1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/iocontext.h> 24 #include <linux/capability.h> 25 #include <linux/ratelimit.h> 26 #include <linux/kthread.h> 27 #include <linux/raid/pq.h> 28 #include <linux/semaphore.h> 29 #include <linux/uuid.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 /* 122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices 123 * condition is not met. Zero means there's no corresponding 124 * BTRFS_ERROR_DEV_*_NOT_MET value. 125 */ 126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = { 127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 129 [BTRFS_RAID_DUP] = 0, 130 [BTRFS_RAID_RAID0] = 0, 131 [BTRFS_RAID_SINGLE] = 0, 132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 134 }; 135 136 static int init_first_rw_device(struct btrfs_trans_handle *trans, 137 struct btrfs_fs_info *fs_info); 138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 143 enum btrfs_map_op op, 144 u64 logical, u64 *length, 145 struct btrfs_bio **bbio_ret, 146 int mirror_num, int need_raid_map); 147 148 DEFINE_MUTEX(uuid_mutex); 149 static LIST_HEAD(fs_uuids); 150 struct list_head *btrfs_get_fs_uuids(void) 151 { 152 return &fs_uuids; 153 } 154 155 /* 156 * alloc_fs_devices - allocate struct btrfs_fs_devices 157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid 158 * 159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 160 * The returned struct is not linked onto any lists and can be destroyed with 161 * kfree() right away. 162 */ 163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 164 { 165 struct btrfs_fs_devices *fs_devs; 166 167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 168 if (!fs_devs) 169 return ERR_PTR(-ENOMEM); 170 171 mutex_init(&fs_devs->device_list_mutex); 172 173 INIT_LIST_HEAD(&fs_devs->devices); 174 INIT_LIST_HEAD(&fs_devs->resized_devices); 175 INIT_LIST_HEAD(&fs_devs->alloc_list); 176 INIT_LIST_HEAD(&fs_devs->list); 177 if (fsid) 178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 179 180 return fs_devs; 181 } 182 183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 184 { 185 struct btrfs_device *device; 186 WARN_ON(fs_devices->opened); 187 while (!list_empty(&fs_devices->devices)) { 188 device = list_entry(fs_devices->devices.next, 189 struct btrfs_device, dev_list); 190 list_del(&device->dev_list); 191 rcu_string_free(device->name); 192 bio_put(device->flush_bio); 193 kfree(device); 194 } 195 kfree(fs_devices); 196 } 197 198 static void btrfs_kobject_uevent(struct block_device *bdev, 199 enum kobject_action action) 200 { 201 int ret; 202 203 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 204 if (ret) 205 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 206 action, 207 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 208 &disk_to_dev(bdev->bd_disk)->kobj); 209 } 210 211 void btrfs_cleanup_fs_uuids(void) 212 { 213 struct btrfs_fs_devices *fs_devices; 214 215 while (!list_empty(&fs_uuids)) { 216 fs_devices = list_entry(fs_uuids.next, 217 struct btrfs_fs_devices, list); 218 list_del(&fs_devices->list); 219 free_fs_devices(fs_devices); 220 } 221 } 222 223 static struct btrfs_device *__alloc_device(void) 224 { 225 struct btrfs_device *dev; 226 227 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 228 if (!dev) 229 return ERR_PTR(-ENOMEM); 230 231 /* 232 * Preallocate a bio that's always going to be used for flushing device 233 * barriers and matches the device lifespan 234 */ 235 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 236 if (!dev->flush_bio) { 237 kfree(dev); 238 return ERR_PTR(-ENOMEM); 239 } 240 241 INIT_LIST_HEAD(&dev->dev_list); 242 INIT_LIST_HEAD(&dev->dev_alloc_list); 243 INIT_LIST_HEAD(&dev->resized_list); 244 245 spin_lock_init(&dev->io_lock); 246 247 spin_lock_init(&dev->reada_lock); 248 atomic_set(&dev->reada_in_flight, 0); 249 atomic_set(&dev->dev_stats_ccnt, 0); 250 btrfs_device_data_ordered_init(dev); 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 253 254 return dev; 255 } 256 257 /* 258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 259 * return NULL. 260 * 261 * If devid and uuid are both specified, the match must be exact, otherwise 262 * only devid is used. 263 */ 264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices, 265 u64 devid, const u8 *uuid) 266 { 267 struct list_head *head = &fs_devices->devices; 268 struct btrfs_device *dev; 269 270 list_for_each_entry(dev, head, dev_list) { 271 if (dev->devid == devid && 272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 273 return dev; 274 } 275 } 276 return NULL; 277 } 278 279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 280 { 281 struct btrfs_fs_devices *fs_devices; 282 283 list_for_each_entry(fs_devices, &fs_uuids, list) { 284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 285 return fs_devices; 286 } 287 return NULL; 288 } 289 290 static int 291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 292 int flush, struct block_device **bdev, 293 struct buffer_head **bh) 294 { 295 int ret; 296 297 *bdev = blkdev_get_by_path(device_path, flags, holder); 298 299 if (IS_ERR(*bdev)) { 300 ret = PTR_ERR(*bdev); 301 goto error; 302 } 303 304 if (flush) 305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 307 if (ret) { 308 blkdev_put(*bdev, flags); 309 goto error; 310 } 311 invalidate_bdev(*bdev); 312 *bh = btrfs_read_dev_super(*bdev); 313 if (IS_ERR(*bh)) { 314 ret = PTR_ERR(*bh); 315 blkdev_put(*bdev, flags); 316 goto error; 317 } 318 319 return 0; 320 321 error: 322 *bdev = NULL; 323 *bh = NULL; 324 return ret; 325 } 326 327 static void requeue_list(struct btrfs_pending_bios *pending_bios, 328 struct bio *head, struct bio *tail) 329 { 330 331 struct bio *old_head; 332 333 old_head = pending_bios->head; 334 pending_bios->head = head; 335 if (pending_bios->tail) 336 tail->bi_next = old_head; 337 else 338 pending_bios->tail = tail; 339 } 340 341 /* 342 * we try to collect pending bios for a device so we don't get a large 343 * number of procs sending bios down to the same device. This greatly 344 * improves the schedulers ability to collect and merge the bios. 345 * 346 * But, it also turns into a long list of bios to process and that is sure 347 * to eventually make the worker thread block. The solution here is to 348 * make some progress and then put this work struct back at the end of 349 * the list if the block device is congested. This way, multiple devices 350 * can make progress from a single worker thread. 351 */ 352 static noinline void run_scheduled_bios(struct btrfs_device *device) 353 { 354 struct btrfs_fs_info *fs_info = device->fs_info; 355 struct bio *pending; 356 struct backing_dev_info *bdi; 357 struct btrfs_pending_bios *pending_bios; 358 struct bio *tail; 359 struct bio *cur; 360 int again = 0; 361 unsigned long num_run; 362 unsigned long batch_run = 0; 363 unsigned long last_waited = 0; 364 int force_reg = 0; 365 int sync_pending = 0; 366 struct blk_plug plug; 367 368 /* 369 * this function runs all the bios we've collected for 370 * a particular device. We don't want to wander off to 371 * another device without first sending all of these down. 372 * So, setup a plug here and finish it off before we return 373 */ 374 blk_start_plug(&plug); 375 376 bdi = device->bdev->bd_bdi; 377 378 loop: 379 spin_lock(&device->io_lock); 380 381 loop_lock: 382 num_run = 0; 383 384 /* take all the bios off the list at once and process them 385 * later on (without the lock held). But, remember the 386 * tail and other pointers so the bios can be properly reinserted 387 * into the list if we hit congestion 388 */ 389 if (!force_reg && device->pending_sync_bios.head) { 390 pending_bios = &device->pending_sync_bios; 391 force_reg = 1; 392 } else { 393 pending_bios = &device->pending_bios; 394 force_reg = 0; 395 } 396 397 pending = pending_bios->head; 398 tail = pending_bios->tail; 399 WARN_ON(pending && !tail); 400 401 /* 402 * if pending was null this time around, no bios need processing 403 * at all and we can stop. Otherwise it'll loop back up again 404 * and do an additional check so no bios are missed. 405 * 406 * device->running_pending is used to synchronize with the 407 * schedule_bio code. 408 */ 409 if (device->pending_sync_bios.head == NULL && 410 device->pending_bios.head == NULL) { 411 again = 0; 412 device->running_pending = 0; 413 } else { 414 again = 1; 415 device->running_pending = 1; 416 } 417 418 pending_bios->head = NULL; 419 pending_bios->tail = NULL; 420 421 spin_unlock(&device->io_lock); 422 423 while (pending) { 424 425 rmb(); 426 /* we want to work on both lists, but do more bios on the 427 * sync list than the regular list 428 */ 429 if ((num_run > 32 && 430 pending_bios != &device->pending_sync_bios && 431 device->pending_sync_bios.head) || 432 (num_run > 64 && pending_bios == &device->pending_sync_bios && 433 device->pending_bios.head)) { 434 spin_lock(&device->io_lock); 435 requeue_list(pending_bios, pending, tail); 436 goto loop_lock; 437 } 438 439 cur = pending; 440 pending = pending->bi_next; 441 cur->bi_next = NULL; 442 443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 444 445 /* 446 * if we're doing the sync list, record that our 447 * plug has some sync requests on it 448 * 449 * If we're doing the regular list and there are 450 * sync requests sitting around, unplug before 451 * we add more 452 */ 453 if (pending_bios == &device->pending_sync_bios) { 454 sync_pending = 1; 455 } else if (sync_pending) { 456 blk_finish_plug(&plug); 457 blk_start_plug(&plug); 458 sync_pending = 0; 459 } 460 461 btrfsic_submit_bio(cur); 462 num_run++; 463 batch_run++; 464 465 cond_resched(); 466 467 /* 468 * we made progress, there is more work to do and the bdi 469 * is now congested. Back off and let other work structs 470 * run instead 471 */ 472 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 473 fs_info->fs_devices->open_devices > 1) { 474 struct io_context *ioc; 475 476 ioc = current->io_context; 477 478 /* 479 * the main goal here is that we don't want to 480 * block if we're going to be able to submit 481 * more requests without blocking. 482 * 483 * This code does two great things, it pokes into 484 * the elevator code from a filesystem _and_ 485 * it makes assumptions about how batching works. 486 */ 487 if (ioc && ioc->nr_batch_requests > 0 && 488 time_before(jiffies, ioc->last_waited + HZ/50UL) && 489 (last_waited == 0 || 490 ioc->last_waited == last_waited)) { 491 /* 492 * we want to go through our batch of 493 * requests and stop. So, we copy out 494 * the ioc->last_waited time and test 495 * against it before looping 496 */ 497 last_waited = ioc->last_waited; 498 cond_resched(); 499 continue; 500 } 501 spin_lock(&device->io_lock); 502 requeue_list(pending_bios, pending, tail); 503 device->running_pending = 1; 504 505 spin_unlock(&device->io_lock); 506 btrfs_queue_work(fs_info->submit_workers, 507 &device->work); 508 goto done; 509 } 510 } 511 512 cond_resched(); 513 if (again) 514 goto loop; 515 516 spin_lock(&device->io_lock); 517 if (device->pending_bios.head || device->pending_sync_bios.head) 518 goto loop_lock; 519 spin_unlock(&device->io_lock); 520 521 done: 522 blk_finish_plug(&plug); 523 } 524 525 static void pending_bios_fn(struct btrfs_work *work) 526 { 527 struct btrfs_device *device; 528 529 device = container_of(work, struct btrfs_device, work); 530 run_scheduled_bios(device); 531 } 532 533 534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev) 535 { 536 struct btrfs_fs_devices *fs_devs; 537 struct btrfs_device *dev; 538 539 if (!cur_dev->name) 540 return; 541 542 list_for_each_entry(fs_devs, &fs_uuids, list) { 543 int del = 1; 544 545 if (fs_devs->opened) 546 continue; 547 if (fs_devs->seeding) 548 continue; 549 550 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 551 552 if (dev == cur_dev) 553 continue; 554 if (!dev->name) 555 continue; 556 557 /* 558 * Todo: This won't be enough. What if the same device 559 * comes back (with new uuid and) with its mapper path? 560 * But for now, this does help as mostly an admin will 561 * either use mapper or non mapper path throughout. 562 */ 563 rcu_read_lock(); 564 del = strcmp(rcu_str_deref(dev->name), 565 rcu_str_deref(cur_dev->name)); 566 rcu_read_unlock(); 567 if (!del) 568 break; 569 } 570 571 if (!del) { 572 /* delete the stale device */ 573 if (fs_devs->num_devices == 1) { 574 btrfs_sysfs_remove_fsid(fs_devs); 575 list_del(&fs_devs->list); 576 free_fs_devices(fs_devs); 577 } else { 578 fs_devs->num_devices--; 579 list_del(&dev->dev_list); 580 rcu_string_free(dev->name); 581 bio_put(dev->flush_bio); 582 kfree(dev); 583 } 584 break; 585 } 586 } 587 } 588 589 /* 590 * Add new device to list of registered devices 591 * 592 * Returns: 593 * 1 - first time device is seen 594 * 0 - device already known 595 * < 0 - error 596 */ 597 static noinline int device_list_add(const char *path, 598 struct btrfs_super_block *disk_super, 599 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 600 { 601 struct btrfs_device *device; 602 struct btrfs_fs_devices *fs_devices; 603 struct rcu_string *name; 604 int ret = 0; 605 u64 found_transid = btrfs_super_generation(disk_super); 606 607 fs_devices = find_fsid(disk_super->fsid); 608 if (!fs_devices) { 609 fs_devices = alloc_fs_devices(disk_super->fsid); 610 if (IS_ERR(fs_devices)) 611 return PTR_ERR(fs_devices); 612 613 list_add(&fs_devices->list, &fs_uuids); 614 615 device = NULL; 616 } else { 617 device = find_device(fs_devices, devid, 618 disk_super->dev_item.uuid); 619 } 620 621 if (!device) { 622 if (fs_devices->opened) 623 return -EBUSY; 624 625 device = btrfs_alloc_device(NULL, &devid, 626 disk_super->dev_item.uuid); 627 if (IS_ERR(device)) { 628 /* we can safely leave the fs_devices entry around */ 629 return PTR_ERR(device); 630 } 631 632 name = rcu_string_strdup(path, GFP_NOFS); 633 if (!name) { 634 bio_put(device->flush_bio); 635 kfree(device); 636 return -ENOMEM; 637 } 638 rcu_assign_pointer(device->name, name); 639 640 mutex_lock(&fs_devices->device_list_mutex); 641 list_add_rcu(&device->dev_list, &fs_devices->devices); 642 fs_devices->num_devices++; 643 mutex_unlock(&fs_devices->device_list_mutex); 644 645 ret = 1; 646 device->fs_devices = fs_devices; 647 } else if (!device->name || strcmp(device->name->str, path)) { 648 /* 649 * When FS is already mounted. 650 * 1. If you are here and if the device->name is NULL that 651 * means this device was missing at time of FS mount. 652 * 2. If you are here and if the device->name is different 653 * from 'path' that means either 654 * a. The same device disappeared and reappeared with 655 * different name. or 656 * b. The missing-disk-which-was-replaced, has 657 * reappeared now. 658 * 659 * We must allow 1 and 2a above. But 2b would be a spurious 660 * and unintentional. 661 * 662 * Further in case of 1 and 2a above, the disk at 'path' 663 * would have missed some transaction when it was away and 664 * in case of 2a the stale bdev has to be updated as well. 665 * 2b must not be allowed at all time. 666 */ 667 668 /* 669 * For now, we do allow update to btrfs_fs_device through the 670 * btrfs dev scan cli after FS has been mounted. We're still 671 * tracking a problem where systems fail mount by subvolume id 672 * when we reject replacement on a mounted FS. 673 */ 674 if (!fs_devices->opened && found_transid < device->generation) { 675 /* 676 * That is if the FS is _not_ mounted and if you 677 * are here, that means there is more than one 678 * disk with same uuid and devid.We keep the one 679 * with larger generation number or the last-in if 680 * generation are equal. 681 */ 682 return -EEXIST; 683 } 684 685 name = rcu_string_strdup(path, GFP_NOFS); 686 if (!name) 687 return -ENOMEM; 688 rcu_string_free(device->name); 689 rcu_assign_pointer(device->name, name); 690 if (device->missing) { 691 fs_devices->missing_devices--; 692 device->missing = 0; 693 } 694 } 695 696 /* 697 * Unmount does not free the btrfs_device struct but would zero 698 * generation along with most of the other members. So just update 699 * it back. We need it to pick the disk with largest generation 700 * (as above). 701 */ 702 if (!fs_devices->opened) 703 device->generation = found_transid; 704 705 /* 706 * if there is new btrfs on an already registered device, 707 * then remove the stale device entry. 708 */ 709 if (ret > 0) 710 btrfs_free_stale_device(device); 711 712 *fs_devices_ret = fs_devices; 713 714 return ret; 715 } 716 717 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 718 { 719 struct btrfs_fs_devices *fs_devices; 720 struct btrfs_device *device; 721 struct btrfs_device *orig_dev; 722 723 fs_devices = alloc_fs_devices(orig->fsid); 724 if (IS_ERR(fs_devices)) 725 return fs_devices; 726 727 mutex_lock(&orig->device_list_mutex); 728 fs_devices->total_devices = orig->total_devices; 729 730 /* We have held the volume lock, it is safe to get the devices. */ 731 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 732 struct rcu_string *name; 733 734 device = btrfs_alloc_device(NULL, &orig_dev->devid, 735 orig_dev->uuid); 736 if (IS_ERR(device)) 737 goto error; 738 739 /* 740 * This is ok to do without rcu read locked because we hold the 741 * uuid mutex so nothing we touch in here is going to disappear. 742 */ 743 if (orig_dev->name) { 744 name = rcu_string_strdup(orig_dev->name->str, 745 GFP_KERNEL); 746 if (!name) { 747 bio_put(device->flush_bio); 748 kfree(device); 749 goto error; 750 } 751 rcu_assign_pointer(device->name, name); 752 } 753 754 list_add(&device->dev_list, &fs_devices->devices); 755 device->fs_devices = fs_devices; 756 fs_devices->num_devices++; 757 } 758 mutex_unlock(&orig->device_list_mutex); 759 return fs_devices; 760 error: 761 mutex_unlock(&orig->device_list_mutex); 762 free_fs_devices(fs_devices); 763 return ERR_PTR(-ENOMEM); 764 } 765 766 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 767 { 768 struct btrfs_device *device, *next; 769 struct btrfs_device *latest_dev = NULL; 770 771 mutex_lock(&uuid_mutex); 772 again: 773 /* This is the initialized path, it is safe to release the devices. */ 774 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 775 if (device->in_fs_metadata) { 776 if (!device->is_tgtdev_for_dev_replace && 777 (!latest_dev || 778 device->generation > latest_dev->generation)) { 779 latest_dev = device; 780 } 781 continue; 782 } 783 784 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 785 /* 786 * In the first step, keep the device which has 787 * the correct fsid and the devid that is used 788 * for the dev_replace procedure. 789 * In the second step, the dev_replace state is 790 * read from the device tree and it is known 791 * whether the procedure is really active or 792 * not, which means whether this device is 793 * used or whether it should be removed. 794 */ 795 if (step == 0 || device->is_tgtdev_for_dev_replace) { 796 continue; 797 } 798 } 799 if (device->bdev) { 800 blkdev_put(device->bdev, device->mode); 801 device->bdev = NULL; 802 fs_devices->open_devices--; 803 } 804 if (device->writeable) { 805 list_del_init(&device->dev_alloc_list); 806 device->writeable = 0; 807 if (!device->is_tgtdev_for_dev_replace) 808 fs_devices->rw_devices--; 809 } 810 list_del_init(&device->dev_list); 811 fs_devices->num_devices--; 812 rcu_string_free(device->name); 813 bio_put(device->flush_bio); 814 kfree(device); 815 } 816 817 if (fs_devices->seed) { 818 fs_devices = fs_devices->seed; 819 goto again; 820 } 821 822 fs_devices->latest_bdev = latest_dev->bdev; 823 824 mutex_unlock(&uuid_mutex); 825 } 826 827 static void __free_device(struct work_struct *work) 828 { 829 struct btrfs_device *device; 830 831 device = container_of(work, struct btrfs_device, rcu_work); 832 rcu_string_free(device->name); 833 bio_put(device->flush_bio); 834 kfree(device); 835 } 836 837 static void free_device(struct rcu_head *head) 838 { 839 struct btrfs_device *device; 840 841 device = container_of(head, struct btrfs_device, rcu); 842 843 INIT_WORK(&device->rcu_work, __free_device); 844 schedule_work(&device->rcu_work); 845 } 846 847 static void btrfs_close_bdev(struct btrfs_device *device) 848 { 849 if (device->bdev && device->writeable) { 850 sync_blockdev(device->bdev); 851 invalidate_bdev(device->bdev); 852 } 853 854 if (device->bdev) 855 blkdev_put(device->bdev, device->mode); 856 } 857 858 static void btrfs_prepare_close_one_device(struct btrfs_device *device) 859 { 860 struct btrfs_fs_devices *fs_devices = device->fs_devices; 861 struct btrfs_device *new_device; 862 struct rcu_string *name; 863 864 if (device->bdev) 865 fs_devices->open_devices--; 866 867 if (device->writeable && 868 device->devid != BTRFS_DEV_REPLACE_DEVID) { 869 list_del_init(&device->dev_alloc_list); 870 fs_devices->rw_devices--; 871 } 872 873 if (device->missing) 874 fs_devices->missing_devices--; 875 876 new_device = btrfs_alloc_device(NULL, &device->devid, 877 device->uuid); 878 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 879 880 /* Safe because we are under uuid_mutex */ 881 if (device->name) { 882 name = rcu_string_strdup(device->name->str, GFP_NOFS); 883 BUG_ON(!name); /* -ENOMEM */ 884 rcu_assign_pointer(new_device->name, name); 885 } 886 887 list_replace_rcu(&device->dev_list, &new_device->dev_list); 888 new_device->fs_devices = device->fs_devices; 889 } 890 891 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 892 { 893 struct btrfs_device *device, *tmp; 894 struct list_head pending_put; 895 896 INIT_LIST_HEAD(&pending_put); 897 898 if (--fs_devices->opened > 0) 899 return 0; 900 901 mutex_lock(&fs_devices->device_list_mutex); 902 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 903 btrfs_prepare_close_one_device(device); 904 list_add(&device->dev_list, &pending_put); 905 } 906 mutex_unlock(&fs_devices->device_list_mutex); 907 908 /* 909 * btrfs_show_devname() is using the device_list_mutex, 910 * sometimes call to blkdev_put() leads vfs calling 911 * into this func. So do put outside of device_list_mutex, 912 * as of now. 913 */ 914 while (!list_empty(&pending_put)) { 915 device = list_first_entry(&pending_put, 916 struct btrfs_device, dev_list); 917 list_del(&device->dev_list); 918 btrfs_close_bdev(device); 919 call_rcu(&device->rcu, free_device); 920 } 921 922 WARN_ON(fs_devices->open_devices); 923 WARN_ON(fs_devices->rw_devices); 924 fs_devices->opened = 0; 925 fs_devices->seeding = 0; 926 927 return 0; 928 } 929 930 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 931 { 932 struct btrfs_fs_devices *seed_devices = NULL; 933 int ret; 934 935 mutex_lock(&uuid_mutex); 936 ret = __btrfs_close_devices(fs_devices); 937 if (!fs_devices->opened) { 938 seed_devices = fs_devices->seed; 939 fs_devices->seed = NULL; 940 } 941 mutex_unlock(&uuid_mutex); 942 943 while (seed_devices) { 944 fs_devices = seed_devices; 945 seed_devices = fs_devices->seed; 946 __btrfs_close_devices(fs_devices); 947 free_fs_devices(fs_devices); 948 } 949 /* 950 * Wait for rcu kworkers under __btrfs_close_devices 951 * to finish all blkdev_puts so device is really 952 * free when umount is done. 953 */ 954 rcu_barrier(); 955 return ret; 956 } 957 958 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 959 fmode_t flags, void *holder) 960 { 961 struct request_queue *q; 962 struct block_device *bdev; 963 struct list_head *head = &fs_devices->devices; 964 struct btrfs_device *device; 965 struct btrfs_device *latest_dev = NULL; 966 struct buffer_head *bh; 967 struct btrfs_super_block *disk_super; 968 u64 devid; 969 int seeding = 1; 970 int ret = 0; 971 972 flags |= FMODE_EXCL; 973 974 list_for_each_entry(device, head, dev_list) { 975 if (device->bdev) 976 continue; 977 if (!device->name) 978 continue; 979 980 /* Just open everything we can; ignore failures here */ 981 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 982 &bdev, &bh)) 983 continue; 984 985 disk_super = (struct btrfs_super_block *)bh->b_data; 986 devid = btrfs_stack_device_id(&disk_super->dev_item); 987 if (devid != device->devid) 988 goto error_brelse; 989 990 if (memcmp(device->uuid, disk_super->dev_item.uuid, 991 BTRFS_UUID_SIZE)) 992 goto error_brelse; 993 994 device->generation = btrfs_super_generation(disk_super); 995 if (!latest_dev || 996 device->generation > latest_dev->generation) 997 latest_dev = device; 998 999 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 1000 device->writeable = 0; 1001 } else { 1002 device->writeable = !bdev_read_only(bdev); 1003 seeding = 0; 1004 } 1005 1006 q = bdev_get_queue(bdev); 1007 if (blk_queue_discard(q)) 1008 device->can_discard = 1; 1009 if (!blk_queue_nonrot(q)) 1010 fs_devices->rotating = 1; 1011 1012 device->bdev = bdev; 1013 device->in_fs_metadata = 0; 1014 device->mode = flags; 1015 1016 fs_devices->open_devices++; 1017 if (device->writeable && 1018 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1019 fs_devices->rw_devices++; 1020 list_add(&device->dev_alloc_list, 1021 &fs_devices->alloc_list); 1022 } 1023 brelse(bh); 1024 continue; 1025 1026 error_brelse: 1027 brelse(bh); 1028 blkdev_put(bdev, flags); 1029 continue; 1030 } 1031 if (fs_devices->open_devices == 0) { 1032 ret = -EINVAL; 1033 goto out; 1034 } 1035 fs_devices->seeding = seeding; 1036 fs_devices->opened = 1; 1037 fs_devices->latest_bdev = latest_dev->bdev; 1038 fs_devices->total_rw_bytes = 0; 1039 out: 1040 return ret; 1041 } 1042 1043 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1044 fmode_t flags, void *holder) 1045 { 1046 int ret; 1047 1048 mutex_lock(&uuid_mutex); 1049 if (fs_devices->opened) { 1050 fs_devices->opened++; 1051 ret = 0; 1052 } else { 1053 ret = __btrfs_open_devices(fs_devices, flags, holder); 1054 } 1055 mutex_unlock(&uuid_mutex); 1056 return ret; 1057 } 1058 1059 static void btrfs_release_disk_super(struct page *page) 1060 { 1061 kunmap(page); 1062 put_page(page); 1063 } 1064 1065 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1066 struct page **page, 1067 struct btrfs_super_block **disk_super) 1068 { 1069 void *p; 1070 pgoff_t index; 1071 1072 /* make sure our super fits in the device */ 1073 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1074 return 1; 1075 1076 /* make sure our super fits in the page */ 1077 if (sizeof(**disk_super) > PAGE_SIZE) 1078 return 1; 1079 1080 /* make sure our super doesn't straddle pages on disk */ 1081 index = bytenr >> PAGE_SHIFT; 1082 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1083 return 1; 1084 1085 /* pull in the page with our super */ 1086 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1087 index, GFP_KERNEL); 1088 1089 if (IS_ERR_OR_NULL(*page)) 1090 return 1; 1091 1092 p = kmap(*page); 1093 1094 /* align our pointer to the offset of the super block */ 1095 *disk_super = p + (bytenr & ~PAGE_MASK); 1096 1097 if (btrfs_super_bytenr(*disk_super) != bytenr || 1098 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1099 btrfs_release_disk_super(*page); 1100 return 1; 1101 } 1102 1103 if ((*disk_super)->label[0] && 1104 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1105 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1106 1107 return 0; 1108 } 1109 1110 /* 1111 * Look for a btrfs signature on a device. This may be called out of the mount path 1112 * and we are not allowed to call set_blocksize during the scan. The superblock 1113 * is read via pagecache 1114 */ 1115 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 1116 struct btrfs_fs_devices **fs_devices_ret) 1117 { 1118 struct btrfs_super_block *disk_super; 1119 struct block_device *bdev; 1120 struct page *page; 1121 int ret = -EINVAL; 1122 u64 devid; 1123 u64 transid; 1124 u64 total_devices; 1125 u64 bytenr; 1126 1127 /* 1128 * we would like to check all the supers, but that would make 1129 * a btrfs mount succeed after a mkfs from a different FS. 1130 * So, we need to add a special mount option to scan for 1131 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1132 */ 1133 bytenr = btrfs_sb_offset(0); 1134 flags |= FMODE_EXCL; 1135 mutex_lock(&uuid_mutex); 1136 1137 bdev = blkdev_get_by_path(path, flags, holder); 1138 if (IS_ERR(bdev)) { 1139 ret = PTR_ERR(bdev); 1140 goto error; 1141 } 1142 1143 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) 1144 goto error_bdev_put; 1145 1146 devid = btrfs_stack_device_id(&disk_super->dev_item); 1147 transid = btrfs_super_generation(disk_super); 1148 total_devices = btrfs_super_num_devices(disk_super); 1149 1150 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1151 if (ret > 0) { 1152 if (disk_super->label[0]) { 1153 pr_info("BTRFS: device label %s ", disk_super->label); 1154 } else { 1155 pr_info("BTRFS: device fsid %pU ", disk_super->fsid); 1156 } 1157 1158 pr_cont("devid %llu transid %llu %s\n", devid, transid, path); 1159 ret = 0; 1160 } 1161 if (!ret && fs_devices_ret) 1162 (*fs_devices_ret)->total_devices = total_devices; 1163 1164 btrfs_release_disk_super(page); 1165 1166 error_bdev_put: 1167 blkdev_put(bdev, flags); 1168 error: 1169 mutex_unlock(&uuid_mutex); 1170 return ret; 1171 } 1172 1173 /* helper to account the used device space in the range */ 1174 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1175 u64 end, u64 *length) 1176 { 1177 struct btrfs_key key; 1178 struct btrfs_root *root = device->fs_info->dev_root; 1179 struct btrfs_dev_extent *dev_extent; 1180 struct btrfs_path *path; 1181 u64 extent_end; 1182 int ret; 1183 int slot; 1184 struct extent_buffer *l; 1185 1186 *length = 0; 1187 1188 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1189 return 0; 1190 1191 path = btrfs_alloc_path(); 1192 if (!path) 1193 return -ENOMEM; 1194 path->reada = READA_FORWARD; 1195 1196 key.objectid = device->devid; 1197 key.offset = start; 1198 key.type = BTRFS_DEV_EXTENT_KEY; 1199 1200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1201 if (ret < 0) 1202 goto out; 1203 if (ret > 0) { 1204 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1205 if (ret < 0) 1206 goto out; 1207 } 1208 1209 while (1) { 1210 l = path->nodes[0]; 1211 slot = path->slots[0]; 1212 if (slot >= btrfs_header_nritems(l)) { 1213 ret = btrfs_next_leaf(root, path); 1214 if (ret == 0) 1215 continue; 1216 if (ret < 0) 1217 goto out; 1218 1219 break; 1220 } 1221 btrfs_item_key_to_cpu(l, &key, slot); 1222 1223 if (key.objectid < device->devid) 1224 goto next; 1225 1226 if (key.objectid > device->devid) 1227 break; 1228 1229 if (key.type != BTRFS_DEV_EXTENT_KEY) 1230 goto next; 1231 1232 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1233 extent_end = key.offset + btrfs_dev_extent_length(l, 1234 dev_extent); 1235 if (key.offset <= start && extent_end > end) { 1236 *length = end - start + 1; 1237 break; 1238 } else if (key.offset <= start && extent_end > start) 1239 *length += extent_end - start; 1240 else if (key.offset > start && extent_end <= end) 1241 *length += extent_end - key.offset; 1242 else if (key.offset > start && key.offset <= end) { 1243 *length += end - key.offset + 1; 1244 break; 1245 } else if (key.offset > end) 1246 break; 1247 1248 next: 1249 path->slots[0]++; 1250 } 1251 ret = 0; 1252 out: 1253 btrfs_free_path(path); 1254 return ret; 1255 } 1256 1257 static int contains_pending_extent(struct btrfs_transaction *transaction, 1258 struct btrfs_device *device, 1259 u64 *start, u64 len) 1260 { 1261 struct btrfs_fs_info *fs_info = device->fs_info; 1262 struct extent_map *em; 1263 struct list_head *search_list = &fs_info->pinned_chunks; 1264 int ret = 0; 1265 u64 physical_start = *start; 1266 1267 if (transaction) 1268 search_list = &transaction->pending_chunks; 1269 again: 1270 list_for_each_entry(em, search_list, list) { 1271 struct map_lookup *map; 1272 int i; 1273 1274 map = em->map_lookup; 1275 for (i = 0; i < map->num_stripes; i++) { 1276 u64 end; 1277 1278 if (map->stripes[i].dev != device) 1279 continue; 1280 if (map->stripes[i].physical >= physical_start + len || 1281 map->stripes[i].physical + em->orig_block_len <= 1282 physical_start) 1283 continue; 1284 /* 1285 * Make sure that while processing the pinned list we do 1286 * not override our *start with a lower value, because 1287 * we can have pinned chunks that fall within this 1288 * device hole and that have lower physical addresses 1289 * than the pending chunks we processed before. If we 1290 * do not take this special care we can end up getting 1291 * 2 pending chunks that start at the same physical 1292 * device offsets because the end offset of a pinned 1293 * chunk can be equal to the start offset of some 1294 * pending chunk. 1295 */ 1296 end = map->stripes[i].physical + em->orig_block_len; 1297 if (end > *start) { 1298 *start = end; 1299 ret = 1; 1300 } 1301 } 1302 } 1303 if (search_list != &fs_info->pinned_chunks) { 1304 search_list = &fs_info->pinned_chunks; 1305 goto again; 1306 } 1307 1308 return ret; 1309 } 1310 1311 1312 /* 1313 * find_free_dev_extent_start - find free space in the specified device 1314 * @device: the device which we search the free space in 1315 * @num_bytes: the size of the free space that we need 1316 * @search_start: the position from which to begin the search 1317 * @start: store the start of the free space. 1318 * @len: the size of the free space. that we find, or the size 1319 * of the max free space if we don't find suitable free space 1320 * 1321 * this uses a pretty simple search, the expectation is that it is 1322 * called very infrequently and that a given device has a small number 1323 * of extents 1324 * 1325 * @start is used to store the start of the free space if we find. But if we 1326 * don't find suitable free space, it will be used to store the start position 1327 * of the max free space. 1328 * 1329 * @len is used to store the size of the free space that we find. 1330 * But if we don't find suitable free space, it is used to store the size of 1331 * the max free space. 1332 */ 1333 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1334 struct btrfs_device *device, u64 num_bytes, 1335 u64 search_start, u64 *start, u64 *len) 1336 { 1337 struct btrfs_fs_info *fs_info = device->fs_info; 1338 struct btrfs_root *root = fs_info->dev_root; 1339 struct btrfs_key key; 1340 struct btrfs_dev_extent *dev_extent; 1341 struct btrfs_path *path; 1342 u64 hole_size; 1343 u64 max_hole_start; 1344 u64 max_hole_size; 1345 u64 extent_end; 1346 u64 search_end = device->total_bytes; 1347 int ret; 1348 int slot; 1349 struct extent_buffer *l; 1350 1351 /* 1352 * We don't want to overwrite the superblock on the drive nor any area 1353 * used by the boot loader (grub for example), so we make sure to start 1354 * at an offset of at least 1MB. 1355 */ 1356 search_start = max_t(u64, search_start, SZ_1M); 1357 1358 path = btrfs_alloc_path(); 1359 if (!path) 1360 return -ENOMEM; 1361 1362 max_hole_start = search_start; 1363 max_hole_size = 0; 1364 1365 again: 1366 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1367 ret = -ENOSPC; 1368 goto out; 1369 } 1370 1371 path->reada = READA_FORWARD; 1372 path->search_commit_root = 1; 1373 path->skip_locking = 1; 1374 1375 key.objectid = device->devid; 1376 key.offset = search_start; 1377 key.type = BTRFS_DEV_EXTENT_KEY; 1378 1379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1380 if (ret < 0) 1381 goto out; 1382 if (ret > 0) { 1383 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1384 if (ret < 0) 1385 goto out; 1386 } 1387 1388 while (1) { 1389 l = path->nodes[0]; 1390 slot = path->slots[0]; 1391 if (slot >= btrfs_header_nritems(l)) { 1392 ret = btrfs_next_leaf(root, path); 1393 if (ret == 0) 1394 continue; 1395 if (ret < 0) 1396 goto out; 1397 1398 break; 1399 } 1400 btrfs_item_key_to_cpu(l, &key, slot); 1401 1402 if (key.objectid < device->devid) 1403 goto next; 1404 1405 if (key.objectid > device->devid) 1406 break; 1407 1408 if (key.type != BTRFS_DEV_EXTENT_KEY) 1409 goto next; 1410 1411 if (key.offset > search_start) { 1412 hole_size = key.offset - search_start; 1413 1414 /* 1415 * Have to check before we set max_hole_start, otherwise 1416 * we could end up sending back this offset anyway. 1417 */ 1418 if (contains_pending_extent(transaction, device, 1419 &search_start, 1420 hole_size)) { 1421 if (key.offset >= search_start) { 1422 hole_size = key.offset - search_start; 1423 } else { 1424 WARN_ON_ONCE(1); 1425 hole_size = 0; 1426 } 1427 } 1428 1429 if (hole_size > max_hole_size) { 1430 max_hole_start = search_start; 1431 max_hole_size = hole_size; 1432 } 1433 1434 /* 1435 * If this free space is greater than which we need, 1436 * it must be the max free space that we have found 1437 * until now, so max_hole_start must point to the start 1438 * of this free space and the length of this free space 1439 * is stored in max_hole_size. Thus, we return 1440 * max_hole_start and max_hole_size and go back to the 1441 * caller. 1442 */ 1443 if (hole_size >= num_bytes) { 1444 ret = 0; 1445 goto out; 1446 } 1447 } 1448 1449 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1450 extent_end = key.offset + btrfs_dev_extent_length(l, 1451 dev_extent); 1452 if (extent_end > search_start) 1453 search_start = extent_end; 1454 next: 1455 path->slots[0]++; 1456 cond_resched(); 1457 } 1458 1459 /* 1460 * At this point, search_start should be the end of 1461 * allocated dev extents, and when shrinking the device, 1462 * search_end may be smaller than search_start. 1463 */ 1464 if (search_end > search_start) { 1465 hole_size = search_end - search_start; 1466 1467 if (contains_pending_extent(transaction, device, &search_start, 1468 hole_size)) { 1469 btrfs_release_path(path); 1470 goto again; 1471 } 1472 1473 if (hole_size > max_hole_size) { 1474 max_hole_start = search_start; 1475 max_hole_size = hole_size; 1476 } 1477 } 1478 1479 /* See above. */ 1480 if (max_hole_size < num_bytes) 1481 ret = -ENOSPC; 1482 else 1483 ret = 0; 1484 1485 out: 1486 btrfs_free_path(path); 1487 *start = max_hole_start; 1488 if (len) 1489 *len = max_hole_size; 1490 return ret; 1491 } 1492 1493 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1494 struct btrfs_device *device, u64 num_bytes, 1495 u64 *start, u64 *len) 1496 { 1497 /* FIXME use last free of some kind */ 1498 return find_free_dev_extent_start(trans->transaction, device, 1499 num_bytes, 0, start, len); 1500 } 1501 1502 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1503 struct btrfs_device *device, 1504 u64 start, u64 *dev_extent_len) 1505 { 1506 struct btrfs_fs_info *fs_info = device->fs_info; 1507 struct btrfs_root *root = fs_info->dev_root; 1508 int ret; 1509 struct btrfs_path *path; 1510 struct btrfs_key key; 1511 struct btrfs_key found_key; 1512 struct extent_buffer *leaf = NULL; 1513 struct btrfs_dev_extent *extent = NULL; 1514 1515 path = btrfs_alloc_path(); 1516 if (!path) 1517 return -ENOMEM; 1518 1519 key.objectid = device->devid; 1520 key.offset = start; 1521 key.type = BTRFS_DEV_EXTENT_KEY; 1522 again: 1523 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1524 if (ret > 0) { 1525 ret = btrfs_previous_item(root, path, key.objectid, 1526 BTRFS_DEV_EXTENT_KEY); 1527 if (ret) 1528 goto out; 1529 leaf = path->nodes[0]; 1530 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1531 extent = btrfs_item_ptr(leaf, path->slots[0], 1532 struct btrfs_dev_extent); 1533 BUG_ON(found_key.offset > start || found_key.offset + 1534 btrfs_dev_extent_length(leaf, extent) < start); 1535 key = found_key; 1536 btrfs_release_path(path); 1537 goto again; 1538 } else if (ret == 0) { 1539 leaf = path->nodes[0]; 1540 extent = btrfs_item_ptr(leaf, path->slots[0], 1541 struct btrfs_dev_extent); 1542 } else { 1543 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1544 goto out; 1545 } 1546 1547 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1548 1549 ret = btrfs_del_item(trans, root, path); 1550 if (ret) { 1551 btrfs_handle_fs_error(fs_info, ret, 1552 "Failed to remove dev extent item"); 1553 } else { 1554 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1555 } 1556 out: 1557 btrfs_free_path(path); 1558 return ret; 1559 } 1560 1561 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1562 struct btrfs_device *device, 1563 u64 chunk_offset, u64 start, u64 num_bytes) 1564 { 1565 int ret; 1566 struct btrfs_path *path; 1567 struct btrfs_fs_info *fs_info = device->fs_info; 1568 struct btrfs_root *root = fs_info->dev_root; 1569 struct btrfs_dev_extent *extent; 1570 struct extent_buffer *leaf; 1571 struct btrfs_key key; 1572 1573 WARN_ON(!device->in_fs_metadata); 1574 WARN_ON(device->is_tgtdev_for_dev_replace); 1575 path = btrfs_alloc_path(); 1576 if (!path) 1577 return -ENOMEM; 1578 1579 key.objectid = device->devid; 1580 key.offset = start; 1581 key.type = BTRFS_DEV_EXTENT_KEY; 1582 ret = btrfs_insert_empty_item(trans, root, path, &key, 1583 sizeof(*extent)); 1584 if (ret) 1585 goto out; 1586 1587 leaf = path->nodes[0]; 1588 extent = btrfs_item_ptr(leaf, path->slots[0], 1589 struct btrfs_dev_extent); 1590 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1591 BTRFS_CHUNK_TREE_OBJECTID); 1592 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1593 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1594 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1595 1596 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1597 btrfs_mark_buffer_dirty(leaf); 1598 out: 1599 btrfs_free_path(path); 1600 return ret; 1601 } 1602 1603 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1604 { 1605 struct extent_map_tree *em_tree; 1606 struct extent_map *em; 1607 struct rb_node *n; 1608 u64 ret = 0; 1609 1610 em_tree = &fs_info->mapping_tree.map_tree; 1611 read_lock(&em_tree->lock); 1612 n = rb_last(&em_tree->map); 1613 if (n) { 1614 em = rb_entry(n, struct extent_map, rb_node); 1615 ret = em->start + em->len; 1616 } 1617 read_unlock(&em_tree->lock); 1618 1619 return ret; 1620 } 1621 1622 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1623 u64 *devid_ret) 1624 { 1625 int ret; 1626 struct btrfs_key key; 1627 struct btrfs_key found_key; 1628 struct btrfs_path *path; 1629 1630 path = btrfs_alloc_path(); 1631 if (!path) 1632 return -ENOMEM; 1633 1634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1635 key.type = BTRFS_DEV_ITEM_KEY; 1636 key.offset = (u64)-1; 1637 1638 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1639 if (ret < 0) 1640 goto error; 1641 1642 BUG_ON(ret == 0); /* Corruption */ 1643 1644 ret = btrfs_previous_item(fs_info->chunk_root, path, 1645 BTRFS_DEV_ITEMS_OBJECTID, 1646 BTRFS_DEV_ITEM_KEY); 1647 if (ret) { 1648 *devid_ret = 1; 1649 } else { 1650 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1651 path->slots[0]); 1652 *devid_ret = found_key.offset + 1; 1653 } 1654 ret = 0; 1655 error: 1656 btrfs_free_path(path); 1657 return ret; 1658 } 1659 1660 /* 1661 * the device information is stored in the chunk root 1662 * the btrfs_device struct should be fully filled in 1663 */ 1664 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1665 struct btrfs_fs_info *fs_info, 1666 struct btrfs_device *device) 1667 { 1668 struct btrfs_root *root = fs_info->chunk_root; 1669 int ret; 1670 struct btrfs_path *path; 1671 struct btrfs_dev_item *dev_item; 1672 struct extent_buffer *leaf; 1673 struct btrfs_key key; 1674 unsigned long ptr; 1675 1676 path = btrfs_alloc_path(); 1677 if (!path) 1678 return -ENOMEM; 1679 1680 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1681 key.type = BTRFS_DEV_ITEM_KEY; 1682 key.offset = device->devid; 1683 1684 ret = btrfs_insert_empty_item(trans, root, path, &key, 1685 sizeof(*dev_item)); 1686 if (ret) 1687 goto out; 1688 1689 leaf = path->nodes[0]; 1690 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1691 1692 btrfs_set_device_id(leaf, dev_item, device->devid); 1693 btrfs_set_device_generation(leaf, dev_item, 0); 1694 btrfs_set_device_type(leaf, dev_item, device->type); 1695 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1696 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1697 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1698 btrfs_set_device_total_bytes(leaf, dev_item, 1699 btrfs_device_get_disk_total_bytes(device)); 1700 btrfs_set_device_bytes_used(leaf, dev_item, 1701 btrfs_device_get_bytes_used(device)); 1702 btrfs_set_device_group(leaf, dev_item, 0); 1703 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1704 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1705 btrfs_set_device_start_offset(leaf, dev_item, 0); 1706 1707 ptr = btrfs_device_uuid(dev_item); 1708 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1709 ptr = btrfs_device_fsid(dev_item); 1710 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE); 1711 btrfs_mark_buffer_dirty(leaf); 1712 1713 ret = 0; 1714 out: 1715 btrfs_free_path(path); 1716 return ret; 1717 } 1718 1719 /* 1720 * Function to update ctime/mtime for a given device path. 1721 * Mainly used for ctime/mtime based probe like libblkid. 1722 */ 1723 static void update_dev_time(const char *path_name) 1724 { 1725 struct file *filp; 1726 1727 filp = filp_open(path_name, O_RDWR, 0); 1728 if (IS_ERR(filp)) 1729 return; 1730 file_update_time(filp); 1731 filp_close(filp, NULL); 1732 } 1733 1734 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, 1735 struct btrfs_device *device) 1736 { 1737 struct btrfs_root *root = fs_info->chunk_root; 1738 int ret; 1739 struct btrfs_path *path; 1740 struct btrfs_key key; 1741 struct btrfs_trans_handle *trans; 1742 1743 path = btrfs_alloc_path(); 1744 if (!path) 1745 return -ENOMEM; 1746 1747 trans = btrfs_start_transaction(root, 0); 1748 if (IS_ERR(trans)) { 1749 btrfs_free_path(path); 1750 return PTR_ERR(trans); 1751 } 1752 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1753 key.type = BTRFS_DEV_ITEM_KEY; 1754 key.offset = device->devid; 1755 1756 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1757 if (ret) { 1758 if (ret > 0) 1759 ret = -ENOENT; 1760 btrfs_abort_transaction(trans, ret); 1761 btrfs_end_transaction(trans); 1762 goto out; 1763 } 1764 1765 ret = btrfs_del_item(trans, root, path); 1766 if (ret) { 1767 btrfs_abort_transaction(trans, ret); 1768 btrfs_end_transaction(trans); 1769 } 1770 1771 out: 1772 btrfs_free_path(path); 1773 if (!ret) 1774 ret = btrfs_commit_transaction(trans); 1775 return ret; 1776 } 1777 1778 /* 1779 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1780 * filesystem. It's up to the caller to adjust that number regarding eg. device 1781 * replace. 1782 */ 1783 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1784 u64 num_devices) 1785 { 1786 u64 all_avail; 1787 unsigned seq; 1788 int i; 1789 1790 do { 1791 seq = read_seqbegin(&fs_info->profiles_lock); 1792 1793 all_avail = fs_info->avail_data_alloc_bits | 1794 fs_info->avail_system_alloc_bits | 1795 fs_info->avail_metadata_alloc_bits; 1796 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1797 1798 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1799 if (!(all_avail & btrfs_raid_group[i])) 1800 continue; 1801 1802 if (num_devices < btrfs_raid_array[i].devs_min) { 1803 int ret = btrfs_raid_mindev_error[i]; 1804 1805 if (ret) 1806 return ret; 1807 } 1808 } 1809 1810 return 0; 1811 } 1812 1813 static struct btrfs_device * btrfs_find_next_active_device( 1814 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1815 { 1816 struct btrfs_device *next_device; 1817 1818 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1819 if (next_device != device && 1820 !next_device->missing && next_device->bdev) 1821 return next_device; 1822 } 1823 1824 return NULL; 1825 } 1826 1827 /* 1828 * Helper function to check if the given device is part of s_bdev / latest_bdev 1829 * and replace it with the provided or the next active device, in the context 1830 * where this function called, there should be always be another device (or 1831 * this_dev) which is active. 1832 */ 1833 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 1834 struct btrfs_device *device, struct btrfs_device *this_dev) 1835 { 1836 struct btrfs_device *next_device; 1837 1838 if (this_dev) 1839 next_device = this_dev; 1840 else 1841 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1842 device); 1843 ASSERT(next_device); 1844 1845 if (fs_info->sb->s_bdev && 1846 (fs_info->sb->s_bdev == device->bdev)) 1847 fs_info->sb->s_bdev = next_device->bdev; 1848 1849 if (fs_info->fs_devices->latest_bdev == device->bdev) 1850 fs_info->fs_devices->latest_bdev = next_device->bdev; 1851 } 1852 1853 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 1854 u64 devid) 1855 { 1856 struct btrfs_device *device; 1857 struct btrfs_fs_devices *cur_devices; 1858 u64 num_devices; 1859 int ret = 0; 1860 1861 mutex_lock(&uuid_mutex); 1862 1863 num_devices = fs_info->fs_devices->num_devices; 1864 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 1865 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1866 WARN_ON(num_devices < 1); 1867 num_devices--; 1868 } 1869 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 1870 1871 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1872 if (ret) 1873 goto out; 1874 1875 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, 1876 &device); 1877 if (ret) 1878 goto out; 1879 1880 if (device->is_tgtdev_for_dev_replace) { 1881 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1882 goto out; 1883 } 1884 1885 if (device->writeable && fs_info->fs_devices->rw_devices == 1) { 1886 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1887 goto out; 1888 } 1889 1890 if (device->writeable) { 1891 mutex_lock(&fs_info->chunk_mutex); 1892 list_del_init(&device->dev_alloc_list); 1893 device->fs_devices->rw_devices--; 1894 mutex_unlock(&fs_info->chunk_mutex); 1895 } 1896 1897 mutex_unlock(&uuid_mutex); 1898 ret = btrfs_shrink_device(device, 0); 1899 mutex_lock(&uuid_mutex); 1900 if (ret) 1901 goto error_undo; 1902 1903 /* 1904 * TODO: the superblock still includes this device in its num_devices 1905 * counter although write_all_supers() is not locked out. This 1906 * could give a filesystem state which requires a degraded mount. 1907 */ 1908 ret = btrfs_rm_dev_item(fs_info, device); 1909 if (ret) 1910 goto error_undo; 1911 1912 device->in_fs_metadata = 0; 1913 btrfs_scrub_cancel_dev(fs_info, device); 1914 1915 /* 1916 * the device list mutex makes sure that we don't change 1917 * the device list while someone else is writing out all 1918 * the device supers. Whoever is writing all supers, should 1919 * lock the device list mutex before getting the number of 1920 * devices in the super block (super_copy). Conversely, 1921 * whoever updates the number of devices in the super block 1922 * (super_copy) should hold the device list mutex. 1923 */ 1924 1925 cur_devices = device->fs_devices; 1926 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1927 list_del_rcu(&device->dev_list); 1928 1929 device->fs_devices->num_devices--; 1930 device->fs_devices->total_devices--; 1931 1932 if (device->missing) 1933 device->fs_devices->missing_devices--; 1934 1935 btrfs_assign_next_active_device(fs_info, device, NULL); 1936 1937 if (device->bdev) { 1938 device->fs_devices->open_devices--; 1939 /* remove sysfs entry */ 1940 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 1941 } 1942 1943 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 1944 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 1945 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1946 1947 /* 1948 * at this point, the device is zero sized and detached from 1949 * the devices list. All that's left is to zero out the old 1950 * supers and free the device. 1951 */ 1952 if (device->writeable) 1953 btrfs_scratch_superblocks(device->bdev, device->name->str); 1954 1955 btrfs_close_bdev(device); 1956 call_rcu(&device->rcu, free_device); 1957 1958 if (cur_devices->open_devices == 0) { 1959 struct btrfs_fs_devices *fs_devices; 1960 fs_devices = fs_info->fs_devices; 1961 while (fs_devices) { 1962 if (fs_devices->seed == cur_devices) { 1963 fs_devices->seed = cur_devices->seed; 1964 break; 1965 } 1966 fs_devices = fs_devices->seed; 1967 } 1968 cur_devices->seed = NULL; 1969 __btrfs_close_devices(cur_devices); 1970 free_fs_devices(cur_devices); 1971 } 1972 1973 out: 1974 mutex_unlock(&uuid_mutex); 1975 return ret; 1976 1977 error_undo: 1978 if (device->writeable) { 1979 mutex_lock(&fs_info->chunk_mutex); 1980 list_add(&device->dev_alloc_list, 1981 &fs_info->fs_devices->alloc_list); 1982 device->fs_devices->rw_devices++; 1983 mutex_unlock(&fs_info->chunk_mutex); 1984 } 1985 goto out; 1986 } 1987 1988 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1989 struct btrfs_device *srcdev) 1990 { 1991 struct btrfs_fs_devices *fs_devices; 1992 1993 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1994 1995 /* 1996 * in case of fs with no seed, srcdev->fs_devices will point 1997 * to fs_devices of fs_info. However when the dev being replaced is 1998 * a seed dev it will point to the seed's local fs_devices. In short 1999 * srcdev will have its correct fs_devices in both the cases. 2000 */ 2001 fs_devices = srcdev->fs_devices; 2002 2003 list_del_rcu(&srcdev->dev_list); 2004 list_del(&srcdev->dev_alloc_list); 2005 fs_devices->num_devices--; 2006 if (srcdev->missing) 2007 fs_devices->missing_devices--; 2008 2009 if (srcdev->writeable) 2010 fs_devices->rw_devices--; 2011 2012 if (srcdev->bdev) 2013 fs_devices->open_devices--; 2014 } 2015 2016 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2017 struct btrfs_device *srcdev) 2018 { 2019 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2020 2021 if (srcdev->writeable) { 2022 /* zero out the old super if it is writable */ 2023 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2024 } 2025 2026 btrfs_close_bdev(srcdev); 2027 call_rcu(&srcdev->rcu, free_device); 2028 2029 /* if this is no devs we rather delete the fs_devices */ 2030 if (!fs_devices->num_devices) { 2031 struct btrfs_fs_devices *tmp_fs_devices; 2032 2033 /* 2034 * On a mounted FS, num_devices can't be zero unless it's a 2035 * seed. In case of a seed device being replaced, the replace 2036 * target added to the sprout FS, so there will be no more 2037 * device left under the seed FS. 2038 */ 2039 ASSERT(fs_devices->seeding); 2040 2041 tmp_fs_devices = fs_info->fs_devices; 2042 while (tmp_fs_devices) { 2043 if (tmp_fs_devices->seed == fs_devices) { 2044 tmp_fs_devices->seed = fs_devices->seed; 2045 break; 2046 } 2047 tmp_fs_devices = tmp_fs_devices->seed; 2048 } 2049 fs_devices->seed = NULL; 2050 __btrfs_close_devices(fs_devices); 2051 free_fs_devices(fs_devices); 2052 } 2053 } 2054 2055 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2056 struct btrfs_device *tgtdev) 2057 { 2058 mutex_lock(&uuid_mutex); 2059 WARN_ON(!tgtdev); 2060 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2061 2062 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2063 2064 if (tgtdev->bdev) 2065 fs_info->fs_devices->open_devices--; 2066 2067 fs_info->fs_devices->num_devices--; 2068 2069 btrfs_assign_next_active_device(fs_info, tgtdev, NULL); 2070 2071 list_del_rcu(&tgtdev->dev_list); 2072 2073 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2074 mutex_unlock(&uuid_mutex); 2075 2076 /* 2077 * The update_dev_time() with in btrfs_scratch_superblocks() 2078 * may lead to a call to btrfs_show_devname() which will try 2079 * to hold device_list_mutex. And here this device 2080 * is already out of device list, so we don't have to hold 2081 * the device_list_mutex lock. 2082 */ 2083 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2084 2085 btrfs_close_bdev(tgtdev); 2086 call_rcu(&tgtdev->rcu, free_device); 2087 } 2088 2089 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, 2090 const char *device_path, 2091 struct btrfs_device **device) 2092 { 2093 int ret = 0; 2094 struct btrfs_super_block *disk_super; 2095 u64 devid; 2096 u8 *dev_uuid; 2097 struct block_device *bdev; 2098 struct buffer_head *bh; 2099 2100 *device = NULL; 2101 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2102 fs_info->bdev_holder, 0, &bdev, &bh); 2103 if (ret) 2104 return ret; 2105 disk_super = (struct btrfs_super_block *)bh->b_data; 2106 devid = btrfs_stack_device_id(&disk_super->dev_item); 2107 dev_uuid = disk_super->dev_item.uuid; 2108 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); 2109 brelse(bh); 2110 if (!*device) 2111 ret = -ENOENT; 2112 blkdev_put(bdev, FMODE_READ); 2113 return ret; 2114 } 2115 2116 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, 2117 const char *device_path, 2118 struct btrfs_device **device) 2119 { 2120 *device = NULL; 2121 if (strcmp(device_path, "missing") == 0) { 2122 struct list_head *devices; 2123 struct btrfs_device *tmp; 2124 2125 devices = &fs_info->fs_devices->devices; 2126 /* 2127 * It is safe to read the devices since the volume_mutex 2128 * is held by the caller. 2129 */ 2130 list_for_each_entry(tmp, devices, dev_list) { 2131 if (tmp->in_fs_metadata && !tmp->bdev) { 2132 *device = tmp; 2133 break; 2134 } 2135 } 2136 2137 if (!*device) 2138 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2139 2140 return 0; 2141 } else { 2142 return btrfs_find_device_by_path(fs_info, device_path, device); 2143 } 2144 } 2145 2146 /* 2147 * Lookup a device given by device id, or the path if the id is 0. 2148 */ 2149 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, 2150 const char *devpath, 2151 struct btrfs_device **device) 2152 { 2153 int ret; 2154 2155 if (devid) { 2156 ret = 0; 2157 *device = btrfs_find_device(fs_info, devid, NULL, NULL); 2158 if (!*device) 2159 ret = -ENOENT; 2160 } else { 2161 if (!devpath || !devpath[0]) 2162 return -EINVAL; 2163 2164 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, 2165 device); 2166 } 2167 return ret; 2168 } 2169 2170 /* 2171 * does all the dirty work required for changing file system's UUID. 2172 */ 2173 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2174 { 2175 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2176 struct btrfs_fs_devices *old_devices; 2177 struct btrfs_fs_devices *seed_devices; 2178 struct btrfs_super_block *disk_super = fs_info->super_copy; 2179 struct btrfs_device *device; 2180 u64 super_flags; 2181 2182 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2183 if (!fs_devices->seeding) 2184 return -EINVAL; 2185 2186 seed_devices = alloc_fs_devices(NULL); 2187 if (IS_ERR(seed_devices)) 2188 return PTR_ERR(seed_devices); 2189 2190 old_devices = clone_fs_devices(fs_devices); 2191 if (IS_ERR(old_devices)) { 2192 kfree(seed_devices); 2193 return PTR_ERR(old_devices); 2194 } 2195 2196 list_add(&old_devices->list, &fs_uuids); 2197 2198 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2199 seed_devices->opened = 1; 2200 INIT_LIST_HEAD(&seed_devices->devices); 2201 INIT_LIST_HEAD(&seed_devices->alloc_list); 2202 mutex_init(&seed_devices->device_list_mutex); 2203 2204 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2205 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2206 synchronize_rcu); 2207 list_for_each_entry(device, &seed_devices->devices, dev_list) 2208 device->fs_devices = seed_devices; 2209 2210 mutex_lock(&fs_info->chunk_mutex); 2211 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2212 mutex_unlock(&fs_info->chunk_mutex); 2213 2214 fs_devices->seeding = 0; 2215 fs_devices->num_devices = 0; 2216 fs_devices->open_devices = 0; 2217 fs_devices->missing_devices = 0; 2218 fs_devices->rotating = 0; 2219 fs_devices->seed = seed_devices; 2220 2221 generate_random_uuid(fs_devices->fsid); 2222 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2223 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2224 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2225 2226 super_flags = btrfs_super_flags(disk_super) & 2227 ~BTRFS_SUPER_FLAG_SEEDING; 2228 btrfs_set_super_flags(disk_super, super_flags); 2229 2230 return 0; 2231 } 2232 2233 /* 2234 * Store the expected generation for seed devices in device items. 2235 */ 2236 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2237 struct btrfs_fs_info *fs_info) 2238 { 2239 struct btrfs_root *root = fs_info->chunk_root; 2240 struct btrfs_path *path; 2241 struct extent_buffer *leaf; 2242 struct btrfs_dev_item *dev_item; 2243 struct btrfs_device *device; 2244 struct btrfs_key key; 2245 u8 fs_uuid[BTRFS_FSID_SIZE]; 2246 u8 dev_uuid[BTRFS_UUID_SIZE]; 2247 u64 devid; 2248 int ret; 2249 2250 path = btrfs_alloc_path(); 2251 if (!path) 2252 return -ENOMEM; 2253 2254 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2255 key.offset = 0; 2256 key.type = BTRFS_DEV_ITEM_KEY; 2257 2258 while (1) { 2259 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2260 if (ret < 0) 2261 goto error; 2262 2263 leaf = path->nodes[0]; 2264 next_slot: 2265 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2266 ret = btrfs_next_leaf(root, path); 2267 if (ret > 0) 2268 break; 2269 if (ret < 0) 2270 goto error; 2271 leaf = path->nodes[0]; 2272 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2273 btrfs_release_path(path); 2274 continue; 2275 } 2276 2277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2278 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2279 key.type != BTRFS_DEV_ITEM_KEY) 2280 break; 2281 2282 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2283 struct btrfs_dev_item); 2284 devid = btrfs_device_id(leaf, dev_item); 2285 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2286 BTRFS_UUID_SIZE); 2287 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2288 BTRFS_FSID_SIZE); 2289 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 2290 BUG_ON(!device); /* Logic error */ 2291 2292 if (device->fs_devices->seeding) { 2293 btrfs_set_device_generation(leaf, dev_item, 2294 device->generation); 2295 btrfs_mark_buffer_dirty(leaf); 2296 } 2297 2298 path->slots[0]++; 2299 goto next_slot; 2300 } 2301 ret = 0; 2302 error: 2303 btrfs_free_path(path); 2304 return ret; 2305 } 2306 2307 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2308 { 2309 struct btrfs_root *root = fs_info->dev_root; 2310 struct request_queue *q; 2311 struct btrfs_trans_handle *trans; 2312 struct btrfs_device *device; 2313 struct block_device *bdev; 2314 struct list_head *devices; 2315 struct super_block *sb = fs_info->sb; 2316 struct rcu_string *name; 2317 u64 tmp; 2318 int seeding_dev = 0; 2319 int ret = 0; 2320 bool unlocked = false; 2321 2322 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding) 2323 return -EROFS; 2324 2325 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2326 fs_info->bdev_holder); 2327 if (IS_ERR(bdev)) 2328 return PTR_ERR(bdev); 2329 2330 if (fs_info->fs_devices->seeding) { 2331 seeding_dev = 1; 2332 down_write(&sb->s_umount); 2333 mutex_lock(&uuid_mutex); 2334 } 2335 2336 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2337 2338 devices = &fs_info->fs_devices->devices; 2339 2340 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2341 list_for_each_entry(device, devices, dev_list) { 2342 if (device->bdev == bdev) { 2343 ret = -EEXIST; 2344 mutex_unlock( 2345 &fs_info->fs_devices->device_list_mutex); 2346 goto error; 2347 } 2348 } 2349 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2350 2351 device = btrfs_alloc_device(fs_info, NULL, NULL); 2352 if (IS_ERR(device)) { 2353 /* we can safely leave the fs_devices entry around */ 2354 ret = PTR_ERR(device); 2355 goto error; 2356 } 2357 2358 name = rcu_string_strdup(device_path, GFP_KERNEL); 2359 if (!name) { 2360 bio_put(device->flush_bio); 2361 kfree(device); 2362 ret = -ENOMEM; 2363 goto error; 2364 } 2365 rcu_assign_pointer(device->name, name); 2366 2367 trans = btrfs_start_transaction(root, 0); 2368 if (IS_ERR(trans)) { 2369 rcu_string_free(device->name); 2370 bio_put(device->flush_bio); 2371 kfree(device); 2372 ret = PTR_ERR(trans); 2373 goto error; 2374 } 2375 2376 q = bdev_get_queue(bdev); 2377 if (blk_queue_discard(q)) 2378 device->can_discard = 1; 2379 device->writeable = 1; 2380 device->generation = trans->transid; 2381 device->io_width = fs_info->sectorsize; 2382 device->io_align = fs_info->sectorsize; 2383 device->sector_size = fs_info->sectorsize; 2384 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2385 fs_info->sectorsize); 2386 device->disk_total_bytes = device->total_bytes; 2387 device->commit_total_bytes = device->total_bytes; 2388 device->fs_info = fs_info; 2389 device->bdev = bdev; 2390 device->in_fs_metadata = 1; 2391 device->is_tgtdev_for_dev_replace = 0; 2392 device->mode = FMODE_EXCL; 2393 device->dev_stats_valid = 1; 2394 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2395 2396 if (seeding_dev) { 2397 sb->s_flags &= ~SB_RDONLY; 2398 ret = btrfs_prepare_sprout(fs_info); 2399 if (ret) { 2400 btrfs_abort_transaction(trans, ret); 2401 goto error_trans; 2402 } 2403 } 2404 2405 device->fs_devices = fs_info->fs_devices; 2406 2407 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2408 mutex_lock(&fs_info->chunk_mutex); 2409 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices); 2410 list_add(&device->dev_alloc_list, 2411 &fs_info->fs_devices->alloc_list); 2412 fs_info->fs_devices->num_devices++; 2413 fs_info->fs_devices->open_devices++; 2414 fs_info->fs_devices->rw_devices++; 2415 fs_info->fs_devices->total_devices++; 2416 fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2417 2418 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2419 2420 if (!blk_queue_nonrot(q)) 2421 fs_info->fs_devices->rotating = 1; 2422 2423 tmp = btrfs_super_total_bytes(fs_info->super_copy); 2424 btrfs_set_super_total_bytes(fs_info->super_copy, 2425 round_down(tmp + device->total_bytes, fs_info->sectorsize)); 2426 2427 tmp = btrfs_super_num_devices(fs_info->super_copy); 2428 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1); 2429 2430 /* add sysfs device entry */ 2431 btrfs_sysfs_add_device_link(fs_info->fs_devices, device); 2432 2433 /* 2434 * we've got more storage, clear any full flags on the space 2435 * infos 2436 */ 2437 btrfs_clear_space_info_full(fs_info); 2438 2439 mutex_unlock(&fs_info->chunk_mutex); 2440 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2441 2442 if (seeding_dev) { 2443 mutex_lock(&fs_info->chunk_mutex); 2444 ret = init_first_rw_device(trans, fs_info); 2445 mutex_unlock(&fs_info->chunk_mutex); 2446 if (ret) { 2447 btrfs_abort_transaction(trans, ret); 2448 goto error_sysfs; 2449 } 2450 } 2451 2452 ret = btrfs_add_device(trans, fs_info, device); 2453 if (ret) { 2454 btrfs_abort_transaction(trans, ret); 2455 goto error_sysfs; 2456 } 2457 2458 if (seeding_dev) { 2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2460 2461 ret = btrfs_finish_sprout(trans, fs_info); 2462 if (ret) { 2463 btrfs_abort_transaction(trans, ret); 2464 goto error_sysfs; 2465 } 2466 2467 /* Sprouting would change fsid of the mounted root, 2468 * so rename the fsid on the sysfs 2469 */ 2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2471 fs_info->fsid); 2472 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf)) 2473 btrfs_warn(fs_info, 2474 "sysfs: failed to create fsid for sprout"); 2475 } 2476 2477 ret = btrfs_commit_transaction(trans); 2478 2479 if (seeding_dev) { 2480 mutex_unlock(&uuid_mutex); 2481 up_write(&sb->s_umount); 2482 unlocked = true; 2483 2484 if (ret) /* transaction commit */ 2485 return ret; 2486 2487 ret = btrfs_relocate_sys_chunks(fs_info); 2488 if (ret < 0) 2489 btrfs_handle_fs_error(fs_info, ret, 2490 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2491 trans = btrfs_attach_transaction(root); 2492 if (IS_ERR(trans)) { 2493 if (PTR_ERR(trans) == -ENOENT) 2494 return 0; 2495 ret = PTR_ERR(trans); 2496 trans = NULL; 2497 goto error_sysfs; 2498 } 2499 ret = btrfs_commit_transaction(trans); 2500 } 2501 2502 /* Update ctime/mtime for libblkid */ 2503 update_dev_time(device_path); 2504 return ret; 2505 2506 error_sysfs: 2507 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device); 2508 error_trans: 2509 if (seeding_dev) 2510 sb->s_flags |= SB_RDONLY; 2511 if (trans) 2512 btrfs_end_transaction(trans); 2513 rcu_string_free(device->name); 2514 bio_put(device->flush_bio); 2515 kfree(device); 2516 error: 2517 blkdev_put(bdev, FMODE_EXCL); 2518 if (seeding_dev && !unlocked) { 2519 mutex_unlock(&uuid_mutex); 2520 up_write(&sb->s_umount); 2521 } 2522 return ret; 2523 } 2524 2525 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2526 const char *device_path, 2527 struct btrfs_device *srcdev, 2528 struct btrfs_device **device_out) 2529 { 2530 struct request_queue *q; 2531 struct btrfs_device *device; 2532 struct block_device *bdev; 2533 struct list_head *devices; 2534 struct rcu_string *name; 2535 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2536 int ret = 0; 2537 2538 *device_out = NULL; 2539 if (fs_info->fs_devices->seeding) { 2540 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2541 return -EINVAL; 2542 } 2543 2544 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2545 fs_info->bdev_holder); 2546 if (IS_ERR(bdev)) { 2547 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2548 return PTR_ERR(bdev); 2549 } 2550 2551 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2552 2553 devices = &fs_info->fs_devices->devices; 2554 list_for_each_entry(device, devices, dev_list) { 2555 if (device->bdev == bdev) { 2556 btrfs_err(fs_info, 2557 "target device is in the filesystem!"); 2558 ret = -EEXIST; 2559 goto error; 2560 } 2561 } 2562 2563 2564 if (i_size_read(bdev->bd_inode) < 2565 btrfs_device_get_total_bytes(srcdev)) { 2566 btrfs_err(fs_info, 2567 "target device is smaller than source device!"); 2568 ret = -EINVAL; 2569 goto error; 2570 } 2571 2572 2573 device = btrfs_alloc_device(NULL, &devid, NULL); 2574 if (IS_ERR(device)) { 2575 ret = PTR_ERR(device); 2576 goto error; 2577 } 2578 2579 name = rcu_string_strdup(device_path, GFP_KERNEL); 2580 if (!name) { 2581 bio_put(device->flush_bio); 2582 kfree(device); 2583 ret = -ENOMEM; 2584 goto error; 2585 } 2586 rcu_assign_pointer(device->name, name); 2587 2588 q = bdev_get_queue(bdev); 2589 if (blk_queue_discard(q)) 2590 device->can_discard = 1; 2591 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2592 device->writeable = 1; 2593 device->generation = 0; 2594 device->io_width = fs_info->sectorsize; 2595 device->io_align = fs_info->sectorsize; 2596 device->sector_size = fs_info->sectorsize; 2597 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2598 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2599 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2600 ASSERT(list_empty(&srcdev->resized_list)); 2601 device->commit_total_bytes = srcdev->commit_total_bytes; 2602 device->commit_bytes_used = device->bytes_used; 2603 device->fs_info = fs_info; 2604 device->bdev = bdev; 2605 device->in_fs_metadata = 1; 2606 device->is_tgtdev_for_dev_replace = 1; 2607 device->mode = FMODE_EXCL; 2608 device->dev_stats_valid = 1; 2609 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2610 device->fs_devices = fs_info->fs_devices; 2611 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2612 fs_info->fs_devices->num_devices++; 2613 fs_info->fs_devices->open_devices++; 2614 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2615 2616 *device_out = device; 2617 return ret; 2618 2619 error: 2620 blkdev_put(bdev, FMODE_EXCL); 2621 return ret; 2622 } 2623 2624 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2625 struct btrfs_device *tgtdev) 2626 { 2627 u32 sectorsize = fs_info->sectorsize; 2628 2629 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2630 tgtdev->io_width = sectorsize; 2631 tgtdev->io_align = sectorsize; 2632 tgtdev->sector_size = sectorsize; 2633 tgtdev->fs_info = fs_info; 2634 tgtdev->in_fs_metadata = 1; 2635 } 2636 2637 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2638 struct btrfs_device *device) 2639 { 2640 int ret; 2641 struct btrfs_path *path; 2642 struct btrfs_root *root = device->fs_info->chunk_root; 2643 struct btrfs_dev_item *dev_item; 2644 struct extent_buffer *leaf; 2645 struct btrfs_key key; 2646 2647 path = btrfs_alloc_path(); 2648 if (!path) 2649 return -ENOMEM; 2650 2651 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2652 key.type = BTRFS_DEV_ITEM_KEY; 2653 key.offset = device->devid; 2654 2655 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2656 if (ret < 0) 2657 goto out; 2658 2659 if (ret > 0) { 2660 ret = -ENOENT; 2661 goto out; 2662 } 2663 2664 leaf = path->nodes[0]; 2665 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2666 2667 btrfs_set_device_id(leaf, dev_item, device->devid); 2668 btrfs_set_device_type(leaf, dev_item, device->type); 2669 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2670 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2671 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2672 btrfs_set_device_total_bytes(leaf, dev_item, 2673 btrfs_device_get_disk_total_bytes(device)); 2674 btrfs_set_device_bytes_used(leaf, dev_item, 2675 btrfs_device_get_bytes_used(device)); 2676 btrfs_mark_buffer_dirty(leaf); 2677 2678 out: 2679 btrfs_free_path(path); 2680 return ret; 2681 } 2682 2683 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2684 struct btrfs_device *device, u64 new_size) 2685 { 2686 struct btrfs_fs_info *fs_info = device->fs_info; 2687 struct btrfs_super_block *super_copy = fs_info->super_copy; 2688 struct btrfs_fs_devices *fs_devices; 2689 u64 old_total; 2690 u64 diff; 2691 2692 if (!device->writeable) 2693 return -EACCES; 2694 2695 new_size = round_down(new_size, fs_info->sectorsize); 2696 2697 mutex_lock(&fs_info->chunk_mutex); 2698 old_total = btrfs_super_total_bytes(super_copy); 2699 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2700 2701 if (new_size <= device->total_bytes || 2702 device->is_tgtdev_for_dev_replace) { 2703 mutex_unlock(&fs_info->chunk_mutex); 2704 return -EINVAL; 2705 } 2706 2707 fs_devices = fs_info->fs_devices; 2708 2709 btrfs_set_super_total_bytes(super_copy, 2710 round_down(old_total + diff, fs_info->sectorsize)); 2711 device->fs_devices->total_rw_bytes += diff; 2712 2713 btrfs_device_set_total_bytes(device, new_size); 2714 btrfs_device_set_disk_total_bytes(device, new_size); 2715 btrfs_clear_space_info_full(device->fs_info); 2716 if (list_empty(&device->resized_list)) 2717 list_add_tail(&device->resized_list, 2718 &fs_devices->resized_devices); 2719 mutex_unlock(&fs_info->chunk_mutex); 2720 2721 return btrfs_update_device(trans, device); 2722 } 2723 2724 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2725 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2726 { 2727 struct btrfs_root *root = fs_info->chunk_root; 2728 int ret; 2729 struct btrfs_path *path; 2730 struct btrfs_key key; 2731 2732 path = btrfs_alloc_path(); 2733 if (!path) 2734 return -ENOMEM; 2735 2736 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2737 key.offset = chunk_offset; 2738 key.type = BTRFS_CHUNK_ITEM_KEY; 2739 2740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2741 if (ret < 0) 2742 goto out; 2743 else if (ret > 0) { /* Logic error or corruption */ 2744 btrfs_handle_fs_error(fs_info, -ENOENT, 2745 "Failed lookup while freeing chunk."); 2746 ret = -ENOENT; 2747 goto out; 2748 } 2749 2750 ret = btrfs_del_item(trans, root, path); 2751 if (ret < 0) 2752 btrfs_handle_fs_error(fs_info, ret, 2753 "Failed to delete chunk item."); 2754 out: 2755 btrfs_free_path(path); 2756 return ret; 2757 } 2758 2759 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2760 { 2761 struct btrfs_super_block *super_copy = fs_info->super_copy; 2762 struct btrfs_disk_key *disk_key; 2763 struct btrfs_chunk *chunk; 2764 u8 *ptr; 2765 int ret = 0; 2766 u32 num_stripes; 2767 u32 array_size; 2768 u32 len = 0; 2769 u32 cur; 2770 struct btrfs_key key; 2771 2772 mutex_lock(&fs_info->chunk_mutex); 2773 array_size = btrfs_super_sys_array_size(super_copy); 2774 2775 ptr = super_copy->sys_chunk_array; 2776 cur = 0; 2777 2778 while (cur < array_size) { 2779 disk_key = (struct btrfs_disk_key *)ptr; 2780 btrfs_disk_key_to_cpu(&key, disk_key); 2781 2782 len = sizeof(*disk_key); 2783 2784 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2785 chunk = (struct btrfs_chunk *)(ptr + len); 2786 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2787 len += btrfs_chunk_item_size(num_stripes); 2788 } else { 2789 ret = -EIO; 2790 break; 2791 } 2792 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2793 key.offset == chunk_offset) { 2794 memmove(ptr, ptr + len, array_size - (cur + len)); 2795 array_size -= len; 2796 btrfs_set_super_sys_array_size(super_copy, array_size); 2797 } else { 2798 ptr += len; 2799 cur += len; 2800 } 2801 } 2802 mutex_unlock(&fs_info->chunk_mutex); 2803 return ret; 2804 } 2805 2806 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info, 2807 u64 logical, u64 length) 2808 { 2809 struct extent_map_tree *em_tree; 2810 struct extent_map *em; 2811 2812 em_tree = &fs_info->mapping_tree.map_tree; 2813 read_lock(&em_tree->lock); 2814 em = lookup_extent_mapping(em_tree, logical, length); 2815 read_unlock(&em_tree->lock); 2816 2817 if (!em) { 2818 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2819 logical, length); 2820 return ERR_PTR(-EINVAL); 2821 } 2822 2823 if (em->start > logical || em->start + em->len < logical) { 2824 btrfs_crit(fs_info, 2825 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2826 logical, length, em->start, em->start + em->len); 2827 free_extent_map(em); 2828 return ERR_PTR(-EINVAL); 2829 } 2830 2831 /* callers are responsible for dropping em's ref. */ 2832 return em; 2833 } 2834 2835 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2836 struct btrfs_fs_info *fs_info, u64 chunk_offset) 2837 { 2838 struct extent_map *em; 2839 struct map_lookup *map; 2840 u64 dev_extent_len = 0; 2841 int i, ret = 0; 2842 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2843 2844 em = get_chunk_map(fs_info, chunk_offset, 1); 2845 if (IS_ERR(em)) { 2846 /* 2847 * This is a logic error, but we don't want to just rely on the 2848 * user having built with ASSERT enabled, so if ASSERT doesn't 2849 * do anything we still error out. 2850 */ 2851 ASSERT(0); 2852 return PTR_ERR(em); 2853 } 2854 map = em->map_lookup; 2855 mutex_lock(&fs_info->chunk_mutex); 2856 check_system_chunk(trans, fs_info, map->type); 2857 mutex_unlock(&fs_info->chunk_mutex); 2858 2859 /* 2860 * Take the device list mutex to prevent races with the final phase of 2861 * a device replace operation that replaces the device object associated 2862 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2863 */ 2864 mutex_lock(&fs_devices->device_list_mutex); 2865 for (i = 0; i < map->num_stripes; i++) { 2866 struct btrfs_device *device = map->stripes[i].dev; 2867 ret = btrfs_free_dev_extent(trans, device, 2868 map->stripes[i].physical, 2869 &dev_extent_len); 2870 if (ret) { 2871 mutex_unlock(&fs_devices->device_list_mutex); 2872 btrfs_abort_transaction(trans, ret); 2873 goto out; 2874 } 2875 2876 if (device->bytes_used > 0) { 2877 mutex_lock(&fs_info->chunk_mutex); 2878 btrfs_device_set_bytes_used(device, 2879 device->bytes_used - dev_extent_len); 2880 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2881 btrfs_clear_space_info_full(fs_info); 2882 mutex_unlock(&fs_info->chunk_mutex); 2883 } 2884 2885 if (map->stripes[i].dev) { 2886 ret = btrfs_update_device(trans, map->stripes[i].dev); 2887 if (ret) { 2888 mutex_unlock(&fs_devices->device_list_mutex); 2889 btrfs_abort_transaction(trans, ret); 2890 goto out; 2891 } 2892 } 2893 } 2894 mutex_unlock(&fs_devices->device_list_mutex); 2895 2896 ret = btrfs_free_chunk(trans, fs_info, chunk_offset); 2897 if (ret) { 2898 btrfs_abort_transaction(trans, ret); 2899 goto out; 2900 } 2901 2902 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2903 2904 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2905 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2906 if (ret) { 2907 btrfs_abort_transaction(trans, ret); 2908 goto out; 2909 } 2910 } 2911 2912 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em); 2913 if (ret) { 2914 btrfs_abort_transaction(trans, ret); 2915 goto out; 2916 } 2917 2918 out: 2919 /* once for us */ 2920 free_extent_map(em); 2921 return ret; 2922 } 2923 2924 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2925 { 2926 struct btrfs_root *root = fs_info->chunk_root; 2927 struct btrfs_trans_handle *trans; 2928 int ret; 2929 2930 /* 2931 * Prevent races with automatic removal of unused block groups. 2932 * After we relocate and before we remove the chunk with offset 2933 * chunk_offset, automatic removal of the block group can kick in, 2934 * resulting in a failure when calling btrfs_remove_chunk() below. 2935 * 2936 * Make sure to acquire this mutex before doing a tree search (dev 2937 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2938 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2939 * we release the path used to search the chunk/dev tree and before 2940 * the current task acquires this mutex and calls us. 2941 */ 2942 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex)); 2943 2944 ret = btrfs_can_relocate(fs_info, chunk_offset); 2945 if (ret) 2946 return -ENOSPC; 2947 2948 /* step one, relocate all the extents inside this chunk */ 2949 btrfs_scrub_pause(fs_info); 2950 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2951 btrfs_scrub_continue(fs_info); 2952 if (ret) 2953 return ret; 2954 2955 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2956 chunk_offset); 2957 if (IS_ERR(trans)) { 2958 ret = PTR_ERR(trans); 2959 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2960 return ret; 2961 } 2962 2963 /* 2964 * step two, delete the device extents and the 2965 * chunk tree entries 2966 */ 2967 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset); 2968 btrfs_end_transaction(trans); 2969 return ret; 2970 } 2971 2972 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 2973 { 2974 struct btrfs_root *chunk_root = fs_info->chunk_root; 2975 struct btrfs_path *path; 2976 struct extent_buffer *leaf; 2977 struct btrfs_chunk *chunk; 2978 struct btrfs_key key; 2979 struct btrfs_key found_key; 2980 u64 chunk_type; 2981 bool retried = false; 2982 int failed = 0; 2983 int ret; 2984 2985 path = btrfs_alloc_path(); 2986 if (!path) 2987 return -ENOMEM; 2988 2989 again: 2990 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2991 key.offset = (u64)-1; 2992 key.type = BTRFS_CHUNK_ITEM_KEY; 2993 2994 while (1) { 2995 mutex_lock(&fs_info->delete_unused_bgs_mutex); 2996 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2997 if (ret < 0) { 2998 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2999 goto error; 3000 } 3001 BUG_ON(ret == 0); /* Corruption */ 3002 3003 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3004 key.type); 3005 if (ret) 3006 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3007 if (ret < 0) 3008 goto error; 3009 if (ret > 0) 3010 break; 3011 3012 leaf = path->nodes[0]; 3013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3014 3015 chunk = btrfs_item_ptr(leaf, path->slots[0], 3016 struct btrfs_chunk); 3017 chunk_type = btrfs_chunk_type(leaf, chunk); 3018 btrfs_release_path(path); 3019 3020 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3021 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3022 if (ret == -ENOSPC) 3023 failed++; 3024 else 3025 BUG_ON(ret); 3026 } 3027 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3028 3029 if (found_key.offset == 0) 3030 break; 3031 key.offset = found_key.offset - 1; 3032 } 3033 ret = 0; 3034 if (failed && !retried) { 3035 failed = 0; 3036 retried = true; 3037 goto again; 3038 } else if (WARN_ON(failed && retried)) { 3039 ret = -ENOSPC; 3040 } 3041 error: 3042 btrfs_free_path(path); 3043 return ret; 3044 } 3045 3046 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3047 struct btrfs_balance_control *bctl) 3048 { 3049 struct btrfs_root *root = fs_info->tree_root; 3050 struct btrfs_trans_handle *trans; 3051 struct btrfs_balance_item *item; 3052 struct btrfs_disk_balance_args disk_bargs; 3053 struct btrfs_path *path; 3054 struct extent_buffer *leaf; 3055 struct btrfs_key key; 3056 int ret, err; 3057 3058 path = btrfs_alloc_path(); 3059 if (!path) 3060 return -ENOMEM; 3061 3062 trans = btrfs_start_transaction(root, 0); 3063 if (IS_ERR(trans)) { 3064 btrfs_free_path(path); 3065 return PTR_ERR(trans); 3066 } 3067 3068 key.objectid = BTRFS_BALANCE_OBJECTID; 3069 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3070 key.offset = 0; 3071 3072 ret = btrfs_insert_empty_item(trans, root, path, &key, 3073 sizeof(*item)); 3074 if (ret) 3075 goto out; 3076 3077 leaf = path->nodes[0]; 3078 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3079 3080 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3081 3082 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3083 btrfs_set_balance_data(leaf, item, &disk_bargs); 3084 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3085 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3086 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3087 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3088 3089 btrfs_set_balance_flags(leaf, item, bctl->flags); 3090 3091 btrfs_mark_buffer_dirty(leaf); 3092 out: 3093 btrfs_free_path(path); 3094 err = btrfs_commit_transaction(trans); 3095 if (err && !ret) 3096 ret = err; 3097 return ret; 3098 } 3099 3100 static int del_balance_item(struct btrfs_fs_info *fs_info) 3101 { 3102 struct btrfs_root *root = fs_info->tree_root; 3103 struct btrfs_trans_handle *trans; 3104 struct btrfs_path *path; 3105 struct btrfs_key key; 3106 int ret, err; 3107 3108 path = btrfs_alloc_path(); 3109 if (!path) 3110 return -ENOMEM; 3111 3112 trans = btrfs_start_transaction(root, 0); 3113 if (IS_ERR(trans)) { 3114 btrfs_free_path(path); 3115 return PTR_ERR(trans); 3116 } 3117 3118 key.objectid = BTRFS_BALANCE_OBJECTID; 3119 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3120 key.offset = 0; 3121 3122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3123 if (ret < 0) 3124 goto out; 3125 if (ret > 0) { 3126 ret = -ENOENT; 3127 goto out; 3128 } 3129 3130 ret = btrfs_del_item(trans, root, path); 3131 out: 3132 btrfs_free_path(path); 3133 err = btrfs_commit_transaction(trans); 3134 if (err && !ret) 3135 ret = err; 3136 return ret; 3137 } 3138 3139 /* 3140 * This is a heuristic used to reduce the number of chunks balanced on 3141 * resume after balance was interrupted. 3142 */ 3143 static void update_balance_args(struct btrfs_balance_control *bctl) 3144 { 3145 /* 3146 * Turn on soft mode for chunk types that were being converted. 3147 */ 3148 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3149 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3150 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3151 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3152 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3153 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3154 3155 /* 3156 * Turn on usage filter if is not already used. The idea is 3157 * that chunks that we have already balanced should be 3158 * reasonably full. Don't do it for chunks that are being 3159 * converted - that will keep us from relocating unconverted 3160 * (albeit full) chunks. 3161 */ 3162 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3163 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3164 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3165 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3166 bctl->data.usage = 90; 3167 } 3168 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3169 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3170 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3171 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3172 bctl->sys.usage = 90; 3173 } 3174 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3175 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3176 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3177 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3178 bctl->meta.usage = 90; 3179 } 3180 } 3181 3182 /* 3183 * Should be called with both balance and volume mutexes held to 3184 * serialize other volume operations (add_dev/rm_dev/resize) with 3185 * restriper. Same goes for unset_balance_control. 3186 */ 3187 static void set_balance_control(struct btrfs_balance_control *bctl) 3188 { 3189 struct btrfs_fs_info *fs_info = bctl->fs_info; 3190 3191 BUG_ON(fs_info->balance_ctl); 3192 3193 spin_lock(&fs_info->balance_lock); 3194 fs_info->balance_ctl = bctl; 3195 spin_unlock(&fs_info->balance_lock); 3196 } 3197 3198 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3199 { 3200 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3201 3202 BUG_ON(!fs_info->balance_ctl); 3203 3204 spin_lock(&fs_info->balance_lock); 3205 fs_info->balance_ctl = NULL; 3206 spin_unlock(&fs_info->balance_lock); 3207 3208 kfree(bctl); 3209 } 3210 3211 /* 3212 * Balance filters. Return 1 if chunk should be filtered out 3213 * (should not be balanced). 3214 */ 3215 static int chunk_profiles_filter(u64 chunk_type, 3216 struct btrfs_balance_args *bargs) 3217 { 3218 chunk_type = chunk_to_extended(chunk_type) & 3219 BTRFS_EXTENDED_PROFILE_MASK; 3220 3221 if (bargs->profiles & chunk_type) 3222 return 0; 3223 3224 return 1; 3225 } 3226 3227 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3228 struct btrfs_balance_args *bargs) 3229 { 3230 struct btrfs_block_group_cache *cache; 3231 u64 chunk_used; 3232 u64 user_thresh_min; 3233 u64 user_thresh_max; 3234 int ret = 1; 3235 3236 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3237 chunk_used = btrfs_block_group_used(&cache->item); 3238 3239 if (bargs->usage_min == 0) 3240 user_thresh_min = 0; 3241 else 3242 user_thresh_min = div_factor_fine(cache->key.offset, 3243 bargs->usage_min); 3244 3245 if (bargs->usage_max == 0) 3246 user_thresh_max = 1; 3247 else if (bargs->usage_max > 100) 3248 user_thresh_max = cache->key.offset; 3249 else 3250 user_thresh_max = div_factor_fine(cache->key.offset, 3251 bargs->usage_max); 3252 3253 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3254 ret = 0; 3255 3256 btrfs_put_block_group(cache); 3257 return ret; 3258 } 3259 3260 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3261 u64 chunk_offset, struct btrfs_balance_args *bargs) 3262 { 3263 struct btrfs_block_group_cache *cache; 3264 u64 chunk_used, user_thresh; 3265 int ret = 1; 3266 3267 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3268 chunk_used = btrfs_block_group_used(&cache->item); 3269 3270 if (bargs->usage_min == 0) 3271 user_thresh = 1; 3272 else if (bargs->usage > 100) 3273 user_thresh = cache->key.offset; 3274 else 3275 user_thresh = div_factor_fine(cache->key.offset, 3276 bargs->usage); 3277 3278 if (chunk_used < user_thresh) 3279 ret = 0; 3280 3281 btrfs_put_block_group(cache); 3282 return ret; 3283 } 3284 3285 static int chunk_devid_filter(struct extent_buffer *leaf, 3286 struct btrfs_chunk *chunk, 3287 struct btrfs_balance_args *bargs) 3288 { 3289 struct btrfs_stripe *stripe; 3290 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3291 int i; 3292 3293 for (i = 0; i < num_stripes; i++) { 3294 stripe = btrfs_stripe_nr(chunk, i); 3295 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3296 return 0; 3297 } 3298 3299 return 1; 3300 } 3301 3302 /* [pstart, pend) */ 3303 static int chunk_drange_filter(struct extent_buffer *leaf, 3304 struct btrfs_chunk *chunk, 3305 struct btrfs_balance_args *bargs) 3306 { 3307 struct btrfs_stripe *stripe; 3308 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3309 u64 stripe_offset; 3310 u64 stripe_length; 3311 int factor; 3312 int i; 3313 3314 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3315 return 0; 3316 3317 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3318 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3319 factor = num_stripes / 2; 3320 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3321 factor = num_stripes - 1; 3322 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3323 factor = num_stripes - 2; 3324 } else { 3325 factor = num_stripes; 3326 } 3327 3328 for (i = 0; i < num_stripes; i++) { 3329 stripe = btrfs_stripe_nr(chunk, i); 3330 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3331 continue; 3332 3333 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3334 stripe_length = btrfs_chunk_length(leaf, chunk); 3335 stripe_length = div_u64(stripe_length, factor); 3336 3337 if (stripe_offset < bargs->pend && 3338 stripe_offset + stripe_length > bargs->pstart) 3339 return 0; 3340 } 3341 3342 return 1; 3343 } 3344 3345 /* [vstart, vend) */ 3346 static int chunk_vrange_filter(struct extent_buffer *leaf, 3347 struct btrfs_chunk *chunk, 3348 u64 chunk_offset, 3349 struct btrfs_balance_args *bargs) 3350 { 3351 if (chunk_offset < bargs->vend && 3352 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3353 /* at least part of the chunk is inside this vrange */ 3354 return 0; 3355 3356 return 1; 3357 } 3358 3359 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3360 struct btrfs_chunk *chunk, 3361 struct btrfs_balance_args *bargs) 3362 { 3363 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3364 3365 if (bargs->stripes_min <= num_stripes 3366 && num_stripes <= bargs->stripes_max) 3367 return 0; 3368 3369 return 1; 3370 } 3371 3372 static int chunk_soft_convert_filter(u64 chunk_type, 3373 struct btrfs_balance_args *bargs) 3374 { 3375 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3376 return 0; 3377 3378 chunk_type = chunk_to_extended(chunk_type) & 3379 BTRFS_EXTENDED_PROFILE_MASK; 3380 3381 if (bargs->target == chunk_type) 3382 return 1; 3383 3384 return 0; 3385 } 3386 3387 static int should_balance_chunk(struct btrfs_fs_info *fs_info, 3388 struct extent_buffer *leaf, 3389 struct btrfs_chunk *chunk, u64 chunk_offset) 3390 { 3391 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3392 struct btrfs_balance_args *bargs = NULL; 3393 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3394 3395 /* type filter */ 3396 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3397 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3398 return 0; 3399 } 3400 3401 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3402 bargs = &bctl->data; 3403 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3404 bargs = &bctl->sys; 3405 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3406 bargs = &bctl->meta; 3407 3408 /* profiles filter */ 3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3410 chunk_profiles_filter(chunk_type, bargs)) { 3411 return 0; 3412 } 3413 3414 /* usage filter */ 3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3416 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3417 return 0; 3418 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3419 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3420 return 0; 3421 } 3422 3423 /* devid filter */ 3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3425 chunk_devid_filter(leaf, chunk, bargs)) { 3426 return 0; 3427 } 3428 3429 /* drange filter, makes sense only with devid filter */ 3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3431 chunk_drange_filter(leaf, chunk, bargs)) { 3432 return 0; 3433 } 3434 3435 /* vrange filter */ 3436 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3437 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3438 return 0; 3439 } 3440 3441 /* stripes filter */ 3442 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3443 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3444 return 0; 3445 } 3446 3447 /* soft profile changing mode */ 3448 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3449 chunk_soft_convert_filter(chunk_type, bargs)) { 3450 return 0; 3451 } 3452 3453 /* 3454 * limited by count, must be the last filter 3455 */ 3456 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3457 if (bargs->limit == 0) 3458 return 0; 3459 else 3460 bargs->limit--; 3461 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3462 /* 3463 * Same logic as the 'limit' filter; the minimum cannot be 3464 * determined here because we do not have the global information 3465 * about the count of all chunks that satisfy the filters. 3466 */ 3467 if (bargs->limit_max == 0) 3468 return 0; 3469 else 3470 bargs->limit_max--; 3471 } 3472 3473 return 1; 3474 } 3475 3476 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3477 { 3478 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3479 struct btrfs_root *chunk_root = fs_info->chunk_root; 3480 struct btrfs_root *dev_root = fs_info->dev_root; 3481 struct list_head *devices; 3482 struct btrfs_device *device; 3483 u64 old_size; 3484 u64 size_to_free; 3485 u64 chunk_type; 3486 struct btrfs_chunk *chunk; 3487 struct btrfs_path *path = NULL; 3488 struct btrfs_key key; 3489 struct btrfs_key found_key; 3490 struct btrfs_trans_handle *trans; 3491 struct extent_buffer *leaf; 3492 int slot; 3493 int ret; 3494 int enospc_errors = 0; 3495 bool counting = true; 3496 /* The single value limit and min/max limits use the same bytes in the */ 3497 u64 limit_data = bctl->data.limit; 3498 u64 limit_meta = bctl->meta.limit; 3499 u64 limit_sys = bctl->sys.limit; 3500 u32 count_data = 0; 3501 u32 count_meta = 0; 3502 u32 count_sys = 0; 3503 int chunk_reserved = 0; 3504 u64 bytes_used = 0; 3505 3506 /* step one make some room on all the devices */ 3507 devices = &fs_info->fs_devices->devices; 3508 list_for_each_entry(device, devices, dev_list) { 3509 old_size = btrfs_device_get_total_bytes(device); 3510 size_to_free = div_factor(old_size, 1); 3511 size_to_free = min_t(u64, size_to_free, SZ_1M); 3512 if (!device->writeable || 3513 btrfs_device_get_total_bytes(device) - 3514 btrfs_device_get_bytes_used(device) > size_to_free || 3515 device->is_tgtdev_for_dev_replace) 3516 continue; 3517 3518 ret = btrfs_shrink_device(device, old_size - size_to_free); 3519 if (ret == -ENOSPC) 3520 break; 3521 if (ret) { 3522 /* btrfs_shrink_device never returns ret > 0 */ 3523 WARN_ON(ret > 0); 3524 goto error; 3525 } 3526 3527 trans = btrfs_start_transaction(dev_root, 0); 3528 if (IS_ERR(trans)) { 3529 ret = PTR_ERR(trans); 3530 btrfs_info_in_rcu(fs_info, 3531 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", 3532 rcu_str_deref(device->name), ret, 3533 old_size, old_size - size_to_free); 3534 goto error; 3535 } 3536 3537 ret = btrfs_grow_device(trans, device, old_size); 3538 if (ret) { 3539 btrfs_end_transaction(trans); 3540 /* btrfs_grow_device never returns ret > 0 */ 3541 WARN_ON(ret > 0); 3542 btrfs_info_in_rcu(fs_info, 3543 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", 3544 rcu_str_deref(device->name), ret, 3545 old_size, old_size - size_to_free); 3546 goto error; 3547 } 3548 3549 btrfs_end_transaction(trans); 3550 } 3551 3552 /* step two, relocate all the chunks */ 3553 path = btrfs_alloc_path(); 3554 if (!path) { 3555 ret = -ENOMEM; 3556 goto error; 3557 } 3558 3559 /* zero out stat counters */ 3560 spin_lock(&fs_info->balance_lock); 3561 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3562 spin_unlock(&fs_info->balance_lock); 3563 again: 3564 if (!counting) { 3565 /* 3566 * The single value limit and min/max limits use the same bytes 3567 * in the 3568 */ 3569 bctl->data.limit = limit_data; 3570 bctl->meta.limit = limit_meta; 3571 bctl->sys.limit = limit_sys; 3572 } 3573 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3574 key.offset = (u64)-1; 3575 key.type = BTRFS_CHUNK_ITEM_KEY; 3576 3577 while (1) { 3578 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3579 atomic_read(&fs_info->balance_cancel_req)) { 3580 ret = -ECANCELED; 3581 goto error; 3582 } 3583 3584 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3585 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3586 if (ret < 0) { 3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3588 goto error; 3589 } 3590 3591 /* 3592 * this shouldn't happen, it means the last relocate 3593 * failed 3594 */ 3595 if (ret == 0) 3596 BUG(); /* FIXME break ? */ 3597 3598 ret = btrfs_previous_item(chunk_root, path, 0, 3599 BTRFS_CHUNK_ITEM_KEY); 3600 if (ret) { 3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3602 ret = 0; 3603 break; 3604 } 3605 3606 leaf = path->nodes[0]; 3607 slot = path->slots[0]; 3608 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3609 3610 if (found_key.objectid != key.objectid) { 3611 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3612 break; 3613 } 3614 3615 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3616 chunk_type = btrfs_chunk_type(leaf, chunk); 3617 3618 if (!counting) { 3619 spin_lock(&fs_info->balance_lock); 3620 bctl->stat.considered++; 3621 spin_unlock(&fs_info->balance_lock); 3622 } 3623 3624 ret = should_balance_chunk(fs_info, leaf, chunk, 3625 found_key.offset); 3626 3627 btrfs_release_path(path); 3628 if (!ret) { 3629 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3630 goto loop; 3631 } 3632 3633 if (counting) { 3634 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3635 spin_lock(&fs_info->balance_lock); 3636 bctl->stat.expected++; 3637 spin_unlock(&fs_info->balance_lock); 3638 3639 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3640 count_data++; 3641 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3642 count_sys++; 3643 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3644 count_meta++; 3645 3646 goto loop; 3647 } 3648 3649 /* 3650 * Apply limit_min filter, no need to check if the LIMITS 3651 * filter is used, limit_min is 0 by default 3652 */ 3653 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3654 count_data < bctl->data.limit_min) 3655 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3656 count_meta < bctl->meta.limit_min) 3657 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3658 count_sys < bctl->sys.limit_min)) { 3659 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3660 goto loop; 3661 } 3662 3663 ASSERT(fs_info->data_sinfo); 3664 spin_lock(&fs_info->data_sinfo->lock); 3665 bytes_used = fs_info->data_sinfo->bytes_used; 3666 spin_unlock(&fs_info->data_sinfo->lock); 3667 3668 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3669 !chunk_reserved && !bytes_used) { 3670 trans = btrfs_start_transaction(chunk_root, 0); 3671 if (IS_ERR(trans)) { 3672 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3673 ret = PTR_ERR(trans); 3674 goto error; 3675 } 3676 3677 ret = btrfs_force_chunk_alloc(trans, fs_info, 3678 BTRFS_BLOCK_GROUP_DATA); 3679 btrfs_end_transaction(trans); 3680 if (ret < 0) { 3681 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3682 goto error; 3683 } 3684 chunk_reserved = 1; 3685 } 3686 3687 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3688 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3689 if (ret && ret != -ENOSPC) 3690 goto error; 3691 if (ret == -ENOSPC) { 3692 enospc_errors++; 3693 } else { 3694 spin_lock(&fs_info->balance_lock); 3695 bctl->stat.completed++; 3696 spin_unlock(&fs_info->balance_lock); 3697 } 3698 loop: 3699 if (found_key.offset == 0) 3700 break; 3701 key.offset = found_key.offset - 1; 3702 } 3703 3704 if (counting) { 3705 btrfs_release_path(path); 3706 counting = false; 3707 goto again; 3708 } 3709 error: 3710 btrfs_free_path(path); 3711 if (enospc_errors) { 3712 btrfs_info(fs_info, "%d enospc errors during balance", 3713 enospc_errors); 3714 if (!ret) 3715 ret = -ENOSPC; 3716 } 3717 3718 return ret; 3719 } 3720 3721 /** 3722 * alloc_profile_is_valid - see if a given profile is valid and reduced 3723 * @flags: profile to validate 3724 * @extended: if true @flags is treated as an extended profile 3725 */ 3726 static int alloc_profile_is_valid(u64 flags, int extended) 3727 { 3728 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3729 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3730 3731 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3732 3733 /* 1) check that all other bits are zeroed */ 3734 if (flags & ~mask) 3735 return 0; 3736 3737 /* 2) see if profile is reduced */ 3738 if (flags == 0) 3739 return !extended; /* "0" is valid for usual profiles */ 3740 3741 /* true if exactly one bit set */ 3742 return (flags & (flags - 1)) == 0; 3743 } 3744 3745 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3746 { 3747 /* cancel requested || normal exit path */ 3748 return atomic_read(&fs_info->balance_cancel_req) || 3749 (atomic_read(&fs_info->balance_pause_req) == 0 && 3750 atomic_read(&fs_info->balance_cancel_req) == 0); 3751 } 3752 3753 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3754 { 3755 int ret; 3756 3757 unset_balance_control(fs_info); 3758 ret = del_balance_item(fs_info); 3759 if (ret) 3760 btrfs_handle_fs_error(fs_info, ret, NULL); 3761 3762 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3763 } 3764 3765 /* Non-zero return value signifies invalidity */ 3766 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3767 u64 allowed) 3768 { 3769 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3770 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3771 (bctl_arg->target & ~allowed))); 3772 } 3773 3774 /* 3775 * Should be called with both balance and volume mutexes held 3776 */ 3777 int btrfs_balance(struct btrfs_balance_control *bctl, 3778 struct btrfs_ioctl_balance_args *bargs) 3779 { 3780 struct btrfs_fs_info *fs_info = bctl->fs_info; 3781 u64 meta_target, data_target; 3782 u64 allowed; 3783 int mixed = 0; 3784 int ret; 3785 u64 num_devices; 3786 unsigned seq; 3787 3788 if (btrfs_fs_closing(fs_info) || 3789 atomic_read(&fs_info->balance_pause_req) || 3790 atomic_read(&fs_info->balance_cancel_req)) { 3791 ret = -EINVAL; 3792 goto out; 3793 } 3794 3795 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3796 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3797 mixed = 1; 3798 3799 /* 3800 * In case of mixed groups both data and meta should be picked, 3801 * and identical options should be given for both of them. 3802 */ 3803 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3804 if (mixed && (bctl->flags & allowed)) { 3805 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3806 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3807 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3808 btrfs_err(fs_info, 3809 "with mixed groups data and metadata balance options must be the same"); 3810 ret = -EINVAL; 3811 goto out; 3812 } 3813 } 3814 3815 num_devices = fs_info->fs_devices->num_devices; 3816 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 3817 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3818 BUG_ON(num_devices < 1); 3819 num_devices--; 3820 } 3821 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 3822 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 3823 if (num_devices > 1) 3824 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3825 if (num_devices > 2) 3826 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3827 if (num_devices > 3) 3828 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3829 BTRFS_BLOCK_GROUP_RAID6); 3830 if (validate_convert_profile(&bctl->data, allowed)) { 3831 btrfs_err(fs_info, 3832 "unable to start balance with target data profile %llu", 3833 bctl->data.target); 3834 ret = -EINVAL; 3835 goto out; 3836 } 3837 if (validate_convert_profile(&bctl->meta, allowed)) { 3838 btrfs_err(fs_info, 3839 "unable to start balance with target metadata profile %llu", 3840 bctl->meta.target); 3841 ret = -EINVAL; 3842 goto out; 3843 } 3844 if (validate_convert_profile(&bctl->sys, allowed)) { 3845 btrfs_err(fs_info, 3846 "unable to start balance with target system profile %llu", 3847 bctl->sys.target); 3848 ret = -EINVAL; 3849 goto out; 3850 } 3851 3852 /* allow to reduce meta or sys integrity only if force set */ 3853 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3854 BTRFS_BLOCK_GROUP_RAID10 | 3855 BTRFS_BLOCK_GROUP_RAID5 | 3856 BTRFS_BLOCK_GROUP_RAID6; 3857 do { 3858 seq = read_seqbegin(&fs_info->profiles_lock); 3859 3860 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3861 (fs_info->avail_system_alloc_bits & allowed) && 3862 !(bctl->sys.target & allowed)) || 3863 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3864 (fs_info->avail_metadata_alloc_bits & allowed) && 3865 !(bctl->meta.target & allowed))) { 3866 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3867 btrfs_info(fs_info, 3868 "force reducing metadata integrity"); 3869 } else { 3870 btrfs_err(fs_info, 3871 "balance will reduce metadata integrity, use force if you want this"); 3872 ret = -EINVAL; 3873 goto out; 3874 } 3875 } 3876 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3877 3878 /* if we're not converting, the target field is uninitialized */ 3879 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3880 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 3881 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3882 bctl->data.target : fs_info->avail_data_alloc_bits; 3883 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 3884 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 3885 btrfs_warn(fs_info, 3886 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3887 meta_target, data_target); 3888 } 3889 3890 ret = insert_balance_item(fs_info, bctl); 3891 if (ret && ret != -EEXIST) 3892 goto out; 3893 3894 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3895 BUG_ON(ret == -EEXIST); 3896 set_balance_control(bctl); 3897 } else { 3898 BUG_ON(ret != -EEXIST); 3899 spin_lock(&fs_info->balance_lock); 3900 update_balance_args(bctl); 3901 spin_unlock(&fs_info->balance_lock); 3902 } 3903 3904 atomic_inc(&fs_info->balance_running); 3905 mutex_unlock(&fs_info->balance_mutex); 3906 3907 ret = __btrfs_balance(fs_info); 3908 3909 mutex_lock(&fs_info->balance_mutex); 3910 atomic_dec(&fs_info->balance_running); 3911 3912 if (bargs) { 3913 memset(bargs, 0, sizeof(*bargs)); 3914 update_ioctl_balance_args(fs_info, 0, bargs); 3915 } 3916 3917 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3918 balance_need_close(fs_info)) { 3919 __cancel_balance(fs_info); 3920 } 3921 3922 wake_up(&fs_info->balance_wait_q); 3923 3924 return ret; 3925 out: 3926 if (bctl->flags & BTRFS_BALANCE_RESUME) 3927 __cancel_balance(fs_info); 3928 else { 3929 kfree(bctl); 3930 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3931 } 3932 return ret; 3933 } 3934 3935 static int balance_kthread(void *data) 3936 { 3937 struct btrfs_fs_info *fs_info = data; 3938 int ret = 0; 3939 3940 mutex_lock(&fs_info->volume_mutex); 3941 mutex_lock(&fs_info->balance_mutex); 3942 3943 if (fs_info->balance_ctl) { 3944 btrfs_info(fs_info, "continuing balance"); 3945 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3946 } 3947 3948 mutex_unlock(&fs_info->balance_mutex); 3949 mutex_unlock(&fs_info->volume_mutex); 3950 3951 return ret; 3952 } 3953 3954 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3955 { 3956 struct task_struct *tsk; 3957 3958 spin_lock(&fs_info->balance_lock); 3959 if (!fs_info->balance_ctl) { 3960 spin_unlock(&fs_info->balance_lock); 3961 return 0; 3962 } 3963 spin_unlock(&fs_info->balance_lock); 3964 3965 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 3966 btrfs_info(fs_info, "force skipping balance"); 3967 return 0; 3968 } 3969 3970 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3971 return PTR_ERR_OR_ZERO(tsk); 3972 } 3973 3974 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3975 { 3976 struct btrfs_balance_control *bctl; 3977 struct btrfs_balance_item *item; 3978 struct btrfs_disk_balance_args disk_bargs; 3979 struct btrfs_path *path; 3980 struct extent_buffer *leaf; 3981 struct btrfs_key key; 3982 int ret; 3983 3984 path = btrfs_alloc_path(); 3985 if (!path) 3986 return -ENOMEM; 3987 3988 key.objectid = BTRFS_BALANCE_OBJECTID; 3989 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3990 key.offset = 0; 3991 3992 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3993 if (ret < 0) 3994 goto out; 3995 if (ret > 0) { /* ret = -ENOENT; */ 3996 ret = 0; 3997 goto out; 3998 } 3999 4000 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4001 if (!bctl) { 4002 ret = -ENOMEM; 4003 goto out; 4004 } 4005 4006 leaf = path->nodes[0]; 4007 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4008 4009 bctl->fs_info = fs_info; 4010 bctl->flags = btrfs_balance_flags(leaf, item); 4011 bctl->flags |= BTRFS_BALANCE_RESUME; 4012 4013 btrfs_balance_data(leaf, item, &disk_bargs); 4014 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4015 btrfs_balance_meta(leaf, item, &disk_bargs); 4016 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4017 btrfs_balance_sys(leaf, item, &disk_bargs); 4018 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4019 4020 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4021 4022 mutex_lock(&fs_info->volume_mutex); 4023 mutex_lock(&fs_info->balance_mutex); 4024 4025 set_balance_control(bctl); 4026 4027 mutex_unlock(&fs_info->balance_mutex); 4028 mutex_unlock(&fs_info->volume_mutex); 4029 out: 4030 btrfs_free_path(path); 4031 return ret; 4032 } 4033 4034 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4035 { 4036 int ret = 0; 4037 4038 mutex_lock(&fs_info->balance_mutex); 4039 if (!fs_info->balance_ctl) { 4040 mutex_unlock(&fs_info->balance_mutex); 4041 return -ENOTCONN; 4042 } 4043 4044 if (atomic_read(&fs_info->balance_running)) { 4045 atomic_inc(&fs_info->balance_pause_req); 4046 mutex_unlock(&fs_info->balance_mutex); 4047 4048 wait_event(fs_info->balance_wait_q, 4049 atomic_read(&fs_info->balance_running) == 0); 4050 4051 mutex_lock(&fs_info->balance_mutex); 4052 /* we are good with balance_ctl ripped off from under us */ 4053 BUG_ON(atomic_read(&fs_info->balance_running)); 4054 atomic_dec(&fs_info->balance_pause_req); 4055 } else { 4056 ret = -ENOTCONN; 4057 } 4058 4059 mutex_unlock(&fs_info->balance_mutex); 4060 return ret; 4061 } 4062 4063 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4064 { 4065 if (sb_rdonly(fs_info->sb)) 4066 return -EROFS; 4067 4068 mutex_lock(&fs_info->balance_mutex); 4069 if (!fs_info->balance_ctl) { 4070 mutex_unlock(&fs_info->balance_mutex); 4071 return -ENOTCONN; 4072 } 4073 4074 atomic_inc(&fs_info->balance_cancel_req); 4075 /* 4076 * if we are running just wait and return, balance item is 4077 * deleted in btrfs_balance in this case 4078 */ 4079 if (atomic_read(&fs_info->balance_running)) { 4080 mutex_unlock(&fs_info->balance_mutex); 4081 wait_event(fs_info->balance_wait_q, 4082 atomic_read(&fs_info->balance_running) == 0); 4083 mutex_lock(&fs_info->balance_mutex); 4084 } else { 4085 /* __cancel_balance needs volume_mutex */ 4086 mutex_unlock(&fs_info->balance_mutex); 4087 mutex_lock(&fs_info->volume_mutex); 4088 mutex_lock(&fs_info->balance_mutex); 4089 4090 if (fs_info->balance_ctl) 4091 __cancel_balance(fs_info); 4092 4093 mutex_unlock(&fs_info->volume_mutex); 4094 } 4095 4096 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 4097 atomic_dec(&fs_info->balance_cancel_req); 4098 mutex_unlock(&fs_info->balance_mutex); 4099 return 0; 4100 } 4101 4102 static int btrfs_uuid_scan_kthread(void *data) 4103 { 4104 struct btrfs_fs_info *fs_info = data; 4105 struct btrfs_root *root = fs_info->tree_root; 4106 struct btrfs_key key; 4107 struct btrfs_path *path = NULL; 4108 int ret = 0; 4109 struct extent_buffer *eb; 4110 int slot; 4111 struct btrfs_root_item root_item; 4112 u32 item_size; 4113 struct btrfs_trans_handle *trans = NULL; 4114 4115 path = btrfs_alloc_path(); 4116 if (!path) { 4117 ret = -ENOMEM; 4118 goto out; 4119 } 4120 4121 key.objectid = 0; 4122 key.type = BTRFS_ROOT_ITEM_KEY; 4123 key.offset = 0; 4124 4125 while (1) { 4126 ret = btrfs_search_forward(root, &key, path, 0); 4127 if (ret) { 4128 if (ret > 0) 4129 ret = 0; 4130 break; 4131 } 4132 4133 if (key.type != BTRFS_ROOT_ITEM_KEY || 4134 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4135 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4136 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4137 goto skip; 4138 4139 eb = path->nodes[0]; 4140 slot = path->slots[0]; 4141 item_size = btrfs_item_size_nr(eb, slot); 4142 if (item_size < sizeof(root_item)) 4143 goto skip; 4144 4145 read_extent_buffer(eb, &root_item, 4146 btrfs_item_ptr_offset(eb, slot), 4147 (int)sizeof(root_item)); 4148 if (btrfs_root_refs(&root_item) == 0) 4149 goto skip; 4150 4151 if (!btrfs_is_empty_uuid(root_item.uuid) || 4152 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4153 if (trans) 4154 goto update_tree; 4155 4156 btrfs_release_path(path); 4157 /* 4158 * 1 - subvol uuid item 4159 * 1 - received_subvol uuid item 4160 */ 4161 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4162 if (IS_ERR(trans)) { 4163 ret = PTR_ERR(trans); 4164 break; 4165 } 4166 continue; 4167 } else { 4168 goto skip; 4169 } 4170 update_tree: 4171 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4172 ret = btrfs_uuid_tree_add(trans, fs_info, 4173 root_item.uuid, 4174 BTRFS_UUID_KEY_SUBVOL, 4175 key.objectid); 4176 if (ret < 0) { 4177 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4178 ret); 4179 break; 4180 } 4181 } 4182 4183 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4184 ret = btrfs_uuid_tree_add(trans, fs_info, 4185 root_item.received_uuid, 4186 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4187 key.objectid); 4188 if (ret < 0) { 4189 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4190 ret); 4191 break; 4192 } 4193 } 4194 4195 skip: 4196 if (trans) { 4197 ret = btrfs_end_transaction(trans); 4198 trans = NULL; 4199 if (ret) 4200 break; 4201 } 4202 4203 btrfs_release_path(path); 4204 if (key.offset < (u64)-1) { 4205 key.offset++; 4206 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4207 key.offset = 0; 4208 key.type = BTRFS_ROOT_ITEM_KEY; 4209 } else if (key.objectid < (u64)-1) { 4210 key.offset = 0; 4211 key.type = BTRFS_ROOT_ITEM_KEY; 4212 key.objectid++; 4213 } else { 4214 break; 4215 } 4216 cond_resched(); 4217 } 4218 4219 out: 4220 btrfs_free_path(path); 4221 if (trans && !IS_ERR(trans)) 4222 btrfs_end_transaction(trans); 4223 if (ret) 4224 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4225 else 4226 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4227 up(&fs_info->uuid_tree_rescan_sem); 4228 return 0; 4229 } 4230 4231 /* 4232 * Callback for btrfs_uuid_tree_iterate(). 4233 * returns: 4234 * 0 check succeeded, the entry is not outdated. 4235 * < 0 if an error occurred. 4236 * > 0 if the check failed, which means the caller shall remove the entry. 4237 */ 4238 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4239 u8 *uuid, u8 type, u64 subid) 4240 { 4241 struct btrfs_key key; 4242 int ret = 0; 4243 struct btrfs_root *subvol_root; 4244 4245 if (type != BTRFS_UUID_KEY_SUBVOL && 4246 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4247 goto out; 4248 4249 key.objectid = subid; 4250 key.type = BTRFS_ROOT_ITEM_KEY; 4251 key.offset = (u64)-1; 4252 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4253 if (IS_ERR(subvol_root)) { 4254 ret = PTR_ERR(subvol_root); 4255 if (ret == -ENOENT) 4256 ret = 1; 4257 goto out; 4258 } 4259 4260 switch (type) { 4261 case BTRFS_UUID_KEY_SUBVOL: 4262 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4263 ret = 1; 4264 break; 4265 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4266 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4267 BTRFS_UUID_SIZE)) 4268 ret = 1; 4269 break; 4270 } 4271 4272 out: 4273 return ret; 4274 } 4275 4276 static int btrfs_uuid_rescan_kthread(void *data) 4277 { 4278 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4279 int ret; 4280 4281 /* 4282 * 1st step is to iterate through the existing UUID tree and 4283 * to delete all entries that contain outdated data. 4284 * 2nd step is to add all missing entries to the UUID tree. 4285 */ 4286 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4287 if (ret < 0) { 4288 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4289 up(&fs_info->uuid_tree_rescan_sem); 4290 return ret; 4291 } 4292 return btrfs_uuid_scan_kthread(data); 4293 } 4294 4295 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4296 { 4297 struct btrfs_trans_handle *trans; 4298 struct btrfs_root *tree_root = fs_info->tree_root; 4299 struct btrfs_root *uuid_root; 4300 struct task_struct *task; 4301 int ret; 4302 4303 /* 4304 * 1 - root node 4305 * 1 - root item 4306 */ 4307 trans = btrfs_start_transaction(tree_root, 2); 4308 if (IS_ERR(trans)) 4309 return PTR_ERR(trans); 4310 4311 uuid_root = btrfs_create_tree(trans, fs_info, 4312 BTRFS_UUID_TREE_OBJECTID); 4313 if (IS_ERR(uuid_root)) { 4314 ret = PTR_ERR(uuid_root); 4315 btrfs_abort_transaction(trans, ret); 4316 btrfs_end_transaction(trans); 4317 return ret; 4318 } 4319 4320 fs_info->uuid_root = uuid_root; 4321 4322 ret = btrfs_commit_transaction(trans); 4323 if (ret) 4324 return ret; 4325 4326 down(&fs_info->uuid_tree_rescan_sem); 4327 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4328 if (IS_ERR(task)) { 4329 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4330 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4331 up(&fs_info->uuid_tree_rescan_sem); 4332 return PTR_ERR(task); 4333 } 4334 4335 return 0; 4336 } 4337 4338 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4339 { 4340 struct task_struct *task; 4341 4342 down(&fs_info->uuid_tree_rescan_sem); 4343 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4344 if (IS_ERR(task)) { 4345 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4346 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4347 up(&fs_info->uuid_tree_rescan_sem); 4348 return PTR_ERR(task); 4349 } 4350 4351 return 0; 4352 } 4353 4354 /* 4355 * shrinking a device means finding all of the device extents past 4356 * the new size, and then following the back refs to the chunks. 4357 * The chunk relocation code actually frees the device extent 4358 */ 4359 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4360 { 4361 struct btrfs_fs_info *fs_info = device->fs_info; 4362 struct btrfs_root *root = fs_info->dev_root; 4363 struct btrfs_trans_handle *trans; 4364 struct btrfs_dev_extent *dev_extent = NULL; 4365 struct btrfs_path *path; 4366 u64 length; 4367 u64 chunk_offset; 4368 int ret; 4369 int slot; 4370 int failed = 0; 4371 bool retried = false; 4372 bool checked_pending_chunks = false; 4373 struct extent_buffer *l; 4374 struct btrfs_key key; 4375 struct btrfs_super_block *super_copy = fs_info->super_copy; 4376 u64 old_total = btrfs_super_total_bytes(super_copy); 4377 u64 old_size = btrfs_device_get_total_bytes(device); 4378 u64 diff; 4379 4380 new_size = round_down(new_size, fs_info->sectorsize); 4381 diff = round_down(old_size - new_size, fs_info->sectorsize); 4382 4383 if (device->is_tgtdev_for_dev_replace) 4384 return -EINVAL; 4385 4386 path = btrfs_alloc_path(); 4387 if (!path) 4388 return -ENOMEM; 4389 4390 path->reada = READA_FORWARD; 4391 4392 mutex_lock(&fs_info->chunk_mutex); 4393 4394 btrfs_device_set_total_bytes(device, new_size); 4395 if (device->writeable) { 4396 device->fs_devices->total_rw_bytes -= diff; 4397 atomic64_sub(diff, &fs_info->free_chunk_space); 4398 } 4399 mutex_unlock(&fs_info->chunk_mutex); 4400 4401 again: 4402 key.objectid = device->devid; 4403 key.offset = (u64)-1; 4404 key.type = BTRFS_DEV_EXTENT_KEY; 4405 4406 do { 4407 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4409 if (ret < 0) { 4410 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4411 goto done; 4412 } 4413 4414 ret = btrfs_previous_item(root, path, 0, key.type); 4415 if (ret) 4416 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4417 if (ret < 0) 4418 goto done; 4419 if (ret) { 4420 ret = 0; 4421 btrfs_release_path(path); 4422 break; 4423 } 4424 4425 l = path->nodes[0]; 4426 slot = path->slots[0]; 4427 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4428 4429 if (key.objectid != device->devid) { 4430 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4431 btrfs_release_path(path); 4432 break; 4433 } 4434 4435 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4436 length = btrfs_dev_extent_length(l, dev_extent); 4437 4438 if (key.offset + length <= new_size) { 4439 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4440 btrfs_release_path(path); 4441 break; 4442 } 4443 4444 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4445 btrfs_release_path(path); 4446 4447 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4448 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4449 if (ret && ret != -ENOSPC) 4450 goto done; 4451 if (ret == -ENOSPC) 4452 failed++; 4453 } while (key.offset-- > 0); 4454 4455 if (failed && !retried) { 4456 failed = 0; 4457 retried = true; 4458 goto again; 4459 } else if (failed && retried) { 4460 ret = -ENOSPC; 4461 goto done; 4462 } 4463 4464 /* Shrinking succeeded, else we would be at "done". */ 4465 trans = btrfs_start_transaction(root, 0); 4466 if (IS_ERR(trans)) { 4467 ret = PTR_ERR(trans); 4468 goto done; 4469 } 4470 4471 mutex_lock(&fs_info->chunk_mutex); 4472 4473 /* 4474 * We checked in the above loop all device extents that were already in 4475 * the device tree. However before we have updated the device's 4476 * total_bytes to the new size, we might have had chunk allocations that 4477 * have not complete yet (new block groups attached to transaction 4478 * handles), and therefore their device extents were not yet in the 4479 * device tree and we missed them in the loop above. So if we have any 4480 * pending chunk using a device extent that overlaps the device range 4481 * that we can not use anymore, commit the current transaction and 4482 * repeat the search on the device tree - this way we guarantee we will 4483 * not have chunks using device extents that end beyond 'new_size'. 4484 */ 4485 if (!checked_pending_chunks) { 4486 u64 start = new_size; 4487 u64 len = old_size - new_size; 4488 4489 if (contains_pending_extent(trans->transaction, device, 4490 &start, len)) { 4491 mutex_unlock(&fs_info->chunk_mutex); 4492 checked_pending_chunks = true; 4493 failed = 0; 4494 retried = false; 4495 ret = btrfs_commit_transaction(trans); 4496 if (ret) 4497 goto done; 4498 goto again; 4499 } 4500 } 4501 4502 btrfs_device_set_disk_total_bytes(device, new_size); 4503 if (list_empty(&device->resized_list)) 4504 list_add_tail(&device->resized_list, 4505 &fs_info->fs_devices->resized_devices); 4506 4507 WARN_ON(diff > old_total); 4508 btrfs_set_super_total_bytes(super_copy, 4509 round_down(old_total - diff, fs_info->sectorsize)); 4510 mutex_unlock(&fs_info->chunk_mutex); 4511 4512 /* Now btrfs_update_device() will change the on-disk size. */ 4513 ret = btrfs_update_device(trans, device); 4514 btrfs_end_transaction(trans); 4515 done: 4516 btrfs_free_path(path); 4517 if (ret) { 4518 mutex_lock(&fs_info->chunk_mutex); 4519 btrfs_device_set_total_bytes(device, old_size); 4520 if (device->writeable) 4521 device->fs_devices->total_rw_bytes += diff; 4522 atomic64_add(diff, &fs_info->free_chunk_space); 4523 mutex_unlock(&fs_info->chunk_mutex); 4524 } 4525 return ret; 4526 } 4527 4528 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4529 struct btrfs_key *key, 4530 struct btrfs_chunk *chunk, int item_size) 4531 { 4532 struct btrfs_super_block *super_copy = fs_info->super_copy; 4533 struct btrfs_disk_key disk_key; 4534 u32 array_size; 4535 u8 *ptr; 4536 4537 mutex_lock(&fs_info->chunk_mutex); 4538 array_size = btrfs_super_sys_array_size(super_copy); 4539 if (array_size + item_size + sizeof(disk_key) 4540 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4541 mutex_unlock(&fs_info->chunk_mutex); 4542 return -EFBIG; 4543 } 4544 4545 ptr = super_copy->sys_chunk_array + array_size; 4546 btrfs_cpu_key_to_disk(&disk_key, key); 4547 memcpy(ptr, &disk_key, sizeof(disk_key)); 4548 ptr += sizeof(disk_key); 4549 memcpy(ptr, chunk, item_size); 4550 item_size += sizeof(disk_key); 4551 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4552 mutex_unlock(&fs_info->chunk_mutex); 4553 4554 return 0; 4555 } 4556 4557 /* 4558 * sort the devices in descending order by max_avail, total_avail 4559 */ 4560 static int btrfs_cmp_device_info(const void *a, const void *b) 4561 { 4562 const struct btrfs_device_info *di_a = a; 4563 const struct btrfs_device_info *di_b = b; 4564 4565 if (di_a->max_avail > di_b->max_avail) 4566 return -1; 4567 if (di_a->max_avail < di_b->max_avail) 4568 return 1; 4569 if (di_a->total_avail > di_b->total_avail) 4570 return -1; 4571 if (di_a->total_avail < di_b->total_avail) 4572 return 1; 4573 return 0; 4574 } 4575 4576 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4577 { 4578 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4579 return; 4580 4581 btrfs_set_fs_incompat(info, RAID56); 4582 } 4583 4584 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \ 4585 - sizeof(struct btrfs_chunk)) \ 4586 / sizeof(struct btrfs_stripe) + 1) 4587 4588 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4589 - 2 * sizeof(struct btrfs_disk_key) \ 4590 - 2 * sizeof(struct btrfs_chunk)) \ 4591 / sizeof(struct btrfs_stripe) + 1) 4592 4593 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4594 u64 start, u64 type) 4595 { 4596 struct btrfs_fs_info *info = trans->fs_info; 4597 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4598 struct btrfs_device *device; 4599 struct map_lookup *map = NULL; 4600 struct extent_map_tree *em_tree; 4601 struct extent_map *em; 4602 struct btrfs_device_info *devices_info = NULL; 4603 u64 total_avail; 4604 int num_stripes; /* total number of stripes to allocate */ 4605 int data_stripes; /* number of stripes that count for 4606 block group size */ 4607 int sub_stripes; /* sub_stripes info for map */ 4608 int dev_stripes; /* stripes per dev */ 4609 int devs_max; /* max devs to use */ 4610 int devs_min; /* min devs needed */ 4611 int devs_increment; /* ndevs has to be a multiple of this */ 4612 int ncopies; /* how many copies to data has */ 4613 int ret; 4614 u64 max_stripe_size; 4615 u64 max_chunk_size; 4616 u64 stripe_size; 4617 u64 num_bytes; 4618 int ndevs; 4619 int i; 4620 int j; 4621 int index; 4622 4623 BUG_ON(!alloc_profile_is_valid(type, 0)); 4624 4625 if (list_empty(&fs_devices->alloc_list)) 4626 return -ENOSPC; 4627 4628 index = __get_raid_index(type); 4629 4630 sub_stripes = btrfs_raid_array[index].sub_stripes; 4631 dev_stripes = btrfs_raid_array[index].dev_stripes; 4632 devs_max = btrfs_raid_array[index].devs_max; 4633 devs_min = btrfs_raid_array[index].devs_min; 4634 devs_increment = btrfs_raid_array[index].devs_increment; 4635 ncopies = btrfs_raid_array[index].ncopies; 4636 4637 if (type & BTRFS_BLOCK_GROUP_DATA) { 4638 max_stripe_size = SZ_1G; 4639 max_chunk_size = 10 * max_stripe_size; 4640 if (!devs_max) 4641 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4642 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4643 /* for larger filesystems, use larger metadata chunks */ 4644 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4645 max_stripe_size = SZ_1G; 4646 else 4647 max_stripe_size = SZ_256M; 4648 max_chunk_size = max_stripe_size; 4649 if (!devs_max) 4650 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4651 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4652 max_stripe_size = SZ_32M; 4653 max_chunk_size = 2 * max_stripe_size; 4654 if (!devs_max) 4655 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4656 } else { 4657 btrfs_err(info, "invalid chunk type 0x%llx requested", 4658 type); 4659 BUG_ON(1); 4660 } 4661 4662 /* we don't want a chunk larger than 10% of writeable space */ 4663 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4664 max_chunk_size); 4665 4666 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4667 GFP_NOFS); 4668 if (!devices_info) 4669 return -ENOMEM; 4670 4671 /* 4672 * in the first pass through the devices list, we gather information 4673 * about the available holes on each device. 4674 */ 4675 ndevs = 0; 4676 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4677 u64 max_avail; 4678 u64 dev_offset; 4679 4680 if (!device->writeable) { 4681 WARN(1, KERN_ERR 4682 "BTRFS: read-only device in alloc_list\n"); 4683 continue; 4684 } 4685 4686 if (!device->in_fs_metadata || 4687 device->is_tgtdev_for_dev_replace) 4688 continue; 4689 4690 if (device->total_bytes > device->bytes_used) 4691 total_avail = device->total_bytes - device->bytes_used; 4692 else 4693 total_avail = 0; 4694 4695 /* If there is no space on this device, skip it. */ 4696 if (total_avail == 0) 4697 continue; 4698 4699 ret = find_free_dev_extent(trans, device, 4700 max_stripe_size * dev_stripes, 4701 &dev_offset, &max_avail); 4702 if (ret && ret != -ENOSPC) 4703 goto error; 4704 4705 if (ret == 0) 4706 max_avail = max_stripe_size * dev_stripes; 4707 4708 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4709 continue; 4710 4711 if (ndevs == fs_devices->rw_devices) { 4712 WARN(1, "%s: found more than %llu devices\n", 4713 __func__, fs_devices->rw_devices); 4714 break; 4715 } 4716 devices_info[ndevs].dev_offset = dev_offset; 4717 devices_info[ndevs].max_avail = max_avail; 4718 devices_info[ndevs].total_avail = total_avail; 4719 devices_info[ndevs].dev = device; 4720 ++ndevs; 4721 } 4722 4723 /* 4724 * now sort the devices by hole size / available space 4725 */ 4726 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4727 btrfs_cmp_device_info, NULL); 4728 4729 /* round down to number of usable stripes */ 4730 ndevs = round_down(ndevs, devs_increment); 4731 4732 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4733 ret = -ENOSPC; 4734 goto error; 4735 } 4736 4737 ndevs = min(ndevs, devs_max); 4738 4739 /* 4740 * the primary goal is to maximize the number of stripes, so use as many 4741 * devices as possible, even if the stripes are not maximum sized. 4742 */ 4743 stripe_size = devices_info[ndevs-1].max_avail; 4744 num_stripes = ndevs * dev_stripes; 4745 4746 /* 4747 * this will have to be fixed for RAID1 and RAID10 over 4748 * more drives 4749 */ 4750 data_stripes = num_stripes / ncopies; 4751 4752 if (type & BTRFS_BLOCK_GROUP_RAID5) 4753 data_stripes = num_stripes - 1; 4754 4755 if (type & BTRFS_BLOCK_GROUP_RAID6) 4756 data_stripes = num_stripes - 2; 4757 4758 /* 4759 * Use the number of data stripes to figure out how big this chunk 4760 * is really going to be in terms of logical address space, 4761 * and compare that answer with the max chunk size 4762 */ 4763 if (stripe_size * data_stripes > max_chunk_size) { 4764 u64 mask = (1ULL << 24) - 1; 4765 4766 stripe_size = div_u64(max_chunk_size, data_stripes); 4767 4768 /* bump the answer up to a 16MB boundary */ 4769 stripe_size = (stripe_size + mask) & ~mask; 4770 4771 /* but don't go higher than the limits we found 4772 * while searching for free extents 4773 */ 4774 if (stripe_size > devices_info[ndevs-1].max_avail) 4775 stripe_size = devices_info[ndevs-1].max_avail; 4776 } 4777 4778 stripe_size = div_u64(stripe_size, dev_stripes); 4779 4780 /* align to BTRFS_STRIPE_LEN */ 4781 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 4782 4783 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4784 if (!map) { 4785 ret = -ENOMEM; 4786 goto error; 4787 } 4788 map->num_stripes = num_stripes; 4789 4790 for (i = 0; i < ndevs; ++i) { 4791 for (j = 0; j < dev_stripes; ++j) { 4792 int s = i * dev_stripes + j; 4793 map->stripes[s].dev = devices_info[i].dev; 4794 map->stripes[s].physical = devices_info[i].dev_offset + 4795 j * stripe_size; 4796 } 4797 } 4798 map->stripe_len = BTRFS_STRIPE_LEN; 4799 map->io_align = BTRFS_STRIPE_LEN; 4800 map->io_width = BTRFS_STRIPE_LEN; 4801 map->type = type; 4802 map->sub_stripes = sub_stripes; 4803 4804 num_bytes = stripe_size * data_stripes; 4805 4806 trace_btrfs_chunk_alloc(info, map, start, num_bytes); 4807 4808 em = alloc_extent_map(); 4809 if (!em) { 4810 kfree(map); 4811 ret = -ENOMEM; 4812 goto error; 4813 } 4814 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4815 em->map_lookup = map; 4816 em->start = start; 4817 em->len = num_bytes; 4818 em->block_start = 0; 4819 em->block_len = em->len; 4820 em->orig_block_len = stripe_size; 4821 4822 em_tree = &info->mapping_tree.map_tree; 4823 write_lock(&em_tree->lock); 4824 ret = add_extent_mapping(em_tree, em, 0); 4825 if (ret) { 4826 write_unlock(&em_tree->lock); 4827 free_extent_map(em); 4828 goto error; 4829 } 4830 4831 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4832 refcount_inc(&em->refs); 4833 write_unlock(&em_tree->lock); 4834 4835 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes); 4836 if (ret) 4837 goto error_del_extent; 4838 4839 for (i = 0; i < map->num_stripes; i++) { 4840 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4841 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4842 } 4843 4844 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 4845 4846 free_extent_map(em); 4847 check_raid56_incompat_flag(info, type); 4848 4849 kfree(devices_info); 4850 return 0; 4851 4852 error_del_extent: 4853 write_lock(&em_tree->lock); 4854 remove_extent_mapping(em_tree, em); 4855 write_unlock(&em_tree->lock); 4856 4857 /* One for our allocation */ 4858 free_extent_map(em); 4859 /* One for the tree reference */ 4860 free_extent_map(em); 4861 /* One for the pending_chunks list reference */ 4862 free_extent_map(em); 4863 error: 4864 kfree(devices_info); 4865 return ret; 4866 } 4867 4868 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4869 struct btrfs_fs_info *fs_info, 4870 u64 chunk_offset, u64 chunk_size) 4871 { 4872 struct btrfs_root *extent_root = fs_info->extent_root; 4873 struct btrfs_root *chunk_root = fs_info->chunk_root; 4874 struct btrfs_key key; 4875 struct btrfs_device *device; 4876 struct btrfs_chunk *chunk; 4877 struct btrfs_stripe *stripe; 4878 struct extent_map *em; 4879 struct map_lookup *map; 4880 size_t item_size; 4881 u64 dev_offset; 4882 u64 stripe_size; 4883 int i = 0; 4884 int ret = 0; 4885 4886 em = get_chunk_map(fs_info, chunk_offset, chunk_size); 4887 if (IS_ERR(em)) 4888 return PTR_ERR(em); 4889 4890 map = em->map_lookup; 4891 item_size = btrfs_chunk_item_size(map->num_stripes); 4892 stripe_size = em->orig_block_len; 4893 4894 chunk = kzalloc(item_size, GFP_NOFS); 4895 if (!chunk) { 4896 ret = -ENOMEM; 4897 goto out; 4898 } 4899 4900 /* 4901 * Take the device list mutex to prevent races with the final phase of 4902 * a device replace operation that replaces the device object associated 4903 * with the map's stripes, because the device object's id can change 4904 * at any time during that final phase of the device replace operation 4905 * (dev-replace.c:btrfs_dev_replace_finishing()). 4906 */ 4907 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4908 for (i = 0; i < map->num_stripes; i++) { 4909 device = map->stripes[i].dev; 4910 dev_offset = map->stripes[i].physical; 4911 4912 ret = btrfs_update_device(trans, device); 4913 if (ret) 4914 break; 4915 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 4916 dev_offset, stripe_size); 4917 if (ret) 4918 break; 4919 } 4920 if (ret) { 4921 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4922 goto out; 4923 } 4924 4925 stripe = &chunk->stripe; 4926 for (i = 0; i < map->num_stripes; i++) { 4927 device = map->stripes[i].dev; 4928 dev_offset = map->stripes[i].physical; 4929 4930 btrfs_set_stack_stripe_devid(stripe, device->devid); 4931 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4932 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4933 stripe++; 4934 } 4935 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4936 4937 btrfs_set_stack_chunk_length(chunk, chunk_size); 4938 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4939 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4940 btrfs_set_stack_chunk_type(chunk, map->type); 4941 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4942 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4943 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4944 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 4945 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4946 4947 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4948 key.type = BTRFS_CHUNK_ITEM_KEY; 4949 key.offset = chunk_offset; 4950 4951 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4952 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4953 /* 4954 * TODO: Cleanup of inserted chunk root in case of 4955 * failure. 4956 */ 4957 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 4958 } 4959 4960 out: 4961 kfree(chunk); 4962 free_extent_map(em); 4963 return ret; 4964 } 4965 4966 /* 4967 * Chunk allocation falls into two parts. The first part does works 4968 * that make the new allocated chunk useable, but not do any operation 4969 * that modifies the chunk tree. The second part does the works that 4970 * require modifying the chunk tree. This division is important for the 4971 * bootstrap process of adding storage to a seed btrfs. 4972 */ 4973 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4974 struct btrfs_fs_info *fs_info, u64 type) 4975 { 4976 u64 chunk_offset; 4977 4978 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4979 chunk_offset = find_next_chunk(fs_info); 4980 return __btrfs_alloc_chunk(trans, chunk_offset, type); 4981 } 4982 4983 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4984 struct btrfs_fs_info *fs_info) 4985 { 4986 u64 chunk_offset; 4987 u64 sys_chunk_offset; 4988 u64 alloc_profile; 4989 int ret; 4990 4991 chunk_offset = find_next_chunk(fs_info); 4992 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 4993 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 4994 if (ret) 4995 return ret; 4996 4997 sys_chunk_offset = find_next_chunk(fs_info); 4998 alloc_profile = btrfs_system_alloc_profile(fs_info); 4999 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5000 return ret; 5001 } 5002 5003 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5004 { 5005 int max_errors; 5006 5007 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5008 BTRFS_BLOCK_GROUP_RAID10 | 5009 BTRFS_BLOCK_GROUP_RAID5 | 5010 BTRFS_BLOCK_GROUP_DUP)) { 5011 max_errors = 1; 5012 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5013 max_errors = 2; 5014 } else { 5015 max_errors = 0; 5016 } 5017 5018 return max_errors; 5019 } 5020 5021 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5022 { 5023 struct extent_map *em; 5024 struct map_lookup *map; 5025 int readonly = 0; 5026 int miss_ndevs = 0; 5027 int i; 5028 5029 em = get_chunk_map(fs_info, chunk_offset, 1); 5030 if (IS_ERR(em)) 5031 return 1; 5032 5033 map = em->map_lookup; 5034 for (i = 0; i < map->num_stripes; i++) { 5035 if (map->stripes[i].dev->missing) { 5036 miss_ndevs++; 5037 continue; 5038 } 5039 5040 if (!map->stripes[i].dev->writeable) { 5041 readonly = 1; 5042 goto end; 5043 } 5044 } 5045 5046 /* 5047 * If the number of missing devices is larger than max errors, 5048 * we can not write the data into that chunk successfully, so 5049 * set it readonly. 5050 */ 5051 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5052 readonly = 1; 5053 end: 5054 free_extent_map(em); 5055 return readonly; 5056 } 5057 5058 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5059 { 5060 extent_map_tree_init(&tree->map_tree); 5061 } 5062 5063 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5064 { 5065 struct extent_map *em; 5066 5067 while (1) { 5068 write_lock(&tree->map_tree.lock); 5069 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5070 if (em) 5071 remove_extent_mapping(&tree->map_tree, em); 5072 write_unlock(&tree->map_tree.lock); 5073 if (!em) 5074 break; 5075 /* once for us */ 5076 free_extent_map(em); 5077 /* once for the tree */ 5078 free_extent_map(em); 5079 } 5080 } 5081 5082 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5083 { 5084 struct extent_map *em; 5085 struct map_lookup *map; 5086 int ret; 5087 5088 em = get_chunk_map(fs_info, logical, len); 5089 if (IS_ERR(em)) 5090 /* 5091 * We could return errors for these cases, but that could get 5092 * ugly and we'd probably do the same thing which is just not do 5093 * anything else and exit, so return 1 so the callers don't try 5094 * to use other copies. 5095 */ 5096 return 1; 5097 5098 map = em->map_lookup; 5099 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5100 ret = map->num_stripes; 5101 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5102 ret = map->sub_stripes; 5103 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5104 ret = 2; 5105 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5106 ret = 3; 5107 else 5108 ret = 1; 5109 free_extent_map(em); 5110 5111 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 5112 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5113 fs_info->dev_replace.tgtdev) 5114 ret++; 5115 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 5116 5117 return ret; 5118 } 5119 5120 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5121 u64 logical) 5122 { 5123 struct extent_map *em; 5124 struct map_lookup *map; 5125 unsigned long len = fs_info->sectorsize; 5126 5127 em = get_chunk_map(fs_info, logical, len); 5128 5129 if (!WARN_ON(IS_ERR(em))) { 5130 map = em->map_lookup; 5131 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5132 len = map->stripe_len * nr_data_stripes(map); 5133 free_extent_map(em); 5134 } 5135 return len; 5136 } 5137 5138 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5139 { 5140 struct extent_map *em; 5141 struct map_lookup *map; 5142 int ret = 0; 5143 5144 em = get_chunk_map(fs_info, logical, len); 5145 5146 if(!WARN_ON(IS_ERR(em))) { 5147 map = em->map_lookup; 5148 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5149 ret = 1; 5150 free_extent_map(em); 5151 } 5152 return ret; 5153 } 5154 5155 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5156 struct map_lookup *map, int first, int num, 5157 int optimal, int dev_replace_is_ongoing) 5158 { 5159 int i; 5160 int tolerance; 5161 struct btrfs_device *srcdev; 5162 5163 if (dev_replace_is_ongoing && 5164 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5165 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5166 srcdev = fs_info->dev_replace.srcdev; 5167 else 5168 srcdev = NULL; 5169 5170 /* 5171 * try to avoid the drive that is the source drive for a 5172 * dev-replace procedure, only choose it if no other non-missing 5173 * mirror is available 5174 */ 5175 for (tolerance = 0; tolerance < 2; tolerance++) { 5176 if (map->stripes[optimal].dev->bdev && 5177 (tolerance || map->stripes[optimal].dev != srcdev)) 5178 return optimal; 5179 for (i = first; i < first + num; i++) { 5180 if (map->stripes[i].dev->bdev && 5181 (tolerance || map->stripes[i].dev != srcdev)) 5182 return i; 5183 } 5184 } 5185 5186 /* we couldn't find one that doesn't fail. Just return something 5187 * and the io error handling code will clean up eventually 5188 */ 5189 return optimal; 5190 } 5191 5192 static inline int parity_smaller(u64 a, u64 b) 5193 { 5194 return a > b; 5195 } 5196 5197 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5198 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5199 { 5200 struct btrfs_bio_stripe s; 5201 int i; 5202 u64 l; 5203 int again = 1; 5204 5205 while (again) { 5206 again = 0; 5207 for (i = 0; i < num_stripes - 1; i++) { 5208 if (parity_smaller(bbio->raid_map[i], 5209 bbio->raid_map[i+1])) { 5210 s = bbio->stripes[i]; 5211 l = bbio->raid_map[i]; 5212 bbio->stripes[i] = bbio->stripes[i+1]; 5213 bbio->raid_map[i] = bbio->raid_map[i+1]; 5214 bbio->stripes[i+1] = s; 5215 bbio->raid_map[i+1] = l; 5216 5217 again = 1; 5218 } 5219 } 5220 } 5221 } 5222 5223 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5224 { 5225 struct btrfs_bio *bbio = kzalloc( 5226 /* the size of the btrfs_bio */ 5227 sizeof(struct btrfs_bio) + 5228 /* plus the variable array for the stripes */ 5229 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5230 /* plus the variable array for the tgt dev */ 5231 sizeof(int) * (real_stripes) + 5232 /* 5233 * plus the raid_map, which includes both the tgt dev 5234 * and the stripes 5235 */ 5236 sizeof(u64) * (total_stripes), 5237 GFP_NOFS|__GFP_NOFAIL); 5238 5239 atomic_set(&bbio->error, 0); 5240 refcount_set(&bbio->refs, 1); 5241 5242 return bbio; 5243 } 5244 5245 void btrfs_get_bbio(struct btrfs_bio *bbio) 5246 { 5247 WARN_ON(!refcount_read(&bbio->refs)); 5248 refcount_inc(&bbio->refs); 5249 } 5250 5251 void btrfs_put_bbio(struct btrfs_bio *bbio) 5252 { 5253 if (!bbio) 5254 return; 5255 if (refcount_dec_and_test(&bbio->refs)) 5256 kfree(bbio); 5257 } 5258 5259 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5260 /* 5261 * Please note that, discard won't be sent to target device of device 5262 * replace. 5263 */ 5264 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5265 u64 logical, u64 length, 5266 struct btrfs_bio **bbio_ret) 5267 { 5268 struct extent_map *em; 5269 struct map_lookup *map; 5270 struct btrfs_bio *bbio; 5271 u64 offset; 5272 u64 stripe_nr; 5273 u64 stripe_nr_end; 5274 u64 stripe_end_offset; 5275 u64 stripe_cnt; 5276 u64 stripe_len; 5277 u64 stripe_offset; 5278 u64 num_stripes; 5279 u32 stripe_index; 5280 u32 factor = 0; 5281 u32 sub_stripes = 0; 5282 u64 stripes_per_dev = 0; 5283 u32 remaining_stripes = 0; 5284 u32 last_stripe = 0; 5285 int ret = 0; 5286 int i; 5287 5288 /* discard always return a bbio */ 5289 ASSERT(bbio_ret); 5290 5291 em = get_chunk_map(fs_info, logical, length); 5292 if (IS_ERR(em)) 5293 return PTR_ERR(em); 5294 5295 map = em->map_lookup; 5296 /* we don't discard raid56 yet */ 5297 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5298 ret = -EOPNOTSUPP; 5299 goto out; 5300 } 5301 5302 offset = logical - em->start; 5303 length = min_t(u64, em->len - offset, length); 5304 5305 stripe_len = map->stripe_len; 5306 /* 5307 * stripe_nr counts the total number of stripes we have to stride 5308 * to get to this block 5309 */ 5310 stripe_nr = div64_u64(offset, stripe_len); 5311 5312 /* stripe_offset is the offset of this block in its stripe */ 5313 stripe_offset = offset - stripe_nr * stripe_len; 5314 5315 stripe_nr_end = round_up(offset + length, map->stripe_len); 5316 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5317 stripe_cnt = stripe_nr_end - stripe_nr; 5318 stripe_end_offset = stripe_nr_end * map->stripe_len - 5319 (offset + length); 5320 /* 5321 * after this, stripe_nr is the number of stripes on this 5322 * device we have to walk to find the data, and stripe_index is 5323 * the number of our device in the stripe array 5324 */ 5325 num_stripes = 1; 5326 stripe_index = 0; 5327 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5328 BTRFS_BLOCK_GROUP_RAID10)) { 5329 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5330 sub_stripes = 1; 5331 else 5332 sub_stripes = map->sub_stripes; 5333 5334 factor = map->num_stripes / sub_stripes; 5335 num_stripes = min_t(u64, map->num_stripes, 5336 sub_stripes * stripe_cnt); 5337 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5338 stripe_index *= sub_stripes; 5339 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5340 &remaining_stripes); 5341 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5342 last_stripe *= sub_stripes; 5343 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5344 BTRFS_BLOCK_GROUP_DUP)) { 5345 num_stripes = map->num_stripes; 5346 } else { 5347 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5348 &stripe_index); 5349 } 5350 5351 bbio = alloc_btrfs_bio(num_stripes, 0); 5352 if (!bbio) { 5353 ret = -ENOMEM; 5354 goto out; 5355 } 5356 5357 for (i = 0; i < num_stripes; i++) { 5358 bbio->stripes[i].physical = 5359 map->stripes[stripe_index].physical + 5360 stripe_offset + stripe_nr * map->stripe_len; 5361 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5362 5363 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5364 BTRFS_BLOCK_GROUP_RAID10)) { 5365 bbio->stripes[i].length = stripes_per_dev * 5366 map->stripe_len; 5367 5368 if (i / sub_stripes < remaining_stripes) 5369 bbio->stripes[i].length += 5370 map->stripe_len; 5371 5372 /* 5373 * Special for the first stripe and 5374 * the last stripe: 5375 * 5376 * |-------|...|-------| 5377 * |----------| 5378 * off end_off 5379 */ 5380 if (i < sub_stripes) 5381 bbio->stripes[i].length -= 5382 stripe_offset; 5383 5384 if (stripe_index >= last_stripe && 5385 stripe_index <= (last_stripe + 5386 sub_stripes - 1)) 5387 bbio->stripes[i].length -= 5388 stripe_end_offset; 5389 5390 if (i == sub_stripes - 1) 5391 stripe_offset = 0; 5392 } else { 5393 bbio->stripes[i].length = length; 5394 } 5395 5396 stripe_index++; 5397 if (stripe_index == map->num_stripes) { 5398 stripe_index = 0; 5399 stripe_nr++; 5400 } 5401 } 5402 5403 *bbio_ret = bbio; 5404 bbio->map_type = map->type; 5405 bbio->num_stripes = num_stripes; 5406 out: 5407 free_extent_map(em); 5408 return ret; 5409 } 5410 5411 /* 5412 * In dev-replace case, for repair case (that's the only case where the mirror 5413 * is selected explicitly when calling btrfs_map_block), blocks left of the 5414 * left cursor can also be read from the target drive. 5415 * 5416 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5417 * array of stripes. 5418 * For READ, it also needs to be supported using the same mirror number. 5419 * 5420 * If the requested block is not left of the left cursor, EIO is returned. This 5421 * can happen because btrfs_num_copies() returns one more in the dev-replace 5422 * case. 5423 */ 5424 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5425 u64 logical, u64 length, 5426 u64 srcdev_devid, int *mirror_num, 5427 u64 *physical) 5428 { 5429 struct btrfs_bio *bbio = NULL; 5430 int num_stripes; 5431 int index_srcdev = 0; 5432 int found = 0; 5433 u64 physical_of_found = 0; 5434 int i; 5435 int ret = 0; 5436 5437 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5438 logical, &length, &bbio, 0, 0); 5439 if (ret) { 5440 ASSERT(bbio == NULL); 5441 return ret; 5442 } 5443 5444 num_stripes = bbio->num_stripes; 5445 if (*mirror_num > num_stripes) { 5446 /* 5447 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5448 * that means that the requested area is not left of the left 5449 * cursor 5450 */ 5451 btrfs_put_bbio(bbio); 5452 return -EIO; 5453 } 5454 5455 /* 5456 * process the rest of the function using the mirror_num of the source 5457 * drive. Therefore look it up first. At the end, patch the device 5458 * pointer to the one of the target drive. 5459 */ 5460 for (i = 0; i < num_stripes; i++) { 5461 if (bbio->stripes[i].dev->devid != srcdev_devid) 5462 continue; 5463 5464 /* 5465 * In case of DUP, in order to keep it simple, only add the 5466 * mirror with the lowest physical address 5467 */ 5468 if (found && 5469 physical_of_found <= bbio->stripes[i].physical) 5470 continue; 5471 5472 index_srcdev = i; 5473 found = 1; 5474 physical_of_found = bbio->stripes[i].physical; 5475 } 5476 5477 btrfs_put_bbio(bbio); 5478 5479 ASSERT(found); 5480 if (!found) 5481 return -EIO; 5482 5483 *mirror_num = index_srcdev + 1; 5484 *physical = physical_of_found; 5485 return ret; 5486 } 5487 5488 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5489 struct btrfs_bio **bbio_ret, 5490 struct btrfs_dev_replace *dev_replace, 5491 int *num_stripes_ret, int *max_errors_ret) 5492 { 5493 struct btrfs_bio *bbio = *bbio_ret; 5494 u64 srcdev_devid = dev_replace->srcdev->devid; 5495 int tgtdev_indexes = 0; 5496 int num_stripes = *num_stripes_ret; 5497 int max_errors = *max_errors_ret; 5498 int i; 5499 5500 if (op == BTRFS_MAP_WRITE) { 5501 int index_where_to_add; 5502 5503 /* 5504 * duplicate the write operations while the dev replace 5505 * procedure is running. Since the copying of the old disk to 5506 * the new disk takes place at run time while the filesystem is 5507 * mounted writable, the regular write operations to the old 5508 * disk have to be duplicated to go to the new disk as well. 5509 * 5510 * Note that device->missing is handled by the caller, and that 5511 * the write to the old disk is already set up in the stripes 5512 * array. 5513 */ 5514 index_where_to_add = num_stripes; 5515 for (i = 0; i < num_stripes; i++) { 5516 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5517 /* write to new disk, too */ 5518 struct btrfs_bio_stripe *new = 5519 bbio->stripes + index_where_to_add; 5520 struct btrfs_bio_stripe *old = 5521 bbio->stripes + i; 5522 5523 new->physical = old->physical; 5524 new->length = old->length; 5525 new->dev = dev_replace->tgtdev; 5526 bbio->tgtdev_map[i] = index_where_to_add; 5527 index_where_to_add++; 5528 max_errors++; 5529 tgtdev_indexes++; 5530 } 5531 } 5532 num_stripes = index_where_to_add; 5533 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5534 int index_srcdev = 0; 5535 int found = 0; 5536 u64 physical_of_found = 0; 5537 5538 /* 5539 * During the dev-replace procedure, the target drive can also 5540 * be used to read data in case it is needed to repair a corrupt 5541 * block elsewhere. This is possible if the requested area is 5542 * left of the left cursor. In this area, the target drive is a 5543 * full copy of the source drive. 5544 */ 5545 for (i = 0; i < num_stripes; i++) { 5546 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5547 /* 5548 * In case of DUP, in order to keep it simple, 5549 * only add the mirror with the lowest physical 5550 * address 5551 */ 5552 if (found && 5553 physical_of_found <= 5554 bbio->stripes[i].physical) 5555 continue; 5556 index_srcdev = i; 5557 found = 1; 5558 physical_of_found = bbio->stripes[i].physical; 5559 } 5560 } 5561 if (found) { 5562 struct btrfs_bio_stripe *tgtdev_stripe = 5563 bbio->stripes + num_stripes; 5564 5565 tgtdev_stripe->physical = physical_of_found; 5566 tgtdev_stripe->length = 5567 bbio->stripes[index_srcdev].length; 5568 tgtdev_stripe->dev = dev_replace->tgtdev; 5569 bbio->tgtdev_map[index_srcdev] = num_stripes; 5570 5571 tgtdev_indexes++; 5572 num_stripes++; 5573 } 5574 } 5575 5576 *num_stripes_ret = num_stripes; 5577 *max_errors_ret = max_errors; 5578 bbio->num_tgtdevs = tgtdev_indexes; 5579 *bbio_ret = bbio; 5580 } 5581 5582 static bool need_full_stripe(enum btrfs_map_op op) 5583 { 5584 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5585 } 5586 5587 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5588 enum btrfs_map_op op, 5589 u64 logical, u64 *length, 5590 struct btrfs_bio **bbio_ret, 5591 int mirror_num, int need_raid_map) 5592 { 5593 struct extent_map *em; 5594 struct map_lookup *map; 5595 u64 offset; 5596 u64 stripe_offset; 5597 u64 stripe_nr; 5598 u64 stripe_len; 5599 u32 stripe_index; 5600 int i; 5601 int ret = 0; 5602 int num_stripes; 5603 int max_errors = 0; 5604 int tgtdev_indexes = 0; 5605 struct btrfs_bio *bbio = NULL; 5606 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5607 int dev_replace_is_ongoing = 0; 5608 int num_alloc_stripes; 5609 int patch_the_first_stripe_for_dev_replace = 0; 5610 u64 physical_to_patch_in_first_stripe = 0; 5611 u64 raid56_full_stripe_start = (u64)-1; 5612 5613 if (op == BTRFS_MAP_DISCARD) 5614 return __btrfs_map_block_for_discard(fs_info, logical, 5615 *length, bbio_ret); 5616 5617 em = get_chunk_map(fs_info, logical, *length); 5618 if (IS_ERR(em)) 5619 return PTR_ERR(em); 5620 5621 map = em->map_lookup; 5622 offset = logical - em->start; 5623 5624 stripe_len = map->stripe_len; 5625 stripe_nr = offset; 5626 /* 5627 * stripe_nr counts the total number of stripes we have to stride 5628 * to get to this block 5629 */ 5630 stripe_nr = div64_u64(stripe_nr, stripe_len); 5631 5632 stripe_offset = stripe_nr * stripe_len; 5633 if (offset < stripe_offset) { 5634 btrfs_crit(fs_info, 5635 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 5636 stripe_offset, offset, em->start, logical, 5637 stripe_len); 5638 free_extent_map(em); 5639 return -EINVAL; 5640 } 5641 5642 /* stripe_offset is the offset of this block in its stripe*/ 5643 stripe_offset = offset - stripe_offset; 5644 5645 /* if we're here for raid56, we need to know the stripe aligned start */ 5646 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5647 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5648 raid56_full_stripe_start = offset; 5649 5650 /* allow a write of a full stripe, but make sure we don't 5651 * allow straddling of stripes 5652 */ 5653 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5654 full_stripe_len); 5655 raid56_full_stripe_start *= full_stripe_len; 5656 } 5657 5658 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5659 u64 max_len; 5660 /* For writes to RAID[56], allow a full stripeset across all disks. 5661 For other RAID types and for RAID[56] reads, just allow a single 5662 stripe (on a single disk). */ 5663 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5664 (op == BTRFS_MAP_WRITE)) { 5665 max_len = stripe_len * nr_data_stripes(map) - 5666 (offset - raid56_full_stripe_start); 5667 } else { 5668 /* we limit the length of each bio to what fits in a stripe */ 5669 max_len = stripe_len - stripe_offset; 5670 } 5671 *length = min_t(u64, em->len - offset, max_len); 5672 } else { 5673 *length = em->len - offset; 5674 } 5675 5676 /* This is for when we're called from btrfs_merge_bio_hook() and all 5677 it cares about is the length */ 5678 if (!bbio_ret) 5679 goto out; 5680 5681 btrfs_dev_replace_lock(dev_replace, 0); 5682 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5683 if (!dev_replace_is_ongoing) 5684 btrfs_dev_replace_unlock(dev_replace, 0); 5685 else 5686 btrfs_dev_replace_set_lock_blocking(dev_replace); 5687 5688 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5689 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 5690 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 5691 dev_replace->srcdev->devid, 5692 &mirror_num, 5693 &physical_to_patch_in_first_stripe); 5694 if (ret) 5695 goto out; 5696 else 5697 patch_the_first_stripe_for_dev_replace = 1; 5698 } else if (mirror_num > map->num_stripes) { 5699 mirror_num = 0; 5700 } 5701 5702 num_stripes = 1; 5703 stripe_index = 0; 5704 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5705 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5706 &stripe_index); 5707 if (!need_full_stripe(op)) 5708 mirror_num = 1; 5709 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5710 if (need_full_stripe(op)) 5711 num_stripes = map->num_stripes; 5712 else if (mirror_num) 5713 stripe_index = mirror_num - 1; 5714 else { 5715 stripe_index = find_live_mirror(fs_info, map, 0, 5716 map->num_stripes, 5717 current->pid % map->num_stripes, 5718 dev_replace_is_ongoing); 5719 mirror_num = stripe_index + 1; 5720 } 5721 5722 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5723 if (need_full_stripe(op)) { 5724 num_stripes = map->num_stripes; 5725 } else if (mirror_num) { 5726 stripe_index = mirror_num - 1; 5727 } else { 5728 mirror_num = 1; 5729 } 5730 5731 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5732 u32 factor = map->num_stripes / map->sub_stripes; 5733 5734 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5735 stripe_index *= map->sub_stripes; 5736 5737 if (need_full_stripe(op)) 5738 num_stripes = map->sub_stripes; 5739 else if (mirror_num) 5740 stripe_index += mirror_num - 1; 5741 else { 5742 int old_stripe_index = stripe_index; 5743 stripe_index = find_live_mirror(fs_info, map, 5744 stripe_index, 5745 map->sub_stripes, stripe_index + 5746 current->pid % map->sub_stripes, 5747 dev_replace_is_ongoing); 5748 mirror_num = stripe_index - old_stripe_index + 1; 5749 } 5750 5751 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5752 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 5753 /* push stripe_nr back to the start of the full stripe */ 5754 stripe_nr = div64_u64(raid56_full_stripe_start, 5755 stripe_len * nr_data_stripes(map)); 5756 5757 /* RAID[56] write or recovery. Return all stripes */ 5758 num_stripes = map->num_stripes; 5759 max_errors = nr_parity_stripes(map); 5760 5761 *length = map->stripe_len; 5762 stripe_index = 0; 5763 stripe_offset = 0; 5764 } else { 5765 /* 5766 * Mirror #0 or #1 means the original data block. 5767 * Mirror #2 is RAID5 parity block. 5768 * Mirror #3 is RAID6 Q block. 5769 */ 5770 stripe_nr = div_u64_rem(stripe_nr, 5771 nr_data_stripes(map), &stripe_index); 5772 if (mirror_num > 1) 5773 stripe_index = nr_data_stripes(map) + 5774 mirror_num - 2; 5775 5776 /* We distribute the parity blocks across stripes */ 5777 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5778 &stripe_index); 5779 if (!need_full_stripe(op) && mirror_num <= 1) 5780 mirror_num = 1; 5781 } 5782 } else { 5783 /* 5784 * after this, stripe_nr is the number of stripes on this 5785 * device we have to walk to find the data, and stripe_index is 5786 * the number of our device in the stripe array 5787 */ 5788 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5789 &stripe_index); 5790 mirror_num = stripe_index + 1; 5791 } 5792 if (stripe_index >= map->num_stripes) { 5793 btrfs_crit(fs_info, 5794 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 5795 stripe_index, map->num_stripes); 5796 ret = -EINVAL; 5797 goto out; 5798 } 5799 5800 num_alloc_stripes = num_stripes; 5801 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 5802 if (op == BTRFS_MAP_WRITE) 5803 num_alloc_stripes <<= 1; 5804 if (op == BTRFS_MAP_GET_READ_MIRRORS) 5805 num_alloc_stripes++; 5806 tgtdev_indexes = num_stripes; 5807 } 5808 5809 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5810 if (!bbio) { 5811 ret = -ENOMEM; 5812 goto out; 5813 } 5814 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 5815 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5816 5817 /* build raid_map */ 5818 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 5819 (need_full_stripe(op) || mirror_num > 1)) { 5820 u64 tmp; 5821 unsigned rot; 5822 5823 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5824 sizeof(struct btrfs_bio_stripe) * 5825 num_alloc_stripes + 5826 sizeof(int) * tgtdev_indexes); 5827 5828 /* Work out the disk rotation on this stripe-set */ 5829 div_u64_rem(stripe_nr, num_stripes, &rot); 5830 5831 /* Fill in the logical address of each stripe */ 5832 tmp = stripe_nr * nr_data_stripes(map); 5833 for (i = 0; i < nr_data_stripes(map); i++) 5834 bbio->raid_map[(i+rot) % num_stripes] = 5835 em->start + (tmp + i) * map->stripe_len; 5836 5837 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5838 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5839 bbio->raid_map[(i+rot+1) % num_stripes] = 5840 RAID6_Q_STRIPE; 5841 } 5842 5843 5844 for (i = 0; i < num_stripes; i++) { 5845 bbio->stripes[i].physical = 5846 map->stripes[stripe_index].physical + 5847 stripe_offset + 5848 stripe_nr * map->stripe_len; 5849 bbio->stripes[i].dev = 5850 map->stripes[stripe_index].dev; 5851 stripe_index++; 5852 } 5853 5854 if (need_full_stripe(op)) 5855 max_errors = btrfs_chunk_max_errors(map); 5856 5857 if (bbio->raid_map) 5858 sort_parity_stripes(bbio, num_stripes); 5859 5860 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 5861 need_full_stripe(op)) { 5862 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 5863 &max_errors); 5864 } 5865 5866 *bbio_ret = bbio; 5867 bbio->map_type = map->type; 5868 bbio->num_stripes = num_stripes; 5869 bbio->max_errors = max_errors; 5870 bbio->mirror_num = mirror_num; 5871 5872 /* 5873 * this is the case that REQ_READ && dev_replace_is_ongoing && 5874 * mirror_num == num_stripes + 1 && dev_replace target drive is 5875 * available as a mirror 5876 */ 5877 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5878 WARN_ON(num_stripes > 1); 5879 bbio->stripes[0].dev = dev_replace->tgtdev; 5880 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5881 bbio->mirror_num = map->num_stripes + 1; 5882 } 5883 out: 5884 if (dev_replace_is_ongoing) { 5885 btrfs_dev_replace_clear_lock_blocking(dev_replace); 5886 btrfs_dev_replace_unlock(dev_replace, 0); 5887 } 5888 free_extent_map(em); 5889 return ret; 5890 } 5891 5892 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5893 u64 logical, u64 *length, 5894 struct btrfs_bio **bbio_ret, int mirror_num) 5895 { 5896 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 5897 mirror_num, 0); 5898 } 5899 5900 /* For Scrub/replace */ 5901 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5902 u64 logical, u64 *length, 5903 struct btrfs_bio **bbio_ret) 5904 { 5905 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 5906 } 5907 5908 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, 5909 u64 chunk_start, u64 physical, u64 devid, 5910 u64 **logical, int *naddrs, int *stripe_len) 5911 { 5912 struct extent_map *em; 5913 struct map_lookup *map; 5914 u64 *buf; 5915 u64 bytenr; 5916 u64 length; 5917 u64 stripe_nr; 5918 u64 rmap_len; 5919 int i, j, nr = 0; 5920 5921 em = get_chunk_map(fs_info, chunk_start, 1); 5922 if (IS_ERR(em)) 5923 return -EIO; 5924 5925 map = em->map_lookup; 5926 length = em->len; 5927 rmap_len = map->stripe_len; 5928 5929 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5930 length = div_u64(length, map->num_stripes / map->sub_stripes); 5931 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5932 length = div_u64(length, map->num_stripes); 5933 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5934 length = div_u64(length, nr_data_stripes(map)); 5935 rmap_len = map->stripe_len * nr_data_stripes(map); 5936 } 5937 5938 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5939 BUG_ON(!buf); /* -ENOMEM */ 5940 5941 for (i = 0; i < map->num_stripes; i++) { 5942 if (devid && map->stripes[i].dev->devid != devid) 5943 continue; 5944 if (map->stripes[i].physical > physical || 5945 map->stripes[i].physical + length <= physical) 5946 continue; 5947 5948 stripe_nr = physical - map->stripes[i].physical; 5949 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 5950 5951 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5952 stripe_nr = stripe_nr * map->num_stripes + i; 5953 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5954 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5955 stripe_nr = stripe_nr * map->num_stripes + i; 5956 } /* else if RAID[56], multiply by nr_data_stripes(). 5957 * Alternatively, just use rmap_len below instead of 5958 * map->stripe_len */ 5959 5960 bytenr = chunk_start + stripe_nr * rmap_len; 5961 WARN_ON(nr >= map->num_stripes); 5962 for (j = 0; j < nr; j++) { 5963 if (buf[j] == bytenr) 5964 break; 5965 } 5966 if (j == nr) { 5967 WARN_ON(nr >= map->num_stripes); 5968 buf[nr++] = bytenr; 5969 } 5970 } 5971 5972 *logical = buf; 5973 *naddrs = nr; 5974 *stripe_len = rmap_len; 5975 5976 free_extent_map(em); 5977 return 0; 5978 } 5979 5980 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5981 { 5982 bio->bi_private = bbio->private; 5983 bio->bi_end_io = bbio->end_io; 5984 bio_endio(bio); 5985 5986 btrfs_put_bbio(bbio); 5987 } 5988 5989 static void btrfs_end_bio(struct bio *bio) 5990 { 5991 struct btrfs_bio *bbio = bio->bi_private; 5992 int is_orig_bio = 0; 5993 5994 if (bio->bi_status) { 5995 atomic_inc(&bbio->error); 5996 if (bio->bi_status == BLK_STS_IOERR || 5997 bio->bi_status == BLK_STS_TARGET) { 5998 unsigned int stripe_index = 5999 btrfs_io_bio(bio)->stripe_index; 6000 struct btrfs_device *dev; 6001 6002 BUG_ON(stripe_index >= bbio->num_stripes); 6003 dev = bbio->stripes[stripe_index].dev; 6004 if (dev->bdev) { 6005 if (bio_op(bio) == REQ_OP_WRITE) 6006 btrfs_dev_stat_inc(dev, 6007 BTRFS_DEV_STAT_WRITE_ERRS); 6008 else 6009 btrfs_dev_stat_inc(dev, 6010 BTRFS_DEV_STAT_READ_ERRS); 6011 if (bio->bi_opf & REQ_PREFLUSH) 6012 btrfs_dev_stat_inc(dev, 6013 BTRFS_DEV_STAT_FLUSH_ERRS); 6014 btrfs_dev_stat_print_on_error(dev); 6015 } 6016 } 6017 } 6018 6019 if (bio == bbio->orig_bio) 6020 is_orig_bio = 1; 6021 6022 btrfs_bio_counter_dec(bbio->fs_info); 6023 6024 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6025 if (!is_orig_bio) { 6026 bio_put(bio); 6027 bio = bbio->orig_bio; 6028 } 6029 6030 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6031 /* only send an error to the higher layers if it is 6032 * beyond the tolerance of the btrfs bio 6033 */ 6034 if (atomic_read(&bbio->error) > bbio->max_errors) { 6035 bio->bi_status = BLK_STS_IOERR; 6036 } else { 6037 /* 6038 * this bio is actually up to date, we didn't 6039 * go over the max number of errors 6040 */ 6041 bio->bi_status = BLK_STS_OK; 6042 } 6043 6044 btrfs_end_bbio(bbio, bio); 6045 } else if (!is_orig_bio) { 6046 bio_put(bio); 6047 } 6048 } 6049 6050 /* 6051 * see run_scheduled_bios for a description of why bios are collected for 6052 * async submit. 6053 * 6054 * This will add one bio to the pending list for a device and make sure 6055 * the work struct is scheduled. 6056 */ 6057 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6058 struct bio *bio) 6059 { 6060 struct btrfs_fs_info *fs_info = device->fs_info; 6061 int should_queue = 1; 6062 struct btrfs_pending_bios *pending_bios; 6063 6064 if (device->missing || !device->bdev) { 6065 bio_io_error(bio); 6066 return; 6067 } 6068 6069 /* don't bother with additional async steps for reads, right now */ 6070 if (bio_op(bio) == REQ_OP_READ) { 6071 bio_get(bio); 6072 btrfsic_submit_bio(bio); 6073 bio_put(bio); 6074 return; 6075 } 6076 6077 WARN_ON(bio->bi_next); 6078 bio->bi_next = NULL; 6079 6080 spin_lock(&device->io_lock); 6081 if (op_is_sync(bio->bi_opf)) 6082 pending_bios = &device->pending_sync_bios; 6083 else 6084 pending_bios = &device->pending_bios; 6085 6086 if (pending_bios->tail) 6087 pending_bios->tail->bi_next = bio; 6088 6089 pending_bios->tail = bio; 6090 if (!pending_bios->head) 6091 pending_bios->head = bio; 6092 if (device->running_pending) 6093 should_queue = 0; 6094 6095 spin_unlock(&device->io_lock); 6096 6097 if (should_queue) 6098 btrfs_queue_work(fs_info->submit_workers, &device->work); 6099 } 6100 6101 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6102 u64 physical, int dev_nr, int async) 6103 { 6104 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6105 struct btrfs_fs_info *fs_info = bbio->fs_info; 6106 6107 bio->bi_private = bbio; 6108 btrfs_io_bio(bio)->stripe_index = dev_nr; 6109 bio->bi_end_io = btrfs_end_bio; 6110 bio->bi_iter.bi_sector = physical >> 9; 6111 #ifdef DEBUG 6112 { 6113 struct rcu_string *name; 6114 6115 rcu_read_lock(); 6116 name = rcu_dereference(dev->name); 6117 btrfs_debug(fs_info, 6118 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6119 bio_op(bio), bio->bi_opf, 6120 (u64)bio->bi_iter.bi_sector, 6121 (u_long)dev->bdev->bd_dev, name->str, dev->devid, 6122 bio->bi_iter.bi_size); 6123 rcu_read_unlock(); 6124 } 6125 #endif 6126 bio_set_dev(bio, dev->bdev); 6127 6128 btrfs_bio_counter_inc_noblocked(fs_info); 6129 6130 if (async) 6131 btrfs_schedule_bio(dev, bio); 6132 else 6133 btrfsic_submit_bio(bio); 6134 } 6135 6136 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6137 { 6138 atomic_inc(&bbio->error); 6139 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6140 /* Should be the original bio. */ 6141 WARN_ON(bio != bbio->orig_bio); 6142 6143 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6144 bio->bi_iter.bi_sector = logical >> 9; 6145 if (atomic_read(&bbio->error) > bbio->max_errors) 6146 bio->bi_status = BLK_STS_IOERR; 6147 else 6148 bio->bi_status = BLK_STS_OK; 6149 btrfs_end_bbio(bbio, bio); 6150 } 6151 } 6152 6153 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6154 int mirror_num, int async_submit) 6155 { 6156 struct btrfs_device *dev; 6157 struct bio *first_bio = bio; 6158 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6159 u64 length = 0; 6160 u64 map_length; 6161 int ret; 6162 int dev_nr; 6163 int total_devs; 6164 struct btrfs_bio *bbio = NULL; 6165 6166 length = bio->bi_iter.bi_size; 6167 map_length = length; 6168 6169 btrfs_bio_counter_inc_blocked(fs_info); 6170 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6171 &map_length, &bbio, mirror_num, 1); 6172 if (ret) { 6173 btrfs_bio_counter_dec(fs_info); 6174 return errno_to_blk_status(ret); 6175 } 6176 6177 total_devs = bbio->num_stripes; 6178 bbio->orig_bio = first_bio; 6179 bbio->private = first_bio->bi_private; 6180 bbio->end_io = first_bio->bi_end_io; 6181 bbio->fs_info = fs_info; 6182 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6183 6184 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6185 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6186 /* In this case, map_length has been set to the length of 6187 a single stripe; not the whole write */ 6188 if (bio_op(bio) == REQ_OP_WRITE) { 6189 ret = raid56_parity_write(fs_info, bio, bbio, 6190 map_length); 6191 } else { 6192 ret = raid56_parity_recover(fs_info, bio, bbio, 6193 map_length, mirror_num, 1); 6194 } 6195 6196 btrfs_bio_counter_dec(fs_info); 6197 return errno_to_blk_status(ret); 6198 } 6199 6200 if (map_length < length) { 6201 btrfs_crit(fs_info, 6202 "mapping failed logical %llu bio len %llu len %llu", 6203 logical, length, map_length); 6204 BUG(); 6205 } 6206 6207 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6208 dev = bbio->stripes[dev_nr].dev; 6209 if (!dev || !dev->bdev || 6210 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) { 6211 bbio_error(bbio, first_bio, logical); 6212 continue; 6213 } 6214 6215 if (dev_nr < total_devs - 1) 6216 bio = btrfs_bio_clone(first_bio); 6217 else 6218 bio = first_bio; 6219 6220 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6221 dev_nr, async_submit); 6222 } 6223 btrfs_bio_counter_dec(fs_info); 6224 return BLK_STS_OK; 6225 } 6226 6227 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6228 u8 *uuid, u8 *fsid) 6229 { 6230 struct btrfs_device *device; 6231 struct btrfs_fs_devices *cur_devices; 6232 6233 cur_devices = fs_info->fs_devices; 6234 while (cur_devices) { 6235 if (!fsid || 6236 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) { 6237 device = find_device(cur_devices, devid, uuid); 6238 if (device) 6239 return device; 6240 } 6241 cur_devices = cur_devices->seed; 6242 } 6243 return NULL; 6244 } 6245 6246 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6247 u64 devid, u8 *dev_uuid) 6248 { 6249 struct btrfs_device *device; 6250 6251 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6252 if (IS_ERR(device)) 6253 return device; 6254 6255 list_add(&device->dev_list, &fs_devices->devices); 6256 device->fs_devices = fs_devices; 6257 fs_devices->num_devices++; 6258 6259 device->missing = 1; 6260 fs_devices->missing_devices++; 6261 6262 return device; 6263 } 6264 6265 /** 6266 * btrfs_alloc_device - allocate struct btrfs_device 6267 * @fs_info: used only for generating a new devid, can be NULL if 6268 * devid is provided (i.e. @devid != NULL). 6269 * @devid: a pointer to devid for this device. If NULL a new devid 6270 * is generated. 6271 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6272 * is generated. 6273 * 6274 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6275 * on error. Returned struct is not linked onto any lists and can be 6276 * destroyed with kfree() right away. 6277 */ 6278 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6279 const u64 *devid, 6280 const u8 *uuid) 6281 { 6282 struct btrfs_device *dev; 6283 u64 tmp; 6284 6285 if (WARN_ON(!devid && !fs_info)) 6286 return ERR_PTR(-EINVAL); 6287 6288 dev = __alloc_device(); 6289 if (IS_ERR(dev)) 6290 return dev; 6291 6292 if (devid) 6293 tmp = *devid; 6294 else { 6295 int ret; 6296 6297 ret = find_next_devid(fs_info, &tmp); 6298 if (ret) { 6299 bio_put(dev->flush_bio); 6300 kfree(dev); 6301 return ERR_PTR(ret); 6302 } 6303 } 6304 dev->devid = tmp; 6305 6306 if (uuid) 6307 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6308 else 6309 generate_random_uuid(dev->uuid); 6310 6311 btrfs_init_work(&dev->work, btrfs_submit_helper, 6312 pending_bios_fn, NULL, NULL); 6313 6314 return dev; 6315 } 6316 6317 /* Return -EIO if any error, otherwise return 0. */ 6318 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, 6319 struct extent_buffer *leaf, 6320 struct btrfs_chunk *chunk, u64 logical) 6321 { 6322 u64 length; 6323 u64 stripe_len; 6324 u16 num_stripes; 6325 u16 sub_stripes; 6326 u64 type; 6327 6328 length = btrfs_chunk_length(leaf, chunk); 6329 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6330 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6331 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6332 type = btrfs_chunk_type(leaf, chunk); 6333 6334 if (!num_stripes) { 6335 btrfs_err(fs_info, "invalid chunk num_stripes: %u", 6336 num_stripes); 6337 return -EIO; 6338 } 6339 if (!IS_ALIGNED(logical, fs_info->sectorsize)) { 6340 btrfs_err(fs_info, "invalid chunk logical %llu", logical); 6341 return -EIO; 6342 } 6343 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { 6344 btrfs_err(fs_info, "invalid chunk sectorsize %u", 6345 btrfs_chunk_sector_size(leaf, chunk)); 6346 return -EIO; 6347 } 6348 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { 6349 btrfs_err(fs_info, "invalid chunk length %llu", length); 6350 return -EIO; 6351 } 6352 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6353 btrfs_err(fs_info, "invalid chunk stripe length: %llu", 6354 stripe_len); 6355 return -EIO; 6356 } 6357 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6358 type) { 6359 btrfs_err(fs_info, "unrecognized chunk type: %llu", 6360 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6361 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6362 btrfs_chunk_type(leaf, chunk)); 6363 return -EIO; 6364 } 6365 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6366 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || 6367 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6368 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6369 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || 6370 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6371 num_stripes != 1)) { 6372 btrfs_err(fs_info, 6373 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6374 num_stripes, sub_stripes, 6375 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6376 return -EIO; 6377 } 6378 6379 return 0; 6380 } 6381 6382 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6383 u64 devid, u8 *uuid, bool error) 6384 { 6385 if (error) 6386 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6387 devid, uuid); 6388 else 6389 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6390 devid, uuid); 6391 } 6392 6393 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 6394 struct extent_buffer *leaf, 6395 struct btrfs_chunk *chunk) 6396 { 6397 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6398 struct map_lookup *map; 6399 struct extent_map *em; 6400 u64 logical; 6401 u64 length; 6402 u64 devid; 6403 u8 uuid[BTRFS_UUID_SIZE]; 6404 int num_stripes; 6405 int ret; 6406 int i; 6407 6408 logical = key->offset; 6409 length = btrfs_chunk_length(leaf, chunk); 6410 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6411 6412 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); 6413 if (ret) 6414 return ret; 6415 6416 read_lock(&map_tree->map_tree.lock); 6417 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6418 read_unlock(&map_tree->map_tree.lock); 6419 6420 /* already mapped? */ 6421 if (em && em->start <= logical && em->start + em->len > logical) { 6422 free_extent_map(em); 6423 return 0; 6424 } else if (em) { 6425 free_extent_map(em); 6426 } 6427 6428 em = alloc_extent_map(); 6429 if (!em) 6430 return -ENOMEM; 6431 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6432 if (!map) { 6433 free_extent_map(em); 6434 return -ENOMEM; 6435 } 6436 6437 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6438 em->map_lookup = map; 6439 em->start = logical; 6440 em->len = length; 6441 em->orig_start = 0; 6442 em->block_start = 0; 6443 em->block_len = em->len; 6444 6445 map->num_stripes = num_stripes; 6446 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6447 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6448 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6449 map->type = btrfs_chunk_type(leaf, chunk); 6450 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6451 for (i = 0; i < num_stripes; i++) { 6452 map->stripes[i].physical = 6453 btrfs_stripe_offset_nr(leaf, chunk, i); 6454 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6455 read_extent_buffer(leaf, uuid, (unsigned long) 6456 btrfs_stripe_dev_uuid_nr(chunk, i), 6457 BTRFS_UUID_SIZE); 6458 map->stripes[i].dev = btrfs_find_device(fs_info, devid, 6459 uuid, NULL); 6460 if (!map->stripes[i].dev && 6461 !btrfs_test_opt(fs_info, DEGRADED)) { 6462 free_extent_map(em); 6463 btrfs_report_missing_device(fs_info, devid, uuid, true); 6464 return -ENOENT; 6465 } 6466 if (!map->stripes[i].dev) { 6467 map->stripes[i].dev = 6468 add_missing_dev(fs_info->fs_devices, devid, 6469 uuid); 6470 if (IS_ERR(map->stripes[i].dev)) { 6471 free_extent_map(em); 6472 btrfs_err(fs_info, 6473 "failed to init missing dev %llu: %ld", 6474 devid, PTR_ERR(map->stripes[i].dev)); 6475 return PTR_ERR(map->stripes[i].dev); 6476 } 6477 btrfs_report_missing_device(fs_info, devid, uuid, false); 6478 } 6479 map->stripes[i].dev->in_fs_metadata = 1; 6480 } 6481 6482 write_lock(&map_tree->map_tree.lock); 6483 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6484 write_unlock(&map_tree->map_tree.lock); 6485 BUG_ON(ret); /* Tree corruption */ 6486 free_extent_map(em); 6487 6488 return 0; 6489 } 6490 6491 static void fill_device_from_item(struct extent_buffer *leaf, 6492 struct btrfs_dev_item *dev_item, 6493 struct btrfs_device *device) 6494 { 6495 unsigned long ptr; 6496 6497 device->devid = btrfs_device_id(leaf, dev_item); 6498 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6499 device->total_bytes = device->disk_total_bytes; 6500 device->commit_total_bytes = device->disk_total_bytes; 6501 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6502 device->commit_bytes_used = device->bytes_used; 6503 device->type = btrfs_device_type(leaf, dev_item); 6504 device->io_align = btrfs_device_io_align(leaf, dev_item); 6505 device->io_width = btrfs_device_io_width(leaf, dev_item); 6506 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6507 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6508 device->is_tgtdev_for_dev_replace = 0; 6509 6510 ptr = btrfs_device_uuid(dev_item); 6511 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6512 } 6513 6514 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6515 u8 *fsid) 6516 { 6517 struct btrfs_fs_devices *fs_devices; 6518 int ret; 6519 6520 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6521 ASSERT(fsid); 6522 6523 fs_devices = fs_info->fs_devices->seed; 6524 while (fs_devices) { 6525 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6526 return fs_devices; 6527 6528 fs_devices = fs_devices->seed; 6529 } 6530 6531 fs_devices = find_fsid(fsid); 6532 if (!fs_devices) { 6533 if (!btrfs_test_opt(fs_info, DEGRADED)) 6534 return ERR_PTR(-ENOENT); 6535 6536 fs_devices = alloc_fs_devices(fsid); 6537 if (IS_ERR(fs_devices)) 6538 return fs_devices; 6539 6540 fs_devices->seeding = 1; 6541 fs_devices->opened = 1; 6542 return fs_devices; 6543 } 6544 6545 fs_devices = clone_fs_devices(fs_devices); 6546 if (IS_ERR(fs_devices)) 6547 return fs_devices; 6548 6549 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6550 fs_info->bdev_holder); 6551 if (ret) { 6552 free_fs_devices(fs_devices); 6553 fs_devices = ERR_PTR(ret); 6554 goto out; 6555 } 6556 6557 if (!fs_devices->seeding) { 6558 __btrfs_close_devices(fs_devices); 6559 free_fs_devices(fs_devices); 6560 fs_devices = ERR_PTR(-EINVAL); 6561 goto out; 6562 } 6563 6564 fs_devices->seed = fs_info->fs_devices->seed; 6565 fs_info->fs_devices->seed = fs_devices; 6566 out: 6567 return fs_devices; 6568 } 6569 6570 static int read_one_dev(struct btrfs_fs_info *fs_info, 6571 struct extent_buffer *leaf, 6572 struct btrfs_dev_item *dev_item) 6573 { 6574 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6575 struct btrfs_device *device; 6576 u64 devid; 6577 int ret; 6578 u8 fs_uuid[BTRFS_FSID_SIZE]; 6579 u8 dev_uuid[BTRFS_UUID_SIZE]; 6580 6581 devid = btrfs_device_id(leaf, dev_item); 6582 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6583 BTRFS_UUID_SIZE); 6584 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6585 BTRFS_FSID_SIZE); 6586 6587 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) { 6588 fs_devices = open_seed_devices(fs_info, fs_uuid); 6589 if (IS_ERR(fs_devices)) 6590 return PTR_ERR(fs_devices); 6591 } 6592 6593 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); 6594 if (!device) { 6595 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6596 btrfs_report_missing_device(fs_info, devid, 6597 dev_uuid, true); 6598 return -ENOENT; 6599 } 6600 6601 device = add_missing_dev(fs_devices, devid, dev_uuid); 6602 if (IS_ERR(device)) { 6603 btrfs_err(fs_info, 6604 "failed to add missing dev %llu: %ld", 6605 devid, PTR_ERR(device)); 6606 return PTR_ERR(device); 6607 } 6608 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6609 } else { 6610 if (!device->bdev) { 6611 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6612 btrfs_report_missing_device(fs_info, 6613 devid, dev_uuid, true); 6614 return -ENOENT; 6615 } 6616 btrfs_report_missing_device(fs_info, devid, 6617 dev_uuid, false); 6618 } 6619 6620 if(!device->bdev && !device->missing) { 6621 /* 6622 * this happens when a device that was properly setup 6623 * in the device info lists suddenly goes bad. 6624 * device->bdev is NULL, and so we have to set 6625 * device->missing to one here 6626 */ 6627 device->fs_devices->missing_devices++; 6628 device->missing = 1; 6629 } 6630 6631 /* Move the device to its own fs_devices */ 6632 if (device->fs_devices != fs_devices) { 6633 ASSERT(device->missing); 6634 6635 list_move(&device->dev_list, &fs_devices->devices); 6636 device->fs_devices->num_devices--; 6637 fs_devices->num_devices++; 6638 6639 device->fs_devices->missing_devices--; 6640 fs_devices->missing_devices++; 6641 6642 device->fs_devices = fs_devices; 6643 } 6644 } 6645 6646 if (device->fs_devices != fs_info->fs_devices) { 6647 BUG_ON(device->writeable); 6648 if (device->generation != 6649 btrfs_device_generation(leaf, dev_item)) 6650 return -EINVAL; 6651 } 6652 6653 fill_device_from_item(leaf, dev_item, device); 6654 device->in_fs_metadata = 1; 6655 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6656 device->fs_devices->total_rw_bytes += device->total_bytes; 6657 atomic64_add(device->total_bytes - device->bytes_used, 6658 &fs_info->free_chunk_space); 6659 } 6660 ret = 0; 6661 return ret; 6662 } 6663 6664 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6665 { 6666 struct btrfs_root *root = fs_info->tree_root; 6667 struct btrfs_super_block *super_copy = fs_info->super_copy; 6668 struct extent_buffer *sb; 6669 struct btrfs_disk_key *disk_key; 6670 struct btrfs_chunk *chunk; 6671 u8 *array_ptr; 6672 unsigned long sb_array_offset; 6673 int ret = 0; 6674 u32 num_stripes; 6675 u32 array_size; 6676 u32 len = 0; 6677 u32 cur_offset; 6678 u64 type; 6679 struct btrfs_key key; 6680 6681 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6682 /* 6683 * This will create extent buffer of nodesize, superblock size is 6684 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6685 * overallocate but we can keep it as-is, only the first page is used. 6686 */ 6687 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6688 if (IS_ERR(sb)) 6689 return PTR_ERR(sb); 6690 set_extent_buffer_uptodate(sb); 6691 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6692 /* 6693 * The sb extent buffer is artificial and just used to read the system array. 6694 * set_extent_buffer_uptodate() call does not properly mark all it's 6695 * pages up-to-date when the page is larger: extent does not cover the 6696 * whole page and consequently check_page_uptodate does not find all 6697 * the page's extents up-to-date (the hole beyond sb), 6698 * write_extent_buffer then triggers a WARN_ON. 6699 * 6700 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6701 * but sb spans only this function. Add an explicit SetPageUptodate call 6702 * to silence the warning eg. on PowerPC 64. 6703 */ 6704 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6705 SetPageUptodate(sb->pages[0]); 6706 6707 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6708 array_size = btrfs_super_sys_array_size(super_copy); 6709 6710 array_ptr = super_copy->sys_chunk_array; 6711 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6712 cur_offset = 0; 6713 6714 while (cur_offset < array_size) { 6715 disk_key = (struct btrfs_disk_key *)array_ptr; 6716 len = sizeof(*disk_key); 6717 if (cur_offset + len > array_size) 6718 goto out_short_read; 6719 6720 btrfs_disk_key_to_cpu(&key, disk_key); 6721 6722 array_ptr += len; 6723 sb_array_offset += len; 6724 cur_offset += len; 6725 6726 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6727 chunk = (struct btrfs_chunk *)sb_array_offset; 6728 /* 6729 * At least one btrfs_chunk with one stripe must be 6730 * present, exact stripe count check comes afterwards 6731 */ 6732 len = btrfs_chunk_item_size(1); 6733 if (cur_offset + len > array_size) 6734 goto out_short_read; 6735 6736 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6737 if (!num_stripes) { 6738 btrfs_err(fs_info, 6739 "invalid number of stripes %u in sys_array at offset %u", 6740 num_stripes, cur_offset); 6741 ret = -EIO; 6742 break; 6743 } 6744 6745 type = btrfs_chunk_type(sb, chunk); 6746 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6747 btrfs_err(fs_info, 6748 "invalid chunk type %llu in sys_array at offset %u", 6749 type, cur_offset); 6750 ret = -EIO; 6751 break; 6752 } 6753 6754 len = btrfs_chunk_item_size(num_stripes); 6755 if (cur_offset + len > array_size) 6756 goto out_short_read; 6757 6758 ret = read_one_chunk(fs_info, &key, sb, chunk); 6759 if (ret) 6760 break; 6761 } else { 6762 btrfs_err(fs_info, 6763 "unexpected item type %u in sys_array at offset %u", 6764 (u32)key.type, cur_offset); 6765 ret = -EIO; 6766 break; 6767 } 6768 array_ptr += len; 6769 sb_array_offset += len; 6770 cur_offset += len; 6771 } 6772 clear_extent_buffer_uptodate(sb); 6773 free_extent_buffer_stale(sb); 6774 return ret; 6775 6776 out_short_read: 6777 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6778 len, cur_offset); 6779 clear_extent_buffer_uptodate(sb); 6780 free_extent_buffer_stale(sb); 6781 return -EIO; 6782 } 6783 6784 /* 6785 * Check if all chunks in the fs are OK for read-write degraded mount 6786 * 6787 * Return true if all chunks meet the minimal RW mount requirements. 6788 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6789 */ 6790 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info) 6791 { 6792 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6793 struct extent_map *em; 6794 u64 next_start = 0; 6795 bool ret = true; 6796 6797 read_lock(&map_tree->map_tree.lock); 6798 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); 6799 read_unlock(&map_tree->map_tree.lock); 6800 /* No chunk at all? Return false anyway */ 6801 if (!em) { 6802 ret = false; 6803 goto out; 6804 } 6805 while (em) { 6806 struct map_lookup *map; 6807 int missing = 0; 6808 int max_tolerated; 6809 int i; 6810 6811 map = em->map_lookup; 6812 max_tolerated = 6813 btrfs_get_num_tolerated_disk_barrier_failures( 6814 map->type); 6815 for (i = 0; i < map->num_stripes; i++) { 6816 struct btrfs_device *dev = map->stripes[i].dev; 6817 6818 if (!dev || !dev->bdev || dev->missing || 6819 dev->last_flush_error) 6820 missing++; 6821 } 6822 if (missing > max_tolerated) { 6823 btrfs_warn(fs_info, 6824 "chunk %llu missing %d devices, max tolerance is %d for writeable mount", 6825 em->start, missing, max_tolerated); 6826 free_extent_map(em); 6827 ret = false; 6828 goto out; 6829 } 6830 next_start = extent_map_end(em); 6831 free_extent_map(em); 6832 6833 read_lock(&map_tree->map_tree.lock); 6834 em = lookup_extent_mapping(&map_tree->map_tree, next_start, 6835 (u64)(-1) - next_start); 6836 read_unlock(&map_tree->map_tree.lock); 6837 } 6838 out: 6839 return ret; 6840 } 6841 6842 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6843 { 6844 struct btrfs_root *root = fs_info->chunk_root; 6845 struct btrfs_path *path; 6846 struct extent_buffer *leaf; 6847 struct btrfs_key key; 6848 struct btrfs_key found_key; 6849 int ret; 6850 int slot; 6851 u64 total_dev = 0; 6852 6853 path = btrfs_alloc_path(); 6854 if (!path) 6855 return -ENOMEM; 6856 6857 mutex_lock(&uuid_mutex); 6858 mutex_lock(&fs_info->chunk_mutex); 6859 6860 /* 6861 * Read all device items, and then all the chunk items. All 6862 * device items are found before any chunk item (their object id 6863 * is smaller than the lowest possible object id for a chunk 6864 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6865 */ 6866 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6867 key.offset = 0; 6868 key.type = 0; 6869 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6870 if (ret < 0) 6871 goto error; 6872 while (1) { 6873 leaf = path->nodes[0]; 6874 slot = path->slots[0]; 6875 if (slot >= btrfs_header_nritems(leaf)) { 6876 ret = btrfs_next_leaf(root, path); 6877 if (ret == 0) 6878 continue; 6879 if (ret < 0) 6880 goto error; 6881 break; 6882 } 6883 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6884 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6885 struct btrfs_dev_item *dev_item; 6886 dev_item = btrfs_item_ptr(leaf, slot, 6887 struct btrfs_dev_item); 6888 ret = read_one_dev(fs_info, leaf, dev_item); 6889 if (ret) 6890 goto error; 6891 total_dev++; 6892 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6893 struct btrfs_chunk *chunk; 6894 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6895 ret = read_one_chunk(fs_info, &found_key, leaf, chunk); 6896 if (ret) 6897 goto error; 6898 } 6899 path->slots[0]++; 6900 } 6901 6902 /* 6903 * After loading chunk tree, we've got all device information, 6904 * do another round of validation checks. 6905 */ 6906 if (total_dev != fs_info->fs_devices->total_devices) { 6907 btrfs_err(fs_info, 6908 "super_num_devices %llu mismatch with num_devices %llu found here", 6909 btrfs_super_num_devices(fs_info->super_copy), 6910 total_dev); 6911 ret = -EINVAL; 6912 goto error; 6913 } 6914 if (btrfs_super_total_bytes(fs_info->super_copy) < 6915 fs_info->fs_devices->total_rw_bytes) { 6916 btrfs_err(fs_info, 6917 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 6918 btrfs_super_total_bytes(fs_info->super_copy), 6919 fs_info->fs_devices->total_rw_bytes); 6920 ret = -EINVAL; 6921 goto error; 6922 } 6923 ret = 0; 6924 error: 6925 mutex_unlock(&fs_info->chunk_mutex); 6926 mutex_unlock(&uuid_mutex); 6927 6928 btrfs_free_path(path); 6929 return ret; 6930 } 6931 6932 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6933 { 6934 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6935 struct btrfs_device *device; 6936 6937 while (fs_devices) { 6938 mutex_lock(&fs_devices->device_list_mutex); 6939 list_for_each_entry(device, &fs_devices->devices, dev_list) 6940 device->fs_info = fs_info; 6941 mutex_unlock(&fs_devices->device_list_mutex); 6942 6943 fs_devices = fs_devices->seed; 6944 } 6945 } 6946 6947 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6948 { 6949 int i; 6950 6951 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6952 btrfs_dev_stat_reset(dev, i); 6953 } 6954 6955 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6956 { 6957 struct btrfs_key key; 6958 struct btrfs_key found_key; 6959 struct btrfs_root *dev_root = fs_info->dev_root; 6960 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6961 struct extent_buffer *eb; 6962 int slot; 6963 int ret = 0; 6964 struct btrfs_device *device; 6965 struct btrfs_path *path = NULL; 6966 int i; 6967 6968 path = btrfs_alloc_path(); 6969 if (!path) { 6970 ret = -ENOMEM; 6971 goto out; 6972 } 6973 6974 mutex_lock(&fs_devices->device_list_mutex); 6975 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6976 int item_size; 6977 struct btrfs_dev_stats_item *ptr; 6978 6979 key.objectid = BTRFS_DEV_STATS_OBJECTID; 6980 key.type = BTRFS_PERSISTENT_ITEM_KEY; 6981 key.offset = device->devid; 6982 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6983 if (ret) { 6984 __btrfs_reset_dev_stats(device); 6985 device->dev_stats_valid = 1; 6986 btrfs_release_path(path); 6987 continue; 6988 } 6989 slot = path->slots[0]; 6990 eb = path->nodes[0]; 6991 btrfs_item_key_to_cpu(eb, &found_key, slot); 6992 item_size = btrfs_item_size_nr(eb, slot); 6993 6994 ptr = btrfs_item_ptr(eb, slot, 6995 struct btrfs_dev_stats_item); 6996 6997 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6998 if (item_size >= (1 + i) * sizeof(__le64)) 6999 btrfs_dev_stat_set(device, i, 7000 btrfs_dev_stats_value(eb, ptr, i)); 7001 else 7002 btrfs_dev_stat_reset(device, i); 7003 } 7004 7005 device->dev_stats_valid = 1; 7006 btrfs_dev_stat_print_on_load(device); 7007 btrfs_release_path(path); 7008 } 7009 mutex_unlock(&fs_devices->device_list_mutex); 7010 7011 out: 7012 btrfs_free_path(path); 7013 return ret < 0 ? ret : 0; 7014 } 7015 7016 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7017 struct btrfs_fs_info *fs_info, 7018 struct btrfs_device *device) 7019 { 7020 struct btrfs_root *dev_root = fs_info->dev_root; 7021 struct btrfs_path *path; 7022 struct btrfs_key key; 7023 struct extent_buffer *eb; 7024 struct btrfs_dev_stats_item *ptr; 7025 int ret; 7026 int i; 7027 7028 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7029 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7030 key.offset = device->devid; 7031 7032 path = btrfs_alloc_path(); 7033 if (!path) 7034 return -ENOMEM; 7035 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7036 if (ret < 0) { 7037 btrfs_warn_in_rcu(fs_info, 7038 "error %d while searching for dev_stats item for device %s", 7039 ret, rcu_str_deref(device->name)); 7040 goto out; 7041 } 7042 7043 if (ret == 0 && 7044 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7045 /* need to delete old one and insert a new one */ 7046 ret = btrfs_del_item(trans, dev_root, path); 7047 if (ret != 0) { 7048 btrfs_warn_in_rcu(fs_info, 7049 "delete too small dev_stats item for device %s failed %d", 7050 rcu_str_deref(device->name), ret); 7051 goto out; 7052 } 7053 ret = 1; 7054 } 7055 7056 if (ret == 1) { 7057 /* need to insert a new item */ 7058 btrfs_release_path(path); 7059 ret = btrfs_insert_empty_item(trans, dev_root, path, 7060 &key, sizeof(*ptr)); 7061 if (ret < 0) { 7062 btrfs_warn_in_rcu(fs_info, 7063 "insert dev_stats item for device %s failed %d", 7064 rcu_str_deref(device->name), ret); 7065 goto out; 7066 } 7067 } 7068 7069 eb = path->nodes[0]; 7070 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7071 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7072 btrfs_set_dev_stats_value(eb, ptr, i, 7073 btrfs_dev_stat_read(device, i)); 7074 btrfs_mark_buffer_dirty(eb); 7075 7076 out: 7077 btrfs_free_path(path); 7078 return ret; 7079 } 7080 7081 /* 7082 * called from commit_transaction. Writes all changed device stats to disk. 7083 */ 7084 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7085 struct btrfs_fs_info *fs_info) 7086 { 7087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7088 struct btrfs_device *device; 7089 int stats_cnt; 7090 int ret = 0; 7091 7092 mutex_lock(&fs_devices->device_list_mutex); 7093 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7094 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 7095 continue; 7096 7097 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7098 ret = update_dev_stat_item(trans, fs_info, device); 7099 if (!ret) 7100 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7101 } 7102 mutex_unlock(&fs_devices->device_list_mutex); 7103 7104 return ret; 7105 } 7106 7107 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7108 { 7109 btrfs_dev_stat_inc(dev, index); 7110 btrfs_dev_stat_print_on_error(dev); 7111 } 7112 7113 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7114 { 7115 if (!dev->dev_stats_valid) 7116 return; 7117 btrfs_err_rl_in_rcu(dev->fs_info, 7118 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7119 rcu_str_deref(dev->name), 7120 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7121 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7122 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7123 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7124 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7125 } 7126 7127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7128 { 7129 int i; 7130 7131 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7132 if (btrfs_dev_stat_read(dev, i) != 0) 7133 break; 7134 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7135 return; /* all values == 0, suppress message */ 7136 7137 btrfs_info_in_rcu(dev->fs_info, 7138 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7139 rcu_str_deref(dev->name), 7140 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7141 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7142 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7143 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7144 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7145 } 7146 7147 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7148 struct btrfs_ioctl_get_dev_stats *stats) 7149 { 7150 struct btrfs_device *dev; 7151 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7152 int i; 7153 7154 mutex_lock(&fs_devices->device_list_mutex); 7155 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL); 7156 mutex_unlock(&fs_devices->device_list_mutex); 7157 7158 if (!dev) { 7159 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7160 return -ENODEV; 7161 } else if (!dev->dev_stats_valid) { 7162 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7163 return -ENODEV; 7164 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7165 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7166 if (stats->nr_items > i) 7167 stats->values[i] = 7168 btrfs_dev_stat_read_and_reset(dev, i); 7169 else 7170 btrfs_dev_stat_reset(dev, i); 7171 } 7172 } else { 7173 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7174 if (stats->nr_items > i) 7175 stats->values[i] = btrfs_dev_stat_read(dev, i); 7176 } 7177 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7178 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7179 return 0; 7180 } 7181 7182 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7183 { 7184 struct buffer_head *bh; 7185 struct btrfs_super_block *disk_super; 7186 int copy_num; 7187 7188 if (!bdev) 7189 return; 7190 7191 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7192 copy_num++) { 7193 7194 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7195 continue; 7196 7197 disk_super = (struct btrfs_super_block *)bh->b_data; 7198 7199 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7200 set_buffer_dirty(bh); 7201 sync_dirty_buffer(bh); 7202 brelse(bh); 7203 } 7204 7205 /* Notify udev that device has changed */ 7206 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7207 7208 /* Update ctime/mtime for device path for libblkid */ 7209 update_dev_time(device_path); 7210 } 7211 7212 /* 7213 * Update the size of all devices, which is used for writing out the 7214 * super blocks. 7215 */ 7216 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7217 { 7218 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7219 struct btrfs_device *curr, *next; 7220 7221 if (list_empty(&fs_devices->resized_devices)) 7222 return; 7223 7224 mutex_lock(&fs_devices->device_list_mutex); 7225 mutex_lock(&fs_info->chunk_mutex); 7226 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7227 resized_list) { 7228 list_del_init(&curr->resized_list); 7229 curr->commit_total_bytes = curr->disk_total_bytes; 7230 } 7231 mutex_unlock(&fs_info->chunk_mutex); 7232 mutex_unlock(&fs_devices->device_list_mutex); 7233 } 7234 7235 /* Must be invoked during the transaction commit */ 7236 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info, 7237 struct btrfs_transaction *transaction) 7238 { 7239 struct extent_map *em; 7240 struct map_lookup *map; 7241 struct btrfs_device *dev; 7242 int i; 7243 7244 if (list_empty(&transaction->pending_chunks)) 7245 return; 7246 7247 /* In order to kick the device replace finish process */ 7248 mutex_lock(&fs_info->chunk_mutex); 7249 list_for_each_entry(em, &transaction->pending_chunks, list) { 7250 map = em->map_lookup; 7251 7252 for (i = 0; i < map->num_stripes; i++) { 7253 dev = map->stripes[i].dev; 7254 dev->commit_bytes_used = dev->bytes_used; 7255 } 7256 } 7257 mutex_unlock(&fs_info->chunk_mutex); 7258 } 7259 7260 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7261 { 7262 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7263 while (fs_devices) { 7264 fs_devices->fs_info = fs_info; 7265 fs_devices = fs_devices->seed; 7266 } 7267 } 7268 7269 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7270 { 7271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7272 while (fs_devices) { 7273 fs_devices->fs_info = NULL; 7274 fs_devices = fs_devices->seed; 7275 } 7276 } 7277