1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include <linux/namei.h> 18 #include "misc.h" 19 #include "ctree.h" 20 #include "extent_map.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "async-thread.h" 27 #include "check-integrity.h" 28 #include "rcu-string.h" 29 #include "dev-replace.h" 30 #include "sysfs.h" 31 #include "tree-checker.h" 32 #include "space-info.h" 33 #include "block-group.h" 34 #include "discard.h" 35 #include "zoned.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 42 [BTRFS_RAID_RAID10] = { 43 .sub_stripes = 2, 44 .dev_stripes = 1, 45 .devs_max = 0, /* 0 == as many as possible */ 46 .devs_min = 2, 47 .tolerated_failures = 1, 48 .devs_increment = 2, 49 .ncopies = 2, 50 .nparity = 0, 51 .raid_name = "raid10", 52 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 53 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 .nparity = 0, 64 .raid_name = "raid1", 65 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 66 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 67 }, 68 [BTRFS_RAID_RAID1C3] = { 69 .sub_stripes = 1, 70 .dev_stripes = 1, 71 .devs_max = 3, 72 .devs_min = 3, 73 .tolerated_failures = 2, 74 .devs_increment = 3, 75 .ncopies = 3, 76 .nparity = 0, 77 .raid_name = "raid1c3", 78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 79 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 80 }, 81 [BTRFS_RAID_RAID1C4] = { 82 .sub_stripes = 1, 83 .dev_stripes = 1, 84 .devs_max = 4, 85 .devs_min = 4, 86 .tolerated_failures = 3, 87 .devs_increment = 4, 88 .ncopies = 4, 89 .nparity = 0, 90 .raid_name = "raid1c4", 91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 92 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 93 }, 94 [BTRFS_RAID_DUP] = { 95 .sub_stripes = 1, 96 .dev_stripes = 2, 97 .devs_max = 1, 98 .devs_min = 1, 99 .tolerated_failures = 0, 100 .devs_increment = 1, 101 .ncopies = 2, 102 .nparity = 0, 103 .raid_name = "dup", 104 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 105 .mindev_error = 0, 106 }, 107 [BTRFS_RAID_RAID0] = { 108 .sub_stripes = 1, 109 .dev_stripes = 1, 110 .devs_max = 0, 111 .devs_min = 1, 112 .tolerated_failures = 0, 113 .devs_increment = 1, 114 .ncopies = 1, 115 .nparity = 0, 116 .raid_name = "raid0", 117 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 118 .mindev_error = 0, 119 }, 120 [BTRFS_RAID_SINGLE] = { 121 .sub_stripes = 1, 122 .dev_stripes = 1, 123 .devs_max = 1, 124 .devs_min = 1, 125 .tolerated_failures = 0, 126 .devs_increment = 1, 127 .ncopies = 1, 128 .nparity = 0, 129 .raid_name = "single", 130 .bg_flag = 0, 131 .mindev_error = 0, 132 }, 133 [BTRFS_RAID_RAID5] = { 134 .sub_stripes = 1, 135 .dev_stripes = 1, 136 .devs_max = 0, 137 .devs_min = 2, 138 .tolerated_failures = 1, 139 .devs_increment = 1, 140 .ncopies = 1, 141 .nparity = 1, 142 .raid_name = "raid5", 143 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 144 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 145 }, 146 [BTRFS_RAID_RAID6] = { 147 .sub_stripes = 1, 148 .dev_stripes = 1, 149 .devs_max = 0, 150 .devs_min = 3, 151 .tolerated_failures = 2, 152 .devs_increment = 1, 153 .ncopies = 1, 154 .nparity = 2, 155 .raid_name = "raid6", 156 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 157 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 158 }, 159 }; 160 161 /* 162 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 163 * can be used as index to access btrfs_raid_array[]. 164 */ 165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 166 { 167 if (flags & BTRFS_BLOCK_GROUP_RAID10) 168 return BTRFS_RAID_RAID10; 169 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 170 return BTRFS_RAID_RAID1; 171 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3) 172 return BTRFS_RAID_RAID1C3; 173 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4) 174 return BTRFS_RAID_RAID1C4; 175 else if (flags & BTRFS_BLOCK_GROUP_DUP) 176 return BTRFS_RAID_DUP; 177 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 178 return BTRFS_RAID_RAID0; 179 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 180 return BTRFS_RAID_RAID5; 181 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 182 return BTRFS_RAID_RAID6; 183 184 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 /* 198 * Fill @buf with textual description of @bg_flags, no more than @size_buf 199 * bytes including terminating null byte. 200 */ 201 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 202 { 203 int i; 204 int ret; 205 char *bp = buf; 206 u64 flags = bg_flags; 207 u32 size_bp = size_buf; 208 209 if (!flags) { 210 strcpy(bp, "NONE"); 211 return; 212 } 213 214 #define DESCRIBE_FLAG(flag, desc) \ 215 do { \ 216 if (flags & (flag)) { \ 217 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 218 if (ret < 0 || ret >= size_bp) \ 219 goto out_overflow; \ 220 size_bp -= ret; \ 221 bp += ret; \ 222 flags &= ~(flag); \ 223 } \ 224 } while (0) 225 226 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 227 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 228 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 229 230 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 231 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 232 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 233 btrfs_raid_array[i].raid_name); 234 #undef DESCRIBE_FLAG 235 236 if (flags) { 237 ret = snprintf(bp, size_bp, "0x%llx|", flags); 238 size_bp -= ret; 239 } 240 241 if (size_bp < size_buf) 242 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 243 244 /* 245 * The text is trimmed, it's up to the caller to provide sufficiently 246 * large buffer 247 */ 248 out_overflow:; 249 } 250 251 static int init_first_rw_device(struct btrfs_trans_handle *trans); 252 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 253 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 255 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 256 enum btrfs_map_op op, 257 u64 logical, u64 *length, 258 struct btrfs_io_context **bioc_ret, 259 int mirror_num, int need_raid_map); 260 261 /* 262 * Device locking 263 * ============== 264 * 265 * There are several mutexes that protect manipulation of devices and low-level 266 * structures like chunks but not block groups, extents or files 267 * 268 * uuid_mutex (global lock) 269 * ------------------------ 270 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 271 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 272 * device) or requested by the device= mount option 273 * 274 * the mutex can be very coarse and can cover long-running operations 275 * 276 * protects: updates to fs_devices counters like missing devices, rw devices, 277 * seeding, structure cloning, opening/closing devices at mount/umount time 278 * 279 * global::fs_devs - add, remove, updates to the global list 280 * 281 * does not protect: manipulation of the fs_devices::devices list in general 282 * but in mount context it could be used to exclude list modifications by eg. 283 * scan ioctl 284 * 285 * btrfs_device::name - renames (write side), read is RCU 286 * 287 * fs_devices::device_list_mutex (per-fs, with RCU) 288 * ------------------------------------------------ 289 * protects updates to fs_devices::devices, ie. adding and deleting 290 * 291 * simple list traversal with read-only actions can be done with RCU protection 292 * 293 * may be used to exclude some operations from running concurrently without any 294 * modifications to the list (see write_all_supers) 295 * 296 * Is not required at mount and close times, because our device list is 297 * protected by the uuid_mutex at that point. 298 * 299 * balance_mutex 300 * ------------- 301 * protects balance structures (status, state) and context accessed from 302 * several places (internally, ioctl) 303 * 304 * chunk_mutex 305 * ----------- 306 * protects chunks, adding or removing during allocation, trim or when a new 307 * device is added/removed. Additionally it also protects post_commit_list of 308 * individual devices, since they can be added to the transaction's 309 * post_commit_list only with chunk_mutex held. 310 * 311 * cleaner_mutex 312 * ------------- 313 * a big lock that is held by the cleaner thread and prevents running subvolume 314 * cleaning together with relocation or delayed iputs 315 * 316 * 317 * Lock nesting 318 * ============ 319 * 320 * uuid_mutex 321 * device_list_mutex 322 * chunk_mutex 323 * balance_mutex 324 * 325 * 326 * Exclusive operations 327 * ==================== 328 * 329 * Maintains the exclusivity of the following operations that apply to the 330 * whole filesystem and cannot run in parallel. 331 * 332 * - Balance (*) 333 * - Device add 334 * - Device remove 335 * - Device replace (*) 336 * - Resize 337 * 338 * The device operations (as above) can be in one of the following states: 339 * 340 * - Running state 341 * - Paused state 342 * - Completed state 343 * 344 * Only device operations marked with (*) can go into the Paused state for the 345 * following reasons: 346 * 347 * - ioctl (only Balance can be Paused through ioctl) 348 * - filesystem remounted as read-only 349 * - filesystem unmounted and mounted as read-only 350 * - system power-cycle and filesystem mounted as read-only 351 * - filesystem or device errors leading to forced read-only 352 * 353 * The status of exclusive operation is set and cleared atomically. 354 * During the course of Paused state, fs_info::exclusive_operation remains set. 355 * A device operation in Paused or Running state can be canceled or resumed 356 * either by ioctl (Balance only) or when remounted as read-write. 357 * The exclusive status is cleared when the device operation is canceled or 358 * completed. 359 */ 360 361 DEFINE_MUTEX(uuid_mutex); 362 static LIST_HEAD(fs_uuids); 363 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 364 { 365 return &fs_uuids; 366 } 367 368 /* 369 * alloc_fs_devices - allocate struct btrfs_fs_devices 370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 371 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 372 * 373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 374 * The returned struct is not linked onto any lists and can be destroyed with 375 * kfree() right away. 376 */ 377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 378 const u8 *metadata_fsid) 379 { 380 struct btrfs_fs_devices *fs_devs; 381 382 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 383 if (!fs_devs) 384 return ERR_PTR(-ENOMEM); 385 386 mutex_init(&fs_devs->device_list_mutex); 387 388 INIT_LIST_HEAD(&fs_devs->devices); 389 INIT_LIST_HEAD(&fs_devs->alloc_list); 390 INIT_LIST_HEAD(&fs_devs->fs_list); 391 INIT_LIST_HEAD(&fs_devs->seed_list); 392 if (fsid) 393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 394 395 if (metadata_fsid) 396 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 397 else if (fsid) 398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 399 400 return fs_devs; 401 } 402 403 void btrfs_free_device(struct btrfs_device *device) 404 { 405 WARN_ON(!list_empty(&device->post_commit_list)); 406 rcu_string_free(device->name); 407 extent_io_tree_release(&device->alloc_state); 408 bio_put(device->flush_bio); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 WARN_ON(fs_devices->opened); 417 while (!list_empty(&fs_devices->devices)) { 418 device = list_entry(fs_devices->devices.next, 419 struct btrfs_device, dev_list); 420 list_del(&device->dev_list); 421 btrfs_free_device(device); 422 } 423 kfree(fs_devices); 424 } 425 426 void __exit btrfs_cleanup_fs_uuids(void) 427 { 428 struct btrfs_fs_devices *fs_devices; 429 430 while (!list_empty(&fs_uuids)) { 431 fs_devices = list_entry(fs_uuids.next, 432 struct btrfs_fs_devices, fs_list); 433 list_del(&fs_devices->fs_list); 434 free_fs_devices(fs_devices); 435 } 436 } 437 438 static noinline struct btrfs_fs_devices *find_fsid( 439 const u8 *fsid, const u8 *metadata_fsid) 440 { 441 struct btrfs_fs_devices *fs_devices; 442 443 ASSERT(fsid); 444 445 /* Handle non-split brain cases */ 446 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 447 if (metadata_fsid) { 448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 449 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 450 BTRFS_FSID_SIZE) == 0) 451 return fs_devices; 452 } else { 453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 454 return fs_devices; 455 } 456 } 457 return NULL; 458 } 459 460 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 461 struct btrfs_super_block *disk_super) 462 { 463 464 struct btrfs_fs_devices *fs_devices; 465 466 /* 467 * Handle scanned device having completed its fsid change but 468 * belonging to a fs_devices that was created by first scanning 469 * a device which didn't have its fsid/metadata_uuid changed 470 * at all and the CHANGING_FSID_V2 flag set. 471 */ 472 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 473 if (fs_devices->fsid_change && 474 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 475 BTRFS_FSID_SIZE) == 0 && 476 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 477 BTRFS_FSID_SIZE) == 0) { 478 return fs_devices; 479 } 480 } 481 /* 482 * Handle scanned device having completed its fsid change but 483 * belonging to a fs_devices that was created by a device that 484 * has an outdated pair of fsid/metadata_uuid and 485 * CHANGING_FSID_V2 flag set. 486 */ 487 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 488 if (fs_devices->fsid_change && 489 memcmp(fs_devices->metadata_uuid, 490 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 491 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 492 BTRFS_FSID_SIZE) == 0) { 493 return fs_devices; 494 } 495 } 496 497 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 498 } 499 500 501 static int 502 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 503 int flush, struct block_device **bdev, 504 struct btrfs_super_block **disk_super) 505 { 506 int ret; 507 508 *bdev = blkdev_get_by_path(device_path, flags, holder); 509 510 if (IS_ERR(*bdev)) { 511 ret = PTR_ERR(*bdev); 512 goto error; 513 } 514 515 if (flush) 516 sync_blockdev(*bdev); 517 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 518 if (ret) { 519 blkdev_put(*bdev, flags); 520 goto error; 521 } 522 invalidate_bdev(*bdev); 523 *disk_super = btrfs_read_dev_super(*bdev); 524 if (IS_ERR(*disk_super)) { 525 ret = PTR_ERR(*disk_super); 526 blkdev_put(*bdev, flags); 527 goto error; 528 } 529 530 return 0; 531 532 error: 533 *bdev = NULL; 534 return ret; 535 } 536 537 /** 538 * Search and remove all stale devices (which are not mounted). 539 * When both inputs are NULL, it will search and release all stale devices. 540 * 541 * @devt: Optional. When provided will it release all unmounted devices 542 * matching this devt only. 543 * @skip_device: Optional. Will skip this device when searching for the stale 544 * devices. 545 * 546 * Return: 0 for success or if @devt is 0. 547 * -EBUSY if @devt is a mounted device. 548 * -ENOENT if @devt does not match any device in the list. 549 */ 550 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 551 { 552 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 553 struct btrfs_device *device, *tmp_device; 554 int ret = 0; 555 556 lockdep_assert_held(&uuid_mutex); 557 558 if (devt) 559 ret = -ENOENT; 560 561 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 562 563 mutex_lock(&fs_devices->device_list_mutex); 564 list_for_each_entry_safe(device, tmp_device, 565 &fs_devices->devices, dev_list) { 566 if (skip_device && skip_device == device) 567 continue; 568 if (devt && devt != device->devt) 569 continue; 570 if (fs_devices->opened) { 571 /* for an already deleted device return 0 */ 572 if (devt && ret != 0) 573 ret = -EBUSY; 574 break; 575 } 576 577 /* delete the stale device */ 578 fs_devices->num_devices--; 579 list_del(&device->dev_list); 580 btrfs_free_device(device); 581 582 ret = 0; 583 } 584 mutex_unlock(&fs_devices->device_list_mutex); 585 586 if (fs_devices->num_devices == 0) { 587 btrfs_sysfs_remove_fsid(fs_devices); 588 list_del(&fs_devices->fs_list); 589 free_fs_devices(fs_devices); 590 } 591 } 592 593 return ret; 594 } 595 596 /* 597 * This is only used on mount, and we are protected from competing things 598 * messing with our fs_devices by the uuid_mutex, thus we do not need the 599 * fs_devices->device_list_mutex here. 600 */ 601 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 602 struct btrfs_device *device, fmode_t flags, 603 void *holder) 604 { 605 struct block_device *bdev; 606 struct btrfs_super_block *disk_super; 607 u64 devid; 608 int ret; 609 610 if (device->bdev) 611 return -EINVAL; 612 if (!device->name) 613 return -EINVAL; 614 615 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 616 &bdev, &disk_super); 617 if (ret) 618 return ret; 619 620 devid = btrfs_stack_device_id(&disk_super->dev_item); 621 if (devid != device->devid) 622 goto error_free_page; 623 624 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 625 goto error_free_page; 626 627 device->generation = btrfs_super_generation(disk_super); 628 629 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 630 if (btrfs_super_incompat_flags(disk_super) & 631 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 632 pr_err( 633 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 634 goto error_free_page; 635 } 636 637 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 638 fs_devices->seeding = true; 639 } else { 640 if (bdev_read_only(bdev)) 641 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 642 else 643 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 644 } 645 646 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 647 fs_devices->rotating = true; 648 649 device->bdev = bdev; 650 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 651 device->mode = flags; 652 653 fs_devices->open_devices++; 654 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 655 device->devid != BTRFS_DEV_REPLACE_DEVID) { 656 fs_devices->rw_devices++; 657 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 658 } 659 btrfs_release_disk_super(disk_super); 660 661 return 0; 662 663 error_free_page: 664 btrfs_release_disk_super(disk_super); 665 blkdev_put(bdev, flags); 666 667 return -EINVAL; 668 } 669 670 /* 671 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 672 * being created with a disk that has already completed its fsid change. Such 673 * disk can belong to an fs which has its FSID changed or to one which doesn't. 674 * Handle both cases here. 675 */ 676 static struct btrfs_fs_devices *find_fsid_inprogress( 677 struct btrfs_super_block *disk_super) 678 { 679 struct btrfs_fs_devices *fs_devices; 680 681 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 682 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 683 BTRFS_FSID_SIZE) != 0 && 684 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 685 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 686 return fs_devices; 687 } 688 } 689 690 return find_fsid(disk_super->fsid, NULL); 691 } 692 693 694 static struct btrfs_fs_devices *find_fsid_changed( 695 struct btrfs_super_block *disk_super) 696 { 697 struct btrfs_fs_devices *fs_devices; 698 699 /* 700 * Handles the case where scanned device is part of an fs that had 701 * multiple successful changes of FSID but currently device didn't 702 * observe it. Meaning our fsid will be different than theirs. We need 703 * to handle two subcases : 704 * 1 - The fs still continues to have different METADATA/FSID uuids. 705 * 2 - The fs is switched back to its original FSID (METADATA/FSID 706 * are equal). 707 */ 708 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 709 /* Changed UUIDs */ 710 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 711 BTRFS_FSID_SIZE) != 0 && 712 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 713 BTRFS_FSID_SIZE) == 0 && 714 memcmp(fs_devices->fsid, disk_super->fsid, 715 BTRFS_FSID_SIZE) != 0) 716 return fs_devices; 717 718 /* Unchanged UUIDs */ 719 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 720 BTRFS_FSID_SIZE) == 0 && 721 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 722 BTRFS_FSID_SIZE) == 0) 723 return fs_devices; 724 } 725 726 return NULL; 727 } 728 729 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 730 struct btrfs_super_block *disk_super) 731 { 732 struct btrfs_fs_devices *fs_devices; 733 734 /* 735 * Handle the case where the scanned device is part of an fs whose last 736 * metadata UUID change reverted it to the original FSID. At the same 737 * time * fs_devices was first created by another constitutent device 738 * which didn't fully observe the operation. This results in an 739 * btrfs_fs_devices created with metadata/fsid different AND 740 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 741 * fs_devices equal to the FSID of the disk. 742 */ 743 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 744 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 745 BTRFS_FSID_SIZE) != 0 && 746 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 747 BTRFS_FSID_SIZE) == 0 && 748 fs_devices->fsid_change) 749 return fs_devices; 750 } 751 752 return NULL; 753 } 754 /* 755 * Add new device to list of registered devices 756 * 757 * Returns: 758 * device pointer which was just added or updated when successful 759 * error pointer when failed 760 */ 761 static noinline struct btrfs_device *device_list_add(const char *path, 762 struct btrfs_super_block *disk_super, 763 bool *new_device_added) 764 { 765 struct btrfs_device *device; 766 struct btrfs_fs_devices *fs_devices = NULL; 767 struct rcu_string *name; 768 u64 found_transid = btrfs_super_generation(disk_super); 769 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 770 dev_t path_devt; 771 int error; 772 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 773 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 774 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 775 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 776 777 error = lookup_bdev(path, &path_devt); 778 if (error) 779 return ERR_PTR(error); 780 781 if (fsid_change_in_progress) { 782 if (!has_metadata_uuid) 783 fs_devices = find_fsid_inprogress(disk_super); 784 else 785 fs_devices = find_fsid_changed(disk_super); 786 } else if (has_metadata_uuid) { 787 fs_devices = find_fsid_with_metadata_uuid(disk_super); 788 } else { 789 fs_devices = find_fsid_reverted_metadata(disk_super); 790 if (!fs_devices) 791 fs_devices = find_fsid(disk_super->fsid, NULL); 792 } 793 794 795 if (!fs_devices) { 796 if (has_metadata_uuid) 797 fs_devices = alloc_fs_devices(disk_super->fsid, 798 disk_super->metadata_uuid); 799 else 800 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 801 802 if (IS_ERR(fs_devices)) 803 return ERR_CAST(fs_devices); 804 805 fs_devices->fsid_change = fsid_change_in_progress; 806 807 mutex_lock(&fs_devices->device_list_mutex); 808 list_add(&fs_devices->fs_list, &fs_uuids); 809 810 device = NULL; 811 } else { 812 struct btrfs_dev_lookup_args args = { 813 .devid = devid, 814 .uuid = disk_super->dev_item.uuid, 815 }; 816 817 mutex_lock(&fs_devices->device_list_mutex); 818 device = btrfs_find_device(fs_devices, &args); 819 820 /* 821 * If this disk has been pulled into an fs devices created by 822 * a device which had the CHANGING_FSID_V2 flag then replace the 823 * metadata_uuid/fsid values of the fs_devices. 824 */ 825 if (fs_devices->fsid_change && 826 found_transid > fs_devices->latest_generation) { 827 memcpy(fs_devices->fsid, disk_super->fsid, 828 BTRFS_FSID_SIZE); 829 830 if (has_metadata_uuid) 831 memcpy(fs_devices->metadata_uuid, 832 disk_super->metadata_uuid, 833 BTRFS_FSID_SIZE); 834 else 835 memcpy(fs_devices->metadata_uuid, 836 disk_super->fsid, BTRFS_FSID_SIZE); 837 838 fs_devices->fsid_change = false; 839 } 840 } 841 842 if (!device) { 843 if (fs_devices->opened) { 844 mutex_unlock(&fs_devices->device_list_mutex); 845 return ERR_PTR(-EBUSY); 846 } 847 848 device = btrfs_alloc_device(NULL, &devid, 849 disk_super->dev_item.uuid); 850 if (IS_ERR(device)) { 851 mutex_unlock(&fs_devices->device_list_mutex); 852 /* we can safely leave the fs_devices entry around */ 853 return device; 854 } 855 856 name = rcu_string_strdup(path, GFP_NOFS); 857 if (!name) { 858 btrfs_free_device(device); 859 mutex_unlock(&fs_devices->device_list_mutex); 860 return ERR_PTR(-ENOMEM); 861 } 862 rcu_assign_pointer(device->name, name); 863 device->devt = path_devt; 864 865 list_add_rcu(&device->dev_list, &fs_devices->devices); 866 fs_devices->num_devices++; 867 868 device->fs_devices = fs_devices; 869 *new_device_added = true; 870 871 if (disk_super->label[0]) 872 pr_info( 873 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 874 disk_super->label, devid, found_transid, path, 875 current->comm, task_pid_nr(current)); 876 else 877 pr_info( 878 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 879 disk_super->fsid, devid, found_transid, path, 880 current->comm, task_pid_nr(current)); 881 882 } else if (!device->name || strcmp(device->name->str, path)) { 883 /* 884 * When FS is already mounted. 885 * 1. If you are here and if the device->name is NULL that 886 * means this device was missing at time of FS mount. 887 * 2. If you are here and if the device->name is different 888 * from 'path' that means either 889 * a. The same device disappeared and reappeared with 890 * different name. or 891 * b. The missing-disk-which-was-replaced, has 892 * reappeared now. 893 * 894 * We must allow 1 and 2a above. But 2b would be a spurious 895 * and unintentional. 896 * 897 * Further in case of 1 and 2a above, the disk at 'path' 898 * would have missed some transaction when it was away and 899 * in case of 2a the stale bdev has to be updated as well. 900 * 2b must not be allowed at all time. 901 */ 902 903 /* 904 * For now, we do allow update to btrfs_fs_device through the 905 * btrfs dev scan cli after FS has been mounted. We're still 906 * tracking a problem where systems fail mount by subvolume id 907 * when we reject replacement on a mounted FS. 908 */ 909 if (!fs_devices->opened && found_transid < device->generation) { 910 /* 911 * That is if the FS is _not_ mounted and if you 912 * are here, that means there is more than one 913 * disk with same uuid and devid.We keep the one 914 * with larger generation number or the last-in if 915 * generation are equal. 916 */ 917 mutex_unlock(&fs_devices->device_list_mutex); 918 return ERR_PTR(-EEXIST); 919 } 920 921 /* 922 * We are going to replace the device path for a given devid, 923 * make sure it's the same device if the device is mounted 924 * 925 * NOTE: the device->fs_info may not be reliable here so pass 926 * in a NULL to message helpers instead. This avoids a possible 927 * use-after-free when the fs_info and fs_info->sb are already 928 * torn down. 929 */ 930 if (device->bdev) { 931 if (device->devt != path_devt) { 932 mutex_unlock(&fs_devices->device_list_mutex); 933 btrfs_warn_in_rcu(NULL, 934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 935 path, devid, found_transid, 936 current->comm, 937 task_pid_nr(current)); 938 return ERR_PTR(-EEXIST); 939 } 940 btrfs_info_in_rcu(NULL, 941 "devid %llu device path %s changed to %s scanned by %s (%d)", 942 devid, rcu_str_deref(device->name), 943 path, current->comm, 944 task_pid_nr(current)); 945 } 946 947 name = rcu_string_strdup(path, GFP_NOFS); 948 if (!name) { 949 mutex_unlock(&fs_devices->device_list_mutex); 950 return ERR_PTR(-ENOMEM); 951 } 952 rcu_string_free(device->name); 953 rcu_assign_pointer(device->name, name); 954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 955 fs_devices->missing_devices--; 956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 957 } 958 device->devt = path_devt; 959 } 960 961 /* 962 * Unmount does not free the btrfs_device struct but would zero 963 * generation along with most of the other members. So just update 964 * it back. We need it to pick the disk with largest generation 965 * (as above). 966 */ 967 if (!fs_devices->opened) { 968 device->generation = found_transid; 969 fs_devices->latest_generation = max_t(u64, found_transid, 970 fs_devices->latest_generation); 971 } 972 973 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 974 975 mutex_unlock(&fs_devices->device_list_mutex); 976 return device; 977 } 978 979 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 980 { 981 struct btrfs_fs_devices *fs_devices; 982 struct btrfs_device *device; 983 struct btrfs_device *orig_dev; 984 int ret = 0; 985 986 lockdep_assert_held(&uuid_mutex); 987 988 fs_devices = alloc_fs_devices(orig->fsid, NULL); 989 if (IS_ERR(fs_devices)) 990 return fs_devices; 991 992 fs_devices->total_devices = orig->total_devices; 993 994 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 995 struct rcu_string *name; 996 997 device = btrfs_alloc_device(NULL, &orig_dev->devid, 998 orig_dev->uuid); 999 if (IS_ERR(device)) { 1000 ret = PTR_ERR(device); 1001 goto error; 1002 } 1003 1004 /* 1005 * This is ok to do without rcu read locked because we hold the 1006 * uuid mutex so nothing we touch in here is going to disappear. 1007 */ 1008 if (orig_dev->name) { 1009 name = rcu_string_strdup(orig_dev->name->str, 1010 GFP_KERNEL); 1011 if (!name) { 1012 btrfs_free_device(device); 1013 ret = -ENOMEM; 1014 goto error; 1015 } 1016 rcu_assign_pointer(device->name, name); 1017 } 1018 1019 list_add(&device->dev_list, &fs_devices->devices); 1020 device->fs_devices = fs_devices; 1021 fs_devices->num_devices++; 1022 } 1023 return fs_devices; 1024 error: 1025 free_fs_devices(fs_devices); 1026 return ERR_PTR(ret); 1027 } 1028 1029 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1030 struct btrfs_device **latest_dev) 1031 { 1032 struct btrfs_device *device, *next; 1033 1034 /* This is the initialized path, it is safe to release the devices. */ 1035 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1036 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1037 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1038 &device->dev_state) && 1039 !test_bit(BTRFS_DEV_STATE_MISSING, 1040 &device->dev_state) && 1041 (!*latest_dev || 1042 device->generation > (*latest_dev)->generation)) { 1043 *latest_dev = device; 1044 } 1045 continue; 1046 } 1047 1048 /* 1049 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1050 * in btrfs_init_dev_replace() so just continue. 1051 */ 1052 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1053 continue; 1054 1055 if (device->bdev) { 1056 blkdev_put(device->bdev, device->mode); 1057 device->bdev = NULL; 1058 fs_devices->open_devices--; 1059 } 1060 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1061 list_del_init(&device->dev_alloc_list); 1062 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1063 fs_devices->rw_devices--; 1064 } 1065 list_del_init(&device->dev_list); 1066 fs_devices->num_devices--; 1067 btrfs_free_device(device); 1068 } 1069 1070 } 1071 1072 /* 1073 * After we have read the system tree and know devids belonging to this 1074 * filesystem, remove the device which does not belong there. 1075 */ 1076 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1077 { 1078 struct btrfs_device *latest_dev = NULL; 1079 struct btrfs_fs_devices *seed_dev; 1080 1081 mutex_lock(&uuid_mutex); 1082 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1083 1084 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1085 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1086 1087 fs_devices->latest_dev = latest_dev; 1088 1089 mutex_unlock(&uuid_mutex); 1090 } 1091 1092 static void btrfs_close_bdev(struct btrfs_device *device) 1093 { 1094 if (!device->bdev) 1095 return; 1096 1097 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1098 sync_blockdev(device->bdev); 1099 invalidate_bdev(device->bdev); 1100 } 1101 1102 blkdev_put(device->bdev, device->mode); 1103 } 1104 1105 static void btrfs_close_one_device(struct btrfs_device *device) 1106 { 1107 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1108 1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1110 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1111 list_del_init(&device->dev_alloc_list); 1112 fs_devices->rw_devices--; 1113 } 1114 1115 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1116 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1117 1118 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1119 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1120 fs_devices->missing_devices--; 1121 } 1122 1123 btrfs_close_bdev(device); 1124 if (device->bdev) { 1125 fs_devices->open_devices--; 1126 device->bdev = NULL; 1127 } 1128 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1129 btrfs_destroy_dev_zone_info(device); 1130 1131 device->fs_info = NULL; 1132 atomic_set(&device->dev_stats_ccnt, 0); 1133 extent_io_tree_release(&device->alloc_state); 1134 1135 /* 1136 * Reset the flush error record. We might have a transient flush error 1137 * in this mount, and if so we aborted the current transaction and set 1138 * the fs to an error state, guaranteeing no super blocks can be further 1139 * committed. However that error might be transient and if we unmount the 1140 * filesystem and mount it again, we should allow the mount to succeed 1141 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1142 * filesystem again we still get flush errors, then we will again abort 1143 * any transaction and set the error state, guaranteeing no commits of 1144 * unsafe super blocks. 1145 */ 1146 device->last_flush_error = 0; 1147 1148 /* Verify the device is back in a pristine state */ 1149 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1150 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1151 ASSERT(list_empty(&device->dev_alloc_list)); 1152 ASSERT(list_empty(&device->post_commit_list)); 1153 } 1154 1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1156 { 1157 struct btrfs_device *device, *tmp; 1158 1159 lockdep_assert_held(&uuid_mutex); 1160 1161 if (--fs_devices->opened > 0) 1162 return; 1163 1164 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1165 btrfs_close_one_device(device); 1166 1167 WARN_ON(fs_devices->open_devices); 1168 WARN_ON(fs_devices->rw_devices); 1169 fs_devices->opened = 0; 1170 fs_devices->seeding = false; 1171 fs_devices->fs_info = NULL; 1172 } 1173 1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 LIST_HEAD(list); 1177 struct btrfs_fs_devices *tmp; 1178 1179 mutex_lock(&uuid_mutex); 1180 close_fs_devices(fs_devices); 1181 if (!fs_devices->opened) 1182 list_splice_init(&fs_devices->seed_list, &list); 1183 1184 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1185 close_fs_devices(fs_devices); 1186 list_del(&fs_devices->seed_list); 1187 free_fs_devices(fs_devices); 1188 } 1189 mutex_unlock(&uuid_mutex); 1190 } 1191 1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1193 fmode_t flags, void *holder) 1194 { 1195 struct btrfs_device *device; 1196 struct btrfs_device *latest_dev = NULL; 1197 struct btrfs_device *tmp_device; 1198 1199 flags |= FMODE_EXCL; 1200 1201 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1202 dev_list) { 1203 int ret; 1204 1205 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1206 if (ret == 0 && 1207 (!latest_dev || device->generation > latest_dev->generation)) { 1208 latest_dev = device; 1209 } else if (ret == -ENODATA) { 1210 fs_devices->num_devices--; 1211 list_del(&device->dev_list); 1212 btrfs_free_device(device); 1213 } 1214 } 1215 if (fs_devices->open_devices == 0) 1216 return -EINVAL; 1217 1218 fs_devices->opened = 1; 1219 fs_devices->latest_dev = latest_dev; 1220 fs_devices->total_rw_bytes = 0; 1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1223 1224 return 0; 1225 } 1226 1227 static int devid_cmp(void *priv, const struct list_head *a, 1228 const struct list_head *b) 1229 { 1230 const struct btrfs_device *dev1, *dev2; 1231 1232 dev1 = list_entry(a, struct btrfs_device, dev_list); 1233 dev2 = list_entry(b, struct btrfs_device, dev_list); 1234 1235 if (dev1->devid < dev2->devid) 1236 return -1; 1237 else if (dev1->devid > dev2->devid) 1238 return 1; 1239 return 0; 1240 } 1241 1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1243 fmode_t flags, void *holder) 1244 { 1245 int ret; 1246 1247 lockdep_assert_held(&uuid_mutex); 1248 /* 1249 * The device_list_mutex cannot be taken here in case opening the 1250 * underlying device takes further locks like open_mutex. 1251 * 1252 * We also don't need the lock here as this is called during mount and 1253 * exclusion is provided by uuid_mutex 1254 */ 1255 1256 if (fs_devices->opened) { 1257 fs_devices->opened++; 1258 ret = 0; 1259 } else { 1260 list_sort(NULL, &fs_devices->devices, devid_cmp); 1261 ret = open_fs_devices(fs_devices, flags, holder); 1262 } 1263 1264 return ret; 1265 } 1266 1267 void btrfs_release_disk_super(struct btrfs_super_block *super) 1268 { 1269 struct page *page = virt_to_page(super); 1270 1271 put_page(page); 1272 } 1273 1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1275 u64 bytenr, u64 bytenr_orig) 1276 { 1277 struct btrfs_super_block *disk_super; 1278 struct page *page; 1279 void *p; 1280 pgoff_t index; 1281 1282 /* make sure our super fits in the device */ 1283 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1284 return ERR_PTR(-EINVAL); 1285 1286 /* make sure our super fits in the page */ 1287 if (sizeof(*disk_super) > PAGE_SIZE) 1288 return ERR_PTR(-EINVAL); 1289 1290 /* make sure our super doesn't straddle pages on disk */ 1291 index = bytenr >> PAGE_SHIFT; 1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1293 return ERR_PTR(-EINVAL); 1294 1295 /* pull in the page with our super */ 1296 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1297 1298 if (IS_ERR(page)) 1299 return ERR_CAST(page); 1300 1301 p = page_address(page); 1302 1303 /* align our pointer to the offset of the super block */ 1304 disk_super = p + offset_in_page(bytenr); 1305 1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1308 btrfs_release_disk_super(p); 1309 return ERR_PTR(-EINVAL); 1310 } 1311 1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1314 1315 return disk_super; 1316 } 1317 1318 int btrfs_forget_devices(dev_t devt) 1319 { 1320 int ret; 1321 1322 mutex_lock(&uuid_mutex); 1323 ret = btrfs_free_stale_devices(devt, NULL); 1324 mutex_unlock(&uuid_mutex); 1325 1326 return ret; 1327 } 1328 1329 /* 1330 * Look for a btrfs signature on a device. This may be called out of the mount path 1331 * and we are not allowed to call set_blocksize during the scan. The superblock 1332 * is read via pagecache 1333 */ 1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1335 void *holder) 1336 { 1337 struct btrfs_super_block *disk_super; 1338 bool new_device_added = false; 1339 struct btrfs_device *device = NULL; 1340 struct block_device *bdev; 1341 u64 bytenr, bytenr_orig; 1342 int ret; 1343 1344 lockdep_assert_held(&uuid_mutex); 1345 1346 /* 1347 * we would like to check all the supers, but that would make 1348 * a btrfs mount succeed after a mkfs from a different FS. 1349 * So, we need to add a special mount option to scan for 1350 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1351 */ 1352 flags |= FMODE_EXCL; 1353 1354 bdev = blkdev_get_by_path(path, flags, holder); 1355 if (IS_ERR(bdev)) 1356 return ERR_CAST(bdev); 1357 1358 bytenr_orig = btrfs_sb_offset(0); 1359 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1360 if (ret) { 1361 device = ERR_PTR(ret); 1362 goto error_bdev_put; 1363 } 1364 1365 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1366 if (IS_ERR(disk_super)) { 1367 device = ERR_CAST(disk_super); 1368 goto error_bdev_put; 1369 } 1370 1371 device = device_list_add(path, disk_super, &new_device_added); 1372 if (!IS_ERR(device) && new_device_added) 1373 btrfs_free_stale_devices(device->devt, device); 1374 1375 btrfs_release_disk_super(disk_super); 1376 1377 error_bdev_put: 1378 blkdev_put(bdev, flags); 1379 1380 return device; 1381 } 1382 1383 /* 1384 * Try to find a chunk that intersects [start, start + len] range and when one 1385 * such is found, record the end of it in *start 1386 */ 1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1388 u64 len) 1389 { 1390 u64 physical_start, physical_end; 1391 1392 lockdep_assert_held(&device->fs_info->chunk_mutex); 1393 1394 if (!find_first_extent_bit(&device->alloc_state, *start, 1395 &physical_start, &physical_end, 1396 CHUNK_ALLOCATED, NULL)) { 1397 1398 if (in_range(physical_start, *start, len) || 1399 in_range(*start, physical_start, 1400 physical_end - physical_start)) { 1401 *start = physical_end + 1; 1402 return true; 1403 } 1404 } 1405 return false; 1406 } 1407 1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1409 { 1410 switch (device->fs_devices->chunk_alloc_policy) { 1411 case BTRFS_CHUNK_ALLOC_REGULAR: 1412 /* 1413 * We don't want to overwrite the superblock on the drive nor 1414 * any area used by the boot loader (grub for example), so we 1415 * make sure to start at an offset of at least 1MB. 1416 */ 1417 return max_t(u64, start, SZ_1M); 1418 case BTRFS_CHUNK_ALLOC_ZONED: 1419 /* 1420 * We don't care about the starting region like regular 1421 * allocator, because we anyway use/reserve the first two zones 1422 * for superblock logging. 1423 */ 1424 return ALIGN(start, device->zone_info->zone_size); 1425 default: 1426 BUG(); 1427 } 1428 } 1429 1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1431 u64 *hole_start, u64 *hole_size, 1432 u64 num_bytes) 1433 { 1434 u64 zone_size = device->zone_info->zone_size; 1435 u64 pos; 1436 int ret; 1437 bool changed = false; 1438 1439 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1440 1441 while (*hole_size > 0) { 1442 pos = btrfs_find_allocatable_zones(device, *hole_start, 1443 *hole_start + *hole_size, 1444 num_bytes); 1445 if (pos != *hole_start) { 1446 *hole_size = *hole_start + *hole_size - pos; 1447 *hole_start = pos; 1448 changed = true; 1449 if (*hole_size < num_bytes) 1450 break; 1451 } 1452 1453 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1454 1455 /* Range is ensured to be empty */ 1456 if (!ret) 1457 return changed; 1458 1459 /* Given hole range was invalid (outside of device) */ 1460 if (ret == -ERANGE) { 1461 *hole_start += *hole_size; 1462 *hole_size = 0; 1463 return true; 1464 } 1465 1466 *hole_start += zone_size; 1467 *hole_size -= zone_size; 1468 changed = true; 1469 } 1470 1471 return changed; 1472 } 1473 1474 /** 1475 * dev_extent_hole_check - check if specified hole is suitable for allocation 1476 * @device: the device which we have the hole 1477 * @hole_start: starting position of the hole 1478 * @hole_size: the size of the hole 1479 * @num_bytes: the size of the free space that we need 1480 * 1481 * This function may modify @hole_start and @hole_size to reflect the suitable 1482 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1483 */ 1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1485 u64 *hole_size, u64 num_bytes) 1486 { 1487 bool changed = false; 1488 u64 hole_end = *hole_start + *hole_size; 1489 1490 for (;;) { 1491 /* 1492 * Check before we set max_hole_start, otherwise we could end up 1493 * sending back this offset anyway. 1494 */ 1495 if (contains_pending_extent(device, hole_start, *hole_size)) { 1496 if (hole_end >= *hole_start) 1497 *hole_size = hole_end - *hole_start; 1498 else 1499 *hole_size = 0; 1500 changed = true; 1501 } 1502 1503 switch (device->fs_devices->chunk_alloc_policy) { 1504 case BTRFS_CHUNK_ALLOC_REGULAR: 1505 /* No extra check */ 1506 break; 1507 case BTRFS_CHUNK_ALLOC_ZONED: 1508 if (dev_extent_hole_check_zoned(device, hole_start, 1509 hole_size, num_bytes)) { 1510 changed = true; 1511 /* 1512 * The changed hole can contain pending extent. 1513 * Loop again to check that. 1514 */ 1515 continue; 1516 } 1517 break; 1518 default: 1519 BUG(); 1520 } 1521 1522 break; 1523 } 1524 1525 return changed; 1526 } 1527 1528 /* 1529 * find_free_dev_extent_start - find free space in the specified device 1530 * @device: the device which we search the free space in 1531 * @num_bytes: the size of the free space that we need 1532 * @search_start: the position from which to begin the search 1533 * @start: store the start of the free space. 1534 * @len: the size of the free space. that we find, or the size 1535 * of the max free space if we don't find suitable free space 1536 * 1537 * this uses a pretty simple search, the expectation is that it is 1538 * called very infrequently and that a given device has a small number 1539 * of extents 1540 * 1541 * @start is used to store the start of the free space if we find. But if we 1542 * don't find suitable free space, it will be used to store the start position 1543 * of the max free space. 1544 * 1545 * @len is used to store the size of the free space that we find. 1546 * But if we don't find suitable free space, it is used to store the size of 1547 * the max free space. 1548 * 1549 * NOTE: This function will search *commit* root of device tree, and does extra 1550 * check to ensure dev extents are not double allocated. 1551 * This makes the function safe to allocate dev extents but may not report 1552 * correct usable device space, as device extent freed in current transaction 1553 * is not reported as available. 1554 */ 1555 static int find_free_dev_extent_start(struct btrfs_device *device, 1556 u64 num_bytes, u64 search_start, u64 *start, 1557 u64 *len) 1558 { 1559 struct btrfs_fs_info *fs_info = device->fs_info; 1560 struct btrfs_root *root = fs_info->dev_root; 1561 struct btrfs_key key; 1562 struct btrfs_dev_extent *dev_extent; 1563 struct btrfs_path *path; 1564 u64 hole_size; 1565 u64 max_hole_start; 1566 u64 max_hole_size; 1567 u64 extent_end; 1568 u64 search_end = device->total_bytes; 1569 int ret; 1570 int slot; 1571 struct extent_buffer *l; 1572 1573 search_start = dev_extent_search_start(device, search_start); 1574 1575 WARN_ON(device->zone_info && 1576 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 max_hole_start = search_start; 1583 max_hole_size = 0; 1584 1585 again: 1586 if (search_start >= search_end || 1587 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1588 ret = -ENOSPC; 1589 goto out; 1590 } 1591 1592 path->reada = READA_FORWARD; 1593 path->search_commit_root = 1; 1594 path->skip_locking = 1; 1595 1596 key.objectid = device->devid; 1597 key.offset = search_start; 1598 key.type = BTRFS_DEV_EXTENT_KEY; 1599 1600 ret = btrfs_search_backwards(root, &key, path); 1601 if (ret < 0) 1602 goto out; 1603 1604 while (1) { 1605 l = path->nodes[0]; 1606 slot = path->slots[0]; 1607 if (slot >= btrfs_header_nritems(l)) { 1608 ret = btrfs_next_leaf(root, path); 1609 if (ret == 0) 1610 continue; 1611 if (ret < 0) 1612 goto out; 1613 1614 break; 1615 } 1616 btrfs_item_key_to_cpu(l, &key, slot); 1617 1618 if (key.objectid < device->devid) 1619 goto next; 1620 1621 if (key.objectid > device->devid) 1622 break; 1623 1624 if (key.type != BTRFS_DEV_EXTENT_KEY) 1625 goto next; 1626 1627 if (key.offset > search_start) { 1628 hole_size = key.offset - search_start; 1629 dev_extent_hole_check(device, &search_start, &hole_size, 1630 num_bytes); 1631 1632 if (hole_size > max_hole_size) { 1633 max_hole_start = search_start; 1634 max_hole_size = hole_size; 1635 } 1636 1637 /* 1638 * If this free space is greater than which we need, 1639 * it must be the max free space that we have found 1640 * until now, so max_hole_start must point to the start 1641 * of this free space and the length of this free space 1642 * is stored in max_hole_size. Thus, we return 1643 * max_hole_start and max_hole_size and go back to the 1644 * caller. 1645 */ 1646 if (hole_size >= num_bytes) { 1647 ret = 0; 1648 goto out; 1649 } 1650 } 1651 1652 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1653 extent_end = key.offset + btrfs_dev_extent_length(l, 1654 dev_extent); 1655 if (extent_end > search_start) 1656 search_start = extent_end; 1657 next: 1658 path->slots[0]++; 1659 cond_resched(); 1660 } 1661 1662 /* 1663 * At this point, search_start should be the end of 1664 * allocated dev extents, and when shrinking the device, 1665 * search_end may be smaller than search_start. 1666 */ 1667 if (search_end > search_start) { 1668 hole_size = search_end - search_start; 1669 if (dev_extent_hole_check(device, &search_start, &hole_size, 1670 num_bytes)) { 1671 btrfs_release_path(path); 1672 goto again; 1673 } 1674 1675 if (hole_size > max_hole_size) { 1676 max_hole_start = search_start; 1677 max_hole_size = hole_size; 1678 } 1679 } 1680 1681 /* See above. */ 1682 if (max_hole_size < num_bytes) 1683 ret = -ENOSPC; 1684 else 1685 ret = 0; 1686 1687 out: 1688 btrfs_free_path(path); 1689 *start = max_hole_start; 1690 if (len) 1691 *len = max_hole_size; 1692 return ret; 1693 } 1694 1695 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1696 u64 *start, u64 *len) 1697 { 1698 /* FIXME use last free of some kind */ 1699 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1700 } 1701 1702 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1703 struct btrfs_device *device, 1704 u64 start, u64 *dev_extent_len) 1705 { 1706 struct btrfs_fs_info *fs_info = device->fs_info; 1707 struct btrfs_root *root = fs_info->dev_root; 1708 int ret; 1709 struct btrfs_path *path; 1710 struct btrfs_key key; 1711 struct btrfs_key found_key; 1712 struct extent_buffer *leaf = NULL; 1713 struct btrfs_dev_extent *extent = NULL; 1714 1715 path = btrfs_alloc_path(); 1716 if (!path) 1717 return -ENOMEM; 1718 1719 key.objectid = device->devid; 1720 key.offset = start; 1721 key.type = BTRFS_DEV_EXTENT_KEY; 1722 again: 1723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1724 if (ret > 0) { 1725 ret = btrfs_previous_item(root, path, key.objectid, 1726 BTRFS_DEV_EXTENT_KEY); 1727 if (ret) 1728 goto out; 1729 leaf = path->nodes[0]; 1730 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1731 extent = btrfs_item_ptr(leaf, path->slots[0], 1732 struct btrfs_dev_extent); 1733 BUG_ON(found_key.offset > start || found_key.offset + 1734 btrfs_dev_extent_length(leaf, extent) < start); 1735 key = found_key; 1736 btrfs_release_path(path); 1737 goto again; 1738 } else if (ret == 0) { 1739 leaf = path->nodes[0]; 1740 extent = btrfs_item_ptr(leaf, path->slots[0], 1741 struct btrfs_dev_extent); 1742 } else { 1743 goto out; 1744 } 1745 1746 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1747 1748 ret = btrfs_del_item(trans, root, path); 1749 if (ret == 0) 1750 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1751 out: 1752 btrfs_free_path(path); 1753 return ret; 1754 } 1755 1756 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1757 { 1758 struct extent_map_tree *em_tree; 1759 struct extent_map *em; 1760 struct rb_node *n; 1761 u64 ret = 0; 1762 1763 em_tree = &fs_info->mapping_tree; 1764 read_lock(&em_tree->lock); 1765 n = rb_last(&em_tree->map.rb_root); 1766 if (n) { 1767 em = rb_entry(n, struct extent_map, rb_node); 1768 ret = em->start + em->len; 1769 } 1770 read_unlock(&em_tree->lock); 1771 1772 return ret; 1773 } 1774 1775 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1776 u64 *devid_ret) 1777 { 1778 int ret; 1779 struct btrfs_key key; 1780 struct btrfs_key found_key; 1781 struct btrfs_path *path; 1782 1783 path = btrfs_alloc_path(); 1784 if (!path) 1785 return -ENOMEM; 1786 1787 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1788 key.type = BTRFS_DEV_ITEM_KEY; 1789 key.offset = (u64)-1; 1790 1791 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1792 if (ret < 0) 1793 goto error; 1794 1795 if (ret == 0) { 1796 /* Corruption */ 1797 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1798 ret = -EUCLEAN; 1799 goto error; 1800 } 1801 1802 ret = btrfs_previous_item(fs_info->chunk_root, path, 1803 BTRFS_DEV_ITEMS_OBJECTID, 1804 BTRFS_DEV_ITEM_KEY); 1805 if (ret) { 1806 *devid_ret = 1; 1807 } else { 1808 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1809 path->slots[0]); 1810 *devid_ret = found_key.offset + 1; 1811 } 1812 ret = 0; 1813 error: 1814 btrfs_free_path(path); 1815 return ret; 1816 } 1817 1818 /* 1819 * the device information is stored in the chunk root 1820 * the btrfs_device struct should be fully filled in 1821 */ 1822 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1823 struct btrfs_device *device) 1824 { 1825 int ret; 1826 struct btrfs_path *path; 1827 struct btrfs_dev_item *dev_item; 1828 struct extent_buffer *leaf; 1829 struct btrfs_key key; 1830 unsigned long ptr; 1831 1832 path = btrfs_alloc_path(); 1833 if (!path) 1834 return -ENOMEM; 1835 1836 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1837 key.type = BTRFS_DEV_ITEM_KEY; 1838 key.offset = device->devid; 1839 1840 btrfs_reserve_chunk_metadata(trans, true); 1841 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1842 &key, sizeof(*dev_item)); 1843 btrfs_trans_release_chunk_metadata(trans); 1844 if (ret) 1845 goto out; 1846 1847 leaf = path->nodes[0]; 1848 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1849 1850 btrfs_set_device_id(leaf, dev_item, device->devid); 1851 btrfs_set_device_generation(leaf, dev_item, 0); 1852 btrfs_set_device_type(leaf, dev_item, device->type); 1853 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1854 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1855 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1856 btrfs_set_device_total_bytes(leaf, dev_item, 1857 btrfs_device_get_disk_total_bytes(device)); 1858 btrfs_set_device_bytes_used(leaf, dev_item, 1859 btrfs_device_get_bytes_used(device)); 1860 btrfs_set_device_group(leaf, dev_item, 0); 1861 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1862 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1863 btrfs_set_device_start_offset(leaf, dev_item, 0); 1864 1865 ptr = btrfs_device_uuid(dev_item); 1866 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1867 ptr = btrfs_device_fsid(dev_item); 1868 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1869 ptr, BTRFS_FSID_SIZE); 1870 btrfs_mark_buffer_dirty(leaf); 1871 1872 ret = 0; 1873 out: 1874 btrfs_free_path(path); 1875 return ret; 1876 } 1877 1878 /* 1879 * Function to update ctime/mtime for a given device path. 1880 * Mainly used for ctime/mtime based probe like libblkid. 1881 * 1882 * We don't care about errors here, this is just to be kind to userspace. 1883 */ 1884 static void update_dev_time(const char *device_path) 1885 { 1886 struct path path; 1887 struct timespec64 now; 1888 int ret; 1889 1890 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1891 if (ret) 1892 return; 1893 1894 now = current_time(d_inode(path.dentry)); 1895 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); 1896 path_put(&path); 1897 } 1898 1899 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1900 struct btrfs_device *device) 1901 { 1902 struct btrfs_root *root = device->fs_info->chunk_root; 1903 int ret; 1904 struct btrfs_path *path; 1905 struct btrfs_key key; 1906 1907 path = btrfs_alloc_path(); 1908 if (!path) 1909 return -ENOMEM; 1910 1911 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1912 key.type = BTRFS_DEV_ITEM_KEY; 1913 key.offset = device->devid; 1914 1915 btrfs_reserve_chunk_metadata(trans, false); 1916 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1917 btrfs_trans_release_chunk_metadata(trans); 1918 if (ret) { 1919 if (ret > 0) 1920 ret = -ENOENT; 1921 goto out; 1922 } 1923 1924 ret = btrfs_del_item(trans, root, path); 1925 out: 1926 btrfs_free_path(path); 1927 return ret; 1928 } 1929 1930 /* 1931 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1932 * filesystem. It's up to the caller to adjust that number regarding eg. device 1933 * replace. 1934 */ 1935 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1936 u64 num_devices) 1937 { 1938 u64 all_avail; 1939 unsigned seq; 1940 int i; 1941 1942 do { 1943 seq = read_seqbegin(&fs_info->profiles_lock); 1944 1945 all_avail = fs_info->avail_data_alloc_bits | 1946 fs_info->avail_system_alloc_bits | 1947 fs_info->avail_metadata_alloc_bits; 1948 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1949 1950 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1951 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1952 continue; 1953 1954 if (num_devices < btrfs_raid_array[i].devs_min) 1955 return btrfs_raid_array[i].mindev_error; 1956 } 1957 1958 return 0; 1959 } 1960 1961 static struct btrfs_device * btrfs_find_next_active_device( 1962 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1963 { 1964 struct btrfs_device *next_device; 1965 1966 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1967 if (next_device != device && 1968 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1969 && next_device->bdev) 1970 return next_device; 1971 } 1972 1973 return NULL; 1974 } 1975 1976 /* 1977 * Helper function to check if the given device is part of s_bdev / latest_dev 1978 * and replace it with the provided or the next active device, in the context 1979 * where this function called, there should be always be another device (or 1980 * this_dev) which is active. 1981 */ 1982 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1983 struct btrfs_device *next_device) 1984 { 1985 struct btrfs_fs_info *fs_info = device->fs_info; 1986 1987 if (!next_device) 1988 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1989 device); 1990 ASSERT(next_device); 1991 1992 if (fs_info->sb->s_bdev && 1993 (fs_info->sb->s_bdev == device->bdev)) 1994 fs_info->sb->s_bdev = next_device->bdev; 1995 1996 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 1997 fs_info->fs_devices->latest_dev = next_device; 1998 } 1999 2000 /* 2001 * Return btrfs_fs_devices::num_devices excluding the device that's being 2002 * currently replaced. 2003 */ 2004 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2005 { 2006 u64 num_devices = fs_info->fs_devices->num_devices; 2007 2008 down_read(&fs_info->dev_replace.rwsem); 2009 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2010 ASSERT(num_devices > 1); 2011 num_devices--; 2012 } 2013 up_read(&fs_info->dev_replace.rwsem); 2014 2015 return num_devices; 2016 } 2017 2018 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2019 struct block_device *bdev, 2020 const char *device_path) 2021 { 2022 struct btrfs_super_block *disk_super; 2023 int copy_num; 2024 2025 if (!bdev) 2026 return; 2027 2028 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2029 struct page *page; 2030 int ret; 2031 2032 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2033 if (IS_ERR(disk_super)) 2034 continue; 2035 2036 if (bdev_is_zoned(bdev)) { 2037 btrfs_reset_sb_log_zones(bdev, copy_num); 2038 continue; 2039 } 2040 2041 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2042 2043 page = virt_to_page(disk_super); 2044 set_page_dirty(page); 2045 lock_page(page); 2046 /* write_on_page() unlocks the page */ 2047 ret = write_one_page(page); 2048 if (ret) 2049 btrfs_warn(fs_info, 2050 "error clearing superblock number %d (%d)", 2051 copy_num, ret); 2052 btrfs_release_disk_super(disk_super); 2053 2054 } 2055 2056 /* Notify udev that device has changed */ 2057 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2058 2059 /* Update ctime/mtime for device path for libblkid */ 2060 update_dev_time(device_path); 2061 } 2062 2063 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2064 struct btrfs_dev_lookup_args *args, 2065 struct block_device **bdev, fmode_t *mode) 2066 { 2067 struct btrfs_trans_handle *trans; 2068 struct btrfs_device *device; 2069 struct btrfs_fs_devices *cur_devices; 2070 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2071 u64 num_devices; 2072 int ret = 0; 2073 2074 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2075 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2076 return -EINVAL; 2077 } 2078 2079 /* 2080 * The device list in fs_devices is accessed without locks (neither 2081 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2082 * filesystem and another device rm cannot run. 2083 */ 2084 num_devices = btrfs_num_devices(fs_info); 2085 2086 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2087 if (ret) 2088 return ret; 2089 2090 device = btrfs_find_device(fs_info->fs_devices, args); 2091 if (!device) { 2092 if (args->missing) 2093 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2094 else 2095 ret = -ENOENT; 2096 return ret; 2097 } 2098 2099 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2100 btrfs_warn_in_rcu(fs_info, 2101 "cannot remove device %s (devid %llu) due to active swapfile", 2102 rcu_str_deref(device->name), device->devid); 2103 return -ETXTBSY; 2104 } 2105 2106 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2107 return BTRFS_ERROR_DEV_TGT_REPLACE; 2108 2109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2110 fs_info->fs_devices->rw_devices == 1) 2111 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2112 2113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2114 mutex_lock(&fs_info->chunk_mutex); 2115 list_del_init(&device->dev_alloc_list); 2116 device->fs_devices->rw_devices--; 2117 mutex_unlock(&fs_info->chunk_mutex); 2118 } 2119 2120 ret = btrfs_shrink_device(device, 0); 2121 if (ret) 2122 goto error_undo; 2123 2124 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2125 if (IS_ERR(trans)) { 2126 ret = PTR_ERR(trans); 2127 goto error_undo; 2128 } 2129 2130 ret = btrfs_rm_dev_item(trans, device); 2131 if (ret) { 2132 /* Any error in dev item removal is critical */ 2133 btrfs_crit(fs_info, 2134 "failed to remove device item for devid %llu: %d", 2135 device->devid, ret); 2136 btrfs_abort_transaction(trans, ret); 2137 btrfs_end_transaction(trans); 2138 return ret; 2139 } 2140 2141 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2142 btrfs_scrub_cancel_dev(device); 2143 2144 /* 2145 * the device list mutex makes sure that we don't change 2146 * the device list while someone else is writing out all 2147 * the device supers. Whoever is writing all supers, should 2148 * lock the device list mutex before getting the number of 2149 * devices in the super block (super_copy). Conversely, 2150 * whoever updates the number of devices in the super block 2151 * (super_copy) should hold the device list mutex. 2152 */ 2153 2154 /* 2155 * In normal cases the cur_devices == fs_devices. But in case 2156 * of deleting a seed device, the cur_devices should point to 2157 * its own fs_devices listed under the fs_devices->seed_list. 2158 */ 2159 cur_devices = device->fs_devices; 2160 mutex_lock(&fs_devices->device_list_mutex); 2161 list_del_rcu(&device->dev_list); 2162 2163 cur_devices->num_devices--; 2164 cur_devices->total_devices--; 2165 /* Update total_devices of the parent fs_devices if it's seed */ 2166 if (cur_devices != fs_devices) 2167 fs_devices->total_devices--; 2168 2169 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2170 cur_devices->missing_devices--; 2171 2172 btrfs_assign_next_active_device(device, NULL); 2173 2174 if (device->bdev) { 2175 cur_devices->open_devices--; 2176 /* remove sysfs entry */ 2177 btrfs_sysfs_remove_device(device); 2178 } 2179 2180 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2181 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2182 mutex_unlock(&fs_devices->device_list_mutex); 2183 2184 /* 2185 * At this point, the device is zero sized and detached from the 2186 * devices list. All that's left is to zero out the old supers and 2187 * free the device. 2188 * 2189 * We cannot call btrfs_close_bdev() here because we're holding the sb 2190 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2191 * block device and it's dependencies. Instead just flush the device 2192 * and let the caller do the final blkdev_put. 2193 */ 2194 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2195 btrfs_scratch_superblocks(fs_info, device->bdev, 2196 device->name->str); 2197 if (device->bdev) { 2198 sync_blockdev(device->bdev); 2199 invalidate_bdev(device->bdev); 2200 } 2201 } 2202 2203 *bdev = device->bdev; 2204 *mode = device->mode; 2205 synchronize_rcu(); 2206 btrfs_free_device(device); 2207 2208 /* 2209 * This can happen if cur_devices is the private seed devices list. We 2210 * cannot call close_fs_devices() here because it expects the uuid_mutex 2211 * to be held, but in fact we don't need that for the private 2212 * seed_devices, we can simply decrement cur_devices->opened and then 2213 * remove it from our list and free the fs_devices. 2214 */ 2215 if (cur_devices->num_devices == 0) { 2216 list_del_init(&cur_devices->seed_list); 2217 ASSERT(cur_devices->opened == 1); 2218 cur_devices->opened--; 2219 free_fs_devices(cur_devices); 2220 } 2221 2222 ret = btrfs_commit_transaction(trans); 2223 2224 return ret; 2225 2226 error_undo: 2227 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2228 mutex_lock(&fs_info->chunk_mutex); 2229 list_add(&device->dev_alloc_list, 2230 &fs_devices->alloc_list); 2231 device->fs_devices->rw_devices++; 2232 mutex_unlock(&fs_info->chunk_mutex); 2233 } 2234 return ret; 2235 } 2236 2237 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2238 { 2239 struct btrfs_fs_devices *fs_devices; 2240 2241 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2242 2243 /* 2244 * in case of fs with no seed, srcdev->fs_devices will point 2245 * to fs_devices of fs_info. However when the dev being replaced is 2246 * a seed dev it will point to the seed's local fs_devices. In short 2247 * srcdev will have its correct fs_devices in both the cases. 2248 */ 2249 fs_devices = srcdev->fs_devices; 2250 2251 list_del_rcu(&srcdev->dev_list); 2252 list_del(&srcdev->dev_alloc_list); 2253 fs_devices->num_devices--; 2254 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2255 fs_devices->missing_devices--; 2256 2257 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2258 fs_devices->rw_devices--; 2259 2260 if (srcdev->bdev) 2261 fs_devices->open_devices--; 2262 } 2263 2264 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2265 { 2266 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2267 2268 mutex_lock(&uuid_mutex); 2269 2270 btrfs_close_bdev(srcdev); 2271 synchronize_rcu(); 2272 btrfs_free_device(srcdev); 2273 2274 /* if this is no devs we rather delete the fs_devices */ 2275 if (!fs_devices->num_devices) { 2276 /* 2277 * On a mounted FS, num_devices can't be zero unless it's a 2278 * seed. In case of a seed device being replaced, the replace 2279 * target added to the sprout FS, so there will be no more 2280 * device left under the seed FS. 2281 */ 2282 ASSERT(fs_devices->seeding); 2283 2284 list_del_init(&fs_devices->seed_list); 2285 close_fs_devices(fs_devices); 2286 free_fs_devices(fs_devices); 2287 } 2288 mutex_unlock(&uuid_mutex); 2289 } 2290 2291 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2292 { 2293 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2294 2295 mutex_lock(&fs_devices->device_list_mutex); 2296 2297 btrfs_sysfs_remove_device(tgtdev); 2298 2299 if (tgtdev->bdev) 2300 fs_devices->open_devices--; 2301 2302 fs_devices->num_devices--; 2303 2304 btrfs_assign_next_active_device(tgtdev, NULL); 2305 2306 list_del_rcu(&tgtdev->dev_list); 2307 2308 mutex_unlock(&fs_devices->device_list_mutex); 2309 2310 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2311 tgtdev->name->str); 2312 2313 btrfs_close_bdev(tgtdev); 2314 synchronize_rcu(); 2315 btrfs_free_device(tgtdev); 2316 } 2317 2318 /** 2319 * Populate args from device at path 2320 * 2321 * @fs_info: the filesystem 2322 * @args: the args to populate 2323 * @path: the path to the device 2324 * 2325 * This will read the super block of the device at @path and populate @args with 2326 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2327 * lookup a device to operate on, but need to do it before we take any locks. 2328 * This properly handles the special case of "missing" that a user may pass in, 2329 * and does some basic sanity checks. The caller must make sure that @path is 2330 * properly NUL terminated before calling in, and must call 2331 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2332 * uuid buffers. 2333 * 2334 * Return: 0 for success, -errno for failure 2335 */ 2336 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2337 struct btrfs_dev_lookup_args *args, 2338 const char *path) 2339 { 2340 struct btrfs_super_block *disk_super; 2341 struct block_device *bdev; 2342 int ret; 2343 2344 if (!path || !path[0]) 2345 return -EINVAL; 2346 if (!strcmp(path, "missing")) { 2347 args->missing = true; 2348 return 0; 2349 } 2350 2351 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2352 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2353 if (!args->uuid || !args->fsid) { 2354 btrfs_put_dev_args_from_path(args); 2355 return -ENOMEM; 2356 } 2357 2358 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0, 2359 &bdev, &disk_super); 2360 if (ret) 2361 return ret; 2362 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2363 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2364 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2365 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2366 else 2367 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2368 btrfs_release_disk_super(disk_super); 2369 blkdev_put(bdev, FMODE_READ); 2370 return 0; 2371 } 2372 2373 /* 2374 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2375 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2376 * that don't need to be freed. 2377 */ 2378 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2379 { 2380 kfree(args->uuid); 2381 kfree(args->fsid); 2382 args->uuid = NULL; 2383 args->fsid = NULL; 2384 } 2385 2386 struct btrfs_device *btrfs_find_device_by_devspec( 2387 struct btrfs_fs_info *fs_info, u64 devid, 2388 const char *device_path) 2389 { 2390 BTRFS_DEV_LOOKUP_ARGS(args); 2391 struct btrfs_device *device; 2392 int ret; 2393 2394 if (devid) { 2395 args.devid = devid; 2396 device = btrfs_find_device(fs_info->fs_devices, &args); 2397 if (!device) 2398 return ERR_PTR(-ENOENT); 2399 return device; 2400 } 2401 2402 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2403 if (ret) 2404 return ERR_PTR(ret); 2405 device = btrfs_find_device(fs_info->fs_devices, &args); 2406 btrfs_put_dev_args_from_path(&args); 2407 if (!device) 2408 return ERR_PTR(-ENOENT); 2409 return device; 2410 } 2411 2412 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2413 { 2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2415 struct btrfs_fs_devices *old_devices; 2416 struct btrfs_fs_devices *seed_devices; 2417 2418 lockdep_assert_held(&uuid_mutex); 2419 if (!fs_devices->seeding) 2420 return ERR_PTR(-EINVAL); 2421 2422 /* 2423 * Private copy of the seed devices, anchored at 2424 * fs_info->fs_devices->seed_list 2425 */ 2426 seed_devices = alloc_fs_devices(NULL, NULL); 2427 if (IS_ERR(seed_devices)) 2428 return seed_devices; 2429 2430 /* 2431 * It's necessary to retain a copy of the original seed fs_devices in 2432 * fs_uuids so that filesystems which have been seeded can successfully 2433 * reference the seed device from open_seed_devices. This also supports 2434 * multiple fs seed. 2435 */ 2436 old_devices = clone_fs_devices(fs_devices); 2437 if (IS_ERR(old_devices)) { 2438 kfree(seed_devices); 2439 return old_devices; 2440 } 2441 2442 list_add(&old_devices->fs_list, &fs_uuids); 2443 2444 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2445 seed_devices->opened = 1; 2446 INIT_LIST_HEAD(&seed_devices->devices); 2447 INIT_LIST_HEAD(&seed_devices->alloc_list); 2448 mutex_init(&seed_devices->device_list_mutex); 2449 2450 return seed_devices; 2451 } 2452 2453 /* 2454 * Splice seed devices into the sprout fs_devices. 2455 * Generate a new fsid for the sprouted read-write filesystem. 2456 */ 2457 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2458 struct btrfs_fs_devices *seed_devices) 2459 { 2460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2461 struct btrfs_super_block *disk_super = fs_info->super_copy; 2462 struct btrfs_device *device; 2463 u64 super_flags; 2464 2465 /* 2466 * We are updating the fsid, the thread leading to device_list_add() 2467 * could race, so uuid_mutex is needed. 2468 */ 2469 lockdep_assert_held(&uuid_mutex); 2470 2471 /* 2472 * The threads listed below may traverse dev_list but can do that without 2473 * device_list_mutex: 2474 * - All device ops and balance - as we are in btrfs_exclop_start. 2475 * - Various dev_list readers - are using RCU. 2476 * - btrfs_ioctl_fitrim() - is using RCU. 2477 * 2478 * For-read threads as below are using device_list_mutex: 2479 * - Readonly scrub btrfs_scrub_dev() 2480 * - Readonly scrub btrfs_scrub_progress() 2481 * - btrfs_get_dev_stats() 2482 */ 2483 lockdep_assert_held(&fs_devices->device_list_mutex); 2484 2485 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2486 synchronize_rcu); 2487 list_for_each_entry(device, &seed_devices->devices, dev_list) 2488 device->fs_devices = seed_devices; 2489 2490 fs_devices->seeding = false; 2491 fs_devices->num_devices = 0; 2492 fs_devices->open_devices = 0; 2493 fs_devices->missing_devices = 0; 2494 fs_devices->rotating = false; 2495 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2496 2497 generate_random_uuid(fs_devices->fsid); 2498 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2499 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2500 2501 super_flags = btrfs_super_flags(disk_super) & 2502 ~BTRFS_SUPER_FLAG_SEEDING; 2503 btrfs_set_super_flags(disk_super, super_flags); 2504 } 2505 2506 /* 2507 * Store the expected generation for seed devices in device items. 2508 */ 2509 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2510 { 2511 BTRFS_DEV_LOOKUP_ARGS(args); 2512 struct btrfs_fs_info *fs_info = trans->fs_info; 2513 struct btrfs_root *root = fs_info->chunk_root; 2514 struct btrfs_path *path; 2515 struct extent_buffer *leaf; 2516 struct btrfs_dev_item *dev_item; 2517 struct btrfs_device *device; 2518 struct btrfs_key key; 2519 u8 fs_uuid[BTRFS_FSID_SIZE]; 2520 u8 dev_uuid[BTRFS_UUID_SIZE]; 2521 int ret; 2522 2523 path = btrfs_alloc_path(); 2524 if (!path) 2525 return -ENOMEM; 2526 2527 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2528 key.offset = 0; 2529 key.type = BTRFS_DEV_ITEM_KEY; 2530 2531 while (1) { 2532 btrfs_reserve_chunk_metadata(trans, false); 2533 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2534 btrfs_trans_release_chunk_metadata(trans); 2535 if (ret < 0) 2536 goto error; 2537 2538 leaf = path->nodes[0]; 2539 next_slot: 2540 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2541 ret = btrfs_next_leaf(root, path); 2542 if (ret > 0) 2543 break; 2544 if (ret < 0) 2545 goto error; 2546 leaf = path->nodes[0]; 2547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2548 btrfs_release_path(path); 2549 continue; 2550 } 2551 2552 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2553 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2554 key.type != BTRFS_DEV_ITEM_KEY) 2555 break; 2556 2557 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2558 struct btrfs_dev_item); 2559 args.devid = btrfs_device_id(leaf, dev_item); 2560 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2561 BTRFS_UUID_SIZE); 2562 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2563 BTRFS_FSID_SIZE); 2564 args.uuid = dev_uuid; 2565 args.fsid = fs_uuid; 2566 device = btrfs_find_device(fs_info->fs_devices, &args); 2567 BUG_ON(!device); /* Logic error */ 2568 2569 if (device->fs_devices->seeding) { 2570 btrfs_set_device_generation(leaf, dev_item, 2571 device->generation); 2572 btrfs_mark_buffer_dirty(leaf); 2573 } 2574 2575 path->slots[0]++; 2576 goto next_slot; 2577 } 2578 ret = 0; 2579 error: 2580 btrfs_free_path(path); 2581 return ret; 2582 } 2583 2584 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2585 { 2586 struct btrfs_root *root = fs_info->dev_root; 2587 struct btrfs_trans_handle *trans; 2588 struct btrfs_device *device; 2589 struct block_device *bdev; 2590 struct super_block *sb = fs_info->sb; 2591 struct rcu_string *name; 2592 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2593 struct btrfs_fs_devices *seed_devices; 2594 u64 orig_super_total_bytes; 2595 u64 orig_super_num_devices; 2596 int ret = 0; 2597 bool seeding_dev = false; 2598 bool locked = false; 2599 2600 if (sb_rdonly(sb) && !fs_devices->seeding) 2601 return -EROFS; 2602 2603 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2604 fs_info->bdev_holder); 2605 if (IS_ERR(bdev)) 2606 return PTR_ERR(bdev); 2607 2608 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2609 ret = -EINVAL; 2610 goto error; 2611 } 2612 2613 if (fs_devices->seeding) { 2614 seeding_dev = true; 2615 down_write(&sb->s_umount); 2616 mutex_lock(&uuid_mutex); 2617 locked = true; 2618 } 2619 2620 sync_blockdev(bdev); 2621 2622 rcu_read_lock(); 2623 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2624 if (device->bdev == bdev) { 2625 ret = -EEXIST; 2626 rcu_read_unlock(); 2627 goto error; 2628 } 2629 } 2630 rcu_read_unlock(); 2631 2632 device = btrfs_alloc_device(fs_info, NULL, NULL); 2633 if (IS_ERR(device)) { 2634 /* we can safely leave the fs_devices entry around */ 2635 ret = PTR_ERR(device); 2636 goto error; 2637 } 2638 2639 name = rcu_string_strdup(device_path, GFP_KERNEL); 2640 if (!name) { 2641 ret = -ENOMEM; 2642 goto error_free_device; 2643 } 2644 rcu_assign_pointer(device->name, name); 2645 2646 device->fs_info = fs_info; 2647 device->bdev = bdev; 2648 ret = lookup_bdev(device_path, &device->devt); 2649 if (ret) 2650 goto error_free_device; 2651 2652 ret = btrfs_get_dev_zone_info(device, false); 2653 if (ret) 2654 goto error_free_device; 2655 2656 trans = btrfs_start_transaction(root, 0); 2657 if (IS_ERR(trans)) { 2658 ret = PTR_ERR(trans); 2659 goto error_free_zone; 2660 } 2661 2662 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2663 device->generation = trans->transid; 2664 device->io_width = fs_info->sectorsize; 2665 device->io_align = fs_info->sectorsize; 2666 device->sector_size = fs_info->sectorsize; 2667 device->total_bytes = 2668 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2669 device->disk_total_bytes = device->total_bytes; 2670 device->commit_total_bytes = device->total_bytes; 2671 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2672 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2673 device->mode = FMODE_EXCL; 2674 device->dev_stats_valid = 1; 2675 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2676 2677 if (seeding_dev) { 2678 btrfs_clear_sb_rdonly(sb); 2679 2680 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2681 seed_devices = btrfs_init_sprout(fs_info); 2682 if (IS_ERR(seed_devices)) { 2683 ret = PTR_ERR(seed_devices); 2684 btrfs_abort_transaction(trans, ret); 2685 goto error_trans; 2686 } 2687 } 2688 2689 mutex_lock(&fs_devices->device_list_mutex); 2690 if (seeding_dev) { 2691 btrfs_setup_sprout(fs_info, seed_devices); 2692 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2693 device); 2694 } 2695 2696 device->fs_devices = fs_devices; 2697 2698 mutex_lock(&fs_info->chunk_mutex); 2699 list_add_rcu(&device->dev_list, &fs_devices->devices); 2700 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2701 fs_devices->num_devices++; 2702 fs_devices->open_devices++; 2703 fs_devices->rw_devices++; 2704 fs_devices->total_devices++; 2705 fs_devices->total_rw_bytes += device->total_bytes; 2706 2707 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2708 2709 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2710 fs_devices->rotating = true; 2711 2712 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2713 btrfs_set_super_total_bytes(fs_info->super_copy, 2714 round_down(orig_super_total_bytes + device->total_bytes, 2715 fs_info->sectorsize)); 2716 2717 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2718 btrfs_set_super_num_devices(fs_info->super_copy, 2719 orig_super_num_devices + 1); 2720 2721 /* 2722 * we've got more storage, clear any full flags on the space 2723 * infos 2724 */ 2725 btrfs_clear_space_info_full(fs_info); 2726 2727 mutex_unlock(&fs_info->chunk_mutex); 2728 2729 /* Add sysfs device entry */ 2730 btrfs_sysfs_add_device(device); 2731 2732 mutex_unlock(&fs_devices->device_list_mutex); 2733 2734 if (seeding_dev) { 2735 mutex_lock(&fs_info->chunk_mutex); 2736 ret = init_first_rw_device(trans); 2737 mutex_unlock(&fs_info->chunk_mutex); 2738 if (ret) { 2739 btrfs_abort_transaction(trans, ret); 2740 goto error_sysfs; 2741 } 2742 } 2743 2744 ret = btrfs_add_dev_item(trans, device); 2745 if (ret) { 2746 btrfs_abort_transaction(trans, ret); 2747 goto error_sysfs; 2748 } 2749 2750 if (seeding_dev) { 2751 ret = btrfs_finish_sprout(trans); 2752 if (ret) { 2753 btrfs_abort_transaction(trans, ret); 2754 goto error_sysfs; 2755 } 2756 2757 /* 2758 * fs_devices now represents the newly sprouted filesystem and 2759 * its fsid has been changed by btrfs_sprout_splice(). 2760 */ 2761 btrfs_sysfs_update_sprout_fsid(fs_devices); 2762 } 2763 2764 ret = btrfs_commit_transaction(trans); 2765 2766 if (seeding_dev) { 2767 mutex_unlock(&uuid_mutex); 2768 up_write(&sb->s_umount); 2769 locked = false; 2770 2771 if (ret) /* transaction commit */ 2772 return ret; 2773 2774 ret = btrfs_relocate_sys_chunks(fs_info); 2775 if (ret < 0) 2776 btrfs_handle_fs_error(fs_info, ret, 2777 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2778 trans = btrfs_attach_transaction(root); 2779 if (IS_ERR(trans)) { 2780 if (PTR_ERR(trans) == -ENOENT) 2781 return 0; 2782 ret = PTR_ERR(trans); 2783 trans = NULL; 2784 goto error_sysfs; 2785 } 2786 ret = btrfs_commit_transaction(trans); 2787 } 2788 2789 /* 2790 * Now that we have written a new super block to this device, check all 2791 * other fs_devices list if device_path alienates any other scanned 2792 * device. 2793 * We can ignore the return value as it typically returns -EINVAL and 2794 * only succeeds if the device was an alien. 2795 */ 2796 btrfs_forget_devices(device->devt); 2797 2798 /* Update ctime/mtime for blkid or udev */ 2799 update_dev_time(device_path); 2800 2801 return ret; 2802 2803 error_sysfs: 2804 btrfs_sysfs_remove_device(device); 2805 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2806 mutex_lock(&fs_info->chunk_mutex); 2807 list_del_rcu(&device->dev_list); 2808 list_del(&device->dev_alloc_list); 2809 fs_info->fs_devices->num_devices--; 2810 fs_info->fs_devices->open_devices--; 2811 fs_info->fs_devices->rw_devices--; 2812 fs_info->fs_devices->total_devices--; 2813 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2814 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2815 btrfs_set_super_total_bytes(fs_info->super_copy, 2816 orig_super_total_bytes); 2817 btrfs_set_super_num_devices(fs_info->super_copy, 2818 orig_super_num_devices); 2819 mutex_unlock(&fs_info->chunk_mutex); 2820 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2821 error_trans: 2822 if (seeding_dev) 2823 btrfs_set_sb_rdonly(sb); 2824 if (trans) 2825 btrfs_end_transaction(trans); 2826 error_free_zone: 2827 btrfs_destroy_dev_zone_info(device); 2828 error_free_device: 2829 btrfs_free_device(device); 2830 error: 2831 blkdev_put(bdev, FMODE_EXCL); 2832 if (locked) { 2833 mutex_unlock(&uuid_mutex); 2834 up_write(&sb->s_umount); 2835 } 2836 return ret; 2837 } 2838 2839 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2840 struct btrfs_device *device) 2841 { 2842 int ret; 2843 struct btrfs_path *path; 2844 struct btrfs_root *root = device->fs_info->chunk_root; 2845 struct btrfs_dev_item *dev_item; 2846 struct extent_buffer *leaf; 2847 struct btrfs_key key; 2848 2849 path = btrfs_alloc_path(); 2850 if (!path) 2851 return -ENOMEM; 2852 2853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2854 key.type = BTRFS_DEV_ITEM_KEY; 2855 key.offset = device->devid; 2856 2857 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2858 if (ret < 0) 2859 goto out; 2860 2861 if (ret > 0) { 2862 ret = -ENOENT; 2863 goto out; 2864 } 2865 2866 leaf = path->nodes[0]; 2867 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2868 2869 btrfs_set_device_id(leaf, dev_item, device->devid); 2870 btrfs_set_device_type(leaf, dev_item, device->type); 2871 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2872 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2873 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2874 btrfs_set_device_total_bytes(leaf, dev_item, 2875 btrfs_device_get_disk_total_bytes(device)); 2876 btrfs_set_device_bytes_used(leaf, dev_item, 2877 btrfs_device_get_bytes_used(device)); 2878 btrfs_mark_buffer_dirty(leaf); 2879 2880 out: 2881 btrfs_free_path(path); 2882 return ret; 2883 } 2884 2885 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2886 struct btrfs_device *device, u64 new_size) 2887 { 2888 struct btrfs_fs_info *fs_info = device->fs_info; 2889 struct btrfs_super_block *super_copy = fs_info->super_copy; 2890 u64 old_total; 2891 u64 diff; 2892 int ret; 2893 2894 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2895 return -EACCES; 2896 2897 new_size = round_down(new_size, fs_info->sectorsize); 2898 2899 mutex_lock(&fs_info->chunk_mutex); 2900 old_total = btrfs_super_total_bytes(super_copy); 2901 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2902 2903 if (new_size <= device->total_bytes || 2904 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2905 mutex_unlock(&fs_info->chunk_mutex); 2906 return -EINVAL; 2907 } 2908 2909 btrfs_set_super_total_bytes(super_copy, 2910 round_down(old_total + diff, fs_info->sectorsize)); 2911 device->fs_devices->total_rw_bytes += diff; 2912 2913 btrfs_device_set_total_bytes(device, new_size); 2914 btrfs_device_set_disk_total_bytes(device, new_size); 2915 btrfs_clear_space_info_full(device->fs_info); 2916 if (list_empty(&device->post_commit_list)) 2917 list_add_tail(&device->post_commit_list, 2918 &trans->transaction->dev_update_list); 2919 mutex_unlock(&fs_info->chunk_mutex); 2920 2921 btrfs_reserve_chunk_metadata(trans, false); 2922 ret = btrfs_update_device(trans, device); 2923 btrfs_trans_release_chunk_metadata(trans); 2924 2925 return ret; 2926 } 2927 2928 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2929 { 2930 struct btrfs_fs_info *fs_info = trans->fs_info; 2931 struct btrfs_root *root = fs_info->chunk_root; 2932 int ret; 2933 struct btrfs_path *path; 2934 struct btrfs_key key; 2935 2936 path = btrfs_alloc_path(); 2937 if (!path) 2938 return -ENOMEM; 2939 2940 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2941 key.offset = chunk_offset; 2942 key.type = BTRFS_CHUNK_ITEM_KEY; 2943 2944 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2945 if (ret < 0) 2946 goto out; 2947 else if (ret > 0) { /* Logic error or corruption */ 2948 btrfs_handle_fs_error(fs_info, -ENOENT, 2949 "Failed lookup while freeing chunk."); 2950 ret = -ENOENT; 2951 goto out; 2952 } 2953 2954 ret = btrfs_del_item(trans, root, path); 2955 if (ret < 0) 2956 btrfs_handle_fs_error(fs_info, ret, 2957 "Failed to delete chunk item."); 2958 out: 2959 btrfs_free_path(path); 2960 return ret; 2961 } 2962 2963 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2964 { 2965 struct btrfs_super_block *super_copy = fs_info->super_copy; 2966 struct btrfs_disk_key *disk_key; 2967 struct btrfs_chunk *chunk; 2968 u8 *ptr; 2969 int ret = 0; 2970 u32 num_stripes; 2971 u32 array_size; 2972 u32 len = 0; 2973 u32 cur; 2974 struct btrfs_key key; 2975 2976 lockdep_assert_held(&fs_info->chunk_mutex); 2977 array_size = btrfs_super_sys_array_size(super_copy); 2978 2979 ptr = super_copy->sys_chunk_array; 2980 cur = 0; 2981 2982 while (cur < array_size) { 2983 disk_key = (struct btrfs_disk_key *)ptr; 2984 btrfs_disk_key_to_cpu(&key, disk_key); 2985 2986 len = sizeof(*disk_key); 2987 2988 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2989 chunk = (struct btrfs_chunk *)(ptr + len); 2990 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2991 len += btrfs_chunk_item_size(num_stripes); 2992 } else { 2993 ret = -EIO; 2994 break; 2995 } 2996 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2997 key.offset == chunk_offset) { 2998 memmove(ptr, ptr + len, array_size - (cur + len)); 2999 array_size -= len; 3000 btrfs_set_super_sys_array_size(super_copy, array_size); 3001 } else { 3002 ptr += len; 3003 cur += len; 3004 } 3005 } 3006 return ret; 3007 } 3008 3009 /* 3010 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3011 * @logical: Logical block offset in bytes. 3012 * @length: Length of extent in bytes. 3013 * 3014 * Return: Chunk mapping or ERR_PTR. 3015 */ 3016 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3017 u64 logical, u64 length) 3018 { 3019 struct extent_map_tree *em_tree; 3020 struct extent_map *em; 3021 3022 em_tree = &fs_info->mapping_tree; 3023 read_lock(&em_tree->lock); 3024 em = lookup_extent_mapping(em_tree, logical, length); 3025 read_unlock(&em_tree->lock); 3026 3027 if (!em) { 3028 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3029 logical, length); 3030 return ERR_PTR(-EINVAL); 3031 } 3032 3033 if (em->start > logical || em->start + em->len < logical) { 3034 btrfs_crit(fs_info, 3035 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3036 logical, length, em->start, em->start + em->len); 3037 free_extent_map(em); 3038 return ERR_PTR(-EINVAL); 3039 } 3040 3041 /* callers are responsible for dropping em's ref. */ 3042 return em; 3043 } 3044 3045 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3046 struct map_lookup *map, u64 chunk_offset) 3047 { 3048 int i; 3049 3050 /* 3051 * Removing chunk items and updating the device items in the chunks btree 3052 * requires holding the chunk_mutex. 3053 * See the comment at btrfs_chunk_alloc() for the details. 3054 */ 3055 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3056 3057 for (i = 0; i < map->num_stripes; i++) { 3058 int ret; 3059 3060 ret = btrfs_update_device(trans, map->stripes[i].dev); 3061 if (ret) 3062 return ret; 3063 } 3064 3065 return btrfs_free_chunk(trans, chunk_offset); 3066 } 3067 3068 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3069 { 3070 struct btrfs_fs_info *fs_info = trans->fs_info; 3071 struct extent_map *em; 3072 struct map_lookup *map; 3073 u64 dev_extent_len = 0; 3074 int i, ret = 0; 3075 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3076 3077 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3078 if (IS_ERR(em)) { 3079 /* 3080 * This is a logic error, but we don't want to just rely on the 3081 * user having built with ASSERT enabled, so if ASSERT doesn't 3082 * do anything we still error out. 3083 */ 3084 ASSERT(0); 3085 return PTR_ERR(em); 3086 } 3087 map = em->map_lookup; 3088 3089 /* 3090 * First delete the device extent items from the devices btree. 3091 * We take the device_list_mutex to avoid racing with the finishing phase 3092 * of a device replace operation. See the comment below before acquiring 3093 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3094 * because that can result in a deadlock when deleting the device extent 3095 * items from the devices btree - COWing an extent buffer from the btree 3096 * may result in allocating a new metadata chunk, which would attempt to 3097 * lock again fs_info->chunk_mutex. 3098 */ 3099 mutex_lock(&fs_devices->device_list_mutex); 3100 for (i = 0; i < map->num_stripes; i++) { 3101 struct btrfs_device *device = map->stripes[i].dev; 3102 ret = btrfs_free_dev_extent(trans, device, 3103 map->stripes[i].physical, 3104 &dev_extent_len); 3105 if (ret) { 3106 mutex_unlock(&fs_devices->device_list_mutex); 3107 btrfs_abort_transaction(trans, ret); 3108 goto out; 3109 } 3110 3111 if (device->bytes_used > 0) { 3112 mutex_lock(&fs_info->chunk_mutex); 3113 btrfs_device_set_bytes_used(device, 3114 device->bytes_used - dev_extent_len); 3115 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3116 btrfs_clear_space_info_full(fs_info); 3117 mutex_unlock(&fs_info->chunk_mutex); 3118 } 3119 } 3120 mutex_unlock(&fs_devices->device_list_mutex); 3121 3122 /* 3123 * We acquire fs_info->chunk_mutex for 2 reasons: 3124 * 3125 * 1) Just like with the first phase of the chunk allocation, we must 3126 * reserve system space, do all chunk btree updates and deletions, and 3127 * update the system chunk array in the superblock while holding this 3128 * mutex. This is for similar reasons as explained on the comment at 3129 * the top of btrfs_chunk_alloc(); 3130 * 3131 * 2) Prevent races with the final phase of a device replace operation 3132 * that replaces the device object associated with the map's stripes, 3133 * because the device object's id can change at any time during that 3134 * final phase of the device replace operation 3135 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3136 * replaced device and then see it with an ID of 3137 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3138 * the device item, which does not exists on the chunk btree. 3139 * The finishing phase of device replace acquires both the 3140 * device_list_mutex and the chunk_mutex, in that order, so we are 3141 * safe by just acquiring the chunk_mutex. 3142 */ 3143 trans->removing_chunk = true; 3144 mutex_lock(&fs_info->chunk_mutex); 3145 3146 check_system_chunk(trans, map->type); 3147 3148 ret = remove_chunk_item(trans, map, chunk_offset); 3149 /* 3150 * Normally we should not get -ENOSPC since we reserved space before 3151 * through the call to check_system_chunk(). 3152 * 3153 * Despite our system space_info having enough free space, we may not 3154 * be able to allocate extents from its block groups, because all have 3155 * an incompatible profile, which will force us to allocate a new system 3156 * block group with the right profile, or right after we called 3157 * check_system_space() above, a scrub turned the only system block group 3158 * with enough free space into RO mode. 3159 * This is explained with more detail at do_chunk_alloc(). 3160 * 3161 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3162 */ 3163 if (ret == -ENOSPC) { 3164 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3165 struct btrfs_block_group *sys_bg; 3166 3167 sys_bg = btrfs_create_chunk(trans, sys_flags); 3168 if (IS_ERR(sys_bg)) { 3169 ret = PTR_ERR(sys_bg); 3170 btrfs_abort_transaction(trans, ret); 3171 goto out; 3172 } 3173 3174 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3175 if (ret) { 3176 btrfs_abort_transaction(trans, ret); 3177 goto out; 3178 } 3179 3180 ret = remove_chunk_item(trans, map, chunk_offset); 3181 if (ret) { 3182 btrfs_abort_transaction(trans, ret); 3183 goto out; 3184 } 3185 } else if (ret) { 3186 btrfs_abort_transaction(trans, ret); 3187 goto out; 3188 } 3189 3190 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3191 3192 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3193 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3194 if (ret) { 3195 btrfs_abort_transaction(trans, ret); 3196 goto out; 3197 } 3198 } 3199 3200 mutex_unlock(&fs_info->chunk_mutex); 3201 trans->removing_chunk = false; 3202 3203 /* 3204 * We are done with chunk btree updates and deletions, so release the 3205 * system space we previously reserved (with check_system_chunk()). 3206 */ 3207 btrfs_trans_release_chunk_metadata(trans); 3208 3209 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3210 if (ret) { 3211 btrfs_abort_transaction(trans, ret); 3212 goto out; 3213 } 3214 3215 out: 3216 if (trans->removing_chunk) { 3217 mutex_unlock(&fs_info->chunk_mutex); 3218 trans->removing_chunk = false; 3219 } 3220 /* once for us */ 3221 free_extent_map(em); 3222 return ret; 3223 } 3224 3225 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3226 { 3227 struct btrfs_root *root = fs_info->chunk_root; 3228 struct btrfs_trans_handle *trans; 3229 struct btrfs_block_group *block_group; 3230 u64 length; 3231 int ret; 3232 3233 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3234 btrfs_err(fs_info, 3235 "relocate: not supported on extent tree v2 yet"); 3236 return -EINVAL; 3237 } 3238 3239 /* 3240 * Prevent races with automatic removal of unused block groups. 3241 * After we relocate and before we remove the chunk with offset 3242 * chunk_offset, automatic removal of the block group can kick in, 3243 * resulting in a failure when calling btrfs_remove_chunk() below. 3244 * 3245 * Make sure to acquire this mutex before doing a tree search (dev 3246 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3247 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3248 * we release the path used to search the chunk/dev tree and before 3249 * the current task acquires this mutex and calls us. 3250 */ 3251 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3252 3253 /* step one, relocate all the extents inside this chunk */ 3254 btrfs_scrub_pause(fs_info); 3255 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3256 btrfs_scrub_continue(fs_info); 3257 if (ret) 3258 return ret; 3259 3260 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3261 if (!block_group) 3262 return -ENOENT; 3263 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3264 length = block_group->length; 3265 btrfs_put_block_group(block_group); 3266 3267 /* 3268 * On a zoned file system, discard the whole block group, this will 3269 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3270 * resetting the zone fails, don't treat it as a fatal problem from the 3271 * filesystem's point of view. 3272 */ 3273 if (btrfs_is_zoned(fs_info)) { 3274 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3275 if (ret) 3276 btrfs_info(fs_info, 3277 "failed to reset zone %llu after relocation", 3278 chunk_offset); 3279 } 3280 3281 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3282 chunk_offset); 3283 if (IS_ERR(trans)) { 3284 ret = PTR_ERR(trans); 3285 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3286 return ret; 3287 } 3288 3289 /* 3290 * step two, delete the device extents and the 3291 * chunk tree entries 3292 */ 3293 ret = btrfs_remove_chunk(trans, chunk_offset); 3294 btrfs_end_transaction(trans); 3295 return ret; 3296 } 3297 3298 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3299 { 3300 struct btrfs_root *chunk_root = fs_info->chunk_root; 3301 struct btrfs_path *path; 3302 struct extent_buffer *leaf; 3303 struct btrfs_chunk *chunk; 3304 struct btrfs_key key; 3305 struct btrfs_key found_key; 3306 u64 chunk_type; 3307 bool retried = false; 3308 int failed = 0; 3309 int ret; 3310 3311 path = btrfs_alloc_path(); 3312 if (!path) 3313 return -ENOMEM; 3314 3315 again: 3316 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3317 key.offset = (u64)-1; 3318 key.type = BTRFS_CHUNK_ITEM_KEY; 3319 3320 while (1) { 3321 mutex_lock(&fs_info->reclaim_bgs_lock); 3322 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3323 if (ret < 0) { 3324 mutex_unlock(&fs_info->reclaim_bgs_lock); 3325 goto error; 3326 } 3327 BUG_ON(ret == 0); /* Corruption */ 3328 3329 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3330 key.type); 3331 if (ret) 3332 mutex_unlock(&fs_info->reclaim_bgs_lock); 3333 if (ret < 0) 3334 goto error; 3335 if (ret > 0) 3336 break; 3337 3338 leaf = path->nodes[0]; 3339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3340 3341 chunk = btrfs_item_ptr(leaf, path->slots[0], 3342 struct btrfs_chunk); 3343 chunk_type = btrfs_chunk_type(leaf, chunk); 3344 btrfs_release_path(path); 3345 3346 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3347 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3348 if (ret == -ENOSPC) 3349 failed++; 3350 else 3351 BUG_ON(ret); 3352 } 3353 mutex_unlock(&fs_info->reclaim_bgs_lock); 3354 3355 if (found_key.offset == 0) 3356 break; 3357 key.offset = found_key.offset - 1; 3358 } 3359 ret = 0; 3360 if (failed && !retried) { 3361 failed = 0; 3362 retried = true; 3363 goto again; 3364 } else if (WARN_ON(failed && retried)) { 3365 ret = -ENOSPC; 3366 } 3367 error: 3368 btrfs_free_path(path); 3369 return ret; 3370 } 3371 3372 /* 3373 * return 1 : allocate a data chunk successfully, 3374 * return <0: errors during allocating a data chunk, 3375 * return 0 : no need to allocate a data chunk. 3376 */ 3377 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3378 u64 chunk_offset) 3379 { 3380 struct btrfs_block_group *cache; 3381 u64 bytes_used; 3382 u64 chunk_type; 3383 3384 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3385 ASSERT(cache); 3386 chunk_type = cache->flags; 3387 btrfs_put_block_group(cache); 3388 3389 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3390 return 0; 3391 3392 spin_lock(&fs_info->data_sinfo->lock); 3393 bytes_used = fs_info->data_sinfo->bytes_used; 3394 spin_unlock(&fs_info->data_sinfo->lock); 3395 3396 if (!bytes_used) { 3397 struct btrfs_trans_handle *trans; 3398 int ret; 3399 3400 trans = btrfs_join_transaction(fs_info->tree_root); 3401 if (IS_ERR(trans)) 3402 return PTR_ERR(trans); 3403 3404 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3405 btrfs_end_transaction(trans); 3406 if (ret < 0) 3407 return ret; 3408 return 1; 3409 } 3410 3411 return 0; 3412 } 3413 3414 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3415 struct btrfs_balance_control *bctl) 3416 { 3417 struct btrfs_root *root = fs_info->tree_root; 3418 struct btrfs_trans_handle *trans; 3419 struct btrfs_balance_item *item; 3420 struct btrfs_disk_balance_args disk_bargs; 3421 struct btrfs_path *path; 3422 struct extent_buffer *leaf; 3423 struct btrfs_key key; 3424 int ret, err; 3425 3426 path = btrfs_alloc_path(); 3427 if (!path) 3428 return -ENOMEM; 3429 3430 trans = btrfs_start_transaction(root, 0); 3431 if (IS_ERR(trans)) { 3432 btrfs_free_path(path); 3433 return PTR_ERR(trans); 3434 } 3435 3436 key.objectid = BTRFS_BALANCE_OBJECTID; 3437 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3438 key.offset = 0; 3439 3440 ret = btrfs_insert_empty_item(trans, root, path, &key, 3441 sizeof(*item)); 3442 if (ret) 3443 goto out; 3444 3445 leaf = path->nodes[0]; 3446 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3447 3448 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3449 3450 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3451 btrfs_set_balance_data(leaf, item, &disk_bargs); 3452 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3453 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3454 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3455 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3456 3457 btrfs_set_balance_flags(leaf, item, bctl->flags); 3458 3459 btrfs_mark_buffer_dirty(leaf); 3460 out: 3461 btrfs_free_path(path); 3462 err = btrfs_commit_transaction(trans); 3463 if (err && !ret) 3464 ret = err; 3465 return ret; 3466 } 3467 3468 static int del_balance_item(struct btrfs_fs_info *fs_info) 3469 { 3470 struct btrfs_root *root = fs_info->tree_root; 3471 struct btrfs_trans_handle *trans; 3472 struct btrfs_path *path; 3473 struct btrfs_key key; 3474 int ret, err; 3475 3476 path = btrfs_alloc_path(); 3477 if (!path) 3478 return -ENOMEM; 3479 3480 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3481 if (IS_ERR(trans)) { 3482 btrfs_free_path(path); 3483 return PTR_ERR(trans); 3484 } 3485 3486 key.objectid = BTRFS_BALANCE_OBJECTID; 3487 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3488 key.offset = 0; 3489 3490 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3491 if (ret < 0) 3492 goto out; 3493 if (ret > 0) { 3494 ret = -ENOENT; 3495 goto out; 3496 } 3497 3498 ret = btrfs_del_item(trans, root, path); 3499 out: 3500 btrfs_free_path(path); 3501 err = btrfs_commit_transaction(trans); 3502 if (err && !ret) 3503 ret = err; 3504 return ret; 3505 } 3506 3507 /* 3508 * This is a heuristic used to reduce the number of chunks balanced on 3509 * resume after balance was interrupted. 3510 */ 3511 static void update_balance_args(struct btrfs_balance_control *bctl) 3512 { 3513 /* 3514 * Turn on soft mode for chunk types that were being converted. 3515 */ 3516 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3517 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3518 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3519 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3520 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3521 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3522 3523 /* 3524 * Turn on usage filter if is not already used. The idea is 3525 * that chunks that we have already balanced should be 3526 * reasonably full. Don't do it for chunks that are being 3527 * converted - that will keep us from relocating unconverted 3528 * (albeit full) chunks. 3529 */ 3530 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3531 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3532 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3533 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3534 bctl->data.usage = 90; 3535 } 3536 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3537 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3538 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3539 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3540 bctl->sys.usage = 90; 3541 } 3542 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3543 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3544 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3545 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3546 bctl->meta.usage = 90; 3547 } 3548 } 3549 3550 /* 3551 * Clear the balance status in fs_info and delete the balance item from disk. 3552 */ 3553 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3554 { 3555 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3556 int ret; 3557 3558 BUG_ON(!fs_info->balance_ctl); 3559 3560 spin_lock(&fs_info->balance_lock); 3561 fs_info->balance_ctl = NULL; 3562 spin_unlock(&fs_info->balance_lock); 3563 3564 kfree(bctl); 3565 ret = del_balance_item(fs_info); 3566 if (ret) 3567 btrfs_handle_fs_error(fs_info, ret, NULL); 3568 } 3569 3570 /* 3571 * Balance filters. Return 1 if chunk should be filtered out 3572 * (should not be balanced). 3573 */ 3574 static int chunk_profiles_filter(u64 chunk_type, 3575 struct btrfs_balance_args *bargs) 3576 { 3577 chunk_type = chunk_to_extended(chunk_type) & 3578 BTRFS_EXTENDED_PROFILE_MASK; 3579 3580 if (bargs->profiles & chunk_type) 3581 return 0; 3582 3583 return 1; 3584 } 3585 3586 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3587 struct btrfs_balance_args *bargs) 3588 { 3589 struct btrfs_block_group *cache; 3590 u64 chunk_used; 3591 u64 user_thresh_min; 3592 u64 user_thresh_max; 3593 int ret = 1; 3594 3595 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3596 chunk_used = cache->used; 3597 3598 if (bargs->usage_min == 0) 3599 user_thresh_min = 0; 3600 else 3601 user_thresh_min = div_factor_fine(cache->length, 3602 bargs->usage_min); 3603 3604 if (bargs->usage_max == 0) 3605 user_thresh_max = 1; 3606 else if (bargs->usage_max > 100) 3607 user_thresh_max = cache->length; 3608 else 3609 user_thresh_max = div_factor_fine(cache->length, 3610 bargs->usage_max); 3611 3612 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3613 ret = 0; 3614 3615 btrfs_put_block_group(cache); 3616 return ret; 3617 } 3618 3619 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3620 u64 chunk_offset, struct btrfs_balance_args *bargs) 3621 { 3622 struct btrfs_block_group *cache; 3623 u64 chunk_used, user_thresh; 3624 int ret = 1; 3625 3626 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3627 chunk_used = cache->used; 3628 3629 if (bargs->usage_min == 0) 3630 user_thresh = 1; 3631 else if (bargs->usage > 100) 3632 user_thresh = cache->length; 3633 else 3634 user_thresh = div_factor_fine(cache->length, bargs->usage); 3635 3636 if (chunk_used < user_thresh) 3637 ret = 0; 3638 3639 btrfs_put_block_group(cache); 3640 return ret; 3641 } 3642 3643 static int chunk_devid_filter(struct extent_buffer *leaf, 3644 struct btrfs_chunk *chunk, 3645 struct btrfs_balance_args *bargs) 3646 { 3647 struct btrfs_stripe *stripe; 3648 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3649 int i; 3650 3651 for (i = 0; i < num_stripes; i++) { 3652 stripe = btrfs_stripe_nr(chunk, i); 3653 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3654 return 0; 3655 } 3656 3657 return 1; 3658 } 3659 3660 static u64 calc_data_stripes(u64 type, int num_stripes) 3661 { 3662 const int index = btrfs_bg_flags_to_raid_index(type); 3663 const int ncopies = btrfs_raid_array[index].ncopies; 3664 const int nparity = btrfs_raid_array[index].nparity; 3665 3666 return (num_stripes - nparity) / ncopies; 3667 } 3668 3669 /* [pstart, pend) */ 3670 static int chunk_drange_filter(struct extent_buffer *leaf, 3671 struct btrfs_chunk *chunk, 3672 struct btrfs_balance_args *bargs) 3673 { 3674 struct btrfs_stripe *stripe; 3675 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3676 u64 stripe_offset; 3677 u64 stripe_length; 3678 u64 type; 3679 int factor; 3680 int i; 3681 3682 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3683 return 0; 3684 3685 type = btrfs_chunk_type(leaf, chunk); 3686 factor = calc_data_stripes(type, num_stripes); 3687 3688 for (i = 0; i < num_stripes; i++) { 3689 stripe = btrfs_stripe_nr(chunk, i); 3690 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3691 continue; 3692 3693 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3694 stripe_length = btrfs_chunk_length(leaf, chunk); 3695 stripe_length = div_u64(stripe_length, factor); 3696 3697 if (stripe_offset < bargs->pend && 3698 stripe_offset + stripe_length > bargs->pstart) 3699 return 0; 3700 } 3701 3702 return 1; 3703 } 3704 3705 /* [vstart, vend) */ 3706 static int chunk_vrange_filter(struct extent_buffer *leaf, 3707 struct btrfs_chunk *chunk, 3708 u64 chunk_offset, 3709 struct btrfs_balance_args *bargs) 3710 { 3711 if (chunk_offset < bargs->vend && 3712 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3713 /* at least part of the chunk is inside this vrange */ 3714 return 0; 3715 3716 return 1; 3717 } 3718 3719 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3720 struct btrfs_chunk *chunk, 3721 struct btrfs_balance_args *bargs) 3722 { 3723 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3724 3725 if (bargs->stripes_min <= num_stripes 3726 && num_stripes <= bargs->stripes_max) 3727 return 0; 3728 3729 return 1; 3730 } 3731 3732 static int chunk_soft_convert_filter(u64 chunk_type, 3733 struct btrfs_balance_args *bargs) 3734 { 3735 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3736 return 0; 3737 3738 chunk_type = chunk_to_extended(chunk_type) & 3739 BTRFS_EXTENDED_PROFILE_MASK; 3740 3741 if (bargs->target == chunk_type) 3742 return 1; 3743 3744 return 0; 3745 } 3746 3747 static int should_balance_chunk(struct extent_buffer *leaf, 3748 struct btrfs_chunk *chunk, u64 chunk_offset) 3749 { 3750 struct btrfs_fs_info *fs_info = leaf->fs_info; 3751 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3752 struct btrfs_balance_args *bargs = NULL; 3753 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3754 3755 /* type filter */ 3756 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3757 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3758 return 0; 3759 } 3760 3761 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3762 bargs = &bctl->data; 3763 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3764 bargs = &bctl->sys; 3765 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3766 bargs = &bctl->meta; 3767 3768 /* profiles filter */ 3769 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3770 chunk_profiles_filter(chunk_type, bargs)) { 3771 return 0; 3772 } 3773 3774 /* usage filter */ 3775 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3776 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3777 return 0; 3778 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3779 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3780 return 0; 3781 } 3782 3783 /* devid filter */ 3784 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3785 chunk_devid_filter(leaf, chunk, bargs)) { 3786 return 0; 3787 } 3788 3789 /* drange filter, makes sense only with devid filter */ 3790 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3791 chunk_drange_filter(leaf, chunk, bargs)) { 3792 return 0; 3793 } 3794 3795 /* vrange filter */ 3796 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3797 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3798 return 0; 3799 } 3800 3801 /* stripes filter */ 3802 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3803 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3804 return 0; 3805 } 3806 3807 /* soft profile changing mode */ 3808 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3809 chunk_soft_convert_filter(chunk_type, bargs)) { 3810 return 0; 3811 } 3812 3813 /* 3814 * limited by count, must be the last filter 3815 */ 3816 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3817 if (bargs->limit == 0) 3818 return 0; 3819 else 3820 bargs->limit--; 3821 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3822 /* 3823 * Same logic as the 'limit' filter; the minimum cannot be 3824 * determined here because we do not have the global information 3825 * about the count of all chunks that satisfy the filters. 3826 */ 3827 if (bargs->limit_max == 0) 3828 return 0; 3829 else 3830 bargs->limit_max--; 3831 } 3832 3833 return 1; 3834 } 3835 3836 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3837 { 3838 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3839 struct btrfs_root *chunk_root = fs_info->chunk_root; 3840 u64 chunk_type; 3841 struct btrfs_chunk *chunk; 3842 struct btrfs_path *path = NULL; 3843 struct btrfs_key key; 3844 struct btrfs_key found_key; 3845 struct extent_buffer *leaf; 3846 int slot; 3847 int ret; 3848 int enospc_errors = 0; 3849 bool counting = true; 3850 /* The single value limit and min/max limits use the same bytes in the */ 3851 u64 limit_data = bctl->data.limit; 3852 u64 limit_meta = bctl->meta.limit; 3853 u64 limit_sys = bctl->sys.limit; 3854 u32 count_data = 0; 3855 u32 count_meta = 0; 3856 u32 count_sys = 0; 3857 int chunk_reserved = 0; 3858 3859 path = btrfs_alloc_path(); 3860 if (!path) { 3861 ret = -ENOMEM; 3862 goto error; 3863 } 3864 3865 /* zero out stat counters */ 3866 spin_lock(&fs_info->balance_lock); 3867 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3868 spin_unlock(&fs_info->balance_lock); 3869 again: 3870 if (!counting) { 3871 /* 3872 * The single value limit and min/max limits use the same bytes 3873 * in the 3874 */ 3875 bctl->data.limit = limit_data; 3876 bctl->meta.limit = limit_meta; 3877 bctl->sys.limit = limit_sys; 3878 } 3879 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3880 key.offset = (u64)-1; 3881 key.type = BTRFS_CHUNK_ITEM_KEY; 3882 3883 while (1) { 3884 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3885 atomic_read(&fs_info->balance_cancel_req)) { 3886 ret = -ECANCELED; 3887 goto error; 3888 } 3889 3890 mutex_lock(&fs_info->reclaim_bgs_lock); 3891 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3892 if (ret < 0) { 3893 mutex_unlock(&fs_info->reclaim_bgs_lock); 3894 goto error; 3895 } 3896 3897 /* 3898 * this shouldn't happen, it means the last relocate 3899 * failed 3900 */ 3901 if (ret == 0) 3902 BUG(); /* FIXME break ? */ 3903 3904 ret = btrfs_previous_item(chunk_root, path, 0, 3905 BTRFS_CHUNK_ITEM_KEY); 3906 if (ret) { 3907 mutex_unlock(&fs_info->reclaim_bgs_lock); 3908 ret = 0; 3909 break; 3910 } 3911 3912 leaf = path->nodes[0]; 3913 slot = path->slots[0]; 3914 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3915 3916 if (found_key.objectid != key.objectid) { 3917 mutex_unlock(&fs_info->reclaim_bgs_lock); 3918 break; 3919 } 3920 3921 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3922 chunk_type = btrfs_chunk_type(leaf, chunk); 3923 3924 if (!counting) { 3925 spin_lock(&fs_info->balance_lock); 3926 bctl->stat.considered++; 3927 spin_unlock(&fs_info->balance_lock); 3928 } 3929 3930 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3931 3932 btrfs_release_path(path); 3933 if (!ret) { 3934 mutex_unlock(&fs_info->reclaim_bgs_lock); 3935 goto loop; 3936 } 3937 3938 if (counting) { 3939 mutex_unlock(&fs_info->reclaim_bgs_lock); 3940 spin_lock(&fs_info->balance_lock); 3941 bctl->stat.expected++; 3942 spin_unlock(&fs_info->balance_lock); 3943 3944 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3945 count_data++; 3946 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3947 count_sys++; 3948 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3949 count_meta++; 3950 3951 goto loop; 3952 } 3953 3954 /* 3955 * Apply limit_min filter, no need to check if the LIMITS 3956 * filter is used, limit_min is 0 by default 3957 */ 3958 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3959 count_data < bctl->data.limit_min) 3960 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3961 count_meta < bctl->meta.limit_min) 3962 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3963 count_sys < bctl->sys.limit_min)) { 3964 mutex_unlock(&fs_info->reclaim_bgs_lock); 3965 goto loop; 3966 } 3967 3968 if (!chunk_reserved) { 3969 /* 3970 * We may be relocating the only data chunk we have, 3971 * which could potentially end up with losing data's 3972 * raid profile, so lets allocate an empty one in 3973 * advance. 3974 */ 3975 ret = btrfs_may_alloc_data_chunk(fs_info, 3976 found_key.offset); 3977 if (ret < 0) { 3978 mutex_unlock(&fs_info->reclaim_bgs_lock); 3979 goto error; 3980 } else if (ret == 1) { 3981 chunk_reserved = 1; 3982 } 3983 } 3984 3985 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3986 mutex_unlock(&fs_info->reclaim_bgs_lock); 3987 if (ret == -ENOSPC) { 3988 enospc_errors++; 3989 } else if (ret == -ETXTBSY) { 3990 btrfs_info(fs_info, 3991 "skipping relocation of block group %llu due to active swapfile", 3992 found_key.offset); 3993 ret = 0; 3994 } else if (ret) { 3995 goto error; 3996 } else { 3997 spin_lock(&fs_info->balance_lock); 3998 bctl->stat.completed++; 3999 spin_unlock(&fs_info->balance_lock); 4000 } 4001 loop: 4002 if (found_key.offset == 0) 4003 break; 4004 key.offset = found_key.offset - 1; 4005 } 4006 4007 if (counting) { 4008 btrfs_release_path(path); 4009 counting = false; 4010 goto again; 4011 } 4012 error: 4013 btrfs_free_path(path); 4014 if (enospc_errors) { 4015 btrfs_info(fs_info, "%d enospc errors during balance", 4016 enospc_errors); 4017 if (!ret) 4018 ret = -ENOSPC; 4019 } 4020 4021 return ret; 4022 } 4023 4024 /** 4025 * alloc_profile_is_valid - see if a given profile is valid and reduced 4026 * @flags: profile to validate 4027 * @extended: if true @flags is treated as an extended profile 4028 */ 4029 static int alloc_profile_is_valid(u64 flags, int extended) 4030 { 4031 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4032 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4033 4034 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4035 4036 /* 1) check that all other bits are zeroed */ 4037 if (flags & ~mask) 4038 return 0; 4039 4040 /* 2) see if profile is reduced */ 4041 if (flags == 0) 4042 return !extended; /* "0" is valid for usual profiles */ 4043 4044 return has_single_bit_set(flags); 4045 } 4046 4047 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4048 { 4049 /* cancel requested || normal exit path */ 4050 return atomic_read(&fs_info->balance_cancel_req) || 4051 (atomic_read(&fs_info->balance_pause_req) == 0 && 4052 atomic_read(&fs_info->balance_cancel_req) == 0); 4053 } 4054 4055 /* 4056 * Validate target profile against allowed profiles and return true if it's OK. 4057 * Otherwise print the error message and return false. 4058 */ 4059 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4060 const struct btrfs_balance_args *bargs, 4061 u64 allowed, const char *type) 4062 { 4063 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4064 return true; 4065 4066 if (fs_info->sectorsize < PAGE_SIZE && 4067 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) { 4068 btrfs_err(fs_info, 4069 "RAID56 is not yet supported for sectorsize %u with page size %lu", 4070 fs_info->sectorsize, PAGE_SIZE); 4071 return false; 4072 } 4073 /* Profile is valid and does not have bits outside of the allowed set */ 4074 if (alloc_profile_is_valid(bargs->target, 1) && 4075 (bargs->target & ~allowed) == 0) 4076 return true; 4077 4078 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4079 type, btrfs_bg_type_to_raid_name(bargs->target)); 4080 return false; 4081 } 4082 4083 /* 4084 * Fill @buf with textual description of balance filter flags @bargs, up to 4085 * @size_buf including the terminating null. The output may be trimmed if it 4086 * does not fit into the provided buffer. 4087 */ 4088 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4089 u32 size_buf) 4090 { 4091 int ret; 4092 u32 size_bp = size_buf; 4093 char *bp = buf; 4094 u64 flags = bargs->flags; 4095 char tmp_buf[128] = {'\0'}; 4096 4097 if (!flags) 4098 return; 4099 4100 #define CHECK_APPEND_NOARG(a) \ 4101 do { \ 4102 ret = snprintf(bp, size_bp, (a)); \ 4103 if (ret < 0 || ret >= size_bp) \ 4104 goto out_overflow; \ 4105 size_bp -= ret; \ 4106 bp += ret; \ 4107 } while (0) 4108 4109 #define CHECK_APPEND_1ARG(a, v1) \ 4110 do { \ 4111 ret = snprintf(bp, size_bp, (a), (v1)); \ 4112 if (ret < 0 || ret >= size_bp) \ 4113 goto out_overflow; \ 4114 size_bp -= ret; \ 4115 bp += ret; \ 4116 } while (0) 4117 4118 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4119 do { \ 4120 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4121 if (ret < 0 || ret >= size_bp) \ 4122 goto out_overflow; \ 4123 size_bp -= ret; \ 4124 bp += ret; \ 4125 } while (0) 4126 4127 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4128 CHECK_APPEND_1ARG("convert=%s,", 4129 btrfs_bg_type_to_raid_name(bargs->target)); 4130 4131 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4132 CHECK_APPEND_NOARG("soft,"); 4133 4134 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4135 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4136 sizeof(tmp_buf)); 4137 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4138 } 4139 4140 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4141 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4142 4143 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4144 CHECK_APPEND_2ARG("usage=%u..%u,", 4145 bargs->usage_min, bargs->usage_max); 4146 4147 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4148 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4149 4150 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4151 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4152 bargs->pstart, bargs->pend); 4153 4154 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4155 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4156 bargs->vstart, bargs->vend); 4157 4158 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4159 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4160 4161 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4162 CHECK_APPEND_2ARG("limit=%u..%u,", 4163 bargs->limit_min, bargs->limit_max); 4164 4165 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4166 CHECK_APPEND_2ARG("stripes=%u..%u,", 4167 bargs->stripes_min, bargs->stripes_max); 4168 4169 #undef CHECK_APPEND_2ARG 4170 #undef CHECK_APPEND_1ARG 4171 #undef CHECK_APPEND_NOARG 4172 4173 out_overflow: 4174 4175 if (size_bp < size_buf) 4176 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4177 else 4178 buf[0] = '\0'; 4179 } 4180 4181 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4182 { 4183 u32 size_buf = 1024; 4184 char tmp_buf[192] = {'\0'}; 4185 char *buf; 4186 char *bp; 4187 u32 size_bp = size_buf; 4188 int ret; 4189 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4190 4191 buf = kzalloc(size_buf, GFP_KERNEL); 4192 if (!buf) 4193 return; 4194 4195 bp = buf; 4196 4197 #define CHECK_APPEND_1ARG(a, v1) \ 4198 do { \ 4199 ret = snprintf(bp, size_bp, (a), (v1)); \ 4200 if (ret < 0 || ret >= size_bp) \ 4201 goto out_overflow; \ 4202 size_bp -= ret; \ 4203 bp += ret; \ 4204 } while (0) 4205 4206 if (bctl->flags & BTRFS_BALANCE_FORCE) 4207 CHECK_APPEND_1ARG("%s", "-f "); 4208 4209 if (bctl->flags & BTRFS_BALANCE_DATA) { 4210 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4211 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4212 } 4213 4214 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4215 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4216 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4217 } 4218 4219 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4220 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4221 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4222 } 4223 4224 #undef CHECK_APPEND_1ARG 4225 4226 out_overflow: 4227 4228 if (size_bp < size_buf) 4229 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4230 btrfs_info(fs_info, "balance: %s %s", 4231 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4232 "resume" : "start", buf); 4233 4234 kfree(buf); 4235 } 4236 4237 /* 4238 * Should be called with balance mutexe held 4239 */ 4240 int btrfs_balance(struct btrfs_fs_info *fs_info, 4241 struct btrfs_balance_control *bctl, 4242 struct btrfs_ioctl_balance_args *bargs) 4243 { 4244 u64 meta_target, data_target; 4245 u64 allowed; 4246 int mixed = 0; 4247 int ret; 4248 u64 num_devices; 4249 unsigned seq; 4250 bool reducing_redundancy; 4251 int i; 4252 4253 if (btrfs_fs_closing(fs_info) || 4254 atomic_read(&fs_info->balance_pause_req) || 4255 btrfs_should_cancel_balance(fs_info)) { 4256 ret = -EINVAL; 4257 goto out; 4258 } 4259 4260 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4261 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4262 mixed = 1; 4263 4264 /* 4265 * In case of mixed groups both data and meta should be picked, 4266 * and identical options should be given for both of them. 4267 */ 4268 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4269 if (mixed && (bctl->flags & allowed)) { 4270 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4271 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4272 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4273 btrfs_err(fs_info, 4274 "balance: mixed groups data and metadata options must be the same"); 4275 ret = -EINVAL; 4276 goto out; 4277 } 4278 } 4279 4280 /* 4281 * rw_devices will not change at the moment, device add/delete/replace 4282 * are exclusive 4283 */ 4284 num_devices = fs_info->fs_devices->rw_devices; 4285 4286 /* 4287 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4288 * special bit for it, to make it easier to distinguish. Thus we need 4289 * to set it manually, or balance would refuse the profile. 4290 */ 4291 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4292 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4293 if (num_devices >= btrfs_raid_array[i].devs_min) 4294 allowed |= btrfs_raid_array[i].bg_flag; 4295 4296 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4297 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4298 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4299 ret = -EINVAL; 4300 goto out; 4301 } 4302 4303 /* 4304 * Allow to reduce metadata or system integrity only if force set for 4305 * profiles with redundancy (copies, parity) 4306 */ 4307 allowed = 0; 4308 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4309 if (btrfs_raid_array[i].ncopies >= 2 || 4310 btrfs_raid_array[i].tolerated_failures >= 1) 4311 allowed |= btrfs_raid_array[i].bg_flag; 4312 } 4313 do { 4314 seq = read_seqbegin(&fs_info->profiles_lock); 4315 4316 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4317 (fs_info->avail_system_alloc_bits & allowed) && 4318 !(bctl->sys.target & allowed)) || 4319 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4320 (fs_info->avail_metadata_alloc_bits & allowed) && 4321 !(bctl->meta.target & allowed))) 4322 reducing_redundancy = true; 4323 else 4324 reducing_redundancy = false; 4325 4326 /* if we're not converting, the target field is uninitialized */ 4327 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4328 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4329 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4330 bctl->data.target : fs_info->avail_data_alloc_bits; 4331 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4332 4333 if (reducing_redundancy) { 4334 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4335 btrfs_info(fs_info, 4336 "balance: force reducing metadata redundancy"); 4337 } else { 4338 btrfs_err(fs_info, 4339 "balance: reduces metadata redundancy, use --force if you want this"); 4340 ret = -EINVAL; 4341 goto out; 4342 } 4343 } 4344 4345 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4346 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4347 btrfs_warn(fs_info, 4348 "balance: metadata profile %s has lower redundancy than data profile %s", 4349 btrfs_bg_type_to_raid_name(meta_target), 4350 btrfs_bg_type_to_raid_name(data_target)); 4351 } 4352 4353 ret = insert_balance_item(fs_info, bctl); 4354 if (ret && ret != -EEXIST) 4355 goto out; 4356 4357 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4358 BUG_ON(ret == -EEXIST); 4359 BUG_ON(fs_info->balance_ctl); 4360 spin_lock(&fs_info->balance_lock); 4361 fs_info->balance_ctl = bctl; 4362 spin_unlock(&fs_info->balance_lock); 4363 } else { 4364 BUG_ON(ret != -EEXIST); 4365 spin_lock(&fs_info->balance_lock); 4366 update_balance_args(bctl); 4367 spin_unlock(&fs_info->balance_lock); 4368 } 4369 4370 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4371 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4372 describe_balance_start_or_resume(fs_info); 4373 mutex_unlock(&fs_info->balance_mutex); 4374 4375 ret = __btrfs_balance(fs_info); 4376 4377 mutex_lock(&fs_info->balance_mutex); 4378 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4379 btrfs_info(fs_info, "balance: paused"); 4380 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4381 } 4382 /* 4383 * Balance can be canceled by: 4384 * 4385 * - Regular cancel request 4386 * Then ret == -ECANCELED and balance_cancel_req > 0 4387 * 4388 * - Fatal signal to "btrfs" process 4389 * Either the signal caught by wait_reserve_ticket() and callers 4390 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4391 * got -ECANCELED. 4392 * Either way, in this case balance_cancel_req = 0, and 4393 * ret == -EINTR or ret == -ECANCELED. 4394 * 4395 * So here we only check the return value to catch canceled balance. 4396 */ 4397 else if (ret == -ECANCELED || ret == -EINTR) 4398 btrfs_info(fs_info, "balance: canceled"); 4399 else 4400 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4401 4402 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4403 4404 if (bargs) { 4405 memset(bargs, 0, sizeof(*bargs)); 4406 btrfs_update_ioctl_balance_args(fs_info, bargs); 4407 } 4408 4409 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4410 balance_need_close(fs_info)) { 4411 reset_balance_state(fs_info); 4412 btrfs_exclop_finish(fs_info); 4413 } 4414 4415 wake_up(&fs_info->balance_wait_q); 4416 4417 return ret; 4418 out: 4419 if (bctl->flags & BTRFS_BALANCE_RESUME) 4420 reset_balance_state(fs_info); 4421 else 4422 kfree(bctl); 4423 btrfs_exclop_finish(fs_info); 4424 4425 return ret; 4426 } 4427 4428 static int balance_kthread(void *data) 4429 { 4430 struct btrfs_fs_info *fs_info = data; 4431 int ret = 0; 4432 4433 sb_start_write(fs_info->sb); 4434 mutex_lock(&fs_info->balance_mutex); 4435 if (fs_info->balance_ctl) 4436 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4437 mutex_unlock(&fs_info->balance_mutex); 4438 sb_end_write(fs_info->sb); 4439 4440 return ret; 4441 } 4442 4443 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4444 { 4445 struct task_struct *tsk; 4446 4447 mutex_lock(&fs_info->balance_mutex); 4448 if (!fs_info->balance_ctl) { 4449 mutex_unlock(&fs_info->balance_mutex); 4450 return 0; 4451 } 4452 mutex_unlock(&fs_info->balance_mutex); 4453 4454 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4455 btrfs_info(fs_info, "balance: resume skipped"); 4456 return 0; 4457 } 4458 4459 spin_lock(&fs_info->super_lock); 4460 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4461 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4462 spin_unlock(&fs_info->super_lock); 4463 /* 4464 * A ro->rw remount sequence should continue with the paused balance 4465 * regardless of who pauses it, system or the user as of now, so set 4466 * the resume flag. 4467 */ 4468 spin_lock(&fs_info->balance_lock); 4469 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4470 spin_unlock(&fs_info->balance_lock); 4471 4472 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4473 return PTR_ERR_OR_ZERO(tsk); 4474 } 4475 4476 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4477 { 4478 struct btrfs_balance_control *bctl; 4479 struct btrfs_balance_item *item; 4480 struct btrfs_disk_balance_args disk_bargs; 4481 struct btrfs_path *path; 4482 struct extent_buffer *leaf; 4483 struct btrfs_key key; 4484 int ret; 4485 4486 path = btrfs_alloc_path(); 4487 if (!path) 4488 return -ENOMEM; 4489 4490 key.objectid = BTRFS_BALANCE_OBJECTID; 4491 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4492 key.offset = 0; 4493 4494 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4495 if (ret < 0) 4496 goto out; 4497 if (ret > 0) { /* ret = -ENOENT; */ 4498 ret = 0; 4499 goto out; 4500 } 4501 4502 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4503 if (!bctl) { 4504 ret = -ENOMEM; 4505 goto out; 4506 } 4507 4508 leaf = path->nodes[0]; 4509 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4510 4511 bctl->flags = btrfs_balance_flags(leaf, item); 4512 bctl->flags |= BTRFS_BALANCE_RESUME; 4513 4514 btrfs_balance_data(leaf, item, &disk_bargs); 4515 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4516 btrfs_balance_meta(leaf, item, &disk_bargs); 4517 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4518 btrfs_balance_sys(leaf, item, &disk_bargs); 4519 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4520 4521 /* 4522 * This should never happen, as the paused balance state is recovered 4523 * during mount without any chance of other exclusive ops to collide. 4524 * 4525 * This gives the exclusive op status to balance and keeps in paused 4526 * state until user intervention (cancel or umount). If the ownership 4527 * cannot be assigned, show a message but do not fail. The balance 4528 * is in a paused state and must have fs_info::balance_ctl properly 4529 * set up. 4530 */ 4531 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4532 btrfs_warn(fs_info, 4533 "balance: cannot set exclusive op status, resume manually"); 4534 4535 btrfs_release_path(path); 4536 4537 mutex_lock(&fs_info->balance_mutex); 4538 BUG_ON(fs_info->balance_ctl); 4539 spin_lock(&fs_info->balance_lock); 4540 fs_info->balance_ctl = bctl; 4541 spin_unlock(&fs_info->balance_lock); 4542 mutex_unlock(&fs_info->balance_mutex); 4543 out: 4544 btrfs_free_path(path); 4545 return ret; 4546 } 4547 4548 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4549 { 4550 int ret = 0; 4551 4552 mutex_lock(&fs_info->balance_mutex); 4553 if (!fs_info->balance_ctl) { 4554 mutex_unlock(&fs_info->balance_mutex); 4555 return -ENOTCONN; 4556 } 4557 4558 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4559 atomic_inc(&fs_info->balance_pause_req); 4560 mutex_unlock(&fs_info->balance_mutex); 4561 4562 wait_event(fs_info->balance_wait_q, 4563 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4564 4565 mutex_lock(&fs_info->balance_mutex); 4566 /* we are good with balance_ctl ripped off from under us */ 4567 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4568 atomic_dec(&fs_info->balance_pause_req); 4569 } else { 4570 ret = -ENOTCONN; 4571 } 4572 4573 mutex_unlock(&fs_info->balance_mutex); 4574 return ret; 4575 } 4576 4577 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4578 { 4579 mutex_lock(&fs_info->balance_mutex); 4580 if (!fs_info->balance_ctl) { 4581 mutex_unlock(&fs_info->balance_mutex); 4582 return -ENOTCONN; 4583 } 4584 4585 /* 4586 * A paused balance with the item stored on disk can be resumed at 4587 * mount time if the mount is read-write. Otherwise it's still paused 4588 * and we must not allow cancelling as it deletes the item. 4589 */ 4590 if (sb_rdonly(fs_info->sb)) { 4591 mutex_unlock(&fs_info->balance_mutex); 4592 return -EROFS; 4593 } 4594 4595 atomic_inc(&fs_info->balance_cancel_req); 4596 /* 4597 * if we are running just wait and return, balance item is 4598 * deleted in btrfs_balance in this case 4599 */ 4600 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4601 mutex_unlock(&fs_info->balance_mutex); 4602 wait_event(fs_info->balance_wait_q, 4603 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4604 mutex_lock(&fs_info->balance_mutex); 4605 } else { 4606 mutex_unlock(&fs_info->balance_mutex); 4607 /* 4608 * Lock released to allow other waiters to continue, we'll 4609 * reexamine the status again. 4610 */ 4611 mutex_lock(&fs_info->balance_mutex); 4612 4613 if (fs_info->balance_ctl) { 4614 reset_balance_state(fs_info); 4615 btrfs_exclop_finish(fs_info); 4616 btrfs_info(fs_info, "balance: canceled"); 4617 } 4618 } 4619 4620 BUG_ON(fs_info->balance_ctl || 4621 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4622 atomic_dec(&fs_info->balance_cancel_req); 4623 mutex_unlock(&fs_info->balance_mutex); 4624 return 0; 4625 } 4626 4627 int btrfs_uuid_scan_kthread(void *data) 4628 { 4629 struct btrfs_fs_info *fs_info = data; 4630 struct btrfs_root *root = fs_info->tree_root; 4631 struct btrfs_key key; 4632 struct btrfs_path *path = NULL; 4633 int ret = 0; 4634 struct extent_buffer *eb; 4635 int slot; 4636 struct btrfs_root_item root_item; 4637 u32 item_size; 4638 struct btrfs_trans_handle *trans = NULL; 4639 bool closing = false; 4640 4641 path = btrfs_alloc_path(); 4642 if (!path) { 4643 ret = -ENOMEM; 4644 goto out; 4645 } 4646 4647 key.objectid = 0; 4648 key.type = BTRFS_ROOT_ITEM_KEY; 4649 key.offset = 0; 4650 4651 while (1) { 4652 if (btrfs_fs_closing(fs_info)) { 4653 closing = true; 4654 break; 4655 } 4656 ret = btrfs_search_forward(root, &key, path, 4657 BTRFS_OLDEST_GENERATION); 4658 if (ret) { 4659 if (ret > 0) 4660 ret = 0; 4661 break; 4662 } 4663 4664 if (key.type != BTRFS_ROOT_ITEM_KEY || 4665 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4666 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4667 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4668 goto skip; 4669 4670 eb = path->nodes[0]; 4671 slot = path->slots[0]; 4672 item_size = btrfs_item_size(eb, slot); 4673 if (item_size < sizeof(root_item)) 4674 goto skip; 4675 4676 read_extent_buffer(eb, &root_item, 4677 btrfs_item_ptr_offset(eb, slot), 4678 (int)sizeof(root_item)); 4679 if (btrfs_root_refs(&root_item) == 0) 4680 goto skip; 4681 4682 if (!btrfs_is_empty_uuid(root_item.uuid) || 4683 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4684 if (trans) 4685 goto update_tree; 4686 4687 btrfs_release_path(path); 4688 /* 4689 * 1 - subvol uuid item 4690 * 1 - received_subvol uuid item 4691 */ 4692 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4693 if (IS_ERR(trans)) { 4694 ret = PTR_ERR(trans); 4695 break; 4696 } 4697 continue; 4698 } else { 4699 goto skip; 4700 } 4701 update_tree: 4702 btrfs_release_path(path); 4703 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4704 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4705 BTRFS_UUID_KEY_SUBVOL, 4706 key.objectid); 4707 if (ret < 0) { 4708 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4709 ret); 4710 break; 4711 } 4712 } 4713 4714 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4715 ret = btrfs_uuid_tree_add(trans, 4716 root_item.received_uuid, 4717 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4718 key.objectid); 4719 if (ret < 0) { 4720 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4721 ret); 4722 break; 4723 } 4724 } 4725 4726 skip: 4727 btrfs_release_path(path); 4728 if (trans) { 4729 ret = btrfs_end_transaction(trans); 4730 trans = NULL; 4731 if (ret) 4732 break; 4733 } 4734 4735 if (key.offset < (u64)-1) { 4736 key.offset++; 4737 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4738 key.offset = 0; 4739 key.type = BTRFS_ROOT_ITEM_KEY; 4740 } else if (key.objectid < (u64)-1) { 4741 key.offset = 0; 4742 key.type = BTRFS_ROOT_ITEM_KEY; 4743 key.objectid++; 4744 } else { 4745 break; 4746 } 4747 cond_resched(); 4748 } 4749 4750 out: 4751 btrfs_free_path(path); 4752 if (trans && !IS_ERR(trans)) 4753 btrfs_end_transaction(trans); 4754 if (ret) 4755 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4756 else if (!closing) 4757 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4758 up(&fs_info->uuid_tree_rescan_sem); 4759 return 0; 4760 } 4761 4762 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4763 { 4764 struct btrfs_trans_handle *trans; 4765 struct btrfs_root *tree_root = fs_info->tree_root; 4766 struct btrfs_root *uuid_root; 4767 struct task_struct *task; 4768 int ret; 4769 4770 /* 4771 * 1 - root node 4772 * 1 - root item 4773 */ 4774 trans = btrfs_start_transaction(tree_root, 2); 4775 if (IS_ERR(trans)) 4776 return PTR_ERR(trans); 4777 4778 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4779 if (IS_ERR(uuid_root)) { 4780 ret = PTR_ERR(uuid_root); 4781 btrfs_abort_transaction(trans, ret); 4782 btrfs_end_transaction(trans); 4783 return ret; 4784 } 4785 4786 fs_info->uuid_root = uuid_root; 4787 4788 ret = btrfs_commit_transaction(trans); 4789 if (ret) 4790 return ret; 4791 4792 down(&fs_info->uuid_tree_rescan_sem); 4793 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4794 if (IS_ERR(task)) { 4795 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4796 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4797 up(&fs_info->uuid_tree_rescan_sem); 4798 return PTR_ERR(task); 4799 } 4800 4801 return 0; 4802 } 4803 4804 /* 4805 * shrinking a device means finding all of the device extents past 4806 * the new size, and then following the back refs to the chunks. 4807 * The chunk relocation code actually frees the device extent 4808 */ 4809 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4810 { 4811 struct btrfs_fs_info *fs_info = device->fs_info; 4812 struct btrfs_root *root = fs_info->dev_root; 4813 struct btrfs_trans_handle *trans; 4814 struct btrfs_dev_extent *dev_extent = NULL; 4815 struct btrfs_path *path; 4816 u64 length; 4817 u64 chunk_offset; 4818 int ret; 4819 int slot; 4820 int failed = 0; 4821 bool retried = false; 4822 struct extent_buffer *l; 4823 struct btrfs_key key; 4824 struct btrfs_super_block *super_copy = fs_info->super_copy; 4825 u64 old_total = btrfs_super_total_bytes(super_copy); 4826 u64 old_size = btrfs_device_get_total_bytes(device); 4827 u64 diff; 4828 u64 start; 4829 4830 new_size = round_down(new_size, fs_info->sectorsize); 4831 start = new_size; 4832 diff = round_down(old_size - new_size, fs_info->sectorsize); 4833 4834 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4835 return -EINVAL; 4836 4837 path = btrfs_alloc_path(); 4838 if (!path) 4839 return -ENOMEM; 4840 4841 path->reada = READA_BACK; 4842 4843 trans = btrfs_start_transaction(root, 0); 4844 if (IS_ERR(trans)) { 4845 btrfs_free_path(path); 4846 return PTR_ERR(trans); 4847 } 4848 4849 mutex_lock(&fs_info->chunk_mutex); 4850 4851 btrfs_device_set_total_bytes(device, new_size); 4852 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4853 device->fs_devices->total_rw_bytes -= diff; 4854 atomic64_sub(diff, &fs_info->free_chunk_space); 4855 } 4856 4857 /* 4858 * Once the device's size has been set to the new size, ensure all 4859 * in-memory chunks are synced to disk so that the loop below sees them 4860 * and relocates them accordingly. 4861 */ 4862 if (contains_pending_extent(device, &start, diff)) { 4863 mutex_unlock(&fs_info->chunk_mutex); 4864 ret = btrfs_commit_transaction(trans); 4865 if (ret) 4866 goto done; 4867 } else { 4868 mutex_unlock(&fs_info->chunk_mutex); 4869 btrfs_end_transaction(trans); 4870 } 4871 4872 again: 4873 key.objectid = device->devid; 4874 key.offset = (u64)-1; 4875 key.type = BTRFS_DEV_EXTENT_KEY; 4876 4877 do { 4878 mutex_lock(&fs_info->reclaim_bgs_lock); 4879 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4880 if (ret < 0) { 4881 mutex_unlock(&fs_info->reclaim_bgs_lock); 4882 goto done; 4883 } 4884 4885 ret = btrfs_previous_item(root, path, 0, key.type); 4886 if (ret) { 4887 mutex_unlock(&fs_info->reclaim_bgs_lock); 4888 if (ret < 0) 4889 goto done; 4890 ret = 0; 4891 btrfs_release_path(path); 4892 break; 4893 } 4894 4895 l = path->nodes[0]; 4896 slot = path->slots[0]; 4897 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4898 4899 if (key.objectid != device->devid) { 4900 mutex_unlock(&fs_info->reclaim_bgs_lock); 4901 btrfs_release_path(path); 4902 break; 4903 } 4904 4905 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4906 length = btrfs_dev_extent_length(l, dev_extent); 4907 4908 if (key.offset + length <= new_size) { 4909 mutex_unlock(&fs_info->reclaim_bgs_lock); 4910 btrfs_release_path(path); 4911 break; 4912 } 4913 4914 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4915 btrfs_release_path(path); 4916 4917 /* 4918 * We may be relocating the only data chunk we have, 4919 * which could potentially end up with losing data's 4920 * raid profile, so lets allocate an empty one in 4921 * advance. 4922 */ 4923 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4924 if (ret < 0) { 4925 mutex_unlock(&fs_info->reclaim_bgs_lock); 4926 goto done; 4927 } 4928 4929 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4930 mutex_unlock(&fs_info->reclaim_bgs_lock); 4931 if (ret == -ENOSPC) { 4932 failed++; 4933 } else if (ret) { 4934 if (ret == -ETXTBSY) { 4935 btrfs_warn(fs_info, 4936 "could not shrink block group %llu due to active swapfile", 4937 chunk_offset); 4938 } 4939 goto done; 4940 } 4941 } while (key.offset-- > 0); 4942 4943 if (failed && !retried) { 4944 failed = 0; 4945 retried = true; 4946 goto again; 4947 } else if (failed && retried) { 4948 ret = -ENOSPC; 4949 goto done; 4950 } 4951 4952 /* Shrinking succeeded, else we would be at "done". */ 4953 trans = btrfs_start_transaction(root, 0); 4954 if (IS_ERR(trans)) { 4955 ret = PTR_ERR(trans); 4956 goto done; 4957 } 4958 4959 mutex_lock(&fs_info->chunk_mutex); 4960 /* Clear all state bits beyond the shrunk device size */ 4961 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4962 CHUNK_STATE_MASK); 4963 4964 btrfs_device_set_disk_total_bytes(device, new_size); 4965 if (list_empty(&device->post_commit_list)) 4966 list_add_tail(&device->post_commit_list, 4967 &trans->transaction->dev_update_list); 4968 4969 WARN_ON(diff > old_total); 4970 btrfs_set_super_total_bytes(super_copy, 4971 round_down(old_total - diff, fs_info->sectorsize)); 4972 mutex_unlock(&fs_info->chunk_mutex); 4973 4974 btrfs_reserve_chunk_metadata(trans, false); 4975 /* Now btrfs_update_device() will change the on-disk size. */ 4976 ret = btrfs_update_device(trans, device); 4977 btrfs_trans_release_chunk_metadata(trans); 4978 if (ret < 0) { 4979 btrfs_abort_transaction(trans, ret); 4980 btrfs_end_transaction(trans); 4981 } else { 4982 ret = btrfs_commit_transaction(trans); 4983 } 4984 done: 4985 btrfs_free_path(path); 4986 if (ret) { 4987 mutex_lock(&fs_info->chunk_mutex); 4988 btrfs_device_set_total_bytes(device, old_size); 4989 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4990 device->fs_devices->total_rw_bytes += diff; 4991 atomic64_add(diff, &fs_info->free_chunk_space); 4992 mutex_unlock(&fs_info->chunk_mutex); 4993 } 4994 return ret; 4995 } 4996 4997 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4998 struct btrfs_key *key, 4999 struct btrfs_chunk *chunk, int item_size) 5000 { 5001 struct btrfs_super_block *super_copy = fs_info->super_copy; 5002 struct btrfs_disk_key disk_key; 5003 u32 array_size; 5004 u8 *ptr; 5005 5006 lockdep_assert_held(&fs_info->chunk_mutex); 5007 5008 array_size = btrfs_super_sys_array_size(super_copy); 5009 if (array_size + item_size + sizeof(disk_key) 5010 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5011 return -EFBIG; 5012 5013 ptr = super_copy->sys_chunk_array + array_size; 5014 btrfs_cpu_key_to_disk(&disk_key, key); 5015 memcpy(ptr, &disk_key, sizeof(disk_key)); 5016 ptr += sizeof(disk_key); 5017 memcpy(ptr, chunk, item_size); 5018 item_size += sizeof(disk_key); 5019 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5020 5021 return 0; 5022 } 5023 5024 /* 5025 * sort the devices in descending order by max_avail, total_avail 5026 */ 5027 static int btrfs_cmp_device_info(const void *a, const void *b) 5028 { 5029 const struct btrfs_device_info *di_a = a; 5030 const struct btrfs_device_info *di_b = b; 5031 5032 if (di_a->max_avail > di_b->max_avail) 5033 return -1; 5034 if (di_a->max_avail < di_b->max_avail) 5035 return 1; 5036 if (di_a->total_avail > di_b->total_avail) 5037 return -1; 5038 if (di_a->total_avail < di_b->total_avail) 5039 return 1; 5040 return 0; 5041 } 5042 5043 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5044 { 5045 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5046 return; 5047 5048 btrfs_set_fs_incompat(info, RAID56); 5049 } 5050 5051 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5052 { 5053 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5054 return; 5055 5056 btrfs_set_fs_incompat(info, RAID1C34); 5057 } 5058 5059 /* 5060 * Structure used internally for btrfs_create_chunk() function. 5061 * Wraps needed parameters. 5062 */ 5063 struct alloc_chunk_ctl { 5064 u64 start; 5065 u64 type; 5066 /* Total number of stripes to allocate */ 5067 int num_stripes; 5068 /* sub_stripes info for map */ 5069 int sub_stripes; 5070 /* Stripes per device */ 5071 int dev_stripes; 5072 /* Maximum number of devices to use */ 5073 int devs_max; 5074 /* Minimum number of devices to use */ 5075 int devs_min; 5076 /* ndevs has to be a multiple of this */ 5077 int devs_increment; 5078 /* Number of copies */ 5079 int ncopies; 5080 /* Number of stripes worth of bytes to store parity information */ 5081 int nparity; 5082 u64 max_stripe_size; 5083 u64 max_chunk_size; 5084 u64 dev_extent_min; 5085 u64 stripe_size; 5086 u64 chunk_size; 5087 int ndevs; 5088 }; 5089 5090 static void init_alloc_chunk_ctl_policy_regular( 5091 struct btrfs_fs_devices *fs_devices, 5092 struct alloc_chunk_ctl *ctl) 5093 { 5094 u64 type = ctl->type; 5095 5096 if (type & BTRFS_BLOCK_GROUP_DATA) { 5097 ctl->max_stripe_size = SZ_1G; 5098 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 5099 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5100 /* For larger filesystems, use larger metadata chunks */ 5101 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 5102 ctl->max_stripe_size = SZ_1G; 5103 else 5104 ctl->max_stripe_size = SZ_256M; 5105 ctl->max_chunk_size = ctl->max_stripe_size; 5106 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5107 ctl->max_stripe_size = SZ_32M; 5108 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5109 ctl->devs_max = min_t(int, ctl->devs_max, 5110 BTRFS_MAX_DEVS_SYS_CHUNK); 5111 } else { 5112 BUG(); 5113 } 5114 5115 /* We don't want a chunk larger than 10% of writable space */ 5116 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 5117 ctl->max_chunk_size); 5118 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 5119 } 5120 5121 static void init_alloc_chunk_ctl_policy_zoned( 5122 struct btrfs_fs_devices *fs_devices, 5123 struct alloc_chunk_ctl *ctl) 5124 { 5125 u64 zone_size = fs_devices->fs_info->zone_size; 5126 u64 limit; 5127 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5128 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5129 u64 min_chunk_size = min_data_stripes * zone_size; 5130 u64 type = ctl->type; 5131 5132 ctl->max_stripe_size = zone_size; 5133 if (type & BTRFS_BLOCK_GROUP_DATA) { 5134 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5135 zone_size); 5136 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5137 ctl->max_chunk_size = ctl->max_stripe_size; 5138 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5139 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5140 ctl->devs_max = min_t(int, ctl->devs_max, 5141 BTRFS_MAX_DEVS_SYS_CHUNK); 5142 } else { 5143 BUG(); 5144 } 5145 5146 /* We don't want a chunk larger than 10% of writable space */ 5147 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5148 zone_size), 5149 min_chunk_size); 5150 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5151 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5152 } 5153 5154 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5155 struct alloc_chunk_ctl *ctl) 5156 { 5157 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5158 5159 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5160 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5161 ctl->devs_max = btrfs_raid_array[index].devs_max; 5162 if (!ctl->devs_max) 5163 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5164 ctl->devs_min = btrfs_raid_array[index].devs_min; 5165 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5166 ctl->ncopies = btrfs_raid_array[index].ncopies; 5167 ctl->nparity = btrfs_raid_array[index].nparity; 5168 ctl->ndevs = 0; 5169 5170 switch (fs_devices->chunk_alloc_policy) { 5171 case BTRFS_CHUNK_ALLOC_REGULAR: 5172 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5173 break; 5174 case BTRFS_CHUNK_ALLOC_ZONED: 5175 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5176 break; 5177 default: 5178 BUG(); 5179 } 5180 } 5181 5182 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5183 struct alloc_chunk_ctl *ctl, 5184 struct btrfs_device_info *devices_info) 5185 { 5186 struct btrfs_fs_info *info = fs_devices->fs_info; 5187 struct btrfs_device *device; 5188 u64 total_avail; 5189 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5190 int ret; 5191 int ndevs = 0; 5192 u64 max_avail; 5193 u64 dev_offset; 5194 5195 /* 5196 * in the first pass through the devices list, we gather information 5197 * about the available holes on each device. 5198 */ 5199 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5200 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5201 WARN(1, KERN_ERR 5202 "BTRFS: read-only device in alloc_list\n"); 5203 continue; 5204 } 5205 5206 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5207 &device->dev_state) || 5208 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5209 continue; 5210 5211 if (device->total_bytes > device->bytes_used) 5212 total_avail = device->total_bytes - device->bytes_used; 5213 else 5214 total_avail = 0; 5215 5216 /* If there is no space on this device, skip it. */ 5217 if (total_avail < ctl->dev_extent_min) 5218 continue; 5219 5220 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5221 &max_avail); 5222 if (ret && ret != -ENOSPC) 5223 return ret; 5224 5225 if (ret == 0) 5226 max_avail = dev_extent_want; 5227 5228 if (max_avail < ctl->dev_extent_min) { 5229 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5230 btrfs_debug(info, 5231 "%s: devid %llu has no free space, have=%llu want=%llu", 5232 __func__, device->devid, max_avail, 5233 ctl->dev_extent_min); 5234 continue; 5235 } 5236 5237 if (ndevs == fs_devices->rw_devices) { 5238 WARN(1, "%s: found more than %llu devices\n", 5239 __func__, fs_devices->rw_devices); 5240 break; 5241 } 5242 devices_info[ndevs].dev_offset = dev_offset; 5243 devices_info[ndevs].max_avail = max_avail; 5244 devices_info[ndevs].total_avail = total_avail; 5245 devices_info[ndevs].dev = device; 5246 ++ndevs; 5247 } 5248 ctl->ndevs = ndevs; 5249 5250 /* 5251 * now sort the devices by hole size / available space 5252 */ 5253 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5254 btrfs_cmp_device_info, NULL); 5255 5256 return 0; 5257 } 5258 5259 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5260 struct btrfs_device_info *devices_info) 5261 { 5262 /* Number of stripes that count for block group size */ 5263 int data_stripes; 5264 5265 /* 5266 * The primary goal is to maximize the number of stripes, so use as 5267 * many devices as possible, even if the stripes are not maximum sized. 5268 * 5269 * The DUP profile stores more than one stripe per device, the 5270 * max_avail is the total size so we have to adjust. 5271 */ 5272 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5273 ctl->dev_stripes); 5274 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5275 5276 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5277 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5278 5279 /* 5280 * Use the number of data stripes to figure out how big this chunk is 5281 * really going to be in terms of logical address space, and compare 5282 * that answer with the max chunk size. If it's higher, we try to 5283 * reduce stripe_size. 5284 */ 5285 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5286 /* 5287 * Reduce stripe_size, round it up to a 16MB boundary again and 5288 * then use it, unless it ends up being even bigger than the 5289 * previous value we had already. 5290 */ 5291 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5292 data_stripes), SZ_16M), 5293 ctl->stripe_size); 5294 } 5295 5296 /* Align to BTRFS_STRIPE_LEN */ 5297 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5298 ctl->chunk_size = ctl->stripe_size * data_stripes; 5299 5300 return 0; 5301 } 5302 5303 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5304 struct btrfs_device_info *devices_info) 5305 { 5306 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5307 /* Number of stripes that count for block group size */ 5308 int data_stripes; 5309 5310 /* 5311 * It should hold because: 5312 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5313 */ 5314 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5315 5316 ctl->stripe_size = zone_size; 5317 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5318 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5319 5320 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5321 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5322 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5323 ctl->stripe_size) + ctl->nparity, 5324 ctl->dev_stripes); 5325 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5326 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5327 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5328 } 5329 5330 ctl->chunk_size = ctl->stripe_size * data_stripes; 5331 5332 return 0; 5333 } 5334 5335 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5336 struct alloc_chunk_ctl *ctl, 5337 struct btrfs_device_info *devices_info) 5338 { 5339 struct btrfs_fs_info *info = fs_devices->fs_info; 5340 5341 /* 5342 * Round down to number of usable stripes, devs_increment can be any 5343 * number so we can't use round_down() that requires power of 2, while 5344 * rounddown is safe. 5345 */ 5346 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5347 5348 if (ctl->ndevs < ctl->devs_min) { 5349 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5350 btrfs_debug(info, 5351 "%s: not enough devices with free space: have=%d minimum required=%d", 5352 __func__, ctl->ndevs, ctl->devs_min); 5353 } 5354 return -ENOSPC; 5355 } 5356 5357 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5358 5359 switch (fs_devices->chunk_alloc_policy) { 5360 case BTRFS_CHUNK_ALLOC_REGULAR: 5361 return decide_stripe_size_regular(ctl, devices_info); 5362 case BTRFS_CHUNK_ALLOC_ZONED: 5363 return decide_stripe_size_zoned(ctl, devices_info); 5364 default: 5365 BUG(); 5366 } 5367 } 5368 5369 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5370 struct alloc_chunk_ctl *ctl, 5371 struct btrfs_device_info *devices_info) 5372 { 5373 struct btrfs_fs_info *info = trans->fs_info; 5374 struct map_lookup *map = NULL; 5375 struct extent_map_tree *em_tree; 5376 struct btrfs_block_group *block_group; 5377 struct extent_map *em; 5378 u64 start = ctl->start; 5379 u64 type = ctl->type; 5380 int ret; 5381 int i; 5382 int j; 5383 5384 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5385 if (!map) 5386 return ERR_PTR(-ENOMEM); 5387 map->num_stripes = ctl->num_stripes; 5388 5389 for (i = 0; i < ctl->ndevs; ++i) { 5390 for (j = 0; j < ctl->dev_stripes; ++j) { 5391 int s = i * ctl->dev_stripes + j; 5392 map->stripes[s].dev = devices_info[i].dev; 5393 map->stripes[s].physical = devices_info[i].dev_offset + 5394 j * ctl->stripe_size; 5395 } 5396 } 5397 map->stripe_len = BTRFS_STRIPE_LEN; 5398 map->io_align = BTRFS_STRIPE_LEN; 5399 map->io_width = BTRFS_STRIPE_LEN; 5400 map->type = type; 5401 map->sub_stripes = ctl->sub_stripes; 5402 5403 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5404 5405 em = alloc_extent_map(); 5406 if (!em) { 5407 kfree(map); 5408 return ERR_PTR(-ENOMEM); 5409 } 5410 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5411 em->map_lookup = map; 5412 em->start = start; 5413 em->len = ctl->chunk_size; 5414 em->block_start = 0; 5415 em->block_len = em->len; 5416 em->orig_block_len = ctl->stripe_size; 5417 5418 em_tree = &info->mapping_tree; 5419 write_lock(&em_tree->lock); 5420 ret = add_extent_mapping(em_tree, em, 0); 5421 if (ret) { 5422 write_unlock(&em_tree->lock); 5423 free_extent_map(em); 5424 return ERR_PTR(ret); 5425 } 5426 write_unlock(&em_tree->lock); 5427 5428 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5429 if (IS_ERR(block_group)) 5430 goto error_del_extent; 5431 5432 for (i = 0; i < map->num_stripes; i++) { 5433 struct btrfs_device *dev = map->stripes[i].dev; 5434 5435 btrfs_device_set_bytes_used(dev, 5436 dev->bytes_used + ctl->stripe_size); 5437 if (list_empty(&dev->post_commit_list)) 5438 list_add_tail(&dev->post_commit_list, 5439 &trans->transaction->dev_update_list); 5440 } 5441 5442 atomic64_sub(ctl->stripe_size * map->num_stripes, 5443 &info->free_chunk_space); 5444 5445 free_extent_map(em); 5446 check_raid56_incompat_flag(info, type); 5447 check_raid1c34_incompat_flag(info, type); 5448 5449 return block_group; 5450 5451 error_del_extent: 5452 write_lock(&em_tree->lock); 5453 remove_extent_mapping(em_tree, em); 5454 write_unlock(&em_tree->lock); 5455 5456 /* One for our allocation */ 5457 free_extent_map(em); 5458 /* One for the tree reference */ 5459 free_extent_map(em); 5460 5461 return block_group; 5462 } 5463 5464 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5465 u64 type) 5466 { 5467 struct btrfs_fs_info *info = trans->fs_info; 5468 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5469 struct btrfs_device_info *devices_info = NULL; 5470 struct alloc_chunk_ctl ctl; 5471 struct btrfs_block_group *block_group; 5472 int ret; 5473 5474 lockdep_assert_held(&info->chunk_mutex); 5475 5476 if (!alloc_profile_is_valid(type, 0)) { 5477 ASSERT(0); 5478 return ERR_PTR(-EINVAL); 5479 } 5480 5481 if (list_empty(&fs_devices->alloc_list)) { 5482 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5483 btrfs_debug(info, "%s: no writable device", __func__); 5484 return ERR_PTR(-ENOSPC); 5485 } 5486 5487 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5488 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5489 ASSERT(0); 5490 return ERR_PTR(-EINVAL); 5491 } 5492 5493 ctl.start = find_next_chunk(info); 5494 ctl.type = type; 5495 init_alloc_chunk_ctl(fs_devices, &ctl); 5496 5497 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5498 GFP_NOFS); 5499 if (!devices_info) 5500 return ERR_PTR(-ENOMEM); 5501 5502 ret = gather_device_info(fs_devices, &ctl, devices_info); 5503 if (ret < 0) { 5504 block_group = ERR_PTR(ret); 5505 goto out; 5506 } 5507 5508 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5509 if (ret < 0) { 5510 block_group = ERR_PTR(ret); 5511 goto out; 5512 } 5513 5514 block_group = create_chunk(trans, &ctl, devices_info); 5515 5516 out: 5517 kfree(devices_info); 5518 return block_group; 5519 } 5520 5521 /* 5522 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5523 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5524 * chunks. 5525 * 5526 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5527 * phases. 5528 */ 5529 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5530 struct btrfs_block_group *bg) 5531 { 5532 struct btrfs_fs_info *fs_info = trans->fs_info; 5533 struct btrfs_root *chunk_root = fs_info->chunk_root; 5534 struct btrfs_key key; 5535 struct btrfs_chunk *chunk; 5536 struct btrfs_stripe *stripe; 5537 struct extent_map *em; 5538 struct map_lookup *map; 5539 size_t item_size; 5540 int i; 5541 int ret; 5542 5543 /* 5544 * We take the chunk_mutex for 2 reasons: 5545 * 5546 * 1) Updates and insertions in the chunk btree must be done while holding 5547 * the chunk_mutex, as well as updating the system chunk array in the 5548 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5549 * details; 5550 * 5551 * 2) To prevent races with the final phase of a device replace operation 5552 * that replaces the device object associated with the map's stripes, 5553 * because the device object's id can change at any time during that 5554 * final phase of the device replace operation 5555 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5556 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5557 * which would cause a failure when updating the device item, which does 5558 * not exists, or persisting a stripe of the chunk item with such ID. 5559 * Here we can't use the device_list_mutex because our caller already 5560 * has locked the chunk_mutex, and the final phase of device replace 5561 * acquires both mutexes - first the device_list_mutex and then the 5562 * chunk_mutex. Using any of those two mutexes protects us from a 5563 * concurrent device replace. 5564 */ 5565 lockdep_assert_held(&fs_info->chunk_mutex); 5566 5567 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5568 if (IS_ERR(em)) { 5569 ret = PTR_ERR(em); 5570 btrfs_abort_transaction(trans, ret); 5571 return ret; 5572 } 5573 5574 map = em->map_lookup; 5575 item_size = btrfs_chunk_item_size(map->num_stripes); 5576 5577 chunk = kzalloc(item_size, GFP_NOFS); 5578 if (!chunk) { 5579 ret = -ENOMEM; 5580 btrfs_abort_transaction(trans, ret); 5581 goto out; 5582 } 5583 5584 for (i = 0; i < map->num_stripes; i++) { 5585 struct btrfs_device *device = map->stripes[i].dev; 5586 5587 ret = btrfs_update_device(trans, device); 5588 if (ret) 5589 goto out; 5590 } 5591 5592 stripe = &chunk->stripe; 5593 for (i = 0; i < map->num_stripes; i++) { 5594 struct btrfs_device *device = map->stripes[i].dev; 5595 const u64 dev_offset = map->stripes[i].physical; 5596 5597 btrfs_set_stack_stripe_devid(stripe, device->devid); 5598 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5599 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5600 stripe++; 5601 } 5602 5603 btrfs_set_stack_chunk_length(chunk, bg->length); 5604 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5605 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5606 btrfs_set_stack_chunk_type(chunk, map->type); 5607 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5608 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5609 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5610 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5611 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5612 5613 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5614 key.type = BTRFS_CHUNK_ITEM_KEY; 5615 key.offset = bg->start; 5616 5617 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5618 if (ret) 5619 goto out; 5620 5621 bg->chunk_item_inserted = 1; 5622 5623 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5624 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5625 if (ret) 5626 goto out; 5627 } 5628 5629 out: 5630 kfree(chunk); 5631 free_extent_map(em); 5632 return ret; 5633 } 5634 5635 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5636 { 5637 struct btrfs_fs_info *fs_info = trans->fs_info; 5638 u64 alloc_profile; 5639 struct btrfs_block_group *meta_bg; 5640 struct btrfs_block_group *sys_bg; 5641 5642 /* 5643 * When adding a new device for sprouting, the seed device is read-only 5644 * so we must first allocate a metadata and a system chunk. But before 5645 * adding the block group items to the extent, device and chunk btrees, 5646 * we must first: 5647 * 5648 * 1) Create both chunks without doing any changes to the btrees, as 5649 * otherwise we would get -ENOSPC since the block groups from the 5650 * seed device are read-only; 5651 * 5652 * 2) Add the device item for the new sprout device - finishing the setup 5653 * of a new block group requires updating the device item in the chunk 5654 * btree, so it must exist when we attempt to do it. The previous step 5655 * ensures this does not fail with -ENOSPC. 5656 * 5657 * After that we can add the block group items to their btrees: 5658 * update existing device item in the chunk btree, add a new block group 5659 * item to the extent btree, add a new chunk item to the chunk btree and 5660 * finally add the new device extent items to the devices btree. 5661 */ 5662 5663 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5664 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5665 if (IS_ERR(meta_bg)) 5666 return PTR_ERR(meta_bg); 5667 5668 alloc_profile = btrfs_system_alloc_profile(fs_info); 5669 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5670 if (IS_ERR(sys_bg)) 5671 return PTR_ERR(sys_bg); 5672 5673 return 0; 5674 } 5675 5676 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5677 { 5678 const int index = btrfs_bg_flags_to_raid_index(map->type); 5679 5680 return btrfs_raid_array[index].tolerated_failures; 5681 } 5682 5683 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5684 { 5685 struct extent_map *em; 5686 struct map_lookup *map; 5687 int miss_ndevs = 0; 5688 int i; 5689 bool ret = true; 5690 5691 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5692 if (IS_ERR(em)) 5693 return false; 5694 5695 map = em->map_lookup; 5696 for (i = 0; i < map->num_stripes; i++) { 5697 if (test_bit(BTRFS_DEV_STATE_MISSING, 5698 &map->stripes[i].dev->dev_state)) { 5699 miss_ndevs++; 5700 continue; 5701 } 5702 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5703 &map->stripes[i].dev->dev_state)) { 5704 ret = false; 5705 goto end; 5706 } 5707 } 5708 5709 /* 5710 * If the number of missing devices is larger than max errors, we can 5711 * not write the data into that chunk successfully. 5712 */ 5713 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5714 ret = false; 5715 end: 5716 free_extent_map(em); 5717 return ret; 5718 } 5719 5720 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5721 { 5722 struct extent_map *em; 5723 5724 while (1) { 5725 write_lock(&tree->lock); 5726 em = lookup_extent_mapping(tree, 0, (u64)-1); 5727 if (em) 5728 remove_extent_mapping(tree, em); 5729 write_unlock(&tree->lock); 5730 if (!em) 5731 break; 5732 /* once for us */ 5733 free_extent_map(em); 5734 /* once for the tree */ 5735 free_extent_map(em); 5736 } 5737 } 5738 5739 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5740 { 5741 struct extent_map *em; 5742 struct map_lookup *map; 5743 int ret; 5744 5745 em = btrfs_get_chunk_map(fs_info, logical, len); 5746 if (IS_ERR(em)) 5747 /* 5748 * We could return errors for these cases, but that could get 5749 * ugly and we'd probably do the same thing which is just not do 5750 * anything else and exit, so return 1 so the callers don't try 5751 * to use other copies. 5752 */ 5753 return 1; 5754 5755 map = em->map_lookup; 5756 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5757 ret = map->num_stripes; 5758 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5759 ret = map->sub_stripes; 5760 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5761 ret = 2; 5762 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5763 /* 5764 * There could be two corrupted data stripes, we need 5765 * to loop retry in order to rebuild the correct data. 5766 * 5767 * Fail a stripe at a time on every retry except the 5768 * stripe under reconstruction. 5769 */ 5770 ret = map->num_stripes; 5771 else 5772 ret = 1; 5773 free_extent_map(em); 5774 5775 down_read(&fs_info->dev_replace.rwsem); 5776 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5777 fs_info->dev_replace.tgtdev) 5778 ret++; 5779 up_read(&fs_info->dev_replace.rwsem); 5780 5781 return ret; 5782 } 5783 5784 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5785 u64 logical) 5786 { 5787 struct extent_map *em; 5788 struct map_lookup *map; 5789 unsigned long len = fs_info->sectorsize; 5790 5791 em = btrfs_get_chunk_map(fs_info, logical, len); 5792 5793 if (!WARN_ON(IS_ERR(em))) { 5794 map = em->map_lookup; 5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5796 len = map->stripe_len * nr_data_stripes(map); 5797 free_extent_map(em); 5798 } 5799 return len; 5800 } 5801 5802 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5803 { 5804 struct extent_map *em; 5805 struct map_lookup *map; 5806 int ret = 0; 5807 5808 em = btrfs_get_chunk_map(fs_info, logical, len); 5809 5810 if(!WARN_ON(IS_ERR(em))) { 5811 map = em->map_lookup; 5812 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5813 ret = 1; 5814 free_extent_map(em); 5815 } 5816 return ret; 5817 } 5818 5819 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5820 struct map_lookup *map, int first, 5821 int dev_replace_is_ongoing) 5822 { 5823 int i; 5824 int num_stripes; 5825 int preferred_mirror; 5826 int tolerance; 5827 struct btrfs_device *srcdev; 5828 5829 ASSERT((map->type & 5830 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5831 5832 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5833 num_stripes = map->sub_stripes; 5834 else 5835 num_stripes = map->num_stripes; 5836 5837 switch (fs_info->fs_devices->read_policy) { 5838 default: 5839 /* Shouldn't happen, just warn and use pid instead of failing */ 5840 btrfs_warn_rl(fs_info, 5841 "unknown read_policy type %u, reset to pid", 5842 fs_info->fs_devices->read_policy); 5843 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5844 fallthrough; 5845 case BTRFS_READ_POLICY_PID: 5846 preferred_mirror = first + (current->pid % num_stripes); 5847 break; 5848 } 5849 5850 if (dev_replace_is_ongoing && 5851 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5852 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5853 srcdev = fs_info->dev_replace.srcdev; 5854 else 5855 srcdev = NULL; 5856 5857 /* 5858 * try to avoid the drive that is the source drive for a 5859 * dev-replace procedure, only choose it if no other non-missing 5860 * mirror is available 5861 */ 5862 for (tolerance = 0; tolerance < 2; tolerance++) { 5863 if (map->stripes[preferred_mirror].dev->bdev && 5864 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5865 return preferred_mirror; 5866 for (i = first; i < first + num_stripes; i++) { 5867 if (map->stripes[i].dev->bdev && 5868 (tolerance || map->stripes[i].dev != srcdev)) 5869 return i; 5870 } 5871 } 5872 5873 /* we couldn't find one that doesn't fail. Just return something 5874 * and the io error handling code will clean up eventually 5875 */ 5876 return preferred_mirror; 5877 } 5878 5879 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5880 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes) 5881 { 5882 int i; 5883 int again = 1; 5884 5885 while (again) { 5886 again = 0; 5887 for (i = 0; i < num_stripes - 1; i++) { 5888 /* Swap if parity is on a smaller index */ 5889 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) { 5890 swap(bioc->stripes[i], bioc->stripes[i + 1]); 5891 swap(bioc->raid_map[i], bioc->raid_map[i + 1]); 5892 again = 1; 5893 } 5894 } 5895 } 5896 } 5897 5898 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5899 int total_stripes, 5900 int real_stripes) 5901 { 5902 struct btrfs_io_context *bioc = kzalloc( 5903 /* The size of btrfs_io_context */ 5904 sizeof(struct btrfs_io_context) + 5905 /* Plus the variable array for the stripes */ 5906 sizeof(struct btrfs_io_stripe) * (total_stripes) + 5907 /* Plus the variable array for the tgt dev */ 5908 sizeof(int) * (real_stripes) + 5909 /* 5910 * Plus the raid_map, which includes both the tgt dev 5911 * and the stripes. 5912 */ 5913 sizeof(u64) * (total_stripes), 5914 GFP_NOFS|__GFP_NOFAIL); 5915 5916 atomic_set(&bioc->error, 0); 5917 refcount_set(&bioc->refs, 1); 5918 5919 bioc->fs_info = fs_info; 5920 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes); 5921 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes); 5922 5923 return bioc; 5924 } 5925 5926 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5927 { 5928 WARN_ON(!refcount_read(&bioc->refs)); 5929 refcount_inc(&bioc->refs); 5930 } 5931 5932 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5933 { 5934 if (!bioc) 5935 return; 5936 if (refcount_dec_and_test(&bioc->refs)) 5937 kfree(bioc); 5938 } 5939 5940 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5941 /* 5942 * Please note that, discard won't be sent to target device of device 5943 * replace. 5944 */ 5945 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5946 u64 logical, u64 *length_ret, 5947 struct btrfs_io_context **bioc_ret) 5948 { 5949 struct extent_map *em; 5950 struct map_lookup *map; 5951 struct btrfs_io_context *bioc; 5952 u64 length = *length_ret; 5953 u64 offset; 5954 u64 stripe_nr; 5955 u64 stripe_nr_end; 5956 u64 stripe_end_offset; 5957 u64 stripe_cnt; 5958 u64 stripe_len; 5959 u64 stripe_offset; 5960 u64 num_stripes; 5961 u32 stripe_index; 5962 u32 factor = 0; 5963 u32 sub_stripes = 0; 5964 u64 stripes_per_dev = 0; 5965 u32 remaining_stripes = 0; 5966 u32 last_stripe = 0; 5967 int ret = 0; 5968 int i; 5969 5970 /* Discard always returns a bioc. */ 5971 ASSERT(bioc_ret); 5972 5973 em = btrfs_get_chunk_map(fs_info, logical, length); 5974 if (IS_ERR(em)) 5975 return PTR_ERR(em); 5976 5977 map = em->map_lookup; 5978 /* we don't discard raid56 yet */ 5979 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5980 ret = -EOPNOTSUPP; 5981 goto out; 5982 } 5983 5984 offset = logical - em->start; 5985 length = min_t(u64, em->start + em->len - logical, length); 5986 *length_ret = length; 5987 5988 stripe_len = map->stripe_len; 5989 /* 5990 * stripe_nr counts the total number of stripes we have to stride 5991 * to get to this block 5992 */ 5993 stripe_nr = div64_u64(offset, stripe_len); 5994 5995 /* stripe_offset is the offset of this block in its stripe */ 5996 stripe_offset = offset - stripe_nr * stripe_len; 5997 5998 stripe_nr_end = round_up(offset + length, map->stripe_len); 5999 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 6000 stripe_cnt = stripe_nr_end - stripe_nr; 6001 stripe_end_offset = stripe_nr_end * map->stripe_len - 6002 (offset + length); 6003 /* 6004 * after this, stripe_nr is the number of stripes on this 6005 * device we have to walk to find the data, and stripe_index is 6006 * the number of our device in the stripe array 6007 */ 6008 num_stripes = 1; 6009 stripe_index = 0; 6010 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6011 BTRFS_BLOCK_GROUP_RAID10)) { 6012 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6013 sub_stripes = 1; 6014 else 6015 sub_stripes = map->sub_stripes; 6016 6017 factor = map->num_stripes / sub_stripes; 6018 num_stripes = min_t(u64, map->num_stripes, 6019 sub_stripes * stripe_cnt); 6020 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6021 stripe_index *= sub_stripes; 6022 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 6023 &remaining_stripes); 6024 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 6025 last_stripe *= sub_stripes; 6026 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6027 BTRFS_BLOCK_GROUP_DUP)) { 6028 num_stripes = map->num_stripes; 6029 } else { 6030 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6031 &stripe_index); 6032 } 6033 6034 bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0); 6035 if (!bioc) { 6036 ret = -ENOMEM; 6037 goto out; 6038 } 6039 6040 for (i = 0; i < num_stripes; i++) { 6041 bioc->stripes[i].physical = 6042 map->stripes[stripe_index].physical + 6043 stripe_offset + stripe_nr * map->stripe_len; 6044 bioc->stripes[i].dev = map->stripes[stripe_index].dev; 6045 6046 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6047 BTRFS_BLOCK_GROUP_RAID10)) { 6048 bioc->stripes[i].length = stripes_per_dev * 6049 map->stripe_len; 6050 6051 if (i / sub_stripes < remaining_stripes) 6052 bioc->stripes[i].length += map->stripe_len; 6053 6054 /* 6055 * Special for the first stripe and 6056 * the last stripe: 6057 * 6058 * |-------|...|-------| 6059 * |----------| 6060 * off end_off 6061 */ 6062 if (i < sub_stripes) 6063 bioc->stripes[i].length -= stripe_offset; 6064 6065 if (stripe_index >= last_stripe && 6066 stripe_index <= (last_stripe + 6067 sub_stripes - 1)) 6068 bioc->stripes[i].length -= stripe_end_offset; 6069 6070 if (i == sub_stripes - 1) 6071 stripe_offset = 0; 6072 } else { 6073 bioc->stripes[i].length = length; 6074 } 6075 6076 stripe_index++; 6077 if (stripe_index == map->num_stripes) { 6078 stripe_index = 0; 6079 stripe_nr++; 6080 } 6081 } 6082 6083 *bioc_ret = bioc; 6084 bioc->map_type = map->type; 6085 bioc->num_stripes = num_stripes; 6086 out: 6087 free_extent_map(em); 6088 return ret; 6089 } 6090 6091 /* 6092 * In dev-replace case, for repair case (that's the only case where the mirror 6093 * is selected explicitly when calling btrfs_map_block), blocks left of the 6094 * left cursor can also be read from the target drive. 6095 * 6096 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 6097 * array of stripes. 6098 * For READ, it also needs to be supported using the same mirror number. 6099 * 6100 * If the requested block is not left of the left cursor, EIO is returned. This 6101 * can happen because btrfs_num_copies() returns one more in the dev-replace 6102 * case. 6103 */ 6104 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 6105 u64 logical, u64 length, 6106 u64 srcdev_devid, int *mirror_num, 6107 u64 *physical) 6108 { 6109 struct btrfs_io_context *bioc = NULL; 6110 int num_stripes; 6111 int index_srcdev = 0; 6112 int found = 0; 6113 u64 physical_of_found = 0; 6114 int i; 6115 int ret = 0; 6116 6117 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 6118 logical, &length, &bioc, 0, 0); 6119 if (ret) { 6120 ASSERT(bioc == NULL); 6121 return ret; 6122 } 6123 6124 num_stripes = bioc->num_stripes; 6125 if (*mirror_num > num_stripes) { 6126 /* 6127 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 6128 * that means that the requested area is not left of the left 6129 * cursor 6130 */ 6131 btrfs_put_bioc(bioc); 6132 return -EIO; 6133 } 6134 6135 /* 6136 * process the rest of the function using the mirror_num of the source 6137 * drive. Therefore look it up first. At the end, patch the device 6138 * pointer to the one of the target drive. 6139 */ 6140 for (i = 0; i < num_stripes; i++) { 6141 if (bioc->stripes[i].dev->devid != srcdev_devid) 6142 continue; 6143 6144 /* 6145 * In case of DUP, in order to keep it simple, only add the 6146 * mirror with the lowest physical address 6147 */ 6148 if (found && 6149 physical_of_found <= bioc->stripes[i].physical) 6150 continue; 6151 6152 index_srcdev = i; 6153 found = 1; 6154 physical_of_found = bioc->stripes[i].physical; 6155 } 6156 6157 btrfs_put_bioc(bioc); 6158 6159 ASSERT(found); 6160 if (!found) 6161 return -EIO; 6162 6163 *mirror_num = index_srcdev + 1; 6164 *physical = physical_of_found; 6165 return ret; 6166 } 6167 6168 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6169 { 6170 struct btrfs_block_group *cache; 6171 bool ret; 6172 6173 /* Non zoned filesystem does not use "to_copy" flag */ 6174 if (!btrfs_is_zoned(fs_info)) 6175 return false; 6176 6177 cache = btrfs_lookup_block_group(fs_info, logical); 6178 6179 spin_lock(&cache->lock); 6180 ret = cache->to_copy; 6181 spin_unlock(&cache->lock); 6182 6183 btrfs_put_block_group(cache); 6184 return ret; 6185 } 6186 6187 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6188 struct btrfs_io_context **bioc_ret, 6189 struct btrfs_dev_replace *dev_replace, 6190 u64 logical, 6191 int *num_stripes_ret, int *max_errors_ret) 6192 { 6193 struct btrfs_io_context *bioc = *bioc_ret; 6194 u64 srcdev_devid = dev_replace->srcdev->devid; 6195 int tgtdev_indexes = 0; 6196 int num_stripes = *num_stripes_ret; 6197 int max_errors = *max_errors_ret; 6198 int i; 6199 6200 if (op == BTRFS_MAP_WRITE) { 6201 int index_where_to_add; 6202 6203 /* 6204 * A block group which have "to_copy" set will eventually 6205 * copied by dev-replace process. We can avoid cloning IO here. 6206 */ 6207 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6208 return; 6209 6210 /* 6211 * duplicate the write operations while the dev replace 6212 * procedure is running. Since the copying of the old disk to 6213 * the new disk takes place at run time while the filesystem is 6214 * mounted writable, the regular write operations to the old 6215 * disk have to be duplicated to go to the new disk as well. 6216 * 6217 * Note that device->missing is handled by the caller, and that 6218 * the write to the old disk is already set up in the stripes 6219 * array. 6220 */ 6221 index_where_to_add = num_stripes; 6222 for (i = 0; i < num_stripes; i++) { 6223 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6224 /* write to new disk, too */ 6225 struct btrfs_io_stripe *new = 6226 bioc->stripes + index_where_to_add; 6227 struct btrfs_io_stripe *old = 6228 bioc->stripes + i; 6229 6230 new->physical = old->physical; 6231 new->length = old->length; 6232 new->dev = dev_replace->tgtdev; 6233 bioc->tgtdev_map[i] = index_where_to_add; 6234 index_where_to_add++; 6235 max_errors++; 6236 tgtdev_indexes++; 6237 } 6238 } 6239 num_stripes = index_where_to_add; 6240 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6241 int index_srcdev = 0; 6242 int found = 0; 6243 u64 physical_of_found = 0; 6244 6245 /* 6246 * During the dev-replace procedure, the target drive can also 6247 * be used to read data in case it is needed to repair a corrupt 6248 * block elsewhere. This is possible if the requested area is 6249 * left of the left cursor. In this area, the target drive is a 6250 * full copy of the source drive. 6251 */ 6252 for (i = 0; i < num_stripes; i++) { 6253 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6254 /* 6255 * In case of DUP, in order to keep it simple, 6256 * only add the mirror with the lowest physical 6257 * address 6258 */ 6259 if (found && 6260 physical_of_found <= bioc->stripes[i].physical) 6261 continue; 6262 index_srcdev = i; 6263 found = 1; 6264 physical_of_found = bioc->stripes[i].physical; 6265 } 6266 } 6267 if (found) { 6268 struct btrfs_io_stripe *tgtdev_stripe = 6269 bioc->stripes + num_stripes; 6270 6271 tgtdev_stripe->physical = physical_of_found; 6272 tgtdev_stripe->length = 6273 bioc->stripes[index_srcdev].length; 6274 tgtdev_stripe->dev = dev_replace->tgtdev; 6275 bioc->tgtdev_map[index_srcdev] = num_stripes; 6276 6277 tgtdev_indexes++; 6278 num_stripes++; 6279 } 6280 } 6281 6282 *num_stripes_ret = num_stripes; 6283 *max_errors_ret = max_errors; 6284 bioc->num_tgtdevs = tgtdev_indexes; 6285 *bioc_ret = bioc; 6286 } 6287 6288 static bool need_full_stripe(enum btrfs_map_op op) 6289 { 6290 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6291 } 6292 6293 /* 6294 * Calculate the geometry of a particular (address, len) tuple. This 6295 * information is used to calculate how big a particular bio can get before it 6296 * straddles a stripe. 6297 * 6298 * @fs_info: the filesystem 6299 * @em: mapping containing the logical extent 6300 * @op: type of operation - write or read 6301 * @logical: address that we want to figure out the geometry of 6302 * @io_geom: pointer used to return values 6303 * 6304 * Returns < 0 in case a chunk for the given logical address cannot be found, 6305 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6306 */ 6307 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6308 enum btrfs_map_op op, u64 logical, 6309 struct btrfs_io_geometry *io_geom) 6310 { 6311 struct map_lookup *map; 6312 u64 len; 6313 u64 offset; 6314 u64 stripe_offset; 6315 u64 stripe_nr; 6316 u64 stripe_len; 6317 u64 raid56_full_stripe_start = (u64)-1; 6318 int data_stripes; 6319 6320 ASSERT(op != BTRFS_MAP_DISCARD); 6321 6322 map = em->map_lookup; 6323 /* Offset of this logical address in the chunk */ 6324 offset = logical - em->start; 6325 /* Len of a stripe in a chunk */ 6326 stripe_len = map->stripe_len; 6327 /* Stripe where this block falls in */ 6328 stripe_nr = div64_u64(offset, stripe_len); 6329 /* Offset of stripe in the chunk */ 6330 stripe_offset = stripe_nr * stripe_len; 6331 if (offset < stripe_offset) { 6332 btrfs_crit(fs_info, 6333 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 6334 stripe_offset, offset, em->start, logical, stripe_len); 6335 return -EINVAL; 6336 } 6337 6338 /* stripe_offset is the offset of this block in its stripe */ 6339 stripe_offset = offset - stripe_offset; 6340 data_stripes = nr_data_stripes(map); 6341 6342 /* Only stripe based profiles needs to check against stripe length. */ 6343 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) { 6344 u64 max_len = stripe_len - stripe_offset; 6345 6346 /* 6347 * In case of raid56, we need to know the stripe aligned start 6348 */ 6349 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6350 unsigned long full_stripe_len = stripe_len * data_stripes; 6351 raid56_full_stripe_start = offset; 6352 6353 /* 6354 * Allow a write of a full stripe, but make sure we 6355 * don't allow straddling of stripes 6356 */ 6357 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6358 full_stripe_len); 6359 raid56_full_stripe_start *= full_stripe_len; 6360 6361 /* 6362 * For writes to RAID[56], allow a full stripeset across 6363 * all disks. For other RAID types and for RAID[56] 6364 * reads, just allow a single stripe (on a single disk). 6365 */ 6366 if (op == BTRFS_MAP_WRITE) { 6367 max_len = stripe_len * data_stripes - 6368 (offset - raid56_full_stripe_start); 6369 } 6370 } 6371 len = min_t(u64, em->len - offset, max_len); 6372 } else { 6373 len = em->len - offset; 6374 } 6375 6376 io_geom->len = len; 6377 io_geom->offset = offset; 6378 io_geom->stripe_len = stripe_len; 6379 io_geom->stripe_nr = stripe_nr; 6380 io_geom->stripe_offset = stripe_offset; 6381 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6382 6383 return 0; 6384 } 6385 6386 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6387 enum btrfs_map_op op, 6388 u64 logical, u64 *length, 6389 struct btrfs_io_context **bioc_ret, 6390 int mirror_num, int need_raid_map) 6391 { 6392 struct extent_map *em; 6393 struct map_lookup *map; 6394 u64 stripe_offset; 6395 u64 stripe_nr; 6396 u64 stripe_len; 6397 u32 stripe_index; 6398 int data_stripes; 6399 int i; 6400 int ret = 0; 6401 int num_stripes; 6402 int max_errors = 0; 6403 int tgtdev_indexes = 0; 6404 struct btrfs_io_context *bioc = NULL; 6405 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6406 int dev_replace_is_ongoing = 0; 6407 int num_alloc_stripes; 6408 int patch_the_first_stripe_for_dev_replace = 0; 6409 u64 physical_to_patch_in_first_stripe = 0; 6410 u64 raid56_full_stripe_start = (u64)-1; 6411 struct btrfs_io_geometry geom; 6412 6413 ASSERT(bioc_ret); 6414 ASSERT(op != BTRFS_MAP_DISCARD); 6415 6416 em = btrfs_get_chunk_map(fs_info, logical, *length); 6417 ASSERT(!IS_ERR(em)); 6418 6419 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6420 if (ret < 0) 6421 return ret; 6422 6423 map = em->map_lookup; 6424 6425 *length = geom.len; 6426 stripe_len = geom.stripe_len; 6427 stripe_nr = geom.stripe_nr; 6428 stripe_offset = geom.stripe_offset; 6429 raid56_full_stripe_start = geom.raid56_stripe_offset; 6430 data_stripes = nr_data_stripes(map); 6431 6432 down_read(&dev_replace->rwsem); 6433 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6434 /* 6435 * Hold the semaphore for read during the whole operation, write is 6436 * requested at commit time but must wait. 6437 */ 6438 if (!dev_replace_is_ongoing) 6439 up_read(&dev_replace->rwsem); 6440 6441 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6442 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6443 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6444 dev_replace->srcdev->devid, 6445 &mirror_num, 6446 &physical_to_patch_in_first_stripe); 6447 if (ret) 6448 goto out; 6449 else 6450 patch_the_first_stripe_for_dev_replace = 1; 6451 } else if (mirror_num > map->num_stripes) { 6452 mirror_num = 0; 6453 } 6454 6455 num_stripes = 1; 6456 stripe_index = 0; 6457 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6458 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6459 &stripe_index); 6460 if (!need_full_stripe(op)) 6461 mirror_num = 1; 6462 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6463 if (need_full_stripe(op)) 6464 num_stripes = map->num_stripes; 6465 else if (mirror_num) 6466 stripe_index = mirror_num - 1; 6467 else { 6468 stripe_index = find_live_mirror(fs_info, map, 0, 6469 dev_replace_is_ongoing); 6470 mirror_num = stripe_index + 1; 6471 } 6472 6473 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6474 if (need_full_stripe(op)) { 6475 num_stripes = map->num_stripes; 6476 } else if (mirror_num) { 6477 stripe_index = mirror_num - 1; 6478 } else { 6479 mirror_num = 1; 6480 } 6481 6482 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6483 u32 factor = map->num_stripes / map->sub_stripes; 6484 6485 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6486 stripe_index *= map->sub_stripes; 6487 6488 if (need_full_stripe(op)) 6489 num_stripes = map->sub_stripes; 6490 else if (mirror_num) 6491 stripe_index += mirror_num - 1; 6492 else { 6493 int old_stripe_index = stripe_index; 6494 stripe_index = find_live_mirror(fs_info, map, 6495 stripe_index, 6496 dev_replace_is_ongoing); 6497 mirror_num = stripe_index - old_stripe_index + 1; 6498 } 6499 6500 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6501 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6502 /* push stripe_nr back to the start of the full stripe */ 6503 stripe_nr = div64_u64(raid56_full_stripe_start, 6504 stripe_len * data_stripes); 6505 6506 /* RAID[56] write or recovery. Return all stripes */ 6507 num_stripes = map->num_stripes; 6508 max_errors = nr_parity_stripes(map); 6509 6510 *length = map->stripe_len; 6511 stripe_index = 0; 6512 stripe_offset = 0; 6513 } else { 6514 /* 6515 * Mirror #0 or #1 means the original data block. 6516 * Mirror #2 is RAID5 parity block. 6517 * Mirror #3 is RAID6 Q block. 6518 */ 6519 stripe_nr = div_u64_rem(stripe_nr, 6520 data_stripes, &stripe_index); 6521 if (mirror_num > 1) 6522 stripe_index = data_stripes + mirror_num - 2; 6523 6524 /* We distribute the parity blocks across stripes */ 6525 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6526 &stripe_index); 6527 if (!need_full_stripe(op) && mirror_num <= 1) 6528 mirror_num = 1; 6529 } 6530 } else { 6531 /* 6532 * after this, stripe_nr is the number of stripes on this 6533 * device we have to walk to find the data, and stripe_index is 6534 * the number of our device in the stripe array 6535 */ 6536 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6537 &stripe_index); 6538 mirror_num = stripe_index + 1; 6539 } 6540 if (stripe_index >= map->num_stripes) { 6541 btrfs_crit(fs_info, 6542 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6543 stripe_index, map->num_stripes); 6544 ret = -EINVAL; 6545 goto out; 6546 } 6547 6548 num_alloc_stripes = num_stripes; 6549 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6550 if (op == BTRFS_MAP_WRITE) 6551 num_alloc_stripes <<= 1; 6552 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6553 num_alloc_stripes++; 6554 tgtdev_indexes = num_stripes; 6555 } 6556 6557 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes); 6558 if (!bioc) { 6559 ret = -ENOMEM; 6560 goto out; 6561 } 6562 6563 for (i = 0; i < num_stripes; i++) { 6564 bioc->stripes[i].physical = map->stripes[stripe_index].physical + 6565 stripe_offset + stripe_nr * map->stripe_len; 6566 bioc->stripes[i].dev = map->stripes[stripe_index].dev; 6567 stripe_index++; 6568 } 6569 6570 /* Build raid_map */ 6571 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6572 (need_full_stripe(op) || mirror_num > 1)) { 6573 u64 tmp; 6574 unsigned rot; 6575 6576 /* Work out the disk rotation on this stripe-set */ 6577 div_u64_rem(stripe_nr, num_stripes, &rot); 6578 6579 /* Fill in the logical address of each stripe */ 6580 tmp = stripe_nr * data_stripes; 6581 for (i = 0; i < data_stripes; i++) 6582 bioc->raid_map[(i + rot) % num_stripes] = 6583 em->start + (tmp + i) * map->stripe_len; 6584 6585 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE; 6586 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6587 bioc->raid_map[(i + rot + 1) % num_stripes] = 6588 RAID6_Q_STRIPE; 6589 6590 sort_parity_stripes(bioc, num_stripes); 6591 } 6592 6593 if (need_full_stripe(op)) 6594 max_errors = btrfs_chunk_max_errors(map); 6595 6596 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6597 need_full_stripe(op)) { 6598 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical, 6599 &num_stripes, &max_errors); 6600 } 6601 6602 *bioc_ret = bioc; 6603 bioc->map_type = map->type; 6604 bioc->num_stripes = num_stripes; 6605 bioc->max_errors = max_errors; 6606 bioc->mirror_num = mirror_num; 6607 6608 /* 6609 * this is the case that REQ_READ && dev_replace_is_ongoing && 6610 * mirror_num == num_stripes + 1 && dev_replace target drive is 6611 * available as a mirror 6612 */ 6613 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6614 WARN_ON(num_stripes > 1); 6615 bioc->stripes[0].dev = dev_replace->tgtdev; 6616 bioc->stripes[0].physical = physical_to_patch_in_first_stripe; 6617 bioc->mirror_num = map->num_stripes + 1; 6618 } 6619 out: 6620 if (dev_replace_is_ongoing) { 6621 lockdep_assert_held(&dev_replace->rwsem); 6622 /* Unlock and let waiting writers proceed */ 6623 up_read(&dev_replace->rwsem); 6624 } 6625 free_extent_map(em); 6626 return ret; 6627 } 6628 6629 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6630 u64 logical, u64 *length, 6631 struct btrfs_io_context **bioc_ret, int mirror_num) 6632 { 6633 if (op == BTRFS_MAP_DISCARD) 6634 return __btrfs_map_block_for_discard(fs_info, logical, 6635 length, bioc_ret); 6636 6637 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6638 mirror_num, 0); 6639 } 6640 6641 /* For Scrub/replace */ 6642 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6643 u64 logical, u64 *length, 6644 struct btrfs_io_context **bioc_ret) 6645 { 6646 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1); 6647 } 6648 6649 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio) 6650 { 6651 bio->bi_private = bioc->private; 6652 bio->bi_end_io = bioc->end_io; 6653 bio_endio(bio); 6654 6655 btrfs_put_bioc(bioc); 6656 } 6657 6658 static void btrfs_end_bio(struct bio *bio) 6659 { 6660 struct btrfs_io_context *bioc = bio->bi_private; 6661 int is_orig_bio = 0; 6662 6663 if (bio->bi_status) { 6664 atomic_inc(&bioc->error); 6665 if (bio->bi_status == BLK_STS_IOERR || 6666 bio->bi_status == BLK_STS_TARGET) { 6667 struct btrfs_device *dev = btrfs_bio(bio)->device; 6668 6669 ASSERT(dev->bdev); 6670 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6671 btrfs_dev_stat_inc_and_print(dev, 6672 BTRFS_DEV_STAT_WRITE_ERRS); 6673 else if (!(bio->bi_opf & REQ_RAHEAD)) 6674 btrfs_dev_stat_inc_and_print(dev, 6675 BTRFS_DEV_STAT_READ_ERRS); 6676 if (bio->bi_opf & REQ_PREFLUSH) 6677 btrfs_dev_stat_inc_and_print(dev, 6678 BTRFS_DEV_STAT_FLUSH_ERRS); 6679 } 6680 } 6681 6682 if (bio == bioc->orig_bio) 6683 is_orig_bio = 1; 6684 6685 btrfs_bio_counter_dec(bioc->fs_info); 6686 6687 if (atomic_dec_and_test(&bioc->stripes_pending)) { 6688 if (!is_orig_bio) { 6689 bio_put(bio); 6690 bio = bioc->orig_bio; 6691 } 6692 6693 btrfs_bio(bio)->mirror_num = bioc->mirror_num; 6694 /* only send an error to the higher layers if it is 6695 * beyond the tolerance of the btrfs bio 6696 */ 6697 if (atomic_read(&bioc->error) > bioc->max_errors) { 6698 bio->bi_status = BLK_STS_IOERR; 6699 } else { 6700 /* 6701 * this bio is actually up to date, we didn't 6702 * go over the max number of errors 6703 */ 6704 bio->bi_status = BLK_STS_OK; 6705 } 6706 6707 btrfs_end_bioc(bioc, bio); 6708 } else if (!is_orig_bio) { 6709 bio_put(bio); 6710 } 6711 } 6712 6713 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio, 6714 u64 physical, struct btrfs_device *dev) 6715 { 6716 struct btrfs_fs_info *fs_info = bioc->fs_info; 6717 6718 bio->bi_private = bioc; 6719 btrfs_bio(bio)->device = dev; 6720 bio->bi_end_io = btrfs_end_bio; 6721 bio->bi_iter.bi_sector = physical >> 9; 6722 /* 6723 * For zone append writing, bi_sector must point the beginning of the 6724 * zone 6725 */ 6726 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6727 if (btrfs_dev_is_sequential(dev, physical)) { 6728 u64 zone_start = round_down(physical, fs_info->zone_size); 6729 6730 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6731 } else { 6732 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6733 bio->bi_opf |= REQ_OP_WRITE; 6734 } 6735 } 6736 btrfs_debug_in_rcu(fs_info, 6737 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6738 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6739 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6740 dev->devid, bio->bi_iter.bi_size); 6741 bio_set_dev(bio, dev->bdev); 6742 6743 btrfs_bio_counter_inc_noblocked(fs_info); 6744 6745 btrfsic_submit_bio(bio); 6746 } 6747 6748 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical) 6749 { 6750 atomic_inc(&bioc->error); 6751 if (atomic_dec_and_test(&bioc->stripes_pending)) { 6752 /* Should be the original bio. */ 6753 WARN_ON(bio != bioc->orig_bio); 6754 6755 btrfs_bio(bio)->mirror_num = bioc->mirror_num; 6756 bio->bi_iter.bi_sector = logical >> 9; 6757 if (atomic_read(&bioc->error) > bioc->max_errors) 6758 bio->bi_status = BLK_STS_IOERR; 6759 else 6760 bio->bi_status = BLK_STS_OK; 6761 btrfs_end_bioc(bioc, bio); 6762 } 6763 } 6764 6765 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6766 int mirror_num) 6767 { 6768 struct btrfs_device *dev; 6769 struct bio *first_bio = bio; 6770 u64 logical = bio->bi_iter.bi_sector << 9; 6771 u64 length = 0; 6772 u64 map_length; 6773 int ret; 6774 int dev_nr; 6775 int total_devs; 6776 struct btrfs_io_context *bioc = NULL; 6777 6778 length = bio->bi_iter.bi_size; 6779 map_length = length; 6780 6781 btrfs_bio_counter_inc_blocked(fs_info); 6782 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6783 &map_length, &bioc, mirror_num, 1); 6784 if (ret) { 6785 btrfs_bio_counter_dec(fs_info); 6786 return errno_to_blk_status(ret); 6787 } 6788 6789 total_devs = bioc->num_stripes; 6790 bioc->orig_bio = first_bio; 6791 bioc->private = first_bio->bi_private; 6792 bioc->end_io = first_bio->bi_end_io; 6793 atomic_set(&bioc->stripes_pending, bioc->num_stripes); 6794 6795 if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6796 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) { 6797 /* In this case, map_length has been set to the length of 6798 a single stripe; not the whole write */ 6799 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 6800 ret = raid56_parity_write(bio, bioc, map_length); 6801 } else { 6802 ret = raid56_parity_recover(bio, bioc, map_length, 6803 mirror_num, 1); 6804 } 6805 6806 btrfs_bio_counter_dec(fs_info); 6807 return errno_to_blk_status(ret); 6808 } 6809 6810 if (map_length < length) { 6811 btrfs_crit(fs_info, 6812 "mapping failed logical %llu bio len %llu len %llu", 6813 logical, length, map_length); 6814 BUG(); 6815 } 6816 6817 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6818 dev = bioc->stripes[dev_nr].dev; 6819 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6820 &dev->dev_state) || 6821 (btrfs_op(first_bio) == BTRFS_MAP_WRITE && 6822 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6823 bioc_error(bioc, first_bio, logical); 6824 continue; 6825 } 6826 6827 if (dev_nr < total_devs - 1) 6828 bio = btrfs_bio_clone(first_bio); 6829 else 6830 bio = first_bio; 6831 6832 submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev); 6833 } 6834 btrfs_bio_counter_dec(fs_info); 6835 return BLK_STS_OK; 6836 } 6837 6838 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6839 const struct btrfs_fs_devices *fs_devices) 6840 { 6841 if (args->fsid == NULL) 6842 return true; 6843 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6844 return true; 6845 return false; 6846 } 6847 6848 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6849 const struct btrfs_device *device) 6850 { 6851 ASSERT((args->devid != (u64)-1) || args->missing); 6852 6853 if ((args->devid != (u64)-1) && device->devid != args->devid) 6854 return false; 6855 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6856 return false; 6857 if (!args->missing) 6858 return true; 6859 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6860 !device->bdev) 6861 return true; 6862 return false; 6863 } 6864 6865 /* 6866 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6867 * return NULL. 6868 * 6869 * If devid and uuid are both specified, the match must be exact, otherwise 6870 * only devid is used. 6871 */ 6872 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6873 const struct btrfs_dev_lookup_args *args) 6874 { 6875 struct btrfs_device *device; 6876 struct btrfs_fs_devices *seed_devs; 6877 6878 if (dev_args_match_fs_devices(args, fs_devices)) { 6879 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6880 if (dev_args_match_device(args, device)) 6881 return device; 6882 } 6883 } 6884 6885 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6886 if (!dev_args_match_fs_devices(args, seed_devs)) 6887 continue; 6888 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6889 if (dev_args_match_device(args, device)) 6890 return device; 6891 } 6892 } 6893 6894 return NULL; 6895 } 6896 6897 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6898 u64 devid, u8 *dev_uuid) 6899 { 6900 struct btrfs_device *device; 6901 unsigned int nofs_flag; 6902 6903 /* 6904 * We call this under the chunk_mutex, so we want to use NOFS for this 6905 * allocation, however we don't want to change btrfs_alloc_device() to 6906 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6907 * places. 6908 */ 6909 nofs_flag = memalloc_nofs_save(); 6910 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6911 memalloc_nofs_restore(nofs_flag); 6912 if (IS_ERR(device)) 6913 return device; 6914 6915 list_add(&device->dev_list, &fs_devices->devices); 6916 device->fs_devices = fs_devices; 6917 fs_devices->num_devices++; 6918 6919 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6920 fs_devices->missing_devices++; 6921 6922 return device; 6923 } 6924 6925 /** 6926 * btrfs_alloc_device - allocate struct btrfs_device 6927 * @fs_info: used only for generating a new devid, can be NULL if 6928 * devid is provided (i.e. @devid != NULL). 6929 * @devid: a pointer to devid for this device. If NULL a new devid 6930 * is generated. 6931 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6932 * is generated. 6933 * 6934 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6935 * on error. Returned struct is not linked onto any lists and must be 6936 * destroyed with btrfs_free_device. 6937 */ 6938 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6939 const u64 *devid, 6940 const u8 *uuid) 6941 { 6942 struct btrfs_device *dev; 6943 u64 tmp; 6944 6945 if (WARN_ON(!devid && !fs_info)) 6946 return ERR_PTR(-EINVAL); 6947 6948 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6949 if (!dev) 6950 return ERR_PTR(-ENOMEM); 6951 6952 /* 6953 * Preallocate a bio that's always going to be used for flushing device 6954 * barriers and matches the device lifespan 6955 */ 6956 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0); 6957 if (!dev->flush_bio) { 6958 kfree(dev); 6959 return ERR_PTR(-ENOMEM); 6960 } 6961 6962 INIT_LIST_HEAD(&dev->dev_list); 6963 INIT_LIST_HEAD(&dev->dev_alloc_list); 6964 INIT_LIST_HEAD(&dev->post_commit_list); 6965 6966 atomic_set(&dev->dev_stats_ccnt, 0); 6967 btrfs_device_data_ordered_init(dev); 6968 extent_io_tree_init(fs_info, &dev->alloc_state, 6969 IO_TREE_DEVICE_ALLOC_STATE, NULL); 6970 6971 if (devid) 6972 tmp = *devid; 6973 else { 6974 int ret; 6975 6976 ret = find_next_devid(fs_info, &tmp); 6977 if (ret) { 6978 btrfs_free_device(dev); 6979 return ERR_PTR(ret); 6980 } 6981 } 6982 dev->devid = tmp; 6983 6984 if (uuid) 6985 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6986 else 6987 generate_random_uuid(dev->uuid); 6988 6989 return dev; 6990 } 6991 6992 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6993 u64 devid, u8 *uuid, bool error) 6994 { 6995 if (error) 6996 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6997 devid, uuid); 6998 else 6999 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 7000 devid, uuid); 7001 } 7002 7003 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 7004 { 7005 const int data_stripes = calc_data_stripes(type, num_stripes); 7006 7007 return div_u64(chunk_len, data_stripes); 7008 } 7009 7010 #if BITS_PER_LONG == 32 7011 /* 7012 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 7013 * can't be accessed on 32bit systems. 7014 * 7015 * This function do mount time check to reject the fs if it already has 7016 * metadata chunk beyond that limit. 7017 */ 7018 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7019 u64 logical, u64 length, u64 type) 7020 { 7021 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7022 return 0; 7023 7024 if (logical + length < MAX_LFS_FILESIZE) 7025 return 0; 7026 7027 btrfs_err_32bit_limit(fs_info); 7028 return -EOVERFLOW; 7029 } 7030 7031 /* 7032 * This is to give early warning for any metadata chunk reaching 7033 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7034 * Although we can still access the metadata, it's not going to be possible 7035 * once the limit is reached. 7036 */ 7037 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7038 u64 logical, u64 length, u64 type) 7039 { 7040 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7041 return; 7042 7043 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7044 return; 7045 7046 btrfs_warn_32bit_limit(fs_info); 7047 } 7048 #endif 7049 7050 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7051 u64 devid, u8 *uuid) 7052 { 7053 struct btrfs_device *dev; 7054 7055 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7056 btrfs_report_missing_device(fs_info, devid, uuid, true); 7057 return ERR_PTR(-ENOENT); 7058 } 7059 7060 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7061 if (IS_ERR(dev)) { 7062 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7063 devid, PTR_ERR(dev)); 7064 return dev; 7065 } 7066 btrfs_report_missing_device(fs_info, devid, uuid, false); 7067 7068 return dev; 7069 } 7070 7071 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7072 struct btrfs_chunk *chunk) 7073 { 7074 BTRFS_DEV_LOOKUP_ARGS(args); 7075 struct btrfs_fs_info *fs_info = leaf->fs_info; 7076 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7077 struct map_lookup *map; 7078 struct extent_map *em; 7079 u64 logical; 7080 u64 length; 7081 u64 devid; 7082 u64 type; 7083 u8 uuid[BTRFS_UUID_SIZE]; 7084 int num_stripes; 7085 int ret; 7086 int i; 7087 7088 logical = key->offset; 7089 length = btrfs_chunk_length(leaf, chunk); 7090 type = btrfs_chunk_type(leaf, chunk); 7091 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7092 7093 #if BITS_PER_LONG == 32 7094 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7095 if (ret < 0) 7096 return ret; 7097 warn_32bit_meta_chunk(fs_info, logical, length, type); 7098 #endif 7099 7100 /* 7101 * Only need to verify chunk item if we're reading from sys chunk array, 7102 * as chunk item in tree block is already verified by tree-checker. 7103 */ 7104 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7105 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7106 if (ret) 7107 return ret; 7108 } 7109 7110 read_lock(&map_tree->lock); 7111 em = lookup_extent_mapping(map_tree, logical, 1); 7112 read_unlock(&map_tree->lock); 7113 7114 /* already mapped? */ 7115 if (em && em->start <= logical && em->start + em->len > logical) { 7116 free_extent_map(em); 7117 return 0; 7118 } else if (em) { 7119 free_extent_map(em); 7120 } 7121 7122 em = alloc_extent_map(); 7123 if (!em) 7124 return -ENOMEM; 7125 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 7126 if (!map) { 7127 free_extent_map(em); 7128 return -ENOMEM; 7129 } 7130 7131 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 7132 em->map_lookup = map; 7133 em->start = logical; 7134 em->len = length; 7135 em->orig_start = 0; 7136 em->block_start = 0; 7137 em->block_len = em->len; 7138 7139 map->num_stripes = num_stripes; 7140 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7141 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7142 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 7143 map->type = type; 7144 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 7145 map->verified_stripes = 0; 7146 em->orig_block_len = calc_stripe_length(type, em->len, 7147 map->num_stripes); 7148 for (i = 0; i < num_stripes; i++) { 7149 map->stripes[i].physical = 7150 btrfs_stripe_offset_nr(leaf, chunk, i); 7151 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7152 args.devid = devid; 7153 read_extent_buffer(leaf, uuid, (unsigned long) 7154 btrfs_stripe_dev_uuid_nr(chunk, i), 7155 BTRFS_UUID_SIZE); 7156 args.uuid = uuid; 7157 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7158 if (!map->stripes[i].dev) { 7159 map->stripes[i].dev = handle_missing_device(fs_info, 7160 devid, uuid); 7161 if (IS_ERR(map->stripes[i].dev)) { 7162 free_extent_map(em); 7163 return PTR_ERR(map->stripes[i].dev); 7164 } 7165 } 7166 7167 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7168 &(map->stripes[i].dev->dev_state)); 7169 } 7170 7171 write_lock(&map_tree->lock); 7172 ret = add_extent_mapping(map_tree, em, 0); 7173 write_unlock(&map_tree->lock); 7174 if (ret < 0) { 7175 btrfs_err(fs_info, 7176 "failed to add chunk map, start=%llu len=%llu: %d", 7177 em->start, em->len, ret); 7178 } 7179 free_extent_map(em); 7180 7181 return ret; 7182 } 7183 7184 static void fill_device_from_item(struct extent_buffer *leaf, 7185 struct btrfs_dev_item *dev_item, 7186 struct btrfs_device *device) 7187 { 7188 unsigned long ptr; 7189 7190 device->devid = btrfs_device_id(leaf, dev_item); 7191 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7192 device->total_bytes = device->disk_total_bytes; 7193 device->commit_total_bytes = device->disk_total_bytes; 7194 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7195 device->commit_bytes_used = device->bytes_used; 7196 device->type = btrfs_device_type(leaf, dev_item); 7197 device->io_align = btrfs_device_io_align(leaf, dev_item); 7198 device->io_width = btrfs_device_io_width(leaf, dev_item); 7199 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7200 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7201 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7202 7203 ptr = btrfs_device_uuid(dev_item); 7204 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7205 } 7206 7207 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7208 u8 *fsid) 7209 { 7210 struct btrfs_fs_devices *fs_devices; 7211 int ret; 7212 7213 lockdep_assert_held(&uuid_mutex); 7214 ASSERT(fsid); 7215 7216 /* This will match only for multi-device seed fs */ 7217 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7218 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7219 return fs_devices; 7220 7221 7222 fs_devices = find_fsid(fsid, NULL); 7223 if (!fs_devices) { 7224 if (!btrfs_test_opt(fs_info, DEGRADED)) 7225 return ERR_PTR(-ENOENT); 7226 7227 fs_devices = alloc_fs_devices(fsid, NULL); 7228 if (IS_ERR(fs_devices)) 7229 return fs_devices; 7230 7231 fs_devices->seeding = true; 7232 fs_devices->opened = 1; 7233 return fs_devices; 7234 } 7235 7236 /* 7237 * Upon first call for a seed fs fsid, just create a private copy of the 7238 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7239 */ 7240 fs_devices = clone_fs_devices(fs_devices); 7241 if (IS_ERR(fs_devices)) 7242 return fs_devices; 7243 7244 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7245 if (ret) { 7246 free_fs_devices(fs_devices); 7247 return ERR_PTR(ret); 7248 } 7249 7250 if (!fs_devices->seeding) { 7251 close_fs_devices(fs_devices); 7252 free_fs_devices(fs_devices); 7253 return ERR_PTR(-EINVAL); 7254 } 7255 7256 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7257 7258 return fs_devices; 7259 } 7260 7261 static int read_one_dev(struct extent_buffer *leaf, 7262 struct btrfs_dev_item *dev_item) 7263 { 7264 BTRFS_DEV_LOOKUP_ARGS(args); 7265 struct btrfs_fs_info *fs_info = leaf->fs_info; 7266 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7267 struct btrfs_device *device; 7268 u64 devid; 7269 int ret; 7270 u8 fs_uuid[BTRFS_FSID_SIZE]; 7271 u8 dev_uuid[BTRFS_UUID_SIZE]; 7272 7273 devid = args.devid = btrfs_device_id(leaf, dev_item); 7274 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7275 BTRFS_UUID_SIZE); 7276 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7277 BTRFS_FSID_SIZE); 7278 args.uuid = dev_uuid; 7279 args.fsid = fs_uuid; 7280 7281 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7282 fs_devices = open_seed_devices(fs_info, fs_uuid); 7283 if (IS_ERR(fs_devices)) 7284 return PTR_ERR(fs_devices); 7285 } 7286 7287 device = btrfs_find_device(fs_info->fs_devices, &args); 7288 if (!device) { 7289 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7290 btrfs_report_missing_device(fs_info, devid, 7291 dev_uuid, true); 7292 return -ENOENT; 7293 } 7294 7295 device = add_missing_dev(fs_devices, devid, dev_uuid); 7296 if (IS_ERR(device)) { 7297 btrfs_err(fs_info, 7298 "failed to add missing dev %llu: %ld", 7299 devid, PTR_ERR(device)); 7300 return PTR_ERR(device); 7301 } 7302 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7303 } else { 7304 if (!device->bdev) { 7305 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7306 btrfs_report_missing_device(fs_info, 7307 devid, dev_uuid, true); 7308 return -ENOENT; 7309 } 7310 btrfs_report_missing_device(fs_info, devid, 7311 dev_uuid, false); 7312 } 7313 7314 if (!device->bdev && 7315 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7316 /* 7317 * this happens when a device that was properly setup 7318 * in the device info lists suddenly goes bad. 7319 * device->bdev is NULL, and so we have to set 7320 * device->missing to one here 7321 */ 7322 device->fs_devices->missing_devices++; 7323 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7324 } 7325 7326 /* Move the device to its own fs_devices */ 7327 if (device->fs_devices != fs_devices) { 7328 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7329 &device->dev_state)); 7330 7331 list_move(&device->dev_list, &fs_devices->devices); 7332 device->fs_devices->num_devices--; 7333 fs_devices->num_devices++; 7334 7335 device->fs_devices->missing_devices--; 7336 fs_devices->missing_devices++; 7337 7338 device->fs_devices = fs_devices; 7339 } 7340 } 7341 7342 if (device->fs_devices != fs_info->fs_devices) { 7343 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7344 if (device->generation != 7345 btrfs_device_generation(leaf, dev_item)) 7346 return -EINVAL; 7347 } 7348 7349 fill_device_from_item(leaf, dev_item, device); 7350 if (device->bdev) { 7351 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7352 7353 if (device->total_bytes > max_total_bytes) { 7354 btrfs_err(fs_info, 7355 "device total_bytes should be at most %llu but found %llu", 7356 max_total_bytes, device->total_bytes); 7357 return -EINVAL; 7358 } 7359 } 7360 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7361 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7362 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7363 device->fs_devices->total_rw_bytes += device->total_bytes; 7364 atomic64_add(device->total_bytes - device->bytes_used, 7365 &fs_info->free_chunk_space); 7366 } 7367 ret = 0; 7368 return ret; 7369 } 7370 7371 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7372 { 7373 struct btrfs_root *root = fs_info->tree_root; 7374 struct btrfs_super_block *super_copy = fs_info->super_copy; 7375 struct extent_buffer *sb; 7376 struct btrfs_disk_key *disk_key; 7377 struct btrfs_chunk *chunk; 7378 u8 *array_ptr; 7379 unsigned long sb_array_offset; 7380 int ret = 0; 7381 u32 num_stripes; 7382 u32 array_size; 7383 u32 len = 0; 7384 u32 cur_offset; 7385 u64 type; 7386 struct btrfs_key key; 7387 7388 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7389 /* 7390 * This will create extent buffer of nodesize, superblock size is 7391 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7392 * overallocate but we can keep it as-is, only the first page is used. 7393 */ 7394 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET, 7395 root->root_key.objectid, 0); 7396 if (IS_ERR(sb)) 7397 return PTR_ERR(sb); 7398 set_extent_buffer_uptodate(sb); 7399 /* 7400 * The sb extent buffer is artificial and just used to read the system array. 7401 * set_extent_buffer_uptodate() call does not properly mark all it's 7402 * pages up-to-date when the page is larger: extent does not cover the 7403 * whole page and consequently check_page_uptodate does not find all 7404 * the page's extents up-to-date (the hole beyond sb), 7405 * write_extent_buffer then triggers a WARN_ON. 7406 * 7407 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7408 * but sb spans only this function. Add an explicit SetPageUptodate call 7409 * to silence the warning eg. on PowerPC 64. 7410 */ 7411 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7412 SetPageUptodate(sb->pages[0]); 7413 7414 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7415 array_size = btrfs_super_sys_array_size(super_copy); 7416 7417 array_ptr = super_copy->sys_chunk_array; 7418 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7419 cur_offset = 0; 7420 7421 while (cur_offset < array_size) { 7422 disk_key = (struct btrfs_disk_key *)array_ptr; 7423 len = sizeof(*disk_key); 7424 if (cur_offset + len > array_size) 7425 goto out_short_read; 7426 7427 btrfs_disk_key_to_cpu(&key, disk_key); 7428 7429 array_ptr += len; 7430 sb_array_offset += len; 7431 cur_offset += len; 7432 7433 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7434 btrfs_err(fs_info, 7435 "unexpected item type %u in sys_array at offset %u", 7436 (u32)key.type, cur_offset); 7437 ret = -EIO; 7438 break; 7439 } 7440 7441 chunk = (struct btrfs_chunk *)sb_array_offset; 7442 /* 7443 * At least one btrfs_chunk with one stripe must be present, 7444 * exact stripe count check comes afterwards 7445 */ 7446 len = btrfs_chunk_item_size(1); 7447 if (cur_offset + len > array_size) 7448 goto out_short_read; 7449 7450 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7451 if (!num_stripes) { 7452 btrfs_err(fs_info, 7453 "invalid number of stripes %u in sys_array at offset %u", 7454 num_stripes, cur_offset); 7455 ret = -EIO; 7456 break; 7457 } 7458 7459 type = btrfs_chunk_type(sb, chunk); 7460 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7461 btrfs_err(fs_info, 7462 "invalid chunk type %llu in sys_array at offset %u", 7463 type, cur_offset); 7464 ret = -EIO; 7465 break; 7466 } 7467 7468 len = btrfs_chunk_item_size(num_stripes); 7469 if (cur_offset + len > array_size) 7470 goto out_short_read; 7471 7472 ret = read_one_chunk(&key, sb, chunk); 7473 if (ret) 7474 break; 7475 7476 array_ptr += len; 7477 sb_array_offset += len; 7478 cur_offset += len; 7479 } 7480 clear_extent_buffer_uptodate(sb); 7481 free_extent_buffer_stale(sb); 7482 return ret; 7483 7484 out_short_read: 7485 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7486 len, cur_offset); 7487 clear_extent_buffer_uptodate(sb); 7488 free_extent_buffer_stale(sb); 7489 return -EIO; 7490 } 7491 7492 /* 7493 * Check if all chunks in the fs are OK for read-write degraded mount 7494 * 7495 * If the @failing_dev is specified, it's accounted as missing. 7496 * 7497 * Return true if all chunks meet the minimal RW mount requirements. 7498 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7499 */ 7500 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7501 struct btrfs_device *failing_dev) 7502 { 7503 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7504 struct extent_map *em; 7505 u64 next_start = 0; 7506 bool ret = true; 7507 7508 read_lock(&map_tree->lock); 7509 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7510 read_unlock(&map_tree->lock); 7511 /* No chunk at all? Return false anyway */ 7512 if (!em) { 7513 ret = false; 7514 goto out; 7515 } 7516 while (em) { 7517 struct map_lookup *map; 7518 int missing = 0; 7519 int max_tolerated; 7520 int i; 7521 7522 map = em->map_lookup; 7523 max_tolerated = 7524 btrfs_get_num_tolerated_disk_barrier_failures( 7525 map->type); 7526 for (i = 0; i < map->num_stripes; i++) { 7527 struct btrfs_device *dev = map->stripes[i].dev; 7528 7529 if (!dev || !dev->bdev || 7530 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7531 dev->last_flush_error) 7532 missing++; 7533 else if (failing_dev && failing_dev == dev) 7534 missing++; 7535 } 7536 if (missing > max_tolerated) { 7537 if (!failing_dev) 7538 btrfs_warn(fs_info, 7539 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7540 em->start, missing, max_tolerated); 7541 free_extent_map(em); 7542 ret = false; 7543 goto out; 7544 } 7545 next_start = extent_map_end(em); 7546 free_extent_map(em); 7547 7548 read_lock(&map_tree->lock); 7549 em = lookup_extent_mapping(map_tree, next_start, 7550 (u64)(-1) - next_start); 7551 read_unlock(&map_tree->lock); 7552 } 7553 out: 7554 return ret; 7555 } 7556 7557 static void readahead_tree_node_children(struct extent_buffer *node) 7558 { 7559 int i; 7560 const int nr_items = btrfs_header_nritems(node); 7561 7562 for (i = 0; i < nr_items; i++) 7563 btrfs_readahead_node_child(node, i); 7564 } 7565 7566 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7567 { 7568 struct btrfs_root *root = fs_info->chunk_root; 7569 struct btrfs_path *path; 7570 struct extent_buffer *leaf; 7571 struct btrfs_key key; 7572 struct btrfs_key found_key; 7573 int ret; 7574 int slot; 7575 u64 total_dev = 0; 7576 u64 last_ra_node = 0; 7577 7578 path = btrfs_alloc_path(); 7579 if (!path) 7580 return -ENOMEM; 7581 7582 /* 7583 * uuid_mutex is needed only if we are mounting a sprout FS 7584 * otherwise we don't need it. 7585 */ 7586 mutex_lock(&uuid_mutex); 7587 7588 /* 7589 * It is possible for mount and umount to race in such a way that 7590 * we execute this code path, but open_fs_devices failed to clear 7591 * total_rw_bytes. We certainly want it cleared before reading the 7592 * device items, so clear it here. 7593 */ 7594 fs_info->fs_devices->total_rw_bytes = 0; 7595 7596 /* 7597 * Lockdep complains about possible circular locking dependency between 7598 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7599 * used for freeze procection of a fs (struct super_block.s_writers), 7600 * which we take when starting a transaction, and extent buffers of the 7601 * chunk tree if we call read_one_dev() while holding a lock on an 7602 * extent buffer of the chunk tree. Since we are mounting the filesystem 7603 * and at this point there can't be any concurrent task modifying the 7604 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7605 */ 7606 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7607 path->skip_locking = 1; 7608 7609 /* 7610 * Read all device items, and then all the chunk items. All 7611 * device items are found before any chunk item (their object id 7612 * is smaller than the lowest possible object id for a chunk 7613 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7614 */ 7615 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7616 key.offset = 0; 7617 key.type = 0; 7618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7619 if (ret < 0) 7620 goto error; 7621 while (1) { 7622 struct extent_buffer *node; 7623 7624 leaf = path->nodes[0]; 7625 slot = path->slots[0]; 7626 if (slot >= btrfs_header_nritems(leaf)) { 7627 ret = btrfs_next_leaf(root, path); 7628 if (ret == 0) 7629 continue; 7630 if (ret < 0) 7631 goto error; 7632 break; 7633 } 7634 node = path->nodes[1]; 7635 if (node) { 7636 if (last_ra_node != node->start) { 7637 readahead_tree_node_children(node); 7638 last_ra_node = node->start; 7639 } 7640 } 7641 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7642 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7643 struct btrfs_dev_item *dev_item; 7644 dev_item = btrfs_item_ptr(leaf, slot, 7645 struct btrfs_dev_item); 7646 ret = read_one_dev(leaf, dev_item); 7647 if (ret) 7648 goto error; 7649 total_dev++; 7650 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7651 struct btrfs_chunk *chunk; 7652 7653 /* 7654 * We are only called at mount time, so no need to take 7655 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7656 * we always lock first fs_info->chunk_mutex before 7657 * acquiring any locks on the chunk tree. This is a 7658 * requirement for chunk allocation, see the comment on 7659 * top of btrfs_chunk_alloc() for details. 7660 */ 7661 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7662 ret = read_one_chunk(&found_key, leaf, chunk); 7663 if (ret) 7664 goto error; 7665 } 7666 path->slots[0]++; 7667 } 7668 7669 /* 7670 * After loading chunk tree, we've got all device information, 7671 * do another round of validation checks. 7672 */ 7673 if (total_dev != fs_info->fs_devices->total_devices) { 7674 btrfs_err(fs_info, 7675 "super_num_devices %llu mismatch with num_devices %llu found here", 7676 btrfs_super_num_devices(fs_info->super_copy), 7677 total_dev); 7678 ret = -EINVAL; 7679 goto error; 7680 } 7681 if (btrfs_super_total_bytes(fs_info->super_copy) < 7682 fs_info->fs_devices->total_rw_bytes) { 7683 btrfs_err(fs_info, 7684 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7685 btrfs_super_total_bytes(fs_info->super_copy), 7686 fs_info->fs_devices->total_rw_bytes); 7687 ret = -EINVAL; 7688 goto error; 7689 } 7690 ret = 0; 7691 error: 7692 mutex_unlock(&uuid_mutex); 7693 7694 btrfs_free_path(path); 7695 return ret; 7696 } 7697 7698 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7699 { 7700 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7701 struct btrfs_device *device; 7702 7703 fs_devices->fs_info = fs_info; 7704 7705 mutex_lock(&fs_devices->device_list_mutex); 7706 list_for_each_entry(device, &fs_devices->devices, dev_list) 7707 device->fs_info = fs_info; 7708 7709 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7710 list_for_each_entry(device, &seed_devs->devices, dev_list) 7711 device->fs_info = fs_info; 7712 7713 seed_devs->fs_info = fs_info; 7714 } 7715 mutex_unlock(&fs_devices->device_list_mutex); 7716 } 7717 7718 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7719 const struct btrfs_dev_stats_item *ptr, 7720 int index) 7721 { 7722 u64 val; 7723 7724 read_extent_buffer(eb, &val, 7725 offsetof(struct btrfs_dev_stats_item, values) + 7726 ((unsigned long)ptr) + (index * sizeof(u64)), 7727 sizeof(val)); 7728 return val; 7729 } 7730 7731 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7732 struct btrfs_dev_stats_item *ptr, 7733 int index, u64 val) 7734 { 7735 write_extent_buffer(eb, &val, 7736 offsetof(struct btrfs_dev_stats_item, values) + 7737 ((unsigned long)ptr) + (index * sizeof(u64)), 7738 sizeof(val)); 7739 } 7740 7741 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7742 struct btrfs_path *path) 7743 { 7744 struct btrfs_dev_stats_item *ptr; 7745 struct extent_buffer *eb; 7746 struct btrfs_key key; 7747 int item_size; 7748 int i, ret, slot; 7749 7750 if (!device->fs_info->dev_root) 7751 return 0; 7752 7753 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7754 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7755 key.offset = device->devid; 7756 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7757 if (ret) { 7758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7759 btrfs_dev_stat_set(device, i, 0); 7760 device->dev_stats_valid = 1; 7761 btrfs_release_path(path); 7762 return ret < 0 ? ret : 0; 7763 } 7764 slot = path->slots[0]; 7765 eb = path->nodes[0]; 7766 item_size = btrfs_item_size(eb, slot); 7767 7768 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7769 7770 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7771 if (item_size >= (1 + i) * sizeof(__le64)) 7772 btrfs_dev_stat_set(device, i, 7773 btrfs_dev_stats_value(eb, ptr, i)); 7774 else 7775 btrfs_dev_stat_set(device, i, 0); 7776 } 7777 7778 device->dev_stats_valid = 1; 7779 btrfs_dev_stat_print_on_load(device); 7780 btrfs_release_path(path); 7781 7782 return 0; 7783 } 7784 7785 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7786 { 7787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7788 struct btrfs_device *device; 7789 struct btrfs_path *path = NULL; 7790 int ret = 0; 7791 7792 path = btrfs_alloc_path(); 7793 if (!path) 7794 return -ENOMEM; 7795 7796 mutex_lock(&fs_devices->device_list_mutex); 7797 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7798 ret = btrfs_device_init_dev_stats(device, path); 7799 if (ret) 7800 goto out; 7801 } 7802 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7803 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7804 ret = btrfs_device_init_dev_stats(device, path); 7805 if (ret) 7806 goto out; 7807 } 7808 } 7809 out: 7810 mutex_unlock(&fs_devices->device_list_mutex); 7811 7812 btrfs_free_path(path); 7813 return ret; 7814 } 7815 7816 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7817 struct btrfs_device *device) 7818 { 7819 struct btrfs_fs_info *fs_info = trans->fs_info; 7820 struct btrfs_root *dev_root = fs_info->dev_root; 7821 struct btrfs_path *path; 7822 struct btrfs_key key; 7823 struct extent_buffer *eb; 7824 struct btrfs_dev_stats_item *ptr; 7825 int ret; 7826 int i; 7827 7828 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7829 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7830 key.offset = device->devid; 7831 7832 path = btrfs_alloc_path(); 7833 if (!path) 7834 return -ENOMEM; 7835 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7836 if (ret < 0) { 7837 btrfs_warn_in_rcu(fs_info, 7838 "error %d while searching for dev_stats item for device %s", 7839 ret, rcu_str_deref(device->name)); 7840 goto out; 7841 } 7842 7843 if (ret == 0 && 7844 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7845 /* need to delete old one and insert a new one */ 7846 ret = btrfs_del_item(trans, dev_root, path); 7847 if (ret != 0) { 7848 btrfs_warn_in_rcu(fs_info, 7849 "delete too small dev_stats item for device %s failed %d", 7850 rcu_str_deref(device->name), ret); 7851 goto out; 7852 } 7853 ret = 1; 7854 } 7855 7856 if (ret == 1) { 7857 /* need to insert a new item */ 7858 btrfs_release_path(path); 7859 ret = btrfs_insert_empty_item(trans, dev_root, path, 7860 &key, sizeof(*ptr)); 7861 if (ret < 0) { 7862 btrfs_warn_in_rcu(fs_info, 7863 "insert dev_stats item for device %s failed %d", 7864 rcu_str_deref(device->name), ret); 7865 goto out; 7866 } 7867 } 7868 7869 eb = path->nodes[0]; 7870 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7871 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7872 btrfs_set_dev_stats_value(eb, ptr, i, 7873 btrfs_dev_stat_read(device, i)); 7874 btrfs_mark_buffer_dirty(eb); 7875 7876 out: 7877 btrfs_free_path(path); 7878 return ret; 7879 } 7880 7881 /* 7882 * called from commit_transaction. Writes all changed device stats to disk. 7883 */ 7884 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7885 { 7886 struct btrfs_fs_info *fs_info = trans->fs_info; 7887 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7888 struct btrfs_device *device; 7889 int stats_cnt; 7890 int ret = 0; 7891 7892 mutex_lock(&fs_devices->device_list_mutex); 7893 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7894 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7895 if (!device->dev_stats_valid || stats_cnt == 0) 7896 continue; 7897 7898 7899 /* 7900 * There is a LOAD-LOAD control dependency between the value of 7901 * dev_stats_ccnt and updating the on-disk values which requires 7902 * reading the in-memory counters. Such control dependencies 7903 * require explicit read memory barriers. 7904 * 7905 * This memory barriers pairs with smp_mb__before_atomic in 7906 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7907 * barrier implied by atomic_xchg in 7908 * btrfs_dev_stats_read_and_reset 7909 */ 7910 smp_rmb(); 7911 7912 ret = update_dev_stat_item(trans, device); 7913 if (!ret) 7914 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7915 } 7916 mutex_unlock(&fs_devices->device_list_mutex); 7917 7918 return ret; 7919 } 7920 7921 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7922 { 7923 btrfs_dev_stat_inc(dev, index); 7924 btrfs_dev_stat_print_on_error(dev); 7925 } 7926 7927 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7928 { 7929 if (!dev->dev_stats_valid) 7930 return; 7931 btrfs_err_rl_in_rcu(dev->fs_info, 7932 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7933 rcu_str_deref(dev->name), 7934 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7935 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7936 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7937 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7938 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7939 } 7940 7941 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7942 { 7943 int i; 7944 7945 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7946 if (btrfs_dev_stat_read(dev, i) != 0) 7947 break; 7948 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7949 return; /* all values == 0, suppress message */ 7950 7951 btrfs_info_in_rcu(dev->fs_info, 7952 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7953 rcu_str_deref(dev->name), 7954 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7955 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7956 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7957 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7958 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7959 } 7960 7961 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7962 struct btrfs_ioctl_get_dev_stats *stats) 7963 { 7964 BTRFS_DEV_LOOKUP_ARGS(args); 7965 struct btrfs_device *dev; 7966 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7967 int i; 7968 7969 mutex_lock(&fs_devices->device_list_mutex); 7970 args.devid = stats->devid; 7971 dev = btrfs_find_device(fs_info->fs_devices, &args); 7972 mutex_unlock(&fs_devices->device_list_mutex); 7973 7974 if (!dev) { 7975 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7976 return -ENODEV; 7977 } else if (!dev->dev_stats_valid) { 7978 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7979 return -ENODEV; 7980 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7981 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7982 if (stats->nr_items > i) 7983 stats->values[i] = 7984 btrfs_dev_stat_read_and_reset(dev, i); 7985 else 7986 btrfs_dev_stat_set(dev, i, 0); 7987 } 7988 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7989 current->comm, task_pid_nr(current)); 7990 } else { 7991 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7992 if (stats->nr_items > i) 7993 stats->values[i] = btrfs_dev_stat_read(dev, i); 7994 } 7995 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7996 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7997 return 0; 7998 } 7999 8000 /* 8001 * Update the size and bytes used for each device where it changed. This is 8002 * delayed since we would otherwise get errors while writing out the 8003 * superblocks. 8004 * 8005 * Must be invoked during transaction commit. 8006 */ 8007 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 8008 { 8009 struct btrfs_device *curr, *next; 8010 8011 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 8012 8013 if (list_empty(&trans->dev_update_list)) 8014 return; 8015 8016 /* 8017 * We don't need the device_list_mutex here. This list is owned by the 8018 * transaction and the transaction must complete before the device is 8019 * released. 8020 */ 8021 mutex_lock(&trans->fs_info->chunk_mutex); 8022 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 8023 post_commit_list) { 8024 list_del_init(&curr->post_commit_list); 8025 curr->commit_total_bytes = curr->disk_total_bytes; 8026 curr->commit_bytes_used = curr->bytes_used; 8027 } 8028 mutex_unlock(&trans->fs_info->chunk_mutex); 8029 } 8030 8031 /* 8032 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 8033 */ 8034 int btrfs_bg_type_to_factor(u64 flags) 8035 { 8036 const int index = btrfs_bg_flags_to_raid_index(flags); 8037 8038 return btrfs_raid_array[index].ncopies; 8039 } 8040 8041 8042 8043 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 8044 u64 chunk_offset, u64 devid, 8045 u64 physical_offset, u64 physical_len) 8046 { 8047 struct btrfs_dev_lookup_args args = { .devid = devid }; 8048 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8049 struct extent_map *em; 8050 struct map_lookup *map; 8051 struct btrfs_device *dev; 8052 u64 stripe_len; 8053 bool found = false; 8054 int ret = 0; 8055 int i; 8056 8057 read_lock(&em_tree->lock); 8058 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 8059 read_unlock(&em_tree->lock); 8060 8061 if (!em) { 8062 btrfs_err(fs_info, 8063 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8064 physical_offset, devid); 8065 ret = -EUCLEAN; 8066 goto out; 8067 } 8068 8069 map = em->map_lookup; 8070 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 8071 if (physical_len != stripe_len) { 8072 btrfs_err(fs_info, 8073 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8074 physical_offset, devid, em->start, physical_len, 8075 stripe_len); 8076 ret = -EUCLEAN; 8077 goto out; 8078 } 8079 8080 for (i = 0; i < map->num_stripes; i++) { 8081 if (map->stripes[i].dev->devid == devid && 8082 map->stripes[i].physical == physical_offset) { 8083 found = true; 8084 if (map->verified_stripes >= map->num_stripes) { 8085 btrfs_err(fs_info, 8086 "too many dev extents for chunk %llu found", 8087 em->start); 8088 ret = -EUCLEAN; 8089 goto out; 8090 } 8091 map->verified_stripes++; 8092 break; 8093 } 8094 } 8095 if (!found) { 8096 btrfs_err(fs_info, 8097 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8098 physical_offset, devid); 8099 ret = -EUCLEAN; 8100 } 8101 8102 /* Make sure no dev extent is beyond device boundary */ 8103 dev = btrfs_find_device(fs_info->fs_devices, &args); 8104 if (!dev) { 8105 btrfs_err(fs_info, "failed to find devid %llu", devid); 8106 ret = -EUCLEAN; 8107 goto out; 8108 } 8109 8110 if (physical_offset + physical_len > dev->disk_total_bytes) { 8111 btrfs_err(fs_info, 8112 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8113 devid, physical_offset, physical_len, 8114 dev->disk_total_bytes); 8115 ret = -EUCLEAN; 8116 goto out; 8117 } 8118 8119 if (dev->zone_info) { 8120 u64 zone_size = dev->zone_info->zone_size; 8121 8122 if (!IS_ALIGNED(physical_offset, zone_size) || 8123 !IS_ALIGNED(physical_len, zone_size)) { 8124 btrfs_err(fs_info, 8125 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8126 devid, physical_offset, physical_len); 8127 ret = -EUCLEAN; 8128 goto out; 8129 } 8130 } 8131 8132 out: 8133 free_extent_map(em); 8134 return ret; 8135 } 8136 8137 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8138 { 8139 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8140 struct extent_map *em; 8141 struct rb_node *node; 8142 int ret = 0; 8143 8144 read_lock(&em_tree->lock); 8145 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 8146 em = rb_entry(node, struct extent_map, rb_node); 8147 if (em->map_lookup->num_stripes != 8148 em->map_lookup->verified_stripes) { 8149 btrfs_err(fs_info, 8150 "chunk %llu has missing dev extent, have %d expect %d", 8151 em->start, em->map_lookup->verified_stripes, 8152 em->map_lookup->num_stripes); 8153 ret = -EUCLEAN; 8154 goto out; 8155 } 8156 } 8157 out: 8158 read_unlock(&em_tree->lock); 8159 return ret; 8160 } 8161 8162 /* 8163 * Ensure that all dev extents are mapped to correct chunk, otherwise 8164 * later chunk allocation/free would cause unexpected behavior. 8165 * 8166 * NOTE: This will iterate through the whole device tree, which should be of 8167 * the same size level as the chunk tree. This slightly increases mount time. 8168 */ 8169 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8170 { 8171 struct btrfs_path *path; 8172 struct btrfs_root *root = fs_info->dev_root; 8173 struct btrfs_key key; 8174 u64 prev_devid = 0; 8175 u64 prev_dev_ext_end = 0; 8176 int ret = 0; 8177 8178 /* 8179 * We don't have a dev_root because we mounted with ignorebadroots and 8180 * failed to load the root, so we want to skip the verification in this 8181 * case for sure. 8182 * 8183 * However if the dev root is fine, but the tree itself is corrupted 8184 * we'd still fail to mount. This verification is only to make sure 8185 * writes can happen safely, so instead just bypass this check 8186 * completely in the case of IGNOREBADROOTS. 8187 */ 8188 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8189 return 0; 8190 8191 key.objectid = 1; 8192 key.type = BTRFS_DEV_EXTENT_KEY; 8193 key.offset = 0; 8194 8195 path = btrfs_alloc_path(); 8196 if (!path) 8197 return -ENOMEM; 8198 8199 path->reada = READA_FORWARD; 8200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8201 if (ret < 0) 8202 goto out; 8203 8204 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8205 ret = btrfs_next_leaf(root, path); 8206 if (ret < 0) 8207 goto out; 8208 /* No dev extents at all? Not good */ 8209 if (ret > 0) { 8210 ret = -EUCLEAN; 8211 goto out; 8212 } 8213 } 8214 while (1) { 8215 struct extent_buffer *leaf = path->nodes[0]; 8216 struct btrfs_dev_extent *dext; 8217 int slot = path->slots[0]; 8218 u64 chunk_offset; 8219 u64 physical_offset; 8220 u64 physical_len; 8221 u64 devid; 8222 8223 btrfs_item_key_to_cpu(leaf, &key, slot); 8224 if (key.type != BTRFS_DEV_EXTENT_KEY) 8225 break; 8226 devid = key.objectid; 8227 physical_offset = key.offset; 8228 8229 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8230 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8231 physical_len = btrfs_dev_extent_length(leaf, dext); 8232 8233 /* Check if this dev extent overlaps with the previous one */ 8234 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8235 btrfs_err(fs_info, 8236 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8237 devid, physical_offset, prev_dev_ext_end); 8238 ret = -EUCLEAN; 8239 goto out; 8240 } 8241 8242 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8243 physical_offset, physical_len); 8244 if (ret < 0) 8245 goto out; 8246 prev_devid = devid; 8247 prev_dev_ext_end = physical_offset + physical_len; 8248 8249 ret = btrfs_next_item(root, path); 8250 if (ret < 0) 8251 goto out; 8252 if (ret > 0) { 8253 ret = 0; 8254 break; 8255 } 8256 } 8257 8258 /* Ensure all chunks have corresponding dev extents */ 8259 ret = verify_chunk_dev_extent_mapping(fs_info); 8260 out: 8261 btrfs_free_path(path); 8262 return ret; 8263 } 8264 8265 /* 8266 * Check whether the given block group or device is pinned by any inode being 8267 * used as a swapfile. 8268 */ 8269 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8270 { 8271 struct btrfs_swapfile_pin *sp; 8272 struct rb_node *node; 8273 8274 spin_lock(&fs_info->swapfile_pins_lock); 8275 node = fs_info->swapfile_pins.rb_node; 8276 while (node) { 8277 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8278 if (ptr < sp->ptr) 8279 node = node->rb_left; 8280 else if (ptr > sp->ptr) 8281 node = node->rb_right; 8282 else 8283 break; 8284 } 8285 spin_unlock(&fs_info->swapfile_pins_lock); 8286 return node != NULL; 8287 } 8288 8289 static int relocating_repair_kthread(void *data) 8290 { 8291 struct btrfs_block_group *cache = (struct btrfs_block_group *)data; 8292 struct btrfs_fs_info *fs_info = cache->fs_info; 8293 u64 target; 8294 int ret = 0; 8295 8296 target = cache->start; 8297 btrfs_put_block_group(cache); 8298 8299 sb_start_write(fs_info->sb); 8300 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8301 btrfs_info(fs_info, 8302 "zoned: skip relocating block group %llu to repair: EBUSY", 8303 target); 8304 sb_end_write(fs_info->sb); 8305 return -EBUSY; 8306 } 8307 8308 mutex_lock(&fs_info->reclaim_bgs_lock); 8309 8310 /* Ensure block group still exists */ 8311 cache = btrfs_lookup_block_group(fs_info, target); 8312 if (!cache) 8313 goto out; 8314 8315 if (!cache->relocating_repair) 8316 goto out; 8317 8318 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8319 if (ret < 0) 8320 goto out; 8321 8322 btrfs_info(fs_info, 8323 "zoned: relocating block group %llu to repair IO failure", 8324 target); 8325 ret = btrfs_relocate_chunk(fs_info, target); 8326 8327 out: 8328 if (cache) 8329 btrfs_put_block_group(cache); 8330 mutex_unlock(&fs_info->reclaim_bgs_lock); 8331 btrfs_exclop_finish(fs_info); 8332 sb_end_write(fs_info->sb); 8333 8334 return ret; 8335 } 8336 8337 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8338 { 8339 struct btrfs_block_group *cache; 8340 8341 if (!btrfs_is_zoned(fs_info)) 8342 return false; 8343 8344 /* Do not attempt to repair in degraded state */ 8345 if (btrfs_test_opt(fs_info, DEGRADED)) 8346 return true; 8347 8348 cache = btrfs_lookup_block_group(fs_info, logical); 8349 if (!cache) 8350 return true; 8351 8352 spin_lock(&cache->lock); 8353 if (cache->relocating_repair) { 8354 spin_unlock(&cache->lock); 8355 btrfs_put_block_group(cache); 8356 return true; 8357 } 8358 cache->relocating_repair = 1; 8359 spin_unlock(&cache->lock); 8360 8361 kthread_run(relocating_repair_kthread, cache, 8362 "btrfs-relocating-repair"); 8363 8364 return true; 8365 } 8366