1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53 DEFINE_MUTEX(uuid_mutex); 54 static LIST_HEAD(fs_uuids); 55 56 static void lock_chunks(struct btrfs_root *root) 57 { 58 mutex_lock(&root->fs_info->chunk_mutex); 59 } 60 61 static void unlock_chunks(struct btrfs_root *root) 62 { 63 mutex_unlock(&root->fs_info->chunk_mutex); 64 } 65 66 static struct btrfs_fs_devices *__alloc_fs_devices(void) 67 { 68 struct btrfs_fs_devices *fs_devs; 69 70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 71 if (!fs_devs) 72 return ERR_PTR(-ENOMEM); 73 74 mutex_init(&fs_devs->device_list_mutex); 75 76 INIT_LIST_HEAD(&fs_devs->devices); 77 INIT_LIST_HEAD(&fs_devs->resized_devices); 78 INIT_LIST_HEAD(&fs_devs->alloc_list); 79 INIT_LIST_HEAD(&fs_devs->list); 80 81 return fs_devs; 82 } 83 84 /** 85 * alloc_fs_devices - allocate struct btrfs_fs_devices 86 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 87 * generated. 88 * 89 * Return: a pointer to a new &struct btrfs_fs_devices on success; 90 * ERR_PTR() on error. Returned struct is not linked onto any lists and 91 * can be destroyed with kfree() right away. 92 */ 93 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 94 { 95 struct btrfs_fs_devices *fs_devs; 96 97 fs_devs = __alloc_fs_devices(); 98 if (IS_ERR(fs_devs)) 99 return fs_devs; 100 101 if (fsid) 102 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 103 else 104 generate_random_uuid(fs_devs->fsid); 105 106 return fs_devs; 107 } 108 109 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 110 { 111 struct btrfs_device *device; 112 WARN_ON(fs_devices->opened); 113 while (!list_empty(&fs_devices->devices)) { 114 device = list_entry(fs_devices->devices.next, 115 struct btrfs_device, dev_list); 116 list_del(&device->dev_list); 117 rcu_string_free(device->name); 118 kfree(device); 119 } 120 kfree(fs_devices); 121 } 122 123 static void btrfs_kobject_uevent(struct block_device *bdev, 124 enum kobject_action action) 125 { 126 int ret; 127 128 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 129 if (ret) 130 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 131 action, 132 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 133 &disk_to_dev(bdev->bd_disk)->kobj); 134 } 135 136 void btrfs_cleanup_fs_uuids(void) 137 { 138 struct btrfs_fs_devices *fs_devices; 139 140 while (!list_empty(&fs_uuids)) { 141 fs_devices = list_entry(fs_uuids.next, 142 struct btrfs_fs_devices, list); 143 list_del(&fs_devices->list); 144 free_fs_devices(fs_devices); 145 } 146 } 147 148 static struct btrfs_device *__alloc_device(void) 149 { 150 struct btrfs_device *dev; 151 152 dev = kzalloc(sizeof(*dev), GFP_NOFS); 153 if (!dev) 154 return ERR_PTR(-ENOMEM); 155 156 INIT_LIST_HEAD(&dev->dev_list); 157 INIT_LIST_HEAD(&dev->dev_alloc_list); 158 INIT_LIST_HEAD(&dev->resized_list); 159 160 spin_lock_init(&dev->io_lock); 161 162 spin_lock_init(&dev->reada_lock); 163 atomic_set(&dev->reada_in_flight, 0); 164 atomic_set(&dev->dev_stats_ccnt, 0); 165 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 166 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 167 168 return dev; 169 } 170 171 static noinline struct btrfs_device *__find_device(struct list_head *head, 172 u64 devid, u8 *uuid) 173 { 174 struct btrfs_device *dev; 175 176 list_for_each_entry(dev, head, dev_list) { 177 if (dev->devid == devid && 178 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 179 return dev; 180 } 181 } 182 return NULL; 183 } 184 185 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 186 { 187 struct btrfs_fs_devices *fs_devices; 188 189 list_for_each_entry(fs_devices, &fs_uuids, list) { 190 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 191 return fs_devices; 192 } 193 return NULL; 194 } 195 196 static int 197 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 198 int flush, struct block_device **bdev, 199 struct buffer_head **bh) 200 { 201 int ret; 202 203 *bdev = blkdev_get_by_path(device_path, flags, holder); 204 205 if (IS_ERR(*bdev)) { 206 ret = PTR_ERR(*bdev); 207 printk(KERN_INFO "BTRFS: open %s failed\n", device_path); 208 goto error; 209 } 210 211 if (flush) 212 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 213 ret = set_blocksize(*bdev, 4096); 214 if (ret) { 215 blkdev_put(*bdev, flags); 216 goto error; 217 } 218 invalidate_bdev(*bdev); 219 *bh = btrfs_read_dev_super(*bdev); 220 if (!*bh) { 221 ret = -EINVAL; 222 blkdev_put(*bdev, flags); 223 goto error; 224 } 225 226 return 0; 227 228 error: 229 *bdev = NULL; 230 *bh = NULL; 231 return ret; 232 } 233 234 static void requeue_list(struct btrfs_pending_bios *pending_bios, 235 struct bio *head, struct bio *tail) 236 { 237 238 struct bio *old_head; 239 240 old_head = pending_bios->head; 241 pending_bios->head = head; 242 if (pending_bios->tail) 243 tail->bi_next = old_head; 244 else 245 pending_bios->tail = tail; 246 } 247 248 /* 249 * we try to collect pending bios for a device so we don't get a large 250 * number of procs sending bios down to the same device. This greatly 251 * improves the schedulers ability to collect and merge the bios. 252 * 253 * But, it also turns into a long list of bios to process and that is sure 254 * to eventually make the worker thread block. The solution here is to 255 * make some progress and then put this work struct back at the end of 256 * the list if the block device is congested. This way, multiple devices 257 * can make progress from a single worker thread. 258 */ 259 static noinline void run_scheduled_bios(struct btrfs_device *device) 260 { 261 struct bio *pending; 262 struct backing_dev_info *bdi; 263 struct btrfs_fs_info *fs_info; 264 struct btrfs_pending_bios *pending_bios; 265 struct bio *tail; 266 struct bio *cur; 267 int again = 0; 268 unsigned long num_run; 269 unsigned long batch_run = 0; 270 unsigned long limit; 271 unsigned long last_waited = 0; 272 int force_reg = 0; 273 int sync_pending = 0; 274 struct blk_plug plug; 275 276 /* 277 * this function runs all the bios we've collected for 278 * a particular device. We don't want to wander off to 279 * another device without first sending all of these down. 280 * So, setup a plug here and finish it off before we return 281 */ 282 blk_start_plug(&plug); 283 284 bdi = blk_get_backing_dev_info(device->bdev); 285 fs_info = device->dev_root->fs_info; 286 limit = btrfs_async_submit_limit(fs_info); 287 limit = limit * 2 / 3; 288 289 loop: 290 spin_lock(&device->io_lock); 291 292 loop_lock: 293 num_run = 0; 294 295 /* take all the bios off the list at once and process them 296 * later on (without the lock held). But, remember the 297 * tail and other pointers so the bios can be properly reinserted 298 * into the list if we hit congestion 299 */ 300 if (!force_reg && device->pending_sync_bios.head) { 301 pending_bios = &device->pending_sync_bios; 302 force_reg = 1; 303 } else { 304 pending_bios = &device->pending_bios; 305 force_reg = 0; 306 } 307 308 pending = pending_bios->head; 309 tail = pending_bios->tail; 310 WARN_ON(pending && !tail); 311 312 /* 313 * if pending was null this time around, no bios need processing 314 * at all and we can stop. Otherwise it'll loop back up again 315 * and do an additional check so no bios are missed. 316 * 317 * device->running_pending is used to synchronize with the 318 * schedule_bio code. 319 */ 320 if (device->pending_sync_bios.head == NULL && 321 device->pending_bios.head == NULL) { 322 again = 0; 323 device->running_pending = 0; 324 } else { 325 again = 1; 326 device->running_pending = 1; 327 } 328 329 pending_bios->head = NULL; 330 pending_bios->tail = NULL; 331 332 spin_unlock(&device->io_lock); 333 334 while (pending) { 335 336 rmb(); 337 /* we want to work on both lists, but do more bios on the 338 * sync list than the regular list 339 */ 340 if ((num_run > 32 && 341 pending_bios != &device->pending_sync_bios && 342 device->pending_sync_bios.head) || 343 (num_run > 64 && pending_bios == &device->pending_sync_bios && 344 device->pending_bios.head)) { 345 spin_lock(&device->io_lock); 346 requeue_list(pending_bios, pending, tail); 347 goto loop_lock; 348 } 349 350 cur = pending; 351 pending = pending->bi_next; 352 cur->bi_next = NULL; 353 354 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 355 waitqueue_active(&fs_info->async_submit_wait)) 356 wake_up(&fs_info->async_submit_wait); 357 358 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 359 360 /* 361 * if we're doing the sync list, record that our 362 * plug has some sync requests on it 363 * 364 * If we're doing the regular list and there are 365 * sync requests sitting around, unplug before 366 * we add more 367 */ 368 if (pending_bios == &device->pending_sync_bios) { 369 sync_pending = 1; 370 } else if (sync_pending) { 371 blk_finish_plug(&plug); 372 blk_start_plug(&plug); 373 sync_pending = 0; 374 } 375 376 btrfsic_submit_bio(cur->bi_rw, cur); 377 num_run++; 378 batch_run++; 379 if (need_resched()) 380 cond_resched(); 381 382 /* 383 * we made progress, there is more work to do and the bdi 384 * is now congested. Back off and let other work structs 385 * run instead 386 */ 387 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 388 fs_info->fs_devices->open_devices > 1) { 389 struct io_context *ioc; 390 391 ioc = current->io_context; 392 393 /* 394 * the main goal here is that we don't want to 395 * block if we're going to be able to submit 396 * more requests without blocking. 397 * 398 * This code does two great things, it pokes into 399 * the elevator code from a filesystem _and_ 400 * it makes assumptions about how batching works. 401 */ 402 if (ioc && ioc->nr_batch_requests > 0 && 403 time_before(jiffies, ioc->last_waited + HZ/50UL) && 404 (last_waited == 0 || 405 ioc->last_waited == last_waited)) { 406 /* 407 * we want to go through our batch of 408 * requests and stop. So, we copy out 409 * the ioc->last_waited time and test 410 * against it before looping 411 */ 412 last_waited = ioc->last_waited; 413 if (need_resched()) 414 cond_resched(); 415 continue; 416 } 417 spin_lock(&device->io_lock); 418 requeue_list(pending_bios, pending, tail); 419 device->running_pending = 1; 420 421 spin_unlock(&device->io_lock); 422 btrfs_queue_work(fs_info->submit_workers, 423 &device->work); 424 goto done; 425 } 426 /* unplug every 64 requests just for good measure */ 427 if (batch_run % 64 == 0) { 428 blk_finish_plug(&plug); 429 blk_start_plug(&plug); 430 sync_pending = 0; 431 } 432 } 433 434 cond_resched(); 435 if (again) 436 goto loop; 437 438 spin_lock(&device->io_lock); 439 if (device->pending_bios.head || device->pending_sync_bios.head) 440 goto loop_lock; 441 spin_unlock(&device->io_lock); 442 443 done: 444 blk_finish_plug(&plug); 445 } 446 447 static void pending_bios_fn(struct btrfs_work *work) 448 { 449 struct btrfs_device *device; 450 451 device = container_of(work, struct btrfs_device, work); 452 run_scheduled_bios(device); 453 } 454 455 /* 456 * Add new device to list of registered devices 457 * 458 * Returns: 459 * 1 - first time device is seen 460 * 0 - device already known 461 * < 0 - error 462 */ 463 static noinline int device_list_add(const char *path, 464 struct btrfs_super_block *disk_super, 465 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 466 { 467 struct btrfs_device *device; 468 struct btrfs_fs_devices *fs_devices; 469 struct rcu_string *name; 470 int ret = 0; 471 u64 found_transid = btrfs_super_generation(disk_super); 472 473 fs_devices = find_fsid(disk_super->fsid); 474 if (!fs_devices) { 475 fs_devices = alloc_fs_devices(disk_super->fsid); 476 if (IS_ERR(fs_devices)) 477 return PTR_ERR(fs_devices); 478 479 list_add(&fs_devices->list, &fs_uuids); 480 481 device = NULL; 482 } else { 483 device = __find_device(&fs_devices->devices, devid, 484 disk_super->dev_item.uuid); 485 } 486 487 if (!device) { 488 if (fs_devices->opened) 489 return -EBUSY; 490 491 device = btrfs_alloc_device(NULL, &devid, 492 disk_super->dev_item.uuid); 493 if (IS_ERR(device)) { 494 /* we can safely leave the fs_devices entry around */ 495 return PTR_ERR(device); 496 } 497 498 name = rcu_string_strdup(path, GFP_NOFS); 499 if (!name) { 500 kfree(device); 501 return -ENOMEM; 502 } 503 rcu_assign_pointer(device->name, name); 504 505 mutex_lock(&fs_devices->device_list_mutex); 506 list_add_rcu(&device->dev_list, &fs_devices->devices); 507 fs_devices->num_devices++; 508 mutex_unlock(&fs_devices->device_list_mutex); 509 510 ret = 1; 511 device->fs_devices = fs_devices; 512 } else if (!device->name || strcmp(device->name->str, path)) { 513 /* 514 * When FS is already mounted. 515 * 1. If you are here and if the device->name is NULL that 516 * means this device was missing at time of FS mount. 517 * 2. If you are here and if the device->name is different 518 * from 'path' that means either 519 * a. The same device disappeared and reappeared with 520 * different name. or 521 * b. The missing-disk-which-was-replaced, has 522 * reappeared now. 523 * 524 * We must allow 1 and 2a above. But 2b would be a spurious 525 * and unintentional. 526 * 527 * Further in case of 1 and 2a above, the disk at 'path' 528 * would have missed some transaction when it was away and 529 * in case of 2a the stale bdev has to be updated as well. 530 * 2b must not be allowed at all time. 531 */ 532 533 /* 534 * For now, we do allow update to btrfs_fs_device through the 535 * btrfs dev scan cli after FS has been mounted. We're still 536 * tracking a problem where systems fail mount by subvolume id 537 * when we reject replacement on a mounted FS. 538 */ 539 if (!fs_devices->opened && found_transid < device->generation) { 540 /* 541 * That is if the FS is _not_ mounted and if you 542 * are here, that means there is more than one 543 * disk with same uuid and devid.We keep the one 544 * with larger generation number or the last-in if 545 * generation are equal. 546 */ 547 return -EEXIST; 548 } 549 550 name = rcu_string_strdup(path, GFP_NOFS); 551 if (!name) 552 return -ENOMEM; 553 rcu_string_free(device->name); 554 rcu_assign_pointer(device->name, name); 555 if (device->missing) { 556 fs_devices->missing_devices--; 557 device->missing = 0; 558 } 559 } 560 561 /* 562 * Unmount does not free the btrfs_device struct but would zero 563 * generation along with most of the other members. So just update 564 * it back. We need it to pick the disk with largest generation 565 * (as above). 566 */ 567 if (!fs_devices->opened) 568 device->generation = found_transid; 569 570 *fs_devices_ret = fs_devices; 571 572 return ret; 573 } 574 575 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 576 { 577 struct btrfs_fs_devices *fs_devices; 578 struct btrfs_device *device; 579 struct btrfs_device *orig_dev; 580 581 fs_devices = alloc_fs_devices(orig->fsid); 582 if (IS_ERR(fs_devices)) 583 return fs_devices; 584 585 mutex_lock(&orig->device_list_mutex); 586 fs_devices->total_devices = orig->total_devices; 587 588 /* We have held the volume lock, it is safe to get the devices. */ 589 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 590 struct rcu_string *name; 591 592 device = btrfs_alloc_device(NULL, &orig_dev->devid, 593 orig_dev->uuid); 594 if (IS_ERR(device)) 595 goto error; 596 597 /* 598 * This is ok to do without rcu read locked because we hold the 599 * uuid mutex so nothing we touch in here is going to disappear. 600 */ 601 if (orig_dev->name) { 602 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 603 if (!name) { 604 kfree(device); 605 goto error; 606 } 607 rcu_assign_pointer(device->name, name); 608 } 609 610 list_add(&device->dev_list, &fs_devices->devices); 611 device->fs_devices = fs_devices; 612 fs_devices->num_devices++; 613 } 614 mutex_unlock(&orig->device_list_mutex); 615 return fs_devices; 616 error: 617 mutex_unlock(&orig->device_list_mutex); 618 free_fs_devices(fs_devices); 619 return ERR_PTR(-ENOMEM); 620 } 621 622 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info, 623 struct btrfs_fs_devices *fs_devices, int step) 624 { 625 struct btrfs_device *device, *next; 626 struct btrfs_device *latest_dev = NULL; 627 628 mutex_lock(&uuid_mutex); 629 again: 630 /* This is the initialized path, it is safe to release the devices. */ 631 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 632 if (device->in_fs_metadata) { 633 if (!device->is_tgtdev_for_dev_replace && 634 (!latest_dev || 635 device->generation > latest_dev->generation)) { 636 latest_dev = device; 637 } 638 continue; 639 } 640 641 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 642 /* 643 * In the first step, keep the device which has 644 * the correct fsid and the devid that is used 645 * for the dev_replace procedure. 646 * In the second step, the dev_replace state is 647 * read from the device tree and it is known 648 * whether the procedure is really active or 649 * not, which means whether this device is 650 * used or whether it should be removed. 651 */ 652 if (step == 0 || device->is_tgtdev_for_dev_replace) { 653 continue; 654 } 655 } 656 if (device->bdev) { 657 blkdev_put(device->bdev, device->mode); 658 device->bdev = NULL; 659 fs_devices->open_devices--; 660 } 661 if (device->writeable) { 662 list_del_init(&device->dev_alloc_list); 663 device->writeable = 0; 664 if (!device->is_tgtdev_for_dev_replace) 665 fs_devices->rw_devices--; 666 } 667 list_del_init(&device->dev_list); 668 fs_devices->num_devices--; 669 rcu_string_free(device->name); 670 kfree(device); 671 } 672 673 if (fs_devices->seed) { 674 fs_devices = fs_devices->seed; 675 goto again; 676 } 677 678 fs_devices->latest_bdev = latest_dev->bdev; 679 680 mutex_unlock(&uuid_mutex); 681 } 682 683 static void __free_device(struct work_struct *work) 684 { 685 struct btrfs_device *device; 686 687 device = container_of(work, struct btrfs_device, rcu_work); 688 689 if (device->bdev) 690 blkdev_put(device->bdev, device->mode); 691 692 rcu_string_free(device->name); 693 kfree(device); 694 } 695 696 static void free_device(struct rcu_head *head) 697 { 698 struct btrfs_device *device; 699 700 device = container_of(head, struct btrfs_device, rcu); 701 702 INIT_WORK(&device->rcu_work, __free_device); 703 schedule_work(&device->rcu_work); 704 } 705 706 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 707 { 708 struct btrfs_device *device; 709 710 if (--fs_devices->opened > 0) 711 return 0; 712 713 mutex_lock(&fs_devices->device_list_mutex); 714 list_for_each_entry(device, &fs_devices->devices, dev_list) { 715 struct btrfs_device *new_device; 716 struct rcu_string *name; 717 718 if (device->bdev) 719 fs_devices->open_devices--; 720 721 if (device->writeable && 722 device->devid != BTRFS_DEV_REPLACE_DEVID) { 723 list_del_init(&device->dev_alloc_list); 724 fs_devices->rw_devices--; 725 } 726 727 if (device->missing) 728 fs_devices->missing_devices--; 729 730 new_device = btrfs_alloc_device(NULL, &device->devid, 731 device->uuid); 732 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 733 734 /* Safe because we are under uuid_mutex */ 735 if (device->name) { 736 name = rcu_string_strdup(device->name->str, GFP_NOFS); 737 BUG_ON(!name); /* -ENOMEM */ 738 rcu_assign_pointer(new_device->name, name); 739 } 740 741 list_replace_rcu(&device->dev_list, &new_device->dev_list); 742 new_device->fs_devices = device->fs_devices; 743 744 call_rcu(&device->rcu, free_device); 745 } 746 mutex_unlock(&fs_devices->device_list_mutex); 747 748 WARN_ON(fs_devices->open_devices); 749 WARN_ON(fs_devices->rw_devices); 750 fs_devices->opened = 0; 751 fs_devices->seeding = 0; 752 753 return 0; 754 } 755 756 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 757 { 758 struct btrfs_fs_devices *seed_devices = NULL; 759 int ret; 760 761 mutex_lock(&uuid_mutex); 762 ret = __btrfs_close_devices(fs_devices); 763 if (!fs_devices->opened) { 764 seed_devices = fs_devices->seed; 765 fs_devices->seed = NULL; 766 } 767 mutex_unlock(&uuid_mutex); 768 769 while (seed_devices) { 770 fs_devices = seed_devices; 771 seed_devices = fs_devices->seed; 772 __btrfs_close_devices(fs_devices); 773 free_fs_devices(fs_devices); 774 } 775 /* 776 * Wait for rcu kworkers under __btrfs_close_devices 777 * to finish all blkdev_puts so device is really 778 * free when umount is done. 779 */ 780 rcu_barrier(); 781 return ret; 782 } 783 784 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 785 fmode_t flags, void *holder) 786 { 787 struct request_queue *q; 788 struct block_device *bdev; 789 struct list_head *head = &fs_devices->devices; 790 struct btrfs_device *device; 791 struct btrfs_device *latest_dev = NULL; 792 struct buffer_head *bh; 793 struct btrfs_super_block *disk_super; 794 u64 devid; 795 int seeding = 1; 796 int ret = 0; 797 798 flags |= FMODE_EXCL; 799 800 list_for_each_entry(device, head, dev_list) { 801 if (device->bdev) 802 continue; 803 if (!device->name) 804 continue; 805 806 /* Just open everything we can; ignore failures here */ 807 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 808 &bdev, &bh)) 809 continue; 810 811 disk_super = (struct btrfs_super_block *)bh->b_data; 812 devid = btrfs_stack_device_id(&disk_super->dev_item); 813 if (devid != device->devid) 814 goto error_brelse; 815 816 if (memcmp(device->uuid, disk_super->dev_item.uuid, 817 BTRFS_UUID_SIZE)) 818 goto error_brelse; 819 820 device->generation = btrfs_super_generation(disk_super); 821 if (!latest_dev || 822 device->generation > latest_dev->generation) 823 latest_dev = device; 824 825 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 826 device->writeable = 0; 827 } else { 828 device->writeable = !bdev_read_only(bdev); 829 seeding = 0; 830 } 831 832 q = bdev_get_queue(bdev); 833 if (blk_queue_discard(q)) 834 device->can_discard = 1; 835 836 device->bdev = bdev; 837 device->in_fs_metadata = 0; 838 device->mode = flags; 839 840 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 841 fs_devices->rotating = 1; 842 843 fs_devices->open_devices++; 844 if (device->writeable && 845 device->devid != BTRFS_DEV_REPLACE_DEVID) { 846 fs_devices->rw_devices++; 847 list_add(&device->dev_alloc_list, 848 &fs_devices->alloc_list); 849 } 850 brelse(bh); 851 continue; 852 853 error_brelse: 854 brelse(bh); 855 blkdev_put(bdev, flags); 856 continue; 857 } 858 if (fs_devices->open_devices == 0) { 859 ret = -EINVAL; 860 goto out; 861 } 862 fs_devices->seeding = seeding; 863 fs_devices->opened = 1; 864 fs_devices->latest_bdev = latest_dev->bdev; 865 fs_devices->total_rw_bytes = 0; 866 out: 867 return ret; 868 } 869 870 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 871 fmode_t flags, void *holder) 872 { 873 int ret; 874 875 mutex_lock(&uuid_mutex); 876 if (fs_devices->opened) { 877 fs_devices->opened++; 878 ret = 0; 879 } else { 880 ret = __btrfs_open_devices(fs_devices, flags, holder); 881 } 882 mutex_unlock(&uuid_mutex); 883 return ret; 884 } 885 886 /* 887 * Look for a btrfs signature on a device. This may be called out of the mount path 888 * and we are not allowed to call set_blocksize during the scan. The superblock 889 * is read via pagecache 890 */ 891 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 892 struct btrfs_fs_devices **fs_devices_ret) 893 { 894 struct btrfs_super_block *disk_super; 895 struct block_device *bdev; 896 struct page *page; 897 void *p; 898 int ret = -EINVAL; 899 u64 devid; 900 u64 transid; 901 u64 total_devices; 902 u64 bytenr; 903 pgoff_t index; 904 905 /* 906 * we would like to check all the supers, but that would make 907 * a btrfs mount succeed after a mkfs from a different FS. 908 * So, we need to add a special mount option to scan for 909 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 910 */ 911 bytenr = btrfs_sb_offset(0); 912 flags |= FMODE_EXCL; 913 mutex_lock(&uuid_mutex); 914 915 bdev = blkdev_get_by_path(path, flags, holder); 916 917 if (IS_ERR(bdev)) { 918 ret = PTR_ERR(bdev); 919 goto error; 920 } 921 922 /* make sure our super fits in the device */ 923 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 924 goto error_bdev_put; 925 926 /* make sure our super fits in the page */ 927 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 928 goto error_bdev_put; 929 930 /* make sure our super doesn't straddle pages on disk */ 931 index = bytenr >> PAGE_CACHE_SHIFT; 932 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 933 goto error_bdev_put; 934 935 /* pull in the page with our super */ 936 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 937 index, GFP_NOFS); 938 939 if (IS_ERR_OR_NULL(page)) 940 goto error_bdev_put; 941 942 p = kmap(page); 943 944 /* align our pointer to the offset of the super block */ 945 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 946 947 if (btrfs_super_bytenr(disk_super) != bytenr || 948 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 949 goto error_unmap; 950 951 devid = btrfs_stack_device_id(&disk_super->dev_item); 952 transid = btrfs_super_generation(disk_super); 953 total_devices = btrfs_super_num_devices(disk_super); 954 955 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 956 if (ret > 0) { 957 if (disk_super->label[0]) { 958 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 959 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 960 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 961 } else { 962 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 963 } 964 965 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 966 ret = 0; 967 } 968 if (!ret && fs_devices_ret) 969 (*fs_devices_ret)->total_devices = total_devices; 970 971 error_unmap: 972 kunmap(page); 973 page_cache_release(page); 974 975 error_bdev_put: 976 blkdev_put(bdev, flags); 977 error: 978 mutex_unlock(&uuid_mutex); 979 return ret; 980 } 981 982 /* helper to account the used device space in the range */ 983 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 984 u64 end, u64 *length) 985 { 986 struct btrfs_key key; 987 struct btrfs_root *root = device->dev_root; 988 struct btrfs_dev_extent *dev_extent; 989 struct btrfs_path *path; 990 u64 extent_end; 991 int ret; 992 int slot; 993 struct extent_buffer *l; 994 995 *length = 0; 996 997 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 998 return 0; 999 1000 path = btrfs_alloc_path(); 1001 if (!path) 1002 return -ENOMEM; 1003 path->reada = 2; 1004 1005 key.objectid = device->devid; 1006 key.offset = start; 1007 key.type = BTRFS_DEV_EXTENT_KEY; 1008 1009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1010 if (ret < 0) 1011 goto out; 1012 if (ret > 0) { 1013 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1014 if (ret < 0) 1015 goto out; 1016 } 1017 1018 while (1) { 1019 l = path->nodes[0]; 1020 slot = path->slots[0]; 1021 if (slot >= btrfs_header_nritems(l)) { 1022 ret = btrfs_next_leaf(root, path); 1023 if (ret == 0) 1024 continue; 1025 if (ret < 0) 1026 goto out; 1027 1028 break; 1029 } 1030 btrfs_item_key_to_cpu(l, &key, slot); 1031 1032 if (key.objectid < device->devid) 1033 goto next; 1034 1035 if (key.objectid > device->devid) 1036 break; 1037 1038 if (key.type != BTRFS_DEV_EXTENT_KEY) 1039 goto next; 1040 1041 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1042 extent_end = key.offset + btrfs_dev_extent_length(l, 1043 dev_extent); 1044 if (key.offset <= start && extent_end > end) { 1045 *length = end - start + 1; 1046 break; 1047 } else if (key.offset <= start && extent_end > start) 1048 *length += extent_end - start; 1049 else if (key.offset > start && extent_end <= end) 1050 *length += extent_end - key.offset; 1051 else if (key.offset > start && key.offset <= end) { 1052 *length += end - key.offset + 1; 1053 break; 1054 } else if (key.offset > end) 1055 break; 1056 1057 next: 1058 path->slots[0]++; 1059 } 1060 ret = 0; 1061 out: 1062 btrfs_free_path(path); 1063 return ret; 1064 } 1065 1066 static int contains_pending_extent(struct btrfs_trans_handle *trans, 1067 struct btrfs_device *device, 1068 u64 *start, u64 len) 1069 { 1070 struct extent_map *em; 1071 int ret = 0; 1072 1073 list_for_each_entry(em, &trans->transaction->pending_chunks, list) { 1074 struct map_lookup *map; 1075 int i; 1076 1077 map = (struct map_lookup *)em->bdev; 1078 for (i = 0; i < map->num_stripes; i++) { 1079 if (map->stripes[i].dev != device) 1080 continue; 1081 if (map->stripes[i].physical >= *start + len || 1082 map->stripes[i].physical + em->orig_block_len <= 1083 *start) 1084 continue; 1085 *start = map->stripes[i].physical + 1086 em->orig_block_len; 1087 ret = 1; 1088 } 1089 } 1090 1091 return ret; 1092 } 1093 1094 1095 /* 1096 * find_free_dev_extent - find free space in the specified device 1097 * @device: the device which we search the free space in 1098 * @num_bytes: the size of the free space that we need 1099 * @start: store the start of the free space. 1100 * @len: the size of the free space. that we find, or the size of the max 1101 * free space if we don't find suitable free space 1102 * 1103 * this uses a pretty simple search, the expectation is that it is 1104 * called very infrequently and that a given device has a small number 1105 * of extents 1106 * 1107 * @start is used to store the start of the free space if we find. But if we 1108 * don't find suitable free space, it will be used to store the start position 1109 * of the max free space. 1110 * 1111 * @len is used to store the size of the free space that we find. 1112 * But if we don't find suitable free space, it is used to store the size of 1113 * the max free space. 1114 */ 1115 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1116 struct btrfs_device *device, u64 num_bytes, 1117 u64 *start, u64 *len) 1118 { 1119 struct btrfs_key key; 1120 struct btrfs_root *root = device->dev_root; 1121 struct btrfs_dev_extent *dev_extent; 1122 struct btrfs_path *path; 1123 u64 hole_size; 1124 u64 max_hole_start; 1125 u64 max_hole_size; 1126 u64 extent_end; 1127 u64 search_start; 1128 u64 search_end = device->total_bytes; 1129 int ret; 1130 int slot; 1131 struct extent_buffer *l; 1132 1133 /* FIXME use last free of some kind */ 1134 1135 /* we don't want to overwrite the superblock on the drive, 1136 * so we make sure to start at an offset of at least 1MB 1137 */ 1138 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1139 1140 path = btrfs_alloc_path(); 1141 if (!path) 1142 return -ENOMEM; 1143 again: 1144 max_hole_start = search_start; 1145 max_hole_size = 0; 1146 hole_size = 0; 1147 1148 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1149 ret = -ENOSPC; 1150 goto out; 1151 } 1152 1153 path->reada = 2; 1154 path->search_commit_root = 1; 1155 path->skip_locking = 1; 1156 1157 key.objectid = device->devid; 1158 key.offset = search_start; 1159 key.type = BTRFS_DEV_EXTENT_KEY; 1160 1161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1162 if (ret < 0) 1163 goto out; 1164 if (ret > 0) { 1165 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1166 if (ret < 0) 1167 goto out; 1168 } 1169 1170 while (1) { 1171 l = path->nodes[0]; 1172 slot = path->slots[0]; 1173 if (slot >= btrfs_header_nritems(l)) { 1174 ret = btrfs_next_leaf(root, path); 1175 if (ret == 0) 1176 continue; 1177 if (ret < 0) 1178 goto out; 1179 1180 break; 1181 } 1182 btrfs_item_key_to_cpu(l, &key, slot); 1183 1184 if (key.objectid < device->devid) 1185 goto next; 1186 1187 if (key.objectid > device->devid) 1188 break; 1189 1190 if (key.type != BTRFS_DEV_EXTENT_KEY) 1191 goto next; 1192 1193 if (key.offset > search_start) { 1194 hole_size = key.offset - search_start; 1195 1196 /* 1197 * Have to check before we set max_hole_start, otherwise 1198 * we could end up sending back this offset anyway. 1199 */ 1200 if (contains_pending_extent(trans, device, 1201 &search_start, 1202 hole_size)) 1203 hole_size = 0; 1204 1205 if (hole_size > max_hole_size) { 1206 max_hole_start = search_start; 1207 max_hole_size = hole_size; 1208 } 1209 1210 /* 1211 * If this free space is greater than which we need, 1212 * it must be the max free space that we have found 1213 * until now, so max_hole_start must point to the start 1214 * of this free space and the length of this free space 1215 * is stored in max_hole_size. Thus, we return 1216 * max_hole_start and max_hole_size and go back to the 1217 * caller. 1218 */ 1219 if (hole_size >= num_bytes) { 1220 ret = 0; 1221 goto out; 1222 } 1223 } 1224 1225 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1226 extent_end = key.offset + btrfs_dev_extent_length(l, 1227 dev_extent); 1228 if (extent_end > search_start) 1229 search_start = extent_end; 1230 next: 1231 path->slots[0]++; 1232 cond_resched(); 1233 } 1234 1235 /* 1236 * At this point, search_start should be the end of 1237 * allocated dev extents, and when shrinking the device, 1238 * search_end may be smaller than search_start. 1239 */ 1240 if (search_end > search_start) 1241 hole_size = search_end - search_start; 1242 1243 if (hole_size > max_hole_size) { 1244 max_hole_start = search_start; 1245 max_hole_size = hole_size; 1246 } 1247 1248 if (contains_pending_extent(trans, device, &search_start, hole_size)) { 1249 btrfs_release_path(path); 1250 goto again; 1251 } 1252 1253 /* See above. */ 1254 if (hole_size < num_bytes) 1255 ret = -ENOSPC; 1256 else 1257 ret = 0; 1258 1259 out: 1260 btrfs_free_path(path); 1261 *start = max_hole_start; 1262 if (len) 1263 *len = max_hole_size; 1264 return ret; 1265 } 1266 1267 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1268 struct btrfs_device *device, 1269 u64 start, u64 *dev_extent_len) 1270 { 1271 int ret; 1272 struct btrfs_path *path; 1273 struct btrfs_root *root = device->dev_root; 1274 struct btrfs_key key; 1275 struct btrfs_key found_key; 1276 struct extent_buffer *leaf = NULL; 1277 struct btrfs_dev_extent *extent = NULL; 1278 1279 path = btrfs_alloc_path(); 1280 if (!path) 1281 return -ENOMEM; 1282 1283 key.objectid = device->devid; 1284 key.offset = start; 1285 key.type = BTRFS_DEV_EXTENT_KEY; 1286 again: 1287 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1288 if (ret > 0) { 1289 ret = btrfs_previous_item(root, path, key.objectid, 1290 BTRFS_DEV_EXTENT_KEY); 1291 if (ret) 1292 goto out; 1293 leaf = path->nodes[0]; 1294 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1295 extent = btrfs_item_ptr(leaf, path->slots[0], 1296 struct btrfs_dev_extent); 1297 BUG_ON(found_key.offset > start || found_key.offset + 1298 btrfs_dev_extent_length(leaf, extent) < start); 1299 key = found_key; 1300 btrfs_release_path(path); 1301 goto again; 1302 } else if (ret == 0) { 1303 leaf = path->nodes[0]; 1304 extent = btrfs_item_ptr(leaf, path->slots[0], 1305 struct btrfs_dev_extent); 1306 } else { 1307 btrfs_error(root->fs_info, ret, "Slot search failed"); 1308 goto out; 1309 } 1310 1311 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1312 1313 ret = btrfs_del_item(trans, root, path); 1314 if (ret) { 1315 btrfs_error(root->fs_info, ret, 1316 "Failed to remove dev extent item"); 1317 } 1318 out: 1319 btrfs_free_path(path); 1320 return ret; 1321 } 1322 1323 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1324 struct btrfs_device *device, 1325 u64 chunk_tree, u64 chunk_objectid, 1326 u64 chunk_offset, u64 start, u64 num_bytes) 1327 { 1328 int ret; 1329 struct btrfs_path *path; 1330 struct btrfs_root *root = device->dev_root; 1331 struct btrfs_dev_extent *extent; 1332 struct extent_buffer *leaf; 1333 struct btrfs_key key; 1334 1335 WARN_ON(!device->in_fs_metadata); 1336 WARN_ON(device->is_tgtdev_for_dev_replace); 1337 path = btrfs_alloc_path(); 1338 if (!path) 1339 return -ENOMEM; 1340 1341 key.objectid = device->devid; 1342 key.offset = start; 1343 key.type = BTRFS_DEV_EXTENT_KEY; 1344 ret = btrfs_insert_empty_item(trans, root, path, &key, 1345 sizeof(*extent)); 1346 if (ret) 1347 goto out; 1348 1349 leaf = path->nodes[0]; 1350 extent = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_dev_extent); 1352 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1353 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1354 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1355 1356 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1357 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1358 1359 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1360 btrfs_mark_buffer_dirty(leaf); 1361 out: 1362 btrfs_free_path(path); 1363 return ret; 1364 } 1365 1366 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1367 { 1368 struct extent_map_tree *em_tree; 1369 struct extent_map *em; 1370 struct rb_node *n; 1371 u64 ret = 0; 1372 1373 em_tree = &fs_info->mapping_tree.map_tree; 1374 read_lock(&em_tree->lock); 1375 n = rb_last(&em_tree->map); 1376 if (n) { 1377 em = rb_entry(n, struct extent_map, rb_node); 1378 ret = em->start + em->len; 1379 } 1380 read_unlock(&em_tree->lock); 1381 1382 return ret; 1383 } 1384 1385 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1386 u64 *devid_ret) 1387 { 1388 int ret; 1389 struct btrfs_key key; 1390 struct btrfs_key found_key; 1391 struct btrfs_path *path; 1392 1393 path = btrfs_alloc_path(); 1394 if (!path) 1395 return -ENOMEM; 1396 1397 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1398 key.type = BTRFS_DEV_ITEM_KEY; 1399 key.offset = (u64)-1; 1400 1401 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1402 if (ret < 0) 1403 goto error; 1404 1405 BUG_ON(ret == 0); /* Corruption */ 1406 1407 ret = btrfs_previous_item(fs_info->chunk_root, path, 1408 BTRFS_DEV_ITEMS_OBJECTID, 1409 BTRFS_DEV_ITEM_KEY); 1410 if (ret) { 1411 *devid_ret = 1; 1412 } else { 1413 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1414 path->slots[0]); 1415 *devid_ret = found_key.offset + 1; 1416 } 1417 ret = 0; 1418 error: 1419 btrfs_free_path(path); 1420 return ret; 1421 } 1422 1423 /* 1424 * the device information is stored in the chunk root 1425 * the btrfs_device struct should be fully filled in 1426 */ 1427 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1428 struct btrfs_root *root, 1429 struct btrfs_device *device) 1430 { 1431 int ret; 1432 struct btrfs_path *path; 1433 struct btrfs_dev_item *dev_item; 1434 struct extent_buffer *leaf; 1435 struct btrfs_key key; 1436 unsigned long ptr; 1437 1438 root = root->fs_info->chunk_root; 1439 1440 path = btrfs_alloc_path(); 1441 if (!path) 1442 return -ENOMEM; 1443 1444 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1445 key.type = BTRFS_DEV_ITEM_KEY; 1446 key.offset = device->devid; 1447 1448 ret = btrfs_insert_empty_item(trans, root, path, &key, 1449 sizeof(*dev_item)); 1450 if (ret) 1451 goto out; 1452 1453 leaf = path->nodes[0]; 1454 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1455 1456 btrfs_set_device_id(leaf, dev_item, device->devid); 1457 btrfs_set_device_generation(leaf, dev_item, 0); 1458 btrfs_set_device_type(leaf, dev_item, device->type); 1459 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1460 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1461 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1462 btrfs_set_device_total_bytes(leaf, dev_item, 1463 btrfs_device_get_disk_total_bytes(device)); 1464 btrfs_set_device_bytes_used(leaf, dev_item, 1465 btrfs_device_get_bytes_used(device)); 1466 btrfs_set_device_group(leaf, dev_item, 0); 1467 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1468 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1469 btrfs_set_device_start_offset(leaf, dev_item, 0); 1470 1471 ptr = btrfs_device_uuid(dev_item); 1472 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1473 ptr = btrfs_device_fsid(dev_item); 1474 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1475 btrfs_mark_buffer_dirty(leaf); 1476 1477 ret = 0; 1478 out: 1479 btrfs_free_path(path); 1480 return ret; 1481 } 1482 1483 /* 1484 * Function to update ctime/mtime for a given device path. 1485 * Mainly used for ctime/mtime based probe like libblkid. 1486 */ 1487 static void update_dev_time(char *path_name) 1488 { 1489 struct file *filp; 1490 1491 filp = filp_open(path_name, O_RDWR, 0); 1492 if (!filp) 1493 return; 1494 file_update_time(filp); 1495 filp_close(filp, NULL); 1496 return; 1497 } 1498 1499 static int btrfs_rm_dev_item(struct btrfs_root *root, 1500 struct btrfs_device *device) 1501 { 1502 int ret; 1503 struct btrfs_path *path; 1504 struct btrfs_key key; 1505 struct btrfs_trans_handle *trans; 1506 1507 root = root->fs_info->chunk_root; 1508 1509 path = btrfs_alloc_path(); 1510 if (!path) 1511 return -ENOMEM; 1512 1513 trans = btrfs_start_transaction(root, 0); 1514 if (IS_ERR(trans)) { 1515 btrfs_free_path(path); 1516 return PTR_ERR(trans); 1517 } 1518 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1519 key.type = BTRFS_DEV_ITEM_KEY; 1520 key.offset = device->devid; 1521 1522 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1523 if (ret < 0) 1524 goto out; 1525 1526 if (ret > 0) { 1527 ret = -ENOENT; 1528 goto out; 1529 } 1530 1531 ret = btrfs_del_item(trans, root, path); 1532 if (ret) 1533 goto out; 1534 out: 1535 btrfs_free_path(path); 1536 btrfs_commit_transaction(trans, root); 1537 return ret; 1538 } 1539 1540 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1541 { 1542 struct btrfs_device *device; 1543 struct btrfs_device *next_device; 1544 struct block_device *bdev; 1545 struct buffer_head *bh = NULL; 1546 struct btrfs_super_block *disk_super; 1547 struct btrfs_fs_devices *cur_devices; 1548 u64 all_avail; 1549 u64 devid; 1550 u64 num_devices; 1551 u8 *dev_uuid; 1552 unsigned seq; 1553 int ret = 0; 1554 bool clear_super = false; 1555 1556 mutex_lock(&uuid_mutex); 1557 1558 do { 1559 seq = read_seqbegin(&root->fs_info->profiles_lock); 1560 1561 all_avail = root->fs_info->avail_data_alloc_bits | 1562 root->fs_info->avail_system_alloc_bits | 1563 root->fs_info->avail_metadata_alloc_bits; 1564 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1565 1566 num_devices = root->fs_info->fs_devices->num_devices; 1567 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1568 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1569 WARN_ON(num_devices < 1); 1570 num_devices--; 1571 } 1572 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1573 1574 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1575 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1576 goto out; 1577 } 1578 1579 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1580 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1581 goto out; 1582 } 1583 1584 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1585 root->fs_info->fs_devices->rw_devices <= 2) { 1586 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1587 goto out; 1588 } 1589 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1590 root->fs_info->fs_devices->rw_devices <= 3) { 1591 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1592 goto out; 1593 } 1594 1595 if (strcmp(device_path, "missing") == 0) { 1596 struct list_head *devices; 1597 struct btrfs_device *tmp; 1598 1599 device = NULL; 1600 devices = &root->fs_info->fs_devices->devices; 1601 /* 1602 * It is safe to read the devices since the volume_mutex 1603 * is held. 1604 */ 1605 list_for_each_entry(tmp, devices, dev_list) { 1606 if (tmp->in_fs_metadata && 1607 !tmp->is_tgtdev_for_dev_replace && 1608 !tmp->bdev) { 1609 device = tmp; 1610 break; 1611 } 1612 } 1613 bdev = NULL; 1614 bh = NULL; 1615 disk_super = NULL; 1616 if (!device) { 1617 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1618 goto out; 1619 } 1620 } else { 1621 ret = btrfs_get_bdev_and_sb(device_path, 1622 FMODE_WRITE | FMODE_EXCL, 1623 root->fs_info->bdev_holder, 0, 1624 &bdev, &bh); 1625 if (ret) 1626 goto out; 1627 disk_super = (struct btrfs_super_block *)bh->b_data; 1628 devid = btrfs_stack_device_id(&disk_super->dev_item); 1629 dev_uuid = disk_super->dev_item.uuid; 1630 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1631 disk_super->fsid); 1632 if (!device) { 1633 ret = -ENOENT; 1634 goto error_brelse; 1635 } 1636 } 1637 1638 if (device->is_tgtdev_for_dev_replace) { 1639 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1640 goto error_brelse; 1641 } 1642 1643 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1644 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1645 goto error_brelse; 1646 } 1647 1648 if (device->writeable) { 1649 lock_chunks(root); 1650 list_del_init(&device->dev_alloc_list); 1651 device->fs_devices->rw_devices--; 1652 unlock_chunks(root); 1653 clear_super = true; 1654 } 1655 1656 mutex_unlock(&uuid_mutex); 1657 ret = btrfs_shrink_device(device, 0); 1658 mutex_lock(&uuid_mutex); 1659 if (ret) 1660 goto error_undo; 1661 1662 /* 1663 * TODO: the superblock still includes this device in its num_devices 1664 * counter although write_all_supers() is not locked out. This 1665 * could give a filesystem state which requires a degraded mount. 1666 */ 1667 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1668 if (ret) 1669 goto error_undo; 1670 1671 device->in_fs_metadata = 0; 1672 btrfs_scrub_cancel_dev(root->fs_info, device); 1673 1674 /* 1675 * the device list mutex makes sure that we don't change 1676 * the device list while someone else is writing out all 1677 * the device supers. Whoever is writing all supers, should 1678 * lock the device list mutex before getting the number of 1679 * devices in the super block (super_copy). Conversely, 1680 * whoever updates the number of devices in the super block 1681 * (super_copy) should hold the device list mutex. 1682 */ 1683 1684 cur_devices = device->fs_devices; 1685 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1686 list_del_rcu(&device->dev_list); 1687 1688 device->fs_devices->num_devices--; 1689 device->fs_devices->total_devices--; 1690 1691 if (device->missing) 1692 device->fs_devices->missing_devices--; 1693 1694 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1695 struct btrfs_device, dev_list); 1696 if (device->bdev == root->fs_info->sb->s_bdev) 1697 root->fs_info->sb->s_bdev = next_device->bdev; 1698 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1699 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1700 1701 if (device->bdev) { 1702 device->fs_devices->open_devices--; 1703 /* remove sysfs entry */ 1704 btrfs_kobj_rm_device(root->fs_info, device); 1705 } 1706 1707 call_rcu(&device->rcu, free_device); 1708 1709 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1710 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1711 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1712 1713 if (cur_devices->open_devices == 0) { 1714 struct btrfs_fs_devices *fs_devices; 1715 fs_devices = root->fs_info->fs_devices; 1716 while (fs_devices) { 1717 if (fs_devices->seed == cur_devices) { 1718 fs_devices->seed = cur_devices->seed; 1719 break; 1720 } 1721 fs_devices = fs_devices->seed; 1722 } 1723 cur_devices->seed = NULL; 1724 __btrfs_close_devices(cur_devices); 1725 free_fs_devices(cur_devices); 1726 } 1727 1728 root->fs_info->num_tolerated_disk_barrier_failures = 1729 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1730 1731 /* 1732 * at this point, the device is zero sized. We want to 1733 * remove it from the devices list and zero out the old super 1734 */ 1735 if (clear_super && disk_super) { 1736 u64 bytenr; 1737 int i; 1738 1739 /* make sure this device isn't detected as part of 1740 * the FS anymore 1741 */ 1742 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1743 set_buffer_dirty(bh); 1744 sync_dirty_buffer(bh); 1745 1746 /* clear the mirror copies of super block on the disk 1747 * being removed, 0th copy is been taken care above and 1748 * the below would take of the rest 1749 */ 1750 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1751 bytenr = btrfs_sb_offset(i); 1752 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1753 i_size_read(bdev->bd_inode)) 1754 break; 1755 1756 brelse(bh); 1757 bh = __bread(bdev, bytenr / 4096, 1758 BTRFS_SUPER_INFO_SIZE); 1759 if (!bh) 1760 continue; 1761 1762 disk_super = (struct btrfs_super_block *)bh->b_data; 1763 1764 if (btrfs_super_bytenr(disk_super) != bytenr || 1765 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1766 continue; 1767 } 1768 memset(&disk_super->magic, 0, 1769 sizeof(disk_super->magic)); 1770 set_buffer_dirty(bh); 1771 sync_dirty_buffer(bh); 1772 } 1773 } 1774 1775 ret = 0; 1776 1777 if (bdev) { 1778 /* Notify udev that device has changed */ 1779 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1780 1781 /* Update ctime/mtime for device path for libblkid */ 1782 update_dev_time(device_path); 1783 } 1784 1785 error_brelse: 1786 brelse(bh); 1787 if (bdev) 1788 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1789 out: 1790 mutex_unlock(&uuid_mutex); 1791 return ret; 1792 error_undo: 1793 if (device->writeable) { 1794 lock_chunks(root); 1795 list_add(&device->dev_alloc_list, 1796 &root->fs_info->fs_devices->alloc_list); 1797 device->fs_devices->rw_devices++; 1798 unlock_chunks(root); 1799 } 1800 goto error_brelse; 1801 } 1802 1803 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info, 1804 struct btrfs_device *srcdev) 1805 { 1806 struct btrfs_fs_devices *fs_devices; 1807 1808 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1809 1810 /* 1811 * in case of fs with no seed, srcdev->fs_devices will point 1812 * to fs_devices of fs_info. However when the dev being replaced is 1813 * a seed dev it will point to the seed's local fs_devices. In short 1814 * srcdev will have its correct fs_devices in both the cases. 1815 */ 1816 fs_devices = srcdev->fs_devices; 1817 1818 list_del_rcu(&srcdev->dev_list); 1819 list_del_rcu(&srcdev->dev_alloc_list); 1820 fs_devices->num_devices--; 1821 if (srcdev->missing) 1822 fs_devices->missing_devices--; 1823 1824 if (srcdev->writeable) { 1825 fs_devices->rw_devices--; 1826 /* zero out the old super if it is writable */ 1827 btrfs_scratch_superblock(srcdev); 1828 } 1829 1830 if (srcdev->bdev) 1831 fs_devices->open_devices--; 1832 1833 call_rcu(&srcdev->rcu, free_device); 1834 1835 /* 1836 * unless fs_devices is seed fs, num_devices shouldn't go 1837 * zero 1838 */ 1839 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1840 1841 /* if this is no devs we rather delete the fs_devices */ 1842 if (!fs_devices->num_devices) { 1843 struct btrfs_fs_devices *tmp_fs_devices; 1844 1845 tmp_fs_devices = fs_info->fs_devices; 1846 while (tmp_fs_devices) { 1847 if (tmp_fs_devices->seed == fs_devices) { 1848 tmp_fs_devices->seed = fs_devices->seed; 1849 break; 1850 } 1851 tmp_fs_devices = tmp_fs_devices->seed; 1852 } 1853 fs_devices->seed = NULL; 1854 __btrfs_close_devices(fs_devices); 1855 free_fs_devices(fs_devices); 1856 } 1857 } 1858 1859 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1860 struct btrfs_device *tgtdev) 1861 { 1862 struct btrfs_device *next_device; 1863 1864 mutex_lock(&uuid_mutex); 1865 WARN_ON(!tgtdev); 1866 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1867 if (tgtdev->bdev) { 1868 btrfs_scratch_superblock(tgtdev); 1869 fs_info->fs_devices->open_devices--; 1870 } 1871 fs_info->fs_devices->num_devices--; 1872 1873 next_device = list_entry(fs_info->fs_devices->devices.next, 1874 struct btrfs_device, dev_list); 1875 if (tgtdev->bdev == fs_info->sb->s_bdev) 1876 fs_info->sb->s_bdev = next_device->bdev; 1877 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1878 fs_info->fs_devices->latest_bdev = next_device->bdev; 1879 list_del_rcu(&tgtdev->dev_list); 1880 1881 call_rcu(&tgtdev->rcu, free_device); 1882 1883 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1884 mutex_unlock(&uuid_mutex); 1885 } 1886 1887 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1888 struct btrfs_device **device) 1889 { 1890 int ret = 0; 1891 struct btrfs_super_block *disk_super; 1892 u64 devid; 1893 u8 *dev_uuid; 1894 struct block_device *bdev; 1895 struct buffer_head *bh; 1896 1897 *device = NULL; 1898 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1899 root->fs_info->bdev_holder, 0, &bdev, &bh); 1900 if (ret) 1901 return ret; 1902 disk_super = (struct btrfs_super_block *)bh->b_data; 1903 devid = btrfs_stack_device_id(&disk_super->dev_item); 1904 dev_uuid = disk_super->dev_item.uuid; 1905 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1906 disk_super->fsid); 1907 brelse(bh); 1908 if (!*device) 1909 ret = -ENOENT; 1910 blkdev_put(bdev, FMODE_READ); 1911 return ret; 1912 } 1913 1914 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 1915 char *device_path, 1916 struct btrfs_device **device) 1917 { 1918 *device = NULL; 1919 if (strcmp(device_path, "missing") == 0) { 1920 struct list_head *devices; 1921 struct btrfs_device *tmp; 1922 1923 devices = &root->fs_info->fs_devices->devices; 1924 /* 1925 * It is safe to read the devices since the volume_mutex 1926 * is held by the caller. 1927 */ 1928 list_for_each_entry(tmp, devices, dev_list) { 1929 if (tmp->in_fs_metadata && !tmp->bdev) { 1930 *device = tmp; 1931 break; 1932 } 1933 } 1934 1935 if (!*device) { 1936 btrfs_err(root->fs_info, "no missing device found"); 1937 return -ENOENT; 1938 } 1939 1940 return 0; 1941 } else { 1942 return btrfs_find_device_by_path(root, device_path, device); 1943 } 1944 } 1945 1946 /* 1947 * does all the dirty work required for changing file system's UUID. 1948 */ 1949 static int btrfs_prepare_sprout(struct btrfs_root *root) 1950 { 1951 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1952 struct btrfs_fs_devices *old_devices; 1953 struct btrfs_fs_devices *seed_devices; 1954 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1955 struct btrfs_device *device; 1956 u64 super_flags; 1957 1958 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1959 if (!fs_devices->seeding) 1960 return -EINVAL; 1961 1962 seed_devices = __alloc_fs_devices(); 1963 if (IS_ERR(seed_devices)) 1964 return PTR_ERR(seed_devices); 1965 1966 old_devices = clone_fs_devices(fs_devices); 1967 if (IS_ERR(old_devices)) { 1968 kfree(seed_devices); 1969 return PTR_ERR(old_devices); 1970 } 1971 1972 list_add(&old_devices->list, &fs_uuids); 1973 1974 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1975 seed_devices->opened = 1; 1976 INIT_LIST_HEAD(&seed_devices->devices); 1977 INIT_LIST_HEAD(&seed_devices->alloc_list); 1978 mutex_init(&seed_devices->device_list_mutex); 1979 1980 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1981 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1982 synchronize_rcu); 1983 list_for_each_entry(device, &seed_devices->devices, dev_list) 1984 device->fs_devices = seed_devices; 1985 1986 lock_chunks(root); 1987 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1988 unlock_chunks(root); 1989 1990 fs_devices->seeding = 0; 1991 fs_devices->num_devices = 0; 1992 fs_devices->open_devices = 0; 1993 fs_devices->missing_devices = 0; 1994 fs_devices->rotating = 0; 1995 fs_devices->seed = seed_devices; 1996 1997 generate_random_uuid(fs_devices->fsid); 1998 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1999 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2000 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2001 2002 super_flags = btrfs_super_flags(disk_super) & 2003 ~BTRFS_SUPER_FLAG_SEEDING; 2004 btrfs_set_super_flags(disk_super, super_flags); 2005 2006 return 0; 2007 } 2008 2009 /* 2010 * strore the expected generation for seed devices in device items. 2011 */ 2012 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2013 struct btrfs_root *root) 2014 { 2015 struct btrfs_path *path; 2016 struct extent_buffer *leaf; 2017 struct btrfs_dev_item *dev_item; 2018 struct btrfs_device *device; 2019 struct btrfs_key key; 2020 u8 fs_uuid[BTRFS_UUID_SIZE]; 2021 u8 dev_uuid[BTRFS_UUID_SIZE]; 2022 u64 devid; 2023 int ret; 2024 2025 path = btrfs_alloc_path(); 2026 if (!path) 2027 return -ENOMEM; 2028 2029 root = root->fs_info->chunk_root; 2030 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2031 key.offset = 0; 2032 key.type = BTRFS_DEV_ITEM_KEY; 2033 2034 while (1) { 2035 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2036 if (ret < 0) 2037 goto error; 2038 2039 leaf = path->nodes[0]; 2040 next_slot: 2041 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2042 ret = btrfs_next_leaf(root, path); 2043 if (ret > 0) 2044 break; 2045 if (ret < 0) 2046 goto error; 2047 leaf = path->nodes[0]; 2048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2049 btrfs_release_path(path); 2050 continue; 2051 } 2052 2053 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2054 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2055 key.type != BTRFS_DEV_ITEM_KEY) 2056 break; 2057 2058 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2059 struct btrfs_dev_item); 2060 devid = btrfs_device_id(leaf, dev_item); 2061 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2062 BTRFS_UUID_SIZE); 2063 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2064 BTRFS_UUID_SIZE); 2065 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2066 fs_uuid); 2067 BUG_ON(!device); /* Logic error */ 2068 2069 if (device->fs_devices->seeding) { 2070 btrfs_set_device_generation(leaf, dev_item, 2071 device->generation); 2072 btrfs_mark_buffer_dirty(leaf); 2073 } 2074 2075 path->slots[0]++; 2076 goto next_slot; 2077 } 2078 ret = 0; 2079 error: 2080 btrfs_free_path(path); 2081 return ret; 2082 } 2083 2084 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2085 { 2086 struct request_queue *q; 2087 struct btrfs_trans_handle *trans; 2088 struct btrfs_device *device; 2089 struct block_device *bdev; 2090 struct list_head *devices; 2091 struct super_block *sb = root->fs_info->sb; 2092 struct rcu_string *name; 2093 u64 tmp; 2094 int seeding_dev = 0; 2095 int ret = 0; 2096 2097 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2098 return -EROFS; 2099 2100 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2101 root->fs_info->bdev_holder); 2102 if (IS_ERR(bdev)) 2103 return PTR_ERR(bdev); 2104 2105 if (root->fs_info->fs_devices->seeding) { 2106 seeding_dev = 1; 2107 down_write(&sb->s_umount); 2108 mutex_lock(&uuid_mutex); 2109 } 2110 2111 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2112 2113 devices = &root->fs_info->fs_devices->devices; 2114 2115 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2116 list_for_each_entry(device, devices, dev_list) { 2117 if (device->bdev == bdev) { 2118 ret = -EEXIST; 2119 mutex_unlock( 2120 &root->fs_info->fs_devices->device_list_mutex); 2121 goto error; 2122 } 2123 } 2124 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2125 2126 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2127 if (IS_ERR(device)) { 2128 /* we can safely leave the fs_devices entry around */ 2129 ret = PTR_ERR(device); 2130 goto error; 2131 } 2132 2133 name = rcu_string_strdup(device_path, GFP_NOFS); 2134 if (!name) { 2135 kfree(device); 2136 ret = -ENOMEM; 2137 goto error; 2138 } 2139 rcu_assign_pointer(device->name, name); 2140 2141 trans = btrfs_start_transaction(root, 0); 2142 if (IS_ERR(trans)) { 2143 rcu_string_free(device->name); 2144 kfree(device); 2145 ret = PTR_ERR(trans); 2146 goto error; 2147 } 2148 2149 q = bdev_get_queue(bdev); 2150 if (blk_queue_discard(q)) 2151 device->can_discard = 1; 2152 device->writeable = 1; 2153 device->generation = trans->transid; 2154 device->io_width = root->sectorsize; 2155 device->io_align = root->sectorsize; 2156 device->sector_size = root->sectorsize; 2157 device->total_bytes = i_size_read(bdev->bd_inode); 2158 device->disk_total_bytes = device->total_bytes; 2159 device->commit_total_bytes = device->total_bytes; 2160 device->dev_root = root->fs_info->dev_root; 2161 device->bdev = bdev; 2162 device->in_fs_metadata = 1; 2163 device->is_tgtdev_for_dev_replace = 0; 2164 device->mode = FMODE_EXCL; 2165 device->dev_stats_valid = 1; 2166 set_blocksize(device->bdev, 4096); 2167 2168 if (seeding_dev) { 2169 sb->s_flags &= ~MS_RDONLY; 2170 ret = btrfs_prepare_sprout(root); 2171 BUG_ON(ret); /* -ENOMEM */ 2172 } 2173 2174 device->fs_devices = root->fs_info->fs_devices; 2175 2176 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2177 lock_chunks(root); 2178 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2179 list_add(&device->dev_alloc_list, 2180 &root->fs_info->fs_devices->alloc_list); 2181 root->fs_info->fs_devices->num_devices++; 2182 root->fs_info->fs_devices->open_devices++; 2183 root->fs_info->fs_devices->rw_devices++; 2184 root->fs_info->fs_devices->total_devices++; 2185 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2186 2187 spin_lock(&root->fs_info->free_chunk_lock); 2188 root->fs_info->free_chunk_space += device->total_bytes; 2189 spin_unlock(&root->fs_info->free_chunk_lock); 2190 2191 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2192 root->fs_info->fs_devices->rotating = 1; 2193 2194 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2195 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2196 tmp + device->total_bytes); 2197 2198 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2199 btrfs_set_super_num_devices(root->fs_info->super_copy, 2200 tmp + 1); 2201 2202 /* add sysfs device entry */ 2203 btrfs_kobj_add_device(root->fs_info, device); 2204 2205 /* 2206 * we've got more storage, clear any full flags on the space 2207 * infos 2208 */ 2209 btrfs_clear_space_info_full(root->fs_info); 2210 2211 unlock_chunks(root); 2212 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2213 2214 if (seeding_dev) { 2215 lock_chunks(root); 2216 ret = init_first_rw_device(trans, root, device); 2217 unlock_chunks(root); 2218 if (ret) { 2219 btrfs_abort_transaction(trans, root, ret); 2220 goto error_trans; 2221 } 2222 } 2223 2224 ret = btrfs_add_device(trans, root, device); 2225 if (ret) { 2226 btrfs_abort_transaction(trans, root, ret); 2227 goto error_trans; 2228 } 2229 2230 if (seeding_dev) { 2231 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2232 2233 ret = btrfs_finish_sprout(trans, root); 2234 if (ret) { 2235 btrfs_abort_transaction(trans, root, ret); 2236 goto error_trans; 2237 } 2238 2239 /* Sprouting would change fsid of the mounted root, 2240 * so rename the fsid on the sysfs 2241 */ 2242 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2243 root->fs_info->fsid); 2244 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf)) 2245 goto error_trans; 2246 } 2247 2248 root->fs_info->num_tolerated_disk_barrier_failures = 2249 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2250 ret = btrfs_commit_transaction(trans, root); 2251 2252 if (seeding_dev) { 2253 mutex_unlock(&uuid_mutex); 2254 up_write(&sb->s_umount); 2255 2256 if (ret) /* transaction commit */ 2257 return ret; 2258 2259 ret = btrfs_relocate_sys_chunks(root); 2260 if (ret < 0) 2261 btrfs_error(root->fs_info, ret, 2262 "Failed to relocate sys chunks after " 2263 "device initialization. This can be fixed " 2264 "using the \"btrfs balance\" command."); 2265 trans = btrfs_attach_transaction(root); 2266 if (IS_ERR(trans)) { 2267 if (PTR_ERR(trans) == -ENOENT) 2268 return 0; 2269 return PTR_ERR(trans); 2270 } 2271 ret = btrfs_commit_transaction(trans, root); 2272 } 2273 2274 /* Update ctime/mtime for libblkid */ 2275 update_dev_time(device_path); 2276 return ret; 2277 2278 error_trans: 2279 btrfs_end_transaction(trans, root); 2280 rcu_string_free(device->name); 2281 btrfs_kobj_rm_device(root->fs_info, device); 2282 kfree(device); 2283 error: 2284 blkdev_put(bdev, FMODE_EXCL); 2285 if (seeding_dev) { 2286 mutex_unlock(&uuid_mutex); 2287 up_write(&sb->s_umount); 2288 } 2289 return ret; 2290 } 2291 2292 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2293 struct btrfs_device *srcdev, 2294 struct btrfs_device **device_out) 2295 { 2296 struct request_queue *q; 2297 struct btrfs_device *device; 2298 struct block_device *bdev; 2299 struct btrfs_fs_info *fs_info = root->fs_info; 2300 struct list_head *devices; 2301 struct rcu_string *name; 2302 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2303 int ret = 0; 2304 2305 *device_out = NULL; 2306 if (fs_info->fs_devices->seeding) { 2307 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2308 return -EINVAL; 2309 } 2310 2311 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2312 fs_info->bdev_holder); 2313 if (IS_ERR(bdev)) { 2314 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2315 return PTR_ERR(bdev); 2316 } 2317 2318 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2319 2320 devices = &fs_info->fs_devices->devices; 2321 list_for_each_entry(device, devices, dev_list) { 2322 if (device->bdev == bdev) { 2323 btrfs_err(fs_info, "target device is in the filesystem!"); 2324 ret = -EEXIST; 2325 goto error; 2326 } 2327 } 2328 2329 2330 if (i_size_read(bdev->bd_inode) < 2331 btrfs_device_get_total_bytes(srcdev)) { 2332 btrfs_err(fs_info, "target device is smaller than source device!"); 2333 ret = -EINVAL; 2334 goto error; 2335 } 2336 2337 2338 device = btrfs_alloc_device(NULL, &devid, NULL); 2339 if (IS_ERR(device)) { 2340 ret = PTR_ERR(device); 2341 goto error; 2342 } 2343 2344 name = rcu_string_strdup(device_path, GFP_NOFS); 2345 if (!name) { 2346 kfree(device); 2347 ret = -ENOMEM; 2348 goto error; 2349 } 2350 rcu_assign_pointer(device->name, name); 2351 2352 q = bdev_get_queue(bdev); 2353 if (blk_queue_discard(q)) 2354 device->can_discard = 1; 2355 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2356 device->writeable = 1; 2357 device->generation = 0; 2358 device->io_width = root->sectorsize; 2359 device->io_align = root->sectorsize; 2360 device->sector_size = root->sectorsize; 2361 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2362 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2363 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2364 ASSERT(list_empty(&srcdev->resized_list)); 2365 device->commit_total_bytes = srcdev->commit_total_bytes; 2366 device->commit_bytes_used = device->bytes_used; 2367 device->dev_root = fs_info->dev_root; 2368 device->bdev = bdev; 2369 device->in_fs_metadata = 1; 2370 device->is_tgtdev_for_dev_replace = 1; 2371 device->mode = FMODE_EXCL; 2372 device->dev_stats_valid = 1; 2373 set_blocksize(device->bdev, 4096); 2374 device->fs_devices = fs_info->fs_devices; 2375 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2376 fs_info->fs_devices->num_devices++; 2377 fs_info->fs_devices->open_devices++; 2378 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2379 2380 *device_out = device; 2381 return ret; 2382 2383 error: 2384 blkdev_put(bdev, FMODE_EXCL); 2385 return ret; 2386 } 2387 2388 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2389 struct btrfs_device *tgtdev) 2390 { 2391 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2392 tgtdev->io_width = fs_info->dev_root->sectorsize; 2393 tgtdev->io_align = fs_info->dev_root->sectorsize; 2394 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2395 tgtdev->dev_root = fs_info->dev_root; 2396 tgtdev->in_fs_metadata = 1; 2397 } 2398 2399 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2400 struct btrfs_device *device) 2401 { 2402 int ret; 2403 struct btrfs_path *path; 2404 struct btrfs_root *root; 2405 struct btrfs_dev_item *dev_item; 2406 struct extent_buffer *leaf; 2407 struct btrfs_key key; 2408 2409 root = device->dev_root->fs_info->chunk_root; 2410 2411 path = btrfs_alloc_path(); 2412 if (!path) 2413 return -ENOMEM; 2414 2415 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2416 key.type = BTRFS_DEV_ITEM_KEY; 2417 key.offset = device->devid; 2418 2419 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2420 if (ret < 0) 2421 goto out; 2422 2423 if (ret > 0) { 2424 ret = -ENOENT; 2425 goto out; 2426 } 2427 2428 leaf = path->nodes[0]; 2429 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2430 2431 btrfs_set_device_id(leaf, dev_item, device->devid); 2432 btrfs_set_device_type(leaf, dev_item, device->type); 2433 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2434 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2435 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2436 btrfs_set_device_total_bytes(leaf, dev_item, 2437 btrfs_device_get_disk_total_bytes(device)); 2438 btrfs_set_device_bytes_used(leaf, dev_item, 2439 btrfs_device_get_bytes_used(device)); 2440 btrfs_mark_buffer_dirty(leaf); 2441 2442 out: 2443 btrfs_free_path(path); 2444 return ret; 2445 } 2446 2447 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2448 struct btrfs_device *device, u64 new_size) 2449 { 2450 struct btrfs_super_block *super_copy = 2451 device->dev_root->fs_info->super_copy; 2452 struct btrfs_fs_devices *fs_devices; 2453 u64 old_total; 2454 u64 diff; 2455 2456 if (!device->writeable) 2457 return -EACCES; 2458 2459 lock_chunks(device->dev_root); 2460 old_total = btrfs_super_total_bytes(super_copy); 2461 diff = new_size - device->total_bytes; 2462 2463 if (new_size <= device->total_bytes || 2464 device->is_tgtdev_for_dev_replace) { 2465 unlock_chunks(device->dev_root); 2466 return -EINVAL; 2467 } 2468 2469 fs_devices = device->dev_root->fs_info->fs_devices; 2470 2471 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2472 device->fs_devices->total_rw_bytes += diff; 2473 2474 btrfs_device_set_total_bytes(device, new_size); 2475 btrfs_device_set_disk_total_bytes(device, new_size); 2476 btrfs_clear_space_info_full(device->dev_root->fs_info); 2477 if (list_empty(&device->resized_list)) 2478 list_add_tail(&device->resized_list, 2479 &fs_devices->resized_devices); 2480 unlock_chunks(device->dev_root); 2481 2482 return btrfs_update_device(trans, device); 2483 } 2484 2485 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2486 struct btrfs_root *root, 2487 u64 chunk_tree, u64 chunk_objectid, 2488 u64 chunk_offset) 2489 { 2490 int ret; 2491 struct btrfs_path *path; 2492 struct btrfs_key key; 2493 2494 root = root->fs_info->chunk_root; 2495 path = btrfs_alloc_path(); 2496 if (!path) 2497 return -ENOMEM; 2498 2499 key.objectid = chunk_objectid; 2500 key.offset = chunk_offset; 2501 key.type = BTRFS_CHUNK_ITEM_KEY; 2502 2503 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2504 if (ret < 0) 2505 goto out; 2506 else if (ret > 0) { /* Logic error or corruption */ 2507 btrfs_error(root->fs_info, -ENOENT, 2508 "Failed lookup while freeing chunk."); 2509 ret = -ENOENT; 2510 goto out; 2511 } 2512 2513 ret = btrfs_del_item(trans, root, path); 2514 if (ret < 0) 2515 btrfs_error(root->fs_info, ret, 2516 "Failed to delete chunk item."); 2517 out: 2518 btrfs_free_path(path); 2519 return ret; 2520 } 2521 2522 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2523 chunk_offset) 2524 { 2525 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2526 struct btrfs_disk_key *disk_key; 2527 struct btrfs_chunk *chunk; 2528 u8 *ptr; 2529 int ret = 0; 2530 u32 num_stripes; 2531 u32 array_size; 2532 u32 len = 0; 2533 u32 cur; 2534 struct btrfs_key key; 2535 2536 lock_chunks(root); 2537 array_size = btrfs_super_sys_array_size(super_copy); 2538 2539 ptr = super_copy->sys_chunk_array; 2540 cur = 0; 2541 2542 while (cur < array_size) { 2543 disk_key = (struct btrfs_disk_key *)ptr; 2544 btrfs_disk_key_to_cpu(&key, disk_key); 2545 2546 len = sizeof(*disk_key); 2547 2548 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2549 chunk = (struct btrfs_chunk *)(ptr + len); 2550 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2551 len += btrfs_chunk_item_size(num_stripes); 2552 } else { 2553 ret = -EIO; 2554 break; 2555 } 2556 if (key.objectid == chunk_objectid && 2557 key.offset == chunk_offset) { 2558 memmove(ptr, ptr + len, array_size - (cur + len)); 2559 array_size -= len; 2560 btrfs_set_super_sys_array_size(super_copy, array_size); 2561 } else { 2562 ptr += len; 2563 cur += len; 2564 } 2565 } 2566 unlock_chunks(root); 2567 return ret; 2568 } 2569 2570 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2571 struct btrfs_root *root, u64 chunk_offset) 2572 { 2573 struct extent_map_tree *em_tree; 2574 struct extent_map *em; 2575 struct btrfs_root *extent_root = root->fs_info->extent_root; 2576 struct map_lookup *map; 2577 u64 dev_extent_len = 0; 2578 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2579 u64 chunk_tree = root->fs_info->chunk_root->objectid; 2580 int i, ret = 0; 2581 2582 /* Just in case */ 2583 root = root->fs_info->chunk_root; 2584 em_tree = &root->fs_info->mapping_tree.map_tree; 2585 2586 read_lock(&em_tree->lock); 2587 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2588 read_unlock(&em_tree->lock); 2589 2590 if (!em || em->start > chunk_offset || 2591 em->start + em->len < chunk_offset) { 2592 /* 2593 * This is a logic error, but we don't want to just rely on the 2594 * user having built with ASSERT enabled, so if ASSERT doens't 2595 * do anything we still error out. 2596 */ 2597 ASSERT(0); 2598 if (em) 2599 free_extent_map(em); 2600 return -EINVAL; 2601 } 2602 map = (struct map_lookup *)em->bdev; 2603 2604 for (i = 0; i < map->num_stripes; i++) { 2605 struct btrfs_device *device = map->stripes[i].dev; 2606 ret = btrfs_free_dev_extent(trans, device, 2607 map->stripes[i].physical, 2608 &dev_extent_len); 2609 if (ret) { 2610 btrfs_abort_transaction(trans, root, ret); 2611 goto out; 2612 } 2613 2614 if (device->bytes_used > 0) { 2615 lock_chunks(root); 2616 btrfs_device_set_bytes_used(device, 2617 device->bytes_used - dev_extent_len); 2618 spin_lock(&root->fs_info->free_chunk_lock); 2619 root->fs_info->free_chunk_space += dev_extent_len; 2620 spin_unlock(&root->fs_info->free_chunk_lock); 2621 btrfs_clear_space_info_full(root->fs_info); 2622 unlock_chunks(root); 2623 } 2624 2625 if (map->stripes[i].dev) { 2626 ret = btrfs_update_device(trans, map->stripes[i].dev); 2627 if (ret) { 2628 btrfs_abort_transaction(trans, root, ret); 2629 goto out; 2630 } 2631 } 2632 } 2633 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2634 chunk_offset); 2635 if (ret) { 2636 btrfs_abort_transaction(trans, root, ret); 2637 goto out; 2638 } 2639 2640 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2641 2642 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2643 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2644 if (ret) { 2645 btrfs_abort_transaction(trans, root, ret); 2646 goto out; 2647 } 2648 } 2649 2650 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2651 if (ret) { 2652 btrfs_abort_transaction(trans, extent_root, ret); 2653 goto out; 2654 } 2655 2656 write_lock(&em_tree->lock); 2657 remove_extent_mapping(em_tree, em); 2658 write_unlock(&em_tree->lock); 2659 2660 /* once for the tree */ 2661 free_extent_map(em); 2662 out: 2663 /* once for us */ 2664 free_extent_map(em); 2665 return ret; 2666 } 2667 2668 static int btrfs_relocate_chunk(struct btrfs_root *root, 2669 u64 chunk_tree, u64 chunk_objectid, 2670 u64 chunk_offset) 2671 { 2672 struct btrfs_root *extent_root; 2673 struct btrfs_trans_handle *trans; 2674 int ret; 2675 2676 root = root->fs_info->chunk_root; 2677 extent_root = root->fs_info->extent_root; 2678 2679 ret = btrfs_can_relocate(extent_root, chunk_offset); 2680 if (ret) 2681 return -ENOSPC; 2682 2683 /* step one, relocate all the extents inside this chunk */ 2684 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2685 if (ret) 2686 return ret; 2687 2688 trans = btrfs_start_transaction(root, 0); 2689 if (IS_ERR(trans)) { 2690 ret = PTR_ERR(trans); 2691 btrfs_std_error(root->fs_info, ret); 2692 return ret; 2693 } 2694 2695 /* 2696 * step two, delete the device extents and the 2697 * chunk tree entries 2698 */ 2699 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2700 btrfs_end_transaction(trans, root); 2701 return ret; 2702 } 2703 2704 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2705 { 2706 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2707 struct btrfs_path *path; 2708 struct extent_buffer *leaf; 2709 struct btrfs_chunk *chunk; 2710 struct btrfs_key key; 2711 struct btrfs_key found_key; 2712 u64 chunk_tree = chunk_root->root_key.objectid; 2713 u64 chunk_type; 2714 bool retried = false; 2715 int failed = 0; 2716 int ret; 2717 2718 path = btrfs_alloc_path(); 2719 if (!path) 2720 return -ENOMEM; 2721 2722 again: 2723 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2724 key.offset = (u64)-1; 2725 key.type = BTRFS_CHUNK_ITEM_KEY; 2726 2727 while (1) { 2728 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2729 if (ret < 0) 2730 goto error; 2731 BUG_ON(ret == 0); /* Corruption */ 2732 2733 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2734 key.type); 2735 if (ret < 0) 2736 goto error; 2737 if (ret > 0) 2738 break; 2739 2740 leaf = path->nodes[0]; 2741 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2742 2743 chunk = btrfs_item_ptr(leaf, path->slots[0], 2744 struct btrfs_chunk); 2745 chunk_type = btrfs_chunk_type(leaf, chunk); 2746 btrfs_release_path(path); 2747 2748 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2749 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2750 found_key.objectid, 2751 found_key.offset); 2752 if (ret == -ENOSPC) 2753 failed++; 2754 else 2755 BUG_ON(ret); 2756 } 2757 2758 if (found_key.offset == 0) 2759 break; 2760 key.offset = found_key.offset - 1; 2761 } 2762 ret = 0; 2763 if (failed && !retried) { 2764 failed = 0; 2765 retried = true; 2766 goto again; 2767 } else if (WARN_ON(failed && retried)) { 2768 ret = -ENOSPC; 2769 } 2770 error: 2771 btrfs_free_path(path); 2772 return ret; 2773 } 2774 2775 static int insert_balance_item(struct btrfs_root *root, 2776 struct btrfs_balance_control *bctl) 2777 { 2778 struct btrfs_trans_handle *trans; 2779 struct btrfs_balance_item *item; 2780 struct btrfs_disk_balance_args disk_bargs; 2781 struct btrfs_path *path; 2782 struct extent_buffer *leaf; 2783 struct btrfs_key key; 2784 int ret, err; 2785 2786 path = btrfs_alloc_path(); 2787 if (!path) 2788 return -ENOMEM; 2789 2790 trans = btrfs_start_transaction(root, 0); 2791 if (IS_ERR(trans)) { 2792 btrfs_free_path(path); 2793 return PTR_ERR(trans); 2794 } 2795 2796 key.objectid = BTRFS_BALANCE_OBJECTID; 2797 key.type = BTRFS_BALANCE_ITEM_KEY; 2798 key.offset = 0; 2799 2800 ret = btrfs_insert_empty_item(trans, root, path, &key, 2801 sizeof(*item)); 2802 if (ret) 2803 goto out; 2804 2805 leaf = path->nodes[0]; 2806 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2807 2808 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2809 2810 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2811 btrfs_set_balance_data(leaf, item, &disk_bargs); 2812 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2813 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2814 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2815 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2816 2817 btrfs_set_balance_flags(leaf, item, bctl->flags); 2818 2819 btrfs_mark_buffer_dirty(leaf); 2820 out: 2821 btrfs_free_path(path); 2822 err = btrfs_commit_transaction(trans, root); 2823 if (err && !ret) 2824 ret = err; 2825 return ret; 2826 } 2827 2828 static int del_balance_item(struct btrfs_root *root) 2829 { 2830 struct btrfs_trans_handle *trans; 2831 struct btrfs_path *path; 2832 struct btrfs_key key; 2833 int ret, err; 2834 2835 path = btrfs_alloc_path(); 2836 if (!path) 2837 return -ENOMEM; 2838 2839 trans = btrfs_start_transaction(root, 0); 2840 if (IS_ERR(trans)) { 2841 btrfs_free_path(path); 2842 return PTR_ERR(trans); 2843 } 2844 2845 key.objectid = BTRFS_BALANCE_OBJECTID; 2846 key.type = BTRFS_BALANCE_ITEM_KEY; 2847 key.offset = 0; 2848 2849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2850 if (ret < 0) 2851 goto out; 2852 if (ret > 0) { 2853 ret = -ENOENT; 2854 goto out; 2855 } 2856 2857 ret = btrfs_del_item(trans, root, path); 2858 out: 2859 btrfs_free_path(path); 2860 err = btrfs_commit_transaction(trans, root); 2861 if (err && !ret) 2862 ret = err; 2863 return ret; 2864 } 2865 2866 /* 2867 * This is a heuristic used to reduce the number of chunks balanced on 2868 * resume after balance was interrupted. 2869 */ 2870 static void update_balance_args(struct btrfs_balance_control *bctl) 2871 { 2872 /* 2873 * Turn on soft mode for chunk types that were being converted. 2874 */ 2875 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2876 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2877 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2878 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2879 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2880 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2881 2882 /* 2883 * Turn on usage filter if is not already used. The idea is 2884 * that chunks that we have already balanced should be 2885 * reasonably full. Don't do it for chunks that are being 2886 * converted - that will keep us from relocating unconverted 2887 * (albeit full) chunks. 2888 */ 2889 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2890 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2891 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2892 bctl->data.usage = 90; 2893 } 2894 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2895 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2896 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2897 bctl->sys.usage = 90; 2898 } 2899 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2900 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2901 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2902 bctl->meta.usage = 90; 2903 } 2904 } 2905 2906 /* 2907 * Should be called with both balance and volume mutexes held to 2908 * serialize other volume operations (add_dev/rm_dev/resize) with 2909 * restriper. Same goes for unset_balance_control. 2910 */ 2911 static void set_balance_control(struct btrfs_balance_control *bctl) 2912 { 2913 struct btrfs_fs_info *fs_info = bctl->fs_info; 2914 2915 BUG_ON(fs_info->balance_ctl); 2916 2917 spin_lock(&fs_info->balance_lock); 2918 fs_info->balance_ctl = bctl; 2919 spin_unlock(&fs_info->balance_lock); 2920 } 2921 2922 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2923 { 2924 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2925 2926 BUG_ON(!fs_info->balance_ctl); 2927 2928 spin_lock(&fs_info->balance_lock); 2929 fs_info->balance_ctl = NULL; 2930 spin_unlock(&fs_info->balance_lock); 2931 2932 kfree(bctl); 2933 } 2934 2935 /* 2936 * Balance filters. Return 1 if chunk should be filtered out 2937 * (should not be balanced). 2938 */ 2939 static int chunk_profiles_filter(u64 chunk_type, 2940 struct btrfs_balance_args *bargs) 2941 { 2942 chunk_type = chunk_to_extended(chunk_type) & 2943 BTRFS_EXTENDED_PROFILE_MASK; 2944 2945 if (bargs->profiles & chunk_type) 2946 return 0; 2947 2948 return 1; 2949 } 2950 2951 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2952 struct btrfs_balance_args *bargs) 2953 { 2954 struct btrfs_block_group_cache *cache; 2955 u64 chunk_used, user_thresh; 2956 int ret = 1; 2957 2958 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2959 chunk_used = btrfs_block_group_used(&cache->item); 2960 2961 if (bargs->usage == 0) 2962 user_thresh = 1; 2963 else if (bargs->usage > 100) 2964 user_thresh = cache->key.offset; 2965 else 2966 user_thresh = div_factor_fine(cache->key.offset, 2967 bargs->usage); 2968 2969 if (chunk_used < user_thresh) 2970 ret = 0; 2971 2972 btrfs_put_block_group(cache); 2973 return ret; 2974 } 2975 2976 static int chunk_devid_filter(struct extent_buffer *leaf, 2977 struct btrfs_chunk *chunk, 2978 struct btrfs_balance_args *bargs) 2979 { 2980 struct btrfs_stripe *stripe; 2981 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2982 int i; 2983 2984 for (i = 0; i < num_stripes; i++) { 2985 stripe = btrfs_stripe_nr(chunk, i); 2986 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2987 return 0; 2988 } 2989 2990 return 1; 2991 } 2992 2993 /* [pstart, pend) */ 2994 static int chunk_drange_filter(struct extent_buffer *leaf, 2995 struct btrfs_chunk *chunk, 2996 u64 chunk_offset, 2997 struct btrfs_balance_args *bargs) 2998 { 2999 struct btrfs_stripe *stripe; 3000 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3001 u64 stripe_offset; 3002 u64 stripe_length; 3003 int factor; 3004 int i; 3005 3006 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3007 return 0; 3008 3009 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3010 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3011 factor = num_stripes / 2; 3012 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3013 factor = num_stripes - 1; 3014 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3015 factor = num_stripes - 2; 3016 } else { 3017 factor = num_stripes; 3018 } 3019 3020 for (i = 0; i < num_stripes; i++) { 3021 stripe = btrfs_stripe_nr(chunk, i); 3022 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3023 continue; 3024 3025 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3026 stripe_length = btrfs_chunk_length(leaf, chunk); 3027 do_div(stripe_length, factor); 3028 3029 if (stripe_offset < bargs->pend && 3030 stripe_offset + stripe_length > bargs->pstart) 3031 return 0; 3032 } 3033 3034 return 1; 3035 } 3036 3037 /* [vstart, vend) */ 3038 static int chunk_vrange_filter(struct extent_buffer *leaf, 3039 struct btrfs_chunk *chunk, 3040 u64 chunk_offset, 3041 struct btrfs_balance_args *bargs) 3042 { 3043 if (chunk_offset < bargs->vend && 3044 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3045 /* at least part of the chunk is inside this vrange */ 3046 return 0; 3047 3048 return 1; 3049 } 3050 3051 static int chunk_soft_convert_filter(u64 chunk_type, 3052 struct btrfs_balance_args *bargs) 3053 { 3054 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3055 return 0; 3056 3057 chunk_type = chunk_to_extended(chunk_type) & 3058 BTRFS_EXTENDED_PROFILE_MASK; 3059 3060 if (bargs->target == chunk_type) 3061 return 1; 3062 3063 return 0; 3064 } 3065 3066 static int should_balance_chunk(struct btrfs_root *root, 3067 struct extent_buffer *leaf, 3068 struct btrfs_chunk *chunk, u64 chunk_offset) 3069 { 3070 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3071 struct btrfs_balance_args *bargs = NULL; 3072 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3073 3074 /* type filter */ 3075 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3076 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3077 return 0; 3078 } 3079 3080 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3081 bargs = &bctl->data; 3082 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3083 bargs = &bctl->sys; 3084 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3085 bargs = &bctl->meta; 3086 3087 /* profiles filter */ 3088 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3089 chunk_profiles_filter(chunk_type, bargs)) { 3090 return 0; 3091 } 3092 3093 /* usage filter */ 3094 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3095 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3096 return 0; 3097 } 3098 3099 /* devid filter */ 3100 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3101 chunk_devid_filter(leaf, chunk, bargs)) { 3102 return 0; 3103 } 3104 3105 /* drange filter, makes sense only with devid filter */ 3106 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3107 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3108 return 0; 3109 } 3110 3111 /* vrange filter */ 3112 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3113 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3114 return 0; 3115 } 3116 3117 /* soft profile changing mode */ 3118 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3119 chunk_soft_convert_filter(chunk_type, bargs)) { 3120 return 0; 3121 } 3122 3123 /* 3124 * limited by count, must be the last filter 3125 */ 3126 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3127 if (bargs->limit == 0) 3128 return 0; 3129 else 3130 bargs->limit--; 3131 } 3132 3133 return 1; 3134 } 3135 3136 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3137 { 3138 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3139 struct btrfs_root *chunk_root = fs_info->chunk_root; 3140 struct btrfs_root *dev_root = fs_info->dev_root; 3141 struct list_head *devices; 3142 struct btrfs_device *device; 3143 u64 old_size; 3144 u64 size_to_free; 3145 struct btrfs_chunk *chunk; 3146 struct btrfs_path *path; 3147 struct btrfs_key key; 3148 struct btrfs_key found_key; 3149 struct btrfs_trans_handle *trans; 3150 struct extent_buffer *leaf; 3151 int slot; 3152 int ret; 3153 int enospc_errors = 0; 3154 bool counting = true; 3155 u64 limit_data = bctl->data.limit; 3156 u64 limit_meta = bctl->meta.limit; 3157 u64 limit_sys = bctl->sys.limit; 3158 3159 /* step one make some room on all the devices */ 3160 devices = &fs_info->fs_devices->devices; 3161 list_for_each_entry(device, devices, dev_list) { 3162 old_size = btrfs_device_get_total_bytes(device); 3163 size_to_free = div_factor(old_size, 1); 3164 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3165 if (!device->writeable || 3166 btrfs_device_get_total_bytes(device) - 3167 btrfs_device_get_bytes_used(device) > size_to_free || 3168 device->is_tgtdev_for_dev_replace) 3169 continue; 3170 3171 ret = btrfs_shrink_device(device, old_size - size_to_free); 3172 if (ret == -ENOSPC) 3173 break; 3174 BUG_ON(ret); 3175 3176 trans = btrfs_start_transaction(dev_root, 0); 3177 BUG_ON(IS_ERR(trans)); 3178 3179 ret = btrfs_grow_device(trans, device, old_size); 3180 BUG_ON(ret); 3181 3182 btrfs_end_transaction(trans, dev_root); 3183 } 3184 3185 /* step two, relocate all the chunks */ 3186 path = btrfs_alloc_path(); 3187 if (!path) { 3188 ret = -ENOMEM; 3189 goto error; 3190 } 3191 3192 /* zero out stat counters */ 3193 spin_lock(&fs_info->balance_lock); 3194 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3195 spin_unlock(&fs_info->balance_lock); 3196 again: 3197 if (!counting) { 3198 bctl->data.limit = limit_data; 3199 bctl->meta.limit = limit_meta; 3200 bctl->sys.limit = limit_sys; 3201 } 3202 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3203 key.offset = (u64)-1; 3204 key.type = BTRFS_CHUNK_ITEM_KEY; 3205 3206 while (1) { 3207 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3208 atomic_read(&fs_info->balance_cancel_req)) { 3209 ret = -ECANCELED; 3210 goto error; 3211 } 3212 3213 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3214 if (ret < 0) 3215 goto error; 3216 3217 /* 3218 * this shouldn't happen, it means the last relocate 3219 * failed 3220 */ 3221 if (ret == 0) 3222 BUG(); /* FIXME break ? */ 3223 3224 ret = btrfs_previous_item(chunk_root, path, 0, 3225 BTRFS_CHUNK_ITEM_KEY); 3226 if (ret) { 3227 ret = 0; 3228 break; 3229 } 3230 3231 leaf = path->nodes[0]; 3232 slot = path->slots[0]; 3233 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3234 3235 if (found_key.objectid != key.objectid) 3236 break; 3237 3238 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3239 3240 if (!counting) { 3241 spin_lock(&fs_info->balance_lock); 3242 bctl->stat.considered++; 3243 spin_unlock(&fs_info->balance_lock); 3244 } 3245 3246 ret = should_balance_chunk(chunk_root, leaf, chunk, 3247 found_key.offset); 3248 btrfs_release_path(path); 3249 if (!ret) 3250 goto loop; 3251 3252 if (counting) { 3253 spin_lock(&fs_info->balance_lock); 3254 bctl->stat.expected++; 3255 spin_unlock(&fs_info->balance_lock); 3256 goto loop; 3257 } 3258 3259 ret = btrfs_relocate_chunk(chunk_root, 3260 chunk_root->root_key.objectid, 3261 found_key.objectid, 3262 found_key.offset); 3263 if (ret && ret != -ENOSPC) 3264 goto error; 3265 if (ret == -ENOSPC) { 3266 enospc_errors++; 3267 } else { 3268 spin_lock(&fs_info->balance_lock); 3269 bctl->stat.completed++; 3270 spin_unlock(&fs_info->balance_lock); 3271 } 3272 loop: 3273 if (found_key.offset == 0) 3274 break; 3275 key.offset = found_key.offset - 1; 3276 } 3277 3278 if (counting) { 3279 btrfs_release_path(path); 3280 counting = false; 3281 goto again; 3282 } 3283 error: 3284 btrfs_free_path(path); 3285 if (enospc_errors) { 3286 btrfs_info(fs_info, "%d enospc errors during balance", 3287 enospc_errors); 3288 if (!ret) 3289 ret = -ENOSPC; 3290 } 3291 3292 return ret; 3293 } 3294 3295 /** 3296 * alloc_profile_is_valid - see if a given profile is valid and reduced 3297 * @flags: profile to validate 3298 * @extended: if true @flags is treated as an extended profile 3299 */ 3300 static int alloc_profile_is_valid(u64 flags, int extended) 3301 { 3302 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3303 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3304 3305 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3306 3307 /* 1) check that all other bits are zeroed */ 3308 if (flags & ~mask) 3309 return 0; 3310 3311 /* 2) see if profile is reduced */ 3312 if (flags == 0) 3313 return !extended; /* "0" is valid for usual profiles */ 3314 3315 /* true if exactly one bit set */ 3316 return (flags & (flags - 1)) == 0; 3317 } 3318 3319 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3320 { 3321 /* cancel requested || normal exit path */ 3322 return atomic_read(&fs_info->balance_cancel_req) || 3323 (atomic_read(&fs_info->balance_pause_req) == 0 && 3324 atomic_read(&fs_info->balance_cancel_req) == 0); 3325 } 3326 3327 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3328 { 3329 int ret; 3330 3331 unset_balance_control(fs_info); 3332 ret = del_balance_item(fs_info->tree_root); 3333 if (ret) 3334 btrfs_std_error(fs_info, ret); 3335 3336 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3337 } 3338 3339 /* 3340 * Should be called with both balance and volume mutexes held 3341 */ 3342 int btrfs_balance(struct btrfs_balance_control *bctl, 3343 struct btrfs_ioctl_balance_args *bargs) 3344 { 3345 struct btrfs_fs_info *fs_info = bctl->fs_info; 3346 u64 allowed; 3347 int mixed = 0; 3348 int ret; 3349 u64 num_devices; 3350 unsigned seq; 3351 3352 if (btrfs_fs_closing(fs_info) || 3353 atomic_read(&fs_info->balance_pause_req) || 3354 atomic_read(&fs_info->balance_cancel_req)) { 3355 ret = -EINVAL; 3356 goto out; 3357 } 3358 3359 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3360 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3361 mixed = 1; 3362 3363 /* 3364 * In case of mixed groups both data and meta should be picked, 3365 * and identical options should be given for both of them. 3366 */ 3367 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3368 if (mixed && (bctl->flags & allowed)) { 3369 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3370 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3371 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3372 btrfs_err(fs_info, "with mixed groups data and " 3373 "metadata balance options must be the same"); 3374 ret = -EINVAL; 3375 goto out; 3376 } 3377 } 3378 3379 num_devices = fs_info->fs_devices->num_devices; 3380 btrfs_dev_replace_lock(&fs_info->dev_replace); 3381 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3382 BUG_ON(num_devices < 1); 3383 num_devices--; 3384 } 3385 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3386 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3387 if (num_devices == 1) 3388 allowed |= BTRFS_BLOCK_GROUP_DUP; 3389 else if (num_devices > 1) 3390 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3391 if (num_devices > 2) 3392 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3393 if (num_devices > 3) 3394 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3395 BTRFS_BLOCK_GROUP_RAID6); 3396 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3397 (!alloc_profile_is_valid(bctl->data.target, 1) || 3398 (bctl->data.target & ~allowed))) { 3399 btrfs_err(fs_info, "unable to start balance with target " 3400 "data profile %llu", 3401 bctl->data.target); 3402 ret = -EINVAL; 3403 goto out; 3404 } 3405 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3406 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3407 (bctl->meta.target & ~allowed))) { 3408 btrfs_err(fs_info, 3409 "unable to start balance with target metadata profile %llu", 3410 bctl->meta.target); 3411 ret = -EINVAL; 3412 goto out; 3413 } 3414 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3415 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3416 (bctl->sys.target & ~allowed))) { 3417 btrfs_err(fs_info, 3418 "unable to start balance with target system profile %llu", 3419 bctl->sys.target); 3420 ret = -EINVAL; 3421 goto out; 3422 } 3423 3424 /* allow dup'ed data chunks only in mixed mode */ 3425 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3426 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3427 btrfs_err(fs_info, "dup for data is not allowed"); 3428 ret = -EINVAL; 3429 goto out; 3430 } 3431 3432 /* allow to reduce meta or sys integrity only if force set */ 3433 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3434 BTRFS_BLOCK_GROUP_RAID10 | 3435 BTRFS_BLOCK_GROUP_RAID5 | 3436 BTRFS_BLOCK_GROUP_RAID6; 3437 do { 3438 seq = read_seqbegin(&fs_info->profiles_lock); 3439 3440 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3441 (fs_info->avail_system_alloc_bits & allowed) && 3442 !(bctl->sys.target & allowed)) || 3443 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3444 (fs_info->avail_metadata_alloc_bits & allowed) && 3445 !(bctl->meta.target & allowed))) { 3446 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3447 btrfs_info(fs_info, "force reducing metadata integrity"); 3448 } else { 3449 btrfs_err(fs_info, "balance will reduce metadata " 3450 "integrity, use force if you want this"); 3451 ret = -EINVAL; 3452 goto out; 3453 } 3454 } 3455 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3456 3457 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3458 int num_tolerated_disk_barrier_failures; 3459 u64 target = bctl->sys.target; 3460 3461 num_tolerated_disk_barrier_failures = 3462 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3463 if (num_tolerated_disk_barrier_failures > 0 && 3464 (target & 3465 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3466 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3467 num_tolerated_disk_barrier_failures = 0; 3468 else if (num_tolerated_disk_barrier_failures > 1 && 3469 (target & 3470 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3471 num_tolerated_disk_barrier_failures = 1; 3472 3473 fs_info->num_tolerated_disk_barrier_failures = 3474 num_tolerated_disk_barrier_failures; 3475 } 3476 3477 ret = insert_balance_item(fs_info->tree_root, bctl); 3478 if (ret && ret != -EEXIST) 3479 goto out; 3480 3481 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3482 BUG_ON(ret == -EEXIST); 3483 set_balance_control(bctl); 3484 } else { 3485 BUG_ON(ret != -EEXIST); 3486 spin_lock(&fs_info->balance_lock); 3487 update_balance_args(bctl); 3488 spin_unlock(&fs_info->balance_lock); 3489 } 3490 3491 atomic_inc(&fs_info->balance_running); 3492 mutex_unlock(&fs_info->balance_mutex); 3493 3494 ret = __btrfs_balance(fs_info); 3495 3496 mutex_lock(&fs_info->balance_mutex); 3497 atomic_dec(&fs_info->balance_running); 3498 3499 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3500 fs_info->num_tolerated_disk_barrier_failures = 3501 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3502 } 3503 3504 if (bargs) { 3505 memset(bargs, 0, sizeof(*bargs)); 3506 update_ioctl_balance_args(fs_info, 0, bargs); 3507 } 3508 3509 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3510 balance_need_close(fs_info)) { 3511 __cancel_balance(fs_info); 3512 } 3513 3514 wake_up(&fs_info->balance_wait_q); 3515 3516 return ret; 3517 out: 3518 if (bctl->flags & BTRFS_BALANCE_RESUME) 3519 __cancel_balance(fs_info); 3520 else { 3521 kfree(bctl); 3522 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3523 } 3524 return ret; 3525 } 3526 3527 static int balance_kthread(void *data) 3528 { 3529 struct btrfs_fs_info *fs_info = data; 3530 int ret = 0; 3531 3532 mutex_lock(&fs_info->volume_mutex); 3533 mutex_lock(&fs_info->balance_mutex); 3534 3535 if (fs_info->balance_ctl) { 3536 btrfs_info(fs_info, "continuing balance"); 3537 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3538 } 3539 3540 mutex_unlock(&fs_info->balance_mutex); 3541 mutex_unlock(&fs_info->volume_mutex); 3542 3543 return ret; 3544 } 3545 3546 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3547 { 3548 struct task_struct *tsk; 3549 3550 spin_lock(&fs_info->balance_lock); 3551 if (!fs_info->balance_ctl) { 3552 spin_unlock(&fs_info->balance_lock); 3553 return 0; 3554 } 3555 spin_unlock(&fs_info->balance_lock); 3556 3557 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3558 btrfs_info(fs_info, "force skipping balance"); 3559 return 0; 3560 } 3561 3562 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3563 return PTR_ERR_OR_ZERO(tsk); 3564 } 3565 3566 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3567 { 3568 struct btrfs_balance_control *bctl; 3569 struct btrfs_balance_item *item; 3570 struct btrfs_disk_balance_args disk_bargs; 3571 struct btrfs_path *path; 3572 struct extent_buffer *leaf; 3573 struct btrfs_key key; 3574 int ret; 3575 3576 path = btrfs_alloc_path(); 3577 if (!path) 3578 return -ENOMEM; 3579 3580 key.objectid = BTRFS_BALANCE_OBJECTID; 3581 key.type = BTRFS_BALANCE_ITEM_KEY; 3582 key.offset = 0; 3583 3584 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3585 if (ret < 0) 3586 goto out; 3587 if (ret > 0) { /* ret = -ENOENT; */ 3588 ret = 0; 3589 goto out; 3590 } 3591 3592 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3593 if (!bctl) { 3594 ret = -ENOMEM; 3595 goto out; 3596 } 3597 3598 leaf = path->nodes[0]; 3599 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3600 3601 bctl->fs_info = fs_info; 3602 bctl->flags = btrfs_balance_flags(leaf, item); 3603 bctl->flags |= BTRFS_BALANCE_RESUME; 3604 3605 btrfs_balance_data(leaf, item, &disk_bargs); 3606 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3607 btrfs_balance_meta(leaf, item, &disk_bargs); 3608 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3609 btrfs_balance_sys(leaf, item, &disk_bargs); 3610 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3611 3612 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3613 3614 mutex_lock(&fs_info->volume_mutex); 3615 mutex_lock(&fs_info->balance_mutex); 3616 3617 set_balance_control(bctl); 3618 3619 mutex_unlock(&fs_info->balance_mutex); 3620 mutex_unlock(&fs_info->volume_mutex); 3621 out: 3622 btrfs_free_path(path); 3623 return ret; 3624 } 3625 3626 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3627 { 3628 int ret = 0; 3629 3630 mutex_lock(&fs_info->balance_mutex); 3631 if (!fs_info->balance_ctl) { 3632 mutex_unlock(&fs_info->balance_mutex); 3633 return -ENOTCONN; 3634 } 3635 3636 if (atomic_read(&fs_info->balance_running)) { 3637 atomic_inc(&fs_info->balance_pause_req); 3638 mutex_unlock(&fs_info->balance_mutex); 3639 3640 wait_event(fs_info->balance_wait_q, 3641 atomic_read(&fs_info->balance_running) == 0); 3642 3643 mutex_lock(&fs_info->balance_mutex); 3644 /* we are good with balance_ctl ripped off from under us */ 3645 BUG_ON(atomic_read(&fs_info->balance_running)); 3646 atomic_dec(&fs_info->balance_pause_req); 3647 } else { 3648 ret = -ENOTCONN; 3649 } 3650 3651 mutex_unlock(&fs_info->balance_mutex); 3652 return ret; 3653 } 3654 3655 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3656 { 3657 if (fs_info->sb->s_flags & MS_RDONLY) 3658 return -EROFS; 3659 3660 mutex_lock(&fs_info->balance_mutex); 3661 if (!fs_info->balance_ctl) { 3662 mutex_unlock(&fs_info->balance_mutex); 3663 return -ENOTCONN; 3664 } 3665 3666 atomic_inc(&fs_info->balance_cancel_req); 3667 /* 3668 * if we are running just wait and return, balance item is 3669 * deleted in btrfs_balance in this case 3670 */ 3671 if (atomic_read(&fs_info->balance_running)) { 3672 mutex_unlock(&fs_info->balance_mutex); 3673 wait_event(fs_info->balance_wait_q, 3674 atomic_read(&fs_info->balance_running) == 0); 3675 mutex_lock(&fs_info->balance_mutex); 3676 } else { 3677 /* __cancel_balance needs volume_mutex */ 3678 mutex_unlock(&fs_info->balance_mutex); 3679 mutex_lock(&fs_info->volume_mutex); 3680 mutex_lock(&fs_info->balance_mutex); 3681 3682 if (fs_info->balance_ctl) 3683 __cancel_balance(fs_info); 3684 3685 mutex_unlock(&fs_info->volume_mutex); 3686 } 3687 3688 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3689 atomic_dec(&fs_info->balance_cancel_req); 3690 mutex_unlock(&fs_info->balance_mutex); 3691 return 0; 3692 } 3693 3694 static int btrfs_uuid_scan_kthread(void *data) 3695 { 3696 struct btrfs_fs_info *fs_info = data; 3697 struct btrfs_root *root = fs_info->tree_root; 3698 struct btrfs_key key; 3699 struct btrfs_key max_key; 3700 struct btrfs_path *path = NULL; 3701 int ret = 0; 3702 struct extent_buffer *eb; 3703 int slot; 3704 struct btrfs_root_item root_item; 3705 u32 item_size; 3706 struct btrfs_trans_handle *trans = NULL; 3707 3708 path = btrfs_alloc_path(); 3709 if (!path) { 3710 ret = -ENOMEM; 3711 goto out; 3712 } 3713 3714 key.objectid = 0; 3715 key.type = BTRFS_ROOT_ITEM_KEY; 3716 key.offset = 0; 3717 3718 max_key.objectid = (u64)-1; 3719 max_key.type = BTRFS_ROOT_ITEM_KEY; 3720 max_key.offset = (u64)-1; 3721 3722 while (1) { 3723 ret = btrfs_search_forward(root, &key, path, 0); 3724 if (ret) { 3725 if (ret > 0) 3726 ret = 0; 3727 break; 3728 } 3729 3730 if (key.type != BTRFS_ROOT_ITEM_KEY || 3731 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3732 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3733 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3734 goto skip; 3735 3736 eb = path->nodes[0]; 3737 slot = path->slots[0]; 3738 item_size = btrfs_item_size_nr(eb, slot); 3739 if (item_size < sizeof(root_item)) 3740 goto skip; 3741 3742 read_extent_buffer(eb, &root_item, 3743 btrfs_item_ptr_offset(eb, slot), 3744 (int)sizeof(root_item)); 3745 if (btrfs_root_refs(&root_item) == 0) 3746 goto skip; 3747 3748 if (!btrfs_is_empty_uuid(root_item.uuid) || 3749 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3750 if (trans) 3751 goto update_tree; 3752 3753 btrfs_release_path(path); 3754 /* 3755 * 1 - subvol uuid item 3756 * 1 - received_subvol uuid item 3757 */ 3758 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3759 if (IS_ERR(trans)) { 3760 ret = PTR_ERR(trans); 3761 break; 3762 } 3763 continue; 3764 } else { 3765 goto skip; 3766 } 3767 update_tree: 3768 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3769 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3770 root_item.uuid, 3771 BTRFS_UUID_KEY_SUBVOL, 3772 key.objectid); 3773 if (ret < 0) { 3774 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3775 ret); 3776 break; 3777 } 3778 } 3779 3780 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3781 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3782 root_item.received_uuid, 3783 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3784 key.objectid); 3785 if (ret < 0) { 3786 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3787 ret); 3788 break; 3789 } 3790 } 3791 3792 skip: 3793 if (trans) { 3794 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3795 trans = NULL; 3796 if (ret) 3797 break; 3798 } 3799 3800 btrfs_release_path(path); 3801 if (key.offset < (u64)-1) { 3802 key.offset++; 3803 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3804 key.offset = 0; 3805 key.type = BTRFS_ROOT_ITEM_KEY; 3806 } else if (key.objectid < (u64)-1) { 3807 key.offset = 0; 3808 key.type = BTRFS_ROOT_ITEM_KEY; 3809 key.objectid++; 3810 } else { 3811 break; 3812 } 3813 cond_resched(); 3814 } 3815 3816 out: 3817 btrfs_free_path(path); 3818 if (trans && !IS_ERR(trans)) 3819 btrfs_end_transaction(trans, fs_info->uuid_root); 3820 if (ret) 3821 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 3822 else 3823 fs_info->update_uuid_tree_gen = 1; 3824 up(&fs_info->uuid_tree_rescan_sem); 3825 return 0; 3826 } 3827 3828 /* 3829 * Callback for btrfs_uuid_tree_iterate(). 3830 * returns: 3831 * 0 check succeeded, the entry is not outdated. 3832 * < 0 if an error occured. 3833 * > 0 if the check failed, which means the caller shall remove the entry. 3834 */ 3835 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3836 u8 *uuid, u8 type, u64 subid) 3837 { 3838 struct btrfs_key key; 3839 int ret = 0; 3840 struct btrfs_root *subvol_root; 3841 3842 if (type != BTRFS_UUID_KEY_SUBVOL && 3843 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3844 goto out; 3845 3846 key.objectid = subid; 3847 key.type = BTRFS_ROOT_ITEM_KEY; 3848 key.offset = (u64)-1; 3849 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3850 if (IS_ERR(subvol_root)) { 3851 ret = PTR_ERR(subvol_root); 3852 if (ret == -ENOENT) 3853 ret = 1; 3854 goto out; 3855 } 3856 3857 switch (type) { 3858 case BTRFS_UUID_KEY_SUBVOL: 3859 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3860 ret = 1; 3861 break; 3862 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3863 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3864 BTRFS_UUID_SIZE)) 3865 ret = 1; 3866 break; 3867 } 3868 3869 out: 3870 return ret; 3871 } 3872 3873 static int btrfs_uuid_rescan_kthread(void *data) 3874 { 3875 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3876 int ret; 3877 3878 /* 3879 * 1st step is to iterate through the existing UUID tree and 3880 * to delete all entries that contain outdated data. 3881 * 2nd step is to add all missing entries to the UUID tree. 3882 */ 3883 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3884 if (ret < 0) { 3885 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 3886 up(&fs_info->uuid_tree_rescan_sem); 3887 return ret; 3888 } 3889 return btrfs_uuid_scan_kthread(data); 3890 } 3891 3892 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3893 { 3894 struct btrfs_trans_handle *trans; 3895 struct btrfs_root *tree_root = fs_info->tree_root; 3896 struct btrfs_root *uuid_root; 3897 struct task_struct *task; 3898 int ret; 3899 3900 /* 3901 * 1 - root node 3902 * 1 - root item 3903 */ 3904 trans = btrfs_start_transaction(tree_root, 2); 3905 if (IS_ERR(trans)) 3906 return PTR_ERR(trans); 3907 3908 uuid_root = btrfs_create_tree(trans, fs_info, 3909 BTRFS_UUID_TREE_OBJECTID); 3910 if (IS_ERR(uuid_root)) { 3911 btrfs_abort_transaction(trans, tree_root, 3912 PTR_ERR(uuid_root)); 3913 return PTR_ERR(uuid_root); 3914 } 3915 3916 fs_info->uuid_root = uuid_root; 3917 3918 ret = btrfs_commit_transaction(trans, tree_root); 3919 if (ret) 3920 return ret; 3921 3922 down(&fs_info->uuid_tree_rescan_sem); 3923 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 3924 if (IS_ERR(task)) { 3925 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3926 btrfs_warn(fs_info, "failed to start uuid_scan task"); 3927 up(&fs_info->uuid_tree_rescan_sem); 3928 return PTR_ERR(task); 3929 } 3930 3931 return 0; 3932 } 3933 3934 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3935 { 3936 struct task_struct *task; 3937 3938 down(&fs_info->uuid_tree_rescan_sem); 3939 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3940 if (IS_ERR(task)) { 3941 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3942 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3943 up(&fs_info->uuid_tree_rescan_sem); 3944 return PTR_ERR(task); 3945 } 3946 3947 return 0; 3948 } 3949 3950 /* 3951 * shrinking a device means finding all of the device extents past 3952 * the new size, and then following the back refs to the chunks. 3953 * The chunk relocation code actually frees the device extent 3954 */ 3955 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3956 { 3957 struct btrfs_trans_handle *trans; 3958 struct btrfs_root *root = device->dev_root; 3959 struct btrfs_dev_extent *dev_extent = NULL; 3960 struct btrfs_path *path; 3961 u64 length; 3962 u64 chunk_tree; 3963 u64 chunk_objectid; 3964 u64 chunk_offset; 3965 int ret; 3966 int slot; 3967 int failed = 0; 3968 bool retried = false; 3969 struct extent_buffer *l; 3970 struct btrfs_key key; 3971 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3972 u64 old_total = btrfs_super_total_bytes(super_copy); 3973 u64 old_size = btrfs_device_get_total_bytes(device); 3974 u64 diff = old_size - new_size; 3975 3976 if (device->is_tgtdev_for_dev_replace) 3977 return -EINVAL; 3978 3979 path = btrfs_alloc_path(); 3980 if (!path) 3981 return -ENOMEM; 3982 3983 path->reada = 2; 3984 3985 lock_chunks(root); 3986 3987 btrfs_device_set_total_bytes(device, new_size); 3988 if (device->writeable) { 3989 device->fs_devices->total_rw_bytes -= diff; 3990 spin_lock(&root->fs_info->free_chunk_lock); 3991 root->fs_info->free_chunk_space -= diff; 3992 spin_unlock(&root->fs_info->free_chunk_lock); 3993 } 3994 unlock_chunks(root); 3995 3996 again: 3997 key.objectid = device->devid; 3998 key.offset = (u64)-1; 3999 key.type = BTRFS_DEV_EXTENT_KEY; 4000 4001 do { 4002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4003 if (ret < 0) 4004 goto done; 4005 4006 ret = btrfs_previous_item(root, path, 0, key.type); 4007 if (ret < 0) 4008 goto done; 4009 if (ret) { 4010 ret = 0; 4011 btrfs_release_path(path); 4012 break; 4013 } 4014 4015 l = path->nodes[0]; 4016 slot = path->slots[0]; 4017 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4018 4019 if (key.objectid != device->devid) { 4020 btrfs_release_path(path); 4021 break; 4022 } 4023 4024 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4025 length = btrfs_dev_extent_length(l, dev_extent); 4026 4027 if (key.offset + length <= new_size) { 4028 btrfs_release_path(path); 4029 break; 4030 } 4031 4032 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 4033 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 4034 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4035 btrfs_release_path(path); 4036 4037 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 4038 chunk_offset); 4039 if (ret && ret != -ENOSPC) 4040 goto done; 4041 if (ret == -ENOSPC) 4042 failed++; 4043 } while (key.offset-- > 0); 4044 4045 if (failed && !retried) { 4046 failed = 0; 4047 retried = true; 4048 goto again; 4049 } else if (failed && retried) { 4050 ret = -ENOSPC; 4051 lock_chunks(root); 4052 4053 btrfs_device_set_total_bytes(device, old_size); 4054 if (device->writeable) 4055 device->fs_devices->total_rw_bytes += diff; 4056 spin_lock(&root->fs_info->free_chunk_lock); 4057 root->fs_info->free_chunk_space += diff; 4058 spin_unlock(&root->fs_info->free_chunk_lock); 4059 unlock_chunks(root); 4060 goto done; 4061 } 4062 4063 /* Shrinking succeeded, else we would be at "done". */ 4064 trans = btrfs_start_transaction(root, 0); 4065 if (IS_ERR(trans)) { 4066 ret = PTR_ERR(trans); 4067 goto done; 4068 } 4069 4070 lock_chunks(root); 4071 btrfs_device_set_disk_total_bytes(device, new_size); 4072 if (list_empty(&device->resized_list)) 4073 list_add_tail(&device->resized_list, 4074 &root->fs_info->fs_devices->resized_devices); 4075 4076 WARN_ON(diff > old_total); 4077 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4078 unlock_chunks(root); 4079 4080 /* Now btrfs_update_device() will change the on-disk size. */ 4081 ret = btrfs_update_device(trans, device); 4082 btrfs_end_transaction(trans, root); 4083 done: 4084 btrfs_free_path(path); 4085 return ret; 4086 } 4087 4088 static int btrfs_add_system_chunk(struct btrfs_root *root, 4089 struct btrfs_key *key, 4090 struct btrfs_chunk *chunk, int item_size) 4091 { 4092 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4093 struct btrfs_disk_key disk_key; 4094 u32 array_size; 4095 u8 *ptr; 4096 4097 lock_chunks(root); 4098 array_size = btrfs_super_sys_array_size(super_copy); 4099 if (array_size + item_size + sizeof(disk_key) 4100 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4101 unlock_chunks(root); 4102 return -EFBIG; 4103 } 4104 4105 ptr = super_copy->sys_chunk_array + array_size; 4106 btrfs_cpu_key_to_disk(&disk_key, key); 4107 memcpy(ptr, &disk_key, sizeof(disk_key)); 4108 ptr += sizeof(disk_key); 4109 memcpy(ptr, chunk, item_size); 4110 item_size += sizeof(disk_key); 4111 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4112 unlock_chunks(root); 4113 4114 return 0; 4115 } 4116 4117 /* 4118 * sort the devices in descending order by max_avail, total_avail 4119 */ 4120 static int btrfs_cmp_device_info(const void *a, const void *b) 4121 { 4122 const struct btrfs_device_info *di_a = a; 4123 const struct btrfs_device_info *di_b = b; 4124 4125 if (di_a->max_avail > di_b->max_avail) 4126 return -1; 4127 if (di_a->max_avail < di_b->max_avail) 4128 return 1; 4129 if (di_a->total_avail > di_b->total_avail) 4130 return -1; 4131 if (di_a->total_avail < di_b->total_avail) 4132 return 1; 4133 return 0; 4134 } 4135 4136 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 4137 [BTRFS_RAID_RAID10] = { 4138 .sub_stripes = 2, 4139 .dev_stripes = 1, 4140 .devs_max = 0, /* 0 == as many as possible */ 4141 .devs_min = 4, 4142 .devs_increment = 2, 4143 .ncopies = 2, 4144 }, 4145 [BTRFS_RAID_RAID1] = { 4146 .sub_stripes = 1, 4147 .dev_stripes = 1, 4148 .devs_max = 2, 4149 .devs_min = 2, 4150 .devs_increment = 2, 4151 .ncopies = 2, 4152 }, 4153 [BTRFS_RAID_DUP] = { 4154 .sub_stripes = 1, 4155 .dev_stripes = 2, 4156 .devs_max = 1, 4157 .devs_min = 1, 4158 .devs_increment = 1, 4159 .ncopies = 2, 4160 }, 4161 [BTRFS_RAID_RAID0] = { 4162 .sub_stripes = 1, 4163 .dev_stripes = 1, 4164 .devs_max = 0, 4165 .devs_min = 2, 4166 .devs_increment = 1, 4167 .ncopies = 1, 4168 }, 4169 [BTRFS_RAID_SINGLE] = { 4170 .sub_stripes = 1, 4171 .dev_stripes = 1, 4172 .devs_max = 1, 4173 .devs_min = 1, 4174 .devs_increment = 1, 4175 .ncopies = 1, 4176 }, 4177 [BTRFS_RAID_RAID5] = { 4178 .sub_stripes = 1, 4179 .dev_stripes = 1, 4180 .devs_max = 0, 4181 .devs_min = 2, 4182 .devs_increment = 1, 4183 .ncopies = 2, 4184 }, 4185 [BTRFS_RAID_RAID6] = { 4186 .sub_stripes = 1, 4187 .dev_stripes = 1, 4188 .devs_max = 0, 4189 .devs_min = 3, 4190 .devs_increment = 1, 4191 .ncopies = 3, 4192 }, 4193 }; 4194 4195 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4196 { 4197 /* TODO allow them to set a preferred stripe size */ 4198 return 64 * 1024; 4199 } 4200 4201 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4202 { 4203 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))) 4204 return; 4205 4206 btrfs_set_fs_incompat(info, RAID56); 4207 } 4208 4209 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4210 - sizeof(struct btrfs_item) \ 4211 - sizeof(struct btrfs_chunk)) \ 4212 / sizeof(struct btrfs_stripe) + 1) 4213 4214 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4215 - 2 * sizeof(struct btrfs_disk_key) \ 4216 - 2 * sizeof(struct btrfs_chunk)) \ 4217 / sizeof(struct btrfs_stripe) + 1) 4218 4219 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4220 struct btrfs_root *extent_root, u64 start, 4221 u64 type) 4222 { 4223 struct btrfs_fs_info *info = extent_root->fs_info; 4224 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4225 struct list_head *cur; 4226 struct map_lookup *map = NULL; 4227 struct extent_map_tree *em_tree; 4228 struct extent_map *em; 4229 struct btrfs_device_info *devices_info = NULL; 4230 u64 total_avail; 4231 int num_stripes; /* total number of stripes to allocate */ 4232 int data_stripes; /* number of stripes that count for 4233 block group size */ 4234 int sub_stripes; /* sub_stripes info for map */ 4235 int dev_stripes; /* stripes per dev */ 4236 int devs_max; /* max devs to use */ 4237 int devs_min; /* min devs needed */ 4238 int devs_increment; /* ndevs has to be a multiple of this */ 4239 int ncopies; /* how many copies to data has */ 4240 int ret; 4241 u64 max_stripe_size; 4242 u64 max_chunk_size; 4243 u64 stripe_size; 4244 u64 num_bytes; 4245 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4246 int ndevs; 4247 int i; 4248 int j; 4249 int index; 4250 4251 BUG_ON(!alloc_profile_is_valid(type, 0)); 4252 4253 if (list_empty(&fs_devices->alloc_list)) 4254 return -ENOSPC; 4255 4256 index = __get_raid_index(type); 4257 4258 sub_stripes = btrfs_raid_array[index].sub_stripes; 4259 dev_stripes = btrfs_raid_array[index].dev_stripes; 4260 devs_max = btrfs_raid_array[index].devs_max; 4261 devs_min = btrfs_raid_array[index].devs_min; 4262 devs_increment = btrfs_raid_array[index].devs_increment; 4263 ncopies = btrfs_raid_array[index].ncopies; 4264 4265 if (type & BTRFS_BLOCK_GROUP_DATA) { 4266 max_stripe_size = 1024 * 1024 * 1024; 4267 max_chunk_size = 10 * max_stripe_size; 4268 if (!devs_max) 4269 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4270 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4271 /* for larger filesystems, use larger metadata chunks */ 4272 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4273 max_stripe_size = 1024 * 1024 * 1024; 4274 else 4275 max_stripe_size = 256 * 1024 * 1024; 4276 max_chunk_size = max_stripe_size; 4277 if (!devs_max) 4278 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4279 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4280 max_stripe_size = 32 * 1024 * 1024; 4281 max_chunk_size = 2 * max_stripe_size; 4282 if (!devs_max) 4283 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4284 } else { 4285 btrfs_err(info, "invalid chunk type 0x%llx requested", 4286 type); 4287 BUG_ON(1); 4288 } 4289 4290 /* we don't want a chunk larger than 10% of writeable space */ 4291 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4292 max_chunk_size); 4293 4294 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 4295 GFP_NOFS); 4296 if (!devices_info) 4297 return -ENOMEM; 4298 4299 cur = fs_devices->alloc_list.next; 4300 4301 /* 4302 * in the first pass through the devices list, we gather information 4303 * about the available holes on each device. 4304 */ 4305 ndevs = 0; 4306 while (cur != &fs_devices->alloc_list) { 4307 struct btrfs_device *device; 4308 u64 max_avail; 4309 u64 dev_offset; 4310 4311 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4312 4313 cur = cur->next; 4314 4315 if (!device->writeable) { 4316 WARN(1, KERN_ERR 4317 "BTRFS: read-only device in alloc_list\n"); 4318 continue; 4319 } 4320 4321 if (!device->in_fs_metadata || 4322 device->is_tgtdev_for_dev_replace) 4323 continue; 4324 4325 if (device->total_bytes > device->bytes_used) 4326 total_avail = device->total_bytes - device->bytes_used; 4327 else 4328 total_avail = 0; 4329 4330 /* If there is no space on this device, skip it. */ 4331 if (total_avail == 0) 4332 continue; 4333 4334 ret = find_free_dev_extent(trans, device, 4335 max_stripe_size * dev_stripes, 4336 &dev_offset, &max_avail); 4337 if (ret && ret != -ENOSPC) 4338 goto error; 4339 4340 if (ret == 0) 4341 max_avail = max_stripe_size * dev_stripes; 4342 4343 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4344 continue; 4345 4346 if (ndevs == fs_devices->rw_devices) { 4347 WARN(1, "%s: found more than %llu devices\n", 4348 __func__, fs_devices->rw_devices); 4349 break; 4350 } 4351 devices_info[ndevs].dev_offset = dev_offset; 4352 devices_info[ndevs].max_avail = max_avail; 4353 devices_info[ndevs].total_avail = total_avail; 4354 devices_info[ndevs].dev = device; 4355 ++ndevs; 4356 } 4357 4358 /* 4359 * now sort the devices by hole size / available space 4360 */ 4361 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4362 btrfs_cmp_device_info, NULL); 4363 4364 /* round down to number of usable stripes */ 4365 ndevs -= ndevs % devs_increment; 4366 4367 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4368 ret = -ENOSPC; 4369 goto error; 4370 } 4371 4372 if (devs_max && ndevs > devs_max) 4373 ndevs = devs_max; 4374 /* 4375 * the primary goal is to maximize the number of stripes, so use as many 4376 * devices as possible, even if the stripes are not maximum sized. 4377 */ 4378 stripe_size = devices_info[ndevs-1].max_avail; 4379 num_stripes = ndevs * dev_stripes; 4380 4381 /* 4382 * this will have to be fixed for RAID1 and RAID10 over 4383 * more drives 4384 */ 4385 data_stripes = num_stripes / ncopies; 4386 4387 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4388 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4389 btrfs_super_stripesize(info->super_copy)); 4390 data_stripes = num_stripes - 1; 4391 } 4392 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4393 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4394 btrfs_super_stripesize(info->super_copy)); 4395 data_stripes = num_stripes - 2; 4396 } 4397 4398 /* 4399 * Use the number of data stripes to figure out how big this chunk 4400 * is really going to be in terms of logical address space, 4401 * and compare that answer with the max chunk size 4402 */ 4403 if (stripe_size * data_stripes > max_chunk_size) { 4404 u64 mask = (1ULL << 24) - 1; 4405 stripe_size = max_chunk_size; 4406 do_div(stripe_size, data_stripes); 4407 4408 /* bump the answer up to a 16MB boundary */ 4409 stripe_size = (stripe_size + mask) & ~mask; 4410 4411 /* but don't go higher than the limits we found 4412 * while searching for free extents 4413 */ 4414 if (stripe_size > devices_info[ndevs-1].max_avail) 4415 stripe_size = devices_info[ndevs-1].max_avail; 4416 } 4417 4418 do_div(stripe_size, dev_stripes); 4419 4420 /* align to BTRFS_STRIPE_LEN */ 4421 do_div(stripe_size, raid_stripe_len); 4422 stripe_size *= raid_stripe_len; 4423 4424 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4425 if (!map) { 4426 ret = -ENOMEM; 4427 goto error; 4428 } 4429 map->num_stripes = num_stripes; 4430 4431 for (i = 0; i < ndevs; ++i) { 4432 for (j = 0; j < dev_stripes; ++j) { 4433 int s = i * dev_stripes + j; 4434 map->stripes[s].dev = devices_info[i].dev; 4435 map->stripes[s].physical = devices_info[i].dev_offset + 4436 j * stripe_size; 4437 } 4438 } 4439 map->sector_size = extent_root->sectorsize; 4440 map->stripe_len = raid_stripe_len; 4441 map->io_align = raid_stripe_len; 4442 map->io_width = raid_stripe_len; 4443 map->type = type; 4444 map->sub_stripes = sub_stripes; 4445 4446 num_bytes = stripe_size * data_stripes; 4447 4448 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4449 4450 em = alloc_extent_map(); 4451 if (!em) { 4452 kfree(map); 4453 ret = -ENOMEM; 4454 goto error; 4455 } 4456 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4457 em->bdev = (struct block_device *)map; 4458 em->start = start; 4459 em->len = num_bytes; 4460 em->block_start = 0; 4461 em->block_len = em->len; 4462 em->orig_block_len = stripe_size; 4463 4464 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4465 write_lock(&em_tree->lock); 4466 ret = add_extent_mapping(em_tree, em, 0); 4467 if (!ret) { 4468 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4469 atomic_inc(&em->refs); 4470 } 4471 write_unlock(&em_tree->lock); 4472 if (ret) { 4473 free_extent_map(em); 4474 goto error; 4475 } 4476 4477 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4478 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4479 start, num_bytes); 4480 if (ret) 4481 goto error_del_extent; 4482 4483 for (i = 0; i < map->num_stripes; i++) { 4484 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4485 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4486 } 4487 4488 spin_lock(&extent_root->fs_info->free_chunk_lock); 4489 extent_root->fs_info->free_chunk_space -= (stripe_size * 4490 map->num_stripes); 4491 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4492 4493 free_extent_map(em); 4494 check_raid56_incompat_flag(extent_root->fs_info, type); 4495 4496 kfree(devices_info); 4497 return 0; 4498 4499 error_del_extent: 4500 write_lock(&em_tree->lock); 4501 remove_extent_mapping(em_tree, em); 4502 write_unlock(&em_tree->lock); 4503 4504 /* One for our allocation */ 4505 free_extent_map(em); 4506 /* One for the tree reference */ 4507 free_extent_map(em); 4508 error: 4509 kfree(devices_info); 4510 return ret; 4511 } 4512 4513 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4514 struct btrfs_root *extent_root, 4515 u64 chunk_offset, u64 chunk_size) 4516 { 4517 struct btrfs_key key; 4518 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4519 struct btrfs_device *device; 4520 struct btrfs_chunk *chunk; 4521 struct btrfs_stripe *stripe; 4522 struct extent_map_tree *em_tree; 4523 struct extent_map *em; 4524 struct map_lookup *map; 4525 size_t item_size; 4526 u64 dev_offset; 4527 u64 stripe_size; 4528 int i = 0; 4529 int ret; 4530 4531 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4532 read_lock(&em_tree->lock); 4533 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4534 read_unlock(&em_tree->lock); 4535 4536 if (!em) { 4537 btrfs_crit(extent_root->fs_info, "unable to find logical " 4538 "%Lu len %Lu", chunk_offset, chunk_size); 4539 return -EINVAL; 4540 } 4541 4542 if (em->start != chunk_offset || em->len != chunk_size) { 4543 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4544 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4545 chunk_size, em->start, em->len); 4546 free_extent_map(em); 4547 return -EINVAL; 4548 } 4549 4550 map = (struct map_lookup *)em->bdev; 4551 item_size = btrfs_chunk_item_size(map->num_stripes); 4552 stripe_size = em->orig_block_len; 4553 4554 chunk = kzalloc(item_size, GFP_NOFS); 4555 if (!chunk) { 4556 ret = -ENOMEM; 4557 goto out; 4558 } 4559 4560 for (i = 0; i < map->num_stripes; i++) { 4561 device = map->stripes[i].dev; 4562 dev_offset = map->stripes[i].physical; 4563 4564 ret = btrfs_update_device(trans, device); 4565 if (ret) 4566 goto out; 4567 ret = btrfs_alloc_dev_extent(trans, device, 4568 chunk_root->root_key.objectid, 4569 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4570 chunk_offset, dev_offset, 4571 stripe_size); 4572 if (ret) 4573 goto out; 4574 } 4575 4576 stripe = &chunk->stripe; 4577 for (i = 0; i < map->num_stripes; i++) { 4578 device = map->stripes[i].dev; 4579 dev_offset = map->stripes[i].physical; 4580 4581 btrfs_set_stack_stripe_devid(stripe, device->devid); 4582 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4583 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4584 stripe++; 4585 } 4586 4587 btrfs_set_stack_chunk_length(chunk, chunk_size); 4588 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4589 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4590 btrfs_set_stack_chunk_type(chunk, map->type); 4591 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4592 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4593 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4594 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4595 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4596 4597 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4598 key.type = BTRFS_CHUNK_ITEM_KEY; 4599 key.offset = chunk_offset; 4600 4601 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4602 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4603 /* 4604 * TODO: Cleanup of inserted chunk root in case of 4605 * failure. 4606 */ 4607 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4608 item_size); 4609 } 4610 4611 out: 4612 kfree(chunk); 4613 free_extent_map(em); 4614 return ret; 4615 } 4616 4617 /* 4618 * Chunk allocation falls into two parts. The first part does works 4619 * that make the new allocated chunk useable, but not do any operation 4620 * that modifies the chunk tree. The second part does the works that 4621 * require modifying the chunk tree. This division is important for the 4622 * bootstrap process of adding storage to a seed btrfs. 4623 */ 4624 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4625 struct btrfs_root *extent_root, u64 type) 4626 { 4627 u64 chunk_offset; 4628 4629 chunk_offset = find_next_chunk(extent_root->fs_info); 4630 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4631 } 4632 4633 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4634 struct btrfs_root *root, 4635 struct btrfs_device *device) 4636 { 4637 u64 chunk_offset; 4638 u64 sys_chunk_offset; 4639 u64 alloc_profile; 4640 struct btrfs_fs_info *fs_info = root->fs_info; 4641 struct btrfs_root *extent_root = fs_info->extent_root; 4642 int ret; 4643 4644 chunk_offset = find_next_chunk(fs_info); 4645 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4646 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4647 alloc_profile); 4648 if (ret) 4649 return ret; 4650 4651 sys_chunk_offset = find_next_chunk(root->fs_info); 4652 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4653 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4654 alloc_profile); 4655 return ret; 4656 } 4657 4658 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4659 { 4660 int max_errors; 4661 4662 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4663 BTRFS_BLOCK_GROUP_RAID10 | 4664 BTRFS_BLOCK_GROUP_RAID5 | 4665 BTRFS_BLOCK_GROUP_DUP)) { 4666 max_errors = 1; 4667 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4668 max_errors = 2; 4669 } else { 4670 max_errors = 0; 4671 } 4672 4673 return max_errors; 4674 } 4675 4676 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4677 { 4678 struct extent_map *em; 4679 struct map_lookup *map; 4680 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4681 int readonly = 0; 4682 int miss_ndevs = 0; 4683 int i; 4684 4685 read_lock(&map_tree->map_tree.lock); 4686 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4687 read_unlock(&map_tree->map_tree.lock); 4688 if (!em) 4689 return 1; 4690 4691 map = (struct map_lookup *)em->bdev; 4692 for (i = 0; i < map->num_stripes; i++) { 4693 if (map->stripes[i].dev->missing) { 4694 miss_ndevs++; 4695 continue; 4696 } 4697 4698 if (!map->stripes[i].dev->writeable) { 4699 readonly = 1; 4700 goto end; 4701 } 4702 } 4703 4704 /* 4705 * If the number of missing devices is larger than max errors, 4706 * we can not write the data into that chunk successfully, so 4707 * set it readonly. 4708 */ 4709 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4710 readonly = 1; 4711 end: 4712 free_extent_map(em); 4713 return readonly; 4714 } 4715 4716 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4717 { 4718 extent_map_tree_init(&tree->map_tree); 4719 } 4720 4721 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4722 { 4723 struct extent_map *em; 4724 4725 while (1) { 4726 write_lock(&tree->map_tree.lock); 4727 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4728 if (em) 4729 remove_extent_mapping(&tree->map_tree, em); 4730 write_unlock(&tree->map_tree.lock); 4731 if (!em) 4732 break; 4733 /* once for us */ 4734 free_extent_map(em); 4735 /* once for the tree */ 4736 free_extent_map(em); 4737 } 4738 } 4739 4740 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4741 { 4742 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4743 struct extent_map *em; 4744 struct map_lookup *map; 4745 struct extent_map_tree *em_tree = &map_tree->map_tree; 4746 int ret; 4747 4748 read_lock(&em_tree->lock); 4749 em = lookup_extent_mapping(em_tree, logical, len); 4750 read_unlock(&em_tree->lock); 4751 4752 /* 4753 * We could return errors for these cases, but that could get ugly and 4754 * we'd probably do the same thing which is just not do anything else 4755 * and exit, so return 1 so the callers don't try to use other copies. 4756 */ 4757 if (!em) { 4758 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 4759 logical+len); 4760 return 1; 4761 } 4762 4763 if (em->start > logical || em->start + em->len < logical) { 4764 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4765 "%Lu-%Lu", logical, logical+len, em->start, 4766 em->start + em->len); 4767 free_extent_map(em); 4768 return 1; 4769 } 4770 4771 map = (struct map_lookup *)em->bdev; 4772 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4773 ret = map->num_stripes; 4774 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4775 ret = map->sub_stripes; 4776 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4777 ret = 2; 4778 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4779 ret = 3; 4780 else 4781 ret = 1; 4782 free_extent_map(em); 4783 4784 btrfs_dev_replace_lock(&fs_info->dev_replace); 4785 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4786 ret++; 4787 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4788 4789 return ret; 4790 } 4791 4792 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4793 struct btrfs_mapping_tree *map_tree, 4794 u64 logical) 4795 { 4796 struct extent_map *em; 4797 struct map_lookup *map; 4798 struct extent_map_tree *em_tree = &map_tree->map_tree; 4799 unsigned long len = root->sectorsize; 4800 4801 read_lock(&em_tree->lock); 4802 em = lookup_extent_mapping(em_tree, logical, len); 4803 read_unlock(&em_tree->lock); 4804 BUG_ON(!em); 4805 4806 BUG_ON(em->start > logical || em->start + em->len < logical); 4807 map = (struct map_lookup *)em->bdev; 4808 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4809 BTRFS_BLOCK_GROUP_RAID6)) { 4810 len = map->stripe_len * nr_data_stripes(map); 4811 } 4812 free_extent_map(em); 4813 return len; 4814 } 4815 4816 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4817 u64 logical, u64 len, int mirror_num) 4818 { 4819 struct extent_map *em; 4820 struct map_lookup *map; 4821 struct extent_map_tree *em_tree = &map_tree->map_tree; 4822 int ret = 0; 4823 4824 read_lock(&em_tree->lock); 4825 em = lookup_extent_mapping(em_tree, logical, len); 4826 read_unlock(&em_tree->lock); 4827 BUG_ON(!em); 4828 4829 BUG_ON(em->start > logical || em->start + em->len < logical); 4830 map = (struct map_lookup *)em->bdev; 4831 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4832 BTRFS_BLOCK_GROUP_RAID6)) 4833 ret = 1; 4834 free_extent_map(em); 4835 return ret; 4836 } 4837 4838 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4839 struct map_lookup *map, int first, int num, 4840 int optimal, int dev_replace_is_ongoing) 4841 { 4842 int i; 4843 int tolerance; 4844 struct btrfs_device *srcdev; 4845 4846 if (dev_replace_is_ongoing && 4847 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4848 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4849 srcdev = fs_info->dev_replace.srcdev; 4850 else 4851 srcdev = NULL; 4852 4853 /* 4854 * try to avoid the drive that is the source drive for a 4855 * dev-replace procedure, only choose it if no other non-missing 4856 * mirror is available 4857 */ 4858 for (tolerance = 0; tolerance < 2; tolerance++) { 4859 if (map->stripes[optimal].dev->bdev && 4860 (tolerance || map->stripes[optimal].dev != srcdev)) 4861 return optimal; 4862 for (i = first; i < first + num; i++) { 4863 if (map->stripes[i].dev->bdev && 4864 (tolerance || map->stripes[i].dev != srcdev)) 4865 return i; 4866 } 4867 } 4868 4869 /* we couldn't find one that doesn't fail. Just return something 4870 * and the io error handling code will clean up eventually 4871 */ 4872 return optimal; 4873 } 4874 4875 static inline int parity_smaller(u64 a, u64 b) 4876 { 4877 return a > b; 4878 } 4879 4880 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4881 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map) 4882 { 4883 struct btrfs_bio_stripe s; 4884 int i; 4885 u64 l; 4886 int again = 1; 4887 4888 while (again) { 4889 again = 0; 4890 for (i = 0; i < bbio->num_stripes - 1; i++) { 4891 if (parity_smaller(raid_map[i], raid_map[i+1])) { 4892 s = bbio->stripes[i]; 4893 l = raid_map[i]; 4894 bbio->stripes[i] = bbio->stripes[i+1]; 4895 raid_map[i] = raid_map[i+1]; 4896 bbio->stripes[i+1] = s; 4897 raid_map[i+1] = l; 4898 again = 1; 4899 } 4900 } 4901 } 4902 } 4903 4904 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 4905 u64 logical, u64 *length, 4906 struct btrfs_bio **bbio_ret, 4907 int mirror_num, u64 **raid_map_ret) 4908 { 4909 struct extent_map *em; 4910 struct map_lookup *map; 4911 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4912 struct extent_map_tree *em_tree = &map_tree->map_tree; 4913 u64 offset; 4914 u64 stripe_offset; 4915 u64 stripe_end_offset; 4916 u64 stripe_nr; 4917 u64 stripe_nr_orig; 4918 u64 stripe_nr_end; 4919 u64 stripe_len; 4920 u64 *raid_map = NULL; 4921 int stripe_index; 4922 int i; 4923 int ret = 0; 4924 int num_stripes; 4925 int max_errors = 0; 4926 struct btrfs_bio *bbio = NULL; 4927 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 4928 int dev_replace_is_ongoing = 0; 4929 int num_alloc_stripes; 4930 int patch_the_first_stripe_for_dev_replace = 0; 4931 u64 physical_to_patch_in_first_stripe = 0; 4932 u64 raid56_full_stripe_start = (u64)-1; 4933 4934 read_lock(&em_tree->lock); 4935 em = lookup_extent_mapping(em_tree, logical, *length); 4936 read_unlock(&em_tree->lock); 4937 4938 if (!em) { 4939 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 4940 logical, *length); 4941 return -EINVAL; 4942 } 4943 4944 if (em->start > logical || em->start + em->len < logical) { 4945 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 4946 "found %Lu-%Lu", logical, em->start, 4947 em->start + em->len); 4948 free_extent_map(em); 4949 return -EINVAL; 4950 } 4951 4952 map = (struct map_lookup *)em->bdev; 4953 offset = logical - em->start; 4954 4955 stripe_len = map->stripe_len; 4956 stripe_nr = offset; 4957 /* 4958 * stripe_nr counts the total number of stripes we have to stride 4959 * to get to this block 4960 */ 4961 do_div(stripe_nr, stripe_len); 4962 4963 stripe_offset = stripe_nr * stripe_len; 4964 BUG_ON(offset < stripe_offset); 4965 4966 /* stripe_offset is the offset of this block in its stripe*/ 4967 stripe_offset = offset - stripe_offset; 4968 4969 /* if we're here for raid56, we need to know the stripe aligned start */ 4970 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4971 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 4972 raid56_full_stripe_start = offset; 4973 4974 /* allow a write of a full stripe, but make sure we don't 4975 * allow straddling of stripes 4976 */ 4977 do_div(raid56_full_stripe_start, full_stripe_len); 4978 raid56_full_stripe_start *= full_stripe_len; 4979 } 4980 4981 if (rw & REQ_DISCARD) { 4982 /* we don't discard raid56 yet */ 4983 if (map->type & 4984 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4985 ret = -EOPNOTSUPP; 4986 goto out; 4987 } 4988 *length = min_t(u64, em->len - offset, *length); 4989 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 4990 u64 max_len; 4991 /* For writes to RAID[56], allow a full stripeset across all disks. 4992 For other RAID types and for RAID[56] reads, just allow a single 4993 stripe (on a single disk). */ 4994 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && 4995 (rw & REQ_WRITE)) { 4996 max_len = stripe_len * nr_data_stripes(map) - 4997 (offset - raid56_full_stripe_start); 4998 } else { 4999 /* we limit the length of each bio to what fits in a stripe */ 5000 max_len = stripe_len - stripe_offset; 5001 } 5002 *length = min_t(u64, em->len - offset, max_len); 5003 } else { 5004 *length = em->len - offset; 5005 } 5006 5007 /* This is for when we're called from btrfs_merge_bio_hook() and all 5008 it cares about is the length */ 5009 if (!bbio_ret) 5010 goto out; 5011 5012 btrfs_dev_replace_lock(dev_replace); 5013 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5014 if (!dev_replace_is_ongoing) 5015 btrfs_dev_replace_unlock(dev_replace); 5016 5017 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5018 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5019 dev_replace->tgtdev != NULL) { 5020 /* 5021 * in dev-replace case, for repair case (that's the only 5022 * case where the mirror is selected explicitly when 5023 * calling btrfs_map_block), blocks left of the left cursor 5024 * can also be read from the target drive. 5025 * For REQ_GET_READ_MIRRORS, the target drive is added as 5026 * the last one to the array of stripes. For READ, it also 5027 * needs to be supported using the same mirror number. 5028 * If the requested block is not left of the left cursor, 5029 * EIO is returned. This can happen because btrfs_num_copies() 5030 * returns one more in the dev-replace case. 5031 */ 5032 u64 tmp_length = *length; 5033 struct btrfs_bio *tmp_bbio = NULL; 5034 int tmp_num_stripes; 5035 u64 srcdev_devid = dev_replace->srcdev->devid; 5036 int index_srcdev = 0; 5037 int found = 0; 5038 u64 physical_of_found = 0; 5039 5040 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5041 logical, &tmp_length, &tmp_bbio, 0, NULL); 5042 if (ret) { 5043 WARN_ON(tmp_bbio != NULL); 5044 goto out; 5045 } 5046 5047 tmp_num_stripes = tmp_bbio->num_stripes; 5048 if (mirror_num > tmp_num_stripes) { 5049 /* 5050 * REQ_GET_READ_MIRRORS does not contain this 5051 * mirror, that means that the requested area 5052 * is not left of the left cursor 5053 */ 5054 ret = -EIO; 5055 kfree(tmp_bbio); 5056 goto out; 5057 } 5058 5059 /* 5060 * process the rest of the function using the mirror_num 5061 * of the source drive. Therefore look it up first. 5062 * At the end, patch the device pointer to the one of the 5063 * target drive. 5064 */ 5065 for (i = 0; i < tmp_num_stripes; i++) { 5066 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 5067 /* 5068 * In case of DUP, in order to keep it 5069 * simple, only add the mirror with the 5070 * lowest physical address 5071 */ 5072 if (found && 5073 physical_of_found <= 5074 tmp_bbio->stripes[i].physical) 5075 continue; 5076 index_srcdev = i; 5077 found = 1; 5078 physical_of_found = 5079 tmp_bbio->stripes[i].physical; 5080 } 5081 } 5082 5083 if (found) { 5084 mirror_num = index_srcdev + 1; 5085 patch_the_first_stripe_for_dev_replace = 1; 5086 physical_to_patch_in_first_stripe = physical_of_found; 5087 } else { 5088 WARN_ON(1); 5089 ret = -EIO; 5090 kfree(tmp_bbio); 5091 goto out; 5092 } 5093 5094 kfree(tmp_bbio); 5095 } else if (mirror_num > map->num_stripes) { 5096 mirror_num = 0; 5097 } 5098 5099 num_stripes = 1; 5100 stripe_index = 0; 5101 stripe_nr_orig = stripe_nr; 5102 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5103 do_div(stripe_nr_end, map->stripe_len); 5104 stripe_end_offset = stripe_nr_end * map->stripe_len - 5105 (offset + *length); 5106 5107 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5108 if (rw & REQ_DISCARD) 5109 num_stripes = min_t(u64, map->num_stripes, 5110 stripe_nr_end - stripe_nr_orig); 5111 stripe_index = do_div(stripe_nr, map->num_stripes); 5112 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5113 mirror_num = 1; 5114 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5115 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5116 num_stripes = map->num_stripes; 5117 else if (mirror_num) 5118 stripe_index = mirror_num - 1; 5119 else { 5120 stripe_index = find_live_mirror(fs_info, map, 0, 5121 map->num_stripes, 5122 current->pid % map->num_stripes, 5123 dev_replace_is_ongoing); 5124 mirror_num = stripe_index + 1; 5125 } 5126 5127 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5128 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5129 num_stripes = map->num_stripes; 5130 } else if (mirror_num) { 5131 stripe_index = mirror_num - 1; 5132 } else { 5133 mirror_num = 1; 5134 } 5135 5136 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5137 int factor = map->num_stripes / map->sub_stripes; 5138 5139 stripe_index = do_div(stripe_nr, factor); 5140 stripe_index *= map->sub_stripes; 5141 5142 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5143 num_stripes = map->sub_stripes; 5144 else if (rw & REQ_DISCARD) 5145 num_stripes = min_t(u64, map->sub_stripes * 5146 (stripe_nr_end - stripe_nr_orig), 5147 map->num_stripes); 5148 else if (mirror_num) 5149 stripe_index += mirror_num - 1; 5150 else { 5151 int old_stripe_index = stripe_index; 5152 stripe_index = find_live_mirror(fs_info, map, 5153 stripe_index, 5154 map->sub_stripes, stripe_index + 5155 current->pid % map->sub_stripes, 5156 dev_replace_is_ongoing); 5157 mirror_num = stripe_index - old_stripe_index + 1; 5158 } 5159 5160 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 5161 BTRFS_BLOCK_GROUP_RAID6)) { 5162 u64 tmp; 5163 5164 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1) 5165 && raid_map_ret) { 5166 int i, rot; 5167 5168 /* push stripe_nr back to the start of the full stripe */ 5169 stripe_nr = raid56_full_stripe_start; 5170 do_div(stripe_nr, stripe_len); 5171 5172 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 5173 5174 /* RAID[56] write or recovery. Return all stripes */ 5175 num_stripes = map->num_stripes; 5176 max_errors = nr_parity_stripes(map); 5177 5178 raid_map = kmalloc_array(num_stripes, sizeof(u64), 5179 GFP_NOFS); 5180 if (!raid_map) { 5181 ret = -ENOMEM; 5182 goto out; 5183 } 5184 5185 /* Work out the disk rotation on this stripe-set */ 5186 tmp = stripe_nr; 5187 rot = do_div(tmp, num_stripes); 5188 5189 /* Fill in the logical address of each stripe */ 5190 tmp = stripe_nr * nr_data_stripes(map); 5191 for (i = 0; i < nr_data_stripes(map); i++) 5192 raid_map[(i+rot) % num_stripes] = 5193 em->start + (tmp + i) * map->stripe_len; 5194 5195 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5196 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5197 raid_map[(i+rot+1) % num_stripes] = 5198 RAID6_Q_STRIPE; 5199 5200 *length = map->stripe_len; 5201 stripe_index = 0; 5202 stripe_offset = 0; 5203 } else { 5204 /* 5205 * Mirror #0 or #1 means the original data block. 5206 * Mirror #2 is RAID5 parity block. 5207 * Mirror #3 is RAID6 Q block. 5208 */ 5209 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 5210 if (mirror_num > 1) 5211 stripe_index = nr_data_stripes(map) + 5212 mirror_num - 2; 5213 5214 /* We distribute the parity blocks across stripes */ 5215 tmp = stripe_nr + stripe_index; 5216 stripe_index = do_div(tmp, map->num_stripes); 5217 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5218 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5219 mirror_num = 1; 5220 } 5221 } else { 5222 /* 5223 * after this do_div call, stripe_nr is the number of stripes 5224 * on this device we have to walk to find the data, and 5225 * stripe_index is the number of our device in the stripe array 5226 */ 5227 stripe_index = do_div(stripe_nr, map->num_stripes); 5228 mirror_num = stripe_index + 1; 5229 } 5230 BUG_ON(stripe_index >= map->num_stripes); 5231 5232 num_alloc_stripes = num_stripes; 5233 if (dev_replace_is_ongoing) { 5234 if (rw & (REQ_WRITE | REQ_DISCARD)) 5235 num_alloc_stripes <<= 1; 5236 if (rw & REQ_GET_READ_MIRRORS) 5237 num_alloc_stripes++; 5238 } 5239 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS); 5240 if (!bbio) { 5241 kfree(raid_map); 5242 ret = -ENOMEM; 5243 goto out; 5244 } 5245 atomic_set(&bbio->error, 0); 5246 5247 if (rw & REQ_DISCARD) { 5248 int factor = 0; 5249 int sub_stripes = 0; 5250 u64 stripes_per_dev = 0; 5251 u32 remaining_stripes = 0; 5252 u32 last_stripe = 0; 5253 5254 if (map->type & 5255 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5256 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5257 sub_stripes = 1; 5258 else 5259 sub_stripes = map->sub_stripes; 5260 5261 factor = map->num_stripes / sub_stripes; 5262 stripes_per_dev = div_u64_rem(stripe_nr_end - 5263 stripe_nr_orig, 5264 factor, 5265 &remaining_stripes); 5266 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5267 last_stripe *= sub_stripes; 5268 } 5269 5270 for (i = 0; i < num_stripes; i++) { 5271 bbio->stripes[i].physical = 5272 map->stripes[stripe_index].physical + 5273 stripe_offset + stripe_nr * map->stripe_len; 5274 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5275 5276 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5277 BTRFS_BLOCK_GROUP_RAID10)) { 5278 bbio->stripes[i].length = stripes_per_dev * 5279 map->stripe_len; 5280 5281 if (i / sub_stripes < remaining_stripes) 5282 bbio->stripes[i].length += 5283 map->stripe_len; 5284 5285 /* 5286 * Special for the first stripe and 5287 * the last stripe: 5288 * 5289 * |-------|...|-------| 5290 * |----------| 5291 * off end_off 5292 */ 5293 if (i < sub_stripes) 5294 bbio->stripes[i].length -= 5295 stripe_offset; 5296 5297 if (stripe_index >= last_stripe && 5298 stripe_index <= (last_stripe + 5299 sub_stripes - 1)) 5300 bbio->stripes[i].length -= 5301 stripe_end_offset; 5302 5303 if (i == sub_stripes - 1) 5304 stripe_offset = 0; 5305 } else 5306 bbio->stripes[i].length = *length; 5307 5308 stripe_index++; 5309 if (stripe_index == map->num_stripes) { 5310 /* This could only happen for RAID0/10 */ 5311 stripe_index = 0; 5312 stripe_nr++; 5313 } 5314 } 5315 } else { 5316 for (i = 0; i < num_stripes; i++) { 5317 bbio->stripes[i].physical = 5318 map->stripes[stripe_index].physical + 5319 stripe_offset + 5320 stripe_nr * map->stripe_len; 5321 bbio->stripes[i].dev = 5322 map->stripes[stripe_index].dev; 5323 stripe_index++; 5324 } 5325 } 5326 5327 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5328 max_errors = btrfs_chunk_max_errors(map); 5329 5330 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5331 dev_replace->tgtdev != NULL) { 5332 int index_where_to_add; 5333 u64 srcdev_devid = dev_replace->srcdev->devid; 5334 5335 /* 5336 * duplicate the write operations while the dev replace 5337 * procedure is running. Since the copying of the old disk 5338 * to the new disk takes place at run time while the 5339 * filesystem is mounted writable, the regular write 5340 * operations to the old disk have to be duplicated to go 5341 * to the new disk as well. 5342 * Note that device->missing is handled by the caller, and 5343 * that the write to the old disk is already set up in the 5344 * stripes array. 5345 */ 5346 index_where_to_add = num_stripes; 5347 for (i = 0; i < num_stripes; i++) { 5348 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5349 /* write to new disk, too */ 5350 struct btrfs_bio_stripe *new = 5351 bbio->stripes + index_where_to_add; 5352 struct btrfs_bio_stripe *old = 5353 bbio->stripes + i; 5354 5355 new->physical = old->physical; 5356 new->length = old->length; 5357 new->dev = dev_replace->tgtdev; 5358 index_where_to_add++; 5359 max_errors++; 5360 } 5361 } 5362 num_stripes = index_where_to_add; 5363 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5364 dev_replace->tgtdev != NULL) { 5365 u64 srcdev_devid = dev_replace->srcdev->devid; 5366 int index_srcdev = 0; 5367 int found = 0; 5368 u64 physical_of_found = 0; 5369 5370 /* 5371 * During the dev-replace procedure, the target drive can 5372 * also be used to read data in case it is needed to repair 5373 * a corrupt block elsewhere. This is possible if the 5374 * requested area is left of the left cursor. In this area, 5375 * the target drive is a full copy of the source drive. 5376 */ 5377 for (i = 0; i < num_stripes; i++) { 5378 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5379 /* 5380 * In case of DUP, in order to keep it 5381 * simple, only add the mirror with the 5382 * lowest physical address 5383 */ 5384 if (found && 5385 physical_of_found <= 5386 bbio->stripes[i].physical) 5387 continue; 5388 index_srcdev = i; 5389 found = 1; 5390 physical_of_found = bbio->stripes[i].physical; 5391 } 5392 } 5393 if (found) { 5394 u64 length = map->stripe_len; 5395 5396 if (physical_of_found + length <= 5397 dev_replace->cursor_left) { 5398 struct btrfs_bio_stripe *tgtdev_stripe = 5399 bbio->stripes + num_stripes; 5400 5401 tgtdev_stripe->physical = physical_of_found; 5402 tgtdev_stripe->length = 5403 bbio->stripes[index_srcdev].length; 5404 tgtdev_stripe->dev = dev_replace->tgtdev; 5405 5406 num_stripes++; 5407 } 5408 } 5409 } 5410 5411 *bbio_ret = bbio; 5412 bbio->num_stripes = num_stripes; 5413 bbio->max_errors = max_errors; 5414 bbio->mirror_num = mirror_num; 5415 5416 /* 5417 * this is the case that REQ_READ && dev_replace_is_ongoing && 5418 * mirror_num == num_stripes + 1 && dev_replace target drive is 5419 * available as a mirror 5420 */ 5421 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5422 WARN_ON(num_stripes > 1); 5423 bbio->stripes[0].dev = dev_replace->tgtdev; 5424 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5425 bbio->mirror_num = map->num_stripes + 1; 5426 } 5427 if (raid_map) { 5428 sort_parity_stripes(bbio, raid_map); 5429 *raid_map_ret = raid_map; 5430 } 5431 out: 5432 if (dev_replace_is_ongoing) 5433 btrfs_dev_replace_unlock(dev_replace); 5434 free_extent_map(em); 5435 return ret; 5436 } 5437 5438 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5439 u64 logical, u64 *length, 5440 struct btrfs_bio **bbio_ret, int mirror_num) 5441 { 5442 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5443 mirror_num, NULL); 5444 } 5445 5446 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5447 u64 chunk_start, u64 physical, u64 devid, 5448 u64 **logical, int *naddrs, int *stripe_len) 5449 { 5450 struct extent_map_tree *em_tree = &map_tree->map_tree; 5451 struct extent_map *em; 5452 struct map_lookup *map; 5453 u64 *buf; 5454 u64 bytenr; 5455 u64 length; 5456 u64 stripe_nr; 5457 u64 rmap_len; 5458 int i, j, nr = 0; 5459 5460 read_lock(&em_tree->lock); 5461 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5462 read_unlock(&em_tree->lock); 5463 5464 if (!em) { 5465 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5466 chunk_start); 5467 return -EIO; 5468 } 5469 5470 if (em->start != chunk_start) { 5471 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5472 em->start, chunk_start); 5473 free_extent_map(em); 5474 return -EIO; 5475 } 5476 map = (struct map_lookup *)em->bdev; 5477 5478 length = em->len; 5479 rmap_len = map->stripe_len; 5480 5481 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5482 do_div(length, map->num_stripes / map->sub_stripes); 5483 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5484 do_div(length, map->num_stripes); 5485 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 5486 BTRFS_BLOCK_GROUP_RAID6)) { 5487 do_div(length, nr_data_stripes(map)); 5488 rmap_len = map->stripe_len * nr_data_stripes(map); 5489 } 5490 5491 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 5492 BUG_ON(!buf); /* -ENOMEM */ 5493 5494 for (i = 0; i < map->num_stripes; i++) { 5495 if (devid && map->stripes[i].dev->devid != devid) 5496 continue; 5497 if (map->stripes[i].physical > physical || 5498 map->stripes[i].physical + length <= physical) 5499 continue; 5500 5501 stripe_nr = physical - map->stripes[i].physical; 5502 do_div(stripe_nr, map->stripe_len); 5503 5504 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5505 stripe_nr = stripe_nr * map->num_stripes + i; 5506 do_div(stripe_nr, map->sub_stripes); 5507 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5508 stripe_nr = stripe_nr * map->num_stripes + i; 5509 } /* else if RAID[56], multiply by nr_data_stripes(). 5510 * Alternatively, just use rmap_len below instead of 5511 * map->stripe_len */ 5512 5513 bytenr = chunk_start + stripe_nr * rmap_len; 5514 WARN_ON(nr >= map->num_stripes); 5515 for (j = 0; j < nr; j++) { 5516 if (buf[j] == bytenr) 5517 break; 5518 } 5519 if (j == nr) { 5520 WARN_ON(nr >= map->num_stripes); 5521 buf[nr++] = bytenr; 5522 } 5523 } 5524 5525 *logical = buf; 5526 *naddrs = nr; 5527 *stripe_len = rmap_len; 5528 5529 free_extent_map(em); 5530 return 0; 5531 } 5532 5533 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err) 5534 { 5535 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED)) 5536 bio_endio_nodec(bio, err); 5537 else 5538 bio_endio(bio, err); 5539 kfree(bbio); 5540 } 5541 5542 static void btrfs_end_bio(struct bio *bio, int err) 5543 { 5544 struct btrfs_bio *bbio = bio->bi_private; 5545 struct btrfs_device *dev = bbio->stripes[0].dev; 5546 int is_orig_bio = 0; 5547 5548 if (err) { 5549 atomic_inc(&bbio->error); 5550 if (err == -EIO || err == -EREMOTEIO) { 5551 unsigned int stripe_index = 5552 btrfs_io_bio(bio)->stripe_index; 5553 5554 BUG_ON(stripe_index >= bbio->num_stripes); 5555 dev = bbio->stripes[stripe_index].dev; 5556 if (dev->bdev) { 5557 if (bio->bi_rw & WRITE) 5558 btrfs_dev_stat_inc(dev, 5559 BTRFS_DEV_STAT_WRITE_ERRS); 5560 else 5561 btrfs_dev_stat_inc(dev, 5562 BTRFS_DEV_STAT_READ_ERRS); 5563 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5564 btrfs_dev_stat_inc(dev, 5565 BTRFS_DEV_STAT_FLUSH_ERRS); 5566 btrfs_dev_stat_print_on_error(dev); 5567 } 5568 } 5569 } 5570 5571 if (bio == bbio->orig_bio) 5572 is_orig_bio = 1; 5573 5574 btrfs_bio_counter_dec(bbio->fs_info); 5575 5576 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5577 if (!is_orig_bio) { 5578 bio_put(bio); 5579 bio = bbio->orig_bio; 5580 } 5581 5582 bio->bi_private = bbio->private; 5583 bio->bi_end_io = bbio->end_io; 5584 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5585 /* only send an error to the higher layers if it is 5586 * beyond the tolerance of the btrfs bio 5587 */ 5588 if (atomic_read(&bbio->error) > bbio->max_errors) { 5589 err = -EIO; 5590 } else { 5591 /* 5592 * this bio is actually up to date, we didn't 5593 * go over the max number of errors 5594 */ 5595 set_bit(BIO_UPTODATE, &bio->bi_flags); 5596 err = 0; 5597 } 5598 5599 btrfs_end_bbio(bbio, bio, err); 5600 } else if (!is_orig_bio) { 5601 bio_put(bio); 5602 } 5603 } 5604 5605 /* 5606 * see run_scheduled_bios for a description of why bios are collected for 5607 * async submit. 5608 * 5609 * This will add one bio to the pending list for a device and make sure 5610 * the work struct is scheduled. 5611 */ 5612 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5613 struct btrfs_device *device, 5614 int rw, struct bio *bio) 5615 { 5616 int should_queue = 1; 5617 struct btrfs_pending_bios *pending_bios; 5618 5619 if (device->missing || !device->bdev) { 5620 bio_endio(bio, -EIO); 5621 return; 5622 } 5623 5624 /* don't bother with additional async steps for reads, right now */ 5625 if (!(rw & REQ_WRITE)) { 5626 bio_get(bio); 5627 btrfsic_submit_bio(rw, bio); 5628 bio_put(bio); 5629 return; 5630 } 5631 5632 /* 5633 * nr_async_bios allows us to reliably return congestion to the 5634 * higher layers. Otherwise, the async bio makes it appear we have 5635 * made progress against dirty pages when we've really just put it 5636 * on a queue for later 5637 */ 5638 atomic_inc(&root->fs_info->nr_async_bios); 5639 WARN_ON(bio->bi_next); 5640 bio->bi_next = NULL; 5641 bio->bi_rw |= rw; 5642 5643 spin_lock(&device->io_lock); 5644 if (bio->bi_rw & REQ_SYNC) 5645 pending_bios = &device->pending_sync_bios; 5646 else 5647 pending_bios = &device->pending_bios; 5648 5649 if (pending_bios->tail) 5650 pending_bios->tail->bi_next = bio; 5651 5652 pending_bios->tail = bio; 5653 if (!pending_bios->head) 5654 pending_bios->head = bio; 5655 if (device->running_pending) 5656 should_queue = 0; 5657 5658 spin_unlock(&device->io_lock); 5659 5660 if (should_queue) 5661 btrfs_queue_work(root->fs_info->submit_workers, 5662 &device->work); 5663 } 5664 5665 static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5666 sector_t sector) 5667 { 5668 struct bio_vec *prev; 5669 struct request_queue *q = bdev_get_queue(bdev); 5670 unsigned int max_sectors = queue_max_sectors(q); 5671 struct bvec_merge_data bvm = { 5672 .bi_bdev = bdev, 5673 .bi_sector = sector, 5674 .bi_rw = bio->bi_rw, 5675 }; 5676 5677 if (WARN_ON(bio->bi_vcnt == 0)) 5678 return 1; 5679 5680 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5681 if (bio_sectors(bio) > max_sectors) 5682 return 0; 5683 5684 if (!q->merge_bvec_fn) 5685 return 1; 5686 5687 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len; 5688 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5689 return 0; 5690 return 1; 5691 } 5692 5693 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5694 struct bio *bio, u64 physical, int dev_nr, 5695 int rw, int async) 5696 { 5697 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5698 5699 bio->bi_private = bbio; 5700 btrfs_io_bio(bio)->stripe_index = dev_nr; 5701 bio->bi_end_io = btrfs_end_bio; 5702 bio->bi_iter.bi_sector = physical >> 9; 5703 #ifdef DEBUG 5704 { 5705 struct rcu_string *name; 5706 5707 rcu_read_lock(); 5708 name = rcu_dereference(dev->name); 5709 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5710 "(%s id %llu), size=%u\n", rw, 5711 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 5712 name->str, dev->devid, bio->bi_iter.bi_size); 5713 rcu_read_unlock(); 5714 } 5715 #endif 5716 bio->bi_bdev = dev->bdev; 5717 5718 btrfs_bio_counter_inc_noblocked(root->fs_info); 5719 5720 if (async) 5721 btrfs_schedule_bio(root, dev, rw, bio); 5722 else 5723 btrfsic_submit_bio(rw, bio); 5724 } 5725 5726 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5727 struct bio *first_bio, struct btrfs_device *dev, 5728 int dev_nr, int rw, int async) 5729 { 5730 struct bio_vec *bvec = first_bio->bi_io_vec; 5731 struct bio *bio; 5732 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5733 u64 physical = bbio->stripes[dev_nr].physical; 5734 5735 again: 5736 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5737 if (!bio) 5738 return -ENOMEM; 5739 5740 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5741 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5742 bvec->bv_offset) < bvec->bv_len) { 5743 u64 len = bio->bi_iter.bi_size; 5744 5745 atomic_inc(&bbio->stripes_pending); 5746 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5747 rw, async); 5748 physical += len; 5749 goto again; 5750 } 5751 bvec++; 5752 } 5753 5754 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5755 return 0; 5756 } 5757 5758 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5759 { 5760 atomic_inc(&bbio->error); 5761 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5762 /* Shoud be the original bio. */ 5763 WARN_ON(bio != bbio->orig_bio); 5764 5765 bio->bi_private = bbio->private; 5766 bio->bi_end_io = bbio->end_io; 5767 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5768 bio->bi_iter.bi_sector = logical >> 9; 5769 5770 btrfs_end_bbio(bbio, bio, -EIO); 5771 } 5772 } 5773 5774 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5775 int mirror_num, int async_submit) 5776 { 5777 struct btrfs_device *dev; 5778 struct bio *first_bio = bio; 5779 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 5780 u64 length = 0; 5781 u64 map_length; 5782 u64 *raid_map = NULL; 5783 int ret; 5784 int dev_nr = 0; 5785 int total_devs = 1; 5786 struct btrfs_bio *bbio = NULL; 5787 5788 length = bio->bi_iter.bi_size; 5789 map_length = length; 5790 5791 btrfs_bio_counter_inc_blocked(root->fs_info); 5792 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5793 mirror_num, &raid_map); 5794 if (ret) { 5795 btrfs_bio_counter_dec(root->fs_info); 5796 return ret; 5797 } 5798 5799 total_devs = bbio->num_stripes; 5800 bbio->orig_bio = first_bio; 5801 bbio->private = first_bio->bi_private; 5802 bbio->end_io = first_bio->bi_end_io; 5803 bbio->fs_info = root->fs_info; 5804 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5805 5806 if (raid_map) { 5807 /* In this case, map_length has been set to the length of 5808 a single stripe; not the whole write */ 5809 if (rw & WRITE) { 5810 ret = raid56_parity_write(root, bio, bbio, 5811 raid_map, map_length); 5812 } else { 5813 ret = raid56_parity_recover(root, bio, bbio, 5814 raid_map, map_length, 5815 mirror_num); 5816 } 5817 /* 5818 * FIXME, replace dosen't support raid56 yet, please fix 5819 * it in the future. 5820 */ 5821 btrfs_bio_counter_dec(root->fs_info); 5822 return ret; 5823 } 5824 5825 if (map_length < length) { 5826 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5827 logical, length, map_length); 5828 BUG(); 5829 } 5830 5831 while (dev_nr < total_devs) { 5832 dev = bbio->stripes[dev_nr].dev; 5833 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5834 bbio_error(bbio, first_bio, logical); 5835 dev_nr++; 5836 continue; 5837 } 5838 5839 /* 5840 * Check and see if we're ok with this bio based on it's size 5841 * and offset with the given device. 5842 */ 5843 if (!bio_size_ok(dev->bdev, first_bio, 5844 bbio->stripes[dev_nr].physical >> 9)) { 5845 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 5846 dev_nr, rw, async_submit); 5847 BUG_ON(ret); 5848 dev_nr++; 5849 continue; 5850 } 5851 5852 if (dev_nr < total_devs - 1) { 5853 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5854 BUG_ON(!bio); /* -ENOMEM */ 5855 } else { 5856 bio = first_bio; 5857 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED; 5858 } 5859 5860 submit_stripe_bio(root, bbio, bio, 5861 bbio->stripes[dev_nr].physical, dev_nr, rw, 5862 async_submit); 5863 dev_nr++; 5864 } 5865 btrfs_bio_counter_dec(root->fs_info); 5866 return 0; 5867 } 5868 5869 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5870 u8 *uuid, u8 *fsid) 5871 { 5872 struct btrfs_device *device; 5873 struct btrfs_fs_devices *cur_devices; 5874 5875 cur_devices = fs_info->fs_devices; 5876 while (cur_devices) { 5877 if (!fsid || 5878 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5879 device = __find_device(&cur_devices->devices, 5880 devid, uuid); 5881 if (device) 5882 return device; 5883 } 5884 cur_devices = cur_devices->seed; 5885 } 5886 return NULL; 5887 } 5888 5889 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 5890 struct btrfs_fs_devices *fs_devices, 5891 u64 devid, u8 *dev_uuid) 5892 { 5893 struct btrfs_device *device; 5894 5895 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 5896 if (IS_ERR(device)) 5897 return NULL; 5898 5899 list_add(&device->dev_list, &fs_devices->devices); 5900 device->fs_devices = fs_devices; 5901 fs_devices->num_devices++; 5902 5903 device->missing = 1; 5904 fs_devices->missing_devices++; 5905 5906 return device; 5907 } 5908 5909 /** 5910 * btrfs_alloc_device - allocate struct btrfs_device 5911 * @fs_info: used only for generating a new devid, can be NULL if 5912 * devid is provided (i.e. @devid != NULL). 5913 * @devid: a pointer to devid for this device. If NULL a new devid 5914 * is generated. 5915 * @uuid: a pointer to UUID for this device. If NULL a new UUID 5916 * is generated. 5917 * 5918 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 5919 * on error. Returned struct is not linked onto any lists and can be 5920 * destroyed with kfree() right away. 5921 */ 5922 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 5923 const u64 *devid, 5924 const u8 *uuid) 5925 { 5926 struct btrfs_device *dev; 5927 u64 tmp; 5928 5929 if (WARN_ON(!devid && !fs_info)) 5930 return ERR_PTR(-EINVAL); 5931 5932 dev = __alloc_device(); 5933 if (IS_ERR(dev)) 5934 return dev; 5935 5936 if (devid) 5937 tmp = *devid; 5938 else { 5939 int ret; 5940 5941 ret = find_next_devid(fs_info, &tmp); 5942 if (ret) { 5943 kfree(dev); 5944 return ERR_PTR(ret); 5945 } 5946 } 5947 dev->devid = tmp; 5948 5949 if (uuid) 5950 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 5951 else 5952 generate_random_uuid(dev->uuid); 5953 5954 btrfs_init_work(&dev->work, btrfs_submit_helper, 5955 pending_bios_fn, NULL, NULL); 5956 5957 return dev; 5958 } 5959 5960 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 5961 struct extent_buffer *leaf, 5962 struct btrfs_chunk *chunk) 5963 { 5964 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5965 struct map_lookup *map; 5966 struct extent_map *em; 5967 u64 logical; 5968 u64 length; 5969 u64 devid; 5970 u8 uuid[BTRFS_UUID_SIZE]; 5971 int num_stripes; 5972 int ret; 5973 int i; 5974 5975 logical = key->offset; 5976 length = btrfs_chunk_length(leaf, chunk); 5977 5978 read_lock(&map_tree->map_tree.lock); 5979 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 5980 read_unlock(&map_tree->map_tree.lock); 5981 5982 /* already mapped? */ 5983 if (em && em->start <= logical && em->start + em->len > logical) { 5984 free_extent_map(em); 5985 return 0; 5986 } else if (em) { 5987 free_extent_map(em); 5988 } 5989 5990 em = alloc_extent_map(); 5991 if (!em) 5992 return -ENOMEM; 5993 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 5994 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5995 if (!map) { 5996 free_extent_map(em); 5997 return -ENOMEM; 5998 } 5999 6000 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6001 em->bdev = (struct block_device *)map; 6002 em->start = logical; 6003 em->len = length; 6004 em->orig_start = 0; 6005 em->block_start = 0; 6006 em->block_len = em->len; 6007 6008 map->num_stripes = num_stripes; 6009 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6010 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6011 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6012 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6013 map->type = btrfs_chunk_type(leaf, chunk); 6014 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6015 for (i = 0; i < num_stripes; i++) { 6016 map->stripes[i].physical = 6017 btrfs_stripe_offset_nr(leaf, chunk, i); 6018 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6019 read_extent_buffer(leaf, uuid, (unsigned long) 6020 btrfs_stripe_dev_uuid_nr(chunk, i), 6021 BTRFS_UUID_SIZE); 6022 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6023 uuid, NULL); 6024 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6025 free_extent_map(em); 6026 return -EIO; 6027 } 6028 if (!map->stripes[i].dev) { 6029 map->stripes[i].dev = 6030 add_missing_dev(root, root->fs_info->fs_devices, 6031 devid, uuid); 6032 if (!map->stripes[i].dev) { 6033 free_extent_map(em); 6034 return -EIO; 6035 } 6036 } 6037 map->stripes[i].dev->in_fs_metadata = 1; 6038 } 6039 6040 write_lock(&map_tree->map_tree.lock); 6041 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6042 write_unlock(&map_tree->map_tree.lock); 6043 BUG_ON(ret); /* Tree corruption */ 6044 free_extent_map(em); 6045 6046 return 0; 6047 } 6048 6049 static void fill_device_from_item(struct extent_buffer *leaf, 6050 struct btrfs_dev_item *dev_item, 6051 struct btrfs_device *device) 6052 { 6053 unsigned long ptr; 6054 6055 device->devid = btrfs_device_id(leaf, dev_item); 6056 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6057 device->total_bytes = device->disk_total_bytes; 6058 device->commit_total_bytes = device->disk_total_bytes; 6059 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6060 device->commit_bytes_used = device->bytes_used; 6061 device->type = btrfs_device_type(leaf, dev_item); 6062 device->io_align = btrfs_device_io_align(leaf, dev_item); 6063 device->io_width = btrfs_device_io_width(leaf, dev_item); 6064 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6065 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6066 device->is_tgtdev_for_dev_replace = 0; 6067 6068 ptr = btrfs_device_uuid(dev_item); 6069 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6070 } 6071 6072 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6073 u8 *fsid) 6074 { 6075 struct btrfs_fs_devices *fs_devices; 6076 int ret; 6077 6078 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6079 6080 fs_devices = root->fs_info->fs_devices->seed; 6081 while (fs_devices) { 6082 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6083 return fs_devices; 6084 6085 fs_devices = fs_devices->seed; 6086 } 6087 6088 fs_devices = find_fsid(fsid); 6089 if (!fs_devices) { 6090 if (!btrfs_test_opt(root, DEGRADED)) 6091 return ERR_PTR(-ENOENT); 6092 6093 fs_devices = alloc_fs_devices(fsid); 6094 if (IS_ERR(fs_devices)) 6095 return fs_devices; 6096 6097 fs_devices->seeding = 1; 6098 fs_devices->opened = 1; 6099 return fs_devices; 6100 } 6101 6102 fs_devices = clone_fs_devices(fs_devices); 6103 if (IS_ERR(fs_devices)) 6104 return fs_devices; 6105 6106 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6107 root->fs_info->bdev_holder); 6108 if (ret) { 6109 free_fs_devices(fs_devices); 6110 fs_devices = ERR_PTR(ret); 6111 goto out; 6112 } 6113 6114 if (!fs_devices->seeding) { 6115 __btrfs_close_devices(fs_devices); 6116 free_fs_devices(fs_devices); 6117 fs_devices = ERR_PTR(-EINVAL); 6118 goto out; 6119 } 6120 6121 fs_devices->seed = root->fs_info->fs_devices->seed; 6122 root->fs_info->fs_devices->seed = fs_devices; 6123 out: 6124 return fs_devices; 6125 } 6126 6127 static int read_one_dev(struct btrfs_root *root, 6128 struct extent_buffer *leaf, 6129 struct btrfs_dev_item *dev_item) 6130 { 6131 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6132 struct btrfs_device *device; 6133 u64 devid; 6134 int ret; 6135 u8 fs_uuid[BTRFS_UUID_SIZE]; 6136 u8 dev_uuid[BTRFS_UUID_SIZE]; 6137 6138 devid = btrfs_device_id(leaf, dev_item); 6139 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6140 BTRFS_UUID_SIZE); 6141 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6142 BTRFS_UUID_SIZE); 6143 6144 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6145 fs_devices = open_seed_devices(root, fs_uuid); 6146 if (IS_ERR(fs_devices)) 6147 return PTR_ERR(fs_devices); 6148 } 6149 6150 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6151 if (!device) { 6152 if (!btrfs_test_opt(root, DEGRADED)) 6153 return -EIO; 6154 6155 btrfs_warn(root->fs_info, "devid %llu missing", devid); 6156 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6157 if (!device) 6158 return -ENOMEM; 6159 } else { 6160 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6161 return -EIO; 6162 6163 if(!device->bdev && !device->missing) { 6164 /* 6165 * this happens when a device that was properly setup 6166 * in the device info lists suddenly goes bad. 6167 * device->bdev is NULL, and so we have to set 6168 * device->missing to one here 6169 */ 6170 device->fs_devices->missing_devices++; 6171 device->missing = 1; 6172 } 6173 6174 /* Move the device to its own fs_devices */ 6175 if (device->fs_devices != fs_devices) { 6176 ASSERT(device->missing); 6177 6178 list_move(&device->dev_list, &fs_devices->devices); 6179 device->fs_devices->num_devices--; 6180 fs_devices->num_devices++; 6181 6182 device->fs_devices->missing_devices--; 6183 fs_devices->missing_devices++; 6184 6185 device->fs_devices = fs_devices; 6186 } 6187 } 6188 6189 if (device->fs_devices != root->fs_info->fs_devices) { 6190 BUG_ON(device->writeable); 6191 if (device->generation != 6192 btrfs_device_generation(leaf, dev_item)) 6193 return -EINVAL; 6194 } 6195 6196 fill_device_from_item(leaf, dev_item, device); 6197 device->in_fs_metadata = 1; 6198 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6199 device->fs_devices->total_rw_bytes += device->total_bytes; 6200 spin_lock(&root->fs_info->free_chunk_lock); 6201 root->fs_info->free_chunk_space += device->total_bytes - 6202 device->bytes_used; 6203 spin_unlock(&root->fs_info->free_chunk_lock); 6204 } 6205 ret = 0; 6206 return ret; 6207 } 6208 6209 int btrfs_read_sys_array(struct btrfs_root *root) 6210 { 6211 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6212 struct extent_buffer *sb; 6213 struct btrfs_disk_key *disk_key; 6214 struct btrfs_chunk *chunk; 6215 u8 *ptr; 6216 unsigned long sb_ptr; 6217 int ret = 0; 6218 u32 num_stripes; 6219 u32 array_size; 6220 u32 len = 0; 6221 u32 cur; 6222 struct btrfs_key key; 6223 6224 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 6225 BTRFS_SUPER_INFO_SIZE); 6226 if (!sb) 6227 return -ENOMEM; 6228 btrfs_set_buffer_uptodate(sb); 6229 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6230 /* 6231 * The sb extent buffer is artifical and just used to read the system array. 6232 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6233 * pages up-to-date when the page is larger: extent does not cover the 6234 * whole page and consequently check_page_uptodate does not find all 6235 * the page's extents up-to-date (the hole beyond sb), 6236 * write_extent_buffer then triggers a WARN_ON. 6237 * 6238 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6239 * but sb spans only this function. Add an explicit SetPageUptodate call 6240 * to silence the warning eg. on PowerPC 64. 6241 */ 6242 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6243 SetPageUptodate(sb->pages[0]); 6244 6245 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6246 array_size = btrfs_super_sys_array_size(super_copy); 6247 6248 ptr = super_copy->sys_chunk_array; 6249 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 6250 cur = 0; 6251 6252 while (cur < array_size) { 6253 disk_key = (struct btrfs_disk_key *)ptr; 6254 btrfs_disk_key_to_cpu(&key, disk_key); 6255 6256 len = sizeof(*disk_key); ptr += len; 6257 sb_ptr += len; 6258 cur += len; 6259 6260 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6261 chunk = (struct btrfs_chunk *)sb_ptr; 6262 ret = read_one_chunk(root, &key, sb, chunk); 6263 if (ret) 6264 break; 6265 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6266 len = btrfs_chunk_item_size(num_stripes); 6267 } else { 6268 ret = -EIO; 6269 break; 6270 } 6271 ptr += len; 6272 sb_ptr += len; 6273 cur += len; 6274 } 6275 free_extent_buffer(sb); 6276 return ret; 6277 } 6278 6279 int btrfs_read_chunk_tree(struct btrfs_root *root) 6280 { 6281 struct btrfs_path *path; 6282 struct extent_buffer *leaf; 6283 struct btrfs_key key; 6284 struct btrfs_key found_key; 6285 int ret; 6286 int slot; 6287 6288 root = root->fs_info->chunk_root; 6289 6290 path = btrfs_alloc_path(); 6291 if (!path) 6292 return -ENOMEM; 6293 6294 mutex_lock(&uuid_mutex); 6295 lock_chunks(root); 6296 6297 /* 6298 * Read all device items, and then all the chunk items. All 6299 * device items are found before any chunk item (their object id 6300 * is smaller than the lowest possible object id for a chunk 6301 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6302 */ 6303 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6304 key.offset = 0; 6305 key.type = 0; 6306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6307 if (ret < 0) 6308 goto error; 6309 while (1) { 6310 leaf = path->nodes[0]; 6311 slot = path->slots[0]; 6312 if (slot >= btrfs_header_nritems(leaf)) { 6313 ret = btrfs_next_leaf(root, path); 6314 if (ret == 0) 6315 continue; 6316 if (ret < 0) 6317 goto error; 6318 break; 6319 } 6320 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6321 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6322 struct btrfs_dev_item *dev_item; 6323 dev_item = btrfs_item_ptr(leaf, slot, 6324 struct btrfs_dev_item); 6325 ret = read_one_dev(root, leaf, dev_item); 6326 if (ret) 6327 goto error; 6328 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6329 struct btrfs_chunk *chunk; 6330 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6331 ret = read_one_chunk(root, &found_key, leaf, chunk); 6332 if (ret) 6333 goto error; 6334 } 6335 path->slots[0]++; 6336 } 6337 ret = 0; 6338 error: 6339 unlock_chunks(root); 6340 mutex_unlock(&uuid_mutex); 6341 6342 btrfs_free_path(path); 6343 return ret; 6344 } 6345 6346 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6347 { 6348 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6349 struct btrfs_device *device; 6350 6351 while (fs_devices) { 6352 mutex_lock(&fs_devices->device_list_mutex); 6353 list_for_each_entry(device, &fs_devices->devices, dev_list) 6354 device->dev_root = fs_info->dev_root; 6355 mutex_unlock(&fs_devices->device_list_mutex); 6356 6357 fs_devices = fs_devices->seed; 6358 } 6359 } 6360 6361 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6362 { 6363 int i; 6364 6365 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6366 btrfs_dev_stat_reset(dev, i); 6367 } 6368 6369 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6370 { 6371 struct btrfs_key key; 6372 struct btrfs_key found_key; 6373 struct btrfs_root *dev_root = fs_info->dev_root; 6374 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6375 struct extent_buffer *eb; 6376 int slot; 6377 int ret = 0; 6378 struct btrfs_device *device; 6379 struct btrfs_path *path = NULL; 6380 int i; 6381 6382 path = btrfs_alloc_path(); 6383 if (!path) { 6384 ret = -ENOMEM; 6385 goto out; 6386 } 6387 6388 mutex_lock(&fs_devices->device_list_mutex); 6389 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6390 int item_size; 6391 struct btrfs_dev_stats_item *ptr; 6392 6393 key.objectid = 0; 6394 key.type = BTRFS_DEV_STATS_KEY; 6395 key.offset = device->devid; 6396 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6397 if (ret) { 6398 __btrfs_reset_dev_stats(device); 6399 device->dev_stats_valid = 1; 6400 btrfs_release_path(path); 6401 continue; 6402 } 6403 slot = path->slots[0]; 6404 eb = path->nodes[0]; 6405 btrfs_item_key_to_cpu(eb, &found_key, slot); 6406 item_size = btrfs_item_size_nr(eb, slot); 6407 6408 ptr = btrfs_item_ptr(eb, slot, 6409 struct btrfs_dev_stats_item); 6410 6411 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6412 if (item_size >= (1 + i) * sizeof(__le64)) 6413 btrfs_dev_stat_set(device, i, 6414 btrfs_dev_stats_value(eb, ptr, i)); 6415 else 6416 btrfs_dev_stat_reset(device, i); 6417 } 6418 6419 device->dev_stats_valid = 1; 6420 btrfs_dev_stat_print_on_load(device); 6421 btrfs_release_path(path); 6422 } 6423 mutex_unlock(&fs_devices->device_list_mutex); 6424 6425 out: 6426 btrfs_free_path(path); 6427 return ret < 0 ? ret : 0; 6428 } 6429 6430 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6431 struct btrfs_root *dev_root, 6432 struct btrfs_device *device) 6433 { 6434 struct btrfs_path *path; 6435 struct btrfs_key key; 6436 struct extent_buffer *eb; 6437 struct btrfs_dev_stats_item *ptr; 6438 int ret; 6439 int i; 6440 6441 key.objectid = 0; 6442 key.type = BTRFS_DEV_STATS_KEY; 6443 key.offset = device->devid; 6444 6445 path = btrfs_alloc_path(); 6446 BUG_ON(!path); 6447 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6448 if (ret < 0) { 6449 printk_in_rcu(KERN_WARNING "BTRFS: " 6450 "error %d while searching for dev_stats item for device %s!\n", 6451 ret, rcu_str_deref(device->name)); 6452 goto out; 6453 } 6454 6455 if (ret == 0 && 6456 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6457 /* need to delete old one and insert a new one */ 6458 ret = btrfs_del_item(trans, dev_root, path); 6459 if (ret != 0) { 6460 printk_in_rcu(KERN_WARNING "BTRFS: " 6461 "delete too small dev_stats item for device %s failed %d!\n", 6462 rcu_str_deref(device->name), ret); 6463 goto out; 6464 } 6465 ret = 1; 6466 } 6467 6468 if (ret == 1) { 6469 /* need to insert a new item */ 6470 btrfs_release_path(path); 6471 ret = btrfs_insert_empty_item(trans, dev_root, path, 6472 &key, sizeof(*ptr)); 6473 if (ret < 0) { 6474 printk_in_rcu(KERN_WARNING "BTRFS: " 6475 "insert dev_stats item for device %s failed %d!\n", 6476 rcu_str_deref(device->name), ret); 6477 goto out; 6478 } 6479 } 6480 6481 eb = path->nodes[0]; 6482 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6483 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6484 btrfs_set_dev_stats_value(eb, ptr, i, 6485 btrfs_dev_stat_read(device, i)); 6486 btrfs_mark_buffer_dirty(eb); 6487 6488 out: 6489 btrfs_free_path(path); 6490 return ret; 6491 } 6492 6493 /* 6494 * called from commit_transaction. Writes all changed device stats to disk. 6495 */ 6496 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6497 struct btrfs_fs_info *fs_info) 6498 { 6499 struct btrfs_root *dev_root = fs_info->dev_root; 6500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6501 struct btrfs_device *device; 6502 int stats_cnt; 6503 int ret = 0; 6504 6505 mutex_lock(&fs_devices->device_list_mutex); 6506 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6507 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6508 continue; 6509 6510 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6511 ret = update_dev_stat_item(trans, dev_root, device); 6512 if (!ret) 6513 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6514 } 6515 mutex_unlock(&fs_devices->device_list_mutex); 6516 6517 return ret; 6518 } 6519 6520 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6521 { 6522 btrfs_dev_stat_inc(dev, index); 6523 btrfs_dev_stat_print_on_error(dev); 6524 } 6525 6526 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6527 { 6528 if (!dev->dev_stats_valid) 6529 return; 6530 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 6531 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6532 rcu_str_deref(dev->name), 6533 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6534 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6535 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6536 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6537 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6538 } 6539 6540 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6541 { 6542 int i; 6543 6544 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6545 if (btrfs_dev_stat_read(dev, i) != 0) 6546 break; 6547 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6548 return; /* all values == 0, suppress message */ 6549 6550 printk_in_rcu(KERN_INFO "BTRFS: " 6551 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6552 rcu_str_deref(dev->name), 6553 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6554 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6555 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6556 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6557 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6558 } 6559 6560 int btrfs_get_dev_stats(struct btrfs_root *root, 6561 struct btrfs_ioctl_get_dev_stats *stats) 6562 { 6563 struct btrfs_device *dev; 6564 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6565 int i; 6566 6567 mutex_lock(&fs_devices->device_list_mutex); 6568 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6569 mutex_unlock(&fs_devices->device_list_mutex); 6570 6571 if (!dev) { 6572 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6573 return -ENODEV; 6574 } else if (!dev->dev_stats_valid) { 6575 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6576 return -ENODEV; 6577 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6578 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6579 if (stats->nr_items > i) 6580 stats->values[i] = 6581 btrfs_dev_stat_read_and_reset(dev, i); 6582 else 6583 btrfs_dev_stat_reset(dev, i); 6584 } 6585 } else { 6586 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6587 if (stats->nr_items > i) 6588 stats->values[i] = btrfs_dev_stat_read(dev, i); 6589 } 6590 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6591 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6592 return 0; 6593 } 6594 6595 int btrfs_scratch_superblock(struct btrfs_device *device) 6596 { 6597 struct buffer_head *bh; 6598 struct btrfs_super_block *disk_super; 6599 6600 bh = btrfs_read_dev_super(device->bdev); 6601 if (!bh) 6602 return -EINVAL; 6603 disk_super = (struct btrfs_super_block *)bh->b_data; 6604 6605 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6606 set_buffer_dirty(bh); 6607 sync_dirty_buffer(bh); 6608 brelse(bh); 6609 6610 return 0; 6611 } 6612 6613 /* 6614 * Update the size of all devices, which is used for writing out the 6615 * super blocks. 6616 */ 6617 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6618 { 6619 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6620 struct btrfs_device *curr, *next; 6621 6622 if (list_empty(&fs_devices->resized_devices)) 6623 return; 6624 6625 mutex_lock(&fs_devices->device_list_mutex); 6626 lock_chunks(fs_info->dev_root); 6627 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6628 resized_list) { 6629 list_del_init(&curr->resized_list); 6630 curr->commit_total_bytes = curr->disk_total_bytes; 6631 } 6632 unlock_chunks(fs_info->dev_root); 6633 mutex_unlock(&fs_devices->device_list_mutex); 6634 } 6635 6636 /* Must be invoked during the transaction commit */ 6637 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6638 struct btrfs_transaction *transaction) 6639 { 6640 struct extent_map *em; 6641 struct map_lookup *map; 6642 struct btrfs_device *dev; 6643 int i; 6644 6645 if (list_empty(&transaction->pending_chunks)) 6646 return; 6647 6648 /* In order to kick the device replace finish process */ 6649 lock_chunks(root); 6650 list_for_each_entry(em, &transaction->pending_chunks, list) { 6651 map = (struct map_lookup *)em->bdev; 6652 6653 for (i = 0; i < map->num_stripes; i++) { 6654 dev = map->stripes[i].dev; 6655 dev->commit_bytes_used = dev->bytes_used; 6656 } 6657 } 6658 unlock_chunks(root); 6659 } 6660