xref: /linux/fs/btrfs/volumes.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
33 
34 struct map_lookup {
35 	u64 type;
36 	int io_align;
37 	int io_width;
38 	int stripe_len;
39 	int sector_size;
40 	int num_stripes;
41 	int sub_stripes;
42 	struct btrfs_bio_stripe stripes[];
43 };
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 			    (sizeof(struct btrfs_bio_stripe) * (n)))
52 
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 void btrfs_lock_volumes(void)
57 {
58 	mutex_lock(&uuid_mutex);
59 }
60 
61 void btrfs_unlock_volumes(void)
62 {
63 	mutex_unlock(&uuid_mutex);
64 }
65 
66 static void lock_chunks(struct btrfs_root *root)
67 {
68 	mutex_lock(&root->fs_info->chunk_mutex);
69 }
70 
71 static void unlock_chunks(struct btrfs_root *root)
72 {
73 	mutex_unlock(&root->fs_info->chunk_mutex);
74 }
75 
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77 {
78 	struct btrfs_device *device;
79 	WARN_ON(fs_devices->opened);
80 	while (!list_empty(&fs_devices->devices)) {
81 		device = list_entry(fs_devices->devices.next,
82 				    struct btrfs_device, dev_list);
83 		list_del(&device->dev_list);
84 		kfree(device->name);
85 		kfree(device);
86 	}
87 	kfree(fs_devices);
88 }
89 
90 int btrfs_cleanup_fs_uuids(void)
91 {
92 	struct btrfs_fs_devices *fs_devices;
93 
94 	while (!list_empty(&fs_uuids)) {
95 		fs_devices = list_entry(fs_uuids.next,
96 					struct btrfs_fs_devices, list);
97 		list_del(&fs_devices->list);
98 		free_fs_devices(fs_devices);
99 	}
100 	return 0;
101 }
102 
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104 						   u64 devid, u8 *uuid)
105 {
106 	struct btrfs_device *dev;
107 
108 	list_for_each_entry(dev, head, dev_list) {
109 		if (dev->devid == devid &&
110 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
111 			return dev;
112 		}
113 	}
114 	return NULL;
115 }
116 
117 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
118 {
119 	struct btrfs_fs_devices *fs_devices;
120 
121 	list_for_each_entry(fs_devices, &fs_uuids, list) {
122 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 			return fs_devices;
124 	}
125 	return NULL;
126 }
127 
128 static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 			struct bio *head, struct bio *tail)
130 {
131 
132 	struct bio *old_head;
133 
134 	old_head = pending_bios->head;
135 	pending_bios->head = head;
136 	if (pending_bios->tail)
137 		tail->bi_next = old_head;
138 	else
139 		pending_bios->tail = tail;
140 }
141 
142 /*
143  * we try to collect pending bios for a device so we don't get a large
144  * number of procs sending bios down to the same device.  This greatly
145  * improves the schedulers ability to collect and merge the bios.
146  *
147  * But, it also turns into a long list of bios to process and that is sure
148  * to eventually make the worker thread block.  The solution here is to
149  * make some progress and then put this work struct back at the end of
150  * the list if the block device is congested.  This way, multiple devices
151  * can make progress from a single worker thread.
152  */
153 static noinline int run_scheduled_bios(struct btrfs_device *device)
154 {
155 	struct bio *pending;
156 	struct backing_dev_info *bdi;
157 	struct btrfs_fs_info *fs_info;
158 	struct btrfs_pending_bios *pending_bios;
159 	struct bio *tail;
160 	struct bio *cur;
161 	int again = 0;
162 	unsigned long num_run;
163 	unsigned long num_sync_run;
164 	unsigned long batch_run = 0;
165 	unsigned long limit;
166 	unsigned long last_waited = 0;
167 	int force_reg = 0;
168 
169 	bdi = blk_get_backing_dev_info(device->bdev);
170 	fs_info = device->dev_root->fs_info;
171 	limit = btrfs_async_submit_limit(fs_info);
172 	limit = limit * 2 / 3;
173 
174 	/* we want to make sure that every time we switch from the sync
175 	 * list to the normal list, we unplug
176 	 */
177 	num_sync_run = 0;
178 
179 loop:
180 	spin_lock(&device->io_lock);
181 
182 loop_lock:
183 	num_run = 0;
184 
185 	/* take all the bios off the list at once and process them
186 	 * later on (without the lock held).  But, remember the
187 	 * tail and other pointers so the bios can be properly reinserted
188 	 * into the list if we hit congestion
189 	 */
190 	if (!force_reg && device->pending_sync_bios.head) {
191 		pending_bios = &device->pending_sync_bios;
192 		force_reg = 1;
193 	} else {
194 		pending_bios = &device->pending_bios;
195 		force_reg = 0;
196 	}
197 
198 	pending = pending_bios->head;
199 	tail = pending_bios->tail;
200 	WARN_ON(pending && !tail);
201 
202 	/*
203 	 * if pending was null this time around, no bios need processing
204 	 * at all and we can stop.  Otherwise it'll loop back up again
205 	 * and do an additional check so no bios are missed.
206 	 *
207 	 * device->running_pending is used to synchronize with the
208 	 * schedule_bio code.
209 	 */
210 	if (device->pending_sync_bios.head == NULL &&
211 	    device->pending_bios.head == NULL) {
212 		again = 0;
213 		device->running_pending = 0;
214 	} else {
215 		again = 1;
216 		device->running_pending = 1;
217 	}
218 
219 	pending_bios->head = NULL;
220 	pending_bios->tail = NULL;
221 
222 	spin_unlock(&device->io_lock);
223 
224 	/*
225 	 * if we're doing the regular priority list, make sure we unplug
226 	 * for any high prio bios we've sent down
227 	 */
228 	if (pending_bios == &device->pending_bios && num_sync_run > 0) {
229 		num_sync_run = 0;
230 		blk_run_backing_dev(bdi, NULL);
231 	}
232 
233 	while (pending) {
234 
235 		rmb();
236 		/* we want to work on both lists, but do more bios on the
237 		 * sync list than the regular list
238 		 */
239 		if ((num_run > 32 &&
240 		    pending_bios != &device->pending_sync_bios &&
241 		    device->pending_sync_bios.head) ||
242 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
243 		    device->pending_bios.head)) {
244 			spin_lock(&device->io_lock);
245 			requeue_list(pending_bios, pending, tail);
246 			goto loop_lock;
247 		}
248 
249 		cur = pending;
250 		pending = pending->bi_next;
251 		cur->bi_next = NULL;
252 		atomic_dec(&fs_info->nr_async_bios);
253 
254 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
255 		    waitqueue_active(&fs_info->async_submit_wait))
256 			wake_up(&fs_info->async_submit_wait);
257 
258 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
259 		submit_bio(cur->bi_rw, cur);
260 		num_run++;
261 		batch_run++;
262 
263 		if (bio_sync(cur))
264 			num_sync_run++;
265 
266 		if (need_resched()) {
267 			if (num_sync_run) {
268 				blk_run_backing_dev(bdi, NULL);
269 				num_sync_run = 0;
270 			}
271 			cond_resched();
272 		}
273 
274 		/*
275 		 * we made progress, there is more work to do and the bdi
276 		 * is now congested.  Back off and let other work structs
277 		 * run instead
278 		 */
279 		if (pending && bdi_write_congested(bdi) && batch_run > 32 &&
280 		    fs_info->fs_devices->open_devices > 1) {
281 			struct io_context *ioc;
282 
283 			ioc = current->io_context;
284 
285 			/*
286 			 * the main goal here is that we don't want to
287 			 * block if we're going to be able to submit
288 			 * more requests without blocking.
289 			 *
290 			 * This code does two great things, it pokes into
291 			 * the elevator code from a filesystem _and_
292 			 * it makes assumptions about how batching works.
293 			 */
294 			if (ioc && ioc->nr_batch_requests > 0 &&
295 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
296 			    (last_waited == 0 ||
297 			     ioc->last_waited == last_waited)) {
298 				/*
299 				 * we want to go through our batch of
300 				 * requests and stop.  So, we copy out
301 				 * the ioc->last_waited time and test
302 				 * against it before looping
303 				 */
304 				last_waited = ioc->last_waited;
305 				if (need_resched()) {
306 					if (num_sync_run) {
307 						blk_run_backing_dev(bdi, NULL);
308 						num_sync_run = 0;
309 					}
310 					cond_resched();
311 				}
312 				continue;
313 			}
314 			spin_lock(&device->io_lock);
315 			requeue_list(pending_bios, pending, tail);
316 			device->running_pending = 1;
317 
318 			spin_unlock(&device->io_lock);
319 			btrfs_requeue_work(&device->work);
320 			goto done;
321 		}
322 	}
323 
324 	if (num_sync_run) {
325 		num_sync_run = 0;
326 		blk_run_backing_dev(bdi, NULL);
327 	}
328 
329 	cond_resched();
330 	if (again)
331 		goto loop;
332 
333 	spin_lock(&device->io_lock);
334 	if (device->pending_bios.head || device->pending_sync_bios.head)
335 		goto loop_lock;
336 	spin_unlock(&device->io_lock);
337 
338 	/*
339 	 * IO has already been through a long path to get here.  Checksumming,
340 	 * async helper threads, perhaps compression.  We've done a pretty
341 	 * good job of collecting a batch of IO and should just unplug
342 	 * the device right away.
343 	 *
344 	 * This will help anyone who is waiting on the IO, they might have
345 	 * already unplugged, but managed to do so before the bio they
346 	 * cared about found its way down here.
347 	 */
348 	blk_run_backing_dev(bdi, NULL);
349 done:
350 	return 0;
351 }
352 
353 static void pending_bios_fn(struct btrfs_work *work)
354 {
355 	struct btrfs_device *device;
356 
357 	device = container_of(work, struct btrfs_device, work);
358 	run_scheduled_bios(device);
359 }
360 
361 static noinline int device_list_add(const char *path,
362 			   struct btrfs_super_block *disk_super,
363 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
364 {
365 	struct btrfs_device *device;
366 	struct btrfs_fs_devices *fs_devices;
367 	u64 found_transid = btrfs_super_generation(disk_super);
368 
369 	fs_devices = find_fsid(disk_super->fsid);
370 	if (!fs_devices) {
371 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
372 		if (!fs_devices)
373 			return -ENOMEM;
374 		INIT_LIST_HEAD(&fs_devices->devices);
375 		INIT_LIST_HEAD(&fs_devices->alloc_list);
376 		list_add(&fs_devices->list, &fs_uuids);
377 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
378 		fs_devices->latest_devid = devid;
379 		fs_devices->latest_trans = found_transid;
380 		mutex_init(&fs_devices->device_list_mutex);
381 		device = NULL;
382 	} else {
383 		device = __find_device(&fs_devices->devices, devid,
384 				       disk_super->dev_item.uuid);
385 	}
386 	if (!device) {
387 		if (fs_devices->opened)
388 			return -EBUSY;
389 
390 		device = kzalloc(sizeof(*device), GFP_NOFS);
391 		if (!device) {
392 			/* we can safely leave the fs_devices entry around */
393 			return -ENOMEM;
394 		}
395 		device->devid = devid;
396 		device->work.func = pending_bios_fn;
397 		memcpy(device->uuid, disk_super->dev_item.uuid,
398 		       BTRFS_UUID_SIZE);
399 		device->barriers = 1;
400 		spin_lock_init(&device->io_lock);
401 		device->name = kstrdup(path, GFP_NOFS);
402 		if (!device->name) {
403 			kfree(device);
404 			return -ENOMEM;
405 		}
406 		INIT_LIST_HEAD(&device->dev_alloc_list);
407 
408 		mutex_lock(&fs_devices->device_list_mutex);
409 		list_add(&device->dev_list, &fs_devices->devices);
410 		mutex_unlock(&fs_devices->device_list_mutex);
411 
412 		device->fs_devices = fs_devices;
413 		fs_devices->num_devices++;
414 	}
415 
416 	if (found_transid > fs_devices->latest_trans) {
417 		fs_devices->latest_devid = devid;
418 		fs_devices->latest_trans = found_transid;
419 	}
420 	*fs_devices_ret = fs_devices;
421 	return 0;
422 }
423 
424 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
425 {
426 	struct btrfs_fs_devices *fs_devices;
427 	struct btrfs_device *device;
428 	struct btrfs_device *orig_dev;
429 
430 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
431 	if (!fs_devices)
432 		return ERR_PTR(-ENOMEM);
433 
434 	INIT_LIST_HEAD(&fs_devices->devices);
435 	INIT_LIST_HEAD(&fs_devices->alloc_list);
436 	INIT_LIST_HEAD(&fs_devices->list);
437 	mutex_init(&fs_devices->device_list_mutex);
438 	fs_devices->latest_devid = orig->latest_devid;
439 	fs_devices->latest_trans = orig->latest_trans;
440 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
441 
442 	mutex_lock(&orig->device_list_mutex);
443 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
444 		device = kzalloc(sizeof(*device), GFP_NOFS);
445 		if (!device)
446 			goto error;
447 
448 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
449 		if (!device->name)
450 			goto error;
451 
452 		device->devid = orig_dev->devid;
453 		device->work.func = pending_bios_fn;
454 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
455 		device->barriers = 1;
456 		spin_lock_init(&device->io_lock);
457 		INIT_LIST_HEAD(&device->dev_list);
458 		INIT_LIST_HEAD(&device->dev_alloc_list);
459 
460 		list_add(&device->dev_list, &fs_devices->devices);
461 		device->fs_devices = fs_devices;
462 		fs_devices->num_devices++;
463 	}
464 	mutex_unlock(&orig->device_list_mutex);
465 	return fs_devices;
466 error:
467 	mutex_unlock(&orig->device_list_mutex);
468 	free_fs_devices(fs_devices);
469 	return ERR_PTR(-ENOMEM);
470 }
471 
472 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
473 {
474 	struct btrfs_device *device, *next;
475 
476 	mutex_lock(&uuid_mutex);
477 again:
478 	mutex_lock(&fs_devices->device_list_mutex);
479 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
480 		if (device->in_fs_metadata)
481 			continue;
482 
483 		if (device->bdev) {
484 			close_bdev_exclusive(device->bdev, device->mode);
485 			device->bdev = NULL;
486 			fs_devices->open_devices--;
487 		}
488 		if (device->writeable) {
489 			list_del_init(&device->dev_alloc_list);
490 			device->writeable = 0;
491 			fs_devices->rw_devices--;
492 		}
493 		list_del_init(&device->dev_list);
494 		fs_devices->num_devices--;
495 		kfree(device->name);
496 		kfree(device);
497 	}
498 	mutex_unlock(&fs_devices->device_list_mutex);
499 
500 	if (fs_devices->seed) {
501 		fs_devices = fs_devices->seed;
502 		goto again;
503 	}
504 
505 	mutex_unlock(&uuid_mutex);
506 	return 0;
507 }
508 
509 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
510 {
511 	struct btrfs_device *device;
512 
513 	if (--fs_devices->opened > 0)
514 		return 0;
515 
516 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
517 		if (device->bdev) {
518 			close_bdev_exclusive(device->bdev, device->mode);
519 			fs_devices->open_devices--;
520 		}
521 		if (device->writeable) {
522 			list_del_init(&device->dev_alloc_list);
523 			fs_devices->rw_devices--;
524 		}
525 
526 		device->bdev = NULL;
527 		device->writeable = 0;
528 		device->in_fs_metadata = 0;
529 	}
530 	WARN_ON(fs_devices->open_devices);
531 	WARN_ON(fs_devices->rw_devices);
532 	fs_devices->opened = 0;
533 	fs_devices->seeding = 0;
534 
535 	return 0;
536 }
537 
538 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
539 {
540 	struct btrfs_fs_devices *seed_devices = NULL;
541 	int ret;
542 
543 	mutex_lock(&uuid_mutex);
544 	ret = __btrfs_close_devices(fs_devices);
545 	if (!fs_devices->opened) {
546 		seed_devices = fs_devices->seed;
547 		fs_devices->seed = NULL;
548 	}
549 	mutex_unlock(&uuid_mutex);
550 
551 	while (seed_devices) {
552 		fs_devices = seed_devices;
553 		seed_devices = fs_devices->seed;
554 		__btrfs_close_devices(fs_devices);
555 		free_fs_devices(fs_devices);
556 	}
557 	return ret;
558 }
559 
560 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
561 				fmode_t flags, void *holder)
562 {
563 	struct block_device *bdev;
564 	struct list_head *head = &fs_devices->devices;
565 	struct btrfs_device *device;
566 	struct block_device *latest_bdev = NULL;
567 	struct buffer_head *bh;
568 	struct btrfs_super_block *disk_super;
569 	u64 latest_devid = 0;
570 	u64 latest_transid = 0;
571 	u64 devid;
572 	int seeding = 1;
573 	int ret = 0;
574 
575 	list_for_each_entry(device, head, dev_list) {
576 		if (device->bdev)
577 			continue;
578 		if (!device->name)
579 			continue;
580 
581 		bdev = open_bdev_exclusive(device->name, flags, holder);
582 		if (IS_ERR(bdev)) {
583 			printk(KERN_INFO "open %s failed\n", device->name);
584 			goto error;
585 		}
586 		set_blocksize(bdev, 4096);
587 
588 		bh = btrfs_read_dev_super(bdev);
589 		if (!bh)
590 			goto error_close;
591 
592 		disk_super = (struct btrfs_super_block *)bh->b_data;
593 		devid = le64_to_cpu(disk_super->dev_item.devid);
594 		if (devid != device->devid)
595 			goto error_brelse;
596 
597 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
598 			   BTRFS_UUID_SIZE))
599 			goto error_brelse;
600 
601 		device->generation = btrfs_super_generation(disk_super);
602 		if (!latest_transid || device->generation > latest_transid) {
603 			latest_devid = devid;
604 			latest_transid = device->generation;
605 			latest_bdev = bdev;
606 		}
607 
608 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
609 			device->writeable = 0;
610 		} else {
611 			device->writeable = !bdev_read_only(bdev);
612 			seeding = 0;
613 		}
614 
615 		device->bdev = bdev;
616 		device->in_fs_metadata = 0;
617 		device->mode = flags;
618 
619 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
620 			fs_devices->rotating = 1;
621 
622 		fs_devices->open_devices++;
623 		if (device->writeable) {
624 			fs_devices->rw_devices++;
625 			list_add(&device->dev_alloc_list,
626 				 &fs_devices->alloc_list);
627 		}
628 		continue;
629 
630 error_brelse:
631 		brelse(bh);
632 error_close:
633 		close_bdev_exclusive(bdev, FMODE_READ);
634 error:
635 		continue;
636 	}
637 	if (fs_devices->open_devices == 0) {
638 		ret = -EIO;
639 		goto out;
640 	}
641 	fs_devices->seeding = seeding;
642 	fs_devices->opened = 1;
643 	fs_devices->latest_bdev = latest_bdev;
644 	fs_devices->latest_devid = latest_devid;
645 	fs_devices->latest_trans = latest_transid;
646 	fs_devices->total_rw_bytes = 0;
647 out:
648 	return ret;
649 }
650 
651 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
652 		       fmode_t flags, void *holder)
653 {
654 	int ret;
655 
656 	mutex_lock(&uuid_mutex);
657 	if (fs_devices->opened) {
658 		fs_devices->opened++;
659 		ret = 0;
660 	} else {
661 		ret = __btrfs_open_devices(fs_devices, flags, holder);
662 	}
663 	mutex_unlock(&uuid_mutex);
664 	return ret;
665 }
666 
667 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
668 			  struct btrfs_fs_devices **fs_devices_ret)
669 {
670 	struct btrfs_super_block *disk_super;
671 	struct block_device *bdev;
672 	struct buffer_head *bh;
673 	int ret;
674 	u64 devid;
675 	u64 transid;
676 
677 	mutex_lock(&uuid_mutex);
678 
679 	bdev = open_bdev_exclusive(path, flags, holder);
680 
681 	if (IS_ERR(bdev)) {
682 		ret = PTR_ERR(bdev);
683 		goto error;
684 	}
685 
686 	ret = set_blocksize(bdev, 4096);
687 	if (ret)
688 		goto error_close;
689 	bh = btrfs_read_dev_super(bdev);
690 	if (!bh) {
691 		ret = -EIO;
692 		goto error_close;
693 	}
694 	disk_super = (struct btrfs_super_block *)bh->b_data;
695 	devid = le64_to_cpu(disk_super->dev_item.devid);
696 	transid = btrfs_super_generation(disk_super);
697 	if (disk_super->label[0])
698 		printk(KERN_INFO "device label %s ", disk_super->label);
699 	else {
700 		/* FIXME, make a readl uuid parser */
701 		printk(KERN_INFO "device fsid %llx-%llx ",
702 		       *(unsigned long long *)disk_super->fsid,
703 		       *(unsigned long long *)(disk_super->fsid + 8));
704 	}
705 	printk(KERN_CONT "devid %llu transid %llu %s\n",
706 	       (unsigned long long)devid, (unsigned long long)transid, path);
707 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
708 
709 	brelse(bh);
710 error_close:
711 	close_bdev_exclusive(bdev, flags);
712 error:
713 	mutex_unlock(&uuid_mutex);
714 	return ret;
715 }
716 
717 /*
718  * this uses a pretty simple search, the expectation is that it is
719  * called very infrequently and that a given device has a small number
720  * of extents
721  */
722 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
723 					 struct btrfs_device *device,
724 					 u64 num_bytes, u64 *start)
725 {
726 	struct btrfs_key key;
727 	struct btrfs_root *root = device->dev_root;
728 	struct btrfs_dev_extent *dev_extent = NULL;
729 	struct btrfs_path *path;
730 	u64 hole_size = 0;
731 	u64 last_byte = 0;
732 	u64 search_start = 0;
733 	u64 search_end = device->total_bytes;
734 	int ret;
735 	int slot = 0;
736 	int start_found;
737 	struct extent_buffer *l;
738 
739 	path = btrfs_alloc_path();
740 	if (!path)
741 		return -ENOMEM;
742 	path->reada = 2;
743 	start_found = 0;
744 
745 	/* FIXME use last free of some kind */
746 
747 	/* we don't want to overwrite the superblock on the drive,
748 	 * so we make sure to start at an offset of at least 1MB
749 	 */
750 	search_start = max((u64)1024 * 1024, search_start);
751 
752 	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
753 		search_start = max(root->fs_info->alloc_start, search_start);
754 
755 	key.objectid = device->devid;
756 	key.offset = search_start;
757 	key.type = BTRFS_DEV_EXTENT_KEY;
758 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
759 	if (ret < 0)
760 		goto error;
761 	ret = btrfs_previous_item(root, path, 0, key.type);
762 	if (ret < 0)
763 		goto error;
764 	l = path->nodes[0];
765 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
766 	while (1) {
767 		l = path->nodes[0];
768 		slot = path->slots[0];
769 		if (slot >= btrfs_header_nritems(l)) {
770 			ret = btrfs_next_leaf(root, path);
771 			if (ret == 0)
772 				continue;
773 			if (ret < 0)
774 				goto error;
775 no_more_items:
776 			if (!start_found) {
777 				if (search_start >= search_end) {
778 					ret = -ENOSPC;
779 					goto error;
780 				}
781 				*start = search_start;
782 				start_found = 1;
783 				goto check_pending;
784 			}
785 			*start = last_byte > search_start ?
786 				last_byte : search_start;
787 			if (search_end <= *start) {
788 				ret = -ENOSPC;
789 				goto error;
790 			}
791 			goto check_pending;
792 		}
793 		btrfs_item_key_to_cpu(l, &key, slot);
794 
795 		if (key.objectid < device->devid)
796 			goto next;
797 
798 		if (key.objectid > device->devid)
799 			goto no_more_items;
800 
801 		if (key.offset >= search_start && key.offset > last_byte &&
802 		    start_found) {
803 			if (last_byte < search_start)
804 				last_byte = search_start;
805 			hole_size = key.offset - last_byte;
806 			if (key.offset > last_byte &&
807 			    hole_size >= num_bytes) {
808 				*start = last_byte;
809 				goto check_pending;
810 			}
811 		}
812 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
813 			goto next;
814 
815 		start_found = 1;
816 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
817 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
818 next:
819 		path->slots[0]++;
820 		cond_resched();
821 	}
822 check_pending:
823 	/* we have to make sure we didn't find an extent that has already
824 	 * been allocated by the map tree or the original allocation
825 	 */
826 	BUG_ON(*start < search_start);
827 
828 	if (*start + num_bytes > search_end) {
829 		ret = -ENOSPC;
830 		goto error;
831 	}
832 	/* check for pending inserts here */
833 	ret = 0;
834 
835 error:
836 	btrfs_free_path(path);
837 	return ret;
838 }
839 
840 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
841 			  struct btrfs_device *device,
842 			  u64 start)
843 {
844 	int ret;
845 	struct btrfs_path *path;
846 	struct btrfs_root *root = device->dev_root;
847 	struct btrfs_key key;
848 	struct btrfs_key found_key;
849 	struct extent_buffer *leaf = NULL;
850 	struct btrfs_dev_extent *extent = NULL;
851 
852 	path = btrfs_alloc_path();
853 	if (!path)
854 		return -ENOMEM;
855 
856 	key.objectid = device->devid;
857 	key.offset = start;
858 	key.type = BTRFS_DEV_EXTENT_KEY;
859 
860 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
861 	if (ret > 0) {
862 		ret = btrfs_previous_item(root, path, key.objectid,
863 					  BTRFS_DEV_EXTENT_KEY);
864 		BUG_ON(ret);
865 		leaf = path->nodes[0];
866 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
867 		extent = btrfs_item_ptr(leaf, path->slots[0],
868 					struct btrfs_dev_extent);
869 		BUG_ON(found_key.offset > start || found_key.offset +
870 		       btrfs_dev_extent_length(leaf, extent) < start);
871 		ret = 0;
872 	} else if (ret == 0) {
873 		leaf = path->nodes[0];
874 		extent = btrfs_item_ptr(leaf, path->slots[0],
875 					struct btrfs_dev_extent);
876 	}
877 	BUG_ON(ret);
878 
879 	if (device->bytes_used > 0)
880 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
881 	ret = btrfs_del_item(trans, root, path);
882 	BUG_ON(ret);
883 
884 	btrfs_free_path(path);
885 	return ret;
886 }
887 
888 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
889 			   struct btrfs_device *device,
890 			   u64 chunk_tree, u64 chunk_objectid,
891 			   u64 chunk_offset, u64 start, u64 num_bytes)
892 {
893 	int ret;
894 	struct btrfs_path *path;
895 	struct btrfs_root *root = device->dev_root;
896 	struct btrfs_dev_extent *extent;
897 	struct extent_buffer *leaf;
898 	struct btrfs_key key;
899 
900 	WARN_ON(!device->in_fs_metadata);
901 	path = btrfs_alloc_path();
902 	if (!path)
903 		return -ENOMEM;
904 
905 	key.objectid = device->devid;
906 	key.offset = start;
907 	key.type = BTRFS_DEV_EXTENT_KEY;
908 	ret = btrfs_insert_empty_item(trans, root, path, &key,
909 				      sizeof(*extent));
910 	BUG_ON(ret);
911 
912 	leaf = path->nodes[0];
913 	extent = btrfs_item_ptr(leaf, path->slots[0],
914 				struct btrfs_dev_extent);
915 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
916 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
917 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
918 
919 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
920 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
921 		    BTRFS_UUID_SIZE);
922 
923 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
924 	btrfs_mark_buffer_dirty(leaf);
925 	btrfs_free_path(path);
926 	return ret;
927 }
928 
929 static noinline int find_next_chunk(struct btrfs_root *root,
930 				    u64 objectid, u64 *offset)
931 {
932 	struct btrfs_path *path;
933 	int ret;
934 	struct btrfs_key key;
935 	struct btrfs_chunk *chunk;
936 	struct btrfs_key found_key;
937 
938 	path = btrfs_alloc_path();
939 	BUG_ON(!path);
940 
941 	key.objectid = objectid;
942 	key.offset = (u64)-1;
943 	key.type = BTRFS_CHUNK_ITEM_KEY;
944 
945 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
946 	if (ret < 0)
947 		goto error;
948 
949 	BUG_ON(ret == 0);
950 
951 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
952 	if (ret) {
953 		*offset = 0;
954 	} else {
955 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
956 				      path->slots[0]);
957 		if (found_key.objectid != objectid)
958 			*offset = 0;
959 		else {
960 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
961 					       struct btrfs_chunk);
962 			*offset = found_key.offset +
963 				btrfs_chunk_length(path->nodes[0], chunk);
964 		}
965 	}
966 	ret = 0;
967 error:
968 	btrfs_free_path(path);
969 	return ret;
970 }
971 
972 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
973 {
974 	int ret;
975 	struct btrfs_key key;
976 	struct btrfs_key found_key;
977 	struct btrfs_path *path;
978 
979 	root = root->fs_info->chunk_root;
980 
981 	path = btrfs_alloc_path();
982 	if (!path)
983 		return -ENOMEM;
984 
985 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
986 	key.type = BTRFS_DEV_ITEM_KEY;
987 	key.offset = (u64)-1;
988 
989 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
990 	if (ret < 0)
991 		goto error;
992 
993 	BUG_ON(ret == 0);
994 
995 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
996 				  BTRFS_DEV_ITEM_KEY);
997 	if (ret) {
998 		*objectid = 1;
999 	} else {
1000 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1001 				      path->slots[0]);
1002 		*objectid = found_key.offset + 1;
1003 	}
1004 	ret = 0;
1005 error:
1006 	btrfs_free_path(path);
1007 	return ret;
1008 }
1009 
1010 /*
1011  * the device information is stored in the chunk root
1012  * the btrfs_device struct should be fully filled in
1013  */
1014 int btrfs_add_device(struct btrfs_trans_handle *trans,
1015 		     struct btrfs_root *root,
1016 		     struct btrfs_device *device)
1017 {
1018 	int ret;
1019 	struct btrfs_path *path;
1020 	struct btrfs_dev_item *dev_item;
1021 	struct extent_buffer *leaf;
1022 	struct btrfs_key key;
1023 	unsigned long ptr;
1024 
1025 	root = root->fs_info->chunk_root;
1026 
1027 	path = btrfs_alloc_path();
1028 	if (!path)
1029 		return -ENOMEM;
1030 
1031 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1032 	key.type = BTRFS_DEV_ITEM_KEY;
1033 	key.offset = device->devid;
1034 
1035 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1036 				      sizeof(*dev_item));
1037 	if (ret)
1038 		goto out;
1039 
1040 	leaf = path->nodes[0];
1041 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1042 
1043 	btrfs_set_device_id(leaf, dev_item, device->devid);
1044 	btrfs_set_device_generation(leaf, dev_item, 0);
1045 	btrfs_set_device_type(leaf, dev_item, device->type);
1046 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1047 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1048 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1049 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1050 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1051 	btrfs_set_device_group(leaf, dev_item, 0);
1052 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1053 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1054 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1055 
1056 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1057 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1058 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1059 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1060 	btrfs_mark_buffer_dirty(leaf);
1061 
1062 	ret = 0;
1063 out:
1064 	btrfs_free_path(path);
1065 	return ret;
1066 }
1067 
1068 static int btrfs_rm_dev_item(struct btrfs_root *root,
1069 			     struct btrfs_device *device)
1070 {
1071 	int ret;
1072 	struct btrfs_path *path;
1073 	struct btrfs_key key;
1074 	struct btrfs_trans_handle *trans;
1075 
1076 	root = root->fs_info->chunk_root;
1077 
1078 	path = btrfs_alloc_path();
1079 	if (!path)
1080 		return -ENOMEM;
1081 
1082 	trans = btrfs_start_transaction(root, 1);
1083 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1084 	key.type = BTRFS_DEV_ITEM_KEY;
1085 	key.offset = device->devid;
1086 	lock_chunks(root);
1087 
1088 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089 	if (ret < 0)
1090 		goto out;
1091 
1092 	if (ret > 0) {
1093 		ret = -ENOENT;
1094 		goto out;
1095 	}
1096 
1097 	ret = btrfs_del_item(trans, root, path);
1098 	if (ret)
1099 		goto out;
1100 out:
1101 	btrfs_free_path(path);
1102 	unlock_chunks(root);
1103 	btrfs_commit_transaction(trans, root);
1104 	return ret;
1105 }
1106 
1107 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1108 {
1109 	struct btrfs_device *device;
1110 	struct btrfs_device *next_device;
1111 	struct block_device *bdev;
1112 	struct buffer_head *bh = NULL;
1113 	struct btrfs_super_block *disk_super;
1114 	u64 all_avail;
1115 	u64 devid;
1116 	u64 num_devices;
1117 	u8 *dev_uuid;
1118 	int ret = 0;
1119 
1120 	mutex_lock(&uuid_mutex);
1121 	mutex_lock(&root->fs_info->volume_mutex);
1122 
1123 	all_avail = root->fs_info->avail_data_alloc_bits |
1124 		root->fs_info->avail_system_alloc_bits |
1125 		root->fs_info->avail_metadata_alloc_bits;
1126 
1127 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1128 	    root->fs_info->fs_devices->rw_devices <= 4) {
1129 		printk(KERN_ERR "btrfs: unable to go below four devices "
1130 		       "on raid10\n");
1131 		ret = -EINVAL;
1132 		goto out;
1133 	}
1134 
1135 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1136 	    root->fs_info->fs_devices->rw_devices <= 2) {
1137 		printk(KERN_ERR "btrfs: unable to go below two "
1138 		       "devices on raid1\n");
1139 		ret = -EINVAL;
1140 		goto out;
1141 	}
1142 
1143 	if (strcmp(device_path, "missing") == 0) {
1144 		struct list_head *devices;
1145 		struct btrfs_device *tmp;
1146 
1147 		device = NULL;
1148 		devices = &root->fs_info->fs_devices->devices;
1149 		mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1150 		list_for_each_entry(tmp, devices, dev_list) {
1151 			if (tmp->in_fs_metadata && !tmp->bdev) {
1152 				device = tmp;
1153 				break;
1154 			}
1155 		}
1156 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1157 		bdev = NULL;
1158 		bh = NULL;
1159 		disk_super = NULL;
1160 		if (!device) {
1161 			printk(KERN_ERR "btrfs: no missing devices found to "
1162 			       "remove\n");
1163 			goto out;
1164 		}
1165 	} else {
1166 		bdev = open_bdev_exclusive(device_path, FMODE_READ,
1167 				      root->fs_info->bdev_holder);
1168 		if (IS_ERR(bdev)) {
1169 			ret = PTR_ERR(bdev);
1170 			goto out;
1171 		}
1172 
1173 		set_blocksize(bdev, 4096);
1174 		bh = btrfs_read_dev_super(bdev);
1175 		if (!bh) {
1176 			ret = -EIO;
1177 			goto error_close;
1178 		}
1179 		disk_super = (struct btrfs_super_block *)bh->b_data;
1180 		devid = le64_to_cpu(disk_super->dev_item.devid);
1181 		dev_uuid = disk_super->dev_item.uuid;
1182 		device = btrfs_find_device(root, devid, dev_uuid,
1183 					   disk_super->fsid);
1184 		if (!device) {
1185 			ret = -ENOENT;
1186 			goto error_brelse;
1187 		}
1188 	}
1189 
1190 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1191 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1192 		       "device\n");
1193 		ret = -EINVAL;
1194 		goto error_brelse;
1195 	}
1196 
1197 	if (device->writeable) {
1198 		list_del_init(&device->dev_alloc_list);
1199 		root->fs_info->fs_devices->rw_devices--;
1200 	}
1201 
1202 	ret = btrfs_shrink_device(device, 0);
1203 	if (ret)
1204 		goto error_brelse;
1205 
1206 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1207 	if (ret)
1208 		goto error_brelse;
1209 
1210 	device->in_fs_metadata = 0;
1211 
1212 	/*
1213 	 * the device list mutex makes sure that we don't change
1214 	 * the device list while someone else is writing out all
1215 	 * the device supers.
1216 	 */
1217 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1218 	list_del_init(&device->dev_list);
1219 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1220 
1221 	device->fs_devices->num_devices--;
1222 
1223 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1224 				 struct btrfs_device, dev_list);
1225 	if (device->bdev == root->fs_info->sb->s_bdev)
1226 		root->fs_info->sb->s_bdev = next_device->bdev;
1227 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1228 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1229 
1230 	if (device->bdev) {
1231 		close_bdev_exclusive(device->bdev, device->mode);
1232 		device->bdev = NULL;
1233 		device->fs_devices->open_devices--;
1234 	}
1235 
1236 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1237 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1238 
1239 	if (device->fs_devices->open_devices == 0) {
1240 		struct btrfs_fs_devices *fs_devices;
1241 		fs_devices = root->fs_info->fs_devices;
1242 		while (fs_devices) {
1243 			if (fs_devices->seed == device->fs_devices)
1244 				break;
1245 			fs_devices = fs_devices->seed;
1246 		}
1247 		fs_devices->seed = device->fs_devices->seed;
1248 		device->fs_devices->seed = NULL;
1249 		__btrfs_close_devices(device->fs_devices);
1250 		free_fs_devices(device->fs_devices);
1251 	}
1252 
1253 	/*
1254 	 * at this point, the device is zero sized.  We want to
1255 	 * remove it from the devices list and zero out the old super
1256 	 */
1257 	if (device->writeable) {
1258 		/* make sure this device isn't detected as part of
1259 		 * the FS anymore
1260 		 */
1261 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1262 		set_buffer_dirty(bh);
1263 		sync_dirty_buffer(bh);
1264 	}
1265 
1266 	kfree(device->name);
1267 	kfree(device);
1268 	ret = 0;
1269 
1270 error_brelse:
1271 	brelse(bh);
1272 error_close:
1273 	if (bdev)
1274 		close_bdev_exclusive(bdev, FMODE_READ);
1275 out:
1276 	mutex_unlock(&root->fs_info->volume_mutex);
1277 	mutex_unlock(&uuid_mutex);
1278 	return ret;
1279 }
1280 
1281 /*
1282  * does all the dirty work required for changing file system's UUID.
1283  */
1284 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1285 				struct btrfs_root *root)
1286 {
1287 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1288 	struct btrfs_fs_devices *old_devices;
1289 	struct btrfs_fs_devices *seed_devices;
1290 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1291 	struct btrfs_device *device;
1292 	u64 super_flags;
1293 
1294 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1295 	if (!fs_devices->seeding)
1296 		return -EINVAL;
1297 
1298 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1299 	if (!seed_devices)
1300 		return -ENOMEM;
1301 
1302 	old_devices = clone_fs_devices(fs_devices);
1303 	if (IS_ERR(old_devices)) {
1304 		kfree(seed_devices);
1305 		return PTR_ERR(old_devices);
1306 	}
1307 
1308 	list_add(&old_devices->list, &fs_uuids);
1309 
1310 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1311 	seed_devices->opened = 1;
1312 	INIT_LIST_HEAD(&seed_devices->devices);
1313 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1314 	mutex_init(&seed_devices->device_list_mutex);
1315 	list_splice_init(&fs_devices->devices, &seed_devices->devices);
1316 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1317 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1318 		device->fs_devices = seed_devices;
1319 	}
1320 
1321 	fs_devices->seeding = 0;
1322 	fs_devices->num_devices = 0;
1323 	fs_devices->open_devices = 0;
1324 	fs_devices->seed = seed_devices;
1325 
1326 	generate_random_uuid(fs_devices->fsid);
1327 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1328 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1329 	super_flags = btrfs_super_flags(disk_super) &
1330 		      ~BTRFS_SUPER_FLAG_SEEDING;
1331 	btrfs_set_super_flags(disk_super, super_flags);
1332 
1333 	return 0;
1334 }
1335 
1336 /*
1337  * strore the expected generation for seed devices in device items.
1338  */
1339 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1340 			       struct btrfs_root *root)
1341 {
1342 	struct btrfs_path *path;
1343 	struct extent_buffer *leaf;
1344 	struct btrfs_dev_item *dev_item;
1345 	struct btrfs_device *device;
1346 	struct btrfs_key key;
1347 	u8 fs_uuid[BTRFS_UUID_SIZE];
1348 	u8 dev_uuid[BTRFS_UUID_SIZE];
1349 	u64 devid;
1350 	int ret;
1351 
1352 	path = btrfs_alloc_path();
1353 	if (!path)
1354 		return -ENOMEM;
1355 
1356 	root = root->fs_info->chunk_root;
1357 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1358 	key.offset = 0;
1359 	key.type = BTRFS_DEV_ITEM_KEY;
1360 
1361 	while (1) {
1362 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1363 		if (ret < 0)
1364 			goto error;
1365 
1366 		leaf = path->nodes[0];
1367 next_slot:
1368 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1369 			ret = btrfs_next_leaf(root, path);
1370 			if (ret > 0)
1371 				break;
1372 			if (ret < 0)
1373 				goto error;
1374 			leaf = path->nodes[0];
1375 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1376 			btrfs_release_path(root, path);
1377 			continue;
1378 		}
1379 
1380 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1381 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1382 		    key.type != BTRFS_DEV_ITEM_KEY)
1383 			break;
1384 
1385 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1386 					  struct btrfs_dev_item);
1387 		devid = btrfs_device_id(leaf, dev_item);
1388 		read_extent_buffer(leaf, dev_uuid,
1389 				   (unsigned long)btrfs_device_uuid(dev_item),
1390 				   BTRFS_UUID_SIZE);
1391 		read_extent_buffer(leaf, fs_uuid,
1392 				   (unsigned long)btrfs_device_fsid(dev_item),
1393 				   BTRFS_UUID_SIZE);
1394 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1395 		BUG_ON(!device);
1396 
1397 		if (device->fs_devices->seeding) {
1398 			btrfs_set_device_generation(leaf, dev_item,
1399 						    device->generation);
1400 			btrfs_mark_buffer_dirty(leaf);
1401 		}
1402 
1403 		path->slots[0]++;
1404 		goto next_slot;
1405 	}
1406 	ret = 0;
1407 error:
1408 	btrfs_free_path(path);
1409 	return ret;
1410 }
1411 
1412 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1413 {
1414 	struct btrfs_trans_handle *trans;
1415 	struct btrfs_device *device;
1416 	struct block_device *bdev;
1417 	struct list_head *devices;
1418 	struct super_block *sb = root->fs_info->sb;
1419 	u64 total_bytes;
1420 	int seeding_dev = 0;
1421 	int ret = 0;
1422 
1423 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1424 		return -EINVAL;
1425 
1426 	bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1427 	if (!bdev)
1428 		return -EIO;
1429 
1430 	if (root->fs_info->fs_devices->seeding) {
1431 		seeding_dev = 1;
1432 		down_write(&sb->s_umount);
1433 		mutex_lock(&uuid_mutex);
1434 	}
1435 
1436 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1437 	mutex_lock(&root->fs_info->volume_mutex);
1438 
1439 	devices = &root->fs_info->fs_devices->devices;
1440 	/*
1441 	 * we have the volume lock, so we don't need the extra
1442 	 * device list mutex while reading the list here.
1443 	 */
1444 	list_for_each_entry(device, devices, dev_list) {
1445 		if (device->bdev == bdev) {
1446 			ret = -EEXIST;
1447 			goto error;
1448 		}
1449 	}
1450 
1451 	device = kzalloc(sizeof(*device), GFP_NOFS);
1452 	if (!device) {
1453 		/* we can safely leave the fs_devices entry around */
1454 		ret = -ENOMEM;
1455 		goto error;
1456 	}
1457 
1458 	device->name = kstrdup(device_path, GFP_NOFS);
1459 	if (!device->name) {
1460 		kfree(device);
1461 		ret = -ENOMEM;
1462 		goto error;
1463 	}
1464 
1465 	ret = find_next_devid(root, &device->devid);
1466 	if (ret) {
1467 		kfree(device);
1468 		goto error;
1469 	}
1470 
1471 	trans = btrfs_start_transaction(root, 1);
1472 	lock_chunks(root);
1473 
1474 	device->barriers = 1;
1475 	device->writeable = 1;
1476 	device->work.func = pending_bios_fn;
1477 	generate_random_uuid(device->uuid);
1478 	spin_lock_init(&device->io_lock);
1479 	device->generation = trans->transid;
1480 	device->io_width = root->sectorsize;
1481 	device->io_align = root->sectorsize;
1482 	device->sector_size = root->sectorsize;
1483 	device->total_bytes = i_size_read(bdev->bd_inode);
1484 	device->disk_total_bytes = device->total_bytes;
1485 	device->dev_root = root->fs_info->dev_root;
1486 	device->bdev = bdev;
1487 	device->in_fs_metadata = 1;
1488 	device->mode = 0;
1489 	set_blocksize(device->bdev, 4096);
1490 
1491 	if (seeding_dev) {
1492 		sb->s_flags &= ~MS_RDONLY;
1493 		ret = btrfs_prepare_sprout(trans, root);
1494 		BUG_ON(ret);
1495 	}
1496 
1497 	device->fs_devices = root->fs_info->fs_devices;
1498 
1499 	/*
1500 	 * we don't want write_supers to jump in here with our device
1501 	 * half setup
1502 	 */
1503 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1504 	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1505 	list_add(&device->dev_alloc_list,
1506 		 &root->fs_info->fs_devices->alloc_list);
1507 	root->fs_info->fs_devices->num_devices++;
1508 	root->fs_info->fs_devices->open_devices++;
1509 	root->fs_info->fs_devices->rw_devices++;
1510 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1511 
1512 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1513 		root->fs_info->fs_devices->rotating = 1;
1514 
1515 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1516 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1517 				    total_bytes + device->total_bytes);
1518 
1519 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1520 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1521 				    total_bytes + 1);
1522 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1523 
1524 	if (seeding_dev) {
1525 		ret = init_first_rw_device(trans, root, device);
1526 		BUG_ON(ret);
1527 		ret = btrfs_finish_sprout(trans, root);
1528 		BUG_ON(ret);
1529 	} else {
1530 		ret = btrfs_add_device(trans, root, device);
1531 	}
1532 
1533 	/*
1534 	 * we've got more storage, clear any full flags on the space
1535 	 * infos
1536 	 */
1537 	btrfs_clear_space_info_full(root->fs_info);
1538 
1539 	unlock_chunks(root);
1540 	btrfs_commit_transaction(trans, root);
1541 
1542 	if (seeding_dev) {
1543 		mutex_unlock(&uuid_mutex);
1544 		up_write(&sb->s_umount);
1545 
1546 		ret = btrfs_relocate_sys_chunks(root);
1547 		BUG_ON(ret);
1548 	}
1549 out:
1550 	mutex_unlock(&root->fs_info->volume_mutex);
1551 	return ret;
1552 error:
1553 	close_bdev_exclusive(bdev, 0);
1554 	if (seeding_dev) {
1555 		mutex_unlock(&uuid_mutex);
1556 		up_write(&sb->s_umount);
1557 	}
1558 	goto out;
1559 }
1560 
1561 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1562 					struct btrfs_device *device)
1563 {
1564 	int ret;
1565 	struct btrfs_path *path;
1566 	struct btrfs_root *root;
1567 	struct btrfs_dev_item *dev_item;
1568 	struct extent_buffer *leaf;
1569 	struct btrfs_key key;
1570 
1571 	root = device->dev_root->fs_info->chunk_root;
1572 
1573 	path = btrfs_alloc_path();
1574 	if (!path)
1575 		return -ENOMEM;
1576 
1577 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1578 	key.type = BTRFS_DEV_ITEM_KEY;
1579 	key.offset = device->devid;
1580 
1581 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1582 	if (ret < 0)
1583 		goto out;
1584 
1585 	if (ret > 0) {
1586 		ret = -ENOENT;
1587 		goto out;
1588 	}
1589 
1590 	leaf = path->nodes[0];
1591 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1592 
1593 	btrfs_set_device_id(leaf, dev_item, device->devid);
1594 	btrfs_set_device_type(leaf, dev_item, device->type);
1595 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1596 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1597 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1598 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1599 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1600 	btrfs_mark_buffer_dirty(leaf);
1601 
1602 out:
1603 	btrfs_free_path(path);
1604 	return ret;
1605 }
1606 
1607 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1608 		      struct btrfs_device *device, u64 new_size)
1609 {
1610 	struct btrfs_super_block *super_copy =
1611 		&device->dev_root->fs_info->super_copy;
1612 	u64 old_total = btrfs_super_total_bytes(super_copy);
1613 	u64 diff = new_size - device->total_bytes;
1614 
1615 	if (!device->writeable)
1616 		return -EACCES;
1617 	if (new_size <= device->total_bytes)
1618 		return -EINVAL;
1619 
1620 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1621 	device->fs_devices->total_rw_bytes += diff;
1622 
1623 	device->total_bytes = new_size;
1624 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1625 
1626 	return btrfs_update_device(trans, device);
1627 }
1628 
1629 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1630 		      struct btrfs_device *device, u64 new_size)
1631 {
1632 	int ret;
1633 	lock_chunks(device->dev_root);
1634 	ret = __btrfs_grow_device(trans, device, new_size);
1635 	unlock_chunks(device->dev_root);
1636 	return ret;
1637 }
1638 
1639 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1640 			    struct btrfs_root *root,
1641 			    u64 chunk_tree, u64 chunk_objectid,
1642 			    u64 chunk_offset)
1643 {
1644 	int ret;
1645 	struct btrfs_path *path;
1646 	struct btrfs_key key;
1647 
1648 	root = root->fs_info->chunk_root;
1649 	path = btrfs_alloc_path();
1650 	if (!path)
1651 		return -ENOMEM;
1652 
1653 	key.objectid = chunk_objectid;
1654 	key.offset = chunk_offset;
1655 	key.type = BTRFS_CHUNK_ITEM_KEY;
1656 
1657 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1658 	BUG_ON(ret);
1659 
1660 	ret = btrfs_del_item(trans, root, path);
1661 	BUG_ON(ret);
1662 
1663 	btrfs_free_path(path);
1664 	return 0;
1665 }
1666 
1667 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1668 			chunk_offset)
1669 {
1670 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1671 	struct btrfs_disk_key *disk_key;
1672 	struct btrfs_chunk *chunk;
1673 	u8 *ptr;
1674 	int ret = 0;
1675 	u32 num_stripes;
1676 	u32 array_size;
1677 	u32 len = 0;
1678 	u32 cur;
1679 	struct btrfs_key key;
1680 
1681 	array_size = btrfs_super_sys_array_size(super_copy);
1682 
1683 	ptr = super_copy->sys_chunk_array;
1684 	cur = 0;
1685 
1686 	while (cur < array_size) {
1687 		disk_key = (struct btrfs_disk_key *)ptr;
1688 		btrfs_disk_key_to_cpu(&key, disk_key);
1689 
1690 		len = sizeof(*disk_key);
1691 
1692 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1693 			chunk = (struct btrfs_chunk *)(ptr + len);
1694 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1695 			len += btrfs_chunk_item_size(num_stripes);
1696 		} else {
1697 			ret = -EIO;
1698 			break;
1699 		}
1700 		if (key.objectid == chunk_objectid &&
1701 		    key.offset == chunk_offset) {
1702 			memmove(ptr, ptr + len, array_size - (cur + len));
1703 			array_size -= len;
1704 			btrfs_set_super_sys_array_size(super_copy, array_size);
1705 		} else {
1706 			ptr += len;
1707 			cur += len;
1708 		}
1709 	}
1710 	return ret;
1711 }
1712 
1713 static int btrfs_relocate_chunk(struct btrfs_root *root,
1714 			 u64 chunk_tree, u64 chunk_objectid,
1715 			 u64 chunk_offset)
1716 {
1717 	struct extent_map_tree *em_tree;
1718 	struct btrfs_root *extent_root;
1719 	struct btrfs_trans_handle *trans;
1720 	struct extent_map *em;
1721 	struct map_lookup *map;
1722 	int ret;
1723 	int i;
1724 
1725 	root = root->fs_info->chunk_root;
1726 	extent_root = root->fs_info->extent_root;
1727 	em_tree = &root->fs_info->mapping_tree.map_tree;
1728 
1729 	/* step one, relocate all the extents inside this chunk */
1730 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1731 	BUG_ON(ret);
1732 
1733 	trans = btrfs_start_transaction(root, 1);
1734 	BUG_ON(!trans);
1735 
1736 	lock_chunks(root);
1737 
1738 	/*
1739 	 * step two, delete the device extents and the
1740 	 * chunk tree entries
1741 	 */
1742 	spin_lock(&em_tree->lock);
1743 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1744 	spin_unlock(&em_tree->lock);
1745 
1746 	BUG_ON(em->start > chunk_offset ||
1747 	       em->start + em->len < chunk_offset);
1748 	map = (struct map_lookup *)em->bdev;
1749 
1750 	for (i = 0; i < map->num_stripes; i++) {
1751 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1752 					    map->stripes[i].physical);
1753 		BUG_ON(ret);
1754 
1755 		if (map->stripes[i].dev) {
1756 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1757 			BUG_ON(ret);
1758 		}
1759 	}
1760 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1761 			       chunk_offset);
1762 
1763 	BUG_ON(ret);
1764 
1765 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1766 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1767 		BUG_ON(ret);
1768 	}
1769 
1770 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1771 	BUG_ON(ret);
1772 
1773 	spin_lock(&em_tree->lock);
1774 	remove_extent_mapping(em_tree, em);
1775 	spin_unlock(&em_tree->lock);
1776 
1777 	kfree(map);
1778 	em->bdev = NULL;
1779 
1780 	/* once for the tree */
1781 	free_extent_map(em);
1782 	/* once for us */
1783 	free_extent_map(em);
1784 
1785 	unlock_chunks(root);
1786 	btrfs_end_transaction(trans, root);
1787 	return 0;
1788 }
1789 
1790 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1791 {
1792 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1793 	struct btrfs_path *path;
1794 	struct extent_buffer *leaf;
1795 	struct btrfs_chunk *chunk;
1796 	struct btrfs_key key;
1797 	struct btrfs_key found_key;
1798 	u64 chunk_tree = chunk_root->root_key.objectid;
1799 	u64 chunk_type;
1800 	int ret;
1801 
1802 	path = btrfs_alloc_path();
1803 	if (!path)
1804 		return -ENOMEM;
1805 
1806 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1807 	key.offset = (u64)-1;
1808 	key.type = BTRFS_CHUNK_ITEM_KEY;
1809 
1810 	while (1) {
1811 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1812 		if (ret < 0)
1813 			goto error;
1814 		BUG_ON(ret == 0);
1815 
1816 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1817 					  key.type);
1818 		if (ret < 0)
1819 			goto error;
1820 		if (ret > 0)
1821 			break;
1822 
1823 		leaf = path->nodes[0];
1824 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1825 
1826 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1827 				       struct btrfs_chunk);
1828 		chunk_type = btrfs_chunk_type(leaf, chunk);
1829 		btrfs_release_path(chunk_root, path);
1830 
1831 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1832 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1833 						   found_key.objectid,
1834 						   found_key.offset);
1835 			BUG_ON(ret);
1836 		}
1837 
1838 		if (found_key.offset == 0)
1839 			break;
1840 		key.offset = found_key.offset - 1;
1841 	}
1842 	ret = 0;
1843 error:
1844 	btrfs_free_path(path);
1845 	return ret;
1846 }
1847 
1848 static u64 div_factor(u64 num, int factor)
1849 {
1850 	if (factor == 10)
1851 		return num;
1852 	num *= factor;
1853 	do_div(num, 10);
1854 	return num;
1855 }
1856 
1857 int btrfs_balance(struct btrfs_root *dev_root)
1858 {
1859 	int ret;
1860 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1861 	struct btrfs_device *device;
1862 	u64 old_size;
1863 	u64 size_to_free;
1864 	struct btrfs_path *path;
1865 	struct btrfs_key key;
1866 	struct btrfs_chunk *chunk;
1867 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1868 	struct btrfs_trans_handle *trans;
1869 	struct btrfs_key found_key;
1870 
1871 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1872 		return -EROFS;
1873 
1874 	mutex_lock(&dev_root->fs_info->volume_mutex);
1875 	dev_root = dev_root->fs_info->dev_root;
1876 
1877 	/* step one make some room on all the devices */
1878 	list_for_each_entry(device, devices, dev_list) {
1879 		old_size = device->total_bytes;
1880 		size_to_free = div_factor(old_size, 1);
1881 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1882 		if (!device->writeable ||
1883 		    device->total_bytes - device->bytes_used > size_to_free)
1884 			continue;
1885 
1886 		ret = btrfs_shrink_device(device, old_size - size_to_free);
1887 		BUG_ON(ret);
1888 
1889 		trans = btrfs_start_transaction(dev_root, 1);
1890 		BUG_ON(!trans);
1891 
1892 		ret = btrfs_grow_device(trans, device, old_size);
1893 		BUG_ON(ret);
1894 
1895 		btrfs_end_transaction(trans, dev_root);
1896 	}
1897 
1898 	/* step two, relocate all the chunks */
1899 	path = btrfs_alloc_path();
1900 	BUG_ON(!path);
1901 
1902 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1903 	key.offset = (u64)-1;
1904 	key.type = BTRFS_CHUNK_ITEM_KEY;
1905 
1906 	while (1) {
1907 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1908 		if (ret < 0)
1909 			goto error;
1910 
1911 		/*
1912 		 * this shouldn't happen, it means the last relocate
1913 		 * failed
1914 		 */
1915 		if (ret == 0)
1916 			break;
1917 
1918 		ret = btrfs_previous_item(chunk_root, path, 0,
1919 					  BTRFS_CHUNK_ITEM_KEY);
1920 		if (ret)
1921 			break;
1922 
1923 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1924 				      path->slots[0]);
1925 		if (found_key.objectid != key.objectid)
1926 			break;
1927 
1928 		chunk = btrfs_item_ptr(path->nodes[0],
1929 				       path->slots[0],
1930 				       struct btrfs_chunk);
1931 		key.offset = found_key.offset;
1932 		/* chunk zero is special */
1933 		if (key.offset == 0)
1934 			break;
1935 
1936 		btrfs_release_path(chunk_root, path);
1937 		ret = btrfs_relocate_chunk(chunk_root,
1938 					   chunk_root->root_key.objectid,
1939 					   found_key.objectid,
1940 					   found_key.offset);
1941 		BUG_ON(ret);
1942 	}
1943 	ret = 0;
1944 error:
1945 	btrfs_free_path(path);
1946 	mutex_unlock(&dev_root->fs_info->volume_mutex);
1947 	return ret;
1948 }
1949 
1950 /*
1951  * shrinking a device means finding all of the device extents past
1952  * the new size, and then following the back refs to the chunks.
1953  * The chunk relocation code actually frees the device extent
1954  */
1955 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1956 {
1957 	struct btrfs_trans_handle *trans;
1958 	struct btrfs_root *root = device->dev_root;
1959 	struct btrfs_dev_extent *dev_extent = NULL;
1960 	struct btrfs_path *path;
1961 	u64 length;
1962 	u64 chunk_tree;
1963 	u64 chunk_objectid;
1964 	u64 chunk_offset;
1965 	int ret;
1966 	int slot;
1967 	struct extent_buffer *l;
1968 	struct btrfs_key key;
1969 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1970 	u64 old_total = btrfs_super_total_bytes(super_copy);
1971 	u64 diff = device->total_bytes - new_size;
1972 
1973 	if (new_size >= device->total_bytes)
1974 		return -EINVAL;
1975 
1976 	path = btrfs_alloc_path();
1977 	if (!path)
1978 		return -ENOMEM;
1979 
1980 	trans = btrfs_start_transaction(root, 1);
1981 	if (!trans) {
1982 		ret = -ENOMEM;
1983 		goto done;
1984 	}
1985 
1986 	path->reada = 2;
1987 
1988 	lock_chunks(root);
1989 
1990 	device->total_bytes = new_size;
1991 	if (device->writeable)
1992 		device->fs_devices->total_rw_bytes -= diff;
1993 	unlock_chunks(root);
1994 	btrfs_end_transaction(trans, root);
1995 
1996 	key.objectid = device->devid;
1997 	key.offset = (u64)-1;
1998 	key.type = BTRFS_DEV_EXTENT_KEY;
1999 
2000 	while (1) {
2001 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2002 		if (ret < 0)
2003 			goto done;
2004 
2005 		ret = btrfs_previous_item(root, path, 0, key.type);
2006 		if (ret < 0)
2007 			goto done;
2008 		if (ret) {
2009 			ret = 0;
2010 			goto done;
2011 		}
2012 
2013 		l = path->nodes[0];
2014 		slot = path->slots[0];
2015 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2016 
2017 		if (key.objectid != device->devid)
2018 			goto done;
2019 
2020 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2021 		length = btrfs_dev_extent_length(l, dev_extent);
2022 
2023 		if (key.offset + length <= new_size)
2024 			break;
2025 
2026 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2027 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2028 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2029 		btrfs_release_path(root, path);
2030 
2031 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2032 					   chunk_offset);
2033 		if (ret)
2034 			goto done;
2035 	}
2036 
2037 	/* Shrinking succeeded, else we would be at "done". */
2038 	trans = btrfs_start_transaction(root, 1);
2039 	if (!trans) {
2040 		ret = -ENOMEM;
2041 		goto done;
2042 	}
2043 	lock_chunks(root);
2044 
2045 	device->disk_total_bytes = new_size;
2046 	/* Now btrfs_update_device() will change the on-disk size. */
2047 	ret = btrfs_update_device(trans, device);
2048 	if (ret) {
2049 		unlock_chunks(root);
2050 		btrfs_end_transaction(trans, root);
2051 		goto done;
2052 	}
2053 	WARN_ON(diff > old_total);
2054 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
2055 	unlock_chunks(root);
2056 	btrfs_end_transaction(trans, root);
2057 done:
2058 	btrfs_free_path(path);
2059 	return ret;
2060 }
2061 
2062 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2063 			   struct btrfs_root *root,
2064 			   struct btrfs_key *key,
2065 			   struct btrfs_chunk *chunk, int item_size)
2066 {
2067 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2068 	struct btrfs_disk_key disk_key;
2069 	u32 array_size;
2070 	u8 *ptr;
2071 
2072 	array_size = btrfs_super_sys_array_size(super_copy);
2073 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2074 		return -EFBIG;
2075 
2076 	ptr = super_copy->sys_chunk_array + array_size;
2077 	btrfs_cpu_key_to_disk(&disk_key, key);
2078 	memcpy(ptr, &disk_key, sizeof(disk_key));
2079 	ptr += sizeof(disk_key);
2080 	memcpy(ptr, chunk, item_size);
2081 	item_size += sizeof(disk_key);
2082 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2083 	return 0;
2084 }
2085 
2086 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2087 					int num_stripes, int sub_stripes)
2088 {
2089 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2090 		return calc_size;
2091 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2092 		return calc_size * (num_stripes / sub_stripes);
2093 	else
2094 		return calc_size * num_stripes;
2095 }
2096 
2097 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2098 			       struct btrfs_root *extent_root,
2099 			       struct map_lookup **map_ret,
2100 			       u64 *num_bytes, u64 *stripe_size,
2101 			       u64 start, u64 type)
2102 {
2103 	struct btrfs_fs_info *info = extent_root->fs_info;
2104 	struct btrfs_device *device = NULL;
2105 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
2106 	struct list_head *cur;
2107 	struct map_lookup *map = NULL;
2108 	struct extent_map_tree *em_tree;
2109 	struct extent_map *em;
2110 	struct list_head private_devs;
2111 	int min_stripe_size = 1 * 1024 * 1024;
2112 	u64 calc_size = 1024 * 1024 * 1024;
2113 	u64 max_chunk_size = calc_size;
2114 	u64 min_free;
2115 	u64 avail;
2116 	u64 max_avail = 0;
2117 	u64 dev_offset;
2118 	int num_stripes = 1;
2119 	int min_stripes = 1;
2120 	int sub_stripes = 0;
2121 	int looped = 0;
2122 	int ret;
2123 	int index;
2124 	int stripe_len = 64 * 1024;
2125 
2126 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2127 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2128 		WARN_ON(1);
2129 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2130 	}
2131 	if (list_empty(&fs_devices->alloc_list))
2132 		return -ENOSPC;
2133 
2134 	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2135 		num_stripes = fs_devices->rw_devices;
2136 		min_stripes = 2;
2137 	}
2138 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2139 		num_stripes = 2;
2140 		min_stripes = 2;
2141 	}
2142 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2143 		num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2144 		if (num_stripes < 2)
2145 			return -ENOSPC;
2146 		min_stripes = 2;
2147 	}
2148 	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2149 		num_stripes = fs_devices->rw_devices;
2150 		if (num_stripes < 4)
2151 			return -ENOSPC;
2152 		num_stripes &= ~(u32)1;
2153 		sub_stripes = 2;
2154 		min_stripes = 4;
2155 	}
2156 
2157 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2158 		max_chunk_size = 10 * calc_size;
2159 		min_stripe_size = 64 * 1024 * 1024;
2160 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2161 		max_chunk_size = 4 * calc_size;
2162 		min_stripe_size = 32 * 1024 * 1024;
2163 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2164 		calc_size = 8 * 1024 * 1024;
2165 		max_chunk_size = calc_size * 2;
2166 		min_stripe_size = 1 * 1024 * 1024;
2167 	}
2168 
2169 	/* we don't want a chunk larger than 10% of writeable space */
2170 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2171 			     max_chunk_size);
2172 
2173 again:
2174 	if (!map || map->num_stripes != num_stripes) {
2175 		kfree(map);
2176 		map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2177 		if (!map)
2178 			return -ENOMEM;
2179 		map->num_stripes = num_stripes;
2180 	}
2181 
2182 	if (calc_size * num_stripes > max_chunk_size) {
2183 		calc_size = max_chunk_size;
2184 		do_div(calc_size, num_stripes);
2185 		do_div(calc_size, stripe_len);
2186 		calc_size *= stripe_len;
2187 	}
2188 	/* we don't want tiny stripes */
2189 	calc_size = max_t(u64, min_stripe_size, calc_size);
2190 
2191 	do_div(calc_size, stripe_len);
2192 	calc_size *= stripe_len;
2193 
2194 	cur = fs_devices->alloc_list.next;
2195 	index = 0;
2196 
2197 	if (type & BTRFS_BLOCK_GROUP_DUP)
2198 		min_free = calc_size * 2;
2199 	else
2200 		min_free = calc_size;
2201 
2202 	/*
2203 	 * we add 1MB because we never use the first 1MB of the device, unless
2204 	 * we've looped, then we are likely allocating the maximum amount of
2205 	 * space left already
2206 	 */
2207 	if (!looped)
2208 		min_free += 1024 * 1024;
2209 
2210 	INIT_LIST_HEAD(&private_devs);
2211 	while (index < num_stripes) {
2212 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2213 		BUG_ON(!device->writeable);
2214 		if (device->total_bytes > device->bytes_used)
2215 			avail = device->total_bytes - device->bytes_used;
2216 		else
2217 			avail = 0;
2218 		cur = cur->next;
2219 
2220 		if (device->in_fs_metadata && avail >= min_free) {
2221 			ret = find_free_dev_extent(trans, device,
2222 						   min_free, &dev_offset);
2223 			if (ret == 0) {
2224 				list_move_tail(&device->dev_alloc_list,
2225 					       &private_devs);
2226 				map->stripes[index].dev = device;
2227 				map->stripes[index].physical = dev_offset;
2228 				index++;
2229 				if (type & BTRFS_BLOCK_GROUP_DUP) {
2230 					map->stripes[index].dev = device;
2231 					map->stripes[index].physical =
2232 						dev_offset + calc_size;
2233 					index++;
2234 				}
2235 			}
2236 		} else if (device->in_fs_metadata && avail > max_avail)
2237 			max_avail = avail;
2238 		if (cur == &fs_devices->alloc_list)
2239 			break;
2240 	}
2241 	list_splice(&private_devs, &fs_devices->alloc_list);
2242 	if (index < num_stripes) {
2243 		if (index >= min_stripes) {
2244 			num_stripes = index;
2245 			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2246 				num_stripes /= sub_stripes;
2247 				num_stripes *= sub_stripes;
2248 			}
2249 			looped = 1;
2250 			goto again;
2251 		}
2252 		if (!looped && max_avail > 0) {
2253 			looped = 1;
2254 			calc_size = max_avail;
2255 			goto again;
2256 		}
2257 		kfree(map);
2258 		return -ENOSPC;
2259 	}
2260 	map->sector_size = extent_root->sectorsize;
2261 	map->stripe_len = stripe_len;
2262 	map->io_align = stripe_len;
2263 	map->io_width = stripe_len;
2264 	map->type = type;
2265 	map->num_stripes = num_stripes;
2266 	map->sub_stripes = sub_stripes;
2267 
2268 	*map_ret = map;
2269 	*stripe_size = calc_size;
2270 	*num_bytes = chunk_bytes_by_type(type, calc_size,
2271 					 num_stripes, sub_stripes);
2272 
2273 	em = alloc_extent_map(GFP_NOFS);
2274 	if (!em) {
2275 		kfree(map);
2276 		return -ENOMEM;
2277 	}
2278 	em->bdev = (struct block_device *)map;
2279 	em->start = start;
2280 	em->len = *num_bytes;
2281 	em->block_start = 0;
2282 	em->block_len = em->len;
2283 
2284 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2285 	spin_lock(&em_tree->lock);
2286 	ret = add_extent_mapping(em_tree, em);
2287 	spin_unlock(&em_tree->lock);
2288 	BUG_ON(ret);
2289 	free_extent_map(em);
2290 
2291 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2292 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2293 				     start, *num_bytes);
2294 	BUG_ON(ret);
2295 
2296 	index = 0;
2297 	while (index < map->num_stripes) {
2298 		device = map->stripes[index].dev;
2299 		dev_offset = map->stripes[index].physical;
2300 
2301 		ret = btrfs_alloc_dev_extent(trans, device,
2302 				info->chunk_root->root_key.objectid,
2303 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2304 				start, dev_offset, calc_size);
2305 		BUG_ON(ret);
2306 		index++;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2313 				struct btrfs_root *extent_root,
2314 				struct map_lookup *map, u64 chunk_offset,
2315 				u64 chunk_size, u64 stripe_size)
2316 {
2317 	u64 dev_offset;
2318 	struct btrfs_key key;
2319 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2320 	struct btrfs_device *device;
2321 	struct btrfs_chunk *chunk;
2322 	struct btrfs_stripe *stripe;
2323 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2324 	int index = 0;
2325 	int ret;
2326 
2327 	chunk = kzalloc(item_size, GFP_NOFS);
2328 	if (!chunk)
2329 		return -ENOMEM;
2330 
2331 	index = 0;
2332 	while (index < map->num_stripes) {
2333 		device = map->stripes[index].dev;
2334 		device->bytes_used += stripe_size;
2335 		ret = btrfs_update_device(trans, device);
2336 		BUG_ON(ret);
2337 		index++;
2338 	}
2339 
2340 	index = 0;
2341 	stripe = &chunk->stripe;
2342 	while (index < map->num_stripes) {
2343 		device = map->stripes[index].dev;
2344 		dev_offset = map->stripes[index].physical;
2345 
2346 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2347 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2348 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2349 		stripe++;
2350 		index++;
2351 	}
2352 
2353 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2354 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2355 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2356 	btrfs_set_stack_chunk_type(chunk, map->type);
2357 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2358 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2359 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2360 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2361 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2362 
2363 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2364 	key.type = BTRFS_CHUNK_ITEM_KEY;
2365 	key.offset = chunk_offset;
2366 
2367 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2368 	BUG_ON(ret);
2369 
2370 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2371 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2372 					     item_size);
2373 		BUG_ON(ret);
2374 	}
2375 	kfree(chunk);
2376 	return 0;
2377 }
2378 
2379 /*
2380  * Chunk allocation falls into two parts. The first part does works
2381  * that make the new allocated chunk useable, but not do any operation
2382  * that modifies the chunk tree. The second part does the works that
2383  * require modifying the chunk tree. This division is important for the
2384  * bootstrap process of adding storage to a seed btrfs.
2385  */
2386 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2387 		      struct btrfs_root *extent_root, u64 type)
2388 {
2389 	u64 chunk_offset;
2390 	u64 chunk_size;
2391 	u64 stripe_size;
2392 	struct map_lookup *map;
2393 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2394 	int ret;
2395 
2396 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2397 			      &chunk_offset);
2398 	if (ret)
2399 		return ret;
2400 
2401 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2402 				  &stripe_size, chunk_offset, type);
2403 	if (ret)
2404 		return ret;
2405 
2406 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2407 				   chunk_size, stripe_size);
2408 	BUG_ON(ret);
2409 	return 0;
2410 }
2411 
2412 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2413 					 struct btrfs_root *root,
2414 					 struct btrfs_device *device)
2415 {
2416 	u64 chunk_offset;
2417 	u64 sys_chunk_offset;
2418 	u64 chunk_size;
2419 	u64 sys_chunk_size;
2420 	u64 stripe_size;
2421 	u64 sys_stripe_size;
2422 	u64 alloc_profile;
2423 	struct map_lookup *map;
2424 	struct map_lookup *sys_map;
2425 	struct btrfs_fs_info *fs_info = root->fs_info;
2426 	struct btrfs_root *extent_root = fs_info->extent_root;
2427 	int ret;
2428 
2429 	ret = find_next_chunk(fs_info->chunk_root,
2430 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2431 	BUG_ON(ret);
2432 
2433 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2434 			(fs_info->metadata_alloc_profile &
2435 			 fs_info->avail_metadata_alloc_bits);
2436 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2437 
2438 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2439 				  &stripe_size, chunk_offset, alloc_profile);
2440 	BUG_ON(ret);
2441 
2442 	sys_chunk_offset = chunk_offset + chunk_size;
2443 
2444 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2445 			(fs_info->system_alloc_profile &
2446 			 fs_info->avail_system_alloc_bits);
2447 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2448 
2449 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2450 				  &sys_chunk_size, &sys_stripe_size,
2451 				  sys_chunk_offset, alloc_profile);
2452 	BUG_ON(ret);
2453 
2454 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2455 	BUG_ON(ret);
2456 
2457 	/*
2458 	 * Modifying chunk tree needs allocating new blocks from both
2459 	 * system block group and metadata block group. So we only can
2460 	 * do operations require modifying the chunk tree after both
2461 	 * block groups were created.
2462 	 */
2463 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2464 				   chunk_size, stripe_size);
2465 	BUG_ON(ret);
2466 
2467 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2468 				   sys_chunk_offset, sys_chunk_size,
2469 				   sys_stripe_size);
2470 	BUG_ON(ret);
2471 	return 0;
2472 }
2473 
2474 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2475 {
2476 	struct extent_map *em;
2477 	struct map_lookup *map;
2478 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2479 	int readonly = 0;
2480 	int i;
2481 
2482 	spin_lock(&map_tree->map_tree.lock);
2483 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2484 	spin_unlock(&map_tree->map_tree.lock);
2485 	if (!em)
2486 		return 1;
2487 
2488 	map = (struct map_lookup *)em->bdev;
2489 	for (i = 0; i < map->num_stripes; i++) {
2490 		if (!map->stripes[i].dev->writeable) {
2491 			readonly = 1;
2492 			break;
2493 		}
2494 	}
2495 	free_extent_map(em);
2496 	return readonly;
2497 }
2498 
2499 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2500 {
2501 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2502 }
2503 
2504 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2505 {
2506 	struct extent_map *em;
2507 
2508 	while (1) {
2509 		spin_lock(&tree->map_tree.lock);
2510 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2511 		if (em)
2512 			remove_extent_mapping(&tree->map_tree, em);
2513 		spin_unlock(&tree->map_tree.lock);
2514 		if (!em)
2515 			break;
2516 		kfree(em->bdev);
2517 		/* once for us */
2518 		free_extent_map(em);
2519 		/* once for the tree */
2520 		free_extent_map(em);
2521 	}
2522 }
2523 
2524 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2525 {
2526 	struct extent_map *em;
2527 	struct map_lookup *map;
2528 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2529 	int ret;
2530 
2531 	spin_lock(&em_tree->lock);
2532 	em = lookup_extent_mapping(em_tree, logical, len);
2533 	spin_unlock(&em_tree->lock);
2534 	BUG_ON(!em);
2535 
2536 	BUG_ON(em->start > logical || em->start + em->len < logical);
2537 	map = (struct map_lookup *)em->bdev;
2538 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2539 		ret = map->num_stripes;
2540 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2541 		ret = map->sub_stripes;
2542 	else
2543 		ret = 1;
2544 	free_extent_map(em);
2545 	return ret;
2546 }
2547 
2548 static int find_live_mirror(struct map_lookup *map, int first, int num,
2549 			    int optimal)
2550 {
2551 	int i;
2552 	if (map->stripes[optimal].dev->bdev)
2553 		return optimal;
2554 	for (i = first; i < first + num; i++) {
2555 		if (map->stripes[i].dev->bdev)
2556 			return i;
2557 	}
2558 	/* we couldn't find one that doesn't fail.  Just return something
2559 	 * and the io error handling code will clean up eventually
2560 	 */
2561 	return optimal;
2562 }
2563 
2564 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2565 			     u64 logical, u64 *length,
2566 			     struct btrfs_multi_bio **multi_ret,
2567 			     int mirror_num, struct page *unplug_page)
2568 {
2569 	struct extent_map *em;
2570 	struct map_lookup *map;
2571 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2572 	u64 offset;
2573 	u64 stripe_offset;
2574 	u64 stripe_nr;
2575 	int stripes_allocated = 8;
2576 	int stripes_required = 1;
2577 	int stripe_index;
2578 	int i;
2579 	int num_stripes;
2580 	int max_errors = 0;
2581 	struct btrfs_multi_bio *multi = NULL;
2582 
2583 	if (multi_ret && !(rw & (1 << BIO_RW)))
2584 		stripes_allocated = 1;
2585 again:
2586 	if (multi_ret) {
2587 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2588 				GFP_NOFS);
2589 		if (!multi)
2590 			return -ENOMEM;
2591 
2592 		atomic_set(&multi->error, 0);
2593 	}
2594 
2595 	spin_lock(&em_tree->lock);
2596 	em = lookup_extent_mapping(em_tree, logical, *length);
2597 	spin_unlock(&em_tree->lock);
2598 
2599 	if (!em && unplug_page)
2600 		return 0;
2601 
2602 	if (!em) {
2603 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2604 		       (unsigned long long)logical,
2605 		       (unsigned long long)*length);
2606 		BUG();
2607 	}
2608 
2609 	BUG_ON(em->start > logical || em->start + em->len < logical);
2610 	map = (struct map_lookup *)em->bdev;
2611 	offset = logical - em->start;
2612 
2613 	if (mirror_num > map->num_stripes)
2614 		mirror_num = 0;
2615 
2616 	/* if our multi bio struct is too small, back off and try again */
2617 	if (rw & (1 << BIO_RW)) {
2618 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2619 				 BTRFS_BLOCK_GROUP_DUP)) {
2620 			stripes_required = map->num_stripes;
2621 			max_errors = 1;
2622 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2623 			stripes_required = map->sub_stripes;
2624 			max_errors = 1;
2625 		}
2626 	}
2627 	if (multi_ret && (rw & (1 << BIO_RW)) &&
2628 	    stripes_allocated < stripes_required) {
2629 		stripes_allocated = map->num_stripes;
2630 		free_extent_map(em);
2631 		kfree(multi);
2632 		goto again;
2633 	}
2634 	stripe_nr = offset;
2635 	/*
2636 	 * stripe_nr counts the total number of stripes we have to stride
2637 	 * to get to this block
2638 	 */
2639 	do_div(stripe_nr, map->stripe_len);
2640 
2641 	stripe_offset = stripe_nr * map->stripe_len;
2642 	BUG_ON(offset < stripe_offset);
2643 
2644 	/* stripe_offset is the offset of this block in its stripe*/
2645 	stripe_offset = offset - stripe_offset;
2646 
2647 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2648 			 BTRFS_BLOCK_GROUP_RAID10 |
2649 			 BTRFS_BLOCK_GROUP_DUP)) {
2650 		/* we limit the length of each bio to what fits in a stripe */
2651 		*length = min_t(u64, em->len - offset,
2652 			      map->stripe_len - stripe_offset);
2653 	} else {
2654 		*length = em->len - offset;
2655 	}
2656 
2657 	if (!multi_ret && !unplug_page)
2658 		goto out;
2659 
2660 	num_stripes = 1;
2661 	stripe_index = 0;
2662 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2663 		if (unplug_page || (rw & (1 << BIO_RW)))
2664 			num_stripes = map->num_stripes;
2665 		else if (mirror_num)
2666 			stripe_index = mirror_num - 1;
2667 		else {
2668 			stripe_index = find_live_mirror(map, 0,
2669 					    map->num_stripes,
2670 					    current->pid % map->num_stripes);
2671 		}
2672 
2673 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2674 		if (rw & (1 << BIO_RW))
2675 			num_stripes = map->num_stripes;
2676 		else if (mirror_num)
2677 			stripe_index = mirror_num - 1;
2678 
2679 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2680 		int factor = map->num_stripes / map->sub_stripes;
2681 
2682 		stripe_index = do_div(stripe_nr, factor);
2683 		stripe_index *= map->sub_stripes;
2684 
2685 		if (unplug_page || (rw & (1 << BIO_RW)))
2686 			num_stripes = map->sub_stripes;
2687 		else if (mirror_num)
2688 			stripe_index += mirror_num - 1;
2689 		else {
2690 			stripe_index = find_live_mirror(map, stripe_index,
2691 					      map->sub_stripes, stripe_index +
2692 					      current->pid % map->sub_stripes);
2693 		}
2694 	} else {
2695 		/*
2696 		 * after this do_div call, stripe_nr is the number of stripes
2697 		 * on this device we have to walk to find the data, and
2698 		 * stripe_index is the number of our device in the stripe array
2699 		 */
2700 		stripe_index = do_div(stripe_nr, map->num_stripes);
2701 	}
2702 	BUG_ON(stripe_index >= map->num_stripes);
2703 
2704 	for (i = 0; i < num_stripes; i++) {
2705 		if (unplug_page) {
2706 			struct btrfs_device *device;
2707 			struct backing_dev_info *bdi;
2708 
2709 			device = map->stripes[stripe_index].dev;
2710 			if (device->bdev) {
2711 				bdi = blk_get_backing_dev_info(device->bdev);
2712 				if (bdi->unplug_io_fn)
2713 					bdi->unplug_io_fn(bdi, unplug_page);
2714 			}
2715 		} else {
2716 			multi->stripes[i].physical =
2717 				map->stripes[stripe_index].physical +
2718 				stripe_offset + stripe_nr * map->stripe_len;
2719 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2720 		}
2721 		stripe_index++;
2722 	}
2723 	if (multi_ret) {
2724 		*multi_ret = multi;
2725 		multi->num_stripes = num_stripes;
2726 		multi->max_errors = max_errors;
2727 	}
2728 out:
2729 	free_extent_map(em);
2730 	return 0;
2731 }
2732 
2733 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2734 		      u64 logical, u64 *length,
2735 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
2736 {
2737 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2738 				 mirror_num, NULL);
2739 }
2740 
2741 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2742 		     u64 chunk_start, u64 physical, u64 devid,
2743 		     u64 **logical, int *naddrs, int *stripe_len)
2744 {
2745 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2746 	struct extent_map *em;
2747 	struct map_lookup *map;
2748 	u64 *buf;
2749 	u64 bytenr;
2750 	u64 length;
2751 	u64 stripe_nr;
2752 	int i, j, nr = 0;
2753 
2754 	spin_lock(&em_tree->lock);
2755 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
2756 	spin_unlock(&em_tree->lock);
2757 
2758 	BUG_ON(!em || em->start != chunk_start);
2759 	map = (struct map_lookup *)em->bdev;
2760 
2761 	length = em->len;
2762 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2763 		do_div(length, map->num_stripes / map->sub_stripes);
2764 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2765 		do_div(length, map->num_stripes);
2766 
2767 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2768 	BUG_ON(!buf);
2769 
2770 	for (i = 0; i < map->num_stripes; i++) {
2771 		if (devid && map->stripes[i].dev->devid != devid)
2772 			continue;
2773 		if (map->stripes[i].physical > physical ||
2774 		    map->stripes[i].physical + length <= physical)
2775 			continue;
2776 
2777 		stripe_nr = physical - map->stripes[i].physical;
2778 		do_div(stripe_nr, map->stripe_len);
2779 
2780 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2781 			stripe_nr = stripe_nr * map->num_stripes + i;
2782 			do_div(stripe_nr, map->sub_stripes);
2783 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2784 			stripe_nr = stripe_nr * map->num_stripes + i;
2785 		}
2786 		bytenr = chunk_start + stripe_nr * map->stripe_len;
2787 		WARN_ON(nr >= map->num_stripes);
2788 		for (j = 0; j < nr; j++) {
2789 			if (buf[j] == bytenr)
2790 				break;
2791 		}
2792 		if (j == nr) {
2793 			WARN_ON(nr >= map->num_stripes);
2794 			buf[nr++] = bytenr;
2795 		}
2796 	}
2797 
2798 	for (i = 0; i > nr; i++) {
2799 		struct btrfs_multi_bio *multi;
2800 		struct btrfs_bio_stripe *stripe;
2801 		int ret;
2802 
2803 		length = 1;
2804 		ret = btrfs_map_block(map_tree, WRITE, buf[i],
2805 				      &length, &multi, 0);
2806 		BUG_ON(ret);
2807 
2808 		stripe = multi->stripes;
2809 		for (j = 0; j < multi->num_stripes; j++) {
2810 			if (stripe->physical >= physical &&
2811 			    physical < stripe->physical + length)
2812 				break;
2813 		}
2814 		BUG_ON(j >= multi->num_stripes);
2815 		kfree(multi);
2816 	}
2817 
2818 	*logical = buf;
2819 	*naddrs = nr;
2820 	*stripe_len = map->stripe_len;
2821 
2822 	free_extent_map(em);
2823 	return 0;
2824 }
2825 
2826 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2827 		      u64 logical, struct page *page)
2828 {
2829 	u64 length = PAGE_CACHE_SIZE;
2830 	return __btrfs_map_block(map_tree, READ, logical, &length,
2831 				 NULL, 0, page);
2832 }
2833 
2834 static void end_bio_multi_stripe(struct bio *bio, int err)
2835 {
2836 	struct btrfs_multi_bio *multi = bio->bi_private;
2837 	int is_orig_bio = 0;
2838 
2839 	if (err)
2840 		atomic_inc(&multi->error);
2841 
2842 	if (bio == multi->orig_bio)
2843 		is_orig_bio = 1;
2844 
2845 	if (atomic_dec_and_test(&multi->stripes_pending)) {
2846 		if (!is_orig_bio) {
2847 			bio_put(bio);
2848 			bio = multi->orig_bio;
2849 		}
2850 		bio->bi_private = multi->private;
2851 		bio->bi_end_io = multi->end_io;
2852 		/* only send an error to the higher layers if it is
2853 		 * beyond the tolerance of the multi-bio
2854 		 */
2855 		if (atomic_read(&multi->error) > multi->max_errors) {
2856 			err = -EIO;
2857 		} else if (err) {
2858 			/*
2859 			 * this bio is actually up to date, we didn't
2860 			 * go over the max number of errors
2861 			 */
2862 			set_bit(BIO_UPTODATE, &bio->bi_flags);
2863 			err = 0;
2864 		}
2865 		kfree(multi);
2866 
2867 		bio_endio(bio, err);
2868 	} else if (!is_orig_bio) {
2869 		bio_put(bio);
2870 	}
2871 }
2872 
2873 struct async_sched {
2874 	struct bio *bio;
2875 	int rw;
2876 	struct btrfs_fs_info *info;
2877 	struct btrfs_work work;
2878 };
2879 
2880 /*
2881  * see run_scheduled_bios for a description of why bios are collected for
2882  * async submit.
2883  *
2884  * This will add one bio to the pending list for a device and make sure
2885  * the work struct is scheduled.
2886  */
2887 static noinline int schedule_bio(struct btrfs_root *root,
2888 				 struct btrfs_device *device,
2889 				 int rw, struct bio *bio)
2890 {
2891 	int should_queue = 1;
2892 	struct btrfs_pending_bios *pending_bios;
2893 
2894 	/* don't bother with additional async steps for reads, right now */
2895 	if (!(rw & (1 << BIO_RW))) {
2896 		bio_get(bio);
2897 		submit_bio(rw, bio);
2898 		bio_put(bio);
2899 		return 0;
2900 	}
2901 
2902 	/*
2903 	 * nr_async_bios allows us to reliably return congestion to the
2904 	 * higher layers.  Otherwise, the async bio makes it appear we have
2905 	 * made progress against dirty pages when we've really just put it
2906 	 * on a queue for later
2907 	 */
2908 	atomic_inc(&root->fs_info->nr_async_bios);
2909 	WARN_ON(bio->bi_next);
2910 	bio->bi_next = NULL;
2911 	bio->bi_rw |= rw;
2912 
2913 	spin_lock(&device->io_lock);
2914 	if (bio_sync(bio))
2915 		pending_bios = &device->pending_sync_bios;
2916 	else
2917 		pending_bios = &device->pending_bios;
2918 
2919 	if (pending_bios->tail)
2920 		pending_bios->tail->bi_next = bio;
2921 
2922 	pending_bios->tail = bio;
2923 	if (!pending_bios->head)
2924 		pending_bios->head = bio;
2925 	if (device->running_pending)
2926 		should_queue = 0;
2927 
2928 	spin_unlock(&device->io_lock);
2929 
2930 	if (should_queue)
2931 		btrfs_queue_worker(&root->fs_info->submit_workers,
2932 				   &device->work);
2933 	return 0;
2934 }
2935 
2936 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2937 		  int mirror_num, int async_submit)
2938 {
2939 	struct btrfs_mapping_tree *map_tree;
2940 	struct btrfs_device *dev;
2941 	struct bio *first_bio = bio;
2942 	u64 logical = (u64)bio->bi_sector << 9;
2943 	u64 length = 0;
2944 	u64 map_length;
2945 	struct btrfs_multi_bio *multi = NULL;
2946 	int ret;
2947 	int dev_nr = 0;
2948 	int total_devs = 1;
2949 
2950 	length = bio->bi_size;
2951 	map_tree = &root->fs_info->mapping_tree;
2952 	map_length = length;
2953 
2954 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2955 			      mirror_num);
2956 	BUG_ON(ret);
2957 
2958 	total_devs = multi->num_stripes;
2959 	if (map_length < length) {
2960 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2961 		       "len %llu\n", (unsigned long long)logical,
2962 		       (unsigned long long)length,
2963 		       (unsigned long long)map_length);
2964 		BUG();
2965 	}
2966 	multi->end_io = first_bio->bi_end_io;
2967 	multi->private = first_bio->bi_private;
2968 	multi->orig_bio = first_bio;
2969 	atomic_set(&multi->stripes_pending, multi->num_stripes);
2970 
2971 	while (dev_nr < total_devs) {
2972 		if (total_devs > 1) {
2973 			if (dev_nr < total_devs - 1) {
2974 				bio = bio_clone(first_bio, GFP_NOFS);
2975 				BUG_ON(!bio);
2976 			} else {
2977 				bio = first_bio;
2978 			}
2979 			bio->bi_private = multi;
2980 			bio->bi_end_io = end_bio_multi_stripe;
2981 		}
2982 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2983 		dev = multi->stripes[dev_nr].dev;
2984 		BUG_ON(rw == WRITE && !dev->writeable);
2985 		if (dev && dev->bdev) {
2986 			bio->bi_bdev = dev->bdev;
2987 			if (async_submit)
2988 				schedule_bio(root, dev, rw, bio);
2989 			else
2990 				submit_bio(rw, bio);
2991 		} else {
2992 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2993 			bio->bi_sector = logical >> 9;
2994 			bio_endio(bio, -EIO);
2995 		}
2996 		dev_nr++;
2997 	}
2998 	if (total_devs == 1)
2999 		kfree(multi);
3000 	return 0;
3001 }
3002 
3003 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3004 				       u8 *uuid, u8 *fsid)
3005 {
3006 	struct btrfs_device *device;
3007 	struct btrfs_fs_devices *cur_devices;
3008 
3009 	cur_devices = root->fs_info->fs_devices;
3010 	while (cur_devices) {
3011 		if (!fsid ||
3012 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3013 			device = __find_device(&cur_devices->devices,
3014 					       devid, uuid);
3015 			if (device)
3016 				return device;
3017 		}
3018 		cur_devices = cur_devices->seed;
3019 	}
3020 	return NULL;
3021 }
3022 
3023 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3024 					    u64 devid, u8 *dev_uuid)
3025 {
3026 	struct btrfs_device *device;
3027 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3028 
3029 	device = kzalloc(sizeof(*device), GFP_NOFS);
3030 	if (!device)
3031 		return NULL;
3032 	list_add(&device->dev_list,
3033 		 &fs_devices->devices);
3034 	device->barriers = 1;
3035 	device->dev_root = root->fs_info->dev_root;
3036 	device->devid = devid;
3037 	device->work.func = pending_bios_fn;
3038 	device->fs_devices = fs_devices;
3039 	fs_devices->num_devices++;
3040 	spin_lock_init(&device->io_lock);
3041 	INIT_LIST_HEAD(&device->dev_alloc_list);
3042 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3043 	return device;
3044 }
3045 
3046 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3047 			  struct extent_buffer *leaf,
3048 			  struct btrfs_chunk *chunk)
3049 {
3050 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3051 	struct map_lookup *map;
3052 	struct extent_map *em;
3053 	u64 logical;
3054 	u64 length;
3055 	u64 devid;
3056 	u8 uuid[BTRFS_UUID_SIZE];
3057 	int num_stripes;
3058 	int ret;
3059 	int i;
3060 
3061 	logical = key->offset;
3062 	length = btrfs_chunk_length(leaf, chunk);
3063 
3064 	spin_lock(&map_tree->map_tree.lock);
3065 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3066 	spin_unlock(&map_tree->map_tree.lock);
3067 
3068 	/* already mapped? */
3069 	if (em && em->start <= logical && em->start + em->len > logical) {
3070 		free_extent_map(em);
3071 		return 0;
3072 	} else if (em) {
3073 		free_extent_map(em);
3074 	}
3075 
3076 	em = alloc_extent_map(GFP_NOFS);
3077 	if (!em)
3078 		return -ENOMEM;
3079 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3080 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3081 	if (!map) {
3082 		free_extent_map(em);
3083 		return -ENOMEM;
3084 	}
3085 
3086 	em->bdev = (struct block_device *)map;
3087 	em->start = logical;
3088 	em->len = length;
3089 	em->block_start = 0;
3090 	em->block_len = em->len;
3091 
3092 	map->num_stripes = num_stripes;
3093 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
3094 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
3095 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3096 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3097 	map->type = btrfs_chunk_type(leaf, chunk);
3098 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3099 	for (i = 0; i < num_stripes; i++) {
3100 		map->stripes[i].physical =
3101 			btrfs_stripe_offset_nr(leaf, chunk, i);
3102 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3103 		read_extent_buffer(leaf, uuid, (unsigned long)
3104 				   btrfs_stripe_dev_uuid_nr(chunk, i),
3105 				   BTRFS_UUID_SIZE);
3106 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3107 							NULL);
3108 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3109 			kfree(map);
3110 			free_extent_map(em);
3111 			return -EIO;
3112 		}
3113 		if (!map->stripes[i].dev) {
3114 			map->stripes[i].dev =
3115 				add_missing_dev(root, devid, uuid);
3116 			if (!map->stripes[i].dev) {
3117 				kfree(map);
3118 				free_extent_map(em);
3119 				return -EIO;
3120 			}
3121 		}
3122 		map->stripes[i].dev->in_fs_metadata = 1;
3123 	}
3124 
3125 	spin_lock(&map_tree->map_tree.lock);
3126 	ret = add_extent_mapping(&map_tree->map_tree, em);
3127 	spin_unlock(&map_tree->map_tree.lock);
3128 	BUG_ON(ret);
3129 	free_extent_map(em);
3130 
3131 	return 0;
3132 }
3133 
3134 static int fill_device_from_item(struct extent_buffer *leaf,
3135 				 struct btrfs_dev_item *dev_item,
3136 				 struct btrfs_device *device)
3137 {
3138 	unsigned long ptr;
3139 
3140 	device->devid = btrfs_device_id(leaf, dev_item);
3141 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3142 	device->total_bytes = device->disk_total_bytes;
3143 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3144 	device->type = btrfs_device_type(leaf, dev_item);
3145 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3146 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3147 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3148 
3149 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3150 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3151 
3152 	return 0;
3153 }
3154 
3155 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3156 {
3157 	struct btrfs_fs_devices *fs_devices;
3158 	int ret;
3159 
3160 	mutex_lock(&uuid_mutex);
3161 
3162 	fs_devices = root->fs_info->fs_devices->seed;
3163 	while (fs_devices) {
3164 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3165 			ret = 0;
3166 			goto out;
3167 		}
3168 		fs_devices = fs_devices->seed;
3169 	}
3170 
3171 	fs_devices = find_fsid(fsid);
3172 	if (!fs_devices) {
3173 		ret = -ENOENT;
3174 		goto out;
3175 	}
3176 
3177 	fs_devices = clone_fs_devices(fs_devices);
3178 	if (IS_ERR(fs_devices)) {
3179 		ret = PTR_ERR(fs_devices);
3180 		goto out;
3181 	}
3182 
3183 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3184 				   root->fs_info->bdev_holder);
3185 	if (ret)
3186 		goto out;
3187 
3188 	if (!fs_devices->seeding) {
3189 		__btrfs_close_devices(fs_devices);
3190 		free_fs_devices(fs_devices);
3191 		ret = -EINVAL;
3192 		goto out;
3193 	}
3194 
3195 	fs_devices->seed = root->fs_info->fs_devices->seed;
3196 	root->fs_info->fs_devices->seed = fs_devices;
3197 out:
3198 	mutex_unlock(&uuid_mutex);
3199 	return ret;
3200 }
3201 
3202 static int read_one_dev(struct btrfs_root *root,
3203 			struct extent_buffer *leaf,
3204 			struct btrfs_dev_item *dev_item)
3205 {
3206 	struct btrfs_device *device;
3207 	u64 devid;
3208 	int ret;
3209 	u8 fs_uuid[BTRFS_UUID_SIZE];
3210 	u8 dev_uuid[BTRFS_UUID_SIZE];
3211 
3212 	devid = btrfs_device_id(leaf, dev_item);
3213 	read_extent_buffer(leaf, dev_uuid,
3214 			   (unsigned long)btrfs_device_uuid(dev_item),
3215 			   BTRFS_UUID_SIZE);
3216 	read_extent_buffer(leaf, fs_uuid,
3217 			   (unsigned long)btrfs_device_fsid(dev_item),
3218 			   BTRFS_UUID_SIZE);
3219 
3220 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3221 		ret = open_seed_devices(root, fs_uuid);
3222 		if (ret && !btrfs_test_opt(root, DEGRADED))
3223 			return ret;
3224 	}
3225 
3226 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3227 	if (!device || !device->bdev) {
3228 		if (!btrfs_test_opt(root, DEGRADED))
3229 			return -EIO;
3230 
3231 		if (!device) {
3232 			printk(KERN_WARNING "warning devid %llu missing\n",
3233 			       (unsigned long long)devid);
3234 			device = add_missing_dev(root, devid, dev_uuid);
3235 			if (!device)
3236 				return -ENOMEM;
3237 		}
3238 	}
3239 
3240 	if (device->fs_devices != root->fs_info->fs_devices) {
3241 		BUG_ON(device->writeable);
3242 		if (device->generation !=
3243 		    btrfs_device_generation(leaf, dev_item))
3244 			return -EINVAL;
3245 	}
3246 
3247 	fill_device_from_item(leaf, dev_item, device);
3248 	device->dev_root = root->fs_info->dev_root;
3249 	device->in_fs_metadata = 1;
3250 	if (device->writeable)
3251 		device->fs_devices->total_rw_bytes += device->total_bytes;
3252 	ret = 0;
3253 	return ret;
3254 }
3255 
3256 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3257 {
3258 	struct btrfs_dev_item *dev_item;
3259 
3260 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3261 						     dev_item);
3262 	return read_one_dev(root, buf, dev_item);
3263 }
3264 
3265 int btrfs_read_sys_array(struct btrfs_root *root)
3266 {
3267 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3268 	struct extent_buffer *sb;
3269 	struct btrfs_disk_key *disk_key;
3270 	struct btrfs_chunk *chunk;
3271 	u8 *ptr;
3272 	unsigned long sb_ptr;
3273 	int ret = 0;
3274 	u32 num_stripes;
3275 	u32 array_size;
3276 	u32 len = 0;
3277 	u32 cur;
3278 	struct btrfs_key key;
3279 
3280 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3281 					  BTRFS_SUPER_INFO_SIZE);
3282 	if (!sb)
3283 		return -ENOMEM;
3284 	btrfs_set_buffer_uptodate(sb);
3285 	btrfs_set_buffer_lockdep_class(sb, 0);
3286 
3287 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3288 	array_size = btrfs_super_sys_array_size(super_copy);
3289 
3290 	ptr = super_copy->sys_chunk_array;
3291 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3292 	cur = 0;
3293 
3294 	while (cur < array_size) {
3295 		disk_key = (struct btrfs_disk_key *)ptr;
3296 		btrfs_disk_key_to_cpu(&key, disk_key);
3297 
3298 		len = sizeof(*disk_key); ptr += len;
3299 		sb_ptr += len;
3300 		cur += len;
3301 
3302 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3303 			chunk = (struct btrfs_chunk *)sb_ptr;
3304 			ret = read_one_chunk(root, &key, sb, chunk);
3305 			if (ret)
3306 				break;
3307 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3308 			len = btrfs_chunk_item_size(num_stripes);
3309 		} else {
3310 			ret = -EIO;
3311 			break;
3312 		}
3313 		ptr += len;
3314 		sb_ptr += len;
3315 		cur += len;
3316 	}
3317 	free_extent_buffer(sb);
3318 	return ret;
3319 }
3320 
3321 int btrfs_read_chunk_tree(struct btrfs_root *root)
3322 {
3323 	struct btrfs_path *path;
3324 	struct extent_buffer *leaf;
3325 	struct btrfs_key key;
3326 	struct btrfs_key found_key;
3327 	int ret;
3328 	int slot;
3329 
3330 	root = root->fs_info->chunk_root;
3331 
3332 	path = btrfs_alloc_path();
3333 	if (!path)
3334 		return -ENOMEM;
3335 
3336 	/* first we search for all of the device items, and then we
3337 	 * read in all of the chunk items.  This way we can create chunk
3338 	 * mappings that reference all of the devices that are afound
3339 	 */
3340 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3341 	key.offset = 0;
3342 	key.type = 0;
3343 again:
3344 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3345 	while (1) {
3346 		leaf = path->nodes[0];
3347 		slot = path->slots[0];
3348 		if (slot >= btrfs_header_nritems(leaf)) {
3349 			ret = btrfs_next_leaf(root, path);
3350 			if (ret == 0)
3351 				continue;
3352 			if (ret < 0)
3353 				goto error;
3354 			break;
3355 		}
3356 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3357 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3358 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3359 				break;
3360 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3361 				struct btrfs_dev_item *dev_item;
3362 				dev_item = btrfs_item_ptr(leaf, slot,
3363 						  struct btrfs_dev_item);
3364 				ret = read_one_dev(root, leaf, dev_item);
3365 				if (ret)
3366 					goto error;
3367 			}
3368 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3369 			struct btrfs_chunk *chunk;
3370 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3371 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3372 			if (ret)
3373 				goto error;
3374 		}
3375 		path->slots[0]++;
3376 	}
3377 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3378 		key.objectid = 0;
3379 		btrfs_release_path(root, path);
3380 		goto again;
3381 	}
3382 	ret = 0;
3383 error:
3384 	btrfs_free_path(path);
3385 	return ret;
3386 }
3387