1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) { 217 strcpy(bp, "NONE"); 218 return; 219 } 220 221 #define DESCRIBE_FLAG(flag, desc) \ 222 do { \ 223 if (flags & (flag)) { \ 224 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 225 if (ret < 0 || ret >= size_bp) \ 226 goto out_overflow; \ 227 size_bp -= ret; \ 228 bp += ret; \ 229 flags &= ~(flag); \ 230 } \ 231 } while (0) 232 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 236 237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 240 btrfs_raid_array[i].raid_name); 241 #undef DESCRIBE_FLAG 242 243 if (flags) { 244 ret = snprintf(bp, size_bp, "0x%llx|", flags); 245 size_bp -= ret; 246 } 247 248 if (size_bp < size_buf) 249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 250 251 /* 252 * The text is trimmed, it's up to the caller to provide sufficiently 253 * large buffer 254 */ 255 out_overflow:; 256 } 257 258 static int init_first_rw_device(struct btrfs_trans_handle *trans); 259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 261 262 /* 263 * Device locking 264 * ============== 265 * 266 * There are several mutexes that protect manipulation of devices and low-level 267 * structures like chunks but not block groups, extents or files 268 * 269 * uuid_mutex (global lock) 270 * ------------------------ 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 273 * device) or requested by the device= mount option 274 * 275 * the mutex can be very coarse and can cover long-running operations 276 * 277 * protects: updates to fs_devices counters like missing devices, rw devices, 278 * seeding, structure cloning, opening/closing devices at mount/umount time 279 * 280 * global::fs_devs - add, remove, updates to the global list 281 * 282 * does not protect: manipulation of the fs_devices::devices list in general 283 * but in mount context it could be used to exclude list modifications by eg. 284 * scan ioctl 285 * 286 * btrfs_device::name - renames (write side), read is RCU 287 * 288 * fs_devices::device_list_mutex (per-fs, with RCU) 289 * ------------------------------------------------ 290 * protects updates to fs_devices::devices, ie. adding and deleting 291 * 292 * simple list traversal with read-only actions can be done with RCU protection 293 * 294 * may be used to exclude some operations from running concurrently without any 295 * modifications to the list (see write_all_supers) 296 * 297 * Is not required at mount and close times, because our device list is 298 * protected by the uuid_mutex at that point. 299 * 300 * balance_mutex 301 * ------------- 302 * protects balance structures (status, state) and context accessed from 303 * several places (internally, ioctl) 304 * 305 * chunk_mutex 306 * ----------- 307 * protects chunks, adding or removing during allocation, trim or when a new 308 * device is added/removed. Additionally it also protects post_commit_list of 309 * individual devices, since they can be added to the transaction's 310 * post_commit_list only with chunk_mutex held. 311 * 312 * cleaner_mutex 313 * ------------- 314 * a big lock that is held by the cleaner thread and prevents running subvolume 315 * cleaning together with relocation or delayed iputs 316 * 317 * 318 * Lock nesting 319 * ============ 320 * 321 * uuid_mutex 322 * device_list_mutex 323 * chunk_mutex 324 * balance_mutex 325 * 326 * 327 * Exclusive operations 328 * ==================== 329 * 330 * Maintains the exclusivity of the following operations that apply to the 331 * whole filesystem and cannot run in parallel. 332 * 333 * - Balance (*) 334 * - Device add 335 * - Device remove 336 * - Device replace (*) 337 * - Resize 338 * 339 * The device operations (as above) can be in one of the following states: 340 * 341 * - Running state 342 * - Paused state 343 * - Completed state 344 * 345 * Only device operations marked with (*) can go into the Paused state for the 346 * following reasons: 347 * 348 * - ioctl (only Balance can be Paused through ioctl) 349 * - filesystem remounted as read-only 350 * - filesystem unmounted and mounted as read-only 351 * - system power-cycle and filesystem mounted as read-only 352 * - filesystem or device errors leading to forced read-only 353 * 354 * The status of exclusive operation is set and cleared atomically. 355 * During the course of Paused state, fs_info::exclusive_operation remains set. 356 * A device operation in Paused or Running state can be canceled or resumed 357 * either by ioctl (Balance only) or when remounted as read-write. 358 * The exclusive status is cleared when the device operation is canceled or 359 * completed. 360 */ 361 362 DEFINE_MUTEX(uuid_mutex); 363 static LIST_HEAD(fs_uuids); 364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 365 { 366 return &fs_uuids; 367 } 368 369 /* 370 * Allocate new btrfs_fs_devices structure identified by a fsid. 371 * 372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 373 * fs_devices::metadata_fsid 374 * 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 376 * The returned struct is not linked onto any lists and can be destroyed with 377 * kfree() right away. 378 */ 379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 380 { 381 struct btrfs_fs_devices *fs_devs; 382 383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 384 if (!fs_devs) 385 return ERR_PTR(-ENOMEM); 386 387 mutex_init(&fs_devs->device_list_mutex); 388 389 INIT_LIST_HEAD(&fs_devs->devices); 390 INIT_LIST_HEAD(&fs_devs->alloc_list); 391 INIT_LIST_HEAD(&fs_devs->fs_list); 392 INIT_LIST_HEAD(&fs_devs->seed_list); 393 394 if (fsid) { 395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 397 } 398 399 return fs_devs; 400 } 401 402 static void btrfs_free_device(struct btrfs_device *device) 403 { 404 WARN_ON(!list_empty(&device->post_commit_list)); 405 rcu_string_free(device->name); 406 extent_io_tree_release(&device->alloc_state); 407 btrfs_destroy_dev_zone_info(device); 408 kfree(device); 409 } 410 411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 412 { 413 struct btrfs_device *device; 414 415 WARN_ON(fs_devices->opened); 416 while (!list_empty(&fs_devices->devices)) { 417 device = list_entry(fs_devices->devices.next, 418 struct btrfs_device, dev_list); 419 list_del(&device->dev_list); 420 btrfs_free_device(device); 421 } 422 kfree(fs_devices); 423 } 424 425 void __exit btrfs_cleanup_fs_uuids(void) 426 { 427 struct btrfs_fs_devices *fs_devices; 428 429 while (!list_empty(&fs_uuids)) { 430 fs_devices = list_entry(fs_uuids.next, 431 struct btrfs_fs_devices, fs_list); 432 list_del(&fs_devices->fs_list); 433 free_fs_devices(fs_devices); 434 } 435 } 436 437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 438 const u8 *fsid, const u8 *metadata_fsid) 439 { 440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 441 return false; 442 443 if (!metadata_fsid) 444 return true; 445 446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 447 return false; 448 449 return true; 450 } 451 452 static noinline struct btrfs_fs_devices *find_fsid( 453 const u8 *fsid, const u8 *metadata_fsid) 454 { 455 struct btrfs_fs_devices *fs_devices; 456 457 ASSERT(fsid); 458 459 /* Handle non-split brain cases */ 460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 462 return fs_devices; 463 } 464 return NULL; 465 } 466 467 static int 468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 469 int flush, struct file **bdev_file, 470 struct btrfs_super_block **disk_super) 471 { 472 struct block_device *bdev; 473 int ret; 474 475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 476 477 if (IS_ERR(*bdev_file)) { 478 ret = PTR_ERR(*bdev_file); 479 goto error; 480 } 481 bdev = file_bdev(*bdev_file); 482 483 if (flush) 484 sync_blockdev(bdev); 485 if (holder) { 486 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 487 if (ret) { 488 fput(*bdev_file); 489 goto error; 490 } 491 } 492 invalidate_bdev(bdev); 493 *disk_super = btrfs_read_dev_super(bdev); 494 if (IS_ERR(*disk_super)) { 495 ret = PTR_ERR(*disk_super); 496 fput(*bdev_file); 497 goto error; 498 } 499 500 return 0; 501 502 error: 503 *disk_super = NULL; 504 *bdev_file = NULL; 505 return ret; 506 } 507 508 /* 509 * Search and remove all stale devices (which are not mounted). When both 510 * inputs are NULL, it will search and release all stale devices. 511 * 512 * @devt: Optional. When provided will it release all unmounted devices 513 * matching this devt only. 514 * @skip_device: Optional. Will skip this device when searching for the stale 515 * devices. 516 * 517 * Return: 0 for success or if @devt is 0. 518 * -EBUSY if @devt is a mounted device. 519 * -ENOENT if @devt does not match any device in the list. 520 */ 521 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 522 { 523 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 524 struct btrfs_device *device, *tmp_device; 525 int ret; 526 bool freed = false; 527 528 lockdep_assert_held(&uuid_mutex); 529 530 /* Return good status if there is no instance of devt. */ 531 ret = 0; 532 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 533 534 mutex_lock(&fs_devices->device_list_mutex); 535 list_for_each_entry_safe(device, tmp_device, 536 &fs_devices->devices, dev_list) { 537 if (skip_device && skip_device == device) 538 continue; 539 if (devt && devt != device->devt) 540 continue; 541 if (fs_devices->opened) { 542 if (devt) 543 ret = -EBUSY; 544 break; 545 } 546 547 /* delete the stale device */ 548 fs_devices->num_devices--; 549 list_del(&device->dev_list); 550 btrfs_free_device(device); 551 552 freed = true; 553 } 554 mutex_unlock(&fs_devices->device_list_mutex); 555 556 if (fs_devices->num_devices == 0) { 557 btrfs_sysfs_remove_fsid(fs_devices); 558 list_del(&fs_devices->fs_list); 559 free_fs_devices(fs_devices); 560 } 561 } 562 563 /* If there is at least one freed device return 0. */ 564 if (freed) 565 return 0; 566 567 return ret; 568 } 569 570 static struct btrfs_fs_devices *find_fsid_by_device( 571 struct btrfs_super_block *disk_super, 572 dev_t devt, bool *same_fsid_diff_dev) 573 { 574 struct btrfs_fs_devices *fsid_fs_devices; 575 struct btrfs_fs_devices *devt_fs_devices; 576 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 577 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 578 bool found_by_devt = false; 579 580 /* Find the fs_device by the usual method, if found use it. */ 581 fsid_fs_devices = find_fsid(disk_super->fsid, 582 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 583 584 /* The temp_fsid feature is supported only with single device filesystem. */ 585 if (btrfs_super_num_devices(disk_super) != 1) 586 return fsid_fs_devices; 587 588 /* 589 * A seed device is an integral component of the sprout device, which 590 * functions as a multi-device filesystem. So, temp-fsid feature is 591 * not supported. 592 */ 593 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 594 return fsid_fs_devices; 595 596 /* Try to find a fs_devices by matching devt. */ 597 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 598 struct btrfs_device *device; 599 600 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 601 if (device->devt == devt) { 602 found_by_devt = true; 603 break; 604 } 605 } 606 if (found_by_devt) 607 break; 608 } 609 610 if (found_by_devt) { 611 /* Existing device. */ 612 if (fsid_fs_devices == NULL) { 613 if (devt_fs_devices->opened == 0) { 614 /* Stale device. */ 615 return NULL; 616 } else { 617 /* temp_fsid is mounting a subvol. */ 618 return devt_fs_devices; 619 } 620 } else { 621 /* Regular or temp_fsid device mounting a subvol. */ 622 return devt_fs_devices; 623 } 624 } else { 625 /* New device. */ 626 if (fsid_fs_devices == NULL) { 627 return NULL; 628 } else { 629 /* sb::fsid is already used create a new temp_fsid. */ 630 *same_fsid_diff_dev = true; 631 return NULL; 632 } 633 } 634 635 /* Not reached. */ 636 } 637 638 /* 639 * This is only used on mount, and we are protected from competing things 640 * messing with our fs_devices by the uuid_mutex, thus we do not need the 641 * fs_devices->device_list_mutex here. 642 */ 643 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 644 struct btrfs_device *device, blk_mode_t flags, 645 void *holder) 646 { 647 struct file *bdev_file; 648 struct btrfs_super_block *disk_super; 649 u64 devid; 650 int ret; 651 652 if (device->bdev) 653 return -EINVAL; 654 if (!device->name) 655 return -EINVAL; 656 657 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 658 &bdev_file, &disk_super); 659 if (ret) 660 return ret; 661 662 devid = btrfs_stack_device_id(&disk_super->dev_item); 663 if (devid != device->devid) 664 goto error_free_page; 665 666 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 667 goto error_free_page; 668 669 device->generation = btrfs_super_generation(disk_super); 670 671 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 672 if (btrfs_super_incompat_flags(disk_super) & 673 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 674 pr_err( 675 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 676 goto error_free_page; 677 } 678 679 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 680 fs_devices->seeding = true; 681 } else { 682 if (bdev_read_only(file_bdev(bdev_file))) 683 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 684 else 685 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 686 } 687 688 if (!bdev_nonrot(file_bdev(bdev_file))) 689 fs_devices->rotating = true; 690 691 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 692 fs_devices->discardable = true; 693 694 device->bdev_file = bdev_file; 695 device->bdev = file_bdev(bdev_file); 696 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 697 698 if (device->devt != device->bdev->bd_dev) { 699 btrfs_warn(NULL, 700 "device %s maj:min changed from %d:%d to %d:%d", 701 device->name->str, MAJOR(device->devt), 702 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 703 MINOR(device->bdev->bd_dev)); 704 705 device->devt = device->bdev->bd_dev; 706 } 707 708 fs_devices->open_devices++; 709 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 710 device->devid != BTRFS_DEV_REPLACE_DEVID) { 711 fs_devices->rw_devices++; 712 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 713 } 714 btrfs_release_disk_super(disk_super); 715 716 return 0; 717 718 error_free_page: 719 btrfs_release_disk_super(disk_super); 720 fput(bdev_file); 721 722 return -EINVAL; 723 } 724 725 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 726 { 727 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 728 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 729 730 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 731 } 732 733 /* 734 * Add new device to list of registered devices 735 * 736 * Returns: 737 * device pointer which was just added or updated when successful 738 * error pointer when failed 739 */ 740 static noinline struct btrfs_device *device_list_add(const char *path, 741 struct btrfs_super_block *disk_super, 742 bool *new_device_added) 743 { 744 struct btrfs_device *device; 745 struct btrfs_fs_devices *fs_devices = NULL; 746 struct rcu_string *name; 747 u64 found_transid = btrfs_super_generation(disk_super); 748 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 749 dev_t path_devt; 750 int error; 751 bool same_fsid_diff_dev = false; 752 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 753 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 754 755 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 756 btrfs_err(NULL, 757 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 758 path); 759 return ERR_PTR(-EAGAIN); 760 } 761 762 error = lookup_bdev(path, &path_devt); 763 if (error) { 764 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 765 path, error); 766 return ERR_PTR(error); 767 } 768 769 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 770 771 if (!fs_devices) { 772 fs_devices = alloc_fs_devices(disk_super->fsid); 773 if (IS_ERR(fs_devices)) 774 return ERR_CAST(fs_devices); 775 776 if (has_metadata_uuid) 777 memcpy(fs_devices->metadata_uuid, 778 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 779 780 if (same_fsid_diff_dev) { 781 generate_random_uuid(fs_devices->fsid); 782 fs_devices->temp_fsid = true; 783 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 784 path, MAJOR(path_devt), MINOR(path_devt), 785 fs_devices->fsid); 786 } 787 788 mutex_lock(&fs_devices->device_list_mutex); 789 list_add(&fs_devices->fs_list, &fs_uuids); 790 791 device = NULL; 792 } else { 793 struct btrfs_dev_lookup_args args = { 794 .devid = devid, 795 .uuid = disk_super->dev_item.uuid, 796 }; 797 798 mutex_lock(&fs_devices->device_list_mutex); 799 device = btrfs_find_device(fs_devices, &args); 800 801 if (found_transid > fs_devices->latest_generation) { 802 memcpy(fs_devices->fsid, disk_super->fsid, 803 BTRFS_FSID_SIZE); 804 memcpy(fs_devices->metadata_uuid, 805 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 806 } 807 } 808 809 if (!device) { 810 unsigned int nofs_flag; 811 812 if (fs_devices->opened) { 813 btrfs_err(NULL, 814 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 815 path, MAJOR(path_devt), MINOR(path_devt), 816 fs_devices->fsid, current->comm, 817 task_pid_nr(current)); 818 mutex_unlock(&fs_devices->device_list_mutex); 819 return ERR_PTR(-EBUSY); 820 } 821 822 nofs_flag = memalloc_nofs_save(); 823 device = btrfs_alloc_device(NULL, &devid, 824 disk_super->dev_item.uuid, path); 825 memalloc_nofs_restore(nofs_flag); 826 if (IS_ERR(device)) { 827 mutex_unlock(&fs_devices->device_list_mutex); 828 /* we can safely leave the fs_devices entry around */ 829 return device; 830 } 831 832 device->devt = path_devt; 833 834 list_add_rcu(&device->dev_list, &fs_devices->devices); 835 fs_devices->num_devices++; 836 837 device->fs_devices = fs_devices; 838 *new_device_added = true; 839 840 if (disk_super->label[0]) 841 pr_info( 842 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 843 disk_super->label, devid, found_transid, path, 844 MAJOR(path_devt), MINOR(path_devt), 845 current->comm, task_pid_nr(current)); 846 else 847 pr_info( 848 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 849 disk_super->fsid, devid, found_transid, path, 850 MAJOR(path_devt), MINOR(path_devt), 851 current->comm, task_pid_nr(current)); 852 853 } else if (!device->name || strcmp(device->name->str, path)) { 854 /* 855 * When FS is already mounted. 856 * 1. If you are here and if the device->name is NULL that 857 * means this device was missing at time of FS mount. 858 * 2. If you are here and if the device->name is different 859 * from 'path' that means either 860 * a. The same device disappeared and reappeared with 861 * different name. or 862 * b. The missing-disk-which-was-replaced, has 863 * reappeared now. 864 * 865 * We must allow 1 and 2a above. But 2b would be a spurious 866 * and unintentional. 867 * 868 * Further in case of 1 and 2a above, the disk at 'path' 869 * would have missed some transaction when it was away and 870 * in case of 2a the stale bdev has to be updated as well. 871 * 2b must not be allowed at all time. 872 */ 873 874 /* 875 * For now, we do allow update to btrfs_fs_device through the 876 * btrfs dev scan cli after FS has been mounted. We're still 877 * tracking a problem where systems fail mount by subvolume id 878 * when we reject replacement on a mounted FS. 879 */ 880 if (!fs_devices->opened && found_transid < device->generation) { 881 /* 882 * That is if the FS is _not_ mounted and if you 883 * are here, that means there is more than one 884 * disk with same uuid and devid.We keep the one 885 * with larger generation number or the last-in if 886 * generation are equal. 887 */ 888 mutex_unlock(&fs_devices->device_list_mutex); 889 btrfs_err(NULL, 890 "device %s already registered with a higher generation, found %llu expect %llu", 891 path, found_transid, device->generation); 892 return ERR_PTR(-EEXIST); 893 } 894 895 /* 896 * We are going to replace the device path for a given devid, 897 * make sure it's the same device if the device is mounted 898 * 899 * NOTE: the device->fs_info may not be reliable here so pass 900 * in a NULL to message helpers instead. This avoids a possible 901 * use-after-free when the fs_info and fs_info->sb are already 902 * torn down. 903 */ 904 if (device->bdev) { 905 if (device->devt != path_devt) { 906 mutex_unlock(&fs_devices->device_list_mutex); 907 btrfs_warn_in_rcu(NULL, 908 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 909 path, devid, found_transid, 910 current->comm, 911 task_pid_nr(current)); 912 return ERR_PTR(-EEXIST); 913 } 914 btrfs_info_in_rcu(NULL, 915 "devid %llu device path %s changed to %s scanned by %s (%d)", 916 devid, btrfs_dev_name(device), 917 path, current->comm, 918 task_pid_nr(current)); 919 } 920 921 name = rcu_string_strdup(path, GFP_NOFS); 922 if (!name) { 923 mutex_unlock(&fs_devices->device_list_mutex); 924 return ERR_PTR(-ENOMEM); 925 } 926 rcu_string_free(device->name); 927 rcu_assign_pointer(device->name, name); 928 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 929 fs_devices->missing_devices--; 930 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 931 } 932 device->devt = path_devt; 933 } 934 935 /* 936 * Unmount does not free the btrfs_device struct but would zero 937 * generation along with most of the other members. So just update 938 * it back. We need it to pick the disk with largest generation 939 * (as above). 940 */ 941 if (!fs_devices->opened) { 942 device->generation = found_transid; 943 fs_devices->latest_generation = max_t(u64, found_transid, 944 fs_devices->latest_generation); 945 } 946 947 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 948 949 mutex_unlock(&fs_devices->device_list_mutex); 950 return device; 951 } 952 953 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 954 { 955 struct btrfs_fs_devices *fs_devices; 956 struct btrfs_device *device; 957 struct btrfs_device *orig_dev; 958 int ret = 0; 959 960 lockdep_assert_held(&uuid_mutex); 961 962 fs_devices = alloc_fs_devices(orig->fsid); 963 if (IS_ERR(fs_devices)) 964 return fs_devices; 965 966 fs_devices->total_devices = orig->total_devices; 967 968 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 969 const char *dev_path = NULL; 970 971 /* 972 * This is ok to do without RCU read locked because we hold the 973 * uuid mutex so nothing we touch in here is going to disappear. 974 */ 975 if (orig_dev->name) 976 dev_path = orig_dev->name->str; 977 978 device = btrfs_alloc_device(NULL, &orig_dev->devid, 979 orig_dev->uuid, dev_path); 980 if (IS_ERR(device)) { 981 ret = PTR_ERR(device); 982 goto error; 983 } 984 985 if (orig_dev->zone_info) { 986 struct btrfs_zoned_device_info *zone_info; 987 988 zone_info = btrfs_clone_dev_zone_info(orig_dev); 989 if (!zone_info) { 990 btrfs_free_device(device); 991 ret = -ENOMEM; 992 goto error; 993 } 994 device->zone_info = zone_info; 995 } 996 997 list_add(&device->dev_list, &fs_devices->devices); 998 device->fs_devices = fs_devices; 999 fs_devices->num_devices++; 1000 } 1001 return fs_devices; 1002 error: 1003 free_fs_devices(fs_devices); 1004 return ERR_PTR(ret); 1005 } 1006 1007 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1008 struct btrfs_device **latest_dev) 1009 { 1010 struct btrfs_device *device, *next; 1011 1012 /* This is the initialized path, it is safe to release the devices. */ 1013 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1014 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1015 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1016 &device->dev_state) && 1017 !test_bit(BTRFS_DEV_STATE_MISSING, 1018 &device->dev_state) && 1019 (!*latest_dev || 1020 device->generation > (*latest_dev)->generation)) { 1021 *latest_dev = device; 1022 } 1023 continue; 1024 } 1025 1026 /* 1027 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1028 * in btrfs_init_dev_replace() so just continue. 1029 */ 1030 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1031 continue; 1032 1033 if (device->bdev_file) { 1034 fput(device->bdev_file); 1035 device->bdev = NULL; 1036 device->bdev_file = NULL; 1037 fs_devices->open_devices--; 1038 } 1039 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1040 list_del_init(&device->dev_alloc_list); 1041 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1042 fs_devices->rw_devices--; 1043 } 1044 list_del_init(&device->dev_list); 1045 fs_devices->num_devices--; 1046 btrfs_free_device(device); 1047 } 1048 1049 } 1050 1051 /* 1052 * After we have read the system tree and know devids belonging to this 1053 * filesystem, remove the device which does not belong there. 1054 */ 1055 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1056 { 1057 struct btrfs_device *latest_dev = NULL; 1058 struct btrfs_fs_devices *seed_dev; 1059 1060 mutex_lock(&uuid_mutex); 1061 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1062 1063 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1064 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1065 1066 fs_devices->latest_dev = latest_dev; 1067 1068 mutex_unlock(&uuid_mutex); 1069 } 1070 1071 static void btrfs_close_bdev(struct btrfs_device *device) 1072 { 1073 if (!device->bdev) 1074 return; 1075 1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1077 sync_blockdev(device->bdev); 1078 invalidate_bdev(device->bdev); 1079 } 1080 1081 fput(device->bdev_file); 1082 } 1083 1084 static void btrfs_close_one_device(struct btrfs_device *device) 1085 { 1086 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1087 1088 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1089 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1090 list_del_init(&device->dev_alloc_list); 1091 fs_devices->rw_devices--; 1092 } 1093 1094 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1095 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1096 1097 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1098 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1099 fs_devices->missing_devices--; 1100 } 1101 1102 btrfs_close_bdev(device); 1103 if (device->bdev) { 1104 fs_devices->open_devices--; 1105 device->bdev = NULL; 1106 } 1107 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1108 btrfs_destroy_dev_zone_info(device); 1109 1110 device->fs_info = NULL; 1111 atomic_set(&device->dev_stats_ccnt, 0); 1112 extent_io_tree_release(&device->alloc_state); 1113 1114 /* 1115 * Reset the flush error record. We might have a transient flush error 1116 * in this mount, and if so we aborted the current transaction and set 1117 * the fs to an error state, guaranteeing no super blocks can be further 1118 * committed. However that error might be transient and if we unmount the 1119 * filesystem and mount it again, we should allow the mount to succeed 1120 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1121 * filesystem again we still get flush errors, then we will again abort 1122 * any transaction and set the error state, guaranteeing no commits of 1123 * unsafe super blocks. 1124 */ 1125 device->last_flush_error = 0; 1126 1127 /* Verify the device is back in a pristine state */ 1128 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1129 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1130 WARN_ON(!list_empty(&device->dev_alloc_list)); 1131 WARN_ON(!list_empty(&device->post_commit_list)); 1132 } 1133 1134 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1135 { 1136 struct btrfs_device *device, *tmp; 1137 1138 lockdep_assert_held(&uuid_mutex); 1139 1140 if (--fs_devices->opened > 0) 1141 return; 1142 1143 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1144 btrfs_close_one_device(device); 1145 1146 WARN_ON(fs_devices->open_devices); 1147 WARN_ON(fs_devices->rw_devices); 1148 fs_devices->opened = 0; 1149 fs_devices->seeding = false; 1150 fs_devices->fs_info = NULL; 1151 } 1152 1153 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1154 { 1155 LIST_HEAD(list); 1156 struct btrfs_fs_devices *tmp; 1157 1158 mutex_lock(&uuid_mutex); 1159 close_fs_devices(fs_devices); 1160 if (!fs_devices->opened) { 1161 list_splice_init(&fs_devices->seed_list, &list); 1162 1163 /* 1164 * If the struct btrfs_fs_devices is not assembled with any 1165 * other device, it can be re-initialized during the next mount 1166 * without the needing device-scan step. Therefore, it can be 1167 * fully freed. 1168 */ 1169 if (fs_devices->num_devices == 1) { 1170 list_del(&fs_devices->fs_list); 1171 free_fs_devices(fs_devices); 1172 } 1173 } 1174 1175 1176 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1177 close_fs_devices(fs_devices); 1178 list_del(&fs_devices->seed_list); 1179 free_fs_devices(fs_devices); 1180 } 1181 mutex_unlock(&uuid_mutex); 1182 } 1183 1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1185 blk_mode_t flags, void *holder) 1186 { 1187 struct btrfs_device *device; 1188 struct btrfs_device *latest_dev = NULL; 1189 struct btrfs_device *tmp_device; 1190 int ret = 0; 1191 1192 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1193 dev_list) { 1194 int ret2; 1195 1196 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1197 if (ret2 == 0 && 1198 (!latest_dev || device->generation > latest_dev->generation)) { 1199 latest_dev = device; 1200 } else if (ret2 == -ENODATA) { 1201 fs_devices->num_devices--; 1202 list_del(&device->dev_list); 1203 btrfs_free_device(device); 1204 } 1205 if (ret == 0 && ret2 != 0) 1206 ret = ret2; 1207 } 1208 1209 if (fs_devices->open_devices == 0) { 1210 if (ret) 1211 return ret; 1212 return -EINVAL; 1213 } 1214 1215 fs_devices->opened = 1; 1216 fs_devices->latest_dev = latest_dev; 1217 fs_devices->total_rw_bytes = 0; 1218 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1219 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1220 1221 return 0; 1222 } 1223 1224 static int devid_cmp(void *priv, const struct list_head *a, 1225 const struct list_head *b) 1226 { 1227 const struct btrfs_device *dev1, *dev2; 1228 1229 dev1 = list_entry(a, struct btrfs_device, dev_list); 1230 dev2 = list_entry(b, struct btrfs_device, dev_list); 1231 1232 if (dev1->devid < dev2->devid) 1233 return -1; 1234 else if (dev1->devid > dev2->devid) 1235 return 1; 1236 return 0; 1237 } 1238 1239 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1240 blk_mode_t flags, void *holder) 1241 { 1242 int ret; 1243 1244 lockdep_assert_held(&uuid_mutex); 1245 /* 1246 * The device_list_mutex cannot be taken here in case opening the 1247 * underlying device takes further locks like open_mutex. 1248 * 1249 * We also don't need the lock here as this is called during mount and 1250 * exclusion is provided by uuid_mutex 1251 */ 1252 1253 if (fs_devices->opened) { 1254 fs_devices->opened++; 1255 ret = 0; 1256 } else { 1257 list_sort(NULL, &fs_devices->devices, devid_cmp); 1258 ret = open_fs_devices(fs_devices, flags, holder); 1259 } 1260 1261 return ret; 1262 } 1263 1264 void btrfs_release_disk_super(struct btrfs_super_block *super) 1265 { 1266 struct page *page = virt_to_page(super); 1267 1268 put_page(page); 1269 } 1270 1271 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1272 u64 bytenr, u64 bytenr_orig) 1273 { 1274 struct btrfs_super_block *disk_super; 1275 struct page *page; 1276 void *p; 1277 pgoff_t index; 1278 1279 /* make sure our super fits in the device */ 1280 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1281 return ERR_PTR(-EINVAL); 1282 1283 /* make sure our super fits in the page */ 1284 if (sizeof(*disk_super) > PAGE_SIZE) 1285 return ERR_PTR(-EINVAL); 1286 1287 /* make sure our super doesn't straddle pages on disk */ 1288 index = bytenr >> PAGE_SHIFT; 1289 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1290 return ERR_PTR(-EINVAL); 1291 1292 /* pull in the page with our super */ 1293 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL); 1294 1295 if (IS_ERR(page)) 1296 return ERR_CAST(page); 1297 1298 p = page_address(page); 1299 1300 /* align our pointer to the offset of the super block */ 1301 disk_super = p + offset_in_page(bytenr); 1302 1303 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1304 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1305 btrfs_release_disk_super(p); 1306 return ERR_PTR(-EINVAL); 1307 } 1308 1309 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1310 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1311 1312 return disk_super; 1313 } 1314 1315 int btrfs_forget_devices(dev_t devt) 1316 { 1317 int ret; 1318 1319 mutex_lock(&uuid_mutex); 1320 ret = btrfs_free_stale_devices(devt, NULL); 1321 mutex_unlock(&uuid_mutex); 1322 1323 return ret; 1324 } 1325 1326 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1327 const char *path, dev_t devt, 1328 bool mount_arg_dev) 1329 { 1330 struct btrfs_fs_devices *fs_devices; 1331 1332 /* 1333 * Do not skip device registration for mounted devices with matching 1334 * maj:min but different paths. Booting without initrd relies on 1335 * /dev/root initially, later replaced with the actual root device. 1336 * A successful scan ensures grub2-probe selects the correct device. 1337 */ 1338 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1339 struct btrfs_device *device; 1340 1341 mutex_lock(&fs_devices->device_list_mutex); 1342 1343 if (!fs_devices->opened) { 1344 mutex_unlock(&fs_devices->device_list_mutex); 1345 continue; 1346 } 1347 1348 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1349 if (device->bdev && (device->bdev->bd_dev == devt) && 1350 strcmp(device->name->str, path) != 0) { 1351 mutex_unlock(&fs_devices->device_list_mutex); 1352 1353 /* Do not skip registration. */ 1354 return false; 1355 } 1356 } 1357 mutex_unlock(&fs_devices->device_list_mutex); 1358 } 1359 1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1362 return true; 1363 1364 return false; 1365 } 1366 1367 /* 1368 * Look for a btrfs signature on a device. This may be called out of the mount path 1369 * and we are not allowed to call set_blocksize during the scan. The superblock 1370 * is read via pagecache. 1371 * 1372 * With @mount_arg_dev it's a scan during mount time that will always register 1373 * the device or return an error. Multi-device and seeding devices are registered 1374 * in both cases. 1375 */ 1376 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1377 bool mount_arg_dev) 1378 { 1379 struct btrfs_super_block *disk_super; 1380 bool new_device_added = false; 1381 struct btrfs_device *device = NULL; 1382 struct file *bdev_file; 1383 u64 bytenr, bytenr_orig; 1384 dev_t devt; 1385 int ret; 1386 1387 lockdep_assert_held(&uuid_mutex); 1388 1389 /* 1390 * we would like to check all the supers, but that would make 1391 * a btrfs mount succeed after a mkfs from a different FS. 1392 * So, we need to add a special mount option to scan for 1393 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1394 */ 1395 1396 /* 1397 * Avoid an exclusive open here, as the systemd-udev may initiate the 1398 * device scan which may race with the user's mount or mkfs command, 1399 * resulting in failure. 1400 * Since the device scan is solely for reading purposes, there is no 1401 * need for an exclusive open. Additionally, the devices are read again 1402 * during the mount process. It is ok to get some inconsistent 1403 * values temporarily, as the device paths of the fsid are the only 1404 * required information for assembling the volume. 1405 */ 1406 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1407 if (IS_ERR(bdev_file)) 1408 return ERR_CAST(bdev_file); 1409 1410 bytenr_orig = btrfs_sb_offset(0); 1411 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr); 1412 if (ret) { 1413 device = ERR_PTR(ret); 1414 goto error_bdev_put; 1415 } 1416 1417 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr, 1418 bytenr_orig); 1419 if (IS_ERR(disk_super)) { 1420 device = ERR_CAST(disk_super); 1421 goto error_bdev_put; 1422 } 1423 1424 devt = file_bdev(bdev_file)->bd_dev; 1425 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1426 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1427 path, MAJOR(devt), MINOR(devt)); 1428 1429 btrfs_free_stale_devices(devt, NULL); 1430 1431 device = NULL; 1432 goto free_disk_super; 1433 } 1434 1435 device = device_list_add(path, disk_super, &new_device_added); 1436 if (!IS_ERR(device) && new_device_added) 1437 btrfs_free_stale_devices(device->devt, device); 1438 1439 free_disk_super: 1440 btrfs_release_disk_super(disk_super); 1441 1442 error_bdev_put: 1443 fput(bdev_file); 1444 1445 return device; 1446 } 1447 1448 /* 1449 * Try to find a chunk that intersects [start, start + len] range and when one 1450 * such is found, record the end of it in *start 1451 */ 1452 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1453 u64 len) 1454 { 1455 u64 physical_start, physical_end; 1456 1457 lockdep_assert_held(&device->fs_info->chunk_mutex); 1458 1459 if (find_first_extent_bit(&device->alloc_state, *start, 1460 &physical_start, &physical_end, 1461 CHUNK_ALLOCATED, NULL)) { 1462 1463 if (in_range(physical_start, *start, len) || 1464 in_range(*start, physical_start, 1465 physical_end + 1 - physical_start)) { 1466 *start = physical_end + 1; 1467 return true; 1468 } 1469 } 1470 return false; 1471 } 1472 1473 static u64 dev_extent_search_start(struct btrfs_device *device) 1474 { 1475 switch (device->fs_devices->chunk_alloc_policy) { 1476 case BTRFS_CHUNK_ALLOC_REGULAR: 1477 return BTRFS_DEVICE_RANGE_RESERVED; 1478 case BTRFS_CHUNK_ALLOC_ZONED: 1479 /* 1480 * We don't care about the starting region like regular 1481 * allocator, because we anyway use/reserve the first two zones 1482 * for superblock logging. 1483 */ 1484 return 0; 1485 default: 1486 BUG(); 1487 } 1488 } 1489 1490 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1491 u64 *hole_start, u64 *hole_size, 1492 u64 num_bytes) 1493 { 1494 u64 zone_size = device->zone_info->zone_size; 1495 u64 pos; 1496 int ret; 1497 bool changed = false; 1498 1499 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1500 1501 while (*hole_size > 0) { 1502 pos = btrfs_find_allocatable_zones(device, *hole_start, 1503 *hole_start + *hole_size, 1504 num_bytes); 1505 if (pos != *hole_start) { 1506 *hole_size = *hole_start + *hole_size - pos; 1507 *hole_start = pos; 1508 changed = true; 1509 if (*hole_size < num_bytes) 1510 break; 1511 } 1512 1513 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1514 1515 /* Range is ensured to be empty */ 1516 if (!ret) 1517 return changed; 1518 1519 /* Given hole range was invalid (outside of device) */ 1520 if (ret == -ERANGE) { 1521 *hole_start += *hole_size; 1522 *hole_size = 0; 1523 return true; 1524 } 1525 1526 *hole_start += zone_size; 1527 *hole_size -= zone_size; 1528 changed = true; 1529 } 1530 1531 return changed; 1532 } 1533 1534 /* 1535 * Check if specified hole is suitable for allocation. 1536 * 1537 * @device: the device which we have the hole 1538 * @hole_start: starting position of the hole 1539 * @hole_size: the size of the hole 1540 * @num_bytes: the size of the free space that we need 1541 * 1542 * This function may modify @hole_start and @hole_size to reflect the suitable 1543 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1544 */ 1545 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1546 u64 *hole_size, u64 num_bytes) 1547 { 1548 bool changed = false; 1549 u64 hole_end = *hole_start + *hole_size; 1550 1551 for (;;) { 1552 /* 1553 * Check before we set max_hole_start, otherwise we could end up 1554 * sending back this offset anyway. 1555 */ 1556 if (contains_pending_extent(device, hole_start, *hole_size)) { 1557 if (hole_end >= *hole_start) 1558 *hole_size = hole_end - *hole_start; 1559 else 1560 *hole_size = 0; 1561 changed = true; 1562 } 1563 1564 switch (device->fs_devices->chunk_alloc_policy) { 1565 case BTRFS_CHUNK_ALLOC_REGULAR: 1566 /* No extra check */ 1567 break; 1568 case BTRFS_CHUNK_ALLOC_ZONED: 1569 if (dev_extent_hole_check_zoned(device, hole_start, 1570 hole_size, num_bytes)) { 1571 changed = true; 1572 /* 1573 * The changed hole can contain pending extent. 1574 * Loop again to check that. 1575 */ 1576 continue; 1577 } 1578 break; 1579 default: 1580 BUG(); 1581 } 1582 1583 break; 1584 } 1585 1586 return changed; 1587 } 1588 1589 /* 1590 * Find free space in the specified device. 1591 * 1592 * @device: the device which we search the free space in 1593 * @num_bytes: the size of the free space that we need 1594 * @search_start: the position from which to begin the search 1595 * @start: store the start of the free space. 1596 * @len: the size of the free space. that we find, or the size 1597 * of the max free space if we don't find suitable free space 1598 * 1599 * This does a pretty simple search, the expectation is that it is called very 1600 * infrequently and that a given device has a small number of extents. 1601 * 1602 * @start is used to store the start of the free space if we find. But if we 1603 * don't find suitable free space, it will be used to store the start position 1604 * of the max free space. 1605 * 1606 * @len is used to store the size of the free space that we find. 1607 * But if we don't find suitable free space, it is used to store the size of 1608 * the max free space. 1609 * 1610 * NOTE: This function will search *commit* root of device tree, and does extra 1611 * check to ensure dev extents are not double allocated. 1612 * This makes the function safe to allocate dev extents but may not report 1613 * correct usable device space, as device extent freed in current transaction 1614 * is not reported as available. 1615 */ 1616 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1617 u64 *start, u64 *len) 1618 { 1619 struct btrfs_fs_info *fs_info = device->fs_info; 1620 struct btrfs_root *root = fs_info->dev_root; 1621 struct btrfs_key key; 1622 struct btrfs_dev_extent *dev_extent; 1623 struct btrfs_path *path; 1624 u64 search_start; 1625 u64 hole_size; 1626 u64 max_hole_start; 1627 u64 max_hole_size = 0; 1628 u64 extent_end; 1629 u64 search_end = device->total_bytes; 1630 int ret; 1631 int slot; 1632 struct extent_buffer *l; 1633 1634 search_start = dev_extent_search_start(device); 1635 max_hole_start = search_start; 1636 1637 WARN_ON(device->zone_info && 1638 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1639 1640 path = btrfs_alloc_path(); 1641 if (!path) { 1642 ret = -ENOMEM; 1643 goto out; 1644 } 1645 again: 1646 if (search_start >= search_end || 1647 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1648 ret = -ENOSPC; 1649 goto out; 1650 } 1651 1652 path->reada = READA_FORWARD; 1653 path->search_commit_root = 1; 1654 path->skip_locking = 1; 1655 1656 key.objectid = device->devid; 1657 key.offset = search_start; 1658 key.type = BTRFS_DEV_EXTENT_KEY; 1659 1660 ret = btrfs_search_backwards(root, &key, path); 1661 if (ret < 0) 1662 goto out; 1663 1664 while (search_start < search_end) { 1665 l = path->nodes[0]; 1666 slot = path->slots[0]; 1667 if (slot >= btrfs_header_nritems(l)) { 1668 ret = btrfs_next_leaf(root, path); 1669 if (ret == 0) 1670 continue; 1671 if (ret < 0) 1672 goto out; 1673 1674 break; 1675 } 1676 btrfs_item_key_to_cpu(l, &key, slot); 1677 1678 if (key.objectid < device->devid) 1679 goto next; 1680 1681 if (key.objectid > device->devid) 1682 break; 1683 1684 if (key.type != BTRFS_DEV_EXTENT_KEY) 1685 goto next; 1686 1687 if (key.offset > search_end) 1688 break; 1689 1690 if (key.offset > search_start) { 1691 hole_size = key.offset - search_start; 1692 dev_extent_hole_check(device, &search_start, &hole_size, 1693 num_bytes); 1694 1695 if (hole_size > max_hole_size) { 1696 max_hole_start = search_start; 1697 max_hole_size = hole_size; 1698 } 1699 1700 /* 1701 * If this free space is greater than which we need, 1702 * it must be the max free space that we have found 1703 * until now, so max_hole_start must point to the start 1704 * of this free space and the length of this free space 1705 * is stored in max_hole_size. Thus, we return 1706 * max_hole_start and max_hole_size and go back to the 1707 * caller. 1708 */ 1709 if (hole_size >= num_bytes) { 1710 ret = 0; 1711 goto out; 1712 } 1713 } 1714 1715 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1716 extent_end = key.offset + btrfs_dev_extent_length(l, 1717 dev_extent); 1718 if (extent_end > search_start) 1719 search_start = extent_end; 1720 next: 1721 path->slots[0]++; 1722 cond_resched(); 1723 } 1724 1725 /* 1726 * At this point, search_start should be the end of 1727 * allocated dev extents, and when shrinking the device, 1728 * search_end may be smaller than search_start. 1729 */ 1730 if (search_end > search_start) { 1731 hole_size = search_end - search_start; 1732 if (dev_extent_hole_check(device, &search_start, &hole_size, 1733 num_bytes)) { 1734 btrfs_release_path(path); 1735 goto again; 1736 } 1737 1738 if (hole_size > max_hole_size) { 1739 max_hole_start = search_start; 1740 max_hole_size = hole_size; 1741 } 1742 } 1743 1744 /* See above. */ 1745 if (max_hole_size < num_bytes) 1746 ret = -ENOSPC; 1747 else 1748 ret = 0; 1749 1750 ASSERT(max_hole_start + max_hole_size <= search_end); 1751 out: 1752 btrfs_free_path(path); 1753 *start = max_hole_start; 1754 if (len) 1755 *len = max_hole_size; 1756 return ret; 1757 } 1758 1759 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1760 struct btrfs_device *device, 1761 u64 start, u64 *dev_extent_len) 1762 { 1763 struct btrfs_fs_info *fs_info = device->fs_info; 1764 struct btrfs_root *root = fs_info->dev_root; 1765 int ret; 1766 struct btrfs_path *path; 1767 struct btrfs_key key; 1768 struct btrfs_key found_key; 1769 struct extent_buffer *leaf = NULL; 1770 struct btrfs_dev_extent *extent = NULL; 1771 1772 path = btrfs_alloc_path(); 1773 if (!path) 1774 return -ENOMEM; 1775 1776 key.objectid = device->devid; 1777 key.offset = start; 1778 key.type = BTRFS_DEV_EXTENT_KEY; 1779 again: 1780 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1781 if (ret > 0) { 1782 ret = btrfs_previous_item(root, path, key.objectid, 1783 BTRFS_DEV_EXTENT_KEY); 1784 if (ret) 1785 goto out; 1786 leaf = path->nodes[0]; 1787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1788 extent = btrfs_item_ptr(leaf, path->slots[0], 1789 struct btrfs_dev_extent); 1790 BUG_ON(found_key.offset > start || found_key.offset + 1791 btrfs_dev_extent_length(leaf, extent) < start); 1792 key = found_key; 1793 btrfs_release_path(path); 1794 goto again; 1795 } else if (ret == 0) { 1796 leaf = path->nodes[0]; 1797 extent = btrfs_item_ptr(leaf, path->slots[0], 1798 struct btrfs_dev_extent); 1799 } else { 1800 goto out; 1801 } 1802 1803 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1804 1805 ret = btrfs_del_item(trans, root, path); 1806 if (ret == 0) 1807 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1808 out: 1809 btrfs_free_path(path); 1810 return ret; 1811 } 1812 1813 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1814 { 1815 struct rb_node *n; 1816 u64 ret = 0; 1817 1818 read_lock(&fs_info->mapping_tree_lock); 1819 n = rb_last(&fs_info->mapping_tree.rb_root); 1820 if (n) { 1821 struct btrfs_chunk_map *map; 1822 1823 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1824 ret = map->start + map->chunk_len; 1825 } 1826 read_unlock(&fs_info->mapping_tree_lock); 1827 1828 return ret; 1829 } 1830 1831 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1832 u64 *devid_ret) 1833 { 1834 int ret; 1835 struct btrfs_key key; 1836 struct btrfs_key found_key; 1837 struct btrfs_path *path; 1838 1839 path = btrfs_alloc_path(); 1840 if (!path) 1841 return -ENOMEM; 1842 1843 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1844 key.type = BTRFS_DEV_ITEM_KEY; 1845 key.offset = (u64)-1; 1846 1847 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1848 if (ret < 0) 1849 goto error; 1850 1851 if (ret == 0) { 1852 /* Corruption */ 1853 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1854 ret = -EUCLEAN; 1855 goto error; 1856 } 1857 1858 ret = btrfs_previous_item(fs_info->chunk_root, path, 1859 BTRFS_DEV_ITEMS_OBJECTID, 1860 BTRFS_DEV_ITEM_KEY); 1861 if (ret) { 1862 *devid_ret = 1; 1863 } else { 1864 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1865 path->slots[0]); 1866 *devid_ret = found_key.offset + 1; 1867 } 1868 ret = 0; 1869 error: 1870 btrfs_free_path(path); 1871 return ret; 1872 } 1873 1874 /* 1875 * the device information is stored in the chunk root 1876 * the btrfs_device struct should be fully filled in 1877 */ 1878 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1879 struct btrfs_device *device) 1880 { 1881 int ret; 1882 struct btrfs_path *path; 1883 struct btrfs_dev_item *dev_item; 1884 struct extent_buffer *leaf; 1885 struct btrfs_key key; 1886 unsigned long ptr; 1887 1888 path = btrfs_alloc_path(); 1889 if (!path) 1890 return -ENOMEM; 1891 1892 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1893 key.type = BTRFS_DEV_ITEM_KEY; 1894 key.offset = device->devid; 1895 1896 btrfs_reserve_chunk_metadata(trans, true); 1897 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1898 &key, sizeof(*dev_item)); 1899 btrfs_trans_release_chunk_metadata(trans); 1900 if (ret) 1901 goto out; 1902 1903 leaf = path->nodes[0]; 1904 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1905 1906 btrfs_set_device_id(leaf, dev_item, device->devid); 1907 btrfs_set_device_generation(leaf, dev_item, 0); 1908 btrfs_set_device_type(leaf, dev_item, device->type); 1909 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1910 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1911 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1912 btrfs_set_device_total_bytes(leaf, dev_item, 1913 btrfs_device_get_disk_total_bytes(device)); 1914 btrfs_set_device_bytes_used(leaf, dev_item, 1915 btrfs_device_get_bytes_used(device)); 1916 btrfs_set_device_group(leaf, dev_item, 0); 1917 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1918 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1919 btrfs_set_device_start_offset(leaf, dev_item, 0); 1920 1921 ptr = btrfs_device_uuid(dev_item); 1922 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1923 ptr = btrfs_device_fsid(dev_item); 1924 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1925 ptr, BTRFS_FSID_SIZE); 1926 btrfs_mark_buffer_dirty(trans, leaf); 1927 1928 ret = 0; 1929 out: 1930 btrfs_free_path(path); 1931 return ret; 1932 } 1933 1934 /* 1935 * Function to update ctime/mtime for a given device path. 1936 * Mainly used for ctime/mtime based probe like libblkid. 1937 * 1938 * We don't care about errors here, this is just to be kind to userspace. 1939 */ 1940 static void update_dev_time(const char *device_path) 1941 { 1942 struct path path; 1943 int ret; 1944 1945 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1946 if (ret) 1947 return; 1948 1949 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1950 path_put(&path); 1951 } 1952 1953 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1954 struct btrfs_device *device) 1955 { 1956 struct btrfs_root *root = device->fs_info->chunk_root; 1957 int ret; 1958 struct btrfs_path *path; 1959 struct btrfs_key key; 1960 1961 path = btrfs_alloc_path(); 1962 if (!path) 1963 return -ENOMEM; 1964 1965 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1966 key.type = BTRFS_DEV_ITEM_KEY; 1967 key.offset = device->devid; 1968 1969 btrfs_reserve_chunk_metadata(trans, false); 1970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1971 btrfs_trans_release_chunk_metadata(trans); 1972 if (ret) { 1973 if (ret > 0) 1974 ret = -ENOENT; 1975 goto out; 1976 } 1977 1978 ret = btrfs_del_item(trans, root, path); 1979 out: 1980 btrfs_free_path(path); 1981 return ret; 1982 } 1983 1984 /* 1985 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1986 * filesystem. It's up to the caller to adjust that number regarding eg. device 1987 * replace. 1988 */ 1989 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1990 u64 num_devices) 1991 { 1992 u64 all_avail; 1993 unsigned seq; 1994 int i; 1995 1996 do { 1997 seq = read_seqbegin(&fs_info->profiles_lock); 1998 1999 all_avail = fs_info->avail_data_alloc_bits | 2000 fs_info->avail_system_alloc_bits | 2001 fs_info->avail_metadata_alloc_bits; 2002 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2003 2004 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2005 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2006 continue; 2007 2008 if (num_devices < btrfs_raid_array[i].devs_min) 2009 return btrfs_raid_array[i].mindev_error; 2010 } 2011 2012 return 0; 2013 } 2014 2015 static struct btrfs_device * btrfs_find_next_active_device( 2016 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2017 { 2018 struct btrfs_device *next_device; 2019 2020 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2021 if (next_device != device && 2022 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2023 && next_device->bdev) 2024 return next_device; 2025 } 2026 2027 return NULL; 2028 } 2029 2030 /* 2031 * Helper function to check if the given device is part of s_bdev / latest_dev 2032 * and replace it with the provided or the next active device, in the context 2033 * where this function called, there should be always be another device (or 2034 * this_dev) which is active. 2035 */ 2036 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2037 struct btrfs_device *next_device) 2038 { 2039 struct btrfs_fs_info *fs_info = device->fs_info; 2040 2041 if (!next_device) 2042 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2043 device); 2044 ASSERT(next_device); 2045 2046 if (fs_info->sb->s_bdev && 2047 (fs_info->sb->s_bdev == device->bdev)) 2048 fs_info->sb->s_bdev = next_device->bdev; 2049 2050 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2051 fs_info->fs_devices->latest_dev = next_device; 2052 } 2053 2054 /* 2055 * Return btrfs_fs_devices::num_devices excluding the device that's being 2056 * currently replaced. 2057 */ 2058 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2059 { 2060 u64 num_devices = fs_info->fs_devices->num_devices; 2061 2062 down_read(&fs_info->dev_replace.rwsem); 2063 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2064 ASSERT(num_devices > 1); 2065 num_devices--; 2066 } 2067 up_read(&fs_info->dev_replace.rwsem); 2068 2069 return num_devices; 2070 } 2071 2072 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2073 struct block_device *bdev, int copy_num) 2074 { 2075 struct btrfs_super_block *disk_super; 2076 const size_t len = sizeof(disk_super->magic); 2077 const u64 bytenr = btrfs_sb_offset(copy_num); 2078 int ret; 2079 2080 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2081 if (IS_ERR(disk_super)) 2082 return; 2083 2084 memset(&disk_super->magic, 0, len); 2085 folio_mark_dirty(virt_to_folio(disk_super)); 2086 btrfs_release_disk_super(disk_super); 2087 2088 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2089 if (ret) 2090 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2091 copy_num, ret); 2092 } 2093 2094 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2095 { 2096 int copy_num; 2097 struct block_device *bdev = device->bdev; 2098 2099 if (!bdev) 2100 return; 2101 2102 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2103 if (bdev_is_zoned(bdev)) 2104 btrfs_reset_sb_log_zones(bdev, copy_num); 2105 else 2106 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2107 } 2108 2109 /* Notify udev that device has changed */ 2110 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2111 2112 /* Update ctime/mtime for device path for libblkid */ 2113 update_dev_time(device->name->str); 2114 } 2115 2116 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2117 struct btrfs_dev_lookup_args *args, 2118 struct file **bdev_file) 2119 { 2120 struct btrfs_trans_handle *trans; 2121 struct btrfs_device *device; 2122 struct btrfs_fs_devices *cur_devices; 2123 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2124 u64 num_devices; 2125 int ret = 0; 2126 2127 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2128 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2129 return -EINVAL; 2130 } 2131 2132 /* 2133 * The device list in fs_devices is accessed without locks (neither 2134 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2135 * filesystem and another device rm cannot run. 2136 */ 2137 num_devices = btrfs_num_devices(fs_info); 2138 2139 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2140 if (ret) 2141 return ret; 2142 2143 device = btrfs_find_device(fs_info->fs_devices, args); 2144 if (!device) { 2145 if (args->missing) 2146 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2147 else 2148 ret = -ENOENT; 2149 return ret; 2150 } 2151 2152 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2153 btrfs_warn_in_rcu(fs_info, 2154 "cannot remove device %s (devid %llu) due to active swapfile", 2155 btrfs_dev_name(device), device->devid); 2156 return -ETXTBSY; 2157 } 2158 2159 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2160 return BTRFS_ERROR_DEV_TGT_REPLACE; 2161 2162 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2163 fs_info->fs_devices->rw_devices == 1) 2164 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2165 2166 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2167 mutex_lock(&fs_info->chunk_mutex); 2168 list_del_init(&device->dev_alloc_list); 2169 device->fs_devices->rw_devices--; 2170 mutex_unlock(&fs_info->chunk_mutex); 2171 } 2172 2173 ret = btrfs_shrink_device(device, 0); 2174 if (ret) 2175 goto error_undo; 2176 2177 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2178 if (IS_ERR(trans)) { 2179 ret = PTR_ERR(trans); 2180 goto error_undo; 2181 } 2182 2183 ret = btrfs_rm_dev_item(trans, device); 2184 if (ret) { 2185 /* Any error in dev item removal is critical */ 2186 btrfs_crit(fs_info, 2187 "failed to remove device item for devid %llu: %d", 2188 device->devid, ret); 2189 btrfs_abort_transaction(trans, ret); 2190 btrfs_end_transaction(trans); 2191 return ret; 2192 } 2193 2194 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2195 btrfs_scrub_cancel_dev(device); 2196 2197 /* 2198 * the device list mutex makes sure that we don't change 2199 * the device list while someone else is writing out all 2200 * the device supers. Whoever is writing all supers, should 2201 * lock the device list mutex before getting the number of 2202 * devices in the super block (super_copy). Conversely, 2203 * whoever updates the number of devices in the super block 2204 * (super_copy) should hold the device list mutex. 2205 */ 2206 2207 /* 2208 * In normal cases the cur_devices == fs_devices. But in case 2209 * of deleting a seed device, the cur_devices should point to 2210 * its own fs_devices listed under the fs_devices->seed_list. 2211 */ 2212 cur_devices = device->fs_devices; 2213 mutex_lock(&fs_devices->device_list_mutex); 2214 list_del_rcu(&device->dev_list); 2215 2216 cur_devices->num_devices--; 2217 cur_devices->total_devices--; 2218 /* Update total_devices of the parent fs_devices if it's seed */ 2219 if (cur_devices != fs_devices) 2220 fs_devices->total_devices--; 2221 2222 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2223 cur_devices->missing_devices--; 2224 2225 btrfs_assign_next_active_device(device, NULL); 2226 2227 if (device->bdev_file) { 2228 cur_devices->open_devices--; 2229 /* remove sysfs entry */ 2230 btrfs_sysfs_remove_device(device); 2231 } 2232 2233 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2234 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2235 mutex_unlock(&fs_devices->device_list_mutex); 2236 2237 /* 2238 * At this point, the device is zero sized and detached from the 2239 * devices list. All that's left is to zero out the old supers and 2240 * free the device. 2241 * 2242 * We cannot call btrfs_close_bdev() here because we're holding the sb 2243 * write lock, and fput() on the block device will pull in the 2244 * ->open_mutex on the block device and it's dependencies. Instead 2245 * just flush the device and let the caller do the final bdev_release. 2246 */ 2247 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2248 btrfs_scratch_superblocks(fs_info, device); 2249 if (device->bdev) { 2250 sync_blockdev(device->bdev); 2251 invalidate_bdev(device->bdev); 2252 } 2253 } 2254 2255 *bdev_file = device->bdev_file; 2256 synchronize_rcu(); 2257 btrfs_free_device(device); 2258 2259 /* 2260 * This can happen if cur_devices is the private seed devices list. We 2261 * cannot call close_fs_devices() here because it expects the uuid_mutex 2262 * to be held, but in fact we don't need that for the private 2263 * seed_devices, we can simply decrement cur_devices->opened and then 2264 * remove it from our list and free the fs_devices. 2265 */ 2266 if (cur_devices->num_devices == 0) { 2267 list_del_init(&cur_devices->seed_list); 2268 ASSERT(cur_devices->opened == 1); 2269 cur_devices->opened--; 2270 free_fs_devices(cur_devices); 2271 } 2272 2273 ret = btrfs_commit_transaction(trans); 2274 2275 return ret; 2276 2277 error_undo: 2278 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2279 mutex_lock(&fs_info->chunk_mutex); 2280 list_add(&device->dev_alloc_list, 2281 &fs_devices->alloc_list); 2282 device->fs_devices->rw_devices++; 2283 mutex_unlock(&fs_info->chunk_mutex); 2284 } 2285 return ret; 2286 } 2287 2288 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2289 { 2290 struct btrfs_fs_devices *fs_devices; 2291 2292 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2293 2294 /* 2295 * in case of fs with no seed, srcdev->fs_devices will point 2296 * to fs_devices of fs_info. However when the dev being replaced is 2297 * a seed dev it will point to the seed's local fs_devices. In short 2298 * srcdev will have its correct fs_devices in both the cases. 2299 */ 2300 fs_devices = srcdev->fs_devices; 2301 2302 list_del_rcu(&srcdev->dev_list); 2303 list_del(&srcdev->dev_alloc_list); 2304 fs_devices->num_devices--; 2305 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2306 fs_devices->missing_devices--; 2307 2308 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2309 fs_devices->rw_devices--; 2310 2311 if (srcdev->bdev) 2312 fs_devices->open_devices--; 2313 } 2314 2315 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2316 { 2317 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2318 2319 mutex_lock(&uuid_mutex); 2320 2321 btrfs_close_bdev(srcdev); 2322 synchronize_rcu(); 2323 btrfs_free_device(srcdev); 2324 2325 /* if this is no devs we rather delete the fs_devices */ 2326 if (!fs_devices->num_devices) { 2327 /* 2328 * On a mounted FS, num_devices can't be zero unless it's a 2329 * seed. In case of a seed device being replaced, the replace 2330 * target added to the sprout FS, so there will be no more 2331 * device left under the seed FS. 2332 */ 2333 ASSERT(fs_devices->seeding); 2334 2335 list_del_init(&fs_devices->seed_list); 2336 close_fs_devices(fs_devices); 2337 free_fs_devices(fs_devices); 2338 } 2339 mutex_unlock(&uuid_mutex); 2340 } 2341 2342 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2343 { 2344 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2345 2346 mutex_lock(&fs_devices->device_list_mutex); 2347 2348 btrfs_sysfs_remove_device(tgtdev); 2349 2350 if (tgtdev->bdev) 2351 fs_devices->open_devices--; 2352 2353 fs_devices->num_devices--; 2354 2355 btrfs_assign_next_active_device(tgtdev, NULL); 2356 2357 list_del_rcu(&tgtdev->dev_list); 2358 2359 mutex_unlock(&fs_devices->device_list_mutex); 2360 2361 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2362 2363 btrfs_close_bdev(tgtdev); 2364 synchronize_rcu(); 2365 btrfs_free_device(tgtdev); 2366 } 2367 2368 /* 2369 * Populate args from device at path. 2370 * 2371 * @fs_info: the filesystem 2372 * @args: the args to populate 2373 * @path: the path to the device 2374 * 2375 * This will read the super block of the device at @path and populate @args with 2376 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2377 * lookup a device to operate on, but need to do it before we take any locks. 2378 * This properly handles the special case of "missing" that a user may pass in, 2379 * and does some basic sanity checks. The caller must make sure that @path is 2380 * properly NUL terminated before calling in, and must call 2381 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2382 * uuid buffers. 2383 * 2384 * Return: 0 for success, -errno for failure 2385 */ 2386 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2387 struct btrfs_dev_lookup_args *args, 2388 const char *path) 2389 { 2390 struct btrfs_super_block *disk_super; 2391 struct file *bdev_file; 2392 int ret; 2393 2394 if (!path || !path[0]) 2395 return -EINVAL; 2396 if (!strcmp(path, "missing")) { 2397 args->missing = true; 2398 return 0; 2399 } 2400 2401 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2402 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2403 if (!args->uuid || !args->fsid) { 2404 btrfs_put_dev_args_from_path(args); 2405 return -ENOMEM; 2406 } 2407 2408 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2409 &bdev_file, &disk_super); 2410 if (ret) { 2411 btrfs_put_dev_args_from_path(args); 2412 return ret; 2413 } 2414 2415 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2416 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2417 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2418 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2419 else 2420 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2421 btrfs_release_disk_super(disk_super); 2422 fput(bdev_file); 2423 return 0; 2424 } 2425 2426 /* 2427 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2428 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2429 * that don't need to be freed. 2430 */ 2431 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2432 { 2433 kfree(args->uuid); 2434 kfree(args->fsid); 2435 args->uuid = NULL; 2436 args->fsid = NULL; 2437 } 2438 2439 struct btrfs_device *btrfs_find_device_by_devspec( 2440 struct btrfs_fs_info *fs_info, u64 devid, 2441 const char *device_path) 2442 { 2443 BTRFS_DEV_LOOKUP_ARGS(args); 2444 struct btrfs_device *device; 2445 int ret; 2446 2447 if (devid) { 2448 args.devid = devid; 2449 device = btrfs_find_device(fs_info->fs_devices, &args); 2450 if (!device) 2451 return ERR_PTR(-ENOENT); 2452 return device; 2453 } 2454 2455 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2456 if (ret) 2457 return ERR_PTR(ret); 2458 device = btrfs_find_device(fs_info->fs_devices, &args); 2459 btrfs_put_dev_args_from_path(&args); 2460 if (!device) 2461 return ERR_PTR(-ENOENT); 2462 return device; 2463 } 2464 2465 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2466 { 2467 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2468 struct btrfs_fs_devices *old_devices; 2469 struct btrfs_fs_devices *seed_devices; 2470 2471 lockdep_assert_held(&uuid_mutex); 2472 if (!fs_devices->seeding) 2473 return ERR_PTR(-EINVAL); 2474 2475 /* 2476 * Private copy of the seed devices, anchored at 2477 * fs_info->fs_devices->seed_list 2478 */ 2479 seed_devices = alloc_fs_devices(NULL); 2480 if (IS_ERR(seed_devices)) 2481 return seed_devices; 2482 2483 /* 2484 * It's necessary to retain a copy of the original seed fs_devices in 2485 * fs_uuids so that filesystems which have been seeded can successfully 2486 * reference the seed device from open_seed_devices. This also supports 2487 * multiple fs seed. 2488 */ 2489 old_devices = clone_fs_devices(fs_devices); 2490 if (IS_ERR(old_devices)) { 2491 kfree(seed_devices); 2492 return old_devices; 2493 } 2494 2495 list_add(&old_devices->fs_list, &fs_uuids); 2496 2497 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2498 seed_devices->opened = 1; 2499 INIT_LIST_HEAD(&seed_devices->devices); 2500 INIT_LIST_HEAD(&seed_devices->alloc_list); 2501 mutex_init(&seed_devices->device_list_mutex); 2502 2503 return seed_devices; 2504 } 2505 2506 /* 2507 * Splice seed devices into the sprout fs_devices. 2508 * Generate a new fsid for the sprouted read-write filesystem. 2509 */ 2510 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2511 struct btrfs_fs_devices *seed_devices) 2512 { 2513 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2514 struct btrfs_super_block *disk_super = fs_info->super_copy; 2515 struct btrfs_device *device; 2516 u64 super_flags; 2517 2518 /* 2519 * We are updating the fsid, the thread leading to device_list_add() 2520 * could race, so uuid_mutex is needed. 2521 */ 2522 lockdep_assert_held(&uuid_mutex); 2523 2524 /* 2525 * The threads listed below may traverse dev_list but can do that without 2526 * device_list_mutex: 2527 * - All device ops and balance - as we are in btrfs_exclop_start. 2528 * - Various dev_list readers - are using RCU. 2529 * - btrfs_ioctl_fitrim() - is using RCU. 2530 * 2531 * For-read threads as below are using device_list_mutex: 2532 * - Readonly scrub btrfs_scrub_dev() 2533 * - Readonly scrub btrfs_scrub_progress() 2534 * - btrfs_get_dev_stats() 2535 */ 2536 lockdep_assert_held(&fs_devices->device_list_mutex); 2537 2538 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2539 synchronize_rcu); 2540 list_for_each_entry(device, &seed_devices->devices, dev_list) 2541 device->fs_devices = seed_devices; 2542 2543 fs_devices->seeding = false; 2544 fs_devices->num_devices = 0; 2545 fs_devices->open_devices = 0; 2546 fs_devices->missing_devices = 0; 2547 fs_devices->rotating = false; 2548 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2549 2550 generate_random_uuid(fs_devices->fsid); 2551 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2552 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2553 2554 super_flags = btrfs_super_flags(disk_super) & 2555 ~BTRFS_SUPER_FLAG_SEEDING; 2556 btrfs_set_super_flags(disk_super, super_flags); 2557 } 2558 2559 /* 2560 * Store the expected generation for seed devices in device items. 2561 */ 2562 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2563 { 2564 BTRFS_DEV_LOOKUP_ARGS(args); 2565 struct btrfs_fs_info *fs_info = trans->fs_info; 2566 struct btrfs_root *root = fs_info->chunk_root; 2567 struct btrfs_path *path; 2568 struct extent_buffer *leaf; 2569 struct btrfs_dev_item *dev_item; 2570 struct btrfs_device *device; 2571 struct btrfs_key key; 2572 u8 fs_uuid[BTRFS_FSID_SIZE]; 2573 u8 dev_uuid[BTRFS_UUID_SIZE]; 2574 int ret; 2575 2576 path = btrfs_alloc_path(); 2577 if (!path) 2578 return -ENOMEM; 2579 2580 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2581 key.offset = 0; 2582 key.type = BTRFS_DEV_ITEM_KEY; 2583 2584 while (1) { 2585 btrfs_reserve_chunk_metadata(trans, false); 2586 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2587 btrfs_trans_release_chunk_metadata(trans); 2588 if (ret < 0) 2589 goto error; 2590 2591 leaf = path->nodes[0]; 2592 next_slot: 2593 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2594 ret = btrfs_next_leaf(root, path); 2595 if (ret > 0) 2596 break; 2597 if (ret < 0) 2598 goto error; 2599 leaf = path->nodes[0]; 2600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2601 btrfs_release_path(path); 2602 continue; 2603 } 2604 2605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2606 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2607 key.type != BTRFS_DEV_ITEM_KEY) 2608 break; 2609 2610 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2611 struct btrfs_dev_item); 2612 args.devid = btrfs_device_id(leaf, dev_item); 2613 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2614 BTRFS_UUID_SIZE); 2615 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2616 BTRFS_FSID_SIZE); 2617 args.uuid = dev_uuid; 2618 args.fsid = fs_uuid; 2619 device = btrfs_find_device(fs_info->fs_devices, &args); 2620 BUG_ON(!device); /* Logic error */ 2621 2622 if (device->fs_devices->seeding) { 2623 btrfs_set_device_generation(leaf, dev_item, 2624 device->generation); 2625 btrfs_mark_buffer_dirty(trans, leaf); 2626 } 2627 2628 path->slots[0]++; 2629 goto next_slot; 2630 } 2631 ret = 0; 2632 error: 2633 btrfs_free_path(path); 2634 return ret; 2635 } 2636 2637 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2638 { 2639 struct btrfs_root *root = fs_info->dev_root; 2640 struct btrfs_trans_handle *trans; 2641 struct btrfs_device *device; 2642 struct file *bdev_file; 2643 struct super_block *sb = fs_info->sb; 2644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2645 struct btrfs_fs_devices *seed_devices = NULL; 2646 u64 orig_super_total_bytes; 2647 u64 orig_super_num_devices; 2648 int ret = 0; 2649 bool seeding_dev = false; 2650 bool locked = false; 2651 2652 if (sb_rdonly(sb) && !fs_devices->seeding) 2653 return -EROFS; 2654 2655 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2656 fs_info->bdev_holder, NULL); 2657 if (IS_ERR(bdev_file)) 2658 return PTR_ERR(bdev_file); 2659 2660 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2661 ret = -EINVAL; 2662 goto error; 2663 } 2664 2665 if (fs_devices->seeding) { 2666 seeding_dev = true; 2667 down_write(&sb->s_umount); 2668 mutex_lock(&uuid_mutex); 2669 locked = true; 2670 } 2671 2672 sync_blockdev(file_bdev(bdev_file)); 2673 2674 rcu_read_lock(); 2675 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2676 if (device->bdev == file_bdev(bdev_file)) { 2677 ret = -EEXIST; 2678 rcu_read_unlock(); 2679 goto error; 2680 } 2681 } 2682 rcu_read_unlock(); 2683 2684 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2685 if (IS_ERR(device)) { 2686 /* we can safely leave the fs_devices entry around */ 2687 ret = PTR_ERR(device); 2688 goto error; 2689 } 2690 2691 device->fs_info = fs_info; 2692 device->bdev_file = bdev_file; 2693 device->bdev = file_bdev(bdev_file); 2694 ret = lookup_bdev(device_path, &device->devt); 2695 if (ret) 2696 goto error_free_device; 2697 2698 ret = btrfs_get_dev_zone_info(device, false); 2699 if (ret) 2700 goto error_free_device; 2701 2702 trans = btrfs_start_transaction(root, 0); 2703 if (IS_ERR(trans)) { 2704 ret = PTR_ERR(trans); 2705 goto error_free_zone; 2706 } 2707 2708 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2709 device->generation = trans->transid; 2710 device->io_width = fs_info->sectorsize; 2711 device->io_align = fs_info->sectorsize; 2712 device->sector_size = fs_info->sectorsize; 2713 device->total_bytes = 2714 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2715 device->disk_total_bytes = device->total_bytes; 2716 device->commit_total_bytes = device->total_bytes; 2717 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2718 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2719 device->dev_stats_valid = 1; 2720 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2721 2722 if (seeding_dev) { 2723 btrfs_clear_sb_rdonly(sb); 2724 2725 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2726 seed_devices = btrfs_init_sprout(fs_info); 2727 if (IS_ERR(seed_devices)) { 2728 ret = PTR_ERR(seed_devices); 2729 btrfs_abort_transaction(trans, ret); 2730 goto error_trans; 2731 } 2732 } 2733 2734 mutex_lock(&fs_devices->device_list_mutex); 2735 if (seeding_dev) { 2736 btrfs_setup_sprout(fs_info, seed_devices); 2737 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2738 device); 2739 } 2740 2741 device->fs_devices = fs_devices; 2742 2743 mutex_lock(&fs_info->chunk_mutex); 2744 list_add_rcu(&device->dev_list, &fs_devices->devices); 2745 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2746 fs_devices->num_devices++; 2747 fs_devices->open_devices++; 2748 fs_devices->rw_devices++; 2749 fs_devices->total_devices++; 2750 fs_devices->total_rw_bytes += device->total_bytes; 2751 2752 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2753 2754 if (!bdev_nonrot(device->bdev)) 2755 fs_devices->rotating = true; 2756 2757 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2758 btrfs_set_super_total_bytes(fs_info->super_copy, 2759 round_down(orig_super_total_bytes + device->total_bytes, 2760 fs_info->sectorsize)); 2761 2762 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2763 btrfs_set_super_num_devices(fs_info->super_copy, 2764 orig_super_num_devices + 1); 2765 2766 /* 2767 * we've got more storage, clear any full flags on the space 2768 * infos 2769 */ 2770 btrfs_clear_space_info_full(fs_info); 2771 2772 mutex_unlock(&fs_info->chunk_mutex); 2773 2774 /* Add sysfs device entry */ 2775 btrfs_sysfs_add_device(device); 2776 2777 mutex_unlock(&fs_devices->device_list_mutex); 2778 2779 if (seeding_dev) { 2780 mutex_lock(&fs_info->chunk_mutex); 2781 ret = init_first_rw_device(trans); 2782 mutex_unlock(&fs_info->chunk_mutex); 2783 if (ret) { 2784 btrfs_abort_transaction(trans, ret); 2785 goto error_sysfs; 2786 } 2787 } 2788 2789 ret = btrfs_add_dev_item(trans, device); 2790 if (ret) { 2791 btrfs_abort_transaction(trans, ret); 2792 goto error_sysfs; 2793 } 2794 2795 if (seeding_dev) { 2796 ret = btrfs_finish_sprout(trans); 2797 if (ret) { 2798 btrfs_abort_transaction(trans, ret); 2799 goto error_sysfs; 2800 } 2801 2802 /* 2803 * fs_devices now represents the newly sprouted filesystem and 2804 * its fsid has been changed by btrfs_sprout_splice(). 2805 */ 2806 btrfs_sysfs_update_sprout_fsid(fs_devices); 2807 } 2808 2809 ret = btrfs_commit_transaction(trans); 2810 2811 if (seeding_dev) { 2812 mutex_unlock(&uuid_mutex); 2813 up_write(&sb->s_umount); 2814 locked = false; 2815 2816 if (ret) /* transaction commit */ 2817 return ret; 2818 2819 ret = btrfs_relocate_sys_chunks(fs_info); 2820 if (ret < 0) 2821 btrfs_handle_fs_error(fs_info, ret, 2822 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2823 trans = btrfs_attach_transaction(root); 2824 if (IS_ERR(trans)) { 2825 if (PTR_ERR(trans) == -ENOENT) 2826 return 0; 2827 ret = PTR_ERR(trans); 2828 trans = NULL; 2829 goto error_sysfs; 2830 } 2831 ret = btrfs_commit_transaction(trans); 2832 } 2833 2834 /* 2835 * Now that we have written a new super block to this device, check all 2836 * other fs_devices list if device_path alienates any other scanned 2837 * device. 2838 * We can ignore the return value as it typically returns -EINVAL and 2839 * only succeeds if the device was an alien. 2840 */ 2841 btrfs_forget_devices(device->devt); 2842 2843 /* Update ctime/mtime for blkid or udev */ 2844 update_dev_time(device_path); 2845 2846 return ret; 2847 2848 error_sysfs: 2849 btrfs_sysfs_remove_device(device); 2850 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2851 mutex_lock(&fs_info->chunk_mutex); 2852 list_del_rcu(&device->dev_list); 2853 list_del(&device->dev_alloc_list); 2854 fs_info->fs_devices->num_devices--; 2855 fs_info->fs_devices->open_devices--; 2856 fs_info->fs_devices->rw_devices--; 2857 fs_info->fs_devices->total_devices--; 2858 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2859 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2860 btrfs_set_super_total_bytes(fs_info->super_copy, 2861 orig_super_total_bytes); 2862 btrfs_set_super_num_devices(fs_info->super_copy, 2863 orig_super_num_devices); 2864 mutex_unlock(&fs_info->chunk_mutex); 2865 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2866 error_trans: 2867 if (seeding_dev) 2868 btrfs_set_sb_rdonly(sb); 2869 if (trans) 2870 btrfs_end_transaction(trans); 2871 error_free_zone: 2872 btrfs_destroy_dev_zone_info(device); 2873 error_free_device: 2874 btrfs_free_device(device); 2875 error: 2876 fput(bdev_file); 2877 if (locked) { 2878 mutex_unlock(&uuid_mutex); 2879 up_write(&sb->s_umount); 2880 } 2881 return ret; 2882 } 2883 2884 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2885 struct btrfs_device *device) 2886 { 2887 int ret; 2888 struct btrfs_path *path; 2889 struct btrfs_root *root = device->fs_info->chunk_root; 2890 struct btrfs_dev_item *dev_item; 2891 struct extent_buffer *leaf; 2892 struct btrfs_key key; 2893 2894 path = btrfs_alloc_path(); 2895 if (!path) 2896 return -ENOMEM; 2897 2898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2899 key.type = BTRFS_DEV_ITEM_KEY; 2900 key.offset = device->devid; 2901 2902 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2903 if (ret < 0) 2904 goto out; 2905 2906 if (ret > 0) { 2907 ret = -ENOENT; 2908 goto out; 2909 } 2910 2911 leaf = path->nodes[0]; 2912 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2913 2914 btrfs_set_device_id(leaf, dev_item, device->devid); 2915 btrfs_set_device_type(leaf, dev_item, device->type); 2916 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2917 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2918 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2919 btrfs_set_device_total_bytes(leaf, dev_item, 2920 btrfs_device_get_disk_total_bytes(device)); 2921 btrfs_set_device_bytes_used(leaf, dev_item, 2922 btrfs_device_get_bytes_used(device)); 2923 btrfs_mark_buffer_dirty(trans, leaf); 2924 2925 out: 2926 btrfs_free_path(path); 2927 return ret; 2928 } 2929 2930 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2931 struct btrfs_device *device, u64 new_size) 2932 { 2933 struct btrfs_fs_info *fs_info = device->fs_info; 2934 struct btrfs_super_block *super_copy = fs_info->super_copy; 2935 u64 old_total; 2936 u64 diff; 2937 int ret; 2938 2939 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2940 return -EACCES; 2941 2942 new_size = round_down(new_size, fs_info->sectorsize); 2943 2944 mutex_lock(&fs_info->chunk_mutex); 2945 old_total = btrfs_super_total_bytes(super_copy); 2946 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2947 2948 if (new_size <= device->total_bytes || 2949 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2950 mutex_unlock(&fs_info->chunk_mutex); 2951 return -EINVAL; 2952 } 2953 2954 btrfs_set_super_total_bytes(super_copy, 2955 round_down(old_total + diff, fs_info->sectorsize)); 2956 device->fs_devices->total_rw_bytes += diff; 2957 atomic64_add(diff, &fs_info->free_chunk_space); 2958 2959 btrfs_device_set_total_bytes(device, new_size); 2960 btrfs_device_set_disk_total_bytes(device, new_size); 2961 btrfs_clear_space_info_full(device->fs_info); 2962 if (list_empty(&device->post_commit_list)) 2963 list_add_tail(&device->post_commit_list, 2964 &trans->transaction->dev_update_list); 2965 mutex_unlock(&fs_info->chunk_mutex); 2966 2967 btrfs_reserve_chunk_metadata(trans, false); 2968 ret = btrfs_update_device(trans, device); 2969 btrfs_trans_release_chunk_metadata(trans); 2970 2971 return ret; 2972 } 2973 2974 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2975 { 2976 struct btrfs_fs_info *fs_info = trans->fs_info; 2977 struct btrfs_root *root = fs_info->chunk_root; 2978 int ret; 2979 struct btrfs_path *path; 2980 struct btrfs_key key; 2981 2982 path = btrfs_alloc_path(); 2983 if (!path) 2984 return -ENOMEM; 2985 2986 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2987 key.offset = chunk_offset; 2988 key.type = BTRFS_CHUNK_ITEM_KEY; 2989 2990 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2991 if (ret < 0) 2992 goto out; 2993 else if (ret > 0) { /* Logic error or corruption */ 2994 btrfs_handle_fs_error(fs_info, -ENOENT, 2995 "Failed lookup while freeing chunk."); 2996 ret = -ENOENT; 2997 goto out; 2998 } 2999 3000 ret = btrfs_del_item(trans, root, path); 3001 if (ret < 0) 3002 btrfs_handle_fs_error(fs_info, ret, 3003 "Failed to delete chunk item."); 3004 out: 3005 btrfs_free_path(path); 3006 return ret; 3007 } 3008 3009 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3010 { 3011 struct btrfs_super_block *super_copy = fs_info->super_copy; 3012 struct btrfs_disk_key *disk_key; 3013 struct btrfs_chunk *chunk; 3014 u8 *ptr; 3015 int ret = 0; 3016 u32 num_stripes; 3017 u32 array_size; 3018 u32 len = 0; 3019 u32 cur; 3020 struct btrfs_key key; 3021 3022 lockdep_assert_held(&fs_info->chunk_mutex); 3023 array_size = btrfs_super_sys_array_size(super_copy); 3024 3025 ptr = super_copy->sys_chunk_array; 3026 cur = 0; 3027 3028 while (cur < array_size) { 3029 disk_key = (struct btrfs_disk_key *)ptr; 3030 btrfs_disk_key_to_cpu(&key, disk_key); 3031 3032 len = sizeof(*disk_key); 3033 3034 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3035 chunk = (struct btrfs_chunk *)(ptr + len); 3036 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3037 len += btrfs_chunk_item_size(num_stripes); 3038 } else { 3039 ret = -EIO; 3040 break; 3041 } 3042 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3043 key.offset == chunk_offset) { 3044 memmove(ptr, ptr + len, array_size - (cur + len)); 3045 array_size -= len; 3046 btrfs_set_super_sys_array_size(super_copy, array_size); 3047 } else { 3048 ptr += len; 3049 cur += len; 3050 } 3051 } 3052 return ret; 3053 } 3054 3055 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3056 u64 logical, u64 length) 3057 { 3058 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3059 struct rb_node *prev = NULL; 3060 struct rb_node *orig_prev; 3061 struct btrfs_chunk_map *map; 3062 struct btrfs_chunk_map *prev_map = NULL; 3063 3064 while (node) { 3065 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3066 prev = node; 3067 prev_map = map; 3068 3069 if (logical < map->start) { 3070 node = node->rb_left; 3071 } else if (logical >= map->start + map->chunk_len) { 3072 node = node->rb_right; 3073 } else { 3074 refcount_inc(&map->refs); 3075 return map; 3076 } 3077 } 3078 3079 if (!prev) 3080 return NULL; 3081 3082 orig_prev = prev; 3083 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3084 prev = rb_next(prev); 3085 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3086 } 3087 3088 if (!prev) { 3089 prev = orig_prev; 3090 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3091 while (prev && logical < prev_map->start) { 3092 prev = rb_prev(prev); 3093 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3094 } 3095 } 3096 3097 if (prev) { 3098 u64 end = logical + length; 3099 3100 /* 3101 * Caller can pass a U64_MAX length when it wants to get any 3102 * chunk starting at an offset of 'logical' or higher, so deal 3103 * with underflow by resetting the end offset to U64_MAX. 3104 */ 3105 if (end < logical) 3106 end = U64_MAX; 3107 3108 if (end > prev_map->start && 3109 logical < prev_map->start + prev_map->chunk_len) { 3110 refcount_inc(&prev_map->refs); 3111 return prev_map; 3112 } 3113 } 3114 3115 return NULL; 3116 } 3117 3118 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3119 u64 logical, u64 length) 3120 { 3121 struct btrfs_chunk_map *map; 3122 3123 read_lock(&fs_info->mapping_tree_lock); 3124 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3125 read_unlock(&fs_info->mapping_tree_lock); 3126 3127 return map; 3128 } 3129 3130 /* 3131 * Find the mapping containing the given logical extent. 3132 * 3133 * @logical: Logical block offset in bytes. 3134 * @length: Length of extent in bytes. 3135 * 3136 * Return: Chunk mapping or ERR_PTR. 3137 */ 3138 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3139 u64 logical, u64 length) 3140 { 3141 struct btrfs_chunk_map *map; 3142 3143 map = btrfs_find_chunk_map(fs_info, logical, length); 3144 3145 if (unlikely(!map)) { 3146 btrfs_crit(fs_info, 3147 "unable to find chunk map for logical %llu length %llu", 3148 logical, length); 3149 return ERR_PTR(-EINVAL); 3150 } 3151 3152 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3153 btrfs_crit(fs_info, 3154 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3155 logical, logical + length, map->start, 3156 map->start + map->chunk_len); 3157 btrfs_free_chunk_map(map); 3158 return ERR_PTR(-EINVAL); 3159 } 3160 3161 /* Callers are responsible for dropping the reference. */ 3162 return map; 3163 } 3164 3165 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3166 struct btrfs_chunk_map *map, u64 chunk_offset) 3167 { 3168 int i; 3169 3170 /* 3171 * Removing chunk items and updating the device items in the chunks btree 3172 * requires holding the chunk_mutex. 3173 * See the comment at btrfs_chunk_alloc() for the details. 3174 */ 3175 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3176 3177 for (i = 0; i < map->num_stripes; i++) { 3178 int ret; 3179 3180 ret = btrfs_update_device(trans, map->stripes[i].dev); 3181 if (ret) 3182 return ret; 3183 } 3184 3185 return btrfs_free_chunk(trans, chunk_offset); 3186 } 3187 3188 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3189 { 3190 struct btrfs_fs_info *fs_info = trans->fs_info; 3191 struct btrfs_chunk_map *map; 3192 u64 dev_extent_len = 0; 3193 int i, ret = 0; 3194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3195 3196 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3197 if (IS_ERR(map)) { 3198 /* 3199 * This is a logic error, but we don't want to just rely on the 3200 * user having built with ASSERT enabled, so if ASSERT doesn't 3201 * do anything we still error out. 3202 */ 3203 ASSERT(0); 3204 return PTR_ERR(map); 3205 } 3206 3207 /* 3208 * First delete the device extent items from the devices btree. 3209 * We take the device_list_mutex to avoid racing with the finishing phase 3210 * of a device replace operation. See the comment below before acquiring 3211 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3212 * because that can result in a deadlock when deleting the device extent 3213 * items from the devices btree - COWing an extent buffer from the btree 3214 * may result in allocating a new metadata chunk, which would attempt to 3215 * lock again fs_info->chunk_mutex. 3216 */ 3217 mutex_lock(&fs_devices->device_list_mutex); 3218 for (i = 0; i < map->num_stripes; i++) { 3219 struct btrfs_device *device = map->stripes[i].dev; 3220 ret = btrfs_free_dev_extent(trans, device, 3221 map->stripes[i].physical, 3222 &dev_extent_len); 3223 if (ret) { 3224 mutex_unlock(&fs_devices->device_list_mutex); 3225 btrfs_abort_transaction(trans, ret); 3226 goto out; 3227 } 3228 3229 if (device->bytes_used > 0) { 3230 mutex_lock(&fs_info->chunk_mutex); 3231 btrfs_device_set_bytes_used(device, 3232 device->bytes_used - dev_extent_len); 3233 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3234 btrfs_clear_space_info_full(fs_info); 3235 mutex_unlock(&fs_info->chunk_mutex); 3236 } 3237 } 3238 mutex_unlock(&fs_devices->device_list_mutex); 3239 3240 /* 3241 * We acquire fs_info->chunk_mutex for 2 reasons: 3242 * 3243 * 1) Just like with the first phase of the chunk allocation, we must 3244 * reserve system space, do all chunk btree updates and deletions, and 3245 * update the system chunk array in the superblock while holding this 3246 * mutex. This is for similar reasons as explained on the comment at 3247 * the top of btrfs_chunk_alloc(); 3248 * 3249 * 2) Prevent races with the final phase of a device replace operation 3250 * that replaces the device object associated with the map's stripes, 3251 * because the device object's id can change at any time during that 3252 * final phase of the device replace operation 3253 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3254 * replaced device and then see it with an ID of 3255 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3256 * the device item, which does not exists on the chunk btree. 3257 * The finishing phase of device replace acquires both the 3258 * device_list_mutex and the chunk_mutex, in that order, so we are 3259 * safe by just acquiring the chunk_mutex. 3260 */ 3261 trans->removing_chunk = true; 3262 mutex_lock(&fs_info->chunk_mutex); 3263 3264 check_system_chunk(trans, map->type); 3265 3266 ret = remove_chunk_item(trans, map, chunk_offset); 3267 /* 3268 * Normally we should not get -ENOSPC since we reserved space before 3269 * through the call to check_system_chunk(). 3270 * 3271 * Despite our system space_info having enough free space, we may not 3272 * be able to allocate extents from its block groups, because all have 3273 * an incompatible profile, which will force us to allocate a new system 3274 * block group with the right profile, or right after we called 3275 * check_system_space() above, a scrub turned the only system block group 3276 * with enough free space into RO mode. 3277 * This is explained with more detail at do_chunk_alloc(). 3278 * 3279 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3280 */ 3281 if (ret == -ENOSPC) { 3282 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3283 struct btrfs_block_group *sys_bg; 3284 3285 sys_bg = btrfs_create_chunk(trans, sys_flags); 3286 if (IS_ERR(sys_bg)) { 3287 ret = PTR_ERR(sys_bg); 3288 btrfs_abort_transaction(trans, ret); 3289 goto out; 3290 } 3291 3292 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3293 if (ret) { 3294 btrfs_abort_transaction(trans, ret); 3295 goto out; 3296 } 3297 3298 ret = remove_chunk_item(trans, map, chunk_offset); 3299 if (ret) { 3300 btrfs_abort_transaction(trans, ret); 3301 goto out; 3302 } 3303 } else if (ret) { 3304 btrfs_abort_transaction(trans, ret); 3305 goto out; 3306 } 3307 3308 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3309 3310 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3311 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3312 if (ret) { 3313 btrfs_abort_transaction(trans, ret); 3314 goto out; 3315 } 3316 } 3317 3318 mutex_unlock(&fs_info->chunk_mutex); 3319 trans->removing_chunk = false; 3320 3321 /* 3322 * We are done with chunk btree updates and deletions, so release the 3323 * system space we previously reserved (with check_system_chunk()). 3324 */ 3325 btrfs_trans_release_chunk_metadata(trans); 3326 3327 ret = btrfs_remove_block_group(trans, map); 3328 if (ret) { 3329 btrfs_abort_transaction(trans, ret); 3330 goto out; 3331 } 3332 3333 out: 3334 if (trans->removing_chunk) { 3335 mutex_unlock(&fs_info->chunk_mutex); 3336 trans->removing_chunk = false; 3337 } 3338 /* once for us */ 3339 btrfs_free_chunk_map(map); 3340 return ret; 3341 } 3342 3343 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3344 { 3345 struct btrfs_root *root = fs_info->chunk_root; 3346 struct btrfs_trans_handle *trans; 3347 struct btrfs_block_group *block_group; 3348 u64 length; 3349 int ret; 3350 3351 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3352 btrfs_err(fs_info, 3353 "relocate: not supported on extent tree v2 yet"); 3354 return -EINVAL; 3355 } 3356 3357 /* 3358 * Prevent races with automatic removal of unused block groups. 3359 * After we relocate and before we remove the chunk with offset 3360 * chunk_offset, automatic removal of the block group can kick in, 3361 * resulting in a failure when calling btrfs_remove_chunk() below. 3362 * 3363 * Make sure to acquire this mutex before doing a tree search (dev 3364 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3365 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3366 * we release the path used to search the chunk/dev tree and before 3367 * the current task acquires this mutex and calls us. 3368 */ 3369 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3370 3371 /* step one, relocate all the extents inside this chunk */ 3372 btrfs_scrub_pause(fs_info); 3373 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3374 btrfs_scrub_continue(fs_info); 3375 if (ret) { 3376 /* 3377 * If we had a transaction abort, stop all running scrubs. 3378 * See transaction.c:cleanup_transaction() why we do it here. 3379 */ 3380 if (BTRFS_FS_ERROR(fs_info)) 3381 btrfs_scrub_cancel(fs_info); 3382 return ret; 3383 } 3384 3385 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3386 if (!block_group) 3387 return -ENOENT; 3388 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3389 length = block_group->length; 3390 btrfs_put_block_group(block_group); 3391 3392 /* 3393 * On a zoned file system, discard the whole block group, this will 3394 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3395 * resetting the zone fails, don't treat it as a fatal problem from the 3396 * filesystem's point of view. 3397 */ 3398 if (btrfs_is_zoned(fs_info)) { 3399 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3400 if (ret) 3401 btrfs_info(fs_info, 3402 "failed to reset zone %llu after relocation", 3403 chunk_offset); 3404 } 3405 3406 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3407 chunk_offset); 3408 if (IS_ERR(trans)) { 3409 ret = PTR_ERR(trans); 3410 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3411 return ret; 3412 } 3413 3414 /* 3415 * step two, delete the device extents and the 3416 * chunk tree entries 3417 */ 3418 ret = btrfs_remove_chunk(trans, chunk_offset); 3419 btrfs_end_transaction(trans); 3420 return ret; 3421 } 3422 3423 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3424 { 3425 struct btrfs_root *chunk_root = fs_info->chunk_root; 3426 struct btrfs_path *path; 3427 struct extent_buffer *leaf; 3428 struct btrfs_chunk *chunk; 3429 struct btrfs_key key; 3430 struct btrfs_key found_key; 3431 u64 chunk_type; 3432 bool retried = false; 3433 int failed = 0; 3434 int ret; 3435 3436 path = btrfs_alloc_path(); 3437 if (!path) 3438 return -ENOMEM; 3439 3440 again: 3441 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3442 key.offset = (u64)-1; 3443 key.type = BTRFS_CHUNK_ITEM_KEY; 3444 3445 while (1) { 3446 mutex_lock(&fs_info->reclaim_bgs_lock); 3447 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3448 if (ret < 0) { 3449 mutex_unlock(&fs_info->reclaim_bgs_lock); 3450 goto error; 3451 } 3452 if (ret == 0) { 3453 /* 3454 * On the first search we would find chunk tree with 3455 * offset -1, which is not possible. On subsequent 3456 * loops this would find an existing item on an invalid 3457 * offset (one less than the previous one, wrong 3458 * alignment and size). 3459 */ 3460 ret = -EUCLEAN; 3461 mutex_unlock(&fs_info->reclaim_bgs_lock); 3462 goto error; 3463 } 3464 3465 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3466 key.type); 3467 if (ret) 3468 mutex_unlock(&fs_info->reclaim_bgs_lock); 3469 if (ret < 0) 3470 goto error; 3471 if (ret > 0) 3472 break; 3473 3474 leaf = path->nodes[0]; 3475 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3476 3477 chunk = btrfs_item_ptr(leaf, path->slots[0], 3478 struct btrfs_chunk); 3479 chunk_type = btrfs_chunk_type(leaf, chunk); 3480 btrfs_release_path(path); 3481 3482 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3483 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3484 if (ret == -ENOSPC) 3485 failed++; 3486 else 3487 BUG_ON(ret); 3488 } 3489 mutex_unlock(&fs_info->reclaim_bgs_lock); 3490 3491 if (found_key.offset == 0) 3492 break; 3493 key.offset = found_key.offset - 1; 3494 } 3495 ret = 0; 3496 if (failed && !retried) { 3497 failed = 0; 3498 retried = true; 3499 goto again; 3500 } else if (WARN_ON(failed && retried)) { 3501 ret = -ENOSPC; 3502 } 3503 error: 3504 btrfs_free_path(path); 3505 return ret; 3506 } 3507 3508 /* 3509 * return 1 : allocate a data chunk successfully, 3510 * return <0: errors during allocating a data chunk, 3511 * return 0 : no need to allocate a data chunk. 3512 */ 3513 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3514 u64 chunk_offset) 3515 { 3516 struct btrfs_block_group *cache; 3517 u64 bytes_used; 3518 u64 chunk_type; 3519 3520 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3521 ASSERT(cache); 3522 chunk_type = cache->flags; 3523 btrfs_put_block_group(cache); 3524 3525 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3526 return 0; 3527 3528 spin_lock(&fs_info->data_sinfo->lock); 3529 bytes_used = fs_info->data_sinfo->bytes_used; 3530 spin_unlock(&fs_info->data_sinfo->lock); 3531 3532 if (!bytes_used) { 3533 struct btrfs_trans_handle *trans; 3534 int ret; 3535 3536 trans = btrfs_join_transaction(fs_info->tree_root); 3537 if (IS_ERR(trans)) 3538 return PTR_ERR(trans); 3539 3540 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3541 btrfs_end_transaction(trans); 3542 if (ret < 0) 3543 return ret; 3544 return 1; 3545 } 3546 3547 return 0; 3548 } 3549 3550 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3551 const struct btrfs_disk_balance_args *disk) 3552 { 3553 memset(cpu, 0, sizeof(*cpu)); 3554 3555 cpu->profiles = le64_to_cpu(disk->profiles); 3556 cpu->usage = le64_to_cpu(disk->usage); 3557 cpu->devid = le64_to_cpu(disk->devid); 3558 cpu->pstart = le64_to_cpu(disk->pstart); 3559 cpu->pend = le64_to_cpu(disk->pend); 3560 cpu->vstart = le64_to_cpu(disk->vstart); 3561 cpu->vend = le64_to_cpu(disk->vend); 3562 cpu->target = le64_to_cpu(disk->target); 3563 cpu->flags = le64_to_cpu(disk->flags); 3564 cpu->limit = le64_to_cpu(disk->limit); 3565 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3566 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3567 } 3568 3569 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3570 const struct btrfs_balance_args *cpu) 3571 { 3572 memset(disk, 0, sizeof(*disk)); 3573 3574 disk->profiles = cpu_to_le64(cpu->profiles); 3575 disk->usage = cpu_to_le64(cpu->usage); 3576 disk->devid = cpu_to_le64(cpu->devid); 3577 disk->pstart = cpu_to_le64(cpu->pstart); 3578 disk->pend = cpu_to_le64(cpu->pend); 3579 disk->vstart = cpu_to_le64(cpu->vstart); 3580 disk->vend = cpu_to_le64(cpu->vend); 3581 disk->target = cpu_to_le64(cpu->target); 3582 disk->flags = cpu_to_le64(cpu->flags); 3583 disk->limit = cpu_to_le64(cpu->limit); 3584 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3585 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3586 } 3587 3588 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3589 struct btrfs_balance_control *bctl) 3590 { 3591 struct btrfs_root *root = fs_info->tree_root; 3592 struct btrfs_trans_handle *trans; 3593 struct btrfs_balance_item *item; 3594 struct btrfs_disk_balance_args disk_bargs; 3595 struct btrfs_path *path; 3596 struct extent_buffer *leaf; 3597 struct btrfs_key key; 3598 int ret, err; 3599 3600 path = btrfs_alloc_path(); 3601 if (!path) 3602 return -ENOMEM; 3603 3604 trans = btrfs_start_transaction(root, 0); 3605 if (IS_ERR(trans)) { 3606 btrfs_free_path(path); 3607 return PTR_ERR(trans); 3608 } 3609 3610 key.objectid = BTRFS_BALANCE_OBJECTID; 3611 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3612 key.offset = 0; 3613 3614 ret = btrfs_insert_empty_item(trans, root, path, &key, 3615 sizeof(*item)); 3616 if (ret) 3617 goto out; 3618 3619 leaf = path->nodes[0]; 3620 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3621 3622 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3623 3624 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3625 btrfs_set_balance_data(leaf, item, &disk_bargs); 3626 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3627 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3628 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3629 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3630 3631 btrfs_set_balance_flags(leaf, item, bctl->flags); 3632 3633 btrfs_mark_buffer_dirty(trans, leaf); 3634 out: 3635 btrfs_free_path(path); 3636 err = btrfs_commit_transaction(trans); 3637 if (err && !ret) 3638 ret = err; 3639 return ret; 3640 } 3641 3642 static int del_balance_item(struct btrfs_fs_info *fs_info) 3643 { 3644 struct btrfs_root *root = fs_info->tree_root; 3645 struct btrfs_trans_handle *trans; 3646 struct btrfs_path *path; 3647 struct btrfs_key key; 3648 int ret, err; 3649 3650 path = btrfs_alloc_path(); 3651 if (!path) 3652 return -ENOMEM; 3653 3654 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3655 if (IS_ERR(trans)) { 3656 btrfs_free_path(path); 3657 return PTR_ERR(trans); 3658 } 3659 3660 key.objectid = BTRFS_BALANCE_OBJECTID; 3661 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3662 key.offset = 0; 3663 3664 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3665 if (ret < 0) 3666 goto out; 3667 if (ret > 0) { 3668 ret = -ENOENT; 3669 goto out; 3670 } 3671 3672 ret = btrfs_del_item(trans, root, path); 3673 out: 3674 btrfs_free_path(path); 3675 err = btrfs_commit_transaction(trans); 3676 if (err && !ret) 3677 ret = err; 3678 return ret; 3679 } 3680 3681 /* 3682 * This is a heuristic used to reduce the number of chunks balanced on 3683 * resume after balance was interrupted. 3684 */ 3685 static void update_balance_args(struct btrfs_balance_control *bctl) 3686 { 3687 /* 3688 * Turn on soft mode for chunk types that were being converted. 3689 */ 3690 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3691 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3692 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3693 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3694 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3695 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3696 3697 /* 3698 * Turn on usage filter if is not already used. The idea is 3699 * that chunks that we have already balanced should be 3700 * reasonably full. Don't do it for chunks that are being 3701 * converted - that will keep us from relocating unconverted 3702 * (albeit full) chunks. 3703 */ 3704 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3705 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3706 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3707 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3708 bctl->data.usage = 90; 3709 } 3710 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3711 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3712 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3713 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3714 bctl->sys.usage = 90; 3715 } 3716 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3717 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3718 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3719 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3720 bctl->meta.usage = 90; 3721 } 3722 } 3723 3724 /* 3725 * Clear the balance status in fs_info and delete the balance item from disk. 3726 */ 3727 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3728 { 3729 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3730 int ret; 3731 3732 ASSERT(fs_info->balance_ctl); 3733 3734 spin_lock(&fs_info->balance_lock); 3735 fs_info->balance_ctl = NULL; 3736 spin_unlock(&fs_info->balance_lock); 3737 3738 kfree(bctl); 3739 ret = del_balance_item(fs_info); 3740 if (ret) 3741 btrfs_handle_fs_error(fs_info, ret, NULL); 3742 } 3743 3744 /* 3745 * Balance filters. Return 1 if chunk should be filtered out 3746 * (should not be balanced). 3747 */ 3748 static int chunk_profiles_filter(u64 chunk_type, 3749 struct btrfs_balance_args *bargs) 3750 { 3751 chunk_type = chunk_to_extended(chunk_type) & 3752 BTRFS_EXTENDED_PROFILE_MASK; 3753 3754 if (bargs->profiles & chunk_type) 3755 return 0; 3756 3757 return 1; 3758 } 3759 3760 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3761 struct btrfs_balance_args *bargs) 3762 { 3763 struct btrfs_block_group *cache; 3764 u64 chunk_used; 3765 u64 user_thresh_min; 3766 u64 user_thresh_max; 3767 int ret = 1; 3768 3769 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3770 chunk_used = cache->used; 3771 3772 if (bargs->usage_min == 0) 3773 user_thresh_min = 0; 3774 else 3775 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3776 3777 if (bargs->usage_max == 0) 3778 user_thresh_max = 1; 3779 else if (bargs->usage_max > 100) 3780 user_thresh_max = cache->length; 3781 else 3782 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3783 3784 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3785 ret = 0; 3786 3787 btrfs_put_block_group(cache); 3788 return ret; 3789 } 3790 3791 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3792 u64 chunk_offset, struct btrfs_balance_args *bargs) 3793 { 3794 struct btrfs_block_group *cache; 3795 u64 chunk_used, user_thresh; 3796 int ret = 1; 3797 3798 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3799 chunk_used = cache->used; 3800 3801 if (bargs->usage_min == 0) 3802 user_thresh = 1; 3803 else if (bargs->usage > 100) 3804 user_thresh = cache->length; 3805 else 3806 user_thresh = mult_perc(cache->length, bargs->usage); 3807 3808 if (chunk_used < user_thresh) 3809 ret = 0; 3810 3811 btrfs_put_block_group(cache); 3812 return ret; 3813 } 3814 3815 static int chunk_devid_filter(struct extent_buffer *leaf, 3816 struct btrfs_chunk *chunk, 3817 struct btrfs_balance_args *bargs) 3818 { 3819 struct btrfs_stripe *stripe; 3820 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3821 int i; 3822 3823 for (i = 0; i < num_stripes; i++) { 3824 stripe = btrfs_stripe_nr(chunk, i); 3825 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3826 return 0; 3827 } 3828 3829 return 1; 3830 } 3831 3832 static u64 calc_data_stripes(u64 type, int num_stripes) 3833 { 3834 const int index = btrfs_bg_flags_to_raid_index(type); 3835 const int ncopies = btrfs_raid_array[index].ncopies; 3836 const int nparity = btrfs_raid_array[index].nparity; 3837 3838 return (num_stripes - nparity) / ncopies; 3839 } 3840 3841 /* [pstart, pend) */ 3842 static int chunk_drange_filter(struct extent_buffer *leaf, 3843 struct btrfs_chunk *chunk, 3844 struct btrfs_balance_args *bargs) 3845 { 3846 struct btrfs_stripe *stripe; 3847 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3848 u64 stripe_offset; 3849 u64 stripe_length; 3850 u64 type; 3851 int factor; 3852 int i; 3853 3854 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3855 return 0; 3856 3857 type = btrfs_chunk_type(leaf, chunk); 3858 factor = calc_data_stripes(type, num_stripes); 3859 3860 for (i = 0; i < num_stripes; i++) { 3861 stripe = btrfs_stripe_nr(chunk, i); 3862 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3863 continue; 3864 3865 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3866 stripe_length = btrfs_chunk_length(leaf, chunk); 3867 stripe_length = div_u64(stripe_length, factor); 3868 3869 if (stripe_offset < bargs->pend && 3870 stripe_offset + stripe_length > bargs->pstart) 3871 return 0; 3872 } 3873 3874 return 1; 3875 } 3876 3877 /* [vstart, vend) */ 3878 static int chunk_vrange_filter(struct extent_buffer *leaf, 3879 struct btrfs_chunk *chunk, 3880 u64 chunk_offset, 3881 struct btrfs_balance_args *bargs) 3882 { 3883 if (chunk_offset < bargs->vend && 3884 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3885 /* at least part of the chunk is inside this vrange */ 3886 return 0; 3887 3888 return 1; 3889 } 3890 3891 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3892 struct btrfs_chunk *chunk, 3893 struct btrfs_balance_args *bargs) 3894 { 3895 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3896 3897 if (bargs->stripes_min <= num_stripes 3898 && num_stripes <= bargs->stripes_max) 3899 return 0; 3900 3901 return 1; 3902 } 3903 3904 static int chunk_soft_convert_filter(u64 chunk_type, 3905 struct btrfs_balance_args *bargs) 3906 { 3907 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3908 return 0; 3909 3910 chunk_type = chunk_to_extended(chunk_type) & 3911 BTRFS_EXTENDED_PROFILE_MASK; 3912 3913 if (bargs->target == chunk_type) 3914 return 1; 3915 3916 return 0; 3917 } 3918 3919 static int should_balance_chunk(struct extent_buffer *leaf, 3920 struct btrfs_chunk *chunk, u64 chunk_offset) 3921 { 3922 struct btrfs_fs_info *fs_info = leaf->fs_info; 3923 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3924 struct btrfs_balance_args *bargs = NULL; 3925 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3926 3927 /* type filter */ 3928 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3929 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3930 return 0; 3931 } 3932 3933 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3934 bargs = &bctl->data; 3935 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3936 bargs = &bctl->sys; 3937 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3938 bargs = &bctl->meta; 3939 3940 /* profiles filter */ 3941 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3942 chunk_profiles_filter(chunk_type, bargs)) { 3943 return 0; 3944 } 3945 3946 /* usage filter */ 3947 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3948 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3949 return 0; 3950 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3951 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3952 return 0; 3953 } 3954 3955 /* devid filter */ 3956 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3957 chunk_devid_filter(leaf, chunk, bargs)) { 3958 return 0; 3959 } 3960 3961 /* drange filter, makes sense only with devid filter */ 3962 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3963 chunk_drange_filter(leaf, chunk, bargs)) { 3964 return 0; 3965 } 3966 3967 /* vrange filter */ 3968 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3969 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3970 return 0; 3971 } 3972 3973 /* stripes filter */ 3974 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3975 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3976 return 0; 3977 } 3978 3979 /* soft profile changing mode */ 3980 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3981 chunk_soft_convert_filter(chunk_type, bargs)) { 3982 return 0; 3983 } 3984 3985 /* 3986 * limited by count, must be the last filter 3987 */ 3988 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3989 if (bargs->limit == 0) 3990 return 0; 3991 else 3992 bargs->limit--; 3993 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3994 /* 3995 * Same logic as the 'limit' filter; the minimum cannot be 3996 * determined here because we do not have the global information 3997 * about the count of all chunks that satisfy the filters. 3998 */ 3999 if (bargs->limit_max == 0) 4000 return 0; 4001 else 4002 bargs->limit_max--; 4003 } 4004 4005 return 1; 4006 } 4007 4008 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4009 { 4010 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4011 struct btrfs_root *chunk_root = fs_info->chunk_root; 4012 u64 chunk_type; 4013 struct btrfs_chunk *chunk; 4014 struct btrfs_path *path = NULL; 4015 struct btrfs_key key; 4016 struct btrfs_key found_key; 4017 struct extent_buffer *leaf; 4018 int slot; 4019 int ret; 4020 int enospc_errors = 0; 4021 bool counting = true; 4022 /* The single value limit and min/max limits use the same bytes in the */ 4023 u64 limit_data = bctl->data.limit; 4024 u64 limit_meta = bctl->meta.limit; 4025 u64 limit_sys = bctl->sys.limit; 4026 u32 count_data = 0; 4027 u32 count_meta = 0; 4028 u32 count_sys = 0; 4029 int chunk_reserved = 0; 4030 4031 path = btrfs_alloc_path(); 4032 if (!path) { 4033 ret = -ENOMEM; 4034 goto error; 4035 } 4036 4037 /* zero out stat counters */ 4038 spin_lock(&fs_info->balance_lock); 4039 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4040 spin_unlock(&fs_info->balance_lock); 4041 again: 4042 if (!counting) { 4043 /* 4044 * The single value limit and min/max limits use the same bytes 4045 * in the 4046 */ 4047 bctl->data.limit = limit_data; 4048 bctl->meta.limit = limit_meta; 4049 bctl->sys.limit = limit_sys; 4050 } 4051 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4052 key.offset = (u64)-1; 4053 key.type = BTRFS_CHUNK_ITEM_KEY; 4054 4055 while (1) { 4056 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4057 atomic_read(&fs_info->balance_cancel_req)) { 4058 ret = -ECANCELED; 4059 goto error; 4060 } 4061 4062 mutex_lock(&fs_info->reclaim_bgs_lock); 4063 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4064 if (ret < 0) { 4065 mutex_unlock(&fs_info->reclaim_bgs_lock); 4066 goto error; 4067 } 4068 4069 /* 4070 * this shouldn't happen, it means the last relocate 4071 * failed 4072 */ 4073 if (ret == 0) 4074 BUG(); /* FIXME break ? */ 4075 4076 ret = btrfs_previous_item(chunk_root, path, 0, 4077 BTRFS_CHUNK_ITEM_KEY); 4078 if (ret) { 4079 mutex_unlock(&fs_info->reclaim_bgs_lock); 4080 ret = 0; 4081 break; 4082 } 4083 4084 leaf = path->nodes[0]; 4085 slot = path->slots[0]; 4086 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4087 4088 if (found_key.objectid != key.objectid) { 4089 mutex_unlock(&fs_info->reclaim_bgs_lock); 4090 break; 4091 } 4092 4093 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4094 chunk_type = btrfs_chunk_type(leaf, chunk); 4095 4096 if (!counting) { 4097 spin_lock(&fs_info->balance_lock); 4098 bctl->stat.considered++; 4099 spin_unlock(&fs_info->balance_lock); 4100 } 4101 4102 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4103 4104 btrfs_release_path(path); 4105 if (!ret) { 4106 mutex_unlock(&fs_info->reclaim_bgs_lock); 4107 goto loop; 4108 } 4109 4110 if (counting) { 4111 mutex_unlock(&fs_info->reclaim_bgs_lock); 4112 spin_lock(&fs_info->balance_lock); 4113 bctl->stat.expected++; 4114 spin_unlock(&fs_info->balance_lock); 4115 4116 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4117 count_data++; 4118 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4119 count_sys++; 4120 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4121 count_meta++; 4122 4123 goto loop; 4124 } 4125 4126 /* 4127 * Apply limit_min filter, no need to check if the LIMITS 4128 * filter is used, limit_min is 0 by default 4129 */ 4130 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4131 count_data < bctl->data.limit_min) 4132 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4133 count_meta < bctl->meta.limit_min) 4134 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4135 count_sys < bctl->sys.limit_min)) { 4136 mutex_unlock(&fs_info->reclaim_bgs_lock); 4137 goto loop; 4138 } 4139 4140 if (!chunk_reserved) { 4141 /* 4142 * We may be relocating the only data chunk we have, 4143 * which could potentially end up with losing data's 4144 * raid profile, so lets allocate an empty one in 4145 * advance. 4146 */ 4147 ret = btrfs_may_alloc_data_chunk(fs_info, 4148 found_key.offset); 4149 if (ret < 0) { 4150 mutex_unlock(&fs_info->reclaim_bgs_lock); 4151 goto error; 4152 } else if (ret == 1) { 4153 chunk_reserved = 1; 4154 } 4155 } 4156 4157 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4158 mutex_unlock(&fs_info->reclaim_bgs_lock); 4159 if (ret == -ENOSPC) { 4160 enospc_errors++; 4161 } else if (ret == -ETXTBSY) { 4162 btrfs_info(fs_info, 4163 "skipping relocation of block group %llu due to active swapfile", 4164 found_key.offset); 4165 ret = 0; 4166 } else if (ret) { 4167 goto error; 4168 } else { 4169 spin_lock(&fs_info->balance_lock); 4170 bctl->stat.completed++; 4171 spin_unlock(&fs_info->balance_lock); 4172 } 4173 loop: 4174 if (found_key.offset == 0) 4175 break; 4176 key.offset = found_key.offset - 1; 4177 } 4178 4179 if (counting) { 4180 btrfs_release_path(path); 4181 counting = false; 4182 goto again; 4183 } 4184 error: 4185 btrfs_free_path(path); 4186 if (enospc_errors) { 4187 btrfs_info(fs_info, "%d enospc errors during balance", 4188 enospc_errors); 4189 if (!ret) 4190 ret = -ENOSPC; 4191 } 4192 4193 return ret; 4194 } 4195 4196 /* 4197 * See if a given profile is valid and reduced. 4198 * 4199 * @flags: profile to validate 4200 * @extended: if true @flags is treated as an extended profile 4201 */ 4202 static int alloc_profile_is_valid(u64 flags, int extended) 4203 { 4204 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4205 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4206 4207 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4208 4209 /* 1) check that all other bits are zeroed */ 4210 if (flags & ~mask) 4211 return 0; 4212 4213 /* 2) see if profile is reduced */ 4214 if (flags == 0) 4215 return !extended; /* "0" is valid for usual profiles */ 4216 4217 return has_single_bit_set(flags); 4218 } 4219 4220 /* 4221 * Validate target profile against allowed profiles and return true if it's OK. 4222 * Otherwise print the error message and return false. 4223 */ 4224 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4225 const struct btrfs_balance_args *bargs, 4226 u64 allowed, const char *type) 4227 { 4228 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4229 return true; 4230 4231 /* Profile is valid and does not have bits outside of the allowed set */ 4232 if (alloc_profile_is_valid(bargs->target, 1) && 4233 (bargs->target & ~allowed) == 0) 4234 return true; 4235 4236 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4237 type, btrfs_bg_type_to_raid_name(bargs->target)); 4238 return false; 4239 } 4240 4241 /* 4242 * Fill @buf with textual description of balance filter flags @bargs, up to 4243 * @size_buf including the terminating null. The output may be trimmed if it 4244 * does not fit into the provided buffer. 4245 */ 4246 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4247 u32 size_buf) 4248 { 4249 int ret; 4250 u32 size_bp = size_buf; 4251 char *bp = buf; 4252 u64 flags = bargs->flags; 4253 char tmp_buf[128] = {'\0'}; 4254 4255 if (!flags) 4256 return; 4257 4258 #define CHECK_APPEND_NOARG(a) \ 4259 do { \ 4260 ret = snprintf(bp, size_bp, (a)); \ 4261 if (ret < 0 || ret >= size_bp) \ 4262 goto out_overflow; \ 4263 size_bp -= ret; \ 4264 bp += ret; \ 4265 } while (0) 4266 4267 #define CHECK_APPEND_1ARG(a, v1) \ 4268 do { \ 4269 ret = snprintf(bp, size_bp, (a), (v1)); \ 4270 if (ret < 0 || ret >= size_bp) \ 4271 goto out_overflow; \ 4272 size_bp -= ret; \ 4273 bp += ret; \ 4274 } while (0) 4275 4276 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4277 do { \ 4278 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4279 if (ret < 0 || ret >= size_bp) \ 4280 goto out_overflow; \ 4281 size_bp -= ret; \ 4282 bp += ret; \ 4283 } while (0) 4284 4285 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4286 CHECK_APPEND_1ARG("convert=%s,", 4287 btrfs_bg_type_to_raid_name(bargs->target)); 4288 4289 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4290 CHECK_APPEND_NOARG("soft,"); 4291 4292 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4293 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4294 sizeof(tmp_buf)); 4295 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4296 } 4297 4298 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4299 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4300 4301 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4302 CHECK_APPEND_2ARG("usage=%u..%u,", 4303 bargs->usage_min, bargs->usage_max); 4304 4305 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4306 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4307 4308 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4309 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4310 bargs->pstart, bargs->pend); 4311 4312 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4313 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4314 bargs->vstart, bargs->vend); 4315 4316 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4317 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4318 4319 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4320 CHECK_APPEND_2ARG("limit=%u..%u,", 4321 bargs->limit_min, bargs->limit_max); 4322 4323 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4324 CHECK_APPEND_2ARG("stripes=%u..%u,", 4325 bargs->stripes_min, bargs->stripes_max); 4326 4327 #undef CHECK_APPEND_2ARG 4328 #undef CHECK_APPEND_1ARG 4329 #undef CHECK_APPEND_NOARG 4330 4331 out_overflow: 4332 4333 if (size_bp < size_buf) 4334 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4335 else 4336 buf[0] = '\0'; 4337 } 4338 4339 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4340 { 4341 u32 size_buf = 1024; 4342 char tmp_buf[192] = {'\0'}; 4343 char *buf; 4344 char *bp; 4345 u32 size_bp = size_buf; 4346 int ret; 4347 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4348 4349 buf = kzalloc(size_buf, GFP_KERNEL); 4350 if (!buf) 4351 return; 4352 4353 bp = buf; 4354 4355 #define CHECK_APPEND_1ARG(a, v1) \ 4356 do { \ 4357 ret = snprintf(bp, size_bp, (a), (v1)); \ 4358 if (ret < 0 || ret >= size_bp) \ 4359 goto out_overflow; \ 4360 size_bp -= ret; \ 4361 bp += ret; \ 4362 } while (0) 4363 4364 if (bctl->flags & BTRFS_BALANCE_FORCE) 4365 CHECK_APPEND_1ARG("%s", "-f "); 4366 4367 if (bctl->flags & BTRFS_BALANCE_DATA) { 4368 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4369 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4370 } 4371 4372 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4373 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4374 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4375 } 4376 4377 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4378 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4379 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4380 } 4381 4382 #undef CHECK_APPEND_1ARG 4383 4384 out_overflow: 4385 4386 if (size_bp < size_buf) 4387 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4388 btrfs_info(fs_info, "balance: %s %s", 4389 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4390 "resume" : "start", buf); 4391 4392 kfree(buf); 4393 } 4394 4395 /* 4396 * Should be called with balance mutexe held 4397 */ 4398 int btrfs_balance(struct btrfs_fs_info *fs_info, 4399 struct btrfs_balance_control *bctl, 4400 struct btrfs_ioctl_balance_args *bargs) 4401 { 4402 u64 meta_target, data_target; 4403 u64 allowed; 4404 int mixed = 0; 4405 int ret; 4406 u64 num_devices; 4407 unsigned seq; 4408 bool reducing_redundancy; 4409 bool paused = false; 4410 int i; 4411 4412 if (btrfs_fs_closing(fs_info) || 4413 atomic_read(&fs_info->balance_pause_req) || 4414 btrfs_should_cancel_balance(fs_info)) { 4415 ret = -EINVAL; 4416 goto out; 4417 } 4418 4419 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4420 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4421 mixed = 1; 4422 4423 /* 4424 * In case of mixed groups both data and meta should be picked, 4425 * and identical options should be given for both of them. 4426 */ 4427 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4428 if (mixed && (bctl->flags & allowed)) { 4429 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4430 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4431 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4432 btrfs_err(fs_info, 4433 "balance: mixed groups data and metadata options must be the same"); 4434 ret = -EINVAL; 4435 goto out; 4436 } 4437 } 4438 4439 /* 4440 * rw_devices will not change at the moment, device add/delete/replace 4441 * are exclusive 4442 */ 4443 num_devices = fs_info->fs_devices->rw_devices; 4444 4445 /* 4446 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4447 * special bit for it, to make it easier to distinguish. Thus we need 4448 * to set it manually, or balance would refuse the profile. 4449 */ 4450 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4451 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4452 if (num_devices >= btrfs_raid_array[i].devs_min) 4453 allowed |= btrfs_raid_array[i].bg_flag; 4454 4455 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4456 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4457 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4458 ret = -EINVAL; 4459 goto out; 4460 } 4461 4462 /* 4463 * Allow to reduce metadata or system integrity only if force set for 4464 * profiles with redundancy (copies, parity) 4465 */ 4466 allowed = 0; 4467 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4468 if (btrfs_raid_array[i].ncopies >= 2 || 4469 btrfs_raid_array[i].tolerated_failures >= 1) 4470 allowed |= btrfs_raid_array[i].bg_flag; 4471 } 4472 do { 4473 seq = read_seqbegin(&fs_info->profiles_lock); 4474 4475 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4476 (fs_info->avail_system_alloc_bits & allowed) && 4477 !(bctl->sys.target & allowed)) || 4478 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4479 (fs_info->avail_metadata_alloc_bits & allowed) && 4480 !(bctl->meta.target & allowed))) 4481 reducing_redundancy = true; 4482 else 4483 reducing_redundancy = false; 4484 4485 /* if we're not converting, the target field is uninitialized */ 4486 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4487 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4488 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4489 bctl->data.target : fs_info->avail_data_alloc_bits; 4490 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4491 4492 if (reducing_redundancy) { 4493 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4494 btrfs_info(fs_info, 4495 "balance: force reducing metadata redundancy"); 4496 } else { 4497 btrfs_err(fs_info, 4498 "balance: reduces metadata redundancy, use --force if you want this"); 4499 ret = -EINVAL; 4500 goto out; 4501 } 4502 } 4503 4504 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4505 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4506 btrfs_warn(fs_info, 4507 "balance: metadata profile %s has lower redundancy than data profile %s", 4508 btrfs_bg_type_to_raid_name(meta_target), 4509 btrfs_bg_type_to_raid_name(data_target)); 4510 } 4511 4512 ret = insert_balance_item(fs_info, bctl); 4513 if (ret && ret != -EEXIST) 4514 goto out; 4515 4516 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4517 BUG_ON(ret == -EEXIST); 4518 BUG_ON(fs_info->balance_ctl); 4519 spin_lock(&fs_info->balance_lock); 4520 fs_info->balance_ctl = bctl; 4521 spin_unlock(&fs_info->balance_lock); 4522 } else { 4523 BUG_ON(ret != -EEXIST); 4524 spin_lock(&fs_info->balance_lock); 4525 update_balance_args(bctl); 4526 spin_unlock(&fs_info->balance_lock); 4527 } 4528 4529 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4530 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4531 describe_balance_start_or_resume(fs_info); 4532 mutex_unlock(&fs_info->balance_mutex); 4533 4534 ret = __btrfs_balance(fs_info); 4535 4536 mutex_lock(&fs_info->balance_mutex); 4537 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4538 btrfs_info(fs_info, "balance: paused"); 4539 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4540 paused = true; 4541 } 4542 /* 4543 * Balance can be canceled by: 4544 * 4545 * - Regular cancel request 4546 * Then ret == -ECANCELED and balance_cancel_req > 0 4547 * 4548 * - Fatal signal to "btrfs" process 4549 * Either the signal caught by wait_reserve_ticket() and callers 4550 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4551 * got -ECANCELED. 4552 * Either way, in this case balance_cancel_req = 0, and 4553 * ret == -EINTR or ret == -ECANCELED. 4554 * 4555 * So here we only check the return value to catch canceled balance. 4556 */ 4557 else if (ret == -ECANCELED || ret == -EINTR) 4558 btrfs_info(fs_info, "balance: canceled"); 4559 else 4560 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4561 4562 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4563 4564 if (bargs) { 4565 memset(bargs, 0, sizeof(*bargs)); 4566 btrfs_update_ioctl_balance_args(fs_info, bargs); 4567 } 4568 4569 /* We didn't pause, we can clean everything up. */ 4570 if (!paused) { 4571 reset_balance_state(fs_info); 4572 btrfs_exclop_finish(fs_info); 4573 } 4574 4575 wake_up(&fs_info->balance_wait_q); 4576 4577 return ret; 4578 out: 4579 if (bctl->flags & BTRFS_BALANCE_RESUME) 4580 reset_balance_state(fs_info); 4581 else 4582 kfree(bctl); 4583 btrfs_exclop_finish(fs_info); 4584 4585 return ret; 4586 } 4587 4588 static int balance_kthread(void *data) 4589 { 4590 struct btrfs_fs_info *fs_info = data; 4591 int ret = 0; 4592 4593 sb_start_write(fs_info->sb); 4594 mutex_lock(&fs_info->balance_mutex); 4595 if (fs_info->balance_ctl) 4596 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4597 mutex_unlock(&fs_info->balance_mutex); 4598 sb_end_write(fs_info->sb); 4599 4600 return ret; 4601 } 4602 4603 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4604 { 4605 struct task_struct *tsk; 4606 4607 mutex_lock(&fs_info->balance_mutex); 4608 if (!fs_info->balance_ctl) { 4609 mutex_unlock(&fs_info->balance_mutex); 4610 return 0; 4611 } 4612 mutex_unlock(&fs_info->balance_mutex); 4613 4614 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4615 btrfs_info(fs_info, "balance: resume skipped"); 4616 return 0; 4617 } 4618 4619 spin_lock(&fs_info->super_lock); 4620 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4621 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4622 spin_unlock(&fs_info->super_lock); 4623 /* 4624 * A ro->rw remount sequence should continue with the paused balance 4625 * regardless of who pauses it, system or the user as of now, so set 4626 * the resume flag. 4627 */ 4628 spin_lock(&fs_info->balance_lock); 4629 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4630 spin_unlock(&fs_info->balance_lock); 4631 4632 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4633 return PTR_ERR_OR_ZERO(tsk); 4634 } 4635 4636 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4637 { 4638 struct btrfs_balance_control *bctl; 4639 struct btrfs_balance_item *item; 4640 struct btrfs_disk_balance_args disk_bargs; 4641 struct btrfs_path *path; 4642 struct extent_buffer *leaf; 4643 struct btrfs_key key; 4644 int ret; 4645 4646 path = btrfs_alloc_path(); 4647 if (!path) 4648 return -ENOMEM; 4649 4650 key.objectid = BTRFS_BALANCE_OBJECTID; 4651 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4652 key.offset = 0; 4653 4654 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4655 if (ret < 0) 4656 goto out; 4657 if (ret > 0) { /* ret = -ENOENT; */ 4658 ret = 0; 4659 goto out; 4660 } 4661 4662 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4663 if (!bctl) { 4664 ret = -ENOMEM; 4665 goto out; 4666 } 4667 4668 leaf = path->nodes[0]; 4669 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4670 4671 bctl->flags = btrfs_balance_flags(leaf, item); 4672 bctl->flags |= BTRFS_BALANCE_RESUME; 4673 4674 btrfs_balance_data(leaf, item, &disk_bargs); 4675 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4676 btrfs_balance_meta(leaf, item, &disk_bargs); 4677 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4678 btrfs_balance_sys(leaf, item, &disk_bargs); 4679 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4680 4681 /* 4682 * This should never happen, as the paused balance state is recovered 4683 * during mount without any chance of other exclusive ops to collide. 4684 * 4685 * This gives the exclusive op status to balance and keeps in paused 4686 * state until user intervention (cancel or umount). If the ownership 4687 * cannot be assigned, show a message but do not fail. The balance 4688 * is in a paused state and must have fs_info::balance_ctl properly 4689 * set up. 4690 */ 4691 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4692 btrfs_warn(fs_info, 4693 "balance: cannot set exclusive op status, resume manually"); 4694 4695 btrfs_release_path(path); 4696 4697 mutex_lock(&fs_info->balance_mutex); 4698 BUG_ON(fs_info->balance_ctl); 4699 spin_lock(&fs_info->balance_lock); 4700 fs_info->balance_ctl = bctl; 4701 spin_unlock(&fs_info->balance_lock); 4702 mutex_unlock(&fs_info->balance_mutex); 4703 out: 4704 btrfs_free_path(path); 4705 return ret; 4706 } 4707 4708 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4709 { 4710 int ret = 0; 4711 4712 mutex_lock(&fs_info->balance_mutex); 4713 if (!fs_info->balance_ctl) { 4714 mutex_unlock(&fs_info->balance_mutex); 4715 return -ENOTCONN; 4716 } 4717 4718 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4719 atomic_inc(&fs_info->balance_pause_req); 4720 mutex_unlock(&fs_info->balance_mutex); 4721 4722 wait_event(fs_info->balance_wait_q, 4723 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4724 4725 mutex_lock(&fs_info->balance_mutex); 4726 /* we are good with balance_ctl ripped off from under us */ 4727 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4728 atomic_dec(&fs_info->balance_pause_req); 4729 } else { 4730 ret = -ENOTCONN; 4731 } 4732 4733 mutex_unlock(&fs_info->balance_mutex); 4734 return ret; 4735 } 4736 4737 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4738 { 4739 mutex_lock(&fs_info->balance_mutex); 4740 if (!fs_info->balance_ctl) { 4741 mutex_unlock(&fs_info->balance_mutex); 4742 return -ENOTCONN; 4743 } 4744 4745 /* 4746 * A paused balance with the item stored on disk can be resumed at 4747 * mount time if the mount is read-write. Otherwise it's still paused 4748 * and we must not allow cancelling as it deletes the item. 4749 */ 4750 if (sb_rdonly(fs_info->sb)) { 4751 mutex_unlock(&fs_info->balance_mutex); 4752 return -EROFS; 4753 } 4754 4755 atomic_inc(&fs_info->balance_cancel_req); 4756 /* 4757 * if we are running just wait and return, balance item is 4758 * deleted in btrfs_balance in this case 4759 */ 4760 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4761 mutex_unlock(&fs_info->balance_mutex); 4762 wait_event(fs_info->balance_wait_q, 4763 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4764 mutex_lock(&fs_info->balance_mutex); 4765 } else { 4766 mutex_unlock(&fs_info->balance_mutex); 4767 /* 4768 * Lock released to allow other waiters to continue, we'll 4769 * reexamine the status again. 4770 */ 4771 mutex_lock(&fs_info->balance_mutex); 4772 4773 if (fs_info->balance_ctl) { 4774 reset_balance_state(fs_info); 4775 btrfs_exclop_finish(fs_info); 4776 btrfs_info(fs_info, "balance: canceled"); 4777 } 4778 } 4779 4780 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4781 atomic_dec(&fs_info->balance_cancel_req); 4782 mutex_unlock(&fs_info->balance_mutex); 4783 return 0; 4784 } 4785 4786 int btrfs_uuid_scan_kthread(void *data) 4787 { 4788 struct btrfs_fs_info *fs_info = data; 4789 struct btrfs_root *root = fs_info->tree_root; 4790 struct btrfs_key key; 4791 struct btrfs_path *path = NULL; 4792 int ret = 0; 4793 struct extent_buffer *eb; 4794 int slot; 4795 struct btrfs_root_item root_item; 4796 u32 item_size; 4797 struct btrfs_trans_handle *trans = NULL; 4798 bool closing = false; 4799 4800 path = btrfs_alloc_path(); 4801 if (!path) { 4802 ret = -ENOMEM; 4803 goto out; 4804 } 4805 4806 key.objectid = 0; 4807 key.type = BTRFS_ROOT_ITEM_KEY; 4808 key.offset = 0; 4809 4810 while (1) { 4811 if (btrfs_fs_closing(fs_info)) { 4812 closing = true; 4813 break; 4814 } 4815 ret = btrfs_search_forward(root, &key, path, 4816 BTRFS_OLDEST_GENERATION); 4817 if (ret) { 4818 if (ret > 0) 4819 ret = 0; 4820 break; 4821 } 4822 4823 if (key.type != BTRFS_ROOT_ITEM_KEY || 4824 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4825 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4826 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4827 goto skip; 4828 4829 eb = path->nodes[0]; 4830 slot = path->slots[0]; 4831 item_size = btrfs_item_size(eb, slot); 4832 if (item_size < sizeof(root_item)) 4833 goto skip; 4834 4835 read_extent_buffer(eb, &root_item, 4836 btrfs_item_ptr_offset(eb, slot), 4837 (int)sizeof(root_item)); 4838 if (btrfs_root_refs(&root_item) == 0) 4839 goto skip; 4840 4841 if (!btrfs_is_empty_uuid(root_item.uuid) || 4842 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4843 if (trans) 4844 goto update_tree; 4845 4846 btrfs_release_path(path); 4847 /* 4848 * 1 - subvol uuid item 4849 * 1 - received_subvol uuid item 4850 */ 4851 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4852 if (IS_ERR(trans)) { 4853 ret = PTR_ERR(trans); 4854 break; 4855 } 4856 continue; 4857 } else { 4858 goto skip; 4859 } 4860 update_tree: 4861 btrfs_release_path(path); 4862 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4863 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4864 BTRFS_UUID_KEY_SUBVOL, 4865 key.objectid); 4866 if (ret < 0) { 4867 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4868 ret); 4869 break; 4870 } 4871 } 4872 4873 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4874 ret = btrfs_uuid_tree_add(trans, 4875 root_item.received_uuid, 4876 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4877 key.objectid); 4878 if (ret < 0) { 4879 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4880 ret); 4881 break; 4882 } 4883 } 4884 4885 skip: 4886 btrfs_release_path(path); 4887 if (trans) { 4888 ret = btrfs_end_transaction(trans); 4889 trans = NULL; 4890 if (ret) 4891 break; 4892 } 4893 4894 if (key.offset < (u64)-1) { 4895 key.offset++; 4896 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4897 key.offset = 0; 4898 key.type = BTRFS_ROOT_ITEM_KEY; 4899 } else if (key.objectid < (u64)-1) { 4900 key.offset = 0; 4901 key.type = BTRFS_ROOT_ITEM_KEY; 4902 key.objectid++; 4903 } else { 4904 break; 4905 } 4906 cond_resched(); 4907 } 4908 4909 out: 4910 btrfs_free_path(path); 4911 if (trans && !IS_ERR(trans)) 4912 btrfs_end_transaction(trans); 4913 if (ret) 4914 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4915 else if (!closing) 4916 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4917 up(&fs_info->uuid_tree_rescan_sem); 4918 return 0; 4919 } 4920 4921 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4922 { 4923 struct btrfs_trans_handle *trans; 4924 struct btrfs_root *tree_root = fs_info->tree_root; 4925 struct btrfs_root *uuid_root; 4926 struct task_struct *task; 4927 int ret; 4928 4929 /* 4930 * 1 - root node 4931 * 1 - root item 4932 */ 4933 trans = btrfs_start_transaction(tree_root, 2); 4934 if (IS_ERR(trans)) 4935 return PTR_ERR(trans); 4936 4937 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4938 if (IS_ERR(uuid_root)) { 4939 ret = PTR_ERR(uuid_root); 4940 btrfs_abort_transaction(trans, ret); 4941 btrfs_end_transaction(trans); 4942 return ret; 4943 } 4944 4945 fs_info->uuid_root = uuid_root; 4946 4947 ret = btrfs_commit_transaction(trans); 4948 if (ret) 4949 return ret; 4950 4951 down(&fs_info->uuid_tree_rescan_sem); 4952 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4953 if (IS_ERR(task)) { 4954 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4955 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4956 up(&fs_info->uuid_tree_rescan_sem); 4957 return PTR_ERR(task); 4958 } 4959 4960 return 0; 4961 } 4962 4963 /* 4964 * shrinking a device means finding all of the device extents past 4965 * the new size, and then following the back refs to the chunks. 4966 * The chunk relocation code actually frees the device extent 4967 */ 4968 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4969 { 4970 struct btrfs_fs_info *fs_info = device->fs_info; 4971 struct btrfs_root *root = fs_info->dev_root; 4972 struct btrfs_trans_handle *trans; 4973 struct btrfs_dev_extent *dev_extent = NULL; 4974 struct btrfs_path *path; 4975 u64 length; 4976 u64 chunk_offset; 4977 int ret; 4978 int slot; 4979 int failed = 0; 4980 bool retried = false; 4981 struct extent_buffer *l; 4982 struct btrfs_key key; 4983 struct btrfs_super_block *super_copy = fs_info->super_copy; 4984 u64 old_total = btrfs_super_total_bytes(super_copy); 4985 u64 old_size = btrfs_device_get_total_bytes(device); 4986 u64 diff; 4987 u64 start; 4988 u64 free_diff = 0; 4989 4990 new_size = round_down(new_size, fs_info->sectorsize); 4991 start = new_size; 4992 diff = round_down(old_size - new_size, fs_info->sectorsize); 4993 4994 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4995 return -EINVAL; 4996 4997 path = btrfs_alloc_path(); 4998 if (!path) 4999 return -ENOMEM; 5000 5001 path->reada = READA_BACK; 5002 5003 trans = btrfs_start_transaction(root, 0); 5004 if (IS_ERR(trans)) { 5005 btrfs_free_path(path); 5006 return PTR_ERR(trans); 5007 } 5008 5009 mutex_lock(&fs_info->chunk_mutex); 5010 5011 btrfs_device_set_total_bytes(device, new_size); 5012 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5013 device->fs_devices->total_rw_bytes -= diff; 5014 5015 /* 5016 * The new free_chunk_space is new_size - used, so we have to 5017 * subtract the delta of the old free_chunk_space which included 5018 * old_size - used. If used > new_size then just subtract this 5019 * entire device's free space. 5020 */ 5021 if (device->bytes_used < new_size) 5022 free_diff = (old_size - device->bytes_used) - 5023 (new_size - device->bytes_used); 5024 else 5025 free_diff = old_size - device->bytes_used; 5026 atomic64_sub(free_diff, &fs_info->free_chunk_space); 5027 } 5028 5029 /* 5030 * Once the device's size has been set to the new size, ensure all 5031 * in-memory chunks are synced to disk so that the loop below sees them 5032 * and relocates them accordingly. 5033 */ 5034 if (contains_pending_extent(device, &start, diff)) { 5035 mutex_unlock(&fs_info->chunk_mutex); 5036 ret = btrfs_commit_transaction(trans); 5037 if (ret) 5038 goto done; 5039 } else { 5040 mutex_unlock(&fs_info->chunk_mutex); 5041 btrfs_end_transaction(trans); 5042 } 5043 5044 again: 5045 key.objectid = device->devid; 5046 key.offset = (u64)-1; 5047 key.type = BTRFS_DEV_EXTENT_KEY; 5048 5049 do { 5050 mutex_lock(&fs_info->reclaim_bgs_lock); 5051 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5052 if (ret < 0) { 5053 mutex_unlock(&fs_info->reclaim_bgs_lock); 5054 goto done; 5055 } 5056 5057 ret = btrfs_previous_item(root, path, 0, key.type); 5058 if (ret) { 5059 mutex_unlock(&fs_info->reclaim_bgs_lock); 5060 if (ret < 0) 5061 goto done; 5062 ret = 0; 5063 btrfs_release_path(path); 5064 break; 5065 } 5066 5067 l = path->nodes[0]; 5068 slot = path->slots[0]; 5069 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 5070 5071 if (key.objectid != device->devid) { 5072 mutex_unlock(&fs_info->reclaim_bgs_lock); 5073 btrfs_release_path(path); 5074 break; 5075 } 5076 5077 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 5078 length = btrfs_dev_extent_length(l, dev_extent); 5079 5080 if (key.offset + length <= new_size) { 5081 mutex_unlock(&fs_info->reclaim_bgs_lock); 5082 btrfs_release_path(path); 5083 break; 5084 } 5085 5086 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 5087 btrfs_release_path(path); 5088 5089 /* 5090 * We may be relocating the only data chunk we have, 5091 * which could potentially end up with losing data's 5092 * raid profile, so lets allocate an empty one in 5093 * advance. 5094 */ 5095 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 5096 if (ret < 0) { 5097 mutex_unlock(&fs_info->reclaim_bgs_lock); 5098 goto done; 5099 } 5100 5101 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 5102 mutex_unlock(&fs_info->reclaim_bgs_lock); 5103 if (ret == -ENOSPC) { 5104 failed++; 5105 } else if (ret) { 5106 if (ret == -ETXTBSY) { 5107 btrfs_warn(fs_info, 5108 "could not shrink block group %llu due to active swapfile", 5109 chunk_offset); 5110 } 5111 goto done; 5112 } 5113 } while (key.offset-- > 0); 5114 5115 if (failed && !retried) { 5116 failed = 0; 5117 retried = true; 5118 goto again; 5119 } else if (failed && retried) { 5120 ret = -ENOSPC; 5121 goto done; 5122 } 5123 5124 /* Shrinking succeeded, else we would be at "done". */ 5125 trans = btrfs_start_transaction(root, 0); 5126 if (IS_ERR(trans)) { 5127 ret = PTR_ERR(trans); 5128 goto done; 5129 } 5130 5131 mutex_lock(&fs_info->chunk_mutex); 5132 /* Clear all state bits beyond the shrunk device size */ 5133 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5134 CHUNK_STATE_MASK); 5135 5136 btrfs_device_set_disk_total_bytes(device, new_size); 5137 if (list_empty(&device->post_commit_list)) 5138 list_add_tail(&device->post_commit_list, 5139 &trans->transaction->dev_update_list); 5140 5141 WARN_ON(diff > old_total); 5142 btrfs_set_super_total_bytes(super_copy, 5143 round_down(old_total - diff, fs_info->sectorsize)); 5144 mutex_unlock(&fs_info->chunk_mutex); 5145 5146 btrfs_reserve_chunk_metadata(trans, false); 5147 /* Now btrfs_update_device() will change the on-disk size. */ 5148 ret = btrfs_update_device(trans, device); 5149 btrfs_trans_release_chunk_metadata(trans); 5150 if (ret < 0) { 5151 btrfs_abort_transaction(trans, ret); 5152 btrfs_end_transaction(trans); 5153 } else { 5154 ret = btrfs_commit_transaction(trans); 5155 } 5156 done: 5157 btrfs_free_path(path); 5158 if (ret) { 5159 mutex_lock(&fs_info->chunk_mutex); 5160 btrfs_device_set_total_bytes(device, old_size); 5161 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5162 device->fs_devices->total_rw_bytes += diff; 5163 atomic64_add(free_diff, &fs_info->free_chunk_space); 5164 } 5165 mutex_unlock(&fs_info->chunk_mutex); 5166 } 5167 return ret; 5168 } 5169 5170 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5171 struct btrfs_key *key, 5172 struct btrfs_chunk *chunk, int item_size) 5173 { 5174 struct btrfs_super_block *super_copy = fs_info->super_copy; 5175 struct btrfs_disk_key disk_key; 5176 u32 array_size; 5177 u8 *ptr; 5178 5179 lockdep_assert_held(&fs_info->chunk_mutex); 5180 5181 array_size = btrfs_super_sys_array_size(super_copy); 5182 if (array_size + item_size + sizeof(disk_key) 5183 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5184 return -EFBIG; 5185 5186 ptr = super_copy->sys_chunk_array + array_size; 5187 btrfs_cpu_key_to_disk(&disk_key, key); 5188 memcpy(ptr, &disk_key, sizeof(disk_key)); 5189 ptr += sizeof(disk_key); 5190 memcpy(ptr, chunk, item_size); 5191 item_size += sizeof(disk_key); 5192 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5193 5194 return 0; 5195 } 5196 5197 /* 5198 * sort the devices in descending order by max_avail, total_avail 5199 */ 5200 static int btrfs_cmp_device_info(const void *a, const void *b) 5201 { 5202 const struct btrfs_device_info *di_a = a; 5203 const struct btrfs_device_info *di_b = b; 5204 5205 if (di_a->max_avail > di_b->max_avail) 5206 return -1; 5207 if (di_a->max_avail < di_b->max_avail) 5208 return 1; 5209 if (di_a->total_avail > di_b->total_avail) 5210 return -1; 5211 if (di_a->total_avail < di_b->total_avail) 5212 return 1; 5213 return 0; 5214 } 5215 5216 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5217 { 5218 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5219 return; 5220 5221 btrfs_set_fs_incompat(info, RAID56); 5222 } 5223 5224 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5225 { 5226 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5227 return; 5228 5229 btrfs_set_fs_incompat(info, RAID1C34); 5230 } 5231 5232 /* 5233 * Structure used internally for btrfs_create_chunk() function. 5234 * Wraps needed parameters. 5235 */ 5236 struct alloc_chunk_ctl { 5237 u64 start; 5238 u64 type; 5239 /* Total number of stripes to allocate */ 5240 int num_stripes; 5241 /* sub_stripes info for map */ 5242 int sub_stripes; 5243 /* Stripes per device */ 5244 int dev_stripes; 5245 /* Maximum number of devices to use */ 5246 int devs_max; 5247 /* Minimum number of devices to use */ 5248 int devs_min; 5249 /* ndevs has to be a multiple of this */ 5250 int devs_increment; 5251 /* Number of copies */ 5252 int ncopies; 5253 /* Number of stripes worth of bytes to store parity information */ 5254 int nparity; 5255 u64 max_stripe_size; 5256 u64 max_chunk_size; 5257 u64 dev_extent_min; 5258 u64 stripe_size; 5259 u64 chunk_size; 5260 int ndevs; 5261 }; 5262 5263 static void init_alloc_chunk_ctl_policy_regular( 5264 struct btrfs_fs_devices *fs_devices, 5265 struct alloc_chunk_ctl *ctl) 5266 { 5267 struct btrfs_space_info *space_info; 5268 5269 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5270 ASSERT(space_info); 5271 5272 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5273 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5274 5275 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5276 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5277 5278 /* We don't want a chunk larger than 10% of writable space */ 5279 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5280 ctl->max_chunk_size); 5281 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5282 } 5283 5284 static void init_alloc_chunk_ctl_policy_zoned( 5285 struct btrfs_fs_devices *fs_devices, 5286 struct alloc_chunk_ctl *ctl) 5287 { 5288 u64 zone_size = fs_devices->fs_info->zone_size; 5289 u64 limit; 5290 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5291 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5292 u64 min_chunk_size = min_data_stripes * zone_size; 5293 u64 type = ctl->type; 5294 5295 ctl->max_stripe_size = zone_size; 5296 if (type & BTRFS_BLOCK_GROUP_DATA) { 5297 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5298 zone_size); 5299 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5300 ctl->max_chunk_size = ctl->max_stripe_size; 5301 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5302 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5303 ctl->devs_max = min_t(int, ctl->devs_max, 5304 BTRFS_MAX_DEVS_SYS_CHUNK); 5305 } else { 5306 BUG(); 5307 } 5308 5309 /* We don't want a chunk larger than 10% of writable space */ 5310 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5311 zone_size), 5312 min_chunk_size); 5313 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5314 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5315 } 5316 5317 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5318 struct alloc_chunk_ctl *ctl) 5319 { 5320 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5321 5322 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5323 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5324 ctl->devs_max = btrfs_raid_array[index].devs_max; 5325 if (!ctl->devs_max) 5326 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5327 ctl->devs_min = btrfs_raid_array[index].devs_min; 5328 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5329 ctl->ncopies = btrfs_raid_array[index].ncopies; 5330 ctl->nparity = btrfs_raid_array[index].nparity; 5331 ctl->ndevs = 0; 5332 5333 switch (fs_devices->chunk_alloc_policy) { 5334 case BTRFS_CHUNK_ALLOC_REGULAR: 5335 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5336 break; 5337 case BTRFS_CHUNK_ALLOC_ZONED: 5338 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5339 break; 5340 default: 5341 BUG(); 5342 } 5343 } 5344 5345 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5346 struct alloc_chunk_ctl *ctl, 5347 struct btrfs_device_info *devices_info) 5348 { 5349 struct btrfs_fs_info *info = fs_devices->fs_info; 5350 struct btrfs_device *device; 5351 u64 total_avail; 5352 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5353 int ret; 5354 int ndevs = 0; 5355 u64 max_avail; 5356 u64 dev_offset; 5357 5358 /* 5359 * in the first pass through the devices list, we gather information 5360 * about the available holes on each device. 5361 */ 5362 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5363 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5364 WARN(1, KERN_ERR 5365 "BTRFS: read-only device in alloc_list\n"); 5366 continue; 5367 } 5368 5369 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5370 &device->dev_state) || 5371 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5372 continue; 5373 5374 if (device->total_bytes > device->bytes_used) 5375 total_avail = device->total_bytes - device->bytes_used; 5376 else 5377 total_avail = 0; 5378 5379 /* If there is no space on this device, skip it. */ 5380 if (total_avail < ctl->dev_extent_min) 5381 continue; 5382 5383 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5384 &max_avail); 5385 if (ret && ret != -ENOSPC) 5386 return ret; 5387 5388 if (ret == 0) 5389 max_avail = dev_extent_want; 5390 5391 if (max_avail < ctl->dev_extent_min) { 5392 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5393 btrfs_debug(info, 5394 "%s: devid %llu has no free space, have=%llu want=%llu", 5395 __func__, device->devid, max_avail, 5396 ctl->dev_extent_min); 5397 continue; 5398 } 5399 5400 if (ndevs == fs_devices->rw_devices) { 5401 WARN(1, "%s: found more than %llu devices\n", 5402 __func__, fs_devices->rw_devices); 5403 break; 5404 } 5405 devices_info[ndevs].dev_offset = dev_offset; 5406 devices_info[ndevs].max_avail = max_avail; 5407 devices_info[ndevs].total_avail = total_avail; 5408 devices_info[ndevs].dev = device; 5409 ++ndevs; 5410 } 5411 ctl->ndevs = ndevs; 5412 5413 /* 5414 * now sort the devices by hole size / available space 5415 */ 5416 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5417 btrfs_cmp_device_info, NULL); 5418 5419 return 0; 5420 } 5421 5422 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5423 struct btrfs_device_info *devices_info) 5424 { 5425 /* Number of stripes that count for block group size */ 5426 int data_stripes; 5427 5428 /* 5429 * The primary goal is to maximize the number of stripes, so use as 5430 * many devices as possible, even if the stripes are not maximum sized. 5431 * 5432 * The DUP profile stores more than one stripe per device, the 5433 * max_avail is the total size so we have to adjust. 5434 */ 5435 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5436 ctl->dev_stripes); 5437 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5438 5439 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5440 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5441 5442 /* 5443 * Use the number of data stripes to figure out how big this chunk is 5444 * really going to be in terms of logical address space, and compare 5445 * that answer with the max chunk size. If it's higher, we try to 5446 * reduce stripe_size. 5447 */ 5448 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5449 /* 5450 * Reduce stripe_size, round it up to a 16MB boundary again and 5451 * then use it, unless it ends up being even bigger than the 5452 * previous value we had already. 5453 */ 5454 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5455 data_stripes), SZ_16M), 5456 ctl->stripe_size); 5457 } 5458 5459 /* Stripe size should not go beyond 1G. */ 5460 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5461 5462 /* Align to BTRFS_STRIPE_LEN */ 5463 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5464 ctl->chunk_size = ctl->stripe_size * data_stripes; 5465 5466 return 0; 5467 } 5468 5469 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5470 struct btrfs_device_info *devices_info) 5471 { 5472 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5473 /* Number of stripes that count for block group size */ 5474 int data_stripes; 5475 5476 /* 5477 * It should hold because: 5478 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5479 */ 5480 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5481 5482 ctl->stripe_size = zone_size; 5483 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5484 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5485 5486 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5487 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5488 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5489 ctl->stripe_size) + ctl->nparity, 5490 ctl->dev_stripes); 5491 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5492 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5493 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5494 } 5495 5496 ctl->chunk_size = ctl->stripe_size * data_stripes; 5497 5498 return 0; 5499 } 5500 5501 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5502 struct alloc_chunk_ctl *ctl, 5503 struct btrfs_device_info *devices_info) 5504 { 5505 struct btrfs_fs_info *info = fs_devices->fs_info; 5506 5507 /* 5508 * Round down to number of usable stripes, devs_increment can be any 5509 * number so we can't use round_down() that requires power of 2, while 5510 * rounddown is safe. 5511 */ 5512 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5513 5514 if (ctl->ndevs < ctl->devs_min) { 5515 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5516 btrfs_debug(info, 5517 "%s: not enough devices with free space: have=%d minimum required=%d", 5518 __func__, ctl->ndevs, ctl->devs_min); 5519 } 5520 return -ENOSPC; 5521 } 5522 5523 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5524 5525 switch (fs_devices->chunk_alloc_policy) { 5526 case BTRFS_CHUNK_ALLOC_REGULAR: 5527 return decide_stripe_size_regular(ctl, devices_info); 5528 case BTRFS_CHUNK_ALLOC_ZONED: 5529 return decide_stripe_size_zoned(ctl, devices_info); 5530 default: 5531 BUG(); 5532 } 5533 } 5534 5535 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5536 { 5537 for (int i = 0; i < map->num_stripes; i++) { 5538 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5539 struct btrfs_device *device = stripe->dev; 5540 5541 set_extent_bit(&device->alloc_state, stripe->physical, 5542 stripe->physical + map->stripe_size - 1, 5543 bits | EXTENT_NOWAIT, NULL); 5544 } 5545 } 5546 5547 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5548 { 5549 for (int i = 0; i < map->num_stripes; i++) { 5550 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5551 struct btrfs_device *device = stripe->dev; 5552 5553 __clear_extent_bit(&device->alloc_state, stripe->physical, 5554 stripe->physical + map->stripe_size - 1, 5555 bits | EXTENT_NOWAIT, 5556 NULL, NULL); 5557 } 5558 } 5559 5560 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5561 { 5562 write_lock(&fs_info->mapping_tree_lock); 5563 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5564 RB_CLEAR_NODE(&map->rb_node); 5565 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5566 write_unlock(&fs_info->mapping_tree_lock); 5567 5568 /* Once for the tree reference. */ 5569 btrfs_free_chunk_map(map); 5570 } 5571 5572 EXPORT_FOR_TESTS 5573 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5574 { 5575 struct rb_node **p; 5576 struct rb_node *parent = NULL; 5577 bool leftmost = true; 5578 5579 write_lock(&fs_info->mapping_tree_lock); 5580 p = &fs_info->mapping_tree.rb_root.rb_node; 5581 while (*p) { 5582 struct btrfs_chunk_map *entry; 5583 5584 parent = *p; 5585 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node); 5586 5587 if (map->start < entry->start) { 5588 p = &(*p)->rb_left; 5589 } else if (map->start > entry->start) { 5590 p = &(*p)->rb_right; 5591 leftmost = false; 5592 } else { 5593 write_unlock(&fs_info->mapping_tree_lock); 5594 return -EEXIST; 5595 } 5596 } 5597 rb_link_node(&map->rb_node, parent, p); 5598 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost); 5599 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5600 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5601 write_unlock(&fs_info->mapping_tree_lock); 5602 5603 return 0; 5604 } 5605 5606 EXPORT_FOR_TESTS 5607 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5608 { 5609 struct btrfs_chunk_map *map; 5610 5611 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5612 if (!map) 5613 return NULL; 5614 5615 refcount_set(&map->refs, 1); 5616 RB_CLEAR_NODE(&map->rb_node); 5617 5618 return map; 5619 } 5620 5621 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5622 struct alloc_chunk_ctl *ctl, 5623 struct btrfs_device_info *devices_info) 5624 { 5625 struct btrfs_fs_info *info = trans->fs_info; 5626 struct btrfs_chunk_map *map; 5627 struct btrfs_block_group *block_group; 5628 u64 start = ctl->start; 5629 u64 type = ctl->type; 5630 int ret; 5631 int i; 5632 int j; 5633 5634 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5635 if (!map) 5636 return ERR_PTR(-ENOMEM); 5637 5638 map->start = start; 5639 map->chunk_len = ctl->chunk_size; 5640 map->stripe_size = ctl->stripe_size; 5641 map->type = type; 5642 map->io_align = BTRFS_STRIPE_LEN; 5643 map->io_width = BTRFS_STRIPE_LEN; 5644 map->sub_stripes = ctl->sub_stripes; 5645 map->num_stripes = ctl->num_stripes; 5646 5647 for (i = 0; i < ctl->ndevs; ++i) { 5648 for (j = 0; j < ctl->dev_stripes; ++j) { 5649 int s = i * ctl->dev_stripes + j; 5650 map->stripes[s].dev = devices_info[i].dev; 5651 map->stripes[s].physical = devices_info[i].dev_offset + 5652 j * ctl->stripe_size; 5653 } 5654 } 5655 5656 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5657 5658 ret = btrfs_add_chunk_map(info, map); 5659 if (ret) { 5660 btrfs_free_chunk_map(map); 5661 return ERR_PTR(ret); 5662 } 5663 5664 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5665 if (IS_ERR(block_group)) { 5666 btrfs_remove_chunk_map(info, map); 5667 return block_group; 5668 } 5669 5670 for (int i = 0; i < map->num_stripes; i++) { 5671 struct btrfs_device *dev = map->stripes[i].dev; 5672 5673 btrfs_device_set_bytes_used(dev, 5674 dev->bytes_used + ctl->stripe_size); 5675 if (list_empty(&dev->post_commit_list)) 5676 list_add_tail(&dev->post_commit_list, 5677 &trans->transaction->dev_update_list); 5678 } 5679 5680 atomic64_sub(ctl->stripe_size * map->num_stripes, 5681 &info->free_chunk_space); 5682 5683 check_raid56_incompat_flag(info, type); 5684 check_raid1c34_incompat_flag(info, type); 5685 5686 return block_group; 5687 } 5688 5689 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5690 u64 type) 5691 { 5692 struct btrfs_fs_info *info = trans->fs_info; 5693 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5694 struct btrfs_device_info *devices_info = NULL; 5695 struct alloc_chunk_ctl ctl; 5696 struct btrfs_block_group *block_group; 5697 int ret; 5698 5699 lockdep_assert_held(&info->chunk_mutex); 5700 5701 if (!alloc_profile_is_valid(type, 0)) { 5702 ASSERT(0); 5703 return ERR_PTR(-EINVAL); 5704 } 5705 5706 if (list_empty(&fs_devices->alloc_list)) { 5707 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5708 btrfs_debug(info, "%s: no writable device", __func__); 5709 return ERR_PTR(-ENOSPC); 5710 } 5711 5712 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5713 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5714 ASSERT(0); 5715 return ERR_PTR(-EINVAL); 5716 } 5717 5718 ctl.start = find_next_chunk(info); 5719 ctl.type = type; 5720 init_alloc_chunk_ctl(fs_devices, &ctl); 5721 5722 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5723 GFP_NOFS); 5724 if (!devices_info) 5725 return ERR_PTR(-ENOMEM); 5726 5727 ret = gather_device_info(fs_devices, &ctl, devices_info); 5728 if (ret < 0) { 5729 block_group = ERR_PTR(ret); 5730 goto out; 5731 } 5732 5733 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5734 if (ret < 0) { 5735 block_group = ERR_PTR(ret); 5736 goto out; 5737 } 5738 5739 block_group = create_chunk(trans, &ctl, devices_info); 5740 5741 out: 5742 kfree(devices_info); 5743 return block_group; 5744 } 5745 5746 /* 5747 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5748 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5749 * chunks. 5750 * 5751 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5752 * phases. 5753 */ 5754 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5755 struct btrfs_block_group *bg) 5756 { 5757 struct btrfs_fs_info *fs_info = trans->fs_info; 5758 struct btrfs_root *chunk_root = fs_info->chunk_root; 5759 struct btrfs_key key; 5760 struct btrfs_chunk *chunk; 5761 struct btrfs_stripe *stripe; 5762 struct btrfs_chunk_map *map; 5763 size_t item_size; 5764 int i; 5765 int ret; 5766 5767 /* 5768 * We take the chunk_mutex for 2 reasons: 5769 * 5770 * 1) Updates and insertions in the chunk btree must be done while holding 5771 * the chunk_mutex, as well as updating the system chunk array in the 5772 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5773 * details; 5774 * 5775 * 2) To prevent races with the final phase of a device replace operation 5776 * that replaces the device object associated with the map's stripes, 5777 * because the device object's id can change at any time during that 5778 * final phase of the device replace operation 5779 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5780 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5781 * which would cause a failure when updating the device item, which does 5782 * not exists, or persisting a stripe of the chunk item with such ID. 5783 * Here we can't use the device_list_mutex because our caller already 5784 * has locked the chunk_mutex, and the final phase of device replace 5785 * acquires both mutexes - first the device_list_mutex and then the 5786 * chunk_mutex. Using any of those two mutexes protects us from a 5787 * concurrent device replace. 5788 */ 5789 lockdep_assert_held(&fs_info->chunk_mutex); 5790 5791 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5792 if (IS_ERR(map)) { 5793 ret = PTR_ERR(map); 5794 btrfs_abort_transaction(trans, ret); 5795 return ret; 5796 } 5797 5798 item_size = btrfs_chunk_item_size(map->num_stripes); 5799 5800 chunk = kzalloc(item_size, GFP_NOFS); 5801 if (!chunk) { 5802 ret = -ENOMEM; 5803 btrfs_abort_transaction(trans, ret); 5804 goto out; 5805 } 5806 5807 for (i = 0; i < map->num_stripes; i++) { 5808 struct btrfs_device *device = map->stripes[i].dev; 5809 5810 ret = btrfs_update_device(trans, device); 5811 if (ret) 5812 goto out; 5813 } 5814 5815 stripe = &chunk->stripe; 5816 for (i = 0; i < map->num_stripes; i++) { 5817 struct btrfs_device *device = map->stripes[i].dev; 5818 const u64 dev_offset = map->stripes[i].physical; 5819 5820 btrfs_set_stack_stripe_devid(stripe, device->devid); 5821 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5822 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5823 stripe++; 5824 } 5825 5826 btrfs_set_stack_chunk_length(chunk, bg->length); 5827 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5828 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5829 btrfs_set_stack_chunk_type(chunk, map->type); 5830 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5831 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5832 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5833 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5834 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5835 5836 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5837 key.type = BTRFS_CHUNK_ITEM_KEY; 5838 key.offset = bg->start; 5839 5840 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5841 if (ret) 5842 goto out; 5843 5844 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5845 5846 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5847 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5848 if (ret) 5849 goto out; 5850 } 5851 5852 out: 5853 kfree(chunk); 5854 btrfs_free_chunk_map(map); 5855 return ret; 5856 } 5857 5858 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5859 { 5860 struct btrfs_fs_info *fs_info = trans->fs_info; 5861 u64 alloc_profile; 5862 struct btrfs_block_group *meta_bg; 5863 struct btrfs_block_group *sys_bg; 5864 5865 /* 5866 * When adding a new device for sprouting, the seed device is read-only 5867 * so we must first allocate a metadata and a system chunk. But before 5868 * adding the block group items to the extent, device and chunk btrees, 5869 * we must first: 5870 * 5871 * 1) Create both chunks without doing any changes to the btrees, as 5872 * otherwise we would get -ENOSPC since the block groups from the 5873 * seed device are read-only; 5874 * 5875 * 2) Add the device item for the new sprout device - finishing the setup 5876 * of a new block group requires updating the device item in the chunk 5877 * btree, so it must exist when we attempt to do it. The previous step 5878 * ensures this does not fail with -ENOSPC. 5879 * 5880 * After that we can add the block group items to their btrees: 5881 * update existing device item in the chunk btree, add a new block group 5882 * item to the extent btree, add a new chunk item to the chunk btree and 5883 * finally add the new device extent items to the devices btree. 5884 */ 5885 5886 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5887 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5888 if (IS_ERR(meta_bg)) 5889 return PTR_ERR(meta_bg); 5890 5891 alloc_profile = btrfs_system_alloc_profile(fs_info); 5892 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5893 if (IS_ERR(sys_bg)) 5894 return PTR_ERR(sys_bg); 5895 5896 return 0; 5897 } 5898 5899 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5900 { 5901 const int index = btrfs_bg_flags_to_raid_index(map->type); 5902 5903 return btrfs_raid_array[index].tolerated_failures; 5904 } 5905 5906 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5907 { 5908 struct btrfs_chunk_map *map; 5909 int miss_ndevs = 0; 5910 int i; 5911 bool ret = true; 5912 5913 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5914 if (IS_ERR(map)) 5915 return false; 5916 5917 for (i = 0; i < map->num_stripes; i++) { 5918 if (test_bit(BTRFS_DEV_STATE_MISSING, 5919 &map->stripes[i].dev->dev_state)) { 5920 miss_ndevs++; 5921 continue; 5922 } 5923 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5924 &map->stripes[i].dev->dev_state)) { 5925 ret = false; 5926 goto end; 5927 } 5928 } 5929 5930 /* 5931 * If the number of missing devices is larger than max errors, we can 5932 * not write the data into that chunk successfully. 5933 */ 5934 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5935 ret = false; 5936 end: 5937 btrfs_free_chunk_map(map); 5938 return ret; 5939 } 5940 5941 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5942 { 5943 write_lock(&fs_info->mapping_tree_lock); 5944 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5945 struct btrfs_chunk_map *map; 5946 struct rb_node *node; 5947 5948 node = rb_first_cached(&fs_info->mapping_tree); 5949 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5950 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5951 RB_CLEAR_NODE(&map->rb_node); 5952 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5953 /* Once for the tree ref. */ 5954 btrfs_free_chunk_map(map); 5955 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5956 } 5957 write_unlock(&fs_info->mapping_tree_lock); 5958 } 5959 5960 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5961 { 5962 struct btrfs_chunk_map *map; 5963 enum btrfs_raid_types index; 5964 int ret = 1; 5965 5966 map = btrfs_get_chunk_map(fs_info, logical, len); 5967 if (IS_ERR(map)) 5968 /* 5969 * We could return errors for these cases, but that could get 5970 * ugly and we'd probably do the same thing which is just not do 5971 * anything else and exit, so return 1 so the callers don't try 5972 * to use other copies. 5973 */ 5974 return 1; 5975 5976 index = btrfs_bg_flags_to_raid_index(map->type); 5977 5978 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5979 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5980 ret = btrfs_raid_array[index].ncopies; 5981 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5982 ret = 2; 5983 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5984 /* 5985 * There could be two corrupted data stripes, we need 5986 * to loop retry in order to rebuild the correct data. 5987 * 5988 * Fail a stripe at a time on every retry except the 5989 * stripe under reconstruction. 5990 */ 5991 ret = map->num_stripes; 5992 btrfs_free_chunk_map(map); 5993 return ret; 5994 } 5995 5996 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5997 u64 logical) 5998 { 5999 struct btrfs_chunk_map *map; 6000 unsigned long len = fs_info->sectorsize; 6001 6002 if (!btrfs_fs_incompat(fs_info, RAID56)) 6003 return len; 6004 6005 map = btrfs_get_chunk_map(fs_info, logical, len); 6006 6007 if (!WARN_ON(IS_ERR(map))) { 6008 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6009 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6010 btrfs_free_chunk_map(map); 6011 } 6012 return len; 6013 } 6014 6015 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 6016 { 6017 struct btrfs_chunk_map *map; 6018 int ret = 0; 6019 6020 if (!btrfs_fs_incompat(fs_info, RAID56)) 6021 return 0; 6022 6023 map = btrfs_get_chunk_map(fs_info, logical, len); 6024 6025 if (!WARN_ON(IS_ERR(map))) { 6026 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6027 ret = 1; 6028 btrfs_free_chunk_map(map); 6029 } 6030 return ret; 6031 } 6032 6033 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6034 struct btrfs_chunk_map *map, int first, 6035 int dev_replace_is_ongoing) 6036 { 6037 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6038 int i; 6039 int num_stripes; 6040 int preferred_mirror; 6041 int tolerance; 6042 struct btrfs_device *srcdev; 6043 6044 ASSERT((map->type & 6045 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 6046 6047 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6048 num_stripes = map->sub_stripes; 6049 else 6050 num_stripes = map->num_stripes; 6051 6052 switch (policy) { 6053 default: 6054 /* Shouldn't happen, just warn and use pid instead of failing */ 6055 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6056 policy); 6057 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6058 fallthrough; 6059 case BTRFS_READ_POLICY_PID: 6060 preferred_mirror = first + (current->pid % num_stripes); 6061 break; 6062 } 6063 6064 if (dev_replace_is_ongoing && 6065 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6066 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6067 srcdev = fs_info->dev_replace.srcdev; 6068 else 6069 srcdev = NULL; 6070 6071 /* 6072 * try to avoid the drive that is the source drive for a 6073 * dev-replace procedure, only choose it if no other non-missing 6074 * mirror is available 6075 */ 6076 for (tolerance = 0; tolerance < 2; tolerance++) { 6077 if (map->stripes[preferred_mirror].dev->bdev && 6078 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6079 return preferred_mirror; 6080 for (i = first; i < first + num_stripes; i++) { 6081 if (map->stripes[i].dev->bdev && 6082 (tolerance || map->stripes[i].dev != srcdev)) 6083 return i; 6084 } 6085 } 6086 6087 /* we couldn't find one that doesn't fail. Just return something 6088 * and the io error handling code will clean up eventually 6089 */ 6090 return preferred_mirror; 6091 } 6092 6093 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6094 u64 logical, 6095 u16 total_stripes) 6096 { 6097 struct btrfs_io_context *bioc; 6098 6099 bioc = kzalloc( 6100 /* The size of btrfs_io_context */ 6101 sizeof(struct btrfs_io_context) + 6102 /* Plus the variable array for the stripes */ 6103 sizeof(struct btrfs_io_stripe) * (total_stripes), 6104 GFP_NOFS); 6105 6106 if (!bioc) 6107 return NULL; 6108 6109 refcount_set(&bioc->refs, 1); 6110 6111 bioc->fs_info = fs_info; 6112 bioc->replace_stripe_src = -1; 6113 bioc->full_stripe_logical = (u64)-1; 6114 bioc->logical = logical; 6115 6116 return bioc; 6117 } 6118 6119 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6120 { 6121 WARN_ON(!refcount_read(&bioc->refs)); 6122 refcount_inc(&bioc->refs); 6123 } 6124 6125 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6126 { 6127 if (!bioc) 6128 return; 6129 if (refcount_dec_and_test(&bioc->refs)) 6130 kfree(bioc); 6131 } 6132 6133 /* 6134 * Please note that, discard won't be sent to target device of device 6135 * replace. 6136 */ 6137 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6138 u64 logical, u64 *length_ret, 6139 u32 *num_stripes) 6140 { 6141 struct btrfs_chunk_map *map; 6142 struct btrfs_discard_stripe *stripes; 6143 u64 length = *length_ret; 6144 u64 offset; 6145 u32 stripe_nr; 6146 u32 stripe_nr_end; 6147 u32 stripe_cnt; 6148 u64 stripe_end_offset; 6149 u64 stripe_offset; 6150 u32 stripe_index; 6151 u32 factor = 0; 6152 u32 sub_stripes = 0; 6153 u32 stripes_per_dev = 0; 6154 u32 remaining_stripes = 0; 6155 u32 last_stripe = 0; 6156 int ret; 6157 int i; 6158 6159 map = btrfs_get_chunk_map(fs_info, logical, length); 6160 if (IS_ERR(map)) 6161 return ERR_CAST(map); 6162 6163 /* we don't discard raid56 yet */ 6164 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6165 ret = -EOPNOTSUPP; 6166 goto out_free_map; 6167 } 6168 6169 offset = logical - map->start; 6170 length = min_t(u64, map->start + map->chunk_len - logical, length); 6171 *length_ret = length; 6172 6173 /* 6174 * stripe_nr counts the total number of stripes we have to stride 6175 * to get to this block 6176 */ 6177 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6178 6179 /* stripe_offset is the offset of this block in its stripe */ 6180 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6181 6182 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6183 BTRFS_STRIPE_LEN_SHIFT; 6184 stripe_cnt = stripe_nr_end - stripe_nr; 6185 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6186 (offset + length); 6187 /* 6188 * after this, stripe_nr is the number of stripes on this 6189 * device we have to walk to find the data, and stripe_index is 6190 * the number of our device in the stripe array 6191 */ 6192 *num_stripes = 1; 6193 stripe_index = 0; 6194 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6195 BTRFS_BLOCK_GROUP_RAID10)) { 6196 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6197 sub_stripes = 1; 6198 else 6199 sub_stripes = map->sub_stripes; 6200 6201 factor = map->num_stripes / sub_stripes; 6202 *num_stripes = min_t(u64, map->num_stripes, 6203 sub_stripes * stripe_cnt); 6204 stripe_index = stripe_nr % factor; 6205 stripe_nr /= factor; 6206 stripe_index *= sub_stripes; 6207 6208 remaining_stripes = stripe_cnt % factor; 6209 stripes_per_dev = stripe_cnt / factor; 6210 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6211 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6212 BTRFS_BLOCK_GROUP_DUP)) { 6213 *num_stripes = map->num_stripes; 6214 } else { 6215 stripe_index = stripe_nr % map->num_stripes; 6216 stripe_nr /= map->num_stripes; 6217 } 6218 6219 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6220 if (!stripes) { 6221 ret = -ENOMEM; 6222 goto out_free_map; 6223 } 6224 6225 for (i = 0; i < *num_stripes; i++) { 6226 stripes[i].physical = 6227 map->stripes[stripe_index].physical + 6228 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6229 stripes[i].dev = map->stripes[stripe_index].dev; 6230 6231 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6232 BTRFS_BLOCK_GROUP_RAID10)) { 6233 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6234 6235 if (i / sub_stripes < remaining_stripes) 6236 stripes[i].length += BTRFS_STRIPE_LEN; 6237 6238 /* 6239 * Special for the first stripe and 6240 * the last stripe: 6241 * 6242 * |-------|...|-------| 6243 * |----------| 6244 * off end_off 6245 */ 6246 if (i < sub_stripes) 6247 stripes[i].length -= stripe_offset; 6248 6249 if (stripe_index >= last_stripe && 6250 stripe_index <= (last_stripe + 6251 sub_stripes - 1)) 6252 stripes[i].length -= stripe_end_offset; 6253 6254 if (i == sub_stripes - 1) 6255 stripe_offset = 0; 6256 } else { 6257 stripes[i].length = length; 6258 } 6259 6260 stripe_index++; 6261 if (stripe_index == map->num_stripes) { 6262 stripe_index = 0; 6263 stripe_nr++; 6264 } 6265 } 6266 6267 btrfs_free_chunk_map(map); 6268 return stripes; 6269 out_free_map: 6270 btrfs_free_chunk_map(map); 6271 return ERR_PTR(ret); 6272 } 6273 6274 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6275 { 6276 struct btrfs_block_group *cache; 6277 bool ret; 6278 6279 /* Non zoned filesystem does not use "to_copy" flag */ 6280 if (!btrfs_is_zoned(fs_info)) 6281 return false; 6282 6283 cache = btrfs_lookup_block_group(fs_info, logical); 6284 6285 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6286 6287 btrfs_put_block_group(cache); 6288 return ret; 6289 } 6290 6291 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6292 struct btrfs_io_context *bioc, 6293 struct btrfs_dev_replace *dev_replace, 6294 u64 logical, 6295 int *num_stripes_ret, int *max_errors_ret) 6296 { 6297 u64 srcdev_devid = dev_replace->srcdev->devid; 6298 /* 6299 * At this stage, num_stripes is still the real number of stripes, 6300 * excluding the duplicated stripes. 6301 */ 6302 int num_stripes = *num_stripes_ret; 6303 int nr_extra_stripes = 0; 6304 int max_errors = *max_errors_ret; 6305 int i; 6306 6307 /* 6308 * A block group which has "to_copy" set will eventually be copied by 6309 * the dev-replace process. We can avoid cloning IO here. 6310 */ 6311 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6312 return; 6313 6314 /* 6315 * Duplicate the write operations while the dev-replace procedure is 6316 * running. Since the copying of the old disk to the new disk takes 6317 * place at run time while the filesystem is mounted writable, the 6318 * regular write operations to the old disk have to be duplicated to go 6319 * to the new disk as well. 6320 * 6321 * Note that device->missing is handled by the caller, and that the 6322 * write to the old disk is already set up in the stripes array. 6323 */ 6324 for (i = 0; i < num_stripes; i++) { 6325 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6326 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6327 6328 if (old->dev->devid != srcdev_devid) 6329 continue; 6330 6331 new->physical = old->physical; 6332 new->dev = dev_replace->tgtdev; 6333 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6334 bioc->replace_stripe_src = i; 6335 nr_extra_stripes++; 6336 } 6337 6338 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6339 ASSERT(nr_extra_stripes <= 2); 6340 /* 6341 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6342 * replace. 6343 * If we have 2 extra stripes, only choose the one with smaller physical. 6344 */ 6345 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6346 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6347 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6348 6349 /* Only DUP can have two extra stripes. */ 6350 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6351 6352 /* 6353 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6354 * The extra stripe would still be there, but won't be accessed. 6355 */ 6356 if (first->physical > second->physical) { 6357 swap(second->physical, first->physical); 6358 swap(second->dev, first->dev); 6359 nr_extra_stripes--; 6360 } 6361 } 6362 6363 *num_stripes_ret = num_stripes + nr_extra_stripes; 6364 *max_errors_ret = max_errors + nr_extra_stripes; 6365 bioc->replace_nr_stripes = nr_extra_stripes; 6366 } 6367 6368 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6369 struct btrfs_io_geometry *io_geom) 6370 { 6371 /* 6372 * Stripe_nr is the stripe where this block falls. stripe_offset is 6373 * the offset of this block in its stripe. 6374 */ 6375 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6376 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6377 ASSERT(io_geom->stripe_offset < U32_MAX); 6378 6379 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6380 unsigned long full_stripe_len = 6381 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6382 6383 /* 6384 * For full stripe start, we use previously calculated 6385 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6386 * STRIPE_LEN. 6387 * 6388 * By this we can avoid u64 division completely. And we have 6389 * to go rounddown(), not round_down(), as nr_data_stripes is 6390 * not ensured to be power of 2. 6391 */ 6392 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6393 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6394 6395 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6396 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6397 /* 6398 * For writes to RAID56, allow to write a full stripe set, but 6399 * no straddling of stripe sets. 6400 */ 6401 if (io_geom->op == BTRFS_MAP_WRITE) 6402 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6403 } 6404 6405 /* 6406 * For other RAID types and for RAID56 reads, allow a single stripe (on 6407 * a single disk). 6408 */ 6409 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6410 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6411 return U64_MAX; 6412 } 6413 6414 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6415 u64 *length, struct btrfs_io_stripe *dst, 6416 struct btrfs_chunk_map *map, 6417 struct btrfs_io_geometry *io_geom) 6418 { 6419 dst->dev = map->stripes[io_geom->stripe_index].dev; 6420 6421 if (io_geom->op == BTRFS_MAP_READ && 6422 btrfs_need_stripe_tree_update(fs_info, map->type)) 6423 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6424 map->type, 6425 io_geom->stripe_index, dst); 6426 6427 dst->physical = map->stripes[io_geom->stripe_index].physical + 6428 io_geom->stripe_offset + 6429 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6430 return 0; 6431 } 6432 6433 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6434 const struct btrfs_io_stripe *smap, 6435 const struct btrfs_chunk_map *map, 6436 int num_alloc_stripes, 6437 enum btrfs_map_op op, int mirror_num) 6438 { 6439 if (!smap) 6440 return false; 6441 6442 if (num_alloc_stripes != 1) 6443 return false; 6444 6445 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ) 6446 return false; 6447 6448 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) 6449 return false; 6450 6451 return true; 6452 } 6453 6454 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6455 struct btrfs_io_geometry *io_geom) 6456 { 6457 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6458 io_geom->stripe_nr /= map->num_stripes; 6459 if (io_geom->op == BTRFS_MAP_READ) 6460 io_geom->mirror_num = 1; 6461 } 6462 6463 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6464 struct btrfs_chunk_map *map, 6465 struct btrfs_io_geometry *io_geom, 6466 bool dev_replace_is_ongoing) 6467 { 6468 if (io_geom->op != BTRFS_MAP_READ) { 6469 io_geom->num_stripes = map->num_stripes; 6470 return; 6471 } 6472 6473 if (io_geom->mirror_num) { 6474 io_geom->stripe_index = io_geom->mirror_num - 1; 6475 return; 6476 } 6477 6478 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6479 dev_replace_is_ongoing); 6480 io_geom->mirror_num = io_geom->stripe_index + 1; 6481 } 6482 6483 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6484 struct btrfs_io_geometry *io_geom) 6485 { 6486 if (io_geom->op != BTRFS_MAP_READ) { 6487 io_geom->num_stripes = map->num_stripes; 6488 return; 6489 } 6490 6491 if (io_geom->mirror_num) { 6492 io_geom->stripe_index = io_geom->mirror_num - 1; 6493 return; 6494 } 6495 6496 io_geom->mirror_num = 1; 6497 } 6498 6499 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6500 struct btrfs_chunk_map *map, 6501 struct btrfs_io_geometry *io_geom, 6502 bool dev_replace_is_ongoing) 6503 { 6504 u32 factor = map->num_stripes / map->sub_stripes; 6505 int old_stripe_index; 6506 6507 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6508 io_geom->stripe_nr /= factor; 6509 6510 if (io_geom->op != BTRFS_MAP_READ) { 6511 io_geom->num_stripes = map->sub_stripes; 6512 return; 6513 } 6514 6515 if (io_geom->mirror_num) { 6516 io_geom->stripe_index += io_geom->mirror_num - 1; 6517 return; 6518 } 6519 6520 old_stripe_index = io_geom->stripe_index; 6521 io_geom->stripe_index = find_live_mirror(fs_info, map, 6522 io_geom->stripe_index, 6523 dev_replace_is_ongoing); 6524 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6525 } 6526 6527 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6528 struct btrfs_io_geometry *io_geom, 6529 u64 logical, u64 *length) 6530 { 6531 int data_stripes = nr_data_stripes(map); 6532 6533 /* 6534 * Needs full stripe mapping. 6535 * 6536 * Push stripe_nr back to the start of the full stripe For those cases 6537 * needing a full stripe, @stripe_nr is the full stripe number. 6538 * 6539 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6540 * that can be expensive. Here we just divide @stripe_nr with 6541 * @data_stripes. 6542 */ 6543 io_geom->stripe_nr /= data_stripes; 6544 6545 /* RAID[56] write or recovery. Return all stripes */ 6546 io_geom->num_stripes = map->num_stripes; 6547 io_geom->max_errors = btrfs_chunk_max_errors(map); 6548 6549 /* Return the length to the full stripe end. */ 6550 *length = min(logical + *length, 6551 io_geom->raid56_full_stripe_start + map->start + 6552 btrfs_stripe_nr_to_offset(data_stripes)) - 6553 logical; 6554 io_geom->stripe_index = 0; 6555 io_geom->stripe_offset = 0; 6556 } 6557 6558 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6559 struct btrfs_io_geometry *io_geom) 6560 { 6561 int data_stripes = nr_data_stripes(map); 6562 6563 ASSERT(io_geom->mirror_num <= 1); 6564 /* Just grab the data stripe directly. */ 6565 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6566 io_geom->stripe_nr /= data_stripes; 6567 6568 /* We distribute the parity blocks across stripes. */ 6569 io_geom->stripe_index = 6570 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6571 6572 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6573 io_geom->mirror_num = 1; 6574 } 6575 6576 static void map_blocks_single(const struct btrfs_chunk_map *map, 6577 struct btrfs_io_geometry *io_geom) 6578 { 6579 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6580 io_geom->stripe_nr /= map->num_stripes; 6581 io_geom->mirror_num = io_geom->stripe_index + 1; 6582 } 6583 6584 /* 6585 * Map one logical range to one or more physical ranges. 6586 * 6587 * @length: (Mandatory) mapped length of this run. 6588 * One logical range can be split into different segments 6589 * due to factors like zones and RAID0/5/6/10 stripe 6590 * boundaries. 6591 * 6592 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6593 * which has one or more physical ranges (btrfs_io_stripe) 6594 * recorded inside. 6595 * Caller should call btrfs_put_bioc() to free it after use. 6596 * 6597 * @smap: (Optional) single physical range optimization. 6598 * If the map request can be fulfilled by one single 6599 * physical range, and this is parameter is not NULL, 6600 * then @bioc_ret would be NULL, and @smap would be 6601 * updated. 6602 * 6603 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6604 * value is 0. 6605 * 6606 * Mirror number 0 means to choose any live mirrors. 6607 * 6608 * For non-RAID56 profiles, non-zero mirror_num means 6609 * the Nth mirror. (e.g. mirror_num 1 means the first 6610 * copy). 6611 * 6612 * For RAID56 profile, mirror 1 means rebuild from P and 6613 * the remaining data stripes. 6614 * 6615 * For RAID6 profile, mirror > 2 means mark another 6616 * data/P stripe error and rebuild from the remaining 6617 * stripes.. 6618 */ 6619 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6620 u64 logical, u64 *length, 6621 struct btrfs_io_context **bioc_ret, 6622 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6623 { 6624 struct btrfs_chunk_map *map; 6625 struct btrfs_io_geometry io_geom = { 0 }; 6626 u64 map_offset; 6627 int i; 6628 int ret = 0; 6629 int num_copies; 6630 struct btrfs_io_context *bioc = NULL; 6631 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6632 int dev_replace_is_ongoing = 0; 6633 u16 num_alloc_stripes; 6634 u64 max_len; 6635 6636 ASSERT(bioc_ret); 6637 6638 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6639 io_geom.num_stripes = 1; 6640 io_geom.stripe_index = 0; 6641 io_geom.op = op; 6642 6643 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6644 if (io_geom.mirror_num > num_copies) 6645 return -EINVAL; 6646 6647 map = btrfs_get_chunk_map(fs_info, logical, *length); 6648 if (IS_ERR(map)) 6649 return PTR_ERR(map); 6650 6651 map_offset = logical - map->start; 6652 io_geom.raid56_full_stripe_start = (u64)-1; 6653 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6654 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6655 6656 down_read(&dev_replace->rwsem); 6657 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6658 /* 6659 * Hold the semaphore for read during the whole operation, write is 6660 * requested at commit time but must wait. 6661 */ 6662 if (!dev_replace_is_ongoing) 6663 up_read(&dev_replace->rwsem); 6664 6665 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6666 case BTRFS_BLOCK_GROUP_RAID0: 6667 map_blocks_raid0(map, &io_geom); 6668 break; 6669 case BTRFS_BLOCK_GROUP_RAID1: 6670 case BTRFS_BLOCK_GROUP_RAID1C3: 6671 case BTRFS_BLOCK_GROUP_RAID1C4: 6672 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6673 break; 6674 case BTRFS_BLOCK_GROUP_DUP: 6675 map_blocks_dup(map, &io_geom); 6676 break; 6677 case BTRFS_BLOCK_GROUP_RAID10: 6678 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6679 break; 6680 case BTRFS_BLOCK_GROUP_RAID5: 6681 case BTRFS_BLOCK_GROUP_RAID6: 6682 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6683 map_blocks_raid56_write(map, &io_geom, logical, length); 6684 else 6685 map_blocks_raid56_read(map, &io_geom); 6686 break; 6687 default: 6688 /* 6689 * After this, stripe_nr is the number of stripes on this 6690 * device we have to walk to find the data, and stripe_index is 6691 * the number of our device in the stripe array 6692 */ 6693 map_blocks_single(map, &io_geom); 6694 break; 6695 } 6696 if (io_geom.stripe_index >= map->num_stripes) { 6697 btrfs_crit(fs_info, 6698 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6699 io_geom.stripe_index, map->num_stripes); 6700 ret = -EINVAL; 6701 goto out; 6702 } 6703 6704 num_alloc_stripes = io_geom.num_stripes; 6705 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6706 op != BTRFS_MAP_READ) 6707 /* 6708 * For replace case, we need to add extra stripes for extra 6709 * duplicated stripes. 6710 * 6711 * For both WRITE and GET_READ_MIRRORS, we may have at most 6712 * 2 more stripes (DUP types, otherwise 1). 6713 */ 6714 num_alloc_stripes += 2; 6715 6716 /* 6717 * If this I/O maps to a single device, try to return the device and 6718 * physical block information on the stack instead of allocating an 6719 * I/O context structure. 6720 */ 6721 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op, 6722 io_geom.mirror_num)) { 6723 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6724 if (mirror_num_ret) 6725 *mirror_num_ret = io_geom.mirror_num; 6726 *bioc_ret = NULL; 6727 goto out; 6728 } 6729 6730 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6731 if (!bioc) { 6732 ret = -ENOMEM; 6733 goto out; 6734 } 6735 bioc->map_type = map->type; 6736 6737 /* 6738 * For RAID56 full map, we need to make sure the stripes[] follows the 6739 * rule that data stripes are all ordered, then followed with P and Q 6740 * (if we have). 6741 * 6742 * It's still mostly the same as other profiles, just with extra rotation. 6743 */ 6744 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6745 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6746 /* 6747 * For RAID56 @stripe_nr is already the number of full stripes 6748 * before us, which is also the rotation value (needs to modulo 6749 * with num_stripes). 6750 * 6751 * In this case, we just add @stripe_nr with @i, then do the 6752 * modulo, to reduce one modulo call. 6753 */ 6754 bioc->full_stripe_logical = map->start + 6755 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6756 nr_data_stripes(map)); 6757 for (int i = 0; i < io_geom.num_stripes; i++) { 6758 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6759 u32 stripe_index; 6760 6761 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6762 dst->dev = map->stripes[stripe_index].dev; 6763 dst->physical = 6764 map->stripes[stripe_index].physical + 6765 io_geom.stripe_offset + 6766 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6767 } 6768 } else { 6769 /* 6770 * For all other non-RAID56 profiles, just copy the target 6771 * stripe into the bioc. 6772 */ 6773 for (i = 0; i < io_geom.num_stripes; i++) { 6774 ret = set_io_stripe(fs_info, logical, length, 6775 &bioc->stripes[i], map, &io_geom); 6776 if (ret < 0) 6777 break; 6778 io_geom.stripe_index++; 6779 } 6780 } 6781 6782 if (ret) { 6783 *bioc_ret = NULL; 6784 btrfs_put_bioc(bioc); 6785 goto out; 6786 } 6787 6788 if (op != BTRFS_MAP_READ) 6789 io_geom.max_errors = btrfs_chunk_max_errors(map); 6790 6791 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6792 op != BTRFS_MAP_READ) { 6793 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6794 &io_geom.num_stripes, &io_geom.max_errors); 6795 } 6796 6797 *bioc_ret = bioc; 6798 bioc->num_stripes = io_geom.num_stripes; 6799 bioc->max_errors = io_geom.max_errors; 6800 bioc->mirror_num = io_geom.mirror_num; 6801 6802 out: 6803 if (dev_replace_is_ongoing) { 6804 lockdep_assert_held(&dev_replace->rwsem); 6805 /* Unlock and let waiting writers proceed */ 6806 up_read(&dev_replace->rwsem); 6807 } 6808 btrfs_free_chunk_map(map); 6809 return ret; 6810 } 6811 6812 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6813 const struct btrfs_fs_devices *fs_devices) 6814 { 6815 if (args->fsid == NULL) 6816 return true; 6817 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6818 return true; 6819 return false; 6820 } 6821 6822 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6823 const struct btrfs_device *device) 6824 { 6825 if (args->missing) { 6826 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6827 !device->bdev) 6828 return true; 6829 return false; 6830 } 6831 6832 if (device->devid != args->devid) 6833 return false; 6834 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6835 return false; 6836 return true; 6837 } 6838 6839 /* 6840 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6841 * return NULL. 6842 * 6843 * If devid and uuid are both specified, the match must be exact, otherwise 6844 * only devid is used. 6845 */ 6846 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6847 const struct btrfs_dev_lookup_args *args) 6848 { 6849 struct btrfs_device *device; 6850 struct btrfs_fs_devices *seed_devs; 6851 6852 if (dev_args_match_fs_devices(args, fs_devices)) { 6853 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6854 if (dev_args_match_device(args, device)) 6855 return device; 6856 } 6857 } 6858 6859 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6860 if (!dev_args_match_fs_devices(args, seed_devs)) 6861 continue; 6862 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6863 if (dev_args_match_device(args, device)) 6864 return device; 6865 } 6866 } 6867 6868 return NULL; 6869 } 6870 6871 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6872 u64 devid, u8 *dev_uuid) 6873 { 6874 struct btrfs_device *device; 6875 unsigned int nofs_flag; 6876 6877 /* 6878 * We call this under the chunk_mutex, so we want to use NOFS for this 6879 * allocation, however we don't want to change btrfs_alloc_device() to 6880 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6881 * places. 6882 */ 6883 6884 nofs_flag = memalloc_nofs_save(); 6885 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6886 memalloc_nofs_restore(nofs_flag); 6887 if (IS_ERR(device)) 6888 return device; 6889 6890 list_add(&device->dev_list, &fs_devices->devices); 6891 device->fs_devices = fs_devices; 6892 fs_devices->num_devices++; 6893 6894 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6895 fs_devices->missing_devices++; 6896 6897 return device; 6898 } 6899 6900 /* 6901 * Allocate new device struct, set up devid and UUID. 6902 * 6903 * @fs_info: used only for generating a new devid, can be NULL if 6904 * devid is provided (i.e. @devid != NULL). 6905 * @devid: a pointer to devid for this device. If NULL a new devid 6906 * is generated. 6907 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6908 * is generated. 6909 * @path: a pointer to device path if available, NULL otherwise. 6910 * 6911 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6912 * on error. Returned struct is not linked onto any lists and must be 6913 * destroyed with btrfs_free_device. 6914 */ 6915 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6916 const u64 *devid, const u8 *uuid, 6917 const char *path) 6918 { 6919 struct btrfs_device *dev; 6920 u64 tmp; 6921 6922 if (WARN_ON(!devid && !fs_info)) 6923 return ERR_PTR(-EINVAL); 6924 6925 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6926 if (!dev) 6927 return ERR_PTR(-ENOMEM); 6928 6929 INIT_LIST_HEAD(&dev->dev_list); 6930 INIT_LIST_HEAD(&dev->dev_alloc_list); 6931 INIT_LIST_HEAD(&dev->post_commit_list); 6932 6933 atomic_set(&dev->dev_stats_ccnt, 0); 6934 btrfs_device_data_ordered_init(dev); 6935 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6936 6937 if (devid) 6938 tmp = *devid; 6939 else { 6940 int ret; 6941 6942 ret = find_next_devid(fs_info, &tmp); 6943 if (ret) { 6944 btrfs_free_device(dev); 6945 return ERR_PTR(ret); 6946 } 6947 } 6948 dev->devid = tmp; 6949 6950 if (uuid) 6951 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6952 else 6953 generate_random_uuid(dev->uuid); 6954 6955 if (path) { 6956 struct rcu_string *name; 6957 6958 name = rcu_string_strdup(path, GFP_KERNEL); 6959 if (!name) { 6960 btrfs_free_device(dev); 6961 return ERR_PTR(-ENOMEM); 6962 } 6963 rcu_assign_pointer(dev->name, name); 6964 } 6965 6966 return dev; 6967 } 6968 6969 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6970 u64 devid, u8 *uuid, bool error) 6971 { 6972 if (error) 6973 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6974 devid, uuid); 6975 else 6976 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6977 devid, uuid); 6978 } 6979 6980 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6981 { 6982 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6983 6984 return div_u64(map->chunk_len, data_stripes); 6985 } 6986 6987 #if BITS_PER_LONG == 32 6988 /* 6989 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6990 * can't be accessed on 32bit systems. 6991 * 6992 * This function do mount time check to reject the fs if it already has 6993 * metadata chunk beyond that limit. 6994 */ 6995 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6996 u64 logical, u64 length, u64 type) 6997 { 6998 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6999 return 0; 7000 7001 if (logical + length < MAX_LFS_FILESIZE) 7002 return 0; 7003 7004 btrfs_err_32bit_limit(fs_info); 7005 return -EOVERFLOW; 7006 } 7007 7008 /* 7009 * This is to give early warning for any metadata chunk reaching 7010 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7011 * Although we can still access the metadata, it's not going to be possible 7012 * once the limit is reached. 7013 */ 7014 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7015 u64 logical, u64 length, u64 type) 7016 { 7017 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7018 return; 7019 7020 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7021 return; 7022 7023 btrfs_warn_32bit_limit(fs_info); 7024 } 7025 #endif 7026 7027 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7028 u64 devid, u8 *uuid) 7029 { 7030 struct btrfs_device *dev; 7031 7032 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7033 btrfs_report_missing_device(fs_info, devid, uuid, true); 7034 return ERR_PTR(-ENOENT); 7035 } 7036 7037 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7038 if (IS_ERR(dev)) { 7039 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7040 devid, PTR_ERR(dev)); 7041 return dev; 7042 } 7043 btrfs_report_missing_device(fs_info, devid, uuid, false); 7044 7045 return dev; 7046 } 7047 7048 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7049 struct btrfs_chunk *chunk) 7050 { 7051 BTRFS_DEV_LOOKUP_ARGS(args); 7052 struct btrfs_fs_info *fs_info = leaf->fs_info; 7053 struct btrfs_chunk_map *map; 7054 u64 logical; 7055 u64 length; 7056 u64 devid; 7057 u64 type; 7058 u8 uuid[BTRFS_UUID_SIZE]; 7059 int index; 7060 int num_stripes; 7061 int ret; 7062 int i; 7063 7064 logical = key->offset; 7065 length = btrfs_chunk_length(leaf, chunk); 7066 type = btrfs_chunk_type(leaf, chunk); 7067 index = btrfs_bg_flags_to_raid_index(type); 7068 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7069 7070 #if BITS_PER_LONG == 32 7071 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7072 if (ret < 0) 7073 return ret; 7074 warn_32bit_meta_chunk(fs_info, logical, length, type); 7075 #endif 7076 7077 /* 7078 * Only need to verify chunk item if we're reading from sys chunk array, 7079 * as chunk item in tree block is already verified by tree-checker. 7080 */ 7081 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7082 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7083 if (ret) 7084 return ret; 7085 } 7086 7087 map = btrfs_find_chunk_map(fs_info, logical, 1); 7088 7089 /* already mapped? */ 7090 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7091 btrfs_free_chunk_map(map); 7092 return 0; 7093 } else if (map) { 7094 btrfs_free_chunk_map(map); 7095 } 7096 7097 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7098 if (!map) 7099 return -ENOMEM; 7100 7101 map->start = logical; 7102 map->chunk_len = length; 7103 map->num_stripes = num_stripes; 7104 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7105 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7106 map->type = type; 7107 /* 7108 * We can't use the sub_stripes value, as for profiles other than 7109 * RAID10, they may have 0 as sub_stripes for filesystems created by 7110 * older mkfs (<v5.4). 7111 * In that case, it can cause divide-by-zero errors later. 7112 * Since currently sub_stripes is fixed for each profile, let's 7113 * use the trusted value instead. 7114 */ 7115 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7116 map->verified_stripes = 0; 7117 map->stripe_size = btrfs_calc_stripe_length(map); 7118 for (i = 0; i < num_stripes; i++) { 7119 map->stripes[i].physical = 7120 btrfs_stripe_offset_nr(leaf, chunk, i); 7121 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7122 args.devid = devid; 7123 read_extent_buffer(leaf, uuid, (unsigned long) 7124 btrfs_stripe_dev_uuid_nr(chunk, i), 7125 BTRFS_UUID_SIZE); 7126 args.uuid = uuid; 7127 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7128 if (!map->stripes[i].dev) { 7129 map->stripes[i].dev = handle_missing_device(fs_info, 7130 devid, uuid); 7131 if (IS_ERR(map->stripes[i].dev)) { 7132 ret = PTR_ERR(map->stripes[i].dev); 7133 btrfs_free_chunk_map(map); 7134 return ret; 7135 } 7136 } 7137 7138 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7139 &(map->stripes[i].dev->dev_state)); 7140 } 7141 7142 ret = btrfs_add_chunk_map(fs_info, map); 7143 if (ret < 0) { 7144 btrfs_err(fs_info, 7145 "failed to add chunk map, start=%llu len=%llu: %d", 7146 map->start, map->chunk_len, ret); 7147 } 7148 7149 return ret; 7150 } 7151 7152 static void fill_device_from_item(struct extent_buffer *leaf, 7153 struct btrfs_dev_item *dev_item, 7154 struct btrfs_device *device) 7155 { 7156 unsigned long ptr; 7157 7158 device->devid = btrfs_device_id(leaf, dev_item); 7159 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7160 device->total_bytes = device->disk_total_bytes; 7161 device->commit_total_bytes = device->disk_total_bytes; 7162 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7163 device->commit_bytes_used = device->bytes_used; 7164 device->type = btrfs_device_type(leaf, dev_item); 7165 device->io_align = btrfs_device_io_align(leaf, dev_item); 7166 device->io_width = btrfs_device_io_width(leaf, dev_item); 7167 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7168 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7169 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7170 7171 ptr = btrfs_device_uuid(dev_item); 7172 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7173 } 7174 7175 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7176 u8 *fsid) 7177 { 7178 struct btrfs_fs_devices *fs_devices; 7179 int ret; 7180 7181 lockdep_assert_held(&uuid_mutex); 7182 ASSERT(fsid); 7183 7184 /* This will match only for multi-device seed fs */ 7185 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7186 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7187 return fs_devices; 7188 7189 7190 fs_devices = find_fsid(fsid, NULL); 7191 if (!fs_devices) { 7192 if (!btrfs_test_opt(fs_info, DEGRADED)) 7193 return ERR_PTR(-ENOENT); 7194 7195 fs_devices = alloc_fs_devices(fsid); 7196 if (IS_ERR(fs_devices)) 7197 return fs_devices; 7198 7199 fs_devices->seeding = true; 7200 fs_devices->opened = 1; 7201 return fs_devices; 7202 } 7203 7204 /* 7205 * Upon first call for a seed fs fsid, just create a private copy of the 7206 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7207 */ 7208 fs_devices = clone_fs_devices(fs_devices); 7209 if (IS_ERR(fs_devices)) 7210 return fs_devices; 7211 7212 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7213 if (ret) { 7214 free_fs_devices(fs_devices); 7215 return ERR_PTR(ret); 7216 } 7217 7218 if (!fs_devices->seeding) { 7219 close_fs_devices(fs_devices); 7220 free_fs_devices(fs_devices); 7221 return ERR_PTR(-EINVAL); 7222 } 7223 7224 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7225 7226 return fs_devices; 7227 } 7228 7229 static int read_one_dev(struct extent_buffer *leaf, 7230 struct btrfs_dev_item *dev_item) 7231 { 7232 BTRFS_DEV_LOOKUP_ARGS(args); 7233 struct btrfs_fs_info *fs_info = leaf->fs_info; 7234 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7235 struct btrfs_device *device; 7236 u64 devid; 7237 int ret; 7238 u8 fs_uuid[BTRFS_FSID_SIZE]; 7239 u8 dev_uuid[BTRFS_UUID_SIZE]; 7240 7241 devid = btrfs_device_id(leaf, dev_item); 7242 args.devid = devid; 7243 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7244 BTRFS_UUID_SIZE); 7245 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7246 BTRFS_FSID_SIZE); 7247 args.uuid = dev_uuid; 7248 args.fsid = fs_uuid; 7249 7250 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7251 fs_devices = open_seed_devices(fs_info, fs_uuid); 7252 if (IS_ERR(fs_devices)) 7253 return PTR_ERR(fs_devices); 7254 } 7255 7256 device = btrfs_find_device(fs_info->fs_devices, &args); 7257 if (!device) { 7258 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7259 btrfs_report_missing_device(fs_info, devid, 7260 dev_uuid, true); 7261 return -ENOENT; 7262 } 7263 7264 device = add_missing_dev(fs_devices, devid, dev_uuid); 7265 if (IS_ERR(device)) { 7266 btrfs_err(fs_info, 7267 "failed to add missing dev %llu: %ld", 7268 devid, PTR_ERR(device)); 7269 return PTR_ERR(device); 7270 } 7271 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7272 } else { 7273 if (!device->bdev) { 7274 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7275 btrfs_report_missing_device(fs_info, 7276 devid, dev_uuid, true); 7277 return -ENOENT; 7278 } 7279 btrfs_report_missing_device(fs_info, devid, 7280 dev_uuid, false); 7281 } 7282 7283 if (!device->bdev && 7284 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7285 /* 7286 * this happens when a device that was properly setup 7287 * in the device info lists suddenly goes bad. 7288 * device->bdev is NULL, and so we have to set 7289 * device->missing to one here 7290 */ 7291 device->fs_devices->missing_devices++; 7292 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7293 } 7294 7295 /* Move the device to its own fs_devices */ 7296 if (device->fs_devices != fs_devices) { 7297 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7298 &device->dev_state)); 7299 7300 list_move(&device->dev_list, &fs_devices->devices); 7301 device->fs_devices->num_devices--; 7302 fs_devices->num_devices++; 7303 7304 device->fs_devices->missing_devices--; 7305 fs_devices->missing_devices++; 7306 7307 device->fs_devices = fs_devices; 7308 } 7309 } 7310 7311 if (device->fs_devices != fs_info->fs_devices) { 7312 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7313 if (device->generation != 7314 btrfs_device_generation(leaf, dev_item)) 7315 return -EINVAL; 7316 } 7317 7318 fill_device_from_item(leaf, dev_item, device); 7319 if (device->bdev) { 7320 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7321 7322 if (device->total_bytes > max_total_bytes) { 7323 btrfs_err(fs_info, 7324 "device total_bytes should be at most %llu but found %llu", 7325 max_total_bytes, device->total_bytes); 7326 return -EINVAL; 7327 } 7328 } 7329 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7330 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7331 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7332 device->fs_devices->total_rw_bytes += device->total_bytes; 7333 atomic64_add(device->total_bytes - device->bytes_used, 7334 &fs_info->free_chunk_space); 7335 } 7336 ret = 0; 7337 return ret; 7338 } 7339 7340 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7341 { 7342 struct btrfs_super_block *super_copy = fs_info->super_copy; 7343 struct extent_buffer *sb; 7344 struct btrfs_disk_key *disk_key; 7345 struct btrfs_chunk *chunk; 7346 u8 *array_ptr; 7347 unsigned long sb_array_offset; 7348 int ret = 0; 7349 u32 num_stripes; 7350 u32 array_size; 7351 u32 len = 0; 7352 u32 cur_offset; 7353 u64 type; 7354 struct btrfs_key key; 7355 7356 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7357 7358 /* 7359 * We allocated a dummy extent, just to use extent buffer accessors. 7360 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7361 * that's fine, we will not go beyond system chunk array anyway. 7362 */ 7363 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7364 if (!sb) 7365 return -ENOMEM; 7366 set_extent_buffer_uptodate(sb); 7367 7368 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7369 array_size = btrfs_super_sys_array_size(super_copy); 7370 7371 array_ptr = super_copy->sys_chunk_array; 7372 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7373 cur_offset = 0; 7374 7375 while (cur_offset < array_size) { 7376 disk_key = (struct btrfs_disk_key *)array_ptr; 7377 len = sizeof(*disk_key); 7378 if (cur_offset + len > array_size) 7379 goto out_short_read; 7380 7381 btrfs_disk_key_to_cpu(&key, disk_key); 7382 7383 array_ptr += len; 7384 sb_array_offset += len; 7385 cur_offset += len; 7386 7387 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7388 btrfs_err(fs_info, 7389 "unexpected item type %u in sys_array at offset %u", 7390 (u32)key.type, cur_offset); 7391 ret = -EIO; 7392 break; 7393 } 7394 7395 chunk = (struct btrfs_chunk *)sb_array_offset; 7396 /* 7397 * At least one btrfs_chunk with one stripe must be present, 7398 * exact stripe count check comes afterwards 7399 */ 7400 len = btrfs_chunk_item_size(1); 7401 if (cur_offset + len > array_size) 7402 goto out_short_read; 7403 7404 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7405 if (!num_stripes) { 7406 btrfs_err(fs_info, 7407 "invalid number of stripes %u in sys_array at offset %u", 7408 num_stripes, cur_offset); 7409 ret = -EIO; 7410 break; 7411 } 7412 7413 type = btrfs_chunk_type(sb, chunk); 7414 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7415 btrfs_err(fs_info, 7416 "invalid chunk type %llu in sys_array at offset %u", 7417 type, cur_offset); 7418 ret = -EIO; 7419 break; 7420 } 7421 7422 len = btrfs_chunk_item_size(num_stripes); 7423 if (cur_offset + len > array_size) 7424 goto out_short_read; 7425 7426 ret = read_one_chunk(&key, sb, chunk); 7427 if (ret) 7428 break; 7429 7430 array_ptr += len; 7431 sb_array_offset += len; 7432 cur_offset += len; 7433 } 7434 clear_extent_buffer_uptodate(sb); 7435 free_extent_buffer_stale(sb); 7436 return ret; 7437 7438 out_short_read: 7439 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7440 len, cur_offset); 7441 clear_extent_buffer_uptodate(sb); 7442 free_extent_buffer_stale(sb); 7443 return -EIO; 7444 } 7445 7446 /* 7447 * Check if all chunks in the fs are OK for read-write degraded mount 7448 * 7449 * If the @failing_dev is specified, it's accounted as missing. 7450 * 7451 * Return true if all chunks meet the minimal RW mount requirements. 7452 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7453 */ 7454 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7455 struct btrfs_device *failing_dev) 7456 { 7457 struct btrfs_chunk_map *map; 7458 u64 next_start; 7459 bool ret = true; 7460 7461 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7462 /* No chunk at all? Return false anyway */ 7463 if (!map) { 7464 ret = false; 7465 goto out; 7466 } 7467 while (map) { 7468 int missing = 0; 7469 int max_tolerated; 7470 int i; 7471 7472 max_tolerated = 7473 btrfs_get_num_tolerated_disk_barrier_failures( 7474 map->type); 7475 for (i = 0; i < map->num_stripes; i++) { 7476 struct btrfs_device *dev = map->stripes[i].dev; 7477 7478 if (!dev || !dev->bdev || 7479 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7480 dev->last_flush_error) 7481 missing++; 7482 else if (failing_dev && failing_dev == dev) 7483 missing++; 7484 } 7485 if (missing > max_tolerated) { 7486 if (!failing_dev) 7487 btrfs_warn(fs_info, 7488 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7489 map->start, missing, max_tolerated); 7490 btrfs_free_chunk_map(map); 7491 ret = false; 7492 goto out; 7493 } 7494 next_start = map->start + map->chunk_len; 7495 btrfs_free_chunk_map(map); 7496 7497 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7498 } 7499 out: 7500 return ret; 7501 } 7502 7503 static void readahead_tree_node_children(struct extent_buffer *node) 7504 { 7505 int i; 7506 const int nr_items = btrfs_header_nritems(node); 7507 7508 for (i = 0; i < nr_items; i++) 7509 btrfs_readahead_node_child(node, i); 7510 } 7511 7512 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7513 { 7514 struct btrfs_root *root = fs_info->chunk_root; 7515 struct btrfs_path *path; 7516 struct extent_buffer *leaf; 7517 struct btrfs_key key; 7518 struct btrfs_key found_key; 7519 int ret; 7520 int slot; 7521 int iter_ret = 0; 7522 u64 total_dev = 0; 7523 u64 last_ra_node = 0; 7524 7525 path = btrfs_alloc_path(); 7526 if (!path) 7527 return -ENOMEM; 7528 7529 /* 7530 * uuid_mutex is needed only if we are mounting a sprout FS 7531 * otherwise we don't need it. 7532 */ 7533 mutex_lock(&uuid_mutex); 7534 7535 /* 7536 * It is possible for mount and umount to race in such a way that 7537 * we execute this code path, but open_fs_devices failed to clear 7538 * total_rw_bytes. We certainly want it cleared before reading the 7539 * device items, so clear it here. 7540 */ 7541 fs_info->fs_devices->total_rw_bytes = 0; 7542 7543 /* 7544 * Lockdep complains about possible circular locking dependency between 7545 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7546 * used for freeze procection of a fs (struct super_block.s_writers), 7547 * which we take when starting a transaction, and extent buffers of the 7548 * chunk tree if we call read_one_dev() while holding a lock on an 7549 * extent buffer of the chunk tree. Since we are mounting the filesystem 7550 * and at this point there can't be any concurrent task modifying the 7551 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7552 */ 7553 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7554 path->skip_locking = 1; 7555 7556 /* 7557 * Read all device items, and then all the chunk items. All 7558 * device items are found before any chunk item (their object id 7559 * is smaller than the lowest possible object id for a chunk 7560 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7561 */ 7562 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7563 key.offset = 0; 7564 key.type = 0; 7565 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7566 struct extent_buffer *node = path->nodes[1]; 7567 7568 leaf = path->nodes[0]; 7569 slot = path->slots[0]; 7570 7571 if (node) { 7572 if (last_ra_node != node->start) { 7573 readahead_tree_node_children(node); 7574 last_ra_node = node->start; 7575 } 7576 } 7577 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7578 struct btrfs_dev_item *dev_item; 7579 dev_item = btrfs_item_ptr(leaf, slot, 7580 struct btrfs_dev_item); 7581 ret = read_one_dev(leaf, dev_item); 7582 if (ret) 7583 goto error; 7584 total_dev++; 7585 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7586 struct btrfs_chunk *chunk; 7587 7588 /* 7589 * We are only called at mount time, so no need to take 7590 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7591 * we always lock first fs_info->chunk_mutex before 7592 * acquiring any locks on the chunk tree. This is a 7593 * requirement for chunk allocation, see the comment on 7594 * top of btrfs_chunk_alloc() for details. 7595 */ 7596 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7597 ret = read_one_chunk(&found_key, leaf, chunk); 7598 if (ret) 7599 goto error; 7600 } 7601 } 7602 /* Catch error found during iteration */ 7603 if (iter_ret < 0) { 7604 ret = iter_ret; 7605 goto error; 7606 } 7607 7608 /* 7609 * After loading chunk tree, we've got all device information, 7610 * do another round of validation checks. 7611 */ 7612 if (total_dev != fs_info->fs_devices->total_devices) { 7613 btrfs_warn(fs_info, 7614 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7615 btrfs_super_num_devices(fs_info->super_copy), 7616 total_dev); 7617 fs_info->fs_devices->total_devices = total_dev; 7618 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7619 } 7620 if (btrfs_super_total_bytes(fs_info->super_copy) < 7621 fs_info->fs_devices->total_rw_bytes) { 7622 btrfs_err(fs_info, 7623 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7624 btrfs_super_total_bytes(fs_info->super_copy), 7625 fs_info->fs_devices->total_rw_bytes); 7626 ret = -EINVAL; 7627 goto error; 7628 } 7629 ret = 0; 7630 error: 7631 mutex_unlock(&uuid_mutex); 7632 7633 btrfs_free_path(path); 7634 return ret; 7635 } 7636 7637 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7638 { 7639 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7640 struct btrfs_device *device; 7641 int ret = 0; 7642 7643 fs_devices->fs_info = fs_info; 7644 7645 mutex_lock(&fs_devices->device_list_mutex); 7646 list_for_each_entry(device, &fs_devices->devices, dev_list) 7647 device->fs_info = fs_info; 7648 7649 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7650 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7651 device->fs_info = fs_info; 7652 ret = btrfs_get_dev_zone_info(device, false); 7653 if (ret) 7654 break; 7655 } 7656 7657 seed_devs->fs_info = fs_info; 7658 } 7659 mutex_unlock(&fs_devices->device_list_mutex); 7660 7661 return ret; 7662 } 7663 7664 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7665 const struct btrfs_dev_stats_item *ptr, 7666 int index) 7667 { 7668 u64 val; 7669 7670 read_extent_buffer(eb, &val, 7671 offsetof(struct btrfs_dev_stats_item, values) + 7672 ((unsigned long)ptr) + (index * sizeof(u64)), 7673 sizeof(val)); 7674 return val; 7675 } 7676 7677 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7678 struct btrfs_dev_stats_item *ptr, 7679 int index, u64 val) 7680 { 7681 write_extent_buffer(eb, &val, 7682 offsetof(struct btrfs_dev_stats_item, values) + 7683 ((unsigned long)ptr) + (index * sizeof(u64)), 7684 sizeof(val)); 7685 } 7686 7687 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7688 struct btrfs_path *path) 7689 { 7690 struct btrfs_dev_stats_item *ptr; 7691 struct extent_buffer *eb; 7692 struct btrfs_key key; 7693 int item_size; 7694 int i, ret, slot; 7695 7696 if (!device->fs_info->dev_root) 7697 return 0; 7698 7699 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7700 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7701 key.offset = device->devid; 7702 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7703 if (ret) { 7704 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7705 btrfs_dev_stat_set(device, i, 0); 7706 device->dev_stats_valid = 1; 7707 btrfs_release_path(path); 7708 return ret < 0 ? ret : 0; 7709 } 7710 slot = path->slots[0]; 7711 eb = path->nodes[0]; 7712 item_size = btrfs_item_size(eb, slot); 7713 7714 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7715 7716 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7717 if (item_size >= (1 + i) * sizeof(__le64)) 7718 btrfs_dev_stat_set(device, i, 7719 btrfs_dev_stats_value(eb, ptr, i)); 7720 else 7721 btrfs_dev_stat_set(device, i, 0); 7722 } 7723 7724 device->dev_stats_valid = 1; 7725 btrfs_dev_stat_print_on_load(device); 7726 btrfs_release_path(path); 7727 7728 return 0; 7729 } 7730 7731 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7732 { 7733 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7734 struct btrfs_device *device; 7735 struct btrfs_path *path = NULL; 7736 int ret = 0; 7737 7738 path = btrfs_alloc_path(); 7739 if (!path) 7740 return -ENOMEM; 7741 7742 mutex_lock(&fs_devices->device_list_mutex); 7743 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7744 ret = btrfs_device_init_dev_stats(device, path); 7745 if (ret) 7746 goto out; 7747 } 7748 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7749 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7750 ret = btrfs_device_init_dev_stats(device, path); 7751 if (ret) 7752 goto out; 7753 } 7754 } 7755 out: 7756 mutex_unlock(&fs_devices->device_list_mutex); 7757 7758 btrfs_free_path(path); 7759 return ret; 7760 } 7761 7762 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7763 struct btrfs_device *device) 7764 { 7765 struct btrfs_fs_info *fs_info = trans->fs_info; 7766 struct btrfs_root *dev_root = fs_info->dev_root; 7767 struct btrfs_path *path; 7768 struct btrfs_key key; 7769 struct extent_buffer *eb; 7770 struct btrfs_dev_stats_item *ptr; 7771 int ret; 7772 int i; 7773 7774 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7775 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7776 key.offset = device->devid; 7777 7778 path = btrfs_alloc_path(); 7779 if (!path) 7780 return -ENOMEM; 7781 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7782 if (ret < 0) { 7783 btrfs_warn_in_rcu(fs_info, 7784 "error %d while searching for dev_stats item for device %s", 7785 ret, btrfs_dev_name(device)); 7786 goto out; 7787 } 7788 7789 if (ret == 0 && 7790 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7791 /* need to delete old one and insert a new one */ 7792 ret = btrfs_del_item(trans, dev_root, path); 7793 if (ret != 0) { 7794 btrfs_warn_in_rcu(fs_info, 7795 "delete too small dev_stats item for device %s failed %d", 7796 btrfs_dev_name(device), ret); 7797 goto out; 7798 } 7799 ret = 1; 7800 } 7801 7802 if (ret == 1) { 7803 /* need to insert a new item */ 7804 btrfs_release_path(path); 7805 ret = btrfs_insert_empty_item(trans, dev_root, path, 7806 &key, sizeof(*ptr)); 7807 if (ret < 0) { 7808 btrfs_warn_in_rcu(fs_info, 7809 "insert dev_stats item for device %s failed %d", 7810 btrfs_dev_name(device), ret); 7811 goto out; 7812 } 7813 } 7814 7815 eb = path->nodes[0]; 7816 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7817 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7818 btrfs_set_dev_stats_value(eb, ptr, i, 7819 btrfs_dev_stat_read(device, i)); 7820 btrfs_mark_buffer_dirty(trans, eb); 7821 7822 out: 7823 btrfs_free_path(path); 7824 return ret; 7825 } 7826 7827 /* 7828 * called from commit_transaction. Writes all changed device stats to disk. 7829 */ 7830 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7831 { 7832 struct btrfs_fs_info *fs_info = trans->fs_info; 7833 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7834 struct btrfs_device *device; 7835 int stats_cnt; 7836 int ret = 0; 7837 7838 mutex_lock(&fs_devices->device_list_mutex); 7839 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7840 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7841 if (!device->dev_stats_valid || stats_cnt == 0) 7842 continue; 7843 7844 7845 /* 7846 * There is a LOAD-LOAD control dependency between the value of 7847 * dev_stats_ccnt and updating the on-disk values which requires 7848 * reading the in-memory counters. Such control dependencies 7849 * require explicit read memory barriers. 7850 * 7851 * This memory barriers pairs with smp_mb__before_atomic in 7852 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7853 * barrier implied by atomic_xchg in 7854 * btrfs_dev_stats_read_and_reset 7855 */ 7856 smp_rmb(); 7857 7858 ret = update_dev_stat_item(trans, device); 7859 if (!ret) 7860 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7861 } 7862 mutex_unlock(&fs_devices->device_list_mutex); 7863 7864 return ret; 7865 } 7866 7867 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7868 { 7869 btrfs_dev_stat_inc(dev, index); 7870 7871 if (!dev->dev_stats_valid) 7872 return; 7873 btrfs_err_rl_in_rcu(dev->fs_info, 7874 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7875 btrfs_dev_name(dev), 7876 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7877 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7878 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7879 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7880 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7881 } 7882 7883 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7884 { 7885 int i; 7886 7887 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7888 if (btrfs_dev_stat_read(dev, i) != 0) 7889 break; 7890 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7891 return; /* all values == 0, suppress message */ 7892 7893 btrfs_info_in_rcu(dev->fs_info, 7894 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7895 btrfs_dev_name(dev), 7896 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7897 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7898 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7899 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7900 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7901 } 7902 7903 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7904 struct btrfs_ioctl_get_dev_stats *stats) 7905 { 7906 BTRFS_DEV_LOOKUP_ARGS(args); 7907 struct btrfs_device *dev; 7908 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7909 int i; 7910 7911 mutex_lock(&fs_devices->device_list_mutex); 7912 args.devid = stats->devid; 7913 dev = btrfs_find_device(fs_info->fs_devices, &args); 7914 mutex_unlock(&fs_devices->device_list_mutex); 7915 7916 if (!dev) { 7917 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7918 return -ENODEV; 7919 } else if (!dev->dev_stats_valid) { 7920 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7921 return -ENODEV; 7922 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7923 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7924 if (stats->nr_items > i) 7925 stats->values[i] = 7926 btrfs_dev_stat_read_and_reset(dev, i); 7927 else 7928 btrfs_dev_stat_set(dev, i, 0); 7929 } 7930 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7931 current->comm, task_pid_nr(current)); 7932 } else { 7933 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7934 if (stats->nr_items > i) 7935 stats->values[i] = btrfs_dev_stat_read(dev, i); 7936 } 7937 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7938 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7939 return 0; 7940 } 7941 7942 /* 7943 * Update the size and bytes used for each device where it changed. This is 7944 * delayed since we would otherwise get errors while writing out the 7945 * superblocks. 7946 * 7947 * Must be invoked during transaction commit. 7948 */ 7949 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7950 { 7951 struct btrfs_device *curr, *next; 7952 7953 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7954 7955 if (list_empty(&trans->dev_update_list)) 7956 return; 7957 7958 /* 7959 * We don't need the device_list_mutex here. This list is owned by the 7960 * transaction and the transaction must complete before the device is 7961 * released. 7962 */ 7963 mutex_lock(&trans->fs_info->chunk_mutex); 7964 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7965 post_commit_list) { 7966 list_del_init(&curr->post_commit_list); 7967 curr->commit_total_bytes = curr->disk_total_bytes; 7968 curr->commit_bytes_used = curr->bytes_used; 7969 } 7970 mutex_unlock(&trans->fs_info->chunk_mutex); 7971 } 7972 7973 /* 7974 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7975 */ 7976 int btrfs_bg_type_to_factor(u64 flags) 7977 { 7978 const int index = btrfs_bg_flags_to_raid_index(flags); 7979 7980 return btrfs_raid_array[index].ncopies; 7981 } 7982 7983 7984 7985 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7986 u64 chunk_offset, u64 devid, 7987 u64 physical_offset, u64 physical_len) 7988 { 7989 struct btrfs_dev_lookup_args args = { .devid = devid }; 7990 struct btrfs_chunk_map *map; 7991 struct btrfs_device *dev; 7992 u64 stripe_len; 7993 bool found = false; 7994 int ret = 0; 7995 int i; 7996 7997 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7998 if (!map) { 7999 btrfs_err(fs_info, 8000 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8001 physical_offset, devid); 8002 ret = -EUCLEAN; 8003 goto out; 8004 } 8005 8006 stripe_len = btrfs_calc_stripe_length(map); 8007 if (physical_len != stripe_len) { 8008 btrfs_err(fs_info, 8009 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8010 physical_offset, devid, map->start, physical_len, 8011 stripe_len); 8012 ret = -EUCLEAN; 8013 goto out; 8014 } 8015 8016 /* 8017 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 8018 * space. Although kernel can handle it without problem, better to warn 8019 * the users. 8020 */ 8021 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 8022 btrfs_warn(fs_info, 8023 "devid %llu physical %llu len %llu inside the reserved space", 8024 devid, physical_offset, physical_len); 8025 8026 for (i = 0; i < map->num_stripes; i++) { 8027 if (map->stripes[i].dev->devid == devid && 8028 map->stripes[i].physical == physical_offset) { 8029 found = true; 8030 if (map->verified_stripes >= map->num_stripes) { 8031 btrfs_err(fs_info, 8032 "too many dev extents for chunk %llu found", 8033 map->start); 8034 ret = -EUCLEAN; 8035 goto out; 8036 } 8037 map->verified_stripes++; 8038 break; 8039 } 8040 } 8041 if (!found) { 8042 btrfs_err(fs_info, 8043 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8044 physical_offset, devid); 8045 ret = -EUCLEAN; 8046 } 8047 8048 /* Make sure no dev extent is beyond device boundary */ 8049 dev = btrfs_find_device(fs_info->fs_devices, &args); 8050 if (!dev) { 8051 btrfs_err(fs_info, "failed to find devid %llu", devid); 8052 ret = -EUCLEAN; 8053 goto out; 8054 } 8055 8056 if (physical_offset + physical_len > dev->disk_total_bytes) { 8057 btrfs_err(fs_info, 8058 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8059 devid, physical_offset, physical_len, 8060 dev->disk_total_bytes); 8061 ret = -EUCLEAN; 8062 goto out; 8063 } 8064 8065 if (dev->zone_info) { 8066 u64 zone_size = dev->zone_info->zone_size; 8067 8068 if (!IS_ALIGNED(physical_offset, zone_size) || 8069 !IS_ALIGNED(physical_len, zone_size)) { 8070 btrfs_err(fs_info, 8071 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8072 devid, physical_offset, physical_len); 8073 ret = -EUCLEAN; 8074 goto out; 8075 } 8076 } 8077 8078 out: 8079 btrfs_free_chunk_map(map); 8080 return ret; 8081 } 8082 8083 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8084 { 8085 struct rb_node *node; 8086 int ret = 0; 8087 8088 read_lock(&fs_info->mapping_tree_lock); 8089 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8090 struct btrfs_chunk_map *map; 8091 8092 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8093 if (map->num_stripes != map->verified_stripes) { 8094 btrfs_err(fs_info, 8095 "chunk %llu has missing dev extent, have %d expect %d", 8096 map->start, map->verified_stripes, map->num_stripes); 8097 ret = -EUCLEAN; 8098 goto out; 8099 } 8100 } 8101 out: 8102 read_unlock(&fs_info->mapping_tree_lock); 8103 return ret; 8104 } 8105 8106 /* 8107 * Ensure that all dev extents are mapped to correct chunk, otherwise 8108 * later chunk allocation/free would cause unexpected behavior. 8109 * 8110 * NOTE: This will iterate through the whole device tree, which should be of 8111 * the same size level as the chunk tree. This slightly increases mount time. 8112 */ 8113 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8114 { 8115 struct btrfs_path *path; 8116 struct btrfs_root *root = fs_info->dev_root; 8117 struct btrfs_key key; 8118 u64 prev_devid = 0; 8119 u64 prev_dev_ext_end = 0; 8120 int ret = 0; 8121 8122 /* 8123 * We don't have a dev_root because we mounted with ignorebadroots and 8124 * failed to load the root, so we want to skip the verification in this 8125 * case for sure. 8126 * 8127 * However if the dev root is fine, but the tree itself is corrupted 8128 * we'd still fail to mount. This verification is only to make sure 8129 * writes can happen safely, so instead just bypass this check 8130 * completely in the case of IGNOREBADROOTS. 8131 */ 8132 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8133 return 0; 8134 8135 key.objectid = 1; 8136 key.type = BTRFS_DEV_EXTENT_KEY; 8137 key.offset = 0; 8138 8139 path = btrfs_alloc_path(); 8140 if (!path) 8141 return -ENOMEM; 8142 8143 path->reada = READA_FORWARD; 8144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8145 if (ret < 0) 8146 goto out; 8147 8148 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8149 ret = btrfs_next_leaf(root, path); 8150 if (ret < 0) 8151 goto out; 8152 /* No dev extents at all? Not good */ 8153 if (ret > 0) { 8154 ret = -EUCLEAN; 8155 goto out; 8156 } 8157 } 8158 while (1) { 8159 struct extent_buffer *leaf = path->nodes[0]; 8160 struct btrfs_dev_extent *dext; 8161 int slot = path->slots[0]; 8162 u64 chunk_offset; 8163 u64 physical_offset; 8164 u64 physical_len; 8165 u64 devid; 8166 8167 btrfs_item_key_to_cpu(leaf, &key, slot); 8168 if (key.type != BTRFS_DEV_EXTENT_KEY) 8169 break; 8170 devid = key.objectid; 8171 physical_offset = key.offset; 8172 8173 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8174 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8175 physical_len = btrfs_dev_extent_length(leaf, dext); 8176 8177 /* Check if this dev extent overlaps with the previous one */ 8178 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8179 btrfs_err(fs_info, 8180 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8181 devid, physical_offset, prev_dev_ext_end); 8182 ret = -EUCLEAN; 8183 goto out; 8184 } 8185 8186 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8187 physical_offset, physical_len); 8188 if (ret < 0) 8189 goto out; 8190 prev_devid = devid; 8191 prev_dev_ext_end = physical_offset + physical_len; 8192 8193 ret = btrfs_next_item(root, path); 8194 if (ret < 0) 8195 goto out; 8196 if (ret > 0) { 8197 ret = 0; 8198 break; 8199 } 8200 } 8201 8202 /* Ensure all chunks have corresponding dev extents */ 8203 ret = verify_chunk_dev_extent_mapping(fs_info); 8204 out: 8205 btrfs_free_path(path); 8206 return ret; 8207 } 8208 8209 /* 8210 * Check whether the given block group or device is pinned by any inode being 8211 * used as a swapfile. 8212 */ 8213 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8214 { 8215 struct btrfs_swapfile_pin *sp; 8216 struct rb_node *node; 8217 8218 spin_lock(&fs_info->swapfile_pins_lock); 8219 node = fs_info->swapfile_pins.rb_node; 8220 while (node) { 8221 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8222 if (ptr < sp->ptr) 8223 node = node->rb_left; 8224 else if (ptr > sp->ptr) 8225 node = node->rb_right; 8226 else 8227 break; 8228 } 8229 spin_unlock(&fs_info->swapfile_pins_lock); 8230 return node != NULL; 8231 } 8232 8233 static int relocating_repair_kthread(void *data) 8234 { 8235 struct btrfs_block_group *cache = data; 8236 struct btrfs_fs_info *fs_info = cache->fs_info; 8237 u64 target; 8238 int ret = 0; 8239 8240 target = cache->start; 8241 btrfs_put_block_group(cache); 8242 8243 sb_start_write(fs_info->sb); 8244 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8245 btrfs_info(fs_info, 8246 "zoned: skip relocating block group %llu to repair: EBUSY", 8247 target); 8248 sb_end_write(fs_info->sb); 8249 return -EBUSY; 8250 } 8251 8252 mutex_lock(&fs_info->reclaim_bgs_lock); 8253 8254 /* Ensure block group still exists */ 8255 cache = btrfs_lookup_block_group(fs_info, target); 8256 if (!cache) 8257 goto out; 8258 8259 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8260 goto out; 8261 8262 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8263 if (ret < 0) 8264 goto out; 8265 8266 btrfs_info(fs_info, 8267 "zoned: relocating block group %llu to repair IO failure", 8268 target); 8269 ret = btrfs_relocate_chunk(fs_info, target); 8270 8271 out: 8272 if (cache) 8273 btrfs_put_block_group(cache); 8274 mutex_unlock(&fs_info->reclaim_bgs_lock); 8275 btrfs_exclop_finish(fs_info); 8276 sb_end_write(fs_info->sb); 8277 8278 return ret; 8279 } 8280 8281 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8282 { 8283 struct btrfs_block_group *cache; 8284 8285 if (!btrfs_is_zoned(fs_info)) 8286 return false; 8287 8288 /* Do not attempt to repair in degraded state */ 8289 if (btrfs_test_opt(fs_info, DEGRADED)) 8290 return true; 8291 8292 cache = btrfs_lookup_block_group(fs_info, logical); 8293 if (!cache) 8294 return true; 8295 8296 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8297 btrfs_put_block_group(cache); 8298 return true; 8299 } 8300 8301 kthread_run(relocating_repair_kthread, cache, 8302 "btrfs-relocating-repair"); 8303 8304 return true; 8305 } 8306 8307 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8308 struct btrfs_io_stripe *smap, 8309 u64 logical) 8310 { 8311 int data_stripes = nr_bioc_data_stripes(bioc); 8312 int i; 8313 8314 for (i = 0; i < data_stripes; i++) { 8315 u64 stripe_start = bioc->full_stripe_logical + 8316 btrfs_stripe_nr_to_offset(i); 8317 8318 if (logical >= stripe_start && 8319 logical < stripe_start + BTRFS_STRIPE_LEN) 8320 break; 8321 } 8322 ASSERT(i < data_stripes); 8323 smap->dev = bioc->stripes[i].dev; 8324 smap->physical = bioc->stripes[i].physical + 8325 ((logical - bioc->full_stripe_logical) & 8326 BTRFS_STRIPE_LEN_MASK); 8327 } 8328 8329 /* 8330 * Map a repair write into a single device. 8331 * 8332 * A repair write is triggered by read time repair or scrub, which would only 8333 * update the contents of a single device. 8334 * Not update any other mirrors nor go through RMW path. 8335 * 8336 * Callers should ensure: 8337 * 8338 * - Call btrfs_bio_counter_inc_blocked() first 8339 * - The range does not cross stripe boundary 8340 * - Has a valid @mirror_num passed in. 8341 */ 8342 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8343 struct btrfs_io_stripe *smap, u64 logical, 8344 u32 length, int mirror_num) 8345 { 8346 struct btrfs_io_context *bioc = NULL; 8347 u64 map_length = length; 8348 int mirror_ret = mirror_num; 8349 int ret; 8350 8351 ASSERT(mirror_num > 0); 8352 8353 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8354 &bioc, smap, &mirror_ret); 8355 if (ret < 0) 8356 return ret; 8357 8358 /* The map range should not cross stripe boundary. */ 8359 ASSERT(map_length >= length); 8360 8361 /* Already mapped to single stripe. */ 8362 if (!bioc) 8363 goto out; 8364 8365 /* Map the RAID56 multi-stripe writes to a single one. */ 8366 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8367 map_raid56_repair_block(bioc, smap, logical); 8368 goto out; 8369 } 8370 8371 ASSERT(mirror_num <= bioc->num_stripes); 8372 smap->dev = bioc->stripes[mirror_num - 1].dev; 8373 smap->physical = bioc->stripes[mirror_num - 1].physical; 8374 out: 8375 btrfs_put_bioc(bioc); 8376 ASSERT(smap->dev); 8377 return 0; 8378 } 8379