xref: /linux/fs/btrfs/volumes.c (revision 202779456dc5b75d07b214064161ef6a2421e8be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40 					 BTRFS_BLOCK_GROUP_RAID10 | \
41 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 	[BTRFS_RAID_RAID10] = {
45 		.sub_stripes	= 2,
46 		.dev_stripes	= 1,
47 		.devs_max	= 0,	/* 0 == as many as possible */
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.nparity        = 0,
53 		.raid_name	= "raid10",
54 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 	},
57 	[BTRFS_RAID_RAID1] = {
58 		.sub_stripes	= 1,
59 		.dev_stripes	= 1,
60 		.devs_max	= 2,
61 		.devs_min	= 2,
62 		.tolerated_failures = 1,
63 		.devs_increment	= 2,
64 		.ncopies	= 2,
65 		.nparity        = 0,
66 		.raid_name	= "raid1",
67 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 	},
70 	[BTRFS_RAID_RAID1C3] = {
71 		.sub_stripes	= 1,
72 		.dev_stripes	= 1,
73 		.devs_max	= 3,
74 		.devs_min	= 3,
75 		.tolerated_failures = 2,
76 		.devs_increment	= 3,
77 		.ncopies	= 3,
78 		.nparity        = 0,
79 		.raid_name	= "raid1c3",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 	},
83 	[BTRFS_RAID_RAID1C4] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 4,
87 		.devs_min	= 4,
88 		.tolerated_failures = 3,
89 		.devs_increment	= 4,
90 		.ncopies	= 4,
91 		.nparity        = 0,
92 		.raid_name	= "raid1c4",
93 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 	},
96 	[BTRFS_RAID_DUP] = {
97 		.sub_stripes	= 1,
98 		.dev_stripes	= 2,
99 		.devs_max	= 1,
100 		.devs_min	= 1,
101 		.tolerated_failures = 0,
102 		.devs_increment	= 1,
103 		.ncopies	= 2,
104 		.nparity        = 0,
105 		.raid_name	= "dup",
106 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107 		.mindev_error	= 0,
108 	},
109 	[BTRFS_RAID_RAID0] = {
110 		.sub_stripes	= 1,
111 		.dev_stripes	= 1,
112 		.devs_max	= 0,
113 		.devs_min	= 1,
114 		.tolerated_failures = 0,
115 		.devs_increment	= 1,
116 		.ncopies	= 1,
117 		.nparity        = 0,
118 		.raid_name	= "raid0",
119 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120 		.mindev_error	= 0,
121 	},
122 	[BTRFS_RAID_SINGLE] = {
123 		.sub_stripes	= 1,
124 		.dev_stripes	= 1,
125 		.devs_max	= 1,
126 		.devs_min	= 1,
127 		.tolerated_failures = 0,
128 		.devs_increment	= 1,
129 		.ncopies	= 1,
130 		.nparity        = 0,
131 		.raid_name	= "single",
132 		.bg_flag	= 0,
133 		.mindev_error	= 0,
134 	},
135 	[BTRFS_RAID_RAID5] = {
136 		.sub_stripes	= 1,
137 		.dev_stripes	= 1,
138 		.devs_max	= 0,
139 		.devs_min	= 2,
140 		.tolerated_failures = 1,
141 		.devs_increment	= 1,
142 		.ncopies	= 1,
143 		.nparity        = 1,
144 		.raid_name	= "raid5",
145 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 	},
148 	[BTRFS_RAID_RAID6] = {
149 		.sub_stripes	= 1,
150 		.dev_stripes	= 1,
151 		.devs_max	= 0,
152 		.devs_min	= 3,
153 		.tolerated_failures = 2,
154 		.devs_increment	= 1,
155 		.ncopies	= 1,
156 		.nparity        = 2,
157 		.raid_name	= "raid6",
158 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 	},
161 };
162 
163 /*
164  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165  * can be used as index to access btrfs_raid_array[].
166  */
167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170 
171 	if (!profile)
172 		return BTRFS_RAID_SINGLE;
173 
174 	return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176 
177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 	const int index = btrfs_bg_flags_to_raid_index(flags);
180 
181 	if (index >= BTRFS_NR_RAID_TYPES)
182 		return NULL;
183 
184 	return btrfs_raid_array[index].raid_name;
185 }
186 
187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190 
191 	return btrfs_raid_array[index].nparity;
192 }
193 
194 /*
195  * Fill @buf with textual description of @bg_flags, no more than @size_buf
196  * bytes including terminating null byte.
197  */
198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 	int i;
201 	int ret;
202 	char *bp = buf;
203 	u64 flags = bg_flags;
204 	u32 size_bp = size_buf;
205 
206 	if (!flags) {
207 		strcpy(bp, "NONE");
208 		return;
209 	}
210 
211 #define DESCRIBE_FLAG(flag, desc)						\
212 	do {								\
213 		if (flags & (flag)) {					\
214 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215 			if (ret < 0 || ret >= size_bp)			\
216 				goto out_overflow;			\
217 			size_bp -= ret;					\
218 			bp += ret;					\
219 			flags &= ~(flag);				\
220 		}							\
221 	} while (0)
222 
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 
227 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 			      btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232 
233 	if (flags) {
234 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 		size_bp -= ret;
236 	}
237 
238 	if (size_bp < size_buf)
239 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 
241 	/*
242 	 * The text is trimmed, it's up to the caller to provide sufficiently
243 	 * large buffer
244 	 */
245 out_overflow:;
246 }
247 
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 
252 /*
253  * Device locking
254  * ==============
255  *
256  * There are several mutexes that protect manipulation of devices and low-level
257  * structures like chunks but not block groups, extents or files
258  *
259  * uuid_mutex (global lock)
260  * ------------------------
261  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263  * device) or requested by the device= mount option
264  *
265  * the mutex can be very coarse and can cover long-running operations
266  *
267  * protects: updates to fs_devices counters like missing devices, rw devices,
268  * seeding, structure cloning, opening/closing devices at mount/umount time
269  *
270  * global::fs_devs - add, remove, updates to the global list
271  *
272  * does not protect: manipulation of the fs_devices::devices list in general
273  * but in mount context it could be used to exclude list modifications by eg.
274  * scan ioctl
275  *
276  * btrfs_device::name - renames (write side), read is RCU
277  *
278  * fs_devices::device_list_mutex (per-fs, with RCU)
279  * ------------------------------------------------
280  * protects updates to fs_devices::devices, ie. adding and deleting
281  *
282  * simple list traversal with read-only actions can be done with RCU protection
283  *
284  * may be used to exclude some operations from running concurrently without any
285  * modifications to the list (see write_all_supers)
286  *
287  * Is not required at mount and close times, because our device list is
288  * protected by the uuid_mutex at that point.
289  *
290  * balance_mutex
291  * -------------
292  * protects balance structures (status, state) and context accessed from
293  * several places (internally, ioctl)
294  *
295  * chunk_mutex
296  * -----------
297  * protects chunks, adding or removing during allocation, trim or when a new
298  * device is added/removed. Additionally it also protects post_commit_list of
299  * individual devices, since they can be added to the transaction's
300  * post_commit_list only with chunk_mutex held.
301  *
302  * cleaner_mutex
303  * -------------
304  * a big lock that is held by the cleaner thread and prevents running subvolume
305  * cleaning together with relocation or delayed iputs
306  *
307  *
308  * Lock nesting
309  * ============
310  *
311  * uuid_mutex
312  *   device_list_mutex
313  *     chunk_mutex
314  *   balance_mutex
315  *
316  *
317  * Exclusive operations
318  * ====================
319  *
320  * Maintains the exclusivity of the following operations that apply to the
321  * whole filesystem and cannot run in parallel.
322  *
323  * - Balance (*)
324  * - Device add
325  * - Device remove
326  * - Device replace (*)
327  * - Resize
328  *
329  * The device operations (as above) can be in one of the following states:
330  *
331  * - Running state
332  * - Paused state
333  * - Completed state
334  *
335  * Only device operations marked with (*) can go into the Paused state for the
336  * following reasons:
337  *
338  * - ioctl (only Balance can be Paused through ioctl)
339  * - filesystem remounted as read-only
340  * - filesystem unmounted and mounted as read-only
341  * - system power-cycle and filesystem mounted as read-only
342  * - filesystem or device errors leading to forced read-only
343  *
344  * The status of exclusive operation is set and cleared atomically.
345  * During the course of Paused state, fs_info::exclusive_operation remains set.
346  * A device operation in Paused or Running state can be canceled or resumed
347  * either by ioctl (Balance only) or when remounted as read-write.
348  * The exclusive status is cleared when the device operation is canceled or
349  * completed.
350  */
351 
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 	return &fs_uuids;
357 }
358 
359 /*
360  * alloc_fs_devices - allocate struct btrfs_fs_devices
361  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
362  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
363  *
364  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365  * The returned struct is not linked onto any lists and can be destroyed with
366  * kfree() right away.
367  */
368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 						 const u8 *metadata_fsid)
370 {
371 	struct btrfs_fs_devices *fs_devs;
372 
373 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 	if (!fs_devs)
375 		return ERR_PTR(-ENOMEM);
376 
377 	mutex_init(&fs_devs->device_list_mutex);
378 
379 	INIT_LIST_HEAD(&fs_devs->devices);
380 	INIT_LIST_HEAD(&fs_devs->alloc_list);
381 	INIT_LIST_HEAD(&fs_devs->fs_list);
382 	INIT_LIST_HEAD(&fs_devs->seed_list);
383 	if (fsid)
384 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385 
386 	if (metadata_fsid)
387 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 	else if (fsid)
389 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390 
391 	return fs_devs;
392 }
393 
394 void btrfs_free_device(struct btrfs_device *device)
395 {
396 	WARN_ON(!list_empty(&device->post_commit_list));
397 	rcu_string_free(device->name);
398 	extent_io_tree_release(&device->alloc_state);
399 	btrfs_destroy_dev_zone_info(device);
400 	kfree(device);
401 }
402 
403 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404 {
405 	struct btrfs_device *device;
406 
407 	WARN_ON(fs_devices->opened);
408 	while (!list_empty(&fs_devices->devices)) {
409 		device = list_entry(fs_devices->devices.next,
410 				    struct btrfs_device, dev_list);
411 		list_del(&device->dev_list);
412 		btrfs_free_device(device);
413 	}
414 	kfree(fs_devices);
415 }
416 
417 void __exit btrfs_cleanup_fs_uuids(void)
418 {
419 	struct btrfs_fs_devices *fs_devices;
420 
421 	while (!list_empty(&fs_uuids)) {
422 		fs_devices = list_entry(fs_uuids.next,
423 					struct btrfs_fs_devices, fs_list);
424 		list_del(&fs_devices->fs_list);
425 		free_fs_devices(fs_devices);
426 	}
427 }
428 
429 static noinline struct btrfs_fs_devices *find_fsid(
430 		const u8 *fsid, const u8 *metadata_fsid)
431 {
432 	struct btrfs_fs_devices *fs_devices;
433 
434 	ASSERT(fsid);
435 
436 	/* Handle non-split brain cases */
437 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
438 		if (metadata_fsid) {
439 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 				      BTRFS_FSID_SIZE) == 0)
442 				return fs_devices;
443 		} else {
444 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 				return fs_devices;
446 		}
447 	}
448 	return NULL;
449 }
450 
451 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 				struct btrfs_super_block *disk_super)
453 {
454 
455 	struct btrfs_fs_devices *fs_devices;
456 
457 	/*
458 	 * Handle scanned device having completed its fsid change but
459 	 * belonging to a fs_devices that was created by first scanning
460 	 * a device which didn't have its fsid/metadata_uuid changed
461 	 * at all and the CHANGING_FSID_V2 flag set.
462 	 */
463 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 		if (fs_devices->fsid_change &&
465 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 			   BTRFS_FSID_SIZE) == 0 &&
467 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 			   BTRFS_FSID_SIZE) == 0) {
469 			return fs_devices;
470 		}
471 	}
472 	/*
473 	 * Handle scanned device having completed its fsid change but
474 	 * belonging to a fs_devices that was created by a device that
475 	 * has an outdated pair of fsid/metadata_uuid and
476 	 * CHANGING_FSID_V2 flag set.
477 	 */
478 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 		if (fs_devices->fsid_change &&
480 		    memcmp(fs_devices->metadata_uuid,
481 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 			   BTRFS_FSID_SIZE) == 0) {
484 			return fs_devices;
485 		}
486 	}
487 
488 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489 }
490 
491 
492 static int
493 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 		      int flush, struct block_device **bdev,
495 		      struct btrfs_super_block **disk_super)
496 {
497 	int ret;
498 
499 	*bdev = blkdev_get_by_path(device_path, flags, holder);
500 
501 	if (IS_ERR(*bdev)) {
502 		ret = PTR_ERR(*bdev);
503 		goto error;
504 	}
505 
506 	if (flush)
507 		sync_blockdev(*bdev);
508 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
509 	if (ret) {
510 		blkdev_put(*bdev, flags);
511 		goto error;
512 	}
513 	invalidate_bdev(*bdev);
514 	*disk_super = btrfs_read_dev_super(*bdev);
515 	if (IS_ERR(*disk_super)) {
516 		ret = PTR_ERR(*disk_super);
517 		blkdev_put(*bdev, flags);
518 		goto error;
519 	}
520 
521 	return 0;
522 
523 error:
524 	*bdev = NULL;
525 	return ret;
526 }
527 
528 /*
529  *  Search and remove all stale devices (which are not mounted).  When both
530  *  inputs are NULL, it will search and release all stale devices.
531  *
532  *  @devt:         Optional. When provided will it release all unmounted devices
533  *                 matching this devt only.
534  *  @skip_device:  Optional. Will skip this device when searching for the stale
535  *                 devices.
536  *
537  *  Return:	0 for success or if @devt is 0.
538  *		-EBUSY if @devt is a mounted device.
539  *		-ENOENT if @devt does not match any device in the list.
540  */
541 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
542 {
543 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 	struct btrfs_device *device, *tmp_device;
545 	int ret = 0;
546 
547 	lockdep_assert_held(&uuid_mutex);
548 
549 	if (devt)
550 		ret = -ENOENT;
551 
552 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
553 
554 		mutex_lock(&fs_devices->device_list_mutex);
555 		list_for_each_entry_safe(device, tmp_device,
556 					 &fs_devices->devices, dev_list) {
557 			if (skip_device && skip_device == device)
558 				continue;
559 			if (devt && devt != device->devt)
560 				continue;
561 			if (fs_devices->opened) {
562 				/* for an already deleted device return 0 */
563 				if (devt && ret != 0)
564 					ret = -EBUSY;
565 				break;
566 			}
567 
568 			/* delete the stale device */
569 			fs_devices->num_devices--;
570 			list_del(&device->dev_list);
571 			btrfs_free_device(device);
572 
573 			ret = 0;
574 		}
575 		mutex_unlock(&fs_devices->device_list_mutex);
576 
577 		if (fs_devices->num_devices == 0) {
578 			btrfs_sysfs_remove_fsid(fs_devices);
579 			list_del(&fs_devices->fs_list);
580 			free_fs_devices(fs_devices);
581 		}
582 	}
583 
584 	return ret;
585 }
586 
587 /*
588  * This is only used on mount, and we are protected from competing things
589  * messing with our fs_devices by the uuid_mutex, thus we do not need the
590  * fs_devices->device_list_mutex here.
591  */
592 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 			struct btrfs_device *device, fmode_t flags,
594 			void *holder)
595 {
596 	struct block_device *bdev;
597 	struct btrfs_super_block *disk_super;
598 	u64 devid;
599 	int ret;
600 
601 	if (device->bdev)
602 		return -EINVAL;
603 	if (!device->name)
604 		return -EINVAL;
605 
606 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
607 				    &bdev, &disk_super);
608 	if (ret)
609 		return ret;
610 
611 	devid = btrfs_stack_device_id(&disk_super->dev_item);
612 	if (devid != device->devid)
613 		goto error_free_page;
614 
615 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
616 		goto error_free_page;
617 
618 	device->generation = btrfs_super_generation(disk_super);
619 
620 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
621 		if (btrfs_super_incompat_flags(disk_super) &
622 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 			pr_err(
624 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
625 			goto error_free_page;
626 		}
627 
628 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
629 		fs_devices->seeding = true;
630 	} else {
631 		if (bdev_read_only(bdev))
632 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 		else
634 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
635 	}
636 
637 	if (!bdev_nonrot(bdev))
638 		fs_devices->rotating = true;
639 
640 	if (bdev_max_discard_sectors(bdev))
641 		fs_devices->discardable = true;
642 
643 	device->bdev = bdev;
644 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
645 	device->mode = flags;
646 
647 	fs_devices->open_devices++;
648 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
650 		fs_devices->rw_devices++;
651 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
652 	}
653 	btrfs_release_disk_super(disk_super);
654 
655 	return 0;
656 
657 error_free_page:
658 	btrfs_release_disk_super(disk_super);
659 	blkdev_put(bdev, flags);
660 
661 	return -EINVAL;
662 }
663 
664 /*
665  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
666  * being created with a disk that has already completed its fsid change. Such
667  * disk can belong to an fs which has its FSID changed or to one which doesn't.
668  * Handle both cases here.
669  */
670 static struct btrfs_fs_devices *find_fsid_inprogress(
671 					struct btrfs_super_block *disk_super)
672 {
673 	struct btrfs_fs_devices *fs_devices;
674 
675 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 			   BTRFS_FSID_SIZE) != 0 &&
678 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 			return fs_devices;
681 		}
682 	}
683 
684 	return find_fsid(disk_super->fsid, NULL);
685 }
686 
687 
688 static struct btrfs_fs_devices *find_fsid_changed(
689 					struct btrfs_super_block *disk_super)
690 {
691 	struct btrfs_fs_devices *fs_devices;
692 
693 	/*
694 	 * Handles the case where scanned device is part of an fs that had
695 	 * multiple successful changes of FSID but currently device didn't
696 	 * observe it. Meaning our fsid will be different than theirs. We need
697 	 * to handle two subcases :
698 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
699 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
700 	 *  are equal).
701 	 */
702 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 		/* Changed UUIDs */
704 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 			   BTRFS_FSID_SIZE) != 0 &&
706 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 			   BTRFS_FSID_SIZE) == 0 &&
708 		    memcmp(fs_devices->fsid, disk_super->fsid,
709 			   BTRFS_FSID_SIZE) != 0)
710 			return fs_devices;
711 
712 		/* Unchanged UUIDs */
713 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 			   BTRFS_FSID_SIZE) == 0 &&
715 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 			   BTRFS_FSID_SIZE) == 0)
717 			return fs_devices;
718 	}
719 
720 	return NULL;
721 }
722 
723 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 				struct btrfs_super_block *disk_super)
725 {
726 	struct btrfs_fs_devices *fs_devices;
727 
728 	/*
729 	 * Handle the case where the scanned device is part of an fs whose last
730 	 * metadata UUID change reverted it to the original FSID. At the same
731 	 * time fs_devices was first created by another constituent device
732 	 * which didn't fully observe the operation. This results in an
733 	 * btrfs_fs_devices created with metadata/fsid different AND
734 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 	 * fs_devices equal to the FSID of the disk.
736 	 */
737 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 			   BTRFS_FSID_SIZE) != 0 &&
740 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 			   BTRFS_FSID_SIZE) == 0 &&
742 		    fs_devices->fsid_change)
743 			return fs_devices;
744 	}
745 
746 	return NULL;
747 }
748 /*
749  * Add new device to list of registered devices
750  *
751  * Returns:
752  * device pointer which was just added or updated when successful
753  * error pointer when failed
754  */
755 static noinline struct btrfs_device *device_list_add(const char *path,
756 			   struct btrfs_super_block *disk_super,
757 			   bool *new_device_added)
758 {
759 	struct btrfs_device *device;
760 	struct btrfs_fs_devices *fs_devices = NULL;
761 	struct rcu_string *name;
762 	u64 found_transid = btrfs_super_generation(disk_super);
763 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
764 	dev_t path_devt;
765 	int error;
766 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
768 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
770 
771 	error = lookup_bdev(path, &path_devt);
772 	if (error) {
773 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 			  path, error);
775 		return ERR_PTR(error);
776 	}
777 
778 	if (fsid_change_in_progress) {
779 		if (!has_metadata_uuid)
780 			fs_devices = find_fsid_inprogress(disk_super);
781 		else
782 			fs_devices = find_fsid_changed(disk_super);
783 	} else if (has_metadata_uuid) {
784 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
785 	} else {
786 		fs_devices = find_fsid_reverted_metadata(disk_super);
787 		if (!fs_devices)
788 			fs_devices = find_fsid(disk_super->fsid, NULL);
789 	}
790 
791 
792 	if (!fs_devices) {
793 		if (has_metadata_uuid)
794 			fs_devices = alloc_fs_devices(disk_super->fsid,
795 						      disk_super->metadata_uuid);
796 		else
797 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798 
799 		if (IS_ERR(fs_devices))
800 			return ERR_CAST(fs_devices);
801 
802 		fs_devices->fsid_change = fsid_change_in_progress;
803 
804 		mutex_lock(&fs_devices->device_list_mutex);
805 		list_add(&fs_devices->fs_list, &fs_uuids);
806 
807 		device = NULL;
808 	} else {
809 		struct btrfs_dev_lookup_args args = {
810 			.devid = devid,
811 			.uuid = disk_super->dev_item.uuid,
812 		};
813 
814 		mutex_lock(&fs_devices->device_list_mutex);
815 		device = btrfs_find_device(fs_devices, &args);
816 
817 		/*
818 		 * If this disk has been pulled into an fs devices created by
819 		 * a device which had the CHANGING_FSID_V2 flag then replace the
820 		 * metadata_uuid/fsid values of the fs_devices.
821 		 */
822 		if (fs_devices->fsid_change &&
823 		    found_transid > fs_devices->latest_generation) {
824 			memcpy(fs_devices->fsid, disk_super->fsid,
825 					BTRFS_FSID_SIZE);
826 
827 			if (has_metadata_uuid)
828 				memcpy(fs_devices->metadata_uuid,
829 				       disk_super->metadata_uuid,
830 				       BTRFS_FSID_SIZE);
831 			else
832 				memcpy(fs_devices->metadata_uuid,
833 				       disk_super->fsid, BTRFS_FSID_SIZE);
834 
835 			fs_devices->fsid_change = false;
836 		}
837 	}
838 
839 	if (!device) {
840 		unsigned int nofs_flag;
841 
842 		if (fs_devices->opened) {
843 			btrfs_err(NULL,
844 		"device %s belongs to fsid %pU, and the fs is already mounted",
845 				  path, fs_devices->fsid);
846 			mutex_unlock(&fs_devices->device_list_mutex);
847 			return ERR_PTR(-EBUSY);
848 		}
849 
850 		nofs_flag = memalloc_nofs_save();
851 		device = btrfs_alloc_device(NULL, &devid,
852 					    disk_super->dev_item.uuid, path);
853 		memalloc_nofs_restore(nofs_flag);
854 		if (IS_ERR(device)) {
855 			mutex_unlock(&fs_devices->device_list_mutex);
856 			/* we can safely leave the fs_devices entry around */
857 			return device;
858 		}
859 
860 		device->devt = path_devt;
861 
862 		list_add_rcu(&device->dev_list, &fs_devices->devices);
863 		fs_devices->num_devices++;
864 
865 		device->fs_devices = fs_devices;
866 		*new_device_added = true;
867 
868 		if (disk_super->label[0])
869 			pr_info(
870 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 				disk_super->label, devid, found_transid, path,
872 				current->comm, task_pid_nr(current));
873 		else
874 			pr_info(
875 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 				disk_super->fsid, devid, found_transid, path,
877 				current->comm, task_pid_nr(current));
878 
879 	} else if (!device->name || strcmp(device->name->str, path)) {
880 		/*
881 		 * When FS is already mounted.
882 		 * 1. If you are here and if the device->name is NULL that
883 		 *    means this device was missing at time of FS mount.
884 		 * 2. If you are here and if the device->name is different
885 		 *    from 'path' that means either
886 		 *      a. The same device disappeared and reappeared with
887 		 *         different name. or
888 		 *      b. The missing-disk-which-was-replaced, has
889 		 *         reappeared now.
890 		 *
891 		 * We must allow 1 and 2a above. But 2b would be a spurious
892 		 * and unintentional.
893 		 *
894 		 * Further in case of 1 and 2a above, the disk at 'path'
895 		 * would have missed some transaction when it was away and
896 		 * in case of 2a the stale bdev has to be updated as well.
897 		 * 2b must not be allowed at all time.
898 		 */
899 
900 		/*
901 		 * For now, we do allow update to btrfs_fs_device through the
902 		 * btrfs dev scan cli after FS has been mounted.  We're still
903 		 * tracking a problem where systems fail mount by subvolume id
904 		 * when we reject replacement on a mounted FS.
905 		 */
906 		if (!fs_devices->opened && found_transid < device->generation) {
907 			/*
908 			 * That is if the FS is _not_ mounted and if you
909 			 * are here, that means there is more than one
910 			 * disk with same uuid and devid.We keep the one
911 			 * with larger generation number or the last-in if
912 			 * generation are equal.
913 			 */
914 			mutex_unlock(&fs_devices->device_list_mutex);
915 			btrfs_err(NULL,
916 "device %s already registered with a higher generation, found %llu expect %llu",
917 				  path, found_transid, device->generation);
918 			return ERR_PTR(-EEXIST);
919 		}
920 
921 		/*
922 		 * We are going to replace the device path for a given devid,
923 		 * make sure it's the same device if the device is mounted
924 		 *
925 		 * NOTE: the device->fs_info may not be reliable here so pass
926 		 * in a NULL to message helpers instead. This avoids a possible
927 		 * use-after-free when the fs_info and fs_info->sb are already
928 		 * torn down.
929 		 */
930 		if (device->bdev) {
931 			if (device->devt != path_devt) {
932 				mutex_unlock(&fs_devices->device_list_mutex);
933 				btrfs_warn_in_rcu(NULL,
934 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 						  path, devid, found_transid,
936 						  current->comm,
937 						  task_pid_nr(current));
938 				return ERR_PTR(-EEXIST);
939 			}
940 			btrfs_info_in_rcu(NULL,
941 	"devid %llu device path %s changed to %s scanned by %s (%d)",
942 					  devid, btrfs_dev_name(device),
943 					  path, current->comm,
944 					  task_pid_nr(current));
945 		}
946 
947 		name = rcu_string_strdup(path, GFP_NOFS);
948 		if (!name) {
949 			mutex_unlock(&fs_devices->device_list_mutex);
950 			return ERR_PTR(-ENOMEM);
951 		}
952 		rcu_string_free(device->name);
953 		rcu_assign_pointer(device->name, name);
954 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 			fs_devices->missing_devices--;
956 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 		}
958 		device->devt = path_devt;
959 	}
960 
961 	/*
962 	 * Unmount does not free the btrfs_device struct but would zero
963 	 * generation along with most of the other members. So just update
964 	 * it back. We need it to pick the disk with largest generation
965 	 * (as above).
966 	 */
967 	if (!fs_devices->opened) {
968 		device->generation = found_transid;
969 		fs_devices->latest_generation = max_t(u64, found_transid,
970 						fs_devices->latest_generation);
971 	}
972 
973 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974 
975 	mutex_unlock(&fs_devices->device_list_mutex);
976 	return device;
977 }
978 
979 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980 {
981 	struct btrfs_fs_devices *fs_devices;
982 	struct btrfs_device *device;
983 	struct btrfs_device *orig_dev;
984 	int ret = 0;
985 
986 	lockdep_assert_held(&uuid_mutex);
987 
988 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 	if (IS_ERR(fs_devices))
990 		return fs_devices;
991 
992 	fs_devices->total_devices = orig->total_devices;
993 
994 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 		const char *dev_path = NULL;
996 
997 		/*
998 		 * This is ok to do without RCU read locked because we hold the
999 		 * uuid mutex so nothing we touch in here is going to disappear.
1000 		 */
1001 		if (orig_dev->name)
1002 			dev_path = orig_dev->name->str;
1003 
1004 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 					    orig_dev->uuid, dev_path);
1006 		if (IS_ERR(device)) {
1007 			ret = PTR_ERR(device);
1008 			goto error;
1009 		}
1010 
1011 		if (orig_dev->zone_info) {
1012 			struct btrfs_zoned_device_info *zone_info;
1013 
1014 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 			if (!zone_info) {
1016 				btrfs_free_device(device);
1017 				ret = -ENOMEM;
1018 				goto error;
1019 			}
1020 			device->zone_info = zone_info;
1021 		}
1022 
1023 		list_add(&device->dev_list, &fs_devices->devices);
1024 		device->fs_devices = fs_devices;
1025 		fs_devices->num_devices++;
1026 	}
1027 	return fs_devices;
1028 error:
1029 	free_fs_devices(fs_devices);
1030 	return ERR_PTR(ret);
1031 }
1032 
1033 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034 				      struct btrfs_device **latest_dev)
1035 {
1036 	struct btrfs_device *device, *next;
1037 
1038 	/* This is the initialized path, it is safe to release the devices. */
1039 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042 				      &device->dev_state) &&
1043 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1044 				      &device->dev_state) &&
1045 			    (!*latest_dev ||
1046 			     device->generation > (*latest_dev)->generation)) {
1047 				*latest_dev = device;
1048 			}
1049 			continue;
1050 		}
1051 
1052 		/*
1053 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 		 * in btrfs_init_dev_replace() so just continue.
1055 		 */
1056 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 			continue;
1058 
1059 		if (device->bdev) {
1060 			blkdev_put(device->bdev, device->mode);
1061 			device->bdev = NULL;
1062 			fs_devices->open_devices--;
1063 		}
1064 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065 			list_del_init(&device->dev_alloc_list);
1066 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067 			fs_devices->rw_devices--;
1068 		}
1069 		list_del_init(&device->dev_list);
1070 		fs_devices->num_devices--;
1071 		btrfs_free_device(device);
1072 	}
1073 
1074 }
1075 
1076 /*
1077  * After we have read the system tree and know devids belonging to this
1078  * filesystem, remove the device which does not belong there.
1079  */
1080 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081 {
1082 	struct btrfs_device *latest_dev = NULL;
1083 	struct btrfs_fs_devices *seed_dev;
1084 
1085 	mutex_lock(&uuid_mutex);
1086 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1087 
1088 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1090 
1091 	fs_devices->latest_dev = latest_dev;
1092 
1093 	mutex_unlock(&uuid_mutex);
1094 }
1095 
1096 static void btrfs_close_bdev(struct btrfs_device *device)
1097 {
1098 	if (!device->bdev)
1099 		return;
1100 
1101 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102 		sync_blockdev(device->bdev);
1103 		invalidate_bdev(device->bdev);
1104 	}
1105 
1106 	blkdev_put(device->bdev, device->mode);
1107 }
1108 
1109 static void btrfs_close_one_device(struct btrfs_device *device)
1110 {
1111 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112 
1113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 		list_del_init(&device->dev_alloc_list);
1116 		fs_devices->rw_devices--;
1117 	}
1118 
1119 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121 
1122 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124 		fs_devices->missing_devices--;
1125 	}
1126 
1127 	btrfs_close_bdev(device);
1128 	if (device->bdev) {
1129 		fs_devices->open_devices--;
1130 		device->bdev = NULL;
1131 	}
1132 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133 	btrfs_destroy_dev_zone_info(device);
1134 
1135 	device->fs_info = NULL;
1136 	atomic_set(&device->dev_stats_ccnt, 0);
1137 	extent_io_tree_release(&device->alloc_state);
1138 
1139 	/*
1140 	 * Reset the flush error record. We might have a transient flush error
1141 	 * in this mount, and if so we aborted the current transaction and set
1142 	 * the fs to an error state, guaranteeing no super blocks can be further
1143 	 * committed. However that error might be transient and if we unmount the
1144 	 * filesystem and mount it again, we should allow the mount to succeed
1145 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 	 * filesystem again we still get flush errors, then we will again abort
1147 	 * any transaction and set the error state, guaranteeing no commits of
1148 	 * unsafe super blocks.
1149 	 */
1150 	device->last_flush_error = 0;
1151 
1152 	/* Verify the device is back in a pristine state  */
1153 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 	ASSERT(list_empty(&device->dev_alloc_list));
1156 	ASSERT(list_empty(&device->post_commit_list));
1157 }
1158 
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161 	struct btrfs_device *device, *tmp;
1162 
1163 	lockdep_assert_held(&uuid_mutex);
1164 
1165 	if (--fs_devices->opened > 0)
1166 		return;
1167 
1168 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 		btrfs_close_one_device(device);
1170 
1171 	WARN_ON(fs_devices->open_devices);
1172 	WARN_ON(fs_devices->rw_devices);
1173 	fs_devices->opened = 0;
1174 	fs_devices->seeding = false;
1175 	fs_devices->fs_info = NULL;
1176 }
1177 
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180 	LIST_HEAD(list);
1181 	struct btrfs_fs_devices *tmp;
1182 
1183 	mutex_lock(&uuid_mutex);
1184 	close_fs_devices(fs_devices);
1185 	if (!fs_devices->opened) {
1186 		list_splice_init(&fs_devices->seed_list, &list);
1187 
1188 		/*
1189 		 * If the struct btrfs_fs_devices is not assembled with any
1190 		 * other device, it can be re-initialized during the next mount
1191 		 * without the needing device-scan step. Therefore, it can be
1192 		 * fully freed.
1193 		 */
1194 		if (fs_devices->num_devices == 1) {
1195 			list_del(&fs_devices->fs_list);
1196 			free_fs_devices(fs_devices);
1197 		}
1198 	}
1199 
1200 
1201 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202 		close_fs_devices(fs_devices);
1203 		list_del(&fs_devices->seed_list);
1204 		free_fs_devices(fs_devices);
1205 	}
1206 	mutex_unlock(&uuid_mutex);
1207 }
1208 
1209 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210 				fmode_t flags, void *holder)
1211 {
1212 	struct btrfs_device *device;
1213 	struct btrfs_device *latest_dev = NULL;
1214 	struct btrfs_device *tmp_device;
1215 
1216 	flags |= FMODE_EXCL;
1217 
1218 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 				 dev_list) {
1220 		int ret;
1221 
1222 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 		if (ret == 0 &&
1224 		    (!latest_dev || device->generation > latest_dev->generation)) {
1225 			latest_dev = device;
1226 		} else if (ret == -ENODATA) {
1227 			fs_devices->num_devices--;
1228 			list_del(&device->dev_list);
1229 			btrfs_free_device(device);
1230 		}
1231 	}
1232 	if (fs_devices->open_devices == 0)
1233 		return -EINVAL;
1234 
1235 	fs_devices->opened = 1;
1236 	fs_devices->latest_dev = latest_dev;
1237 	fs_devices->total_rw_bytes = 0;
1238 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240 
1241 	return 0;
1242 }
1243 
1244 static int devid_cmp(void *priv, const struct list_head *a,
1245 		     const struct list_head *b)
1246 {
1247 	const struct btrfs_device *dev1, *dev2;
1248 
1249 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1251 
1252 	if (dev1->devid < dev2->devid)
1253 		return -1;
1254 	else if (dev1->devid > dev2->devid)
1255 		return 1;
1256 	return 0;
1257 }
1258 
1259 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260 		       fmode_t flags, void *holder)
1261 {
1262 	int ret;
1263 
1264 	lockdep_assert_held(&uuid_mutex);
1265 	/*
1266 	 * The device_list_mutex cannot be taken here in case opening the
1267 	 * underlying device takes further locks like open_mutex.
1268 	 *
1269 	 * We also don't need the lock here as this is called during mount and
1270 	 * exclusion is provided by uuid_mutex
1271 	 */
1272 
1273 	if (fs_devices->opened) {
1274 		fs_devices->opened++;
1275 		ret = 0;
1276 	} else {
1277 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1278 		ret = open_fs_devices(fs_devices, flags, holder);
1279 	}
1280 
1281 	return ret;
1282 }
1283 
1284 void btrfs_release_disk_super(struct btrfs_super_block *super)
1285 {
1286 	struct page *page = virt_to_page(super);
1287 
1288 	put_page(page);
1289 }
1290 
1291 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292 						       u64 bytenr, u64 bytenr_orig)
1293 {
1294 	struct btrfs_super_block *disk_super;
1295 	struct page *page;
1296 	void *p;
1297 	pgoff_t index;
1298 
1299 	/* make sure our super fits in the device */
1300 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301 		return ERR_PTR(-EINVAL);
1302 
1303 	/* make sure our super fits in the page */
1304 	if (sizeof(*disk_super) > PAGE_SIZE)
1305 		return ERR_PTR(-EINVAL);
1306 
1307 	/* make sure our super doesn't straddle pages on disk */
1308 	index = bytenr >> PAGE_SHIFT;
1309 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 		return ERR_PTR(-EINVAL);
1311 
1312 	/* pull in the page with our super */
1313 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314 
1315 	if (IS_ERR(page))
1316 		return ERR_CAST(page);
1317 
1318 	p = page_address(page);
1319 
1320 	/* align our pointer to the offset of the super block */
1321 	disk_super = p + offset_in_page(bytenr);
1322 
1323 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325 		btrfs_release_disk_super(p);
1326 		return ERR_PTR(-EINVAL);
1327 	}
1328 
1329 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331 
1332 	return disk_super;
1333 }
1334 
1335 int btrfs_forget_devices(dev_t devt)
1336 {
1337 	int ret;
1338 
1339 	mutex_lock(&uuid_mutex);
1340 	ret = btrfs_free_stale_devices(devt, NULL);
1341 	mutex_unlock(&uuid_mutex);
1342 
1343 	return ret;
1344 }
1345 
1346 /*
1347  * Look for a btrfs signature on a device. This may be called out of the mount path
1348  * and we are not allowed to call set_blocksize during the scan. The superblock
1349  * is read via pagecache
1350  */
1351 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 					   void *holder)
1353 {
1354 	struct btrfs_super_block *disk_super;
1355 	bool new_device_added = false;
1356 	struct btrfs_device *device = NULL;
1357 	struct block_device *bdev;
1358 	u64 bytenr, bytenr_orig;
1359 	int ret;
1360 
1361 	lockdep_assert_held(&uuid_mutex);
1362 
1363 	/*
1364 	 * we would like to check all the supers, but that would make
1365 	 * a btrfs mount succeed after a mkfs from a different FS.
1366 	 * So, we need to add a special mount option to scan for
1367 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 	 */
1369 	flags |= FMODE_EXCL;
1370 
1371 	bdev = blkdev_get_by_path(path, flags, holder);
1372 	if (IS_ERR(bdev))
1373 		return ERR_CAST(bdev);
1374 
1375 	bytenr_orig = btrfs_sb_offset(0);
1376 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377 	if (ret) {
1378 		device = ERR_PTR(ret);
1379 		goto error_bdev_put;
1380 	}
1381 
1382 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383 	if (IS_ERR(disk_super)) {
1384 		device = ERR_CAST(disk_super);
1385 		goto error_bdev_put;
1386 	}
1387 
1388 	device = device_list_add(path, disk_super, &new_device_added);
1389 	if (!IS_ERR(device) && new_device_added)
1390 		btrfs_free_stale_devices(device->devt, device);
1391 
1392 	btrfs_release_disk_super(disk_super);
1393 
1394 error_bdev_put:
1395 	blkdev_put(bdev, flags);
1396 
1397 	return device;
1398 }
1399 
1400 /*
1401  * Try to find a chunk that intersects [start, start + len] range and when one
1402  * such is found, record the end of it in *start
1403  */
1404 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405 				    u64 len)
1406 {
1407 	u64 physical_start, physical_end;
1408 
1409 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1410 
1411 	if (!find_first_extent_bit(&device->alloc_state, *start,
1412 				   &physical_start, &physical_end,
1413 				   CHUNK_ALLOCATED, NULL)) {
1414 
1415 		if (in_range(physical_start, *start, len) ||
1416 		    in_range(*start, physical_start,
1417 			     physical_end - physical_start)) {
1418 			*start = physical_end + 1;
1419 			return true;
1420 		}
1421 	}
1422 	return false;
1423 }
1424 
1425 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426 {
1427 	switch (device->fs_devices->chunk_alloc_policy) {
1428 	case BTRFS_CHUNK_ALLOC_REGULAR:
1429 		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430 	case BTRFS_CHUNK_ALLOC_ZONED:
1431 		/*
1432 		 * We don't care about the starting region like regular
1433 		 * allocator, because we anyway use/reserve the first two zones
1434 		 * for superblock logging.
1435 		 */
1436 		return ALIGN(start, device->zone_info->zone_size);
1437 	default:
1438 		BUG();
1439 	}
1440 }
1441 
1442 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443 					u64 *hole_start, u64 *hole_size,
1444 					u64 num_bytes)
1445 {
1446 	u64 zone_size = device->zone_info->zone_size;
1447 	u64 pos;
1448 	int ret;
1449 	bool changed = false;
1450 
1451 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452 
1453 	while (*hole_size > 0) {
1454 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1455 						   *hole_start + *hole_size,
1456 						   num_bytes);
1457 		if (pos != *hole_start) {
1458 			*hole_size = *hole_start + *hole_size - pos;
1459 			*hole_start = pos;
1460 			changed = true;
1461 			if (*hole_size < num_bytes)
1462 				break;
1463 		}
1464 
1465 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466 
1467 		/* Range is ensured to be empty */
1468 		if (!ret)
1469 			return changed;
1470 
1471 		/* Given hole range was invalid (outside of device) */
1472 		if (ret == -ERANGE) {
1473 			*hole_start += *hole_size;
1474 			*hole_size = 0;
1475 			return true;
1476 		}
1477 
1478 		*hole_start += zone_size;
1479 		*hole_size -= zone_size;
1480 		changed = true;
1481 	}
1482 
1483 	return changed;
1484 }
1485 
1486 /*
1487  * Check if specified hole is suitable for allocation.
1488  *
1489  * @device:	the device which we have the hole
1490  * @hole_start: starting position of the hole
1491  * @hole_size:	the size of the hole
1492  * @num_bytes:	the size of the free space that we need
1493  *
1494  * This function may modify @hole_start and @hole_size to reflect the suitable
1495  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496  */
1497 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 				  u64 *hole_size, u64 num_bytes)
1499 {
1500 	bool changed = false;
1501 	u64 hole_end = *hole_start + *hole_size;
1502 
1503 	for (;;) {
1504 		/*
1505 		 * Check before we set max_hole_start, otherwise we could end up
1506 		 * sending back this offset anyway.
1507 		 */
1508 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 			if (hole_end >= *hole_start)
1510 				*hole_size = hole_end - *hole_start;
1511 			else
1512 				*hole_size = 0;
1513 			changed = true;
1514 		}
1515 
1516 		switch (device->fs_devices->chunk_alloc_policy) {
1517 		case BTRFS_CHUNK_ALLOC_REGULAR:
1518 			/* No extra check */
1519 			break;
1520 		case BTRFS_CHUNK_ALLOC_ZONED:
1521 			if (dev_extent_hole_check_zoned(device, hole_start,
1522 							hole_size, num_bytes)) {
1523 				changed = true;
1524 				/*
1525 				 * The changed hole can contain pending extent.
1526 				 * Loop again to check that.
1527 				 */
1528 				continue;
1529 			}
1530 			break;
1531 		default:
1532 			BUG();
1533 		}
1534 
1535 		break;
1536 	}
1537 
1538 	return changed;
1539 }
1540 
1541 /*
1542  * Find free space in the specified device.
1543  *
1544  * @device:	  the device which we search the free space in
1545  * @num_bytes:	  the size of the free space that we need
1546  * @search_start: the position from which to begin the search
1547  * @start:	  store the start of the free space.
1548  * @len:	  the size of the free space. that we find, or the size
1549  *		  of the max free space if we don't find suitable free space
1550  *
1551  * This does a pretty simple search, the expectation is that it is called very
1552  * infrequently and that a given device has a small number of extents.
1553  *
1554  * @start is used to store the start of the free space if we find. But if we
1555  * don't find suitable free space, it will be used to store the start position
1556  * of the max free space.
1557  *
1558  * @len is used to store the size of the free space that we find.
1559  * But if we don't find suitable free space, it is used to store the size of
1560  * the max free space.
1561  *
1562  * NOTE: This function will search *commit* root of device tree, and does extra
1563  * check to ensure dev extents are not double allocated.
1564  * This makes the function safe to allocate dev extents but may not report
1565  * correct usable device space, as device extent freed in current transaction
1566  * is not reported as available.
1567  */
1568 static int find_free_dev_extent_start(struct btrfs_device *device,
1569 				u64 num_bytes, u64 search_start, u64 *start,
1570 				u64 *len)
1571 {
1572 	struct btrfs_fs_info *fs_info = device->fs_info;
1573 	struct btrfs_root *root = fs_info->dev_root;
1574 	struct btrfs_key key;
1575 	struct btrfs_dev_extent *dev_extent;
1576 	struct btrfs_path *path;
1577 	u64 hole_size;
1578 	u64 max_hole_start;
1579 	u64 max_hole_size;
1580 	u64 extent_end;
1581 	u64 search_end = device->total_bytes;
1582 	int ret;
1583 	int slot;
1584 	struct extent_buffer *l;
1585 
1586 	search_start = dev_extent_search_start(device, search_start);
1587 
1588 	WARN_ON(device->zone_info &&
1589 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	max_hole_start = search_start;
1596 	max_hole_size = 0;
1597 
1598 again:
1599 	if (search_start >= search_end ||
1600 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601 		ret = -ENOSPC;
1602 		goto out;
1603 	}
1604 
1605 	path->reada = READA_FORWARD;
1606 	path->search_commit_root = 1;
1607 	path->skip_locking = 1;
1608 
1609 	key.objectid = device->devid;
1610 	key.offset = search_start;
1611 	key.type = BTRFS_DEV_EXTENT_KEY;
1612 
1613 	ret = btrfs_search_backwards(root, &key, path);
1614 	if (ret < 0)
1615 		goto out;
1616 
1617 	while (search_start < search_end) {
1618 		l = path->nodes[0];
1619 		slot = path->slots[0];
1620 		if (slot >= btrfs_header_nritems(l)) {
1621 			ret = btrfs_next_leaf(root, path);
1622 			if (ret == 0)
1623 				continue;
1624 			if (ret < 0)
1625 				goto out;
1626 
1627 			break;
1628 		}
1629 		btrfs_item_key_to_cpu(l, &key, slot);
1630 
1631 		if (key.objectid < device->devid)
1632 			goto next;
1633 
1634 		if (key.objectid > device->devid)
1635 			break;
1636 
1637 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1638 			goto next;
1639 
1640 		if (key.offset > search_end)
1641 			break;
1642 
1643 		if (key.offset > search_start) {
1644 			hole_size = key.offset - search_start;
1645 			dev_extent_hole_check(device, &search_start, &hole_size,
1646 					      num_bytes);
1647 
1648 			if (hole_size > max_hole_size) {
1649 				max_hole_start = search_start;
1650 				max_hole_size = hole_size;
1651 			}
1652 
1653 			/*
1654 			 * If this free space is greater than which we need,
1655 			 * it must be the max free space that we have found
1656 			 * until now, so max_hole_start must point to the start
1657 			 * of this free space and the length of this free space
1658 			 * is stored in max_hole_size. Thus, we return
1659 			 * max_hole_start and max_hole_size and go back to the
1660 			 * caller.
1661 			 */
1662 			if (hole_size >= num_bytes) {
1663 				ret = 0;
1664 				goto out;
1665 			}
1666 		}
1667 
1668 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 		extent_end = key.offset + btrfs_dev_extent_length(l,
1670 								  dev_extent);
1671 		if (extent_end > search_start)
1672 			search_start = extent_end;
1673 next:
1674 		path->slots[0]++;
1675 		cond_resched();
1676 	}
1677 
1678 	/*
1679 	 * At this point, search_start should be the end of
1680 	 * allocated dev extents, and when shrinking the device,
1681 	 * search_end may be smaller than search_start.
1682 	 */
1683 	if (search_end > search_start) {
1684 		hole_size = search_end - search_start;
1685 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1686 					  num_bytes)) {
1687 			btrfs_release_path(path);
1688 			goto again;
1689 		}
1690 
1691 		if (hole_size > max_hole_size) {
1692 			max_hole_start = search_start;
1693 			max_hole_size = hole_size;
1694 		}
1695 	}
1696 
1697 	/* See above. */
1698 	if (max_hole_size < num_bytes)
1699 		ret = -ENOSPC;
1700 	else
1701 		ret = 0;
1702 
1703 	ASSERT(max_hole_start + max_hole_size <= search_end);
1704 out:
1705 	btrfs_free_path(path);
1706 	*start = max_hole_start;
1707 	if (len)
1708 		*len = max_hole_size;
1709 	return ret;
1710 }
1711 
1712 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713 			 u64 *start, u64 *len)
1714 {
1715 	/* FIXME use last free of some kind */
1716 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717 }
1718 
1719 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720 			  struct btrfs_device *device,
1721 			  u64 start, u64 *dev_extent_len)
1722 {
1723 	struct btrfs_fs_info *fs_info = device->fs_info;
1724 	struct btrfs_root *root = fs_info->dev_root;
1725 	int ret;
1726 	struct btrfs_path *path;
1727 	struct btrfs_key key;
1728 	struct btrfs_key found_key;
1729 	struct extent_buffer *leaf = NULL;
1730 	struct btrfs_dev_extent *extent = NULL;
1731 
1732 	path = btrfs_alloc_path();
1733 	if (!path)
1734 		return -ENOMEM;
1735 
1736 	key.objectid = device->devid;
1737 	key.offset = start;
1738 	key.type = BTRFS_DEV_EXTENT_KEY;
1739 again:
1740 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741 	if (ret > 0) {
1742 		ret = btrfs_previous_item(root, path, key.objectid,
1743 					  BTRFS_DEV_EXTENT_KEY);
1744 		if (ret)
1745 			goto out;
1746 		leaf = path->nodes[0];
1747 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748 		extent = btrfs_item_ptr(leaf, path->slots[0],
1749 					struct btrfs_dev_extent);
1750 		BUG_ON(found_key.offset > start || found_key.offset +
1751 		       btrfs_dev_extent_length(leaf, extent) < start);
1752 		key = found_key;
1753 		btrfs_release_path(path);
1754 		goto again;
1755 	} else if (ret == 0) {
1756 		leaf = path->nodes[0];
1757 		extent = btrfs_item_ptr(leaf, path->slots[0],
1758 					struct btrfs_dev_extent);
1759 	} else {
1760 		goto out;
1761 	}
1762 
1763 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764 
1765 	ret = btrfs_del_item(trans, root, path);
1766 	if (ret == 0)
1767 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768 out:
1769 	btrfs_free_path(path);
1770 	return ret;
1771 }
1772 
1773 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774 {
1775 	struct extent_map_tree *em_tree;
1776 	struct extent_map *em;
1777 	struct rb_node *n;
1778 	u64 ret = 0;
1779 
1780 	em_tree = &fs_info->mapping_tree;
1781 	read_lock(&em_tree->lock);
1782 	n = rb_last(&em_tree->map.rb_root);
1783 	if (n) {
1784 		em = rb_entry(n, struct extent_map, rb_node);
1785 		ret = em->start + em->len;
1786 	}
1787 	read_unlock(&em_tree->lock);
1788 
1789 	return ret;
1790 }
1791 
1792 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793 				    u64 *devid_ret)
1794 {
1795 	int ret;
1796 	struct btrfs_key key;
1797 	struct btrfs_key found_key;
1798 	struct btrfs_path *path;
1799 
1800 	path = btrfs_alloc_path();
1801 	if (!path)
1802 		return -ENOMEM;
1803 
1804 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 	key.type = BTRFS_DEV_ITEM_KEY;
1806 	key.offset = (u64)-1;
1807 
1808 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809 	if (ret < 0)
1810 		goto error;
1811 
1812 	if (ret == 0) {
1813 		/* Corruption */
1814 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 		ret = -EUCLEAN;
1816 		goto error;
1817 	}
1818 
1819 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1820 				  BTRFS_DEV_ITEMS_OBJECTID,
1821 				  BTRFS_DEV_ITEM_KEY);
1822 	if (ret) {
1823 		*devid_ret = 1;
1824 	} else {
1825 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826 				      path->slots[0]);
1827 		*devid_ret = found_key.offset + 1;
1828 	}
1829 	ret = 0;
1830 error:
1831 	btrfs_free_path(path);
1832 	return ret;
1833 }
1834 
1835 /*
1836  * the device information is stored in the chunk root
1837  * the btrfs_device struct should be fully filled in
1838  */
1839 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840 			    struct btrfs_device *device)
1841 {
1842 	int ret;
1843 	struct btrfs_path *path;
1844 	struct btrfs_dev_item *dev_item;
1845 	struct extent_buffer *leaf;
1846 	struct btrfs_key key;
1847 	unsigned long ptr;
1848 
1849 	path = btrfs_alloc_path();
1850 	if (!path)
1851 		return -ENOMEM;
1852 
1853 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854 	key.type = BTRFS_DEV_ITEM_KEY;
1855 	key.offset = device->devid;
1856 
1857 	btrfs_reserve_chunk_metadata(trans, true);
1858 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859 				      &key, sizeof(*dev_item));
1860 	btrfs_trans_release_chunk_metadata(trans);
1861 	if (ret)
1862 		goto out;
1863 
1864 	leaf = path->nodes[0];
1865 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866 
1867 	btrfs_set_device_id(leaf, dev_item, device->devid);
1868 	btrfs_set_device_generation(leaf, dev_item, 0);
1869 	btrfs_set_device_type(leaf, dev_item, device->type);
1870 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873 	btrfs_set_device_total_bytes(leaf, dev_item,
1874 				     btrfs_device_get_disk_total_bytes(device));
1875 	btrfs_set_device_bytes_used(leaf, dev_item,
1876 				    btrfs_device_get_bytes_used(device));
1877 	btrfs_set_device_group(leaf, dev_item, 0);
1878 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1881 
1882 	ptr = btrfs_device_uuid(dev_item);
1883 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884 	ptr = btrfs_device_fsid(dev_item);
1885 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886 			    ptr, BTRFS_FSID_SIZE);
1887 	btrfs_mark_buffer_dirty(leaf);
1888 
1889 	ret = 0;
1890 out:
1891 	btrfs_free_path(path);
1892 	return ret;
1893 }
1894 
1895 /*
1896  * Function to update ctime/mtime for a given device path.
1897  * Mainly used for ctime/mtime based probe like libblkid.
1898  *
1899  * We don't care about errors here, this is just to be kind to userspace.
1900  */
1901 static void update_dev_time(const char *device_path)
1902 {
1903 	struct path path;
1904 	struct timespec64 now;
1905 	int ret;
1906 
1907 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908 	if (ret)
1909 		return;
1910 
1911 	now = current_time(d_inode(path.dentry));
1912 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913 	path_put(&path);
1914 }
1915 
1916 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917 			     struct btrfs_device *device)
1918 {
1919 	struct btrfs_root *root = device->fs_info->chunk_root;
1920 	int ret;
1921 	struct btrfs_path *path;
1922 	struct btrfs_key key;
1923 
1924 	path = btrfs_alloc_path();
1925 	if (!path)
1926 		return -ENOMEM;
1927 
1928 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929 	key.type = BTRFS_DEV_ITEM_KEY;
1930 	key.offset = device->devid;
1931 
1932 	btrfs_reserve_chunk_metadata(trans, false);
1933 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934 	btrfs_trans_release_chunk_metadata(trans);
1935 	if (ret) {
1936 		if (ret > 0)
1937 			ret = -ENOENT;
1938 		goto out;
1939 	}
1940 
1941 	ret = btrfs_del_item(trans, root, path);
1942 out:
1943 	btrfs_free_path(path);
1944 	return ret;
1945 }
1946 
1947 /*
1948  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949  * filesystem. It's up to the caller to adjust that number regarding eg. device
1950  * replace.
1951  */
1952 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953 		u64 num_devices)
1954 {
1955 	u64 all_avail;
1956 	unsigned seq;
1957 	int i;
1958 
1959 	do {
1960 		seq = read_seqbegin(&fs_info->profiles_lock);
1961 
1962 		all_avail = fs_info->avail_data_alloc_bits |
1963 			    fs_info->avail_system_alloc_bits |
1964 			    fs_info->avail_metadata_alloc_bits;
1965 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1966 
1967 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969 			continue;
1970 
1971 		if (num_devices < btrfs_raid_array[i].devs_min)
1972 			return btrfs_raid_array[i].mindev_error;
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 static struct btrfs_device * btrfs_find_next_active_device(
1979 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980 {
1981 	struct btrfs_device *next_device;
1982 
1983 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984 		if (next_device != device &&
1985 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986 		    && next_device->bdev)
1987 			return next_device;
1988 	}
1989 
1990 	return NULL;
1991 }
1992 
1993 /*
1994  * Helper function to check if the given device is part of s_bdev / latest_dev
1995  * and replace it with the provided or the next active device, in the context
1996  * where this function called, there should be always be another device (or
1997  * this_dev) which is active.
1998  */
1999 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000 					    struct btrfs_device *next_device)
2001 {
2002 	struct btrfs_fs_info *fs_info = device->fs_info;
2003 
2004 	if (!next_device)
2005 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006 							    device);
2007 	ASSERT(next_device);
2008 
2009 	if (fs_info->sb->s_bdev &&
2010 			(fs_info->sb->s_bdev == device->bdev))
2011 		fs_info->sb->s_bdev = next_device->bdev;
2012 
2013 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014 		fs_info->fs_devices->latest_dev = next_device;
2015 }
2016 
2017 /*
2018  * Return btrfs_fs_devices::num_devices excluding the device that's being
2019  * currently replaced.
2020  */
2021 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022 {
2023 	u64 num_devices = fs_info->fs_devices->num_devices;
2024 
2025 	down_read(&fs_info->dev_replace.rwsem);
2026 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027 		ASSERT(num_devices > 1);
2028 		num_devices--;
2029 	}
2030 	up_read(&fs_info->dev_replace.rwsem);
2031 
2032 	return num_devices;
2033 }
2034 
2035 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036 				     struct block_device *bdev, int copy_num)
2037 {
2038 	struct btrfs_super_block *disk_super;
2039 	const size_t len = sizeof(disk_super->magic);
2040 	const u64 bytenr = btrfs_sb_offset(copy_num);
2041 	int ret;
2042 
2043 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044 	if (IS_ERR(disk_super))
2045 		return;
2046 
2047 	memset(&disk_super->magic, 0, len);
2048 	folio_mark_dirty(virt_to_folio(disk_super));
2049 	btrfs_release_disk_super(disk_super);
2050 
2051 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052 	if (ret)
2053 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054 			copy_num, ret);
2055 }
2056 
2057 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 			       struct block_device *bdev,
2059 			       const char *device_path)
2060 {
2061 	int copy_num;
2062 
2063 	if (!bdev)
2064 		return;
2065 
2066 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067 		if (bdev_is_zoned(bdev))
2068 			btrfs_reset_sb_log_zones(bdev, copy_num);
2069 		else
2070 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071 	}
2072 
2073 	/* Notify udev that device has changed */
2074 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075 
2076 	/* Update ctime/mtime for device path for libblkid */
2077 	update_dev_time(device_path);
2078 }
2079 
2080 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081 		    struct btrfs_dev_lookup_args *args,
2082 		    struct block_device **bdev, fmode_t *mode)
2083 {
2084 	struct btrfs_trans_handle *trans;
2085 	struct btrfs_device *device;
2086 	struct btrfs_fs_devices *cur_devices;
2087 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088 	u64 num_devices;
2089 	int ret = 0;
2090 
2091 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093 		return -EINVAL;
2094 	}
2095 
2096 	/*
2097 	 * The device list in fs_devices is accessed without locks (neither
2098 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099 	 * filesystem and another device rm cannot run.
2100 	 */
2101 	num_devices = btrfs_num_devices(fs_info);
2102 
2103 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 	if (ret)
2105 		return ret;
2106 
2107 	device = btrfs_find_device(fs_info->fs_devices, args);
2108 	if (!device) {
2109 		if (args->missing)
2110 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111 		else
2112 			ret = -ENOENT;
2113 		return ret;
2114 	}
2115 
2116 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117 		btrfs_warn_in_rcu(fs_info,
2118 		  "cannot remove device %s (devid %llu) due to active swapfile",
2119 				  btrfs_dev_name(device), device->devid);
2120 		return -ETXTBSY;
2121 	}
2122 
2123 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2125 
2126 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127 	    fs_info->fs_devices->rw_devices == 1)
2128 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129 
2130 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131 		mutex_lock(&fs_info->chunk_mutex);
2132 		list_del_init(&device->dev_alloc_list);
2133 		device->fs_devices->rw_devices--;
2134 		mutex_unlock(&fs_info->chunk_mutex);
2135 	}
2136 
2137 	ret = btrfs_shrink_device(device, 0);
2138 	if (ret)
2139 		goto error_undo;
2140 
2141 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142 	if (IS_ERR(trans)) {
2143 		ret = PTR_ERR(trans);
2144 		goto error_undo;
2145 	}
2146 
2147 	ret = btrfs_rm_dev_item(trans, device);
2148 	if (ret) {
2149 		/* Any error in dev item removal is critical */
2150 		btrfs_crit(fs_info,
2151 			   "failed to remove device item for devid %llu: %d",
2152 			   device->devid, ret);
2153 		btrfs_abort_transaction(trans, ret);
2154 		btrfs_end_transaction(trans);
2155 		return ret;
2156 	}
2157 
2158 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159 	btrfs_scrub_cancel_dev(device);
2160 
2161 	/*
2162 	 * the device list mutex makes sure that we don't change
2163 	 * the device list while someone else is writing out all
2164 	 * the device supers. Whoever is writing all supers, should
2165 	 * lock the device list mutex before getting the number of
2166 	 * devices in the super block (super_copy). Conversely,
2167 	 * whoever updates the number of devices in the super block
2168 	 * (super_copy) should hold the device list mutex.
2169 	 */
2170 
2171 	/*
2172 	 * In normal cases the cur_devices == fs_devices. But in case
2173 	 * of deleting a seed device, the cur_devices should point to
2174 	 * its own fs_devices listed under the fs_devices->seed_list.
2175 	 */
2176 	cur_devices = device->fs_devices;
2177 	mutex_lock(&fs_devices->device_list_mutex);
2178 	list_del_rcu(&device->dev_list);
2179 
2180 	cur_devices->num_devices--;
2181 	cur_devices->total_devices--;
2182 	/* Update total_devices of the parent fs_devices if it's seed */
2183 	if (cur_devices != fs_devices)
2184 		fs_devices->total_devices--;
2185 
2186 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187 		cur_devices->missing_devices--;
2188 
2189 	btrfs_assign_next_active_device(device, NULL);
2190 
2191 	if (device->bdev) {
2192 		cur_devices->open_devices--;
2193 		/* remove sysfs entry */
2194 		btrfs_sysfs_remove_device(device);
2195 	}
2196 
2197 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199 	mutex_unlock(&fs_devices->device_list_mutex);
2200 
2201 	/*
2202 	 * At this point, the device is zero sized and detached from the
2203 	 * devices list.  All that's left is to zero out the old supers and
2204 	 * free the device.
2205 	 *
2206 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208 	 * block device and it's dependencies.  Instead just flush the device
2209 	 * and let the caller do the final blkdev_put.
2210 	 */
2211 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 		btrfs_scratch_superblocks(fs_info, device->bdev,
2213 					  device->name->str);
2214 		if (device->bdev) {
2215 			sync_blockdev(device->bdev);
2216 			invalidate_bdev(device->bdev);
2217 		}
2218 	}
2219 
2220 	*bdev = device->bdev;
2221 	*mode = device->mode;
2222 	synchronize_rcu();
2223 	btrfs_free_device(device);
2224 
2225 	/*
2226 	 * This can happen if cur_devices is the private seed devices list.  We
2227 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228 	 * to be held, but in fact we don't need that for the private
2229 	 * seed_devices, we can simply decrement cur_devices->opened and then
2230 	 * remove it from our list and free the fs_devices.
2231 	 */
2232 	if (cur_devices->num_devices == 0) {
2233 		list_del_init(&cur_devices->seed_list);
2234 		ASSERT(cur_devices->opened == 1);
2235 		cur_devices->opened--;
2236 		free_fs_devices(cur_devices);
2237 	}
2238 
2239 	ret = btrfs_commit_transaction(trans);
2240 
2241 	return ret;
2242 
2243 error_undo:
2244 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 		mutex_lock(&fs_info->chunk_mutex);
2246 		list_add(&device->dev_alloc_list,
2247 			 &fs_devices->alloc_list);
2248 		device->fs_devices->rw_devices++;
2249 		mutex_unlock(&fs_info->chunk_mutex);
2250 	}
2251 	return ret;
2252 }
2253 
2254 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255 {
2256 	struct btrfs_fs_devices *fs_devices;
2257 
2258 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259 
2260 	/*
2261 	 * in case of fs with no seed, srcdev->fs_devices will point
2262 	 * to fs_devices of fs_info. However when the dev being replaced is
2263 	 * a seed dev it will point to the seed's local fs_devices. In short
2264 	 * srcdev will have its correct fs_devices in both the cases.
2265 	 */
2266 	fs_devices = srcdev->fs_devices;
2267 
2268 	list_del_rcu(&srcdev->dev_list);
2269 	list_del(&srcdev->dev_alloc_list);
2270 	fs_devices->num_devices--;
2271 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272 		fs_devices->missing_devices--;
2273 
2274 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275 		fs_devices->rw_devices--;
2276 
2277 	if (srcdev->bdev)
2278 		fs_devices->open_devices--;
2279 }
2280 
2281 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282 {
2283 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284 
2285 	mutex_lock(&uuid_mutex);
2286 
2287 	btrfs_close_bdev(srcdev);
2288 	synchronize_rcu();
2289 	btrfs_free_device(srcdev);
2290 
2291 	/* if this is no devs we rather delete the fs_devices */
2292 	if (!fs_devices->num_devices) {
2293 		/*
2294 		 * On a mounted FS, num_devices can't be zero unless it's a
2295 		 * seed. In case of a seed device being replaced, the replace
2296 		 * target added to the sprout FS, so there will be no more
2297 		 * device left under the seed FS.
2298 		 */
2299 		ASSERT(fs_devices->seeding);
2300 
2301 		list_del_init(&fs_devices->seed_list);
2302 		close_fs_devices(fs_devices);
2303 		free_fs_devices(fs_devices);
2304 	}
2305 	mutex_unlock(&uuid_mutex);
2306 }
2307 
2308 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309 {
2310 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311 
2312 	mutex_lock(&fs_devices->device_list_mutex);
2313 
2314 	btrfs_sysfs_remove_device(tgtdev);
2315 
2316 	if (tgtdev->bdev)
2317 		fs_devices->open_devices--;
2318 
2319 	fs_devices->num_devices--;
2320 
2321 	btrfs_assign_next_active_device(tgtdev, NULL);
2322 
2323 	list_del_rcu(&tgtdev->dev_list);
2324 
2325 	mutex_unlock(&fs_devices->device_list_mutex);
2326 
2327 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328 				  tgtdev->name->str);
2329 
2330 	btrfs_close_bdev(tgtdev);
2331 	synchronize_rcu();
2332 	btrfs_free_device(tgtdev);
2333 }
2334 
2335 /*
2336  * Populate args from device at path.
2337  *
2338  * @fs_info:	the filesystem
2339  * @args:	the args to populate
2340  * @path:	the path to the device
2341  *
2342  * This will read the super block of the device at @path and populate @args with
2343  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2344  * lookup a device to operate on, but need to do it before we take any locks.
2345  * This properly handles the special case of "missing" that a user may pass in,
2346  * and does some basic sanity checks.  The caller must make sure that @path is
2347  * properly NUL terminated before calling in, and must call
2348  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349  * uuid buffers.
2350  *
2351  * Return: 0 for success, -errno for failure
2352  */
2353 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354 				 struct btrfs_dev_lookup_args *args,
2355 				 const char *path)
2356 {
2357 	struct btrfs_super_block *disk_super;
2358 	struct block_device *bdev;
2359 	int ret;
2360 
2361 	if (!path || !path[0])
2362 		return -EINVAL;
2363 	if (!strcmp(path, "missing")) {
2364 		args->missing = true;
2365 		return 0;
2366 	}
2367 
2368 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370 	if (!args->uuid || !args->fsid) {
2371 		btrfs_put_dev_args_from_path(args);
2372 		return -ENOMEM;
2373 	}
2374 
2375 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376 				    &bdev, &disk_super);
2377 	if (ret) {
2378 		btrfs_put_dev_args_from_path(args);
2379 		return ret;
2380 	}
2381 
2382 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386 	else
2387 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 	btrfs_release_disk_super(disk_super);
2389 	blkdev_put(bdev, FMODE_READ);
2390 	return 0;
2391 }
2392 
2393 /*
2394  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396  * that don't need to be freed.
2397  */
2398 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399 {
2400 	kfree(args->uuid);
2401 	kfree(args->fsid);
2402 	args->uuid = NULL;
2403 	args->fsid = NULL;
2404 }
2405 
2406 struct btrfs_device *btrfs_find_device_by_devspec(
2407 		struct btrfs_fs_info *fs_info, u64 devid,
2408 		const char *device_path)
2409 {
2410 	BTRFS_DEV_LOOKUP_ARGS(args);
2411 	struct btrfs_device *device;
2412 	int ret;
2413 
2414 	if (devid) {
2415 		args.devid = devid;
2416 		device = btrfs_find_device(fs_info->fs_devices, &args);
2417 		if (!device)
2418 			return ERR_PTR(-ENOENT);
2419 		return device;
2420 	}
2421 
2422 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 	if (ret)
2424 		return ERR_PTR(ret);
2425 	device = btrfs_find_device(fs_info->fs_devices, &args);
2426 	btrfs_put_dev_args_from_path(&args);
2427 	if (!device)
2428 		return ERR_PTR(-ENOENT);
2429 	return device;
2430 }
2431 
2432 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433 {
2434 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435 	struct btrfs_fs_devices *old_devices;
2436 	struct btrfs_fs_devices *seed_devices;
2437 
2438 	lockdep_assert_held(&uuid_mutex);
2439 	if (!fs_devices->seeding)
2440 		return ERR_PTR(-EINVAL);
2441 
2442 	/*
2443 	 * Private copy of the seed devices, anchored at
2444 	 * fs_info->fs_devices->seed_list
2445 	 */
2446 	seed_devices = alloc_fs_devices(NULL, NULL);
2447 	if (IS_ERR(seed_devices))
2448 		return seed_devices;
2449 
2450 	/*
2451 	 * It's necessary to retain a copy of the original seed fs_devices in
2452 	 * fs_uuids so that filesystems which have been seeded can successfully
2453 	 * reference the seed device from open_seed_devices. This also supports
2454 	 * multiple fs seed.
2455 	 */
2456 	old_devices = clone_fs_devices(fs_devices);
2457 	if (IS_ERR(old_devices)) {
2458 		kfree(seed_devices);
2459 		return old_devices;
2460 	}
2461 
2462 	list_add(&old_devices->fs_list, &fs_uuids);
2463 
2464 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465 	seed_devices->opened = 1;
2466 	INIT_LIST_HEAD(&seed_devices->devices);
2467 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2468 	mutex_init(&seed_devices->device_list_mutex);
2469 
2470 	return seed_devices;
2471 }
2472 
2473 /*
2474  * Splice seed devices into the sprout fs_devices.
2475  * Generate a new fsid for the sprouted read-write filesystem.
2476  */
2477 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478 			       struct btrfs_fs_devices *seed_devices)
2479 {
2480 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2482 	struct btrfs_device *device;
2483 	u64 super_flags;
2484 
2485 	/*
2486 	 * We are updating the fsid, the thread leading to device_list_add()
2487 	 * could race, so uuid_mutex is needed.
2488 	 */
2489 	lockdep_assert_held(&uuid_mutex);
2490 
2491 	/*
2492 	 * The threads listed below may traverse dev_list but can do that without
2493 	 * device_list_mutex:
2494 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2495 	 * - Various dev_list readers - are using RCU.
2496 	 * - btrfs_ioctl_fitrim() - is using RCU.
2497 	 *
2498 	 * For-read threads as below are using device_list_mutex:
2499 	 * - Readonly scrub btrfs_scrub_dev()
2500 	 * - Readonly scrub btrfs_scrub_progress()
2501 	 * - btrfs_get_dev_stats()
2502 	 */
2503 	lockdep_assert_held(&fs_devices->device_list_mutex);
2504 
2505 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506 			      synchronize_rcu);
2507 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2508 		device->fs_devices = seed_devices;
2509 
2510 	fs_devices->seeding = false;
2511 	fs_devices->num_devices = 0;
2512 	fs_devices->open_devices = 0;
2513 	fs_devices->missing_devices = 0;
2514 	fs_devices->rotating = false;
2515 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516 
2517 	generate_random_uuid(fs_devices->fsid);
2518 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520 
2521 	super_flags = btrfs_super_flags(disk_super) &
2522 		      ~BTRFS_SUPER_FLAG_SEEDING;
2523 	btrfs_set_super_flags(disk_super, super_flags);
2524 }
2525 
2526 /*
2527  * Store the expected generation for seed devices in device items.
2528  */
2529 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530 {
2531 	BTRFS_DEV_LOOKUP_ARGS(args);
2532 	struct btrfs_fs_info *fs_info = trans->fs_info;
2533 	struct btrfs_root *root = fs_info->chunk_root;
2534 	struct btrfs_path *path;
2535 	struct extent_buffer *leaf;
2536 	struct btrfs_dev_item *dev_item;
2537 	struct btrfs_device *device;
2538 	struct btrfs_key key;
2539 	u8 fs_uuid[BTRFS_FSID_SIZE];
2540 	u8 dev_uuid[BTRFS_UUID_SIZE];
2541 	int ret;
2542 
2543 	path = btrfs_alloc_path();
2544 	if (!path)
2545 		return -ENOMEM;
2546 
2547 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548 	key.offset = 0;
2549 	key.type = BTRFS_DEV_ITEM_KEY;
2550 
2551 	while (1) {
2552 		btrfs_reserve_chunk_metadata(trans, false);
2553 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554 		btrfs_trans_release_chunk_metadata(trans);
2555 		if (ret < 0)
2556 			goto error;
2557 
2558 		leaf = path->nodes[0];
2559 next_slot:
2560 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561 			ret = btrfs_next_leaf(root, path);
2562 			if (ret > 0)
2563 				break;
2564 			if (ret < 0)
2565 				goto error;
2566 			leaf = path->nodes[0];
2567 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568 			btrfs_release_path(path);
2569 			continue;
2570 		}
2571 
2572 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574 		    key.type != BTRFS_DEV_ITEM_KEY)
2575 			break;
2576 
2577 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578 					  struct btrfs_dev_item);
2579 		args.devid = btrfs_device_id(leaf, dev_item);
2580 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581 				   BTRFS_UUID_SIZE);
2582 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583 				   BTRFS_FSID_SIZE);
2584 		args.uuid = dev_uuid;
2585 		args.fsid = fs_uuid;
2586 		device = btrfs_find_device(fs_info->fs_devices, &args);
2587 		BUG_ON(!device); /* Logic error */
2588 
2589 		if (device->fs_devices->seeding) {
2590 			btrfs_set_device_generation(leaf, dev_item,
2591 						    device->generation);
2592 			btrfs_mark_buffer_dirty(leaf);
2593 		}
2594 
2595 		path->slots[0]++;
2596 		goto next_slot;
2597 	}
2598 	ret = 0;
2599 error:
2600 	btrfs_free_path(path);
2601 	return ret;
2602 }
2603 
2604 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605 {
2606 	struct btrfs_root *root = fs_info->dev_root;
2607 	struct btrfs_trans_handle *trans;
2608 	struct btrfs_device *device;
2609 	struct block_device *bdev;
2610 	struct super_block *sb = fs_info->sb;
2611 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612 	struct btrfs_fs_devices *seed_devices;
2613 	u64 orig_super_total_bytes;
2614 	u64 orig_super_num_devices;
2615 	int ret = 0;
2616 	bool seeding_dev = false;
2617 	bool locked = false;
2618 
2619 	if (sb_rdonly(sb) && !fs_devices->seeding)
2620 		return -EROFS;
2621 
2622 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623 				  fs_info->bdev_holder);
2624 	if (IS_ERR(bdev))
2625 		return PTR_ERR(bdev);
2626 
2627 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628 		ret = -EINVAL;
2629 		goto error;
2630 	}
2631 
2632 	if (fs_devices->seeding) {
2633 		seeding_dev = true;
2634 		down_write(&sb->s_umount);
2635 		mutex_lock(&uuid_mutex);
2636 		locked = true;
2637 	}
2638 
2639 	sync_blockdev(bdev);
2640 
2641 	rcu_read_lock();
2642 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643 		if (device->bdev == bdev) {
2644 			ret = -EEXIST;
2645 			rcu_read_unlock();
2646 			goto error;
2647 		}
2648 	}
2649 	rcu_read_unlock();
2650 
2651 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652 	if (IS_ERR(device)) {
2653 		/* we can safely leave the fs_devices entry around */
2654 		ret = PTR_ERR(device);
2655 		goto error;
2656 	}
2657 
2658 	device->fs_info = fs_info;
2659 	device->bdev = bdev;
2660 	ret = lookup_bdev(device_path, &device->devt);
2661 	if (ret)
2662 		goto error_free_device;
2663 
2664 	ret = btrfs_get_dev_zone_info(device, false);
2665 	if (ret)
2666 		goto error_free_device;
2667 
2668 	trans = btrfs_start_transaction(root, 0);
2669 	if (IS_ERR(trans)) {
2670 		ret = PTR_ERR(trans);
2671 		goto error_free_zone;
2672 	}
2673 
2674 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675 	device->generation = trans->transid;
2676 	device->io_width = fs_info->sectorsize;
2677 	device->io_align = fs_info->sectorsize;
2678 	device->sector_size = fs_info->sectorsize;
2679 	device->total_bytes =
2680 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681 	device->disk_total_bytes = device->total_bytes;
2682 	device->commit_total_bytes = device->total_bytes;
2683 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685 	device->mode = FMODE_EXCL;
2686 	device->dev_stats_valid = 1;
2687 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688 
2689 	if (seeding_dev) {
2690 		btrfs_clear_sb_rdonly(sb);
2691 
2692 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2693 		seed_devices = btrfs_init_sprout(fs_info);
2694 		if (IS_ERR(seed_devices)) {
2695 			ret = PTR_ERR(seed_devices);
2696 			btrfs_abort_transaction(trans, ret);
2697 			goto error_trans;
2698 		}
2699 	}
2700 
2701 	mutex_lock(&fs_devices->device_list_mutex);
2702 	if (seeding_dev) {
2703 		btrfs_setup_sprout(fs_info, seed_devices);
2704 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705 						device);
2706 	}
2707 
2708 	device->fs_devices = fs_devices;
2709 
2710 	mutex_lock(&fs_info->chunk_mutex);
2711 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2712 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713 	fs_devices->num_devices++;
2714 	fs_devices->open_devices++;
2715 	fs_devices->rw_devices++;
2716 	fs_devices->total_devices++;
2717 	fs_devices->total_rw_bytes += device->total_bytes;
2718 
2719 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720 
2721 	if (!bdev_nonrot(bdev))
2722 		fs_devices->rotating = true;
2723 
2724 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725 	btrfs_set_super_total_bytes(fs_info->super_copy,
2726 		round_down(orig_super_total_bytes + device->total_bytes,
2727 			   fs_info->sectorsize));
2728 
2729 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730 	btrfs_set_super_num_devices(fs_info->super_copy,
2731 				    orig_super_num_devices + 1);
2732 
2733 	/*
2734 	 * we've got more storage, clear any full flags on the space
2735 	 * infos
2736 	 */
2737 	btrfs_clear_space_info_full(fs_info);
2738 
2739 	mutex_unlock(&fs_info->chunk_mutex);
2740 
2741 	/* Add sysfs device entry */
2742 	btrfs_sysfs_add_device(device);
2743 
2744 	mutex_unlock(&fs_devices->device_list_mutex);
2745 
2746 	if (seeding_dev) {
2747 		mutex_lock(&fs_info->chunk_mutex);
2748 		ret = init_first_rw_device(trans);
2749 		mutex_unlock(&fs_info->chunk_mutex);
2750 		if (ret) {
2751 			btrfs_abort_transaction(trans, ret);
2752 			goto error_sysfs;
2753 		}
2754 	}
2755 
2756 	ret = btrfs_add_dev_item(trans, device);
2757 	if (ret) {
2758 		btrfs_abort_transaction(trans, ret);
2759 		goto error_sysfs;
2760 	}
2761 
2762 	if (seeding_dev) {
2763 		ret = btrfs_finish_sprout(trans);
2764 		if (ret) {
2765 			btrfs_abort_transaction(trans, ret);
2766 			goto error_sysfs;
2767 		}
2768 
2769 		/*
2770 		 * fs_devices now represents the newly sprouted filesystem and
2771 		 * its fsid has been changed by btrfs_sprout_splice().
2772 		 */
2773 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2774 	}
2775 
2776 	ret = btrfs_commit_transaction(trans);
2777 
2778 	if (seeding_dev) {
2779 		mutex_unlock(&uuid_mutex);
2780 		up_write(&sb->s_umount);
2781 		locked = false;
2782 
2783 		if (ret) /* transaction commit */
2784 			return ret;
2785 
2786 		ret = btrfs_relocate_sys_chunks(fs_info);
2787 		if (ret < 0)
2788 			btrfs_handle_fs_error(fs_info, ret,
2789 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790 		trans = btrfs_attach_transaction(root);
2791 		if (IS_ERR(trans)) {
2792 			if (PTR_ERR(trans) == -ENOENT)
2793 				return 0;
2794 			ret = PTR_ERR(trans);
2795 			trans = NULL;
2796 			goto error_sysfs;
2797 		}
2798 		ret = btrfs_commit_transaction(trans);
2799 	}
2800 
2801 	/*
2802 	 * Now that we have written a new super block to this device, check all
2803 	 * other fs_devices list if device_path alienates any other scanned
2804 	 * device.
2805 	 * We can ignore the return value as it typically returns -EINVAL and
2806 	 * only succeeds if the device was an alien.
2807 	 */
2808 	btrfs_forget_devices(device->devt);
2809 
2810 	/* Update ctime/mtime for blkid or udev */
2811 	update_dev_time(device_path);
2812 
2813 	return ret;
2814 
2815 error_sysfs:
2816 	btrfs_sysfs_remove_device(device);
2817 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818 	mutex_lock(&fs_info->chunk_mutex);
2819 	list_del_rcu(&device->dev_list);
2820 	list_del(&device->dev_alloc_list);
2821 	fs_info->fs_devices->num_devices--;
2822 	fs_info->fs_devices->open_devices--;
2823 	fs_info->fs_devices->rw_devices--;
2824 	fs_info->fs_devices->total_devices--;
2825 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827 	btrfs_set_super_total_bytes(fs_info->super_copy,
2828 				    orig_super_total_bytes);
2829 	btrfs_set_super_num_devices(fs_info->super_copy,
2830 				    orig_super_num_devices);
2831 	mutex_unlock(&fs_info->chunk_mutex);
2832 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833 error_trans:
2834 	if (seeding_dev)
2835 		btrfs_set_sb_rdonly(sb);
2836 	if (trans)
2837 		btrfs_end_transaction(trans);
2838 error_free_zone:
2839 	btrfs_destroy_dev_zone_info(device);
2840 error_free_device:
2841 	btrfs_free_device(device);
2842 error:
2843 	blkdev_put(bdev, FMODE_EXCL);
2844 	if (locked) {
2845 		mutex_unlock(&uuid_mutex);
2846 		up_write(&sb->s_umount);
2847 	}
2848 	return ret;
2849 }
2850 
2851 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852 					struct btrfs_device *device)
2853 {
2854 	int ret;
2855 	struct btrfs_path *path;
2856 	struct btrfs_root *root = device->fs_info->chunk_root;
2857 	struct btrfs_dev_item *dev_item;
2858 	struct extent_buffer *leaf;
2859 	struct btrfs_key key;
2860 
2861 	path = btrfs_alloc_path();
2862 	if (!path)
2863 		return -ENOMEM;
2864 
2865 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866 	key.type = BTRFS_DEV_ITEM_KEY;
2867 	key.offset = device->devid;
2868 
2869 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870 	if (ret < 0)
2871 		goto out;
2872 
2873 	if (ret > 0) {
2874 		ret = -ENOENT;
2875 		goto out;
2876 	}
2877 
2878 	leaf = path->nodes[0];
2879 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880 
2881 	btrfs_set_device_id(leaf, dev_item, device->devid);
2882 	btrfs_set_device_type(leaf, dev_item, device->type);
2883 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886 	btrfs_set_device_total_bytes(leaf, dev_item,
2887 				     btrfs_device_get_disk_total_bytes(device));
2888 	btrfs_set_device_bytes_used(leaf, dev_item,
2889 				    btrfs_device_get_bytes_used(device));
2890 	btrfs_mark_buffer_dirty(leaf);
2891 
2892 out:
2893 	btrfs_free_path(path);
2894 	return ret;
2895 }
2896 
2897 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898 		      struct btrfs_device *device, u64 new_size)
2899 {
2900 	struct btrfs_fs_info *fs_info = device->fs_info;
2901 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2902 	u64 old_total;
2903 	u64 diff;
2904 	int ret;
2905 
2906 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907 		return -EACCES;
2908 
2909 	new_size = round_down(new_size, fs_info->sectorsize);
2910 
2911 	mutex_lock(&fs_info->chunk_mutex);
2912 	old_total = btrfs_super_total_bytes(super_copy);
2913 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914 
2915 	if (new_size <= device->total_bytes ||
2916 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917 		mutex_unlock(&fs_info->chunk_mutex);
2918 		return -EINVAL;
2919 	}
2920 
2921 	btrfs_set_super_total_bytes(super_copy,
2922 			round_down(old_total + diff, fs_info->sectorsize));
2923 	device->fs_devices->total_rw_bytes += diff;
2924 
2925 	btrfs_device_set_total_bytes(device, new_size);
2926 	btrfs_device_set_disk_total_bytes(device, new_size);
2927 	btrfs_clear_space_info_full(device->fs_info);
2928 	if (list_empty(&device->post_commit_list))
2929 		list_add_tail(&device->post_commit_list,
2930 			      &trans->transaction->dev_update_list);
2931 	mutex_unlock(&fs_info->chunk_mutex);
2932 
2933 	btrfs_reserve_chunk_metadata(trans, false);
2934 	ret = btrfs_update_device(trans, device);
2935 	btrfs_trans_release_chunk_metadata(trans);
2936 
2937 	return ret;
2938 }
2939 
2940 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941 {
2942 	struct btrfs_fs_info *fs_info = trans->fs_info;
2943 	struct btrfs_root *root = fs_info->chunk_root;
2944 	int ret;
2945 	struct btrfs_path *path;
2946 	struct btrfs_key key;
2947 
2948 	path = btrfs_alloc_path();
2949 	if (!path)
2950 		return -ENOMEM;
2951 
2952 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953 	key.offset = chunk_offset;
2954 	key.type = BTRFS_CHUNK_ITEM_KEY;
2955 
2956 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957 	if (ret < 0)
2958 		goto out;
2959 	else if (ret > 0) { /* Logic error or corruption */
2960 		btrfs_handle_fs_error(fs_info, -ENOENT,
2961 				      "Failed lookup while freeing chunk.");
2962 		ret = -ENOENT;
2963 		goto out;
2964 	}
2965 
2966 	ret = btrfs_del_item(trans, root, path);
2967 	if (ret < 0)
2968 		btrfs_handle_fs_error(fs_info, ret,
2969 				      "Failed to delete chunk item.");
2970 out:
2971 	btrfs_free_path(path);
2972 	return ret;
2973 }
2974 
2975 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976 {
2977 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2978 	struct btrfs_disk_key *disk_key;
2979 	struct btrfs_chunk *chunk;
2980 	u8 *ptr;
2981 	int ret = 0;
2982 	u32 num_stripes;
2983 	u32 array_size;
2984 	u32 len = 0;
2985 	u32 cur;
2986 	struct btrfs_key key;
2987 
2988 	lockdep_assert_held(&fs_info->chunk_mutex);
2989 	array_size = btrfs_super_sys_array_size(super_copy);
2990 
2991 	ptr = super_copy->sys_chunk_array;
2992 	cur = 0;
2993 
2994 	while (cur < array_size) {
2995 		disk_key = (struct btrfs_disk_key *)ptr;
2996 		btrfs_disk_key_to_cpu(&key, disk_key);
2997 
2998 		len = sizeof(*disk_key);
2999 
3000 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001 			chunk = (struct btrfs_chunk *)(ptr + len);
3002 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003 			len += btrfs_chunk_item_size(num_stripes);
3004 		} else {
3005 			ret = -EIO;
3006 			break;
3007 		}
3008 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009 		    key.offset == chunk_offset) {
3010 			memmove(ptr, ptr + len, array_size - (cur + len));
3011 			array_size -= len;
3012 			btrfs_set_super_sys_array_size(super_copy, array_size);
3013 		} else {
3014 			ptr += len;
3015 			cur += len;
3016 		}
3017 	}
3018 	return ret;
3019 }
3020 
3021 /*
3022  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023  * @logical: Logical block offset in bytes.
3024  * @length: Length of extent in bytes.
3025  *
3026  * Return: Chunk mapping or ERR_PTR.
3027  */
3028 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029 				       u64 logical, u64 length)
3030 {
3031 	struct extent_map_tree *em_tree;
3032 	struct extent_map *em;
3033 
3034 	em_tree = &fs_info->mapping_tree;
3035 	read_lock(&em_tree->lock);
3036 	em = lookup_extent_mapping(em_tree, logical, length);
3037 	read_unlock(&em_tree->lock);
3038 
3039 	if (!em) {
3040 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041 			   logical, length);
3042 		return ERR_PTR(-EINVAL);
3043 	}
3044 
3045 	if (em->start > logical || em->start + em->len < logical) {
3046 		btrfs_crit(fs_info,
3047 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048 			   logical, length, em->start, em->start + em->len);
3049 		free_extent_map(em);
3050 		return ERR_PTR(-EINVAL);
3051 	}
3052 
3053 	/* callers are responsible for dropping em's ref. */
3054 	return em;
3055 }
3056 
3057 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058 			     struct map_lookup *map, u64 chunk_offset)
3059 {
3060 	int i;
3061 
3062 	/*
3063 	 * Removing chunk items and updating the device items in the chunks btree
3064 	 * requires holding the chunk_mutex.
3065 	 * See the comment at btrfs_chunk_alloc() for the details.
3066 	 */
3067 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068 
3069 	for (i = 0; i < map->num_stripes; i++) {
3070 		int ret;
3071 
3072 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3073 		if (ret)
3074 			return ret;
3075 	}
3076 
3077 	return btrfs_free_chunk(trans, chunk_offset);
3078 }
3079 
3080 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081 {
3082 	struct btrfs_fs_info *fs_info = trans->fs_info;
3083 	struct extent_map *em;
3084 	struct map_lookup *map;
3085 	u64 dev_extent_len = 0;
3086 	int i, ret = 0;
3087 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088 
3089 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090 	if (IS_ERR(em)) {
3091 		/*
3092 		 * This is a logic error, but we don't want to just rely on the
3093 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3094 		 * do anything we still error out.
3095 		 */
3096 		ASSERT(0);
3097 		return PTR_ERR(em);
3098 	}
3099 	map = em->map_lookup;
3100 
3101 	/*
3102 	 * First delete the device extent items from the devices btree.
3103 	 * We take the device_list_mutex to avoid racing with the finishing phase
3104 	 * of a device replace operation. See the comment below before acquiring
3105 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106 	 * because that can result in a deadlock when deleting the device extent
3107 	 * items from the devices btree - COWing an extent buffer from the btree
3108 	 * may result in allocating a new metadata chunk, which would attempt to
3109 	 * lock again fs_info->chunk_mutex.
3110 	 */
3111 	mutex_lock(&fs_devices->device_list_mutex);
3112 	for (i = 0; i < map->num_stripes; i++) {
3113 		struct btrfs_device *device = map->stripes[i].dev;
3114 		ret = btrfs_free_dev_extent(trans, device,
3115 					    map->stripes[i].physical,
3116 					    &dev_extent_len);
3117 		if (ret) {
3118 			mutex_unlock(&fs_devices->device_list_mutex);
3119 			btrfs_abort_transaction(trans, ret);
3120 			goto out;
3121 		}
3122 
3123 		if (device->bytes_used > 0) {
3124 			mutex_lock(&fs_info->chunk_mutex);
3125 			btrfs_device_set_bytes_used(device,
3126 					device->bytes_used - dev_extent_len);
3127 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128 			btrfs_clear_space_info_full(fs_info);
3129 			mutex_unlock(&fs_info->chunk_mutex);
3130 		}
3131 	}
3132 	mutex_unlock(&fs_devices->device_list_mutex);
3133 
3134 	/*
3135 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3136 	 *
3137 	 * 1) Just like with the first phase of the chunk allocation, we must
3138 	 *    reserve system space, do all chunk btree updates and deletions, and
3139 	 *    update the system chunk array in the superblock while holding this
3140 	 *    mutex. This is for similar reasons as explained on the comment at
3141 	 *    the top of btrfs_chunk_alloc();
3142 	 *
3143 	 * 2) Prevent races with the final phase of a device replace operation
3144 	 *    that replaces the device object associated with the map's stripes,
3145 	 *    because the device object's id can change at any time during that
3146 	 *    final phase of the device replace operation
3147 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148 	 *    replaced device and then see it with an ID of
3149 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150 	 *    the device item, which does not exists on the chunk btree.
3151 	 *    The finishing phase of device replace acquires both the
3152 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3153 	 *    safe by just acquiring the chunk_mutex.
3154 	 */
3155 	trans->removing_chunk = true;
3156 	mutex_lock(&fs_info->chunk_mutex);
3157 
3158 	check_system_chunk(trans, map->type);
3159 
3160 	ret = remove_chunk_item(trans, map, chunk_offset);
3161 	/*
3162 	 * Normally we should not get -ENOSPC since we reserved space before
3163 	 * through the call to check_system_chunk().
3164 	 *
3165 	 * Despite our system space_info having enough free space, we may not
3166 	 * be able to allocate extents from its block groups, because all have
3167 	 * an incompatible profile, which will force us to allocate a new system
3168 	 * block group with the right profile, or right after we called
3169 	 * check_system_space() above, a scrub turned the only system block group
3170 	 * with enough free space into RO mode.
3171 	 * This is explained with more detail at do_chunk_alloc().
3172 	 *
3173 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174 	 */
3175 	if (ret == -ENOSPC) {
3176 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177 		struct btrfs_block_group *sys_bg;
3178 
3179 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3180 		if (IS_ERR(sys_bg)) {
3181 			ret = PTR_ERR(sys_bg);
3182 			btrfs_abort_transaction(trans, ret);
3183 			goto out;
3184 		}
3185 
3186 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187 		if (ret) {
3188 			btrfs_abort_transaction(trans, ret);
3189 			goto out;
3190 		}
3191 
3192 		ret = remove_chunk_item(trans, map, chunk_offset);
3193 		if (ret) {
3194 			btrfs_abort_transaction(trans, ret);
3195 			goto out;
3196 		}
3197 	} else if (ret) {
3198 		btrfs_abort_transaction(trans, ret);
3199 		goto out;
3200 	}
3201 
3202 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203 
3204 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206 		if (ret) {
3207 			btrfs_abort_transaction(trans, ret);
3208 			goto out;
3209 		}
3210 	}
3211 
3212 	mutex_unlock(&fs_info->chunk_mutex);
3213 	trans->removing_chunk = false;
3214 
3215 	/*
3216 	 * We are done with chunk btree updates and deletions, so release the
3217 	 * system space we previously reserved (with check_system_chunk()).
3218 	 */
3219 	btrfs_trans_release_chunk_metadata(trans);
3220 
3221 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222 	if (ret) {
3223 		btrfs_abort_transaction(trans, ret);
3224 		goto out;
3225 	}
3226 
3227 out:
3228 	if (trans->removing_chunk) {
3229 		mutex_unlock(&fs_info->chunk_mutex);
3230 		trans->removing_chunk = false;
3231 	}
3232 	/* once for us */
3233 	free_extent_map(em);
3234 	return ret;
3235 }
3236 
3237 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238 {
3239 	struct btrfs_root *root = fs_info->chunk_root;
3240 	struct btrfs_trans_handle *trans;
3241 	struct btrfs_block_group *block_group;
3242 	u64 length;
3243 	int ret;
3244 
3245 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246 		btrfs_err(fs_info,
3247 			  "relocate: not supported on extent tree v2 yet");
3248 		return -EINVAL;
3249 	}
3250 
3251 	/*
3252 	 * Prevent races with automatic removal of unused block groups.
3253 	 * After we relocate and before we remove the chunk with offset
3254 	 * chunk_offset, automatic removal of the block group can kick in,
3255 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3256 	 *
3257 	 * Make sure to acquire this mutex before doing a tree search (dev
3258 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260 	 * we release the path used to search the chunk/dev tree and before
3261 	 * the current task acquires this mutex and calls us.
3262 	 */
3263 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264 
3265 	/* step one, relocate all the extents inside this chunk */
3266 	btrfs_scrub_pause(fs_info);
3267 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268 	btrfs_scrub_continue(fs_info);
3269 	if (ret)
3270 		return ret;
3271 
3272 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273 	if (!block_group)
3274 		return -ENOENT;
3275 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276 	length = block_group->length;
3277 	btrfs_put_block_group(block_group);
3278 
3279 	/*
3280 	 * On a zoned file system, discard the whole block group, this will
3281 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282 	 * resetting the zone fails, don't treat it as a fatal problem from the
3283 	 * filesystem's point of view.
3284 	 */
3285 	if (btrfs_is_zoned(fs_info)) {
3286 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287 		if (ret)
3288 			btrfs_info(fs_info,
3289 				"failed to reset zone %llu after relocation",
3290 				chunk_offset);
3291 	}
3292 
3293 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294 						     chunk_offset);
3295 	if (IS_ERR(trans)) {
3296 		ret = PTR_ERR(trans);
3297 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298 		return ret;
3299 	}
3300 
3301 	/*
3302 	 * step two, delete the device extents and the
3303 	 * chunk tree entries
3304 	 */
3305 	ret = btrfs_remove_chunk(trans, chunk_offset);
3306 	btrfs_end_transaction(trans);
3307 	return ret;
3308 }
3309 
3310 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311 {
3312 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3313 	struct btrfs_path *path;
3314 	struct extent_buffer *leaf;
3315 	struct btrfs_chunk *chunk;
3316 	struct btrfs_key key;
3317 	struct btrfs_key found_key;
3318 	u64 chunk_type;
3319 	bool retried = false;
3320 	int failed = 0;
3321 	int ret;
3322 
3323 	path = btrfs_alloc_path();
3324 	if (!path)
3325 		return -ENOMEM;
3326 
3327 again:
3328 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329 	key.offset = (u64)-1;
3330 	key.type = BTRFS_CHUNK_ITEM_KEY;
3331 
3332 	while (1) {
3333 		mutex_lock(&fs_info->reclaim_bgs_lock);
3334 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335 		if (ret < 0) {
3336 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3337 			goto error;
3338 		}
3339 		BUG_ON(ret == 0); /* Corruption */
3340 
3341 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342 					  key.type);
3343 		if (ret)
3344 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 		if (ret < 0)
3346 			goto error;
3347 		if (ret > 0)
3348 			break;
3349 
3350 		leaf = path->nodes[0];
3351 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352 
3353 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3354 				       struct btrfs_chunk);
3355 		chunk_type = btrfs_chunk_type(leaf, chunk);
3356 		btrfs_release_path(path);
3357 
3358 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360 			if (ret == -ENOSPC)
3361 				failed++;
3362 			else
3363 				BUG_ON(ret);
3364 		}
3365 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3366 
3367 		if (found_key.offset == 0)
3368 			break;
3369 		key.offset = found_key.offset - 1;
3370 	}
3371 	ret = 0;
3372 	if (failed && !retried) {
3373 		failed = 0;
3374 		retried = true;
3375 		goto again;
3376 	} else if (WARN_ON(failed && retried)) {
3377 		ret = -ENOSPC;
3378 	}
3379 error:
3380 	btrfs_free_path(path);
3381 	return ret;
3382 }
3383 
3384 /*
3385  * return 1 : allocate a data chunk successfully,
3386  * return <0: errors during allocating a data chunk,
3387  * return 0 : no need to allocate a data chunk.
3388  */
3389 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390 				      u64 chunk_offset)
3391 {
3392 	struct btrfs_block_group *cache;
3393 	u64 bytes_used;
3394 	u64 chunk_type;
3395 
3396 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 	ASSERT(cache);
3398 	chunk_type = cache->flags;
3399 	btrfs_put_block_group(cache);
3400 
3401 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402 		return 0;
3403 
3404 	spin_lock(&fs_info->data_sinfo->lock);
3405 	bytes_used = fs_info->data_sinfo->bytes_used;
3406 	spin_unlock(&fs_info->data_sinfo->lock);
3407 
3408 	if (!bytes_used) {
3409 		struct btrfs_trans_handle *trans;
3410 		int ret;
3411 
3412 		trans =	btrfs_join_transaction(fs_info->tree_root);
3413 		if (IS_ERR(trans))
3414 			return PTR_ERR(trans);
3415 
3416 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417 		btrfs_end_transaction(trans);
3418 		if (ret < 0)
3419 			return ret;
3420 		return 1;
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427 			       struct btrfs_balance_control *bctl)
3428 {
3429 	struct btrfs_root *root = fs_info->tree_root;
3430 	struct btrfs_trans_handle *trans;
3431 	struct btrfs_balance_item *item;
3432 	struct btrfs_disk_balance_args disk_bargs;
3433 	struct btrfs_path *path;
3434 	struct extent_buffer *leaf;
3435 	struct btrfs_key key;
3436 	int ret, err;
3437 
3438 	path = btrfs_alloc_path();
3439 	if (!path)
3440 		return -ENOMEM;
3441 
3442 	trans = btrfs_start_transaction(root, 0);
3443 	if (IS_ERR(trans)) {
3444 		btrfs_free_path(path);
3445 		return PTR_ERR(trans);
3446 	}
3447 
3448 	key.objectid = BTRFS_BALANCE_OBJECTID;
3449 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450 	key.offset = 0;
3451 
3452 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3453 				      sizeof(*item));
3454 	if (ret)
3455 		goto out;
3456 
3457 	leaf = path->nodes[0];
3458 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459 
3460 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461 
3462 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3464 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468 
3469 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3470 
3471 	btrfs_mark_buffer_dirty(leaf);
3472 out:
3473 	btrfs_free_path(path);
3474 	err = btrfs_commit_transaction(trans);
3475 	if (err && !ret)
3476 		ret = err;
3477 	return ret;
3478 }
3479 
3480 static int del_balance_item(struct btrfs_fs_info *fs_info)
3481 {
3482 	struct btrfs_root *root = fs_info->tree_root;
3483 	struct btrfs_trans_handle *trans;
3484 	struct btrfs_path *path;
3485 	struct btrfs_key key;
3486 	int ret, err;
3487 
3488 	path = btrfs_alloc_path();
3489 	if (!path)
3490 		return -ENOMEM;
3491 
3492 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493 	if (IS_ERR(trans)) {
3494 		btrfs_free_path(path);
3495 		return PTR_ERR(trans);
3496 	}
3497 
3498 	key.objectid = BTRFS_BALANCE_OBJECTID;
3499 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500 	key.offset = 0;
3501 
3502 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503 	if (ret < 0)
3504 		goto out;
3505 	if (ret > 0) {
3506 		ret = -ENOENT;
3507 		goto out;
3508 	}
3509 
3510 	ret = btrfs_del_item(trans, root, path);
3511 out:
3512 	btrfs_free_path(path);
3513 	err = btrfs_commit_transaction(trans);
3514 	if (err && !ret)
3515 		ret = err;
3516 	return ret;
3517 }
3518 
3519 /*
3520  * This is a heuristic used to reduce the number of chunks balanced on
3521  * resume after balance was interrupted.
3522  */
3523 static void update_balance_args(struct btrfs_balance_control *bctl)
3524 {
3525 	/*
3526 	 * Turn on soft mode for chunk types that were being converted.
3527 	 */
3528 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534 
3535 	/*
3536 	 * Turn on usage filter if is not already used.  The idea is
3537 	 * that chunks that we have already balanced should be
3538 	 * reasonably full.  Don't do it for chunks that are being
3539 	 * converted - that will keep us from relocating unconverted
3540 	 * (albeit full) chunks.
3541 	 */
3542 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 		bctl->data.usage = 90;
3547 	}
3548 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552 		bctl->sys.usage = 90;
3553 	}
3554 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558 		bctl->meta.usage = 90;
3559 	}
3560 }
3561 
3562 /*
3563  * Clear the balance status in fs_info and delete the balance item from disk.
3564  */
3565 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566 {
3567 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568 	int ret;
3569 
3570 	BUG_ON(!fs_info->balance_ctl);
3571 
3572 	spin_lock(&fs_info->balance_lock);
3573 	fs_info->balance_ctl = NULL;
3574 	spin_unlock(&fs_info->balance_lock);
3575 
3576 	kfree(bctl);
3577 	ret = del_balance_item(fs_info);
3578 	if (ret)
3579 		btrfs_handle_fs_error(fs_info, ret, NULL);
3580 }
3581 
3582 /*
3583  * Balance filters.  Return 1 if chunk should be filtered out
3584  * (should not be balanced).
3585  */
3586 static int chunk_profiles_filter(u64 chunk_type,
3587 				 struct btrfs_balance_args *bargs)
3588 {
3589 	chunk_type = chunk_to_extended(chunk_type) &
3590 				BTRFS_EXTENDED_PROFILE_MASK;
3591 
3592 	if (bargs->profiles & chunk_type)
3593 		return 0;
3594 
3595 	return 1;
3596 }
3597 
3598 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599 			      struct btrfs_balance_args *bargs)
3600 {
3601 	struct btrfs_block_group *cache;
3602 	u64 chunk_used;
3603 	u64 user_thresh_min;
3604 	u64 user_thresh_max;
3605 	int ret = 1;
3606 
3607 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608 	chunk_used = cache->used;
3609 
3610 	if (bargs->usage_min == 0)
3611 		user_thresh_min = 0;
3612 	else
3613 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614 
3615 	if (bargs->usage_max == 0)
3616 		user_thresh_max = 1;
3617 	else if (bargs->usage_max > 100)
3618 		user_thresh_max = cache->length;
3619 	else
3620 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621 
3622 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623 		ret = 0;
3624 
3625 	btrfs_put_block_group(cache);
3626 	return ret;
3627 }
3628 
3629 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3631 {
3632 	struct btrfs_block_group *cache;
3633 	u64 chunk_used, user_thresh;
3634 	int ret = 1;
3635 
3636 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637 	chunk_used = cache->used;
3638 
3639 	if (bargs->usage_min == 0)
3640 		user_thresh = 1;
3641 	else if (bargs->usage > 100)
3642 		user_thresh = cache->length;
3643 	else
3644 		user_thresh = mult_perc(cache->length, bargs->usage);
3645 
3646 	if (chunk_used < user_thresh)
3647 		ret = 0;
3648 
3649 	btrfs_put_block_group(cache);
3650 	return ret;
3651 }
3652 
3653 static int chunk_devid_filter(struct extent_buffer *leaf,
3654 			      struct btrfs_chunk *chunk,
3655 			      struct btrfs_balance_args *bargs)
3656 {
3657 	struct btrfs_stripe *stripe;
3658 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659 	int i;
3660 
3661 	for (i = 0; i < num_stripes; i++) {
3662 		stripe = btrfs_stripe_nr(chunk, i);
3663 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664 			return 0;
3665 	}
3666 
3667 	return 1;
3668 }
3669 
3670 static u64 calc_data_stripes(u64 type, int num_stripes)
3671 {
3672 	const int index = btrfs_bg_flags_to_raid_index(type);
3673 	const int ncopies = btrfs_raid_array[index].ncopies;
3674 	const int nparity = btrfs_raid_array[index].nparity;
3675 
3676 	return (num_stripes - nparity) / ncopies;
3677 }
3678 
3679 /* [pstart, pend) */
3680 static int chunk_drange_filter(struct extent_buffer *leaf,
3681 			       struct btrfs_chunk *chunk,
3682 			       struct btrfs_balance_args *bargs)
3683 {
3684 	struct btrfs_stripe *stripe;
3685 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686 	u64 stripe_offset;
3687 	u64 stripe_length;
3688 	u64 type;
3689 	int factor;
3690 	int i;
3691 
3692 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693 		return 0;
3694 
3695 	type = btrfs_chunk_type(leaf, chunk);
3696 	factor = calc_data_stripes(type, num_stripes);
3697 
3698 	for (i = 0; i < num_stripes; i++) {
3699 		stripe = btrfs_stripe_nr(chunk, i);
3700 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701 			continue;
3702 
3703 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704 		stripe_length = btrfs_chunk_length(leaf, chunk);
3705 		stripe_length = div_u64(stripe_length, factor);
3706 
3707 		if (stripe_offset < bargs->pend &&
3708 		    stripe_offset + stripe_length > bargs->pstart)
3709 			return 0;
3710 	}
3711 
3712 	return 1;
3713 }
3714 
3715 /* [vstart, vend) */
3716 static int chunk_vrange_filter(struct extent_buffer *leaf,
3717 			       struct btrfs_chunk *chunk,
3718 			       u64 chunk_offset,
3719 			       struct btrfs_balance_args *bargs)
3720 {
3721 	if (chunk_offset < bargs->vend &&
3722 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723 		/* at least part of the chunk is inside this vrange */
3724 		return 0;
3725 
3726 	return 1;
3727 }
3728 
3729 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730 			       struct btrfs_chunk *chunk,
3731 			       struct btrfs_balance_args *bargs)
3732 {
3733 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734 
3735 	if (bargs->stripes_min <= num_stripes
3736 			&& num_stripes <= bargs->stripes_max)
3737 		return 0;
3738 
3739 	return 1;
3740 }
3741 
3742 static int chunk_soft_convert_filter(u64 chunk_type,
3743 				     struct btrfs_balance_args *bargs)
3744 {
3745 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746 		return 0;
3747 
3748 	chunk_type = chunk_to_extended(chunk_type) &
3749 				BTRFS_EXTENDED_PROFILE_MASK;
3750 
3751 	if (bargs->target == chunk_type)
3752 		return 1;
3753 
3754 	return 0;
3755 }
3756 
3757 static int should_balance_chunk(struct extent_buffer *leaf,
3758 				struct btrfs_chunk *chunk, u64 chunk_offset)
3759 {
3760 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3761 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762 	struct btrfs_balance_args *bargs = NULL;
3763 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764 
3765 	/* type filter */
3766 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768 		return 0;
3769 	}
3770 
3771 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772 		bargs = &bctl->data;
3773 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774 		bargs = &bctl->sys;
3775 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776 		bargs = &bctl->meta;
3777 
3778 	/* profiles filter */
3779 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780 	    chunk_profiles_filter(chunk_type, bargs)) {
3781 		return 0;
3782 	}
3783 
3784 	/* usage filter */
3785 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787 		return 0;
3788 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790 		return 0;
3791 	}
3792 
3793 	/* devid filter */
3794 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795 	    chunk_devid_filter(leaf, chunk, bargs)) {
3796 		return 0;
3797 	}
3798 
3799 	/* drange filter, makes sense only with devid filter */
3800 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801 	    chunk_drange_filter(leaf, chunk, bargs)) {
3802 		return 0;
3803 	}
3804 
3805 	/* vrange filter */
3806 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808 		return 0;
3809 	}
3810 
3811 	/* stripes filter */
3812 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814 		return 0;
3815 	}
3816 
3817 	/* soft profile changing mode */
3818 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3820 		return 0;
3821 	}
3822 
3823 	/*
3824 	 * limited by count, must be the last filter
3825 	 */
3826 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827 		if (bargs->limit == 0)
3828 			return 0;
3829 		else
3830 			bargs->limit--;
3831 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832 		/*
3833 		 * Same logic as the 'limit' filter; the minimum cannot be
3834 		 * determined here because we do not have the global information
3835 		 * about the count of all chunks that satisfy the filters.
3836 		 */
3837 		if (bargs->limit_max == 0)
3838 			return 0;
3839 		else
3840 			bargs->limit_max--;
3841 	}
3842 
3843 	return 1;
3844 }
3845 
3846 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847 {
3848 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3850 	u64 chunk_type;
3851 	struct btrfs_chunk *chunk;
3852 	struct btrfs_path *path = NULL;
3853 	struct btrfs_key key;
3854 	struct btrfs_key found_key;
3855 	struct extent_buffer *leaf;
3856 	int slot;
3857 	int ret;
3858 	int enospc_errors = 0;
3859 	bool counting = true;
3860 	/* The single value limit and min/max limits use the same bytes in the */
3861 	u64 limit_data = bctl->data.limit;
3862 	u64 limit_meta = bctl->meta.limit;
3863 	u64 limit_sys = bctl->sys.limit;
3864 	u32 count_data = 0;
3865 	u32 count_meta = 0;
3866 	u32 count_sys = 0;
3867 	int chunk_reserved = 0;
3868 
3869 	path = btrfs_alloc_path();
3870 	if (!path) {
3871 		ret = -ENOMEM;
3872 		goto error;
3873 	}
3874 
3875 	/* zero out stat counters */
3876 	spin_lock(&fs_info->balance_lock);
3877 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3878 	spin_unlock(&fs_info->balance_lock);
3879 again:
3880 	if (!counting) {
3881 		/*
3882 		 * The single value limit and min/max limits use the same bytes
3883 		 * in the
3884 		 */
3885 		bctl->data.limit = limit_data;
3886 		bctl->meta.limit = limit_meta;
3887 		bctl->sys.limit = limit_sys;
3888 	}
3889 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890 	key.offset = (u64)-1;
3891 	key.type = BTRFS_CHUNK_ITEM_KEY;
3892 
3893 	while (1) {
3894 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895 		    atomic_read(&fs_info->balance_cancel_req)) {
3896 			ret = -ECANCELED;
3897 			goto error;
3898 		}
3899 
3900 		mutex_lock(&fs_info->reclaim_bgs_lock);
3901 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902 		if (ret < 0) {
3903 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3904 			goto error;
3905 		}
3906 
3907 		/*
3908 		 * this shouldn't happen, it means the last relocate
3909 		 * failed
3910 		 */
3911 		if (ret == 0)
3912 			BUG(); /* FIXME break ? */
3913 
3914 		ret = btrfs_previous_item(chunk_root, path, 0,
3915 					  BTRFS_CHUNK_ITEM_KEY);
3916 		if (ret) {
3917 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 			ret = 0;
3919 			break;
3920 		}
3921 
3922 		leaf = path->nodes[0];
3923 		slot = path->slots[0];
3924 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925 
3926 		if (found_key.objectid != key.objectid) {
3927 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3928 			break;
3929 		}
3930 
3931 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932 		chunk_type = btrfs_chunk_type(leaf, chunk);
3933 
3934 		if (!counting) {
3935 			spin_lock(&fs_info->balance_lock);
3936 			bctl->stat.considered++;
3937 			spin_unlock(&fs_info->balance_lock);
3938 		}
3939 
3940 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941 
3942 		btrfs_release_path(path);
3943 		if (!ret) {
3944 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 			goto loop;
3946 		}
3947 
3948 		if (counting) {
3949 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 			spin_lock(&fs_info->balance_lock);
3951 			bctl->stat.expected++;
3952 			spin_unlock(&fs_info->balance_lock);
3953 
3954 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955 				count_data++;
3956 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957 				count_sys++;
3958 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959 				count_meta++;
3960 
3961 			goto loop;
3962 		}
3963 
3964 		/*
3965 		 * Apply limit_min filter, no need to check if the LIMITS
3966 		 * filter is used, limit_min is 0 by default
3967 		 */
3968 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969 					count_data < bctl->data.limit_min)
3970 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971 					count_meta < bctl->meta.limit_min)
3972 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973 					count_sys < bctl->sys.limit_min)) {
3974 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 			goto loop;
3976 		}
3977 
3978 		if (!chunk_reserved) {
3979 			/*
3980 			 * We may be relocating the only data chunk we have,
3981 			 * which could potentially end up with losing data's
3982 			 * raid profile, so lets allocate an empty one in
3983 			 * advance.
3984 			 */
3985 			ret = btrfs_may_alloc_data_chunk(fs_info,
3986 							 found_key.offset);
3987 			if (ret < 0) {
3988 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3989 				goto error;
3990 			} else if (ret == 1) {
3991 				chunk_reserved = 1;
3992 			}
3993 		}
3994 
3995 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3997 		if (ret == -ENOSPC) {
3998 			enospc_errors++;
3999 		} else if (ret == -ETXTBSY) {
4000 			btrfs_info(fs_info,
4001 	   "skipping relocation of block group %llu due to active swapfile",
4002 				   found_key.offset);
4003 			ret = 0;
4004 		} else if (ret) {
4005 			goto error;
4006 		} else {
4007 			spin_lock(&fs_info->balance_lock);
4008 			bctl->stat.completed++;
4009 			spin_unlock(&fs_info->balance_lock);
4010 		}
4011 loop:
4012 		if (found_key.offset == 0)
4013 			break;
4014 		key.offset = found_key.offset - 1;
4015 	}
4016 
4017 	if (counting) {
4018 		btrfs_release_path(path);
4019 		counting = false;
4020 		goto again;
4021 	}
4022 error:
4023 	btrfs_free_path(path);
4024 	if (enospc_errors) {
4025 		btrfs_info(fs_info, "%d enospc errors during balance",
4026 			   enospc_errors);
4027 		if (!ret)
4028 			ret = -ENOSPC;
4029 	}
4030 
4031 	return ret;
4032 }
4033 
4034 /*
4035  * See if a given profile is valid and reduced.
4036  *
4037  * @flags:     profile to validate
4038  * @extended:  if true @flags is treated as an extended profile
4039  */
4040 static int alloc_profile_is_valid(u64 flags, int extended)
4041 {
4042 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044 
4045 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046 
4047 	/* 1) check that all other bits are zeroed */
4048 	if (flags & ~mask)
4049 		return 0;
4050 
4051 	/* 2) see if profile is reduced */
4052 	if (flags == 0)
4053 		return !extended; /* "0" is valid for usual profiles */
4054 
4055 	return has_single_bit_set(flags);
4056 }
4057 
4058 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059 {
4060 	/* cancel requested || normal exit path */
4061 	return atomic_read(&fs_info->balance_cancel_req) ||
4062 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4063 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4064 }
4065 
4066 /*
4067  * Validate target profile against allowed profiles and return true if it's OK.
4068  * Otherwise print the error message and return false.
4069  */
4070 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071 		const struct btrfs_balance_args *bargs,
4072 		u64 allowed, const char *type)
4073 {
4074 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075 		return true;
4076 
4077 	/* Profile is valid and does not have bits outside of the allowed set */
4078 	if (alloc_profile_is_valid(bargs->target, 1) &&
4079 	    (bargs->target & ~allowed) == 0)
4080 		return true;
4081 
4082 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083 			type, btrfs_bg_type_to_raid_name(bargs->target));
4084 	return false;
4085 }
4086 
4087 /*
4088  * Fill @buf with textual description of balance filter flags @bargs, up to
4089  * @size_buf including the terminating null. The output may be trimmed if it
4090  * does not fit into the provided buffer.
4091  */
4092 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093 				 u32 size_buf)
4094 {
4095 	int ret;
4096 	u32 size_bp = size_buf;
4097 	char *bp = buf;
4098 	u64 flags = bargs->flags;
4099 	char tmp_buf[128] = {'\0'};
4100 
4101 	if (!flags)
4102 		return;
4103 
4104 #define CHECK_APPEND_NOARG(a)						\
4105 	do {								\
4106 		ret = snprintf(bp, size_bp, (a));			\
4107 		if (ret < 0 || ret >= size_bp)				\
4108 			goto out_overflow;				\
4109 		size_bp -= ret;						\
4110 		bp += ret;						\
4111 	} while (0)
4112 
4113 #define CHECK_APPEND_1ARG(a, v1)					\
4114 	do {								\
4115 		ret = snprintf(bp, size_bp, (a), (v1));			\
4116 		if (ret < 0 || ret >= size_bp)				\
4117 			goto out_overflow;				\
4118 		size_bp -= ret;						\
4119 		bp += ret;						\
4120 	} while (0)
4121 
4122 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4123 	do {								\
4124 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4125 		if (ret < 0 || ret >= size_bp)				\
4126 			goto out_overflow;				\
4127 		size_bp -= ret;						\
4128 		bp += ret;						\
4129 	} while (0)
4130 
4131 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132 		CHECK_APPEND_1ARG("convert=%s,",
4133 				  btrfs_bg_type_to_raid_name(bargs->target));
4134 
4135 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136 		CHECK_APPEND_NOARG("soft,");
4137 
4138 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140 					    sizeof(tmp_buf));
4141 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142 	}
4143 
4144 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146 
4147 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148 		CHECK_APPEND_2ARG("usage=%u..%u,",
4149 				  bargs->usage_min, bargs->usage_max);
4150 
4151 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153 
4154 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156 				  bargs->pstart, bargs->pend);
4157 
4158 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160 				  bargs->vstart, bargs->vend);
4161 
4162 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164 
4165 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166 		CHECK_APPEND_2ARG("limit=%u..%u,",
4167 				bargs->limit_min, bargs->limit_max);
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4171 				  bargs->stripes_min, bargs->stripes_max);
4172 
4173 #undef CHECK_APPEND_2ARG
4174 #undef CHECK_APPEND_1ARG
4175 #undef CHECK_APPEND_NOARG
4176 
4177 out_overflow:
4178 
4179 	if (size_bp < size_buf)
4180 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181 	else
4182 		buf[0] = '\0';
4183 }
4184 
4185 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186 {
4187 	u32 size_buf = 1024;
4188 	char tmp_buf[192] = {'\0'};
4189 	char *buf;
4190 	char *bp;
4191 	u32 size_bp = size_buf;
4192 	int ret;
4193 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194 
4195 	buf = kzalloc(size_buf, GFP_KERNEL);
4196 	if (!buf)
4197 		return;
4198 
4199 	bp = buf;
4200 
4201 #define CHECK_APPEND_1ARG(a, v1)					\
4202 	do {								\
4203 		ret = snprintf(bp, size_bp, (a), (v1));			\
4204 		if (ret < 0 || ret >= size_bp)				\
4205 			goto out_overflow;				\
4206 		size_bp -= ret;						\
4207 		bp += ret;						\
4208 	} while (0)
4209 
4210 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4211 		CHECK_APPEND_1ARG("%s", "-f ");
4212 
4213 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4214 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216 	}
4217 
4218 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221 	}
4222 
4223 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226 	}
4227 
4228 #undef CHECK_APPEND_1ARG
4229 
4230 out_overflow:
4231 
4232 	if (size_bp < size_buf)
4233 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234 	btrfs_info(fs_info, "balance: %s %s",
4235 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236 		   "resume" : "start", buf);
4237 
4238 	kfree(buf);
4239 }
4240 
4241 /*
4242  * Should be called with balance mutexe held
4243  */
4244 int btrfs_balance(struct btrfs_fs_info *fs_info,
4245 		  struct btrfs_balance_control *bctl,
4246 		  struct btrfs_ioctl_balance_args *bargs)
4247 {
4248 	u64 meta_target, data_target;
4249 	u64 allowed;
4250 	int mixed = 0;
4251 	int ret;
4252 	u64 num_devices;
4253 	unsigned seq;
4254 	bool reducing_redundancy;
4255 	int i;
4256 
4257 	if (btrfs_fs_closing(fs_info) ||
4258 	    atomic_read(&fs_info->balance_pause_req) ||
4259 	    btrfs_should_cancel_balance(fs_info)) {
4260 		ret = -EINVAL;
4261 		goto out;
4262 	}
4263 
4264 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266 		mixed = 1;
4267 
4268 	/*
4269 	 * In case of mixed groups both data and meta should be picked,
4270 	 * and identical options should be given for both of them.
4271 	 */
4272 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273 	if (mixed && (bctl->flags & allowed)) {
4274 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277 			btrfs_err(fs_info,
4278 	  "balance: mixed groups data and metadata options must be the same");
4279 			ret = -EINVAL;
4280 			goto out;
4281 		}
4282 	}
4283 
4284 	/*
4285 	 * rw_devices will not change at the moment, device add/delete/replace
4286 	 * are exclusive
4287 	 */
4288 	num_devices = fs_info->fs_devices->rw_devices;
4289 
4290 	/*
4291 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292 	 * special bit for it, to make it easier to distinguish.  Thus we need
4293 	 * to set it manually, or balance would refuse the profile.
4294 	 */
4295 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297 		if (num_devices >= btrfs_raid_array[i].devs_min)
4298 			allowed |= btrfs_raid_array[i].bg_flag;
4299 
4300 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4303 		ret = -EINVAL;
4304 		goto out;
4305 	}
4306 
4307 	/*
4308 	 * Allow to reduce metadata or system integrity only if force set for
4309 	 * profiles with redundancy (copies, parity)
4310 	 */
4311 	allowed = 0;
4312 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313 		if (btrfs_raid_array[i].ncopies >= 2 ||
4314 		    btrfs_raid_array[i].tolerated_failures >= 1)
4315 			allowed |= btrfs_raid_array[i].bg_flag;
4316 	}
4317 	do {
4318 		seq = read_seqbegin(&fs_info->profiles_lock);
4319 
4320 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321 		     (fs_info->avail_system_alloc_bits & allowed) &&
4322 		     !(bctl->sys.target & allowed)) ||
4323 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4325 		     !(bctl->meta.target & allowed)))
4326 			reducing_redundancy = true;
4327 		else
4328 			reducing_redundancy = false;
4329 
4330 		/* if we're not converting, the target field is uninitialized */
4331 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334 			bctl->data.target : fs_info->avail_data_alloc_bits;
4335 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4336 
4337 	if (reducing_redundancy) {
4338 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339 			btrfs_info(fs_info,
4340 			   "balance: force reducing metadata redundancy");
4341 		} else {
4342 			btrfs_err(fs_info,
4343 	"balance: reduces metadata redundancy, use --force if you want this");
4344 			ret = -EINVAL;
4345 			goto out;
4346 		}
4347 	}
4348 
4349 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351 		btrfs_warn(fs_info,
4352 	"balance: metadata profile %s has lower redundancy than data profile %s",
4353 				btrfs_bg_type_to_raid_name(meta_target),
4354 				btrfs_bg_type_to_raid_name(data_target));
4355 	}
4356 
4357 	ret = insert_balance_item(fs_info, bctl);
4358 	if (ret && ret != -EEXIST)
4359 		goto out;
4360 
4361 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362 		BUG_ON(ret == -EEXIST);
4363 		BUG_ON(fs_info->balance_ctl);
4364 		spin_lock(&fs_info->balance_lock);
4365 		fs_info->balance_ctl = bctl;
4366 		spin_unlock(&fs_info->balance_lock);
4367 	} else {
4368 		BUG_ON(ret != -EEXIST);
4369 		spin_lock(&fs_info->balance_lock);
4370 		update_balance_args(bctl);
4371 		spin_unlock(&fs_info->balance_lock);
4372 	}
4373 
4374 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376 	describe_balance_start_or_resume(fs_info);
4377 	mutex_unlock(&fs_info->balance_mutex);
4378 
4379 	ret = __btrfs_balance(fs_info);
4380 
4381 	mutex_lock(&fs_info->balance_mutex);
4382 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383 		btrfs_info(fs_info, "balance: paused");
4384 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385 	}
4386 	/*
4387 	 * Balance can be canceled by:
4388 	 *
4389 	 * - Regular cancel request
4390 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4391 	 *
4392 	 * - Fatal signal to "btrfs" process
4393 	 *   Either the signal caught by wait_reserve_ticket() and callers
4394 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4395 	 *   got -ECANCELED.
4396 	 *   Either way, in this case balance_cancel_req = 0, and
4397 	 *   ret == -EINTR or ret == -ECANCELED.
4398 	 *
4399 	 * So here we only check the return value to catch canceled balance.
4400 	 */
4401 	else if (ret == -ECANCELED || ret == -EINTR)
4402 		btrfs_info(fs_info, "balance: canceled");
4403 	else
4404 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405 
4406 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407 
4408 	if (bargs) {
4409 		memset(bargs, 0, sizeof(*bargs));
4410 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4411 	}
4412 
4413 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414 	    balance_need_close(fs_info)) {
4415 		reset_balance_state(fs_info);
4416 		btrfs_exclop_finish(fs_info);
4417 	}
4418 
4419 	wake_up(&fs_info->balance_wait_q);
4420 
4421 	return ret;
4422 out:
4423 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4424 		reset_balance_state(fs_info);
4425 	else
4426 		kfree(bctl);
4427 	btrfs_exclop_finish(fs_info);
4428 
4429 	return ret;
4430 }
4431 
4432 static int balance_kthread(void *data)
4433 {
4434 	struct btrfs_fs_info *fs_info = data;
4435 	int ret = 0;
4436 
4437 	sb_start_write(fs_info->sb);
4438 	mutex_lock(&fs_info->balance_mutex);
4439 	if (fs_info->balance_ctl)
4440 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441 	mutex_unlock(&fs_info->balance_mutex);
4442 	sb_end_write(fs_info->sb);
4443 
4444 	return ret;
4445 }
4446 
4447 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448 {
4449 	struct task_struct *tsk;
4450 
4451 	mutex_lock(&fs_info->balance_mutex);
4452 	if (!fs_info->balance_ctl) {
4453 		mutex_unlock(&fs_info->balance_mutex);
4454 		return 0;
4455 	}
4456 	mutex_unlock(&fs_info->balance_mutex);
4457 
4458 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459 		btrfs_info(fs_info, "balance: resume skipped");
4460 		return 0;
4461 	}
4462 
4463 	spin_lock(&fs_info->super_lock);
4464 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466 	spin_unlock(&fs_info->super_lock);
4467 	/*
4468 	 * A ro->rw remount sequence should continue with the paused balance
4469 	 * regardless of who pauses it, system or the user as of now, so set
4470 	 * the resume flag.
4471 	 */
4472 	spin_lock(&fs_info->balance_lock);
4473 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474 	spin_unlock(&fs_info->balance_lock);
4475 
4476 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477 	return PTR_ERR_OR_ZERO(tsk);
4478 }
4479 
4480 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481 {
4482 	struct btrfs_balance_control *bctl;
4483 	struct btrfs_balance_item *item;
4484 	struct btrfs_disk_balance_args disk_bargs;
4485 	struct btrfs_path *path;
4486 	struct extent_buffer *leaf;
4487 	struct btrfs_key key;
4488 	int ret;
4489 
4490 	path = btrfs_alloc_path();
4491 	if (!path)
4492 		return -ENOMEM;
4493 
4494 	key.objectid = BTRFS_BALANCE_OBJECTID;
4495 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496 	key.offset = 0;
4497 
4498 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499 	if (ret < 0)
4500 		goto out;
4501 	if (ret > 0) { /* ret = -ENOENT; */
4502 		ret = 0;
4503 		goto out;
4504 	}
4505 
4506 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507 	if (!bctl) {
4508 		ret = -ENOMEM;
4509 		goto out;
4510 	}
4511 
4512 	leaf = path->nodes[0];
4513 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514 
4515 	bctl->flags = btrfs_balance_flags(leaf, item);
4516 	bctl->flags |= BTRFS_BALANCE_RESUME;
4517 
4518 	btrfs_balance_data(leaf, item, &disk_bargs);
4519 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520 	btrfs_balance_meta(leaf, item, &disk_bargs);
4521 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522 	btrfs_balance_sys(leaf, item, &disk_bargs);
4523 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524 
4525 	/*
4526 	 * This should never happen, as the paused balance state is recovered
4527 	 * during mount without any chance of other exclusive ops to collide.
4528 	 *
4529 	 * This gives the exclusive op status to balance and keeps in paused
4530 	 * state until user intervention (cancel or umount). If the ownership
4531 	 * cannot be assigned, show a message but do not fail. The balance
4532 	 * is in a paused state and must have fs_info::balance_ctl properly
4533 	 * set up.
4534 	 */
4535 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536 		btrfs_warn(fs_info,
4537 	"balance: cannot set exclusive op status, resume manually");
4538 
4539 	btrfs_release_path(path);
4540 
4541 	mutex_lock(&fs_info->balance_mutex);
4542 	BUG_ON(fs_info->balance_ctl);
4543 	spin_lock(&fs_info->balance_lock);
4544 	fs_info->balance_ctl = bctl;
4545 	spin_unlock(&fs_info->balance_lock);
4546 	mutex_unlock(&fs_info->balance_mutex);
4547 out:
4548 	btrfs_free_path(path);
4549 	return ret;
4550 }
4551 
4552 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553 {
4554 	int ret = 0;
4555 
4556 	mutex_lock(&fs_info->balance_mutex);
4557 	if (!fs_info->balance_ctl) {
4558 		mutex_unlock(&fs_info->balance_mutex);
4559 		return -ENOTCONN;
4560 	}
4561 
4562 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563 		atomic_inc(&fs_info->balance_pause_req);
4564 		mutex_unlock(&fs_info->balance_mutex);
4565 
4566 		wait_event(fs_info->balance_wait_q,
4567 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568 
4569 		mutex_lock(&fs_info->balance_mutex);
4570 		/* we are good with balance_ctl ripped off from under us */
4571 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572 		atomic_dec(&fs_info->balance_pause_req);
4573 	} else {
4574 		ret = -ENOTCONN;
4575 	}
4576 
4577 	mutex_unlock(&fs_info->balance_mutex);
4578 	return ret;
4579 }
4580 
4581 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582 {
4583 	mutex_lock(&fs_info->balance_mutex);
4584 	if (!fs_info->balance_ctl) {
4585 		mutex_unlock(&fs_info->balance_mutex);
4586 		return -ENOTCONN;
4587 	}
4588 
4589 	/*
4590 	 * A paused balance with the item stored on disk can be resumed at
4591 	 * mount time if the mount is read-write. Otherwise it's still paused
4592 	 * and we must not allow cancelling as it deletes the item.
4593 	 */
4594 	if (sb_rdonly(fs_info->sb)) {
4595 		mutex_unlock(&fs_info->balance_mutex);
4596 		return -EROFS;
4597 	}
4598 
4599 	atomic_inc(&fs_info->balance_cancel_req);
4600 	/*
4601 	 * if we are running just wait and return, balance item is
4602 	 * deleted in btrfs_balance in this case
4603 	 */
4604 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605 		mutex_unlock(&fs_info->balance_mutex);
4606 		wait_event(fs_info->balance_wait_q,
4607 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608 		mutex_lock(&fs_info->balance_mutex);
4609 	} else {
4610 		mutex_unlock(&fs_info->balance_mutex);
4611 		/*
4612 		 * Lock released to allow other waiters to continue, we'll
4613 		 * reexamine the status again.
4614 		 */
4615 		mutex_lock(&fs_info->balance_mutex);
4616 
4617 		if (fs_info->balance_ctl) {
4618 			reset_balance_state(fs_info);
4619 			btrfs_exclop_finish(fs_info);
4620 			btrfs_info(fs_info, "balance: canceled");
4621 		}
4622 	}
4623 
4624 	BUG_ON(fs_info->balance_ctl ||
4625 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626 	atomic_dec(&fs_info->balance_cancel_req);
4627 	mutex_unlock(&fs_info->balance_mutex);
4628 	return 0;
4629 }
4630 
4631 int btrfs_uuid_scan_kthread(void *data)
4632 {
4633 	struct btrfs_fs_info *fs_info = data;
4634 	struct btrfs_root *root = fs_info->tree_root;
4635 	struct btrfs_key key;
4636 	struct btrfs_path *path = NULL;
4637 	int ret = 0;
4638 	struct extent_buffer *eb;
4639 	int slot;
4640 	struct btrfs_root_item root_item;
4641 	u32 item_size;
4642 	struct btrfs_trans_handle *trans = NULL;
4643 	bool closing = false;
4644 
4645 	path = btrfs_alloc_path();
4646 	if (!path) {
4647 		ret = -ENOMEM;
4648 		goto out;
4649 	}
4650 
4651 	key.objectid = 0;
4652 	key.type = BTRFS_ROOT_ITEM_KEY;
4653 	key.offset = 0;
4654 
4655 	while (1) {
4656 		if (btrfs_fs_closing(fs_info)) {
4657 			closing = true;
4658 			break;
4659 		}
4660 		ret = btrfs_search_forward(root, &key, path,
4661 				BTRFS_OLDEST_GENERATION);
4662 		if (ret) {
4663 			if (ret > 0)
4664 				ret = 0;
4665 			break;
4666 		}
4667 
4668 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672 			goto skip;
4673 
4674 		eb = path->nodes[0];
4675 		slot = path->slots[0];
4676 		item_size = btrfs_item_size(eb, slot);
4677 		if (item_size < sizeof(root_item))
4678 			goto skip;
4679 
4680 		read_extent_buffer(eb, &root_item,
4681 				   btrfs_item_ptr_offset(eb, slot),
4682 				   (int)sizeof(root_item));
4683 		if (btrfs_root_refs(&root_item) == 0)
4684 			goto skip;
4685 
4686 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 			if (trans)
4689 				goto update_tree;
4690 
4691 			btrfs_release_path(path);
4692 			/*
4693 			 * 1 - subvol uuid item
4694 			 * 1 - received_subvol uuid item
4695 			 */
4696 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697 			if (IS_ERR(trans)) {
4698 				ret = PTR_ERR(trans);
4699 				break;
4700 			}
4701 			continue;
4702 		} else {
4703 			goto skip;
4704 		}
4705 update_tree:
4706 		btrfs_release_path(path);
4707 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709 						  BTRFS_UUID_KEY_SUBVOL,
4710 						  key.objectid);
4711 			if (ret < 0) {
4712 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713 					ret);
4714 				break;
4715 			}
4716 		}
4717 
4718 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719 			ret = btrfs_uuid_tree_add(trans,
4720 						  root_item.received_uuid,
4721 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722 						  key.objectid);
4723 			if (ret < 0) {
4724 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725 					ret);
4726 				break;
4727 			}
4728 		}
4729 
4730 skip:
4731 		btrfs_release_path(path);
4732 		if (trans) {
4733 			ret = btrfs_end_transaction(trans);
4734 			trans = NULL;
4735 			if (ret)
4736 				break;
4737 		}
4738 
4739 		if (key.offset < (u64)-1) {
4740 			key.offset++;
4741 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742 			key.offset = 0;
4743 			key.type = BTRFS_ROOT_ITEM_KEY;
4744 		} else if (key.objectid < (u64)-1) {
4745 			key.offset = 0;
4746 			key.type = BTRFS_ROOT_ITEM_KEY;
4747 			key.objectid++;
4748 		} else {
4749 			break;
4750 		}
4751 		cond_resched();
4752 	}
4753 
4754 out:
4755 	btrfs_free_path(path);
4756 	if (trans && !IS_ERR(trans))
4757 		btrfs_end_transaction(trans);
4758 	if (ret)
4759 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760 	else if (!closing)
4761 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762 	up(&fs_info->uuid_tree_rescan_sem);
4763 	return 0;
4764 }
4765 
4766 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767 {
4768 	struct btrfs_trans_handle *trans;
4769 	struct btrfs_root *tree_root = fs_info->tree_root;
4770 	struct btrfs_root *uuid_root;
4771 	struct task_struct *task;
4772 	int ret;
4773 
4774 	/*
4775 	 * 1 - root node
4776 	 * 1 - root item
4777 	 */
4778 	trans = btrfs_start_transaction(tree_root, 2);
4779 	if (IS_ERR(trans))
4780 		return PTR_ERR(trans);
4781 
4782 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783 	if (IS_ERR(uuid_root)) {
4784 		ret = PTR_ERR(uuid_root);
4785 		btrfs_abort_transaction(trans, ret);
4786 		btrfs_end_transaction(trans);
4787 		return ret;
4788 	}
4789 
4790 	fs_info->uuid_root = uuid_root;
4791 
4792 	ret = btrfs_commit_transaction(trans);
4793 	if (ret)
4794 		return ret;
4795 
4796 	down(&fs_info->uuid_tree_rescan_sem);
4797 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798 	if (IS_ERR(task)) {
4799 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4801 		up(&fs_info->uuid_tree_rescan_sem);
4802 		return PTR_ERR(task);
4803 	}
4804 
4805 	return 0;
4806 }
4807 
4808 /*
4809  * shrinking a device means finding all of the device extents past
4810  * the new size, and then following the back refs to the chunks.
4811  * The chunk relocation code actually frees the device extent
4812  */
4813 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814 {
4815 	struct btrfs_fs_info *fs_info = device->fs_info;
4816 	struct btrfs_root *root = fs_info->dev_root;
4817 	struct btrfs_trans_handle *trans;
4818 	struct btrfs_dev_extent *dev_extent = NULL;
4819 	struct btrfs_path *path;
4820 	u64 length;
4821 	u64 chunk_offset;
4822 	int ret;
4823 	int slot;
4824 	int failed = 0;
4825 	bool retried = false;
4826 	struct extent_buffer *l;
4827 	struct btrfs_key key;
4828 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4829 	u64 old_total = btrfs_super_total_bytes(super_copy);
4830 	u64 old_size = btrfs_device_get_total_bytes(device);
4831 	u64 diff;
4832 	u64 start;
4833 
4834 	new_size = round_down(new_size, fs_info->sectorsize);
4835 	start = new_size;
4836 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4837 
4838 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839 		return -EINVAL;
4840 
4841 	path = btrfs_alloc_path();
4842 	if (!path)
4843 		return -ENOMEM;
4844 
4845 	path->reada = READA_BACK;
4846 
4847 	trans = btrfs_start_transaction(root, 0);
4848 	if (IS_ERR(trans)) {
4849 		btrfs_free_path(path);
4850 		return PTR_ERR(trans);
4851 	}
4852 
4853 	mutex_lock(&fs_info->chunk_mutex);
4854 
4855 	btrfs_device_set_total_bytes(device, new_size);
4856 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857 		device->fs_devices->total_rw_bytes -= diff;
4858 		atomic64_sub(diff, &fs_info->free_chunk_space);
4859 	}
4860 
4861 	/*
4862 	 * Once the device's size has been set to the new size, ensure all
4863 	 * in-memory chunks are synced to disk so that the loop below sees them
4864 	 * and relocates them accordingly.
4865 	 */
4866 	if (contains_pending_extent(device, &start, diff)) {
4867 		mutex_unlock(&fs_info->chunk_mutex);
4868 		ret = btrfs_commit_transaction(trans);
4869 		if (ret)
4870 			goto done;
4871 	} else {
4872 		mutex_unlock(&fs_info->chunk_mutex);
4873 		btrfs_end_transaction(trans);
4874 	}
4875 
4876 again:
4877 	key.objectid = device->devid;
4878 	key.offset = (u64)-1;
4879 	key.type = BTRFS_DEV_EXTENT_KEY;
4880 
4881 	do {
4882 		mutex_lock(&fs_info->reclaim_bgs_lock);
4883 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884 		if (ret < 0) {
4885 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 			goto done;
4887 		}
4888 
4889 		ret = btrfs_previous_item(root, path, 0, key.type);
4890 		if (ret) {
4891 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4892 			if (ret < 0)
4893 				goto done;
4894 			ret = 0;
4895 			btrfs_release_path(path);
4896 			break;
4897 		}
4898 
4899 		l = path->nodes[0];
4900 		slot = path->slots[0];
4901 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902 
4903 		if (key.objectid != device->devid) {
4904 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 			btrfs_release_path(path);
4906 			break;
4907 		}
4908 
4909 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910 		length = btrfs_dev_extent_length(l, dev_extent);
4911 
4912 		if (key.offset + length <= new_size) {
4913 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 			btrfs_release_path(path);
4915 			break;
4916 		}
4917 
4918 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919 		btrfs_release_path(path);
4920 
4921 		/*
4922 		 * We may be relocating the only data chunk we have,
4923 		 * which could potentially end up with losing data's
4924 		 * raid profile, so lets allocate an empty one in
4925 		 * advance.
4926 		 */
4927 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928 		if (ret < 0) {
4929 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 			goto done;
4931 		}
4932 
4933 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4935 		if (ret == -ENOSPC) {
4936 			failed++;
4937 		} else if (ret) {
4938 			if (ret == -ETXTBSY) {
4939 				btrfs_warn(fs_info,
4940 		   "could not shrink block group %llu due to active swapfile",
4941 					   chunk_offset);
4942 			}
4943 			goto done;
4944 		}
4945 	} while (key.offset-- > 0);
4946 
4947 	if (failed && !retried) {
4948 		failed = 0;
4949 		retried = true;
4950 		goto again;
4951 	} else if (failed && retried) {
4952 		ret = -ENOSPC;
4953 		goto done;
4954 	}
4955 
4956 	/* Shrinking succeeded, else we would be at "done". */
4957 	trans = btrfs_start_transaction(root, 0);
4958 	if (IS_ERR(trans)) {
4959 		ret = PTR_ERR(trans);
4960 		goto done;
4961 	}
4962 
4963 	mutex_lock(&fs_info->chunk_mutex);
4964 	/* Clear all state bits beyond the shrunk device size */
4965 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966 			  CHUNK_STATE_MASK);
4967 
4968 	btrfs_device_set_disk_total_bytes(device, new_size);
4969 	if (list_empty(&device->post_commit_list))
4970 		list_add_tail(&device->post_commit_list,
4971 			      &trans->transaction->dev_update_list);
4972 
4973 	WARN_ON(diff > old_total);
4974 	btrfs_set_super_total_bytes(super_copy,
4975 			round_down(old_total - diff, fs_info->sectorsize));
4976 	mutex_unlock(&fs_info->chunk_mutex);
4977 
4978 	btrfs_reserve_chunk_metadata(trans, false);
4979 	/* Now btrfs_update_device() will change the on-disk size. */
4980 	ret = btrfs_update_device(trans, device);
4981 	btrfs_trans_release_chunk_metadata(trans);
4982 	if (ret < 0) {
4983 		btrfs_abort_transaction(trans, ret);
4984 		btrfs_end_transaction(trans);
4985 	} else {
4986 		ret = btrfs_commit_transaction(trans);
4987 	}
4988 done:
4989 	btrfs_free_path(path);
4990 	if (ret) {
4991 		mutex_lock(&fs_info->chunk_mutex);
4992 		btrfs_device_set_total_bytes(device, old_size);
4993 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994 			device->fs_devices->total_rw_bytes += diff;
4995 		atomic64_add(diff, &fs_info->free_chunk_space);
4996 		mutex_unlock(&fs_info->chunk_mutex);
4997 	}
4998 	return ret;
4999 }
5000 
5001 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002 			   struct btrfs_key *key,
5003 			   struct btrfs_chunk *chunk, int item_size)
5004 {
5005 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5006 	struct btrfs_disk_key disk_key;
5007 	u32 array_size;
5008 	u8 *ptr;
5009 
5010 	lockdep_assert_held(&fs_info->chunk_mutex);
5011 
5012 	array_size = btrfs_super_sys_array_size(super_copy);
5013 	if (array_size + item_size + sizeof(disk_key)
5014 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015 		return -EFBIG;
5016 
5017 	ptr = super_copy->sys_chunk_array + array_size;
5018 	btrfs_cpu_key_to_disk(&disk_key, key);
5019 	memcpy(ptr, &disk_key, sizeof(disk_key));
5020 	ptr += sizeof(disk_key);
5021 	memcpy(ptr, chunk, item_size);
5022 	item_size += sizeof(disk_key);
5023 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024 
5025 	return 0;
5026 }
5027 
5028 /*
5029  * sort the devices in descending order by max_avail, total_avail
5030  */
5031 static int btrfs_cmp_device_info(const void *a, const void *b)
5032 {
5033 	const struct btrfs_device_info *di_a = a;
5034 	const struct btrfs_device_info *di_b = b;
5035 
5036 	if (di_a->max_avail > di_b->max_avail)
5037 		return -1;
5038 	if (di_a->max_avail < di_b->max_avail)
5039 		return 1;
5040 	if (di_a->total_avail > di_b->total_avail)
5041 		return -1;
5042 	if (di_a->total_avail < di_b->total_avail)
5043 		return 1;
5044 	return 0;
5045 }
5046 
5047 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048 {
5049 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050 		return;
5051 
5052 	btrfs_set_fs_incompat(info, RAID56);
5053 }
5054 
5055 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056 {
5057 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058 		return;
5059 
5060 	btrfs_set_fs_incompat(info, RAID1C34);
5061 }
5062 
5063 /*
5064  * Structure used internally for btrfs_create_chunk() function.
5065  * Wraps needed parameters.
5066  */
5067 struct alloc_chunk_ctl {
5068 	u64 start;
5069 	u64 type;
5070 	/* Total number of stripes to allocate */
5071 	int num_stripes;
5072 	/* sub_stripes info for map */
5073 	int sub_stripes;
5074 	/* Stripes per device */
5075 	int dev_stripes;
5076 	/* Maximum number of devices to use */
5077 	int devs_max;
5078 	/* Minimum number of devices to use */
5079 	int devs_min;
5080 	/* ndevs has to be a multiple of this */
5081 	int devs_increment;
5082 	/* Number of copies */
5083 	int ncopies;
5084 	/* Number of stripes worth of bytes to store parity information */
5085 	int nparity;
5086 	u64 max_stripe_size;
5087 	u64 max_chunk_size;
5088 	u64 dev_extent_min;
5089 	u64 stripe_size;
5090 	u64 chunk_size;
5091 	int ndevs;
5092 };
5093 
5094 static void init_alloc_chunk_ctl_policy_regular(
5095 				struct btrfs_fs_devices *fs_devices,
5096 				struct alloc_chunk_ctl *ctl)
5097 {
5098 	struct btrfs_space_info *space_info;
5099 
5100 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101 	ASSERT(space_info);
5102 
5103 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104 	ctl->max_stripe_size = ctl->max_chunk_size;
5105 
5106 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108 
5109 	/* We don't want a chunk larger than 10% of writable space */
5110 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111 				  ctl->max_chunk_size);
5112 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113 }
5114 
5115 static void init_alloc_chunk_ctl_policy_zoned(
5116 				      struct btrfs_fs_devices *fs_devices,
5117 				      struct alloc_chunk_ctl *ctl)
5118 {
5119 	u64 zone_size = fs_devices->fs_info->zone_size;
5120 	u64 limit;
5121 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123 	u64 min_chunk_size = min_data_stripes * zone_size;
5124 	u64 type = ctl->type;
5125 
5126 	ctl->max_stripe_size = zone_size;
5127 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5128 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129 						 zone_size);
5130 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131 		ctl->max_chunk_size = ctl->max_stripe_size;
5132 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134 		ctl->devs_max = min_t(int, ctl->devs_max,
5135 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5136 	} else {
5137 		BUG();
5138 	}
5139 
5140 	/* We don't want a chunk larger than 10% of writable space */
5141 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142 			       zone_size),
5143 		    min_chunk_size);
5144 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146 }
5147 
5148 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149 				 struct alloc_chunk_ctl *ctl)
5150 {
5151 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152 
5153 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5156 	if (!ctl->devs_max)
5157 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5159 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5161 	ctl->nparity = btrfs_raid_array[index].nparity;
5162 	ctl->ndevs = 0;
5163 
5164 	switch (fs_devices->chunk_alloc_policy) {
5165 	case BTRFS_CHUNK_ALLOC_REGULAR:
5166 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167 		break;
5168 	case BTRFS_CHUNK_ALLOC_ZONED:
5169 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170 		break;
5171 	default:
5172 		BUG();
5173 	}
5174 }
5175 
5176 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177 			      struct alloc_chunk_ctl *ctl,
5178 			      struct btrfs_device_info *devices_info)
5179 {
5180 	struct btrfs_fs_info *info = fs_devices->fs_info;
5181 	struct btrfs_device *device;
5182 	u64 total_avail;
5183 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184 	int ret;
5185 	int ndevs = 0;
5186 	u64 max_avail;
5187 	u64 dev_offset;
5188 
5189 	/*
5190 	 * in the first pass through the devices list, we gather information
5191 	 * about the available holes on each device.
5192 	 */
5193 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195 			WARN(1, KERN_ERR
5196 			       "BTRFS: read-only device in alloc_list\n");
5197 			continue;
5198 		}
5199 
5200 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201 					&device->dev_state) ||
5202 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203 			continue;
5204 
5205 		if (device->total_bytes > device->bytes_used)
5206 			total_avail = device->total_bytes - device->bytes_used;
5207 		else
5208 			total_avail = 0;
5209 
5210 		/* If there is no space on this device, skip it. */
5211 		if (total_avail < ctl->dev_extent_min)
5212 			continue;
5213 
5214 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215 					   &max_avail);
5216 		if (ret && ret != -ENOSPC)
5217 			return ret;
5218 
5219 		if (ret == 0)
5220 			max_avail = dev_extent_want;
5221 
5222 		if (max_avail < ctl->dev_extent_min) {
5223 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224 				btrfs_debug(info,
5225 			"%s: devid %llu has no free space, have=%llu want=%llu",
5226 					    __func__, device->devid, max_avail,
5227 					    ctl->dev_extent_min);
5228 			continue;
5229 		}
5230 
5231 		if (ndevs == fs_devices->rw_devices) {
5232 			WARN(1, "%s: found more than %llu devices\n",
5233 			     __func__, fs_devices->rw_devices);
5234 			break;
5235 		}
5236 		devices_info[ndevs].dev_offset = dev_offset;
5237 		devices_info[ndevs].max_avail = max_avail;
5238 		devices_info[ndevs].total_avail = total_avail;
5239 		devices_info[ndevs].dev = device;
5240 		++ndevs;
5241 	}
5242 	ctl->ndevs = ndevs;
5243 
5244 	/*
5245 	 * now sort the devices by hole size / available space
5246 	 */
5247 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248 	     btrfs_cmp_device_info, NULL);
5249 
5250 	return 0;
5251 }
5252 
5253 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254 				      struct btrfs_device_info *devices_info)
5255 {
5256 	/* Number of stripes that count for block group size */
5257 	int data_stripes;
5258 
5259 	/*
5260 	 * The primary goal is to maximize the number of stripes, so use as
5261 	 * many devices as possible, even if the stripes are not maximum sized.
5262 	 *
5263 	 * The DUP profile stores more than one stripe per device, the
5264 	 * max_avail is the total size so we have to adjust.
5265 	 */
5266 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267 				   ctl->dev_stripes);
5268 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269 
5270 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5271 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272 
5273 	/*
5274 	 * Use the number of data stripes to figure out how big this chunk is
5275 	 * really going to be in terms of logical address space, and compare
5276 	 * that answer with the max chunk size. If it's higher, we try to
5277 	 * reduce stripe_size.
5278 	 */
5279 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280 		/*
5281 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5282 		 * then use it, unless it ends up being even bigger than the
5283 		 * previous value we had already.
5284 		 */
5285 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286 							data_stripes), SZ_16M),
5287 				       ctl->stripe_size);
5288 	}
5289 
5290 	/* Stripe size should not go beyond 1G. */
5291 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292 
5293 	/* Align to BTRFS_STRIPE_LEN */
5294 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5296 
5297 	return 0;
5298 }
5299 
5300 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301 				    struct btrfs_device_info *devices_info)
5302 {
5303 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304 	/* Number of stripes that count for block group size */
5305 	int data_stripes;
5306 
5307 	/*
5308 	 * It should hold because:
5309 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310 	 */
5311 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312 
5313 	ctl->stripe_size = zone_size;
5314 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316 
5317 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320 					     ctl->stripe_size) + ctl->nparity,
5321 				     ctl->dev_stripes);
5322 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325 	}
5326 
5327 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5328 
5329 	return 0;
5330 }
5331 
5332 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333 			      struct alloc_chunk_ctl *ctl,
5334 			      struct btrfs_device_info *devices_info)
5335 {
5336 	struct btrfs_fs_info *info = fs_devices->fs_info;
5337 
5338 	/*
5339 	 * Round down to number of usable stripes, devs_increment can be any
5340 	 * number so we can't use round_down() that requires power of 2, while
5341 	 * rounddown is safe.
5342 	 */
5343 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344 
5345 	if (ctl->ndevs < ctl->devs_min) {
5346 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347 			btrfs_debug(info,
5348 	"%s: not enough devices with free space: have=%d minimum required=%d",
5349 				    __func__, ctl->ndevs, ctl->devs_min);
5350 		}
5351 		return -ENOSPC;
5352 	}
5353 
5354 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355 
5356 	switch (fs_devices->chunk_alloc_policy) {
5357 	case BTRFS_CHUNK_ALLOC_REGULAR:
5358 		return decide_stripe_size_regular(ctl, devices_info);
5359 	case BTRFS_CHUNK_ALLOC_ZONED:
5360 		return decide_stripe_size_zoned(ctl, devices_info);
5361 	default:
5362 		BUG();
5363 	}
5364 }
5365 
5366 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367 			struct alloc_chunk_ctl *ctl,
5368 			struct btrfs_device_info *devices_info)
5369 {
5370 	struct btrfs_fs_info *info = trans->fs_info;
5371 	struct map_lookup *map = NULL;
5372 	struct extent_map_tree *em_tree;
5373 	struct btrfs_block_group *block_group;
5374 	struct extent_map *em;
5375 	u64 start = ctl->start;
5376 	u64 type = ctl->type;
5377 	int ret;
5378 	int i;
5379 	int j;
5380 
5381 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382 	if (!map)
5383 		return ERR_PTR(-ENOMEM);
5384 	map->num_stripes = ctl->num_stripes;
5385 
5386 	for (i = 0; i < ctl->ndevs; ++i) {
5387 		for (j = 0; j < ctl->dev_stripes; ++j) {
5388 			int s = i * ctl->dev_stripes + j;
5389 			map->stripes[s].dev = devices_info[i].dev;
5390 			map->stripes[s].physical = devices_info[i].dev_offset +
5391 						   j * ctl->stripe_size;
5392 		}
5393 	}
5394 	map->stripe_len = BTRFS_STRIPE_LEN;
5395 	map->io_align = BTRFS_STRIPE_LEN;
5396 	map->io_width = BTRFS_STRIPE_LEN;
5397 	map->type = type;
5398 	map->sub_stripes = ctl->sub_stripes;
5399 
5400 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401 
5402 	em = alloc_extent_map();
5403 	if (!em) {
5404 		kfree(map);
5405 		return ERR_PTR(-ENOMEM);
5406 	}
5407 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408 	em->map_lookup = map;
5409 	em->start = start;
5410 	em->len = ctl->chunk_size;
5411 	em->block_start = 0;
5412 	em->block_len = em->len;
5413 	em->orig_block_len = ctl->stripe_size;
5414 
5415 	em_tree = &info->mapping_tree;
5416 	write_lock(&em_tree->lock);
5417 	ret = add_extent_mapping(em_tree, em, 0);
5418 	if (ret) {
5419 		write_unlock(&em_tree->lock);
5420 		free_extent_map(em);
5421 		return ERR_PTR(ret);
5422 	}
5423 	write_unlock(&em_tree->lock);
5424 
5425 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426 	if (IS_ERR(block_group))
5427 		goto error_del_extent;
5428 
5429 	for (i = 0; i < map->num_stripes; i++) {
5430 		struct btrfs_device *dev = map->stripes[i].dev;
5431 
5432 		btrfs_device_set_bytes_used(dev,
5433 					    dev->bytes_used + ctl->stripe_size);
5434 		if (list_empty(&dev->post_commit_list))
5435 			list_add_tail(&dev->post_commit_list,
5436 				      &trans->transaction->dev_update_list);
5437 	}
5438 
5439 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5440 		     &info->free_chunk_space);
5441 
5442 	free_extent_map(em);
5443 	check_raid56_incompat_flag(info, type);
5444 	check_raid1c34_incompat_flag(info, type);
5445 
5446 	return block_group;
5447 
5448 error_del_extent:
5449 	write_lock(&em_tree->lock);
5450 	remove_extent_mapping(em_tree, em);
5451 	write_unlock(&em_tree->lock);
5452 
5453 	/* One for our allocation */
5454 	free_extent_map(em);
5455 	/* One for the tree reference */
5456 	free_extent_map(em);
5457 
5458 	return block_group;
5459 }
5460 
5461 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462 					    u64 type)
5463 {
5464 	struct btrfs_fs_info *info = trans->fs_info;
5465 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466 	struct btrfs_device_info *devices_info = NULL;
5467 	struct alloc_chunk_ctl ctl;
5468 	struct btrfs_block_group *block_group;
5469 	int ret;
5470 
5471 	lockdep_assert_held(&info->chunk_mutex);
5472 
5473 	if (!alloc_profile_is_valid(type, 0)) {
5474 		ASSERT(0);
5475 		return ERR_PTR(-EINVAL);
5476 	}
5477 
5478 	if (list_empty(&fs_devices->alloc_list)) {
5479 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480 			btrfs_debug(info, "%s: no writable device", __func__);
5481 		return ERR_PTR(-ENOSPC);
5482 	}
5483 
5484 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486 		ASSERT(0);
5487 		return ERR_PTR(-EINVAL);
5488 	}
5489 
5490 	ctl.start = find_next_chunk(info);
5491 	ctl.type = type;
5492 	init_alloc_chunk_ctl(fs_devices, &ctl);
5493 
5494 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495 			       GFP_NOFS);
5496 	if (!devices_info)
5497 		return ERR_PTR(-ENOMEM);
5498 
5499 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5500 	if (ret < 0) {
5501 		block_group = ERR_PTR(ret);
5502 		goto out;
5503 	}
5504 
5505 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506 	if (ret < 0) {
5507 		block_group = ERR_PTR(ret);
5508 		goto out;
5509 	}
5510 
5511 	block_group = create_chunk(trans, &ctl, devices_info);
5512 
5513 out:
5514 	kfree(devices_info);
5515 	return block_group;
5516 }
5517 
5518 /*
5519  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521  * chunks.
5522  *
5523  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524  * phases.
5525  */
5526 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527 				     struct btrfs_block_group *bg)
5528 {
5529 	struct btrfs_fs_info *fs_info = trans->fs_info;
5530 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5531 	struct btrfs_key key;
5532 	struct btrfs_chunk *chunk;
5533 	struct btrfs_stripe *stripe;
5534 	struct extent_map *em;
5535 	struct map_lookup *map;
5536 	size_t item_size;
5537 	int i;
5538 	int ret;
5539 
5540 	/*
5541 	 * We take the chunk_mutex for 2 reasons:
5542 	 *
5543 	 * 1) Updates and insertions in the chunk btree must be done while holding
5544 	 *    the chunk_mutex, as well as updating the system chunk array in the
5545 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5546 	 *    details;
5547 	 *
5548 	 * 2) To prevent races with the final phase of a device replace operation
5549 	 *    that replaces the device object associated with the map's stripes,
5550 	 *    because the device object's id can change at any time during that
5551 	 *    final phase of the device replace operation
5552 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554 	 *    which would cause a failure when updating the device item, which does
5555 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5556 	 *    Here we can't use the device_list_mutex because our caller already
5557 	 *    has locked the chunk_mutex, and the final phase of device replace
5558 	 *    acquires both mutexes - first the device_list_mutex and then the
5559 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5560 	 *    concurrent device replace.
5561 	 */
5562 	lockdep_assert_held(&fs_info->chunk_mutex);
5563 
5564 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565 	if (IS_ERR(em)) {
5566 		ret = PTR_ERR(em);
5567 		btrfs_abort_transaction(trans, ret);
5568 		return ret;
5569 	}
5570 
5571 	map = em->map_lookup;
5572 	item_size = btrfs_chunk_item_size(map->num_stripes);
5573 
5574 	chunk = kzalloc(item_size, GFP_NOFS);
5575 	if (!chunk) {
5576 		ret = -ENOMEM;
5577 		btrfs_abort_transaction(trans, ret);
5578 		goto out;
5579 	}
5580 
5581 	for (i = 0; i < map->num_stripes; i++) {
5582 		struct btrfs_device *device = map->stripes[i].dev;
5583 
5584 		ret = btrfs_update_device(trans, device);
5585 		if (ret)
5586 			goto out;
5587 	}
5588 
5589 	stripe = &chunk->stripe;
5590 	for (i = 0; i < map->num_stripes; i++) {
5591 		struct btrfs_device *device = map->stripes[i].dev;
5592 		const u64 dev_offset = map->stripes[i].physical;
5593 
5594 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5595 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597 		stripe++;
5598 	}
5599 
5600 	btrfs_set_stack_chunk_length(chunk, bg->length);
5601 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603 	btrfs_set_stack_chunk_type(chunk, map->type);
5604 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609 
5610 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611 	key.type = BTRFS_CHUNK_ITEM_KEY;
5612 	key.offset = bg->start;
5613 
5614 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615 	if (ret)
5616 		goto out;
5617 
5618 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619 
5620 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622 		if (ret)
5623 			goto out;
5624 	}
5625 
5626 out:
5627 	kfree(chunk);
5628 	free_extent_map(em);
5629 	return ret;
5630 }
5631 
5632 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633 {
5634 	struct btrfs_fs_info *fs_info = trans->fs_info;
5635 	u64 alloc_profile;
5636 	struct btrfs_block_group *meta_bg;
5637 	struct btrfs_block_group *sys_bg;
5638 
5639 	/*
5640 	 * When adding a new device for sprouting, the seed device is read-only
5641 	 * so we must first allocate a metadata and a system chunk. But before
5642 	 * adding the block group items to the extent, device and chunk btrees,
5643 	 * we must first:
5644 	 *
5645 	 * 1) Create both chunks without doing any changes to the btrees, as
5646 	 *    otherwise we would get -ENOSPC since the block groups from the
5647 	 *    seed device are read-only;
5648 	 *
5649 	 * 2) Add the device item for the new sprout device - finishing the setup
5650 	 *    of a new block group requires updating the device item in the chunk
5651 	 *    btree, so it must exist when we attempt to do it. The previous step
5652 	 *    ensures this does not fail with -ENOSPC.
5653 	 *
5654 	 * After that we can add the block group items to their btrees:
5655 	 * update existing device item in the chunk btree, add a new block group
5656 	 * item to the extent btree, add a new chunk item to the chunk btree and
5657 	 * finally add the new device extent items to the devices btree.
5658 	 */
5659 
5660 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662 	if (IS_ERR(meta_bg))
5663 		return PTR_ERR(meta_bg);
5664 
5665 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5666 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667 	if (IS_ERR(sys_bg))
5668 		return PTR_ERR(sys_bg);
5669 
5670 	return 0;
5671 }
5672 
5673 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674 {
5675 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5676 
5677 	return btrfs_raid_array[index].tolerated_failures;
5678 }
5679 
5680 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681 {
5682 	struct extent_map *em;
5683 	struct map_lookup *map;
5684 	int miss_ndevs = 0;
5685 	int i;
5686 	bool ret = true;
5687 
5688 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689 	if (IS_ERR(em))
5690 		return false;
5691 
5692 	map = em->map_lookup;
5693 	for (i = 0; i < map->num_stripes; i++) {
5694 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5695 					&map->stripes[i].dev->dev_state)) {
5696 			miss_ndevs++;
5697 			continue;
5698 		}
5699 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700 					&map->stripes[i].dev->dev_state)) {
5701 			ret = false;
5702 			goto end;
5703 		}
5704 	}
5705 
5706 	/*
5707 	 * If the number of missing devices is larger than max errors, we can
5708 	 * not write the data into that chunk successfully.
5709 	 */
5710 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5711 		ret = false;
5712 end:
5713 	free_extent_map(em);
5714 	return ret;
5715 }
5716 
5717 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718 {
5719 	struct extent_map *em;
5720 
5721 	while (1) {
5722 		write_lock(&tree->lock);
5723 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5724 		if (em)
5725 			remove_extent_mapping(tree, em);
5726 		write_unlock(&tree->lock);
5727 		if (!em)
5728 			break;
5729 		/* once for us */
5730 		free_extent_map(em);
5731 		/* once for the tree */
5732 		free_extent_map(em);
5733 	}
5734 }
5735 
5736 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737 {
5738 	struct extent_map *em;
5739 	struct map_lookup *map;
5740 	enum btrfs_raid_types index;
5741 	int ret = 1;
5742 
5743 	em = btrfs_get_chunk_map(fs_info, logical, len);
5744 	if (IS_ERR(em))
5745 		/*
5746 		 * We could return errors for these cases, but that could get
5747 		 * ugly and we'd probably do the same thing which is just not do
5748 		 * anything else and exit, so return 1 so the callers don't try
5749 		 * to use other copies.
5750 		 */
5751 		return 1;
5752 
5753 	map = em->map_lookup;
5754 	index = btrfs_bg_flags_to_raid_index(map->type);
5755 
5756 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758 		ret = btrfs_raid_array[index].ncopies;
5759 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760 		ret = 2;
5761 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762 		/*
5763 		 * There could be two corrupted data stripes, we need
5764 		 * to loop retry in order to rebuild the correct data.
5765 		 *
5766 		 * Fail a stripe at a time on every retry except the
5767 		 * stripe under reconstruction.
5768 		 */
5769 		ret = map->num_stripes;
5770 	free_extent_map(em);
5771 
5772 	down_read(&fs_info->dev_replace.rwsem);
5773 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 	    fs_info->dev_replace.tgtdev)
5775 		ret++;
5776 	up_read(&fs_info->dev_replace.rwsem);
5777 
5778 	return ret;
5779 }
5780 
5781 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 				    u64 logical)
5783 {
5784 	struct extent_map *em;
5785 	struct map_lookup *map;
5786 	unsigned long len = fs_info->sectorsize;
5787 
5788 	if (!btrfs_fs_incompat(fs_info, RAID56))
5789 		return len;
5790 
5791 	em = btrfs_get_chunk_map(fs_info, logical, len);
5792 
5793 	if (!WARN_ON(IS_ERR(em))) {
5794 		map = em->map_lookup;
5795 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 			len = map->stripe_len * nr_data_stripes(map);
5797 		free_extent_map(em);
5798 	}
5799 	return len;
5800 }
5801 
5802 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803 {
5804 	struct extent_map *em;
5805 	struct map_lookup *map;
5806 	int ret = 0;
5807 
5808 	if (!btrfs_fs_incompat(fs_info, RAID56))
5809 		return 0;
5810 
5811 	em = btrfs_get_chunk_map(fs_info, logical, len);
5812 
5813 	if(!WARN_ON(IS_ERR(em))) {
5814 		map = em->map_lookup;
5815 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 			ret = 1;
5817 		free_extent_map(em);
5818 	}
5819 	return ret;
5820 }
5821 
5822 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 			    struct map_lookup *map, int first,
5824 			    int dev_replace_is_ongoing)
5825 {
5826 	int i;
5827 	int num_stripes;
5828 	int preferred_mirror;
5829 	int tolerance;
5830 	struct btrfs_device *srcdev;
5831 
5832 	ASSERT((map->type &
5833 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834 
5835 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 		num_stripes = map->sub_stripes;
5837 	else
5838 		num_stripes = map->num_stripes;
5839 
5840 	switch (fs_info->fs_devices->read_policy) {
5841 	default:
5842 		/* Shouldn't happen, just warn and use pid instead of failing */
5843 		btrfs_warn_rl(fs_info,
5844 			      "unknown read_policy type %u, reset to pid",
5845 			      fs_info->fs_devices->read_policy);
5846 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 		fallthrough;
5848 	case BTRFS_READ_POLICY_PID:
5849 		preferred_mirror = first + (current->pid % num_stripes);
5850 		break;
5851 	}
5852 
5853 	if (dev_replace_is_ongoing &&
5854 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 		srcdev = fs_info->dev_replace.srcdev;
5857 	else
5858 		srcdev = NULL;
5859 
5860 	/*
5861 	 * try to avoid the drive that is the source drive for a
5862 	 * dev-replace procedure, only choose it if no other non-missing
5863 	 * mirror is available
5864 	 */
5865 	for (tolerance = 0; tolerance < 2; tolerance++) {
5866 		if (map->stripes[preferred_mirror].dev->bdev &&
5867 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 			return preferred_mirror;
5869 		for (i = first; i < first + num_stripes; i++) {
5870 			if (map->stripes[i].dev->bdev &&
5871 			    (tolerance || map->stripes[i].dev != srcdev))
5872 				return i;
5873 		}
5874 	}
5875 
5876 	/* we couldn't find one that doesn't fail.  Just return something
5877 	 * and the io error handling code will clean up eventually
5878 	 */
5879 	return preferred_mirror;
5880 }
5881 
5882 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884 {
5885 	int i;
5886 	int again = 1;
5887 
5888 	while (again) {
5889 		again = 0;
5890 		for (i = 0; i < num_stripes - 1; i++) {
5891 			/* Swap if parity is on a smaller index */
5892 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895 				again = 1;
5896 			}
5897 		}
5898 	}
5899 }
5900 
5901 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 						       int total_stripes,
5903 						       int real_stripes)
5904 {
5905 	struct btrfs_io_context *bioc = kzalloc(
5906 		 /* The size of btrfs_io_context */
5907 		sizeof(struct btrfs_io_context) +
5908 		/* Plus the variable array for the stripes */
5909 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910 		/* Plus the variable array for the tgt dev */
5911 		sizeof(int) * (real_stripes) +
5912 		/*
5913 		 * Plus the raid_map, which includes both the tgt dev
5914 		 * and the stripes.
5915 		 */
5916 		sizeof(u64) * (total_stripes),
5917 		GFP_NOFS);
5918 
5919 	if (!bioc)
5920 		return NULL;
5921 
5922 	refcount_set(&bioc->refs, 1);
5923 
5924 	bioc->fs_info = fs_info;
5925 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927 
5928 	return bioc;
5929 }
5930 
5931 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932 {
5933 	WARN_ON(!refcount_read(&bioc->refs));
5934 	refcount_inc(&bioc->refs);
5935 }
5936 
5937 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938 {
5939 	if (!bioc)
5940 		return;
5941 	if (refcount_dec_and_test(&bioc->refs))
5942 		kfree(bioc);
5943 }
5944 
5945 /*
5946  * Please note that, discard won't be sent to target device of device
5947  * replace.
5948  */
5949 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 					       u64 logical, u64 *length_ret,
5951 					       u32 *num_stripes)
5952 {
5953 	struct extent_map *em;
5954 	struct map_lookup *map;
5955 	struct btrfs_discard_stripe *stripes;
5956 	u64 length = *length_ret;
5957 	u64 offset;
5958 	u64 stripe_nr;
5959 	u64 stripe_nr_end;
5960 	u64 stripe_end_offset;
5961 	u64 stripe_cnt;
5962 	u64 stripe_len;
5963 	u64 stripe_offset;
5964 	u32 stripe_index;
5965 	u32 factor = 0;
5966 	u32 sub_stripes = 0;
5967 	u64 stripes_per_dev = 0;
5968 	u32 remaining_stripes = 0;
5969 	u32 last_stripe = 0;
5970 	int ret;
5971 	int i;
5972 
5973 	em = btrfs_get_chunk_map(fs_info, logical, length);
5974 	if (IS_ERR(em))
5975 		return ERR_CAST(em);
5976 
5977 	map = em->map_lookup;
5978 
5979 	/* we don't discard raid56 yet */
5980 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 		ret = -EOPNOTSUPP;
5982 		goto out_free_map;
5983 }
5984 
5985 	offset = logical - em->start;
5986 	length = min_t(u64, em->start + em->len - logical, length);
5987 	*length_ret = length;
5988 
5989 	stripe_len = map->stripe_len;
5990 	/*
5991 	 * stripe_nr counts the total number of stripes we have to stride
5992 	 * to get to this block
5993 	 */
5994 	stripe_nr = div64_u64(offset, stripe_len);
5995 
5996 	/* stripe_offset is the offset of this block in its stripe */
5997 	stripe_offset = offset - stripe_nr * stripe_len;
5998 
5999 	stripe_nr_end = round_up(offset + length, map->stripe_len);
6000 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001 	stripe_cnt = stripe_nr_end - stripe_nr;
6002 	stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 			    (offset + length);
6004 	/*
6005 	 * after this, stripe_nr is the number of stripes on this
6006 	 * device we have to walk to find the data, and stripe_index is
6007 	 * the number of our device in the stripe array
6008 	 */
6009 	*num_stripes = 1;
6010 	stripe_index = 0;
6011 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 			 BTRFS_BLOCK_GROUP_RAID10)) {
6013 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 			sub_stripes = 1;
6015 		else
6016 			sub_stripes = map->sub_stripes;
6017 
6018 		factor = map->num_stripes / sub_stripes;
6019 		*num_stripes = min_t(u64, map->num_stripes,
6020 				    sub_stripes * stripe_cnt);
6021 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 		stripe_index *= sub_stripes;
6023 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 					      &remaining_stripes);
6025 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 		last_stripe *= sub_stripes;
6027 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028 				BTRFS_BLOCK_GROUP_DUP)) {
6029 		*num_stripes = map->num_stripes;
6030 	} else {
6031 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 					&stripe_index);
6033 	}
6034 
6035 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 	if (!stripes) {
6037 		ret = -ENOMEM;
6038 		goto out_free_map;
6039 	}
6040 
6041 	for (i = 0; i < *num_stripes; i++) {
6042 		stripes[i].physical =
6043 			map->stripes[stripe_index].physical +
6044 			stripe_offset + stripe_nr * map->stripe_len;
6045 		stripes[i].dev = map->stripes[stripe_index].dev;
6046 
6047 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 				 BTRFS_BLOCK_GROUP_RAID10)) {
6049 			stripes[i].length = stripes_per_dev * map->stripe_len;
6050 
6051 			if (i / sub_stripes < remaining_stripes)
6052 				stripes[i].length += map->stripe_len;
6053 
6054 			/*
6055 			 * Special for the first stripe and
6056 			 * the last stripe:
6057 			 *
6058 			 * |-------|...|-------|
6059 			 *     |----------|
6060 			 *    off     end_off
6061 			 */
6062 			if (i < sub_stripes)
6063 				stripes[i].length -= stripe_offset;
6064 
6065 			if (stripe_index >= last_stripe &&
6066 			    stripe_index <= (last_stripe +
6067 					     sub_stripes - 1))
6068 				stripes[i].length -= stripe_end_offset;
6069 
6070 			if (i == sub_stripes - 1)
6071 				stripe_offset = 0;
6072 		} else {
6073 			stripes[i].length = length;
6074 		}
6075 
6076 		stripe_index++;
6077 		if (stripe_index == map->num_stripes) {
6078 			stripe_index = 0;
6079 			stripe_nr++;
6080 		}
6081 	}
6082 
6083 	free_extent_map(em);
6084 	return stripes;
6085 out_free_map:
6086 	free_extent_map(em);
6087 	return ERR_PTR(ret);
6088 }
6089 
6090 /*
6091  * In dev-replace case, for repair case (that's the only case where the mirror
6092  * is selected explicitly when calling btrfs_map_block), blocks left of the
6093  * left cursor can also be read from the target drive.
6094  *
6095  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096  * array of stripes.
6097  * For READ, it also needs to be supported using the same mirror number.
6098  *
6099  * If the requested block is not left of the left cursor, EIO is returned. This
6100  * can happen because btrfs_num_copies() returns one more in the dev-replace
6101  * case.
6102  */
6103 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 					 u64 logical, u64 length,
6105 					 u64 srcdev_devid, int *mirror_num,
6106 					 u64 *physical)
6107 {
6108 	struct btrfs_io_context *bioc = NULL;
6109 	int num_stripes;
6110 	int index_srcdev = 0;
6111 	int found = 0;
6112 	u64 physical_of_found = 0;
6113 	int i;
6114 	int ret = 0;
6115 
6116 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117 				logical, &length, &bioc, NULL, NULL, 0);
6118 	if (ret) {
6119 		ASSERT(bioc == NULL);
6120 		return ret;
6121 	}
6122 
6123 	num_stripes = bioc->num_stripes;
6124 	if (*mirror_num > num_stripes) {
6125 		/*
6126 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 		 * that means that the requested area is not left of the left
6128 		 * cursor
6129 		 */
6130 		btrfs_put_bioc(bioc);
6131 		return -EIO;
6132 	}
6133 
6134 	/*
6135 	 * process the rest of the function using the mirror_num of the source
6136 	 * drive. Therefore look it up first.  At the end, patch the device
6137 	 * pointer to the one of the target drive.
6138 	 */
6139 	for (i = 0; i < num_stripes; i++) {
6140 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6141 			continue;
6142 
6143 		/*
6144 		 * In case of DUP, in order to keep it simple, only add the
6145 		 * mirror with the lowest physical address
6146 		 */
6147 		if (found &&
6148 		    physical_of_found <= bioc->stripes[i].physical)
6149 			continue;
6150 
6151 		index_srcdev = i;
6152 		found = 1;
6153 		physical_of_found = bioc->stripes[i].physical;
6154 	}
6155 
6156 	btrfs_put_bioc(bioc);
6157 
6158 	ASSERT(found);
6159 	if (!found)
6160 		return -EIO;
6161 
6162 	*mirror_num = index_srcdev + 1;
6163 	*physical = physical_of_found;
6164 	return ret;
6165 }
6166 
6167 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168 {
6169 	struct btrfs_block_group *cache;
6170 	bool ret;
6171 
6172 	/* Non zoned filesystem does not use "to_copy" flag */
6173 	if (!btrfs_is_zoned(fs_info))
6174 		return false;
6175 
6176 	cache = btrfs_lookup_block_group(fs_info, logical);
6177 
6178 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179 
6180 	btrfs_put_block_group(cache);
6181 	return ret;
6182 }
6183 
6184 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 				      struct btrfs_io_context **bioc_ret,
6186 				      struct btrfs_dev_replace *dev_replace,
6187 				      u64 logical,
6188 				      int *num_stripes_ret, int *max_errors_ret)
6189 {
6190 	struct btrfs_io_context *bioc = *bioc_ret;
6191 	u64 srcdev_devid = dev_replace->srcdev->devid;
6192 	int tgtdev_indexes = 0;
6193 	int num_stripes = *num_stripes_ret;
6194 	int max_errors = *max_errors_ret;
6195 	int i;
6196 
6197 	if (op == BTRFS_MAP_WRITE) {
6198 		int index_where_to_add;
6199 
6200 		/*
6201 		 * A block group which have "to_copy" set will eventually
6202 		 * copied by dev-replace process. We can avoid cloning IO here.
6203 		 */
6204 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 			return;
6206 
6207 		/*
6208 		 * duplicate the write operations while the dev replace
6209 		 * procedure is running. Since the copying of the old disk to
6210 		 * the new disk takes place at run time while the filesystem is
6211 		 * mounted writable, the regular write operations to the old
6212 		 * disk have to be duplicated to go to the new disk as well.
6213 		 *
6214 		 * Note that device->missing is handled by the caller, and that
6215 		 * the write to the old disk is already set up in the stripes
6216 		 * array.
6217 		 */
6218 		index_where_to_add = num_stripes;
6219 		for (i = 0; i < num_stripes; i++) {
6220 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221 				/* write to new disk, too */
6222 				struct btrfs_io_stripe *new =
6223 					bioc->stripes + index_where_to_add;
6224 				struct btrfs_io_stripe *old =
6225 					bioc->stripes + i;
6226 
6227 				new->physical = old->physical;
6228 				new->dev = dev_replace->tgtdev;
6229 				bioc->tgtdev_map[i] = index_where_to_add;
6230 				index_where_to_add++;
6231 				max_errors++;
6232 				tgtdev_indexes++;
6233 			}
6234 		}
6235 		num_stripes = index_where_to_add;
6236 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 		int index_srcdev = 0;
6238 		int found = 0;
6239 		u64 physical_of_found = 0;
6240 
6241 		/*
6242 		 * During the dev-replace procedure, the target drive can also
6243 		 * be used to read data in case it is needed to repair a corrupt
6244 		 * block elsewhere. This is possible if the requested area is
6245 		 * left of the left cursor. In this area, the target drive is a
6246 		 * full copy of the source drive.
6247 		 */
6248 		for (i = 0; i < num_stripes; i++) {
6249 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250 				/*
6251 				 * In case of DUP, in order to keep it simple,
6252 				 * only add the mirror with the lowest physical
6253 				 * address
6254 				 */
6255 				if (found &&
6256 				    physical_of_found <= bioc->stripes[i].physical)
6257 					continue;
6258 				index_srcdev = i;
6259 				found = 1;
6260 				physical_of_found = bioc->stripes[i].physical;
6261 			}
6262 		}
6263 		if (found) {
6264 			struct btrfs_io_stripe *tgtdev_stripe =
6265 				bioc->stripes + num_stripes;
6266 
6267 			tgtdev_stripe->physical = physical_of_found;
6268 			tgtdev_stripe->dev = dev_replace->tgtdev;
6269 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6270 
6271 			tgtdev_indexes++;
6272 			num_stripes++;
6273 		}
6274 	}
6275 
6276 	*num_stripes_ret = num_stripes;
6277 	*max_errors_ret = max_errors;
6278 	bioc->num_tgtdevs = tgtdev_indexes;
6279 	*bioc_ret = bioc;
6280 }
6281 
6282 static bool need_full_stripe(enum btrfs_map_op op)
6283 {
6284 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285 }
6286 
6287 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6288 			    u64 offset, u64 *stripe_nr, u64 *stripe_offset,
6289 			    u64 *full_stripe_start)
6290 {
6291 	u32 stripe_len = map->stripe_len;
6292 
6293 	ASSERT(op != BTRFS_MAP_DISCARD);
6294 
6295 	/*
6296 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6297 	 * the offset of this block in its stripe.
6298 	 */
6299 	*stripe_nr = div64_u64_rem(offset, stripe_len, stripe_offset);
6300 	ASSERT(*stripe_offset < U32_MAX);
6301 
6302 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6303 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
6304 
6305 		*full_stripe_start =
6306 			div64_u64(offset, full_stripe_len) * full_stripe_len;
6307 
6308 		/*
6309 		 * For writes to RAID56, allow to write a full stripe set, but
6310 		 * no straddling of stripe sets.
6311 		 */
6312 		if (op == BTRFS_MAP_WRITE)
6313 			return full_stripe_len - (offset - *full_stripe_start);
6314 	}
6315 
6316 	/*
6317 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6318 	 * a single disk).
6319 	 */
6320 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6321 		return stripe_len - *stripe_offset;
6322 	return U64_MAX;
6323 }
6324 
6325 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6326 		          u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6327 {
6328 	dst->dev = map->stripes[stripe_index].dev;
6329 	dst->physical = map->stripes[stripe_index].physical +
6330 			stripe_offset + stripe_nr * map->stripe_len;
6331 }
6332 
6333 int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6334 		      u64 logical, u64 *length,
6335 		      struct btrfs_io_context **bioc_ret,
6336 		      struct btrfs_io_stripe *smap, int *mirror_num_ret,
6337 		      int need_raid_map)
6338 {
6339 	struct extent_map *em;
6340 	struct map_lookup *map;
6341 	u64 map_offset;
6342 	u64 stripe_offset;
6343 	u64 stripe_nr;
6344 	u64 stripe_len;
6345 	u32 stripe_index;
6346 	int data_stripes;
6347 	int i;
6348 	int ret = 0;
6349 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6350 	int num_stripes;
6351 	int max_errors = 0;
6352 	int tgtdev_indexes = 0;
6353 	struct btrfs_io_context *bioc = NULL;
6354 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6355 	int dev_replace_is_ongoing = 0;
6356 	int num_alloc_stripes;
6357 	int patch_the_first_stripe_for_dev_replace = 0;
6358 	u64 physical_to_patch_in_first_stripe = 0;
6359 	u64 raid56_full_stripe_start = (u64)-1;
6360 	u64 max_len;
6361 
6362 	ASSERT(bioc_ret);
6363 	ASSERT(op != BTRFS_MAP_DISCARD);
6364 
6365 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6366 	ASSERT(!IS_ERR(em));
6367 
6368 	map = em->map_lookup;
6369 	data_stripes = nr_data_stripes(map);
6370 	stripe_len = map->stripe_len;
6371 
6372 	map_offset = logical - em->start;
6373 	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6374 				   &stripe_offset, &raid56_full_stripe_start);
6375 	*length = min_t(u64, em->len - map_offset, max_len);
6376 
6377 	down_read(&dev_replace->rwsem);
6378 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6379 	/*
6380 	 * Hold the semaphore for read during the whole operation, write is
6381 	 * requested at commit time but must wait.
6382 	 */
6383 	if (!dev_replace_is_ongoing)
6384 		up_read(&dev_replace->rwsem);
6385 
6386 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6387 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6388 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6389 						    dev_replace->srcdev->devid,
6390 						    &mirror_num,
6391 					    &physical_to_patch_in_first_stripe);
6392 		if (ret)
6393 			goto out;
6394 		else
6395 			patch_the_first_stripe_for_dev_replace = 1;
6396 	} else if (mirror_num > map->num_stripes) {
6397 		mirror_num = 0;
6398 	}
6399 
6400 	num_stripes = 1;
6401 	stripe_index = 0;
6402 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6403 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6404 				&stripe_index);
6405 		if (!need_full_stripe(op))
6406 			mirror_num = 1;
6407 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6408 		if (need_full_stripe(op))
6409 			num_stripes = map->num_stripes;
6410 		else if (mirror_num)
6411 			stripe_index = mirror_num - 1;
6412 		else {
6413 			stripe_index = find_live_mirror(fs_info, map, 0,
6414 					    dev_replace_is_ongoing);
6415 			mirror_num = stripe_index + 1;
6416 		}
6417 
6418 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6419 		if (need_full_stripe(op)) {
6420 			num_stripes = map->num_stripes;
6421 		} else if (mirror_num) {
6422 			stripe_index = mirror_num - 1;
6423 		} else {
6424 			mirror_num = 1;
6425 		}
6426 
6427 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6428 		u32 factor = map->num_stripes / map->sub_stripes;
6429 
6430 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6431 		stripe_index *= map->sub_stripes;
6432 
6433 		if (need_full_stripe(op))
6434 			num_stripes = map->sub_stripes;
6435 		else if (mirror_num)
6436 			stripe_index += mirror_num - 1;
6437 		else {
6438 			int old_stripe_index = stripe_index;
6439 			stripe_index = find_live_mirror(fs_info, map,
6440 					      stripe_index,
6441 					      dev_replace_is_ongoing);
6442 			mirror_num = stripe_index - old_stripe_index + 1;
6443 		}
6444 
6445 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6446 		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6447 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6448 			/* push stripe_nr back to the start of the full stripe */
6449 			stripe_nr = div64_u64(raid56_full_stripe_start,
6450 					stripe_len * data_stripes);
6451 
6452 			/* RAID[56] write or recovery. Return all stripes */
6453 			num_stripes = map->num_stripes;
6454 			max_errors = btrfs_chunk_max_errors(map);
6455 
6456 			/* Return the length to the full stripe end */
6457 			*length = min(logical + *length,
6458 				      raid56_full_stripe_start + em->start +
6459 				      data_stripes * stripe_len) - logical;
6460 			stripe_index = 0;
6461 			stripe_offset = 0;
6462 		} else {
6463 			/*
6464 			 * Mirror #0 or #1 means the original data block.
6465 			 * Mirror #2 is RAID5 parity block.
6466 			 * Mirror #3 is RAID6 Q block.
6467 			 */
6468 			stripe_nr = div_u64_rem(stripe_nr,
6469 					data_stripes, &stripe_index);
6470 			if (mirror_num > 1)
6471 				stripe_index = data_stripes + mirror_num - 2;
6472 
6473 			/* We distribute the parity blocks across stripes */
6474 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6475 					&stripe_index);
6476 			if (!need_full_stripe(op) && mirror_num <= 1)
6477 				mirror_num = 1;
6478 		}
6479 	} else {
6480 		/*
6481 		 * after this, stripe_nr is the number of stripes on this
6482 		 * device we have to walk to find the data, and stripe_index is
6483 		 * the number of our device in the stripe array
6484 		 */
6485 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6486 				&stripe_index);
6487 		mirror_num = stripe_index + 1;
6488 	}
6489 	if (stripe_index >= map->num_stripes) {
6490 		btrfs_crit(fs_info,
6491 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6492 			   stripe_index, map->num_stripes);
6493 		ret = -EINVAL;
6494 		goto out;
6495 	}
6496 
6497 	num_alloc_stripes = num_stripes;
6498 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6499 		if (op == BTRFS_MAP_WRITE)
6500 			num_alloc_stripes <<= 1;
6501 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6502 			num_alloc_stripes++;
6503 		tgtdev_indexes = num_stripes;
6504 	}
6505 
6506 	/*
6507 	 * If this I/O maps to a single device, try to return the device and
6508 	 * physical block information on the stack instead of allocating an
6509 	 * I/O context structure.
6510 	 */
6511 	if (smap && num_alloc_stripes == 1 &&
6512 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6513 	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6514 	     !dev_replace->tgtdev)) {
6515 		if (patch_the_first_stripe_for_dev_replace) {
6516 			smap->dev = dev_replace->tgtdev;
6517 			smap->physical = physical_to_patch_in_first_stripe;
6518 			*mirror_num_ret = map->num_stripes + 1;
6519 		} else {
6520 			set_io_stripe(smap, map, stripe_index, stripe_offset,
6521 				      stripe_nr);
6522 			*mirror_num_ret = mirror_num;
6523 		}
6524 		*bioc_ret = NULL;
6525 		ret = 0;
6526 		goto out;
6527 	}
6528 
6529 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6530 	if (!bioc) {
6531 		ret = -ENOMEM;
6532 		goto out;
6533 	}
6534 
6535 	for (i = 0; i < num_stripes; i++) {
6536 		set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6537 			      stripe_nr);
6538 		stripe_index++;
6539 	}
6540 
6541 	/* Build raid_map */
6542 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6543 	    (need_full_stripe(op) || mirror_num > 1)) {
6544 		u64 tmp;
6545 		unsigned rot;
6546 
6547 		/* Work out the disk rotation on this stripe-set */
6548 		div_u64_rem(stripe_nr, num_stripes, &rot);
6549 
6550 		/* Fill in the logical address of each stripe */
6551 		tmp = stripe_nr * data_stripes;
6552 		for (i = 0; i < data_stripes; i++)
6553 			bioc->raid_map[(i + rot) % num_stripes] =
6554 				em->start + (tmp + i) * map->stripe_len;
6555 
6556 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6557 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6558 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6559 				RAID6_Q_STRIPE;
6560 
6561 		sort_parity_stripes(bioc, num_stripes);
6562 	}
6563 
6564 	if (need_full_stripe(op))
6565 		max_errors = btrfs_chunk_max_errors(map);
6566 
6567 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6568 	    need_full_stripe(op)) {
6569 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6570 					  &num_stripes, &max_errors);
6571 	}
6572 
6573 	*bioc_ret = bioc;
6574 	bioc->map_type = map->type;
6575 	bioc->num_stripes = num_stripes;
6576 	bioc->max_errors = max_errors;
6577 	bioc->mirror_num = mirror_num;
6578 
6579 	/*
6580 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6581 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6582 	 * available as a mirror
6583 	 */
6584 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6585 		WARN_ON(num_stripes > 1);
6586 		bioc->stripes[0].dev = dev_replace->tgtdev;
6587 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6588 		bioc->mirror_num = map->num_stripes + 1;
6589 	}
6590 out:
6591 	if (dev_replace_is_ongoing) {
6592 		lockdep_assert_held(&dev_replace->rwsem);
6593 		/* Unlock and let waiting writers proceed */
6594 		up_read(&dev_replace->rwsem);
6595 	}
6596 	free_extent_map(em);
6597 	return ret;
6598 }
6599 
6600 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6601 		      u64 logical, u64 *length,
6602 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6603 {
6604 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6605 				 NULL, &mirror_num, 0);
6606 }
6607 
6608 /* For Scrub/replace */
6609 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6610 		     u64 logical, u64 *length,
6611 		     struct btrfs_io_context **bioc_ret)
6612 {
6613 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6614 				 NULL, NULL, 1);
6615 }
6616 
6617 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6618 				      const struct btrfs_fs_devices *fs_devices)
6619 {
6620 	if (args->fsid == NULL)
6621 		return true;
6622 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6623 		return true;
6624 	return false;
6625 }
6626 
6627 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6628 				  const struct btrfs_device *device)
6629 {
6630 	if (args->missing) {
6631 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6632 		    !device->bdev)
6633 			return true;
6634 		return false;
6635 	}
6636 
6637 	if (device->devid != args->devid)
6638 		return false;
6639 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6640 		return false;
6641 	return true;
6642 }
6643 
6644 /*
6645  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6646  * return NULL.
6647  *
6648  * If devid and uuid are both specified, the match must be exact, otherwise
6649  * only devid is used.
6650  */
6651 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6652 				       const struct btrfs_dev_lookup_args *args)
6653 {
6654 	struct btrfs_device *device;
6655 	struct btrfs_fs_devices *seed_devs;
6656 
6657 	if (dev_args_match_fs_devices(args, fs_devices)) {
6658 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6659 			if (dev_args_match_device(args, device))
6660 				return device;
6661 		}
6662 	}
6663 
6664 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6665 		if (!dev_args_match_fs_devices(args, seed_devs))
6666 			continue;
6667 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6668 			if (dev_args_match_device(args, device))
6669 				return device;
6670 		}
6671 	}
6672 
6673 	return NULL;
6674 }
6675 
6676 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6677 					    u64 devid, u8 *dev_uuid)
6678 {
6679 	struct btrfs_device *device;
6680 	unsigned int nofs_flag;
6681 
6682 	/*
6683 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6684 	 * allocation, however we don't want to change btrfs_alloc_device() to
6685 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6686 	 * places.
6687 	 */
6688 
6689 	nofs_flag = memalloc_nofs_save();
6690 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6691 	memalloc_nofs_restore(nofs_flag);
6692 	if (IS_ERR(device))
6693 		return device;
6694 
6695 	list_add(&device->dev_list, &fs_devices->devices);
6696 	device->fs_devices = fs_devices;
6697 	fs_devices->num_devices++;
6698 
6699 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6700 	fs_devices->missing_devices++;
6701 
6702 	return device;
6703 }
6704 
6705 /*
6706  * Allocate new device struct, set up devid and UUID.
6707  *
6708  * @fs_info:	used only for generating a new devid, can be NULL if
6709  *		devid is provided (i.e. @devid != NULL).
6710  * @devid:	a pointer to devid for this device.  If NULL a new devid
6711  *		is generated.
6712  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6713  *		is generated.
6714  * @path:	a pointer to device path if available, NULL otherwise.
6715  *
6716  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6717  * on error.  Returned struct is not linked onto any lists and must be
6718  * destroyed with btrfs_free_device.
6719  */
6720 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6721 					const u64 *devid, const u8 *uuid,
6722 					const char *path)
6723 {
6724 	struct btrfs_device *dev;
6725 	u64 tmp;
6726 
6727 	if (WARN_ON(!devid && !fs_info))
6728 		return ERR_PTR(-EINVAL);
6729 
6730 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6731 	if (!dev)
6732 		return ERR_PTR(-ENOMEM);
6733 
6734 	INIT_LIST_HEAD(&dev->dev_list);
6735 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6736 	INIT_LIST_HEAD(&dev->post_commit_list);
6737 
6738 	atomic_set(&dev->dev_stats_ccnt, 0);
6739 	btrfs_device_data_ordered_init(dev);
6740 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6741 
6742 	if (devid)
6743 		tmp = *devid;
6744 	else {
6745 		int ret;
6746 
6747 		ret = find_next_devid(fs_info, &tmp);
6748 		if (ret) {
6749 			btrfs_free_device(dev);
6750 			return ERR_PTR(ret);
6751 		}
6752 	}
6753 	dev->devid = tmp;
6754 
6755 	if (uuid)
6756 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6757 	else
6758 		generate_random_uuid(dev->uuid);
6759 
6760 	if (path) {
6761 		struct rcu_string *name;
6762 
6763 		name = rcu_string_strdup(path, GFP_KERNEL);
6764 		if (!name) {
6765 			btrfs_free_device(dev);
6766 			return ERR_PTR(-ENOMEM);
6767 		}
6768 		rcu_assign_pointer(dev->name, name);
6769 	}
6770 
6771 	return dev;
6772 }
6773 
6774 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6775 					u64 devid, u8 *uuid, bool error)
6776 {
6777 	if (error)
6778 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6779 			      devid, uuid);
6780 	else
6781 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6782 			      devid, uuid);
6783 }
6784 
6785 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6786 {
6787 	const struct map_lookup *map = em->map_lookup;
6788 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6789 
6790 	return div_u64(em->len, data_stripes);
6791 }
6792 
6793 #if BITS_PER_LONG == 32
6794 /*
6795  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6796  * can't be accessed on 32bit systems.
6797  *
6798  * This function do mount time check to reject the fs if it already has
6799  * metadata chunk beyond that limit.
6800  */
6801 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6802 				  u64 logical, u64 length, u64 type)
6803 {
6804 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6805 		return 0;
6806 
6807 	if (logical + length < MAX_LFS_FILESIZE)
6808 		return 0;
6809 
6810 	btrfs_err_32bit_limit(fs_info);
6811 	return -EOVERFLOW;
6812 }
6813 
6814 /*
6815  * This is to give early warning for any metadata chunk reaching
6816  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6817  * Although we can still access the metadata, it's not going to be possible
6818  * once the limit is reached.
6819  */
6820 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6821 				  u64 logical, u64 length, u64 type)
6822 {
6823 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6824 		return;
6825 
6826 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6827 		return;
6828 
6829 	btrfs_warn_32bit_limit(fs_info);
6830 }
6831 #endif
6832 
6833 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6834 						  u64 devid, u8 *uuid)
6835 {
6836 	struct btrfs_device *dev;
6837 
6838 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6839 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6840 		return ERR_PTR(-ENOENT);
6841 	}
6842 
6843 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6844 	if (IS_ERR(dev)) {
6845 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6846 			  devid, PTR_ERR(dev));
6847 		return dev;
6848 	}
6849 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6850 
6851 	return dev;
6852 }
6853 
6854 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6855 			  struct btrfs_chunk *chunk)
6856 {
6857 	BTRFS_DEV_LOOKUP_ARGS(args);
6858 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6859 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6860 	struct map_lookup *map;
6861 	struct extent_map *em;
6862 	u64 logical;
6863 	u64 length;
6864 	u64 devid;
6865 	u64 type;
6866 	u8 uuid[BTRFS_UUID_SIZE];
6867 	int index;
6868 	int num_stripes;
6869 	int ret;
6870 	int i;
6871 
6872 	logical = key->offset;
6873 	length = btrfs_chunk_length(leaf, chunk);
6874 	type = btrfs_chunk_type(leaf, chunk);
6875 	index = btrfs_bg_flags_to_raid_index(type);
6876 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6877 
6878 #if BITS_PER_LONG == 32
6879 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6880 	if (ret < 0)
6881 		return ret;
6882 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6883 #endif
6884 
6885 	/*
6886 	 * Only need to verify chunk item if we're reading from sys chunk array,
6887 	 * as chunk item in tree block is already verified by tree-checker.
6888 	 */
6889 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6890 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6891 		if (ret)
6892 			return ret;
6893 	}
6894 
6895 	read_lock(&map_tree->lock);
6896 	em = lookup_extent_mapping(map_tree, logical, 1);
6897 	read_unlock(&map_tree->lock);
6898 
6899 	/* already mapped? */
6900 	if (em && em->start <= logical && em->start + em->len > logical) {
6901 		free_extent_map(em);
6902 		return 0;
6903 	} else if (em) {
6904 		free_extent_map(em);
6905 	}
6906 
6907 	em = alloc_extent_map();
6908 	if (!em)
6909 		return -ENOMEM;
6910 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6911 	if (!map) {
6912 		free_extent_map(em);
6913 		return -ENOMEM;
6914 	}
6915 
6916 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6917 	em->map_lookup = map;
6918 	em->start = logical;
6919 	em->len = length;
6920 	em->orig_start = 0;
6921 	em->block_start = 0;
6922 	em->block_len = em->len;
6923 
6924 	map->num_stripes = num_stripes;
6925 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6926 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6927 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6928 	map->type = type;
6929 	/*
6930 	 * We can't use the sub_stripes value, as for profiles other than
6931 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6932 	 * older mkfs (<v5.4).
6933 	 * In that case, it can cause divide-by-zero errors later.
6934 	 * Since currently sub_stripes is fixed for each profile, let's
6935 	 * use the trusted value instead.
6936 	 */
6937 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6938 	map->verified_stripes = 0;
6939 	em->orig_block_len = btrfs_calc_stripe_length(em);
6940 	for (i = 0; i < num_stripes; i++) {
6941 		map->stripes[i].physical =
6942 			btrfs_stripe_offset_nr(leaf, chunk, i);
6943 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6944 		args.devid = devid;
6945 		read_extent_buffer(leaf, uuid, (unsigned long)
6946 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6947 				   BTRFS_UUID_SIZE);
6948 		args.uuid = uuid;
6949 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6950 		if (!map->stripes[i].dev) {
6951 			map->stripes[i].dev = handle_missing_device(fs_info,
6952 								    devid, uuid);
6953 			if (IS_ERR(map->stripes[i].dev)) {
6954 				ret = PTR_ERR(map->stripes[i].dev);
6955 				free_extent_map(em);
6956 				return ret;
6957 			}
6958 		}
6959 
6960 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6961 				&(map->stripes[i].dev->dev_state));
6962 	}
6963 
6964 	write_lock(&map_tree->lock);
6965 	ret = add_extent_mapping(map_tree, em, 0);
6966 	write_unlock(&map_tree->lock);
6967 	if (ret < 0) {
6968 		btrfs_err(fs_info,
6969 			  "failed to add chunk map, start=%llu len=%llu: %d",
6970 			  em->start, em->len, ret);
6971 	}
6972 	free_extent_map(em);
6973 
6974 	return ret;
6975 }
6976 
6977 static void fill_device_from_item(struct extent_buffer *leaf,
6978 				 struct btrfs_dev_item *dev_item,
6979 				 struct btrfs_device *device)
6980 {
6981 	unsigned long ptr;
6982 
6983 	device->devid = btrfs_device_id(leaf, dev_item);
6984 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6985 	device->total_bytes = device->disk_total_bytes;
6986 	device->commit_total_bytes = device->disk_total_bytes;
6987 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6988 	device->commit_bytes_used = device->bytes_used;
6989 	device->type = btrfs_device_type(leaf, dev_item);
6990 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6991 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6992 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6993 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6994 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6995 
6996 	ptr = btrfs_device_uuid(dev_item);
6997 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6998 }
6999 
7000 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7001 						  u8 *fsid)
7002 {
7003 	struct btrfs_fs_devices *fs_devices;
7004 	int ret;
7005 
7006 	lockdep_assert_held(&uuid_mutex);
7007 	ASSERT(fsid);
7008 
7009 	/* This will match only for multi-device seed fs */
7010 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7011 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7012 			return fs_devices;
7013 
7014 
7015 	fs_devices = find_fsid(fsid, NULL);
7016 	if (!fs_devices) {
7017 		if (!btrfs_test_opt(fs_info, DEGRADED))
7018 			return ERR_PTR(-ENOENT);
7019 
7020 		fs_devices = alloc_fs_devices(fsid, NULL);
7021 		if (IS_ERR(fs_devices))
7022 			return fs_devices;
7023 
7024 		fs_devices->seeding = true;
7025 		fs_devices->opened = 1;
7026 		return fs_devices;
7027 	}
7028 
7029 	/*
7030 	 * Upon first call for a seed fs fsid, just create a private copy of the
7031 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7032 	 */
7033 	fs_devices = clone_fs_devices(fs_devices);
7034 	if (IS_ERR(fs_devices))
7035 		return fs_devices;
7036 
7037 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7038 	if (ret) {
7039 		free_fs_devices(fs_devices);
7040 		return ERR_PTR(ret);
7041 	}
7042 
7043 	if (!fs_devices->seeding) {
7044 		close_fs_devices(fs_devices);
7045 		free_fs_devices(fs_devices);
7046 		return ERR_PTR(-EINVAL);
7047 	}
7048 
7049 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7050 
7051 	return fs_devices;
7052 }
7053 
7054 static int read_one_dev(struct extent_buffer *leaf,
7055 			struct btrfs_dev_item *dev_item)
7056 {
7057 	BTRFS_DEV_LOOKUP_ARGS(args);
7058 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7059 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7060 	struct btrfs_device *device;
7061 	u64 devid;
7062 	int ret;
7063 	u8 fs_uuid[BTRFS_FSID_SIZE];
7064 	u8 dev_uuid[BTRFS_UUID_SIZE];
7065 
7066 	devid = btrfs_device_id(leaf, dev_item);
7067 	args.devid = devid;
7068 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7069 			   BTRFS_UUID_SIZE);
7070 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7071 			   BTRFS_FSID_SIZE);
7072 	args.uuid = dev_uuid;
7073 	args.fsid = fs_uuid;
7074 
7075 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7076 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7077 		if (IS_ERR(fs_devices))
7078 			return PTR_ERR(fs_devices);
7079 	}
7080 
7081 	device = btrfs_find_device(fs_info->fs_devices, &args);
7082 	if (!device) {
7083 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7084 			btrfs_report_missing_device(fs_info, devid,
7085 							dev_uuid, true);
7086 			return -ENOENT;
7087 		}
7088 
7089 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7090 		if (IS_ERR(device)) {
7091 			btrfs_err(fs_info,
7092 				"failed to add missing dev %llu: %ld",
7093 				devid, PTR_ERR(device));
7094 			return PTR_ERR(device);
7095 		}
7096 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7097 	} else {
7098 		if (!device->bdev) {
7099 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7100 				btrfs_report_missing_device(fs_info,
7101 						devid, dev_uuid, true);
7102 				return -ENOENT;
7103 			}
7104 			btrfs_report_missing_device(fs_info, devid,
7105 							dev_uuid, false);
7106 		}
7107 
7108 		if (!device->bdev &&
7109 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7110 			/*
7111 			 * this happens when a device that was properly setup
7112 			 * in the device info lists suddenly goes bad.
7113 			 * device->bdev is NULL, and so we have to set
7114 			 * device->missing to one here
7115 			 */
7116 			device->fs_devices->missing_devices++;
7117 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7118 		}
7119 
7120 		/* Move the device to its own fs_devices */
7121 		if (device->fs_devices != fs_devices) {
7122 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7123 							&device->dev_state));
7124 
7125 			list_move(&device->dev_list, &fs_devices->devices);
7126 			device->fs_devices->num_devices--;
7127 			fs_devices->num_devices++;
7128 
7129 			device->fs_devices->missing_devices--;
7130 			fs_devices->missing_devices++;
7131 
7132 			device->fs_devices = fs_devices;
7133 		}
7134 	}
7135 
7136 	if (device->fs_devices != fs_info->fs_devices) {
7137 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7138 		if (device->generation !=
7139 		    btrfs_device_generation(leaf, dev_item))
7140 			return -EINVAL;
7141 	}
7142 
7143 	fill_device_from_item(leaf, dev_item, device);
7144 	if (device->bdev) {
7145 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7146 
7147 		if (device->total_bytes > max_total_bytes) {
7148 			btrfs_err(fs_info,
7149 			"device total_bytes should be at most %llu but found %llu",
7150 				  max_total_bytes, device->total_bytes);
7151 			return -EINVAL;
7152 		}
7153 	}
7154 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7155 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7156 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7157 		device->fs_devices->total_rw_bytes += device->total_bytes;
7158 		atomic64_add(device->total_bytes - device->bytes_used,
7159 				&fs_info->free_chunk_space);
7160 	}
7161 	ret = 0;
7162 	return ret;
7163 }
7164 
7165 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7166 {
7167 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7168 	struct extent_buffer *sb;
7169 	struct btrfs_disk_key *disk_key;
7170 	struct btrfs_chunk *chunk;
7171 	u8 *array_ptr;
7172 	unsigned long sb_array_offset;
7173 	int ret = 0;
7174 	u32 num_stripes;
7175 	u32 array_size;
7176 	u32 len = 0;
7177 	u32 cur_offset;
7178 	u64 type;
7179 	struct btrfs_key key;
7180 
7181 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7182 
7183 	/*
7184 	 * We allocated a dummy extent, just to use extent buffer accessors.
7185 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7186 	 * that's fine, we will not go beyond system chunk array anyway.
7187 	 */
7188 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7189 	if (!sb)
7190 		return -ENOMEM;
7191 	set_extent_buffer_uptodate(sb);
7192 
7193 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7194 	array_size = btrfs_super_sys_array_size(super_copy);
7195 
7196 	array_ptr = super_copy->sys_chunk_array;
7197 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7198 	cur_offset = 0;
7199 
7200 	while (cur_offset < array_size) {
7201 		disk_key = (struct btrfs_disk_key *)array_ptr;
7202 		len = sizeof(*disk_key);
7203 		if (cur_offset + len > array_size)
7204 			goto out_short_read;
7205 
7206 		btrfs_disk_key_to_cpu(&key, disk_key);
7207 
7208 		array_ptr += len;
7209 		sb_array_offset += len;
7210 		cur_offset += len;
7211 
7212 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7213 			btrfs_err(fs_info,
7214 			    "unexpected item type %u in sys_array at offset %u",
7215 				  (u32)key.type, cur_offset);
7216 			ret = -EIO;
7217 			break;
7218 		}
7219 
7220 		chunk = (struct btrfs_chunk *)sb_array_offset;
7221 		/*
7222 		 * At least one btrfs_chunk with one stripe must be present,
7223 		 * exact stripe count check comes afterwards
7224 		 */
7225 		len = btrfs_chunk_item_size(1);
7226 		if (cur_offset + len > array_size)
7227 			goto out_short_read;
7228 
7229 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7230 		if (!num_stripes) {
7231 			btrfs_err(fs_info,
7232 			"invalid number of stripes %u in sys_array at offset %u",
7233 				  num_stripes, cur_offset);
7234 			ret = -EIO;
7235 			break;
7236 		}
7237 
7238 		type = btrfs_chunk_type(sb, chunk);
7239 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7240 			btrfs_err(fs_info,
7241 			"invalid chunk type %llu in sys_array at offset %u",
7242 				  type, cur_offset);
7243 			ret = -EIO;
7244 			break;
7245 		}
7246 
7247 		len = btrfs_chunk_item_size(num_stripes);
7248 		if (cur_offset + len > array_size)
7249 			goto out_short_read;
7250 
7251 		ret = read_one_chunk(&key, sb, chunk);
7252 		if (ret)
7253 			break;
7254 
7255 		array_ptr += len;
7256 		sb_array_offset += len;
7257 		cur_offset += len;
7258 	}
7259 	clear_extent_buffer_uptodate(sb);
7260 	free_extent_buffer_stale(sb);
7261 	return ret;
7262 
7263 out_short_read:
7264 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7265 			len, cur_offset);
7266 	clear_extent_buffer_uptodate(sb);
7267 	free_extent_buffer_stale(sb);
7268 	return -EIO;
7269 }
7270 
7271 /*
7272  * Check if all chunks in the fs are OK for read-write degraded mount
7273  *
7274  * If the @failing_dev is specified, it's accounted as missing.
7275  *
7276  * Return true if all chunks meet the minimal RW mount requirements.
7277  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7278  */
7279 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7280 					struct btrfs_device *failing_dev)
7281 {
7282 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7283 	struct extent_map *em;
7284 	u64 next_start = 0;
7285 	bool ret = true;
7286 
7287 	read_lock(&map_tree->lock);
7288 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7289 	read_unlock(&map_tree->lock);
7290 	/* No chunk at all? Return false anyway */
7291 	if (!em) {
7292 		ret = false;
7293 		goto out;
7294 	}
7295 	while (em) {
7296 		struct map_lookup *map;
7297 		int missing = 0;
7298 		int max_tolerated;
7299 		int i;
7300 
7301 		map = em->map_lookup;
7302 		max_tolerated =
7303 			btrfs_get_num_tolerated_disk_barrier_failures(
7304 					map->type);
7305 		for (i = 0; i < map->num_stripes; i++) {
7306 			struct btrfs_device *dev = map->stripes[i].dev;
7307 
7308 			if (!dev || !dev->bdev ||
7309 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7310 			    dev->last_flush_error)
7311 				missing++;
7312 			else if (failing_dev && failing_dev == dev)
7313 				missing++;
7314 		}
7315 		if (missing > max_tolerated) {
7316 			if (!failing_dev)
7317 				btrfs_warn(fs_info,
7318 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7319 				   em->start, missing, max_tolerated);
7320 			free_extent_map(em);
7321 			ret = false;
7322 			goto out;
7323 		}
7324 		next_start = extent_map_end(em);
7325 		free_extent_map(em);
7326 
7327 		read_lock(&map_tree->lock);
7328 		em = lookup_extent_mapping(map_tree, next_start,
7329 					   (u64)(-1) - next_start);
7330 		read_unlock(&map_tree->lock);
7331 	}
7332 out:
7333 	return ret;
7334 }
7335 
7336 static void readahead_tree_node_children(struct extent_buffer *node)
7337 {
7338 	int i;
7339 	const int nr_items = btrfs_header_nritems(node);
7340 
7341 	for (i = 0; i < nr_items; i++)
7342 		btrfs_readahead_node_child(node, i);
7343 }
7344 
7345 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7346 {
7347 	struct btrfs_root *root = fs_info->chunk_root;
7348 	struct btrfs_path *path;
7349 	struct extent_buffer *leaf;
7350 	struct btrfs_key key;
7351 	struct btrfs_key found_key;
7352 	int ret;
7353 	int slot;
7354 	int iter_ret = 0;
7355 	u64 total_dev = 0;
7356 	u64 last_ra_node = 0;
7357 
7358 	path = btrfs_alloc_path();
7359 	if (!path)
7360 		return -ENOMEM;
7361 
7362 	/*
7363 	 * uuid_mutex is needed only if we are mounting a sprout FS
7364 	 * otherwise we don't need it.
7365 	 */
7366 	mutex_lock(&uuid_mutex);
7367 
7368 	/*
7369 	 * It is possible for mount and umount to race in such a way that
7370 	 * we execute this code path, but open_fs_devices failed to clear
7371 	 * total_rw_bytes. We certainly want it cleared before reading the
7372 	 * device items, so clear it here.
7373 	 */
7374 	fs_info->fs_devices->total_rw_bytes = 0;
7375 
7376 	/*
7377 	 * Lockdep complains about possible circular locking dependency between
7378 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7379 	 * used for freeze procection of a fs (struct super_block.s_writers),
7380 	 * which we take when starting a transaction, and extent buffers of the
7381 	 * chunk tree if we call read_one_dev() while holding a lock on an
7382 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7383 	 * and at this point there can't be any concurrent task modifying the
7384 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7385 	 */
7386 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7387 	path->skip_locking = 1;
7388 
7389 	/*
7390 	 * Read all device items, and then all the chunk items. All
7391 	 * device items are found before any chunk item (their object id
7392 	 * is smaller than the lowest possible object id for a chunk
7393 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7394 	 */
7395 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7396 	key.offset = 0;
7397 	key.type = 0;
7398 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7399 		struct extent_buffer *node = path->nodes[1];
7400 
7401 		leaf = path->nodes[0];
7402 		slot = path->slots[0];
7403 
7404 		if (node) {
7405 			if (last_ra_node != node->start) {
7406 				readahead_tree_node_children(node);
7407 				last_ra_node = node->start;
7408 			}
7409 		}
7410 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7411 			struct btrfs_dev_item *dev_item;
7412 			dev_item = btrfs_item_ptr(leaf, slot,
7413 						  struct btrfs_dev_item);
7414 			ret = read_one_dev(leaf, dev_item);
7415 			if (ret)
7416 				goto error;
7417 			total_dev++;
7418 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7419 			struct btrfs_chunk *chunk;
7420 
7421 			/*
7422 			 * We are only called at mount time, so no need to take
7423 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7424 			 * we always lock first fs_info->chunk_mutex before
7425 			 * acquiring any locks on the chunk tree. This is a
7426 			 * requirement for chunk allocation, see the comment on
7427 			 * top of btrfs_chunk_alloc() for details.
7428 			 */
7429 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7430 			ret = read_one_chunk(&found_key, leaf, chunk);
7431 			if (ret)
7432 				goto error;
7433 		}
7434 	}
7435 	/* Catch error found during iteration */
7436 	if (iter_ret < 0) {
7437 		ret = iter_ret;
7438 		goto error;
7439 	}
7440 
7441 	/*
7442 	 * After loading chunk tree, we've got all device information,
7443 	 * do another round of validation checks.
7444 	 */
7445 	if (total_dev != fs_info->fs_devices->total_devices) {
7446 		btrfs_warn(fs_info,
7447 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7448 			  btrfs_super_num_devices(fs_info->super_copy),
7449 			  total_dev);
7450 		fs_info->fs_devices->total_devices = total_dev;
7451 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7452 	}
7453 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7454 	    fs_info->fs_devices->total_rw_bytes) {
7455 		btrfs_err(fs_info,
7456 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7457 			  btrfs_super_total_bytes(fs_info->super_copy),
7458 			  fs_info->fs_devices->total_rw_bytes);
7459 		ret = -EINVAL;
7460 		goto error;
7461 	}
7462 	ret = 0;
7463 error:
7464 	mutex_unlock(&uuid_mutex);
7465 
7466 	btrfs_free_path(path);
7467 	return ret;
7468 }
7469 
7470 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7471 {
7472 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7473 	struct btrfs_device *device;
7474 	int ret = 0;
7475 
7476 	fs_devices->fs_info = fs_info;
7477 
7478 	mutex_lock(&fs_devices->device_list_mutex);
7479 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7480 		device->fs_info = fs_info;
7481 
7482 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7483 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7484 			device->fs_info = fs_info;
7485 			ret = btrfs_get_dev_zone_info(device, false);
7486 			if (ret)
7487 				break;
7488 		}
7489 
7490 		seed_devs->fs_info = fs_info;
7491 	}
7492 	mutex_unlock(&fs_devices->device_list_mutex);
7493 
7494 	return ret;
7495 }
7496 
7497 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7498 				 const struct btrfs_dev_stats_item *ptr,
7499 				 int index)
7500 {
7501 	u64 val;
7502 
7503 	read_extent_buffer(eb, &val,
7504 			   offsetof(struct btrfs_dev_stats_item, values) +
7505 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7506 			   sizeof(val));
7507 	return val;
7508 }
7509 
7510 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7511 				      struct btrfs_dev_stats_item *ptr,
7512 				      int index, u64 val)
7513 {
7514 	write_extent_buffer(eb, &val,
7515 			    offsetof(struct btrfs_dev_stats_item, values) +
7516 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7517 			    sizeof(val));
7518 }
7519 
7520 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7521 				       struct btrfs_path *path)
7522 {
7523 	struct btrfs_dev_stats_item *ptr;
7524 	struct extent_buffer *eb;
7525 	struct btrfs_key key;
7526 	int item_size;
7527 	int i, ret, slot;
7528 
7529 	if (!device->fs_info->dev_root)
7530 		return 0;
7531 
7532 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7533 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7534 	key.offset = device->devid;
7535 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7536 	if (ret) {
7537 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7538 			btrfs_dev_stat_set(device, i, 0);
7539 		device->dev_stats_valid = 1;
7540 		btrfs_release_path(path);
7541 		return ret < 0 ? ret : 0;
7542 	}
7543 	slot = path->slots[0];
7544 	eb = path->nodes[0];
7545 	item_size = btrfs_item_size(eb, slot);
7546 
7547 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7548 
7549 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7550 		if (item_size >= (1 + i) * sizeof(__le64))
7551 			btrfs_dev_stat_set(device, i,
7552 					   btrfs_dev_stats_value(eb, ptr, i));
7553 		else
7554 			btrfs_dev_stat_set(device, i, 0);
7555 	}
7556 
7557 	device->dev_stats_valid = 1;
7558 	btrfs_dev_stat_print_on_load(device);
7559 	btrfs_release_path(path);
7560 
7561 	return 0;
7562 }
7563 
7564 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7565 {
7566 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7567 	struct btrfs_device *device;
7568 	struct btrfs_path *path = NULL;
7569 	int ret = 0;
7570 
7571 	path = btrfs_alloc_path();
7572 	if (!path)
7573 		return -ENOMEM;
7574 
7575 	mutex_lock(&fs_devices->device_list_mutex);
7576 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7577 		ret = btrfs_device_init_dev_stats(device, path);
7578 		if (ret)
7579 			goto out;
7580 	}
7581 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7582 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7583 			ret = btrfs_device_init_dev_stats(device, path);
7584 			if (ret)
7585 				goto out;
7586 		}
7587 	}
7588 out:
7589 	mutex_unlock(&fs_devices->device_list_mutex);
7590 
7591 	btrfs_free_path(path);
7592 	return ret;
7593 }
7594 
7595 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7596 				struct btrfs_device *device)
7597 {
7598 	struct btrfs_fs_info *fs_info = trans->fs_info;
7599 	struct btrfs_root *dev_root = fs_info->dev_root;
7600 	struct btrfs_path *path;
7601 	struct btrfs_key key;
7602 	struct extent_buffer *eb;
7603 	struct btrfs_dev_stats_item *ptr;
7604 	int ret;
7605 	int i;
7606 
7607 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7608 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7609 	key.offset = device->devid;
7610 
7611 	path = btrfs_alloc_path();
7612 	if (!path)
7613 		return -ENOMEM;
7614 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7615 	if (ret < 0) {
7616 		btrfs_warn_in_rcu(fs_info,
7617 			"error %d while searching for dev_stats item for device %s",
7618 				  ret, btrfs_dev_name(device));
7619 		goto out;
7620 	}
7621 
7622 	if (ret == 0 &&
7623 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7624 		/* need to delete old one and insert a new one */
7625 		ret = btrfs_del_item(trans, dev_root, path);
7626 		if (ret != 0) {
7627 			btrfs_warn_in_rcu(fs_info,
7628 				"delete too small dev_stats item for device %s failed %d",
7629 					  btrfs_dev_name(device), ret);
7630 			goto out;
7631 		}
7632 		ret = 1;
7633 	}
7634 
7635 	if (ret == 1) {
7636 		/* need to insert a new item */
7637 		btrfs_release_path(path);
7638 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7639 					      &key, sizeof(*ptr));
7640 		if (ret < 0) {
7641 			btrfs_warn_in_rcu(fs_info,
7642 				"insert dev_stats item for device %s failed %d",
7643 				btrfs_dev_name(device), ret);
7644 			goto out;
7645 		}
7646 	}
7647 
7648 	eb = path->nodes[0];
7649 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7650 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7651 		btrfs_set_dev_stats_value(eb, ptr, i,
7652 					  btrfs_dev_stat_read(device, i));
7653 	btrfs_mark_buffer_dirty(eb);
7654 
7655 out:
7656 	btrfs_free_path(path);
7657 	return ret;
7658 }
7659 
7660 /*
7661  * called from commit_transaction. Writes all changed device stats to disk.
7662  */
7663 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7664 {
7665 	struct btrfs_fs_info *fs_info = trans->fs_info;
7666 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7667 	struct btrfs_device *device;
7668 	int stats_cnt;
7669 	int ret = 0;
7670 
7671 	mutex_lock(&fs_devices->device_list_mutex);
7672 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7673 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7674 		if (!device->dev_stats_valid || stats_cnt == 0)
7675 			continue;
7676 
7677 
7678 		/*
7679 		 * There is a LOAD-LOAD control dependency between the value of
7680 		 * dev_stats_ccnt and updating the on-disk values which requires
7681 		 * reading the in-memory counters. Such control dependencies
7682 		 * require explicit read memory barriers.
7683 		 *
7684 		 * This memory barriers pairs with smp_mb__before_atomic in
7685 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7686 		 * barrier implied by atomic_xchg in
7687 		 * btrfs_dev_stats_read_and_reset
7688 		 */
7689 		smp_rmb();
7690 
7691 		ret = update_dev_stat_item(trans, device);
7692 		if (!ret)
7693 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7694 	}
7695 	mutex_unlock(&fs_devices->device_list_mutex);
7696 
7697 	return ret;
7698 }
7699 
7700 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7701 {
7702 	btrfs_dev_stat_inc(dev, index);
7703 
7704 	if (!dev->dev_stats_valid)
7705 		return;
7706 	btrfs_err_rl_in_rcu(dev->fs_info,
7707 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7708 			   btrfs_dev_name(dev),
7709 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7710 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7711 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7712 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7713 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7714 }
7715 
7716 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7717 {
7718 	int i;
7719 
7720 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7721 		if (btrfs_dev_stat_read(dev, i) != 0)
7722 			break;
7723 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7724 		return; /* all values == 0, suppress message */
7725 
7726 	btrfs_info_in_rcu(dev->fs_info,
7727 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7728 	       btrfs_dev_name(dev),
7729 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7730 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7731 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7732 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7733 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7734 }
7735 
7736 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7737 			struct btrfs_ioctl_get_dev_stats *stats)
7738 {
7739 	BTRFS_DEV_LOOKUP_ARGS(args);
7740 	struct btrfs_device *dev;
7741 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7742 	int i;
7743 
7744 	mutex_lock(&fs_devices->device_list_mutex);
7745 	args.devid = stats->devid;
7746 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7747 	mutex_unlock(&fs_devices->device_list_mutex);
7748 
7749 	if (!dev) {
7750 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7751 		return -ENODEV;
7752 	} else if (!dev->dev_stats_valid) {
7753 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7754 		return -ENODEV;
7755 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7756 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7757 			if (stats->nr_items > i)
7758 				stats->values[i] =
7759 					btrfs_dev_stat_read_and_reset(dev, i);
7760 			else
7761 				btrfs_dev_stat_set(dev, i, 0);
7762 		}
7763 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7764 			   current->comm, task_pid_nr(current));
7765 	} else {
7766 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7767 			if (stats->nr_items > i)
7768 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7769 	}
7770 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7771 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7772 	return 0;
7773 }
7774 
7775 /*
7776  * Update the size and bytes used for each device where it changed.  This is
7777  * delayed since we would otherwise get errors while writing out the
7778  * superblocks.
7779  *
7780  * Must be invoked during transaction commit.
7781  */
7782 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7783 {
7784 	struct btrfs_device *curr, *next;
7785 
7786 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7787 
7788 	if (list_empty(&trans->dev_update_list))
7789 		return;
7790 
7791 	/*
7792 	 * We don't need the device_list_mutex here.  This list is owned by the
7793 	 * transaction and the transaction must complete before the device is
7794 	 * released.
7795 	 */
7796 	mutex_lock(&trans->fs_info->chunk_mutex);
7797 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7798 				 post_commit_list) {
7799 		list_del_init(&curr->post_commit_list);
7800 		curr->commit_total_bytes = curr->disk_total_bytes;
7801 		curr->commit_bytes_used = curr->bytes_used;
7802 	}
7803 	mutex_unlock(&trans->fs_info->chunk_mutex);
7804 }
7805 
7806 /*
7807  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7808  */
7809 int btrfs_bg_type_to_factor(u64 flags)
7810 {
7811 	const int index = btrfs_bg_flags_to_raid_index(flags);
7812 
7813 	return btrfs_raid_array[index].ncopies;
7814 }
7815 
7816 
7817 
7818 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7819 				 u64 chunk_offset, u64 devid,
7820 				 u64 physical_offset, u64 physical_len)
7821 {
7822 	struct btrfs_dev_lookup_args args = { .devid = devid };
7823 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7824 	struct extent_map *em;
7825 	struct map_lookup *map;
7826 	struct btrfs_device *dev;
7827 	u64 stripe_len;
7828 	bool found = false;
7829 	int ret = 0;
7830 	int i;
7831 
7832 	read_lock(&em_tree->lock);
7833 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7834 	read_unlock(&em_tree->lock);
7835 
7836 	if (!em) {
7837 		btrfs_err(fs_info,
7838 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7839 			  physical_offset, devid);
7840 		ret = -EUCLEAN;
7841 		goto out;
7842 	}
7843 
7844 	map = em->map_lookup;
7845 	stripe_len = btrfs_calc_stripe_length(em);
7846 	if (physical_len != stripe_len) {
7847 		btrfs_err(fs_info,
7848 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7849 			  physical_offset, devid, em->start, physical_len,
7850 			  stripe_len);
7851 		ret = -EUCLEAN;
7852 		goto out;
7853 	}
7854 
7855 	/*
7856 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7857 	 * space. Although kernel can handle it without problem, better to warn
7858 	 * the users.
7859 	 */
7860 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7861 		btrfs_warn(fs_info,
7862 		"devid %llu physical %llu len %llu inside the reserved space",
7863 			   devid, physical_offset, physical_len);
7864 
7865 	for (i = 0; i < map->num_stripes; i++) {
7866 		if (map->stripes[i].dev->devid == devid &&
7867 		    map->stripes[i].physical == physical_offset) {
7868 			found = true;
7869 			if (map->verified_stripes >= map->num_stripes) {
7870 				btrfs_err(fs_info,
7871 				"too many dev extents for chunk %llu found",
7872 					  em->start);
7873 				ret = -EUCLEAN;
7874 				goto out;
7875 			}
7876 			map->verified_stripes++;
7877 			break;
7878 		}
7879 	}
7880 	if (!found) {
7881 		btrfs_err(fs_info,
7882 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7883 			physical_offset, devid);
7884 		ret = -EUCLEAN;
7885 	}
7886 
7887 	/* Make sure no dev extent is beyond device boundary */
7888 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7889 	if (!dev) {
7890 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7891 		ret = -EUCLEAN;
7892 		goto out;
7893 	}
7894 
7895 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7896 		btrfs_err(fs_info,
7897 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7898 			  devid, physical_offset, physical_len,
7899 			  dev->disk_total_bytes);
7900 		ret = -EUCLEAN;
7901 		goto out;
7902 	}
7903 
7904 	if (dev->zone_info) {
7905 		u64 zone_size = dev->zone_info->zone_size;
7906 
7907 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7908 		    !IS_ALIGNED(physical_len, zone_size)) {
7909 			btrfs_err(fs_info,
7910 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7911 				  devid, physical_offset, physical_len);
7912 			ret = -EUCLEAN;
7913 			goto out;
7914 		}
7915 	}
7916 
7917 out:
7918 	free_extent_map(em);
7919 	return ret;
7920 }
7921 
7922 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7923 {
7924 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7925 	struct extent_map *em;
7926 	struct rb_node *node;
7927 	int ret = 0;
7928 
7929 	read_lock(&em_tree->lock);
7930 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7931 		em = rb_entry(node, struct extent_map, rb_node);
7932 		if (em->map_lookup->num_stripes !=
7933 		    em->map_lookup->verified_stripes) {
7934 			btrfs_err(fs_info,
7935 			"chunk %llu has missing dev extent, have %d expect %d",
7936 				  em->start, em->map_lookup->verified_stripes,
7937 				  em->map_lookup->num_stripes);
7938 			ret = -EUCLEAN;
7939 			goto out;
7940 		}
7941 	}
7942 out:
7943 	read_unlock(&em_tree->lock);
7944 	return ret;
7945 }
7946 
7947 /*
7948  * Ensure that all dev extents are mapped to correct chunk, otherwise
7949  * later chunk allocation/free would cause unexpected behavior.
7950  *
7951  * NOTE: This will iterate through the whole device tree, which should be of
7952  * the same size level as the chunk tree.  This slightly increases mount time.
7953  */
7954 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7955 {
7956 	struct btrfs_path *path;
7957 	struct btrfs_root *root = fs_info->dev_root;
7958 	struct btrfs_key key;
7959 	u64 prev_devid = 0;
7960 	u64 prev_dev_ext_end = 0;
7961 	int ret = 0;
7962 
7963 	/*
7964 	 * We don't have a dev_root because we mounted with ignorebadroots and
7965 	 * failed to load the root, so we want to skip the verification in this
7966 	 * case for sure.
7967 	 *
7968 	 * However if the dev root is fine, but the tree itself is corrupted
7969 	 * we'd still fail to mount.  This verification is only to make sure
7970 	 * writes can happen safely, so instead just bypass this check
7971 	 * completely in the case of IGNOREBADROOTS.
7972 	 */
7973 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7974 		return 0;
7975 
7976 	key.objectid = 1;
7977 	key.type = BTRFS_DEV_EXTENT_KEY;
7978 	key.offset = 0;
7979 
7980 	path = btrfs_alloc_path();
7981 	if (!path)
7982 		return -ENOMEM;
7983 
7984 	path->reada = READA_FORWARD;
7985 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7986 	if (ret < 0)
7987 		goto out;
7988 
7989 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7990 		ret = btrfs_next_leaf(root, path);
7991 		if (ret < 0)
7992 			goto out;
7993 		/* No dev extents at all? Not good */
7994 		if (ret > 0) {
7995 			ret = -EUCLEAN;
7996 			goto out;
7997 		}
7998 	}
7999 	while (1) {
8000 		struct extent_buffer *leaf = path->nodes[0];
8001 		struct btrfs_dev_extent *dext;
8002 		int slot = path->slots[0];
8003 		u64 chunk_offset;
8004 		u64 physical_offset;
8005 		u64 physical_len;
8006 		u64 devid;
8007 
8008 		btrfs_item_key_to_cpu(leaf, &key, slot);
8009 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8010 			break;
8011 		devid = key.objectid;
8012 		physical_offset = key.offset;
8013 
8014 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8015 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8016 		physical_len = btrfs_dev_extent_length(leaf, dext);
8017 
8018 		/* Check if this dev extent overlaps with the previous one */
8019 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8020 			btrfs_err(fs_info,
8021 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8022 				  devid, physical_offset, prev_dev_ext_end);
8023 			ret = -EUCLEAN;
8024 			goto out;
8025 		}
8026 
8027 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8028 					    physical_offset, physical_len);
8029 		if (ret < 0)
8030 			goto out;
8031 		prev_devid = devid;
8032 		prev_dev_ext_end = physical_offset + physical_len;
8033 
8034 		ret = btrfs_next_item(root, path);
8035 		if (ret < 0)
8036 			goto out;
8037 		if (ret > 0) {
8038 			ret = 0;
8039 			break;
8040 		}
8041 	}
8042 
8043 	/* Ensure all chunks have corresponding dev extents */
8044 	ret = verify_chunk_dev_extent_mapping(fs_info);
8045 out:
8046 	btrfs_free_path(path);
8047 	return ret;
8048 }
8049 
8050 /*
8051  * Check whether the given block group or device is pinned by any inode being
8052  * used as a swapfile.
8053  */
8054 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8055 {
8056 	struct btrfs_swapfile_pin *sp;
8057 	struct rb_node *node;
8058 
8059 	spin_lock(&fs_info->swapfile_pins_lock);
8060 	node = fs_info->swapfile_pins.rb_node;
8061 	while (node) {
8062 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8063 		if (ptr < sp->ptr)
8064 			node = node->rb_left;
8065 		else if (ptr > sp->ptr)
8066 			node = node->rb_right;
8067 		else
8068 			break;
8069 	}
8070 	spin_unlock(&fs_info->swapfile_pins_lock);
8071 	return node != NULL;
8072 }
8073 
8074 static int relocating_repair_kthread(void *data)
8075 {
8076 	struct btrfs_block_group *cache = data;
8077 	struct btrfs_fs_info *fs_info = cache->fs_info;
8078 	u64 target;
8079 	int ret = 0;
8080 
8081 	target = cache->start;
8082 	btrfs_put_block_group(cache);
8083 
8084 	sb_start_write(fs_info->sb);
8085 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8086 		btrfs_info(fs_info,
8087 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8088 			   target);
8089 		sb_end_write(fs_info->sb);
8090 		return -EBUSY;
8091 	}
8092 
8093 	mutex_lock(&fs_info->reclaim_bgs_lock);
8094 
8095 	/* Ensure block group still exists */
8096 	cache = btrfs_lookup_block_group(fs_info, target);
8097 	if (!cache)
8098 		goto out;
8099 
8100 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8101 		goto out;
8102 
8103 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8104 	if (ret < 0)
8105 		goto out;
8106 
8107 	btrfs_info(fs_info,
8108 		   "zoned: relocating block group %llu to repair IO failure",
8109 		   target);
8110 	ret = btrfs_relocate_chunk(fs_info, target);
8111 
8112 out:
8113 	if (cache)
8114 		btrfs_put_block_group(cache);
8115 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8116 	btrfs_exclop_finish(fs_info);
8117 	sb_end_write(fs_info->sb);
8118 
8119 	return ret;
8120 }
8121 
8122 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8123 {
8124 	struct btrfs_block_group *cache;
8125 
8126 	if (!btrfs_is_zoned(fs_info))
8127 		return false;
8128 
8129 	/* Do not attempt to repair in degraded state */
8130 	if (btrfs_test_opt(fs_info, DEGRADED))
8131 		return true;
8132 
8133 	cache = btrfs_lookup_block_group(fs_info, logical);
8134 	if (!cache)
8135 		return true;
8136 
8137 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8138 		btrfs_put_block_group(cache);
8139 		return true;
8140 	}
8141 
8142 	kthread_run(relocating_repair_kthread, cache,
8143 		    "btrfs-relocating-repair");
8144 
8145 	return true;
8146 }
8147