xref: /linux/fs/btrfs/volumes.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 struct list_head *btrfs_get_fs_uuids(void)
56 {
57 	return &fs_uuids;
58 }
59 
60 static struct btrfs_fs_devices *__alloc_fs_devices(void)
61 {
62 	struct btrfs_fs_devices *fs_devs;
63 
64 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65 	if (!fs_devs)
66 		return ERR_PTR(-ENOMEM);
67 
68 	mutex_init(&fs_devs->device_list_mutex);
69 
70 	INIT_LIST_HEAD(&fs_devs->devices);
71 	INIT_LIST_HEAD(&fs_devs->resized_devices);
72 	INIT_LIST_HEAD(&fs_devs->alloc_list);
73 	INIT_LIST_HEAD(&fs_devs->list);
74 
75 	return fs_devs;
76 }
77 
78 /**
79  * alloc_fs_devices - allocate struct btrfs_fs_devices
80  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
81  *		generated.
82  *
83  * Return: a pointer to a new &struct btrfs_fs_devices on success;
84  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
85  * can be destroyed with kfree() right away.
86  */
87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88 {
89 	struct btrfs_fs_devices *fs_devs;
90 
91 	fs_devs = __alloc_fs_devices();
92 	if (IS_ERR(fs_devs))
93 		return fs_devs;
94 
95 	if (fsid)
96 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97 	else
98 		generate_random_uuid(fs_devs->fsid);
99 
100 	return fs_devs;
101 }
102 
103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104 {
105 	struct btrfs_device *device;
106 	WARN_ON(fs_devices->opened);
107 	while (!list_empty(&fs_devices->devices)) {
108 		device = list_entry(fs_devices->devices.next,
109 				    struct btrfs_device, dev_list);
110 		list_del(&device->dev_list);
111 		rcu_string_free(device->name);
112 		kfree(device);
113 	}
114 	kfree(fs_devices);
115 }
116 
117 static void btrfs_kobject_uevent(struct block_device *bdev,
118 				 enum kobject_action action)
119 {
120 	int ret;
121 
122 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123 	if (ret)
124 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
125 			action,
126 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127 			&disk_to_dev(bdev->bd_disk)->kobj);
128 }
129 
130 void btrfs_cleanup_fs_uuids(void)
131 {
132 	struct btrfs_fs_devices *fs_devices;
133 
134 	while (!list_empty(&fs_uuids)) {
135 		fs_devices = list_entry(fs_uuids.next,
136 					struct btrfs_fs_devices, list);
137 		list_del(&fs_devices->list);
138 		free_fs_devices(fs_devices);
139 	}
140 }
141 
142 static struct btrfs_device *__alloc_device(void)
143 {
144 	struct btrfs_device *dev;
145 
146 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
147 	if (!dev)
148 		return ERR_PTR(-ENOMEM);
149 
150 	INIT_LIST_HEAD(&dev->dev_list);
151 	INIT_LIST_HEAD(&dev->dev_alloc_list);
152 	INIT_LIST_HEAD(&dev->resized_list);
153 
154 	spin_lock_init(&dev->io_lock);
155 
156 	spin_lock_init(&dev->reada_lock);
157 	atomic_set(&dev->reada_in_flight, 0);
158 	atomic_set(&dev->dev_stats_ccnt, 0);
159 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161 
162 	return dev;
163 }
164 
165 static noinline struct btrfs_device *__find_device(struct list_head *head,
166 						   u64 devid, u8 *uuid)
167 {
168 	struct btrfs_device *dev;
169 
170 	list_for_each_entry(dev, head, dev_list) {
171 		if (dev->devid == devid &&
172 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
173 			return dev;
174 		}
175 	}
176 	return NULL;
177 }
178 
179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
180 {
181 	struct btrfs_fs_devices *fs_devices;
182 
183 	list_for_each_entry(fs_devices, &fs_uuids, list) {
184 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185 			return fs_devices;
186 	}
187 	return NULL;
188 }
189 
190 static int
191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192 		      int flush, struct block_device **bdev,
193 		      struct buffer_head **bh)
194 {
195 	int ret;
196 
197 	*bdev = blkdev_get_by_path(device_path, flags, holder);
198 
199 	if (IS_ERR(*bdev)) {
200 		ret = PTR_ERR(*bdev);
201 		printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
202 		goto error;
203 	}
204 
205 	if (flush)
206 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207 	ret = set_blocksize(*bdev, 4096);
208 	if (ret) {
209 		blkdev_put(*bdev, flags);
210 		goto error;
211 	}
212 	invalidate_bdev(*bdev);
213 	*bh = btrfs_read_dev_super(*bdev);
214 	if (!*bh) {
215 		ret = -EINVAL;
216 		blkdev_put(*bdev, flags);
217 		goto error;
218 	}
219 
220 	return 0;
221 
222 error:
223 	*bdev = NULL;
224 	*bh = NULL;
225 	return ret;
226 }
227 
228 static void requeue_list(struct btrfs_pending_bios *pending_bios,
229 			struct bio *head, struct bio *tail)
230 {
231 
232 	struct bio *old_head;
233 
234 	old_head = pending_bios->head;
235 	pending_bios->head = head;
236 	if (pending_bios->tail)
237 		tail->bi_next = old_head;
238 	else
239 		pending_bios->tail = tail;
240 }
241 
242 /*
243  * we try to collect pending bios for a device so we don't get a large
244  * number of procs sending bios down to the same device.  This greatly
245  * improves the schedulers ability to collect and merge the bios.
246  *
247  * But, it also turns into a long list of bios to process and that is sure
248  * to eventually make the worker thread block.  The solution here is to
249  * make some progress and then put this work struct back at the end of
250  * the list if the block device is congested.  This way, multiple devices
251  * can make progress from a single worker thread.
252  */
253 static noinline void run_scheduled_bios(struct btrfs_device *device)
254 {
255 	struct bio *pending;
256 	struct backing_dev_info *bdi;
257 	struct btrfs_fs_info *fs_info;
258 	struct btrfs_pending_bios *pending_bios;
259 	struct bio *tail;
260 	struct bio *cur;
261 	int again = 0;
262 	unsigned long num_run;
263 	unsigned long batch_run = 0;
264 	unsigned long limit;
265 	unsigned long last_waited = 0;
266 	int force_reg = 0;
267 	int sync_pending = 0;
268 	struct blk_plug plug;
269 
270 	/*
271 	 * this function runs all the bios we've collected for
272 	 * a particular device.  We don't want to wander off to
273 	 * another device without first sending all of these down.
274 	 * So, setup a plug here and finish it off before we return
275 	 */
276 	blk_start_plug(&plug);
277 
278 	bdi = blk_get_backing_dev_info(device->bdev);
279 	fs_info = device->dev_root->fs_info;
280 	limit = btrfs_async_submit_limit(fs_info);
281 	limit = limit * 2 / 3;
282 
283 loop:
284 	spin_lock(&device->io_lock);
285 
286 loop_lock:
287 	num_run = 0;
288 
289 	/* take all the bios off the list at once and process them
290 	 * later on (without the lock held).  But, remember the
291 	 * tail and other pointers so the bios can be properly reinserted
292 	 * into the list if we hit congestion
293 	 */
294 	if (!force_reg && device->pending_sync_bios.head) {
295 		pending_bios = &device->pending_sync_bios;
296 		force_reg = 1;
297 	} else {
298 		pending_bios = &device->pending_bios;
299 		force_reg = 0;
300 	}
301 
302 	pending = pending_bios->head;
303 	tail = pending_bios->tail;
304 	WARN_ON(pending && !tail);
305 
306 	/*
307 	 * if pending was null this time around, no bios need processing
308 	 * at all and we can stop.  Otherwise it'll loop back up again
309 	 * and do an additional check so no bios are missed.
310 	 *
311 	 * device->running_pending is used to synchronize with the
312 	 * schedule_bio code.
313 	 */
314 	if (device->pending_sync_bios.head == NULL &&
315 	    device->pending_bios.head == NULL) {
316 		again = 0;
317 		device->running_pending = 0;
318 	} else {
319 		again = 1;
320 		device->running_pending = 1;
321 	}
322 
323 	pending_bios->head = NULL;
324 	pending_bios->tail = NULL;
325 
326 	spin_unlock(&device->io_lock);
327 
328 	while (pending) {
329 
330 		rmb();
331 		/* we want to work on both lists, but do more bios on the
332 		 * sync list than the regular list
333 		 */
334 		if ((num_run > 32 &&
335 		    pending_bios != &device->pending_sync_bios &&
336 		    device->pending_sync_bios.head) ||
337 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338 		    device->pending_bios.head)) {
339 			spin_lock(&device->io_lock);
340 			requeue_list(pending_bios, pending, tail);
341 			goto loop_lock;
342 		}
343 
344 		cur = pending;
345 		pending = pending->bi_next;
346 		cur->bi_next = NULL;
347 
348 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
349 		    waitqueue_active(&fs_info->async_submit_wait))
350 			wake_up(&fs_info->async_submit_wait);
351 
352 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
353 
354 		/*
355 		 * if we're doing the sync list, record that our
356 		 * plug has some sync requests on it
357 		 *
358 		 * If we're doing the regular list and there are
359 		 * sync requests sitting around, unplug before
360 		 * we add more
361 		 */
362 		if (pending_bios == &device->pending_sync_bios) {
363 			sync_pending = 1;
364 		} else if (sync_pending) {
365 			blk_finish_plug(&plug);
366 			blk_start_plug(&plug);
367 			sync_pending = 0;
368 		}
369 
370 		btrfsic_submit_bio(cur->bi_rw, cur);
371 		num_run++;
372 		batch_run++;
373 
374 		cond_resched();
375 
376 		/*
377 		 * we made progress, there is more work to do and the bdi
378 		 * is now congested.  Back off and let other work structs
379 		 * run instead
380 		 */
381 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
382 		    fs_info->fs_devices->open_devices > 1) {
383 			struct io_context *ioc;
384 
385 			ioc = current->io_context;
386 
387 			/*
388 			 * the main goal here is that we don't want to
389 			 * block if we're going to be able to submit
390 			 * more requests without blocking.
391 			 *
392 			 * This code does two great things, it pokes into
393 			 * the elevator code from a filesystem _and_
394 			 * it makes assumptions about how batching works.
395 			 */
396 			if (ioc && ioc->nr_batch_requests > 0 &&
397 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398 			    (last_waited == 0 ||
399 			     ioc->last_waited == last_waited)) {
400 				/*
401 				 * we want to go through our batch of
402 				 * requests and stop.  So, we copy out
403 				 * the ioc->last_waited time and test
404 				 * against it before looping
405 				 */
406 				last_waited = ioc->last_waited;
407 				cond_resched();
408 				continue;
409 			}
410 			spin_lock(&device->io_lock);
411 			requeue_list(pending_bios, pending, tail);
412 			device->running_pending = 1;
413 
414 			spin_unlock(&device->io_lock);
415 			btrfs_queue_work(fs_info->submit_workers,
416 					 &device->work);
417 			goto done;
418 		}
419 		/* unplug every 64 requests just for good measure */
420 		if (batch_run % 64 == 0) {
421 			blk_finish_plug(&plug);
422 			blk_start_plug(&plug);
423 			sync_pending = 0;
424 		}
425 	}
426 
427 	cond_resched();
428 	if (again)
429 		goto loop;
430 
431 	spin_lock(&device->io_lock);
432 	if (device->pending_bios.head || device->pending_sync_bios.head)
433 		goto loop_lock;
434 	spin_unlock(&device->io_lock);
435 
436 done:
437 	blk_finish_plug(&plug);
438 }
439 
440 static void pending_bios_fn(struct btrfs_work *work)
441 {
442 	struct btrfs_device *device;
443 
444 	device = container_of(work, struct btrfs_device, work);
445 	run_scheduled_bios(device);
446 }
447 
448 
449 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450 {
451 	struct btrfs_fs_devices *fs_devs;
452 	struct btrfs_device *dev;
453 
454 	if (!cur_dev->name)
455 		return;
456 
457 	list_for_each_entry(fs_devs, &fs_uuids, list) {
458 		int del = 1;
459 
460 		if (fs_devs->opened)
461 			continue;
462 		if (fs_devs->seeding)
463 			continue;
464 
465 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466 
467 			if (dev == cur_dev)
468 				continue;
469 			if (!dev->name)
470 				continue;
471 
472 			/*
473 			 * Todo: This won't be enough. What if the same device
474 			 * comes back (with new uuid and) with its mapper path?
475 			 * But for now, this does help as mostly an admin will
476 			 * either use mapper or non mapper path throughout.
477 			 */
478 			rcu_read_lock();
479 			del = strcmp(rcu_str_deref(dev->name),
480 						rcu_str_deref(cur_dev->name));
481 			rcu_read_unlock();
482 			if (!del)
483 				break;
484 		}
485 
486 		if (!del) {
487 			/* delete the stale device */
488 			if (fs_devs->num_devices == 1) {
489 				btrfs_sysfs_remove_fsid(fs_devs);
490 				list_del(&fs_devs->list);
491 				free_fs_devices(fs_devs);
492 			} else {
493 				fs_devs->num_devices--;
494 				list_del(&dev->dev_list);
495 				rcu_string_free(dev->name);
496 				kfree(dev);
497 			}
498 			break;
499 		}
500 	}
501 }
502 
503 /*
504  * Add new device to list of registered devices
505  *
506  * Returns:
507  * 1   - first time device is seen
508  * 0   - device already known
509  * < 0 - error
510  */
511 static noinline int device_list_add(const char *path,
512 			   struct btrfs_super_block *disk_super,
513 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514 {
515 	struct btrfs_device *device;
516 	struct btrfs_fs_devices *fs_devices;
517 	struct rcu_string *name;
518 	int ret = 0;
519 	u64 found_transid = btrfs_super_generation(disk_super);
520 
521 	fs_devices = find_fsid(disk_super->fsid);
522 	if (!fs_devices) {
523 		fs_devices = alloc_fs_devices(disk_super->fsid);
524 		if (IS_ERR(fs_devices))
525 			return PTR_ERR(fs_devices);
526 
527 		list_add(&fs_devices->list, &fs_uuids);
528 
529 		device = NULL;
530 	} else {
531 		device = __find_device(&fs_devices->devices, devid,
532 				       disk_super->dev_item.uuid);
533 	}
534 
535 	if (!device) {
536 		if (fs_devices->opened)
537 			return -EBUSY;
538 
539 		device = btrfs_alloc_device(NULL, &devid,
540 					    disk_super->dev_item.uuid);
541 		if (IS_ERR(device)) {
542 			/* we can safely leave the fs_devices entry around */
543 			return PTR_ERR(device);
544 		}
545 
546 		name = rcu_string_strdup(path, GFP_NOFS);
547 		if (!name) {
548 			kfree(device);
549 			return -ENOMEM;
550 		}
551 		rcu_assign_pointer(device->name, name);
552 
553 		mutex_lock(&fs_devices->device_list_mutex);
554 		list_add_rcu(&device->dev_list, &fs_devices->devices);
555 		fs_devices->num_devices++;
556 		mutex_unlock(&fs_devices->device_list_mutex);
557 
558 		ret = 1;
559 		device->fs_devices = fs_devices;
560 	} else if (!device->name || strcmp(device->name->str, path)) {
561 		/*
562 		 * When FS is already mounted.
563 		 * 1. If you are here and if the device->name is NULL that
564 		 *    means this device was missing at time of FS mount.
565 		 * 2. If you are here and if the device->name is different
566 		 *    from 'path' that means either
567 		 *      a. The same device disappeared and reappeared with
568 		 *         different name. or
569 		 *      b. The missing-disk-which-was-replaced, has
570 		 *         reappeared now.
571 		 *
572 		 * We must allow 1 and 2a above. But 2b would be a spurious
573 		 * and unintentional.
574 		 *
575 		 * Further in case of 1 and 2a above, the disk at 'path'
576 		 * would have missed some transaction when it was away and
577 		 * in case of 2a the stale bdev has to be updated as well.
578 		 * 2b must not be allowed at all time.
579 		 */
580 
581 		/*
582 		 * For now, we do allow update to btrfs_fs_device through the
583 		 * btrfs dev scan cli after FS has been mounted.  We're still
584 		 * tracking a problem where systems fail mount by subvolume id
585 		 * when we reject replacement on a mounted FS.
586 		 */
587 		if (!fs_devices->opened && found_transid < device->generation) {
588 			/*
589 			 * That is if the FS is _not_ mounted and if you
590 			 * are here, that means there is more than one
591 			 * disk with same uuid and devid.We keep the one
592 			 * with larger generation number or the last-in if
593 			 * generation are equal.
594 			 */
595 			return -EEXIST;
596 		}
597 
598 		name = rcu_string_strdup(path, GFP_NOFS);
599 		if (!name)
600 			return -ENOMEM;
601 		rcu_string_free(device->name);
602 		rcu_assign_pointer(device->name, name);
603 		if (device->missing) {
604 			fs_devices->missing_devices--;
605 			device->missing = 0;
606 		}
607 	}
608 
609 	/*
610 	 * Unmount does not free the btrfs_device struct but would zero
611 	 * generation along with most of the other members. So just update
612 	 * it back. We need it to pick the disk with largest generation
613 	 * (as above).
614 	 */
615 	if (!fs_devices->opened)
616 		device->generation = found_transid;
617 
618 	/*
619 	 * if there is new btrfs on an already registered device,
620 	 * then remove the stale device entry.
621 	 */
622 	btrfs_free_stale_device(device);
623 
624 	*fs_devices_ret = fs_devices;
625 
626 	return ret;
627 }
628 
629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630 {
631 	struct btrfs_fs_devices *fs_devices;
632 	struct btrfs_device *device;
633 	struct btrfs_device *orig_dev;
634 
635 	fs_devices = alloc_fs_devices(orig->fsid);
636 	if (IS_ERR(fs_devices))
637 		return fs_devices;
638 
639 	mutex_lock(&orig->device_list_mutex);
640 	fs_devices->total_devices = orig->total_devices;
641 
642 	/* We have held the volume lock, it is safe to get the devices. */
643 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
644 		struct rcu_string *name;
645 
646 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
647 					    orig_dev->uuid);
648 		if (IS_ERR(device))
649 			goto error;
650 
651 		/*
652 		 * This is ok to do without rcu read locked because we hold the
653 		 * uuid mutex so nothing we touch in here is going to disappear.
654 		 */
655 		if (orig_dev->name) {
656 			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657 			if (!name) {
658 				kfree(device);
659 				goto error;
660 			}
661 			rcu_assign_pointer(device->name, name);
662 		}
663 
664 		list_add(&device->dev_list, &fs_devices->devices);
665 		device->fs_devices = fs_devices;
666 		fs_devices->num_devices++;
667 	}
668 	mutex_unlock(&orig->device_list_mutex);
669 	return fs_devices;
670 error:
671 	mutex_unlock(&orig->device_list_mutex);
672 	free_fs_devices(fs_devices);
673 	return ERR_PTR(-ENOMEM);
674 }
675 
676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
677 {
678 	struct btrfs_device *device, *next;
679 	struct btrfs_device *latest_dev = NULL;
680 
681 	mutex_lock(&uuid_mutex);
682 again:
683 	/* This is the initialized path, it is safe to release the devices. */
684 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
685 		if (device->in_fs_metadata) {
686 			if (!device->is_tgtdev_for_dev_replace &&
687 			    (!latest_dev ||
688 			     device->generation > latest_dev->generation)) {
689 				latest_dev = device;
690 			}
691 			continue;
692 		}
693 
694 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695 			/*
696 			 * In the first step, keep the device which has
697 			 * the correct fsid and the devid that is used
698 			 * for the dev_replace procedure.
699 			 * In the second step, the dev_replace state is
700 			 * read from the device tree and it is known
701 			 * whether the procedure is really active or
702 			 * not, which means whether this device is
703 			 * used or whether it should be removed.
704 			 */
705 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
706 				continue;
707 			}
708 		}
709 		if (device->bdev) {
710 			blkdev_put(device->bdev, device->mode);
711 			device->bdev = NULL;
712 			fs_devices->open_devices--;
713 		}
714 		if (device->writeable) {
715 			list_del_init(&device->dev_alloc_list);
716 			device->writeable = 0;
717 			if (!device->is_tgtdev_for_dev_replace)
718 				fs_devices->rw_devices--;
719 		}
720 		list_del_init(&device->dev_list);
721 		fs_devices->num_devices--;
722 		rcu_string_free(device->name);
723 		kfree(device);
724 	}
725 
726 	if (fs_devices->seed) {
727 		fs_devices = fs_devices->seed;
728 		goto again;
729 	}
730 
731 	fs_devices->latest_bdev = latest_dev->bdev;
732 
733 	mutex_unlock(&uuid_mutex);
734 }
735 
736 static void __free_device(struct work_struct *work)
737 {
738 	struct btrfs_device *device;
739 
740 	device = container_of(work, struct btrfs_device, rcu_work);
741 
742 	if (device->bdev)
743 		blkdev_put(device->bdev, device->mode);
744 
745 	rcu_string_free(device->name);
746 	kfree(device);
747 }
748 
749 static void free_device(struct rcu_head *head)
750 {
751 	struct btrfs_device *device;
752 
753 	device = container_of(head, struct btrfs_device, rcu);
754 
755 	INIT_WORK(&device->rcu_work, __free_device);
756 	schedule_work(&device->rcu_work);
757 }
758 
759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
760 {
761 	struct btrfs_device *device, *tmp;
762 
763 	if (--fs_devices->opened > 0)
764 		return 0;
765 
766 	mutex_lock(&fs_devices->device_list_mutex);
767 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
768 		struct btrfs_device *new_device;
769 		struct rcu_string *name;
770 
771 		if (device->bdev)
772 			fs_devices->open_devices--;
773 
774 		if (device->writeable &&
775 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
776 			list_del_init(&device->dev_alloc_list);
777 			fs_devices->rw_devices--;
778 		}
779 
780 		if (device->missing)
781 			fs_devices->missing_devices--;
782 
783 		new_device = btrfs_alloc_device(NULL, &device->devid,
784 						device->uuid);
785 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
786 
787 		/* Safe because we are under uuid_mutex */
788 		if (device->name) {
789 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
790 			BUG_ON(!name); /* -ENOMEM */
791 			rcu_assign_pointer(new_device->name, name);
792 		}
793 
794 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
795 		new_device->fs_devices = device->fs_devices;
796 
797 		call_rcu(&device->rcu, free_device);
798 	}
799 	mutex_unlock(&fs_devices->device_list_mutex);
800 
801 	WARN_ON(fs_devices->open_devices);
802 	WARN_ON(fs_devices->rw_devices);
803 	fs_devices->opened = 0;
804 	fs_devices->seeding = 0;
805 
806 	return 0;
807 }
808 
809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810 {
811 	struct btrfs_fs_devices *seed_devices = NULL;
812 	int ret;
813 
814 	mutex_lock(&uuid_mutex);
815 	ret = __btrfs_close_devices(fs_devices);
816 	if (!fs_devices->opened) {
817 		seed_devices = fs_devices->seed;
818 		fs_devices->seed = NULL;
819 	}
820 	mutex_unlock(&uuid_mutex);
821 
822 	while (seed_devices) {
823 		fs_devices = seed_devices;
824 		seed_devices = fs_devices->seed;
825 		__btrfs_close_devices(fs_devices);
826 		free_fs_devices(fs_devices);
827 	}
828 	/*
829 	 * Wait for rcu kworkers under __btrfs_close_devices
830 	 * to finish all blkdev_puts so device is really
831 	 * free when umount is done.
832 	 */
833 	rcu_barrier();
834 	return ret;
835 }
836 
837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838 				fmode_t flags, void *holder)
839 {
840 	struct request_queue *q;
841 	struct block_device *bdev;
842 	struct list_head *head = &fs_devices->devices;
843 	struct btrfs_device *device;
844 	struct btrfs_device *latest_dev = NULL;
845 	struct buffer_head *bh;
846 	struct btrfs_super_block *disk_super;
847 	u64 devid;
848 	int seeding = 1;
849 	int ret = 0;
850 
851 	flags |= FMODE_EXCL;
852 
853 	list_for_each_entry(device, head, dev_list) {
854 		if (device->bdev)
855 			continue;
856 		if (!device->name)
857 			continue;
858 
859 		/* Just open everything we can; ignore failures here */
860 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861 					    &bdev, &bh))
862 			continue;
863 
864 		disk_super = (struct btrfs_super_block *)bh->b_data;
865 		devid = btrfs_stack_device_id(&disk_super->dev_item);
866 		if (devid != device->devid)
867 			goto error_brelse;
868 
869 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
870 			   BTRFS_UUID_SIZE))
871 			goto error_brelse;
872 
873 		device->generation = btrfs_super_generation(disk_super);
874 		if (!latest_dev ||
875 		    device->generation > latest_dev->generation)
876 			latest_dev = device;
877 
878 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879 			device->writeable = 0;
880 		} else {
881 			device->writeable = !bdev_read_only(bdev);
882 			seeding = 0;
883 		}
884 
885 		q = bdev_get_queue(bdev);
886 		if (blk_queue_discard(q))
887 			device->can_discard = 1;
888 
889 		device->bdev = bdev;
890 		device->in_fs_metadata = 0;
891 		device->mode = flags;
892 
893 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894 			fs_devices->rotating = 1;
895 
896 		fs_devices->open_devices++;
897 		if (device->writeable &&
898 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
899 			fs_devices->rw_devices++;
900 			list_add(&device->dev_alloc_list,
901 				 &fs_devices->alloc_list);
902 		}
903 		brelse(bh);
904 		continue;
905 
906 error_brelse:
907 		brelse(bh);
908 		blkdev_put(bdev, flags);
909 		continue;
910 	}
911 	if (fs_devices->open_devices == 0) {
912 		ret = -EINVAL;
913 		goto out;
914 	}
915 	fs_devices->seeding = seeding;
916 	fs_devices->opened = 1;
917 	fs_devices->latest_bdev = latest_dev->bdev;
918 	fs_devices->total_rw_bytes = 0;
919 out:
920 	return ret;
921 }
922 
923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
924 		       fmode_t flags, void *holder)
925 {
926 	int ret;
927 
928 	mutex_lock(&uuid_mutex);
929 	if (fs_devices->opened) {
930 		fs_devices->opened++;
931 		ret = 0;
932 	} else {
933 		ret = __btrfs_open_devices(fs_devices, flags, holder);
934 	}
935 	mutex_unlock(&uuid_mutex);
936 	return ret;
937 }
938 
939 /*
940  * Look for a btrfs signature on a device. This may be called out of the mount path
941  * and we are not allowed to call set_blocksize during the scan. The superblock
942  * is read via pagecache
943  */
944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
945 			  struct btrfs_fs_devices **fs_devices_ret)
946 {
947 	struct btrfs_super_block *disk_super;
948 	struct block_device *bdev;
949 	struct page *page;
950 	void *p;
951 	int ret = -EINVAL;
952 	u64 devid;
953 	u64 transid;
954 	u64 total_devices;
955 	u64 bytenr;
956 	pgoff_t index;
957 
958 	/*
959 	 * we would like to check all the supers, but that would make
960 	 * a btrfs mount succeed after a mkfs from a different FS.
961 	 * So, we need to add a special mount option to scan for
962 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963 	 */
964 	bytenr = btrfs_sb_offset(0);
965 	flags |= FMODE_EXCL;
966 	mutex_lock(&uuid_mutex);
967 
968 	bdev = blkdev_get_by_path(path, flags, holder);
969 
970 	if (IS_ERR(bdev)) {
971 		ret = PTR_ERR(bdev);
972 		goto error;
973 	}
974 
975 	/* make sure our super fits in the device */
976 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977 		goto error_bdev_put;
978 
979 	/* make sure our super fits in the page */
980 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981 		goto error_bdev_put;
982 
983 	/* make sure our super doesn't straddle pages on disk */
984 	index = bytenr >> PAGE_CACHE_SHIFT;
985 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986 		goto error_bdev_put;
987 
988 	/* pull in the page with our super */
989 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990 				   index, GFP_NOFS);
991 
992 	if (IS_ERR_OR_NULL(page))
993 		goto error_bdev_put;
994 
995 	p = kmap(page);
996 
997 	/* align our pointer to the offset of the super block */
998 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999 
1000 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1001 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002 		goto error_unmap;
1003 
1004 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1005 	transid = btrfs_super_generation(disk_super);
1006 	total_devices = btrfs_super_num_devices(disk_super);
1007 
1008 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009 	if (ret > 0) {
1010 		if (disk_super->label[0]) {
1011 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014 		} else {
1015 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016 		}
1017 
1018 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019 		ret = 0;
1020 	}
1021 	if (!ret && fs_devices_ret)
1022 		(*fs_devices_ret)->total_devices = total_devices;
1023 
1024 error_unmap:
1025 	kunmap(page);
1026 	page_cache_release(page);
1027 
1028 error_bdev_put:
1029 	blkdev_put(bdev, flags);
1030 error:
1031 	mutex_unlock(&uuid_mutex);
1032 	return ret;
1033 }
1034 
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037 				   u64 end, u64 *length)
1038 {
1039 	struct btrfs_key key;
1040 	struct btrfs_root *root = device->dev_root;
1041 	struct btrfs_dev_extent *dev_extent;
1042 	struct btrfs_path *path;
1043 	u64 extent_end;
1044 	int ret;
1045 	int slot;
1046 	struct extent_buffer *l;
1047 
1048 	*length = 0;
1049 
1050 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051 		return 0;
1052 
1053 	path = btrfs_alloc_path();
1054 	if (!path)
1055 		return -ENOMEM;
1056 	path->reada = 2;
1057 
1058 	key.objectid = device->devid;
1059 	key.offset = start;
1060 	key.type = BTRFS_DEV_EXTENT_KEY;
1061 
1062 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063 	if (ret < 0)
1064 		goto out;
1065 	if (ret > 0) {
1066 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067 		if (ret < 0)
1068 			goto out;
1069 	}
1070 
1071 	while (1) {
1072 		l = path->nodes[0];
1073 		slot = path->slots[0];
1074 		if (slot >= btrfs_header_nritems(l)) {
1075 			ret = btrfs_next_leaf(root, path);
1076 			if (ret == 0)
1077 				continue;
1078 			if (ret < 0)
1079 				goto out;
1080 
1081 			break;
1082 		}
1083 		btrfs_item_key_to_cpu(l, &key, slot);
1084 
1085 		if (key.objectid < device->devid)
1086 			goto next;
1087 
1088 		if (key.objectid > device->devid)
1089 			break;
1090 
1091 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1092 			goto next;
1093 
1094 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095 		extent_end = key.offset + btrfs_dev_extent_length(l,
1096 								  dev_extent);
1097 		if (key.offset <= start && extent_end > end) {
1098 			*length = end - start + 1;
1099 			break;
1100 		} else if (key.offset <= start && extent_end > start)
1101 			*length += extent_end - start;
1102 		else if (key.offset > start && extent_end <= end)
1103 			*length += extent_end - key.offset;
1104 		else if (key.offset > start && key.offset <= end) {
1105 			*length += end - key.offset + 1;
1106 			break;
1107 		} else if (key.offset > end)
1108 			break;
1109 
1110 next:
1111 		path->slots[0]++;
1112 	}
1113 	ret = 0;
1114 out:
1115 	btrfs_free_path(path);
1116 	return ret;
1117 }
1118 
1119 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1120 				   struct btrfs_device *device,
1121 				   u64 *start, u64 len)
1122 {
1123 	struct extent_map *em;
1124 	struct list_head *search_list = &trans->transaction->pending_chunks;
1125 	int ret = 0;
1126 	u64 physical_start = *start;
1127 
1128 again:
1129 	list_for_each_entry(em, search_list, list) {
1130 		struct map_lookup *map;
1131 		int i;
1132 
1133 		map = (struct map_lookup *)em->bdev;
1134 		for (i = 0; i < map->num_stripes; i++) {
1135 			u64 end;
1136 
1137 			if (map->stripes[i].dev != device)
1138 				continue;
1139 			if (map->stripes[i].physical >= physical_start + len ||
1140 			    map->stripes[i].physical + em->orig_block_len <=
1141 			    physical_start)
1142 				continue;
1143 			/*
1144 			 * Make sure that while processing the pinned list we do
1145 			 * not override our *start with a lower value, because
1146 			 * we can have pinned chunks that fall within this
1147 			 * device hole and that have lower physical addresses
1148 			 * than the pending chunks we processed before. If we
1149 			 * do not take this special care we can end up getting
1150 			 * 2 pending chunks that start at the same physical
1151 			 * device offsets because the end offset of a pinned
1152 			 * chunk can be equal to the start offset of some
1153 			 * pending chunk.
1154 			 */
1155 			end = map->stripes[i].physical + em->orig_block_len;
1156 			if (end > *start) {
1157 				*start = end;
1158 				ret = 1;
1159 			}
1160 		}
1161 	}
1162 	if (search_list == &trans->transaction->pending_chunks) {
1163 		search_list = &trans->root->fs_info->pinned_chunks;
1164 		goto again;
1165 	}
1166 
1167 	return ret;
1168 }
1169 
1170 
1171 /*
1172  * find_free_dev_extent - find free space in the specified device
1173  * @device:	the device which we search the free space in
1174  * @num_bytes:	the size of the free space that we need
1175  * @start:	store the start of the free space.
1176  * @len:	the size of the free space. that we find, or the size of the max
1177  * 		free space if we don't find suitable free space
1178  *
1179  * this uses a pretty simple search, the expectation is that it is
1180  * called very infrequently and that a given device has a small number
1181  * of extents
1182  *
1183  * @start is used to store the start of the free space if we find. But if we
1184  * don't find suitable free space, it will be used to store the start position
1185  * of the max free space.
1186  *
1187  * @len is used to store the size of the free space that we find.
1188  * But if we don't find suitable free space, it is used to store the size of
1189  * the max free space.
1190  */
1191 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1192 			 struct btrfs_device *device, u64 num_bytes,
1193 			 u64 *start, u64 *len)
1194 {
1195 	struct btrfs_key key;
1196 	struct btrfs_root *root = device->dev_root;
1197 	struct btrfs_dev_extent *dev_extent;
1198 	struct btrfs_path *path;
1199 	u64 hole_size;
1200 	u64 max_hole_start;
1201 	u64 max_hole_size;
1202 	u64 extent_end;
1203 	u64 search_start;
1204 	u64 search_end = device->total_bytes;
1205 	int ret;
1206 	int slot;
1207 	struct extent_buffer *l;
1208 
1209 	/* FIXME use last free of some kind */
1210 
1211 	/* we don't want to overwrite the superblock on the drive,
1212 	 * so we make sure to start at an offset of at least 1MB
1213 	 */
1214 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1215 
1216 	path = btrfs_alloc_path();
1217 	if (!path)
1218 		return -ENOMEM;
1219 
1220 	max_hole_start = search_start;
1221 	max_hole_size = 0;
1222 
1223 again:
1224 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1225 		ret = -ENOSPC;
1226 		goto out;
1227 	}
1228 
1229 	path->reada = 2;
1230 	path->search_commit_root = 1;
1231 	path->skip_locking = 1;
1232 
1233 	key.objectid = device->devid;
1234 	key.offset = search_start;
1235 	key.type = BTRFS_DEV_EXTENT_KEY;
1236 
1237 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1238 	if (ret < 0)
1239 		goto out;
1240 	if (ret > 0) {
1241 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1242 		if (ret < 0)
1243 			goto out;
1244 	}
1245 
1246 	while (1) {
1247 		l = path->nodes[0];
1248 		slot = path->slots[0];
1249 		if (slot >= btrfs_header_nritems(l)) {
1250 			ret = btrfs_next_leaf(root, path);
1251 			if (ret == 0)
1252 				continue;
1253 			if (ret < 0)
1254 				goto out;
1255 
1256 			break;
1257 		}
1258 		btrfs_item_key_to_cpu(l, &key, slot);
1259 
1260 		if (key.objectid < device->devid)
1261 			goto next;
1262 
1263 		if (key.objectid > device->devid)
1264 			break;
1265 
1266 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1267 			goto next;
1268 
1269 		if (key.offset > search_start) {
1270 			hole_size = key.offset - search_start;
1271 
1272 			/*
1273 			 * Have to check before we set max_hole_start, otherwise
1274 			 * we could end up sending back this offset anyway.
1275 			 */
1276 			if (contains_pending_extent(trans, device,
1277 						    &search_start,
1278 						    hole_size)) {
1279 				if (key.offset >= search_start) {
1280 					hole_size = key.offset - search_start;
1281 				} else {
1282 					WARN_ON_ONCE(1);
1283 					hole_size = 0;
1284 				}
1285 			}
1286 
1287 			if (hole_size > max_hole_size) {
1288 				max_hole_start = search_start;
1289 				max_hole_size = hole_size;
1290 			}
1291 
1292 			/*
1293 			 * If this free space is greater than which we need,
1294 			 * it must be the max free space that we have found
1295 			 * until now, so max_hole_start must point to the start
1296 			 * of this free space and the length of this free space
1297 			 * is stored in max_hole_size. Thus, we return
1298 			 * max_hole_start and max_hole_size and go back to the
1299 			 * caller.
1300 			 */
1301 			if (hole_size >= num_bytes) {
1302 				ret = 0;
1303 				goto out;
1304 			}
1305 		}
1306 
1307 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1308 		extent_end = key.offset + btrfs_dev_extent_length(l,
1309 								  dev_extent);
1310 		if (extent_end > search_start)
1311 			search_start = extent_end;
1312 next:
1313 		path->slots[0]++;
1314 		cond_resched();
1315 	}
1316 
1317 	/*
1318 	 * At this point, search_start should be the end of
1319 	 * allocated dev extents, and when shrinking the device,
1320 	 * search_end may be smaller than search_start.
1321 	 */
1322 	if (search_end > search_start) {
1323 		hole_size = search_end - search_start;
1324 
1325 		if (contains_pending_extent(trans, device, &search_start,
1326 					    hole_size)) {
1327 			btrfs_release_path(path);
1328 			goto again;
1329 		}
1330 
1331 		if (hole_size > max_hole_size) {
1332 			max_hole_start = search_start;
1333 			max_hole_size = hole_size;
1334 		}
1335 	}
1336 
1337 	/* See above. */
1338 	if (max_hole_size < num_bytes)
1339 		ret = -ENOSPC;
1340 	else
1341 		ret = 0;
1342 
1343 out:
1344 	btrfs_free_path(path);
1345 	*start = max_hole_start;
1346 	if (len)
1347 		*len = max_hole_size;
1348 	return ret;
1349 }
1350 
1351 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1352 			  struct btrfs_device *device,
1353 			  u64 start, u64 *dev_extent_len)
1354 {
1355 	int ret;
1356 	struct btrfs_path *path;
1357 	struct btrfs_root *root = device->dev_root;
1358 	struct btrfs_key key;
1359 	struct btrfs_key found_key;
1360 	struct extent_buffer *leaf = NULL;
1361 	struct btrfs_dev_extent *extent = NULL;
1362 
1363 	path = btrfs_alloc_path();
1364 	if (!path)
1365 		return -ENOMEM;
1366 
1367 	key.objectid = device->devid;
1368 	key.offset = start;
1369 	key.type = BTRFS_DEV_EXTENT_KEY;
1370 again:
1371 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1372 	if (ret > 0) {
1373 		ret = btrfs_previous_item(root, path, key.objectid,
1374 					  BTRFS_DEV_EXTENT_KEY);
1375 		if (ret)
1376 			goto out;
1377 		leaf = path->nodes[0];
1378 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1379 		extent = btrfs_item_ptr(leaf, path->slots[0],
1380 					struct btrfs_dev_extent);
1381 		BUG_ON(found_key.offset > start || found_key.offset +
1382 		       btrfs_dev_extent_length(leaf, extent) < start);
1383 		key = found_key;
1384 		btrfs_release_path(path);
1385 		goto again;
1386 	} else if (ret == 0) {
1387 		leaf = path->nodes[0];
1388 		extent = btrfs_item_ptr(leaf, path->slots[0],
1389 					struct btrfs_dev_extent);
1390 	} else {
1391 		btrfs_error(root->fs_info, ret, "Slot search failed");
1392 		goto out;
1393 	}
1394 
1395 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1396 
1397 	ret = btrfs_del_item(trans, root, path);
1398 	if (ret) {
1399 		btrfs_error(root->fs_info, ret,
1400 			    "Failed to remove dev extent item");
1401 	} else {
1402 		trans->transaction->have_free_bgs = 1;
1403 	}
1404 out:
1405 	btrfs_free_path(path);
1406 	return ret;
1407 }
1408 
1409 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1410 				  struct btrfs_device *device,
1411 				  u64 chunk_tree, u64 chunk_objectid,
1412 				  u64 chunk_offset, u64 start, u64 num_bytes)
1413 {
1414 	int ret;
1415 	struct btrfs_path *path;
1416 	struct btrfs_root *root = device->dev_root;
1417 	struct btrfs_dev_extent *extent;
1418 	struct extent_buffer *leaf;
1419 	struct btrfs_key key;
1420 
1421 	WARN_ON(!device->in_fs_metadata);
1422 	WARN_ON(device->is_tgtdev_for_dev_replace);
1423 	path = btrfs_alloc_path();
1424 	if (!path)
1425 		return -ENOMEM;
1426 
1427 	key.objectid = device->devid;
1428 	key.offset = start;
1429 	key.type = BTRFS_DEV_EXTENT_KEY;
1430 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1431 				      sizeof(*extent));
1432 	if (ret)
1433 		goto out;
1434 
1435 	leaf = path->nodes[0];
1436 	extent = btrfs_item_ptr(leaf, path->slots[0],
1437 				struct btrfs_dev_extent);
1438 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1439 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1440 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1441 
1442 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1443 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1444 
1445 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1446 	btrfs_mark_buffer_dirty(leaf);
1447 out:
1448 	btrfs_free_path(path);
1449 	return ret;
1450 }
1451 
1452 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1453 {
1454 	struct extent_map_tree *em_tree;
1455 	struct extent_map *em;
1456 	struct rb_node *n;
1457 	u64 ret = 0;
1458 
1459 	em_tree = &fs_info->mapping_tree.map_tree;
1460 	read_lock(&em_tree->lock);
1461 	n = rb_last(&em_tree->map);
1462 	if (n) {
1463 		em = rb_entry(n, struct extent_map, rb_node);
1464 		ret = em->start + em->len;
1465 	}
1466 	read_unlock(&em_tree->lock);
1467 
1468 	return ret;
1469 }
1470 
1471 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1472 				    u64 *devid_ret)
1473 {
1474 	int ret;
1475 	struct btrfs_key key;
1476 	struct btrfs_key found_key;
1477 	struct btrfs_path *path;
1478 
1479 	path = btrfs_alloc_path();
1480 	if (!path)
1481 		return -ENOMEM;
1482 
1483 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1484 	key.type = BTRFS_DEV_ITEM_KEY;
1485 	key.offset = (u64)-1;
1486 
1487 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1488 	if (ret < 0)
1489 		goto error;
1490 
1491 	BUG_ON(ret == 0); /* Corruption */
1492 
1493 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1494 				  BTRFS_DEV_ITEMS_OBJECTID,
1495 				  BTRFS_DEV_ITEM_KEY);
1496 	if (ret) {
1497 		*devid_ret = 1;
1498 	} else {
1499 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1500 				      path->slots[0]);
1501 		*devid_ret = found_key.offset + 1;
1502 	}
1503 	ret = 0;
1504 error:
1505 	btrfs_free_path(path);
1506 	return ret;
1507 }
1508 
1509 /*
1510  * the device information is stored in the chunk root
1511  * the btrfs_device struct should be fully filled in
1512  */
1513 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1514 			    struct btrfs_root *root,
1515 			    struct btrfs_device *device)
1516 {
1517 	int ret;
1518 	struct btrfs_path *path;
1519 	struct btrfs_dev_item *dev_item;
1520 	struct extent_buffer *leaf;
1521 	struct btrfs_key key;
1522 	unsigned long ptr;
1523 
1524 	root = root->fs_info->chunk_root;
1525 
1526 	path = btrfs_alloc_path();
1527 	if (!path)
1528 		return -ENOMEM;
1529 
1530 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1531 	key.type = BTRFS_DEV_ITEM_KEY;
1532 	key.offset = device->devid;
1533 
1534 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1535 				      sizeof(*dev_item));
1536 	if (ret)
1537 		goto out;
1538 
1539 	leaf = path->nodes[0];
1540 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1541 
1542 	btrfs_set_device_id(leaf, dev_item, device->devid);
1543 	btrfs_set_device_generation(leaf, dev_item, 0);
1544 	btrfs_set_device_type(leaf, dev_item, device->type);
1545 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1546 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1547 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1548 	btrfs_set_device_total_bytes(leaf, dev_item,
1549 				     btrfs_device_get_disk_total_bytes(device));
1550 	btrfs_set_device_bytes_used(leaf, dev_item,
1551 				    btrfs_device_get_bytes_used(device));
1552 	btrfs_set_device_group(leaf, dev_item, 0);
1553 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1554 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1555 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1556 
1557 	ptr = btrfs_device_uuid(dev_item);
1558 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1559 	ptr = btrfs_device_fsid(dev_item);
1560 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1561 	btrfs_mark_buffer_dirty(leaf);
1562 
1563 	ret = 0;
1564 out:
1565 	btrfs_free_path(path);
1566 	return ret;
1567 }
1568 
1569 /*
1570  * Function to update ctime/mtime for a given device path.
1571  * Mainly used for ctime/mtime based probe like libblkid.
1572  */
1573 static void update_dev_time(char *path_name)
1574 {
1575 	struct file *filp;
1576 
1577 	filp = filp_open(path_name, O_RDWR, 0);
1578 	if (IS_ERR(filp))
1579 		return;
1580 	file_update_time(filp);
1581 	filp_close(filp, NULL);
1582 	return;
1583 }
1584 
1585 static int btrfs_rm_dev_item(struct btrfs_root *root,
1586 			     struct btrfs_device *device)
1587 {
1588 	int ret;
1589 	struct btrfs_path *path;
1590 	struct btrfs_key key;
1591 	struct btrfs_trans_handle *trans;
1592 
1593 	root = root->fs_info->chunk_root;
1594 
1595 	path = btrfs_alloc_path();
1596 	if (!path)
1597 		return -ENOMEM;
1598 
1599 	trans = btrfs_start_transaction(root, 0);
1600 	if (IS_ERR(trans)) {
1601 		btrfs_free_path(path);
1602 		return PTR_ERR(trans);
1603 	}
1604 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1605 	key.type = BTRFS_DEV_ITEM_KEY;
1606 	key.offset = device->devid;
1607 
1608 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1609 	if (ret < 0)
1610 		goto out;
1611 
1612 	if (ret > 0) {
1613 		ret = -ENOENT;
1614 		goto out;
1615 	}
1616 
1617 	ret = btrfs_del_item(trans, root, path);
1618 	if (ret)
1619 		goto out;
1620 out:
1621 	btrfs_free_path(path);
1622 	btrfs_commit_transaction(trans, root);
1623 	return ret;
1624 }
1625 
1626 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1627 {
1628 	struct btrfs_device *device;
1629 	struct btrfs_device *next_device;
1630 	struct block_device *bdev;
1631 	struct buffer_head *bh = NULL;
1632 	struct btrfs_super_block *disk_super;
1633 	struct btrfs_fs_devices *cur_devices;
1634 	u64 all_avail;
1635 	u64 devid;
1636 	u64 num_devices;
1637 	u8 *dev_uuid;
1638 	unsigned seq;
1639 	int ret = 0;
1640 	bool clear_super = false;
1641 
1642 	mutex_lock(&uuid_mutex);
1643 
1644 	do {
1645 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1646 
1647 		all_avail = root->fs_info->avail_data_alloc_bits |
1648 			    root->fs_info->avail_system_alloc_bits |
1649 			    root->fs_info->avail_metadata_alloc_bits;
1650 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1651 
1652 	num_devices = root->fs_info->fs_devices->num_devices;
1653 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1654 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1655 		WARN_ON(num_devices < 1);
1656 		num_devices--;
1657 	}
1658 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1659 
1660 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1661 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1662 		goto out;
1663 	}
1664 
1665 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1666 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1667 		goto out;
1668 	}
1669 
1670 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1671 	    root->fs_info->fs_devices->rw_devices <= 2) {
1672 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1673 		goto out;
1674 	}
1675 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1676 	    root->fs_info->fs_devices->rw_devices <= 3) {
1677 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1678 		goto out;
1679 	}
1680 
1681 	if (strcmp(device_path, "missing") == 0) {
1682 		struct list_head *devices;
1683 		struct btrfs_device *tmp;
1684 
1685 		device = NULL;
1686 		devices = &root->fs_info->fs_devices->devices;
1687 		/*
1688 		 * It is safe to read the devices since the volume_mutex
1689 		 * is held.
1690 		 */
1691 		list_for_each_entry(tmp, devices, dev_list) {
1692 			if (tmp->in_fs_metadata &&
1693 			    !tmp->is_tgtdev_for_dev_replace &&
1694 			    !tmp->bdev) {
1695 				device = tmp;
1696 				break;
1697 			}
1698 		}
1699 		bdev = NULL;
1700 		bh = NULL;
1701 		disk_super = NULL;
1702 		if (!device) {
1703 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1704 			goto out;
1705 		}
1706 	} else {
1707 		ret = btrfs_get_bdev_and_sb(device_path,
1708 					    FMODE_WRITE | FMODE_EXCL,
1709 					    root->fs_info->bdev_holder, 0,
1710 					    &bdev, &bh);
1711 		if (ret)
1712 			goto out;
1713 		disk_super = (struct btrfs_super_block *)bh->b_data;
1714 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1715 		dev_uuid = disk_super->dev_item.uuid;
1716 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1717 					   disk_super->fsid);
1718 		if (!device) {
1719 			ret = -ENOENT;
1720 			goto error_brelse;
1721 		}
1722 	}
1723 
1724 	if (device->is_tgtdev_for_dev_replace) {
1725 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1726 		goto error_brelse;
1727 	}
1728 
1729 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1730 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1731 		goto error_brelse;
1732 	}
1733 
1734 	if (device->writeable) {
1735 		lock_chunks(root);
1736 		list_del_init(&device->dev_alloc_list);
1737 		device->fs_devices->rw_devices--;
1738 		unlock_chunks(root);
1739 		clear_super = true;
1740 	}
1741 
1742 	mutex_unlock(&uuid_mutex);
1743 	ret = btrfs_shrink_device(device, 0);
1744 	mutex_lock(&uuid_mutex);
1745 	if (ret)
1746 		goto error_undo;
1747 
1748 	/*
1749 	 * TODO: the superblock still includes this device in its num_devices
1750 	 * counter although write_all_supers() is not locked out. This
1751 	 * could give a filesystem state which requires a degraded mount.
1752 	 */
1753 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1754 	if (ret)
1755 		goto error_undo;
1756 
1757 	device->in_fs_metadata = 0;
1758 	btrfs_scrub_cancel_dev(root->fs_info, device);
1759 
1760 	/*
1761 	 * the device list mutex makes sure that we don't change
1762 	 * the device list while someone else is writing out all
1763 	 * the device supers. Whoever is writing all supers, should
1764 	 * lock the device list mutex before getting the number of
1765 	 * devices in the super block (super_copy). Conversely,
1766 	 * whoever updates the number of devices in the super block
1767 	 * (super_copy) should hold the device list mutex.
1768 	 */
1769 
1770 	cur_devices = device->fs_devices;
1771 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1772 	list_del_rcu(&device->dev_list);
1773 
1774 	device->fs_devices->num_devices--;
1775 	device->fs_devices->total_devices--;
1776 
1777 	if (device->missing)
1778 		device->fs_devices->missing_devices--;
1779 
1780 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1781 				 struct btrfs_device, dev_list);
1782 	if (device->bdev == root->fs_info->sb->s_bdev)
1783 		root->fs_info->sb->s_bdev = next_device->bdev;
1784 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1785 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1786 
1787 	if (device->bdev) {
1788 		device->fs_devices->open_devices--;
1789 		/* remove sysfs entry */
1790 		btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
1791 	}
1792 
1793 	call_rcu(&device->rcu, free_device);
1794 
1795 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1796 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1797 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1798 
1799 	if (cur_devices->open_devices == 0) {
1800 		struct btrfs_fs_devices *fs_devices;
1801 		fs_devices = root->fs_info->fs_devices;
1802 		while (fs_devices) {
1803 			if (fs_devices->seed == cur_devices) {
1804 				fs_devices->seed = cur_devices->seed;
1805 				break;
1806 			}
1807 			fs_devices = fs_devices->seed;
1808 		}
1809 		cur_devices->seed = NULL;
1810 		__btrfs_close_devices(cur_devices);
1811 		free_fs_devices(cur_devices);
1812 	}
1813 
1814 	root->fs_info->num_tolerated_disk_barrier_failures =
1815 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1816 
1817 	/*
1818 	 * at this point, the device is zero sized.  We want to
1819 	 * remove it from the devices list and zero out the old super
1820 	 */
1821 	if (clear_super && disk_super) {
1822 		u64 bytenr;
1823 		int i;
1824 
1825 		/* make sure this device isn't detected as part of
1826 		 * the FS anymore
1827 		 */
1828 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1829 		set_buffer_dirty(bh);
1830 		sync_dirty_buffer(bh);
1831 
1832 		/* clear the mirror copies of super block on the disk
1833 		 * being removed, 0th copy is been taken care above and
1834 		 * the below would take of the rest
1835 		 */
1836 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1837 			bytenr = btrfs_sb_offset(i);
1838 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1839 					i_size_read(bdev->bd_inode))
1840 				break;
1841 
1842 			brelse(bh);
1843 			bh = __bread(bdev, bytenr / 4096,
1844 					BTRFS_SUPER_INFO_SIZE);
1845 			if (!bh)
1846 				continue;
1847 
1848 			disk_super = (struct btrfs_super_block *)bh->b_data;
1849 
1850 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1851 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1852 				continue;
1853 			}
1854 			memset(&disk_super->magic, 0,
1855 						sizeof(disk_super->magic));
1856 			set_buffer_dirty(bh);
1857 			sync_dirty_buffer(bh);
1858 		}
1859 	}
1860 
1861 	ret = 0;
1862 
1863 	if (bdev) {
1864 		/* Notify udev that device has changed */
1865 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1866 
1867 		/* Update ctime/mtime for device path for libblkid */
1868 		update_dev_time(device_path);
1869 	}
1870 
1871 error_brelse:
1872 	brelse(bh);
1873 	if (bdev)
1874 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1875 out:
1876 	mutex_unlock(&uuid_mutex);
1877 	return ret;
1878 error_undo:
1879 	if (device->writeable) {
1880 		lock_chunks(root);
1881 		list_add(&device->dev_alloc_list,
1882 			 &root->fs_info->fs_devices->alloc_list);
1883 		device->fs_devices->rw_devices++;
1884 		unlock_chunks(root);
1885 	}
1886 	goto error_brelse;
1887 }
1888 
1889 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1890 					struct btrfs_device *srcdev)
1891 {
1892 	struct btrfs_fs_devices *fs_devices;
1893 
1894 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1895 
1896 	/*
1897 	 * in case of fs with no seed, srcdev->fs_devices will point
1898 	 * to fs_devices of fs_info. However when the dev being replaced is
1899 	 * a seed dev it will point to the seed's local fs_devices. In short
1900 	 * srcdev will have its correct fs_devices in both the cases.
1901 	 */
1902 	fs_devices = srcdev->fs_devices;
1903 
1904 	list_del_rcu(&srcdev->dev_list);
1905 	list_del_rcu(&srcdev->dev_alloc_list);
1906 	fs_devices->num_devices--;
1907 	if (srcdev->missing)
1908 		fs_devices->missing_devices--;
1909 
1910 	if (srcdev->writeable) {
1911 		fs_devices->rw_devices--;
1912 		/* zero out the old super if it is writable */
1913 		btrfs_scratch_superblock(srcdev);
1914 	}
1915 
1916 	if (srcdev->bdev)
1917 		fs_devices->open_devices--;
1918 }
1919 
1920 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1921 				      struct btrfs_device *srcdev)
1922 {
1923 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1924 
1925 	call_rcu(&srcdev->rcu, free_device);
1926 
1927 	/*
1928 	 * unless fs_devices is seed fs, num_devices shouldn't go
1929 	 * zero
1930 	 */
1931 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1932 
1933 	/* if this is no devs we rather delete the fs_devices */
1934 	if (!fs_devices->num_devices) {
1935 		struct btrfs_fs_devices *tmp_fs_devices;
1936 
1937 		tmp_fs_devices = fs_info->fs_devices;
1938 		while (tmp_fs_devices) {
1939 			if (tmp_fs_devices->seed == fs_devices) {
1940 				tmp_fs_devices->seed = fs_devices->seed;
1941 				break;
1942 			}
1943 			tmp_fs_devices = tmp_fs_devices->seed;
1944 		}
1945 		fs_devices->seed = NULL;
1946 		__btrfs_close_devices(fs_devices);
1947 		free_fs_devices(fs_devices);
1948 	}
1949 }
1950 
1951 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1952 				      struct btrfs_device *tgtdev)
1953 {
1954 	struct btrfs_device *next_device;
1955 
1956 	mutex_lock(&uuid_mutex);
1957 	WARN_ON(!tgtdev);
1958 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1959 
1960 	btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1961 
1962 	if (tgtdev->bdev) {
1963 		btrfs_scratch_superblock(tgtdev);
1964 		fs_info->fs_devices->open_devices--;
1965 	}
1966 	fs_info->fs_devices->num_devices--;
1967 
1968 	next_device = list_entry(fs_info->fs_devices->devices.next,
1969 				 struct btrfs_device, dev_list);
1970 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1971 		fs_info->sb->s_bdev = next_device->bdev;
1972 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1973 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1974 	list_del_rcu(&tgtdev->dev_list);
1975 
1976 	call_rcu(&tgtdev->rcu, free_device);
1977 
1978 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1979 	mutex_unlock(&uuid_mutex);
1980 }
1981 
1982 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1983 				     struct btrfs_device **device)
1984 {
1985 	int ret = 0;
1986 	struct btrfs_super_block *disk_super;
1987 	u64 devid;
1988 	u8 *dev_uuid;
1989 	struct block_device *bdev;
1990 	struct buffer_head *bh;
1991 
1992 	*device = NULL;
1993 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1994 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1995 	if (ret)
1996 		return ret;
1997 	disk_super = (struct btrfs_super_block *)bh->b_data;
1998 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1999 	dev_uuid = disk_super->dev_item.uuid;
2000 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2001 				    disk_super->fsid);
2002 	brelse(bh);
2003 	if (!*device)
2004 		ret = -ENOENT;
2005 	blkdev_put(bdev, FMODE_READ);
2006 	return ret;
2007 }
2008 
2009 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2010 					 char *device_path,
2011 					 struct btrfs_device **device)
2012 {
2013 	*device = NULL;
2014 	if (strcmp(device_path, "missing") == 0) {
2015 		struct list_head *devices;
2016 		struct btrfs_device *tmp;
2017 
2018 		devices = &root->fs_info->fs_devices->devices;
2019 		/*
2020 		 * It is safe to read the devices since the volume_mutex
2021 		 * is held by the caller.
2022 		 */
2023 		list_for_each_entry(tmp, devices, dev_list) {
2024 			if (tmp->in_fs_metadata && !tmp->bdev) {
2025 				*device = tmp;
2026 				break;
2027 			}
2028 		}
2029 
2030 		if (!*device) {
2031 			btrfs_err(root->fs_info, "no missing device found");
2032 			return -ENOENT;
2033 		}
2034 
2035 		return 0;
2036 	} else {
2037 		return btrfs_find_device_by_path(root, device_path, device);
2038 	}
2039 }
2040 
2041 /*
2042  * does all the dirty work required for changing file system's UUID.
2043  */
2044 static int btrfs_prepare_sprout(struct btrfs_root *root)
2045 {
2046 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2047 	struct btrfs_fs_devices *old_devices;
2048 	struct btrfs_fs_devices *seed_devices;
2049 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2050 	struct btrfs_device *device;
2051 	u64 super_flags;
2052 
2053 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2054 	if (!fs_devices->seeding)
2055 		return -EINVAL;
2056 
2057 	seed_devices = __alloc_fs_devices();
2058 	if (IS_ERR(seed_devices))
2059 		return PTR_ERR(seed_devices);
2060 
2061 	old_devices = clone_fs_devices(fs_devices);
2062 	if (IS_ERR(old_devices)) {
2063 		kfree(seed_devices);
2064 		return PTR_ERR(old_devices);
2065 	}
2066 
2067 	list_add(&old_devices->list, &fs_uuids);
2068 
2069 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2070 	seed_devices->opened = 1;
2071 	INIT_LIST_HEAD(&seed_devices->devices);
2072 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2073 	mutex_init(&seed_devices->device_list_mutex);
2074 
2075 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2076 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2077 			      synchronize_rcu);
2078 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2079 		device->fs_devices = seed_devices;
2080 
2081 	lock_chunks(root);
2082 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2083 	unlock_chunks(root);
2084 
2085 	fs_devices->seeding = 0;
2086 	fs_devices->num_devices = 0;
2087 	fs_devices->open_devices = 0;
2088 	fs_devices->missing_devices = 0;
2089 	fs_devices->rotating = 0;
2090 	fs_devices->seed = seed_devices;
2091 
2092 	generate_random_uuid(fs_devices->fsid);
2093 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2094 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2095 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2096 
2097 	super_flags = btrfs_super_flags(disk_super) &
2098 		      ~BTRFS_SUPER_FLAG_SEEDING;
2099 	btrfs_set_super_flags(disk_super, super_flags);
2100 
2101 	return 0;
2102 }
2103 
2104 /*
2105  * strore the expected generation for seed devices in device items.
2106  */
2107 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2108 			       struct btrfs_root *root)
2109 {
2110 	struct btrfs_path *path;
2111 	struct extent_buffer *leaf;
2112 	struct btrfs_dev_item *dev_item;
2113 	struct btrfs_device *device;
2114 	struct btrfs_key key;
2115 	u8 fs_uuid[BTRFS_UUID_SIZE];
2116 	u8 dev_uuid[BTRFS_UUID_SIZE];
2117 	u64 devid;
2118 	int ret;
2119 
2120 	path = btrfs_alloc_path();
2121 	if (!path)
2122 		return -ENOMEM;
2123 
2124 	root = root->fs_info->chunk_root;
2125 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2126 	key.offset = 0;
2127 	key.type = BTRFS_DEV_ITEM_KEY;
2128 
2129 	while (1) {
2130 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2131 		if (ret < 0)
2132 			goto error;
2133 
2134 		leaf = path->nodes[0];
2135 next_slot:
2136 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2137 			ret = btrfs_next_leaf(root, path);
2138 			if (ret > 0)
2139 				break;
2140 			if (ret < 0)
2141 				goto error;
2142 			leaf = path->nodes[0];
2143 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2144 			btrfs_release_path(path);
2145 			continue;
2146 		}
2147 
2148 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2149 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2150 		    key.type != BTRFS_DEV_ITEM_KEY)
2151 			break;
2152 
2153 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2154 					  struct btrfs_dev_item);
2155 		devid = btrfs_device_id(leaf, dev_item);
2156 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2157 				   BTRFS_UUID_SIZE);
2158 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2159 				   BTRFS_UUID_SIZE);
2160 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2161 					   fs_uuid);
2162 		BUG_ON(!device); /* Logic error */
2163 
2164 		if (device->fs_devices->seeding) {
2165 			btrfs_set_device_generation(leaf, dev_item,
2166 						    device->generation);
2167 			btrfs_mark_buffer_dirty(leaf);
2168 		}
2169 
2170 		path->slots[0]++;
2171 		goto next_slot;
2172 	}
2173 	ret = 0;
2174 error:
2175 	btrfs_free_path(path);
2176 	return ret;
2177 }
2178 
2179 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2180 {
2181 	struct request_queue *q;
2182 	struct btrfs_trans_handle *trans;
2183 	struct btrfs_device *device;
2184 	struct block_device *bdev;
2185 	struct list_head *devices;
2186 	struct super_block *sb = root->fs_info->sb;
2187 	struct rcu_string *name;
2188 	u64 tmp;
2189 	int seeding_dev = 0;
2190 	int ret = 0;
2191 
2192 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2193 		return -EROFS;
2194 
2195 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2196 				  root->fs_info->bdev_holder);
2197 	if (IS_ERR(bdev))
2198 		return PTR_ERR(bdev);
2199 
2200 	if (root->fs_info->fs_devices->seeding) {
2201 		seeding_dev = 1;
2202 		down_write(&sb->s_umount);
2203 		mutex_lock(&uuid_mutex);
2204 	}
2205 
2206 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2207 
2208 	devices = &root->fs_info->fs_devices->devices;
2209 
2210 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2211 	list_for_each_entry(device, devices, dev_list) {
2212 		if (device->bdev == bdev) {
2213 			ret = -EEXIST;
2214 			mutex_unlock(
2215 				&root->fs_info->fs_devices->device_list_mutex);
2216 			goto error;
2217 		}
2218 	}
2219 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2220 
2221 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2222 	if (IS_ERR(device)) {
2223 		/* we can safely leave the fs_devices entry around */
2224 		ret = PTR_ERR(device);
2225 		goto error;
2226 	}
2227 
2228 	name = rcu_string_strdup(device_path, GFP_NOFS);
2229 	if (!name) {
2230 		kfree(device);
2231 		ret = -ENOMEM;
2232 		goto error;
2233 	}
2234 	rcu_assign_pointer(device->name, name);
2235 
2236 	trans = btrfs_start_transaction(root, 0);
2237 	if (IS_ERR(trans)) {
2238 		rcu_string_free(device->name);
2239 		kfree(device);
2240 		ret = PTR_ERR(trans);
2241 		goto error;
2242 	}
2243 
2244 	q = bdev_get_queue(bdev);
2245 	if (blk_queue_discard(q))
2246 		device->can_discard = 1;
2247 	device->writeable = 1;
2248 	device->generation = trans->transid;
2249 	device->io_width = root->sectorsize;
2250 	device->io_align = root->sectorsize;
2251 	device->sector_size = root->sectorsize;
2252 	device->total_bytes = i_size_read(bdev->bd_inode);
2253 	device->disk_total_bytes = device->total_bytes;
2254 	device->commit_total_bytes = device->total_bytes;
2255 	device->dev_root = root->fs_info->dev_root;
2256 	device->bdev = bdev;
2257 	device->in_fs_metadata = 1;
2258 	device->is_tgtdev_for_dev_replace = 0;
2259 	device->mode = FMODE_EXCL;
2260 	device->dev_stats_valid = 1;
2261 	set_blocksize(device->bdev, 4096);
2262 
2263 	if (seeding_dev) {
2264 		sb->s_flags &= ~MS_RDONLY;
2265 		ret = btrfs_prepare_sprout(root);
2266 		BUG_ON(ret); /* -ENOMEM */
2267 	}
2268 
2269 	device->fs_devices = root->fs_info->fs_devices;
2270 
2271 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2272 	lock_chunks(root);
2273 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2274 	list_add(&device->dev_alloc_list,
2275 		 &root->fs_info->fs_devices->alloc_list);
2276 	root->fs_info->fs_devices->num_devices++;
2277 	root->fs_info->fs_devices->open_devices++;
2278 	root->fs_info->fs_devices->rw_devices++;
2279 	root->fs_info->fs_devices->total_devices++;
2280 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2281 
2282 	spin_lock(&root->fs_info->free_chunk_lock);
2283 	root->fs_info->free_chunk_space += device->total_bytes;
2284 	spin_unlock(&root->fs_info->free_chunk_lock);
2285 
2286 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2287 		root->fs_info->fs_devices->rotating = 1;
2288 
2289 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2290 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2291 				    tmp + device->total_bytes);
2292 
2293 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2294 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2295 				    tmp + 1);
2296 
2297 	/* add sysfs device entry */
2298 	btrfs_kobj_add_device(root->fs_info->fs_devices, device);
2299 
2300 	/*
2301 	 * we've got more storage, clear any full flags on the space
2302 	 * infos
2303 	 */
2304 	btrfs_clear_space_info_full(root->fs_info);
2305 
2306 	unlock_chunks(root);
2307 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308 
2309 	if (seeding_dev) {
2310 		lock_chunks(root);
2311 		ret = init_first_rw_device(trans, root, device);
2312 		unlock_chunks(root);
2313 		if (ret) {
2314 			btrfs_abort_transaction(trans, root, ret);
2315 			goto error_trans;
2316 		}
2317 	}
2318 
2319 	ret = btrfs_add_device(trans, root, device);
2320 	if (ret) {
2321 		btrfs_abort_transaction(trans, root, ret);
2322 		goto error_trans;
2323 	}
2324 
2325 	if (seeding_dev) {
2326 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2327 
2328 		ret = btrfs_finish_sprout(trans, root);
2329 		if (ret) {
2330 			btrfs_abort_transaction(trans, root, ret);
2331 			goto error_trans;
2332 		}
2333 
2334 		/* Sprouting would change fsid of the mounted root,
2335 		 * so rename the fsid on the sysfs
2336 		 */
2337 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2338 						root->fs_info->fsid);
2339 		if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2340 								fsid_buf))
2341 			pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2342 	}
2343 
2344 	root->fs_info->num_tolerated_disk_barrier_failures =
2345 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2346 	ret = btrfs_commit_transaction(trans, root);
2347 
2348 	if (seeding_dev) {
2349 		mutex_unlock(&uuid_mutex);
2350 		up_write(&sb->s_umount);
2351 
2352 		if (ret) /* transaction commit */
2353 			return ret;
2354 
2355 		ret = btrfs_relocate_sys_chunks(root);
2356 		if (ret < 0)
2357 			btrfs_error(root->fs_info, ret,
2358 				    "Failed to relocate sys chunks after "
2359 				    "device initialization. This can be fixed "
2360 				    "using the \"btrfs balance\" command.");
2361 		trans = btrfs_attach_transaction(root);
2362 		if (IS_ERR(trans)) {
2363 			if (PTR_ERR(trans) == -ENOENT)
2364 				return 0;
2365 			return PTR_ERR(trans);
2366 		}
2367 		ret = btrfs_commit_transaction(trans, root);
2368 	}
2369 
2370 	/* Update ctime/mtime for libblkid */
2371 	update_dev_time(device_path);
2372 	return ret;
2373 
2374 error_trans:
2375 	btrfs_end_transaction(trans, root);
2376 	rcu_string_free(device->name);
2377 	btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
2378 	kfree(device);
2379 error:
2380 	blkdev_put(bdev, FMODE_EXCL);
2381 	if (seeding_dev) {
2382 		mutex_unlock(&uuid_mutex);
2383 		up_write(&sb->s_umount);
2384 	}
2385 	return ret;
2386 }
2387 
2388 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2389 				  struct btrfs_device *srcdev,
2390 				  struct btrfs_device **device_out)
2391 {
2392 	struct request_queue *q;
2393 	struct btrfs_device *device;
2394 	struct block_device *bdev;
2395 	struct btrfs_fs_info *fs_info = root->fs_info;
2396 	struct list_head *devices;
2397 	struct rcu_string *name;
2398 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2399 	int ret = 0;
2400 
2401 	*device_out = NULL;
2402 	if (fs_info->fs_devices->seeding) {
2403 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2404 		return -EINVAL;
2405 	}
2406 
2407 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2408 				  fs_info->bdev_holder);
2409 	if (IS_ERR(bdev)) {
2410 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2411 		return PTR_ERR(bdev);
2412 	}
2413 
2414 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415 
2416 	devices = &fs_info->fs_devices->devices;
2417 	list_for_each_entry(device, devices, dev_list) {
2418 		if (device->bdev == bdev) {
2419 			btrfs_err(fs_info, "target device is in the filesystem!");
2420 			ret = -EEXIST;
2421 			goto error;
2422 		}
2423 	}
2424 
2425 
2426 	if (i_size_read(bdev->bd_inode) <
2427 	    btrfs_device_get_total_bytes(srcdev)) {
2428 		btrfs_err(fs_info, "target device is smaller than source device!");
2429 		ret = -EINVAL;
2430 		goto error;
2431 	}
2432 
2433 
2434 	device = btrfs_alloc_device(NULL, &devid, NULL);
2435 	if (IS_ERR(device)) {
2436 		ret = PTR_ERR(device);
2437 		goto error;
2438 	}
2439 
2440 	name = rcu_string_strdup(device_path, GFP_NOFS);
2441 	if (!name) {
2442 		kfree(device);
2443 		ret = -ENOMEM;
2444 		goto error;
2445 	}
2446 	rcu_assign_pointer(device->name, name);
2447 
2448 	q = bdev_get_queue(bdev);
2449 	if (blk_queue_discard(q))
2450 		device->can_discard = 1;
2451 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2452 	device->writeable = 1;
2453 	device->generation = 0;
2454 	device->io_width = root->sectorsize;
2455 	device->io_align = root->sectorsize;
2456 	device->sector_size = root->sectorsize;
2457 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2458 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2459 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2460 	ASSERT(list_empty(&srcdev->resized_list));
2461 	device->commit_total_bytes = srcdev->commit_total_bytes;
2462 	device->commit_bytes_used = device->bytes_used;
2463 	device->dev_root = fs_info->dev_root;
2464 	device->bdev = bdev;
2465 	device->in_fs_metadata = 1;
2466 	device->is_tgtdev_for_dev_replace = 1;
2467 	device->mode = FMODE_EXCL;
2468 	device->dev_stats_valid = 1;
2469 	set_blocksize(device->bdev, 4096);
2470 	device->fs_devices = fs_info->fs_devices;
2471 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2472 	fs_info->fs_devices->num_devices++;
2473 	fs_info->fs_devices->open_devices++;
2474 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2475 
2476 	*device_out = device;
2477 	return ret;
2478 
2479 error:
2480 	blkdev_put(bdev, FMODE_EXCL);
2481 	return ret;
2482 }
2483 
2484 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2485 					      struct btrfs_device *tgtdev)
2486 {
2487 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2488 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2489 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2490 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2491 	tgtdev->dev_root = fs_info->dev_root;
2492 	tgtdev->in_fs_metadata = 1;
2493 }
2494 
2495 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2496 					struct btrfs_device *device)
2497 {
2498 	int ret;
2499 	struct btrfs_path *path;
2500 	struct btrfs_root *root;
2501 	struct btrfs_dev_item *dev_item;
2502 	struct extent_buffer *leaf;
2503 	struct btrfs_key key;
2504 
2505 	root = device->dev_root->fs_info->chunk_root;
2506 
2507 	path = btrfs_alloc_path();
2508 	if (!path)
2509 		return -ENOMEM;
2510 
2511 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512 	key.type = BTRFS_DEV_ITEM_KEY;
2513 	key.offset = device->devid;
2514 
2515 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2516 	if (ret < 0)
2517 		goto out;
2518 
2519 	if (ret > 0) {
2520 		ret = -ENOENT;
2521 		goto out;
2522 	}
2523 
2524 	leaf = path->nodes[0];
2525 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2526 
2527 	btrfs_set_device_id(leaf, dev_item, device->devid);
2528 	btrfs_set_device_type(leaf, dev_item, device->type);
2529 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2530 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2531 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2532 	btrfs_set_device_total_bytes(leaf, dev_item,
2533 				     btrfs_device_get_disk_total_bytes(device));
2534 	btrfs_set_device_bytes_used(leaf, dev_item,
2535 				    btrfs_device_get_bytes_used(device));
2536 	btrfs_mark_buffer_dirty(leaf);
2537 
2538 out:
2539 	btrfs_free_path(path);
2540 	return ret;
2541 }
2542 
2543 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2544 		      struct btrfs_device *device, u64 new_size)
2545 {
2546 	struct btrfs_super_block *super_copy =
2547 		device->dev_root->fs_info->super_copy;
2548 	struct btrfs_fs_devices *fs_devices;
2549 	u64 old_total;
2550 	u64 diff;
2551 
2552 	if (!device->writeable)
2553 		return -EACCES;
2554 
2555 	lock_chunks(device->dev_root);
2556 	old_total = btrfs_super_total_bytes(super_copy);
2557 	diff = new_size - device->total_bytes;
2558 
2559 	if (new_size <= device->total_bytes ||
2560 	    device->is_tgtdev_for_dev_replace) {
2561 		unlock_chunks(device->dev_root);
2562 		return -EINVAL;
2563 	}
2564 
2565 	fs_devices = device->dev_root->fs_info->fs_devices;
2566 
2567 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2568 	device->fs_devices->total_rw_bytes += diff;
2569 
2570 	btrfs_device_set_total_bytes(device, new_size);
2571 	btrfs_device_set_disk_total_bytes(device, new_size);
2572 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2573 	if (list_empty(&device->resized_list))
2574 		list_add_tail(&device->resized_list,
2575 			      &fs_devices->resized_devices);
2576 	unlock_chunks(device->dev_root);
2577 
2578 	return btrfs_update_device(trans, device);
2579 }
2580 
2581 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2582 			    struct btrfs_root *root, u64 chunk_objectid,
2583 			    u64 chunk_offset)
2584 {
2585 	int ret;
2586 	struct btrfs_path *path;
2587 	struct btrfs_key key;
2588 
2589 	root = root->fs_info->chunk_root;
2590 	path = btrfs_alloc_path();
2591 	if (!path)
2592 		return -ENOMEM;
2593 
2594 	key.objectid = chunk_objectid;
2595 	key.offset = chunk_offset;
2596 	key.type = BTRFS_CHUNK_ITEM_KEY;
2597 
2598 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2599 	if (ret < 0)
2600 		goto out;
2601 	else if (ret > 0) { /* Logic error or corruption */
2602 		btrfs_error(root->fs_info, -ENOENT,
2603 			    "Failed lookup while freeing chunk.");
2604 		ret = -ENOENT;
2605 		goto out;
2606 	}
2607 
2608 	ret = btrfs_del_item(trans, root, path);
2609 	if (ret < 0)
2610 		btrfs_error(root->fs_info, ret,
2611 			    "Failed to delete chunk item.");
2612 out:
2613 	btrfs_free_path(path);
2614 	return ret;
2615 }
2616 
2617 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2618 			chunk_offset)
2619 {
2620 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2621 	struct btrfs_disk_key *disk_key;
2622 	struct btrfs_chunk *chunk;
2623 	u8 *ptr;
2624 	int ret = 0;
2625 	u32 num_stripes;
2626 	u32 array_size;
2627 	u32 len = 0;
2628 	u32 cur;
2629 	struct btrfs_key key;
2630 
2631 	lock_chunks(root);
2632 	array_size = btrfs_super_sys_array_size(super_copy);
2633 
2634 	ptr = super_copy->sys_chunk_array;
2635 	cur = 0;
2636 
2637 	while (cur < array_size) {
2638 		disk_key = (struct btrfs_disk_key *)ptr;
2639 		btrfs_disk_key_to_cpu(&key, disk_key);
2640 
2641 		len = sizeof(*disk_key);
2642 
2643 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2644 			chunk = (struct btrfs_chunk *)(ptr + len);
2645 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2646 			len += btrfs_chunk_item_size(num_stripes);
2647 		} else {
2648 			ret = -EIO;
2649 			break;
2650 		}
2651 		if (key.objectid == chunk_objectid &&
2652 		    key.offset == chunk_offset) {
2653 			memmove(ptr, ptr + len, array_size - (cur + len));
2654 			array_size -= len;
2655 			btrfs_set_super_sys_array_size(super_copy, array_size);
2656 		} else {
2657 			ptr += len;
2658 			cur += len;
2659 		}
2660 	}
2661 	unlock_chunks(root);
2662 	return ret;
2663 }
2664 
2665 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2666 		       struct btrfs_root *root, u64 chunk_offset)
2667 {
2668 	struct extent_map_tree *em_tree;
2669 	struct extent_map *em;
2670 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2671 	struct map_lookup *map;
2672 	u64 dev_extent_len = 0;
2673 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2674 	int i, ret = 0;
2675 
2676 	/* Just in case */
2677 	root = root->fs_info->chunk_root;
2678 	em_tree = &root->fs_info->mapping_tree.map_tree;
2679 
2680 	read_lock(&em_tree->lock);
2681 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2682 	read_unlock(&em_tree->lock);
2683 
2684 	if (!em || em->start > chunk_offset ||
2685 	    em->start + em->len < chunk_offset) {
2686 		/*
2687 		 * This is a logic error, but we don't want to just rely on the
2688 		 * user having built with ASSERT enabled, so if ASSERT doens't
2689 		 * do anything we still error out.
2690 		 */
2691 		ASSERT(0);
2692 		if (em)
2693 			free_extent_map(em);
2694 		return -EINVAL;
2695 	}
2696 	map = (struct map_lookup *)em->bdev;
2697 	lock_chunks(root->fs_info->chunk_root);
2698 	check_system_chunk(trans, extent_root, map->type);
2699 	unlock_chunks(root->fs_info->chunk_root);
2700 
2701 	for (i = 0; i < map->num_stripes; i++) {
2702 		struct btrfs_device *device = map->stripes[i].dev;
2703 		ret = btrfs_free_dev_extent(trans, device,
2704 					    map->stripes[i].physical,
2705 					    &dev_extent_len);
2706 		if (ret) {
2707 			btrfs_abort_transaction(trans, root, ret);
2708 			goto out;
2709 		}
2710 
2711 		if (device->bytes_used > 0) {
2712 			lock_chunks(root);
2713 			btrfs_device_set_bytes_used(device,
2714 					device->bytes_used - dev_extent_len);
2715 			spin_lock(&root->fs_info->free_chunk_lock);
2716 			root->fs_info->free_chunk_space += dev_extent_len;
2717 			spin_unlock(&root->fs_info->free_chunk_lock);
2718 			btrfs_clear_space_info_full(root->fs_info);
2719 			unlock_chunks(root);
2720 		}
2721 
2722 		if (map->stripes[i].dev) {
2723 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2724 			if (ret) {
2725 				btrfs_abort_transaction(trans, root, ret);
2726 				goto out;
2727 			}
2728 		}
2729 	}
2730 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2731 	if (ret) {
2732 		btrfs_abort_transaction(trans, root, ret);
2733 		goto out;
2734 	}
2735 
2736 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2737 
2738 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2739 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2740 		if (ret) {
2741 			btrfs_abort_transaction(trans, root, ret);
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2747 	if (ret) {
2748 		btrfs_abort_transaction(trans, extent_root, ret);
2749 		goto out;
2750 	}
2751 
2752 out:
2753 	/* once for us */
2754 	free_extent_map(em);
2755 	return ret;
2756 }
2757 
2758 static int btrfs_relocate_chunk(struct btrfs_root *root,
2759 				u64 chunk_objectid,
2760 				u64 chunk_offset)
2761 {
2762 	struct btrfs_root *extent_root;
2763 	struct btrfs_trans_handle *trans;
2764 	int ret;
2765 
2766 	root = root->fs_info->chunk_root;
2767 	extent_root = root->fs_info->extent_root;
2768 
2769 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2770 	if (ret)
2771 		return -ENOSPC;
2772 
2773 	/* step one, relocate all the extents inside this chunk */
2774 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2775 	if (ret)
2776 		return ret;
2777 
2778 	trans = btrfs_start_transaction(root, 0);
2779 	if (IS_ERR(trans)) {
2780 		ret = PTR_ERR(trans);
2781 		btrfs_std_error(root->fs_info, ret);
2782 		return ret;
2783 	}
2784 
2785 	/*
2786 	 * step two, delete the device extents and the
2787 	 * chunk tree entries
2788 	 */
2789 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2790 	btrfs_end_transaction(trans, root);
2791 	return ret;
2792 }
2793 
2794 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2795 {
2796 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2797 	struct btrfs_path *path;
2798 	struct extent_buffer *leaf;
2799 	struct btrfs_chunk *chunk;
2800 	struct btrfs_key key;
2801 	struct btrfs_key found_key;
2802 	u64 chunk_type;
2803 	bool retried = false;
2804 	int failed = 0;
2805 	int ret;
2806 
2807 	path = btrfs_alloc_path();
2808 	if (!path)
2809 		return -ENOMEM;
2810 
2811 again:
2812 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2813 	key.offset = (u64)-1;
2814 	key.type = BTRFS_CHUNK_ITEM_KEY;
2815 
2816 	while (1) {
2817 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2818 		if (ret < 0)
2819 			goto error;
2820 		BUG_ON(ret == 0); /* Corruption */
2821 
2822 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2823 					  key.type);
2824 		if (ret < 0)
2825 			goto error;
2826 		if (ret > 0)
2827 			break;
2828 
2829 		leaf = path->nodes[0];
2830 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2831 
2832 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2833 				       struct btrfs_chunk);
2834 		chunk_type = btrfs_chunk_type(leaf, chunk);
2835 		btrfs_release_path(path);
2836 
2837 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2838 			ret = btrfs_relocate_chunk(chunk_root,
2839 						   found_key.objectid,
2840 						   found_key.offset);
2841 			if (ret == -ENOSPC)
2842 				failed++;
2843 			else
2844 				BUG_ON(ret);
2845 		}
2846 
2847 		if (found_key.offset == 0)
2848 			break;
2849 		key.offset = found_key.offset - 1;
2850 	}
2851 	ret = 0;
2852 	if (failed && !retried) {
2853 		failed = 0;
2854 		retried = true;
2855 		goto again;
2856 	} else if (WARN_ON(failed && retried)) {
2857 		ret = -ENOSPC;
2858 	}
2859 error:
2860 	btrfs_free_path(path);
2861 	return ret;
2862 }
2863 
2864 static int insert_balance_item(struct btrfs_root *root,
2865 			       struct btrfs_balance_control *bctl)
2866 {
2867 	struct btrfs_trans_handle *trans;
2868 	struct btrfs_balance_item *item;
2869 	struct btrfs_disk_balance_args disk_bargs;
2870 	struct btrfs_path *path;
2871 	struct extent_buffer *leaf;
2872 	struct btrfs_key key;
2873 	int ret, err;
2874 
2875 	path = btrfs_alloc_path();
2876 	if (!path)
2877 		return -ENOMEM;
2878 
2879 	trans = btrfs_start_transaction(root, 0);
2880 	if (IS_ERR(trans)) {
2881 		btrfs_free_path(path);
2882 		return PTR_ERR(trans);
2883 	}
2884 
2885 	key.objectid = BTRFS_BALANCE_OBJECTID;
2886 	key.type = BTRFS_BALANCE_ITEM_KEY;
2887 	key.offset = 0;
2888 
2889 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2890 				      sizeof(*item));
2891 	if (ret)
2892 		goto out;
2893 
2894 	leaf = path->nodes[0];
2895 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2896 
2897 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2898 
2899 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2900 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2901 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2902 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2903 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2904 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2905 
2906 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2907 
2908 	btrfs_mark_buffer_dirty(leaf);
2909 out:
2910 	btrfs_free_path(path);
2911 	err = btrfs_commit_transaction(trans, root);
2912 	if (err && !ret)
2913 		ret = err;
2914 	return ret;
2915 }
2916 
2917 static int del_balance_item(struct btrfs_root *root)
2918 {
2919 	struct btrfs_trans_handle *trans;
2920 	struct btrfs_path *path;
2921 	struct btrfs_key key;
2922 	int ret, err;
2923 
2924 	path = btrfs_alloc_path();
2925 	if (!path)
2926 		return -ENOMEM;
2927 
2928 	trans = btrfs_start_transaction(root, 0);
2929 	if (IS_ERR(trans)) {
2930 		btrfs_free_path(path);
2931 		return PTR_ERR(trans);
2932 	}
2933 
2934 	key.objectid = BTRFS_BALANCE_OBJECTID;
2935 	key.type = BTRFS_BALANCE_ITEM_KEY;
2936 	key.offset = 0;
2937 
2938 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2939 	if (ret < 0)
2940 		goto out;
2941 	if (ret > 0) {
2942 		ret = -ENOENT;
2943 		goto out;
2944 	}
2945 
2946 	ret = btrfs_del_item(trans, root, path);
2947 out:
2948 	btrfs_free_path(path);
2949 	err = btrfs_commit_transaction(trans, root);
2950 	if (err && !ret)
2951 		ret = err;
2952 	return ret;
2953 }
2954 
2955 /*
2956  * This is a heuristic used to reduce the number of chunks balanced on
2957  * resume after balance was interrupted.
2958  */
2959 static void update_balance_args(struct btrfs_balance_control *bctl)
2960 {
2961 	/*
2962 	 * Turn on soft mode for chunk types that were being converted.
2963 	 */
2964 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2965 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2966 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2967 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2968 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2969 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2970 
2971 	/*
2972 	 * Turn on usage filter if is not already used.  The idea is
2973 	 * that chunks that we have already balanced should be
2974 	 * reasonably full.  Don't do it for chunks that are being
2975 	 * converted - that will keep us from relocating unconverted
2976 	 * (albeit full) chunks.
2977 	 */
2978 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2979 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2980 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2981 		bctl->data.usage = 90;
2982 	}
2983 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2984 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2985 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2986 		bctl->sys.usage = 90;
2987 	}
2988 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2989 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2990 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2991 		bctl->meta.usage = 90;
2992 	}
2993 }
2994 
2995 /*
2996  * Should be called with both balance and volume mutexes held to
2997  * serialize other volume operations (add_dev/rm_dev/resize) with
2998  * restriper.  Same goes for unset_balance_control.
2999  */
3000 static void set_balance_control(struct btrfs_balance_control *bctl)
3001 {
3002 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3003 
3004 	BUG_ON(fs_info->balance_ctl);
3005 
3006 	spin_lock(&fs_info->balance_lock);
3007 	fs_info->balance_ctl = bctl;
3008 	spin_unlock(&fs_info->balance_lock);
3009 }
3010 
3011 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3012 {
3013 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3014 
3015 	BUG_ON(!fs_info->balance_ctl);
3016 
3017 	spin_lock(&fs_info->balance_lock);
3018 	fs_info->balance_ctl = NULL;
3019 	spin_unlock(&fs_info->balance_lock);
3020 
3021 	kfree(bctl);
3022 }
3023 
3024 /*
3025  * Balance filters.  Return 1 if chunk should be filtered out
3026  * (should not be balanced).
3027  */
3028 static int chunk_profiles_filter(u64 chunk_type,
3029 				 struct btrfs_balance_args *bargs)
3030 {
3031 	chunk_type = chunk_to_extended(chunk_type) &
3032 				BTRFS_EXTENDED_PROFILE_MASK;
3033 
3034 	if (bargs->profiles & chunk_type)
3035 		return 0;
3036 
3037 	return 1;
3038 }
3039 
3040 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3041 			      struct btrfs_balance_args *bargs)
3042 {
3043 	struct btrfs_block_group_cache *cache;
3044 	u64 chunk_used, user_thresh;
3045 	int ret = 1;
3046 
3047 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3048 	chunk_used = btrfs_block_group_used(&cache->item);
3049 
3050 	if (bargs->usage == 0)
3051 		user_thresh = 1;
3052 	else if (bargs->usage > 100)
3053 		user_thresh = cache->key.offset;
3054 	else
3055 		user_thresh = div_factor_fine(cache->key.offset,
3056 					      bargs->usage);
3057 
3058 	if (chunk_used < user_thresh)
3059 		ret = 0;
3060 
3061 	btrfs_put_block_group(cache);
3062 	return ret;
3063 }
3064 
3065 static int chunk_devid_filter(struct extent_buffer *leaf,
3066 			      struct btrfs_chunk *chunk,
3067 			      struct btrfs_balance_args *bargs)
3068 {
3069 	struct btrfs_stripe *stripe;
3070 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3071 	int i;
3072 
3073 	for (i = 0; i < num_stripes; i++) {
3074 		stripe = btrfs_stripe_nr(chunk, i);
3075 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3076 			return 0;
3077 	}
3078 
3079 	return 1;
3080 }
3081 
3082 /* [pstart, pend) */
3083 static int chunk_drange_filter(struct extent_buffer *leaf,
3084 			       struct btrfs_chunk *chunk,
3085 			       u64 chunk_offset,
3086 			       struct btrfs_balance_args *bargs)
3087 {
3088 	struct btrfs_stripe *stripe;
3089 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3090 	u64 stripe_offset;
3091 	u64 stripe_length;
3092 	int factor;
3093 	int i;
3094 
3095 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3096 		return 0;
3097 
3098 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3099 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3100 		factor = num_stripes / 2;
3101 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3102 		factor = num_stripes - 1;
3103 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3104 		factor = num_stripes - 2;
3105 	} else {
3106 		factor = num_stripes;
3107 	}
3108 
3109 	for (i = 0; i < num_stripes; i++) {
3110 		stripe = btrfs_stripe_nr(chunk, i);
3111 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3112 			continue;
3113 
3114 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3115 		stripe_length = btrfs_chunk_length(leaf, chunk);
3116 		stripe_length = div_u64(stripe_length, factor);
3117 
3118 		if (stripe_offset < bargs->pend &&
3119 		    stripe_offset + stripe_length > bargs->pstart)
3120 			return 0;
3121 	}
3122 
3123 	return 1;
3124 }
3125 
3126 /* [vstart, vend) */
3127 static int chunk_vrange_filter(struct extent_buffer *leaf,
3128 			       struct btrfs_chunk *chunk,
3129 			       u64 chunk_offset,
3130 			       struct btrfs_balance_args *bargs)
3131 {
3132 	if (chunk_offset < bargs->vend &&
3133 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3134 		/* at least part of the chunk is inside this vrange */
3135 		return 0;
3136 
3137 	return 1;
3138 }
3139 
3140 static int chunk_soft_convert_filter(u64 chunk_type,
3141 				     struct btrfs_balance_args *bargs)
3142 {
3143 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3144 		return 0;
3145 
3146 	chunk_type = chunk_to_extended(chunk_type) &
3147 				BTRFS_EXTENDED_PROFILE_MASK;
3148 
3149 	if (bargs->target == chunk_type)
3150 		return 1;
3151 
3152 	return 0;
3153 }
3154 
3155 static int should_balance_chunk(struct btrfs_root *root,
3156 				struct extent_buffer *leaf,
3157 				struct btrfs_chunk *chunk, u64 chunk_offset)
3158 {
3159 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3160 	struct btrfs_balance_args *bargs = NULL;
3161 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3162 
3163 	/* type filter */
3164 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3165 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3166 		return 0;
3167 	}
3168 
3169 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3170 		bargs = &bctl->data;
3171 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3172 		bargs = &bctl->sys;
3173 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3174 		bargs = &bctl->meta;
3175 
3176 	/* profiles filter */
3177 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3178 	    chunk_profiles_filter(chunk_type, bargs)) {
3179 		return 0;
3180 	}
3181 
3182 	/* usage filter */
3183 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3184 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3185 		return 0;
3186 	}
3187 
3188 	/* devid filter */
3189 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3190 	    chunk_devid_filter(leaf, chunk, bargs)) {
3191 		return 0;
3192 	}
3193 
3194 	/* drange filter, makes sense only with devid filter */
3195 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3196 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3197 		return 0;
3198 	}
3199 
3200 	/* vrange filter */
3201 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3202 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3203 		return 0;
3204 	}
3205 
3206 	/* soft profile changing mode */
3207 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3208 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3209 		return 0;
3210 	}
3211 
3212 	/*
3213 	 * limited by count, must be the last filter
3214 	 */
3215 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3216 		if (bargs->limit == 0)
3217 			return 0;
3218 		else
3219 			bargs->limit--;
3220 	}
3221 
3222 	return 1;
3223 }
3224 
3225 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3226 {
3227 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3228 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3229 	struct btrfs_root *dev_root = fs_info->dev_root;
3230 	struct list_head *devices;
3231 	struct btrfs_device *device;
3232 	u64 old_size;
3233 	u64 size_to_free;
3234 	struct btrfs_chunk *chunk;
3235 	struct btrfs_path *path;
3236 	struct btrfs_key key;
3237 	struct btrfs_key found_key;
3238 	struct btrfs_trans_handle *trans;
3239 	struct extent_buffer *leaf;
3240 	int slot;
3241 	int ret;
3242 	int enospc_errors = 0;
3243 	bool counting = true;
3244 	u64 limit_data = bctl->data.limit;
3245 	u64 limit_meta = bctl->meta.limit;
3246 	u64 limit_sys = bctl->sys.limit;
3247 
3248 	/* step one make some room on all the devices */
3249 	devices = &fs_info->fs_devices->devices;
3250 	list_for_each_entry(device, devices, dev_list) {
3251 		old_size = btrfs_device_get_total_bytes(device);
3252 		size_to_free = div_factor(old_size, 1);
3253 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3254 		if (!device->writeable ||
3255 		    btrfs_device_get_total_bytes(device) -
3256 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3257 		    device->is_tgtdev_for_dev_replace)
3258 			continue;
3259 
3260 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3261 		if (ret == -ENOSPC)
3262 			break;
3263 		BUG_ON(ret);
3264 
3265 		trans = btrfs_start_transaction(dev_root, 0);
3266 		BUG_ON(IS_ERR(trans));
3267 
3268 		ret = btrfs_grow_device(trans, device, old_size);
3269 		BUG_ON(ret);
3270 
3271 		btrfs_end_transaction(trans, dev_root);
3272 	}
3273 
3274 	/* step two, relocate all the chunks */
3275 	path = btrfs_alloc_path();
3276 	if (!path) {
3277 		ret = -ENOMEM;
3278 		goto error;
3279 	}
3280 
3281 	/* zero out stat counters */
3282 	spin_lock(&fs_info->balance_lock);
3283 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3284 	spin_unlock(&fs_info->balance_lock);
3285 again:
3286 	if (!counting) {
3287 		bctl->data.limit = limit_data;
3288 		bctl->meta.limit = limit_meta;
3289 		bctl->sys.limit = limit_sys;
3290 	}
3291 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3292 	key.offset = (u64)-1;
3293 	key.type = BTRFS_CHUNK_ITEM_KEY;
3294 
3295 	while (1) {
3296 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3297 		    atomic_read(&fs_info->balance_cancel_req)) {
3298 			ret = -ECANCELED;
3299 			goto error;
3300 		}
3301 
3302 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3303 		if (ret < 0)
3304 			goto error;
3305 
3306 		/*
3307 		 * this shouldn't happen, it means the last relocate
3308 		 * failed
3309 		 */
3310 		if (ret == 0)
3311 			BUG(); /* FIXME break ? */
3312 
3313 		ret = btrfs_previous_item(chunk_root, path, 0,
3314 					  BTRFS_CHUNK_ITEM_KEY);
3315 		if (ret) {
3316 			ret = 0;
3317 			break;
3318 		}
3319 
3320 		leaf = path->nodes[0];
3321 		slot = path->slots[0];
3322 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3323 
3324 		if (found_key.objectid != key.objectid)
3325 			break;
3326 
3327 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3328 
3329 		if (!counting) {
3330 			spin_lock(&fs_info->balance_lock);
3331 			bctl->stat.considered++;
3332 			spin_unlock(&fs_info->balance_lock);
3333 		}
3334 
3335 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3336 					   found_key.offset);
3337 		btrfs_release_path(path);
3338 		if (!ret)
3339 			goto loop;
3340 
3341 		if (counting) {
3342 			spin_lock(&fs_info->balance_lock);
3343 			bctl->stat.expected++;
3344 			spin_unlock(&fs_info->balance_lock);
3345 			goto loop;
3346 		}
3347 
3348 		ret = btrfs_relocate_chunk(chunk_root,
3349 					   found_key.objectid,
3350 					   found_key.offset);
3351 		if (ret && ret != -ENOSPC)
3352 			goto error;
3353 		if (ret == -ENOSPC) {
3354 			enospc_errors++;
3355 		} else {
3356 			spin_lock(&fs_info->balance_lock);
3357 			bctl->stat.completed++;
3358 			spin_unlock(&fs_info->balance_lock);
3359 		}
3360 loop:
3361 		if (found_key.offset == 0)
3362 			break;
3363 		key.offset = found_key.offset - 1;
3364 	}
3365 
3366 	if (counting) {
3367 		btrfs_release_path(path);
3368 		counting = false;
3369 		goto again;
3370 	}
3371 error:
3372 	btrfs_free_path(path);
3373 	if (enospc_errors) {
3374 		btrfs_info(fs_info, "%d enospc errors during balance",
3375 		       enospc_errors);
3376 		if (!ret)
3377 			ret = -ENOSPC;
3378 	}
3379 
3380 	return ret;
3381 }
3382 
3383 /**
3384  * alloc_profile_is_valid - see if a given profile is valid and reduced
3385  * @flags: profile to validate
3386  * @extended: if true @flags is treated as an extended profile
3387  */
3388 static int alloc_profile_is_valid(u64 flags, int extended)
3389 {
3390 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3391 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3392 
3393 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3394 
3395 	/* 1) check that all other bits are zeroed */
3396 	if (flags & ~mask)
3397 		return 0;
3398 
3399 	/* 2) see if profile is reduced */
3400 	if (flags == 0)
3401 		return !extended; /* "0" is valid for usual profiles */
3402 
3403 	/* true if exactly one bit set */
3404 	return (flags & (flags - 1)) == 0;
3405 }
3406 
3407 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3408 {
3409 	/* cancel requested || normal exit path */
3410 	return atomic_read(&fs_info->balance_cancel_req) ||
3411 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3412 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3413 }
3414 
3415 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3416 {
3417 	int ret;
3418 
3419 	unset_balance_control(fs_info);
3420 	ret = del_balance_item(fs_info->tree_root);
3421 	if (ret)
3422 		btrfs_std_error(fs_info, ret);
3423 
3424 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3425 }
3426 
3427 /*
3428  * Should be called with both balance and volume mutexes held
3429  */
3430 int btrfs_balance(struct btrfs_balance_control *bctl,
3431 		  struct btrfs_ioctl_balance_args *bargs)
3432 {
3433 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3434 	u64 allowed;
3435 	int mixed = 0;
3436 	int ret;
3437 	u64 num_devices;
3438 	unsigned seq;
3439 
3440 	if (btrfs_fs_closing(fs_info) ||
3441 	    atomic_read(&fs_info->balance_pause_req) ||
3442 	    atomic_read(&fs_info->balance_cancel_req)) {
3443 		ret = -EINVAL;
3444 		goto out;
3445 	}
3446 
3447 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3448 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3449 		mixed = 1;
3450 
3451 	/*
3452 	 * In case of mixed groups both data and meta should be picked,
3453 	 * and identical options should be given for both of them.
3454 	 */
3455 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3456 	if (mixed && (bctl->flags & allowed)) {
3457 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3458 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3459 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3460 			btrfs_err(fs_info, "with mixed groups data and "
3461 				   "metadata balance options must be the same");
3462 			ret = -EINVAL;
3463 			goto out;
3464 		}
3465 	}
3466 
3467 	num_devices = fs_info->fs_devices->num_devices;
3468 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3469 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3470 		BUG_ON(num_devices < 1);
3471 		num_devices--;
3472 	}
3473 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3474 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3475 	if (num_devices == 1)
3476 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3477 	else if (num_devices > 1)
3478 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3479 	if (num_devices > 2)
3480 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3481 	if (num_devices > 3)
3482 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3483 			    BTRFS_BLOCK_GROUP_RAID6);
3484 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3485 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3486 	     (bctl->data.target & ~allowed))) {
3487 		btrfs_err(fs_info, "unable to start balance with target "
3488 			   "data profile %llu",
3489 		       bctl->data.target);
3490 		ret = -EINVAL;
3491 		goto out;
3492 	}
3493 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3494 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3495 	     (bctl->meta.target & ~allowed))) {
3496 		btrfs_err(fs_info,
3497 			   "unable to start balance with target metadata profile %llu",
3498 		       bctl->meta.target);
3499 		ret = -EINVAL;
3500 		goto out;
3501 	}
3502 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3503 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3504 	     (bctl->sys.target & ~allowed))) {
3505 		btrfs_err(fs_info,
3506 			   "unable to start balance with target system profile %llu",
3507 		       bctl->sys.target);
3508 		ret = -EINVAL;
3509 		goto out;
3510 	}
3511 
3512 	/* allow dup'ed data chunks only in mixed mode */
3513 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3514 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3515 		btrfs_err(fs_info, "dup for data is not allowed");
3516 		ret = -EINVAL;
3517 		goto out;
3518 	}
3519 
3520 	/* allow to reduce meta or sys integrity only if force set */
3521 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3522 			BTRFS_BLOCK_GROUP_RAID10 |
3523 			BTRFS_BLOCK_GROUP_RAID5 |
3524 			BTRFS_BLOCK_GROUP_RAID6;
3525 	do {
3526 		seq = read_seqbegin(&fs_info->profiles_lock);
3527 
3528 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3529 		     (fs_info->avail_system_alloc_bits & allowed) &&
3530 		     !(bctl->sys.target & allowed)) ||
3531 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3532 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3533 		     !(bctl->meta.target & allowed))) {
3534 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3535 				btrfs_info(fs_info, "force reducing metadata integrity");
3536 			} else {
3537 				btrfs_err(fs_info, "balance will reduce metadata "
3538 					   "integrity, use force if you want this");
3539 				ret = -EINVAL;
3540 				goto out;
3541 			}
3542 		}
3543 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3544 
3545 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3546 		int num_tolerated_disk_barrier_failures;
3547 		u64 target = bctl->sys.target;
3548 
3549 		num_tolerated_disk_barrier_failures =
3550 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3551 		if (num_tolerated_disk_barrier_failures > 0 &&
3552 		    (target &
3553 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3554 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3555 			num_tolerated_disk_barrier_failures = 0;
3556 		else if (num_tolerated_disk_barrier_failures > 1 &&
3557 			 (target &
3558 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3559 			num_tolerated_disk_barrier_failures = 1;
3560 
3561 		fs_info->num_tolerated_disk_barrier_failures =
3562 			num_tolerated_disk_barrier_failures;
3563 	}
3564 
3565 	ret = insert_balance_item(fs_info->tree_root, bctl);
3566 	if (ret && ret != -EEXIST)
3567 		goto out;
3568 
3569 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3570 		BUG_ON(ret == -EEXIST);
3571 		set_balance_control(bctl);
3572 	} else {
3573 		BUG_ON(ret != -EEXIST);
3574 		spin_lock(&fs_info->balance_lock);
3575 		update_balance_args(bctl);
3576 		spin_unlock(&fs_info->balance_lock);
3577 	}
3578 
3579 	atomic_inc(&fs_info->balance_running);
3580 	mutex_unlock(&fs_info->balance_mutex);
3581 
3582 	ret = __btrfs_balance(fs_info);
3583 
3584 	mutex_lock(&fs_info->balance_mutex);
3585 	atomic_dec(&fs_info->balance_running);
3586 
3587 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3588 		fs_info->num_tolerated_disk_barrier_failures =
3589 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3590 	}
3591 
3592 	if (bargs) {
3593 		memset(bargs, 0, sizeof(*bargs));
3594 		update_ioctl_balance_args(fs_info, 0, bargs);
3595 	}
3596 
3597 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3598 	    balance_need_close(fs_info)) {
3599 		__cancel_balance(fs_info);
3600 	}
3601 
3602 	wake_up(&fs_info->balance_wait_q);
3603 
3604 	return ret;
3605 out:
3606 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3607 		__cancel_balance(fs_info);
3608 	else {
3609 		kfree(bctl);
3610 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3611 	}
3612 	return ret;
3613 }
3614 
3615 static int balance_kthread(void *data)
3616 {
3617 	struct btrfs_fs_info *fs_info = data;
3618 	int ret = 0;
3619 
3620 	mutex_lock(&fs_info->volume_mutex);
3621 	mutex_lock(&fs_info->balance_mutex);
3622 
3623 	if (fs_info->balance_ctl) {
3624 		btrfs_info(fs_info, "continuing balance");
3625 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3626 	}
3627 
3628 	mutex_unlock(&fs_info->balance_mutex);
3629 	mutex_unlock(&fs_info->volume_mutex);
3630 
3631 	return ret;
3632 }
3633 
3634 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3635 {
3636 	struct task_struct *tsk;
3637 
3638 	spin_lock(&fs_info->balance_lock);
3639 	if (!fs_info->balance_ctl) {
3640 		spin_unlock(&fs_info->balance_lock);
3641 		return 0;
3642 	}
3643 	spin_unlock(&fs_info->balance_lock);
3644 
3645 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3646 		btrfs_info(fs_info, "force skipping balance");
3647 		return 0;
3648 	}
3649 
3650 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3651 	return PTR_ERR_OR_ZERO(tsk);
3652 }
3653 
3654 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3655 {
3656 	struct btrfs_balance_control *bctl;
3657 	struct btrfs_balance_item *item;
3658 	struct btrfs_disk_balance_args disk_bargs;
3659 	struct btrfs_path *path;
3660 	struct extent_buffer *leaf;
3661 	struct btrfs_key key;
3662 	int ret;
3663 
3664 	path = btrfs_alloc_path();
3665 	if (!path)
3666 		return -ENOMEM;
3667 
3668 	key.objectid = BTRFS_BALANCE_OBJECTID;
3669 	key.type = BTRFS_BALANCE_ITEM_KEY;
3670 	key.offset = 0;
3671 
3672 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3673 	if (ret < 0)
3674 		goto out;
3675 	if (ret > 0) { /* ret = -ENOENT; */
3676 		ret = 0;
3677 		goto out;
3678 	}
3679 
3680 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3681 	if (!bctl) {
3682 		ret = -ENOMEM;
3683 		goto out;
3684 	}
3685 
3686 	leaf = path->nodes[0];
3687 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3688 
3689 	bctl->fs_info = fs_info;
3690 	bctl->flags = btrfs_balance_flags(leaf, item);
3691 	bctl->flags |= BTRFS_BALANCE_RESUME;
3692 
3693 	btrfs_balance_data(leaf, item, &disk_bargs);
3694 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3695 	btrfs_balance_meta(leaf, item, &disk_bargs);
3696 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3697 	btrfs_balance_sys(leaf, item, &disk_bargs);
3698 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3699 
3700 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3701 
3702 	mutex_lock(&fs_info->volume_mutex);
3703 	mutex_lock(&fs_info->balance_mutex);
3704 
3705 	set_balance_control(bctl);
3706 
3707 	mutex_unlock(&fs_info->balance_mutex);
3708 	mutex_unlock(&fs_info->volume_mutex);
3709 out:
3710 	btrfs_free_path(path);
3711 	return ret;
3712 }
3713 
3714 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3715 {
3716 	int ret = 0;
3717 
3718 	mutex_lock(&fs_info->balance_mutex);
3719 	if (!fs_info->balance_ctl) {
3720 		mutex_unlock(&fs_info->balance_mutex);
3721 		return -ENOTCONN;
3722 	}
3723 
3724 	if (atomic_read(&fs_info->balance_running)) {
3725 		atomic_inc(&fs_info->balance_pause_req);
3726 		mutex_unlock(&fs_info->balance_mutex);
3727 
3728 		wait_event(fs_info->balance_wait_q,
3729 			   atomic_read(&fs_info->balance_running) == 0);
3730 
3731 		mutex_lock(&fs_info->balance_mutex);
3732 		/* we are good with balance_ctl ripped off from under us */
3733 		BUG_ON(atomic_read(&fs_info->balance_running));
3734 		atomic_dec(&fs_info->balance_pause_req);
3735 	} else {
3736 		ret = -ENOTCONN;
3737 	}
3738 
3739 	mutex_unlock(&fs_info->balance_mutex);
3740 	return ret;
3741 }
3742 
3743 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3744 {
3745 	if (fs_info->sb->s_flags & MS_RDONLY)
3746 		return -EROFS;
3747 
3748 	mutex_lock(&fs_info->balance_mutex);
3749 	if (!fs_info->balance_ctl) {
3750 		mutex_unlock(&fs_info->balance_mutex);
3751 		return -ENOTCONN;
3752 	}
3753 
3754 	atomic_inc(&fs_info->balance_cancel_req);
3755 	/*
3756 	 * if we are running just wait and return, balance item is
3757 	 * deleted in btrfs_balance in this case
3758 	 */
3759 	if (atomic_read(&fs_info->balance_running)) {
3760 		mutex_unlock(&fs_info->balance_mutex);
3761 		wait_event(fs_info->balance_wait_q,
3762 			   atomic_read(&fs_info->balance_running) == 0);
3763 		mutex_lock(&fs_info->balance_mutex);
3764 	} else {
3765 		/* __cancel_balance needs volume_mutex */
3766 		mutex_unlock(&fs_info->balance_mutex);
3767 		mutex_lock(&fs_info->volume_mutex);
3768 		mutex_lock(&fs_info->balance_mutex);
3769 
3770 		if (fs_info->balance_ctl)
3771 			__cancel_balance(fs_info);
3772 
3773 		mutex_unlock(&fs_info->volume_mutex);
3774 	}
3775 
3776 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3777 	atomic_dec(&fs_info->balance_cancel_req);
3778 	mutex_unlock(&fs_info->balance_mutex);
3779 	return 0;
3780 }
3781 
3782 static int btrfs_uuid_scan_kthread(void *data)
3783 {
3784 	struct btrfs_fs_info *fs_info = data;
3785 	struct btrfs_root *root = fs_info->tree_root;
3786 	struct btrfs_key key;
3787 	struct btrfs_key max_key;
3788 	struct btrfs_path *path = NULL;
3789 	int ret = 0;
3790 	struct extent_buffer *eb;
3791 	int slot;
3792 	struct btrfs_root_item root_item;
3793 	u32 item_size;
3794 	struct btrfs_trans_handle *trans = NULL;
3795 
3796 	path = btrfs_alloc_path();
3797 	if (!path) {
3798 		ret = -ENOMEM;
3799 		goto out;
3800 	}
3801 
3802 	key.objectid = 0;
3803 	key.type = BTRFS_ROOT_ITEM_KEY;
3804 	key.offset = 0;
3805 
3806 	max_key.objectid = (u64)-1;
3807 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3808 	max_key.offset = (u64)-1;
3809 
3810 	while (1) {
3811 		ret = btrfs_search_forward(root, &key, path, 0);
3812 		if (ret) {
3813 			if (ret > 0)
3814 				ret = 0;
3815 			break;
3816 		}
3817 
3818 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3819 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3820 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3821 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3822 			goto skip;
3823 
3824 		eb = path->nodes[0];
3825 		slot = path->slots[0];
3826 		item_size = btrfs_item_size_nr(eb, slot);
3827 		if (item_size < sizeof(root_item))
3828 			goto skip;
3829 
3830 		read_extent_buffer(eb, &root_item,
3831 				   btrfs_item_ptr_offset(eb, slot),
3832 				   (int)sizeof(root_item));
3833 		if (btrfs_root_refs(&root_item) == 0)
3834 			goto skip;
3835 
3836 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3837 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3838 			if (trans)
3839 				goto update_tree;
3840 
3841 			btrfs_release_path(path);
3842 			/*
3843 			 * 1 - subvol uuid item
3844 			 * 1 - received_subvol uuid item
3845 			 */
3846 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3847 			if (IS_ERR(trans)) {
3848 				ret = PTR_ERR(trans);
3849 				break;
3850 			}
3851 			continue;
3852 		} else {
3853 			goto skip;
3854 		}
3855 update_tree:
3856 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3857 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3858 						  root_item.uuid,
3859 						  BTRFS_UUID_KEY_SUBVOL,
3860 						  key.objectid);
3861 			if (ret < 0) {
3862 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3863 					ret);
3864 				break;
3865 			}
3866 		}
3867 
3868 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3869 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3870 						  root_item.received_uuid,
3871 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3872 						  key.objectid);
3873 			if (ret < 0) {
3874 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3875 					ret);
3876 				break;
3877 			}
3878 		}
3879 
3880 skip:
3881 		if (trans) {
3882 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3883 			trans = NULL;
3884 			if (ret)
3885 				break;
3886 		}
3887 
3888 		btrfs_release_path(path);
3889 		if (key.offset < (u64)-1) {
3890 			key.offset++;
3891 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3892 			key.offset = 0;
3893 			key.type = BTRFS_ROOT_ITEM_KEY;
3894 		} else if (key.objectid < (u64)-1) {
3895 			key.offset = 0;
3896 			key.type = BTRFS_ROOT_ITEM_KEY;
3897 			key.objectid++;
3898 		} else {
3899 			break;
3900 		}
3901 		cond_resched();
3902 	}
3903 
3904 out:
3905 	btrfs_free_path(path);
3906 	if (trans && !IS_ERR(trans))
3907 		btrfs_end_transaction(trans, fs_info->uuid_root);
3908 	if (ret)
3909 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3910 	else
3911 		fs_info->update_uuid_tree_gen = 1;
3912 	up(&fs_info->uuid_tree_rescan_sem);
3913 	return 0;
3914 }
3915 
3916 /*
3917  * Callback for btrfs_uuid_tree_iterate().
3918  * returns:
3919  * 0	check succeeded, the entry is not outdated.
3920  * < 0	if an error occured.
3921  * > 0	if the check failed, which means the caller shall remove the entry.
3922  */
3923 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3924 				       u8 *uuid, u8 type, u64 subid)
3925 {
3926 	struct btrfs_key key;
3927 	int ret = 0;
3928 	struct btrfs_root *subvol_root;
3929 
3930 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3931 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3932 		goto out;
3933 
3934 	key.objectid = subid;
3935 	key.type = BTRFS_ROOT_ITEM_KEY;
3936 	key.offset = (u64)-1;
3937 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3938 	if (IS_ERR(subvol_root)) {
3939 		ret = PTR_ERR(subvol_root);
3940 		if (ret == -ENOENT)
3941 			ret = 1;
3942 		goto out;
3943 	}
3944 
3945 	switch (type) {
3946 	case BTRFS_UUID_KEY_SUBVOL:
3947 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3948 			ret = 1;
3949 		break;
3950 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3951 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3952 			   BTRFS_UUID_SIZE))
3953 			ret = 1;
3954 		break;
3955 	}
3956 
3957 out:
3958 	return ret;
3959 }
3960 
3961 static int btrfs_uuid_rescan_kthread(void *data)
3962 {
3963 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3964 	int ret;
3965 
3966 	/*
3967 	 * 1st step is to iterate through the existing UUID tree and
3968 	 * to delete all entries that contain outdated data.
3969 	 * 2nd step is to add all missing entries to the UUID tree.
3970 	 */
3971 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3972 	if (ret < 0) {
3973 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3974 		up(&fs_info->uuid_tree_rescan_sem);
3975 		return ret;
3976 	}
3977 	return btrfs_uuid_scan_kthread(data);
3978 }
3979 
3980 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3981 {
3982 	struct btrfs_trans_handle *trans;
3983 	struct btrfs_root *tree_root = fs_info->tree_root;
3984 	struct btrfs_root *uuid_root;
3985 	struct task_struct *task;
3986 	int ret;
3987 
3988 	/*
3989 	 * 1 - root node
3990 	 * 1 - root item
3991 	 */
3992 	trans = btrfs_start_transaction(tree_root, 2);
3993 	if (IS_ERR(trans))
3994 		return PTR_ERR(trans);
3995 
3996 	uuid_root = btrfs_create_tree(trans, fs_info,
3997 				      BTRFS_UUID_TREE_OBJECTID);
3998 	if (IS_ERR(uuid_root)) {
3999 		ret = PTR_ERR(uuid_root);
4000 		btrfs_abort_transaction(trans, tree_root, ret);
4001 		return ret;
4002 	}
4003 
4004 	fs_info->uuid_root = uuid_root;
4005 
4006 	ret = btrfs_commit_transaction(trans, tree_root);
4007 	if (ret)
4008 		return ret;
4009 
4010 	down(&fs_info->uuid_tree_rescan_sem);
4011 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4012 	if (IS_ERR(task)) {
4013 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4014 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4015 		up(&fs_info->uuid_tree_rescan_sem);
4016 		return PTR_ERR(task);
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4023 {
4024 	struct task_struct *task;
4025 
4026 	down(&fs_info->uuid_tree_rescan_sem);
4027 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4028 	if (IS_ERR(task)) {
4029 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4030 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4031 		up(&fs_info->uuid_tree_rescan_sem);
4032 		return PTR_ERR(task);
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 /*
4039  * shrinking a device means finding all of the device extents past
4040  * the new size, and then following the back refs to the chunks.
4041  * The chunk relocation code actually frees the device extent
4042  */
4043 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4044 {
4045 	struct btrfs_trans_handle *trans;
4046 	struct btrfs_root *root = device->dev_root;
4047 	struct btrfs_dev_extent *dev_extent = NULL;
4048 	struct btrfs_path *path;
4049 	u64 length;
4050 	u64 chunk_objectid;
4051 	u64 chunk_offset;
4052 	int ret;
4053 	int slot;
4054 	int failed = 0;
4055 	bool retried = false;
4056 	bool checked_pending_chunks = false;
4057 	struct extent_buffer *l;
4058 	struct btrfs_key key;
4059 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4060 	u64 old_total = btrfs_super_total_bytes(super_copy);
4061 	u64 old_size = btrfs_device_get_total_bytes(device);
4062 	u64 diff = old_size - new_size;
4063 
4064 	if (device->is_tgtdev_for_dev_replace)
4065 		return -EINVAL;
4066 
4067 	path = btrfs_alloc_path();
4068 	if (!path)
4069 		return -ENOMEM;
4070 
4071 	path->reada = 2;
4072 
4073 	lock_chunks(root);
4074 
4075 	btrfs_device_set_total_bytes(device, new_size);
4076 	if (device->writeable) {
4077 		device->fs_devices->total_rw_bytes -= diff;
4078 		spin_lock(&root->fs_info->free_chunk_lock);
4079 		root->fs_info->free_chunk_space -= diff;
4080 		spin_unlock(&root->fs_info->free_chunk_lock);
4081 	}
4082 	unlock_chunks(root);
4083 
4084 again:
4085 	key.objectid = device->devid;
4086 	key.offset = (u64)-1;
4087 	key.type = BTRFS_DEV_EXTENT_KEY;
4088 
4089 	do {
4090 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4091 		if (ret < 0)
4092 			goto done;
4093 
4094 		ret = btrfs_previous_item(root, path, 0, key.type);
4095 		if (ret < 0)
4096 			goto done;
4097 		if (ret) {
4098 			ret = 0;
4099 			btrfs_release_path(path);
4100 			break;
4101 		}
4102 
4103 		l = path->nodes[0];
4104 		slot = path->slots[0];
4105 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4106 
4107 		if (key.objectid != device->devid) {
4108 			btrfs_release_path(path);
4109 			break;
4110 		}
4111 
4112 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4113 		length = btrfs_dev_extent_length(l, dev_extent);
4114 
4115 		if (key.offset + length <= new_size) {
4116 			btrfs_release_path(path);
4117 			break;
4118 		}
4119 
4120 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4121 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4122 		btrfs_release_path(path);
4123 
4124 		ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4125 		if (ret && ret != -ENOSPC)
4126 			goto done;
4127 		if (ret == -ENOSPC)
4128 			failed++;
4129 	} while (key.offset-- > 0);
4130 
4131 	if (failed && !retried) {
4132 		failed = 0;
4133 		retried = true;
4134 		goto again;
4135 	} else if (failed && retried) {
4136 		ret = -ENOSPC;
4137 		goto done;
4138 	}
4139 
4140 	/* Shrinking succeeded, else we would be at "done". */
4141 	trans = btrfs_start_transaction(root, 0);
4142 	if (IS_ERR(trans)) {
4143 		ret = PTR_ERR(trans);
4144 		goto done;
4145 	}
4146 
4147 	lock_chunks(root);
4148 
4149 	/*
4150 	 * We checked in the above loop all device extents that were already in
4151 	 * the device tree. However before we have updated the device's
4152 	 * total_bytes to the new size, we might have had chunk allocations that
4153 	 * have not complete yet (new block groups attached to transaction
4154 	 * handles), and therefore their device extents were not yet in the
4155 	 * device tree and we missed them in the loop above. So if we have any
4156 	 * pending chunk using a device extent that overlaps the device range
4157 	 * that we can not use anymore, commit the current transaction and
4158 	 * repeat the search on the device tree - this way we guarantee we will
4159 	 * not have chunks using device extents that end beyond 'new_size'.
4160 	 */
4161 	if (!checked_pending_chunks) {
4162 		u64 start = new_size;
4163 		u64 len = old_size - new_size;
4164 
4165 		if (contains_pending_extent(trans, device, &start, len)) {
4166 			unlock_chunks(root);
4167 			checked_pending_chunks = true;
4168 			failed = 0;
4169 			retried = false;
4170 			ret = btrfs_commit_transaction(trans, root);
4171 			if (ret)
4172 				goto done;
4173 			goto again;
4174 		}
4175 	}
4176 
4177 	btrfs_device_set_disk_total_bytes(device, new_size);
4178 	if (list_empty(&device->resized_list))
4179 		list_add_tail(&device->resized_list,
4180 			      &root->fs_info->fs_devices->resized_devices);
4181 
4182 	WARN_ON(diff > old_total);
4183 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4184 	unlock_chunks(root);
4185 
4186 	/* Now btrfs_update_device() will change the on-disk size. */
4187 	ret = btrfs_update_device(trans, device);
4188 	btrfs_end_transaction(trans, root);
4189 done:
4190 	btrfs_free_path(path);
4191 	if (ret) {
4192 		lock_chunks(root);
4193 		btrfs_device_set_total_bytes(device, old_size);
4194 		if (device->writeable)
4195 			device->fs_devices->total_rw_bytes += diff;
4196 		spin_lock(&root->fs_info->free_chunk_lock);
4197 		root->fs_info->free_chunk_space += diff;
4198 		spin_unlock(&root->fs_info->free_chunk_lock);
4199 		unlock_chunks(root);
4200 	}
4201 	return ret;
4202 }
4203 
4204 static int btrfs_add_system_chunk(struct btrfs_root *root,
4205 			   struct btrfs_key *key,
4206 			   struct btrfs_chunk *chunk, int item_size)
4207 {
4208 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4209 	struct btrfs_disk_key disk_key;
4210 	u32 array_size;
4211 	u8 *ptr;
4212 
4213 	lock_chunks(root);
4214 	array_size = btrfs_super_sys_array_size(super_copy);
4215 	if (array_size + item_size + sizeof(disk_key)
4216 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4217 		unlock_chunks(root);
4218 		return -EFBIG;
4219 	}
4220 
4221 	ptr = super_copy->sys_chunk_array + array_size;
4222 	btrfs_cpu_key_to_disk(&disk_key, key);
4223 	memcpy(ptr, &disk_key, sizeof(disk_key));
4224 	ptr += sizeof(disk_key);
4225 	memcpy(ptr, chunk, item_size);
4226 	item_size += sizeof(disk_key);
4227 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4228 	unlock_chunks(root);
4229 
4230 	return 0;
4231 }
4232 
4233 /*
4234  * sort the devices in descending order by max_avail, total_avail
4235  */
4236 static int btrfs_cmp_device_info(const void *a, const void *b)
4237 {
4238 	const struct btrfs_device_info *di_a = a;
4239 	const struct btrfs_device_info *di_b = b;
4240 
4241 	if (di_a->max_avail > di_b->max_avail)
4242 		return -1;
4243 	if (di_a->max_avail < di_b->max_avail)
4244 		return 1;
4245 	if (di_a->total_avail > di_b->total_avail)
4246 		return -1;
4247 	if (di_a->total_avail < di_b->total_avail)
4248 		return 1;
4249 	return 0;
4250 }
4251 
4252 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4253 	[BTRFS_RAID_RAID10] = {
4254 		.sub_stripes	= 2,
4255 		.dev_stripes	= 1,
4256 		.devs_max	= 0,	/* 0 == as many as possible */
4257 		.devs_min	= 4,
4258 		.devs_increment	= 2,
4259 		.ncopies	= 2,
4260 	},
4261 	[BTRFS_RAID_RAID1] = {
4262 		.sub_stripes	= 1,
4263 		.dev_stripes	= 1,
4264 		.devs_max	= 2,
4265 		.devs_min	= 2,
4266 		.devs_increment	= 2,
4267 		.ncopies	= 2,
4268 	},
4269 	[BTRFS_RAID_DUP] = {
4270 		.sub_stripes	= 1,
4271 		.dev_stripes	= 2,
4272 		.devs_max	= 1,
4273 		.devs_min	= 1,
4274 		.devs_increment	= 1,
4275 		.ncopies	= 2,
4276 	},
4277 	[BTRFS_RAID_RAID0] = {
4278 		.sub_stripes	= 1,
4279 		.dev_stripes	= 1,
4280 		.devs_max	= 0,
4281 		.devs_min	= 2,
4282 		.devs_increment	= 1,
4283 		.ncopies	= 1,
4284 	},
4285 	[BTRFS_RAID_SINGLE] = {
4286 		.sub_stripes	= 1,
4287 		.dev_stripes	= 1,
4288 		.devs_max	= 1,
4289 		.devs_min	= 1,
4290 		.devs_increment	= 1,
4291 		.ncopies	= 1,
4292 	},
4293 	[BTRFS_RAID_RAID5] = {
4294 		.sub_stripes	= 1,
4295 		.dev_stripes	= 1,
4296 		.devs_max	= 0,
4297 		.devs_min	= 2,
4298 		.devs_increment	= 1,
4299 		.ncopies	= 2,
4300 	},
4301 	[BTRFS_RAID_RAID6] = {
4302 		.sub_stripes	= 1,
4303 		.dev_stripes	= 1,
4304 		.devs_max	= 0,
4305 		.devs_min	= 3,
4306 		.devs_increment	= 1,
4307 		.ncopies	= 3,
4308 	},
4309 };
4310 
4311 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4312 {
4313 	/* TODO allow them to set a preferred stripe size */
4314 	return 64 * 1024;
4315 }
4316 
4317 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4318 {
4319 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4320 		return;
4321 
4322 	btrfs_set_fs_incompat(info, RAID56);
4323 }
4324 
4325 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4326 			- sizeof(struct btrfs_item)		\
4327 			- sizeof(struct btrfs_chunk))		\
4328 			/ sizeof(struct btrfs_stripe) + 1)
4329 
4330 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4331 				- 2 * sizeof(struct btrfs_disk_key)	\
4332 				- 2 * sizeof(struct btrfs_chunk))	\
4333 				/ sizeof(struct btrfs_stripe) + 1)
4334 
4335 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4336 			       struct btrfs_root *extent_root, u64 start,
4337 			       u64 type)
4338 {
4339 	struct btrfs_fs_info *info = extent_root->fs_info;
4340 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4341 	struct list_head *cur;
4342 	struct map_lookup *map = NULL;
4343 	struct extent_map_tree *em_tree;
4344 	struct extent_map *em;
4345 	struct btrfs_device_info *devices_info = NULL;
4346 	u64 total_avail;
4347 	int num_stripes;	/* total number of stripes to allocate */
4348 	int data_stripes;	/* number of stripes that count for
4349 				   block group size */
4350 	int sub_stripes;	/* sub_stripes info for map */
4351 	int dev_stripes;	/* stripes per dev */
4352 	int devs_max;		/* max devs to use */
4353 	int devs_min;		/* min devs needed */
4354 	int devs_increment;	/* ndevs has to be a multiple of this */
4355 	int ncopies;		/* how many copies to data has */
4356 	int ret;
4357 	u64 max_stripe_size;
4358 	u64 max_chunk_size;
4359 	u64 stripe_size;
4360 	u64 num_bytes;
4361 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4362 	int ndevs;
4363 	int i;
4364 	int j;
4365 	int index;
4366 
4367 	BUG_ON(!alloc_profile_is_valid(type, 0));
4368 
4369 	if (list_empty(&fs_devices->alloc_list))
4370 		return -ENOSPC;
4371 
4372 	index = __get_raid_index(type);
4373 
4374 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4375 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4376 	devs_max = btrfs_raid_array[index].devs_max;
4377 	devs_min = btrfs_raid_array[index].devs_min;
4378 	devs_increment = btrfs_raid_array[index].devs_increment;
4379 	ncopies = btrfs_raid_array[index].ncopies;
4380 
4381 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4382 		max_stripe_size = 1024 * 1024 * 1024;
4383 		max_chunk_size = 10 * max_stripe_size;
4384 		if (!devs_max)
4385 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4386 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4387 		/* for larger filesystems, use larger metadata chunks */
4388 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4389 			max_stripe_size = 1024 * 1024 * 1024;
4390 		else
4391 			max_stripe_size = 256 * 1024 * 1024;
4392 		max_chunk_size = max_stripe_size;
4393 		if (!devs_max)
4394 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4395 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4396 		max_stripe_size = 32 * 1024 * 1024;
4397 		max_chunk_size = 2 * max_stripe_size;
4398 		if (!devs_max)
4399 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4400 	} else {
4401 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4402 		       type);
4403 		BUG_ON(1);
4404 	}
4405 
4406 	/* we don't want a chunk larger than 10% of writeable space */
4407 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4408 			     max_chunk_size);
4409 
4410 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4411 			       GFP_NOFS);
4412 	if (!devices_info)
4413 		return -ENOMEM;
4414 
4415 	cur = fs_devices->alloc_list.next;
4416 
4417 	/*
4418 	 * in the first pass through the devices list, we gather information
4419 	 * about the available holes on each device.
4420 	 */
4421 	ndevs = 0;
4422 	while (cur != &fs_devices->alloc_list) {
4423 		struct btrfs_device *device;
4424 		u64 max_avail;
4425 		u64 dev_offset;
4426 
4427 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4428 
4429 		cur = cur->next;
4430 
4431 		if (!device->writeable) {
4432 			WARN(1, KERN_ERR
4433 			       "BTRFS: read-only device in alloc_list\n");
4434 			continue;
4435 		}
4436 
4437 		if (!device->in_fs_metadata ||
4438 		    device->is_tgtdev_for_dev_replace)
4439 			continue;
4440 
4441 		if (device->total_bytes > device->bytes_used)
4442 			total_avail = device->total_bytes - device->bytes_used;
4443 		else
4444 			total_avail = 0;
4445 
4446 		/* If there is no space on this device, skip it. */
4447 		if (total_avail == 0)
4448 			continue;
4449 
4450 		ret = find_free_dev_extent(trans, device,
4451 					   max_stripe_size * dev_stripes,
4452 					   &dev_offset, &max_avail);
4453 		if (ret && ret != -ENOSPC)
4454 			goto error;
4455 
4456 		if (ret == 0)
4457 			max_avail = max_stripe_size * dev_stripes;
4458 
4459 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4460 			continue;
4461 
4462 		if (ndevs == fs_devices->rw_devices) {
4463 			WARN(1, "%s: found more than %llu devices\n",
4464 			     __func__, fs_devices->rw_devices);
4465 			break;
4466 		}
4467 		devices_info[ndevs].dev_offset = dev_offset;
4468 		devices_info[ndevs].max_avail = max_avail;
4469 		devices_info[ndevs].total_avail = total_avail;
4470 		devices_info[ndevs].dev = device;
4471 		++ndevs;
4472 	}
4473 
4474 	/*
4475 	 * now sort the devices by hole size / available space
4476 	 */
4477 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4478 	     btrfs_cmp_device_info, NULL);
4479 
4480 	/* round down to number of usable stripes */
4481 	ndevs -= ndevs % devs_increment;
4482 
4483 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4484 		ret = -ENOSPC;
4485 		goto error;
4486 	}
4487 
4488 	if (devs_max && ndevs > devs_max)
4489 		ndevs = devs_max;
4490 	/*
4491 	 * the primary goal is to maximize the number of stripes, so use as many
4492 	 * devices as possible, even if the stripes are not maximum sized.
4493 	 */
4494 	stripe_size = devices_info[ndevs-1].max_avail;
4495 	num_stripes = ndevs * dev_stripes;
4496 
4497 	/*
4498 	 * this will have to be fixed for RAID1 and RAID10 over
4499 	 * more drives
4500 	 */
4501 	data_stripes = num_stripes / ncopies;
4502 
4503 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4504 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4505 				 btrfs_super_stripesize(info->super_copy));
4506 		data_stripes = num_stripes - 1;
4507 	}
4508 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4509 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4510 				 btrfs_super_stripesize(info->super_copy));
4511 		data_stripes = num_stripes - 2;
4512 	}
4513 
4514 	/*
4515 	 * Use the number of data stripes to figure out how big this chunk
4516 	 * is really going to be in terms of logical address space,
4517 	 * and compare that answer with the max chunk size
4518 	 */
4519 	if (stripe_size * data_stripes > max_chunk_size) {
4520 		u64 mask = (1ULL << 24) - 1;
4521 
4522 		stripe_size = div_u64(max_chunk_size, data_stripes);
4523 
4524 		/* bump the answer up to a 16MB boundary */
4525 		stripe_size = (stripe_size + mask) & ~mask;
4526 
4527 		/* but don't go higher than the limits we found
4528 		 * while searching for free extents
4529 		 */
4530 		if (stripe_size > devices_info[ndevs-1].max_avail)
4531 			stripe_size = devices_info[ndevs-1].max_avail;
4532 	}
4533 
4534 	stripe_size = div_u64(stripe_size, dev_stripes);
4535 
4536 	/* align to BTRFS_STRIPE_LEN */
4537 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4538 	stripe_size *= raid_stripe_len;
4539 
4540 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4541 	if (!map) {
4542 		ret = -ENOMEM;
4543 		goto error;
4544 	}
4545 	map->num_stripes = num_stripes;
4546 
4547 	for (i = 0; i < ndevs; ++i) {
4548 		for (j = 0; j < dev_stripes; ++j) {
4549 			int s = i * dev_stripes + j;
4550 			map->stripes[s].dev = devices_info[i].dev;
4551 			map->stripes[s].physical = devices_info[i].dev_offset +
4552 						   j * stripe_size;
4553 		}
4554 	}
4555 	map->sector_size = extent_root->sectorsize;
4556 	map->stripe_len = raid_stripe_len;
4557 	map->io_align = raid_stripe_len;
4558 	map->io_width = raid_stripe_len;
4559 	map->type = type;
4560 	map->sub_stripes = sub_stripes;
4561 
4562 	num_bytes = stripe_size * data_stripes;
4563 
4564 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4565 
4566 	em = alloc_extent_map();
4567 	if (!em) {
4568 		kfree(map);
4569 		ret = -ENOMEM;
4570 		goto error;
4571 	}
4572 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4573 	em->bdev = (struct block_device *)map;
4574 	em->start = start;
4575 	em->len = num_bytes;
4576 	em->block_start = 0;
4577 	em->block_len = em->len;
4578 	em->orig_block_len = stripe_size;
4579 
4580 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4581 	write_lock(&em_tree->lock);
4582 	ret = add_extent_mapping(em_tree, em, 0);
4583 	if (!ret) {
4584 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4585 		atomic_inc(&em->refs);
4586 	}
4587 	write_unlock(&em_tree->lock);
4588 	if (ret) {
4589 		free_extent_map(em);
4590 		goto error;
4591 	}
4592 
4593 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4594 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4595 				     start, num_bytes);
4596 	if (ret)
4597 		goto error_del_extent;
4598 
4599 	for (i = 0; i < map->num_stripes; i++) {
4600 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4601 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4602 	}
4603 
4604 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4605 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4606 						   map->num_stripes);
4607 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4608 
4609 	free_extent_map(em);
4610 	check_raid56_incompat_flag(extent_root->fs_info, type);
4611 
4612 	kfree(devices_info);
4613 	return 0;
4614 
4615 error_del_extent:
4616 	write_lock(&em_tree->lock);
4617 	remove_extent_mapping(em_tree, em);
4618 	write_unlock(&em_tree->lock);
4619 
4620 	/* One for our allocation */
4621 	free_extent_map(em);
4622 	/* One for the tree reference */
4623 	free_extent_map(em);
4624 	/* One for the pending_chunks list reference */
4625 	free_extent_map(em);
4626 error:
4627 	kfree(devices_info);
4628 	return ret;
4629 }
4630 
4631 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4632 				struct btrfs_root *extent_root,
4633 				u64 chunk_offset, u64 chunk_size)
4634 {
4635 	struct btrfs_key key;
4636 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4637 	struct btrfs_device *device;
4638 	struct btrfs_chunk *chunk;
4639 	struct btrfs_stripe *stripe;
4640 	struct extent_map_tree *em_tree;
4641 	struct extent_map *em;
4642 	struct map_lookup *map;
4643 	size_t item_size;
4644 	u64 dev_offset;
4645 	u64 stripe_size;
4646 	int i = 0;
4647 	int ret;
4648 
4649 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4650 	read_lock(&em_tree->lock);
4651 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4652 	read_unlock(&em_tree->lock);
4653 
4654 	if (!em) {
4655 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4656 			   "%Lu len %Lu", chunk_offset, chunk_size);
4657 		return -EINVAL;
4658 	}
4659 
4660 	if (em->start != chunk_offset || em->len != chunk_size) {
4661 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4662 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4663 			  chunk_size, em->start, em->len);
4664 		free_extent_map(em);
4665 		return -EINVAL;
4666 	}
4667 
4668 	map = (struct map_lookup *)em->bdev;
4669 	item_size = btrfs_chunk_item_size(map->num_stripes);
4670 	stripe_size = em->orig_block_len;
4671 
4672 	chunk = kzalloc(item_size, GFP_NOFS);
4673 	if (!chunk) {
4674 		ret = -ENOMEM;
4675 		goto out;
4676 	}
4677 
4678 	for (i = 0; i < map->num_stripes; i++) {
4679 		device = map->stripes[i].dev;
4680 		dev_offset = map->stripes[i].physical;
4681 
4682 		ret = btrfs_update_device(trans, device);
4683 		if (ret)
4684 			goto out;
4685 		ret = btrfs_alloc_dev_extent(trans, device,
4686 					     chunk_root->root_key.objectid,
4687 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4688 					     chunk_offset, dev_offset,
4689 					     stripe_size);
4690 		if (ret)
4691 			goto out;
4692 	}
4693 
4694 	stripe = &chunk->stripe;
4695 	for (i = 0; i < map->num_stripes; i++) {
4696 		device = map->stripes[i].dev;
4697 		dev_offset = map->stripes[i].physical;
4698 
4699 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4700 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4701 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4702 		stripe++;
4703 	}
4704 
4705 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4706 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4707 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4708 	btrfs_set_stack_chunk_type(chunk, map->type);
4709 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4710 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4711 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4712 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4713 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4714 
4715 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4716 	key.type = BTRFS_CHUNK_ITEM_KEY;
4717 	key.offset = chunk_offset;
4718 
4719 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4720 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4721 		/*
4722 		 * TODO: Cleanup of inserted chunk root in case of
4723 		 * failure.
4724 		 */
4725 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4726 					     item_size);
4727 	}
4728 
4729 out:
4730 	kfree(chunk);
4731 	free_extent_map(em);
4732 	return ret;
4733 }
4734 
4735 /*
4736  * Chunk allocation falls into two parts. The first part does works
4737  * that make the new allocated chunk useable, but not do any operation
4738  * that modifies the chunk tree. The second part does the works that
4739  * require modifying the chunk tree. This division is important for the
4740  * bootstrap process of adding storage to a seed btrfs.
4741  */
4742 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4743 		      struct btrfs_root *extent_root, u64 type)
4744 {
4745 	u64 chunk_offset;
4746 
4747 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4748 	chunk_offset = find_next_chunk(extent_root->fs_info);
4749 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4750 }
4751 
4752 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4753 					 struct btrfs_root *root,
4754 					 struct btrfs_device *device)
4755 {
4756 	u64 chunk_offset;
4757 	u64 sys_chunk_offset;
4758 	u64 alloc_profile;
4759 	struct btrfs_fs_info *fs_info = root->fs_info;
4760 	struct btrfs_root *extent_root = fs_info->extent_root;
4761 	int ret;
4762 
4763 	chunk_offset = find_next_chunk(fs_info);
4764 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4765 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4766 				  alloc_profile);
4767 	if (ret)
4768 		return ret;
4769 
4770 	sys_chunk_offset = find_next_chunk(root->fs_info);
4771 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4772 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4773 				  alloc_profile);
4774 	return ret;
4775 }
4776 
4777 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4778 {
4779 	int max_errors;
4780 
4781 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4782 			 BTRFS_BLOCK_GROUP_RAID10 |
4783 			 BTRFS_BLOCK_GROUP_RAID5 |
4784 			 BTRFS_BLOCK_GROUP_DUP)) {
4785 		max_errors = 1;
4786 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4787 		max_errors = 2;
4788 	} else {
4789 		max_errors = 0;
4790 	}
4791 
4792 	return max_errors;
4793 }
4794 
4795 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4796 {
4797 	struct extent_map *em;
4798 	struct map_lookup *map;
4799 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4800 	int readonly = 0;
4801 	int miss_ndevs = 0;
4802 	int i;
4803 
4804 	read_lock(&map_tree->map_tree.lock);
4805 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4806 	read_unlock(&map_tree->map_tree.lock);
4807 	if (!em)
4808 		return 1;
4809 
4810 	map = (struct map_lookup *)em->bdev;
4811 	for (i = 0; i < map->num_stripes; i++) {
4812 		if (map->stripes[i].dev->missing) {
4813 			miss_ndevs++;
4814 			continue;
4815 		}
4816 
4817 		if (!map->stripes[i].dev->writeable) {
4818 			readonly = 1;
4819 			goto end;
4820 		}
4821 	}
4822 
4823 	/*
4824 	 * If the number of missing devices is larger than max errors,
4825 	 * we can not write the data into that chunk successfully, so
4826 	 * set it readonly.
4827 	 */
4828 	if (miss_ndevs > btrfs_chunk_max_errors(map))
4829 		readonly = 1;
4830 end:
4831 	free_extent_map(em);
4832 	return readonly;
4833 }
4834 
4835 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4836 {
4837 	extent_map_tree_init(&tree->map_tree);
4838 }
4839 
4840 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4841 {
4842 	struct extent_map *em;
4843 
4844 	while (1) {
4845 		write_lock(&tree->map_tree.lock);
4846 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4847 		if (em)
4848 			remove_extent_mapping(&tree->map_tree, em);
4849 		write_unlock(&tree->map_tree.lock);
4850 		if (!em)
4851 			break;
4852 		/* once for us */
4853 		free_extent_map(em);
4854 		/* once for the tree */
4855 		free_extent_map(em);
4856 	}
4857 }
4858 
4859 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4860 {
4861 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4862 	struct extent_map *em;
4863 	struct map_lookup *map;
4864 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4865 	int ret;
4866 
4867 	read_lock(&em_tree->lock);
4868 	em = lookup_extent_mapping(em_tree, logical, len);
4869 	read_unlock(&em_tree->lock);
4870 
4871 	/*
4872 	 * We could return errors for these cases, but that could get ugly and
4873 	 * we'd probably do the same thing which is just not do anything else
4874 	 * and exit, so return 1 so the callers don't try to use other copies.
4875 	 */
4876 	if (!em) {
4877 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4878 			    logical+len);
4879 		return 1;
4880 	}
4881 
4882 	if (em->start > logical || em->start + em->len < logical) {
4883 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4884 			    "%Lu-%Lu", logical, logical+len, em->start,
4885 			    em->start + em->len);
4886 		free_extent_map(em);
4887 		return 1;
4888 	}
4889 
4890 	map = (struct map_lookup *)em->bdev;
4891 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4892 		ret = map->num_stripes;
4893 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4894 		ret = map->sub_stripes;
4895 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4896 		ret = 2;
4897 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4898 		ret = 3;
4899 	else
4900 		ret = 1;
4901 	free_extent_map(em);
4902 
4903 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4904 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4905 		ret++;
4906 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4907 
4908 	return ret;
4909 }
4910 
4911 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4912 				    struct btrfs_mapping_tree *map_tree,
4913 				    u64 logical)
4914 {
4915 	struct extent_map *em;
4916 	struct map_lookup *map;
4917 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4918 	unsigned long len = root->sectorsize;
4919 
4920 	read_lock(&em_tree->lock);
4921 	em = lookup_extent_mapping(em_tree, logical, len);
4922 	read_unlock(&em_tree->lock);
4923 	BUG_ON(!em);
4924 
4925 	BUG_ON(em->start > logical || em->start + em->len < logical);
4926 	map = (struct map_lookup *)em->bdev;
4927 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4928 		len = map->stripe_len * nr_data_stripes(map);
4929 	free_extent_map(em);
4930 	return len;
4931 }
4932 
4933 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4934 			   u64 logical, u64 len, int mirror_num)
4935 {
4936 	struct extent_map *em;
4937 	struct map_lookup *map;
4938 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4939 	int ret = 0;
4940 
4941 	read_lock(&em_tree->lock);
4942 	em = lookup_extent_mapping(em_tree, logical, len);
4943 	read_unlock(&em_tree->lock);
4944 	BUG_ON(!em);
4945 
4946 	BUG_ON(em->start > logical || em->start + em->len < logical);
4947 	map = (struct map_lookup *)em->bdev;
4948 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4949 		ret = 1;
4950 	free_extent_map(em);
4951 	return ret;
4952 }
4953 
4954 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4955 			    struct map_lookup *map, int first, int num,
4956 			    int optimal, int dev_replace_is_ongoing)
4957 {
4958 	int i;
4959 	int tolerance;
4960 	struct btrfs_device *srcdev;
4961 
4962 	if (dev_replace_is_ongoing &&
4963 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4964 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4965 		srcdev = fs_info->dev_replace.srcdev;
4966 	else
4967 		srcdev = NULL;
4968 
4969 	/*
4970 	 * try to avoid the drive that is the source drive for a
4971 	 * dev-replace procedure, only choose it if no other non-missing
4972 	 * mirror is available
4973 	 */
4974 	for (tolerance = 0; tolerance < 2; tolerance++) {
4975 		if (map->stripes[optimal].dev->bdev &&
4976 		    (tolerance || map->stripes[optimal].dev != srcdev))
4977 			return optimal;
4978 		for (i = first; i < first + num; i++) {
4979 			if (map->stripes[i].dev->bdev &&
4980 			    (tolerance || map->stripes[i].dev != srcdev))
4981 				return i;
4982 		}
4983 	}
4984 
4985 	/* we couldn't find one that doesn't fail.  Just return something
4986 	 * and the io error handling code will clean up eventually
4987 	 */
4988 	return optimal;
4989 }
4990 
4991 static inline int parity_smaller(u64 a, u64 b)
4992 {
4993 	return a > b;
4994 }
4995 
4996 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4997 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4998 {
4999 	struct btrfs_bio_stripe s;
5000 	int i;
5001 	u64 l;
5002 	int again = 1;
5003 
5004 	while (again) {
5005 		again = 0;
5006 		for (i = 0; i < num_stripes - 1; i++) {
5007 			if (parity_smaller(bbio->raid_map[i],
5008 					   bbio->raid_map[i+1])) {
5009 				s = bbio->stripes[i];
5010 				l = bbio->raid_map[i];
5011 				bbio->stripes[i] = bbio->stripes[i+1];
5012 				bbio->raid_map[i] = bbio->raid_map[i+1];
5013 				bbio->stripes[i+1] = s;
5014 				bbio->raid_map[i+1] = l;
5015 
5016 				again = 1;
5017 			}
5018 		}
5019 	}
5020 }
5021 
5022 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5023 {
5024 	struct btrfs_bio *bbio = kzalloc(
5025 		 /* the size of the btrfs_bio */
5026 		sizeof(struct btrfs_bio) +
5027 		/* plus the variable array for the stripes */
5028 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5029 		/* plus the variable array for the tgt dev */
5030 		sizeof(int) * (real_stripes) +
5031 		/*
5032 		 * plus the raid_map, which includes both the tgt dev
5033 		 * and the stripes
5034 		 */
5035 		sizeof(u64) * (total_stripes),
5036 		GFP_NOFS);
5037 	if (!bbio)
5038 		return NULL;
5039 
5040 	atomic_set(&bbio->error, 0);
5041 	atomic_set(&bbio->refs, 1);
5042 
5043 	return bbio;
5044 }
5045 
5046 void btrfs_get_bbio(struct btrfs_bio *bbio)
5047 {
5048 	WARN_ON(!atomic_read(&bbio->refs));
5049 	atomic_inc(&bbio->refs);
5050 }
5051 
5052 void btrfs_put_bbio(struct btrfs_bio *bbio)
5053 {
5054 	if (!bbio)
5055 		return;
5056 	if (atomic_dec_and_test(&bbio->refs))
5057 		kfree(bbio);
5058 }
5059 
5060 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5061 			     u64 logical, u64 *length,
5062 			     struct btrfs_bio **bbio_ret,
5063 			     int mirror_num, int need_raid_map)
5064 {
5065 	struct extent_map *em;
5066 	struct map_lookup *map;
5067 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5068 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5069 	u64 offset;
5070 	u64 stripe_offset;
5071 	u64 stripe_end_offset;
5072 	u64 stripe_nr;
5073 	u64 stripe_nr_orig;
5074 	u64 stripe_nr_end;
5075 	u64 stripe_len;
5076 	u32 stripe_index;
5077 	int i;
5078 	int ret = 0;
5079 	int num_stripes;
5080 	int max_errors = 0;
5081 	int tgtdev_indexes = 0;
5082 	struct btrfs_bio *bbio = NULL;
5083 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5084 	int dev_replace_is_ongoing = 0;
5085 	int num_alloc_stripes;
5086 	int patch_the_first_stripe_for_dev_replace = 0;
5087 	u64 physical_to_patch_in_first_stripe = 0;
5088 	u64 raid56_full_stripe_start = (u64)-1;
5089 
5090 	read_lock(&em_tree->lock);
5091 	em = lookup_extent_mapping(em_tree, logical, *length);
5092 	read_unlock(&em_tree->lock);
5093 
5094 	if (!em) {
5095 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5096 			logical, *length);
5097 		return -EINVAL;
5098 	}
5099 
5100 	if (em->start > logical || em->start + em->len < logical) {
5101 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5102 			   "found %Lu-%Lu", logical, em->start,
5103 			   em->start + em->len);
5104 		free_extent_map(em);
5105 		return -EINVAL;
5106 	}
5107 
5108 	map = (struct map_lookup *)em->bdev;
5109 	offset = logical - em->start;
5110 
5111 	stripe_len = map->stripe_len;
5112 	stripe_nr = offset;
5113 	/*
5114 	 * stripe_nr counts the total number of stripes we have to stride
5115 	 * to get to this block
5116 	 */
5117 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5118 
5119 	stripe_offset = stripe_nr * stripe_len;
5120 	BUG_ON(offset < stripe_offset);
5121 
5122 	/* stripe_offset is the offset of this block in its stripe*/
5123 	stripe_offset = offset - stripe_offset;
5124 
5125 	/* if we're here for raid56, we need to know the stripe aligned start */
5126 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5127 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5128 		raid56_full_stripe_start = offset;
5129 
5130 		/* allow a write of a full stripe, but make sure we don't
5131 		 * allow straddling of stripes
5132 		 */
5133 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5134 				full_stripe_len);
5135 		raid56_full_stripe_start *= full_stripe_len;
5136 	}
5137 
5138 	if (rw & REQ_DISCARD) {
5139 		/* we don't discard raid56 yet */
5140 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5141 			ret = -EOPNOTSUPP;
5142 			goto out;
5143 		}
5144 		*length = min_t(u64, em->len - offset, *length);
5145 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5146 		u64 max_len;
5147 		/* For writes to RAID[56], allow a full stripeset across all disks.
5148 		   For other RAID types and for RAID[56] reads, just allow a single
5149 		   stripe (on a single disk). */
5150 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5151 		    (rw & REQ_WRITE)) {
5152 			max_len = stripe_len * nr_data_stripes(map) -
5153 				(offset - raid56_full_stripe_start);
5154 		} else {
5155 			/* we limit the length of each bio to what fits in a stripe */
5156 			max_len = stripe_len - stripe_offset;
5157 		}
5158 		*length = min_t(u64, em->len - offset, max_len);
5159 	} else {
5160 		*length = em->len - offset;
5161 	}
5162 
5163 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5164 	   it cares about is the length */
5165 	if (!bbio_ret)
5166 		goto out;
5167 
5168 	btrfs_dev_replace_lock(dev_replace);
5169 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5170 	if (!dev_replace_is_ongoing)
5171 		btrfs_dev_replace_unlock(dev_replace);
5172 
5173 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5174 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5175 	    dev_replace->tgtdev != NULL) {
5176 		/*
5177 		 * in dev-replace case, for repair case (that's the only
5178 		 * case where the mirror is selected explicitly when
5179 		 * calling btrfs_map_block), blocks left of the left cursor
5180 		 * can also be read from the target drive.
5181 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5182 		 * the last one to the array of stripes. For READ, it also
5183 		 * needs to be supported using the same mirror number.
5184 		 * If the requested block is not left of the left cursor,
5185 		 * EIO is returned. This can happen because btrfs_num_copies()
5186 		 * returns one more in the dev-replace case.
5187 		 */
5188 		u64 tmp_length = *length;
5189 		struct btrfs_bio *tmp_bbio = NULL;
5190 		int tmp_num_stripes;
5191 		u64 srcdev_devid = dev_replace->srcdev->devid;
5192 		int index_srcdev = 0;
5193 		int found = 0;
5194 		u64 physical_of_found = 0;
5195 
5196 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5197 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5198 		if (ret) {
5199 			WARN_ON(tmp_bbio != NULL);
5200 			goto out;
5201 		}
5202 
5203 		tmp_num_stripes = tmp_bbio->num_stripes;
5204 		if (mirror_num > tmp_num_stripes) {
5205 			/*
5206 			 * REQ_GET_READ_MIRRORS does not contain this
5207 			 * mirror, that means that the requested area
5208 			 * is not left of the left cursor
5209 			 */
5210 			ret = -EIO;
5211 			btrfs_put_bbio(tmp_bbio);
5212 			goto out;
5213 		}
5214 
5215 		/*
5216 		 * process the rest of the function using the mirror_num
5217 		 * of the source drive. Therefore look it up first.
5218 		 * At the end, patch the device pointer to the one of the
5219 		 * target drive.
5220 		 */
5221 		for (i = 0; i < tmp_num_stripes; i++) {
5222 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5223 				/*
5224 				 * In case of DUP, in order to keep it
5225 				 * simple, only add the mirror with the
5226 				 * lowest physical address
5227 				 */
5228 				if (found &&
5229 				    physical_of_found <=
5230 				     tmp_bbio->stripes[i].physical)
5231 					continue;
5232 				index_srcdev = i;
5233 				found = 1;
5234 				physical_of_found =
5235 					tmp_bbio->stripes[i].physical;
5236 			}
5237 		}
5238 
5239 		if (found) {
5240 			mirror_num = index_srcdev + 1;
5241 			patch_the_first_stripe_for_dev_replace = 1;
5242 			physical_to_patch_in_first_stripe = physical_of_found;
5243 		} else {
5244 			WARN_ON(1);
5245 			ret = -EIO;
5246 			btrfs_put_bbio(tmp_bbio);
5247 			goto out;
5248 		}
5249 
5250 		btrfs_put_bbio(tmp_bbio);
5251 	} else if (mirror_num > map->num_stripes) {
5252 		mirror_num = 0;
5253 	}
5254 
5255 	num_stripes = 1;
5256 	stripe_index = 0;
5257 	stripe_nr_orig = stripe_nr;
5258 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5259 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5260 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5261 			    (offset + *length);
5262 
5263 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5264 		if (rw & REQ_DISCARD)
5265 			num_stripes = min_t(u64, map->num_stripes,
5266 					    stripe_nr_end - stripe_nr_orig);
5267 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5268 				&stripe_index);
5269 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5270 			mirror_num = 1;
5271 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5272 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5273 			num_stripes = map->num_stripes;
5274 		else if (mirror_num)
5275 			stripe_index = mirror_num - 1;
5276 		else {
5277 			stripe_index = find_live_mirror(fs_info, map, 0,
5278 					    map->num_stripes,
5279 					    current->pid % map->num_stripes,
5280 					    dev_replace_is_ongoing);
5281 			mirror_num = stripe_index + 1;
5282 		}
5283 
5284 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5285 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5286 			num_stripes = map->num_stripes;
5287 		} else if (mirror_num) {
5288 			stripe_index = mirror_num - 1;
5289 		} else {
5290 			mirror_num = 1;
5291 		}
5292 
5293 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5294 		u32 factor = map->num_stripes / map->sub_stripes;
5295 
5296 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5297 		stripe_index *= map->sub_stripes;
5298 
5299 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5300 			num_stripes = map->sub_stripes;
5301 		else if (rw & REQ_DISCARD)
5302 			num_stripes = min_t(u64, map->sub_stripes *
5303 					    (stripe_nr_end - stripe_nr_orig),
5304 					    map->num_stripes);
5305 		else if (mirror_num)
5306 			stripe_index += mirror_num - 1;
5307 		else {
5308 			int old_stripe_index = stripe_index;
5309 			stripe_index = find_live_mirror(fs_info, map,
5310 					      stripe_index,
5311 					      map->sub_stripes, stripe_index +
5312 					      current->pid % map->sub_stripes,
5313 					      dev_replace_is_ongoing);
5314 			mirror_num = stripe_index - old_stripe_index + 1;
5315 		}
5316 
5317 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5318 		if (need_raid_map &&
5319 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5320 		     mirror_num > 1)) {
5321 			/* push stripe_nr back to the start of the full stripe */
5322 			stripe_nr = div_u64(raid56_full_stripe_start,
5323 					stripe_len * nr_data_stripes(map));
5324 
5325 			/* RAID[56] write or recovery. Return all stripes */
5326 			num_stripes = map->num_stripes;
5327 			max_errors = nr_parity_stripes(map);
5328 
5329 			*length = map->stripe_len;
5330 			stripe_index = 0;
5331 			stripe_offset = 0;
5332 		} else {
5333 			/*
5334 			 * Mirror #0 or #1 means the original data block.
5335 			 * Mirror #2 is RAID5 parity block.
5336 			 * Mirror #3 is RAID6 Q block.
5337 			 */
5338 			stripe_nr = div_u64_rem(stripe_nr,
5339 					nr_data_stripes(map), &stripe_index);
5340 			if (mirror_num > 1)
5341 				stripe_index = nr_data_stripes(map) +
5342 						mirror_num - 2;
5343 
5344 			/* We distribute the parity blocks across stripes */
5345 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5346 					&stripe_index);
5347 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5348 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5349 				mirror_num = 1;
5350 		}
5351 	} else {
5352 		/*
5353 		 * after this, stripe_nr is the number of stripes on this
5354 		 * device we have to walk to find the data, and stripe_index is
5355 		 * the number of our device in the stripe array
5356 		 */
5357 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5358 				&stripe_index);
5359 		mirror_num = stripe_index + 1;
5360 	}
5361 	BUG_ON(stripe_index >= map->num_stripes);
5362 
5363 	num_alloc_stripes = num_stripes;
5364 	if (dev_replace_is_ongoing) {
5365 		if (rw & (REQ_WRITE | REQ_DISCARD))
5366 			num_alloc_stripes <<= 1;
5367 		if (rw & REQ_GET_READ_MIRRORS)
5368 			num_alloc_stripes++;
5369 		tgtdev_indexes = num_stripes;
5370 	}
5371 
5372 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5373 	if (!bbio) {
5374 		ret = -ENOMEM;
5375 		goto out;
5376 	}
5377 	if (dev_replace_is_ongoing)
5378 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5379 
5380 	/* build raid_map */
5381 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5382 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5383 	    mirror_num > 1)) {
5384 		u64 tmp;
5385 		unsigned rot;
5386 
5387 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5388 				 sizeof(struct btrfs_bio_stripe) *
5389 				 num_alloc_stripes +
5390 				 sizeof(int) * tgtdev_indexes);
5391 
5392 		/* Work out the disk rotation on this stripe-set */
5393 		div_u64_rem(stripe_nr, num_stripes, &rot);
5394 
5395 		/* Fill in the logical address of each stripe */
5396 		tmp = stripe_nr * nr_data_stripes(map);
5397 		for (i = 0; i < nr_data_stripes(map); i++)
5398 			bbio->raid_map[(i+rot) % num_stripes] =
5399 				em->start + (tmp + i) * map->stripe_len;
5400 
5401 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5402 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5403 			bbio->raid_map[(i+rot+1) % num_stripes] =
5404 				RAID6_Q_STRIPE;
5405 	}
5406 
5407 	if (rw & REQ_DISCARD) {
5408 		u32 factor = 0;
5409 		u32 sub_stripes = 0;
5410 		u64 stripes_per_dev = 0;
5411 		u32 remaining_stripes = 0;
5412 		u32 last_stripe = 0;
5413 
5414 		if (map->type &
5415 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5416 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5417 				sub_stripes = 1;
5418 			else
5419 				sub_stripes = map->sub_stripes;
5420 
5421 			factor = map->num_stripes / sub_stripes;
5422 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5423 						      stripe_nr_orig,
5424 						      factor,
5425 						      &remaining_stripes);
5426 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5427 			last_stripe *= sub_stripes;
5428 		}
5429 
5430 		for (i = 0; i < num_stripes; i++) {
5431 			bbio->stripes[i].physical =
5432 				map->stripes[stripe_index].physical +
5433 				stripe_offset + stripe_nr * map->stripe_len;
5434 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5435 
5436 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5437 					 BTRFS_BLOCK_GROUP_RAID10)) {
5438 				bbio->stripes[i].length = stripes_per_dev *
5439 							  map->stripe_len;
5440 
5441 				if (i / sub_stripes < remaining_stripes)
5442 					bbio->stripes[i].length +=
5443 						map->stripe_len;
5444 
5445 				/*
5446 				 * Special for the first stripe and
5447 				 * the last stripe:
5448 				 *
5449 				 * |-------|...|-------|
5450 				 *     |----------|
5451 				 *    off     end_off
5452 				 */
5453 				if (i < sub_stripes)
5454 					bbio->stripes[i].length -=
5455 						stripe_offset;
5456 
5457 				if (stripe_index >= last_stripe &&
5458 				    stripe_index <= (last_stripe +
5459 						     sub_stripes - 1))
5460 					bbio->stripes[i].length -=
5461 						stripe_end_offset;
5462 
5463 				if (i == sub_stripes - 1)
5464 					stripe_offset = 0;
5465 			} else
5466 				bbio->stripes[i].length = *length;
5467 
5468 			stripe_index++;
5469 			if (stripe_index == map->num_stripes) {
5470 				/* This could only happen for RAID0/10 */
5471 				stripe_index = 0;
5472 				stripe_nr++;
5473 			}
5474 		}
5475 	} else {
5476 		for (i = 0; i < num_stripes; i++) {
5477 			bbio->stripes[i].physical =
5478 				map->stripes[stripe_index].physical +
5479 				stripe_offset +
5480 				stripe_nr * map->stripe_len;
5481 			bbio->stripes[i].dev =
5482 				map->stripes[stripe_index].dev;
5483 			stripe_index++;
5484 		}
5485 	}
5486 
5487 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5488 		max_errors = btrfs_chunk_max_errors(map);
5489 
5490 	if (bbio->raid_map)
5491 		sort_parity_stripes(bbio, num_stripes);
5492 
5493 	tgtdev_indexes = 0;
5494 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5495 	    dev_replace->tgtdev != NULL) {
5496 		int index_where_to_add;
5497 		u64 srcdev_devid = dev_replace->srcdev->devid;
5498 
5499 		/*
5500 		 * duplicate the write operations while the dev replace
5501 		 * procedure is running. Since the copying of the old disk
5502 		 * to the new disk takes place at run time while the
5503 		 * filesystem is mounted writable, the regular write
5504 		 * operations to the old disk have to be duplicated to go
5505 		 * to the new disk as well.
5506 		 * Note that device->missing is handled by the caller, and
5507 		 * that the write to the old disk is already set up in the
5508 		 * stripes array.
5509 		 */
5510 		index_where_to_add = num_stripes;
5511 		for (i = 0; i < num_stripes; i++) {
5512 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5513 				/* write to new disk, too */
5514 				struct btrfs_bio_stripe *new =
5515 					bbio->stripes + index_where_to_add;
5516 				struct btrfs_bio_stripe *old =
5517 					bbio->stripes + i;
5518 
5519 				new->physical = old->physical;
5520 				new->length = old->length;
5521 				new->dev = dev_replace->tgtdev;
5522 				bbio->tgtdev_map[i] = index_where_to_add;
5523 				index_where_to_add++;
5524 				max_errors++;
5525 				tgtdev_indexes++;
5526 			}
5527 		}
5528 		num_stripes = index_where_to_add;
5529 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5530 		   dev_replace->tgtdev != NULL) {
5531 		u64 srcdev_devid = dev_replace->srcdev->devid;
5532 		int index_srcdev = 0;
5533 		int found = 0;
5534 		u64 physical_of_found = 0;
5535 
5536 		/*
5537 		 * During the dev-replace procedure, the target drive can
5538 		 * also be used to read data in case it is needed to repair
5539 		 * a corrupt block elsewhere. This is possible if the
5540 		 * requested area is left of the left cursor. In this area,
5541 		 * the target drive is a full copy of the source drive.
5542 		 */
5543 		for (i = 0; i < num_stripes; i++) {
5544 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5545 				/*
5546 				 * In case of DUP, in order to keep it
5547 				 * simple, only add the mirror with the
5548 				 * lowest physical address
5549 				 */
5550 				if (found &&
5551 				    physical_of_found <=
5552 				     bbio->stripes[i].physical)
5553 					continue;
5554 				index_srcdev = i;
5555 				found = 1;
5556 				physical_of_found = bbio->stripes[i].physical;
5557 			}
5558 		}
5559 		if (found) {
5560 			if (physical_of_found + map->stripe_len <=
5561 			    dev_replace->cursor_left) {
5562 				struct btrfs_bio_stripe *tgtdev_stripe =
5563 					bbio->stripes + num_stripes;
5564 
5565 				tgtdev_stripe->physical = physical_of_found;
5566 				tgtdev_stripe->length =
5567 					bbio->stripes[index_srcdev].length;
5568 				tgtdev_stripe->dev = dev_replace->tgtdev;
5569 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5570 
5571 				tgtdev_indexes++;
5572 				num_stripes++;
5573 			}
5574 		}
5575 	}
5576 
5577 	*bbio_ret = bbio;
5578 	bbio->map_type = map->type;
5579 	bbio->num_stripes = num_stripes;
5580 	bbio->max_errors = max_errors;
5581 	bbio->mirror_num = mirror_num;
5582 	bbio->num_tgtdevs = tgtdev_indexes;
5583 
5584 	/*
5585 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5586 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5587 	 * available as a mirror
5588 	 */
5589 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5590 		WARN_ON(num_stripes > 1);
5591 		bbio->stripes[0].dev = dev_replace->tgtdev;
5592 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5593 		bbio->mirror_num = map->num_stripes + 1;
5594 	}
5595 out:
5596 	if (dev_replace_is_ongoing)
5597 		btrfs_dev_replace_unlock(dev_replace);
5598 	free_extent_map(em);
5599 	return ret;
5600 }
5601 
5602 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5603 		      u64 logical, u64 *length,
5604 		      struct btrfs_bio **bbio_ret, int mirror_num)
5605 {
5606 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5607 				 mirror_num, 0);
5608 }
5609 
5610 /* For Scrub/replace */
5611 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5612 		     u64 logical, u64 *length,
5613 		     struct btrfs_bio **bbio_ret, int mirror_num,
5614 		     int need_raid_map)
5615 {
5616 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5617 				 mirror_num, need_raid_map);
5618 }
5619 
5620 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5621 		     u64 chunk_start, u64 physical, u64 devid,
5622 		     u64 **logical, int *naddrs, int *stripe_len)
5623 {
5624 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5625 	struct extent_map *em;
5626 	struct map_lookup *map;
5627 	u64 *buf;
5628 	u64 bytenr;
5629 	u64 length;
5630 	u64 stripe_nr;
5631 	u64 rmap_len;
5632 	int i, j, nr = 0;
5633 
5634 	read_lock(&em_tree->lock);
5635 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5636 	read_unlock(&em_tree->lock);
5637 
5638 	if (!em) {
5639 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5640 		       chunk_start);
5641 		return -EIO;
5642 	}
5643 
5644 	if (em->start != chunk_start) {
5645 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5646 		       em->start, chunk_start);
5647 		free_extent_map(em);
5648 		return -EIO;
5649 	}
5650 	map = (struct map_lookup *)em->bdev;
5651 
5652 	length = em->len;
5653 	rmap_len = map->stripe_len;
5654 
5655 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5656 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5657 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5658 		length = div_u64(length, map->num_stripes);
5659 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5660 		length = div_u64(length, nr_data_stripes(map));
5661 		rmap_len = map->stripe_len * nr_data_stripes(map);
5662 	}
5663 
5664 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5665 	BUG_ON(!buf); /* -ENOMEM */
5666 
5667 	for (i = 0; i < map->num_stripes; i++) {
5668 		if (devid && map->stripes[i].dev->devid != devid)
5669 			continue;
5670 		if (map->stripes[i].physical > physical ||
5671 		    map->stripes[i].physical + length <= physical)
5672 			continue;
5673 
5674 		stripe_nr = physical - map->stripes[i].physical;
5675 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5676 
5677 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5678 			stripe_nr = stripe_nr * map->num_stripes + i;
5679 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5680 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5681 			stripe_nr = stripe_nr * map->num_stripes + i;
5682 		} /* else if RAID[56], multiply by nr_data_stripes().
5683 		   * Alternatively, just use rmap_len below instead of
5684 		   * map->stripe_len */
5685 
5686 		bytenr = chunk_start + stripe_nr * rmap_len;
5687 		WARN_ON(nr >= map->num_stripes);
5688 		for (j = 0; j < nr; j++) {
5689 			if (buf[j] == bytenr)
5690 				break;
5691 		}
5692 		if (j == nr) {
5693 			WARN_ON(nr >= map->num_stripes);
5694 			buf[nr++] = bytenr;
5695 		}
5696 	}
5697 
5698 	*logical = buf;
5699 	*naddrs = nr;
5700 	*stripe_len = rmap_len;
5701 
5702 	free_extent_map(em);
5703 	return 0;
5704 }
5705 
5706 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5707 {
5708 	bio->bi_private = bbio->private;
5709 	bio->bi_end_io = bbio->end_io;
5710 	bio_endio(bio, err);
5711 
5712 	btrfs_put_bbio(bbio);
5713 }
5714 
5715 static void btrfs_end_bio(struct bio *bio, int err)
5716 {
5717 	struct btrfs_bio *bbio = bio->bi_private;
5718 	struct btrfs_device *dev = bbio->stripes[0].dev;
5719 	int is_orig_bio = 0;
5720 
5721 	if (err) {
5722 		atomic_inc(&bbio->error);
5723 		if (err == -EIO || err == -EREMOTEIO) {
5724 			unsigned int stripe_index =
5725 				btrfs_io_bio(bio)->stripe_index;
5726 
5727 			BUG_ON(stripe_index >= bbio->num_stripes);
5728 			dev = bbio->stripes[stripe_index].dev;
5729 			if (dev->bdev) {
5730 				if (bio->bi_rw & WRITE)
5731 					btrfs_dev_stat_inc(dev,
5732 						BTRFS_DEV_STAT_WRITE_ERRS);
5733 				else
5734 					btrfs_dev_stat_inc(dev,
5735 						BTRFS_DEV_STAT_READ_ERRS);
5736 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5737 					btrfs_dev_stat_inc(dev,
5738 						BTRFS_DEV_STAT_FLUSH_ERRS);
5739 				btrfs_dev_stat_print_on_error(dev);
5740 			}
5741 		}
5742 	}
5743 
5744 	if (bio == bbio->orig_bio)
5745 		is_orig_bio = 1;
5746 
5747 	btrfs_bio_counter_dec(bbio->fs_info);
5748 
5749 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5750 		if (!is_orig_bio) {
5751 			bio_put(bio);
5752 			bio = bbio->orig_bio;
5753 		}
5754 
5755 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5756 		/* only send an error to the higher layers if it is
5757 		 * beyond the tolerance of the btrfs bio
5758 		 */
5759 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5760 			err = -EIO;
5761 		} else {
5762 			/*
5763 			 * this bio is actually up to date, we didn't
5764 			 * go over the max number of errors
5765 			 */
5766 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5767 			err = 0;
5768 		}
5769 
5770 		btrfs_end_bbio(bbio, bio, err);
5771 	} else if (!is_orig_bio) {
5772 		bio_put(bio);
5773 	}
5774 }
5775 
5776 /*
5777  * see run_scheduled_bios for a description of why bios are collected for
5778  * async submit.
5779  *
5780  * This will add one bio to the pending list for a device and make sure
5781  * the work struct is scheduled.
5782  */
5783 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5784 					struct btrfs_device *device,
5785 					int rw, struct bio *bio)
5786 {
5787 	int should_queue = 1;
5788 	struct btrfs_pending_bios *pending_bios;
5789 
5790 	if (device->missing || !device->bdev) {
5791 		bio_endio(bio, -EIO);
5792 		return;
5793 	}
5794 
5795 	/* don't bother with additional async steps for reads, right now */
5796 	if (!(rw & REQ_WRITE)) {
5797 		bio_get(bio);
5798 		btrfsic_submit_bio(rw, bio);
5799 		bio_put(bio);
5800 		return;
5801 	}
5802 
5803 	/*
5804 	 * nr_async_bios allows us to reliably return congestion to the
5805 	 * higher layers.  Otherwise, the async bio makes it appear we have
5806 	 * made progress against dirty pages when we've really just put it
5807 	 * on a queue for later
5808 	 */
5809 	atomic_inc(&root->fs_info->nr_async_bios);
5810 	WARN_ON(bio->bi_next);
5811 	bio->bi_next = NULL;
5812 	bio->bi_rw |= rw;
5813 
5814 	spin_lock(&device->io_lock);
5815 	if (bio->bi_rw & REQ_SYNC)
5816 		pending_bios = &device->pending_sync_bios;
5817 	else
5818 		pending_bios = &device->pending_bios;
5819 
5820 	if (pending_bios->tail)
5821 		pending_bios->tail->bi_next = bio;
5822 
5823 	pending_bios->tail = bio;
5824 	if (!pending_bios->head)
5825 		pending_bios->head = bio;
5826 	if (device->running_pending)
5827 		should_queue = 0;
5828 
5829 	spin_unlock(&device->io_lock);
5830 
5831 	if (should_queue)
5832 		btrfs_queue_work(root->fs_info->submit_workers,
5833 				 &device->work);
5834 }
5835 
5836 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5837 		       sector_t sector)
5838 {
5839 	struct bio_vec *prev;
5840 	struct request_queue *q = bdev_get_queue(bdev);
5841 	unsigned int max_sectors = queue_max_sectors(q);
5842 	struct bvec_merge_data bvm = {
5843 		.bi_bdev = bdev,
5844 		.bi_sector = sector,
5845 		.bi_rw = bio->bi_rw,
5846 	};
5847 
5848 	if (WARN_ON(bio->bi_vcnt == 0))
5849 		return 1;
5850 
5851 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5852 	if (bio_sectors(bio) > max_sectors)
5853 		return 0;
5854 
5855 	if (!q->merge_bvec_fn)
5856 		return 1;
5857 
5858 	bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5859 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5860 		return 0;
5861 	return 1;
5862 }
5863 
5864 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5865 			      struct bio *bio, u64 physical, int dev_nr,
5866 			      int rw, int async)
5867 {
5868 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5869 
5870 	bio->bi_private = bbio;
5871 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5872 	bio->bi_end_io = btrfs_end_bio;
5873 	bio->bi_iter.bi_sector = physical >> 9;
5874 #ifdef DEBUG
5875 	{
5876 		struct rcu_string *name;
5877 
5878 		rcu_read_lock();
5879 		name = rcu_dereference(dev->name);
5880 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5881 			 "(%s id %llu), size=%u\n", rw,
5882 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5883 			 name->str, dev->devid, bio->bi_iter.bi_size);
5884 		rcu_read_unlock();
5885 	}
5886 #endif
5887 	bio->bi_bdev = dev->bdev;
5888 
5889 	btrfs_bio_counter_inc_noblocked(root->fs_info);
5890 
5891 	if (async)
5892 		btrfs_schedule_bio(root, dev, rw, bio);
5893 	else
5894 		btrfsic_submit_bio(rw, bio);
5895 }
5896 
5897 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5898 			      struct bio *first_bio, struct btrfs_device *dev,
5899 			      int dev_nr, int rw, int async)
5900 {
5901 	struct bio_vec *bvec = first_bio->bi_io_vec;
5902 	struct bio *bio;
5903 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5904 	u64 physical = bbio->stripes[dev_nr].physical;
5905 
5906 again:
5907 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5908 	if (!bio)
5909 		return -ENOMEM;
5910 
5911 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5912 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5913 				 bvec->bv_offset) < bvec->bv_len) {
5914 			u64 len = bio->bi_iter.bi_size;
5915 
5916 			atomic_inc(&bbio->stripes_pending);
5917 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5918 					  rw, async);
5919 			physical += len;
5920 			goto again;
5921 		}
5922 		bvec++;
5923 	}
5924 
5925 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5926 	return 0;
5927 }
5928 
5929 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5930 {
5931 	atomic_inc(&bbio->error);
5932 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5933 		/* Shoud be the original bio. */
5934 		WARN_ON(bio != bbio->orig_bio);
5935 
5936 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5937 		bio->bi_iter.bi_sector = logical >> 9;
5938 
5939 		btrfs_end_bbio(bbio, bio, -EIO);
5940 	}
5941 }
5942 
5943 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5944 		  int mirror_num, int async_submit)
5945 {
5946 	struct btrfs_device *dev;
5947 	struct bio *first_bio = bio;
5948 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5949 	u64 length = 0;
5950 	u64 map_length;
5951 	int ret;
5952 	int dev_nr;
5953 	int total_devs;
5954 	struct btrfs_bio *bbio = NULL;
5955 
5956 	length = bio->bi_iter.bi_size;
5957 	map_length = length;
5958 
5959 	btrfs_bio_counter_inc_blocked(root->fs_info);
5960 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5961 			      mirror_num, 1);
5962 	if (ret) {
5963 		btrfs_bio_counter_dec(root->fs_info);
5964 		return ret;
5965 	}
5966 
5967 	total_devs = bbio->num_stripes;
5968 	bbio->orig_bio = first_bio;
5969 	bbio->private = first_bio->bi_private;
5970 	bbio->end_io = first_bio->bi_end_io;
5971 	bbio->fs_info = root->fs_info;
5972 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5973 
5974 	if (bbio->raid_map) {
5975 		/* In this case, map_length has been set to the length of
5976 		   a single stripe; not the whole write */
5977 		if (rw & WRITE) {
5978 			ret = raid56_parity_write(root, bio, bbio, map_length);
5979 		} else {
5980 			ret = raid56_parity_recover(root, bio, bbio, map_length,
5981 						    mirror_num, 1);
5982 		}
5983 
5984 		btrfs_bio_counter_dec(root->fs_info);
5985 		return ret;
5986 	}
5987 
5988 	if (map_length < length) {
5989 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5990 			logical, length, map_length);
5991 		BUG();
5992 	}
5993 
5994 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5995 		dev = bbio->stripes[dev_nr].dev;
5996 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5997 			bbio_error(bbio, first_bio, logical);
5998 			continue;
5999 		}
6000 
6001 		/*
6002 		 * Check and see if we're ok with this bio based on it's size
6003 		 * and offset with the given device.
6004 		 */
6005 		if (!bio_size_ok(dev->bdev, first_bio,
6006 				 bbio->stripes[dev_nr].physical >> 9)) {
6007 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
6008 						 dev_nr, rw, async_submit);
6009 			BUG_ON(ret);
6010 			continue;
6011 		}
6012 
6013 		if (dev_nr < total_devs - 1) {
6014 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6015 			BUG_ON(!bio); /* -ENOMEM */
6016 		} else
6017 			bio = first_bio;
6018 
6019 		submit_stripe_bio(root, bbio, bio,
6020 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
6021 				  async_submit);
6022 	}
6023 	btrfs_bio_counter_dec(root->fs_info);
6024 	return 0;
6025 }
6026 
6027 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6028 				       u8 *uuid, u8 *fsid)
6029 {
6030 	struct btrfs_device *device;
6031 	struct btrfs_fs_devices *cur_devices;
6032 
6033 	cur_devices = fs_info->fs_devices;
6034 	while (cur_devices) {
6035 		if (!fsid ||
6036 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6037 			device = __find_device(&cur_devices->devices,
6038 					       devid, uuid);
6039 			if (device)
6040 				return device;
6041 		}
6042 		cur_devices = cur_devices->seed;
6043 	}
6044 	return NULL;
6045 }
6046 
6047 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6048 					    struct btrfs_fs_devices *fs_devices,
6049 					    u64 devid, u8 *dev_uuid)
6050 {
6051 	struct btrfs_device *device;
6052 
6053 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6054 	if (IS_ERR(device))
6055 		return NULL;
6056 
6057 	list_add(&device->dev_list, &fs_devices->devices);
6058 	device->fs_devices = fs_devices;
6059 	fs_devices->num_devices++;
6060 
6061 	device->missing = 1;
6062 	fs_devices->missing_devices++;
6063 
6064 	return device;
6065 }
6066 
6067 /**
6068  * btrfs_alloc_device - allocate struct btrfs_device
6069  * @fs_info:	used only for generating a new devid, can be NULL if
6070  *		devid is provided (i.e. @devid != NULL).
6071  * @devid:	a pointer to devid for this device.  If NULL a new devid
6072  *		is generated.
6073  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6074  *		is generated.
6075  *
6076  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6077  * on error.  Returned struct is not linked onto any lists and can be
6078  * destroyed with kfree() right away.
6079  */
6080 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6081 					const u64 *devid,
6082 					const u8 *uuid)
6083 {
6084 	struct btrfs_device *dev;
6085 	u64 tmp;
6086 
6087 	if (WARN_ON(!devid && !fs_info))
6088 		return ERR_PTR(-EINVAL);
6089 
6090 	dev = __alloc_device();
6091 	if (IS_ERR(dev))
6092 		return dev;
6093 
6094 	if (devid)
6095 		tmp = *devid;
6096 	else {
6097 		int ret;
6098 
6099 		ret = find_next_devid(fs_info, &tmp);
6100 		if (ret) {
6101 			kfree(dev);
6102 			return ERR_PTR(ret);
6103 		}
6104 	}
6105 	dev->devid = tmp;
6106 
6107 	if (uuid)
6108 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6109 	else
6110 		generate_random_uuid(dev->uuid);
6111 
6112 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6113 			pending_bios_fn, NULL, NULL);
6114 
6115 	return dev;
6116 }
6117 
6118 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6119 			  struct extent_buffer *leaf,
6120 			  struct btrfs_chunk *chunk)
6121 {
6122 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6123 	struct map_lookup *map;
6124 	struct extent_map *em;
6125 	u64 logical;
6126 	u64 length;
6127 	u64 devid;
6128 	u8 uuid[BTRFS_UUID_SIZE];
6129 	int num_stripes;
6130 	int ret;
6131 	int i;
6132 
6133 	logical = key->offset;
6134 	length = btrfs_chunk_length(leaf, chunk);
6135 
6136 	read_lock(&map_tree->map_tree.lock);
6137 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6138 	read_unlock(&map_tree->map_tree.lock);
6139 
6140 	/* already mapped? */
6141 	if (em && em->start <= logical && em->start + em->len > logical) {
6142 		free_extent_map(em);
6143 		return 0;
6144 	} else if (em) {
6145 		free_extent_map(em);
6146 	}
6147 
6148 	em = alloc_extent_map();
6149 	if (!em)
6150 		return -ENOMEM;
6151 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6152 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6153 	if (!map) {
6154 		free_extent_map(em);
6155 		return -ENOMEM;
6156 	}
6157 
6158 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6159 	em->bdev = (struct block_device *)map;
6160 	em->start = logical;
6161 	em->len = length;
6162 	em->orig_start = 0;
6163 	em->block_start = 0;
6164 	em->block_len = em->len;
6165 
6166 	map->num_stripes = num_stripes;
6167 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6168 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6169 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6170 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6171 	map->type = btrfs_chunk_type(leaf, chunk);
6172 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6173 	for (i = 0; i < num_stripes; i++) {
6174 		map->stripes[i].physical =
6175 			btrfs_stripe_offset_nr(leaf, chunk, i);
6176 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6177 		read_extent_buffer(leaf, uuid, (unsigned long)
6178 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6179 				   BTRFS_UUID_SIZE);
6180 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6181 							uuid, NULL);
6182 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6183 			free_extent_map(em);
6184 			return -EIO;
6185 		}
6186 		if (!map->stripes[i].dev) {
6187 			map->stripes[i].dev =
6188 				add_missing_dev(root, root->fs_info->fs_devices,
6189 						devid, uuid);
6190 			if (!map->stripes[i].dev) {
6191 				free_extent_map(em);
6192 				return -EIO;
6193 			}
6194 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6195 						devid, uuid);
6196 		}
6197 		map->stripes[i].dev->in_fs_metadata = 1;
6198 	}
6199 
6200 	write_lock(&map_tree->map_tree.lock);
6201 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6202 	write_unlock(&map_tree->map_tree.lock);
6203 	BUG_ON(ret); /* Tree corruption */
6204 	free_extent_map(em);
6205 
6206 	return 0;
6207 }
6208 
6209 static void fill_device_from_item(struct extent_buffer *leaf,
6210 				 struct btrfs_dev_item *dev_item,
6211 				 struct btrfs_device *device)
6212 {
6213 	unsigned long ptr;
6214 
6215 	device->devid = btrfs_device_id(leaf, dev_item);
6216 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6217 	device->total_bytes = device->disk_total_bytes;
6218 	device->commit_total_bytes = device->disk_total_bytes;
6219 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6220 	device->commit_bytes_used = device->bytes_used;
6221 	device->type = btrfs_device_type(leaf, dev_item);
6222 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6223 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6224 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6225 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6226 	device->is_tgtdev_for_dev_replace = 0;
6227 
6228 	ptr = btrfs_device_uuid(dev_item);
6229 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6230 }
6231 
6232 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6233 						  u8 *fsid)
6234 {
6235 	struct btrfs_fs_devices *fs_devices;
6236 	int ret;
6237 
6238 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6239 
6240 	fs_devices = root->fs_info->fs_devices->seed;
6241 	while (fs_devices) {
6242 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6243 			return fs_devices;
6244 
6245 		fs_devices = fs_devices->seed;
6246 	}
6247 
6248 	fs_devices = find_fsid(fsid);
6249 	if (!fs_devices) {
6250 		if (!btrfs_test_opt(root, DEGRADED))
6251 			return ERR_PTR(-ENOENT);
6252 
6253 		fs_devices = alloc_fs_devices(fsid);
6254 		if (IS_ERR(fs_devices))
6255 			return fs_devices;
6256 
6257 		fs_devices->seeding = 1;
6258 		fs_devices->opened = 1;
6259 		return fs_devices;
6260 	}
6261 
6262 	fs_devices = clone_fs_devices(fs_devices);
6263 	if (IS_ERR(fs_devices))
6264 		return fs_devices;
6265 
6266 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6267 				   root->fs_info->bdev_holder);
6268 	if (ret) {
6269 		free_fs_devices(fs_devices);
6270 		fs_devices = ERR_PTR(ret);
6271 		goto out;
6272 	}
6273 
6274 	if (!fs_devices->seeding) {
6275 		__btrfs_close_devices(fs_devices);
6276 		free_fs_devices(fs_devices);
6277 		fs_devices = ERR_PTR(-EINVAL);
6278 		goto out;
6279 	}
6280 
6281 	fs_devices->seed = root->fs_info->fs_devices->seed;
6282 	root->fs_info->fs_devices->seed = fs_devices;
6283 out:
6284 	return fs_devices;
6285 }
6286 
6287 static int read_one_dev(struct btrfs_root *root,
6288 			struct extent_buffer *leaf,
6289 			struct btrfs_dev_item *dev_item)
6290 {
6291 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6292 	struct btrfs_device *device;
6293 	u64 devid;
6294 	int ret;
6295 	u8 fs_uuid[BTRFS_UUID_SIZE];
6296 	u8 dev_uuid[BTRFS_UUID_SIZE];
6297 
6298 	devid = btrfs_device_id(leaf, dev_item);
6299 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6300 			   BTRFS_UUID_SIZE);
6301 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6302 			   BTRFS_UUID_SIZE);
6303 
6304 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6305 		fs_devices = open_seed_devices(root, fs_uuid);
6306 		if (IS_ERR(fs_devices))
6307 			return PTR_ERR(fs_devices);
6308 	}
6309 
6310 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6311 	if (!device) {
6312 		if (!btrfs_test_opt(root, DEGRADED))
6313 			return -EIO;
6314 
6315 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6316 		if (!device)
6317 			return -ENOMEM;
6318 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6319 				devid, dev_uuid);
6320 	} else {
6321 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6322 			return -EIO;
6323 
6324 		if(!device->bdev && !device->missing) {
6325 			/*
6326 			 * this happens when a device that was properly setup
6327 			 * in the device info lists suddenly goes bad.
6328 			 * device->bdev is NULL, and so we have to set
6329 			 * device->missing to one here
6330 			 */
6331 			device->fs_devices->missing_devices++;
6332 			device->missing = 1;
6333 		}
6334 
6335 		/* Move the device to its own fs_devices */
6336 		if (device->fs_devices != fs_devices) {
6337 			ASSERT(device->missing);
6338 
6339 			list_move(&device->dev_list, &fs_devices->devices);
6340 			device->fs_devices->num_devices--;
6341 			fs_devices->num_devices++;
6342 
6343 			device->fs_devices->missing_devices--;
6344 			fs_devices->missing_devices++;
6345 
6346 			device->fs_devices = fs_devices;
6347 		}
6348 	}
6349 
6350 	if (device->fs_devices != root->fs_info->fs_devices) {
6351 		BUG_ON(device->writeable);
6352 		if (device->generation !=
6353 		    btrfs_device_generation(leaf, dev_item))
6354 			return -EINVAL;
6355 	}
6356 
6357 	fill_device_from_item(leaf, dev_item, device);
6358 	device->in_fs_metadata = 1;
6359 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6360 		device->fs_devices->total_rw_bytes += device->total_bytes;
6361 		spin_lock(&root->fs_info->free_chunk_lock);
6362 		root->fs_info->free_chunk_space += device->total_bytes -
6363 			device->bytes_used;
6364 		spin_unlock(&root->fs_info->free_chunk_lock);
6365 	}
6366 	ret = 0;
6367 	return ret;
6368 }
6369 
6370 int btrfs_read_sys_array(struct btrfs_root *root)
6371 {
6372 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6373 	struct extent_buffer *sb;
6374 	struct btrfs_disk_key *disk_key;
6375 	struct btrfs_chunk *chunk;
6376 	u8 *array_ptr;
6377 	unsigned long sb_array_offset;
6378 	int ret = 0;
6379 	u32 num_stripes;
6380 	u32 array_size;
6381 	u32 len = 0;
6382 	u32 cur_offset;
6383 	struct btrfs_key key;
6384 
6385 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6386 	/*
6387 	 * This will create extent buffer of nodesize, superblock size is
6388 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6389 	 * overallocate but we can keep it as-is, only the first page is used.
6390 	 */
6391 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6392 	if (!sb)
6393 		return -ENOMEM;
6394 	btrfs_set_buffer_uptodate(sb);
6395 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6396 	/*
6397 	 * The sb extent buffer is artifical and just used to read the system array.
6398 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6399 	 * pages up-to-date when the page is larger: extent does not cover the
6400 	 * whole page and consequently check_page_uptodate does not find all
6401 	 * the page's extents up-to-date (the hole beyond sb),
6402 	 * write_extent_buffer then triggers a WARN_ON.
6403 	 *
6404 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6405 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6406 	 * to silence the warning eg. on PowerPC 64.
6407 	 */
6408 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6409 		SetPageUptodate(sb->pages[0]);
6410 
6411 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6412 	array_size = btrfs_super_sys_array_size(super_copy);
6413 
6414 	array_ptr = super_copy->sys_chunk_array;
6415 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6416 	cur_offset = 0;
6417 
6418 	while (cur_offset < array_size) {
6419 		disk_key = (struct btrfs_disk_key *)array_ptr;
6420 		len = sizeof(*disk_key);
6421 		if (cur_offset + len > array_size)
6422 			goto out_short_read;
6423 
6424 		btrfs_disk_key_to_cpu(&key, disk_key);
6425 
6426 		array_ptr += len;
6427 		sb_array_offset += len;
6428 		cur_offset += len;
6429 
6430 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6431 			chunk = (struct btrfs_chunk *)sb_array_offset;
6432 			/*
6433 			 * At least one btrfs_chunk with one stripe must be
6434 			 * present, exact stripe count check comes afterwards
6435 			 */
6436 			len = btrfs_chunk_item_size(1);
6437 			if (cur_offset + len > array_size)
6438 				goto out_short_read;
6439 
6440 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6441 			len = btrfs_chunk_item_size(num_stripes);
6442 			if (cur_offset + len > array_size)
6443 				goto out_short_read;
6444 
6445 			ret = read_one_chunk(root, &key, sb, chunk);
6446 			if (ret)
6447 				break;
6448 		} else {
6449 			ret = -EIO;
6450 			break;
6451 		}
6452 		array_ptr += len;
6453 		sb_array_offset += len;
6454 		cur_offset += len;
6455 	}
6456 	free_extent_buffer(sb);
6457 	return ret;
6458 
6459 out_short_read:
6460 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6461 			len, cur_offset);
6462 	free_extent_buffer(sb);
6463 	return -EIO;
6464 }
6465 
6466 int btrfs_read_chunk_tree(struct btrfs_root *root)
6467 {
6468 	struct btrfs_path *path;
6469 	struct extent_buffer *leaf;
6470 	struct btrfs_key key;
6471 	struct btrfs_key found_key;
6472 	int ret;
6473 	int slot;
6474 
6475 	root = root->fs_info->chunk_root;
6476 
6477 	path = btrfs_alloc_path();
6478 	if (!path)
6479 		return -ENOMEM;
6480 
6481 	mutex_lock(&uuid_mutex);
6482 	lock_chunks(root);
6483 
6484 	/*
6485 	 * Read all device items, and then all the chunk items. All
6486 	 * device items are found before any chunk item (their object id
6487 	 * is smaller than the lowest possible object id for a chunk
6488 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6489 	 */
6490 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6491 	key.offset = 0;
6492 	key.type = 0;
6493 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6494 	if (ret < 0)
6495 		goto error;
6496 	while (1) {
6497 		leaf = path->nodes[0];
6498 		slot = path->slots[0];
6499 		if (slot >= btrfs_header_nritems(leaf)) {
6500 			ret = btrfs_next_leaf(root, path);
6501 			if (ret == 0)
6502 				continue;
6503 			if (ret < 0)
6504 				goto error;
6505 			break;
6506 		}
6507 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6508 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6509 			struct btrfs_dev_item *dev_item;
6510 			dev_item = btrfs_item_ptr(leaf, slot,
6511 						  struct btrfs_dev_item);
6512 			ret = read_one_dev(root, leaf, dev_item);
6513 			if (ret)
6514 				goto error;
6515 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6516 			struct btrfs_chunk *chunk;
6517 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6518 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6519 			if (ret)
6520 				goto error;
6521 		}
6522 		path->slots[0]++;
6523 	}
6524 	ret = 0;
6525 error:
6526 	unlock_chunks(root);
6527 	mutex_unlock(&uuid_mutex);
6528 
6529 	btrfs_free_path(path);
6530 	return ret;
6531 }
6532 
6533 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6534 {
6535 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6536 	struct btrfs_device *device;
6537 
6538 	while (fs_devices) {
6539 		mutex_lock(&fs_devices->device_list_mutex);
6540 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6541 			device->dev_root = fs_info->dev_root;
6542 		mutex_unlock(&fs_devices->device_list_mutex);
6543 
6544 		fs_devices = fs_devices->seed;
6545 	}
6546 }
6547 
6548 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6549 {
6550 	int i;
6551 
6552 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6553 		btrfs_dev_stat_reset(dev, i);
6554 }
6555 
6556 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6557 {
6558 	struct btrfs_key key;
6559 	struct btrfs_key found_key;
6560 	struct btrfs_root *dev_root = fs_info->dev_root;
6561 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562 	struct extent_buffer *eb;
6563 	int slot;
6564 	int ret = 0;
6565 	struct btrfs_device *device;
6566 	struct btrfs_path *path = NULL;
6567 	int i;
6568 
6569 	path = btrfs_alloc_path();
6570 	if (!path) {
6571 		ret = -ENOMEM;
6572 		goto out;
6573 	}
6574 
6575 	mutex_lock(&fs_devices->device_list_mutex);
6576 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6577 		int item_size;
6578 		struct btrfs_dev_stats_item *ptr;
6579 
6580 		key.objectid = 0;
6581 		key.type = BTRFS_DEV_STATS_KEY;
6582 		key.offset = device->devid;
6583 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6584 		if (ret) {
6585 			__btrfs_reset_dev_stats(device);
6586 			device->dev_stats_valid = 1;
6587 			btrfs_release_path(path);
6588 			continue;
6589 		}
6590 		slot = path->slots[0];
6591 		eb = path->nodes[0];
6592 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6593 		item_size = btrfs_item_size_nr(eb, slot);
6594 
6595 		ptr = btrfs_item_ptr(eb, slot,
6596 				     struct btrfs_dev_stats_item);
6597 
6598 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6599 			if (item_size >= (1 + i) * sizeof(__le64))
6600 				btrfs_dev_stat_set(device, i,
6601 					btrfs_dev_stats_value(eb, ptr, i));
6602 			else
6603 				btrfs_dev_stat_reset(device, i);
6604 		}
6605 
6606 		device->dev_stats_valid = 1;
6607 		btrfs_dev_stat_print_on_load(device);
6608 		btrfs_release_path(path);
6609 	}
6610 	mutex_unlock(&fs_devices->device_list_mutex);
6611 
6612 out:
6613 	btrfs_free_path(path);
6614 	return ret < 0 ? ret : 0;
6615 }
6616 
6617 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6618 				struct btrfs_root *dev_root,
6619 				struct btrfs_device *device)
6620 {
6621 	struct btrfs_path *path;
6622 	struct btrfs_key key;
6623 	struct extent_buffer *eb;
6624 	struct btrfs_dev_stats_item *ptr;
6625 	int ret;
6626 	int i;
6627 
6628 	key.objectid = 0;
6629 	key.type = BTRFS_DEV_STATS_KEY;
6630 	key.offset = device->devid;
6631 
6632 	path = btrfs_alloc_path();
6633 	BUG_ON(!path);
6634 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6635 	if (ret < 0) {
6636 		printk_in_rcu(KERN_WARNING "BTRFS: "
6637 			"error %d while searching for dev_stats item for device %s!\n",
6638 			      ret, rcu_str_deref(device->name));
6639 		goto out;
6640 	}
6641 
6642 	if (ret == 0 &&
6643 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6644 		/* need to delete old one and insert a new one */
6645 		ret = btrfs_del_item(trans, dev_root, path);
6646 		if (ret != 0) {
6647 			printk_in_rcu(KERN_WARNING "BTRFS: "
6648 				"delete too small dev_stats item for device %s failed %d!\n",
6649 				      rcu_str_deref(device->name), ret);
6650 			goto out;
6651 		}
6652 		ret = 1;
6653 	}
6654 
6655 	if (ret == 1) {
6656 		/* need to insert a new item */
6657 		btrfs_release_path(path);
6658 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6659 					      &key, sizeof(*ptr));
6660 		if (ret < 0) {
6661 			printk_in_rcu(KERN_WARNING "BTRFS: "
6662 					  "insert dev_stats item for device %s failed %d!\n",
6663 				      rcu_str_deref(device->name), ret);
6664 			goto out;
6665 		}
6666 	}
6667 
6668 	eb = path->nodes[0];
6669 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6670 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6671 		btrfs_set_dev_stats_value(eb, ptr, i,
6672 					  btrfs_dev_stat_read(device, i));
6673 	btrfs_mark_buffer_dirty(eb);
6674 
6675 out:
6676 	btrfs_free_path(path);
6677 	return ret;
6678 }
6679 
6680 /*
6681  * called from commit_transaction. Writes all changed device stats to disk.
6682  */
6683 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6684 			struct btrfs_fs_info *fs_info)
6685 {
6686 	struct btrfs_root *dev_root = fs_info->dev_root;
6687 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6688 	struct btrfs_device *device;
6689 	int stats_cnt;
6690 	int ret = 0;
6691 
6692 	mutex_lock(&fs_devices->device_list_mutex);
6693 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6694 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6695 			continue;
6696 
6697 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6698 		ret = update_dev_stat_item(trans, dev_root, device);
6699 		if (!ret)
6700 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6701 	}
6702 	mutex_unlock(&fs_devices->device_list_mutex);
6703 
6704 	return ret;
6705 }
6706 
6707 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6708 {
6709 	btrfs_dev_stat_inc(dev, index);
6710 	btrfs_dev_stat_print_on_error(dev);
6711 }
6712 
6713 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6714 {
6715 	if (!dev->dev_stats_valid)
6716 		return;
6717 	printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6718 			   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6719 			   rcu_str_deref(dev->name),
6720 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6721 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6722 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6723 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6724 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6725 }
6726 
6727 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6728 {
6729 	int i;
6730 
6731 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6732 		if (btrfs_dev_stat_read(dev, i) != 0)
6733 			break;
6734 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6735 		return; /* all values == 0, suppress message */
6736 
6737 	printk_in_rcu(KERN_INFO "BTRFS: "
6738 		   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6739 	       rcu_str_deref(dev->name),
6740 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6741 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6742 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6743 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6744 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6745 }
6746 
6747 int btrfs_get_dev_stats(struct btrfs_root *root,
6748 			struct btrfs_ioctl_get_dev_stats *stats)
6749 {
6750 	struct btrfs_device *dev;
6751 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6752 	int i;
6753 
6754 	mutex_lock(&fs_devices->device_list_mutex);
6755 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6756 	mutex_unlock(&fs_devices->device_list_mutex);
6757 
6758 	if (!dev) {
6759 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6760 		return -ENODEV;
6761 	} else if (!dev->dev_stats_valid) {
6762 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6763 		return -ENODEV;
6764 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6765 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6766 			if (stats->nr_items > i)
6767 				stats->values[i] =
6768 					btrfs_dev_stat_read_and_reset(dev, i);
6769 			else
6770 				btrfs_dev_stat_reset(dev, i);
6771 		}
6772 	} else {
6773 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6774 			if (stats->nr_items > i)
6775 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6776 	}
6777 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6778 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6779 	return 0;
6780 }
6781 
6782 int btrfs_scratch_superblock(struct btrfs_device *device)
6783 {
6784 	struct buffer_head *bh;
6785 	struct btrfs_super_block *disk_super;
6786 
6787 	bh = btrfs_read_dev_super(device->bdev);
6788 	if (!bh)
6789 		return -EINVAL;
6790 	disk_super = (struct btrfs_super_block *)bh->b_data;
6791 
6792 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6793 	set_buffer_dirty(bh);
6794 	sync_dirty_buffer(bh);
6795 	brelse(bh);
6796 
6797 	return 0;
6798 }
6799 
6800 /*
6801  * Update the size of all devices, which is used for writing out the
6802  * super blocks.
6803  */
6804 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6805 {
6806 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6807 	struct btrfs_device *curr, *next;
6808 
6809 	if (list_empty(&fs_devices->resized_devices))
6810 		return;
6811 
6812 	mutex_lock(&fs_devices->device_list_mutex);
6813 	lock_chunks(fs_info->dev_root);
6814 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6815 				 resized_list) {
6816 		list_del_init(&curr->resized_list);
6817 		curr->commit_total_bytes = curr->disk_total_bytes;
6818 	}
6819 	unlock_chunks(fs_info->dev_root);
6820 	mutex_unlock(&fs_devices->device_list_mutex);
6821 }
6822 
6823 /* Must be invoked during the transaction commit */
6824 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6825 					struct btrfs_transaction *transaction)
6826 {
6827 	struct extent_map *em;
6828 	struct map_lookup *map;
6829 	struct btrfs_device *dev;
6830 	int i;
6831 
6832 	if (list_empty(&transaction->pending_chunks))
6833 		return;
6834 
6835 	/* In order to kick the device replace finish process */
6836 	lock_chunks(root);
6837 	list_for_each_entry(em, &transaction->pending_chunks, list) {
6838 		map = (struct map_lookup *)em->bdev;
6839 
6840 		for (i = 0; i < map->num_stripes; i++) {
6841 			dev = map->stripes[i].dev;
6842 			dev->commit_bytes_used = dev->bytes_used;
6843 		}
6844 	}
6845 	unlock_chunks(root);
6846 }
6847 
6848 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6849 {
6850 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6851 	while (fs_devices) {
6852 		fs_devices->fs_info = fs_info;
6853 		fs_devices = fs_devices->seed;
6854 	}
6855 }
6856 
6857 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6858 {
6859 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6860 	while (fs_devices) {
6861 		fs_devices->fs_info = NULL;
6862 		fs_devices = fs_devices->seed;
6863 	}
6864 }
6865