1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) { 217 strcpy(bp, "NONE"); 218 return; 219 } 220 221 #define DESCRIBE_FLAG(flag, desc) \ 222 do { \ 223 if (flags & (flag)) { \ 224 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 225 if (ret < 0 || ret >= size_bp) \ 226 goto out_overflow; \ 227 size_bp -= ret; \ 228 bp += ret; \ 229 flags &= ~(flag); \ 230 } \ 231 } while (0) 232 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 236 237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 240 btrfs_raid_array[i].raid_name); 241 #undef DESCRIBE_FLAG 242 243 if (flags) { 244 ret = snprintf(bp, size_bp, "0x%llx|", flags); 245 size_bp -= ret; 246 } 247 248 if (size_bp < size_buf) 249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 250 251 /* 252 * The text is trimmed, it's up to the caller to provide sufficiently 253 * large buffer 254 */ 255 out_overflow:; 256 } 257 258 static int init_first_rw_device(struct btrfs_trans_handle *trans); 259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 261 262 /* 263 * Device locking 264 * ============== 265 * 266 * There are several mutexes that protect manipulation of devices and low-level 267 * structures like chunks but not block groups, extents or files 268 * 269 * uuid_mutex (global lock) 270 * ------------------------ 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 273 * device) or requested by the device= mount option 274 * 275 * the mutex can be very coarse and can cover long-running operations 276 * 277 * protects: updates to fs_devices counters like missing devices, rw devices, 278 * seeding, structure cloning, opening/closing devices at mount/umount time 279 * 280 * global::fs_devs - add, remove, updates to the global list 281 * 282 * does not protect: manipulation of the fs_devices::devices list in general 283 * but in mount context it could be used to exclude list modifications by eg. 284 * scan ioctl 285 * 286 * btrfs_device::name - renames (write side), read is RCU 287 * 288 * fs_devices::device_list_mutex (per-fs, with RCU) 289 * ------------------------------------------------ 290 * protects updates to fs_devices::devices, ie. adding and deleting 291 * 292 * simple list traversal with read-only actions can be done with RCU protection 293 * 294 * may be used to exclude some operations from running concurrently without any 295 * modifications to the list (see write_all_supers) 296 * 297 * Is not required at mount and close times, because our device list is 298 * protected by the uuid_mutex at that point. 299 * 300 * balance_mutex 301 * ------------- 302 * protects balance structures (status, state) and context accessed from 303 * several places (internally, ioctl) 304 * 305 * chunk_mutex 306 * ----------- 307 * protects chunks, adding or removing during allocation, trim or when a new 308 * device is added/removed. Additionally it also protects post_commit_list of 309 * individual devices, since they can be added to the transaction's 310 * post_commit_list only with chunk_mutex held. 311 * 312 * cleaner_mutex 313 * ------------- 314 * a big lock that is held by the cleaner thread and prevents running subvolume 315 * cleaning together with relocation or delayed iputs 316 * 317 * 318 * Lock nesting 319 * ============ 320 * 321 * uuid_mutex 322 * device_list_mutex 323 * chunk_mutex 324 * balance_mutex 325 * 326 * 327 * Exclusive operations 328 * ==================== 329 * 330 * Maintains the exclusivity of the following operations that apply to the 331 * whole filesystem and cannot run in parallel. 332 * 333 * - Balance (*) 334 * - Device add 335 * - Device remove 336 * - Device replace (*) 337 * - Resize 338 * 339 * The device operations (as above) can be in one of the following states: 340 * 341 * - Running state 342 * - Paused state 343 * - Completed state 344 * 345 * Only device operations marked with (*) can go into the Paused state for the 346 * following reasons: 347 * 348 * - ioctl (only Balance can be Paused through ioctl) 349 * - filesystem remounted as read-only 350 * - filesystem unmounted and mounted as read-only 351 * - system power-cycle and filesystem mounted as read-only 352 * - filesystem or device errors leading to forced read-only 353 * 354 * The status of exclusive operation is set and cleared atomically. 355 * During the course of Paused state, fs_info::exclusive_operation remains set. 356 * A device operation in Paused or Running state can be canceled or resumed 357 * either by ioctl (Balance only) or when remounted as read-write. 358 * The exclusive status is cleared when the device operation is canceled or 359 * completed. 360 */ 361 362 DEFINE_MUTEX(uuid_mutex); 363 static LIST_HEAD(fs_uuids); 364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 365 { 366 return &fs_uuids; 367 } 368 369 /* 370 * Allocate new btrfs_fs_devices structure identified by a fsid. 371 * 372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 373 * fs_devices::metadata_fsid 374 * 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 376 * The returned struct is not linked onto any lists and can be destroyed with 377 * kfree() right away. 378 */ 379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 380 { 381 struct btrfs_fs_devices *fs_devs; 382 383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 384 if (!fs_devs) 385 return ERR_PTR(-ENOMEM); 386 387 mutex_init(&fs_devs->device_list_mutex); 388 389 INIT_LIST_HEAD(&fs_devs->devices); 390 INIT_LIST_HEAD(&fs_devs->alloc_list); 391 INIT_LIST_HEAD(&fs_devs->fs_list); 392 INIT_LIST_HEAD(&fs_devs->seed_list); 393 394 if (fsid) { 395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 397 } 398 399 return fs_devs; 400 } 401 402 static void btrfs_free_device(struct btrfs_device *device) 403 { 404 WARN_ON(!list_empty(&device->post_commit_list)); 405 rcu_string_free(device->name); 406 extent_io_tree_release(&device->alloc_state); 407 btrfs_destroy_dev_zone_info(device); 408 kfree(device); 409 } 410 411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 412 { 413 struct btrfs_device *device; 414 415 WARN_ON(fs_devices->opened); 416 while (!list_empty(&fs_devices->devices)) { 417 device = list_entry(fs_devices->devices.next, 418 struct btrfs_device, dev_list); 419 list_del(&device->dev_list); 420 btrfs_free_device(device); 421 } 422 kfree(fs_devices); 423 } 424 425 void __exit btrfs_cleanup_fs_uuids(void) 426 { 427 struct btrfs_fs_devices *fs_devices; 428 429 while (!list_empty(&fs_uuids)) { 430 fs_devices = list_entry(fs_uuids.next, 431 struct btrfs_fs_devices, fs_list); 432 list_del(&fs_devices->fs_list); 433 free_fs_devices(fs_devices); 434 } 435 } 436 437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 438 const u8 *fsid, const u8 *metadata_fsid) 439 { 440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 441 return false; 442 443 if (!metadata_fsid) 444 return true; 445 446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 447 return false; 448 449 return true; 450 } 451 452 static noinline struct btrfs_fs_devices *find_fsid( 453 const u8 *fsid, const u8 *metadata_fsid) 454 { 455 struct btrfs_fs_devices *fs_devices; 456 457 ASSERT(fsid); 458 459 /* Handle non-split brain cases */ 460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 462 return fs_devices; 463 } 464 return NULL; 465 } 466 467 static int 468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 469 int flush, struct file **bdev_file, 470 struct btrfs_super_block **disk_super) 471 { 472 struct block_device *bdev; 473 int ret; 474 475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 476 477 if (IS_ERR(*bdev_file)) { 478 ret = PTR_ERR(*bdev_file); 479 goto error; 480 } 481 bdev = file_bdev(*bdev_file); 482 483 if (flush) 484 sync_blockdev(bdev); 485 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE); 486 if (ret) { 487 fput(*bdev_file); 488 goto error; 489 } 490 invalidate_bdev(bdev); 491 *disk_super = btrfs_read_dev_super(bdev); 492 if (IS_ERR(*disk_super)) { 493 ret = PTR_ERR(*disk_super); 494 fput(*bdev_file); 495 goto error; 496 } 497 498 return 0; 499 500 error: 501 *bdev_file = NULL; 502 return ret; 503 } 504 505 /* 506 * Search and remove all stale devices (which are not mounted). When both 507 * inputs are NULL, it will search and release all stale devices. 508 * 509 * @devt: Optional. When provided will it release all unmounted devices 510 * matching this devt only. 511 * @skip_device: Optional. Will skip this device when searching for the stale 512 * devices. 513 * 514 * Return: 0 for success or if @devt is 0. 515 * -EBUSY if @devt is a mounted device. 516 * -ENOENT if @devt does not match any device in the list. 517 */ 518 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 519 { 520 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 521 struct btrfs_device *device, *tmp_device; 522 int ret; 523 bool freed = false; 524 525 lockdep_assert_held(&uuid_mutex); 526 527 /* Return good status if there is no instance of devt. */ 528 ret = 0; 529 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 530 531 mutex_lock(&fs_devices->device_list_mutex); 532 list_for_each_entry_safe(device, tmp_device, 533 &fs_devices->devices, dev_list) { 534 if (skip_device && skip_device == device) 535 continue; 536 if (devt && devt != device->devt) 537 continue; 538 if (fs_devices->opened) { 539 if (devt) 540 ret = -EBUSY; 541 break; 542 } 543 544 /* delete the stale device */ 545 fs_devices->num_devices--; 546 list_del(&device->dev_list); 547 btrfs_free_device(device); 548 549 freed = true; 550 } 551 mutex_unlock(&fs_devices->device_list_mutex); 552 553 if (fs_devices->num_devices == 0) { 554 btrfs_sysfs_remove_fsid(fs_devices); 555 list_del(&fs_devices->fs_list); 556 free_fs_devices(fs_devices); 557 } 558 } 559 560 /* If there is at least one freed device return 0. */ 561 if (freed) 562 return 0; 563 564 return ret; 565 } 566 567 static struct btrfs_fs_devices *find_fsid_by_device( 568 struct btrfs_super_block *disk_super, 569 dev_t devt, bool *same_fsid_diff_dev) 570 { 571 struct btrfs_fs_devices *fsid_fs_devices; 572 struct btrfs_fs_devices *devt_fs_devices; 573 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 574 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 575 bool found_by_devt = false; 576 577 /* Find the fs_device by the usual method, if found use it. */ 578 fsid_fs_devices = find_fsid(disk_super->fsid, 579 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 580 581 /* The temp_fsid feature is supported only with single device filesystem. */ 582 if (btrfs_super_num_devices(disk_super) != 1) 583 return fsid_fs_devices; 584 585 /* 586 * A seed device is an integral component of the sprout device, which 587 * functions as a multi-device filesystem. So, temp-fsid feature is 588 * not supported. 589 */ 590 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 591 return fsid_fs_devices; 592 593 /* Try to find a fs_devices by matching devt. */ 594 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 595 struct btrfs_device *device; 596 597 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 598 if (device->devt == devt) { 599 found_by_devt = true; 600 break; 601 } 602 } 603 if (found_by_devt) 604 break; 605 } 606 607 if (found_by_devt) { 608 /* Existing device. */ 609 if (fsid_fs_devices == NULL) { 610 if (devt_fs_devices->opened == 0) { 611 /* Stale device. */ 612 return NULL; 613 } else { 614 /* temp_fsid is mounting a subvol. */ 615 return devt_fs_devices; 616 } 617 } else { 618 /* Regular or temp_fsid device mounting a subvol. */ 619 return devt_fs_devices; 620 } 621 } else { 622 /* New device. */ 623 if (fsid_fs_devices == NULL) { 624 return NULL; 625 } else { 626 /* sb::fsid is already used create a new temp_fsid. */ 627 *same_fsid_diff_dev = true; 628 return NULL; 629 } 630 } 631 632 /* Not reached. */ 633 } 634 635 /* 636 * This is only used on mount, and we are protected from competing things 637 * messing with our fs_devices by the uuid_mutex, thus we do not need the 638 * fs_devices->device_list_mutex here. 639 */ 640 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 641 struct btrfs_device *device, blk_mode_t flags, 642 void *holder) 643 { 644 struct file *bdev_file; 645 struct btrfs_super_block *disk_super; 646 u64 devid; 647 int ret; 648 649 if (device->bdev) 650 return -EINVAL; 651 if (!device->name) 652 return -EINVAL; 653 654 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 655 &bdev_file, &disk_super); 656 if (ret) 657 return ret; 658 659 devid = btrfs_stack_device_id(&disk_super->dev_item); 660 if (devid != device->devid) 661 goto error_free_page; 662 663 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 664 goto error_free_page; 665 666 device->generation = btrfs_super_generation(disk_super); 667 668 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 669 if (btrfs_super_incompat_flags(disk_super) & 670 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 671 pr_err( 672 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 673 goto error_free_page; 674 } 675 676 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 677 fs_devices->seeding = true; 678 } else { 679 if (bdev_read_only(file_bdev(bdev_file))) 680 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 681 else 682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 683 } 684 685 if (!bdev_nonrot(file_bdev(bdev_file))) 686 fs_devices->rotating = true; 687 688 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 689 fs_devices->discardable = true; 690 691 device->bdev_file = bdev_file; 692 device->bdev = file_bdev(bdev_file); 693 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 694 695 fs_devices->open_devices++; 696 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 697 device->devid != BTRFS_DEV_REPLACE_DEVID) { 698 fs_devices->rw_devices++; 699 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 700 } 701 btrfs_release_disk_super(disk_super); 702 703 return 0; 704 705 error_free_page: 706 btrfs_release_disk_super(disk_super); 707 fput(bdev_file); 708 709 return -EINVAL; 710 } 711 712 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 713 { 714 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 715 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 716 717 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 718 } 719 720 /* 721 * Add new device to list of registered devices 722 * 723 * Returns: 724 * device pointer which was just added or updated when successful 725 * error pointer when failed 726 */ 727 static noinline struct btrfs_device *device_list_add(const char *path, 728 struct btrfs_super_block *disk_super, 729 bool *new_device_added) 730 { 731 struct btrfs_device *device; 732 struct btrfs_fs_devices *fs_devices = NULL; 733 struct rcu_string *name; 734 u64 found_transid = btrfs_super_generation(disk_super); 735 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 736 dev_t path_devt; 737 int error; 738 bool same_fsid_diff_dev = false; 739 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 740 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 741 742 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 743 btrfs_err(NULL, 744 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 745 path); 746 return ERR_PTR(-EAGAIN); 747 } 748 749 error = lookup_bdev(path, &path_devt); 750 if (error) { 751 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 752 path, error); 753 return ERR_PTR(error); 754 } 755 756 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 757 758 if (!fs_devices) { 759 fs_devices = alloc_fs_devices(disk_super->fsid); 760 if (IS_ERR(fs_devices)) 761 return ERR_CAST(fs_devices); 762 763 if (has_metadata_uuid) 764 memcpy(fs_devices->metadata_uuid, 765 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 766 767 if (same_fsid_diff_dev) { 768 generate_random_uuid(fs_devices->fsid); 769 fs_devices->temp_fsid = true; 770 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 771 path, MAJOR(path_devt), MINOR(path_devt), 772 fs_devices->fsid); 773 } 774 775 mutex_lock(&fs_devices->device_list_mutex); 776 list_add(&fs_devices->fs_list, &fs_uuids); 777 778 device = NULL; 779 } else { 780 struct btrfs_dev_lookup_args args = { 781 .devid = devid, 782 .uuid = disk_super->dev_item.uuid, 783 }; 784 785 mutex_lock(&fs_devices->device_list_mutex); 786 device = btrfs_find_device(fs_devices, &args); 787 788 if (found_transid > fs_devices->latest_generation) { 789 memcpy(fs_devices->fsid, disk_super->fsid, 790 BTRFS_FSID_SIZE); 791 memcpy(fs_devices->metadata_uuid, 792 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 793 } 794 } 795 796 if (!device) { 797 unsigned int nofs_flag; 798 799 if (fs_devices->opened) { 800 btrfs_err(NULL, 801 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 802 path, MAJOR(path_devt), MINOR(path_devt), 803 fs_devices->fsid, current->comm, 804 task_pid_nr(current)); 805 mutex_unlock(&fs_devices->device_list_mutex); 806 return ERR_PTR(-EBUSY); 807 } 808 809 nofs_flag = memalloc_nofs_save(); 810 device = btrfs_alloc_device(NULL, &devid, 811 disk_super->dev_item.uuid, path); 812 memalloc_nofs_restore(nofs_flag); 813 if (IS_ERR(device)) { 814 mutex_unlock(&fs_devices->device_list_mutex); 815 /* we can safely leave the fs_devices entry around */ 816 return device; 817 } 818 819 device->devt = path_devt; 820 821 list_add_rcu(&device->dev_list, &fs_devices->devices); 822 fs_devices->num_devices++; 823 824 device->fs_devices = fs_devices; 825 *new_device_added = true; 826 827 if (disk_super->label[0]) 828 pr_info( 829 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 830 disk_super->label, devid, found_transid, path, 831 MAJOR(path_devt), MINOR(path_devt), 832 current->comm, task_pid_nr(current)); 833 else 834 pr_info( 835 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 836 disk_super->fsid, devid, found_transid, path, 837 MAJOR(path_devt), MINOR(path_devt), 838 current->comm, task_pid_nr(current)); 839 840 } else if (!device->name || strcmp(device->name->str, path)) { 841 /* 842 * When FS is already mounted. 843 * 1. If you are here and if the device->name is NULL that 844 * means this device was missing at time of FS mount. 845 * 2. If you are here and if the device->name is different 846 * from 'path' that means either 847 * a. The same device disappeared and reappeared with 848 * different name. or 849 * b. The missing-disk-which-was-replaced, has 850 * reappeared now. 851 * 852 * We must allow 1 and 2a above. But 2b would be a spurious 853 * and unintentional. 854 * 855 * Further in case of 1 and 2a above, the disk at 'path' 856 * would have missed some transaction when it was away and 857 * in case of 2a the stale bdev has to be updated as well. 858 * 2b must not be allowed at all time. 859 */ 860 861 /* 862 * For now, we do allow update to btrfs_fs_device through the 863 * btrfs dev scan cli after FS has been mounted. We're still 864 * tracking a problem where systems fail mount by subvolume id 865 * when we reject replacement on a mounted FS. 866 */ 867 if (!fs_devices->opened && found_transid < device->generation) { 868 /* 869 * That is if the FS is _not_ mounted and if you 870 * are here, that means there is more than one 871 * disk with same uuid and devid.We keep the one 872 * with larger generation number or the last-in if 873 * generation are equal. 874 */ 875 mutex_unlock(&fs_devices->device_list_mutex); 876 btrfs_err(NULL, 877 "device %s already registered with a higher generation, found %llu expect %llu", 878 path, found_transid, device->generation); 879 return ERR_PTR(-EEXIST); 880 } 881 882 /* 883 * We are going to replace the device path for a given devid, 884 * make sure it's the same device if the device is mounted 885 * 886 * NOTE: the device->fs_info may not be reliable here so pass 887 * in a NULL to message helpers instead. This avoids a possible 888 * use-after-free when the fs_info and fs_info->sb are already 889 * torn down. 890 */ 891 if (device->bdev) { 892 if (device->devt != path_devt) { 893 mutex_unlock(&fs_devices->device_list_mutex); 894 btrfs_warn_in_rcu(NULL, 895 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 896 path, devid, found_transid, 897 current->comm, 898 task_pid_nr(current)); 899 return ERR_PTR(-EEXIST); 900 } 901 btrfs_info_in_rcu(NULL, 902 "devid %llu device path %s changed to %s scanned by %s (%d)", 903 devid, btrfs_dev_name(device), 904 path, current->comm, 905 task_pid_nr(current)); 906 } 907 908 name = rcu_string_strdup(path, GFP_NOFS); 909 if (!name) { 910 mutex_unlock(&fs_devices->device_list_mutex); 911 return ERR_PTR(-ENOMEM); 912 } 913 rcu_string_free(device->name); 914 rcu_assign_pointer(device->name, name); 915 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 916 fs_devices->missing_devices--; 917 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 918 } 919 device->devt = path_devt; 920 } 921 922 /* 923 * Unmount does not free the btrfs_device struct but would zero 924 * generation along with most of the other members. So just update 925 * it back. We need it to pick the disk with largest generation 926 * (as above). 927 */ 928 if (!fs_devices->opened) { 929 device->generation = found_transid; 930 fs_devices->latest_generation = max_t(u64, found_transid, 931 fs_devices->latest_generation); 932 } 933 934 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 935 936 mutex_unlock(&fs_devices->device_list_mutex); 937 return device; 938 } 939 940 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 941 { 942 struct btrfs_fs_devices *fs_devices; 943 struct btrfs_device *device; 944 struct btrfs_device *orig_dev; 945 int ret = 0; 946 947 lockdep_assert_held(&uuid_mutex); 948 949 fs_devices = alloc_fs_devices(orig->fsid); 950 if (IS_ERR(fs_devices)) 951 return fs_devices; 952 953 fs_devices->total_devices = orig->total_devices; 954 955 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 956 const char *dev_path = NULL; 957 958 /* 959 * This is ok to do without RCU read locked because we hold the 960 * uuid mutex so nothing we touch in here is going to disappear. 961 */ 962 if (orig_dev->name) 963 dev_path = orig_dev->name->str; 964 965 device = btrfs_alloc_device(NULL, &orig_dev->devid, 966 orig_dev->uuid, dev_path); 967 if (IS_ERR(device)) { 968 ret = PTR_ERR(device); 969 goto error; 970 } 971 972 if (orig_dev->zone_info) { 973 struct btrfs_zoned_device_info *zone_info; 974 975 zone_info = btrfs_clone_dev_zone_info(orig_dev); 976 if (!zone_info) { 977 btrfs_free_device(device); 978 ret = -ENOMEM; 979 goto error; 980 } 981 device->zone_info = zone_info; 982 } 983 984 list_add(&device->dev_list, &fs_devices->devices); 985 device->fs_devices = fs_devices; 986 fs_devices->num_devices++; 987 } 988 return fs_devices; 989 error: 990 free_fs_devices(fs_devices); 991 return ERR_PTR(ret); 992 } 993 994 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 995 struct btrfs_device **latest_dev) 996 { 997 struct btrfs_device *device, *next; 998 999 /* This is the initialized path, it is safe to release the devices. */ 1000 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1001 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1002 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1003 &device->dev_state) && 1004 !test_bit(BTRFS_DEV_STATE_MISSING, 1005 &device->dev_state) && 1006 (!*latest_dev || 1007 device->generation > (*latest_dev)->generation)) { 1008 *latest_dev = device; 1009 } 1010 continue; 1011 } 1012 1013 /* 1014 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1015 * in btrfs_init_dev_replace() so just continue. 1016 */ 1017 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1018 continue; 1019 1020 if (device->bdev_file) { 1021 fput(device->bdev_file); 1022 device->bdev = NULL; 1023 device->bdev_file = NULL; 1024 fs_devices->open_devices--; 1025 } 1026 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1027 list_del_init(&device->dev_alloc_list); 1028 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1029 fs_devices->rw_devices--; 1030 } 1031 list_del_init(&device->dev_list); 1032 fs_devices->num_devices--; 1033 btrfs_free_device(device); 1034 } 1035 1036 } 1037 1038 /* 1039 * After we have read the system tree and know devids belonging to this 1040 * filesystem, remove the device which does not belong there. 1041 */ 1042 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1043 { 1044 struct btrfs_device *latest_dev = NULL; 1045 struct btrfs_fs_devices *seed_dev; 1046 1047 mutex_lock(&uuid_mutex); 1048 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1049 1050 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1051 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1052 1053 fs_devices->latest_dev = latest_dev; 1054 1055 mutex_unlock(&uuid_mutex); 1056 } 1057 1058 static void btrfs_close_bdev(struct btrfs_device *device) 1059 { 1060 if (!device->bdev) 1061 return; 1062 1063 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1064 sync_blockdev(device->bdev); 1065 invalidate_bdev(device->bdev); 1066 } 1067 1068 fput(device->bdev_file); 1069 } 1070 1071 static void btrfs_close_one_device(struct btrfs_device *device) 1072 { 1073 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1074 1075 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1076 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1077 list_del_init(&device->dev_alloc_list); 1078 fs_devices->rw_devices--; 1079 } 1080 1081 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1082 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1083 1084 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1085 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1086 fs_devices->missing_devices--; 1087 } 1088 1089 btrfs_close_bdev(device); 1090 if (device->bdev) { 1091 fs_devices->open_devices--; 1092 device->bdev = NULL; 1093 } 1094 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1095 btrfs_destroy_dev_zone_info(device); 1096 1097 device->fs_info = NULL; 1098 atomic_set(&device->dev_stats_ccnt, 0); 1099 extent_io_tree_release(&device->alloc_state); 1100 1101 /* 1102 * Reset the flush error record. We might have a transient flush error 1103 * in this mount, and if so we aborted the current transaction and set 1104 * the fs to an error state, guaranteeing no super blocks can be further 1105 * committed. However that error might be transient and if we unmount the 1106 * filesystem and mount it again, we should allow the mount to succeed 1107 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1108 * filesystem again we still get flush errors, then we will again abort 1109 * any transaction and set the error state, guaranteeing no commits of 1110 * unsafe super blocks. 1111 */ 1112 device->last_flush_error = 0; 1113 1114 /* Verify the device is back in a pristine state */ 1115 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1116 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1117 WARN_ON(!list_empty(&device->dev_alloc_list)); 1118 WARN_ON(!list_empty(&device->post_commit_list)); 1119 } 1120 1121 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1122 { 1123 struct btrfs_device *device, *tmp; 1124 1125 lockdep_assert_held(&uuid_mutex); 1126 1127 if (--fs_devices->opened > 0) 1128 return; 1129 1130 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1131 btrfs_close_one_device(device); 1132 1133 WARN_ON(fs_devices->open_devices); 1134 WARN_ON(fs_devices->rw_devices); 1135 fs_devices->opened = 0; 1136 fs_devices->seeding = false; 1137 fs_devices->fs_info = NULL; 1138 } 1139 1140 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1141 { 1142 LIST_HEAD(list); 1143 struct btrfs_fs_devices *tmp; 1144 1145 mutex_lock(&uuid_mutex); 1146 close_fs_devices(fs_devices); 1147 if (!fs_devices->opened) { 1148 list_splice_init(&fs_devices->seed_list, &list); 1149 1150 /* 1151 * If the struct btrfs_fs_devices is not assembled with any 1152 * other device, it can be re-initialized during the next mount 1153 * without the needing device-scan step. Therefore, it can be 1154 * fully freed. 1155 */ 1156 if (fs_devices->num_devices == 1) { 1157 list_del(&fs_devices->fs_list); 1158 free_fs_devices(fs_devices); 1159 } 1160 } 1161 1162 1163 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1164 close_fs_devices(fs_devices); 1165 list_del(&fs_devices->seed_list); 1166 free_fs_devices(fs_devices); 1167 } 1168 mutex_unlock(&uuid_mutex); 1169 } 1170 1171 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1172 blk_mode_t flags, void *holder) 1173 { 1174 struct btrfs_device *device; 1175 struct btrfs_device *latest_dev = NULL; 1176 struct btrfs_device *tmp_device; 1177 1178 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1179 dev_list) { 1180 int ret; 1181 1182 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1183 if (ret == 0 && 1184 (!latest_dev || device->generation > latest_dev->generation)) { 1185 latest_dev = device; 1186 } else if (ret == -ENODATA) { 1187 fs_devices->num_devices--; 1188 list_del(&device->dev_list); 1189 btrfs_free_device(device); 1190 } 1191 } 1192 if (fs_devices->open_devices == 0) 1193 return -EINVAL; 1194 1195 fs_devices->opened = 1; 1196 fs_devices->latest_dev = latest_dev; 1197 fs_devices->total_rw_bytes = 0; 1198 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1199 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1200 1201 return 0; 1202 } 1203 1204 static int devid_cmp(void *priv, const struct list_head *a, 1205 const struct list_head *b) 1206 { 1207 const struct btrfs_device *dev1, *dev2; 1208 1209 dev1 = list_entry(a, struct btrfs_device, dev_list); 1210 dev2 = list_entry(b, struct btrfs_device, dev_list); 1211 1212 if (dev1->devid < dev2->devid) 1213 return -1; 1214 else if (dev1->devid > dev2->devid) 1215 return 1; 1216 return 0; 1217 } 1218 1219 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1220 blk_mode_t flags, void *holder) 1221 { 1222 int ret; 1223 1224 lockdep_assert_held(&uuid_mutex); 1225 /* 1226 * The device_list_mutex cannot be taken here in case opening the 1227 * underlying device takes further locks like open_mutex. 1228 * 1229 * We also don't need the lock here as this is called during mount and 1230 * exclusion is provided by uuid_mutex 1231 */ 1232 1233 if (fs_devices->opened) { 1234 fs_devices->opened++; 1235 ret = 0; 1236 } else { 1237 list_sort(NULL, &fs_devices->devices, devid_cmp); 1238 ret = open_fs_devices(fs_devices, flags, holder); 1239 } 1240 1241 return ret; 1242 } 1243 1244 void btrfs_release_disk_super(struct btrfs_super_block *super) 1245 { 1246 struct page *page = virt_to_page(super); 1247 1248 put_page(page); 1249 } 1250 1251 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1252 u64 bytenr, u64 bytenr_orig) 1253 { 1254 struct btrfs_super_block *disk_super; 1255 struct page *page; 1256 void *p; 1257 pgoff_t index; 1258 1259 /* make sure our super fits in the device */ 1260 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1261 return ERR_PTR(-EINVAL); 1262 1263 /* make sure our super fits in the page */ 1264 if (sizeof(*disk_super) > PAGE_SIZE) 1265 return ERR_PTR(-EINVAL); 1266 1267 /* make sure our super doesn't straddle pages on disk */ 1268 index = bytenr >> PAGE_SHIFT; 1269 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1270 return ERR_PTR(-EINVAL); 1271 1272 /* pull in the page with our super */ 1273 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1274 1275 if (IS_ERR(page)) 1276 return ERR_CAST(page); 1277 1278 p = page_address(page); 1279 1280 /* align our pointer to the offset of the super block */ 1281 disk_super = p + offset_in_page(bytenr); 1282 1283 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1284 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1285 btrfs_release_disk_super(p); 1286 return ERR_PTR(-EINVAL); 1287 } 1288 1289 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1290 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1291 1292 return disk_super; 1293 } 1294 1295 int btrfs_forget_devices(dev_t devt) 1296 { 1297 int ret; 1298 1299 mutex_lock(&uuid_mutex); 1300 ret = btrfs_free_stale_devices(devt, NULL); 1301 mutex_unlock(&uuid_mutex); 1302 1303 return ret; 1304 } 1305 1306 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1307 const char *path, dev_t devt, 1308 bool mount_arg_dev) 1309 { 1310 struct btrfs_fs_devices *fs_devices; 1311 1312 /* 1313 * Do not skip device registration for mounted devices with matching 1314 * maj:min but different paths. Booting without initrd relies on 1315 * /dev/root initially, later replaced with the actual root device. 1316 * A successful scan ensures grub2-probe selects the correct device. 1317 */ 1318 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1319 struct btrfs_device *device; 1320 1321 mutex_lock(&fs_devices->device_list_mutex); 1322 1323 if (!fs_devices->opened) { 1324 mutex_unlock(&fs_devices->device_list_mutex); 1325 continue; 1326 } 1327 1328 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1329 if (device->bdev && (device->bdev->bd_dev == devt) && 1330 strcmp(device->name->str, path) != 0) { 1331 mutex_unlock(&fs_devices->device_list_mutex); 1332 1333 /* Do not skip registration. */ 1334 return false; 1335 } 1336 } 1337 mutex_unlock(&fs_devices->device_list_mutex); 1338 } 1339 1340 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1341 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1342 return true; 1343 1344 return false; 1345 } 1346 1347 /* 1348 * Look for a btrfs signature on a device. This may be called out of the mount path 1349 * and we are not allowed to call set_blocksize during the scan. The superblock 1350 * is read via pagecache. 1351 * 1352 * With @mount_arg_dev it's a scan during mount time that will always register 1353 * the device or return an error. Multi-device and seeding devices are registered 1354 * in both cases. 1355 */ 1356 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1357 bool mount_arg_dev) 1358 { 1359 struct btrfs_super_block *disk_super; 1360 bool new_device_added = false; 1361 struct btrfs_device *device = NULL; 1362 struct file *bdev_file; 1363 u64 bytenr, bytenr_orig; 1364 dev_t devt; 1365 int ret; 1366 1367 lockdep_assert_held(&uuid_mutex); 1368 1369 /* 1370 * we would like to check all the supers, but that would make 1371 * a btrfs mount succeed after a mkfs from a different FS. 1372 * So, we need to add a special mount option to scan for 1373 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1374 */ 1375 1376 /* 1377 * Avoid an exclusive open here, as the systemd-udev may initiate the 1378 * device scan which may race with the user's mount or mkfs command, 1379 * resulting in failure. 1380 * Since the device scan is solely for reading purposes, there is no 1381 * need for an exclusive open. Additionally, the devices are read again 1382 * during the mount process. It is ok to get some inconsistent 1383 * values temporarily, as the device paths of the fsid are the only 1384 * required information for assembling the volume. 1385 */ 1386 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1387 if (IS_ERR(bdev_file)) 1388 return ERR_CAST(bdev_file); 1389 1390 bytenr_orig = btrfs_sb_offset(0); 1391 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr); 1392 if (ret) { 1393 device = ERR_PTR(ret); 1394 goto error_bdev_put; 1395 } 1396 1397 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr, 1398 bytenr_orig); 1399 if (IS_ERR(disk_super)) { 1400 device = ERR_CAST(disk_super); 1401 goto error_bdev_put; 1402 } 1403 1404 devt = file_bdev(bdev_file)->bd_dev; 1405 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1406 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1407 path, MAJOR(devt), MINOR(devt)); 1408 1409 btrfs_free_stale_devices(devt, NULL); 1410 1411 device = NULL; 1412 goto free_disk_super; 1413 } 1414 1415 device = device_list_add(path, disk_super, &new_device_added); 1416 if (!IS_ERR(device) && new_device_added) 1417 btrfs_free_stale_devices(device->devt, device); 1418 1419 free_disk_super: 1420 btrfs_release_disk_super(disk_super); 1421 1422 error_bdev_put: 1423 fput(bdev_file); 1424 1425 return device; 1426 } 1427 1428 /* 1429 * Try to find a chunk that intersects [start, start + len] range and when one 1430 * such is found, record the end of it in *start 1431 */ 1432 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1433 u64 len) 1434 { 1435 u64 physical_start, physical_end; 1436 1437 lockdep_assert_held(&device->fs_info->chunk_mutex); 1438 1439 if (find_first_extent_bit(&device->alloc_state, *start, 1440 &physical_start, &physical_end, 1441 CHUNK_ALLOCATED, NULL)) { 1442 1443 if (in_range(physical_start, *start, len) || 1444 in_range(*start, physical_start, 1445 physical_end + 1 - physical_start)) { 1446 *start = physical_end + 1; 1447 return true; 1448 } 1449 } 1450 return false; 1451 } 1452 1453 static u64 dev_extent_search_start(struct btrfs_device *device) 1454 { 1455 switch (device->fs_devices->chunk_alloc_policy) { 1456 case BTRFS_CHUNK_ALLOC_REGULAR: 1457 return BTRFS_DEVICE_RANGE_RESERVED; 1458 case BTRFS_CHUNK_ALLOC_ZONED: 1459 /* 1460 * We don't care about the starting region like regular 1461 * allocator, because we anyway use/reserve the first two zones 1462 * for superblock logging. 1463 */ 1464 return 0; 1465 default: 1466 BUG(); 1467 } 1468 } 1469 1470 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1471 u64 *hole_start, u64 *hole_size, 1472 u64 num_bytes) 1473 { 1474 u64 zone_size = device->zone_info->zone_size; 1475 u64 pos; 1476 int ret; 1477 bool changed = false; 1478 1479 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1480 1481 while (*hole_size > 0) { 1482 pos = btrfs_find_allocatable_zones(device, *hole_start, 1483 *hole_start + *hole_size, 1484 num_bytes); 1485 if (pos != *hole_start) { 1486 *hole_size = *hole_start + *hole_size - pos; 1487 *hole_start = pos; 1488 changed = true; 1489 if (*hole_size < num_bytes) 1490 break; 1491 } 1492 1493 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1494 1495 /* Range is ensured to be empty */ 1496 if (!ret) 1497 return changed; 1498 1499 /* Given hole range was invalid (outside of device) */ 1500 if (ret == -ERANGE) { 1501 *hole_start += *hole_size; 1502 *hole_size = 0; 1503 return true; 1504 } 1505 1506 *hole_start += zone_size; 1507 *hole_size -= zone_size; 1508 changed = true; 1509 } 1510 1511 return changed; 1512 } 1513 1514 /* 1515 * Check if specified hole is suitable for allocation. 1516 * 1517 * @device: the device which we have the hole 1518 * @hole_start: starting position of the hole 1519 * @hole_size: the size of the hole 1520 * @num_bytes: the size of the free space that we need 1521 * 1522 * This function may modify @hole_start and @hole_size to reflect the suitable 1523 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1524 */ 1525 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1526 u64 *hole_size, u64 num_bytes) 1527 { 1528 bool changed = false; 1529 u64 hole_end = *hole_start + *hole_size; 1530 1531 for (;;) { 1532 /* 1533 * Check before we set max_hole_start, otherwise we could end up 1534 * sending back this offset anyway. 1535 */ 1536 if (contains_pending_extent(device, hole_start, *hole_size)) { 1537 if (hole_end >= *hole_start) 1538 *hole_size = hole_end - *hole_start; 1539 else 1540 *hole_size = 0; 1541 changed = true; 1542 } 1543 1544 switch (device->fs_devices->chunk_alloc_policy) { 1545 case BTRFS_CHUNK_ALLOC_REGULAR: 1546 /* No extra check */ 1547 break; 1548 case BTRFS_CHUNK_ALLOC_ZONED: 1549 if (dev_extent_hole_check_zoned(device, hole_start, 1550 hole_size, num_bytes)) { 1551 changed = true; 1552 /* 1553 * The changed hole can contain pending extent. 1554 * Loop again to check that. 1555 */ 1556 continue; 1557 } 1558 break; 1559 default: 1560 BUG(); 1561 } 1562 1563 break; 1564 } 1565 1566 return changed; 1567 } 1568 1569 /* 1570 * Find free space in the specified device. 1571 * 1572 * @device: the device which we search the free space in 1573 * @num_bytes: the size of the free space that we need 1574 * @search_start: the position from which to begin the search 1575 * @start: store the start of the free space. 1576 * @len: the size of the free space. that we find, or the size 1577 * of the max free space if we don't find suitable free space 1578 * 1579 * This does a pretty simple search, the expectation is that it is called very 1580 * infrequently and that a given device has a small number of extents. 1581 * 1582 * @start is used to store the start of the free space if we find. But if we 1583 * don't find suitable free space, it will be used to store the start position 1584 * of the max free space. 1585 * 1586 * @len is used to store the size of the free space that we find. 1587 * But if we don't find suitable free space, it is used to store the size of 1588 * the max free space. 1589 * 1590 * NOTE: This function will search *commit* root of device tree, and does extra 1591 * check to ensure dev extents are not double allocated. 1592 * This makes the function safe to allocate dev extents but may not report 1593 * correct usable device space, as device extent freed in current transaction 1594 * is not reported as available. 1595 */ 1596 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1597 u64 *start, u64 *len) 1598 { 1599 struct btrfs_fs_info *fs_info = device->fs_info; 1600 struct btrfs_root *root = fs_info->dev_root; 1601 struct btrfs_key key; 1602 struct btrfs_dev_extent *dev_extent; 1603 struct btrfs_path *path; 1604 u64 search_start; 1605 u64 hole_size; 1606 u64 max_hole_start; 1607 u64 max_hole_size = 0; 1608 u64 extent_end; 1609 u64 search_end = device->total_bytes; 1610 int ret; 1611 int slot; 1612 struct extent_buffer *l; 1613 1614 search_start = dev_extent_search_start(device); 1615 max_hole_start = search_start; 1616 1617 WARN_ON(device->zone_info && 1618 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1619 1620 path = btrfs_alloc_path(); 1621 if (!path) { 1622 ret = -ENOMEM; 1623 goto out; 1624 } 1625 again: 1626 if (search_start >= search_end || 1627 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1628 ret = -ENOSPC; 1629 goto out; 1630 } 1631 1632 path->reada = READA_FORWARD; 1633 path->search_commit_root = 1; 1634 path->skip_locking = 1; 1635 1636 key.objectid = device->devid; 1637 key.offset = search_start; 1638 key.type = BTRFS_DEV_EXTENT_KEY; 1639 1640 ret = btrfs_search_backwards(root, &key, path); 1641 if (ret < 0) 1642 goto out; 1643 1644 while (search_start < search_end) { 1645 l = path->nodes[0]; 1646 slot = path->slots[0]; 1647 if (slot >= btrfs_header_nritems(l)) { 1648 ret = btrfs_next_leaf(root, path); 1649 if (ret == 0) 1650 continue; 1651 if (ret < 0) 1652 goto out; 1653 1654 break; 1655 } 1656 btrfs_item_key_to_cpu(l, &key, slot); 1657 1658 if (key.objectid < device->devid) 1659 goto next; 1660 1661 if (key.objectid > device->devid) 1662 break; 1663 1664 if (key.type != BTRFS_DEV_EXTENT_KEY) 1665 goto next; 1666 1667 if (key.offset > search_end) 1668 break; 1669 1670 if (key.offset > search_start) { 1671 hole_size = key.offset - search_start; 1672 dev_extent_hole_check(device, &search_start, &hole_size, 1673 num_bytes); 1674 1675 if (hole_size > max_hole_size) { 1676 max_hole_start = search_start; 1677 max_hole_size = hole_size; 1678 } 1679 1680 /* 1681 * If this free space is greater than which we need, 1682 * it must be the max free space that we have found 1683 * until now, so max_hole_start must point to the start 1684 * of this free space and the length of this free space 1685 * is stored in max_hole_size. Thus, we return 1686 * max_hole_start and max_hole_size and go back to the 1687 * caller. 1688 */ 1689 if (hole_size >= num_bytes) { 1690 ret = 0; 1691 goto out; 1692 } 1693 } 1694 1695 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1696 extent_end = key.offset + btrfs_dev_extent_length(l, 1697 dev_extent); 1698 if (extent_end > search_start) 1699 search_start = extent_end; 1700 next: 1701 path->slots[0]++; 1702 cond_resched(); 1703 } 1704 1705 /* 1706 * At this point, search_start should be the end of 1707 * allocated dev extents, and when shrinking the device, 1708 * search_end may be smaller than search_start. 1709 */ 1710 if (search_end > search_start) { 1711 hole_size = search_end - search_start; 1712 if (dev_extent_hole_check(device, &search_start, &hole_size, 1713 num_bytes)) { 1714 btrfs_release_path(path); 1715 goto again; 1716 } 1717 1718 if (hole_size > max_hole_size) { 1719 max_hole_start = search_start; 1720 max_hole_size = hole_size; 1721 } 1722 } 1723 1724 /* See above. */ 1725 if (max_hole_size < num_bytes) 1726 ret = -ENOSPC; 1727 else 1728 ret = 0; 1729 1730 ASSERT(max_hole_start + max_hole_size <= search_end); 1731 out: 1732 btrfs_free_path(path); 1733 *start = max_hole_start; 1734 if (len) 1735 *len = max_hole_size; 1736 return ret; 1737 } 1738 1739 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1740 struct btrfs_device *device, 1741 u64 start, u64 *dev_extent_len) 1742 { 1743 struct btrfs_fs_info *fs_info = device->fs_info; 1744 struct btrfs_root *root = fs_info->dev_root; 1745 int ret; 1746 struct btrfs_path *path; 1747 struct btrfs_key key; 1748 struct btrfs_key found_key; 1749 struct extent_buffer *leaf = NULL; 1750 struct btrfs_dev_extent *extent = NULL; 1751 1752 path = btrfs_alloc_path(); 1753 if (!path) 1754 return -ENOMEM; 1755 1756 key.objectid = device->devid; 1757 key.offset = start; 1758 key.type = BTRFS_DEV_EXTENT_KEY; 1759 again: 1760 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1761 if (ret > 0) { 1762 ret = btrfs_previous_item(root, path, key.objectid, 1763 BTRFS_DEV_EXTENT_KEY); 1764 if (ret) 1765 goto out; 1766 leaf = path->nodes[0]; 1767 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1768 extent = btrfs_item_ptr(leaf, path->slots[0], 1769 struct btrfs_dev_extent); 1770 BUG_ON(found_key.offset > start || found_key.offset + 1771 btrfs_dev_extent_length(leaf, extent) < start); 1772 key = found_key; 1773 btrfs_release_path(path); 1774 goto again; 1775 } else if (ret == 0) { 1776 leaf = path->nodes[0]; 1777 extent = btrfs_item_ptr(leaf, path->slots[0], 1778 struct btrfs_dev_extent); 1779 } else { 1780 goto out; 1781 } 1782 1783 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1784 1785 ret = btrfs_del_item(trans, root, path); 1786 if (ret == 0) 1787 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1788 out: 1789 btrfs_free_path(path); 1790 return ret; 1791 } 1792 1793 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1794 { 1795 struct rb_node *n; 1796 u64 ret = 0; 1797 1798 read_lock(&fs_info->mapping_tree_lock); 1799 n = rb_last(&fs_info->mapping_tree.rb_root); 1800 if (n) { 1801 struct btrfs_chunk_map *map; 1802 1803 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1804 ret = map->start + map->chunk_len; 1805 } 1806 read_unlock(&fs_info->mapping_tree_lock); 1807 1808 return ret; 1809 } 1810 1811 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1812 u64 *devid_ret) 1813 { 1814 int ret; 1815 struct btrfs_key key; 1816 struct btrfs_key found_key; 1817 struct btrfs_path *path; 1818 1819 path = btrfs_alloc_path(); 1820 if (!path) 1821 return -ENOMEM; 1822 1823 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1824 key.type = BTRFS_DEV_ITEM_KEY; 1825 key.offset = (u64)-1; 1826 1827 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1828 if (ret < 0) 1829 goto error; 1830 1831 if (ret == 0) { 1832 /* Corruption */ 1833 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1834 ret = -EUCLEAN; 1835 goto error; 1836 } 1837 1838 ret = btrfs_previous_item(fs_info->chunk_root, path, 1839 BTRFS_DEV_ITEMS_OBJECTID, 1840 BTRFS_DEV_ITEM_KEY); 1841 if (ret) { 1842 *devid_ret = 1; 1843 } else { 1844 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1845 path->slots[0]); 1846 *devid_ret = found_key.offset + 1; 1847 } 1848 ret = 0; 1849 error: 1850 btrfs_free_path(path); 1851 return ret; 1852 } 1853 1854 /* 1855 * the device information is stored in the chunk root 1856 * the btrfs_device struct should be fully filled in 1857 */ 1858 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1859 struct btrfs_device *device) 1860 { 1861 int ret; 1862 struct btrfs_path *path; 1863 struct btrfs_dev_item *dev_item; 1864 struct extent_buffer *leaf; 1865 struct btrfs_key key; 1866 unsigned long ptr; 1867 1868 path = btrfs_alloc_path(); 1869 if (!path) 1870 return -ENOMEM; 1871 1872 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1873 key.type = BTRFS_DEV_ITEM_KEY; 1874 key.offset = device->devid; 1875 1876 btrfs_reserve_chunk_metadata(trans, true); 1877 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1878 &key, sizeof(*dev_item)); 1879 btrfs_trans_release_chunk_metadata(trans); 1880 if (ret) 1881 goto out; 1882 1883 leaf = path->nodes[0]; 1884 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1885 1886 btrfs_set_device_id(leaf, dev_item, device->devid); 1887 btrfs_set_device_generation(leaf, dev_item, 0); 1888 btrfs_set_device_type(leaf, dev_item, device->type); 1889 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1890 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1891 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1892 btrfs_set_device_total_bytes(leaf, dev_item, 1893 btrfs_device_get_disk_total_bytes(device)); 1894 btrfs_set_device_bytes_used(leaf, dev_item, 1895 btrfs_device_get_bytes_used(device)); 1896 btrfs_set_device_group(leaf, dev_item, 0); 1897 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1898 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1899 btrfs_set_device_start_offset(leaf, dev_item, 0); 1900 1901 ptr = btrfs_device_uuid(dev_item); 1902 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1903 ptr = btrfs_device_fsid(dev_item); 1904 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1905 ptr, BTRFS_FSID_SIZE); 1906 btrfs_mark_buffer_dirty(trans, leaf); 1907 1908 ret = 0; 1909 out: 1910 btrfs_free_path(path); 1911 return ret; 1912 } 1913 1914 /* 1915 * Function to update ctime/mtime for a given device path. 1916 * Mainly used for ctime/mtime based probe like libblkid. 1917 * 1918 * We don't care about errors here, this is just to be kind to userspace. 1919 */ 1920 static void update_dev_time(const char *device_path) 1921 { 1922 struct path path; 1923 int ret; 1924 1925 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1926 if (ret) 1927 return; 1928 1929 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1930 path_put(&path); 1931 } 1932 1933 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1934 struct btrfs_device *device) 1935 { 1936 struct btrfs_root *root = device->fs_info->chunk_root; 1937 int ret; 1938 struct btrfs_path *path; 1939 struct btrfs_key key; 1940 1941 path = btrfs_alloc_path(); 1942 if (!path) 1943 return -ENOMEM; 1944 1945 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1946 key.type = BTRFS_DEV_ITEM_KEY; 1947 key.offset = device->devid; 1948 1949 btrfs_reserve_chunk_metadata(trans, false); 1950 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1951 btrfs_trans_release_chunk_metadata(trans); 1952 if (ret) { 1953 if (ret > 0) 1954 ret = -ENOENT; 1955 goto out; 1956 } 1957 1958 ret = btrfs_del_item(trans, root, path); 1959 out: 1960 btrfs_free_path(path); 1961 return ret; 1962 } 1963 1964 /* 1965 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1966 * filesystem. It's up to the caller to adjust that number regarding eg. device 1967 * replace. 1968 */ 1969 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1970 u64 num_devices) 1971 { 1972 u64 all_avail; 1973 unsigned seq; 1974 int i; 1975 1976 do { 1977 seq = read_seqbegin(&fs_info->profiles_lock); 1978 1979 all_avail = fs_info->avail_data_alloc_bits | 1980 fs_info->avail_system_alloc_bits | 1981 fs_info->avail_metadata_alloc_bits; 1982 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1983 1984 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1985 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1986 continue; 1987 1988 if (num_devices < btrfs_raid_array[i].devs_min) 1989 return btrfs_raid_array[i].mindev_error; 1990 } 1991 1992 return 0; 1993 } 1994 1995 static struct btrfs_device * btrfs_find_next_active_device( 1996 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1997 { 1998 struct btrfs_device *next_device; 1999 2000 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2001 if (next_device != device && 2002 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2003 && next_device->bdev) 2004 return next_device; 2005 } 2006 2007 return NULL; 2008 } 2009 2010 /* 2011 * Helper function to check if the given device is part of s_bdev / latest_dev 2012 * and replace it with the provided or the next active device, in the context 2013 * where this function called, there should be always be another device (or 2014 * this_dev) which is active. 2015 */ 2016 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2017 struct btrfs_device *next_device) 2018 { 2019 struct btrfs_fs_info *fs_info = device->fs_info; 2020 2021 if (!next_device) 2022 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2023 device); 2024 ASSERT(next_device); 2025 2026 if (fs_info->sb->s_bdev && 2027 (fs_info->sb->s_bdev == device->bdev)) 2028 fs_info->sb->s_bdev = next_device->bdev; 2029 2030 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2031 fs_info->fs_devices->latest_dev = next_device; 2032 } 2033 2034 /* 2035 * Return btrfs_fs_devices::num_devices excluding the device that's being 2036 * currently replaced. 2037 */ 2038 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2039 { 2040 u64 num_devices = fs_info->fs_devices->num_devices; 2041 2042 down_read(&fs_info->dev_replace.rwsem); 2043 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2044 ASSERT(num_devices > 1); 2045 num_devices--; 2046 } 2047 up_read(&fs_info->dev_replace.rwsem); 2048 2049 return num_devices; 2050 } 2051 2052 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2053 struct block_device *bdev, int copy_num) 2054 { 2055 struct btrfs_super_block *disk_super; 2056 const size_t len = sizeof(disk_super->magic); 2057 const u64 bytenr = btrfs_sb_offset(copy_num); 2058 int ret; 2059 2060 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2061 if (IS_ERR(disk_super)) 2062 return; 2063 2064 memset(&disk_super->magic, 0, len); 2065 folio_mark_dirty(virt_to_folio(disk_super)); 2066 btrfs_release_disk_super(disk_super); 2067 2068 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2069 if (ret) 2070 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2071 copy_num, ret); 2072 } 2073 2074 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2075 { 2076 int copy_num; 2077 struct block_device *bdev = device->bdev; 2078 2079 if (!bdev) 2080 return; 2081 2082 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2083 if (bdev_is_zoned(bdev)) 2084 btrfs_reset_sb_log_zones(bdev, copy_num); 2085 else 2086 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2087 } 2088 2089 /* Notify udev that device has changed */ 2090 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2091 2092 /* Update ctime/mtime for device path for libblkid */ 2093 update_dev_time(device->name->str); 2094 } 2095 2096 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2097 struct btrfs_dev_lookup_args *args, 2098 struct file **bdev_file) 2099 { 2100 struct btrfs_trans_handle *trans; 2101 struct btrfs_device *device; 2102 struct btrfs_fs_devices *cur_devices; 2103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2104 u64 num_devices; 2105 int ret = 0; 2106 2107 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2108 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2109 return -EINVAL; 2110 } 2111 2112 /* 2113 * The device list in fs_devices is accessed without locks (neither 2114 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2115 * filesystem and another device rm cannot run. 2116 */ 2117 num_devices = btrfs_num_devices(fs_info); 2118 2119 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2120 if (ret) 2121 return ret; 2122 2123 device = btrfs_find_device(fs_info->fs_devices, args); 2124 if (!device) { 2125 if (args->missing) 2126 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2127 else 2128 ret = -ENOENT; 2129 return ret; 2130 } 2131 2132 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2133 btrfs_warn_in_rcu(fs_info, 2134 "cannot remove device %s (devid %llu) due to active swapfile", 2135 btrfs_dev_name(device), device->devid); 2136 return -ETXTBSY; 2137 } 2138 2139 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2140 return BTRFS_ERROR_DEV_TGT_REPLACE; 2141 2142 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2143 fs_info->fs_devices->rw_devices == 1) 2144 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2145 2146 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2147 mutex_lock(&fs_info->chunk_mutex); 2148 list_del_init(&device->dev_alloc_list); 2149 device->fs_devices->rw_devices--; 2150 mutex_unlock(&fs_info->chunk_mutex); 2151 } 2152 2153 ret = btrfs_shrink_device(device, 0); 2154 if (ret) 2155 goto error_undo; 2156 2157 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2158 if (IS_ERR(trans)) { 2159 ret = PTR_ERR(trans); 2160 goto error_undo; 2161 } 2162 2163 ret = btrfs_rm_dev_item(trans, device); 2164 if (ret) { 2165 /* Any error in dev item removal is critical */ 2166 btrfs_crit(fs_info, 2167 "failed to remove device item for devid %llu: %d", 2168 device->devid, ret); 2169 btrfs_abort_transaction(trans, ret); 2170 btrfs_end_transaction(trans); 2171 return ret; 2172 } 2173 2174 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2175 btrfs_scrub_cancel_dev(device); 2176 2177 /* 2178 * the device list mutex makes sure that we don't change 2179 * the device list while someone else is writing out all 2180 * the device supers. Whoever is writing all supers, should 2181 * lock the device list mutex before getting the number of 2182 * devices in the super block (super_copy). Conversely, 2183 * whoever updates the number of devices in the super block 2184 * (super_copy) should hold the device list mutex. 2185 */ 2186 2187 /* 2188 * In normal cases the cur_devices == fs_devices. But in case 2189 * of deleting a seed device, the cur_devices should point to 2190 * its own fs_devices listed under the fs_devices->seed_list. 2191 */ 2192 cur_devices = device->fs_devices; 2193 mutex_lock(&fs_devices->device_list_mutex); 2194 list_del_rcu(&device->dev_list); 2195 2196 cur_devices->num_devices--; 2197 cur_devices->total_devices--; 2198 /* Update total_devices of the parent fs_devices if it's seed */ 2199 if (cur_devices != fs_devices) 2200 fs_devices->total_devices--; 2201 2202 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2203 cur_devices->missing_devices--; 2204 2205 btrfs_assign_next_active_device(device, NULL); 2206 2207 if (device->bdev_file) { 2208 cur_devices->open_devices--; 2209 /* remove sysfs entry */ 2210 btrfs_sysfs_remove_device(device); 2211 } 2212 2213 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2214 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2215 mutex_unlock(&fs_devices->device_list_mutex); 2216 2217 /* 2218 * At this point, the device is zero sized and detached from the 2219 * devices list. All that's left is to zero out the old supers and 2220 * free the device. 2221 * 2222 * We cannot call btrfs_close_bdev() here because we're holding the sb 2223 * write lock, and fput() on the block device will pull in the 2224 * ->open_mutex on the block device and it's dependencies. Instead 2225 * just flush the device and let the caller do the final bdev_release. 2226 */ 2227 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2228 btrfs_scratch_superblocks(fs_info, device); 2229 if (device->bdev) { 2230 sync_blockdev(device->bdev); 2231 invalidate_bdev(device->bdev); 2232 } 2233 } 2234 2235 *bdev_file = device->bdev_file; 2236 synchronize_rcu(); 2237 btrfs_free_device(device); 2238 2239 /* 2240 * This can happen if cur_devices is the private seed devices list. We 2241 * cannot call close_fs_devices() here because it expects the uuid_mutex 2242 * to be held, but in fact we don't need that for the private 2243 * seed_devices, we can simply decrement cur_devices->opened and then 2244 * remove it from our list and free the fs_devices. 2245 */ 2246 if (cur_devices->num_devices == 0) { 2247 list_del_init(&cur_devices->seed_list); 2248 ASSERT(cur_devices->opened == 1); 2249 cur_devices->opened--; 2250 free_fs_devices(cur_devices); 2251 } 2252 2253 ret = btrfs_commit_transaction(trans); 2254 2255 return ret; 2256 2257 error_undo: 2258 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2259 mutex_lock(&fs_info->chunk_mutex); 2260 list_add(&device->dev_alloc_list, 2261 &fs_devices->alloc_list); 2262 device->fs_devices->rw_devices++; 2263 mutex_unlock(&fs_info->chunk_mutex); 2264 } 2265 return ret; 2266 } 2267 2268 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2269 { 2270 struct btrfs_fs_devices *fs_devices; 2271 2272 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2273 2274 /* 2275 * in case of fs with no seed, srcdev->fs_devices will point 2276 * to fs_devices of fs_info. However when the dev being replaced is 2277 * a seed dev it will point to the seed's local fs_devices. In short 2278 * srcdev will have its correct fs_devices in both the cases. 2279 */ 2280 fs_devices = srcdev->fs_devices; 2281 2282 list_del_rcu(&srcdev->dev_list); 2283 list_del(&srcdev->dev_alloc_list); 2284 fs_devices->num_devices--; 2285 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2286 fs_devices->missing_devices--; 2287 2288 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2289 fs_devices->rw_devices--; 2290 2291 if (srcdev->bdev) 2292 fs_devices->open_devices--; 2293 } 2294 2295 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2296 { 2297 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2298 2299 mutex_lock(&uuid_mutex); 2300 2301 btrfs_close_bdev(srcdev); 2302 synchronize_rcu(); 2303 btrfs_free_device(srcdev); 2304 2305 /* if this is no devs we rather delete the fs_devices */ 2306 if (!fs_devices->num_devices) { 2307 /* 2308 * On a mounted FS, num_devices can't be zero unless it's a 2309 * seed. In case of a seed device being replaced, the replace 2310 * target added to the sprout FS, so there will be no more 2311 * device left under the seed FS. 2312 */ 2313 ASSERT(fs_devices->seeding); 2314 2315 list_del_init(&fs_devices->seed_list); 2316 close_fs_devices(fs_devices); 2317 free_fs_devices(fs_devices); 2318 } 2319 mutex_unlock(&uuid_mutex); 2320 } 2321 2322 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2323 { 2324 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2325 2326 mutex_lock(&fs_devices->device_list_mutex); 2327 2328 btrfs_sysfs_remove_device(tgtdev); 2329 2330 if (tgtdev->bdev) 2331 fs_devices->open_devices--; 2332 2333 fs_devices->num_devices--; 2334 2335 btrfs_assign_next_active_device(tgtdev, NULL); 2336 2337 list_del_rcu(&tgtdev->dev_list); 2338 2339 mutex_unlock(&fs_devices->device_list_mutex); 2340 2341 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2342 2343 btrfs_close_bdev(tgtdev); 2344 synchronize_rcu(); 2345 btrfs_free_device(tgtdev); 2346 } 2347 2348 /* 2349 * Populate args from device at path. 2350 * 2351 * @fs_info: the filesystem 2352 * @args: the args to populate 2353 * @path: the path to the device 2354 * 2355 * This will read the super block of the device at @path and populate @args with 2356 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2357 * lookup a device to operate on, but need to do it before we take any locks. 2358 * This properly handles the special case of "missing" that a user may pass in, 2359 * and does some basic sanity checks. The caller must make sure that @path is 2360 * properly NUL terminated before calling in, and must call 2361 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2362 * uuid buffers. 2363 * 2364 * Return: 0 for success, -errno for failure 2365 */ 2366 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2367 struct btrfs_dev_lookup_args *args, 2368 const char *path) 2369 { 2370 struct btrfs_super_block *disk_super; 2371 struct file *bdev_file; 2372 int ret; 2373 2374 if (!path || !path[0]) 2375 return -EINVAL; 2376 if (!strcmp(path, "missing")) { 2377 args->missing = true; 2378 return 0; 2379 } 2380 2381 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2382 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2383 if (!args->uuid || !args->fsid) { 2384 btrfs_put_dev_args_from_path(args); 2385 return -ENOMEM; 2386 } 2387 2388 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2389 &bdev_file, &disk_super); 2390 if (ret) { 2391 btrfs_put_dev_args_from_path(args); 2392 return ret; 2393 } 2394 2395 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2396 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2397 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2398 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2399 else 2400 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2401 btrfs_release_disk_super(disk_super); 2402 fput(bdev_file); 2403 return 0; 2404 } 2405 2406 /* 2407 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2408 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2409 * that don't need to be freed. 2410 */ 2411 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2412 { 2413 kfree(args->uuid); 2414 kfree(args->fsid); 2415 args->uuid = NULL; 2416 args->fsid = NULL; 2417 } 2418 2419 struct btrfs_device *btrfs_find_device_by_devspec( 2420 struct btrfs_fs_info *fs_info, u64 devid, 2421 const char *device_path) 2422 { 2423 BTRFS_DEV_LOOKUP_ARGS(args); 2424 struct btrfs_device *device; 2425 int ret; 2426 2427 if (devid) { 2428 args.devid = devid; 2429 device = btrfs_find_device(fs_info->fs_devices, &args); 2430 if (!device) 2431 return ERR_PTR(-ENOENT); 2432 return device; 2433 } 2434 2435 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2436 if (ret) 2437 return ERR_PTR(ret); 2438 device = btrfs_find_device(fs_info->fs_devices, &args); 2439 btrfs_put_dev_args_from_path(&args); 2440 if (!device) 2441 return ERR_PTR(-ENOENT); 2442 return device; 2443 } 2444 2445 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2446 { 2447 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2448 struct btrfs_fs_devices *old_devices; 2449 struct btrfs_fs_devices *seed_devices; 2450 2451 lockdep_assert_held(&uuid_mutex); 2452 if (!fs_devices->seeding) 2453 return ERR_PTR(-EINVAL); 2454 2455 /* 2456 * Private copy of the seed devices, anchored at 2457 * fs_info->fs_devices->seed_list 2458 */ 2459 seed_devices = alloc_fs_devices(NULL); 2460 if (IS_ERR(seed_devices)) 2461 return seed_devices; 2462 2463 /* 2464 * It's necessary to retain a copy of the original seed fs_devices in 2465 * fs_uuids so that filesystems which have been seeded can successfully 2466 * reference the seed device from open_seed_devices. This also supports 2467 * multiple fs seed. 2468 */ 2469 old_devices = clone_fs_devices(fs_devices); 2470 if (IS_ERR(old_devices)) { 2471 kfree(seed_devices); 2472 return old_devices; 2473 } 2474 2475 list_add(&old_devices->fs_list, &fs_uuids); 2476 2477 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2478 seed_devices->opened = 1; 2479 INIT_LIST_HEAD(&seed_devices->devices); 2480 INIT_LIST_HEAD(&seed_devices->alloc_list); 2481 mutex_init(&seed_devices->device_list_mutex); 2482 2483 return seed_devices; 2484 } 2485 2486 /* 2487 * Splice seed devices into the sprout fs_devices. 2488 * Generate a new fsid for the sprouted read-write filesystem. 2489 */ 2490 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2491 struct btrfs_fs_devices *seed_devices) 2492 { 2493 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2494 struct btrfs_super_block *disk_super = fs_info->super_copy; 2495 struct btrfs_device *device; 2496 u64 super_flags; 2497 2498 /* 2499 * We are updating the fsid, the thread leading to device_list_add() 2500 * could race, so uuid_mutex is needed. 2501 */ 2502 lockdep_assert_held(&uuid_mutex); 2503 2504 /* 2505 * The threads listed below may traverse dev_list but can do that without 2506 * device_list_mutex: 2507 * - All device ops and balance - as we are in btrfs_exclop_start. 2508 * - Various dev_list readers - are using RCU. 2509 * - btrfs_ioctl_fitrim() - is using RCU. 2510 * 2511 * For-read threads as below are using device_list_mutex: 2512 * - Readonly scrub btrfs_scrub_dev() 2513 * - Readonly scrub btrfs_scrub_progress() 2514 * - btrfs_get_dev_stats() 2515 */ 2516 lockdep_assert_held(&fs_devices->device_list_mutex); 2517 2518 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2519 synchronize_rcu); 2520 list_for_each_entry(device, &seed_devices->devices, dev_list) 2521 device->fs_devices = seed_devices; 2522 2523 fs_devices->seeding = false; 2524 fs_devices->num_devices = 0; 2525 fs_devices->open_devices = 0; 2526 fs_devices->missing_devices = 0; 2527 fs_devices->rotating = false; 2528 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2529 2530 generate_random_uuid(fs_devices->fsid); 2531 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2532 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2533 2534 super_flags = btrfs_super_flags(disk_super) & 2535 ~BTRFS_SUPER_FLAG_SEEDING; 2536 btrfs_set_super_flags(disk_super, super_flags); 2537 } 2538 2539 /* 2540 * Store the expected generation for seed devices in device items. 2541 */ 2542 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2543 { 2544 BTRFS_DEV_LOOKUP_ARGS(args); 2545 struct btrfs_fs_info *fs_info = trans->fs_info; 2546 struct btrfs_root *root = fs_info->chunk_root; 2547 struct btrfs_path *path; 2548 struct extent_buffer *leaf; 2549 struct btrfs_dev_item *dev_item; 2550 struct btrfs_device *device; 2551 struct btrfs_key key; 2552 u8 fs_uuid[BTRFS_FSID_SIZE]; 2553 u8 dev_uuid[BTRFS_UUID_SIZE]; 2554 int ret; 2555 2556 path = btrfs_alloc_path(); 2557 if (!path) 2558 return -ENOMEM; 2559 2560 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2561 key.offset = 0; 2562 key.type = BTRFS_DEV_ITEM_KEY; 2563 2564 while (1) { 2565 btrfs_reserve_chunk_metadata(trans, false); 2566 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2567 btrfs_trans_release_chunk_metadata(trans); 2568 if (ret < 0) 2569 goto error; 2570 2571 leaf = path->nodes[0]; 2572 next_slot: 2573 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2574 ret = btrfs_next_leaf(root, path); 2575 if (ret > 0) 2576 break; 2577 if (ret < 0) 2578 goto error; 2579 leaf = path->nodes[0]; 2580 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2581 btrfs_release_path(path); 2582 continue; 2583 } 2584 2585 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2586 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2587 key.type != BTRFS_DEV_ITEM_KEY) 2588 break; 2589 2590 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2591 struct btrfs_dev_item); 2592 args.devid = btrfs_device_id(leaf, dev_item); 2593 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2594 BTRFS_UUID_SIZE); 2595 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2596 BTRFS_FSID_SIZE); 2597 args.uuid = dev_uuid; 2598 args.fsid = fs_uuid; 2599 device = btrfs_find_device(fs_info->fs_devices, &args); 2600 BUG_ON(!device); /* Logic error */ 2601 2602 if (device->fs_devices->seeding) { 2603 btrfs_set_device_generation(leaf, dev_item, 2604 device->generation); 2605 btrfs_mark_buffer_dirty(trans, leaf); 2606 } 2607 2608 path->slots[0]++; 2609 goto next_slot; 2610 } 2611 ret = 0; 2612 error: 2613 btrfs_free_path(path); 2614 return ret; 2615 } 2616 2617 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2618 { 2619 struct btrfs_root *root = fs_info->dev_root; 2620 struct btrfs_trans_handle *trans; 2621 struct btrfs_device *device; 2622 struct file *bdev_file; 2623 struct super_block *sb = fs_info->sb; 2624 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2625 struct btrfs_fs_devices *seed_devices = NULL; 2626 u64 orig_super_total_bytes; 2627 u64 orig_super_num_devices; 2628 int ret = 0; 2629 bool seeding_dev = false; 2630 bool locked = false; 2631 2632 if (sb_rdonly(sb) && !fs_devices->seeding) 2633 return -EROFS; 2634 2635 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2636 fs_info->bdev_holder, NULL); 2637 if (IS_ERR(bdev_file)) 2638 return PTR_ERR(bdev_file); 2639 2640 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2641 ret = -EINVAL; 2642 goto error; 2643 } 2644 2645 if (fs_devices->seeding) { 2646 seeding_dev = true; 2647 down_write(&sb->s_umount); 2648 mutex_lock(&uuid_mutex); 2649 locked = true; 2650 } 2651 2652 sync_blockdev(file_bdev(bdev_file)); 2653 2654 rcu_read_lock(); 2655 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2656 if (device->bdev == file_bdev(bdev_file)) { 2657 ret = -EEXIST; 2658 rcu_read_unlock(); 2659 goto error; 2660 } 2661 } 2662 rcu_read_unlock(); 2663 2664 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2665 if (IS_ERR(device)) { 2666 /* we can safely leave the fs_devices entry around */ 2667 ret = PTR_ERR(device); 2668 goto error; 2669 } 2670 2671 device->fs_info = fs_info; 2672 device->bdev_file = bdev_file; 2673 device->bdev = file_bdev(bdev_file); 2674 ret = lookup_bdev(device_path, &device->devt); 2675 if (ret) 2676 goto error_free_device; 2677 2678 ret = btrfs_get_dev_zone_info(device, false); 2679 if (ret) 2680 goto error_free_device; 2681 2682 trans = btrfs_start_transaction(root, 0); 2683 if (IS_ERR(trans)) { 2684 ret = PTR_ERR(trans); 2685 goto error_free_zone; 2686 } 2687 2688 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2689 device->generation = trans->transid; 2690 device->io_width = fs_info->sectorsize; 2691 device->io_align = fs_info->sectorsize; 2692 device->sector_size = fs_info->sectorsize; 2693 device->total_bytes = 2694 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2695 device->disk_total_bytes = device->total_bytes; 2696 device->commit_total_bytes = device->total_bytes; 2697 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2698 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2699 device->dev_stats_valid = 1; 2700 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2701 2702 if (seeding_dev) { 2703 btrfs_clear_sb_rdonly(sb); 2704 2705 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2706 seed_devices = btrfs_init_sprout(fs_info); 2707 if (IS_ERR(seed_devices)) { 2708 ret = PTR_ERR(seed_devices); 2709 btrfs_abort_transaction(trans, ret); 2710 goto error_trans; 2711 } 2712 } 2713 2714 mutex_lock(&fs_devices->device_list_mutex); 2715 if (seeding_dev) { 2716 btrfs_setup_sprout(fs_info, seed_devices); 2717 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2718 device); 2719 } 2720 2721 device->fs_devices = fs_devices; 2722 2723 mutex_lock(&fs_info->chunk_mutex); 2724 list_add_rcu(&device->dev_list, &fs_devices->devices); 2725 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2726 fs_devices->num_devices++; 2727 fs_devices->open_devices++; 2728 fs_devices->rw_devices++; 2729 fs_devices->total_devices++; 2730 fs_devices->total_rw_bytes += device->total_bytes; 2731 2732 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2733 2734 if (!bdev_nonrot(device->bdev)) 2735 fs_devices->rotating = true; 2736 2737 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2738 btrfs_set_super_total_bytes(fs_info->super_copy, 2739 round_down(orig_super_total_bytes + device->total_bytes, 2740 fs_info->sectorsize)); 2741 2742 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2743 btrfs_set_super_num_devices(fs_info->super_copy, 2744 orig_super_num_devices + 1); 2745 2746 /* 2747 * we've got more storage, clear any full flags on the space 2748 * infos 2749 */ 2750 btrfs_clear_space_info_full(fs_info); 2751 2752 mutex_unlock(&fs_info->chunk_mutex); 2753 2754 /* Add sysfs device entry */ 2755 btrfs_sysfs_add_device(device); 2756 2757 mutex_unlock(&fs_devices->device_list_mutex); 2758 2759 if (seeding_dev) { 2760 mutex_lock(&fs_info->chunk_mutex); 2761 ret = init_first_rw_device(trans); 2762 mutex_unlock(&fs_info->chunk_mutex); 2763 if (ret) { 2764 btrfs_abort_transaction(trans, ret); 2765 goto error_sysfs; 2766 } 2767 } 2768 2769 ret = btrfs_add_dev_item(trans, device); 2770 if (ret) { 2771 btrfs_abort_transaction(trans, ret); 2772 goto error_sysfs; 2773 } 2774 2775 if (seeding_dev) { 2776 ret = btrfs_finish_sprout(trans); 2777 if (ret) { 2778 btrfs_abort_transaction(trans, ret); 2779 goto error_sysfs; 2780 } 2781 2782 /* 2783 * fs_devices now represents the newly sprouted filesystem and 2784 * its fsid has been changed by btrfs_sprout_splice(). 2785 */ 2786 btrfs_sysfs_update_sprout_fsid(fs_devices); 2787 } 2788 2789 ret = btrfs_commit_transaction(trans); 2790 2791 if (seeding_dev) { 2792 mutex_unlock(&uuid_mutex); 2793 up_write(&sb->s_umount); 2794 locked = false; 2795 2796 if (ret) /* transaction commit */ 2797 return ret; 2798 2799 ret = btrfs_relocate_sys_chunks(fs_info); 2800 if (ret < 0) 2801 btrfs_handle_fs_error(fs_info, ret, 2802 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2803 trans = btrfs_attach_transaction(root); 2804 if (IS_ERR(trans)) { 2805 if (PTR_ERR(trans) == -ENOENT) 2806 return 0; 2807 ret = PTR_ERR(trans); 2808 trans = NULL; 2809 goto error_sysfs; 2810 } 2811 ret = btrfs_commit_transaction(trans); 2812 } 2813 2814 /* 2815 * Now that we have written a new super block to this device, check all 2816 * other fs_devices list if device_path alienates any other scanned 2817 * device. 2818 * We can ignore the return value as it typically returns -EINVAL and 2819 * only succeeds if the device was an alien. 2820 */ 2821 btrfs_forget_devices(device->devt); 2822 2823 /* Update ctime/mtime for blkid or udev */ 2824 update_dev_time(device_path); 2825 2826 return ret; 2827 2828 error_sysfs: 2829 btrfs_sysfs_remove_device(device); 2830 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2831 mutex_lock(&fs_info->chunk_mutex); 2832 list_del_rcu(&device->dev_list); 2833 list_del(&device->dev_alloc_list); 2834 fs_info->fs_devices->num_devices--; 2835 fs_info->fs_devices->open_devices--; 2836 fs_info->fs_devices->rw_devices--; 2837 fs_info->fs_devices->total_devices--; 2838 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2839 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2840 btrfs_set_super_total_bytes(fs_info->super_copy, 2841 orig_super_total_bytes); 2842 btrfs_set_super_num_devices(fs_info->super_copy, 2843 orig_super_num_devices); 2844 mutex_unlock(&fs_info->chunk_mutex); 2845 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2846 error_trans: 2847 if (seeding_dev) 2848 btrfs_set_sb_rdonly(sb); 2849 if (trans) 2850 btrfs_end_transaction(trans); 2851 error_free_zone: 2852 btrfs_destroy_dev_zone_info(device); 2853 error_free_device: 2854 btrfs_free_device(device); 2855 error: 2856 fput(bdev_file); 2857 if (locked) { 2858 mutex_unlock(&uuid_mutex); 2859 up_write(&sb->s_umount); 2860 } 2861 return ret; 2862 } 2863 2864 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2865 struct btrfs_device *device) 2866 { 2867 int ret; 2868 struct btrfs_path *path; 2869 struct btrfs_root *root = device->fs_info->chunk_root; 2870 struct btrfs_dev_item *dev_item; 2871 struct extent_buffer *leaf; 2872 struct btrfs_key key; 2873 2874 path = btrfs_alloc_path(); 2875 if (!path) 2876 return -ENOMEM; 2877 2878 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2879 key.type = BTRFS_DEV_ITEM_KEY; 2880 key.offset = device->devid; 2881 2882 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2883 if (ret < 0) 2884 goto out; 2885 2886 if (ret > 0) { 2887 ret = -ENOENT; 2888 goto out; 2889 } 2890 2891 leaf = path->nodes[0]; 2892 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2893 2894 btrfs_set_device_id(leaf, dev_item, device->devid); 2895 btrfs_set_device_type(leaf, dev_item, device->type); 2896 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2897 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2898 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2899 btrfs_set_device_total_bytes(leaf, dev_item, 2900 btrfs_device_get_disk_total_bytes(device)); 2901 btrfs_set_device_bytes_used(leaf, dev_item, 2902 btrfs_device_get_bytes_used(device)); 2903 btrfs_mark_buffer_dirty(trans, leaf); 2904 2905 out: 2906 btrfs_free_path(path); 2907 return ret; 2908 } 2909 2910 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2911 struct btrfs_device *device, u64 new_size) 2912 { 2913 struct btrfs_fs_info *fs_info = device->fs_info; 2914 struct btrfs_super_block *super_copy = fs_info->super_copy; 2915 u64 old_total; 2916 u64 diff; 2917 int ret; 2918 2919 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2920 return -EACCES; 2921 2922 new_size = round_down(new_size, fs_info->sectorsize); 2923 2924 mutex_lock(&fs_info->chunk_mutex); 2925 old_total = btrfs_super_total_bytes(super_copy); 2926 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2927 2928 if (new_size <= device->total_bytes || 2929 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2930 mutex_unlock(&fs_info->chunk_mutex); 2931 return -EINVAL; 2932 } 2933 2934 btrfs_set_super_total_bytes(super_copy, 2935 round_down(old_total + diff, fs_info->sectorsize)); 2936 device->fs_devices->total_rw_bytes += diff; 2937 atomic64_add(diff, &fs_info->free_chunk_space); 2938 2939 btrfs_device_set_total_bytes(device, new_size); 2940 btrfs_device_set_disk_total_bytes(device, new_size); 2941 btrfs_clear_space_info_full(device->fs_info); 2942 if (list_empty(&device->post_commit_list)) 2943 list_add_tail(&device->post_commit_list, 2944 &trans->transaction->dev_update_list); 2945 mutex_unlock(&fs_info->chunk_mutex); 2946 2947 btrfs_reserve_chunk_metadata(trans, false); 2948 ret = btrfs_update_device(trans, device); 2949 btrfs_trans_release_chunk_metadata(trans); 2950 2951 return ret; 2952 } 2953 2954 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2955 { 2956 struct btrfs_fs_info *fs_info = trans->fs_info; 2957 struct btrfs_root *root = fs_info->chunk_root; 2958 int ret; 2959 struct btrfs_path *path; 2960 struct btrfs_key key; 2961 2962 path = btrfs_alloc_path(); 2963 if (!path) 2964 return -ENOMEM; 2965 2966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2967 key.offset = chunk_offset; 2968 key.type = BTRFS_CHUNK_ITEM_KEY; 2969 2970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2971 if (ret < 0) 2972 goto out; 2973 else if (ret > 0) { /* Logic error or corruption */ 2974 btrfs_handle_fs_error(fs_info, -ENOENT, 2975 "Failed lookup while freeing chunk."); 2976 ret = -ENOENT; 2977 goto out; 2978 } 2979 2980 ret = btrfs_del_item(trans, root, path); 2981 if (ret < 0) 2982 btrfs_handle_fs_error(fs_info, ret, 2983 "Failed to delete chunk item."); 2984 out: 2985 btrfs_free_path(path); 2986 return ret; 2987 } 2988 2989 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2990 { 2991 struct btrfs_super_block *super_copy = fs_info->super_copy; 2992 struct btrfs_disk_key *disk_key; 2993 struct btrfs_chunk *chunk; 2994 u8 *ptr; 2995 int ret = 0; 2996 u32 num_stripes; 2997 u32 array_size; 2998 u32 len = 0; 2999 u32 cur; 3000 struct btrfs_key key; 3001 3002 lockdep_assert_held(&fs_info->chunk_mutex); 3003 array_size = btrfs_super_sys_array_size(super_copy); 3004 3005 ptr = super_copy->sys_chunk_array; 3006 cur = 0; 3007 3008 while (cur < array_size) { 3009 disk_key = (struct btrfs_disk_key *)ptr; 3010 btrfs_disk_key_to_cpu(&key, disk_key); 3011 3012 len = sizeof(*disk_key); 3013 3014 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3015 chunk = (struct btrfs_chunk *)(ptr + len); 3016 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3017 len += btrfs_chunk_item_size(num_stripes); 3018 } else { 3019 ret = -EIO; 3020 break; 3021 } 3022 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3023 key.offset == chunk_offset) { 3024 memmove(ptr, ptr + len, array_size - (cur + len)); 3025 array_size -= len; 3026 btrfs_set_super_sys_array_size(super_copy, array_size); 3027 } else { 3028 ptr += len; 3029 cur += len; 3030 } 3031 } 3032 return ret; 3033 } 3034 3035 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3036 u64 logical, u64 length) 3037 { 3038 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3039 struct rb_node *prev = NULL; 3040 struct rb_node *orig_prev; 3041 struct btrfs_chunk_map *map; 3042 struct btrfs_chunk_map *prev_map = NULL; 3043 3044 while (node) { 3045 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3046 prev = node; 3047 prev_map = map; 3048 3049 if (logical < map->start) { 3050 node = node->rb_left; 3051 } else if (logical >= map->start + map->chunk_len) { 3052 node = node->rb_right; 3053 } else { 3054 refcount_inc(&map->refs); 3055 return map; 3056 } 3057 } 3058 3059 if (!prev) 3060 return NULL; 3061 3062 orig_prev = prev; 3063 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3064 prev = rb_next(prev); 3065 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3066 } 3067 3068 if (!prev) { 3069 prev = orig_prev; 3070 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3071 while (prev && logical < prev_map->start) { 3072 prev = rb_prev(prev); 3073 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3074 } 3075 } 3076 3077 if (prev) { 3078 u64 end = logical + length; 3079 3080 /* 3081 * Caller can pass a U64_MAX length when it wants to get any 3082 * chunk starting at an offset of 'logical' or higher, so deal 3083 * with underflow by resetting the end offset to U64_MAX. 3084 */ 3085 if (end < logical) 3086 end = U64_MAX; 3087 3088 if (end > prev_map->start && 3089 logical < prev_map->start + prev_map->chunk_len) { 3090 refcount_inc(&prev_map->refs); 3091 return prev_map; 3092 } 3093 } 3094 3095 return NULL; 3096 } 3097 3098 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3099 u64 logical, u64 length) 3100 { 3101 struct btrfs_chunk_map *map; 3102 3103 read_lock(&fs_info->mapping_tree_lock); 3104 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3105 read_unlock(&fs_info->mapping_tree_lock); 3106 3107 return map; 3108 } 3109 3110 /* 3111 * Find the mapping containing the given logical extent. 3112 * 3113 * @logical: Logical block offset in bytes. 3114 * @length: Length of extent in bytes. 3115 * 3116 * Return: Chunk mapping or ERR_PTR. 3117 */ 3118 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3119 u64 logical, u64 length) 3120 { 3121 struct btrfs_chunk_map *map; 3122 3123 map = btrfs_find_chunk_map(fs_info, logical, length); 3124 3125 if (unlikely(!map)) { 3126 btrfs_crit(fs_info, 3127 "unable to find chunk map for logical %llu length %llu", 3128 logical, length); 3129 return ERR_PTR(-EINVAL); 3130 } 3131 3132 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3133 btrfs_crit(fs_info, 3134 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3135 logical, logical + length, map->start, 3136 map->start + map->chunk_len); 3137 btrfs_free_chunk_map(map); 3138 return ERR_PTR(-EINVAL); 3139 } 3140 3141 /* Callers are responsible for dropping the reference. */ 3142 return map; 3143 } 3144 3145 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3146 struct btrfs_chunk_map *map, u64 chunk_offset) 3147 { 3148 int i; 3149 3150 /* 3151 * Removing chunk items and updating the device items in the chunks btree 3152 * requires holding the chunk_mutex. 3153 * See the comment at btrfs_chunk_alloc() for the details. 3154 */ 3155 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3156 3157 for (i = 0; i < map->num_stripes; i++) { 3158 int ret; 3159 3160 ret = btrfs_update_device(trans, map->stripes[i].dev); 3161 if (ret) 3162 return ret; 3163 } 3164 3165 return btrfs_free_chunk(trans, chunk_offset); 3166 } 3167 3168 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3169 { 3170 struct btrfs_fs_info *fs_info = trans->fs_info; 3171 struct btrfs_chunk_map *map; 3172 u64 dev_extent_len = 0; 3173 int i, ret = 0; 3174 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3175 3176 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3177 if (IS_ERR(map)) { 3178 /* 3179 * This is a logic error, but we don't want to just rely on the 3180 * user having built with ASSERT enabled, so if ASSERT doesn't 3181 * do anything we still error out. 3182 */ 3183 ASSERT(0); 3184 return PTR_ERR(map); 3185 } 3186 3187 /* 3188 * First delete the device extent items from the devices btree. 3189 * We take the device_list_mutex to avoid racing with the finishing phase 3190 * of a device replace operation. See the comment below before acquiring 3191 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3192 * because that can result in a deadlock when deleting the device extent 3193 * items from the devices btree - COWing an extent buffer from the btree 3194 * may result in allocating a new metadata chunk, which would attempt to 3195 * lock again fs_info->chunk_mutex. 3196 */ 3197 mutex_lock(&fs_devices->device_list_mutex); 3198 for (i = 0; i < map->num_stripes; i++) { 3199 struct btrfs_device *device = map->stripes[i].dev; 3200 ret = btrfs_free_dev_extent(trans, device, 3201 map->stripes[i].physical, 3202 &dev_extent_len); 3203 if (ret) { 3204 mutex_unlock(&fs_devices->device_list_mutex); 3205 btrfs_abort_transaction(trans, ret); 3206 goto out; 3207 } 3208 3209 if (device->bytes_used > 0) { 3210 mutex_lock(&fs_info->chunk_mutex); 3211 btrfs_device_set_bytes_used(device, 3212 device->bytes_used - dev_extent_len); 3213 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3214 btrfs_clear_space_info_full(fs_info); 3215 mutex_unlock(&fs_info->chunk_mutex); 3216 } 3217 } 3218 mutex_unlock(&fs_devices->device_list_mutex); 3219 3220 /* 3221 * We acquire fs_info->chunk_mutex for 2 reasons: 3222 * 3223 * 1) Just like with the first phase of the chunk allocation, we must 3224 * reserve system space, do all chunk btree updates and deletions, and 3225 * update the system chunk array in the superblock while holding this 3226 * mutex. This is for similar reasons as explained on the comment at 3227 * the top of btrfs_chunk_alloc(); 3228 * 3229 * 2) Prevent races with the final phase of a device replace operation 3230 * that replaces the device object associated with the map's stripes, 3231 * because the device object's id can change at any time during that 3232 * final phase of the device replace operation 3233 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3234 * replaced device and then see it with an ID of 3235 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3236 * the device item, which does not exists on the chunk btree. 3237 * The finishing phase of device replace acquires both the 3238 * device_list_mutex and the chunk_mutex, in that order, so we are 3239 * safe by just acquiring the chunk_mutex. 3240 */ 3241 trans->removing_chunk = true; 3242 mutex_lock(&fs_info->chunk_mutex); 3243 3244 check_system_chunk(trans, map->type); 3245 3246 ret = remove_chunk_item(trans, map, chunk_offset); 3247 /* 3248 * Normally we should not get -ENOSPC since we reserved space before 3249 * through the call to check_system_chunk(). 3250 * 3251 * Despite our system space_info having enough free space, we may not 3252 * be able to allocate extents from its block groups, because all have 3253 * an incompatible profile, which will force us to allocate a new system 3254 * block group with the right profile, or right after we called 3255 * check_system_space() above, a scrub turned the only system block group 3256 * with enough free space into RO mode. 3257 * This is explained with more detail at do_chunk_alloc(). 3258 * 3259 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3260 */ 3261 if (ret == -ENOSPC) { 3262 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3263 struct btrfs_block_group *sys_bg; 3264 3265 sys_bg = btrfs_create_chunk(trans, sys_flags); 3266 if (IS_ERR(sys_bg)) { 3267 ret = PTR_ERR(sys_bg); 3268 btrfs_abort_transaction(trans, ret); 3269 goto out; 3270 } 3271 3272 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3273 if (ret) { 3274 btrfs_abort_transaction(trans, ret); 3275 goto out; 3276 } 3277 3278 ret = remove_chunk_item(trans, map, chunk_offset); 3279 if (ret) { 3280 btrfs_abort_transaction(trans, ret); 3281 goto out; 3282 } 3283 } else if (ret) { 3284 btrfs_abort_transaction(trans, ret); 3285 goto out; 3286 } 3287 3288 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3289 3290 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3291 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3292 if (ret) { 3293 btrfs_abort_transaction(trans, ret); 3294 goto out; 3295 } 3296 } 3297 3298 mutex_unlock(&fs_info->chunk_mutex); 3299 trans->removing_chunk = false; 3300 3301 /* 3302 * We are done with chunk btree updates and deletions, so release the 3303 * system space we previously reserved (with check_system_chunk()). 3304 */ 3305 btrfs_trans_release_chunk_metadata(trans); 3306 3307 ret = btrfs_remove_block_group(trans, map); 3308 if (ret) { 3309 btrfs_abort_transaction(trans, ret); 3310 goto out; 3311 } 3312 3313 out: 3314 if (trans->removing_chunk) { 3315 mutex_unlock(&fs_info->chunk_mutex); 3316 trans->removing_chunk = false; 3317 } 3318 /* once for us */ 3319 btrfs_free_chunk_map(map); 3320 return ret; 3321 } 3322 3323 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3324 { 3325 struct btrfs_root *root = fs_info->chunk_root; 3326 struct btrfs_trans_handle *trans; 3327 struct btrfs_block_group *block_group; 3328 u64 length; 3329 int ret; 3330 3331 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3332 btrfs_err(fs_info, 3333 "relocate: not supported on extent tree v2 yet"); 3334 return -EINVAL; 3335 } 3336 3337 /* 3338 * Prevent races with automatic removal of unused block groups. 3339 * After we relocate and before we remove the chunk with offset 3340 * chunk_offset, automatic removal of the block group can kick in, 3341 * resulting in a failure when calling btrfs_remove_chunk() below. 3342 * 3343 * Make sure to acquire this mutex before doing a tree search (dev 3344 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3345 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3346 * we release the path used to search the chunk/dev tree and before 3347 * the current task acquires this mutex and calls us. 3348 */ 3349 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3350 3351 /* step one, relocate all the extents inside this chunk */ 3352 btrfs_scrub_pause(fs_info); 3353 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3354 btrfs_scrub_continue(fs_info); 3355 if (ret) { 3356 /* 3357 * If we had a transaction abort, stop all running scrubs. 3358 * See transaction.c:cleanup_transaction() why we do it here. 3359 */ 3360 if (BTRFS_FS_ERROR(fs_info)) 3361 btrfs_scrub_cancel(fs_info); 3362 return ret; 3363 } 3364 3365 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3366 if (!block_group) 3367 return -ENOENT; 3368 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3369 length = block_group->length; 3370 btrfs_put_block_group(block_group); 3371 3372 /* 3373 * On a zoned file system, discard the whole block group, this will 3374 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3375 * resetting the zone fails, don't treat it as a fatal problem from the 3376 * filesystem's point of view. 3377 */ 3378 if (btrfs_is_zoned(fs_info)) { 3379 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3380 if (ret) 3381 btrfs_info(fs_info, 3382 "failed to reset zone %llu after relocation", 3383 chunk_offset); 3384 } 3385 3386 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3387 chunk_offset); 3388 if (IS_ERR(trans)) { 3389 ret = PTR_ERR(trans); 3390 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3391 return ret; 3392 } 3393 3394 /* 3395 * step two, delete the device extents and the 3396 * chunk tree entries 3397 */ 3398 ret = btrfs_remove_chunk(trans, chunk_offset); 3399 btrfs_end_transaction(trans); 3400 return ret; 3401 } 3402 3403 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3404 { 3405 struct btrfs_root *chunk_root = fs_info->chunk_root; 3406 struct btrfs_path *path; 3407 struct extent_buffer *leaf; 3408 struct btrfs_chunk *chunk; 3409 struct btrfs_key key; 3410 struct btrfs_key found_key; 3411 u64 chunk_type; 3412 bool retried = false; 3413 int failed = 0; 3414 int ret; 3415 3416 path = btrfs_alloc_path(); 3417 if (!path) 3418 return -ENOMEM; 3419 3420 again: 3421 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3422 key.offset = (u64)-1; 3423 key.type = BTRFS_CHUNK_ITEM_KEY; 3424 3425 while (1) { 3426 mutex_lock(&fs_info->reclaim_bgs_lock); 3427 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3428 if (ret < 0) { 3429 mutex_unlock(&fs_info->reclaim_bgs_lock); 3430 goto error; 3431 } 3432 if (ret == 0) { 3433 /* 3434 * On the first search we would find chunk tree with 3435 * offset -1, which is not possible. On subsequent 3436 * loops this would find an existing item on an invalid 3437 * offset (one less than the previous one, wrong 3438 * alignment and size). 3439 */ 3440 ret = -EUCLEAN; 3441 goto error; 3442 } 3443 3444 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3445 key.type); 3446 if (ret) 3447 mutex_unlock(&fs_info->reclaim_bgs_lock); 3448 if (ret < 0) 3449 goto error; 3450 if (ret > 0) 3451 break; 3452 3453 leaf = path->nodes[0]; 3454 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3455 3456 chunk = btrfs_item_ptr(leaf, path->slots[0], 3457 struct btrfs_chunk); 3458 chunk_type = btrfs_chunk_type(leaf, chunk); 3459 btrfs_release_path(path); 3460 3461 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3462 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3463 if (ret == -ENOSPC) 3464 failed++; 3465 else 3466 BUG_ON(ret); 3467 } 3468 mutex_unlock(&fs_info->reclaim_bgs_lock); 3469 3470 if (found_key.offset == 0) 3471 break; 3472 key.offset = found_key.offset - 1; 3473 } 3474 ret = 0; 3475 if (failed && !retried) { 3476 failed = 0; 3477 retried = true; 3478 goto again; 3479 } else if (WARN_ON(failed && retried)) { 3480 ret = -ENOSPC; 3481 } 3482 error: 3483 btrfs_free_path(path); 3484 return ret; 3485 } 3486 3487 /* 3488 * return 1 : allocate a data chunk successfully, 3489 * return <0: errors during allocating a data chunk, 3490 * return 0 : no need to allocate a data chunk. 3491 */ 3492 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3493 u64 chunk_offset) 3494 { 3495 struct btrfs_block_group *cache; 3496 u64 bytes_used; 3497 u64 chunk_type; 3498 3499 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3500 ASSERT(cache); 3501 chunk_type = cache->flags; 3502 btrfs_put_block_group(cache); 3503 3504 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3505 return 0; 3506 3507 spin_lock(&fs_info->data_sinfo->lock); 3508 bytes_used = fs_info->data_sinfo->bytes_used; 3509 spin_unlock(&fs_info->data_sinfo->lock); 3510 3511 if (!bytes_used) { 3512 struct btrfs_trans_handle *trans; 3513 int ret; 3514 3515 trans = btrfs_join_transaction(fs_info->tree_root); 3516 if (IS_ERR(trans)) 3517 return PTR_ERR(trans); 3518 3519 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3520 btrfs_end_transaction(trans); 3521 if (ret < 0) 3522 return ret; 3523 return 1; 3524 } 3525 3526 return 0; 3527 } 3528 3529 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3530 const struct btrfs_disk_balance_args *disk) 3531 { 3532 memset(cpu, 0, sizeof(*cpu)); 3533 3534 cpu->profiles = le64_to_cpu(disk->profiles); 3535 cpu->usage = le64_to_cpu(disk->usage); 3536 cpu->devid = le64_to_cpu(disk->devid); 3537 cpu->pstart = le64_to_cpu(disk->pstart); 3538 cpu->pend = le64_to_cpu(disk->pend); 3539 cpu->vstart = le64_to_cpu(disk->vstart); 3540 cpu->vend = le64_to_cpu(disk->vend); 3541 cpu->target = le64_to_cpu(disk->target); 3542 cpu->flags = le64_to_cpu(disk->flags); 3543 cpu->limit = le64_to_cpu(disk->limit); 3544 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3545 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3546 } 3547 3548 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3549 const struct btrfs_balance_args *cpu) 3550 { 3551 memset(disk, 0, sizeof(*disk)); 3552 3553 disk->profiles = cpu_to_le64(cpu->profiles); 3554 disk->usage = cpu_to_le64(cpu->usage); 3555 disk->devid = cpu_to_le64(cpu->devid); 3556 disk->pstart = cpu_to_le64(cpu->pstart); 3557 disk->pend = cpu_to_le64(cpu->pend); 3558 disk->vstart = cpu_to_le64(cpu->vstart); 3559 disk->vend = cpu_to_le64(cpu->vend); 3560 disk->target = cpu_to_le64(cpu->target); 3561 disk->flags = cpu_to_le64(cpu->flags); 3562 disk->limit = cpu_to_le64(cpu->limit); 3563 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3564 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3565 } 3566 3567 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3568 struct btrfs_balance_control *bctl) 3569 { 3570 struct btrfs_root *root = fs_info->tree_root; 3571 struct btrfs_trans_handle *trans; 3572 struct btrfs_balance_item *item; 3573 struct btrfs_disk_balance_args disk_bargs; 3574 struct btrfs_path *path; 3575 struct extent_buffer *leaf; 3576 struct btrfs_key key; 3577 int ret, err; 3578 3579 path = btrfs_alloc_path(); 3580 if (!path) 3581 return -ENOMEM; 3582 3583 trans = btrfs_start_transaction(root, 0); 3584 if (IS_ERR(trans)) { 3585 btrfs_free_path(path); 3586 return PTR_ERR(trans); 3587 } 3588 3589 key.objectid = BTRFS_BALANCE_OBJECTID; 3590 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3591 key.offset = 0; 3592 3593 ret = btrfs_insert_empty_item(trans, root, path, &key, 3594 sizeof(*item)); 3595 if (ret) 3596 goto out; 3597 3598 leaf = path->nodes[0]; 3599 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3600 3601 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3602 3603 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3604 btrfs_set_balance_data(leaf, item, &disk_bargs); 3605 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3606 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3607 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3608 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3609 3610 btrfs_set_balance_flags(leaf, item, bctl->flags); 3611 3612 btrfs_mark_buffer_dirty(trans, leaf); 3613 out: 3614 btrfs_free_path(path); 3615 err = btrfs_commit_transaction(trans); 3616 if (err && !ret) 3617 ret = err; 3618 return ret; 3619 } 3620 3621 static int del_balance_item(struct btrfs_fs_info *fs_info) 3622 { 3623 struct btrfs_root *root = fs_info->tree_root; 3624 struct btrfs_trans_handle *trans; 3625 struct btrfs_path *path; 3626 struct btrfs_key key; 3627 int ret, err; 3628 3629 path = btrfs_alloc_path(); 3630 if (!path) 3631 return -ENOMEM; 3632 3633 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3634 if (IS_ERR(trans)) { 3635 btrfs_free_path(path); 3636 return PTR_ERR(trans); 3637 } 3638 3639 key.objectid = BTRFS_BALANCE_OBJECTID; 3640 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3641 key.offset = 0; 3642 3643 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3644 if (ret < 0) 3645 goto out; 3646 if (ret > 0) { 3647 ret = -ENOENT; 3648 goto out; 3649 } 3650 3651 ret = btrfs_del_item(trans, root, path); 3652 out: 3653 btrfs_free_path(path); 3654 err = btrfs_commit_transaction(trans); 3655 if (err && !ret) 3656 ret = err; 3657 return ret; 3658 } 3659 3660 /* 3661 * This is a heuristic used to reduce the number of chunks balanced on 3662 * resume after balance was interrupted. 3663 */ 3664 static void update_balance_args(struct btrfs_balance_control *bctl) 3665 { 3666 /* 3667 * Turn on soft mode for chunk types that were being converted. 3668 */ 3669 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3670 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3671 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3672 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3673 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3674 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3675 3676 /* 3677 * Turn on usage filter if is not already used. The idea is 3678 * that chunks that we have already balanced should be 3679 * reasonably full. Don't do it for chunks that are being 3680 * converted - that will keep us from relocating unconverted 3681 * (albeit full) chunks. 3682 */ 3683 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3684 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3685 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3686 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3687 bctl->data.usage = 90; 3688 } 3689 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3690 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3691 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3692 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3693 bctl->sys.usage = 90; 3694 } 3695 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3696 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3697 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3698 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3699 bctl->meta.usage = 90; 3700 } 3701 } 3702 3703 /* 3704 * Clear the balance status in fs_info and delete the balance item from disk. 3705 */ 3706 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3707 { 3708 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3709 int ret; 3710 3711 ASSERT(fs_info->balance_ctl); 3712 3713 spin_lock(&fs_info->balance_lock); 3714 fs_info->balance_ctl = NULL; 3715 spin_unlock(&fs_info->balance_lock); 3716 3717 kfree(bctl); 3718 ret = del_balance_item(fs_info); 3719 if (ret) 3720 btrfs_handle_fs_error(fs_info, ret, NULL); 3721 } 3722 3723 /* 3724 * Balance filters. Return 1 if chunk should be filtered out 3725 * (should not be balanced). 3726 */ 3727 static int chunk_profiles_filter(u64 chunk_type, 3728 struct btrfs_balance_args *bargs) 3729 { 3730 chunk_type = chunk_to_extended(chunk_type) & 3731 BTRFS_EXTENDED_PROFILE_MASK; 3732 3733 if (bargs->profiles & chunk_type) 3734 return 0; 3735 3736 return 1; 3737 } 3738 3739 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3740 struct btrfs_balance_args *bargs) 3741 { 3742 struct btrfs_block_group *cache; 3743 u64 chunk_used; 3744 u64 user_thresh_min; 3745 u64 user_thresh_max; 3746 int ret = 1; 3747 3748 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3749 chunk_used = cache->used; 3750 3751 if (bargs->usage_min == 0) 3752 user_thresh_min = 0; 3753 else 3754 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3755 3756 if (bargs->usage_max == 0) 3757 user_thresh_max = 1; 3758 else if (bargs->usage_max > 100) 3759 user_thresh_max = cache->length; 3760 else 3761 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3762 3763 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3764 ret = 0; 3765 3766 btrfs_put_block_group(cache); 3767 return ret; 3768 } 3769 3770 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3771 u64 chunk_offset, struct btrfs_balance_args *bargs) 3772 { 3773 struct btrfs_block_group *cache; 3774 u64 chunk_used, user_thresh; 3775 int ret = 1; 3776 3777 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3778 chunk_used = cache->used; 3779 3780 if (bargs->usage_min == 0) 3781 user_thresh = 1; 3782 else if (bargs->usage > 100) 3783 user_thresh = cache->length; 3784 else 3785 user_thresh = mult_perc(cache->length, bargs->usage); 3786 3787 if (chunk_used < user_thresh) 3788 ret = 0; 3789 3790 btrfs_put_block_group(cache); 3791 return ret; 3792 } 3793 3794 static int chunk_devid_filter(struct extent_buffer *leaf, 3795 struct btrfs_chunk *chunk, 3796 struct btrfs_balance_args *bargs) 3797 { 3798 struct btrfs_stripe *stripe; 3799 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3800 int i; 3801 3802 for (i = 0; i < num_stripes; i++) { 3803 stripe = btrfs_stripe_nr(chunk, i); 3804 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3805 return 0; 3806 } 3807 3808 return 1; 3809 } 3810 3811 static u64 calc_data_stripes(u64 type, int num_stripes) 3812 { 3813 const int index = btrfs_bg_flags_to_raid_index(type); 3814 const int ncopies = btrfs_raid_array[index].ncopies; 3815 const int nparity = btrfs_raid_array[index].nparity; 3816 3817 return (num_stripes - nparity) / ncopies; 3818 } 3819 3820 /* [pstart, pend) */ 3821 static int chunk_drange_filter(struct extent_buffer *leaf, 3822 struct btrfs_chunk *chunk, 3823 struct btrfs_balance_args *bargs) 3824 { 3825 struct btrfs_stripe *stripe; 3826 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3827 u64 stripe_offset; 3828 u64 stripe_length; 3829 u64 type; 3830 int factor; 3831 int i; 3832 3833 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3834 return 0; 3835 3836 type = btrfs_chunk_type(leaf, chunk); 3837 factor = calc_data_stripes(type, num_stripes); 3838 3839 for (i = 0; i < num_stripes; i++) { 3840 stripe = btrfs_stripe_nr(chunk, i); 3841 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3842 continue; 3843 3844 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3845 stripe_length = btrfs_chunk_length(leaf, chunk); 3846 stripe_length = div_u64(stripe_length, factor); 3847 3848 if (stripe_offset < bargs->pend && 3849 stripe_offset + stripe_length > bargs->pstart) 3850 return 0; 3851 } 3852 3853 return 1; 3854 } 3855 3856 /* [vstart, vend) */ 3857 static int chunk_vrange_filter(struct extent_buffer *leaf, 3858 struct btrfs_chunk *chunk, 3859 u64 chunk_offset, 3860 struct btrfs_balance_args *bargs) 3861 { 3862 if (chunk_offset < bargs->vend && 3863 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3864 /* at least part of the chunk is inside this vrange */ 3865 return 0; 3866 3867 return 1; 3868 } 3869 3870 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3871 struct btrfs_chunk *chunk, 3872 struct btrfs_balance_args *bargs) 3873 { 3874 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3875 3876 if (bargs->stripes_min <= num_stripes 3877 && num_stripes <= bargs->stripes_max) 3878 return 0; 3879 3880 return 1; 3881 } 3882 3883 static int chunk_soft_convert_filter(u64 chunk_type, 3884 struct btrfs_balance_args *bargs) 3885 { 3886 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3887 return 0; 3888 3889 chunk_type = chunk_to_extended(chunk_type) & 3890 BTRFS_EXTENDED_PROFILE_MASK; 3891 3892 if (bargs->target == chunk_type) 3893 return 1; 3894 3895 return 0; 3896 } 3897 3898 static int should_balance_chunk(struct extent_buffer *leaf, 3899 struct btrfs_chunk *chunk, u64 chunk_offset) 3900 { 3901 struct btrfs_fs_info *fs_info = leaf->fs_info; 3902 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3903 struct btrfs_balance_args *bargs = NULL; 3904 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3905 3906 /* type filter */ 3907 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3908 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3909 return 0; 3910 } 3911 3912 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3913 bargs = &bctl->data; 3914 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3915 bargs = &bctl->sys; 3916 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3917 bargs = &bctl->meta; 3918 3919 /* profiles filter */ 3920 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3921 chunk_profiles_filter(chunk_type, bargs)) { 3922 return 0; 3923 } 3924 3925 /* usage filter */ 3926 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3927 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3928 return 0; 3929 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3930 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3931 return 0; 3932 } 3933 3934 /* devid filter */ 3935 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3936 chunk_devid_filter(leaf, chunk, bargs)) { 3937 return 0; 3938 } 3939 3940 /* drange filter, makes sense only with devid filter */ 3941 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3942 chunk_drange_filter(leaf, chunk, bargs)) { 3943 return 0; 3944 } 3945 3946 /* vrange filter */ 3947 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3948 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3949 return 0; 3950 } 3951 3952 /* stripes filter */ 3953 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3954 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3955 return 0; 3956 } 3957 3958 /* soft profile changing mode */ 3959 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3960 chunk_soft_convert_filter(chunk_type, bargs)) { 3961 return 0; 3962 } 3963 3964 /* 3965 * limited by count, must be the last filter 3966 */ 3967 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3968 if (bargs->limit == 0) 3969 return 0; 3970 else 3971 bargs->limit--; 3972 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3973 /* 3974 * Same logic as the 'limit' filter; the minimum cannot be 3975 * determined here because we do not have the global information 3976 * about the count of all chunks that satisfy the filters. 3977 */ 3978 if (bargs->limit_max == 0) 3979 return 0; 3980 else 3981 bargs->limit_max--; 3982 } 3983 3984 return 1; 3985 } 3986 3987 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3988 { 3989 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3990 struct btrfs_root *chunk_root = fs_info->chunk_root; 3991 u64 chunk_type; 3992 struct btrfs_chunk *chunk; 3993 struct btrfs_path *path = NULL; 3994 struct btrfs_key key; 3995 struct btrfs_key found_key; 3996 struct extent_buffer *leaf; 3997 int slot; 3998 int ret; 3999 int enospc_errors = 0; 4000 bool counting = true; 4001 /* The single value limit and min/max limits use the same bytes in the */ 4002 u64 limit_data = bctl->data.limit; 4003 u64 limit_meta = bctl->meta.limit; 4004 u64 limit_sys = bctl->sys.limit; 4005 u32 count_data = 0; 4006 u32 count_meta = 0; 4007 u32 count_sys = 0; 4008 int chunk_reserved = 0; 4009 4010 path = btrfs_alloc_path(); 4011 if (!path) { 4012 ret = -ENOMEM; 4013 goto error; 4014 } 4015 4016 /* zero out stat counters */ 4017 spin_lock(&fs_info->balance_lock); 4018 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4019 spin_unlock(&fs_info->balance_lock); 4020 again: 4021 if (!counting) { 4022 /* 4023 * The single value limit and min/max limits use the same bytes 4024 * in the 4025 */ 4026 bctl->data.limit = limit_data; 4027 bctl->meta.limit = limit_meta; 4028 bctl->sys.limit = limit_sys; 4029 } 4030 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4031 key.offset = (u64)-1; 4032 key.type = BTRFS_CHUNK_ITEM_KEY; 4033 4034 while (1) { 4035 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4036 atomic_read(&fs_info->balance_cancel_req)) { 4037 ret = -ECANCELED; 4038 goto error; 4039 } 4040 4041 mutex_lock(&fs_info->reclaim_bgs_lock); 4042 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4043 if (ret < 0) { 4044 mutex_unlock(&fs_info->reclaim_bgs_lock); 4045 goto error; 4046 } 4047 4048 /* 4049 * this shouldn't happen, it means the last relocate 4050 * failed 4051 */ 4052 if (ret == 0) 4053 BUG(); /* FIXME break ? */ 4054 4055 ret = btrfs_previous_item(chunk_root, path, 0, 4056 BTRFS_CHUNK_ITEM_KEY); 4057 if (ret) { 4058 mutex_unlock(&fs_info->reclaim_bgs_lock); 4059 ret = 0; 4060 break; 4061 } 4062 4063 leaf = path->nodes[0]; 4064 slot = path->slots[0]; 4065 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4066 4067 if (found_key.objectid != key.objectid) { 4068 mutex_unlock(&fs_info->reclaim_bgs_lock); 4069 break; 4070 } 4071 4072 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4073 chunk_type = btrfs_chunk_type(leaf, chunk); 4074 4075 if (!counting) { 4076 spin_lock(&fs_info->balance_lock); 4077 bctl->stat.considered++; 4078 spin_unlock(&fs_info->balance_lock); 4079 } 4080 4081 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4082 4083 btrfs_release_path(path); 4084 if (!ret) { 4085 mutex_unlock(&fs_info->reclaim_bgs_lock); 4086 goto loop; 4087 } 4088 4089 if (counting) { 4090 mutex_unlock(&fs_info->reclaim_bgs_lock); 4091 spin_lock(&fs_info->balance_lock); 4092 bctl->stat.expected++; 4093 spin_unlock(&fs_info->balance_lock); 4094 4095 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4096 count_data++; 4097 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4098 count_sys++; 4099 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4100 count_meta++; 4101 4102 goto loop; 4103 } 4104 4105 /* 4106 * Apply limit_min filter, no need to check if the LIMITS 4107 * filter is used, limit_min is 0 by default 4108 */ 4109 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4110 count_data < bctl->data.limit_min) 4111 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4112 count_meta < bctl->meta.limit_min) 4113 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4114 count_sys < bctl->sys.limit_min)) { 4115 mutex_unlock(&fs_info->reclaim_bgs_lock); 4116 goto loop; 4117 } 4118 4119 if (!chunk_reserved) { 4120 /* 4121 * We may be relocating the only data chunk we have, 4122 * which could potentially end up with losing data's 4123 * raid profile, so lets allocate an empty one in 4124 * advance. 4125 */ 4126 ret = btrfs_may_alloc_data_chunk(fs_info, 4127 found_key.offset); 4128 if (ret < 0) { 4129 mutex_unlock(&fs_info->reclaim_bgs_lock); 4130 goto error; 4131 } else if (ret == 1) { 4132 chunk_reserved = 1; 4133 } 4134 } 4135 4136 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4137 mutex_unlock(&fs_info->reclaim_bgs_lock); 4138 if (ret == -ENOSPC) { 4139 enospc_errors++; 4140 } else if (ret == -ETXTBSY) { 4141 btrfs_info(fs_info, 4142 "skipping relocation of block group %llu due to active swapfile", 4143 found_key.offset); 4144 ret = 0; 4145 } else if (ret) { 4146 goto error; 4147 } else { 4148 spin_lock(&fs_info->balance_lock); 4149 bctl->stat.completed++; 4150 spin_unlock(&fs_info->balance_lock); 4151 } 4152 loop: 4153 if (found_key.offset == 0) 4154 break; 4155 key.offset = found_key.offset - 1; 4156 } 4157 4158 if (counting) { 4159 btrfs_release_path(path); 4160 counting = false; 4161 goto again; 4162 } 4163 error: 4164 btrfs_free_path(path); 4165 if (enospc_errors) { 4166 btrfs_info(fs_info, "%d enospc errors during balance", 4167 enospc_errors); 4168 if (!ret) 4169 ret = -ENOSPC; 4170 } 4171 4172 return ret; 4173 } 4174 4175 /* 4176 * See if a given profile is valid and reduced. 4177 * 4178 * @flags: profile to validate 4179 * @extended: if true @flags is treated as an extended profile 4180 */ 4181 static int alloc_profile_is_valid(u64 flags, int extended) 4182 { 4183 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4184 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4185 4186 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4187 4188 /* 1) check that all other bits are zeroed */ 4189 if (flags & ~mask) 4190 return 0; 4191 4192 /* 2) see if profile is reduced */ 4193 if (flags == 0) 4194 return !extended; /* "0" is valid for usual profiles */ 4195 4196 return has_single_bit_set(flags); 4197 } 4198 4199 /* 4200 * Validate target profile against allowed profiles and return true if it's OK. 4201 * Otherwise print the error message and return false. 4202 */ 4203 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4204 const struct btrfs_balance_args *bargs, 4205 u64 allowed, const char *type) 4206 { 4207 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4208 return true; 4209 4210 /* Profile is valid and does not have bits outside of the allowed set */ 4211 if (alloc_profile_is_valid(bargs->target, 1) && 4212 (bargs->target & ~allowed) == 0) 4213 return true; 4214 4215 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4216 type, btrfs_bg_type_to_raid_name(bargs->target)); 4217 return false; 4218 } 4219 4220 /* 4221 * Fill @buf with textual description of balance filter flags @bargs, up to 4222 * @size_buf including the terminating null. The output may be trimmed if it 4223 * does not fit into the provided buffer. 4224 */ 4225 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4226 u32 size_buf) 4227 { 4228 int ret; 4229 u32 size_bp = size_buf; 4230 char *bp = buf; 4231 u64 flags = bargs->flags; 4232 char tmp_buf[128] = {'\0'}; 4233 4234 if (!flags) 4235 return; 4236 4237 #define CHECK_APPEND_NOARG(a) \ 4238 do { \ 4239 ret = snprintf(bp, size_bp, (a)); \ 4240 if (ret < 0 || ret >= size_bp) \ 4241 goto out_overflow; \ 4242 size_bp -= ret; \ 4243 bp += ret; \ 4244 } while (0) 4245 4246 #define CHECK_APPEND_1ARG(a, v1) \ 4247 do { \ 4248 ret = snprintf(bp, size_bp, (a), (v1)); \ 4249 if (ret < 0 || ret >= size_bp) \ 4250 goto out_overflow; \ 4251 size_bp -= ret; \ 4252 bp += ret; \ 4253 } while (0) 4254 4255 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4256 do { \ 4257 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4258 if (ret < 0 || ret >= size_bp) \ 4259 goto out_overflow; \ 4260 size_bp -= ret; \ 4261 bp += ret; \ 4262 } while (0) 4263 4264 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4265 CHECK_APPEND_1ARG("convert=%s,", 4266 btrfs_bg_type_to_raid_name(bargs->target)); 4267 4268 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4269 CHECK_APPEND_NOARG("soft,"); 4270 4271 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4272 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4273 sizeof(tmp_buf)); 4274 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4275 } 4276 4277 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4278 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4279 4280 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4281 CHECK_APPEND_2ARG("usage=%u..%u,", 4282 bargs->usage_min, bargs->usage_max); 4283 4284 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4285 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4286 4287 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4288 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4289 bargs->pstart, bargs->pend); 4290 4291 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4292 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4293 bargs->vstart, bargs->vend); 4294 4295 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4296 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4297 4298 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4299 CHECK_APPEND_2ARG("limit=%u..%u,", 4300 bargs->limit_min, bargs->limit_max); 4301 4302 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4303 CHECK_APPEND_2ARG("stripes=%u..%u,", 4304 bargs->stripes_min, bargs->stripes_max); 4305 4306 #undef CHECK_APPEND_2ARG 4307 #undef CHECK_APPEND_1ARG 4308 #undef CHECK_APPEND_NOARG 4309 4310 out_overflow: 4311 4312 if (size_bp < size_buf) 4313 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4314 else 4315 buf[0] = '\0'; 4316 } 4317 4318 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4319 { 4320 u32 size_buf = 1024; 4321 char tmp_buf[192] = {'\0'}; 4322 char *buf; 4323 char *bp; 4324 u32 size_bp = size_buf; 4325 int ret; 4326 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4327 4328 buf = kzalloc(size_buf, GFP_KERNEL); 4329 if (!buf) 4330 return; 4331 4332 bp = buf; 4333 4334 #define CHECK_APPEND_1ARG(a, v1) \ 4335 do { \ 4336 ret = snprintf(bp, size_bp, (a), (v1)); \ 4337 if (ret < 0 || ret >= size_bp) \ 4338 goto out_overflow; \ 4339 size_bp -= ret; \ 4340 bp += ret; \ 4341 } while (0) 4342 4343 if (bctl->flags & BTRFS_BALANCE_FORCE) 4344 CHECK_APPEND_1ARG("%s", "-f "); 4345 4346 if (bctl->flags & BTRFS_BALANCE_DATA) { 4347 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4348 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4349 } 4350 4351 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4352 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4353 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4354 } 4355 4356 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4357 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4358 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4359 } 4360 4361 #undef CHECK_APPEND_1ARG 4362 4363 out_overflow: 4364 4365 if (size_bp < size_buf) 4366 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4367 btrfs_info(fs_info, "balance: %s %s", 4368 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4369 "resume" : "start", buf); 4370 4371 kfree(buf); 4372 } 4373 4374 /* 4375 * Should be called with balance mutexe held 4376 */ 4377 int btrfs_balance(struct btrfs_fs_info *fs_info, 4378 struct btrfs_balance_control *bctl, 4379 struct btrfs_ioctl_balance_args *bargs) 4380 { 4381 u64 meta_target, data_target; 4382 u64 allowed; 4383 int mixed = 0; 4384 int ret; 4385 u64 num_devices; 4386 unsigned seq; 4387 bool reducing_redundancy; 4388 bool paused = false; 4389 int i; 4390 4391 if (btrfs_fs_closing(fs_info) || 4392 atomic_read(&fs_info->balance_pause_req) || 4393 btrfs_should_cancel_balance(fs_info)) { 4394 ret = -EINVAL; 4395 goto out; 4396 } 4397 4398 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4399 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4400 mixed = 1; 4401 4402 /* 4403 * In case of mixed groups both data and meta should be picked, 4404 * and identical options should be given for both of them. 4405 */ 4406 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4407 if (mixed && (bctl->flags & allowed)) { 4408 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4409 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4410 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4411 btrfs_err(fs_info, 4412 "balance: mixed groups data and metadata options must be the same"); 4413 ret = -EINVAL; 4414 goto out; 4415 } 4416 } 4417 4418 /* 4419 * rw_devices will not change at the moment, device add/delete/replace 4420 * are exclusive 4421 */ 4422 num_devices = fs_info->fs_devices->rw_devices; 4423 4424 /* 4425 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4426 * special bit for it, to make it easier to distinguish. Thus we need 4427 * to set it manually, or balance would refuse the profile. 4428 */ 4429 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4430 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4431 if (num_devices >= btrfs_raid_array[i].devs_min) 4432 allowed |= btrfs_raid_array[i].bg_flag; 4433 4434 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4435 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4436 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4437 ret = -EINVAL; 4438 goto out; 4439 } 4440 4441 /* 4442 * Allow to reduce metadata or system integrity only if force set for 4443 * profiles with redundancy (copies, parity) 4444 */ 4445 allowed = 0; 4446 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4447 if (btrfs_raid_array[i].ncopies >= 2 || 4448 btrfs_raid_array[i].tolerated_failures >= 1) 4449 allowed |= btrfs_raid_array[i].bg_flag; 4450 } 4451 do { 4452 seq = read_seqbegin(&fs_info->profiles_lock); 4453 4454 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4455 (fs_info->avail_system_alloc_bits & allowed) && 4456 !(bctl->sys.target & allowed)) || 4457 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4458 (fs_info->avail_metadata_alloc_bits & allowed) && 4459 !(bctl->meta.target & allowed))) 4460 reducing_redundancy = true; 4461 else 4462 reducing_redundancy = false; 4463 4464 /* if we're not converting, the target field is uninitialized */ 4465 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4466 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4467 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4468 bctl->data.target : fs_info->avail_data_alloc_bits; 4469 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4470 4471 if (reducing_redundancy) { 4472 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4473 btrfs_info(fs_info, 4474 "balance: force reducing metadata redundancy"); 4475 } else { 4476 btrfs_err(fs_info, 4477 "balance: reduces metadata redundancy, use --force if you want this"); 4478 ret = -EINVAL; 4479 goto out; 4480 } 4481 } 4482 4483 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4484 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4485 btrfs_warn(fs_info, 4486 "balance: metadata profile %s has lower redundancy than data profile %s", 4487 btrfs_bg_type_to_raid_name(meta_target), 4488 btrfs_bg_type_to_raid_name(data_target)); 4489 } 4490 4491 ret = insert_balance_item(fs_info, bctl); 4492 if (ret && ret != -EEXIST) 4493 goto out; 4494 4495 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4496 BUG_ON(ret == -EEXIST); 4497 BUG_ON(fs_info->balance_ctl); 4498 spin_lock(&fs_info->balance_lock); 4499 fs_info->balance_ctl = bctl; 4500 spin_unlock(&fs_info->balance_lock); 4501 } else { 4502 BUG_ON(ret != -EEXIST); 4503 spin_lock(&fs_info->balance_lock); 4504 update_balance_args(bctl); 4505 spin_unlock(&fs_info->balance_lock); 4506 } 4507 4508 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4509 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4510 describe_balance_start_or_resume(fs_info); 4511 mutex_unlock(&fs_info->balance_mutex); 4512 4513 ret = __btrfs_balance(fs_info); 4514 4515 mutex_lock(&fs_info->balance_mutex); 4516 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4517 btrfs_info(fs_info, "balance: paused"); 4518 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4519 paused = true; 4520 } 4521 /* 4522 * Balance can be canceled by: 4523 * 4524 * - Regular cancel request 4525 * Then ret == -ECANCELED and balance_cancel_req > 0 4526 * 4527 * - Fatal signal to "btrfs" process 4528 * Either the signal caught by wait_reserve_ticket() and callers 4529 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4530 * got -ECANCELED. 4531 * Either way, in this case balance_cancel_req = 0, and 4532 * ret == -EINTR or ret == -ECANCELED. 4533 * 4534 * So here we only check the return value to catch canceled balance. 4535 */ 4536 else if (ret == -ECANCELED || ret == -EINTR) 4537 btrfs_info(fs_info, "balance: canceled"); 4538 else 4539 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4540 4541 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4542 4543 if (bargs) { 4544 memset(bargs, 0, sizeof(*bargs)); 4545 btrfs_update_ioctl_balance_args(fs_info, bargs); 4546 } 4547 4548 /* We didn't pause, we can clean everything up. */ 4549 if (!paused) { 4550 reset_balance_state(fs_info); 4551 btrfs_exclop_finish(fs_info); 4552 } 4553 4554 wake_up(&fs_info->balance_wait_q); 4555 4556 return ret; 4557 out: 4558 if (bctl->flags & BTRFS_BALANCE_RESUME) 4559 reset_balance_state(fs_info); 4560 else 4561 kfree(bctl); 4562 btrfs_exclop_finish(fs_info); 4563 4564 return ret; 4565 } 4566 4567 static int balance_kthread(void *data) 4568 { 4569 struct btrfs_fs_info *fs_info = data; 4570 int ret = 0; 4571 4572 sb_start_write(fs_info->sb); 4573 mutex_lock(&fs_info->balance_mutex); 4574 if (fs_info->balance_ctl) 4575 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4576 mutex_unlock(&fs_info->balance_mutex); 4577 sb_end_write(fs_info->sb); 4578 4579 return ret; 4580 } 4581 4582 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4583 { 4584 struct task_struct *tsk; 4585 4586 mutex_lock(&fs_info->balance_mutex); 4587 if (!fs_info->balance_ctl) { 4588 mutex_unlock(&fs_info->balance_mutex); 4589 return 0; 4590 } 4591 mutex_unlock(&fs_info->balance_mutex); 4592 4593 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4594 btrfs_info(fs_info, "balance: resume skipped"); 4595 return 0; 4596 } 4597 4598 spin_lock(&fs_info->super_lock); 4599 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4600 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4601 spin_unlock(&fs_info->super_lock); 4602 /* 4603 * A ro->rw remount sequence should continue with the paused balance 4604 * regardless of who pauses it, system or the user as of now, so set 4605 * the resume flag. 4606 */ 4607 spin_lock(&fs_info->balance_lock); 4608 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4609 spin_unlock(&fs_info->balance_lock); 4610 4611 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4612 return PTR_ERR_OR_ZERO(tsk); 4613 } 4614 4615 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4616 { 4617 struct btrfs_balance_control *bctl; 4618 struct btrfs_balance_item *item; 4619 struct btrfs_disk_balance_args disk_bargs; 4620 struct btrfs_path *path; 4621 struct extent_buffer *leaf; 4622 struct btrfs_key key; 4623 int ret; 4624 4625 path = btrfs_alloc_path(); 4626 if (!path) 4627 return -ENOMEM; 4628 4629 key.objectid = BTRFS_BALANCE_OBJECTID; 4630 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4631 key.offset = 0; 4632 4633 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4634 if (ret < 0) 4635 goto out; 4636 if (ret > 0) { /* ret = -ENOENT; */ 4637 ret = 0; 4638 goto out; 4639 } 4640 4641 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4642 if (!bctl) { 4643 ret = -ENOMEM; 4644 goto out; 4645 } 4646 4647 leaf = path->nodes[0]; 4648 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4649 4650 bctl->flags = btrfs_balance_flags(leaf, item); 4651 bctl->flags |= BTRFS_BALANCE_RESUME; 4652 4653 btrfs_balance_data(leaf, item, &disk_bargs); 4654 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4655 btrfs_balance_meta(leaf, item, &disk_bargs); 4656 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4657 btrfs_balance_sys(leaf, item, &disk_bargs); 4658 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4659 4660 /* 4661 * This should never happen, as the paused balance state is recovered 4662 * during mount without any chance of other exclusive ops to collide. 4663 * 4664 * This gives the exclusive op status to balance and keeps in paused 4665 * state until user intervention (cancel or umount). If the ownership 4666 * cannot be assigned, show a message but do not fail. The balance 4667 * is in a paused state and must have fs_info::balance_ctl properly 4668 * set up. 4669 */ 4670 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4671 btrfs_warn(fs_info, 4672 "balance: cannot set exclusive op status, resume manually"); 4673 4674 btrfs_release_path(path); 4675 4676 mutex_lock(&fs_info->balance_mutex); 4677 BUG_ON(fs_info->balance_ctl); 4678 spin_lock(&fs_info->balance_lock); 4679 fs_info->balance_ctl = bctl; 4680 spin_unlock(&fs_info->balance_lock); 4681 mutex_unlock(&fs_info->balance_mutex); 4682 out: 4683 btrfs_free_path(path); 4684 return ret; 4685 } 4686 4687 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4688 { 4689 int ret = 0; 4690 4691 mutex_lock(&fs_info->balance_mutex); 4692 if (!fs_info->balance_ctl) { 4693 mutex_unlock(&fs_info->balance_mutex); 4694 return -ENOTCONN; 4695 } 4696 4697 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4698 atomic_inc(&fs_info->balance_pause_req); 4699 mutex_unlock(&fs_info->balance_mutex); 4700 4701 wait_event(fs_info->balance_wait_q, 4702 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4703 4704 mutex_lock(&fs_info->balance_mutex); 4705 /* we are good with balance_ctl ripped off from under us */ 4706 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4707 atomic_dec(&fs_info->balance_pause_req); 4708 } else { 4709 ret = -ENOTCONN; 4710 } 4711 4712 mutex_unlock(&fs_info->balance_mutex); 4713 return ret; 4714 } 4715 4716 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4717 { 4718 mutex_lock(&fs_info->balance_mutex); 4719 if (!fs_info->balance_ctl) { 4720 mutex_unlock(&fs_info->balance_mutex); 4721 return -ENOTCONN; 4722 } 4723 4724 /* 4725 * A paused balance with the item stored on disk can be resumed at 4726 * mount time if the mount is read-write. Otherwise it's still paused 4727 * and we must not allow cancelling as it deletes the item. 4728 */ 4729 if (sb_rdonly(fs_info->sb)) { 4730 mutex_unlock(&fs_info->balance_mutex); 4731 return -EROFS; 4732 } 4733 4734 atomic_inc(&fs_info->balance_cancel_req); 4735 /* 4736 * if we are running just wait and return, balance item is 4737 * deleted in btrfs_balance in this case 4738 */ 4739 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4740 mutex_unlock(&fs_info->balance_mutex); 4741 wait_event(fs_info->balance_wait_q, 4742 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4743 mutex_lock(&fs_info->balance_mutex); 4744 } else { 4745 mutex_unlock(&fs_info->balance_mutex); 4746 /* 4747 * Lock released to allow other waiters to continue, we'll 4748 * reexamine the status again. 4749 */ 4750 mutex_lock(&fs_info->balance_mutex); 4751 4752 if (fs_info->balance_ctl) { 4753 reset_balance_state(fs_info); 4754 btrfs_exclop_finish(fs_info); 4755 btrfs_info(fs_info, "balance: canceled"); 4756 } 4757 } 4758 4759 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4760 atomic_dec(&fs_info->balance_cancel_req); 4761 mutex_unlock(&fs_info->balance_mutex); 4762 return 0; 4763 } 4764 4765 int btrfs_uuid_scan_kthread(void *data) 4766 { 4767 struct btrfs_fs_info *fs_info = data; 4768 struct btrfs_root *root = fs_info->tree_root; 4769 struct btrfs_key key; 4770 struct btrfs_path *path = NULL; 4771 int ret = 0; 4772 struct extent_buffer *eb; 4773 int slot; 4774 struct btrfs_root_item root_item; 4775 u32 item_size; 4776 struct btrfs_trans_handle *trans = NULL; 4777 bool closing = false; 4778 4779 path = btrfs_alloc_path(); 4780 if (!path) { 4781 ret = -ENOMEM; 4782 goto out; 4783 } 4784 4785 key.objectid = 0; 4786 key.type = BTRFS_ROOT_ITEM_KEY; 4787 key.offset = 0; 4788 4789 while (1) { 4790 if (btrfs_fs_closing(fs_info)) { 4791 closing = true; 4792 break; 4793 } 4794 ret = btrfs_search_forward(root, &key, path, 4795 BTRFS_OLDEST_GENERATION); 4796 if (ret) { 4797 if (ret > 0) 4798 ret = 0; 4799 break; 4800 } 4801 4802 if (key.type != BTRFS_ROOT_ITEM_KEY || 4803 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4804 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4805 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4806 goto skip; 4807 4808 eb = path->nodes[0]; 4809 slot = path->slots[0]; 4810 item_size = btrfs_item_size(eb, slot); 4811 if (item_size < sizeof(root_item)) 4812 goto skip; 4813 4814 read_extent_buffer(eb, &root_item, 4815 btrfs_item_ptr_offset(eb, slot), 4816 (int)sizeof(root_item)); 4817 if (btrfs_root_refs(&root_item) == 0) 4818 goto skip; 4819 4820 if (!btrfs_is_empty_uuid(root_item.uuid) || 4821 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4822 if (trans) 4823 goto update_tree; 4824 4825 btrfs_release_path(path); 4826 /* 4827 * 1 - subvol uuid item 4828 * 1 - received_subvol uuid item 4829 */ 4830 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4831 if (IS_ERR(trans)) { 4832 ret = PTR_ERR(trans); 4833 break; 4834 } 4835 continue; 4836 } else { 4837 goto skip; 4838 } 4839 update_tree: 4840 btrfs_release_path(path); 4841 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4842 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4843 BTRFS_UUID_KEY_SUBVOL, 4844 key.objectid); 4845 if (ret < 0) { 4846 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4847 ret); 4848 break; 4849 } 4850 } 4851 4852 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4853 ret = btrfs_uuid_tree_add(trans, 4854 root_item.received_uuid, 4855 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4856 key.objectid); 4857 if (ret < 0) { 4858 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4859 ret); 4860 break; 4861 } 4862 } 4863 4864 skip: 4865 btrfs_release_path(path); 4866 if (trans) { 4867 ret = btrfs_end_transaction(trans); 4868 trans = NULL; 4869 if (ret) 4870 break; 4871 } 4872 4873 if (key.offset < (u64)-1) { 4874 key.offset++; 4875 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4876 key.offset = 0; 4877 key.type = BTRFS_ROOT_ITEM_KEY; 4878 } else if (key.objectid < (u64)-1) { 4879 key.offset = 0; 4880 key.type = BTRFS_ROOT_ITEM_KEY; 4881 key.objectid++; 4882 } else { 4883 break; 4884 } 4885 cond_resched(); 4886 } 4887 4888 out: 4889 btrfs_free_path(path); 4890 if (trans && !IS_ERR(trans)) 4891 btrfs_end_transaction(trans); 4892 if (ret) 4893 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4894 else if (!closing) 4895 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4896 up(&fs_info->uuid_tree_rescan_sem); 4897 return 0; 4898 } 4899 4900 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4901 { 4902 struct btrfs_trans_handle *trans; 4903 struct btrfs_root *tree_root = fs_info->tree_root; 4904 struct btrfs_root *uuid_root; 4905 struct task_struct *task; 4906 int ret; 4907 4908 /* 4909 * 1 - root node 4910 * 1 - root item 4911 */ 4912 trans = btrfs_start_transaction(tree_root, 2); 4913 if (IS_ERR(trans)) 4914 return PTR_ERR(trans); 4915 4916 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4917 if (IS_ERR(uuid_root)) { 4918 ret = PTR_ERR(uuid_root); 4919 btrfs_abort_transaction(trans, ret); 4920 btrfs_end_transaction(trans); 4921 return ret; 4922 } 4923 4924 fs_info->uuid_root = uuid_root; 4925 4926 ret = btrfs_commit_transaction(trans); 4927 if (ret) 4928 return ret; 4929 4930 down(&fs_info->uuid_tree_rescan_sem); 4931 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4932 if (IS_ERR(task)) { 4933 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4934 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4935 up(&fs_info->uuid_tree_rescan_sem); 4936 return PTR_ERR(task); 4937 } 4938 4939 return 0; 4940 } 4941 4942 /* 4943 * shrinking a device means finding all of the device extents past 4944 * the new size, and then following the back refs to the chunks. 4945 * The chunk relocation code actually frees the device extent 4946 */ 4947 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4948 { 4949 struct btrfs_fs_info *fs_info = device->fs_info; 4950 struct btrfs_root *root = fs_info->dev_root; 4951 struct btrfs_trans_handle *trans; 4952 struct btrfs_dev_extent *dev_extent = NULL; 4953 struct btrfs_path *path; 4954 u64 length; 4955 u64 chunk_offset; 4956 int ret; 4957 int slot; 4958 int failed = 0; 4959 bool retried = false; 4960 struct extent_buffer *l; 4961 struct btrfs_key key; 4962 struct btrfs_super_block *super_copy = fs_info->super_copy; 4963 u64 old_total = btrfs_super_total_bytes(super_copy); 4964 u64 old_size = btrfs_device_get_total_bytes(device); 4965 u64 diff; 4966 u64 start; 4967 u64 free_diff = 0; 4968 4969 new_size = round_down(new_size, fs_info->sectorsize); 4970 start = new_size; 4971 diff = round_down(old_size - new_size, fs_info->sectorsize); 4972 4973 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4974 return -EINVAL; 4975 4976 path = btrfs_alloc_path(); 4977 if (!path) 4978 return -ENOMEM; 4979 4980 path->reada = READA_BACK; 4981 4982 trans = btrfs_start_transaction(root, 0); 4983 if (IS_ERR(trans)) { 4984 btrfs_free_path(path); 4985 return PTR_ERR(trans); 4986 } 4987 4988 mutex_lock(&fs_info->chunk_mutex); 4989 4990 btrfs_device_set_total_bytes(device, new_size); 4991 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4992 device->fs_devices->total_rw_bytes -= diff; 4993 4994 /* 4995 * The new free_chunk_space is new_size - used, so we have to 4996 * subtract the delta of the old free_chunk_space which included 4997 * old_size - used. If used > new_size then just subtract this 4998 * entire device's free space. 4999 */ 5000 if (device->bytes_used < new_size) 5001 free_diff = (old_size - device->bytes_used) - 5002 (new_size - device->bytes_used); 5003 else 5004 free_diff = old_size - device->bytes_used; 5005 atomic64_sub(free_diff, &fs_info->free_chunk_space); 5006 } 5007 5008 /* 5009 * Once the device's size has been set to the new size, ensure all 5010 * in-memory chunks are synced to disk so that the loop below sees them 5011 * and relocates them accordingly. 5012 */ 5013 if (contains_pending_extent(device, &start, diff)) { 5014 mutex_unlock(&fs_info->chunk_mutex); 5015 ret = btrfs_commit_transaction(trans); 5016 if (ret) 5017 goto done; 5018 } else { 5019 mutex_unlock(&fs_info->chunk_mutex); 5020 btrfs_end_transaction(trans); 5021 } 5022 5023 again: 5024 key.objectid = device->devid; 5025 key.offset = (u64)-1; 5026 key.type = BTRFS_DEV_EXTENT_KEY; 5027 5028 do { 5029 mutex_lock(&fs_info->reclaim_bgs_lock); 5030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5031 if (ret < 0) { 5032 mutex_unlock(&fs_info->reclaim_bgs_lock); 5033 goto done; 5034 } 5035 5036 ret = btrfs_previous_item(root, path, 0, key.type); 5037 if (ret) { 5038 mutex_unlock(&fs_info->reclaim_bgs_lock); 5039 if (ret < 0) 5040 goto done; 5041 ret = 0; 5042 btrfs_release_path(path); 5043 break; 5044 } 5045 5046 l = path->nodes[0]; 5047 slot = path->slots[0]; 5048 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 5049 5050 if (key.objectid != device->devid) { 5051 mutex_unlock(&fs_info->reclaim_bgs_lock); 5052 btrfs_release_path(path); 5053 break; 5054 } 5055 5056 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 5057 length = btrfs_dev_extent_length(l, dev_extent); 5058 5059 if (key.offset + length <= new_size) { 5060 mutex_unlock(&fs_info->reclaim_bgs_lock); 5061 btrfs_release_path(path); 5062 break; 5063 } 5064 5065 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 5066 btrfs_release_path(path); 5067 5068 /* 5069 * We may be relocating the only data chunk we have, 5070 * which could potentially end up with losing data's 5071 * raid profile, so lets allocate an empty one in 5072 * advance. 5073 */ 5074 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 5075 if (ret < 0) { 5076 mutex_unlock(&fs_info->reclaim_bgs_lock); 5077 goto done; 5078 } 5079 5080 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 5081 mutex_unlock(&fs_info->reclaim_bgs_lock); 5082 if (ret == -ENOSPC) { 5083 failed++; 5084 } else if (ret) { 5085 if (ret == -ETXTBSY) { 5086 btrfs_warn(fs_info, 5087 "could not shrink block group %llu due to active swapfile", 5088 chunk_offset); 5089 } 5090 goto done; 5091 } 5092 } while (key.offset-- > 0); 5093 5094 if (failed && !retried) { 5095 failed = 0; 5096 retried = true; 5097 goto again; 5098 } else if (failed && retried) { 5099 ret = -ENOSPC; 5100 goto done; 5101 } 5102 5103 /* Shrinking succeeded, else we would be at "done". */ 5104 trans = btrfs_start_transaction(root, 0); 5105 if (IS_ERR(trans)) { 5106 ret = PTR_ERR(trans); 5107 goto done; 5108 } 5109 5110 mutex_lock(&fs_info->chunk_mutex); 5111 /* Clear all state bits beyond the shrunk device size */ 5112 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 5113 CHUNK_STATE_MASK); 5114 5115 btrfs_device_set_disk_total_bytes(device, new_size); 5116 if (list_empty(&device->post_commit_list)) 5117 list_add_tail(&device->post_commit_list, 5118 &trans->transaction->dev_update_list); 5119 5120 WARN_ON(diff > old_total); 5121 btrfs_set_super_total_bytes(super_copy, 5122 round_down(old_total - diff, fs_info->sectorsize)); 5123 mutex_unlock(&fs_info->chunk_mutex); 5124 5125 btrfs_reserve_chunk_metadata(trans, false); 5126 /* Now btrfs_update_device() will change the on-disk size. */ 5127 ret = btrfs_update_device(trans, device); 5128 btrfs_trans_release_chunk_metadata(trans); 5129 if (ret < 0) { 5130 btrfs_abort_transaction(trans, ret); 5131 btrfs_end_transaction(trans); 5132 } else { 5133 ret = btrfs_commit_transaction(trans); 5134 } 5135 done: 5136 btrfs_free_path(path); 5137 if (ret) { 5138 mutex_lock(&fs_info->chunk_mutex); 5139 btrfs_device_set_total_bytes(device, old_size); 5140 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5141 device->fs_devices->total_rw_bytes += diff; 5142 atomic64_add(free_diff, &fs_info->free_chunk_space); 5143 } 5144 mutex_unlock(&fs_info->chunk_mutex); 5145 } 5146 return ret; 5147 } 5148 5149 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5150 struct btrfs_key *key, 5151 struct btrfs_chunk *chunk, int item_size) 5152 { 5153 struct btrfs_super_block *super_copy = fs_info->super_copy; 5154 struct btrfs_disk_key disk_key; 5155 u32 array_size; 5156 u8 *ptr; 5157 5158 lockdep_assert_held(&fs_info->chunk_mutex); 5159 5160 array_size = btrfs_super_sys_array_size(super_copy); 5161 if (array_size + item_size + sizeof(disk_key) 5162 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5163 return -EFBIG; 5164 5165 ptr = super_copy->sys_chunk_array + array_size; 5166 btrfs_cpu_key_to_disk(&disk_key, key); 5167 memcpy(ptr, &disk_key, sizeof(disk_key)); 5168 ptr += sizeof(disk_key); 5169 memcpy(ptr, chunk, item_size); 5170 item_size += sizeof(disk_key); 5171 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5172 5173 return 0; 5174 } 5175 5176 /* 5177 * sort the devices in descending order by max_avail, total_avail 5178 */ 5179 static int btrfs_cmp_device_info(const void *a, const void *b) 5180 { 5181 const struct btrfs_device_info *di_a = a; 5182 const struct btrfs_device_info *di_b = b; 5183 5184 if (di_a->max_avail > di_b->max_avail) 5185 return -1; 5186 if (di_a->max_avail < di_b->max_avail) 5187 return 1; 5188 if (di_a->total_avail > di_b->total_avail) 5189 return -1; 5190 if (di_a->total_avail < di_b->total_avail) 5191 return 1; 5192 return 0; 5193 } 5194 5195 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5196 { 5197 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5198 return; 5199 5200 btrfs_set_fs_incompat(info, RAID56); 5201 } 5202 5203 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5204 { 5205 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5206 return; 5207 5208 btrfs_set_fs_incompat(info, RAID1C34); 5209 } 5210 5211 /* 5212 * Structure used internally for btrfs_create_chunk() function. 5213 * Wraps needed parameters. 5214 */ 5215 struct alloc_chunk_ctl { 5216 u64 start; 5217 u64 type; 5218 /* Total number of stripes to allocate */ 5219 int num_stripes; 5220 /* sub_stripes info for map */ 5221 int sub_stripes; 5222 /* Stripes per device */ 5223 int dev_stripes; 5224 /* Maximum number of devices to use */ 5225 int devs_max; 5226 /* Minimum number of devices to use */ 5227 int devs_min; 5228 /* ndevs has to be a multiple of this */ 5229 int devs_increment; 5230 /* Number of copies */ 5231 int ncopies; 5232 /* Number of stripes worth of bytes to store parity information */ 5233 int nparity; 5234 u64 max_stripe_size; 5235 u64 max_chunk_size; 5236 u64 dev_extent_min; 5237 u64 stripe_size; 5238 u64 chunk_size; 5239 int ndevs; 5240 }; 5241 5242 static void init_alloc_chunk_ctl_policy_regular( 5243 struct btrfs_fs_devices *fs_devices, 5244 struct alloc_chunk_ctl *ctl) 5245 { 5246 struct btrfs_space_info *space_info; 5247 5248 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5249 ASSERT(space_info); 5250 5251 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5252 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5253 5254 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5255 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5256 5257 /* We don't want a chunk larger than 10% of writable space */ 5258 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5259 ctl->max_chunk_size); 5260 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5261 } 5262 5263 static void init_alloc_chunk_ctl_policy_zoned( 5264 struct btrfs_fs_devices *fs_devices, 5265 struct alloc_chunk_ctl *ctl) 5266 { 5267 u64 zone_size = fs_devices->fs_info->zone_size; 5268 u64 limit; 5269 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5270 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5271 u64 min_chunk_size = min_data_stripes * zone_size; 5272 u64 type = ctl->type; 5273 5274 ctl->max_stripe_size = zone_size; 5275 if (type & BTRFS_BLOCK_GROUP_DATA) { 5276 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5277 zone_size); 5278 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5279 ctl->max_chunk_size = ctl->max_stripe_size; 5280 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5281 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5282 ctl->devs_max = min_t(int, ctl->devs_max, 5283 BTRFS_MAX_DEVS_SYS_CHUNK); 5284 } else { 5285 BUG(); 5286 } 5287 5288 /* We don't want a chunk larger than 10% of writable space */ 5289 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5290 zone_size), 5291 min_chunk_size); 5292 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5293 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5294 } 5295 5296 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5297 struct alloc_chunk_ctl *ctl) 5298 { 5299 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5300 5301 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5302 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5303 ctl->devs_max = btrfs_raid_array[index].devs_max; 5304 if (!ctl->devs_max) 5305 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5306 ctl->devs_min = btrfs_raid_array[index].devs_min; 5307 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5308 ctl->ncopies = btrfs_raid_array[index].ncopies; 5309 ctl->nparity = btrfs_raid_array[index].nparity; 5310 ctl->ndevs = 0; 5311 5312 switch (fs_devices->chunk_alloc_policy) { 5313 case BTRFS_CHUNK_ALLOC_REGULAR: 5314 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5315 break; 5316 case BTRFS_CHUNK_ALLOC_ZONED: 5317 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5318 break; 5319 default: 5320 BUG(); 5321 } 5322 } 5323 5324 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5325 struct alloc_chunk_ctl *ctl, 5326 struct btrfs_device_info *devices_info) 5327 { 5328 struct btrfs_fs_info *info = fs_devices->fs_info; 5329 struct btrfs_device *device; 5330 u64 total_avail; 5331 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5332 int ret; 5333 int ndevs = 0; 5334 u64 max_avail; 5335 u64 dev_offset; 5336 5337 /* 5338 * in the first pass through the devices list, we gather information 5339 * about the available holes on each device. 5340 */ 5341 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5342 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5343 WARN(1, KERN_ERR 5344 "BTRFS: read-only device in alloc_list\n"); 5345 continue; 5346 } 5347 5348 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5349 &device->dev_state) || 5350 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5351 continue; 5352 5353 if (device->total_bytes > device->bytes_used) 5354 total_avail = device->total_bytes - device->bytes_used; 5355 else 5356 total_avail = 0; 5357 5358 /* If there is no space on this device, skip it. */ 5359 if (total_avail < ctl->dev_extent_min) 5360 continue; 5361 5362 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5363 &max_avail); 5364 if (ret && ret != -ENOSPC) 5365 return ret; 5366 5367 if (ret == 0) 5368 max_avail = dev_extent_want; 5369 5370 if (max_avail < ctl->dev_extent_min) { 5371 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5372 btrfs_debug(info, 5373 "%s: devid %llu has no free space, have=%llu want=%llu", 5374 __func__, device->devid, max_avail, 5375 ctl->dev_extent_min); 5376 continue; 5377 } 5378 5379 if (ndevs == fs_devices->rw_devices) { 5380 WARN(1, "%s: found more than %llu devices\n", 5381 __func__, fs_devices->rw_devices); 5382 break; 5383 } 5384 devices_info[ndevs].dev_offset = dev_offset; 5385 devices_info[ndevs].max_avail = max_avail; 5386 devices_info[ndevs].total_avail = total_avail; 5387 devices_info[ndevs].dev = device; 5388 ++ndevs; 5389 } 5390 ctl->ndevs = ndevs; 5391 5392 /* 5393 * now sort the devices by hole size / available space 5394 */ 5395 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5396 btrfs_cmp_device_info, NULL); 5397 5398 return 0; 5399 } 5400 5401 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5402 struct btrfs_device_info *devices_info) 5403 { 5404 /* Number of stripes that count for block group size */ 5405 int data_stripes; 5406 5407 /* 5408 * The primary goal is to maximize the number of stripes, so use as 5409 * many devices as possible, even if the stripes are not maximum sized. 5410 * 5411 * The DUP profile stores more than one stripe per device, the 5412 * max_avail is the total size so we have to adjust. 5413 */ 5414 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5415 ctl->dev_stripes); 5416 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5417 5418 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5419 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5420 5421 /* 5422 * Use the number of data stripes to figure out how big this chunk is 5423 * really going to be in terms of logical address space, and compare 5424 * that answer with the max chunk size. If it's higher, we try to 5425 * reduce stripe_size. 5426 */ 5427 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5428 /* 5429 * Reduce stripe_size, round it up to a 16MB boundary again and 5430 * then use it, unless it ends up being even bigger than the 5431 * previous value we had already. 5432 */ 5433 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5434 data_stripes), SZ_16M), 5435 ctl->stripe_size); 5436 } 5437 5438 /* Stripe size should not go beyond 1G. */ 5439 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5440 5441 /* Align to BTRFS_STRIPE_LEN */ 5442 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5443 ctl->chunk_size = ctl->stripe_size * data_stripes; 5444 5445 return 0; 5446 } 5447 5448 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5449 struct btrfs_device_info *devices_info) 5450 { 5451 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5452 /* Number of stripes that count for block group size */ 5453 int data_stripes; 5454 5455 /* 5456 * It should hold because: 5457 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5458 */ 5459 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5460 5461 ctl->stripe_size = zone_size; 5462 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5463 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5464 5465 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5466 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5467 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5468 ctl->stripe_size) + ctl->nparity, 5469 ctl->dev_stripes); 5470 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5471 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5472 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5473 } 5474 5475 ctl->chunk_size = ctl->stripe_size * data_stripes; 5476 5477 return 0; 5478 } 5479 5480 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5481 struct alloc_chunk_ctl *ctl, 5482 struct btrfs_device_info *devices_info) 5483 { 5484 struct btrfs_fs_info *info = fs_devices->fs_info; 5485 5486 /* 5487 * Round down to number of usable stripes, devs_increment can be any 5488 * number so we can't use round_down() that requires power of 2, while 5489 * rounddown is safe. 5490 */ 5491 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5492 5493 if (ctl->ndevs < ctl->devs_min) { 5494 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5495 btrfs_debug(info, 5496 "%s: not enough devices with free space: have=%d minimum required=%d", 5497 __func__, ctl->ndevs, ctl->devs_min); 5498 } 5499 return -ENOSPC; 5500 } 5501 5502 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5503 5504 switch (fs_devices->chunk_alloc_policy) { 5505 case BTRFS_CHUNK_ALLOC_REGULAR: 5506 return decide_stripe_size_regular(ctl, devices_info); 5507 case BTRFS_CHUNK_ALLOC_ZONED: 5508 return decide_stripe_size_zoned(ctl, devices_info); 5509 default: 5510 BUG(); 5511 } 5512 } 5513 5514 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5515 { 5516 for (int i = 0; i < map->num_stripes; i++) { 5517 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5518 struct btrfs_device *device = stripe->dev; 5519 5520 set_extent_bit(&device->alloc_state, stripe->physical, 5521 stripe->physical + map->stripe_size - 1, 5522 bits | EXTENT_NOWAIT, NULL); 5523 } 5524 } 5525 5526 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5527 { 5528 for (int i = 0; i < map->num_stripes; i++) { 5529 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5530 struct btrfs_device *device = stripe->dev; 5531 5532 __clear_extent_bit(&device->alloc_state, stripe->physical, 5533 stripe->physical + map->stripe_size - 1, 5534 bits | EXTENT_NOWAIT, 5535 NULL, NULL); 5536 } 5537 } 5538 5539 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5540 { 5541 write_lock(&fs_info->mapping_tree_lock); 5542 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5543 RB_CLEAR_NODE(&map->rb_node); 5544 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5545 write_unlock(&fs_info->mapping_tree_lock); 5546 5547 /* Once for the tree reference. */ 5548 btrfs_free_chunk_map(map); 5549 } 5550 5551 EXPORT_FOR_TESTS 5552 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5553 { 5554 struct rb_node **p; 5555 struct rb_node *parent = NULL; 5556 bool leftmost = true; 5557 5558 write_lock(&fs_info->mapping_tree_lock); 5559 p = &fs_info->mapping_tree.rb_root.rb_node; 5560 while (*p) { 5561 struct btrfs_chunk_map *entry; 5562 5563 parent = *p; 5564 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node); 5565 5566 if (map->start < entry->start) { 5567 p = &(*p)->rb_left; 5568 } else if (map->start > entry->start) { 5569 p = &(*p)->rb_right; 5570 leftmost = false; 5571 } else { 5572 write_unlock(&fs_info->mapping_tree_lock); 5573 return -EEXIST; 5574 } 5575 } 5576 rb_link_node(&map->rb_node, parent, p); 5577 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost); 5578 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5579 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5580 write_unlock(&fs_info->mapping_tree_lock); 5581 5582 return 0; 5583 } 5584 5585 EXPORT_FOR_TESTS 5586 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5587 { 5588 struct btrfs_chunk_map *map; 5589 5590 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5591 if (!map) 5592 return NULL; 5593 5594 refcount_set(&map->refs, 1); 5595 RB_CLEAR_NODE(&map->rb_node); 5596 5597 return map; 5598 } 5599 5600 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp) 5601 { 5602 const int size = btrfs_chunk_map_size(map->num_stripes); 5603 struct btrfs_chunk_map *clone; 5604 5605 clone = kmemdup(map, size, gfp); 5606 if (!clone) 5607 return NULL; 5608 5609 refcount_set(&clone->refs, 1); 5610 RB_CLEAR_NODE(&clone->rb_node); 5611 5612 return clone; 5613 } 5614 5615 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5616 struct alloc_chunk_ctl *ctl, 5617 struct btrfs_device_info *devices_info) 5618 { 5619 struct btrfs_fs_info *info = trans->fs_info; 5620 struct btrfs_chunk_map *map; 5621 struct btrfs_block_group *block_group; 5622 u64 start = ctl->start; 5623 u64 type = ctl->type; 5624 int ret; 5625 int i; 5626 int j; 5627 5628 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5629 if (!map) 5630 return ERR_PTR(-ENOMEM); 5631 5632 map->start = start; 5633 map->chunk_len = ctl->chunk_size; 5634 map->stripe_size = ctl->stripe_size; 5635 map->type = type; 5636 map->io_align = BTRFS_STRIPE_LEN; 5637 map->io_width = BTRFS_STRIPE_LEN; 5638 map->sub_stripes = ctl->sub_stripes; 5639 map->num_stripes = ctl->num_stripes; 5640 5641 for (i = 0; i < ctl->ndevs; ++i) { 5642 for (j = 0; j < ctl->dev_stripes; ++j) { 5643 int s = i * ctl->dev_stripes + j; 5644 map->stripes[s].dev = devices_info[i].dev; 5645 map->stripes[s].physical = devices_info[i].dev_offset + 5646 j * ctl->stripe_size; 5647 } 5648 } 5649 5650 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5651 5652 ret = btrfs_add_chunk_map(info, map); 5653 if (ret) { 5654 btrfs_free_chunk_map(map); 5655 return ERR_PTR(ret); 5656 } 5657 5658 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5659 if (IS_ERR(block_group)) { 5660 btrfs_remove_chunk_map(info, map); 5661 return block_group; 5662 } 5663 5664 for (int i = 0; i < map->num_stripes; i++) { 5665 struct btrfs_device *dev = map->stripes[i].dev; 5666 5667 btrfs_device_set_bytes_used(dev, 5668 dev->bytes_used + ctl->stripe_size); 5669 if (list_empty(&dev->post_commit_list)) 5670 list_add_tail(&dev->post_commit_list, 5671 &trans->transaction->dev_update_list); 5672 } 5673 5674 atomic64_sub(ctl->stripe_size * map->num_stripes, 5675 &info->free_chunk_space); 5676 5677 check_raid56_incompat_flag(info, type); 5678 check_raid1c34_incompat_flag(info, type); 5679 5680 return block_group; 5681 } 5682 5683 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5684 u64 type) 5685 { 5686 struct btrfs_fs_info *info = trans->fs_info; 5687 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5688 struct btrfs_device_info *devices_info = NULL; 5689 struct alloc_chunk_ctl ctl; 5690 struct btrfs_block_group *block_group; 5691 int ret; 5692 5693 lockdep_assert_held(&info->chunk_mutex); 5694 5695 if (!alloc_profile_is_valid(type, 0)) { 5696 ASSERT(0); 5697 return ERR_PTR(-EINVAL); 5698 } 5699 5700 if (list_empty(&fs_devices->alloc_list)) { 5701 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5702 btrfs_debug(info, "%s: no writable device", __func__); 5703 return ERR_PTR(-ENOSPC); 5704 } 5705 5706 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5707 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5708 ASSERT(0); 5709 return ERR_PTR(-EINVAL); 5710 } 5711 5712 ctl.start = find_next_chunk(info); 5713 ctl.type = type; 5714 init_alloc_chunk_ctl(fs_devices, &ctl); 5715 5716 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5717 GFP_NOFS); 5718 if (!devices_info) 5719 return ERR_PTR(-ENOMEM); 5720 5721 ret = gather_device_info(fs_devices, &ctl, devices_info); 5722 if (ret < 0) { 5723 block_group = ERR_PTR(ret); 5724 goto out; 5725 } 5726 5727 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5728 if (ret < 0) { 5729 block_group = ERR_PTR(ret); 5730 goto out; 5731 } 5732 5733 block_group = create_chunk(trans, &ctl, devices_info); 5734 5735 out: 5736 kfree(devices_info); 5737 return block_group; 5738 } 5739 5740 /* 5741 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5742 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5743 * chunks. 5744 * 5745 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5746 * phases. 5747 */ 5748 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5749 struct btrfs_block_group *bg) 5750 { 5751 struct btrfs_fs_info *fs_info = trans->fs_info; 5752 struct btrfs_root *chunk_root = fs_info->chunk_root; 5753 struct btrfs_key key; 5754 struct btrfs_chunk *chunk; 5755 struct btrfs_stripe *stripe; 5756 struct btrfs_chunk_map *map; 5757 size_t item_size; 5758 int i; 5759 int ret; 5760 5761 /* 5762 * We take the chunk_mutex for 2 reasons: 5763 * 5764 * 1) Updates and insertions in the chunk btree must be done while holding 5765 * the chunk_mutex, as well as updating the system chunk array in the 5766 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5767 * details; 5768 * 5769 * 2) To prevent races with the final phase of a device replace operation 5770 * that replaces the device object associated with the map's stripes, 5771 * because the device object's id can change at any time during that 5772 * final phase of the device replace operation 5773 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5774 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5775 * which would cause a failure when updating the device item, which does 5776 * not exists, or persisting a stripe of the chunk item with such ID. 5777 * Here we can't use the device_list_mutex because our caller already 5778 * has locked the chunk_mutex, and the final phase of device replace 5779 * acquires both mutexes - first the device_list_mutex and then the 5780 * chunk_mutex. Using any of those two mutexes protects us from a 5781 * concurrent device replace. 5782 */ 5783 lockdep_assert_held(&fs_info->chunk_mutex); 5784 5785 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5786 if (IS_ERR(map)) { 5787 ret = PTR_ERR(map); 5788 btrfs_abort_transaction(trans, ret); 5789 return ret; 5790 } 5791 5792 item_size = btrfs_chunk_item_size(map->num_stripes); 5793 5794 chunk = kzalloc(item_size, GFP_NOFS); 5795 if (!chunk) { 5796 ret = -ENOMEM; 5797 btrfs_abort_transaction(trans, ret); 5798 goto out; 5799 } 5800 5801 for (i = 0; i < map->num_stripes; i++) { 5802 struct btrfs_device *device = map->stripes[i].dev; 5803 5804 ret = btrfs_update_device(trans, device); 5805 if (ret) 5806 goto out; 5807 } 5808 5809 stripe = &chunk->stripe; 5810 for (i = 0; i < map->num_stripes; i++) { 5811 struct btrfs_device *device = map->stripes[i].dev; 5812 const u64 dev_offset = map->stripes[i].physical; 5813 5814 btrfs_set_stack_stripe_devid(stripe, device->devid); 5815 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5816 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5817 stripe++; 5818 } 5819 5820 btrfs_set_stack_chunk_length(chunk, bg->length); 5821 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5822 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5823 btrfs_set_stack_chunk_type(chunk, map->type); 5824 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5825 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5826 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5827 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5828 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5829 5830 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5831 key.type = BTRFS_CHUNK_ITEM_KEY; 5832 key.offset = bg->start; 5833 5834 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5835 if (ret) 5836 goto out; 5837 5838 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5839 5840 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5841 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5842 if (ret) 5843 goto out; 5844 } 5845 5846 out: 5847 kfree(chunk); 5848 btrfs_free_chunk_map(map); 5849 return ret; 5850 } 5851 5852 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5853 { 5854 struct btrfs_fs_info *fs_info = trans->fs_info; 5855 u64 alloc_profile; 5856 struct btrfs_block_group *meta_bg; 5857 struct btrfs_block_group *sys_bg; 5858 5859 /* 5860 * When adding a new device for sprouting, the seed device is read-only 5861 * so we must first allocate a metadata and a system chunk. But before 5862 * adding the block group items to the extent, device and chunk btrees, 5863 * we must first: 5864 * 5865 * 1) Create both chunks without doing any changes to the btrees, as 5866 * otherwise we would get -ENOSPC since the block groups from the 5867 * seed device are read-only; 5868 * 5869 * 2) Add the device item for the new sprout device - finishing the setup 5870 * of a new block group requires updating the device item in the chunk 5871 * btree, so it must exist when we attempt to do it. The previous step 5872 * ensures this does not fail with -ENOSPC. 5873 * 5874 * After that we can add the block group items to their btrees: 5875 * update existing device item in the chunk btree, add a new block group 5876 * item to the extent btree, add a new chunk item to the chunk btree and 5877 * finally add the new device extent items to the devices btree. 5878 */ 5879 5880 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5881 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5882 if (IS_ERR(meta_bg)) 5883 return PTR_ERR(meta_bg); 5884 5885 alloc_profile = btrfs_system_alloc_profile(fs_info); 5886 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5887 if (IS_ERR(sys_bg)) 5888 return PTR_ERR(sys_bg); 5889 5890 return 0; 5891 } 5892 5893 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5894 { 5895 const int index = btrfs_bg_flags_to_raid_index(map->type); 5896 5897 return btrfs_raid_array[index].tolerated_failures; 5898 } 5899 5900 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5901 { 5902 struct btrfs_chunk_map *map; 5903 int miss_ndevs = 0; 5904 int i; 5905 bool ret = true; 5906 5907 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5908 if (IS_ERR(map)) 5909 return false; 5910 5911 for (i = 0; i < map->num_stripes; i++) { 5912 if (test_bit(BTRFS_DEV_STATE_MISSING, 5913 &map->stripes[i].dev->dev_state)) { 5914 miss_ndevs++; 5915 continue; 5916 } 5917 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5918 &map->stripes[i].dev->dev_state)) { 5919 ret = false; 5920 goto end; 5921 } 5922 } 5923 5924 /* 5925 * If the number of missing devices is larger than max errors, we can 5926 * not write the data into that chunk successfully. 5927 */ 5928 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5929 ret = false; 5930 end: 5931 btrfs_free_chunk_map(map); 5932 return ret; 5933 } 5934 5935 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5936 { 5937 write_lock(&fs_info->mapping_tree_lock); 5938 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5939 struct btrfs_chunk_map *map; 5940 struct rb_node *node; 5941 5942 node = rb_first_cached(&fs_info->mapping_tree); 5943 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5944 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5945 RB_CLEAR_NODE(&map->rb_node); 5946 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5947 /* Once for the tree ref. */ 5948 btrfs_free_chunk_map(map); 5949 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5950 } 5951 write_unlock(&fs_info->mapping_tree_lock); 5952 } 5953 5954 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5955 { 5956 struct btrfs_chunk_map *map; 5957 enum btrfs_raid_types index; 5958 int ret = 1; 5959 5960 map = btrfs_get_chunk_map(fs_info, logical, len); 5961 if (IS_ERR(map)) 5962 /* 5963 * We could return errors for these cases, but that could get 5964 * ugly and we'd probably do the same thing which is just not do 5965 * anything else and exit, so return 1 so the callers don't try 5966 * to use other copies. 5967 */ 5968 return 1; 5969 5970 index = btrfs_bg_flags_to_raid_index(map->type); 5971 5972 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5973 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5974 ret = btrfs_raid_array[index].ncopies; 5975 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5976 ret = 2; 5977 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5978 /* 5979 * There could be two corrupted data stripes, we need 5980 * to loop retry in order to rebuild the correct data. 5981 * 5982 * Fail a stripe at a time on every retry except the 5983 * stripe under reconstruction. 5984 */ 5985 ret = map->num_stripes; 5986 btrfs_free_chunk_map(map); 5987 return ret; 5988 } 5989 5990 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5991 u64 logical) 5992 { 5993 struct btrfs_chunk_map *map; 5994 unsigned long len = fs_info->sectorsize; 5995 5996 if (!btrfs_fs_incompat(fs_info, RAID56)) 5997 return len; 5998 5999 map = btrfs_get_chunk_map(fs_info, logical, len); 6000 6001 if (!WARN_ON(IS_ERR(map))) { 6002 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6003 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6004 btrfs_free_chunk_map(map); 6005 } 6006 return len; 6007 } 6008 6009 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 6010 { 6011 struct btrfs_chunk_map *map; 6012 int ret = 0; 6013 6014 if (!btrfs_fs_incompat(fs_info, RAID56)) 6015 return 0; 6016 6017 map = btrfs_get_chunk_map(fs_info, logical, len); 6018 6019 if (!WARN_ON(IS_ERR(map))) { 6020 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6021 ret = 1; 6022 btrfs_free_chunk_map(map); 6023 } 6024 return ret; 6025 } 6026 6027 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6028 struct btrfs_chunk_map *map, int first, 6029 int dev_replace_is_ongoing) 6030 { 6031 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6032 int i; 6033 int num_stripes; 6034 int preferred_mirror; 6035 int tolerance; 6036 struct btrfs_device *srcdev; 6037 6038 ASSERT((map->type & 6039 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 6040 6041 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6042 num_stripes = map->sub_stripes; 6043 else 6044 num_stripes = map->num_stripes; 6045 6046 switch (policy) { 6047 default: 6048 /* Shouldn't happen, just warn and use pid instead of failing */ 6049 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6050 policy); 6051 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6052 fallthrough; 6053 case BTRFS_READ_POLICY_PID: 6054 preferred_mirror = first + (current->pid % num_stripes); 6055 break; 6056 } 6057 6058 if (dev_replace_is_ongoing && 6059 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6060 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6061 srcdev = fs_info->dev_replace.srcdev; 6062 else 6063 srcdev = NULL; 6064 6065 /* 6066 * try to avoid the drive that is the source drive for a 6067 * dev-replace procedure, only choose it if no other non-missing 6068 * mirror is available 6069 */ 6070 for (tolerance = 0; tolerance < 2; tolerance++) { 6071 if (map->stripes[preferred_mirror].dev->bdev && 6072 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6073 return preferred_mirror; 6074 for (i = first; i < first + num_stripes; i++) { 6075 if (map->stripes[i].dev->bdev && 6076 (tolerance || map->stripes[i].dev != srcdev)) 6077 return i; 6078 } 6079 } 6080 6081 /* we couldn't find one that doesn't fail. Just return something 6082 * and the io error handling code will clean up eventually 6083 */ 6084 return preferred_mirror; 6085 } 6086 6087 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6088 u64 logical, 6089 u16 total_stripes) 6090 { 6091 struct btrfs_io_context *bioc; 6092 6093 bioc = kzalloc( 6094 /* The size of btrfs_io_context */ 6095 sizeof(struct btrfs_io_context) + 6096 /* Plus the variable array for the stripes */ 6097 sizeof(struct btrfs_io_stripe) * (total_stripes), 6098 GFP_NOFS); 6099 6100 if (!bioc) 6101 return NULL; 6102 6103 refcount_set(&bioc->refs, 1); 6104 6105 bioc->fs_info = fs_info; 6106 bioc->replace_stripe_src = -1; 6107 bioc->full_stripe_logical = (u64)-1; 6108 bioc->logical = logical; 6109 6110 return bioc; 6111 } 6112 6113 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6114 { 6115 WARN_ON(!refcount_read(&bioc->refs)); 6116 refcount_inc(&bioc->refs); 6117 } 6118 6119 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6120 { 6121 if (!bioc) 6122 return; 6123 if (refcount_dec_and_test(&bioc->refs)) 6124 kfree(bioc); 6125 } 6126 6127 /* 6128 * Please note that, discard won't be sent to target device of device 6129 * replace. 6130 */ 6131 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6132 u64 logical, u64 *length_ret, 6133 u32 *num_stripes) 6134 { 6135 struct btrfs_chunk_map *map; 6136 struct btrfs_discard_stripe *stripes; 6137 u64 length = *length_ret; 6138 u64 offset; 6139 u32 stripe_nr; 6140 u32 stripe_nr_end; 6141 u32 stripe_cnt; 6142 u64 stripe_end_offset; 6143 u64 stripe_offset; 6144 u32 stripe_index; 6145 u32 factor = 0; 6146 u32 sub_stripes = 0; 6147 u32 stripes_per_dev = 0; 6148 u32 remaining_stripes = 0; 6149 u32 last_stripe = 0; 6150 int ret; 6151 int i; 6152 6153 map = btrfs_get_chunk_map(fs_info, logical, length); 6154 if (IS_ERR(map)) 6155 return ERR_CAST(map); 6156 6157 /* we don't discard raid56 yet */ 6158 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6159 ret = -EOPNOTSUPP; 6160 goto out_free_map; 6161 } 6162 6163 offset = logical - map->start; 6164 length = min_t(u64, map->start + map->chunk_len - logical, length); 6165 *length_ret = length; 6166 6167 /* 6168 * stripe_nr counts the total number of stripes we have to stride 6169 * to get to this block 6170 */ 6171 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6172 6173 /* stripe_offset is the offset of this block in its stripe */ 6174 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6175 6176 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6177 BTRFS_STRIPE_LEN_SHIFT; 6178 stripe_cnt = stripe_nr_end - stripe_nr; 6179 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6180 (offset + length); 6181 /* 6182 * after this, stripe_nr is the number of stripes on this 6183 * device we have to walk to find the data, and stripe_index is 6184 * the number of our device in the stripe array 6185 */ 6186 *num_stripes = 1; 6187 stripe_index = 0; 6188 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6189 BTRFS_BLOCK_GROUP_RAID10)) { 6190 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6191 sub_stripes = 1; 6192 else 6193 sub_stripes = map->sub_stripes; 6194 6195 factor = map->num_stripes / sub_stripes; 6196 *num_stripes = min_t(u64, map->num_stripes, 6197 sub_stripes * stripe_cnt); 6198 stripe_index = stripe_nr % factor; 6199 stripe_nr /= factor; 6200 stripe_index *= sub_stripes; 6201 6202 remaining_stripes = stripe_cnt % factor; 6203 stripes_per_dev = stripe_cnt / factor; 6204 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6205 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6206 BTRFS_BLOCK_GROUP_DUP)) { 6207 *num_stripes = map->num_stripes; 6208 } else { 6209 stripe_index = stripe_nr % map->num_stripes; 6210 stripe_nr /= map->num_stripes; 6211 } 6212 6213 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6214 if (!stripes) { 6215 ret = -ENOMEM; 6216 goto out_free_map; 6217 } 6218 6219 for (i = 0; i < *num_stripes; i++) { 6220 stripes[i].physical = 6221 map->stripes[stripe_index].physical + 6222 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6223 stripes[i].dev = map->stripes[stripe_index].dev; 6224 6225 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6226 BTRFS_BLOCK_GROUP_RAID10)) { 6227 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6228 6229 if (i / sub_stripes < remaining_stripes) 6230 stripes[i].length += BTRFS_STRIPE_LEN; 6231 6232 /* 6233 * Special for the first stripe and 6234 * the last stripe: 6235 * 6236 * |-------|...|-------| 6237 * |----------| 6238 * off end_off 6239 */ 6240 if (i < sub_stripes) 6241 stripes[i].length -= stripe_offset; 6242 6243 if (stripe_index >= last_stripe && 6244 stripe_index <= (last_stripe + 6245 sub_stripes - 1)) 6246 stripes[i].length -= stripe_end_offset; 6247 6248 if (i == sub_stripes - 1) 6249 stripe_offset = 0; 6250 } else { 6251 stripes[i].length = length; 6252 } 6253 6254 stripe_index++; 6255 if (stripe_index == map->num_stripes) { 6256 stripe_index = 0; 6257 stripe_nr++; 6258 } 6259 } 6260 6261 btrfs_free_chunk_map(map); 6262 return stripes; 6263 out_free_map: 6264 btrfs_free_chunk_map(map); 6265 return ERR_PTR(ret); 6266 } 6267 6268 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6269 { 6270 struct btrfs_block_group *cache; 6271 bool ret; 6272 6273 /* Non zoned filesystem does not use "to_copy" flag */ 6274 if (!btrfs_is_zoned(fs_info)) 6275 return false; 6276 6277 cache = btrfs_lookup_block_group(fs_info, logical); 6278 6279 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6280 6281 btrfs_put_block_group(cache); 6282 return ret; 6283 } 6284 6285 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6286 struct btrfs_io_context *bioc, 6287 struct btrfs_dev_replace *dev_replace, 6288 u64 logical, 6289 int *num_stripes_ret, int *max_errors_ret) 6290 { 6291 u64 srcdev_devid = dev_replace->srcdev->devid; 6292 /* 6293 * At this stage, num_stripes is still the real number of stripes, 6294 * excluding the duplicated stripes. 6295 */ 6296 int num_stripes = *num_stripes_ret; 6297 int nr_extra_stripes = 0; 6298 int max_errors = *max_errors_ret; 6299 int i; 6300 6301 /* 6302 * A block group which has "to_copy" set will eventually be copied by 6303 * the dev-replace process. We can avoid cloning IO here. 6304 */ 6305 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6306 return; 6307 6308 /* 6309 * Duplicate the write operations while the dev-replace procedure is 6310 * running. Since the copying of the old disk to the new disk takes 6311 * place at run time while the filesystem is mounted writable, the 6312 * regular write operations to the old disk have to be duplicated to go 6313 * to the new disk as well. 6314 * 6315 * Note that device->missing is handled by the caller, and that the 6316 * write to the old disk is already set up in the stripes array. 6317 */ 6318 for (i = 0; i < num_stripes; i++) { 6319 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6320 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6321 6322 if (old->dev->devid != srcdev_devid) 6323 continue; 6324 6325 new->physical = old->physical; 6326 new->dev = dev_replace->tgtdev; 6327 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6328 bioc->replace_stripe_src = i; 6329 nr_extra_stripes++; 6330 } 6331 6332 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6333 ASSERT(nr_extra_stripes <= 2); 6334 /* 6335 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6336 * replace. 6337 * If we have 2 extra stripes, only choose the one with smaller physical. 6338 */ 6339 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6340 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6341 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6342 6343 /* Only DUP can have two extra stripes. */ 6344 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6345 6346 /* 6347 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6348 * The extra stripe would still be there, but won't be accessed. 6349 */ 6350 if (first->physical > second->physical) { 6351 swap(second->physical, first->physical); 6352 swap(second->dev, first->dev); 6353 nr_extra_stripes--; 6354 } 6355 } 6356 6357 *num_stripes_ret = num_stripes + nr_extra_stripes; 6358 *max_errors_ret = max_errors + nr_extra_stripes; 6359 bioc->replace_nr_stripes = nr_extra_stripes; 6360 } 6361 6362 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6363 struct btrfs_io_geometry *io_geom) 6364 { 6365 /* 6366 * Stripe_nr is the stripe where this block falls. stripe_offset is 6367 * the offset of this block in its stripe. 6368 */ 6369 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6370 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6371 ASSERT(io_geom->stripe_offset < U32_MAX); 6372 6373 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6374 unsigned long full_stripe_len = 6375 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6376 6377 /* 6378 * For full stripe start, we use previously calculated 6379 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6380 * STRIPE_LEN. 6381 * 6382 * By this we can avoid u64 division completely. And we have 6383 * to go rounddown(), not round_down(), as nr_data_stripes is 6384 * not ensured to be power of 2. 6385 */ 6386 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6387 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6388 6389 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6390 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6391 /* 6392 * For writes to RAID56, allow to write a full stripe set, but 6393 * no straddling of stripe sets. 6394 */ 6395 if (io_geom->op == BTRFS_MAP_WRITE) 6396 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6397 } 6398 6399 /* 6400 * For other RAID types and for RAID56 reads, allow a single stripe (on 6401 * a single disk). 6402 */ 6403 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6404 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6405 return U64_MAX; 6406 } 6407 6408 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6409 u64 *length, struct btrfs_io_stripe *dst, 6410 struct btrfs_chunk_map *map, 6411 struct btrfs_io_geometry *io_geom) 6412 { 6413 dst->dev = map->stripes[io_geom->stripe_index].dev; 6414 6415 if (io_geom->op == BTRFS_MAP_READ && 6416 btrfs_need_stripe_tree_update(fs_info, map->type)) 6417 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6418 map->type, 6419 io_geom->stripe_index, dst); 6420 6421 dst->physical = map->stripes[io_geom->stripe_index].physical + 6422 io_geom->stripe_offset + 6423 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6424 return 0; 6425 } 6426 6427 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6428 const struct btrfs_io_stripe *smap, 6429 const struct btrfs_chunk_map *map, 6430 int num_alloc_stripes, 6431 enum btrfs_map_op op, int mirror_num) 6432 { 6433 if (!smap) 6434 return false; 6435 6436 if (num_alloc_stripes != 1) 6437 return false; 6438 6439 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ) 6440 return false; 6441 6442 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) 6443 return false; 6444 6445 return true; 6446 } 6447 6448 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6449 struct btrfs_io_geometry *io_geom) 6450 { 6451 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6452 io_geom->stripe_nr /= map->num_stripes; 6453 if (io_geom->op == BTRFS_MAP_READ) 6454 io_geom->mirror_num = 1; 6455 } 6456 6457 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6458 struct btrfs_chunk_map *map, 6459 struct btrfs_io_geometry *io_geom, 6460 bool dev_replace_is_ongoing) 6461 { 6462 if (io_geom->op != BTRFS_MAP_READ) { 6463 io_geom->num_stripes = map->num_stripes; 6464 return; 6465 } 6466 6467 if (io_geom->mirror_num) { 6468 io_geom->stripe_index = io_geom->mirror_num - 1; 6469 return; 6470 } 6471 6472 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6473 dev_replace_is_ongoing); 6474 io_geom->mirror_num = io_geom->stripe_index + 1; 6475 } 6476 6477 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6478 struct btrfs_io_geometry *io_geom) 6479 { 6480 if (io_geom->op != BTRFS_MAP_READ) { 6481 io_geom->num_stripes = map->num_stripes; 6482 return; 6483 } 6484 6485 if (io_geom->mirror_num) { 6486 io_geom->stripe_index = io_geom->mirror_num - 1; 6487 return; 6488 } 6489 6490 io_geom->mirror_num = 1; 6491 } 6492 6493 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6494 struct btrfs_chunk_map *map, 6495 struct btrfs_io_geometry *io_geom, 6496 bool dev_replace_is_ongoing) 6497 { 6498 u32 factor = map->num_stripes / map->sub_stripes; 6499 int old_stripe_index; 6500 6501 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6502 io_geom->stripe_nr /= factor; 6503 6504 if (io_geom->op != BTRFS_MAP_READ) { 6505 io_geom->num_stripes = map->sub_stripes; 6506 return; 6507 } 6508 6509 if (io_geom->mirror_num) { 6510 io_geom->stripe_index += io_geom->mirror_num - 1; 6511 return; 6512 } 6513 6514 old_stripe_index = io_geom->stripe_index; 6515 io_geom->stripe_index = find_live_mirror(fs_info, map, 6516 io_geom->stripe_index, 6517 dev_replace_is_ongoing); 6518 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6519 } 6520 6521 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6522 struct btrfs_io_geometry *io_geom, 6523 u64 logical, u64 *length) 6524 { 6525 int data_stripes = nr_data_stripes(map); 6526 6527 /* 6528 * Needs full stripe mapping. 6529 * 6530 * Push stripe_nr back to the start of the full stripe For those cases 6531 * needing a full stripe, @stripe_nr is the full stripe number. 6532 * 6533 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6534 * that can be expensive. Here we just divide @stripe_nr with 6535 * @data_stripes. 6536 */ 6537 io_geom->stripe_nr /= data_stripes; 6538 6539 /* RAID[56] write or recovery. Return all stripes */ 6540 io_geom->num_stripes = map->num_stripes; 6541 io_geom->max_errors = btrfs_chunk_max_errors(map); 6542 6543 /* Return the length to the full stripe end. */ 6544 *length = min(logical + *length, 6545 io_geom->raid56_full_stripe_start + map->start + 6546 btrfs_stripe_nr_to_offset(data_stripes)) - 6547 logical; 6548 io_geom->stripe_index = 0; 6549 io_geom->stripe_offset = 0; 6550 } 6551 6552 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6553 struct btrfs_io_geometry *io_geom) 6554 { 6555 int data_stripes = nr_data_stripes(map); 6556 6557 ASSERT(io_geom->mirror_num <= 1); 6558 /* Just grab the data stripe directly. */ 6559 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6560 io_geom->stripe_nr /= data_stripes; 6561 6562 /* We distribute the parity blocks across stripes. */ 6563 io_geom->stripe_index = 6564 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6565 6566 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6567 io_geom->mirror_num = 1; 6568 } 6569 6570 static void map_blocks_single(const struct btrfs_chunk_map *map, 6571 struct btrfs_io_geometry *io_geom) 6572 { 6573 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6574 io_geom->stripe_nr /= map->num_stripes; 6575 io_geom->mirror_num = io_geom->stripe_index + 1; 6576 } 6577 6578 /* 6579 * Map one logical range to one or more physical ranges. 6580 * 6581 * @length: (Mandatory) mapped length of this run. 6582 * One logical range can be split into different segments 6583 * due to factors like zones and RAID0/5/6/10 stripe 6584 * boundaries. 6585 * 6586 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6587 * which has one or more physical ranges (btrfs_io_stripe) 6588 * recorded inside. 6589 * Caller should call btrfs_put_bioc() to free it after use. 6590 * 6591 * @smap: (Optional) single physical range optimization. 6592 * If the map request can be fulfilled by one single 6593 * physical range, and this is parameter is not NULL, 6594 * then @bioc_ret would be NULL, and @smap would be 6595 * updated. 6596 * 6597 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6598 * value is 0. 6599 * 6600 * Mirror number 0 means to choose any live mirrors. 6601 * 6602 * For non-RAID56 profiles, non-zero mirror_num means 6603 * the Nth mirror. (e.g. mirror_num 1 means the first 6604 * copy). 6605 * 6606 * For RAID56 profile, mirror 1 means rebuild from P and 6607 * the remaining data stripes. 6608 * 6609 * For RAID6 profile, mirror > 2 means mark another 6610 * data/P stripe error and rebuild from the remaining 6611 * stripes.. 6612 */ 6613 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6614 u64 logical, u64 *length, 6615 struct btrfs_io_context **bioc_ret, 6616 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6617 { 6618 struct btrfs_chunk_map *map; 6619 struct btrfs_io_geometry io_geom = { 0 }; 6620 u64 map_offset; 6621 int i; 6622 int ret = 0; 6623 int num_copies; 6624 struct btrfs_io_context *bioc = NULL; 6625 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6626 int dev_replace_is_ongoing = 0; 6627 u16 num_alloc_stripes; 6628 u64 max_len; 6629 6630 ASSERT(bioc_ret); 6631 6632 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6633 io_geom.num_stripes = 1; 6634 io_geom.stripe_index = 0; 6635 io_geom.op = op; 6636 6637 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6638 if (io_geom.mirror_num > num_copies) 6639 return -EINVAL; 6640 6641 map = btrfs_get_chunk_map(fs_info, logical, *length); 6642 if (IS_ERR(map)) 6643 return PTR_ERR(map); 6644 6645 map_offset = logical - map->start; 6646 io_geom.raid56_full_stripe_start = (u64)-1; 6647 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6648 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6649 6650 down_read(&dev_replace->rwsem); 6651 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6652 /* 6653 * Hold the semaphore for read during the whole operation, write is 6654 * requested at commit time but must wait. 6655 */ 6656 if (!dev_replace_is_ongoing) 6657 up_read(&dev_replace->rwsem); 6658 6659 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6660 case BTRFS_BLOCK_GROUP_RAID0: 6661 map_blocks_raid0(map, &io_geom); 6662 break; 6663 case BTRFS_BLOCK_GROUP_RAID1: 6664 case BTRFS_BLOCK_GROUP_RAID1C3: 6665 case BTRFS_BLOCK_GROUP_RAID1C4: 6666 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6667 break; 6668 case BTRFS_BLOCK_GROUP_DUP: 6669 map_blocks_dup(map, &io_geom); 6670 break; 6671 case BTRFS_BLOCK_GROUP_RAID10: 6672 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6673 break; 6674 case BTRFS_BLOCK_GROUP_RAID5: 6675 case BTRFS_BLOCK_GROUP_RAID6: 6676 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6677 map_blocks_raid56_write(map, &io_geom, logical, length); 6678 else 6679 map_blocks_raid56_read(map, &io_geom); 6680 break; 6681 default: 6682 /* 6683 * After this, stripe_nr is the number of stripes on this 6684 * device we have to walk to find the data, and stripe_index is 6685 * the number of our device in the stripe array 6686 */ 6687 map_blocks_single(map, &io_geom); 6688 break; 6689 } 6690 if (io_geom.stripe_index >= map->num_stripes) { 6691 btrfs_crit(fs_info, 6692 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6693 io_geom.stripe_index, map->num_stripes); 6694 ret = -EINVAL; 6695 goto out; 6696 } 6697 6698 num_alloc_stripes = io_geom.num_stripes; 6699 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6700 op != BTRFS_MAP_READ) 6701 /* 6702 * For replace case, we need to add extra stripes for extra 6703 * duplicated stripes. 6704 * 6705 * For both WRITE and GET_READ_MIRRORS, we may have at most 6706 * 2 more stripes (DUP types, otherwise 1). 6707 */ 6708 num_alloc_stripes += 2; 6709 6710 /* 6711 * If this I/O maps to a single device, try to return the device and 6712 * physical block information on the stack instead of allocating an 6713 * I/O context structure. 6714 */ 6715 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op, 6716 io_geom.mirror_num)) { 6717 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6718 if (mirror_num_ret) 6719 *mirror_num_ret = io_geom.mirror_num; 6720 *bioc_ret = NULL; 6721 goto out; 6722 } 6723 6724 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6725 if (!bioc) { 6726 ret = -ENOMEM; 6727 goto out; 6728 } 6729 bioc->map_type = map->type; 6730 6731 /* 6732 * For RAID56 full map, we need to make sure the stripes[] follows the 6733 * rule that data stripes are all ordered, then followed with P and Q 6734 * (if we have). 6735 * 6736 * It's still mostly the same as other profiles, just with extra rotation. 6737 */ 6738 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6739 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6740 /* 6741 * For RAID56 @stripe_nr is already the number of full stripes 6742 * before us, which is also the rotation value (needs to modulo 6743 * with num_stripes). 6744 * 6745 * In this case, we just add @stripe_nr with @i, then do the 6746 * modulo, to reduce one modulo call. 6747 */ 6748 bioc->full_stripe_logical = map->start + 6749 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6750 nr_data_stripes(map)); 6751 for (int i = 0; i < io_geom.num_stripes; i++) { 6752 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6753 u32 stripe_index; 6754 6755 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6756 dst->dev = map->stripes[stripe_index].dev; 6757 dst->physical = 6758 map->stripes[stripe_index].physical + 6759 io_geom.stripe_offset + 6760 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6761 } 6762 } else { 6763 /* 6764 * For all other non-RAID56 profiles, just copy the target 6765 * stripe into the bioc. 6766 */ 6767 for (i = 0; i < io_geom.num_stripes; i++) { 6768 ret = set_io_stripe(fs_info, logical, length, 6769 &bioc->stripes[i], map, &io_geom); 6770 if (ret < 0) 6771 break; 6772 io_geom.stripe_index++; 6773 } 6774 } 6775 6776 if (ret) { 6777 *bioc_ret = NULL; 6778 btrfs_put_bioc(bioc); 6779 goto out; 6780 } 6781 6782 if (op != BTRFS_MAP_READ) 6783 io_geom.max_errors = btrfs_chunk_max_errors(map); 6784 6785 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6786 op != BTRFS_MAP_READ) { 6787 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6788 &io_geom.num_stripes, &io_geom.max_errors); 6789 } 6790 6791 *bioc_ret = bioc; 6792 bioc->num_stripes = io_geom.num_stripes; 6793 bioc->max_errors = io_geom.max_errors; 6794 bioc->mirror_num = io_geom.mirror_num; 6795 6796 out: 6797 if (dev_replace_is_ongoing) { 6798 lockdep_assert_held(&dev_replace->rwsem); 6799 /* Unlock and let waiting writers proceed */ 6800 up_read(&dev_replace->rwsem); 6801 } 6802 btrfs_free_chunk_map(map); 6803 return ret; 6804 } 6805 6806 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6807 const struct btrfs_fs_devices *fs_devices) 6808 { 6809 if (args->fsid == NULL) 6810 return true; 6811 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6812 return true; 6813 return false; 6814 } 6815 6816 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6817 const struct btrfs_device *device) 6818 { 6819 if (args->missing) { 6820 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6821 !device->bdev) 6822 return true; 6823 return false; 6824 } 6825 6826 if (device->devid != args->devid) 6827 return false; 6828 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6829 return false; 6830 return true; 6831 } 6832 6833 /* 6834 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6835 * return NULL. 6836 * 6837 * If devid and uuid are both specified, the match must be exact, otherwise 6838 * only devid is used. 6839 */ 6840 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6841 const struct btrfs_dev_lookup_args *args) 6842 { 6843 struct btrfs_device *device; 6844 struct btrfs_fs_devices *seed_devs; 6845 6846 if (dev_args_match_fs_devices(args, fs_devices)) { 6847 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6848 if (dev_args_match_device(args, device)) 6849 return device; 6850 } 6851 } 6852 6853 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6854 if (!dev_args_match_fs_devices(args, seed_devs)) 6855 continue; 6856 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6857 if (dev_args_match_device(args, device)) 6858 return device; 6859 } 6860 } 6861 6862 return NULL; 6863 } 6864 6865 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6866 u64 devid, u8 *dev_uuid) 6867 { 6868 struct btrfs_device *device; 6869 unsigned int nofs_flag; 6870 6871 /* 6872 * We call this under the chunk_mutex, so we want to use NOFS for this 6873 * allocation, however we don't want to change btrfs_alloc_device() to 6874 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6875 * places. 6876 */ 6877 6878 nofs_flag = memalloc_nofs_save(); 6879 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6880 memalloc_nofs_restore(nofs_flag); 6881 if (IS_ERR(device)) 6882 return device; 6883 6884 list_add(&device->dev_list, &fs_devices->devices); 6885 device->fs_devices = fs_devices; 6886 fs_devices->num_devices++; 6887 6888 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6889 fs_devices->missing_devices++; 6890 6891 return device; 6892 } 6893 6894 /* 6895 * Allocate new device struct, set up devid and UUID. 6896 * 6897 * @fs_info: used only for generating a new devid, can be NULL if 6898 * devid is provided (i.e. @devid != NULL). 6899 * @devid: a pointer to devid for this device. If NULL a new devid 6900 * is generated. 6901 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6902 * is generated. 6903 * @path: a pointer to device path if available, NULL otherwise. 6904 * 6905 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6906 * on error. Returned struct is not linked onto any lists and must be 6907 * destroyed with btrfs_free_device. 6908 */ 6909 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6910 const u64 *devid, const u8 *uuid, 6911 const char *path) 6912 { 6913 struct btrfs_device *dev; 6914 u64 tmp; 6915 6916 if (WARN_ON(!devid && !fs_info)) 6917 return ERR_PTR(-EINVAL); 6918 6919 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6920 if (!dev) 6921 return ERR_PTR(-ENOMEM); 6922 6923 INIT_LIST_HEAD(&dev->dev_list); 6924 INIT_LIST_HEAD(&dev->dev_alloc_list); 6925 INIT_LIST_HEAD(&dev->post_commit_list); 6926 6927 atomic_set(&dev->dev_stats_ccnt, 0); 6928 btrfs_device_data_ordered_init(dev); 6929 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6930 6931 if (devid) 6932 tmp = *devid; 6933 else { 6934 int ret; 6935 6936 ret = find_next_devid(fs_info, &tmp); 6937 if (ret) { 6938 btrfs_free_device(dev); 6939 return ERR_PTR(ret); 6940 } 6941 } 6942 dev->devid = tmp; 6943 6944 if (uuid) 6945 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6946 else 6947 generate_random_uuid(dev->uuid); 6948 6949 if (path) { 6950 struct rcu_string *name; 6951 6952 name = rcu_string_strdup(path, GFP_KERNEL); 6953 if (!name) { 6954 btrfs_free_device(dev); 6955 return ERR_PTR(-ENOMEM); 6956 } 6957 rcu_assign_pointer(dev->name, name); 6958 } 6959 6960 return dev; 6961 } 6962 6963 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6964 u64 devid, u8 *uuid, bool error) 6965 { 6966 if (error) 6967 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6968 devid, uuid); 6969 else 6970 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6971 devid, uuid); 6972 } 6973 6974 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6975 { 6976 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6977 6978 return div_u64(map->chunk_len, data_stripes); 6979 } 6980 6981 #if BITS_PER_LONG == 32 6982 /* 6983 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6984 * can't be accessed on 32bit systems. 6985 * 6986 * This function do mount time check to reject the fs if it already has 6987 * metadata chunk beyond that limit. 6988 */ 6989 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6990 u64 logical, u64 length, u64 type) 6991 { 6992 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6993 return 0; 6994 6995 if (logical + length < MAX_LFS_FILESIZE) 6996 return 0; 6997 6998 btrfs_err_32bit_limit(fs_info); 6999 return -EOVERFLOW; 7000 } 7001 7002 /* 7003 * This is to give early warning for any metadata chunk reaching 7004 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7005 * Although we can still access the metadata, it's not going to be possible 7006 * once the limit is reached. 7007 */ 7008 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7009 u64 logical, u64 length, u64 type) 7010 { 7011 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7012 return; 7013 7014 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7015 return; 7016 7017 btrfs_warn_32bit_limit(fs_info); 7018 } 7019 #endif 7020 7021 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7022 u64 devid, u8 *uuid) 7023 { 7024 struct btrfs_device *dev; 7025 7026 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7027 btrfs_report_missing_device(fs_info, devid, uuid, true); 7028 return ERR_PTR(-ENOENT); 7029 } 7030 7031 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7032 if (IS_ERR(dev)) { 7033 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7034 devid, PTR_ERR(dev)); 7035 return dev; 7036 } 7037 btrfs_report_missing_device(fs_info, devid, uuid, false); 7038 7039 return dev; 7040 } 7041 7042 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7043 struct btrfs_chunk *chunk) 7044 { 7045 BTRFS_DEV_LOOKUP_ARGS(args); 7046 struct btrfs_fs_info *fs_info = leaf->fs_info; 7047 struct btrfs_chunk_map *map; 7048 u64 logical; 7049 u64 length; 7050 u64 devid; 7051 u64 type; 7052 u8 uuid[BTRFS_UUID_SIZE]; 7053 int index; 7054 int num_stripes; 7055 int ret; 7056 int i; 7057 7058 logical = key->offset; 7059 length = btrfs_chunk_length(leaf, chunk); 7060 type = btrfs_chunk_type(leaf, chunk); 7061 index = btrfs_bg_flags_to_raid_index(type); 7062 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7063 7064 #if BITS_PER_LONG == 32 7065 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7066 if (ret < 0) 7067 return ret; 7068 warn_32bit_meta_chunk(fs_info, logical, length, type); 7069 #endif 7070 7071 /* 7072 * Only need to verify chunk item if we're reading from sys chunk array, 7073 * as chunk item in tree block is already verified by tree-checker. 7074 */ 7075 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7076 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7077 if (ret) 7078 return ret; 7079 } 7080 7081 map = btrfs_find_chunk_map(fs_info, logical, 1); 7082 7083 /* already mapped? */ 7084 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7085 btrfs_free_chunk_map(map); 7086 return 0; 7087 } else if (map) { 7088 btrfs_free_chunk_map(map); 7089 } 7090 7091 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7092 if (!map) 7093 return -ENOMEM; 7094 7095 map->start = logical; 7096 map->chunk_len = length; 7097 map->num_stripes = num_stripes; 7098 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7099 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7100 map->type = type; 7101 /* 7102 * We can't use the sub_stripes value, as for profiles other than 7103 * RAID10, they may have 0 as sub_stripes for filesystems created by 7104 * older mkfs (<v5.4). 7105 * In that case, it can cause divide-by-zero errors later. 7106 * Since currently sub_stripes is fixed for each profile, let's 7107 * use the trusted value instead. 7108 */ 7109 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7110 map->verified_stripes = 0; 7111 map->stripe_size = btrfs_calc_stripe_length(map); 7112 for (i = 0; i < num_stripes; i++) { 7113 map->stripes[i].physical = 7114 btrfs_stripe_offset_nr(leaf, chunk, i); 7115 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7116 args.devid = devid; 7117 read_extent_buffer(leaf, uuid, (unsigned long) 7118 btrfs_stripe_dev_uuid_nr(chunk, i), 7119 BTRFS_UUID_SIZE); 7120 args.uuid = uuid; 7121 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7122 if (!map->stripes[i].dev) { 7123 map->stripes[i].dev = handle_missing_device(fs_info, 7124 devid, uuid); 7125 if (IS_ERR(map->stripes[i].dev)) { 7126 ret = PTR_ERR(map->stripes[i].dev); 7127 btrfs_free_chunk_map(map); 7128 return ret; 7129 } 7130 } 7131 7132 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7133 &(map->stripes[i].dev->dev_state)); 7134 } 7135 7136 ret = btrfs_add_chunk_map(fs_info, map); 7137 if (ret < 0) { 7138 btrfs_err(fs_info, 7139 "failed to add chunk map, start=%llu len=%llu: %d", 7140 map->start, map->chunk_len, ret); 7141 } 7142 7143 return ret; 7144 } 7145 7146 static void fill_device_from_item(struct extent_buffer *leaf, 7147 struct btrfs_dev_item *dev_item, 7148 struct btrfs_device *device) 7149 { 7150 unsigned long ptr; 7151 7152 device->devid = btrfs_device_id(leaf, dev_item); 7153 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7154 device->total_bytes = device->disk_total_bytes; 7155 device->commit_total_bytes = device->disk_total_bytes; 7156 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7157 device->commit_bytes_used = device->bytes_used; 7158 device->type = btrfs_device_type(leaf, dev_item); 7159 device->io_align = btrfs_device_io_align(leaf, dev_item); 7160 device->io_width = btrfs_device_io_width(leaf, dev_item); 7161 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7162 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7163 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7164 7165 ptr = btrfs_device_uuid(dev_item); 7166 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7167 } 7168 7169 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7170 u8 *fsid) 7171 { 7172 struct btrfs_fs_devices *fs_devices; 7173 int ret; 7174 7175 lockdep_assert_held(&uuid_mutex); 7176 ASSERT(fsid); 7177 7178 /* This will match only for multi-device seed fs */ 7179 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7180 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7181 return fs_devices; 7182 7183 7184 fs_devices = find_fsid(fsid, NULL); 7185 if (!fs_devices) { 7186 if (!btrfs_test_opt(fs_info, DEGRADED)) 7187 return ERR_PTR(-ENOENT); 7188 7189 fs_devices = alloc_fs_devices(fsid); 7190 if (IS_ERR(fs_devices)) 7191 return fs_devices; 7192 7193 fs_devices->seeding = true; 7194 fs_devices->opened = 1; 7195 return fs_devices; 7196 } 7197 7198 /* 7199 * Upon first call for a seed fs fsid, just create a private copy of the 7200 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7201 */ 7202 fs_devices = clone_fs_devices(fs_devices); 7203 if (IS_ERR(fs_devices)) 7204 return fs_devices; 7205 7206 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7207 if (ret) { 7208 free_fs_devices(fs_devices); 7209 return ERR_PTR(ret); 7210 } 7211 7212 if (!fs_devices->seeding) { 7213 close_fs_devices(fs_devices); 7214 free_fs_devices(fs_devices); 7215 return ERR_PTR(-EINVAL); 7216 } 7217 7218 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7219 7220 return fs_devices; 7221 } 7222 7223 static int read_one_dev(struct extent_buffer *leaf, 7224 struct btrfs_dev_item *dev_item) 7225 { 7226 BTRFS_DEV_LOOKUP_ARGS(args); 7227 struct btrfs_fs_info *fs_info = leaf->fs_info; 7228 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7229 struct btrfs_device *device; 7230 u64 devid; 7231 int ret; 7232 u8 fs_uuid[BTRFS_FSID_SIZE]; 7233 u8 dev_uuid[BTRFS_UUID_SIZE]; 7234 7235 devid = btrfs_device_id(leaf, dev_item); 7236 args.devid = devid; 7237 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7238 BTRFS_UUID_SIZE); 7239 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7240 BTRFS_FSID_SIZE); 7241 args.uuid = dev_uuid; 7242 args.fsid = fs_uuid; 7243 7244 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7245 fs_devices = open_seed_devices(fs_info, fs_uuid); 7246 if (IS_ERR(fs_devices)) 7247 return PTR_ERR(fs_devices); 7248 } 7249 7250 device = btrfs_find_device(fs_info->fs_devices, &args); 7251 if (!device) { 7252 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7253 btrfs_report_missing_device(fs_info, devid, 7254 dev_uuid, true); 7255 return -ENOENT; 7256 } 7257 7258 device = add_missing_dev(fs_devices, devid, dev_uuid); 7259 if (IS_ERR(device)) { 7260 btrfs_err(fs_info, 7261 "failed to add missing dev %llu: %ld", 7262 devid, PTR_ERR(device)); 7263 return PTR_ERR(device); 7264 } 7265 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7266 } else { 7267 if (!device->bdev) { 7268 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7269 btrfs_report_missing_device(fs_info, 7270 devid, dev_uuid, true); 7271 return -ENOENT; 7272 } 7273 btrfs_report_missing_device(fs_info, devid, 7274 dev_uuid, false); 7275 } 7276 7277 if (!device->bdev && 7278 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7279 /* 7280 * this happens when a device that was properly setup 7281 * in the device info lists suddenly goes bad. 7282 * device->bdev is NULL, and so we have to set 7283 * device->missing to one here 7284 */ 7285 device->fs_devices->missing_devices++; 7286 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7287 } 7288 7289 /* Move the device to its own fs_devices */ 7290 if (device->fs_devices != fs_devices) { 7291 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7292 &device->dev_state)); 7293 7294 list_move(&device->dev_list, &fs_devices->devices); 7295 device->fs_devices->num_devices--; 7296 fs_devices->num_devices++; 7297 7298 device->fs_devices->missing_devices--; 7299 fs_devices->missing_devices++; 7300 7301 device->fs_devices = fs_devices; 7302 } 7303 } 7304 7305 if (device->fs_devices != fs_info->fs_devices) { 7306 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7307 if (device->generation != 7308 btrfs_device_generation(leaf, dev_item)) 7309 return -EINVAL; 7310 } 7311 7312 fill_device_from_item(leaf, dev_item, device); 7313 if (device->bdev) { 7314 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7315 7316 if (device->total_bytes > max_total_bytes) { 7317 btrfs_err(fs_info, 7318 "device total_bytes should be at most %llu but found %llu", 7319 max_total_bytes, device->total_bytes); 7320 return -EINVAL; 7321 } 7322 } 7323 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7324 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7325 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7326 device->fs_devices->total_rw_bytes += device->total_bytes; 7327 atomic64_add(device->total_bytes - device->bytes_used, 7328 &fs_info->free_chunk_space); 7329 } 7330 ret = 0; 7331 return ret; 7332 } 7333 7334 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7335 { 7336 struct btrfs_super_block *super_copy = fs_info->super_copy; 7337 struct extent_buffer *sb; 7338 struct btrfs_disk_key *disk_key; 7339 struct btrfs_chunk *chunk; 7340 u8 *array_ptr; 7341 unsigned long sb_array_offset; 7342 int ret = 0; 7343 u32 num_stripes; 7344 u32 array_size; 7345 u32 len = 0; 7346 u32 cur_offset; 7347 u64 type; 7348 struct btrfs_key key; 7349 7350 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7351 7352 /* 7353 * We allocated a dummy extent, just to use extent buffer accessors. 7354 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7355 * that's fine, we will not go beyond system chunk array anyway. 7356 */ 7357 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7358 if (!sb) 7359 return -ENOMEM; 7360 set_extent_buffer_uptodate(sb); 7361 7362 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7363 array_size = btrfs_super_sys_array_size(super_copy); 7364 7365 array_ptr = super_copy->sys_chunk_array; 7366 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7367 cur_offset = 0; 7368 7369 while (cur_offset < array_size) { 7370 disk_key = (struct btrfs_disk_key *)array_ptr; 7371 len = sizeof(*disk_key); 7372 if (cur_offset + len > array_size) 7373 goto out_short_read; 7374 7375 btrfs_disk_key_to_cpu(&key, disk_key); 7376 7377 array_ptr += len; 7378 sb_array_offset += len; 7379 cur_offset += len; 7380 7381 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7382 btrfs_err(fs_info, 7383 "unexpected item type %u in sys_array at offset %u", 7384 (u32)key.type, cur_offset); 7385 ret = -EIO; 7386 break; 7387 } 7388 7389 chunk = (struct btrfs_chunk *)sb_array_offset; 7390 /* 7391 * At least one btrfs_chunk with one stripe must be present, 7392 * exact stripe count check comes afterwards 7393 */ 7394 len = btrfs_chunk_item_size(1); 7395 if (cur_offset + len > array_size) 7396 goto out_short_read; 7397 7398 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7399 if (!num_stripes) { 7400 btrfs_err(fs_info, 7401 "invalid number of stripes %u in sys_array at offset %u", 7402 num_stripes, cur_offset); 7403 ret = -EIO; 7404 break; 7405 } 7406 7407 type = btrfs_chunk_type(sb, chunk); 7408 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7409 btrfs_err(fs_info, 7410 "invalid chunk type %llu in sys_array at offset %u", 7411 type, cur_offset); 7412 ret = -EIO; 7413 break; 7414 } 7415 7416 len = btrfs_chunk_item_size(num_stripes); 7417 if (cur_offset + len > array_size) 7418 goto out_short_read; 7419 7420 ret = read_one_chunk(&key, sb, chunk); 7421 if (ret) 7422 break; 7423 7424 array_ptr += len; 7425 sb_array_offset += len; 7426 cur_offset += len; 7427 } 7428 clear_extent_buffer_uptodate(sb); 7429 free_extent_buffer_stale(sb); 7430 return ret; 7431 7432 out_short_read: 7433 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7434 len, cur_offset); 7435 clear_extent_buffer_uptodate(sb); 7436 free_extent_buffer_stale(sb); 7437 return -EIO; 7438 } 7439 7440 /* 7441 * Check if all chunks in the fs are OK for read-write degraded mount 7442 * 7443 * If the @failing_dev is specified, it's accounted as missing. 7444 * 7445 * Return true if all chunks meet the minimal RW mount requirements. 7446 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7447 */ 7448 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7449 struct btrfs_device *failing_dev) 7450 { 7451 struct btrfs_chunk_map *map; 7452 u64 next_start; 7453 bool ret = true; 7454 7455 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7456 /* No chunk at all? Return false anyway */ 7457 if (!map) { 7458 ret = false; 7459 goto out; 7460 } 7461 while (map) { 7462 int missing = 0; 7463 int max_tolerated; 7464 int i; 7465 7466 max_tolerated = 7467 btrfs_get_num_tolerated_disk_barrier_failures( 7468 map->type); 7469 for (i = 0; i < map->num_stripes; i++) { 7470 struct btrfs_device *dev = map->stripes[i].dev; 7471 7472 if (!dev || !dev->bdev || 7473 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7474 dev->last_flush_error) 7475 missing++; 7476 else if (failing_dev && failing_dev == dev) 7477 missing++; 7478 } 7479 if (missing > max_tolerated) { 7480 if (!failing_dev) 7481 btrfs_warn(fs_info, 7482 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7483 map->start, missing, max_tolerated); 7484 btrfs_free_chunk_map(map); 7485 ret = false; 7486 goto out; 7487 } 7488 next_start = map->start + map->chunk_len; 7489 btrfs_free_chunk_map(map); 7490 7491 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7492 } 7493 out: 7494 return ret; 7495 } 7496 7497 static void readahead_tree_node_children(struct extent_buffer *node) 7498 { 7499 int i; 7500 const int nr_items = btrfs_header_nritems(node); 7501 7502 for (i = 0; i < nr_items; i++) 7503 btrfs_readahead_node_child(node, i); 7504 } 7505 7506 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7507 { 7508 struct btrfs_root *root = fs_info->chunk_root; 7509 struct btrfs_path *path; 7510 struct extent_buffer *leaf; 7511 struct btrfs_key key; 7512 struct btrfs_key found_key; 7513 int ret; 7514 int slot; 7515 int iter_ret = 0; 7516 u64 total_dev = 0; 7517 u64 last_ra_node = 0; 7518 7519 path = btrfs_alloc_path(); 7520 if (!path) 7521 return -ENOMEM; 7522 7523 /* 7524 * uuid_mutex is needed only if we are mounting a sprout FS 7525 * otherwise we don't need it. 7526 */ 7527 mutex_lock(&uuid_mutex); 7528 7529 /* 7530 * It is possible for mount and umount to race in such a way that 7531 * we execute this code path, but open_fs_devices failed to clear 7532 * total_rw_bytes. We certainly want it cleared before reading the 7533 * device items, so clear it here. 7534 */ 7535 fs_info->fs_devices->total_rw_bytes = 0; 7536 7537 /* 7538 * Lockdep complains about possible circular locking dependency between 7539 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7540 * used for freeze procection of a fs (struct super_block.s_writers), 7541 * which we take when starting a transaction, and extent buffers of the 7542 * chunk tree if we call read_one_dev() while holding a lock on an 7543 * extent buffer of the chunk tree. Since we are mounting the filesystem 7544 * and at this point there can't be any concurrent task modifying the 7545 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7546 */ 7547 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7548 path->skip_locking = 1; 7549 7550 /* 7551 * Read all device items, and then all the chunk items. All 7552 * device items are found before any chunk item (their object id 7553 * is smaller than the lowest possible object id for a chunk 7554 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7555 */ 7556 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7557 key.offset = 0; 7558 key.type = 0; 7559 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7560 struct extent_buffer *node = path->nodes[1]; 7561 7562 leaf = path->nodes[0]; 7563 slot = path->slots[0]; 7564 7565 if (node) { 7566 if (last_ra_node != node->start) { 7567 readahead_tree_node_children(node); 7568 last_ra_node = node->start; 7569 } 7570 } 7571 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7572 struct btrfs_dev_item *dev_item; 7573 dev_item = btrfs_item_ptr(leaf, slot, 7574 struct btrfs_dev_item); 7575 ret = read_one_dev(leaf, dev_item); 7576 if (ret) 7577 goto error; 7578 total_dev++; 7579 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7580 struct btrfs_chunk *chunk; 7581 7582 /* 7583 * We are only called at mount time, so no need to take 7584 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7585 * we always lock first fs_info->chunk_mutex before 7586 * acquiring any locks on the chunk tree. This is a 7587 * requirement for chunk allocation, see the comment on 7588 * top of btrfs_chunk_alloc() for details. 7589 */ 7590 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7591 ret = read_one_chunk(&found_key, leaf, chunk); 7592 if (ret) 7593 goto error; 7594 } 7595 } 7596 /* Catch error found during iteration */ 7597 if (iter_ret < 0) { 7598 ret = iter_ret; 7599 goto error; 7600 } 7601 7602 /* 7603 * After loading chunk tree, we've got all device information, 7604 * do another round of validation checks. 7605 */ 7606 if (total_dev != fs_info->fs_devices->total_devices) { 7607 btrfs_warn(fs_info, 7608 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7609 btrfs_super_num_devices(fs_info->super_copy), 7610 total_dev); 7611 fs_info->fs_devices->total_devices = total_dev; 7612 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7613 } 7614 if (btrfs_super_total_bytes(fs_info->super_copy) < 7615 fs_info->fs_devices->total_rw_bytes) { 7616 btrfs_err(fs_info, 7617 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7618 btrfs_super_total_bytes(fs_info->super_copy), 7619 fs_info->fs_devices->total_rw_bytes); 7620 ret = -EINVAL; 7621 goto error; 7622 } 7623 ret = 0; 7624 error: 7625 mutex_unlock(&uuid_mutex); 7626 7627 btrfs_free_path(path); 7628 return ret; 7629 } 7630 7631 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7632 { 7633 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7634 struct btrfs_device *device; 7635 int ret = 0; 7636 7637 fs_devices->fs_info = fs_info; 7638 7639 mutex_lock(&fs_devices->device_list_mutex); 7640 list_for_each_entry(device, &fs_devices->devices, dev_list) 7641 device->fs_info = fs_info; 7642 7643 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7644 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7645 device->fs_info = fs_info; 7646 ret = btrfs_get_dev_zone_info(device, false); 7647 if (ret) 7648 break; 7649 } 7650 7651 seed_devs->fs_info = fs_info; 7652 } 7653 mutex_unlock(&fs_devices->device_list_mutex); 7654 7655 return ret; 7656 } 7657 7658 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7659 const struct btrfs_dev_stats_item *ptr, 7660 int index) 7661 { 7662 u64 val; 7663 7664 read_extent_buffer(eb, &val, 7665 offsetof(struct btrfs_dev_stats_item, values) + 7666 ((unsigned long)ptr) + (index * sizeof(u64)), 7667 sizeof(val)); 7668 return val; 7669 } 7670 7671 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7672 struct btrfs_dev_stats_item *ptr, 7673 int index, u64 val) 7674 { 7675 write_extent_buffer(eb, &val, 7676 offsetof(struct btrfs_dev_stats_item, values) + 7677 ((unsigned long)ptr) + (index * sizeof(u64)), 7678 sizeof(val)); 7679 } 7680 7681 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7682 struct btrfs_path *path) 7683 { 7684 struct btrfs_dev_stats_item *ptr; 7685 struct extent_buffer *eb; 7686 struct btrfs_key key; 7687 int item_size; 7688 int i, ret, slot; 7689 7690 if (!device->fs_info->dev_root) 7691 return 0; 7692 7693 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7694 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7695 key.offset = device->devid; 7696 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7697 if (ret) { 7698 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7699 btrfs_dev_stat_set(device, i, 0); 7700 device->dev_stats_valid = 1; 7701 btrfs_release_path(path); 7702 return ret < 0 ? ret : 0; 7703 } 7704 slot = path->slots[0]; 7705 eb = path->nodes[0]; 7706 item_size = btrfs_item_size(eb, slot); 7707 7708 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7709 7710 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7711 if (item_size >= (1 + i) * sizeof(__le64)) 7712 btrfs_dev_stat_set(device, i, 7713 btrfs_dev_stats_value(eb, ptr, i)); 7714 else 7715 btrfs_dev_stat_set(device, i, 0); 7716 } 7717 7718 device->dev_stats_valid = 1; 7719 btrfs_dev_stat_print_on_load(device); 7720 btrfs_release_path(path); 7721 7722 return 0; 7723 } 7724 7725 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7726 { 7727 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7728 struct btrfs_device *device; 7729 struct btrfs_path *path = NULL; 7730 int ret = 0; 7731 7732 path = btrfs_alloc_path(); 7733 if (!path) 7734 return -ENOMEM; 7735 7736 mutex_lock(&fs_devices->device_list_mutex); 7737 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7738 ret = btrfs_device_init_dev_stats(device, path); 7739 if (ret) 7740 goto out; 7741 } 7742 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7743 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7744 ret = btrfs_device_init_dev_stats(device, path); 7745 if (ret) 7746 goto out; 7747 } 7748 } 7749 out: 7750 mutex_unlock(&fs_devices->device_list_mutex); 7751 7752 btrfs_free_path(path); 7753 return ret; 7754 } 7755 7756 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7757 struct btrfs_device *device) 7758 { 7759 struct btrfs_fs_info *fs_info = trans->fs_info; 7760 struct btrfs_root *dev_root = fs_info->dev_root; 7761 struct btrfs_path *path; 7762 struct btrfs_key key; 7763 struct extent_buffer *eb; 7764 struct btrfs_dev_stats_item *ptr; 7765 int ret; 7766 int i; 7767 7768 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7769 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7770 key.offset = device->devid; 7771 7772 path = btrfs_alloc_path(); 7773 if (!path) 7774 return -ENOMEM; 7775 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7776 if (ret < 0) { 7777 btrfs_warn_in_rcu(fs_info, 7778 "error %d while searching for dev_stats item for device %s", 7779 ret, btrfs_dev_name(device)); 7780 goto out; 7781 } 7782 7783 if (ret == 0 && 7784 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7785 /* need to delete old one and insert a new one */ 7786 ret = btrfs_del_item(trans, dev_root, path); 7787 if (ret != 0) { 7788 btrfs_warn_in_rcu(fs_info, 7789 "delete too small dev_stats item for device %s failed %d", 7790 btrfs_dev_name(device), ret); 7791 goto out; 7792 } 7793 ret = 1; 7794 } 7795 7796 if (ret == 1) { 7797 /* need to insert a new item */ 7798 btrfs_release_path(path); 7799 ret = btrfs_insert_empty_item(trans, dev_root, path, 7800 &key, sizeof(*ptr)); 7801 if (ret < 0) { 7802 btrfs_warn_in_rcu(fs_info, 7803 "insert dev_stats item for device %s failed %d", 7804 btrfs_dev_name(device), ret); 7805 goto out; 7806 } 7807 } 7808 7809 eb = path->nodes[0]; 7810 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7811 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7812 btrfs_set_dev_stats_value(eb, ptr, i, 7813 btrfs_dev_stat_read(device, i)); 7814 btrfs_mark_buffer_dirty(trans, eb); 7815 7816 out: 7817 btrfs_free_path(path); 7818 return ret; 7819 } 7820 7821 /* 7822 * called from commit_transaction. Writes all changed device stats to disk. 7823 */ 7824 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7825 { 7826 struct btrfs_fs_info *fs_info = trans->fs_info; 7827 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7828 struct btrfs_device *device; 7829 int stats_cnt; 7830 int ret = 0; 7831 7832 mutex_lock(&fs_devices->device_list_mutex); 7833 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7834 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7835 if (!device->dev_stats_valid || stats_cnt == 0) 7836 continue; 7837 7838 7839 /* 7840 * There is a LOAD-LOAD control dependency between the value of 7841 * dev_stats_ccnt and updating the on-disk values which requires 7842 * reading the in-memory counters. Such control dependencies 7843 * require explicit read memory barriers. 7844 * 7845 * This memory barriers pairs with smp_mb__before_atomic in 7846 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7847 * barrier implied by atomic_xchg in 7848 * btrfs_dev_stats_read_and_reset 7849 */ 7850 smp_rmb(); 7851 7852 ret = update_dev_stat_item(trans, device); 7853 if (!ret) 7854 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7855 } 7856 mutex_unlock(&fs_devices->device_list_mutex); 7857 7858 return ret; 7859 } 7860 7861 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7862 { 7863 btrfs_dev_stat_inc(dev, index); 7864 7865 if (!dev->dev_stats_valid) 7866 return; 7867 btrfs_err_rl_in_rcu(dev->fs_info, 7868 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7869 btrfs_dev_name(dev), 7870 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7871 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7875 } 7876 7877 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7878 { 7879 int i; 7880 7881 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7882 if (btrfs_dev_stat_read(dev, i) != 0) 7883 break; 7884 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7885 return; /* all values == 0, suppress message */ 7886 7887 btrfs_info_in_rcu(dev->fs_info, 7888 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7889 btrfs_dev_name(dev), 7890 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7892 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7893 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7894 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7895 } 7896 7897 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7898 struct btrfs_ioctl_get_dev_stats *stats) 7899 { 7900 BTRFS_DEV_LOOKUP_ARGS(args); 7901 struct btrfs_device *dev; 7902 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7903 int i; 7904 7905 mutex_lock(&fs_devices->device_list_mutex); 7906 args.devid = stats->devid; 7907 dev = btrfs_find_device(fs_info->fs_devices, &args); 7908 mutex_unlock(&fs_devices->device_list_mutex); 7909 7910 if (!dev) { 7911 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7912 return -ENODEV; 7913 } else if (!dev->dev_stats_valid) { 7914 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7915 return -ENODEV; 7916 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7917 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7918 if (stats->nr_items > i) 7919 stats->values[i] = 7920 btrfs_dev_stat_read_and_reset(dev, i); 7921 else 7922 btrfs_dev_stat_set(dev, i, 0); 7923 } 7924 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7925 current->comm, task_pid_nr(current)); 7926 } else { 7927 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7928 if (stats->nr_items > i) 7929 stats->values[i] = btrfs_dev_stat_read(dev, i); 7930 } 7931 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7932 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7933 return 0; 7934 } 7935 7936 /* 7937 * Update the size and bytes used for each device where it changed. This is 7938 * delayed since we would otherwise get errors while writing out the 7939 * superblocks. 7940 * 7941 * Must be invoked during transaction commit. 7942 */ 7943 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7944 { 7945 struct btrfs_device *curr, *next; 7946 7947 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7948 7949 if (list_empty(&trans->dev_update_list)) 7950 return; 7951 7952 /* 7953 * We don't need the device_list_mutex here. This list is owned by the 7954 * transaction and the transaction must complete before the device is 7955 * released. 7956 */ 7957 mutex_lock(&trans->fs_info->chunk_mutex); 7958 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7959 post_commit_list) { 7960 list_del_init(&curr->post_commit_list); 7961 curr->commit_total_bytes = curr->disk_total_bytes; 7962 curr->commit_bytes_used = curr->bytes_used; 7963 } 7964 mutex_unlock(&trans->fs_info->chunk_mutex); 7965 } 7966 7967 /* 7968 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7969 */ 7970 int btrfs_bg_type_to_factor(u64 flags) 7971 { 7972 const int index = btrfs_bg_flags_to_raid_index(flags); 7973 7974 return btrfs_raid_array[index].ncopies; 7975 } 7976 7977 7978 7979 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7980 u64 chunk_offset, u64 devid, 7981 u64 physical_offset, u64 physical_len) 7982 { 7983 struct btrfs_dev_lookup_args args = { .devid = devid }; 7984 struct btrfs_chunk_map *map; 7985 struct btrfs_device *dev; 7986 u64 stripe_len; 7987 bool found = false; 7988 int ret = 0; 7989 int i; 7990 7991 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7992 if (!map) { 7993 btrfs_err(fs_info, 7994 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7995 physical_offset, devid); 7996 ret = -EUCLEAN; 7997 goto out; 7998 } 7999 8000 stripe_len = btrfs_calc_stripe_length(map); 8001 if (physical_len != stripe_len) { 8002 btrfs_err(fs_info, 8003 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8004 physical_offset, devid, map->start, physical_len, 8005 stripe_len); 8006 ret = -EUCLEAN; 8007 goto out; 8008 } 8009 8010 /* 8011 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 8012 * space. Although kernel can handle it without problem, better to warn 8013 * the users. 8014 */ 8015 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 8016 btrfs_warn(fs_info, 8017 "devid %llu physical %llu len %llu inside the reserved space", 8018 devid, physical_offset, physical_len); 8019 8020 for (i = 0; i < map->num_stripes; i++) { 8021 if (map->stripes[i].dev->devid == devid && 8022 map->stripes[i].physical == physical_offset) { 8023 found = true; 8024 if (map->verified_stripes >= map->num_stripes) { 8025 btrfs_err(fs_info, 8026 "too many dev extents for chunk %llu found", 8027 map->start); 8028 ret = -EUCLEAN; 8029 goto out; 8030 } 8031 map->verified_stripes++; 8032 break; 8033 } 8034 } 8035 if (!found) { 8036 btrfs_err(fs_info, 8037 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8038 physical_offset, devid); 8039 ret = -EUCLEAN; 8040 } 8041 8042 /* Make sure no dev extent is beyond device boundary */ 8043 dev = btrfs_find_device(fs_info->fs_devices, &args); 8044 if (!dev) { 8045 btrfs_err(fs_info, "failed to find devid %llu", devid); 8046 ret = -EUCLEAN; 8047 goto out; 8048 } 8049 8050 if (physical_offset + physical_len > dev->disk_total_bytes) { 8051 btrfs_err(fs_info, 8052 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8053 devid, physical_offset, physical_len, 8054 dev->disk_total_bytes); 8055 ret = -EUCLEAN; 8056 goto out; 8057 } 8058 8059 if (dev->zone_info) { 8060 u64 zone_size = dev->zone_info->zone_size; 8061 8062 if (!IS_ALIGNED(physical_offset, zone_size) || 8063 !IS_ALIGNED(physical_len, zone_size)) { 8064 btrfs_err(fs_info, 8065 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8066 devid, physical_offset, physical_len); 8067 ret = -EUCLEAN; 8068 goto out; 8069 } 8070 } 8071 8072 out: 8073 btrfs_free_chunk_map(map); 8074 return ret; 8075 } 8076 8077 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8078 { 8079 struct rb_node *node; 8080 int ret = 0; 8081 8082 read_lock(&fs_info->mapping_tree_lock); 8083 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8084 struct btrfs_chunk_map *map; 8085 8086 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8087 if (map->num_stripes != map->verified_stripes) { 8088 btrfs_err(fs_info, 8089 "chunk %llu has missing dev extent, have %d expect %d", 8090 map->start, map->verified_stripes, map->num_stripes); 8091 ret = -EUCLEAN; 8092 goto out; 8093 } 8094 } 8095 out: 8096 read_unlock(&fs_info->mapping_tree_lock); 8097 return ret; 8098 } 8099 8100 /* 8101 * Ensure that all dev extents are mapped to correct chunk, otherwise 8102 * later chunk allocation/free would cause unexpected behavior. 8103 * 8104 * NOTE: This will iterate through the whole device tree, which should be of 8105 * the same size level as the chunk tree. This slightly increases mount time. 8106 */ 8107 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8108 { 8109 struct btrfs_path *path; 8110 struct btrfs_root *root = fs_info->dev_root; 8111 struct btrfs_key key; 8112 u64 prev_devid = 0; 8113 u64 prev_dev_ext_end = 0; 8114 int ret = 0; 8115 8116 /* 8117 * We don't have a dev_root because we mounted with ignorebadroots and 8118 * failed to load the root, so we want to skip the verification in this 8119 * case for sure. 8120 * 8121 * However if the dev root is fine, but the tree itself is corrupted 8122 * we'd still fail to mount. This verification is only to make sure 8123 * writes can happen safely, so instead just bypass this check 8124 * completely in the case of IGNOREBADROOTS. 8125 */ 8126 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8127 return 0; 8128 8129 key.objectid = 1; 8130 key.type = BTRFS_DEV_EXTENT_KEY; 8131 key.offset = 0; 8132 8133 path = btrfs_alloc_path(); 8134 if (!path) 8135 return -ENOMEM; 8136 8137 path->reada = READA_FORWARD; 8138 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8139 if (ret < 0) 8140 goto out; 8141 8142 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8143 ret = btrfs_next_leaf(root, path); 8144 if (ret < 0) 8145 goto out; 8146 /* No dev extents at all? Not good */ 8147 if (ret > 0) { 8148 ret = -EUCLEAN; 8149 goto out; 8150 } 8151 } 8152 while (1) { 8153 struct extent_buffer *leaf = path->nodes[0]; 8154 struct btrfs_dev_extent *dext; 8155 int slot = path->slots[0]; 8156 u64 chunk_offset; 8157 u64 physical_offset; 8158 u64 physical_len; 8159 u64 devid; 8160 8161 btrfs_item_key_to_cpu(leaf, &key, slot); 8162 if (key.type != BTRFS_DEV_EXTENT_KEY) 8163 break; 8164 devid = key.objectid; 8165 physical_offset = key.offset; 8166 8167 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8168 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8169 physical_len = btrfs_dev_extent_length(leaf, dext); 8170 8171 /* Check if this dev extent overlaps with the previous one */ 8172 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8173 btrfs_err(fs_info, 8174 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8175 devid, physical_offset, prev_dev_ext_end); 8176 ret = -EUCLEAN; 8177 goto out; 8178 } 8179 8180 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8181 physical_offset, physical_len); 8182 if (ret < 0) 8183 goto out; 8184 prev_devid = devid; 8185 prev_dev_ext_end = physical_offset + physical_len; 8186 8187 ret = btrfs_next_item(root, path); 8188 if (ret < 0) 8189 goto out; 8190 if (ret > 0) { 8191 ret = 0; 8192 break; 8193 } 8194 } 8195 8196 /* Ensure all chunks have corresponding dev extents */ 8197 ret = verify_chunk_dev_extent_mapping(fs_info); 8198 out: 8199 btrfs_free_path(path); 8200 return ret; 8201 } 8202 8203 /* 8204 * Check whether the given block group or device is pinned by any inode being 8205 * used as a swapfile. 8206 */ 8207 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8208 { 8209 struct btrfs_swapfile_pin *sp; 8210 struct rb_node *node; 8211 8212 spin_lock(&fs_info->swapfile_pins_lock); 8213 node = fs_info->swapfile_pins.rb_node; 8214 while (node) { 8215 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8216 if (ptr < sp->ptr) 8217 node = node->rb_left; 8218 else if (ptr > sp->ptr) 8219 node = node->rb_right; 8220 else 8221 break; 8222 } 8223 spin_unlock(&fs_info->swapfile_pins_lock); 8224 return node != NULL; 8225 } 8226 8227 static int relocating_repair_kthread(void *data) 8228 { 8229 struct btrfs_block_group *cache = data; 8230 struct btrfs_fs_info *fs_info = cache->fs_info; 8231 u64 target; 8232 int ret = 0; 8233 8234 target = cache->start; 8235 btrfs_put_block_group(cache); 8236 8237 sb_start_write(fs_info->sb); 8238 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8239 btrfs_info(fs_info, 8240 "zoned: skip relocating block group %llu to repair: EBUSY", 8241 target); 8242 sb_end_write(fs_info->sb); 8243 return -EBUSY; 8244 } 8245 8246 mutex_lock(&fs_info->reclaim_bgs_lock); 8247 8248 /* Ensure block group still exists */ 8249 cache = btrfs_lookup_block_group(fs_info, target); 8250 if (!cache) 8251 goto out; 8252 8253 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8254 goto out; 8255 8256 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8257 if (ret < 0) 8258 goto out; 8259 8260 btrfs_info(fs_info, 8261 "zoned: relocating block group %llu to repair IO failure", 8262 target); 8263 ret = btrfs_relocate_chunk(fs_info, target); 8264 8265 out: 8266 if (cache) 8267 btrfs_put_block_group(cache); 8268 mutex_unlock(&fs_info->reclaim_bgs_lock); 8269 btrfs_exclop_finish(fs_info); 8270 sb_end_write(fs_info->sb); 8271 8272 return ret; 8273 } 8274 8275 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8276 { 8277 struct btrfs_block_group *cache; 8278 8279 if (!btrfs_is_zoned(fs_info)) 8280 return false; 8281 8282 /* Do not attempt to repair in degraded state */ 8283 if (btrfs_test_opt(fs_info, DEGRADED)) 8284 return true; 8285 8286 cache = btrfs_lookup_block_group(fs_info, logical); 8287 if (!cache) 8288 return true; 8289 8290 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8291 btrfs_put_block_group(cache); 8292 return true; 8293 } 8294 8295 kthread_run(relocating_repair_kthread, cache, 8296 "btrfs-relocating-repair"); 8297 8298 return true; 8299 } 8300 8301 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8302 struct btrfs_io_stripe *smap, 8303 u64 logical) 8304 { 8305 int data_stripes = nr_bioc_data_stripes(bioc); 8306 int i; 8307 8308 for (i = 0; i < data_stripes; i++) { 8309 u64 stripe_start = bioc->full_stripe_logical + 8310 btrfs_stripe_nr_to_offset(i); 8311 8312 if (logical >= stripe_start && 8313 logical < stripe_start + BTRFS_STRIPE_LEN) 8314 break; 8315 } 8316 ASSERT(i < data_stripes); 8317 smap->dev = bioc->stripes[i].dev; 8318 smap->physical = bioc->stripes[i].physical + 8319 ((logical - bioc->full_stripe_logical) & 8320 BTRFS_STRIPE_LEN_MASK); 8321 } 8322 8323 /* 8324 * Map a repair write into a single device. 8325 * 8326 * A repair write is triggered by read time repair or scrub, which would only 8327 * update the contents of a single device. 8328 * Not update any other mirrors nor go through RMW path. 8329 * 8330 * Callers should ensure: 8331 * 8332 * - Call btrfs_bio_counter_inc_blocked() first 8333 * - The range does not cross stripe boundary 8334 * - Has a valid @mirror_num passed in. 8335 */ 8336 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8337 struct btrfs_io_stripe *smap, u64 logical, 8338 u32 length, int mirror_num) 8339 { 8340 struct btrfs_io_context *bioc = NULL; 8341 u64 map_length = length; 8342 int mirror_ret = mirror_num; 8343 int ret; 8344 8345 ASSERT(mirror_num > 0); 8346 8347 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8348 &bioc, smap, &mirror_ret); 8349 if (ret < 0) 8350 return ret; 8351 8352 /* The map range should not cross stripe boundary. */ 8353 ASSERT(map_length >= length); 8354 8355 /* Already mapped to single stripe. */ 8356 if (!bioc) 8357 goto out; 8358 8359 /* Map the RAID56 multi-stripe writes to a single one. */ 8360 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8361 map_raid56_repair_block(bioc, smap, logical); 8362 goto out; 8363 } 8364 8365 ASSERT(mirror_num <= bioc->num_stripes); 8366 smap->dev = bioc->stripes[mirror_num - 1].dev; 8367 smap->physical = bioc->stripes[mirror_num - 1].physical; 8368 out: 8369 btrfs_put_bioc(bioc); 8370 ASSERT(smap->dev); 8371 return 0; 8372 } 8373