1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <asm/div64.h> 29 #include "compat.h" 30 #include "ctree.h" 31 #include "extent_map.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "async-thread.h" 37 #include "check-integrity.h" 38 #include "rcu-string.h" 39 40 static int init_first_rw_device(struct btrfs_trans_handle *trans, 41 struct btrfs_root *root, 42 struct btrfs_device *device); 43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 46 47 static DEFINE_MUTEX(uuid_mutex); 48 static LIST_HEAD(fs_uuids); 49 50 static void lock_chunks(struct btrfs_root *root) 51 { 52 mutex_lock(&root->fs_info->chunk_mutex); 53 } 54 55 static void unlock_chunks(struct btrfs_root *root) 56 { 57 mutex_unlock(&root->fs_info->chunk_mutex); 58 } 59 60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 61 { 62 struct btrfs_device *device; 63 WARN_ON(fs_devices->opened); 64 while (!list_empty(&fs_devices->devices)) { 65 device = list_entry(fs_devices->devices.next, 66 struct btrfs_device, dev_list); 67 list_del(&device->dev_list); 68 rcu_string_free(device->name); 69 kfree(device); 70 } 71 kfree(fs_devices); 72 } 73 74 void btrfs_cleanup_fs_uuids(void) 75 { 76 struct btrfs_fs_devices *fs_devices; 77 78 while (!list_empty(&fs_uuids)) { 79 fs_devices = list_entry(fs_uuids.next, 80 struct btrfs_fs_devices, list); 81 list_del(&fs_devices->list); 82 free_fs_devices(fs_devices); 83 } 84 } 85 86 static noinline struct btrfs_device *__find_device(struct list_head *head, 87 u64 devid, u8 *uuid) 88 { 89 struct btrfs_device *dev; 90 91 list_for_each_entry(dev, head, dev_list) { 92 if (dev->devid == devid && 93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 94 return dev; 95 } 96 } 97 return NULL; 98 } 99 100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 101 { 102 struct btrfs_fs_devices *fs_devices; 103 104 list_for_each_entry(fs_devices, &fs_uuids, list) { 105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 106 return fs_devices; 107 } 108 return NULL; 109 } 110 111 static void requeue_list(struct btrfs_pending_bios *pending_bios, 112 struct bio *head, struct bio *tail) 113 { 114 115 struct bio *old_head; 116 117 old_head = pending_bios->head; 118 pending_bios->head = head; 119 if (pending_bios->tail) 120 tail->bi_next = old_head; 121 else 122 pending_bios->tail = tail; 123 } 124 125 /* 126 * we try to collect pending bios for a device so we don't get a large 127 * number of procs sending bios down to the same device. This greatly 128 * improves the schedulers ability to collect and merge the bios. 129 * 130 * But, it also turns into a long list of bios to process and that is sure 131 * to eventually make the worker thread block. The solution here is to 132 * make some progress and then put this work struct back at the end of 133 * the list if the block device is congested. This way, multiple devices 134 * can make progress from a single worker thread. 135 */ 136 static noinline void run_scheduled_bios(struct btrfs_device *device) 137 { 138 struct bio *pending; 139 struct backing_dev_info *bdi; 140 struct btrfs_fs_info *fs_info; 141 struct btrfs_pending_bios *pending_bios; 142 struct bio *tail; 143 struct bio *cur; 144 int again = 0; 145 unsigned long num_run; 146 unsigned long batch_run = 0; 147 unsigned long limit; 148 unsigned long last_waited = 0; 149 int force_reg = 0; 150 int sync_pending = 0; 151 struct blk_plug plug; 152 153 /* 154 * this function runs all the bios we've collected for 155 * a particular device. We don't want to wander off to 156 * another device without first sending all of these down. 157 * So, setup a plug here and finish it off before we return 158 */ 159 blk_start_plug(&plug); 160 161 bdi = blk_get_backing_dev_info(device->bdev); 162 fs_info = device->dev_root->fs_info; 163 limit = btrfs_async_submit_limit(fs_info); 164 limit = limit * 2 / 3; 165 166 loop: 167 spin_lock(&device->io_lock); 168 169 loop_lock: 170 num_run = 0; 171 172 /* take all the bios off the list at once and process them 173 * later on (without the lock held). But, remember the 174 * tail and other pointers so the bios can be properly reinserted 175 * into the list if we hit congestion 176 */ 177 if (!force_reg && device->pending_sync_bios.head) { 178 pending_bios = &device->pending_sync_bios; 179 force_reg = 1; 180 } else { 181 pending_bios = &device->pending_bios; 182 force_reg = 0; 183 } 184 185 pending = pending_bios->head; 186 tail = pending_bios->tail; 187 WARN_ON(pending && !tail); 188 189 /* 190 * if pending was null this time around, no bios need processing 191 * at all and we can stop. Otherwise it'll loop back up again 192 * and do an additional check so no bios are missed. 193 * 194 * device->running_pending is used to synchronize with the 195 * schedule_bio code. 196 */ 197 if (device->pending_sync_bios.head == NULL && 198 device->pending_bios.head == NULL) { 199 again = 0; 200 device->running_pending = 0; 201 } else { 202 again = 1; 203 device->running_pending = 1; 204 } 205 206 pending_bios->head = NULL; 207 pending_bios->tail = NULL; 208 209 spin_unlock(&device->io_lock); 210 211 while (pending) { 212 213 rmb(); 214 /* we want to work on both lists, but do more bios on the 215 * sync list than the regular list 216 */ 217 if ((num_run > 32 && 218 pending_bios != &device->pending_sync_bios && 219 device->pending_sync_bios.head) || 220 (num_run > 64 && pending_bios == &device->pending_sync_bios && 221 device->pending_bios.head)) { 222 spin_lock(&device->io_lock); 223 requeue_list(pending_bios, pending, tail); 224 goto loop_lock; 225 } 226 227 cur = pending; 228 pending = pending->bi_next; 229 cur->bi_next = NULL; 230 231 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 232 waitqueue_active(&fs_info->async_submit_wait)) 233 wake_up(&fs_info->async_submit_wait); 234 235 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 236 237 /* 238 * if we're doing the sync list, record that our 239 * plug has some sync requests on it 240 * 241 * If we're doing the regular list and there are 242 * sync requests sitting around, unplug before 243 * we add more 244 */ 245 if (pending_bios == &device->pending_sync_bios) { 246 sync_pending = 1; 247 } else if (sync_pending) { 248 blk_finish_plug(&plug); 249 blk_start_plug(&plug); 250 sync_pending = 0; 251 } 252 253 btrfsic_submit_bio(cur->bi_rw, cur); 254 num_run++; 255 batch_run++; 256 if (need_resched()) 257 cond_resched(); 258 259 /* 260 * we made progress, there is more work to do and the bdi 261 * is now congested. Back off and let other work structs 262 * run instead 263 */ 264 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 265 fs_info->fs_devices->open_devices > 1) { 266 struct io_context *ioc; 267 268 ioc = current->io_context; 269 270 /* 271 * the main goal here is that we don't want to 272 * block if we're going to be able to submit 273 * more requests without blocking. 274 * 275 * This code does two great things, it pokes into 276 * the elevator code from a filesystem _and_ 277 * it makes assumptions about how batching works. 278 */ 279 if (ioc && ioc->nr_batch_requests > 0 && 280 time_before(jiffies, ioc->last_waited + HZ/50UL) && 281 (last_waited == 0 || 282 ioc->last_waited == last_waited)) { 283 /* 284 * we want to go through our batch of 285 * requests and stop. So, we copy out 286 * the ioc->last_waited time and test 287 * against it before looping 288 */ 289 last_waited = ioc->last_waited; 290 if (need_resched()) 291 cond_resched(); 292 continue; 293 } 294 spin_lock(&device->io_lock); 295 requeue_list(pending_bios, pending, tail); 296 device->running_pending = 1; 297 298 spin_unlock(&device->io_lock); 299 btrfs_requeue_work(&device->work); 300 goto done; 301 } 302 /* unplug every 64 requests just for good measure */ 303 if (batch_run % 64 == 0) { 304 blk_finish_plug(&plug); 305 blk_start_plug(&plug); 306 sync_pending = 0; 307 } 308 } 309 310 cond_resched(); 311 if (again) 312 goto loop; 313 314 spin_lock(&device->io_lock); 315 if (device->pending_bios.head || device->pending_sync_bios.head) 316 goto loop_lock; 317 spin_unlock(&device->io_lock); 318 319 done: 320 blk_finish_plug(&plug); 321 } 322 323 static void pending_bios_fn(struct btrfs_work *work) 324 { 325 struct btrfs_device *device; 326 327 device = container_of(work, struct btrfs_device, work); 328 run_scheduled_bios(device); 329 } 330 331 static noinline int device_list_add(const char *path, 332 struct btrfs_super_block *disk_super, 333 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 334 { 335 struct btrfs_device *device; 336 struct btrfs_fs_devices *fs_devices; 337 struct rcu_string *name; 338 u64 found_transid = btrfs_super_generation(disk_super); 339 340 fs_devices = find_fsid(disk_super->fsid); 341 if (!fs_devices) { 342 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 343 if (!fs_devices) 344 return -ENOMEM; 345 INIT_LIST_HEAD(&fs_devices->devices); 346 INIT_LIST_HEAD(&fs_devices->alloc_list); 347 list_add(&fs_devices->list, &fs_uuids); 348 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 349 fs_devices->latest_devid = devid; 350 fs_devices->latest_trans = found_transid; 351 mutex_init(&fs_devices->device_list_mutex); 352 device = NULL; 353 } else { 354 device = __find_device(&fs_devices->devices, devid, 355 disk_super->dev_item.uuid); 356 } 357 if (!device) { 358 if (fs_devices->opened) 359 return -EBUSY; 360 361 device = kzalloc(sizeof(*device), GFP_NOFS); 362 if (!device) { 363 /* we can safely leave the fs_devices entry around */ 364 return -ENOMEM; 365 } 366 device->devid = devid; 367 device->dev_stats_valid = 0; 368 device->work.func = pending_bios_fn; 369 memcpy(device->uuid, disk_super->dev_item.uuid, 370 BTRFS_UUID_SIZE); 371 spin_lock_init(&device->io_lock); 372 373 name = rcu_string_strdup(path, GFP_NOFS); 374 if (!name) { 375 kfree(device); 376 return -ENOMEM; 377 } 378 rcu_assign_pointer(device->name, name); 379 INIT_LIST_HEAD(&device->dev_alloc_list); 380 381 /* init readahead state */ 382 spin_lock_init(&device->reada_lock); 383 device->reada_curr_zone = NULL; 384 atomic_set(&device->reada_in_flight, 0); 385 device->reada_next = 0; 386 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT); 387 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT); 388 389 mutex_lock(&fs_devices->device_list_mutex); 390 list_add_rcu(&device->dev_list, &fs_devices->devices); 391 mutex_unlock(&fs_devices->device_list_mutex); 392 393 device->fs_devices = fs_devices; 394 fs_devices->num_devices++; 395 } else if (!device->name || strcmp(device->name->str, path)) { 396 name = rcu_string_strdup(path, GFP_NOFS); 397 if (!name) 398 return -ENOMEM; 399 rcu_string_free(device->name); 400 rcu_assign_pointer(device->name, name); 401 if (device->missing) { 402 fs_devices->missing_devices--; 403 device->missing = 0; 404 } 405 } 406 407 if (found_transid > fs_devices->latest_trans) { 408 fs_devices->latest_devid = devid; 409 fs_devices->latest_trans = found_transid; 410 } 411 *fs_devices_ret = fs_devices; 412 return 0; 413 } 414 415 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 416 { 417 struct btrfs_fs_devices *fs_devices; 418 struct btrfs_device *device; 419 struct btrfs_device *orig_dev; 420 421 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 422 if (!fs_devices) 423 return ERR_PTR(-ENOMEM); 424 425 INIT_LIST_HEAD(&fs_devices->devices); 426 INIT_LIST_HEAD(&fs_devices->alloc_list); 427 INIT_LIST_HEAD(&fs_devices->list); 428 mutex_init(&fs_devices->device_list_mutex); 429 fs_devices->latest_devid = orig->latest_devid; 430 fs_devices->latest_trans = orig->latest_trans; 431 fs_devices->total_devices = orig->total_devices; 432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); 433 434 /* We have held the volume lock, it is safe to get the devices. */ 435 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 436 struct rcu_string *name; 437 438 device = kzalloc(sizeof(*device), GFP_NOFS); 439 if (!device) 440 goto error; 441 442 /* 443 * This is ok to do without rcu read locked because we hold the 444 * uuid mutex so nothing we touch in here is going to disappear. 445 */ 446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 447 if (!name) { 448 kfree(device); 449 goto error; 450 } 451 rcu_assign_pointer(device->name, name); 452 453 device->devid = orig_dev->devid; 454 device->work.func = pending_bios_fn; 455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); 456 spin_lock_init(&device->io_lock); 457 INIT_LIST_HEAD(&device->dev_list); 458 INIT_LIST_HEAD(&device->dev_alloc_list); 459 460 list_add(&device->dev_list, &fs_devices->devices); 461 device->fs_devices = fs_devices; 462 fs_devices->num_devices++; 463 } 464 return fs_devices; 465 error: 466 free_fs_devices(fs_devices); 467 return ERR_PTR(-ENOMEM); 468 } 469 470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) 471 { 472 struct btrfs_device *device, *next; 473 474 struct block_device *latest_bdev = NULL; 475 u64 latest_devid = 0; 476 u64 latest_transid = 0; 477 478 mutex_lock(&uuid_mutex); 479 again: 480 /* This is the initialized path, it is safe to release the devices. */ 481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 482 if (device->in_fs_metadata) { 483 if (!latest_transid || 484 device->generation > latest_transid) { 485 latest_devid = device->devid; 486 latest_transid = device->generation; 487 latest_bdev = device->bdev; 488 } 489 continue; 490 } 491 492 if (device->bdev) { 493 blkdev_put(device->bdev, device->mode); 494 device->bdev = NULL; 495 fs_devices->open_devices--; 496 } 497 if (device->writeable) { 498 list_del_init(&device->dev_alloc_list); 499 device->writeable = 0; 500 fs_devices->rw_devices--; 501 } 502 list_del_init(&device->dev_list); 503 fs_devices->num_devices--; 504 rcu_string_free(device->name); 505 kfree(device); 506 } 507 508 if (fs_devices->seed) { 509 fs_devices = fs_devices->seed; 510 goto again; 511 } 512 513 fs_devices->latest_bdev = latest_bdev; 514 fs_devices->latest_devid = latest_devid; 515 fs_devices->latest_trans = latest_transid; 516 517 mutex_unlock(&uuid_mutex); 518 } 519 520 static void __free_device(struct work_struct *work) 521 { 522 struct btrfs_device *device; 523 524 device = container_of(work, struct btrfs_device, rcu_work); 525 526 if (device->bdev) 527 blkdev_put(device->bdev, device->mode); 528 529 rcu_string_free(device->name); 530 kfree(device); 531 } 532 533 static void free_device(struct rcu_head *head) 534 { 535 struct btrfs_device *device; 536 537 device = container_of(head, struct btrfs_device, rcu); 538 539 INIT_WORK(&device->rcu_work, __free_device); 540 schedule_work(&device->rcu_work); 541 } 542 543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 544 { 545 struct btrfs_device *device; 546 547 if (--fs_devices->opened > 0) 548 return 0; 549 550 mutex_lock(&fs_devices->device_list_mutex); 551 list_for_each_entry(device, &fs_devices->devices, dev_list) { 552 struct btrfs_device *new_device; 553 struct rcu_string *name; 554 555 if (device->bdev) 556 fs_devices->open_devices--; 557 558 if (device->writeable) { 559 list_del_init(&device->dev_alloc_list); 560 fs_devices->rw_devices--; 561 } 562 563 if (device->can_discard) 564 fs_devices->num_can_discard--; 565 566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS); 567 BUG_ON(!new_device); /* -ENOMEM */ 568 memcpy(new_device, device, sizeof(*new_device)); 569 570 /* Safe because we are under uuid_mutex */ 571 if (device->name) { 572 name = rcu_string_strdup(device->name->str, GFP_NOFS); 573 BUG_ON(device->name && !name); /* -ENOMEM */ 574 rcu_assign_pointer(new_device->name, name); 575 } 576 new_device->bdev = NULL; 577 new_device->writeable = 0; 578 new_device->in_fs_metadata = 0; 579 new_device->can_discard = 0; 580 list_replace_rcu(&device->dev_list, &new_device->dev_list); 581 582 call_rcu(&device->rcu, free_device); 583 } 584 mutex_unlock(&fs_devices->device_list_mutex); 585 586 WARN_ON(fs_devices->open_devices); 587 WARN_ON(fs_devices->rw_devices); 588 fs_devices->opened = 0; 589 fs_devices->seeding = 0; 590 591 return 0; 592 } 593 594 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 595 { 596 struct btrfs_fs_devices *seed_devices = NULL; 597 int ret; 598 599 mutex_lock(&uuid_mutex); 600 ret = __btrfs_close_devices(fs_devices); 601 if (!fs_devices->opened) { 602 seed_devices = fs_devices->seed; 603 fs_devices->seed = NULL; 604 } 605 mutex_unlock(&uuid_mutex); 606 607 while (seed_devices) { 608 fs_devices = seed_devices; 609 seed_devices = fs_devices->seed; 610 __btrfs_close_devices(fs_devices); 611 free_fs_devices(fs_devices); 612 } 613 return ret; 614 } 615 616 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 617 fmode_t flags, void *holder) 618 { 619 struct request_queue *q; 620 struct block_device *bdev; 621 struct list_head *head = &fs_devices->devices; 622 struct btrfs_device *device; 623 struct block_device *latest_bdev = NULL; 624 struct buffer_head *bh; 625 struct btrfs_super_block *disk_super; 626 u64 latest_devid = 0; 627 u64 latest_transid = 0; 628 u64 devid; 629 int seeding = 1; 630 int ret = 0; 631 632 flags |= FMODE_EXCL; 633 634 list_for_each_entry(device, head, dev_list) { 635 if (device->bdev) 636 continue; 637 if (!device->name) 638 continue; 639 640 bdev = blkdev_get_by_path(device->name->str, flags, holder); 641 if (IS_ERR(bdev)) { 642 printk(KERN_INFO "btrfs: open %s failed\n", device->name->str); 643 goto error; 644 } 645 filemap_write_and_wait(bdev->bd_inode->i_mapping); 646 invalidate_bdev(bdev); 647 set_blocksize(bdev, 4096); 648 649 bh = btrfs_read_dev_super(bdev); 650 if (!bh) 651 goto error_close; 652 653 disk_super = (struct btrfs_super_block *)bh->b_data; 654 devid = btrfs_stack_device_id(&disk_super->dev_item); 655 if (devid != device->devid) 656 goto error_brelse; 657 658 if (memcmp(device->uuid, disk_super->dev_item.uuid, 659 BTRFS_UUID_SIZE)) 660 goto error_brelse; 661 662 device->generation = btrfs_super_generation(disk_super); 663 if (!latest_transid || device->generation > latest_transid) { 664 latest_devid = devid; 665 latest_transid = device->generation; 666 latest_bdev = bdev; 667 } 668 669 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 670 device->writeable = 0; 671 } else { 672 device->writeable = !bdev_read_only(bdev); 673 seeding = 0; 674 } 675 676 q = bdev_get_queue(bdev); 677 if (blk_queue_discard(q)) { 678 device->can_discard = 1; 679 fs_devices->num_can_discard++; 680 } 681 682 device->bdev = bdev; 683 device->in_fs_metadata = 0; 684 device->mode = flags; 685 686 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 687 fs_devices->rotating = 1; 688 689 fs_devices->open_devices++; 690 if (device->writeable) { 691 fs_devices->rw_devices++; 692 list_add(&device->dev_alloc_list, 693 &fs_devices->alloc_list); 694 } 695 brelse(bh); 696 continue; 697 698 error_brelse: 699 brelse(bh); 700 error_close: 701 blkdev_put(bdev, flags); 702 error: 703 continue; 704 } 705 if (fs_devices->open_devices == 0) { 706 ret = -EINVAL; 707 goto out; 708 } 709 fs_devices->seeding = seeding; 710 fs_devices->opened = 1; 711 fs_devices->latest_bdev = latest_bdev; 712 fs_devices->latest_devid = latest_devid; 713 fs_devices->latest_trans = latest_transid; 714 fs_devices->total_rw_bytes = 0; 715 out: 716 return ret; 717 } 718 719 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 720 fmode_t flags, void *holder) 721 { 722 int ret; 723 724 mutex_lock(&uuid_mutex); 725 if (fs_devices->opened) { 726 fs_devices->opened++; 727 ret = 0; 728 } else { 729 ret = __btrfs_open_devices(fs_devices, flags, holder); 730 } 731 mutex_unlock(&uuid_mutex); 732 return ret; 733 } 734 735 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 736 struct btrfs_fs_devices **fs_devices_ret) 737 { 738 struct btrfs_super_block *disk_super; 739 struct block_device *bdev; 740 struct buffer_head *bh; 741 int ret; 742 u64 devid; 743 u64 transid; 744 u64 total_devices; 745 746 flags |= FMODE_EXCL; 747 bdev = blkdev_get_by_path(path, flags, holder); 748 749 if (IS_ERR(bdev)) { 750 ret = PTR_ERR(bdev); 751 goto error; 752 } 753 754 mutex_lock(&uuid_mutex); 755 ret = set_blocksize(bdev, 4096); 756 if (ret) 757 goto error_close; 758 bh = btrfs_read_dev_super(bdev); 759 if (!bh) { 760 ret = -EINVAL; 761 goto error_close; 762 } 763 disk_super = (struct btrfs_super_block *)bh->b_data; 764 devid = btrfs_stack_device_id(&disk_super->dev_item); 765 transid = btrfs_super_generation(disk_super); 766 total_devices = btrfs_super_num_devices(disk_super); 767 if (disk_super->label[0]) 768 printk(KERN_INFO "device label %s ", disk_super->label); 769 else 770 printk(KERN_INFO "device fsid %pU ", disk_super->fsid); 771 printk(KERN_CONT "devid %llu transid %llu %s\n", 772 (unsigned long long)devid, (unsigned long long)transid, path); 773 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 774 if (!ret && fs_devices_ret) 775 (*fs_devices_ret)->total_devices = total_devices; 776 brelse(bh); 777 error_close: 778 mutex_unlock(&uuid_mutex); 779 blkdev_put(bdev, flags); 780 error: 781 return ret; 782 } 783 784 /* helper to account the used device space in the range */ 785 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 786 u64 end, u64 *length) 787 { 788 struct btrfs_key key; 789 struct btrfs_root *root = device->dev_root; 790 struct btrfs_dev_extent *dev_extent; 791 struct btrfs_path *path; 792 u64 extent_end; 793 int ret; 794 int slot; 795 struct extent_buffer *l; 796 797 *length = 0; 798 799 if (start >= device->total_bytes) 800 return 0; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 path->reada = 2; 806 807 key.objectid = device->devid; 808 key.offset = start; 809 key.type = BTRFS_DEV_EXTENT_KEY; 810 811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 812 if (ret < 0) 813 goto out; 814 if (ret > 0) { 815 ret = btrfs_previous_item(root, path, key.objectid, key.type); 816 if (ret < 0) 817 goto out; 818 } 819 820 while (1) { 821 l = path->nodes[0]; 822 slot = path->slots[0]; 823 if (slot >= btrfs_header_nritems(l)) { 824 ret = btrfs_next_leaf(root, path); 825 if (ret == 0) 826 continue; 827 if (ret < 0) 828 goto out; 829 830 break; 831 } 832 btrfs_item_key_to_cpu(l, &key, slot); 833 834 if (key.objectid < device->devid) 835 goto next; 836 837 if (key.objectid > device->devid) 838 break; 839 840 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 841 goto next; 842 843 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 844 extent_end = key.offset + btrfs_dev_extent_length(l, 845 dev_extent); 846 if (key.offset <= start && extent_end > end) { 847 *length = end - start + 1; 848 break; 849 } else if (key.offset <= start && extent_end > start) 850 *length += extent_end - start; 851 else if (key.offset > start && extent_end <= end) 852 *length += extent_end - key.offset; 853 else if (key.offset > start && key.offset <= end) { 854 *length += end - key.offset + 1; 855 break; 856 } else if (key.offset > end) 857 break; 858 859 next: 860 path->slots[0]++; 861 } 862 ret = 0; 863 out: 864 btrfs_free_path(path); 865 return ret; 866 } 867 868 /* 869 * find_free_dev_extent - find free space in the specified device 870 * @device: the device which we search the free space in 871 * @num_bytes: the size of the free space that we need 872 * @start: store the start of the free space. 873 * @len: the size of the free space. that we find, or the size of the max 874 * free space if we don't find suitable free space 875 * 876 * this uses a pretty simple search, the expectation is that it is 877 * called very infrequently and that a given device has a small number 878 * of extents 879 * 880 * @start is used to store the start of the free space if we find. But if we 881 * don't find suitable free space, it will be used to store the start position 882 * of the max free space. 883 * 884 * @len is used to store the size of the free space that we find. 885 * But if we don't find suitable free space, it is used to store the size of 886 * the max free space. 887 */ 888 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 889 u64 *start, u64 *len) 890 { 891 struct btrfs_key key; 892 struct btrfs_root *root = device->dev_root; 893 struct btrfs_dev_extent *dev_extent; 894 struct btrfs_path *path; 895 u64 hole_size; 896 u64 max_hole_start; 897 u64 max_hole_size; 898 u64 extent_end; 899 u64 search_start; 900 u64 search_end = device->total_bytes; 901 int ret; 902 int slot; 903 struct extent_buffer *l; 904 905 /* FIXME use last free of some kind */ 906 907 /* we don't want to overwrite the superblock on the drive, 908 * so we make sure to start at an offset of at least 1MB 909 */ 910 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 911 912 max_hole_start = search_start; 913 max_hole_size = 0; 914 hole_size = 0; 915 916 if (search_start >= search_end) { 917 ret = -ENOSPC; 918 goto error; 919 } 920 921 path = btrfs_alloc_path(); 922 if (!path) { 923 ret = -ENOMEM; 924 goto error; 925 } 926 path->reada = 2; 927 928 key.objectid = device->devid; 929 key.offset = search_start; 930 key.type = BTRFS_DEV_EXTENT_KEY; 931 932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 933 if (ret < 0) 934 goto out; 935 if (ret > 0) { 936 ret = btrfs_previous_item(root, path, key.objectid, key.type); 937 if (ret < 0) 938 goto out; 939 } 940 941 while (1) { 942 l = path->nodes[0]; 943 slot = path->slots[0]; 944 if (slot >= btrfs_header_nritems(l)) { 945 ret = btrfs_next_leaf(root, path); 946 if (ret == 0) 947 continue; 948 if (ret < 0) 949 goto out; 950 951 break; 952 } 953 btrfs_item_key_to_cpu(l, &key, slot); 954 955 if (key.objectid < device->devid) 956 goto next; 957 958 if (key.objectid > device->devid) 959 break; 960 961 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 962 goto next; 963 964 if (key.offset > search_start) { 965 hole_size = key.offset - search_start; 966 967 if (hole_size > max_hole_size) { 968 max_hole_start = search_start; 969 max_hole_size = hole_size; 970 } 971 972 /* 973 * If this free space is greater than which we need, 974 * it must be the max free space that we have found 975 * until now, so max_hole_start must point to the start 976 * of this free space and the length of this free space 977 * is stored in max_hole_size. Thus, we return 978 * max_hole_start and max_hole_size and go back to the 979 * caller. 980 */ 981 if (hole_size >= num_bytes) { 982 ret = 0; 983 goto out; 984 } 985 } 986 987 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 988 extent_end = key.offset + btrfs_dev_extent_length(l, 989 dev_extent); 990 if (extent_end > search_start) 991 search_start = extent_end; 992 next: 993 path->slots[0]++; 994 cond_resched(); 995 } 996 997 /* 998 * At this point, search_start should be the end of 999 * allocated dev extents, and when shrinking the device, 1000 * search_end may be smaller than search_start. 1001 */ 1002 if (search_end > search_start) 1003 hole_size = search_end - search_start; 1004 1005 if (hole_size > max_hole_size) { 1006 max_hole_start = search_start; 1007 max_hole_size = hole_size; 1008 } 1009 1010 /* See above. */ 1011 if (hole_size < num_bytes) 1012 ret = -ENOSPC; 1013 else 1014 ret = 0; 1015 1016 out: 1017 btrfs_free_path(path); 1018 error: 1019 *start = max_hole_start; 1020 if (len) 1021 *len = max_hole_size; 1022 return ret; 1023 } 1024 1025 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1026 struct btrfs_device *device, 1027 u64 start) 1028 { 1029 int ret; 1030 struct btrfs_path *path; 1031 struct btrfs_root *root = device->dev_root; 1032 struct btrfs_key key; 1033 struct btrfs_key found_key; 1034 struct extent_buffer *leaf = NULL; 1035 struct btrfs_dev_extent *extent = NULL; 1036 1037 path = btrfs_alloc_path(); 1038 if (!path) 1039 return -ENOMEM; 1040 1041 key.objectid = device->devid; 1042 key.offset = start; 1043 key.type = BTRFS_DEV_EXTENT_KEY; 1044 again: 1045 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1046 if (ret > 0) { 1047 ret = btrfs_previous_item(root, path, key.objectid, 1048 BTRFS_DEV_EXTENT_KEY); 1049 if (ret) 1050 goto out; 1051 leaf = path->nodes[0]; 1052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1053 extent = btrfs_item_ptr(leaf, path->slots[0], 1054 struct btrfs_dev_extent); 1055 BUG_ON(found_key.offset > start || found_key.offset + 1056 btrfs_dev_extent_length(leaf, extent) < start); 1057 key = found_key; 1058 btrfs_release_path(path); 1059 goto again; 1060 } else if (ret == 0) { 1061 leaf = path->nodes[0]; 1062 extent = btrfs_item_ptr(leaf, path->slots[0], 1063 struct btrfs_dev_extent); 1064 } else { 1065 btrfs_error(root->fs_info, ret, "Slot search failed"); 1066 goto out; 1067 } 1068 1069 if (device->bytes_used > 0) { 1070 u64 len = btrfs_dev_extent_length(leaf, extent); 1071 device->bytes_used -= len; 1072 spin_lock(&root->fs_info->free_chunk_lock); 1073 root->fs_info->free_chunk_space += len; 1074 spin_unlock(&root->fs_info->free_chunk_lock); 1075 } 1076 ret = btrfs_del_item(trans, root, path); 1077 if (ret) { 1078 btrfs_error(root->fs_info, ret, 1079 "Failed to remove dev extent item"); 1080 } 1081 out: 1082 btrfs_free_path(path); 1083 return ret; 1084 } 1085 1086 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1087 struct btrfs_device *device, 1088 u64 chunk_tree, u64 chunk_objectid, 1089 u64 chunk_offset, u64 start, u64 num_bytes) 1090 { 1091 int ret; 1092 struct btrfs_path *path; 1093 struct btrfs_root *root = device->dev_root; 1094 struct btrfs_dev_extent *extent; 1095 struct extent_buffer *leaf; 1096 struct btrfs_key key; 1097 1098 WARN_ON(!device->in_fs_metadata); 1099 path = btrfs_alloc_path(); 1100 if (!path) 1101 return -ENOMEM; 1102 1103 key.objectid = device->devid; 1104 key.offset = start; 1105 key.type = BTRFS_DEV_EXTENT_KEY; 1106 ret = btrfs_insert_empty_item(trans, root, path, &key, 1107 sizeof(*extent)); 1108 if (ret) 1109 goto out; 1110 1111 leaf = path->nodes[0]; 1112 extent = btrfs_item_ptr(leaf, path->slots[0], 1113 struct btrfs_dev_extent); 1114 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1115 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1116 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1117 1118 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1119 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), 1120 BTRFS_UUID_SIZE); 1121 1122 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1123 btrfs_mark_buffer_dirty(leaf); 1124 out: 1125 btrfs_free_path(path); 1126 return ret; 1127 } 1128 1129 static noinline int find_next_chunk(struct btrfs_root *root, 1130 u64 objectid, u64 *offset) 1131 { 1132 struct btrfs_path *path; 1133 int ret; 1134 struct btrfs_key key; 1135 struct btrfs_chunk *chunk; 1136 struct btrfs_key found_key; 1137 1138 path = btrfs_alloc_path(); 1139 if (!path) 1140 return -ENOMEM; 1141 1142 key.objectid = objectid; 1143 key.offset = (u64)-1; 1144 key.type = BTRFS_CHUNK_ITEM_KEY; 1145 1146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1147 if (ret < 0) 1148 goto error; 1149 1150 BUG_ON(ret == 0); /* Corruption */ 1151 1152 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); 1153 if (ret) { 1154 *offset = 0; 1155 } else { 1156 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1157 path->slots[0]); 1158 if (found_key.objectid != objectid) 1159 *offset = 0; 1160 else { 1161 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], 1162 struct btrfs_chunk); 1163 *offset = found_key.offset + 1164 btrfs_chunk_length(path->nodes[0], chunk); 1165 } 1166 } 1167 ret = 0; 1168 error: 1169 btrfs_free_path(path); 1170 return ret; 1171 } 1172 1173 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) 1174 { 1175 int ret; 1176 struct btrfs_key key; 1177 struct btrfs_key found_key; 1178 struct btrfs_path *path; 1179 1180 root = root->fs_info->chunk_root; 1181 1182 path = btrfs_alloc_path(); 1183 if (!path) 1184 return -ENOMEM; 1185 1186 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1187 key.type = BTRFS_DEV_ITEM_KEY; 1188 key.offset = (u64)-1; 1189 1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1191 if (ret < 0) 1192 goto error; 1193 1194 BUG_ON(ret == 0); /* Corruption */ 1195 1196 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, 1197 BTRFS_DEV_ITEM_KEY); 1198 if (ret) { 1199 *objectid = 1; 1200 } else { 1201 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1202 path->slots[0]); 1203 *objectid = found_key.offset + 1; 1204 } 1205 ret = 0; 1206 error: 1207 btrfs_free_path(path); 1208 return ret; 1209 } 1210 1211 /* 1212 * the device information is stored in the chunk root 1213 * the btrfs_device struct should be fully filled in 1214 */ 1215 int btrfs_add_device(struct btrfs_trans_handle *trans, 1216 struct btrfs_root *root, 1217 struct btrfs_device *device) 1218 { 1219 int ret; 1220 struct btrfs_path *path; 1221 struct btrfs_dev_item *dev_item; 1222 struct extent_buffer *leaf; 1223 struct btrfs_key key; 1224 unsigned long ptr; 1225 1226 root = root->fs_info->chunk_root; 1227 1228 path = btrfs_alloc_path(); 1229 if (!path) 1230 return -ENOMEM; 1231 1232 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1233 key.type = BTRFS_DEV_ITEM_KEY; 1234 key.offset = device->devid; 1235 1236 ret = btrfs_insert_empty_item(trans, root, path, &key, 1237 sizeof(*dev_item)); 1238 if (ret) 1239 goto out; 1240 1241 leaf = path->nodes[0]; 1242 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1243 1244 btrfs_set_device_id(leaf, dev_item, device->devid); 1245 btrfs_set_device_generation(leaf, dev_item, 0); 1246 btrfs_set_device_type(leaf, dev_item, device->type); 1247 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1248 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1249 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1250 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1251 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1252 btrfs_set_device_group(leaf, dev_item, 0); 1253 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1254 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1255 btrfs_set_device_start_offset(leaf, dev_item, 0); 1256 1257 ptr = (unsigned long)btrfs_device_uuid(dev_item); 1258 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1259 ptr = (unsigned long)btrfs_device_fsid(dev_item); 1260 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1261 btrfs_mark_buffer_dirty(leaf); 1262 1263 ret = 0; 1264 out: 1265 btrfs_free_path(path); 1266 return ret; 1267 } 1268 1269 static int btrfs_rm_dev_item(struct btrfs_root *root, 1270 struct btrfs_device *device) 1271 { 1272 int ret; 1273 struct btrfs_path *path; 1274 struct btrfs_key key; 1275 struct btrfs_trans_handle *trans; 1276 1277 root = root->fs_info->chunk_root; 1278 1279 path = btrfs_alloc_path(); 1280 if (!path) 1281 return -ENOMEM; 1282 1283 trans = btrfs_start_transaction(root, 0); 1284 if (IS_ERR(trans)) { 1285 btrfs_free_path(path); 1286 return PTR_ERR(trans); 1287 } 1288 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1289 key.type = BTRFS_DEV_ITEM_KEY; 1290 key.offset = device->devid; 1291 lock_chunks(root); 1292 1293 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1294 if (ret < 0) 1295 goto out; 1296 1297 if (ret > 0) { 1298 ret = -ENOENT; 1299 goto out; 1300 } 1301 1302 ret = btrfs_del_item(trans, root, path); 1303 if (ret) 1304 goto out; 1305 out: 1306 btrfs_free_path(path); 1307 unlock_chunks(root); 1308 btrfs_commit_transaction(trans, root); 1309 return ret; 1310 } 1311 1312 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1313 { 1314 struct btrfs_device *device; 1315 struct btrfs_device *next_device; 1316 struct block_device *bdev; 1317 struct buffer_head *bh = NULL; 1318 struct btrfs_super_block *disk_super; 1319 struct btrfs_fs_devices *cur_devices; 1320 u64 all_avail; 1321 u64 devid; 1322 u64 num_devices; 1323 u8 *dev_uuid; 1324 int ret = 0; 1325 bool clear_super = false; 1326 1327 mutex_lock(&uuid_mutex); 1328 1329 all_avail = root->fs_info->avail_data_alloc_bits | 1330 root->fs_info->avail_system_alloc_bits | 1331 root->fs_info->avail_metadata_alloc_bits; 1332 1333 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && 1334 root->fs_info->fs_devices->num_devices <= 4) { 1335 printk(KERN_ERR "btrfs: unable to go below four devices " 1336 "on raid10\n"); 1337 ret = -EINVAL; 1338 goto out; 1339 } 1340 1341 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && 1342 root->fs_info->fs_devices->num_devices <= 2) { 1343 printk(KERN_ERR "btrfs: unable to go below two " 1344 "devices on raid1\n"); 1345 ret = -EINVAL; 1346 goto out; 1347 } 1348 1349 if (strcmp(device_path, "missing") == 0) { 1350 struct list_head *devices; 1351 struct btrfs_device *tmp; 1352 1353 device = NULL; 1354 devices = &root->fs_info->fs_devices->devices; 1355 /* 1356 * It is safe to read the devices since the volume_mutex 1357 * is held. 1358 */ 1359 list_for_each_entry(tmp, devices, dev_list) { 1360 if (tmp->in_fs_metadata && !tmp->bdev) { 1361 device = tmp; 1362 break; 1363 } 1364 } 1365 bdev = NULL; 1366 bh = NULL; 1367 disk_super = NULL; 1368 if (!device) { 1369 printk(KERN_ERR "btrfs: no missing devices found to " 1370 "remove\n"); 1371 goto out; 1372 } 1373 } else { 1374 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL, 1375 root->fs_info->bdev_holder); 1376 if (IS_ERR(bdev)) { 1377 ret = PTR_ERR(bdev); 1378 goto out; 1379 } 1380 1381 set_blocksize(bdev, 4096); 1382 invalidate_bdev(bdev); 1383 bh = btrfs_read_dev_super(bdev); 1384 if (!bh) { 1385 ret = -EINVAL; 1386 goto error_close; 1387 } 1388 disk_super = (struct btrfs_super_block *)bh->b_data; 1389 devid = btrfs_stack_device_id(&disk_super->dev_item); 1390 dev_uuid = disk_super->dev_item.uuid; 1391 device = btrfs_find_device(root, devid, dev_uuid, 1392 disk_super->fsid); 1393 if (!device) { 1394 ret = -ENOENT; 1395 goto error_brelse; 1396 } 1397 } 1398 1399 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1400 printk(KERN_ERR "btrfs: unable to remove the only writeable " 1401 "device\n"); 1402 ret = -EINVAL; 1403 goto error_brelse; 1404 } 1405 1406 if (device->writeable) { 1407 lock_chunks(root); 1408 list_del_init(&device->dev_alloc_list); 1409 unlock_chunks(root); 1410 root->fs_info->fs_devices->rw_devices--; 1411 clear_super = true; 1412 } 1413 1414 ret = btrfs_shrink_device(device, 0); 1415 if (ret) 1416 goto error_undo; 1417 1418 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1419 if (ret) 1420 goto error_undo; 1421 1422 spin_lock(&root->fs_info->free_chunk_lock); 1423 root->fs_info->free_chunk_space = device->total_bytes - 1424 device->bytes_used; 1425 spin_unlock(&root->fs_info->free_chunk_lock); 1426 1427 device->in_fs_metadata = 0; 1428 btrfs_scrub_cancel_dev(root, device); 1429 1430 /* 1431 * the device list mutex makes sure that we don't change 1432 * the device list while someone else is writing out all 1433 * the device supers. 1434 */ 1435 1436 cur_devices = device->fs_devices; 1437 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1438 list_del_rcu(&device->dev_list); 1439 1440 device->fs_devices->num_devices--; 1441 device->fs_devices->total_devices--; 1442 1443 if (device->missing) 1444 root->fs_info->fs_devices->missing_devices--; 1445 1446 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1447 struct btrfs_device, dev_list); 1448 if (device->bdev == root->fs_info->sb->s_bdev) 1449 root->fs_info->sb->s_bdev = next_device->bdev; 1450 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1451 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1452 1453 if (device->bdev) 1454 device->fs_devices->open_devices--; 1455 1456 call_rcu(&device->rcu, free_device); 1457 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1458 1459 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1460 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1461 1462 if (cur_devices->open_devices == 0) { 1463 struct btrfs_fs_devices *fs_devices; 1464 fs_devices = root->fs_info->fs_devices; 1465 while (fs_devices) { 1466 if (fs_devices->seed == cur_devices) 1467 break; 1468 fs_devices = fs_devices->seed; 1469 } 1470 fs_devices->seed = cur_devices->seed; 1471 cur_devices->seed = NULL; 1472 lock_chunks(root); 1473 __btrfs_close_devices(cur_devices); 1474 unlock_chunks(root); 1475 free_fs_devices(cur_devices); 1476 } 1477 1478 root->fs_info->num_tolerated_disk_barrier_failures = 1479 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1480 1481 /* 1482 * at this point, the device is zero sized. We want to 1483 * remove it from the devices list and zero out the old super 1484 */ 1485 if (clear_super) { 1486 /* make sure this device isn't detected as part of 1487 * the FS anymore 1488 */ 1489 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1490 set_buffer_dirty(bh); 1491 sync_dirty_buffer(bh); 1492 } 1493 1494 ret = 0; 1495 1496 error_brelse: 1497 brelse(bh); 1498 error_close: 1499 if (bdev) 1500 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1501 out: 1502 mutex_unlock(&uuid_mutex); 1503 return ret; 1504 error_undo: 1505 if (device->writeable) { 1506 lock_chunks(root); 1507 list_add(&device->dev_alloc_list, 1508 &root->fs_info->fs_devices->alloc_list); 1509 unlock_chunks(root); 1510 root->fs_info->fs_devices->rw_devices++; 1511 } 1512 goto error_brelse; 1513 } 1514 1515 /* 1516 * does all the dirty work required for changing file system's UUID. 1517 */ 1518 static int btrfs_prepare_sprout(struct btrfs_root *root) 1519 { 1520 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1521 struct btrfs_fs_devices *old_devices; 1522 struct btrfs_fs_devices *seed_devices; 1523 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1524 struct btrfs_device *device; 1525 u64 super_flags; 1526 1527 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1528 if (!fs_devices->seeding) 1529 return -EINVAL; 1530 1531 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); 1532 if (!seed_devices) 1533 return -ENOMEM; 1534 1535 old_devices = clone_fs_devices(fs_devices); 1536 if (IS_ERR(old_devices)) { 1537 kfree(seed_devices); 1538 return PTR_ERR(old_devices); 1539 } 1540 1541 list_add(&old_devices->list, &fs_uuids); 1542 1543 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1544 seed_devices->opened = 1; 1545 INIT_LIST_HEAD(&seed_devices->devices); 1546 INIT_LIST_HEAD(&seed_devices->alloc_list); 1547 mutex_init(&seed_devices->device_list_mutex); 1548 1549 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1550 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1551 synchronize_rcu); 1552 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1553 1554 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1555 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1556 device->fs_devices = seed_devices; 1557 } 1558 1559 fs_devices->seeding = 0; 1560 fs_devices->num_devices = 0; 1561 fs_devices->open_devices = 0; 1562 fs_devices->total_devices = 0; 1563 fs_devices->seed = seed_devices; 1564 1565 generate_random_uuid(fs_devices->fsid); 1566 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1567 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1568 super_flags = btrfs_super_flags(disk_super) & 1569 ~BTRFS_SUPER_FLAG_SEEDING; 1570 btrfs_set_super_flags(disk_super, super_flags); 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * strore the expected generation for seed devices in device items. 1577 */ 1578 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1579 struct btrfs_root *root) 1580 { 1581 struct btrfs_path *path; 1582 struct extent_buffer *leaf; 1583 struct btrfs_dev_item *dev_item; 1584 struct btrfs_device *device; 1585 struct btrfs_key key; 1586 u8 fs_uuid[BTRFS_UUID_SIZE]; 1587 u8 dev_uuid[BTRFS_UUID_SIZE]; 1588 u64 devid; 1589 int ret; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 root = root->fs_info->chunk_root; 1596 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1597 key.offset = 0; 1598 key.type = BTRFS_DEV_ITEM_KEY; 1599 1600 while (1) { 1601 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1602 if (ret < 0) 1603 goto error; 1604 1605 leaf = path->nodes[0]; 1606 next_slot: 1607 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1608 ret = btrfs_next_leaf(root, path); 1609 if (ret > 0) 1610 break; 1611 if (ret < 0) 1612 goto error; 1613 leaf = path->nodes[0]; 1614 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1615 btrfs_release_path(path); 1616 continue; 1617 } 1618 1619 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1620 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1621 key.type != BTRFS_DEV_ITEM_KEY) 1622 break; 1623 1624 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1625 struct btrfs_dev_item); 1626 devid = btrfs_device_id(leaf, dev_item); 1627 read_extent_buffer(leaf, dev_uuid, 1628 (unsigned long)btrfs_device_uuid(dev_item), 1629 BTRFS_UUID_SIZE); 1630 read_extent_buffer(leaf, fs_uuid, 1631 (unsigned long)btrfs_device_fsid(dev_item), 1632 BTRFS_UUID_SIZE); 1633 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 1634 BUG_ON(!device); /* Logic error */ 1635 1636 if (device->fs_devices->seeding) { 1637 btrfs_set_device_generation(leaf, dev_item, 1638 device->generation); 1639 btrfs_mark_buffer_dirty(leaf); 1640 } 1641 1642 path->slots[0]++; 1643 goto next_slot; 1644 } 1645 ret = 0; 1646 error: 1647 btrfs_free_path(path); 1648 return ret; 1649 } 1650 1651 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1652 { 1653 struct request_queue *q; 1654 struct btrfs_trans_handle *trans; 1655 struct btrfs_device *device; 1656 struct block_device *bdev; 1657 struct list_head *devices; 1658 struct super_block *sb = root->fs_info->sb; 1659 struct rcu_string *name; 1660 u64 total_bytes; 1661 int seeding_dev = 0; 1662 int ret = 0; 1663 1664 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1665 return -EROFS; 1666 1667 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1668 root->fs_info->bdev_holder); 1669 if (IS_ERR(bdev)) 1670 return PTR_ERR(bdev); 1671 1672 if (root->fs_info->fs_devices->seeding) { 1673 seeding_dev = 1; 1674 down_write(&sb->s_umount); 1675 mutex_lock(&uuid_mutex); 1676 } 1677 1678 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1679 1680 devices = &root->fs_info->fs_devices->devices; 1681 /* 1682 * we have the volume lock, so we don't need the extra 1683 * device list mutex while reading the list here. 1684 */ 1685 list_for_each_entry(device, devices, dev_list) { 1686 if (device->bdev == bdev) { 1687 ret = -EEXIST; 1688 goto error; 1689 } 1690 } 1691 1692 device = kzalloc(sizeof(*device), GFP_NOFS); 1693 if (!device) { 1694 /* we can safely leave the fs_devices entry around */ 1695 ret = -ENOMEM; 1696 goto error; 1697 } 1698 1699 name = rcu_string_strdup(device_path, GFP_NOFS); 1700 if (!name) { 1701 kfree(device); 1702 ret = -ENOMEM; 1703 goto error; 1704 } 1705 rcu_assign_pointer(device->name, name); 1706 1707 ret = find_next_devid(root, &device->devid); 1708 if (ret) { 1709 rcu_string_free(device->name); 1710 kfree(device); 1711 goto error; 1712 } 1713 1714 trans = btrfs_start_transaction(root, 0); 1715 if (IS_ERR(trans)) { 1716 rcu_string_free(device->name); 1717 kfree(device); 1718 ret = PTR_ERR(trans); 1719 goto error; 1720 } 1721 1722 lock_chunks(root); 1723 1724 q = bdev_get_queue(bdev); 1725 if (blk_queue_discard(q)) 1726 device->can_discard = 1; 1727 device->writeable = 1; 1728 device->work.func = pending_bios_fn; 1729 generate_random_uuid(device->uuid); 1730 spin_lock_init(&device->io_lock); 1731 device->generation = trans->transid; 1732 device->io_width = root->sectorsize; 1733 device->io_align = root->sectorsize; 1734 device->sector_size = root->sectorsize; 1735 device->total_bytes = i_size_read(bdev->bd_inode); 1736 device->disk_total_bytes = device->total_bytes; 1737 device->dev_root = root->fs_info->dev_root; 1738 device->bdev = bdev; 1739 device->in_fs_metadata = 1; 1740 device->mode = FMODE_EXCL; 1741 set_blocksize(device->bdev, 4096); 1742 1743 if (seeding_dev) { 1744 sb->s_flags &= ~MS_RDONLY; 1745 ret = btrfs_prepare_sprout(root); 1746 BUG_ON(ret); /* -ENOMEM */ 1747 } 1748 1749 device->fs_devices = root->fs_info->fs_devices; 1750 1751 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1752 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 1753 list_add(&device->dev_alloc_list, 1754 &root->fs_info->fs_devices->alloc_list); 1755 root->fs_info->fs_devices->num_devices++; 1756 root->fs_info->fs_devices->open_devices++; 1757 root->fs_info->fs_devices->rw_devices++; 1758 root->fs_info->fs_devices->total_devices++; 1759 if (device->can_discard) 1760 root->fs_info->fs_devices->num_can_discard++; 1761 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 1762 1763 spin_lock(&root->fs_info->free_chunk_lock); 1764 root->fs_info->free_chunk_space += device->total_bytes; 1765 spin_unlock(&root->fs_info->free_chunk_lock); 1766 1767 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 1768 root->fs_info->fs_devices->rotating = 1; 1769 1770 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 1771 btrfs_set_super_total_bytes(root->fs_info->super_copy, 1772 total_bytes + device->total_bytes); 1773 1774 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 1775 btrfs_set_super_num_devices(root->fs_info->super_copy, 1776 total_bytes + 1); 1777 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1778 1779 if (seeding_dev) { 1780 ret = init_first_rw_device(trans, root, device); 1781 if (ret) { 1782 btrfs_abort_transaction(trans, root, ret); 1783 goto error_trans; 1784 } 1785 ret = btrfs_finish_sprout(trans, root); 1786 if (ret) { 1787 btrfs_abort_transaction(trans, root, ret); 1788 goto error_trans; 1789 } 1790 } else { 1791 ret = btrfs_add_device(trans, root, device); 1792 if (ret) { 1793 btrfs_abort_transaction(trans, root, ret); 1794 goto error_trans; 1795 } 1796 } 1797 1798 /* 1799 * we've got more storage, clear any full flags on the space 1800 * infos 1801 */ 1802 btrfs_clear_space_info_full(root->fs_info); 1803 1804 unlock_chunks(root); 1805 root->fs_info->num_tolerated_disk_barrier_failures = 1806 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1807 ret = btrfs_commit_transaction(trans, root); 1808 1809 if (seeding_dev) { 1810 mutex_unlock(&uuid_mutex); 1811 up_write(&sb->s_umount); 1812 1813 if (ret) /* transaction commit */ 1814 return ret; 1815 1816 ret = btrfs_relocate_sys_chunks(root); 1817 if (ret < 0) 1818 btrfs_error(root->fs_info, ret, 1819 "Failed to relocate sys chunks after " 1820 "device initialization. This can be fixed " 1821 "using the \"btrfs balance\" command."); 1822 } 1823 1824 return ret; 1825 1826 error_trans: 1827 unlock_chunks(root); 1828 btrfs_end_transaction(trans, root); 1829 rcu_string_free(device->name); 1830 kfree(device); 1831 error: 1832 blkdev_put(bdev, FMODE_EXCL); 1833 if (seeding_dev) { 1834 mutex_unlock(&uuid_mutex); 1835 up_write(&sb->s_umount); 1836 } 1837 return ret; 1838 } 1839 1840 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 1841 struct btrfs_device *device) 1842 { 1843 int ret; 1844 struct btrfs_path *path; 1845 struct btrfs_root *root; 1846 struct btrfs_dev_item *dev_item; 1847 struct extent_buffer *leaf; 1848 struct btrfs_key key; 1849 1850 root = device->dev_root->fs_info->chunk_root; 1851 1852 path = btrfs_alloc_path(); 1853 if (!path) 1854 return -ENOMEM; 1855 1856 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1857 key.type = BTRFS_DEV_ITEM_KEY; 1858 key.offset = device->devid; 1859 1860 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1861 if (ret < 0) 1862 goto out; 1863 1864 if (ret > 0) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 1869 leaf = path->nodes[0]; 1870 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1871 1872 btrfs_set_device_id(leaf, dev_item, device->devid); 1873 btrfs_set_device_type(leaf, dev_item, device->type); 1874 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1875 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1876 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1877 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 1878 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1879 btrfs_mark_buffer_dirty(leaf); 1880 1881 out: 1882 btrfs_free_path(path); 1883 return ret; 1884 } 1885 1886 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 1887 struct btrfs_device *device, u64 new_size) 1888 { 1889 struct btrfs_super_block *super_copy = 1890 device->dev_root->fs_info->super_copy; 1891 u64 old_total = btrfs_super_total_bytes(super_copy); 1892 u64 diff = new_size - device->total_bytes; 1893 1894 if (!device->writeable) 1895 return -EACCES; 1896 if (new_size <= device->total_bytes) 1897 return -EINVAL; 1898 1899 btrfs_set_super_total_bytes(super_copy, old_total + diff); 1900 device->fs_devices->total_rw_bytes += diff; 1901 1902 device->total_bytes = new_size; 1903 device->disk_total_bytes = new_size; 1904 btrfs_clear_space_info_full(device->dev_root->fs_info); 1905 1906 return btrfs_update_device(trans, device); 1907 } 1908 1909 int btrfs_grow_device(struct btrfs_trans_handle *trans, 1910 struct btrfs_device *device, u64 new_size) 1911 { 1912 int ret; 1913 lock_chunks(device->dev_root); 1914 ret = __btrfs_grow_device(trans, device, new_size); 1915 unlock_chunks(device->dev_root); 1916 return ret; 1917 } 1918 1919 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 1920 struct btrfs_root *root, 1921 u64 chunk_tree, u64 chunk_objectid, 1922 u64 chunk_offset) 1923 { 1924 int ret; 1925 struct btrfs_path *path; 1926 struct btrfs_key key; 1927 1928 root = root->fs_info->chunk_root; 1929 path = btrfs_alloc_path(); 1930 if (!path) 1931 return -ENOMEM; 1932 1933 key.objectid = chunk_objectid; 1934 key.offset = chunk_offset; 1935 key.type = BTRFS_CHUNK_ITEM_KEY; 1936 1937 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1938 if (ret < 0) 1939 goto out; 1940 else if (ret > 0) { /* Logic error or corruption */ 1941 btrfs_error(root->fs_info, -ENOENT, 1942 "Failed lookup while freeing chunk."); 1943 ret = -ENOENT; 1944 goto out; 1945 } 1946 1947 ret = btrfs_del_item(trans, root, path); 1948 if (ret < 0) 1949 btrfs_error(root->fs_info, ret, 1950 "Failed to delete chunk item."); 1951 out: 1952 btrfs_free_path(path); 1953 return ret; 1954 } 1955 1956 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 1957 chunk_offset) 1958 { 1959 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 1960 struct btrfs_disk_key *disk_key; 1961 struct btrfs_chunk *chunk; 1962 u8 *ptr; 1963 int ret = 0; 1964 u32 num_stripes; 1965 u32 array_size; 1966 u32 len = 0; 1967 u32 cur; 1968 struct btrfs_key key; 1969 1970 array_size = btrfs_super_sys_array_size(super_copy); 1971 1972 ptr = super_copy->sys_chunk_array; 1973 cur = 0; 1974 1975 while (cur < array_size) { 1976 disk_key = (struct btrfs_disk_key *)ptr; 1977 btrfs_disk_key_to_cpu(&key, disk_key); 1978 1979 len = sizeof(*disk_key); 1980 1981 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 1982 chunk = (struct btrfs_chunk *)(ptr + len); 1983 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 1984 len += btrfs_chunk_item_size(num_stripes); 1985 } else { 1986 ret = -EIO; 1987 break; 1988 } 1989 if (key.objectid == chunk_objectid && 1990 key.offset == chunk_offset) { 1991 memmove(ptr, ptr + len, array_size - (cur + len)); 1992 array_size -= len; 1993 btrfs_set_super_sys_array_size(super_copy, array_size); 1994 } else { 1995 ptr += len; 1996 cur += len; 1997 } 1998 } 1999 return ret; 2000 } 2001 2002 static int btrfs_relocate_chunk(struct btrfs_root *root, 2003 u64 chunk_tree, u64 chunk_objectid, 2004 u64 chunk_offset) 2005 { 2006 struct extent_map_tree *em_tree; 2007 struct btrfs_root *extent_root; 2008 struct btrfs_trans_handle *trans; 2009 struct extent_map *em; 2010 struct map_lookup *map; 2011 int ret; 2012 int i; 2013 2014 root = root->fs_info->chunk_root; 2015 extent_root = root->fs_info->extent_root; 2016 em_tree = &root->fs_info->mapping_tree.map_tree; 2017 2018 ret = btrfs_can_relocate(extent_root, chunk_offset); 2019 if (ret) 2020 return -ENOSPC; 2021 2022 /* step one, relocate all the extents inside this chunk */ 2023 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2024 if (ret) 2025 return ret; 2026 2027 trans = btrfs_start_transaction(root, 0); 2028 BUG_ON(IS_ERR(trans)); 2029 2030 lock_chunks(root); 2031 2032 /* 2033 * step two, delete the device extents and the 2034 * chunk tree entries 2035 */ 2036 read_lock(&em_tree->lock); 2037 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2038 read_unlock(&em_tree->lock); 2039 2040 BUG_ON(!em || em->start > chunk_offset || 2041 em->start + em->len < chunk_offset); 2042 map = (struct map_lookup *)em->bdev; 2043 2044 for (i = 0; i < map->num_stripes; i++) { 2045 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2046 map->stripes[i].physical); 2047 BUG_ON(ret); 2048 2049 if (map->stripes[i].dev) { 2050 ret = btrfs_update_device(trans, map->stripes[i].dev); 2051 BUG_ON(ret); 2052 } 2053 } 2054 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2055 chunk_offset); 2056 2057 BUG_ON(ret); 2058 2059 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2060 2061 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2062 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2063 BUG_ON(ret); 2064 } 2065 2066 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2067 BUG_ON(ret); 2068 2069 write_lock(&em_tree->lock); 2070 remove_extent_mapping(em_tree, em); 2071 write_unlock(&em_tree->lock); 2072 2073 kfree(map); 2074 em->bdev = NULL; 2075 2076 /* once for the tree */ 2077 free_extent_map(em); 2078 /* once for us */ 2079 free_extent_map(em); 2080 2081 unlock_chunks(root); 2082 btrfs_end_transaction(trans, root); 2083 return 0; 2084 } 2085 2086 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2087 { 2088 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2089 struct btrfs_path *path; 2090 struct extent_buffer *leaf; 2091 struct btrfs_chunk *chunk; 2092 struct btrfs_key key; 2093 struct btrfs_key found_key; 2094 u64 chunk_tree = chunk_root->root_key.objectid; 2095 u64 chunk_type; 2096 bool retried = false; 2097 int failed = 0; 2098 int ret; 2099 2100 path = btrfs_alloc_path(); 2101 if (!path) 2102 return -ENOMEM; 2103 2104 again: 2105 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2106 key.offset = (u64)-1; 2107 key.type = BTRFS_CHUNK_ITEM_KEY; 2108 2109 while (1) { 2110 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2111 if (ret < 0) 2112 goto error; 2113 BUG_ON(ret == 0); /* Corruption */ 2114 2115 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2116 key.type); 2117 if (ret < 0) 2118 goto error; 2119 if (ret > 0) 2120 break; 2121 2122 leaf = path->nodes[0]; 2123 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2124 2125 chunk = btrfs_item_ptr(leaf, path->slots[0], 2126 struct btrfs_chunk); 2127 chunk_type = btrfs_chunk_type(leaf, chunk); 2128 btrfs_release_path(path); 2129 2130 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2131 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2132 found_key.objectid, 2133 found_key.offset); 2134 if (ret == -ENOSPC) 2135 failed++; 2136 else if (ret) 2137 BUG(); 2138 } 2139 2140 if (found_key.offset == 0) 2141 break; 2142 key.offset = found_key.offset - 1; 2143 } 2144 ret = 0; 2145 if (failed && !retried) { 2146 failed = 0; 2147 retried = true; 2148 goto again; 2149 } else if (failed && retried) { 2150 WARN_ON(1); 2151 ret = -ENOSPC; 2152 } 2153 error: 2154 btrfs_free_path(path); 2155 return ret; 2156 } 2157 2158 static int insert_balance_item(struct btrfs_root *root, 2159 struct btrfs_balance_control *bctl) 2160 { 2161 struct btrfs_trans_handle *trans; 2162 struct btrfs_balance_item *item; 2163 struct btrfs_disk_balance_args disk_bargs; 2164 struct btrfs_path *path; 2165 struct extent_buffer *leaf; 2166 struct btrfs_key key; 2167 int ret, err; 2168 2169 path = btrfs_alloc_path(); 2170 if (!path) 2171 return -ENOMEM; 2172 2173 trans = btrfs_start_transaction(root, 0); 2174 if (IS_ERR(trans)) { 2175 btrfs_free_path(path); 2176 return PTR_ERR(trans); 2177 } 2178 2179 key.objectid = BTRFS_BALANCE_OBJECTID; 2180 key.type = BTRFS_BALANCE_ITEM_KEY; 2181 key.offset = 0; 2182 2183 ret = btrfs_insert_empty_item(trans, root, path, &key, 2184 sizeof(*item)); 2185 if (ret) 2186 goto out; 2187 2188 leaf = path->nodes[0]; 2189 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2190 2191 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2192 2193 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2194 btrfs_set_balance_data(leaf, item, &disk_bargs); 2195 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2196 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2197 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2198 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2199 2200 btrfs_set_balance_flags(leaf, item, bctl->flags); 2201 2202 btrfs_mark_buffer_dirty(leaf); 2203 out: 2204 btrfs_free_path(path); 2205 err = btrfs_commit_transaction(trans, root); 2206 if (err && !ret) 2207 ret = err; 2208 return ret; 2209 } 2210 2211 static int del_balance_item(struct btrfs_root *root) 2212 { 2213 struct btrfs_trans_handle *trans; 2214 struct btrfs_path *path; 2215 struct btrfs_key key; 2216 int ret, err; 2217 2218 path = btrfs_alloc_path(); 2219 if (!path) 2220 return -ENOMEM; 2221 2222 trans = btrfs_start_transaction(root, 0); 2223 if (IS_ERR(trans)) { 2224 btrfs_free_path(path); 2225 return PTR_ERR(trans); 2226 } 2227 2228 key.objectid = BTRFS_BALANCE_OBJECTID; 2229 key.type = BTRFS_BALANCE_ITEM_KEY; 2230 key.offset = 0; 2231 2232 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2233 if (ret < 0) 2234 goto out; 2235 if (ret > 0) { 2236 ret = -ENOENT; 2237 goto out; 2238 } 2239 2240 ret = btrfs_del_item(trans, root, path); 2241 out: 2242 btrfs_free_path(path); 2243 err = btrfs_commit_transaction(trans, root); 2244 if (err && !ret) 2245 ret = err; 2246 return ret; 2247 } 2248 2249 /* 2250 * This is a heuristic used to reduce the number of chunks balanced on 2251 * resume after balance was interrupted. 2252 */ 2253 static void update_balance_args(struct btrfs_balance_control *bctl) 2254 { 2255 /* 2256 * Turn on soft mode for chunk types that were being converted. 2257 */ 2258 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2259 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2260 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2261 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2262 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2263 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2264 2265 /* 2266 * Turn on usage filter if is not already used. The idea is 2267 * that chunks that we have already balanced should be 2268 * reasonably full. Don't do it for chunks that are being 2269 * converted - that will keep us from relocating unconverted 2270 * (albeit full) chunks. 2271 */ 2272 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2273 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2274 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2275 bctl->data.usage = 90; 2276 } 2277 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2278 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2279 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2280 bctl->sys.usage = 90; 2281 } 2282 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2283 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2284 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2285 bctl->meta.usage = 90; 2286 } 2287 } 2288 2289 /* 2290 * Should be called with both balance and volume mutexes held to 2291 * serialize other volume operations (add_dev/rm_dev/resize) with 2292 * restriper. Same goes for unset_balance_control. 2293 */ 2294 static void set_balance_control(struct btrfs_balance_control *bctl) 2295 { 2296 struct btrfs_fs_info *fs_info = bctl->fs_info; 2297 2298 BUG_ON(fs_info->balance_ctl); 2299 2300 spin_lock(&fs_info->balance_lock); 2301 fs_info->balance_ctl = bctl; 2302 spin_unlock(&fs_info->balance_lock); 2303 } 2304 2305 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2306 { 2307 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2308 2309 BUG_ON(!fs_info->balance_ctl); 2310 2311 spin_lock(&fs_info->balance_lock); 2312 fs_info->balance_ctl = NULL; 2313 spin_unlock(&fs_info->balance_lock); 2314 2315 kfree(bctl); 2316 } 2317 2318 /* 2319 * Balance filters. Return 1 if chunk should be filtered out 2320 * (should not be balanced). 2321 */ 2322 static int chunk_profiles_filter(u64 chunk_type, 2323 struct btrfs_balance_args *bargs) 2324 { 2325 chunk_type = chunk_to_extended(chunk_type) & 2326 BTRFS_EXTENDED_PROFILE_MASK; 2327 2328 if (bargs->profiles & chunk_type) 2329 return 0; 2330 2331 return 1; 2332 } 2333 2334 static u64 div_factor_fine(u64 num, int factor) 2335 { 2336 if (factor <= 0) 2337 return 0; 2338 if (factor >= 100) 2339 return num; 2340 2341 num *= factor; 2342 do_div(num, 100); 2343 return num; 2344 } 2345 2346 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2347 struct btrfs_balance_args *bargs) 2348 { 2349 struct btrfs_block_group_cache *cache; 2350 u64 chunk_used, user_thresh; 2351 int ret = 1; 2352 2353 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2354 chunk_used = btrfs_block_group_used(&cache->item); 2355 2356 user_thresh = div_factor_fine(cache->key.offset, bargs->usage); 2357 if (chunk_used < user_thresh) 2358 ret = 0; 2359 2360 btrfs_put_block_group(cache); 2361 return ret; 2362 } 2363 2364 static int chunk_devid_filter(struct extent_buffer *leaf, 2365 struct btrfs_chunk *chunk, 2366 struct btrfs_balance_args *bargs) 2367 { 2368 struct btrfs_stripe *stripe; 2369 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2370 int i; 2371 2372 for (i = 0; i < num_stripes; i++) { 2373 stripe = btrfs_stripe_nr(chunk, i); 2374 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2375 return 0; 2376 } 2377 2378 return 1; 2379 } 2380 2381 /* [pstart, pend) */ 2382 static int chunk_drange_filter(struct extent_buffer *leaf, 2383 struct btrfs_chunk *chunk, 2384 u64 chunk_offset, 2385 struct btrfs_balance_args *bargs) 2386 { 2387 struct btrfs_stripe *stripe; 2388 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2389 u64 stripe_offset; 2390 u64 stripe_length; 2391 int factor; 2392 int i; 2393 2394 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2395 return 0; 2396 2397 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2398 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) 2399 factor = 2; 2400 else 2401 factor = 1; 2402 factor = num_stripes / factor; 2403 2404 for (i = 0; i < num_stripes; i++) { 2405 stripe = btrfs_stripe_nr(chunk, i); 2406 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2407 continue; 2408 2409 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2410 stripe_length = btrfs_chunk_length(leaf, chunk); 2411 do_div(stripe_length, factor); 2412 2413 if (stripe_offset < bargs->pend && 2414 stripe_offset + stripe_length > bargs->pstart) 2415 return 0; 2416 } 2417 2418 return 1; 2419 } 2420 2421 /* [vstart, vend) */ 2422 static int chunk_vrange_filter(struct extent_buffer *leaf, 2423 struct btrfs_chunk *chunk, 2424 u64 chunk_offset, 2425 struct btrfs_balance_args *bargs) 2426 { 2427 if (chunk_offset < bargs->vend && 2428 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2429 /* at least part of the chunk is inside this vrange */ 2430 return 0; 2431 2432 return 1; 2433 } 2434 2435 static int chunk_soft_convert_filter(u64 chunk_type, 2436 struct btrfs_balance_args *bargs) 2437 { 2438 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2439 return 0; 2440 2441 chunk_type = chunk_to_extended(chunk_type) & 2442 BTRFS_EXTENDED_PROFILE_MASK; 2443 2444 if (bargs->target == chunk_type) 2445 return 1; 2446 2447 return 0; 2448 } 2449 2450 static int should_balance_chunk(struct btrfs_root *root, 2451 struct extent_buffer *leaf, 2452 struct btrfs_chunk *chunk, u64 chunk_offset) 2453 { 2454 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2455 struct btrfs_balance_args *bargs = NULL; 2456 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2457 2458 /* type filter */ 2459 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2460 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2461 return 0; 2462 } 2463 2464 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2465 bargs = &bctl->data; 2466 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2467 bargs = &bctl->sys; 2468 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2469 bargs = &bctl->meta; 2470 2471 /* profiles filter */ 2472 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2473 chunk_profiles_filter(chunk_type, bargs)) { 2474 return 0; 2475 } 2476 2477 /* usage filter */ 2478 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2479 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2480 return 0; 2481 } 2482 2483 /* devid filter */ 2484 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2485 chunk_devid_filter(leaf, chunk, bargs)) { 2486 return 0; 2487 } 2488 2489 /* drange filter, makes sense only with devid filter */ 2490 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2491 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2492 return 0; 2493 } 2494 2495 /* vrange filter */ 2496 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2497 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2498 return 0; 2499 } 2500 2501 /* soft profile changing mode */ 2502 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2503 chunk_soft_convert_filter(chunk_type, bargs)) { 2504 return 0; 2505 } 2506 2507 return 1; 2508 } 2509 2510 static u64 div_factor(u64 num, int factor) 2511 { 2512 if (factor == 10) 2513 return num; 2514 num *= factor; 2515 do_div(num, 10); 2516 return num; 2517 } 2518 2519 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2520 { 2521 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2522 struct btrfs_root *chunk_root = fs_info->chunk_root; 2523 struct btrfs_root *dev_root = fs_info->dev_root; 2524 struct list_head *devices; 2525 struct btrfs_device *device; 2526 u64 old_size; 2527 u64 size_to_free; 2528 struct btrfs_chunk *chunk; 2529 struct btrfs_path *path; 2530 struct btrfs_key key; 2531 struct btrfs_key found_key; 2532 struct btrfs_trans_handle *trans; 2533 struct extent_buffer *leaf; 2534 int slot; 2535 int ret; 2536 int enospc_errors = 0; 2537 bool counting = true; 2538 2539 /* step one make some room on all the devices */ 2540 devices = &fs_info->fs_devices->devices; 2541 list_for_each_entry(device, devices, dev_list) { 2542 old_size = device->total_bytes; 2543 size_to_free = div_factor(old_size, 1); 2544 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2545 if (!device->writeable || 2546 device->total_bytes - device->bytes_used > size_to_free) 2547 continue; 2548 2549 ret = btrfs_shrink_device(device, old_size - size_to_free); 2550 if (ret == -ENOSPC) 2551 break; 2552 BUG_ON(ret); 2553 2554 trans = btrfs_start_transaction(dev_root, 0); 2555 BUG_ON(IS_ERR(trans)); 2556 2557 ret = btrfs_grow_device(trans, device, old_size); 2558 BUG_ON(ret); 2559 2560 btrfs_end_transaction(trans, dev_root); 2561 } 2562 2563 /* step two, relocate all the chunks */ 2564 path = btrfs_alloc_path(); 2565 if (!path) { 2566 ret = -ENOMEM; 2567 goto error; 2568 } 2569 2570 /* zero out stat counters */ 2571 spin_lock(&fs_info->balance_lock); 2572 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2573 spin_unlock(&fs_info->balance_lock); 2574 again: 2575 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2576 key.offset = (u64)-1; 2577 key.type = BTRFS_CHUNK_ITEM_KEY; 2578 2579 while (1) { 2580 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2581 atomic_read(&fs_info->balance_cancel_req)) { 2582 ret = -ECANCELED; 2583 goto error; 2584 } 2585 2586 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2587 if (ret < 0) 2588 goto error; 2589 2590 /* 2591 * this shouldn't happen, it means the last relocate 2592 * failed 2593 */ 2594 if (ret == 0) 2595 BUG(); /* FIXME break ? */ 2596 2597 ret = btrfs_previous_item(chunk_root, path, 0, 2598 BTRFS_CHUNK_ITEM_KEY); 2599 if (ret) { 2600 ret = 0; 2601 break; 2602 } 2603 2604 leaf = path->nodes[0]; 2605 slot = path->slots[0]; 2606 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2607 2608 if (found_key.objectid != key.objectid) 2609 break; 2610 2611 /* chunk zero is special */ 2612 if (found_key.offset == 0) 2613 break; 2614 2615 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 2616 2617 if (!counting) { 2618 spin_lock(&fs_info->balance_lock); 2619 bctl->stat.considered++; 2620 spin_unlock(&fs_info->balance_lock); 2621 } 2622 2623 ret = should_balance_chunk(chunk_root, leaf, chunk, 2624 found_key.offset); 2625 btrfs_release_path(path); 2626 if (!ret) 2627 goto loop; 2628 2629 if (counting) { 2630 spin_lock(&fs_info->balance_lock); 2631 bctl->stat.expected++; 2632 spin_unlock(&fs_info->balance_lock); 2633 goto loop; 2634 } 2635 2636 ret = btrfs_relocate_chunk(chunk_root, 2637 chunk_root->root_key.objectid, 2638 found_key.objectid, 2639 found_key.offset); 2640 if (ret && ret != -ENOSPC) 2641 goto error; 2642 if (ret == -ENOSPC) { 2643 enospc_errors++; 2644 } else { 2645 spin_lock(&fs_info->balance_lock); 2646 bctl->stat.completed++; 2647 spin_unlock(&fs_info->balance_lock); 2648 } 2649 loop: 2650 key.offset = found_key.offset - 1; 2651 } 2652 2653 if (counting) { 2654 btrfs_release_path(path); 2655 counting = false; 2656 goto again; 2657 } 2658 error: 2659 btrfs_free_path(path); 2660 if (enospc_errors) { 2661 printk(KERN_INFO "btrfs: %d enospc errors during balance\n", 2662 enospc_errors); 2663 if (!ret) 2664 ret = -ENOSPC; 2665 } 2666 2667 return ret; 2668 } 2669 2670 /** 2671 * alloc_profile_is_valid - see if a given profile is valid and reduced 2672 * @flags: profile to validate 2673 * @extended: if true @flags is treated as an extended profile 2674 */ 2675 static int alloc_profile_is_valid(u64 flags, int extended) 2676 { 2677 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 2678 BTRFS_BLOCK_GROUP_PROFILE_MASK); 2679 2680 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 2681 2682 /* 1) check that all other bits are zeroed */ 2683 if (flags & ~mask) 2684 return 0; 2685 2686 /* 2) see if profile is reduced */ 2687 if (flags == 0) 2688 return !extended; /* "0" is valid for usual profiles */ 2689 2690 /* true if exactly one bit set */ 2691 return (flags & (flags - 1)) == 0; 2692 } 2693 2694 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 2695 { 2696 /* cancel requested || normal exit path */ 2697 return atomic_read(&fs_info->balance_cancel_req) || 2698 (atomic_read(&fs_info->balance_pause_req) == 0 && 2699 atomic_read(&fs_info->balance_cancel_req) == 0); 2700 } 2701 2702 static void __cancel_balance(struct btrfs_fs_info *fs_info) 2703 { 2704 int ret; 2705 2706 unset_balance_control(fs_info); 2707 ret = del_balance_item(fs_info->tree_root); 2708 BUG_ON(ret); 2709 } 2710 2711 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 2712 struct btrfs_ioctl_balance_args *bargs); 2713 2714 /* 2715 * Should be called with both balance and volume mutexes held 2716 */ 2717 int btrfs_balance(struct btrfs_balance_control *bctl, 2718 struct btrfs_ioctl_balance_args *bargs) 2719 { 2720 struct btrfs_fs_info *fs_info = bctl->fs_info; 2721 u64 allowed; 2722 int mixed = 0; 2723 int ret; 2724 2725 if (btrfs_fs_closing(fs_info) || 2726 atomic_read(&fs_info->balance_pause_req) || 2727 atomic_read(&fs_info->balance_cancel_req)) { 2728 ret = -EINVAL; 2729 goto out; 2730 } 2731 2732 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 2733 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 2734 mixed = 1; 2735 2736 /* 2737 * In case of mixed groups both data and meta should be picked, 2738 * and identical options should be given for both of them. 2739 */ 2740 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 2741 if (mixed && (bctl->flags & allowed)) { 2742 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 2743 !(bctl->flags & BTRFS_BALANCE_METADATA) || 2744 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 2745 printk(KERN_ERR "btrfs: with mixed groups data and " 2746 "metadata balance options must be the same\n"); 2747 ret = -EINVAL; 2748 goto out; 2749 } 2750 } 2751 2752 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 2753 if (fs_info->fs_devices->num_devices == 1) 2754 allowed |= BTRFS_BLOCK_GROUP_DUP; 2755 else if (fs_info->fs_devices->num_devices < 4) 2756 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 2757 else 2758 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | 2759 BTRFS_BLOCK_GROUP_RAID10); 2760 2761 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2762 (!alloc_profile_is_valid(bctl->data.target, 1) || 2763 (bctl->data.target & ~allowed))) { 2764 printk(KERN_ERR "btrfs: unable to start balance with target " 2765 "data profile %llu\n", 2766 (unsigned long long)bctl->data.target); 2767 ret = -EINVAL; 2768 goto out; 2769 } 2770 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2771 (!alloc_profile_is_valid(bctl->meta.target, 1) || 2772 (bctl->meta.target & ~allowed))) { 2773 printk(KERN_ERR "btrfs: unable to start balance with target " 2774 "metadata profile %llu\n", 2775 (unsigned long long)bctl->meta.target); 2776 ret = -EINVAL; 2777 goto out; 2778 } 2779 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2780 (!alloc_profile_is_valid(bctl->sys.target, 1) || 2781 (bctl->sys.target & ~allowed))) { 2782 printk(KERN_ERR "btrfs: unable to start balance with target " 2783 "system profile %llu\n", 2784 (unsigned long long)bctl->sys.target); 2785 ret = -EINVAL; 2786 goto out; 2787 } 2788 2789 /* allow dup'ed data chunks only in mixed mode */ 2790 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2791 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 2792 printk(KERN_ERR "btrfs: dup for data is not allowed\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 /* allow to reduce meta or sys integrity only if force set */ 2798 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2799 BTRFS_BLOCK_GROUP_RAID10; 2800 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2801 (fs_info->avail_system_alloc_bits & allowed) && 2802 !(bctl->sys.target & allowed)) || 2803 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 2804 (fs_info->avail_metadata_alloc_bits & allowed) && 2805 !(bctl->meta.target & allowed))) { 2806 if (bctl->flags & BTRFS_BALANCE_FORCE) { 2807 printk(KERN_INFO "btrfs: force reducing metadata " 2808 "integrity\n"); 2809 } else { 2810 printk(KERN_ERR "btrfs: balance will reduce metadata " 2811 "integrity, use force if you want this\n"); 2812 ret = -EINVAL; 2813 goto out; 2814 } 2815 } 2816 2817 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 2818 int num_tolerated_disk_barrier_failures; 2819 u64 target = bctl->sys.target; 2820 2821 num_tolerated_disk_barrier_failures = 2822 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2823 if (num_tolerated_disk_barrier_failures > 0 && 2824 (target & 2825 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 2826 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 2827 num_tolerated_disk_barrier_failures = 0; 2828 else if (num_tolerated_disk_barrier_failures > 1 && 2829 (target & 2830 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 2831 num_tolerated_disk_barrier_failures = 1; 2832 2833 fs_info->num_tolerated_disk_barrier_failures = 2834 num_tolerated_disk_barrier_failures; 2835 } 2836 2837 ret = insert_balance_item(fs_info->tree_root, bctl); 2838 if (ret && ret != -EEXIST) 2839 goto out; 2840 2841 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 2842 BUG_ON(ret == -EEXIST); 2843 set_balance_control(bctl); 2844 } else { 2845 BUG_ON(ret != -EEXIST); 2846 spin_lock(&fs_info->balance_lock); 2847 update_balance_args(bctl); 2848 spin_unlock(&fs_info->balance_lock); 2849 } 2850 2851 atomic_inc(&fs_info->balance_running); 2852 mutex_unlock(&fs_info->balance_mutex); 2853 2854 ret = __btrfs_balance(fs_info); 2855 2856 mutex_lock(&fs_info->balance_mutex); 2857 atomic_dec(&fs_info->balance_running); 2858 2859 if (bargs) { 2860 memset(bargs, 0, sizeof(*bargs)); 2861 update_ioctl_balance_args(fs_info, 0, bargs); 2862 } 2863 2864 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 2865 balance_need_close(fs_info)) { 2866 __cancel_balance(fs_info); 2867 } 2868 2869 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 2870 fs_info->num_tolerated_disk_barrier_failures = 2871 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2872 } 2873 2874 wake_up(&fs_info->balance_wait_q); 2875 2876 return ret; 2877 out: 2878 if (bctl->flags & BTRFS_BALANCE_RESUME) 2879 __cancel_balance(fs_info); 2880 else 2881 kfree(bctl); 2882 return ret; 2883 } 2884 2885 static int balance_kthread(void *data) 2886 { 2887 struct btrfs_fs_info *fs_info = data; 2888 int ret = 0; 2889 2890 mutex_lock(&fs_info->volume_mutex); 2891 mutex_lock(&fs_info->balance_mutex); 2892 2893 if (fs_info->balance_ctl) { 2894 printk(KERN_INFO "btrfs: continuing balance\n"); 2895 ret = btrfs_balance(fs_info->balance_ctl, NULL); 2896 } 2897 2898 mutex_unlock(&fs_info->balance_mutex); 2899 mutex_unlock(&fs_info->volume_mutex); 2900 2901 return ret; 2902 } 2903 2904 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 2905 { 2906 struct task_struct *tsk; 2907 2908 spin_lock(&fs_info->balance_lock); 2909 if (!fs_info->balance_ctl) { 2910 spin_unlock(&fs_info->balance_lock); 2911 return 0; 2912 } 2913 spin_unlock(&fs_info->balance_lock); 2914 2915 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 2916 printk(KERN_INFO "btrfs: force skipping balance\n"); 2917 return 0; 2918 } 2919 2920 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 2921 if (IS_ERR(tsk)) 2922 return PTR_ERR(tsk); 2923 2924 return 0; 2925 } 2926 2927 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 2928 { 2929 struct btrfs_balance_control *bctl; 2930 struct btrfs_balance_item *item; 2931 struct btrfs_disk_balance_args disk_bargs; 2932 struct btrfs_path *path; 2933 struct extent_buffer *leaf; 2934 struct btrfs_key key; 2935 int ret; 2936 2937 path = btrfs_alloc_path(); 2938 if (!path) 2939 return -ENOMEM; 2940 2941 key.objectid = BTRFS_BALANCE_OBJECTID; 2942 key.type = BTRFS_BALANCE_ITEM_KEY; 2943 key.offset = 0; 2944 2945 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2946 if (ret < 0) 2947 goto out; 2948 if (ret > 0) { /* ret = -ENOENT; */ 2949 ret = 0; 2950 goto out; 2951 } 2952 2953 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 2954 if (!bctl) { 2955 ret = -ENOMEM; 2956 goto out; 2957 } 2958 2959 leaf = path->nodes[0]; 2960 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2961 2962 bctl->fs_info = fs_info; 2963 bctl->flags = btrfs_balance_flags(leaf, item); 2964 bctl->flags |= BTRFS_BALANCE_RESUME; 2965 2966 btrfs_balance_data(leaf, item, &disk_bargs); 2967 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 2968 btrfs_balance_meta(leaf, item, &disk_bargs); 2969 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 2970 btrfs_balance_sys(leaf, item, &disk_bargs); 2971 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 2972 2973 mutex_lock(&fs_info->volume_mutex); 2974 mutex_lock(&fs_info->balance_mutex); 2975 2976 set_balance_control(bctl); 2977 2978 mutex_unlock(&fs_info->balance_mutex); 2979 mutex_unlock(&fs_info->volume_mutex); 2980 out: 2981 btrfs_free_path(path); 2982 return ret; 2983 } 2984 2985 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 2986 { 2987 int ret = 0; 2988 2989 mutex_lock(&fs_info->balance_mutex); 2990 if (!fs_info->balance_ctl) { 2991 mutex_unlock(&fs_info->balance_mutex); 2992 return -ENOTCONN; 2993 } 2994 2995 if (atomic_read(&fs_info->balance_running)) { 2996 atomic_inc(&fs_info->balance_pause_req); 2997 mutex_unlock(&fs_info->balance_mutex); 2998 2999 wait_event(fs_info->balance_wait_q, 3000 atomic_read(&fs_info->balance_running) == 0); 3001 3002 mutex_lock(&fs_info->balance_mutex); 3003 /* we are good with balance_ctl ripped off from under us */ 3004 BUG_ON(atomic_read(&fs_info->balance_running)); 3005 atomic_dec(&fs_info->balance_pause_req); 3006 } else { 3007 ret = -ENOTCONN; 3008 } 3009 3010 mutex_unlock(&fs_info->balance_mutex); 3011 return ret; 3012 } 3013 3014 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3015 { 3016 mutex_lock(&fs_info->balance_mutex); 3017 if (!fs_info->balance_ctl) { 3018 mutex_unlock(&fs_info->balance_mutex); 3019 return -ENOTCONN; 3020 } 3021 3022 atomic_inc(&fs_info->balance_cancel_req); 3023 /* 3024 * if we are running just wait and return, balance item is 3025 * deleted in btrfs_balance in this case 3026 */ 3027 if (atomic_read(&fs_info->balance_running)) { 3028 mutex_unlock(&fs_info->balance_mutex); 3029 wait_event(fs_info->balance_wait_q, 3030 atomic_read(&fs_info->balance_running) == 0); 3031 mutex_lock(&fs_info->balance_mutex); 3032 } else { 3033 /* __cancel_balance needs volume_mutex */ 3034 mutex_unlock(&fs_info->balance_mutex); 3035 mutex_lock(&fs_info->volume_mutex); 3036 mutex_lock(&fs_info->balance_mutex); 3037 3038 if (fs_info->balance_ctl) 3039 __cancel_balance(fs_info); 3040 3041 mutex_unlock(&fs_info->volume_mutex); 3042 } 3043 3044 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3045 atomic_dec(&fs_info->balance_cancel_req); 3046 mutex_unlock(&fs_info->balance_mutex); 3047 return 0; 3048 } 3049 3050 /* 3051 * shrinking a device means finding all of the device extents past 3052 * the new size, and then following the back refs to the chunks. 3053 * The chunk relocation code actually frees the device extent 3054 */ 3055 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3056 { 3057 struct btrfs_trans_handle *trans; 3058 struct btrfs_root *root = device->dev_root; 3059 struct btrfs_dev_extent *dev_extent = NULL; 3060 struct btrfs_path *path; 3061 u64 length; 3062 u64 chunk_tree; 3063 u64 chunk_objectid; 3064 u64 chunk_offset; 3065 int ret; 3066 int slot; 3067 int failed = 0; 3068 bool retried = false; 3069 struct extent_buffer *l; 3070 struct btrfs_key key; 3071 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3072 u64 old_total = btrfs_super_total_bytes(super_copy); 3073 u64 old_size = device->total_bytes; 3074 u64 diff = device->total_bytes - new_size; 3075 3076 if (new_size >= device->total_bytes) 3077 return -EINVAL; 3078 3079 path = btrfs_alloc_path(); 3080 if (!path) 3081 return -ENOMEM; 3082 3083 path->reada = 2; 3084 3085 lock_chunks(root); 3086 3087 device->total_bytes = new_size; 3088 if (device->writeable) { 3089 device->fs_devices->total_rw_bytes -= diff; 3090 spin_lock(&root->fs_info->free_chunk_lock); 3091 root->fs_info->free_chunk_space -= diff; 3092 spin_unlock(&root->fs_info->free_chunk_lock); 3093 } 3094 unlock_chunks(root); 3095 3096 again: 3097 key.objectid = device->devid; 3098 key.offset = (u64)-1; 3099 key.type = BTRFS_DEV_EXTENT_KEY; 3100 3101 do { 3102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3103 if (ret < 0) 3104 goto done; 3105 3106 ret = btrfs_previous_item(root, path, 0, key.type); 3107 if (ret < 0) 3108 goto done; 3109 if (ret) { 3110 ret = 0; 3111 btrfs_release_path(path); 3112 break; 3113 } 3114 3115 l = path->nodes[0]; 3116 slot = path->slots[0]; 3117 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3118 3119 if (key.objectid != device->devid) { 3120 btrfs_release_path(path); 3121 break; 3122 } 3123 3124 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3125 length = btrfs_dev_extent_length(l, dev_extent); 3126 3127 if (key.offset + length <= new_size) { 3128 btrfs_release_path(path); 3129 break; 3130 } 3131 3132 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3133 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3134 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3135 btrfs_release_path(path); 3136 3137 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3138 chunk_offset); 3139 if (ret && ret != -ENOSPC) 3140 goto done; 3141 if (ret == -ENOSPC) 3142 failed++; 3143 } while (key.offset-- > 0); 3144 3145 if (failed && !retried) { 3146 failed = 0; 3147 retried = true; 3148 goto again; 3149 } else if (failed && retried) { 3150 ret = -ENOSPC; 3151 lock_chunks(root); 3152 3153 device->total_bytes = old_size; 3154 if (device->writeable) 3155 device->fs_devices->total_rw_bytes += diff; 3156 spin_lock(&root->fs_info->free_chunk_lock); 3157 root->fs_info->free_chunk_space += diff; 3158 spin_unlock(&root->fs_info->free_chunk_lock); 3159 unlock_chunks(root); 3160 goto done; 3161 } 3162 3163 /* Shrinking succeeded, else we would be at "done". */ 3164 trans = btrfs_start_transaction(root, 0); 3165 if (IS_ERR(trans)) { 3166 ret = PTR_ERR(trans); 3167 goto done; 3168 } 3169 3170 lock_chunks(root); 3171 3172 device->disk_total_bytes = new_size; 3173 /* Now btrfs_update_device() will change the on-disk size. */ 3174 ret = btrfs_update_device(trans, device); 3175 if (ret) { 3176 unlock_chunks(root); 3177 btrfs_end_transaction(trans, root); 3178 goto done; 3179 } 3180 WARN_ON(diff > old_total); 3181 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3182 unlock_chunks(root); 3183 btrfs_end_transaction(trans, root); 3184 done: 3185 btrfs_free_path(path); 3186 return ret; 3187 } 3188 3189 static int btrfs_add_system_chunk(struct btrfs_root *root, 3190 struct btrfs_key *key, 3191 struct btrfs_chunk *chunk, int item_size) 3192 { 3193 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3194 struct btrfs_disk_key disk_key; 3195 u32 array_size; 3196 u8 *ptr; 3197 3198 array_size = btrfs_super_sys_array_size(super_copy); 3199 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3200 return -EFBIG; 3201 3202 ptr = super_copy->sys_chunk_array + array_size; 3203 btrfs_cpu_key_to_disk(&disk_key, key); 3204 memcpy(ptr, &disk_key, sizeof(disk_key)); 3205 ptr += sizeof(disk_key); 3206 memcpy(ptr, chunk, item_size); 3207 item_size += sizeof(disk_key); 3208 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3209 return 0; 3210 } 3211 3212 /* 3213 * sort the devices in descending order by max_avail, total_avail 3214 */ 3215 static int btrfs_cmp_device_info(const void *a, const void *b) 3216 { 3217 const struct btrfs_device_info *di_a = a; 3218 const struct btrfs_device_info *di_b = b; 3219 3220 if (di_a->max_avail > di_b->max_avail) 3221 return -1; 3222 if (di_a->max_avail < di_b->max_avail) 3223 return 1; 3224 if (di_a->total_avail > di_b->total_avail) 3225 return -1; 3226 if (di_a->total_avail < di_b->total_avail) 3227 return 1; 3228 return 0; 3229 } 3230 3231 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3232 struct btrfs_root *extent_root, 3233 struct map_lookup **map_ret, 3234 u64 *num_bytes_out, u64 *stripe_size_out, 3235 u64 start, u64 type) 3236 { 3237 struct btrfs_fs_info *info = extent_root->fs_info; 3238 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3239 struct list_head *cur; 3240 struct map_lookup *map = NULL; 3241 struct extent_map_tree *em_tree; 3242 struct extent_map *em; 3243 struct btrfs_device_info *devices_info = NULL; 3244 u64 total_avail; 3245 int num_stripes; /* total number of stripes to allocate */ 3246 int sub_stripes; /* sub_stripes info for map */ 3247 int dev_stripes; /* stripes per dev */ 3248 int devs_max; /* max devs to use */ 3249 int devs_min; /* min devs needed */ 3250 int devs_increment; /* ndevs has to be a multiple of this */ 3251 int ncopies; /* how many copies to data has */ 3252 int ret; 3253 u64 max_stripe_size; 3254 u64 max_chunk_size; 3255 u64 stripe_size; 3256 u64 num_bytes; 3257 int ndevs; 3258 int i; 3259 int j; 3260 3261 BUG_ON(!alloc_profile_is_valid(type, 0)); 3262 3263 if (list_empty(&fs_devices->alloc_list)) 3264 return -ENOSPC; 3265 3266 sub_stripes = 1; 3267 dev_stripes = 1; 3268 devs_increment = 1; 3269 ncopies = 1; 3270 devs_max = 0; /* 0 == as many as possible */ 3271 devs_min = 1; 3272 3273 /* 3274 * define the properties of each RAID type. 3275 * FIXME: move this to a global table and use it in all RAID 3276 * calculation code 3277 */ 3278 if (type & (BTRFS_BLOCK_GROUP_DUP)) { 3279 dev_stripes = 2; 3280 ncopies = 2; 3281 devs_max = 1; 3282 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) { 3283 devs_min = 2; 3284 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) { 3285 devs_increment = 2; 3286 ncopies = 2; 3287 devs_max = 2; 3288 devs_min = 2; 3289 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) { 3290 sub_stripes = 2; 3291 devs_increment = 2; 3292 ncopies = 2; 3293 devs_min = 4; 3294 } else { 3295 devs_max = 1; 3296 } 3297 3298 if (type & BTRFS_BLOCK_GROUP_DATA) { 3299 max_stripe_size = 1024 * 1024 * 1024; 3300 max_chunk_size = 10 * max_stripe_size; 3301 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 3302 /* for larger filesystems, use larger metadata chunks */ 3303 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 3304 max_stripe_size = 1024 * 1024 * 1024; 3305 else 3306 max_stripe_size = 256 * 1024 * 1024; 3307 max_chunk_size = max_stripe_size; 3308 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 3309 max_stripe_size = 32 * 1024 * 1024; 3310 max_chunk_size = 2 * max_stripe_size; 3311 } else { 3312 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", 3313 type); 3314 BUG_ON(1); 3315 } 3316 3317 /* we don't want a chunk larger than 10% of writeable space */ 3318 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 3319 max_chunk_size); 3320 3321 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 3322 GFP_NOFS); 3323 if (!devices_info) 3324 return -ENOMEM; 3325 3326 cur = fs_devices->alloc_list.next; 3327 3328 /* 3329 * in the first pass through the devices list, we gather information 3330 * about the available holes on each device. 3331 */ 3332 ndevs = 0; 3333 while (cur != &fs_devices->alloc_list) { 3334 struct btrfs_device *device; 3335 u64 max_avail; 3336 u64 dev_offset; 3337 3338 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 3339 3340 cur = cur->next; 3341 3342 if (!device->writeable) { 3343 printk(KERN_ERR 3344 "btrfs: read-only device in alloc_list\n"); 3345 WARN_ON(1); 3346 continue; 3347 } 3348 3349 if (!device->in_fs_metadata) 3350 continue; 3351 3352 if (device->total_bytes > device->bytes_used) 3353 total_avail = device->total_bytes - device->bytes_used; 3354 else 3355 total_avail = 0; 3356 3357 /* If there is no space on this device, skip it. */ 3358 if (total_avail == 0) 3359 continue; 3360 3361 ret = find_free_dev_extent(device, 3362 max_stripe_size * dev_stripes, 3363 &dev_offset, &max_avail); 3364 if (ret && ret != -ENOSPC) 3365 goto error; 3366 3367 if (ret == 0) 3368 max_avail = max_stripe_size * dev_stripes; 3369 3370 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 3371 continue; 3372 3373 devices_info[ndevs].dev_offset = dev_offset; 3374 devices_info[ndevs].max_avail = max_avail; 3375 devices_info[ndevs].total_avail = total_avail; 3376 devices_info[ndevs].dev = device; 3377 ++ndevs; 3378 } 3379 3380 /* 3381 * now sort the devices by hole size / available space 3382 */ 3383 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 3384 btrfs_cmp_device_info, NULL); 3385 3386 /* round down to number of usable stripes */ 3387 ndevs -= ndevs % devs_increment; 3388 3389 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 3390 ret = -ENOSPC; 3391 goto error; 3392 } 3393 3394 if (devs_max && ndevs > devs_max) 3395 ndevs = devs_max; 3396 /* 3397 * the primary goal is to maximize the number of stripes, so use as many 3398 * devices as possible, even if the stripes are not maximum sized. 3399 */ 3400 stripe_size = devices_info[ndevs-1].max_avail; 3401 num_stripes = ndevs * dev_stripes; 3402 3403 if (stripe_size * ndevs > max_chunk_size * ncopies) { 3404 stripe_size = max_chunk_size * ncopies; 3405 do_div(stripe_size, ndevs); 3406 } 3407 3408 do_div(stripe_size, dev_stripes); 3409 3410 /* align to BTRFS_STRIPE_LEN */ 3411 do_div(stripe_size, BTRFS_STRIPE_LEN); 3412 stripe_size *= BTRFS_STRIPE_LEN; 3413 3414 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 3415 if (!map) { 3416 ret = -ENOMEM; 3417 goto error; 3418 } 3419 map->num_stripes = num_stripes; 3420 3421 for (i = 0; i < ndevs; ++i) { 3422 for (j = 0; j < dev_stripes; ++j) { 3423 int s = i * dev_stripes + j; 3424 map->stripes[s].dev = devices_info[i].dev; 3425 map->stripes[s].physical = devices_info[i].dev_offset + 3426 j * stripe_size; 3427 } 3428 } 3429 map->sector_size = extent_root->sectorsize; 3430 map->stripe_len = BTRFS_STRIPE_LEN; 3431 map->io_align = BTRFS_STRIPE_LEN; 3432 map->io_width = BTRFS_STRIPE_LEN; 3433 map->type = type; 3434 map->sub_stripes = sub_stripes; 3435 3436 *map_ret = map; 3437 num_bytes = stripe_size * (num_stripes / ncopies); 3438 3439 *stripe_size_out = stripe_size; 3440 *num_bytes_out = num_bytes; 3441 3442 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 3443 3444 em = alloc_extent_map(); 3445 if (!em) { 3446 ret = -ENOMEM; 3447 goto error; 3448 } 3449 em->bdev = (struct block_device *)map; 3450 em->start = start; 3451 em->len = num_bytes; 3452 em->block_start = 0; 3453 em->block_len = em->len; 3454 3455 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 3456 write_lock(&em_tree->lock); 3457 ret = add_extent_mapping(em_tree, em); 3458 write_unlock(&em_tree->lock); 3459 free_extent_map(em); 3460 if (ret) 3461 goto error; 3462 3463 ret = btrfs_make_block_group(trans, extent_root, 0, type, 3464 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3465 start, num_bytes); 3466 if (ret) 3467 goto error; 3468 3469 for (i = 0; i < map->num_stripes; ++i) { 3470 struct btrfs_device *device; 3471 u64 dev_offset; 3472 3473 device = map->stripes[i].dev; 3474 dev_offset = map->stripes[i].physical; 3475 3476 ret = btrfs_alloc_dev_extent(trans, device, 3477 info->chunk_root->root_key.objectid, 3478 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3479 start, dev_offset, stripe_size); 3480 if (ret) { 3481 btrfs_abort_transaction(trans, extent_root, ret); 3482 goto error; 3483 } 3484 } 3485 3486 kfree(devices_info); 3487 return 0; 3488 3489 error: 3490 kfree(map); 3491 kfree(devices_info); 3492 return ret; 3493 } 3494 3495 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, 3496 struct btrfs_root *extent_root, 3497 struct map_lookup *map, u64 chunk_offset, 3498 u64 chunk_size, u64 stripe_size) 3499 { 3500 u64 dev_offset; 3501 struct btrfs_key key; 3502 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3503 struct btrfs_device *device; 3504 struct btrfs_chunk *chunk; 3505 struct btrfs_stripe *stripe; 3506 size_t item_size = btrfs_chunk_item_size(map->num_stripes); 3507 int index = 0; 3508 int ret; 3509 3510 chunk = kzalloc(item_size, GFP_NOFS); 3511 if (!chunk) 3512 return -ENOMEM; 3513 3514 index = 0; 3515 while (index < map->num_stripes) { 3516 device = map->stripes[index].dev; 3517 device->bytes_used += stripe_size; 3518 ret = btrfs_update_device(trans, device); 3519 if (ret) 3520 goto out_free; 3521 index++; 3522 } 3523 3524 spin_lock(&extent_root->fs_info->free_chunk_lock); 3525 extent_root->fs_info->free_chunk_space -= (stripe_size * 3526 map->num_stripes); 3527 spin_unlock(&extent_root->fs_info->free_chunk_lock); 3528 3529 index = 0; 3530 stripe = &chunk->stripe; 3531 while (index < map->num_stripes) { 3532 device = map->stripes[index].dev; 3533 dev_offset = map->stripes[index].physical; 3534 3535 btrfs_set_stack_stripe_devid(stripe, device->devid); 3536 btrfs_set_stack_stripe_offset(stripe, dev_offset); 3537 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 3538 stripe++; 3539 index++; 3540 } 3541 3542 btrfs_set_stack_chunk_length(chunk, chunk_size); 3543 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 3544 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 3545 btrfs_set_stack_chunk_type(chunk, map->type); 3546 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 3547 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 3548 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 3549 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 3550 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 3551 3552 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3553 key.type = BTRFS_CHUNK_ITEM_KEY; 3554 key.offset = chunk_offset; 3555 3556 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 3557 3558 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3559 /* 3560 * TODO: Cleanup of inserted chunk root in case of 3561 * failure. 3562 */ 3563 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 3564 item_size); 3565 } 3566 3567 out_free: 3568 kfree(chunk); 3569 return ret; 3570 } 3571 3572 /* 3573 * Chunk allocation falls into two parts. The first part does works 3574 * that make the new allocated chunk useable, but not do any operation 3575 * that modifies the chunk tree. The second part does the works that 3576 * require modifying the chunk tree. This division is important for the 3577 * bootstrap process of adding storage to a seed btrfs. 3578 */ 3579 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3580 struct btrfs_root *extent_root, u64 type) 3581 { 3582 u64 chunk_offset; 3583 u64 chunk_size; 3584 u64 stripe_size; 3585 struct map_lookup *map; 3586 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 3587 int ret; 3588 3589 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, 3590 &chunk_offset); 3591 if (ret) 3592 return ret; 3593 3594 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3595 &stripe_size, chunk_offset, type); 3596 if (ret) 3597 return ret; 3598 3599 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3600 chunk_size, stripe_size); 3601 if (ret) 3602 return ret; 3603 return 0; 3604 } 3605 3606 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 3607 struct btrfs_root *root, 3608 struct btrfs_device *device) 3609 { 3610 u64 chunk_offset; 3611 u64 sys_chunk_offset; 3612 u64 chunk_size; 3613 u64 sys_chunk_size; 3614 u64 stripe_size; 3615 u64 sys_stripe_size; 3616 u64 alloc_profile; 3617 struct map_lookup *map; 3618 struct map_lookup *sys_map; 3619 struct btrfs_fs_info *fs_info = root->fs_info; 3620 struct btrfs_root *extent_root = fs_info->extent_root; 3621 int ret; 3622 3623 ret = find_next_chunk(fs_info->chunk_root, 3624 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); 3625 if (ret) 3626 return ret; 3627 3628 alloc_profile = BTRFS_BLOCK_GROUP_METADATA | 3629 fs_info->avail_metadata_alloc_bits; 3630 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3631 3632 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, 3633 &stripe_size, chunk_offset, alloc_profile); 3634 if (ret) 3635 return ret; 3636 3637 sys_chunk_offset = chunk_offset + chunk_size; 3638 3639 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | 3640 fs_info->avail_system_alloc_bits; 3641 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); 3642 3643 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, 3644 &sys_chunk_size, &sys_stripe_size, 3645 sys_chunk_offset, alloc_profile); 3646 if (ret) { 3647 btrfs_abort_transaction(trans, root, ret); 3648 goto out; 3649 } 3650 3651 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 3652 if (ret) { 3653 btrfs_abort_transaction(trans, root, ret); 3654 goto out; 3655 } 3656 3657 /* 3658 * Modifying chunk tree needs allocating new blocks from both 3659 * system block group and metadata block group. So we only can 3660 * do operations require modifying the chunk tree after both 3661 * block groups were created. 3662 */ 3663 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, 3664 chunk_size, stripe_size); 3665 if (ret) { 3666 btrfs_abort_transaction(trans, root, ret); 3667 goto out; 3668 } 3669 3670 ret = __finish_chunk_alloc(trans, extent_root, sys_map, 3671 sys_chunk_offset, sys_chunk_size, 3672 sys_stripe_size); 3673 if (ret) 3674 btrfs_abort_transaction(trans, root, ret); 3675 3676 out: 3677 3678 return ret; 3679 } 3680 3681 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 3682 { 3683 struct extent_map *em; 3684 struct map_lookup *map; 3685 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 3686 int readonly = 0; 3687 int i; 3688 3689 read_lock(&map_tree->map_tree.lock); 3690 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3691 read_unlock(&map_tree->map_tree.lock); 3692 if (!em) 3693 return 1; 3694 3695 if (btrfs_test_opt(root, DEGRADED)) { 3696 free_extent_map(em); 3697 return 0; 3698 } 3699 3700 map = (struct map_lookup *)em->bdev; 3701 for (i = 0; i < map->num_stripes; i++) { 3702 if (!map->stripes[i].dev->writeable) { 3703 readonly = 1; 3704 break; 3705 } 3706 } 3707 free_extent_map(em); 3708 return readonly; 3709 } 3710 3711 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 3712 { 3713 extent_map_tree_init(&tree->map_tree); 3714 } 3715 3716 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 3717 { 3718 struct extent_map *em; 3719 3720 while (1) { 3721 write_lock(&tree->map_tree.lock); 3722 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 3723 if (em) 3724 remove_extent_mapping(&tree->map_tree, em); 3725 write_unlock(&tree->map_tree.lock); 3726 if (!em) 3727 break; 3728 kfree(em->bdev); 3729 /* once for us */ 3730 free_extent_map(em); 3731 /* once for the tree */ 3732 free_extent_map(em); 3733 } 3734 } 3735 3736 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) 3737 { 3738 struct extent_map *em; 3739 struct map_lookup *map; 3740 struct extent_map_tree *em_tree = &map_tree->map_tree; 3741 int ret; 3742 3743 read_lock(&em_tree->lock); 3744 em = lookup_extent_mapping(em_tree, logical, len); 3745 read_unlock(&em_tree->lock); 3746 BUG_ON(!em); 3747 3748 BUG_ON(em->start > logical || em->start + em->len < logical); 3749 map = (struct map_lookup *)em->bdev; 3750 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 3751 ret = map->num_stripes; 3752 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 3753 ret = map->sub_stripes; 3754 else 3755 ret = 1; 3756 free_extent_map(em); 3757 return ret; 3758 } 3759 3760 static int find_live_mirror(struct map_lookup *map, int first, int num, 3761 int optimal) 3762 { 3763 int i; 3764 if (map->stripes[optimal].dev->bdev) 3765 return optimal; 3766 for (i = first; i < first + num; i++) { 3767 if (map->stripes[i].dev->bdev) 3768 return i; 3769 } 3770 /* we couldn't find one that doesn't fail. Just return something 3771 * and the io error handling code will clean up eventually 3772 */ 3773 return optimal; 3774 } 3775 3776 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 3777 u64 logical, u64 *length, 3778 struct btrfs_bio **bbio_ret, 3779 int mirror_num) 3780 { 3781 struct extent_map *em; 3782 struct map_lookup *map; 3783 struct extent_map_tree *em_tree = &map_tree->map_tree; 3784 u64 offset; 3785 u64 stripe_offset; 3786 u64 stripe_end_offset; 3787 u64 stripe_nr; 3788 u64 stripe_nr_orig; 3789 u64 stripe_nr_end; 3790 int stripe_index; 3791 int i; 3792 int ret = 0; 3793 int num_stripes; 3794 int max_errors = 0; 3795 struct btrfs_bio *bbio = NULL; 3796 3797 read_lock(&em_tree->lock); 3798 em = lookup_extent_mapping(em_tree, logical, *length); 3799 read_unlock(&em_tree->lock); 3800 3801 if (!em) { 3802 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n", 3803 (unsigned long long)logical, 3804 (unsigned long long)*length); 3805 BUG(); 3806 } 3807 3808 BUG_ON(em->start > logical || em->start + em->len < logical); 3809 map = (struct map_lookup *)em->bdev; 3810 offset = logical - em->start; 3811 3812 if (mirror_num > map->num_stripes) 3813 mirror_num = 0; 3814 3815 stripe_nr = offset; 3816 /* 3817 * stripe_nr counts the total number of stripes we have to stride 3818 * to get to this block 3819 */ 3820 do_div(stripe_nr, map->stripe_len); 3821 3822 stripe_offset = stripe_nr * map->stripe_len; 3823 BUG_ON(offset < stripe_offset); 3824 3825 /* stripe_offset is the offset of this block in its stripe*/ 3826 stripe_offset = offset - stripe_offset; 3827 3828 if (rw & REQ_DISCARD) 3829 *length = min_t(u64, em->len - offset, *length); 3830 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 3831 /* we limit the length of each bio to what fits in a stripe */ 3832 *length = min_t(u64, em->len - offset, 3833 map->stripe_len - stripe_offset); 3834 } else { 3835 *length = em->len - offset; 3836 } 3837 3838 if (!bbio_ret) 3839 goto out; 3840 3841 num_stripes = 1; 3842 stripe_index = 0; 3843 stripe_nr_orig = stripe_nr; 3844 stripe_nr_end = (offset + *length + map->stripe_len - 1) & 3845 (~(map->stripe_len - 1)); 3846 do_div(stripe_nr_end, map->stripe_len); 3847 stripe_end_offset = stripe_nr_end * map->stripe_len - 3848 (offset + *length); 3849 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3850 if (rw & REQ_DISCARD) 3851 num_stripes = min_t(u64, map->num_stripes, 3852 stripe_nr_end - stripe_nr_orig); 3853 stripe_index = do_div(stripe_nr, map->num_stripes); 3854 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3855 if (rw & (REQ_WRITE | REQ_DISCARD)) 3856 num_stripes = map->num_stripes; 3857 else if (mirror_num) 3858 stripe_index = mirror_num - 1; 3859 else { 3860 stripe_index = find_live_mirror(map, 0, 3861 map->num_stripes, 3862 current->pid % map->num_stripes); 3863 mirror_num = stripe_index + 1; 3864 } 3865 3866 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3867 if (rw & (REQ_WRITE | REQ_DISCARD)) { 3868 num_stripes = map->num_stripes; 3869 } else if (mirror_num) { 3870 stripe_index = mirror_num - 1; 3871 } else { 3872 mirror_num = 1; 3873 } 3874 3875 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3876 int factor = map->num_stripes / map->sub_stripes; 3877 3878 stripe_index = do_div(stripe_nr, factor); 3879 stripe_index *= map->sub_stripes; 3880 3881 if (rw & REQ_WRITE) 3882 num_stripes = map->sub_stripes; 3883 else if (rw & REQ_DISCARD) 3884 num_stripes = min_t(u64, map->sub_stripes * 3885 (stripe_nr_end - stripe_nr_orig), 3886 map->num_stripes); 3887 else if (mirror_num) 3888 stripe_index += mirror_num - 1; 3889 else { 3890 int old_stripe_index = stripe_index; 3891 stripe_index = find_live_mirror(map, stripe_index, 3892 map->sub_stripes, stripe_index + 3893 current->pid % map->sub_stripes); 3894 mirror_num = stripe_index - old_stripe_index + 1; 3895 } 3896 } else { 3897 /* 3898 * after this do_div call, stripe_nr is the number of stripes 3899 * on this device we have to walk to find the data, and 3900 * stripe_index is the number of our device in the stripe array 3901 */ 3902 stripe_index = do_div(stripe_nr, map->num_stripes); 3903 mirror_num = stripe_index + 1; 3904 } 3905 BUG_ON(stripe_index >= map->num_stripes); 3906 3907 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS); 3908 if (!bbio) { 3909 ret = -ENOMEM; 3910 goto out; 3911 } 3912 atomic_set(&bbio->error, 0); 3913 3914 if (rw & REQ_DISCARD) { 3915 int factor = 0; 3916 int sub_stripes = 0; 3917 u64 stripes_per_dev = 0; 3918 u32 remaining_stripes = 0; 3919 u32 last_stripe = 0; 3920 3921 if (map->type & 3922 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3923 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 3924 sub_stripes = 1; 3925 else 3926 sub_stripes = map->sub_stripes; 3927 3928 factor = map->num_stripes / sub_stripes; 3929 stripes_per_dev = div_u64_rem(stripe_nr_end - 3930 stripe_nr_orig, 3931 factor, 3932 &remaining_stripes); 3933 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 3934 last_stripe *= sub_stripes; 3935 } 3936 3937 for (i = 0; i < num_stripes; i++) { 3938 bbio->stripes[i].physical = 3939 map->stripes[stripe_index].physical + 3940 stripe_offset + stripe_nr * map->stripe_len; 3941 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 3942 3943 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3944 BTRFS_BLOCK_GROUP_RAID10)) { 3945 bbio->stripes[i].length = stripes_per_dev * 3946 map->stripe_len; 3947 3948 if (i / sub_stripes < remaining_stripes) 3949 bbio->stripes[i].length += 3950 map->stripe_len; 3951 3952 /* 3953 * Special for the first stripe and 3954 * the last stripe: 3955 * 3956 * |-------|...|-------| 3957 * |----------| 3958 * off end_off 3959 */ 3960 if (i < sub_stripes) 3961 bbio->stripes[i].length -= 3962 stripe_offset; 3963 3964 if (stripe_index >= last_stripe && 3965 stripe_index <= (last_stripe + 3966 sub_stripes - 1)) 3967 bbio->stripes[i].length -= 3968 stripe_end_offset; 3969 3970 if (i == sub_stripes - 1) 3971 stripe_offset = 0; 3972 } else 3973 bbio->stripes[i].length = *length; 3974 3975 stripe_index++; 3976 if (stripe_index == map->num_stripes) { 3977 /* This could only happen for RAID0/10 */ 3978 stripe_index = 0; 3979 stripe_nr++; 3980 } 3981 } 3982 } else { 3983 for (i = 0; i < num_stripes; i++) { 3984 bbio->stripes[i].physical = 3985 map->stripes[stripe_index].physical + 3986 stripe_offset + 3987 stripe_nr * map->stripe_len; 3988 bbio->stripes[i].dev = 3989 map->stripes[stripe_index].dev; 3990 stripe_index++; 3991 } 3992 } 3993 3994 if (rw & REQ_WRITE) { 3995 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 3996 BTRFS_BLOCK_GROUP_RAID10 | 3997 BTRFS_BLOCK_GROUP_DUP)) { 3998 max_errors = 1; 3999 } 4000 } 4001 4002 *bbio_ret = bbio; 4003 bbio->num_stripes = num_stripes; 4004 bbio->max_errors = max_errors; 4005 bbio->mirror_num = mirror_num; 4006 out: 4007 free_extent_map(em); 4008 return ret; 4009 } 4010 4011 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, 4012 u64 logical, u64 *length, 4013 struct btrfs_bio **bbio_ret, int mirror_num) 4014 { 4015 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret, 4016 mirror_num); 4017 } 4018 4019 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 4020 u64 chunk_start, u64 physical, u64 devid, 4021 u64 **logical, int *naddrs, int *stripe_len) 4022 { 4023 struct extent_map_tree *em_tree = &map_tree->map_tree; 4024 struct extent_map *em; 4025 struct map_lookup *map; 4026 u64 *buf; 4027 u64 bytenr; 4028 u64 length; 4029 u64 stripe_nr; 4030 int i, j, nr = 0; 4031 4032 read_lock(&em_tree->lock); 4033 em = lookup_extent_mapping(em_tree, chunk_start, 1); 4034 read_unlock(&em_tree->lock); 4035 4036 BUG_ON(!em || em->start != chunk_start); 4037 map = (struct map_lookup *)em->bdev; 4038 4039 length = em->len; 4040 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4041 do_div(length, map->num_stripes / map->sub_stripes); 4042 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 4043 do_div(length, map->num_stripes); 4044 4045 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 4046 BUG_ON(!buf); /* -ENOMEM */ 4047 4048 for (i = 0; i < map->num_stripes; i++) { 4049 if (devid && map->stripes[i].dev->devid != devid) 4050 continue; 4051 if (map->stripes[i].physical > physical || 4052 map->stripes[i].physical + length <= physical) 4053 continue; 4054 4055 stripe_nr = physical - map->stripes[i].physical; 4056 do_div(stripe_nr, map->stripe_len); 4057 4058 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 4059 stripe_nr = stripe_nr * map->num_stripes + i; 4060 do_div(stripe_nr, map->sub_stripes); 4061 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 4062 stripe_nr = stripe_nr * map->num_stripes + i; 4063 } 4064 bytenr = chunk_start + stripe_nr * map->stripe_len; 4065 WARN_ON(nr >= map->num_stripes); 4066 for (j = 0; j < nr; j++) { 4067 if (buf[j] == bytenr) 4068 break; 4069 } 4070 if (j == nr) { 4071 WARN_ON(nr >= map->num_stripes); 4072 buf[nr++] = bytenr; 4073 } 4074 } 4075 4076 *logical = buf; 4077 *naddrs = nr; 4078 *stripe_len = map->stripe_len; 4079 4080 free_extent_map(em); 4081 return 0; 4082 } 4083 4084 static void *merge_stripe_index_into_bio_private(void *bi_private, 4085 unsigned int stripe_index) 4086 { 4087 /* 4088 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is 4089 * at most 1. 4090 * The alternative solution (instead of stealing bits from the 4091 * pointer) would be to allocate an intermediate structure 4092 * that contains the old private pointer plus the stripe_index. 4093 */ 4094 BUG_ON((((uintptr_t)bi_private) & 3) != 0); 4095 BUG_ON(stripe_index > 3); 4096 return (void *)(((uintptr_t)bi_private) | stripe_index); 4097 } 4098 4099 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private) 4100 { 4101 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3)); 4102 } 4103 4104 static unsigned int extract_stripe_index_from_bio_private(void *bi_private) 4105 { 4106 return (unsigned int)((uintptr_t)bi_private) & 3; 4107 } 4108 4109 static void btrfs_end_bio(struct bio *bio, int err) 4110 { 4111 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private); 4112 int is_orig_bio = 0; 4113 4114 if (err) { 4115 atomic_inc(&bbio->error); 4116 if (err == -EIO || err == -EREMOTEIO) { 4117 unsigned int stripe_index = 4118 extract_stripe_index_from_bio_private( 4119 bio->bi_private); 4120 struct btrfs_device *dev; 4121 4122 BUG_ON(stripe_index >= bbio->num_stripes); 4123 dev = bbio->stripes[stripe_index].dev; 4124 if (dev->bdev) { 4125 if (bio->bi_rw & WRITE) 4126 btrfs_dev_stat_inc(dev, 4127 BTRFS_DEV_STAT_WRITE_ERRS); 4128 else 4129 btrfs_dev_stat_inc(dev, 4130 BTRFS_DEV_STAT_READ_ERRS); 4131 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 4132 btrfs_dev_stat_inc(dev, 4133 BTRFS_DEV_STAT_FLUSH_ERRS); 4134 btrfs_dev_stat_print_on_error(dev); 4135 } 4136 } 4137 } 4138 4139 if (bio == bbio->orig_bio) 4140 is_orig_bio = 1; 4141 4142 if (atomic_dec_and_test(&bbio->stripes_pending)) { 4143 if (!is_orig_bio) { 4144 bio_put(bio); 4145 bio = bbio->orig_bio; 4146 } 4147 bio->bi_private = bbio->private; 4148 bio->bi_end_io = bbio->end_io; 4149 bio->bi_bdev = (struct block_device *) 4150 (unsigned long)bbio->mirror_num; 4151 /* only send an error to the higher layers if it is 4152 * beyond the tolerance of the multi-bio 4153 */ 4154 if (atomic_read(&bbio->error) > bbio->max_errors) { 4155 err = -EIO; 4156 } else { 4157 /* 4158 * this bio is actually up to date, we didn't 4159 * go over the max number of errors 4160 */ 4161 set_bit(BIO_UPTODATE, &bio->bi_flags); 4162 err = 0; 4163 } 4164 kfree(bbio); 4165 4166 bio_endio(bio, err); 4167 } else if (!is_orig_bio) { 4168 bio_put(bio); 4169 } 4170 } 4171 4172 struct async_sched { 4173 struct bio *bio; 4174 int rw; 4175 struct btrfs_fs_info *info; 4176 struct btrfs_work work; 4177 }; 4178 4179 /* 4180 * see run_scheduled_bios for a description of why bios are collected for 4181 * async submit. 4182 * 4183 * This will add one bio to the pending list for a device and make sure 4184 * the work struct is scheduled. 4185 */ 4186 static noinline void schedule_bio(struct btrfs_root *root, 4187 struct btrfs_device *device, 4188 int rw, struct bio *bio) 4189 { 4190 int should_queue = 1; 4191 struct btrfs_pending_bios *pending_bios; 4192 4193 /* don't bother with additional async steps for reads, right now */ 4194 if (!(rw & REQ_WRITE)) { 4195 bio_get(bio); 4196 btrfsic_submit_bio(rw, bio); 4197 bio_put(bio); 4198 return; 4199 } 4200 4201 /* 4202 * nr_async_bios allows us to reliably return congestion to the 4203 * higher layers. Otherwise, the async bio makes it appear we have 4204 * made progress against dirty pages when we've really just put it 4205 * on a queue for later 4206 */ 4207 atomic_inc(&root->fs_info->nr_async_bios); 4208 WARN_ON(bio->bi_next); 4209 bio->bi_next = NULL; 4210 bio->bi_rw |= rw; 4211 4212 spin_lock(&device->io_lock); 4213 if (bio->bi_rw & REQ_SYNC) 4214 pending_bios = &device->pending_sync_bios; 4215 else 4216 pending_bios = &device->pending_bios; 4217 4218 if (pending_bios->tail) 4219 pending_bios->tail->bi_next = bio; 4220 4221 pending_bios->tail = bio; 4222 if (!pending_bios->head) 4223 pending_bios->head = bio; 4224 if (device->running_pending) 4225 should_queue = 0; 4226 4227 spin_unlock(&device->io_lock); 4228 4229 if (should_queue) 4230 btrfs_queue_worker(&root->fs_info->submit_workers, 4231 &device->work); 4232 } 4233 4234 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 4235 int mirror_num, int async_submit) 4236 { 4237 struct btrfs_mapping_tree *map_tree; 4238 struct btrfs_device *dev; 4239 struct bio *first_bio = bio; 4240 u64 logical = (u64)bio->bi_sector << 9; 4241 u64 length = 0; 4242 u64 map_length; 4243 int ret; 4244 int dev_nr = 0; 4245 int total_devs = 1; 4246 struct btrfs_bio *bbio = NULL; 4247 4248 length = bio->bi_size; 4249 map_tree = &root->fs_info->mapping_tree; 4250 map_length = length; 4251 4252 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio, 4253 mirror_num); 4254 if (ret) /* -ENOMEM */ 4255 return ret; 4256 4257 total_devs = bbio->num_stripes; 4258 if (map_length < length) { 4259 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu " 4260 "len %llu\n", (unsigned long long)logical, 4261 (unsigned long long)length, 4262 (unsigned long long)map_length); 4263 BUG(); 4264 } 4265 4266 bbio->orig_bio = first_bio; 4267 bbio->private = first_bio->bi_private; 4268 bbio->end_io = first_bio->bi_end_io; 4269 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 4270 4271 while (dev_nr < total_devs) { 4272 if (dev_nr < total_devs - 1) { 4273 bio = bio_clone(first_bio, GFP_NOFS); 4274 BUG_ON(!bio); /* -ENOMEM */ 4275 } else { 4276 bio = first_bio; 4277 } 4278 bio->bi_private = bbio; 4279 bio->bi_private = merge_stripe_index_into_bio_private( 4280 bio->bi_private, (unsigned int)dev_nr); 4281 bio->bi_end_io = btrfs_end_bio; 4282 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9; 4283 dev = bbio->stripes[dev_nr].dev; 4284 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { 4285 #ifdef DEBUG 4286 struct rcu_string *name; 4287 4288 rcu_read_lock(); 4289 name = rcu_dereference(dev->name); 4290 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu " 4291 "(%s id %llu), size=%u\n", rw, 4292 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 4293 name->str, dev->devid, bio->bi_size); 4294 rcu_read_unlock(); 4295 #endif 4296 bio->bi_bdev = dev->bdev; 4297 if (async_submit) 4298 schedule_bio(root, dev, rw, bio); 4299 else 4300 btrfsic_submit_bio(rw, bio); 4301 } else { 4302 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; 4303 bio->bi_sector = logical >> 9; 4304 bio_endio(bio, -EIO); 4305 } 4306 dev_nr++; 4307 } 4308 return 0; 4309 } 4310 4311 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, 4312 u8 *uuid, u8 *fsid) 4313 { 4314 struct btrfs_device *device; 4315 struct btrfs_fs_devices *cur_devices; 4316 4317 cur_devices = root->fs_info->fs_devices; 4318 while (cur_devices) { 4319 if (!fsid || 4320 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4321 device = __find_device(&cur_devices->devices, 4322 devid, uuid); 4323 if (device) 4324 return device; 4325 } 4326 cur_devices = cur_devices->seed; 4327 } 4328 return NULL; 4329 } 4330 4331 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 4332 u64 devid, u8 *dev_uuid) 4333 { 4334 struct btrfs_device *device; 4335 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4336 4337 device = kzalloc(sizeof(*device), GFP_NOFS); 4338 if (!device) 4339 return NULL; 4340 list_add(&device->dev_list, 4341 &fs_devices->devices); 4342 device->dev_root = root->fs_info->dev_root; 4343 device->devid = devid; 4344 device->work.func = pending_bios_fn; 4345 device->fs_devices = fs_devices; 4346 device->missing = 1; 4347 fs_devices->num_devices++; 4348 fs_devices->missing_devices++; 4349 spin_lock_init(&device->io_lock); 4350 INIT_LIST_HEAD(&device->dev_alloc_list); 4351 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); 4352 return device; 4353 } 4354 4355 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 4356 struct extent_buffer *leaf, 4357 struct btrfs_chunk *chunk) 4358 { 4359 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4360 struct map_lookup *map; 4361 struct extent_map *em; 4362 u64 logical; 4363 u64 length; 4364 u64 devid; 4365 u8 uuid[BTRFS_UUID_SIZE]; 4366 int num_stripes; 4367 int ret; 4368 int i; 4369 4370 logical = key->offset; 4371 length = btrfs_chunk_length(leaf, chunk); 4372 4373 read_lock(&map_tree->map_tree.lock); 4374 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 4375 read_unlock(&map_tree->map_tree.lock); 4376 4377 /* already mapped? */ 4378 if (em && em->start <= logical && em->start + em->len > logical) { 4379 free_extent_map(em); 4380 return 0; 4381 } else if (em) { 4382 free_extent_map(em); 4383 } 4384 4385 em = alloc_extent_map(); 4386 if (!em) 4387 return -ENOMEM; 4388 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 4389 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4390 if (!map) { 4391 free_extent_map(em); 4392 return -ENOMEM; 4393 } 4394 4395 em->bdev = (struct block_device *)map; 4396 em->start = logical; 4397 em->len = length; 4398 em->block_start = 0; 4399 em->block_len = em->len; 4400 4401 map->num_stripes = num_stripes; 4402 map->io_width = btrfs_chunk_io_width(leaf, chunk); 4403 map->io_align = btrfs_chunk_io_align(leaf, chunk); 4404 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 4405 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 4406 map->type = btrfs_chunk_type(leaf, chunk); 4407 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 4408 for (i = 0; i < num_stripes; i++) { 4409 map->stripes[i].physical = 4410 btrfs_stripe_offset_nr(leaf, chunk, i); 4411 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 4412 read_extent_buffer(leaf, uuid, (unsigned long) 4413 btrfs_stripe_dev_uuid_nr(chunk, i), 4414 BTRFS_UUID_SIZE); 4415 map->stripes[i].dev = btrfs_find_device(root, devid, uuid, 4416 NULL); 4417 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 4418 kfree(map); 4419 free_extent_map(em); 4420 return -EIO; 4421 } 4422 if (!map->stripes[i].dev) { 4423 map->stripes[i].dev = 4424 add_missing_dev(root, devid, uuid); 4425 if (!map->stripes[i].dev) { 4426 kfree(map); 4427 free_extent_map(em); 4428 return -EIO; 4429 } 4430 } 4431 map->stripes[i].dev->in_fs_metadata = 1; 4432 } 4433 4434 write_lock(&map_tree->map_tree.lock); 4435 ret = add_extent_mapping(&map_tree->map_tree, em); 4436 write_unlock(&map_tree->map_tree.lock); 4437 BUG_ON(ret); /* Tree corruption */ 4438 free_extent_map(em); 4439 4440 return 0; 4441 } 4442 4443 static void fill_device_from_item(struct extent_buffer *leaf, 4444 struct btrfs_dev_item *dev_item, 4445 struct btrfs_device *device) 4446 { 4447 unsigned long ptr; 4448 4449 device->devid = btrfs_device_id(leaf, dev_item); 4450 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 4451 device->total_bytes = device->disk_total_bytes; 4452 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 4453 device->type = btrfs_device_type(leaf, dev_item); 4454 device->io_align = btrfs_device_io_align(leaf, dev_item); 4455 device->io_width = btrfs_device_io_width(leaf, dev_item); 4456 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 4457 4458 ptr = (unsigned long)btrfs_device_uuid(dev_item); 4459 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 4460 } 4461 4462 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 4463 { 4464 struct btrfs_fs_devices *fs_devices; 4465 int ret; 4466 4467 BUG_ON(!mutex_is_locked(&uuid_mutex)); 4468 4469 fs_devices = root->fs_info->fs_devices->seed; 4470 while (fs_devices) { 4471 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 4472 ret = 0; 4473 goto out; 4474 } 4475 fs_devices = fs_devices->seed; 4476 } 4477 4478 fs_devices = find_fsid(fsid); 4479 if (!fs_devices) { 4480 ret = -ENOENT; 4481 goto out; 4482 } 4483 4484 fs_devices = clone_fs_devices(fs_devices); 4485 if (IS_ERR(fs_devices)) { 4486 ret = PTR_ERR(fs_devices); 4487 goto out; 4488 } 4489 4490 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 4491 root->fs_info->bdev_holder); 4492 if (ret) { 4493 free_fs_devices(fs_devices); 4494 goto out; 4495 } 4496 4497 if (!fs_devices->seeding) { 4498 __btrfs_close_devices(fs_devices); 4499 free_fs_devices(fs_devices); 4500 ret = -EINVAL; 4501 goto out; 4502 } 4503 4504 fs_devices->seed = root->fs_info->fs_devices->seed; 4505 root->fs_info->fs_devices->seed = fs_devices; 4506 out: 4507 return ret; 4508 } 4509 4510 static int read_one_dev(struct btrfs_root *root, 4511 struct extent_buffer *leaf, 4512 struct btrfs_dev_item *dev_item) 4513 { 4514 struct btrfs_device *device; 4515 u64 devid; 4516 int ret; 4517 u8 fs_uuid[BTRFS_UUID_SIZE]; 4518 u8 dev_uuid[BTRFS_UUID_SIZE]; 4519 4520 devid = btrfs_device_id(leaf, dev_item); 4521 read_extent_buffer(leaf, dev_uuid, 4522 (unsigned long)btrfs_device_uuid(dev_item), 4523 BTRFS_UUID_SIZE); 4524 read_extent_buffer(leaf, fs_uuid, 4525 (unsigned long)btrfs_device_fsid(dev_item), 4526 BTRFS_UUID_SIZE); 4527 4528 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 4529 ret = open_seed_devices(root, fs_uuid); 4530 if (ret && !btrfs_test_opt(root, DEGRADED)) 4531 return ret; 4532 } 4533 4534 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); 4535 if (!device || !device->bdev) { 4536 if (!btrfs_test_opt(root, DEGRADED)) 4537 return -EIO; 4538 4539 if (!device) { 4540 printk(KERN_WARNING "warning devid %llu missing\n", 4541 (unsigned long long)devid); 4542 device = add_missing_dev(root, devid, dev_uuid); 4543 if (!device) 4544 return -ENOMEM; 4545 } else if (!device->missing) { 4546 /* 4547 * this happens when a device that was properly setup 4548 * in the device info lists suddenly goes bad. 4549 * device->bdev is NULL, and so we have to set 4550 * device->missing to one here 4551 */ 4552 root->fs_info->fs_devices->missing_devices++; 4553 device->missing = 1; 4554 } 4555 } 4556 4557 if (device->fs_devices != root->fs_info->fs_devices) { 4558 BUG_ON(device->writeable); 4559 if (device->generation != 4560 btrfs_device_generation(leaf, dev_item)) 4561 return -EINVAL; 4562 } 4563 4564 fill_device_from_item(leaf, dev_item, device); 4565 device->dev_root = root->fs_info->dev_root; 4566 device->in_fs_metadata = 1; 4567 if (device->writeable) { 4568 device->fs_devices->total_rw_bytes += device->total_bytes; 4569 spin_lock(&root->fs_info->free_chunk_lock); 4570 root->fs_info->free_chunk_space += device->total_bytes - 4571 device->bytes_used; 4572 spin_unlock(&root->fs_info->free_chunk_lock); 4573 } 4574 ret = 0; 4575 return ret; 4576 } 4577 4578 int btrfs_read_sys_array(struct btrfs_root *root) 4579 { 4580 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4581 struct extent_buffer *sb; 4582 struct btrfs_disk_key *disk_key; 4583 struct btrfs_chunk *chunk; 4584 u8 *ptr; 4585 unsigned long sb_ptr; 4586 int ret = 0; 4587 u32 num_stripes; 4588 u32 array_size; 4589 u32 len = 0; 4590 u32 cur; 4591 struct btrfs_key key; 4592 4593 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 4594 BTRFS_SUPER_INFO_SIZE); 4595 if (!sb) 4596 return -ENOMEM; 4597 btrfs_set_buffer_uptodate(sb); 4598 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 4599 /* 4600 * The sb extent buffer is artifical and just used to read the system array. 4601 * btrfs_set_buffer_uptodate() call does not properly mark all it's 4602 * pages up-to-date when the page is larger: extent does not cover the 4603 * whole page and consequently check_page_uptodate does not find all 4604 * the page's extents up-to-date (the hole beyond sb), 4605 * write_extent_buffer then triggers a WARN_ON. 4606 * 4607 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 4608 * but sb spans only this function. Add an explicit SetPageUptodate call 4609 * to silence the warning eg. on PowerPC 64. 4610 */ 4611 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 4612 SetPageUptodate(sb->pages[0]); 4613 4614 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 4615 array_size = btrfs_super_sys_array_size(super_copy); 4616 4617 ptr = super_copy->sys_chunk_array; 4618 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 4619 cur = 0; 4620 4621 while (cur < array_size) { 4622 disk_key = (struct btrfs_disk_key *)ptr; 4623 btrfs_disk_key_to_cpu(&key, disk_key); 4624 4625 len = sizeof(*disk_key); ptr += len; 4626 sb_ptr += len; 4627 cur += len; 4628 4629 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 4630 chunk = (struct btrfs_chunk *)sb_ptr; 4631 ret = read_one_chunk(root, &key, sb, chunk); 4632 if (ret) 4633 break; 4634 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 4635 len = btrfs_chunk_item_size(num_stripes); 4636 } else { 4637 ret = -EIO; 4638 break; 4639 } 4640 ptr += len; 4641 sb_ptr += len; 4642 cur += len; 4643 } 4644 free_extent_buffer(sb); 4645 return ret; 4646 } 4647 4648 int btrfs_read_chunk_tree(struct btrfs_root *root) 4649 { 4650 struct btrfs_path *path; 4651 struct extent_buffer *leaf; 4652 struct btrfs_key key; 4653 struct btrfs_key found_key; 4654 int ret; 4655 int slot; 4656 4657 root = root->fs_info->chunk_root; 4658 4659 path = btrfs_alloc_path(); 4660 if (!path) 4661 return -ENOMEM; 4662 4663 mutex_lock(&uuid_mutex); 4664 lock_chunks(root); 4665 4666 /* first we search for all of the device items, and then we 4667 * read in all of the chunk items. This way we can create chunk 4668 * mappings that reference all of the devices that are afound 4669 */ 4670 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 4671 key.offset = 0; 4672 key.type = 0; 4673 again: 4674 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4675 if (ret < 0) 4676 goto error; 4677 while (1) { 4678 leaf = path->nodes[0]; 4679 slot = path->slots[0]; 4680 if (slot >= btrfs_header_nritems(leaf)) { 4681 ret = btrfs_next_leaf(root, path); 4682 if (ret == 0) 4683 continue; 4684 if (ret < 0) 4685 goto error; 4686 break; 4687 } 4688 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4689 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4690 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) 4691 break; 4692 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 4693 struct btrfs_dev_item *dev_item; 4694 dev_item = btrfs_item_ptr(leaf, slot, 4695 struct btrfs_dev_item); 4696 ret = read_one_dev(root, leaf, dev_item); 4697 if (ret) 4698 goto error; 4699 } 4700 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 4701 struct btrfs_chunk *chunk; 4702 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4703 ret = read_one_chunk(root, &found_key, leaf, chunk); 4704 if (ret) 4705 goto error; 4706 } 4707 path->slots[0]++; 4708 } 4709 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { 4710 key.objectid = 0; 4711 btrfs_release_path(path); 4712 goto again; 4713 } 4714 ret = 0; 4715 error: 4716 unlock_chunks(root); 4717 mutex_unlock(&uuid_mutex); 4718 4719 btrfs_free_path(path); 4720 return ret; 4721 } 4722 4723 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 4724 { 4725 int i; 4726 4727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4728 btrfs_dev_stat_reset(dev, i); 4729 } 4730 4731 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 4732 { 4733 struct btrfs_key key; 4734 struct btrfs_key found_key; 4735 struct btrfs_root *dev_root = fs_info->dev_root; 4736 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4737 struct extent_buffer *eb; 4738 int slot; 4739 int ret = 0; 4740 struct btrfs_device *device; 4741 struct btrfs_path *path = NULL; 4742 int i; 4743 4744 path = btrfs_alloc_path(); 4745 if (!path) { 4746 ret = -ENOMEM; 4747 goto out; 4748 } 4749 4750 mutex_lock(&fs_devices->device_list_mutex); 4751 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4752 int item_size; 4753 struct btrfs_dev_stats_item *ptr; 4754 4755 key.objectid = 0; 4756 key.type = BTRFS_DEV_STATS_KEY; 4757 key.offset = device->devid; 4758 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 4759 if (ret) { 4760 __btrfs_reset_dev_stats(device); 4761 device->dev_stats_valid = 1; 4762 btrfs_release_path(path); 4763 continue; 4764 } 4765 slot = path->slots[0]; 4766 eb = path->nodes[0]; 4767 btrfs_item_key_to_cpu(eb, &found_key, slot); 4768 item_size = btrfs_item_size_nr(eb, slot); 4769 4770 ptr = btrfs_item_ptr(eb, slot, 4771 struct btrfs_dev_stats_item); 4772 4773 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4774 if (item_size >= (1 + i) * sizeof(__le64)) 4775 btrfs_dev_stat_set(device, i, 4776 btrfs_dev_stats_value(eb, ptr, i)); 4777 else 4778 btrfs_dev_stat_reset(device, i); 4779 } 4780 4781 device->dev_stats_valid = 1; 4782 btrfs_dev_stat_print_on_load(device); 4783 btrfs_release_path(path); 4784 } 4785 mutex_unlock(&fs_devices->device_list_mutex); 4786 4787 out: 4788 btrfs_free_path(path); 4789 return ret < 0 ? ret : 0; 4790 } 4791 4792 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 4793 struct btrfs_root *dev_root, 4794 struct btrfs_device *device) 4795 { 4796 struct btrfs_path *path; 4797 struct btrfs_key key; 4798 struct extent_buffer *eb; 4799 struct btrfs_dev_stats_item *ptr; 4800 int ret; 4801 int i; 4802 4803 key.objectid = 0; 4804 key.type = BTRFS_DEV_STATS_KEY; 4805 key.offset = device->devid; 4806 4807 path = btrfs_alloc_path(); 4808 BUG_ON(!path); 4809 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 4810 if (ret < 0) { 4811 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n", 4812 ret, rcu_str_deref(device->name)); 4813 goto out; 4814 } 4815 4816 if (ret == 0 && 4817 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 4818 /* need to delete old one and insert a new one */ 4819 ret = btrfs_del_item(trans, dev_root, path); 4820 if (ret != 0) { 4821 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n", 4822 rcu_str_deref(device->name), ret); 4823 goto out; 4824 } 4825 ret = 1; 4826 } 4827 4828 if (ret == 1) { 4829 /* need to insert a new item */ 4830 btrfs_release_path(path); 4831 ret = btrfs_insert_empty_item(trans, dev_root, path, 4832 &key, sizeof(*ptr)); 4833 if (ret < 0) { 4834 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n", 4835 rcu_str_deref(device->name), ret); 4836 goto out; 4837 } 4838 } 4839 4840 eb = path->nodes[0]; 4841 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 4842 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4843 btrfs_set_dev_stats_value(eb, ptr, i, 4844 btrfs_dev_stat_read(device, i)); 4845 btrfs_mark_buffer_dirty(eb); 4846 4847 out: 4848 btrfs_free_path(path); 4849 return ret; 4850 } 4851 4852 /* 4853 * called from commit_transaction. Writes all changed device stats to disk. 4854 */ 4855 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 4856 struct btrfs_fs_info *fs_info) 4857 { 4858 struct btrfs_root *dev_root = fs_info->dev_root; 4859 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 4860 struct btrfs_device *device; 4861 int ret = 0; 4862 4863 mutex_lock(&fs_devices->device_list_mutex); 4864 list_for_each_entry(device, &fs_devices->devices, dev_list) { 4865 if (!device->dev_stats_valid || !device->dev_stats_dirty) 4866 continue; 4867 4868 ret = update_dev_stat_item(trans, dev_root, device); 4869 if (!ret) 4870 device->dev_stats_dirty = 0; 4871 } 4872 mutex_unlock(&fs_devices->device_list_mutex); 4873 4874 return ret; 4875 } 4876 4877 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 4878 { 4879 btrfs_dev_stat_inc(dev, index); 4880 btrfs_dev_stat_print_on_error(dev); 4881 } 4882 4883 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 4884 { 4885 if (!dev->dev_stats_valid) 4886 return; 4887 printk_ratelimited_in_rcu(KERN_ERR 4888 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4889 rcu_str_deref(dev->name), 4890 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4892 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4893 btrfs_dev_stat_read(dev, 4894 BTRFS_DEV_STAT_CORRUPTION_ERRS), 4895 btrfs_dev_stat_read(dev, 4896 BTRFS_DEV_STAT_GENERATION_ERRS)); 4897 } 4898 4899 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 4900 { 4901 int i; 4902 4903 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4904 if (btrfs_dev_stat_read(dev, i) != 0) 4905 break; 4906 if (i == BTRFS_DEV_STAT_VALUES_MAX) 4907 return; /* all values == 0, suppress message */ 4908 4909 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 4910 rcu_str_deref(dev->name), 4911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 4912 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 4913 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 4914 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 4915 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 4916 } 4917 4918 int btrfs_get_dev_stats(struct btrfs_root *root, 4919 struct btrfs_ioctl_get_dev_stats *stats) 4920 { 4921 struct btrfs_device *dev; 4922 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 4923 int i; 4924 4925 mutex_lock(&fs_devices->device_list_mutex); 4926 dev = btrfs_find_device(root, stats->devid, NULL, NULL); 4927 mutex_unlock(&fs_devices->device_list_mutex); 4928 4929 if (!dev) { 4930 printk(KERN_WARNING 4931 "btrfs: get dev_stats failed, device not found\n"); 4932 return -ENODEV; 4933 } else if (!dev->dev_stats_valid) { 4934 printk(KERN_WARNING 4935 "btrfs: get dev_stats failed, not yet valid\n"); 4936 return -ENODEV; 4937 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 4938 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 4939 if (stats->nr_items > i) 4940 stats->values[i] = 4941 btrfs_dev_stat_read_and_reset(dev, i); 4942 else 4943 btrfs_dev_stat_reset(dev, i); 4944 } 4945 } else { 4946 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 4947 if (stats->nr_items > i) 4948 stats->values[i] = btrfs_dev_stat_read(dev, i); 4949 } 4950 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 4951 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 4952 return 0; 4953 } 4954