xref: /linux/fs/btrfs/volumes.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 #include "raid-stripe-tree.h"
39 
40 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
41 					 BTRFS_BLOCK_GROUP_RAID10 | \
42 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
43 
44 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
45 	[BTRFS_RAID_RAID10] = {
46 		.sub_stripes	= 2,
47 		.dev_stripes	= 1,
48 		.devs_max	= 0,	/* 0 == as many as possible */
49 		.devs_min	= 2,
50 		.tolerated_failures = 1,
51 		.devs_increment	= 2,
52 		.ncopies	= 2,
53 		.nparity        = 0,
54 		.raid_name	= "raid10",
55 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
56 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
57 	},
58 	[BTRFS_RAID_RAID1] = {
59 		.sub_stripes	= 1,
60 		.dev_stripes	= 1,
61 		.devs_max	= 2,
62 		.devs_min	= 2,
63 		.tolerated_failures = 1,
64 		.devs_increment	= 2,
65 		.ncopies	= 2,
66 		.nparity        = 0,
67 		.raid_name	= "raid1",
68 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
69 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
70 	},
71 	[BTRFS_RAID_RAID1C3] = {
72 		.sub_stripes	= 1,
73 		.dev_stripes	= 1,
74 		.devs_max	= 3,
75 		.devs_min	= 3,
76 		.tolerated_failures = 2,
77 		.devs_increment	= 3,
78 		.ncopies	= 3,
79 		.nparity        = 0,
80 		.raid_name	= "raid1c3",
81 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
82 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
83 	},
84 	[BTRFS_RAID_RAID1C4] = {
85 		.sub_stripes	= 1,
86 		.dev_stripes	= 1,
87 		.devs_max	= 4,
88 		.devs_min	= 4,
89 		.tolerated_failures = 3,
90 		.devs_increment	= 4,
91 		.ncopies	= 4,
92 		.nparity        = 0,
93 		.raid_name	= "raid1c4",
94 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
95 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
96 	},
97 	[BTRFS_RAID_DUP] = {
98 		.sub_stripes	= 1,
99 		.dev_stripes	= 2,
100 		.devs_max	= 1,
101 		.devs_min	= 1,
102 		.tolerated_failures = 0,
103 		.devs_increment	= 1,
104 		.ncopies	= 2,
105 		.nparity        = 0,
106 		.raid_name	= "dup",
107 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
108 		.mindev_error	= 0,
109 	},
110 	[BTRFS_RAID_RAID0] = {
111 		.sub_stripes	= 1,
112 		.dev_stripes	= 1,
113 		.devs_max	= 0,
114 		.devs_min	= 1,
115 		.tolerated_failures = 0,
116 		.devs_increment	= 1,
117 		.ncopies	= 1,
118 		.nparity        = 0,
119 		.raid_name	= "raid0",
120 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
121 		.mindev_error	= 0,
122 	},
123 	[BTRFS_RAID_SINGLE] = {
124 		.sub_stripes	= 1,
125 		.dev_stripes	= 1,
126 		.devs_max	= 1,
127 		.devs_min	= 1,
128 		.tolerated_failures = 0,
129 		.devs_increment	= 1,
130 		.ncopies	= 1,
131 		.nparity        = 0,
132 		.raid_name	= "single",
133 		.bg_flag	= 0,
134 		.mindev_error	= 0,
135 	},
136 	[BTRFS_RAID_RAID5] = {
137 		.sub_stripes	= 1,
138 		.dev_stripes	= 1,
139 		.devs_max	= 0,
140 		.devs_min	= 2,
141 		.tolerated_failures = 1,
142 		.devs_increment	= 1,
143 		.ncopies	= 1,
144 		.nparity        = 1,
145 		.raid_name	= "raid5",
146 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
147 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
148 	},
149 	[BTRFS_RAID_RAID6] = {
150 		.sub_stripes	= 1,
151 		.dev_stripes	= 1,
152 		.devs_max	= 0,
153 		.devs_min	= 3,
154 		.tolerated_failures = 2,
155 		.devs_increment	= 1,
156 		.ncopies	= 1,
157 		.nparity        = 2,
158 		.raid_name	= "raid6",
159 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
160 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
161 	},
162 };
163 
164 /*
165  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
166  * can be used as index to access btrfs_raid_array[].
167  */
168 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
169 {
170 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
171 
172 	if (!profile)
173 		return BTRFS_RAID_SINGLE;
174 
175 	return BTRFS_BG_FLAG_TO_INDEX(profile);
176 }
177 
178 const char *btrfs_bg_type_to_raid_name(u64 flags)
179 {
180 	const int index = btrfs_bg_flags_to_raid_index(flags);
181 
182 	if (index >= BTRFS_NR_RAID_TYPES)
183 		return NULL;
184 
185 	return btrfs_raid_array[index].raid_name;
186 }
187 
188 int btrfs_nr_parity_stripes(u64 type)
189 {
190 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
191 
192 	return btrfs_raid_array[index].nparity;
193 }
194 
195 /*
196  * Fill @buf with textual description of @bg_flags, no more than @size_buf
197  * bytes including terminating null byte.
198  */
199 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
200 {
201 	int i;
202 	int ret;
203 	char *bp = buf;
204 	u64 flags = bg_flags;
205 	u32 size_bp = size_buf;
206 
207 	if (!flags) {
208 		strcpy(bp, "NONE");
209 		return;
210 	}
211 
212 #define DESCRIBE_FLAG(flag, desc)						\
213 	do {								\
214 		if (flags & (flag)) {					\
215 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
216 			if (ret < 0 || ret >= size_bp)			\
217 				goto out_overflow;			\
218 			size_bp -= ret;					\
219 			bp += ret;					\
220 			flags &= ~(flag);				\
221 		}							\
222 	} while (0)
223 
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
226 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
227 
228 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
229 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
230 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
231 			      btrfs_raid_array[i].raid_name);
232 #undef DESCRIBE_FLAG
233 
234 	if (flags) {
235 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
236 		size_bp -= ret;
237 	}
238 
239 	if (size_bp < size_buf)
240 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
241 
242 	/*
243 	 * The text is trimmed, it's up to the caller to provide sufficiently
244 	 * large buffer
245 	 */
246 out_overflow:;
247 }
248 
249 static int init_first_rw_device(struct btrfs_trans_handle *trans);
250 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
251 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
252 
253 /*
254  * Device locking
255  * ==============
256  *
257  * There are several mutexes that protect manipulation of devices and low-level
258  * structures like chunks but not block groups, extents or files
259  *
260  * uuid_mutex (global lock)
261  * ------------------------
262  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
263  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
264  * device) or requested by the device= mount option
265  *
266  * the mutex can be very coarse and can cover long-running operations
267  *
268  * protects: updates to fs_devices counters like missing devices, rw devices,
269  * seeding, structure cloning, opening/closing devices at mount/umount time
270  *
271  * global::fs_devs - add, remove, updates to the global list
272  *
273  * does not protect: manipulation of the fs_devices::devices list in general
274  * but in mount context it could be used to exclude list modifications by eg.
275  * scan ioctl
276  *
277  * btrfs_device::name - renames (write side), read is RCU
278  *
279  * fs_devices::device_list_mutex (per-fs, with RCU)
280  * ------------------------------------------------
281  * protects updates to fs_devices::devices, ie. adding and deleting
282  *
283  * simple list traversal with read-only actions can be done with RCU protection
284  *
285  * may be used to exclude some operations from running concurrently without any
286  * modifications to the list (see write_all_supers)
287  *
288  * Is not required at mount and close times, because our device list is
289  * protected by the uuid_mutex at that point.
290  *
291  * balance_mutex
292  * -------------
293  * protects balance structures (status, state) and context accessed from
294  * several places (internally, ioctl)
295  *
296  * chunk_mutex
297  * -----------
298  * protects chunks, adding or removing during allocation, trim or when a new
299  * device is added/removed. Additionally it also protects post_commit_list of
300  * individual devices, since they can be added to the transaction's
301  * post_commit_list only with chunk_mutex held.
302  *
303  * cleaner_mutex
304  * -------------
305  * a big lock that is held by the cleaner thread and prevents running subvolume
306  * cleaning together with relocation or delayed iputs
307  *
308  *
309  * Lock nesting
310  * ============
311  *
312  * uuid_mutex
313  *   device_list_mutex
314  *     chunk_mutex
315  *   balance_mutex
316  *
317  *
318  * Exclusive operations
319  * ====================
320  *
321  * Maintains the exclusivity of the following operations that apply to the
322  * whole filesystem and cannot run in parallel.
323  *
324  * - Balance (*)
325  * - Device add
326  * - Device remove
327  * - Device replace (*)
328  * - Resize
329  *
330  * The device operations (as above) can be in one of the following states:
331  *
332  * - Running state
333  * - Paused state
334  * - Completed state
335  *
336  * Only device operations marked with (*) can go into the Paused state for the
337  * following reasons:
338  *
339  * - ioctl (only Balance can be Paused through ioctl)
340  * - filesystem remounted as read-only
341  * - filesystem unmounted and mounted as read-only
342  * - system power-cycle and filesystem mounted as read-only
343  * - filesystem or device errors leading to forced read-only
344  *
345  * The status of exclusive operation is set and cleared atomically.
346  * During the course of Paused state, fs_info::exclusive_operation remains set.
347  * A device operation in Paused or Running state can be canceled or resumed
348  * either by ioctl (Balance only) or when remounted as read-write.
349  * The exclusive status is cleared when the device operation is canceled or
350  * completed.
351  */
352 
353 DEFINE_MUTEX(uuid_mutex);
354 static LIST_HEAD(fs_uuids);
355 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
356 {
357 	return &fs_uuids;
358 }
359 
360 /*
361  * Allocate new btrfs_fs_devices structure identified by a fsid.
362  *
363  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
364  *           fs_devices::metadata_fsid
365  *
366  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
367  * The returned struct is not linked onto any lists and can be destroyed with
368  * kfree() right away.
369  */
370 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
371 {
372 	struct btrfs_fs_devices *fs_devs;
373 
374 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
375 	if (!fs_devs)
376 		return ERR_PTR(-ENOMEM);
377 
378 	mutex_init(&fs_devs->device_list_mutex);
379 
380 	INIT_LIST_HEAD(&fs_devs->devices);
381 	INIT_LIST_HEAD(&fs_devs->alloc_list);
382 	INIT_LIST_HEAD(&fs_devs->fs_list);
383 	INIT_LIST_HEAD(&fs_devs->seed_list);
384 
385 	if (fsid) {
386 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
387 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
388 	}
389 
390 	return fs_devs;
391 }
392 
393 static void btrfs_free_device(struct btrfs_device *device)
394 {
395 	WARN_ON(!list_empty(&device->post_commit_list));
396 	rcu_string_free(device->name);
397 	extent_io_tree_release(&device->alloc_state);
398 	btrfs_destroy_dev_zone_info(device);
399 	kfree(device);
400 }
401 
402 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
403 {
404 	struct btrfs_device *device;
405 
406 	WARN_ON(fs_devices->opened);
407 	while (!list_empty(&fs_devices->devices)) {
408 		device = list_entry(fs_devices->devices.next,
409 				    struct btrfs_device, dev_list);
410 		list_del(&device->dev_list);
411 		btrfs_free_device(device);
412 	}
413 	kfree(fs_devices);
414 }
415 
416 void __exit btrfs_cleanup_fs_uuids(void)
417 {
418 	struct btrfs_fs_devices *fs_devices;
419 
420 	while (!list_empty(&fs_uuids)) {
421 		fs_devices = list_entry(fs_uuids.next,
422 					struct btrfs_fs_devices, fs_list);
423 		list_del(&fs_devices->fs_list);
424 		free_fs_devices(fs_devices);
425 	}
426 }
427 
428 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
429 				  const u8 *fsid, const u8 *metadata_fsid)
430 {
431 	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
432 		return false;
433 
434 	if (!metadata_fsid)
435 		return true;
436 
437 	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
438 		return false;
439 
440 	return true;
441 }
442 
443 static noinline struct btrfs_fs_devices *find_fsid(
444 		const u8 *fsid, const u8 *metadata_fsid)
445 {
446 	struct btrfs_fs_devices *fs_devices;
447 
448 	ASSERT(fsid);
449 
450 	/* Handle non-split brain cases */
451 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
453 			return fs_devices;
454 	}
455 	return NULL;
456 }
457 
458 static int
459 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
460 		      int flush, struct bdev_handle **bdev_handle,
461 		      struct btrfs_super_block **disk_super)
462 {
463 	struct block_device *bdev;
464 	int ret;
465 
466 	*bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
467 
468 	if (IS_ERR(*bdev_handle)) {
469 		ret = PTR_ERR(*bdev_handle);
470 		goto error;
471 	}
472 	bdev = (*bdev_handle)->bdev;
473 
474 	if (flush)
475 		sync_blockdev(bdev);
476 	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
477 	if (ret) {
478 		bdev_release(*bdev_handle);
479 		goto error;
480 	}
481 	invalidate_bdev(bdev);
482 	*disk_super = btrfs_read_dev_super(bdev);
483 	if (IS_ERR(*disk_super)) {
484 		ret = PTR_ERR(*disk_super);
485 		bdev_release(*bdev_handle);
486 		goto error;
487 	}
488 
489 	return 0;
490 
491 error:
492 	*bdev_handle = NULL;
493 	return ret;
494 }
495 
496 /*
497  *  Search and remove all stale devices (which are not mounted).  When both
498  *  inputs are NULL, it will search and release all stale devices.
499  *
500  *  @devt:         Optional. When provided will it release all unmounted devices
501  *                 matching this devt only.
502  *  @skip_device:  Optional. Will skip this device when searching for the stale
503  *                 devices.
504  *
505  *  Return:	0 for success or if @devt is 0.
506  *		-EBUSY if @devt is a mounted device.
507  *		-ENOENT if @devt does not match any device in the list.
508  */
509 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
510 {
511 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
512 	struct btrfs_device *device, *tmp_device;
513 	int ret;
514 	bool freed = false;
515 
516 	lockdep_assert_held(&uuid_mutex);
517 
518 	/* Return good status if there is no instance of devt. */
519 	ret = 0;
520 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
521 
522 		mutex_lock(&fs_devices->device_list_mutex);
523 		list_for_each_entry_safe(device, tmp_device,
524 					 &fs_devices->devices, dev_list) {
525 			if (skip_device && skip_device == device)
526 				continue;
527 			if (devt && devt != device->devt)
528 				continue;
529 			if (fs_devices->opened) {
530 				if (devt)
531 					ret = -EBUSY;
532 				break;
533 			}
534 
535 			/* delete the stale device */
536 			fs_devices->num_devices--;
537 			list_del(&device->dev_list);
538 			btrfs_free_device(device);
539 
540 			freed = true;
541 		}
542 		mutex_unlock(&fs_devices->device_list_mutex);
543 
544 		if (fs_devices->num_devices == 0) {
545 			btrfs_sysfs_remove_fsid(fs_devices);
546 			list_del(&fs_devices->fs_list);
547 			free_fs_devices(fs_devices);
548 		}
549 	}
550 
551 	/* If there is at least one freed device return 0. */
552 	if (freed)
553 		return 0;
554 
555 	return ret;
556 }
557 
558 static struct btrfs_fs_devices *find_fsid_by_device(
559 					struct btrfs_super_block *disk_super,
560 					dev_t devt, bool *same_fsid_diff_dev)
561 {
562 	struct btrfs_fs_devices *fsid_fs_devices;
563 	struct btrfs_fs_devices *devt_fs_devices;
564 	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
565 					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
566 	bool found_by_devt = false;
567 
568 	/* Find the fs_device by the usual method, if found use it. */
569 	fsid_fs_devices = find_fsid(disk_super->fsid,
570 		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
571 
572 	/* The temp_fsid feature is supported only with single device filesystem. */
573 	if (btrfs_super_num_devices(disk_super) != 1)
574 		return fsid_fs_devices;
575 
576 	/*
577 	 * A seed device is an integral component of the sprout device, which
578 	 * functions as a multi-device filesystem. So, temp-fsid feature is
579 	 * not supported.
580 	 */
581 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
582 		return fsid_fs_devices;
583 
584 	/* Try to find a fs_devices by matching devt. */
585 	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
586 		struct btrfs_device *device;
587 
588 		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
589 			if (device->devt == devt) {
590 				found_by_devt = true;
591 				break;
592 			}
593 		}
594 		if (found_by_devt)
595 			break;
596 	}
597 
598 	if (found_by_devt) {
599 		/* Existing device. */
600 		if (fsid_fs_devices == NULL) {
601 			if (devt_fs_devices->opened == 0) {
602 				/* Stale device. */
603 				return NULL;
604 			} else {
605 				/* temp_fsid is mounting a subvol. */
606 				return devt_fs_devices;
607 			}
608 		} else {
609 			/* Regular or temp_fsid device mounting a subvol. */
610 			return devt_fs_devices;
611 		}
612 	} else {
613 		/* New device. */
614 		if (fsid_fs_devices == NULL) {
615 			return NULL;
616 		} else {
617 			/* sb::fsid is already used create a new temp_fsid. */
618 			*same_fsid_diff_dev = true;
619 			return NULL;
620 		}
621 	}
622 
623 	/* Not reached. */
624 }
625 
626 /*
627  * This is only used on mount, and we are protected from competing things
628  * messing with our fs_devices by the uuid_mutex, thus we do not need the
629  * fs_devices->device_list_mutex here.
630  */
631 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
632 			struct btrfs_device *device, blk_mode_t flags,
633 			void *holder)
634 {
635 	struct bdev_handle *bdev_handle;
636 	struct btrfs_super_block *disk_super;
637 	u64 devid;
638 	int ret;
639 
640 	if (device->bdev)
641 		return -EINVAL;
642 	if (!device->name)
643 		return -EINVAL;
644 
645 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
646 				    &bdev_handle, &disk_super);
647 	if (ret)
648 		return ret;
649 
650 	devid = btrfs_stack_device_id(&disk_super->dev_item);
651 	if (devid != device->devid)
652 		goto error_free_page;
653 
654 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
655 		goto error_free_page;
656 
657 	device->generation = btrfs_super_generation(disk_super);
658 
659 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
660 		if (btrfs_super_incompat_flags(disk_super) &
661 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
662 			pr_err(
663 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
664 			goto error_free_page;
665 		}
666 
667 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
668 		fs_devices->seeding = true;
669 	} else {
670 		if (bdev_read_only(bdev_handle->bdev))
671 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
672 		else
673 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
674 	}
675 
676 	if (!bdev_nonrot(bdev_handle->bdev))
677 		fs_devices->rotating = true;
678 
679 	if (bdev_max_discard_sectors(bdev_handle->bdev))
680 		fs_devices->discardable = true;
681 
682 	device->bdev_handle = bdev_handle;
683 	device->bdev = bdev_handle->bdev;
684 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
685 
686 	fs_devices->open_devices++;
687 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
688 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
689 		fs_devices->rw_devices++;
690 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
691 	}
692 	btrfs_release_disk_super(disk_super);
693 
694 	return 0;
695 
696 error_free_page:
697 	btrfs_release_disk_super(disk_super);
698 	bdev_release(bdev_handle);
699 
700 	return -EINVAL;
701 }
702 
703 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
704 {
705 	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
706 				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
707 
708 	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
709 }
710 
711 /*
712  * Add new device to list of registered devices
713  *
714  * Returns:
715  * device pointer which was just added or updated when successful
716  * error pointer when failed
717  */
718 static noinline struct btrfs_device *device_list_add(const char *path,
719 			   struct btrfs_super_block *disk_super,
720 			   bool *new_device_added)
721 {
722 	struct btrfs_device *device;
723 	struct btrfs_fs_devices *fs_devices = NULL;
724 	struct rcu_string *name;
725 	u64 found_transid = btrfs_super_generation(disk_super);
726 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
727 	dev_t path_devt;
728 	int error;
729 	bool same_fsid_diff_dev = false;
730 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
731 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
732 
733 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
734 		btrfs_err(NULL,
735 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
736 			  path);
737 		return ERR_PTR(-EAGAIN);
738 	}
739 
740 	error = lookup_bdev(path, &path_devt);
741 	if (error) {
742 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
743 			  path, error);
744 		return ERR_PTR(error);
745 	}
746 
747 	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
748 
749 	if (!fs_devices) {
750 		fs_devices = alloc_fs_devices(disk_super->fsid);
751 		if (has_metadata_uuid)
752 			memcpy(fs_devices->metadata_uuid,
753 			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
754 
755 		if (IS_ERR(fs_devices))
756 			return ERR_CAST(fs_devices);
757 
758 		if (same_fsid_diff_dev) {
759 			generate_random_uuid(fs_devices->fsid);
760 			fs_devices->temp_fsid = true;
761 			pr_info("BTRFS: device %s using temp-fsid %pU\n",
762 				path, fs_devices->fsid);
763 		}
764 
765 		mutex_lock(&fs_devices->device_list_mutex);
766 		list_add(&fs_devices->fs_list, &fs_uuids);
767 
768 		device = NULL;
769 	} else {
770 		struct btrfs_dev_lookup_args args = {
771 			.devid = devid,
772 			.uuid = disk_super->dev_item.uuid,
773 		};
774 
775 		mutex_lock(&fs_devices->device_list_mutex);
776 		device = btrfs_find_device(fs_devices, &args);
777 
778 		if (found_transid > fs_devices->latest_generation) {
779 			memcpy(fs_devices->fsid, disk_super->fsid,
780 					BTRFS_FSID_SIZE);
781 			memcpy(fs_devices->metadata_uuid,
782 			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
783 		}
784 	}
785 
786 	if (!device) {
787 		unsigned int nofs_flag;
788 
789 		if (fs_devices->opened) {
790 			btrfs_err(NULL,
791 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
792 				  path, fs_devices->fsid, current->comm,
793 				  task_pid_nr(current));
794 			mutex_unlock(&fs_devices->device_list_mutex);
795 			return ERR_PTR(-EBUSY);
796 		}
797 
798 		nofs_flag = memalloc_nofs_save();
799 		device = btrfs_alloc_device(NULL, &devid,
800 					    disk_super->dev_item.uuid, path);
801 		memalloc_nofs_restore(nofs_flag);
802 		if (IS_ERR(device)) {
803 			mutex_unlock(&fs_devices->device_list_mutex);
804 			/* we can safely leave the fs_devices entry around */
805 			return device;
806 		}
807 
808 		device->devt = path_devt;
809 
810 		list_add_rcu(&device->dev_list, &fs_devices->devices);
811 		fs_devices->num_devices++;
812 
813 		device->fs_devices = fs_devices;
814 		*new_device_added = true;
815 
816 		if (disk_super->label[0])
817 			pr_info(
818 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
819 				disk_super->label, devid, found_transid, path,
820 				current->comm, task_pid_nr(current));
821 		else
822 			pr_info(
823 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
824 				disk_super->fsid, devid, found_transid, path,
825 				current->comm, task_pid_nr(current));
826 
827 	} else if (!device->name || strcmp(device->name->str, path)) {
828 		/*
829 		 * When FS is already mounted.
830 		 * 1. If you are here and if the device->name is NULL that
831 		 *    means this device was missing at time of FS mount.
832 		 * 2. If you are here and if the device->name is different
833 		 *    from 'path' that means either
834 		 *      a. The same device disappeared and reappeared with
835 		 *         different name. or
836 		 *      b. The missing-disk-which-was-replaced, has
837 		 *         reappeared now.
838 		 *
839 		 * We must allow 1 and 2a above. But 2b would be a spurious
840 		 * and unintentional.
841 		 *
842 		 * Further in case of 1 and 2a above, the disk at 'path'
843 		 * would have missed some transaction when it was away and
844 		 * in case of 2a the stale bdev has to be updated as well.
845 		 * 2b must not be allowed at all time.
846 		 */
847 
848 		/*
849 		 * For now, we do allow update to btrfs_fs_device through the
850 		 * btrfs dev scan cli after FS has been mounted.  We're still
851 		 * tracking a problem where systems fail mount by subvolume id
852 		 * when we reject replacement on a mounted FS.
853 		 */
854 		if (!fs_devices->opened && found_transid < device->generation) {
855 			/*
856 			 * That is if the FS is _not_ mounted and if you
857 			 * are here, that means there is more than one
858 			 * disk with same uuid and devid.We keep the one
859 			 * with larger generation number or the last-in if
860 			 * generation are equal.
861 			 */
862 			mutex_unlock(&fs_devices->device_list_mutex);
863 			btrfs_err(NULL,
864 "device %s already registered with a higher generation, found %llu expect %llu",
865 				  path, found_transid, device->generation);
866 			return ERR_PTR(-EEXIST);
867 		}
868 
869 		/*
870 		 * We are going to replace the device path for a given devid,
871 		 * make sure it's the same device if the device is mounted
872 		 *
873 		 * NOTE: the device->fs_info may not be reliable here so pass
874 		 * in a NULL to message helpers instead. This avoids a possible
875 		 * use-after-free when the fs_info and fs_info->sb are already
876 		 * torn down.
877 		 */
878 		if (device->bdev) {
879 			if (device->devt != path_devt) {
880 				mutex_unlock(&fs_devices->device_list_mutex);
881 				btrfs_warn_in_rcu(NULL,
882 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
883 						  path, devid, found_transid,
884 						  current->comm,
885 						  task_pid_nr(current));
886 				return ERR_PTR(-EEXIST);
887 			}
888 			btrfs_info_in_rcu(NULL,
889 	"devid %llu device path %s changed to %s scanned by %s (%d)",
890 					  devid, btrfs_dev_name(device),
891 					  path, current->comm,
892 					  task_pid_nr(current));
893 		}
894 
895 		name = rcu_string_strdup(path, GFP_NOFS);
896 		if (!name) {
897 			mutex_unlock(&fs_devices->device_list_mutex);
898 			return ERR_PTR(-ENOMEM);
899 		}
900 		rcu_string_free(device->name);
901 		rcu_assign_pointer(device->name, name);
902 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
903 			fs_devices->missing_devices--;
904 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
905 		}
906 		device->devt = path_devt;
907 	}
908 
909 	/*
910 	 * Unmount does not free the btrfs_device struct but would zero
911 	 * generation along with most of the other members. So just update
912 	 * it back. We need it to pick the disk with largest generation
913 	 * (as above).
914 	 */
915 	if (!fs_devices->opened) {
916 		device->generation = found_transid;
917 		fs_devices->latest_generation = max_t(u64, found_transid,
918 						fs_devices->latest_generation);
919 	}
920 
921 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
922 
923 	mutex_unlock(&fs_devices->device_list_mutex);
924 	return device;
925 }
926 
927 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
928 {
929 	struct btrfs_fs_devices *fs_devices;
930 	struct btrfs_device *device;
931 	struct btrfs_device *orig_dev;
932 	int ret = 0;
933 
934 	lockdep_assert_held(&uuid_mutex);
935 
936 	fs_devices = alloc_fs_devices(orig->fsid);
937 	if (IS_ERR(fs_devices))
938 		return fs_devices;
939 
940 	fs_devices->total_devices = orig->total_devices;
941 
942 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
943 		const char *dev_path = NULL;
944 
945 		/*
946 		 * This is ok to do without RCU read locked because we hold the
947 		 * uuid mutex so nothing we touch in here is going to disappear.
948 		 */
949 		if (orig_dev->name)
950 			dev_path = orig_dev->name->str;
951 
952 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
953 					    orig_dev->uuid, dev_path);
954 		if (IS_ERR(device)) {
955 			ret = PTR_ERR(device);
956 			goto error;
957 		}
958 
959 		if (orig_dev->zone_info) {
960 			struct btrfs_zoned_device_info *zone_info;
961 
962 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
963 			if (!zone_info) {
964 				btrfs_free_device(device);
965 				ret = -ENOMEM;
966 				goto error;
967 			}
968 			device->zone_info = zone_info;
969 		}
970 
971 		list_add(&device->dev_list, &fs_devices->devices);
972 		device->fs_devices = fs_devices;
973 		fs_devices->num_devices++;
974 	}
975 	return fs_devices;
976 error:
977 	free_fs_devices(fs_devices);
978 	return ERR_PTR(ret);
979 }
980 
981 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
982 				      struct btrfs_device **latest_dev)
983 {
984 	struct btrfs_device *device, *next;
985 
986 	/* This is the initialized path, it is safe to release the devices. */
987 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
988 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
989 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
990 				      &device->dev_state) &&
991 			    !test_bit(BTRFS_DEV_STATE_MISSING,
992 				      &device->dev_state) &&
993 			    (!*latest_dev ||
994 			     device->generation > (*latest_dev)->generation)) {
995 				*latest_dev = device;
996 			}
997 			continue;
998 		}
999 
1000 		/*
1001 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1002 		 * in btrfs_init_dev_replace() so just continue.
1003 		 */
1004 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1005 			continue;
1006 
1007 		if (device->bdev_handle) {
1008 			bdev_release(device->bdev_handle);
1009 			device->bdev = NULL;
1010 			device->bdev_handle = NULL;
1011 			fs_devices->open_devices--;
1012 		}
1013 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1014 			list_del_init(&device->dev_alloc_list);
1015 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1016 			fs_devices->rw_devices--;
1017 		}
1018 		list_del_init(&device->dev_list);
1019 		fs_devices->num_devices--;
1020 		btrfs_free_device(device);
1021 	}
1022 
1023 }
1024 
1025 /*
1026  * After we have read the system tree and know devids belonging to this
1027  * filesystem, remove the device which does not belong there.
1028  */
1029 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1030 {
1031 	struct btrfs_device *latest_dev = NULL;
1032 	struct btrfs_fs_devices *seed_dev;
1033 
1034 	mutex_lock(&uuid_mutex);
1035 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1036 
1037 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1038 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1039 
1040 	fs_devices->latest_dev = latest_dev;
1041 
1042 	mutex_unlock(&uuid_mutex);
1043 }
1044 
1045 static void btrfs_close_bdev(struct btrfs_device *device)
1046 {
1047 	if (!device->bdev)
1048 		return;
1049 
1050 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1051 		sync_blockdev(device->bdev);
1052 		invalidate_bdev(device->bdev);
1053 	}
1054 
1055 	bdev_release(device->bdev_handle);
1056 }
1057 
1058 static void btrfs_close_one_device(struct btrfs_device *device)
1059 {
1060 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1061 
1062 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1063 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1064 		list_del_init(&device->dev_alloc_list);
1065 		fs_devices->rw_devices--;
1066 	}
1067 
1068 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1070 
1071 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1072 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1073 		fs_devices->missing_devices--;
1074 	}
1075 
1076 	btrfs_close_bdev(device);
1077 	if (device->bdev) {
1078 		fs_devices->open_devices--;
1079 		device->bdev = NULL;
1080 	}
1081 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1082 	btrfs_destroy_dev_zone_info(device);
1083 
1084 	device->fs_info = NULL;
1085 	atomic_set(&device->dev_stats_ccnt, 0);
1086 	extent_io_tree_release(&device->alloc_state);
1087 
1088 	/*
1089 	 * Reset the flush error record. We might have a transient flush error
1090 	 * in this mount, and if so we aborted the current transaction and set
1091 	 * the fs to an error state, guaranteeing no super blocks can be further
1092 	 * committed. However that error might be transient and if we unmount the
1093 	 * filesystem and mount it again, we should allow the mount to succeed
1094 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1095 	 * filesystem again we still get flush errors, then we will again abort
1096 	 * any transaction and set the error state, guaranteeing no commits of
1097 	 * unsafe super blocks.
1098 	 */
1099 	device->last_flush_error = 0;
1100 
1101 	/* Verify the device is back in a pristine state  */
1102 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1103 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1104 	WARN_ON(!list_empty(&device->dev_alloc_list));
1105 	WARN_ON(!list_empty(&device->post_commit_list));
1106 }
1107 
1108 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1109 {
1110 	struct btrfs_device *device, *tmp;
1111 
1112 	lockdep_assert_held(&uuid_mutex);
1113 
1114 	if (--fs_devices->opened > 0)
1115 		return;
1116 
1117 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1118 		btrfs_close_one_device(device);
1119 
1120 	WARN_ON(fs_devices->open_devices);
1121 	WARN_ON(fs_devices->rw_devices);
1122 	fs_devices->opened = 0;
1123 	fs_devices->seeding = false;
1124 	fs_devices->fs_info = NULL;
1125 }
1126 
1127 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1128 {
1129 	LIST_HEAD(list);
1130 	struct btrfs_fs_devices *tmp;
1131 
1132 	mutex_lock(&uuid_mutex);
1133 	close_fs_devices(fs_devices);
1134 	if (!fs_devices->opened) {
1135 		list_splice_init(&fs_devices->seed_list, &list);
1136 
1137 		/*
1138 		 * If the struct btrfs_fs_devices is not assembled with any
1139 		 * other device, it can be re-initialized during the next mount
1140 		 * without the needing device-scan step. Therefore, it can be
1141 		 * fully freed.
1142 		 */
1143 		if (fs_devices->num_devices == 1) {
1144 			list_del(&fs_devices->fs_list);
1145 			free_fs_devices(fs_devices);
1146 		}
1147 	}
1148 
1149 
1150 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1151 		close_fs_devices(fs_devices);
1152 		list_del(&fs_devices->seed_list);
1153 		free_fs_devices(fs_devices);
1154 	}
1155 	mutex_unlock(&uuid_mutex);
1156 }
1157 
1158 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1159 				blk_mode_t flags, void *holder)
1160 {
1161 	struct btrfs_device *device;
1162 	struct btrfs_device *latest_dev = NULL;
1163 	struct btrfs_device *tmp_device;
1164 
1165 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1166 				 dev_list) {
1167 		int ret;
1168 
1169 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1170 		if (ret == 0 &&
1171 		    (!latest_dev || device->generation > latest_dev->generation)) {
1172 			latest_dev = device;
1173 		} else if (ret == -ENODATA) {
1174 			fs_devices->num_devices--;
1175 			list_del(&device->dev_list);
1176 			btrfs_free_device(device);
1177 		}
1178 	}
1179 	if (fs_devices->open_devices == 0)
1180 		return -EINVAL;
1181 
1182 	fs_devices->opened = 1;
1183 	fs_devices->latest_dev = latest_dev;
1184 	fs_devices->total_rw_bytes = 0;
1185 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1186 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1187 
1188 	return 0;
1189 }
1190 
1191 static int devid_cmp(void *priv, const struct list_head *a,
1192 		     const struct list_head *b)
1193 {
1194 	const struct btrfs_device *dev1, *dev2;
1195 
1196 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1197 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1198 
1199 	if (dev1->devid < dev2->devid)
1200 		return -1;
1201 	else if (dev1->devid > dev2->devid)
1202 		return 1;
1203 	return 0;
1204 }
1205 
1206 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1207 		       blk_mode_t flags, void *holder)
1208 {
1209 	int ret;
1210 
1211 	lockdep_assert_held(&uuid_mutex);
1212 	/*
1213 	 * The device_list_mutex cannot be taken here in case opening the
1214 	 * underlying device takes further locks like open_mutex.
1215 	 *
1216 	 * We also don't need the lock here as this is called during mount and
1217 	 * exclusion is provided by uuid_mutex
1218 	 */
1219 
1220 	if (fs_devices->opened) {
1221 		fs_devices->opened++;
1222 		ret = 0;
1223 	} else {
1224 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1225 		ret = open_fs_devices(fs_devices, flags, holder);
1226 	}
1227 
1228 	return ret;
1229 }
1230 
1231 void btrfs_release_disk_super(struct btrfs_super_block *super)
1232 {
1233 	struct page *page = virt_to_page(super);
1234 
1235 	put_page(page);
1236 }
1237 
1238 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1239 						       u64 bytenr, u64 bytenr_orig)
1240 {
1241 	struct btrfs_super_block *disk_super;
1242 	struct page *page;
1243 	void *p;
1244 	pgoff_t index;
1245 
1246 	/* make sure our super fits in the device */
1247 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1248 		return ERR_PTR(-EINVAL);
1249 
1250 	/* make sure our super fits in the page */
1251 	if (sizeof(*disk_super) > PAGE_SIZE)
1252 		return ERR_PTR(-EINVAL);
1253 
1254 	/* make sure our super doesn't straddle pages on disk */
1255 	index = bytenr >> PAGE_SHIFT;
1256 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1257 		return ERR_PTR(-EINVAL);
1258 
1259 	/* pull in the page with our super */
1260 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1261 
1262 	if (IS_ERR(page))
1263 		return ERR_CAST(page);
1264 
1265 	p = page_address(page);
1266 
1267 	/* align our pointer to the offset of the super block */
1268 	disk_super = p + offset_in_page(bytenr);
1269 
1270 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1271 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1272 		btrfs_release_disk_super(p);
1273 		return ERR_PTR(-EINVAL);
1274 	}
1275 
1276 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1277 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1278 
1279 	return disk_super;
1280 }
1281 
1282 int btrfs_forget_devices(dev_t devt)
1283 {
1284 	int ret;
1285 
1286 	mutex_lock(&uuid_mutex);
1287 	ret = btrfs_free_stale_devices(devt, NULL);
1288 	mutex_unlock(&uuid_mutex);
1289 
1290 	return ret;
1291 }
1292 
1293 /*
1294  * Look for a btrfs signature on a device. This may be called out of the mount path
1295  * and we are not allowed to call set_blocksize during the scan. The superblock
1296  * is read via pagecache.
1297  *
1298  * With @mount_arg_dev it's a scan during mount time that will always register
1299  * the device or return an error. Multi-device and seeding devices are registered
1300  * in both cases.
1301  */
1302 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1303 					   bool mount_arg_dev)
1304 {
1305 	struct btrfs_super_block *disk_super;
1306 	bool new_device_added = false;
1307 	struct btrfs_device *device = NULL;
1308 	struct bdev_handle *bdev_handle;
1309 	u64 bytenr, bytenr_orig;
1310 	int ret;
1311 
1312 	lockdep_assert_held(&uuid_mutex);
1313 
1314 	/*
1315 	 * we would like to check all the supers, but that would make
1316 	 * a btrfs mount succeed after a mkfs from a different FS.
1317 	 * So, we need to add a special mount option to scan for
1318 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1319 	 */
1320 
1321 	/*
1322 	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1323 	 * device scan which may race with the user's mount or mkfs command,
1324 	 * resulting in failure.
1325 	 * Since the device scan is solely for reading purposes, there is no
1326 	 * need for an exclusive open. Additionally, the devices are read again
1327 	 * during the mount process. It is ok to get some inconsistent
1328 	 * values temporarily, as the device paths of the fsid are the only
1329 	 * required information for assembling the volume.
1330 	 */
1331 	bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1332 	if (IS_ERR(bdev_handle))
1333 		return ERR_CAST(bdev_handle);
1334 
1335 	bytenr_orig = btrfs_sb_offset(0);
1336 	ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1337 	if (ret) {
1338 		device = ERR_PTR(ret);
1339 		goto error_bdev_put;
1340 	}
1341 
1342 	disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1343 					   bytenr_orig);
1344 	if (IS_ERR(disk_super)) {
1345 		device = ERR_CAST(disk_super);
1346 		goto error_bdev_put;
1347 	}
1348 
1349 	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1350 	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1351 		dev_t devt;
1352 
1353 		ret = lookup_bdev(path, &devt);
1354 		if (ret)
1355 			btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1356 				   path, ret);
1357 		else
1358 			btrfs_free_stale_devices(devt, NULL);
1359 
1360 		pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1361 		device = NULL;
1362 		goto free_disk_super;
1363 	}
1364 
1365 	device = device_list_add(path, disk_super, &new_device_added);
1366 	if (!IS_ERR(device) && new_device_added)
1367 		btrfs_free_stale_devices(device->devt, device);
1368 
1369 free_disk_super:
1370 	btrfs_release_disk_super(disk_super);
1371 
1372 error_bdev_put:
1373 	bdev_release(bdev_handle);
1374 
1375 	return device;
1376 }
1377 
1378 /*
1379  * Try to find a chunk that intersects [start, start + len] range and when one
1380  * such is found, record the end of it in *start
1381  */
1382 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1383 				    u64 len)
1384 {
1385 	u64 physical_start, physical_end;
1386 
1387 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1388 
1389 	if (find_first_extent_bit(&device->alloc_state, *start,
1390 				  &physical_start, &physical_end,
1391 				  CHUNK_ALLOCATED, NULL)) {
1392 
1393 		if (in_range(physical_start, *start, len) ||
1394 		    in_range(*start, physical_start,
1395 			     physical_end - physical_start)) {
1396 			*start = physical_end + 1;
1397 			return true;
1398 		}
1399 	}
1400 	return false;
1401 }
1402 
1403 static u64 dev_extent_search_start(struct btrfs_device *device)
1404 {
1405 	switch (device->fs_devices->chunk_alloc_policy) {
1406 	case BTRFS_CHUNK_ALLOC_REGULAR:
1407 		return BTRFS_DEVICE_RANGE_RESERVED;
1408 	case BTRFS_CHUNK_ALLOC_ZONED:
1409 		/*
1410 		 * We don't care about the starting region like regular
1411 		 * allocator, because we anyway use/reserve the first two zones
1412 		 * for superblock logging.
1413 		 */
1414 		return 0;
1415 	default:
1416 		BUG();
1417 	}
1418 }
1419 
1420 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1421 					u64 *hole_start, u64 *hole_size,
1422 					u64 num_bytes)
1423 {
1424 	u64 zone_size = device->zone_info->zone_size;
1425 	u64 pos;
1426 	int ret;
1427 	bool changed = false;
1428 
1429 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1430 
1431 	while (*hole_size > 0) {
1432 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1433 						   *hole_start + *hole_size,
1434 						   num_bytes);
1435 		if (pos != *hole_start) {
1436 			*hole_size = *hole_start + *hole_size - pos;
1437 			*hole_start = pos;
1438 			changed = true;
1439 			if (*hole_size < num_bytes)
1440 				break;
1441 		}
1442 
1443 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1444 
1445 		/* Range is ensured to be empty */
1446 		if (!ret)
1447 			return changed;
1448 
1449 		/* Given hole range was invalid (outside of device) */
1450 		if (ret == -ERANGE) {
1451 			*hole_start += *hole_size;
1452 			*hole_size = 0;
1453 			return true;
1454 		}
1455 
1456 		*hole_start += zone_size;
1457 		*hole_size -= zone_size;
1458 		changed = true;
1459 	}
1460 
1461 	return changed;
1462 }
1463 
1464 /*
1465  * Check if specified hole is suitable for allocation.
1466  *
1467  * @device:	the device which we have the hole
1468  * @hole_start: starting position of the hole
1469  * @hole_size:	the size of the hole
1470  * @num_bytes:	the size of the free space that we need
1471  *
1472  * This function may modify @hole_start and @hole_size to reflect the suitable
1473  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1474  */
1475 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1476 				  u64 *hole_size, u64 num_bytes)
1477 {
1478 	bool changed = false;
1479 	u64 hole_end = *hole_start + *hole_size;
1480 
1481 	for (;;) {
1482 		/*
1483 		 * Check before we set max_hole_start, otherwise we could end up
1484 		 * sending back this offset anyway.
1485 		 */
1486 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1487 			if (hole_end >= *hole_start)
1488 				*hole_size = hole_end - *hole_start;
1489 			else
1490 				*hole_size = 0;
1491 			changed = true;
1492 		}
1493 
1494 		switch (device->fs_devices->chunk_alloc_policy) {
1495 		case BTRFS_CHUNK_ALLOC_REGULAR:
1496 			/* No extra check */
1497 			break;
1498 		case BTRFS_CHUNK_ALLOC_ZONED:
1499 			if (dev_extent_hole_check_zoned(device, hole_start,
1500 							hole_size, num_bytes)) {
1501 				changed = true;
1502 				/*
1503 				 * The changed hole can contain pending extent.
1504 				 * Loop again to check that.
1505 				 */
1506 				continue;
1507 			}
1508 			break;
1509 		default:
1510 			BUG();
1511 		}
1512 
1513 		break;
1514 	}
1515 
1516 	return changed;
1517 }
1518 
1519 /*
1520  * Find free space in the specified device.
1521  *
1522  * @device:	  the device which we search the free space in
1523  * @num_bytes:	  the size of the free space that we need
1524  * @search_start: the position from which to begin the search
1525  * @start:	  store the start of the free space.
1526  * @len:	  the size of the free space. that we find, or the size
1527  *		  of the max free space if we don't find suitable free space
1528  *
1529  * This does a pretty simple search, the expectation is that it is called very
1530  * infrequently and that a given device has a small number of extents.
1531  *
1532  * @start is used to store the start of the free space if we find. But if we
1533  * don't find suitable free space, it will be used to store the start position
1534  * of the max free space.
1535  *
1536  * @len is used to store the size of the free space that we find.
1537  * But if we don't find suitable free space, it is used to store the size of
1538  * the max free space.
1539  *
1540  * NOTE: This function will search *commit* root of device tree, and does extra
1541  * check to ensure dev extents are not double allocated.
1542  * This makes the function safe to allocate dev extents but may not report
1543  * correct usable device space, as device extent freed in current transaction
1544  * is not reported as available.
1545  */
1546 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1547 				u64 *start, u64 *len)
1548 {
1549 	struct btrfs_fs_info *fs_info = device->fs_info;
1550 	struct btrfs_root *root = fs_info->dev_root;
1551 	struct btrfs_key key;
1552 	struct btrfs_dev_extent *dev_extent;
1553 	struct btrfs_path *path;
1554 	u64 search_start;
1555 	u64 hole_size;
1556 	u64 max_hole_start;
1557 	u64 max_hole_size = 0;
1558 	u64 extent_end;
1559 	u64 search_end = device->total_bytes;
1560 	int ret;
1561 	int slot;
1562 	struct extent_buffer *l;
1563 
1564 	search_start = dev_extent_search_start(device);
1565 	max_hole_start = search_start;
1566 
1567 	WARN_ON(device->zone_info &&
1568 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1569 
1570 	path = btrfs_alloc_path();
1571 	if (!path) {
1572 		ret = -ENOMEM;
1573 		goto out;
1574 	}
1575 again:
1576 	if (search_start >= search_end ||
1577 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1578 		ret = -ENOSPC;
1579 		goto out;
1580 	}
1581 
1582 	path->reada = READA_FORWARD;
1583 	path->search_commit_root = 1;
1584 	path->skip_locking = 1;
1585 
1586 	key.objectid = device->devid;
1587 	key.offset = search_start;
1588 	key.type = BTRFS_DEV_EXTENT_KEY;
1589 
1590 	ret = btrfs_search_backwards(root, &key, path);
1591 	if (ret < 0)
1592 		goto out;
1593 
1594 	while (search_start < search_end) {
1595 		l = path->nodes[0];
1596 		slot = path->slots[0];
1597 		if (slot >= btrfs_header_nritems(l)) {
1598 			ret = btrfs_next_leaf(root, path);
1599 			if (ret == 0)
1600 				continue;
1601 			if (ret < 0)
1602 				goto out;
1603 
1604 			break;
1605 		}
1606 		btrfs_item_key_to_cpu(l, &key, slot);
1607 
1608 		if (key.objectid < device->devid)
1609 			goto next;
1610 
1611 		if (key.objectid > device->devid)
1612 			break;
1613 
1614 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1615 			goto next;
1616 
1617 		if (key.offset > search_end)
1618 			break;
1619 
1620 		if (key.offset > search_start) {
1621 			hole_size = key.offset - search_start;
1622 			dev_extent_hole_check(device, &search_start, &hole_size,
1623 					      num_bytes);
1624 
1625 			if (hole_size > max_hole_size) {
1626 				max_hole_start = search_start;
1627 				max_hole_size = hole_size;
1628 			}
1629 
1630 			/*
1631 			 * If this free space is greater than which we need,
1632 			 * it must be the max free space that we have found
1633 			 * until now, so max_hole_start must point to the start
1634 			 * of this free space and the length of this free space
1635 			 * is stored in max_hole_size. Thus, we return
1636 			 * max_hole_start and max_hole_size and go back to the
1637 			 * caller.
1638 			 */
1639 			if (hole_size >= num_bytes) {
1640 				ret = 0;
1641 				goto out;
1642 			}
1643 		}
1644 
1645 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1646 		extent_end = key.offset + btrfs_dev_extent_length(l,
1647 								  dev_extent);
1648 		if (extent_end > search_start)
1649 			search_start = extent_end;
1650 next:
1651 		path->slots[0]++;
1652 		cond_resched();
1653 	}
1654 
1655 	/*
1656 	 * At this point, search_start should be the end of
1657 	 * allocated dev extents, and when shrinking the device,
1658 	 * search_end may be smaller than search_start.
1659 	 */
1660 	if (search_end > search_start) {
1661 		hole_size = search_end - search_start;
1662 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1663 					  num_bytes)) {
1664 			btrfs_release_path(path);
1665 			goto again;
1666 		}
1667 
1668 		if (hole_size > max_hole_size) {
1669 			max_hole_start = search_start;
1670 			max_hole_size = hole_size;
1671 		}
1672 	}
1673 
1674 	/* See above. */
1675 	if (max_hole_size < num_bytes)
1676 		ret = -ENOSPC;
1677 	else
1678 		ret = 0;
1679 
1680 	ASSERT(max_hole_start + max_hole_size <= search_end);
1681 out:
1682 	btrfs_free_path(path);
1683 	*start = max_hole_start;
1684 	if (len)
1685 		*len = max_hole_size;
1686 	return ret;
1687 }
1688 
1689 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1690 			  struct btrfs_device *device,
1691 			  u64 start, u64 *dev_extent_len)
1692 {
1693 	struct btrfs_fs_info *fs_info = device->fs_info;
1694 	struct btrfs_root *root = fs_info->dev_root;
1695 	int ret;
1696 	struct btrfs_path *path;
1697 	struct btrfs_key key;
1698 	struct btrfs_key found_key;
1699 	struct extent_buffer *leaf = NULL;
1700 	struct btrfs_dev_extent *extent = NULL;
1701 
1702 	path = btrfs_alloc_path();
1703 	if (!path)
1704 		return -ENOMEM;
1705 
1706 	key.objectid = device->devid;
1707 	key.offset = start;
1708 	key.type = BTRFS_DEV_EXTENT_KEY;
1709 again:
1710 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1711 	if (ret > 0) {
1712 		ret = btrfs_previous_item(root, path, key.objectid,
1713 					  BTRFS_DEV_EXTENT_KEY);
1714 		if (ret)
1715 			goto out;
1716 		leaf = path->nodes[0];
1717 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1718 		extent = btrfs_item_ptr(leaf, path->slots[0],
1719 					struct btrfs_dev_extent);
1720 		BUG_ON(found_key.offset > start || found_key.offset +
1721 		       btrfs_dev_extent_length(leaf, extent) < start);
1722 		key = found_key;
1723 		btrfs_release_path(path);
1724 		goto again;
1725 	} else if (ret == 0) {
1726 		leaf = path->nodes[0];
1727 		extent = btrfs_item_ptr(leaf, path->slots[0],
1728 					struct btrfs_dev_extent);
1729 	} else {
1730 		goto out;
1731 	}
1732 
1733 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1734 
1735 	ret = btrfs_del_item(trans, root, path);
1736 	if (ret == 0)
1737 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1738 out:
1739 	btrfs_free_path(path);
1740 	return ret;
1741 }
1742 
1743 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1744 {
1745 	struct extent_map_tree *em_tree;
1746 	struct extent_map *em;
1747 	struct rb_node *n;
1748 	u64 ret = 0;
1749 
1750 	em_tree = &fs_info->mapping_tree;
1751 	read_lock(&em_tree->lock);
1752 	n = rb_last(&em_tree->map.rb_root);
1753 	if (n) {
1754 		em = rb_entry(n, struct extent_map, rb_node);
1755 		ret = em->start + em->len;
1756 	}
1757 	read_unlock(&em_tree->lock);
1758 
1759 	return ret;
1760 }
1761 
1762 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1763 				    u64 *devid_ret)
1764 {
1765 	int ret;
1766 	struct btrfs_key key;
1767 	struct btrfs_key found_key;
1768 	struct btrfs_path *path;
1769 
1770 	path = btrfs_alloc_path();
1771 	if (!path)
1772 		return -ENOMEM;
1773 
1774 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1775 	key.type = BTRFS_DEV_ITEM_KEY;
1776 	key.offset = (u64)-1;
1777 
1778 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1779 	if (ret < 0)
1780 		goto error;
1781 
1782 	if (ret == 0) {
1783 		/* Corruption */
1784 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1785 		ret = -EUCLEAN;
1786 		goto error;
1787 	}
1788 
1789 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1790 				  BTRFS_DEV_ITEMS_OBJECTID,
1791 				  BTRFS_DEV_ITEM_KEY);
1792 	if (ret) {
1793 		*devid_ret = 1;
1794 	} else {
1795 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1796 				      path->slots[0]);
1797 		*devid_ret = found_key.offset + 1;
1798 	}
1799 	ret = 0;
1800 error:
1801 	btrfs_free_path(path);
1802 	return ret;
1803 }
1804 
1805 /*
1806  * the device information is stored in the chunk root
1807  * the btrfs_device struct should be fully filled in
1808  */
1809 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1810 			    struct btrfs_device *device)
1811 {
1812 	int ret;
1813 	struct btrfs_path *path;
1814 	struct btrfs_dev_item *dev_item;
1815 	struct extent_buffer *leaf;
1816 	struct btrfs_key key;
1817 	unsigned long ptr;
1818 
1819 	path = btrfs_alloc_path();
1820 	if (!path)
1821 		return -ENOMEM;
1822 
1823 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1824 	key.type = BTRFS_DEV_ITEM_KEY;
1825 	key.offset = device->devid;
1826 
1827 	btrfs_reserve_chunk_metadata(trans, true);
1828 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1829 				      &key, sizeof(*dev_item));
1830 	btrfs_trans_release_chunk_metadata(trans);
1831 	if (ret)
1832 		goto out;
1833 
1834 	leaf = path->nodes[0];
1835 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1836 
1837 	btrfs_set_device_id(leaf, dev_item, device->devid);
1838 	btrfs_set_device_generation(leaf, dev_item, 0);
1839 	btrfs_set_device_type(leaf, dev_item, device->type);
1840 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1841 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1842 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1843 	btrfs_set_device_total_bytes(leaf, dev_item,
1844 				     btrfs_device_get_disk_total_bytes(device));
1845 	btrfs_set_device_bytes_used(leaf, dev_item,
1846 				    btrfs_device_get_bytes_used(device));
1847 	btrfs_set_device_group(leaf, dev_item, 0);
1848 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1849 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1850 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1851 
1852 	ptr = btrfs_device_uuid(dev_item);
1853 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1854 	ptr = btrfs_device_fsid(dev_item);
1855 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1856 			    ptr, BTRFS_FSID_SIZE);
1857 	btrfs_mark_buffer_dirty(trans, leaf);
1858 
1859 	ret = 0;
1860 out:
1861 	btrfs_free_path(path);
1862 	return ret;
1863 }
1864 
1865 /*
1866  * Function to update ctime/mtime for a given device path.
1867  * Mainly used for ctime/mtime based probe like libblkid.
1868  *
1869  * We don't care about errors here, this is just to be kind to userspace.
1870  */
1871 static void update_dev_time(const char *device_path)
1872 {
1873 	struct path path;
1874 	int ret;
1875 
1876 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1877 	if (ret)
1878 		return;
1879 
1880 	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1881 	path_put(&path);
1882 }
1883 
1884 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1885 			     struct btrfs_device *device)
1886 {
1887 	struct btrfs_root *root = device->fs_info->chunk_root;
1888 	int ret;
1889 	struct btrfs_path *path;
1890 	struct btrfs_key key;
1891 
1892 	path = btrfs_alloc_path();
1893 	if (!path)
1894 		return -ENOMEM;
1895 
1896 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1897 	key.type = BTRFS_DEV_ITEM_KEY;
1898 	key.offset = device->devid;
1899 
1900 	btrfs_reserve_chunk_metadata(trans, false);
1901 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1902 	btrfs_trans_release_chunk_metadata(trans);
1903 	if (ret) {
1904 		if (ret > 0)
1905 			ret = -ENOENT;
1906 		goto out;
1907 	}
1908 
1909 	ret = btrfs_del_item(trans, root, path);
1910 out:
1911 	btrfs_free_path(path);
1912 	return ret;
1913 }
1914 
1915 /*
1916  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1917  * filesystem. It's up to the caller to adjust that number regarding eg. device
1918  * replace.
1919  */
1920 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1921 		u64 num_devices)
1922 {
1923 	u64 all_avail;
1924 	unsigned seq;
1925 	int i;
1926 
1927 	do {
1928 		seq = read_seqbegin(&fs_info->profiles_lock);
1929 
1930 		all_avail = fs_info->avail_data_alloc_bits |
1931 			    fs_info->avail_system_alloc_bits |
1932 			    fs_info->avail_metadata_alloc_bits;
1933 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1934 
1935 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1936 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1937 			continue;
1938 
1939 		if (num_devices < btrfs_raid_array[i].devs_min)
1940 			return btrfs_raid_array[i].mindev_error;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static struct btrfs_device * btrfs_find_next_active_device(
1947 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1948 {
1949 	struct btrfs_device *next_device;
1950 
1951 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1952 		if (next_device != device &&
1953 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1954 		    && next_device->bdev)
1955 			return next_device;
1956 	}
1957 
1958 	return NULL;
1959 }
1960 
1961 /*
1962  * Helper function to check if the given device is part of s_bdev / latest_dev
1963  * and replace it with the provided or the next active device, in the context
1964  * where this function called, there should be always be another device (or
1965  * this_dev) which is active.
1966  */
1967 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1968 					    struct btrfs_device *next_device)
1969 {
1970 	struct btrfs_fs_info *fs_info = device->fs_info;
1971 
1972 	if (!next_device)
1973 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1974 							    device);
1975 	ASSERT(next_device);
1976 
1977 	if (fs_info->sb->s_bdev &&
1978 			(fs_info->sb->s_bdev == device->bdev))
1979 		fs_info->sb->s_bdev = next_device->bdev;
1980 
1981 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1982 		fs_info->fs_devices->latest_dev = next_device;
1983 }
1984 
1985 /*
1986  * Return btrfs_fs_devices::num_devices excluding the device that's being
1987  * currently replaced.
1988  */
1989 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1990 {
1991 	u64 num_devices = fs_info->fs_devices->num_devices;
1992 
1993 	down_read(&fs_info->dev_replace.rwsem);
1994 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1995 		ASSERT(num_devices > 1);
1996 		num_devices--;
1997 	}
1998 	up_read(&fs_info->dev_replace.rwsem);
1999 
2000 	return num_devices;
2001 }
2002 
2003 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2004 				     struct block_device *bdev, int copy_num)
2005 {
2006 	struct btrfs_super_block *disk_super;
2007 	const size_t len = sizeof(disk_super->magic);
2008 	const u64 bytenr = btrfs_sb_offset(copy_num);
2009 	int ret;
2010 
2011 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2012 	if (IS_ERR(disk_super))
2013 		return;
2014 
2015 	memset(&disk_super->magic, 0, len);
2016 	folio_mark_dirty(virt_to_folio(disk_super));
2017 	btrfs_release_disk_super(disk_super);
2018 
2019 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2020 	if (ret)
2021 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2022 			copy_num, ret);
2023 }
2024 
2025 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2026 			       struct block_device *bdev,
2027 			       const char *device_path)
2028 {
2029 	int copy_num;
2030 
2031 	if (!bdev)
2032 		return;
2033 
2034 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2035 		if (bdev_is_zoned(bdev))
2036 			btrfs_reset_sb_log_zones(bdev, copy_num);
2037 		else
2038 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2039 	}
2040 
2041 	/* Notify udev that device has changed */
2042 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2043 
2044 	/* Update ctime/mtime for device path for libblkid */
2045 	update_dev_time(device_path);
2046 }
2047 
2048 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2049 		    struct btrfs_dev_lookup_args *args,
2050 		    struct bdev_handle **bdev_handle)
2051 {
2052 	struct btrfs_trans_handle *trans;
2053 	struct btrfs_device *device;
2054 	struct btrfs_fs_devices *cur_devices;
2055 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2056 	u64 num_devices;
2057 	int ret = 0;
2058 
2059 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2060 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2061 		return -EINVAL;
2062 	}
2063 
2064 	/*
2065 	 * The device list in fs_devices is accessed without locks (neither
2066 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2067 	 * filesystem and another device rm cannot run.
2068 	 */
2069 	num_devices = btrfs_num_devices(fs_info);
2070 
2071 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2072 	if (ret)
2073 		return ret;
2074 
2075 	device = btrfs_find_device(fs_info->fs_devices, args);
2076 	if (!device) {
2077 		if (args->missing)
2078 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2079 		else
2080 			ret = -ENOENT;
2081 		return ret;
2082 	}
2083 
2084 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2085 		btrfs_warn_in_rcu(fs_info,
2086 		  "cannot remove device %s (devid %llu) due to active swapfile",
2087 				  btrfs_dev_name(device), device->devid);
2088 		return -ETXTBSY;
2089 	}
2090 
2091 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2092 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2093 
2094 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2095 	    fs_info->fs_devices->rw_devices == 1)
2096 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2097 
2098 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2099 		mutex_lock(&fs_info->chunk_mutex);
2100 		list_del_init(&device->dev_alloc_list);
2101 		device->fs_devices->rw_devices--;
2102 		mutex_unlock(&fs_info->chunk_mutex);
2103 	}
2104 
2105 	ret = btrfs_shrink_device(device, 0);
2106 	if (ret)
2107 		goto error_undo;
2108 
2109 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2110 	if (IS_ERR(trans)) {
2111 		ret = PTR_ERR(trans);
2112 		goto error_undo;
2113 	}
2114 
2115 	ret = btrfs_rm_dev_item(trans, device);
2116 	if (ret) {
2117 		/* Any error in dev item removal is critical */
2118 		btrfs_crit(fs_info,
2119 			   "failed to remove device item for devid %llu: %d",
2120 			   device->devid, ret);
2121 		btrfs_abort_transaction(trans, ret);
2122 		btrfs_end_transaction(trans);
2123 		return ret;
2124 	}
2125 
2126 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2127 	btrfs_scrub_cancel_dev(device);
2128 
2129 	/*
2130 	 * the device list mutex makes sure that we don't change
2131 	 * the device list while someone else is writing out all
2132 	 * the device supers. Whoever is writing all supers, should
2133 	 * lock the device list mutex before getting the number of
2134 	 * devices in the super block (super_copy). Conversely,
2135 	 * whoever updates the number of devices in the super block
2136 	 * (super_copy) should hold the device list mutex.
2137 	 */
2138 
2139 	/*
2140 	 * In normal cases the cur_devices == fs_devices. But in case
2141 	 * of deleting a seed device, the cur_devices should point to
2142 	 * its own fs_devices listed under the fs_devices->seed_list.
2143 	 */
2144 	cur_devices = device->fs_devices;
2145 	mutex_lock(&fs_devices->device_list_mutex);
2146 	list_del_rcu(&device->dev_list);
2147 
2148 	cur_devices->num_devices--;
2149 	cur_devices->total_devices--;
2150 	/* Update total_devices of the parent fs_devices if it's seed */
2151 	if (cur_devices != fs_devices)
2152 		fs_devices->total_devices--;
2153 
2154 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2155 		cur_devices->missing_devices--;
2156 
2157 	btrfs_assign_next_active_device(device, NULL);
2158 
2159 	if (device->bdev_handle) {
2160 		cur_devices->open_devices--;
2161 		/* remove sysfs entry */
2162 		btrfs_sysfs_remove_device(device);
2163 	}
2164 
2165 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2166 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2167 	mutex_unlock(&fs_devices->device_list_mutex);
2168 
2169 	/*
2170 	 * At this point, the device is zero sized and detached from the
2171 	 * devices list.  All that's left is to zero out the old supers and
2172 	 * free the device.
2173 	 *
2174 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2175 	 * write lock, and bdev_release() will pull in the ->open_mutex on
2176 	 * the block device and it's dependencies.  Instead just flush the
2177 	 * device and let the caller do the final bdev_release.
2178 	 */
2179 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2180 		btrfs_scratch_superblocks(fs_info, device->bdev,
2181 					  device->name->str);
2182 		if (device->bdev) {
2183 			sync_blockdev(device->bdev);
2184 			invalidate_bdev(device->bdev);
2185 		}
2186 	}
2187 
2188 	*bdev_handle = device->bdev_handle;
2189 	synchronize_rcu();
2190 	btrfs_free_device(device);
2191 
2192 	/*
2193 	 * This can happen if cur_devices is the private seed devices list.  We
2194 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2195 	 * to be held, but in fact we don't need that for the private
2196 	 * seed_devices, we can simply decrement cur_devices->opened and then
2197 	 * remove it from our list and free the fs_devices.
2198 	 */
2199 	if (cur_devices->num_devices == 0) {
2200 		list_del_init(&cur_devices->seed_list);
2201 		ASSERT(cur_devices->opened == 1);
2202 		cur_devices->opened--;
2203 		free_fs_devices(cur_devices);
2204 	}
2205 
2206 	ret = btrfs_commit_transaction(trans);
2207 
2208 	return ret;
2209 
2210 error_undo:
2211 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 		mutex_lock(&fs_info->chunk_mutex);
2213 		list_add(&device->dev_alloc_list,
2214 			 &fs_devices->alloc_list);
2215 		device->fs_devices->rw_devices++;
2216 		mutex_unlock(&fs_info->chunk_mutex);
2217 	}
2218 	return ret;
2219 }
2220 
2221 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2222 {
2223 	struct btrfs_fs_devices *fs_devices;
2224 
2225 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2226 
2227 	/*
2228 	 * in case of fs with no seed, srcdev->fs_devices will point
2229 	 * to fs_devices of fs_info. However when the dev being replaced is
2230 	 * a seed dev it will point to the seed's local fs_devices. In short
2231 	 * srcdev will have its correct fs_devices in both the cases.
2232 	 */
2233 	fs_devices = srcdev->fs_devices;
2234 
2235 	list_del_rcu(&srcdev->dev_list);
2236 	list_del(&srcdev->dev_alloc_list);
2237 	fs_devices->num_devices--;
2238 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2239 		fs_devices->missing_devices--;
2240 
2241 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2242 		fs_devices->rw_devices--;
2243 
2244 	if (srcdev->bdev)
2245 		fs_devices->open_devices--;
2246 }
2247 
2248 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2249 {
2250 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2251 
2252 	mutex_lock(&uuid_mutex);
2253 
2254 	btrfs_close_bdev(srcdev);
2255 	synchronize_rcu();
2256 	btrfs_free_device(srcdev);
2257 
2258 	/* if this is no devs we rather delete the fs_devices */
2259 	if (!fs_devices->num_devices) {
2260 		/*
2261 		 * On a mounted FS, num_devices can't be zero unless it's a
2262 		 * seed. In case of a seed device being replaced, the replace
2263 		 * target added to the sprout FS, so there will be no more
2264 		 * device left under the seed FS.
2265 		 */
2266 		ASSERT(fs_devices->seeding);
2267 
2268 		list_del_init(&fs_devices->seed_list);
2269 		close_fs_devices(fs_devices);
2270 		free_fs_devices(fs_devices);
2271 	}
2272 	mutex_unlock(&uuid_mutex);
2273 }
2274 
2275 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2276 {
2277 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2278 
2279 	mutex_lock(&fs_devices->device_list_mutex);
2280 
2281 	btrfs_sysfs_remove_device(tgtdev);
2282 
2283 	if (tgtdev->bdev)
2284 		fs_devices->open_devices--;
2285 
2286 	fs_devices->num_devices--;
2287 
2288 	btrfs_assign_next_active_device(tgtdev, NULL);
2289 
2290 	list_del_rcu(&tgtdev->dev_list);
2291 
2292 	mutex_unlock(&fs_devices->device_list_mutex);
2293 
2294 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2295 				  tgtdev->name->str);
2296 
2297 	btrfs_close_bdev(tgtdev);
2298 	synchronize_rcu();
2299 	btrfs_free_device(tgtdev);
2300 }
2301 
2302 /*
2303  * Populate args from device at path.
2304  *
2305  * @fs_info:	the filesystem
2306  * @args:	the args to populate
2307  * @path:	the path to the device
2308  *
2309  * This will read the super block of the device at @path and populate @args with
2310  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2311  * lookup a device to operate on, but need to do it before we take any locks.
2312  * This properly handles the special case of "missing" that a user may pass in,
2313  * and does some basic sanity checks.  The caller must make sure that @path is
2314  * properly NUL terminated before calling in, and must call
2315  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2316  * uuid buffers.
2317  *
2318  * Return: 0 for success, -errno for failure
2319  */
2320 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2321 				 struct btrfs_dev_lookup_args *args,
2322 				 const char *path)
2323 {
2324 	struct btrfs_super_block *disk_super;
2325 	struct bdev_handle *bdev_handle;
2326 	int ret;
2327 
2328 	if (!path || !path[0])
2329 		return -EINVAL;
2330 	if (!strcmp(path, "missing")) {
2331 		args->missing = true;
2332 		return 0;
2333 	}
2334 
2335 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2336 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2337 	if (!args->uuid || !args->fsid) {
2338 		btrfs_put_dev_args_from_path(args);
2339 		return -ENOMEM;
2340 	}
2341 
2342 	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2343 				    &bdev_handle, &disk_super);
2344 	if (ret) {
2345 		btrfs_put_dev_args_from_path(args);
2346 		return ret;
2347 	}
2348 
2349 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2350 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2351 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2352 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2353 	else
2354 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2355 	btrfs_release_disk_super(disk_super);
2356 	bdev_release(bdev_handle);
2357 	return 0;
2358 }
2359 
2360 /*
2361  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2362  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2363  * that don't need to be freed.
2364  */
2365 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2366 {
2367 	kfree(args->uuid);
2368 	kfree(args->fsid);
2369 	args->uuid = NULL;
2370 	args->fsid = NULL;
2371 }
2372 
2373 struct btrfs_device *btrfs_find_device_by_devspec(
2374 		struct btrfs_fs_info *fs_info, u64 devid,
2375 		const char *device_path)
2376 {
2377 	BTRFS_DEV_LOOKUP_ARGS(args);
2378 	struct btrfs_device *device;
2379 	int ret;
2380 
2381 	if (devid) {
2382 		args.devid = devid;
2383 		device = btrfs_find_device(fs_info->fs_devices, &args);
2384 		if (!device)
2385 			return ERR_PTR(-ENOENT);
2386 		return device;
2387 	}
2388 
2389 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2390 	if (ret)
2391 		return ERR_PTR(ret);
2392 	device = btrfs_find_device(fs_info->fs_devices, &args);
2393 	btrfs_put_dev_args_from_path(&args);
2394 	if (!device)
2395 		return ERR_PTR(-ENOENT);
2396 	return device;
2397 }
2398 
2399 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2400 {
2401 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2402 	struct btrfs_fs_devices *old_devices;
2403 	struct btrfs_fs_devices *seed_devices;
2404 
2405 	lockdep_assert_held(&uuid_mutex);
2406 	if (!fs_devices->seeding)
2407 		return ERR_PTR(-EINVAL);
2408 
2409 	/*
2410 	 * Private copy of the seed devices, anchored at
2411 	 * fs_info->fs_devices->seed_list
2412 	 */
2413 	seed_devices = alloc_fs_devices(NULL);
2414 	if (IS_ERR(seed_devices))
2415 		return seed_devices;
2416 
2417 	/*
2418 	 * It's necessary to retain a copy of the original seed fs_devices in
2419 	 * fs_uuids so that filesystems which have been seeded can successfully
2420 	 * reference the seed device from open_seed_devices. This also supports
2421 	 * multiple fs seed.
2422 	 */
2423 	old_devices = clone_fs_devices(fs_devices);
2424 	if (IS_ERR(old_devices)) {
2425 		kfree(seed_devices);
2426 		return old_devices;
2427 	}
2428 
2429 	list_add(&old_devices->fs_list, &fs_uuids);
2430 
2431 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2432 	seed_devices->opened = 1;
2433 	INIT_LIST_HEAD(&seed_devices->devices);
2434 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2435 	mutex_init(&seed_devices->device_list_mutex);
2436 
2437 	return seed_devices;
2438 }
2439 
2440 /*
2441  * Splice seed devices into the sprout fs_devices.
2442  * Generate a new fsid for the sprouted read-write filesystem.
2443  */
2444 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2445 			       struct btrfs_fs_devices *seed_devices)
2446 {
2447 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2448 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2449 	struct btrfs_device *device;
2450 	u64 super_flags;
2451 
2452 	/*
2453 	 * We are updating the fsid, the thread leading to device_list_add()
2454 	 * could race, so uuid_mutex is needed.
2455 	 */
2456 	lockdep_assert_held(&uuid_mutex);
2457 
2458 	/*
2459 	 * The threads listed below may traverse dev_list but can do that without
2460 	 * device_list_mutex:
2461 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2462 	 * - Various dev_list readers - are using RCU.
2463 	 * - btrfs_ioctl_fitrim() - is using RCU.
2464 	 *
2465 	 * For-read threads as below are using device_list_mutex:
2466 	 * - Readonly scrub btrfs_scrub_dev()
2467 	 * - Readonly scrub btrfs_scrub_progress()
2468 	 * - btrfs_get_dev_stats()
2469 	 */
2470 	lockdep_assert_held(&fs_devices->device_list_mutex);
2471 
2472 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2473 			      synchronize_rcu);
2474 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2475 		device->fs_devices = seed_devices;
2476 
2477 	fs_devices->seeding = false;
2478 	fs_devices->num_devices = 0;
2479 	fs_devices->open_devices = 0;
2480 	fs_devices->missing_devices = 0;
2481 	fs_devices->rotating = false;
2482 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2483 
2484 	generate_random_uuid(fs_devices->fsid);
2485 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2486 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2487 
2488 	super_flags = btrfs_super_flags(disk_super) &
2489 		      ~BTRFS_SUPER_FLAG_SEEDING;
2490 	btrfs_set_super_flags(disk_super, super_flags);
2491 }
2492 
2493 /*
2494  * Store the expected generation for seed devices in device items.
2495  */
2496 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2497 {
2498 	BTRFS_DEV_LOOKUP_ARGS(args);
2499 	struct btrfs_fs_info *fs_info = trans->fs_info;
2500 	struct btrfs_root *root = fs_info->chunk_root;
2501 	struct btrfs_path *path;
2502 	struct extent_buffer *leaf;
2503 	struct btrfs_dev_item *dev_item;
2504 	struct btrfs_device *device;
2505 	struct btrfs_key key;
2506 	u8 fs_uuid[BTRFS_FSID_SIZE];
2507 	u8 dev_uuid[BTRFS_UUID_SIZE];
2508 	int ret;
2509 
2510 	path = btrfs_alloc_path();
2511 	if (!path)
2512 		return -ENOMEM;
2513 
2514 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2515 	key.offset = 0;
2516 	key.type = BTRFS_DEV_ITEM_KEY;
2517 
2518 	while (1) {
2519 		btrfs_reserve_chunk_metadata(trans, false);
2520 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2521 		btrfs_trans_release_chunk_metadata(trans);
2522 		if (ret < 0)
2523 			goto error;
2524 
2525 		leaf = path->nodes[0];
2526 next_slot:
2527 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2528 			ret = btrfs_next_leaf(root, path);
2529 			if (ret > 0)
2530 				break;
2531 			if (ret < 0)
2532 				goto error;
2533 			leaf = path->nodes[0];
2534 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2535 			btrfs_release_path(path);
2536 			continue;
2537 		}
2538 
2539 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2540 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2541 		    key.type != BTRFS_DEV_ITEM_KEY)
2542 			break;
2543 
2544 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2545 					  struct btrfs_dev_item);
2546 		args.devid = btrfs_device_id(leaf, dev_item);
2547 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2548 				   BTRFS_UUID_SIZE);
2549 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2550 				   BTRFS_FSID_SIZE);
2551 		args.uuid = dev_uuid;
2552 		args.fsid = fs_uuid;
2553 		device = btrfs_find_device(fs_info->fs_devices, &args);
2554 		BUG_ON(!device); /* Logic error */
2555 
2556 		if (device->fs_devices->seeding) {
2557 			btrfs_set_device_generation(leaf, dev_item,
2558 						    device->generation);
2559 			btrfs_mark_buffer_dirty(trans, leaf);
2560 		}
2561 
2562 		path->slots[0]++;
2563 		goto next_slot;
2564 	}
2565 	ret = 0;
2566 error:
2567 	btrfs_free_path(path);
2568 	return ret;
2569 }
2570 
2571 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2572 {
2573 	struct btrfs_root *root = fs_info->dev_root;
2574 	struct btrfs_trans_handle *trans;
2575 	struct btrfs_device *device;
2576 	struct bdev_handle *bdev_handle;
2577 	struct super_block *sb = fs_info->sb;
2578 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2579 	struct btrfs_fs_devices *seed_devices = NULL;
2580 	u64 orig_super_total_bytes;
2581 	u64 orig_super_num_devices;
2582 	int ret = 0;
2583 	bool seeding_dev = false;
2584 	bool locked = false;
2585 
2586 	if (sb_rdonly(sb) && !fs_devices->seeding)
2587 		return -EROFS;
2588 
2589 	bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2590 					fs_info->bdev_holder, NULL);
2591 	if (IS_ERR(bdev_handle))
2592 		return PTR_ERR(bdev_handle);
2593 
2594 	if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2595 		ret = -EINVAL;
2596 		goto error;
2597 	}
2598 
2599 	if (fs_devices->seeding) {
2600 		seeding_dev = true;
2601 		down_write(&sb->s_umount);
2602 		mutex_lock(&uuid_mutex);
2603 		locked = true;
2604 	}
2605 
2606 	sync_blockdev(bdev_handle->bdev);
2607 
2608 	rcu_read_lock();
2609 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2610 		if (device->bdev == bdev_handle->bdev) {
2611 			ret = -EEXIST;
2612 			rcu_read_unlock();
2613 			goto error;
2614 		}
2615 	}
2616 	rcu_read_unlock();
2617 
2618 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2619 	if (IS_ERR(device)) {
2620 		/* we can safely leave the fs_devices entry around */
2621 		ret = PTR_ERR(device);
2622 		goto error;
2623 	}
2624 
2625 	device->fs_info = fs_info;
2626 	device->bdev_handle = bdev_handle;
2627 	device->bdev = bdev_handle->bdev;
2628 	ret = lookup_bdev(device_path, &device->devt);
2629 	if (ret)
2630 		goto error_free_device;
2631 
2632 	ret = btrfs_get_dev_zone_info(device, false);
2633 	if (ret)
2634 		goto error_free_device;
2635 
2636 	trans = btrfs_start_transaction(root, 0);
2637 	if (IS_ERR(trans)) {
2638 		ret = PTR_ERR(trans);
2639 		goto error_free_zone;
2640 	}
2641 
2642 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2643 	device->generation = trans->transid;
2644 	device->io_width = fs_info->sectorsize;
2645 	device->io_align = fs_info->sectorsize;
2646 	device->sector_size = fs_info->sectorsize;
2647 	device->total_bytes =
2648 		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2649 	device->disk_total_bytes = device->total_bytes;
2650 	device->commit_total_bytes = device->total_bytes;
2651 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2652 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2653 	device->dev_stats_valid = 1;
2654 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655 
2656 	if (seeding_dev) {
2657 		btrfs_clear_sb_rdonly(sb);
2658 
2659 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2660 		seed_devices = btrfs_init_sprout(fs_info);
2661 		if (IS_ERR(seed_devices)) {
2662 			ret = PTR_ERR(seed_devices);
2663 			btrfs_abort_transaction(trans, ret);
2664 			goto error_trans;
2665 		}
2666 	}
2667 
2668 	mutex_lock(&fs_devices->device_list_mutex);
2669 	if (seeding_dev) {
2670 		btrfs_setup_sprout(fs_info, seed_devices);
2671 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2672 						device);
2673 	}
2674 
2675 	device->fs_devices = fs_devices;
2676 
2677 	mutex_lock(&fs_info->chunk_mutex);
2678 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2679 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2680 	fs_devices->num_devices++;
2681 	fs_devices->open_devices++;
2682 	fs_devices->rw_devices++;
2683 	fs_devices->total_devices++;
2684 	fs_devices->total_rw_bytes += device->total_bytes;
2685 
2686 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2687 
2688 	if (!bdev_nonrot(device->bdev))
2689 		fs_devices->rotating = true;
2690 
2691 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2692 	btrfs_set_super_total_bytes(fs_info->super_copy,
2693 		round_down(orig_super_total_bytes + device->total_bytes,
2694 			   fs_info->sectorsize));
2695 
2696 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2697 	btrfs_set_super_num_devices(fs_info->super_copy,
2698 				    orig_super_num_devices + 1);
2699 
2700 	/*
2701 	 * we've got more storage, clear any full flags on the space
2702 	 * infos
2703 	 */
2704 	btrfs_clear_space_info_full(fs_info);
2705 
2706 	mutex_unlock(&fs_info->chunk_mutex);
2707 
2708 	/* Add sysfs device entry */
2709 	btrfs_sysfs_add_device(device);
2710 
2711 	mutex_unlock(&fs_devices->device_list_mutex);
2712 
2713 	if (seeding_dev) {
2714 		mutex_lock(&fs_info->chunk_mutex);
2715 		ret = init_first_rw_device(trans);
2716 		mutex_unlock(&fs_info->chunk_mutex);
2717 		if (ret) {
2718 			btrfs_abort_transaction(trans, ret);
2719 			goto error_sysfs;
2720 		}
2721 	}
2722 
2723 	ret = btrfs_add_dev_item(trans, device);
2724 	if (ret) {
2725 		btrfs_abort_transaction(trans, ret);
2726 		goto error_sysfs;
2727 	}
2728 
2729 	if (seeding_dev) {
2730 		ret = btrfs_finish_sprout(trans);
2731 		if (ret) {
2732 			btrfs_abort_transaction(trans, ret);
2733 			goto error_sysfs;
2734 		}
2735 
2736 		/*
2737 		 * fs_devices now represents the newly sprouted filesystem and
2738 		 * its fsid has been changed by btrfs_sprout_splice().
2739 		 */
2740 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2741 	}
2742 
2743 	ret = btrfs_commit_transaction(trans);
2744 
2745 	if (seeding_dev) {
2746 		mutex_unlock(&uuid_mutex);
2747 		up_write(&sb->s_umount);
2748 		locked = false;
2749 
2750 		if (ret) /* transaction commit */
2751 			return ret;
2752 
2753 		ret = btrfs_relocate_sys_chunks(fs_info);
2754 		if (ret < 0)
2755 			btrfs_handle_fs_error(fs_info, ret,
2756 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2757 		trans = btrfs_attach_transaction(root);
2758 		if (IS_ERR(trans)) {
2759 			if (PTR_ERR(trans) == -ENOENT)
2760 				return 0;
2761 			ret = PTR_ERR(trans);
2762 			trans = NULL;
2763 			goto error_sysfs;
2764 		}
2765 		ret = btrfs_commit_transaction(trans);
2766 	}
2767 
2768 	/*
2769 	 * Now that we have written a new super block to this device, check all
2770 	 * other fs_devices list if device_path alienates any other scanned
2771 	 * device.
2772 	 * We can ignore the return value as it typically returns -EINVAL and
2773 	 * only succeeds if the device was an alien.
2774 	 */
2775 	btrfs_forget_devices(device->devt);
2776 
2777 	/* Update ctime/mtime for blkid or udev */
2778 	update_dev_time(device_path);
2779 
2780 	return ret;
2781 
2782 error_sysfs:
2783 	btrfs_sysfs_remove_device(device);
2784 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2785 	mutex_lock(&fs_info->chunk_mutex);
2786 	list_del_rcu(&device->dev_list);
2787 	list_del(&device->dev_alloc_list);
2788 	fs_info->fs_devices->num_devices--;
2789 	fs_info->fs_devices->open_devices--;
2790 	fs_info->fs_devices->rw_devices--;
2791 	fs_info->fs_devices->total_devices--;
2792 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2793 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2794 	btrfs_set_super_total_bytes(fs_info->super_copy,
2795 				    orig_super_total_bytes);
2796 	btrfs_set_super_num_devices(fs_info->super_copy,
2797 				    orig_super_num_devices);
2798 	mutex_unlock(&fs_info->chunk_mutex);
2799 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2800 error_trans:
2801 	if (seeding_dev)
2802 		btrfs_set_sb_rdonly(sb);
2803 	if (trans)
2804 		btrfs_end_transaction(trans);
2805 error_free_zone:
2806 	btrfs_destroy_dev_zone_info(device);
2807 error_free_device:
2808 	btrfs_free_device(device);
2809 error:
2810 	bdev_release(bdev_handle);
2811 	if (locked) {
2812 		mutex_unlock(&uuid_mutex);
2813 		up_write(&sb->s_umount);
2814 	}
2815 	return ret;
2816 }
2817 
2818 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2819 					struct btrfs_device *device)
2820 {
2821 	int ret;
2822 	struct btrfs_path *path;
2823 	struct btrfs_root *root = device->fs_info->chunk_root;
2824 	struct btrfs_dev_item *dev_item;
2825 	struct extent_buffer *leaf;
2826 	struct btrfs_key key;
2827 
2828 	path = btrfs_alloc_path();
2829 	if (!path)
2830 		return -ENOMEM;
2831 
2832 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2833 	key.type = BTRFS_DEV_ITEM_KEY;
2834 	key.offset = device->devid;
2835 
2836 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2837 	if (ret < 0)
2838 		goto out;
2839 
2840 	if (ret > 0) {
2841 		ret = -ENOENT;
2842 		goto out;
2843 	}
2844 
2845 	leaf = path->nodes[0];
2846 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2847 
2848 	btrfs_set_device_id(leaf, dev_item, device->devid);
2849 	btrfs_set_device_type(leaf, dev_item, device->type);
2850 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2851 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2852 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2853 	btrfs_set_device_total_bytes(leaf, dev_item,
2854 				     btrfs_device_get_disk_total_bytes(device));
2855 	btrfs_set_device_bytes_used(leaf, dev_item,
2856 				    btrfs_device_get_bytes_used(device));
2857 	btrfs_mark_buffer_dirty(trans, leaf);
2858 
2859 out:
2860 	btrfs_free_path(path);
2861 	return ret;
2862 }
2863 
2864 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2865 		      struct btrfs_device *device, u64 new_size)
2866 {
2867 	struct btrfs_fs_info *fs_info = device->fs_info;
2868 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2869 	u64 old_total;
2870 	u64 diff;
2871 	int ret;
2872 
2873 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2874 		return -EACCES;
2875 
2876 	new_size = round_down(new_size, fs_info->sectorsize);
2877 
2878 	mutex_lock(&fs_info->chunk_mutex);
2879 	old_total = btrfs_super_total_bytes(super_copy);
2880 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2881 
2882 	if (new_size <= device->total_bytes ||
2883 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2884 		mutex_unlock(&fs_info->chunk_mutex);
2885 		return -EINVAL;
2886 	}
2887 
2888 	btrfs_set_super_total_bytes(super_copy,
2889 			round_down(old_total + diff, fs_info->sectorsize));
2890 	device->fs_devices->total_rw_bytes += diff;
2891 	atomic64_add(diff, &fs_info->free_chunk_space);
2892 
2893 	btrfs_device_set_total_bytes(device, new_size);
2894 	btrfs_device_set_disk_total_bytes(device, new_size);
2895 	btrfs_clear_space_info_full(device->fs_info);
2896 	if (list_empty(&device->post_commit_list))
2897 		list_add_tail(&device->post_commit_list,
2898 			      &trans->transaction->dev_update_list);
2899 	mutex_unlock(&fs_info->chunk_mutex);
2900 
2901 	btrfs_reserve_chunk_metadata(trans, false);
2902 	ret = btrfs_update_device(trans, device);
2903 	btrfs_trans_release_chunk_metadata(trans);
2904 
2905 	return ret;
2906 }
2907 
2908 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2909 {
2910 	struct btrfs_fs_info *fs_info = trans->fs_info;
2911 	struct btrfs_root *root = fs_info->chunk_root;
2912 	int ret;
2913 	struct btrfs_path *path;
2914 	struct btrfs_key key;
2915 
2916 	path = btrfs_alloc_path();
2917 	if (!path)
2918 		return -ENOMEM;
2919 
2920 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2921 	key.offset = chunk_offset;
2922 	key.type = BTRFS_CHUNK_ITEM_KEY;
2923 
2924 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2925 	if (ret < 0)
2926 		goto out;
2927 	else if (ret > 0) { /* Logic error or corruption */
2928 		btrfs_handle_fs_error(fs_info, -ENOENT,
2929 				      "Failed lookup while freeing chunk.");
2930 		ret = -ENOENT;
2931 		goto out;
2932 	}
2933 
2934 	ret = btrfs_del_item(trans, root, path);
2935 	if (ret < 0)
2936 		btrfs_handle_fs_error(fs_info, ret,
2937 				      "Failed to delete chunk item.");
2938 out:
2939 	btrfs_free_path(path);
2940 	return ret;
2941 }
2942 
2943 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2944 {
2945 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2946 	struct btrfs_disk_key *disk_key;
2947 	struct btrfs_chunk *chunk;
2948 	u8 *ptr;
2949 	int ret = 0;
2950 	u32 num_stripes;
2951 	u32 array_size;
2952 	u32 len = 0;
2953 	u32 cur;
2954 	struct btrfs_key key;
2955 
2956 	lockdep_assert_held(&fs_info->chunk_mutex);
2957 	array_size = btrfs_super_sys_array_size(super_copy);
2958 
2959 	ptr = super_copy->sys_chunk_array;
2960 	cur = 0;
2961 
2962 	while (cur < array_size) {
2963 		disk_key = (struct btrfs_disk_key *)ptr;
2964 		btrfs_disk_key_to_cpu(&key, disk_key);
2965 
2966 		len = sizeof(*disk_key);
2967 
2968 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2969 			chunk = (struct btrfs_chunk *)(ptr + len);
2970 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2971 			len += btrfs_chunk_item_size(num_stripes);
2972 		} else {
2973 			ret = -EIO;
2974 			break;
2975 		}
2976 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2977 		    key.offset == chunk_offset) {
2978 			memmove(ptr, ptr + len, array_size - (cur + len));
2979 			array_size -= len;
2980 			btrfs_set_super_sys_array_size(super_copy, array_size);
2981 		} else {
2982 			ptr += len;
2983 			cur += len;
2984 		}
2985 	}
2986 	return ret;
2987 }
2988 
2989 /*
2990  * Find the mapping containing the given logical extent.
2991  *
2992  * @logical: Logical block offset in bytes.
2993  * @length: Length of extent in bytes.
2994  *
2995  * Return: Chunk mapping or ERR_PTR.
2996  */
2997 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2998 				       u64 logical, u64 length)
2999 {
3000 	struct extent_map_tree *em_tree;
3001 	struct extent_map *em;
3002 
3003 	em_tree = &fs_info->mapping_tree;
3004 	read_lock(&em_tree->lock);
3005 	em = lookup_extent_mapping(em_tree, logical, length);
3006 	read_unlock(&em_tree->lock);
3007 
3008 	if (!em) {
3009 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3010 			   logical, length);
3011 		return ERR_PTR(-EINVAL);
3012 	}
3013 
3014 	if (em->start > logical || em->start + em->len < logical) {
3015 		btrfs_crit(fs_info,
3016 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3017 			   logical, length, em->start, em->start + em->len);
3018 		free_extent_map(em);
3019 		return ERR_PTR(-EINVAL);
3020 	}
3021 
3022 	/* callers are responsible for dropping em's ref. */
3023 	return em;
3024 }
3025 
3026 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3027 			     struct map_lookup *map, u64 chunk_offset)
3028 {
3029 	int i;
3030 
3031 	/*
3032 	 * Removing chunk items and updating the device items in the chunks btree
3033 	 * requires holding the chunk_mutex.
3034 	 * See the comment at btrfs_chunk_alloc() for the details.
3035 	 */
3036 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3037 
3038 	for (i = 0; i < map->num_stripes; i++) {
3039 		int ret;
3040 
3041 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3042 		if (ret)
3043 			return ret;
3044 	}
3045 
3046 	return btrfs_free_chunk(trans, chunk_offset);
3047 }
3048 
3049 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3050 {
3051 	struct btrfs_fs_info *fs_info = trans->fs_info;
3052 	struct extent_map *em;
3053 	struct map_lookup *map;
3054 	u64 dev_extent_len = 0;
3055 	int i, ret = 0;
3056 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3057 
3058 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3059 	if (IS_ERR(em)) {
3060 		/*
3061 		 * This is a logic error, but we don't want to just rely on the
3062 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3063 		 * do anything we still error out.
3064 		 */
3065 		ASSERT(0);
3066 		return PTR_ERR(em);
3067 	}
3068 	map = em->map_lookup;
3069 
3070 	/*
3071 	 * First delete the device extent items from the devices btree.
3072 	 * We take the device_list_mutex to avoid racing with the finishing phase
3073 	 * of a device replace operation. See the comment below before acquiring
3074 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3075 	 * because that can result in a deadlock when deleting the device extent
3076 	 * items from the devices btree - COWing an extent buffer from the btree
3077 	 * may result in allocating a new metadata chunk, which would attempt to
3078 	 * lock again fs_info->chunk_mutex.
3079 	 */
3080 	mutex_lock(&fs_devices->device_list_mutex);
3081 	for (i = 0; i < map->num_stripes; i++) {
3082 		struct btrfs_device *device = map->stripes[i].dev;
3083 		ret = btrfs_free_dev_extent(trans, device,
3084 					    map->stripes[i].physical,
3085 					    &dev_extent_len);
3086 		if (ret) {
3087 			mutex_unlock(&fs_devices->device_list_mutex);
3088 			btrfs_abort_transaction(trans, ret);
3089 			goto out;
3090 		}
3091 
3092 		if (device->bytes_used > 0) {
3093 			mutex_lock(&fs_info->chunk_mutex);
3094 			btrfs_device_set_bytes_used(device,
3095 					device->bytes_used - dev_extent_len);
3096 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3097 			btrfs_clear_space_info_full(fs_info);
3098 			mutex_unlock(&fs_info->chunk_mutex);
3099 		}
3100 	}
3101 	mutex_unlock(&fs_devices->device_list_mutex);
3102 
3103 	/*
3104 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3105 	 *
3106 	 * 1) Just like with the first phase of the chunk allocation, we must
3107 	 *    reserve system space, do all chunk btree updates and deletions, and
3108 	 *    update the system chunk array in the superblock while holding this
3109 	 *    mutex. This is for similar reasons as explained on the comment at
3110 	 *    the top of btrfs_chunk_alloc();
3111 	 *
3112 	 * 2) Prevent races with the final phase of a device replace operation
3113 	 *    that replaces the device object associated with the map's stripes,
3114 	 *    because the device object's id can change at any time during that
3115 	 *    final phase of the device replace operation
3116 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3117 	 *    replaced device and then see it with an ID of
3118 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3119 	 *    the device item, which does not exists on the chunk btree.
3120 	 *    The finishing phase of device replace acquires both the
3121 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3122 	 *    safe by just acquiring the chunk_mutex.
3123 	 */
3124 	trans->removing_chunk = true;
3125 	mutex_lock(&fs_info->chunk_mutex);
3126 
3127 	check_system_chunk(trans, map->type);
3128 
3129 	ret = remove_chunk_item(trans, map, chunk_offset);
3130 	/*
3131 	 * Normally we should not get -ENOSPC since we reserved space before
3132 	 * through the call to check_system_chunk().
3133 	 *
3134 	 * Despite our system space_info having enough free space, we may not
3135 	 * be able to allocate extents from its block groups, because all have
3136 	 * an incompatible profile, which will force us to allocate a new system
3137 	 * block group with the right profile, or right after we called
3138 	 * check_system_space() above, a scrub turned the only system block group
3139 	 * with enough free space into RO mode.
3140 	 * This is explained with more detail at do_chunk_alloc().
3141 	 *
3142 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3143 	 */
3144 	if (ret == -ENOSPC) {
3145 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3146 		struct btrfs_block_group *sys_bg;
3147 
3148 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3149 		if (IS_ERR(sys_bg)) {
3150 			ret = PTR_ERR(sys_bg);
3151 			btrfs_abort_transaction(trans, ret);
3152 			goto out;
3153 		}
3154 
3155 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3156 		if (ret) {
3157 			btrfs_abort_transaction(trans, ret);
3158 			goto out;
3159 		}
3160 
3161 		ret = remove_chunk_item(trans, map, chunk_offset);
3162 		if (ret) {
3163 			btrfs_abort_transaction(trans, ret);
3164 			goto out;
3165 		}
3166 	} else if (ret) {
3167 		btrfs_abort_transaction(trans, ret);
3168 		goto out;
3169 	}
3170 
3171 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3172 
3173 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3174 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3175 		if (ret) {
3176 			btrfs_abort_transaction(trans, ret);
3177 			goto out;
3178 		}
3179 	}
3180 
3181 	mutex_unlock(&fs_info->chunk_mutex);
3182 	trans->removing_chunk = false;
3183 
3184 	/*
3185 	 * We are done with chunk btree updates and deletions, so release the
3186 	 * system space we previously reserved (with check_system_chunk()).
3187 	 */
3188 	btrfs_trans_release_chunk_metadata(trans);
3189 
3190 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3191 	if (ret) {
3192 		btrfs_abort_transaction(trans, ret);
3193 		goto out;
3194 	}
3195 
3196 out:
3197 	if (trans->removing_chunk) {
3198 		mutex_unlock(&fs_info->chunk_mutex);
3199 		trans->removing_chunk = false;
3200 	}
3201 	/* once for us */
3202 	free_extent_map(em);
3203 	return ret;
3204 }
3205 
3206 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3207 {
3208 	struct btrfs_root *root = fs_info->chunk_root;
3209 	struct btrfs_trans_handle *trans;
3210 	struct btrfs_block_group *block_group;
3211 	u64 length;
3212 	int ret;
3213 
3214 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3215 		btrfs_err(fs_info,
3216 			  "relocate: not supported on extent tree v2 yet");
3217 		return -EINVAL;
3218 	}
3219 
3220 	/*
3221 	 * Prevent races with automatic removal of unused block groups.
3222 	 * After we relocate and before we remove the chunk with offset
3223 	 * chunk_offset, automatic removal of the block group can kick in,
3224 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3225 	 *
3226 	 * Make sure to acquire this mutex before doing a tree search (dev
3227 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3228 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3229 	 * we release the path used to search the chunk/dev tree and before
3230 	 * the current task acquires this mutex and calls us.
3231 	 */
3232 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3233 
3234 	/* step one, relocate all the extents inside this chunk */
3235 	btrfs_scrub_pause(fs_info);
3236 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3237 	btrfs_scrub_continue(fs_info);
3238 	if (ret) {
3239 		/*
3240 		 * If we had a transaction abort, stop all running scrubs.
3241 		 * See transaction.c:cleanup_transaction() why we do it here.
3242 		 */
3243 		if (BTRFS_FS_ERROR(fs_info))
3244 			btrfs_scrub_cancel(fs_info);
3245 		return ret;
3246 	}
3247 
3248 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3249 	if (!block_group)
3250 		return -ENOENT;
3251 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3252 	length = block_group->length;
3253 	btrfs_put_block_group(block_group);
3254 
3255 	/*
3256 	 * On a zoned file system, discard the whole block group, this will
3257 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3258 	 * resetting the zone fails, don't treat it as a fatal problem from the
3259 	 * filesystem's point of view.
3260 	 */
3261 	if (btrfs_is_zoned(fs_info)) {
3262 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3263 		if (ret)
3264 			btrfs_info(fs_info,
3265 				"failed to reset zone %llu after relocation",
3266 				chunk_offset);
3267 	}
3268 
3269 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3270 						     chunk_offset);
3271 	if (IS_ERR(trans)) {
3272 		ret = PTR_ERR(trans);
3273 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3274 		return ret;
3275 	}
3276 
3277 	/*
3278 	 * step two, delete the device extents and the
3279 	 * chunk tree entries
3280 	 */
3281 	ret = btrfs_remove_chunk(trans, chunk_offset);
3282 	btrfs_end_transaction(trans);
3283 	return ret;
3284 }
3285 
3286 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3287 {
3288 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3289 	struct btrfs_path *path;
3290 	struct extent_buffer *leaf;
3291 	struct btrfs_chunk *chunk;
3292 	struct btrfs_key key;
3293 	struct btrfs_key found_key;
3294 	u64 chunk_type;
3295 	bool retried = false;
3296 	int failed = 0;
3297 	int ret;
3298 
3299 	path = btrfs_alloc_path();
3300 	if (!path)
3301 		return -ENOMEM;
3302 
3303 again:
3304 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3305 	key.offset = (u64)-1;
3306 	key.type = BTRFS_CHUNK_ITEM_KEY;
3307 
3308 	while (1) {
3309 		mutex_lock(&fs_info->reclaim_bgs_lock);
3310 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3311 		if (ret < 0) {
3312 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3313 			goto error;
3314 		}
3315 		BUG_ON(ret == 0); /* Corruption */
3316 
3317 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3318 					  key.type);
3319 		if (ret)
3320 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3321 		if (ret < 0)
3322 			goto error;
3323 		if (ret > 0)
3324 			break;
3325 
3326 		leaf = path->nodes[0];
3327 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3328 
3329 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3330 				       struct btrfs_chunk);
3331 		chunk_type = btrfs_chunk_type(leaf, chunk);
3332 		btrfs_release_path(path);
3333 
3334 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3335 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3336 			if (ret == -ENOSPC)
3337 				failed++;
3338 			else
3339 				BUG_ON(ret);
3340 		}
3341 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3342 
3343 		if (found_key.offset == 0)
3344 			break;
3345 		key.offset = found_key.offset - 1;
3346 	}
3347 	ret = 0;
3348 	if (failed && !retried) {
3349 		failed = 0;
3350 		retried = true;
3351 		goto again;
3352 	} else if (WARN_ON(failed && retried)) {
3353 		ret = -ENOSPC;
3354 	}
3355 error:
3356 	btrfs_free_path(path);
3357 	return ret;
3358 }
3359 
3360 /*
3361  * return 1 : allocate a data chunk successfully,
3362  * return <0: errors during allocating a data chunk,
3363  * return 0 : no need to allocate a data chunk.
3364  */
3365 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3366 				      u64 chunk_offset)
3367 {
3368 	struct btrfs_block_group *cache;
3369 	u64 bytes_used;
3370 	u64 chunk_type;
3371 
3372 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3373 	ASSERT(cache);
3374 	chunk_type = cache->flags;
3375 	btrfs_put_block_group(cache);
3376 
3377 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3378 		return 0;
3379 
3380 	spin_lock(&fs_info->data_sinfo->lock);
3381 	bytes_used = fs_info->data_sinfo->bytes_used;
3382 	spin_unlock(&fs_info->data_sinfo->lock);
3383 
3384 	if (!bytes_used) {
3385 		struct btrfs_trans_handle *trans;
3386 		int ret;
3387 
3388 		trans =	btrfs_join_transaction(fs_info->tree_root);
3389 		if (IS_ERR(trans))
3390 			return PTR_ERR(trans);
3391 
3392 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3393 		btrfs_end_transaction(trans);
3394 		if (ret < 0)
3395 			return ret;
3396 		return 1;
3397 	}
3398 
3399 	return 0;
3400 }
3401 
3402 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3403 			       struct btrfs_balance_control *bctl)
3404 {
3405 	struct btrfs_root *root = fs_info->tree_root;
3406 	struct btrfs_trans_handle *trans;
3407 	struct btrfs_balance_item *item;
3408 	struct btrfs_disk_balance_args disk_bargs;
3409 	struct btrfs_path *path;
3410 	struct extent_buffer *leaf;
3411 	struct btrfs_key key;
3412 	int ret, err;
3413 
3414 	path = btrfs_alloc_path();
3415 	if (!path)
3416 		return -ENOMEM;
3417 
3418 	trans = btrfs_start_transaction(root, 0);
3419 	if (IS_ERR(trans)) {
3420 		btrfs_free_path(path);
3421 		return PTR_ERR(trans);
3422 	}
3423 
3424 	key.objectid = BTRFS_BALANCE_OBJECTID;
3425 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3426 	key.offset = 0;
3427 
3428 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3429 				      sizeof(*item));
3430 	if (ret)
3431 		goto out;
3432 
3433 	leaf = path->nodes[0];
3434 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3435 
3436 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3437 
3438 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3439 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3440 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3441 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3442 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3443 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3444 
3445 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3446 
3447 	btrfs_mark_buffer_dirty(trans, leaf);
3448 out:
3449 	btrfs_free_path(path);
3450 	err = btrfs_commit_transaction(trans);
3451 	if (err && !ret)
3452 		ret = err;
3453 	return ret;
3454 }
3455 
3456 static int del_balance_item(struct btrfs_fs_info *fs_info)
3457 {
3458 	struct btrfs_root *root = fs_info->tree_root;
3459 	struct btrfs_trans_handle *trans;
3460 	struct btrfs_path *path;
3461 	struct btrfs_key key;
3462 	int ret, err;
3463 
3464 	path = btrfs_alloc_path();
3465 	if (!path)
3466 		return -ENOMEM;
3467 
3468 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3469 	if (IS_ERR(trans)) {
3470 		btrfs_free_path(path);
3471 		return PTR_ERR(trans);
3472 	}
3473 
3474 	key.objectid = BTRFS_BALANCE_OBJECTID;
3475 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3476 	key.offset = 0;
3477 
3478 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3479 	if (ret < 0)
3480 		goto out;
3481 	if (ret > 0) {
3482 		ret = -ENOENT;
3483 		goto out;
3484 	}
3485 
3486 	ret = btrfs_del_item(trans, root, path);
3487 out:
3488 	btrfs_free_path(path);
3489 	err = btrfs_commit_transaction(trans);
3490 	if (err && !ret)
3491 		ret = err;
3492 	return ret;
3493 }
3494 
3495 /*
3496  * This is a heuristic used to reduce the number of chunks balanced on
3497  * resume after balance was interrupted.
3498  */
3499 static void update_balance_args(struct btrfs_balance_control *bctl)
3500 {
3501 	/*
3502 	 * Turn on soft mode for chunk types that were being converted.
3503 	 */
3504 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3505 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3506 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3507 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3508 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3509 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3510 
3511 	/*
3512 	 * Turn on usage filter if is not already used.  The idea is
3513 	 * that chunks that we have already balanced should be
3514 	 * reasonably full.  Don't do it for chunks that are being
3515 	 * converted - that will keep us from relocating unconverted
3516 	 * (albeit full) chunks.
3517 	 */
3518 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3519 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3520 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3521 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3522 		bctl->data.usage = 90;
3523 	}
3524 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3526 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3527 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3528 		bctl->sys.usage = 90;
3529 	}
3530 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3531 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3532 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3533 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3534 		bctl->meta.usage = 90;
3535 	}
3536 }
3537 
3538 /*
3539  * Clear the balance status in fs_info and delete the balance item from disk.
3540  */
3541 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3542 {
3543 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3544 	int ret;
3545 
3546 	BUG_ON(!fs_info->balance_ctl);
3547 
3548 	spin_lock(&fs_info->balance_lock);
3549 	fs_info->balance_ctl = NULL;
3550 	spin_unlock(&fs_info->balance_lock);
3551 
3552 	kfree(bctl);
3553 	ret = del_balance_item(fs_info);
3554 	if (ret)
3555 		btrfs_handle_fs_error(fs_info, ret, NULL);
3556 }
3557 
3558 /*
3559  * Balance filters.  Return 1 if chunk should be filtered out
3560  * (should not be balanced).
3561  */
3562 static int chunk_profiles_filter(u64 chunk_type,
3563 				 struct btrfs_balance_args *bargs)
3564 {
3565 	chunk_type = chunk_to_extended(chunk_type) &
3566 				BTRFS_EXTENDED_PROFILE_MASK;
3567 
3568 	if (bargs->profiles & chunk_type)
3569 		return 0;
3570 
3571 	return 1;
3572 }
3573 
3574 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3575 			      struct btrfs_balance_args *bargs)
3576 {
3577 	struct btrfs_block_group *cache;
3578 	u64 chunk_used;
3579 	u64 user_thresh_min;
3580 	u64 user_thresh_max;
3581 	int ret = 1;
3582 
3583 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3584 	chunk_used = cache->used;
3585 
3586 	if (bargs->usage_min == 0)
3587 		user_thresh_min = 0;
3588 	else
3589 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3590 
3591 	if (bargs->usage_max == 0)
3592 		user_thresh_max = 1;
3593 	else if (bargs->usage_max > 100)
3594 		user_thresh_max = cache->length;
3595 	else
3596 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3597 
3598 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3599 		ret = 0;
3600 
3601 	btrfs_put_block_group(cache);
3602 	return ret;
3603 }
3604 
3605 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3606 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3607 {
3608 	struct btrfs_block_group *cache;
3609 	u64 chunk_used, user_thresh;
3610 	int ret = 1;
3611 
3612 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3613 	chunk_used = cache->used;
3614 
3615 	if (bargs->usage_min == 0)
3616 		user_thresh = 1;
3617 	else if (bargs->usage > 100)
3618 		user_thresh = cache->length;
3619 	else
3620 		user_thresh = mult_perc(cache->length, bargs->usage);
3621 
3622 	if (chunk_used < user_thresh)
3623 		ret = 0;
3624 
3625 	btrfs_put_block_group(cache);
3626 	return ret;
3627 }
3628 
3629 static int chunk_devid_filter(struct extent_buffer *leaf,
3630 			      struct btrfs_chunk *chunk,
3631 			      struct btrfs_balance_args *bargs)
3632 {
3633 	struct btrfs_stripe *stripe;
3634 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3635 	int i;
3636 
3637 	for (i = 0; i < num_stripes; i++) {
3638 		stripe = btrfs_stripe_nr(chunk, i);
3639 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3640 			return 0;
3641 	}
3642 
3643 	return 1;
3644 }
3645 
3646 static u64 calc_data_stripes(u64 type, int num_stripes)
3647 {
3648 	const int index = btrfs_bg_flags_to_raid_index(type);
3649 	const int ncopies = btrfs_raid_array[index].ncopies;
3650 	const int nparity = btrfs_raid_array[index].nparity;
3651 
3652 	return (num_stripes - nparity) / ncopies;
3653 }
3654 
3655 /* [pstart, pend) */
3656 static int chunk_drange_filter(struct extent_buffer *leaf,
3657 			       struct btrfs_chunk *chunk,
3658 			       struct btrfs_balance_args *bargs)
3659 {
3660 	struct btrfs_stripe *stripe;
3661 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3662 	u64 stripe_offset;
3663 	u64 stripe_length;
3664 	u64 type;
3665 	int factor;
3666 	int i;
3667 
3668 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3669 		return 0;
3670 
3671 	type = btrfs_chunk_type(leaf, chunk);
3672 	factor = calc_data_stripes(type, num_stripes);
3673 
3674 	for (i = 0; i < num_stripes; i++) {
3675 		stripe = btrfs_stripe_nr(chunk, i);
3676 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3677 			continue;
3678 
3679 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3680 		stripe_length = btrfs_chunk_length(leaf, chunk);
3681 		stripe_length = div_u64(stripe_length, factor);
3682 
3683 		if (stripe_offset < bargs->pend &&
3684 		    stripe_offset + stripe_length > bargs->pstart)
3685 			return 0;
3686 	}
3687 
3688 	return 1;
3689 }
3690 
3691 /* [vstart, vend) */
3692 static int chunk_vrange_filter(struct extent_buffer *leaf,
3693 			       struct btrfs_chunk *chunk,
3694 			       u64 chunk_offset,
3695 			       struct btrfs_balance_args *bargs)
3696 {
3697 	if (chunk_offset < bargs->vend &&
3698 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3699 		/* at least part of the chunk is inside this vrange */
3700 		return 0;
3701 
3702 	return 1;
3703 }
3704 
3705 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3706 			       struct btrfs_chunk *chunk,
3707 			       struct btrfs_balance_args *bargs)
3708 {
3709 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3710 
3711 	if (bargs->stripes_min <= num_stripes
3712 			&& num_stripes <= bargs->stripes_max)
3713 		return 0;
3714 
3715 	return 1;
3716 }
3717 
3718 static int chunk_soft_convert_filter(u64 chunk_type,
3719 				     struct btrfs_balance_args *bargs)
3720 {
3721 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3722 		return 0;
3723 
3724 	chunk_type = chunk_to_extended(chunk_type) &
3725 				BTRFS_EXTENDED_PROFILE_MASK;
3726 
3727 	if (bargs->target == chunk_type)
3728 		return 1;
3729 
3730 	return 0;
3731 }
3732 
3733 static int should_balance_chunk(struct extent_buffer *leaf,
3734 				struct btrfs_chunk *chunk, u64 chunk_offset)
3735 {
3736 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3737 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3738 	struct btrfs_balance_args *bargs = NULL;
3739 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3740 
3741 	/* type filter */
3742 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3743 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3744 		return 0;
3745 	}
3746 
3747 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748 		bargs = &bctl->data;
3749 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750 		bargs = &bctl->sys;
3751 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752 		bargs = &bctl->meta;
3753 
3754 	/* profiles filter */
3755 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3756 	    chunk_profiles_filter(chunk_type, bargs)) {
3757 		return 0;
3758 	}
3759 
3760 	/* usage filter */
3761 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3762 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3763 		return 0;
3764 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3765 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3766 		return 0;
3767 	}
3768 
3769 	/* devid filter */
3770 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3771 	    chunk_devid_filter(leaf, chunk, bargs)) {
3772 		return 0;
3773 	}
3774 
3775 	/* drange filter, makes sense only with devid filter */
3776 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3777 	    chunk_drange_filter(leaf, chunk, bargs)) {
3778 		return 0;
3779 	}
3780 
3781 	/* vrange filter */
3782 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3783 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3784 		return 0;
3785 	}
3786 
3787 	/* stripes filter */
3788 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3789 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3790 		return 0;
3791 	}
3792 
3793 	/* soft profile changing mode */
3794 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3795 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3796 		return 0;
3797 	}
3798 
3799 	/*
3800 	 * limited by count, must be the last filter
3801 	 */
3802 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3803 		if (bargs->limit == 0)
3804 			return 0;
3805 		else
3806 			bargs->limit--;
3807 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3808 		/*
3809 		 * Same logic as the 'limit' filter; the minimum cannot be
3810 		 * determined here because we do not have the global information
3811 		 * about the count of all chunks that satisfy the filters.
3812 		 */
3813 		if (bargs->limit_max == 0)
3814 			return 0;
3815 		else
3816 			bargs->limit_max--;
3817 	}
3818 
3819 	return 1;
3820 }
3821 
3822 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3823 {
3824 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3825 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3826 	u64 chunk_type;
3827 	struct btrfs_chunk *chunk;
3828 	struct btrfs_path *path = NULL;
3829 	struct btrfs_key key;
3830 	struct btrfs_key found_key;
3831 	struct extent_buffer *leaf;
3832 	int slot;
3833 	int ret;
3834 	int enospc_errors = 0;
3835 	bool counting = true;
3836 	/* The single value limit and min/max limits use the same bytes in the */
3837 	u64 limit_data = bctl->data.limit;
3838 	u64 limit_meta = bctl->meta.limit;
3839 	u64 limit_sys = bctl->sys.limit;
3840 	u32 count_data = 0;
3841 	u32 count_meta = 0;
3842 	u32 count_sys = 0;
3843 	int chunk_reserved = 0;
3844 
3845 	path = btrfs_alloc_path();
3846 	if (!path) {
3847 		ret = -ENOMEM;
3848 		goto error;
3849 	}
3850 
3851 	/* zero out stat counters */
3852 	spin_lock(&fs_info->balance_lock);
3853 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3854 	spin_unlock(&fs_info->balance_lock);
3855 again:
3856 	if (!counting) {
3857 		/*
3858 		 * The single value limit and min/max limits use the same bytes
3859 		 * in the
3860 		 */
3861 		bctl->data.limit = limit_data;
3862 		bctl->meta.limit = limit_meta;
3863 		bctl->sys.limit = limit_sys;
3864 	}
3865 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3866 	key.offset = (u64)-1;
3867 	key.type = BTRFS_CHUNK_ITEM_KEY;
3868 
3869 	while (1) {
3870 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3871 		    atomic_read(&fs_info->balance_cancel_req)) {
3872 			ret = -ECANCELED;
3873 			goto error;
3874 		}
3875 
3876 		mutex_lock(&fs_info->reclaim_bgs_lock);
3877 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3878 		if (ret < 0) {
3879 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3880 			goto error;
3881 		}
3882 
3883 		/*
3884 		 * this shouldn't happen, it means the last relocate
3885 		 * failed
3886 		 */
3887 		if (ret == 0)
3888 			BUG(); /* FIXME break ? */
3889 
3890 		ret = btrfs_previous_item(chunk_root, path, 0,
3891 					  BTRFS_CHUNK_ITEM_KEY);
3892 		if (ret) {
3893 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3894 			ret = 0;
3895 			break;
3896 		}
3897 
3898 		leaf = path->nodes[0];
3899 		slot = path->slots[0];
3900 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3901 
3902 		if (found_key.objectid != key.objectid) {
3903 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3904 			break;
3905 		}
3906 
3907 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3908 		chunk_type = btrfs_chunk_type(leaf, chunk);
3909 
3910 		if (!counting) {
3911 			spin_lock(&fs_info->balance_lock);
3912 			bctl->stat.considered++;
3913 			spin_unlock(&fs_info->balance_lock);
3914 		}
3915 
3916 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3917 
3918 		btrfs_release_path(path);
3919 		if (!ret) {
3920 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3921 			goto loop;
3922 		}
3923 
3924 		if (counting) {
3925 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3926 			spin_lock(&fs_info->balance_lock);
3927 			bctl->stat.expected++;
3928 			spin_unlock(&fs_info->balance_lock);
3929 
3930 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931 				count_data++;
3932 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933 				count_sys++;
3934 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935 				count_meta++;
3936 
3937 			goto loop;
3938 		}
3939 
3940 		/*
3941 		 * Apply limit_min filter, no need to check if the LIMITS
3942 		 * filter is used, limit_min is 0 by default
3943 		 */
3944 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3945 					count_data < bctl->data.limit_min)
3946 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3947 					count_meta < bctl->meta.limit_min)
3948 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3949 					count_sys < bctl->sys.limit_min)) {
3950 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3951 			goto loop;
3952 		}
3953 
3954 		if (!chunk_reserved) {
3955 			/*
3956 			 * We may be relocating the only data chunk we have,
3957 			 * which could potentially end up with losing data's
3958 			 * raid profile, so lets allocate an empty one in
3959 			 * advance.
3960 			 */
3961 			ret = btrfs_may_alloc_data_chunk(fs_info,
3962 							 found_key.offset);
3963 			if (ret < 0) {
3964 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3965 				goto error;
3966 			} else if (ret == 1) {
3967 				chunk_reserved = 1;
3968 			}
3969 		}
3970 
3971 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3972 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3973 		if (ret == -ENOSPC) {
3974 			enospc_errors++;
3975 		} else if (ret == -ETXTBSY) {
3976 			btrfs_info(fs_info,
3977 	   "skipping relocation of block group %llu due to active swapfile",
3978 				   found_key.offset);
3979 			ret = 0;
3980 		} else if (ret) {
3981 			goto error;
3982 		} else {
3983 			spin_lock(&fs_info->balance_lock);
3984 			bctl->stat.completed++;
3985 			spin_unlock(&fs_info->balance_lock);
3986 		}
3987 loop:
3988 		if (found_key.offset == 0)
3989 			break;
3990 		key.offset = found_key.offset - 1;
3991 	}
3992 
3993 	if (counting) {
3994 		btrfs_release_path(path);
3995 		counting = false;
3996 		goto again;
3997 	}
3998 error:
3999 	btrfs_free_path(path);
4000 	if (enospc_errors) {
4001 		btrfs_info(fs_info, "%d enospc errors during balance",
4002 			   enospc_errors);
4003 		if (!ret)
4004 			ret = -ENOSPC;
4005 	}
4006 
4007 	return ret;
4008 }
4009 
4010 /*
4011  * See if a given profile is valid and reduced.
4012  *
4013  * @flags:     profile to validate
4014  * @extended:  if true @flags is treated as an extended profile
4015  */
4016 static int alloc_profile_is_valid(u64 flags, int extended)
4017 {
4018 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4019 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4020 
4021 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4022 
4023 	/* 1) check that all other bits are zeroed */
4024 	if (flags & ~mask)
4025 		return 0;
4026 
4027 	/* 2) see if profile is reduced */
4028 	if (flags == 0)
4029 		return !extended; /* "0" is valid for usual profiles */
4030 
4031 	return has_single_bit_set(flags);
4032 }
4033 
4034 /*
4035  * Validate target profile against allowed profiles and return true if it's OK.
4036  * Otherwise print the error message and return false.
4037  */
4038 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4039 		const struct btrfs_balance_args *bargs,
4040 		u64 allowed, const char *type)
4041 {
4042 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4043 		return true;
4044 
4045 	/* Profile is valid and does not have bits outside of the allowed set */
4046 	if (alloc_profile_is_valid(bargs->target, 1) &&
4047 	    (bargs->target & ~allowed) == 0)
4048 		return true;
4049 
4050 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4051 			type, btrfs_bg_type_to_raid_name(bargs->target));
4052 	return false;
4053 }
4054 
4055 /*
4056  * Fill @buf with textual description of balance filter flags @bargs, up to
4057  * @size_buf including the terminating null. The output may be trimmed if it
4058  * does not fit into the provided buffer.
4059  */
4060 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4061 				 u32 size_buf)
4062 {
4063 	int ret;
4064 	u32 size_bp = size_buf;
4065 	char *bp = buf;
4066 	u64 flags = bargs->flags;
4067 	char tmp_buf[128] = {'\0'};
4068 
4069 	if (!flags)
4070 		return;
4071 
4072 #define CHECK_APPEND_NOARG(a)						\
4073 	do {								\
4074 		ret = snprintf(bp, size_bp, (a));			\
4075 		if (ret < 0 || ret >= size_bp)				\
4076 			goto out_overflow;				\
4077 		size_bp -= ret;						\
4078 		bp += ret;						\
4079 	} while (0)
4080 
4081 #define CHECK_APPEND_1ARG(a, v1)					\
4082 	do {								\
4083 		ret = snprintf(bp, size_bp, (a), (v1));			\
4084 		if (ret < 0 || ret >= size_bp)				\
4085 			goto out_overflow;				\
4086 		size_bp -= ret;						\
4087 		bp += ret;						\
4088 	} while (0)
4089 
4090 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4091 	do {								\
4092 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4093 		if (ret < 0 || ret >= size_bp)				\
4094 			goto out_overflow;				\
4095 		size_bp -= ret;						\
4096 		bp += ret;						\
4097 	} while (0)
4098 
4099 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4100 		CHECK_APPEND_1ARG("convert=%s,",
4101 				  btrfs_bg_type_to_raid_name(bargs->target));
4102 
4103 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4104 		CHECK_APPEND_NOARG("soft,");
4105 
4106 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4107 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4108 					    sizeof(tmp_buf));
4109 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4110 	}
4111 
4112 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4113 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4114 
4115 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4116 		CHECK_APPEND_2ARG("usage=%u..%u,",
4117 				  bargs->usage_min, bargs->usage_max);
4118 
4119 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4120 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4121 
4122 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4123 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4124 				  bargs->pstart, bargs->pend);
4125 
4126 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4127 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4128 				  bargs->vstart, bargs->vend);
4129 
4130 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4131 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4132 
4133 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4134 		CHECK_APPEND_2ARG("limit=%u..%u,",
4135 				bargs->limit_min, bargs->limit_max);
4136 
4137 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4138 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4139 				  bargs->stripes_min, bargs->stripes_max);
4140 
4141 #undef CHECK_APPEND_2ARG
4142 #undef CHECK_APPEND_1ARG
4143 #undef CHECK_APPEND_NOARG
4144 
4145 out_overflow:
4146 
4147 	if (size_bp < size_buf)
4148 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4149 	else
4150 		buf[0] = '\0';
4151 }
4152 
4153 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4154 {
4155 	u32 size_buf = 1024;
4156 	char tmp_buf[192] = {'\0'};
4157 	char *buf;
4158 	char *bp;
4159 	u32 size_bp = size_buf;
4160 	int ret;
4161 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4162 
4163 	buf = kzalloc(size_buf, GFP_KERNEL);
4164 	if (!buf)
4165 		return;
4166 
4167 	bp = buf;
4168 
4169 #define CHECK_APPEND_1ARG(a, v1)					\
4170 	do {								\
4171 		ret = snprintf(bp, size_bp, (a), (v1));			\
4172 		if (ret < 0 || ret >= size_bp)				\
4173 			goto out_overflow;				\
4174 		size_bp -= ret;						\
4175 		bp += ret;						\
4176 	} while (0)
4177 
4178 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4179 		CHECK_APPEND_1ARG("%s", "-f ");
4180 
4181 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4182 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4183 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4184 	}
4185 
4186 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4187 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4188 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4189 	}
4190 
4191 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4192 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4193 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4194 	}
4195 
4196 #undef CHECK_APPEND_1ARG
4197 
4198 out_overflow:
4199 
4200 	if (size_bp < size_buf)
4201 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4202 	btrfs_info(fs_info, "balance: %s %s",
4203 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4204 		   "resume" : "start", buf);
4205 
4206 	kfree(buf);
4207 }
4208 
4209 /*
4210  * Should be called with balance mutexe held
4211  */
4212 int btrfs_balance(struct btrfs_fs_info *fs_info,
4213 		  struct btrfs_balance_control *bctl,
4214 		  struct btrfs_ioctl_balance_args *bargs)
4215 {
4216 	u64 meta_target, data_target;
4217 	u64 allowed;
4218 	int mixed = 0;
4219 	int ret;
4220 	u64 num_devices;
4221 	unsigned seq;
4222 	bool reducing_redundancy;
4223 	bool paused = false;
4224 	int i;
4225 
4226 	if (btrfs_fs_closing(fs_info) ||
4227 	    atomic_read(&fs_info->balance_pause_req) ||
4228 	    btrfs_should_cancel_balance(fs_info)) {
4229 		ret = -EINVAL;
4230 		goto out;
4231 	}
4232 
4233 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4234 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4235 		mixed = 1;
4236 
4237 	/*
4238 	 * In case of mixed groups both data and meta should be picked,
4239 	 * and identical options should be given for both of them.
4240 	 */
4241 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4242 	if (mixed && (bctl->flags & allowed)) {
4243 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4244 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4245 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4246 			btrfs_err(fs_info,
4247 	  "balance: mixed groups data and metadata options must be the same");
4248 			ret = -EINVAL;
4249 			goto out;
4250 		}
4251 	}
4252 
4253 	/*
4254 	 * rw_devices will not change at the moment, device add/delete/replace
4255 	 * are exclusive
4256 	 */
4257 	num_devices = fs_info->fs_devices->rw_devices;
4258 
4259 	/*
4260 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4261 	 * special bit for it, to make it easier to distinguish.  Thus we need
4262 	 * to set it manually, or balance would refuse the profile.
4263 	 */
4264 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4265 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4266 		if (num_devices >= btrfs_raid_array[i].devs_min)
4267 			allowed |= btrfs_raid_array[i].bg_flag;
4268 
4269 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4270 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4271 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4272 		ret = -EINVAL;
4273 		goto out;
4274 	}
4275 
4276 	/*
4277 	 * Allow to reduce metadata or system integrity only if force set for
4278 	 * profiles with redundancy (copies, parity)
4279 	 */
4280 	allowed = 0;
4281 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4282 		if (btrfs_raid_array[i].ncopies >= 2 ||
4283 		    btrfs_raid_array[i].tolerated_failures >= 1)
4284 			allowed |= btrfs_raid_array[i].bg_flag;
4285 	}
4286 	do {
4287 		seq = read_seqbegin(&fs_info->profiles_lock);
4288 
4289 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4290 		     (fs_info->avail_system_alloc_bits & allowed) &&
4291 		     !(bctl->sys.target & allowed)) ||
4292 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4293 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4294 		     !(bctl->meta.target & allowed)))
4295 			reducing_redundancy = true;
4296 		else
4297 			reducing_redundancy = false;
4298 
4299 		/* if we're not converting, the target field is uninitialized */
4300 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4301 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4302 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4303 			bctl->data.target : fs_info->avail_data_alloc_bits;
4304 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4305 
4306 	if (reducing_redundancy) {
4307 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4308 			btrfs_info(fs_info,
4309 			   "balance: force reducing metadata redundancy");
4310 		} else {
4311 			btrfs_err(fs_info,
4312 	"balance: reduces metadata redundancy, use --force if you want this");
4313 			ret = -EINVAL;
4314 			goto out;
4315 		}
4316 	}
4317 
4318 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4319 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4320 		btrfs_warn(fs_info,
4321 	"balance: metadata profile %s has lower redundancy than data profile %s",
4322 				btrfs_bg_type_to_raid_name(meta_target),
4323 				btrfs_bg_type_to_raid_name(data_target));
4324 	}
4325 
4326 	ret = insert_balance_item(fs_info, bctl);
4327 	if (ret && ret != -EEXIST)
4328 		goto out;
4329 
4330 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4331 		BUG_ON(ret == -EEXIST);
4332 		BUG_ON(fs_info->balance_ctl);
4333 		spin_lock(&fs_info->balance_lock);
4334 		fs_info->balance_ctl = bctl;
4335 		spin_unlock(&fs_info->balance_lock);
4336 	} else {
4337 		BUG_ON(ret != -EEXIST);
4338 		spin_lock(&fs_info->balance_lock);
4339 		update_balance_args(bctl);
4340 		spin_unlock(&fs_info->balance_lock);
4341 	}
4342 
4343 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4344 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4345 	describe_balance_start_or_resume(fs_info);
4346 	mutex_unlock(&fs_info->balance_mutex);
4347 
4348 	ret = __btrfs_balance(fs_info);
4349 
4350 	mutex_lock(&fs_info->balance_mutex);
4351 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4352 		btrfs_info(fs_info, "balance: paused");
4353 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4354 		paused = true;
4355 	}
4356 	/*
4357 	 * Balance can be canceled by:
4358 	 *
4359 	 * - Regular cancel request
4360 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4361 	 *
4362 	 * - Fatal signal to "btrfs" process
4363 	 *   Either the signal caught by wait_reserve_ticket() and callers
4364 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4365 	 *   got -ECANCELED.
4366 	 *   Either way, in this case balance_cancel_req = 0, and
4367 	 *   ret == -EINTR or ret == -ECANCELED.
4368 	 *
4369 	 * So here we only check the return value to catch canceled balance.
4370 	 */
4371 	else if (ret == -ECANCELED || ret == -EINTR)
4372 		btrfs_info(fs_info, "balance: canceled");
4373 	else
4374 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4375 
4376 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4377 
4378 	if (bargs) {
4379 		memset(bargs, 0, sizeof(*bargs));
4380 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4381 	}
4382 
4383 	/* We didn't pause, we can clean everything up. */
4384 	if (!paused) {
4385 		reset_balance_state(fs_info);
4386 		btrfs_exclop_finish(fs_info);
4387 	}
4388 
4389 	wake_up(&fs_info->balance_wait_q);
4390 
4391 	return ret;
4392 out:
4393 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4394 		reset_balance_state(fs_info);
4395 	else
4396 		kfree(bctl);
4397 	btrfs_exclop_finish(fs_info);
4398 
4399 	return ret;
4400 }
4401 
4402 static int balance_kthread(void *data)
4403 {
4404 	struct btrfs_fs_info *fs_info = data;
4405 	int ret = 0;
4406 
4407 	sb_start_write(fs_info->sb);
4408 	mutex_lock(&fs_info->balance_mutex);
4409 	if (fs_info->balance_ctl)
4410 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4411 	mutex_unlock(&fs_info->balance_mutex);
4412 	sb_end_write(fs_info->sb);
4413 
4414 	return ret;
4415 }
4416 
4417 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4418 {
4419 	struct task_struct *tsk;
4420 
4421 	mutex_lock(&fs_info->balance_mutex);
4422 	if (!fs_info->balance_ctl) {
4423 		mutex_unlock(&fs_info->balance_mutex);
4424 		return 0;
4425 	}
4426 	mutex_unlock(&fs_info->balance_mutex);
4427 
4428 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4429 		btrfs_info(fs_info, "balance: resume skipped");
4430 		return 0;
4431 	}
4432 
4433 	spin_lock(&fs_info->super_lock);
4434 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4435 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4436 	spin_unlock(&fs_info->super_lock);
4437 	/*
4438 	 * A ro->rw remount sequence should continue with the paused balance
4439 	 * regardless of who pauses it, system or the user as of now, so set
4440 	 * the resume flag.
4441 	 */
4442 	spin_lock(&fs_info->balance_lock);
4443 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4444 	spin_unlock(&fs_info->balance_lock);
4445 
4446 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4447 	return PTR_ERR_OR_ZERO(tsk);
4448 }
4449 
4450 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4451 {
4452 	struct btrfs_balance_control *bctl;
4453 	struct btrfs_balance_item *item;
4454 	struct btrfs_disk_balance_args disk_bargs;
4455 	struct btrfs_path *path;
4456 	struct extent_buffer *leaf;
4457 	struct btrfs_key key;
4458 	int ret;
4459 
4460 	path = btrfs_alloc_path();
4461 	if (!path)
4462 		return -ENOMEM;
4463 
4464 	key.objectid = BTRFS_BALANCE_OBJECTID;
4465 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4466 	key.offset = 0;
4467 
4468 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4469 	if (ret < 0)
4470 		goto out;
4471 	if (ret > 0) { /* ret = -ENOENT; */
4472 		ret = 0;
4473 		goto out;
4474 	}
4475 
4476 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4477 	if (!bctl) {
4478 		ret = -ENOMEM;
4479 		goto out;
4480 	}
4481 
4482 	leaf = path->nodes[0];
4483 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4484 
4485 	bctl->flags = btrfs_balance_flags(leaf, item);
4486 	bctl->flags |= BTRFS_BALANCE_RESUME;
4487 
4488 	btrfs_balance_data(leaf, item, &disk_bargs);
4489 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4490 	btrfs_balance_meta(leaf, item, &disk_bargs);
4491 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4492 	btrfs_balance_sys(leaf, item, &disk_bargs);
4493 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4494 
4495 	/*
4496 	 * This should never happen, as the paused balance state is recovered
4497 	 * during mount without any chance of other exclusive ops to collide.
4498 	 *
4499 	 * This gives the exclusive op status to balance and keeps in paused
4500 	 * state until user intervention (cancel or umount). If the ownership
4501 	 * cannot be assigned, show a message but do not fail. The balance
4502 	 * is in a paused state and must have fs_info::balance_ctl properly
4503 	 * set up.
4504 	 */
4505 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4506 		btrfs_warn(fs_info,
4507 	"balance: cannot set exclusive op status, resume manually");
4508 
4509 	btrfs_release_path(path);
4510 
4511 	mutex_lock(&fs_info->balance_mutex);
4512 	BUG_ON(fs_info->balance_ctl);
4513 	spin_lock(&fs_info->balance_lock);
4514 	fs_info->balance_ctl = bctl;
4515 	spin_unlock(&fs_info->balance_lock);
4516 	mutex_unlock(&fs_info->balance_mutex);
4517 out:
4518 	btrfs_free_path(path);
4519 	return ret;
4520 }
4521 
4522 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4523 {
4524 	int ret = 0;
4525 
4526 	mutex_lock(&fs_info->balance_mutex);
4527 	if (!fs_info->balance_ctl) {
4528 		mutex_unlock(&fs_info->balance_mutex);
4529 		return -ENOTCONN;
4530 	}
4531 
4532 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4533 		atomic_inc(&fs_info->balance_pause_req);
4534 		mutex_unlock(&fs_info->balance_mutex);
4535 
4536 		wait_event(fs_info->balance_wait_q,
4537 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4538 
4539 		mutex_lock(&fs_info->balance_mutex);
4540 		/* we are good with balance_ctl ripped off from under us */
4541 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4542 		atomic_dec(&fs_info->balance_pause_req);
4543 	} else {
4544 		ret = -ENOTCONN;
4545 	}
4546 
4547 	mutex_unlock(&fs_info->balance_mutex);
4548 	return ret;
4549 }
4550 
4551 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4552 {
4553 	mutex_lock(&fs_info->balance_mutex);
4554 	if (!fs_info->balance_ctl) {
4555 		mutex_unlock(&fs_info->balance_mutex);
4556 		return -ENOTCONN;
4557 	}
4558 
4559 	/*
4560 	 * A paused balance with the item stored on disk can be resumed at
4561 	 * mount time if the mount is read-write. Otherwise it's still paused
4562 	 * and we must not allow cancelling as it deletes the item.
4563 	 */
4564 	if (sb_rdonly(fs_info->sb)) {
4565 		mutex_unlock(&fs_info->balance_mutex);
4566 		return -EROFS;
4567 	}
4568 
4569 	atomic_inc(&fs_info->balance_cancel_req);
4570 	/*
4571 	 * if we are running just wait and return, balance item is
4572 	 * deleted in btrfs_balance in this case
4573 	 */
4574 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4575 		mutex_unlock(&fs_info->balance_mutex);
4576 		wait_event(fs_info->balance_wait_q,
4577 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4578 		mutex_lock(&fs_info->balance_mutex);
4579 	} else {
4580 		mutex_unlock(&fs_info->balance_mutex);
4581 		/*
4582 		 * Lock released to allow other waiters to continue, we'll
4583 		 * reexamine the status again.
4584 		 */
4585 		mutex_lock(&fs_info->balance_mutex);
4586 
4587 		if (fs_info->balance_ctl) {
4588 			reset_balance_state(fs_info);
4589 			btrfs_exclop_finish(fs_info);
4590 			btrfs_info(fs_info, "balance: canceled");
4591 		}
4592 	}
4593 
4594 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4595 	atomic_dec(&fs_info->balance_cancel_req);
4596 	mutex_unlock(&fs_info->balance_mutex);
4597 	return 0;
4598 }
4599 
4600 int btrfs_uuid_scan_kthread(void *data)
4601 {
4602 	struct btrfs_fs_info *fs_info = data;
4603 	struct btrfs_root *root = fs_info->tree_root;
4604 	struct btrfs_key key;
4605 	struct btrfs_path *path = NULL;
4606 	int ret = 0;
4607 	struct extent_buffer *eb;
4608 	int slot;
4609 	struct btrfs_root_item root_item;
4610 	u32 item_size;
4611 	struct btrfs_trans_handle *trans = NULL;
4612 	bool closing = false;
4613 
4614 	path = btrfs_alloc_path();
4615 	if (!path) {
4616 		ret = -ENOMEM;
4617 		goto out;
4618 	}
4619 
4620 	key.objectid = 0;
4621 	key.type = BTRFS_ROOT_ITEM_KEY;
4622 	key.offset = 0;
4623 
4624 	while (1) {
4625 		if (btrfs_fs_closing(fs_info)) {
4626 			closing = true;
4627 			break;
4628 		}
4629 		ret = btrfs_search_forward(root, &key, path,
4630 				BTRFS_OLDEST_GENERATION);
4631 		if (ret) {
4632 			if (ret > 0)
4633 				ret = 0;
4634 			break;
4635 		}
4636 
4637 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4638 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4639 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4640 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4641 			goto skip;
4642 
4643 		eb = path->nodes[0];
4644 		slot = path->slots[0];
4645 		item_size = btrfs_item_size(eb, slot);
4646 		if (item_size < sizeof(root_item))
4647 			goto skip;
4648 
4649 		read_extent_buffer(eb, &root_item,
4650 				   btrfs_item_ptr_offset(eb, slot),
4651 				   (int)sizeof(root_item));
4652 		if (btrfs_root_refs(&root_item) == 0)
4653 			goto skip;
4654 
4655 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4656 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4657 			if (trans)
4658 				goto update_tree;
4659 
4660 			btrfs_release_path(path);
4661 			/*
4662 			 * 1 - subvol uuid item
4663 			 * 1 - received_subvol uuid item
4664 			 */
4665 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4666 			if (IS_ERR(trans)) {
4667 				ret = PTR_ERR(trans);
4668 				break;
4669 			}
4670 			continue;
4671 		} else {
4672 			goto skip;
4673 		}
4674 update_tree:
4675 		btrfs_release_path(path);
4676 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4677 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4678 						  BTRFS_UUID_KEY_SUBVOL,
4679 						  key.objectid);
4680 			if (ret < 0) {
4681 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4682 					ret);
4683 				break;
4684 			}
4685 		}
4686 
4687 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 			ret = btrfs_uuid_tree_add(trans,
4689 						  root_item.received_uuid,
4690 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4691 						  key.objectid);
4692 			if (ret < 0) {
4693 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4694 					ret);
4695 				break;
4696 			}
4697 		}
4698 
4699 skip:
4700 		btrfs_release_path(path);
4701 		if (trans) {
4702 			ret = btrfs_end_transaction(trans);
4703 			trans = NULL;
4704 			if (ret)
4705 				break;
4706 		}
4707 
4708 		if (key.offset < (u64)-1) {
4709 			key.offset++;
4710 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4711 			key.offset = 0;
4712 			key.type = BTRFS_ROOT_ITEM_KEY;
4713 		} else if (key.objectid < (u64)-1) {
4714 			key.offset = 0;
4715 			key.type = BTRFS_ROOT_ITEM_KEY;
4716 			key.objectid++;
4717 		} else {
4718 			break;
4719 		}
4720 		cond_resched();
4721 	}
4722 
4723 out:
4724 	btrfs_free_path(path);
4725 	if (trans && !IS_ERR(trans))
4726 		btrfs_end_transaction(trans);
4727 	if (ret)
4728 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4729 	else if (!closing)
4730 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4731 	up(&fs_info->uuid_tree_rescan_sem);
4732 	return 0;
4733 }
4734 
4735 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4736 {
4737 	struct btrfs_trans_handle *trans;
4738 	struct btrfs_root *tree_root = fs_info->tree_root;
4739 	struct btrfs_root *uuid_root;
4740 	struct task_struct *task;
4741 	int ret;
4742 
4743 	/*
4744 	 * 1 - root node
4745 	 * 1 - root item
4746 	 */
4747 	trans = btrfs_start_transaction(tree_root, 2);
4748 	if (IS_ERR(trans))
4749 		return PTR_ERR(trans);
4750 
4751 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4752 	if (IS_ERR(uuid_root)) {
4753 		ret = PTR_ERR(uuid_root);
4754 		btrfs_abort_transaction(trans, ret);
4755 		btrfs_end_transaction(trans);
4756 		return ret;
4757 	}
4758 
4759 	fs_info->uuid_root = uuid_root;
4760 
4761 	ret = btrfs_commit_transaction(trans);
4762 	if (ret)
4763 		return ret;
4764 
4765 	down(&fs_info->uuid_tree_rescan_sem);
4766 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4767 	if (IS_ERR(task)) {
4768 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4769 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4770 		up(&fs_info->uuid_tree_rescan_sem);
4771 		return PTR_ERR(task);
4772 	}
4773 
4774 	return 0;
4775 }
4776 
4777 /*
4778  * shrinking a device means finding all of the device extents past
4779  * the new size, and then following the back refs to the chunks.
4780  * The chunk relocation code actually frees the device extent
4781  */
4782 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4783 {
4784 	struct btrfs_fs_info *fs_info = device->fs_info;
4785 	struct btrfs_root *root = fs_info->dev_root;
4786 	struct btrfs_trans_handle *trans;
4787 	struct btrfs_dev_extent *dev_extent = NULL;
4788 	struct btrfs_path *path;
4789 	u64 length;
4790 	u64 chunk_offset;
4791 	int ret;
4792 	int slot;
4793 	int failed = 0;
4794 	bool retried = false;
4795 	struct extent_buffer *l;
4796 	struct btrfs_key key;
4797 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4798 	u64 old_total = btrfs_super_total_bytes(super_copy);
4799 	u64 old_size = btrfs_device_get_total_bytes(device);
4800 	u64 diff;
4801 	u64 start;
4802 	u64 free_diff = 0;
4803 
4804 	new_size = round_down(new_size, fs_info->sectorsize);
4805 	start = new_size;
4806 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4807 
4808 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4809 		return -EINVAL;
4810 
4811 	path = btrfs_alloc_path();
4812 	if (!path)
4813 		return -ENOMEM;
4814 
4815 	path->reada = READA_BACK;
4816 
4817 	trans = btrfs_start_transaction(root, 0);
4818 	if (IS_ERR(trans)) {
4819 		btrfs_free_path(path);
4820 		return PTR_ERR(trans);
4821 	}
4822 
4823 	mutex_lock(&fs_info->chunk_mutex);
4824 
4825 	btrfs_device_set_total_bytes(device, new_size);
4826 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4827 		device->fs_devices->total_rw_bytes -= diff;
4828 
4829 		/*
4830 		 * The new free_chunk_space is new_size - used, so we have to
4831 		 * subtract the delta of the old free_chunk_space which included
4832 		 * old_size - used.  If used > new_size then just subtract this
4833 		 * entire device's free space.
4834 		 */
4835 		if (device->bytes_used < new_size)
4836 			free_diff = (old_size - device->bytes_used) -
4837 				    (new_size - device->bytes_used);
4838 		else
4839 			free_diff = old_size - device->bytes_used;
4840 		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4841 	}
4842 
4843 	/*
4844 	 * Once the device's size has been set to the new size, ensure all
4845 	 * in-memory chunks are synced to disk so that the loop below sees them
4846 	 * and relocates them accordingly.
4847 	 */
4848 	if (contains_pending_extent(device, &start, diff)) {
4849 		mutex_unlock(&fs_info->chunk_mutex);
4850 		ret = btrfs_commit_transaction(trans);
4851 		if (ret)
4852 			goto done;
4853 	} else {
4854 		mutex_unlock(&fs_info->chunk_mutex);
4855 		btrfs_end_transaction(trans);
4856 	}
4857 
4858 again:
4859 	key.objectid = device->devid;
4860 	key.offset = (u64)-1;
4861 	key.type = BTRFS_DEV_EXTENT_KEY;
4862 
4863 	do {
4864 		mutex_lock(&fs_info->reclaim_bgs_lock);
4865 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4866 		if (ret < 0) {
4867 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4868 			goto done;
4869 		}
4870 
4871 		ret = btrfs_previous_item(root, path, 0, key.type);
4872 		if (ret) {
4873 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4874 			if (ret < 0)
4875 				goto done;
4876 			ret = 0;
4877 			btrfs_release_path(path);
4878 			break;
4879 		}
4880 
4881 		l = path->nodes[0];
4882 		slot = path->slots[0];
4883 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4884 
4885 		if (key.objectid != device->devid) {
4886 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4887 			btrfs_release_path(path);
4888 			break;
4889 		}
4890 
4891 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4892 		length = btrfs_dev_extent_length(l, dev_extent);
4893 
4894 		if (key.offset + length <= new_size) {
4895 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4896 			btrfs_release_path(path);
4897 			break;
4898 		}
4899 
4900 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4901 		btrfs_release_path(path);
4902 
4903 		/*
4904 		 * We may be relocating the only data chunk we have,
4905 		 * which could potentially end up with losing data's
4906 		 * raid profile, so lets allocate an empty one in
4907 		 * advance.
4908 		 */
4909 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4910 		if (ret < 0) {
4911 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4912 			goto done;
4913 		}
4914 
4915 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4916 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4917 		if (ret == -ENOSPC) {
4918 			failed++;
4919 		} else if (ret) {
4920 			if (ret == -ETXTBSY) {
4921 				btrfs_warn(fs_info,
4922 		   "could not shrink block group %llu due to active swapfile",
4923 					   chunk_offset);
4924 			}
4925 			goto done;
4926 		}
4927 	} while (key.offset-- > 0);
4928 
4929 	if (failed && !retried) {
4930 		failed = 0;
4931 		retried = true;
4932 		goto again;
4933 	} else if (failed && retried) {
4934 		ret = -ENOSPC;
4935 		goto done;
4936 	}
4937 
4938 	/* Shrinking succeeded, else we would be at "done". */
4939 	trans = btrfs_start_transaction(root, 0);
4940 	if (IS_ERR(trans)) {
4941 		ret = PTR_ERR(trans);
4942 		goto done;
4943 	}
4944 
4945 	mutex_lock(&fs_info->chunk_mutex);
4946 	/* Clear all state bits beyond the shrunk device size */
4947 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4948 			  CHUNK_STATE_MASK);
4949 
4950 	btrfs_device_set_disk_total_bytes(device, new_size);
4951 	if (list_empty(&device->post_commit_list))
4952 		list_add_tail(&device->post_commit_list,
4953 			      &trans->transaction->dev_update_list);
4954 
4955 	WARN_ON(diff > old_total);
4956 	btrfs_set_super_total_bytes(super_copy,
4957 			round_down(old_total - diff, fs_info->sectorsize));
4958 	mutex_unlock(&fs_info->chunk_mutex);
4959 
4960 	btrfs_reserve_chunk_metadata(trans, false);
4961 	/* Now btrfs_update_device() will change the on-disk size. */
4962 	ret = btrfs_update_device(trans, device);
4963 	btrfs_trans_release_chunk_metadata(trans);
4964 	if (ret < 0) {
4965 		btrfs_abort_transaction(trans, ret);
4966 		btrfs_end_transaction(trans);
4967 	} else {
4968 		ret = btrfs_commit_transaction(trans);
4969 	}
4970 done:
4971 	btrfs_free_path(path);
4972 	if (ret) {
4973 		mutex_lock(&fs_info->chunk_mutex);
4974 		btrfs_device_set_total_bytes(device, old_size);
4975 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4976 			device->fs_devices->total_rw_bytes += diff;
4977 			atomic64_add(free_diff, &fs_info->free_chunk_space);
4978 		}
4979 		mutex_unlock(&fs_info->chunk_mutex);
4980 	}
4981 	return ret;
4982 }
4983 
4984 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4985 			   struct btrfs_key *key,
4986 			   struct btrfs_chunk *chunk, int item_size)
4987 {
4988 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4989 	struct btrfs_disk_key disk_key;
4990 	u32 array_size;
4991 	u8 *ptr;
4992 
4993 	lockdep_assert_held(&fs_info->chunk_mutex);
4994 
4995 	array_size = btrfs_super_sys_array_size(super_copy);
4996 	if (array_size + item_size + sizeof(disk_key)
4997 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4998 		return -EFBIG;
4999 
5000 	ptr = super_copy->sys_chunk_array + array_size;
5001 	btrfs_cpu_key_to_disk(&disk_key, key);
5002 	memcpy(ptr, &disk_key, sizeof(disk_key));
5003 	ptr += sizeof(disk_key);
5004 	memcpy(ptr, chunk, item_size);
5005 	item_size += sizeof(disk_key);
5006 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5007 
5008 	return 0;
5009 }
5010 
5011 /*
5012  * sort the devices in descending order by max_avail, total_avail
5013  */
5014 static int btrfs_cmp_device_info(const void *a, const void *b)
5015 {
5016 	const struct btrfs_device_info *di_a = a;
5017 	const struct btrfs_device_info *di_b = b;
5018 
5019 	if (di_a->max_avail > di_b->max_avail)
5020 		return -1;
5021 	if (di_a->max_avail < di_b->max_avail)
5022 		return 1;
5023 	if (di_a->total_avail > di_b->total_avail)
5024 		return -1;
5025 	if (di_a->total_avail < di_b->total_avail)
5026 		return 1;
5027 	return 0;
5028 }
5029 
5030 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5031 {
5032 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5033 		return;
5034 
5035 	btrfs_set_fs_incompat(info, RAID56);
5036 }
5037 
5038 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5039 {
5040 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5041 		return;
5042 
5043 	btrfs_set_fs_incompat(info, RAID1C34);
5044 }
5045 
5046 /*
5047  * Structure used internally for btrfs_create_chunk() function.
5048  * Wraps needed parameters.
5049  */
5050 struct alloc_chunk_ctl {
5051 	u64 start;
5052 	u64 type;
5053 	/* Total number of stripes to allocate */
5054 	int num_stripes;
5055 	/* sub_stripes info for map */
5056 	int sub_stripes;
5057 	/* Stripes per device */
5058 	int dev_stripes;
5059 	/* Maximum number of devices to use */
5060 	int devs_max;
5061 	/* Minimum number of devices to use */
5062 	int devs_min;
5063 	/* ndevs has to be a multiple of this */
5064 	int devs_increment;
5065 	/* Number of copies */
5066 	int ncopies;
5067 	/* Number of stripes worth of bytes to store parity information */
5068 	int nparity;
5069 	u64 max_stripe_size;
5070 	u64 max_chunk_size;
5071 	u64 dev_extent_min;
5072 	u64 stripe_size;
5073 	u64 chunk_size;
5074 	int ndevs;
5075 };
5076 
5077 static void init_alloc_chunk_ctl_policy_regular(
5078 				struct btrfs_fs_devices *fs_devices,
5079 				struct alloc_chunk_ctl *ctl)
5080 {
5081 	struct btrfs_space_info *space_info;
5082 
5083 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5084 	ASSERT(space_info);
5085 
5086 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5087 	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5088 
5089 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5090 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5091 
5092 	/* We don't want a chunk larger than 10% of writable space */
5093 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5094 				  ctl->max_chunk_size);
5095 	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5096 }
5097 
5098 static void init_alloc_chunk_ctl_policy_zoned(
5099 				      struct btrfs_fs_devices *fs_devices,
5100 				      struct alloc_chunk_ctl *ctl)
5101 {
5102 	u64 zone_size = fs_devices->fs_info->zone_size;
5103 	u64 limit;
5104 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5105 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5106 	u64 min_chunk_size = min_data_stripes * zone_size;
5107 	u64 type = ctl->type;
5108 
5109 	ctl->max_stripe_size = zone_size;
5110 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5111 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5112 						 zone_size);
5113 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5114 		ctl->max_chunk_size = ctl->max_stripe_size;
5115 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5116 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5117 		ctl->devs_max = min_t(int, ctl->devs_max,
5118 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5119 	} else {
5120 		BUG();
5121 	}
5122 
5123 	/* We don't want a chunk larger than 10% of writable space */
5124 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5125 			       zone_size),
5126 		    min_chunk_size);
5127 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5128 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5129 }
5130 
5131 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5132 				 struct alloc_chunk_ctl *ctl)
5133 {
5134 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5135 
5136 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5137 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5138 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5139 	if (!ctl->devs_max)
5140 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5141 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5142 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5143 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5144 	ctl->nparity = btrfs_raid_array[index].nparity;
5145 	ctl->ndevs = 0;
5146 
5147 	switch (fs_devices->chunk_alloc_policy) {
5148 	case BTRFS_CHUNK_ALLOC_REGULAR:
5149 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5150 		break;
5151 	case BTRFS_CHUNK_ALLOC_ZONED:
5152 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5153 		break;
5154 	default:
5155 		BUG();
5156 	}
5157 }
5158 
5159 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5160 			      struct alloc_chunk_ctl *ctl,
5161 			      struct btrfs_device_info *devices_info)
5162 {
5163 	struct btrfs_fs_info *info = fs_devices->fs_info;
5164 	struct btrfs_device *device;
5165 	u64 total_avail;
5166 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5167 	int ret;
5168 	int ndevs = 0;
5169 	u64 max_avail;
5170 	u64 dev_offset;
5171 
5172 	/*
5173 	 * in the first pass through the devices list, we gather information
5174 	 * about the available holes on each device.
5175 	 */
5176 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5177 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5178 			WARN(1, KERN_ERR
5179 			       "BTRFS: read-only device in alloc_list\n");
5180 			continue;
5181 		}
5182 
5183 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5184 					&device->dev_state) ||
5185 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5186 			continue;
5187 
5188 		if (device->total_bytes > device->bytes_used)
5189 			total_avail = device->total_bytes - device->bytes_used;
5190 		else
5191 			total_avail = 0;
5192 
5193 		/* If there is no space on this device, skip it. */
5194 		if (total_avail < ctl->dev_extent_min)
5195 			continue;
5196 
5197 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5198 					   &max_avail);
5199 		if (ret && ret != -ENOSPC)
5200 			return ret;
5201 
5202 		if (ret == 0)
5203 			max_avail = dev_extent_want;
5204 
5205 		if (max_avail < ctl->dev_extent_min) {
5206 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5207 				btrfs_debug(info,
5208 			"%s: devid %llu has no free space, have=%llu want=%llu",
5209 					    __func__, device->devid, max_avail,
5210 					    ctl->dev_extent_min);
5211 			continue;
5212 		}
5213 
5214 		if (ndevs == fs_devices->rw_devices) {
5215 			WARN(1, "%s: found more than %llu devices\n",
5216 			     __func__, fs_devices->rw_devices);
5217 			break;
5218 		}
5219 		devices_info[ndevs].dev_offset = dev_offset;
5220 		devices_info[ndevs].max_avail = max_avail;
5221 		devices_info[ndevs].total_avail = total_avail;
5222 		devices_info[ndevs].dev = device;
5223 		++ndevs;
5224 	}
5225 	ctl->ndevs = ndevs;
5226 
5227 	/*
5228 	 * now sort the devices by hole size / available space
5229 	 */
5230 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5231 	     btrfs_cmp_device_info, NULL);
5232 
5233 	return 0;
5234 }
5235 
5236 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5237 				      struct btrfs_device_info *devices_info)
5238 {
5239 	/* Number of stripes that count for block group size */
5240 	int data_stripes;
5241 
5242 	/*
5243 	 * The primary goal is to maximize the number of stripes, so use as
5244 	 * many devices as possible, even if the stripes are not maximum sized.
5245 	 *
5246 	 * The DUP profile stores more than one stripe per device, the
5247 	 * max_avail is the total size so we have to adjust.
5248 	 */
5249 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5250 				   ctl->dev_stripes);
5251 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5252 
5253 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5254 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5255 
5256 	/*
5257 	 * Use the number of data stripes to figure out how big this chunk is
5258 	 * really going to be in terms of logical address space, and compare
5259 	 * that answer with the max chunk size. If it's higher, we try to
5260 	 * reduce stripe_size.
5261 	 */
5262 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5263 		/*
5264 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5265 		 * then use it, unless it ends up being even bigger than the
5266 		 * previous value we had already.
5267 		 */
5268 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5269 							data_stripes), SZ_16M),
5270 				       ctl->stripe_size);
5271 	}
5272 
5273 	/* Stripe size should not go beyond 1G. */
5274 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5275 
5276 	/* Align to BTRFS_STRIPE_LEN */
5277 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5278 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5279 
5280 	return 0;
5281 }
5282 
5283 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5284 				    struct btrfs_device_info *devices_info)
5285 {
5286 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5287 	/* Number of stripes that count for block group size */
5288 	int data_stripes;
5289 
5290 	/*
5291 	 * It should hold because:
5292 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5293 	 */
5294 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5295 
5296 	ctl->stripe_size = zone_size;
5297 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5298 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5299 
5300 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5301 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5302 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5303 					     ctl->stripe_size) + ctl->nparity,
5304 				     ctl->dev_stripes);
5305 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5306 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5307 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5308 	}
5309 
5310 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5311 
5312 	return 0;
5313 }
5314 
5315 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5316 			      struct alloc_chunk_ctl *ctl,
5317 			      struct btrfs_device_info *devices_info)
5318 {
5319 	struct btrfs_fs_info *info = fs_devices->fs_info;
5320 
5321 	/*
5322 	 * Round down to number of usable stripes, devs_increment can be any
5323 	 * number so we can't use round_down() that requires power of 2, while
5324 	 * rounddown is safe.
5325 	 */
5326 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5327 
5328 	if (ctl->ndevs < ctl->devs_min) {
5329 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5330 			btrfs_debug(info,
5331 	"%s: not enough devices with free space: have=%d minimum required=%d",
5332 				    __func__, ctl->ndevs, ctl->devs_min);
5333 		}
5334 		return -ENOSPC;
5335 	}
5336 
5337 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5338 
5339 	switch (fs_devices->chunk_alloc_policy) {
5340 	case BTRFS_CHUNK_ALLOC_REGULAR:
5341 		return decide_stripe_size_regular(ctl, devices_info);
5342 	case BTRFS_CHUNK_ALLOC_ZONED:
5343 		return decide_stripe_size_zoned(ctl, devices_info);
5344 	default:
5345 		BUG();
5346 	}
5347 }
5348 
5349 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5350 			struct alloc_chunk_ctl *ctl,
5351 			struct btrfs_device_info *devices_info)
5352 {
5353 	struct btrfs_fs_info *info = trans->fs_info;
5354 	struct map_lookup *map = NULL;
5355 	struct extent_map_tree *em_tree;
5356 	struct btrfs_block_group *block_group;
5357 	struct extent_map *em;
5358 	u64 start = ctl->start;
5359 	u64 type = ctl->type;
5360 	int ret;
5361 	int i;
5362 	int j;
5363 
5364 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5365 	if (!map)
5366 		return ERR_PTR(-ENOMEM);
5367 	map->num_stripes = ctl->num_stripes;
5368 
5369 	for (i = 0; i < ctl->ndevs; ++i) {
5370 		for (j = 0; j < ctl->dev_stripes; ++j) {
5371 			int s = i * ctl->dev_stripes + j;
5372 			map->stripes[s].dev = devices_info[i].dev;
5373 			map->stripes[s].physical = devices_info[i].dev_offset +
5374 						   j * ctl->stripe_size;
5375 		}
5376 	}
5377 	map->io_align = BTRFS_STRIPE_LEN;
5378 	map->io_width = BTRFS_STRIPE_LEN;
5379 	map->type = type;
5380 	map->sub_stripes = ctl->sub_stripes;
5381 
5382 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5383 
5384 	em = alloc_extent_map();
5385 	if (!em) {
5386 		kfree(map);
5387 		return ERR_PTR(-ENOMEM);
5388 	}
5389 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5390 	em->map_lookup = map;
5391 	em->start = start;
5392 	em->len = ctl->chunk_size;
5393 	em->block_start = 0;
5394 	em->block_len = em->len;
5395 	em->orig_block_len = ctl->stripe_size;
5396 
5397 	em_tree = &info->mapping_tree;
5398 	write_lock(&em_tree->lock);
5399 	ret = add_extent_mapping(em_tree, em, 0);
5400 	if (ret) {
5401 		write_unlock(&em_tree->lock);
5402 		free_extent_map(em);
5403 		return ERR_PTR(ret);
5404 	}
5405 	write_unlock(&em_tree->lock);
5406 
5407 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5408 	if (IS_ERR(block_group))
5409 		goto error_del_extent;
5410 
5411 	for (i = 0; i < map->num_stripes; i++) {
5412 		struct btrfs_device *dev = map->stripes[i].dev;
5413 
5414 		btrfs_device_set_bytes_used(dev,
5415 					    dev->bytes_used + ctl->stripe_size);
5416 		if (list_empty(&dev->post_commit_list))
5417 			list_add_tail(&dev->post_commit_list,
5418 				      &trans->transaction->dev_update_list);
5419 	}
5420 
5421 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5422 		     &info->free_chunk_space);
5423 
5424 	free_extent_map(em);
5425 	check_raid56_incompat_flag(info, type);
5426 	check_raid1c34_incompat_flag(info, type);
5427 
5428 	return block_group;
5429 
5430 error_del_extent:
5431 	write_lock(&em_tree->lock);
5432 	remove_extent_mapping(em_tree, em);
5433 	write_unlock(&em_tree->lock);
5434 
5435 	/* One for our allocation */
5436 	free_extent_map(em);
5437 	/* One for the tree reference */
5438 	free_extent_map(em);
5439 
5440 	return block_group;
5441 }
5442 
5443 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5444 					    u64 type)
5445 {
5446 	struct btrfs_fs_info *info = trans->fs_info;
5447 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5448 	struct btrfs_device_info *devices_info = NULL;
5449 	struct alloc_chunk_ctl ctl;
5450 	struct btrfs_block_group *block_group;
5451 	int ret;
5452 
5453 	lockdep_assert_held(&info->chunk_mutex);
5454 
5455 	if (!alloc_profile_is_valid(type, 0)) {
5456 		ASSERT(0);
5457 		return ERR_PTR(-EINVAL);
5458 	}
5459 
5460 	if (list_empty(&fs_devices->alloc_list)) {
5461 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5462 			btrfs_debug(info, "%s: no writable device", __func__);
5463 		return ERR_PTR(-ENOSPC);
5464 	}
5465 
5466 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5467 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5468 		ASSERT(0);
5469 		return ERR_PTR(-EINVAL);
5470 	}
5471 
5472 	ctl.start = find_next_chunk(info);
5473 	ctl.type = type;
5474 	init_alloc_chunk_ctl(fs_devices, &ctl);
5475 
5476 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5477 			       GFP_NOFS);
5478 	if (!devices_info)
5479 		return ERR_PTR(-ENOMEM);
5480 
5481 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5482 	if (ret < 0) {
5483 		block_group = ERR_PTR(ret);
5484 		goto out;
5485 	}
5486 
5487 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5488 	if (ret < 0) {
5489 		block_group = ERR_PTR(ret);
5490 		goto out;
5491 	}
5492 
5493 	block_group = create_chunk(trans, &ctl, devices_info);
5494 
5495 out:
5496 	kfree(devices_info);
5497 	return block_group;
5498 }
5499 
5500 /*
5501  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5502  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5503  * chunks.
5504  *
5505  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5506  * phases.
5507  */
5508 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5509 				     struct btrfs_block_group *bg)
5510 {
5511 	struct btrfs_fs_info *fs_info = trans->fs_info;
5512 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5513 	struct btrfs_key key;
5514 	struct btrfs_chunk *chunk;
5515 	struct btrfs_stripe *stripe;
5516 	struct extent_map *em;
5517 	struct map_lookup *map;
5518 	size_t item_size;
5519 	int i;
5520 	int ret;
5521 
5522 	/*
5523 	 * We take the chunk_mutex for 2 reasons:
5524 	 *
5525 	 * 1) Updates and insertions in the chunk btree must be done while holding
5526 	 *    the chunk_mutex, as well as updating the system chunk array in the
5527 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5528 	 *    details;
5529 	 *
5530 	 * 2) To prevent races with the final phase of a device replace operation
5531 	 *    that replaces the device object associated with the map's stripes,
5532 	 *    because the device object's id can change at any time during that
5533 	 *    final phase of the device replace operation
5534 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5535 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5536 	 *    which would cause a failure when updating the device item, which does
5537 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5538 	 *    Here we can't use the device_list_mutex because our caller already
5539 	 *    has locked the chunk_mutex, and the final phase of device replace
5540 	 *    acquires both mutexes - first the device_list_mutex and then the
5541 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5542 	 *    concurrent device replace.
5543 	 */
5544 	lockdep_assert_held(&fs_info->chunk_mutex);
5545 
5546 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5547 	if (IS_ERR(em)) {
5548 		ret = PTR_ERR(em);
5549 		btrfs_abort_transaction(trans, ret);
5550 		return ret;
5551 	}
5552 
5553 	map = em->map_lookup;
5554 	item_size = btrfs_chunk_item_size(map->num_stripes);
5555 
5556 	chunk = kzalloc(item_size, GFP_NOFS);
5557 	if (!chunk) {
5558 		ret = -ENOMEM;
5559 		btrfs_abort_transaction(trans, ret);
5560 		goto out;
5561 	}
5562 
5563 	for (i = 0; i < map->num_stripes; i++) {
5564 		struct btrfs_device *device = map->stripes[i].dev;
5565 
5566 		ret = btrfs_update_device(trans, device);
5567 		if (ret)
5568 			goto out;
5569 	}
5570 
5571 	stripe = &chunk->stripe;
5572 	for (i = 0; i < map->num_stripes; i++) {
5573 		struct btrfs_device *device = map->stripes[i].dev;
5574 		const u64 dev_offset = map->stripes[i].physical;
5575 
5576 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5577 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5578 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5579 		stripe++;
5580 	}
5581 
5582 	btrfs_set_stack_chunk_length(chunk, bg->length);
5583 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5584 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5585 	btrfs_set_stack_chunk_type(chunk, map->type);
5586 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5587 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5588 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5589 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5590 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5591 
5592 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5593 	key.type = BTRFS_CHUNK_ITEM_KEY;
5594 	key.offset = bg->start;
5595 
5596 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5597 	if (ret)
5598 		goto out;
5599 
5600 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5601 
5602 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5603 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5604 		if (ret)
5605 			goto out;
5606 	}
5607 
5608 out:
5609 	kfree(chunk);
5610 	free_extent_map(em);
5611 	return ret;
5612 }
5613 
5614 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5615 {
5616 	struct btrfs_fs_info *fs_info = trans->fs_info;
5617 	u64 alloc_profile;
5618 	struct btrfs_block_group *meta_bg;
5619 	struct btrfs_block_group *sys_bg;
5620 
5621 	/*
5622 	 * When adding a new device for sprouting, the seed device is read-only
5623 	 * so we must first allocate a metadata and a system chunk. But before
5624 	 * adding the block group items to the extent, device and chunk btrees,
5625 	 * we must first:
5626 	 *
5627 	 * 1) Create both chunks without doing any changes to the btrees, as
5628 	 *    otherwise we would get -ENOSPC since the block groups from the
5629 	 *    seed device are read-only;
5630 	 *
5631 	 * 2) Add the device item for the new sprout device - finishing the setup
5632 	 *    of a new block group requires updating the device item in the chunk
5633 	 *    btree, so it must exist when we attempt to do it. The previous step
5634 	 *    ensures this does not fail with -ENOSPC.
5635 	 *
5636 	 * After that we can add the block group items to their btrees:
5637 	 * update existing device item in the chunk btree, add a new block group
5638 	 * item to the extent btree, add a new chunk item to the chunk btree and
5639 	 * finally add the new device extent items to the devices btree.
5640 	 */
5641 
5642 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5643 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5644 	if (IS_ERR(meta_bg))
5645 		return PTR_ERR(meta_bg);
5646 
5647 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5648 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5649 	if (IS_ERR(sys_bg))
5650 		return PTR_ERR(sys_bg);
5651 
5652 	return 0;
5653 }
5654 
5655 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5656 {
5657 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5658 
5659 	return btrfs_raid_array[index].tolerated_failures;
5660 }
5661 
5662 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5663 {
5664 	struct extent_map *em;
5665 	struct map_lookup *map;
5666 	int miss_ndevs = 0;
5667 	int i;
5668 	bool ret = true;
5669 
5670 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5671 	if (IS_ERR(em))
5672 		return false;
5673 
5674 	map = em->map_lookup;
5675 	for (i = 0; i < map->num_stripes; i++) {
5676 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5677 					&map->stripes[i].dev->dev_state)) {
5678 			miss_ndevs++;
5679 			continue;
5680 		}
5681 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5682 					&map->stripes[i].dev->dev_state)) {
5683 			ret = false;
5684 			goto end;
5685 		}
5686 	}
5687 
5688 	/*
5689 	 * If the number of missing devices is larger than max errors, we can
5690 	 * not write the data into that chunk successfully.
5691 	 */
5692 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5693 		ret = false;
5694 end:
5695 	free_extent_map(em);
5696 	return ret;
5697 }
5698 
5699 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5700 {
5701 	struct extent_map *em;
5702 
5703 	while (1) {
5704 		write_lock(&tree->lock);
5705 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5706 		if (em)
5707 			remove_extent_mapping(tree, em);
5708 		write_unlock(&tree->lock);
5709 		if (!em)
5710 			break;
5711 		/* once for us */
5712 		free_extent_map(em);
5713 		/* once for the tree */
5714 		free_extent_map(em);
5715 	}
5716 }
5717 
5718 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5719 {
5720 	struct extent_map *em;
5721 	struct map_lookup *map;
5722 	enum btrfs_raid_types index;
5723 	int ret = 1;
5724 
5725 	em = btrfs_get_chunk_map(fs_info, logical, len);
5726 	if (IS_ERR(em))
5727 		/*
5728 		 * We could return errors for these cases, but that could get
5729 		 * ugly and we'd probably do the same thing which is just not do
5730 		 * anything else and exit, so return 1 so the callers don't try
5731 		 * to use other copies.
5732 		 */
5733 		return 1;
5734 
5735 	map = em->map_lookup;
5736 	index = btrfs_bg_flags_to_raid_index(map->type);
5737 
5738 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5739 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5740 		ret = btrfs_raid_array[index].ncopies;
5741 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5742 		ret = 2;
5743 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5744 		/*
5745 		 * There could be two corrupted data stripes, we need
5746 		 * to loop retry in order to rebuild the correct data.
5747 		 *
5748 		 * Fail a stripe at a time on every retry except the
5749 		 * stripe under reconstruction.
5750 		 */
5751 		ret = map->num_stripes;
5752 	free_extent_map(em);
5753 	return ret;
5754 }
5755 
5756 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5757 				    u64 logical)
5758 {
5759 	struct extent_map *em;
5760 	struct map_lookup *map;
5761 	unsigned long len = fs_info->sectorsize;
5762 
5763 	if (!btrfs_fs_incompat(fs_info, RAID56))
5764 		return len;
5765 
5766 	em = btrfs_get_chunk_map(fs_info, logical, len);
5767 
5768 	if (!WARN_ON(IS_ERR(em))) {
5769 		map = em->map_lookup;
5770 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5771 			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5772 		free_extent_map(em);
5773 	}
5774 	return len;
5775 }
5776 
5777 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5778 {
5779 	struct extent_map *em;
5780 	struct map_lookup *map;
5781 	int ret = 0;
5782 
5783 	if (!btrfs_fs_incompat(fs_info, RAID56))
5784 		return 0;
5785 
5786 	em = btrfs_get_chunk_map(fs_info, logical, len);
5787 
5788 	if(!WARN_ON(IS_ERR(em))) {
5789 		map = em->map_lookup;
5790 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5791 			ret = 1;
5792 		free_extent_map(em);
5793 	}
5794 	return ret;
5795 }
5796 
5797 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5798 			    struct map_lookup *map, int first,
5799 			    int dev_replace_is_ongoing)
5800 {
5801 	int i;
5802 	int num_stripes;
5803 	int preferred_mirror;
5804 	int tolerance;
5805 	struct btrfs_device *srcdev;
5806 
5807 	ASSERT((map->type &
5808 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5809 
5810 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5811 		num_stripes = map->sub_stripes;
5812 	else
5813 		num_stripes = map->num_stripes;
5814 
5815 	switch (fs_info->fs_devices->read_policy) {
5816 	default:
5817 		/* Shouldn't happen, just warn and use pid instead of failing */
5818 		btrfs_warn_rl(fs_info,
5819 			      "unknown read_policy type %u, reset to pid",
5820 			      fs_info->fs_devices->read_policy);
5821 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5822 		fallthrough;
5823 	case BTRFS_READ_POLICY_PID:
5824 		preferred_mirror = first + (current->pid % num_stripes);
5825 		break;
5826 	}
5827 
5828 	if (dev_replace_is_ongoing &&
5829 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5830 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5831 		srcdev = fs_info->dev_replace.srcdev;
5832 	else
5833 		srcdev = NULL;
5834 
5835 	/*
5836 	 * try to avoid the drive that is the source drive for a
5837 	 * dev-replace procedure, only choose it if no other non-missing
5838 	 * mirror is available
5839 	 */
5840 	for (tolerance = 0; tolerance < 2; tolerance++) {
5841 		if (map->stripes[preferred_mirror].dev->bdev &&
5842 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5843 			return preferred_mirror;
5844 		for (i = first; i < first + num_stripes; i++) {
5845 			if (map->stripes[i].dev->bdev &&
5846 			    (tolerance || map->stripes[i].dev != srcdev))
5847 				return i;
5848 		}
5849 	}
5850 
5851 	/* we couldn't find one that doesn't fail.  Just return something
5852 	 * and the io error handling code will clean up eventually
5853 	 */
5854 	return preferred_mirror;
5855 }
5856 
5857 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5858 						       u64 logical,
5859 						       u16 total_stripes)
5860 {
5861 	struct btrfs_io_context *bioc;
5862 
5863 	bioc = kzalloc(
5864 		 /* The size of btrfs_io_context */
5865 		sizeof(struct btrfs_io_context) +
5866 		/* Plus the variable array for the stripes */
5867 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5868 		GFP_NOFS);
5869 
5870 	if (!bioc)
5871 		return NULL;
5872 
5873 	refcount_set(&bioc->refs, 1);
5874 
5875 	bioc->fs_info = fs_info;
5876 	bioc->replace_stripe_src = -1;
5877 	bioc->full_stripe_logical = (u64)-1;
5878 	bioc->logical = logical;
5879 
5880 	return bioc;
5881 }
5882 
5883 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5884 {
5885 	WARN_ON(!refcount_read(&bioc->refs));
5886 	refcount_inc(&bioc->refs);
5887 }
5888 
5889 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5890 {
5891 	if (!bioc)
5892 		return;
5893 	if (refcount_dec_and_test(&bioc->refs))
5894 		kfree(bioc);
5895 }
5896 
5897 /*
5898  * Please note that, discard won't be sent to target device of device
5899  * replace.
5900  */
5901 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5902 					       u64 logical, u64 *length_ret,
5903 					       u32 *num_stripes)
5904 {
5905 	struct extent_map *em;
5906 	struct map_lookup *map;
5907 	struct btrfs_discard_stripe *stripes;
5908 	u64 length = *length_ret;
5909 	u64 offset;
5910 	u32 stripe_nr;
5911 	u32 stripe_nr_end;
5912 	u32 stripe_cnt;
5913 	u64 stripe_end_offset;
5914 	u64 stripe_offset;
5915 	u32 stripe_index;
5916 	u32 factor = 0;
5917 	u32 sub_stripes = 0;
5918 	u32 stripes_per_dev = 0;
5919 	u32 remaining_stripes = 0;
5920 	u32 last_stripe = 0;
5921 	int ret;
5922 	int i;
5923 
5924 	em = btrfs_get_chunk_map(fs_info, logical, length);
5925 	if (IS_ERR(em))
5926 		return ERR_CAST(em);
5927 
5928 	map = em->map_lookup;
5929 
5930 	/* we don't discard raid56 yet */
5931 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5932 		ret = -EOPNOTSUPP;
5933 		goto out_free_map;
5934 	}
5935 
5936 	offset = logical - em->start;
5937 	length = min_t(u64, em->start + em->len - logical, length);
5938 	*length_ret = length;
5939 
5940 	/*
5941 	 * stripe_nr counts the total number of stripes we have to stride
5942 	 * to get to this block
5943 	 */
5944 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5945 
5946 	/* stripe_offset is the offset of this block in its stripe */
5947 	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5948 
5949 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5950 			BTRFS_STRIPE_LEN_SHIFT;
5951 	stripe_cnt = stripe_nr_end - stripe_nr;
5952 	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5953 			    (offset + length);
5954 	/*
5955 	 * after this, stripe_nr is the number of stripes on this
5956 	 * device we have to walk to find the data, and stripe_index is
5957 	 * the number of our device in the stripe array
5958 	 */
5959 	*num_stripes = 1;
5960 	stripe_index = 0;
5961 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5962 			 BTRFS_BLOCK_GROUP_RAID10)) {
5963 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5964 			sub_stripes = 1;
5965 		else
5966 			sub_stripes = map->sub_stripes;
5967 
5968 		factor = map->num_stripes / sub_stripes;
5969 		*num_stripes = min_t(u64, map->num_stripes,
5970 				    sub_stripes * stripe_cnt);
5971 		stripe_index = stripe_nr % factor;
5972 		stripe_nr /= factor;
5973 		stripe_index *= sub_stripes;
5974 
5975 		remaining_stripes = stripe_cnt % factor;
5976 		stripes_per_dev = stripe_cnt / factor;
5977 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
5978 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5979 				BTRFS_BLOCK_GROUP_DUP)) {
5980 		*num_stripes = map->num_stripes;
5981 	} else {
5982 		stripe_index = stripe_nr % map->num_stripes;
5983 		stripe_nr /= map->num_stripes;
5984 	}
5985 
5986 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
5987 	if (!stripes) {
5988 		ret = -ENOMEM;
5989 		goto out_free_map;
5990 	}
5991 
5992 	for (i = 0; i < *num_stripes; i++) {
5993 		stripes[i].physical =
5994 			map->stripes[stripe_index].physical +
5995 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
5996 		stripes[i].dev = map->stripes[stripe_index].dev;
5997 
5998 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5999 				 BTRFS_BLOCK_GROUP_RAID10)) {
6000 			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6001 
6002 			if (i / sub_stripes < remaining_stripes)
6003 				stripes[i].length += BTRFS_STRIPE_LEN;
6004 
6005 			/*
6006 			 * Special for the first stripe and
6007 			 * the last stripe:
6008 			 *
6009 			 * |-------|...|-------|
6010 			 *     |----------|
6011 			 *    off     end_off
6012 			 */
6013 			if (i < sub_stripes)
6014 				stripes[i].length -= stripe_offset;
6015 
6016 			if (stripe_index >= last_stripe &&
6017 			    stripe_index <= (last_stripe +
6018 					     sub_stripes - 1))
6019 				stripes[i].length -= stripe_end_offset;
6020 
6021 			if (i == sub_stripes - 1)
6022 				stripe_offset = 0;
6023 		} else {
6024 			stripes[i].length = length;
6025 		}
6026 
6027 		stripe_index++;
6028 		if (stripe_index == map->num_stripes) {
6029 			stripe_index = 0;
6030 			stripe_nr++;
6031 		}
6032 	}
6033 
6034 	free_extent_map(em);
6035 	return stripes;
6036 out_free_map:
6037 	free_extent_map(em);
6038 	return ERR_PTR(ret);
6039 }
6040 
6041 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6042 {
6043 	struct btrfs_block_group *cache;
6044 	bool ret;
6045 
6046 	/* Non zoned filesystem does not use "to_copy" flag */
6047 	if (!btrfs_is_zoned(fs_info))
6048 		return false;
6049 
6050 	cache = btrfs_lookup_block_group(fs_info, logical);
6051 
6052 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6053 
6054 	btrfs_put_block_group(cache);
6055 	return ret;
6056 }
6057 
6058 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6059 				      struct btrfs_io_context *bioc,
6060 				      struct btrfs_dev_replace *dev_replace,
6061 				      u64 logical,
6062 				      int *num_stripes_ret, int *max_errors_ret)
6063 {
6064 	u64 srcdev_devid = dev_replace->srcdev->devid;
6065 	/*
6066 	 * At this stage, num_stripes is still the real number of stripes,
6067 	 * excluding the duplicated stripes.
6068 	 */
6069 	int num_stripes = *num_stripes_ret;
6070 	int nr_extra_stripes = 0;
6071 	int max_errors = *max_errors_ret;
6072 	int i;
6073 
6074 	/*
6075 	 * A block group which has "to_copy" set will eventually be copied by
6076 	 * the dev-replace process. We can avoid cloning IO here.
6077 	 */
6078 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6079 		return;
6080 
6081 	/*
6082 	 * Duplicate the write operations while the dev-replace procedure is
6083 	 * running. Since the copying of the old disk to the new disk takes
6084 	 * place at run time while the filesystem is mounted writable, the
6085 	 * regular write operations to the old disk have to be duplicated to go
6086 	 * to the new disk as well.
6087 	 *
6088 	 * Note that device->missing is handled by the caller, and that the
6089 	 * write to the old disk is already set up in the stripes array.
6090 	 */
6091 	for (i = 0; i < num_stripes; i++) {
6092 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6093 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6094 
6095 		if (old->dev->devid != srcdev_devid)
6096 			continue;
6097 
6098 		new->physical = old->physical;
6099 		new->dev = dev_replace->tgtdev;
6100 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6101 			bioc->replace_stripe_src = i;
6102 		nr_extra_stripes++;
6103 	}
6104 
6105 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6106 	ASSERT(nr_extra_stripes <= 2);
6107 	/*
6108 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6109 	 * replace.
6110 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6111 	 */
6112 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6113 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6114 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6115 
6116 		/* Only DUP can have two extra stripes. */
6117 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6118 
6119 		/*
6120 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6121 		 * The extra stripe would still be there, but won't be accessed.
6122 		 */
6123 		if (first->physical > second->physical) {
6124 			swap(second->physical, first->physical);
6125 			swap(second->dev, first->dev);
6126 			nr_extra_stripes--;
6127 		}
6128 	}
6129 
6130 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6131 	*max_errors_ret = max_errors + nr_extra_stripes;
6132 	bioc->replace_nr_stripes = nr_extra_stripes;
6133 }
6134 
6135 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6136 			    u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6137 			    u64 *full_stripe_start)
6138 {
6139 	/*
6140 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6141 	 * the offset of this block in its stripe.
6142 	 */
6143 	*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6144 	*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6145 	ASSERT(*stripe_offset < U32_MAX);
6146 
6147 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6148 		unsigned long full_stripe_len =
6149 			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6150 
6151 		/*
6152 		 * For full stripe start, we use previously calculated
6153 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6154 		 * STRIPE_LEN.
6155 		 *
6156 		 * By this we can avoid u64 division completely.  And we have
6157 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6158 		 * not ensured to be power of 2.
6159 		 */
6160 		*full_stripe_start =
6161 			btrfs_stripe_nr_to_offset(
6162 				rounddown(*stripe_nr, nr_data_stripes(map)));
6163 
6164 		ASSERT(*full_stripe_start + full_stripe_len > offset);
6165 		ASSERT(*full_stripe_start <= offset);
6166 		/*
6167 		 * For writes to RAID56, allow to write a full stripe set, but
6168 		 * no straddling of stripe sets.
6169 		 */
6170 		if (op == BTRFS_MAP_WRITE)
6171 			return full_stripe_len - (offset - *full_stripe_start);
6172 	}
6173 
6174 	/*
6175 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6176 	 * a single disk).
6177 	 */
6178 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6179 		return BTRFS_STRIPE_LEN - *stripe_offset;
6180 	return U64_MAX;
6181 }
6182 
6183 static int set_io_stripe(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6184 			 u64 logical, u64 *length, struct btrfs_io_stripe *dst,
6185 			 struct map_lookup *map, u32 stripe_index,
6186 			 u64 stripe_offset, u64 stripe_nr)
6187 {
6188 	dst->dev = map->stripes[stripe_index].dev;
6189 
6190 	if (op == BTRFS_MAP_READ && btrfs_need_stripe_tree_update(fs_info, map->type))
6191 		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6192 						    map->type, stripe_index, dst);
6193 
6194 	dst->physical = map->stripes[stripe_index].physical +
6195 			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6196 	return 0;
6197 }
6198 
6199 /*
6200  * Map one logical range to one or more physical ranges.
6201  *
6202  * @length:		(Mandatory) mapped length of this run.
6203  *			One logical range can be split into different segments
6204  *			due to factors like zones and RAID0/5/6/10 stripe
6205  *			boundaries.
6206  *
6207  * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6208  *			which has one or more physical ranges (btrfs_io_stripe)
6209  *			recorded inside.
6210  *			Caller should call btrfs_put_bioc() to free it after use.
6211  *
6212  * @smap:		(Optional) single physical range optimization.
6213  *			If the map request can be fulfilled by one single
6214  *			physical range, and this is parameter is not NULL,
6215  *			then @bioc_ret would be NULL, and @smap would be
6216  *			updated.
6217  *
6218  * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6219  *			value is 0.
6220  *
6221  *			Mirror number 0 means to choose any live mirrors.
6222  *
6223  *			For non-RAID56 profiles, non-zero mirror_num means
6224  *			the Nth mirror. (e.g. mirror_num 1 means the first
6225  *			copy).
6226  *
6227  *			For RAID56 profile, mirror 1 means rebuild from P and
6228  *			the remaining data stripes.
6229  *
6230  *			For RAID6 profile, mirror > 2 means mark another
6231  *			data/P stripe error and rebuild from the remaining
6232  *			stripes..
6233  */
6234 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6235 		    u64 logical, u64 *length,
6236 		    struct btrfs_io_context **bioc_ret,
6237 		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6238 {
6239 	struct extent_map *em;
6240 	struct map_lookup *map;
6241 	u64 map_offset;
6242 	u64 stripe_offset;
6243 	u32 stripe_nr;
6244 	u32 stripe_index;
6245 	int data_stripes;
6246 	int i;
6247 	int ret = 0;
6248 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6249 	int num_stripes;
6250 	int num_copies;
6251 	int max_errors = 0;
6252 	struct btrfs_io_context *bioc = NULL;
6253 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6254 	int dev_replace_is_ongoing = 0;
6255 	u16 num_alloc_stripes;
6256 	u64 raid56_full_stripe_start = (u64)-1;
6257 	u64 max_len;
6258 
6259 	ASSERT(bioc_ret);
6260 
6261 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6262 	if (mirror_num > num_copies)
6263 		return -EINVAL;
6264 
6265 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6266 	if (IS_ERR(em))
6267 		return PTR_ERR(em);
6268 
6269 	map = em->map_lookup;
6270 	data_stripes = nr_data_stripes(map);
6271 
6272 	map_offset = logical - em->start;
6273 	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6274 				   &stripe_offset, &raid56_full_stripe_start);
6275 	*length = min_t(u64, em->len - map_offset, max_len);
6276 
6277 	down_read(&dev_replace->rwsem);
6278 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6279 	/*
6280 	 * Hold the semaphore for read during the whole operation, write is
6281 	 * requested at commit time but must wait.
6282 	 */
6283 	if (!dev_replace_is_ongoing)
6284 		up_read(&dev_replace->rwsem);
6285 
6286 	num_stripes = 1;
6287 	stripe_index = 0;
6288 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6289 		stripe_index = stripe_nr % map->num_stripes;
6290 		stripe_nr /= map->num_stripes;
6291 		if (op == BTRFS_MAP_READ)
6292 			mirror_num = 1;
6293 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6294 		if (op != BTRFS_MAP_READ) {
6295 			num_stripes = map->num_stripes;
6296 		} else if (mirror_num) {
6297 			stripe_index = mirror_num - 1;
6298 		} else {
6299 			stripe_index = find_live_mirror(fs_info, map, 0,
6300 					    dev_replace_is_ongoing);
6301 			mirror_num = stripe_index + 1;
6302 		}
6303 
6304 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6305 		if (op != BTRFS_MAP_READ) {
6306 			num_stripes = map->num_stripes;
6307 		} else if (mirror_num) {
6308 			stripe_index = mirror_num - 1;
6309 		} else {
6310 			mirror_num = 1;
6311 		}
6312 
6313 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6314 		u32 factor = map->num_stripes / map->sub_stripes;
6315 
6316 		stripe_index = (stripe_nr % factor) * map->sub_stripes;
6317 		stripe_nr /= factor;
6318 
6319 		if (op != BTRFS_MAP_READ)
6320 			num_stripes = map->sub_stripes;
6321 		else if (mirror_num)
6322 			stripe_index += mirror_num - 1;
6323 		else {
6324 			int old_stripe_index = stripe_index;
6325 			stripe_index = find_live_mirror(fs_info, map,
6326 					      stripe_index,
6327 					      dev_replace_is_ongoing);
6328 			mirror_num = stripe_index - old_stripe_index + 1;
6329 		}
6330 
6331 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6332 		if (op != BTRFS_MAP_READ || mirror_num > 1) {
6333 			/*
6334 			 * Needs full stripe mapping.
6335 			 *
6336 			 * Push stripe_nr back to the start of the full stripe
6337 			 * For those cases needing a full stripe, @stripe_nr
6338 			 * is the full stripe number.
6339 			 *
6340 			 * Originally we go raid56_full_stripe_start / full_stripe_len,
6341 			 * but that can be expensive.  Here we just divide
6342 			 * @stripe_nr with @data_stripes.
6343 			 */
6344 			stripe_nr /= data_stripes;
6345 
6346 			/* RAID[56] write or recovery. Return all stripes */
6347 			num_stripes = map->num_stripes;
6348 			max_errors = btrfs_chunk_max_errors(map);
6349 
6350 			/* Return the length to the full stripe end */
6351 			*length = min(logical + *length,
6352 				      raid56_full_stripe_start + em->start +
6353 				      btrfs_stripe_nr_to_offset(data_stripes)) -
6354 				  logical;
6355 			stripe_index = 0;
6356 			stripe_offset = 0;
6357 		} else {
6358 			ASSERT(mirror_num <= 1);
6359 			/* Just grab the data stripe directly. */
6360 			stripe_index = stripe_nr % data_stripes;
6361 			stripe_nr /= data_stripes;
6362 
6363 			/* We distribute the parity blocks across stripes */
6364 			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6365 			if (op == BTRFS_MAP_READ && mirror_num < 1)
6366 				mirror_num = 1;
6367 		}
6368 	} else {
6369 		/*
6370 		 * After this, stripe_nr is the number of stripes on this
6371 		 * device we have to walk to find the data, and stripe_index is
6372 		 * the number of our device in the stripe array
6373 		 */
6374 		stripe_index = stripe_nr % map->num_stripes;
6375 		stripe_nr /= map->num_stripes;
6376 		mirror_num = stripe_index + 1;
6377 	}
6378 	if (stripe_index >= map->num_stripes) {
6379 		btrfs_crit(fs_info,
6380 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6381 			   stripe_index, map->num_stripes);
6382 		ret = -EINVAL;
6383 		goto out;
6384 	}
6385 
6386 	num_alloc_stripes = num_stripes;
6387 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6388 	    op != BTRFS_MAP_READ)
6389 		/*
6390 		 * For replace case, we need to add extra stripes for extra
6391 		 * duplicated stripes.
6392 		 *
6393 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6394 		 * 2 more stripes (DUP types, otherwise 1).
6395 		 */
6396 		num_alloc_stripes += 2;
6397 
6398 	/*
6399 	 * If this I/O maps to a single device, try to return the device and
6400 	 * physical block information on the stack instead of allocating an
6401 	 * I/O context structure.
6402 	 */
6403 	if (smap && num_alloc_stripes == 1 &&
6404 	    !(btrfs_need_stripe_tree_update(fs_info, map->type) &&
6405 	      op != BTRFS_MAP_READ) &&
6406 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6407 		ret = set_io_stripe(fs_info, op, logical, length, smap, map,
6408 				    stripe_index, stripe_offset, stripe_nr);
6409 		if (mirror_num_ret)
6410 			*mirror_num_ret = mirror_num;
6411 		*bioc_ret = NULL;
6412 		goto out;
6413 	}
6414 
6415 	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6416 	if (!bioc) {
6417 		ret = -ENOMEM;
6418 		goto out;
6419 	}
6420 	bioc->map_type = map->type;
6421 
6422 	/*
6423 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6424 	 * rule that data stripes are all ordered, then followed with P and Q
6425 	 * (if we have).
6426 	 *
6427 	 * It's still mostly the same as other profiles, just with extra rotation.
6428 	 */
6429 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6430 	    (op != BTRFS_MAP_READ || mirror_num > 1)) {
6431 		/*
6432 		 * For RAID56 @stripe_nr is already the number of full stripes
6433 		 * before us, which is also the rotation value (needs to modulo
6434 		 * with num_stripes).
6435 		 *
6436 		 * In this case, we just add @stripe_nr with @i, then do the
6437 		 * modulo, to reduce one modulo call.
6438 		 */
6439 		bioc->full_stripe_logical = em->start +
6440 			btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6441 		for (int i = 0; i < num_stripes; i++) {
6442 			ret = set_io_stripe(fs_info, op, logical, length,
6443 					    &bioc->stripes[i], map,
6444 					    (i + stripe_nr) % num_stripes,
6445 					    stripe_offset, stripe_nr);
6446 			if (ret < 0)
6447 				break;
6448 		}
6449 	} else {
6450 		/*
6451 		 * For all other non-RAID56 profiles, just copy the target
6452 		 * stripe into the bioc.
6453 		 */
6454 		for (i = 0; i < num_stripes; i++) {
6455 			ret = set_io_stripe(fs_info, op, logical, length,
6456 					    &bioc->stripes[i], map, stripe_index,
6457 					    stripe_offset, stripe_nr);
6458 			if (ret < 0)
6459 				break;
6460 			stripe_index++;
6461 		}
6462 	}
6463 
6464 	if (ret) {
6465 		*bioc_ret = NULL;
6466 		btrfs_put_bioc(bioc);
6467 		goto out;
6468 	}
6469 
6470 	if (op != BTRFS_MAP_READ)
6471 		max_errors = btrfs_chunk_max_errors(map);
6472 
6473 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6474 	    op != BTRFS_MAP_READ) {
6475 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6476 					  &num_stripes, &max_errors);
6477 	}
6478 
6479 	*bioc_ret = bioc;
6480 	bioc->num_stripes = num_stripes;
6481 	bioc->max_errors = max_errors;
6482 	bioc->mirror_num = mirror_num;
6483 
6484 out:
6485 	if (dev_replace_is_ongoing) {
6486 		lockdep_assert_held(&dev_replace->rwsem);
6487 		/* Unlock and let waiting writers proceed */
6488 		up_read(&dev_replace->rwsem);
6489 	}
6490 	free_extent_map(em);
6491 	return ret;
6492 }
6493 
6494 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6495 				      const struct btrfs_fs_devices *fs_devices)
6496 {
6497 	if (args->fsid == NULL)
6498 		return true;
6499 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6500 		return true;
6501 	return false;
6502 }
6503 
6504 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6505 				  const struct btrfs_device *device)
6506 {
6507 	if (args->missing) {
6508 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6509 		    !device->bdev)
6510 			return true;
6511 		return false;
6512 	}
6513 
6514 	if (device->devid != args->devid)
6515 		return false;
6516 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6517 		return false;
6518 	return true;
6519 }
6520 
6521 /*
6522  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6523  * return NULL.
6524  *
6525  * If devid and uuid are both specified, the match must be exact, otherwise
6526  * only devid is used.
6527  */
6528 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6529 				       const struct btrfs_dev_lookup_args *args)
6530 {
6531 	struct btrfs_device *device;
6532 	struct btrfs_fs_devices *seed_devs;
6533 
6534 	if (dev_args_match_fs_devices(args, fs_devices)) {
6535 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6536 			if (dev_args_match_device(args, device))
6537 				return device;
6538 		}
6539 	}
6540 
6541 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6542 		if (!dev_args_match_fs_devices(args, seed_devs))
6543 			continue;
6544 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6545 			if (dev_args_match_device(args, device))
6546 				return device;
6547 		}
6548 	}
6549 
6550 	return NULL;
6551 }
6552 
6553 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6554 					    u64 devid, u8 *dev_uuid)
6555 {
6556 	struct btrfs_device *device;
6557 	unsigned int nofs_flag;
6558 
6559 	/*
6560 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6561 	 * allocation, however we don't want to change btrfs_alloc_device() to
6562 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6563 	 * places.
6564 	 */
6565 
6566 	nofs_flag = memalloc_nofs_save();
6567 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6568 	memalloc_nofs_restore(nofs_flag);
6569 	if (IS_ERR(device))
6570 		return device;
6571 
6572 	list_add(&device->dev_list, &fs_devices->devices);
6573 	device->fs_devices = fs_devices;
6574 	fs_devices->num_devices++;
6575 
6576 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6577 	fs_devices->missing_devices++;
6578 
6579 	return device;
6580 }
6581 
6582 /*
6583  * Allocate new device struct, set up devid and UUID.
6584  *
6585  * @fs_info:	used only for generating a new devid, can be NULL if
6586  *		devid is provided (i.e. @devid != NULL).
6587  * @devid:	a pointer to devid for this device.  If NULL a new devid
6588  *		is generated.
6589  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6590  *		is generated.
6591  * @path:	a pointer to device path if available, NULL otherwise.
6592  *
6593  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6594  * on error.  Returned struct is not linked onto any lists and must be
6595  * destroyed with btrfs_free_device.
6596  */
6597 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6598 					const u64 *devid, const u8 *uuid,
6599 					const char *path)
6600 {
6601 	struct btrfs_device *dev;
6602 	u64 tmp;
6603 
6604 	if (WARN_ON(!devid && !fs_info))
6605 		return ERR_PTR(-EINVAL);
6606 
6607 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6608 	if (!dev)
6609 		return ERR_PTR(-ENOMEM);
6610 
6611 	INIT_LIST_HEAD(&dev->dev_list);
6612 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6613 	INIT_LIST_HEAD(&dev->post_commit_list);
6614 
6615 	atomic_set(&dev->dev_stats_ccnt, 0);
6616 	btrfs_device_data_ordered_init(dev);
6617 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6618 
6619 	if (devid)
6620 		tmp = *devid;
6621 	else {
6622 		int ret;
6623 
6624 		ret = find_next_devid(fs_info, &tmp);
6625 		if (ret) {
6626 			btrfs_free_device(dev);
6627 			return ERR_PTR(ret);
6628 		}
6629 	}
6630 	dev->devid = tmp;
6631 
6632 	if (uuid)
6633 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6634 	else
6635 		generate_random_uuid(dev->uuid);
6636 
6637 	if (path) {
6638 		struct rcu_string *name;
6639 
6640 		name = rcu_string_strdup(path, GFP_KERNEL);
6641 		if (!name) {
6642 			btrfs_free_device(dev);
6643 			return ERR_PTR(-ENOMEM);
6644 		}
6645 		rcu_assign_pointer(dev->name, name);
6646 	}
6647 
6648 	return dev;
6649 }
6650 
6651 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6652 					u64 devid, u8 *uuid, bool error)
6653 {
6654 	if (error)
6655 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6656 			      devid, uuid);
6657 	else
6658 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6659 			      devid, uuid);
6660 }
6661 
6662 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6663 {
6664 	const struct map_lookup *map = em->map_lookup;
6665 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6666 
6667 	return div_u64(em->len, data_stripes);
6668 }
6669 
6670 #if BITS_PER_LONG == 32
6671 /*
6672  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6673  * can't be accessed on 32bit systems.
6674  *
6675  * This function do mount time check to reject the fs if it already has
6676  * metadata chunk beyond that limit.
6677  */
6678 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6679 				  u64 logical, u64 length, u64 type)
6680 {
6681 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6682 		return 0;
6683 
6684 	if (logical + length < MAX_LFS_FILESIZE)
6685 		return 0;
6686 
6687 	btrfs_err_32bit_limit(fs_info);
6688 	return -EOVERFLOW;
6689 }
6690 
6691 /*
6692  * This is to give early warning for any metadata chunk reaching
6693  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6694  * Although we can still access the metadata, it's not going to be possible
6695  * once the limit is reached.
6696  */
6697 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6698 				  u64 logical, u64 length, u64 type)
6699 {
6700 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6701 		return;
6702 
6703 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6704 		return;
6705 
6706 	btrfs_warn_32bit_limit(fs_info);
6707 }
6708 #endif
6709 
6710 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6711 						  u64 devid, u8 *uuid)
6712 {
6713 	struct btrfs_device *dev;
6714 
6715 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6716 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6717 		return ERR_PTR(-ENOENT);
6718 	}
6719 
6720 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6721 	if (IS_ERR(dev)) {
6722 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6723 			  devid, PTR_ERR(dev));
6724 		return dev;
6725 	}
6726 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6727 
6728 	return dev;
6729 }
6730 
6731 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6732 			  struct btrfs_chunk *chunk)
6733 {
6734 	BTRFS_DEV_LOOKUP_ARGS(args);
6735 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6736 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6737 	struct map_lookup *map;
6738 	struct extent_map *em;
6739 	u64 logical;
6740 	u64 length;
6741 	u64 devid;
6742 	u64 type;
6743 	u8 uuid[BTRFS_UUID_SIZE];
6744 	int index;
6745 	int num_stripes;
6746 	int ret;
6747 	int i;
6748 
6749 	logical = key->offset;
6750 	length = btrfs_chunk_length(leaf, chunk);
6751 	type = btrfs_chunk_type(leaf, chunk);
6752 	index = btrfs_bg_flags_to_raid_index(type);
6753 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6754 
6755 #if BITS_PER_LONG == 32
6756 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6757 	if (ret < 0)
6758 		return ret;
6759 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6760 #endif
6761 
6762 	/*
6763 	 * Only need to verify chunk item if we're reading from sys chunk array,
6764 	 * as chunk item in tree block is already verified by tree-checker.
6765 	 */
6766 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6767 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6768 		if (ret)
6769 			return ret;
6770 	}
6771 
6772 	read_lock(&map_tree->lock);
6773 	em = lookup_extent_mapping(map_tree, logical, 1);
6774 	read_unlock(&map_tree->lock);
6775 
6776 	/* already mapped? */
6777 	if (em && em->start <= logical && em->start + em->len > logical) {
6778 		free_extent_map(em);
6779 		return 0;
6780 	} else if (em) {
6781 		free_extent_map(em);
6782 	}
6783 
6784 	em = alloc_extent_map();
6785 	if (!em)
6786 		return -ENOMEM;
6787 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6788 	if (!map) {
6789 		free_extent_map(em);
6790 		return -ENOMEM;
6791 	}
6792 
6793 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6794 	em->map_lookup = map;
6795 	em->start = logical;
6796 	em->len = length;
6797 	em->orig_start = 0;
6798 	em->block_start = 0;
6799 	em->block_len = em->len;
6800 
6801 	map->num_stripes = num_stripes;
6802 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6803 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6804 	map->type = type;
6805 	/*
6806 	 * We can't use the sub_stripes value, as for profiles other than
6807 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6808 	 * older mkfs (<v5.4).
6809 	 * In that case, it can cause divide-by-zero errors later.
6810 	 * Since currently sub_stripes is fixed for each profile, let's
6811 	 * use the trusted value instead.
6812 	 */
6813 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6814 	map->verified_stripes = 0;
6815 	em->orig_block_len = btrfs_calc_stripe_length(em);
6816 	for (i = 0; i < num_stripes; i++) {
6817 		map->stripes[i].physical =
6818 			btrfs_stripe_offset_nr(leaf, chunk, i);
6819 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6820 		args.devid = devid;
6821 		read_extent_buffer(leaf, uuid, (unsigned long)
6822 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6823 				   BTRFS_UUID_SIZE);
6824 		args.uuid = uuid;
6825 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6826 		if (!map->stripes[i].dev) {
6827 			map->stripes[i].dev = handle_missing_device(fs_info,
6828 								    devid, uuid);
6829 			if (IS_ERR(map->stripes[i].dev)) {
6830 				ret = PTR_ERR(map->stripes[i].dev);
6831 				free_extent_map(em);
6832 				return ret;
6833 			}
6834 		}
6835 
6836 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6837 				&(map->stripes[i].dev->dev_state));
6838 	}
6839 
6840 	write_lock(&map_tree->lock);
6841 	ret = add_extent_mapping(map_tree, em, 0);
6842 	write_unlock(&map_tree->lock);
6843 	if (ret < 0) {
6844 		btrfs_err(fs_info,
6845 			  "failed to add chunk map, start=%llu len=%llu: %d",
6846 			  em->start, em->len, ret);
6847 	}
6848 	free_extent_map(em);
6849 
6850 	return ret;
6851 }
6852 
6853 static void fill_device_from_item(struct extent_buffer *leaf,
6854 				 struct btrfs_dev_item *dev_item,
6855 				 struct btrfs_device *device)
6856 {
6857 	unsigned long ptr;
6858 
6859 	device->devid = btrfs_device_id(leaf, dev_item);
6860 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6861 	device->total_bytes = device->disk_total_bytes;
6862 	device->commit_total_bytes = device->disk_total_bytes;
6863 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6864 	device->commit_bytes_used = device->bytes_used;
6865 	device->type = btrfs_device_type(leaf, dev_item);
6866 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6867 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6868 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6869 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6870 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6871 
6872 	ptr = btrfs_device_uuid(dev_item);
6873 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6874 }
6875 
6876 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6877 						  u8 *fsid)
6878 {
6879 	struct btrfs_fs_devices *fs_devices;
6880 	int ret;
6881 
6882 	lockdep_assert_held(&uuid_mutex);
6883 	ASSERT(fsid);
6884 
6885 	/* This will match only for multi-device seed fs */
6886 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6887 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6888 			return fs_devices;
6889 
6890 
6891 	fs_devices = find_fsid(fsid, NULL);
6892 	if (!fs_devices) {
6893 		if (!btrfs_test_opt(fs_info, DEGRADED))
6894 			return ERR_PTR(-ENOENT);
6895 
6896 		fs_devices = alloc_fs_devices(fsid);
6897 		if (IS_ERR(fs_devices))
6898 			return fs_devices;
6899 
6900 		fs_devices->seeding = true;
6901 		fs_devices->opened = 1;
6902 		return fs_devices;
6903 	}
6904 
6905 	/*
6906 	 * Upon first call for a seed fs fsid, just create a private copy of the
6907 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6908 	 */
6909 	fs_devices = clone_fs_devices(fs_devices);
6910 	if (IS_ERR(fs_devices))
6911 		return fs_devices;
6912 
6913 	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6914 	if (ret) {
6915 		free_fs_devices(fs_devices);
6916 		return ERR_PTR(ret);
6917 	}
6918 
6919 	if (!fs_devices->seeding) {
6920 		close_fs_devices(fs_devices);
6921 		free_fs_devices(fs_devices);
6922 		return ERR_PTR(-EINVAL);
6923 	}
6924 
6925 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6926 
6927 	return fs_devices;
6928 }
6929 
6930 static int read_one_dev(struct extent_buffer *leaf,
6931 			struct btrfs_dev_item *dev_item)
6932 {
6933 	BTRFS_DEV_LOOKUP_ARGS(args);
6934 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6935 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6936 	struct btrfs_device *device;
6937 	u64 devid;
6938 	int ret;
6939 	u8 fs_uuid[BTRFS_FSID_SIZE];
6940 	u8 dev_uuid[BTRFS_UUID_SIZE];
6941 
6942 	devid = btrfs_device_id(leaf, dev_item);
6943 	args.devid = devid;
6944 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6945 			   BTRFS_UUID_SIZE);
6946 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6947 			   BTRFS_FSID_SIZE);
6948 	args.uuid = dev_uuid;
6949 	args.fsid = fs_uuid;
6950 
6951 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6952 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6953 		if (IS_ERR(fs_devices))
6954 			return PTR_ERR(fs_devices);
6955 	}
6956 
6957 	device = btrfs_find_device(fs_info->fs_devices, &args);
6958 	if (!device) {
6959 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6960 			btrfs_report_missing_device(fs_info, devid,
6961 							dev_uuid, true);
6962 			return -ENOENT;
6963 		}
6964 
6965 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6966 		if (IS_ERR(device)) {
6967 			btrfs_err(fs_info,
6968 				"failed to add missing dev %llu: %ld",
6969 				devid, PTR_ERR(device));
6970 			return PTR_ERR(device);
6971 		}
6972 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6973 	} else {
6974 		if (!device->bdev) {
6975 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6976 				btrfs_report_missing_device(fs_info,
6977 						devid, dev_uuid, true);
6978 				return -ENOENT;
6979 			}
6980 			btrfs_report_missing_device(fs_info, devid,
6981 							dev_uuid, false);
6982 		}
6983 
6984 		if (!device->bdev &&
6985 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6986 			/*
6987 			 * this happens when a device that was properly setup
6988 			 * in the device info lists suddenly goes bad.
6989 			 * device->bdev is NULL, and so we have to set
6990 			 * device->missing to one here
6991 			 */
6992 			device->fs_devices->missing_devices++;
6993 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6994 		}
6995 
6996 		/* Move the device to its own fs_devices */
6997 		if (device->fs_devices != fs_devices) {
6998 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6999 							&device->dev_state));
7000 
7001 			list_move(&device->dev_list, &fs_devices->devices);
7002 			device->fs_devices->num_devices--;
7003 			fs_devices->num_devices++;
7004 
7005 			device->fs_devices->missing_devices--;
7006 			fs_devices->missing_devices++;
7007 
7008 			device->fs_devices = fs_devices;
7009 		}
7010 	}
7011 
7012 	if (device->fs_devices != fs_info->fs_devices) {
7013 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7014 		if (device->generation !=
7015 		    btrfs_device_generation(leaf, dev_item))
7016 			return -EINVAL;
7017 	}
7018 
7019 	fill_device_from_item(leaf, dev_item, device);
7020 	if (device->bdev) {
7021 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7022 
7023 		if (device->total_bytes > max_total_bytes) {
7024 			btrfs_err(fs_info,
7025 			"device total_bytes should be at most %llu but found %llu",
7026 				  max_total_bytes, device->total_bytes);
7027 			return -EINVAL;
7028 		}
7029 	}
7030 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7031 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7032 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7033 		device->fs_devices->total_rw_bytes += device->total_bytes;
7034 		atomic64_add(device->total_bytes - device->bytes_used,
7035 				&fs_info->free_chunk_space);
7036 	}
7037 	ret = 0;
7038 	return ret;
7039 }
7040 
7041 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7042 {
7043 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7044 	struct extent_buffer *sb;
7045 	struct btrfs_disk_key *disk_key;
7046 	struct btrfs_chunk *chunk;
7047 	u8 *array_ptr;
7048 	unsigned long sb_array_offset;
7049 	int ret = 0;
7050 	u32 num_stripes;
7051 	u32 array_size;
7052 	u32 len = 0;
7053 	u32 cur_offset;
7054 	u64 type;
7055 	struct btrfs_key key;
7056 
7057 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7058 
7059 	/*
7060 	 * We allocated a dummy extent, just to use extent buffer accessors.
7061 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7062 	 * that's fine, we will not go beyond system chunk array anyway.
7063 	 */
7064 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7065 	if (!sb)
7066 		return -ENOMEM;
7067 	set_extent_buffer_uptodate(sb);
7068 
7069 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7070 	array_size = btrfs_super_sys_array_size(super_copy);
7071 
7072 	array_ptr = super_copy->sys_chunk_array;
7073 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7074 	cur_offset = 0;
7075 
7076 	while (cur_offset < array_size) {
7077 		disk_key = (struct btrfs_disk_key *)array_ptr;
7078 		len = sizeof(*disk_key);
7079 		if (cur_offset + len > array_size)
7080 			goto out_short_read;
7081 
7082 		btrfs_disk_key_to_cpu(&key, disk_key);
7083 
7084 		array_ptr += len;
7085 		sb_array_offset += len;
7086 		cur_offset += len;
7087 
7088 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7089 			btrfs_err(fs_info,
7090 			    "unexpected item type %u in sys_array at offset %u",
7091 				  (u32)key.type, cur_offset);
7092 			ret = -EIO;
7093 			break;
7094 		}
7095 
7096 		chunk = (struct btrfs_chunk *)sb_array_offset;
7097 		/*
7098 		 * At least one btrfs_chunk with one stripe must be present,
7099 		 * exact stripe count check comes afterwards
7100 		 */
7101 		len = btrfs_chunk_item_size(1);
7102 		if (cur_offset + len > array_size)
7103 			goto out_short_read;
7104 
7105 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7106 		if (!num_stripes) {
7107 			btrfs_err(fs_info,
7108 			"invalid number of stripes %u in sys_array at offset %u",
7109 				  num_stripes, cur_offset);
7110 			ret = -EIO;
7111 			break;
7112 		}
7113 
7114 		type = btrfs_chunk_type(sb, chunk);
7115 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7116 			btrfs_err(fs_info,
7117 			"invalid chunk type %llu in sys_array at offset %u",
7118 				  type, cur_offset);
7119 			ret = -EIO;
7120 			break;
7121 		}
7122 
7123 		len = btrfs_chunk_item_size(num_stripes);
7124 		if (cur_offset + len > array_size)
7125 			goto out_short_read;
7126 
7127 		ret = read_one_chunk(&key, sb, chunk);
7128 		if (ret)
7129 			break;
7130 
7131 		array_ptr += len;
7132 		sb_array_offset += len;
7133 		cur_offset += len;
7134 	}
7135 	clear_extent_buffer_uptodate(sb);
7136 	free_extent_buffer_stale(sb);
7137 	return ret;
7138 
7139 out_short_read:
7140 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7141 			len, cur_offset);
7142 	clear_extent_buffer_uptodate(sb);
7143 	free_extent_buffer_stale(sb);
7144 	return -EIO;
7145 }
7146 
7147 /*
7148  * Check if all chunks in the fs are OK for read-write degraded mount
7149  *
7150  * If the @failing_dev is specified, it's accounted as missing.
7151  *
7152  * Return true if all chunks meet the minimal RW mount requirements.
7153  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7154  */
7155 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7156 					struct btrfs_device *failing_dev)
7157 {
7158 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7159 	struct extent_map *em;
7160 	u64 next_start = 0;
7161 	bool ret = true;
7162 
7163 	read_lock(&map_tree->lock);
7164 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7165 	read_unlock(&map_tree->lock);
7166 	/* No chunk at all? Return false anyway */
7167 	if (!em) {
7168 		ret = false;
7169 		goto out;
7170 	}
7171 	while (em) {
7172 		struct map_lookup *map;
7173 		int missing = 0;
7174 		int max_tolerated;
7175 		int i;
7176 
7177 		map = em->map_lookup;
7178 		max_tolerated =
7179 			btrfs_get_num_tolerated_disk_barrier_failures(
7180 					map->type);
7181 		for (i = 0; i < map->num_stripes; i++) {
7182 			struct btrfs_device *dev = map->stripes[i].dev;
7183 
7184 			if (!dev || !dev->bdev ||
7185 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7186 			    dev->last_flush_error)
7187 				missing++;
7188 			else if (failing_dev && failing_dev == dev)
7189 				missing++;
7190 		}
7191 		if (missing > max_tolerated) {
7192 			if (!failing_dev)
7193 				btrfs_warn(fs_info,
7194 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7195 				   em->start, missing, max_tolerated);
7196 			free_extent_map(em);
7197 			ret = false;
7198 			goto out;
7199 		}
7200 		next_start = extent_map_end(em);
7201 		free_extent_map(em);
7202 
7203 		read_lock(&map_tree->lock);
7204 		em = lookup_extent_mapping(map_tree, next_start,
7205 					   (u64)(-1) - next_start);
7206 		read_unlock(&map_tree->lock);
7207 	}
7208 out:
7209 	return ret;
7210 }
7211 
7212 static void readahead_tree_node_children(struct extent_buffer *node)
7213 {
7214 	int i;
7215 	const int nr_items = btrfs_header_nritems(node);
7216 
7217 	for (i = 0; i < nr_items; i++)
7218 		btrfs_readahead_node_child(node, i);
7219 }
7220 
7221 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7222 {
7223 	struct btrfs_root *root = fs_info->chunk_root;
7224 	struct btrfs_path *path;
7225 	struct extent_buffer *leaf;
7226 	struct btrfs_key key;
7227 	struct btrfs_key found_key;
7228 	int ret;
7229 	int slot;
7230 	int iter_ret = 0;
7231 	u64 total_dev = 0;
7232 	u64 last_ra_node = 0;
7233 
7234 	path = btrfs_alloc_path();
7235 	if (!path)
7236 		return -ENOMEM;
7237 
7238 	/*
7239 	 * uuid_mutex is needed only if we are mounting a sprout FS
7240 	 * otherwise we don't need it.
7241 	 */
7242 	mutex_lock(&uuid_mutex);
7243 
7244 	/*
7245 	 * It is possible for mount and umount to race in such a way that
7246 	 * we execute this code path, but open_fs_devices failed to clear
7247 	 * total_rw_bytes. We certainly want it cleared before reading the
7248 	 * device items, so clear it here.
7249 	 */
7250 	fs_info->fs_devices->total_rw_bytes = 0;
7251 
7252 	/*
7253 	 * Lockdep complains about possible circular locking dependency between
7254 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7255 	 * used for freeze procection of a fs (struct super_block.s_writers),
7256 	 * which we take when starting a transaction, and extent buffers of the
7257 	 * chunk tree if we call read_one_dev() while holding a lock on an
7258 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7259 	 * and at this point there can't be any concurrent task modifying the
7260 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7261 	 */
7262 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7263 	path->skip_locking = 1;
7264 
7265 	/*
7266 	 * Read all device items, and then all the chunk items. All
7267 	 * device items are found before any chunk item (their object id
7268 	 * is smaller than the lowest possible object id for a chunk
7269 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7270 	 */
7271 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7272 	key.offset = 0;
7273 	key.type = 0;
7274 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7275 		struct extent_buffer *node = path->nodes[1];
7276 
7277 		leaf = path->nodes[0];
7278 		slot = path->slots[0];
7279 
7280 		if (node) {
7281 			if (last_ra_node != node->start) {
7282 				readahead_tree_node_children(node);
7283 				last_ra_node = node->start;
7284 			}
7285 		}
7286 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7287 			struct btrfs_dev_item *dev_item;
7288 			dev_item = btrfs_item_ptr(leaf, slot,
7289 						  struct btrfs_dev_item);
7290 			ret = read_one_dev(leaf, dev_item);
7291 			if (ret)
7292 				goto error;
7293 			total_dev++;
7294 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7295 			struct btrfs_chunk *chunk;
7296 
7297 			/*
7298 			 * We are only called at mount time, so no need to take
7299 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7300 			 * we always lock first fs_info->chunk_mutex before
7301 			 * acquiring any locks on the chunk tree. This is a
7302 			 * requirement for chunk allocation, see the comment on
7303 			 * top of btrfs_chunk_alloc() for details.
7304 			 */
7305 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7306 			ret = read_one_chunk(&found_key, leaf, chunk);
7307 			if (ret)
7308 				goto error;
7309 		}
7310 	}
7311 	/* Catch error found during iteration */
7312 	if (iter_ret < 0) {
7313 		ret = iter_ret;
7314 		goto error;
7315 	}
7316 
7317 	/*
7318 	 * After loading chunk tree, we've got all device information,
7319 	 * do another round of validation checks.
7320 	 */
7321 	if (total_dev != fs_info->fs_devices->total_devices) {
7322 		btrfs_warn(fs_info,
7323 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7324 			  btrfs_super_num_devices(fs_info->super_copy),
7325 			  total_dev);
7326 		fs_info->fs_devices->total_devices = total_dev;
7327 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7328 	}
7329 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7330 	    fs_info->fs_devices->total_rw_bytes) {
7331 		btrfs_err(fs_info,
7332 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7333 			  btrfs_super_total_bytes(fs_info->super_copy),
7334 			  fs_info->fs_devices->total_rw_bytes);
7335 		ret = -EINVAL;
7336 		goto error;
7337 	}
7338 	ret = 0;
7339 error:
7340 	mutex_unlock(&uuid_mutex);
7341 
7342 	btrfs_free_path(path);
7343 	return ret;
7344 }
7345 
7346 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7347 {
7348 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7349 	struct btrfs_device *device;
7350 	int ret = 0;
7351 
7352 	fs_devices->fs_info = fs_info;
7353 
7354 	mutex_lock(&fs_devices->device_list_mutex);
7355 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7356 		device->fs_info = fs_info;
7357 
7358 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7359 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7360 			device->fs_info = fs_info;
7361 			ret = btrfs_get_dev_zone_info(device, false);
7362 			if (ret)
7363 				break;
7364 		}
7365 
7366 		seed_devs->fs_info = fs_info;
7367 	}
7368 	mutex_unlock(&fs_devices->device_list_mutex);
7369 
7370 	return ret;
7371 }
7372 
7373 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7374 				 const struct btrfs_dev_stats_item *ptr,
7375 				 int index)
7376 {
7377 	u64 val;
7378 
7379 	read_extent_buffer(eb, &val,
7380 			   offsetof(struct btrfs_dev_stats_item, values) +
7381 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7382 			   sizeof(val));
7383 	return val;
7384 }
7385 
7386 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7387 				      struct btrfs_dev_stats_item *ptr,
7388 				      int index, u64 val)
7389 {
7390 	write_extent_buffer(eb, &val,
7391 			    offsetof(struct btrfs_dev_stats_item, values) +
7392 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7393 			    sizeof(val));
7394 }
7395 
7396 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7397 				       struct btrfs_path *path)
7398 {
7399 	struct btrfs_dev_stats_item *ptr;
7400 	struct extent_buffer *eb;
7401 	struct btrfs_key key;
7402 	int item_size;
7403 	int i, ret, slot;
7404 
7405 	if (!device->fs_info->dev_root)
7406 		return 0;
7407 
7408 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7409 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7410 	key.offset = device->devid;
7411 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7412 	if (ret) {
7413 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7414 			btrfs_dev_stat_set(device, i, 0);
7415 		device->dev_stats_valid = 1;
7416 		btrfs_release_path(path);
7417 		return ret < 0 ? ret : 0;
7418 	}
7419 	slot = path->slots[0];
7420 	eb = path->nodes[0];
7421 	item_size = btrfs_item_size(eb, slot);
7422 
7423 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7424 
7425 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7426 		if (item_size >= (1 + i) * sizeof(__le64))
7427 			btrfs_dev_stat_set(device, i,
7428 					   btrfs_dev_stats_value(eb, ptr, i));
7429 		else
7430 			btrfs_dev_stat_set(device, i, 0);
7431 	}
7432 
7433 	device->dev_stats_valid = 1;
7434 	btrfs_dev_stat_print_on_load(device);
7435 	btrfs_release_path(path);
7436 
7437 	return 0;
7438 }
7439 
7440 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7441 {
7442 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7443 	struct btrfs_device *device;
7444 	struct btrfs_path *path = NULL;
7445 	int ret = 0;
7446 
7447 	path = btrfs_alloc_path();
7448 	if (!path)
7449 		return -ENOMEM;
7450 
7451 	mutex_lock(&fs_devices->device_list_mutex);
7452 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7453 		ret = btrfs_device_init_dev_stats(device, path);
7454 		if (ret)
7455 			goto out;
7456 	}
7457 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7458 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7459 			ret = btrfs_device_init_dev_stats(device, path);
7460 			if (ret)
7461 				goto out;
7462 		}
7463 	}
7464 out:
7465 	mutex_unlock(&fs_devices->device_list_mutex);
7466 
7467 	btrfs_free_path(path);
7468 	return ret;
7469 }
7470 
7471 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7472 				struct btrfs_device *device)
7473 {
7474 	struct btrfs_fs_info *fs_info = trans->fs_info;
7475 	struct btrfs_root *dev_root = fs_info->dev_root;
7476 	struct btrfs_path *path;
7477 	struct btrfs_key key;
7478 	struct extent_buffer *eb;
7479 	struct btrfs_dev_stats_item *ptr;
7480 	int ret;
7481 	int i;
7482 
7483 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7484 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7485 	key.offset = device->devid;
7486 
7487 	path = btrfs_alloc_path();
7488 	if (!path)
7489 		return -ENOMEM;
7490 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7491 	if (ret < 0) {
7492 		btrfs_warn_in_rcu(fs_info,
7493 			"error %d while searching for dev_stats item for device %s",
7494 				  ret, btrfs_dev_name(device));
7495 		goto out;
7496 	}
7497 
7498 	if (ret == 0 &&
7499 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7500 		/* need to delete old one and insert a new one */
7501 		ret = btrfs_del_item(trans, dev_root, path);
7502 		if (ret != 0) {
7503 			btrfs_warn_in_rcu(fs_info,
7504 				"delete too small dev_stats item for device %s failed %d",
7505 					  btrfs_dev_name(device), ret);
7506 			goto out;
7507 		}
7508 		ret = 1;
7509 	}
7510 
7511 	if (ret == 1) {
7512 		/* need to insert a new item */
7513 		btrfs_release_path(path);
7514 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7515 					      &key, sizeof(*ptr));
7516 		if (ret < 0) {
7517 			btrfs_warn_in_rcu(fs_info,
7518 				"insert dev_stats item for device %s failed %d",
7519 				btrfs_dev_name(device), ret);
7520 			goto out;
7521 		}
7522 	}
7523 
7524 	eb = path->nodes[0];
7525 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7526 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7527 		btrfs_set_dev_stats_value(eb, ptr, i,
7528 					  btrfs_dev_stat_read(device, i));
7529 	btrfs_mark_buffer_dirty(trans, eb);
7530 
7531 out:
7532 	btrfs_free_path(path);
7533 	return ret;
7534 }
7535 
7536 /*
7537  * called from commit_transaction. Writes all changed device stats to disk.
7538  */
7539 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7540 {
7541 	struct btrfs_fs_info *fs_info = trans->fs_info;
7542 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7543 	struct btrfs_device *device;
7544 	int stats_cnt;
7545 	int ret = 0;
7546 
7547 	mutex_lock(&fs_devices->device_list_mutex);
7548 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7549 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7550 		if (!device->dev_stats_valid || stats_cnt == 0)
7551 			continue;
7552 
7553 
7554 		/*
7555 		 * There is a LOAD-LOAD control dependency between the value of
7556 		 * dev_stats_ccnt and updating the on-disk values which requires
7557 		 * reading the in-memory counters. Such control dependencies
7558 		 * require explicit read memory barriers.
7559 		 *
7560 		 * This memory barriers pairs with smp_mb__before_atomic in
7561 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7562 		 * barrier implied by atomic_xchg in
7563 		 * btrfs_dev_stats_read_and_reset
7564 		 */
7565 		smp_rmb();
7566 
7567 		ret = update_dev_stat_item(trans, device);
7568 		if (!ret)
7569 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7570 	}
7571 	mutex_unlock(&fs_devices->device_list_mutex);
7572 
7573 	return ret;
7574 }
7575 
7576 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7577 {
7578 	btrfs_dev_stat_inc(dev, index);
7579 
7580 	if (!dev->dev_stats_valid)
7581 		return;
7582 	btrfs_err_rl_in_rcu(dev->fs_info,
7583 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7584 			   btrfs_dev_name(dev),
7585 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7586 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7587 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7588 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7589 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7590 }
7591 
7592 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7593 {
7594 	int i;
7595 
7596 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7597 		if (btrfs_dev_stat_read(dev, i) != 0)
7598 			break;
7599 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7600 		return; /* all values == 0, suppress message */
7601 
7602 	btrfs_info_in_rcu(dev->fs_info,
7603 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7604 	       btrfs_dev_name(dev),
7605 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7606 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7607 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7608 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7609 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7610 }
7611 
7612 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7613 			struct btrfs_ioctl_get_dev_stats *stats)
7614 {
7615 	BTRFS_DEV_LOOKUP_ARGS(args);
7616 	struct btrfs_device *dev;
7617 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7618 	int i;
7619 
7620 	mutex_lock(&fs_devices->device_list_mutex);
7621 	args.devid = stats->devid;
7622 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7623 	mutex_unlock(&fs_devices->device_list_mutex);
7624 
7625 	if (!dev) {
7626 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7627 		return -ENODEV;
7628 	} else if (!dev->dev_stats_valid) {
7629 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7630 		return -ENODEV;
7631 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7632 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7633 			if (stats->nr_items > i)
7634 				stats->values[i] =
7635 					btrfs_dev_stat_read_and_reset(dev, i);
7636 			else
7637 				btrfs_dev_stat_set(dev, i, 0);
7638 		}
7639 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7640 			   current->comm, task_pid_nr(current));
7641 	} else {
7642 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7643 			if (stats->nr_items > i)
7644 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7645 	}
7646 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7647 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7648 	return 0;
7649 }
7650 
7651 /*
7652  * Update the size and bytes used for each device where it changed.  This is
7653  * delayed since we would otherwise get errors while writing out the
7654  * superblocks.
7655  *
7656  * Must be invoked during transaction commit.
7657  */
7658 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7659 {
7660 	struct btrfs_device *curr, *next;
7661 
7662 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7663 
7664 	if (list_empty(&trans->dev_update_list))
7665 		return;
7666 
7667 	/*
7668 	 * We don't need the device_list_mutex here.  This list is owned by the
7669 	 * transaction and the transaction must complete before the device is
7670 	 * released.
7671 	 */
7672 	mutex_lock(&trans->fs_info->chunk_mutex);
7673 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7674 				 post_commit_list) {
7675 		list_del_init(&curr->post_commit_list);
7676 		curr->commit_total_bytes = curr->disk_total_bytes;
7677 		curr->commit_bytes_used = curr->bytes_used;
7678 	}
7679 	mutex_unlock(&trans->fs_info->chunk_mutex);
7680 }
7681 
7682 /*
7683  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7684  */
7685 int btrfs_bg_type_to_factor(u64 flags)
7686 {
7687 	const int index = btrfs_bg_flags_to_raid_index(flags);
7688 
7689 	return btrfs_raid_array[index].ncopies;
7690 }
7691 
7692 
7693 
7694 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7695 				 u64 chunk_offset, u64 devid,
7696 				 u64 physical_offset, u64 physical_len)
7697 {
7698 	struct btrfs_dev_lookup_args args = { .devid = devid };
7699 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7700 	struct extent_map *em;
7701 	struct map_lookup *map;
7702 	struct btrfs_device *dev;
7703 	u64 stripe_len;
7704 	bool found = false;
7705 	int ret = 0;
7706 	int i;
7707 
7708 	read_lock(&em_tree->lock);
7709 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7710 	read_unlock(&em_tree->lock);
7711 
7712 	if (!em) {
7713 		btrfs_err(fs_info,
7714 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7715 			  physical_offset, devid);
7716 		ret = -EUCLEAN;
7717 		goto out;
7718 	}
7719 
7720 	map = em->map_lookup;
7721 	stripe_len = btrfs_calc_stripe_length(em);
7722 	if (physical_len != stripe_len) {
7723 		btrfs_err(fs_info,
7724 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7725 			  physical_offset, devid, em->start, physical_len,
7726 			  stripe_len);
7727 		ret = -EUCLEAN;
7728 		goto out;
7729 	}
7730 
7731 	/*
7732 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7733 	 * space. Although kernel can handle it without problem, better to warn
7734 	 * the users.
7735 	 */
7736 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7737 		btrfs_warn(fs_info,
7738 		"devid %llu physical %llu len %llu inside the reserved space",
7739 			   devid, physical_offset, physical_len);
7740 
7741 	for (i = 0; i < map->num_stripes; i++) {
7742 		if (map->stripes[i].dev->devid == devid &&
7743 		    map->stripes[i].physical == physical_offset) {
7744 			found = true;
7745 			if (map->verified_stripes >= map->num_stripes) {
7746 				btrfs_err(fs_info,
7747 				"too many dev extents for chunk %llu found",
7748 					  em->start);
7749 				ret = -EUCLEAN;
7750 				goto out;
7751 			}
7752 			map->verified_stripes++;
7753 			break;
7754 		}
7755 	}
7756 	if (!found) {
7757 		btrfs_err(fs_info,
7758 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7759 			physical_offset, devid);
7760 		ret = -EUCLEAN;
7761 	}
7762 
7763 	/* Make sure no dev extent is beyond device boundary */
7764 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7765 	if (!dev) {
7766 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7767 		ret = -EUCLEAN;
7768 		goto out;
7769 	}
7770 
7771 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7772 		btrfs_err(fs_info,
7773 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7774 			  devid, physical_offset, physical_len,
7775 			  dev->disk_total_bytes);
7776 		ret = -EUCLEAN;
7777 		goto out;
7778 	}
7779 
7780 	if (dev->zone_info) {
7781 		u64 zone_size = dev->zone_info->zone_size;
7782 
7783 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7784 		    !IS_ALIGNED(physical_len, zone_size)) {
7785 			btrfs_err(fs_info,
7786 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7787 				  devid, physical_offset, physical_len);
7788 			ret = -EUCLEAN;
7789 			goto out;
7790 		}
7791 	}
7792 
7793 out:
7794 	free_extent_map(em);
7795 	return ret;
7796 }
7797 
7798 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7799 {
7800 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7801 	struct extent_map *em;
7802 	struct rb_node *node;
7803 	int ret = 0;
7804 
7805 	read_lock(&em_tree->lock);
7806 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7807 		em = rb_entry(node, struct extent_map, rb_node);
7808 		if (em->map_lookup->num_stripes !=
7809 		    em->map_lookup->verified_stripes) {
7810 			btrfs_err(fs_info,
7811 			"chunk %llu has missing dev extent, have %d expect %d",
7812 				  em->start, em->map_lookup->verified_stripes,
7813 				  em->map_lookup->num_stripes);
7814 			ret = -EUCLEAN;
7815 			goto out;
7816 		}
7817 	}
7818 out:
7819 	read_unlock(&em_tree->lock);
7820 	return ret;
7821 }
7822 
7823 /*
7824  * Ensure that all dev extents are mapped to correct chunk, otherwise
7825  * later chunk allocation/free would cause unexpected behavior.
7826  *
7827  * NOTE: This will iterate through the whole device tree, which should be of
7828  * the same size level as the chunk tree.  This slightly increases mount time.
7829  */
7830 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7831 {
7832 	struct btrfs_path *path;
7833 	struct btrfs_root *root = fs_info->dev_root;
7834 	struct btrfs_key key;
7835 	u64 prev_devid = 0;
7836 	u64 prev_dev_ext_end = 0;
7837 	int ret = 0;
7838 
7839 	/*
7840 	 * We don't have a dev_root because we mounted with ignorebadroots and
7841 	 * failed to load the root, so we want to skip the verification in this
7842 	 * case for sure.
7843 	 *
7844 	 * However if the dev root is fine, but the tree itself is corrupted
7845 	 * we'd still fail to mount.  This verification is only to make sure
7846 	 * writes can happen safely, so instead just bypass this check
7847 	 * completely in the case of IGNOREBADROOTS.
7848 	 */
7849 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7850 		return 0;
7851 
7852 	key.objectid = 1;
7853 	key.type = BTRFS_DEV_EXTENT_KEY;
7854 	key.offset = 0;
7855 
7856 	path = btrfs_alloc_path();
7857 	if (!path)
7858 		return -ENOMEM;
7859 
7860 	path->reada = READA_FORWARD;
7861 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7862 	if (ret < 0)
7863 		goto out;
7864 
7865 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7866 		ret = btrfs_next_leaf(root, path);
7867 		if (ret < 0)
7868 			goto out;
7869 		/* No dev extents at all? Not good */
7870 		if (ret > 0) {
7871 			ret = -EUCLEAN;
7872 			goto out;
7873 		}
7874 	}
7875 	while (1) {
7876 		struct extent_buffer *leaf = path->nodes[0];
7877 		struct btrfs_dev_extent *dext;
7878 		int slot = path->slots[0];
7879 		u64 chunk_offset;
7880 		u64 physical_offset;
7881 		u64 physical_len;
7882 		u64 devid;
7883 
7884 		btrfs_item_key_to_cpu(leaf, &key, slot);
7885 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7886 			break;
7887 		devid = key.objectid;
7888 		physical_offset = key.offset;
7889 
7890 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7891 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7892 		physical_len = btrfs_dev_extent_length(leaf, dext);
7893 
7894 		/* Check if this dev extent overlaps with the previous one */
7895 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7896 			btrfs_err(fs_info,
7897 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7898 				  devid, physical_offset, prev_dev_ext_end);
7899 			ret = -EUCLEAN;
7900 			goto out;
7901 		}
7902 
7903 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7904 					    physical_offset, physical_len);
7905 		if (ret < 0)
7906 			goto out;
7907 		prev_devid = devid;
7908 		prev_dev_ext_end = physical_offset + physical_len;
7909 
7910 		ret = btrfs_next_item(root, path);
7911 		if (ret < 0)
7912 			goto out;
7913 		if (ret > 0) {
7914 			ret = 0;
7915 			break;
7916 		}
7917 	}
7918 
7919 	/* Ensure all chunks have corresponding dev extents */
7920 	ret = verify_chunk_dev_extent_mapping(fs_info);
7921 out:
7922 	btrfs_free_path(path);
7923 	return ret;
7924 }
7925 
7926 /*
7927  * Check whether the given block group or device is pinned by any inode being
7928  * used as a swapfile.
7929  */
7930 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7931 {
7932 	struct btrfs_swapfile_pin *sp;
7933 	struct rb_node *node;
7934 
7935 	spin_lock(&fs_info->swapfile_pins_lock);
7936 	node = fs_info->swapfile_pins.rb_node;
7937 	while (node) {
7938 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7939 		if (ptr < sp->ptr)
7940 			node = node->rb_left;
7941 		else if (ptr > sp->ptr)
7942 			node = node->rb_right;
7943 		else
7944 			break;
7945 	}
7946 	spin_unlock(&fs_info->swapfile_pins_lock);
7947 	return node != NULL;
7948 }
7949 
7950 static int relocating_repair_kthread(void *data)
7951 {
7952 	struct btrfs_block_group *cache = data;
7953 	struct btrfs_fs_info *fs_info = cache->fs_info;
7954 	u64 target;
7955 	int ret = 0;
7956 
7957 	target = cache->start;
7958 	btrfs_put_block_group(cache);
7959 
7960 	sb_start_write(fs_info->sb);
7961 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7962 		btrfs_info(fs_info,
7963 			   "zoned: skip relocating block group %llu to repair: EBUSY",
7964 			   target);
7965 		sb_end_write(fs_info->sb);
7966 		return -EBUSY;
7967 	}
7968 
7969 	mutex_lock(&fs_info->reclaim_bgs_lock);
7970 
7971 	/* Ensure block group still exists */
7972 	cache = btrfs_lookup_block_group(fs_info, target);
7973 	if (!cache)
7974 		goto out;
7975 
7976 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7977 		goto out;
7978 
7979 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
7980 	if (ret < 0)
7981 		goto out;
7982 
7983 	btrfs_info(fs_info,
7984 		   "zoned: relocating block group %llu to repair IO failure",
7985 		   target);
7986 	ret = btrfs_relocate_chunk(fs_info, target);
7987 
7988 out:
7989 	if (cache)
7990 		btrfs_put_block_group(cache);
7991 	mutex_unlock(&fs_info->reclaim_bgs_lock);
7992 	btrfs_exclop_finish(fs_info);
7993 	sb_end_write(fs_info->sb);
7994 
7995 	return ret;
7996 }
7997 
7998 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
7999 {
8000 	struct btrfs_block_group *cache;
8001 
8002 	if (!btrfs_is_zoned(fs_info))
8003 		return false;
8004 
8005 	/* Do not attempt to repair in degraded state */
8006 	if (btrfs_test_opt(fs_info, DEGRADED))
8007 		return true;
8008 
8009 	cache = btrfs_lookup_block_group(fs_info, logical);
8010 	if (!cache)
8011 		return true;
8012 
8013 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8014 		btrfs_put_block_group(cache);
8015 		return true;
8016 	}
8017 
8018 	kthread_run(relocating_repair_kthread, cache,
8019 		    "btrfs-relocating-repair");
8020 
8021 	return true;
8022 }
8023 
8024 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8025 				    struct btrfs_io_stripe *smap,
8026 				    u64 logical)
8027 {
8028 	int data_stripes = nr_bioc_data_stripes(bioc);
8029 	int i;
8030 
8031 	for (i = 0; i < data_stripes; i++) {
8032 		u64 stripe_start = bioc->full_stripe_logical +
8033 				   btrfs_stripe_nr_to_offset(i);
8034 
8035 		if (logical >= stripe_start &&
8036 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8037 			break;
8038 	}
8039 	ASSERT(i < data_stripes);
8040 	smap->dev = bioc->stripes[i].dev;
8041 	smap->physical = bioc->stripes[i].physical +
8042 			((logical - bioc->full_stripe_logical) &
8043 			 BTRFS_STRIPE_LEN_MASK);
8044 }
8045 
8046 /*
8047  * Map a repair write into a single device.
8048  *
8049  * A repair write is triggered by read time repair or scrub, which would only
8050  * update the contents of a single device.
8051  * Not update any other mirrors nor go through RMW path.
8052  *
8053  * Callers should ensure:
8054  *
8055  * - Call btrfs_bio_counter_inc_blocked() first
8056  * - The range does not cross stripe boundary
8057  * - Has a valid @mirror_num passed in.
8058  */
8059 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8060 			   struct btrfs_io_stripe *smap, u64 logical,
8061 			   u32 length, int mirror_num)
8062 {
8063 	struct btrfs_io_context *bioc = NULL;
8064 	u64 map_length = length;
8065 	int mirror_ret = mirror_num;
8066 	int ret;
8067 
8068 	ASSERT(mirror_num > 0);
8069 
8070 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8071 			      &bioc, smap, &mirror_ret);
8072 	if (ret < 0)
8073 		return ret;
8074 
8075 	/* The map range should not cross stripe boundary. */
8076 	ASSERT(map_length >= length);
8077 
8078 	/* Already mapped to single stripe. */
8079 	if (!bioc)
8080 		goto out;
8081 
8082 	/* Map the RAID56 multi-stripe writes to a single one. */
8083 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8084 		map_raid56_repair_block(bioc, smap, logical);
8085 		goto out;
8086 	}
8087 
8088 	ASSERT(mirror_num <= bioc->num_stripes);
8089 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8090 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8091 out:
8092 	btrfs_put_bioc(bioc);
8093 	ASSERT(smap->dev);
8094 	return 0;
8095 }
8096