1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 bool use_rst; 52 }; 53 54 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 55 [BTRFS_RAID_RAID10] = { 56 .sub_stripes = 2, 57 .dev_stripes = 1, 58 .devs_max = 0, /* 0 == as many as possible */ 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 .nparity = 0, 64 .raid_name = "raid10", 65 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 66 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 67 }, 68 [BTRFS_RAID_RAID1] = { 69 .sub_stripes = 1, 70 .dev_stripes = 1, 71 .devs_max = 2, 72 .devs_min = 2, 73 .tolerated_failures = 1, 74 .devs_increment = 2, 75 .ncopies = 2, 76 .nparity = 0, 77 .raid_name = "raid1", 78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 79 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 80 }, 81 [BTRFS_RAID_RAID1C3] = { 82 .sub_stripes = 1, 83 .dev_stripes = 1, 84 .devs_max = 3, 85 .devs_min = 3, 86 .tolerated_failures = 2, 87 .devs_increment = 3, 88 .ncopies = 3, 89 .nparity = 0, 90 .raid_name = "raid1c3", 91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 92 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 93 }, 94 [BTRFS_RAID_RAID1C4] = { 95 .sub_stripes = 1, 96 .dev_stripes = 1, 97 .devs_max = 4, 98 .devs_min = 4, 99 .tolerated_failures = 3, 100 .devs_increment = 4, 101 .ncopies = 4, 102 .nparity = 0, 103 .raid_name = "raid1c4", 104 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 105 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 106 }, 107 [BTRFS_RAID_DUP] = { 108 .sub_stripes = 1, 109 .dev_stripes = 2, 110 .devs_max = 1, 111 .devs_min = 1, 112 .tolerated_failures = 0, 113 .devs_increment = 1, 114 .ncopies = 2, 115 .nparity = 0, 116 .raid_name = "dup", 117 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 118 .mindev_error = 0, 119 }, 120 [BTRFS_RAID_RAID0] = { 121 .sub_stripes = 1, 122 .dev_stripes = 1, 123 .devs_max = 0, 124 .devs_min = 1, 125 .tolerated_failures = 0, 126 .devs_increment = 1, 127 .ncopies = 1, 128 .nparity = 0, 129 .raid_name = "raid0", 130 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 131 .mindev_error = 0, 132 }, 133 [BTRFS_RAID_SINGLE] = { 134 .sub_stripes = 1, 135 .dev_stripes = 1, 136 .devs_max = 1, 137 .devs_min = 1, 138 .tolerated_failures = 0, 139 .devs_increment = 1, 140 .ncopies = 1, 141 .nparity = 0, 142 .raid_name = "single", 143 .bg_flag = 0, 144 .mindev_error = 0, 145 }, 146 [BTRFS_RAID_RAID5] = { 147 .sub_stripes = 1, 148 .dev_stripes = 1, 149 .devs_max = 0, 150 .devs_min = 2, 151 .tolerated_failures = 1, 152 .devs_increment = 1, 153 .ncopies = 1, 154 .nparity = 1, 155 .raid_name = "raid5", 156 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 157 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 158 }, 159 [BTRFS_RAID_RAID6] = { 160 .sub_stripes = 1, 161 .dev_stripes = 1, 162 .devs_max = 0, 163 .devs_min = 3, 164 .tolerated_failures = 2, 165 .devs_increment = 1, 166 .ncopies = 1, 167 .nparity = 2, 168 .raid_name = "raid6", 169 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 170 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 171 }, 172 }; 173 174 /* 175 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 176 * can be used as index to access btrfs_raid_array[]. 177 */ 178 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 179 { 180 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 181 182 if (!profile) 183 return BTRFS_RAID_SINGLE; 184 185 return BTRFS_BG_FLAG_TO_INDEX(profile); 186 } 187 188 const char *btrfs_bg_type_to_raid_name(u64 flags) 189 { 190 const int index = btrfs_bg_flags_to_raid_index(flags); 191 192 if (index >= BTRFS_NR_RAID_TYPES) 193 return NULL; 194 195 return btrfs_raid_array[index].raid_name; 196 } 197 198 int btrfs_nr_parity_stripes(u64 type) 199 { 200 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 201 202 return btrfs_raid_array[index].nparity; 203 } 204 205 /* 206 * Fill @buf with textual description of @bg_flags, no more than @size_buf 207 * bytes including terminating null byte. 208 */ 209 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 210 { 211 int i; 212 int ret; 213 char *bp = buf; 214 u64 flags = bg_flags; 215 u32 size_bp = size_buf; 216 217 if (!flags) { 218 strcpy(bp, "NONE"); 219 return; 220 } 221 222 #define DESCRIBE_FLAG(flag, desc) \ 223 do { \ 224 if (flags & (flag)) { \ 225 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 226 if (ret < 0 || ret >= size_bp) \ 227 goto out_overflow; \ 228 size_bp -= ret; \ 229 bp += ret; \ 230 flags &= ~(flag); \ 231 } \ 232 } while (0) 233 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 237 238 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 239 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 240 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 241 btrfs_raid_array[i].raid_name); 242 #undef DESCRIBE_FLAG 243 244 if (flags) { 245 ret = snprintf(bp, size_bp, "0x%llx|", flags); 246 size_bp -= ret; 247 } 248 249 if (size_bp < size_buf) 250 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 251 252 /* 253 * The text is trimmed, it's up to the caller to provide sufficiently 254 * large buffer 255 */ 256 out_overflow:; 257 } 258 259 static int init_first_rw_device(struct btrfs_trans_handle *trans); 260 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 261 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 262 263 /* 264 * Device locking 265 * ============== 266 * 267 * There are several mutexes that protect manipulation of devices and low-level 268 * structures like chunks but not block groups, extents or files 269 * 270 * uuid_mutex (global lock) 271 * ------------------------ 272 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 273 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 274 * device) or requested by the device= mount option 275 * 276 * the mutex can be very coarse and can cover long-running operations 277 * 278 * protects: updates to fs_devices counters like missing devices, rw devices, 279 * seeding, structure cloning, opening/closing devices at mount/umount time 280 * 281 * global::fs_devs - add, remove, updates to the global list 282 * 283 * does not protect: manipulation of the fs_devices::devices list in general 284 * but in mount context it could be used to exclude list modifications by eg. 285 * scan ioctl 286 * 287 * btrfs_device::name - renames (write side), read is RCU 288 * 289 * fs_devices::device_list_mutex (per-fs, with RCU) 290 * ------------------------------------------------ 291 * protects updates to fs_devices::devices, ie. adding and deleting 292 * 293 * simple list traversal with read-only actions can be done with RCU protection 294 * 295 * may be used to exclude some operations from running concurrently without any 296 * modifications to the list (see write_all_supers) 297 * 298 * Is not required at mount and close times, because our device list is 299 * protected by the uuid_mutex at that point. 300 * 301 * balance_mutex 302 * ------------- 303 * protects balance structures (status, state) and context accessed from 304 * several places (internally, ioctl) 305 * 306 * chunk_mutex 307 * ----------- 308 * protects chunks, adding or removing during allocation, trim or when a new 309 * device is added/removed. Additionally it also protects post_commit_list of 310 * individual devices, since they can be added to the transaction's 311 * post_commit_list only with chunk_mutex held. 312 * 313 * cleaner_mutex 314 * ------------- 315 * a big lock that is held by the cleaner thread and prevents running subvolume 316 * cleaning together with relocation or delayed iputs 317 * 318 * 319 * Lock nesting 320 * ============ 321 * 322 * uuid_mutex 323 * device_list_mutex 324 * chunk_mutex 325 * balance_mutex 326 * 327 * 328 * Exclusive operations 329 * ==================== 330 * 331 * Maintains the exclusivity of the following operations that apply to the 332 * whole filesystem and cannot run in parallel. 333 * 334 * - Balance (*) 335 * - Device add 336 * - Device remove 337 * - Device replace (*) 338 * - Resize 339 * 340 * The device operations (as above) can be in one of the following states: 341 * 342 * - Running state 343 * - Paused state 344 * - Completed state 345 * 346 * Only device operations marked with (*) can go into the Paused state for the 347 * following reasons: 348 * 349 * - ioctl (only Balance can be Paused through ioctl) 350 * - filesystem remounted as read-only 351 * - filesystem unmounted and mounted as read-only 352 * - system power-cycle and filesystem mounted as read-only 353 * - filesystem or device errors leading to forced read-only 354 * 355 * The status of exclusive operation is set and cleared atomically. 356 * During the course of Paused state, fs_info::exclusive_operation remains set. 357 * A device operation in Paused or Running state can be canceled or resumed 358 * either by ioctl (Balance only) or when remounted as read-write. 359 * The exclusive status is cleared when the device operation is canceled or 360 * completed. 361 */ 362 363 DEFINE_MUTEX(uuid_mutex); 364 static LIST_HEAD(fs_uuids); 365 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 366 { 367 return &fs_uuids; 368 } 369 370 /* 371 * Allocate new btrfs_fs_devices structure identified by a fsid. 372 * 373 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 374 * fs_devices::metadata_fsid 375 * 376 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 377 * The returned struct is not linked onto any lists and can be destroyed with 378 * kfree() right away. 379 */ 380 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 381 { 382 struct btrfs_fs_devices *fs_devs; 383 384 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 385 if (!fs_devs) 386 return ERR_PTR(-ENOMEM); 387 388 mutex_init(&fs_devs->device_list_mutex); 389 390 INIT_LIST_HEAD(&fs_devs->devices); 391 INIT_LIST_HEAD(&fs_devs->alloc_list); 392 INIT_LIST_HEAD(&fs_devs->fs_list); 393 INIT_LIST_HEAD(&fs_devs->seed_list); 394 395 if (fsid) { 396 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 397 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 398 } 399 400 return fs_devs; 401 } 402 403 static void btrfs_free_device(struct btrfs_device *device) 404 { 405 WARN_ON(!list_empty(&device->post_commit_list)); 406 rcu_string_free(device->name); 407 extent_io_tree_release(&device->alloc_state); 408 btrfs_destroy_dev_zone_info(device); 409 kfree(device); 410 } 411 412 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 413 { 414 struct btrfs_device *device; 415 416 WARN_ON(fs_devices->opened); 417 while (!list_empty(&fs_devices->devices)) { 418 device = list_entry(fs_devices->devices.next, 419 struct btrfs_device, dev_list); 420 list_del(&device->dev_list); 421 btrfs_free_device(device); 422 } 423 kfree(fs_devices); 424 } 425 426 void __exit btrfs_cleanup_fs_uuids(void) 427 { 428 struct btrfs_fs_devices *fs_devices; 429 430 while (!list_empty(&fs_uuids)) { 431 fs_devices = list_entry(fs_uuids.next, 432 struct btrfs_fs_devices, fs_list); 433 list_del(&fs_devices->fs_list); 434 free_fs_devices(fs_devices); 435 } 436 } 437 438 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 439 const u8 *fsid, const u8 *metadata_fsid) 440 { 441 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 442 return false; 443 444 if (!metadata_fsid) 445 return true; 446 447 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 448 return false; 449 450 return true; 451 } 452 453 static noinline struct btrfs_fs_devices *find_fsid( 454 const u8 *fsid, const u8 *metadata_fsid) 455 { 456 struct btrfs_fs_devices *fs_devices; 457 458 ASSERT(fsid); 459 460 /* Handle non-split brain cases */ 461 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 462 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 463 return fs_devices; 464 } 465 return NULL; 466 } 467 468 static int 469 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 470 int flush, struct file **bdev_file, 471 struct btrfs_super_block **disk_super) 472 { 473 struct block_device *bdev; 474 int ret; 475 476 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 477 478 if (IS_ERR(*bdev_file)) { 479 ret = PTR_ERR(*bdev_file); 480 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 481 device_path, flags, ret); 482 goto error; 483 } 484 bdev = file_bdev(*bdev_file); 485 486 if (flush) 487 sync_blockdev(bdev); 488 if (holder) { 489 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 490 if (ret) { 491 fput(*bdev_file); 492 goto error; 493 } 494 } 495 invalidate_bdev(bdev); 496 *disk_super = btrfs_read_dev_super(bdev); 497 if (IS_ERR(*disk_super)) { 498 ret = PTR_ERR(*disk_super); 499 fput(*bdev_file); 500 goto error; 501 } 502 503 return 0; 504 505 error: 506 *disk_super = NULL; 507 *bdev_file = NULL; 508 return ret; 509 } 510 511 /* 512 * Search and remove all stale devices (which are not mounted). When both 513 * inputs are NULL, it will search and release all stale devices. 514 * 515 * @devt: Optional. When provided will it release all unmounted devices 516 * matching this devt only. 517 * @skip_device: Optional. Will skip this device when searching for the stale 518 * devices. 519 * 520 * Return: 0 for success or if @devt is 0. 521 * -EBUSY if @devt is a mounted device. 522 * -ENOENT if @devt does not match any device in the list. 523 */ 524 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 525 { 526 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 527 struct btrfs_device *device, *tmp_device; 528 int ret; 529 bool freed = false; 530 531 lockdep_assert_held(&uuid_mutex); 532 533 /* Return good status if there is no instance of devt. */ 534 ret = 0; 535 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 536 537 mutex_lock(&fs_devices->device_list_mutex); 538 list_for_each_entry_safe(device, tmp_device, 539 &fs_devices->devices, dev_list) { 540 if (skip_device && skip_device == device) 541 continue; 542 if (devt && devt != device->devt) 543 continue; 544 if (fs_devices->opened) { 545 if (devt) 546 ret = -EBUSY; 547 break; 548 } 549 550 /* delete the stale device */ 551 fs_devices->num_devices--; 552 list_del(&device->dev_list); 553 btrfs_free_device(device); 554 555 freed = true; 556 } 557 mutex_unlock(&fs_devices->device_list_mutex); 558 559 if (fs_devices->num_devices == 0) { 560 btrfs_sysfs_remove_fsid(fs_devices); 561 list_del(&fs_devices->fs_list); 562 free_fs_devices(fs_devices); 563 } 564 } 565 566 /* If there is at least one freed device return 0. */ 567 if (freed) 568 return 0; 569 570 return ret; 571 } 572 573 static struct btrfs_fs_devices *find_fsid_by_device( 574 struct btrfs_super_block *disk_super, 575 dev_t devt, bool *same_fsid_diff_dev) 576 { 577 struct btrfs_fs_devices *fsid_fs_devices; 578 struct btrfs_fs_devices *devt_fs_devices; 579 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 580 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 581 bool found_by_devt = false; 582 583 /* Find the fs_device by the usual method, if found use it. */ 584 fsid_fs_devices = find_fsid(disk_super->fsid, 585 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 586 587 /* The temp_fsid feature is supported only with single device filesystem. */ 588 if (btrfs_super_num_devices(disk_super) != 1) 589 return fsid_fs_devices; 590 591 /* 592 * A seed device is an integral component of the sprout device, which 593 * functions as a multi-device filesystem. So, temp-fsid feature is 594 * not supported. 595 */ 596 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 597 return fsid_fs_devices; 598 599 /* Try to find a fs_devices by matching devt. */ 600 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 601 struct btrfs_device *device; 602 603 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 604 if (device->devt == devt) { 605 found_by_devt = true; 606 break; 607 } 608 } 609 if (found_by_devt) 610 break; 611 } 612 613 if (found_by_devt) { 614 /* Existing device. */ 615 if (fsid_fs_devices == NULL) { 616 if (devt_fs_devices->opened == 0) { 617 /* Stale device. */ 618 return NULL; 619 } else { 620 /* temp_fsid is mounting a subvol. */ 621 return devt_fs_devices; 622 } 623 } else { 624 /* Regular or temp_fsid device mounting a subvol. */ 625 return devt_fs_devices; 626 } 627 } else { 628 /* New device. */ 629 if (fsid_fs_devices == NULL) { 630 return NULL; 631 } else { 632 /* sb::fsid is already used create a new temp_fsid. */ 633 *same_fsid_diff_dev = true; 634 return NULL; 635 } 636 } 637 638 /* Not reached. */ 639 } 640 641 /* 642 * This is only used on mount, and we are protected from competing things 643 * messing with our fs_devices by the uuid_mutex, thus we do not need the 644 * fs_devices->device_list_mutex here. 645 */ 646 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 647 struct btrfs_device *device, blk_mode_t flags, 648 void *holder) 649 { 650 struct file *bdev_file; 651 struct btrfs_super_block *disk_super; 652 u64 devid; 653 int ret; 654 655 if (device->bdev) 656 return -EINVAL; 657 if (!device->name) 658 return -EINVAL; 659 660 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 661 &bdev_file, &disk_super); 662 if (ret) 663 return ret; 664 665 devid = btrfs_stack_device_id(&disk_super->dev_item); 666 if (devid != device->devid) 667 goto error_free_page; 668 669 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 670 goto error_free_page; 671 672 device->generation = btrfs_super_generation(disk_super); 673 674 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 675 if (btrfs_super_incompat_flags(disk_super) & 676 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 677 pr_err( 678 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 679 goto error_free_page; 680 } 681 682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 fs_devices->seeding = true; 684 } else { 685 if (bdev_read_only(file_bdev(bdev_file))) 686 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 687 else 688 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 } 690 691 if (!bdev_nonrot(file_bdev(bdev_file))) 692 fs_devices->rotating = true; 693 694 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 695 fs_devices->discardable = true; 696 697 device->bdev_file = bdev_file; 698 device->bdev = file_bdev(bdev_file); 699 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 700 701 if (device->devt != device->bdev->bd_dev) { 702 btrfs_warn(NULL, 703 "device %s maj:min changed from %d:%d to %d:%d", 704 device->name->str, MAJOR(device->devt), 705 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 706 MINOR(device->bdev->bd_dev)); 707 708 device->devt = device->bdev->bd_dev; 709 } 710 711 fs_devices->open_devices++; 712 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 713 device->devid != BTRFS_DEV_REPLACE_DEVID) { 714 fs_devices->rw_devices++; 715 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 716 } 717 btrfs_release_disk_super(disk_super); 718 719 return 0; 720 721 error_free_page: 722 btrfs_release_disk_super(disk_super); 723 fput(bdev_file); 724 725 return -EINVAL; 726 } 727 728 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 729 { 730 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 731 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 732 733 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 734 } 735 736 /* 737 * We can have very weird soft links passed in. 738 * One example is "/proc/self/fd/<fd>", which can be a soft link to 739 * a block device. 740 * 741 * But it's never a good idea to use those weird names. 742 * Here we check if the path (not following symlinks) is a good one inside 743 * "/dev/". 744 */ 745 static bool is_good_dev_path(const char *dev_path) 746 { 747 struct path path = { .mnt = NULL, .dentry = NULL }; 748 char *path_buf = NULL; 749 char *resolved_path; 750 bool is_good = false; 751 int ret; 752 753 if (!dev_path) 754 goto out; 755 756 path_buf = kmalloc(PATH_MAX, GFP_KERNEL); 757 if (!path_buf) 758 goto out; 759 760 /* 761 * Do not follow soft link, just check if the original path is inside 762 * "/dev/". 763 */ 764 ret = kern_path(dev_path, 0, &path); 765 if (ret) 766 goto out; 767 resolved_path = d_path(&path, path_buf, PATH_MAX); 768 if (IS_ERR(resolved_path)) 769 goto out; 770 if (strncmp(resolved_path, "/dev/", strlen("/dev/"))) 771 goto out; 772 is_good = true; 773 out: 774 kfree(path_buf); 775 path_put(&path); 776 return is_good; 777 } 778 779 static int get_canonical_dev_path(const char *dev_path, char *canonical) 780 { 781 struct path path = { .mnt = NULL, .dentry = NULL }; 782 char *path_buf = NULL; 783 char *resolved_path; 784 int ret; 785 786 if (!dev_path) { 787 ret = -EINVAL; 788 goto out; 789 } 790 791 path_buf = kmalloc(PATH_MAX, GFP_KERNEL); 792 if (!path_buf) { 793 ret = -ENOMEM; 794 goto out; 795 } 796 797 ret = kern_path(dev_path, LOOKUP_FOLLOW, &path); 798 if (ret) 799 goto out; 800 resolved_path = d_path(&path, path_buf, PATH_MAX); 801 if (IS_ERR(resolved_path)) { 802 ret = PTR_ERR(resolved_path); 803 goto out; 804 } 805 ret = strscpy(canonical, resolved_path, PATH_MAX); 806 out: 807 kfree(path_buf); 808 path_put(&path); 809 return ret; 810 } 811 812 static bool is_same_device(struct btrfs_device *device, const char *new_path) 813 { 814 struct path old = { .mnt = NULL, .dentry = NULL }; 815 struct path new = { .mnt = NULL, .dentry = NULL }; 816 char *old_path = NULL; 817 bool is_same = false; 818 int ret; 819 820 if (!device->name) 821 goto out; 822 823 old_path = kzalloc(PATH_MAX, GFP_NOFS); 824 if (!old_path) 825 goto out; 826 827 rcu_read_lock(); 828 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX); 829 rcu_read_unlock(); 830 if (ret < 0) 831 goto out; 832 833 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 834 if (ret) 835 goto out; 836 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 837 if (ret) 838 goto out; 839 if (path_equal(&old, &new)) 840 is_same = true; 841 out: 842 kfree(old_path); 843 path_put(&old); 844 path_put(&new); 845 return is_same; 846 } 847 848 /* 849 * Add new device to list of registered devices 850 * 851 * Returns: 852 * device pointer which was just added or updated when successful 853 * error pointer when failed 854 */ 855 static noinline struct btrfs_device *device_list_add(const char *path, 856 struct btrfs_super_block *disk_super, 857 bool *new_device_added) 858 { 859 struct btrfs_device *device; 860 struct btrfs_fs_devices *fs_devices = NULL; 861 struct rcu_string *name; 862 u64 found_transid = btrfs_super_generation(disk_super); 863 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 864 dev_t path_devt; 865 int error; 866 bool same_fsid_diff_dev = false; 867 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 868 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 869 870 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 871 btrfs_err(NULL, 872 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 873 path); 874 return ERR_PTR(-EAGAIN); 875 } 876 877 error = lookup_bdev(path, &path_devt); 878 if (error) { 879 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 880 path, error); 881 return ERR_PTR(error); 882 } 883 884 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 885 886 if (!fs_devices) { 887 fs_devices = alloc_fs_devices(disk_super->fsid); 888 if (IS_ERR(fs_devices)) 889 return ERR_CAST(fs_devices); 890 891 if (has_metadata_uuid) 892 memcpy(fs_devices->metadata_uuid, 893 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 894 895 if (same_fsid_diff_dev) { 896 generate_random_uuid(fs_devices->fsid); 897 fs_devices->temp_fsid = true; 898 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 899 path, MAJOR(path_devt), MINOR(path_devt), 900 fs_devices->fsid); 901 } 902 903 mutex_lock(&fs_devices->device_list_mutex); 904 list_add(&fs_devices->fs_list, &fs_uuids); 905 906 device = NULL; 907 } else { 908 struct btrfs_dev_lookup_args args = { 909 .devid = devid, 910 .uuid = disk_super->dev_item.uuid, 911 }; 912 913 mutex_lock(&fs_devices->device_list_mutex); 914 device = btrfs_find_device(fs_devices, &args); 915 916 if (found_transid > fs_devices->latest_generation) { 917 memcpy(fs_devices->fsid, disk_super->fsid, 918 BTRFS_FSID_SIZE); 919 memcpy(fs_devices->metadata_uuid, 920 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 921 } 922 } 923 924 if (!device) { 925 unsigned int nofs_flag; 926 927 if (fs_devices->opened) { 928 btrfs_err(NULL, 929 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 930 path, MAJOR(path_devt), MINOR(path_devt), 931 fs_devices->fsid, current->comm, 932 task_pid_nr(current)); 933 mutex_unlock(&fs_devices->device_list_mutex); 934 return ERR_PTR(-EBUSY); 935 } 936 937 nofs_flag = memalloc_nofs_save(); 938 device = btrfs_alloc_device(NULL, &devid, 939 disk_super->dev_item.uuid, path); 940 memalloc_nofs_restore(nofs_flag); 941 if (IS_ERR(device)) { 942 mutex_unlock(&fs_devices->device_list_mutex); 943 /* we can safely leave the fs_devices entry around */ 944 return device; 945 } 946 947 device->devt = path_devt; 948 949 list_add_rcu(&device->dev_list, &fs_devices->devices); 950 fs_devices->num_devices++; 951 952 device->fs_devices = fs_devices; 953 *new_device_added = true; 954 955 if (disk_super->label[0]) 956 pr_info( 957 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 958 disk_super->label, devid, found_transid, path, 959 MAJOR(path_devt), MINOR(path_devt), 960 current->comm, task_pid_nr(current)); 961 else 962 pr_info( 963 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 964 disk_super->fsid, devid, found_transid, path, 965 MAJOR(path_devt), MINOR(path_devt), 966 current->comm, task_pid_nr(current)); 967 968 } else if (!device->name || !is_same_device(device, path)) { 969 /* 970 * When FS is already mounted. 971 * 1. If you are here and if the device->name is NULL that 972 * means this device was missing at time of FS mount. 973 * 2. If you are here and if the device->name is different 974 * from 'path' that means either 975 * a. The same device disappeared and reappeared with 976 * different name. or 977 * b. The missing-disk-which-was-replaced, has 978 * reappeared now. 979 * 980 * We must allow 1 and 2a above. But 2b would be a spurious 981 * and unintentional. 982 * 983 * Further in case of 1 and 2a above, the disk at 'path' 984 * would have missed some transaction when it was away and 985 * in case of 2a the stale bdev has to be updated as well. 986 * 2b must not be allowed at all time. 987 */ 988 989 /* 990 * For now, we do allow update to btrfs_fs_device through the 991 * btrfs dev scan cli after FS has been mounted. We're still 992 * tracking a problem where systems fail mount by subvolume id 993 * when we reject replacement on a mounted FS. 994 */ 995 if (!fs_devices->opened && found_transid < device->generation) { 996 /* 997 * That is if the FS is _not_ mounted and if you 998 * are here, that means there is more than one 999 * disk with same uuid and devid.We keep the one 1000 * with larger generation number or the last-in if 1001 * generation are equal. 1002 */ 1003 mutex_unlock(&fs_devices->device_list_mutex); 1004 btrfs_err(NULL, 1005 "device %s already registered with a higher generation, found %llu expect %llu", 1006 path, found_transid, device->generation); 1007 return ERR_PTR(-EEXIST); 1008 } 1009 1010 /* 1011 * We are going to replace the device path for a given devid, 1012 * make sure it's the same device if the device is mounted 1013 * 1014 * NOTE: the device->fs_info may not be reliable here so pass 1015 * in a NULL to message helpers instead. This avoids a possible 1016 * use-after-free when the fs_info and fs_info->sb are already 1017 * torn down. 1018 */ 1019 if (device->bdev) { 1020 if (device->devt != path_devt) { 1021 mutex_unlock(&fs_devices->device_list_mutex); 1022 btrfs_warn_in_rcu(NULL, 1023 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 1024 path, devid, found_transid, 1025 current->comm, 1026 task_pid_nr(current)); 1027 return ERR_PTR(-EEXIST); 1028 } 1029 btrfs_info_in_rcu(NULL, 1030 "devid %llu device path %s changed to %s scanned by %s (%d)", 1031 devid, btrfs_dev_name(device), 1032 path, current->comm, 1033 task_pid_nr(current)); 1034 } 1035 1036 name = rcu_string_strdup(path, GFP_NOFS); 1037 if (!name) { 1038 mutex_unlock(&fs_devices->device_list_mutex); 1039 return ERR_PTR(-ENOMEM); 1040 } 1041 rcu_string_free(device->name); 1042 rcu_assign_pointer(device->name, name); 1043 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1044 fs_devices->missing_devices--; 1045 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1046 } 1047 device->devt = path_devt; 1048 } 1049 1050 /* 1051 * Unmount does not free the btrfs_device struct but would zero 1052 * generation along with most of the other members. So just update 1053 * it back. We need it to pick the disk with largest generation 1054 * (as above). 1055 */ 1056 if (!fs_devices->opened) { 1057 device->generation = found_transid; 1058 fs_devices->latest_generation = max_t(u64, found_transid, 1059 fs_devices->latest_generation); 1060 } 1061 1062 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1063 1064 mutex_unlock(&fs_devices->device_list_mutex); 1065 return device; 1066 } 1067 1068 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1069 { 1070 struct btrfs_fs_devices *fs_devices; 1071 struct btrfs_device *device; 1072 struct btrfs_device *orig_dev; 1073 int ret = 0; 1074 1075 lockdep_assert_held(&uuid_mutex); 1076 1077 fs_devices = alloc_fs_devices(orig->fsid); 1078 if (IS_ERR(fs_devices)) 1079 return fs_devices; 1080 1081 fs_devices->total_devices = orig->total_devices; 1082 1083 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1084 const char *dev_path = NULL; 1085 1086 /* 1087 * This is ok to do without RCU read locked because we hold the 1088 * uuid mutex so nothing we touch in here is going to disappear. 1089 */ 1090 if (orig_dev->name) 1091 dev_path = orig_dev->name->str; 1092 1093 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1094 orig_dev->uuid, dev_path); 1095 if (IS_ERR(device)) { 1096 ret = PTR_ERR(device); 1097 goto error; 1098 } 1099 1100 if (orig_dev->zone_info) { 1101 struct btrfs_zoned_device_info *zone_info; 1102 1103 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1104 if (!zone_info) { 1105 btrfs_free_device(device); 1106 ret = -ENOMEM; 1107 goto error; 1108 } 1109 device->zone_info = zone_info; 1110 } 1111 1112 list_add(&device->dev_list, &fs_devices->devices); 1113 device->fs_devices = fs_devices; 1114 fs_devices->num_devices++; 1115 } 1116 return fs_devices; 1117 error: 1118 free_fs_devices(fs_devices); 1119 return ERR_PTR(ret); 1120 } 1121 1122 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1123 struct btrfs_device **latest_dev) 1124 { 1125 struct btrfs_device *device, *next; 1126 1127 /* This is the initialized path, it is safe to release the devices. */ 1128 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1129 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1130 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1131 &device->dev_state) && 1132 !test_bit(BTRFS_DEV_STATE_MISSING, 1133 &device->dev_state) && 1134 (!*latest_dev || 1135 device->generation > (*latest_dev)->generation)) { 1136 *latest_dev = device; 1137 } 1138 continue; 1139 } 1140 1141 /* 1142 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1143 * in btrfs_init_dev_replace() so just continue. 1144 */ 1145 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1146 continue; 1147 1148 if (device->bdev_file) { 1149 fput(device->bdev_file); 1150 device->bdev = NULL; 1151 device->bdev_file = NULL; 1152 fs_devices->open_devices--; 1153 } 1154 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1155 list_del_init(&device->dev_alloc_list); 1156 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1157 fs_devices->rw_devices--; 1158 } 1159 list_del_init(&device->dev_list); 1160 fs_devices->num_devices--; 1161 btrfs_free_device(device); 1162 } 1163 1164 } 1165 1166 /* 1167 * After we have read the system tree and know devids belonging to this 1168 * filesystem, remove the device which does not belong there. 1169 */ 1170 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1171 { 1172 struct btrfs_device *latest_dev = NULL; 1173 struct btrfs_fs_devices *seed_dev; 1174 1175 mutex_lock(&uuid_mutex); 1176 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1177 1178 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1179 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1180 1181 fs_devices->latest_dev = latest_dev; 1182 1183 mutex_unlock(&uuid_mutex); 1184 } 1185 1186 static void btrfs_close_bdev(struct btrfs_device *device) 1187 { 1188 if (!device->bdev) 1189 return; 1190 1191 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1192 sync_blockdev(device->bdev); 1193 invalidate_bdev(device->bdev); 1194 } 1195 1196 fput(device->bdev_file); 1197 } 1198 1199 static void btrfs_close_one_device(struct btrfs_device *device) 1200 { 1201 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1202 1203 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1204 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1205 list_del_init(&device->dev_alloc_list); 1206 fs_devices->rw_devices--; 1207 } 1208 1209 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1210 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1211 1212 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1213 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1214 fs_devices->missing_devices--; 1215 } 1216 1217 btrfs_close_bdev(device); 1218 if (device->bdev) { 1219 fs_devices->open_devices--; 1220 device->bdev = NULL; 1221 device->bdev_file = NULL; 1222 } 1223 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1224 btrfs_destroy_dev_zone_info(device); 1225 1226 device->fs_info = NULL; 1227 atomic_set(&device->dev_stats_ccnt, 0); 1228 extent_io_tree_release(&device->alloc_state); 1229 1230 /* 1231 * Reset the flush error record. We might have a transient flush error 1232 * in this mount, and if so we aborted the current transaction and set 1233 * the fs to an error state, guaranteeing no super blocks can be further 1234 * committed. However that error might be transient and if we unmount the 1235 * filesystem and mount it again, we should allow the mount to succeed 1236 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1237 * filesystem again we still get flush errors, then we will again abort 1238 * any transaction and set the error state, guaranteeing no commits of 1239 * unsafe super blocks. 1240 */ 1241 device->last_flush_error = 0; 1242 1243 /* Verify the device is back in a pristine state */ 1244 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1245 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1246 WARN_ON(!list_empty(&device->dev_alloc_list)); 1247 WARN_ON(!list_empty(&device->post_commit_list)); 1248 } 1249 1250 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1251 { 1252 struct btrfs_device *device, *tmp; 1253 1254 lockdep_assert_held(&uuid_mutex); 1255 1256 if (--fs_devices->opened > 0) 1257 return; 1258 1259 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1260 btrfs_close_one_device(device); 1261 1262 WARN_ON(fs_devices->open_devices); 1263 WARN_ON(fs_devices->rw_devices); 1264 fs_devices->opened = 0; 1265 fs_devices->seeding = false; 1266 fs_devices->fs_info = NULL; 1267 } 1268 1269 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1270 { 1271 LIST_HEAD(list); 1272 struct btrfs_fs_devices *tmp; 1273 1274 mutex_lock(&uuid_mutex); 1275 close_fs_devices(fs_devices); 1276 if (!fs_devices->opened) { 1277 list_splice_init(&fs_devices->seed_list, &list); 1278 1279 /* 1280 * If the struct btrfs_fs_devices is not assembled with any 1281 * other device, it can be re-initialized during the next mount 1282 * without the needing device-scan step. Therefore, it can be 1283 * fully freed. 1284 */ 1285 if (fs_devices->num_devices == 1) { 1286 list_del(&fs_devices->fs_list); 1287 free_fs_devices(fs_devices); 1288 } 1289 } 1290 1291 1292 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1293 close_fs_devices(fs_devices); 1294 list_del(&fs_devices->seed_list); 1295 free_fs_devices(fs_devices); 1296 } 1297 mutex_unlock(&uuid_mutex); 1298 } 1299 1300 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1301 blk_mode_t flags, void *holder) 1302 { 1303 struct btrfs_device *device; 1304 struct btrfs_device *latest_dev = NULL; 1305 struct btrfs_device *tmp_device; 1306 s64 __maybe_unused value = 0; 1307 int ret = 0; 1308 1309 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1310 dev_list) { 1311 int ret2; 1312 1313 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1314 if (ret2 == 0 && 1315 (!latest_dev || device->generation > latest_dev->generation)) { 1316 latest_dev = device; 1317 } else if (ret2 == -ENODATA) { 1318 fs_devices->num_devices--; 1319 list_del(&device->dev_list); 1320 btrfs_free_device(device); 1321 } 1322 if (ret == 0 && ret2 != 0) 1323 ret = ret2; 1324 } 1325 1326 if (fs_devices->open_devices == 0) { 1327 if (ret) 1328 return ret; 1329 return -EINVAL; 1330 } 1331 1332 fs_devices->opened = 1; 1333 fs_devices->latest_dev = latest_dev; 1334 fs_devices->total_rw_bytes = 0; 1335 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1336 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1337 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1338 fs_devices->read_devid = latest_dev->devid; 1339 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1340 &value); 1341 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1342 fs_devices->collect_fs_stats = true; 1343 1344 if (value) { 1345 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1346 fs_devices->rr_min_contig_read = value; 1347 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1348 fs_devices->read_devid = value; 1349 } 1350 #else 1351 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1352 #endif 1353 1354 return 0; 1355 } 1356 1357 static int devid_cmp(void *priv, const struct list_head *a, 1358 const struct list_head *b) 1359 { 1360 const struct btrfs_device *dev1, *dev2; 1361 1362 dev1 = list_entry(a, struct btrfs_device, dev_list); 1363 dev2 = list_entry(b, struct btrfs_device, dev_list); 1364 1365 if (dev1->devid < dev2->devid) 1366 return -1; 1367 else if (dev1->devid > dev2->devid) 1368 return 1; 1369 return 0; 1370 } 1371 1372 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1373 blk_mode_t flags, void *holder) 1374 { 1375 int ret; 1376 1377 lockdep_assert_held(&uuid_mutex); 1378 /* 1379 * The device_list_mutex cannot be taken here in case opening the 1380 * underlying device takes further locks like open_mutex. 1381 * 1382 * We also don't need the lock here as this is called during mount and 1383 * exclusion is provided by uuid_mutex 1384 */ 1385 1386 if (fs_devices->opened) { 1387 fs_devices->opened++; 1388 ret = 0; 1389 } else { 1390 list_sort(NULL, &fs_devices->devices, devid_cmp); 1391 ret = open_fs_devices(fs_devices, flags, holder); 1392 } 1393 1394 return ret; 1395 } 1396 1397 void btrfs_release_disk_super(struct btrfs_super_block *super) 1398 { 1399 struct page *page = virt_to_page(super); 1400 1401 put_page(page); 1402 } 1403 1404 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1405 u64 bytenr, u64 bytenr_orig) 1406 { 1407 struct btrfs_super_block *disk_super; 1408 struct page *page; 1409 void *p; 1410 pgoff_t index; 1411 1412 /* make sure our super fits in the device */ 1413 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1414 return ERR_PTR(-EINVAL); 1415 1416 /* make sure our super fits in the page */ 1417 if (sizeof(*disk_super) > PAGE_SIZE) 1418 return ERR_PTR(-EINVAL); 1419 1420 /* make sure our super doesn't straddle pages on disk */ 1421 index = bytenr >> PAGE_SHIFT; 1422 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1423 return ERR_PTR(-EINVAL); 1424 1425 /* pull in the page with our super */ 1426 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL); 1427 1428 if (IS_ERR(page)) 1429 return ERR_CAST(page); 1430 1431 p = page_address(page); 1432 1433 /* align our pointer to the offset of the super block */ 1434 disk_super = p + offset_in_page(bytenr); 1435 1436 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1437 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1438 btrfs_release_disk_super(p); 1439 return ERR_PTR(-EINVAL); 1440 } 1441 1442 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1443 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1444 1445 return disk_super; 1446 } 1447 1448 int btrfs_forget_devices(dev_t devt) 1449 { 1450 int ret; 1451 1452 mutex_lock(&uuid_mutex); 1453 ret = btrfs_free_stale_devices(devt, NULL); 1454 mutex_unlock(&uuid_mutex); 1455 1456 return ret; 1457 } 1458 1459 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1460 const char *path, dev_t devt, 1461 bool mount_arg_dev) 1462 { 1463 struct btrfs_fs_devices *fs_devices; 1464 1465 /* 1466 * Do not skip device registration for mounted devices with matching 1467 * maj:min but different paths. Booting without initrd relies on 1468 * /dev/root initially, later replaced with the actual root device. 1469 * A successful scan ensures grub2-probe selects the correct device. 1470 */ 1471 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1472 struct btrfs_device *device; 1473 1474 mutex_lock(&fs_devices->device_list_mutex); 1475 1476 if (!fs_devices->opened) { 1477 mutex_unlock(&fs_devices->device_list_mutex); 1478 continue; 1479 } 1480 1481 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1482 if (device->bdev && (device->bdev->bd_dev == devt) && 1483 strcmp(device->name->str, path) != 0) { 1484 mutex_unlock(&fs_devices->device_list_mutex); 1485 1486 /* Do not skip registration. */ 1487 return false; 1488 } 1489 } 1490 mutex_unlock(&fs_devices->device_list_mutex); 1491 } 1492 1493 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1494 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1495 return true; 1496 1497 return false; 1498 } 1499 1500 /* 1501 * Look for a btrfs signature on a device. This may be called out of the mount path 1502 * and we are not allowed to call set_blocksize during the scan. The superblock 1503 * is read via pagecache. 1504 * 1505 * With @mount_arg_dev it's a scan during mount time that will always register 1506 * the device or return an error. Multi-device and seeding devices are registered 1507 * in both cases. 1508 */ 1509 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1510 bool mount_arg_dev) 1511 { 1512 struct btrfs_super_block *disk_super; 1513 bool new_device_added = false; 1514 struct btrfs_device *device = NULL; 1515 struct file *bdev_file; 1516 char *canonical_path = NULL; 1517 u64 bytenr; 1518 dev_t devt; 1519 int ret; 1520 1521 lockdep_assert_held(&uuid_mutex); 1522 1523 if (!is_good_dev_path(path)) { 1524 canonical_path = kmalloc(PATH_MAX, GFP_KERNEL); 1525 if (canonical_path) { 1526 ret = get_canonical_dev_path(path, canonical_path); 1527 if (ret < 0) { 1528 kfree(canonical_path); 1529 canonical_path = NULL; 1530 } 1531 } 1532 } 1533 /* 1534 * Avoid an exclusive open here, as the systemd-udev may initiate the 1535 * device scan which may race with the user's mount or mkfs command, 1536 * resulting in failure. 1537 * Since the device scan is solely for reading purposes, there is no 1538 * need for an exclusive open. Additionally, the devices are read again 1539 * during the mount process. It is ok to get some inconsistent 1540 * values temporarily, as the device paths of the fsid are the only 1541 * required information for assembling the volume. 1542 */ 1543 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1544 if (IS_ERR(bdev_file)) 1545 return ERR_CAST(bdev_file); 1546 1547 /* 1548 * We would like to check all the super blocks, but doing so would 1549 * allow a mount to succeed after a mkfs from a different filesystem. 1550 * Currently, recovery from a bad primary btrfs superblock is done 1551 * using the userspace command 'btrfs check --super'. 1552 */ 1553 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr); 1554 if (ret) { 1555 device = ERR_PTR(ret); 1556 goto error_bdev_put; 1557 } 1558 1559 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr, 1560 btrfs_sb_offset(0)); 1561 if (IS_ERR(disk_super)) { 1562 device = ERR_CAST(disk_super); 1563 goto error_bdev_put; 1564 } 1565 1566 devt = file_bdev(bdev_file)->bd_dev; 1567 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1568 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1569 path, MAJOR(devt), MINOR(devt)); 1570 1571 btrfs_free_stale_devices(devt, NULL); 1572 1573 device = NULL; 1574 goto free_disk_super; 1575 } 1576 1577 device = device_list_add(canonical_path ? : path, disk_super, 1578 &new_device_added); 1579 if (!IS_ERR(device) && new_device_added) 1580 btrfs_free_stale_devices(device->devt, device); 1581 1582 free_disk_super: 1583 btrfs_release_disk_super(disk_super); 1584 1585 error_bdev_put: 1586 fput(bdev_file); 1587 kfree(canonical_path); 1588 1589 return device; 1590 } 1591 1592 /* 1593 * Try to find a chunk that intersects [start, start + len] range and when one 1594 * such is found, record the end of it in *start 1595 */ 1596 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1597 u64 len) 1598 { 1599 u64 physical_start, physical_end; 1600 1601 lockdep_assert_held(&device->fs_info->chunk_mutex); 1602 1603 if (find_first_extent_bit(&device->alloc_state, *start, 1604 &physical_start, &physical_end, 1605 CHUNK_ALLOCATED, NULL)) { 1606 1607 if (in_range(physical_start, *start, len) || 1608 in_range(*start, physical_start, 1609 physical_end + 1 - physical_start)) { 1610 *start = physical_end + 1; 1611 return true; 1612 } 1613 } 1614 return false; 1615 } 1616 1617 static u64 dev_extent_search_start(struct btrfs_device *device) 1618 { 1619 switch (device->fs_devices->chunk_alloc_policy) { 1620 case BTRFS_CHUNK_ALLOC_REGULAR: 1621 return BTRFS_DEVICE_RANGE_RESERVED; 1622 case BTRFS_CHUNK_ALLOC_ZONED: 1623 /* 1624 * We don't care about the starting region like regular 1625 * allocator, because we anyway use/reserve the first two zones 1626 * for superblock logging. 1627 */ 1628 return 0; 1629 default: 1630 BUG(); 1631 } 1632 } 1633 1634 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1635 u64 *hole_start, u64 *hole_size, 1636 u64 num_bytes) 1637 { 1638 u64 zone_size = device->zone_info->zone_size; 1639 u64 pos; 1640 int ret; 1641 bool changed = false; 1642 1643 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1644 1645 while (*hole_size > 0) { 1646 pos = btrfs_find_allocatable_zones(device, *hole_start, 1647 *hole_start + *hole_size, 1648 num_bytes); 1649 if (pos != *hole_start) { 1650 *hole_size = *hole_start + *hole_size - pos; 1651 *hole_start = pos; 1652 changed = true; 1653 if (*hole_size < num_bytes) 1654 break; 1655 } 1656 1657 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1658 1659 /* Range is ensured to be empty */ 1660 if (!ret) 1661 return changed; 1662 1663 /* Given hole range was invalid (outside of device) */ 1664 if (ret == -ERANGE) { 1665 *hole_start += *hole_size; 1666 *hole_size = 0; 1667 return true; 1668 } 1669 1670 *hole_start += zone_size; 1671 *hole_size -= zone_size; 1672 changed = true; 1673 } 1674 1675 return changed; 1676 } 1677 1678 /* 1679 * Check if specified hole is suitable for allocation. 1680 * 1681 * @device: the device which we have the hole 1682 * @hole_start: starting position of the hole 1683 * @hole_size: the size of the hole 1684 * @num_bytes: the size of the free space that we need 1685 * 1686 * This function may modify @hole_start and @hole_size to reflect the suitable 1687 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1688 */ 1689 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1690 u64 *hole_size, u64 num_bytes) 1691 { 1692 bool changed = false; 1693 u64 hole_end = *hole_start + *hole_size; 1694 1695 for (;;) { 1696 /* 1697 * Check before we set max_hole_start, otherwise we could end up 1698 * sending back this offset anyway. 1699 */ 1700 if (contains_pending_extent(device, hole_start, *hole_size)) { 1701 if (hole_end >= *hole_start) 1702 *hole_size = hole_end - *hole_start; 1703 else 1704 *hole_size = 0; 1705 changed = true; 1706 } 1707 1708 switch (device->fs_devices->chunk_alloc_policy) { 1709 case BTRFS_CHUNK_ALLOC_REGULAR: 1710 /* No extra check */ 1711 break; 1712 case BTRFS_CHUNK_ALLOC_ZONED: 1713 if (dev_extent_hole_check_zoned(device, hole_start, 1714 hole_size, num_bytes)) { 1715 changed = true; 1716 /* 1717 * The changed hole can contain pending extent. 1718 * Loop again to check that. 1719 */ 1720 continue; 1721 } 1722 break; 1723 default: 1724 BUG(); 1725 } 1726 1727 break; 1728 } 1729 1730 return changed; 1731 } 1732 1733 /* 1734 * Find free space in the specified device. 1735 * 1736 * @device: the device which we search the free space in 1737 * @num_bytes: the size of the free space that we need 1738 * @search_start: the position from which to begin the search 1739 * @start: store the start of the free space. 1740 * @len: the size of the free space. that we find, or the size 1741 * of the max free space if we don't find suitable free space 1742 * 1743 * This does a pretty simple search, the expectation is that it is called very 1744 * infrequently and that a given device has a small number of extents. 1745 * 1746 * @start is used to store the start of the free space if we find. But if we 1747 * don't find suitable free space, it will be used to store the start position 1748 * of the max free space. 1749 * 1750 * @len is used to store the size of the free space that we find. 1751 * But if we don't find suitable free space, it is used to store the size of 1752 * the max free space. 1753 * 1754 * NOTE: This function will search *commit* root of device tree, and does extra 1755 * check to ensure dev extents are not double allocated. 1756 * This makes the function safe to allocate dev extents but may not report 1757 * correct usable device space, as device extent freed in current transaction 1758 * is not reported as available. 1759 */ 1760 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1761 u64 *start, u64 *len) 1762 { 1763 struct btrfs_fs_info *fs_info = device->fs_info; 1764 struct btrfs_root *root = fs_info->dev_root; 1765 struct btrfs_key key; 1766 struct btrfs_dev_extent *dev_extent; 1767 struct btrfs_path *path; 1768 u64 search_start; 1769 u64 hole_size; 1770 u64 max_hole_start; 1771 u64 max_hole_size = 0; 1772 u64 extent_end; 1773 u64 search_end = device->total_bytes; 1774 int ret; 1775 int slot; 1776 struct extent_buffer *l; 1777 1778 search_start = dev_extent_search_start(device); 1779 max_hole_start = search_start; 1780 1781 WARN_ON(device->zone_info && 1782 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1783 1784 path = btrfs_alloc_path(); 1785 if (!path) { 1786 ret = -ENOMEM; 1787 goto out; 1788 } 1789 again: 1790 if (search_start >= search_end || 1791 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1792 ret = -ENOSPC; 1793 goto out; 1794 } 1795 1796 path->reada = READA_FORWARD; 1797 path->search_commit_root = 1; 1798 path->skip_locking = 1; 1799 1800 key.objectid = device->devid; 1801 key.offset = search_start; 1802 key.type = BTRFS_DEV_EXTENT_KEY; 1803 1804 ret = btrfs_search_backwards(root, &key, path); 1805 if (ret < 0) 1806 goto out; 1807 1808 while (search_start < search_end) { 1809 l = path->nodes[0]; 1810 slot = path->slots[0]; 1811 if (slot >= btrfs_header_nritems(l)) { 1812 ret = btrfs_next_leaf(root, path); 1813 if (ret == 0) 1814 continue; 1815 if (ret < 0) 1816 goto out; 1817 1818 break; 1819 } 1820 btrfs_item_key_to_cpu(l, &key, slot); 1821 1822 if (key.objectid < device->devid) 1823 goto next; 1824 1825 if (key.objectid > device->devid) 1826 break; 1827 1828 if (key.type != BTRFS_DEV_EXTENT_KEY) 1829 goto next; 1830 1831 if (key.offset > search_end) 1832 break; 1833 1834 if (key.offset > search_start) { 1835 hole_size = key.offset - search_start; 1836 dev_extent_hole_check(device, &search_start, &hole_size, 1837 num_bytes); 1838 1839 if (hole_size > max_hole_size) { 1840 max_hole_start = search_start; 1841 max_hole_size = hole_size; 1842 } 1843 1844 /* 1845 * If this free space is greater than which we need, 1846 * it must be the max free space that we have found 1847 * until now, so max_hole_start must point to the start 1848 * of this free space and the length of this free space 1849 * is stored in max_hole_size. Thus, we return 1850 * max_hole_start and max_hole_size and go back to the 1851 * caller. 1852 */ 1853 if (hole_size >= num_bytes) { 1854 ret = 0; 1855 goto out; 1856 } 1857 } 1858 1859 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1860 extent_end = key.offset + btrfs_dev_extent_length(l, 1861 dev_extent); 1862 if (extent_end > search_start) 1863 search_start = extent_end; 1864 next: 1865 path->slots[0]++; 1866 cond_resched(); 1867 } 1868 1869 /* 1870 * At this point, search_start should be the end of 1871 * allocated dev extents, and when shrinking the device, 1872 * search_end may be smaller than search_start. 1873 */ 1874 if (search_end > search_start) { 1875 hole_size = search_end - search_start; 1876 if (dev_extent_hole_check(device, &search_start, &hole_size, 1877 num_bytes)) { 1878 btrfs_release_path(path); 1879 goto again; 1880 } 1881 1882 if (hole_size > max_hole_size) { 1883 max_hole_start = search_start; 1884 max_hole_size = hole_size; 1885 } 1886 } 1887 1888 /* See above. */ 1889 if (max_hole_size < num_bytes) 1890 ret = -ENOSPC; 1891 else 1892 ret = 0; 1893 1894 ASSERT(max_hole_start + max_hole_size <= search_end); 1895 out: 1896 btrfs_free_path(path); 1897 *start = max_hole_start; 1898 if (len) 1899 *len = max_hole_size; 1900 return ret; 1901 } 1902 1903 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1904 struct btrfs_device *device, 1905 u64 start, u64 *dev_extent_len) 1906 { 1907 struct btrfs_fs_info *fs_info = device->fs_info; 1908 struct btrfs_root *root = fs_info->dev_root; 1909 int ret; 1910 struct btrfs_path *path; 1911 struct btrfs_key key; 1912 struct btrfs_key found_key; 1913 struct extent_buffer *leaf = NULL; 1914 struct btrfs_dev_extent *extent = NULL; 1915 1916 path = btrfs_alloc_path(); 1917 if (!path) 1918 return -ENOMEM; 1919 1920 key.objectid = device->devid; 1921 key.offset = start; 1922 key.type = BTRFS_DEV_EXTENT_KEY; 1923 again: 1924 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1925 if (ret > 0) { 1926 ret = btrfs_previous_item(root, path, key.objectid, 1927 BTRFS_DEV_EXTENT_KEY); 1928 if (ret) 1929 goto out; 1930 leaf = path->nodes[0]; 1931 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1932 extent = btrfs_item_ptr(leaf, path->slots[0], 1933 struct btrfs_dev_extent); 1934 BUG_ON(found_key.offset > start || found_key.offset + 1935 btrfs_dev_extent_length(leaf, extent) < start); 1936 key = found_key; 1937 btrfs_release_path(path); 1938 goto again; 1939 } else if (ret == 0) { 1940 leaf = path->nodes[0]; 1941 extent = btrfs_item_ptr(leaf, path->slots[0], 1942 struct btrfs_dev_extent); 1943 } else { 1944 goto out; 1945 } 1946 1947 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1948 1949 ret = btrfs_del_item(trans, root, path); 1950 if (ret == 0) 1951 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1952 out: 1953 btrfs_free_path(path); 1954 return ret; 1955 } 1956 1957 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1958 { 1959 struct rb_node *n; 1960 u64 ret = 0; 1961 1962 read_lock(&fs_info->mapping_tree_lock); 1963 n = rb_last(&fs_info->mapping_tree.rb_root); 1964 if (n) { 1965 struct btrfs_chunk_map *map; 1966 1967 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1968 ret = map->start + map->chunk_len; 1969 } 1970 read_unlock(&fs_info->mapping_tree_lock); 1971 1972 return ret; 1973 } 1974 1975 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1976 u64 *devid_ret) 1977 { 1978 int ret; 1979 struct btrfs_key key; 1980 struct btrfs_key found_key; 1981 struct btrfs_path *path; 1982 1983 path = btrfs_alloc_path(); 1984 if (!path) 1985 return -ENOMEM; 1986 1987 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1988 key.type = BTRFS_DEV_ITEM_KEY; 1989 key.offset = (u64)-1; 1990 1991 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1992 if (ret < 0) 1993 goto error; 1994 1995 if (ret == 0) { 1996 /* Corruption */ 1997 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1998 ret = -EUCLEAN; 1999 goto error; 2000 } 2001 2002 ret = btrfs_previous_item(fs_info->chunk_root, path, 2003 BTRFS_DEV_ITEMS_OBJECTID, 2004 BTRFS_DEV_ITEM_KEY); 2005 if (ret) { 2006 *devid_ret = 1; 2007 } else { 2008 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2009 path->slots[0]); 2010 *devid_ret = found_key.offset + 1; 2011 } 2012 ret = 0; 2013 error: 2014 btrfs_free_path(path); 2015 return ret; 2016 } 2017 2018 /* 2019 * the device information is stored in the chunk root 2020 * the btrfs_device struct should be fully filled in 2021 */ 2022 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 2023 struct btrfs_device *device) 2024 { 2025 int ret; 2026 struct btrfs_path *path; 2027 struct btrfs_dev_item *dev_item; 2028 struct extent_buffer *leaf; 2029 struct btrfs_key key; 2030 unsigned long ptr; 2031 2032 path = btrfs_alloc_path(); 2033 if (!path) 2034 return -ENOMEM; 2035 2036 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2037 key.type = BTRFS_DEV_ITEM_KEY; 2038 key.offset = device->devid; 2039 2040 btrfs_reserve_chunk_metadata(trans, true); 2041 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 2042 &key, sizeof(*dev_item)); 2043 btrfs_trans_release_chunk_metadata(trans); 2044 if (ret) 2045 goto out; 2046 2047 leaf = path->nodes[0]; 2048 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2049 2050 btrfs_set_device_id(leaf, dev_item, device->devid); 2051 btrfs_set_device_generation(leaf, dev_item, 0); 2052 btrfs_set_device_type(leaf, dev_item, device->type); 2053 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2054 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2055 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2056 btrfs_set_device_total_bytes(leaf, dev_item, 2057 btrfs_device_get_disk_total_bytes(device)); 2058 btrfs_set_device_bytes_used(leaf, dev_item, 2059 btrfs_device_get_bytes_used(device)); 2060 btrfs_set_device_group(leaf, dev_item, 0); 2061 btrfs_set_device_seek_speed(leaf, dev_item, 0); 2062 btrfs_set_device_bandwidth(leaf, dev_item, 0); 2063 btrfs_set_device_start_offset(leaf, dev_item, 0); 2064 2065 ptr = btrfs_device_uuid(dev_item); 2066 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 2067 ptr = btrfs_device_fsid(dev_item); 2068 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 2069 ptr, BTRFS_FSID_SIZE); 2070 2071 ret = 0; 2072 out: 2073 btrfs_free_path(path); 2074 return ret; 2075 } 2076 2077 /* 2078 * Function to update ctime/mtime for a given device path. 2079 * Mainly used for ctime/mtime based probe like libblkid. 2080 * 2081 * We don't care about errors here, this is just to be kind to userspace. 2082 */ 2083 static void update_dev_time(const char *device_path) 2084 { 2085 struct path path; 2086 int ret; 2087 2088 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 2089 if (ret) 2090 return; 2091 2092 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 2093 path_put(&path); 2094 } 2095 2096 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2097 struct btrfs_device *device) 2098 { 2099 struct btrfs_root *root = device->fs_info->chunk_root; 2100 int ret; 2101 struct btrfs_path *path; 2102 struct btrfs_key key; 2103 2104 path = btrfs_alloc_path(); 2105 if (!path) 2106 return -ENOMEM; 2107 2108 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2109 key.type = BTRFS_DEV_ITEM_KEY; 2110 key.offset = device->devid; 2111 2112 btrfs_reserve_chunk_metadata(trans, false); 2113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2114 btrfs_trans_release_chunk_metadata(trans); 2115 if (ret) { 2116 if (ret > 0) 2117 ret = -ENOENT; 2118 goto out; 2119 } 2120 2121 ret = btrfs_del_item(trans, root, path); 2122 out: 2123 btrfs_free_path(path); 2124 return ret; 2125 } 2126 2127 /* 2128 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2129 * filesystem. It's up to the caller to adjust that number regarding eg. device 2130 * replace. 2131 */ 2132 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2133 u64 num_devices) 2134 { 2135 u64 all_avail; 2136 unsigned seq; 2137 int i; 2138 2139 do { 2140 seq = read_seqbegin(&fs_info->profiles_lock); 2141 2142 all_avail = fs_info->avail_data_alloc_bits | 2143 fs_info->avail_system_alloc_bits | 2144 fs_info->avail_metadata_alloc_bits; 2145 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2146 2147 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2148 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2149 continue; 2150 2151 if (num_devices < btrfs_raid_array[i].devs_min) 2152 return btrfs_raid_array[i].mindev_error; 2153 } 2154 2155 return 0; 2156 } 2157 2158 static struct btrfs_device * btrfs_find_next_active_device( 2159 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2160 { 2161 struct btrfs_device *next_device; 2162 2163 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2164 if (next_device != device && 2165 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2166 && next_device->bdev) 2167 return next_device; 2168 } 2169 2170 return NULL; 2171 } 2172 2173 /* 2174 * Helper function to check if the given device is part of s_bdev / latest_dev 2175 * and replace it with the provided or the next active device, in the context 2176 * where this function called, there should be always be another device (or 2177 * this_dev) which is active. 2178 */ 2179 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2180 struct btrfs_device *next_device) 2181 { 2182 struct btrfs_fs_info *fs_info = device->fs_info; 2183 2184 if (!next_device) 2185 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2186 device); 2187 ASSERT(next_device); 2188 2189 if (fs_info->sb->s_bdev && 2190 (fs_info->sb->s_bdev == device->bdev)) 2191 fs_info->sb->s_bdev = next_device->bdev; 2192 2193 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2194 fs_info->fs_devices->latest_dev = next_device; 2195 } 2196 2197 /* 2198 * Return btrfs_fs_devices::num_devices excluding the device that's being 2199 * currently replaced. 2200 */ 2201 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2202 { 2203 u64 num_devices = fs_info->fs_devices->num_devices; 2204 2205 down_read(&fs_info->dev_replace.rwsem); 2206 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2207 ASSERT(num_devices > 1); 2208 num_devices--; 2209 } 2210 up_read(&fs_info->dev_replace.rwsem); 2211 2212 return num_devices; 2213 } 2214 2215 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2216 struct block_device *bdev, int copy_num) 2217 { 2218 struct btrfs_super_block *disk_super; 2219 const size_t len = sizeof(disk_super->magic); 2220 const u64 bytenr = btrfs_sb_offset(copy_num); 2221 int ret; 2222 2223 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2224 if (IS_ERR(disk_super)) 2225 return; 2226 2227 memset(&disk_super->magic, 0, len); 2228 folio_mark_dirty(virt_to_folio(disk_super)); 2229 btrfs_release_disk_super(disk_super); 2230 2231 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2232 if (ret) 2233 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2234 copy_num, ret); 2235 } 2236 2237 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2238 { 2239 int copy_num; 2240 struct block_device *bdev = device->bdev; 2241 2242 if (!bdev) 2243 return; 2244 2245 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2246 if (bdev_is_zoned(bdev)) 2247 btrfs_reset_sb_log_zones(bdev, copy_num); 2248 else 2249 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2250 } 2251 2252 /* Notify udev that device has changed */ 2253 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2254 2255 /* Update ctime/mtime for device path for libblkid */ 2256 update_dev_time(device->name->str); 2257 } 2258 2259 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2260 struct btrfs_dev_lookup_args *args, 2261 struct file **bdev_file) 2262 { 2263 struct btrfs_trans_handle *trans; 2264 struct btrfs_device *device; 2265 struct btrfs_fs_devices *cur_devices; 2266 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2267 u64 num_devices; 2268 int ret = 0; 2269 2270 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2271 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2272 return -EINVAL; 2273 } 2274 2275 /* 2276 * The device list in fs_devices is accessed without locks (neither 2277 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2278 * filesystem and another device rm cannot run. 2279 */ 2280 num_devices = btrfs_num_devices(fs_info); 2281 2282 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2283 if (ret) 2284 return ret; 2285 2286 device = btrfs_find_device(fs_info->fs_devices, args); 2287 if (!device) { 2288 if (args->missing) 2289 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2290 else 2291 ret = -ENOENT; 2292 return ret; 2293 } 2294 2295 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2296 btrfs_warn_in_rcu(fs_info, 2297 "cannot remove device %s (devid %llu) due to active swapfile", 2298 btrfs_dev_name(device), device->devid); 2299 return -ETXTBSY; 2300 } 2301 2302 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2303 return BTRFS_ERROR_DEV_TGT_REPLACE; 2304 2305 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2306 fs_info->fs_devices->rw_devices == 1) 2307 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2308 2309 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2310 mutex_lock(&fs_info->chunk_mutex); 2311 list_del_init(&device->dev_alloc_list); 2312 device->fs_devices->rw_devices--; 2313 mutex_unlock(&fs_info->chunk_mutex); 2314 } 2315 2316 ret = btrfs_shrink_device(device, 0); 2317 if (ret) 2318 goto error_undo; 2319 2320 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2321 if (IS_ERR(trans)) { 2322 ret = PTR_ERR(trans); 2323 goto error_undo; 2324 } 2325 2326 ret = btrfs_rm_dev_item(trans, device); 2327 if (ret) { 2328 /* Any error in dev item removal is critical */ 2329 btrfs_crit(fs_info, 2330 "failed to remove device item for devid %llu: %d", 2331 device->devid, ret); 2332 btrfs_abort_transaction(trans, ret); 2333 btrfs_end_transaction(trans); 2334 return ret; 2335 } 2336 2337 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2338 btrfs_scrub_cancel_dev(device); 2339 2340 /* 2341 * the device list mutex makes sure that we don't change 2342 * the device list while someone else is writing out all 2343 * the device supers. Whoever is writing all supers, should 2344 * lock the device list mutex before getting the number of 2345 * devices in the super block (super_copy). Conversely, 2346 * whoever updates the number of devices in the super block 2347 * (super_copy) should hold the device list mutex. 2348 */ 2349 2350 /* 2351 * In normal cases the cur_devices == fs_devices. But in case 2352 * of deleting a seed device, the cur_devices should point to 2353 * its own fs_devices listed under the fs_devices->seed_list. 2354 */ 2355 cur_devices = device->fs_devices; 2356 mutex_lock(&fs_devices->device_list_mutex); 2357 list_del_rcu(&device->dev_list); 2358 2359 cur_devices->num_devices--; 2360 cur_devices->total_devices--; 2361 /* Update total_devices of the parent fs_devices if it's seed */ 2362 if (cur_devices != fs_devices) 2363 fs_devices->total_devices--; 2364 2365 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2366 cur_devices->missing_devices--; 2367 2368 btrfs_assign_next_active_device(device, NULL); 2369 2370 if (device->bdev_file) { 2371 cur_devices->open_devices--; 2372 /* remove sysfs entry */ 2373 btrfs_sysfs_remove_device(device); 2374 } 2375 2376 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2377 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2378 mutex_unlock(&fs_devices->device_list_mutex); 2379 2380 /* 2381 * At this point, the device is zero sized and detached from the 2382 * devices list. All that's left is to zero out the old supers and 2383 * free the device. 2384 * 2385 * We cannot call btrfs_close_bdev() here because we're holding the sb 2386 * write lock, and fput() on the block device will pull in the 2387 * ->open_mutex on the block device and it's dependencies. Instead 2388 * just flush the device and let the caller do the final bdev_release. 2389 */ 2390 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2391 btrfs_scratch_superblocks(fs_info, device); 2392 if (device->bdev) { 2393 sync_blockdev(device->bdev); 2394 invalidate_bdev(device->bdev); 2395 } 2396 } 2397 2398 *bdev_file = device->bdev_file; 2399 synchronize_rcu(); 2400 btrfs_free_device(device); 2401 2402 /* 2403 * This can happen if cur_devices is the private seed devices list. We 2404 * cannot call close_fs_devices() here because it expects the uuid_mutex 2405 * to be held, but in fact we don't need that for the private 2406 * seed_devices, we can simply decrement cur_devices->opened and then 2407 * remove it from our list and free the fs_devices. 2408 */ 2409 if (cur_devices->num_devices == 0) { 2410 list_del_init(&cur_devices->seed_list); 2411 ASSERT(cur_devices->opened == 1); 2412 cur_devices->opened--; 2413 free_fs_devices(cur_devices); 2414 } 2415 2416 ret = btrfs_commit_transaction(trans); 2417 2418 return ret; 2419 2420 error_undo: 2421 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2422 mutex_lock(&fs_info->chunk_mutex); 2423 list_add(&device->dev_alloc_list, 2424 &fs_devices->alloc_list); 2425 device->fs_devices->rw_devices++; 2426 mutex_unlock(&fs_info->chunk_mutex); 2427 } 2428 return ret; 2429 } 2430 2431 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2432 { 2433 struct btrfs_fs_devices *fs_devices; 2434 2435 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2436 2437 /* 2438 * in case of fs with no seed, srcdev->fs_devices will point 2439 * to fs_devices of fs_info. However when the dev being replaced is 2440 * a seed dev it will point to the seed's local fs_devices. In short 2441 * srcdev will have its correct fs_devices in both the cases. 2442 */ 2443 fs_devices = srcdev->fs_devices; 2444 2445 list_del_rcu(&srcdev->dev_list); 2446 list_del(&srcdev->dev_alloc_list); 2447 fs_devices->num_devices--; 2448 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2449 fs_devices->missing_devices--; 2450 2451 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2452 fs_devices->rw_devices--; 2453 2454 if (srcdev->bdev) 2455 fs_devices->open_devices--; 2456 } 2457 2458 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2459 { 2460 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2461 2462 mutex_lock(&uuid_mutex); 2463 2464 btrfs_close_bdev(srcdev); 2465 synchronize_rcu(); 2466 btrfs_free_device(srcdev); 2467 2468 /* if this is no devs we rather delete the fs_devices */ 2469 if (!fs_devices->num_devices) { 2470 /* 2471 * On a mounted FS, num_devices can't be zero unless it's a 2472 * seed. In case of a seed device being replaced, the replace 2473 * target added to the sprout FS, so there will be no more 2474 * device left under the seed FS. 2475 */ 2476 ASSERT(fs_devices->seeding); 2477 2478 list_del_init(&fs_devices->seed_list); 2479 close_fs_devices(fs_devices); 2480 free_fs_devices(fs_devices); 2481 } 2482 mutex_unlock(&uuid_mutex); 2483 } 2484 2485 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2486 { 2487 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2488 2489 mutex_lock(&fs_devices->device_list_mutex); 2490 2491 btrfs_sysfs_remove_device(tgtdev); 2492 2493 if (tgtdev->bdev) 2494 fs_devices->open_devices--; 2495 2496 fs_devices->num_devices--; 2497 2498 btrfs_assign_next_active_device(tgtdev, NULL); 2499 2500 list_del_rcu(&tgtdev->dev_list); 2501 2502 mutex_unlock(&fs_devices->device_list_mutex); 2503 2504 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2505 2506 btrfs_close_bdev(tgtdev); 2507 synchronize_rcu(); 2508 btrfs_free_device(tgtdev); 2509 } 2510 2511 /* 2512 * Populate args from device at path. 2513 * 2514 * @fs_info: the filesystem 2515 * @args: the args to populate 2516 * @path: the path to the device 2517 * 2518 * This will read the super block of the device at @path and populate @args with 2519 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2520 * lookup a device to operate on, but need to do it before we take any locks. 2521 * This properly handles the special case of "missing" that a user may pass in, 2522 * and does some basic sanity checks. The caller must make sure that @path is 2523 * properly NUL terminated before calling in, and must call 2524 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2525 * uuid buffers. 2526 * 2527 * Return: 0 for success, -errno for failure 2528 */ 2529 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2530 struct btrfs_dev_lookup_args *args, 2531 const char *path) 2532 { 2533 struct btrfs_super_block *disk_super; 2534 struct file *bdev_file; 2535 int ret; 2536 2537 if (!path || !path[0]) 2538 return -EINVAL; 2539 if (!strcmp(path, "missing")) { 2540 args->missing = true; 2541 return 0; 2542 } 2543 2544 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2545 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2546 if (!args->uuid || !args->fsid) { 2547 btrfs_put_dev_args_from_path(args); 2548 return -ENOMEM; 2549 } 2550 2551 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2552 &bdev_file, &disk_super); 2553 if (ret) { 2554 btrfs_put_dev_args_from_path(args); 2555 return ret; 2556 } 2557 2558 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2559 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2560 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2561 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2562 else 2563 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2564 btrfs_release_disk_super(disk_super); 2565 fput(bdev_file); 2566 return 0; 2567 } 2568 2569 /* 2570 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2571 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2572 * that don't need to be freed. 2573 */ 2574 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2575 { 2576 kfree(args->uuid); 2577 kfree(args->fsid); 2578 args->uuid = NULL; 2579 args->fsid = NULL; 2580 } 2581 2582 struct btrfs_device *btrfs_find_device_by_devspec( 2583 struct btrfs_fs_info *fs_info, u64 devid, 2584 const char *device_path) 2585 { 2586 BTRFS_DEV_LOOKUP_ARGS(args); 2587 struct btrfs_device *device; 2588 int ret; 2589 2590 if (devid) { 2591 args.devid = devid; 2592 device = btrfs_find_device(fs_info->fs_devices, &args); 2593 if (!device) 2594 return ERR_PTR(-ENOENT); 2595 return device; 2596 } 2597 2598 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2599 if (ret) 2600 return ERR_PTR(ret); 2601 device = btrfs_find_device(fs_info->fs_devices, &args); 2602 btrfs_put_dev_args_from_path(&args); 2603 if (!device) 2604 return ERR_PTR(-ENOENT); 2605 return device; 2606 } 2607 2608 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2609 { 2610 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2611 struct btrfs_fs_devices *old_devices; 2612 struct btrfs_fs_devices *seed_devices; 2613 2614 lockdep_assert_held(&uuid_mutex); 2615 if (!fs_devices->seeding) 2616 return ERR_PTR(-EINVAL); 2617 2618 /* 2619 * Private copy of the seed devices, anchored at 2620 * fs_info->fs_devices->seed_list 2621 */ 2622 seed_devices = alloc_fs_devices(NULL); 2623 if (IS_ERR(seed_devices)) 2624 return seed_devices; 2625 2626 /* 2627 * It's necessary to retain a copy of the original seed fs_devices in 2628 * fs_uuids so that filesystems which have been seeded can successfully 2629 * reference the seed device from open_seed_devices. This also supports 2630 * multiple fs seed. 2631 */ 2632 old_devices = clone_fs_devices(fs_devices); 2633 if (IS_ERR(old_devices)) { 2634 kfree(seed_devices); 2635 return old_devices; 2636 } 2637 2638 list_add(&old_devices->fs_list, &fs_uuids); 2639 2640 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2641 seed_devices->opened = 1; 2642 INIT_LIST_HEAD(&seed_devices->devices); 2643 INIT_LIST_HEAD(&seed_devices->alloc_list); 2644 mutex_init(&seed_devices->device_list_mutex); 2645 2646 return seed_devices; 2647 } 2648 2649 /* 2650 * Splice seed devices into the sprout fs_devices. 2651 * Generate a new fsid for the sprouted read-write filesystem. 2652 */ 2653 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2654 struct btrfs_fs_devices *seed_devices) 2655 { 2656 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2657 struct btrfs_super_block *disk_super = fs_info->super_copy; 2658 struct btrfs_device *device; 2659 u64 super_flags; 2660 2661 /* 2662 * We are updating the fsid, the thread leading to device_list_add() 2663 * could race, so uuid_mutex is needed. 2664 */ 2665 lockdep_assert_held(&uuid_mutex); 2666 2667 /* 2668 * The threads listed below may traverse dev_list but can do that without 2669 * device_list_mutex: 2670 * - All device ops and balance - as we are in btrfs_exclop_start. 2671 * - Various dev_list readers - are using RCU. 2672 * - btrfs_ioctl_fitrim() - is using RCU. 2673 * 2674 * For-read threads as below are using device_list_mutex: 2675 * - Readonly scrub btrfs_scrub_dev() 2676 * - Readonly scrub btrfs_scrub_progress() 2677 * - btrfs_get_dev_stats() 2678 */ 2679 lockdep_assert_held(&fs_devices->device_list_mutex); 2680 2681 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2682 synchronize_rcu); 2683 list_for_each_entry(device, &seed_devices->devices, dev_list) 2684 device->fs_devices = seed_devices; 2685 2686 fs_devices->seeding = false; 2687 fs_devices->num_devices = 0; 2688 fs_devices->open_devices = 0; 2689 fs_devices->missing_devices = 0; 2690 fs_devices->rotating = false; 2691 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2692 2693 generate_random_uuid(fs_devices->fsid); 2694 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2695 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2696 2697 super_flags = btrfs_super_flags(disk_super) & 2698 ~BTRFS_SUPER_FLAG_SEEDING; 2699 btrfs_set_super_flags(disk_super, super_flags); 2700 } 2701 2702 /* 2703 * Store the expected generation for seed devices in device items. 2704 */ 2705 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2706 { 2707 BTRFS_DEV_LOOKUP_ARGS(args); 2708 struct btrfs_fs_info *fs_info = trans->fs_info; 2709 struct btrfs_root *root = fs_info->chunk_root; 2710 struct btrfs_path *path; 2711 struct extent_buffer *leaf; 2712 struct btrfs_dev_item *dev_item; 2713 struct btrfs_device *device; 2714 struct btrfs_key key; 2715 u8 fs_uuid[BTRFS_FSID_SIZE]; 2716 u8 dev_uuid[BTRFS_UUID_SIZE]; 2717 int ret; 2718 2719 path = btrfs_alloc_path(); 2720 if (!path) 2721 return -ENOMEM; 2722 2723 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2724 key.offset = 0; 2725 key.type = BTRFS_DEV_ITEM_KEY; 2726 2727 while (1) { 2728 btrfs_reserve_chunk_metadata(trans, false); 2729 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2730 btrfs_trans_release_chunk_metadata(trans); 2731 if (ret < 0) 2732 goto error; 2733 2734 leaf = path->nodes[0]; 2735 next_slot: 2736 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2737 ret = btrfs_next_leaf(root, path); 2738 if (ret > 0) 2739 break; 2740 if (ret < 0) 2741 goto error; 2742 leaf = path->nodes[0]; 2743 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2744 btrfs_release_path(path); 2745 continue; 2746 } 2747 2748 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2749 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2750 key.type != BTRFS_DEV_ITEM_KEY) 2751 break; 2752 2753 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2754 struct btrfs_dev_item); 2755 args.devid = btrfs_device_id(leaf, dev_item); 2756 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2757 BTRFS_UUID_SIZE); 2758 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2759 BTRFS_FSID_SIZE); 2760 args.uuid = dev_uuid; 2761 args.fsid = fs_uuid; 2762 device = btrfs_find_device(fs_info->fs_devices, &args); 2763 BUG_ON(!device); /* Logic error */ 2764 2765 if (device->fs_devices->seeding) 2766 btrfs_set_device_generation(leaf, dev_item, 2767 device->generation); 2768 2769 path->slots[0]++; 2770 goto next_slot; 2771 } 2772 ret = 0; 2773 error: 2774 btrfs_free_path(path); 2775 return ret; 2776 } 2777 2778 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2779 { 2780 struct btrfs_root *root = fs_info->dev_root; 2781 struct btrfs_trans_handle *trans; 2782 struct btrfs_device *device; 2783 struct file *bdev_file; 2784 struct super_block *sb = fs_info->sb; 2785 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2786 struct btrfs_fs_devices *seed_devices = NULL; 2787 u64 orig_super_total_bytes; 2788 u64 orig_super_num_devices; 2789 int ret = 0; 2790 bool seeding_dev = false; 2791 bool locked = false; 2792 2793 if (sb_rdonly(sb) && !fs_devices->seeding) 2794 return -EROFS; 2795 2796 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2797 fs_info->bdev_holder, NULL); 2798 if (IS_ERR(bdev_file)) 2799 return PTR_ERR(bdev_file); 2800 2801 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2802 ret = -EINVAL; 2803 goto error; 2804 } 2805 2806 if (fs_devices->seeding) { 2807 seeding_dev = true; 2808 down_write(&sb->s_umount); 2809 mutex_lock(&uuid_mutex); 2810 locked = true; 2811 } 2812 2813 sync_blockdev(file_bdev(bdev_file)); 2814 2815 rcu_read_lock(); 2816 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2817 if (device->bdev == file_bdev(bdev_file)) { 2818 ret = -EEXIST; 2819 rcu_read_unlock(); 2820 goto error; 2821 } 2822 } 2823 rcu_read_unlock(); 2824 2825 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2826 if (IS_ERR(device)) { 2827 /* we can safely leave the fs_devices entry around */ 2828 ret = PTR_ERR(device); 2829 goto error; 2830 } 2831 2832 device->fs_info = fs_info; 2833 device->bdev_file = bdev_file; 2834 device->bdev = file_bdev(bdev_file); 2835 ret = lookup_bdev(device_path, &device->devt); 2836 if (ret) 2837 goto error_free_device; 2838 2839 ret = btrfs_get_dev_zone_info(device, false); 2840 if (ret) 2841 goto error_free_device; 2842 2843 trans = btrfs_start_transaction(root, 0); 2844 if (IS_ERR(trans)) { 2845 ret = PTR_ERR(trans); 2846 goto error_free_zone; 2847 } 2848 2849 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2850 device->generation = trans->transid; 2851 device->io_width = fs_info->sectorsize; 2852 device->io_align = fs_info->sectorsize; 2853 device->sector_size = fs_info->sectorsize; 2854 device->total_bytes = 2855 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2856 device->disk_total_bytes = device->total_bytes; 2857 device->commit_total_bytes = device->total_bytes; 2858 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2859 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2860 device->dev_stats_valid = 1; 2861 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2862 2863 if (seeding_dev) { 2864 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2865 seed_devices = btrfs_init_sprout(fs_info); 2866 if (IS_ERR(seed_devices)) { 2867 ret = PTR_ERR(seed_devices); 2868 btrfs_abort_transaction(trans, ret); 2869 goto error_trans; 2870 } 2871 } 2872 2873 mutex_lock(&fs_devices->device_list_mutex); 2874 if (seeding_dev) { 2875 btrfs_setup_sprout(fs_info, seed_devices); 2876 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2877 device); 2878 } 2879 2880 device->fs_devices = fs_devices; 2881 2882 mutex_lock(&fs_info->chunk_mutex); 2883 list_add_rcu(&device->dev_list, &fs_devices->devices); 2884 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2885 fs_devices->num_devices++; 2886 fs_devices->open_devices++; 2887 fs_devices->rw_devices++; 2888 fs_devices->total_devices++; 2889 fs_devices->total_rw_bytes += device->total_bytes; 2890 2891 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2892 2893 if (!bdev_nonrot(device->bdev)) 2894 fs_devices->rotating = true; 2895 2896 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2897 btrfs_set_super_total_bytes(fs_info->super_copy, 2898 round_down(orig_super_total_bytes + device->total_bytes, 2899 fs_info->sectorsize)); 2900 2901 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2902 btrfs_set_super_num_devices(fs_info->super_copy, 2903 orig_super_num_devices + 1); 2904 2905 /* 2906 * we've got more storage, clear any full flags on the space 2907 * infos 2908 */ 2909 btrfs_clear_space_info_full(fs_info); 2910 2911 mutex_unlock(&fs_info->chunk_mutex); 2912 2913 /* Add sysfs device entry */ 2914 btrfs_sysfs_add_device(device); 2915 2916 mutex_unlock(&fs_devices->device_list_mutex); 2917 2918 if (seeding_dev) { 2919 mutex_lock(&fs_info->chunk_mutex); 2920 ret = init_first_rw_device(trans); 2921 mutex_unlock(&fs_info->chunk_mutex); 2922 if (ret) { 2923 btrfs_abort_transaction(trans, ret); 2924 goto error_sysfs; 2925 } 2926 } 2927 2928 ret = btrfs_add_dev_item(trans, device); 2929 if (ret) { 2930 btrfs_abort_transaction(trans, ret); 2931 goto error_sysfs; 2932 } 2933 2934 if (seeding_dev) { 2935 ret = btrfs_finish_sprout(trans); 2936 if (ret) { 2937 btrfs_abort_transaction(trans, ret); 2938 goto error_sysfs; 2939 } 2940 2941 /* 2942 * fs_devices now represents the newly sprouted filesystem and 2943 * its fsid has been changed by btrfs_sprout_splice(). 2944 */ 2945 btrfs_sysfs_update_sprout_fsid(fs_devices); 2946 } 2947 2948 ret = btrfs_commit_transaction(trans); 2949 2950 if (seeding_dev) { 2951 mutex_unlock(&uuid_mutex); 2952 up_write(&sb->s_umount); 2953 locked = false; 2954 2955 if (ret) /* transaction commit */ 2956 return ret; 2957 2958 ret = btrfs_relocate_sys_chunks(fs_info); 2959 if (ret < 0) 2960 btrfs_handle_fs_error(fs_info, ret, 2961 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2962 trans = btrfs_attach_transaction(root); 2963 if (IS_ERR(trans)) { 2964 if (PTR_ERR(trans) == -ENOENT) 2965 return 0; 2966 ret = PTR_ERR(trans); 2967 trans = NULL; 2968 goto error_sysfs; 2969 } 2970 ret = btrfs_commit_transaction(trans); 2971 } 2972 2973 /* 2974 * Now that we have written a new super block to this device, check all 2975 * other fs_devices list if device_path alienates any other scanned 2976 * device. 2977 * We can ignore the return value as it typically returns -EINVAL and 2978 * only succeeds if the device was an alien. 2979 */ 2980 btrfs_forget_devices(device->devt); 2981 2982 /* Update ctime/mtime for blkid or udev */ 2983 update_dev_time(device_path); 2984 2985 return ret; 2986 2987 error_sysfs: 2988 btrfs_sysfs_remove_device(device); 2989 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2990 mutex_lock(&fs_info->chunk_mutex); 2991 list_del_rcu(&device->dev_list); 2992 list_del(&device->dev_alloc_list); 2993 fs_info->fs_devices->num_devices--; 2994 fs_info->fs_devices->open_devices--; 2995 fs_info->fs_devices->rw_devices--; 2996 fs_info->fs_devices->total_devices--; 2997 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2998 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2999 btrfs_set_super_total_bytes(fs_info->super_copy, 3000 orig_super_total_bytes); 3001 btrfs_set_super_num_devices(fs_info->super_copy, 3002 orig_super_num_devices); 3003 mutex_unlock(&fs_info->chunk_mutex); 3004 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3005 error_trans: 3006 if (trans) 3007 btrfs_end_transaction(trans); 3008 error_free_zone: 3009 btrfs_destroy_dev_zone_info(device); 3010 error_free_device: 3011 btrfs_free_device(device); 3012 error: 3013 fput(bdev_file); 3014 if (locked) { 3015 mutex_unlock(&uuid_mutex); 3016 up_write(&sb->s_umount); 3017 } 3018 return ret; 3019 } 3020 3021 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 3022 struct btrfs_device *device) 3023 { 3024 int ret; 3025 struct btrfs_path *path; 3026 struct btrfs_root *root = device->fs_info->chunk_root; 3027 struct btrfs_dev_item *dev_item; 3028 struct extent_buffer *leaf; 3029 struct btrfs_key key; 3030 3031 path = btrfs_alloc_path(); 3032 if (!path) 3033 return -ENOMEM; 3034 3035 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 3036 key.type = BTRFS_DEV_ITEM_KEY; 3037 key.offset = device->devid; 3038 3039 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3040 if (ret < 0) 3041 goto out; 3042 3043 if (ret > 0) { 3044 ret = -ENOENT; 3045 goto out; 3046 } 3047 3048 leaf = path->nodes[0]; 3049 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 3050 3051 btrfs_set_device_id(leaf, dev_item, device->devid); 3052 btrfs_set_device_type(leaf, dev_item, device->type); 3053 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 3054 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 3055 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 3056 btrfs_set_device_total_bytes(leaf, dev_item, 3057 btrfs_device_get_disk_total_bytes(device)); 3058 btrfs_set_device_bytes_used(leaf, dev_item, 3059 btrfs_device_get_bytes_used(device)); 3060 out: 3061 btrfs_free_path(path); 3062 return ret; 3063 } 3064 3065 int btrfs_grow_device(struct btrfs_trans_handle *trans, 3066 struct btrfs_device *device, u64 new_size) 3067 { 3068 struct btrfs_fs_info *fs_info = device->fs_info; 3069 struct btrfs_super_block *super_copy = fs_info->super_copy; 3070 u64 old_total; 3071 u64 diff; 3072 int ret; 3073 3074 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 3075 return -EACCES; 3076 3077 new_size = round_down(new_size, fs_info->sectorsize); 3078 3079 mutex_lock(&fs_info->chunk_mutex); 3080 old_total = btrfs_super_total_bytes(super_copy); 3081 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 3082 3083 if (new_size <= device->total_bytes || 3084 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 3085 mutex_unlock(&fs_info->chunk_mutex); 3086 return -EINVAL; 3087 } 3088 3089 btrfs_set_super_total_bytes(super_copy, 3090 round_down(old_total + diff, fs_info->sectorsize)); 3091 device->fs_devices->total_rw_bytes += diff; 3092 atomic64_add(diff, &fs_info->free_chunk_space); 3093 3094 btrfs_device_set_total_bytes(device, new_size); 3095 btrfs_device_set_disk_total_bytes(device, new_size); 3096 btrfs_clear_space_info_full(device->fs_info); 3097 if (list_empty(&device->post_commit_list)) 3098 list_add_tail(&device->post_commit_list, 3099 &trans->transaction->dev_update_list); 3100 mutex_unlock(&fs_info->chunk_mutex); 3101 3102 btrfs_reserve_chunk_metadata(trans, false); 3103 ret = btrfs_update_device(trans, device); 3104 btrfs_trans_release_chunk_metadata(trans); 3105 3106 return ret; 3107 } 3108 3109 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3110 { 3111 struct btrfs_fs_info *fs_info = trans->fs_info; 3112 struct btrfs_root *root = fs_info->chunk_root; 3113 int ret; 3114 struct btrfs_path *path; 3115 struct btrfs_key key; 3116 3117 path = btrfs_alloc_path(); 3118 if (!path) 3119 return -ENOMEM; 3120 3121 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3122 key.offset = chunk_offset; 3123 key.type = BTRFS_CHUNK_ITEM_KEY; 3124 3125 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3126 if (ret < 0) 3127 goto out; 3128 else if (ret > 0) { /* Logic error or corruption */ 3129 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3130 chunk_offset); 3131 btrfs_abort_transaction(trans, -ENOENT); 3132 ret = -EUCLEAN; 3133 goto out; 3134 } 3135 3136 ret = btrfs_del_item(trans, root, path); 3137 if (ret < 0) { 3138 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3139 btrfs_abort_transaction(trans, ret); 3140 goto out; 3141 } 3142 out: 3143 btrfs_free_path(path); 3144 return ret; 3145 } 3146 3147 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3148 { 3149 struct btrfs_super_block *super_copy = fs_info->super_copy; 3150 struct btrfs_disk_key *disk_key; 3151 struct btrfs_chunk *chunk; 3152 u8 *ptr; 3153 int ret = 0; 3154 u32 num_stripes; 3155 u32 array_size; 3156 u32 len = 0; 3157 u32 cur; 3158 struct btrfs_key key; 3159 3160 lockdep_assert_held(&fs_info->chunk_mutex); 3161 array_size = btrfs_super_sys_array_size(super_copy); 3162 3163 ptr = super_copy->sys_chunk_array; 3164 cur = 0; 3165 3166 while (cur < array_size) { 3167 disk_key = (struct btrfs_disk_key *)ptr; 3168 btrfs_disk_key_to_cpu(&key, disk_key); 3169 3170 len = sizeof(*disk_key); 3171 3172 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3173 chunk = (struct btrfs_chunk *)(ptr + len); 3174 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3175 len += btrfs_chunk_item_size(num_stripes); 3176 } else { 3177 ret = -EIO; 3178 break; 3179 } 3180 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3181 key.offset == chunk_offset) { 3182 memmove(ptr, ptr + len, array_size - (cur + len)); 3183 array_size -= len; 3184 btrfs_set_super_sys_array_size(super_copy, array_size); 3185 } else { 3186 ptr += len; 3187 cur += len; 3188 } 3189 } 3190 return ret; 3191 } 3192 3193 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3194 u64 logical, u64 length) 3195 { 3196 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3197 struct rb_node *prev = NULL; 3198 struct rb_node *orig_prev; 3199 struct btrfs_chunk_map *map; 3200 struct btrfs_chunk_map *prev_map = NULL; 3201 3202 while (node) { 3203 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3204 prev = node; 3205 prev_map = map; 3206 3207 if (logical < map->start) { 3208 node = node->rb_left; 3209 } else if (logical >= map->start + map->chunk_len) { 3210 node = node->rb_right; 3211 } else { 3212 refcount_inc(&map->refs); 3213 return map; 3214 } 3215 } 3216 3217 if (!prev) 3218 return NULL; 3219 3220 orig_prev = prev; 3221 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3222 prev = rb_next(prev); 3223 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3224 } 3225 3226 if (!prev) { 3227 prev = orig_prev; 3228 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3229 while (prev && logical < prev_map->start) { 3230 prev = rb_prev(prev); 3231 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3232 } 3233 } 3234 3235 if (prev) { 3236 u64 end = logical + length; 3237 3238 /* 3239 * Caller can pass a U64_MAX length when it wants to get any 3240 * chunk starting at an offset of 'logical' or higher, so deal 3241 * with underflow by resetting the end offset to U64_MAX. 3242 */ 3243 if (end < logical) 3244 end = U64_MAX; 3245 3246 if (end > prev_map->start && 3247 logical < prev_map->start + prev_map->chunk_len) { 3248 refcount_inc(&prev_map->refs); 3249 return prev_map; 3250 } 3251 } 3252 3253 return NULL; 3254 } 3255 3256 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3257 u64 logical, u64 length) 3258 { 3259 struct btrfs_chunk_map *map; 3260 3261 read_lock(&fs_info->mapping_tree_lock); 3262 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3263 read_unlock(&fs_info->mapping_tree_lock); 3264 3265 return map; 3266 } 3267 3268 /* 3269 * Find the mapping containing the given logical extent. 3270 * 3271 * @logical: Logical block offset in bytes. 3272 * @length: Length of extent in bytes. 3273 * 3274 * Return: Chunk mapping or ERR_PTR. 3275 */ 3276 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3277 u64 logical, u64 length) 3278 { 3279 struct btrfs_chunk_map *map; 3280 3281 map = btrfs_find_chunk_map(fs_info, logical, length); 3282 3283 if (unlikely(!map)) { 3284 btrfs_crit(fs_info, 3285 "unable to find chunk map for logical %llu length %llu", 3286 logical, length); 3287 return ERR_PTR(-EINVAL); 3288 } 3289 3290 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3291 btrfs_crit(fs_info, 3292 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3293 logical, logical + length, map->start, 3294 map->start + map->chunk_len); 3295 btrfs_free_chunk_map(map); 3296 return ERR_PTR(-EINVAL); 3297 } 3298 3299 /* Callers are responsible for dropping the reference. */ 3300 return map; 3301 } 3302 3303 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3304 struct btrfs_chunk_map *map, u64 chunk_offset) 3305 { 3306 int i; 3307 3308 /* 3309 * Removing chunk items and updating the device items in the chunks btree 3310 * requires holding the chunk_mutex. 3311 * See the comment at btrfs_chunk_alloc() for the details. 3312 */ 3313 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3314 3315 for (i = 0; i < map->num_stripes; i++) { 3316 int ret; 3317 3318 ret = btrfs_update_device(trans, map->stripes[i].dev); 3319 if (ret) 3320 return ret; 3321 } 3322 3323 return btrfs_free_chunk(trans, chunk_offset); 3324 } 3325 3326 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3327 { 3328 struct btrfs_fs_info *fs_info = trans->fs_info; 3329 struct btrfs_chunk_map *map; 3330 u64 dev_extent_len = 0; 3331 int i, ret = 0; 3332 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3333 3334 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3335 if (IS_ERR(map)) { 3336 /* 3337 * This is a logic error, but we don't want to just rely on the 3338 * user having built with ASSERT enabled, so if ASSERT doesn't 3339 * do anything we still error out. 3340 */ 3341 ASSERT(0); 3342 return PTR_ERR(map); 3343 } 3344 3345 /* 3346 * First delete the device extent items from the devices btree. 3347 * We take the device_list_mutex to avoid racing with the finishing phase 3348 * of a device replace operation. See the comment below before acquiring 3349 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3350 * because that can result in a deadlock when deleting the device extent 3351 * items from the devices btree - COWing an extent buffer from the btree 3352 * may result in allocating a new metadata chunk, which would attempt to 3353 * lock again fs_info->chunk_mutex. 3354 */ 3355 mutex_lock(&fs_devices->device_list_mutex); 3356 for (i = 0; i < map->num_stripes; i++) { 3357 struct btrfs_device *device = map->stripes[i].dev; 3358 ret = btrfs_free_dev_extent(trans, device, 3359 map->stripes[i].physical, 3360 &dev_extent_len); 3361 if (ret) { 3362 mutex_unlock(&fs_devices->device_list_mutex); 3363 btrfs_abort_transaction(trans, ret); 3364 goto out; 3365 } 3366 3367 if (device->bytes_used > 0) { 3368 mutex_lock(&fs_info->chunk_mutex); 3369 btrfs_device_set_bytes_used(device, 3370 device->bytes_used - dev_extent_len); 3371 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3372 btrfs_clear_space_info_full(fs_info); 3373 mutex_unlock(&fs_info->chunk_mutex); 3374 } 3375 } 3376 mutex_unlock(&fs_devices->device_list_mutex); 3377 3378 /* 3379 * We acquire fs_info->chunk_mutex for 2 reasons: 3380 * 3381 * 1) Just like with the first phase of the chunk allocation, we must 3382 * reserve system space, do all chunk btree updates and deletions, and 3383 * update the system chunk array in the superblock while holding this 3384 * mutex. This is for similar reasons as explained on the comment at 3385 * the top of btrfs_chunk_alloc(); 3386 * 3387 * 2) Prevent races with the final phase of a device replace operation 3388 * that replaces the device object associated with the map's stripes, 3389 * because the device object's id can change at any time during that 3390 * final phase of the device replace operation 3391 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3392 * replaced device and then see it with an ID of 3393 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3394 * the device item, which does not exists on the chunk btree. 3395 * The finishing phase of device replace acquires both the 3396 * device_list_mutex and the chunk_mutex, in that order, so we are 3397 * safe by just acquiring the chunk_mutex. 3398 */ 3399 trans->removing_chunk = true; 3400 mutex_lock(&fs_info->chunk_mutex); 3401 3402 check_system_chunk(trans, map->type); 3403 3404 ret = remove_chunk_item(trans, map, chunk_offset); 3405 /* 3406 * Normally we should not get -ENOSPC since we reserved space before 3407 * through the call to check_system_chunk(). 3408 * 3409 * Despite our system space_info having enough free space, we may not 3410 * be able to allocate extents from its block groups, because all have 3411 * an incompatible profile, which will force us to allocate a new system 3412 * block group with the right profile, or right after we called 3413 * check_system_space() above, a scrub turned the only system block group 3414 * with enough free space into RO mode. 3415 * This is explained with more detail at do_chunk_alloc(). 3416 * 3417 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3418 */ 3419 if (ret == -ENOSPC) { 3420 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3421 struct btrfs_block_group *sys_bg; 3422 3423 sys_bg = btrfs_create_chunk(trans, sys_flags); 3424 if (IS_ERR(sys_bg)) { 3425 ret = PTR_ERR(sys_bg); 3426 btrfs_abort_transaction(trans, ret); 3427 goto out; 3428 } 3429 3430 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3431 if (ret) { 3432 btrfs_abort_transaction(trans, ret); 3433 goto out; 3434 } 3435 3436 ret = remove_chunk_item(trans, map, chunk_offset); 3437 if (ret) { 3438 btrfs_abort_transaction(trans, ret); 3439 goto out; 3440 } 3441 } else if (ret) { 3442 btrfs_abort_transaction(trans, ret); 3443 goto out; 3444 } 3445 3446 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3447 3448 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3449 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3450 if (ret) { 3451 btrfs_abort_transaction(trans, ret); 3452 goto out; 3453 } 3454 } 3455 3456 mutex_unlock(&fs_info->chunk_mutex); 3457 trans->removing_chunk = false; 3458 3459 /* 3460 * We are done with chunk btree updates and deletions, so release the 3461 * system space we previously reserved (with check_system_chunk()). 3462 */ 3463 btrfs_trans_release_chunk_metadata(trans); 3464 3465 ret = btrfs_remove_block_group(trans, map); 3466 if (ret) { 3467 btrfs_abort_transaction(trans, ret); 3468 goto out; 3469 } 3470 3471 out: 3472 if (trans->removing_chunk) { 3473 mutex_unlock(&fs_info->chunk_mutex); 3474 trans->removing_chunk = false; 3475 } 3476 /* once for us */ 3477 btrfs_free_chunk_map(map); 3478 return ret; 3479 } 3480 3481 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3482 { 3483 struct btrfs_root *root = fs_info->chunk_root; 3484 struct btrfs_trans_handle *trans; 3485 struct btrfs_block_group *block_group; 3486 u64 length; 3487 int ret; 3488 3489 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3490 btrfs_err(fs_info, 3491 "relocate: not supported on extent tree v2 yet"); 3492 return -EINVAL; 3493 } 3494 3495 /* 3496 * Prevent races with automatic removal of unused block groups. 3497 * After we relocate and before we remove the chunk with offset 3498 * chunk_offset, automatic removal of the block group can kick in, 3499 * resulting in a failure when calling btrfs_remove_chunk() below. 3500 * 3501 * Make sure to acquire this mutex before doing a tree search (dev 3502 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3503 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3504 * we release the path used to search the chunk/dev tree and before 3505 * the current task acquires this mutex and calls us. 3506 */ 3507 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3508 3509 /* step one, relocate all the extents inside this chunk */ 3510 btrfs_scrub_pause(fs_info); 3511 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3512 btrfs_scrub_continue(fs_info); 3513 if (ret) { 3514 /* 3515 * If we had a transaction abort, stop all running scrubs. 3516 * See transaction.c:cleanup_transaction() why we do it here. 3517 */ 3518 if (BTRFS_FS_ERROR(fs_info)) 3519 btrfs_scrub_cancel(fs_info); 3520 return ret; 3521 } 3522 3523 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3524 if (!block_group) 3525 return -ENOENT; 3526 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3527 length = block_group->length; 3528 btrfs_put_block_group(block_group); 3529 3530 /* 3531 * On a zoned file system, discard the whole block group, this will 3532 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3533 * resetting the zone fails, don't treat it as a fatal problem from the 3534 * filesystem's point of view. 3535 */ 3536 if (btrfs_is_zoned(fs_info)) { 3537 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3538 if (ret) 3539 btrfs_info(fs_info, 3540 "failed to reset zone %llu after relocation", 3541 chunk_offset); 3542 } 3543 3544 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3545 chunk_offset); 3546 if (IS_ERR(trans)) { 3547 ret = PTR_ERR(trans); 3548 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3549 return ret; 3550 } 3551 3552 /* 3553 * step two, delete the device extents and the 3554 * chunk tree entries 3555 */ 3556 ret = btrfs_remove_chunk(trans, chunk_offset); 3557 btrfs_end_transaction(trans); 3558 return ret; 3559 } 3560 3561 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3562 { 3563 struct btrfs_root *chunk_root = fs_info->chunk_root; 3564 struct btrfs_path *path; 3565 struct extent_buffer *leaf; 3566 struct btrfs_chunk *chunk; 3567 struct btrfs_key key; 3568 struct btrfs_key found_key; 3569 u64 chunk_type; 3570 bool retried = false; 3571 int failed = 0; 3572 int ret; 3573 3574 path = btrfs_alloc_path(); 3575 if (!path) 3576 return -ENOMEM; 3577 3578 again: 3579 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3580 key.offset = (u64)-1; 3581 key.type = BTRFS_CHUNK_ITEM_KEY; 3582 3583 while (1) { 3584 mutex_lock(&fs_info->reclaim_bgs_lock); 3585 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3586 if (ret < 0) { 3587 mutex_unlock(&fs_info->reclaim_bgs_lock); 3588 goto error; 3589 } 3590 if (ret == 0) { 3591 /* 3592 * On the first search we would find chunk tree with 3593 * offset -1, which is not possible. On subsequent 3594 * loops this would find an existing item on an invalid 3595 * offset (one less than the previous one, wrong 3596 * alignment and size). 3597 */ 3598 ret = -EUCLEAN; 3599 mutex_unlock(&fs_info->reclaim_bgs_lock); 3600 goto error; 3601 } 3602 3603 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3604 key.type); 3605 if (ret) 3606 mutex_unlock(&fs_info->reclaim_bgs_lock); 3607 if (ret < 0) 3608 goto error; 3609 if (ret > 0) 3610 break; 3611 3612 leaf = path->nodes[0]; 3613 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3614 3615 chunk = btrfs_item_ptr(leaf, path->slots[0], 3616 struct btrfs_chunk); 3617 chunk_type = btrfs_chunk_type(leaf, chunk); 3618 btrfs_release_path(path); 3619 3620 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3621 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3622 if (ret == -ENOSPC) 3623 failed++; 3624 else 3625 BUG_ON(ret); 3626 } 3627 mutex_unlock(&fs_info->reclaim_bgs_lock); 3628 3629 if (found_key.offset == 0) 3630 break; 3631 key.offset = found_key.offset - 1; 3632 } 3633 ret = 0; 3634 if (failed && !retried) { 3635 failed = 0; 3636 retried = true; 3637 goto again; 3638 } else if (WARN_ON(failed && retried)) { 3639 ret = -ENOSPC; 3640 } 3641 error: 3642 btrfs_free_path(path); 3643 return ret; 3644 } 3645 3646 /* 3647 * return 1 : allocate a data chunk successfully, 3648 * return <0: errors during allocating a data chunk, 3649 * return 0 : no need to allocate a data chunk. 3650 */ 3651 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3652 u64 chunk_offset) 3653 { 3654 struct btrfs_block_group *cache; 3655 u64 bytes_used; 3656 u64 chunk_type; 3657 3658 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3659 ASSERT(cache); 3660 chunk_type = cache->flags; 3661 btrfs_put_block_group(cache); 3662 3663 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3664 return 0; 3665 3666 spin_lock(&fs_info->data_sinfo->lock); 3667 bytes_used = fs_info->data_sinfo->bytes_used; 3668 spin_unlock(&fs_info->data_sinfo->lock); 3669 3670 if (!bytes_used) { 3671 struct btrfs_trans_handle *trans; 3672 int ret; 3673 3674 trans = btrfs_join_transaction(fs_info->tree_root); 3675 if (IS_ERR(trans)) 3676 return PTR_ERR(trans); 3677 3678 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3679 btrfs_end_transaction(trans); 3680 if (ret < 0) 3681 return ret; 3682 return 1; 3683 } 3684 3685 return 0; 3686 } 3687 3688 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3689 const struct btrfs_disk_balance_args *disk) 3690 { 3691 memset(cpu, 0, sizeof(*cpu)); 3692 3693 cpu->profiles = le64_to_cpu(disk->profiles); 3694 cpu->usage = le64_to_cpu(disk->usage); 3695 cpu->devid = le64_to_cpu(disk->devid); 3696 cpu->pstart = le64_to_cpu(disk->pstart); 3697 cpu->pend = le64_to_cpu(disk->pend); 3698 cpu->vstart = le64_to_cpu(disk->vstart); 3699 cpu->vend = le64_to_cpu(disk->vend); 3700 cpu->target = le64_to_cpu(disk->target); 3701 cpu->flags = le64_to_cpu(disk->flags); 3702 cpu->limit = le64_to_cpu(disk->limit); 3703 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3704 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3705 } 3706 3707 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3708 const struct btrfs_balance_args *cpu) 3709 { 3710 memset(disk, 0, sizeof(*disk)); 3711 3712 disk->profiles = cpu_to_le64(cpu->profiles); 3713 disk->usage = cpu_to_le64(cpu->usage); 3714 disk->devid = cpu_to_le64(cpu->devid); 3715 disk->pstart = cpu_to_le64(cpu->pstart); 3716 disk->pend = cpu_to_le64(cpu->pend); 3717 disk->vstart = cpu_to_le64(cpu->vstart); 3718 disk->vend = cpu_to_le64(cpu->vend); 3719 disk->target = cpu_to_le64(cpu->target); 3720 disk->flags = cpu_to_le64(cpu->flags); 3721 disk->limit = cpu_to_le64(cpu->limit); 3722 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3723 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3724 } 3725 3726 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3727 struct btrfs_balance_control *bctl) 3728 { 3729 struct btrfs_root *root = fs_info->tree_root; 3730 struct btrfs_trans_handle *trans; 3731 struct btrfs_balance_item *item; 3732 struct btrfs_disk_balance_args disk_bargs; 3733 struct btrfs_path *path; 3734 struct extent_buffer *leaf; 3735 struct btrfs_key key; 3736 int ret, err; 3737 3738 path = btrfs_alloc_path(); 3739 if (!path) 3740 return -ENOMEM; 3741 3742 trans = btrfs_start_transaction(root, 0); 3743 if (IS_ERR(trans)) { 3744 btrfs_free_path(path); 3745 return PTR_ERR(trans); 3746 } 3747 3748 key.objectid = BTRFS_BALANCE_OBJECTID; 3749 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3750 key.offset = 0; 3751 3752 ret = btrfs_insert_empty_item(trans, root, path, &key, 3753 sizeof(*item)); 3754 if (ret) 3755 goto out; 3756 3757 leaf = path->nodes[0]; 3758 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3759 3760 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3761 3762 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3763 btrfs_set_balance_data(leaf, item, &disk_bargs); 3764 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3765 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3766 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3767 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3768 btrfs_set_balance_flags(leaf, item, bctl->flags); 3769 out: 3770 btrfs_free_path(path); 3771 err = btrfs_commit_transaction(trans); 3772 if (err && !ret) 3773 ret = err; 3774 return ret; 3775 } 3776 3777 static int del_balance_item(struct btrfs_fs_info *fs_info) 3778 { 3779 struct btrfs_root *root = fs_info->tree_root; 3780 struct btrfs_trans_handle *trans; 3781 struct btrfs_path *path; 3782 struct btrfs_key key; 3783 int ret, err; 3784 3785 path = btrfs_alloc_path(); 3786 if (!path) 3787 return -ENOMEM; 3788 3789 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3790 if (IS_ERR(trans)) { 3791 btrfs_free_path(path); 3792 return PTR_ERR(trans); 3793 } 3794 3795 key.objectid = BTRFS_BALANCE_OBJECTID; 3796 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3797 key.offset = 0; 3798 3799 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3800 if (ret < 0) 3801 goto out; 3802 if (ret > 0) { 3803 ret = -ENOENT; 3804 goto out; 3805 } 3806 3807 ret = btrfs_del_item(trans, root, path); 3808 out: 3809 btrfs_free_path(path); 3810 err = btrfs_commit_transaction(trans); 3811 if (err && !ret) 3812 ret = err; 3813 return ret; 3814 } 3815 3816 /* 3817 * This is a heuristic used to reduce the number of chunks balanced on 3818 * resume after balance was interrupted. 3819 */ 3820 static void update_balance_args(struct btrfs_balance_control *bctl) 3821 { 3822 /* 3823 * Turn on soft mode for chunk types that were being converted. 3824 */ 3825 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3826 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3827 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3828 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3829 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3830 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3831 3832 /* 3833 * Turn on usage filter if is not already used. The idea is 3834 * that chunks that we have already balanced should be 3835 * reasonably full. Don't do it for chunks that are being 3836 * converted - that will keep us from relocating unconverted 3837 * (albeit full) chunks. 3838 */ 3839 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3840 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3841 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3842 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3843 bctl->data.usage = 90; 3844 } 3845 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3846 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3847 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3848 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3849 bctl->sys.usage = 90; 3850 } 3851 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3852 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3853 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3854 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3855 bctl->meta.usage = 90; 3856 } 3857 } 3858 3859 /* 3860 * Clear the balance status in fs_info and delete the balance item from disk. 3861 */ 3862 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3863 { 3864 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3865 int ret; 3866 3867 ASSERT(fs_info->balance_ctl); 3868 3869 spin_lock(&fs_info->balance_lock); 3870 fs_info->balance_ctl = NULL; 3871 spin_unlock(&fs_info->balance_lock); 3872 3873 kfree(bctl); 3874 ret = del_balance_item(fs_info); 3875 if (ret) 3876 btrfs_handle_fs_error(fs_info, ret, NULL); 3877 } 3878 3879 /* 3880 * Balance filters. Return 1 if chunk should be filtered out 3881 * (should not be balanced). 3882 */ 3883 static int chunk_profiles_filter(u64 chunk_type, 3884 struct btrfs_balance_args *bargs) 3885 { 3886 chunk_type = chunk_to_extended(chunk_type) & 3887 BTRFS_EXTENDED_PROFILE_MASK; 3888 3889 if (bargs->profiles & chunk_type) 3890 return 0; 3891 3892 return 1; 3893 } 3894 3895 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3896 struct btrfs_balance_args *bargs) 3897 { 3898 struct btrfs_block_group *cache; 3899 u64 chunk_used; 3900 u64 user_thresh_min; 3901 u64 user_thresh_max; 3902 int ret = 1; 3903 3904 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3905 chunk_used = cache->used; 3906 3907 if (bargs->usage_min == 0) 3908 user_thresh_min = 0; 3909 else 3910 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3911 3912 if (bargs->usage_max == 0) 3913 user_thresh_max = 1; 3914 else if (bargs->usage_max > 100) 3915 user_thresh_max = cache->length; 3916 else 3917 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3918 3919 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3920 ret = 0; 3921 3922 btrfs_put_block_group(cache); 3923 return ret; 3924 } 3925 3926 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3927 u64 chunk_offset, struct btrfs_balance_args *bargs) 3928 { 3929 struct btrfs_block_group *cache; 3930 u64 chunk_used, user_thresh; 3931 int ret = 1; 3932 3933 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3934 chunk_used = cache->used; 3935 3936 if (bargs->usage_min == 0) 3937 user_thresh = 1; 3938 else if (bargs->usage > 100) 3939 user_thresh = cache->length; 3940 else 3941 user_thresh = mult_perc(cache->length, bargs->usage); 3942 3943 if (chunk_used < user_thresh) 3944 ret = 0; 3945 3946 btrfs_put_block_group(cache); 3947 return ret; 3948 } 3949 3950 static int chunk_devid_filter(struct extent_buffer *leaf, 3951 struct btrfs_chunk *chunk, 3952 struct btrfs_balance_args *bargs) 3953 { 3954 struct btrfs_stripe *stripe; 3955 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3956 int i; 3957 3958 for (i = 0; i < num_stripes; i++) { 3959 stripe = btrfs_stripe_nr(chunk, i); 3960 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3961 return 0; 3962 } 3963 3964 return 1; 3965 } 3966 3967 static u64 calc_data_stripes(u64 type, int num_stripes) 3968 { 3969 const int index = btrfs_bg_flags_to_raid_index(type); 3970 const int ncopies = btrfs_raid_array[index].ncopies; 3971 const int nparity = btrfs_raid_array[index].nparity; 3972 3973 return (num_stripes - nparity) / ncopies; 3974 } 3975 3976 /* [pstart, pend) */ 3977 static int chunk_drange_filter(struct extent_buffer *leaf, 3978 struct btrfs_chunk *chunk, 3979 struct btrfs_balance_args *bargs) 3980 { 3981 struct btrfs_stripe *stripe; 3982 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3983 u64 stripe_offset; 3984 u64 stripe_length; 3985 u64 type; 3986 int factor; 3987 int i; 3988 3989 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3990 return 0; 3991 3992 type = btrfs_chunk_type(leaf, chunk); 3993 factor = calc_data_stripes(type, num_stripes); 3994 3995 for (i = 0; i < num_stripes; i++) { 3996 stripe = btrfs_stripe_nr(chunk, i); 3997 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3998 continue; 3999 4000 stripe_offset = btrfs_stripe_offset(leaf, stripe); 4001 stripe_length = btrfs_chunk_length(leaf, chunk); 4002 stripe_length = div_u64(stripe_length, factor); 4003 4004 if (stripe_offset < bargs->pend && 4005 stripe_offset + stripe_length > bargs->pstart) 4006 return 0; 4007 } 4008 4009 return 1; 4010 } 4011 4012 /* [vstart, vend) */ 4013 static int chunk_vrange_filter(struct extent_buffer *leaf, 4014 struct btrfs_chunk *chunk, 4015 u64 chunk_offset, 4016 struct btrfs_balance_args *bargs) 4017 { 4018 if (chunk_offset < bargs->vend && 4019 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 4020 /* at least part of the chunk is inside this vrange */ 4021 return 0; 4022 4023 return 1; 4024 } 4025 4026 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 4027 struct btrfs_chunk *chunk, 4028 struct btrfs_balance_args *bargs) 4029 { 4030 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4031 4032 if (bargs->stripes_min <= num_stripes 4033 && num_stripes <= bargs->stripes_max) 4034 return 0; 4035 4036 return 1; 4037 } 4038 4039 static int chunk_soft_convert_filter(u64 chunk_type, 4040 struct btrfs_balance_args *bargs) 4041 { 4042 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4043 return 0; 4044 4045 chunk_type = chunk_to_extended(chunk_type) & 4046 BTRFS_EXTENDED_PROFILE_MASK; 4047 4048 if (bargs->target == chunk_type) 4049 return 1; 4050 4051 return 0; 4052 } 4053 4054 static int should_balance_chunk(struct extent_buffer *leaf, 4055 struct btrfs_chunk *chunk, u64 chunk_offset) 4056 { 4057 struct btrfs_fs_info *fs_info = leaf->fs_info; 4058 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4059 struct btrfs_balance_args *bargs = NULL; 4060 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 4061 4062 /* type filter */ 4063 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 4064 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 4065 return 0; 4066 } 4067 4068 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4069 bargs = &bctl->data; 4070 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4071 bargs = &bctl->sys; 4072 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4073 bargs = &bctl->meta; 4074 4075 /* profiles filter */ 4076 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 4077 chunk_profiles_filter(chunk_type, bargs)) { 4078 return 0; 4079 } 4080 4081 /* usage filter */ 4082 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 4083 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 4084 return 0; 4085 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4086 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4087 return 0; 4088 } 4089 4090 /* devid filter */ 4091 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4092 chunk_devid_filter(leaf, chunk, bargs)) { 4093 return 0; 4094 } 4095 4096 /* drange filter, makes sense only with devid filter */ 4097 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4098 chunk_drange_filter(leaf, chunk, bargs)) { 4099 return 0; 4100 } 4101 4102 /* vrange filter */ 4103 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4104 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4105 return 0; 4106 } 4107 4108 /* stripes filter */ 4109 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4110 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4111 return 0; 4112 } 4113 4114 /* soft profile changing mode */ 4115 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4116 chunk_soft_convert_filter(chunk_type, bargs)) { 4117 return 0; 4118 } 4119 4120 /* 4121 * limited by count, must be the last filter 4122 */ 4123 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4124 if (bargs->limit == 0) 4125 return 0; 4126 else 4127 bargs->limit--; 4128 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4129 /* 4130 * Same logic as the 'limit' filter; the minimum cannot be 4131 * determined here because we do not have the global information 4132 * about the count of all chunks that satisfy the filters. 4133 */ 4134 if (bargs->limit_max == 0) 4135 return 0; 4136 else 4137 bargs->limit_max--; 4138 } 4139 4140 return 1; 4141 } 4142 4143 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4144 { 4145 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4146 struct btrfs_root *chunk_root = fs_info->chunk_root; 4147 u64 chunk_type; 4148 struct btrfs_chunk *chunk; 4149 struct btrfs_path *path = NULL; 4150 struct btrfs_key key; 4151 struct btrfs_key found_key; 4152 struct extent_buffer *leaf; 4153 int slot; 4154 int ret; 4155 int enospc_errors = 0; 4156 bool counting = true; 4157 /* The single value limit and min/max limits use the same bytes in the */ 4158 u64 limit_data = bctl->data.limit; 4159 u64 limit_meta = bctl->meta.limit; 4160 u64 limit_sys = bctl->sys.limit; 4161 u32 count_data = 0; 4162 u32 count_meta = 0; 4163 u32 count_sys = 0; 4164 int chunk_reserved = 0; 4165 4166 path = btrfs_alloc_path(); 4167 if (!path) { 4168 ret = -ENOMEM; 4169 goto error; 4170 } 4171 4172 /* zero out stat counters */ 4173 spin_lock(&fs_info->balance_lock); 4174 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4175 spin_unlock(&fs_info->balance_lock); 4176 again: 4177 if (!counting) { 4178 /* 4179 * The single value limit and min/max limits use the same bytes 4180 * in the 4181 */ 4182 bctl->data.limit = limit_data; 4183 bctl->meta.limit = limit_meta; 4184 bctl->sys.limit = limit_sys; 4185 } 4186 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4187 key.offset = (u64)-1; 4188 key.type = BTRFS_CHUNK_ITEM_KEY; 4189 4190 while (1) { 4191 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4192 atomic_read(&fs_info->balance_cancel_req)) { 4193 ret = -ECANCELED; 4194 goto error; 4195 } 4196 4197 mutex_lock(&fs_info->reclaim_bgs_lock); 4198 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4199 if (ret < 0) { 4200 mutex_unlock(&fs_info->reclaim_bgs_lock); 4201 goto error; 4202 } 4203 4204 /* 4205 * this shouldn't happen, it means the last relocate 4206 * failed 4207 */ 4208 if (ret == 0) 4209 BUG(); /* FIXME break ? */ 4210 4211 ret = btrfs_previous_item(chunk_root, path, 0, 4212 BTRFS_CHUNK_ITEM_KEY); 4213 if (ret) { 4214 mutex_unlock(&fs_info->reclaim_bgs_lock); 4215 ret = 0; 4216 break; 4217 } 4218 4219 leaf = path->nodes[0]; 4220 slot = path->slots[0]; 4221 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4222 4223 if (found_key.objectid != key.objectid) { 4224 mutex_unlock(&fs_info->reclaim_bgs_lock); 4225 break; 4226 } 4227 4228 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4229 chunk_type = btrfs_chunk_type(leaf, chunk); 4230 4231 if (!counting) { 4232 spin_lock(&fs_info->balance_lock); 4233 bctl->stat.considered++; 4234 spin_unlock(&fs_info->balance_lock); 4235 } 4236 4237 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4238 4239 btrfs_release_path(path); 4240 if (!ret) { 4241 mutex_unlock(&fs_info->reclaim_bgs_lock); 4242 goto loop; 4243 } 4244 4245 if (counting) { 4246 mutex_unlock(&fs_info->reclaim_bgs_lock); 4247 spin_lock(&fs_info->balance_lock); 4248 bctl->stat.expected++; 4249 spin_unlock(&fs_info->balance_lock); 4250 4251 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4252 count_data++; 4253 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4254 count_sys++; 4255 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4256 count_meta++; 4257 4258 goto loop; 4259 } 4260 4261 /* 4262 * Apply limit_min filter, no need to check if the LIMITS 4263 * filter is used, limit_min is 0 by default 4264 */ 4265 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4266 count_data < bctl->data.limit_min) 4267 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4268 count_meta < bctl->meta.limit_min) 4269 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4270 count_sys < bctl->sys.limit_min)) { 4271 mutex_unlock(&fs_info->reclaim_bgs_lock); 4272 goto loop; 4273 } 4274 4275 if (!chunk_reserved) { 4276 /* 4277 * We may be relocating the only data chunk we have, 4278 * which could potentially end up with losing data's 4279 * raid profile, so lets allocate an empty one in 4280 * advance. 4281 */ 4282 ret = btrfs_may_alloc_data_chunk(fs_info, 4283 found_key.offset); 4284 if (ret < 0) { 4285 mutex_unlock(&fs_info->reclaim_bgs_lock); 4286 goto error; 4287 } else if (ret == 1) { 4288 chunk_reserved = 1; 4289 } 4290 } 4291 4292 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4293 mutex_unlock(&fs_info->reclaim_bgs_lock); 4294 if (ret == -ENOSPC) { 4295 enospc_errors++; 4296 } else if (ret == -ETXTBSY) { 4297 btrfs_info(fs_info, 4298 "skipping relocation of block group %llu due to active swapfile", 4299 found_key.offset); 4300 ret = 0; 4301 } else if (ret) { 4302 goto error; 4303 } else { 4304 spin_lock(&fs_info->balance_lock); 4305 bctl->stat.completed++; 4306 spin_unlock(&fs_info->balance_lock); 4307 } 4308 loop: 4309 if (found_key.offset == 0) 4310 break; 4311 key.offset = found_key.offset - 1; 4312 } 4313 4314 if (counting) { 4315 btrfs_release_path(path); 4316 counting = false; 4317 goto again; 4318 } 4319 error: 4320 btrfs_free_path(path); 4321 if (enospc_errors) { 4322 btrfs_info(fs_info, "%d enospc errors during balance", 4323 enospc_errors); 4324 if (!ret) 4325 ret = -ENOSPC; 4326 } 4327 4328 return ret; 4329 } 4330 4331 /* 4332 * See if a given profile is valid and reduced. 4333 * 4334 * @flags: profile to validate 4335 * @extended: if true @flags is treated as an extended profile 4336 */ 4337 static int alloc_profile_is_valid(u64 flags, int extended) 4338 { 4339 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4340 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4341 4342 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4343 4344 /* 1) check that all other bits are zeroed */ 4345 if (flags & ~mask) 4346 return 0; 4347 4348 /* 2) see if profile is reduced */ 4349 if (flags == 0) 4350 return !extended; /* "0" is valid for usual profiles */ 4351 4352 return has_single_bit_set(flags); 4353 } 4354 4355 /* 4356 * Validate target profile against allowed profiles and return true if it's OK. 4357 * Otherwise print the error message and return false. 4358 */ 4359 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4360 const struct btrfs_balance_args *bargs, 4361 u64 allowed, const char *type) 4362 { 4363 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4364 return true; 4365 4366 /* Profile is valid and does not have bits outside of the allowed set */ 4367 if (alloc_profile_is_valid(bargs->target, 1) && 4368 (bargs->target & ~allowed) == 0) 4369 return true; 4370 4371 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4372 type, btrfs_bg_type_to_raid_name(bargs->target)); 4373 return false; 4374 } 4375 4376 /* 4377 * Fill @buf with textual description of balance filter flags @bargs, up to 4378 * @size_buf including the terminating null. The output may be trimmed if it 4379 * does not fit into the provided buffer. 4380 */ 4381 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4382 u32 size_buf) 4383 { 4384 int ret; 4385 u32 size_bp = size_buf; 4386 char *bp = buf; 4387 u64 flags = bargs->flags; 4388 char tmp_buf[128] = {'\0'}; 4389 4390 if (!flags) 4391 return; 4392 4393 #define CHECK_APPEND_NOARG(a) \ 4394 do { \ 4395 ret = snprintf(bp, size_bp, (a)); \ 4396 if (ret < 0 || ret >= size_bp) \ 4397 goto out_overflow; \ 4398 size_bp -= ret; \ 4399 bp += ret; \ 4400 } while (0) 4401 4402 #define CHECK_APPEND_1ARG(a, v1) \ 4403 do { \ 4404 ret = snprintf(bp, size_bp, (a), (v1)); \ 4405 if (ret < 0 || ret >= size_bp) \ 4406 goto out_overflow; \ 4407 size_bp -= ret; \ 4408 bp += ret; \ 4409 } while (0) 4410 4411 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4412 do { \ 4413 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4414 if (ret < 0 || ret >= size_bp) \ 4415 goto out_overflow; \ 4416 size_bp -= ret; \ 4417 bp += ret; \ 4418 } while (0) 4419 4420 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4421 CHECK_APPEND_1ARG("convert=%s,", 4422 btrfs_bg_type_to_raid_name(bargs->target)); 4423 4424 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4425 CHECK_APPEND_NOARG("soft,"); 4426 4427 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4428 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4429 sizeof(tmp_buf)); 4430 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4431 } 4432 4433 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4434 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4435 4436 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4437 CHECK_APPEND_2ARG("usage=%u..%u,", 4438 bargs->usage_min, bargs->usage_max); 4439 4440 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4441 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4442 4443 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4444 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4445 bargs->pstart, bargs->pend); 4446 4447 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4448 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4449 bargs->vstart, bargs->vend); 4450 4451 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4452 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4453 4454 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4455 CHECK_APPEND_2ARG("limit=%u..%u,", 4456 bargs->limit_min, bargs->limit_max); 4457 4458 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4459 CHECK_APPEND_2ARG("stripes=%u..%u,", 4460 bargs->stripes_min, bargs->stripes_max); 4461 4462 #undef CHECK_APPEND_2ARG 4463 #undef CHECK_APPEND_1ARG 4464 #undef CHECK_APPEND_NOARG 4465 4466 out_overflow: 4467 4468 if (size_bp < size_buf) 4469 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4470 else 4471 buf[0] = '\0'; 4472 } 4473 4474 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4475 { 4476 u32 size_buf = 1024; 4477 char tmp_buf[192] = {'\0'}; 4478 char *buf; 4479 char *bp; 4480 u32 size_bp = size_buf; 4481 int ret; 4482 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4483 4484 buf = kzalloc(size_buf, GFP_KERNEL); 4485 if (!buf) 4486 return; 4487 4488 bp = buf; 4489 4490 #define CHECK_APPEND_1ARG(a, v1) \ 4491 do { \ 4492 ret = snprintf(bp, size_bp, (a), (v1)); \ 4493 if (ret < 0 || ret >= size_bp) \ 4494 goto out_overflow; \ 4495 size_bp -= ret; \ 4496 bp += ret; \ 4497 } while (0) 4498 4499 if (bctl->flags & BTRFS_BALANCE_FORCE) 4500 CHECK_APPEND_1ARG("%s", "-f "); 4501 4502 if (bctl->flags & BTRFS_BALANCE_DATA) { 4503 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4504 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4505 } 4506 4507 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4508 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4509 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4510 } 4511 4512 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4513 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4514 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4515 } 4516 4517 #undef CHECK_APPEND_1ARG 4518 4519 out_overflow: 4520 4521 if (size_bp < size_buf) 4522 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4523 btrfs_info(fs_info, "balance: %s %s", 4524 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4525 "resume" : "start", buf); 4526 4527 kfree(buf); 4528 } 4529 4530 /* 4531 * Should be called with balance mutexe held 4532 */ 4533 int btrfs_balance(struct btrfs_fs_info *fs_info, 4534 struct btrfs_balance_control *bctl, 4535 struct btrfs_ioctl_balance_args *bargs) 4536 { 4537 u64 meta_target, data_target; 4538 u64 allowed; 4539 int mixed = 0; 4540 int ret; 4541 u64 num_devices; 4542 unsigned seq; 4543 bool reducing_redundancy; 4544 bool paused = false; 4545 int i; 4546 4547 if (btrfs_fs_closing(fs_info) || 4548 atomic_read(&fs_info->balance_pause_req) || 4549 btrfs_should_cancel_balance(fs_info)) { 4550 ret = -EINVAL; 4551 goto out; 4552 } 4553 4554 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4555 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4556 mixed = 1; 4557 4558 /* 4559 * In case of mixed groups both data and meta should be picked, 4560 * and identical options should be given for both of them. 4561 */ 4562 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4563 if (mixed && (bctl->flags & allowed)) { 4564 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4565 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4566 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4567 btrfs_err(fs_info, 4568 "balance: mixed groups data and metadata options must be the same"); 4569 ret = -EINVAL; 4570 goto out; 4571 } 4572 } 4573 4574 /* 4575 * rw_devices will not change at the moment, device add/delete/replace 4576 * are exclusive 4577 */ 4578 num_devices = fs_info->fs_devices->rw_devices; 4579 4580 /* 4581 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4582 * special bit for it, to make it easier to distinguish. Thus we need 4583 * to set it manually, or balance would refuse the profile. 4584 */ 4585 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4586 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4587 if (num_devices >= btrfs_raid_array[i].devs_min) 4588 allowed |= btrfs_raid_array[i].bg_flag; 4589 4590 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4591 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4592 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4593 ret = -EINVAL; 4594 goto out; 4595 } 4596 4597 /* 4598 * Allow to reduce metadata or system integrity only if force set for 4599 * profiles with redundancy (copies, parity) 4600 */ 4601 allowed = 0; 4602 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4603 if (btrfs_raid_array[i].ncopies >= 2 || 4604 btrfs_raid_array[i].tolerated_failures >= 1) 4605 allowed |= btrfs_raid_array[i].bg_flag; 4606 } 4607 do { 4608 seq = read_seqbegin(&fs_info->profiles_lock); 4609 4610 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4611 (fs_info->avail_system_alloc_bits & allowed) && 4612 !(bctl->sys.target & allowed)) || 4613 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4614 (fs_info->avail_metadata_alloc_bits & allowed) && 4615 !(bctl->meta.target & allowed))) 4616 reducing_redundancy = true; 4617 else 4618 reducing_redundancy = false; 4619 4620 /* if we're not converting, the target field is uninitialized */ 4621 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4622 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4623 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4624 bctl->data.target : fs_info->avail_data_alloc_bits; 4625 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4626 4627 if (reducing_redundancy) { 4628 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4629 btrfs_info(fs_info, 4630 "balance: force reducing metadata redundancy"); 4631 } else { 4632 btrfs_err(fs_info, 4633 "balance: reduces metadata redundancy, use --force if you want this"); 4634 ret = -EINVAL; 4635 goto out; 4636 } 4637 } 4638 4639 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4640 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4641 btrfs_warn(fs_info, 4642 "balance: metadata profile %s has lower redundancy than data profile %s", 4643 btrfs_bg_type_to_raid_name(meta_target), 4644 btrfs_bg_type_to_raid_name(data_target)); 4645 } 4646 4647 ret = insert_balance_item(fs_info, bctl); 4648 if (ret && ret != -EEXIST) 4649 goto out; 4650 4651 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4652 BUG_ON(ret == -EEXIST); 4653 BUG_ON(fs_info->balance_ctl); 4654 spin_lock(&fs_info->balance_lock); 4655 fs_info->balance_ctl = bctl; 4656 spin_unlock(&fs_info->balance_lock); 4657 } else { 4658 BUG_ON(ret != -EEXIST); 4659 spin_lock(&fs_info->balance_lock); 4660 update_balance_args(bctl); 4661 spin_unlock(&fs_info->balance_lock); 4662 } 4663 4664 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4665 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4666 describe_balance_start_or_resume(fs_info); 4667 mutex_unlock(&fs_info->balance_mutex); 4668 4669 ret = __btrfs_balance(fs_info); 4670 4671 mutex_lock(&fs_info->balance_mutex); 4672 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4673 btrfs_info(fs_info, "balance: paused"); 4674 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4675 paused = true; 4676 } 4677 /* 4678 * Balance can be canceled by: 4679 * 4680 * - Regular cancel request 4681 * Then ret == -ECANCELED and balance_cancel_req > 0 4682 * 4683 * - Fatal signal to "btrfs" process 4684 * Either the signal caught by wait_reserve_ticket() and callers 4685 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4686 * got -ECANCELED. 4687 * Either way, in this case balance_cancel_req = 0, and 4688 * ret == -EINTR or ret == -ECANCELED. 4689 * 4690 * So here we only check the return value to catch canceled balance. 4691 */ 4692 else if (ret == -ECANCELED || ret == -EINTR) 4693 btrfs_info(fs_info, "balance: canceled"); 4694 else 4695 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4696 4697 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4698 4699 if (bargs) { 4700 memset(bargs, 0, sizeof(*bargs)); 4701 btrfs_update_ioctl_balance_args(fs_info, bargs); 4702 } 4703 4704 /* We didn't pause, we can clean everything up. */ 4705 if (!paused) { 4706 reset_balance_state(fs_info); 4707 btrfs_exclop_finish(fs_info); 4708 } 4709 4710 wake_up(&fs_info->balance_wait_q); 4711 4712 return ret; 4713 out: 4714 if (bctl->flags & BTRFS_BALANCE_RESUME) 4715 reset_balance_state(fs_info); 4716 else 4717 kfree(bctl); 4718 btrfs_exclop_finish(fs_info); 4719 4720 return ret; 4721 } 4722 4723 static int balance_kthread(void *data) 4724 { 4725 struct btrfs_fs_info *fs_info = data; 4726 int ret = 0; 4727 4728 sb_start_write(fs_info->sb); 4729 mutex_lock(&fs_info->balance_mutex); 4730 if (fs_info->balance_ctl) 4731 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4732 mutex_unlock(&fs_info->balance_mutex); 4733 sb_end_write(fs_info->sb); 4734 4735 return ret; 4736 } 4737 4738 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4739 { 4740 struct task_struct *tsk; 4741 4742 mutex_lock(&fs_info->balance_mutex); 4743 if (!fs_info->balance_ctl) { 4744 mutex_unlock(&fs_info->balance_mutex); 4745 return 0; 4746 } 4747 mutex_unlock(&fs_info->balance_mutex); 4748 4749 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4750 btrfs_info(fs_info, "balance: resume skipped"); 4751 return 0; 4752 } 4753 4754 spin_lock(&fs_info->super_lock); 4755 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4756 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4757 spin_unlock(&fs_info->super_lock); 4758 /* 4759 * A ro->rw remount sequence should continue with the paused balance 4760 * regardless of who pauses it, system or the user as of now, so set 4761 * the resume flag. 4762 */ 4763 spin_lock(&fs_info->balance_lock); 4764 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4765 spin_unlock(&fs_info->balance_lock); 4766 4767 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4768 return PTR_ERR_OR_ZERO(tsk); 4769 } 4770 4771 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4772 { 4773 struct btrfs_balance_control *bctl; 4774 struct btrfs_balance_item *item; 4775 struct btrfs_disk_balance_args disk_bargs; 4776 struct btrfs_path *path; 4777 struct extent_buffer *leaf; 4778 struct btrfs_key key; 4779 int ret; 4780 4781 path = btrfs_alloc_path(); 4782 if (!path) 4783 return -ENOMEM; 4784 4785 key.objectid = BTRFS_BALANCE_OBJECTID; 4786 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4787 key.offset = 0; 4788 4789 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4790 if (ret < 0) 4791 goto out; 4792 if (ret > 0) { /* ret = -ENOENT; */ 4793 ret = 0; 4794 goto out; 4795 } 4796 4797 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4798 if (!bctl) { 4799 ret = -ENOMEM; 4800 goto out; 4801 } 4802 4803 leaf = path->nodes[0]; 4804 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4805 4806 bctl->flags = btrfs_balance_flags(leaf, item); 4807 bctl->flags |= BTRFS_BALANCE_RESUME; 4808 4809 btrfs_balance_data(leaf, item, &disk_bargs); 4810 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4811 btrfs_balance_meta(leaf, item, &disk_bargs); 4812 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4813 btrfs_balance_sys(leaf, item, &disk_bargs); 4814 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4815 4816 /* 4817 * This should never happen, as the paused balance state is recovered 4818 * during mount without any chance of other exclusive ops to collide. 4819 * 4820 * This gives the exclusive op status to balance and keeps in paused 4821 * state until user intervention (cancel or umount). If the ownership 4822 * cannot be assigned, show a message but do not fail. The balance 4823 * is in a paused state and must have fs_info::balance_ctl properly 4824 * set up. 4825 */ 4826 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4827 btrfs_warn(fs_info, 4828 "balance: cannot set exclusive op status, resume manually"); 4829 4830 btrfs_release_path(path); 4831 4832 mutex_lock(&fs_info->balance_mutex); 4833 BUG_ON(fs_info->balance_ctl); 4834 spin_lock(&fs_info->balance_lock); 4835 fs_info->balance_ctl = bctl; 4836 spin_unlock(&fs_info->balance_lock); 4837 mutex_unlock(&fs_info->balance_mutex); 4838 out: 4839 btrfs_free_path(path); 4840 return ret; 4841 } 4842 4843 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4844 { 4845 int ret = 0; 4846 4847 mutex_lock(&fs_info->balance_mutex); 4848 if (!fs_info->balance_ctl) { 4849 mutex_unlock(&fs_info->balance_mutex); 4850 return -ENOTCONN; 4851 } 4852 4853 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4854 atomic_inc(&fs_info->balance_pause_req); 4855 mutex_unlock(&fs_info->balance_mutex); 4856 4857 wait_event(fs_info->balance_wait_q, 4858 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4859 4860 mutex_lock(&fs_info->balance_mutex); 4861 /* we are good with balance_ctl ripped off from under us */ 4862 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4863 atomic_dec(&fs_info->balance_pause_req); 4864 } else { 4865 ret = -ENOTCONN; 4866 } 4867 4868 mutex_unlock(&fs_info->balance_mutex); 4869 return ret; 4870 } 4871 4872 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4873 { 4874 mutex_lock(&fs_info->balance_mutex); 4875 if (!fs_info->balance_ctl) { 4876 mutex_unlock(&fs_info->balance_mutex); 4877 return -ENOTCONN; 4878 } 4879 4880 /* 4881 * A paused balance with the item stored on disk can be resumed at 4882 * mount time if the mount is read-write. Otherwise it's still paused 4883 * and we must not allow cancelling as it deletes the item. 4884 */ 4885 if (sb_rdonly(fs_info->sb)) { 4886 mutex_unlock(&fs_info->balance_mutex); 4887 return -EROFS; 4888 } 4889 4890 atomic_inc(&fs_info->balance_cancel_req); 4891 /* 4892 * if we are running just wait and return, balance item is 4893 * deleted in btrfs_balance in this case 4894 */ 4895 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4896 mutex_unlock(&fs_info->balance_mutex); 4897 wait_event(fs_info->balance_wait_q, 4898 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4899 mutex_lock(&fs_info->balance_mutex); 4900 } else { 4901 mutex_unlock(&fs_info->balance_mutex); 4902 /* 4903 * Lock released to allow other waiters to continue, we'll 4904 * reexamine the status again. 4905 */ 4906 mutex_lock(&fs_info->balance_mutex); 4907 4908 if (fs_info->balance_ctl) { 4909 reset_balance_state(fs_info); 4910 btrfs_exclop_finish(fs_info); 4911 btrfs_info(fs_info, "balance: canceled"); 4912 } 4913 } 4914 4915 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4916 atomic_dec(&fs_info->balance_cancel_req); 4917 mutex_unlock(&fs_info->balance_mutex); 4918 return 0; 4919 } 4920 4921 /* 4922 * shrinking a device means finding all of the device extents past 4923 * the new size, and then following the back refs to the chunks. 4924 * The chunk relocation code actually frees the device extent 4925 */ 4926 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4927 { 4928 struct btrfs_fs_info *fs_info = device->fs_info; 4929 struct btrfs_root *root = fs_info->dev_root; 4930 struct btrfs_trans_handle *trans; 4931 struct btrfs_dev_extent *dev_extent = NULL; 4932 struct btrfs_path *path; 4933 u64 length; 4934 u64 chunk_offset; 4935 int ret; 4936 int slot; 4937 int failed = 0; 4938 bool retried = false; 4939 struct extent_buffer *l; 4940 struct btrfs_key key; 4941 struct btrfs_super_block *super_copy = fs_info->super_copy; 4942 u64 old_total = btrfs_super_total_bytes(super_copy); 4943 u64 old_size = btrfs_device_get_total_bytes(device); 4944 u64 diff; 4945 u64 start; 4946 u64 free_diff = 0; 4947 4948 new_size = round_down(new_size, fs_info->sectorsize); 4949 start = new_size; 4950 diff = round_down(old_size - new_size, fs_info->sectorsize); 4951 4952 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4953 return -EINVAL; 4954 4955 path = btrfs_alloc_path(); 4956 if (!path) 4957 return -ENOMEM; 4958 4959 path->reada = READA_BACK; 4960 4961 trans = btrfs_start_transaction(root, 0); 4962 if (IS_ERR(trans)) { 4963 btrfs_free_path(path); 4964 return PTR_ERR(trans); 4965 } 4966 4967 mutex_lock(&fs_info->chunk_mutex); 4968 4969 btrfs_device_set_total_bytes(device, new_size); 4970 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4971 device->fs_devices->total_rw_bytes -= diff; 4972 4973 /* 4974 * The new free_chunk_space is new_size - used, so we have to 4975 * subtract the delta of the old free_chunk_space which included 4976 * old_size - used. If used > new_size then just subtract this 4977 * entire device's free space. 4978 */ 4979 if (device->bytes_used < new_size) 4980 free_diff = (old_size - device->bytes_used) - 4981 (new_size - device->bytes_used); 4982 else 4983 free_diff = old_size - device->bytes_used; 4984 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4985 } 4986 4987 /* 4988 * Once the device's size has been set to the new size, ensure all 4989 * in-memory chunks are synced to disk so that the loop below sees them 4990 * and relocates them accordingly. 4991 */ 4992 if (contains_pending_extent(device, &start, diff)) { 4993 mutex_unlock(&fs_info->chunk_mutex); 4994 ret = btrfs_commit_transaction(trans); 4995 if (ret) 4996 goto done; 4997 } else { 4998 mutex_unlock(&fs_info->chunk_mutex); 4999 btrfs_end_transaction(trans); 5000 } 5001 5002 again: 5003 key.objectid = device->devid; 5004 key.offset = (u64)-1; 5005 key.type = BTRFS_DEV_EXTENT_KEY; 5006 5007 do { 5008 mutex_lock(&fs_info->reclaim_bgs_lock); 5009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5010 if (ret < 0) { 5011 mutex_unlock(&fs_info->reclaim_bgs_lock); 5012 goto done; 5013 } 5014 5015 ret = btrfs_previous_item(root, path, 0, key.type); 5016 if (ret) { 5017 mutex_unlock(&fs_info->reclaim_bgs_lock); 5018 if (ret < 0) 5019 goto done; 5020 ret = 0; 5021 btrfs_release_path(path); 5022 break; 5023 } 5024 5025 l = path->nodes[0]; 5026 slot = path->slots[0]; 5027 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 5028 5029 if (key.objectid != device->devid) { 5030 mutex_unlock(&fs_info->reclaim_bgs_lock); 5031 btrfs_release_path(path); 5032 break; 5033 } 5034 5035 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 5036 length = btrfs_dev_extent_length(l, dev_extent); 5037 5038 if (key.offset + length <= new_size) { 5039 mutex_unlock(&fs_info->reclaim_bgs_lock); 5040 btrfs_release_path(path); 5041 break; 5042 } 5043 5044 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 5045 btrfs_release_path(path); 5046 5047 /* 5048 * We may be relocating the only data chunk we have, 5049 * which could potentially end up with losing data's 5050 * raid profile, so lets allocate an empty one in 5051 * advance. 5052 */ 5053 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 5054 if (ret < 0) { 5055 mutex_unlock(&fs_info->reclaim_bgs_lock); 5056 goto done; 5057 } 5058 5059 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 5060 mutex_unlock(&fs_info->reclaim_bgs_lock); 5061 if (ret == -ENOSPC) { 5062 failed++; 5063 } else if (ret) { 5064 if (ret == -ETXTBSY) { 5065 btrfs_warn(fs_info, 5066 "could not shrink block group %llu due to active swapfile", 5067 chunk_offset); 5068 } 5069 goto done; 5070 } 5071 } while (key.offset-- > 0); 5072 5073 if (failed && !retried) { 5074 failed = 0; 5075 retried = true; 5076 goto again; 5077 } else if (failed && retried) { 5078 ret = -ENOSPC; 5079 goto done; 5080 } 5081 5082 /* Shrinking succeeded, else we would be at "done". */ 5083 trans = btrfs_start_transaction(root, 0); 5084 if (IS_ERR(trans)) { 5085 ret = PTR_ERR(trans); 5086 goto done; 5087 } 5088 5089 mutex_lock(&fs_info->chunk_mutex); 5090 /* Clear all state bits beyond the shrunk device size */ 5091 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5092 CHUNK_STATE_MASK); 5093 5094 btrfs_device_set_disk_total_bytes(device, new_size); 5095 if (list_empty(&device->post_commit_list)) 5096 list_add_tail(&device->post_commit_list, 5097 &trans->transaction->dev_update_list); 5098 5099 WARN_ON(diff > old_total); 5100 btrfs_set_super_total_bytes(super_copy, 5101 round_down(old_total - diff, fs_info->sectorsize)); 5102 mutex_unlock(&fs_info->chunk_mutex); 5103 5104 btrfs_reserve_chunk_metadata(trans, false); 5105 /* Now btrfs_update_device() will change the on-disk size. */ 5106 ret = btrfs_update_device(trans, device); 5107 btrfs_trans_release_chunk_metadata(trans); 5108 if (ret < 0) { 5109 btrfs_abort_transaction(trans, ret); 5110 btrfs_end_transaction(trans); 5111 } else { 5112 ret = btrfs_commit_transaction(trans); 5113 } 5114 done: 5115 btrfs_free_path(path); 5116 if (ret) { 5117 mutex_lock(&fs_info->chunk_mutex); 5118 btrfs_device_set_total_bytes(device, old_size); 5119 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5120 device->fs_devices->total_rw_bytes += diff; 5121 atomic64_add(free_diff, &fs_info->free_chunk_space); 5122 } 5123 mutex_unlock(&fs_info->chunk_mutex); 5124 } 5125 return ret; 5126 } 5127 5128 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5129 struct btrfs_key *key, 5130 struct btrfs_chunk *chunk, int item_size) 5131 { 5132 struct btrfs_super_block *super_copy = fs_info->super_copy; 5133 struct btrfs_disk_key disk_key; 5134 u32 array_size; 5135 u8 *ptr; 5136 5137 lockdep_assert_held(&fs_info->chunk_mutex); 5138 5139 array_size = btrfs_super_sys_array_size(super_copy); 5140 if (array_size + item_size + sizeof(disk_key) 5141 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5142 return -EFBIG; 5143 5144 ptr = super_copy->sys_chunk_array + array_size; 5145 btrfs_cpu_key_to_disk(&disk_key, key); 5146 memcpy(ptr, &disk_key, sizeof(disk_key)); 5147 ptr += sizeof(disk_key); 5148 memcpy(ptr, chunk, item_size); 5149 item_size += sizeof(disk_key); 5150 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5151 5152 return 0; 5153 } 5154 5155 /* 5156 * sort the devices in descending order by max_avail, total_avail 5157 */ 5158 static int btrfs_cmp_device_info(const void *a, const void *b) 5159 { 5160 const struct btrfs_device_info *di_a = a; 5161 const struct btrfs_device_info *di_b = b; 5162 5163 if (di_a->max_avail > di_b->max_avail) 5164 return -1; 5165 if (di_a->max_avail < di_b->max_avail) 5166 return 1; 5167 if (di_a->total_avail > di_b->total_avail) 5168 return -1; 5169 if (di_a->total_avail < di_b->total_avail) 5170 return 1; 5171 return 0; 5172 } 5173 5174 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5175 { 5176 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5177 return; 5178 5179 btrfs_set_fs_incompat(info, RAID56); 5180 } 5181 5182 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5183 { 5184 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5185 return; 5186 5187 btrfs_set_fs_incompat(info, RAID1C34); 5188 } 5189 5190 /* 5191 * Structure used internally for btrfs_create_chunk() function. 5192 * Wraps needed parameters. 5193 */ 5194 struct alloc_chunk_ctl { 5195 u64 start; 5196 u64 type; 5197 /* Total number of stripes to allocate */ 5198 int num_stripes; 5199 /* sub_stripes info for map */ 5200 int sub_stripes; 5201 /* Stripes per device */ 5202 int dev_stripes; 5203 /* Maximum number of devices to use */ 5204 int devs_max; 5205 /* Minimum number of devices to use */ 5206 int devs_min; 5207 /* ndevs has to be a multiple of this */ 5208 int devs_increment; 5209 /* Number of copies */ 5210 int ncopies; 5211 /* Number of stripes worth of bytes to store parity information */ 5212 int nparity; 5213 u64 max_stripe_size; 5214 u64 max_chunk_size; 5215 u64 dev_extent_min; 5216 u64 stripe_size; 5217 u64 chunk_size; 5218 int ndevs; 5219 }; 5220 5221 static void init_alloc_chunk_ctl_policy_regular( 5222 struct btrfs_fs_devices *fs_devices, 5223 struct alloc_chunk_ctl *ctl) 5224 { 5225 struct btrfs_space_info *space_info; 5226 5227 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5228 ASSERT(space_info); 5229 5230 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5231 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5232 5233 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5234 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5235 5236 /* We don't want a chunk larger than 10% of writable space */ 5237 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5238 ctl->max_chunk_size); 5239 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5240 } 5241 5242 static void init_alloc_chunk_ctl_policy_zoned( 5243 struct btrfs_fs_devices *fs_devices, 5244 struct alloc_chunk_ctl *ctl) 5245 { 5246 u64 zone_size = fs_devices->fs_info->zone_size; 5247 u64 limit; 5248 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5249 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5250 u64 min_chunk_size = min_data_stripes * zone_size; 5251 u64 type = ctl->type; 5252 5253 ctl->max_stripe_size = zone_size; 5254 if (type & BTRFS_BLOCK_GROUP_DATA) { 5255 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5256 zone_size); 5257 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5258 ctl->max_chunk_size = ctl->max_stripe_size; 5259 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5260 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5261 ctl->devs_max = min_t(int, ctl->devs_max, 5262 BTRFS_MAX_DEVS_SYS_CHUNK); 5263 } else { 5264 BUG(); 5265 } 5266 5267 /* We don't want a chunk larger than 10% of writable space */ 5268 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5269 zone_size), 5270 min_chunk_size); 5271 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5272 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5273 } 5274 5275 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5276 struct alloc_chunk_ctl *ctl) 5277 { 5278 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5279 5280 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5281 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5282 ctl->devs_max = btrfs_raid_array[index].devs_max; 5283 if (!ctl->devs_max) 5284 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5285 ctl->devs_min = btrfs_raid_array[index].devs_min; 5286 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5287 ctl->ncopies = btrfs_raid_array[index].ncopies; 5288 ctl->nparity = btrfs_raid_array[index].nparity; 5289 ctl->ndevs = 0; 5290 5291 switch (fs_devices->chunk_alloc_policy) { 5292 case BTRFS_CHUNK_ALLOC_REGULAR: 5293 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5294 break; 5295 case BTRFS_CHUNK_ALLOC_ZONED: 5296 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5297 break; 5298 default: 5299 BUG(); 5300 } 5301 } 5302 5303 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5304 struct alloc_chunk_ctl *ctl, 5305 struct btrfs_device_info *devices_info) 5306 { 5307 struct btrfs_fs_info *info = fs_devices->fs_info; 5308 struct btrfs_device *device; 5309 u64 total_avail; 5310 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5311 int ret; 5312 int ndevs = 0; 5313 u64 max_avail; 5314 u64 dev_offset; 5315 5316 /* 5317 * in the first pass through the devices list, we gather information 5318 * about the available holes on each device. 5319 */ 5320 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5321 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5322 WARN(1, KERN_ERR 5323 "BTRFS: read-only device in alloc_list\n"); 5324 continue; 5325 } 5326 5327 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5328 &device->dev_state) || 5329 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5330 continue; 5331 5332 if (device->total_bytes > device->bytes_used) 5333 total_avail = device->total_bytes - device->bytes_used; 5334 else 5335 total_avail = 0; 5336 5337 /* If there is no space on this device, skip it. */ 5338 if (total_avail < ctl->dev_extent_min) 5339 continue; 5340 5341 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5342 &max_avail); 5343 if (ret && ret != -ENOSPC) 5344 return ret; 5345 5346 if (ret == 0) 5347 max_avail = dev_extent_want; 5348 5349 if (max_avail < ctl->dev_extent_min) { 5350 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5351 btrfs_debug(info, 5352 "%s: devid %llu has no free space, have=%llu want=%llu", 5353 __func__, device->devid, max_avail, 5354 ctl->dev_extent_min); 5355 continue; 5356 } 5357 5358 if (ndevs == fs_devices->rw_devices) { 5359 WARN(1, "%s: found more than %llu devices\n", 5360 __func__, fs_devices->rw_devices); 5361 break; 5362 } 5363 devices_info[ndevs].dev_offset = dev_offset; 5364 devices_info[ndevs].max_avail = max_avail; 5365 devices_info[ndevs].total_avail = total_avail; 5366 devices_info[ndevs].dev = device; 5367 ++ndevs; 5368 } 5369 ctl->ndevs = ndevs; 5370 5371 /* 5372 * now sort the devices by hole size / available space 5373 */ 5374 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5375 btrfs_cmp_device_info, NULL); 5376 5377 return 0; 5378 } 5379 5380 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5381 struct btrfs_device_info *devices_info) 5382 { 5383 /* Number of stripes that count for block group size */ 5384 int data_stripes; 5385 5386 /* 5387 * The primary goal is to maximize the number of stripes, so use as 5388 * many devices as possible, even if the stripes are not maximum sized. 5389 * 5390 * The DUP profile stores more than one stripe per device, the 5391 * max_avail is the total size so we have to adjust. 5392 */ 5393 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5394 ctl->dev_stripes); 5395 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5396 5397 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5398 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5399 5400 /* 5401 * Use the number of data stripes to figure out how big this chunk is 5402 * really going to be in terms of logical address space, and compare 5403 * that answer with the max chunk size. If it's higher, we try to 5404 * reduce stripe_size. 5405 */ 5406 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5407 /* 5408 * Reduce stripe_size, round it up to a 16MB boundary again and 5409 * then use it, unless it ends up being even bigger than the 5410 * previous value we had already. 5411 */ 5412 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5413 data_stripes), SZ_16M), 5414 ctl->stripe_size); 5415 } 5416 5417 /* Stripe size should not go beyond 1G. */ 5418 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5419 5420 /* Align to BTRFS_STRIPE_LEN */ 5421 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5422 ctl->chunk_size = ctl->stripe_size * data_stripes; 5423 5424 return 0; 5425 } 5426 5427 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5428 struct btrfs_device_info *devices_info) 5429 { 5430 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5431 /* Number of stripes that count for block group size */ 5432 int data_stripes; 5433 5434 /* 5435 * It should hold because: 5436 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5437 */ 5438 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5439 5440 ctl->stripe_size = zone_size; 5441 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5442 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5443 5444 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5445 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5446 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5447 ctl->stripe_size) + ctl->nparity, 5448 ctl->dev_stripes); 5449 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5450 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5451 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5452 } 5453 5454 ctl->chunk_size = ctl->stripe_size * data_stripes; 5455 5456 return 0; 5457 } 5458 5459 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5460 struct alloc_chunk_ctl *ctl, 5461 struct btrfs_device_info *devices_info) 5462 { 5463 struct btrfs_fs_info *info = fs_devices->fs_info; 5464 5465 /* 5466 * Round down to number of usable stripes, devs_increment can be any 5467 * number so we can't use round_down() that requires power of 2, while 5468 * rounddown is safe. 5469 */ 5470 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5471 5472 if (ctl->ndevs < ctl->devs_min) { 5473 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5474 btrfs_debug(info, 5475 "%s: not enough devices with free space: have=%d minimum required=%d", 5476 __func__, ctl->ndevs, ctl->devs_min); 5477 } 5478 return -ENOSPC; 5479 } 5480 5481 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5482 5483 switch (fs_devices->chunk_alloc_policy) { 5484 case BTRFS_CHUNK_ALLOC_REGULAR: 5485 return decide_stripe_size_regular(ctl, devices_info); 5486 case BTRFS_CHUNK_ALLOC_ZONED: 5487 return decide_stripe_size_zoned(ctl, devices_info); 5488 default: 5489 BUG(); 5490 } 5491 } 5492 5493 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5494 { 5495 for (int i = 0; i < map->num_stripes; i++) { 5496 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5497 struct btrfs_device *device = stripe->dev; 5498 5499 set_extent_bit(&device->alloc_state, stripe->physical, 5500 stripe->physical + map->stripe_size - 1, 5501 bits | EXTENT_NOWAIT, NULL); 5502 } 5503 } 5504 5505 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5506 { 5507 for (int i = 0; i < map->num_stripes; i++) { 5508 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5509 struct btrfs_device *device = stripe->dev; 5510 5511 __clear_extent_bit(&device->alloc_state, stripe->physical, 5512 stripe->physical + map->stripe_size - 1, 5513 bits | EXTENT_NOWAIT, 5514 NULL, NULL); 5515 } 5516 } 5517 5518 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5519 { 5520 write_lock(&fs_info->mapping_tree_lock); 5521 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5522 RB_CLEAR_NODE(&map->rb_node); 5523 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5524 write_unlock(&fs_info->mapping_tree_lock); 5525 5526 /* Once for the tree reference. */ 5527 btrfs_free_chunk_map(map); 5528 } 5529 5530 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5531 const struct rb_node *exist) 5532 { 5533 const struct btrfs_chunk_map *new_map = 5534 rb_entry(new, struct btrfs_chunk_map, rb_node); 5535 const struct btrfs_chunk_map *exist_map = 5536 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5537 5538 if (new_map->start == exist_map->start) 5539 return 0; 5540 if (new_map->start < exist_map->start) 5541 return -1; 5542 return 1; 5543 } 5544 5545 EXPORT_FOR_TESTS 5546 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5547 { 5548 struct rb_node *exist; 5549 5550 write_lock(&fs_info->mapping_tree_lock); 5551 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5552 btrfs_chunk_map_cmp); 5553 5554 if (exist) { 5555 write_unlock(&fs_info->mapping_tree_lock); 5556 return -EEXIST; 5557 } 5558 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5559 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5560 write_unlock(&fs_info->mapping_tree_lock); 5561 5562 return 0; 5563 } 5564 5565 EXPORT_FOR_TESTS 5566 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5567 { 5568 struct btrfs_chunk_map *map; 5569 5570 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5571 if (!map) 5572 return NULL; 5573 5574 refcount_set(&map->refs, 1); 5575 RB_CLEAR_NODE(&map->rb_node); 5576 5577 return map; 5578 } 5579 5580 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5581 struct alloc_chunk_ctl *ctl, 5582 struct btrfs_device_info *devices_info) 5583 { 5584 struct btrfs_fs_info *info = trans->fs_info; 5585 struct btrfs_chunk_map *map; 5586 struct btrfs_block_group *block_group; 5587 u64 start = ctl->start; 5588 u64 type = ctl->type; 5589 int ret; 5590 5591 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5592 if (!map) 5593 return ERR_PTR(-ENOMEM); 5594 5595 map->start = start; 5596 map->chunk_len = ctl->chunk_size; 5597 map->stripe_size = ctl->stripe_size; 5598 map->type = type; 5599 map->io_align = BTRFS_STRIPE_LEN; 5600 map->io_width = BTRFS_STRIPE_LEN; 5601 map->sub_stripes = ctl->sub_stripes; 5602 map->num_stripes = ctl->num_stripes; 5603 5604 for (int i = 0; i < ctl->ndevs; i++) { 5605 for (int j = 0; j < ctl->dev_stripes; j++) { 5606 int s = i * ctl->dev_stripes + j; 5607 map->stripes[s].dev = devices_info[i].dev; 5608 map->stripes[s].physical = devices_info[i].dev_offset + 5609 j * ctl->stripe_size; 5610 } 5611 } 5612 5613 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5614 5615 ret = btrfs_add_chunk_map(info, map); 5616 if (ret) { 5617 btrfs_free_chunk_map(map); 5618 return ERR_PTR(ret); 5619 } 5620 5621 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5622 if (IS_ERR(block_group)) { 5623 btrfs_remove_chunk_map(info, map); 5624 return block_group; 5625 } 5626 5627 for (int i = 0; i < map->num_stripes; i++) { 5628 struct btrfs_device *dev = map->stripes[i].dev; 5629 5630 btrfs_device_set_bytes_used(dev, 5631 dev->bytes_used + ctl->stripe_size); 5632 if (list_empty(&dev->post_commit_list)) 5633 list_add_tail(&dev->post_commit_list, 5634 &trans->transaction->dev_update_list); 5635 } 5636 5637 atomic64_sub(ctl->stripe_size * map->num_stripes, 5638 &info->free_chunk_space); 5639 5640 check_raid56_incompat_flag(info, type); 5641 check_raid1c34_incompat_flag(info, type); 5642 5643 return block_group; 5644 } 5645 5646 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5647 u64 type) 5648 { 5649 struct btrfs_fs_info *info = trans->fs_info; 5650 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5651 struct btrfs_device_info *devices_info = NULL; 5652 struct alloc_chunk_ctl ctl; 5653 struct btrfs_block_group *block_group; 5654 int ret; 5655 5656 lockdep_assert_held(&info->chunk_mutex); 5657 5658 if (!alloc_profile_is_valid(type, 0)) { 5659 ASSERT(0); 5660 return ERR_PTR(-EINVAL); 5661 } 5662 5663 if (list_empty(&fs_devices->alloc_list)) { 5664 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5665 btrfs_debug(info, "%s: no writable device", __func__); 5666 return ERR_PTR(-ENOSPC); 5667 } 5668 5669 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5670 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5671 ASSERT(0); 5672 return ERR_PTR(-EINVAL); 5673 } 5674 5675 ctl.start = find_next_chunk(info); 5676 ctl.type = type; 5677 init_alloc_chunk_ctl(fs_devices, &ctl); 5678 5679 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5680 GFP_NOFS); 5681 if (!devices_info) 5682 return ERR_PTR(-ENOMEM); 5683 5684 ret = gather_device_info(fs_devices, &ctl, devices_info); 5685 if (ret < 0) { 5686 block_group = ERR_PTR(ret); 5687 goto out; 5688 } 5689 5690 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5691 if (ret < 0) { 5692 block_group = ERR_PTR(ret); 5693 goto out; 5694 } 5695 5696 block_group = create_chunk(trans, &ctl, devices_info); 5697 5698 out: 5699 kfree(devices_info); 5700 return block_group; 5701 } 5702 5703 /* 5704 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5705 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5706 * chunks. 5707 * 5708 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5709 * phases. 5710 */ 5711 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5712 struct btrfs_block_group *bg) 5713 { 5714 struct btrfs_fs_info *fs_info = trans->fs_info; 5715 struct btrfs_root *chunk_root = fs_info->chunk_root; 5716 struct btrfs_key key; 5717 struct btrfs_chunk *chunk; 5718 struct btrfs_stripe *stripe; 5719 struct btrfs_chunk_map *map; 5720 size_t item_size; 5721 int i; 5722 int ret; 5723 5724 /* 5725 * We take the chunk_mutex for 2 reasons: 5726 * 5727 * 1) Updates and insertions in the chunk btree must be done while holding 5728 * the chunk_mutex, as well as updating the system chunk array in the 5729 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5730 * details; 5731 * 5732 * 2) To prevent races with the final phase of a device replace operation 5733 * that replaces the device object associated with the map's stripes, 5734 * because the device object's id can change at any time during that 5735 * final phase of the device replace operation 5736 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5737 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5738 * which would cause a failure when updating the device item, which does 5739 * not exists, or persisting a stripe of the chunk item with such ID. 5740 * Here we can't use the device_list_mutex because our caller already 5741 * has locked the chunk_mutex, and the final phase of device replace 5742 * acquires both mutexes - first the device_list_mutex and then the 5743 * chunk_mutex. Using any of those two mutexes protects us from a 5744 * concurrent device replace. 5745 */ 5746 lockdep_assert_held(&fs_info->chunk_mutex); 5747 5748 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5749 if (IS_ERR(map)) { 5750 ret = PTR_ERR(map); 5751 btrfs_abort_transaction(trans, ret); 5752 return ret; 5753 } 5754 5755 item_size = btrfs_chunk_item_size(map->num_stripes); 5756 5757 chunk = kzalloc(item_size, GFP_NOFS); 5758 if (!chunk) { 5759 ret = -ENOMEM; 5760 btrfs_abort_transaction(trans, ret); 5761 goto out; 5762 } 5763 5764 for (i = 0; i < map->num_stripes; i++) { 5765 struct btrfs_device *device = map->stripes[i].dev; 5766 5767 ret = btrfs_update_device(trans, device); 5768 if (ret) 5769 goto out; 5770 } 5771 5772 stripe = &chunk->stripe; 5773 for (i = 0; i < map->num_stripes; i++) { 5774 struct btrfs_device *device = map->stripes[i].dev; 5775 const u64 dev_offset = map->stripes[i].physical; 5776 5777 btrfs_set_stack_stripe_devid(stripe, device->devid); 5778 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5779 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5780 stripe++; 5781 } 5782 5783 btrfs_set_stack_chunk_length(chunk, bg->length); 5784 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5785 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5786 btrfs_set_stack_chunk_type(chunk, map->type); 5787 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5788 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5789 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5790 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5791 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5792 5793 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5794 key.type = BTRFS_CHUNK_ITEM_KEY; 5795 key.offset = bg->start; 5796 5797 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5798 if (ret) 5799 goto out; 5800 5801 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5802 5803 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5804 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5805 if (ret) 5806 goto out; 5807 } 5808 5809 out: 5810 kfree(chunk); 5811 btrfs_free_chunk_map(map); 5812 return ret; 5813 } 5814 5815 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5816 { 5817 struct btrfs_fs_info *fs_info = trans->fs_info; 5818 u64 alloc_profile; 5819 struct btrfs_block_group *meta_bg; 5820 struct btrfs_block_group *sys_bg; 5821 5822 /* 5823 * When adding a new device for sprouting, the seed device is read-only 5824 * so we must first allocate a metadata and a system chunk. But before 5825 * adding the block group items to the extent, device and chunk btrees, 5826 * we must first: 5827 * 5828 * 1) Create both chunks without doing any changes to the btrees, as 5829 * otherwise we would get -ENOSPC since the block groups from the 5830 * seed device are read-only; 5831 * 5832 * 2) Add the device item for the new sprout device - finishing the setup 5833 * of a new block group requires updating the device item in the chunk 5834 * btree, so it must exist when we attempt to do it. The previous step 5835 * ensures this does not fail with -ENOSPC. 5836 * 5837 * After that we can add the block group items to their btrees: 5838 * update existing device item in the chunk btree, add a new block group 5839 * item to the extent btree, add a new chunk item to the chunk btree and 5840 * finally add the new device extent items to the devices btree. 5841 */ 5842 5843 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5844 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5845 if (IS_ERR(meta_bg)) 5846 return PTR_ERR(meta_bg); 5847 5848 alloc_profile = btrfs_system_alloc_profile(fs_info); 5849 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5850 if (IS_ERR(sys_bg)) 5851 return PTR_ERR(sys_bg); 5852 5853 return 0; 5854 } 5855 5856 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5857 { 5858 const int index = btrfs_bg_flags_to_raid_index(map->type); 5859 5860 return btrfs_raid_array[index].tolerated_failures; 5861 } 5862 5863 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5864 { 5865 struct btrfs_chunk_map *map; 5866 int miss_ndevs = 0; 5867 int i; 5868 bool ret = true; 5869 5870 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5871 if (IS_ERR(map)) 5872 return false; 5873 5874 for (i = 0; i < map->num_stripes; i++) { 5875 if (test_bit(BTRFS_DEV_STATE_MISSING, 5876 &map->stripes[i].dev->dev_state)) { 5877 miss_ndevs++; 5878 continue; 5879 } 5880 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5881 &map->stripes[i].dev->dev_state)) { 5882 ret = false; 5883 goto end; 5884 } 5885 } 5886 5887 /* 5888 * If the number of missing devices is larger than max errors, we can 5889 * not write the data into that chunk successfully. 5890 */ 5891 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5892 ret = false; 5893 end: 5894 btrfs_free_chunk_map(map); 5895 return ret; 5896 } 5897 5898 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5899 { 5900 write_lock(&fs_info->mapping_tree_lock); 5901 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5902 struct btrfs_chunk_map *map; 5903 struct rb_node *node; 5904 5905 node = rb_first_cached(&fs_info->mapping_tree); 5906 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5907 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5908 RB_CLEAR_NODE(&map->rb_node); 5909 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5910 /* Once for the tree ref. */ 5911 btrfs_free_chunk_map(map); 5912 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5913 } 5914 write_unlock(&fs_info->mapping_tree_lock); 5915 } 5916 5917 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5918 { 5919 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5920 5921 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5922 return 2; 5923 5924 /* 5925 * There could be two corrupted data stripes, we need to loop retry in 5926 * order to rebuild the correct data. 5927 * 5928 * Fail a stripe at a time on every retry except the stripe under 5929 * reconstruction. 5930 */ 5931 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5932 return map->num_stripes; 5933 5934 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5935 return btrfs_raid_array[index].ncopies; 5936 } 5937 5938 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5939 { 5940 struct btrfs_chunk_map *map; 5941 int ret; 5942 5943 map = btrfs_get_chunk_map(fs_info, logical, len); 5944 if (IS_ERR(map)) 5945 /* 5946 * We could return errors for these cases, but that could get 5947 * ugly and we'd probably do the same thing which is just not do 5948 * anything else and exit, so return 1 so the callers don't try 5949 * to use other copies. 5950 */ 5951 return 1; 5952 5953 ret = btrfs_chunk_map_num_copies(map); 5954 btrfs_free_chunk_map(map); 5955 return ret; 5956 } 5957 5958 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5959 u64 logical) 5960 { 5961 struct btrfs_chunk_map *map; 5962 unsigned long len = fs_info->sectorsize; 5963 5964 if (!btrfs_fs_incompat(fs_info, RAID56)) 5965 return len; 5966 5967 map = btrfs_get_chunk_map(fs_info, logical, len); 5968 5969 if (!WARN_ON(IS_ERR(map))) { 5970 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5971 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5972 btrfs_free_chunk_map(map); 5973 } 5974 return len; 5975 } 5976 5977 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5978 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5979 { 5980 for (int index = first; index < first + num_stripes; index++) { 5981 const struct btrfs_device *device = map->stripes[index].dev; 5982 5983 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5984 return index; 5985 } 5986 5987 /* If no read-preferred device is set use the first stripe. */ 5988 return first; 5989 } 5990 5991 struct stripe_mirror { 5992 u64 devid; 5993 int num; 5994 }; 5995 5996 static int btrfs_cmp_devid(const void *a, const void *b) 5997 { 5998 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5999 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 6000 6001 if (s1->devid < s2->devid) 6002 return -1; 6003 if (s1->devid > s2->devid) 6004 return 1; 6005 return 0; 6006 } 6007 6008 /* 6009 * Select a stripe for reading using the round-robin algorithm. 6010 * 6011 * 1. Compute the read cycle as the total sectors read divided by the minimum 6012 * sectors per device. 6013 * 2. Determine the stripe number for the current read by taking the modulus 6014 * of the read cycle with the total number of stripes: 6015 * 6016 * stripe index = (total sectors / min sectors per dev) % num stripes 6017 * 6018 * The calculated stripe index is then used to select the corresponding device 6019 * from the list of devices, which is ordered by devid. 6020 */ 6021 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 6022 { 6023 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 6024 struct btrfs_device *device = map->stripes[first].dev; 6025 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 6026 unsigned int read_cycle; 6027 unsigned int total_reads; 6028 unsigned int min_reads_per_dev; 6029 6030 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 6031 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 6032 fs_info->sectorsize_bits; 6033 6034 for (int index = 0, i = first; i < first + num_stripes; i++) { 6035 stripes[index].devid = map->stripes[i].dev->devid; 6036 stripes[index].num = i; 6037 index++; 6038 } 6039 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 6040 btrfs_cmp_devid, NULL); 6041 6042 read_cycle = total_reads / min_reads_per_dev; 6043 return stripes[read_cycle % num_stripes].num; 6044 } 6045 #endif 6046 6047 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6048 struct btrfs_chunk_map *map, int first, 6049 int dev_replace_is_ongoing) 6050 { 6051 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6052 int i; 6053 int num_stripes; 6054 int preferred_mirror; 6055 int tolerance; 6056 struct btrfs_device *srcdev; 6057 6058 ASSERT((map->type & 6059 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 6060 6061 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6062 num_stripes = map->sub_stripes; 6063 else 6064 num_stripes = map->num_stripes; 6065 6066 switch (policy) { 6067 default: 6068 /* Shouldn't happen, just warn and use pid instead of failing */ 6069 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6070 policy); 6071 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6072 fallthrough; 6073 case BTRFS_READ_POLICY_PID: 6074 preferred_mirror = first + (current->pid % num_stripes); 6075 break; 6076 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6077 case BTRFS_READ_POLICY_RR: 6078 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 6079 break; 6080 case BTRFS_READ_POLICY_DEVID: 6081 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 6082 break; 6083 #endif 6084 } 6085 6086 if (dev_replace_is_ongoing && 6087 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6088 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6089 srcdev = fs_info->dev_replace.srcdev; 6090 else 6091 srcdev = NULL; 6092 6093 /* 6094 * try to avoid the drive that is the source drive for a 6095 * dev-replace procedure, only choose it if no other non-missing 6096 * mirror is available 6097 */ 6098 for (tolerance = 0; tolerance < 2; tolerance++) { 6099 if (map->stripes[preferred_mirror].dev->bdev && 6100 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6101 return preferred_mirror; 6102 for (i = first; i < first + num_stripes; i++) { 6103 if (map->stripes[i].dev->bdev && 6104 (tolerance || map->stripes[i].dev != srcdev)) 6105 return i; 6106 } 6107 } 6108 6109 /* we couldn't find one that doesn't fail. Just return something 6110 * and the io error handling code will clean up eventually 6111 */ 6112 return preferred_mirror; 6113 } 6114 6115 EXPORT_FOR_TESTS 6116 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6117 u64 logical, u16 total_stripes) 6118 { 6119 struct btrfs_io_context *bioc; 6120 6121 bioc = kzalloc( 6122 /* The size of btrfs_io_context */ 6123 sizeof(struct btrfs_io_context) + 6124 /* Plus the variable array for the stripes */ 6125 sizeof(struct btrfs_io_stripe) * (total_stripes), 6126 GFP_NOFS); 6127 6128 if (!bioc) 6129 return NULL; 6130 6131 refcount_set(&bioc->refs, 1); 6132 6133 bioc->fs_info = fs_info; 6134 bioc->replace_stripe_src = -1; 6135 bioc->full_stripe_logical = (u64)-1; 6136 bioc->logical = logical; 6137 6138 return bioc; 6139 } 6140 6141 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6142 { 6143 WARN_ON(!refcount_read(&bioc->refs)); 6144 refcount_inc(&bioc->refs); 6145 } 6146 6147 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6148 { 6149 if (!bioc) 6150 return; 6151 if (refcount_dec_and_test(&bioc->refs)) 6152 kfree(bioc); 6153 } 6154 6155 /* 6156 * Please note that, discard won't be sent to target device of device 6157 * replace. 6158 */ 6159 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6160 u64 logical, u64 *length_ret, 6161 u32 *num_stripes) 6162 { 6163 struct btrfs_chunk_map *map; 6164 struct btrfs_discard_stripe *stripes; 6165 u64 length = *length_ret; 6166 u64 offset; 6167 u32 stripe_nr; 6168 u32 stripe_nr_end; 6169 u32 stripe_cnt; 6170 u64 stripe_end_offset; 6171 u64 stripe_offset; 6172 u32 stripe_index; 6173 u32 factor = 0; 6174 u32 sub_stripes = 0; 6175 u32 stripes_per_dev = 0; 6176 u32 remaining_stripes = 0; 6177 u32 last_stripe = 0; 6178 int ret; 6179 int i; 6180 6181 map = btrfs_get_chunk_map(fs_info, logical, length); 6182 if (IS_ERR(map)) 6183 return ERR_CAST(map); 6184 6185 /* we don't discard raid56 yet */ 6186 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6187 ret = -EOPNOTSUPP; 6188 goto out_free_map; 6189 } 6190 6191 offset = logical - map->start; 6192 length = min_t(u64, map->start + map->chunk_len - logical, length); 6193 *length_ret = length; 6194 6195 /* 6196 * stripe_nr counts the total number of stripes we have to stride 6197 * to get to this block 6198 */ 6199 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6200 6201 /* stripe_offset is the offset of this block in its stripe */ 6202 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6203 6204 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6205 BTRFS_STRIPE_LEN_SHIFT; 6206 stripe_cnt = stripe_nr_end - stripe_nr; 6207 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6208 (offset + length); 6209 /* 6210 * after this, stripe_nr is the number of stripes on this 6211 * device we have to walk to find the data, and stripe_index is 6212 * the number of our device in the stripe array 6213 */ 6214 *num_stripes = 1; 6215 stripe_index = 0; 6216 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6217 BTRFS_BLOCK_GROUP_RAID10)) { 6218 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6219 sub_stripes = 1; 6220 else 6221 sub_stripes = map->sub_stripes; 6222 6223 factor = map->num_stripes / sub_stripes; 6224 *num_stripes = min_t(u64, map->num_stripes, 6225 sub_stripes * stripe_cnt); 6226 stripe_index = stripe_nr % factor; 6227 stripe_nr /= factor; 6228 stripe_index *= sub_stripes; 6229 6230 remaining_stripes = stripe_cnt % factor; 6231 stripes_per_dev = stripe_cnt / factor; 6232 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6233 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6234 BTRFS_BLOCK_GROUP_DUP)) { 6235 *num_stripes = map->num_stripes; 6236 } else { 6237 stripe_index = stripe_nr % map->num_stripes; 6238 stripe_nr /= map->num_stripes; 6239 } 6240 6241 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6242 if (!stripes) { 6243 ret = -ENOMEM; 6244 goto out_free_map; 6245 } 6246 6247 for (i = 0; i < *num_stripes; i++) { 6248 stripes[i].physical = 6249 map->stripes[stripe_index].physical + 6250 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6251 stripes[i].dev = map->stripes[stripe_index].dev; 6252 6253 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6254 BTRFS_BLOCK_GROUP_RAID10)) { 6255 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6256 6257 if (i / sub_stripes < remaining_stripes) 6258 stripes[i].length += BTRFS_STRIPE_LEN; 6259 6260 /* 6261 * Special for the first stripe and 6262 * the last stripe: 6263 * 6264 * |-------|...|-------| 6265 * |----------| 6266 * off end_off 6267 */ 6268 if (i < sub_stripes) 6269 stripes[i].length -= stripe_offset; 6270 6271 if (stripe_index >= last_stripe && 6272 stripe_index <= (last_stripe + 6273 sub_stripes - 1)) 6274 stripes[i].length -= stripe_end_offset; 6275 6276 if (i == sub_stripes - 1) 6277 stripe_offset = 0; 6278 } else { 6279 stripes[i].length = length; 6280 } 6281 6282 stripe_index++; 6283 if (stripe_index == map->num_stripes) { 6284 stripe_index = 0; 6285 stripe_nr++; 6286 } 6287 } 6288 6289 btrfs_free_chunk_map(map); 6290 return stripes; 6291 out_free_map: 6292 btrfs_free_chunk_map(map); 6293 return ERR_PTR(ret); 6294 } 6295 6296 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6297 { 6298 struct btrfs_block_group *cache; 6299 bool ret; 6300 6301 /* Non zoned filesystem does not use "to_copy" flag */ 6302 if (!btrfs_is_zoned(fs_info)) 6303 return false; 6304 6305 cache = btrfs_lookup_block_group(fs_info, logical); 6306 6307 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6308 6309 btrfs_put_block_group(cache); 6310 return ret; 6311 } 6312 6313 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6314 struct btrfs_dev_replace *dev_replace, 6315 u64 logical, 6316 struct btrfs_io_geometry *io_geom) 6317 { 6318 u64 srcdev_devid = dev_replace->srcdev->devid; 6319 /* 6320 * At this stage, num_stripes is still the real number of stripes, 6321 * excluding the duplicated stripes. 6322 */ 6323 int num_stripes = io_geom->num_stripes; 6324 int max_errors = io_geom->max_errors; 6325 int nr_extra_stripes = 0; 6326 int i; 6327 6328 /* 6329 * A block group which has "to_copy" set will eventually be copied by 6330 * the dev-replace process. We can avoid cloning IO here. 6331 */ 6332 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6333 return; 6334 6335 /* 6336 * Duplicate the write operations while the dev-replace procedure is 6337 * running. Since the copying of the old disk to the new disk takes 6338 * place at run time while the filesystem is mounted writable, the 6339 * regular write operations to the old disk have to be duplicated to go 6340 * to the new disk as well. 6341 * 6342 * Note that device->missing is handled by the caller, and that the 6343 * write to the old disk is already set up in the stripes array. 6344 */ 6345 for (i = 0; i < num_stripes; i++) { 6346 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6347 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6348 6349 if (old->dev->devid != srcdev_devid) 6350 continue; 6351 6352 new->physical = old->physical; 6353 new->dev = dev_replace->tgtdev; 6354 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6355 bioc->replace_stripe_src = i; 6356 nr_extra_stripes++; 6357 } 6358 6359 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6360 ASSERT(nr_extra_stripes <= 2); 6361 /* 6362 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6363 * replace. 6364 * If we have 2 extra stripes, only choose the one with smaller physical. 6365 */ 6366 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6367 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6368 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6369 6370 /* Only DUP can have two extra stripes. */ 6371 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6372 6373 /* 6374 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6375 * The extra stripe would still be there, but won't be accessed. 6376 */ 6377 if (first->physical > second->physical) { 6378 swap(second->physical, first->physical); 6379 swap(second->dev, first->dev); 6380 nr_extra_stripes--; 6381 } 6382 } 6383 6384 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6385 io_geom->max_errors = max_errors + nr_extra_stripes; 6386 bioc->replace_nr_stripes = nr_extra_stripes; 6387 } 6388 6389 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6390 struct btrfs_io_geometry *io_geom) 6391 { 6392 /* 6393 * Stripe_nr is the stripe where this block falls. stripe_offset is 6394 * the offset of this block in its stripe. 6395 */ 6396 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6397 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6398 ASSERT(io_geom->stripe_offset < U32_MAX); 6399 6400 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6401 unsigned long full_stripe_len = 6402 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6403 6404 /* 6405 * For full stripe start, we use previously calculated 6406 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6407 * STRIPE_LEN. 6408 * 6409 * By this we can avoid u64 division completely. And we have 6410 * to go rounddown(), not round_down(), as nr_data_stripes is 6411 * not ensured to be power of 2. 6412 */ 6413 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6414 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6415 6416 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6417 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6418 /* 6419 * For writes to RAID56, allow to write a full stripe set, but 6420 * no straddling of stripe sets. 6421 */ 6422 if (io_geom->op == BTRFS_MAP_WRITE) 6423 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6424 } 6425 6426 /* 6427 * For other RAID types and for RAID56 reads, allow a single stripe (on 6428 * a single disk). 6429 */ 6430 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6431 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6432 return U64_MAX; 6433 } 6434 6435 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6436 u64 *length, struct btrfs_io_stripe *dst, 6437 struct btrfs_chunk_map *map, 6438 struct btrfs_io_geometry *io_geom) 6439 { 6440 dst->dev = map->stripes[io_geom->stripe_index].dev; 6441 6442 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6443 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6444 map->type, 6445 io_geom->stripe_index, dst); 6446 6447 dst->physical = map->stripes[io_geom->stripe_index].physical + 6448 io_geom->stripe_offset + 6449 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6450 return 0; 6451 } 6452 6453 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6454 const struct btrfs_io_stripe *smap, 6455 const struct btrfs_chunk_map *map, 6456 int num_alloc_stripes, 6457 struct btrfs_io_geometry *io_geom) 6458 { 6459 if (!smap) 6460 return false; 6461 6462 if (num_alloc_stripes != 1) 6463 return false; 6464 6465 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6466 return false; 6467 6468 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6469 return false; 6470 6471 return true; 6472 } 6473 6474 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6475 struct btrfs_io_geometry *io_geom) 6476 { 6477 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6478 io_geom->stripe_nr /= map->num_stripes; 6479 if (io_geom->op == BTRFS_MAP_READ) 6480 io_geom->mirror_num = 1; 6481 } 6482 6483 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6484 struct btrfs_chunk_map *map, 6485 struct btrfs_io_geometry *io_geom, 6486 bool dev_replace_is_ongoing) 6487 { 6488 if (io_geom->op != BTRFS_MAP_READ) { 6489 io_geom->num_stripes = map->num_stripes; 6490 return; 6491 } 6492 6493 if (io_geom->mirror_num) { 6494 io_geom->stripe_index = io_geom->mirror_num - 1; 6495 return; 6496 } 6497 6498 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6499 dev_replace_is_ongoing); 6500 io_geom->mirror_num = io_geom->stripe_index + 1; 6501 } 6502 6503 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6504 struct btrfs_io_geometry *io_geom) 6505 { 6506 if (io_geom->op != BTRFS_MAP_READ) { 6507 io_geom->num_stripes = map->num_stripes; 6508 return; 6509 } 6510 6511 if (io_geom->mirror_num) { 6512 io_geom->stripe_index = io_geom->mirror_num - 1; 6513 return; 6514 } 6515 6516 io_geom->mirror_num = 1; 6517 } 6518 6519 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6520 struct btrfs_chunk_map *map, 6521 struct btrfs_io_geometry *io_geom, 6522 bool dev_replace_is_ongoing) 6523 { 6524 u32 factor = map->num_stripes / map->sub_stripes; 6525 int old_stripe_index; 6526 6527 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6528 io_geom->stripe_nr /= factor; 6529 6530 if (io_geom->op != BTRFS_MAP_READ) { 6531 io_geom->num_stripes = map->sub_stripes; 6532 return; 6533 } 6534 6535 if (io_geom->mirror_num) { 6536 io_geom->stripe_index += io_geom->mirror_num - 1; 6537 return; 6538 } 6539 6540 old_stripe_index = io_geom->stripe_index; 6541 io_geom->stripe_index = find_live_mirror(fs_info, map, 6542 io_geom->stripe_index, 6543 dev_replace_is_ongoing); 6544 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6545 } 6546 6547 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6548 struct btrfs_io_geometry *io_geom, 6549 u64 logical, u64 *length) 6550 { 6551 int data_stripes = nr_data_stripes(map); 6552 6553 /* 6554 * Needs full stripe mapping. 6555 * 6556 * Push stripe_nr back to the start of the full stripe For those cases 6557 * needing a full stripe, @stripe_nr is the full stripe number. 6558 * 6559 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6560 * that can be expensive. Here we just divide @stripe_nr with 6561 * @data_stripes. 6562 */ 6563 io_geom->stripe_nr /= data_stripes; 6564 6565 /* RAID[56] write or recovery. Return all stripes */ 6566 io_geom->num_stripes = map->num_stripes; 6567 io_geom->max_errors = btrfs_chunk_max_errors(map); 6568 6569 /* Return the length to the full stripe end. */ 6570 *length = min(logical + *length, 6571 io_geom->raid56_full_stripe_start + map->start + 6572 btrfs_stripe_nr_to_offset(data_stripes)) - 6573 logical; 6574 io_geom->stripe_index = 0; 6575 io_geom->stripe_offset = 0; 6576 } 6577 6578 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6579 struct btrfs_io_geometry *io_geom) 6580 { 6581 int data_stripes = nr_data_stripes(map); 6582 6583 ASSERT(io_geom->mirror_num <= 1); 6584 /* Just grab the data stripe directly. */ 6585 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6586 io_geom->stripe_nr /= data_stripes; 6587 6588 /* We distribute the parity blocks across stripes. */ 6589 io_geom->stripe_index = 6590 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6591 6592 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6593 io_geom->mirror_num = 1; 6594 } 6595 6596 static void map_blocks_single(const struct btrfs_chunk_map *map, 6597 struct btrfs_io_geometry *io_geom) 6598 { 6599 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6600 io_geom->stripe_nr /= map->num_stripes; 6601 io_geom->mirror_num = io_geom->stripe_index + 1; 6602 } 6603 6604 /* 6605 * Map one logical range to one or more physical ranges. 6606 * 6607 * @length: (Mandatory) mapped length of this run. 6608 * One logical range can be split into different segments 6609 * due to factors like zones and RAID0/5/6/10 stripe 6610 * boundaries. 6611 * 6612 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6613 * which has one or more physical ranges (btrfs_io_stripe) 6614 * recorded inside. 6615 * Caller should call btrfs_put_bioc() to free it after use. 6616 * 6617 * @smap: (Optional) single physical range optimization. 6618 * If the map request can be fulfilled by one single 6619 * physical range, and this is parameter is not NULL, 6620 * then @bioc_ret would be NULL, and @smap would be 6621 * updated. 6622 * 6623 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6624 * value is 0. 6625 * 6626 * Mirror number 0 means to choose any live mirrors. 6627 * 6628 * For non-RAID56 profiles, non-zero mirror_num means 6629 * the Nth mirror. (e.g. mirror_num 1 means the first 6630 * copy). 6631 * 6632 * For RAID56 profile, mirror 1 means rebuild from P and 6633 * the remaining data stripes. 6634 * 6635 * For RAID6 profile, mirror > 2 means mark another 6636 * data/P stripe error and rebuild from the remaining 6637 * stripes.. 6638 */ 6639 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6640 u64 logical, u64 *length, 6641 struct btrfs_io_context **bioc_ret, 6642 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6643 { 6644 struct btrfs_chunk_map *map; 6645 struct btrfs_io_geometry io_geom = { 0 }; 6646 u64 map_offset; 6647 int ret = 0; 6648 int num_copies; 6649 struct btrfs_io_context *bioc = NULL; 6650 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6651 int dev_replace_is_ongoing = 0; 6652 u16 num_alloc_stripes; 6653 u64 max_len; 6654 6655 ASSERT(bioc_ret); 6656 6657 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6658 io_geom.num_stripes = 1; 6659 io_geom.stripe_index = 0; 6660 io_geom.op = op; 6661 6662 map = btrfs_get_chunk_map(fs_info, logical, *length); 6663 if (IS_ERR(map)) 6664 return PTR_ERR(map); 6665 6666 num_copies = btrfs_chunk_map_num_copies(map); 6667 if (io_geom.mirror_num > num_copies) 6668 return -EINVAL; 6669 6670 map_offset = logical - map->start; 6671 io_geom.raid56_full_stripe_start = (u64)-1; 6672 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6673 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6674 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6675 6676 if (dev_replace->replace_task != current) 6677 down_read(&dev_replace->rwsem); 6678 6679 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6680 /* 6681 * Hold the semaphore for read during the whole operation, write is 6682 * requested at commit time but must wait. 6683 */ 6684 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6685 up_read(&dev_replace->rwsem); 6686 6687 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6688 case BTRFS_BLOCK_GROUP_RAID0: 6689 map_blocks_raid0(map, &io_geom); 6690 break; 6691 case BTRFS_BLOCK_GROUP_RAID1: 6692 case BTRFS_BLOCK_GROUP_RAID1C3: 6693 case BTRFS_BLOCK_GROUP_RAID1C4: 6694 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6695 break; 6696 case BTRFS_BLOCK_GROUP_DUP: 6697 map_blocks_dup(map, &io_geom); 6698 break; 6699 case BTRFS_BLOCK_GROUP_RAID10: 6700 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6701 break; 6702 case BTRFS_BLOCK_GROUP_RAID5: 6703 case BTRFS_BLOCK_GROUP_RAID6: 6704 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6705 map_blocks_raid56_write(map, &io_geom, logical, length); 6706 else 6707 map_blocks_raid56_read(map, &io_geom); 6708 break; 6709 default: 6710 /* 6711 * After this, stripe_nr is the number of stripes on this 6712 * device we have to walk to find the data, and stripe_index is 6713 * the number of our device in the stripe array 6714 */ 6715 map_blocks_single(map, &io_geom); 6716 break; 6717 } 6718 if (io_geom.stripe_index >= map->num_stripes) { 6719 btrfs_crit(fs_info, 6720 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6721 io_geom.stripe_index, map->num_stripes); 6722 ret = -EINVAL; 6723 goto out; 6724 } 6725 6726 num_alloc_stripes = io_geom.num_stripes; 6727 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6728 op != BTRFS_MAP_READ) 6729 /* 6730 * For replace case, we need to add extra stripes for extra 6731 * duplicated stripes. 6732 * 6733 * For both WRITE and GET_READ_MIRRORS, we may have at most 6734 * 2 more stripes (DUP types, otherwise 1). 6735 */ 6736 num_alloc_stripes += 2; 6737 6738 /* 6739 * If this I/O maps to a single device, try to return the device and 6740 * physical block information on the stack instead of allocating an 6741 * I/O context structure. 6742 */ 6743 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6744 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6745 if (mirror_num_ret) 6746 *mirror_num_ret = io_geom.mirror_num; 6747 *bioc_ret = NULL; 6748 goto out; 6749 } 6750 6751 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6752 if (!bioc) { 6753 ret = -ENOMEM; 6754 goto out; 6755 } 6756 bioc->map_type = map->type; 6757 bioc->use_rst = io_geom.use_rst; 6758 6759 /* 6760 * For RAID56 full map, we need to make sure the stripes[] follows the 6761 * rule that data stripes are all ordered, then followed with P and Q 6762 * (if we have). 6763 * 6764 * It's still mostly the same as other profiles, just with extra rotation. 6765 */ 6766 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6767 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6768 /* 6769 * For RAID56 @stripe_nr is already the number of full stripes 6770 * before us, which is also the rotation value (needs to modulo 6771 * with num_stripes). 6772 * 6773 * In this case, we just add @stripe_nr with @i, then do the 6774 * modulo, to reduce one modulo call. 6775 */ 6776 bioc->full_stripe_logical = map->start + 6777 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6778 nr_data_stripes(map)); 6779 for (int i = 0; i < io_geom.num_stripes; i++) { 6780 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6781 u32 stripe_index; 6782 6783 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6784 dst->dev = map->stripes[stripe_index].dev; 6785 dst->physical = 6786 map->stripes[stripe_index].physical + 6787 io_geom.stripe_offset + 6788 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6789 } 6790 } else { 6791 /* 6792 * For all other non-RAID56 profiles, just copy the target 6793 * stripe into the bioc. 6794 */ 6795 for (int i = 0; i < io_geom.num_stripes; i++) { 6796 ret = set_io_stripe(fs_info, logical, length, 6797 &bioc->stripes[i], map, &io_geom); 6798 if (ret < 0) 6799 break; 6800 io_geom.stripe_index++; 6801 } 6802 } 6803 6804 if (ret) { 6805 *bioc_ret = NULL; 6806 btrfs_put_bioc(bioc); 6807 goto out; 6808 } 6809 6810 if (op != BTRFS_MAP_READ) 6811 io_geom.max_errors = btrfs_chunk_max_errors(map); 6812 6813 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6814 op != BTRFS_MAP_READ) { 6815 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6816 } 6817 6818 *bioc_ret = bioc; 6819 bioc->num_stripes = io_geom.num_stripes; 6820 bioc->max_errors = io_geom.max_errors; 6821 bioc->mirror_num = io_geom.mirror_num; 6822 6823 out: 6824 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6825 lockdep_assert_held(&dev_replace->rwsem); 6826 /* Unlock and let waiting writers proceed */ 6827 up_read(&dev_replace->rwsem); 6828 } 6829 btrfs_free_chunk_map(map); 6830 return ret; 6831 } 6832 6833 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6834 const struct btrfs_fs_devices *fs_devices) 6835 { 6836 if (args->fsid == NULL) 6837 return true; 6838 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6839 return true; 6840 return false; 6841 } 6842 6843 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6844 const struct btrfs_device *device) 6845 { 6846 if (args->missing) { 6847 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6848 !device->bdev) 6849 return true; 6850 return false; 6851 } 6852 6853 if (device->devid != args->devid) 6854 return false; 6855 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6856 return false; 6857 return true; 6858 } 6859 6860 /* 6861 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6862 * return NULL. 6863 * 6864 * If devid and uuid are both specified, the match must be exact, otherwise 6865 * only devid is used. 6866 */ 6867 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6868 const struct btrfs_dev_lookup_args *args) 6869 { 6870 struct btrfs_device *device; 6871 struct btrfs_fs_devices *seed_devs; 6872 6873 if (dev_args_match_fs_devices(args, fs_devices)) { 6874 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6875 if (dev_args_match_device(args, device)) 6876 return device; 6877 } 6878 } 6879 6880 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6881 if (!dev_args_match_fs_devices(args, seed_devs)) 6882 continue; 6883 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6884 if (dev_args_match_device(args, device)) 6885 return device; 6886 } 6887 } 6888 6889 return NULL; 6890 } 6891 6892 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6893 u64 devid, u8 *dev_uuid) 6894 { 6895 struct btrfs_device *device; 6896 unsigned int nofs_flag; 6897 6898 /* 6899 * We call this under the chunk_mutex, so we want to use NOFS for this 6900 * allocation, however we don't want to change btrfs_alloc_device() to 6901 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6902 * places. 6903 */ 6904 6905 nofs_flag = memalloc_nofs_save(); 6906 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6907 memalloc_nofs_restore(nofs_flag); 6908 if (IS_ERR(device)) 6909 return device; 6910 6911 list_add(&device->dev_list, &fs_devices->devices); 6912 device->fs_devices = fs_devices; 6913 fs_devices->num_devices++; 6914 6915 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6916 fs_devices->missing_devices++; 6917 6918 return device; 6919 } 6920 6921 /* 6922 * Allocate new device struct, set up devid and UUID. 6923 * 6924 * @fs_info: used only for generating a new devid, can be NULL if 6925 * devid is provided (i.e. @devid != NULL). 6926 * @devid: a pointer to devid for this device. If NULL a new devid 6927 * is generated. 6928 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6929 * is generated. 6930 * @path: a pointer to device path if available, NULL otherwise. 6931 * 6932 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6933 * on error. Returned struct is not linked onto any lists and must be 6934 * destroyed with btrfs_free_device. 6935 */ 6936 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6937 const u64 *devid, const u8 *uuid, 6938 const char *path) 6939 { 6940 struct btrfs_device *dev; 6941 u64 tmp; 6942 6943 if (WARN_ON(!devid && !fs_info)) 6944 return ERR_PTR(-EINVAL); 6945 6946 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6947 if (!dev) 6948 return ERR_PTR(-ENOMEM); 6949 6950 INIT_LIST_HEAD(&dev->dev_list); 6951 INIT_LIST_HEAD(&dev->dev_alloc_list); 6952 INIT_LIST_HEAD(&dev->post_commit_list); 6953 6954 atomic_set(&dev->dev_stats_ccnt, 0); 6955 btrfs_device_data_ordered_init(dev); 6956 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6957 6958 if (devid) 6959 tmp = *devid; 6960 else { 6961 int ret; 6962 6963 ret = find_next_devid(fs_info, &tmp); 6964 if (ret) { 6965 btrfs_free_device(dev); 6966 return ERR_PTR(ret); 6967 } 6968 } 6969 dev->devid = tmp; 6970 6971 if (uuid) 6972 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6973 else 6974 generate_random_uuid(dev->uuid); 6975 6976 if (path) { 6977 struct rcu_string *name; 6978 6979 name = rcu_string_strdup(path, GFP_KERNEL); 6980 if (!name) { 6981 btrfs_free_device(dev); 6982 return ERR_PTR(-ENOMEM); 6983 } 6984 rcu_assign_pointer(dev->name, name); 6985 } 6986 6987 return dev; 6988 } 6989 6990 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6991 u64 devid, u8 *uuid, bool error) 6992 { 6993 if (error) 6994 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6995 devid, uuid); 6996 else 6997 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6998 devid, uuid); 6999 } 7000 7001 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 7002 { 7003 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 7004 7005 return div_u64(map->chunk_len, data_stripes); 7006 } 7007 7008 #if BITS_PER_LONG == 32 7009 /* 7010 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 7011 * can't be accessed on 32bit systems. 7012 * 7013 * This function do mount time check to reject the fs if it already has 7014 * metadata chunk beyond that limit. 7015 */ 7016 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7017 u64 logical, u64 length, u64 type) 7018 { 7019 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7020 return 0; 7021 7022 if (logical + length < MAX_LFS_FILESIZE) 7023 return 0; 7024 7025 btrfs_err_32bit_limit(fs_info); 7026 return -EOVERFLOW; 7027 } 7028 7029 /* 7030 * This is to give early warning for any metadata chunk reaching 7031 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7032 * Although we can still access the metadata, it's not going to be possible 7033 * once the limit is reached. 7034 */ 7035 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7036 u64 logical, u64 length, u64 type) 7037 { 7038 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7039 return; 7040 7041 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7042 return; 7043 7044 btrfs_warn_32bit_limit(fs_info); 7045 } 7046 #endif 7047 7048 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7049 u64 devid, u8 *uuid) 7050 { 7051 struct btrfs_device *dev; 7052 7053 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7054 btrfs_report_missing_device(fs_info, devid, uuid, true); 7055 return ERR_PTR(-ENOENT); 7056 } 7057 7058 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7059 if (IS_ERR(dev)) { 7060 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7061 devid, PTR_ERR(dev)); 7062 return dev; 7063 } 7064 btrfs_report_missing_device(fs_info, devid, uuid, false); 7065 7066 return dev; 7067 } 7068 7069 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7070 struct btrfs_chunk *chunk) 7071 { 7072 BTRFS_DEV_LOOKUP_ARGS(args); 7073 struct btrfs_fs_info *fs_info = leaf->fs_info; 7074 struct btrfs_chunk_map *map; 7075 u64 logical; 7076 u64 length; 7077 u64 devid; 7078 u64 type; 7079 u8 uuid[BTRFS_UUID_SIZE]; 7080 int index; 7081 int num_stripes; 7082 int ret; 7083 int i; 7084 7085 logical = key->offset; 7086 length = btrfs_chunk_length(leaf, chunk); 7087 type = btrfs_chunk_type(leaf, chunk); 7088 index = btrfs_bg_flags_to_raid_index(type); 7089 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7090 7091 #if BITS_PER_LONG == 32 7092 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7093 if (ret < 0) 7094 return ret; 7095 warn_32bit_meta_chunk(fs_info, logical, length, type); 7096 #endif 7097 7098 map = btrfs_find_chunk_map(fs_info, logical, 1); 7099 7100 /* already mapped? */ 7101 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7102 btrfs_free_chunk_map(map); 7103 return 0; 7104 } else if (map) { 7105 btrfs_free_chunk_map(map); 7106 } 7107 7108 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7109 if (!map) 7110 return -ENOMEM; 7111 7112 map->start = logical; 7113 map->chunk_len = length; 7114 map->num_stripes = num_stripes; 7115 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7116 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7117 map->type = type; 7118 /* 7119 * We can't use the sub_stripes value, as for profiles other than 7120 * RAID10, they may have 0 as sub_stripes for filesystems created by 7121 * older mkfs (<v5.4). 7122 * In that case, it can cause divide-by-zero errors later. 7123 * Since currently sub_stripes is fixed for each profile, let's 7124 * use the trusted value instead. 7125 */ 7126 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7127 map->verified_stripes = 0; 7128 map->stripe_size = btrfs_calc_stripe_length(map); 7129 for (i = 0; i < num_stripes; i++) { 7130 map->stripes[i].physical = 7131 btrfs_stripe_offset_nr(leaf, chunk, i); 7132 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7133 args.devid = devid; 7134 read_extent_buffer(leaf, uuid, (unsigned long) 7135 btrfs_stripe_dev_uuid_nr(chunk, i), 7136 BTRFS_UUID_SIZE); 7137 args.uuid = uuid; 7138 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7139 if (!map->stripes[i].dev) { 7140 map->stripes[i].dev = handle_missing_device(fs_info, 7141 devid, uuid); 7142 if (IS_ERR(map->stripes[i].dev)) { 7143 ret = PTR_ERR(map->stripes[i].dev); 7144 btrfs_free_chunk_map(map); 7145 return ret; 7146 } 7147 } 7148 7149 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7150 &(map->stripes[i].dev->dev_state)); 7151 } 7152 7153 ret = btrfs_add_chunk_map(fs_info, map); 7154 if (ret < 0) { 7155 btrfs_err(fs_info, 7156 "failed to add chunk map, start=%llu len=%llu: %d", 7157 map->start, map->chunk_len, ret); 7158 } 7159 7160 return ret; 7161 } 7162 7163 static void fill_device_from_item(struct extent_buffer *leaf, 7164 struct btrfs_dev_item *dev_item, 7165 struct btrfs_device *device) 7166 { 7167 unsigned long ptr; 7168 7169 device->devid = btrfs_device_id(leaf, dev_item); 7170 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7171 device->total_bytes = device->disk_total_bytes; 7172 device->commit_total_bytes = device->disk_total_bytes; 7173 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7174 device->commit_bytes_used = device->bytes_used; 7175 device->type = btrfs_device_type(leaf, dev_item); 7176 device->io_align = btrfs_device_io_align(leaf, dev_item); 7177 device->io_width = btrfs_device_io_width(leaf, dev_item); 7178 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7179 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7180 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7181 7182 ptr = btrfs_device_uuid(dev_item); 7183 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7184 } 7185 7186 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7187 u8 *fsid) 7188 { 7189 struct btrfs_fs_devices *fs_devices; 7190 int ret; 7191 7192 lockdep_assert_held(&uuid_mutex); 7193 ASSERT(fsid); 7194 7195 /* This will match only for multi-device seed fs */ 7196 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7197 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7198 return fs_devices; 7199 7200 7201 fs_devices = find_fsid(fsid, NULL); 7202 if (!fs_devices) { 7203 if (!btrfs_test_opt(fs_info, DEGRADED)) 7204 return ERR_PTR(-ENOENT); 7205 7206 fs_devices = alloc_fs_devices(fsid); 7207 if (IS_ERR(fs_devices)) 7208 return fs_devices; 7209 7210 fs_devices->seeding = true; 7211 fs_devices->opened = 1; 7212 return fs_devices; 7213 } 7214 7215 /* 7216 * Upon first call for a seed fs fsid, just create a private copy of the 7217 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7218 */ 7219 fs_devices = clone_fs_devices(fs_devices); 7220 if (IS_ERR(fs_devices)) 7221 return fs_devices; 7222 7223 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7224 if (ret) { 7225 free_fs_devices(fs_devices); 7226 return ERR_PTR(ret); 7227 } 7228 7229 if (!fs_devices->seeding) { 7230 close_fs_devices(fs_devices); 7231 free_fs_devices(fs_devices); 7232 return ERR_PTR(-EINVAL); 7233 } 7234 7235 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7236 7237 return fs_devices; 7238 } 7239 7240 static int read_one_dev(struct extent_buffer *leaf, 7241 struct btrfs_dev_item *dev_item) 7242 { 7243 BTRFS_DEV_LOOKUP_ARGS(args); 7244 struct btrfs_fs_info *fs_info = leaf->fs_info; 7245 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7246 struct btrfs_device *device; 7247 u64 devid; 7248 int ret; 7249 u8 fs_uuid[BTRFS_FSID_SIZE]; 7250 u8 dev_uuid[BTRFS_UUID_SIZE]; 7251 7252 devid = btrfs_device_id(leaf, dev_item); 7253 args.devid = devid; 7254 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7255 BTRFS_UUID_SIZE); 7256 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7257 BTRFS_FSID_SIZE); 7258 args.uuid = dev_uuid; 7259 args.fsid = fs_uuid; 7260 7261 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7262 fs_devices = open_seed_devices(fs_info, fs_uuid); 7263 if (IS_ERR(fs_devices)) 7264 return PTR_ERR(fs_devices); 7265 } 7266 7267 device = btrfs_find_device(fs_info->fs_devices, &args); 7268 if (!device) { 7269 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7270 btrfs_report_missing_device(fs_info, devid, 7271 dev_uuid, true); 7272 return -ENOENT; 7273 } 7274 7275 device = add_missing_dev(fs_devices, devid, dev_uuid); 7276 if (IS_ERR(device)) { 7277 btrfs_err(fs_info, 7278 "failed to add missing dev %llu: %ld", 7279 devid, PTR_ERR(device)); 7280 return PTR_ERR(device); 7281 } 7282 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7283 } else { 7284 if (!device->bdev) { 7285 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7286 btrfs_report_missing_device(fs_info, 7287 devid, dev_uuid, true); 7288 return -ENOENT; 7289 } 7290 btrfs_report_missing_device(fs_info, devid, 7291 dev_uuid, false); 7292 } 7293 7294 if (!device->bdev && 7295 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7296 /* 7297 * this happens when a device that was properly setup 7298 * in the device info lists suddenly goes bad. 7299 * device->bdev is NULL, and so we have to set 7300 * device->missing to one here 7301 */ 7302 device->fs_devices->missing_devices++; 7303 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7304 } 7305 7306 /* Move the device to its own fs_devices */ 7307 if (device->fs_devices != fs_devices) { 7308 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7309 &device->dev_state)); 7310 7311 list_move(&device->dev_list, &fs_devices->devices); 7312 device->fs_devices->num_devices--; 7313 fs_devices->num_devices++; 7314 7315 device->fs_devices->missing_devices--; 7316 fs_devices->missing_devices++; 7317 7318 device->fs_devices = fs_devices; 7319 } 7320 } 7321 7322 if (device->fs_devices != fs_info->fs_devices) { 7323 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7324 if (device->generation != 7325 btrfs_device_generation(leaf, dev_item)) 7326 return -EINVAL; 7327 } 7328 7329 fill_device_from_item(leaf, dev_item, device); 7330 if (device->bdev) { 7331 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7332 7333 if (device->total_bytes > max_total_bytes) { 7334 btrfs_err(fs_info, 7335 "device total_bytes should be at most %llu but found %llu", 7336 max_total_bytes, device->total_bytes); 7337 return -EINVAL; 7338 } 7339 } 7340 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7341 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7342 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7343 device->fs_devices->total_rw_bytes += device->total_bytes; 7344 atomic64_add(device->total_bytes - device->bytes_used, 7345 &fs_info->free_chunk_space); 7346 } 7347 ret = 0; 7348 return ret; 7349 } 7350 7351 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7352 { 7353 struct btrfs_super_block *super_copy = fs_info->super_copy; 7354 struct extent_buffer *sb; 7355 u8 *array_ptr; 7356 unsigned long sb_array_offset; 7357 int ret = 0; 7358 u32 array_size; 7359 u32 cur_offset; 7360 struct btrfs_key key; 7361 7362 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7363 7364 /* 7365 * We allocated a dummy extent, just to use extent buffer accessors. 7366 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7367 * that's fine, we will not go beyond system chunk array anyway. 7368 */ 7369 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7370 if (!sb) 7371 return -ENOMEM; 7372 set_extent_buffer_uptodate(sb); 7373 7374 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7375 array_size = btrfs_super_sys_array_size(super_copy); 7376 7377 array_ptr = super_copy->sys_chunk_array; 7378 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7379 cur_offset = 0; 7380 7381 while (cur_offset < array_size) { 7382 struct btrfs_chunk *chunk; 7383 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7384 u32 len = sizeof(*disk_key); 7385 7386 /* 7387 * The sys_chunk_array has been already verified at super block 7388 * read time. Only do ASSERT()s for basic checks. 7389 */ 7390 ASSERT(cur_offset + len <= array_size); 7391 7392 btrfs_disk_key_to_cpu(&key, disk_key); 7393 7394 array_ptr += len; 7395 sb_array_offset += len; 7396 cur_offset += len; 7397 7398 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7399 7400 chunk = (struct btrfs_chunk *)sb_array_offset; 7401 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7402 7403 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7404 7405 ASSERT(cur_offset + len <= array_size); 7406 7407 ret = read_one_chunk(&key, sb, chunk); 7408 if (ret) 7409 break; 7410 7411 array_ptr += len; 7412 sb_array_offset += len; 7413 cur_offset += len; 7414 } 7415 clear_extent_buffer_uptodate(sb); 7416 free_extent_buffer_stale(sb); 7417 return ret; 7418 } 7419 7420 /* 7421 * Check if all chunks in the fs are OK for read-write degraded mount 7422 * 7423 * If the @failing_dev is specified, it's accounted as missing. 7424 * 7425 * Return true if all chunks meet the minimal RW mount requirements. 7426 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7427 */ 7428 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7429 struct btrfs_device *failing_dev) 7430 { 7431 struct btrfs_chunk_map *map; 7432 u64 next_start; 7433 bool ret = true; 7434 7435 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7436 /* No chunk at all? Return false anyway */ 7437 if (!map) { 7438 ret = false; 7439 goto out; 7440 } 7441 while (map) { 7442 int missing = 0; 7443 int max_tolerated; 7444 int i; 7445 7446 max_tolerated = 7447 btrfs_get_num_tolerated_disk_barrier_failures( 7448 map->type); 7449 for (i = 0; i < map->num_stripes; i++) { 7450 struct btrfs_device *dev = map->stripes[i].dev; 7451 7452 if (!dev || !dev->bdev || 7453 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7454 dev->last_flush_error) 7455 missing++; 7456 else if (failing_dev && failing_dev == dev) 7457 missing++; 7458 } 7459 if (missing > max_tolerated) { 7460 if (!failing_dev) 7461 btrfs_warn(fs_info, 7462 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7463 map->start, missing, max_tolerated); 7464 btrfs_free_chunk_map(map); 7465 ret = false; 7466 goto out; 7467 } 7468 next_start = map->start + map->chunk_len; 7469 btrfs_free_chunk_map(map); 7470 7471 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7472 } 7473 out: 7474 return ret; 7475 } 7476 7477 static void readahead_tree_node_children(struct extent_buffer *node) 7478 { 7479 int i; 7480 const int nr_items = btrfs_header_nritems(node); 7481 7482 for (i = 0; i < nr_items; i++) 7483 btrfs_readahead_node_child(node, i); 7484 } 7485 7486 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7487 { 7488 struct btrfs_root *root = fs_info->chunk_root; 7489 struct btrfs_path *path; 7490 struct extent_buffer *leaf; 7491 struct btrfs_key key; 7492 struct btrfs_key found_key; 7493 int ret; 7494 int slot; 7495 int iter_ret = 0; 7496 u64 total_dev = 0; 7497 u64 last_ra_node = 0; 7498 7499 path = btrfs_alloc_path(); 7500 if (!path) 7501 return -ENOMEM; 7502 7503 /* 7504 * uuid_mutex is needed only if we are mounting a sprout FS 7505 * otherwise we don't need it. 7506 */ 7507 mutex_lock(&uuid_mutex); 7508 7509 /* 7510 * It is possible for mount and umount to race in such a way that 7511 * we execute this code path, but open_fs_devices failed to clear 7512 * total_rw_bytes. We certainly want it cleared before reading the 7513 * device items, so clear it here. 7514 */ 7515 fs_info->fs_devices->total_rw_bytes = 0; 7516 7517 /* 7518 * Lockdep complains about possible circular locking dependency between 7519 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7520 * used for freeze procection of a fs (struct super_block.s_writers), 7521 * which we take when starting a transaction, and extent buffers of the 7522 * chunk tree if we call read_one_dev() while holding a lock on an 7523 * extent buffer of the chunk tree. Since we are mounting the filesystem 7524 * and at this point there can't be any concurrent task modifying the 7525 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7526 */ 7527 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7528 path->skip_locking = 1; 7529 7530 /* 7531 * Read all device items, and then all the chunk items. All 7532 * device items are found before any chunk item (their object id 7533 * is smaller than the lowest possible object id for a chunk 7534 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7535 */ 7536 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7537 key.offset = 0; 7538 key.type = 0; 7539 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7540 struct extent_buffer *node = path->nodes[1]; 7541 7542 leaf = path->nodes[0]; 7543 slot = path->slots[0]; 7544 7545 if (node) { 7546 if (last_ra_node != node->start) { 7547 readahead_tree_node_children(node); 7548 last_ra_node = node->start; 7549 } 7550 } 7551 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7552 struct btrfs_dev_item *dev_item; 7553 dev_item = btrfs_item_ptr(leaf, slot, 7554 struct btrfs_dev_item); 7555 ret = read_one_dev(leaf, dev_item); 7556 if (ret) 7557 goto error; 7558 total_dev++; 7559 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7560 struct btrfs_chunk *chunk; 7561 7562 /* 7563 * We are only called at mount time, so no need to take 7564 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7565 * we always lock first fs_info->chunk_mutex before 7566 * acquiring any locks on the chunk tree. This is a 7567 * requirement for chunk allocation, see the comment on 7568 * top of btrfs_chunk_alloc() for details. 7569 */ 7570 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7571 ret = read_one_chunk(&found_key, leaf, chunk); 7572 if (ret) 7573 goto error; 7574 } 7575 } 7576 /* Catch error found during iteration */ 7577 if (iter_ret < 0) { 7578 ret = iter_ret; 7579 goto error; 7580 } 7581 7582 /* 7583 * After loading chunk tree, we've got all device information, 7584 * do another round of validation checks. 7585 */ 7586 if (total_dev != fs_info->fs_devices->total_devices) { 7587 btrfs_warn(fs_info, 7588 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7589 btrfs_super_num_devices(fs_info->super_copy), 7590 total_dev); 7591 fs_info->fs_devices->total_devices = total_dev; 7592 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7593 } 7594 if (btrfs_super_total_bytes(fs_info->super_copy) < 7595 fs_info->fs_devices->total_rw_bytes) { 7596 btrfs_err(fs_info, 7597 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7598 btrfs_super_total_bytes(fs_info->super_copy), 7599 fs_info->fs_devices->total_rw_bytes); 7600 ret = -EINVAL; 7601 goto error; 7602 } 7603 ret = 0; 7604 error: 7605 mutex_unlock(&uuid_mutex); 7606 7607 btrfs_free_path(path); 7608 return ret; 7609 } 7610 7611 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7612 { 7613 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7614 struct btrfs_device *device; 7615 int ret = 0; 7616 7617 mutex_lock(&fs_devices->device_list_mutex); 7618 list_for_each_entry(device, &fs_devices->devices, dev_list) 7619 device->fs_info = fs_info; 7620 7621 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7622 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7623 device->fs_info = fs_info; 7624 ret = btrfs_get_dev_zone_info(device, false); 7625 if (ret) 7626 break; 7627 } 7628 7629 seed_devs->fs_info = fs_info; 7630 } 7631 mutex_unlock(&fs_devices->device_list_mutex); 7632 7633 return ret; 7634 } 7635 7636 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7637 const struct btrfs_dev_stats_item *ptr, 7638 int index) 7639 { 7640 u64 val; 7641 7642 read_extent_buffer(eb, &val, 7643 offsetof(struct btrfs_dev_stats_item, values) + 7644 ((unsigned long)ptr) + (index * sizeof(u64)), 7645 sizeof(val)); 7646 return val; 7647 } 7648 7649 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7650 struct btrfs_dev_stats_item *ptr, 7651 int index, u64 val) 7652 { 7653 write_extent_buffer(eb, &val, 7654 offsetof(struct btrfs_dev_stats_item, values) + 7655 ((unsigned long)ptr) + (index * sizeof(u64)), 7656 sizeof(val)); 7657 } 7658 7659 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7660 struct btrfs_path *path) 7661 { 7662 struct btrfs_dev_stats_item *ptr; 7663 struct extent_buffer *eb; 7664 struct btrfs_key key; 7665 int item_size; 7666 int i, ret, slot; 7667 7668 if (!device->fs_info->dev_root) 7669 return 0; 7670 7671 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7672 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7673 key.offset = device->devid; 7674 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7675 if (ret) { 7676 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7677 btrfs_dev_stat_set(device, i, 0); 7678 device->dev_stats_valid = 1; 7679 btrfs_release_path(path); 7680 return ret < 0 ? ret : 0; 7681 } 7682 slot = path->slots[0]; 7683 eb = path->nodes[0]; 7684 item_size = btrfs_item_size(eb, slot); 7685 7686 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7687 7688 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7689 if (item_size >= (1 + i) * sizeof(__le64)) 7690 btrfs_dev_stat_set(device, i, 7691 btrfs_dev_stats_value(eb, ptr, i)); 7692 else 7693 btrfs_dev_stat_set(device, i, 0); 7694 } 7695 7696 device->dev_stats_valid = 1; 7697 btrfs_dev_stat_print_on_load(device); 7698 btrfs_release_path(path); 7699 7700 return 0; 7701 } 7702 7703 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7704 { 7705 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7706 struct btrfs_device *device; 7707 struct btrfs_path *path = NULL; 7708 int ret = 0; 7709 7710 path = btrfs_alloc_path(); 7711 if (!path) 7712 return -ENOMEM; 7713 7714 mutex_lock(&fs_devices->device_list_mutex); 7715 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7716 ret = btrfs_device_init_dev_stats(device, path); 7717 if (ret) 7718 goto out; 7719 } 7720 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7721 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7722 ret = btrfs_device_init_dev_stats(device, path); 7723 if (ret) 7724 goto out; 7725 } 7726 } 7727 out: 7728 mutex_unlock(&fs_devices->device_list_mutex); 7729 7730 btrfs_free_path(path); 7731 return ret; 7732 } 7733 7734 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7735 struct btrfs_device *device) 7736 { 7737 struct btrfs_fs_info *fs_info = trans->fs_info; 7738 struct btrfs_root *dev_root = fs_info->dev_root; 7739 struct btrfs_path *path; 7740 struct btrfs_key key; 7741 struct extent_buffer *eb; 7742 struct btrfs_dev_stats_item *ptr; 7743 int ret; 7744 int i; 7745 7746 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7747 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7748 key.offset = device->devid; 7749 7750 path = btrfs_alloc_path(); 7751 if (!path) 7752 return -ENOMEM; 7753 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7754 if (ret < 0) { 7755 btrfs_warn_in_rcu(fs_info, 7756 "error %d while searching for dev_stats item for device %s", 7757 ret, btrfs_dev_name(device)); 7758 goto out; 7759 } 7760 7761 if (ret == 0 && 7762 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7763 /* need to delete old one and insert a new one */ 7764 ret = btrfs_del_item(trans, dev_root, path); 7765 if (ret != 0) { 7766 btrfs_warn_in_rcu(fs_info, 7767 "delete too small dev_stats item for device %s failed %d", 7768 btrfs_dev_name(device), ret); 7769 goto out; 7770 } 7771 ret = 1; 7772 } 7773 7774 if (ret == 1) { 7775 /* need to insert a new item */ 7776 btrfs_release_path(path); 7777 ret = btrfs_insert_empty_item(trans, dev_root, path, 7778 &key, sizeof(*ptr)); 7779 if (ret < 0) { 7780 btrfs_warn_in_rcu(fs_info, 7781 "insert dev_stats item for device %s failed %d", 7782 btrfs_dev_name(device), ret); 7783 goto out; 7784 } 7785 } 7786 7787 eb = path->nodes[0]; 7788 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7789 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7790 btrfs_set_dev_stats_value(eb, ptr, i, 7791 btrfs_dev_stat_read(device, i)); 7792 out: 7793 btrfs_free_path(path); 7794 return ret; 7795 } 7796 7797 /* 7798 * called from commit_transaction. Writes all changed device stats to disk. 7799 */ 7800 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7801 { 7802 struct btrfs_fs_info *fs_info = trans->fs_info; 7803 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7804 struct btrfs_device *device; 7805 int stats_cnt; 7806 int ret = 0; 7807 7808 mutex_lock(&fs_devices->device_list_mutex); 7809 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7810 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7811 if (!device->dev_stats_valid || stats_cnt == 0) 7812 continue; 7813 7814 7815 /* 7816 * There is a LOAD-LOAD control dependency between the value of 7817 * dev_stats_ccnt and updating the on-disk values which requires 7818 * reading the in-memory counters. Such control dependencies 7819 * require explicit read memory barriers. 7820 * 7821 * This memory barriers pairs with smp_mb__before_atomic in 7822 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7823 * barrier implied by atomic_xchg in 7824 * btrfs_dev_stats_read_and_reset 7825 */ 7826 smp_rmb(); 7827 7828 ret = update_dev_stat_item(trans, device); 7829 if (!ret) 7830 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7831 } 7832 mutex_unlock(&fs_devices->device_list_mutex); 7833 7834 return ret; 7835 } 7836 7837 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7838 { 7839 btrfs_dev_stat_inc(dev, index); 7840 7841 if (!dev->dev_stats_valid) 7842 return; 7843 btrfs_err_rl_in_rcu(dev->fs_info, 7844 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7845 btrfs_dev_name(dev), 7846 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7847 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7848 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7849 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7850 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7851 } 7852 7853 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7854 { 7855 int i; 7856 7857 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7858 if (btrfs_dev_stat_read(dev, i) != 0) 7859 break; 7860 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7861 return; /* all values == 0, suppress message */ 7862 7863 btrfs_info_in_rcu(dev->fs_info, 7864 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7865 btrfs_dev_name(dev), 7866 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7867 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7868 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7869 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7870 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7871 } 7872 7873 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7874 struct btrfs_ioctl_get_dev_stats *stats) 7875 { 7876 BTRFS_DEV_LOOKUP_ARGS(args); 7877 struct btrfs_device *dev; 7878 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7879 int i; 7880 7881 mutex_lock(&fs_devices->device_list_mutex); 7882 args.devid = stats->devid; 7883 dev = btrfs_find_device(fs_info->fs_devices, &args); 7884 mutex_unlock(&fs_devices->device_list_mutex); 7885 7886 if (!dev) { 7887 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7888 return -ENODEV; 7889 } else if (!dev->dev_stats_valid) { 7890 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7891 return -ENODEV; 7892 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7893 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7894 if (stats->nr_items > i) 7895 stats->values[i] = 7896 btrfs_dev_stat_read_and_reset(dev, i); 7897 else 7898 btrfs_dev_stat_set(dev, i, 0); 7899 } 7900 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7901 current->comm, task_pid_nr(current)); 7902 } else { 7903 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7904 if (stats->nr_items > i) 7905 stats->values[i] = btrfs_dev_stat_read(dev, i); 7906 } 7907 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7908 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7909 return 0; 7910 } 7911 7912 /* 7913 * Update the size and bytes used for each device where it changed. This is 7914 * delayed since we would otherwise get errors while writing out the 7915 * superblocks. 7916 * 7917 * Must be invoked during transaction commit. 7918 */ 7919 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7920 { 7921 struct btrfs_device *curr, *next; 7922 7923 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7924 7925 if (list_empty(&trans->dev_update_list)) 7926 return; 7927 7928 /* 7929 * We don't need the device_list_mutex here. This list is owned by the 7930 * transaction and the transaction must complete before the device is 7931 * released. 7932 */ 7933 mutex_lock(&trans->fs_info->chunk_mutex); 7934 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7935 post_commit_list) { 7936 list_del_init(&curr->post_commit_list); 7937 curr->commit_total_bytes = curr->disk_total_bytes; 7938 curr->commit_bytes_used = curr->bytes_used; 7939 } 7940 mutex_unlock(&trans->fs_info->chunk_mutex); 7941 } 7942 7943 /* 7944 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7945 */ 7946 int btrfs_bg_type_to_factor(u64 flags) 7947 { 7948 const int index = btrfs_bg_flags_to_raid_index(flags); 7949 7950 return btrfs_raid_array[index].ncopies; 7951 } 7952 7953 7954 7955 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7956 u64 chunk_offset, u64 devid, 7957 u64 physical_offset, u64 physical_len) 7958 { 7959 struct btrfs_dev_lookup_args args = { .devid = devid }; 7960 struct btrfs_chunk_map *map; 7961 struct btrfs_device *dev; 7962 u64 stripe_len; 7963 bool found = false; 7964 int ret = 0; 7965 int i; 7966 7967 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7968 if (!map) { 7969 btrfs_err(fs_info, 7970 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7971 physical_offset, devid); 7972 ret = -EUCLEAN; 7973 goto out; 7974 } 7975 7976 stripe_len = btrfs_calc_stripe_length(map); 7977 if (physical_len != stripe_len) { 7978 btrfs_err(fs_info, 7979 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7980 physical_offset, devid, map->start, physical_len, 7981 stripe_len); 7982 ret = -EUCLEAN; 7983 goto out; 7984 } 7985 7986 /* 7987 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7988 * space. Although kernel can handle it without problem, better to warn 7989 * the users. 7990 */ 7991 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7992 btrfs_warn(fs_info, 7993 "devid %llu physical %llu len %llu inside the reserved space", 7994 devid, physical_offset, physical_len); 7995 7996 for (i = 0; i < map->num_stripes; i++) { 7997 if (map->stripes[i].dev->devid == devid && 7998 map->stripes[i].physical == physical_offset) { 7999 found = true; 8000 if (map->verified_stripes >= map->num_stripes) { 8001 btrfs_err(fs_info, 8002 "too many dev extents for chunk %llu found", 8003 map->start); 8004 ret = -EUCLEAN; 8005 goto out; 8006 } 8007 map->verified_stripes++; 8008 break; 8009 } 8010 } 8011 if (!found) { 8012 btrfs_err(fs_info, 8013 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8014 physical_offset, devid); 8015 ret = -EUCLEAN; 8016 } 8017 8018 /* Make sure no dev extent is beyond device boundary */ 8019 dev = btrfs_find_device(fs_info->fs_devices, &args); 8020 if (!dev) { 8021 btrfs_err(fs_info, "failed to find devid %llu", devid); 8022 ret = -EUCLEAN; 8023 goto out; 8024 } 8025 8026 if (physical_offset + physical_len > dev->disk_total_bytes) { 8027 btrfs_err(fs_info, 8028 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8029 devid, physical_offset, physical_len, 8030 dev->disk_total_bytes); 8031 ret = -EUCLEAN; 8032 goto out; 8033 } 8034 8035 if (dev->zone_info) { 8036 u64 zone_size = dev->zone_info->zone_size; 8037 8038 if (!IS_ALIGNED(physical_offset, zone_size) || 8039 !IS_ALIGNED(physical_len, zone_size)) { 8040 btrfs_err(fs_info, 8041 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8042 devid, physical_offset, physical_len); 8043 ret = -EUCLEAN; 8044 goto out; 8045 } 8046 } 8047 8048 out: 8049 btrfs_free_chunk_map(map); 8050 return ret; 8051 } 8052 8053 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8054 { 8055 struct rb_node *node; 8056 int ret = 0; 8057 8058 read_lock(&fs_info->mapping_tree_lock); 8059 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8060 struct btrfs_chunk_map *map; 8061 8062 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8063 if (map->num_stripes != map->verified_stripes) { 8064 btrfs_err(fs_info, 8065 "chunk %llu has missing dev extent, have %d expect %d", 8066 map->start, map->verified_stripes, map->num_stripes); 8067 ret = -EUCLEAN; 8068 goto out; 8069 } 8070 } 8071 out: 8072 read_unlock(&fs_info->mapping_tree_lock); 8073 return ret; 8074 } 8075 8076 /* 8077 * Ensure that all dev extents are mapped to correct chunk, otherwise 8078 * later chunk allocation/free would cause unexpected behavior. 8079 * 8080 * NOTE: This will iterate through the whole device tree, which should be of 8081 * the same size level as the chunk tree. This slightly increases mount time. 8082 */ 8083 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8084 { 8085 struct btrfs_path *path; 8086 struct btrfs_root *root = fs_info->dev_root; 8087 struct btrfs_key key; 8088 u64 prev_devid = 0; 8089 u64 prev_dev_ext_end = 0; 8090 int ret = 0; 8091 8092 /* 8093 * We don't have a dev_root because we mounted with ignorebadroots and 8094 * failed to load the root, so we want to skip the verification in this 8095 * case for sure. 8096 * 8097 * However if the dev root is fine, but the tree itself is corrupted 8098 * we'd still fail to mount. This verification is only to make sure 8099 * writes can happen safely, so instead just bypass this check 8100 * completely in the case of IGNOREBADROOTS. 8101 */ 8102 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8103 return 0; 8104 8105 key.objectid = 1; 8106 key.type = BTRFS_DEV_EXTENT_KEY; 8107 key.offset = 0; 8108 8109 path = btrfs_alloc_path(); 8110 if (!path) 8111 return -ENOMEM; 8112 8113 path->reada = READA_FORWARD; 8114 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8115 if (ret < 0) 8116 goto out; 8117 8118 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8119 ret = btrfs_next_leaf(root, path); 8120 if (ret < 0) 8121 goto out; 8122 /* No dev extents at all? Not good */ 8123 if (ret > 0) { 8124 ret = -EUCLEAN; 8125 goto out; 8126 } 8127 } 8128 while (1) { 8129 struct extent_buffer *leaf = path->nodes[0]; 8130 struct btrfs_dev_extent *dext; 8131 int slot = path->slots[0]; 8132 u64 chunk_offset; 8133 u64 physical_offset; 8134 u64 physical_len; 8135 u64 devid; 8136 8137 btrfs_item_key_to_cpu(leaf, &key, slot); 8138 if (key.type != BTRFS_DEV_EXTENT_KEY) 8139 break; 8140 devid = key.objectid; 8141 physical_offset = key.offset; 8142 8143 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8144 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8145 physical_len = btrfs_dev_extent_length(leaf, dext); 8146 8147 /* Check if this dev extent overlaps with the previous one */ 8148 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8149 btrfs_err(fs_info, 8150 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8151 devid, physical_offset, prev_dev_ext_end); 8152 ret = -EUCLEAN; 8153 goto out; 8154 } 8155 8156 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8157 physical_offset, physical_len); 8158 if (ret < 0) 8159 goto out; 8160 prev_devid = devid; 8161 prev_dev_ext_end = physical_offset + physical_len; 8162 8163 ret = btrfs_next_item(root, path); 8164 if (ret < 0) 8165 goto out; 8166 if (ret > 0) { 8167 ret = 0; 8168 break; 8169 } 8170 } 8171 8172 /* Ensure all chunks have corresponding dev extents */ 8173 ret = verify_chunk_dev_extent_mapping(fs_info); 8174 out: 8175 btrfs_free_path(path); 8176 return ret; 8177 } 8178 8179 /* 8180 * Check whether the given block group or device is pinned by any inode being 8181 * used as a swapfile. 8182 */ 8183 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8184 { 8185 struct btrfs_swapfile_pin *sp; 8186 struct rb_node *node; 8187 8188 spin_lock(&fs_info->swapfile_pins_lock); 8189 node = fs_info->swapfile_pins.rb_node; 8190 while (node) { 8191 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8192 if (ptr < sp->ptr) 8193 node = node->rb_left; 8194 else if (ptr > sp->ptr) 8195 node = node->rb_right; 8196 else 8197 break; 8198 } 8199 spin_unlock(&fs_info->swapfile_pins_lock); 8200 return node != NULL; 8201 } 8202 8203 static int relocating_repair_kthread(void *data) 8204 { 8205 struct btrfs_block_group *cache = data; 8206 struct btrfs_fs_info *fs_info = cache->fs_info; 8207 u64 target; 8208 int ret = 0; 8209 8210 target = cache->start; 8211 btrfs_put_block_group(cache); 8212 8213 sb_start_write(fs_info->sb); 8214 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8215 btrfs_info(fs_info, 8216 "zoned: skip relocating block group %llu to repair: EBUSY", 8217 target); 8218 sb_end_write(fs_info->sb); 8219 return -EBUSY; 8220 } 8221 8222 mutex_lock(&fs_info->reclaim_bgs_lock); 8223 8224 /* Ensure block group still exists */ 8225 cache = btrfs_lookup_block_group(fs_info, target); 8226 if (!cache) 8227 goto out; 8228 8229 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8230 goto out; 8231 8232 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8233 if (ret < 0) 8234 goto out; 8235 8236 btrfs_info(fs_info, 8237 "zoned: relocating block group %llu to repair IO failure", 8238 target); 8239 ret = btrfs_relocate_chunk(fs_info, target); 8240 8241 out: 8242 if (cache) 8243 btrfs_put_block_group(cache); 8244 mutex_unlock(&fs_info->reclaim_bgs_lock); 8245 btrfs_exclop_finish(fs_info); 8246 sb_end_write(fs_info->sb); 8247 8248 return ret; 8249 } 8250 8251 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8252 { 8253 struct btrfs_block_group *cache; 8254 8255 if (!btrfs_is_zoned(fs_info)) 8256 return false; 8257 8258 /* Do not attempt to repair in degraded state */ 8259 if (btrfs_test_opt(fs_info, DEGRADED)) 8260 return true; 8261 8262 cache = btrfs_lookup_block_group(fs_info, logical); 8263 if (!cache) 8264 return true; 8265 8266 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8267 btrfs_put_block_group(cache); 8268 return true; 8269 } 8270 8271 kthread_run(relocating_repair_kthread, cache, 8272 "btrfs-relocating-repair"); 8273 8274 return true; 8275 } 8276 8277 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8278 struct btrfs_io_stripe *smap, 8279 u64 logical) 8280 { 8281 int data_stripes = nr_bioc_data_stripes(bioc); 8282 int i; 8283 8284 for (i = 0; i < data_stripes; i++) { 8285 u64 stripe_start = bioc->full_stripe_logical + 8286 btrfs_stripe_nr_to_offset(i); 8287 8288 if (logical >= stripe_start && 8289 logical < stripe_start + BTRFS_STRIPE_LEN) 8290 break; 8291 } 8292 ASSERT(i < data_stripes); 8293 smap->dev = bioc->stripes[i].dev; 8294 smap->physical = bioc->stripes[i].physical + 8295 ((logical - bioc->full_stripe_logical) & 8296 BTRFS_STRIPE_LEN_MASK); 8297 } 8298 8299 /* 8300 * Map a repair write into a single device. 8301 * 8302 * A repair write is triggered by read time repair or scrub, which would only 8303 * update the contents of a single device. 8304 * Not update any other mirrors nor go through RMW path. 8305 * 8306 * Callers should ensure: 8307 * 8308 * - Call btrfs_bio_counter_inc_blocked() first 8309 * - The range does not cross stripe boundary 8310 * - Has a valid @mirror_num passed in. 8311 */ 8312 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8313 struct btrfs_io_stripe *smap, u64 logical, 8314 u32 length, int mirror_num) 8315 { 8316 struct btrfs_io_context *bioc = NULL; 8317 u64 map_length = length; 8318 int mirror_ret = mirror_num; 8319 int ret; 8320 8321 ASSERT(mirror_num > 0); 8322 8323 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8324 &bioc, smap, &mirror_ret); 8325 if (ret < 0) 8326 return ret; 8327 8328 /* The map range should not cross stripe boundary. */ 8329 ASSERT(map_length >= length); 8330 8331 /* Already mapped to single stripe. */ 8332 if (!bioc) 8333 goto out; 8334 8335 /* Map the RAID56 multi-stripe writes to a single one. */ 8336 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8337 map_raid56_repair_block(bioc, smap, logical); 8338 goto out; 8339 } 8340 8341 ASSERT(mirror_num <= bioc->num_stripes); 8342 smap->dev = bioc->stripes[mirror_num - 1].dev; 8343 smap->physical = bioc->stripes[mirror_num - 1].physical; 8344 out: 8345 btrfs_put_bioc(bioc); 8346 ASSERT(smap->dev); 8347 return 0; 8348 } 8349