw & WRITE)
4090 					btrfs_dev_stat_inc(dev,
4091 						BTRFS_DEV_STAT_WRITE_ERRS);
4092 				else
4093 					btrfs_dev_stat_inc(dev,
4094 						BTRFS_DEV_STAT_READ_ERRS);
4095 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4096 					btrfs_dev_stat_inc(dev,
4097 						BTRFS_DEV_STAT_FLUSH_ERRS);
4098 				btrfs_dev_stat_print_on_error(dev);
4099 			}
4100 		}
4101 	}
4102 
4103 	if (bio == bbio->orig_bio)
4104 		is_orig_bio = 1;
4105 
4106 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
4107 		if (!is_orig_bio) {
4108 			bio_put(bio);
4109 			bio = bbio->orig_bio;
4110 		}
4111 		bio->bi_private = bbio->private;
4112 		bio->bi_end_io = bbio->end_io;
4113 		bio->bi_bdev = (struct block_device *)
4114 					(unsigned long)bbio->mirror_num;
4115 		/* only send an error to the higher layers if it is
4116 		 * beyond the tolerance of the multi-bio
4117 		 */
4118 		if (atomic_read(&bbio->error) > bbio->max_errors) {
4119 			err = -EIO;
4120 		} else {
4121 			/*
4122 			 * this bio is actually up to date, we didn't
4123 			 * go over the max number of errors
4124 			 */
4125 			set_bit(BIO_UPTODATE, &bio->bi_flags);
4126 			err = 0;
4127 		}
4128 		kfree(bbio);
4129 
4130 		bio_endio(bio, err);
4131 	} else if (!is_orig_bio) {
4132 		bio_put(bio);
4133 	}
4134 }
4135 
4136 struct async_sched {
4137 	struct bio *bio;
4138 	int rw;
4139 	struct btrfs_fs_info *info;
4140 	struct btrfs_work work;
4141 };
4142 
4143 /*
4144  * see run_scheduled_bios for a description of why bios are collected for
4145  * async submit.
4146  *
4147  * This will add one bio to the pending list for a device and make sure
4148  * the work struct is scheduled.
4149  */
4150 static noinline void schedule_bio(struct btrfs_root *root,
4151 				 struct btrfs_device *device,
4152 				 int rw, struct bio *bio)
4153 {
4154 	int should_queue = 1;
4155 	struct btrfs_pending_bios *pending_bios;
4156 
4157 	/* don't bother with additional async steps for reads, right now */
4158 	if (!(rw & REQ_WRITE)) {
4159 		bio_get(bio);
4160 		btrfsic_submit_bio(rw, bio);
4161 		bio_put(bio);
4162 		return;
4163 	}
4164 
4165 	/*
4166 	 * nr_async_bios allows us to reliably return congestion to the
4167 	 * higher layers.  Otherwise, the async bio makes it appear we have
4168 	 * made progress against dirty pages when we've really just put it
4169 	 * on a queue for later
4170 	 */
4171 	atomic_inc(&root->fs_info->nr_async_bios);
4172 	WARN_ON(bio->bi_next);
4173 	bio->bi_next = NULL;
4174 	bio->bi_rw |= rw;
4175 
4176 	spin_lock(&device->io_lock);
4177 	if (bio->bi_rw & REQ_SYNC)
4178 		pending_bios = &device->pending_sync_bios;
4179 	else
4180 		pending_bios = &device->pending_bios;
4181 
4182 	if (pending_bios->tail)
4183 		pending_bios->tail->bi_next = bio;
4184 
4185 	pending_bios->tail = bio;
4186 	if (!pending_bios->head)
4187 		pending_bios->head = bio;
4188 	if (device->running_pending)
4189 		should_queue = 0;
4190 
4191 	spin_unlock(&device->io_lock);
4192 
4193 	if (should_queue)
4194 		btrfs_queue_worker(&root->fs_info->submit_workers,
4195 				   &device->work);
4196 }
4197 
4198 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4199 		  int mirror_num, int async_submit)
4200 {
4201 	struct btrfs_mapping_tree *map_tree;
4202 	struct btrfs_device *dev;
4203 	struct bio *first_bio = bio;
4204 	u64 logical = (u64)bio->bi_sector << 9;
4205 	u64 length = 0;
4206 	u64 map_length;
4207 	int ret;
4208 	int dev_nr = 0;
4209 	int total_devs = 1;
4210 	struct btrfs_bio *bbio = NULL;
4211 
4212 	length = bio->bi_size;
4213 	map_tree = &root->fs_info->mapping_tree;
4214 	map_length = length;
4215 
4216 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4217 			      mirror_num);
4218 	if (ret) /* -ENOMEM */
4219 		return ret;
4220 
4221 	total_devs = bbio->num_stripes;
4222 	if (map_length < length) {
4223 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4224 		       "len %llu\n", (unsigned long long)logical,
4225 		       (unsigned long long)length,
4226 		       (unsigned long long)map_length);
4227 		BUG();
4228 	}
4229 
4230 	bbio->orig_bio = first_bio;
4231 	bbio->private = first_bio->bi_private;
4232 	bbio->end_io = first_bio->bi_end_io;
4233 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4234 
4235 	while (dev_nr < total_devs) {
4236 		if (dev_nr < total_devs - 1) {
4237 			bio = bio_clone(first_bio, GFP_NOFS);
4238 			BUG_ON(!bio); /* -ENOMEM */
4239 		} else {
4240 			bio = first_bio;
4241 		}
4242 		bio->bi_private = bbio;
4243 		bio->bi_private = merge_stripe_index_into_bio_private(
4244 				bio->bi_private, (unsigned int)dev_nr);
4245 		bio->bi_end_io = btrfs_end_bio;
4246 		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4247 		dev = bbio->stripes[dev_nr].dev;
4248 		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4249 #ifdef DEBUG
4250 			struct rcu_string *name;
4251 
4252 			rcu_read_lock();
4253 			name = rcu_dereference(dev->name);
4254 			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4255 				 "(%s id %llu), size=%u\n", rw,
4256 				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4257 				 name->str, dev->devid, bio->bi_size);
4258 			rcu_read_unlock();
4259 #endif
4260 			bio->bi_bdev = dev->bdev;
4261 			if (async_submit)
4262 				schedule_bio(root, dev, rw, bio);
4263 			else
4264 				btrfsic_submit_bio(rw, bio);
4265 		} else {
4266 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4267 			bio->bi_sector = logical >> 9;
4268 			bio_endio(bio, -EIO);
4269 		}
4270 		dev_nr++;
4271 	}
4272 	return 0;
4273 }
4274 
4275 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4276 				       u8 *uuid, u8 *fsid)
4277 {
4278 	struct btrfs_device *device;
4279 	struct btrfs_fs_devices *cur_devices;
4280 
4281 	cur_devices = root->fs_info->fs_devices;
4282 	while (cur_devices) {
4283 		if (!fsid ||
4284 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4285 			device = __find_device(&cur_devices->devices,
4286 					       devid, uuid);
4287 			if (device)
4288 				return device;
4289 		}
4290 		cur_devices = cur_devices->seed;
4291 	}
4292 	return NULL;
4293 }
4294 
4295 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4296 					    u64 devid, u8 *dev_uuid)
4297 {
4298 	struct btrfs_device *device;
4299 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4300 
4301 	device = kzalloc(sizeof(*device), GFP_NOFS);
4302 	if (!device)
4303 		return NULL;
4304 	list_add(&device->dev_list,
4305 		 &fs_devices->devices);
4306 	device->dev_root = root->fs_info->dev_root;
4307 	device->devid = devid;
4308 	device->work.func = pending_bios_fn;
4309 	device->fs_devices = fs_devices;
4310 	device->missing = 1;
4311 	fs_devices->num_devices++;
4312 	fs_devices->missing_devices++;
4313 	spin_lock_init(&device->io_lock);
4314 	INIT_LIST_HEAD(&device->dev_alloc_list);
4315 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4316 	return device;
4317 }
4318 
4319 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4320 			  struct extent_buffer *leaf,
4321 			  struct btrfs_chunk *chunk)
4322 {
4323 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4324 	struct map_lookup *map;
4325 	struct extent_map *em;
4326 	u64 logical;
4327 	u64 length;
4328 	u64 devid;
4329 	u8 uuid[BTRFS_UUID_SIZE];
4330 	int num_stripes;
4331 	int ret;
4332 	int i;
4333 
4334 	logical = key->offset;
4335 	length = btrfs_chunk_length(leaf, chunk);
4336 
4337 	read_lock(&map_tree->map_tree.lock);
4338 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4339 	read_unlock(&map_tree->map_tree.lock);
4340 
4341 	/* already mapped? */
4342 	if (em && em->start <= logical && em->start + em->len > logical) {
4343 		free_extent_map(em);
4344 		return 0;
4345 	} else if (em) {
4346 		free_extent_map(em);
4347 	}
4348 
4349 	em = alloc_extent_map();
4350 	if (!em)
4351 		return -ENOMEM;
4352 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4353 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4354 	if (!map) {
4355 		free_extent_map(em);
4356 		return -ENOMEM;
4357 	}
4358 
4359 	em->bdev = (struct block_device *)map;
4360 	em->start = logical;
4361 	em->len = length;
4362 	em->block_start = 0;
4363 	em->block_len = em->len;
4364 
4365 	map->num_stripes = num_stripes;
4366 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
4367 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
4368 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4369 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4370 	map->type = btrfs_chunk_type(leaf, chunk);
4371 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4372 	for (i = 0; i < num_stripes; i++) {
4373 		map->stripes[i].physical =
4374 			btrfs_stripe_offset_nr(leaf, chunk, i);
4375 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4376 		read_extent_buffer(leaf, uuid, (unsigned long)
4377 				   btrfs_stripe_dev_uuid_nr(chunk, i),
4378 				   BTRFS_UUID_SIZE);
4379 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4380 							NULL);
4381 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4382 			kfree(map);
4383 			free_extent_map(em);
4384 			return -EIO;
4385 		}
4386 		if (!map->stripes[i].dev) {
4387 			map->stripes[i].dev =
4388 				add_missing_dev(root, devid, uuid);
4389 			if (!map->stripes[i].dev) {
4390 				kfree(map);
4391 				free_extent_map(em);
4392 				return -EIO;
4393 			}
4394 		}
4395 		map->stripes[i].dev->in_fs_metadata = 1;
4396 	}
4397 
4398 	write_lock(&map_tree->map_tree.lock);
4399 	ret = add_extent_mapping(&map_tree->map_tree, em);
4400 	write_unlock(&map_tree->map_tree.lock);
4401 	BUG_ON(ret); /* Tree corruption */
4402 	free_extent_map(em);
4403 
4404 	return 0;
4405 }
4406 
4407 static void fill_device_from_item(struct extent_buffer *leaf,
4408 				 struct btrfs_dev_item *dev_item,
4409 				 struct btrfs_device *device)
4410 {
4411 	unsigned long ptr;
4412 
4413 	device->devid = btrfs_device_id(leaf, dev_item);
4414 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4415 	device->total_bytes = device->disk_total_bytes;
4416 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4417 	device->type = btrfs_device_type(leaf, dev_item);
4418 	device->io_align = btrfs_device_io_align(leaf, dev_item);
4419 	device->io_width = btrfs_device_io_width(leaf, dev_item);
4420 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4421 
4422 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
4423 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4424 }
4425 
4426 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4427 {
4428 	struct btrfs_fs_devices *fs_devices;
4429 	int ret;
4430 
4431 	BUG_ON(!mutex_is_locked(&uuid_mutex));
4432 
4433 	fs_devices = root->fs_info->fs_devices->seed;
4434 	while (fs_devices) {
4435 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4436 			ret = 0;
4437 			goto out;
4438 		}
4439 		fs_devices = fs_devices->seed;
4440 	}
4441 
4442 	fs_devices = find_fsid(fsid);
4443 	if (!fs_devices) {
4444 		ret = -ENOENT;
4445 		goto out;
4446 	}
4447 
4448 	fs_devices = clone_fs_devices(fs_devices);
4449 	if (IS_ERR(fs_devices)) {
4450 		ret = PTR_ERR(fs_devices);
4451 		goto out;
4452 	}
4453 
4454 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4455 				   root->fs_info->bdev_holder);
4456 	if (ret) {
4457 		free_fs_devices(fs_devices);
4458 		goto out;
4459 	}
4460 
4461 	if (!fs_devices->seeding) {
4462 		__btrfs_close_devices(fs_devices);
4463 		free_fs_devices(fs_devices);
4464 		ret = -EINVAL;
4465 		goto out;
4466 	}
4467 
4468 	fs_devices->seed = root->fs_info->fs_devices->seed;
4469 	root->fs_info->fs_devices->seed = fs_devices;
4470 out:
4471 	return ret;
4472 }
4473 
4474 static int read_one_dev(struct btrfs_root *root,
4475 			struct extent_buffer *leaf,
4476 			struct btrfs_dev_item *dev_item)
4477 {
4478 	struct btrfs_device *device;
4479 	u64 devid;
4480 	int ret;
4481 	u8 fs_uuid[BTRFS_UUID_SIZE];
4482 	u8 dev_uuid[BTRFS_UUID_SIZE];
4483 
4484 	devid = btrfs_device_id(leaf, dev_item);
4485 	read_extent_buffer(leaf, dev_uuid,
4486 			   (unsigned long)btrfs_device_uuid(dev_item),
4487 			   BTRFS_UUID_SIZE);
4488 	read_extent_buffer(leaf, fs_uuid,
4489 			   (unsigned long)btrfs_device_fsid(dev_item),
4490 			   BTRFS_UUID_SIZE);
4491 
4492 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4493 		ret = open_seed_devices(root, fs_uuid);
4494 		if (ret && !btrfs_test_opt(root, DEGRADED))
4495 			return ret;
4496 	}
4497 
4498 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4499 	if (!device || !device->bdev) {
4500 		if (!btrfs_test_opt(root, DEGRADED))
4501 			return -EIO;
4502 
4503 		if (!device) {
4504 			printk(KERN_WARNING "warning devid %llu missing\n",
4505 			       (unsigned long long)devid);
4506 			device = add_missing_dev(root, devid, dev_uuid);
4507 			if (!device)
4508 				return -ENOMEM;
4509 		} else if (!device->missing) {
4510 			/*
4511 			 * this happens when a device that was properly setup
4512 			 * in the device info lists suddenly goes bad.
4513 			 * device->bdev is NULL, and so we have to set
4514 			 * device->missing to one here
4515 			 */
4516 			root->fs_info->fs_devices->missing_devices++;
4517 			device->missing = 1;
4518 		}
4519 	}
4520 
4521 	if (device->fs_devices != root->fs_info->fs_devices) {
4522 		BUG_ON(device->writeable);
4523 		if (device->generation !=
4524 		    btrfs_device_generation(leaf, dev_item))
4525 			return -EINVAL;
4526 	}
4527 
4528 	fill_device_from_item(leaf, dev_item, device);
4529 	device->dev_root = root->fs_info->dev_root;
4530 	device->in_fs_metadata = 1;
4531 	if (device->writeable) {
4532 		device->fs_devices->total_rw_bytes += device->total_bytes;
4533 		spin_lock(&root->fs_info->free_chunk_lock);
4534 		root->fs_info->free_chunk_space += device->total_bytes -
4535 			device->bytes_used;
4536 		spin_unlock(&root->fs_info->free_chunk_lock);
4537 	}
4538 	ret = 0;
4539 	return ret;
4540 }
4541 
4542 int btrfs_read_sys_array(struct btrfs_root *root)
4543 {
4544 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4545 	struct extent_buffer *sb;
4546 	struct btrfs_disk_key *disk_key;
4547 	struct btrfs_chunk *chunk;
4548 	u8 *ptr;
4549 	unsigned long sb_ptr;
4550 	int ret = 0;
4551 	u32 num_stripes;
4552 	u32 array_size;
4553 	u32 len = 0;
4554 	u32 cur;
4555 	struct btrfs_key key;
4556 
4557 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4558 					  BTRFS_SUPER_INFO_SIZE);
4559 	if (!sb)
4560 		return -ENOMEM;
4561 	btrfs_set_buffer_uptodate(sb);
4562 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4563 	/*
4564 	 * The sb extent buffer is artifical and just used to read the system array.
4565 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4566 	 * pages up-to-date when the page is larger: extent does not cover the
4567 	 * whole page and consequently check_page_uptodate does not find all
4568 	 * the page's extents up-to-date (the hole beyond sb),
4569 	 * write_extent_buffer then triggers a WARN_ON.
4570 	 *
4571 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4572 	 * but sb spans only this function. Add an explicit SetPageUptodate call
4573 	 * to silence the warning eg. on PowerPC 64.
4574 	 */
4575 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4576 		SetPageUptodate(sb->pages[0]);
4577 
4578 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4579 	array_size = btrfs_super_sys_array_size(super_copy);
4580 
4581 	ptr = super_copy->sys_chunk_array;
4582 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4583 	cur = 0;
4584 
4585 	while (cur < array_size) {
4586 		disk_key = (struct btrfs_disk_key *)ptr;
4587 		btrfs_disk_key_to_cpu(&key, disk_key);
4588 
4589 		len = sizeof(*disk_key); ptr += len;
4590 		sb_ptr += len;
4591 		cur += len;
4592 
4593 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4594 			chunk = (struct btrfs_chunk *)sb_ptr;
4595 			ret = read_one_chunk(root, &key, sb, chunk);
4596 			if (ret)
4597 				break;
4598 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4599 			len = btrfs_chunk_item_size(num_stripes);
4600 		} else {
4601 			ret = -EIO;
4602 			break;
4603 		}
4604 		ptr += len;
4605 		sb_ptr += len;
4606 		cur += len;
4607 	}
4608 	free_extent_buffer(sb);
4609 	return ret;
4610 }
4611 
4612 struct btrfs_device *btrfs_find_device_for_logical(struct btrfs_root *root,
4613 						   u64 logical, int mirror_num)
4614 {
4615 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4616 	int ret;
4617 	u64 map_length = 0;
4618 	struct btrfs_bio *bbio = NULL;
4619 	struct btrfs_device *device;
4620 
4621 	BUG_ON(mirror_num == 0);
4622 	ret = btrfs_map_block(map_tree, WRITE, logical, &map_length, &bbio,
4623 			      mirror_num);
4624 	if (ret) {
4625 		BUG_ON(bbio != NULL);
4626 		return NULL;
4627 	}
4628 	BUG_ON(mirror_num != bbio->mirror_num);
4629 	device = bbio->stripes[mirror_num - 1].dev;
4630 	kfree(bbio);
4631 	return device;
4632 }
4633 
4634 int btrfs_read_chunk_tree(struct btrfs_root *root)
4635 {
4636 	struct btrfs_path *path;
4637 	struct extent_buffer *leaf;
4638 	struct btrfs_key key;
4639 	struct btrfs_key found_key;
4640 	int ret;
4641 	int slot;
4642 
4643 	root = root->fs_info->chunk_root;
4644 
4645 	path = btrfs_alloc_path();
4646 	if (!path)
4647 		return -ENOMEM;
4648 
4649 	mutex_lock(&uuid_mutex);
4650 	lock_chunks(root);
4651 
4652 	/* first we search for all of the device items, and then we
4653 	 * read in all of the chunk items.  This way we can create chunk
4654 	 * mappings that reference all of the devices that are afound
4655 	 */
4656 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4657 	key.offset = 0;
4658 	key.type = 0;
4659 again:
4660 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4661 	if (ret < 0)
4662 		goto error;
4663 	while (1) {
4664 		leaf = path->nodes[0];
4665 		slot = path->slots[0];
4666 		if (slot >= btrfs_header_nritems(leaf)) {
4667 			ret = btrfs_next_leaf(root, path);
4668 			if (ret == 0)
4669 				continue;
4670 			if (ret < 0)
4671 				goto error;
4672 			break;
4673 		}
4674 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4675 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4676 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4677 				break;
4678 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4679 				struct btrfs_dev_item *dev_item;
4680 				dev_item = btrfs_item_ptr(leaf, slot,
4681 						  struct btrfs_dev_item);
4682 				ret = read_one_dev(root, leaf, dev_item);
4683 				if (ret)
4684 					goto error;
4685 			}
4686 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4687 			struct btrfs_chunk *chunk;
4688 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4689 			ret = read_one_chunk(root, &found_key, leaf, chunk);
4690 			if (ret)
4691 				goto error;
4692 		}
4693 		path->slots[0]++;
4694 	}
4695 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4696 		key.objectid = 0;
4697 		btrfs_release_path(path);
4698 		goto again;
4699 	}
4700 	ret = 0;
4701 error:
4702 	unlock_chunks(root);
4703 	mutex_unlock(&uuid_mutex);
4704 
4705 	btrfs_free_path(path);
4706 	return ret;
4707 }
4708 
4709 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4710 {
4711 	int i;
4712 
4713 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4714 		btrfs_dev_stat_reset(dev, i);
4715 }
4716 
4717 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4718 {
4719 	struct btrfs_key key;
4720 	struct btrfs_key found_key;
4721 	struct btrfs_root *dev_root = fs_info->dev_root;
4722 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4723 	struct extent_buffer *eb;
4724 	int slot;
4725 	int ret = 0;
4726 	struct btrfs_device *device;
4727 	struct btrfs_path *path = NULL;
4728 	int i;
4729 
4730 	path = btrfs_alloc_path();
4731 	if (!path) {
4732 		ret = -ENOMEM;
4733 		goto out;
4734 	}
4735 
4736 	mutex_lock(&fs_devices->device_list_mutex);
4737 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4738 		int item_size;
4739 		struct btrfs_dev_stats_item *ptr;
4740 
4741 		key.objectid = 0;
4742 		key.type = BTRFS_DEV_STATS_KEY;
4743 		key.offset = device->devid;
4744 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4745 		if (ret) {
4746 			__btrfs_reset_dev_stats(device);
4747 			device->dev_stats_valid = 1;
4748 			btrfs_release_path(path);
4749 			continue;
4750 		}
4751 		slot = path->slots[0];
4752 		eb = path->nodes[0];
4753 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4754 		item_size = btrfs_item_size_nr(eb, slot);
4755 
4756 		ptr = btrfs_item_ptr(eb, slot,
4757 				     struct btrfs_dev_stats_item);
4758 
4759 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4760 			if (item_size >= (1 + i) * sizeof(__le64))
4761 				btrfs_dev_stat_set(device, i,
4762 					btrfs_dev_stats_value(eb, ptr, i));
4763 			else
4764 				btrfs_dev_stat_reset(device, i);
4765 		}
4766 
4767 		device->dev_stats_valid = 1;
4768 		btrfs_dev_stat_print_on_load(device);
4769 		btrfs_release_path(path);
4770 	}
4771 	mutex_unlock(&fs_devices->device_list_mutex);
4772 
4773 out:
4774 	btrfs_free_path(path);
4775 	return ret < 0 ? ret : 0;
4776 }
4777 
4778 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4779 				struct btrfs_root *dev_root,
4780 				struct btrfs_device *device)
4781 {
4782 	struct btrfs_path *path;
4783 	struct btrfs_key key;
4784 	struct extent_buffer *eb;
4785 	struct btrfs_dev_stats_item *ptr;
4786 	int ret;
4787 	int i;
4788 
4789 	key.objectid = 0;
4790 	key.type = BTRFS_DEV_STATS_KEY;
4791 	key.offset = device->devid;
4792 
4793 	path = btrfs_alloc_path();
4794 	BUG_ON(!path);
4795 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4796 	if (ret < 0) {
4797 		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4798 			      ret, rcu_str_deref(device->name));
4799 		goto out;
4800 	}
4801 
4802 	if (ret == 0 &&
4803 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4804 		/* need to delete old one and insert a new one */
4805 		ret = btrfs_del_item(trans, dev_root, path);
4806 		if (ret != 0) {
4807 			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4808 				      rcu_str_deref(device->name), ret);
4809 			goto out;
4810 		}
4811 		ret = 1;
4812 	}
4813 
4814 	if (ret == 1) {
4815 		/* need to insert a new item */
4816 		btrfs_release_path(path);
4817 		ret = btrfs_insert_empty_item(trans, dev_root, path,
4818 					      &key, sizeof(*ptr));
4819 		if (ret < 0) {
4820 			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4821 				      rcu_str_deref(device->name), ret);
4822 			goto out;
4823 		}
4824 	}
4825 
4826 	eb = path->nodes[0];
4827 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4828 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4829 		btrfs_set_dev_stats_value(eb, ptr, i,
4830 					  btrfs_dev_stat_read(device, i));
4831 	btrfs_mark_buffer_dirty(eb);
4832 
4833 out:
4834 	btrfs_free_path(path);
4835 	return ret;
4836 }
4837 
4838 /*
4839  * called from commit_transaction. Writes all changed device stats to disk.
4840  */
4841 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4842 			struct btrfs_fs_info *fs_info)
4843 {
4844 	struct btrfs_root *dev_root = fs_info->dev_root;
4845 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4846 	struct btrfs_device *device;
4847 	int ret = 0;
4848 
4849 	mutex_lock(&fs_devices->device_list_mutex);
4850 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4851 		if (!device->dev_stats_valid || !device->dev_stats_dirty)
4852 			continue;
4853 
4854 		ret = update_dev_stat_item(trans, dev_root, device);
4855 		if (!ret)
4856 			device->dev_stats_dirty = 0;
4857 	}
4858 	mutex_unlock(&fs_devices->device_list_mutex);
4859 
4860 	return ret;
4861 }
4862 
4863 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4864 {
4865 	btrfs_dev_stat_inc(dev, index);
4866 	btrfs_dev_stat_print_on_error(dev);
4867 }
4868 
4869 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4870 {
4871 	if (!dev->dev_stats_valid)
4872 		return;
4873 	printk_ratelimited_in_rcu(KERN_ERR
4874 			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4875 			   rcu_str_deref(dev->name),
4876 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4877 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4878 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4879 			   btrfs_dev_stat_read(dev,
4880 					       BTRFS_DEV_STAT_CORRUPTION_ERRS),
4881 			   btrfs_dev_stat_read(dev,
4882 					       BTRFS_DEV_STAT_GENERATION_ERRS));
4883 }
4884 
4885 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4886 {
4887 	int i;
4888 
4889 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4890 		if (btrfs_dev_stat_read(dev, i) != 0)
4891 			break;
4892 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
4893 		return; /* all values == 0, suppress message */
4894 
4895 	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4896 	       rcu_str_deref(dev->name),
4897 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4898 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4899 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4900 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4901 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4902 }
4903 
4904 int btrfs_get_dev_stats(struct btrfs_root *root,
4905 			struct btrfs_ioctl_get_dev_stats *stats)
4906 {
4907 	struct btrfs_device *dev;
4908 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4909 	int i;
4910 
4911 	mutex_lock(&fs_devices->device_list_mutex);
4912 	dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4913 	mutex_unlock(&fs_devices->device_list_mutex);
4914 
4915 	if (!dev) {
4916 		printk(KERN_WARNING
4917 		       "btrfs: get dev_stats failed, device not found\n");
4918 		return -ENODEV;
4919 	} else if (!dev->dev_stats_valid) {
4920 		printk(KERN_WARNING
4921 		       "btrfs: get dev_stats failed, not yet valid\n");
4922 		return -ENODEV;
4923 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
4924 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4925 			if (stats->nr_items > i)
4926 				stats->values[i] =
4927 					btrfs_dev_stat_read_and_reset(dev, i);
4928 			else
4929 				btrfs_dev_stat_reset(dev, i);
4930 		}
4931 	} else {
4932 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4933 			if (stats->nr_items > i)
4934 				stats->values[i] = btrfs_dev_stat_read(dev, i);
4935 	}
4936 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4937 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4938 	return 0;
4939 }
4940