1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53 DEFINE_MUTEX(uuid_mutex); 54 static LIST_HEAD(fs_uuids); 55 struct list_head *btrfs_get_fs_uuids(void) 56 { 57 return &fs_uuids; 58 } 59 60 static struct btrfs_fs_devices *__alloc_fs_devices(void) 61 { 62 struct btrfs_fs_devices *fs_devs; 63 64 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 65 if (!fs_devs) 66 return ERR_PTR(-ENOMEM); 67 68 mutex_init(&fs_devs->device_list_mutex); 69 70 INIT_LIST_HEAD(&fs_devs->devices); 71 INIT_LIST_HEAD(&fs_devs->resized_devices); 72 INIT_LIST_HEAD(&fs_devs->alloc_list); 73 INIT_LIST_HEAD(&fs_devs->list); 74 75 return fs_devs; 76 } 77 78 /** 79 * alloc_fs_devices - allocate struct btrfs_fs_devices 80 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 81 * generated. 82 * 83 * Return: a pointer to a new &struct btrfs_fs_devices on success; 84 * ERR_PTR() on error. Returned struct is not linked onto any lists and 85 * can be destroyed with kfree() right away. 86 */ 87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 88 { 89 struct btrfs_fs_devices *fs_devs; 90 91 fs_devs = __alloc_fs_devices(); 92 if (IS_ERR(fs_devs)) 93 return fs_devs; 94 95 if (fsid) 96 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 97 else 98 generate_random_uuid(fs_devs->fsid); 99 100 return fs_devs; 101 } 102 103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 104 { 105 struct btrfs_device *device; 106 WARN_ON(fs_devices->opened); 107 while (!list_empty(&fs_devices->devices)) { 108 device = list_entry(fs_devices->devices.next, 109 struct btrfs_device, dev_list); 110 list_del(&device->dev_list); 111 rcu_string_free(device->name); 112 kfree(device); 113 } 114 kfree(fs_devices); 115 } 116 117 static void btrfs_kobject_uevent(struct block_device *bdev, 118 enum kobject_action action) 119 { 120 int ret; 121 122 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 123 if (ret) 124 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 125 action, 126 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 127 &disk_to_dev(bdev->bd_disk)->kobj); 128 } 129 130 void btrfs_cleanup_fs_uuids(void) 131 { 132 struct btrfs_fs_devices *fs_devices; 133 134 while (!list_empty(&fs_uuids)) { 135 fs_devices = list_entry(fs_uuids.next, 136 struct btrfs_fs_devices, list); 137 list_del(&fs_devices->list); 138 free_fs_devices(fs_devices); 139 } 140 } 141 142 static struct btrfs_device *__alloc_device(void) 143 { 144 struct btrfs_device *dev; 145 146 dev = kzalloc(sizeof(*dev), GFP_NOFS); 147 if (!dev) 148 return ERR_PTR(-ENOMEM); 149 150 INIT_LIST_HEAD(&dev->dev_list); 151 INIT_LIST_HEAD(&dev->dev_alloc_list); 152 INIT_LIST_HEAD(&dev->resized_list); 153 154 spin_lock_init(&dev->io_lock); 155 156 spin_lock_init(&dev->reada_lock); 157 atomic_set(&dev->reada_in_flight, 0); 158 atomic_set(&dev->dev_stats_ccnt, 0); 159 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 160 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 161 162 return dev; 163 } 164 165 static noinline struct btrfs_device *__find_device(struct list_head *head, 166 u64 devid, u8 *uuid) 167 { 168 struct btrfs_device *dev; 169 170 list_for_each_entry(dev, head, dev_list) { 171 if (dev->devid == devid && 172 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 173 return dev; 174 } 175 } 176 return NULL; 177 } 178 179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 180 { 181 struct btrfs_fs_devices *fs_devices; 182 183 list_for_each_entry(fs_devices, &fs_uuids, list) { 184 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 185 return fs_devices; 186 } 187 return NULL; 188 } 189 190 static int 191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 192 int flush, struct block_device **bdev, 193 struct buffer_head **bh) 194 { 195 int ret; 196 197 *bdev = blkdev_get_by_path(device_path, flags, holder); 198 199 if (IS_ERR(*bdev)) { 200 ret = PTR_ERR(*bdev); 201 printk(KERN_INFO "BTRFS: open %s failed\n", device_path); 202 goto error; 203 } 204 205 if (flush) 206 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 207 ret = set_blocksize(*bdev, 4096); 208 if (ret) { 209 blkdev_put(*bdev, flags); 210 goto error; 211 } 212 invalidate_bdev(*bdev); 213 *bh = btrfs_read_dev_super(*bdev); 214 if (!*bh) { 215 ret = -EINVAL; 216 blkdev_put(*bdev, flags); 217 goto error; 218 } 219 220 return 0; 221 222 error: 223 *bdev = NULL; 224 *bh = NULL; 225 return ret; 226 } 227 228 static void requeue_list(struct btrfs_pending_bios *pending_bios, 229 struct bio *head, struct bio *tail) 230 { 231 232 struct bio *old_head; 233 234 old_head = pending_bios->head; 235 pending_bios->head = head; 236 if (pending_bios->tail) 237 tail->bi_next = old_head; 238 else 239 pending_bios->tail = tail; 240 } 241 242 /* 243 * we try to collect pending bios for a device so we don't get a large 244 * number of procs sending bios down to the same device. This greatly 245 * improves the schedulers ability to collect and merge the bios. 246 * 247 * But, it also turns into a long list of bios to process and that is sure 248 * to eventually make the worker thread block. The solution here is to 249 * make some progress and then put this work struct back at the end of 250 * the list if the block device is congested. This way, multiple devices 251 * can make progress from a single worker thread. 252 */ 253 static noinline void run_scheduled_bios(struct btrfs_device *device) 254 { 255 struct bio *pending; 256 struct backing_dev_info *bdi; 257 struct btrfs_fs_info *fs_info; 258 struct btrfs_pending_bios *pending_bios; 259 struct bio *tail; 260 struct bio *cur; 261 int again = 0; 262 unsigned long num_run; 263 unsigned long batch_run = 0; 264 unsigned long limit; 265 unsigned long last_waited = 0; 266 int force_reg = 0; 267 int sync_pending = 0; 268 struct blk_plug plug; 269 270 /* 271 * this function runs all the bios we've collected for 272 * a particular device. We don't want to wander off to 273 * another device without first sending all of these down. 274 * So, setup a plug here and finish it off before we return 275 */ 276 blk_start_plug(&plug); 277 278 bdi = blk_get_backing_dev_info(device->bdev); 279 fs_info = device->dev_root->fs_info; 280 limit = btrfs_async_submit_limit(fs_info); 281 limit = limit * 2 / 3; 282 283 loop: 284 spin_lock(&device->io_lock); 285 286 loop_lock: 287 num_run = 0; 288 289 /* take all the bios off the list at once and process them 290 * later on (without the lock held). But, remember the 291 * tail and other pointers so the bios can be properly reinserted 292 * into the list if we hit congestion 293 */ 294 if (!force_reg && device->pending_sync_bios.head) { 295 pending_bios = &device->pending_sync_bios; 296 force_reg = 1; 297 } else { 298 pending_bios = &device->pending_bios; 299 force_reg = 0; 300 } 301 302 pending = pending_bios->head; 303 tail = pending_bios->tail; 304 WARN_ON(pending && !tail); 305 306 /* 307 * if pending was null this time around, no bios need processing 308 * at all and we can stop. Otherwise it'll loop back up again 309 * and do an additional check so no bios are missed. 310 * 311 * device->running_pending is used to synchronize with the 312 * schedule_bio code. 313 */ 314 if (device->pending_sync_bios.head == NULL && 315 device->pending_bios.head == NULL) { 316 again = 0; 317 device->running_pending = 0; 318 } else { 319 again = 1; 320 device->running_pending = 1; 321 } 322 323 pending_bios->head = NULL; 324 pending_bios->tail = NULL; 325 326 spin_unlock(&device->io_lock); 327 328 while (pending) { 329 330 rmb(); 331 /* we want to work on both lists, but do more bios on the 332 * sync list than the regular list 333 */ 334 if ((num_run > 32 && 335 pending_bios != &device->pending_sync_bios && 336 device->pending_sync_bios.head) || 337 (num_run > 64 && pending_bios == &device->pending_sync_bios && 338 device->pending_bios.head)) { 339 spin_lock(&device->io_lock); 340 requeue_list(pending_bios, pending, tail); 341 goto loop_lock; 342 } 343 344 cur = pending; 345 pending = pending->bi_next; 346 cur->bi_next = NULL; 347 348 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 349 waitqueue_active(&fs_info->async_submit_wait)) 350 wake_up(&fs_info->async_submit_wait); 351 352 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 353 354 /* 355 * if we're doing the sync list, record that our 356 * plug has some sync requests on it 357 * 358 * If we're doing the regular list and there are 359 * sync requests sitting around, unplug before 360 * we add more 361 */ 362 if (pending_bios == &device->pending_sync_bios) { 363 sync_pending = 1; 364 } else if (sync_pending) { 365 blk_finish_plug(&plug); 366 blk_start_plug(&plug); 367 sync_pending = 0; 368 } 369 370 btrfsic_submit_bio(cur->bi_rw, cur); 371 num_run++; 372 batch_run++; 373 374 cond_resched(); 375 376 /* 377 * we made progress, there is more work to do and the bdi 378 * is now congested. Back off and let other work structs 379 * run instead 380 */ 381 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 382 fs_info->fs_devices->open_devices > 1) { 383 struct io_context *ioc; 384 385 ioc = current->io_context; 386 387 /* 388 * the main goal here is that we don't want to 389 * block if we're going to be able to submit 390 * more requests without blocking. 391 * 392 * This code does two great things, it pokes into 393 * the elevator code from a filesystem _and_ 394 * it makes assumptions about how batching works. 395 */ 396 if (ioc && ioc->nr_batch_requests > 0 && 397 time_before(jiffies, ioc->last_waited + HZ/50UL) && 398 (last_waited == 0 || 399 ioc->last_waited == last_waited)) { 400 /* 401 * we want to go through our batch of 402 * requests and stop. So, we copy out 403 * the ioc->last_waited time and test 404 * against it before looping 405 */ 406 last_waited = ioc->last_waited; 407 cond_resched(); 408 continue; 409 } 410 spin_lock(&device->io_lock); 411 requeue_list(pending_bios, pending, tail); 412 device->running_pending = 1; 413 414 spin_unlock(&device->io_lock); 415 btrfs_queue_work(fs_info->submit_workers, 416 &device->work); 417 goto done; 418 } 419 /* unplug every 64 requests just for good measure */ 420 if (batch_run % 64 == 0) { 421 blk_finish_plug(&plug); 422 blk_start_plug(&plug); 423 sync_pending = 0; 424 } 425 } 426 427 cond_resched(); 428 if (again) 429 goto loop; 430 431 spin_lock(&device->io_lock); 432 if (device->pending_bios.head || device->pending_sync_bios.head) 433 goto loop_lock; 434 spin_unlock(&device->io_lock); 435 436 done: 437 blk_finish_plug(&plug); 438 } 439 440 static void pending_bios_fn(struct btrfs_work *work) 441 { 442 struct btrfs_device *device; 443 444 device = container_of(work, struct btrfs_device, work); 445 run_scheduled_bios(device); 446 } 447 448 449 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 450 { 451 struct btrfs_fs_devices *fs_devs; 452 struct btrfs_device *dev; 453 454 if (!cur_dev->name) 455 return; 456 457 list_for_each_entry(fs_devs, &fs_uuids, list) { 458 int del = 1; 459 460 if (fs_devs->opened) 461 continue; 462 if (fs_devs->seeding) 463 continue; 464 465 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 466 467 if (dev == cur_dev) 468 continue; 469 if (!dev->name) 470 continue; 471 472 /* 473 * Todo: This won't be enough. What if the same device 474 * comes back (with new uuid and) with its mapper path? 475 * But for now, this does help as mostly an admin will 476 * either use mapper or non mapper path throughout. 477 */ 478 rcu_read_lock(); 479 del = strcmp(rcu_str_deref(dev->name), 480 rcu_str_deref(cur_dev->name)); 481 rcu_read_unlock(); 482 if (!del) 483 break; 484 } 485 486 if (!del) { 487 /* delete the stale device */ 488 if (fs_devs->num_devices == 1) { 489 btrfs_sysfs_remove_fsid(fs_devs); 490 list_del(&fs_devs->list); 491 free_fs_devices(fs_devs); 492 } else { 493 fs_devs->num_devices--; 494 list_del(&dev->dev_list); 495 rcu_string_free(dev->name); 496 kfree(dev); 497 } 498 break; 499 } 500 } 501 } 502 503 /* 504 * Add new device to list of registered devices 505 * 506 * Returns: 507 * 1 - first time device is seen 508 * 0 - device already known 509 * < 0 - error 510 */ 511 static noinline int device_list_add(const char *path, 512 struct btrfs_super_block *disk_super, 513 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 514 { 515 struct btrfs_device *device; 516 struct btrfs_fs_devices *fs_devices; 517 struct rcu_string *name; 518 int ret = 0; 519 u64 found_transid = btrfs_super_generation(disk_super); 520 521 fs_devices = find_fsid(disk_super->fsid); 522 if (!fs_devices) { 523 fs_devices = alloc_fs_devices(disk_super->fsid); 524 if (IS_ERR(fs_devices)) 525 return PTR_ERR(fs_devices); 526 527 list_add(&fs_devices->list, &fs_uuids); 528 529 device = NULL; 530 } else { 531 device = __find_device(&fs_devices->devices, devid, 532 disk_super->dev_item.uuid); 533 } 534 535 if (!device) { 536 if (fs_devices->opened) 537 return -EBUSY; 538 539 device = btrfs_alloc_device(NULL, &devid, 540 disk_super->dev_item.uuid); 541 if (IS_ERR(device)) { 542 /* we can safely leave the fs_devices entry around */ 543 return PTR_ERR(device); 544 } 545 546 name = rcu_string_strdup(path, GFP_NOFS); 547 if (!name) { 548 kfree(device); 549 return -ENOMEM; 550 } 551 rcu_assign_pointer(device->name, name); 552 553 mutex_lock(&fs_devices->device_list_mutex); 554 list_add_rcu(&device->dev_list, &fs_devices->devices); 555 fs_devices->num_devices++; 556 mutex_unlock(&fs_devices->device_list_mutex); 557 558 ret = 1; 559 device->fs_devices = fs_devices; 560 } else if (!device->name || strcmp(device->name->str, path)) { 561 /* 562 * When FS is already mounted. 563 * 1. If you are here and if the device->name is NULL that 564 * means this device was missing at time of FS mount. 565 * 2. If you are here and if the device->name is different 566 * from 'path' that means either 567 * a. The same device disappeared and reappeared with 568 * different name. or 569 * b. The missing-disk-which-was-replaced, has 570 * reappeared now. 571 * 572 * We must allow 1 and 2a above. But 2b would be a spurious 573 * and unintentional. 574 * 575 * Further in case of 1 and 2a above, the disk at 'path' 576 * would have missed some transaction when it was away and 577 * in case of 2a the stale bdev has to be updated as well. 578 * 2b must not be allowed at all time. 579 */ 580 581 /* 582 * For now, we do allow update to btrfs_fs_device through the 583 * btrfs dev scan cli after FS has been mounted. We're still 584 * tracking a problem where systems fail mount by subvolume id 585 * when we reject replacement on a mounted FS. 586 */ 587 if (!fs_devices->opened && found_transid < device->generation) { 588 /* 589 * That is if the FS is _not_ mounted and if you 590 * are here, that means there is more than one 591 * disk with same uuid and devid.We keep the one 592 * with larger generation number or the last-in if 593 * generation are equal. 594 */ 595 return -EEXIST; 596 } 597 598 name = rcu_string_strdup(path, GFP_NOFS); 599 if (!name) 600 return -ENOMEM; 601 rcu_string_free(device->name); 602 rcu_assign_pointer(device->name, name); 603 if (device->missing) { 604 fs_devices->missing_devices--; 605 device->missing = 0; 606 } 607 } 608 609 /* 610 * Unmount does not free the btrfs_device struct but would zero 611 * generation along with most of the other members. So just update 612 * it back. We need it to pick the disk with largest generation 613 * (as above). 614 */ 615 if (!fs_devices->opened) 616 device->generation = found_transid; 617 618 /* 619 * if there is new btrfs on an already registered device, 620 * then remove the stale device entry. 621 */ 622 btrfs_free_stale_device(device); 623 624 *fs_devices_ret = fs_devices; 625 626 return ret; 627 } 628 629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 630 { 631 struct btrfs_fs_devices *fs_devices; 632 struct btrfs_device *device; 633 struct btrfs_device *orig_dev; 634 635 fs_devices = alloc_fs_devices(orig->fsid); 636 if (IS_ERR(fs_devices)) 637 return fs_devices; 638 639 mutex_lock(&orig->device_list_mutex); 640 fs_devices->total_devices = orig->total_devices; 641 642 /* We have held the volume lock, it is safe to get the devices. */ 643 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 644 struct rcu_string *name; 645 646 device = btrfs_alloc_device(NULL, &orig_dev->devid, 647 orig_dev->uuid); 648 if (IS_ERR(device)) 649 goto error; 650 651 /* 652 * This is ok to do without rcu read locked because we hold the 653 * uuid mutex so nothing we touch in here is going to disappear. 654 */ 655 if (orig_dev->name) { 656 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 657 if (!name) { 658 kfree(device); 659 goto error; 660 } 661 rcu_assign_pointer(device->name, name); 662 } 663 664 list_add(&device->dev_list, &fs_devices->devices); 665 device->fs_devices = fs_devices; 666 fs_devices->num_devices++; 667 } 668 mutex_unlock(&orig->device_list_mutex); 669 return fs_devices; 670 error: 671 mutex_unlock(&orig->device_list_mutex); 672 free_fs_devices(fs_devices); 673 return ERR_PTR(-ENOMEM); 674 } 675 676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 677 { 678 struct btrfs_device *device, *next; 679 struct btrfs_device *latest_dev = NULL; 680 681 mutex_lock(&uuid_mutex); 682 again: 683 /* This is the initialized path, it is safe to release the devices. */ 684 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 685 if (device->in_fs_metadata) { 686 if (!device->is_tgtdev_for_dev_replace && 687 (!latest_dev || 688 device->generation > latest_dev->generation)) { 689 latest_dev = device; 690 } 691 continue; 692 } 693 694 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 695 /* 696 * In the first step, keep the device which has 697 * the correct fsid and the devid that is used 698 * for the dev_replace procedure. 699 * In the second step, the dev_replace state is 700 * read from the device tree and it is known 701 * whether the procedure is really active or 702 * not, which means whether this device is 703 * used or whether it should be removed. 704 */ 705 if (step == 0 || device->is_tgtdev_for_dev_replace) { 706 continue; 707 } 708 } 709 if (device->bdev) { 710 blkdev_put(device->bdev, device->mode); 711 device->bdev = NULL; 712 fs_devices->open_devices--; 713 } 714 if (device->writeable) { 715 list_del_init(&device->dev_alloc_list); 716 device->writeable = 0; 717 if (!device->is_tgtdev_for_dev_replace) 718 fs_devices->rw_devices--; 719 } 720 list_del_init(&device->dev_list); 721 fs_devices->num_devices--; 722 rcu_string_free(device->name); 723 kfree(device); 724 } 725 726 if (fs_devices->seed) { 727 fs_devices = fs_devices->seed; 728 goto again; 729 } 730 731 fs_devices->latest_bdev = latest_dev->bdev; 732 733 mutex_unlock(&uuid_mutex); 734 } 735 736 static void __free_device(struct work_struct *work) 737 { 738 struct btrfs_device *device; 739 740 device = container_of(work, struct btrfs_device, rcu_work); 741 742 if (device->bdev) 743 blkdev_put(device->bdev, device->mode); 744 745 rcu_string_free(device->name); 746 kfree(device); 747 } 748 749 static void free_device(struct rcu_head *head) 750 { 751 struct btrfs_device *device; 752 753 device = container_of(head, struct btrfs_device, rcu); 754 755 INIT_WORK(&device->rcu_work, __free_device); 756 schedule_work(&device->rcu_work); 757 } 758 759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 760 { 761 struct btrfs_device *device, *tmp; 762 763 if (--fs_devices->opened > 0) 764 return 0; 765 766 mutex_lock(&fs_devices->device_list_mutex); 767 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 768 struct btrfs_device *new_device; 769 struct rcu_string *name; 770 771 if (device->bdev) 772 fs_devices->open_devices--; 773 774 if (device->writeable && 775 device->devid != BTRFS_DEV_REPLACE_DEVID) { 776 list_del_init(&device->dev_alloc_list); 777 fs_devices->rw_devices--; 778 } 779 780 if (device->missing) 781 fs_devices->missing_devices--; 782 783 new_device = btrfs_alloc_device(NULL, &device->devid, 784 device->uuid); 785 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 786 787 /* Safe because we are under uuid_mutex */ 788 if (device->name) { 789 name = rcu_string_strdup(device->name->str, GFP_NOFS); 790 BUG_ON(!name); /* -ENOMEM */ 791 rcu_assign_pointer(new_device->name, name); 792 } 793 794 list_replace_rcu(&device->dev_list, &new_device->dev_list); 795 new_device->fs_devices = device->fs_devices; 796 797 call_rcu(&device->rcu, free_device); 798 } 799 mutex_unlock(&fs_devices->device_list_mutex); 800 801 WARN_ON(fs_devices->open_devices); 802 WARN_ON(fs_devices->rw_devices); 803 fs_devices->opened = 0; 804 fs_devices->seeding = 0; 805 806 return 0; 807 } 808 809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 810 { 811 struct btrfs_fs_devices *seed_devices = NULL; 812 int ret; 813 814 mutex_lock(&uuid_mutex); 815 ret = __btrfs_close_devices(fs_devices); 816 if (!fs_devices->opened) { 817 seed_devices = fs_devices->seed; 818 fs_devices->seed = NULL; 819 } 820 mutex_unlock(&uuid_mutex); 821 822 while (seed_devices) { 823 fs_devices = seed_devices; 824 seed_devices = fs_devices->seed; 825 __btrfs_close_devices(fs_devices); 826 free_fs_devices(fs_devices); 827 } 828 /* 829 * Wait for rcu kworkers under __btrfs_close_devices 830 * to finish all blkdev_puts so device is really 831 * free when umount is done. 832 */ 833 rcu_barrier(); 834 return ret; 835 } 836 837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 838 fmode_t flags, void *holder) 839 { 840 struct request_queue *q; 841 struct block_device *bdev; 842 struct list_head *head = &fs_devices->devices; 843 struct btrfs_device *device; 844 struct btrfs_device *latest_dev = NULL; 845 struct buffer_head *bh; 846 struct btrfs_super_block *disk_super; 847 u64 devid; 848 int seeding = 1; 849 int ret = 0; 850 851 flags |= FMODE_EXCL; 852 853 list_for_each_entry(device, head, dev_list) { 854 if (device->bdev) 855 continue; 856 if (!device->name) 857 continue; 858 859 /* Just open everything we can; ignore failures here */ 860 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 861 &bdev, &bh)) 862 continue; 863 864 disk_super = (struct btrfs_super_block *)bh->b_data; 865 devid = btrfs_stack_device_id(&disk_super->dev_item); 866 if (devid != device->devid) 867 goto error_brelse; 868 869 if (memcmp(device->uuid, disk_super->dev_item.uuid, 870 BTRFS_UUID_SIZE)) 871 goto error_brelse; 872 873 device->generation = btrfs_super_generation(disk_super); 874 if (!latest_dev || 875 device->generation > latest_dev->generation) 876 latest_dev = device; 877 878 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 879 device->writeable = 0; 880 } else { 881 device->writeable = !bdev_read_only(bdev); 882 seeding = 0; 883 } 884 885 q = bdev_get_queue(bdev); 886 if (blk_queue_discard(q)) 887 device->can_discard = 1; 888 889 device->bdev = bdev; 890 device->in_fs_metadata = 0; 891 device->mode = flags; 892 893 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 894 fs_devices->rotating = 1; 895 896 fs_devices->open_devices++; 897 if (device->writeable && 898 device->devid != BTRFS_DEV_REPLACE_DEVID) { 899 fs_devices->rw_devices++; 900 list_add(&device->dev_alloc_list, 901 &fs_devices->alloc_list); 902 } 903 brelse(bh); 904 continue; 905 906 error_brelse: 907 brelse(bh); 908 blkdev_put(bdev, flags); 909 continue; 910 } 911 if (fs_devices->open_devices == 0) { 912 ret = -EINVAL; 913 goto out; 914 } 915 fs_devices->seeding = seeding; 916 fs_devices->opened = 1; 917 fs_devices->latest_bdev = latest_dev->bdev; 918 fs_devices->total_rw_bytes = 0; 919 out: 920 return ret; 921 } 922 923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 924 fmode_t flags, void *holder) 925 { 926 int ret; 927 928 mutex_lock(&uuid_mutex); 929 if (fs_devices->opened) { 930 fs_devices->opened++; 931 ret = 0; 932 } else { 933 ret = __btrfs_open_devices(fs_devices, flags, holder); 934 } 935 mutex_unlock(&uuid_mutex); 936 return ret; 937 } 938 939 /* 940 * Look for a btrfs signature on a device. This may be called out of the mount path 941 * and we are not allowed to call set_blocksize during the scan. The superblock 942 * is read via pagecache 943 */ 944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 945 struct btrfs_fs_devices **fs_devices_ret) 946 { 947 struct btrfs_super_block *disk_super; 948 struct block_device *bdev; 949 struct page *page; 950 void *p; 951 int ret = -EINVAL; 952 u64 devid; 953 u64 transid; 954 u64 total_devices; 955 u64 bytenr; 956 pgoff_t index; 957 958 /* 959 * we would like to check all the supers, but that would make 960 * a btrfs mount succeed after a mkfs from a different FS. 961 * So, we need to add a special mount option to scan for 962 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 963 */ 964 bytenr = btrfs_sb_offset(0); 965 flags |= FMODE_EXCL; 966 mutex_lock(&uuid_mutex); 967 968 bdev = blkdev_get_by_path(path, flags, holder); 969 970 if (IS_ERR(bdev)) { 971 ret = PTR_ERR(bdev); 972 goto error; 973 } 974 975 /* make sure our super fits in the device */ 976 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 977 goto error_bdev_put; 978 979 /* make sure our super fits in the page */ 980 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 981 goto error_bdev_put; 982 983 /* make sure our super doesn't straddle pages on disk */ 984 index = bytenr >> PAGE_CACHE_SHIFT; 985 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 986 goto error_bdev_put; 987 988 /* pull in the page with our super */ 989 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 990 index, GFP_NOFS); 991 992 if (IS_ERR_OR_NULL(page)) 993 goto error_bdev_put; 994 995 p = kmap(page); 996 997 /* align our pointer to the offset of the super block */ 998 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 999 1000 if (btrfs_super_bytenr(disk_super) != bytenr || 1001 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 1002 goto error_unmap; 1003 1004 devid = btrfs_stack_device_id(&disk_super->dev_item); 1005 transid = btrfs_super_generation(disk_super); 1006 total_devices = btrfs_super_num_devices(disk_super); 1007 1008 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1009 if (ret > 0) { 1010 if (disk_super->label[0]) { 1011 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 1012 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1013 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 1014 } else { 1015 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 1016 } 1017 1018 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 1019 ret = 0; 1020 } 1021 if (!ret && fs_devices_ret) 1022 (*fs_devices_ret)->total_devices = total_devices; 1023 1024 error_unmap: 1025 kunmap(page); 1026 page_cache_release(page); 1027 1028 error_bdev_put: 1029 blkdev_put(bdev, flags); 1030 error: 1031 mutex_unlock(&uuid_mutex); 1032 return ret; 1033 } 1034 1035 /* helper to account the used device space in the range */ 1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1037 u64 end, u64 *length) 1038 { 1039 struct btrfs_key key; 1040 struct btrfs_root *root = device->dev_root; 1041 struct btrfs_dev_extent *dev_extent; 1042 struct btrfs_path *path; 1043 u64 extent_end; 1044 int ret; 1045 int slot; 1046 struct extent_buffer *l; 1047 1048 *length = 0; 1049 1050 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1051 return 0; 1052 1053 path = btrfs_alloc_path(); 1054 if (!path) 1055 return -ENOMEM; 1056 path->reada = 2; 1057 1058 key.objectid = device->devid; 1059 key.offset = start; 1060 key.type = BTRFS_DEV_EXTENT_KEY; 1061 1062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1063 if (ret < 0) 1064 goto out; 1065 if (ret > 0) { 1066 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1067 if (ret < 0) 1068 goto out; 1069 } 1070 1071 while (1) { 1072 l = path->nodes[0]; 1073 slot = path->slots[0]; 1074 if (slot >= btrfs_header_nritems(l)) { 1075 ret = btrfs_next_leaf(root, path); 1076 if (ret == 0) 1077 continue; 1078 if (ret < 0) 1079 goto out; 1080 1081 break; 1082 } 1083 btrfs_item_key_to_cpu(l, &key, slot); 1084 1085 if (key.objectid < device->devid) 1086 goto next; 1087 1088 if (key.objectid > device->devid) 1089 break; 1090 1091 if (key.type != BTRFS_DEV_EXTENT_KEY) 1092 goto next; 1093 1094 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1095 extent_end = key.offset + btrfs_dev_extent_length(l, 1096 dev_extent); 1097 if (key.offset <= start && extent_end > end) { 1098 *length = end - start + 1; 1099 break; 1100 } else if (key.offset <= start && extent_end > start) 1101 *length += extent_end - start; 1102 else if (key.offset > start && extent_end <= end) 1103 *length += extent_end - key.offset; 1104 else if (key.offset > start && key.offset <= end) { 1105 *length += end - key.offset + 1; 1106 break; 1107 } else if (key.offset > end) 1108 break; 1109 1110 next: 1111 path->slots[0]++; 1112 } 1113 ret = 0; 1114 out: 1115 btrfs_free_path(path); 1116 return ret; 1117 } 1118 1119 static int contains_pending_extent(struct btrfs_trans_handle *trans, 1120 struct btrfs_device *device, 1121 u64 *start, u64 len) 1122 { 1123 struct extent_map *em; 1124 struct list_head *search_list = &trans->transaction->pending_chunks; 1125 int ret = 0; 1126 u64 physical_start = *start; 1127 1128 again: 1129 list_for_each_entry(em, search_list, list) { 1130 struct map_lookup *map; 1131 int i; 1132 1133 map = (struct map_lookup *)em->bdev; 1134 for (i = 0; i < map->num_stripes; i++) { 1135 u64 end; 1136 1137 if (map->stripes[i].dev != device) 1138 continue; 1139 if (map->stripes[i].physical >= physical_start + len || 1140 map->stripes[i].physical + em->orig_block_len <= 1141 physical_start) 1142 continue; 1143 /* 1144 * Make sure that while processing the pinned list we do 1145 * not override our *start with a lower value, because 1146 * we can have pinned chunks that fall within this 1147 * device hole and that have lower physical addresses 1148 * than the pending chunks we processed before. If we 1149 * do not take this special care we can end up getting 1150 * 2 pending chunks that start at the same physical 1151 * device offsets because the end offset of a pinned 1152 * chunk can be equal to the start offset of some 1153 * pending chunk. 1154 */ 1155 end = map->stripes[i].physical + em->orig_block_len; 1156 if (end > *start) { 1157 *start = end; 1158 ret = 1; 1159 } 1160 } 1161 } 1162 if (search_list == &trans->transaction->pending_chunks) { 1163 search_list = &trans->root->fs_info->pinned_chunks; 1164 goto again; 1165 } 1166 1167 return ret; 1168 } 1169 1170 1171 /* 1172 * find_free_dev_extent - find free space in the specified device 1173 * @device: the device which we search the free space in 1174 * @num_bytes: the size of the free space that we need 1175 * @start: store the start of the free space. 1176 * @len: the size of the free space. that we find, or the size of the max 1177 * free space if we don't find suitable free space 1178 * 1179 * this uses a pretty simple search, the expectation is that it is 1180 * called very infrequently and that a given device has a small number 1181 * of extents 1182 * 1183 * @start is used to store the start of the free space if we find. But if we 1184 * don't find suitable free space, it will be used to store the start position 1185 * of the max free space. 1186 * 1187 * @len is used to store the size of the free space that we find. 1188 * But if we don't find suitable free space, it is used to store the size of 1189 * the max free space. 1190 */ 1191 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1192 struct btrfs_device *device, u64 num_bytes, 1193 u64 *start, u64 *len) 1194 { 1195 struct btrfs_key key; 1196 struct btrfs_root *root = device->dev_root; 1197 struct btrfs_dev_extent *dev_extent; 1198 struct btrfs_path *path; 1199 u64 hole_size; 1200 u64 max_hole_start; 1201 u64 max_hole_size; 1202 u64 extent_end; 1203 u64 search_start; 1204 u64 search_end = device->total_bytes; 1205 int ret; 1206 int slot; 1207 struct extent_buffer *l; 1208 1209 /* FIXME use last free of some kind */ 1210 1211 /* we don't want to overwrite the superblock on the drive, 1212 * so we make sure to start at an offset of at least 1MB 1213 */ 1214 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1215 1216 path = btrfs_alloc_path(); 1217 if (!path) 1218 return -ENOMEM; 1219 1220 max_hole_start = search_start; 1221 max_hole_size = 0; 1222 1223 again: 1224 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1225 ret = -ENOSPC; 1226 goto out; 1227 } 1228 1229 path->reada = 2; 1230 path->search_commit_root = 1; 1231 path->skip_locking = 1; 1232 1233 key.objectid = device->devid; 1234 key.offset = search_start; 1235 key.type = BTRFS_DEV_EXTENT_KEY; 1236 1237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1238 if (ret < 0) 1239 goto out; 1240 if (ret > 0) { 1241 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1242 if (ret < 0) 1243 goto out; 1244 } 1245 1246 while (1) { 1247 l = path->nodes[0]; 1248 slot = path->slots[0]; 1249 if (slot >= btrfs_header_nritems(l)) { 1250 ret = btrfs_next_leaf(root, path); 1251 if (ret == 0) 1252 continue; 1253 if (ret < 0) 1254 goto out; 1255 1256 break; 1257 } 1258 btrfs_item_key_to_cpu(l, &key, slot); 1259 1260 if (key.objectid < device->devid) 1261 goto next; 1262 1263 if (key.objectid > device->devid) 1264 break; 1265 1266 if (key.type != BTRFS_DEV_EXTENT_KEY) 1267 goto next; 1268 1269 if (key.offset > search_start) { 1270 hole_size = key.offset - search_start; 1271 1272 /* 1273 * Have to check before we set max_hole_start, otherwise 1274 * we could end up sending back this offset anyway. 1275 */ 1276 if (contains_pending_extent(trans, device, 1277 &search_start, 1278 hole_size)) { 1279 if (key.offset >= search_start) { 1280 hole_size = key.offset - search_start; 1281 } else { 1282 WARN_ON_ONCE(1); 1283 hole_size = 0; 1284 } 1285 } 1286 1287 if (hole_size > max_hole_size) { 1288 max_hole_start = search_start; 1289 max_hole_size = hole_size; 1290 } 1291 1292 /* 1293 * If this free space is greater than which we need, 1294 * it must be the max free space that we have found 1295 * until now, so max_hole_start must point to the start 1296 * of this free space and the length of this free space 1297 * is stored in max_hole_size. Thus, we return 1298 * max_hole_start and max_hole_size and go back to the 1299 * caller. 1300 */ 1301 if (hole_size >= num_bytes) { 1302 ret = 0; 1303 goto out; 1304 } 1305 } 1306 1307 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1308 extent_end = key.offset + btrfs_dev_extent_length(l, 1309 dev_extent); 1310 if (extent_end > search_start) 1311 search_start = extent_end; 1312 next: 1313 path->slots[0]++; 1314 cond_resched(); 1315 } 1316 1317 /* 1318 * At this point, search_start should be the end of 1319 * allocated dev extents, and when shrinking the device, 1320 * search_end may be smaller than search_start. 1321 */ 1322 if (search_end > search_start) { 1323 hole_size = search_end - search_start; 1324 1325 if (contains_pending_extent(trans, device, &search_start, 1326 hole_size)) { 1327 btrfs_release_path(path); 1328 goto again; 1329 } 1330 1331 if (hole_size > max_hole_size) { 1332 max_hole_start = search_start; 1333 max_hole_size = hole_size; 1334 } 1335 } 1336 1337 /* See above. */ 1338 if (max_hole_size < num_bytes) 1339 ret = -ENOSPC; 1340 else 1341 ret = 0; 1342 1343 out: 1344 btrfs_free_path(path); 1345 *start = max_hole_start; 1346 if (len) 1347 *len = max_hole_size; 1348 return ret; 1349 } 1350 1351 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1352 struct btrfs_device *device, 1353 u64 start, u64 *dev_extent_len) 1354 { 1355 int ret; 1356 struct btrfs_path *path; 1357 struct btrfs_root *root = device->dev_root; 1358 struct btrfs_key key; 1359 struct btrfs_key found_key; 1360 struct extent_buffer *leaf = NULL; 1361 struct btrfs_dev_extent *extent = NULL; 1362 1363 path = btrfs_alloc_path(); 1364 if (!path) 1365 return -ENOMEM; 1366 1367 key.objectid = device->devid; 1368 key.offset = start; 1369 key.type = BTRFS_DEV_EXTENT_KEY; 1370 again: 1371 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1372 if (ret > 0) { 1373 ret = btrfs_previous_item(root, path, key.objectid, 1374 BTRFS_DEV_EXTENT_KEY); 1375 if (ret) 1376 goto out; 1377 leaf = path->nodes[0]; 1378 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1379 extent = btrfs_item_ptr(leaf, path->slots[0], 1380 struct btrfs_dev_extent); 1381 BUG_ON(found_key.offset > start || found_key.offset + 1382 btrfs_dev_extent_length(leaf, extent) < start); 1383 key = found_key; 1384 btrfs_release_path(path); 1385 goto again; 1386 } else if (ret == 0) { 1387 leaf = path->nodes[0]; 1388 extent = btrfs_item_ptr(leaf, path->slots[0], 1389 struct btrfs_dev_extent); 1390 } else { 1391 btrfs_error(root->fs_info, ret, "Slot search failed"); 1392 goto out; 1393 } 1394 1395 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1396 1397 ret = btrfs_del_item(trans, root, path); 1398 if (ret) { 1399 btrfs_error(root->fs_info, ret, 1400 "Failed to remove dev extent item"); 1401 } else { 1402 trans->transaction->have_free_bgs = 1; 1403 } 1404 out: 1405 btrfs_free_path(path); 1406 return ret; 1407 } 1408 1409 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1410 struct btrfs_device *device, 1411 u64 chunk_tree, u64 chunk_objectid, 1412 u64 chunk_offset, u64 start, u64 num_bytes) 1413 { 1414 int ret; 1415 struct btrfs_path *path; 1416 struct btrfs_root *root = device->dev_root; 1417 struct btrfs_dev_extent *extent; 1418 struct extent_buffer *leaf; 1419 struct btrfs_key key; 1420 1421 WARN_ON(!device->in_fs_metadata); 1422 WARN_ON(device->is_tgtdev_for_dev_replace); 1423 path = btrfs_alloc_path(); 1424 if (!path) 1425 return -ENOMEM; 1426 1427 key.objectid = device->devid; 1428 key.offset = start; 1429 key.type = BTRFS_DEV_EXTENT_KEY; 1430 ret = btrfs_insert_empty_item(trans, root, path, &key, 1431 sizeof(*extent)); 1432 if (ret) 1433 goto out; 1434 1435 leaf = path->nodes[0]; 1436 extent = btrfs_item_ptr(leaf, path->slots[0], 1437 struct btrfs_dev_extent); 1438 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1439 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1440 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1441 1442 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1443 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1444 1445 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1446 btrfs_mark_buffer_dirty(leaf); 1447 out: 1448 btrfs_free_path(path); 1449 return ret; 1450 } 1451 1452 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1453 { 1454 struct extent_map_tree *em_tree; 1455 struct extent_map *em; 1456 struct rb_node *n; 1457 u64 ret = 0; 1458 1459 em_tree = &fs_info->mapping_tree.map_tree; 1460 read_lock(&em_tree->lock); 1461 n = rb_last(&em_tree->map); 1462 if (n) { 1463 em = rb_entry(n, struct extent_map, rb_node); 1464 ret = em->start + em->len; 1465 } 1466 read_unlock(&em_tree->lock); 1467 1468 return ret; 1469 } 1470 1471 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1472 u64 *devid_ret) 1473 { 1474 int ret; 1475 struct btrfs_key key; 1476 struct btrfs_key found_key; 1477 struct btrfs_path *path; 1478 1479 path = btrfs_alloc_path(); 1480 if (!path) 1481 return -ENOMEM; 1482 1483 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1484 key.type = BTRFS_DEV_ITEM_KEY; 1485 key.offset = (u64)-1; 1486 1487 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1488 if (ret < 0) 1489 goto error; 1490 1491 BUG_ON(ret == 0); /* Corruption */ 1492 1493 ret = btrfs_previous_item(fs_info->chunk_root, path, 1494 BTRFS_DEV_ITEMS_OBJECTID, 1495 BTRFS_DEV_ITEM_KEY); 1496 if (ret) { 1497 *devid_ret = 1; 1498 } else { 1499 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1500 path->slots[0]); 1501 *devid_ret = found_key.offset + 1; 1502 } 1503 ret = 0; 1504 error: 1505 btrfs_free_path(path); 1506 return ret; 1507 } 1508 1509 /* 1510 * the device information is stored in the chunk root 1511 * the btrfs_device struct should be fully filled in 1512 */ 1513 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1514 struct btrfs_root *root, 1515 struct btrfs_device *device) 1516 { 1517 int ret; 1518 struct btrfs_path *path; 1519 struct btrfs_dev_item *dev_item; 1520 struct extent_buffer *leaf; 1521 struct btrfs_key key; 1522 unsigned long ptr; 1523 1524 root = root->fs_info->chunk_root; 1525 1526 path = btrfs_alloc_path(); 1527 if (!path) 1528 return -ENOMEM; 1529 1530 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1531 key.type = BTRFS_DEV_ITEM_KEY; 1532 key.offset = device->devid; 1533 1534 ret = btrfs_insert_empty_item(trans, root, path, &key, 1535 sizeof(*dev_item)); 1536 if (ret) 1537 goto out; 1538 1539 leaf = path->nodes[0]; 1540 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1541 1542 btrfs_set_device_id(leaf, dev_item, device->devid); 1543 btrfs_set_device_generation(leaf, dev_item, 0); 1544 btrfs_set_device_type(leaf, dev_item, device->type); 1545 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1546 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1547 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1548 btrfs_set_device_total_bytes(leaf, dev_item, 1549 btrfs_device_get_disk_total_bytes(device)); 1550 btrfs_set_device_bytes_used(leaf, dev_item, 1551 btrfs_device_get_bytes_used(device)); 1552 btrfs_set_device_group(leaf, dev_item, 0); 1553 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1554 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1555 btrfs_set_device_start_offset(leaf, dev_item, 0); 1556 1557 ptr = btrfs_device_uuid(dev_item); 1558 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1559 ptr = btrfs_device_fsid(dev_item); 1560 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1561 btrfs_mark_buffer_dirty(leaf); 1562 1563 ret = 0; 1564 out: 1565 btrfs_free_path(path); 1566 return ret; 1567 } 1568 1569 /* 1570 * Function to update ctime/mtime for a given device path. 1571 * Mainly used for ctime/mtime based probe like libblkid. 1572 */ 1573 static void update_dev_time(char *path_name) 1574 { 1575 struct file *filp; 1576 1577 filp = filp_open(path_name, O_RDWR, 0); 1578 if (IS_ERR(filp)) 1579 return; 1580 file_update_time(filp); 1581 filp_close(filp, NULL); 1582 return; 1583 } 1584 1585 static int btrfs_rm_dev_item(struct btrfs_root *root, 1586 struct btrfs_device *device) 1587 { 1588 int ret; 1589 struct btrfs_path *path; 1590 struct btrfs_key key; 1591 struct btrfs_trans_handle *trans; 1592 1593 root = root->fs_info->chunk_root; 1594 1595 path = btrfs_alloc_path(); 1596 if (!path) 1597 return -ENOMEM; 1598 1599 trans = btrfs_start_transaction(root, 0); 1600 if (IS_ERR(trans)) { 1601 btrfs_free_path(path); 1602 return PTR_ERR(trans); 1603 } 1604 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1605 key.type = BTRFS_DEV_ITEM_KEY; 1606 key.offset = device->devid; 1607 1608 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1609 if (ret < 0) 1610 goto out; 1611 1612 if (ret > 0) { 1613 ret = -ENOENT; 1614 goto out; 1615 } 1616 1617 ret = btrfs_del_item(trans, root, path); 1618 if (ret) 1619 goto out; 1620 out: 1621 btrfs_free_path(path); 1622 btrfs_commit_transaction(trans, root); 1623 return ret; 1624 } 1625 1626 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1627 { 1628 struct btrfs_device *device; 1629 struct btrfs_device *next_device; 1630 struct block_device *bdev; 1631 struct buffer_head *bh = NULL; 1632 struct btrfs_super_block *disk_super; 1633 struct btrfs_fs_devices *cur_devices; 1634 u64 all_avail; 1635 u64 devid; 1636 u64 num_devices; 1637 u8 *dev_uuid; 1638 unsigned seq; 1639 int ret = 0; 1640 bool clear_super = false; 1641 1642 mutex_lock(&uuid_mutex); 1643 1644 do { 1645 seq = read_seqbegin(&root->fs_info->profiles_lock); 1646 1647 all_avail = root->fs_info->avail_data_alloc_bits | 1648 root->fs_info->avail_system_alloc_bits | 1649 root->fs_info->avail_metadata_alloc_bits; 1650 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1651 1652 num_devices = root->fs_info->fs_devices->num_devices; 1653 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1654 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1655 WARN_ON(num_devices < 1); 1656 num_devices--; 1657 } 1658 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1659 1660 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1661 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1662 goto out; 1663 } 1664 1665 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1666 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1667 goto out; 1668 } 1669 1670 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1671 root->fs_info->fs_devices->rw_devices <= 2) { 1672 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1673 goto out; 1674 } 1675 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1676 root->fs_info->fs_devices->rw_devices <= 3) { 1677 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1678 goto out; 1679 } 1680 1681 if (strcmp(device_path, "missing") == 0) { 1682 struct list_head *devices; 1683 struct btrfs_device *tmp; 1684 1685 device = NULL; 1686 devices = &root->fs_info->fs_devices->devices; 1687 /* 1688 * It is safe to read the devices since the volume_mutex 1689 * is held. 1690 */ 1691 list_for_each_entry(tmp, devices, dev_list) { 1692 if (tmp->in_fs_metadata && 1693 !tmp->is_tgtdev_for_dev_replace && 1694 !tmp->bdev) { 1695 device = tmp; 1696 break; 1697 } 1698 } 1699 bdev = NULL; 1700 bh = NULL; 1701 disk_super = NULL; 1702 if (!device) { 1703 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1704 goto out; 1705 } 1706 } else { 1707 ret = btrfs_get_bdev_and_sb(device_path, 1708 FMODE_WRITE | FMODE_EXCL, 1709 root->fs_info->bdev_holder, 0, 1710 &bdev, &bh); 1711 if (ret) 1712 goto out; 1713 disk_super = (struct btrfs_super_block *)bh->b_data; 1714 devid = btrfs_stack_device_id(&disk_super->dev_item); 1715 dev_uuid = disk_super->dev_item.uuid; 1716 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1717 disk_super->fsid); 1718 if (!device) { 1719 ret = -ENOENT; 1720 goto error_brelse; 1721 } 1722 } 1723 1724 if (device->is_tgtdev_for_dev_replace) { 1725 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1726 goto error_brelse; 1727 } 1728 1729 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1730 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1731 goto error_brelse; 1732 } 1733 1734 if (device->writeable) { 1735 lock_chunks(root); 1736 list_del_init(&device->dev_alloc_list); 1737 device->fs_devices->rw_devices--; 1738 unlock_chunks(root); 1739 clear_super = true; 1740 } 1741 1742 mutex_unlock(&uuid_mutex); 1743 ret = btrfs_shrink_device(device, 0); 1744 mutex_lock(&uuid_mutex); 1745 if (ret) 1746 goto error_undo; 1747 1748 /* 1749 * TODO: the superblock still includes this device in its num_devices 1750 * counter although write_all_supers() is not locked out. This 1751 * could give a filesystem state which requires a degraded mount. 1752 */ 1753 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1754 if (ret) 1755 goto error_undo; 1756 1757 device->in_fs_metadata = 0; 1758 btrfs_scrub_cancel_dev(root->fs_info, device); 1759 1760 /* 1761 * the device list mutex makes sure that we don't change 1762 * the device list while someone else is writing out all 1763 * the device supers. Whoever is writing all supers, should 1764 * lock the device list mutex before getting the number of 1765 * devices in the super block (super_copy). Conversely, 1766 * whoever updates the number of devices in the super block 1767 * (super_copy) should hold the device list mutex. 1768 */ 1769 1770 cur_devices = device->fs_devices; 1771 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1772 list_del_rcu(&device->dev_list); 1773 1774 device->fs_devices->num_devices--; 1775 device->fs_devices->total_devices--; 1776 1777 if (device->missing) 1778 device->fs_devices->missing_devices--; 1779 1780 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1781 struct btrfs_device, dev_list); 1782 if (device->bdev == root->fs_info->sb->s_bdev) 1783 root->fs_info->sb->s_bdev = next_device->bdev; 1784 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1785 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1786 1787 if (device->bdev) { 1788 device->fs_devices->open_devices--; 1789 /* remove sysfs entry */ 1790 btrfs_kobj_rm_device(root->fs_info->fs_devices, device); 1791 } 1792 1793 call_rcu(&device->rcu, free_device); 1794 1795 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1796 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1797 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1798 1799 if (cur_devices->open_devices == 0) { 1800 struct btrfs_fs_devices *fs_devices; 1801 fs_devices = root->fs_info->fs_devices; 1802 while (fs_devices) { 1803 if (fs_devices->seed == cur_devices) { 1804 fs_devices->seed = cur_devices->seed; 1805 break; 1806 } 1807 fs_devices = fs_devices->seed; 1808 } 1809 cur_devices->seed = NULL; 1810 __btrfs_close_devices(cur_devices); 1811 free_fs_devices(cur_devices); 1812 } 1813 1814 root->fs_info->num_tolerated_disk_barrier_failures = 1815 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1816 1817 /* 1818 * at this point, the device is zero sized. We want to 1819 * remove it from the devices list and zero out the old super 1820 */ 1821 if (clear_super && disk_super) { 1822 u64 bytenr; 1823 int i; 1824 1825 /* make sure this device isn't detected as part of 1826 * the FS anymore 1827 */ 1828 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1829 set_buffer_dirty(bh); 1830 sync_dirty_buffer(bh); 1831 1832 /* clear the mirror copies of super block on the disk 1833 * being removed, 0th copy is been taken care above and 1834 * the below would take of the rest 1835 */ 1836 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1837 bytenr = btrfs_sb_offset(i); 1838 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1839 i_size_read(bdev->bd_inode)) 1840 break; 1841 1842 brelse(bh); 1843 bh = __bread(bdev, bytenr / 4096, 1844 BTRFS_SUPER_INFO_SIZE); 1845 if (!bh) 1846 continue; 1847 1848 disk_super = (struct btrfs_super_block *)bh->b_data; 1849 1850 if (btrfs_super_bytenr(disk_super) != bytenr || 1851 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1852 continue; 1853 } 1854 memset(&disk_super->magic, 0, 1855 sizeof(disk_super->magic)); 1856 set_buffer_dirty(bh); 1857 sync_dirty_buffer(bh); 1858 } 1859 } 1860 1861 ret = 0; 1862 1863 if (bdev) { 1864 /* Notify udev that device has changed */ 1865 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1866 1867 /* Update ctime/mtime for device path for libblkid */ 1868 update_dev_time(device_path); 1869 } 1870 1871 error_brelse: 1872 brelse(bh); 1873 if (bdev) 1874 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1875 out: 1876 mutex_unlock(&uuid_mutex); 1877 return ret; 1878 error_undo: 1879 if (device->writeable) { 1880 lock_chunks(root); 1881 list_add(&device->dev_alloc_list, 1882 &root->fs_info->fs_devices->alloc_list); 1883 device->fs_devices->rw_devices++; 1884 unlock_chunks(root); 1885 } 1886 goto error_brelse; 1887 } 1888 1889 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1890 struct btrfs_device *srcdev) 1891 { 1892 struct btrfs_fs_devices *fs_devices; 1893 1894 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1895 1896 /* 1897 * in case of fs with no seed, srcdev->fs_devices will point 1898 * to fs_devices of fs_info. However when the dev being replaced is 1899 * a seed dev it will point to the seed's local fs_devices. In short 1900 * srcdev will have its correct fs_devices in both the cases. 1901 */ 1902 fs_devices = srcdev->fs_devices; 1903 1904 list_del_rcu(&srcdev->dev_list); 1905 list_del_rcu(&srcdev->dev_alloc_list); 1906 fs_devices->num_devices--; 1907 if (srcdev->missing) 1908 fs_devices->missing_devices--; 1909 1910 if (srcdev->writeable) { 1911 fs_devices->rw_devices--; 1912 /* zero out the old super if it is writable */ 1913 btrfs_scratch_superblock(srcdev); 1914 } 1915 1916 if (srcdev->bdev) 1917 fs_devices->open_devices--; 1918 } 1919 1920 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1921 struct btrfs_device *srcdev) 1922 { 1923 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1924 1925 call_rcu(&srcdev->rcu, free_device); 1926 1927 /* 1928 * unless fs_devices is seed fs, num_devices shouldn't go 1929 * zero 1930 */ 1931 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1932 1933 /* if this is no devs we rather delete the fs_devices */ 1934 if (!fs_devices->num_devices) { 1935 struct btrfs_fs_devices *tmp_fs_devices; 1936 1937 tmp_fs_devices = fs_info->fs_devices; 1938 while (tmp_fs_devices) { 1939 if (tmp_fs_devices->seed == fs_devices) { 1940 tmp_fs_devices->seed = fs_devices->seed; 1941 break; 1942 } 1943 tmp_fs_devices = tmp_fs_devices->seed; 1944 } 1945 fs_devices->seed = NULL; 1946 __btrfs_close_devices(fs_devices); 1947 free_fs_devices(fs_devices); 1948 } 1949 } 1950 1951 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1952 struct btrfs_device *tgtdev) 1953 { 1954 struct btrfs_device *next_device; 1955 1956 mutex_lock(&uuid_mutex); 1957 WARN_ON(!tgtdev); 1958 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1959 1960 btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev); 1961 1962 if (tgtdev->bdev) { 1963 btrfs_scratch_superblock(tgtdev); 1964 fs_info->fs_devices->open_devices--; 1965 } 1966 fs_info->fs_devices->num_devices--; 1967 1968 next_device = list_entry(fs_info->fs_devices->devices.next, 1969 struct btrfs_device, dev_list); 1970 if (tgtdev->bdev == fs_info->sb->s_bdev) 1971 fs_info->sb->s_bdev = next_device->bdev; 1972 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1973 fs_info->fs_devices->latest_bdev = next_device->bdev; 1974 list_del_rcu(&tgtdev->dev_list); 1975 1976 call_rcu(&tgtdev->rcu, free_device); 1977 1978 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1979 mutex_unlock(&uuid_mutex); 1980 } 1981 1982 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1983 struct btrfs_device **device) 1984 { 1985 int ret = 0; 1986 struct btrfs_super_block *disk_super; 1987 u64 devid; 1988 u8 *dev_uuid; 1989 struct block_device *bdev; 1990 struct buffer_head *bh; 1991 1992 *device = NULL; 1993 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1994 root->fs_info->bdev_holder, 0, &bdev, &bh); 1995 if (ret) 1996 return ret; 1997 disk_super = (struct btrfs_super_block *)bh->b_data; 1998 devid = btrfs_stack_device_id(&disk_super->dev_item); 1999 dev_uuid = disk_super->dev_item.uuid; 2000 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2001 disk_super->fsid); 2002 brelse(bh); 2003 if (!*device) 2004 ret = -ENOENT; 2005 blkdev_put(bdev, FMODE_READ); 2006 return ret; 2007 } 2008 2009 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 2010 char *device_path, 2011 struct btrfs_device **device) 2012 { 2013 *device = NULL; 2014 if (strcmp(device_path, "missing") == 0) { 2015 struct list_head *devices; 2016 struct btrfs_device *tmp; 2017 2018 devices = &root->fs_info->fs_devices->devices; 2019 /* 2020 * It is safe to read the devices since the volume_mutex 2021 * is held by the caller. 2022 */ 2023 list_for_each_entry(tmp, devices, dev_list) { 2024 if (tmp->in_fs_metadata && !tmp->bdev) { 2025 *device = tmp; 2026 break; 2027 } 2028 } 2029 2030 if (!*device) { 2031 btrfs_err(root->fs_info, "no missing device found"); 2032 return -ENOENT; 2033 } 2034 2035 return 0; 2036 } else { 2037 return btrfs_find_device_by_path(root, device_path, device); 2038 } 2039 } 2040 2041 /* 2042 * does all the dirty work required for changing file system's UUID. 2043 */ 2044 static int btrfs_prepare_sprout(struct btrfs_root *root) 2045 { 2046 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2047 struct btrfs_fs_devices *old_devices; 2048 struct btrfs_fs_devices *seed_devices; 2049 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 2050 struct btrfs_device *device; 2051 u64 super_flags; 2052 2053 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2054 if (!fs_devices->seeding) 2055 return -EINVAL; 2056 2057 seed_devices = __alloc_fs_devices(); 2058 if (IS_ERR(seed_devices)) 2059 return PTR_ERR(seed_devices); 2060 2061 old_devices = clone_fs_devices(fs_devices); 2062 if (IS_ERR(old_devices)) { 2063 kfree(seed_devices); 2064 return PTR_ERR(old_devices); 2065 } 2066 2067 list_add(&old_devices->list, &fs_uuids); 2068 2069 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2070 seed_devices->opened = 1; 2071 INIT_LIST_HEAD(&seed_devices->devices); 2072 INIT_LIST_HEAD(&seed_devices->alloc_list); 2073 mutex_init(&seed_devices->device_list_mutex); 2074 2075 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2076 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2077 synchronize_rcu); 2078 list_for_each_entry(device, &seed_devices->devices, dev_list) 2079 device->fs_devices = seed_devices; 2080 2081 lock_chunks(root); 2082 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2083 unlock_chunks(root); 2084 2085 fs_devices->seeding = 0; 2086 fs_devices->num_devices = 0; 2087 fs_devices->open_devices = 0; 2088 fs_devices->missing_devices = 0; 2089 fs_devices->rotating = 0; 2090 fs_devices->seed = seed_devices; 2091 2092 generate_random_uuid(fs_devices->fsid); 2093 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2094 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2095 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2096 2097 super_flags = btrfs_super_flags(disk_super) & 2098 ~BTRFS_SUPER_FLAG_SEEDING; 2099 btrfs_set_super_flags(disk_super, super_flags); 2100 2101 return 0; 2102 } 2103 2104 /* 2105 * strore the expected generation for seed devices in device items. 2106 */ 2107 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2108 struct btrfs_root *root) 2109 { 2110 struct btrfs_path *path; 2111 struct extent_buffer *leaf; 2112 struct btrfs_dev_item *dev_item; 2113 struct btrfs_device *device; 2114 struct btrfs_key key; 2115 u8 fs_uuid[BTRFS_UUID_SIZE]; 2116 u8 dev_uuid[BTRFS_UUID_SIZE]; 2117 u64 devid; 2118 int ret; 2119 2120 path = btrfs_alloc_path(); 2121 if (!path) 2122 return -ENOMEM; 2123 2124 root = root->fs_info->chunk_root; 2125 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2126 key.offset = 0; 2127 key.type = BTRFS_DEV_ITEM_KEY; 2128 2129 while (1) { 2130 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2131 if (ret < 0) 2132 goto error; 2133 2134 leaf = path->nodes[0]; 2135 next_slot: 2136 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2137 ret = btrfs_next_leaf(root, path); 2138 if (ret > 0) 2139 break; 2140 if (ret < 0) 2141 goto error; 2142 leaf = path->nodes[0]; 2143 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2144 btrfs_release_path(path); 2145 continue; 2146 } 2147 2148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2149 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2150 key.type != BTRFS_DEV_ITEM_KEY) 2151 break; 2152 2153 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2154 struct btrfs_dev_item); 2155 devid = btrfs_device_id(leaf, dev_item); 2156 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2157 BTRFS_UUID_SIZE); 2158 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2159 BTRFS_UUID_SIZE); 2160 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2161 fs_uuid); 2162 BUG_ON(!device); /* Logic error */ 2163 2164 if (device->fs_devices->seeding) { 2165 btrfs_set_device_generation(leaf, dev_item, 2166 device->generation); 2167 btrfs_mark_buffer_dirty(leaf); 2168 } 2169 2170 path->slots[0]++; 2171 goto next_slot; 2172 } 2173 ret = 0; 2174 error: 2175 btrfs_free_path(path); 2176 return ret; 2177 } 2178 2179 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2180 { 2181 struct request_queue *q; 2182 struct btrfs_trans_handle *trans; 2183 struct btrfs_device *device; 2184 struct block_device *bdev; 2185 struct list_head *devices; 2186 struct super_block *sb = root->fs_info->sb; 2187 struct rcu_string *name; 2188 u64 tmp; 2189 int seeding_dev = 0; 2190 int ret = 0; 2191 2192 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2193 return -EROFS; 2194 2195 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2196 root->fs_info->bdev_holder); 2197 if (IS_ERR(bdev)) 2198 return PTR_ERR(bdev); 2199 2200 if (root->fs_info->fs_devices->seeding) { 2201 seeding_dev = 1; 2202 down_write(&sb->s_umount); 2203 mutex_lock(&uuid_mutex); 2204 } 2205 2206 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2207 2208 devices = &root->fs_info->fs_devices->devices; 2209 2210 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2211 list_for_each_entry(device, devices, dev_list) { 2212 if (device->bdev == bdev) { 2213 ret = -EEXIST; 2214 mutex_unlock( 2215 &root->fs_info->fs_devices->device_list_mutex); 2216 goto error; 2217 } 2218 } 2219 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2220 2221 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2222 if (IS_ERR(device)) { 2223 /* we can safely leave the fs_devices entry around */ 2224 ret = PTR_ERR(device); 2225 goto error; 2226 } 2227 2228 name = rcu_string_strdup(device_path, GFP_NOFS); 2229 if (!name) { 2230 kfree(device); 2231 ret = -ENOMEM; 2232 goto error; 2233 } 2234 rcu_assign_pointer(device->name, name); 2235 2236 trans = btrfs_start_transaction(root, 0); 2237 if (IS_ERR(trans)) { 2238 rcu_string_free(device->name); 2239 kfree(device); 2240 ret = PTR_ERR(trans); 2241 goto error; 2242 } 2243 2244 q = bdev_get_queue(bdev); 2245 if (blk_queue_discard(q)) 2246 device->can_discard = 1; 2247 device->writeable = 1; 2248 device->generation = trans->transid; 2249 device->io_width = root->sectorsize; 2250 device->io_align = root->sectorsize; 2251 device->sector_size = root->sectorsize; 2252 device->total_bytes = i_size_read(bdev->bd_inode); 2253 device->disk_total_bytes = device->total_bytes; 2254 device->commit_total_bytes = device->total_bytes; 2255 device->dev_root = root->fs_info->dev_root; 2256 device->bdev = bdev; 2257 device->in_fs_metadata = 1; 2258 device->is_tgtdev_for_dev_replace = 0; 2259 device->mode = FMODE_EXCL; 2260 device->dev_stats_valid = 1; 2261 set_blocksize(device->bdev, 4096); 2262 2263 if (seeding_dev) { 2264 sb->s_flags &= ~MS_RDONLY; 2265 ret = btrfs_prepare_sprout(root); 2266 BUG_ON(ret); /* -ENOMEM */ 2267 } 2268 2269 device->fs_devices = root->fs_info->fs_devices; 2270 2271 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2272 lock_chunks(root); 2273 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2274 list_add(&device->dev_alloc_list, 2275 &root->fs_info->fs_devices->alloc_list); 2276 root->fs_info->fs_devices->num_devices++; 2277 root->fs_info->fs_devices->open_devices++; 2278 root->fs_info->fs_devices->rw_devices++; 2279 root->fs_info->fs_devices->total_devices++; 2280 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2281 2282 spin_lock(&root->fs_info->free_chunk_lock); 2283 root->fs_info->free_chunk_space += device->total_bytes; 2284 spin_unlock(&root->fs_info->free_chunk_lock); 2285 2286 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2287 root->fs_info->fs_devices->rotating = 1; 2288 2289 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2290 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2291 tmp + device->total_bytes); 2292 2293 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2294 btrfs_set_super_num_devices(root->fs_info->super_copy, 2295 tmp + 1); 2296 2297 /* add sysfs device entry */ 2298 btrfs_kobj_add_device(root->fs_info->fs_devices, device); 2299 2300 /* 2301 * we've got more storage, clear any full flags on the space 2302 * infos 2303 */ 2304 btrfs_clear_space_info_full(root->fs_info); 2305 2306 unlock_chunks(root); 2307 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2308 2309 if (seeding_dev) { 2310 lock_chunks(root); 2311 ret = init_first_rw_device(trans, root, device); 2312 unlock_chunks(root); 2313 if (ret) { 2314 btrfs_abort_transaction(trans, root, ret); 2315 goto error_trans; 2316 } 2317 } 2318 2319 ret = btrfs_add_device(trans, root, device); 2320 if (ret) { 2321 btrfs_abort_transaction(trans, root, ret); 2322 goto error_trans; 2323 } 2324 2325 if (seeding_dev) { 2326 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2327 2328 ret = btrfs_finish_sprout(trans, root); 2329 if (ret) { 2330 btrfs_abort_transaction(trans, root, ret); 2331 goto error_trans; 2332 } 2333 2334 /* Sprouting would change fsid of the mounted root, 2335 * so rename the fsid on the sysfs 2336 */ 2337 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2338 root->fs_info->fsid); 2339 if (kobject_rename(&root->fs_info->fs_devices->super_kobj, 2340 fsid_buf)) 2341 pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n"); 2342 } 2343 2344 root->fs_info->num_tolerated_disk_barrier_failures = 2345 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2346 ret = btrfs_commit_transaction(trans, root); 2347 2348 if (seeding_dev) { 2349 mutex_unlock(&uuid_mutex); 2350 up_write(&sb->s_umount); 2351 2352 if (ret) /* transaction commit */ 2353 return ret; 2354 2355 ret = btrfs_relocate_sys_chunks(root); 2356 if (ret < 0) 2357 btrfs_error(root->fs_info, ret, 2358 "Failed to relocate sys chunks after " 2359 "device initialization. This can be fixed " 2360 "using the \"btrfs balance\" command."); 2361 trans = btrfs_attach_transaction(root); 2362 if (IS_ERR(trans)) { 2363 if (PTR_ERR(trans) == -ENOENT) 2364 return 0; 2365 return PTR_ERR(trans); 2366 } 2367 ret = btrfs_commit_transaction(trans, root); 2368 } 2369 2370 /* Update ctime/mtime for libblkid */ 2371 update_dev_time(device_path); 2372 return ret; 2373 2374 error_trans: 2375 btrfs_end_transaction(trans, root); 2376 rcu_string_free(device->name); 2377 btrfs_kobj_rm_device(root->fs_info->fs_devices, device); 2378 kfree(device); 2379 error: 2380 blkdev_put(bdev, FMODE_EXCL); 2381 if (seeding_dev) { 2382 mutex_unlock(&uuid_mutex); 2383 up_write(&sb->s_umount); 2384 } 2385 return ret; 2386 } 2387 2388 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2389 struct btrfs_device *srcdev, 2390 struct btrfs_device **device_out) 2391 { 2392 struct request_queue *q; 2393 struct btrfs_device *device; 2394 struct block_device *bdev; 2395 struct btrfs_fs_info *fs_info = root->fs_info; 2396 struct list_head *devices; 2397 struct rcu_string *name; 2398 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2399 int ret = 0; 2400 2401 *device_out = NULL; 2402 if (fs_info->fs_devices->seeding) { 2403 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2404 return -EINVAL; 2405 } 2406 2407 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2408 fs_info->bdev_holder); 2409 if (IS_ERR(bdev)) { 2410 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2411 return PTR_ERR(bdev); 2412 } 2413 2414 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2415 2416 devices = &fs_info->fs_devices->devices; 2417 list_for_each_entry(device, devices, dev_list) { 2418 if (device->bdev == bdev) { 2419 btrfs_err(fs_info, "target device is in the filesystem!"); 2420 ret = -EEXIST; 2421 goto error; 2422 } 2423 } 2424 2425 2426 if (i_size_read(bdev->bd_inode) < 2427 btrfs_device_get_total_bytes(srcdev)) { 2428 btrfs_err(fs_info, "target device is smaller than source device!"); 2429 ret = -EINVAL; 2430 goto error; 2431 } 2432 2433 2434 device = btrfs_alloc_device(NULL, &devid, NULL); 2435 if (IS_ERR(device)) { 2436 ret = PTR_ERR(device); 2437 goto error; 2438 } 2439 2440 name = rcu_string_strdup(device_path, GFP_NOFS); 2441 if (!name) { 2442 kfree(device); 2443 ret = -ENOMEM; 2444 goto error; 2445 } 2446 rcu_assign_pointer(device->name, name); 2447 2448 q = bdev_get_queue(bdev); 2449 if (blk_queue_discard(q)) 2450 device->can_discard = 1; 2451 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2452 device->writeable = 1; 2453 device->generation = 0; 2454 device->io_width = root->sectorsize; 2455 device->io_align = root->sectorsize; 2456 device->sector_size = root->sectorsize; 2457 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2458 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2459 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2460 ASSERT(list_empty(&srcdev->resized_list)); 2461 device->commit_total_bytes = srcdev->commit_total_bytes; 2462 device->commit_bytes_used = device->bytes_used; 2463 device->dev_root = fs_info->dev_root; 2464 device->bdev = bdev; 2465 device->in_fs_metadata = 1; 2466 device->is_tgtdev_for_dev_replace = 1; 2467 device->mode = FMODE_EXCL; 2468 device->dev_stats_valid = 1; 2469 set_blocksize(device->bdev, 4096); 2470 device->fs_devices = fs_info->fs_devices; 2471 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2472 fs_info->fs_devices->num_devices++; 2473 fs_info->fs_devices->open_devices++; 2474 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2475 2476 *device_out = device; 2477 return ret; 2478 2479 error: 2480 blkdev_put(bdev, FMODE_EXCL); 2481 return ret; 2482 } 2483 2484 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2485 struct btrfs_device *tgtdev) 2486 { 2487 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2488 tgtdev->io_width = fs_info->dev_root->sectorsize; 2489 tgtdev->io_align = fs_info->dev_root->sectorsize; 2490 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2491 tgtdev->dev_root = fs_info->dev_root; 2492 tgtdev->in_fs_metadata = 1; 2493 } 2494 2495 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2496 struct btrfs_device *device) 2497 { 2498 int ret; 2499 struct btrfs_path *path; 2500 struct btrfs_root *root; 2501 struct btrfs_dev_item *dev_item; 2502 struct extent_buffer *leaf; 2503 struct btrfs_key key; 2504 2505 root = device->dev_root->fs_info->chunk_root; 2506 2507 path = btrfs_alloc_path(); 2508 if (!path) 2509 return -ENOMEM; 2510 2511 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2512 key.type = BTRFS_DEV_ITEM_KEY; 2513 key.offset = device->devid; 2514 2515 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2516 if (ret < 0) 2517 goto out; 2518 2519 if (ret > 0) { 2520 ret = -ENOENT; 2521 goto out; 2522 } 2523 2524 leaf = path->nodes[0]; 2525 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2526 2527 btrfs_set_device_id(leaf, dev_item, device->devid); 2528 btrfs_set_device_type(leaf, dev_item, device->type); 2529 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2530 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2531 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2532 btrfs_set_device_total_bytes(leaf, dev_item, 2533 btrfs_device_get_disk_total_bytes(device)); 2534 btrfs_set_device_bytes_used(leaf, dev_item, 2535 btrfs_device_get_bytes_used(device)); 2536 btrfs_mark_buffer_dirty(leaf); 2537 2538 out: 2539 btrfs_free_path(path); 2540 return ret; 2541 } 2542 2543 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2544 struct btrfs_device *device, u64 new_size) 2545 { 2546 struct btrfs_super_block *super_copy = 2547 device->dev_root->fs_info->super_copy; 2548 struct btrfs_fs_devices *fs_devices; 2549 u64 old_total; 2550 u64 diff; 2551 2552 if (!device->writeable) 2553 return -EACCES; 2554 2555 lock_chunks(device->dev_root); 2556 old_total = btrfs_super_total_bytes(super_copy); 2557 diff = new_size - device->total_bytes; 2558 2559 if (new_size <= device->total_bytes || 2560 device->is_tgtdev_for_dev_replace) { 2561 unlock_chunks(device->dev_root); 2562 return -EINVAL; 2563 } 2564 2565 fs_devices = device->dev_root->fs_info->fs_devices; 2566 2567 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2568 device->fs_devices->total_rw_bytes += diff; 2569 2570 btrfs_device_set_total_bytes(device, new_size); 2571 btrfs_device_set_disk_total_bytes(device, new_size); 2572 btrfs_clear_space_info_full(device->dev_root->fs_info); 2573 if (list_empty(&device->resized_list)) 2574 list_add_tail(&device->resized_list, 2575 &fs_devices->resized_devices); 2576 unlock_chunks(device->dev_root); 2577 2578 return btrfs_update_device(trans, device); 2579 } 2580 2581 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2582 struct btrfs_root *root, u64 chunk_objectid, 2583 u64 chunk_offset) 2584 { 2585 int ret; 2586 struct btrfs_path *path; 2587 struct btrfs_key key; 2588 2589 root = root->fs_info->chunk_root; 2590 path = btrfs_alloc_path(); 2591 if (!path) 2592 return -ENOMEM; 2593 2594 key.objectid = chunk_objectid; 2595 key.offset = chunk_offset; 2596 key.type = BTRFS_CHUNK_ITEM_KEY; 2597 2598 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2599 if (ret < 0) 2600 goto out; 2601 else if (ret > 0) { /* Logic error or corruption */ 2602 btrfs_error(root->fs_info, -ENOENT, 2603 "Failed lookup while freeing chunk."); 2604 ret = -ENOENT; 2605 goto out; 2606 } 2607 2608 ret = btrfs_del_item(trans, root, path); 2609 if (ret < 0) 2610 btrfs_error(root->fs_info, ret, 2611 "Failed to delete chunk item."); 2612 out: 2613 btrfs_free_path(path); 2614 return ret; 2615 } 2616 2617 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2618 chunk_offset) 2619 { 2620 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2621 struct btrfs_disk_key *disk_key; 2622 struct btrfs_chunk *chunk; 2623 u8 *ptr; 2624 int ret = 0; 2625 u32 num_stripes; 2626 u32 array_size; 2627 u32 len = 0; 2628 u32 cur; 2629 struct btrfs_key key; 2630 2631 lock_chunks(root); 2632 array_size = btrfs_super_sys_array_size(super_copy); 2633 2634 ptr = super_copy->sys_chunk_array; 2635 cur = 0; 2636 2637 while (cur < array_size) { 2638 disk_key = (struct btrfs_disk_key *)ptr; 2639 btrfs_disk_key_to_cpu(&key, disk_key); 2640 2641 len = sizeof(*disk_key); 2642 2643 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2644 chunk = (struct btrfs_chunk *)(ptr + len); 2645 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2646 len += btrfs_chunk_item_size(num_stripes); 2647 } else { 2648 ret = -EIO; 2649 break; 2650 } 2651 if (key.objectid == chunk_objectid && 2652 key.offset == chunk_offset) { 2653 memmove(ptr, ptr + len, array_size - (cur + len)); 2654 array_size -= len; 2655 btrfs_set_super_sys_array_size(super_copy, array_size); 2656 } else { 2657 ptr += len; 2658 cur += len; 2659 } 2660 } 2661 unlock_chunks(root); 2662 return ret; 2663 } 2664 2665 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2666 struct btrfs_root *root, u64 chunk_offset) 2667 { 2668 struct extent_map_tree *em_tree; 2669 struct extent_map *em; 2670 struct btrfs_root *extent_root = root->fs_info->extent_root; 2671 struct map_lookup *map; 2672 u64 dev_extent_len = 0; 2673 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2674 int i, ret = 0; 2675 2676 /* Just in case */ 2677 root = root->fs_info->chunk_root; 2678 em_tree = &root->fs_info->mapping_tree.map_tree; 2679 2680 read_lock(&em_tree->lock); 2681 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2682 read_unlock(&em_tree->lock); 2683 2684 if (!em || em->start > chunk_offset || 2685 em->start + em->len < chunk_offset) { 2686 /* 2687 * This is a logic error, but we don't want to just rely on the 2688 * user having built with ASSERT enabled, so if ASSERT doens't 2689 * do anything we still error out. 2690 */ 2691 ASSERT(0); 2692 if (em) 2693 free_extent_map(em); 2694 return -EINVAL; 2695 } 2696 map = (struct map_lookup *)em->bdev; 2697 lock_chunks(root->fs_info->chunk_root); 2698 check_system_chunk(trans, extent_root, map->type); 2699 unlock_chunks(root->fs_info->chunk_root); 2700 2701 for (i = 0; i < map->num_stripes; i++) { 2702 struct btrfs_device *device = map->stripes[i].dev; 2703 ret = btrfs_free_dev_extent(trans, device, 2704 map->stripes[i].physical, 2705 &dev_extent_len); 2706 if (ret) { 2707 btrfs_abort_transaction(trans, root, ret); 2708 goto out; 2709 } 2710 2711 if (device->bytes_used > 0) { 2712 lock_chunks(root); 2713 btrfs_device_set_bytes_used(device, 2714 device->bytes_used - dev_extent_len); 2715 spin_lock(&root->fs_info->free_chunk_lock); 2716 root->fs_info->free_chunk_space += dev_extent_len; 2717 spin_unlock(&root->fs_info->free_chunk_lock); 2718 btrfs_clear_space_info_full(root->fs_info); 2719 unlock_chunks(root); 2720 } 2721 2722 if (map->stripes[i].dev) { 2723 ret = btrfs_update_device(trans, map->stripes[i].dev); 2724 if (ret) { 2725 btrfs_abort_transaction(trans, root, ret); 2726 goto out; 2727 } 2728 } 2729 } 2730 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2731 if (ret) { 2732 btrfs_abort_transaction(trans, root, ret); 2733 goto out; 2734 } 2735 2736 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2737 2738 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2739 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2740 if (ret) { 2741 btrfs_abort_transaction(trans, root, ret); 2742 goto out; 2743 } 2744 } 2745 2746 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2747 if (ret) { 2748 btrfs_abort_transaction(trans, extent_root, ret); 2749 goto out; 2750 } 2751 2752 out: 2753 /* once for us */ 2754 free_extent_map(em); 2755 return ret; 2756 } 2757 2758 static int btrfs_relocate_chunk(struct btrfs_root *root, 2759 u64 chunk_objectid, 2760 u64 chunk_offset) 2761 { 2762 struct btrfs_root *extent_root; 2763 struct btrfs_trans_handle *trans; 2764 int ret; 2765 2766 root = root->fs_info->chunk_root; 2767 extent_root = root->fs_info->extent_root; 2768 2769 ret = btrfs_can_relocate(extent_root, chunk_offset); 2770 if (ret) 2771 return -ENOSPC; 2772 2773 /* step one, relocate all the extents inside this chunk */ 2774 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2775 if (ret) 2776 return ret; 2777 2778 trans = btrfs_start_transaction(root, 0); 2779 if (IS_ERR(trans)) { 2780 ret = PTR_ERR(trans); 2781 btrfs_std_error(root->fs_info, ret); 2782 return ret; 2783 } 2784 2785 /* 2786 * step two, delete the device extents and the 2787 * chunk tree entries 2788 */ 2789 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2790 btrfs_end_transaction(trans, root); 2791 return ret; 2792 } 2793 2794 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2795 { 2796 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2797 struct btrfs_path *path; 2798 struct extent_buffer *leaf; 2799 struct btrfs_chunk *chunk; 2800 struct btrfs_key key; 2801 struct btrfs_key found_key; 2802 u64 chunk_type; 2803 bool retried = false; 2804 int failed = 0; 2805 int ret; 2806 2807 path = btrfs_alloc_path(); 2808 if (!path) 2809 return -ENOMEM; 2810 2811 again: 2812 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2813 key.offset = (u64)-1; 2814 key.type = BTRFS_CHUNK_ITEM_KEY; 2815 2816 while (1) { 2817 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2818 if (ret < 0) 2819 goto error; 2820 BUG_ON(ret == 0); /* Corruption */ 2821 2822 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2823 key.type); 2824 if (ret < 0) 2825 goto error; 2826 if (ret > 0) 2827 break; 2828 2829 leaf = path->nodes[0]; 2830 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2831 2832 chunk = btrfs_item_ptr(leaf, path->slots[0], 2833 struct btrfs_chunk); 2834 chunk_type = btrfs_chunk_type(leaf, chunk); 2835 btrfs_release_path(path); 2836 2837 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2838 ret = btrfs_relocate_chunk(chunk_root, 2839 found_key.objectid, 2840 found_key.offset); 2841 if (ret == -ENOSPC) 2842 failed++; 2843 else 2844 BUG_ON(ret); 2845 } 2846 2847 if (found_key.offset == 0) 2848 break; 2849 key.offset = found_key.offset - 1; 2850 } 2851 ret = 0; 2852 if (failed && !retried) { 2853 failed = 0; 2854 retried = true; 2855 goto again; 2856 } else if (WARN_ON(failed && retried)) { 2857 ret = -ENOSPC; 2858 } 2859 error: 2860 btrfs_free_path(path); 2861 return ret; 2862 } 2863 2864 static int insert_balance_item(struct btrfs_root *root, 2865 struct btrfs_balance_control *bctl) 2866 { 2867 struct btrfs_trans_handle *trans; 2868 struct btrfs_balance_item *item; 2869 struct btrfs_disk_balance_args disk_bargs; 2870 struct btrfs_path *path; 2871 struct extent_buffer *leaf; 2872 struct btrfs_key key; 2873 int ret, err; 2874 2875 path = btrfs_alloc_path(); 2876 if (!path) 2877 return -ENOMEM; 2878 2879 trans = btrfs_start_transaction(root, 0); 2880 if (IS_ERR(trans)) { 2881 btrfs_free_path(path); 2882 return PTR_ERR(trans); 2883 } 2884 2885 key.objectid = BTRFS_BALANCE_OBJECTID; 2886 key.type = BTRFS_BALANCE_ITEM_KEY; 2887 key.offset = 0; 2888 2889 ret = btrfs_insert_empty_item(trans, root, path, &key, 2890 sizeof(*item)); 2891 if (ret) 2892 goto out; 2893 2894 leaf = path->nodes[0]; 2895 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2896 2897 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2898 2899 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2900 btrfs_set_balance_data(leaf, item, &disk_bargs); 2901 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2902 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2903 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2904 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2905 2906 btrfs_set_balance_flags(leaf, item, bctl->flags); 2907 2908 btrfs_mark_buffer_dirty(leaf); 2909 out: 2910 btrfs_free_path(path); 2911 err = btrfs_commit_transaction(trans, root); 2912 if (err && !ret) 2913 ret = err; 2914 return ret; 2915 } 2916 2917 static int del_balance_item(struct btrfs_root *root) 2918 { 2919 struct btrfs_trans_handle *trans; 2920 struct btrfs_path *path; 2921 struct btrfs_key key; 2922 int ret, err; 2923 2924 path = btrfs_alloc_path(); 2925 if (!path) 2926 return -ENOMEM; 2927 2928 trans = btrfs_start_transaction(root, 0); 2929 if (IS_ERR(trans)) { 2930 btrfs_free_path(path); 2931 return PTR_ERR(trans); 2932 } 2933 2934 key.objectid = BTRFS_BALANCE_OBJECTID; 2935 key.type = BTRFS_BALANCE_ITEM_KEY; 2936 key.offset = 0; 2937 2938 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2939 if (ret < 0) 2940 goto out; 2941 if (ret > 0) { 2942 ret = -ENOENT; 2943 goto out; 2944 } 2945 2946 ret = btrfs_del_item(trans, root, path); 2947 out: 2948 btrfs_free_path(path); 2949 err = btrfs_commit_transaction(trans, root); 2950 if (err && !ret) 2951 ret = err; 2952 return ret; 2953 } 2954 2955 /* 2956 * This is a heuristic used to reduce the number of chunks balanced on 2957 * resume after balance was interrupted. 2958 */ 2959 static void update_balance_args(struct btrfs_balance_control *bctl) 2960 { 2961 /* 2962 * Turn on soft mode for chunk types that were being converted. 2963 */ 2964 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2965 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2966 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2967 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2968 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2969 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2970 2971 /* 2972 * Turn on usage filter if is not already used. The idea is 2973 * that chunks that we have already balanced should be 2974 * reasonably full. Don't do it for chunks that are being 2975 * converted - that will keep us from relocating unconverted 2976 * (albeit full) chunks. 2977 */ 2978 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2979 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2980 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2981 bctl->data.usage = 90; 2982 } 2983 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2984 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2985 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2986 bctl->sys.usage = 90; 2987 } 2988 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2989 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2990 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2991 bctl->meta.usage = 90; 2992 } 2993 } 2994 2995 /* 2996 * Should be called with both balance and volume mutexes held to 2997 * serialize other volume operations (add_dev/rm_dev/resize) with 2998 * restriper. Same goes for unset_balance_control. 2999 */ 3000 static void set_balance_control(struct btrfs_balance_control *bctl) 3001 { 3002 struct btrfs_fs_info *fs_info = bctl->fs_info; 3003 3004 BUG_ON(fs_info->balance_ctl); 3005 3006 spin_lock(&fs_info->balance_lock); 3007 fs_info->balance_ctl = bctl; 3008 spin_unlock(&fs_info->balance_lock); 3009 } 3010 3011 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3012 { 3013 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3014 3015 BUG_ON(!fs_info->balance_ctl); 3016 3017 spin_lock(&fs_info->balance_lock); 3018 fs_info->balance_ctl = NULL; 3019 spin_unlock(&fs_info->balance_lock); 3020 3021 kfree(bctl); 3022 } 3023 3024 /* 3025 * Balance filters. Return 1 if chunk should be filtered out 3026 * (should not be balanced). 3027 */ 3028 static int chunk_profiles_filter(u64 chunk_type, 3029 struct btrfs_balance_args *bargs) 3030 { 3031 chunk_type = chunk_to_extended(chunk_type) & 3032 BTRFS_EXTENDED_PROFILE_MASK; 3033 3034 if (bargs->profiles & chunk_type) 3035 return 0; 3036 3037 return 1; 3038 } 3039 3040 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3041 struct btrfs_balance_args *bargs) 3042 { 3043 struct btrfs_block_group_cache *cache; 3044 u64 chunk_used, user_thresh; 3045 int ret = 1; 3046 3047 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3048 chunk_used = btrfs_block_group_used(&cache->item); 3049 3050 if (bargs->usage == 0) 3051 user_thresh = 1; 3052 else if (bargs->usage > 100) 3053 user_thresh = cache->key.offset; 3054 else 3055 user_thresh = div_factor_fine(cache->key.offset, 3056 bargs->usage); 3057 3058 if (chunk_used < user_thresh) 3059 ret = 0; 3060 3061 btrfs_put_block_group(cache); 3062 return ret; 3063 } 3064 3065 static int chunk_devid_filter(struct extent_buffer *leaf, 3066 struct btrfs_chunk *chunk, 3067 struct btrfs_balance_args *bargs) 3068 { 3069 struct btrfs_stripe *stripe; 3070 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3071 int i; 3072 3073 for (i = 0; i < num_stripes; i++) { 3074 stripe = btrfs_stripe_nr(chunk, i); 3075 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3076 return 0; 3077 } 3078 3079 return 1; 3080 } 3081 3082 /* [pstart, pend) */ 3083 static int chunk_drange_filter(struct extent_buffer *leaf, 3084 struct btrfs_chunk *chunk, 3085 u64 chunk_offset, 3086 struct btrfs_balance_args *bargs) 3087 { 3088 struct btrfs_stripe *stripe; 3089 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3090 u64 stripe_offset; 3091 u64 stripe_length; 3092 int factor; 3093 int i; 3094 3095 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3096 return 0; 3097 3098 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3099 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3100 factor = num_stripes / 2; 3101 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3102 factor = num_stripes - 1; 3103 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3104 factor = num_stripes - 2; 3105 } else { 3106 factor = num_stripes; 3107 } 3108 3109 for (i = 0; i < num_stripes; i++) { 3110 stripe = btrfs_stripe_nr(chunk, i); 3111 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3112 continue; 3113 3114 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3115 stripe_length = btrfs_chunk_length(leaf, chunk); 3116 stripe_length = div_u64(stripe_length, factor); 3117 3118 if (stripe_offset < bargs->pend && 3119 stripe_offset + stripe_length > bargs->pstart) 3120 return 0; 3121 } 3122 3123 return 1; 3124 } 3125 3126 /* [vstart, vend) */ 3127 static int chunk_vrange_filter(struct extent_buffer *leaf, 3128 struct btrfs_chunk *chunk, 3129 u64 chunk_offset, 3130 struct btrfs_balance_args *bargs) 3131 { 3132 if (chunk_offset < bargs->vend && 3133 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3134 /* at least part of the chunk is inside this vrange */ 3135 return 0; 3136 3137 return 1; 3138 } 3139 3140 static int chunk_soft_convert_filter(u64 chunk_type, 3141 struct btrfs_balance_args *bargs) 3142 { 3143 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3144 return 0; 3145 3146 chunk_type = chunk_to_extended(chunk_type) & 3147 BTRFS_EXTENDED_PROFILE_MASK; 3148 3149 if (bargs->target == chunk_type) 3150 return 1; 3151 3152 return 0; 3153 } 3154 3155 static int should_balance_chunk(struct btrfs_root *root, 3156 struct extent_buffer *leaf, 3157 struct btrfs_chunk *chunk, u64 chunk_offset) 3158 { 3159 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3160 struct btrfs_balance_args *bargs = NULL; 3161 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3162 3163 /* type filter */ 3164 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3165 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3166 return 0; 3167 } 3168 3169 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3170 bargs = &bctl->data; 3171 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3172 bargs = &bctl->sys; 3173 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3174 bargs = &bctl->meta; 3175 3176 /* profiles filter */ 3177 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3178 chunk_profiles_filter(chunk_type, bargs)) { 3179 return 0; 3180 } 3181 3182 /* usage filter */ 3183 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3184 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3185 return 0; 3186 } 3187 3188 /* devid filter */ 3189 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3190 chunk_devid_filter(leaf, chunk, bargs)) { 3191 return 0; 3192 } 3193 3194 /* drange filter, makes sense only with devid filter */ 3195 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3196 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3197 return 0; 3198 } 3199 3200 /* vrange filter */ 3201 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3202 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3203 return 0; 3204 } 3205 3206 /* soft profile changing mode */ 3207 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3208 chunk_soft_convert_filter(chunk_type, bargs)) { 3209 return 0; 3210 } 3211 3212 /* 3213 * limited by count, must be the last filter 3214 */ 3215 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3216 if (bargs->limit == 0) 3217 return 0; 3218 else 3219 bargs->limit--; 3220 } 3221 3222 return 1; 3223 } 3224 3225 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3226 { 3227 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3228 struct btrfs_root *chunk_root = fs_info->chunk_root; 3229 struct btrfs_root *dev_root = fs_info->dev_root; 3230 struct list_head *devices; 3231 struct btrfs_device *device; 3232 u64 old_size; 3233 u64 size_to_free; 3234 struct btrfs_chunk *chunk; 3235 struct btrfs_path *path; 3236 struct btrfs_key key; 3237 struct btrfs_key found_key; 3238 struct btrfs_trans_handle *trans; 3239 struct extent_buffer *leaf; 3240 int slot; 3241 int ret; 3242 int enospc_errors = 0; 3243 bool counting = true; 3244 u64 limit_data = bctl->data.limit; 3245 u64 limit_meta = bctl->meta.limit; 3246 u64 limit_sys = bctl->sys.limit; 3247 3248 /* step one make some room on all the devices */ 3249 devices = &fs_info->fs_devices->devices; 3250 list_for_each_entry(device, devices, dev_list) { 3251 old_size = btrfs_device_get_total_bytes(device); 3252 size_to_free = div_factor(old_size, 1); 3253 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3254 if (!device->writeable || 3255 btrfs_device_get_total_bytes(device) - 3256 btrfs_device_get_bytes_used(device) > size_to_free || 3257 device->is_tgtdev_for_dev_replace) 3258 continue; 3259 3260 ret = btrfs_shrink_device(device, old_size - size_to_free); 3261 if (ret == -ENOSPC) 3262 break; 3263 BUG_ON(ret); 3264 3265 trans = btrfs_start_transaction(dev_root, 0); 3266 BUG_ON(IS_ERR(trans)); 3267 3268 ret = btrfs_grow_device(trans, device, old_size); 3269 BUG_ON(ret); 3270 3271 btrfs_end_transaction(trans, dev_root); 3272 } 3273 3274 /* step two, relocate all the chunks */ 3275 path = btrfs_alloc_path(); 3276 if (!path) { 3277 ret = -ENOMEM; 3278 goto error; 3279 } 3280 3281 /* zero out stat counters */ 3282 spin_lock(&fs_info->balance_lock); 3283 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3284 spin_unlock(&fs_info->balance_lock); 3285 again: 3286 if (!counting) { 3287 bctl->data.limit = limit_data; 3288 bctl->meta.limit = limit_meta; 3289 bctl->sys.limit = limit_sys; 3290 } 3291 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3292 key.offset = (u64)-1; 3293 key.type = BTRFS_CHUNK_ITEM_KEY; 3294 3295 while (1) { 3296 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3297 atomic_read(&fs_info->balance_cancel_req)) { 3298 ret = -ECANCELED; 3299 goto error; 3300 } 3301 3302 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3303 if (ret < 0) 3304 goto error; 3305 3306 /* 3307 * this shouldn't happen, it means the last relocate 3308 * failed 3309 */ 3310 if (ret == 0) 3311 BUG(); /* FIXME break ? */ 3312 3313 ret = btrfs_previous_item(chunk_root, path, 0, 3314 BTRFS_CHUNK_ITEM_KEY); 3315 if (ret) { 3316 ret = 0; 3317 break; 3318 } 3319 3320 leaf = path->nodes[0]; 3321 slot = path->slots[0]; 3322 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3323 3324 if (found_key.objectid != key.objectid) 3325 break; 3326 3327 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3328 3329 if (!counting) { 3330 spin_lock(&fs_info->balance_lock); 3331 bctl->stat.considered++; 3332 spin_unlock(&fs_info->balance_lock); 3333 } 3334 3335 ret = should_balance_chunk(chunk_root, leaf, chunk, 3336 found_key.offset); 3337 btrfs_release_path(path); 3338 if (!ret) 3339 goto loop; 3340 3341 if (counting) { 3342 spin_lock(&fs_info->balance_lock); 3343 bctl->stat.expected++; 3344 spin_unlock(&fs_info->balance_lock); 3345 goto loop; 3346 } 3347 3348 ret = btrfs_relocate_chunk(chunk_root, 3349 found_key.objectid, 3350 found_key.offset); 3351 if (ret && ret != -ENOSPC) 3352 goto error; 3353 if (ret == -ENOSPC) { 3354 enospc_errors++; 3355 } else { 3356 spin_lock(&fs_info->balance_lock); 3357 bctl->stat.completed++; 3358 spin_unlock(&fs_info->balance_lock); 3359 } 3360 loop: 3361 if (found_key.offset == 0) 3362 break; 3363 key.offset = found_key.offset - 1; 3364 } 3365 3366 if (counting) { 3367 btrfs_release_path(path); 3368 counting = false; 3369 goto again; 3370 } 3371 error: 3372 btrfs_free_path(path); 3373 if (enospc_errors) { 3374 btrfs_info(fs_info, "%d enospc errors during balance", 3375 enospc_errors); 3376 if (!ret) 3377 ret = -ENOSPC; 3378 } 3379 3380 return ret; 3381 } 3382 3383 /** 3384 * alloc_profile_is_valid - see if a given profile is valid and reduced 3385 * @flags: profile to validate 3386 * @extended: if true @flags is treated as an extended profile 3387 */ 3388 static int alloc_profile_is_valid(u64 flags, int extended) 3389 { 3390 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3391 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3392 3393 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3394 3395 /* 1) check that all other bits are zeroed */ 3396 if (flags & ~mask) 3397 return 0; 3398 3399 /* 2) see if profile is reduced */ 3400 if (flags == 0) 3401 return !extended; /* "0" is valid for usual profiles */ 3402 3403 /* true if exactly one bit set */ 3404 return (flags & (flags - 1)) == 0; 3405 } 3406 3407 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3408 { 3409 /* cancel requested || normal exit path */ 3410 return atomic_read(&fs_info->balance_cancel_req) || 3411 (atomic_read(&fs_info->balance_pause_req) == 0 && 3412 atomic_read(&fs_info->balance_cancel_req) == 0); 3413 } 3414 3415 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3416 { 3417 int ret; 3418 3419 unset_balance_control(fs_info); 3420 ret = del_balance_item(fs_info->tree_root); 3421 if (ret) 3422 btrfs_std_error(fs_info, ret); 3423 3424 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3425 } 3426 3427 /* 3428 * Should be called with both balance and volume mutexes held 3429 */ 3430 int btrfs_balance(struct btrfs_balance_control *bctl, 3431 struct btrfs_ioctl_balance_args *bargs) 3432 { 3433 struct btrfs_fs_info *fs_info = bctl->fs_info; 3434 u64 allowed; 3435 int mixed = 0; 3436 int ret; 3437 u64 num_devices; 3438 unsigned seq; 3439 3440 if (btrfs_fs_closing(fs_info) || 3441 atomic_read(&fs_info->balance_pause_req) || 3442 atomic_read(&fs_info->balance_cancel_req)) { 3443 ret = -EINVAL; 3444 goto out; 3445 } 3446 3447 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3448 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3449 mixed = 1; 3450 3451 /* 3452 * In case of mixed groups both data and meta should be picked, 3453 * and identical options should be given for both of them. 3454 */ 3455 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3456 if (mixed && (bctl->flags & allowed)) { 3457 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3458 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3459 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3460 btrfs_err(fs_info, "with mixed groups data and " 3461 "metadata balance options must be the same"); 3462 ret = -EINVAL; 3463 goto out; 3464 } 3465 } 3466 3467 num_devices = fs_info->fs_devices->num_devices; 3468 btrfs_dev_replace_lock(&fs_info->dev_replace); 3469 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3470 BUG_ON(num_devices < 1); 3471 num_devices--; 3472 } 3473 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3474 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3475 if (num_devices == 1) 3476 allowed |= BTRFS_BLOCK_GROUP_DUP; 3477 else if (num_devices > 1) 3478 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3479 if (num_devices > 2) 3480 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3481 if (num_devices > 3) 3482 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3483 BTRFS_BLOCK_GROUP_RAID6); 3484 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3485 (!alloc_profile_is_valid(bctl->data.target, 1) || 3486 (bctl->data.target & ~allowed))) { 3487 btrfs_err(fs_info, "unable to start balance with target " 3488 "data profile %llu", 3489 bctl->data.target); 3490 ret = -EINVAL; 3491 goto out; 3492 } 3493 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3494 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3495 (bctl->meta.target & ~allowed))) { 3496 btrfs_err(fs_info, 3497 "unable to start balance with target metadata profile %llu", 3498 bctl->meta.target); 3499 ret = -EINVAL; 3500 goto out; 3501 } 3502 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3503 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3504 (bctl->sys.target & ~allowed))) { 3505 btrfs_err(fs_info, 3506 "unable to start balance with target system profile %llu", 3507 bctl->sys.target); 3508 ret = -EINVAL; 3509 goto out; 3510 } 3511 3512 /* allow dup'ed data chunks only in mixed mode */ 3513 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3514 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3515 btrfs_err(fs_info, "dup for data is not allowed"); 3516 ret = -EINVAL; 3517 goto out; 3518 } 3519 3520 /* allow to reduce meta or sys integrity only if force set */ 3521 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3522 BTRFS_BLOCK_GROUP_RAID10 | 3523 BTRFS_BLOCK_GROUP_RAID5 | 3524 BTRFS_BLOCK_GROUP_RAID6; 3525 do { 3526 seq = read_seqbegin(&fs_info->profiles_lock); 3527 3528 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3529 (fs_info->avail_system_alloc_bits & allowed) && 3530 !(bctl->sys.target & allowed)) || 3531 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3532 (fs_info->avail_metadata_alloc_bits & allowed) && 3533 !(bctl->meta.target & allowed))) { 3534 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3535 btrfs_info(fs_info, "force reducing metadata integrity"); 3536 } else { 3537 btrfs_err(fs_info, "balance will reduce metadata " 3538 "integrity, use force if you want this"); 3539 ret = -EINVAL; 3540 goto out; 3541 } 3542 } 3543 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3544 3545 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3546 int num_tolerated_disk_barrier_failures; 3547 u64 target = bctl->sys.target; 3548 3549 num_tolerated_disk_barrier_failures = 3550 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3551 if (num_tolerated_disk_barrier_failures > 0 && 3552 (target & 3553 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3554 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3555 num_tolerated_disk_barrier_failures = 0; 3556 else if (num_tolerated_disk_barrier_failures > 1 && 3557 (target & 3558 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3559 num_tolerated_disk_barrier_failures = 1; 3560 3561 fs_info->num_tolerated_disk_barrier_failures = 3562 num_tolerated_disk_barrier_failures; 3563 } 3564 3565 ret = insert_balance_item(fs_info->tree_root, bctl); 3566 if (ret && ret != -EEXIST) 3567 goto out; 3568 3569 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3570 BUG_ON(ret == -EEXIST); 3571 set_balance_control(bctl); 3572 } else { 3573 BUG_ON(ret != -EEXIST); 3574 spin_lock(&fs_info->balance_lock); 3575 update_balance_args(bctl); 3576 spin_unlock(&fs_info->balance_lock); 3577 } 3578 3579 atomic_inc(&fs_info->balance_running); 3580 mutex_unlock(&fs_info->balance_mutex); 3581 3582 ret = __btrfs_balance(fs_info); 3583 3584 mutex_lock(&fs_info->balance_mutex); 3585 atomic_dec(&fs_info->balance_running); 3586 3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3588 fs_info->num_tolerated_disk_barrier_failures = 3589 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3590 } 3591 3592 if (bargs) { 3593 memset(bargs, 0, sizeof(*bargs)); 3594 update_ioctl_balance_args(fs_info, 0, bargs); 3595 } 3596 3597 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3598 balance_need_close(fs_info)) { 3599 __cancel_balance(fs_info); 3600 } 3601 3602 wake_up(&fs_info->balance_wait_q); 3603 3604 return ret; 3605 out: 3606 if (bctl->flags & BTRFS_BALANCE_RESUME) 3607 __cancel_balance(fs_info); 3608 else { 3609 kfree(bctl); 3610 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3611 } 3612 return ret; 3613 } 3614 3615 static int balance_kthread(void *data) 3616 { 3617 struct btrfs_fs_info *fs_info = data; 3618 int ret = 0; 3619 3620 mutex_lock(&fs_info->volume_mutex); 3621 mutex_lock(&fs_info->balance_mutex); 3622 3623 if (fs_info->balance_ctl) { 3624 btrfs_info(fs_info, "continuing balance"); 3625 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3626 } 3627 3628 mutex_unlock(&fs_info->balance_mutex); 3629 mutex_unlock(&fs_info->volume_mutex); 3630 3631 return ret; 3632 } 3633 3634 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3635 { 3636 struct task_struct *tsk; 3637 3638 spin_lock(&fs_info->balance_lock); 3639 if (!fs_info->balance_ctl) { 3640 spin_unlock(&fs_info->balance_lock); 3641 return 0; 3642 } 3643 spin_unlock(&fs_info->balance_lock); 3644 3645 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3646 btrfs_info(fs_info, "force skipping balance"); 3647 return 0; 3648 } 3649 3650 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3651 return PTR_ERR_OR_ZERO(tsk); 3652 } 3653 3654 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3655 { 3656 struct btrfs_balance_control *bctl; 3657 struct btrfs_balance_item *item; 3658 struct btrfs_disk_balance_args disk_bargs; 3659 struct btrfs_path *path; 3660 struct extent_buffer *leaf; 3661 struct btrfs_key key; 3662 int ret; 3663 3664 path = btrfs_alloc_path(); 3665 if (!path) 3666 return -ENOMEM; 3667 3668 key.objectid = BTRFS_BALANCE_OBJECTID; 3669 key.type = BTRFS_BALANCE_ITEM_KEY; 3670 key.offset = 0; 3671 3672 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3673 if (ret < 0) 3674 goto out; 3675 if (ret > 0) { /* ret = -ENOENT; */ 3676 ret = 0; 3677 goto out; 3678 } 3679 3680 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3681 if (!bctl) { 3682 ret = -ENOMEM; 3683 goto out; 3684 } 3685 3686 leaf = path->nodes[0]; 3687 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3688 3689 bctl->fs_info = fs_info; 3690 bctl->flags = btrfs_balance_flags(leaf, item); 3691 bctl->flags |= BTRFS_BALANCE_RESUME; 3692 3693 btrfs_balance_data(leaf, item, &disk_bargs); 3694 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3695 btrfs_balance_meta(leaf, item, &disk_bargs); 3696 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3697 btrfs_balance_sys(leaf, item, &disk_bargs); 3698 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3699 3700 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3701 3702 mutex_lock(&fs_info->volume_mutex); 3703 mutex_lock(&fs_info->balance_mutex); 3704 3705 set_balance_control(bctl); 3706 3707 mutex_unlock(&fs_info->balance_mutex); 3708 mutex_unlock(&fs_info->volume_mutex); 3709 out: 3710 btrfs_free_path(path); 3711 return ret; 3712 } 3713 3714 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3715 { 3716 int ret = 0; 3717 3718 mutex_lock(&fs_info->balance_mutex); 3719 if (!fs_info->balance_ctl) { 3720 mutex_unlock(&fs_info->balance_mutex); 3721 return -ENOTCONN; 3722 } 3723 3724 if (atomic_read(&fs_info->balance_running)) { 3725 atomic_inc(&fs_info->balance_pause_req); 3726 mutex_unlock(&fs_info->balance_mutex); 3727 3728 wait_event(fs_info->balance_wait_q, 3729 atomic_read(&fs_info->balance_running) == 0); 3730 3731 mutex_lock(&fs_info->balance_mutex); 3732 /* we are good with balance_ctl ripped off from under us */ 3733 BUG_ON(atomic_read(&fs_info->balance_running)); 3734 atomic_dec(&fs_info->balance_pause_req); 3735 } else { 3736 ret = -ENOTCONN; 3737 } 3738 3739 mutex_unlock(&fs_info->balance_mutex); 3740 return ret; 3741 } 3742 3743 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3744 { 3745 if (fs_info->sb->s_flags & MS_RDONLY) 3746 return -EROFS; 3747 3748 mutex_lock(&fs_info->balance_mutex); 3749 if (!fs_info->balance_ctl) { 3750 mutex_unlock(&fs_info->balance_mutex); 3751 return -ENOTCONN; 3752 } 3753 3754 atomic_inc(&fs_info->balance_cancel_req); 3755 /* 3756 * if we are running just wait and return, balance item is 3757 * deleted in btrfs_balance in this case 3758 */ 3759 if (atomic_read(&fs_info->balance_running)) { 3760 mutex_unlock(&fs_info->balance_mutex); 3761 wait_event(fs_info->balance_wait_q, 3762 atomic_read(&fs_info->balance_running) == 0); 3763 mutex_lock(&fs_info->balance_mutex); 3764 } else { 3765 /* __cancel_balance needs volume_mutex */ 3766 mutex_unlock(&fs_info->balance_mutex); 3767 mutex_lock(&fs_info->volume_mutex); 3768 mutex_lock(&fs_info->balance_mutex); 3769 3770 if (fs_info->balance_ctl) 3771 __cancel_balance(fs_info); 3772 3773 mutex_unlock(&fs_info->volume_mutex); 3774 } 3775 3776 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3777 atomic_dec(&fs_info->balance_cancel_req); 3778 mutex_unlock(&fs_info->balance_mutex); 3779 return 0; 3780 } 3781 3782 static int btrfs_uuid_scan_kthread(void *data) 3783 { 3784 struct btrfs_fs_info *fs_info = data; 3785 struct btrfs_root *root = fs_info->tree_root; 3786 struct btrfs_key key; 3787 struct btrfs_key max_key; 3788 struct btrfs_path *path = NULL; 3789 int ret = 0; 3790 struct extent_buffer *eb; 3791 int slot; 3792 struct btrfs_root_item root_item; 3793 u32 item_size; 3794 struct btrfs_trans_handle *trans = NULL; 3795 3796 path = btrfs_alloc_path(); 3797 if (!path) { 3798 ret = -ENOMEM; 3799 goto out; 3800 } 3801 3802 key.objectid = 0; 3803 key.type = BTRFS_ROOT_ITEM_KEY; 3804 key.offset = 0; 3805 3806 max_key.objectid = (u64)-1; 3807 max_key.type = BTRFS_ROOT_ITEM_KEY; 3808 max_key.offset = (u64)-1; 3809 3810 while (1) { 3811 ret = btrfs_search_forward(root, &key, path, 0); 3812 if (ret) { 3813 if (ret > 0) 3814 ret = 0; 3815 break; 3816 } 3817 3818 if (key.type != BTRFS_ROOT_ITEM_KEY || 3819 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3820 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3821 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3822 goto skip; 3823 3824 eb = path->nodes[0]; 3825 slot = path->slots[0]; 3826 item_size = btrfs_item_size_nr(eb, slot); 3827 if (item_size < sizeof(root_item)) 3828 goto skip; 3829 3830 read_extent_buffer(eb, &root_item, 3831 btrfs_item_ptr_offset(eb, slot), 3832 (int)sizeof(root_item)); 3833 if (btrfs_root_refs(&root_item) == 0) 3834 goto skip; 3835 3836 if (!btrfs_is_empty_uuid(root_item.uuid) || 3837 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3838 if (trans) 3839 goto update_tree; 3840 3841 btrfs_release_path(path); 3842 /* 3843 * 1 - subvol uuid item 3844 * 1 - received_subvol uuid item 3845 */ 3846 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3847 if (IS_ERR(trans)) { 3848 ret = PTR_ERR(trans); 3849 break; 3850 } 3851 continue; 3852 } else { 3853 goto skip; 3854 } 3855 update_tree: 3856 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3857 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3858 root_item.uuid, 3859 BTRFS_UUID_KEY_SUBVOL, 3860 key.objectid); 3861 if (ret < 0) { 3862 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3863 ret); 3864 break; 3865 } 3866 } 3867 3868 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3869 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3870 root_item.received_uuid, 3871 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3872 key.objectid); 3873 if (ret < 0) { 3874 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3875 ret); 3876 break; 3877 } 3878 } 3879 3880 skip: 3881 if (trans) { 3882 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3883 trans = NULL; 3884 if (ret) 3885 break; 3886 } 3887 3888 btrfs_release_path(path); 3889 if (key.offset < (u64)-1) { 3890 key.offset++; 3891 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3892 key.offset = 0; 3893 key.type = BTRFS_ROOT_ITEM_KEY; 3894 } else if (key.objectid < (u64)-1) { 3895 key.offset = 0; 3896 key.type = BTRFS_ROOT_ITEM_KEY; 3897 key.objectid++; 3898 } else { 3899 break; 3900 } 3901 cond_resched(); 3902 } 3903 3904 out: 3905 btrfs_free_path(path); 3906 if (trans && !IS_ERR(trans)) 3907 btrfs_end_transaction(trans, fs_info->uuid_root); 3908 if (ret) 3909 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 3910 else 3911 fs_info->update_uuid_tree_gen = 1; 3912 up(&fs_info->uuid_tree_rescan_sem); 3913 return 0; 3914 } 3915 3916 /* 3917 * Callback for btrfs_uuid_tree_iterate(). 3918 * returns: 3919 * 0 check succeeded, the entry is not outdated. 3920 * < 0 if an error occured. 3921 * > 0 if the check failed, which means the caller shall remove the entry. 3922 */ 3923 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3924 u8 *uuid, u8 type, u64 subid) 3925 { 3926 struct btrfs_key key; 3927 int ret = 0; 3928 struct btrfs_root *subvol_root; 3929 3930 if (type != BTRFS_UUID_KEY_SUBVOL && 3931 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3932 goto out; 3933 3934 key.objectid = subid; 3935 key.type = BTRFS_ROOT_ITEM_KEY; 3936 key.offset = (u64)-1; 3937 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3938 if (IS_ERR(subvol_root)) { 3939 ret = PTR_ERR(subvol_root); 3940 if (ret == -ENOENT) 3941 ret = 1; 3942 goto out; 3943 } 3944 3945 switch (type) { 3946 case BTRFS_UUID_KEY_SUBVOL: 3947 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3948 ret = 1; 3949 break; 3950 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3951 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3952 BTRFS_UUID_SIZE)) 3953 ret = 1; 3954 break; 3955 } 3956 3957 out: 3958 return ret; 3959 } 3960 3961 static int btrfs_uuid_rescan_kthread(void *data) 3962 { 3963 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3964 int ret; 3965 3966 /* 3967 * 1st step is to iterate through the existing UUID tree and 3968 * to delete all entries that contain outdated data. 3969 * 2nd step is to add all missing entries to the UUID tree. 3970 */ 3971 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3972 if (ret < 0) { 3973 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 3974 up(&fs_info->uuid_tree_rescan_sem); 3975 return ret; 3976 } 3977 return btrfs_uuid_scan_kthread(data); 3978 } 3979 3980 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3981 { 3982 struct btrfs_trans_handle *trans; 3983 struct btrfs_root *tree_root = fs_info->tree_root; 3984 struct btrfs_root *uuid_root; 3985 struct task_struct *task; 3986 int ret; 3987 3988 /* 3989 * 1 - root node 3990 * 1 - root item 3991 */ 3992 trans = btrfs_start_transaction(tree_root, 2); 3993 if (IS_ERR(trans)) 3994 return PTR_ERR(trans); 3995 3996 uuid_root = btrfs_create_tree(trans, fs_info, 3997 BTRFS_UUID_TREE_OBJECTID); 3998 if (IS_ERR(uuid_root)) { 3999 ret = PTR_ERR(uuid_root); 4000 btrfs_abort_transaction(trans, tree_root, ret); 4001 return ret; 4002 } 4003 4004 fs_info->uuid_root = uuid_root; 4005 4006 ret = btrfs_commit_transaction(trans, tree_root); 4007 if (ret) 4008 return ret; 4009 4010 down(&fs_info->uuid_tree_rescan_sem); 4011 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4012 if (IS_ERR(task)) { 4013 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4014 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4015 up(&fs_info->uuid_tree_rescan_sem); 4016 return PTR_ERR(task); 4017 } 4018 4019 return 0; 4020 } 4021 4022 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4023 { 4024 struct task_struct *task; 4025 4026 down(&fs_info->uuid_tree_rescan_sem); 4027 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4028 if (IS_ERR(task)) { 4029 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4030 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4031 up(&fs_info->uuid_tree_rescan_sem); 4032 return PTR_ERR(task); 4033 } 4034 4035 return 0; 4036 } 4037 4038 /* 4039 * shrinking a device means finding all of the device extents past 4040 * the new size, and then following the back refs to the chunks. 4041 * The chunk relocation code actually frees the device extent 4042 */ 4043 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4044 { 4045 struct btrfs_trans_handle *trans; 4046 struct btrfs_root *root = device->dev_root; 4047 struct btrfs_dev_extent *dev_extent = NULL; 4048 struct btrfs_path *path; 4049 u64 length; 4050 u64 chunk_objectid; 4051 u64 chunk_offset; 4052 int ret; 4053 int slot; 4054 int failed = 0; 4055 bool retried = false; 4056 bool checked_pending_chunks = false; 4057 struct extent_buffer *l; 4058 struct btrfs_key key; 4059 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4060 u64 old_total = btrfs_super_total_bytes(super_copy); 4061 u64 old_size = btrfs_device_get_total_bytes(device); 4062 u64 diff = old_size - new_size; 4063 4064 if (device->is_tgtdev_for_dev_replace) 4065 return -EINVAL; 4066 4067 path = btrfs_alloc_path(); 4068 if (!path) 4069 return -ENOMEM; 4070 4071 path->reada = 2; 4072 4073 lock_chunks(root); 4074 4075 btrfs_device_set_total_bytes(device, new_size); 4076 if (device->writeable) { 4077 device->fs_devices->total_rw_bytes -= diff; 4078 spin_lock(&root->fs_info->free_chunk_lock); 4079 root->fs_info->free_chunk_space -= diff; 4080 spin_unlock(&root->fs_info->free_chunk_lock); 4081 } 4082 unlock_chunks(root); 4083 4084 again: 4085 key.objectid = device->devid; 4086 key.offset = (u64)-1; 4087 key.type = BTRFS_DEV_EXTENT_KEY; 4088 4089 do { 4090 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4091 if (ret < 0) 4092 goto done; 4093 4094 ret = btrfs_previous_item(root, path, 0, key.type); 4095 if (ret < 0) 4096 goto done; 4097 if (ret) { 4098 ret = 0; 4099 btrfs_release_path(path); 4100 break; 4101 } 4102 4103 l = path->nodes[0]; 4104 slot = path->slots[0]; 4105 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4106 4107 if (key.objectid != device->devid) { 4108 btrfs_release_path(path); 4109 break; 4110 } 4111 4112 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4113 length = btrfs_dev_extent_length(l, dev_extent); 4114 4115 if (key.offset + length <= new_size) { 4116 btrfs_release_path(path); 4117 break; 4118 } 4119 4120 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 4121 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4122 btrfs_release_path(path); 4123 4124 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset); 4125 if (ret && ret != -ENOSPC) 4126 goto done; 4127 if (ret == -ENOSPC) 4128 failed++; 4129 } while (key.offset-- > 0); 4130 4131 if (failed && !retried) { 4132 failed = 0; 4133 retried = true; 4134 goto again; 4135 } else if (failed && retried) { 4136 ret = -ENOSPC; 4137 goto done; 4138 } 4139 4140 /* Shrinking succeeded, else we would be at "done". */ 4141 trans = btrfs_start_transaction(root, 0); 4142 if (IS_ERR(trans)) { 4143 ret = PTR_ERR(trans); 4144 goto done; 4145 } 4146 4147 lock_chunks(root); 4148 4149 /* 4150 * We checked in the above loop all device extents that were already in 4151 * the device tree. However before we have updated the device's 4152 * total_bytes to the new size, we might have had chunk allocations that 4153 * have not complete yet (new block groups attached to transaction 4154 * handles), and therefore their device extents were not yet in the 4155 * device tree and we missed them in the loop above. So if we have any 4156 * pending chunk using a device extent that overlaps the device range 4157 * that we can not use anymore, commit the current transaction and 4158 * repeat the search on the device tree - this way we guarantee we will 4159 * not have chunks using device extents that end beyond 'new_size'. 4160 */ 4161 if (!checked_pending_chunks) { 4162 u64 start = new_size; 4163 u64 len = old_size - new_size; 4164 4165 if (contains_pending_extent(trans, device, &start, len)) { 4166 unlock_chunks(root); 4167 checked_pending_chunks = true; 4168 failed = 0; 4169 retried = false; 4170 ret = btrfs_commit_transaction(trans, root); 4171 if (ret) 4172 goto done; 4173 goto again; 4174 } 4175 } 4176 4177 btrfs_device_set_disk_total_bytes(device, new_size); 4178 if (list_empty(&device->resized_list)) 4179 list_add_tail(&device->resized_list, 4180 &root->fs_info->fs_devices->resized_devices); 4181 4182 WARN_ON(diff > old_total); 4183 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4184 unlock_chunks(root); 4185 4186 /* Now btrfs_update_device() will change the on-disk size. */ 4187 ret = btrfs_update_device(trans, device); 4188 btrfs_end_transaction(trans, root); 4189 done: 4190 btrfs_free_path(path); 4191 if (ret) { 4192 lock_chunks(root); 4193 btrfs_device_set_total_bytes(device, old_size); 4194 if (device->writeable) 4195 device->fs_devices->total_rw_bytes += diff; 4196 spin_lock(&root->fs_info->free_chunk_lock); 4197 root->fs_info->free_chunk_space += diff; 4198 spin_unlock(&root->fs_info->free_chunk_lock); 4199 unlock_chunks(root); 4200 } 4201 return ret; 4202 } 4203 4204 static int btrfs_add_system_chunk(struct btrfs_root *root, 4205 struct btrfs_key *key, 4206 struct btrfs_chunk *chunk, int item_size) 4207 { 4208 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4209 struct btrfs_disk_key disk_key; 4210 u32 array_size; 4211 u8 *ptr; 4212 4213 lock_chunks(root); 4214 array_size = btrfs_super_sys_array_size(super_copy); 4215 if (array_size + item_size + sizeof(disk_key) 4216 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4217 unlock_chunks(root); 4218 return -EFBIG; 4219 } 4220 4221 ptr = super_copy->sys_chunk_array + array_size; 4222 btrfs_cpu_key_to_disk(&disk_key, key); 4223 memcpy(ptr, &disk_key, sizeof(disk_key)); 4224 ptr += sizeof(disk_key); 4225 memcpy(ptr, chunk, item_size); 4226 item_size += sizeof(disk_key); 4227 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4228 unlock_chunks(root); 4229 4230 return 0; 4231 } 4232 4233 /* 4234 * sort the devices in descending order by max_avail, total_avail 4235 */ 4236 static int btrfs_cmp_device_info(const void *a, const void *b) 4237 { 4238 const struct btrfs_device_info *di_a = a; 4239 const struct btrfs_device_info *di_b = b; 4240 4241 if (di_a->max_avail > di_b->max_avail) 4242 return -1; 4243 if (di_a->max_avail < di_b->max_avail) 4244 return 1; 4245 if (di_a->total_avail > di_b->total_avail) 4246 return -1; 4247 if (di_a->total_avail < di_b->total_avail) 4248 return 1; 4249 return 0; 4250 } 4251 4252 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 4253 [BTRFS_RAID_RAID10] = { 4254 .sub_stripes = 2, 4255 .dev_stripes = 1, 4256 .devs_max = 0, /* 0 == as many as possible */ 4257 .devs_min = 4, 4258 .devs_increment = 2, 4259 .ncopies = 2, 4260 }, 4261 [BTRFS_RAID_RAID1] = { 4262 .sub_stripes = 1, 4263 .dev_stripes = 1, 4264 .devs_max = 2, 4265 .devs_min = 2, 4266 .devs_increment = 2, 4267 .ncopies = 2, 4268 }, 4269 [BTRFS_RAID_DUP] = { 4270 .sub_stripes = 1, 4271 .dev_stripes = 2, 4272 .devs_max = 1, 4273 .devs_min = 1, 4274 .devs_increment = 1, 4275 .ncopies = 2, 4276 }, 4277 [BTRFS_RAID_RAID0] = { 4278 .sub_stripes = 1, 4279 .dev_stripes = 1, 4280 .devs_max = 0, 4281 .devs_min = 2, 4282 .devs_increment = 1, 4283 .ncopies = 1, 4284 }, 4285 [BTRFS_RAID_SINGLE] = { 4286 .sub_stripes = 1, 4287 .dev_stripes = 1, 4288 .devs_max = 1, 4289 .devs_min = 1, 4290 .devs_increment = 1, 4291 .ncopies = 1, 4292 }, 4293 [BTRFS_RAID_RAID5] = { 4294 .sub_stripes = 1, 4295 .dev_stripes = 1, 4296 .devs_max = 0, 4297 .devs_min = 2, 4298 .devs_increment = 1, 4299 .ncopies = 2, 4300 }, 4301 [BTRFS_RAID_RAID6] = { 4302 .sub_stripes = 1, 4303 .dev_stripes = 1, 4304 .devs_max = 0, 4305 .devs_min = 3, 4306 .devs_increment = 1, 4307 .ncopies = 3, 4308 }, 4309 }; 4310 4311 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4312 { 4313 /* TODO allow them to set a preferred stripe size */ 4314 return 64 * 1024; 4315 } 4316 4317 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4318 { 4319 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4320 return; 4321 4322 btrfs_set_fs_incompat(info, RAID56); 4323 } 4324 4325 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4326 - sizeof(struct btrfs_item) \ 4327 - sizeof(struct btrfs_chunk)) \ 4328 / sizeof(struct btrfs_stripe) + 1) 4329 4330 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4331 - 2 * sizeof(struct btrfs_disk_key) \ 4332 - 2 * sizeof(struct btrfs_chunk)) \ 4333 / sizeof(struct btrfs_stripe) + 1) 4334 4335 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4336 struct btrfs_root *extent_root, u64 start, 4337 u64 type) 4338 { 4339 struct btrfs_fs_info *info = extent_root->fs_info; 4340 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4341 struct list_head *cur; 4342 struct map_lookup *map = NULL; 4343 struct extent_map_tree *em_tree; 4344 struct extent_map *em; 4345 struct btrfs_device_info *devices_info = NULL; 4346 u64 total_avail; 4347 int num_stripes; /* total number of stripes to allocate */ 4348 int data_stripes; /* number of stripes that count for 4349 block group size */ 4350 int sub_stripes; /* sub_stripes info for map */ 4351 int dev_stripes; /* stripes per dev */ 4352 int devs_max; /* max devs to use */ 4353 int devs_min; /* min devs needed */ 4354 int devs_increment; /* ndevs has to be a multiple of this */ 4355 int ncopies; /* how many copies to data has */ 4356 int ret; 4357 u64 max_stripe_size; 4358 u64 max_chunk_size; 4359 u64 stripe_size; 4360 u64 num_bytes; 4361 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4362 int ndevs; 4363 int i; 4364 int j; 4365 int index; 4366 4367 BUG_ON(!alloc_profile_is_valid(type, 0)); 4368 4369 if (list_empty(&fs_devices->alloc_list)) 4370 return -ENOSPC; 4371 4372 index = __get_raid_index(type); 4373 4374 sub_stripes = btrfs_raid_array[index].sub_stripes; 4375 dev_stripes = btrfs_raid_array[index].dev_stripes; 4376 devs_max = btrfs_raid_array[index].devs_max; 4377 devs_min = btrfs_raid_array[index].devs_min; 4378 devs_increment = btrfs_raid_array[index].devs_increment; 4379 ncopies = btrfs_raid_array[index].ncopies; 4380 4381 if (type & BTRFS_BLOCK_GROUP_DATA) { 4382 max_stripe_size = 1024 * 1024 * 1024; 4383 max_chunk_size = 10 * max_stripe_size; 4384 if (!devs_max) 4385 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4386 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4387 /* for larger filesystems, use larger metadata chunks */ 4388 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4389 max_stripe_size = 1024 * 1024 * 1024; 4390 else 4391 max_stripe_size = 256 * 1024 * 1024; 4392 max_chunk_size = max_stripe_size; 4393 if (!devs_max) 4394 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4395 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4396 max_stripe_size = 32 * 1024 * 1024; 4397 max_chunk_size = 2 * max_stripe_size; 4398 if (!devs_max) 4399 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4400 } else { 4401 btrfs_err(info, "invalid chunk type 0x%llx requested", 4402 type); 4403 BUG_ON(1); 4404 } 4405 4406 /* we don't want a chunk larger than 10% of writeable space */ 4407 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4408 max_chunk_size); 4409 4410 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4411 GFP_NOFS); 4412 if (!devices_info) 4413 return -ENOMEM; 4414 4415 cur = fs_devices->alloc_list.next; 4416 4417 /* 4418 * in the first pass through the devices list, we gather information 4419 * about the available holes on each device. 4420 */ 4421 ndevs = 0; 4422 while (cur != &fs_devices->alloc_list) { 4423 struct btrfs_device *device; 4424 u64 max_avail; 4425 u64 dev_offset; 4426 4427 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4428 4429 cur = cur->next; 4430 4431 if (!device->writeable) { 4432 WARN(1, KERN_ERR 4433 "BTRFS: read-only device in alloc_list\n"); 4434 continue; 4435 } 4436 4437 if (!device->in_fs_metadata || 4438 device->is_tgtdev_for_dev_replace) 4439 continue; 4440 4441 if (device->total_bytes > device->bytes_used) 4442 total_avail = device->total_bytes - device->bytes_used; 4443 else 4444 total_avail = 0; 4445 4446 /* If there is no space on this device, skip it. */ 4447 if (total_avail == 0) 4448 continue; 4449 4450 ret = find_free_dev_extent(trans, device, 4451 max_stripe_size * dev_stripes, 4452 &dev_offset, &max_avail); 4453 if (ret && ret != -ENOSPC) 4454 goto error; 4455 4456 if (ret == 0) 4457 max_avail = max_stripe_size * dev_stripes; 4458 4459 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4460 continue; 4461 4462 if (ndevs == fs_devices->rw_devices) { 4463 WARN(1, "%s: found more than %llu devices\n", 4464 __func__, fs_devices->rw_devices); 4465 break; 4466 } 4467 devices_info[ndevs].dev_offset = dev_offset; 4468 devices_info[ndevs].max_avail = max_avail; 4469 devices_info[ndevs].total_avail = total_avail; 4470 devices_info[ndevs].dev = device; 4471 ++ndevs; 4472 } 4473 4474 /* 4475 * now sort the devices by hole size / available space 4476 */ 4477 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4478 btrfs_cmp_device_info, NULL); 4479 4480 /* round down to number of usable stripes */ 4481 ndevs -= ndevs % devs_increment; 4482 4483 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4484 ret = -ENOSPC; 4485 goto error; 4486 } 4487 4488 if (devs_max && ndevs > devs_max) 4489 ndevs = devs_max; 4490 /* 4491 * the primary goal is to maximize the number of stripes, so use as many 4492 * devices as possible, even if the stripes are not maximum sized. 4493 */ 4494 stripe_size = devices_info[ndevs-1].max_avail; 4495 num_stripes = ndevs * dev_stripes; 4496 4497 /* 4498 * this will have to be fixed for RAID1 and RAID10 over 4499 * more drives 4500 */ 4501 data_stripes = num_stripes / ncopies; 4502 4503 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4504 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4505 btrfs_super_stripesize(info->super_copy)); 4506 data_stripes = num_stripes - 1; 4507 } 4508 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4509 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4510 btrfs_super_stripesize(info->super_copy)); 4511 data_stripes = num_stripes - 2; 4512 } 4513 4514 /* 4515 * Use the number of data stripes to figure out how big this chunk 4516 * is really going to be in terms of logical address space, 4517 * and compare that answer with the max chunk size 4518 */ 4519 if (stripe_size * data_stripes > max_chunk_size) { 4520 u64 mask = (1ULL << 24) - 1; 4521 4522 stripe_size = div_u64(max_chunk_size, data_stripes); 4523 4524 /* bump the answer up to a 16MB boundary */ 4525 stripe_size = (stripe_size + mask) & ~mask; 4526 4527 /* but don't go higher than the limits we found 4528 * while searching for free extents 4529 */ 4530 if (stripe_size > devices_info[ndevs-1].max_avail) 4531 stripe_size = devices_info[ndevs-1].max_avail; 4532 } 4533 4534 stripe_size = div_u64(stripe_size, dev_stripes); 4535 4536 /* align to BTRFS_STRIPE_LEN */ 4537 stripe_size = div_u64(stripe_size, raid_stripe_len); 4538 stripe_size *= raid_stripe_len; 4539 4540 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4541 if (!map) { 4542 ret = -ENOMEM; 4543 goto error; 4544 } 4545 map->num_stripes = num_stripes; 4546 4547 for (i = 0; i < ndevs; ++i) { 4548 for (j = 0; j < dev_stripes; ++j) { 4549 int s = i * dev_stripes + j; 4550 map->stripes[s].dev = devices_info[i].dev; 4551 map->stripes[s].physical = devices_info[i].dev_offset + 4552 j * stripe_size; 4553 } 4554 } 4555 map->sector_size = extent_root->sectorsize; 4556 map->stripe_len = raid_stripe_len; 4557 map->io_align = raid_stripe_len; 4558 map->io_width = raid_stripe_len; 4559 map->type = type; 4560 map->sub_stripes = sub_stripes; 4561 4562 num_bytes = stripe_size * data_stripes; 4563 4564 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4565 4566 em = alloc_extent_map(); 4567 if (!em) { 4568 kfree(map); 4569 ret = -ENOMEM; 4570 goto error; 4571 } 4572 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4573 em->bdev = (struct block_device *)map; 4574 em->start = start; 4575 em->len = num_bytes; 4576 em->block_start = 0; 4577 em->block_len = em->len; 4578 em->orig_block_len = stripe_size; 4579 4580 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4581 write_lock(&em_tree->lock); 4582 ret = add_extent_mapping(em_tree, em, 0); 4583 if (!ret) { 4584 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4585 atomic_inc(&em->refs); 4586 } 4587 write_unlock(&em_tree->lock); 4588 if (ret) { 4589 free_extent_map(em); 4590 goto error; 4591 } 4592 4593 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4594 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4595 start, num_bytes); 4596 if (ret) 4597 goto error_del_extent; 4598 4599 for (i = 0; i < map->num_stripes; i++) { 4600 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4601 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4602 } 4603 4604 spin_lock(&extent_root->fs_info->free_chunk_lock); 4605 extent_root->fs_info->free_chunk_space -= (stripe_size * 4606 map->num_stripes); 4607 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4608 4609 free_extent_map(em); 4610 check_raid56_incompat_flag(extent_root->fs_info, type); 4611 4612 kfree(devices_info); 4613 return 0; 4614 4615 error_del_extent: 4616 write_lock(&em_tree->lock); 4617 remove_extent_mapping(em_tree, em); 4618 write_unlock(&em_tree->lock); 4619 4620 /* One for our allocation */ 4621 free_extent_map(em); 4622 /* One for the tree reference */ 4623 free_extent_map(em); 4624 /* One for the pending_chunks list reference */ 4625 free_extent_map(em); 4626 error: 4627 kfree(devices_info); 4628 return ret; 4629 } 4630 4631 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4632 struct btrfs_root *extent_root, 4633 u64 chunk_offset, u64 chunk_size) 4634 { 4635 struct btrfs_key key; 4636 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4637 struct btrfs_device *device; 4638 struct btrfs_chunk *chunk; 4639 struct btrfs_stripe *stripe; 4640 struct extent_map_tree *em_tree; 4641 struct extent_map *em; 4642 struct map_lookup *map; 4643 size_t item_size; 4644 u64 dev_offset; 4645 u64 stripe_size; 4646 int i = 0; 4647 int ret; 4648 4649 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4650 read_lock(&em_tree->lock); 4651 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4652 read_unlock(&em_tree->lock); 4653 4654 if (!em) { 4655 btrfs_crit(extent_root->fs_info, "unable to find logical " 4656 "%Lu len %Lu", chunk_offset, chunk_size); 4657 return -EINVAL; 4658 } 4659 4660 if (em->start != chunk_offset || em->len != chunk_size) { 4661 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4662 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4663 chunk_size, em->start, em->len); 4664 free_extent_map(em); 4665 return -EINVAL; 4666 } 4667 4668 map = (struct map_lookup *)em->bdev; 4669 item_size = btrfs_chunk_item_size(map->num_stripes); 4670 stripe_size = em->orig_block_len; 4671 4672 chunk = kzalloc(item_size, GFP_NOFS); 4673 if (!chunk) { 4674 ret = -ENOMEM; 4675 goto out; 4676 } 4677 4678 for (i = 0; i < map->num_stripes; i++) { 4679 device = map->stripes[i].dev; 4680 dev_offset = map->stripes[i].physical; 4681 4682 ret = btrfs_update_device(trans, device); 4683 if (ret) 4684 goto out; 4685 ret = btrfs_alloc_dev_extent(trans, device, 4686 chunk_root->root_key.objectid, 4687 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4688 chunk_offset, dev_offset, 4689 stripe_size); 4690 if (ret) 4691 goto out; 4692 } 4693 4694 stripe = &chunk->stripe; 4695 for (i = 0; i < map->num_stripes; i++) { 4696 device = map->stripes[i].dev; 4697 dev_offset = map->stripes[i].physical; 4698 4699 btrfs_set_stack_stripe_devid(stripe, device->devid); 4700 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4701 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4702 stripe++; 4703 } 4704 4705 btrfs_set_stack_chunk_length(chunk, chunk_size); 4706 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4707 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4708 btrfs_set_stack_chunk_type(chunk, map->type); 4709 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4710 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4711 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4712 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4713 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4714 4715 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4716 key.type = BTRFS_CHUNK_ITEM_KEY; 4717 key.offset = chunk_offset; 4718 4719 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4720 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4721 /* 4722 * TODO: Cleanup of inserted chunk root in case of 4723 * failure. 4724 */ 4725 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4726 item_size); 4727 } 4728 4729 out: 4730 kfree(chunk); 4731 free_extent_map(em); 4732 return ret; 4733 } 4734 4735 /* 4736 * Chunk allocation falls into two parts. The first part does works 4737 * that make the new allocated chunk useable, but not do any operation 4738 * that modifies the chunk tree. The second part does the works that 4739 * require modifying the chunk tree. This division is important for the 4740 * bootstrap process of adding storage to a seed btrfs. 4741 */ 4742 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4743 struct btrfs_root *extent_root, u64 type) 4744 { 4745 u64 chunk_offset; 4746 4747 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 4748 chunk_offset = find_next_chunk(extent_root->fs_info); 4749 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4750 } 4751 4752 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4753 struct btrfs_root *root, 4754 struct btrfs_device *device) 4755 { 4756 u64 chunk_offset; 4757 u64 sys_chunk_offset; 4758 u64 alloc_profile; 4759 struct btrfs_fs_info *fs_info = root->fs_info; 4760 struct btrfs_root *extent_root = fs_info->extent_root; 4761 int ret; 4762 4763 chunk_offset = find_next_chunk(fs_info); 4764 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4765 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4766 alloc_profile); 4767 if (ret) 4768 return ret; 4769 4770 sys_chunk_offset = find_next_chunk(root->fs_info); 4771 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4772 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4773 alloc_profile); 4774 return ret; 4775 } 4776 4777 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4778 { 4779 int max_errors; 4780 4781 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4782 BTRFS_BLOCK_GROUP_RAID10 | 4783 BTRFS_BLOCK_GROUP_RAID5 | 4784 BTRFS_BLOCK_GROUP_DUP)) { 4785 max_errors = 1; 4786 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4787 max_errors = 2; 4788 } else { 4789 max_errors = 0; 4790 } 4791 4792 return max_errors; 4793 } 4794 4795 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4796 { 4797 struct extent_map *em; 4798 struct map_lookup *map; 4799 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4800 int readonly = 0; 4801 int miss_ndevs = 0; 4802 int i; 4803 4804 read_lock(&map_tree->map_tree.lock); 4805 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4806 read_unlock(&map_tree->map_tree.lock); 4807 if (!em) 4808 return 1; 4809 4810 map = (struct map_lookup *)em->bdev; 4811 for (i = 0; i < map->num_stripes; i++) { 4812 if (map->stripes[i].dev->missing) { 4813 miss_ndevs++; 4814 continue; 4815 } 4816 4817 if (!map->stripes[i].dev->writeable) { 4818 readonly = 1; 4819 goto end; 4820 } 4821 } 4822 4823 /* 4824 * If the number of missing devices is larger than max errors, 4825 * we can not write the data into that chunk successfully, so 4826 * set it readonly. 4827 */ 4828 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4829 readonly = 1; 4830 end: 4831 free_extent_map(em); 4832 return readonly; 4833 } 4834 4835 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4836 { 4837 extent_map_tree_init(&tree->map_tree); 4838 } 4839 4840 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4841 { 4842 struct extent_map *em; 4843 4844 while (1) { 4845 write_lock(&tree->map_tree.lock); 4846 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4847 if (em) 4848 remove_extent_mapping(&tree->map_tree, em); 4849 write_unlock(&tree->map_tree.lock); 4850 if (!em) 4851 break; 4852 /* once for us */ 4853 free_extent_map(em); 4854 /* once for the tree */ 4855 free_extent_map(em); 4856 } 4857 } 4858 4859 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4860 { 4861 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4862 struct extent_map *em; 4863 struct map_lookup *map; 4864 struct extent_map_tree *em_tree = &map_tree->map_tree; 4865 int ret; 4866 4867 read_lock(&em_tree->lock); 4868 em = lookup_extent_mapping(em_tree, logical, len); 4869 read_unlock(&em_tree->lock); 4870 4871 /* 4872 * We could return errors for these cases, but that could get ugly and 4873 * we'd probably do the same thing which is just not do anything else 4874 * and exit, so return 1 so the callers don't try to use other copies. 4875 */ 4876 if (!em) { 4877 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 4878 logical+len); 4879 return 1; 4880 } 4881 4882 if (em->start > logical || em->start + em->len < logical) { 4883 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4884 "%Lu-%Lu", logical, logical+len, em->start, 4885 em->start + em->len); 4886 free_extent_map(em); 4887 return 1; 4888 } 4889 4890 map = (struct map_lookup *)em->bdev; 4891 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4892 ret = map->num_stripes; 4893 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4894 ret = map->sub_stripes; 4895 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4896 ret = 2; 4897 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4898 ret = 3; 4899 else 4900 ret = 1; 4901 free_extent_map(em); 4902 4903 btrfs_dev_replace_lock(&fs_info->dev_replace); 4904 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4905 ret++; 4906 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4907 4908 return ret; 4909 } 4910 4911 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4912 struct btrfs_mapping_tree *map_tree, 4913 u64 logical) 4914 { 4915 struct extent_map *em; 4916 struct map_lookup *map; 4917 struct extent_map_tree *em_tree = &map_tree->map_tree; 4918 unsigned long len = root->sectorsize; 4919 4920 read_lock(&em_tree->lock); 4921 em = lookup_extent_mapping(em_tree, logical, len); 4922 read_unlock(&em_tree->lock); 4923 BUG_ON(!em); 4924 4925 BUG_ON(em->start > logical || em->start + em->len < logical); 4926 map = (struct map_lookup *)em->bdev; 4927 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4928 len = map->stripe_len * nr_data_stripes(map); 4929 free_extent_map(em); 4930 return len; 4931 } 4932 4933 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4934 u64 logical, u64 len, int mirror_num) 4935 { 4936 struct extent_map *em; 4937 struct map_lookup *map; 4938 struct extent_map_tree *em_tree = &map_tree->map_tree; 4939 int ret = 0; 4940 4941 read_lock(&em_tree->lock); 4942 em = lookup_extent_mapping(em_tree, logical, len); 4943 read_unlock(&em_tree->lock); 4944 BUG_ON(!em); 4945 4946 BUG_ON(em->start > logical || em->start + em->len < logical); 4947 map = (struct map_lookup *)em->bdev; 4948 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 4949 ret = 1; 4950 free_extent_map(em); 4951 return ret; 4952 } 4953 4954 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4955 struct map_lookup *map, int first, int num, 4956 int optimal, int dev_replace_is_ongoing) 4957 { 4958 int i; 4959 int tolerance; 4960 struct btrfs_device *srcdev; 4961 4962 if (dev_replace_is_ongoing && 4963 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4964 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4965 srcdev = fs_info->dev_replace.srcdev; 4966 else 4967 srcdev = NULL; 4968 4969 /* 4970 * try to avoid the drive that is the source drive for a 4971 * dev-replace procedure, only choose it if no other non-missing 4972 * mirror is available 4973 */ 4974 for (tolerance = 0; tolerance < 2; tolerance++) { 4975 if (map->stripes[optimal].dev->bdev && 4976 (tolerance || map->stripes[optimal].dev != srcdev)) 4977 return optimal; 4978 for (i = first; i < first + num; i++) { 4979 if (map->stripes[i].dev->bdev && 4980 (tolerance || map->stripes[i].dev != srcdev)) 4981 return i; 4982 } 4983 } 4984 4985 /* we couldn't find one that doesn't fail. Just return something 4986 * and the io error handling code will clean up eventually 4987 */ 4988 return optimal; 4989 } 4990 4991 static inline int parity_smaller(u64 a, u64 b) 4992 { 4993 return a > b; 4994 } 4995 4996 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4997 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 4998 { 4999 struct btrfs_bio_stripe s; 5000 int i; 5001 u64 l; 5002 int again = 1; 5003 5004 while (again) { 5005 again = 0; 5006 for (i = 0; i < num_stripes - 1; i++) { 5007 if (parity_smaller(bbio->raid_map[i], 5008 bbio->raid_map[i+1])) { 5009 s = bbio->stripes[i]; 5010 l = bbio->raid_map[i]; 5011 bbio->stripes[i] = bbio->stripes[i+1]; 5012 bbio->raid_map[i] = bbio->raid_map[i+1]; 5013 bbio->stripes[i+1] = s; 5014 bbio->raid_map[i+1] = l; 5015 5016 again = 1; 5017 } 5018 } 5019 } 5020 } 5021 5022 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5023 { 5024 struct btrfs_bio *bbio = kzalloc( 5025 /* the size of the btrfs_bio */ 5026 sizeof(struct btrfs_bio) + 5027 /* plus the variable array for the stripes */ 5028 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5029 /* plus the variable array for the tgt dev */ 5030 sizeof(int) * (real_stripes) + 5031 /* 5032 * plus the raid_map, which includes both the tgt dev 5033 * and the stripes 5034 */ 5035 sizeof(u64) * (total_stripes), 5036 GFP_NOFS); 5037 if (!bbio) 5038 return NULL; 5039 5040 atomic_set(&bbio->error, 0); 5041 atomic_set(&bbio->refs, 1); 5042 5043 return bbio; 5044 } 5045 5046 void btrfs_get_bbio(struct btrfs_bio *bbio) 5047 { 5048 WARN_ON(!atomic_read(&bbio->refs)); 5049 atomic_inc(&bbio->refs); 5050 } 5051 5052 void btrfs_put_bbio(struct btrfs_bio *bbio) 5053 { 5054 if (!bbio) 5055 return; 5056 if (atomic_dec_and_test(&bbio->refs)) 5057 kfree(bbio); 5058 } 5059 5060 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5061 u64 logical, u64 *length, 5062 struct btrfs_bio **bbio_ret, 5063 int mirror_num, int need_raid_map) 5064 { 5065 struct extent_map *em; 5066 struct map_lookup *map; 5067 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5068 struct extent_map_tree *em_tree = &map_tree->map_tree; 5069 u64 offset; 5070 u64 stripe_offset; 5071 u64 stripe_end_offset; 5072 u64 stripe_nr; 5073 u64 stripe_nr_orig; 5074 u64 stripe_nr_end; 5075 u64 stripe_len; 5076 u32 stripe_index; 5077 int i; 5078 int ret = 0; 5079 int num_stripes; 5080 int max_errors = 0; 5081 int tgtdev_indexes = 0; 5082 struct btrfs_bio *bbio = NULL; 5083 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5084 int dev_replace_is_ongoing = 0; 5085 int num_alloc_stripes; 5086 int patch_the_first_stripe_for_dev_replace = 0; 5087 u64 physical_to_patch_in_first_stripe = 0; 5088 u64 raid56_full_stripe_start = (u64)-1; 5089 5090 read_lock(&em_tree->lock); 5091 em = lookup_extent_mapping(em_tree, logical, *length); 5092 read_unlock(&em_tree->lock); 5093 5094 if (!em) { 5095 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5096 logical, *length); 5097 return -EINVAL; 5098 } 5099 5100 if (em->start > logical || em->start + em->len < logical) { 5101 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 5102 "found %Lu-%Lu", logical, em->start, 5103 em->start + em->len); 5104 free_extent_map(em); 5105 return -EINVAL; 5106 } 5107 5108 map = (struct map_lookup *)em->bdev; 5109 offset = logical - em->start; 5110 5111 stripe_len = map->stripe_len; 5112 stripe_nr = offset; 5113 /* 5114 * stripe_nr counts the total number of stripes we have to stride 5115 * to get to this block 5116 */ 5117 stripe_nr = div64_u64(stripe_nr, stripe_len); 5118 5119 stripe_offset = stripe_nr * stripe_len; 5120 BUG_ON(offset < stripe_offset); 5121 5122 /* stripe_offset is the offset of this block in its stripe*/ 5123 stripe_offset = offset - stripe_offset; 5124 5125 /* if we're here for raid56, we need to know the stripe aligned start */ 5126 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5127 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5128 raid56_full_stripe_start = offset; 5129 5130 /* allow a write of a full stripe, but make sure we don't 5131 * allow straddling of stripes 5132 */ 5133 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5134 full_stripe_len); 5135 raid56_full_stripe_start *= full_stripe_len; 5136 } 5137 5138 if (rw & REQ_DISCARD) { 5139 /* we don't discard raid56 yet */ 5140 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5141 ret = -EOPNOTSUPP; 5142 goto out; 5143 } 5144 *length = min_t(u64, em->len - offset, *length); 5145 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5146 u64 max_len; 5147 /* For writes to RAID[56], allow a full stripeset across all disks. 5148 For other RAID types and for RAID[56] reads, just allow a single 5149 stripe (on a single disk). */ 5150 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5151 (rw & REQ_WRITE)) { 5152 max_len = stripe_len * nr_data_stripes(map) - 5153 (offset - raid56_full_stripe_start); 5154 } else { 5155 /* we limit the length of each bio to what fits in a stripe */ 5156 max_len = stripe_len - stripe_offset; 5157 } 5158 *length = min_t(u64, em->len - offset, max_len); 5159 } else { 5160 *length = em->len - offset; 5161 } 5162 5163 /* This is for when we're called from btrfs_merge_bio_hook() and all 5164 it cares about is the length */ 5165 if (!bbio_ret) 5166 goto out; 5167 5168 btrfs_dev_replace_lock(dev_replace); 5169 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5170 if (!dev_replace_is_ongoing) 5171 btrfs_dev_replace_unlock(dev_replace); 5172 5173 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5174 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5175 dev_replace->tgtdev != NULL) { 5176 /* 5177 * in dev-replace case, for repair case (that's the only 5178 * case where the mirror is selected explicitly when 5179 * calling btrfs_map_block), blocks left of the left cursor 5180 * can also be read from the target drive. 5181 * For REQ_GET_READ_MIRRORS, the target drive is added as 5182 * the last one to the array of stripes. For READ, it also 5183 * needs to be supported using the same mirror number. 5184 * If the requested block is not left of the left cursor, 5185 * EIO is returned. This can happen because btrfs_num_copies() 5186 * returns one more in the dev-replace case. 5187 */ 5188 u64 tmp_length = *length; 5189 struct btrfs_bio *tmp_bbio = NULL; 5190 int tmp_num_stripes; 5191 u64 srcdev_devid = dev_replace->srcdev->devid; 5192 int index_srcdev = 0; 5193 int found = 0; 5194 u64 physical_of_found = 0; 5195 5196 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5197 logical, &tmp_length, &tmp_bbio, 0, 0); 5198 if (ret) { 5199 WARN_ON(tmp_bbio != NULL); 5200 goto out; 5201 } 5202 5203 tmp_num_stripes = tmp_bbio->num_stripes; 5204 if (mirror_num > tmp_num_stripes) { 5205 /* 5206 * REQ_GET_READ_MIRRORS does not contain this 5207 * mirror, that means that the requested area 5208 * is not left of the left cursor 5209 */ 5210 ret = -EIO; 5211 btrfs_put_bbio(tmp_bbio); 5212 goto out; 5213 } 5214 5215 /* 5216 * process the rest of the function using the mirror_num 5217 * of the source drive. Therefore look it up first. 5218 * At the end, patch the device pointer to the one of the 5219 * target drive. 5220 */ 5221 for (i = 0; i < tmp_num_stripes; i++) { 5222 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 5223 /* 5224 * In case of DUP, in order to keep it 5225 * simple, only add the mirror with the 5226 * lowest physical address 5227 */ 5228 if (found && 5229 physical_of_found <= 5230 tmp_bbio->stripes[i].physical) 5231 continue; 5232 index_srcdev = i; 5233 found = 1; 5234 physical_of_found = 5235 tmp_bbio->stripes[i].physical; 5236 } 5237 } 5238 5239 if (found) { 5240 mirror_num = index_srcdev + 1; 5241 patch_the_first_stripe_for_dev_replace = 1; 5242 physical_to_patch_in_first_stripe = physical_of_found; 5243 } else { 5244 WARN_ON(1); 5245 ret = -EIO; 5246 btrfs_put_bbio(tmp_bbio); 5247 goto out; 5248 } 5249 5250 btrfs_put_bbio(tmp_bbio); 5251 } else if (mirror_num > map->num_stripes) { 5252 mirror_num = 0; 5253 } 5254 5255 num_stripes = 1; 5256 stripe_index = 0; 5257 stripe_nr_orig = stripe_nr; 5258 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5259 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5260 stripe_end_offset = stripe_nr_end * map->stripe_len - 5261 (offset + *length); 5262 5263 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5264 if (rw & REQ_DISCARD) 5265 num_stripes = min_t(u64, map->num_stripes, 5266 stripe_nr_end - stripe_nr_orig); 5267 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5268 &stripe_index); 5269 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5270 mirror_num = 1; 5271 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5272 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5273 num_stripes = map->num_stripes; 5274 else if (mirror_num) 5275 stripe_index = mirror_num - 1; 5276 else { 5277 stripe_index = find_live_mirror(fs_info, map, 0, 5278 map->num_stripes, 5279 current->pid % map->num_stripes, 5280 dev_replace_is_ongoing); 5281 mirror_num = stripe_index + 1; 5282 } 5283 5284 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5285 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5286 num_stripes = map->num_stripes; 5287 } else if (mirror_num) { 5288 stripe_index = mirror_num - 1; 5289 } else { 5290 mirror_num = 1; 5291 } 5292 5293 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5294 u32 factor = map->num_stripes / map->sub_stripes; 5295 5296 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5297 stripe_index *= map->sub_stripes; 5298 5299 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5300 num_stripes = map->sub_stripes; 5301 else if (rw & REQ_DISCARD) 5302 num_stripes = min_t(u64, map->sub_stripes * 5303 (stripe_nr_end - stripe_nr_orig), 5304 map->num_stripes); 5305 else if (mirror_num) 5306 stripe_index += mirror_num - 1; 5307 else { 5308 int old_stripe_index = stripe_index; 5309 stripe_index = find_live_mirror(fs_info, map, 5310 stripe_index, 5311 map->sub_stripes, stripe_index + 5312 current->pid % map->sub_stripes, 5313 dev_replace_is_ongoing); 5314 mirror_num = stripe_index - old_stripe_index + 1; 5315 } 5316 5317 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5318 if (need_raid_map && 5319 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5320 mirror_num > 1)) { 5321 /* push stripe_nr back to the start of the full stripe */ 5322 stripe_nr = div_u64(raid56_full_stripe_start, 5323 stripe_len * nr_data_stripes(map)); 5324 5325 /* RAID[56] write or recovery. Return all stripes */ 5326 num_stripes = map->num_stripes; 5327 max_errors = nr_parity_stripes(map); 5328 5329 *length = map->stripe_len; 5330 stripe_index = 0; 5331 stripe_offset = 0; 5332 } else { 5333 /* 5334 * Mirror #0 or #1 means the original data block. 5335 * Mirror #2 is RAID5 parity block. 5336 * Mirror #3 is RAID6 Q block. 5337 */ 5338 stripe_nr = div_u64_rem(stripe_nr, 5339 nr_data_stripes(map), &stripe_index); 5340 if (mirror_num > 1) 5341 stripe_index = nr_data_stripes(map) + 5342 mirror_num - 2; 5343 5344 /* We distribute the parity blocks across stripes */ 5345 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5346 &stripe_index); 5347 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5348 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5349 mirror_num = 1; 5350 } 5351 } else { 5352 /* 5353 * after this, stripe_nr is the number of stripes on this 5354 * device we have to walk to find the data, and stripe_index is 5355 * the number of our device in the stripe array 5356 */ 5357 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5358 &stripe_index); 5359 mirror_num = stripe_index + 1; 5360 } 5361 BUG_ON(stripe_index >= map->num_stripes); 5362 5363 num_alloc_stripes = num_stripes; 5364 if (dev_replace_is_ongoing) { 5365 if (rw & (REQ_WRITE | REQ_DISCARD)) 5366 num_alloc_stripes <<= 1; 5367 if (rw & REQ_GET_READ_MIRRORS) 5368 num_alloc_stripes++; 5369 tgtdev_indexes = num_stripes; 5370 } 5371 5372 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5373 if (!bbio) { 5374 ret = -ENOMEM; 5375 goto out; 5376 } 5377 if (dev_replace_is_ongoing) 5378 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5379 5380 /* build raid_map */ 5381 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5382 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5383 mirror_num > 1)) { 5384 u64 tmp; 5385 unsigned rot; 5386 5387 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5388 sizeof(struct btrfs_bio_stripe) * 5389 num_alloc_stripes + 5390 sizeof(int) * tgtdev_indexes); 5391 5392 /* Work out the disk rotation on this stripe-set */ 5393 div_u64_rem(stripe_nr, num_stripes, &rot); 5394 5395 /* Fill in the logical address of each stripe */ 5396 tmp = stripe_nr * nr_data_stripes(map); 5397 for (i = 0; i < nr_data_stripes(map); i++) 5398 bbio->raid_map[(i+rot) % num_stripes] = 5399 em->start + (tmp + i) * map->stripe_len; 5400 5401 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5402 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5403 bbio->raid_map[(i+rot+1) % num_stripes] = 5404 RAID6_Q_STRIPE; 5405 } 5406 5407 if (rw & REQ_DISCARD) { 5408 u32 factor = 0; 5409 u32 sub_stripes = 0; 5410 u64 stripes_per_dev = 0; 5411 u32 remaining_stripes = 0; 5412 u32 last_stripe = 0; 5413 5414 if (map->type & 5415 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5416 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5417 sub_stripes = 1; 5418 else 5419 sub_stripes = map->sub_stripes; 5420 5421 factor = map->num_stripes / sub_stripes; 5422 stripes_per_dev = div_u64_rem(stripe_nr_end - 5423 stripe_nr_orig, 5424 factor, 5425 &remaining_stripes); 5426 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5427 last_stripe *= sub_stripes; 5428 } 5429 5430 for (i = 0; i < num_stripes; i++) { 5431 bbio->stripes[i].physical = 5432 map->stripes[stripe_index].physical + 5433 stripe_offset + stripe_nr * map->stripe_len; 5434 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5435 5436 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5437 BTRFS_BLOCK_GROUP_RAID10)) { 5438 bbio->stripes[i].length = stripes_per_dev * 5439 map->stripe_len; 5440 5441 if (i / sub_stripes < remaining_stripes) 5442 bbio->stripes[i].length += 5443 map->stripe_len; 5444 5445 /* 5446 * Special for the first stripe and 5447 * the last stripe: 5448 * 5449 * |-------|...|-------| 5450 * |----------| 5451 * off end_off 5452 */ 5453 if (i < sub_stripes) 5454 bbio->stripes[i].length -= 5455 stripe_offset; 5456 5457 if (stripe_index >= last_stripe && 5458 stripe_index <= (last_stripe + 5459 sub_stripes - 1)) 5460 bbio->stripes[i].length -= 5461 stripe_end_offset; 5462 5463 if (i == sub_stripes - 1) 5464 stripe_offset = 0; 5465 } else 5466 bbio->stripes[i].length = *length; 5467 5468 stripe_index++; 5469 if (stripe_index == map->num_stripes) { 5470 /* This could only happen for RAID0/10 */ 5471 stripe_index = 0; 5472 stripe_nr++; 5473 } 5474 } 5475 } else { 5476 for (i = 0; i < num_stripes; i++) { 5477 bbio->stripes[i].physical = 5478 map->stripes[stripe_index].physical + 5479 stripe_offset + 5480 stripe_nr * map->stripe_len; 5481 bbio->stripes[i].dev = 5482 map->stripes[stripe_index].dev; 5483 stripe_index++; 5484 } 5485 } 5486 5487 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5488 max_errors = btrfs_chunk_max_errors(map); 5489 5490 if (bbio->raid_map) 5491 sort_parity_stripes(bbio, num_stripes); 5492 5493 tgtdev_indexes = 0; 5494 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5495 dev_replace->tgtdev != NULL) { 5496 int index_where_to_add; 5497 u64 srcdev_devid = dev_replace->srcdev->devid; 5498 5499 /* 5500 * duplicate the write operations while the dev replace 5501 * procedure is running. Since the copying of the old disk 5502 * to the new disk takes place at run time while the 5503 * filesystem is mounted writable, the regular write 5504 * operations to the old disk have to be duplicated to go 5505 * to the new disk as well. 5506 * Note that device->missing is handled by the caller, and 5507 * that the write to the old disk is already set up in the 5508 * stripes array. 5509 */ 5510 index_where_to_add = num_stripes; 5511 for (i = 0; i < num_stripes; i++) { 5512 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5513 /* write to new disk, too */ 5514 struct btrfs_bio_stripe *new = 5515 bbio->stripes + index_where_to_add; 5516 struct btrfs_bio_stripe *old = 5517 bbio->stripes + i; 5518 5519 new->physical = old->physical; 5520 new->length = old->length; 5521 new->dev = dev_replace->tgtdev; 5522 bbio->tgtdev_map[i] = index_where_to_add; 5523 index_where_to_add++; 5524 max_errors++; 5525 tgtdev_indexes++; 5526 } 5527 } 5528 num_stripes = index_where_to_add; 5529 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5530 dev_replace->tgtdev != NULL) { 5531 u64 srcdev_devid = dev_replace->srcdev->devid; 5532 int index_srcdev = 0; 5533 int found = 0; 5534 u64 physical_of_found = 0; 5535 5536 /* 5537 * During the dev-replace procedure, the target drive can 5538 * also be used to read data in case it is needed to repair 5539 * a corrupt block elsewhere. This is possible if the 5540 * requested area is left of the left cursor. In this area, 5541 * the target drive is a full copy of the source drive. 5542 */ 5543 for (i = 0; i < num_stripes; i++) { 5544 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5545 /* 5546 * In case of DUP, in order to keep it 5547 * simple, only add the mirror with the 5548 * lowest physical address 5549 */ 5550 if (found && 5551 physical_of_found <= 5552 bbio->stripes[i].physical) 5553 continue; 5554 index_srcdev = i; 5555 found = 1; 5556 physical_of_found = bbio->stripes[i].physical; 5557 } 5558 } 5559 if (found) { 5560 if (physical_of_found + map->stripe_len <= 5561 dev_replace->cursor_left) { 5562 struct btrfs_bio_stripe *tgtdev_stripe = 5563 bbio->stripes + num_stripes; 5564 5565 tgtdev_stripe->physical = physical_of_found; 5566 tgtdev_stripe->length = 5567 bbio->stripes[index_srcdev].length; 5568 tgtdev_stripe->dev = dev_replace->tgtdev; 5569 bbio->tgtdev_map[index_srcdev] = num_stripes; 5570 5571 tgtdev_indexes++; 5572 num_stripes++; 5573 } 5574 } 5575 } 5576 5577 *bbio_ret = bbio; 5578 bbio->map_type = map->type; 5579 bbio->num_stripes = num_stripes; 5580 bbio->max_errors = max_errors; 5581 bbio->mirror_num = mirror_num; 5582 bbio->num_tgtdevs = tgtdev_indexes; 5583 5584 /* 5585 * this is the case that REQ_READ && dev_replace_is_ongoing && 5586 * mirror_num == num_stripes + 1 && dev_replace target drive is 5587 * available as a mirror 5588 */ 5589 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5590 WARN_ON(num_stripes > 1); 5591 bbio->stripes[0].dev = dev_replace->tgtdev; 5592 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5593 bbio->mirror_num = map->num_stripes + 1; 5594 } 5595 out: 5596 if (dev_replace_is_ongoing) 5597 btrfs_dev_replace_unlock(dev_replace); 5598 free_extent_map(em); 5599 return ret; 5600 } 5601 5602 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5603 u64 logical, u64 *length, 5604 struct btrfs_bio **bbio_ret, int mirror_num) 5605 { 5606 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5607 mirror_num, 0); 5608 } 5609 5610 /* For Scrub/replace */ 5611 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5612 u64 logical, u64 *length, 5613 struct btrfs_bio **bbio_ret, int mirror_num, 5614 int need_raid_map) 5615 { 5616 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5617 mirror_num, need_raid_map); 5618 } 5619 5620 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5621 u64 chunk_start, u64 physical, u64 devid, 5622 u64 **logical, int *naddrs, int *stripe_len) 5623 { 5624 struct extent_map_tree *em_tree = &map_tree->map_tree; 5625 struct extent_map *em; 5626 struct map_lookup *map; 5627 u64 *buf; 5628 u64 bytenr; 5629 u64 length; 5630 u64 stripe_nr; 5631 u64 rmap_len; 5632 int i, j, nr = 0; 5633 5634 read_lock(&em_tree->lock); 5635 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5636 read_unlock(&em_tree->lock); 5637 5638 if (!em) { 5639 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5640 chunk_start); 5641 return -EIO; 5642 } 5643 5644 if (em->start != chunk_start) { 5645 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5646 em->start, chunk_start); 5647 free_extent_map(em); 5648 return -EIO; 5649 } 5650 map = (struct map_lookup *)em->bdev; 5651 5652 length = em->len; 5653 rmap_len = map->stripe_len; 5654 5655 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5656 length = div_u64(length, map->num_stripes / map->sub_stripes); 5657 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5658 length = div_u64(length, map->num_stripes); 5659 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5660 length = div_u64(length, nr_data_stripes(map)); 5661 rmap_len = map->stripe_len * nr_data_stripes(map); 5662 } 5663 5664 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5665 BUG_ON(!buf); /* -ENOMEM */ 5666 5667 for (i = 0; i < map->num_stripes; i++) { 5668 if (devid && map->stripes[i].dev->devid != devid) 5669 continue; 5670 if (map->stripes[i].physical > physical || 5671 map->stripes[i].physical + length <= physical) 5672 continue; 5673 5674 stripe_nr = physical - map->stripes[i].physical; 5675 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5676 5677 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5678 stripe_nr = stripe_nr * map->num_stripes + i; 5679 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5680 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5681 stripe_nr = stripe_nr * map->num_stripes + i; 5682 } /* else if RAID[56], multiply by nr_data_stripes(). 5683 * Alternatively, just use rmap_len below instead of 5684 * map->stripe_len */ 5685 5686 bytenr = chunk_start + stripe_nr * rmap_len; 5687 WARN_ON(nr >= map->num_stripes); 5688 for (j = 0; j < nr; j++) { 5689 if (buf[j] == bytenr) 5690 break; 5691 } 5692 if (j == nr) { 5693 WARN_ON(nr >= map->num_stripes); 5694 buf[nr++] = bytenr; 5695 } 5696 } 5697 5698 *logical = buf; 5699 *naddrs = nr; 5700 *stripe_len = rmap_len; 5701 5702 free_extent_map(em); 5703 return 0; 5704 } 5705 5706 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err) 5707 { 5708 bio->bi_private = bbio->private; 5709 bio->bi_end_io = bbio->end_io; 5710 bio_endio(bio, err); 5711 5712 btrfs_put_bbio(bbio); 5713 } 5714 5715 static void btrfs_end_bio(struct bio *bio, int err) 5716 { 5717 struct btrfs_bio *bbio = bio->bi_private; 5718 struct btrfs_device *dev = bbio->stripes[0].dev; 5719 int is_orig_bio = 0; 5720 5721 if (err) { 5722 atomic_inc(&bbio->error); 5723 if (err == -EIO || err == -EREMOTEIO) { 5724 unsigned int stripe_index = 5725 btrfs_io_bio(bio)->stripe_index; 5726 5727 BUG_ON(stripe_index >= bbio->num_stripes); 5728 dev = bbio->stripes[stripe_index].dev; 5729 if (dev->bdev) { 5730 if (bio->bi_rw & WRITE) 5731 btrfs_dev_stat_inc(dev, 5732 BTRFS_DEV_STAT_WRITE_ERRS); 5733 else 5734 btrfs_dev_stat_inc(dev, 5735 BTRFS_DEV_STAT_READ_ERRS); 5736 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5737 btrfs_dev_stat_inc(dev, 5738 BTRFS_DEV_STAT_FLUSH_ERRS); 5739 btrfs_dev_stat_print_on_error(dev); 5740 } 5741 } 5742 } 5743 5744 if (bio == bbio->orig_bio) 5745 is_orig_bio = 1; 5746 5747 btrfs_bio_counter_dec(bbio->fs_info); 5748 5749 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5750 if (!is_orig_bio) { 5751 bio_put(bio); 5752 bio = bbio->orig_bio; 5753 } 5754 5755 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5756 /* only send an error to the higher layers if it is 5757 * beyond the tolerance of the btrfs bio 5758 */ 5759 if (atomic_read(&bbio->error) > bbio->max_errors) { 5760 err = -EIO; 5761 } else { 5762 /* 5763 * this bio is actually up to date, we didn't 5764 * go over the max number of errors 5765 */ 5766 set_bit(BIO_UPTODATE, &bio->bi_flags); 5767 err = 0; 5768 } 5769 5770 btrfs_end_bbio(bbio, bio, err); 5771 } else if (!is_orig_bio) { 5772 bio_put(bio); 5773 } 5774 } 5775 5776 /* 5777 * see run_scheduled_bios for a description of why bios are collected for 5778 * async submit. 5779 * 5780 * This will add one bio to the pending list for a device and make sure 5781 * the work struct is scheduled. 5782 */ 5783 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5784 struct btrfs_device *device, 5785 int rw, struct bio *bio) 5786 { 5787 int should_queue = 1; 5788 struct btrfs_pending_bios *pending_bios; 5789 5790 if (device->missing || !device->bdev) { 5791 bio_endio(bio, -EIO); 5792 return; 5793 } 5794 5795 /* don't bother with additional async steps for reads, right now */ 5796 if (!(rw & REQ_WRITE)) { 5797 bio_get(bio); 5798 btrfsic_submit_bio(rw, bio); 5799 bio_put(bio); 5800 return; 5801 } 5802 5803 /* 5804 * nr_async_bios allows us to reliably return congestion to the 5805 * higher layers. Otherwise, the async bio makes it appear we have 5806 * made progress against dirty pages when we've really just put it 5807 * on a queue for later 5808 */ 5809 atomic_inc(&root->fs_info->nr_async_bios); 5810 WARN_ON(bio->bi_next); 5811 bio->bi_next = NULL; 5812 bio->bi_rw |= rw; 5813 5814 spin_lock(&device->io_lock); 5815 if (bio->bi_rw & REQ_SYNC) 5816 pending_bios = &device->pending_sync_bios; 5817 else 5818 pending_bios = &device->pending_bios; 5819 5820 if (pending_bios->tail) 5821 pending_bios->tail->bi_next = bio; 5822 5823 pending_bios->tail = bio; 5824 if (!pending_bios->head) 5825 pending_bios->head = bio; 5826 if (device->running_pending) 5827 should_queue = 0; 5828 5829 spin_unlock(&device->io_lock); 5830 5831 if (should_queue) 5832 btrfs_queue_work(root->fs_info->submit_workers, 5833 &device->work); 5834 } 5835 5836 static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5837 sector_t sector) 5838 { 5839 struct bio_vec *prev; 5840 struct request_queue *q = bdev_get_queue(bdev); 5841 unsigned int max_sectors = queue_max_sectors(q); 5842 struct bvec_merge_data bvm = { 5843 .bi_bdev = bdev, 5844 .bi_sector = sector, 5845 .bi_rw = bio->bi_rw, 5846 }; 5847 5848 if (WARN_ON(bio->bi_vcnt == 0)) 5849 return 1; 5850 5851 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5852 if (bio_sectors(bio) > max_sectors) 5853 return 0; 5854 5855 if (!q->merge_bvec_fn) 5856 return 1; 5857 5858 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len; 5859 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5860 return 0; 5861 return 1; 5862 } 5863 5864 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5865 struct bio *bio, u64 physical, int dev_nr, 5866 int rw, int async) 5867 { 5868 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5869 5870 bio->bi_private = bbio; 5871 btrfs_io_bio(bio)->stripe_index = dev_nr; 5872 bio->bi_end_io = btrfs_end_bio; 5873 bio->bi_iter.bi_sector = physical >> 9; 5874 #ifdef DEBUG 5875 { 5876 struct rcu_string *name; 5877 5878 rcu_read_lock(); 5879 name = rcu_dereference(dev->name); 5880 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5881 "(%s id %llu), size=%u\n", rw, 5882 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 5883 name->str, dev->devid, bio->bi_iter.bi_size); 5884 rcu_read_unlock(); 5885 } 5886 #endif 5887 bio->bi_bdev = dev->bdev; 5888 5889 btrfs_bio_counter_inc_noblocked(root->fs_info); 5890 5891 if (async) 5892 btrfs_schedule_bio(root, dev, rw, bio); 5893 else 5894 btrfsic_submit_bio(rw, bio); 5895 } 5896 5897 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5898 struct bio *first_bio, struct btrfs_device *dev, 5899 int dev_nr, int rw, int async) 5900 { 5901 struct bio_vec *bvec = first_bio->bi_io_vec; 5902 struct bio *bio; 5903 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5904 u64 physical = bbio->stripes[dev_nr].physical; 5905 5906 again: 5907 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5908 if (!bio) 5909 return -ENOMEM; 5910 5911 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5912 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5913 bvec->bv_offset) < bvec->bv_len) { 5914 u64 len = bio->bi_iter.bi_size; 5915 5916 atomic_inc(&bbio->stripes_pending); 5917 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5918 rw, async); 5919 physical += len; 5920 goto again; 5921 } 5922 bvec++; 5923 } 5924 5925 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5926 return 0; 5927 } 5928 5929 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5930 { 5931 atomic_inc(&bbio->error); 5932 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5933 /* Shoud be the original bio. */ 5934 WARN_ON(bio != bbio->orig_bio); 5935 5936 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5937 bio->bi_iter.bi_sector = logical >> 9; 5938 5939 btrfs_end_bbio(bbio, bio, -EIO); 5940 } 5941 } 5942 5943 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5944 int mirror_num, int async_submit) 5945 { 5946 struct btrfs_device *dev; 5947 struct bio *first_bio = bio; 5948 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 5949 u64 length = 0; 5950 u64 map_length; 5951 int ret; 5952 int dev_nr; 5953 int total_devs; 5954 struct btrfs_bio *bbio = NULL; 5955 5956 length = bio->bi_iter.bi_size; 5957 map_length = length; 5958 5959 btrfs_bio_counter_inc_blocked(root->fs_info); 5960 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5961 mirror_num, 1); 5962 if (ret) { 5963 btrfs_bio_counter_dec(root->fs_info); 5964 return ret; 5965 } 5966 5967 total_devs = bbio->num_stripes; 5968 bbio->orig_bio = first_bio; 5969 bbio->private = first_bio->bi_private; 5970 bbio->end_io = first_bio->bi_end_io; 5971 bbio->fs_info = root->fs_info; 5972 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5973 5974 if (bbio->raid_map) { 5975 /* In this case, map_length has been set to the length of 5976 a single stripe; not the whole write */ 5977 if (rw & WRITE) { 5978 ret = raid56_parity_write(root, bio, bbio, map_length); 5979 } else { 5980 ret = raid56_parity_recover(root, bio, bbio, map_length, 5981 mirror_num, 1); 5982 } 5983 5984 btrfs_bio_counter_dec(root->fs_info); 5985 return ret; 5986 } 5987 5988 if (map_length < length) { 5989 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5990 logical, length, map_length); 5991 BUG(); 5992 } 5993 5994 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 5995 dev = bbio->stripes[dev_nr].dev; 5996 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5997 bbio_error(bbio, first_bio, logical); 5998 continue; 5999 } 6000 6001 /* 6002 * Check and see if we're ok with this bio based on it's size 6003 * and offset with the given device. 6004 */ 6005 if (!bio_size_ok(dev->bdev, first_bio, 6006 bbio->stripes[dev_nr].physical >> 9)) { 6007 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 6008 dev_nr, rw, async_submit); 6009 BUG_ON(ret); 6010 continue; 6011 } 6012 6013 if (dev_nr < total_devs - 1) { 6014 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6015 BUG_ON(!bio); /* -ENOMEM */ 6016 } else 6017 bio = first_bio; 6018 6019 submit_stripe_bio(root, bbio, bio, 6020 bbio->stripes[dev_nr].physical, dev_nr, rw, 6021 async_submit); 6022 } 6023 btrfs_bio_counter_dec(root->fs_info); 6024 return 0; 6025 } 6026 6027 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6028 u8 *uuid, u8 *fsid) 6029 { 6030 struct btrfs_device *device; 6031 struct btrfs_fs_devices *cur_devices; 6032 6033 cur_devices = fs_info->fs_devices; 6034 while (cur_devices) { 6035 if (!fsid || 6036 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6037 device = __find_device(&cur_devices->devices, 6038 devid, uuid); 6039 if (device) 6040 return device; 6041 } 6042 cur_devices = cur_devices->seed; 6043 } 6044 return NULL; 6045 } 6046 6047 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 6048 struct btrfs_fs_devices *fs_devices, 6049 u64 devid, u8 *dev_uuid) 6050 { 6051 struct btrfs_device *device; 6052 6053 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6054 if (IS_ERR(device)) 6055 return NULL; 6056 6057 list_add(&device->dev_list, &fs_devices->devices); 6058 device->fs_devices = fs_devices; 6059 fs_devices->num_devices++; 6060 6061 device->missing = 1; 6062 fs_devices->missing_devices++; 6063 6064 return device; 6065 } 6066 6067 /** 6068 * btrfs_alloc_device - allocate struct btrfs_device 6069 * @fs_info: used only for generating a new devid, can be NULL if 6070 * devid is provided (i.e. @devid != NULL). 6071 * @devid: a pointer to devid for this device. If NULL a new devid 6072 * is generated. 6073 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6074 * is generated. 6075 * 6076 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6077 * on error. Returned struct is not linked onto any lists and can be 6078 * destroyed with kfree() right away. 6079 */ 6080 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6081 const u64 *devid, 6082 const u8 *uuid) 6083 { 6084 struct btrfs_device *dev; 6085 u64 tmp; 6086 6087 if (WARN_ON(!devid && !fs_info)) 6088 return ERR_PTR(-EINVAL); 6089 6090 dev = __alloc_device(); 6091 if (IS_ERR(dev)) 6092 return dev; 6093 6094 if (devid) 6095 tmp = *devid; 6096 else { 6097 int ret; 6098 6099 ret = find_next_devid(fs_info, &tmp); 6100 if (ret) { 6101 kfree(dev); 6102 return ERR_PTR(ret); 6103 } 6104 } 6105 dev->devid = tmp; 6106 6107 if (uuid) 6108 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6109 else 6110 generate_random_uuid(dev->uuid); 6111 6112 btrfs_init_work(&dev->work, btrfs_submit_helper, 6113 pending_bios_fn, NULL, NULL); 6114 6115 return dev; 6116 } 6117 6118 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6119 struct extent_buffer *leaf, 6120 struct btrfs_chunk *chunk) 6121 { 6122 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6123 struct map_lookup *map; 6124 struct extent_map *em; 6125 u64 logical; 6126 u64 length; 6127 u64 devid; 6128 u8 uuid[BTRFS_UUID_SIZE]; 6129 int num_stripes; 6130 int ret; 6131 int i; 6132 6133 logical = key->offset; 6134 length = btrfs_chunk_length(leaf, chunk); 6135 6136 read_lock(&map_tree->map_tree.lock); 6137 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6138 read_unlock(&map_tree->map_tree.lock); 6139 6140 /* already mapped? */ 6141 if (em && em->start <= logical && em->start + em->len > logical) { 6142 free_extent_map(em); 6143 return 0; 6144 } else if (em) { 6145 free_extent_map(em); 6146 } 6147 6148 em = alloc_extent_map(); 6149 if (!em) 6150 return -ENOMEM; 6151 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6152 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6153 if (!map) { 6154 free_extent_map(em); 6155 return -ENOMEM; 6156 } 6157 6158 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6159 em->bdev = (struct block_device *)map; 6160 em->start = logical; 6161 em->len = length; 6162 em->orig_start = 0; 6163 em->block_start = 0; 6164 em->block_len = em->len; 6165 6166 map->num_stripes = num_stripes; 6167 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6168 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6169 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6170 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6171 map->type = btrfs_chunk_type(leaf, chunk); 6172 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6173 for (i = 0; i < num_stripes; i++) { 6174 map->stripes[i].physical = 6175 btrfs_stripe_offset_nr(leaf, chunk, i); 6176 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6177 read_extent_buffer(leaf, uuid, (unsigned long) 6178 btrfs_stripe_dev_uuid_nr(chunk, i), 6179 BTRFS_UUID_SIZE); 6180 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6181 uuid, NULL); 6182 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6183 free_extent_map(em); 6184 return -EIO; 6185 } 6186 if (!map->stripes[i].dev) { 6187 map->stripes[i].dev = 6188 add_missing_dev(root, root->fs_info->fs_devices, 6189 devid, uuid); 6190 if (!map->stripes[i].dev) { 6191 free_extent_map(em); 6192 return -EIO; 6193 } 6194 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing", 6195 devid, uuid); 6196 } 6197 map->stripes[i].dev->in_fs_metadata = 1; 6198 } 6199 6200 write_lock(&map_tree->map_tree.lock); 6201 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6202 write_unlock(&map_tree->map_tree.lock); 6203 BUG_ON(ret); /* Tree corruption */ 6204 free_extent_map(em); 6205 6206 return 0; 6207 } 6208 6209 static void fill_device_from_item(struct extent_buffer *leaf, 6210 struct btrfs_dev_item *dev_item, 6211 struct btrfs_device *device) 6212 { 6213 unsigned long ptr; 6214 6215 device->devid = btrfs_device_id(leaf, dev_item); 6216 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6217 device->total_bytes = device->disk_total_bytes; 6218 device->commit_total_bytes = device->disk_total_bytes; 6219 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6220 device->commit_bytes_used = device->bytes_used; 6221 device->type = btrfs_device_type(leaf, dev_item); 6222 device->io_align = btrfs_device_io_align(leaf, dev_item); 6223 device->io_width = btrfs_device_io_width(leaf, dev_item); 6224 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6225 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6226 device->is_tgtdev_for_dev_replace = 0; 6227 6228 ptr = btrfs_device_uuid(dev_item); 6229 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6230 } 6231 6232 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6233 u8 *fsid) 6234 { 6235 struct btrfs_fs_devices *fs_devices; 6236 int ret; 6237 6238 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6239 6240 fs_devices = root->fs_info->fs_devices->seed; 6241 while (fs_devices) { 6242 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6243 return fs_devices; 6244 6245 fs_devices = fs_devices->seed; 6246 } 6247 6248 fs_devices = find_fsid(fsid); 6249 if (!fs_devices) { 6250 if (!btrfs_test_opt(root, DEGRADED)) 6251 return ERR_PTR(-ENOENT); 6252 6253 fs_devices = alloc_fs_devices(fsid); 6254 if (IS_ERR(fs_devices)) 6255 return fs_devices; 6256 6257 fs_devices->seeding = 1; 6258 fs_devices->opened = 1; 6259 return fs_devices; 6260 } 6261 6262 fs_devices = clone_fs_devices(fs_devices); 6263 if (IS_ERR(fs_devices)) 6264 return fs_devices; 6265 6266 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6267 root->fs_info->bdev_holder); 6268 if (ret) { 6269 free_fs_devices(fs_devices); 6270 fs_devices = ERR_PTR(ret); 6271 goto out; 6272 } 6273 6274 if (!fs_devices->seeding) { 6275 __btrfs_close_devices(fs_devices); 6276 free_fs_devices(fs_devices); 6277 fs_devices = ERR_PTR(-EINVAL); 6278 goto out; 6279 } 6280 6281 fs_devices->seed = root->fs_info->fs_devices->seed; 6282 root->fs_info->fs_devices->seed = fs_devices; 6283 out: 6284 return fs_devices; 6285 } 6286 6287 static int read_one_dev(struct btrfs_root *root, 6288 struct extent_buffer *leaf, 6289 struct btrfs_dev_item *dev_item) 6290 { 6291 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6292 struct btrfs_device *device; 6293 u64 devid; 6294 int ret; 6295 u8 fs_uuid[BTRFS_UUID_SIZE]; 6296 u8 dev_uuid[BTRFS_UUID_SIZE]; 6297 6298 devid = btrfs_device_id(leaf, dev_item); 6299 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6300 BTRFS_UUID_SIZE); 6301 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6302 BTRFS_UUID_SIZE); 6303 6304 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6305 fs_devices = open_seed_devices(root, fs_uuid); 6306 if (IS_ERR(fs_devices)) 6307 return PTR_ERR(fs_devices); 6308 } 6309 6310 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6311 if (!device) { 6312 if (!btrfs_test_opt(root, DEGRADED)) 6313 return -EIO; 6314 6315 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6316 if (!device) 6317 return -ENOMEM; 6318 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing", 6319 devid, dev_uuid); 6320 } else { 6321 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6322 return -EIO; 6323 6324 if(!device->bdev && !device->missing) { 6325 /* 6326 * this happens when a device that was properly setup 6327 * in the device info lists suddenly goes bad. 6328 * device->bdev is NULL, and so we have to set 6329 * device->missing to one here 6330 */ 6331 device->fs_devices->missing_devices++; 6332 device->missing = 1; 6333 } 6334 6335 /* Move the device to its own fs_devices */ 6336 if (device->fs_devices != fs_devices) { 6337 ASSERT(device->missing); 6338 6339 list_move(&device->dev_list, &fs_devices->devices); 6340 device->fs_devices->num_devices--; 6341 fs_devices->num_devices++; 6342 6343 device->fs_devices->missing_devices--; 6344 fs_devices->missing_devices++; 6345 6346 device->fs_devices = fs_devices; 6347 } 6348 } 6349 6350 if (device->fs_devices != root->fs_info->fs_devices) { 6351 BUG_ON(device->writeable); 6352 if (device->generation != 6353 btrfs_device_generation(leaf, dev_item)) 6354 return -EINVAL; 6355 } 6356 6357 fill_device_from_item(leaf, dev_item, device); 6358 device->in_fs_metadata = 1; 6359 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6360 device->fs_devices->total_rw_bytes += device->total_bytes; 6361 spin_lock(&root->fs_info->free_chunk_lock); 6362 root->fs_info->free_chunk_space += device->total_bytes - 6363 device->bytes_used; 6364 spin_unlock(&root->fs_info->free_chunk_lock); 6365 } 6366 ret = 0; 6367 return ret; 6368 } 6369 6370 int btrfs_read_sys_array(struct btrfs_root *root) 6371 { 6372 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6373 struct extent_buffer *sb; 6374 struct btrfs_disk_key *disk_key; 6375 struct btrfs_chunk *chunk; 6376 u8 *array_ptr; 6377 unsigned long sb_array_offset; 6378 int ret = 0; 6379 u32 num_stripes; 6380 u32 array_size; 6381 u32 len = 0; 6382 u32 cur_offset; 6383 struct btrfs_key key; 6384 6385 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6386 /* 6387 * This will create extent buffer of nodesize, superblock size is 6388 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6389 * overallocate but we can keep it as-is, only the first page is used. 6390 */ 6391 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6392 if (!sb) 6393 return -ENOMEM; 6394 btrfs_set_buffer_uptodate(sb); 6395 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6396 /* 6397 * The sb extent buffer is artifical and just used to read the system array. 6398 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6399 * pages up-to-date when the page is larger: extent does not cover the 6400 * whole page and consequently check_page_uptodate does not find all 6401 * the page's extents up-to-date (the hole beyond sb), 6402 * write_extent_buffer then triggers a WARN_ON. 6403 * 6404 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6405 * but sb spans only this function. Add an explicit SetPageUptodate call 6406 * to silence the warning eg. on PowerPC 64. 6407 */ 6408 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6409 SetPageUptodate(sb->pages[0]); 6410 6411 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6412 array_size = btrfs_super_sys_array_size(super_copy); 6413 6414 array_ptr = super_copy->sys_chunk_array; 6415 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6416 cur_offset = 0; 6417 6418 while (cur_offset < array_size) { 6419 disk_key = (struct btrfs_disk_key *)array_ptr; 6420 len = sizeof(*disk_key); 6421 if (cur_offset + len > array_size) 6422 goto out_short_read; 6423 6424 btrfs_disk_key_to_cpu(&key, disk_key); 6425 6426 array_ptr += len; 6427 sb_array_offset += len; 6428 cur_offset += len; 6429 6430 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6431 chunk = (struct btrfs_chunk *)sb_array_offset; 6432 /* 6433 * At least one btrfs_chunk with one stripe must be 6434 * present, exact stripe count check comes afterwards 6435 */ 6436 len = btrfs_chunk_item_size(1); 6437 if (cur_offset + len > array_size) 6438 goto out_short_read; 6439 6440 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6441 len = btrfs_chunk_item_size(num_stripes); 6442 if (cur_offset + len > array_size) 6443 goto out_short_read; 6444 6445 ret = read_one_chunk(root, &key, sb, chunk); 6446 if (ret) 6447 break; 6448 } else { 6449 ret = -EIO; 6450 break; 6451 } 6452 array_ptr += len; 6453 sb_array_offset += len; 6454 cur_offset += len; 6455 } 6456 free_extent_buffer(sb); 6457 return ret; 6458 6459 out_short_read: 6460 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6461 len, cur_offset); 6462 free_extent_buffer(sb); 6463 return -EIO; 6464 } 6465 6466 int btrfs_read_chunk_tree(struct btrfs_root *root) 6467 { 6468 struct btrfs_path *path; 6469 struct extent_buffer *leaf; 6470 struct btrfs_key key; 6471 struct btrfs_key found_key; 6472 int ret; 6473 int slot; 6474 6475 root = root->fs_info->chunk_root; 6476 6477 path = btrfs_alloc_path(); 6478 if (!path) 6479 return -ENOMEM; 6480 6481 mutex_lock(&uuid_mutex); 6482 lock_chunks(root); 6483 6484 /* 6485 * Read all device items, and then all the chunk items. All 6486 * device items are found before any chunk item (their object id 6487 * is smaller than the lowest possible object id for a chunk 6488 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6489 */ 6490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6491 key.offset = 0; 6492 key.type = 0; 6493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6494 if (ret < 0) 6495 goto error; 6496 while (1) { 6497 leaf = path->nodes[0]; 6498 slot = path->slots[0]; 6499 if (slot >= btrfs_header_nritems(leaf)) { 6500 ret = btrfs_next_leaf(root, path); 6501 if (ret == 0) 6502 continue; 6503 if (ret < 0) 6504 goto error; 6505 break; 6506 } 6507 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6508 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6509 struct btrfs_dev_item *dev_item; 6510 dev_item = btrfs_item_ptr(leaf, slot, 6511 struct btrfs_dev_item); 6512 ret = read_one_dev(root, leaf, dev_item); 6513 if (ret) 6514 goto error; 6515 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6516 struct btrfs_chunk *chunk; 6517 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6518 ret = read_one_chunk(root, &found_key, leaf, chunk); 6519 if (ret) 6520 goto error; 6521 } 6522 path->slots[0]++; 6523 } 6524 ret = 0; 6525 error: 6526 unlock_chunks(root); 6527 mutex_unlock(&uuid_mutex); 6528 6529 btrfs_free_path(path); 6530 return ret; 6531 } 6532 6533 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6534 { 6535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6536 struct btrfs_device *device; 6537 6538 while (fs_devices) { 6539 mutex_lock(&fs_devices->device_list_mutex); 6540 list_for_each_entry(device, &fs_devices->devices, dev_list) 6541 device->dev_root = fs_info->dev_root; 6542 mutex_unlock(&fs_devices->device_list_mutex); 6543 6544 fs_devices = fs_devices->seed; 6545 } 6546 } 6547 6548 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6549 { 6550 int i; 6551 6552 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6553 btrfs_dev_stat_reset(dev, i); 6554 } 6555 6556 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6557 { 6558 struct btrfs_key key; 6559 struct btrfs_key found_key; 6560 struct btrfs_root *dev_root = fs_info->dev_root; 6561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6562 struct extent_buffer *eb; 6563 int slot; 6564 int ret = 0; 6565 struct btrfs_device *device; 6566 struct btrfs_path *path = NULL; 6567 int i; 6568 6569 path = btrfs_alloc_path(); 6570 if (!path) { 6571 ret = -ENOMEM; 6572 goto out; 6573 } 6574 6575 mutex_lock(&fs_devices->device_list_mutex); 6576 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6577 int item_size; 6578 struct btrfs_dev_stats_item *ptr; 6579 6580 key.objectid = 0; 6581 key.type = BTRFS_DEV_STATS_KEY; 6582 key.offset = device->devid; 6583 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6584 if (ret) { 6585 __btrfs_reset_dev_stats(device); 6586 device->dev_stats_valid = 1; 6587 btrfs_release_path(path); 6588 continue; 6589 } 6590 slot = path->slots[0]; 6591 eb = path->nodes[0]; 6592 btrfs_item_key_to_cpu(eb, &found_key, slot); 6593 item_size = btrfs_item_size_nr(eb, slot); 6594 6595 ptr = btrfs_item_ptr(eb, slot, 6596 struct btrfs_dev_stats_item); 6597 6598 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6599 if (item_size >= (1 + i) * sizeof(__le64)) 6600 btrfs_dev_stat_set(device, i, 6601 btrfs_dev_stats_value(eb, ptr, i)); 6602 else 6603 btrfs_dev_stat_reset(device, i); 6604 } 6605 6606 device->dev_stats_valid = 1; 6607 btrfs_dev_stat_print_on_load(device); 6608 btrfs_release_path(path); 6609 } 6610 mutex_unlock(&fs_devices->device_list_mutex); 6611 6612 out: 6613 btrfs_free_path(path); 6614 return ret < 0 ? ret : 0; 6615 } 6616 6617 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6618 struct btrfs_root *dev_root, 6619 struct btrfs_device *device) 6620 { 6621 struct btrfs_path *path; 6622 struct btrfs_key key; 6623 struct extent_buffer *eb; 6624 struct btrfs_dev_stats_item *ptr; 6625 int ret; 6626 int i; 6627 6628 key.objectid = 0; 6629 key.type = BTRFS_DEV_STATS_KEY; 6630 key.offset = device->devid; 6631 6632 path = btrfs_alloc_path(); 6633 BUG_ON(!path); 6634 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6635 if (ret < 0) { 6636 printk_in_rcu(KERN_WARNING "BTRFS: " 6637 "error %d while searching for dev_stats item for device %s!\n", 6638 ret, rcu_str_deref(device->name)); 6639 goto out; 6640 } 6641 6642 if (ret == 0 && 6643 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6644 /* need to delete old one and insert a new one */ 6645 ret = btrfs_del_item(trans, dev_root, path); 6646 if (ret != 0) { 6647 printk_in_rcu(KERN_WARNING "BTRFS: " 6648 "delete too small dev_stats item for device %s failed %d!\n", 6649 rcu_str_deref(device->name), ret); 6650 goto out; 6651 } 6652 ret = 1; 6653 } 6654 6655 if (ret == 1) { 6656 /* need to insert a new item */ 6657 btrfs_release_path(path); 6658 ret = btrfs_insert_empty_item(trans, dev_root, path, 6659 &key, sizeof(*ptr)); 6660 if (ret < 0) { 6661 printk_in_rcu(KERN_WARNING "BTRFS: " 6662 "insert dev_stats item for device %s failed %d!\n", 6663 rcu_str_deref(device->name), ret); 6664 goto out; 6665 } 6666 } 6667 6668 eb = path->nodes[0]; 6669 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6670 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6671 btrfs_set_dev_stats_value(eb, ptr, i, 6672 btrfs_dev_stat_read(device, i)); 6673 btrfs_mark_buffer_dirty(eb); 6674 6675 out: 6676 btrfs_free_path(path); 6677 return ret; 6678 } 6679 6680 /* 6681 * called from commit_transaction. Writes all changed device stats to disk. 6682 */ 6683 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6684 struct btrfs_fs_info *fs_info) 6685 { 6686 struct btrfs_root *dev_root = fs_info->dev_root; 6687 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6688 struct btrfs_device *device; 6689 int stats_cnt; 6690 int ret = 0; 6691 6692 mutex_lock(&fs_devices->device_list_mutex); 6693 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6694 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6695 continue; 6696 6697 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6698 ret = update_dev_stat_item(trans, dev_root, device); 6699 if (!ret) 6700 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6701 } 6702 mutex_unlock(&fs_devices->device_list_mutex); 6703 6704 return ret; 6705 } 6706 6707 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6708 { 6709 btrfs_dev_stat_inc(dev, index); 6710 btrfs_dev_stat_print_on_error(dev); 6711 } 6712 6713 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6714 { 6715 if (!dev->dev_stats_valid) 6716 return; 6717 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 6718 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6719 rcu_str_deref(dev->name), 6720 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6721 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6722 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6723 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6724 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6725 } 6726 6727 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6728 { 6729 int i; 6730 6731 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6732 if (btrfs_dev_stat_read(dev, i) != 0) 6733 break; 6734 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6735 return; /* all values == 0, suppress message */ 6736 6737 printk_in_rcu(KERN_INFO "BTRFS: " 6738 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6739 rcu_str_deref(dev->name), 6740 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6741 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6742 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6743 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6744 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6745 } 6746 6747 int btrfs_get_dev_stats(struct btrfs_root *root, 6748 struct btrfs_ioctl_get_dev_stats *stats) 6749 { 6750 struct btrfs_device *dev; 6751 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6752 int i; 6753 6754 mutex_lock(&fs_devices->device_list_mutex); 6755 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6756 mutex_unlock(&fs_devices->device_list_mutex); 6757 6758 if (!dev) { 6759 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6760 return -ENODEV; 6761 } else if (!dev->dev_stats_valid) { 6762 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6763 return -ENODEV; 6764 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6765 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6766 if (stats->nr_items > i) 6767 stats->values[i] = 6768 btrfs_dev_stat_read_and_reset(dev, i); 6769 else 6770 btrfs_dev_stat_reset(dev, i); 6771 } 6772 } else { 6773 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6774 if (stats->nr_items > i) 6775 stats->values[i] = btrfs_dev_stat_read(dev, i); 6776 } 6777 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6778 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6779 return 0; 6780 } 6781 6782 int btrfs_scratch_superblock(struct btrfs_device *device) 6783 { 6784 struct buffer_head *bh; 6785 struct btrfs_super_block *disk_super; 6786 6787 bh = btrfs_read_dev_super(device->bdev); 6788 if (!bh) 6789 return -EINVAL; 6790 disk_super = (struct btrfs_super_block *)bh->b_data; 6791 6792 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6793 set_buffer_dirty(bh); 6794 sync_dirty_buffer(bh); 6795 brelse(bh); 6796 6797 return 0; 6798 } 6799 6800 /* 6801 * Update the size of all devices, which is used for writing out the 6802 * super blocks. 6803 */ 6804 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6805 { 6806 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6807 struct btrfs_device *curr, *next; 6808 6809 if (list_empty(&fs_devices->resized_devices)) 6810 return; 6811 6812 mutex_lock(&fs_devices->device_list_mutex); 6813 lock_chunks(fs_info->dev_root); 6814 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6815 resized_list) { 6816 list_del_init(&curr->resized_list); 6817 curr->commit_total_bytes = curr->disk_total_bytes; 6818 } 6819 unlock_chunks(fs_info->dev_root); 6820 mutex_unlock(&fs_devices->device_list_mutex); 6821 } 6822 6823 /* Must be invoked during the transaction commit */ 6824 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6825 struct btrfs_transaction *transaction) 6826 { 6827 struct extent_map *em; 6828 struct map_lookup *map; 6829 struct btrfs_device *dev; 6830 int i; 6831 6832 if (list_empty(&transaction->pending_chunks)) 6833 return; 6834 6835 /* In order to kick the device replace finish process */ 6836 lock_chunks(root); 6837 list_for_each_entry(em, &transaction->pending_chunks, list) { 6838 map = (struct map_lookup *)em->bdev; 6839 6840 for (i = 0; i < map->num_stripes; i++) { 6841 dev = map->stripes[i].dev; 6842 dev->commit_bytes_used = dev->bytes_used; 6843 } 6844 } 6845 unlock_chunks(root); 6846 } 6847 6848 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 6849 { 6850 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6851 while (fs_devices) { 6852 fs_devices->fs_info = fs_info; 6853 fs_devices = fs_devices->seed; 6854 } 6855 } 6856 6857 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 6858 { 6859 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6860 while (fs_devices) { 6861 fs_devices->fs_info = NULL; 6862 fs_devices = fs_devices->seed; 6863 } 6864 } 6865