xref: /linux/fs/btrfs/volumes.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
38 					 BTRFS_BLOCK_GROUP_RAID10 | \
39 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
40 
41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
42 	[BTRFS_RAID_RAID10] = {
43 		.sub_stripes	= 2,
44 		.dev_stripes	= 1,
45 		.devs_max	= 0,	/* 0 == as many as possible */
46 		.devs_min	= 2,
47 		.tolerated_failures = 1,
48 		.devs_increment	= 2,
49 		.ncopies	= 2,
50 		.nparity        = 0,
51 		.raid_name	= "raid10",
52 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
53 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 		.nparity        = 0,
64 		.raid_name	= "raid1",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
66 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
67 	},
68 	[BTRFS_RAID_RAID1C3] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 3,
72 		.devs_min	= 3,
73 		.tolerated_failures = 2,
74 		.devs_increment	= 3,
75 		.ncopies	= 3,
76 		.nparity        = 0,
77 		.raid_name	= "raid1c3",
78 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
79 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
80 	},
81 	[BTRFS_RAID_RAID1C4] = {
82 		.sub_stripes	= 1,
83 		.dev_stripes	= 1,
84 		.devs_max	= 4,
85 		.devs_min	= 4,
86 		.tolerated_failures = 3,
87 		.devs_increment	= 4,
88 		.ncopies	= 4,
89 		.nparity        = 0,
90 		.raid_name	= "raid1c4",
91 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
92 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
93 	},
94 	[BTRFS_RAID_DUP] = {
95 		.sub_stripes	= 1,
96 		.dev_stripes	= 2,
97 		.devs_max	= 1,
98 		.devs_min	= 1,
99 		.tolerated_failures = 0,
100 		.devs_increment	= 1,
101 		.ncopies	= 2,
102 		.nparity        = 0,
103 		.raid_name	= "dup",
104 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
105 		.mindev_error	= 0,
106 	},
107 	[BTRFS_RAID_RAID0] = {
108 		.sub_stripes	= 1,
109 		.dev_stripes	= 1,
110 		.devs_max	= 0,
111 		.devs_min	= 1,
112 		.tolerated_failures = 0,
113 		.devs_increment	= 1,
114 		.ncopies	= 1,
115 		.nparity        = 0,
116 		.raid_name	= "raid0",
117 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
118 		.mindev_error	= 0,
119 	},
120 	[BTRFS_RAID_SINGLE] = {
121 		.sub_stripes	= 1,
122 		.dev_stripes	= 1,
123 		.devs_max	= 1,
124 		.devs_min	= 1,
125 		.tolerated_failures = 0,
126 		.devs_increment	= 1,
127 		.ncopies	= 1,
128 		.nparity        = 0,
129 		.raid_name	= "single",
130 		.bg_flag	= 0,
131 		.mindev_error	= 0,
132 	},
133 	[BTRFS_RAID_RAID5] = {
134 		.sub_stripes	= 1,
135 		.dev_stripes	= 1,
136 		.devs_max	= 0,
137 		.devs_min	= 2,
138 		.tolerated_failures = 1,
139 		.devs_increment	= 1,
140 		.ncopies	= 1,
141 		.nparity        = 1,
142 		.raid_name	= "raid5",
143 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
144 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
145 	},
146 	[BTRFS_RAID_RAID6] = {
147 		.sub_stripes	= 1,
148 		.dev_stripes	= 1,
149 		.devs_max	= 0,
150 		.devs_min	= 3,
151 		.tolerated_failures = 2,
152 		.devs_increment	= 1,
153 		.ncopies	= 1,
154 		.nparity        = 2,
155 		.raid_name	= "raid6",
156 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
157 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
158 	},
159 };
160 
161 /*
162  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
163  * can be used as index to access btrfs_raid_array[].
164  */
165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
166 {
167 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
168 
169 	if (!profile)
170 		return BTRFS_RAID_SINGLE;
171 
172 	return BTRFS_BG_FLAG_TO_INDEX(profile);
173 }
174 
175 const char *btrfs_bg_type_to_raid_name(u64 flags)
176 {
177 	const int index = btrfs_bg_flags_to_raid_index(flags);
178 
179 	if (index >= BTRFS_NR_RAID_TYPES)
180 		return NULL;
181 
182 	return btrfs_raid_array[index].raid_name;
183 }
184 
185 int btrfs_nr_parity_stripes(u64 type)
186 {
187 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
188 
189 	return btrfs_raid_array[index].nparity;
190 }
191 
192 /*
193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
194  * bytes including terminating null byte.
195  */
196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198 	int i;
199 	int ret;
200 	char *bp = buf;
201 	u64 flags = bg_flags;
202 	u32 size_bp = size_buf;
203 
204 	if (!flags) {
205 		strcpy(bp, "NONE");
206 		return;
207 	}
208 
209 #define DESCRIBE_FLAG(flag, desc)						\
210 	do {								\
211 		if (flags & (flag)) {					\
212 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
213 			if (ret < 0 || ret >= size_bp)			\
214 				goto out_overflow;			\
215 			size_bp -= ret;					\
216 			bp += ret;					\
217 			flags &= ~(flag);				\
218 		}							\
219 	} while (0)
220 
221 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224 
225 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 			      btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230 
231 	if (flags) {
232 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 		size_bp -= ret;
234 	}
235 
236 	if (size_bp < size_buf)
237 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238 
239 	/*
240 	 * The text is trimmed, it's up to the caller to provide sufficiently
241 	 * large buffer
242 	 */
243 out_overflow:;
244 }
245 
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
249 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
250 			     enum btrfs_map_op op,
251 			     u64 logical, u64 *length,
252 			     struct btrfs_io_context **bioc_ret,
253 			     int mirror_num, int need_raid_map);
254 
255 /*
256  * Device locking
257  * ==============
258  *
259  * There are several mutexes that protect manipulation of devices and low-level
260  * structures like chunks but not block groups, extents or files
261  *
262  * uuid_mutex (global lock)
263  * ------------------------
264  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
265  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
266  * device) or requested by the device= mount option
267  *
268  * the mutex can be very coarse and can cover long-running operations
269  *
270  * protects: updates to fs_devices counters like missing devices, rw devices,
271  * seeding, structure cloning, opening/closing devices at mount/umount time
272  *
273  * global::fs_devs - add, remove, updates to the global list
274  *
275  * does not protect: manipulation of the fs_devices::devices list in general
276  * but in mount context it could be used to exclude list modifications by eg.
277  * scan ioctl
278  *
279  * btrfs_device::name - renames (write side), read is RCU
280  *
281  * fs_devices::device_list_mutex (per-fs, with RCU)
282  * ------------------------------------------------
283  * protects updates to fs_devices::devices, ie. adding and deleting
284  *
285  * simple list traversal with read-only actions can be done with RCU protection
286  *
287  * may be used to exclude some operations from running concurrently without any
288  * modifications to the list (see write_all_supers)
289  *
290  * Is not required at mount and close times, because our device list is
291  * protected by the uuid_mutex at that point.
292  *
293  * balance_mutex
294  * -------------
295  * protects balance structures (status, state) and context accessed from
296  * several places (internally, ioctl)
297  *
298  * chunk_mutex
299  * -----------
300  * protects chunks, adding or removing during allocation, trim or when a new
301  * device is added/removed. Additionally it also protects post_commit_list of
302  * individual devices, since they can be added to the transaction's
303  * post_commit_list only with chunk_mutex held.
304  *
305  * cleaner_mutex
306  * -------------
307  * a big lock that is held by the cleaner thread and prevents running subvolume
308  * cleaning together with relocation or delayed iputs
309  *
310  *
311  * Lock nesting
312  * ============
313  *
314  * uuid_mutex
315  *   device_list_mutex
316  *     chunk_mutex
317  *   balance_mutex
318  *
319  *
320  * Exclusive operations
321  * ====================
322  *
323  * Maintains the exclusivity of the following operations that apply to the
324  * whole filesystem and cannot run in parallel.
325  *
326  * - Balance (*)
327  * - Device add
328  * - Device remove
329  * - Device replace (*)
330  * - Resize
331  *
332  * The device operations (as above) can be in one of the following states:
333  *
334  * - Running state
335  * - Paused state
336  * - Completed state
337  *
338  * Only device operations marked with (*) can go into the Paused state for the
339  * following reasons:
340  *
341  * - ioctl (only Balance can be Paused through ioctl)
342  * - filesystem remounted as read-only
343  * - filesystem unmounted and mounted as read-only
344  * - system power-cycle and filesystem mounted as read-only
345  * - filesystem or device errors leading to forced read-only
346  *
347  * The status of exclusive operation is set and cleared atomically.
348  * During the course of Paused state, fs_info::exclusive_operation remains set.
349  * A device operation in Paused or Running state can be canceled or resumed
350  * either by ioctl (Balance only) or when remounted as read-write.
351  * The exclusive status is cleared when the device operation is canceled or
352  * completed.
353  */
354 
355 DEFINE_MUTEX(uuid_mutex);
356 static LIST_HEAD(fs_uuids);
357 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
358 {
359 	return &fs_uuids;
360 }
361 
362 /*
363  * alloc_fs_devices - allocate struct btrfs_fs_devices
364  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
365  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
366  *
367  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
368  * The returned struct is not linked onto any lists and can be destroyed with
369  * kfree() right away.
370  */
371 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
372 						 const u8 *metadata_fsid)
373 {
374 	struct btrfs_fs_devices *fs_devs;
375 
376 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
377 	if (!fs_devs)
378 		return ERR_PTR(-ENOMEM);
379 
380 	mutex_init(&fs_devs->device_list_mutex);
381 
382 	INIT_LIST_HEAD(&fs_devs->devices);
383 	INIT_LIST_HEAD(&fs_devs->alloc_list);
384 	INIT_LIST_HEAD(&fs_devs->fs_list);
385 	INIT_LIST_HEAD(&fs_devs->seed_list);
386 	if (fsid)
387 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 
389 	if (metadata_fsid)
390 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
391 	else if (fsid)
392 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
393 
394 	return fs_devs;
395 }
396 
397 void btrfs_free_device(struct btrfs_device *device)
398 {
399 	WARN_ON(!list_empty(&device->post_commit_list));
400 	rcu_string_free(device->name);
401 	extent_io_tree_release(&device->alloc_state);
402 	btrfs_destroy_dev_zone_info(device);
403 	kfree(device);
404 }
405 
406 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
407 {
408 	struct btrfs_device *device;
409 	WARN_ON(fs_devices->opened);
410 	while (!list_empty(&fs_devices->devices)) {
411 		device = list_entry(fs_devices->devices.next,
412 				    struct btrfs_device, dev_list);
413 		list_del(&device->dev_list);
414 		btrfs_free_device(device);
415 	}
416 	kfree(fs_devices);
417 }
418 
419 void __exit btrfs_cleanup_fs_uuids(void)
420 {
421 	struct btrfs_fs_devices *fs_devices;
422 
423 	while (!list_empty(&fs_uuids)) {
424 		fs_devices = list_entry(fs_uuids.next,
425 					struct btrfs_fs_devices, fs_list);
426 		list_del(&fs_devices->fs_list);
427 		free_fs_devices(fs_devices);
428 	}
429 }
430 
431 static noinline struct btrfs_fs_devices *find_fsid(
432 		const u8 *fsid, const u8 *metadata_fsid)
433 {
434 	struct btrfs_fs_devices *fs_devices;
435 
436 	ASSERT(fsid);
437 
438 	/* Handle non-split brain cases */
439 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
440 		if (metadata_fsid) {
441 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
442 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
443 				      BTRFS_FSID_SIZE) == 0)
444 				return fs_devices;
445 		} else {
446 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
447 				return fs_devices;
448 		}
449 	}
450 	return NULL;
451 }
452 
453 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
454 				struct btrfs_super_block *disk_super)
455 {
456 
457 	struct btrfs_fs_devices *fs_devices;
458 
459 	/*
460 	 * Handle scanned device having completed its fsid change but
461 	 * belonging to a fs_devices that was created by first scanning
462 	 * a device which didn't have its fsid/metadata_uuid changed
463 	 * at all and the CHANGING_FSID_V2 flag set.
464 	 */
465 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
466 		if (fs_devices->fsid_change &&
467 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
468 			   BTRFS_FSID_SIZE) == 0 &&
469 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
470 			   BTRFS_FSID_SIZE) == 0) {
471 			return fs_devices;
472 		}
473 	}
474 	/*
475 	 * Handle scanned device having completed its fsid change but
476 	 * belonging to a fs_devices that was created by a device that
477 	 * has an outdated pair of fsid/metadata_uuid and
478 	 * CHANGING_FSID_V2 flag set.
479 	 */
480 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
481 		if (fs_devices->fsid_change &&
482 		    memcmp(fs_devices->metadata_uuid,
483 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
484 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
485 			   BTRFS_FSID_SIZE) == 0) {
486 			return fs_devices;
487 		}
488 	}
489 
490 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
491 }
492 
493 
494 static int
495 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
496 		      int flush, struct block_device **bdev,
497 		      struct btrfs_super_block **disk_super)
498 {
499 	int ret;
500 
501 	*bdev = blkdev_get_by_path(device_path, flags, holder);
502 
503 	if (IS_ERR(*bdev)) {
504 		ret = PTR_ERR(*bdev);
505 		goto error;
506 	}
507 
508 	if (flush)
509 		sync_blockdev(*bdev);
510 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
511 	if (ret) {
512 		blkdev_put(*bdev, flags);
513 		goto error;
514 	}
515 	invalidate_bdev(*bdev);
516 	*disk_super = btrfs_read_dev_super(*bdev);
517 	if (IS_ERR(*disk_super)) {
518 		ret = PTR_ERR(*disk_super);
519 		blkdev_put(*bdev, flags);
520 		goto error;
521 	}
522 
523 	return 0;
524 
525 error:
526 	*bdev = NULL;
527 	return ret;
528 }
529 
530 /**
531  *  Search and remove all stale devices (which are not mounted).
532  *  When both inputs are NULL, it will search and release all stale devices.
533  *
534  *  @devt:	Optional. When provided will it release all unmounted devices
535  *		matching this devt only.
536  *  @skip_device:  Optional. Will skip this device when searching for the stale
537  *		devices.
538  *
539  *  Return:	0 for success or if @devt is 0.
540  *		-EBUSY if @devt is a mounted device.
541  *		-ENOENT if @devt does not match any device in the list.
542  */
543 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
544 {
545 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
546 	struct btrfs_device *device, *tmp_device;
547 	int ret = 0;
548 
549 	lockdep_assert_held(&uuid_mutex);
550 
551 	if (devt)
552 		ret = -ENOENT;
553 
554 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
555 
556 		mutex_lock(&fs_devices->device_list_mutex);
557 		list_for_each_entry_safe(device, tmp_device,
558 					 &fs_devices->devices, dev_list) {
559 			if (skip_device && skip_device == device)
560 				continue;
561 			if (devt && devt != device->devt)
562 				continue;
563 			if (fs_devices->opened) {
564 				/* for an already deleted device return 0 */
565 				if (devt && ret != 0)
566 					ret = -EBUSY;
567 				break;
568 			}
569 
570 			/* delete the stale device */
571 			fs_devices->num_devices--;
572 			list_del(&device->dev_list);
573 			btrfs_free_device(device);
574 
575 			ret = 0;
576 		}
577 		mutex_unlock(&fs_devices->device_list_mutex);
578 
579 		if (fs_devices->num_devices == 0) {
580 			btrfs_sysfs_remove_fsid(fs_devices);
581 			list_del(&fs_devices->fs_list);
582 			free_fs_devices(fs_devices);
583 		}
584 	}
585 
586 	return ret;
587 }
588 
589 /*
590  * This is only used on mount, and we are protected from competing things
591  * messing with our fs_devices by the uuid_mutex, thus we do not need the
592  * fs_devices->device_list_mutex here.
593  */
594 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
595 			struct btrfs_device *device, fmode_t flags,
596 			void *holder)
597 {
598 	struct block_device *bdev;
599 	struct btrfs_super_block *disk_super;
600 	u64 devid;
601 	int ret;
602 
603 	if (device->bdev)
604 		return -EINVAL;
605 	if (!device->name)
606 		return -EINVAL;
607 
608 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
609 				    &bdev, &disk_super);
610 	if (ret)
611 		return ret;
612 
613 	devid = btrfs_stack_device_id(&disk_super->dev_item);
614 	if (devid != device->devid)
615 		goto error_free_page;
616 
617 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
618 		goto error_free_page;
619 
620 	device->generation = btrfs_super_generation(disk_super);
621 
622 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
623 		if (btrfs_super_incompat_flags(disk_super) &
624 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
625 			pr_err(
626 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
627 			goto error_free_page;
628 		}
629 
630 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
631 		fs_devices->seeding = true;
632 	} else {
633 		if (bdev_read_only(bdev))
634 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
635 		else
636 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
637 	}
638 
639 	if (!bdev_nonrot(bdev))
640 		fs_devices->rotating = true;
641 
642 	device->bdev = bdev;
643 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
644 	device->mode = flags;
645 
646 	fs_devices->open_devices++;
647 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
648 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
649 		fs_devices->rw_devices++;
650 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
651 	}
652 	btrfs_release_disk_super(disk_super);
653 
654 	return 0;
655 
656 error_free_page:
657 	btrfs_release_disk_super(disk_super);
658 	blkdev_put(bdev, flags);
659 
660 	return -EINVAL;
661 }
662 
663 /*
664  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
665  * being created with a disk that has already completed its fsid change. Such
666  * disk can belong to an fs which has its FSID changed or to one which doesn't.
667  * Handle both cases here.
668  */
669 static struct btrfs_fs_devices *find_fsid_inprogress(
670 					struct btrfs_super_block *disk_super)
671 {
672 	struct btrfs_fs_devices *fs_devices;
673 
674 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
675 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
676 			   BTRFS_FSID_SIZE) != 0 &&
677 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
678 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
679 			return fs_devices;
680 		}
681 	}
682 
683 	return find_fsid(disk_super->fsid, NULL);
684 }
685 
686 
687 static struct btrfs_fs_devices *find_fsid_changed(
688 					struct btrfs_super_block *disk_super)
689 {
690 	struct btrfs_fs_devices *fs_devices;
691 
692 	/*
693 	 * Handles the case where scanned device is part of an fs that had
694 	 * multiple successful changes of FSID but currently device didn't
695 	 * observe it. Meaning our fsid will be different than theirs. We need
696 	 * to handle two subcases :
697 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
698 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
699 	 *  are equal).
700 	 */
701 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
702 		/* Changed UUIDs */
703 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
704 			   BTRFS_FSID_SIZE) != 0 &&
705 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
706 			   BTRFS_FSID_SIZE) == 0 &&
707 		    memcmp(fs_devices->fsid, disk_super->fsid,
708 			   BTRFS_FSID_SIZE) != 0)
709 			return fs_devices;
710 
711 		/* Unchanged UUIDs */
712 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
713 			   BTRFS_FSID_SIZE) == 0 &&
714 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
715 			   BTRFS_FSID_SIZE) == 0)
716 			return fs_devices;
717 	}
718 
719 	return NULL;
720 }
721 
722 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
723 				struct btrfs_super_block *disk_super)
724 {
725 	struct btrfs_fs_devices *fs_devices;
726 
727 	/*
728 	 * Handle the case where the scanned device is part of an fs whose last
729 	 * metadata UUID change reverted it to the original FSID. At the same
730 	 * time * fs_devices was first created by another constitutent device
731 	 * which didn't fully observe the operation. This results in an
732 	 * btrfs_fs_devices created with metadata/fsid different AND
733 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
734 	 * fs_devices equal to the FSID of the disk.
735 	 */
736 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
737 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
738 			   BTRFS_FSID_SIZE) != 0 &&
739 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
740 			   BTRFS_FSID_SIZE) == 0 &&
741 		    fs_devices->fsid_change)
742 			return fs_devices;
743 	}
744 
745 	return NULL;
746 }
747 /*
748  * Add new device to list of registered devices
749  *
750  * Returns:
751  * device pointer which was just added or updated when successful
752  * error pointer when failed
753  */
754 static noinline struct btrfs_device *device_list_add(const char *path,
755 			   struct btrfs_super_block *disk_super,
756 			   bool *new_device_added)
757 {
758 	struct btrfs_device *device;
759 	struct btrfs_fs_devices *fs_devices = NULL;
760 	struct rcu_string *name;
761 	u64 found_transid = btrfs_super_generation(disk_super);
762 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
763 	dev_t path_devt;
764 	int error;
765 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
766 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
767 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
768 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
769 
770 	error = lookup_bdev(path, &path_devt);
771 	if (error)
772 		return ERR_PTR(error);
773 
774 	if (fsid_change_in_progress) {
775 		if (!has_metadata_uuid)
776 			fs_devices = find_fsid_inprogress(disk_super);
777 		else
778 			fs_devices = find_fsid_changed(disk_super);
779 	} else if (has_metadata_uuid) {
780 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
781 	} else {
782 		fs_devices = find_fsid_reverted_metadata(disk_super);
783 		if (!fs_devices)
784 			fs_devices = find_fsid(disk_super->fsid, NULL);
785 	}
786 
787 
788 	if (!fs_devices) {
789 		if (has_metadata_uuid)
790 			fs_devices = alloc_fs_devices(disk_super->fsid,
791 						      disk_super->metadata_uuid);
792 		else
793 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
794 
795 		if (IS_ERR(fs_devices))
796 			return ERR_CAST(fs_devices);
797 
798 		fs_devices->fsid_change = fsid_change_in_progress;
799 
800 		mutex_lock(&fs_devices->device_list_mutex);
801 		list_add(&fs_devices->fs_list, &fs_uuids);
802 
803 		device = NULL;
804 	} else {
805 		struct btrfs_dev_lookup_args args = {
806 			.devid = devid,
807 			.uuid = disk_super->dev_item.uuid,
808 		};
809 
810 		mutex_lock(&fs_devices->device_list_mutex);
811 		device = btrfs_find_device(fs_devices, &args);
812 
813 		/*
814 		 * If this disk has been pulled into an fs devices created by
815 		 * a device which had the CHANGING_FSID_V2 flag then replace the
816 		 * metadata_uuid/fsid values of the fs_devices.
817 		 */
818 		if (fs_devices->fsid_change &&
819 		    found_transid > fs_devices->latest_generation) {
820 			memcpy(fs_devices->fsid, disk_super->fsid,
821 					BTRFS_FSID_SIZE);
822 
823 			if (has_metadata_uuid)
824 				memcpy(fs_devices->metadata_uuid,
825 				       disk_super->metadata_uuid,
826 				       BTRFS_FSID_SIZE);
827 			else
828 				memcpy(fs_devices->metadata_uuid,
829 				       disk_super->fsid, BTRFS_FSID_SIZE);
830 
831 			fs_devices->fsid_change = false;
832 		}
833 	}
834 
835 	if (!device) {
836 		if (fs_devices->opened) {
837 			mutex_unlock(&fs_devices->device_list_mutex);
838 			return ERR_PTR(-EBUSY);
839 		}
840 
841 		device = btrfs_alloc_device(NULL, &devid,
842 					    disk_super->dev_item.uuid);
843 		if (IS_ERR(device)) {
844 			mutex_unlock(&fs_devices->device_list_mutex);
845 			/* we can safely leave the fs_devices entry around */
846 			return device;
847 		}
848 
849 		name = rcu_string_strdup(path, GFP_NOFS);
850 		if (!name) {
851 			btrfs_free_device(device);
852 			mutex_unlock(&fs_devices->device_list_mutex);
853 			return ERR_PTR(-ENOMEM);
854 		}
855 		rcu_assign_pointer(device->name, name);
856 		device->devt = path_devt;
857 
858 		list_add_rcu(&device->dev_list, &fs_devices->devices);
859 		fs_devices->num_devices++;
860 
861 		device->fs_devices = fs_devices;
862 		*new_device_added = true;
863 
864 		if (disk_super->label[0])
865 			pr_info(
866 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
867 				disk_super->label, devid, found_transid, path,
868 				current->comm, task_pid_nr(current));
869 		else
870 			pr_info(
871 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
872 				disk_super->fsid, devid, found_transid, path,
873 				current->comm, task_pid_nr(current));
874 
875 	} else if (!device->name || strcmp(device->name->str, path)) {
876 		/*
877 		 * When FS is already mounted.
878 		 * 1. If you are here and if the device->name is NULL that
879 		 *    means this device was missing at time of FS mount.
880 		 * 2. If you are here and if the device->name is different
881 		 *    from 'path' that means either
882 		 *      a. The same device disappeared and reappeared with
883 		 *         different name. or
884 		 *      b. The missing-disk-which-was-replaced, has
885 		 *         reappeared now.
886 		 *
887 		 * We must allow 1 and 2a above. But 2b would be a spurious
888 		 * and unintentional.
889 		 *
890 		 * Further in case of 1 and 2a above, the disk at 'path'
891 		 * would have missed some transaction when it was away and
892 		 * in case of 2a the stale bdev has to be updated as well.
893 		 * 2b must not be allowed at all time.
894 		 */
895 
896 		/*
897 		 * For now, we do allow update to btrfs_fs_device through the
898 		 * btrfs dev scan cli after FS has been mounted.  We're still
899 		 * tracking a problem where systems fail mount by subvolume id
900 		 * when we reject replacement on a mounted FS.
901 		 */
902 		if (!fs_devices->opened && found_transid < device->generation) {
903 			/*
904 			 * That is if the FS is _not_ mounted and if you
905 			 * are here, that means there is more than one
906 			 * disk with same uuid and devid.We keep the one
907 			 * with larger generation number or the last-in if
908 			 * generation are equal.
909 			 */
910 			mutex_unlock(&fs_devices->device_list_mutex);
911 			return ERR_PTR(-EEXIST);
912 		}
913 
914 		/*
915 		 * We are going to replace the device path for a given devid,
916 		 * make sure it's the same device if the device is mounted
917 		 *
918 		 * NOTE: the device->fs_info may not be reliable here so pass
919 		 * in a NULL to message helpers instead. This avoids a possible
920 		 * use-after-free when the fs_info and fs_info->sb are already
921 		 * torn down.
922 		 */
923 		if (device->bdev) {
924 			if (device->devt != path_devt) {
925 				mutex_unlock(&fs_devices->device_list_mutex);
926 				btrfs_warn_in_rcu(NULL,
927 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
928 						  path, devid, found_transid,
929 						  current->comm,
930 						  task_pid_nr(current));
931 				return ERR_PTR(-EEXIST);
932 			}
933 			btrfs_info_in_rcu(NULL,
934 	"devid %llu device path %s changed to %s scanned by %s (%d)",
935 					  devid, rcu_str_deref(device->name),
936 					  path, current->comm,
937 					  task_pid_nr(current));
938 		}
939 
940 		name = rcu_string_strdup(path, GFP_NOFS);
941 		if (!name) {
942 			mutex_unlock(&fs_devices->device_list_mutex);
943 			return ERR_PTR(-ENOMEM);
944 		}
945 		rcu_string_free(device->name);
946 		rcu_assign_pointer(device->name, name);
947 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
948 			fs_devices->missing_devices--;
949 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
950 		}
951 		device->devt = path_devt;
952 	}
953 
954 	/*
955 	 * Unmount does not free the btrfs_device struct but would zero
956 	 * generation along with most of the other members. So just update
957 	 * it back. We need it to pick the disk with largest generation
958 	 * (as above).
959 	 */
960 	if (!fs_devices->opened) {
961 		device->generation = found_transid;
962 		fs_devices->latest_generation = max_t(u64, found_transid,
963 						fs_devices->latest_generation);
964 	}
965 
966 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
967 
968 	mutex_unlock(&fs_devices->device_list_mutex);
969 	return device;
970 }
971 
972 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
973 {
974 	struct btrfs_fs_devices *fs_devices;
975 	struct btrfs_device *device;
976 	struct btrfs_device *orig_dev;
977 	int ret = 0;
978 
979 	lockdep_assert_held(&uuid_mutex);
980 
981 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
982 	if (IS_ERR(fs_devices))
983 		return fs_devices;
984 
985 	fs_devices->total_devices = orig->total_devices;
986 
987 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
988 		struct rcu_string *name;
989 
990 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
991 					    orig_dev->uuid);
992 		if (IS_ERR(device)) {
993 			ret = PTR_ERR(device);
994 			goto error;
995 		}
996 
997 		/*
998 		 * This is ok to do without rcu read locked because we hold the
999 		 * uuid mutex so nothing we touch in here is going to disappear.
1000 		 */
1001 		if (orig_dev->name) {
1002 			name = rcu_string_strdup(orig_dev->name->str,
1003 					GFP_KERNEL);
1004 			if (!name) {
1005 				btrfs_free_device(device);
1006 				ret = -ENOMEM;
1007 				goto error;
1008 			}
1009 			rcu_assign_pointer(device->name, name);
1010 		}
1011 
1012 		list_add(&device->dev_list, &fs_devices->devices);
1013 		device->fs_devices = fs_devices;
1014 		fs_devices->num_devices++;
1015 	}
1016 	return fs_devices;
1017 error:
1018 	free_fs_devices(fs_devices);
1019 	return ERR_PTR(ret);
1020 }
1021 
1022 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1023 				      struct btrfs_device **latest_dev)
1024 {
1025 	struct btrfs_device *device, *next;
1026 
1027 	/* This is the initialized path, it is safe to release the devices. */
1028 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1029 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1030 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1031 				      &device->dev_state) &&
1032 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1033 				      &device->dev_state) &&
1034 			    (!*latest_dev ||
1035 			     device->generation > (*latest_dev)->generation)) {
1036 				*latest_dev = device;
1037 			}
1038 			continue;
1039 		}
1040 
1041 		/*
1042 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1043 		 * in btrfs_init_dev_replace() so just continue.
1044 		 */
1045 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1046 			continue;
1047 
1048 		if (device->bdev) {
1049 			blkdev_put(device->bdev, device->mode);
1050 			device->bdev = NULL;
1051 			fs_devices->open_devices--;
1052 		}
1053 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1054 			list_del_init(&device->dev_alloc_list);
1055 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1056 			fs_devices->rw_devices--;
1057 		}
1058 		list_del_init(&device->dev_list);
1059 		fs_devices->num_devices--;
1060 		btrfs_free_device(device);
1061 	}
1062 
1063 }
1064 
1065 /*
1066  * After we have read the system tree and know devids belonging to this
1067  * filesystem, remove the device which does not belong there.
1068  */
1069 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1070 {
1071 	struct btrfs_device *latest_dev = NULL;
1072 	struct btrfs_fs_devices *seed_dev;
1073 
1074 	mutex_lock(&uuid_mutex);
1075 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1076 
1077 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1078 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1079 
1080 	fs_devices->latest_dev = latest_dev;
1081 
1082 	mutex_unlock(&uuid_mutex);
1083 }
1084 
1085 static void btrfs_close_bdev(struct btrfs_device *device)
1086 {
1087 	if (!device->bdev)
1088 		return;
1089 
1090 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1091 		sync_blockdev(device->bdev);
1092 		invalidate_bdev(device->bdev);
1093 	}
1094 
1095 	blkdev_put(device->bdev, device->mode);
1096 }
1097 
1098 static void btrfs_close_one_device(struct btrfs_device *device)
1099 {
1100 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1101 
1102 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1103 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1104 		list_del_init(&device->dev_alloc_list);
1105 		fs_devices->rw_devices--;
1106 	}
1107 
1108 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1109 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1110 
1111 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1112 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1113 		fs_devices->missing_devices--;
1114 	}
1115 
1116 	btrfs_close_bdev(device);
1117 	if (device->bdev) {
1118 		fs_devices->open_devices--;
1119 		device->bdev = NULL;
1120 	}
1121 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1122 	btrfs_destroy_dev_zone_info(device);
1123 
1124 	device->fs_info = NULL;
1125 	atomic_set(&device->dev_stats_ccnt, 0);
1126 	extent_io_tree_release(&device->alloc_state);
1127 
1128 	/*
1129 	 * Reset the flush error record. We might have a transient flush error
1130 	 * in this mount, and if so we aborted the current transaction and set
1131 	 * the fs to an error state, guaranteeing no super blocks can be further
1132 	 * committed. However that error might be transient and if we unmount the
1133 	 * filesystem and mount it again, we should allow the mount to succeed
1134 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1135 	 * filesystem again we still get flush errors, then we will again abort
1136 	 * any transaction and set the error state, guaranteeing no commits of
1137 	 * unsafe super blocks.
1138 	 */
1139 	device->last_flush_error = 0;
1140 
1141 	/* Verify the device is back in a pristine state  */
1142 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1143 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1144 	ASSERT(list_empty(&device->dev_alloc_list));
1145 	ASSERT(list_empty(&device->post_commit_list));
1146 }
1147 
1148 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1149 {
1150 	struct btrfs_device *device, *tmp;
1151 
1152 	lockdep_assert_held(&uuid_mutex);
1153 
1154 	if (--fs_devices->opened > 0)
1155 		return;
1156 
1157 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1158 		btrfs_close_one_device(device);
1159 
1160 	WARN_ON(fs_devices->open_devices);
1161 	WARN_ON(fs_devices->rw_devices);
1162 	fs_devices->opened = 0;
1163 	fs_devices->seeding = false;
1164 	fs_devices->fs_info = NULL;
1165 }
1166 
1167 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1168 {
1169 	LIST_HEAD(list);
1170 	struct btrfs_fs_devices *tmp;
1171 
1172 	mutex_lock(&uuid_mutex);
1173 	close_fs_devices(fs_devices);
1174 	if (!fs_devices->opened)
1175 		list_splice_init(&fs_devices->seed_list, &list);
1176 
1177 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1178 		close_fs_devices(fs_devices);
1179 		list_del(&fs_devices->seed_list);
1180 		free_fs_devices(fs_devices);
1181 	}
1182 	mutex_unlock(&uuid_mutex);
1183 }
1184 
1185 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1186 				fmode_t flags, void *holder)
1187 {
1188 	struct btrfs_device *device;
1189 	struct btrfs_device *latest_dev = NULL;
1190 	struct btrfs_device *tmp_device;
1191 
1192 	flags |= FMODE_EXCL;
1193 
1194 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1195 				 dev_list) {
1196 		int ret;
1197 
1198 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1199 		if (ret == 0 &&
1200 		    (!latest_dev || device->generation > latest_dev->generation)) {
1201 			latest_dev = device;
1202 		} else if (ret == -ENODATA) {
1203 			fs_devices->num_devices--;
1204 			list_del(&device->dev_list);
1205 			btrfs_free_device(device);
1206 		}
1207 	}
1208 	if (fs_devices->open_devices == 0)
1209 		return -EINVAL;
1210 
1211 	fs_devices->opened = 1;
1212 	fs_devices->latest_dev = latest_dev;
1213 	fs_devices->total_rw_bytes = 0;
1214 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1215 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1216 
1217 	return 0;
1218 }
1219 
1220 static int devid_cmp(void *priv, const struct list_head *a,
1221 		     const struct list_head *b)
1222 {
1223 	const struct btrfs_device *dev1, *dev2;
1224 
1225 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1226 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1227 
1228 	if (dev1->devid < dev2->devid)
1229 		return -1;
1230 	else if (dev1->devid > dev2->devid)
1231 		return 1;
1232 	return 0;
1233 }
1234 
1235 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1236 		       fmode_t flags, void *holder)
1237 {
1238 	int ret;
1239 
1240 	lockdep_assert_held(&uuid_mutex);
1241 	/*
1242 	 * The device_list_mutex cannot be taken here in case opening the
1243 	 * underlying device takes further locks like open_mutex.
1244 	 *
1245 	 * We also don't need the lock here as this is called during mount and
1246 	 * exclusion is provided by uuid_mutex
1247 	 */
1248 
1249 	if (fs_devices->opened) {
1250 		fs_devices->opened++;
1251 		ret = 0;
1252 	} else {
1253 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1254 		ret = open_fs_devices(fs_devices, flags, holder);
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 void btrfs_release_disk_super(struct btrfs_super_block *super)
1261 {
1262 	struct page *page = virt_to_page(super);
1263 
1264 	put_page(page);
1265 }
1266 
1267 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1268 						       u64 bytenr, u64 bytenr_orig)
1269 {
1270 	struct btrfs_super_block *disk_super;
1271 	struct page *page;
1272 	void *p;
1273 	pgoff_t index;
1274 
1275 	/* make sure our super fits in the device */
1276 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1277 		return ERR_PTR(-EINVAL);
1278 
1279 	/* make sure our super fits in the page */
1280 	if (sizeof(*disk_super) > PAGE_SIZE)
1281 		return ERR_PTR(-EINVAL);
1282 
1283 	/* make sure our super doesn't straddle pages on disk */
1284 	index = bytenr >> PAGE_SHIFT;
1285 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1286 		return ERR_PTR(-EINVAL);
1287 
1288 	/* pull in the page with our super */
1289 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1290 
1291 	if (IS_ERR(page))
1292 		return ERR_CAST(page);
1293 
1294 	p = page_address(page);
1295 
1296 	/* align our pointer to the offset of the super block */
1297 	disk_super = p + offset_in_page(bytenr);
1298 
1299 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1300 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1301 		btrfs_release_disk_super(p);
1302 		return ERR_PTR(-EINVAL);
1303 	}
1304 
1305 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1306 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1307 
1308 	return disk_super;
1309 }
1310 
1311 int btrfs_forget_devices(dev_t devt)
1312 {
1313 	int ret;
1314 
1315 	mutex_lock(&uuid_mutex);
1316 	ret = btrfs_free_stale_devices(devt, NULL);
1317 	mutex_unlock(&uuid_mutex);
1318 
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Look for a btrfs signature on a device. This may be called out of the mount path
1324  * and we are not allowed to call set_blocksize during the scan. The superblock
1325  * is read via pagecache
1326  */
1327 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1328 					   void *holder)
1329 {
1330 	struct btrfs_super_block *disk_super;
1331 	bool new_device_added = false;
1332 	struct btrfs_device *device = NULL;
1333 	struct block_device *bdev;
1334 	u64 bytenr, bytenr_orig;
1335 	int ret;
1336 
1337 	lockdep_assert_held(&uuid_mutex);
1338 
1339 	/*
1340 	 * we would like to check all the supers, but that would make
1341 	 * a btrfs mount succeed after a mkfs from a different FS.
1342 	 * So, we need to add a special mount option to scan for
1343 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1344 	 */
1345 	flags |= FMODE_EXCL;
1346 
1347 	bdev = blkdev_get_by_path(path, flags, holder);
1348 	if (IS_ERR(bdev))
1349 		return ERR_CAST(bdev);
1350 
1351 	bytenr_orig = btrfs_sb_offset(0);
1352 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1353 	if (ret) {
1354 		device = ERR_PTR(ret);
1355 		goto error_bdev_put;
1356 	}
1357 
1358 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1359 	if (IS_ERR(disk_super)) {
1360 		device = ERR_CAST(disk_super);
1361 		goto error_bdev_put;
1362 	}
1363 
1364 	device = device_list_add(path, disk_super, &new_device_added);
1365 	if (!IS_ERR(device) && new_device_added)
1366 		btrfs_free_stale_devices(device->devt, device);
1367 
1368 	btrfs_release_disk_super(disk_super);
1369 
1370 error_bdev_put:
1371 	blkdev_put(bdev, flags);
1372 
1373 	return device;
1374 }
1375 
1376 /*
1377  * Try to find a chunk that intersects [start, start + len] range and when one
1378  * such is found, record the end of it in *start
1379  */
1380 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1381 				    u64 len)
1382 {
1383 	u64 physical_start, physical_end;
1384 
1385 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1386 
1387 	if (!find_first_extent_bit(&device->alloc_state, *start,
1388 				   &physical_start, &physical_end,
1389 				   CHUNK_ALLOCATED, NULL)) {
1390 
1391 		if (in_range(physical_start, *start, len) ||
1392 		    in_range(*start, physical_start,
1393 			     physical_end - physical_start)) {
1394 			*start = physical_end + 1;
1395 			return true;
1396 		}
1397 	}
1398 	return false;
1399 }
1400 
1401 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1402 {
1403 	switch (device->fs_devices->chunk_alloc_policy) {
1404 	case BTRFS_CHUNK_ALLOC_REGULAR:
1405 		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1406 	case BTRFS_CHUNK_ALLOC_ZONED:
1407 		/*
1408 		 * We don't care about the starting region like regular
1409 		 * allocator, because we anyway use/reserve the first two zones
1410 		 * for superblock logging.
1411 		 */
1412 		return ALIGN(start, device->zone_info->zone_size);
1413 	default:
1414 		BUG();
1415 	}
1416 }
1417 
1418 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1419 					u64 *hole_start, u64 *hole_size,
1420 					u64 num_bytes)
1421 {
1422 	u64 zone_size = device->zone_info->zone_size;
1423 	u64 pos;
1424 	int ret;
1425 	bool changed = false;
1426 
1427 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1428 
1429 	while (*hole_size > 0) {
1430 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1431 						   *hole_start + *hole_size,
1432 						   num_bytes);
1433 		if (pos != *hole_start) {
1434 			*hole_size = *hole_start + *hole_size - pos;
1435 			*hole_start = pos;
1436 			changed = true;
1437 			if (*hole_size < num_bytes)
1438 				break;
1439 		}
1440 
1441 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1442 
1443 		/* Range is ensured to be empty */
1444 		if (!ret)
1445 			return changed;
1446 
1447 		/* Given hole range was invalid (outside of device) */
1448 		if (ret == -ERANGE) {
1449 			*hole_start += *hole_size;
1450 			*hole_size = 0;
1451 			return true;
1452 		}
1453 
1454 		*hole_start += zone_size;
1455 		*hole_size -= zone_size;
1456 		changed = true;
1457 	}
1458 
1459 	return changed;
1460 }
1461 
1462 /**
1463  * dev_extent_hole_check - check if specified hole is suitable for allocation
1464  * @device:	the device which we have the hole
1465  * @hole_start: starting position of the hole
1466  * @hole_size:	the size of the hole
1467  * @num_bytes:	the size of the free space that we need
1468  *
1469  * This function may modify @hole_start and @hole_size to reflect the suitable
1470  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1471  */
1472 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1473 				  u64 *hole_size, u64 num_bytes)
1474 {
1475 	bool changed = false;
1476 	u64 hole_end = *hole_start + *hole_size;
1477 
1478 	for (;;) {
1479 		/*
1480 		 * Check before we set max_hole_start, otherwise we could end up
1481 		 * sending back this offset anyway.
1482 		 */
1483 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1484 			if (hole_end >= *hole_start)
1485 				*hole_size = hole_end - *hole_start;
1486 			else
1487 				*hole_size = 0;
1488 			changed = true;
1489 		}
1490 
1491 		switch (device->fs_devices->chunk_alloc_policy) {
1492 		case BTRFS_CHUNK_ALLOC_REGULAR:
1493 			/* No extra check */
1494 			break;
1495 		case BTRFS_CHUNK_ALLOC_ZONED:
1496 			if (dev_extent_hole_check_zoned(device, hole_start,
1497 							hole_size, num_bytes)) {
1498 				changed = true;
1499 				/*
1500 				 * The changed hole can contain pending extent.
1501 				 * Loop again to check that.
1502 				 */
1503 				continue;
1504 			}
1505 			break;
1506 		default:
1507 			BUG();
1508 		}
1509 
1510 		break;
1511 	}
1512 
1513 	return changed;
1514 }
1515 
1516 /*
1517  * find_free_dev_extent_start - find free space in the specified device
1518  * @device:	  the device which we search the free space in
1519  * @num_bytes:	  the size of the free space that we need
1520  * @search_start: the position from which to begin the search
1521  * @start:	  store the start of the free space.
1522  * @len:	  the size of the free space. that we find, or the size
1523  *		  of the max free space if we don't find suitable free space
1524  *
1525  * this uses a pretty simple search, the expectation is that it is
1526  * called very infrequently and that a given device has a small number
1527  * of extents
1528  *
1529  * @start is used to store the start of the free space if we find. But if we
1530  * don't find suitable free space, it will be used to store the start position
1531  * of the max free space.
1532  *
1533  * @len is used to store the size of the free space that we find.
1534  * But if we don't find suitable free space, it is used to store the size of
1535  * the max free space.
1536  *
1537  * NOTE: This function will search *commit* root of device tree, and does extra
1538  * check to ensure dev extents are not double allocated.
1539  * This makes the function safe to allocate dev extents but may not report
1540  * correct usable device space, as device extent freed in current transaction
1541  * is not reported as available.
1542  */
1543 static int find_free_dev_extent_start(struct btrfs_device *device,
1544 				u64 num_bytes, u64 search_start, u64 *start,
1545 				u64 *len)
1546 {
1547 	struct btrfs_fs_info *fs_info = device->fs_info;
1548 	struct btrfs_root *root = fs_info->dev_root;
1549 	struct btrfs_key key;
1550 	struct btrfs_dev_extent *dev_extent;
1551 	struct btrfs_path *path;
1552 	u64 hole_size;
1553 	u64 max_hole_start;
1554 	u64 max_hole_size;
1555 	u64 extent_end;
1556 	u64 search_end = device->total_bytes;
1557 	int ret;
1558 	int slot;
1559 	struct extent_buffer *l;
1560 
1561 	search_start = dev_extent_search_start(device, search_start);
1562 
1563 	WARN_ON(device->zone_info &&
1564 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1565 
1566 	path = btrfs_alloc_path();
1567 	if (!path)
1568 		return -ENOMEM;
1569 
1570 	max_hole_start = search_start;
1571 	max_hole_size = 0;
1572 
1573 again:
1574 	if (search_start >= search_end ||
1575 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1576 		ret = -ENOSPC;
1577 		goto out;
1578 	}
1579 
1580 	path->reada = READA_FORWARD;
1581 	path->search_commit_root = 1;
1582 	path->skip_locking = 1;
1583 
1584 	key.objectid = device->devid;
1585 	key.offset = search_start;
1586 	key.type = BTRFS_DEV_EXTENT_KEY;
1587 
1588 	ret = btrfs_search_backwards(root, &key, path);
1589 	if (ret < 0)
1590 		goto out;
1591 
1592 	while (1) {
1593 		l = path->nodes[0];
1594 		slot = path->slots[0];
1595 		if (slot >= btrfs_header_nritems(l)) {
1596 			ret = btrfs_next_leaf(root, path);
1597 			if (ret == 0)
1598 				continue;
1599 			if (ret < 0)
1600 				goto out;
1601 
1602 			break;
1603 		}
1604 		btrfs_item_key_to_cpu(l, &key, slot);
1605 
1606 		if (key.objectid < device->devid)
1607 			goto next;
1608 
1609 		if (key.objectid > device->devid)
1610 			break;
1611 
1612 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1613 			goto next;
1614 
1615 		if (key.offset > search_start) {
1616 			hole_size = key.offset - search_start;
1617 			dev_extent_hole_check(device, &search_start, &hole_size,
1618 					      num_bytes);
1619 
1620 			if (hole_size > max_hole_size) {
1621 				max_hole_start = search_start;
1622 				max_hole_size = hole_size;
1623 			}
1624 
1625 			/*
1626 			 * If this free space is greater than which we need,
1627 			 * it must be the max free space that we have found
1628 			 * until now, so max_hole_start must point to the start
1629 			 * of this free space and the length of this free space
1630 			 * is stored in max_hole_size. Thus, we return
1631 			 * max_hole_start and max_hole_size and go back to the
1632 			 * caller.
1633 			 */
1634 			if (hole_size >= num_bytes) {
1635 				ret = 0;
1636 				goto out;
1637 			}
1638 		}
1639 
1640 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1641 		extent_end = key.offset + btrfs_dev_extent_length(l,
1642 								  dev_extent);
1643 		if (extent_end > search_start)
1644 			search_start = extent_end;
1645 next:
1646 		path->slots[0]++;
1647 		cond_resched();
1648 	}
1649 
1650 	/*
1651 	 * At this point, search_start should be the end of
1652 	 * allocated dev extents, and when shrinking the device,
1653 	 * search_end may be smaller than search_start.
1654 	 */
1655 	if (search_end > search_start) {
1656 		hole_size = search_end - search_start;
1657 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1658 					  num_bytes)) {
1659 			btrfs_release_path(path);
1660 			goto again;
1661 		}
1662 
1663 		if (hole_size > max_hole_size) {
1664 			max_hole_start = search_start;
1665 			max_hole_size = hole_size;
1666 		}
1667 	}
1668 
1669 	/* See above. */
1670 	if (max_hole_size < num_bytes)
1671 		ret = -ENOSPC;
1672 	else
1673 		ret = 0;
1674 
1675 out:
1676 	btrfs_free_path(path);
1677 	*start = max_hole_start;
1678 	if (len)
1679 		*len = max_hole_size;
1680 	return ret;
1681 }
1682 
1683 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1684 			 u64 *start, u64 *len)
1685 {
1686 	/* FIXME use last free of some kind */
1687 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1688 }
1689 
1690 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1691 			  struct btrfs_device *device,
1692 			  u64 start, u64 *dev_extent_len)
1693 {
1694 	struct btrfs_fs_info *fs_info = device->fs_info;
1695 	struct btrfs_root *root = fs_info->dev_root;
1696 	int ret;
1697 	struct btrfs_path *path;
1698 	struct btrfs_key key;
1699 	struct btrfs_key found_key;
1700 	struct extent_buffer *leaf = NULL;
1701 	struct btrfs_dev_extent *extent = NULL;
1702 
1703 	path = btrfs_alloc_path();
1704 	if (!path)
1705 		return -ENOMEM;
1706 
1707 	key.objectid = device->devid;
1708 	key.offset = start;
1709 	key.type = BTRFS_DEV_EXTENT_KEY;
1710 again:
1711 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1712 	if (ret > 0) {
1713 		ret = btrfs_previous_item(root, path, key.objectid,
1714 					  BTRFS_DEV_EXTENT_KEY);
1715 		if (ret)
1716 			goto out;
1717 		leaf = path->nodes[0];
1718 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1719 		extent = btrfs_item_ptr(leaf, path->slots[0],
1720 					struct btrfs_dev_extent);
1721 		BUG_ON(found_key.offset > start || found_key.offset +
1722 		       btrfs_dev_extent_length(leaf, extent) < start);
1723 		key = found_key;
1724 		btrfs_release_path(path);
1725 		goto again;
1726 	} else if (ret == 0) {
1727 		leaf = path->nodes[0];
1728 		extent = btrfs_item_ptr(leaf, path->slots[0],
1729 					struct btrfs_dev_extent);
1730 	} else {
1731 		goto out;
1732 	}
1733 
1734 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1735 
1736 	ret = btrfs_del_item(trans, root, path);
1737 	if (ret == 0)
1738 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1739 out:
1740 	btrfs_free_path(path);
1741 	return ret;
1742 }
1743 
1744 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1745 {
1746 	struct extent_map_tree *em_tree;
1747 	struct extent_map *em;
1748 	struct rb_node *n;
1749 	u64 ret = 0;
1750 
1751 	em_tree = &fs_info->mapping_tree;
1752 	read_lock(&em_tree->lock);
1753 	n = rb_last(&em_tree->map.rb_root);
1754 	if (n) {
1755 		em = rb_entry(n, struct extent_map, rb_node);
1756 		ret = em->start + em->len;
1757 	}
1758 	read_unlock(&em_tree->lock);
1759 
1760 	return ret;
1761 }
1762 
1763 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1764 				    u64 *devid_ret)
1765 {
1766 	int ret;
1767 	struct btrfs_key key;
1768 	struct btrfs_key found_key;
1769 	struct btrfs_path *path;
1770 
1771 	path = btrfs_alloc_path();
1772 	if (!path)
1773 		return -ENOMEM;
1774 
1775 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1776 	key.type = BTRFS_DEV_ITEM_KEY;
1777 	key.offset = (u64)-1;
1778 
1779 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1780 	if (ret < 0)
1781 		goto error;
1782 
1783 	if (ret == 0) {
1784 		/* Corruption */
1785 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1786 		ret = -EUCLEAN;
1787 		goto error;
1788 	}
1789 
1790 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1791 				  BTRFS_DEV_ITEMS_OBJECTID,
1792 				  BTRFS_DEV_ITEM_KEY);
1793 	if (ret) {
1794 		*devid_ret = 1;
1795 	} else {
1796 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1797 				      path->slots[0]);
1798 		*devid_ret = found_key.offset + 1;
1799 	}
1800 	ret = 0;
1801 error:
1802 	btrfs_free_path(path);
1803 	return ret;
1804 }
1805 
1806 /*
1807  * the device information is stored in the chunk root
1808  * the btrfs_device struct should be fully filled in
1809  */
1810 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1811 			    struct btrfs_device *device)
1812 {
1813 	int ret;
1814 	struct btrfs_path *path;
1815 	struct btrfs_dev_item *dev_item;
1816 	struct extent_buffer *leaf;
1817 	struct btrfs_key key;
1818 	unsigned long ptr;
1819 
1820 	path = btrfs_alloc_path();
1821 	if (!path)
1822 		return -ENOMEM;
1823 
1824 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1825 	key.type = BTRFS_DEV_ITEM_KEY;
1826 	key.offset = device->devid;
1827 
1828 	btrfs_reserve_chunk_metadata(trans, true);
1829 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1830 				      &key, sizeof(*dev_item));
1831 	btrfs_trans_release_chunk_metadata(trans);
1832 	if (ret)
1833 		goto out;
1834 
1835 	leaf = path->nodes[0];
1836 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1837 
1838 	btrfs_set_device_id(leaf, dev_item, device->devid);
1839 	btrfs_set_device_generation(leaf, dev_item, 0);
1840 	btrfs_set_device_type(leaf, dev_item, device->type);
1841 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1842 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1843 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1844 	btrfs_set_device_total_bytes(leaf, dev_item,
1845 				     btrfs_device_get_disk_total_bytes(device));
1846 	btrfs_set_device_bytes_used(leaf, dev_item,
1847 				    btrfs_device_get_bytes_used(device));
1848 	btrfs_set_device_group(leaf, dev_item, 0);
1849 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1850 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1851 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1852 
1853 	ptr = btrfs_device_uuid(dev_item);
1854 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1855 	ptr = btrfs_device_fsid(dev_item);
1856 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1857 			    ptr, BTRFS_FSID_SIZE);
1858 	btrfs_mark_buffer_dirty(leaf);
1859 
1860 	ret = 0;
1861 out:
1862 	btrfs_free_path(path);
1863 	return ret;
1864 }
1865 
1866 /*
1867  * Function to update ctime/mtime for a given device path.
1868  * Mainly used for ctime/mtime based probe like libblkid.
1869  *
1870  * We don't care about errors here, this is just to be kind to userspace.
1871  */
1872 static void update_dev_time(const char *device_path)
1873 {
1874 	struct path path;
1875 	struct timespec64 now;
1876 	int ret;
1877 
1878 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1879 	if (ret)
1880 		return;
1881 
1882 	now = current_time(d_inode(path.dentry));
1883 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1884 	path_put(&path);
1885 }
1886 
1887 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1888 			     struct btrfs_device *device)
1889 {
1890 	struct btrfs_root *root = device->fs_info->chunk_root;
1891 	int ret;
1892 	struct btrfs_path *path;
1893 	struct btrfs_key key;
1894 
1895 	path = btrfs_alloc_path();
1896 	if (!path)
1897 		return -ENOMEM;
1898 
1899 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1900 	key.type = BTRFS_DEV_ITEM_KEY;
1901 	key.offset = device->devid;
1902 
1903 	btrfs_reserve_chunk_metadata(trans, false);
1904 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1905 	btrfs_trans_release_chunk_metadata(trans);
1906 	if (ret) {
1907 		if (ret > 0)
1908 			ret = -ENOENT;
1909 		goto out;
1910 	}
1911 
1912 	ret = btrfs_del_item(trans, root, path);
1913 out:
1914 	btrfs_free_path(path);
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1920  * filesystem. It's up to the caller to adjust that number regarding eg. device
1921  * replace.
1922  */
1923 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1924 		u64 num_devices)
1925 {
1926 	u64 all_avail;
1927 	unsigned seq;
1928 	int i;
1929 
1930 	do {
1931 		seq = read_seqbegin(&fs_info->profiles_lock);
1932 
1933 		all_avail = fs_info->avail_data_alloc_bits |
1934 			    fs_info->avail_system_alloc_bits |
1935 			    fs_info->avail_metadata_alloc_bits;
1936 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1937 
1938 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1939 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1940 			continue;
1941 
1942 		if (num_devices < btrfs_raid_array[i].devs_min)
1943 			return btrfs_raid_array[i].mindev_error;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static struct btrfs_device * btrfs_find_next_active_device(
1950 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1951 {
1952 	struct btrfs_device *next_device;
1953 
1954 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1955 		if (next_device != device &&
1956 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1957 		    && next_device->bdev)
1958 			return next_device;
1959 	}
1960 
1961 	return NULL;
1962 }
1963 
1964 /*
1965  * Helper function to check if the given device is part of s_bdev / latest_dev
1966  * and replace it with the provided or the next active device, in the context
1967  * where this function called, there should be always be another device (or
1968  * this_dev) which is active.
1969  */
1970 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1971 					    struct btrfs_device *next_device)
1972 {
1973 	struct btrfs_fs_info *fs_info = device->fs_info;
1974 
1975 	if (!next_device)
1976 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1977 							    device);
1978 	ASSERT(next_device);
1979 
1980 	if (fs_info->sb->s_bdev &&
1981 			(fs_info->sb->s_bdev == device->bdev))
1982 		fs_info->sb->s_bdev = next_device->bdev;
1983 
1984 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1985 		fs_info->fs_devices->latest_dev = next_device;
1986 }
1987 
1988 /*
1989  * Return btrfs_fs_devices::num_devices excluding the device that's being
1990  * currently replaced.
1991  */
1992 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1993 {
1994 	u64 num_devices = fs_info->fs_devices->num_devices;
1995 
1996 	down_read(&fs_info->dev_replace.rwsem);
1997 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1998 		ASSERT(num_devices > 1);
1999 		num_devices--;
2000 	}
2001 	up_read(&fs_info->dev_replace.rwsem);
2002 
2003 	return num_devices;
2004 }
2005 
2006 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2007 			       struct block_device *bdev,
2008 			       const char *device_path)
2009 {
2010 	struct btrfs_super_block *disk_super;
2011 	int copy_num;
2012 
2013 	if (!bdev)
2014 		return;
2015 
2016 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2017 		struct page *page;
2018 		int ret;
2019 
2020 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2021 		if (IS_ERR(disk_super))
2022 			continue;
2023 
2024 		if (bdev_is_zoned(bdev)) {
2025 			btrfs_reset_sb_log_zones(bdev, copy_num);
2026 			continue;
2027 		}
2028 
2029 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2030 
2031 		page = virt_to_page(disk_super);
2032 		set_page_dirty(page);
2033 		lock_page(page);
2034 		/* write_on_page() unlocks the page */
2035 		ret = write_one_page(page);
2036 		if (ret)
2037 			btrfs_warn(fs_info,
2038 				"error clearing superblock number %d (%d)",
2039 				copy_num, ret);
2040 		btrfs_release_disk_super(disk_super);
2041 
2042 	}
2043 
2044 	/* Notify udev that device has changed */
2045 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2046 
2047 	/* Update ctime/mtime for device path for libblkid */
2048 	update_dev_time(device_path);
2049 }
2050 
2051 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2052 		    struct btrfs_dev_lookup_args *args,
2053 		    struct block_device **bdev, fmode_t *mode)
2054 {
2055 	struct btrfs_trans_handle *trans;
2056 	struct btrfs_device *device;
2057 	struct btrfs_fs_devices *cur_devices;
2058 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2059 	u64 num_devices;
2060 	int ret = 0;
2061 
2062 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2063 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2064 		return -EINVAL;
2065 	}
2066 
2067 	/*
2068 	 * The device list in fs_devices is accessed without locks (neither
2069 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2070 	 * filesystem and another device rm cannot run.
2071 	 */
2072 	num_devices = btrfs_num_devices(fs_info);
2073 
2074 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2075 	if (ret)
2076 		return ret;
2077 
2078 	device = btrfs_find_device(fs_info->fs_devices, args);
2079 	if (!device) {
2080 		if (args->missing)
2081 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2082 		else
2083 			ret = -ENOENT;
2084 		return ret;
2085 	}
2086 
2087 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2088 		btrfs_warn_in_rcu(fs_info,
2089 		  "cannot remove device %s (devid %llu) due to active swapfile",
2090 				  rcu_str_deref(device->name), device->devid);
2091 		return -ETXTBSY;
2092 	}
2093 
2094 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2095 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2096 
2097 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2098 	    fs_info->fs_devices->rw_devices == 1)
2099 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2100 
2101 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2102 		mutex_lock(&fs_info->chunk_mutex);
2103 		list_del_init(&device->dev_alloc_list);
2104 		device->fs_devices->rw_devices--;
2105 		mutex_unlock(&fs_info->chunk_mutex);
2106 	}
2107 
2108 	ret = btrfs_shrink_device(device, 0);
2109 	if (ret)
2110 		goto error_undo;
2111 
2112 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2113 	if (IS_ERR(trans)) {
2114 		ret = PTR_ERR(trans);
2115 		goto error_undo;
2116 	}
2117 
2118 	ret = btrfs_rm_dev_item(trans, device);
2119 	if (ret) {
2120 		/* Any error in dev item removal is critical */
2121 		btrfs_crit(fs_info,
2122 			   "failed to remove device item for devid %llu: %d",
2123 			   device->devid, ret);
2124 		btrfs_abort_transaction(trans, ret);
2125 		btrfs_end_transaction(trans);
2126 		return ret;
2127 	}
2128 
2129 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2130 	btrfs_scrub_cancel_dev(device);
2131 
2132 	/*
2133 	 * the device list mutex makes sure that we don't change
2134 	 * the device list while someone else is writing out all
2135 	 * the device supers. Whoever is writing all supers, should
2136 	 * lock the device list mutex before getting the number of
2137 	 * devices in the super block (super_copy). Conversely,
2138 	 * whoever updates the number of devices in the super block
2139 	 * (super_copy) should hold the device list mutex.
2140 	 */
2141 
2142 	/*
2143 	 * In normal cases the cur_devices == fs_devices. But in case
2144 	 * of deleting a seed device, the cur_devices should point to
2145 	 * its own fs_devices listed under the fs_devices->seed_list.
2146 	 */
2147 	cur_devices = device->fs_devices;
2148 	mutex_lock(&fs_devices->device_list_mutex);
2149 	list_del_rcu(&device->dev_list);
2150 
2151 	cur_devices->num_devices--;
2152 	cur_devices->total_devices--;
2153 	/* Update total_devices of the parent fs_devices if it's seed */
2154 	if (cur_devices != fs_devices)
2155 		fs_devices->total_devices--;
2156 
2157 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2158 		cur_devices->missing_devices--;
2159 
2160 	btrfs_assign_next_active_device(device, NULL);
2161 
2162 	if (device->bdev) {
2163 		cur_devices->open_devices--;
2164 		/* remove sysfs entry */
2165 		btrfs_sysfs_remove_device(device);
2166 	}
2167 
2168 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2169 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2170 	mutex_unlock(&fs_devices->device_list_mutex);
2171 
2172 	/*
2173 	 * At this point, the device is zero sized and detached from the
2174 	 * devices list.  All that's left is to zero out the old supers and
2175 	 * free the device.
2176 	 *
2177 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2178 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2179 	 * block device and it's dependencies.  Instead just flush the device
2180 	 * and let the caller do the final blkdev_put.
2181 	 */
2182 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2183 		btrfs_scratch_superblocks(fs_info, device->bdev,
2184 					  device->name->str);
2185 		if (device->bdev) {
2186 			sync_blockdev(device->bdev);
2187 			invalidate_bdev(device->bdev);
2188 		}
2189 	}
2190 
2191 	*bdev = device->bdev;
2192 	*mode = device->mode;
2193 	synchronize_rcu();
2194 	btrfs_free_device(device);
2195 
2196 	/*
2197 	 * This can happen if cur_devices is the private seed devices list.  We
2198 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2199 	 * to be held, but in fact we don't need that for the private
2200 	 * seed_devices, we can simply decrement cur_devices->opened and then
2201 	 * remove it from our list and free the fs_devices.
2202 	 */
2203 	if (cur_devices->num_devices == 0) {
2204 		list_del_init(&cur_devices->seed_list);
2205 		ASSERT(cur_devices->opened == 1);
2206 		cur_devices->opened--;
2207 		free_fs_devices(cur_devices);
2208 	}
2209 
2210 	ret = btrfs_commit_transaction(trans);
2211 
2212 	return ret;
2213 
2214 error_undo:
2215 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2216 		mutex_lock(&fs_info->chunk_mutex);
2217 		list_add(&device->dev_alloc_list,
2218 			 &fs_devices->alloc_list);
2219 		device->fs_devices->rw_devices++;
2220 		mutex_unlock(&fs_info->chunk_mutex);
2221 	}
2222 	return ret;
2223 }
2224 
2225 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2226 {
2227 	struct btrfs_fs_devices *fs_devices;
2228 
2229 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2230 
2231 	/*
2232 	 * in case of fs with no seed, srcdev->fs_devices will point
2233 	 * to fs_devices of fs_info. However when the dev being replaced is
2234 	 * a seed dev it will point to the seed's local fs_devices. In short
2235 	 * srcdev will have its correct fs_devices in both the cases.
2236 	 */
2237 	fs_devices = srcdev->fs_devices;
2238 
2239 	list_del_rcu(&srcdev->dev_list);
2240 	list_del(&srcdev->dev_alloc_list);
2241 	fs_devices->num_devices--;
2242 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2243 		fs_devices->missing_devices--;
2244 
2245 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2246 		fs_devices->rw_devices--;
2247 
2248 	if (srcdev->bdev)
2249 		fs_devices->open_devices--;
2250 }
2251 
2252 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2253 {
2254 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2255 
2256 	mutex_lock(&uuid_mutex);
2257 
2258 	btrfs_close_bdev(srcdev);
2259 	synchronize_rcu();
2260 	btrfs_free_device(srcdev);
2261 
2262 	/* if this is no devs we rather delete the fs_devices */
2263 	if (!fs_devices->num_devices) {
2264 		/*
2265 		 * On a mounted FS, num_devices can't be zero unless it's a
2266 		 * seed. In case of a seed device being replaced, the replace
2267 		 * target added to the sprout FS, so there will be no more
2268 		 * device left under the seed FS.
2269 		 */
2270 		ASSERT(fs_devices->seeding);
2271 
2272 		list_del_init(&fs_devices->seed_list);
2273 		close_fs_devices(fs_devices);
2274 		free_fs_devices(fs_devices);
2275 	}
2276 	mutex_unlock(&uuid_mutex);
2277 }
2278 
2279 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2280 {
2281 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2282 
2283 	mutex_lock(&fs_devices->device_list_mutex);
2284 
2285 	btrfs_sysfs_remove_device(tgtdev);
2286 
2287 	if (tgtdev->bdev)
2288 		fs_devices->open_devices--;
2289 
2290 	fs_devices->num_devices--;
2291 
2292 	btrfs_assign_next_active_device(tgtdev, NULL);
2293 
2294 	list_del_rcu(&tgtdev->dev_list);
2295 
2296 	mutex_unlock(&fs_devices->device_list_mutex);
2297 
2298 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2299 				  tgtdev->name->str);
2300 
2301 	btrfs_close_bdev(tgtdev);
2302 	synchronize_rcu();
2303 	btrfs_free_device(tgtdev);
2304 }
2305 
2306 /**
2307  * Populate args from device at path
2308  *
2309  * @fs_info:	the filesystem
2310  * @args:	the args to populate
2311  * @path:	the path to the device
2312  *
2313  * This will read the super block of the device at @path and populate @args with
2314  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2315  * lookup a device to operate on, but need to do it before we take any locks.
2316  * This properly handles the special case of "missing" that a user may pass in,
2317  * and does some basic sanity checks.  The caller must make sure that @path is
2318  * properly NUL terminated before calling in, and must call
2319  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2320  * uuid buffers.
2321  *
2322  * Return: 0 for success, -errno for failure
2323  */
2324 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2325 				 struct btrfs_dev_lookup_args *args,
2326 				 const char *path)
2327 {
2328 	struct btrfs_super_block *disk_super;
2329 	struct block_device *bdev;
2330 	int ret;
2331 
2332 	if (!path || !path[0])
2333 		return -EINVAL;
2334 	if (!strcmp(path, "missing")) {
2335 		args->missing = true;
2336 		return 0;
2337 	}
2338 
2339 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2340 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2341 	if (!args->uuid || !args->fsid) {
2342 		btrfs_put_dev_args_from_path(args);
2343 		return -ENOMEM;
2344 	}
2345 
2346 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2347 				    &bdev, &disk_super);
2348 	if (ret) {
2349 		btrfs_put_dev_args_from_path(args);
2350 		return ret;
2351 	}
2352 
2353 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2354 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2355 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2356 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2357 	else
2358 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2359 	btrfs_release_disk_super(disk_super);
2360 	blkdev_put(bdev, FMODE_READ);
2361 	return 0;
2362 }
2363 
2364 /*
2365  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2366  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2367  * that don't need to be freed.
2368  */
2369 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2370 {
2371 	kfree(args->uuid);
2372 	kfree(args->fsid);
2373 	args->uuid = NULL;
2374 	args->fsid = NULL;
2375 }
2376 
2377 struct btrfs_device *btrfs_find_device_by_devspec(
2378 		struct btrfs_fs_info *fs_info, u64 devid,
2379 		const char *device_path)
2380 {
2381 	BTRFS_DEV_LOOKUP_ARGS(args);
2382 	struct btrfs_device *device;
2383 	int ret;
2384 
2385 	if (devid) {
2386 		args.devid = devid;
2387 		device = btrfs_find_device(fs_info->fs_devices, &args);
2388 		if (!device)
2389 			return ERR_PTR(-ENOENT);
2390 		return device;
2391 	}
2392 
2393 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2394 	if (ret)
2395 		return ERR_PTR(ret);
2396 	device = btrfs_find_device(fs_info->fs_devices, &args);
2397 	btrfs_put_dev_args_from_path(&args);
2398 	if (!device)
2399 		return ERR_PTR(-ENOENT);
2400 	return device;
2401 }
2402 
2403 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2404 {
2405 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2406 	struct btrfs_fs_devices *old_devices;
2407 	struct btrfs_fs_devices *seed_devices;
2408 
2409 	lockdep_assert_held(&uuid_mutex);
2410 	if (!fs_devices->seeding)
2411 		return ERR_PTR(-EINVAL);
2412 
2413 	/*
2414 	 * Private copy of the seed devices, anchored at
2415 	 * fs_info->fs_devices->seed_list
2416 	 */
2417 	seed_devices = alloc_fs_devices(NULL, NULL);
2418 	if (IS_ERR(seed_devices))
2419 		return seed_devices;
2420 
2421 	/*
2422 	 * It's necessary to retain a copy of the original seed fs_devices in
2423 	 * fs_uuids so that filesystems which have been seeded can successfully
2424 	 * reference the seed device from open_seed_devices. This also supports
2425 	 * multiple fs seed.
2426 	 */
2427 	old_devices = clone_fs_devices(fs_devices);
2428 	if (IS_ERR(old_devices)) {
2429 		kfree(seed_devices);
2430 		return old_devices;
2431 	}
2432 
2433 	list_add(&old_devices->fs_list, &fs_uuids);
2434 
2435 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2436 	seed_devices->opened = 1;
2437 	INIT_LIST_HEAD(&seed_devices->devices);
2438 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2439 	mutex_init(&seed_devices->device_list_mutex);
2440 
2441 	return seed_devices;
2442 }
2443 
2444 /*
2445  * Splice seed devices into the sprout fs_devices.
2446  * Generate a new fsid for the sprouted read-write filesystem.
2447  */
2448 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2449 			       struct btrfs_fs_devices *seed_devices)
2450 {
2451 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2452 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2453 	struct btrfs_device *device;
2454 	u64 super_flags;
2455 
2456 	/*
2457 	 * We are updating the fsid, the thread leading to device_list_add()
2458 	 * could race, so uuid_mutex is needed.
2459 	 */
2460 	lockdep_assert_held(&uuid_mutex);
2461 
2462 	/*
2463 	 * The threads listed below may traverse dev_list but can do that without
2464 	 * device_list_mutex:
2465 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2466 	 * - Various dev_list readers - are using RCU.
2467 	 * - btrfs_ioctl_fitrim() - is using RCU.
2468 	 *
2469 	 * For-read threads as below are using device_list_mutex:
2470 	 * - Readonly scrub btrfs_scrub_dev()
2471 	 * - Readonly scrub btrfs_scrub_progress()
2472 	 * - btrfs_get_dev_stats()
2473 	 */
2474 	lockdep_assert_held(&fs_devices->device_list_mutex);
2475 
2476 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2477 			      synchronize_rcu);
2478 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2479 		device->fs_devices = seed_devices;
2480 
2481 	fs_devices->seeding = false;
2482 	fs_devices->num_devices = 0;
2483 	fs_devices->open_devices = 0;
2484 	fs_devices->missing_devices = 0;
2485 	fs_devices->rotating = false;
2486 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2487 
2488 	generate_random_uuid(fs_devices->fsid);
2489 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2490 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2491 
2492 	super_flags = btrfs_super_flags(disk_super) &
2493 		      ~BTRFS_SUPER_FLAG_SEEDING;
2494 	btrfs_set_super_flags(disk_super, super_flags);
2495 }
2496 
2497 /*
2498  * Store the expected generation for seed devices in device items.
2499  */
2500 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2501 {
2502 	BTRFS_DEV_LOOKUP_ARGS(args);
2503 	struct btrfs_fs_info *fs_info = trans->fs_info;
2504 	struct btrfs_root *root = fs_info->chunk_root;
2505 	struct btrfs_path *path;
2506 	struct extent_buffer *leaf;
2507 	struct btrfs_dev_item *dev_item;
2508 	struct btrfs_device *device;
2509 	struct btrfs_key key;
2510 	u8 fs_uuid[BTRFS_FSID_SIZE];
2511 	u8 dev_uuid[BTRFS_UUID_SIZE];
2512 	int ret;
2513 
2514 	path = btrfs_alloc_path();
2515 	if (!path)
2516 		return -ENOMEM;
2517 
2518 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2519 	key.offset = 0;
2520 	key.type = BTRFS_DEV_ITEM_KEY;
2521 
2522 	while (1) {
2523 		btrfs_reserve_chunk_metadata(trans, false);
2524 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2525 		btrfs_trans_release_chunk_metadata(trans);
2526 		if (ret < 0)
2527 			goto error;
2528 
2529 		leaf = path->nodes[0];
2530 next_slot:
2531 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2532 			ret = btrfs_next_leaf(root, path);
2533 			if (ret > 0)
2534 				break;
2535 			if (ret < 0)
2536 				goto error;
2537 			leaf = path->nodes[0];
2538 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2539 			btrfs_release_path(path);
2540 			continue;
2541 		}
2542 
2543 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2544 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2545 		    key.type != BTRFS_DEV_ITEM_KEY)
2546 			break;
2547 
2548 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2549 					  struct btrfs_dev_item);
2550 		args.devid = btrfs_device_id(leaf, dev_item);
2551 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2552 				   BTRFS_UUID_SIZE);
2553 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2554 				   BTRFS_FSID_SIZE);
2555 		args.uuid = dev_uuid;
2556 		args.fsid = fs_uuid;
2557 		device = btrfs_find_device(fs_info->fs_devices, &args);
2558 		BUG_ON(!device); /* Logic error */
2559 
2560 		if (device->fs_devices->seeding) {
2561 			btrfs_set_device_generation(leaf, dev_item,
2562 						    device->generation);
2563 			btrfs_mark_buffer_dirty(leaf);
2564 		}
2565 
2566 		path->slots[0]++;
2567 		goto next_slot;
2568 	}
2569 	ret = 0;
2570 error:
2571 	btrfs_free_path(path);
2572 	return ret;
2573 }
2574 
2575 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2576 {
2577 	struct btrfs_root *root = fs_info->dev_root;
2578 	struct btrfs_trans_handle *trans;
2579 	struct btrfs_device *device;
2580 	struct block_device *bdev;
2581 	struct super_block *sb = fs_info->sb;
2582 	struct rcu_string *name;
2583 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2584 	struct btrfs_fs_devices *seed_devices;
2585 	u64 orig_super_total_bytes;
2586 	u64 orig_super_num_devices;
2587 	int ret = 0;
2588 	bool seeding_dev = false;
2589 	bool locked = false;
2590 
2591 	if (sb_rdonly(sb) && !fs_devices->seeding)
2592 		return -EROFS;
2593 
2594 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2595 				  fs_info->bdev_holder);
2596 	if (IS_ERR(bdev))
2597 		return PTR_ERR(bdev);
2598 
2599 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2600 		ret = -EINVAL;
2601 		goto error;
2602 	}
2603 
2604 	if (fs_devices->seeding) {
2605 		seeding_dev = true;
2606 		down_write(&sb->s_umount);
2607 		mutex_lock(&uuid_mutex);
2608 		locked = true;
2609 	}
2610 
2611 	sync_blockdev(bdev);
2612 
2613 	rcu_read_lock();
2614 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2615 		if (device->bdev == bdev) {
2616 			ret = -EEXIST;
2617 			rcu_read_unlock();
2618 			goto error;
2619 		}
2620 	}
2621 	rcu_read_unlock();
2622 
2623 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2624 	if (IS_ERR(device)) {
2625 		/* we can safely leave the fs_devices entry around */
2626 		ret = PTR_ERR(device);
2627 		goto error;
2628 	}
2629 
2630 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2631 	if (!name) {
2632 		ret = -ENOMEM;
2633 		goto error_free_device;
2634 	}
2635 	rcu_assign_pointer(device->name, name);
2636 
2637 	device->fs_info = fs_info;
2638 	device->bdev = bdev;
2639 	ret = lookup_bdev(device_path, &device->devt);
2640 	if (ret)
2641 		goto error_free_device;
2642 
2643 	ret = btrfs_get_dev_zone_info(device, false);
2644 	if (ret)
2645 		goto error_free_device;
2646 
2647 	trans = btrfs_start_transaction(root, 0);
2648 	if (IS_ERR(trans)) {
2649 		ret = PTR_ERR(trans);
2650 		goto error_free_zone;
2651 	}
2652 
2653 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2654 	device->generation = trans->transid;
2655 	device->io_width = fs_info->sectorsize;
2656 	device->io_align = fs_info->sectorsize;
2657 	device->sector_size = fs_info->sectorsize;
2658 	device->total_bytes =
2659 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2660 	device->disk_total_bytes = device->total_bytes;
2661 	device->commit_total_bytes = device->total_bytes;
2662 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2663 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2664 	device->mode = FMODE_EXCL;
2665 	device->dev_stats_valid = 1;
2666 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2667 
2668 	if (seeding_dev) {
2669 		btrfs_clear_sb_rdonly(sb);
2670 
2671 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2672 		seed_devices = btrfs_init_sprout(fs_info);
2673 		if (IS_ERR(seed_devices)) {
2674 			ret = PTR_ERR(seed_devices);
2675 			btrfs_abort_transaction(trans, ret);
2676 			goto error_trans;
2677 		}
2678 	}
2679 
2680 	mutex_lock(&fs_devices->device_list_mutex);
2681 	if (seeding_dev) {
2682 		btrfs_setup_sprout(fs_info, seed_devices);
2683 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2684 						device);
2685 	}
2686 
2687 	device->fs_devices = fs_devices;
2688 
2689 	mutex_lock(&fs_info->chunk_mutex);
2690 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2691 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2692 	fs_devices->num_devices++;
2693 	fs_devices->open_devices++;
2694 	fs_devices->rw_devices++;
2695 	fs_devices->total_devices++;
2696 	fs_devices->total_rw_bytes += device->total_bytes;
2697 
2698 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2699 
2700 	if (!bdev_nonrot(bdev))
2701 		fs_devices->rotating = true;
2702 
2703 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2704 	btrfs_set_super_total_bytes(fs_info->super_copy,
2705 		round_down(orig_super_total_bytes + device->total_bytes,
2706 			   fs_info->sectorsize));
2707 
2708 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2709 	btrfs_set_super_num_devices(fs_info->super_copy,
2710 				    orig_super_num_devices + 1);
2711 
2712 	/*
2713 	 * we've got more storage, clear any full flags on the space
2714 	 * infos
2715 	 */
2716 	btrfs_clear_space_info_full(fs_info);
2717 
2718 	mutex_unlock(&fs_info->chunk_mutex);
2719 
2720 	/* Add sysfs device entry */
2721 	btrfs_sysfs_add_device(device);
2722 
2723 	mutex_unlock(&fs_devices->device_list_mutex);
2724 
2725 	if (seeding_dev) {
2726 		mutex_lock(&fs_info->chunk_mutex);
2727 		ret = init_first_rw_device(trans);
2728 		mutex_unlock(&fs_info->chunk_mutex);
2729 		if (ret) {
2730 			btrfs_abort_transaction(trans, ret);
2731 			goto error_sysfs;
2732 		}
2733 	}
2734 
2735 	ret = btrfs_add_dev_item(trans, device);
2736 	if (ret) {
2737 		btrfs_abort_transaction(trans, ret);
2738 		goto error_sysfs;
2739 	}
2740 
2741 	if (seeding_dev) {
2742 		ret = btrfs_finish_sprout(trans);
2743 		if (ret) {
2744 			btrfs_abort_transaction(trans, ret);
2745 			goto error_sysfs;
2746 		}
2747 
2748 		/*
2749 		 * fs_devices now represents the newly sprouted filesystem and
2750 		 * its fsid has been changed by btrfs_sprout_splice().
2751 		 */
2752 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2753 	}
2754 
2755 	ret = btrfs_commit_transaction(trans);
2756 
2757 	if (seeding_dev) {
2758 		mutex_unlock(&uuid_mutex);
2759 		up_write(&sb->s_umount);
2760 		locked = false;
2761 
2762 		if (ret) /* transaction commit */
2763 			return ret;
2764 
2765 		ret = btrfs_relocate_sys_chunks(fs_info);
2766 		if (ret < 0)
2767 			btrfs_handle_fs_error(fs_info, ret,
2768 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2769 		trans = btrfs_attach_transaction(root);
2770 		if (IS_ERR(trans)) {
2771 			if (PTR_ERR(trans) == -ENOENT)
2772 				return 0;
2773 			ret = PTR_ERR(trans);
2774 			trans = NULL;
2775 			goto error_sysfs;
2776 		}
2777 		ret = btrfs_commit_transaction(trans);
2778 	}
2779 
2780 	/*
2781 	 * Now that we have written a new super block to this device, check all
2782 	 * other fs_devices list if device_path alienates any other scanned
2783 	 * device.
2784 	 * We can ignore the return value as it typically returns -EINVAL and
2785 	 * only succeeds if the device was an alien.
2786 	 */
2787 	btrfs_forget_devices(device->devt);
2788 
2789 	/* Update ctime/mtime for blkid or udev */
2790 	update_dev_time(device_path);
2791 
2792 	return ret;
2793 
2794 error_sysfs:
2795 	btrfs_sysfs_remove_device(device);
2796 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2797 	mutex_lock(&fs_info->chunk_mutex);
2798 	list_del_rcu(&device->dev_list);
2799 	list_del(&device->dev_alloc_list);
2800 	fs_info->fs_devices->num_devices--;
2801 	fs_info->fs_devices->open_devices--;
2802 	fs_info->fs_devices->rw_devices--;
2803 	fs_info->fs_devices->total_devices--;
2804 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2805 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2806 	btrfs_set_super_total_bytes(fs_info->super_copy,
2807 				    orig_super_total_bytes);
2808 	btrfs_set_super_num_devices(fs_info->super_copy,
2809 				    orig_super_num_devices);
2810 	mutex_unlock(&fs_info->chunk_mutex);
2811 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2812 error_trans:
2813 	if (seeding_dev)
2814 		btrfs_set_sb_rdonly(sb);
2815 	if (trans)
2816 		btrfs_end_transaction(trans);
2817 error_free_zone:
2818 	btrfs_destroy_dev_zone_info(device);
2819 error_free_device:
2820 	btrfs_free_device(device);
2821 error:
2822 	blkdev_put(bdev, FMODE_EXCL);
2823 	if (locked) {
2824 		mutex_unlock(&uuid_mutex);
2825 		up_write(&sb->s_umount);
2826 	}
2827 	return ret;
2828 }
2829 
2830 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2831 					struct btrfs_device *device)
2832 {
2833 	int ret;
2834 	struct btrfs_path *path;
2835 	struct btrfs_root *root = device->fs_info->chunk_root;
2836 	struct btrfs_dev_item *dev_item;
2837 	struct extent_buffer *leaf;
2838 	struct btrfs_key key;
2839 
2840 	path = btrfs_alloc_path();
2841 	if (!path)
2842 		return -ENOMEM;
2843 
2844 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2845 	key.type = BTRFS_DEV_ITEM_KEY;
2846 	key.offset = device->devid;
2847 
2848 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2849 	if (ret < 0)
2850 		goto out;
2851 
2852 	if (ret > 0) {
2853 		ret = -ENOENT;
2854 		goto out;
2855 	}
2856 
2857 	leaf = path->nodes[0];
2858 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2859 
2860 	btrfs_set_device_id(leaf, dev_item, device->devid);
2861 	btrfs_set_device_type(leaf, dev_item, device->type);
2862 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2863 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2864 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2865 	btrfs_set_device_total_bytes(leaf, dev_item,
2866 				     btrfs_device_get_disk_total_bytes(device));
2867 	btrfs_set_device_bytes_used(leaf, dev_item,
2868 				    btrfs_device_get_bytes_used(device));
2869 	btrfs_mark_buffer_dirty(leaf);
2870 
2871 out:
2872 	btrfs_free_path(path);
2873 	return ret;
2874 }
2875 
2876 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2877 		      struct btrfs_device *device, u64 new_size)
2878 {
2879 	struct btrfs_fs_info *fs_info = device->fs_info;
2880 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2881 	u64 old_total;
2882 	u64 diff;
2883 	int ret;
2884 
2885 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2886 		return -EACCES;
2887 
2888 	new_size = round_down(new_size, fs_info->sectorsize);
2889 
2890 	mutex_lock(&fs_info->chunk_mutex);
2891 	old_total = btrfs_super_total_bytes(super_copy);
2892 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2893 
2894 	if (new_size <= device->total_bytes ||
2895 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2896 		mutex_unlock(&fs_info->chunk_mutex);
2897 		return -EINVAL;
2898 	}
2899 
2900 	btrfs_set_super_total_bytes(super_copy,
2901 			round_down(old_total + diff, fs_info->sectorsize));
2902 	device->fs_devices->total_rw_bytes += diff;
2903 
2904 	btrfs_device_set_total_bytes(device, new_size);
2905 	btrfs_device_set_disk_total_bytes(device, new_size);
2906 	btrfs_clear_space_info_full(device->fs_info);
2907 	if (list_empty(&device->post_commit_list))
2908 		list_add_tail(&device->post_commit_list,
2909 			      &trans->transaction->dev_update_list);
2910 	mutex_unlock(&fs_info->chunk_mutex);
2911 
2912 	btrfs_reserve_chunk_metadata(trans, false);
2913 	ret = btrfs_update_device(trans, device);
2914 	btrfs_trans_release_chunk_metadata(trans);
2915 
2916 	return ret;
2917 }
2918 
2919 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2920 {
2921 	struct btrfs_fs_info *fs_info = trans->fs_info;
2922 	struct btrfs_root *root = fs_info->chunk_root;
2923 	int ret;
2924 	struct btrfs_path *path;
2925 	struct btrfs_key key;
2926 
2927 	path = btrfs_alloc_path();
2928 	if (!path)
2929 		return -ENOMEM;
2930 
2931 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2932 	key.offset = chunk_offset;
2933 	key.type = BTRFS_CHUNK_ITEM_KEY;
2934 
2935 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2936 	if (ret < 0)
2937 		goto out;
2938 	else if (ret > 0) { /* Logic error or corruption */
2939 		btrfs_handle_fs_error(fs_info, -ENOENT,
2940 				      "Failed lookup while freeing chunk.");
2941 		ret = -ENOENT;
2942 		goto out;
2943 	}
2944 
2945 	ret = btrfs_del_item(trans, root, path);
2946 	if (ret < 0)
2947 		btrfs_handle_fs_error(fs_info, ret,
2948 				      "Failed to delete chunk item.");
2949 out:
2950 	btrfs_free_path(path);
2951 	return ret;
2952 }
2953 
2954 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2955 {
2956 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2957 	struct btrfs_disk_key *disk_key;
2958 	struct btrfs_chunk *chunk;
2959 	u8 *ptr;
2960 	int ret = 0;
2961 	u32 num_stripes;
2962 	u32 array_size;
2963 	u32 len = 0;
2964 	u32 cur;
2965 	struct btrfs_key key;
2966 
2967 	lockdep_assert_held(&fs_info->chunk_mutex);
2968 	array_size = btrfs_super_sys_array_size(super_copy);
2969 
2970 	ptr = super_copy->sys_chunk_array;
2971 	cur = 0;
2972 
2973 	while (cur < array_size) {
2974 		disk_key = (struct btrfs_disk_key *)ptr;
2975 		btrfs_disk_key_to_cpu(&key, disk_key);
2976 
2977 		len = sizeof(*disk_key);
2978 
2979 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2980 			chunk = (struct btrfs_chunk *)(ptr + len);
2981 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2982 			len += btrfs_chunk_item_size(num_stripes);
2983 		} else {
2984 			ret = -EIO;
2985 			break;
2986 		}
2987 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2988 		    key.offset == chunk_offset) {
2989 			memmove(ptr, ptr + len, array_size - (cur + len));
2990 			array_size -= len;
2991 			btrfs_set_super_sys_array_size(super_copy, array_size);
2992 		} else {
2993 			ptr += len;
2994 			cur += len;
2995 		}
2996 	}
2997 	return ret;
2998 }
2999 
3000 /*
3001  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3002  * @logical: Logical block offset in bytes.
3003  * @length: Length of extent in bytes.
3004  *
3005  * Return: Chunk mapping or ERR_PTR.
3006  */
3007 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3008 				       u64 logical, u64 length)
3009 {
3010 	struct extent_map_tree *em_tree;
3011 	struct extent_map *em;
3012 
3013 	em_tree = &fs_info->mapping_tree;
3014 	read_lock(&em_tree->lock);
3015 	em = lookup_extent_mapping(em_tree, logical, length);
3016 	read_unlock(&em_tree->lock);
3017 
3018 	if (!em) {
3019 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3020 			   logical, length);
3021 		return ERR_PTR(-EINVAL);
3022 	}
3023 
3024 	if (em->start > logical || em->start + em->len < logical) {
3025 		btrfs_crit(fs_info,
3026 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3027 			   logical, length, em->start, em->start + em->len);
3028 		free_extent_map(em);
3029 		return ERR_PTR(-EINVAL);
3030 	}
3031 
3032 	/* callers are responsible for dropping em's ref. */
3033 	return em;
3034 }
3035 
3036 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3037 			     struct map_lookup *map, u64 chunk_offset)
3038 {
3039 	int i;
3040 
3041 	/*
3042 	 * Removing chunk items and updating the device items in the chunks btree
3043 	 * requires holding the chunk_mutex.
3044 	 * See the comment at btrfs_chunk_alloc() for the details.
3045 	 */
3046 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3047 
3048 	for (i = 0; i < map->num_stripes; i++) {
3049 		int ret;
3050 
3051 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3052 		if (ret)
3053 			return ret;
3054 	}
3055 
3056 	return btrfs_free_chunk(trans, chunk_offset);
3057 }
3058 
3059 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3060 {
3061 	struct btrfs_fs_info *fs_info = trans->fs_info;
3062 	struct extent_map *em;
3063 	struct map_lookup *map;
3064 	u64 dev_extent_len = 0;
3065 	int i, ret = 0;
3066 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3067 
3068 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3069 	if (IS_ERR(em)) {
3070 		/*
3071 		 * This is a logic error, but we don't want to just rely on the
3072 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3073 		 * do anything we still error out.
3074 		 */
3075 		ASSERT(0);
3076 		return PTR_ERR(em);
3077 	}
3078 	map = em->map_lookup;
3079 
3080 	/*
3081 	 * First delete the device extent items from the devices btree.
3082 	 * We take the device_list_mutex to avoid racing with the finishing phase
3083 	 * of a device replace operation. See the comment below before acquiring
3084 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3085 	 * because that can result in a deadlock when deleting the device extent
3086 	 * items from the devices btree - COWing an extent buffer from the btree
3087 	 * may result in allocating a new metadata chunk, which would attempt to
3088 	 * lock again fs_info->chunk_mutex.
3089 	 */
3090 	mutex_lock(&fs_devices->device_list_mutex);
3091 	for (i = 0; i < map->num_stripes; i++) {
3092 		struct btrfs_device *device = map->stripes[i].dev;
3093 		ret = btrfs_free_dev_extent(trans, device,
3094 					    map->stripes[i].physical,
3095 					    &dev_extent_len);
3096 		if (ret) {
3097 			mutex_unlock(&fs_devices->device_list_mutex);
3098 			btrfs_abort_transaction(trans, ret);
3099 			goto out;
3100 		}
3101 
3102 		if (device->bytes_used > 0) {
3103 			mutex_lock(&fs_info->chunk_mutex);
3104 			btrfs_device_set_bytes_used(device,
3105 					device->bytes_used - dev_extent_len);
3106 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3107 			btrfs_clear_space_info_full(fs_info);
3108 			mutex_unlock(&fs_info->chunk_mutex);
3109 		}
3110 	}
3111 	mutex_unlock(&fs_devices->device_list_mutex);
3112 
3113 	/*
3114 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3115 	 *
3116 	 * 1) Just like with the first phase of the chunk allocation, we must
3117 	 *    reserve system space, do all chunk btree updates and deletions, and
3118 	 *    update the system chunk array in the superblock while holding this
3119 	 *    mutex. This is for similar reasons as explained on the comment at
3120 	 *    the top of btrfs_chunk_alloc();
3121 	 *
3122 	 * 2) Prevent races with the final phase of a device replace operation
3123 	 *    that replaces the device object associated with the map's stripes,
3124 	 *    because the device object's id can change at any time during that
3125 	 *    final phase of the device replace operation
3126 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3127 	 *    replaced device and then see it with an ID of
3128 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3129 	 *    the device item, which does not exists on the chunk btree.
3130 	 *    The finishing phase of device replace acquires both the
3131 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3132 	 *    safe by just acquiring the chunk_mutex.
3133 	 */
3134 	trans->removing_chunk = true;
3135 	mutex_lock(&fs_info->chunk_mutex);
3136 
3137 	check_system_chunk(trans, map->type);
3138 
3139 	ret = remove_chunk_item(trans, map, chunk_offset);
3140 	/*
3141 	 * Normally we should not get -ENOSPC since we reserved space before
3142 	 * through the call to check_system_chunk().
3143 	 *
3144 	 * Despite our system space_info having enough free space, we may not
3145 	 * be able to allocate extents from its block groups, because all have
3146 	 * an incompatible profile, which will force us to allocate a new system
3147 	 * block group with the right profile, or right after we called
3148 	 * check_system_space() above, a scrub turned the only system block group
3149 	 * with enough free space into RO mode.
3150 	 * This is explained with more detail at do_chunk_alloc().
3151 	 *
3152 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3153 	 */
3154 	if (ret == -ENOSPC) {
3155 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3156 		struct btrfs_block_group *sys_bg;
3157 
3158 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3159 		if (IS_ERR(sys_bg)) {
3160 			ret = PTR_ERR(sys_bg);
3161 			btrfs_abort_transaction(trans, ret);
3162 			goto out;
3163 		}
3164 
3165 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3166 		if (ret) {
3167 			btrfs_abort_transaction(trans, ret);
3168 			goto out;
3169 		}
3170 
3171 		ret = remove_chunk_item(trans, map, chunk_offset);
3172 		if (ret) {
3173 			btrfs_abort_transaction(trans, ret);
3174 			goto out;
3175 		}
3176 	} else if (ret) {
3177 		btrfs_abort_transaction(trans, ret);
3178 		goto out;
3179 	}
3180 
3181 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3182 
3183 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3184 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3185 		if (ret) {
3186 			btrfs_abort_transaction(trans, ret);
3187 			goto out;
3188 		}
3189 	}
3190 
3191 	mutex_unlock(&fs_info->chunk_mutex);
3192 	trans->removing_chunk = false;
3193 
3194 	/*
3195 	 * We are done with chunk btree updates and deletions, so release the
3196 	 * system space we previously reserved (with check_system_chunk()).
3197 	 */
3198 	btrfs_trans_release_chunk_metadata(trans);
3199 
3200 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3201 	if (ret) {
3202 		btrfs_abort_transaction(trans, ret);
3203 		goto out;
3204 	}
3205 
3206 out:
3207 	if (trans->removing_chunk) {
3208 		mutex_unlock(&fs_info->chunk_mutex);
3209 		trans->removing_chunk = false;
3210 	}
3211 	/* once for us */
3212 	free_extent_map(em);
3213 	return ret;
3214 }
3215 
3216 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3217 {
3218 	struct btrfs_root *root = fs_info->chunk_root;
3219 	struct btrfs_trans_handle *trans;
3220 	struct btrfs_block_group *block_group;
3221 	u64 length;
3222 	int ret;
3223 
3224 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3225 		btrfs_err(fs_info,
3226 			  "relocate: not supported on extent tree v2 yet");
3227 		return -EINVAL;
3228 	}
3229 
3230 	/*
3231 	 * Prevent races with automatic removal of unused block groups.
3232 	 * After we relocate and before we remove the chunk with offset
3233 	 * chunk_offset, automatic removal of the block group can kick in,
3234 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3235 	 *
3236 	 * Make sure to acquire this mutex before doing a tree search (dev
3237 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3238 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3239 	 * we release the path used to search the chunk/dev tree and before
3240 	 * the current task acquires this mutex and calls us.
3241 	 */
3242 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3243 
3244 	/* step one, relocate all the extents inside this chunk */
3245 	btrfs_scrub_pause(fs_info);
3246 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3247 	btrfs_scrub_continue(fs_info);
3248 	if (ret)
3249 		return ret;
3250 
3251 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3252 	if (!block_group)
3253 		return -ENOENT;
3254 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3255 	length = block_group->length;
3256 	btrfs_put_block_group(block_group);
3257 
3258 	/*
3259 	 * On a zoned file system, discard the whole block group, this will
3260 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3261 	 * resetting the zone fails, don't treat it as a fatal problem from the
3262 	 * filesystem's point of view.
3263 	 */
3264 	if (btrfs_is_zoned(fs_info)) {
3265 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3266 		if (ret)
3267 			btrfs_info(fs_info,
3268 				"failed to reset zone %llu after relocation",
3269 				chunk_offset);
3270 	}
3271 
3272 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3273 						     chunk_offset);
3274 	if (IS_ERR(trans)) {
3275 		ret = PTR_ERR(trans);
3276 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3277 		return ret;
3278 	}
3279 
3280 	/*
3281 	 * step two, delete the device extents and the
3282 	 * chunk tree entries
3283 	 */
3284 	ret = btrfs_remove_chunk(trans, chunk_offset);
3285 	btrfs_end_transaction(trans);
3286 	return ret;
3287 }
3288 
3289 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3290 {
3291 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3292 	struct btrfs_path *path;
3293 	struct extent_buffer *leaf;
3294 	struct btrfs_chunk *chunk;
3295 	struct btrfs_key key;
3296 	struct btrfs_key found_key;
3297 	u64 chunk_type;
3298 	bool retried = false;
3299 	int failed = 0;
3300 	int ret;
3301 
3302 	path = btrfs_alloc_path();
3303 	if (!path)
3304 		return -ENOMEM;
3305 
3306 again:
3307 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3308 	key.offset = (u64)-1;
3309 	key.type = BTRFS_CHUNK_ITEM_KEY;
3310 
3311 	while (1) {
3312 		mutex_lock(&fs_info->reclaim_bgs_lock);
3313 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3314 		if (ret < 0) {
3315 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3316 			goto error;
3317 		}
3318 		BUG_ON(ret == 0); /* Corruption */
3319 
3320 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3321 					  key.type);
3322 		if (ret)
3323 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3324 		if (ret < 0)
3325 			goto error;
3326 		if (ret > 0)
3327 			break;
3328 
3329 		leaf = path->nodes[0];
3330 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3331 
3332 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3333 				       struct btrfs_chunk);
3334 		chunk_type = btrfs_chunk_type(leaf, chunk);
3335 		btrfs_release_path(path);
3336 
3337 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3338 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3339 			if (ret == -ENOSPC)
3340 				failed++;
3341 			else
3342 				BUG_ON(ret);
3343 		}
3344 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 
3346 		if (found_key.offset == 0)
3347 			break;
3348 		key.offset = found_key.offset - 1;
3349 	}
3350 	ret = 0;
3351 	if (failed && !retried) {
3352 		failed = 0;
3353 		retried = true;
3354 		goto again;
3355 	} else if (WARN_ON(failed && retried)) {
3356 		ret = -ENOSPC;
3357 	}
3358 error:
3359 	btrfs_free_path(path);
3360 	return ret;
3361 }
3362 
3363 /*
3364  * return 1 : allocate a data chunk successfully,
3365  * return <0: errors during allocating a data chunk,
3366  * return 0 : no need to allocate a data chunk.
3367  */
3368 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3369 				      u64 chunk_offset)
3370 {
3371 	struct btrfs_block_group *cache;
3372 	u64 bytes_used;
3373 	u64 chunk_type;
3374 
3375 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3376 	ASSERT(cache);
3377 	chunk_type = cache->flags;
3378 	btrfs_put_block_group(cache);
3379 
3380 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3381 		return 0;
3382 
3383 	spin_lock(&fs_info->data_sinfo->lock);
3384 	bytes_used = fs_info->data_sinfo->bytes_used;
3385 	spin_unlock(&fs_info->data_sinfo->lock);
3386 
3387 	if (!bytes_used) {
3388 		struct btrfs_trans_handle *trans;
3389 		int ret;
3390 
3391 		trans =	btrfs_join_transaction(fs_info->tree_root);
3392 		if (IS_ERR(trans))
3393 			return PTR_ERR(trans);
3394 
3395 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3396 		btrfs_end_transaction(trans);
3397 		if (ret < 0)
3398 			return ret;
3399 		return 1;
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3406 			       struct btrfs_balance_control *bctl)
3407 {
3408 	struct btrfs_root *root = fs_info->tree_root;
3409 	struct btrfs_trans_handle *trans;
3410 	struct btrfs_balance_item *item;
3411 	struct btrfs_disk_balance_args disk_bargs;
3412 	struct btrfs_path *path;
3413 	struct extent_buffer *leaf;
3414 	struct btrfs_key key;
3415 	int ret, err;
3416 
3417 	path = btrfs_alloc_path();
3418 	if (!path)
3419 		return -ENOMEM;
3420 
3421 	trans = btrfs_start_transaction(root, 0);
3422 	if (IS_ERR(trans)) {
3423 		btrfs_free_path(path);
3424 		return PTR_ERR(trans);
3425 	}
3426 
3427 	key.objectid = BTRFS_BALANCE_OBJECTID;
3428 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3429 	key.offset = 0;
3430 
3431 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3432 				      sizeof(*item));
3433 	if (ret)
3434 		goto out;
3435 
3436 	leaf = path->nodes[0];
3437 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3438 
3439 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3440 
3441 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3442 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3443 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3444 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3445 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3446 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3447 
3448 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3449 
3450 	btrfs_mark_buffer_dirty(leaf);
3451 out:
3452 	btrfs_free_path(path);
3453 	err = btrfs_commit_transaction(trans);
3454 	if (err && !ret)
3455 		ret = err;
3456 	return ret;
3457 }
3458 
3459 static int del_balance_item(struct btrfs_fs_info *fs_info)
3460 {
3461 	struct btrfs_root *root = fs_info->tree_root;
3462 	struct btrfs_trans_handle *trans;
3463 	struct btrfs_path *path;
3464 	struct btrfs_key key;
3465 	int ret, err;
3466 
3467 	path = btrfs_alloc_path();
3468 	if (!path)
3469 		return -ENOMEM;
3470 
3471 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3472 	if (IS_ERR(trans)) {
3473 		btrfs_free_path(path);
3474 		return PTR_ERR(trans);
3475 	}
3476 
3477 	key.objectid = BTRFS_BALANCE_OBJECTID;
3478 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3479 	key.offset = 0;
3480 
3481 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3482 	if (ret < 0)
3483 		goto out;
3484 	if (ret > 0) {
3485 		ret = -ENOENT;
3486 		goto out;
3487 	}
3488 
3489 	ret = btrfs_del_item(trans, root, path);
3490 out:
3491 	btrfs_free_path(path);
3492 	err = btrfs_commit_transaction(trans);
3493 	if (err && !ret)
3494 		ret = err;
3495 	return ret;
3496 }
3497 
3498 /*
3499  * This is a heuristic used to reduce the number of chunks balanced on
3500  * resume after balance was interrupted.
3501  */
3502 static void update_balance_args(struct btrfs_balance_control *bctl)
3503 {
3504 	/*
3505 	 * Turn on soft mode for chunk types that were being converted.
3506 	 */
3507 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3508 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3509 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3510 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3511 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3512 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3513 
3514 	/*
3515 	 * Turn on usage filter if is not already used.  The idea is
3516 	 * that chunks that we have already balanced should be
3517 	 * reasonably full.  Don't do it for chunks that are being
3518 	 * converted - that will keep us from relocating unconverted
3519 	 * (albeit full) chunks.
3520 	 */
3521 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3522 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3523 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3524 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3525 		bctl->data.usage = 90;
3526 	}
3527 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3528 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3529 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3530 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3531 		bctl->sys.usage = 90;
3532 	}
3533 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3534 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3535 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3536 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3537 		bctl->meta.usage = 90;
3538 	}
3539 }
3540 
3541 /*
3542  * Clear the balance status in fs_info and delete the balance item from disk.
3543  */
3544 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3545 {
3546 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3547 	int ret;
3548 
3549 	BUG_ON(!fs_info->balance_ctl);
3550 
3551 	spin_lock(&fs_info->balance_lock);
3552 	fs_info->balance_ctl = NULL;
3553 	spin_unlock(&fs_info->balance_lock);
3554 
3555 	kfree(bctl);
3556 	ret = del_balance_item(fs_info);
3557 	if (ret)
3558 		btrfs_handle_fs_error(fs_info, ret, NULL);
3559 }
3560 
3561 /*
3562  * Balance filters.  Return 1 if chunk should be filtered out
3563  * (should not be balanced).
3564  */
3565 static int chunk_profiles_filter(u64 chunk_type,
3566 				 struct btrfs_balance_args *bargs)
3567 {
3568 	chunk_type = chunk_to_extended(chunk_type) &
3569 				BTRFS_EXTENDED_PROFILE_MASK;
3570 
3571 	if (bargs->profiles & chunk_type)
3572 		return 0;
3573 
3574 	return 1;
3575 }
3576 
3577 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3578 			      struct btrfs_balance_args *bargs)
3579 {
3580 	struct btrfs_block_group *cache;
3581 	u64 chunk_used;
3582 	u64 user_thresh_min;
3583 	u64 user_thresh_max;
3584 	int ret = 1;
3585 
3586 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3587 	chunk_used = cache->used;
3588 
3589 	if (bargs->usage_min == 0)
3590 		user_thresh_min = 0;
3591 	else
3592 		user_thresh_min = div_factor_fine(cache->length,
3593 						  bargs->usage_min);
3594 
3595 	if (bargs->usage_max == 0)
3596 		user_thresh_max = 1;
3597 	else if (bargs->usage_max > 100)
3598 		user_thresh_max = cache->length;
3599 	else
3600 		user_thresh_max = div_factor_fine(cache->length,
3601 						  bargs->usage_max);
3602 
3603 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3604 		ret = 0;
3605 
3606 	btrfs_put_block_group(cache);
3607 	return ret;
3608 }
3609 
3610 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3611 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3612 {
3613 	struct btrfs_block_group *cache;
3614 	u64 chunk_used, user_thresh;
3615 	int ret = 1;
3616 
3617 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3618 	chunk_used = cache->used;
3619 
3620 	if (bargs->usage_min == 0)
3621 		user_thresh = 1;
3622 	else if (bargs->usage > 100)
3623 		user_thresh = cache->length;
3624 	else
3625 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3626 
3627 	if (chunk_used < user_thresh)
3628 		ret = 0;
3629 
3630 	btrfs_put_block_group(cache);
3631 	return ret;
3632 }
3633 
3634 static int chunk_devid_filter(struct extent_buffer *leaf,
3635 			      struct btrfs_chunk *chunk,
3636 			      struct btrfs_balance_args *bargs)
3637 {
3638 	struct btrfs_stripe *stripe;
3639 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3640 	int i;
3641 
3642 	for (i = 0; i < num_stripes; i++) {
3643 		stripe = btrfs_stripe_nr(chunk, i);
3644 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3645 			return 0;
3646 	}
3647 
3648 	return 1;
3649 }
3650 
3651 static u64 calc_data_stripes(u64 type, int num_stripes)
3652 {
3653 	const int index = btrfs_bg_flags_to_raid_index(type);
3654 	const int ncopies = btrfs_raid_array[index].ncopies;
3655 	const int nparity = btrfs_raid_array[index].nparity;
3656 
3657 	return (num_stripes - nparity) / ncopies;
3658 }
3659 
3660 /* [pstart, pend) */
3661 static int chunk_drange_filter(struct extent_buffer *leaf,
3662 			       struct btrfs_chunk *chunk,
3663 			       struct btrfs_balance_args *bargs)
3664 {
3665 	struct btrfs_stripe *stripe;
3666 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3667 	u64 stripe_offset;
3668 	u64 stripe_length;
3669 	u64 type;
3670 	int factor;
3671 	int i;
3672 
3673 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3674 		return 0;
3675 
3676 	type = btrfs_chunk_type(leaf, chunk);
3677 	factor = calc_data_stripes(type, num_stripes);
3678 
3679 	for (i = 0; i < num_stripes; i++) {
3680 		stripe = btrfs_stripe_nr(chunk, i);
3681 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3682 			continue;
3683 
3684 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3685 		stripe_length = btrfs_chunk_length(leaf, chunk);
3686 		stripe_length = div_u64(stripe_length, factor);
3687 
3688 		if (stripe_offset < bargs->pend &&
3689 		    stripe_offset + stripe_length > bargs->pstart)
3690 			return 0;
3691 	}
3692 
3693 	return 1;
3694 }
3695 
3696 /* [vstart, vend) */
3697 static int chunk_vrange_filter(struct extent_buffer *leaf,
3698 			       struct btrfs_chunk *chunk,
3699 			       u64 chunk_offset,
3700 			       struct btrfs_balance_args *bargs)
3701 {
3702 	if (chunk_offset < bargs->vend &&
3703 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3704 		/* at least part of the chunk is inside this vrange */
3705 		return 0;
3706 
3707 	return 1;
3708 }
3709 
3710 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3711 			       struct btrfs_chunk *chunk,
3712 			       struct btrfs_balance_args *bargs)
3713 {
3714 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3715 
3716 	if (bargs->stripes_min <= num_stripes
3717 			&& num_stripes <= bargs->stripes_max)
3718 		return 0;
3719 
3720 	return 1;
3721 }
3722 
3723 static int chunk_soft_convert_filter(u64 chunk_type,
3724 				     struct btrfs_balance_args *bargs)
3725 {
3726 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3727 		return 0;
3728 
3729 	chunk_type = chunk_to_extended(chunk_type) &
3730 				BTRFS_EXTENDED_PROFILE_MASK;
3731 
3732 	if (bargs->target == chunk_type)
3733 		return 1;
3734 
3735 	return 0;
3736 }
3737 
3738 static int should_balance_chunk(struct extent_buffer *leaf,
3739 				struct btrfs_chunk *chunk, u64 chunk_offset)
3740 {
3741 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3742 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3743 	struct btrfs_balance_args *bargs = NULL;
3744 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3745 
3746 	/* type filter */
3747 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3748 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3749 		return 0;
3750 	}
3751 
3752 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3753 		bargs = &bctl->data;
3754 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3755 		bargs = &bctl->sys;
3756 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3757 		bargs = &bctl->meta;
3758 
3759 	/* profiles filter */
3760 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3761 	    chunk_profiles_filter(chunk_type, bargs)) {
3762 		return 0;
3763 	}
3764 
3765 	/* usage filter */
3766 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3767 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3768 		return 0;
3769 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3770 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3771 		return 0;
3772 	}
3773 
3774 	/* devid filter */
3775 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3776 	    chunk_devid_filter(leaf, chunk, bargs)) {
3777 		return 0;
3778 	}
3779 
3780 	/* drange filter, makes sense only with devid filter */
3781 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3782 	    chunk_drange_filter(leaf, chunk, bargs)) {
3783 		return 0;
3784 	}
3785 
3786 	/* vrange filter */
3787 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3788 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3789 		return 0;
3790 	}
3791 
3792 	/* stripes filter */
3793 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3794 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3795 		return 0;
3796 	}
3797 
3798 	/* soft profile changing mode */
3799 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3800 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3801 		return 0;
3802 	}
3803 
3804 	/*
3805 	 * limited by count, must be the last filter
3806 	 */
3807 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3808 		if (bargs->limit == 0)
3809 			return 0;
3810 		else
3811 			bargs->limit--;
3812 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3813 		/*
3814 		 * Same logic as the 'limit' filter; the minimum cannot be
3815 		 * determined here because we do not have the global information
3816 		 * about the count of all chunks that satisfy the filters.
3817 		 */
3818 		if (bargs->limit_max == 0)
3819 			return 0;
3820 		else
3821 			bargs->limit_max--;
3822 	}
3823 
3824 	return 1;
3825 }
3826 
3827 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3828 {
3829 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3830 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3831 	u64 chunk_type;
3832 	struct btrfs_chunk *chunk;
3833 	struct btrfs_path *path = NULL;
3834 	struct btrfs_key key;
3835 	struct btrfs_key found_key;
3836 	struct extent_buffer *leaf;
3837 	int slot;
3838 	int ret;
3839 	int enospc_errors = 0;
3840 	bool counting = true;
3841 	/* The single value limit and min/max limits use the same bytes in the */
3842 	u64 limit_data = bctl->data.limit;
3843 	u64 limit_meta = bctl->meta.limit;
3844 	u64 limit_sys = bctl->sys.limit;
3845 	u32 count_data = 0;
3846 	u32 count_meta = 0;
3847 	u32 count_sys = 0;
3848 	int chunk_reserved = 0;
3849 
3850 	path = btrfs_alloc_path();
3851 	if (!path) {
3852 		ret = -ENOMEM;
3853 		goto error;
3854 	}
3855 
3856 	/* zero out stat counters */
3857 	spin_lock(&fs_info->balance_lock);
3858 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3859 	spin_unlock(&fs_info->balance_lock);
3860 again:
3861 	if (!counting) {
3862 		/*
3863 		 * The single value limit and min/max limits use the same bytes
3864 		 * in the
3865 		 */
3866 		bctl->data.limit = limit_data;
3867 		bctl->meta.limit = limit_meta;
3868 		bctl->sys.limit = limit_sys;
3869 	}
3870 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3871 	key.offset = (u64)-1;
3872 	key.type = BTRFS_CHUNK_ITEM_KEY;
3873 
3874 	while (1) {
3875 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3876 		    atomic_read(&fs_info->balance_cancel_req)) {
3877 			ret = -ECANCELED;
3878 			goto error;
3879 		}
3880 
3881 		mutex_lock(&fs_info->reclaim_bgs_lock);
3882 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3883 		if (ret < 0) {
3884 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3885 			goto error;
3886 		}
3887 
3888 		/*
3889 		 * this shouldn't happen, it means the last relocate
3890 		 * failed
3891 		 */
3892 		if (ret == 0)
3893 			BUG(); /* FIXME break ? */
3894 
3895 		ret = btrfs_previous_item(chunk_root, path, 0,
3896 					  BTRFS_CHUNK_ITEM_KEY);
3897 		if (ret) {
3898 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3899 			ret = 0;
3900 			break;
3901 		}
3902 
3903 		leaf = path->nodes[0];
3904 		slot = path->slots[0];
3905 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3906 
3907 		if (found_key.objectid != key.objectid) {
3908 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3909 			break;
3910 		}
3911 
3912 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3913 		chunk_type = btrfs_chunk_type(leaf, chunk);
3914 
3915 		if (!counting) {
3916 			spin_lock(&fs_info->balance_lock);
3917 			bctl->stat.considered++;
3918 			spin_unlock(&fs_info->balance_lock);
3919 		}
3920 
3921 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3922 
3923 		btrfs_release_path(path);
3924 		if (!ret) {
3925 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3926 			goto loop;
3927 		}
3928 
3929 		if (counting) {
3930 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3931 			spin_lock(&fs_info->balance_lock);
3932 			bctl->stat.expected++;
3933 			spin_unlock(&fs_info->balance_lock);
3934 
3935 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3936 				count_data++;
3937 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3938 				count_sys++;
3939 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3940 				count_meta++;
3941 
3942 			goto loop;
3943 		}
3944 
3945 		/*
3946 		 * Apply limit_min filter, no need to check if the LIMITS
3947 		 * filter is used, limit_min is 0 by default
3948 		 */
3949 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3950 					count_data < bctl->data.limit_min)
3951 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3952 					count_meta < bctl->meta.limit_min)
3953 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3954 					count_sys < bctl->sys.limit_min)) {
3955 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3956 			goto loop;
3957 		}
3958 
3959 		if (!chunk_reserved) {
3960 			/*
3961 			 * We may be relocating the only data chunk we have,
3962 			 * which could potentially end up with losing data's
3963 			 * raid profile, so lets allocate an empty one in
3964 			 * advance.
3965 			 */
3966 			ret = btrfs_may_alloc_data_chunk(fs_info,
3967 							 found_key.offset);
3968 			if (ret < 0) {
3969 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3970 				goto error;
3971 			} else if (ret == 1) {
3972 				chunk_reserved = 1;
3973 			}
3974 		}
3975 
3976 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3977 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3978 		if (ret == -ENOSPC) {
3979 			enospc_errors++;
3980 		} else if (ret == -ETXTBSY) {
3981 			btrfs_info(fs_info,
3982 	   "skipping relocation of block group %llu due to active swapfile",
3983 				   found_key.offset);
3984 			ret = 0;
3985 		} else if (ret) {
3986 			goto error;
3987 		} else {
3988 			spin_lock(&fs_info->balance_lock);
3989 			bctl->stat.completed++;
3990 			spin_unlock(&fs_info->balance_lock);
3991 		}
3992 loop:
3993 		if (found_key.offset == 0)
3994 			break;
3995 		key.offset = found_key.offset - 1;
3996 	}
3997 
3998 	if (counting) {
3999 		btrfs_release_path(path);
4000 		counting = false;
4001 		goto again;
4002 	}
4003 error:
4004 	btrfs_free_path(path);
4005 	if (enospc_errors) {
4006 		btrfs_info(fs_info, "%d enospc errors during balance",
4007 			   enospc_errors);
4008 		if (!ret)
4009 			ret = -ENOSPC;
4010 	}
4011 
4012 	return ret;
4013 }
4014 
4015 /**
4016  * alloc_profile_is_valid - see if a given profile is valid and reduced
4017  * @flags: profile to validate
4018  * @extended: if true @flags is treated as an extended profile
4019  */
4020 static int alloc_profile_is_valid(u64 flags, int extended)
4021 {
4022 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4023 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4024 
4025 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4026 
4027 	/* 1) check that all other bits are zeroed */
4028 	if (flags & ~mask)
4029 		return 0;
4030 
4031 	/* 2) see if profile is reduced */
4032 	if (flags == 0)
4033 		return !extended; /* "0" is valid for usual profiles */
4034 
4035 	return has_single_bit_set(flags);
4036 }
4037 
4038 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4039 {
4040 	/* cancel requested || normal exit path */
4041 	return atomic_read(&fs_info->balance_cancel_req) ||
4042 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4043 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4044 }
4045 
4046 /*
4047  * Validate target profile against allowed profiles and return true if it's OK.
4048  * Otherwise print the error message and return false.
4049  */
4050 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4051 		const struct btrfs_balance_args *bargs,
4052 		u64 allowed, const char *type)
4053 {
4054 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4055 		return true;
4056 
4057 	/* Profile is valid and does not have bits outside of the allowed set */
4058 	if (alloc_profile_is_valid(bargs->target, 1) &&
4059 	    (bargs->target & ~allowed) == 0)
4060 		return true;
4061 
4062 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4063 			type, btrfs_bg_type_to_raid_name(bargs->target));
4064 	return false;
4065 }
4066 
4067 /*
4068  * Fill @buf with textual description of balance filter flags @bargs, up to
4069  * @size_buf including the terminating null. The output may be trimmed if it
4070  * does not fit into the provided buffer.
4071  */
4072 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4073 				 u32 size_buf)
4074 {
4075 	int ret;
4076 	u32 size_bp = size_buf;
4077 	char *bp = buf;
4078 	u64 flags = bargs->flags;
4079 	char tmp_buf[128] = {'\0'};
4080 
4081 	if (!flags)
4082 		return;
4083 
4084 #define CHECK_APPEND_NOARG(a)						\
4085 	do {								\
4086 		ret = snprintf(bp, size_bp, (a));			\
4087 		if (ret < 0 || ret >= size_bp)				\
4088 			goto out_overflow;				\
4089 		size_bp -= ret;						\
4090 		bp += ret;						\
4091 	} while (0)
4092 
4093 #define CHECK_APPEND_1ARG(a, v1)					\
4094 	do {								\
4095 		ret = snprintf(bp, size_bp, (a), (v1));			\
4096 		if (ret < 0 || ret >= size_bp)				\
4097 			goto out_overflow;				\
4098 		size_bp -= ret;						\
4099 		bp += ret;						\
4100 	} while (0)
4101 
4102 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4103 	do {								\
4104 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4105 		if (ret < 0 || ret >= size_bp)				\
4106 			goto out_overflow;				\
4107 		size_bp -= ret;						\
4108 		bp += ret;						\
4109 	} while (0)
4110 
4111 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4112 		CHECK_APPEND_1ARG("convert=%s,",
4113 				  btrfs_bg_type_to_raid_name(bargs->target));
4114 
4115 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4116 		CHECK_APPEND_NOARG("soft,");
4117 
4118 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4119 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4120 					    sizeof(tmp_buf));
4121 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4122 	}
4123 
4124 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4125 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4126 
4127 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4128 		CHECK_APPEND_2ARG("usage=%u..%u,",
4129 				  bargs->usage_min, bargs->usage_max);
4130 
4131 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4132 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4133 
4134 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4135 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4136 				  bargs->pstart, bargs->pend);
4137 
4138 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4139 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4140 				  bargs->vstart, bargs->vend);
4141 
4142 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4143 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4144 
4145 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4146 		CHECK_APPEND_2ARG("limit=%u..%u,",
4147 				bargs->limit_min, bargs->limit_max);
4148 
4149 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4150 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4151 				  bargs->stripes_min, bargs->stripes_max);
4152 
4153 #undef CHECK_APPEND_2ARG
4154 #undef CHECK_APPEND_1ARG
4155 #undef CHECK_APPEND_NOARG
4156 
4157 out_overflow:
4158 
4159 	if (size_bp < size_buf)
4160 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4161 	else
4162 		buf[0] = '\0';
4163 }
4164 
4165 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4166 {
4167 	u32 size_buf = 1024;
4168 	char tmp_buf[192] = {'\0'};
4169 	char *buf;
4170 	char *bp;
4171 	u32 size_bp = size_buf;
4172 	int ret;
4173 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4174 
4175 	buf = kzalloc(size_buf, GFP_KERNEL);
4176 	if (!buf)
4177 		return;
4178 
4179 	bp = buf;
4180 
4181 #define CHECK_APPEND_1ARG(a, v1)					\
4182 	do {								\
4183 		ret = snprintf(bp, size_bp, (a), (v1));			\
4184 		if (ret < 0 || ret >= size_bp)				\
4185 			goto out_overflow;				\
4186 		size_bp -= ret;						\
4187 		bp += ret;						\
4188 	} while (0)
4189 
4190 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4191 		CHECK_APPEND_1ARG("%s", "-f ");
4192 
4193 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4194 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4195 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4196 	}
4197 
4198 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4199 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4200 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4201 	}
4202 
4203 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4204 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4205 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4206 	}
4207 
4208 #undef CHECK_APPEND_1ARG
4209 
4210 out_overflow:
4211 
4212 	if (size_bp < size_buf)
4213 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4214 	btrfs_info(fs_info, "balance: %s %s",
4215 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4216 		   "resume" : "start", buf);
4217 
4218 	kfree(buf);
4219 }
4220 
4221 /*
4222  * Should be called with balance mutexe held
4223  */
4224 int btrfs_balance(struct btrfs_fs_info *fs_info,
4225 		  struct btrfs_balance_control *bctl,
4226 		  struct btrfs_ioctl_balance_args *bargs)
4227 {
4228 	u64 meta_target, data_target;
4229 	u64 allowed;
4230 	int mixed = 0;
4231 	int ret;
4232 	u64 num_devices;
4233 	unsigned seq;
4234 	bool reducing_redundancy;
4235 	int i;
4236 
4237 	if (btrfs_fs_closing(fs_info) ||
4238 	    atomic_read(&fs_info->balance_pause_req) ||
4239 	    btrfs_should_cancel_balance(fs_info)) {
4240 		ret = -EINVAL;
4241 		goto out;
4242 	}
4243 
4244 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4245 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4246 		mixed = 1;
4247 
4248 	/*
4249 	 * In case of mixed groups both data and meta should be picked,
4250 	 * and identical options should be given for both of them.
4251 	 */
4252 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4253 	if (mixed && (bctl->flags & allowed)) {
4254 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4255 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4256 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4257 			btrfs_err(fs_info,
4258 	  "balance: mixed groups data and metadata options must be the same");
4259 			ret = -EINVAL;
4260 			goto out;
4261 		}
4262 	}
4263 
4264 	/*
4265 	 * rw_devices will not change at the moment, device add/delete/replace
4266 	 * are exclusive
4267 	 */
4268 	num_devices = fs_info->fs_devices->rw_devices;
4269 
4270 	/*
4271 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4272 	 * special bit for it, to make it easier to distinguish.  Thus we need
4273 	 * to set it manually, or balance would refuse the profile.
4274 	 */
4275 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4276 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4277 		if (num_devices >= btrfs_raid_array[i].devs_min)
4278 			allowed |= btrfs_raid_array[i].bg_flag;
4279 
4280 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4281 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4282 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4283 		ret = -EINVAL;
4284 		goto out;
4285 	}
4286 
4287 	/*
4288 	 * Allow to reduce metadata or system integrity only if force set for
4289 	 * profiles with redundancy (copies, parity)
4290 	 */
4291 	allowed = 0;
4292 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4293 		if (btrfs_raid_array[i].ncopies >= 2 ||
4294 		    btrfs_raid_array[i].tolerated_failures >= 1)
4295 			allowed |= btrfs_raid_array[i].bg_flag;
4296 	}
4297 	do {
4298 		seq = read_seqbegin(&fs_info->profiles_lock);
4299 
4300 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4301 		     (fs_info->avail_system_alloc_bits & allowed) &&
4302 		     !(bctl->sys.target & allowed)) ||
4303 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4304 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4305 		     !(bctl->meta.target & allowed)))
4306 			reducing_redundancy = true;
4307 		else
4308 			reducing_redundancy = false;
4309 
4310 		/* if we're not converting, the target field is uninitialized */
4311 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4312 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4313 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4314 			bctl->data.target : fs_info->avail_data_alloc_bits;
4315 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4316 
4317 	if (reducing_redundancy) {
4318 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4319 			btrfs_info(fs_info,
4320 			   "balance: force reducing metadata redundancy");
4321 		} else {
4322 			btrfs_err(fs_info,
4323 	"balance: reduces metadata redundancy, use --force if you want this");
4324 			ret = -EINVAL;
4325 			goto out;
4326 		}
4327 	}
4328 
4329 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4330 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4331 		btrfs_warn(fs_info,
4332 	"balance: metadata profile %s has lower redundancy than data profile %s",
4333 				btrfs_bg_type_to_raid_name(meta_target),
4334 				btrfs_bg_type_to_raid_name(data_target));
4335 	}
4336 
4337 	ret = insert_balance_item(fs_info, bctl);
4338 	if (ret && ret != -EEXIST)
4339 		goto out;
4340 
4341 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4342 		BUG_ON(ret == -EEXIST);
4343 		BUG_ON(fs_info->balance_ctl);
4344 		spin_lock(&fs_info->balance_lock);
4345 		fs_info->balance_ctl = bctl;
4346 		spin_unlock(&fs_info->balance_lock);
4347 	} else {
4348 		BUG_ON(ret != -EEXIST);
4349 		spin_lock(&fs_info->balance_lock);
4350 		update_balance_args(bctl);
4351 		spin_unlock(&fs_info->balance_lock);
4352 	}
4353 
4354 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4355 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4356 	describe_balance_start_or_resume(fs_info);
4357 	mutex_unlock(&fs_info->balance_mutex);
4358 
4359 	ret = __btrfs_balance(fs_info);
4360 
4361 	mutex_lock(&fs_info->balance_mutex);
4362 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4363 		btrfs_info(fs_info, "balance: paused");
4364 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4365 	}
4366 	/*
4367 	 * Balance can be canceled by:
4368 	 *
4369 	 * - Regular cancel request
4370 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4371 	 *
4372 	 * - Fatal signal to "btrfs" process
4373 	 *   Either the signal caught by wait_reserve_ticket() and callers
4374 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4375 	 *   got -ECANCELED.
4376 	 *   Either way, in this case balance_cancel_req = 0, and
4377 	 *   ret == -EINTR or ret == -ECANCELED.
4378 	 *
4379 	 * So here we only check the return value to catch canceled balance.
4380 	 */
4381 	else if (ret == -ECANCELED || ret == -EINTR)
4382 		btrfs_info(fs_info, "balance: canceled");
4383 	else
4384 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4385 
4386 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4387 
4388 	if (bargs) {
4389 		memset(bargs, 0, sizeof(*bargs));
4390 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4391 	}
4392 
4393 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4394 	    balance_need_close(fs_info)) {
4395 		reset_balance_state(fs_info);
4396 		btrfs_exclop_finish(fs_info);
4397 	}
4398 
4399 	wake_up(&fs_info->balance_wait_q);
4400 
4401 	return ret;
4402 out:
4403 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4404 		reset_balance_state(fs_info);
4405 	else
4406 		kfree(bctl);
4407 	btrfs_exclop_finish(fs_info);
4408 
4409 	return ret;
4410 }
4411 
4412 static int balance_kthread(void *data)
4413 {
4414 	struct btrfs_fs_info *fs_info = data;
4415 	int ret = 0;
4416 
4417 	sb_start_write(fs_info->sb);
4418 	mutex_lock(&fs_info->balance_mutex);
4419 	if (fs_info->balance_ctl)
4420 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4421 	mutex_unlock(&fs_info->balance_mutex);
4422 	sb_end_write(fs_info->sb);
4423 
4424 	return ret;
4425 }
4426 
4427 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4428 {
4429 	struct task_struct *tsk;
4430 
4431 	mutex_lock(&fs_info->balance_mutex);
4432 	if (!fs_info->balance_ctl) {
4433 		mutex_unlock(&fs_info->balance_mutex);
4434 		return 0;
4435 	}
4436 	mutex_unlock(&fs_info->balance_mutex);
4437 
4438 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4439 		btrfs_info(fs_info, "balance: resume skipped");
4440 		return 0;
4441 	}
4442 
4443 	spin_lock(&fs_info->super_lock);
4444 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4445 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4446 	spin_unlock(&fs_info->super_lock);
4447 	/*
4448 	 * A ro->rw remount sequence should continue with the paused balance
4449 	 * regardless of who pauses it, system or the user as of now, so set
4450 	 * the resume flag.
4451 	 */
4452 	spin_lock(&fs_info->balance_lock);
4453 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4454 	spin_unlock(&fs_info->balance_lock);
4455 
4456 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4457 	return PTR_ERR_OR_ZERO(tsk);
4458 }
4459 
4460 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4461 {
4462 	struct btrfs_balance_control *bctl;
4463 	struct btrfs_balance_item *item;
4464 	struct btrfs_disk_balance_args disk_bargs;
4465 	struct btrfs_path *path;
4466 	struct extent_buffer *leaf;
4467 	struct btrfs_key key;
4468 	int ret;
4469 
4470 	path = btrfs_alloc_path();
4471 	if (!path)
4472 		return -ENOMEM;
4473 
4474 	key.objectid = BTRFS_BALANCE_OBJECTID;
4475 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4476 	key.offset = 0;
4477 
4478 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4479 	if (ret < 0)
4480 		goto out;
4481 	if (ret > 0) { /* ret = -ENOENT; */
4482 		ret = 0;
4483 		goto out;
4484 	}
4485 
4486 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4487 	if (!bctl) {
4488 		ret = -ENOMEM;
4489 		goto out;
4490 	}
4491 
4492 	leaf = path->nodes[0];
4493 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4494 
4495 	bctl->flags = btrfs_balance_flags(leaf, item);
4496 	bctl->flags |= BTRFS_BALANCE_RESUME;
4497 
4498 	btrfs_balance_data(leaf, item, &disk_bargs);
4499 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4500 	btrfs_balance_meta(leaf, item, &disk_bargs);
4501 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4502 	btrfs_balance_sys(leaf, item, &disk_bargs);
4503 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4504 
4505 	/*
4506 	 * This should never happen, as the paused balance state is recovered
4507 	 * during mount without any chance of other exclusive ops to collide.
4508 	 *
4509 	 * This gives the exclusive op status to balance and keeps in paused
4510 	 * state until user intervention (cancel or umount). If the ownership
4511 	 * cannot be assigned, show a message but do not fail. The balance
4512 	 * is in a paused state and must have fs_info::balance_ctl properly
4513 	 * set up.
4514 	 */
4515 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4516 		btrfs_warn(fs_info,
4517 	"balance: cannot set exclusive op status, resume manually");
4518 
4519 	btrfs_release_path(path);
4520 
4521 	mutex_lock(&fs_info->balance_mutex);
4522 	BUG_ON(fs_info->balance_ctl);
4523 	spin_lock(&fs_info->balance_lock);
4524 	fs_info->balance_ctl = bctl;
4525 	spin_unlock(&fs_info->balance_lock);
4526 	mutex_unlock(&fs_info->balance_mutex);
4527 out:
4528 	btrfs_free_path(path);
4529 	return ret;
4530 }
4531 
4532 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4533 {
4534 	int ret = 0;
4535 
4536 	mutex_lock(&fs_info->balance_mutex);
4537 	if (!fs_info->balance_ctl) {
4538 		mutex_unlock(&fs_info->balance_mutex);
4539 		return -ENOTCONN;
4540 	}
4541 
4542 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4543 		atomic_inc(&fs_info->balance_pause_req);
4544 		mutex_unlock(&fs_info->balance_mutex);
4545 
4546 		wait_event(fs_info->balance_wait_q,
4547 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4548 
4549 		mutex_lock(&fs_info->balance_mutex);
4550 		/* we are good with balance_ctl ripped off from under us */
4551 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4552 		atomic_dec(&fs_info->balance_pause_req);
4553 	} else {
4554 		ret = -ENOTCONN;
4555 	}
4556 
4557 	mutex_unlock(&fs_info->balance_mutex);
4558 	return ret;
4559 }
4560 
4561 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4562 {
4563 	mutex_lock(&fs_info->balance_mutex);
4564 	if (!fs_info->balance_ctl) {
4565 		mutex_unlock(&fs_info->balance_mutex);
4566 		return -ENOTCONN;
4567 	}
4568 
4569 	/*
4570 	 * A paused balance with the item stored on disk can be resumed at
4571 	 * mount time if the mount is read-write. Otherwise it's still paused
4572 	 * and we must not allow cancelling as it deletes the item.
4573 	 */
4574 	if (sb_rdonly(fs_info->sb)) {
4575 		mutex_unlock(&fs_info->balance_mutex);
4576 		return -EROFS;
4577 	}
4578 
4579 	atomic_inc(&fs_info->balance_cancel_req);
4580 	/*
4581 	 * if we are running just wait and return, balance item is
4582 	 * deleted in btrfs_balance in this case
4583 	 */
4584 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4585 		mutex_unlock(&fs_info->balance_mutex);
4586 		wait_event(fs_info->balance_wait_q,
4587 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4588 		mutex_lock(&fs_info->balance_mutex);
4589 	} else {
4590 		mutex_unlock(&fs_info->balance_mutex);
4591 		/*
4592 		 * Lock released to allow other waiters to continue, we'll
4593 		 * reexamine the status again.
4594 		 */
4595 		mutex_lock(&fs_info->balance_mutex);
4596 
4597 		if (fs_info->balance_ctl) {
4598 			reset_balance_state(fs_info);
4599 			btrfs_exclop_finish(fs_info);
4600 			btrfs_info(fs_info, "balance: canceled");
4601 		}
4602 	}
4603 
4604 	BUG_ON(fs_info->balance_ctl ||
4605 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4606 	atomic_dec(&fs_info->balance_cancel_req);
4607 	mutex_unlock(&fs_info->balance_mutex);
4608 	return 0;
4609 }
4610 
4611 int btrfs_uuid_scan_kthread(void *data)
4612 {
4613 	struct btrfs_fs_info *fs_info = data;
4614 	struct btrfs_root *root = fs_info->tree_root;
4615 	struct btrfs_key key;
4616 	struct btrfs_path *path = NULL;
4617 	int ret = 0;
4618 	struct extent_buffer *eb;
4619 	int slot;
4620 	struct btrfs_root_item root_item;
4621 	u32 item_size;
4622 	struct btrfs_trans_handle *trans = NULL;
4623 	bool closing = false;
4624 
4625 	path = btrfs_alloc_path();
4626 	if (!path) {
4627 		ret = -ENOMEM;
4628 		goto out;
4629 	}
4630 
4631 	key.objectid = 0;
4632 	key.type = BTRFS_ROOT_ITEM_KEY;
4633 	key.offset = 0;
4634 
4635 	while (1) {
4636 		if (btrfs_fs_closing(fs_info)) {
4637 			closing = true;
4638 			break;
4639 		}
4640 		ret = btrfs_search_forward(root, &key, path,
4641 				BTRFS_OLDEST_GENERATION);
4642 		if (ret) {
4643 			if (ret > 0)
4644 				ret = 0;
4645 			break;
4646 		}
4647 
4648 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4649 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4650 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4651 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4652 			goto skip;
4653 
4654 		eb = path->nodes[0];
4655 		slot = path->slots[0];
4656 		item_size = btrfs_item_size(eb, slot);
4657 		if (item_size < sizeof(root_item))
4658 			goto skip;
4659 
4660 		read_extent_buffer(eb, &root_item,
4661 				   btrfs_item_ptr_offset(eb, slot),
4662 				   (int)sizeof(root_item));
4663 		if (btrfs_root_refs(&root_item) == 0)
4664 			goto skip;
4665 
4666 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4667 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4668 			if (trans)
4669 				goto update_tree;
4670 
4671 			btrfs_release_path(path);
4672 			/*
4673 			 * 1 - subvol uuid item
4674 			 * 1 - received_subvol uuid item
4675 			 */
4676 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4677 			if (IS_ERR(trans)) {
4678 				ret = PTR_ERR(trans);
4679 				break;
4680 			}
4681 			continue;
4682 		} else {
4683 			goto skip;
4684 		}
4685 update_tree:
4686 		btrfs_release_path(path);
4687 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4688 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4689 						  BTRFS_UUID_KEY_SUBVOL,
4690 						  key.objectid);
4691 			if (ret < 0) {
4692 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4693 					ret);
4694 				break;
4695 			}
4696 		}
4697 
4698 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4699 			ret = btrfs_uuid_tree_add(trans,
4700 						  root_item.received_uuid,
4701 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4702 						  key.objectid);
4703 			if (ret < 0) {
4704 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4705 					ret);
4706 				break;
4707 			}
4708 		}
4709 
4710 skip:
4711 		btrfs_release_path(path);
4712 		if (trans) {
4713 			ret = btrfs_end_transaction(trans);
4714 			trans = NULL;
4715 			if (ret)
4716 				break;
4717 		}
4718 
4719 		if (key.offset < (u64)-1) {
4720 			key.offset++;
4721 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4722 			key.offset = 0;
4723 			key.type = BTRFS_ROOT_ITEM_KEY;
4724 		} else if (key.objectid < (u64)-1) {
4725 			key.offset = 0;
4726 			key.type = BTRFS_ROOT_ITEM_KEY;
4727 			key.objectid++;
4728 		} else {
4729 			break;
4730 		}
4731 		cond_resched();
4732 	}
4733 
4734 out:
4735 	btrfs_free_path(path);
4736 	if (trans && !IS_ERR(trans))
4737 		btrfs_end_transaction(trans);
4738 	if (ret)
4739 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4740 	else if (!closing)
4741 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4742 	up(&fs_info->uuid_tree_rescan_sem);
4743 	return 0;
4744 }
4745 
4746 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4747 {
4748 	struct btrfs_trans_handle *trans;
4749 	struct btrfs_root *tree_root = fs_info->tree_root;
4750 	struct btrfs_root *uuid_root;
4751 	struct task_struct *task;
4752 	int ret;
4753 
4754 	/*
4755 	 * 1 - root node
4756 	 * 1 - root item
4757 	 */
4758 	trans = btrfs_start_transaction(tree_root, 2);
4759 	if (IS_ERR(trans))
4760 		return PTR_ERR(trans);
4761 
4762 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4763 	if (IS_ERR(uuid_root)) {
4764 		ret = PTR_ERR(uuid_root);
4765 		btrfs_abort_transaction(trans, ret);
4766 		btrfs_end_transaction(trans);
4767 		return ret;
4768 	}
4769 
4770 	fs_info->uuid_root = uuid_root;
4771 
4772 	ret = btrfs_commit_transaction(trans);
4773 	if (ret)
4774 		return ret;
4775 
4776 	down(&fs_info->uuid_tree_rescan_sem);
4777 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4778 	if (IS_ERR(task)) {
4779 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4780 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4781 		up(&fs_info->uuid_tree_rescan_sem);
4782 		return PTR_ERR(task);
4783 	}
4784 
4785 	return 0;
4786 }
4787 
4788 /*
4789  * shrinking a device means finding all of the device extents past
4790  * the new size, and then following the back refs to the chunks.
4791  * The chunk relocation code actually frees the device extent
4792  */
4793 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4794 {
4795 	struct btrfs_fs_info *fs_info = device->fs_info;
4796 	struct btrfs_root *root = fs_info->dev_root;
4797 	struct btrfs_trans_handle *trans;
4798 	struct btrfs_dev_extent *dev_extent = NULL;
4799 	struct btrfs_path *path;
4800 	u64 length;
4801 	u64 chunk_offset;
4802 	int ret;
4803 	int slot;
4804 	int failed = 0;
4805 	bool retried = false;
4806 	struct extent_buffer *l;
4807 	struct btrfs_key key;
4808 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4809 	u64 old_total = btrfs_super_total_bytes(super_copy);
4810 	u64 old_size = btrfs_device_get_total_bytes(device);
4811 	u64 diff;
4812 	u64 start;
4813 
4814 	new_size = round_down(new_size, fs_info->sectorsize);
4815 	start = new_size;
4816 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4817 
4818 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4819 		return -EINVAL;
4820 
4821 	path = btrfs_alloc_path();
4822 	if (!path)
4823 		return -ENOMEM;
4824 
4825 	path->reada = READA_BACK;
4826 
4827 	trans = btrfs_start_transaction(root, 0);
4828 	if (IS_ERR(trans)) {
4829 		btrfs_free_path(path);
4830 		return PTR_ERR(trans);
4831 	}
4832 
4833 	mutex_lock(&fs_info->chunk_mutex);
4834 
4835 	btrfs_device_set_total_bytes(device, new_size);
4836 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4837 		device->fs_devices->total_rw_bytes -= diff;
4838 		atomic64_sub(diff, &fs_info->free_chunk_space);
4839 	}
4840 
4841 	/*
4842 	 * Once the device's size has been set to the new size, ensure all
4843 	 * in-memory chunks are synced to disk so that the loop below sees them
4844 	 * and relocates them accordingly.
4845 	 */
4846 	if (contains_pending_extent(device, &start, diff)) {
4847 		mutex_unlock(&fs_info->chunk_mutex);
4848 		ret = btrfs_commit_transaction(trans);
4849 		if (ret)
4850 			goto done;
4851 	} else {
4852 		mutex_unlock(&fs_info->chunk_mutex);
4853 		btrfs_end_transaction(trans);
4854 	}
4855 
4856 again:
4857 	key.objectid = device->devid;
4858 	key.offset = (u64)-1;
4859 	key.type = BTRFS_DEV_EXTENT_KEY;
4860 
4861 	do {
4862 		mutex_lock(&fs_info->reclaim_bgs_lock);
4863 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4864 		if (ret < 0) {
4865 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4866 			goto done;
4867 		}
4868 
4869 		ret = btrfs_previous_item(root, path, 0, key.type);
4870 		if (ret) {
4871 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4872 			if (ret < 0)
4873 				goto done;
4874 			ret = 0;
4875 			btrfs_release_path(path);
4876 			break;
4877 		}
4878 
4879 		l = path->nodes[0];
4880 		slot = path->slots[0];
4881 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4882 
4883 		if (key.objectid != device->devid) {
4884 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4885 			btrfs_release_path(path);
4886 			break;
4887 		}
4888 
4889 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4890 		length = btrfs_dev_extent_length(l, dev_extent);
4891 
4892 		if (key.offset + length <= new_size) {
4893 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4894 			btrfs_release_path(path);
4895 			break;
4896 		}
4897 
4898 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4899 		btrfs_release_path(path);
4900 
4901 		/*
4902 		 * We may be relocating the only data chunk we have,
4903 		 * which could potentially end up with losing data's
4904 		 * raid profile, so lets allocate an empty one in
4905 		 * advance.
4906 		 */
4907 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4908 		if (ret < 0) {
4909 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4910 			goto done;
4911 		}
4912 
4913 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4914 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4915 		if (ret == -ENOSPC) {
4916 			failed++;
4917 		} else if (ret) {
4918 			if (ret == -ETXTBSY) {
4919 				btrfs_warn(fs_info,
4920 		   "could not shrink block group %llu due to active swapfile",
4921 					   chunk_offset);
4922 			}
4923 			goto done;
4924 		}
4925 	} while (key.offset-- > 0);
4926 
4927 	if (failed && !retried) {
4928 		failed = 0;
4929 		retried = true;
4930 		goto again;
4931 	} else if (failed && retried) {
4932 		ret = -ENOSPC;
4933 		goto done;
4934 	}
4935 
4936 	/* Shrinking succeeded, else we would be at "done". */
4937 	trans = btrfs_start_transaction(root, 0);
4938 	if (IS_ERR(trans)) {
4939 		ret = PTR_ERR(trans);
4940 		goto done;
4941 	}
4942 
4943 	mutex_lock(&fs_info->chunk_mutex);
4944 	/* Clear all state bits beyond the shrunk device size */
4945 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4946 			  CHUNK_STATE_MASK);
4947 
4948 	btrfs_device_set_disk_total_bytes(device, new_size);
4949 	if (list_empty(&device->post_commit_list))
4950 		list_add_tail(&device->post_commit_list,
4951 			      &trans->transaction->dev_update_list);
4952 
4953 	WARN_ON(diff > old_total);
4954 	btrfs_set_super_total_bytes(super_copy,
4955 			round_down(old_total - diff, fs_info->sectorsize));
4956 	mutex_unlock(&fs_info->chunk_mutex);
4957 
4958 	btrfs_reserve_chunk_metadata(trans, false);
4959 	/* Now btrfs_update_device() will change the on-disk size. */
4960 	ret = btrfs_update_device(trans, device);
4961 	btrfs_trans_release_chunk_metadata(trans);
4962 	if (ret < 0) {
4963 		btrfs_abort_transaction(trans, ret);
4964 		btrfs_end_transaction(trans);
4965 	} else {
4966 		ret = btrfs_commit_transaction(trans);
4967 	}
4968 done:
4969 	btrfs_free_path(path);
4970 	if (ret) {
4971 		mutex_lock(&fs_info->chunk_mutex);
4972 		btrfs_device_set_total_bytes(device, old_size);
4973 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4974 			device->fs_devices->total_rw_bytes += diff;
4975 		atomic64_add(diff, &fs_info->free_chunk_space);
4976 		mutex_unlock(&fs_info->chunk_mutex);
4977 	}
4978 	return ret;
4979 }
4980 
4981 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4982 			   struct btrfs_key *key,
4983 			   struct btrfs_chunk *chunk, int item_size)
4984 {
4985 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4986 	struct btrfs_disk_key disk_key;
4987 	u32 array_size;
4988 	u8 *ptr;
4989 
4990 	lockdep_assert_held(&fs_info->chunk_mutex);
4991 
4992 	array_size = btrfs_super_sys_array_size(super_copy);
4993 	if (array_size + item_size + sizeof(disk_key)
4994 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4995 		return -EFBIG;
4996 
4997 	ptr = super_copy->sys_chunk_array + array_size;
4998 	btrfs_cpu_key_to_disk(&disk_key, key);
4999 	memcpy(ptr, &disk_key, sizeof(disk_key));
5000 	ptr += sizeof(disk_key);
5001 	memcpy(ptr, chunk, item_size);
5002 	item_size += sizeof(disk_key);
5003 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5004 
5005 	return 0;
5006 }
5007 
5008 /*
5009  * sort the devices in descending order by max_avail, total_avail
5010  */
5011 static int btrfs_cmp_device_info(const void *a, const void *b)
5012 {
5013 	const struct btrfs_device_info *di_a = a;
5014 	const struct btrfs_device_info *di_b = b;
5015 
5016 	if (di_a->max_avail > di_b->max_avail)
5017 		return -1;
5018 	if (di_a->max_avail < di_b->max_avail)
5019 		return 1;
5020 	if (di_a->total_avail > di_b->total_avail)
5021 		return -1;
5022 	if (di_a->total_avail < di_b->total_avail)
5023 		return 1;
5024 	return 0;
5025 }
5026 
5027 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5028 {
5029 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5030 		return;
5031 
5032 	btrfs_set_fs_incompat(info, RAID56);
5033 }
5034 
5035 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5036 {
5037 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5038 		return;
5039 
5040 	btrfs_set_fs_incompat(info, RAID1C34);
5041 }
5042 
5043 /*
5044  * Structure used internally for btrfs_create_chunk() function.
5045  * Wraps needed parameters.
5046  */
5047 struct alloc_chunk_ctl {
5048 	u64 start;
5049 	u64 type;
5050 	/* Total number of stripes to allocate */
5051 	int num_stripes;
5052 	/* sub_stripes info for map */
5053 	int sub_stripes;
5054 	/* Stripes per device */
5055 	int dev_stripes;
5056 	/* Maximum number of devices to use */
5057 	int devs_max;
5058 	/* Minimum number of devices to use */
5059 	int devs_min;
5060 	/* ndevs has to be a multiple of this */
5061 	int devs_increment;
5062 	/* Number of copies */
5063 	int ncopies;
5064 	/* Number of stripes worth of bytes to store parity information */
5065 	int nparity;
5066 	u64 max_stripe_size;
5067 	u64 max_chunk_size;
5068 	u64 dev_extent_min;
5069 	u64 stripe_size;
5070 	u64 chunk_size;
5071 	int ndevs;
5072 };
5073 
5074 static void init_alloc_chunk_ctl_policy_regular(
5075 				struct btrfs_fs_devices *fs_devices,
5076 				struct alloc_chunk_ctl *ctl)
5077 {
5078 	struct btrfs_space_info *space_info;
5079 
5080 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5081 	ASSERT(space_info);
5082 
5083 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5084 	ctl->max_stripe_size = ctl->max_chunk_size;
5085 
5086 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5087 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5088 
5089 	/* We don't want a chunk larger than 10% of writable space */
5090 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5091 				  ctl->max_chunk_size);
5092 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5093 }
5094 
5095 static void init_alloc_chunk_ctl_policy_zoned(
5096 				      struct btrfs_fs_devices *fs_devices,
5097 				      struct alloc_chunk_ctl *ctl)
5098 {
5099 	u64 zone_size = fs_devices->fs_info->zone_size;
5100 	u64 limit;
5101 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5102 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5103 	u64 min_chunk_size = min_data_stripes * zone_size;
5104 	u64 type = ctl->type;
5105 
5106 	ctl->max_stripe_size = zone_size;
5107 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5108 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5109 						 zone_size);
5110 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5111 		ctl->max_chunk_size = ctl->max_stripe_size;
5112 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5113 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5114 		ctl->devs_max = min_t(int, ctl->devs_max,
5115 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5116 	} else {
5117 		BUG();
5118 	}
5119 
5120 	/* We don't want a chunk larger than 10% of writable space */
5121 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5122 			       zone_size),
5123 		    min_chunk_size);
5124 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5125 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5126 }
5127 
5128 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5129 				 struct alloc_chunk_ctl *ctl)
5130 {
5131 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5132 
5133 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5134 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5135 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5136 	if (!ctl->devs_max)
5137 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5138 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5139 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5140 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5141 	ctl->nparity = btrfs_raid_array[index].nparity;
5142 	ctl->ndevs = 0;
5143 
5144 	switch (fs_devices->chunk_alloc_policy) {
5145 	case BTRFS_CHUNK_ALLOC_REGULAR:
5146 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5147 		break;
5148 	case BTRFS_CHUNK_ALLOC_ZONED:
5149 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5150 		break;
5151 	default:
5152 		BUG();
5153 	}
5154 }
5155 
5156 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5157 			      struct alloc_chunk_ctl *ctl,
5158 			      struct btrfs_device_info *devices_info)
5159 {
5160 	struct btrfs_fs_info *info = fs_devices->fs_info;
5161 	struct btrfs_device *device;
5162 	u64 total_avail;
5163 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5164 	int ret;
5165 	int ndevs = 0;
5166 	u64 max_avail;
5167 	u64 dev_offset;
5168 
5169 	/*
5170 	 * in the first pass through the devices list, we gather information
5171 	 * about the available holes on each device.
5172 	 */
5173 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5174 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5175 			WARN(1, KERN_ERR
5176 			       "BTRFS: read-only device in alloc_list\n");
5177 			continue;
5178 		}
5179 
5180 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5181 					&device->dev_state) ||
5182 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5183 			continue;
5184 
5185 		if (device->total_bytes > device->bytes_used)
5186 			total_avail = device->total_bytes - device->bytes_used;
5187 		else
5188 			total_avail = 0;
5189 
5190 		/* If there is no space on this device, skip it. */
5191 		if (total_avail < ctl->dev_extent_min)
5192 			continue;
5193 
5194 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5195 					   &max_avail);
5196 		if (ret && ret != -ENOSPC)
5197 			return ret;
5198 
5199 		if (ret == 0)
5200 			max_avail = dev_extent_want;
5201 
5202 		if (max_avail < ctl->dev_extent_min) {
5203 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5204 				btrfs_debug(info,
5205 			"%s: devid %llu has no free space, have=%llu want=%llu",
5206 					    __func__, device->devid, max_avail,
5207 					    ctl->dev_extent_min);
5208 			continue;
5209 		}
5210 
5211 		if (ndevs == fs_devices->rw_devices) {
5212 			WARN(1, "%s: found more than %llu devices\n",
5213 			     __func__, fs_devices->rw_devices);
5214 			break;
5215 		}
5216 		devices_info[ndevs].dev_offset = dev_offset;
5217 		devices_info[ndevs].max_avail = max_avail;
5218 		devices_info[ndevs].total_avail = total_avail;
5219 		devices_info[ndevs].dev = device;
5220 		++ndevs;
5221 	}
5222 	ctl->ndevs = ndevs;
5223 
5224 	/*
5225 	 * now sort the devices by hole size / available space
5226 	 */
5227 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5228 	     btrfs_cmp_device_info, NULL);
5229 
5230 	return 0;
5231 }
5232 
5233 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5234 				      struct btrfs_device_info *devices_info)
5235 {
5236 	/* Number of stripes that count for block group size */
5237 	int data_stripes;
5238 
5239 	/*
5240 	 * The primary goal is to maximize the number of stripes, so use as
5241 	 * many devices as possible, even if the stripes are not maximum sized.
5242 	 *
5243 	 * The DUP profile stores more than one stripe per device, the
5244 	 * max_avail is the total size so we have to adjust.
5245 	 */
5246 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5247 				   ctl->dev_stripes);
5248 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5249 
5250 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5251 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5252 
5253 	/*
5254 	 * Use the number of data stripes to figure out how big this chunk is
5255 	 * really going to be in terms of logical address space, and compare
5256 	 * that answer with the max chunk size. If it's higher, we try to
5257 	 * reduce stripe_size.
5258 	 */
5259 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5260 		/*
5261 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5262 		 * then use it, unless it ends up being even bigger than the
5263 		 * previous value we had already.
5264 		 */
5265 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5266 							data_stripes), SZ_16M),
5267 				       ctl->stripe_size);
5268 	}
5269 
5270 	/* Align to BTRFS_STRIPE_LEN */
5271 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5272 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5273 
5274 	return 0;
5275 }
5276 
5277 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5278 				    struct btrfs_device_info *devices_info)
5279 {
5280 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5281 	/* Number of stripes that count for block group size */
5282 	int data_stripes;
5283 
5284 	/*
5285 	 * It should hold because:
5286 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5287 	 */
5288 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5289 
5290 	ctl->stripe_size = zone_size;
5291 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5292 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5293 
5294 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5295 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5296 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5297 					     ctl->stripe_size) + ctl->nparity,
5298 				     ctl->dev_stripes);
5299 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5300 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5301 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5302 	}
5303 
5304 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5305 
5306 	return 0;
5307 }
5308 
5309 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5310 			      struct alloc_chunk_ctl *ctl,
5311 			      struct btrfs_device_info *devices_info)
5312 {
5313 	struct btrfs_fs_info *info = fs_devices->fs_info;
5314 
5315 	/*
5316 	 * Round down to number of usable stripes, devs_increment can be any
5317 	 * number so we can't use round_down() that requires power of 2, while
5318 	 * rounddown is safe.
5319 	 */
5320 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5321 
5322 	if (ctl->ndevs < ctl->devs_min) {
5323 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5324 			btrfs_debug(info,
5325 	"%s: not enough devices with free space: have=%d minimum required=%d",
5326 				    __func__, ctl->ndevs, ctl->devs_min);
5327 		}
5328 		return -ENOSPC;
5329 	}
5330 
5331 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5332 
5333 	switch (fs_devices->chunk_alloc_policy) {
5334 	case BTRFS_CHUNK_ALLOC_REGULAR:
5335 		return decide_stripe_size_regular(ctl, devices_info);
5336 	case BTRFS_CHUNK_ALLOC_ZONED:
5337 		return decide_stripe_size_zoned(ctl, devices_info);
5338 	default:
5339 		BUG();
5340 	}
5341 }
5342 
5343 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5344 			struct alloc_chunk_ctl *ctl,
5345 			struct btrfs_device_info *devices_info)
5346 {
5347 	struct btrfs_fs_info *info = trans->fs_info;
5348 	struct map_lookup *map = NULL;
5349 	struct extent_map_tree *em_tree;
5350 	struct btrfs_block_group *block_group;
5351 	struct extent_map *em;
5352 	u64 start = ctl->start;
5353 	u64 type = ctl->type;
5354 	int ret;
5355 	int i;
5356 	int j;
5357 
5358 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5359 	if (!map)
5360 		return ERR_PTR(-ENOMEM);
5361 	map->num_stripes = ctl->num_stripes;
5362 
5363 	for (i = 0; i < ctl->ndevs; ++i) {
5364 		for (j = 0; j < ctl->dev_stripes; ++j) {
5365 			int s = i * ctl->dev_stripes + j;
5366 			map->stripes[s].dev = devices_info[i].dev;
5367 			map->stripes[s].physical = devices_info[i].dev_offset +
5368 						   j * ctl->stripe_size;
5369 		}
5370 	}
5371 	map->stripe_len = BTRFS_STRIPE_LEN;
5372 	map->io_align = BTRFS_STRIPE_LEN;
5373 	map->io_width = BTRFS_STRIPE_LEN;
5374 	map->type = type;
5375 	map->sub_stripes = ctl->sub_stripes;
5376 
5377 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5378 
5379 	em = alloc_extent_map();
5380 	if (!em) {
5381 		kfree(map);
5382 		return ERR_PTR(-ENOMEM);
5383 	}
5384 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5385 	em->map_lookup = map;
5386 	em->start = start;
5387 	em->len = ctl->chunk_size;
5388 	em->block_start = 0;
5389 	em->block_len = em->len;
5390 	em->orig_block_len = ctl->stripe_size;
5391 
5392 	em_tree = &info->mapping_tree;
5393 	write_lock(&em_tree->lock);
5394 	ret = add_extent_mapping(em_tree, em, 0);
5395 	if (ret) {
5396 		write_unlock(&em_tree->lock);
5397 		free_extent_map(em);
5398 		return ERR_PTR(ret);
5399 	}
5400 	write_unlock(&em_tree->lock);
5401 
5402 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5403 	if (IS_ERR(block_group))
5404 		goto error_del_extent;
5405 
5406 	for (i = 0; i < map->num_stripes; i++) {
5407 		struct btrfs_device *dev = map->stripes[i].dev;
5408 
5409 		btrfs_device_set_bytes_used(dev,
5410 					    dev->bytes_used + ctl->stripe_size);
5411 		if (list_empty(&dev->post_commit_list))
5412 			list_add_tail(&dev->post_commit_list,
5413 				      &trans->transaction->dev_update_list);
5414 	}
5415 
5416 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5417 		     &info->free_chunk_space);
5418 
5419 	free_extent_map(em);
5420 	check_raid56_incompat_flag(info, type);
5421 	check_raid1c34_incompat_flag(info, type);
5422 
5423 	return block_group;
5424 
5425 error_del_extent:
5426 	write_lock(&em_tree->lock);
5427 	remove_extent_mapping(em_tree, em);
5428 	write_unlock(&em_tree->lock);
5429 
5430 	/* One for our allocation */
5431 	free_extent_map(em);
5432 	/* One for the tree reference */
5433 	free_extent_map(em);
5434 
5435 	return block_group;
5436 }
5437 
5438 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5439 					    u64 type)
5440 {
5441 	struct btrfs_fs_info *info = trans->fs_info;
5442 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5443 	struct btrfs_device_info *devices_info = NULL;
5444 	struct alloc_chunk_ctl ctl;
5445 	struct btrfs_block_group *block_group;
5446 	int ret;
5447 
5448 	lockdep_assert_held(&info->chunk_mutex);
5449 
5450 	if (!alloc_profile_is_valid(type, 0)) {
5451 		ASSERT(0);
5452 		return ERR_PTR(-EINVAL);
5453 	}
5454 
5455 	if (list_empty(&fs_devices->alloc_list)) {
5456 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5457 			btrfs_debug(info, "%s: no writable device", __func__);
5458 		return ERR_PTR(-ENOSPC);
5459 	}
5460 
5461 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5462 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5463 		ASSERT(0);
5464 		return ERR_PTR(-EINVAL);
5465 	}
5466 
5467 	ctl.start = find_next_chunk(info);
5468 	ctl.type = type;
5469 	init_alloc_chunk_ctl(fs_devices, &ctl);
5470 
5471 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5472 			       GFP_NOFS);
5473 	if (!devices_info)
5474 		return ERR_PTR(-ENOMEM);
5475 
5476 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5477 	if (ret < 0) {
5478 		block_group = ERR_PTR(ret);
5479 		goto out;
5480 	}
5481 
5482 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5483 	if (ret < 0) {
5484 		block_group = ERR_PTR(ret);
5485 		goto out;
5486 	}
5487 
5488 	block_group = create_chunk(trans, &ctl, devices_info);
5489 
5490 out:
5491 	kfree(devices_info);
5492 	return block_group;
5493 }
5494 
5495 /*
5496  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5497  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5498  * chunks.
5499  *
5500  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5501  * phases.
5502  */
5503 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5504 				     struct btrfs_block_group *bg)
5505 {
5506 	struct btrfs_fs_info *fs_info = trans->fs_info;
5507 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5508 	struct btrfs_key key;
5509 	struct btrfs_chunk *chunk;
5510 	struct btrfs_stripe *stripe;
5511 	struct extent_map *em;
5512 	struct map_lookup *map;
5513 	size_t item_size;
5514 	int i;
5515 	int ret;
5516 
5517 	/*
5518 	 * We take the chunk_mutex for 2 reasons:
5519 	 *
5520 	 * 1) Updates and insertions in the chunk btree must be done while holding
5521 	 *    the chunk_mutex, as well as updating the system chunk array in the
5522 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5523 	 *    details;
5524 	 *
5525 	 * 2) To prevent races with the final phase of a device replace operation
5526 	 *    that replaces the device object associated with the map's stripes,
5527 	 *    because the device object's id can change at any time during that
5528 	 *    final phase of the device replace operation
5529 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5530 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5531 	 *    which would cause a failure when updating the device item, which does
5532 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5533 	 *    Here we can't use the device_list_mutex because our caller already
5534 	 *    has locked the chunk_mutex, and the final phase of device replace
5535 	 *    acquires both mutexes - first the device_list_mutex and then the
5536 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5537 	 *    concurrent device replace.
5538 	 */
5539 	lockdep_assert_held(&fs_info->chunk_mutex);
5540 
5541 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5542 	if (IS_ERR(em)) {
5543 		ret = PTR_ERR(em);
5544 		btrfs_abort_transaction(trans, ret);
5545 		return ret;
5546 	}
5547 
5548 	map = em->map_lookup;
5549 	item_size = btrfs_chunk_item_size(map->num_stripes);
5550 
5551 	chunk = kzalloc(item_size, GFP_NOFS);
5552 	if (!chunk) {
5553 		ret = -ENOMEM;
5554 		btrfs_abort_transaction(trans, ret);
5555 		goto out;
5556 	}
5557 
5558 	for (i = 0; i < map->num_stripes; i++) {
5559 		struct btrfs_device *device = map->stripes[i].dev;
5560 
5561 		ret = btrfs_update_device(trans, device);
5562 		if (ret)
5563 			goto out;
5564 	}
5565 
5566 	stripe = &chunk->stripe;
5567 	for (i = 0; i < map->num_stripes; i++) {
5568 		struct btrfs_device *device = map->stripes[i].dev;
5569 		const u64 dev_offset = map->stripes[i].physical;
5570 
5571 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5572 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5573 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5574 		stripe++;
5575 	}
5576 
5577 	btrfs_set_stack_chunk_length(chunk, bg->length);
5578 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5579 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5580 	btrfs_set_stack_chunk_type(chunk, map->type);
5581 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5582 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5583 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5584 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5585 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5586 
5587 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5588 	key.type = BTRFS_CHUNK_ITEM_KEY;
5589 	key.offset = bg->start;
5590 
5591 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5592 	if (ret)
5593 		goto out;
5594 
5595 	bg->chunk_item_inserted = 1;
5596 
5597 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5598 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5599 		if (ret)
5600 			goto out;
5601 	}
5602 
5603 out:
5604 	kfree(chunk);
5605 	free_extent_map(em);
5606 	return ret;
5607 }
5608 
5609 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5610 {
5611 	struct btrfs_fs_info *fs_info = trans->fs_info;
5612 	u64 alloc_profile;
5613 	struct btrfs_block_group *meta_bg;
5614 	struct btrfs_block_group *sys_bg;
5615 
5616 	/*
5617 	 * When adding a new device for sprouting, the seed device is read-only
5618 	 * so we must first allocate a metadata and a system chunk. But before
5619 	 * adding the block group items to the extent, device and chunk btrees,
5620 	 * we must first:
5621 	 *
5622 	 * 1) Create both chunks without doing any changes to the btrees, as
5623 	 *    otherwise we would get -ENOSPC since the block groups from the
5624 	 *    seed device are read-only;
5625 	 *
5626 	 * 2) Add the device item for the new sprout device - finishing the setup
5627 	 *    of a new block group requires updating the device item in the chunk
5628 	 *    btree, so it must exist when we attempt to do it. The previous step
5629 	 *    ensures this does not fail with -ENOSPC.
5630 	 *
5631 	 * After that we can add the block group items to their btrees:
5632 	 * update existing device item in the chunk btree, add a new block group
5633 	 * item to the extent btree, add a new chunk item to the chunk btree and
5634 	 * finally add the new device extent items to the devices btree.
5635 	 */
5636 
5637 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5638 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5639 	if (IS_ERR(meta_bg))
5640 		return PTR_ERR(meta_bg);
5641 
5642 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5643 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5644 	if (IS_ERR(sys_bg))
5645 		return PTR_ERR(sys_bg);
5646 
5647 	return 0;
5648 }
5649 
5650 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5651 {
5652 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5653 
5654 	return btrfs_raid_array[index].tolerated_failures;
5655 }
5656 
5657 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5658 {
5659 	struct extent_map *em;
5660 	struct map_lookup *map;
5661 	int miss_ndevs = 0;
5662 	int i;
5663 	bool ret = true;
5664 
5665 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5666 	if (IS_ERR(em))
5667 		return false;
5668 
5669 	map = em->map_lookup;
5670 	for (i = 0; i < map->num_stripes; i++) {
5671 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5672 					&map->stripes[i].dev->dev_state)) {
5673 			miss_ndevs++;
5674 			continue;
5675 		}
5676 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5677 					&map->stripes[i].dev->dev_state)) {
5678 			ret = false;
5679 			goto end;
5680 		}
5681 	}
5682 
5683 	/*
5684 	 * If the number of missing devices is larger than max errors, we can
5685 	 * not write the data into that chunk successfully.
5686 	 */
5687 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5688 		ret = false;
5689 end:
5690 	free_extent_map(em);
5691 	return ret;
5692 }
5693 
5694 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5695 {
5696 	struct extent_map *em;
5697 
5698 	while (1) {
5699 		write_lock(&tree->lock);
5700 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5701 		if (em)
5702 			remove_extent_mapping(tree, em);
5703 		write_unlock(&tree->lock);
5704 		if (!em)
5705 			break;
5706 		/* once for us */
5707 		free_extent_map(em);
5708 		/* once for the tree */
5709 		free_extent_map(em);
5710 	}
5711 }
5712 
5713 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5714 {
5715 	struct extent_map *em;
5716 	struct map_lookup *map;
5717 	enum btrfs_raid_types index;
5718 	int ret = 1;
5719 
5720 	em = btrfs_get_chunk_map(fs_info, logical, len);
5721 	if (IS_ERR(em))
5722 		/*
5723 		 * We could return errors for these cases, but that could get
5724 		 * ugly and we'd probably do the same thing which is just not do
5725 		 * anything else and exit, so return 1 so the callers don't try
5726 		 * to use other copies.
5727 		 */
5728 		return 1;
5729 
5730 	map = em->map_lookup;
5731 	index = btrfs_bg_flags_to_raid_index(map->type);
5732 
5733 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5734 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5735 		ret = btrfs_raid_array[index].ncopies;
5736 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5737 		ret = 2;
5738 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5739 		/*
5740 		 * There could be two corrupted data stripes, we need
5741 		 * to loop retry in order to rebuild the correct data.
5742 		 *
5743 		 * Fail a stripe at a time on every retry except the
5744 		 * stripe under reconstruction.
5745 		 */
5746 		ret = map->num_stripes;
5747 	free_extent_map(em);
5748 
5749 	down_read(&fs_info->dev_replace.rwsem);
5750 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5751 	    fs_info->dev_replace.tgtdev)
5752 		ret++;
5753 	up_read(&fs_info->dev_replace.rwsem);
5754 
5755 	return ret;
5756 }
5757 
5758 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5759 				    u64 logical)
5760 {
5761 	struct extent_map *em;
5762 	struct map_lookup *map;
5763 	unsigned long len = fs_info->sectorsize;
5764 
5765 	if (!btrfs_fs_incompat(fs_info, RAID56))
5766 		return len;
5767 
5768 	em = btrfs_get_chunk_map(fs_info, logical, len);
5769 
5770 	if (!WARN_ON(IS_ERR(em))) {
5771 		map = em->map_lookup;
5772 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5773 			len = map->stripe_len * nr_data_stripes(map);
5774 		free_extent_map(em);
5775 	}
5776 	return len;
5777 }
5778 
5779 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5780 {
5781 	struct extent_map *em;
5782 	struct map_lookup *map;
5783 	int ret = 0;
5784 
5785 	if (!btrfs_fs_incompat(fs_info, RAID56))
5786 		return 0;
5787 
5788 	em = btrfs_get_chunk_map(fs_info, logical, len);
5789 
5790 	if(!WARN_ON(IS_ERR(em))) {
5791 		map = em->map_lookup;
5792 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5793 			ret = 1;
5794 		free_extent_map(em);
5795 	}
5796 	return ret;
5797 }
5798 
5799 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5800 			    struct map_lookup *map, int first,
5801 			    int dev_replace_is_ongoing)
5802 {
5803 	int i;
5804 	int num_stripes;
5805 	int preferred_mirror;
5806 	int tolerance;
5807 	struct btrfs_device *srcdev;
5808 
5809 	ASSERT((map->type &
5810 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5811 
5812 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5813 		num_stripes = map->sub_stripes;
5814 	else
5815 		num_stripes = map->num_stripes;
5816 
5817 	switch (fs_info->fs_devices->read_policy) {
5818 	default:
5819 		/* Shouldn't happen, just warn and use pid instead of failing */
5820 		btrfs_warn_rl(fs_info,
5821 			      "unknown read_policy type %u, reset to pid",
5822 			      fs_info->fs_devices->read_policy);
5823 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5824 		fallthrough;
5825 	case BTRFS_READ_POLICY_PID:
5826 		preferred_mirror = first + (current->pid % num_stripes);
5827 		break;
5828 	}
5829 
5830 	if (dev_replace_is_ongoing &&
5831 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5832 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5833 		srcdev = fs_info->dev_replace.srcdev;
5834 	else
5835 		srcdev = NULL;
5836 
5837 	/*
5838 	 * try to avoid the drive that is the source drive for a
5839 	 * dev-replace procedure, only choose it if no other non-missing
5840 	 * mirror is available
5841 	 */
5842 	for (tolerance = 0; tolerance < 2; tolerance++) {
5843 		if (map->stripes[preferred_mirror].dev->bdev &&
5844 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5845 			return preferred_mirror;
5846 		for (i = first; i < first + num_stripes; i++) {
5847 			if (map->stripes[i].dev->bdev &&
5848 			    (tolerance || map->stripes[i].dev != srcdev))
5849 				return i;
5850 		}
5851 	}
5852 
5853 	/* we couldn't find one that doesn't fail.  Just return something
5854 	 * and the io error handling code will clean up eventually
5855 	 */
5856 	return preferred_mirror;
5857 }
5858 
5859 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5860 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5861 {
5862 	int i;
5863 	int again = 1;
5864 
5865 	while (again) {
5866 		again = 0;
5867 		for (i = 0; i < num_stripes - 1; i++) {
5868 			/* Swap if parity is on a smaller index */
5869 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5870 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5871 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5872 				again = 1;
5873 			}
5874 		}
5875 	}
5876 }
5877 
5878 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5879 						       int total_stripes,
5880 						       int real_stripes)
5881 {
5882 	struct btrfs_io_context *bioc = kzalloc(
5883 		 /* The size of btrfs_io_context */
5884 		sizeof(struct btrfs_io_context) +
5885 		/* Plus the variable array for the stripes */
5886 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5887 		/* Plus the variable array for the tgt dev */
5888 		sizeof(int) * (real_stripes) +
5889 		/*
5890 		 * Plus the raid_map, which includes both the tgt dev
5891 		 * and the stripes.
5892 		 */
5893 		sizeof(u64) * (total_stripes),
5894 		GFP_NOFS|__GFP_NOFAIL);
5895 
5896 	atomic_set(&bioc->error, 0);
5897 	refcount_set(&bioc->refs, 1);
5898 
5899 	bioc->fs_info = fs_info;
5900 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5901 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5902 
5903 	return bioc;
5904 }
5905 
5906 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5907 {
5908 	WARN_ON(!refcount_read(&bioc->refs));
5909 	refcount_inc(&bioc->refs);
5910 }
5911 
5912 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5913 {
5914 	if (!bioc)
5915 		return;
5916 	if (refcount_dec_and_test(&bioc->refs))
5917 		kfree(bioc);
5918 }
5919 
5920 /*
5921  * Please note that, discard won't be sent to target device of device
5922  * replace.
5923  */
5924 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5925 					       u64 logical, u64 *length_ret,
5926 					       u32 *num_stripes)
5927 {
5928 	struct extent_map *em;
5929 	struct map_lookup *map;
5930 	struct btrfs_discard_stripe *stripes;
5931 	u64 length = *length_ret;
5932 	u64 offset;
5933 	u64 stripe_nr;
5934 	u64 stripe_nr_end;
5935 	u64 stripe_end_offset;
5936 	u64 stripe_cnt;
5937 	u64 stripe_len;
5938 	u64 stripe_offset;
5939 	u32 stripe_index;
5940 	u32 factor = 0;
5941 	u32 sub_stripes = 0;
5942 	u64 stripes_per_dev = 0;
5943 	u32 remaining_stripes = 0;
5944 	u32 last_stripe = 0;
5945 	int ret;
5946 	int i;
5947 
5948 	em = btrfs_get_chunk_map(fs_info, logical, length);
5949 	if (IS_ERR(em))
5950 		return ERR_CAST(em);
5951 
5952 	map = em->map_lookup;
5953 
5954 	/* we don't discard raid56 yet */
5955 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5956 		ret = -EOPNOTSUPP;
5957 		goto out_free_map;
5958 }
5959 
5960 	offset = logical - em->start;
5961 	length = min_t(u64, em->start + em->len - logical, length);
5962 	*length_ret = length;
5963 
5964 	stripe_len = map->stripe_len;
5965 	/*
5966 	 * stripe_nr counts the total number of stripes we have to stride
5967 	 * to get to this block
5968 	 */
5969 	stripe_nr = div64_u64(offset, stripe_len);
5970 
5971 	/* stripe_offset is the offset of this block in its stripe */
5972 	stripe_offset = offset - stripe_nr * stripe_len;
5973 
5974 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5975 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5976 	stripe_cnt = stripe_nr_end - stripe_nr;
5977 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5978 			    (offset + length);
5979 	/*
5980 	 * after this, stripe_nr is the number of stripes on this
5981 	 * device we have to walk to find the data, and stripe_index is
5982 	 * the number of our device in the stripe array
5983 	 */
5984 	*num_stripes = 1;
5985 	stripe_index = 0;
5986 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5987 			 BTRFS_BLOCK_GROUP_RAID10)) {
5988 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5989 			sub_stripes = 1;
5990 		else
5991 			sub_stripes = map->sub_stripes;
5992 
5993 		factor = map->num_stripes / sub_stripes;
5994 		*num_stripes = min_t(u64, map->num_stripes,
5995 				    sub_stripes * stripe_cnt);
5996 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5997 		stripe_index *= sub_stripes;
5998 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5999 					      &remaining_stripes);
6000 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6001 		last_stripe *= sub_stripes;
6002 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6003 				BTRFS_BLOCK_GROUP_DUP)) {
6004 		*num_stripes = map->num_stripes;
6005 	} else {
6006 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6007 					&stripe_index);
6008 	}
6009 
6010 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6011 	if (!stripes) {
6012 		ret = -ENOMEM;
6013 		goto out_free_map;
6014 	}
6015 
6016 	for (i = 0; i < *num_stripes; i++) {
6017 		stripes[i].physical =
6018 			map->stripes[stripe_index].physical +
6019 			stripe_offset + stripe_nr * map->stripe_len;
6020 		stripes[i].dev = map->stripes[stripe_index].dev;
6021 
6022 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6023 				 BTRFS_BLOCK_GROUP_RAID10)) {
6024 			stripes[i].length = stripes_per_dev * map->stripe_len;
6025 
6026 			if (i / sub_stripes < remaining_stripes)
6027 				stripes[i].length += map->stripe_len;
6028 
6029 			/*
6030 			 * Special for the first stripe and
6031 			 * the last stripe:
6032 			 *
6033 			 * |-------|...|-------|
6034 			 *     |----------|
6035 			 *    off     end_off
6036 			 */
6037 			if (i < sub_stripes)
6038 				stripes[i].length -= stripe_offset;
6039 
6040 			if (stripe_index >= last_stripe &&
6041 			    stripe_index <= (last_stripe +
6042 					     sub_stripes - 1))
6043 				stripes[i].length -= stripe_end_offset;
6044 
6045 			if (i == sub_stripes - 1)
6046 				stripe_offset = 0;
6047 		} else {
6048 			stripes[i].length = length;
6049 		}
6050 
6051 		stripe_index++;
6052 		if (stripe_index == map->num_stripes) {
6053 			stripe_index = 0;
6054 			stripe_nr++;
6055 		}
6056 	}
6057 
6058 	free_extent_map(em);
6059 	return stripes;
6060 out_free_map:
6061 	free_extent_map(em);
6062 	return ERR_PTR(ret);
6063 }
6064 
6065 /*
6066  * In dev-replace case, for repair case (that's the only case where the mirror
6067  * is selected explicitly when calling btrfs_map_block), blocks left of the
6068  * left cursor can also be read from the target drive.
6069  *
6070  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6071  * array of stripes.
6072  * For READ, it also needs to be supported using the same mirror number.
6073  *
6074  * If the requested block is not left of the left cursor, EIO is returned. This
6075  * can happen because btrfs_num_copies() returns one more in the dev-replace
6076  * case.
6077  */
6078 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6079 					 u64 logical, u64 length,
6080 					 u64 srcdev_devid, int *mirror_num,
6081 					 u64 *physical)
6082 {
6083 	struct btrfs_io_context *bioc = NULL;
6084 	int num_stripes;
6085 	int index_srcdev = 0;
6086 	int found = 0;
6087 	u64 physical_of_found = 0;
6088 	int i;
6089 	int ret = 0;
6090 
6091 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6092 				logical, &length, &bioc, 0, 0);
6093 	if (ret) {
6094 		ASSERT(bioc == NULL);
6095 		return ret;
6096 	}
6097 
6098 	num_stripes = bioc->num_stripes;
6099 	if (*mirror_num > num_stripes) {
6100 		/*
6101 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6102 		 * that means that the requested area is not left of the left
6103 		 * cursor
6104 		 */
6105 		btrfs_put_bioc(bioc);
6106 		return -EIO;
6107 	}
6108 
6109 	/*
6110 	 * process the rest of the function using the mirror_num of the source
6111 	 * drive. Therefore look it up first.  At the end, patch the device
6112 	 * pointer to the one of the target drive.
6113 	 */
6114 	for (i = 0; i < num_stripes; i++) {
6115 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6116 			continue;
6117 
6118 		/*
6119 		 * In case of DUP, in order to keep it simple, only add the
6120 		 * mirror with the lowest physical address
6121 		 */
6122 		if (found &&
6123 		    physical_of_found <= bioc->stripes[i].physical)
6124 			continue;
6125 
6126 		index_srcdev = i;
6127 		found = 1;
6128 		physical_of_found = bioc->stripes[i].physical;
6129 	}
6130 
6131 	btrfs_put_bioc(bioc);
6132 
6133 	ASSERT(found);
6134 	if (!found)
6135 		return -EIO;
6136 
6137 	*mirror_num = index_srcdev + 1;
6138 	*physical = physical_of_found;
6139 	return ret;
6140 }
6141 
6142 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6143 {
6144 	struct btrfs_block_group *cache;
6145 	bool ret;
6146 
6147 	/* Non zoned filesystem does not use "to_copy" flag */
6148 	if (!btrfs_is_zoned(fs_info))
6149 		return false;
6150 
6151 	cache = btrfs_lookup_block_group(fs_info, logical);
6152 
6153 	spin_lock(&cache->lock);
6154 	ret = cache->to_copy;
6155 	spin_unlock(&cache->lock);
6156 
6157 	btrfs_put_block_group(cache);
6158 	return ret;
6159 }
6160 
6161 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6162 				      struct btrfs_io_context **bioc_ret,
6163 				      struct btrfs_dev_replace *dev_replace,
6164 				      u64 logical,
6165 				      int *num_stripes_ret, int *max_errors_ret)
6166 {
6167 	struct btrfs_io_context *bioc = *bioc_ret;
6168 	u64 srcdev_devid = dev_replace->srcdev->devid;
6169 	int tgtdev_indexes = 0;
6170 	int num_stripes = *num_stripes_ret;
6171 	int max_errors = *max_errors_ret;
6172 	int i;
6173 
6174 	if (op == BTRFS_MAP_WRITE) {
6175 		int index_where_to_add;
6176 
6177 		/*
6178 		 * A block group which have "to_copy" set will eventually
6179 		 * copied by dev-replace process. We can avoid cloning IO here.
6180 		 */
6181 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6182 			return;
6183 
6184 		/*
6185 		 * duplicate the write operations while the dev replace
6186 		 * procedure is running. Since the copying of the old disk to
6187 		 * the new disk takes place at run time while the filesystem is
6188 		 * mounted writable, the regular write operations to the old
6189 		 * disk have to be duplicated to go to the new disk as well.
6190 		 *
6191 		 * Note that device->missing is handled by the caller, and that
6192 		 * the write to the old disk is already set up in the stripes
6193 		 * array.
6194 		 */
6195 		index_where_to_add = num_stripes;
6196 		for (i = 0; i < num_stripes; i++) {
6197 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6198 				/* write to new disk, too */
6199 				struct btrfs_io_stripe *new =
6200 					bioc->stripes + index_where_to_add;
6201 				struct btrfs_io_stripe *old =
6202 					bioc->stripes + i;
6203 
6204 				new->physical = old->physical;
6205 				new->dev = dev_replace->tgtdev;
6206 				bioc->tgtdev_map[i] = index_where_to_add;
6207 				index_where_to_add++;
6208 				max_errors++;
6209 				tgtdev_indexes++;
6210 			}
6211 		}
6212 		num_stripes = index_where_to_add;
6213 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6214 		int index_srcdev = 0;
6215 		int found = 0;
6216 		u64 physical_of_found = 0;
6217 
6218 		/*
6219 		 * During the dev-replace procedure, the target drive can also
6220 		 * be used to read data in case it is needed to repair a corrupt
6221 		 * block elsewhere. This is possible if the requested area is
6222 		 * left of the left cursor. In this area, the target drive is a
6223 		 * full copy of the source drive.
6224 		 */
6225 		for (i = 0; i < num_stripes; i++) {
6226 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6227 				/*
6228 				 * In case of DUP, in order to keep it simple,
6229 				 * only add the mirror with the lowest physical
6230 				 * address
6231 				 */
6232 				if (found &&
6233 				    physical_of_found <= bioc->stripes[i].physical)
6234 					continue;
6235 				index_srcdev = i;
6236 				found = 1;
6237 				physical_of_found = bioc->stripes[i].physical;
6238 			}
6239 		}
6240 		if (found) {
6241 			struct btrfs_io_stripe *tgtdev_stripe =
6242 				bioc->stripes + num_stripes;
6243 
6244 			tgtdev_stripe->physical = physical_of_found;
6245 			tgtdev_stripe->dev = dev_replace->tgtdev;
6246 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6247 
6248 			tgtdev_indexes++;
6249 			num_stripes++;
6250 		}
6251 	}
6252 
6253 	*num_stripes_ret = num_stripes;
6254 	*max_errors_ret = max_errors;
6255 	bioc->num_tgtdevs = tgtdev_indexes;
6256 	*bioc_ret = bioc;
6257 }
6258 
6259 static bool need_full_stripe(enum btrfs_map_op op)
6260 {
6261 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6262 }
6263 
6264 /*
6265  * Calculate the geometry of a particular (address, len) tuple. This
6266  * information is used to calculate how big a particular bio can get before it
6267  * straddles a stripe.
6268  *
6269  * @fs_info: the filesystem
6270  * @em:      mapping containing the logical extent
6271  * @op:      type of operation - write or read
6272  * @logical: address that we want to figure out the geometry of
6273  * @io_geom: pointer used to return values
6274  *
6275  * Returns < 0 in case a chunk for the given logical address cannot be found,
6276  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6277  */
6278 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6279 			  enum btrfs_map_op op, u64 logical,
6280 			  struct btrfs_io_geometry *io_geom)
6281 {
6282 	struct map_lookup *map;
6283 	u64 len;
6284 	u64 offset;
6285 	u64 stripe_offset;
6286 	u64 stripe_nr;
6287 	u32 stripe_len;
6288 	u64 raid56_full_stripe_start = (u64)-1;
6289 	int data_stripes;
6290 
6291 	ASSERT(op != BTRFS_MAP_DISCARD);
6292 
6293 	map = em->map_lookup;
6294 	/* Offset of this logical address in the chunk */
6295 	offset = logical - em->start;
6296 	/* Len of a stripe in a chunk */
6297 	stripe_len = map->stripe_len;
6298 	/*
6299 	 * Stripe_nr is where this block falls in
6300 	 * stripe_offset is the offset of this block in its stripe.
6301 	 */
6302 	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6303 	ASSERT(stripe_offset < U32_MAX);
6304 
6305 	data_stripes = nr_data_stripes(map);
6306 
6307 	/* Only stripe based profiles needs to check against stripe length. */
6308 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6309 		u64 max_len = stripe_len - stripe_offset;
6310 
6311 		/*
6312 		 * In case of raid56, we need to know the stripe aligned start
6313 		 */
6314 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6315 			unsigned long full_stripe_len = stripe_len * data_stripes;
6316 			raid56_full_stripe_start = offset;
6317 
6318 			/*
6319 			 * Allow a write of a full stripe, but make sure we
6320 			 * don't allow straddling of stripes
6321 			 */
6322 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6323 					full_stripe_len);
6324 			raid56_full_stripe_start *= full_stripe_len;
6325 
6326 			/*
6327 			 * For writes to RAID[56], allow a full stripeset across
6328 			 * all disks. For other RAID types and for RAID[56]
6329 			 * reads, just allow a single stripe (on a single disk).
6330 			 */
6331 			if (op == BTRFS_MAP_WRITE) {
6332 				max_len = stripe_len * data_stripes -
6333 					  (offset - raid56_full_stripe_start);
6334 			}
6335 		}
6336 		len = min_t(u64, em->len - offset, max_len);
6337 	} else {
6338 		len = em->len - offset;
6339 	}
6340 
6341 	io_geom->len = len;
6342 	io_geom->offset = offset;
6343 	io_geom->stripe_len = stripe_len;
6344 	io_geom->stripe_nr = stripe_nr;
6345 	io_geom->stripe_offset = stripe_offset;
6346 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6347 
6348 	return 0;
6349 }
6350 
6351 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6352 			     enum btrfs_map_op op,
6353 			     u64 logical, u64 *length,
6354 			     struct btrfs_io_context **bioc_ret,
6355 			     int mirror_num, int need_raid_map)
6356 {
6357 	struct extent_map *em;
6358 	struct map_lookup *map;
6359 	u64 stripe_offset;
6360 	u64 stripe_nr;
6361 	u64 stripe_len;
6362 	u32 stripe_index;
6363 	int data_stripes;
6364 	int i;
6365 	int ret = 0;
6366 	int num_stripes;
6367 	int max_errors = 0;
6368 	int tgtdev_indexes = 0;
6369 	struct btrfs_io_context *bioc = NULL;
6370 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6371 	int dev_replace_is_ongoing = 0;
6372 	int num_alloc_stripes;
6373 	int patch_the_first_stripe_for_dev_replace = 0;
6374 	u64 physical_to_patch_in_first_stripe = 0;
6375 	u64 raid56_full_stripe_start = (u64)-1;
6376 	struct btrfs_io_geometry geom;
6377 
6378 	ASSERT(bioc_ret);
6379 	ASSERT(op != BTRFS_MAP_DISCARD);
6380 
6381 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6382 	ASSERT(!IS_ERR(em));
6383 
6384 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6385 	if (ret < 0)
6386 		return ret;
6387 
6388 	map = em->map_lookup;
6389 
6390 	*length = geom.len;
6391 	stripe_len = geom.stripe_len;
6392 	stripe_nr = geom.stripe_nr;
6393 	stripe_offset = geom.stripe_offset;
6394 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6395 	data_stripes = nr_data_stripes(map);
6396 
6397 	down_read(&dev_replace->rwsem);
6398 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6399 	/*
6400 	 * Hold the semaphore for read during the whole operation, write is
6401 	 * requested at commit time but must wait.
6402 	 */
6403 	if (!dev_replace_is_ongoing)
6404 		up_read(&dev_replace->rwsem);
6405 
6406 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6407 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6408 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6409 						    dev_replace->srcdev->devid,
6410 						    &mirror_num,
6411 					    &physical_to_patch_in_first_stripe);
6412 		if (ret)
6413 			goto out;
6414 		else
6415 			patch_the_first_stripe_for_dev_replace = 1;
6416 	} else if (mirror_num > map->num_stripes) {
6417 		mirror_num = 0;
6418 	}
6419 
6420 	num_stripes = 1;
6421 	stripe_index = 0;
6422 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6423 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6424 				&stripe_index);
6425 		if (!need_full_stripe(op))
6426 			mirror_num = 1;
6427 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6428 		if (need_full_stripe(op))
6429 			num_stripes = map->num_stripes;
6430 		else if (mirror_num)
6431 			stripe_index = mirror_num - 1;
6432 		else {
6433 			stripe_index = find_live_mirror(fs_info, map, 0,
6434 					    dev_replace_is_ongoing);
6435 			mirror_num = stripe_index + 1;
6436 		}
6437 
6438 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6439 		if (need_full_stripe(op)) {
6440 			num_stripes = map->num_stripes;
6441 		} else if (mirror_num) {
6442 			stripe_index = mirror_num - 1;
6443 		} else {
6444 			mirror_num = 1;
6445 		}
6446 
6447 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6448 		u32 factor = map->num_stripes / map->sub_stripes;
6449 
6450 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6451 		stripe_index *= map->sub_stripes;
6452 
6453 		if (need_full_stripe(op))
6454 			num_stripes = map->sub_stripes;
6455 		else if (mirror_num)
6456 			stripe_index += mirror_num - 1;
6457 		else {
6458 			int old_stripe_index = stripe_index;
6459 			stripe_index = find_live_mirror(fs_info, map,
6460 					      stripe_index,
6461 					      dev_replace_is_ongoing);
6462 			mirror_num = stripe_index - old_stripe_index + 1;
6463 		}
6464 
6465 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6466 		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6467 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6468 			/* push stripe_nr back to the start of the full stripe */
6469 			stripe_nr = div64_u64(raid56_full_stripe_start,
6470 					stripe_len * data_stripes);
6471 
6472 			/* RAID[56] write or recovery. Return all stripes */
6473 			num_stripes = map->num_stripes;
6474 			max_errors = btrfs_chunk_max_errors(map);
6475 
6476 			/* Return the length to the full stripe end */
6477 			*length = min(logical + *length,
6478 				      raid56_full_stripe_start + em->start +
6479 				      data_stripes * stripe_len) - logical;
6480 			stripe_index = 0;
6481 			stripe_offset = 0;
6482 		} else {
6483 			/*
6484 			 * Mirror #0 or #1 means the original data block.
6485 			 * Mirror #2 is RAID5 parity block.
6486 			 * Mirror #3 is RAID6 Q block.
6487 			 */
6488 			stripe_nr = div_u64_rem(stripe_nr,
6489 					data_stripes, &stripe_index);
6490 			if (mirror_num > 1)
6491 				stripe_index = data_stripes + mirror_num - 2;
6492 
6493 			/* We distribute the parity blocks across stripes */
6494 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6495 					&stripe_index);
6496 			if (!need_full_stripe(op) && mirror_num <= 1)
6497 				mirror_num = 1;
6498 		}
6499 	} else {
6500 		/*
6501 		 * after this, stripe_nr is the number of stripes on this
6502 		 * device we have to walk to find the data, and stripe_index is
6503 		 * the number of our device in the stripe array
6504 		 */
6505 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6506 				&stripe_index);
6507 		mirror_num = stripe_index + 1;
6508 	}
6509 	if (stripe_index >= map->num_stripes) {
6510 		btrfs_crit(fs_info,
6511 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6512 			   stripe_index, map->num_stripes);
6513 		ret = -EINVAL;
6514 		goto out;
6515 	}
6516 
6517 	num_alloc_stripes = num_stripes;
6518 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6519 		if (op == BTRFS_MAP_WRITE)
6520 			num_alloc_stripes <<= 1;
6521 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6522 			num_alloc_stripes++;
6523 		tgtdev_indexes = num_stripes;
6524 	}
6525 
6526 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6527 	if (!bioc) {
6528 		ret = -ENOMEM;
6529 		goto out;
6530 	}
6531 
6532 	for (i = 0; i < num_stripes; i++) {
6533 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6534 			stripe_offset + stripe_nr * map->stripe_len;
6535 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6536 		stripe_index++;
6537 	}
6538 
6539 	/* Build raid_map */
6540 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6541 	    (need_full_stripe(op) || mirror_num > 1)) {
6542 		u64 tmp;
6543 		unsigned rot;
6544 
6545 		/* Work out the disk rotation on this stripe-set */
6546 		div_u64_rem(stripe_nr, num_stripes, &rot);
6547 
6548 		/* Fill in the logical address of each stripe */
6549 		tmp = stripe_nr * data_stripes;
6550 		for (i = 0; i < data_stripes; i++)
6551 			bioc->raid_map[(i + rot) % num_stripes] =
6552 				em->start + (tmp + i) * map->stripe_len;
6553 
6554 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6555 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6556 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6557 				RAID6_Q_STRIPE;
6558 
6559 		sort_parity_stripes(bioc, num_stripes);
6560 	}
6561 
6562 	if (need_full_stripe(op))
6563 		max_errors = btrfs_chunk_max_errors(map);
6564 
6565 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6566 	    need_full_stripe(op)) {
6567 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6568 					  &num_stripes, &max_errors);
6569 	}
6570 
6571 	*bioc_ret = bioc;
6572 	bioc->map_type = map->type;
6573 	bioc->num_stripes = num_stripes;
6574 	bioc->max_errors = max_errors;
6575 	bioc->mirror_num = mirror_num;
6576 
6577 	/*
6578 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6579 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6580 	 * available as a mirror
6581 	 */
6582 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6583 		WARN_ON(num_stripes > 1);
6584 		bioc->stripes[0].dev = dev_replace->tgtdev;
6585 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6586 		bioc->mirror_num = map->num_stripes + 1;
6587 	}
6588 out:
6589 	if (dev_replace_is_ongoing) {
6590 		lockdep_assert_held(&dev_replace->rwsem);
6591 		/* Unlock and let waiting writers proceed */
6592 		up_read(&dev_replace->rwsem);
6593 	}
6594 	free_extent_map(em);
6595 	return ret;
6596 }
6597 
6598 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6599 		      u64 logical, u64 *length,
6600 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6601 {
6602 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6603 				 mirror_num, 0);
6604 }
6605 
6606 /* For Scrub/replace */
6607 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6608 		     u64 logical, u64 *length,
6609 		     struct btrfs_io_context **bioc_ret)
6610 {
6611 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6612 }
6613 
6614 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_io_context *bioc)
6615 {
6616 	if (bioc->orig_bio->bi_opf & REQ_META)
6617 		return bioc->fs_info->endio_meta_workers;
6618 	return bioc->fs_info->endio_workers;
6619 }
6620 
6621 static void btrfs_end_bio_work(struct work_struct *work)
6622 {
6623 	struct btrfs_bio *bbio =
6624 		container_of(work, struct btrfs_bio, end_io_work);
6625 
6626 	bio_endio(&bbio->bio);
6627 }
6628 
6629 static void btrfs_end_bioc(struct btrfs_io_context *bioc, bool async)
6630 {
6631 	struct bio *orig_bio = bioc->orig_bio;
6632 	struct btrfs_bio *bbio = btrfs_bio(orig_bio);
6633 
6634 	bbio->mirror_num = bioc->mirror_num;
6635 	orig_bio->bi_private = bioc->private;
6636 	orig_bio->bi_end_io = bioc->end_io;
6637 
6638 	/*
6639 	 * Only send an error to the higher layers if it is beyond the tolerance
6640 	 * threshold.
6641 	 */
6642 	if (atomic_read(&bioc->error) > bioc->max_errors)
6643 		orig_bio->bi_status = BLK_STS_IOERR;
6644 	else
6645 		orig_bio->bi_status = BLK_STS_OK;
6646 
6647 	if (btrfs_op(orig_bio) == BTRFS_MAP_READ && async) {
6648 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
6649 		queue_work(btrfs_end_io_wq(bioc), &bbio->end_io_work);
6650 	} else {
6651 		bio_endio(orig_bio);
6652 	}
6653 
6654 	btrfs_put_bioc(bioc);
6655 }
6656 
6657 static void btrfs_end_bio(struct bio *bio)
6658 {
6659 	struct btrfs_io_stripe *stripe = bio->bi_private;
6660 	struct btrfs_io_context *bioc = stripe->bioc;
6661 
6662 	if (bio->bi_status) {
6663 		atomic_inc(&bioc->error);
6664 		if (bio->bi_status == BLK_STS_IOERR ||
6665 		    bio->bi_status == BLK_STS_TARGET) {
6666 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6667 				btrfs_dev_stat_inc_and_print(stripe->dev,
6668 						BTRFS_DEV_STAT_WRITE_ERRS);
6669 			else if (!(bio->bi_opf & REQ_RAHEAD))
6670 				btrfs_dev_stat_inc_and_print(stripe->dev,
6671 						BTRFS_DEV_STAT_READ_ERRS);
6672 			if (bio->bi_opf & REQ_PREFLUSH)
6673 				btrfs_dev_stat_inc_and_print(stripe->dev,
6674 						BTRFS_DEV_STAT_FLUSH_ERRS);
6675 		}
6676 	}
6677 
6678 	if (bio != bioc->orig_bio)
6679 		bio_put(bio);
6680 
6681 	btrfs_bio_counter_dec(bioc->fs_info);
6682 	if (atomic_dec_and_test(&bioc->stripes_pending))
6683 		btrfs_end_bioc(bioc, true);
6684 }
6685 
6686 static void submit_stripe_bio(struct btrfs_io_context *bioc,
6687 			      struct bio *orig_bio, int dev_nr, bool clone)
6688 {
6689 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6690 	struct btrfs_device *dev = bioc->stripes[dev_nr].dev;
6691 	u64 physical = bioc->stripes[dev_nr].physical;
6692 	struct bio *bio;
6693 
6694 	if (!dev || !dev->bdev ||
6695 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6696 	    (btrfs_op(orig_bio) == BTRFS_MAP_WRITE &&
6697 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6698 		atomic_inc(&bioc->error);
6699 		if (atomic_dec_and_test(&bioc->stripes_pending))
6700 			btrfs_end_bioc(bioc, false);
6701 		return;
6702 	}
6703 
6704 	if (clone) {
6705 		bio = bio_alloc_clone(dev->bdev, orig_bio, GFP_NOFS, &fs_bio_set);
6706 	} else {
6707 		bio = orig_bio;
6708 		bio_set_dev(bio, dev->bdev);
6709 		btrfs_bio(bio)->device = dev;
6710 	}
6711 
6712 	bioc->stripes[dev_nr].bioc = bioc;
6713 	bio->bi_private = &bioc->stripes[dev_nr];
6714 	bio->bi_end_io = btrfs_end_bio;
6715 	bio->bi_iter.bi_sector = physical >> 9;
6716 	/*
6717 	 * For zone append writing, bi_sector must point the beginning of the
6718 	 * zone
6719 	 */
6720 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6721 		if (btrfs_dev_is_sequential(dev, physical)) {
6722 			u64 zone_start = round_down(physical, fs_info->zone_size);
6723 
6724 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6725 		} else {
6726 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6727 			bio->bi_opf |= REQ_OP_WRITE;
6728 		}
6729 	}
6730 	btrfs_debug_in_rcu(fs_info,
6731 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6732 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6733 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6734 		dev->devid, bio->bi_iter.bi_size);
6735 
6736 	btrfs_bio_counter_inc_noblocked(fs_info);
6737 
6738 	btrfsic_check_bio(bio);
6739 	submit_bio(bio);
6740 }
6741 
6742 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
6743 {
6744 	u64 logical = bio->bi_iter.bi_sector << 9;
6745 	u64 length = bio->bi_iter.bi_size;
6746 	u64 map_length = length;
6747 	int ret;
6748 	int dev_nr;
6749 	int total_devs;
6750 	struct btrfs_io_context *bioc = NULL;
6751 
6752 	btrfs_bio_counter_inc_blocked(fs_info);
6753 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6754 				&map_length, &bioc, mirror_num, 1);
6755 	if (ret) {
6756 		btrfs_bio_counter_dec(fs_info);
6757 		bio->bi_status = errno_to_blk_status(ret);
6758 		bio_endio(bio);
6759 		return;
6760 	}
6761 
6762 	total_devs = bioc->num_stripes;
6763 	bioc->orig_bio = bio;
6764 	bioc->private = bio->bi_private;
6765 	bioc->end_io = bio->bi_end_io;
6766 	atomic_set(&bioc->stripes_pending, total_devs);
6767 
6768 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6769 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6770 		if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6771 			raid56_parity_write(bio, bioc);
6772 		else
6773 			raid56_parity_recover(bio, bioc, mirror_num, true);
6774 		return;
6775 	}
6776 
6777 	if (map_length < length) {
6778 		btrfs_crit(fs_info,
6779 			   "mapping failed logical %llu bio len %llu len %llu",
6780 			   logical, length, map_length);
6781 		BUG();
6782 	}
6783 
6784 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6785 		const bool should_clone = (dev_nr < total_devs - 1);
6786 
6787 		submit_stripe_bio(bioc, bio, dev_nr, should_clone);
6788 	}
6789 	btrfs_bio_counter_dec(fs_info);
6790 }
6791 
6792 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6793 				      const struct btrfs_fs_devices *fs_devices)
6794 {
6795 	if (args->fsid == NULL)
6796 		return true;
6797 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6798 		return true;
6799 	return false;
6800 }
6801 
6802 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6803 				  const struct btrfs_device *device)
6804 {
6805 	ASSERT((args->devid != (u64)-1) || args->missing);
6806 
6807 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6808 		return false;
6809 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6810 		return false;
6811 	if (!args->missing)
6812 		return true;
6813 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6814 	    !device->bdev)
6815 		return true;
6816 	return false;
6817 }
6818 
6819 /*
6820  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6821  * return NULL.
6822  *
6823  * If devid and uuid are both specified, the match must be exact, otherwise
6824  * only devid is used.
6825  */
6826 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6827 				       const struct btrfs_dev_lookup_args *args)
6828 {
6829 	struct btrfs_device *device;
6830 	struct btrfs_fs_devices *seed_devs;
6831 
6832 	if (dev_args_match_fs_devices(args, fs_devices)) {
6833 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6834 			if (dev_args_match_device(args, device))
6835 				return device;
6836 		}
6837 	}
6838 
6839 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6840 		if (!dev_args_match_fs_devices(args, seed_devs))
6841 			continue;
6842 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6843 			if (dev_args_match_device(args, device))
6844 				return device;
6845 		}
6846 	}
6847 
6848 	return NULL;
6849 }
6850 
6851 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6852 					    u64 devid, u8 *dev_uuid)
6853 {
6854 	struct btrfs_device *device;
6855 	unsigned int nofs_flag;
6856 
6857 	/*
6858 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6859 	 * allocation, however we don't want to change btrfs_alloc_device() to
6860 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6861 	 * places.
6862 	 */
6863 	nofs_flag = memalloc_nofs_save();
6864 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6865 	memalloc_nofs_restore(nofs_flag);
6866 	if (IS_ERR(device))
6867 		return device;
6868 
6869 	list_add(&device->dev_list, &fs_devices->devices);
6870 	device->fs_devices = fs_devices;
6871 	fs_devices->num_devices++;
6872 
6873 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6874 	fs_devices->missing_devices++;
6875 
6876 	return device;
6877 }
6878 
6879 /**
6880  * btrfs_alloc_device - allocate struct btrfs_device
6881  * @fs_info:	used only for generating a new devid, can be NULL if
6882  *		devid is provided (i.e. @devid != NULL).
6883  * @devid:	a pointer to devid for this device.  If NULL a new devid
6884  *		is generated.
6885  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6886  *		is generated.
6887  *
6888  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6889  * on error.  Returned struct is not linked onto any lists and must be
6890  * destroyed with btrfs_free_device.
6891  */
6892 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6893 					const u64 *devid,
6894 					const u8 *uuid)
6895 {
6896 	struct btrfs_device *dev;
6897 	u64 tmp;
6898 
6899 	if (WARN_ON(!devid && !fs_info))
6900 		return ERR_PTR(-EINVAL);
6901 
6902 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6903 	if (!dev)
6904 		return ERR_PTR(-ENOMEM);
6905 
6906 	INIT_LIST_HEAD(&dev->dev_list);
6907 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6908 	INIT_LIST_HEAD(&dev->post_commit_list);
6909 
6910 	atomic_set(&dev->dev_stats_ccnt, 0);
6911 	btrfs_device_data_ordered_init(dev);
6912 	extent_io_tree_init(fs_info, &dev->alloc_state,
6913 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6914 
6915 	if (devid)
6916 		tmp = *devid;
6917 	else {
6918 		int ret;
6919 
6920 		ret = find_next_devid(fs_info, &tmp);
6921 		if (ret) {
6922 			btrfs_free_device(dev);
6923 			return ERR_PTR(ret);
6924 		}
6925 	}
6926 	dev->devid = tmp;
6927 
6928 	if (uuid)
6929 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6930 	else
6931 		generate_random_uuid(dev->uuid);
6932 
6933 	return dev;
6934 }
6935 
6936 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6937 					u64 devid, u8 *uuid, bool error)
6938 {
6939 	if (error)
6940 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6941 			      devid, uuid);
6942 	else
6943 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6944 			      devid, uuid);
6945 }
6946 
6947 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6948 {
6949 	const struct map_lookup *map = em->map_lookup;
6950 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6951 
6952 	return div_u64(em->len, data_stripes);
6953 }
6954 
6955 #if BITS_PER_LONG == 32
6956 /*
6957  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6958  * can't be accessed on 32bit systems.
6959  *
6960  * This function do mount time check to reject the fs if it already has
6961  * metadata chunk beyond that limit.
6962  */
6963 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6964 				  u64 logical, u64 length, u64 type)
6965 {
6966 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6967 		return 0;
6968 
6969 	if (logical + length < MAX_LFS_FILESIZE)
6970 		return 0;
6971 
6972 	btrfs_err_32bit_limit(fs_info);
6973 	return -EOVERFLOW;
6974 }
6975 
6976 /*
6977  * This is to give early warning for any metadata chunk reaching
6978  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6979  * Although we can still access the metadata, it's not going to be possible
6980  * once the limit is reached.
6981  */
6982 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6983 				  u64 logical, u64 length, u64 type)
6984 {
6985 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6986 		return;
6987 
6988 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6989 		return;
6990 
6991 	btrfs_warn_32bit_limit(fs_info);
6992 }
6993 #endif
6994 
6995 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6996 						  u64 devid, u8 *uuid)
6997 {
6998 	struct btrfs_device *dev;
6999 
7000 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7001 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7002 		return ERR_PTR(-ENOENT);
7003 	}
7004 
7005 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7006 	if (IS_ERR(dev)) {
7007 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7008 			  devid, PTR_ERR(dev));
7009 		return dev;
7010 	}
7011 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7012 
7013 	return dev;
7014 }
7015 
7016 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7017 			  struct btrfs_chunk *chunk)
7018 {
7019 	BTRFS_DEV_LOOKUP_ARGS(args);
7020 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7021 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7022 	struct map_lookup *map;
7023 	struct extent_map *em;
7024 	u64 logical;
7025 	u64 length;
7026 	u64 devid;
7027 	u64 type;
7028 	u8 uuid[BTRFS_UUID_SIZE];
7029 	int num_stripes;
7030 	int ret;
7031 	int i;
7032 
7033 	logical = key->offset;
7034 	length = btrfs_chunk_length(leaf, chunk);
7035 	type = btrfs_chunk_type(leaf, chunk);
7036 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7037 
7038 #if BITS_PER_LONG == 32
7039 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7040 	if (ret < 0)
7041 		return ret;
7042 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7043 #endif
7044 
7045 	/*
7046 	 * Only need to verify chunk item if we're reading from sys chunk array,
7047 	 * as chunk item in tree block is already verified by tree-checker.
7048 	 */
7049 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7050 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7051 		if (ret)
7052 			return ret;
7053 	}
7054 
7055 	read_lock(&map_tree->lock);
7056 	em = lookup_extent_mapping(map_tree, logical, 1);
7057 	read_unlock(&map_tree->lock);
7058 
7059 	/* already mapped? */
7060 	if (em && em->start <= logical && em->start + em->len > logical) {
7061 		free_extent_map(em);
7062 		return 0;
7063 	} else if (em) {
7064 		free_extent_map(em);
7065 	}
7066 
7067 	em = alloc_extent_map();
7068 	if (!em)
7069 		return -ENOMEM;
7070 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7071 	if (!map) {
7072 		free_extent_map(em);
7073 		return -ENOMEM;
7074 	}
7075 
7076 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7077 	em->map_lookup = map;
7078 	em->start = logical;
7079 	em->len = length;
7080 	em->orig_start = 0;
7081 	em->block_start = 0;
7082 	em->block_len = em->len;
7083 
7084 	map->num_stripes = num_stripes;
7085 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7086 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7087 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7088 	map->type = type;
7089 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7090 	map->verified_stripes = 0;
7091 	em->orig_block_len = btrfs_calc_stripe_length(em);
7092 	for (i = 0; i < num_stripes; i++) {
7093 		map->stripes[i].physical =
7094 			btrfs_stripe_offset_nr(leaf, chunk, i);
7095 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7096 		args.devid = devid;
7097 		read_extent_buffer(leaf, uuid, (unsigned long)
7098 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7099 				   BTRFS_UUID_SIZE);
7100 		args.uuid = uuid;
7101 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7102 		if (!map->stripes[i].dev) {
7103 			map->stripes[i].dev = handle_missing_device(fs_info,
7104 								    devid, uuid);
7105 			if (IS_ERR(map->stripes[i].dev)) {
7106 				free_extent_map(em);
7107 				return PTR_ERR(map->stripes[i].dev);
7108 			}
7109 		}
7110 
7111 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7112 				&(map->stripes[i].dev->dev_state));
7113 	}
7114 
7115 	write_lock(&map_tree->lock);
7116 	ret = add_extent_mapping(map_tree, em, 0);
7117 	write_unlock(&map_tree->lock);
7118 	if (ret < 0) {
7119 		btrfs_err(fs_info,
7120 			  "failed to add chunk map, start=%llu len=%llu: %d",
7121 			  em->start, em->len, ret);
7122 	}
7123 	free_extent_map(em);
7124 
7125 	return ret;
7126 }
7127 
7128 static void fill_device_from_item(struct extent_buffer *leaf,
7129 				 struct btrfs_dev_item *dev_item,
7130 				 struct btrfs_device *device)
7131 {
7132 	unsigned long ptr;
7133 
7134 	device->devid = btrfs_device_id(leaf, dev_item);
7135 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7136 	device->total_bytes = device->disk_total_bytes;
7137 	device->commit_total_bytes = device->disk_total_bytes;
7138 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7139 	device->commit_bytes_used = device->bytes_used;
7140 	device->type = btrfs_device_type(leaf, dev_item);
7141 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7142 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7143 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7144 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7145 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7146 
7147 	ptr = btrfs_device_uuid(dev_item);
7148 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7149 }
7150 
7151 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7152 						  u8 *fsid)
7153 {
7154 	struct btrfs_fs_devices *fs_devices;
7155 	int ret;
7156 
7157 	lockdep_assert_held(&uuid_mutex);
7158 	ASSERT(fsid);
7159 
7160 	/* This will match only for multi-device seed fs */
7161 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7162 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7163 			return fs_devices;
7164 
7165 
7166 	fs_devices = find_fsid(fsid, NULL);
7167 	if (!fs_devices) {
7168 		if (!btrfs_test_opt(fs_info, DEGRADED))
7169 			return ERR_PTR(-ENOENT);
7170 
7171 		fs_devices = alloc_fs_devices(fsid, NULL);
7172 		if (IS_ERR(fs_devices))
7173 			return fs_devices;
7174 
7175 		fs_devices->seeding = true;
7176 		fs_devices->opened = 1;
7177 		return fs_devices;
7178 	}
7179 
7180 	/*
7181 	 * Upon first call for a seed fs fsid, just create a private copy of the
7182 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7183 	 */
7184 	fs_devices = clone_fs_devices(fs_devices);
7185 	if (IS_ERR(fs_devices))
7186 		return fs_devices;
7187 
7188 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7189 	if (ret) {
7190 		free_fs_devices(fs_devices);
7191 		return ERR_PTR(ret);
7192 	}
7193 
7194 	if (!fs_devices->seeding) {
7195 		close_fs_devices(fs_devices);
7196 		free_fs_devices(fs_devices);
7197 		return ERR_PTR(-EINVAL);
7198 	}
7199 
7200 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7201 
7202 	return fs_devices;
7203 }
7204 
7205 static int read_one_dev(struct extent_buffer *leaf,
7206 			struct btrfs_dev_item *dev_item)
7207 {
7208 	BTRFS_DEV_LOOKUP_ARGS(args);
7209 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7210 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7211 	struct btrfs_device *device;
7212 	u64 devid;
7213 	int ret;
7214 	u8 fs_uuid[BTRFS_FSID_SIZE];
7215 	u8 dev_uuid[BTRFS_UUID_SIZE];
7216 
7217 	devid = btrfs_device_id(leaf, dev_item);
7218 	args.devid = devid;
7219 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7220 			   BTRFS_UUID_SIZE);
7221 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7222 			   BTRFS_FSID_SIZE);
7223 	args.uuid = dev_uuid;
7224 	args.fsid = fs_uuid;
7225 
7226 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7227 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7228 		if (IS_ERR(fs_devices))
7229 			return PTR_ERR(fs_devices);
7230 	}
7231 
7232 	device = btrfs_find_device(fs_info->fs_devices, &args);
7233 	if (!device) {
7234 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7235 			btrfs_report_missing_device(fs_info, devid,
7236 							dev_uuid, true);
7237 			return -ENOENT;
7238 		}
7239 
7240 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7241 		if (IS_ERR(device)) {
7242 			btrfs_err(fs_info,
7243 				"failed to add missing dev %llu: %ld",
7244 				devid, PTR_ERR(device));
7245 			return PTR_ERR(device);
7246 		}
7247 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7248 	} else {
7249 		if (!device->bdev) {
7250 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7251 				btrfs_report_missing_device(fs_info,
7252 						devid, dev_uuid, true);
7253 				return -ENOENT;
7254 			}
7255 			btrfs_report_missing_device(fs_info, devid,
7256 							dev_uuid, false);
7257 		}
7258 
7259 		if (!device->bdev &&
7260 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7261 			/*
7262 			 * this happens when a device that was properly setup
7263 			 * in the device info lists suddenly goes bad.
7264 			 * device->bdev is NULL, and so we have to set
7265 			 * device->missing to one here
7266 			 */
7267 			device->fs_devices->missing_devices++;
7268 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7269 		}
7270 
7271 		/* Move the device to its own fs_devices */
7272 		if (device->fs_devices != fs_devices) {
7273 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7274 							&device->dev_state));
7275 
7276 			list_move(&device->dev_list, &fs_devices->devices);
7277 			device->fs_devices->num_devices--;
7278 			fs_devices->num_devices++;
7279 
7280 			device->fs_devices->missing_devices--;
7281 			fs_devices->missing_devices++;
7282 
7283 			device->fs_devices = fs_devices;
7284 		}
7285 	}
7286 
7287 	if (device->fs_devices != fs_info->fs_devices) {
7288 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7289 		if (device->generation !=
7290 		    btrfs_device_generation(leaf, dev_item))
7291 			return -EINVAL;
7292 	}
7293 
7294 	fill_device_from_item(leaf, dev_item, device);
7295 	if (device->bdev) {
7296 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7297 
7298 		if (device->total_bytes > max_total_bytes) {
7299 			btrfs_err(fs_info,
7300 			"device total_bytes should be at most %llu but found %llu",
7301 				  max_total_bytes, device->total_bytes);
7302 			return -EINVAL;
7303 		}
7304 	}
7305 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7306 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7307 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7308 		device->fs_devices->total_rw_bytes += device->total_bytes;
7309 		atomic64_add(device->total_bytes - device->bytes_used,
7310 				&fs_info->free_chunk_space);
7311 	}
7312 	ret = 0;
7313 	return ret;
7314 }
7315 
7316 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7317 {
7318 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7319 	struct extent_buffer *sb;
7320 	struct btrfs_disk_key *disk_key;
7321 	struct btrfs_chunk *chunk;
7322 	u8 *array_ptr;
7323 	unsigned long sb_array_offset;
7324 	int ret = 0;
7325 	u32 num_stripes;
7326 	u32 array_size;
7327 	u32 len = 0;
7328 	u32 cur_offset;
7329 	u64 type;
7330 	struct btrfs_key key;
7331 
7332 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7333 
7334 	/*
7335 	 * We allocated a dummy extent, just to use extent buffer accessors.
7336 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7337 	 * that's fine, we will not go beyond system chunk array anyway.
7338 	 */
7339 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7340 	if (!sb)
7341 		return -ENOMEM;
7342 	set_extent_buffer_uptodate(sb);
7343 
7344 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7345 	array_size = btrfs_super_sys_array_size(super_copy);
7346 
7347 	array_ptr = super_copy->sys_chunk_array;
7348 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7349 	cur_offset = 0;
7350 
7351 	while (cur_offset < array_size) {
7352 		disk_key = (struct btrfs_disk_key *)array_ptr;
7353 		len = sizeof(*disk_key);
7354 		if (cur_offset + len > array_size)
7355 			goto out_short_read;
7356 
7357 		btrfs_disk_key_to_cpu(&key, disk_key);
7358 
7359 		array_ptr += len;
7360 		sb_array_offset += len;
7361 		cur_offset += len;
7362 
7363 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7364 			btrfs_err(fs_info,
7365 			    "unexpected item type %u in sys_array at offset %u",
7366 				  (u32)key.type, cur_offset);
7367 			ret = -EIO;
7368 			break;
7369 		}
7370 
7371 		chunk = (struct btrfs_chunk *)sb_array_offset;
7372 		/*
7373 		 * At least one btrfs_chunk with one stripe must be present,
7374 		 * exact stripe count check comes afterwards
7375 		 */
7376 		len = btrfs_chunk_item_size(1);
7377 		if (cur_offset + len > array_size)
7378 			goto out_short_read;
7379 
7380 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7381 		if (!num_stripes) {
7382 			btrfs_err(fs_info,
7383 			"invalid number of stripes %u in sys_array at offset %u",
7384 				  num_stripes, cur_offset);
7385 			ret = -EIO;
7386 			break;
7387 		}
7388 
7389 		type = btrfs_chunk_type(sb, chunk);
7390 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7391 			btrfs_err(fs_info,
7392 			"invalid chunk type %llu in sys_array at offset %u",
7393 				  type, cur_offset);
7394 			ret = -EIO;
7395 			break;
7396 		}
7397 
7398 		len = btrfs_chunk_item_size(num_stripes);
7399 		if (cur_offset + len > array_size)
7400 			goto out_short_read;
7401 
7402 		ret = read_one_chunk(&key, sb, chunk);
7403 		if (ret)
7404 			break;
7405 
7406 		array_ptr += len;
7407 		sb_array_offset += len;
7408 		cur_offset += len;
7409 	}
7410 	clear_extent_buffer_uptodate(sb);
7411 	free_extent_buffer_stale(sb);
7412 	return ret;
7413 
7414 out_short_read:
7415 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7416 			len, cur_offset);
7417 	clear_extent_buffer_uptodate(sb);
7418 	free_extent_buffer_stale(sb);
7419 	return -EIO;
7420 }
7421 
7422 /*
7423  * Check if all chunks in the fs are OK for read-write degraded mount
7424  *
7425  * If the @failing_dev is specified, it's accounted as missing.
7426  *
7427  * Return true if all chunks meet the minimal RW mount requirements.
7428  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7429  */
7430 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7431 					struct btrfs_device *failing_dev)
7432 {
7433 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7434 	struct extent_map *em;
7435 	u64 next_start = 0;
7436 	bool ret = true;
7437 
7438 	read_lock(&map_tree->lock);
7439 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7440 	read_unlock(&map_tree->lock);
7441 	/* No chunk at all? Return false anyway */
7442 	if (!em) {
7443 		ret = false;
7444 		goto out;
7445 	}
7446 	while (em) {
7447 		struct map_lookup *map;
7448 		int missing = 0;
7449 		int max_tolerated;
7450 		int i;
7451 
7452 		map = em->map_lookup;
7453 		max_tolerated =
7454 			btrfs_get_num_tolerated_disk_barrier_failures(
7455 					map->type);
7456 		for (i = 0; i < map->num_stripes; i++) {
7457 			struct btrfs_device *dev = map->stripes[i].dev;
7458 
7459 			if (!dev || !dev->bdev ||
7460 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7461 			    dev->last_flush_error)
7462 				missing++;
7463 			else if (failing_dev && failing_dev == dev)
7464 				missing++;
7465 		}
7466 		if (missing > max_tolerated) {
7467 			if (!failing_dev)
7468 				btrfs_warn(fs_info,
7469 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7470 				   em->start, missing, max_tolerated);
7471 			free_extent_map(em);
7472 			ret = false;
7473 			goto out;
7474 		}
7475 		next_start = extent_map_end(em);
7476 		free_extent_map(em);
7477 
7478 		read_lock(&map_tree->lock);
7479 		em = lookup_extent_mapping(map_tree, next_start,
7480 					   (u64)(-1) - next_start);
7481 		read_unlock(&map_tree->lock);
7482 	}
7483 out:
7484 	return ret;
7485 }
7486 
7487 static void readahead_tree_node_children(struct extent_buffer *node)
7488 {
7489 	int i;
7490 	const int nr_items = btrfs_header_nritems(node);
7491 
7492 	for (i = 0; i < nr_items; i++)
7493 		btrfs_readahead_node_child(node, i);
7494 }
7495 
7496 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7497 {
7498 	struct btrfs_root *root = fs_info->chunk_root;
7499 	struct btrfs_path *path;
7500 	struct extent_buffer *leaf;
7501 	struct btrfs_key key;
7502 	struct btrfs_key found_key;
7503 	int ret;
7504 	int slot;
7505 	int iter_ret = 0;
7506 	u64 total_dev = 0;
7507 	u64 last_ra_node = 0;
7508 
7509 	path = btrfs_alloc_path();
7510 	if (!path)
7511 		return -ENOMEM;
7512 
7513 	/*
7514 	 * uuid_mutex is needed only if we are mounting a sprout FS
7515 	 * otherwise we don't need it.
7516 	 */
7517 	mutex_lock(&uuid_mutex);
7518 
7519 	/*
7520 	 * It is possible for mount and umount to race in such a way that
7521 	 * we execute this code path, but open_fs_devices failed to clear
7522 	 * total_rw_bytes. We certainly want it cleared before reading the
7523 	 * device items, so clear it here.
7524 	 */
7525 	fs_info->fs_devices->total_rw_bytes = 0;
7526 
7527 	/*
7528 	 * Lockdep complains about possible circular locking dependency between
7529 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7530 	 * used for freeze procection of a fs (struct super_block.s_writers),
7531 	 * which we take when starting a transaction, and extent buffers of the
7532 	 * chunk tree if we call read_one_dev() while holding a lock on an
7533 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7534 	 * and at this point there can't be any concurrent task modifying the
7535 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7536 	 */
7537 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7538 	path->skip_locking = 1;
7539 
7540 	/*
7541 	 * Read all device items, and then all the chunk items. All
7542 	 * device items are found before any chunk item (their object id
7543 	 * is smaller than the lowest possible object id for a chunk
7544 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7545 	 */
7546 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7547 	key.offset = 0;
7548 	key.type = 0;
7549 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7550 		struct extent_buffer *node = path->nodes[1];
7551 
7552 		leaf = path->nodes[0];
7553 		slot = path->slots[0];
7554 
7555 		if (node) {
7556 			if (last_ra_node != node->start) {
7557 				readahead_tree_node_children(node);
7558 				last_ra_node = node->start;
7559 			}
7560 		}
7561 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7562 			struct btrfs_dev_item *dev_item;
7563 			dev_item = btrfs_item_ptr(leaf, slot,
7564 						  struct btrfs_dev_item);
7565 			ret = read_one_dev(leaf, dev_item);
7566 			if (ret)
7567 				goto error;
7568 			total_dev++;
7569 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7570 			struct btrfs_chunk *chunk;
7571 
7572 			/*
7573 			 * We are only called at mount time, so no need to take
7574 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7575 			 * we always lock first fs_info->chunk_mutex before
7576 			 * acquiring any locks on the chunk tree. This is a
7577 			 * requirement for chunk allocation, see the comment on
7578 			 * top of btrfs_chunk_alloc() for details.
7579 			 */
7580 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7581 			ret = read_one_chunk(&found_key, leaf, chunk);
7582 			if (ret)
7583 				goto error;
7584 		}
7585 	}
7586 	/* Catch error found during iteration */
7587 	if (iter_ret < 0) {
7588 		ret = iter_ret;
7589 		goto error;
7590 	}
7591 
7592 	/*
7593 	 * After loading chunk tree, we've got all device information,
7594 	 * do another round of validation checks.
7595 	 */
7596 	if (total_dev != fs_info->fs_devices->total_devices) {
7597 		btrfs_warn(fs_info,
7598 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7599 			  btrfs_super_num_devices(fs_info->super_copy),
7600 			  total_dev);
7601 		fs_info->fs_devices->total_devices = total_dev;
7602 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7603 	}
7604 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7605 	    fs_info->fs_devices->total_rw_bytes) {
7606 		btrfs_err(fs_info,
7607 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7608 			  btrfs_super_total_bytes(fs_info->super_copy),
7609 			  fs_info->fs_devices->total_rw_bytes);
7610 		ret = -EINVAL;
7611 		goto error;
7612 	}
7613 	ret = 0;
7614 error:
7615 	mutex_unlock(&uuid_mutex);
7616 
7617 	btrfs_free_path(path);
7618 	return ret;
7619 }
7620 
7621 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7622 {
7623 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7624 	struct btrfs_device *device;
7625 
7626 	fs_devices->fs_info = fs_info;
7627 
7628 	mutex_lock(&fs_devices->device_list_mutex);
7629 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7630 		device->fs_info = fs_info;
7631 
7632 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7633 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7634 			device->fs_info = fs_info;
7635 
7636 		seed_devs->fs_info = fs_info;
7637 	}
7638 	mutex_unlock(&fs_devices->device_list_mutex);
7639 }
7640 
7641 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7642 				 const struct btrfs_dev_stats_item *ptr,
7643 				 int index)
7644 {
7645 	u64 val;
7646 
7647 	read_extent_buffer(eb, &val,
7648 			   offsetof(struct btrfs_dev_stats_item, values) +
7649 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7650 			   sizeof(val));
7651 	return val;
7652 }
7653 
7654 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7655 				      struct btrfs_dev_stats_item *ptr,
7656 				      int index, u64 val)
7657 {
7658 	write_extent_buffer(eb, &val,
7659 			    offsetof(struct btrfs_dev_stats_item, values) +
7660 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7661 			    sizeof(val));
7662 }
7663 
7664 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7665 				       struct btrfs_path *path)
7666 {
7667 	struct btrfs_dev_stats_item *ptr;
7668 	struct extent_buffer *eb;
7669 	struct btrfs_key key;
7670 	int item_size;
7671 	int i, ret, slot;
7672 
7673 	if (!device->fs_info->dev_root)
7674 		return 0;
7675 
7676 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7677 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7678 	key.offset = device->devid;
7679 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7680 	if (ret) {
7681 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7682 			btrfs_dev_stat_set(device, i, 0);
7683 		device->dev_stats_valid = 1;
7684 		btrfs_release_path(path);
7685 		return ret < 0 ? ret : 0;
7686 	}
7687 	slot = path->slots[0];
7688 	eb = path->nodes[0];
7689 	item_size = btrfs_item_size(eb, slot);
7690 
7691 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7692 
7693 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7694 		if (item_size >= (1 + i) * sizeof(__le64))
7695 			btrfs_dev_stat_set(device, i,
7696 					   btrfs_dev_stats_value(eb, ptr, i));
7697 		else
7698 			btrfs_dev_stat_set(device, i, 0);
7699 	}
7700 
7701 	device->dev_stats_valid = 1;
7702 	btrfs_dev_stat_print_on_load(device);
7703 	btrfs_release_path(path);
7704 
7705 	return 0;
7706 }
7707 
7708 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7709 {
7710 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7711 	struct btrfs_device *device;
7712 	struct btrfs_path *path = NULL;
7713 	int ret = 0;
7714 
7715 	path = btrfs_alloc_path();
7716 	if (!path)
7717 		return -ENOMEM;
7718 
7719 	mutex_lock(&fs_devices->device_list_mutex);
7720 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7721 		ret = btrfs_device_init_dev_stats(device, path);
7722 		if (ret)
7723 			goto out;
7724 	}
7725 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7726 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7727 			ret = btrfs_device_init_dev_stats(device, path);
7728 			if (ret)
7729 				goto out;
7730 		}
7731 	}
7732 out:
7733 	mutex_unlock(&fs_devices->device_list_mutex);
7734 
7735 	btrfs_free_path(path);
7736 	return ret;
7737 }
7738 
7739 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7740 				struct btrfs_device *device)
7741 {
7742 	struct btrfs_fs_info *fs_info = trans->fs_info;
7743 	struct btrfs_root *dev_root = fs_info->dev_root;
7744 	struct btrfs_path *path;
7745 	struct btrfs_key key;
7746 	struct extent_buffer *eb;
7747 	struct btrfs_dev_stats_item *ptr;
7748 	int ret;
7749 	int i;
7750 
7751 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7752 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7753 	key.offset = device->devid;
7754 
7755 	path = btrfs_alloc_path();
7756 	if (!path)
7757 		return -ENOMEM;
7758 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7759 	if (ret < 0) {
7760 		btrfs_warn_in_rcu(fs_info,
7761 			"error %d while searching for dev_stats item for device %s",
7762 			      ret, rcu_str_deref(device->name));
7763 		goto out;
7764 	}
7765 
7766 	if (ret == 0 &&
7767 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7768 		/* need to delete old one and insert a new one */
7769 		ret = btrfs_del_item(trans, dev_root, path);
7770 		if (ret != 0) {
7771 			btrfs_warn_in_rcu(fs_info,
7772 				"delete too small dev_stats item for device %s failed %d",
7773 				      rcu_str_deref(device->name), ret);
7774 			goto out;
7775 		}
7776 		ret = 1;
7777 	}
7778 
7779 	if (ret == 1) {
7780 		/* need to insert a new item */
7781 		btrfs_release_path(path);
7782 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7783 					      &key, sizeof(*ptr));
7784 		if (ret < 0) {
7785 			btrfs_warn_in_rcu(fs_info,
7786 				"insert dev_stats item for device %s failed %d",
7787 				rcu_str_deref(device->name), ret);
7788 			goto out;
7789 		}
7790 	}
7791 
7792 	eb = path->nodes[0];
7793 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7794 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7795 		btrfs_set_dev_stats_value(eb, ptr, i,
7796 					  btrfs_dev_stat_read(device, i));
7797 	btrfs_mark_buffer_dirty(eb);
7798 
7799 out:
7800 	btrfs_free_path(path);
7801 	return ret;
7802 }
7803 
7804 /*
7805  * called from commit_transaction. Writes all changed device stats to disk.
7806  */
7807 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7808 {
7809 	struct btrfs_fs_info *fs_info = trans->fs_info;
7810 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7811 	struct btrfs_device *device;
7812 	int stats_cnt;
7813 	int ret = 0;
7814 
7815 	mutex_lock(&fs_devices->device_list_mutex);
7816 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7817 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7818 		if (!device->dev_stats_valid || stats_cnt == 0)
7819 			continue;
7820 
7821 
7822 		/*
7823 		 * There is a LOAD-LOAD control dependency between the value of
7824 		 * dev_stats_ccnt and updating the on-disk values which requires
7825 		 * reading the in-memory counters. Such control dependencies
7826 		 * require explicit read memory barriers.
7827 		 *
7828 		 * This memory barriers pairs with smp_mb__before_atomic in
7829 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7830 		 * barrier implied by atomic_xchg in
7831 		 * btrfs_dev_stats_read_and_reset
7832 		 */
7833 		smp_rmb();
7834 
7835 		ret = update_dev_stat_item(trans, device);
7836 		if (!ret)
7837 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7838 	}
7839 	mutex_unlock(&fs_devices->device_list_mutex);
7840 
7841 	return ret;
7842 }
7843 
7844 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7845 {
7846 	btrfs_dev_stat_inc(dev, index);
7847 
7848 	if (!dev->dev_stats_valid)
7849 		return;
7850 	btrfs_err_rl_in_rcu(dev->fs_info,
7851 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7852 			   rcu_str_deref(dev->name),
7853 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7854 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7855 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7856 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7857 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7858 }
7859 
7860 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7861 {
7862 	int i;
7863 
7864 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7865 		if (btrfs_dev_stat_read(dev, i) != 0)
7866 			break;
7867 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7868 		return; /* all values == 0, suppress message */
7869 
7870 	btrfs_info_in_rcu(dev->fs_info,
7871 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7872 	       rcu_str_deref(dev->name),
7873 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7874 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7875 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7876 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7877 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7878 }
7879 
7880 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7881 			struct btrfs_ioctl_get_dev_stats *stats)
7882 {
7883 	BTRFS_DEV_LOOKUP_ARGS(args);
7884 	struct btrfs_device *dev;
7885 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7886 	int i;
7887 
7888 	mutex_lock(&fs_devices->device_list_mutex);
7889 	args.devid = stats->devid;
7890 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7891 	mutex_unlock(&fs_devices->device_list_mutex);
7892 
7893 	if (!dev) {
7894 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7895 		return -ENODEV;
7896 	} else if (!dev->dev_stats_valid) {
7897 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7898 		return -ENODEV;
7899 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7900 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7901 			if (stats->nr_items > i)
7902 				stats->values[i] =
7903 					btrfs_dev_stat_read_and_reset(dev, i);
7904 			else
7905 				btrfs_dev_stat_set(dev, i, 0);
7906 		}
7907 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7908 			   current->comm, task_pid_nr(current));
7909 	} else {
7910 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7911 			if (stats->nr_items > i)
7912 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7913 	}
7914 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7915 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7916 	return 0;
7917 }
7918 
7919 /*
7920  * Update the size and bytes used for each device where it changed.  This is
7921  * delayed since we would otherwise get errors while writing out the
7922  * superblocks.
7923  *
7924  * Must be invoked during transaction commit.
7925  */
7926 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7927 {
7928 	struct btrfs_device *curr, *next;
7929 
7930 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7931 
7932 	if (list_empty(&trans->dev_update_list))
7933 		return;
7934 
7935 	/*
7936 	 * We don't need the device_list_mutex here.  This list is owned by the
7937 	 * transaction and the transaction must complete before the device is
7938 	 * released.
7939 	 */
7940 	mutex_lock(&trans->fs_info->chunk_mutex);
7941 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7942 				 post_commit_list) {
7943 		list_del_init(&curr->post_commit_list);
7944 		curr->commit_total_bytes = curr->disk_total_bytes;
7945 		curr->commit_bytes_used = curr->bytes_used;
7946 	}
7947 	mutex_unlock(&trans->fs_info->chunk_mutex);
7948 }
7949 
7950 /*
7951  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7952  */
7953 int btrfs_bg_type_to_factor(u64 flags)
7954 {
7955 	const int index = btrfs_bg_flags_to_raid_index(flags);
7956 
7957 	return btrfs_raid_array[index].ncopies;
7958 }
7959 
7960 
7961 
7962 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7963 				 u64 chunk_offset, u64 devid,
7964 				 u64 physical_offset, u64 physical_len)
7965 {
7966 	struct btrfs_dev_lookup_args args = { .devid = devid };
7967 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7968 	struct extent_map *em;
7969 	struct map_lookup *map;
7970 	struct btrfs_device *dev;
7971 	u64 stripe_len;
7972 	bool found = false;
7973 	int ret = 0;
7974 	int i;
7975 
7976 	read_lock(&em_tree->lock);
7977 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7978 	read_unlock(&em_tree->lock);
7979 
7980 	if (!em) {
7981 		btrfs_err(fs_info,
7982 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7983 			  physical_offset, devid);
7984 		ret = -EUCLEAN;
7985 		goto out;
7986 	}
7987 
7988 	map = em->map_lookup;
7989 	stripe_len = btrfs_calc_stripe_length(em);
7990 	if (physical_len != stripe_len) {
7991 		btrfs_err(fs_info,
7992 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7993 			  physical_offset, devid, em->start, physical_len,
7994 			  stripe_len);
7995 		ret = -EUCLEAN;
7996 		goto out;
7997 	}
7998 
7999 	/*
8000 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8001 	 * space. Although kernel can handle it without problem, better to warn
8002 	 * the users.
8003 	 */
8004 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8005 		btrfs_warn(fs_info,
8006 		"devid %llu physical %llu len %llu inside the reserved space",
8007 			   devid, physical_offset, physical_len);
8008 
8009 	for (i = 0; i < map->num_stripes; i++) {
8010 		if (map->stripes[i].dev->devid == devid &&
8011 		    map->stripes[i].physical == physical_offset) {
8012 			found = true;
8013 			if (map->verified_stripes >= map->num_stripes) {
8014 				btrfs_err(fs_info,
8015 				"too many dev extents for chunk %llu found",
8016 					  em->start);
8017 				ret = -EUCLEAN;
8018 				goto out;
8019 			}
8020 			map->verified_stripes++;
8021 			break;
8022 		}
8023 	}
8024 	if (!found) {
8025 		btrfs_err(fs_info,
8026 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8027 			physical_offset, devid);
8028 		ret = -EUCLEAN;
8029 	}
8030 
8031 	/* Make sure no dev extent is beyond device boundary */
8032 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8033 	if (!dev) {
8034 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8035 		ret = -EUCLEAN;
8036 		goto out;
8037 	}
8038 
8039 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8040 		btrfs_err(fs_info,
8041 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8042 			  devid, physical_offset, physical_len,
8043 			  dev->disk_total_bytes);
8044 		ret = -EUCLEAN;
8045 		goto out;
8046 	}
8047 
8048 	if (dev->zone_info) {
8049 		u64 zone_size = dev->zone_info->zone_size;
8050 
8051 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8052 		    !IS_ALIGNED(physical_len, zone_size)) {
8053 			btrfs_err(fs_info,
8054 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8055 				  devid, physical_offset, physical_len);
8056 			ret = -EUCLEAN;
8057 			goto out;
8058 		}
8059 	}
8060 
8061 out:
8062 	free_extent_map(em);
8063 	return ret;
8064 }
8065 
8066 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8067 {
8068 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8069 	struct extent_map *em;
8070 	struct rb_node *node;
8071 	int ret = 0;
8072 
8073 	read_lock(&em_tree->lock);
8074 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8075 		em = rb_entry(node, struct extent_map, rb_node);
8076 		if (em->map_lookup->num_stripes !=
8077 		    em->map_lookup->verified_stripes) {
8078 			btrfs_err(fs_info,
8079 			"chunk %llu has missing dev extent, have %d expect %d",
8080 				  em->start, em->map_lookup->verified_stripes,
8081 				  em->map_lookup->num_stripes);
8082 			ret = -EUCLEAN;
8083 			goto out;
8084 		}
8085 	}
8086 out:
8087 	read_unlock(&em_tree->lock);
8088 	return ret;
8089 }
8090 
8091 /*
8092  * Ensure that all dev extents are mapped to correct chunk, otherwise
8093  * later chunk allocation/free would cause unexpected behavior.
8094  *
8095  * NOTE: This will iterate through the whole device tree, which should be of
8096  * the same size level as the chunk tree.  This slightly increases mount time.
8097  */
8098 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8099 {
8100 	struct btrfs_path *path;
8101 	struct btrfs_root *root = fs_info->dev_root;
8102 	struct btrfs_key key;
8103 	u64 prev_devid = 0;
8104 	u64 prev_dev_ext_end = 0;
8105 	int ret = 0;
8106 
8107 	/*
8108 	 * We don't have a dev_root because we mounted with ignorebadroots and
8109 	 * failed to load the root, so we want to skip the verification in this
8110 	 * case for sure.
8111 	 *
8112 	 * However if the dev root is fine, but the tree itself is corrupted
8113 	 * we'd still fail to mount.  This verification is only to make sure
8114 	 * writes can happen safely, so instead just bypass this check
8115 	 * completely in the case of IGNOREBADROOTS.
8116 	 */
8117 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8118 		return 0;
8119 
8120 	key.objectid = 1;
8121 	key.type = BTRFS_DEV_EXTENT_KEY;
8122 	key.offset = 0;
8123 
8124 	path = btrfs_alloc_path();
8125 	if (!path)
8126 		return -ENOMEM;
8127 
8128 	path->reada = READA_FORWARD;
8129 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8130 	if (ret < 0)
8131 		goto out;
8132 
8133 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8134 		ret = btrfs_next_leaf(root, path);
8135 		if (ret < 0)
8136 			goto out;
8137 		/* No dev extents at all? Not good */
8138 		if (ret > 0) {
8139 			ret = -EUCLEAN;
8140 			goto out;
8141 		}
8142 	}
8143 	while (1) {
8144 		struct extent_buffer *leaf = path->nodes[0];
8145 		struct btrfs_dev_extent *dext;
8146 		int slot = path->slots[0];
8147 		u64 chunk_offset;
8148 		u64 physical_offset;
8149 		u64 physical_len;
8150 		u64 devid;
8151 
8152 		btrfs_item_key_to_cpu(leaf, &key, slot);
8153 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8154 			break;
8155 		devid = key.objectid;
8156 		physical_offset = key.offset;
8157 
8158 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8159 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8160 		physical_len = btrfs_dev_extent_length(leaf, dext);
8161 
8162 		/* Check if this dev extent overlaps with the previous one */
8163 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8164 			btrfs_err(fs_info,
8165 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8166 				  devid, physical_offset, prev_dev_ext_end);
8167 			ret = -EUCLEAN;
8168 			goto out;
8169 		}
8170 
8171 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8172 					    physical_offset, physical_len);
8173 		if (ret < 0)
8174 			goto out;
8175 		prev_devid = devid;
8176 		prev_dev_ext_end = physical_offset + physical_len;
8177 
8178 		ret = btrfs_next_item(root, path);
8179 		if (ret < 0)
8180 			goto out;
8181 		if (ret > 0) {
8182 			ret = 0;
8183 			break;
8184 		}
8185 	}
8186 
8187 	/* Ensure all chunks have corresponding dev extents */
8188 	ret = verify_chunk_dev_extent_mapping(fs_info);
8189 out:
8190 	btrfs_free_path(path);
8191 	return ret;
8192 }
8193 
8194 /*
8195  * Check whether the given block group or device is pinned by any inode being
8196  * used as a swapfile.
8197  */
8198 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8199 {
8200 	struct btrfs_swapfile_pin *sp;
8201 	struct rb_node *node;
8202 
8203 	spin_lock(&fs_info->swapfile_pins_lock);
8204 	node = fs_info->swapfile_pins.rb_node;
8205 	while (node) {
8206 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8207 		if (ptr < sp->ptr)
8208 			node = node->rb_left;
8209 		else if (ptr > sp->ptr)
8210 			node = node->rb_right;
8211 		else
8212 			break;
8213 	}
8214 	spin_unlock(&fs_info->swapfile_pins_lock);
8215 	return node != NULL;
8216 }
8217 
8218 static int relocating_repair_kthread(void *data)
8219 {
8220 	struct btrfs_block_group *cache = data;
8221 	struct btrfs_fs_info *fs_info = cache->fs_info;
8222 	u64 target;
8223 	int ret = 0;
8224 
8225 	target = cache->start;
8226 	btrfs_put_block_group(cache);
8227 
8228 	sb_start_write(fs_info->sb);
8229 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8230 		btrfs_info(fs_info,
8231 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8232 			   target);
8233 		sb_end_write(fs_info->sb);
8234 		return -EBUSY;
8235 	}
8236 
8237 	mutex_lock(&fs_info->reclaim_bgs_lock);
8238 
8239 	/* Ensure block group still exists */
8240 	cache = btrfs_lookup_block_group(fs_info, target);
8241 	if (!cache)
8242 		goto out;
8243 
8244 	if (!cache->relocating_repair)
8245 		goto out;
8246 
8247 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8248 	if (ret < 0)
8249 		goto out;
8250 
8251 	btrfs_info(fs_info,
8252 		   "zoned: relocating block group %llu to repair IO failure",
8253 		   target);
8254 	ret = btrfs_relocate_chunk(fs_info, target);
8255 
8256 out:
8257 	if (cache)
8258 		btrfs_put_block_group(cache);
8259 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8260 	btrfs_exclop_finish(fs_info);
8261 	sb_end_write(fs_info->sb);
8262 
8263 	return ret;
8264 }
8265 
8266 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8267 {
8268 	struct btrfs_block_group *cache;
8269 
8270 	if (!btrfs_is_zoned(fs_info))
8271 		return false;
8272 
8273 	/* Do not attempt to repair in degraded state */
8274 	if (btrfs_test_opt(fs_info, DEGRADED))
8275 		return true;
8276 
8277 	cache = btrfs_lookup_block_group(fs_info, logical);
8278 	if (!cache)
8279 		return true;
8280 
8281 	spin_lock(&cache->lock);
8282 	if (cache->relocating_repair) {
8283 		spin_unlock(&cache->lock);
8284 		btrfs_put_block_group(cache);
8285 		return true;
8286 	}
8287 	cache->relocating_repair = 1;
8288 	spin_unlock(&cache->lock);
8289 
8290 	kthread_run(relocating_repair_kthread, cache,
8291 		    "btrfs-relocating-repair");
8292 
8293 	return true;
8294 }
8295