xref: /linux/fs/btrfs/volumes.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 			     enum btrfs_map_op op,
144 			     u64 logical, u64 *length,
145 			     struct btrfs_bio **bbio_ret,
146 			     int mirror_num, int need_raid_map);
147 
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 	return &fs_uuids;
153 }
154 
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 	struct btrfs_fs_devices *fs_devs;
166 
167 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 	if (!fs_devs)
169 		return ERR_PTR(-ENOMEM);
170 
171 	mutex_init(&fs_devs->device_list_mutex);
172 
173 	INIT_LIST_HEAD(&fs_devs->devices);
174 	INIT_LIST_HEAD(&fs_devs->resized_devices);
175 	INIT_LIST_HEAD(&fs_devs->alloc_list);
176 	INIT_LIST_HEAD(&fs_devs->list);
177 	if (fsid)
178 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179 
180 	return fs_devs;
181 }
182 
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185 	struct btrfs_device *device;
186 	WARN_ON(fs_devices->opened);
187 	while (!list_empty(&fs_devices->devices)) {
188 		device = list_entry(fs_devices->devices.next,
189 				    struct btrfs_device, dev_list);
190 		list_del(&device->dev_list);
191 		rcu_string_free(device->name);
192 		bio_put(device->flush_bio);
193 		kfree(device);
194 	}
195 	kfree(fs_devices);
196 }
197 
198 static void btrfs_kobject_uevent(struct block_device *bdev,
199 				 enum kobject_action action)
200 {
201 	int ret;
202 
203 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 	if (ret)
205 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
206 			action,
207 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
208 			&disk_to_dev(bdev->bd_disk)->kobj);
209 }
210 
211 void btrfs_cleanup_fs_uuids(void)
212 {
213 	struct btrfs_fs_devices *fs_devices;
214 
215 	while (!list_empty(&fs_uuids)) {
216 		fs_devices = list_entry(fs_uuids.next,
217 					struct btrfs_fs_devices, list);
218 		list_del(&fs_devices->list);
219 		free_fs_devices(fs_devices);
220 	}
221 }
222 
223 static struct btrfs_device *__alloc_device(void)
224 {
225 	struct btrfs_device *dev;
226 
227 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
228 	if (!dev)
229 		return ERR_PTR(-ENOMEM);
230 
231 	/*
232 	 * Preallocate a bio that's always going to be used for flushing device
233 	 * barriers and matches the device lifespan
234 	 */
235 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
236 	if (!dev->flush_bio) {
237 		kfree(dev);
238 		return ERR_PTR(-ENOMEM);
239 	}
240 
241 	INIT_LIST_HEAD(&dev->dev_list);
242 	INIT_LIST_HEAD(&dev->dev_alloc_list);
243 	INIT_LIST_HEAD(&dev->resized_list);
244 
245 	spin_lock_init(&dev->io_lock);
246 
247 	spin_lock_init(&dev->reada_lock);
248 	atomic_set(&dev->reada_in_flight, 0);
249 	atomic_set(&dev->dev_stats_ccnt, 0);
250 	btrfs_device_data_ordered_init(dev);
251 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 
254 	return dev;
255 }
256 
257 /*
258  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259  * return NULL.
260  *
261  * If devid and uuid are both specified, the match must be exact, otherwise
262  * only devid is used.
263  */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 		u64 devid, const u8 *uuid)
266 {
267 	struct list_head *head = &fs_devices->devices;
268 	struct btrfs_device *dev;
269 
270 	list_for_each_entry(dev, head, dev_list) {
271 		if (dev->devid == devid &&
272 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273 			return dev;
274 		}
275 	}
276 	return NULL;
277 }
278 
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281 	struct btrfs_fs_devices *fs_devices;
282 
283 	list_for_each_entry(fs_devices, &fs_uuids, list) {
284 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 			return fs_devices;
286 	}
287 	return NULL;
288 }
289 
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 		      int flush, struct block_device **bdev,
293 		      struct buffer_head **bh)
294 {
295 	int ret;
296 
297 	*bdev = blkdev_get_by_path(device_path, flags, holder);
298 
299 	if (IS_ERR(*bdev)) {
300 		ret = PTR_ERR(*bdev);
301 		goto error;
302 	}
303 
304 	if (flush)
305 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307 	if (ret) {
308 		blkdev_put(*bdev, flags);
309 		goto error;
310 	}
311 	invalidate_bdev(*bdev);
312 	*bh = btrfs_read_dev_super(*bdev);
313 	if (IS_ERR(*bh)) {
314 		ret = PTR_ERR(*bh);
315 		blkdev_put(*bdev, flags);
316 		goto error;
317 	}
318 
319 	return 0;
320 
321 error:
322 	*bdev = NULL;
323 	*bh = NULL;
324 	return ret;
325 }
326 
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 			struct bio *head, struct bio *tail)
329 {
330 
331 	struct bio *old_head;
332 
333 	old_head = pending_bios->head;
334 	pending_bios->head = head;
335 	if (pending_bios->tail)
336 		tail->bi_next = old_head;
337 	else
338 		pending_bios->tail = tail;
339 }
340 
341 /*
342  * we try to collect pending bios for a device so we don't get a large
343  * number of procs sending bios down to the same device.  This greatly
344  * improves the schedulers ability to collect and merge the bios.
345  *
346  * But, it also turns into a long list of bios to process and that is sure
347  * to eventually make the worker thread block.  The solution here is to
348  * make some progress and then put this work struct back at the end of
349  * the list if the block device is congested.  This way, multiple devices
350  * can make progress from a single worker thread.
351  */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354 	struct btrfs_fs_info *fs_info = device->fs_info;
355 	struct bio *pending;
356 	struct backing_dev_info *bdi;
357 	struct btrfs_pending_bios *pending_bios;
358 	struct bio *tail;
359 	struct bio *cur;
360 	int again = 0;
361 	unsigned long num_run;
362 	unsigned long batch_run = 0;
363 	unsigned long last_waited = 0;
364 	int force_reg = 0;
365 	int sync_pending = 0;
366 	struct blk_plug plug;
367 
368 	/*
369 	 * this function runs all the bios we've collected for
370 	 * a particular device.  We don't want to wander off to
371 	 * another device without first sending all of these down.
372 	 * So, setup a plug here and finish it off before we return
373 	 */
374 	blk_start_plug(&plug);
375 
376 	bdi = device->bdev->bd_bdi;
377 
378 loop:
379 	spin_lock(&device->io_lock);
380 
381 loop_lock:
382 	num_run = 0;
383 
384 	/* take all the bios off the list at once and process them
385 	 * later on (without the lock held).  But, remember the
386 	 * tail and other pointers so the bios can be properly reinserted
387 	 * into the list if we hit congestion
388 	 */
389 	if (!force_reg && device->pending_sync_bios.head) {
390 		pending_bios = &device->pending_sync_bios;
391 		force_reg = 1;
392 	} else {
393 		pending_bios = &device->pending_bios;
394 		force_reg = 0;
395 	}
396 
397 	pending = pending_bios->head;
398 	tail = pending_bios->tail;
399 	WARN_ON(pending && !tail);
400 
401 	/*
402 	 * if pending was null this time around, no bios need processing
403 	 * at all and we can stop.  Otherwise it'll loop back up again
404 	 * and do an additional check so no bios are missed.
405 	 *
406 	 * device->running_pending is used to synchronize with the
407 	 * schedule_bio code.
408 	 */
409 	if (device->pending_sync_bios.head == NULL &&
410 	    device->pending_bios.head == NULL) {
411 		again = 0;
412 		device->running_pending = 0;
413 	} else {
414 		again = 1;
415 		device->running_pending = 1;
416 	}
417 
418 	pending_bios->head = NULL;
419 	pending_bios->tail = NULL;
420 
421 	spin_unlock(&device->io_lock);
422 
423 	while (pending) {
424 
425 		rmb();
426 		/* we want to work on both lists, but do more bios on the
427 		 * sync list than the regular list
428 		 */
429 		if ((num_run > 32 &&
430 		    pending_bios != &device->pending_sync_bios &&
431 		    device->pending_sync_bios.head) ||
432 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 		    device->pending_bios.head)) {
434 			spin_lock(&device->io_lock);
435 			requeue_list(pending_bios, pending, tail);
436 			goto loop_lock;
437 		}
438 
439 		cur = pending;
440 		pending = pending->bi_next;
441 		cur->bi_next = NULL;
442 
443 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
444 
445 		/*
446 		 * if we're doing the sync list, record that our
447 		 * plug has some sync requests on it
448 		 *
449 		 * If we're doing the regular list and there are
450 		 * sync requests sitting around, unplug before
451 		 * we add more
452 		 */
453 		if (pending_bios == &device->pending_sync_bios) {
454 			sync_pending = 1;
455 		} else if (sync_pending) {
456 			blk_finish_plug(&plug);
457 			blk_start_plug(&plug);
458 			sync_pending = 0;
459 		}
460 
461 		btrfsic_submit_bio(cur);
462 		num_run++;
463 		batch_run++;
464 
465 		cond_resched();
466 
467 		/*
468 		 * we made progress, there is more work to do and the bdi
469 		 * is now congested.  Back off and let other work structs
470 		 * run instead
471 		 */
472 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
473 		    fs_info->fs_devices->open_devices > 1) {
474 			struct io_context *ioc;
475 
476 			ioc = current->io_context;
477 
478 			/*
479 			 * the main goal here is that we don't want to
480 			 * block if we're going to be able to submit
481 			 * more requests without blocking.
482 			 *
483 			 * This code does two great things, it pokes into
484 			 * the elevator code from a filesystem _and_
485 			 * it makes assumptions about how batching works.
486 			 */
487 			if (ioc && ioc->nr_batch_requests > 0 &&
488 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489 			    (last_waited == 0 ||
490 			     ioc->last_waited == last_waited)) {
491 				/*
492 				 * we want to go through our batch of
493 				 * requests and stop.  So, we copy out
494 				 * the ioc->last_waited time and test
495 				 * against it before looping
496 				 */
497 				last_waited = ioc->last_waited;
498 				cond_resched();
499 				continue;
500 			}
501 			spin_lock(&device->io_lock);
502 			requeue_list(pending_bios, pending, tail);
503 			device->running_pending = 1;
504 
505 			spin_unlock(&device->io_lock);
506 			btrfs_queue_work(fs_info->submit_workers,
507 					 &device->work);
508 			goto done;
509 		}
510 	}
511 
512 	cond_resched();
513 	if (again)
514 		goto loop;
515 
516 	spin_lock(&device->io_lock);
517 	if (device->pending_bios.head || device->pending_sync_bios.head)
518 		goto loop_lock;
519 	spin_unlock(&device->io_lock);
520 
521 done:
522 	blk_finish_plug(&plug);
523 }
524 
525 static void pending_bios_fn(struct btrfs_work *work)
526 {
527 	struct btrfs_device *device;
528 
529 	device = container_of(work, struct btrfs_device, work);
530 	run_scheduled_bios(device);
531 }
532 
533 
534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
535 {
536 	struct btrfs_fs_devices *fs_devs;
537 	struct btrfs_device *dev;
538 
539 	if (!cur_dev->name)
540 		return;
541 
542 	list_for_each_entry(fs_devs, &fs_uuids, list) {
543 		int del = 1;
544 
545 		if (fs_devs->opened)
546 			continue;
547 		if (fs_devs->seeding)
548 			continue;
549 
550 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551 
552 			if (dev == cur_dev)
553 				continue;
554 			if (!dev->name)
555 				continue;
556 
557 			/*
558 			 * Todo: This won't be enough. What if the same device
559 			 * comes back (with new uuid and) with its mapper path?
560 			 * But for now, this does help as mostly an admin will
561 			 * either use mapper or non mapper path throughout.
562 			 */
563 			rcu_read_lock();
564 			del = strcmp(rcu_str_deref(dev->name),
565 						rcu_str_deref(cur_dev->name));
566 			rcu_read_unlock();
567 			if (!del)
568 				break;
569 		}
570 
571 		if (!del) {
572 			/* delete the stale device */
573 			if (fs_devs->num_devices == 1) {
574 				btrfs_sysfs_remove_fsid(fs_devs);
575 				list_del(&fs_devs->list);
576 				free_fs_devices(fs_devs);
577 			} else {
578 				fs_devs->num_devices--;
579 				list_del(&dev->dev_list);
580 				rcu_string_free(dev->name);
581 				bio_put(dev->flush_bio);
582 				kfree(dev);
583 			}
584 			break;
585 		}
586 	}
587 }
588 
589 /*
590  * Add new device to list of registered devices
591  *
592  * Returns:
593  * 1   - first time device is seen
594  * 0   - device already known
595  * < 0 - error
596  */
597 static noinline int device_list_add(const char *path,
598 			   struct btrfs_super_block *disk_super,
599 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
600 {
601 	struct btrfs_device *device;
602 	struct btrfs_fs_devices *fs_devices;
603 	struct rcu_string *name;
604 	int ret = 0;
605 	u64 found_transid = btrfs_super_generation(disk_super);
606 
607 	fs_devices = find_fsid(disk_super->fsid);
608 	if (!fs_devices) {
609 		fs_devices = alloc_fs_devices(disk_super->fsid);
610 		if (IS_ERR(fs_devices))
611 			return PTR_ERR(fs_devices);
612 
613 		list_add(&fs_devices->list, &fs_uuids);
614 
615 		device = NULL;
616 	} else {
617 		device = find_device(fs_devices, devid,
618 				disk_super->dev_item.uuid);
619 	}
620 
621 	if (!device) {
622 		if (fs_devices->opened)
623 			return -EBUSY;
624 
625 		device = btrfs_alloc_device(NULL, &devid,
626 					    disk_super->dev_item.uuid);
627 		if (IS_ERR(device)) {
628 			/* we can safely leave the fs_devices entry around */
629 			return PTR_ERR(device);
630 		}
631 
632 		name = rcu_string_strdup(path, GFP_NOFS);
633 		if (!name) {
634 			bio_put(device->flush_bio);
635 			kfree(device);
636 			return -ENOMEM;
637 		}
638 		rcu_assign_pointer(device->name, name);
639 
640 		mutex_lock(&fs_devices->device_list_mutex);
641 		list_add_rcu(&device->dev_list, &fs_devices->devices);
642 		fs_devices->num_devices++;
643 		mutex_unlock(&fs_devices->device_list_mutex);
644 
645 		ret = 1;
646 		device->fs_devices = fs_devices;
647 	} else if (!device->name || strcmp(device->name->str, path)) {
648 		/*
649 		 * When FS is already mounted.
650 		 * 1. If you are here and if the device->name is NULL that
651 		 *    means this device was missing at time of FS mount.
652 		 * 2. If you are here and if the device->name is different
653 		 *    from 'path' that means either
654 		 *      a. The same device disappeared and reappeared with
655 		 *         different name. or
656 		 *      b. The missing-disk-which-was-replaced, has
657 		 *         reappeared now.
658 		 *
659 		 * We must allow 1 and 2a above. But 2b would be a spurious
660 		 * and unintentional.
661 		 *
662 		 * Further in case of 1 and 2a above, the disk at 'path'
663 		 * would have missed some transaction when it was away and
664 		 * in case of 2a the stale bdev has to be updated as well.
665 		 * 2b must not be allowed at all time.
666 		 */
667 
668 		/*
669 		 * For now, we do allow update to btrfs_fs_device through the
670 		 * btrfs dev scan cli after FS has been mounted.  We're still
671 		 * tracking a problem where systems fail mount by subvolume id
672 		 * when we reject replacement on a mounted FS.
673 		 */
674 		if (!fs_devices->opened && found_transid < device->generation) {
675 			/*
676 			 * That is if the FS is _not_ mounted and if you
677 			 * are here, that means there is more than one
678 			 * disk with same uuid and devid.We keep the one
679 			 * with larger generation number or the last-in if
680 			 * generation are equal.
681 			 */
682 			return -EEXIST;
683 		}
684 
685 		name = rcu_string_strdup(path, GFP_NOFS);
686 		if (!name)
687 			return -ENOMEM;
688 		rcu_string_free(device->name);
689 		rcu_assign_pointer(device->name, name);
690 		if (device->missing) {
691 			fs_devices->missing_devices--;
692 			device->missing = 0;
693 		}
694 	}
695 
696 	/*
697 	 * Unmount does not free the btrfs_device struct but would zero
698 	 * generation along with most of the other members. So just update
699 	 * it back. We need it to pick the disk with largest generation
700 	 * (as above).
701 	 */
702 	if (!fs_devices->opened)
703 		device->generation = found_transid;
704 
705 	/*
706 	 * if there is new btrfs on an already registered device,
707 	 * then remove the stale device entry.
708 	 */
709 	if (ret > 0)
710 		btrfs_free_stale_device(device);
711 
712 	*fs_devices_ret = fs_devices;
713 
714 	return ret;
715 }
716 
717 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
718 {
719 	struct btrfs_fs_devices *fs_devices;
720 	struct btrfs_device *device;
721 	struct btrfs_device *orig_dev;
722 
723 	fs_devices = alloc_fs_devices(orig->fsid);
724 	if (IS_ERR(fs_devices))
725 		return fs_devices;
726 
727 	mutex_lock(&orig->device_list_mutex);
728 	fs_devices->total_devices = orig->total_devices;
729 
730 	/* We have held the volume lock, it is safe to get the devices. */
731 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
732 		struct rcu_string *name;
733 
734 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
735 					    orig_dev->uuid);
736 		if (IS_ERR(device))
737 			goto error;
738 
739 		/*
740 		 * This is ok to do without rcu read locked because we hold the
741 		 * uuid mutex so nothing we touch in here is going to disappear.
742 		 */
743 		if (orig_dev->name) {
744 			name = rcu_string_strdup(orig_dev->name->str,
745 					GFP_KERNEL);
746 			if (!name) {
747 				bio_put(device->flush_bio);
748 				kfree(device);
749 				goto error;
750 			}
751 			rcu_assign_pointer(device->name, name);
752 		}
753 
754 		list_add(&device->dev_list, &fs_devices->devices);
755 		device->fs_devices = fs_devices;
756 		fs_devices->num_devices++;
757 	}
758 	mutex_unlock(&orig->device_list_mutex);
759 	return fs_devices;
760 error:
761 	mutex_unlock(&orig->device_list_mutex);
762 	free_fs_devices(fs_devices);
763 	return ERR_PTR(-ENOMEM);
764 }
765 
766 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
767 {
768 	struct btrfs_device *device, *next;
769 	struct btrfs_device *latest_dev = NULL;
770 
771 	mutex_lock(&uuid_mutex);
772 again:
773 	/* This is the initialized path, it is safe to release the devices. */
774 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
775 		if (device->in_fs_metadata) {
776 			if (!device->is_tgtdev_for_dev_replace &&
777 			    (!latest_dev ||
778 			     device->generation > latest_dev->generation)) {
779 				latest_dev = device;
780 			}
781 			continue;
782 		}
783 
784 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
785 			/*
786 			 * In the first step, keep the device which has
787 			 * the correct fsid and the devid that is used
788 			 * for the dev_replace procedure.
789 			 * In the second step, the dev_replace state is
790 			 * read from the device tree and it is known
791 			 * whether the procedure is really active or
792 			 * not, which means whether this device is
793 			 * used or whether it should be removed.
794 			 */
795 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
796 				continue;
797 			}
798 		}
799 		if (device->bdev) {
800 			blkdev_put(device->bdev, device->mode);
801 			device->bdev = NULL;
802 			fs_devices->open_devices--;
803 		}
804 		if (device->writeable) {
805 			list_del_init(&device->dev_alloc_list);
806 			device->writeable = 0;
807 			if (!device->is_tgtdev_for_dev_replace)
808 				fs_devices->rw_devices--;
809 		}
810 		list_del_init(&device->dev_list);
811 		fs_devices->num_devices--;
812 		rcu_string_free(device->name);
813 		bio_put(device->flush_bio);
814 		kfree(device);
815 	}
816 
817 	if (fs_devices->seed) {
818 		fs_devices = fs_devices->seed;
819 		goto again;
820 	}
821 
822 	fs_devices->latest_bdev = latest_dev->bdev;
823 
824 	mutex_unlock(&uuid_mutex);
825 }
826 
827 static void __free_device(struct work_struct *work)
828 {
829 	struct btrfs_device *device;
830 
831 	device = container_of(work, struct btrfs_device, rcu_work);
832 	rcu_string_free(device->name);
833 	bio_put(device->flush_bio);
834 	kfree(device);
835 }
836 
837 static void free_device(struct rcu_head *head)
838 {
839 	struct btrfs_device *device;
840 
841 	device = container_of(head, struct btrfs_device, rcu);
842 
843 	INIT_WORK(&device->rcu_work, __free_device);
844 	schedule_work(&device->rcu_work);
845 }
846 
847 static void btrfs_close_bdev(struct btrfs_device *device)
848 {
849 	if (device->bdev && device->writeable) {
850 		sync_blockdev(device->bdev);
851 		invalidate_bdev(device->bdev);
852 	}
853 
854 	if (device->bdev)
855 		blkdev_put(device->bdev, device->mode);
856 }
857 
858 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
859 {
860 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
861 	struct btrfs_device *new_device;
862 	struct rcu_string *name;
863 
864 	if (device->bdev)
865 		fs_devices->open_devices--;
866 
867 	if (device->writeable &&
868 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
869 		list_del_init(&device->dev_alloc_list);
870 		fs_devices->rw_devices--;
871 	}
872 
873 	if (device->missing)
874 		fs_devices->missing_devices--;
875 
876 	new_device = btrfs_alloc_device(NULL, &device->devid,
877 					device->uuid);
878 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
879 
880 	/* Safe because we are under uuid_mutex */
881 	if (device->name) {
882 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
883 		BUG_ON(!name); /* -ENOMEM */
884 		rcu_assign_pointer(new_device->name, name);
885 	}
886 
887 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
888 	new_device->fs_devices = device->fs_devices;
889 }
890 
891 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
892 {
893 	struct btrfs_device *device, *tmp;
894 	struct list_head pending_put;
895 
896 	INIT_LIST_HEAD(&pending_put);
897 
898 	if (--fs_devices->opened > 0)
899 		return 0;
900 
901 	mutex_lock(&fs_devices->device_list_mutex);
902 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
903 		btrfs_prepare_close_one_device(device);
904 		list_add(&device->dev_list, &pending_put);
905 	}
906 	mutex_unlock(&fs_devices->device_list_mutex);
907 
908 	/*
909 	 * btrfs_show_devname() is using the device_list_mutex,
910 	 * sometimes call to blkdev_put() leads vfs calling
911 	 * into this func. So do put outside of device_list_mutex,
912 	 * as of now.
913 	 */
914 	while (!list_empty(&pending_put)) {
915 		device = list_first_entry(&pending_put,
916 				struct btrfs_device, dev_list);
917 		list_del(&device->dev_list);
918 		btrfs_close_bdev(device);
919 		call_rcu(&device->rcu, free_device);
920 	}
921 
922 	WARN_ON(fs_devices->open_devices);
923 	WARN_ON(fs_devices->rw_devices);
924 	fs_devices->opened = 0;
925 	fs_devices->seeding = 0;
926 
927 	return 0;
928 }
929 
930 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
931 {
932 	struct btrfs_fs_devices *seed_devices = NULL;
933 	int ret;
934 
935 	mutex_lock(&uuid_mutex);
936 	ret = __btrfs_close_devices(fs_devices);
937 	if (!fs_devices->opened) {
938 		seed_devices = fs_devices->seed;
939 		fs_devices->seed = NULL;
940 	}
941 	mutex_unlock(&uuid_mutex);
942 
943 	while (seed_devices) {
944 		fs_devices = seed_devices;
945 		seed_devices = fs_devices->seed;
946 		__btrfs_close_devices(fs_devices);
947 		free_fs_devices(fs_devices);
948 	}
949 	/*
950 	 * Wait for rcu kworkers under __btrfs_close_devices
951 	 * to finish all blkdev_puts so device is really
952 	 * free when umount is done.
953 	 */
954 	rcu_barrier();
955 	return ret;
956 }
957 
958 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
959 				fmode_t flags, void *holder)
960 {
961 	struct request_queue *q;
962 	struct block_device *bdev;
963 	struct list_head *head = &fs_devices->devices;
964 	struct btrfs_device *device;
965 	struct btrfs_device *latest_dev = NULL;
966 	struct buffer_head *bh;
967 	struct btrfs_super_block *disk_super;
968 	u64 devid;
969 	int seeding = 1;
970 	int ret = 0;
971 
972 	flags |= FMODE_EXCL;
973 
974 	list_for_each_entry(device, head, dev_list) {
975 		if (device->bdev)
976 			continue;
977 		if (!device->name)
978 			continue;
979 
980 		/* Just open everything we can; ignore failures here */
981 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
982 					    &bdev, &bh))
983 			continue;
984 
985 		disk_super = (struct btrfs_super_block *)bh->b_data;
986 		devid = btrfs_stack_device_id(&disk_super->dev_item);
987 		if (devid != device->devid)
988 			goto error_brelse;
989 
990 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
991 			   BTRFS_UUID_SIZE))
992 			goto error_brelse;
993 
994 		device->generation = btrfs_super_generation(disk_super);
995 		if (!latest_dev ||
996 		    device->generation > latest_dev->generation)
997 			latest_dev = device;
998 
999 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1000 			device->writeable = 0;
1001 		} else {
1002 			device->writeable = !bdev_read_only(bdev);
1003 			seeding = 0;
1004 		}
1005 
1006 		q = bdev_get_queue(bdev);
1007 		if (blk_queue_discard(q))
1008 			device->can_discard = 1;
1009 		if (!blk_queue_nonrot(q))
1010 			fs_devices->rotating = 1;
1011 
1012 		device->bdev = bdev;
1013 		device->in_fs_metadata = 0;
1014 		device->mode = flags;
1015 
1016 		fs_devices->open_devices++;
1017 		if (device->writeable &&
1018 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1019 			fs_devices->rw_devices++;
1020 			list_add(&device->dev_alloc_list,
1021 				 &fs_devices->alloc_list);
1022 		}
1023 		brelse(bh);
1024 		continue;
1025 
1026 error_brelse:
1027 		brelse(bh);
1028 		blkdev_put(bdev, flags);
1029 		continue;
1030 	}
1031 	if (fs_devices->open_devices == 0) {
1032 		ret = -EINVAL;
1033 		goto out;
1034 	}
1035 	fs_devices->seeding = seeding;
1036 	fs_devices->opened = 1;
1037 	fs_devices->latest_bdev = latest_dev->bdev;
1038 	fs_devices->total_rw_bytes = 0;
1039 out:
1040 	return ret;
1041 }
1042 
1043 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1044 		       fmode_t flags, void *holder)
1045 {
1046 	int ret;
1047 
1048 	mutex_lock(&uuid_mutex);
1049 	if (fs_devices->opened) {
1050 		fs_devices->opened++;
1051 		ret = 0;
1052 	} else {
1053 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1054 	}
1055 	mutex_unlock(&uuid_mutex);
1056 	return ret;
1057 }
1058 
1059 static void btrfs_release_disk_super(struct page *page)
1060 {
1061 	kunmap(page);
1062 	put_page(page);
1063 }
1064 
1065 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1066 				 struct page **page,
1067 				 struct btrfs_super_block **disk_super)
1068 {
1069 	void *p;
1070 	pgoff_t index;
1071 
1072 	/* make sure our super fits in the device */
1073 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1074 		return 1;
1075 
1076 	/* make sure our super fits in the page */
1077 	if (sizeof(**disk_super) > PAGE_SIZE)
1078 		return 1;
1079 
1080 	/* make sure our super doesn't straddle pages on disk */
1081 	index = bytenr >> PAGE_SHIFT;
1082 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1083 		return 1;
1084 
1085 	/* pull in the page with our super */
1086 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1087 				   index, GFP_KERNEL);
1088 
1089 	if (IS_ERR_OR_NULL(*page))
1090 		return 1;
1091 
1092 	p = kmap(*page);
1093 
1094 	/* align our pointer to the offset of the super block */
1095 	*disk_super = p + (bytenr & ~PAGE_MASK);
1096 
1097 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1098 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1099 		btrfs_release_disk_super(*page);
1100 		return 1;
1101 	}
1102 
1103 	if ((*disk_super)->label[0] &&
1104 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1105 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1106 
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Look for a btrfs signature on a device. This may be called out of the mount path
1112  * and we are not allowed to call set_blocksize during the scan. The superblock
1113  * is read via pagecache
1114  */
1115 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1116 			  struct btrfs_fs_devices **fs_devices_ret)
1117 {
1118 	struct btrfs_super_block *disk_super;
1119 	struct block_device *bdev;
1120 	struct page *page;
1121 	int ret = -EINVAL;
1122 	u64 devid;
1123 	u64 transid;
1124 	u64 total_devices;
1125 	u64 bytenr;
1126 
1127 	/*
1128 	 * we would like to check all the supers, but that would make
1129 	 * a btrfs mount succeed after a mkfs from a different FS.
1130 	 * So, we need to add a special mount option to scan for
1131 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1132 	 */
1133 	bytenr = btrfs_sb_offset(0);
1134 	flags |= FMODE_EXCL;
1135 	mutex_lock(&uuid_mutex);
1136 
1137 	bdev = blkdev_get_by_path(path, flags, holder);
1138 	if (IS_ERR(bdev)) {
1139 		ret = PTR_ERR(bdev);
1140 		goto error;
1141 	}
1142 
1143 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1144 		goto error_bdev_put;
1145 
1146 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1147 	transid = btrfs_super_generation(disk_super);
1148 	total_devices = btrfs_super_num_devices(disk_super);
1149 
1150 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1151 	if (ret > 0) {
1152 		if (disk_super->label[0]) {
1153 			pr_info("BTRFS: device label %s ", disk_super->label);
1154 		} else {
1155 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1156 		}
1157 
1158 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1159 		ret = 0;
1160 	}
1161 	if (!ret && fs_devices_ret)
1162 		(*fs_devices_ret)->total_devices = total_devices;
1163 
1164 	btrfs_release_disk_super(page);
1165 
1166 error_bdev_put:
1167 	blkdev_put(bdev, flags);
1168 error:
1169 	mutex_unlock(&uuid_mutex);
1170 	return ret;
1171 }
1172 
1173 /* helper to account the used device space in the range */
1174 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1175 				   u64 end, u64 *length)
1176 {
1177 	struct btrfs_key key;
1178 	struct btrfs_root *root = device->fs_info->dev_root;
1179 	struct btrfs_dev_extent *dev_extent;
1180 	struct btrfs_path *path;
1181 	u64 extent_end;
1182 	int ret;
1183 	int slot;
1184 	struct extent_buffer *l;
1185 
1186 	*length = 0;
1187 
1188 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1189 		return 0;
1190 
1191 	path = btrfs_alloc_path();
1192 	if (!path)
1193 		return -ENOMEM;
1194 	path->reada = READA_FORWARD;
1195 
1196 	key.objectid = device->devid;
1197 	key.offset = start;
1198 	key.type = BTRFS_DEV_EXTENT_KEY;
1199 
1200 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1201 	if (ret < 0)
1202 		goto out;
1203 	if (ret > 0) {
1204 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1205 		if (ret < 0)
1206 			goto out;
1207 	}
1208 
1209 	while (1) {
1210 		l = path->nodes[0];
1211 		slot = path->slots[0];
1212 		if (slot >= btrfs_header_nritems(l)) {
1213 			ret = btrfs_next_leaf(root, path);
1214 			if (ret == 0)
1215 				continue;
1216 			if (ret < 0)
1217 				goto out;
1218 
1219 			break;
1220 		}
1221 		btrfs_item_key_to_cpu(l, &key, slot);
1222 
1223 		if (key.objectid < device->devid)
1224 			goto next;
1225 
1226 		if (key.objectid > device->devid)
1227 			break;
1228 
1229 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1230 			goto next;
1231 
1232 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1233 		extent_end = key.offset + btrfs_dev_extent_length(l,
1234 								  dev_extent);
1235 		if (key.offset <= start && extent_end > end) {
1236 			*length = end - start + 1;
1237 			break;
1238 		} else if (key.offset <= start && extent_end > start)
1239 			*length += extent_end - start;
1240 		else if (key.offset > start && extent_end <= end)
1241 			*length += extent_end - key.offset;
1242 		else if (key.offset > start && key.offset <= end) {
1243 			*length += end - key.offset + 1;
1244 			break;
1245 		} else if (key.offset > end)
1246 			break;
1247 
1248 next:
1249 		path->slots[0]++;
1250 	}
1251 	ret = 0;
1252 out:
1253 	btrfs_free_path(path);
1254 	return ret;
1255 }
1256 
1257 static int contains_pending_extent(struct btrfs_transaction *transaction,
1258 				   struct btrfs_device *device,
1259 				   u64 *start, u64 len)
1260 {
1261 	struct btrfs_fs_info *fs_info = device->fs_info;
1262 	struct extent_map *em;
1263 	struct list_head *search_list = &fs_info->pinned_chunks;
1264 	int ret = 0;
1265 	u64 physical_start = *start;
1266 
1267 	if (transaction)
1268 		search_list = &transaction->pending_chunks;
1269 again:
1270 	list_for_each_entry(em, search_list, list) {
1271 		struct map_lookup *map;
1272 		int i;
1273 
1274 		map = em->map_lookup;
1275 		for (i = 0; i < map->num_stripes; i++) {
1276 			u64 end;
1277 
1278 			if (map->stripes[i].dev != device)
1279 				continue;
1280 			if (map->stripes[i].physical >= physical_start + len ||
1281 			    map->stripes[i].physical + em->orig_block_len <=
1282 			    physical_start)
1283 				continue;
1284 			/*
1285 			 * Make sure that while processing the pinned list we do
1286 			 * not override our *start with a lower value, because
1287 			 * we can have pinned chunks that fall within this
1288 			 * device hole and that have lower physical addresses
1289 			 * than the pending chunks we processed before. If we
1290 			 * do not take this special care we can end up getting
1291 			 * 2 pending chunks that start at the same physical
1292 			 * device offsets because the end offset of a pinned
1293 			 * chunk can be equal to the start offset of some
1294 			 * pending chunk.
1295 			 */
1296 			end = map->stripes[i].physical + em->orig_block_len;
1297 			if (end > *start) {
1298 				*start = end;
1299 				ret = 1;
1300 			}
1301 		}
1302 	}
1303 	if (search_list != &fs_info->pinned_chunks) {
1304 		search_list = &fs_info->pinned_chunks;
1305 		goto again;
1306 	}
1307 
1308 	return ret;
1309 }
1310 
1311 
1312 /*
1313  * find_free_dev_extent_start - find free space in the specified device
1314  * @device:	  the device which we search the free space in
1315  * @num_bytes:	  the size of the free space that we need
1316  * @search_start: the position from which to begin the search
1317  * @start:	  store the start of the free space.
1318  * @len:	  the size of the free space. that we find, or the size
1319  *		  of the max free space if we don't find suitable free space
1320  *
1321  * this uses a pretty simple search, the expectation is that it is
1322  * called very infrequently and that a given device has a small number
1323  * of extents
1324  *
1325  * @start is used to store the start of the free space if we find. But if we
1326  * don't find suitable free space, it will be used to store the start position
1327  * of the max free space.
1328  *
1329  * @len is used to store the size of the free space that we find.
1330  * But if we don't find suitable free space, it is used to store the size of
1331  * the max free space.
1332  */
1333 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1334 			       struct btrfs_device *device, u64 num_bytes,
1335 			       u64 search_start, u64 *start, u64 *len)
1336 {
1337 	struct btrfs_fs_info *fs_info = device->fs_info;
1338 	struct btrfs_root *root = fs_info->dev_root;
1339 	struct btrfs_key key;
1340 	struct btrfs_dev_extent *dev_extent;
1341 	struct btrfs_path *path;
1342 	u64 hole_size;
1343 	u64 max_hole_start;
1344 	u64 max_hole_size;
1345 	u64 extent_end;
1346 	u64 search_end = device->total_bytes;
1347 	int ret;
1348 	int slot;
1349 	struct extent_buffer *l;
1350 
1351 	/*
1352 	 * We don't want to overwrite the superblock on the drive nor any area
1353 	 * used by the boot loader (grub for example), so we make sure to start
1354 	 * at an offset of at least 1MB.
1355 	 */
1356 	search_start = max_t(u64, search_start, SZ_1M);
1357 
1358 	path = btrfs_alloc_path();
1359 	if (!path)
1360 		return -ENOMEM;
1361 
1362 	max_hole_start = search_start;
1363 	max_hole_size = 0;
1364 
1365 again:
1366 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1367 		ret = -ENOSPC;
1368 		goto out;
1369 	}
1370 
1371 	path->reada = READA_FORWARD;
1372 	path->search_commit_root = 1;
1373 	path->skip_locking = 1;
1374 
1375 	key.objectid = device->devid;
1376 	key.offset = search_start;
1377 	key.type = BTRFS_DEV_EXTENT_KEY;
1378 
1379 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1380 	if (ret < 0)
1381 		goto out;
1382 	if (ret > 0) {
1383 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1384 		if (ret < 0)
1385 			goto out;
1386 	}
1387 
1388 	while (1) {
1389 		l = path->nodes[0];
1390 		slot = path->slots[0];
1391 		if (slot >= btrfs_header_nritems(l)) {
1392 			ret = btrfs_next_leaf(root, path);
1393 			if (ret == 0)
1394 				continue;
1395 			if (ret < 0)
1396 				goto out;
1397 
1398 			break;
1399 		}
1400 		btrfs_item_key_to_cpu(l, &key, slot);
1401 
1402 		if (key.objectid < device->devid)
1403 			goto next;
1404 
1405 		if (key.objectid > device->devid)
1406 			break;
1407 
1408 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1409 			goto next;
1410 
1411 		if (key.offset > search_start) {
1412 			hole_size = key.offset - search_start;
1413 
1414 			/*
1415 			 * Have to check before we set max_hole_start, otherwise
1416 			 * we could end up sending back this offset anyway.
1417 			 */
1418 			if (contains_pending_extent(transaction, device,
1419 						    &search_start,
1420 						    hole_size)) {
1421 				if (key.offset >= search_start) {
1422 					hole_size = key.offset - search_start;
1423 				} else {
1424 					WARN_ON_ONCE(1);
1425 					hole_size = 0;
1426 				}
1427 			}
1428 
1429 			if (hole_size > max_hole_size) {
1430 				max_hole_start = search_start;
1431 				max_hole_size = hole_size;
1432 			}
1433 
1434 			/*
1435 			 * If this free space is greater than which we need,
1436 			 * it must be the max free space that we have found
1437 			 * until now, so max_hole_start must point to the start
1438 			 * of this free space and the length of this free space
1439 			 * is stored in max_hole_size. Thus, we return
1440 			 * max_hole_start and max_hole_size and go back to the
1441 			 * caller.
1442 			 */
1443 			if (hole_size >= num_bytes) {
1444 				ret = 0;
1445 				goto out;
1446 			}
1447 		}
1448 
1449 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1450 		extent_end = key.offset + btrfs_dev_extent_length(l,
1451 								  dev_extent);
1452 		if (extent_end > search_start)
1453 			search_start = extent_end;
1454 next:
1455 		path->slots[0]++;
1456 		cond_resched();
1457 	}
1458 
1459 	/*
1460 	 * At this point, search_start should be the end of
1461 	 * allocated dev extents, and when shrinking the device,
1462 	 * search_end may be smaller than search_start.
1463 	 */
1464 	if (search_end > search_start) {
1465 		hole_size = search_end - search_start;
1466 
1467 		if (contains_pending_extent(transaction, device, &search_start,
1468 					    hole_size)) {
1469 			btrfs_release_path(path);
1470 			goto again;
1471 		}
1472 
1473 		if (hole_size > max_hole_size) {
1474 			max_hole_start = search_start;
1475 			max_hole_size = hole_size;
1476 		}
1477 	}
1478 
1479 	/* See above. */
1480 	if (max_hole_size < num_bytes)
1481 		ret = -ENOSPC;
1482 	else
1483 		ret = 0;
1484 
1485 out:
1486 	btrfs_free_path(path);
1487 	*start = max_hole_start;
1488 	if (len)
1489 		*len = max_hole_size;
1490 	return ret;
1491 }
1492 
1493 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1494 			 struct btrfs_device *device, u64 num_bytes,
1495 			 u64 *start, u64 *len)
1496 {
1497 	/* FIXME use last free of some kind */
1498 	return find_free_dev_extent_start(trans->transaction, device,
1499 					  num_bytes, 0, start, len);
1500 }
1501 
1502 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1503 			  struct btrfs_device *device,
1504 			  u64 start, u64 *dev_extent_len)
1505 {
1506 	struct btrfs_fs_info *fs_info = device->fs_info;
1507 	struct btrfs_root *root = fs_info->dev_root;
1508 	int ret;
1509 	struct btrfs_path *path;
1510 	struct btrfs_key key;
1511 	struct btrfs_key found_key;
1512 	struct extent_buffer *leaf = NULL;
1513 	struct btrfs_dev_extent *extent = NULL;
1514 
1515 	path = btrfs_alloc_path();
1516 	if (!path)
1517 		return -ENOMEM;
1518 
1519 	key.objectid = device->devid;
1520 	key.offset = start;
1521 	key.type = BTRFS_DEV_EXTENT_KEY;
1522 again:
1523 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1524 	if (ret > 0) {
1525 		ret = btrfs_previous_item(root, path, key.objectid,
1526 					  BTRFS_DEV_EXTENT_KEY);
1527 		if (ret)
1528 			goto out;
1529 		leaf = path->nodes[0];
1530 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1531 		extent = btrfs_item_ptr(leaf, path->slots[0],
1532 					struct btrfs_dev_extent);
1533 		BUG_ON(found_key.offset > start || found_key.offset +
1534 		       btrfs_dev_extent_length(leaf, extent) < start);
1535 		key = found_key;
1536 		btrfs_release_path(path);
1537 		goto again;
1538 	} else if (ret == 0) {
1539 		leaf = path->nodes[0];
1540 		extent = btrfs_item_ptr(leaf, path->slots[0],
1541 					struct btrfs_dev_extent);
1542 	} else {
1543 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1544 		goto out;
1545 	}
1546 
1547 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1548 
1549 	ret = btrfs_del_item(trans, root, path);
1550 	if (ret) {
1551 		btrfs_handle_fs_error(fs_info, ret,
1552 				      "Failed to remove dev extent item");
1553 	} else {
1554 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1555 	}
1556 out:
1557 	btrfs_free_path(path);
1558 	return ret;
1559 }
1560 
1561 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1562 				  struct btrfs_device *device,
1563 				  u64 chunk_offset, u64 start, u64 num_bytes)
1564 {
1565 	int ret;
1566 	struct btrfs_path *path;
1567 	struct btrfs_fs_info *fs_info = device->fs_info;
1568 	struct btrfs_root *root = fs_info->dev_root;
1569 	struct btrfs_dev_extent *extent;
1570 	struct extent_buffer *leaf;
1571 	struct btrfs_key key;
1572 
1573 	WARN_ON(!device->in_fs_metadata);
1574 	WARN_ON(device->is_tgtdev_for_dev_replace);
1575 	path = btrfs_alloc_path();
1576 	if (!path)
1577 		return -ENOMEM;
1578 
1579 	key.objectid = device->devid;
1580 	key.offset = start;
1581 	key.type = BTRFS_DEV_EXTENT_KEY;
1582 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1583 				      sizeof(*extent));
1584 	if (ret)
1585 		goto out;
1586 
1587 	leaf = path->nodes[0];
1588 	extent = btrfs_item_ptr(leaf, path->slots[0],
1589 				struct btrfs_dev_extent);
1590 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1591 					BTRFS_CHUNK_TREE_OBJECTID);
1592 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1593 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1594 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1595 
1596 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1597 	btrfs_mark_buffer_dirty(leaf);
1598 out:
1599 	btrfs_free_path(path);
1600 	return ret;
1601 }
1602 
1603 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1604 {
1605 	struct extent_map_tree *em_tree;
1606 	struct extent_map *em;
1607 	struct rb_node *n;
1608 	u64 ret = 0;
1609 
1610 	em_tree = &fs_info->mapping_tree.map_tree;
1611 	read_lock(&em_tree->lock);
1612 	n = rb_last(&em_tree->map);
1613 	if (n) {
1614 		em = rb_entry(n, struct extent_map, rb_node);
1615 		ret = em->start + em->len;
1616 	}
1617 	read_unlock(&em_tree->lock);
1618 
1619 	return ret;
1620 }
1621 
1622 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1623 				    u64 *devid_ret)
1624 {
1625 	int ret;
1626 	struct btrfs_key key;
1627 	struct btrfs_key found_key;
1628 	struct btrfs_path *path;
1629 
1630 	path = btrfs_alloc_path();
1631 	if (!path)
1632 		return -ENOMEM;
1633 
1634 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1635 	key.type = BTRFS_DEV_ITEM_KEY;
1636 	key.offset = (u64)-1;
1637 
1638 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1639 	if (ret < 0)
1640 		goto error;
1641 
1642 	BUG_ON(ret == 0); /* Corruption */
1643 
1644 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1645 				  BTRFS_DEV_ITEMS_OBJECTID,
1646 				  BTRFS_DEV_ITEM_KEY);
1647 	if (ret) {
1648 		*devid_ret = 1;
1649 	} else {
1650 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1651 				      path->slots[0]);
1652 		*devid_ret = found_key.offset + 1;
1653 	}
1654 	ret = 0;
1655 error:
1656 	btrfs_free_path(path);
1657 	return ret;
1658 }
1659 
1660 /*
1661  * the device information is stored in the chunk root
1662  * the btrfs_device struct should be fully filled in
1663  */
1664 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1665 			    struct btrfs_fs_info *fs_info,
1666 			    struct btrfs_device *device)
1667 {
1668 	struct btrfs_root *root = fs_info->chunk_root;
1669 	int ret;
1670 	struct btrfs_path *path;
1671 	struct btrfs_dev_item *dev_item;
1672 	struct extent_buffer *leaf;
1673 	struct btrfs_key key;
1674 	unsigned long ptr;
1675 
1676 	path = btrfs_alloc_path();
1677 	if (!path)
1678 		return -ENOMEM;
1679 
1680 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1681 	key.type = BTRFS_DEV_ITEM_KEY;
1682 	key.offset = device->devid;
1683 
1684 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1685 				      sizeof(*dev_item));
1686 	if (ret)
1687 		goto out;
1688 
1689 	leaf = path->nodes[0];
1690 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1691 
1692 	btrfs_set_device_id(leaf, dev_item, device->devid);
1693 	btrfs_set_device_generation(leaf, dev_item, 0);
1694 	btrfs_set_device_type(leaf, dev_item, device->type);
1695 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1696 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1697 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1698 	btrfs_set_device_total_bytes(leaf, dev_item,
1699 				     btrfs_device_get_disk_total_bytes(device));
1700 	btrfs_set_device_bytes_used(leaf, dev_item,
1701 				    btrfs_device_get_bytes_used(device));
1702 	btrfs_set_device_group(leaf, dev_item, 0);
1703 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1704 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1705 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1706 
1707 	ptr = btrfs_device_uuid(dev_item);
1708 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1709 	ptr = btrfs_device_fsid(dev_item);
1710 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1711 	btrfs_mark_buffer_dirty(leaf);
1712 
1713 	ret = 0;
1714 out:
1715 	btrfs_free_path(path);
1716 	return ret;
1717 }
1718 
1719 /*
1720  * Function to update ctime/mtime for a given device path.
1721  * Mainly used for ctime/mtime based probe like libblkid.
1722  */
1723 static void update_dev_time(const char *path_name)
1724 {
1725 	struct file *filp;
1726 
1727 	filp = filp_open(path_name, O_RDWR, 0);
1728 	if (IS_ERR(filp))
1729 		return;
1730 	file_update_time(filp);
1731 	filp_close(filp, NULL);
1732 }
1733 
1734 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1735 			     struct btrfs_device *device)
1736 {
1737 	struct btrfs_root *root = fs_info->chunk_root;
1738 	int ret;
1739 	struct btrfs_path *path;
1740 	struct btrfs_key key;
1741 	struct btrfs_trans_handle *trans;
1742 
1743 	path = btrfs_alloc_path();
1744 	if (!path)
1745 		return -ENOMEM;
1746 
1747 	trans = btrfs_start_transaction(root, 0);
1748 	if (IS_ERR(trans)) {
1749 		btrfs_free_path(path);
1750 		return PTR_ERR(trans);
1751 	}
1752 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1753 	key.type = BTRFS_DEV_ITEM_KEY;
1754 	key.offset = device->devid;
1755 
1756 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1757 	if (ret) {
1758 		if (ret > 0)
1759 			ret = -ENOENT;
1760 		btrfs_abort_transaction(trans, ret);
1761 		btrfs_end_transaction(trans);
1762 		goto out;
1763 	}
1764 
1765 	ret = btrfs_del_item(trans, root, path);
1766 	if (ret) {
1767 		btrfs_abort_transaction(trans, ret);
1768 		btrfs_end_transaction(trans);
1769 	}
1770 
1771 out:
1772 	btrfs_free_path(path);
1773 	if (!ret)
1774 		ret = btrfs_commit_transaction(trans);
1775 	return ret;
1776 }
1777 
1778 /*
1779  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1780  * filesystem. It's up to the caller to adjust that number regarding eg. device
1781  * replace.
1782  */
1783 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1784 		u64 num_devices)
1785 {
1786 	u64 all_avail;
1787 	unsigned seq;
1788 	int i;
1789 
1790 	do {
1791 		seq = read_seqbegin(&fs_info->profiles_lock);
1792 
1793 		all_avail = fs_info->avail_data_alloc_bits |
1794 			    fs_info->avail_system_alloc_bits |
1795 			    fs_info->avail_metadata_alloc_bits;
1796 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1797 
1798 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1799 		if (!(all_avail & btrfs_raid_group[i]))
1800 			continue;
1801 
1802 		if (num_devices < btrfs_raid_array[i].devs_min) {
1803 			int ret = btrfs_raid_mindev_error[i];
1804 
1805 			if (ret)
1806 				return ret;
1807 		}
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static struct btrfs_device * btrfs_find_next_active_device(
1814 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1815 {
1816 	struct btrfs_device *next_device;
1817 
1818 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1819 		if (next_device != device &&
1820 			!next_device->missing && next_device->bdev)
1821 			return next_device;
1822 	}
1823 
1824 	return NULL;
1825 }
1826 
1827 /*
1828  * Helper function to check if the given device is part of s_bdev / latest_bdev
1829  * and replace it with the provided or the next active device, in the context
1830  * where this function called, there should be always be another device (or
1831  * this_dev) which is active.
1832  */
1833 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1834 		struct btrfs_device *device, struct btrfs_device *this_dev)
1835 {
1836 	struct btrfs_device *next_device;
1837 
1838 	if (this_dev)
1839 		next_device = this_dev;
1840 	else
1841 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1842 								device);
1843 	ASSERT(next_device);
1844 
1845 	if (fs_info->sb->s_bdev &&
1846 			(fs_info->sb->s_bdev == device->bdev))
1847 		fs_info->sb->s_bdev = next_device->bdev;
1848 
1849 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1850 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1851 }
1852 
1853 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1854 		u64 devid)
1855 {
1856 	struct btrfs_device *device;
1857 	struct btrfs_fs_devices *cur_devices;
1858 	u64 num_devices;
1859 	int ret = 0;
1860 
1861 	mutex_lock(&uuid_mutex);
1862 
1863 	num_devices = fs_info->fs_devices->num_devices;
1864 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1865 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1866 		WARN_ON(num_devices < 1);
1867 		num_devices--;
1868 	}
1869 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1870 
1871 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1872 	if (ret)
1873 		goto out;
1874 
1875 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1876 					   &device);
1877 	if (ret)
1878 		goto out;
1879 
1880 	if (device->is_tgtdev_for_dev_replace) {
1881 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1882 		goto out;
1883 	}
1884 
1885 	if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1886 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1887 		goto out;
1888 	}
1889 
1890 	if (device->writeable) {
1891 		mutex_lock(&fs_info->chunk_mutex);
1892 		list_del_init(&device->dev_alloc_list);
1893 		device->fs_devices->rw_devices--;
1894 		mutex_unlock(&fs_info->chunk_mutex);
1895 	}
1896 
1897 	mutex_unlock(&uuid_mutex);
1898 	ret = btrfs_shrink_device(device, 0);
1899 	mutex_lock(&uuid_mutex);
1900 	if (ret)
1901 		goto error_undo;
1902 
1903 	/*
1904 	 * TODO: the superblock still includes this device in its num_devices
1905 	 * counter although write_all_supers() is not locked out. This
1906 	 * could give a filesystem state which requires a degraded mount.
1907 	 */
1908 	ret = btrfs_rm_dev_item(fs_info, device);
1909 	if (ret)
1910 		goto error_undo;
1911 
1912 	device->in_fs_metadata = 0;
1913 	btrfs_scrub_cancel_dev(fs_info, device);
1914 
1915 	/*
1916 	 * the device list mutex makes sure that we don't change
1917 	 * the device list while someone else is writing out all
1918 	 * the device supers. Whoever is writing all supers, should
1919 	 * lock the device list mutex before getting the number of
1920 	 * devices in the super block (super_copy). Conversely,
1921 	 * whoever updates the number of devices in the super block
1922 	 * (super_copy) should hold the device list mutex.
1923 	 */
1924 
1925 	cur_devices = device->fs_devices;
1926 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1927 	list_del_rcu(&device->dev_list);
1928 
1929 	device->fs_devices->num_devices--;
1930 	device->fs_devices->total_devices--;
1931 
1932 	if (device->missing)
1933 		device->fs_devices->missing_devices--;
1934 
1935 	btrfs_assign_next_active_device(fs_info, device, NULL);
1936 
1937 	if (device->bdev) {
1938 		device->fs_devices->open_devices--;
1939 		/* remove sysfs entry */
1940 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1941 	}
1942 
1943 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1944 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1945 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1946 
1947 	/*
1948 	 * at this point, the device is zero sized and detached from
1949 	 * the devices list.  All that's left is to zero out the old
1950 	 * supers and free the device.
1951 	 */
1952 	if (device->writeable)
1953 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1954 
1955 	btrfs_close_bdev(device);
1956 	call_rcu(&device->rcu, free_device);
1957 
1958 	if (cur_devices->open_devices == 0) {
1959 		struct btrfs_fs_devices *fs_devices;
1960 		fs_devices = fs_info->fs_devices;
1961 		while (fs_devices) {
1962 			if (fs_devices->seed == cur_devices) {
1963 				fs_devices->seed = cur_devices->seed;
1964 				break;
1965 			}
1966 			fs_devices = fs_devices->seed;
1967 		}
1968 		cur_devices->seed = NULL;
1969 		__btrfs_close_devices(cur_devices);
1970 		free_fs_devices(cur_devices);
1971 	}
1972 
1973 out:
1974 	mutex_unlock(&uuid_mutex);
1975 	return ret;
1976 
1977 error_undo:
1978 	if (device->writeable) {
1979 		mutex_lock(&fs_info->chunk_mutex);
1980 		list_add(&device->dev_alloc_list,
1981 			 &fs_info->fs_devices->alloc_list);
1982 		device->fs_devices->rw_devices++;
1983 		mutex_unlock(&fs_info->chunk_mutex);
1984 	}
1985 	goto out;
1986 }
1987 
1988 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1989 					struct btrfs_device *srcdev)
1990 {
1991 	struct btrfs_fs_devices *fs_devices;
1992 
1993 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1994 
1995 	/*
1996 	 * in case of fs with no seed, srcdev->fs_devices will point
1997 	 * to fs_devices of fs_info. However when the dev being replaced is
1998 	 * a seed dev it will point to the seed's local fs_devices. In short
1999 	 * srcdev will have its correct fs_devices in both the cases.
2000 	 */
2001 	fs_devices = srcdev->fs_devices;
2002 
2003 	list_del_rcu(&srcdev->dev_list);
2004 	list_del(&srcdev->dev_alloc_list);
2005 	fs_devices->num_devices--;
2006 	if (srcdev->missing)
2007 		fs_devices->missing_devices--;
2008 
2009 	if (srcdev->writeable)
2010 		fs_devices->rw_devices--;
2011 
2012 	if (srcdev->bdev)
2013 		fs_devices->open_devices--;
2014 }
2015 
2016 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2017 				      struct btrfs_device *srcdev)
2018 {
2019 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2020 
2021 	if (srcdev->writeable) {
2022 		/* zero out the old super if it is writable */
2023 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2024 	}
2025 
2026 	btrfs_close_bdev(srcdev);
2027 	call_rcu(&srcdev->rcu, free_device);
2028 
2029 	/* if this is no devs we rather delete the fs_devices */
2030 	if (!fs_devices->num_devices) {
2031 		struct btrfs_fs_devices *tmp_fs_devices;
2032 
2033 		/*
2034 		 * On a mounted FS, num_devices can't be zero unless it's a
2035 		 * seed. In case of a seed device being replaced, the replace
2036 		 * target added to the sprout FS, so there will be no more
2037 		 * device left under the seed FS.
2038 		 */
2039 		ASSERT(fs_devices->seeding);
2040 
2041 		tmp_fs_devices = fs_info->fs_devices;
2042 		while (tmp_fs_devices) {
2043 			if (tmp_fs_devices->seed == fs_devices) {
2044 				tmp_fs_devices->seed = fs_devices->seed;
2045 				break;
2046 			}
2047 			tmp_fs_devices = tmp_fs_devices->seed;
2048 		}
2049 		fs_devices->seed = NULL;
2050 		__btrfs_close_devices(fs_devices);
2051 		free_fs_devices(fs_devices);
2052 	}
2053 }
2054 
2055 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2056 				      struct btrfs_device *tgtdev)
2057 {
2058 	mutex_lock(&uuid_mutex);
2059 	WARN_ON(!tgtdev);
2060 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2061 
2062 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2063 
2064 	if (tgtdev->bdev)
2065 		fs_info->fs_devices->open_devices--;
2066 
2067 	fs_info->fs_devices->num_devices--;
2068 
2069 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2070 
2071 	list_del_rcu(&tgtdev->dev_list);
2072 
2073 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2074 	mutex_unlock(&uuid_mutex);
2075 
2076 	/*
2077 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2078 	 * may lead to a call to btrfs_show_devname() which will try
2079 	 * to hold device_list_mutex. And here this device
2080 	 * is already out of device list, so we don't have to hold
2081 	 * the device_list_mutex lock.
2082 	 */
2083 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2084 
2085 	btrfs_close_bdev(tgtdev);
2086 	call_rcu(&tgtdev->rcu, free_device);
2087 }
2088 
2089 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2090 				     const char *device_path,
2091 				     struct btrfs_device **device)
2092 {
2093 	int ret = 0;
2094 	struct btrfs_super_block *disk_super;
2095 	u64 devid;
2096 	u8 *dev_uuid;
2097 	struct block_device *bdev;
2098 	struct buffer_head *bh;
2099 
2100 	*device = NULL;
2101 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2102 				    fs_info->bdev_holder, 0, &bdev, &bh);
2103 	if (ret)
2104 		return ret;
2105 	disk_super = (struct btrfs_super_block *)bh->b_data;
2106 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2107 	dev_uuid = disk_super->dev_item.uuid;
2108 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2109 	brelse(bh);
2110 	if (!*device)
2111 		ret = -ENOENT;
2112 	blkdev_put(bdev, FMODE_READ);
2113 	return ret;
2114 }
2115 
2116 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2117 					 const char *device_path,
2118 					 struct btrfs_device **device)
2119 {
2120 	*device = NULL;
2121 	if (strcmp(device_path, "missing") == 0) {
2122 		struct list_head *devices;
2123 		struct btrfs_device *tmp;
2124 
2125 		devices = &fs_info->fs_devices->devices;
2126 		/*
2127 		 * It is safe to read the devices since the volume_mutex
2128 		 * is held by the caller.
2129 		 */
2130 		list_for_each_entry(tmp, devices, dev_list) {
2131 			if (tmp->in_fs_metadata && !tmp->bdev) {
2132 				*device = tmp;
2133 				break;
2134 			}
2135 		}
2136 
2137 		if (!*device)
2138 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2139 
2140 		return 0;
2141 	} else {
2142 		return btrfs_find_device_by_path(fs_info, device_path, device);
2143 	}
2144 }
2145 
2146 /*
2147  * Lookup a device given by device id, or the path if the id is 0.
2148  */
2149 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2150 				 const char *devpath,
2151 				 struct btrfs_device **device)
2152 {
2153 	int ret;
2154 
2155 	if (devid) {
2156 		ret = 0;
2157 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2158 		if (!*device)
2159 			ret = -ENOENT;
2160 	} else {
2161 		if (!devpath || !devpath[0])
2162 			return -EINVAL;
2163 
2164 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2165 							   device);
2166 	}
2167 	return ret;
2168 }
2169 
2170 /*
2171  * does all the dirty work required for changing file system's UUID.
2172  */
2173 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2174 {
2175 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2176 	struct btrfs_fs_devices *old_devices;
2177 	struct btrfs_fs_devices *seed_devices;
2178 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2179 	struct btrfs_device *device;
2180 	u64 super_flags;
2181 
2182 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2183 	if (!fs_devices->seeding)
2184 		return -EINVAL;
2185 
2186 	seed_devices = alloc_fs_devices(NULL);
2187 	if (IS_ERR(seed_devices))
2188 		return PTR_ERR(seed_devices);
2189 
2190 	old_devices = clone_fs_devices(fs_devices);
2191 	if (IS_ERR(old_devices)) {
2192 		kfree(seed_devices);
2193 		return PTR_ERR(old_devices);
2194 	}
2195 
2196 	list_add(&old_devices->list, &fs_uuids);
2197 
2198 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2199 	seed_devices->opened = 1;
2200 	INIT_LIST_HEAD(&seed_devices->devices);
2201 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2202 	mutex_init(&seed_devices->device_list_mutex);
2203 
2204 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2205 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2206 			      synchronize_rcu);
2207 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2208 		device->fs_devices = seed_devices;
2209 
2210 	mutex_lock(&fs_info->chunk_mutex);
2211 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2212 	mutex_unlock(&fs_info->chunk_mutex);
2213 
2214 	fs_devices->seeding = 0;
2215 	fs_devices->num_devices = 0;
2216 	fs_devices->open_devices = 0;
2217 	fs_devices->missing_devices = 0;
2218 	fs_devices->rotating = 0;
2219 	fs_devices->seed = seed_devices;
2220 
2221 	generate_random_uuid(fs_devices->fsid);
2222 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2223 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2224 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2225 
2226 	super_flags = btrfs_super_flags(disk_super) &
2227 		      ~BTRFS_SUPER_FLAG_SEEDING;
2228 	btrfs_set_super_flags(disk_super, super_flags);
2229 
2230 	return 0;
2231 }
2232 
2233 /*
2234  * Store the expected generation for seed devices in device items.
2235  */
2236 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2237 			       struct btrfs_fs_info *fs_info)
2238 {
2239 	struct btrfs_root *root = fs_info->chunk_root;
2240 	struct btrfs_path *path;
2241 	struct extent_buffer *leaf;
2242 	struct btrfs_dev_item *dev_item;
2243 	struct btrfs_device *device;
2244 	struct btrfs_key key;
2245 	u8 fs_uuid[BTRFS_FSID_SIZE];
2246 	u8 dev_uuid[BTRFS_UUID_SIZE];
2247 	u64 devid;
2248 	int ret;
2249 
2250 	path = btrfs_alloc_path();
2251 	if (!path)
2252 		return -ENOMEM;
2253 
2254 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2255 	key.offset = 0;
2256 	key.type = BTRFS_DEV_ITEM_KEY;
2257 
2258 	while (1) {
2259 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2260 		if (ret < 0)
2261 			goto error;
2262 
2263 		leaf = path->nodes[0];
2264 next_slot:
2265 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2266 			ret = btrfs_next_leaf(root, path);
2267 			if (ret > 0)
2268 				break;
2269 			if (ret < 0)
2270 				goto error;
2271 			leaf = path->nodes[0];
2272 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2273 			btrfs_release_path(path);
2274 			continue;
2275 		}
2276 
2277 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2278 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2279 		    key.type != BTRFS_DEV_ITEM_KEY)
2280 			break;
2281 
2282 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2283 					  struct btrfs_dev_item);
2284 		devid = btrfs_device_id(leaf, dev_item);
2285 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2286 				   BTRFS_UUID_SIZE);
2287 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2288 				   BTRFS_FSID_SIZE);
2289 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2290 		BUG_ON(!device); /* Logic error */
2291 
2292 		if (device->fs_devices->seeding) {
2293 			btrfs_set_device_generation(leaf, dev_item,
2294 						    device->generation);
2295 			btrfs_mark_buffer_dirty(leaf);
2296 		}
2297 
2298 		path->slots[0]++;
2299 		goto next_slot;
2300 	}
2301 	ret = 0;
2302 error:
2303 	btrfs_free_path(path);
2304 	return ret;
2305 }
2306 
2307 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2308 {
2309 	struct btrfs_root *root = fs_info->dev_root;
2310 	struct request_queue *q;
2311 	struct btrfs_trans_handle *trans;
2312 	struct btrfs_device *device;
2313 	struct block_device *bdev;
2314 	struct list_head *devices;
2315 	struct super_block *sb = fs_info->sb;
2316 	struct rcu_string *name;
2317 	u64 tmp;
2318 	int seeding_dev = 0;
2319 	int ret = 0;
2320 	bool unlocked = false;
2321 
2322 	if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2323 		return -EROFS;
2324 
2325 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2326 				  fs_info->bdev_holder);
2327 	if (IS_ERR(bdev))
2328 		return PTR_ERR(bdev);
2329 
2330 	if (fs_info->fs_devices->seeding) {
2331 		seeding_dev = 1;
2332 		down_write(&sb->s_umount);
2333 		mutex_lock(&uuid_mutex);
2334 	}
2335 
2336 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2337 
2338 	devices = &fs_info->fs_devices->devices;
2339 
2340 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2341 	list_for_each_entry(device, devices, dev_list) {
2342 		if (device->bdev == bdev) {
2343 			ret = -EEXIST;
2344 			mutex_unlock(
2345 				&fs_info->fs_devices->device_list_mutex);
2346 			goto error;
2347 		}
2348 	}
2349 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2350 
2351 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2352 	if (IS_ERR(device)) {
2353 		/* we can safely leave the fs_devices entry around */
2354 		ret = PTR_ERR(device);
2355 		goto error;
2356 	}
2357 
2358 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2359 	if (!name) {
2360 		bio_put(device->flush_bio);
2361 		kfree(device);
2362 		ret = -ENOMEM;
2363 		goto error;
2364 	}
2365 	rcu_assign_pointer(device->name, name);
2366 
2367 	trans = btrfs_start_transaction(root, 0);
2368 	if (IS_ERR(trans)) {
2369 		rcu_string_free(device->name);
2370 		bio_put(device->flush_bio);
2371 		kfree(device);
2372 		ret = PTR_ERR(trans);
2373 		goto error;
2374 	}
2375 
2376 	q = bdev_get_queue(bdev);
2377 	if (blk_queue_discard(q))
2378 		device->can_discard = 1;
2379 	device->writeable = 1;
2380 	device->generation = trans->transid;
2381 	device->io_width = fs_info->sectorsize;
2382 	device->io_align = fs_info->sectorsize;
2383 	device->sector_size = fs_info->sectorsize;
2384 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2385 					 fs_info->sectorsize);
2386 	device->disk_total_bytes = device->total_bytes;
2387 	device->commit_total_bytes = device->total_bytes;
2388 	device->fs_info = fs_info;
2389 	device->bdev = bdev;
2390 	device->in_fs_metadata = 1;
2391 	device->is_tgtdev_for_dev_replace = 0;
2392 	device->mode = FMODE_EXCL;
2393 	device->dev_stats_valid = 1;
2394 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2395 
2396 	if (seeding_dev) {
2397 		sb->s_flags &= ~SB_RDONLY;
2398 		ret = btrfs_prepare_sprout(fs_info);
2399 		if (ret) {
2400 			btrfs_abort_transaction(trans, ret);
2401 			goto error_trans;
2402 		}
2403 	}
2404 
2405 	device->fs_devices = fs_info->fs_devices;
2406 
2407 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2408 	mutex_lock(&fs_info->chunk_mutex);
2409 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2410 	list_add(&device->dev_alloc_list,
2411 		 &fs_info->fs_devices->alloc_list);
2412 	fs_info->fs_devices->num_devices++;
2413 	fs_info->fs_devices->open_devices++;
2414 	fs_info->fs_devices->rw_devices++;
2415 	fs_info->fs_devices->total_devices++;
2416 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2417 
2418 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2419 
2420 	if (!blk_queue_nonrot(q))
2421 		fs_info->fs_devices->rotating = 1;
2422 
2423 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424 	btrfs_set_super_total_bytes(fs_info->super_copy,
2425 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2426 
2427 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2428 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2429 
2430 	/* add sysfs device entry */
2431 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2432 
2433 	/*
2434 	 * we've got more storage, clear any full flags on the space
2435 	 * infos
2436 	 */
2437 	btrfs_clear_space_info_full(fs_info);
2438 
2439 	mutex_unlock(&fs_info->chunk_mutex);
2440 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2441 
2442 	if (seeding_dev) {
2443 		mutex_lock(&fs_info->chunk_mutex);
2444 		ret = init_first_rw_device(trans, fs_info);
2445 		mutex_unlock(&fs_info->chunk_mutex);
2446 		if (ret) {
2447 			btrfs_abort_transaction(trans, ret);
2448 			goto error_sysfs;
2449 		}
2450 	}
2451 
2452 	ret = btrfs_add_device(trans, fs_info, device);
2453 	if (ret) {
2454 		btrfs_abort_transaction(trans, ret);
2455 		goto error_sysfs;
2456 	}
2457 
2458 	if (seeding_dev) {
2459 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460 
2461 		ret = btrfs_finish_sprout(trans, fs_info);
2462 		if (ret) {
2463 			btrfs_abort_transaction(trans, ret);
2464 			goto error_sysfs;
2465 		}
2466 
2467 		/* Sprouting would change fsid of the mounted root,
2468 		 * so rename the fsid on the sysfs
2469 		 */
2470 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471 						fs_info->fsid);
2472 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2473 			btrfs_warn(fs_info,
2474 				   "sysfs: failed to create fsid for sprout");
2475 	}
2476 
2477 	ret = btrfs_commit_transaction(trans);
2478 
2479 	if (seeding_dev) {
2480 		mutex_unlock(&uuid_mutex);
2481 		up_write(&sb->s_umount);
2482 		unlocked = true;
2483 
2484 		if (ret) /* transaction commit */
2485 			return ret;
2486 
2487 		ret = btrfs_relocate_sys_chunks(fs_info);
2488 		if (ret < 0)
2489 			btrfs_handle_fs_error(fs_info, ret,
2490 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2491 		trans = btrfs_attach_transaction(root);
2492 		if (IS_ERR(trans)) {
2493 			if (PTR_ERR(trans) == -ENOENT)
2494 				return 0;
2495 			ret = PTR_ERR(trans);
2496 			trans = NULL;
2497 			goto error_sysfs;
2498 		}
2499 		ret = btrfs_commit_transaction(trans);
2500 	}
2501 
2502 	/* Update ctime/mtime for libblkid */
2503 	update_dev_time(device_path);
2504 	return ret;
2505 
2506 error_sysfs:
2507 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2508 error_trans:
2509 	if (seeding_dev)
2510 		sb->s_flags |= SB_RDONLY;
2511 	if (trans)
2512 		btrfs_end_transaction(trans);
2513 	rcu_string_free(device->name);
2514 	bio_put(device->flush_bio);
2515 	kfree(device);
2516 error:
2517 	blkdev_put(bdev, FMODE_EXCL);
2518 	if (seeding_dev && !unlocked) {
2519 		mutex_unlock(&uuid_mutex);
2520 		up_write(&sb->s_umount);
2521 	}
2522 	return ret;
2523 }
2524 
2525 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2526 				  const char *device_path,
2527 				  struct btrfs_device *srcdev,
2528 				  struct btrfs_device **device_out)
2529 {
2530 	struct request_queue *q;
2531 	struct btrfs_device *device;
2532 	struct block_device *bdev;
2533 	struct list_head *devices;
2534 	struct rcu_string *name;
2535 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2536 	int ret = 0;
2537 
2538 	*device_out = NULL;
2539 	if (fs_info->fs_devices->seeding) {
2540 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2541 		return -EINVAL;
2542 	}
2543 
2544 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2545 				  fs_info->bdev_holder);
2546 	if (IS_ERR(bdev)) {
2547 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2548 		return PTR_ERR(bdev);
2549 	}
2550 
2551 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2552 
2553 	devices = &fs_info->fs_devices->devices;
2554 	list_for_each_entry(device, devices, dev_list) {
2555 		if (device->bdev == bdev) {
2556 			btrfs_err(fs_info,
2557 				  "target device is in the filesystem!");
2558 			ret = -EEXIST;
2559 			goto error;
2560 		}
2561 	}
2562 
2563 
2564 	if (i_size_read(bdev->bd_inode) <
2565 	    btrfs_device_get_total_bytes(srcdev)) {
2566 		btrfs_err(fs_info,
2567 			  "target device is smaller than source device!");
2568 		ret = -EINVAL;
2569 		goto error;
2570 	}
2571 
2572 
2573 	device = btrfs_alloc_device(NULL, &devid, NULL);
2574 	if (IS_ERR(device)) {
2575 		ret = PTR_ERR(device);
2576 		goto error;
2577 	}
2578 
2579 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2580 	if (!name) {
2581 		bio_put(device->flush_bio);
2582 		kfree(device);
2583 		ret = -ENOMEM;
2584 		goto error;
2585 	}
2586 	rcu_assign_pointer(device->name, name);
2587 
2588 	q = bdev_get_queue(bdev);
2589 	if (blk_queue_discard(q))
2590 		device->can_discard = 1;
2591 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2592 	device->writeable = 1;
2593 	device->generation = 0;
2594 	device->io_width = fs_info->sectorsize;
2595 	device->io_align = fs_info->sectorsize;
2596 	device->sector_size = fs_info->sectorsize;
2597 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2598 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2599 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2600 	ASSERT(list_empty(&srcdev->resized_list));
2601 	device->commit_total_bytes = srcdev->commit_total_bytes;
2602 	device->commit_bytes_used = device->bytes_used;
2603 	device->fs_info = fs_info;
2604 	device->bdev = bdev;
2605 	device->in_fs_metadata = 1;
2606 	device->is_tgtdev_for_dev_replace = 1;
2607 	device->mode = FMODE_EXCL;
2608 	device->dev_stats_valid = 1;
2609 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2610 	device->fs_devices = fs_info->fs_devices;
2611 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2612 	fs_info->fs_devices->num_devices++;
2613 	fs_info->fs_devices->open_devices++;
2614 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2615 
2616 	*device_out = device;
2617 	return ret;
2618 
2619 error:
2620 	blkdev_put(bdev, FMODE_EXCL);
2621 	return ret;
2622 }
2623 
2624 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2625 					      struct btrfs_device *tgtdev)
2626 {
2627 	u32 sectorsize = fs_info->sectorsize;
2628 
2629 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2630 	tgtdev->io_width = sectorsize;
2631 	tgtdev->io_align = sectorsize;
2632 	tgtdev->sector_size = sectorsize;
2633 	tgtdev->fs_info = fs_info;
2634 	tgtdev->in_fs_metadata = 1;
2635 }
2636 
2637 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2638 					struct btrfs_device *device)
2639 {
2640 	int ret;
2641 	struct btrfs_path *path;
2642 	struct btrfs_root *root = device->fs_info->chunk_root;
2643 	struct btrfs_dev_item *dev_item;
2644 	struct extent_buffer *leaf;
2645 	struct btrfs_key key;
2646 
2647 	path = btrfs_alloc_path();
2648 	if (!path)
2649 		return -ENOMEM;
2650 
2651 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2652 	key.type = BTRFS_DEV_ITEM_KEY;
2653 	key.offset = device->devid;
2654 
2655 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2656 	if (ret < 0)
2657 		goto out;
2658 
2659 	if (ret > 0) {
2660 		ret = -ENOENT;
2661 		goto out;
2662 	}
2663 
2664 	leaf = path->nodes[0];
2665 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2666 
2667 	btrfs_set_device_id(leaf, dev_item, device->devid);
2668 	btrfs_set_device_type(leaf, dev_item, device->type);
2669 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2670 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2671 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2672 	btrfs_set_device_total_bytes(leaf, dev_item,
2673 				     btrfs_device_get_disk_total_bytes(device));
2674 	btrfs_set_device_bytes_used(leaf, dev_item,
2675 				    btrfs_device_get_bytes_used(device));
2676 	btrfs_mark_buffer_dirty(leaf);
2677 
2678 out:
2679 	btrfs_free_path(path);
2680 	return ret;
2681 }
2682 
2683 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2684 		      struct btrfs_device *device, u64 new_size)
2685 {
2686 	struct btrfs_fs_info *fs_info = device->fs_info;
2687 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2688 	struct btrfs_fs_devices *fs_devices;
2689 	u64 old_total;
2690 	u64 diff;
2691 
2692 	if (!device->writeable)
2693 		return -EACCES;
2694 
2695 	new_size = round_down(new_size, fs_info->sectorsize);
2696 
2697 	mutex_lock(&fs_info->chunk_mutex);
2698 	old_total = btrfs_super_total_bytes(super_copy);
2699 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2700 
2701 	if (new_size <= device->total_bytes ||
2702 	    device->is_tgtdev_for_dev_replace) {
2703 		mutex_unlock(&fs_info->chunk_mutex);
2704 		return -EINVAL;
2705 	}
2706 
2707 	fs_devices = fs_info->fs_devices;
2708 
2709 	btrfs_set_super_total_bytes(super_copy,
2710 			round_down(old_total + diff, fs_info->sectorsize));
2711 	device->fs_devices->total_rw_bytes += diff;
2712 
2713 	btrfs_device_set_total_bytes(device, new_size);
2714 	btrfs_device_set_disk_total_bytes(device, new_size);
2715 	btrfs_clear_space_info_full(device->fs_info);
2716 	if (list_empty(&device->resized_list))
2717 		list_add_tail(&device->resized_list,
2718 			      &fs_devices->resized_devices);
2719 	mutex_unlock(&fs_info->chunk_mutex);
2720 
2721 	return btrfs_update_device(trans, device);
2722 }
2723 
2724 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2725 			    struct btrfs_fs_info *fs_info, u64 chunk_offset)
2726 {
2727 	struct btrfs_root *root = fs_info->chunk_root;
2728 	int ret;
2729 	struct btrfs_path *path;
2730 	struct btrfs_key key;
2731 
2732 	path = btrfs_alloc_path();
2733 	if (!path)
2734 		return -ENOMEM;
2735 
2736 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2737 	key.offset = chunk_offset;
2738 	key.type = BTRFS_CHUNK_ITEM_KEY;
2739 
2740 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2741 	if (ret < 0)
2742 		goto out;
2743 	else if (ret > 0) { /* Logic error or corruption */
2744 		btrfs_handle_fs_error(fs_info, -ENOENT,
2745 				      "Failed lookup while freeing chunk.");
2746 		ret = -ENOENT;
2747 		goto out;
2748 	}
2749 
2750 	ret = btrfs_del_item(trans, root, path);
2751 	if (ret < 0)
2752 		btrfs_handle_fs_error(fs_info, ret,
2753 				      "Failed to delete chunk item.");
2754 out:
2755 	btrfs_free_path(path);
2756 	return ret;
2757 }
2758 
2759 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2760 {
2761 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2762 	struct btrfs_disk_key *disk_key;
2763 	struct btrfs_chunk *chunk;
2764 	u8 *ptr;
2765 	int ret = 0;
2766 	u32 num_stripes;
2767 	u32 array_size;
2768 	u32 len = 0;
2769 	u32 cur;
2770 	struct btrfs_key key;
2771 
2772 	mutex_lock(&fs_info->chunk_mutex);
2773 	array_size = btrfs_super_sys_array_size(super_copy);
2774 
2775 	ptr = super_copy->sys_chunk_array;
2776 	cur = 0;
2777 
2778 	while (cur < array_size) {
2779 		disk_key = (struct btrfs_disk_key *)ptr;
2780 		btrfs_disk_key_to_cpu(&key, disk_key);
2781 
2782 		len = sizeof(*disk_key);
2783 
2784 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2785 			chunk = (struct btrfs_chunk *)(ptr + len);
2786 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2787 			len += btrfs_chunk_item_size(num_stripes);
2788 		} else {
2789 			ret = -EIO;
2790 			break;
2791 		}
2792 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2793 		    key.offset == chunk_offset) {
2794 			memmove(ptr, ptr + len, array_size - (cur + len));
2795 			array_size -= len;
2796 			btrfs_set_super_sys_array_size(super_copy, array_size);
2797 		} else {
2798 			ptr += len;
2799 			cur += len;
2800 		}
2801 	}
2802 	mutex_unlock(&fs_info->chunk_mutex);
2803 	return ret;
2804 }
2805 
2806 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2807 					u64 logical, u64 length)
2808 {
2809 	struct extent_map_tree *em_tree;
2810 	struct extent_map *em;
2811 
2812 	em_tree = &fs_info->mapping_tree.map_tree;
2813 	read_lock(&em_tree->lock);
2814 	em = lookup_extent_mapping(em_tree, logical, length);
2815 	read_unlock(&em_tree->lock);
2816 
2817 	if (!em) {
2818 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2819 			   logical, length);
2820 		return ERR_PTR(-EINVAL);
2821 	}
2822 
2823 	if (em->start > logical || em->start + em->len < logical) {
2824 		btrfs_crit(fs_info,
2825 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2826 			   logical, length, em->start, em->start + em->len);
2827 		free_extent_map(em);
2828 		return ERR_PTR(-EINVAL);
2829 	}
2830 
2831 	/* callers are responsible for dropping em's ref. */
2832 	return em;
2833 }
2834 
2835 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2836 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2837 {
2838 	struct extent_map *em;
2839 	struct map_lookup *map;
2840 	u64 dev_extent_len = 0;
2841 	int i, ret = 0;
2842 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2843 
2844 	em = get_chunk_map(fs_info, chunk_offset, 1);
2845 	if (IS_ERR(em)) {
2846 		/*
2847 		 * This is a logic error, but we don't want to just rely on the
2848 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2849 		 * do anything we still error out.
2850 		 */
2851 		ASSERT(0);
2852 		return PTR_ERR(em);
2853 	}
2854 	map = em->map_lookup;
2855 	mutex_lock(&fs_info->chunk_mutex);
2856 	check_system_chunk(trans, fs_info, map->type);
2857 	mutex_unlock(&fs_info->chunk_mutex);
2858 
2859 	/*
2860 	 * Take the device list mutex to prevent races with the final phase of
2861 	 * a device replace operation that replaces the device object associated
2862 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2863 	 */
2864 	mutex_lock(&fs_devices->device_list_mutex);
2865 	for (i = 0; i < map->num_stripes; i++) {
2866 		struct btrfs_device *device = map->stripes[i].dev;
2867 		ret = btrfs_free_dev_extent(trans, device,
2868 					    map->stripes[i].physical,
2869 					    &dev_extent_len);
2870 		if (ret) {
2871 			mutex_unlock(&fs_devices->device_list_mutex);
2872 			btrfs_abort_transaction(trans, ret);
2873 			goto out;
2874 		}
2875 
2876 		if (device->bytes_used > 0) {
2877 			mutex_lock(&fs_info->chunk_mutex);
2878 			btrfs_device_set_bytes_used(device,
2879 					device->bytes_used - dev_extent_len);
2880 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2881 			btrfs_clear_space_info_full(fs_info);
2882 			mutex_unlock(&fs_info->chunk_mutex);
2883 		}
2884 
2885 		if (map->stripes[i].dev) {
2886 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2887 			if (ret) {
2888 				mutex_unlock(&fs_devices->device_list_mutex);
2889 				btrfs_abort_transaction(trans, ret);
2890 				goto out;
2891 			}
2892 		}
2893 	}
2894 	mutex_unlock(&fs_devices->device_list_mutex);
2895 
2896 	ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2897 	if (ret) {
2898 		btrfs_abort_transaction(trans, ret);
2899 		goto out;
2900 	}
2901 
2902 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2903 
2904 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2905 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2906 		if (ret) {
2907 			btrfs_abort_transaction(trans, ret);
2908 			goto out;
2909 		}
2910 	}
2911 
2912 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2913 	if (ret) {
2914 		btrfs_abort_transaction(trans, ret);
2915 		goto out;
2916 	}
2917 
2918 out:
2919 	/* once for us */
2920 	free_extent_map(em);
2921 	return ret;
2922 }
2923 
2924 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2925 {
2926 	struct btrfs_root *root = fs_info->chunk_root;
2927 	struct btrfs_trans_handle *trans;
2928 	int ret;
2929 
2930 	/*
2931 	 * Prevent races with automatic removal of unused block groups.
2932 	 * After we relocate and before we remove the chunk with offset
2933 	 * chunk_offset, automatic removal of the block group can kick in,
2934 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2935 	 *
2936 	 * Make sure to acquire this mutex before doing a tree search (dev
2937 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2938 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2939 	 * we release the path used to search the chunk/dev tree and before
2940 	 * the current task acquires this mutex and calls us.
2941 	 */
2942 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2943 
2944 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2945 	if (ret)
2946 		return -ENOSPC;
2947 
2948 	/* step one, relocate all the extents inside this chunk */
2949 	btrfs_scrub_pause(fs_info);
2950 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2951 	btrfs_scrub_continue(fs_info);
2952 	if (ret)
2953 		return ret;
2954 
2955 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2956 						     chunk_offset);
2957 	if (IS_ERR(trans)) {
2958 		ret = PTR_ERR(trans);
2959 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2960 		return ret;
2961 	}
2962 
2963 	/*
2964 	 * step two, delete the device extents and the
2965 	 * chunk tree entries
2966 	 */
2967 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2968 	btrfs_end_transaction(trans);
2969 	return ret;
2970 }
2971 
2972 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2973 {
2974 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2975 	struct btrfs_path *path;
2976 	struct extent_buffer *leaf;
2977 	struct btrfs_chunk *chunk;
2978 	struct btrfs_key key;
2979 	struct btrfs_key found_key;
2980 	u64 chunk_type;
2981 	bool retried = false;
2982 	int failed = 0;
2983 	int ret;
2984 
2985 	path = btrfs_alloc_path();
2986 	if (!path)
2987 		return -ENOMEM;
2988 
2989 again:
2990 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2991 	key.offset = (u64)-1;
2992 	key.type = BTRFS_CHUNK_ITEM_KEY;
2993 
2994 	while (1) {
2995 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2996 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2997 		if (ret < 0) {
2998 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2999 			goto error;
3000 		}
3001 		BUG_ON(ret == 0); /* Corruption */
3002 
3003 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3004 					  key.type);
3005 		if (ret)
3006 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3007 		if (ret < 0)
3008 			goto error;
3009 		if (ret > 0)
3010 			break;
3011 
3012 		leaf = path->nodes[0];
3013 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3014 
3015 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3016 				       struct btrfs_chunk);
3017 		chunk_type = btrfs_chunk_type(leaf, chunk);
3018 		btrfs_release_path(path);
3019 
3020 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3021 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3022 			if (ret == -ENOSPC)
3023 				failed++;
3024 			else
3025 				BUG_ON(ret);
3026 		}
3027 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3028 
3029 		if (found_key.offset == 0)
3030 			break;
3031 		key.offset = found_key.offset - 1;
3032 	}
3033 	ret = 0;
3034 	if (failed && !retried) {
3035 		failed = 0;
3036 		retried = true;
3037 		goto again;
3038 	} else if (WARN_ON(failed && retried)) {
3039 		ret = -ENOSPC;
3040 	}
3041 error:
3042 	btrfs_free_path(path);
3043 	return ret;
3044 }
3045 
3046 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3047 			       struct btrfs_balance_control *bctl)
3048 {
3049 	struct btrfs_root *root = fs_info->tree_root;
3050 	struct btrfs_trans_handle *trans;
3051 	struct btrfs_balance_item *item;
3052 	struct btrfs_disk_balance_args disk_bargs;
3053 	struct btrfs_path *path;
3054 	struct extent_buffer *leaf;
3055 	struct btrfs_key key;
3056 	int ret, err;
3057 
3058 	path = btrfs_alloc_path();
3059 	if (!path)
3060 		return -ENOMEM;
3061 
3062 	trans = btrfs_start_transaction(root, 0);
3063 	if (IS_ERR(trans)) {
3064 		btrfs_free_path(path);
3065 		return PTR_ERR(trans);
3066 	}
3067 
3068 	key.objectid = BTRFS_BALANCE_OBJECTID;
3069 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3070 	key.offset = 0;
3071 
3072 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3073 				      sizeof(*item));
3074 	if (ret)
3075 		goto out;
3076 
3077 	leaf = path->nodes[0];
3078 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3079 
3080 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3081 
3082 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3083 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3084 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3085 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3086 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3087 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3088 
3089 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3090 
3091 	btrfs_mark_buffer_dirty(leaf);
3092 out:
3093 	btrfs_free_path(path);
3094 	err = btrfs_commit_transaction(trans);
3095 	if (err && !ret)
3096 		ret = err;
3097 	return ret;
3098 }
3099 
3100 static int del_balance_item(struct btrfs_fs_info *fs_info)
3101 {
3102 	struct btrfs_root *root = fs_info->tree_root;
3103 	struct btrfs_trans_handle *trans;
3104 	struct btrfs_path *path;
3105 	struct btrfs_key key;
3106 	int ret, err;
3107 
3108 	path = btrfs_alloc_path();
3109 	if (!path)
3110 		return -ENOMEM;
3111 
3112 	trans = btrfs_start_transaction(root, 0);
3113 	if (IS_ERR(trans)) {
3114 		btrfs_free_path(path);
3115 		return PTR_ERR(trans);
3116 	}
3117 
3118 	key.objectid = BTRFS_BALANCE_OBJECTID;
3119 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3120 	key.offset = 0;
3121 
3122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3123 	if (ret < 0)
3124 		goto out;
3125 	if (ret > 0) {
3126 		ret = -ENOENT;
3127 		goto out;
3128 	}
3129 
3130 	ret = btrfs_del_item(trans, root, path);
3131 out:
3132 	btrfs_free_path(path);
3133 	err = btrfs_commit_transaction(trans);
3134 	if (err && !ret)
3135 		ret = err;
3136 	return ret;
3137 }
3138 
3139 /*
3140  * This is a heuristic used to reduce the number of chunks balanced on
3141  * resume after balance was interrupted.
3142  */
3143 static void update_balance_args(struct btrfs_balance_control *bctl)
3144 {
3145 	/*
3146 	 * Turn on soft mode for chunk types that were being converted.
3147 	 */
3148 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3149 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3150 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3151 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3152 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3153 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3154 
3155 	/*
3156 	 * Turn on usage filter if is not already used.  The idea is
3157 	 * that chunks that we have already balanced should be
3158 	 * reasonably full.  Don't do it for chunks that are being
3159 	 * converted - that will keep us from relocating unconverted
3160 	 * (albeit full) chunks.
3161 	 */
3162 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 		bctl->data.usage = 90;
3167 	}
3168 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3169 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3170 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3171 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3172 		bctl->sys.usage = 90;
3173 	}
3174 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3175 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3176 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3177 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3178 		bctl->meta.usage = 90;
3179 	}
3180 }
3181 
3182 /*
3183  * Should be called with both balance and volume mutexes held to
3184  * serialize other volume operations (add_dev/rm_dev/resize) with
3185  * restriper.  Same goes for unset_balance_control.
3186  */
3187 static void set_balance_control(struct btrfs_balance_control *bctl)
3188 {
3189 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3190 
3191 	BUG_ON(fs_info->balance_ctl);
3192 
3193 	spin_lock(&fs_info->balance_lock);
3194 	fs_info->balance_ctl = bctl;
3195 	spin_unlock(&fs_info->balance_lock);
3196 }
3197 
3198 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3199 {
3200 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3201 
3202 	BUG_ON(!fs_info->balance_ctl);
3203 
3204 	spin_lock(&fs_info->balance_lock);
3205 	fs_info->balance_ctl = NULL;
3206 	spin_unlock(&fs_info->balance_lock);
3207 
3208 	kfree(bctl);
3209 }
3210 
3211 /*
3212  * Balance filters.  Return 1 if chunk should be filtered out
3213  * (should not be balanced).
3214  */
3215 static int chunk_profiles_filter(u64 chunk_type,
3216 				 struct btrfs_balance_args *bargs)
3217 {
3218 	chunk_type = chunk_to_extended(chunk_type) &
3219 				BTRFS_EXTENDED_PROFILE_MASK;
3220 
3221 	if (bargs->profiles & chunk_type)
3222 		return 0;
3223 
3224 	return 1;
3225 }
3226 
3227 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3228 			      struct btrfs_balance_args *bargs)
3229 {
3230 	struct btrfs_block_group_cache *cache;
3231 	u64 chunk_used;
3232 	u64 user_thresh_min;
3233 	u64 user_thresh_max;
3234 	int ret = 1;
3235 
3236 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3237 	chunk_used = btrfs_block_group_used(&cache->item);
3238 
3239 	if (bargs->usage_min == 0)
3240 		user_thresh_min = 0;
3241 	else
3242 		user_thresh_min = div_factor_fine(cache->key.offset,
3243 					bargs->usage_min);
3244 
3245 	if (bargs->usage_max == 0)
3246 		user_thresh_max = 1;
3247 	else if (bargs->usage_max > 100)
3248 		user_thresh_max = cache->key.offset;
3249 	else
3250 		user_thresh_max = div_factor_fine(cache->key.offset,
3251 					bargs->usage_max);
3252 
3253 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3254 		ret = 0;
3255 
3256 	btrfs_put_block_group(cache);
3257 	return ret;
3258 }
3259 
3260 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3261 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3262 {
3263 	struct btrfs_block_group_cache *cache;
3264 	u64 chunk_used, user_thresh;
3265 	int ret = 1;
3266 
3267 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3268 	chunk_used = btrfs_block_group_used(&cache->item);
3269 
3270 	if (bargs->usage_min == 0)
3271 		user_thresh = 1;
3272 	else if (bargs->usage > 100)
3273 		user_thresh = cache->key.offset;
3274 	else
3275 		user_thresh = div_factor_fine(cache->key.offset,
3276 					      bargs->usage);
3277 
3278 	if (chunk_used < user_thresh)
3279 		ret = 0;
3280 
3281 	btrfs_put_block_group(cache);
3282 	return ret;
3283 }
3284 
3285 static int chunk_devid_filter(struct extent_buffer *leaf,
3286 			      struct btrfs_chunk *chunk,
3287 			      struct btrfs_balance_args *bargs)
3288 {
3289 	struct btrfs_stripe *stripe;
3290 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3291 	int i;
3292 
3293 	for (i = 0; i < num_stripes; i++) {
3294 		stripe = btrfs_stripe_nr(chunk, i);
3295 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3296 			return 0;
3297 	}
3298 
3299 	return 1;
3300 }
3301 
3302 /* [pstart, pend) */
3303 static int chunk_drange_filter(struct extent_buffer *leaf,
3304 			       struct btrfs_chunk *chunk,
3305 			       struct btrfs_balance_args *bargs)
3306 {
3307 	struct btrfs_stripe *stripe;
3308 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3309 	u64 stripe_offset;
3310 	u64 stripe_length;
3311 	int factor;
3312 	int i;
3313 
3314 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3315 		return 0;
3316 
3317 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3318 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3319 		factor = num_stripes / 2;
3320 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3321 		factor = num_stripes - 1;
3322 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3323 		factor = num_stripes - 2;
3324 	} else {
3325 		factor = num_stripes;
3326 	}
3327 
3328 	for (i = 0; i < num_stripes; i++) {
3329 		stripe = btrfs_stripe_nr(chunk, i);
3330 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3331 			continue;
3332 
3333 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3334 		stripe_length = btrfs_chunk_length(leaf, chunk);
3335 		stripe_length = div_u64(stripe_length, factor);
3336 
3337 		if (stripe_offset < bargs->pend &&
3338 		    stripe_offset + stripe_length > bargs->pstart)
3339 			return 0;
3340 	}
3341 
3342 	return 1;
3343 }
3344 
3345 /* [vstart, vend) */
3346 static int chunk_vrange_filter(struct extent_buffer *leaf,
3347 			       struct btrfs_chunk *chunk,
3348 			       u64 chunk_offset,
3349 			       struct btrfs_balance_args *bargs)
3350 {
3351 	if (chunk_offset < bargs->vend &&
3352 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3353 		/* at least part of the chunk is inside this vrange */
3354 		return 0;
3355 
3356 	return 1;
3357 }
3358 
3359 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3360 			       struct btrfs_chunk *chunk,
3361 			       struct btrfs_balance_args *bargs)
3362 {
3363 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3364 
3365 	if (bargs->stripes_min <= num_stripes
3366 			&& num_stripes <= bargs->stripes_max)
3367 		return 0;
3368 
3369 	return 1;
3370 }
3371 
3372 static int chunk_soft_convert_filter(u64 chunk_type,
3373 				     struct btrfs_balance_args *bargs)
3374 {
3375 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3376 		return 0;
3377 
3378 	chunk_type = chunk_to_extended(chunk_type) &
3379 				BTRFS_EXTENDED_PROFILE_MASK;
3380 
3381 	if (bargs->target == chunk_type)
3382 		return 1;
3383 
3384 	return 0;
3385 }
3386 
3387 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3388 				struct extent_buffer *leaf,
3389 				struct btrfs_chunk *chunk, u64 chunk_offset)
3390 {
3391 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3392 	struct btrfs_balance_args *bargs = NULL;
3393 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3394 
3395 	/* type filter */
3396 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3397 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3398 		return 0;
3399 	}
3400 
3401 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3402 		bargs = &bctl->data;
3403 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3404 		bargs = &bctl->sys;
3405 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3406 		bargs = &bctl->meta;
3407 
3408 	/* profiles filter */
3409 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3410 	    chunk_profiles_filter(chunk_type, bargs)) {
3411 		return 0;
3412 	}
3413 
3414 	/* usage filter */
3415 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3416 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3417 		return 0;
3418 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3419 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3420 		return 0;
3421 	}
3422 
3423 	/* devid filter */
3424 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3425 	    chunk_devid_filter(leaf, chunk, bargs)) {
3426 		return 0;
3427 	}
3428 
3429 	/* drange filter, makes sense only with devid filter */
3430 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3431 	    chunk_drange_filter(leaf, chunk, bargs)) {
3432 		return 0;
3433 	}
3434 
3435 	/* vrange filter */
3436 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3437 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3438 		return 0;
3439 	}
3440 
3441 	/* stripes filter */
3442 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3443 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3444 		return 0;
3445 	}
3446 
3447 	/* soft profile changing mode */
3448 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3449 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3450 		return 0;
3451 	}
3452 
3453 	/*
3454 	 * limited by count, must be the last filter
3455 	 */
3456 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3457 		if (bargs->limit == 0)
3458 			return 0;
3459 		else
3460 			bargs->limit--;
3461 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3462 		/*
3463 		 * Same logic as the 'limit' filter; the minimum cannot be
3464 		 * determined here because we do not have the global information
3465 		 * about the count of all chunks that satisfy the filters.
3466 		 */
3467 		if (bargs->limit_max == 0)
3468 			return 0;
3469 		else
3470 			bargs->limit_max--;
3471 	}
3472 
3473 	return 1;
3474 }
3475 
3476 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3477 {
3478 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3479 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3480 	struct btrfs_root *dev_root = fs_info->dev_root;
3481 	struct list_head *devices;
3482 	struct btrfs_device *device;
3483 	u64 old_size;
3484 	u64 size_to_free;
3485 	u64 chunk_type;
3486 	struct btrfs_chunk *chunk;
3487 	struct btrfs_path *path = NULL;
3488 	struct btrfs_key key;
3489 	struct btrfs_key found_key;
3490 	struct btrfs_trans_handle *trans;
3491 	struct extent_buffer *leaf;
3492 	int slot;
3493 	int ret;
3494 	int enospc_errors = 0;
3495 	bool counting = true;
3496 	/* The single value limit and min/max limits use the same bytes in the */
3497 	u64 limit_data = bctl->data.limit;
3498 	u64 limit_meta = bctl->meta.limit;
3499 	u64 limit_sys = bctl->sys.limit;
3500 	u32 count_data = 0;
3501 	u32 count_meta = 0;
3502 	u32 count_sys = 0;
3503 	int chunk_reserved = 0;
3504 	u64 bytes_used = 0;
3505 
3506 	/* step one make some room on all the devices */
3507 	devices = &fs_info->fs_devices->devices;
3508 	list_for_each_entry(device, devices, dev_list) {
3509 		old_size = btrfs_device_get_total_bytes(device);
3510 		size_to_free = div_factor(old_size, 1);
3511 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3512 		if (!device->writeable ||
3513 		    btrfs_device_get_total_bytes(device) -
3514 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3515 		    device->is_tgtdev_for_dev_replace)
3516 			continue;
3517 
3518 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3519 		if (ret == -ENOSPC)
3520 			break;
3521 		if (ret) {
3522 			/* btrfs_shrink_device never returns ret > 0 */
3523 			WARN_ON(ret > 0);
3524 			goto error;
3525 		}
3526 
3527 		trans = btrfs_start_transaction(dev_root, 0);
3528 		if (IS_ERR(trans)) {
3529 			ret = PTR_ERR(trans);
3530 			btrfs_info_in_rcu(fs_info,
3531 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3532 					  rcu_str_deref(device->name), ret,
3533 					  old_size, old_size - size_to_free);
3534 			goto error;
3535 		}
3536 
3537 		ret = btrfs_grow_device(trans, device, old_size);
3538 		if (ret) {
3539 			btrfs_end_transaction(trans);
3540 			/* btrfs_grow_device never returns ret > 0 */
3541 			WARN_ON(ret > 0);
3542 			btrfs_info_in_rcu(fs_info,
3543 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3544 					  rcu_str_deref(device->name), ret,
3545 					  old_size, old_size - size_to_free);
3546 			goto error;
3547 		}
3548 
3549 		btrfs_end_transaction(trans);
3550 	}
3551 
3552 	/* step two, relocate all the chunks */
3553 	path = btrfs_alloc_path();
3554 	if (!path) {
3555 		ret = -ENOMEM;
3556 		goto error;
3557 	}
3558 
3559 	/* zero out stat counters */
3560 	spin_lock(&fs_info->balance_lock);
3561 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3562 	spin_unlock(&fs_info->balance_lock);
3563 again:
3564 	if (!counting) {
3565 		/*
3566 		 * The single value limit and min/max limits use the same bytes
3567 		 * in the
3568 		 */
3569 		bctl->data.limit = limit_data;
3570 		bctl->meta.limit = limit_meta;
3571 		bctl->sys.limit = limit_sys;
3572 	}
3573 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3574 	key.offset = (u64)-1;
3575 	key.type = BTRFS_CHUNK_ITEM_KEY;
3576 
3577 	while (1) {
3578 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3579 		    atomic_read(&fs_info->balance_cancel_req)) {
3580 			ret = -ECANCELED;
3581 			goto error;
3582 		}
3583 
3584 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3585 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3586 		if (ret < 0) {
3587 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 			goto error;
3589 		}
3590 
3591 		/*
3592 		 * this shouldn't happen, it means the last relocate
3593 		 * failed
3594 		 */
3595 		if (ret == 0)
3596 			BUG(); /* FIXME break ? */
3597 
3598 		ret = btrfs_previous_item(chunk_root, path, 0,
3599 					  BTRFS_CHUNK_ITEM_KEY);
3600 		if (ret) {
3601 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3602 			ret = 0;
3603 			break;
3604 		}
3605 
3606 		leaf = path->nodes[0];
3607 		slot = path->slots[0];
3608 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3609 
3610 		if (found_key.objectid != key.objectid) {
3611 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3612 			break;
3613 		}
3614 
3615 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3616 		chunk_type = btrfs_chunk_type(leaf, chunk);
3617 
3618 		if (!counting) {
3619 			spin_lock(&fs_info->balance_lock);
3620 			bctl->stat.considered++;
3621 			spin_unlock(&fs_info->balance_lock);
3622 		}
3623 
3624 		ret = should_balance_chunk(fs_info, leaf, chunk,
3625 					   found_key.offset);
3626 
3627 		btrfs_release_path(path);
3628 		if (!ret) {
3629 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3630 			goto loop;
3631 		}
3632 
3633 		if (counting) {
3634 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3635 			spin_lock(&fs_info->balance_lock);
3636 			bctl->stat.expected++;
3637 			spin_unlock(&fs_info->balance_lock);
3638 
3639 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3640 				count_data++;
3641 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3642 				count_sys++;
3643 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3644 				count_meta++;
3645 
3646 			goto loop;
3647 		}
3648 
3649 		/*
3650 		 * Apply limit_min filter, no need to check if the LIMITS
3651 		 * filter is used, limit_min is 0 by default
3652 		 */
3653 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3654 					count_data < bctl->data.limit_min)
3655 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3656 					count_meta < bctl->meta.limit_min)
3657 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3658 					count_sys < bctl->sys.limit_min)) {
3659 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660 			goto loop;
3661 		}
3662 
3663 		ASSERT(fs_info->data_sinfo);
3664 		spin_lock(&fs_info->data_sinfo->lock);
3665 		bytes_used = fs_info->data_sinfo->bytes_used;
3666 		spin_unlock(&fs_info->data_sinfo->lock);
3667 
3668 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3669 		    !chunk_reserved && !bytes_used) {
3670 			trans = btrfs_start_transaction(chunk_root, 0);
3671 			if (IS_ERR(trans)) {
3672 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3673 				ret = PTR_ERR(trans);
3674 				goto error;
3675 			}
3676 
3677 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3678 						      BTRFS_BLOCK_GROUP_DATA);
3679 			btrfs_end_transaction(trans);
3680 			if (ret < 0) {
3681 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3682 				goto error;
3683 			}
3684 			chunk_reserved = 1;
3685 		}
3686 
3687 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3688 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3689 		if (ret && ret != -ENOSPC)
3690 			goto error;
3691 		if (ret == -ENOSPC) {
3692 			enospc_errors++;
3693 		} else {
3694 			spin_lock(&fs_info->balance_lock);
3695 			bctl->stat.completed++;
3696 			spin_unlock(&fs_info->balance_lock);
3697 		}
3698 loop:
3699 		if (found_key.offset == 0)
3700 			break;
3701 		key.offset = found_key.offset - 1;
3702 	}
3703 
3704 	if (counting) {
3705 		btrfs_release_path(path);
3706 		counting = false;
3707 		goto again;
3708 	}
3709 error:
3710 	btrfs_free_path(path);
3711 	if (enospc_errors) {
3712 		btrfs_info(fs_info, "%d enospc errors during balance",
3713 			   enospc_errors);
3714 		if (!ret)
3715 			ret = -ENOSPC;
3716 	}
3717 
3718 	return ret;
3719 }
3720 
3721 /**
3722  * alloc_profile_is_valid - see if a given profile is valid and reduced
3723  * @flags: profile to validate
3724  * @extended: if true @flags is treated as an extended profile
3725  */
3726 static int alloc_profile_is_valid(u64 flags, int extended)
3727 {
3728 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3729 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3730 
3731 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3732 
3733 	/* 1) check that all other bits are zeroed */
3734 	if (flags & ~mask)
3735 		return 0;
3736 
3737 	/* 2) see if profile is reduced */
3738 	if (flags == 0)
3739 		return !extended; /* "0" is valid for usual profiles */
3740 
3741 	/* true if exactly one bit set */
3742 	return (flags & (flags - 1)) == 0;
3743 }
3744 
3745 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3746 {
3747 	/* cancel requested || normal exit path */
3748 	return atomic_read(&fs_info->balance_cancel_req) ||
3749 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3750 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3751 }
3752 
3753 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3754 {
3755 	int ret;
3756 
3757 	unset_balance_control(fs_info);
3758 	ret = del_balance_item(fs_info);
3759 	if (ret)
3760 		btrfs_handle_fs_error(fs_info, ret, NULL);
3761 
3762 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3763 }
3764 
3765 /* Non-zero return value signifies invalidity */
3766 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3767 		u64 allowed)
3768 {
3769 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3770 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3771 		 (bctl_arg->target & ~allowed)));
3772 }
3773 
3774 /*
3775  * Should be called with both balance and volume mutexes held
3776  */
3777 int btrfs_balance(struct btrfs_balance_control *bctl,
3778 		  struct btrfs_ioctl_balance_args *bargs)
3779 {
3780 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3781 	u64 meta_target, data_target;
3782 	u64 allowed;
3783 	int mixed = 0;
3784 	int ret;
3785 	u64 num_devices;
3786 	unsigned seq;
3787 
3788 	if (btrfs_fs_closing(fs_info) ||
3789 	    atomic_read(&fs_info->balance_pause_req) ||
3790 	    atomic_read(&fs_info->balance_cancel_req)) {
3791 		ret = -EINVAL;
3792 		goto out;
3793 	}
3794 
3795 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3796 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3797 		mixed = 1;
3798 
3799 	/*
3800 	 * In case of mixed groups both data and meta should be picked,
3801 	 * and identical options should be given for both of them.
3802 	 */
3803 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3804 	if (mixed && (bctl->flags & allowed)) {
3805 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3806 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3807 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3808 			btrfs_err(fs_info,
3809 				  "with mixed groups data and metadata balance options must be the same");
3810 			ret = -EINVAL;
3811 			goto out;
3812 		}
3813 	}
3814 
3815 	num_devices = fs_info->fs_devices->num_devices;
3816 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3817 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3818 		BUG_ON(num_devices < 1);
3819 		num_devices--;
3820 	}
3821 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3822 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3823 	if (num_devices > 1)
3824 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3825 	if (num_devices > 2)
3826 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3827 	if (num_devices > 3)
3828 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3829 			    BTRFS_BLOCK_GROUP_RAID6);
3830 	if (validate_convert_profile(&bctl->data, allowed)) {
3831 		btrfs_err(fs_info,
3832 			  "unable to start balance with target data profile %llu",
3833 			  bctl->data.target);
3834 		ret = -EINVAL;
3835 		goto out;
3836 	}
3837 	if (validate_convert_profile(&bctl->meta, allowed)) {
3838 		btrfs_err(fs_info,
3839 			  "unable to start balance with target metadata profile %llu",
3840 			  bctl->meta.target);
3841 		ret = -EINVAL;
3842 		goto out;
3843 	}
3844 	if (validate_convert_profile(&bctl->sys, allowed)) {
3845 		btrfs_err(fs_info,
3846 			  "unable to start balance with target system profile %llu",
3847 			  bctl->sys.target);
3848 		ret = -EINVAL;
3849 		goto out;
3850 	}
3851 
3852 	/* allow to reduce meta or sys integrity only if force set */
3853 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3854 			BTRFS_BLOCK_GROUP_RAID10 |
3855 			BTRFS_BLOCK_GROUP_RAID5 |
3856 			BTRFS_BLOCK_GROUP_RAID6;
3857 	do {
3858 		seq = read_seqbegin(&fs_info->profiles_lock);
3859 
3860 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3861 		     (fs_info->avail_system_alloc_bits & allowed) &&
3862 		     !(bctl->sys.target & allowed)) ||
3863 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3864 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3865 		     !(bctl->meta.target & allowed))) {
3866 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3867 				btrfs_info(fs_info,
3868 					   "force reducing metadata integrity");
3869 			} else {
3870 				btrfs_err(fs_info,
3871 					  "balance will reduce metadata integrity, use force if you want this");
3872 				ret = -EINVAL;
3873 				goto out;
3874 			}
3875 		}
3876 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3877 
3878 	/* if we're not converting, the target field is uninitialized */
3879 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3880 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3881 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3882 		bctl->data.target : fs_info->avail_data_alloc_bits;
3883 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3884 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3885 		btrfs_warn(fs_info,
3886 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3887 			   meta_target, data_target);
3888 	}
3889 
3890 	ret = insert_balance_item(fs_info, bctl);
3891 	if (ret && ret != -EEXIST)
3892 		goto out;
3893 
3894 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3895 		BUG_ON(ret == -EEXIST);
3896 		set_balance_control(bctl);
3897 	} else {
3898 		BUG_ON(ret != -EEXIST);
3899 		spin_lock(&fs_info->balance_lock);
3900 		update_balance_args(bctl);
3901 		spin_unlock(&fs_info->balance_lock);
3902 	}
3903 
3904 	atomic_inc(&fs_info->balance_running);
3905 	mutex_unlock(&fs_info->balance_mutex);
3906 
3907 	ret = __btrfs_balance(fs_info);
3908 
3909 	mutex_lock(&fs_info->balance_mutex);
3910 	atomic_dec(&fs_info->balance_running);
3911 
3912 	if (bargs) {
3913 		memset(bargs, 0, sizeof(*bargs));
3914 		update_ioctl_balance_args(fs_info, 0, bargs);
3915 	}
3916 
3917 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3918 	    balance_need_close(fs_info)) {
3919 		__cancel_balance(fs_info);
3920 	}
3921 
3922 	wake_up(&fs_info->balance_wait_q);
3923 
3924 	return ret;
3925 out:
3926 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3927 		__cancel_balance(fs_info);
3928 	else {
3929 		kfree(bctl);
3930 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3931 	}
3932 	return ret;
3933 }
3934 
3935 static int balance_kthread(void *data)
3936 {
3937 	struct btrfs_fs_info *fs_info = data;
3938 	int ret = 0;
3939 
3940 	mutex_lock(&fs_info->volume_mutex);
3941 	mutex_lock(&fs_info->balance_mutex);
3942 
3943 	if (fs_info->balance_ctl) {
3944 		btrfs_info(fs_info, "continuing balance");
3945 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3946 	}
3947 
3948 	mutex_unlock(&fs_info->balance_mutex);
3949 	mutex_unlock(&fs_info->volume_mutex);
3950 
3951 	return ret;
3952 }
3953 
3954 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3955 {
3956 	struct task_struct *tsk;
3957 
3958 	spin_lock(&fs_info->balance_lock);
3959 	if (!fs_info->balance_ctl) {
3960 		spin_unlock(&fs_info->balance_lock);
3961 		return 0;
3962 	}
3963 	spin_unlock(&fs_info->balance_lock);
3964 
3965 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3966 		btrfs_info(fs_info, "force skipping balance");
3967 		return 0;
3968 	}
3969 
3970 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3971 	return PTR_ERR_OR_ZERO(tsk);
3972 }
3973 
3974 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3975 {
3976 	struct btrfs_balance_control *bctl;
3977 	struct btrfs_balance_item *item;
3978 	struct btrfs_disk_balance_args disk_bargs;
3979 	struct btrfs_path *path;
3980 	struct extent_buffer *leaf;
3981 	struct btrfs_key key;
3982 	int ret;
3983 
3984 	path = btrfs_alloc_path();
3985 	if (!path)
3986 		return -ENOMEM;
3987 
3988 	key.objectid = BTRFS_BALANCE_OBJECTID;
3989 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3990 	key.offset = 0;
3991 
3992 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3993 	if (ret < 0)
3994 		goto out;
3995 	if (ret > 0) { /* ret = -ENOENT; */
3996 		ret = 0;
3997 		goto out;
3998 	}
3999 
4000 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4001 	if (!bctl) {
4002 		ret = -ENOMEM;
4003 		goto out;
4004 	}
4005 
4006 	leaf = path->nodes[0];
4007 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4008 
4009 	bctl->fs_info = fs_info;
4010 	bctl->flags = btrfs_balance_flags(leaf, item);
4011 	bctl->flags |= BTRFS_BALANCE_RESUME;
4012 
4013 	btrfs_balance_data(leaf, item, &disk_bargs);
4014 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4015 	btrfs_balance_meta(leaf, item, &disk_bargs);
4016 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4017 	btrfs_balance_sys(leaf, item, &disk_bargs);
4018 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4019 
4020 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4021 
4022 	mutex_lock(&fs_info->volume_mutex);
4023 	mutex_lock(&fs_info->balance_mutex);
4024 
4025 	set_balance_control(bctl);
4026 
4027 	mutex_unlock(&fs_info->balance_mutex);
4028 	mutex_unlock(&fs_info->volume_mutex);
4029 out:
4030 	btrfs_free_path(path);
4031 	return ret;
4032 }
4033 
4034 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4035 {
4036 	int ret = 0;
4037 
4038 	mutex_lock(&fs_info->balance_mutex);
4039 	if (!fs_info->balance_ctl) {
4040 		mutex_unlock(&fs_info->balance_mutex);
4041 		return -ENOTCONN;
4042 	}
4043 
4044 	if (atomic_read(&fs_info->balance_running)) {
4045 		atomic_inc(&fs_info->balance_pause_req);
4046 		mutex_unlock(&fs_info->balance_mutex);
4047 
4048 		wait_event(fs_info->balance_wait_q,
4049 			   atomic_read(&fs_info->balance_running) == 0);
4050 
4051 		mutex_lock(&fs_info->balance_mutex);
4052 		/* we are good with balance_ctl ripped off from under us */
4053 		BUG_ON(atomic_read(&fs_info->balance_running));
4054 		atomic_dec(&fs_info->balance_pause_req);
4055 	} else {
4056 		ret = -ENOTCONN;
4057 	}
4058 
4059 	mutex_unlock(&fs_info->balance_mutex);
4060 	return ret;
4061 }
4062 
4063 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4064 {
4065 	if (sb_rdonly(fs_info->sb))
4066 		return -EROFS;
4067 
4068 	mutex_lock(&fs_info->balance_mutex);
4069 	if (!fs_info->balance_ctl) {
4070 		mutex_unlock(&fs_info->balance_mutex);
4071 		return -ENOTCONN;
4072 	}
4073 
4074 	atomic_inc(&fs_info->balance_cancel_req);
4075 	/*
4076 	 * if we are running just wait and return, balance item is
4077 	 * deleted in btrfs_balance in this case
4078 	 */
4079 	if (atomic_read(&fs_info->balance_running)) {
4080 		mutex_unlock(&fs_info->balance_mutex);
4081 		wait_event(fs_info->balance_wait_q,
4082 			   atomic_read(&fs_info->balance_running) == 0);
4083 		mutex_lock(&fs_info->balance_mutex);
4084 	} else {
4085 		/* __cancel_balance needs volume_mutex */
4086 		mutex_unlock(&fs_info->balance_mutex);
4087 		mutex_lock(&fs_info->volume_mutex);
4088 		mutex_lock(&fs_info->balance_mutex);
4089 
4090 		if (fs_info->balance_ctl)
4091 			__cancel_balance(fs_info);
4092 
4093 		mutex_unlock(&fs_info->volume_mutex);
4094 	}
4095 
4096 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4097 	atomic_dec(&fs_info->balance_cancel_req);
4098 	mutex_unlock(&fs_info->balance_mutex);
4099 	return 0;
4100 }
4101 
4102 static int btrfs_uuid_scan_kthread(void *data)
4103 {
4104 	struct btrfs_fs_info *fs_info = data;
4105 	struct btrfs_root *root = fs_info->tree_root;
4106 	struct btrfs_key key;
4107 	struct btrfs_path *path = NULL;
4108 	int ret = 0;
4109 	struct extent_buffer *eb;
4110 	int slot;
4111 	struct btrfs_root_item root_item;
4112 	u32 item_size;
4113 	struct btrfs_trans_handle *trans = NULL;
4114 
4115 	path = btrfs_alloc_path();
4116 	if (!path) {
4117 		ret = -ENOMEM;
4118 		goto out;
4119 	}
4120 
4121 	key.objectid = 0;
4122 	key.type = BTRFS_ROOT_ITEM_KEY;
4123 	key.offset = 0;
4124 
4125 	while (1) {
4126 		ret = btrfs_search_forward(root, &key, path, 0);
4127 		if (ret) {
4128 			if (ret > 0)
4129 				ret = 0;
4130 			break;
4131 		}
4132 
4133 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4134 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4135 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4136 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4137 			goto skip;
4138 
4139 		eb = path->nodes[0];
4140 		slot = path->slots[0];
4141 		item_size = btrfs_item_size_nr(eb, slot);
4142 		if (item_size < sizeof(root_item))
4143 			goto skip;
4144 
4145 		read_extent_buffer(eb, &root_item,
4146 				   btrfs_item_ptr_offset(eb, slot),
4147 				   (int)sizeof(root_item));
4148 		if (btrfs_root_refs(&root_item) == 0)
4149 			goto skip;
4150 
4151 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4152 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4153 			if (trans)
4154 				goto update_tree;
4155 
4156 			btrfs_release_path(path);
4157 			/*
4158 			 * 1 - subvol uuid item
4159 			 * 1 - received_subvol uuid item
4160 			 */
4161 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4162 			if (IS_ERR(trans)) {
4163 				ret = PTR_ERR(trans);
4164 				break;
4165 			}
4166 			continue;
4167 		} else {
4168 			goto skip;
4169 		}
4170 update_tree:
4171 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4172 			ret = btrfs_uuid_tree_add(trans, fs_info,
4173 						  root_item.uuid,
4174 						  BTRFS_UUID_KEY_SUBVOL,
4175 						  key.objectid);
4176 			if (ret < 0) {
4177 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4178 					ret);
4179 				break;
4180 			}
4181 		}
4182 
4183 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4184 			ret = btrfs_uuid_tree_add(trans, fs_info,
4185 						  root_item.received_uuid,
4186 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4187 						  key.objectid);
4188 			if (ret < 0) {
4189 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4190 					ret);
4191 				break;
4192 			}
4193 		}
4194 
4195 skip:
4196 		if (trans) {
4197 			ret = btrfs_end_transaction(trans);
4198 			trans = NULL;
4199 			if (ret)
4200 				break;
4201 		}
4202 
4203 		btrfs_release_path(path);
4204 		if (key.offset < (u64)-1) {
4205 			key.offset++;
4206 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4207 			key.offset = 0;
4208 			key.type = BTRFS_ROOT_ITEM_KEY;
4209 		} else if (key.objectid < (u64)-1) {
4210 			key.offset = 0;
4211 			key.type = BTRFS_ROOT_ITEM_KEY;
4212 			key.objectid++;
4213 		} else {
4214 			break;
4215 		}
4216 		cond_resched();
4217 	}
4218 
4219 out:
4220 	btrfs_free_path(path);
4221 	if (trans && !IS_ERR(trans))
4222 		btrfs_end_transaction(trans);
4223 	if (ret)
4224 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4225 	else
4226 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4227 	up(&fs_info->uuid_tree_rescan_sem);
4228 	return 0;
4229 }
4230 
4231 /*
4232  * Callback for btrfs_uuid_tree_iterate().
4233  * returns:
4234  * 0	check succeeded, the entry is not outdated.
4235  * < 0	if an error occurred.
4236  * > 0	if the check failed, which means the caller shall remove the entry.
4237  */
4238 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4239 				       u8 *uuid, u8 type, u64 subid)
4240 {
4241 	struct btrfs_key key;
4242 	int ret = 0;
4243 	struct btrfs_root *subvol_root;
4244 
4245 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4246 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4247 		goto out;
4248 
4249 	key.objectid = subid;
4250 	key.type = BTRFS_ROOT_ITEM_KEY;
4251 	key.offset = (u64)-1;
4252 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4253 	if (IS_ERR(subvol_root)) {
4254 		ret = PTR_ERR(subvol_root);
4255 		if (ret == -ENOENT)
4256 			ret = 1;
4257 		goto out;
4258 	}
4259 
4260 	switch (type) {
4261 	case BTRFS_UUID_KEY_SUBVOL:
4262 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4263 			ret = 1;
4264 		break;
4265 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4266 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4267 			   BTRFS_UUID_SIZE))
4268 			ret = 1;
4269 		break;
4270 	}
4271 
4272 out:
4273 	return ret;
4274 }
4275 
4276 static int btrfs_uuid_rescan_kthread(void *data)
4277 {
4278 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4279 	int ret;
4280 
4281 	/*
4282 	 * 1st step is to iterate through the existing UUID tree and
4283 	 * to delete all entries that contain outdated data.
4284 	 * 2nd step is to add all missing entries to the UUID tree.
4285 	 */
4286 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4287 	if (ret < 0) {
4288 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4289 		up(&fs_info->uuid_tree_rescan_sem);
4290 		return ret;
4291 	}
4292 	return btrfs_uuid_scan_kthread(data);
4293 }
4294 
4295 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4296 {
4297 	struct btrfs_trans_handle *trans;
4298 	struct btrfs_root *tree_root = fs_info->tree_root;
4299 	struct btrfs_root *uuid_root;
4300 	struct task_struct *task;
4301 	int ret;
4302 
4303 	/*
4304 	 * 1 - root node
4305 	 * 1 - root item
4306 	 */
4307 	trans = btrfs_start_transaction(tree_root, 2);
4308 	if (IS_ERR(trans))
4309 		return PTR_ERR(trans);
4310 
4311 	uuid_root = btrfs_create_tree(trans, fs_info,
4312 				      BTRFS_UUID_TREE_OBJECTID);
4313 	if (IS_ERR(uuid_root)) {
4314 		ret = PTR_ERR(uuid_root);
4315 		btrfs_abort_transaction(trans, ret);
4316 		btrfs_end_transaction(trans);
4317 		return ret;
4318 	}
4319 
4320 	fs_info->uuid_root = uuid_root;
4321 
4322 	ret = btrfs_commit_transaction(trans);
4323 	if (ret)
4324 		return ret;
4325 
4326 	down(&fs_info->uuid_tree_rescan_sem);
4327 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4328 	if (IS_ERR(task)) {
4329 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4330 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4331 		up(&fs_info->uuid_tree_rescan_sem);
4332 		return PTR_ERR(task);
4333 	}
4334 
4335 	return 0;
4336 }
4337 
4338 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4339 {
4340 	struct task_struct *task;
4341 
4342 	down(&fs_info->uuid_tree_rescan_sem);
4343 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4344 	if (IS_ERR(task)) {
4345 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4346 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4347 		up(&fs_info->uuid_tree_rescan_sem);
4348 		return PTR_ERR(task);
4349 	}
4350 
4351 	return 0;
4352 }
4353 
4354 /*
4355  * shrinking a device means finding all of the device extents past
4356  * the new size, and then following the back refs to the chunks.
4357  * The chunk relocation code actually frees the device extent
4358  */
4359 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4360 {
4361 	struct btrfs_fs_info *fs_info = device->fs_info;
4362 	struct btrfs_root *root = fs_info->dev_root;
4363 	struct btrfs_trans_handle *trans;
4364 	struct btrfs_dev_extent *dev_extent = NULL;
4365 	struct btrfs_path *path;
4366 	u64 length;
4367 	u64 chunk_offset;
4368 	int ret;
4369 	int slot;
4370 	int failed = 0;
4371 	bool retried = false;
4372 	bool checked_pending_chunks = false;
4373 	struct extent_buffer *l;
4374 	struct btrfs_key key;
4375 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4376 	u64 old_total = btrfs_super_total_bytes(super_copy);
4377 	u64 old_size = btrfs_device_get_total_bytes(device);
4378 	u64 diff;
4379 
4380 	new_size = round_down(new_size, fs_info->sectorsize);
4381 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4382 
4383 	if (device->is_tgtdev_for_dev_replace)
4384 		return -EINVAL;
4385 
4386 	path = btrfs_alloc_path();
4387 	if (!path)
4388 		return -ENOMEM;
4389 
4390 	path->reada = READA_FORWARD;
4391 
4392 	mutex_lock(&fs_info->chunk_mutex);
4393 
4394 	btrfs_device_set_total_bytes(device, new_size);
4395 	if (device->writeable) {
4396 		device->fs_devices->total_rw_bytes -= diff;
4397 		atomic64_sub(diff, &fs_info->free_chunk_space);
4398 	}
4399 	mutex_unlock(&fs_info->chunk_mutex);
4400 
4401 again:
4402 	key.objectid = device->devid;
4403 	key.offset = (u64)-1;
4404 	key.type = BTRFS_DEV_EXTENT_KEY;
4405 
4406 	do {
4407 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4408 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4409 		if (ret < 0) {
4410 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4411 			goto done;
4412 		}
4413 
4414 		ret = btrfs_previous_item(root, path, 0, key.type);
4415 		if (ret)
4416 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4417 		if (ret < 0)
4418 			goto done;
4419 		if (ret) {
4420 			ret = 0;
4421 			btrfs_release_path(path);
4422 			break;
4423 		}
4424 
4425 		l = path->nodes[0];
4426 		slot = path->slots[0];
4427 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4428 
4429 		if (key.objectid != device->devid) {
4430 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431 			btrfs_release_path(path);
4432 			break;
4433 		}
4434 
4435 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4436 		length = btrfs_dev_extent_length(l, dev_extent);
4437 
4438 		if (key.offset + length <= new_size) {
4439 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4440 			btrfs_release_path(path);
4441 			break;
4442 		}
4443 
4444 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4445 		btrfs_release_path(path);
4446 
4447 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4448 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4449 		if (ret && ret != -ENOSPC)
4450 			goto done;
4451 		if (ret == -ENOSPC)
4452 			failed++;
4453 	} while (key.offset-- > 0);
4454 
4455 	if (failed && !retried) {
4456 		failed = 0;
4457 		retried = true;
4458 		goto again;
4459 	} else if (failed && retried) {
4460 		ret = -ENOSPC;
4461 		goto done;
4462 	}
4463 
4464 	/* Shrinking succeeded, else we would be at "done". */
4465 	trans = btrfs_start_transaction(root, 0);
4466 	if (IS_ERR(trans)) {
4467 		ret = PTR_ERR(trans);
4468 		goto done;
4469 	}
4470 
4471 	mutex_lock(&fs_info->chunk_mutex);
4472 
4473 	/*
4474 	 * We checked in the above loop all device extents that were already in
4475 	 * the device tree. However before we have updated the device's
4476 	 * total_bytes to the new size, we might have had chunk allocations that
4477 	 * have not complete yet (new block groups attached to transaction
4478 	 * handles), and therefore their device extents were not yet in the
4479 	 * device tree and we missed them in the loop above. So if we have any
4480 	 * pending chunk using a device extent that overlaps the device range
4481 	 * that we can not use anymore, commit the current transaction and
4482 	 * repeat the search on the device tree - this way we guarantee we will
4483 	 * not have chunks using device extents that end beyond 'new_size'.
4484 	 */
4485 	if (!checked_pending_chunks) {
4486 		u64 start = new_size;
4487 		u64 len = old_size - new_size;
4488 
4489 		if (contains_pending_extent(trans->transaction, device,
4490 					    &start, len)) {
4491 			mutex_unlock(&fs_info->chunk_mutex);
4492 			checked_pending_chunks = true;
4493 			failed = 0;
4494 			retried = false;
4495 			ret = btrfs_commit_transaction(trans);
4496 			if (ret)
4497 				goto done;
4498 			goto again;
4499 		}
4500 	}
4501 
4502 	btrfs_device_set_disk_total_bytes(device, new_size);
4503 	if (list_empty(&device->resized_list))
4504 		list_add_tail(&device->resized_list,
4505 			      &fs_info->fs_devices->resized_devices);
4506 
4507 	WARN_ON(diff > old_total);
4508 	btrfs_set_super_total_bytes(super_copy,
4509 			round_down(old_total - diff, fs_info->sectorsize));
4510 	mutex_unlock(&fs_info->chunk_mutex);
4511 
4512 	/* Now btrfs_update_device() will change the on-disk size. */
4513 	ret = btrfs_update_device(trans, device);
4514 	btrfs_end_transaction(trans);
4515 done:
4516 	btrfs_free_path(path);
4517 	if (ret) {
4518 		mutex_lock(&fs_info->chunk_mutex);
4519 		btrfs_device_set_total_bytes(device, old_size);
4520 		if (device->writeable)
4521 			device->fs_devices->total_rw_bytes += diff;
4522 		atomic64_add(diff, &fs_info->free_chunk_space);
4523 		mutex_unlock(&fs_info->chunk_mutex);
4524 	}
4525 	return ret;
4526 }
4527 
4528 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4529 			   struct btrfs_key *key,
4530 			   struct btrfs_chunk *chunk, int item_size)
4531 {
4532 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4533 	struct btrfs_disk_key disk_key;
4534 	u32 array_size;
4535 	u8 *ptr;
4536 
4537 	mutex_lock(&fs_info->chunk_mutex);
4538 	array_size = btrfs_super_sys_array_size(super_copy);
4539 	if (array_size + item_size + sizeof(disk_key)
4540 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4541 		mutex_unlock(&fs_info->chunk_mutex);
4542 		return -EFBIG;
4543 	}
4544 
4545 	ptr = super_copy->sys_chunk_array + array_size;
4546 	btrfs_cpu_key_to_disk(&disk_key, key);
4547 	memcpy(ptr, &disk_key, sizeof(disk_key));
4548 	ptr += sizeof(disk_key);
4549 	memcpy(ptr, chunk, item_size);
4550 	item_size += sizeof(disk_key);
4551 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4552 	mutex_unlock(&fs_info->chunk_mutex);
4553 
4554 	return 0;
4555 }
4556 
4557 /*
4558  * sort the devices in descending order by max_avail, total_avail
4559  */
4560 static int btrfs_cmp_device_info(const void *a, const void *b)
4561 {
4562 	const struct btrfs_device_info *di_a = a;
4563 	const struct btrfs_device_info *di_b = b;
4564 
4565 	if (di_a->max_avail > di_b->max_avail)
4566 		return -1;
4567 	if (di_a->max_avail < di_b->max_avail)
4568 		return 1;
4569 	if (di_a->total_avail > di_b->total_avail)
4570 		return -1;
4571 	if (di_a->total_avail < di_b->total_avail)
4572 		return 1;
4573 	return 0;
4574 }
4575 
4576 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4577 {
4578 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4579 		return;
4580 
4581 	btrfs_set_fs_incompat(info, RAID56);
4582 }
4583 
4584 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4585 			- sizeof(struct btrfs_chunk))		\
4586 			/ sizeof(struct btrfs_stripe) + 1)
4587 
4588 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4589 				- 2 * sizeof(struct btrfs_disk_key)	\
4590 				- 2 * sizeof(struct btrfs_chunk))	\
4591 				/ sizeof(struct btrfs_stripe) + 1)
4592 
4593 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4594 			       u64 start, u64 type)
4595 {
4596 	struct btrfs_fs_info *info = trans->fs_info;
4597 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4598 	struct btrfs_device *device;
4599 	struct map_lookup *map = NULL;
4600 	struct extent_map_tree *em_tree;
4601 	struct extent_map *em;
4602 	struct btrfs_device_info *devices_info = NULL;
4603 	u64 total_avail;
4604 	int num_stripes;	/* total number of stripes to allocate */
4605 	int data_stripes;	/* number of stripes that count for
4606 				   block group size */
4607 	int sub_stripes;	/* sub_stripes info for map */
4608 	int dev_stripes;	/* stripes per dev */
4609 	int devs_max;		/* max devs to use */
4610 	int devs_min;		/* min devs needed */
4611 	int devs_increment;	/* ndevs has to be a multiple of this */
4612 	int ncopies;		/* how many copies to data has */
4613 	int ret;
4614 	u64 max_stripe_size;
4615 	u64 max_chunk_size;
4616 	u64 stripe_size;
4617 	u64 num_bytes;
4618 	int ndevs;
4619 	int i;
4620 	int j;
4621 	int index;
4622 
4623 	BUG_ON(!alloc_profile_is_valid(type, 0));
4624 
4625 	if (list_empty(&fs_devices->alloc_list))
4626 		return -ENOSPC;
4627 
4628 	index = __get_raid_index(type);
4629 
4630 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4631 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4632 	devs_max = btrfs_raid_array[index].devs_max;
4633 	devs_min = btrfs_raid_array[index].devs_min;
4634 	devs_increment = btrfs_raid_array[index].devs_increment;
4635 	ncopies = btrfs_raid_array[index].ncopies;
4636 
4637 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4638 		max_stripe_size = SZ_1G;
4639 		max_chunk_size = 10 * max_stripe_size;
4640 		if (!devs_max)
4641 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4642 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4643 		/* for larger filesystems, use larger metadata chunks */
4644 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4645 			max_stripe_size = SZ_1G;
4646 		else
4647 			max_stripe_size = SZ_256M;
4648 		max_chunk_size = max_stripe_size;
4649 		if (!devs_max)
4650 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4651 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4652 		max_stripe_size = SZ_32M;
4653 		max_chunk_size = 2 * max_stripe_size;
4654 		if (!devs_max)
4655 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4656 	} else {
4657 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4658 		       type);
4659 		BUG_ON(1);
4660 	}
4661 
4662 	/* we don't want a chunk larger than 10% of writeable space */
4663 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4664 			     max_chunk_size);
4665 
4666 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4667 			       GFP_NOFS);
4668 	if (!devices_info)
4669 		return -ENOMEM;
4670 
4671 	/*
4672 	 * in the first pass through the devices list, we gather information
4673 	 * about the available holes on each device.
4674 	 */
4675 	ndevs = 0;
4676 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4677 		u64 max_avail;
4678 		u64 dev_offset;
4679 
4680 		if (!device->writeable) {
4681 			WARN(1, KERN_ERR
4682 			       "BTRFS: read-only device in alloc_list\n");
4683 			continue;
4684 		}
4685 
4686 		if (!device->in_fs_metadata ||
4687 		    device->is_tgtdev_for_dev_replace)
4688 			continue;
4689 
4690 		if (device->total_bytes > device->bytes_used)
4691 			total_avail = device->total_bytes - device->bytes_used;
4692 		else
4693 			total_avail = 0;
4694 
4695 		/* If there is no space on this device, skip it. */
4696 		if (total_avail == 0)
4697 			continue;
4698 
4699 		ret = find_free_dev_extent(trans, device,
4700 					   max_stripe_size * dev_stripes,
4701 					   &dev_offset, &max_avail);
4702 		if (ret && ret != -ENOSPC)
4703 			goto error;
4704 
4705 		if (ret == 0)
4706 			max_avail = max_stripe_size * dev_stripes;
4707 
4708 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4709 			continue;
4710 
4711 		if (ndevs == fs_devices->rw_devices) {
4712 			WARN(1, "%s: found more than %llu devices\n",
4713 			     __func__, fs_devices->rw_devices);
4714 			break;
4715 		}
4716 		devices_info[ndevs].dev_offset = dev_offset;
4717 		devices_info[ndevs].max_avail = max_avail;
4718 		devices_info[ndevs].total_avail = total_avail;
4719 		devices_info[ndevs].dev = device;
4720 		++ndevs;
4721 	}
4722 
4723 	/*
4724 	 * now sort the devices by hole size / available space
4725 	 */
4726 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4727 	     btrfs_cmp_device_info, NULL);
4728 
4729 	/* round down to number of usable stripes */
4730 	ndevs = round_down(ndevs, devs_increment);
4731 
4732 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4733 		ret = -ENOSPC;
4734 		goto error;
4735 	}
4736 
4737 	ndevs = min(ndevs, devs_max);
4738 
4739 	/*
4740 	 * the primary goal is to maximize the number of stripes, so use as many
4741 	 * devices as possible, even if the stripes are not maximum sized.
4742 	 */
4743 	stripe_size = devices_info[ndevs-1].max_avail;
4744 	num_stripes = ndevs * dev_stripes;
4745 
4746 	/*
4747 	 * this will have to be fixed for RAID1 and RAID10 over
4748 	 * more drives
4749 	 */
4750 	data_stripes = num_stripes / ncopies;
4751 
4752 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4753 		data_stripes = num_stripes - 1;
4754 
4755 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4756 		data_stripes = num_stripes - 2;
4757 
4758 	/*
4759 	 * Use the number of data stripes to figure out how big this chunk
4760 	 * is really going to be in terms of logical address space,
4761 	 * and compare that answer with the max chunk size
4762 	 */
4763 	if (stripe_size * data_stripes > max_chunk_size) {
4764 		u64 mask = (1ULL << 24) - 1;
4765 
4766 		stripe_size = div_u64(max_chunk_size, data_stripes);
4767 
4768 		/* bump the answer up to a 16MB boundary */
4769 		stripe_size = (stripe_size + mask) & ~mask;
4770 
4771 		/* but don't go higher than the limits we found
4772 		 * while searching for free extents
4773 		 */
4774 		if (stripe_size > devices_info[ndevs-1].max_avail)
4775 			stripe_size = devices_info[ndevs-1].max_avail;
4776 	}
4777 
4778 	stripe_size = div_u64(stripe_size, dev_stripes);
4779 
4780 	/* align to BTRFS_STRIPE_LEN */
4781 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4782 
4783 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4784 	if (!map) {
4785 		ret = -ENOMEM;
4786 		goto error;
4787 	}
4788 	map->num_stripes = num_stripes;
4789 
4790 	for (i = 0; i < ndevs; ++i) {
4791 		for (j = 0; j < dev_stripes; ++j) {
4792 			int s = i * dev_stripes + j;
4793 			map->stripes[s].dev = devices_info[i].dev;
4794 			map->stripes[s].physical = devices_info[i].dev_offset +
4795 						   j * stripe_size;
4796 		}
4797 	}
4798 	map->stripe_len = BTRFS_STRIPE_LEN;
4799 	map->io_align = BTRFS_STRIPE_LEN;
4800 	map->io_width = BTRFS_STRIPE_LEN;
4801 	map->type = type;
4802 	map->sub_stripes = sub_stripes;
4803 
4804 	num_bytes = stripe_size * data_stripes;
4805 
4806 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4807 
4808 	em = alloc_extent_map();
4809 	if (!em) {
4810 		kfree(map);
4811 		ret = -ENOMEM;
4812 		goto error;
4813 	}
4814 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4815 	em->map_lookup = map;
4816 	em->start = start;
4817 	em->len = num_bytes;
4818 	em->block_start = 0;
4819 	em->block_len = em->len;
4820 	em->orig_block_len = stripe_size;
4821 
4822 	em_tree = &info->mapping_tree.map_tree;
4823 	write_lock(&em_tree->lock);
4824 	ret = add_extent_mapping(em_tree, em, 0);
4825 	if (ret) {
4826 		write_unlock(&em_tree->lock);
4827 		free_extent_map(em);
4828 		goto error;
4829 	}
4830 
4831 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4832 	refcount_inc(&em->refs);
4833 	write_unlock(&em_tree->lock);
4834 
4835 	ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4836 	if (ret)
4837 		goto error_del_extent;
4838 
4839 	for (i = 0; i < map->num_stripes; i++) {
4840 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4841 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4842 	}
4843 
4844 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4845 
4846 	free_extent_map(em);
4847 	check_raid56_incompat_flag(info, type);
4848 
4849 	kfree(devices_info);
4850 	return 0;
4851 
4852 error_del_extent:
4853 	write_lock(&em_tree->lock);
4854 	remove_extent_mapping(em_tree, em);
4855 	write_unlock(&em_tree->lock);
4856 
4857 	/* One for our allocation */
4858 	free_extent_map(em);
4859 	/* One for the tree reference */
4860 	free_extent_map(em);
4861 	/* One for the pending_chunks list reference */
4862 	free_extent_map(em);
4863 error:
4864 	kfree(devices_info);
4865 	return ret;
4866 }
4867 
4868 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4869 				struct btrfs_fs_info *fs_info,
4870 				u64 chunk_offset, u64 chunk_size)
4871 {
4872 	struct btrfs_root *extent_root = fs_info->extent_root;
4873 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4874 	struct btrfs_key key;
4875 	struct btrfs_device *device;
4876 	struct btrfs_chunk *chunk;
4877 	struct btrfs_stripe *stripe;
4878 	struct extent_map *em;
4879 	struct map_lookup *map;
4880 	size_t item_size;
4881 	u64 dev_offset;
4882 	u64 stripe_size;
4883 	int i = 0;
4884 	int ret = 0;
4885 
4886 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4887 	if (IS_ERR(em))
4888 		return PTR_ERR(em);
4889 
4890 	map = em->map_lookup;
4891 	item_size = btrfs_chunk_item_size(map->num_stripes);
4892 	stripe_size = em->orig_block_len;
4893 
4894 	chunk = kzalloc(item_size, GFP_NOFS);
4895 	if (!chunk) {
4896 		ret = -ENOMEM;
4897 		goto out;
4898 	}
4899 
4900 	/*
4901 	 * Take the device list mutex to prevent races with the final phase of
4902 	 * a device replace operation that replaces the device object associated
4903 	 * with the map's stripes, because the device object's id can change
4904 	 * at any time during that final phase of the device replace operation
4905 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4906 	 */
4907 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4908 	for (i = 0; i < map->num_stripes; i++) {
4909 		device = map->stripes[i].dev;
4910 		dev_offset = map->stripes[i].physical;
4911 
4912 		ret = btrfs_update_device(trans, device);
4913 		if (ret)
4914 			break;
4915 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4916 					     dev_offset, stripe_size);
4917 		if (ret)
4918 			break;
4919 	}
4920 	if (ret) {
4921 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4922 		goto out;
4923 	}
4924 
4925 	stripe = &chunk->stripe;
4926 	for (i = 0; i < map->num_stripes; i++) {
4927 		device = map->stripes[i].dev;
4928 		dev_offset = map->stripes[i].physical;
4929 
4930 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4931 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4932 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4933 		stripe++;
4934 	}
4935 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4936 
4937 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4938 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4939 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4940 	btrfs_set_stack_chunk_type(chunk, map->type);
4941 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4942 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4943 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4944 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4945 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4946 
4947 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4948 	key.type = BTRFS_CHUNK_ITEM_KEY;
4949 	key.offset = chunk_offset;
4950 
4951 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4952 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4953 		/*
4954 		 * TODO: Cleanup of inserted chunk root in case of
4955 		 * failure.
4956 		 */
4957 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4958 	}
4959 
4960 out:
4961 	kfree(chunk);
4962 	free_extent_map(em);
4963 	return ret;
4964 }
4965 
4966 /*
4967  * Chunk allocation falls into two parts. The first part does works
4968  * that make the new allocated chunk useable, but not do any operation
4969  * that modifies the chunk tree. The second part does the works that
4970  * require modifying the chunk tree. This division is important for the
4971  * bootstrap process of adding storage to a seed btrfs.
4972  */
4973 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4974 		      struct btrfs_fs_info *fs_info, u64 type)
4975 {
4976 	u64 chunk_offset;
4977 
4978 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4979 	chunk_offset = find_next_chunk(fs_info);
4980 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
4981 }
4982 
4983 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4984 					 struct btrfs_fs_info *fs_info)
4985 {
4986 	u64 chunk_offset;
4987 	u64 sys_chunk_offset;
4988 	u64 alloc_profile;
4989 	int ret;
4990 
4991 	chunk_offset = find_next_chunk(fs_info);
4992 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4993 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4994 	if (ret)
4995 		return ret;
4996 
4997 	sys_chunk_offset = find_next_chunk(fs_info);
4998 	alloc_profile = btrfs_system_alloc_profile(fs_info);
4999 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5000 	return ret;
5001 }
5002 
5003 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5004 {
5005 	int max_errors;
5006 
5007 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5008 			 BTRFS_BLOCK_GROUP_RAID10 |
5009 			 BTRFS_BLOCK_GROUP_RAID5 |
5010 			 BTRFS_BLOCK_GROUP_DUP)) {
5011 		max_errors = 1;
5012 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5013 		max_errors = 2;
5014 	} else {
5015 		max_errors = 0;
5016 	}
5017 
5018 	return max_errors;
5019 }
5020 
5021 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5022 {
5023 	struct extent_map *em;
5024 	struct map_lookup *map;
5025 	int readonly = 0;
5026 	int miss_ndevs = 0;
5027 	int i;
5028 
5029 	em = get_chunk_map(fs_info, chunk_offset, 1);
5030 	if (IS_ERR(em))
5031 		return 1;
5032 
5033 	map = em->map_lookup;
5034 	for (i = 0; i < map->num_stripes; i++) {
5035 		if (map->stripes[i].dev->missing) {
5036 			miss_ndevs++;
5037 			continue;
5038 		}
5039 
5040 		if (!map->stripes[i].dev->writeable) {
5041 			readonly = 1;
5042 			goto end;
5043 		}
5044 	}
5045 
5046 	/*
5047 	 * If the number of missing devices is larger than max errors,
5048 	 * we can not write the data into that chunk successfully, so
5049 	 * set it readonly.
5050 	 */
5051 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5052 		readonly = 1;
5053 end:
5054 	free_extent_map(em);
5055 	return readonly;
5056 }
5057 
5058 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5059 {
5060 	extent_map_tree_init(&tree->map_tree);
5061 }
5062 
5063 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5064 {
5065 	struct extent_map *em;
5066 
5067 	while (1) {
5068 		write_lock(&tree->map_tree.lock);
5069 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5070 		if (em)
5071 			remove_extent_mapping(&tree->map_tree, em);
5072 		write_unlock(&tree->map_tree.lock);
5073 		if (!em)
5074 			break;
5075 		/* once for us */
5076 		free_extent_map(em);
5077 		/* once for the tree */
5078 		free_extent_map(em);
5079 	}
5080 }
5081 
5082 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5083 {
5084 	struct extent_map *em;
5085 	struct map_lookup *map;
5086 	int ret;
5087 
5088 	em = get_chunk_map(fs_info, logical, len);
5089 	if (IS_ERR(em))
5090 		/*
5091 		 * We could return errors for these cases, but that could get
5092 		 * ugly and we'd probably do the same thing which is just not do
5093 		 * anything else and exit, so return 1 so the callers don't try
5094 		 * to use other copies.
5095 		 */
5096 		return 1;
5097 
5098 	map = em->map_lookup;
5099 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5100 		ret = map->num_stripes;
5101 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5102 		ret = map->sub_stripes;
5103 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5104 		ret = 2;
5105 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5106 		ret = 3;
5107 	else
5108 		ret = 1;
5109 	free_extent_map(em);
5110 
5111 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5112 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5113 	    fs_info->dev_replace.tgtdev)
5114 		ret++;
5115 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5116 
5117 	return ret;
5118 }
5119 
5120 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5121 				    u64 logical)
5122 {
5123 	struct extent_map *em;
5124 	struct map_lookup *map;
5125 	unsigned long len = fs_info->sectorsize;
5126 
5127 	em = get_chunk_map(fs_info, logical, len);
5128 
5129 	if (!WARN_ON(IS_ERR(em))) {
5130 		map = em->map_lookup;
5131 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5132 			len = map->stripe_len * nr_data_stripes(map);
5133 		free_extent_map(em);
5134 	}
5135 	return len;
5136 }
5137 
5138 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5139 {
5140 	struct extent_map *em;
5141 	struct map_lookup *map;
5142 	int ret = 0;
5143 
5144 	em = get_chunk_map(fs_info, logical, len);
5145 
5146 	if(!WARN_ON(IS_ERR(em))) {
5147 		map = em->map_lookup;
5148 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5149 			ret = 1;
5150 		free_extent_map(em);
5151 	}
5152 	return ret;
5153 }
5154 
5155 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5156 			    struct map_lookup *map, int first, int num,
5157 			    int optimal, int dev_replace_is_ongoing)
5158 {
5159 	int i;
5160 	int tolerance;
5161 	struct btrfs_device *srcdev;
5162 
5163 	if (dev_replace_is_ongoing &&
5164 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5165 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5166 		srcdev = fs_info->dev_replace.srcdev;
5167 	else
5168 		srcdev = NULL;
5169 
5170 	/*
5171 	 * try to avoid the drive that is the source drive for a
5172 	 * dev-replace procedure, only choose it if no other non-missing
5173 	 * mirror is available
5174 	 */
5175 	for (tolerance = 0; tolerance < 2; tolerance++) {
5176 		if (map->stripes[optimal].dev->bdev &&
5177 		    (tolerance || map->stripes[optimal].dev != srcdev))
5178 			return optimal;
5179 		for (i = first; i < first + num; i++) {
5180 			if (map->stripes[i].dev->bdev &&
5181 			    (tolerance || map->stripes[i].dev != srcdev))
5182 				return i;
5183 		}
5184 	}
5185 
5186 	/* we couldn't find one that doesn't fail.  Just return something
5187 	 * and the io error handling code will clean up eventually
5188 	 */
5189 	return optimal;
5190 }
5191 
5192 static inline int parity_smaller(u64 a, u64 b)
5193 {
5194 	return a > b;
5195 }
5196 
5197 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5198 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5199 {
5200 	struct btrfs_bio_stripe s;
5201 	int i;
5202 	u64 l;
5203 	int again = 1;
5204 
5205 	while (again) {
5206 		again = 0;
5207 		for (i = 0; i < num_stripes - 1; i++) {
5208 			if (parity_smaller(bbio->raid_map[i],
5209 					   bbio->raid_map[i+1])) {
5210 				s = bbio->stripes[i];
5211 				l = bbio->raid_map[i];
5212 				bbio->stripes[i] = bbio->stripes[i+1];
5213 				bbio->raid_map[i] = bbio->raid_map[i+1];
5214 				bbio->stripes[i+1] = s;
5215 				bbio->raid_map[i+1] = l;
5216 
5217 				again = 1;
5218 			}
5219 		}
5220 	}
5221 }
5222 
5223 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5224 {
5225 	struct btrfs_bio *bbio = kzalloc(
5226 		 /* the size of the btrfs_bio */
5227 		sizeof(struct btrfs_bio) +
5228 		/* plus the variable array for the stripes */
5229 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5230 		/* plus the variable array for the tgt dev */
5231 		sizeof(int) * (real_stripes) +
5232 		/*
5233 		 * plus the raid_map, which includes both the tgt dev
5234 		 * and the stripes
5235 		 */
5236 		sizeof(u64) * (total_stripes),
5237 		GFP_NOFS|__GFP_NOFAIL);
5238 
5239 	atomic_set(&bbio->error, 0);
5240 	refcount_set(&bbio->refs, 1);
5241 
5242 	return bbio;
5243 }
5244 
5245 void btrfs_get_bbio(struct btrfs_bio *bbio)
5246 {
5247 	WARN_ON(!refcount_read(&bbio->refs));
5248 	refcount_inc(&bbio->refs);
5249 }
5250 
5251 void btrfs_put_bbio(struct btrfs_bio *bbio)
5252 {
5253 	if (!bbio)
5254 		return;
5255 	if (refcount_dec_and_test(&bbio->refs))
5256 		kfree(bbio);
5257 }
5258 
5259 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5260 /*
5261  * Please note that, discard won't be sent to target device of device
5262  * replace.
5263  */
5264 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5265 					 u64 logical, u64 length,
5266 					 struct btrfs_bio **bbio_ret)
5267 {
5268 	struct extent_map *em;
5269 	struct map_lookup *map;
5270 	struct btrfs_bio *bbio;
5271 	u64 offset;
5272 	u64 stripe_nr;
5273 	u64 stripe_nr_end;
5274 	u64 stripe_end_offset;
5275 	u64 stripe_cnt;
5276 	u64 stripe_len;
5277 	u64 stripe_offset;
5278 	u64 num_stripes;
5279 	u32 stripe_index;
5280 	u32 factor = 0;
5281 	u32 sub_stripes = 0;
5282 	u64 stripes_per_dev = 0;
5283 	u32 remaining_stripes = 0;
5284 	u32 last_stripe = 0;
5285 	int ret = 0;
5286 	int i;
5287 
5288 	/* discard always return a bbio */
5289 	ASSERT(bbio_ret);
5290 
5291 	em = get_chunk_map(fs_info, logical, length);
5292 	if (IS_ERR(em))
5293 		return PTR_ERR(em);
5294 
5295 	map = em->map_lookup;
5296 	/* we don't discard raid56 yet */
5297 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5298 		ret = -EOPNOTSUPP;
5299 		goto out;
5300 	}
5301 
5302 	offset = logical - em->start;
5303 	length = min_t(u64, em->len - offset, length);
5304 
5305 	stripe_len = map->stripe_len;
5306 	/*
5307 	 * stripe_nr counts the total number of stripes we have to stride
5308 	 * to get to this block
5309 	 */
5310 	stripe_nr = div64_u64(offset, stripe_len);
5311 
5312 	/* stripe_offset is the offset of this block in its stripe */
5313 	stripe_offset = offset - stripe_nr * stripe_len;
5314 
5315 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5316 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5317 	stripe_cnt = stripe_nr_end - stripe_nr;
5318 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5319 			    (offset + length);
5320 	/*
5321 	 * after this, stripe_nr is the number of stripes on this
5322 	 * device we have to walk to find the data, and stripe_index is
5323 	 * the number of our device in the stripe array
5324 	 */
5325 	num_stripes = 1;
5326 	stripe_index = 0;
5327 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5328 			 BTRFS_BLOCK_GROUP_RAID10)) {
5329 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5330 			sub_stripes = 1;
5331 		else
5332 			sub_stripes = map->sub_stripes;
5333 
5334 		factor = map->num_stripes / sub_stripes;
5335 		num_stripes = min_t(u64, map->num_stripes,
5336 				    sub_stripes * stripe_cnt);
5337 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5338 		stripe_index *= sub_stripes;
5339 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5340 					      &remaining_stripes);
5341 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5342 		last_stripe *= sub_stripes;
5343 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5344 				BTRFS_BLOCK_GROUP_DUP)) {
5345 		num_stripes = map->num_stripes;
5346 	} else {
5347 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5348 					&stripe_index);
5349 	}
5350 
5351 	bbio = alloc_btrfs_bio(num_stripes, 0);
5352 	if (!bbio) {
5353 		ret = -ENOMEM;
5354 		goto out;
5355 	}
5356 
5357 	for (i = 0; i < num_stripes; i++) {
5358 		bbio->stripes[i].physical =
5359 			map->stripes[stripe_index].physical +
5360 			stripe_offset + stripe_nr * map->stripe_len;
5361 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5362 
5363 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5364 				 BTRFS_BLOCK_GROUP_RAID10)) {
5365 			bbio->stripes[i].length = stripes_per_dev *
5366 				map->stripe_len;
5367 
5368 			if (i / sub_stripes < remaining_stripes)
5369 				bbio->stripes[i].length +=
5370 					map->stripe_len;
5371 
5372 			/*
5373 			 * Special for the first stripe and
5374 			 * the last stripe:
5375 			 *
5376 			 * |-------|...|-------|
5377 			 *     |----------|
5378 			 *    off     end_off
5379 			 */
5380 			if (i < sub_stripes)
5381 				bbio->stripes[i].length -=
5382 					stripe_offset;
5383 
5384 			if (stripe_index >= last_stripe &&
5385 			    stripe_index <= (last_stripe +
5386 					     sub_stripes - 1))
5387 				bbio->stripes[i].length -=
5388 					stripe_end_offset;
5389 
5390 			if (i == sub_stripes - 1)
5391 				stripe_offset = 0;
5392 		} else {
5393 			bbio->stripes[i].length = length;
5394 		}
5395 
5396 		stripe_index++;
5397 		if (stripe_index == map->num_stripes) {
5398 			stripe_index = 0;
5399 			stripe_nr++;
5400 		}
5401 	}
5402 
5403 	*bbio_ret = bbio;
5404 	bbio->map_type = map->type;
5405 	bbio->num_stripes = num_stripes;
5406 out:
5407 	free_extent_map(em);
5408 	return ret;
5409 }
5410 
5411 /*
5412  * In dev-replace case, for repair case (that's the only case where the mirror
5413  * is selected explicitly when calling btrfs_map_block), blocks left of the
5414  * left cursor can also be read from the target drive.
5415  *
5416  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5417  * array of stripes.
5418  * For READ, it also needs to be supported using the same mirror number.
5419  *
5420  * If the requested block is not left of the left cursor, EIO is returned. This
5421  * can happen because btrfs_num_copies() returns one more in the dev-replace
5422  * case.
5423  */
5424 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5425 					 u64 logical, u64 length,
5426 					 u64 srcdev_devid, int *mirror_num,
5427 					 u64 *physical)
5428 {
5429 	struct btrfs_bio *bbio = NULL;
5430 	int num_stripes;
5431 	int index_srcdev = 0;
5432 	int found = 0;
5433 	u64 physical_of_found = 0;
5434 	int i;
5435 	int ret = 0;
5436 
5437 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5438 				logical, &length, &bbio, 0, 0);
5439 	if (ret) {
5440 		ASSERT(bbio == NULL);
5441 		return ret;
5442 	}
5443 
5444 	num_stripes = bbio->num_stripes;
5445 	if (*mirror_num > num_stripes) {
5446 		/*
5447 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5448 		 * that means that the requested area is not left of the left
5449 		 * cursor
5450 		 */
5451 		btrfs_put_bbio(bbio);
5452 		return -EIO;
5453 	}
5454 
5455 	/*
5456 	 * process the rest of the function using the mirror_num of the source
5457 	 * drive. Therefore look it up first.  At the end, patch the device
5458 	 * pointer to the one of the target drive.
5459 	 */
5460 	for (i = 0; i < num_stripes; i++) {
5461 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5462 			continue;
5463 
5464 		/*
5465 		 * In case of DUP, in order to keep it simple, only add the
5466 		 * mirror with the lowest physical address
5467 		 */
5468 		if (found &&
5469 		    physical_of_found <= bbio->stripes[i].physical)
5470 			continue;
5471 
5472 		index_srcdev = i;
5473 		found = 1;
5474 		physical_of_found = bbio->stripes[i].physical;
5475 	}
5476 
5477 	btrfs_put_bbio(bbio);
5478 
5479 	ASSERT(found);
5480 	if (!found)
5481 		return -EIO;
5482 
5483 	*mirror_num = index_srcdev + 1;
5484 	*physical = physical_of_found;
5485 	return ret;
5486 }
5487 
5488 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5489 				      struct btrfs_bio **bbio_ret,
5490 				      struct btrfs_dev_replace *dev_replace,
5491 				      int *num_stripes_ret, int *max_errors_ret)
5492 {
5493 	struct btrfs_bio *bbio = *bbio_ret;
5494 	u64 srcdev_devid = dev_replace->srcdev->devid;
5495 	int tgtdev_indexes = 0;
5496 	int num_stripes = *num_stripes_ret;
5497 	int max_errors = *max_errors_ret;
5498 	int i;
5499 
5500 	if (op == BTRFS_MAP_WRITE) {
5501 		int index_where_to_add;
5502 
5503 		/*
5504 		 * duplicate the write operations while the dev replace
5505 		 * procedure is running. Since the copying of the old disk to
5506 		 * the new disk takes place at run time while the filesystem is
5507 		 * mounted writable, the regular write operations to the old
5508 		 * disk have to be duplicated to go to the new disk as well.
5509 		 *
5510 		 * Note that device->missing is handled by the caller, and that
5511 		 * the write to the old disk is already set up in the stripes
5512 		 * array.
5513 		 */
5514 		index_where_to_add = num_stripes;
5515 		for (i = 0; i < num_stripes; i++) {
5516 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5517 				/* write to new disk, too */
5518 				struct btrfs_bio_stripe *new =
5519 					bbio->stripes + index_where_to_add;
5520 				struct btrfs_bio_stripe *old =
5521 					bbio->stripes + i;
5522 
5523 				new->physical = old->physical;
5524 				new->length = old->length;
5525 				new->dev = dev_replace->tgtdev;
5526 				bbio->tgtdev_map[i] = index_where_to_add;
5527 				index_where_to_add++;
5528 				max_errors++;
5529 				tgtdev_indexes++;
5530 			}
5531 		}
5532 		num_stripes = index_where_to_add;
5533 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5534 		int index_srcdev = 0;
5535 		int found = 0;
5536 		u64 physical_of_found = 0;
5537 
5538 		/*
5539 		 * During the dev-replace procedure, the target drive can also
5540 		 * be used to read data in case it is needed to repair a corrupt
5541 		 * block elsewhere. This is possible if the requested area is
5542 		 * left of the left cursor. In this area, the target drive is a
5543 		 * full copy of the source drive.
5544 		 */
5545 		for (i = 0; i < num_stripes; i++) {
5546 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5547 				/*
5548 				 * In case of DUP, in order to keep it simple,
5549 				 * only add the mirror with the lowest physical
5550 				 * address
5551 				 */
5552 				if (found &&
5553 				    physical_of_found <=
5554 				     bbio->stripes[i].physical)
5555 					continue;
5556 				index_srcdev = i;
5557 				found = 1;
5558 				physical_of_found = bbio->stripes[i].physical;
5559 			}
5560 		}
5561 		if (found) {
5562 			struct btrfs_bio_stripe *tgtdev_stripe =
5563 				bbio->stripes + num_stripes;
5564 
5565 			tgtdev_stripe->physical = physical_of_found;
5566 			tgtdev_stripe->length =
5567 				bbio->stripes[index_srcdev].length;
5568 			tgtdev_stripe->dev = dev_replace->tgtdev;
5569 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5570 
5571 			tgtdev_indexes++;
5572 			num_stripes++;
5573 		}
5574 	}
5575 
5576 	*num_stripes_ret = num_stripes;
5577 	*max_errors_ret = max_errors;
5578 	bbio->num_tgtdevs = tgtdev_indexes;
5579 	*bbio_ret = bbio;
5580 }
5581 
5582 static bool need_full_stripe(enum btrfs_map_op op)
5583 {
5584 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5585 }
5586 
5587 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5588 			     enum btrfs_map_op op,
5589 			     u64 logical, u64 *length,
5590 			     struct btrfs_bio **bbio_ret,
5591 			     int mirror_num, int need_raid_map)
5592 {
5593 	struct extent_map *em;
5594 	struct map_lookup *map;
5595 	u64 offset;
5596 	u64 stripe_offset;
5597 	u64 stripe_nr;
5598 	u64 stripe_len;
5599 	u32 stripe_index;
5600 	int i;
5601 	int ret = 0;
5602 	int num_stripes;
5603 	int max_errors = 0;
5604 	int tgtdev_indexes = 0;
5605 	struct btrfs_bio *bbio = NULL;
5606 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5607 	int dev_replace_is_ongoing = 0;
5608 	int num_alloc_stripes;
5609 	int patch_the_first_stripe_for_dev_replace = 0;
5610 	u64 physical_to_patch_in_first_stripe = 0;
5611 	u64 raid56_full_stripe_start = (u64)-1;
5612 
5613 	if (op == BTRFS_MAP_DISCARD)
5614 		return __btrfs_map_block_for_discard(fs_info, logical,
5615 						     *length, bbio_ret);
5616 
5617 	em = get_chunk_map(fs_info, logical, *length);
5618 	if (IS_ERR(em))
5619 		return PTR_ERR(em);
5620 
5621 	map = em->map_lookup;
5622 	offset = logical - em->start;
5623 
5624 	stripe_len = map->stripe_len;
5625 	stripe_nr = offset;
5626 	/*
5627 	 * stripe_nr counts the total number of stripes we have to stride
5628 	 * to get to this block
5629 	 */
5630 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5631 
5632 	stripe_offset = stripe_nr * stripe_len;
5633 	if (offset < stripe_offset) {
5634 		btrfs_crit(fs_info,
5635 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5636 			   stripe_offset, offset, em->start, logical,
5637 			   stripe_len);
5638 		free_extent_map(em);
5639 		return -EINVAL;
5640 	}
5641 
5642 	/* stripe_offset is the offset of this block in its stripe*/
5643 	stripe_offset = offset - stripe_offset;
5644 
5645 	/* if we're here for raid56, we need to know the stripe aligned start */
5646 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5647 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5648 		raid56_full_stripe_start = offset;
5649 
5650 		/* allow a write of a full stripe, but make sure we don't
5651 		 * allow straddling of stripes
5652 		 */
5653 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5654 				full_stripe_len);
5655 		raid56_full_stripe_start *= full_stripe_len;
5656 	}
5657 
5658 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5659 		u64 max_len;
5660 		/* For writes to RAID[56], allow a full stripeset across all disks.
5661 		   For other RAID types and for RAID[56] reads, just allow a single
5662 		   stripe (on a single disk). */
5663 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5664 		    (op == BTRFS_MAP_WRITE)) {
5665 			max_len = stripe_len * nr_data_stripes(map) -
5666 				(offset - raid56_full_stripe_start);
5667 		} else {
5668 			/* we limit the length of each bio to what fits in a stripe */
5669 			max_len = stripe_len - stripe_offset;
5670 		}
5671 		*length = min_t(u64, em->len - offset, max_len);
5672 	} else {
5673 		*length = em->len - offset;
5674 	}
5675 
5676 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5677 	   it cares about is the length */
5678 	if (!bbio_ret)
5679 		goto out;
5680 
5681 	btrfs_dev_replace_lock(dev_replace, 0);
5682 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5683 	if (!dev_replace_is_ongoing)
5684 		btrfs_dev_replace_unlock(dev_replace, 0);
5685 	else
5686 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5687 
5688 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5689 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5690 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5691 						    dev_replace->srcdev->devid,
5692 						    &mirror_num,
5693 					    &physical_to_patch_in_first_stripe);
5694 		if (ret)
5695 			goto out;
5696 		else
5697 			patch_the_first_stripe_for_dev_replace = 1;
5698 	} else if (mirror_num > map->num_stripes) {
5699 		mirror_num = 0;
5700 	}
5701 
5702 	num_stripes = 1;
5703 	stripe_index = 0;
5704 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5705 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5706 				&stripe_index);
5707 		if (!need_full_stripe(op))
5708 			mirror_num = 1;
5709 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5710 		if (need_full_stripe(op))
5711 			num_stripes = map->num_stripes;
5712 		else if (mirror_num)
5713 			stripe_index = mirror_num - 1;
5714 		else {
5715 			stripe_index = find_live_mirror(fs_info, map, 0,
5716 					    map->num_stripes,
5717 					    current->pid % map->num_stripes,
5718 					    dev_replace_is_ongoing);
5719 			mirror_num = stripe_index + 1;
5720 		}
5721 
5722 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5723 		if (need_full_stripe(op)) {
5724 			num_stripes = map->num_stripes;
5725 		} else if (mirror_num) {
5726 			stripe_index = mirror_num - 1;
5727 		} else {
5728 			mirror_num = 1;
5729 		}
5730 
5731 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5732 		u32 factor = map->num_stripes / map->sub_stripes;
5733 
5734 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5735 		stripe_index *= map->sub_stripes;
5736 
5737 		if (need_full_stripe(op))
5738 			num_stripes = map->sub_stripes;
5739 		else if (mirror_num)
5740 			stripe_index += mirror_num - 1;
5741 		else {
5742 			int old_stripe_index = stripe_index;
5743 			stripe_index = find_live_mirror(fs_info, map,
5744 					      stripe_index,
5745 					      map->sub_stripes, stripe_index +
5746 					      current->pid % map->sub_stripes,
5747 					      dev_replace_is_ongoing);
5748 			mirror_num = stripe_index - old_stripe_index + 1;
5749 		}
5750 
5751 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5752 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5753 			/* push stripe_nr back to the start of the full stripe */
5754 			stripe_nr = div64_u64(raid56_full_stripe_start,
5755 					stripe_len * nr_data_stripes(map));
5756 
5757 			/* RAID[56] write or recovery. Return all stripes */
5758 			num_stripes = map->num_stripes;
5759 			max_errors = nr_parity_stripes(map);
5760 
5761 			*length = map->stripe_len;
5762 			stripe_index = 0;
5763 			stripe_offset = 0;
5764 		} else {
5765 			/*
5766 			 * Mirror #0 or #1 means the original data block.
5767 			 * Mirror #2 is RAID5 parity block.
5768 			 * Mirror #3 is RAID6 Q block.
5769 			 */
5770 			stripe_nr = div_u64_rem(stripe_nr,
5771 					nr_data_stripes(map), &stripe_index);
5772 			if (mirror_num > 1)
5773 				stripe_index = nr_data_stripes(map) +
5774 						mirror_num - 2;
5775 
5776 			/* We distribute the parity blocks across stripes */
5777 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5778 					&stripe_index);
5779 			if (!need_full_stripe(op) && mirror_num <= 1)
5780 				mirror_num = 1;
5781 		}
5782 	} else {
5783 		/*
5784 		 * after this, stripe_nr is the number of stripes on this
5785 		 * device we have to walk to find the data, and stripe_index is
5786 		 * the number of our device in the stripe array
5787 		 */
5788 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5789 				&stripe_index);
5790 		mirror_num = stripe_index + 1;
5791 	}
5792 	if (stripe_index >= map->num_stripes) {
5793 		btrfs_crit(fs_info,
5794 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5795 			   stripe_index, map->num_stripes);
5796 		ret = -EINVAL;
5797 		goto out;
5798 	}
5799 
5800 	num_alloc_stripes = num_stripes;
5801 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5802 		if (op == BTRFS_MAP_WRITE)
5803 			num_alloc_stripes <<= 1;
5804 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5805 			num_alloc_stripes++;
5806 		tgtdev_indexes = num_stripes;
5807 	}
5808 
5809 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5810 	if (!bbio) {
5811 		ret = -ENOMEM;
5812 		goto out;
5813 	}
5814 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5815 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5816 
5817 	/* build raid_map */
5818 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5819 	    (need_full_stripe(op) || mirror_num > 1)) {
5820 		u64 tmp;
5821 		unsigned rot;
5822 
5823 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5824 				 sizeof(struct btrfs_bio_stripe) *
5825 				 num_alloc_stripes +
5826 				 sizeof(int) * tgtdev_indexes);
5827 
5828 		/* Work out the disk rotation on this stripe-set */
5829 		div_u64_rem(stripe_nr, num_stripes, &rot);
5830 
5831 		/* Fill in the logical address of each stripe */
5832 		tmp = stripe_nr * nr_data_stripes(map);
5833 		for (i = 0; i < nr_data_stripes(map); i++)
5834 			bbio->raid_map[(i+rot) % num_stripes] =
5835 				em->start + (tmp + i) * map->stripe_len;
5836 
5837 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5838 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5839 			bbio->raid_map[(i+rot+1) % num_stripes] =
5840 				RAID6_Q_STRIPE;
5841 	}
5842 
5843 
5844 	for (i = 0; i < num_stripes; i++) {
5845 		bbio->stripes[i].physical =
5846 			map->stripes[stripe_index].physical +
5847 			stripe_offset +
5848 			stripe_nr * map->stripe_len;
5849 		bbio->stripes[i].dev =
5850 			map->stripes[stripe_index].dev;
5851 		stripe_index++;
5852 	}
5853 
5854 	if (need_full_stripe(op))
5855 		max_errors = btrfs_chunk_max_errors(map);
5856 
5857 	if (bbio->raid_map)
5858 		sort_parity_stripes(bbio, num_stripes);
5859 
5860 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5861 	    need_full_stripe(op)) {
5862 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5863 					  &max_errors);
5864 	}
5865 
5866 	*bbio_ret = bbio;
5867 	bbio->map_type = map->type;
5868 	bbio->num_stripes = num_stripes;
5869 	bbio->max_errors = max_errors;
5870 	bbio->mirror_num = mirror_num;
5871 
5872 	/*
5873 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5874 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5875 	 * available as a mirror
5876 	 */
5877 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5878 		WARN_ON(num_stripes > 1);
5879 		bbio->stripes[0].dev = dev_replace->tgtdev;
5880 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5881 		bbio->mirror_num = map->num_stripes + 1;
5882 	}
5883 out:
5884 	if (dev_replace_is_ongoing) {
5885 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5886 		btrfs_dev_replace_unlock(dev_replace, 0);
5887 	}
5888 	free_extent_map(em);
5889 	return ret;
5890 }
5891 
5892 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5893 		      u64 logical, u64 *length,
5894 		      struct btrfs_bio **bbio_ret, int mirror_num)
5895 {
5896 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5897 				 mirror_num, 0);
5898 }
5899 
5900 /* For Scrub/replace */
5901 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5902 		     u64 logical, u64 *length,
5903 		     struct btrfs_bio **bbio_ret)
5904 {
5905 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5906 }
5907 
5908 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5909 		     u64 chunk_start, u64 physical, u64 devid,
5910 		     u64 **logical, int *naddrs, int *stripe_len)
5911 {
5912 	struct extent_map *em;
5913 	struct map_lookup *map;
5914 	u64 *buf;
5915 	u64 bytenr;
5916 	u64 length;
5917 	u64 stripe_nr;
5918 	u64 rmap_len;
5919 	int i, j, nr = 0;
5920 
5921 	em = get_chunk_map(fs_info, chunk_start, 1);
5922 	if (IS_ERR(em))
5923 		return -EIO;
5924 
5925 	map = em->map_lookup;
5926 	length = em->len;
5927 	rmap_len = map->stripe_len;
5928 
5929 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5930 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5931 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5932 		length = div_u64(length, map->num_stripes);
5933 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5934 		length = div_u64(length, nr_data_stripes(map));
5935 		rmap_len = map->stripe_len * nr_data_stripes(map);
5936 	}
5937 
5938 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5939 	BUG_ON(!buf); /* -ENOMEM */
5940 
5941 	for (i = 0; i < map->num_stripes; i++) {
5942 		if (devid && map->stripes[i].dev->devid != devid)
5943 			continue;
5944 		if (map->stripes[i].physical > physical ||
5945 		    map->stripes[i].physical + length <= physical)
5946 			continue;
5947 
5948 		stripe_nr = physical - map->stripes[i].physical;
5949 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5950 
5951 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5952 			stripe_nr = stripe_nr * map->num_stripes + i;
5953 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5954 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5955 			stripe_nr = stripe_nr * map->num_stripes + i;
5956 		} /* else if RAID[56], multiply by nr_data_stripes().
5957 		   * Alternatively, just use rmap_len below instead of
5958 		   * map->stripe_len */
5959 
5960 		bytenr = chunk_start + stripe_nr * rmap_len;
5961 		WARN_ON(nr >= map->num_stripes);
5962 		for (j = 0; j < nr; j++) {
5963 			if (buf[j] == bytenr)
5964 				break;
5965 		}
5966 		if (j == nr) {
5967 			WARN_ON(nr >= map->num_stripes);
5968 			buf[nr++] = bytenr;
5969 		}
5970 	}
5971 
5972 	*logical = buf;
5973 	*naddrs = nr;
5974 	*stripe_len = rmap_len;
5975 
5976 	free_extent_map(em);
5977 	return 0;
5978 }
5979 
5980 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5981 {
5982 	bio->bi_private = bbio->private;
5983 	bio->bi_end_io = bbio->end_io;
5984 	bio_endio(bio);
5985 
5986 	btrfs_put_bbio(bbio);
5987 }
5988 
5989 static void btrfs_end_bio(struct bio *bio)
5990 {
5991 	struct btrfs_bio *bbio = bio->bi_private;
5992 	int is_orig_bio = 0;
5993 
5994 	if (bio->bi_status) {
5995 		atomic_inc(&bbio->error);
5996 		if (bio->bi_status == BLK_STS_IOERR ||
5997 		    bio->bi_status == BLK_STS_TARGET) {
5998 			unsigned int stripe_index =
5999 				btrfs_io_bio(bio)->stripe_index;
6000 			struct btrfs_device *dev;
6001 
6002 			BUG_ON(stripe_index >= bbio->num_stripes);
6003 			dev = bbio->stripes[stripe_index].dev;
6004 			if (dev->bdev) {
6005 				if (bio_op(bio) == REQ_OP_WRITE)
6006 					btrfs_dev_stat_inc(dev,
6007 						BTRFS_DEV_STAT_WRITE_ERRS);
6008 				else
6009 					btrfs_dev_stat_inc(dev,
6010 						BTRFS_DEV_STAT_READ_ERRS);
6011 				if (bio->bi_opf & REQ_PREFLUSH)
6012 					btrfs_dev_stat_inc(dev,
6013 						BTRFS_DEV_STAT_FLUSH_ERRS);
6014 				btrfs_dev_stat_print_on_error(dev);
6015 			}
6016 		}
6017 	}
6018 
6019 	if (bio == bbio->orig_bio)
6020 		is_orig_bio = 1;
6021 
6022 	btrfs_bio_counter_dec(bbio->fs_info);
6023 
6024 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6025 		if (!is_orig_bio) {
6026 			bio_put(bio);
6027 			bio = bbio->orig_bio;
6028 		}
6029 
6030 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6031 		/* only send an error to the higher layers if it is
6032 		 * beyond the tolerance of the btrfs bio
6033 		 */
6034 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6035 			bio->bi_status = BLK_STS_IOERR;
6036 		} else {
6037 			/*
6038 			 * this bio is actually up to date, we didn't
6039 			 * go over the max number of errors
6040 			 */
6041 			bio->bi_status = BLK_STS_OK;
6042 		}
6043 
6044 		btrfs_end_bbio(bbio, bio);
6045 	} else if (!is_orig_bio) {
6046 		bio_put(bio);
6047 	}
6048 }
6049 
6050 /*
6051  * see run_scheduled_bios for a description of why bios are collected for
6052  * async submit.
6053  *
6054  * This will add one bio to the pending list for a device and make sure
6055  * the work struct is scheduled.
6056  */
6057 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6058 					struct bio *bio)
6059 {
6060 	struct btrfs_fs_info *fs_info = device->fs_info;
6061 	int should_queue = 1;
6062 	struct btrfs_pending_bios *pending_bios;
6063 
6064 	if (device->missing || !device->bdev) {
6065 		bio_io_error(bio);
6066 		return;
6067 	}
6068 
6069 	/* don't bother with additional async steps for reads, right now */
6070 	if (bio_op(bio) == REQ_OP_READ) {
6071 		bio_get(bio);
6072 		btrfsic_submit_bio(bio);
6073 		bio_put(bio);
6074 		return;
6075 	}
6076 
6077 	WARN_ON(bio->bi_next);
6078 	bio->bi_next = NULL;
6079 
6080 	spin_lock(&device->io_lock);
6081 	if (op_is_sync(bio->bi_opf))
6082 		pending_bios = &device->pending_sync_bios;
6083 	else
6084 		pending_bios = &device->pending_bios;
6085 
6086 	if (pending_bios->tail)
6087 		pending_bios->tail->bi_next = bio;
6088 
6089 	pending_bios->tail = bio;
6090 	if (!pending_bios->head)
6091 		pending_bios->head = bio;
6092 	if (device->running_pending)
6093 		should_queue = 0;
6094 
6095 	spin_unlock(&device->io_lock);
6096 
6097 	if (should_queue)
6098 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6099 }
6100 
6101 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6102 			      u64 physical, int dev_nr, int async)
6103 {
6104 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6105 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6106 
6107 	bio->bi_private = bbio;
6108 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6109 	bio->bi_end_io = btrfs_end_bio;
6110 	bio->bi_iter.bi_sector = physical >> 9;
6111 #ifdef DEBUG
6112 	{
6113 		struct rcu_string *name;
6114 
6115 		rcu_read_lock();
6116 		name = rcu_dereference(dev->name);
6117 		btrfs_debug(fs_info,
6118 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6119 			bio_op(bio), bio->bi_opf,
6120 			(u64)bio->bi_iter.bi_sector,
6121 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6122 			bio->bi_iter.bi_size);
6123 		rcu_read_unlock();
6124 	}
6125 #endif
6126 	bio_set_dev(bio, dev->bdev);
6127 
6128 	btrfs_bio_counter_inc_noblocked(fs_info);
6129 
6130 	if (async)
6131 		btrfs_schedule_bio(dev, bio);
6132 	else
6133 		btrfsic_submit_bio(bio);
6134 }
6135 
6136 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6137 {
6138 	atomic_inc(&bbio->error);
6139 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6140 		/* Should be the original bio. */
6141 		WARN_ON(bio != bbio->orig_bio);
6142 
6143 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6144 		bio->bi_iter.bi_sector = logical >> 9;
6145 		if (atomic_read(&bbio->error) > bbio->max_errors)
6146 			bio->bi_status = BLK_STS_IOERR;
6147 		else
6148 			bio->bi_status = BLK_STS_OK;
6149 		btrfs_end_bbio(bbio, bio);
6150 	}
6151 }
6152 
6153 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6154 			   int mirror_num, int async_submit)
6155 {
6156 	struct btrfs_device *dev;
6157 	struct bio *first_bio = bio;
6158 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6159 	u64 length = 0;
6160 	u64 map_length;
6161 	int ret;
6162 	int dev_nr;
6163 	int total_devs;
6164 	struct btrfs_bio *bbio = NULL;
6165 
6166 	length = bio->bi_iter.bi_size;
6167 	map_length = length;
6168 
6169 	btrfs_bio_counter_inc_blocked(fs_info);
6170 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6171 				&map_length, &bbio, mirror_num, 1);
6172 	if (ret) {
6173 		btrfs_bio_counter_dec(fs_info);
6174 		return errno_to_blk_status(ret);
6175 	}
6176 
6177 	total_devs = bbio->num_stripes;
6178 	bbio->orig_bio = first_bio;
6179 	bbio->private = first_bio->bi_private;
6180 	bbio->end_io = first_bio->bi_end_io;
6181 	bbio->fs_info = fs_info;
6182 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6183 
6184 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6185 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6186 		/* In this case, map_length has been set to the length of
6187 		   a single stripe; not the whole write */
6188 		if (bio_op(bio) == REQ_OP_WRITE) {
6189 			ret = raid56_parity_write(fs_info, bio, bbio,
6190 						  map_length);
6191 		} else {
6192 			ret = raid56_parity_recover(fs_info, bio, bbio,
6193 						    map_length, mirror_num, 1);
6194 		}
6195 
6196 		btrfs_bio_counter_dec(fs_info);
6197 		return errno_to_blk_status(ret);
6198 	}
6199 
6200 	if (map_length < length) {
6201 		btrfs_crit(fs_info,
6202 			   "mapping failed logical %llu bio len %llu len %llu",
6203 			   logical, length, map_length);
6204 		BUG();
6205 	}
6206 
6207 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6208 		dev = bbio->stripes[dev_nr].dev;
6209 		if (!dev || !dev->bdev ||
6210 		    (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6211 			bbio_error(bbio, first_bio, logical);
6212 			continue;
6213 		}
6214 
6215 		if (dev_nr < total_devs - 1)
6216 			bio = btrfs_bio_clone(first_bio);
6217 		else
6218 			bio = first_bio;
6219 
6220 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6221 				  dev_nr, async_submit);
6222 	}
6223 	btrfs_bio_counter_dec(fs_info);
6224 	return BLK_STS_OK;
6225 }
6226 
6227 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6228 				       u8 *uuid, u8 *fsid)
6229 {
6230 	struct btrfs_device *device;
6231 	struct btrfs_fs_devices *cur_devices;
6232 
6233 	cur_devices = fs_info->fs_devices;
6234 	while (cur_devices) {
6235 		if (!fsid ||
6236 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6237 			device = find_device(cur_devices, devid, uuid);
6238 			if (device)
6239 				return device;
6240 		}
6241 		cur_devices = cur_devices->seed;
6242 	}
6243 	return NULL;
6244 }
6245 
6246 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6247 					    u64 devid, u8 *dev_uuid)
6248 {
6249 	struct btrfs_device *device;
6250 
6251 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6252 	if (IS_ERR(device))
6253 		return device;
6254 
6255 	list_add(&device->dev_list, &fs_devices->devices);
6256 	device->fs_devices = fs_devices;
6257 	fs_devices->num_devices++;
6258 
6259 	device->missing = 1;
6260 	fs_devices->missing_devices++;
6261 
6262 	return device;
6263 }
6264 
6265 /**
6266  * btrfs_alloc_device - allocate struct btrfs_device
6267  * @fs_info:	used only for generating a new devid, can be NULL if
6268  *		devid is provided (i.e. @devid != NULL).
6269  * @devid:	a pointer to devid for this device.  If NULL a new devid
6270  *		is generated.
6271  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6272  *		is generated.
6273  *
6274  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6275  * on error.  Returned struct is not linked onto any lists and can be
6276  * destroyed with kfree() right away.
6277  */
6278 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6279 					const u64 *devid,
6280 					const u8 *uuid)
6281 {
6282 	struct btrfs_device *dev;
6283 	u64 tmp;
6284 
6285 	if (WARN_ON(!devid && !fs_info))
6286 		return ERR_PTR(-EINVAL);
6287 
6288 	dev = __alloc_device();
6289 	if (IS_ERR(dev))
6290 		return dev;
6291 
6292 	if (devid)
6293 		tmp = *devid;
6294 	else {
6295 		int ret;
6296 
6297 		ret = find_next_devid(fs_info, &tmp);
6298 		if (ret) {
6299 			bio_put(dev->flush_bio);
6300 			kfree(dev);
6301 			return ERR_PTR(ret);
6302 		}
6303 	}
6304 	dev->devid = tmp;
6305 
6306 	if (uuid)
6307 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6308 	else
6309 		generate_random_uuid(dev->uuid);
6310 
6311 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6312 			pending_bios_fn, NULL, NULL);
6313 
6314 	return dev;
6315 }
6316 
6317 /* Return -EIO if any error, otherwise return 0. */
6318 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6319 				   struct extent_buffer *leaf,
6320 				   struct btrfs_chunk *chunk, u64 logical)
6321 {
6322 	u64 length;
6323 	u64 stripe_len;
6324 	u16 num_stripes;
6325 	u16 sub_stripes;
6326 	u64 type;
6327 
6328 	length = btrfs_chunk_length(leaf, chunk);
6329 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6330 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6331 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6332 	type = btrfs_chunk_type(leaf, chunk);
6333 
6334 	if (!num_stripes) {
6335 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6336 			  num_stripes);
6337 		return -EIO;
6338 	}
6339 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6340 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6341 		return -EIO;
6342 	}
6343 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6344 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6345 			  btrfs_chunk_sector_size(leaf, chunk));
6346 		return -EIO;
6347 	}
6348 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6349 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6350 		return -EIO;
6351 	}
6352 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6353 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6354 			  stripe_len);
6355 		return -EIO;
6356 	}
6357 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6358 	    type) {
6359 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6360 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6361 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6362 			  btrfs_chunk_type(leaf, chunk));
6363 		return -EIO;
6364 	}
6365 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6366 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6367 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6368 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6369 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6370 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6371 	     num_stripes != 1)) {
6372 		btrfs_err(fs_info,
6373 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6374 			num_stripes, sub_stripes,
6375 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6376 		return -EIO;
6377 	}
6378 
6379 	return 0;
6380 }
6381 
6382 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6383 					u64 devid, u8 *uuid, bool error)
6384 {
6385 	if (error)
6386 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6387 			      devid, uuid);
6388 	else
6389 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6390 			      devid, uuid);
6391 }
6392 
6393 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6394 			  struct extent_buffer *leaf,
6395 			  struct btrfs_chunk *chunk)
6396 {
6397 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6398 	struct map_lookup *map;
6399 	struct extent_map *em;
6400 	u64 logical;
6401 	u64 length;
6402 	u64 devid;
6403 	u8 uuid[BTRFS_UUID_SIZE];
6404 	int num_stripes;
6405 	int ret;
6406 	int i;
6407 
6408 	logical = key->offset;
6409 	length = btrfs_chunk_length(leaf, chunk);
6410 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6411 
6412 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6413 	if (ret)
6414 		return ret;
6415 
6416 	read_lock(&map_tree->map_tree.lock);
6417 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6418 	read_unlock(&map_tree->map_tree.lock);
6419 
6420 	/* already mapped? */
6421 	if (em && em->start <= logical && em->start + em->len > logical) {
6422 		free_extent_map(em);
6423 		return 0;
6424 	} else if (em) {
6425 		free_extent_map(em);
6426 	}
6427 
6428 	em = alloc_extent_map();
6429 	if (!em)
6430 		return -ENOMEM;
6431 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6432 	if (!map) {
6433 		free_extent_map(em);
6434 		return -ENOMEM;
6435 	}
6436 
6437 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6438 	em->map_lookup = map;
6439 	em->start = logical;
6440 	em->len = length;
6441 	em->orig_start = 0;
6442 	em->block_start = 0;
6443 	em->block_len = em->len;
6444 
6445 	map->num_stripes = num_stripes;
6446 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6447 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6448 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6449 	map->type = btrfs_chunk_type(leaf, chunk);
6450 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6451 	for (i = 0; i < num_stripes; i++) {
6452 		map->stripes[i].physical =
6453 			btrfs_stripe_offset_nr(leaf, chunk, i);
6454 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6455 		read_extent_buffer(leaf, uuid, (unsigned long)
6456 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6457 				   BTRFS_UUID_SIZE);
6458 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6459 							uuid, NULL);
6460 		if (!map->stripes[i].dev &&
6461 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6462 			free_extent_map(em);
6463 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6464 			return -ENOENT;
6465 		}
6466 		if (!map->stripes[i].dev) {
6467 			map->stripes[i].dev =
6468 				add_missing_dev(fs_info->fs_devices, devid,
6469 						uuid);
6470 			if (IS_ERR(map->stripes[i].dev)) {
6471 				free_extent_map(em);
6472 				btrfs_err(fs_info,
6473 					"failed to init missing dev %llu: %ld",
6474 					devid, PTR_ERR(map->stripes[i].dev));
6475 				return PTR_ERR(map->stripes[i].dev);
6476 			}
6477 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6478 		}
6479 		map->stripes[i].dev->in_fs_metadata = 1;
6480 	}
6481 
6482 	write_lock(&map_tree->map_tree.lock);
6483 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6484 	write_unlock(&map_tree->map_tree.lock);
6485 	BUG_ON(ret); /* Tree corruption */
6486 	free_extent_map(em);
6487 
6488 	return 0;
6489 }
6490 
6491 static void fill_device_from_item(struct extent_buffer *leaf,
6492 				 struct btrfs_dev_item *dev_item,
6493 				 struct btrfs_device *device)
6494 {
6495 	unsigned long ptr;
6496 
6497 	device->devid = btrfs_device_id(leaf, dev_item);
6498 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6499 	device->total_bytes = device->disk_total_bytes;
6500 	device->commit_total_bytes = device->disk_total_bytes;
6501 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6502 	device->commit_bytes_used = device->bytes_used;
6503 	device->type = btrfs_device_type(leaf, dev_item);
6504 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6505 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6506 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6507 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6508 	device->is_tgtdev_for_dev_replace = 0;
6509 
6510 	ptr = btrfs_device_uuid(dev_item);
6511 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6512 }
6513 
6514 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6515 						  u8 *fsid)
6516 {
6517 	struct btrfs_fs_devices *fs_devices;
6518 	int ret;
6519 
6520 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6521 	ASSERT(fsid);
6522 
6523 	fs_devices = fs_info->fs_devices->seed;
6524 	while (fs_devices) {
6525 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6526 			return fs_devices;
6527 
6528 		fs_devices = fs_devices->seed;
6529 	}
6530 
6531 	fs_devices = find_fsid(fsid);
6532 	if (!fs_devices) {
6533 		if (!btrfs_test_opt(fs_info, DEGRADED))
6534 			return ERR_PTR(-ENOENT);
6535 
6536 		fs_devices = alloc_fs_devices(fsid);
6537 		if (IS_ERR(fs_devices))
6538 			return fs_devices;
6539 
6540 		fs_devices->seeding = 1;
6541 		fs_devices->opened = 1;
6542 		return fs_devices;
6543 	}
6544 
6545 	fs_devices = clone_fs_devices(fs_devices);
6546 	if (IS_ERR(fs_devices))
6547 		return fs_devices;
6548 
6549 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6550 				   fs_info->bdev_holder);
6551 	if (ret) {
6552 		free_fs_devices(fs_devices);
6553 		fs_devices = ERR_PTR(ret);
6554 		goto out;
6555 	}
6556 
6557 	if (!fs_devices->seeding) {
6558 		__btrfs_close_devices(fs_devices);
6559 		free_fs_devices(fs_devices);
6560 		fs_devices = ERR_PTR(-EINVAL);
6561 		goto out;
6562 	}
6563 
6564 	fs_devices->seed = fs_info->fs_devices->seed;
6565 	fs_info->fs_devices->seed = fs_devices;
6566 out:
6567 	return fs_devices;
6568 }
6569 
6570 static int read_one_dev(struct btrfs_fs_info *fs_info,
6571 			struct extent_buffer *leaf,
6572 			struct btrfs_dev_item *dev_item)
6573 {
6574 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6575 	struct btrfs_device *device;
6576 	u64 devid;
6577 	int ret;
6578 	u8 fs_uuid[BTRFS_FSID_SIZE];
6579 	u8 dev_uuid[BTRFS_UUID_SIZE];
6580 
6581 	devid = btrfs_device_id(leaf, dev_item);
6582 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6583 			   BTRFS_UUID_SIZE);
6584 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6585 			   BTRFS_FSID_SIZE);
6586 
6587 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6588 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6589 		if (IS_ERR(fs_devices))
6590 			return PTR_ERR(fs_devices);
6591 	}
6592 
6593 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6594 	if (!device) {
6595 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6596 			btrfs_report_missing_device(fs_info, devid,
6597 							dev_uuid, true);
6598 			return -ENOENT;
6599 		}
6600 
6601 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6602 		if (IS_ERR(device)) {
6603 			btrfs_err(fs_info,
6604 				"failed to add missing dev %llu: %ld",
6605 				devid, PTR_ERR(device));
6606 			return PTR_ERR(device);
6607 		}
6608 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6609 	} else {
6610 		if (!device->bdev) {
6611 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6612 				btrfs_report_missing_device(fs_info,
6613 						devid, dev_uuid, true);
6614 				return -ENOENT;
6615 			}
6616 			btrfs_report_missing_device(fs_info, devid,
6617 							dev_uuid, false);
6618 		}
6619 
6620 		if(!device->bdev && !device->missing) {
6621 			/*
6622 			 * this happens when a device that was properly setup
6623 			 * in the device info lists suddenly goes bad.
6624 			 * device->bdev is NULL, and so we have to set
6625 			 * device->missing to one here
6626 			 */
6627 			device->fs_devices->missing_devices++;
6628 			device->missing = 1;
6629 		}
6630 
6631 		/* Move the device to its own fs_devices */
6632 		if (device->fs_devices != fs_devices) {
6633 			ASSERT(device->missing);
6634 
6635 			list_move(&device->dev_list, &fs_devices->devices);
6636 			device->fs_devices->num_devices--;
6637 			fs_devices->num_devices++;
6638 
6639 			device->fs_devices->missing_devices--;
6640 			fs_devices->missing_devices++;
6641 
6642 			device->fs_devices = fs_devices;
6643 		}
6644 	}
6645 
6646 	if (device->fs_devices != fs_info->fs_devices) {
6647 		BUG_ON(device->writeable);
6648 		if (device->generation !=
6649 		    btrfs_device_generation(leaf, dev_item))
6650 			return -EINVAL;
6651 	}
6652 
6653 	fill_device_from_item(leaf, dev_item, device);
6654 	device->in_fs_metadata = 1;
6655 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6656 		device->fs_devices->total_rw_bytes += device->total_bytes;
6657 		atomic64_add(device->total_bytes - device->bytes_used,
6658 				&fs_info->free_chunk_space);
6659 	}
6660 	ret = 0;
6661 	return ret;
6662 }
6663 
6664 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6665 {
6666 	struct btrfs_root *root = fs_info->tree_root;
6667 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6668 	struct extent_buffer *sb;
6669 	struct btrfs_disk_key *disk_key;
6670 	struct btrfs_chunk *chunk;
6671 	u8 *array_ptr;
6672 	unsigned long sb_array_offset;
6673 	int ret = 0;
6674 	u32 num_stripes;
6675 	u32 array_size;
6676 	u32 len = 0;
6677 	u32 cur_offset;
6678 	u64 type;
6679 	struct btrfs_key key;
6680 
6681 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6682 	/*
6683 	 * This will create extent buffer of nodesize, superblock size is
6684 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6685 	 * overallocate but we can keep it as-is, only the first page is used.
6686 	 */
6687 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6688 	if (IS_ERR(sb))
6689 		return PTR_ERR(sb);
6690 	set_extent_buffer_uptodate(sb);
6691 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6692 	/*
6693 	 * The sb extent buffer is artificial and just used to read the system array.
6694 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6695 	 * pages up-to-date when the page is larger: extent does not cover the
6696 	 * whole page and consequently check_page_uptodate does not find all
6697 	 * the page's extents up-to-date (the hole beyond sb),
6698 	 * write_extent_buffer then triggers a WARN_ON.
6699 	 *
6700 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6701 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6702 	 * to silence the warning eg. on PowerPC 64.
6703 	 */
6704 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6705 		SetPageUptodate(sb->pages[0]);
6706 
6707 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6708 	array_size = btrfs_super_sys_array_size(super_copy);
6709 
6710 	array_ptr = super_copy->sys_chunk_array;
6711 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6712 	cur_offset = 0;
6713 
6714 	while (cur_offset < array_size) {
6715 		disk_key = (struct btrfs_disk_key *)array_ptr;
6716 		len = sizeof(*disk_key);
6717 		if (cur_offset + len > array_size)
6718 			goto out_short_read;
6719 
6720 		btrfs_disk_key_to_cpu(&key, disk_key);
6721 
6722 		array_ptr += len;
6723 		sb_array_offset += len;
6724 		cur_offset += len;
6725 
6726 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6727 			chunk = (struct btrfs_chunk *)sb_array_offset;
6728 			/*
6729 			 * At least one btrfs_chunk with one stripe must be
6730 			 * present, exact stripe count check comes afterwards
6731 			 */
6732 			len = btrfs_chunk_item_size(1);
6733 			if (cur_offset + len > array_size)
6734 				goto out_short_read;
6735 
6736 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6737 			if (!num_stripes) {
6738 				btrfs_err(fs_info,
6739 					"invalid number of stripes %u in sys_array at offset %u",
6740 					num_stripes, cur_offset);
6741 				ret = -EIO;
6742 				break;
6743 			}
6744 
6745 			type = btrfs_chunk_type(sb, chunk);
6746 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6747 				btrfs_err(fs_info,
6748 			    "invalid chunk type %llu in sys_array at offset %u",
6749 					type, cur_offset);
6750 				ret = -EIO;
6751 				break;
6752 			}
6753 
6754 			len = btrfs_chunk_item_size(num_stripes);
6755 			if (cur_offset + len > array_size)
6756 				goto out_short_read;
6757 
6758 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6759 			if (ret)
6760 				break;
6761 		} else {
6762 			btrfs_err(fs_info,
6763 			    "unexpected item type %u in sys_array at offset %u",
6764 				  (u32)key.type, cur_offset);
6765 			ret = -EIO;
6766 			break;
6767 		}
6768 		array_ptr += len;
6769 		sb_array_offset += len;
6770 		cur_offset += len;
6771 	}
6772 	clear_extent_buffer_uptodate(sb);
6773 	free_extent_buffer_stale(sb);
6774 	return ret;
6775 
6776 out_short_read:
6777 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6778 			len, cur_offset);
6779 	clear_extent_buffer_uptodate(sb);
6780 	free_extent_buffer_stale(sb);
6781 	return -EIO;
6782 }
6783 
6784 /*
6785  * Check if all chunks in the fs are OK for read-write degraded mount
6786  *
6787  * Return true if all chunks meet the minimal RW mount requirements.
6788  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6789  */
6790 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6791 {
6792 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6793 	struct extent_map *em;
6794 	u64 next_start = 0;
6795 	bool ret = true;
6796 
6797 	read_lock(&map_tree->map_tree.lock);
6798 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6799 	read_unlock(&map_tree->map_tree.lock);
6800 	/* No chunk at all? Return false anyway */
6801 	if (!em) {
6802 		ret = false;
6803 		goto out;
6804 	}
6805 	while (em) {
6806 		struct map_lookup *map;
6807 		int missing = 0;
6808 		int max_tolerated;
6809 		int i;
6810 
6811 		map = em->map_lookup;
6812 		max_tolerated =
6813 			btrfs_get_num_tolerated_disk_barrier_failures(
6814 					map->type);
6815 		for (i = 0; i < map->num_stripes; i++) {
6816 			struct btrfs_device *dev = map->stripes[i].dev;
6817 
6818 			if (!dev || !dev->bdev || dev->missing ||
6819 			    dev->last_flush_error)
6820 				missing++;
6821 		}
6822 		if (missing > max_tolerated) {
6823 			btrfs_warn(fs_info,
6824 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6825 				   em->start, missing, max_tolerated);
6826 			free_extent_map(em);
6827 			ret = false;
6828 			goto out;
6829 		}
6830 		next_start = extent_map_end(em);
6831 		free_extent_map(em);
6832 
6833 		read_lock(&map_tree->map_tree.lock);
6834 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6835 					   (u64)(-1) - next_start);
6836 		read_unlock(&map_tree->map_tree.lock);
6837 	}
6838 out:
6839 	return ret;
6840 }
6841 
6842 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6843 {
6844 	struct btrfs_root *root = fs_info->chunk_root;
6845 	struct btrfs_path *path;
6846 	struct extent_buffer *leaf;
6847 	struct btrfs_key key;
6848 	struct btrfs_key found_key;
6849 	int ret;
6850 	int slot;
6851 	u64 total_dev = 0;
6852 
6853 	path = btrfs_alloc_path();
6854 	if (!path)
6855 		return -ENOMEM;
6856 
6857 	mutex_lock(&uuid_mutex);
6858 	mutex_lock(&fs_info->chunk_mutex);
6859 
6860 	/*
6861 	 * Read all device items, and then all the chunk items. All
6862 	 * device items are found before any chunk item (their object id
6863 	 * is smaller than the lowest possible object id for a chunk
6864 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6865 	 */
6866 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6867 	key.offset = 0;
6868 	key.type = 0;
6869 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6870 	if (ret < 0)
6871 		goto error;
6872 	while (1) {
6873 		leaf = path->nodes[0];
6874 		slot = path->slots[0];
6875 		if (slot >= btrfs_header_nritems(leaf)) {
6876 			ret = btrfs_next_leaf(root, path);
6877 			if (ret == 0)
6878 				continue;
6879 			if (ret < 0)
6880 				goto error;
6881 			break;
6882 		}
6883 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6884 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6885 			struct btrfs_dev_item *dev_item;
6886 			dev_item = btrfs_item_ptr(leaf, slot,
6887 						  struct btrfs_dev_item);
6888 			ret = read_one_dev(fs_info, leaf, dev_item);
6889 			if (ret)
6890 				goto error;
6891 			total_dev++;
6892 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6893 			struct btrfs_chunk *chunk;
6894 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6895 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6896 			if (ret)
6897 				goto error;
6898 		}
6899 		path->slots[0]++;
6900 	}
6901 
6902 	/*
6903 	 * After loading chunk tree, we've got all device information,
6904 	 * do another round of validation checks.
6905 	 */
6906 	if (total_dev != fs_info->fs_devices->total_devices) {
6907 		btrfs_err(fs_info,
6908 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6909 			  btrfs_super_num_devices(fs_info->super_copy),
6910 			  total_dev);
6911 		ret = -EINVAL;
6912 		goto error;
6913 	}
6914 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6915 	    fs_info->fs_devices->total_rw_bytes) {
6916 		btrfs_err(fs_info,
6917 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6918 			  btrfs_super_total_bytes(fs_info->super_copy),
6919 			  fs_info->fs_devices->total_rw_bytes);
6920 		ret = -EINVAL;
6921 		goto error;
6922 	}
6923 	ret = 0;
6924 error:
6925 	mutex_unlock(&fs_info->chunk_mutex);
6926 	mutex_unlock(&uuid_mutex);
6927 
6928 	btrfs_free_path(path);
6929 	return ret;
6930 }
6931 
6932 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6933 {
6934 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6935 	struct btrfs_device *device;
6936 
6937 	while (fs_devices) {
6938 		mutex_lock(&fs_devices->device_list_mutex);
6939 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6940 			device->fs_info = fs_info;
6941 		mutex_unlock(&fs_devices->device_list_mutex);
6942 
6943 		fs_devices = fs_devices->seed;
6944 	}
6945 }
6946 
6947 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6948 {
6949 	int i;
6950 
6951 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6952 		btrfs_dev_stat_reset(dev, i);
6953 }
6954 
6955 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6956 {
6957 	struct btrfs_key key;
6958 	struct btrfs_key found_key;
6959 	struct btrfs_root *dev_root = fs_info->dev_root;
6960 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6961 	struct extent_buffer *eb;
6962 	int slot;
6963 	int ret = 0;
6964 	struct btrfs_device *device;
6965 	struct btrfs_path *path = NULL;
6966 	int i;
6967 
6968 	path = btrfs_alloc_path();
6969 	if (!path) {
6970 		ret = -ENOMEM;
6971 		goto out;
6972 	}
6973 
6974 	mutex_lock(&fs_devices->device_list_mutex);
6975 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6976 		int item_size;
6977 		struct btrfs_dev_stats_item *ptr;
6978 
6979 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6980 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6981 		key.offset = device->devid;
6982 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6983 		if (ret) {
6984 			__btrfs_reset_dev_stats(device);
6985 			device->dev_stats_valid = 1;
6986 			btrfs_release_path(path);
6987 			continue;
6988 		}
6989 		slot = path->slots[0];
6990 		eb = path->nodes[0];
6991 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6992 		item_size = btrfs_item_size_nr(eb, slot);
6993 
6994 		ptr = btrfs_item_ptr(eb, slot,
6995 				     struct btrfs_dev_stats_item);
6996 
6997 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6998 			if (item_size >= (1 + i) * sizeof(__le64))
6999 				btrfs_dev_stat_set(device, i,
7000 					btrfs_dev_stats_value(eb, ptr, i));
7001 			else
7002 				btrfs_dev_stat_reset(device, i);
7003 		}
7004 
7005 		device->dev_stats_valid = 1;
7006 		btrfs_dev_stat_print_on_load(device);
7007 		btrfs_release_path(path);
7008 	}
7009 	mutex_unlock(&fs_devices->device_list_mutex);
7010 
7011 out:
7012 	btrfs_free_path(path);
7013 	return ret < 0 ? ret : 0;
7014 }
7015 
7016 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7017 				struct btrfs_fs_info *fs_info,
7018 				struct btrfs_device *device)
7019 {
7020 	struct btrfs_root *dev_root = fs_info->dev_root;
7021 	struct btrfs_path *path;
7022 	struct btrfs_key key;
7023 	struct extent_buffer *eb;
7024 	struct btrfs_dev_stats_item *ptr;
7025 	int ret;
7026 	int i;
7027 
7028 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7029 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7030 	key.offset = device->devid;
7031 
7032 	path = btrfs_alloc_path();
7033 	if (!path)
7034 		return -ENOMEM;
7035 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7036 	if (ret < 0) {
7037 		btrfs_warn_in_rcu(fs_info,
7038 			"error %d while searching for dev_stats item for device %s",
7039 			      ret, rcu_str_deref(device->name));
7040 		goto out;
7041 	}
7042 
7043 	if (ret == 0 &&
7044 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7045 		/* need to delete old one and insert a new one */
7046 		ret = btrfs_del_item(trans, dev_root, path);
7047 		if (ret != 0) {
7048 			btrfs_warn_in_rcu(fs_info,
7049 				"delete too small dev_stats item for device %s failed %d",
7050 				      rcu_str_deref(device->name), ret);
7051 			goto out;
7052 		}
7053 		ret = 1;
7054 	}
7055 
7056 	if (ret == 1) {
7057 		/* need to insert a new item */
7058 		btrfs_release_path(path);
7059 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7060 					      &key, sizeof(*ptr));
7061 		if (ret < 0) {
7062 			btrfs_warn_in_rcu(fs_info,
7063 				"insert dev_stats item for device %s failed %d",
7064 				rcu_str_deref(device->name), ret);
7065 			goto out;
7066 		}
7067 	}
7068 
7069 	eb = path->nodes[0];
7070 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7071 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7072 		btrfs_set_dev_stats_value(eb, ptr, i,
7073 					  btrfs_dev_stat_read(device, i));
7074 	btrfs_mark_buffer_dirty(eb);
7075 
7076 out:
7077 	btrfs_free_path(path);
7078 	return ret;
7079 }
7080 
7081 /*
7082  * called from commit_transaction. Writes all changed device stats to disk.
7083  */
7084 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7085 			struct btrfs_fs_info *fs_info)
7086 {
7087 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7088 	struct btrfs_device *device;
7089 	int stats_cnt;
7090 	int ret = 0;
7091 
7092 	mutex_lock(&fs_devices->device_list_mutex);
7093 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7094 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7095 			continue;
7096 
7097 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7098 		ret = update_dev_stat_item(trans, fs_info, device);
7099 		if (!ret)
7100 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7101 	}
7102 	mutex_unlock(&fs_devices->device_list_mutex);
7103 
7104 	return ret;
7105 }
7106 
7107 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7108 {
7109 	btrfs_dev_stat_inc(dev, index);
7110 	btrfs_dev_stat_print_on_error(dev);
7111 }
7112 
7113 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7114 {
7115 	if (!dev->dev_stats_valid)
7116 		return;
7117 	btrfs_err_rl_in_rcu(dev->fs_info,
7118 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7119 			   rcu_str_deref(dev->name),
7120 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7121 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7122 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7123 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7124 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7125 }
7126 
7127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7128 {
7129 	int i;
7130 
7131 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7132 		if (btrfs_dev_stat_read(dev, i) != 0)
7133 			break;
7134 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7135 		return; /* all values == 0, suppress message */
7136 
7137 	btrfs_info_in_rcu(dev->fs_info,
7138 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7139 	       rcu_str_deref(dev->name),
7140 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7141 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7142 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7143 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7144 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7145 }
7146 
7147 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7148 			struct btrfs_ioctl_get_dev_stats *stats)
7149 {
7150 	struct btrfs_device *dev;
7151 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7152 	int i;
7153 
7154 	mutex_lock(&fs_devices->device_list_mutex);
7155 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7156 	mutex_unlock(&fs_devices->device_list_mutex);
7157 
7158 	if (!dev) {
7159 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7160 		return -ENODEV;
7161 	} else if (!dev->dev_stats_valid) {
7162 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7163 		return -ENODEV;
7164 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7165 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7166 			if (stats->nr_items > i)
7167 				stats->values[i] =
7168 					btrfs_dev_stat_read_and_reset(dev, i);
7169 			else
7170 				btrfs_dev_stat_reset(dev, i);
7171 		}
7172 	} else {
7173 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7174 			if (stats->nr_items > i)
7175 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7176 	}
7177 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7178 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7179 	return 0;
7180 }
7181 
7182 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7183 {
7184 	struct buffer_head *bh;
7185 	struct btrfs_super_block *disk_super;
7186 	int copy_num;
7187 
7188 	if (!bdev)
7189 		return;
7190 
7191 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7192 		copy_num++) {
7193 
7194 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7195 			continue;
7196 
7197 		disk_super = (struct btrfs_super_block *)bh->b_data;
7198 
7199 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7200 		set_buffer_dirty(bh);
7201 		sync_dirty_buffer(bh);
7202 		brelse(bh);
7203 	}
7204 
7205 	/* Notify udev that device has changed */
7206 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7207 
7208 	/* Update ctime/mtime for device path for libblkid */
7209 	update_dev_time(device_path);
7210 }
7211 
7212 /*
7213  * Update the size of all devices, which is used for writing out the
7214  * super blocks.
7215  */
7216 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7217 {
7218 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7219 	struct btrfs_device *curr, *next;
7220 
7221 	if (list_empty(&fs_devices->resized_devices))
7222 		return;
7223 
7224 	mutex_lock(&fs_devices->device_list_mutex);
7225 	mutex_lock(&fs_info->chunk_mutex);
7226 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7227 				 resized_list) {
7228 		list_del_init(&curr->resized_list);
7229 		curr->commit_total_bytes = curr->disk_total_bytes;
7230 	}
7231 	mutex_unlock(&fs_info->chunk_mutex);
7232 	mutex_unlock(&fs_devices->device_list_mutex);
7233 }
7234 
7235 /* Must be invoked during the transaction commit */
7236 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7237 					struct btrfs_transaction *transaction)
7238 {
7239 	struct extent_map *em;
7240 	struct map_lookup *map;
7241 	struct btrfs_device *dev;
7242 	int i;
7243 
7244 	if (list_empty(&transaction->pending_chunks))
7245 		return;
7246 
7247 	/* In order to kick the device replace finish process */
7248 	mutex_lock(&fs_info->chunk_mutex);
7249 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7250 		map = em->map_lookup;
7251 
7252 		for (i = 0; i < map->num_stripes; i++) {
7253 			dev = map->stripes[i].dev;
7254 			dev->commit_bytes_used = dev->bytes_used;
7255 		}
7256 	}
7257 	mutex_unlock(&fs_info->chunk_mutex);
7258 }
7259 
7260 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7261 {
7262 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7263 	while (fs_devices) {
7264 		fs_devices->fs_info = fs_info;
7265 		fs_devices = fs_devices->seed;
7266 	}
7267 }
7268 
7269 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7270 {
7271 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7272 	while (fs_devices) {
7273 		fs_devices->fs_info = NULL;
7274 		fs_devices = fs_devices->seed;
7275 	}
7276 }
7277