1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42 struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221 #define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255 out_overflow:;
256 }
257
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262 /*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 return &fs_uuids;
367 }
368
369 /*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
alloc_fs_devices(const u8 * fsid)379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400 }
401
btrfs_free_device(struct btrfs_device * device)402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409 }
410
free_fs_devices(struct btrfs_fs_devices * fs_devices)411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423 }
424
btrfs_cleanup_fs_uuids(void)425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435 }
436
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439 {
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450 }
451
find_fsid(const u8 * fsid,const u8 * metadata_fsid)452 static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454 {
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465 }
466
467 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471 {
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 device_path, flags, ret);
481 goto error;
482 }
483 bdev = file_bdev(*bdev_file);
484
485 if (flush)
486 sync_blockdev(bdev);
487 if (holder) {
488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 if (ret) {
490 fput(*bdev_file);
491 goto error;
492 }
493 }
494 invalidate_bdev(bdev);
495 *disk_super = btrfs_read_dev_super(bdev);
496 if (IS_ERR(*disk_super)) {
497 ret = PTR_ERR(*disk_super);
498 fput(*bdev_file);
499 goto error;
500 }
501
502 return 0;
503
504 error:
505 *disk_super = NULL;
506 *bdev_file = NULL;
507 return ret;
508 }
509
510 /*
511 * Search and remove all stale devices (which are not mounted). When both
512 * inputs are NULL, it will search and release all stale devices.
513 *
514 * @devt: Optional. When provided will it release all unmounted devices
515 * matching this devt only.
516 * @skip_device: Optional. Will skip this device when searching for the stale
517 * devices.
518 *
519 * Return: 0 for success or if @devt is 0.
520 * -EBUSY if @devt is a mounted device.
521 * -ENOENT if @devt does not match any device in the list.
522 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524 {
525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 struct btrfs_device *device, *tmp_device;
527 int ret;
528 bool freed = false;
529
530 lockdep_assert_held(&uuid_mutex);
531
532 /* Return good status if there is no instance of devt. */
533 ret = 0;
534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535
536 mutex_lock(&fs_devices->device_list_mutex);
537 list_for_each_entry_safe(device, tmp_device,
538 &fs_devices->devices, dev_list) {
539 if (skip_device && skip_device == device)
540 continue;
541 if (devt && devt != device->devt)
542 continue;
543 if (fs_devices->opened) {
544 if (devt)
545 ret = -EBUSY;
546 break;
547 }
548
549 /* delete the stale device */
550 fs_devices->num_devices--;
551 list_del(&device->dev_list);
552 btrfs_free_device(device);
553
554 freed = true;
555 }
556 mutex_unlock(&fs_devices->device_list_mutex);
557
558 if (fs_devices->num_devices == 0) {
559 btrfs_sysfs_remove_fsid(fs_devices);
560 list_del(&fs_devices->fs_list);
561 free_fs_devices(fs_devices);
562 }
563 }
564
565 /* If there is at least one freed device return 0. */
566 if (freed)
567 return 0;
568
569 return ret;
570 }
571
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)572 static struct btrfs_fs_devices *find_fsid_by_device(
573 struct btrfs_super_block *disk_super,
574 dev_t devt, bool *same_fsid_diff_dev)
575 {
576 struct btrfs_fs_devices *fsid_fs_devices;
577 struct btrfs_fs_devices *devt_fs_devices;
578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 bool found_by_devt = false;
581
582 /* Find the fs_device by the usual method, if found use it. */
583 fsid_fs_devices = find_fsid(disk_super->fsid,
584 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585
586 /* The temp_fsid feature is supported only with single device filesystem. */
587 if (btrfs_super_num_devices(disk_super) != 1)
588 return fsid_fs_devices;
589
590 /*
591 * A seed device is an integral component of the sprout device, which
592 * functions as a multi-device filesystem. So, temp-fsid feature is
593 * not supported.
594 */
595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 return fsid_fs_devices;
597
598 /* Try to find a fs_devices by matching devt. */
599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 struct btrfs_device *device;
601
602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 if (device->devt == devt) {
604 found_by_devt = true;
605 break;
606 }
607 }
608 if (found_by_devt)
609 break;
610 }
611
612 if (found_by_devt) {
613 /* Existing device. */
614 if (fsid_fs_devices == NULL) {
615 if (devt_fs_devices->opened == 0) {
616 /* Stale device. */
617 return NULL;
618 } else {
619 /* temp_fsid is mounting a subvol. */
620 return devt_fs_devices;
621 }
622 } else {
623 /* Regular or temp_fsid device mounting a subvol. */
624 return devt_fs_devices;
625 }
626 } else {
627 /* New device. */
628 if (fsid_fs_devices == NULL) {
629 return NULL;
630 } else {
631 /* sb::fsid is already used create a new temp_fsid. */
632 *same_fsid_diff_dev = true;
633 return NULL;
634 }
635 }
636
637 /* Not reached. */
638 }
639
640 /*
641 * This is only used on mount, and we are protected from competing things
642 * messing with our fs_devices by the uuid_mutex, thus we do not need the
643 * fs_devices->device_list_mutex here.
644 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 struct btrfs_device *device, blk_mode_t flags,
647 void *holder)
648 {
649 struct file *bdev_file;
650 struct btrfs_super_block *disk_super;
651 u64 devid;
652 int ret;
653
654 if (device->bdev)
655 return -EINVAL;
656 if (!device->name)
657 return -EINVAL;
658
659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 &bdev_file, &disk_super);
661 if (ret)
662 return ret;
663
664 devid = btrfs_stack_device_id(&disk_super->dev_item);
665 if (devid != device->devid)
666 goto error_free_page;
667
668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 goto error_free_page;
670
671 device->generation = btrfs_super_generation(disk_super);
672
673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 if (btrfs_super_incompat_flags(disk_super) &
675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 pr_err(
677 "BTRFS: Invalid seeding and uuid-changed device detected\n");
678 goto error_free_page;
679 }
680
681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 fs_devices->seeding = true;
683 } else {
684 if (bdev_read_only(file_bdev(bdev_file)))
685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 else
687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 }
689
690 if (!bdev_nonrot(file_bdev(bdev_file)))
691 fs_devices->rotating = true;
692
693 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 fs_devices->discardable = true;
695
696 device->bdev_file = bdev_file;
697 device->bdev = file_bdev(bdev_file);
698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699
700 if (device->devt != device->bdev->bd_dev) {
701 btrfs_warn(NULL,
702 "device %s maj:min changed from %d:%d to %d:%d",
703 device->name->str, MAJOR(device->devt),
704 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 MINOR(device->bdev->bd_dev));
706
707 device->devt = device->bdev->bd_dev;
708 }
709
710 fs_devices->open_devices++;
711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 fs_devices->rw_devices++;
714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 }
716 btrfs_release_disk_super(disk_super);
717
718 return 0;
719
720 error_free_page:
721 btrfs_release_disk_super(disk_super);
722 fput(bdev_file);
723
724 return -EINVAL;
725 }
726
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728 {
729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731
732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733 }
734
735 /*
736 * We can have very weird soft links passed in.
737 * One example is "/proc/self/fd/<fd>", which can be a soft link to
738 * a block device.
739 *
740 * But it's never a good idea to use those weird names.
741 * Here we check if the path (not following symlinks) is a good one inside
742 * "/dev/".
743 */
is_good_dev_path(const char * dev_path)744 static bool is_good_dev_path(const char *dev_path)
745 {
746 struct path path = { .mnt = NULL, .dentry = NULL };
747 char *path_buf = NULL;
748 char *resolved_path;
749 bool is_good = false;
750 int ret;
751
752 if (!dev_path)
753 goto out;
754
755 path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
756 if (!path_buf)
757 goto out;
758
759 /*
760 * Do not follow soft link, just check if the original path is inside
761 * "/dev/".
762 */
763 ret = kern_path(dev_path, 0, &path);
764 if (ret)
765 goto out;
766 resolved_path = d_path(&path, path_buf, PATH_MAX);
767 if (IS_ERR(resolved_path))
768 goto out;
769 if (strncmp(resolved_path, "/dev/", strlen("/dev/")))
770 goto out;
771 is_good = true;
772 out:
773 kfree(path_buf);
774 path_put(&path);
775 return is_good;
776 }
777
get_canonical_dev_path(const char * dev_path,char * canonical)778 static int get_canonical_dev_path(const char *dev_path, char *canonical)
779 {
780 struct path path = { .mnt = NULL, .dentry = NULL };
781 char *path_buf = NULL;
782 char *resolved_path;
783 int ret;
784
785 if (!dev_path) {
786 ret = -EINVAL;
787 goto out;
788 }
789
790 path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
791 if (!path_buf) {
792 ret = -ENOMEM;
793 goto out;
794 }
795
796 ret = kern_path(dev_path, LOOKUP_FOLLOW, &path);
797 if (ret)
798 goto out;
799 resolved_path = d_path(&path, path_buf, PATH_MAX);
800 ret = strscpy(canonical, resolved_path, PATH_MAX);
801 out:
802 kfree(path_buf);
803 path_put(&path);
804 return ret;
805 }
806
is_same_device(struct btrfs_device * device,const char * new_path)807 static bool is_same_device(struct btrfs_device *device, const char *new_path)
808 {
809 struct path old = { .mnt = NULL, .dentry = NULL };
810 struct path new = { .mnt = NULL, .dentry = NULL };
811 char *old_path = NULL;
812 bool is_same = false;
813 int ret;
814
815 if (!device->name)
816 goto out;
817
818 old_path = kzalloc(PATH_MAX, GFP_NOFS);
819 if (!old_path)
820 goto out;
821
822 rcu_read_lock();
823 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
824 rcu_read_unlock();
825 if (ret < 0)
826 goto out;
827
828 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
829 if (ret)
830 goto out;
831 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
832 if (ret)
833 goto out;
834 if (path_equal(&old, &new))
835 is_same = true;
836 out:
837 kfree(old_path);
838 path_put(&old);
839 path_put(&new);
840 return is_same;
841 }
842
843 /*
844 * Add new device to list of registered devices
845 *
846 * Returns:
847 * device pointer which was just added or updated when successful
848 * error pointer when failed
849 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)850 static noinline struct btrfs_device *device_list_add(const char *path,
851 struct btrfs_super_block *disk_super,
852 bool *new_device_added)
853 {
854 struct btrfs_device *device;
855 struct btrfs_fs_devices *fs_devices = NULL;
856 struct rcu_string *name;
857 u64 found_transid = btrfs_super_generation(disk_super);
858 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
859 dev_t path_devt;
860 int error;
861 bool same_fsid_diff_dev = false;
862 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
863 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
864
865 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
866 btrfs_err(NULL,
867 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
868 path);
869 return ERR_PTR(-EAGAIN);
870 }
871
872 error = lookup_bdev(path, &path_devt);
873 if (error) {
874 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
875 path, error);
876 return ERR_PTR(error);
877 }
878
879 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
880
881 if (!fs_devices) {
882 fs_devices = alloc_fs_devices(disk_super->fsid);
883 if (IS_ERR(fs_devices))
884 return ERR_CAST(fs_devices);
885
886 if (has_metadata_uuid)
887 memcpy(fs_devices->metadata_uuid,
888 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
889
890 if (same_fsid_diff_dev) {
891 generate_random_uuid(fs_devices->fsid);
892 fs_devices->temp_fsid = true;
893 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
894 path, MAJOR(path_devt), MINOR(path_devt),
895 fs_devices->fsid);
896 }
897
898 mutex_lock(&fs_devices->device_list_mutex);
899 list_add(&fs_devices->fs_list, &fs_uuids);
900
901 device = NULL;
902 } else {
903 struct btrfs_dev_lookup_args args = {
904 .devid = devid,
905 .uuid = disk_super->dev_item.uuid,
906 };
907
908 mutex_lock(&fs_devices->device_list_mutex);
909 device = btrfs_find_device(fs_devices, &args);
910
911 if (found_transid > fs_devices->latest_generation) {
912 memcpy(fs_devices->fsid, disk_super->fsid,
913 BTRFS_FSID_SIZE);
914 memcpy(fs_devices->metadata_uuid,
915 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
916 }
917 }
918
919 if (!device) {
920 unsigned int nofs_flag;
921
922 if (fs_devices->opened) {
923 btrfs_err(NULL,
924 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
925 path, MAJOR(path_devt), MINOR(path_devt),
926 fs_devices->fsid, current->comm,
927 task_pid_nr(current));
928 mutex_unlock(&fs_devices->device_list_mutex);
929 return ERR_PTR(-EBUSY);
930 }
931
932 nofs_flag = memalloc_nofs_save();
933 device = btrfs_alloc_device(NULL, &devid,
934 disk_super->dev_item.uuid, path);
935 memalloc_nofs_restore(nofs_flag);
936 if (IS_ERR(device)) {
937 mutex_unlock(&fs_devices->device_list_mutex);
938 /* we can safely leave the fs_devices entry around */
939 return device;
940 }
941
942 device->devt = path_devt;
943
944 list_add_rcu(&device->dev_list, &fs_devices->devices);
945 fs_devices->num_devices++;
946
947 device->fs_devices = fs_devices;
948 *new_device_added = true;
949
950 if (disk_super->label[0])
951 pr_info(
952 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
953 disk_super->label, devid, found_transid, path,
954 MAJOR(path_devt), MINOR(path_devt),
955 current->comm, task_pid_nr(current));
956 else
957 pr_info(
958 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
959 disk_super->fsid, devid, found_transid, path,
960 MAJOR(path_devt), MINOR(path_devt),
961 current->comm, task_pid_nr(current));
962
963 } else if (!device->name || !is_same_device(device, path)) {
964 /*
965 * When FS is already mounted.
966 * 1. If you are here and if the device->name is NULL that
967 * means this device was missing at time of FS mount.
968 * 2. If you are here and if the device->name is different
969 * from 'path' that means either
970 * a. The same device disappeared and reappeared with
971 * different name. or
972 * b. The missing-disk-which-was-replaced, has
973 * reappeared now.
974 *
975 * We must allow 1 and 2a above. But 2b would be a spurious
976 * and unintentional.
977 *
978 * Further in case of 1 and 2a above, the disk at 'path'
979 * would have missed some transaction when it was away and
980 * in case of 2a the stale bdev has to be updated as well.
981 * 2b must not be allowed at all time.
982 */
983
984 /*
985 * For now, we do allow update to btrfs_fs_device through the
986 * btrfs dev scan cli after FS has been mounted. We're still
987 * tracking a problem where systems fail mount by subvolume id
988 * when we reject replacement on a mounted FS.
989 */
990 if (!fs_devices->opened && found_transid < device->generation) {
991 /*
992 * That is if the FS is _not_ mounted and if you
993 * are here, that means there is more than one
994 * disk with same uuid and devid.We keep the one
995 * with larger generation number or the last-in if
996 * generation are equal.
997 */
998 mutex_unlock(&fs_devices->device_list_mutex);
999 btrfs_err(NULL,
1000 "device %s already registered with a higher generation, found %llu expect %llu",
1001 path, found_transid, device->generation);
1002 return ERR_PTR(-EEXIST);
1003 }
1004
1005 /*
1006 * We are going to replace the device path for a given devid,
1007 * make sure it's the same device if the device is mounted
1008 *
1009 * NOTE: the device->fs_info may not be reliable here so pass
1010 * in a NULL to message helpers instead. This avoids a possible
1011 * use-after-free when the fs_info and fs_info->sb are already
1012 * torn down.
1013 */
1014 if (device->bdev) {
1015 if (device->devt != path_devt) {
1016 mutex_unlock(&fs_devices->device_list_mutex);
1017 btrfs_warn_in_rcu(NULL,
1018 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
1019 path, devid, found_transid,
1020 current->comm,
1021 task_pid_nr(current));
1022 return ERR_PTR(-EEXIST);
1023 }
1024 btrfs_info_in_rcu(NULL,
1025 "devid %llu device path %s changed to %s scanned by %s (%d)",
1026 devid, btrfs_dev_name(device),
1027 path, current->comm,
1028 task_pid_nr(current));
1029 }
1030
1031 name = rcu_string_strdup(path, GFP_NOFS);
1032 if (!name) {
1033 mutex_unlock(&fs_devices->device_list_mutex);
1034 return ERR_PTR(-ENOMEM);
1035 }
1036 rcu_string_free(device->name);
1037 rcu_assign_pointer(device->name, name);
1038 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1039 fs_devices->missing_devices--;
1040 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1041 }
1042 device->devt = path_devt;
1043 }
1044
1045 /*
1046 * Unmount does not free the btrfs_device struct but would zero
1047 * generation along with most of the other members. So just update
1048 * it back. We need it to pick the disk with largest generation
1049 * (as above).
1050 */
1051 if (!fs_devices->opened) {
1052 device->generation = found_transid;
1053 fs_devices->latest_generation = max_t(u64, found_transid,
1054 fs_devices->latest_generation);
1055 }
1056
1057 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1058
1059 mutex_unlock(&fs_devices->device_list_mutex);
1060 return device;
1061 }
1062
clone_fs_devices(struct btrfs_fs_devices * orig)1063 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1064 {
1065 struct btrfs_fs_devices *fs_devices;
1066 struct btrfs_device *device;
1067 struct btrfs_device *orig_dev;
1068 int ret = 0;
1069
1070 lockdep_assert_held(&uuid_mutex);
1071
1072 fs_devices = alloc_fs_devices(orig->fsid);
1073 if (IS_ERR(fs_devices))
1074 return fs_devices;
1075
1076 fs_devices->total_devices = orig->total_devices;
1077
1078 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1079 const char *dev_path = NULL;
1080
1081 /*
1082 * This is ok to do without RCU read locked because we hold the
1083 * uuid mutex so nothing we touch in here is going to disappear.
1084 */
1085 if (orig_dev->name)
1086 dev_path = orig_dev->name->str;
1087
1088 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1089 orig_dev->uuid, dev_path);
1090 if (IS_ERR(device)) {
1091 ret = PTR_ERR(device);
1092 goto error;
1093 }
1094
1095 if (orig_dev->zone_info) {
1096 struct btrfs_zoned_device_info *zone_info;
1097
1098 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1099 if (!zone_info) {
1100 btrfs_free_device(device);
1101 ret = -ENOMEM;
1102 goto error;
1103 }
1104 device->zone_info = zone_info;
1105 }
1106
1107 list_add(&device->dev_list, &fs_devices->devices);
1108 device->fs_devices = fs_devices;
1109 fs_devices->num_devices++;
1110 }
1111 return fs_devices;
1112 error:
1113 free_fs_devices(fs_devices);
1114 return ERR_PTR(ret);
1115 }
1116
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1117 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1118 struct btrfs_device **latest_dev)
1119 {
1120 struct btrfs_device *device, *next;
1121
1122 /* This is the initialized path, it is safe to release the devices. */
1123 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1124 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1125 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1126 &device->dev_state) &&
1127 !test_bit(BTRFS_DEV_STATE_MISSING,
1128 &device->dev_state) &&
1129 (!*latest_dev ||
1130 device->generation > (*latest_dev)->generation)) {
1131 *latest_dev = device;
1132 }
1133 continue;
1134 }
1135
1136 /*
1137 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1138 * in btrfs_init_dev_replace() so just continue.
1139 */
1140 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1141 continue;
1142
1143 if (device->bdev_file) {
1144 fput(device->bdev_file);
1145 device->bdev = NULL;
1146 device->bdev_file = NULL;
1147 fs_devices->open_devices--;
1148 }
1149 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1150 list_del_init(&device->dev_alloc_list);
1151 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1152 fs_devices->rw_devices--;
1153 }
1154 list_del_init(&device->dev_list);
1155 fs_devices->num_devices--;
1156 btrfs_free_device(device);
1157 }
1158
1159 }
1160
1161 /*
1162 * After we have read the system tree and know devids belonging to this
1163 * filesystem, remove the device which does not belong there.
1164 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1165 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1166 {
1167 struct btrfs_device *latest_dev = NULL;
1168 struct btrfs_fs_devices *seed_dev;
1169
1170 mutex_lock(&uuid_mutex);
1171 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1172
1173 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1174 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1175
1176 fs_devices->latest_dev = latest_dev;
1177
1178 mutex_unlock(&uuid_mutex);
1179 }
1180
btrfs_close_bdev(struct btrfs_device * device)1181 static void btrfs_close_bdev(struct btrfs_device *device)
1182 {
1183 if (!device->bdev)
1184 return;
1185
1186 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1187 sync_blockdev(device->bdev);
1188 invalidate_bdev(device->bdev);
1189 }
1190
1191 fput(device->bdev_file);
1192 }
1193
btrfs_close_one_device(struct btrfs_device * device)1194 static void btrfs_close_one_device(struct btrfs_device *device)
1195 {
1196 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1197
1198 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1199 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1200 list_del_init(&device->dev_alloc_list);
1201 fs_devices->rw_devices--;
1202 }
1203
1204 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1205 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1206
1207 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1208 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1209 fs_devices->missing_devices--;
1210 }
1211
1212 btrfs_close_bdev(device);
1213 if (device->bdev) {
1214 fs_devices->open_devices--;
1215 device->bdev = NULL;
1216 device->bdev_file = NULL;
1217 }
1218 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1219 btrfs_destroy_dev_zone_info(device);
1220
1221 device->fs_info = NULL;
1222 atomic_set(&device->dev_stats_ccnt, 0);
1223 extent_io_tree_release(&device->alloc_state);
1224
1225 /*
1226 * Reset the flush error record. We might have a transient flush error
1227 * in this mount, and if so we aborted the current transaction and set
1228 * the fs to an error state, guaranteeing no super blocks can be further
1229 * committed. However that error might be transient and if we unmount the
1230 * filesystem and mount it again, we should allow the mount to succeed
1231 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1232 * filesystem again we still get flush errors, then we will again abort
1233 * any transaction and set the error state, guaranteeing no commits of
1234 * unsafe super blocks.
1235 */
1236 device->last_flush_error = 0;
1237
1238 /* Verify the device is back in a pristine state */
1239 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1240 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1241 WARN_ON(!list_empty(&device->dev_alloc_list));
1242 WARN_ON(!list_empty(&device->post_commit_list));
1243 }
1244
close_fs_devices(struct btrfs_fs_devices * fs_devices)1245 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1246 {
1247 struct btrfs_device *device, *tmp;
1248
1249 lockdep_assert_held(&uuid_mutex);
1250
1251 if (--fs_devices->opened > 0)
1252 return;
1253
1254 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1255 btrfs_close_one_device(device);
1256
1257 WARN_ON(fs_devices->open_devices);
1258 WARN_ON(fs_devices->rw_devices);
1259 fs_devices->opened = 0;
1260 fs_devices->seeding = false;
1261 fs_devices->fs_info = NULL;
1262 }
1263
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1264 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1265 {
1266 LIST_HEAD(list);
1267 struct btrfs_fs_devices *tmp;
1268
1269 mutex_lock(&uuid_mutex);
1270 close_fs_devices(fs_devices);
1271 if (!fs_devices->opened) {
1272 list_splice_init(&fs_devices->seed_list, &list);
1273
1274 /*
1275 * If the struct btrfs_fs_devices is not assembled with any
1276 * other device, it can be re-initialized during the next mount
1277 * without the needing device-scan step. Therefore, it can be
1278 * fully freed.
1279 */
1280 if (fs_devices->num_devices == 1) {
1281 list_del(&fs_devices->fs_list);
1282 free_fs_devices(fs_devices);
1283 }
1284 }
1285
1286
1287 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1288 close_fs_devices(fs_devices);
1289 list_del(&fs_devices->seed_list);
1290 free_fs_devices(fs_devices);
1291 }
1292 mutex_unlock(&uuid_mutex);
1293 }
1294
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1295 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1296 blk_mode_t flags, void *holder)
1297 {
1298 struct btrfs_device *device;
1299 struct btrfs_device *latest_dev = NULL;
1300 struct btrfs_device *tmp_device;
1301 int ret = 0;
1302
1303 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1304 dev_list) {
1305 int ret2;
1306
1307 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1308 if (ret2 == 0 &&
1309 (!latest_dev || device->generation > latest_dev->generation)) {
1310 latest_dev = device;
1311 } else if (ret2 == -ENODATA) {
1312 fs_devices->num_devices--;
1313 list_del(&device->dev_list);
1314 btrfs_free_device(device);
1315 }
1316 if (ret == 0 && ret2 != 0)
1317 ret = ret2;
1318 }
1319
1320 if (fs_devices->open_devices == 0) {
1321 if (ret)
1322 return ret;
1323 return -EINVAL;
1324 }
1325
1326 fs_devices->opened = 1;
1327 fs_devices->latest_dev = latest_dev;
1328 fs_devices->total_rw_bytes = 0;
1329 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1330 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1331
1332 return 0;
1333 }
1334
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1335 static int devid_cmp(void *priv, const struct list_head *a,
1336 const struct list_head *b)
1337 {
1338 const struct btrfs_device *dev1, *dev2;
1339
1340 dev1 = list_entry(a, struct btrfs_device, dev_list);
1341 dev2 = list_entry(b, struct btrfs_device, dev_list);
1342
1343 if (dev1->devid < dev2->devid)
1344 return -1;
1345 else if (dev1->devid > dev2->devid)
1346 return 1;
1347 return 0;
1348 }
1349
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1350 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1351 blk_mode_t flags, void *holder)
1352 {
1353 int ret;
1354
1355 lockdep_assert_held(&uuid_mutex);
1356 /*
1357 * The device_list_mutex cannot be taken here in case opening the
1358 * underlying device takes further locks like open_mutex.
1359 *
1360 * We also don't need the lock here as this is called during mount and
1361 * exclusion is provided by uuid_mutex
1362 */
1363
1364 if (fs_devices->opened) {
1365 fs_devices->opened++;
1366 ret = 0;
1367 } else {
1368 list_sort(NULL, &fs_devices->devices, devid_cmp);
1369 ret = open_fs_devices(fs_devices, flags, holder);
1370 }
1371
1372 return ret;
1373 }
1374
btrfs_release_disk_super(struct btrfs_super_block * super)1375 void btrfs_release_disk_super(struct btrfs_super_block *super)
1376 {
1377 struct page *page = virt_to_page(super);
1378
1379 put_page(page);
1380 }
1381
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1382 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1383 u64 bytenr, u64 bytenr_orig)
1384 {
1385 struct btrfs_super_block *disk_super;
1386 struct page *page;
1387 void *p;
1388 pgoff_t index;
1389
1390 /* make sure our super fits in the device */
1391 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1392 return ERR_PTR(-EINVAL);
1393
1394 /* make sure our super fits in the page */
1395 if (sizeof(*disk_super) > PAGE_SIZE)
1396 return ERR_PTR(-EINVAL);
1397
1398 /* make sure our super doesn't straddle pages on disk */
1399 index = bytenr >> PAGE_SHIFT;
1400 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1401 return ERR_PTR(-EINVAL);
1402
1403 /* pull in the page with our super */
1404 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1405
1406 if (IS_ERR(page))
1407 return ERR_CAST(page);
1408
1409 p = page_address(page);
1410
1411 /* align our pointer to the offset of the super block */
1412 disk_super = p + offset_in_page(bytenr);
1413
1414 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1415 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1416 btrfs_release_disk_super(p);
1417 return ERR_PTR(-EINVAL);
1418 }
1419
1420 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1421 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1422
1423 return disk_super;
1424 }
1425
btrfs_forget_devices(dev_t devt)1426 int btrfs_forget_devices(dev_t devt)
1427 {
1428 int ret;
1429
1430 mutex_lock(&uuid_mutex);
1431 ret = btrfs_free_stale_devices(devt, NULL);
1432 mutex_unlock(&uuid_mutex);
1433
1434 return ret;
1435 }
1436
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1437 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1438 const char *path, dev_t devt,
1439 bool mount_arg_dev)
1440 {
1441 struct btrfs_fs_devices *fs_devices;
1442
1443 /*
1444 * Do not skip device registration for mounted devices with matching
1445 * maj:min but different paths. Booting without initrd relies on
1446 * /dev/root initially, later replaced with the actual root device.
1447 * A successful scan ensures grub2-probe selects the correct device.
1448 */
1449 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1450 struct btrfs_device *device;
1451
1452 mutex_lock(&fs_devices->device_list_mutex);
1453
1454 if (!fs_devices->opened) {
1455 mutex_unlock(&fs_devices->device_list_mutex);
1456 continue;
1457 }
1458
1459 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1460 if (device->bdev && (device->bdev->bd_dev == devt) &&
1461 strcmp(device->name->str, path) != 0) {
1462 mutex_unlock(&fs_devices->device_list_mutex);
1463
1464 /* Do not skip registration. */
1465 return false;
1466 }
1467 }
1468 mutex_unlock(&fs_devices->device_list_mutex);
1469 }
1470
1471 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1472 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1473 return true;
1474
1475 return false;
1476 }
1477
1478 /*
1479 * Look for a btrfs signature on a device. This may be called out of the mount path
1480 * and we are not allowed to call set_blocksize during the scan. The superblock
1481 * is read via pagecache.
1482 *
1483 * With @mount_arg_dev it's a scan during mount time that will always register
1484 * the device or return an error. Multi-device and seeding devices are registered
1485 * in both cases.
1486 */
btrfs_scan_one_device(const char * path,blk_mode_t flags,bool mount_arg_dev)1487 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1488 bool mount_arg_dev)
1489 {
1490 struct btrfs_super_block *disk_super;
1491 bool new_device_added = false;
1492 struct btrfs_device *device = NULL;
1493 struct file *bdev_file;
1494 char *canonical_path = NULL;
1495 u64 bytenr;
1496 dev_t devt;
1497 int ret;
1498
1499 lockdep_assert_held(&uuid_mutex);
1500
1501 if (!is_good_dev_path(path)) {
1502 canonical_path = kmalloc(PATH_MAX, GFP_KERNEL);
1503 if (canonical_path) {
1504 ret = get_canonical_dev_path(path, canonical_path);
1505 if (ret < 0) {
1506 kfree(canonical_path);
1507 canonical_path = NULL;
1508 }
1509 }
1510 }
1511 /*
1512 * Avoid an exclusive open here, as the systemd-udev may initiate the
1513 * device scan which may race with the user's mount or mkfs command,
1514 * resulting in failure.
1515 * Since the device scan is solely for reading purposes, there is no
1516 * need for an exclusive open. Additionally, the devices are read again
1517 * during the mount process. It is ok to get some inconsistent
1518 * values temporarily, as the device paths of the fsid are the only
1519 * required information for assembling the volume.
1520 */
1521 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1522 if (IS_ERR(bdev_file))
1523 return ERR_CAST(bdev_file);
1524
1525 /*
1526 * We would like to check all the super blocks, but doing so would
1527 * allow a mount to succeed after a mkfs from a different filesystem.
1528 * Currently, recovery from a bad primary btrfs superblock is done
1529 * using the userspace command 'btrfs check --super'.
1530 */
1531 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1532 if (ret) {
1533 device = ERR_PTR(ret);
1534 goto error_bdev_put;
1535 }
1536
1537 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1538 btrfs_sb_offset(0));
1539 if (IS_ERR(disk_super)) {
1540 device = ERR_CAST(disk_super);
1541 goto error_bdev_put;
1542 }
1543
1544 devt = file_bdev(bdev_file)->bd_dev;
1545 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1546 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1547 path, MAJOR(devt), MINOR(devt));
1548
1549 btrfs_free_stale_devices(devt, NULL);
1550
1551 device = NULL;
1552 goto free_disk_super;
1553 }
1554
1555 device = device_list_add(canonical_path ? : path, disk_super,
1556 &new_device_added);
1557 if (!IS_ERR(device) && new_device_added)
1558 btrfs_free_stale_devices(device->devt, device);
1559
1560 free_disk_super:
1561 btrfs_release_disk_super(disk_super);
1562
1563 error_bdev_put:
1564 fput(bdev_file);
1565 kfree(canonical_path);
1566
1567 return device;
1568 }
1569
1570 /*
1571 * Try to find a chunk that intersects [start, start + len] range and when one
1572 * such is found, record the end of it in *start
1573 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1574 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1575 u64 len)
1576 {
1577 u64 physical_start, physical_end;
1578
1579 lockdep_assert_held(&device->fs_info->chunk_mutex);
1580
1581 if (find_first_extent_bit(&device->alloc_state, *start,
1582 &physical_start, &physical_end,
1583 CHUNK_ALLOCATED, NULL)) {
1584
1585 if (in_range(physical_start, *start, len) ||
1586 in_range(*start, physical_start,
1587 physical_end + 1 - physical_start)) {
1588 *start = physical_end + 1;
1589 return true;
1590 }
1591 }
1592 return false;
1593 }
1594
dev_extent_search_start(struct btrfs_device * device)1595 static u64 dev_extent_search_start(struct btrfs_device *device)
1596 {
1597 switch (device->fs_devices->chunk_alloc_policy) {
1598 case BTRFS_CHUNK_ALLOC_REGULAR:
1599 return BTRFS_DEVICE_RANGE_RESERVED;
1600 case BTRFS_CHUNK_ALLOC_ZONED:
1601 /*
1602 * We don't care about the starting region like regular
1603 * allocator, because we anyway use/reserve the first two zones
1604 * for superblock logging.
1605 */
1606 return 0;
1607 default:
1608 BUG();
1609 }
1610 }
1611
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1612 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1613 u64 *hole_start, u64 *hole_size,
1614 u64 num_bytes)
1615 {
1616 u64 zone_size = device->zone_info->zone_size;
1617 u64 pos;
1618 int ret;
1619 bool changed = false;
1620
1621 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1622
1623 while (*hole_size > 0) {
1624 pos = btrfs_find_allocatable_zones(device, *hole_start,
1625 *hole_start + *hole_size,
1626 num_bytes);
1627 if (pos != *hole_start) {
1628 *hole_size = *hole_start + *hole_size - pos;
1629 *hole_start = pos;
1630 changed = true;
1631 if (*hole_size < num_bytes)
1632 break;
1633 }
1634
1635 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1636
1637 /* Range is ensured to be empty */
1638 if (!ret)
1639 return changed;
1640
1641 /* Given hole range was invalid (outside of device) */
1642 if (ret == -ERANGE) {
1643 *hole_start += *hole_size;
1644 *hole_size = 0;
1645 return true;
1646 }
1647
1648 *hole_start += zone_size;
1649 *hole_size -= zone_size;
1650 changed = true;
1651 }
1652
1653 return changed;
1654 }
1655
1656 /*
1657 * Check if specified hole is suitable for allocation.
1658 *
1659 * @device: the device which we have the hole
1660 * @hole_start: starting position of the hole
1661 * @hole_size: the size of the hole
1662 * @num_bytes: the size of the free space that we need
1663 *
1664 * This function may modify @hole_start and @hole_size to reflect the suitable
1665 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1666 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1667 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1668 u64 *hole_size, u64 num_bytes)
1669 {
1670 bool changed = false;
1671 u64 hole_end = *hole_start + *hole_size;
1672
1673 for (;;) {
1674 /*
1675 * Check before we set max_hole_start, otherwise we could end up
1676 * sending back this offset anyway.
1677 */
1678 if (contains_pending_extent(device, hole_start, *hole_size)) {
1679 if (hole_end >= *hole_start)
1680 *hole_size = hole_end - *hole_start;
1681 else
1682 *hole_size = 0;
1683 changed = true;
1684 }
1685
1686 switch (device->fs_devices->chunk_alloc_policy) {
1687 case BTRFS_CHUNK_ALLOC_REGULAR:
1688 /* No extra check */
1689 break;
1690 case BTRFS_CHUNK_ALLOC_ZONED:
1691 if (dev_extent_hole_check_zoned(device, hole_start,
1692 hole_size, num_bytes)) {
1693 changed = true;
1694 /*
1695 * The changed hole can contain pending extent.
1696 * Loop again to check that.
1697 */
1698 continue;
1699 }
1700 break;
1701 default:
1702 BUG();
1703 }
1704
1705 break;
1706 }
1707
1708 return changed;
1709 }
1710
1711 /*
1712 * Find free space in the specified device.
1713 *
1714 * @device: the device which we search the free space in
1715 * @num_bytes: the size of the free space that we need
1716 * @search_start: the position from which to begin the search
1717 * @start: store the start of the free space.
1718 * @len: the size of the free space. that we find, or the size
1719 * of the max free space if we don't find suitable free space
1720 *
1721 * This does a pretty simple search, the expectation is that it is called very
1722 * infrequently and that a given device has a small number of extents.
1723 *
1724 * @start is used to store the start of the free space if we find. But if we
1725 * don't find suitable free space, it will be used to store the start position
1726 * of the max free space.
1727 *
1728 * @len is used to store the size of the free space that we find.
1729 * But if we don't find suitable free space, it is used to store the size of
1730 * the max free space.
1731 *
1732 * NOTE: This function will search *commit* root of device tree, and does extra
1733 * check to ensure dev extents are not double allocated.
1734 * This makes the function safe to allocate dev extents but may not report
1735 * correct usable device space, as device extent freed in current transaction
1736 * is not reported as available.
1737 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1738 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1739 u64 *start, u64 *len)
1740 {
1741 struct btrfs_fs_info *fs_info = device->fs_info;
1742 struct btrfs_root *root = fs_info->dev_root;
1743 struct btrfs_key key;
1744 struct btrfs_dev_extent *dev_extent;
1745 struct btrfs_path *path;
1746 u64 search_start;
1747 u64 hole_size;
1748 u64 max_hole_start;
1749 u64 max_hole_size = 0;
1750 u64 extent_end;
1751 u64 search_end = device->total_bytes;
1752 int ret;
1753 int slot;
1754 struct extent_buffer *l;
1755
1756 search_start = dev_extent_search_start(device);
1757 max_hole_start = search_start;
1758
1759 WARN_ON(device->zone_info &&
1760 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1761
1762 path = btrfs_alloc_path();
1763 if (!path) {
1764 ret = -ENOMEM;
1765 goto out;
1766 }
1767 again:
1768 if (search_start >= search_end ||
1769 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1770 ret = -ENOSPC;
1771 goto out;
1772 }
1773
1774 path->reada = READA_FORWARD;
1775 path->search_commit_root = 1;
1776 path->skip_locking = 1;
1777
1778 key.objectid = device->devid;
1779 key.offset = search_start;
1780 key.type = BTRFS_DEV_EXTENT_KEY;
1781
1782 ret = btrfs_search_backwards(root, &key, path);
1783 if (ret < 0)
1784 goto out;
1785
1786 while (search_start < search_end) {
1787 l = path->nodes[0];
1788 slot = path->slots[0];
1789 if (slot >= btrfs_header_nritems(l)) {
1790 ret = btrfs_next_leaf(root, path);
1791 if (ret == 0)
1792 continue;
1793 if (ret < 0)
1794 goto out;
1795
1796 break;
1797 }
1798 btrfs_item_key_to_cpu(l, &key, slot);
1799
1800 if (key.objectid < device->devid)
1801 goto next;
1802
1803 if (key.objectid > device->devid)
1804 break;
1805
1806 if (key.type != BTRFS_DEV_EXTENT_KEY)
1807 goto next;
1808
1809 if (key.offset > search_end)
1810 break;
1811
1812 if (key.offset > search_start) {
1813 hole_size = key.offset - search_start;
1814 dev_extent_hole_check(device, &search_start, &hole_size,
1815 num_bytes);
1816
1817 if (hole_size > max_hole_size) {
1818 max_hole_start = search_start;
1819 max_hole_size = hole_size;
1820 }
1821
1822 /*
1823 * If this free space is greater than which we need,
1824 * it must be the max free space that we have found
1825 * until now, so max_hole_start must point to the start
1826 * of this free space and the length of this free space
1827 * is stored in max_hole_size. Thus, we return
1828 * max_hole_start and max_hole_size and go back to the
1829 * caller.
1830 */
1831 if (hole_size >= num_bytes) {
1832 ret = 0;
1833 goto out;
1834 }
1835 }
1836
1837 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1838 extent_end = key.offset + btrfs_dev_extent_length(l,
1839 dev_extent);
1840 if (extent_end > search_start)
1841 search_start = extent_end;
1842 next:
1843 path->slots[0]++;
1844 cond_resched();
1845 }
1846
1847 /*
1848 * At this point, search_start should be the end of
1849 * allocated dev extents, and when shrinking the device,
1850 * search_end may be smaller than search_start.
1851 */
1852 if (search_end > search_start) {
1853 hole_size = search_end - search_start;
1854 if (dev_extent_hole_check(device, &search_start, &hole_size,
1855 num_bytes)) {
1856 btrfs_release_path(path);
1857 goto again;
1858 }
1859
1860 if (hole_size > max_hole_size) {
1861 max_hole_start = search_start;
1862 max_hole_size = hole_size;
1863 }
1864 }
1865
1866 /* See above. */
1867 if (max_hole_size < num_bytes)
1868 ret = -ENOSPC;
1869 else
1870 ret = 0;
1871
1872 ASSERT(max_hole_start + max_hole_size <= search_end);
1873 out:
1874 btrfs_free_path(path);
1875 *start = max_hole_start;
1876 if (len)
1877 *len = max_hole_size;
1878 return ret;
1879 }
1880
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1881 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1882 struct btrfs_device *device,
1883 u64 start, u64 *dev_extent_len)
1884 {
1885 struct btrfs_fs_info *fs_info = device->fs_info;
1886 struct btrfs_root *root = fs_info->dev_root;
1887 int ret;
1888 struct btrfs_path *path;
1889 struct btrfs_key key;
1890 struct btrfs_key found_key;
1891 struct extent_buffer *leaf = NULL;
1892 struct btrfs_dev_extent *extent = NULL;
1893
1894 path = btrfs_alloc_path();
1895 if (!path)
1896 return -ENOMEM;
1897
1898 key.objectid = device->devid;
1899 key.offset = start;
1900 key.type = BTRFS_DEV_EXTENT_KEY;
1901 again:
1902 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1903 if (ret > 0) {
1904 ret = btrfs_previous_item(root, path, key.objectid,
1905 BTRFS_DEV_EXTENT_KEY);
1906 if (ret)
1907 goto out;
1908 leaf = path->nodes[0];
1909 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1910 extent = btrfs_item_ptr(leaf, path->slots[0],
1911 struct btrfs_dev_extent);
1912 BUG_ON(found_key.offset > start || found_key.offset +
1913 btrfs_dev_extent_length(leaf, extent) < start);
1914 key = found_key;
1915 btrfs_release_path(path);
1916 goto again;
1917 } else if (ret == 0) {
1918 leaf = path->nodes[0];
1919 extent = btrfs_item_ptr(leaf, path->slots[0],
1920 struct btrfs_dev_extent);
1921 } else {
1922 goto out;
1923 }
1924
1925 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1926
1927 ret = btrfs_del_item(trans, root, path);
1928 if (ret == 0)
1929 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1930 out:
1931 btrfs_free_path(path);
1932 return ret;
1933 }
1934
find_next_chunk(struct btrfs_fs_info * fs_info)1935 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1936 {
1937 struct rb_node *n;
1938 u64 ret = 0;
1939
1940 read_lock(&fs_info->mapping_tree_lock);
1941 n = rb_last(&fs_info->mapping_tree.rb_root);
1942 if (n) {
1943 struct btrfs_chunk_map *map;
1944
1945 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1946 ret = map->start + map->chunk_len;
1947 }
1948 read_unlock(&fs_info->mapping_tree_lock);
1949
1950 return ret;
1951 }
1952
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1953 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1954 u64 *devid_ret)
1955 {
1956 int ret;
1957 struct btrfs_key key;
1958 struct btrfs_key found_key;
1959 struct btrfs_path *path;
1960
1961 path = btrfs_alloc_path();
1962 if (!path)
1963 return -ENOMEM;
1964
1965 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1966 key.type = BTRFS_DEV_ITEM_KEY;
1967 key.offset = (u64)-1;
1968
1969 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1970 if (ret < 0)
1971 goto error;
1972
1973 if (ret == 0) {
1974 /* Corruption */
1975 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1976 ret = -EUCLEAN;
1977 goto error;
1978 }
1979
1980 ret = btrfs_previous_item(fs_info->chunk_root, path,
1981 BTRFS_DEV_ITEMS_OBJECTID,
1982 BTRFS_DEV_ITEM_KEY);
1983 if (ret) {
1984 *devid_ret = 1;
1985 } else {
1986 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1987 path->slots[0]);
1988 *devid_ret = found_key.offset + 1;
1989 }
1990 ret = 0;
1991 error:
1992 btrfs_free_path(path);
1993 return ret;
1994 }
1995
1996 /*
1997 * the device information is stored in the chunk root
1998 * the btrfs_device struct should be fully filled in
1999 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2000 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
2001 struct btrfs_device *device)
2002 {
2003 int ret;
2004 struct btrfs_path *path;
2005 struct btrfs_dev_item *dev_item;
2006 struct extent_buffer *leaf;
2007 struct btrfs_key key;
2008 unsigned long ptr;
2009
2010 path = btrfs_alloc_path();
2011 if (!path)
2012 return -ENOMEM;
2013
2014 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2015 key.type = BTRFS_DEV_ITEM_KEY;
2016 key.offset = device->devid;
2017
2018 btrfs_reserve_chunk_metadata(trans, true);
2019 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
2020 &key, sizeof(*dev_item));
2021 btrfs_trans_release_chunk_metadata(trans);
2022 if (ret)
2023 goto out;
2024
2025 leaf = path->nodes[0];
2026 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2027
2028 btrfs_set_device_id(leaf, dev_item, device->devid);
2029 btrfs_set_device_generation(leaf, dev_item, 0);
2030 btrfs_set_device_type(leaf, dev_item, device->type);
2031 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2032 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2033 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2034 btrfs_set_device_total_bytes(leaf, dev_item,
2035 btrfs_device_get_disk_total_bytes(device));
2036 btrfs_set_device_bytes_used(leaf, dev_item,
2037 btrfs_device_get_bytes_used(device));
2038 btrfs_set_device_group(leaf, dev_item, 0);
2039 btrfs_set_device_seek_speed(leaf, dev_item, 0);
2040 btrfs_set_device_bandwidth(leaf, dev_item, 0);
2041 btrfs_set_device_start_offset(leaf, dev_item, 0);
2042
2043 ptr = btrfs_device_uuid(dev_item);
2044 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2045 ptr = btrfs_device_fsid(dev_item);
2046 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
2047 ptr, BTRFS_FSID_SIZE);
2048 btrfs_mark_buffer_dirty(trans, leaf);
2049
2050 ret = 0;
2051 out:
2052 btrfs_free_path(path);
2053 return ret;
2054 }
2055
2056 /*
2057 * Function to update ctime/mtime for a given device path.
2058 * Mainly used for ctime/mtime based probe like libblkid.
2059 *
2060 * We don't care about errors here, this is just to be kind to userspace.
2061 */
update_dev_time(const char * device_path)2062 static void update_dev_time(const char *device_path)
2063 {
2064 struct path path;
2065 int ret;
2066
2067 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2068 if (ret)
2069 return;
2070
2071 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2072 path_put(&path);
2073 }
2074
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2075 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2076 struct btrfs_device *device)
2077 {
2078 struct btrfs_root *root = device->fs_info->chunk_root;
2079 int ret;
2080 struct btrfs_path *path;
2081 struct btrfs_key key;
2082
2083 path = btrfs_alloc_path();
2084 if (!path)
2085 return -ENOMEM;
2086
2087 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2088 key.type = BTRFS_DEV_ITEM_KEY;
2089 key.offset = device->devid;
2090
2091 btrfs_reserve_chunk_metadata(trans, false);
2092 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2093 btrfs_trans_release_chunk_metadata(trans);
2094 if (ret) {
2095 if (ret > 0)
2096 ret = -ENOENT;
2097 goto out;
2098 }
2099
2100 ret = btrfs_del_item(trans, root, path);
2101 out:
2102 btrfs_free_path(path);
2103 return ret;
2104 }
2105
2106 /*
2107 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2108 * filesystem. It's up to the caller to adjust that number regarding eg. device
2109 * replace.
2110 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2111 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2112 u64 num_devices)
2113 {
2114 u64 all_avail;
2115 unsigned seq;
2116 int i;
2117
2118 do {
2119 seq = read_seqbegin(&fs_info->profiles_lock);
2120
2121 all_avail = fs_info->avail_data_alloc_bits |
2122 fs_info->avail_system_alloc_bits |
2123 fs_info->avail_metadata_alloc_bits;
2124 } while (read_seqretry(&fs_info->profiles_lock, seq));
2125
2126 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2127 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2128 continue;
2129
2130 if (num_devices < btrfs_raid_array[i].devs_min)
2131 return btrfs_raid_array[i].mindev_error;
2132 }
2133
2134 return 0;
2135 }
2136
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2137 static struct btrfs_device * btrfs_find_next_active_device(
2138 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2139 {
2140 struct btrfs_device *next_device;
2141
2142 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2143 if (next_device != device &&
2144 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2145 && next_device->bdev)
2146 return next_device;
2147 }
2148
2149 return NULL;
2150 }
2151
2152 /*
2153 * Helper function to check if the given device is part of s_bdev / latest_dev
2154 * and replace it with the provided or the next active device, in the context
2155 * where this function called, there should be always be another device (or
2156 * this_dev) which is active.
2157 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2158 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2159 struct btrfs_device *next_device)
2160 {
2161 struct btrfs_fs_info *fs_info = device->fs_info;
2162
2163 if (!next_device)
2164 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2165 device);
2166 ASSERT(next_device);
2167
2168 if (fs_info->sb->s_bdev &&
2169 (fs_info->sb->s_bdev == device->bdev))
2170 fs_info->sb->s_bdev = next_device->bdev;
2171
2172 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2173 fs_info->fs_devices->latest_dev = next_device;
2174 }
2175
2176 /*
2177 * Return btrfs_fs_devices::num_devices excluding the device that's being
2178 * currently replaced.
2179 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2180 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2181 {
2182 u64 num_devices = fs_info->fs_devices->num_devices;
2183
2184 down_read(&fs_info->dev_replace.rwsem);
2185 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2186 ASSERT(num_devices > 1);
2187 num_devices--;
2188 }
2189 up_read(&fs_info->dev_replace.rwsem);
2190
2191 return num_devices;
2192 }
2193
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2194 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2195 struct block_device *bdev, int copy_num)
2196 {
2197 struct btrfs_super_block *disk_super;
2198 const size_t len = sizeof(disk_super->magic);
2199 const u64 bytenr = btrfs_sb_offset(copy_num);
2200 int ret;
2201
2202 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2203 if (IS_ERR(disk_super))
2204 return;
2205
2206 memset(&disk_super->magic, 0, len);
2207 folio_mark_dirty(virt_to_folio(disk_super));
2208 btrfs_release_disk_super(disk_super);
2209
2210 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2211 if (ret)
2212 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2213 copy_num, ret);
2214 }
2215
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2216 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2217 {
2218 int copy_num;
2219 struct block_device *bdev = device->bdev;
2220
2221 if (!bdev)
2222 return;
2223
2224 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2225 if (bdev_is_zoned(bdev))
2226 btrfs_reset_sb_log_zones(bdev, copy_num);
2227 else
2228 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2229 }
2230
2231 /* Notify udev that device has changed */
2232 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2233
2234 /* Update ctime/mtime for device path for libblkid */
2235 update_dev_time(device->name->str);
2236 }
2237
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2238 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2239 struct btrfs_dev_lookup_args *args,
2240 struct file **bdev_file)
2241 {
2242 struct btrfs_trans_handle *trans;
2243 struct btrfs_device *device;
2244 struct btrfs_fs_devices *cur_devices;
2245 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2246 u64 num_devices;
2247 int ret = 0;
2248
2249 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2250 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2251 return -EINVAL;
2252 }
2253
2254 /*
2255 * The device list in fs_devices is accessed without locks (neither
2256 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2257 * filesystem and another device rm cannot run.
2258 */
2259 num_devices = btrfs_num_devices(fs_info);
2260
2261 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2262 if (ret)
2263 return ret;
2264
2265 device = btrfs_find_device(fs_info->fs_devices, args);
2266 if (!device) {
2267 if (args->missing)
2268 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2269 else
2270 ret = -ENOENT;
2271 return ret;
2272 }
2273
2274 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2275 btrfs_warn_in_rcu(fs_info,
2276 "cannot remove device %s (devid %llu) due to active swapfile",
2277 btrfs_dev_name(device), device->devid);
2278 return -ETXTBSY;
2279 }
2280
2281 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2282 return BTRFS_ERROR_DEV_TGT_REPLACE;
2283
2284 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2285 fs_info->fs_devices->rw_devices == 1)
2286 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2287
2288 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2289 mutex_lock(&fs_info->chunk_mutex);
2290 list_del_init(&device->dev_alloc_list);
2291 device->fs_devices->rw_devices--;
2292 mutex_unlock(&fs_info->chunk_mutex);
2293 }
2294
2295 ret = btrfs_shrink_device(device, 0);
2296 if (ret)
2297 goto error_undo;
2298
2299 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2300 if (IS_ERR(trans)) {
2301 ret = PTR_ERR(trans);
2302 goto error_undo;
2303 }
2304
2305 ret = btrfs_rm_dev_item(trans, device);
2306 if (ret) {
2307 /* Any error in dev item removal is critical */
2308 btrfs_crit(fs_info,
2309 "failed to remove device item for devid %llu: %d",
2310 device->devid, ret);
2311 btrfs_abort_transaction(trans, ret);
2312 btrfs_end_transaction(trans);
2313 return ret;
2314 }
2315
2316 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2317 btrfs_scrub_cancel_dev(device);
2318
2319 /*
2320 * the device list mutex makes sure that we don't change
2321 * the device list while someone else is writing out all
2322 * the device supers. Whoever is writing all supers, should
2323 * lock the device list mutex before getting the number of
2324 * devices in the super block (super_copy). Conversely,
2325 * whoever updates the number of devices in the super block
2326 * (super_copy) should hold the device list mutex.
2327 */
2328
2329 /*
2330 * In normal cases the cur_devices == fs_devices. But in case
2331 * of deleting a seed device, the cur_devices should point to
2332 * its own fs_devices listed under the fs_devices->seed_list.
2333 */
2334 cur_devices = device->fs_devices;
2335 mutex_lock(&fs_devices->device_list_mutex);
2336 list_del_rcu(&device->dev_list);
2337
2338 cur_devices->num_devices--;
2339 cur_devices->total_devices--;
2340 /* Update total_devices of the parent fs_devices if it's seed */
2341 if (cur_devices != fs_devices)
2342 fs_devices->total_devices--;
2343
2344 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2345 cur_devices->missing_devices--;
2346
2347 btrfs_assign_next_active_device(device, NULL);
2348
2349 if (device->bdev_file) {
2350 cur_devices->open_devices--;
2351 /* remove sysfs entry */
2352 btrfs_sysfs_remove_device(device);
2353 }
2354
2355 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2356 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2357 mutex_unlock(&fs_devices->device_list_mutex);
2358
2359 /*
2360 * At this point, the device is zero sized and detached from the
2361 * devices list. All that's left is to zero out the old supers and
2362 * free the device.
2363 *
2364 * We cannot call btrfs_close_bdev() here because we're holding the sb
2365 * write lock, and fput() on the block device will pull in the
2366 * ->open_mutex on the block device and it's dependencies. Instead
2367 * just flush the device and let the caller do the final bdev_release.
2368 */
2369 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2370 btrfs_scratch_superblocks(fs_info, device);
2371 if (device->bdev) {
2372 sync_blockdev(device->bdev);
2373 invalidate_bdev(device->bdev);
2374 }
2375 }
2376
2377 *bdev_file = device->bdev_file;
2378 synchronize_rcu();
2379 btrfs_free_device(device);
2380
2381 /*
2382 * This can happen if cur_devices is the private seed devices list. We
2383 * cannot call close_fs_devices() here because it expects the uuid_mutex
2384 * to be held, but in fact we don't need that for the private
2385 * seed_devices, we can simply decrement cur_devices->opened and then
2386 * remove it from our list and free the fs_devices.
2387 */
2388 if (cur_devices->num_devices == 0) {
2389 list_del_init(&cur_devices->seed_list);
2390 ASSERT(cur_devices->opened == 1);
2391 cur_devices->opened--;
2392 free_fs_devices(cur_devices);
2393 }
2394
2395 ret = btrfs_commit_transaction(trans);
2396
2397 return ret;
2398
2399 error_undo:
2400 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2401 mutex_lock(&fs_info->chunk_mutex);
2402 list_add(&device->dev_alloc_list,
2403 &fs_devices->alloc_list);
2404 device->fs_devices->rw_devices++;
2405 mutex_unlock(&fs_info->chunk_mutex);
2406 }
2407 return ret;
2408 }
2409
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2410 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2411 {
2412 struct btrfs_fs_devices *fs_devices;
2413
2414 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2415
2416 /*
2417 * in case of fs with no seed, srcdev->fs_devices will point
2418 * to fs_devices of fs_info. However when the dev being replaced is
2419 * a seed dev it will point to the seed's local fs_devices. In short
2420 * srcdev will have its correct fs_devices in both the cases.
2421 */
2422 fs_devices = srcdev->fs_devices;
2423
2424 list_del_rcu(&srcdev->dev_list);
2425 list_del(&srcdev->dev_alloc_list);
2426 fs_devices->num_devices--;
2427 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2428 fs_devices->missing_devices--;
2429
2430 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2431 fs_devices->rw_devices--;
2432
2433 if (srcdev->bdev)
2434 fs_devices->open_devices--;
2435 }
2436
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2437 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2438 {
2439 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2440
2441 mutex_lock(&uuid_mutex);
2442
2443 btrfs_close_bdev(srcdev);
2444 synchronize_rcu();
2445 btrfs_free_device(srcdev);
2446
2447 /* if this is no devs we rather delete the fs_devices */
2448 if (!fs_devices->num_devices) {
2449 /*
2450 * On a mounted FS, num_devices can't be zero unless it's a
2451 * seed. In case of a seed device being replaced, the replace
2452 * target added to the sprout FS, so there will be no more
2453 * device left under the seed FS.
2454 */
2455 ASSERT(fs_devices->seeding);
2456
2457 list_del_init(&fs_devices->seed_list);
2458 close_fs_devices(fs_devices);
2459 free_fs_devices(fs_devices);
2460 }
2461 mutex_unlock(&uuid_mutex);
2462 }
2463
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2464 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2465 {
2466 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2467
2468 mutex_lock(&fs_devices->device_list_mutex);
2469
2470 btrfs_sysfs_remove_device(tgtdev);
2471
2472 if (tgtdev->bdev)
2473 fs_devices->open_devices--;
2474
2475 fs_devices->num_devices--;
2476
2477 btrfs_assign_next_active_device(tgtdev, NULL);
2478
2479 list_del_rcu(&tgtdev->dev_list);
2480
2481 mutex_unlock(&fs_devices->device_list_mutex);
2482
2483 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2484
2485 btrfs_close_bdev(tgtdev);
2486 synchronize_rcu();
2487 btrfs_free_device(tgtdev);
2488 }
2489
2490 /*
2491 * Populate args from device at path.
2492 *
2493 * @fs_info: the filesystem
2494 * @args: the args to populate
2495 * @path: the path to the device
2496 *
2497 * This will read the super block of the device at @path and populate @args with
2498 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2499 * lookup a device to operate on, but need to do it before we take any locks.
2500 * This properly handles the special case of "missing" that a user may pass in,
2501 * and does some basic sanity checks. The caller must make sure that @path is
2502 * properly NUL terminated before calling in, and must call
2503 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2504 * uuid buffers.
2505 *
2506 * Return: 0 for success, -errno for failure
2507 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2508 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2509 struct btrfs_dev_lookup_args *args,
2510 const char *path)
2511 {
2512 struct btrfs_super_block *disk_super;
2513 struct file *bdev_file;
2514 int ret;
2515
2516 if (!path || !path[0])
2517 return -EINVAL;
2518 if (!strcmp(path, "missing")) {
2519 args->missing = true;
2520 return 0;
2521 }
2522
2523 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2524 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2525 if (!args->uuid || !args->fsid) {
2526 btrfs_put_dev_args_from_path(args);
2527 return -ENOMEM;
2528 }
2529
2530 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2531 &bdev_file, &disk_super);
2532 if (ret) {
2533 btrfs_put_dev_args_from_path(args);
2534 return ret;
2535 }
2536
2537 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2538 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2539 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2540 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2541 else
2542 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2543 btrfs_release_disk_super(disk_super);
2544 fput(bdev_file);
2545 return 0;
2546 }
2547
2548 /*
2549 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2550 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2551 * that don't need to be freed.
2552 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2553 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2554 {
2555 kfree(args->uuid);
2556 kfree(args->fsid);
2557 args->uuid = NULL;
2558 args->fsid = NULL;
2559 }
2560
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2561 struct btrfs_device *btrfs_find_device_by_devspec(
2562 struct btrfs_fs_info *fs_info, u64 devid,
2563 const char *device_path)
2564 {
2565 BTRFS_DEV_LOOKUP_ARGS(args);
2566 struct btrfs_device *device;
2567 int ret;
2568
2569 if (devid) {
2570 args.devid = devid;
2571 device = btrfs_find_device(fs_info->fs_devices, &args);
2572 if (!device)
2573 return ERR_PTR(-ENOENT);
2574 return device;
2575 }
2576
2577 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2578 if (ret)
2579 return ERR_PTR(ret);
2580 device = btrfs_find_device(fs_info->fs_devices, &args);
2581 btrfs_put_dev_args_from_path(&args);
2582 if (!device)
2583 return ERR_PTR(-ENOENT);
2584 return device;
2585 }
2586
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2587 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2588 {
2589 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2590 struct btrfs_fs_devices *old_devices;
2591 struct btrfs_fs_devices *seed_devices;
2592
2593 lockdep_assert_held(&uuid_mutex);
2594 if (!fs_devices->seeding)
2595 return ERR_PTR(-EINVAL);
2596
2597 /*
2598 * Private copy of the seed devices, anchored at
2599 * fs_info->fs_devices->seed_list
2600 */
2601 seed_devices = alloc_fs_devices(NULL);
2602 if (IS_ERR(seed_devices))
2603 return seed_devices;
2604
2605 /*
2606 * It's necessary to retain a copy of the original seed fs_devices in
2607 * fs_uuids so that filesystems which have been seeded can successfully
2608 * reference the seed device from open_seed_devices. This also supports
2609 * multiple fs seed.
2610 */
2611 old_devices = clone_fs_devices(fs_devices);
2612 if (IS_ERR(old_devices)) {
2613 kfree(seed_devices);
2614 return old_devices;
2615 }
2616
2617 list_add(&old_devices->fs_list, &fs_uuids);
2618
2619 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2620 seed_devices->opened = 1;
2621 INIT_LIST_HEAD(&seed_devices->devices);
2622 INIT_LIST_HEAD(&seed_devices->alloc_list);
2623 mutex_init(&seed_devices->device_list_mutex);
2624
2625 return seed_devices;
2626 }
2627
2628 /*
2629 * Splice seed devices into the sprout fs_devices.
2630 * Generate a new fsid for the sprouted read-write filesystem.
2631 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2632 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2633 struct btrfs_fs_devices *seed_devices)
2634 {
2635 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2636 struct btrfs_super_block *disk_super = fs_info->super_copy;
2637 struct btrfs_device *device;
2638 u64 super_flags;
2639
2640 /*
2641 * We are updating the fsid, the thread leading to device_list_add()
2642 * could race, so uuid_mutex is needed.
2643 */
2644 lockdep_assert_held(&uuid_mutex);
2645
2646 /*
2647 * The threads listed below may traverse dev_list but can do that without
2648 * device_list_mutex:
2649 * - All device ops and balance - as we are in btrfs_exclop_start.
2650 * - Various dev_list readers - are using RCU.
2651 * - btrfs_ioctl_fitrim() - is using RCU.
2652 *
2653 * For-read threads as below are using device_list_mutex:
2654 * - Readonly scrub btrfs_scrub_dev()
2655 * - Readonly scrub btrfs_scrub_progress()
2656 * - btrfs_get_dev_stats()
2657 */
2658 lockdep_assert_held(&fs_devices->device_list_mutex);
2659
2660 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2661 synchronize_rcu);
2662 list_for_each_entry(device, &seed_devices->devices, dev_list)
2663 device->fs_devices = seed_devices;
2664
2665 fs_devices->seeding = false;
2666 fs_devices->num_devices = 0;
2667 fs_devices->open_devices = 0;
2668 fs_devices->missing_devices = 0;
2669 fs_devices->rotating = false;
2670 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2671
2672 generate_random_uuid(fs_devices->fsid);
2673 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2674 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2675
2676 super_flags = btrfs_super_flags(disk_super) &
2677 ~BTRFS_SUPER_FLAG_SEEDING;
2678 btrfs_set_super_flags(disk_super, super_flags);
2679 }
2680
2681 /*
2682 * Store the expected generation for seed devices in device items.
2683 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2684 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2685 {
2686 BTRFS_DEV_LOOKUP_ARGS(args);
2687 struct btrfs_fs_info *fs_info = trans->fs_info;
2688 struct btrfs_root *root = fs_info->chunk_root;
2689 struct btrfs_path *path;
2690 struct extent_buffer *leaf;
2691 struct btrfs_dev_item *dev_item;
2692 struct btrfs_device *device;
2693 struct btrfs_key key;
2694 u8 fs_uuid[BTRFS_FSID_SIZE];
2695 u8 dev_uuid[BTRFS_UUID_SIZE];
2696 int ret;
2697
2698 path = btrfs_alloc_path();
2699 if (!path)
2700 return -ENOMEM;
2701
2702 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2703 key.offset = 0;
2704 key.type = BTRFS_DEV_ITEM_KEY;
2705
2706 while (1) {
2707 btrfs_reserve_chunk_metadata(trans, false);
2708 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2709 btrfs_trans_release_chunk_metadata(trans);
2710 if (ret < 0)
2711 goto error;
2712
2713 leaf = path->nodes[0];
2714 next_slot:
2715 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2716 ret = btrfs_next_leaf(root, path);
2717 if (ret > 0)
2718 break;
2719 if (ret < 0)
2720 goto error;
2721 leaf = path->nodes[0];
2722 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2723 btrfs_release_path(path);
2724 continue;
2725 }
2726
2727 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2728 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2729 key.type != BTRFS_DEV_ITEM_KEY)
2730 break;
2731
2732 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2733 struct btrfs_dev_item);
2734 args.devid = btrfs_device_id(leaf, dev_item);
2735 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2736 BTRFS_UUID_SIZE);
2737 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2738 BTRFS_FSID_SIZE);
2739 args.uuid = dev_uuid;
2740 args.fsid = fs_uuid;
2741 device = btrfs_find_device(fs_info->fs_devices, &args);
2742 BUG_ON(!device); /* Logic error */
2743
2744 if (device->fs_devices->seeding) {
2745 btrfs_set_device_generation(leaf, dev_item,
2746 device->generation);
2747 btrfs_mark_buffer_dirty(trans, leaf);
2748 }
2749
2750 path->slots[0]++;
2751 goto next_slot;
2752 }
2753 ret = 0;
2754 error:
2755 btrfs_free_path(path);
2756 return ret;
2757 }
2758
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2759 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2760 {
2761 struct btrfs_root *root = fs_info->dev_root;
2762 struct btrfs_trans_handle *trans;
2763 struct btrfs_device *device;
2764 struct file *bdev_file;
2765 struct super_block *sb = fs_info->sb;
2766 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2767 struct btrfs_fs_devices *seed_devices = NULL;
2768 u64 orig_super_total_bytes;
2769 u64 orig_super_num_devices;
2770 int ret = 0;
2771 bool seeding_dev = false;
2772 bool locked = false;
2773
2774 if (sb_rdonly(sb) && !fs_devices->seeding)
2775 return -EROFS;
2776
2777 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2778 fs_info->bdev_holder, NULL);
2779 if (IS_ERR(bdev_file))
2780 return PTR_ERR(bdev_file);
2781
2782 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2783 ret = -EINVAL;
2784 goto error;
2785 }
2786
2787 if (fs_devices->seeding) {
2788 seeding_dev = true;
2789 down_write(&sb->s_umount);
2790 mutex_lock(&uuid_mutex);
2791 locked = true;
2792 }
2793
2794 sync_blockdev(file_bdev(bdev_file));
2795
2796 rcu_read_lock();
2797 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2798 if (device->bdev == file_bdev(bdev_file)) {
2799 ret = -EEXIST;
2800 rcu_read_unlock();
2801 goto error;
2802 }
2803 }
2804 rcu_read_unlock();
2805
2806 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2807 if (IS_ERR(device)) {
2808 /* we can safely leave the fs_devices entry around */
2809 ret = PTR_ERR(device);
2810 goto error;
2811 }
2812
2813 device->fs_info = fs_info;
2814 device->bdev_file = bdev_file;
2815 device->bdev = file_bdev(bdev_file);
2816 ret = lookup_bdev(device_path, &device->devt);
2817 if (ret)
2818 goto error_free_device;
2819
2820 ret = btrfs_get_dev_zone_info(device, false);
2821 if (ret)
2822 goto error_free_device;
2823
2824 trans = btrfs_start_transaction(root, 0);
2825 if (IS_ERR(trans)) {
2826 ret = PTR_ERR(trans);
2827 goto error_free_zone;
2828 }
2829
2830 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2831 device->generation = trans->transid;
2832 device->io_width = fs_info->sectorsize;
2833 device->io_align = fs_info->sectorsize;
2834 device->sector_size = fs_info->sectorsize;
2835 device->total_bytes =
2836 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2837 device->disk_total_bytes = device->total_bytes;
2838 device->commit_total_bytes = device->total_bytes;
2839 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2840 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2841 device->dev_stats_valid = 1;
2842 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2843
2844 if (seeding_dev) {
2845 /* GFP_KERNEL allocation must not be under device_list_mutex */
2846 seed_devices = btrfs_init_sprout(fs_info);
2847 if (IS_ERR(seed_devices)) {
2848 ret = PTR_ERR(seed_devices);
2849 btrfs_abort_transaction(trans, ret);
2850 goto error_trans;
2851 }
2852 }
2853
2854 mutex_lock(&fs_devices->device_list_mutex);
2855 if (seeding_dev) {
2856 btrfs_setup_sprout(fs_info, seed_devices);
2857 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2858 device);
2859 }
2860
2861 device->fs_devices = fs_devices;
2862
2863 mutex_lock(&fs_info->chunk_mutex);
2864 list_add_rcu(&device->dev_list, &fs_devices->devices);
2865 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2866 fs_devices->num_devices++;
2867 fs_devices->open_devices++;
2868 fs_devices->rw_devices++;
2869 fs_devices->total_devices++;
2870 fs_devices->total_rw_bytes += device->total_bytes;
2871
2872 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2873
2874 if (!bdev_nonrot(device->bdev))
2875 fs_devices->rotating = true;
2876
2877 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2878 btrfs_set_super_total_bytes(fs_info->super_copy,
2879 round_down(orig_super_total_bytes + device->total_bytes,
2880 fs_info->sectorsize));
2881
2882 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2883 btrfs_set_super_num_devices(fs_info->super_copy,
2884 orig_super_num_devices + 1);
2885
2886 /*
2887 * we've got more storage, clear any full flags on the space
2888 * infos
2889 */
2890 btrfs_clear_space_info_full(fs_info);
2891
2892 mutex_unlock(&fs_info->chunk_mutex);
2893
2894 /* Add sysfs device entry */
2895 btrfs_sysfs_add_device(device);
2896
2897 mutex_unlock(&fs_devices->device_list_mutex);
2898
2899 if (seeding_dev) {
2900 mutex_lock(&fs_info->chunk_mutex);
2901 ret = init_first_rw_device(trans);
2902 mutex_unlock(&fs_info->chunk_mutex);
2903 if (ret) {
2904 btrfs_abort_transaction(trans, ret);
2905 goto error_sysfs;
2906 }
2907 }
2908
2909 ret = btrfs_add_dev_item(trans, device);
2910 if (ret) {
2911 btrfs_abort_transaction(trans, ret);
2912 goto error_sysfs;
2913 }
2914
2915 if (seeding_dev) {
2916 ret = btrfs_finish_sprout(trans);
2917 if (ret) {
2918 btrfs_abort_transaction(trans, ret);
2919 goto error_sysfs;
2920 }
2921
2922 /*
2923 * fs_devices now represents the newly sprouted filesystem and
2924 * its fsid has been changed by btrfs_sprout_splice().
2925 */
2926 btrfs_sysfs_update_sprout_fsid(fs_devices);
2927 }
2928
2929 ret = btrfs_commit_transaction(trans);
2930
2931 if (seeding_dev) {
2932 mutex_unlock(&uuid_mutex);
2933 up_write(&sb->s_umount);
2934 locked = false;
2935
2936 if (ret) /* transaction commit */
2937 return ret;
2938
2939 ret = btrfs_relocate_sys_chunks(fs_info);
2940 if (ret < 0)
2941 btrfs_handle_fs_error(fs_info, ret,
2942 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2943 trans = btrfs_attach_transaction(root);
2944 if (IS_ERR(trans)) {
2945 if (PTR_ERR(trans) == -ENOENT)
2946 return 0;
2947 ret = PTR_ERR(trans);
2948 trans = NULL;
2949 goto error_sysfs;
2950 }
2951 ret = btrfs_commit_transaction(trans);
2952 }
2953
2954 /*
2955 * Now that we have written a new super block to this device, check all
2956 * other fs_devices list if device_path alienates any other scanned
2957 * device.
2958 * We can ignore the return value as it typically returns -EINVAL and
2959 * only succeeds if the device was an alien.
2960 */
2961 btrfs_forget_devices(device->devt);
2962
2963 /* Update ctime/mtime for blkid or udev */
2964 update_dev_time(device_path);
2965
2966 return ret;
2967
2968 error_sysfs:
2969 btrfs_sysfs_remove_device(device);
2970 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2971 mutex_lock(&fs_info->chunk_mutex);
2972 list_del_rcu(&device->dev_list);
2973 list_del(&device->dev_alloc_list);
2974 fs_info->fs_devices->num_devices--;
2975 fs_info->fs_devices->open_devices--;
2976 fs_info->fs_devices->rw_devices--;
2977 fs_info->fs_devices->total_devices--;
2978 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2979 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2980 btrfs_set_super_total_bytes(fs_info->super_copy,
2981 orig_super_total_bytes);
2982 btrfs_set_super_num_devices(fs_info->super_copy,
2983 orig_super_num_devices);
2984 mutex_unlock(&fs_info->chunk_mutex);
2985 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986 error_trans:
2987 if (trans)
2988 btrfs_end_transaction(trans);
2989 error_free_zone:
2990 btrfs_destroy_dev_zone_info(device);
2991 error_free_device:
2992 btrfs_free_device(device);
2993 error:
2994 fput(bdev_file);
2995 if (locked) {
2996 mutex_unlock(&uuid_mutex);
2997 up_write(&sb->s_umount);
2998 }
2999 return ret;
3000 }
3001
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)3002 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
3003 struct btrfs_device *device)
3004 {
3005 int ret;
3006 struct btrfs_path *path;
3007 struct btrfs_root *root = device->fs_info->chunk_root;
3008 struct btrfs_dev_item *dev_item;
3009 struct extent_buffer *leaf;
3010 struct btrfs_key key;
3011
3012 path = btrfs_alloc_path();
3013 if (!path)
3014 return -ENOMEM;
3015
3016 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3017 key.type = BTRFS_DEV_ITEM_KEY;
3018 key.offset = device->devid;
3019
3020 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3021 if (ret < 0)
3022 goto out;
3023
3024 if (ret > 0) {
3025 ret = -ENOENT;
3026 goto out;
3027 }
3028
3029 leaf = path->nodes[0];
3030 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
3031
3032 btrfs_set_device_id(leaf, dev_item, device->devid);
3033 btrfs_set_device_type(leaf, dev_item, device->type);
3034 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
3035 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
3036 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
3037 btrfs_set_device_total_bytes(leaf, dev_item,
3038 btrfs_device_get_disk_total_bytes(device));
3039 btrfs_set_device_bytes_used(leaf, dev_item,
3040 btrfs_device_get_bytes_used(device));
3041 btrfs_mark_buffer_dirty(trans, leaf);
3042
3043 out:
3044 btrfs_free_path(path);
3045 return ret;
3046 }
3047
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)3048 int btrfs_grow_device(struct btrfs_trans_handle *trans,
3049 struct btrfs_device *device, u64 new_size)
3050 {
3051 struct btrfs_fs_info *fs_info = device->fs_info;
3052 struct btrfs_super_block *super_copy = fs_info->super_copy;
3053 u64 old_total;
3054 u64 diff;
3055 int ret;
3056
3057 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
3058 return -EACCES;
3059
3060 new_size = round_down(new_size, fs_info->sectorsize);
3061
3062 mutex_lock(&fs_info->chunk_mutex);
3063 old_total = btrfs_super_total_bytes(super_copy);
3064 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3065
3066 if (new_size <= device->total_bytes ||
3067 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3068 mutex_unlock(&fs_info->chunk_mutex);
3069 return -EINVAL;
3070 }
3071
3072 btrfs_set_super_total_bytes(super_copy,
3073 round_down(old_total + diff, fs_info->sectorsize));
3074 device->fs_devices->total_rw_bytes += diff;
3075 atomic64_add(diff, &fs_info->free_chunk_space);
3076
3077 btrfs_device_set_total_bytes(device, new_size);
3078 btrfs_device_set_disk_total_bytes(device, new_size);
3079 btrfs_clear_space_info_full(device->fs_info);
3080 if (list_empty(&device->post_commit_list))
3081 list_add_tail(&device->post_commit_list,
3082 &trans->transaction->dev_update_list);
3083 mutex_unlock(&fs_info->chunk_mutex);
3084
3085 btrfs_reserve_chunk_metadata(trans, false);
3086 ret = btrfs_update_device(trans, device);
3087 btrfs_trans_release_chunk_metadata(trans);
3088
3089 return ret;
3090 }
3091
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3092 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3093 {
3094 struct btrfs_fs_info *fs_info = trans->fs_info;
3095 struct btrfs_root *root = fs_info->chunk_root;
3096 int ret;
3097 struct btrfs_path *path;
3098 struct btrfs_key key;
3099
3100 path = btrfs_alloc_path();
3101 if (!path)
3102 return -ENOMEM;
3103
3104 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3105 key.offset = chunk_offset;
3106 key.type = BTRFS_CHUNK_ITEM_KEY;
3107
3108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3109 if (ret < 0)
3110 goto out;
3111 else if (ret > 0) { /* Logic error or corruption */
3112 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3113 chunk_offset);
3114 btrfs_abort_transaction(trans, -ENOENT);
3115 ret = -EUCLEAN;
3116 goto out;
3117 }
3118
3119 ret = btrfs_del_item(trans, root, path);
3120 if (ret < 0) {
3121 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3122 btrfs_abort_transaction(trans, ret);
3123 goto out;
3124 }
3125 out:
3126 btrfs_free_path(path);
3127 return ret;
3128 }
3129
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3130 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3131 {
3132 struct btrfs_super_block *super_copy = fs_info->super_copy;
3133 struct btrfs_disk_key *disk_key;
3134 struct btrfs_chunk *chunk;
3135 u8 *ptr;
3136 int ret = 0;
3137 u32 num_stripes;
3138 u32 array_size;
3139 u32 len = 0;
3140 u32 cur;
3141 struct btrfs_key key;
3142
3143 lockdep_assert_held(&fs_info->chunk_mutex);
3144 array_size = btrfs_super_sys_array_size(super_copy);
3145
3146 ptr = super_copy->sys_chunk_array;
3147 cur = 0;
3148
3149 while (cur < array_size) {
3150 disk_key = (struct btrfs_disk_key *)ptr;
3151 btrfs_disk_key_to_cpu(&key, disk_key);
3152
3153 len = sizeof(*disk_key);
3154
3155 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3156 chunk = (struct btrfs_chunk *)(ptr + len);
3157 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3158 len += btrfs_chunk_item_size(num_stripes);
3159 } else {
3160 ret = -EIO;
3161 break;
3162 }
3163 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3164 key.offset == chunk_offset) {
3165 memmove(ptr, ptr + len, array_size - (cur + len));
3166 array_size -= len;
3167 btrfs_set_super_sys_array_size(super_copy, array_size);
3168 } else {
3169 ptr += len;
3170 cur += len;
3171 }
3172 }
3173 return ret;
3174 }
3175
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3176 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3177 u64 logical, u64 length)
3178 {
3179 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3180 struct rb_node *prev = NULL;
3181 struct rb_node *orig_prev;
3182 struct btrfs_chunk_map *map;
3183 struct btrfs_chunk_map *prev_map = NULL;
3184
3185 while (node) {
3186 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3187 prev = node;
3188 prev_map = map;
3189
3190 if (logical < map->start) {
3191 node = node->rb_left;
3192 } else if (logical >= map->start + map->chunk_len) {
3193 node = node->rb_right;
3194 } else {
3195 refcount_inc(&map->refs);
3196 return map;
3197 }
3198 }
3199
3200 if (!prev)
3201 return NULL;
3202
3203 orig_prev = prev;
3204 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3205 prev = rb_next(prev);
3206 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3207 }
3208
3209 if (!prev) {
3210 prev = orig_prev;
3211 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3212 while (prev && logical < prev_map->start) {
3213 prev = rb_prev(prev);
3214 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3215 }
3216 }
3217
3218 if (prev) {
3219 u64 end = logical + length;
3220
3221 /*
3222 * Caller can pass a U64_MAX length when it wants to get any
3223 * chunk starting at an offset of 'logical' or higher, so deal
3224 * with underflow by resetting the end offset to U64_MAX.
3225 */
3226 if (end < logical)
3227 end = U64_MAX;
3228
3229 if (end > prev_map->start &&
3230 logical < prev_map->start + prev_map->chunk_len) {
3231 refcount_inc(&prev_map->refs);
3232 return prev_map;
3233 }
3234 }
3235
3236 return NULL;
3237 }
3238
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3239 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3240 u64 logical, u64 length)
3241 {
3242 struct btrfs_chunk_map *map;
3243
3244 read_lock(&fs_info->mapping_tree_lock);
3245 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3246 read_unlock(&fs_info->mapping_tree_lock);
3247
3248 return map;
3249 }
3250
3251 /*
3252 * Find the mapping containing the given logical extent.
3253 *
3254 * @logical: Logical block offset in bytes.
3255 * @length: Length of extent in bytes.
3256 *
3257 * Return: Chunk mapping or ERR_PTR.
3258 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3259 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3260 u64 logical, u64 length)
3261 {
3262 struct btrfs_chunk_map *map;
3263
3264 map = btrfs_find_chunk_map(fs_info, logical, length);
3265
3266 if (unlikely(!map)) {
3267 btrfs_crit(fs_info,
3268 "unable to find chunk map for logical %llu length %llu",
3269 logical, length);
3270 return ERR_PTR(-EINVAL);
3271 }
3272
3273 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3274 btrfs_crit(fs_info,
3275 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3276 logical, logical + length, map->start,
3277 map->start + map->chunk_len);
3278 btrfs_free_chunk_map(map);
3279 return ERR_PTR(-EINVAL);
3280 }
3281
3282 /* Callers are responsible for dropping the reference. */
3283 return map;
3284 }
3285
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3286 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3287 struct btrfs_chunk_map *map, u64 chunk_offset)
3288 {
3289 int i;
3290
3291 /*
3292 * Removing chunk items and updating the device items in the chunks btree
3293 * requires holding the chunk_mutex.
3294 * See the comment at btrfs_chunk_alloc() for the details.
3295 */
3296 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3297
3298 for (i = 0; i < map->num_stripes; i++) {
3299 int ret;
3300
3301 ret = btrfs_update_device(trans, map->stripes[i].dev);
3302 if (ret)
3303 return ret;
3304 }
3305
3306 return btrfs_free_chunk(trans, chunk_offset);
3307 }
3308
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3309 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3310 {
3311 struct btrfs_fs_info *fs_info = trans->fs_info;
3312 struct btrfs_chunk_map *map;
3313 u64 dev_extent_len = 0;
3314 int i, ret = 0;
3315 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3316
3317 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3318 if (IS_ERR(map)) {
3319 /*
3320 * This is a logic error, but we don't want to just rely on the
3321 * user having built with ASSERT enabled, so if ASSERT doesn't
3322 * do anything we still error out.
3323 */
3324 ASSERT(0);
3325 return PTR_ERR(map);
3326 }
3327
3328 /*
3329 * First delete the device extent items from the devices btree.
3330 * We take the device_list_mutex to avoid racing with the finishing phase
3331 * of a device replace operation. See the comment below before acquiring
3332 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3333 * because that can result in a deadlock when deleting the device extent
3334 * items from the devices btree - COWing an extent buffer from the btree
3335 * may result in allocating a new metadata chunk, which would attempt to
3336 * lock again fs_info->chunk_mutex.
3337 */
3338 mutex_lock(&fs_devices->device_list_mutex);
3339 for (i = 0; i < map->num_stripes; i++) {
3340 struct btrfs_device *device = map->stripes[i].dev;
3341 ret = btrfs_free_dev_extent(trans, device,
3342 map->stripes[i].physical,
3343 &dev_extent_len);
3344 if (ret) {
3345 mutex_unlock(&fs_devices->device_list_mutex);
3346 btrfs_abort_transaction(trans, ret);
3347 goto out;
3348 }
3349
3350 if (device->bytes_used > 0) {
3351 mutex_lock(&fs_info->chunk_mutex);
3352 btrfs_device_set_bytes_used(device,
3353 device->bytes_used - dev_extent_len);
3354 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3355 btrfs_clear_space_info_full(fs_info);
3356 mutex_unlock(&fs_info->chunk_mutex);
3357 }
3358 }
3359 mutex_unlock(&fs_devices->device_list_mutex);
3360
3361 /*
3362 * We acquire fs_info->chunk_mutex for 2 reasons:
3363 *
3364 * 1) Just like with the first phase of the chunk allocation, we must
3365 * reserve system space, do all chunk btree updates and deletions, and
3366 * update the system chunk array in the superblock while holding this
3367 * mutex. This is for similar reasons as explained on the comment at
3368 * the top of btrfs_chunk_alloc();
3369 *
3370 * 2) Prevent races with the final phase of a device replace operation
3371 * that replaces the device object associated with the map's stripes,
3372 * because the device object's id can change at any time during that
3373 * final phase of the device replace operation
3374 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3375 * replaced device and then see it with an ID of
3376 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3377 * the device item, which does not exists on the chunk btree.
3378 * The finishing phase of device replace acquires both the
3379 * device_list_mutex and the chunk_mutex, in that order, so we are
3380 * safe by just acquiring the chunk_mutex.
3381 */
3382 trans->removing_chunk = true;
3383 mutex_lock(&fs_info->chunk_mutex);
3384
3385 check_system_chunk(trans, map->type);
3386
3387 ret = remove_chunk_item(trans, map, chunk_offset);
3388 /*
3389 * Normally we should not get -ENOSPC since we reserved space before
3390 * through the call to check_system_chunk().
3391 *
3392 * Despite our system space_info having enough free space, we may not
3393 * be able to allocate extents from its block groups, because all have
3394 * an incompatible profile, which will force us to allocate a new system
3395 * block group with the right profile, or right after we called
3396 * check_system_space() above, a scrub turned the only system block group
3397 * with enough free space into RO mode.
3398 * This is explained with more detail at do_chunk_alloc().
3399 *
3400 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3401 */
3402 if (ret == -ENOSPC) {
3403 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3404 struct btrfs_block_group *sys_bg;
3405
3406 sys_bg = btrfs_create_chunk(trans, sys_flags);
3407 if (IS_ERR(sys_bg)) {
3408 ret = PTR_ERR(sys_bg);
3409 btrfs_abort_transaction(trans, ret);
3410 goto out;
3411 }
3412
3413 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3414 if (ret) {
3415 btrfs_abort_transaction(trans, ret);
3416 goto out;
3417 }
3418
3419 ret = remove_chunk_item(trans, map, chunk_offset);
3420 if (ret) {
3421 btrfs_abort_transaction(trans, ret);
3422 goto out;
3423 }
3424 } else if (ret) {
3425 btrfs_abort_transaction(trans, ret);
3426 goto out;
3427 }
3428
3429 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3430
3431 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3432 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3433 if (ret) {
3434 btrfs_abort_transaction(trans, ret);
3435 goto out;
3436 }
3437 }
3438
3439 mutex_unlock(&fs_info->chunk_mutex);
3440 trans->removing_chunk = false;
3441
3442 /*
3443 * We are done with chunk btree updates and deletions, so release the
3444 * system space we previously reserved (with check_system_chunk()).
3445 */
3446 btrfs_trans_release_chunk_metadata(trans);
3447
3448 ret = btrfs_remove_block_group(trans, map);
3449 if (ret) {
3450 btrfs_abort_transaction(trans, ret);
3451 goto out;
3452 }
3453
3454 out:
3455 if (trans->removing_chunk) {
3456 mutex_unlock(&fs_info->chunk_mutex);
3457 trans->removing_chunk = false;
3458 }
3459 /* once for us */
3460 btrfs_free_chunk_map(map);
3461 return ret;
3462 }
3463
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3464 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3465 {
3466 struct btrfs_root *root = fs_info->chunk_root;
3467 struct btrfs_trans_handle *trans;
3468 struct btrfs_block_group *block_group;
3469 u64 length;
3470 int ret;
3471
3472 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3473 btrfs_err(fs_info,
3474 "relocate: not supported on extent tree v2 yet");
3475 return -EINVAL;
3476 }
3477
3478 /*
3479 * Prevent races with automatic removal of unused block groups.
3480 * After we relocate and before we remove the chunk with offset
3481 * chunk_offset, automatic removal of the block group can kick in,
3482 * resulting in a failure when calling btrfs_remove_chunk() below.
3483 *
3484 * Make sure to acquire this mutex before doing a tree search (dev
3485 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3486 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3487 * we release the path used to search the chunk/dev tree and before
3488 * the current task acquires this mutex and calls us.
3489 */
3490 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3491
3492 /* step one, relocate all the extents inside this chunk */
3493 btrfs_scrub_pause(fs_info);
3494 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3495 btrfs_scrub_continue(fs_info);
3496 if (ret) {
3497 /*
3498 * If we had a transaction abort, stop all running scrubs.
3499 * See transaction.c:cleanup_transaction() why we do it here.
3500 */
3501 if (BTRFS_FS_ERROR(fs_info))
3502 btrfs_scrub_cancel(fs_info);
3503 return ret;
3504 }
3505
3506 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3507 if (!block_group)
3508 return -ENOENT;
3509 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3510 length = block_group->length;
3511 btrfs_put_block_group(block_group);
3512
3513 /*
3514 * On a zoned file system, discard the whole block group, this will
3515 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3516 * resetting the zone fails, don't treat it as a fatal problem from the
3517 * filesystem's point of view.
3518 */
3519 if (btrfs_is_zoned(fs_info)) {
3520 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3521 if (ret)
3522 btrfs_info(fs_info,
3523 "failed to reset zone %llu after relocation",
3524 chunk_offset);
3525 }
3526
3527 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3528 chunk_offset);
3529 if (IS_ERR(trans)) {
3530 ret = PTR_ERR(trans);
3531 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3532 return ret;
3533 }
3534
3535 /*
3536 * step two, delete the device extents and the
3537 * chunk tree entries
3538 */
3539 ret = btrfs_remove_chunk(trans, chunk_offset);
3540 btrfs_end_transaction(trans);
3541 return ret;
3542 }
3543
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3544 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3545 {
3546 struct btrfs_root *chunk_root = fs_info->chunk_root;
3547 struct btrfs_path *path;
3548 struct extent_buffer *leaf;
3549 struct btrfs_chunk *chunk;
3550 struct btrfs_key key;
3551 struct btrfs_key found_key;
3552 u64 chunk_type;
3553 bool retried = false;
3554 int failed = 0;
3555 int ret;
3556
3557 path = btrfs_alloc_path();
3558 if (!path)
3559 return -ENOMEM;
3560
3561 again:
3562 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3563 key.offset = (u64)-1;
3564 key.type = BTRFS_CHUNK_ITEM_KEY;
3565
3566 while (1) {
3567 mutex_lock(&fs_info->reclaim_bgs_lock);
3568 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3569 if (ret < 0) {
3570 mutex_unlock(&fs_info->reclaim_bgs_lock);
3571 goto error;
3572 }
3573 if (ret == 0) {
3574 /*
3575 * On the first search we would find chunk tree with
3576 * offset -1, which is not possible. On subsequent
3577 * loops this would find an existing item on an invalid
3578 * offset (one less than the previous one, wrong
3579 * alignment and size).
3580 */
3581 ret = -EUCLEAN;
3582 mutex_unlock(&fs_info->reclaim_bgs_lock);
3583 goto error;
3584 }
3585
3586 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3587 key.type);
3588 if (ret)
3589 mutex_unlock(&fs_info->reclaim_bgs_lock);
3590 if (ret < 0)
3591 goto error;
3592 if (ret > 0)
3593 break;
3594
3595 leaf = path->nodes[0];
3596 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3597
3598 chunk = btrfs_item_ptr(leaf, path->slots[0],
3599 struct btrfs_chunk);
3600 chunk_type = btrfs_chunk_type(leaf, chunk);
3601 btrfs_release_path(path);
3602
3603 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3604 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3605 if (ret == -ENOSPC)
3606 failed++;
3607 else
3608 BUG_ON(ret);
3609 }
3610 mutex_unlock(&fs_info->reclaim_bgs_lock);
3611
3612 if (found_key.offset == 0)
3613 break;
3614 key.offset = found_key.offset - 1;
3615 }
3616 ret = 0;
3617 if (failed && !retried) {
3618 failed = 0;
3619 retried = true;
3620 goto again;
3621 } else if (WARN_ON(failed && retried)) {
3622 ret = -ENOSPC;
3623 }
3624 error:
3625 btrfs_free_path(path);
3626 return ret;
3627 }
3628
3629 /*
3630 * return 1 : allocate a data chunk successfully,
3631 * return <0: errors during allocating a data chunk,
3632 * return 0 : no need to allocate a data chunk.
3633 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3634 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3635 u64 chunk_offset)
3636 {
3637 struct btrfs_block_group *cache;
3638 u64 bytes_used;
3639 u64 chunk_type;
3640
3641 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3642 ASSERT(cache);
3643 chunk_type = cache->flags;
3644 btrfs_put_block_group(cache);
3645
3646 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3647 return 0;
3648
3649 spin_lock(&fs_info->data_sinfo->lock);
3650 bytes_used = fs_info->data_sinfo->bytes_used;
3651 spin_unlock(&fs_info->data_sinfo->lock);
3652
3653 if (!bytes_used) {
3654 struct btrfs_trans_handle *trans;
3655 int ret;
3656
3657 trans = btrfs_join_transaction(fs_info->tree_root);
3658 if (IS_ERR(trans))
3659 return PTR_ERR(trans);
3660
3661 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3662 btrfs_end_transaction(trans);
3663 if (ret < 0)
3664 return ret;
3665 return 1;
3666 }
3667
3668 return 0;
3669 }
3670
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3671 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3672 const struct btrfs_disk_balance_args *disk)
3673 {
3674 memset(cpu, 0, sizeof(*cpu));
3675
3676 cpu->profiles = le64_to_cpu(disk->profiles);
3677 cpu->usage = le64_to_cpu(disk->usage);
3678 cpu->devid = le64_to_cpu(disk->devid);
3679 cpu->pstart = le64_to_cpu(disk->pstart);
3680 cpu->pend = le64_to_cpu(disk->pend);
3681 cpu->vstart = le64_to_cpu(disk->vstart);
3682 cpu->vend = le64_to_cpu(disk->vend);
3683 cpu->target = le64_to_cpu(disk->target);
3684 cpu->flags = le64_to_cpu(disk->flags);
3685 cpu->limit = le64_to_cpu(disk->limit);
3686 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3687 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3688 }
3689
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3690 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3691 const struct btrfs_balance_args *cpu)
3692 {
3693 memset(disk, 0, sizeof(*disk));
3694
3695 disk->profiles = cpu_to_le64(cpu->profiles);
3696 disk->usage = cpu_to_le64(cpu->usage);
3697 disk->devid = cpu_to_le64(cpu->devid);
3698 disk->pstart = cpu_to_le64(cpu->pstart);
3699 disk->pend = cpu_to_le64(cpu->pend);
3700 disk->vstart = cpu_to_le64(cpu->vstart);
3701 disk->vend = cpu_to_le64(cpu->vend);
3702 disk->target = cpu_to_le64(cpu->target);
3703 disk->flags = cpu_to_le64(cpu->flags);
3704 disk->limit = cpu_to_le64(cpu->limit);
3705 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3706 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3707 }
3708
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3709 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3710 struct btrfs_balance_control *bctl)
3711 {
3712 struct btrfs_root *root = fs_info->tree_root;
3713 struct btrfs_trans_handle *trans;
3714 struct btrfs_balance_item *item;
3715 struct btrfs_disk_balance_args disk_bargs;
3716 struct btrfs_path *path;
3717 struct extent_buffer *leaf;
3718 struct btrfs_key key;
3719 int ret, err;
3720
3721 path = btrfs_alloc_path();
3722 if (!path)
3723 return -ENOMEM;
3724
3725 trans = btrfs_start_transaction(root, 0);
3726 if (IS_ERR(trans)) {
3727 btrfs_free_path(path);
3728 return PTR_ERR(trans);
3729 }
3730
3731 key.objectid = BTRFS_BALANCE_OBJECTID;
3732 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3733 key.offset = 0;
3734
3735 ret = btrfs_insert_empty_item(trans, root, path, &key,
3736 sizeof(*item));
3737 if (ret)
3738 goto out;
3739
3740 leaf = path->nodes[0];
3741 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3742
3743 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3744
3745 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3746 btrfs_set_balance_data(leaf, item, &disk_bargs);
3747 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3748 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3749 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3750 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3751
3752 btrfs_set_balance_flags(leaf, item, bctl->flags);
3753
3754 btrfs_mark_buffer_dirty(trans, leaf);
3755 out:
3756 btrfs_free_path(path);
3757 err = btrfs_commit_transaction(trans);
3758 if (err && !ret)
3759 ret = err;
3760 return ret;
3761 }
3762
del_balance_item(struct btrfs_fs_info * fs_info)3763 static int del_balance_item(struct btrfs_fs_info *fs_info)
3764 {
3765 struct btrfs_root *root = fs_info->tree_root;
3766 struct btrfs_trans_handle *trans;
3767 struct btrfs_path *path;
3768 struct btrfs_key key;
3769 int ret, err;
3770
3771 path = btrfs_alloc_path();
3772 if (!path)
3773 return -ENOMEM;
3774
3775 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3776 if (IS_ERR(trans)) {
3777 btrfs_free_path(path);
3778 return PTR_ERR(trans);
3779 }
3780
3781 key.objectid = BTRFS_BALANCE_OBJECTID;
3782 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3783 key.offset = 0;
3784
3785 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3786 if (ret < 0)
3787 goto out;
3788 if (ret > 0) {
3789 ret = -ENOENT;
3790 goto out;
3791 }
3792
3793 ret = btrfs_del_item(trans, root, path);
3794 out:
3795 btrfs_free_path(path);
3796 err = btrfs_commit_transaction(trans);
3797 if (err && !ret)
3798 ret = err;
3799 return ret;
3800 }
3801
3802 /*
3803 * This is a heuristic used to reduce the number of chunks balanced on
3804 * resume after balance was interrupted.
3805 */
update_balance_args(struct btrfs_balance_control * bctl)3806 static void update_balance_args(struct btrfs_balance_control *bctl)
3807 {
3808 /*
3809 * Turn on soft mode for chunk types that were being converted.
3810 */
3811 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3812 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3813 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3814 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3815 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3816 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3817
3818 /*
3819 * Turn on usage filter if is not already used. The idea is
3820 * that chunks that we have already balanced should be
3821 * reasonably full. Don't do it for chunks that are being
3822 * converted - that will keep us from relocating unconverted
3823 * (albeit full) chunks.
3824 */
3825 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3826 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3827 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3828 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3829 bctl->data.usage = 90;
3830 }
3831 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3832 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3833 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3834 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3835 bctl->sys.usage = 90;
3836 }
3837 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3838 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3839 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3840 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3841 bctl->meta.usage = 90;
3842 }
3843 }
3844
3845 /*
3846 * Clear the balance status in fs_info and delete the balance item from disk.
3847 */
reset_balance_state(struct btrfs_fs_info * fs_info)3848 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3849 {
3850 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3851 int ret;
3852
3853 ASSERT(fs_info->balance_ctl);
3854
3855 spin_lock(&fs_info->balance_lock);
3856 fs_info->balance_ctl = NULL;
3857 spin_unlock(&fs_info->balance_lock);
3858
3859 kfree(bctl);
3860 ret = del_balance_item(fs_info);
3861 if (ret)
3862 btrfs_handle_fs_error(fs_info, ret, NULL);
3863 }
3864
3865 /*
3866 * Balance filters. Return 1 if chunk should be filtered out
3867 * (should not be balanced).
3868 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3869 static int chunk_profiles_filter(u64 chunk_type,
3870 struct btrfs_balance_args *bargs)
3871 {
3872 chunk_type = chunk_to_extended(chunk_type) &
3873 BTRFS_EXTENDED_PROFILE_MASK;
3874
3875 if (bargs->profiles & chunk_type)
3876 return 0;
3877
3878 return 1;
3879 }
3880
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3881 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3882 struct btrfs_balance_args *bargs)
3883 {
3884 struct btrfs_block_group *cache;
3885 u64 chunk_used;
3886 u64 user_thresh_min;
3887 u64 user_thresh_max;
3888 int ret = 1;
3889
3890 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3891 chunk_used = cache->used;
3892
3893 if (bargs->usage_min == 0)
3894 user_thresh_min = 0;
3895 else
3896 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3897
3898 if (bargs->usage_max == 0)
3899 user_thresh_max = 1;
3900 else if (bargs->usage_max > 100)
3901 user_thresh_max = cache->length;
3902 else
3903 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3904
3905 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3906 ret = 0;
3907
3908 btrfs_put_block_group(cache);
3909 return ret;
3910 }
3911
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3912 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3913 u64 chunk_offset, struct btrfs_balance_args *bargs)
3914 {
3915 struct btrfs_block_group *cache;
3916 u64 chunk_used, user_thresh;
3917 int ret = 1;
3918
3919 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3920 chunk_used = cache->used;
3921
3922 if (bargs->usage_min == 0)
3923 user_thresh = 1;
3924 else if (bargs->usage > 100)
3925 user_thresh = cache->length;
3926 else
3927 user_thresh = mult_perc(cache->length, bargs->usage);
3928
3929 if (chunk_used < user_thresh)
3930 ret = 0;
3931
3932 btrfs_put_block_group(cache);
3933 return ret;
3934 }
3935
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3936 static int chunk_devid_filter(struct extent_buffer *leaf,
3937 struct btrfs_chunk *chunk,
3938 struct btrfs_balance_args *bargs)
3939 {
3940 struct btrfs_stripe *stripe;
3941 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3942 int i;
3943
3944 for (i = 0; i < num_stripes; i++) {
3945 stripe = btrfs_stripe_nr(chunk, i);
3946 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3947 return 0;
3948 }
3949
3950 return 1;
3951 }
3952
calc_data_stripes(u64 type,int num_stripes)3953 static u64 calc_data_stripes(u64 type, int num_stripes)
3954 {
3955 const int index = btrfs_bg_flags_to_raid_index(type);
3956 const int ncopies = btrfs_raid_array[index].ncopies;
3957 const int nparity = btrfs_raid_array[index].nparity;
3958
3959 return (num_stripes - nparity) / ncopies;
3960 }
3961
3962 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3963 static int chunk_drange_filter(struct extent_buffer *leaf,
3964 struct btrfs_chunk *chunk,
3965 struct btrfs_balance_args *bargs)
3966 {
3967 struct btrfs_stripe *stripe;
3968 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3969 u64 stripe_offset;
3970 u64 stripe_length;
3971 u64 type;
3972 int factor;
3973 int i;
3974
3975 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3976 return 0;
3977
3978 type = btrfs_chunk_type(leaf, chunk);
3979 factor = calc_data_stripes(type, num_stripes);
3980
3981 for (i = 0; i < num_stripes; i++) {
3982 stripe = btrfs_stripe_nr(chunk, i);
3983 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3984 continue;
3985
3986 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3987 stripe_length = btrfs_chunk_length(leaf, chunk);
3988 stripe_length = div_u64(stripe_length, factor);
3989
3990 if (stripe_offset < bargs->pend &&
3991 stripe_offset + stripe_length > bargs->pstart)
3992 return 0;
3993 }
3994
3995 return 1;
3996 }
3997
3998 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3999 static int chunk_vrange_filter(struct extent_buffer *leaf,
4000 struct btrfs_chunk *chunk,
4001 u64 chunk_offset,
4002 struct btrfs_balance_args *bargs)
4003 {
4004 if (chunk_offset < bargs->vend &&
4005 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
4006 /* at least part of the chunk is inside this vrange */
4007 return 0;
4008
4009 return 1;
4010 }
4011
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)4012 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
4013 struct btrfs_chunk *chunk,
4014 struct btrfs_balance_args *bargs)
4015 {
4016 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4017
4018 if (bargs->stripes_min <= num_stripes
4019 && num_stripes <= bargs->stripes_max)
4020 return 0;
4021
4022 return 1;
4023 }
4024
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)4025 static int chunk_soft_convert_filter(u64 chunk_type,
4026 struct btrfs_balance_args *bargs)
4027 {
4028 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4029 return 0;
4030
4031 chunk_type = chunk_to_extended(chunk_type) &
4032 BTRFS_EXTENDED_PROFILE_MASK;
4033
4034 if (bargs->target == chunk_type)
4035 return 1;
4036
4037 return 0;
4038 }
4039
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)4040 static int should_balance_chunk(struct extent_buffer *leaf,
4041 struct btrfs_chunk *chunk, u64 chunk_offset)
4042 {
4043 struct btrfs_fs_info *fs_info = leaf->fs_info;
4044 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4045 struct btrfs_balance_args *bargs = NULL;
4046 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
4047
4048 /* type filter */
4049 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
4050 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
4051 return 0;
4052 }
4053
4054 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4055 bargs = &bctl->data;
4056 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4057 bargs = &bctl->sys;
4058 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4059 bargs = &bctl->meta;
4060
4061 /* profiles filter */
4062 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4063 chunk_profiles_filter(chunk_type, bargs)) {
4064 return 0;
4065 }
4066
4067 /* usage filter */
4068 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4069 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4070 return 0;
4071 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4072 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4073 return 0;
4074 }
4075
4076 /* devid filter */
4077 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4078 chunk_devid_filter(leaf, chunk, bargs)) {
4079 return 0;
4080 }
4081
4082 /* drange filter, makes sense only with devid filter */
4083 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4084 chunk_drange_filter(leaf, chunk, bargs)) {
4085 return 0;
4086 }
4087
4088 /* vrange filter */
4089 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4090 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4091 return 0;
4092 }
4093
4094 /* stripes filter */
4095 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4096 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4097 return 0;
4098 }
4099
4100 /* soft profile changing mode */
4101 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4102 chunk_soft_convert_filter(chunk_type, bargs)) {
4103 return 0;
4104 }
4105
4106 /*
4107 * limited by count, must be the last filter
4108 */
4109 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4110 if (bargs->limit == 0)
4111 return 0;
4112 else
4113 bargs->limit--;
4114 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4115 /*
4116 * Same logic as the 'limit' filter; the minimum cannot be
4117 * determined here because we do not have the global information
4118 * about the count of all chunks that satisfy the filters.
4119 */
4120 if (bargs->limit_max == 0)
4121 return 0;
4122 else
4123 bargs->limit_max--;
4124 }
4125
4126 return 1;
4127 }
4128
__btrfs_balance(struct btrfs_fs_info * fs_info)4129 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4130 {
4131 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4132 struct btrfs_root *chunk_root = fs_info->chunk_root;
4133 u64 chunk_type;
4134 struct btrfs_chunk *chunk;
4135 struct btrfs_path *path = NULL;
4136 struct btrfs_key key;
4137 struct btrfs_key found_key;
4138 struct extent_buffer *leaf;
4139 int slot;
4140 int ret;
4141 int enospc_errors = 0;
4142 bool counting = true;
4143 /* The single value limit and min/max limits use the same bytes in the */
4144 u64 limit_data = bctl->data.limit;
4145 u64 limit_meta = bctl->meta.limit;
4146 u64 limit_sys = bctl->sys.limit;
4147 u32 count_data = 0;
4148 u32 count_meta = 0;
4149 u32 count_sys = 0;
4150 int chunk_reserved = 0;
4151
4152 path = btrfs_alloc_path();
4153 if (!path) {
4154 ret = -ENOMEM;
4155 goto error;
4156 }
4157
4158 /* zero out stat counters */
4159 spin_lock(&fs_info->balance_lock);
4160 memset(&bctl->stat, 0, sizeof(bctl->stat));
4161 spin_unlock(&fs_info->balance_lock);
4162 again:
4163 if (!counting) {
4164 /*
4165 * The single value limit and min/max limits use the same bytes
4166 * in the
4167 */
4168 bctl->data.limit = limit_data;
4169 bctl->meta.limit = limit_meta;
4170 bctl->sys.limit = limit_sys;
4171 }
4172 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4173 key.offset = (u64)-1;
4174 key.type = BTRFS_CHUNK_ITEM_KEY;
4175
4176 while (1) {
4177 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4178 atomic_read(&fs_info->balance_cancel_req)) {
4179 ret = -ECANCELED;
4180 goto error;
4181 }
4182
4183 mutex_lock(&fs_info->reclaim_bgs_lock);
4184 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4185 if (ret < 0) {
4186 mutex_unlock(&fs_info->reclaim_bgs_lock);
4187 goto error;
4188 }
4189
4190 /*
4191 * this shouldn't happen, it means the last relocate
4192 * failed
4193 */
4194 if (ret == 0)
4195 BUG(); /* FIXME break ? */
4196
4197 ret = btrfs_previous_item(chunk_root, path, 0,
4198 BTRFS_CHUNK_ITEM_KEY);
4199 if (ret) {
4200 mutex_unlock(&fs_info->reclaim_bgs_lock);
4201 ret = 0;
4202 break;
4203 }
4204
4205 leaf = path->nodes[0];
4206 slot = path->slots[0];
4207 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4208
4209 if (found_key.objectid != key.objectid) {
4210 mutex_unlock(&fs_info->reclaim_bgs_lock);
4211 break;
4212 }
4213
4214 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4215 chunk_type = btrfs_chunk_type(leaf, chunk);
4216
4217 if (!counting) {
4218 spin_lock(&fs_info->balance_lock);
4219 bctl->stat.considered++;
4220 spin_unlock(&fs_info->balance_lock);
4221 }
4222
4223 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4224
4225 btrfs_release_path(path);
4226 if (!ret) {
4227 mutex_unlock(&fs_info->reclaim_bgs_lock);
4228 goto loop;
4229 }
4230
4231 if (counting) {
4232 mutex_unlock(&fs_info->reclaim_bgs_lock);
4233 spin_lock(&fs_info->balance_lock);
4234 bctl->stat.expected++;
4235 spin_unlock(&fs_info->balance_lock);
4236
4237 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4238 count_data++;
4239 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4240 count_sys++;
4241 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4242 count_meta++;
4243
4244 goto loop;
4245 }
4246
4247 /*
4248 * Apply limit_min filter, no need to check if the LIMITS
4249 * filter is used, limit_min is 0 by default
4250 */
4251 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4252 count_data < bctl->data.limit_min)
4253 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4254 count_meta < bctl->meta.limit_min)
4255 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4256 count_sys < bctl->sys.limit_min)) {
4257 mutex_unlock(&fs_info->reclaim_bgs_lock);
4258 goto loop;
4259 }
4260
4261 if (!chunk_reserved) {
4262 /*
4263 * We may be relocating the only data chunk we have,
4264 * which could potentially end up with losing data's
4265 * raid profile, so lets allocate an empty one in
4266 * advance.
4267 */
4268 ret = btrfs_may_alloc_data_chunk(fs_info,
4269 found_key.offset);
4270 if (ret < 0) {
4271 mutex_unlock(&fs_info->reclaim_bgs_lock);
4272 goto error;
4273 } else if (ret == 1) {
4274 chunk_reserved = 1;
4275 }
4276 }
4277
4278 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4279 mutex_unlock(&fs_info->reclaim_bgs_lock);
4280 if (ret == -ENOSPC) {
4281 enospc_errors++;
4282 } else if (ret == -ETXTBSY) {
4283 btrfs_info(fs_info,
4284 "skipping relocation of block group %llu due to active swapfile",
4285 found_key.offset);
4286 ret = 0;
4287 } else if (ret) {
4288 goto error;
4289 } else {
4290 spin_lock(&fs_info->balance_lock);
4291 bctl->stat.completed++;
4292 spin_unlock(&fs_info->balance_lock);
4293 }
4294 loop:
4295 if (found_key.offset == 0)
4296 break;
4297 key.offset = found_key.offset - 1;
4298 }
4299
4300 if (counting) {
4301 btrfs_release_path(path);
4302 counting = false;
4303 goto again;
4304 }
4305 error:
4306 btrfs_free_path(path);
4307 if (enospc_errors) {
4308 btrfs_info(fs_info, "%d enospc errors during balance",
4309 enospc_errors);
4310 if (!ret)
4311 ret = -ENOSPC;
4312 }
4313
4314 return ret;
4315 }
4316
4317 /*
4318 * See if a given profile is valid and reduced.
4319 *
4320 * @flags: profile to validate
4321 * @extended: if true @flags is treated as an extended profile
4322 */
alloc_profile_is_valid(u64 flags,int extended)4323 static int alloc_profile_is_valid(u64 flags, int extended)
4324 {
4325 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4326 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4327
4328 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4329
4330 /* 1) check that all other bits are zeroed */
4331 if (flags & ~mask)
4332 return 0;
4333
4334 /* 2) see if profile is reduced */
4335 if (flags == 0)
4336 return !extended; /* "0" is valid for usual profiles */
4337
4338 return has_single_bit_set(flags);
4339 }
4340
4341 /*
4342 * Validate target profile against allowed profiles and return true if it's OK.
4343 * Otherwise print the error message and return false.
4344 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4345 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4346 const struct btrfs_balance_args *bargs,
4347 u64 allowed, const char *type)
4348 {
4349 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4350 return true;
4351
4352 /* Profile is valid and does not have bits outside of the allowed set */
4353 if (alloc_profile_is_valid(bargs->target, 1) &&
4354 (bargs->target & ~allowed) == 0)
4355 return true;
4356
4357 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4358 type, btrfs_bg_type_to_raid_name(bargs->target));
4359 return false;
4360 }
4361
4362 /*
4363 * Fill @buf with textual description of balance filter flags @bargs, up to
4364 * @size_buf including the terminating null. The output may be trimmed if it
4365 * does not fit into the provided buffer.
4366 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4367 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4368 u32 size_buf)
4369 {
4370 int ret;
4371 u32 size_bp = size_buf;
4372 char *bp = buf;
4373 u64 flags = bargs->flags;
4374 char tmp_buf[128] = {'\0'};
4375
4376 if (!flags)
4377 return;
4378
4379 #define CHECK_APPEND_NOARG(a) \
4380 do { \
4381 ret = snprintf(bp, size_bp, (a)); \
4382 if (ret < 0 || ret >= size_bp) \
4383 goto out_overflow; \
4384 size_bp -= ret; \
4385 bp += ret; \
4386 } while (0)
4387
4388 #define CHECK_APPEND_1ARG(a, v1) \
4389 do { \
4390 ret = snprintf(bp, size_bp, (a), (v1)); \
4391 if (ret < 0 || ret >= size_bp) \
4392 goto out_overflow; \
4393 size_bp -= ret; \
4394 bp += ret; \
4395 } while (0)
4396
4397 #define CHECK_APPEND_2ARG(a, v1, v2) \
4398 do { \
4399 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4400 if (ret < 0 || ret >= size_bp) \
4401 goto out_overflow; \
4402 size_bp -= ret; \
4403 bp += ret; \
4404 } while (0)
4405
4406 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4407 CHECK_APPEND_1ARG("convert=%s,",
4408 btrfs_bg_type_to_raid_name(bargs->target));
4409
4410 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4411 CHECK_APPEND_NOARG("soft,");
4412
4413 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4414 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4415 sizeof(tmp_buf));
4416 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4417 }
4418
4419 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4420 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4421
4422 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4423 CHECK_APPEND_2ARG("usage=%u..%u,",
4424 bargs->usage_min, bargs->usage_max);
4425
4426 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4427 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4428
4429 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4430 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4431 bargs->pstart, bargs->pend);
4432
4433 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4434 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4435 bargs->vstart, bargs->vend);
4436
4437 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4438 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4439
4440 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4441 CHECK_APPEND_2ARG("limit=%u..%u,",
4442 bargs->limit_min, bargs->limit_max);
4443
4444 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4445 CHECK_APPEND_2ARG("stripes=%u..%u,",
4446 bargs->stripes_min, bargs->stripes_max);
4447
4448 #undef CHECK_APPEND_2ARG
4449 #undef CHECK_APPEND_1ARG
4450 #undef CHECK_APPEND_NOARG
4451
4452 out_overflow:
4453
4454 if (size_bp < size_buf)
4455 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4456 else
4457 buf[0] = '\0';
4458 }
4459
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4460 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4461 {
4462 u32 size_buf = 1024;
4463 char tmp_buf[192] = {'\0'};
4464 char *buf;
4465 char *bp;
4466 u32 size_bp = size_buf;
4467 int ret;
4468 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4469
4470 buf = kzalloc(size_buf, GFP_KERNEL);
4471 if (!buf)
4472 return;
4473
4474 bp = buf;
4475
4476 #define CHECK_APPEND_1ARG(a, v1) \
4477 do { \
4478 ret = snprintf(bp, size_bp, (a), (v1)); \
4479 if (ret < 0 || ret >= size_bp) \
4480 goto out_overflow; \
4481 size_bp -= ret; \
4482 bp += ret; \
4483 } while (0)
4484
4485 if (bctl->flags & BTRFS_BALANCE_FORCE)
4486 CHECK_APPEND_1ARG("%s", "-f ");
4487
4488 if (bctl->flags & BTRFS_BALANCE_DATA) {
4489 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4490 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4491 }
4492
4493 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4494 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4495 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4496 }
4497
4498 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4499 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4500 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4501 }
4502
4503 #undef CHECK_APPEND_1ARG
4504
4505 out_overflow:
4506
4507 if (size_bp < size_buf)
4508 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4509 btrfs_info(fs_info, "balance: %s %s",
4510 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4511 "resume" : "start", buf);
4512
4513 kfree(buf);
4514 }
4515
4516 /*
4517 * Should be called with balance mutexe held
4518 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4519 int btrfs_balance(struct btrfs_fs_info *fs_info,
4520 struct btrfs_balance_control *bctl,
4521 struct btrfs_ioctl_balance_args *bargs)
4522 {
4523 u64 meta_target, data_target;
4524 u64 allowed;
4525 int mixed = 0;
4526 int ret;
4527 u64 num_devices;
4528 unsigned seq;
4529 bool reducing_redundancy;
4530 bool paused = false;
4531 int i;
4532
4533 if (btrfs_fs_closing(fs_info) ||
4534 atomic_read(&fs_info->balance_pause_req) ||
4535 btrfs_should_cancel_balance(fs_info)) {
4536 ret = -EINVAL;
4537 goto out;
4538 }
4539
4540 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4541 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4542 mixed = 1;
4543
4544 /*
4545 * In case of mixed groups both data and meta should be picked,
4546 * and identical options should be given for both of them.
4547 */
4548 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4549 if (mixed && (bctl->flags & allowed)) {
4550 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4551 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4552 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4553 btrfs_err(fs_info,
4554 "balance: mixed groups data and metadata options must be the same");
4555 ret = -EINVAL;
4556 goto out;
4557 }
4558 }
4559
4560 /*
4561 * rw_devices will not change at the moment, device add/delete/replace
4562 * are exclusive
4563 */
4564 num_devices = fs_info->fs_devices->rw_devices;
4565
4566 /*
4567 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4568 * special bit for it, to make it easier to distinguish. Thus we need
4569 * to set it manually, or balance would refuse the profile.
4570 */
4571 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4572 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4573 if (num_devices >= btrfs_raid_array[i].devs_min)
4574 allowed |= btrfs_raid_array[i].bg_flag;
4575
4576 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4577 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4578 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4579 ret = -EINVAL;
4580 goto out;
4581 }
4582
4583 /*
4584 * Allow to reduce metadata or system integrity only if force set for
4585 * profiles with redundancy (copies, parity)
4586 */
4587 allowed = 0;
4588 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4589 if (btrfs_raid_array[i].ncopies >= 2 ||
4590 btrfs_raid_array[i].tolerated_failures >= 1)
4591 allowed |= btrfs_raid_array[i].bg_flag;
4592 }
4593 do {
4594 seq = read_seqbegin(&fs_info->profiles_lock);
4595
4596 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4597 (fs_info->avail_system_alloc_bits & allowed) &&
4598 !(bctl->sys.target & allowed)) ||
4599 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4600 (fs_info->avail_metadata_alloc_bits & allowed) &&
4601 !(bctl->meta.target & allowed)))
4602 reducing_redundancy = true;
4603 else
4604 reducing_redundancy = false;
4605
4606 /* if we're not converting, the target field is uninitialized */
4607 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4608 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4609 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4610 bctl->data.target : fs_info->avail_data_alloc_bits;
4611 } while (read_seqretry(&fs_info->profiles_lock, seq));
4612
4613 if (reducing_redundancy) {
4614 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4615 btrfs_info(fs_info,
4616 "balance: force reducing metadata redundancy");
4617 } else {
4618 btrfs_err(fs_info,
4619 "balance: reduces metadata redundancy, use --force if you want this");
4620 ret = -EINVAL;
4621 goto out;
4622 }
4623 }
4624
4625 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4626 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4627 btrfs_warn(fs_info,
4628 "balance: metadata profile %s has lower redundancy than data profile %s",
4629 btrfs_bg_type_to_raid_name(meta_target),
4630 btrfs_bg_type_to_raid_name(data_target));
4631 }
4632
4633 ret = insert_balance_item(fs_info, bctl);
4634 if (ret && ret != -EEXIST)
4635 goto out;
4636
4637 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4638 BUG_ON(ret == -EEXIST);
4639 BUG_ON(fs_info->balance_ctl);
4640 spin_lock(&fs_info->balance_lock);
4641 fs_info->balance_ctl = bctl;
4642 spin_unlock(&fs_info->balance_lock);
4643 } else {
4644 BUG_ON(ret != -EEXIST);
4645 spin_lock(&fs_info->balance_lock);
4646 update_balance_args(bctl);
4647 spin_unlock(&fs_info->balance_lock);
4648 }
4649
4650 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4651 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4652 describe_balance_start_or_resume(fs_info);
4653 mutex_unlock(&fs_info->balance_mutex);
4654
4655 ret = __btrfs_balance(fs_info);
4656
4657 mutex_lock(&fs_info->balance_mutex);
4658 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4659 btrfs_info(fs_info, "balance: paused");
4660 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4661 paused = true;
4662 }
4663 /*
4664 * Balance can be canceled by:
4665 *
4666 * - Regular cancel request
4667 * Then ret == -ECANCELED and balance_cancel_req > 0
4668 *
4669 * - Fatal signal to "btrfs" process
4670 * Either the signal caught by wait_reserve_ticket() and callers
4671 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4672 * got -ECANCELED.
4673 * Either way, in this case balance_cancel_req = 0, and
4674 * ret == -EINTR or ret == -ECANCELED.
4675 *
4676 * So here we only check the return value to catch canceled balance.
4677 */
4678 else if (ret == -ECANCELED || ret == -EINTR)
4679 btrfs_info(fs_info, "balance: canceled");
4680 else
4681 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4682
4683 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4684
4685 if (bargs) {
4686 memset(bargs, 0, sizeof(*bargs));
4687 btrfs_update_ioctl_balance_args(fs_info, bargs);
4688 }
4689
4690 /* We didn't pause, we can clean everything up. */
4691 if (!paused) {
4692 reset_balance_state(fs_info);
4693 btrfs_exclop_finish(fs_info);
4694 }
4695
4696 wake_up(&fs_info->balance_wait_q);
4697
4698 return ret;
4699 out:
4700 if (bctl->flags & BTRFS_BALANCE_RESUME)
4701 reset_balance_state(fs_info);
4702 else
4703 kfree(bctl);
4704 btrfs_exclop_finish(fs_info);
4705
4706 return ret;
4707 }
4708
balance_kthread(void * data)4709 static int balance_kthread(void *data)
4710 {
4711 struct btrfs_fs_info *fs_info = data;
4712 int ret = 0;
4713
4714 sb_start_write(fs_info->sb);
4715 mutex_lock(&fs_info->balance_mutex);
4716 if (fs_info->balance_ctl)
4717 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4718 mutex_unlock(&fs_info->balance_mutex);
4719 sb_end_write(fs_info->sb);
4720
4721 return ret;
4722 }
4723
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4724 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4725 {
4726 struct task_struct *tsk;
4727
4728 mutex_lock(&fs_info->balance_mutex);
4729 if (!fs_info->balance_ctl) {
4730 mutex_unlock(&fs_info->balance_mutex);
4731 return 0;
4732 }
4733 mutex_unlock(&fs_info->balance_mutex);
4734
4735 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4736 btrfs_info(fs_info, "balance: resume skipped");
4737 return 0;
4738 }
4739
4740 spin_lock(&fs_info->super_lock);
4741 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4742 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4743 spin_unlock(&fs_info->super_lock);
4744 /*
4745 * A ro->rw remount sequence should continue with the paused balance
4746 * regardless of who pauses it, system or the user as of now, so set
4747 * the resume flag.
4748 */
4749 spin_lock(&fs_info->balance_lock);
4750 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4751 spin_unlock(&fs_info->balance_lock);
4752
4753 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4754 return PTR_ERR_OR_ZERO(tsk);
4755 }
4756
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4757 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4758 {
4759 struct btrfs_balance_control *bctl;
4760 struct btrfs_balance_item *item;
4761 struct btrfs_disk_balance_args disk_bargs;
4762 struct btrfs_path *path;
4763 struct extent_buffer *leaf;
4764 struct btrfs_key key;
4765 int ret;
4766
4767 path = btrfs_alloc_path();
4768 if (!path)
4769 return -ENOMEM;
4770
4771 key.objectid = BTRFS_BALANCE_OBJECTID;
4772 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4773 key.offset = 0;
4774
4775 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4776 if (ret < 0)
4777 goto out;
4778 if (ret > 0) { /* ret = -ENOENT; */
4779 ret = 0;
4780 goto out;
4781 }
4782
4783 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4784 if (!bctl) {
4785 ret = -ENOMEM;
4786 goto out;
4787 }
4788
4789 leaf = path->nodes[0];
4790 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4791
4792 bctl->flags = btrfs_balance_flags(leaf, item);
4793 bctl->flags |= BTRFS_BALANCE_RESUME;
4794
4795 btrfs_balance_data(leaf, item, &disk_bargs);
4796 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4797 btrfs_balance_meta(leaf, item, &disk_bargs);
4798 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4799 btrfs_balance_sys(leaf, item, &disk_bargs);
4800 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4801
4802 /*
4803 * This should never happen, as the paused balance state is recovered
4804 * during mount without any chance of other exclusive ops to collide.
4805 *
4806 * This gives the exclusive op status to balance and keeps in paused
4807 * state until user intervention (cancel or umount). If the ownership
4808 * cannot be assigned, show a message but do not fail. The balance
4809 * is in a paused state and must have fs_info::balance_ctl properly
4810 * set up.
4811 */
4812 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4813 btrfs_warn(fs_info,
4814 "balance: cannot set exclusive op status, resume manually");
4815
4816 btrfs_release_path(path);
4817
4818 mutex_lock(&fs_info->balance_mutex);
4819 BUG_ON(fs_info->balance_ctl);
4820 spin_lock(&fs_info->balance_lock);
4821 fs_info->balance_ctl = bctl;
4822 spin_unlock(&fs_info->balance_lock);
4823 mutex_unlock(&fs_info->balance_mutex);
4824 out:
4825 btrfs_free_path(path);
4826 return ret;
4827 }
4828
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4829 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4830 {
4831 int ret = 0;
4832
4833 mutex_lock(&fs_info->balance_mutex);
4834 if (!fs_info->balance_ctl) {
4835 mutex_unlock(&fs_info->balance_mutex);
4836 return -ENOTCONN;
4837 }
4838
4839 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4840 atomic_inc(&fs_info->balance_pause_req);
4841 mutex_unlock(&fs_info->balance_mutex);
4842
4843 wait_event(fs_info->balance_wait_q,
4844 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4845
4846 mutex_lock(&fs_info->balance_mutex);
4847 /* we are good with balance_ctl ripped off from under us */
4848 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4849 atomic_dec(&fs_info->balance_pause_req);
4850 } else {
4851 ret = -ENOTCONN;
4852 }
4853
4854 mutex_unlock(&fs_info->balance_mutex);
4855 return ret;
4856 }
4857
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4858 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4859 {
4860 mutex_lock(&fs_info->balance_mutex);
4861 if (!fs_info->balance_ctl) {
4862 mutex_unlock(&fs_info->balance_mutex);
4863 return -ENOTCONN;
4864 }
4865
4866 /*
4867 * A paused balance with the item stored on disk can be resumed at
4868 * mount time if the mount is read-write. Otherwise it's still paused
4869 * and we must not allow cancelling as it deletes the item.
4870 */
4871 if (sb_rdonly(fs_info->sb)) {
4872 mutex_unlock(&fs_info->balance_mutex);
4873 return -EROFS;
4874 }
4875
4876 atomic_inc(&fs_info->balance_cancel_req);
4877 /*
4878 * if we are running just wait and return, balance item is
4879 * deleted in btrfs_balance in this case
4880 */
4881 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4882 mutex_unlock(&fs_info->balance_mutex);
4883 wait_event(fs_info->balance_wait_q,
4884 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4885 mutex_lock(&fs_info->balance_mutex);
4886 } else {
4887 mutex_unlock(&fs_info->balance_mutex);
4888 /*
4889 * Lock released to allow other waiters to continue, we'll
4890 * reexamine the status again.
4891 */
4892 mutex_lock(&fs_info->balance_mutex);
4893
4894 if (fs_info->balance_ctl) {
4895 reset_balance_state(fs_info);
4896 btrfs_exclop_finish(fs_info);
4897 btrfs_info(fs_info, "balance: canceled");
4898 }
4899 }
4900
4901 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4902 atomic_dec(&fs_info->balance_cancel_req);
4903 mutex_unlock(&fs_info->balance_mutex);
4904 return 0;
4905 }
4906
4907 /*
4908 * shrinking a device means finding all of the device extents past
4909 * the new size, and then following the back refs to the chunks.
4910 * The chunk relocation code actually frees the device extent
4911 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4912 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4913 {
4914 struct btrfs_fs_info *fs_info = device->fs_info;
4915 struct btrfs_root *root = fs_info->dev_root;
4916 struct btrfs_trans_handle *trans;
4917 struct btrfs_dev_extent *dev_extent = NULL;
4918 struct btrfs_path *path;
4919 u64 length;
4920 u64 chunk_offset;
4921 int ret;
4922 int slot;
4923 int failed = 0;
4924 bool retried = false;
4925 struct extent_buffer *l;
4926 struct btrfs_key key;
4927 struct btrfs_super_block *super_copy = fs_info->super_copy;
4928 u64 old_total = btrfs_super_total_bytes(super_copy);
4929 u64 old_size = btrfs_device_get_total_bytes(device);
4930 u64 diff;
4931 u64 start;
4932 u64 free_diff = 0;
4933
4934 new_size = round_down(new_size, fs_info->sectorsize);
4935 start = new_size;
4936 diff = round_down(old_size - new_size, fs_info->sectorsize);
4937
4938 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4939 return -EINVAL;
4940
4941 path = btrfs_alloc_path();
4942 if (!path)
4943 return -ENOMEM;
4944
4945 path->reada = READA_BACK;
4946
4947 trans = btrfs_start_transaction(root, 0);
4948 if (IS_ERR(trans)) {
4949 btrfs_free_path(path);
4950 return PTR_ERR(trans);
4951 }
4952
4953 mutex_lock(&fs_info->chunk_mutex);
4954
4955 btrfs_device_set_total_bytes(device, new_size);
4956 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4957 device->fs_devices->total_rw_bytes -= diff;
4958
4959 /*
4960 * The new free_chunk_space is new_size - used, so we have to
4961 * subtract the delta of the old free_chunk_space which included
4962 * old_size - used. If used > new_size then just subtract this
4963 * entire device's free space.
4964 */
4965 if (device->bytes_used < new_size)
4966 free_diff = (old_size - device->bytes_used) -
4967 (new_size - device->bytes_used);
4968 else
4969 free_diff = old_size - device->bytes_used;
4970 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4971 }
4972
4973 /*
4974 * Once the device's size has been set to the new size, ensure all
4975 * in-memory chunks are synced to disk so that the loop below sees them
4976 * and relocates them accordingly.
4977 */
4978 if (contains_pending_extent(device, &start, diff)) {
4979 mutex_unlock(&fs_info->chunk_mutex);
4980 ret = btrfs_commit_transaction(trans);
4981 if (ret)
4982 goto done;
4983 } else {
4984 mutex_unlock(&fs_info->chunk_mutex);
4985 btrfs_end_transaction(trans);
4986 }
4987
4988 again:
4989 key.objectid = device->devid;
4990 key.offset = (u64)-1;
4991 key.type = BTRFS_DEV_EXTENT_KEY;
4992
4993 do {
4994 mutex_lock(&fs_info->reclaim_bgs_lock);
4995 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4996 if (ret < 0) {
4997 mutex_unlock(&fs_info->reclaim_bgs_lock);
4998 goto done;
4999 }
5000
5001 ret = btrfs_previous_item(root, path, 0, key.type);
5002 if (ret) {
5003 mutex_unlock(&fs_info->reclaim_bgs_lock);
5004 if (ret < 0)
5005 goto done;
5006 ret = 0;
5007 btrfs_release_path(path);
5008 break;
5009 }
5010
5011 l = path->nodes[0];
5012 slot = path->slots[0];
5013 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5014
5015 if (key.objectid != device->devid) {
5016 mutex_unlock(&fs_info->reclaim_bgs_lock);
5017 btrfs_release_path(path);
5018 break;
5019 }
5020
5021 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5022 length = btrfs_dev_extent_length(l, dev_extent);
5023
5024 if (key.offset + length <= new_size) {
5025 mutex_unlock(&fs_info->reclaim_bgs_lock);
5026 btrfs_release_path(path);
5027 break;
5028 }
5029
5030 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5031 btrfs_release_path(path);
5032
5033 /*
5034 * We may be relocating the only data chunk we have,
5035 * which could potentially end up with losing data's
5036 * raid profile, so lets allocate an empty one in
5037 * advance.
5038 */
5039 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5040 if (ret < 0) {
5041 mutex_unlock(&fs_info->reclaim_bgs_lock);
5042 goto done;
5043 }
5044
5045 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5046 mutex_unlock(&fs_info->reclaim_bgs_lock);
5047 if (ret == -ENOSPC) {
5048 failed++;
5049 } else if (ret) {
5050 if (ret == -ETXTBSY) {
5051 btrfs_warn(fs_info,
5052 "could not shrink block group %llu due to active swapfile",
5053 chunk_offset);
5054 }
5055 goto done;
5056 }
5057 } while (key.offset-- > 0);
5058
5059 if (failed && !retried) {
5060 failed = 0;
5061 retried = true;
5062 goto again;
5063 } else if (failed && retried) {
5064 ret = -ENOSPC;
5065 goto done;
5066 }
5067
5068 /* Shrinking succeeded, else we would be at "done". */
5069 trans = btrfs_start_transaction(root, 0);
5070 if (IS_ERR(trans)) {
5071 ret = PTR_ERR(trans);
5072 goto done;
5073 }
5074
5075 mutex_lock(&fs_info->chunk_mutex);
5076 /* Clear all state bits beyond the shrunk device size */
5077 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5078 CHUNK_STATE_MASK);
5079
5080 btrfs_device_set_disk_total_bytes(device, new_size);
5081 if (list_empty(&device->post_commit_list))
5082 list_add_tail(&device->post_commit_list,
5083 &trans->transaction->dev_update_list);
5084
5085 WARN_ON(diff > old_total);
5086 btrfs_set_super_total_bytes(super_copy,
5087 round_down(old_total - diff, fs_info->sectorsize));
5088 mutex_unlock(&fs_info->chunk_mutex);
5089
5090 btrfs_reserve_chunk_metadata(trans, false);
5091 /* Now btrfs_update_device() will change the on-disk size. */
5092 ret = btrfs_update_device(trans, device);
5093 btrfs_trans_release_chunk_metadata(trans);
5094 if (ret < 0) {
5095 btrfs_abort_transaction(trans, ret);
5096 btrfs_end_transaction(trans);
5097 } else {
5098 ret = btrfs_commit_transaction(trans);
5099 }
5100 done:
5101 btrfs_free_path(path);
5102 if (ret) {
5103 mutex_lock(&fs_info->chunk_mutex);
5104 btrfs_device_set_total_bytes(device, old_size);
5105 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5106 device->fs_devices->total_rw_bytes += diff;
5107 atomic64_add(free_diff, &fs_info->free_chunk_space);
5108 }
5109 mutex_unlock(&fs_info->chunk_mutex);
5110 }
5111 return ret;
5112 }
5113
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5114 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5115 struct btrfs_key *key,
5116 struct btrfs_chunk *chunk, int item_size)
5117 {
5118 struct btrfs_super_block *super_copy = fs_info->super_copy;
5119 struct btrfs_disk_key disk_key;
5120 u32 array_size;
5121 u8 *ptr;
5122
5123 lockdep_assert_held(&fs_info->chunk_mutex);
5124
5125 array_size = btrfs_super_sys_array_size(super_copy);
5126 if (array_size + item_size + sizeof(disk_key)
5127 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5128 return -EFBIG;
5129
5130 ptr = super_copy->sys_chunk_array + array_size;
5131 btrfs_cpu_key_to_disk(&disk_key, key);
5132 memcpy(ptr, &disk_key, sizeof(disk_key));
5133 ptr += sizeof(disk_key);
5134 memcpy(ptr, chunk, item_size);
5135 item_size += sizeof(disk_key);
5136 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5137
5138 return 0;
5139 }
5140
5141 /*
5142 * sort the devices in descending order by max_avail, total_avail
5143 */
btrfs_cmp_device_info(const void * a,const void * b)5144 static int btrfs_cmp_device_info(const void *a, const void *b)
5145 {
5146 const struct btrfs_device_info *di_a = a;
5147 const struct btrfs_device_info *di_b = b;
5148
5149 if (di_a->max_avail > di_b->max_avail)
5150 return -1;
5151 if (di_a->max_avail < di_b->max_avail)
5152 return 1;
5153 if (di_a->total_avail > di_b->total_avail)
5154 return -1;
5155 if (di_a->total_avail < di_b->total_avail)
5156 return 1;
5157 return 0;
5158 }
5159
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5160 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5161 {
5162 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5163 return;
5164
5165 btrfs_set_fs_incompat(info, RAID56);
5166 }
5167
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5168 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5169 {
5170 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5171 return;
5172
5173 btrfs_set_fs_incompat(info, RAID1C34);
5174 }
5175
5176 /*
5177 * Structure used internally for btrfs_create_chunk() function.
5178 * Wraps needed parameters.
5179 */
5180 struct alloc_chunk_ctl {
5181 u64 start;
5182 u64 type;
5183 /* Total number of stripes to allocate */
5184 int num_stripes;
5185 /* sub_stripes info for map */
5186 int sub_stripes;
5187 /* Stripes per device */
5188 int dev_stripes;
5189 /* Maximum number of devices to use */
5190 int devs_max;
5191 /* Minimum number of devices to use */
5192 int devs_min;
5193 /* ndevs has to be a multiple of this */
5194 int devs_increment;
5195 /* Number of copies */
5196 int ncopies;
5197 /* Number of stripes worth of bytes to store parity information */
5198 int nparity;
5199 u64 max_stripe_size;
5200 u64 max_chunk_size;
5201 u64 dev_extent_min;
5202 u64 stripe_size;
5203 u64 chunk_size;
5204 int ndevs;
5205 };
5206
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5207 static void init_alloc_chunk_ctl_policy_regular(
5208 struct btrfs_fs_devices *fs_devices,
5209 struct alloc_chunk_ctl *ctl)
5210 {
5211 struct btrfs_space_info *space_info;
5212
5213 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5214 ASSERT(space_info);
5215
5216 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5217 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5218
5219 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5220 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5221
5222 /* We don't want a chunk larger than 10% of writable space */
5223 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5224 ctl->max_chunk_size);
5225 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5226 }
5227
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5228 static void init_alloc_chunk_ctl_policy_zoned(
5229 struct btrfs_fs_devices *fs_devices,
5230 struct alloc_chunk_ctl *ctl)
5231 {
5232 u64 zone_size = fs_devices->fs_info->zone_size;
5233 u64 limit;
5234 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5235 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5236 u64 min_chunk_size = min_data_stripes * zone_size;
5237 u64 type = ctl->type;
5238
5239 ctl->max_stripe_size = zone_size;
5240 if (type & BTRFS_BLOCK_GROUP_DATA) {
5241 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5242 zone_size);
5243 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5244 ctl->max_chunk_size = ctl->max_stripe_size;
5245 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5246 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5247 ctl->devs_max = min_t(int, ctl->devs_max,
5248 BTRFS_MAX_DEVS_SYS_CHUNK);
5249 } else {
5250 BUG();
5251 }
5252
5253 /* We don't want a chunk larger than 10% of writable space */
5254 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5255 zone_size),
5256 min_chunk_size);
5257 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5258 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5259 }
5260
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5261 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5262 struct alloc_chunk_ctl *ctl)
5263 {
5264 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5265
5266 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5267 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5268 ctl->devs_max = btrfs_raid_array[index].devs_max;
5269 if (!ctl->devs_max)
5270 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5271 ctl->devs_min = btrfs_raid_array[index].devs_min;
5272 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5273 ctl->ncopies = btrfs_raid_array[index].ncopies;
5274 ctl->nparity = btrfs_raid_array[index].nparity;
5275 ctl->ndevs = 0;
5276
5277 switch (fs_devices->chunk_alloc_policy) {
5278 case BTRFS_CHUNK_ALLOC_REGULAR:
5279 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5280 break;
5281 case BTRFS_CHUNK_ALLOC_ZONED:
5282 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5283 break;
5284 default:
5285 BUG();
5286 }
5287 }
5288
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5289 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5290 struct alloc_chunk_ctl *ctl,
5291 struct btrfs_device_info *devices_info)
5292 {
5293 struct btrfs_fs_info *info = fs_devices->fs_info;
5294 struct btrfs_device *device;
5295 u64 total_avail;
5296 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5297 int ret;
5298 int ndevs = 0;
5299 u64 max_avail;
5300 u64 dev_offset;
5301
5302 /*
5303 * in the first pass through the devices list, we gather information
5304 * about the available holes on each device.
5305 */
5306 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5307 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5308 WARN(1, KERN_ERR
5309 "BTRFS: read-only device in alloc_list\n");
5310 continue;
5311 }
5312
5313 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5314 &device->dev_state) ||
5315 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5316 continue;
5317
5318 if (device->total_bytes > device->bytes_used)
5319 total_avail = device->total_bytes - device->bytes_used;
5320 else
5321 total_avail = 0;
5322
5323 /* If there is no space on this device, skip it. */
5324 if (total_avail < ctl->dev_extent_min)
5325 continue;
5326
5327 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5328 &max_avail);
5329 if (ret && ret != -ENOSPC)
5330 return ret;
5331
5332 if (ret == 0)
5333 max_avail = dev_extent_want;
5334
5335 if (max_avail < ctl->dev_extent_min) {
5336 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5337 btrfs_debug(info,
5338 "%s: devid %llu has no free space, have=%llu want=%llu",
5339 __func__, device->devid, max_avail,
5340 ctl->dev_extent_min);
5341 continue;
5342 }
5343
5344 if (ndevs == fs_devices->rw_devices) {
5345 WARN(1, "%s: found more than %llu devices\n",
5346 __func__, fs_devices->rw_devices);
5347 break;
5348 }
5349 devices_info[ndevs].dev_offset = dev_offset;
5350 devices_info[ndevs].max_avail = max_avail;
5351 devices_info[ndevs].total_avail = total_avail;
5352 devices_info[ndevs].dev = device;
5353 ++ndevs;
5354 }
5355 ctl->ndevs = ndevs;
5356
5357 /*
5358 * now sort the devices by hole size / available space
5359 */
5360 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5361 btrfs_cmp_device_info, NULL);
5362
5363 return 0;
5364 }
5365
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5366 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5367 struct btrfs_device_info *devices_info)
5368 {
5369 /* Number of stripes that count for block group size */
5370 int data_stripes;
5371
5372 /*
5373 * The primary goal is to maximize the number of stripes, so use as
5374 * many devices as possible, even if the stripes are not maximum sized.
5375 *
5376 * The DUP profile stores more than one stripe per device, the
5377 * max_avail is the total size so we have to adjust.
5378 */
5379 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5380 ctl->dev_stripes);
5381 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5382
5383 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5384 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5385
5386 /*
5387 * Use the number of data stripes to figure out how big this chunk is
5388 * really going to be in terms of logical address space, and compare
5389 * that answer with the max chunk size. If it's higher, we try to
5390 * reduce stripe_size.
5391 */
5392 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5393 /*
5394 * Reduce stripe_size, round it up to a 16MB boundary again and
5395 * then use it, unless it ends up being even bigger than the
5396 * previous value we had already.
5397 */
5398 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5399 data_stripes), SZ_16M),
5400 ctl->stripe_size);
5401 }
5402
5403 /* Stripe size should not go beyond 1G. */
5404 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5405
5406 /* Align to BTRFS_STRIPE_LEN */
5407 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5408 ctl->chunk_size = ctl->stripe_size * data_stripes;
5409
5410 return 0;
5411 }
5412
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5413 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5414 struct btrfs_device_info *devices_info)
5415 {
5416 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5417 /* Number of stripes that count for block group size */
5418 int data_stripes;
5419
5420 /*
5421 * It should hold because:
5422 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5423 */
5424 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5425
5426 ctl->stripe_size = zone_size;
5427 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5428 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5429
5430 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5431 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5432 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5433 ctl->stripe_size) + ctl->nparity,
5434 ctl->dev_stripes);
5435 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5436 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5437 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5438 }
5439
5440 ctl->chunk_size = ctl->stripe_size * data_stripes;
5441
5442 return 0;
5443 }
5444
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5445 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5446 struct alloc_chunk_ctl *ctl,
5447 struct btrfs_device_info *devices_info)
5448 {
5449 struct btrfs_fs_info *info = fs_devices->fs_info;
5450
5451 /*
5452 * Round down to number of usable stripes, devs_increment can be any
5453 * number so we can't use round_down() that requires power of 2, while
5454 * rounddown is safe.
5455 */
5456 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5457
5458 if (ctl->ndevs < ctl->devs_min) {
5459 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5460 btrfs_debug(info,
5461 "%s: not enough devices with free space: have=%d minimum required=%d",
5462 __func__, ctl->ndevs, ctl->devs_min);
5463 }
5464 return -ENOSPC;
5465 }
5466
5467 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5468
5469 switch (fs_devices->chunk_alloc_policy) {
5470 case BTRFS_CHUNK_ALLOC_REGULAR:
5471 return decide_stripe_size_regular(ctl, devices_info);
5472 case BTRFS_CHUNK_ALLOC_ZONED:
5473 return decide_stripe_size_zoned(ctl, devices_info);
5474 default:
5475 BUG();
5476 }
5477 }
5478
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5479 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5480 {
5481 for (int i = 0; i < map->num_stripes; i++) {
5482 struct btrfs_io_stripe *stripe = &map->stripes[i];
5483 struct btrfs_device *device = stripe->dev;
5484
5485 set_extent_bit(&device->alloc_state, stripe->physical,
5486 stripe->physical + map->stripe_size - 1,
5487 bits | EXTENT_NOWAIT, NULL);
5488 }
5489 }
5490
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5491 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5492 {
5493 for (int i = 0; i < map->num_stripes; i++) {
5494 struct btrfs_io_stripe *stripe = &map->stripes[i];
5495 struct btrfs_device *device = stripe->dev;
5496
5497 __clear_extent_bit(&device->alloc_state, stripe->physical,
5498 stripe->physical + map->stripe_size - 1,
5499 bits | EXTENT_NOWAIT,
5500 NULL, NULL);
5501 }
5502 }
5503
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5504 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5505 {
5506 write_lock(&fs_info->mapping_tree_lock);
5507 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5508 RB_CLEAR_NODE(&map->rb_node);
5509 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5510 write_unlock(&fs_info->mapping_tree_lock);
5511
5512 /* Once for the tree reference. */
5513 btrfs_free_chunk_map(map);
5514 }
5515
5516 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5517 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5518 {
5519 struct rb_node **p;
5520 struct rb_node *parent = NULL;
5521 bool leftmost = true;
5522
5523 write_lock(&fs_info->mapping_tree_lock);
5524 p = &fs_info->mapping_tree.rb_root.rb_node;
5525 while (*p) {
5526 struct btrfs_chunk_map *entry;
5527
5528 parent = *p;
5529 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5530
5531 if (map->start < entry->start) {
5532 p = &(*p)->rb_left;
5533 } else if (map->start > entry->start) {
5534 p = &(*p)->rb_right;
5535 leftmost = false;
5536 } else {
5537 write_unlock(&fs_info->mapping_tree_lock);
5538 return -EEXIST;
5539 }
5540 }
5541 rb_link_node(&map->rb_node, parent, p);
5542 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5543 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5544 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5545 write_unlock(&fs_info->mapping_tree_lock);
5546
5547 return 0;
5548 }
5549
5550 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5551 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5552 {
5553 struct btrfs_chunk_map *map;
5554
5555 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5556 if (!map)
5557 return NULL;
5558
5559 refcount_set(&map->refs, 1);
5560 RB_CLEAR_NODE(&map->rb_node);
5561
5562 return map;
5563 }
5564
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5565 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5566 struct alloc_chunk_ctl *ctl,
5567 struct btrfs_device_info *devices_info)
5568 {
5569 struct btrfs_fs_info *info = trans->fs_info;
5570 struct btrfs_chunk_map *map;
5571 struct btrfs_block_group *block_group;
5572 u64 start = ctl->start;
5573 u64 type = ctl->type;
5574 int ret;
5575
5576 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5577 if (!map)
5578 return ERR_PTR(-ENOMEM);
5579
5580 map->start = start;
5581 map->chunk_len = ctl->chunk_size;
5582 map->stripe_size = ctl->stripe_size;
5583 map->type = type;
5584 map->io_align = BTRFS_STRIPE_LEN;
5585 map->io_width = BTRFS_STRIPE_LEN;
5586 map->sub_stripes = ctl->sub_stripes;
5587 map->num_stripes = ctl->num_stripes;
5588
5589 for (int i = 0; i < ctl->ndevs; i++) {
5590 for (int j = 0; j < ctl->dev_stripes; j++) {
5591 int s = i * ctl->dev_stripes + j;
5592 map->stripes[s].dev = devices_info[i].dev;
5593 map->stripes[s].physical = devices_info[i].dev_offset +
5594 j * ctl->stripe_size;
5595 }
5596 }
5597
5598 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5599
5600 ret = btrfs_add_chunk_map(info, map);
5601 if (ret) {
5602 btrfs_free_chunk_map(map);
5603 return ERR_PTR(ret);
5604 }
5605
5606 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5607 if (IS_ERR(block_group)) {
5608 btrfs_remove_chunk_map(info, map);
5609 return block_group;
5610 }
5611
5612 for (int i = 0; i < map->num_stripes; i++) {
5613 struct btrfs_device *dev = map->stripes[i].dev;
5614
5615 btrfs_device_set_bytes_used(dev,
5616 dev->bytes_used + ctl->stripe_size);
5617 if (list_empty(&dev->post_commit_list))
5618 list_add_tail(&dev->post_commit_list,
5619 &trans->transaction->dev_update_list);
5620 }
5621
5622 atomic64_sub(ctl->stripe_size * map->num_stripes,
5623 &info->free_chunk_space);
5624
5625 check_raid56_incompat_flag(info, type);
5626 check_raid1c34_incompat_flag(info, type);
5627
5628 return block_group;
5629 }
5630
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5631 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5632 u64 type)
5633 {
5634 struct btrfs_fs_info *info = trans->fs_info;
5635 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5636 struct btrfs_device_info *devices_info = NULL;
5637 struct alloc_chunk_ctl ctl;
5638 struct btrfs_block_group *block_group;
5639 int ret;
5640
5641 lockdep_assert_held(&info->chunk_mutex);
5642
5643 if (!alloc_profile_is_valid(type, 0)) {
5644 ASSERT(0);
5645 return ERR_PTR(-EINVAL);
5646 }
5647
5648 if (list_empty(&fs_devices->alloc_list)) {
5649 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5650 btrfs_debug(info, "%s: no writable device", __func__);
5651 return ERR_PTR(-ENOSPC);
5652 }
5653
5654 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5655 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5656 ASSERT(0);
5657 return ERR_PTR(-EINVAL);
5658 }
5659
5660 ctl.start = find_next_chunk(info);
5661 ctl.type = type;
5662 init_alloc_chunk_ctl(fs_devices, &ctl);
5663
5664 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5665 GFP_NOFS);
5666 if (!devices_info)
5667 return ERR_PTR(-ENOMEM);
5668
5669 ret = gather_device_info(fs_devices, &ctl, devices_info);
5670 if (ret < 0) {
5671 block_group = ERR_PTR(ret);
5672 goto out;
5673 }
5674
5675 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5676 if (ret < 0) {
5677 block_group = ERR_PTR(ret);
5678 goto out;
5679 }
5680
5681 block_group = create_chunk(trans, &ctl, devices_info);
5682
5683 out:
5684 kfree(devices_info);
5685 return block_group;
5686 }
5687
5688 /*
5689 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5690 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5691 * chunks.
5692 *
5693 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5694 * phases.
5695 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5696 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5697 struct btrfs_block_group *bg)
5698 {
5699 struct btrfs_fs_info *fs_info = trans->fs_info;
5700 struct btrfs_root *chunk_root = fs_info->chunk_root;
5701 struct btrfs_key key;
5702 struct btrfs_chunk *chunk;
5703 struct btrfs_stripe *stripe;
5704 struct btrfs_chunk_map *map;
5705 size_t item_size;
5706 int i;
5707 int ret;
5708
5709 /*
5710 * We take the chunk_mutex for 2 reasons:
5711 *
5712 * 1) Updates and insertions in the chunk btree must be done while holding
5713 * the chunk_mutex, as well as updating the system chunk array in the
5714 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5715 * details;
5716 *
5717 * 2) To prevent races with the final phase of a device replace operation
5718 * that replaces the device object associated with the map's stripes,
5719 * because the device object's id can change at any time during that
5720 * final phase of the device replace operation
5721 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5722 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5723 * which would cause a failure when updating the device item, which does
5724 * not exists, or persisting a stripe of the chunk item with such ID.
5725 * Here we can't use the device_list_mutex because our caller already
5726 * has locked the chunk_mutex, and the final phase of device replace
5727 * acquires both mutexes - first the device_list_mutex and then the
5728 * chunk_mutex. Using any of those two mutexes protects us from a
5729 * concurrent device replace.
5730 */
5731 lockdep_assert_held(&fs_info->chunk_mutex);
5732
5733 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5734 if (IS_ERR(map)) {
5735 ret = PTR_ERR(map);
5736 btrfs_abort_transaction(trans, ret);
5737 return ret;
5738 }
5739
5740 item_size = btrfs_chunk_item_size(map->num_stripes);
5741
5742 chunk = kzalloc(item_size, GFP_NOFS);
5743 if (!chunk) {
5744 ret = -ENOMEM;
5745 btrfs_abort_transaction(trans, ret);
5746 goto out;
5747 }
5748
5749 for (i = 0; i < map->num_stripes; i++) {
5750 struct btrfs_device *device = map->stripes[i].dev;
5751
5752 ret = btrfs_update_device(trans, device);
5753 if (ret)
5754 goto out;
5755 }
5756
5757 stripe = &chunk->stripe;
5758 for (i = 0; i < map->num_stripes; i++) {
5759 struct btrfs_device *device = map->stripes[i].dev;
5760 const u64 dev_offset = map->stripes[i].physical;
5761
5762 btrfs_set_stack_stripe_devid(stripe, device->devid);
5763 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5764 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5765 stripe++;
5766 }
5767
5768 btrfs_set_stack_chunk_length(chunk, bg->length);
5769 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5770 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5771 btrfs_set_stack_chunk_type(chunk, map->type);
5772 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5773 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5774 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5775 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5776 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5777
5778 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5779 key.type = BTRFS_CHUNK_ITEM_KEY;
5780 key.offset = bg->start;
5781
5782 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5783 if (ret)
5784 goto out;
5785
5786 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5787
5788 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5789 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5790 if (ret)
5791 goto out;
5792 }
5793
5794 out:
5795 kfree(chunk);
5796 btrfs_free_chunk_map(map);
5797 return ret;
5798 }
5799
init_first_rw_device(struct btrfs_trans_handle * trans)5800 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5801 {
5802 struct btrfs_fs_info *fs_info = trans->fs_info;
5803 u64 alloc_profile;
5804 struct btrfs_block_group *meta_bg;
5805 struct btrfs_block_group *sys_bg;
5806
5807 /*
5808 * When adding a new device for sprouting, the seed device is read-only
5809 * so we must first allocate a metadata and a system chunk. But before
5810 * adding the block group items to the extent, device and chunk btrees,
5811 * we must first:
5812 *
5813 * 1) Create both chunks without doing any changes to the btrees, as
5814 * otherwise we would get -ENOSPC since the block groups from the
5815 * seed device are read-only;
5816 *
5817 * 2) Add the device item for the new sprout device - finishing the setup
5818 * of a new block group requires updating the device item in the chunk
5819 * btree, so it must exist when we attempt to do it. The previous step
5820 * ensures this does not fail with -ENOSPC.
5821 *
5822 * After that we can add the block group items to their btrees:
5823 * update existing device item in the chunk btree, add a new block group
5824 * item to the extent btree, add a new chunk item to the chunk btree and
5825 * finally add the new device extent items to the devices btree.
5826 */
5827
5828 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5829 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5830 if (IS_ERR(meta_bg))
5831 return PTR_ERR(meta_bg);
5832
5833 alloc_profile = btrfs_system_alloc_profile(fs_info);
5834 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5835 if (IS_ERR(sys_bg))
5836 return PTR_ERR(sys_bg);
5837
5838 return 0;
5839 }
5840
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5841 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5842 {
5843 const int index = btrfs_bg_flags_to_raid_index(map->type);
5844
5845 return btrfs_raid_array[index].tolerated_failures;
5846 }
5847
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5848 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5849 {
5850 struct btrfs_chunk_map *map;
5851 int miss_ndevs = 0;
5852 int i;
5853 bool ret = true;
5854
5855 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5856 if (IS_ERR(map))
5857 return false;
5858
5859 for (i = 0; i < map->num_stripes; i++) {
5860 if (test_bit(BTRFS_DEV_STATE_MISSING,
5861 &map->stripes[i].dev->dev_state)) {
5862 miss_ndevs++;
5863 continue;
5864 }
5865 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5866 &map->stripes[i].dev->dev_state)) {
5867 ret = false;
5868 goto end;
5869 }
5870 }
5871
5872 /*
5873 * If the number of missing devices is larger than max errors, we can
5874 * not write the data into that chunk successfully.
5875 */
5876 if (miss_ndevs > btrfs_chunk_max_errors(map))
5877 ret = false;
5878 end:
5879 btrfs_free_chunk_map(map);
5880 return ret;
5881 }
5882
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5883 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5884 {
5885 write_lock(&fs_info->mapping_tree_lock);
5886 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5887 struct btrfs_chunk_map *map;
5888 struct rb_node *node;
5889
5890 node = rb_first_cached(&fs_info->mapping_tree);
5891 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5892 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5893 RB_CLEAR_NODE(&map->rb_node);
5894 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5895 /* Once for the tree ref. */
5896 btrfs_free_chunk_map(map);
5897 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5898 }
5899 write_unlock(&fs_info->mapping_tree_lock);
5900 }
5901
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5902 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5903 {
5904 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5905
5906 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5907 return 2;
5908
5909 /*
5910 * There could be two corrupted data stripes, we need to loop retry in
5911 * order to rebuild the correct data.
5912 *
5913 * Fail a stripe at a time on every retry except the stripe under
5914 * reconstruction.
5915 */
5916 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5917 return map->num_stripes;
5918
5919 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5920 return btrfs_raid_array[index].ncopies;
5921 }
5922
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5923 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5924 {
5925 struct btrfs_chunk_map *map;
5926 int ret;
5927
5928 map = btrfs_get_chunk_map(fs_info, logical, len);
5929 if (IS_ERR(map))
5930 /*
5931 * We could return errors for these cases, but that could get
5932 * ugly and we'd probably do the same thing which is just not do
5933 * anything else and exit, so return 1 so the callers don't try
5934 * to use other copies.
5935 */
5936 return 1;
5937
5938 ret = btrfs_chunk_map_num_copies(map);
5939 btrfs_free_chunk_map(map);
5940 return ret;
5941 }
5942
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5943 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5944 u64 logical)
5945 {
5946 struct btrfs_chunk_map *map;
5947 unsigned long len = fs_info->sectorsize;
5948
5949 if (!btrfs_fs_incompat(fs_info, RAID56))
5950 return len;
5951
5952 map = btrfs_get_chunk_map(fs_info, logical, len);
5953
5954 if (!WARN_ON(IS_ERR(map))) {
5955 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5956 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5957 btrfs_free_chunk_map(map);
5958 }
5959 return len;
5960 }
5961
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,int dev_replace_is_ongoing)5962 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5963 struct btrfs_chunk_map *map, int first,
5964 int dev_replace_is_ongoing)
5965 {
5966 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5967 int i;
5968 int num_stripes;
5969 int preferred_mirror;
5970 int tolerance;
5971 struct btrfs_device *srcdev;
5972
5973 ASSERT((map->type &
5974 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5975
5976 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5977 num_stripes = map->sub_stripes;
5978 else
5979 num_stripes = map->num_stripes;
5980
5981 switch (policy) {
5982 default:
5983 /* Shouldn't happen, just warn and use pid instead of failing */
5984 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5985 policy);
5986 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5987 fallthrough;
5988 case BTRFS_READ_POLICY_PID:
5989 preferred_mirror = first + (current->pid % num_stripes);
5990 break;
5991 }
5992
5993 if (dev_replace_is_ongoing &&
5994 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5995 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5996 srcdev = fs_info->dev_replace.srcdev;
5997 else
5998 srcdev = NULL;
5999
6000 /*
6001 * try to avoid the drive that is the source drive for a
6002 * dev-replace procedure, only choose it if no other non-missing
6003 * mirror is available
6004 */
6005 for (tolerance = 0; tolerance < 2; tolerance++) {
6006 if (map->stripes[preferred_mirror].dev->bdev &&
6007 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6008 return preferred_mirror;
6009 for (i = first; i < first + num_stripes; i++) {
6010 if (map->stripes[i].dev->bdev &&
6011 (tolerance || map->stripes[i].dev != srcdev))
6012 return i;
6013 }
6014 }
6015
6016 /* we couldn't find one that doesn't fail. Just return something
6017 * and the io error handling code will clean up eventually
6018 */
6019 return preferred_mirror;
6020 }
6021
6022 EXPORT_FOR_TESTS
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)6023 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6024 u64 logical, u16 total_stripes)
6025 {
6026 struct btrfs_io_context *bioc;
6027
6028 bioc = kzalloc(
6029 /* The size of btrfs_io_context */
6030 sizeof(struct btrfs_io_context) +
6031 /* Plus the variable array for the stripes */
6032 sizeof(struct btrfs_io_stripe) * (total_stripes),
6033 GFP_NOFS);
6034
6035 if (!bioc)
6036 return NULL;
6037
6038 refcount_set(&bioc->refs, 1);
6039
6040 bioc->fs_info = fs_info;
6041 bioc->replace_stripe_src = -1;
6042 bioc->full_stripe_logical = (u64)-1;
6043 bioc->logical = logical;
6044
6045 return bioc;
6046 }
6047
btrfs_get_bioc(struct btrfs_io_context * bioc)6048 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6049 {
6050 WARN_ON(!refcount_read(&bioc->refs));
6051 refcount_inc(&bioc->refs);
6052 }
6053
btrfs_put_bioc(struct btrfs_io_context * bioc)6054 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6055 {
6056 if (!bioc)
6057 return;
6058 if (refcount_dec_and_test(&bioc->refs))
6059 kfree(bioc);
6060 }
6061
6062 /*
6063 * Please note that, discard won't be sent to target device of device
6064 * replace.
6065 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)6066 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6067 u64 logical, u64 *length_ret,
6068 u32 *num_stripes)
6069 {
6070 struct btrfs_chunk_map *map;
6071 struct btrfs_discard_stripe *stripes;
6072 u64 length = *length_ret;
6073 u64 offset;
6074 u32 stripe_nr;
6075 u32 stripe_nr_end;
6076 u32 stripe_cnt;
6077 u64 stripe_end_offset;
6078 u64 stripe_offset;
6079 u32 stripe_index;
6080 u32 factor = 0;
6081 u32 sub_stripes = 0;
6082 u32 stripes_per_dev = 0;
6083 u32 remaining_stripes = 0;
6084 u32 last_stripe = 0;
6085 int ret;
6086 int i;
6087
6088 map = btrfs_get_chunk_map(fs_info, logical, length);
6089 if (IS_ERR(map))
6090 return ERR_CAST(map);
6091
6092 /* we don't discard raid56 yet */
6093 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6094 ret = -EOPNOTSUPP;
6095 goto out_free_map;
6096 }
6097
6098 offset = logical - map->start;
6099 length = min_t(u64, map->start + map->chunk_len - logical, length);
6100 *length_ret = length;
6101
6102 /*
6103 * stripe_nr counts the total number of stripes we have to stride
6104 * to get to this block
6105 */
6106 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6107
6108 /* stripe_offset is the offset of this block in its stripe */
6109 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6110
6111 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6112 BTRFS_STRIPE_LEN_SHIFT;
6113 stripe_cnt = stripe_nr_end - stripe_nr;
6114 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6115 (offset + length);
6116 /*
6117 * after this, stripe_nr is the number of stripes on this
6118 * device we have to walk to find the data, and stripe_index is
6119 * the number of our device in the stripe array
6120 */
6121 *num_stripes = 1;
6122 stripe_index = 0;
6123 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6124 BTRFS_BLOCK_GROUP_RAID10)) {
6125 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6126 sub_stripes = 1;
6127 else
6128 sub_stripes = map->sub_stripes;
6129
6130 factor = map->num_stripes / sub_stripes;
6131 *num_stripes = min_t(u64, map->num_stripes,
6132 sub_stripes * stripe_cnt);
6133 stripe_index = stripe_nr % factor;
6134 stripe_nr /= factor;
6135 stripe_index *= sub_stripes;
6136
6137 remaining_stripes = stripe_cnt % factor;
6138 stripes_per_dev = stripe_cnt / factor;
6139 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6140 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6141 BTRFS_BLOCK_GROUP_DUP)) {
6142 *num_stripes = map->num_stripes;
6143 } else {
6144 stripe_index = stripe_nr % map->num_stripes;
6145 stripe_nr /= map->num_stripes;
6146 }
6147
6148 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6149 if (!stripes) {
6150 ret = -ENOMEM;
6151 goto out_free_map;
6152 }
6153
6154 for (i = 0; i < *num_stripes; i++) {
6155 stripes[i].physical =
6156 map->stripes[stripe_index].physical +
6157 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6158 stripes[i].dev = map->stripes[stripe_index].dev;
6159
6160 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6161 BTRFS_BLOCK_GROUP_RAID10)) {
6162 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6163
6164 if (i / sub_stripes < remaining_stripes)
6165 stripes[i].length += BTRFS_STRIPE_LEN;
6166
6167 /*
6168 * Special for the first stripe and
6169 * the last stripe:
6170 *
6171 * |-------|...|-------|
6172 * |----------|
6173 * off end_off
6174 */
6175 if (i < sub_stripes)
6176 stripes[i].length -= stripe_offset;
6177
6178 if (stripe_index >= last_stripe &&
6179 stripe_index <= (last_stripe +
6180 sub_stripes - 1))
6181 stripes[i].length -= stripe_end_offset;
6182
6183 if (i == sub_stripes - 1)
6184 stripe_offset = 0;
6185 } else {
6186 stripes[i].length = length;
6187 }
6188
6189 stripe_index++;
6190 if (stripe_index == map->num_stripes) {
6191 stripe_index = 0;
6192 stripe_nr++;
6193 }
6194 }
6195
6196 btrfs_free_chunk_map(map);
6197 return stripes;
6198 out_free_map:
6199 btrfs_free_chunk_map(map);
6200 return ERR_PTR(ret);
6201 }
6202
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6203 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6204 {
6205 struct btrfs_block_group *cache;
6206 bool ret;
6207
6208 /* Non zoned filesystem does not use "to_copy" flag */
6209 if (!btrfs_is_zoned(fs_info))
6210 return false;
6211
6212 cache = btrfs_lookup_block_group(fs_info, logical);
6213
6214 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6215
6216 btrfs_put_block_group(cache);
6217 return ret;
6218 }
6219
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6220 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6221 struct btrfs_dev_replace *dev_replace,
6222 u64 logical,
6223 struct btrfs_io_geometry *io_geom)
6224 {
6225 u64 srcdev_devid = dev_replace->srcdev->devid;
6226 /*
6227 * At this stage, num_stripes is still the real number of stripes,
6228 * excluding the duplicated stripes.
6229 */
6230 int num_stripes = io_geom->num_stripes;
6231 int max_errors = io_geom->max_errors;
6232 int nr_extra_stripes = 0;
6233 int i;
6234
6235 /*
6236 * A block group which has "to_copy" set will eventually be copied by
6237 * the dev-replace process. We can avoid cloning IO here.
6238 */
6239 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6240 return;
6241
6242 /*
6243 * Duplicate the write operations while the dev-replace procedure is
6244 * running. Since the copying of the old disk to the new disk takes
6245 * place at run time while the filesystem is mounted writable, the
6246 * regular write operations to the old disk have to be duplicated to go
6247 * to the new disk as well.
6248 *
6249 * Note that device->missing is handled by the caller, and that the
6250 * write to the old disk is already set up in the stripes array.
6251 */
6252 for (i = 0; i < num_stripes; i++) {
6253 struct btrfs_io_stripe *old = &bioc->stripes[i];
6254 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6255
6256 if (old->dev->devid != srcdev_devid)
6257 continue;
6258
6259 new->physical = old->physical;
6260 new->dev = dev_replace->tgtdev;
6261 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6262 bioc->replace_stripe_src = i;
6263 nr_extra_stripes++;
6264 }
6265
6266 /* We can only have at most 2 extra nr_stripes (for DUP). */
6267 ASSERT(nr_extra_stripes <= 2);
6268 /*
6269 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6270 * replace.
6271 * If we have 2 extra stripes, only choose the one with smaller physical.
6272 */
6273 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6274 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6275 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6276
6277 /* Only DUP can have two extra stripes. */
6278 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6279
6280 /*
6281 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6282 * The extra stripe would still be there, but won't be accessed.
6283 */
6284 if (first->physical > second->physical) {
6285 swap(second->physical, first->physical);
6286 swap(second->dev, first->dev);
6287 nr_extra_stripes--;
6288 }
6289 }
6290
6291 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6292 io_geom->max_errors = max_errors + nr_extra_stripes;
6293 bioc->replace_nr_stripes = nr_extra_stripes;
6294 }
6295
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6296 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6297 struct btrfs_io_geometry *io_geom)
6298 {
6299 /*
6300 * Stripe_nr is the stripe where this block falls. stripe_offset is
6301 * the offset of this block in its stripe.
6302 */
6303 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6304 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6305 ASSERT(io_geom->stripe_offset < U32_MAX);
6306
6307 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6308 unsigned long full_stripe_len =
6309 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6310
6311 /*
6312 * For full stripe start, we use previously calculated
6313 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6314 * STRIPE_LEN.
6315 *
6316 * By this we can avoid u64 division completely. And we have
6317 * to go rounddown(), not round_down(), as nr_data_stripes is
6318 * not ensured to be power of 2.
6319 */
6320 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6321 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6322
6323 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6324 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6325 /*
6326 * For writes to RAID56, allow to write a full stripe set, but
6327 * no straddling of stripe sets.
6328 */
6329 if (io_geom->op == BTRFS_MAP_WRITE)
6330 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6331 }
6332
6333 /*
6334 * For other RAID types and for RAID56 reads, allow a single stripe (on
6335 * a single disk).
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6338 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6339 return U64_MAX;
6340 }
6341
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6342 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6343 u64 *length, struct btrfs_io_stripe *dst,
6344 struct btrfs_chunk_map *map,
6345 struct btrfs_io_geometry *io_geom)
6346 {
6347 dst->dev = map->stripes[io_geom->stripe_index].dev;
6348
6349 if (io_geom->op == BTRFS_MAP_READ &&
6350 btrfs_need_stripe_tree_update(fs_info, map->type))
6351 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6352 map->type,
6353 io_geom->stripe_index, dst);
6354
6355 dst->physical = map->stripes[io_geom->stripe_index].physical +
6356 io_geom->stripe_offset +
6357 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6358 return 0;
6359 }
6360
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,enum btrfs_map_op op,int mirror_num)6361 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6362 const struct btrfs_io_stripe *smap,
6363 const struct btrfs_chunk_map *map,
6364 int num_alloc_stripes,
6365 enum btrfs_map_op op, int mirror_num)
6366 {
6367 if (!smap)
6368 return false;
6369
6370 if (num_alloc_stripes != 1)
6371 return false;
6372
6373 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6374 return false;
6375
6376 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6377 return false;
6378
6379 return true;
6380 }
6381
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6382 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6383 struct btrfs_io_geometry *io_geom)
6384 {
6385 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6386 io_geom->stripe_nr /= map->num_stripes;
6387 if (io_geom->op == BTRFS_MAP_READ)
6388 io_geom->mirror_num = 1;
6389 }
6390
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6391 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6392 struct btrfs_chunk_map *map,
6393 struct btrfs_io_geometry *io_geom,
6394 bool dev_replace_is_ongoing)
6395 {
6396 if (io_geom->op != BTRFS_MAP_READ) {
6397 io_geom->num_stripes = map->num_stripes;
6398 return;
6399 }
6400
6401 if (io_geom->mirror_num) {
6402 io_geom->stripe_index = io_geom->mirror_num - 1;
6403 return;
6404 }
6405
6406 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6407 dev_replace_is_ongoing);
6408 io_geom->mirror_num = io_geom->stripe_index + 1;
6409 }
6410
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6411 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6412 struct btrfs_io_geometry *io_geom)
6413 {
6414 if (io_geom->op != BTRFS_MAP_READ) {
6415 io_geom->num_stripes = map->num_stripes;
6416 return;
6417 }
6418
6419 if (io_geom->mirror_num) {
6420 io_geom->stripe_index = io_geom->mirror_num - 1;
6421 return;
6422 }
6423
6424 io_geom->mirror_num = 1;
6425 }
6426
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6427 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6428 struct btrfs_chunk_map *map,
6429 struct btrfs_io_geometry *io_geom,
6430 bool dev_replace_is_ongoing)
6431 {
6432 u32 factor = map->num_stripes / map->sub_stripes;
6433 int old_stripe_index;
6434
6435 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6436 io_geom->stripe_nr /= factor;
6437
6438 if (io_geom->op != BTRFS_MAP_READ) {
6439 io_geom->num_stripes = map->sub_stripes;
6440 return;
6441 }
6442
6443 if (io_geom->mirror_num) {
6444 io_geom->stripe_index += io_geom->mirror_num - 1;
6445 return;
6446 }
6447
6448 old_stripe_index = io_geom->stripe_index;
6449 io_geom->stripe_index = find_live_mirror(fs_info, map,
6450 io_geom->stripe_index,
6451 dev_replace_is_ongoing);
6452 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6453 }
6454
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6455 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6456 struct btrfs_io_geometry *io_geom,
6457 u64 logical, u64 *length)
6458 {
6459 int data_stripes = nr_data_stripes(map);
6460
6461 /*
6462 * Needs full stripe mapping.
6463 *
6464 * Push stripe_nr back to the start of the full stripe For those cases
6465 * needing a full stripe, @stripe_nr is the full stripe number.
6466 *
6467 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6468 * that can be expensive. Here we just divide @stripe_nr with
6469 * @data_stripes.
6470 */
6471 io_geom->stripe_nr /= data_stripes;
6472
6473 /* RAID[56] write or recovery. Return all stripes */
6474 io_geom->num_stripes = map->num_stripes;
6475 io_geom->max_errors = btrfs_chunk_max_errors(map);
6476
6477 /* Return the length to the full stripe end. */
6478 *length = min(logical + *length,
6479 io_geom->raid56_full_stripe_start + map->start +
6480 btrfs_stripe_nr_to_offset(data_stripes)) -
6481 logical;
6482 io_geom->stripe_index = 0;
6483 io_geom->stripe_offset = 0;
6484 }
6485
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6486 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6487 struct btrfs_io_geometry *io_geom)
6488 {
6489 int data_stripes = nr_data_stripes(map);
6490
6491 ASSERT(io_geom->mirror_num <= 1);
6492 /* Just grab the data stripe directly. */
6493 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6494 io_geom->stripe_nr /= data_stripes;
6495
6496 /* We distribute the parity blocks across stripes. */
6497 io_geom->stripe_index =
6498 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6499
6500 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6501 io_geom->mirror_num = 1;
6502 }
6503
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6504 static void map_blocks_single(const struct btrfs_chunk_map *map,
6505 struct btrfs_io_geometry *io_geom)
6506 {
6507 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6508 io_geom->stripe_nr /= map->num_stripes;
6509 io_geom->mirror_num = io_geom->stripe_index + 1;
6510 }
6511
6512 /*
6513 * Map one logical range to one or more physical ranges.
6514 *
6515 * @length: (Mandatory) mapped length of this run.
6516 * One logical range can be split into different segments
6517 * due to factors like zones and RAID0/5/6/10 stripe
6518 * boundaries.
6519 *
6520 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6521 * which has one or more physical ranges (btrfs_io_stripe)
6522 * recorded inside.
6523 * Caller should call btrfs_put_bioc() to free it after use.
6524 *
6525 * @smap: (Optional) single physical range optimization.
6526 * If the map request can be fulfilled by one single
6527 * physical range, and this is parameter is not NULL,
6528 * then @bioc_ret would be NULL, and @smap would be
6529 * updated.
6530 *
6531 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6532 * value is 0.
6533 *
6534 * Mirror number 0 means to choose any live mirrors.
6535 *
6536 * For non-RAID56 profiles, non-zero mirror_num means
6537 * the Nth mirror. (e.g. mirror_num 1 means the first
6538 * copy).
6539 *
6540 * For RAID56 profile, mirror 1 means rebuild from P and
6541 * the remaining data stripes.
6542 *
6543 * For RAID6 profile, mirror > 2 means mark another
6544 * data/P stripe error and rebuild from the remaining
6545 * stripes..
6546 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6547 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6548 u64 logical, u64 *length,
6549 struct btrfs_io_context **bioc_ret,
6550 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6551 {
6552 struct btrfs_chunk_map *map;
6553 struct btrfs_io_geometry io_geom = { 0 };
6554 u64 map_offset;
6555 int ret = 0;
6556 int num_copies;
6557 struct btrfs_io_context *bioc = NULL;
6558 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6559 int dev_replace_is_ongoing = 0;
6560 u16 num_alloc_stripes;
6561 u64 max_len;
6562
6563 ASSERT(bioc_ret);
6564
6565 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6566 io_geom.num_stripes = 1;
6567 io_geom.stripe_index = 0;
6568 io_geom.op = op;
6569
6570 map = btrfs_get_chunk_map(fs_info, logical, *length);
6571 if (IS_ERR(map))
6572 return PTR_ERR(map);
6573
6574 num_copies = btrfs_chunk_map_num_copies(map);
6575 if (io_geom.mirror_num > num_copies)
6576 return -EINVAL;
6577
6578 map_offset = logical - map->start;
6579 io_geom.raid56_full_stripe_start = (u64)-1;
6580 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6581 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6582
6583 if (dev_replace->replace_task != current)
6584 down_read(&dev_replace->rwsem);
6585
6586 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6587 /*
6588 * Hold the semaphore for read during the whole operation, write is
6589 * requested at commit time but must wait.
6590 */
6591 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6592 up_read(&dev_replace->rwsem);
6593
6594 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6595 case BTRFS_BLOCK_GROUP_RAID0:
6596 map_blocks_raid0(map, &io_geom);
6597 break;
6598 case BTRFS_BLOCK_GROUP_RAID1:
6599 case BTRFS_BLOCK_GROUP_RAID1C3:
6600 case BTRFS_BLOCK_GROUP_RAID1C4:
6601 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6602 break;
6603 case BTRFS_BLOCK_GROUP_DUP:
6604 map_blocks_dup(map, &io_geom);
6605 break;
6606 case BTRFS_BLOCK_GROUP_RAID10:
6607 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6608 break;
6609 case BTRFS_BLOCK_GROUP_RAID5:
6610 case BTRFS_BLOCK_GROUP_RAID6:
6611 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6612 map_blocks_raid56_write(map, &io_geom, logical, length);
6613 else
6614 map_blocks_raid56_read(map, &io_geom);
6615 break;
6616 default:
6617 /*
6618 * After this, stripe_nr is the number of stripes on this
6619 * device we have to walk to find the data, and stripe_index is
6620 * the number of our device in the stripe array
6621 */
6622 map_blocks_single(map, &io_geom);
6623 break;
6624 }
6625 if (io_geom.stripe_index >= map->num_stripes) {
6626 btrfs_crit(fs_info,
6627 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6628 io_geom.stripe_index, map->num_stripes);
6629 ret = -EINVAL;
6630 goto out;
6631 }
6632
6633 num_alloc_stripes = io_geom.num_stripes;
6634 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6635 op != BTRFS_MAP_READ)
6636 /*
6637 * For replace case, we need to add extra stripes for extra
6638 * duplicated stripes.
6639 *
6640 * For both WRITE and GET_READ_MIRRORS, we may have at most
6641 * 2 more stripes (DUP types, otherwise 1).
6642 */
6643 num_alloc_stripes += 2;
6644
6645 /*
6646 * If this I/O maps to a single device, try to return the device and
6647 * physical block information on the stack instead of allocating an
6648 * I/O context structure.
6649 */
6650 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6651 io_geom.mirror_num)) {
6652 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6653 if (mirror_num_ret)
6654 *mirror_num_ret = io_geom.mirror_num;
6655 *bioc_ret = NULL;
6656 goto out;
6657 }
6658
6659 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6660 if (!bioc) {
6661 ret = -ENOMEM;
6662 goto out;
6663 }
6664 bioc->map_type = map->type;
6665
6666 /*
6667 * For RAID56 full map, we need to make sure the stripes[] follows the
6668 * rule that data stripes are all ordered, then followed with P and Q
6669 * (if we have).
6670 *
6671 * It's still mostly the same as other profiles, just with extra rotation.
6672 */
6673 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6674 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6675 /*
6676 * For RAID56 @stripe_nr is already the number of full stripes
6677 * before us, which is also the rotation value (needs to modulo
6678 * with num_stripes).
6679 *
6680 * In this case, we just add @stripe_nr with @i, then do the
6681 * modulo, to reduce one modulo call.
6682 */
6683 bioc->full_stripe_logical = map->start +
6684 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6685 nr_data_stripes(map));
6686 for (int i = 0; i < io_geom.num_stripes; i++) {
6687 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6688 u32 stripe_index;
6689
6690 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6691 dst->dev = map->stripes[stripe_index].dev;
6692 dst->physical =
6693 map->stripes[stripe_index].physical +
6694 io_geom.stripe_offset +
6695 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6696 }
6697 } else {
6698 /*
6699 * For all other non-RAID56 profiles, just copy the target
6700 * stripe into the bioc.
6701 */
6702 for (int i = 0; i < io_geom.num_stripes; i++) {
6703 ret = set_io_stripe(fs_info, logical, length,
6704 &bioc->stripes[i], map, &io_geom);
6705 if (ret < 0)
6706 break;
6707 io_geom.stripe_index++;
6708 }
6709 }
6710
6711 if (ret) {
6712 *bioc_ret = NULL;
6713 btrfs_put_bioc(bioc);
6714 goto out;
6715 }
6716
6717 if (op != BTRFS_MAP_READ)
6718 io_geom.max_errors = btrfs_chunk_max_errors(map);
6719
6720 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6721 op != BTRFS_MAP_READ) {
6722 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6723 }
6724
6725 *bioc_ret = bioc;
6726 bioc->num_stripes = io_geom.num_stripes;
6727 bioc->max_errors = io_geom.max_errors;
6728 bioc->mirror_num = io_geom.mirror_num;
6729
6730 out:
6731 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6732 lockdep_assert_held(&dev_replace->rwsem);
6733 /* Unlock and let waiting writers proceed */
6734 up_read(&dev_replace->rwsem);
6735 }
6736 btrfs_free_chunk_map(map);
6737 return ret;
6738 }
6739
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6740 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6741 const struct btrfs_fs_devices *fs_devices)
6742 {
6743 if (args->fsid == NULL)
6744 return true;
6745 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6746 return true;
6747 return false;
6748 }
6749
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6750 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6751 const struct btrfs_device *device)
6752 {
6753 if (args->missing) {
6754 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6755 !device->bdev)
6756 return true;
6757 return false;
6758 }
6759
6760 if (device->devid != args->devid)
6761 return false;
6762 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6763 return false;
6764 return true;
6765 }
6766
6767 /*
6768 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6769 * return NULL.
6770 *
6771 * If devid and uuid are both specified, the match must be exact, otherwise
6772 * only devid is used.
6773 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6774 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6775 const struct btrfs_dev_lookup_args *args)
6776 {
6777 struct btrfs_device *device;
6778 struct btrfs_fs_devices *seed_devs;
6779
6780 if (dev_args_match_fs_devices(args, fs_devices)) {
6781 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6782 if (dev_args_match_device(args, device))
6783 return device;
6784 }
6785 }
6786
6787 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6788 if (!dev_args_match_fs_devices(args, seed_devs))
6789 continue;
6790 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6791 if (dev_args_match_device(args, device))
6792 return device;
6793 }
6794 }
6795
6796 return NULL;
6797 }
6798
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6799 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6800 u64 devid, u8 *dev_uuid)
6801 {
6802 struct btrfs_device *device;
6803 unsigned int nofs_flag;
6804
6805 /*
6806 * We call this under the chunk_mutex, so we want to use NOFS for this
6807 * allocation, however we don't want to change btrfs_alloc_device() to
6808 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6809 * places.
6810 */
6811
6812 nofs_flag = memalloc_nofs_save();
6813 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6814 memalloc_nofs_restore(nofs_flag);
6815 if (IS_ERR(device))
6816 return device;
6817
6818 list_add(&device->dev_list, &fs_devices->devices);
6819 device->fs_devices = fs_devices;
6820 fs_devices->num_devices++;
6821
6822 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6823 fs_devices->missing_devices++;
6824
6825 return device;
6826 }
6827
6828 /*
6829 * Allocate new device struct, set up devid and UUID.
6830 *
6831 * @fs_info: used only for generating a new devid, can be NULL if
6832 * devid is provided (i.e. @devid != NULL).
6833 * @devid: a pointer to devid for this device. If NULL a new devid
6834 * is generated.
6835 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6836 * is generated.
6837 * @path: a pointer to device path if available, NULL otherwise.
6838 *
6839 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6840 * on error. Returned struct is not linked onto any lists and must be
6841 * destroyed with btrfs_free_device.
6842 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6843 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6844 const u64 *devid, const u8 *uuid,
6845 const char *path)
6846 {
6847 struct btrfs_device *dev;
6848 u64 tmp;
6849
6850 if (WARN_ON(!devid && !fs_info))
6851 return ERR_PTR(-EINVAL);
6852
6853 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6854 if (!dev)
6855 return ERR_PTR(-ENOMEM);
6856
6857 INIT_LIST_HEAD(&dev->dev_list);
6858 INIT_LIST_HEAD(&dev->dev_alloc_list);
6859 INIT_LIST_HEAD(&dev->post_commit_list);
6860
6861 atomic_set(&dev->dev_stats_ccnt, 0);
6862 btrfs_device_data_ordered_init(dev);
6863 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6864
6865 if (devid)
6866 tmp = *devid;
6867 else {
6868 int ret;
6869
6870 ret = find_next_devid(fs_info, &tmp);
6871 if (ret) {
6872 btrfs_free_device(dev);
6873 return ERR_PTR(ret);
6874 }
6875 }
6876 dev->devid = tmp;
6877
6878 if (uuid)
6879 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6880 else
6881 generate_random_uuid(dev->uuid);
6882
6883 if (path) {
6884 struct rcu_string *name;
6885
6886 name = rcu_string_strdup(path, GFP_KERNEL);
6887 if (!name) {
6888 btrfs_free_device(dev);
6889 return ERR_PTR(-ENOMEM);
6890 }
6891 rcu_assign_pointer(dev->name, name);
6892 }
6893
6894 return dev;
6895 }
6896
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6897 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6898 u64 devid, u8 *uuid, bool error)
6899 {
6900 if (error)
6901 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6902 devid, uuid);
6903 else
6904 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6905 devid, uuid);
6906 }
6907
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6908 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6909 {
6910 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6911
6912 return div_u64(map->chunk_len, data_stripes);
6913 }
6914
6915 #if BITS_PER_LONG == 32
6916 /*
6917 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6918 * can't be accessed on 32bit systems.
6919 *
6920 * This function do mount time check to reject the fs if it already has
6921 * metadata chunk beyond that limit.
6922 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6923 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6924 u64 logical, u64 length, u64 type)
6925 {
6926 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6927 return 0;
6928
6929 if (logical + length < MAX_LFS_FILESIZE)
6930 return 0;
6931
6932 btrfs_err_32bit_limit(fs_info);
6933 return -EOVERFLOW;
6934 }
6935
6936 /*
6937 * This is to give early warning for any metadata chunk reaching
6938 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6939 * Although we can still access the metadata, it's not going to be possible
6940 * once the limit is reached.
6941 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6942 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6943 u64 logical, u64 length, u64 type)
6944 {
6945 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6946 return;
6947
6948 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6949 return;
6950
6951 btrfs_warn_32bit_limit(fs_info);
6952 }
6953 #endif
6954
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6955 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6956 u64 devid, u8 *uuid)
6957 {
6958 struct btrfs_device *dev;
6959
6960 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6961 btrfs_report_missing_device(fs_info, devid, uuid, true);
6962 return ERR_PTR(-ENOENT);
6963 }
6964
6965 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6966 if (IS_ERR(dev)) {
6967 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6968 devid, PTR_ERR(dev));
6969 return dev;
6970 }
6971 btrfs_report_missing_device(fs_info, devid, uuid, false);
6972
6973 return dev;
6974 }
6975
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6976 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6977 struct btrfs_chunk *chunk)
6978 {
6979 BTRFS_DEV_LOOKUP_ARGS(args);
6980 struct btrfs_fs_info *fs_info = leaf->fs_info;
6981 struct btrfs_chunk_map *map;
6982 u64 logical;
6983 u64 length;
6984 u64 devid;
6985 u64 type;
6986 u8 uuid[BTRFS_UUID_SIZE];
6987 int index;
6988 int num_stripes;
6989 int ret;
6990 int i;
6991
6992 logical = key->offset;
6993 length = btrfs_chunk_length(leaf, chunk);
6994 type = btrfs_chunk_type(leaf, chunk);
6995 index = btrfs_bg_flags_to_raid_index(type);
6996 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6997
6998 #if BITS_PER_LONG == 32
6999 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7000 if (ret < 0)
7001 return ret;
7002 warn_32bit_meta_chunk(fs_info, logical, length, type);
7003 #endif
7004
7005 /*
7006 * Only need to verify chunk item if we're reading from sys chunk array,
7007 * as chunk item in tree block is already verified by tree-checker.
7008 */
7009 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7010 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7011 if (ret)
7012 return ret;
7013 }
7014
7015 map = btrfs_find_chunk_map(fs_info, logical, 1);
7016
7017 /* already mapped? */
7018 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7019 btrfs_free_chunk_map(map);
7020 return 0;
7021 } else if (map) {
7022 btrfs_free_chunk_map(map);
7023 }
7024
7025 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7026 if (!map)
7027 return -ENOMEM;
7028
7029 map->start = logical;
7030 map->chunk_len = length;
7031 map->num_stripes = num_stripes;
7032 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7033 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7034 map->type = type;
7035 /*
7036 * We can't use the sub_stripes value, as for profiles other than
7037 * RAID10, they may have 0 as sub_stripes for filesystems created by
7038 * older mkfs (<v5.4).
7039 * In that case, it can cause divide-by-zero errors later.
7040 * Since currently sub_stripes is fixed for each profile, let's
7041 * use the trusted value instead.
7042 */
7043 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7044 map->verified_stripes = 0;
7045 map->stripe_size = btrfs_calc_stripe_length(map);
7046 for (i = 0; i < num_stripes; i++) {
7047 map->stripes[i].physical =
7048 btrfs_stripe_offset_nr(leaf, chunk, i);
7049 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7050 args.devid = devid;
7051 read_extent_buffer(leaf, uuid, (unsigned long)
7052 btrfs_stripe_dev_uuid_nr(chunk, i),
7053 BTRFS_UUID_SIZE);
7054 args.uuid = uuid;
7055 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7056 if (!map->stripes[i].dev) {
7057 map->stripes[i].dev = handle_missing_device(fs_info,
7058 devid, uuid);
7059 if (IS_ERR(map->stripes[i].dev)) {
7060 ret = PTR_ERR(map->stripes[i].dev);
7061 btrfs_free_chunk_map(map);
7062 return ret;
7063 }
7064 }
7065
7066 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7067 &(map->stripes[i].dev->dev_state));
7068 }
7069
7070 ret = btrfs_add_chunk_map(fs_info, map);
7071 if (ret < 0) {
7072 btrfs_err(fs_info,
7073 "failed to add chunk map, start=%llu len=%llu: %d",
7074 map->start, map->chunk_len, ret);
7075 }
7076
7077 return ret;
7078 }
7079
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7080 static void fill_device_from_item(struct extent_buffer *leaf,
7081 struct btrfs_dev_item *dev_item,
7082 struct btrfs_device *device)
7083 {
7084 unsigned long ptr;
7085
7086 device->devid = btrfs_device_id(leaf, dev_item);
7087 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7088 device->total_bytes = device->disk_total_bytes;
7089 device->commit_total_bytes = device->disk_total_bytes;
7090 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7091 device->commit_bytes_used = device->bytes_used;
7092 device->type = btrfs_device_type(leaf, dev_item);
7093 device->io_align = btrfs_device_io_align(leaf, dev_item);
7094 device->io_width = btrfs_device_io_width(leaf, dev_item);
7095 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7096 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7097 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7098
7099 ptr = btrfs_device_uuid(dev_item);
7100 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7101 }
7102
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7103 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7104 u8 *fsid)
7105 {
7106 struct btrfs_fs_devices *fs_devices;
7107 int ret;
7108
7109 lockdep_assert_held(&uuid_mutex);
7110 ASSERT(fsid);
7111
7112 /* This will match only for multi-device seed fs */
7113 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7114 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7115 return fs_devices;
7116
7117
7118 fs_devices = find_fsid(fsid, NULL);
7119 if (!fs_devices) {
7120 if (!btrfs_test_opt(fs_info, DEGRADED))
7121 return ERR_PTR(-ENOENT);
7122
7123 fs_devices = alloc_fs_devices(fsid);
7124 if (IS_ERR(fs_devices))
7125 return fs_devices;
7126
7127 fs_devices->seeding = true;
7128 fs_devices->opened = 1;
7129 return fs_devices;
7130 }
7131
7132 /*
7133 * Upon first call for a seed fs fsid, just create a private copy of the
7134 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7135 */
7136 fs_devices = clone_fs_devices(fs_devices);
7137 if (IS_ERR(fs_devices))
7138 return fs_devices;
7139
7140 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7141 if (ret) {
7142 free_fs_devices(fs_devices);
7143 return ERR_PTR(ret);
7144 }
7145
7146 if (!fs_devices->seeding) {
7147 close_fs_devices(fs_devices);
7148 free_fs_devices(fs_devices);
7149 return ERR_PTR(-EINVAL);
7150 }
7151
7152 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7153
7154 return fs_devices;
7155 }
7156
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7157 static int read_one_dev(struct extent_buffer *leaf,
7158 struct btrfs_dev_item *dev_item)
7159 {
7160 BTRFS_DEV_LOOKUP_ARGS(args);
7161 struct btrfs_fs_info *fs_info = leaf->fs_info;
7162 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7163 struct btrfs_device *device;
7164 u64 devid;
7165 int ret;
7166 u8 fs_uuid[BTRFS_FSID_SIZE];
7167 u8 dev_uuid[BTRFS_UUID_SIZE];
7168
7169 devid = btrfs_device_id(leaf, dev_item);
7170 args.devid = devid;
7171 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7172 BTRFS_UUID_SIZE);
7173 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7174 BTRFS_FSID_SIZE);
7175 args.uuid = dev_uuid;
7176 args.fsid = fs_uuid;
7177
7178 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7179 fs_devices = open_seed_devices(fs_info, fs_uuid);
7180 if (IS_ERR(fs_devices))
7181 return PTR_ERR(fs_devices);
7182 }
7183
7184 device = btrfs_find_device(fs_info->fs_devices, &args);
7185 if (!device) {
7186 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7187 btrfs_report_missing_device(fs_info, devid,
7188 dev_uuid, true);
7189 return -ENOENT;
7190 }
7191
7192 device = add_missing_dev(fs_devices, devid, dev_uuid);
7193 if (IS_ERR(device)) {
7194 btrfs_err(fs_info,
7195 "failed to add missing dev %llu: %ld",
7196 devid, PTR_ERR(device));
7197 return PTR_ERR(device);
7198 }
7199 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7200 } else {
7201 if (!device->bdev) {
7202 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7203 btrfs_report_missing_device(fs_info,
7204 devid, dev_uuid, true);
7205 return -ENOENT;
7206 }
7207 btrfs_report_missing_device(fs_info, devid,
7208 dev_uuid, false);
7209 }
7210
7211 if (!device->bdev &&
7212 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7213 /*
7214 * this happens when a device that was properly setup
7215 * in the device info lists suddenly goes bad.
7216 * device->bdev is NULL, and so we have to set
7217 * device->missing to one here
7218 */
7219 device->fs_devices->missing_devices++;
7220 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7221 }
7222
7223 /* Move the device to its own fs_devices */
7224 if (device->fs_devices != fs_devices) {
7225 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7226 &device->dev_state));
7227
7228 list_move(&device->dev_list, &fs_devices->devices);
7229 device->fs_devices->num_devices--;
7230 fs_devices->num_devices++;
7231
7232 device->fs_devices->missing_devices--;
7233 fs_devices->missing_devices++;
7234
7235 device->fs_devices = fs_devices;
7236 }
7237 }
7238
7239 if (device->fs_devices != fs_info->fs_devices) {
7240 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7241 if (device->generation !=
7242 btrfs_device_generation(leaf, dev_item))
7243 return -EINVAL;
7244 }
7245
7246 fill_device_from_item(leaf, dev_item, device);
7247 if (device->bdev) {
7248 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7249
7250 if (device->total_bytes > max_total_bytes) {
7251 btrfs_err(fs_info,
7252 "device total_bytes should be at most %llu but found %llu",
7253 max_total_bytes, device->total_bytes);
7254 return -EINVAL;
7255 }
7256 }
7257 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7258 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7259 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7260 device->fs_devices->total_rw_bytes += device->total_bytes;
7261 atomic64_add(device->total_bytes - device->bytes_used,
7262 &fs_info->free_chunk_space);
7263 }
7264 ret = 0;
7265 return ret;
7266 }
7267
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7268 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7269 {
7270 struct btrfs_super_block *super_copy = fs_info->super_copy;
7271 struct extent_buffer *sb;
7272 struct btrfs_disk_key *disk_key;
7273 struct btrfs_chunk *chunk;
7274 u8 *array_ptr;
7275 unsigned long sb_array_offset;
7276 int ret = 0;
7277 u32 num_stripes;
7278 u32 array_size;
7279 u32 len = 0;
7280 u32 cur_offset;
7281 u64 type;
7282 struct btrfs_key key;
7283
7284 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7285
7286 /*
7287 * We allocated a dummy extent, just to use extent buffer accessors.
7288 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7289 * that's fine, we will not go beyond system chunk array anyway.
7290 */
7291 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7292 if (!sb)
7293 return -ENOMEM;
7294 set_extent_buffer_uptodate(sb);
7295
7296 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7297 array_size = btrfs_super_sys_array_size(super_copy);
7298
7299 array_ptr = super_copy->sys_chunk_array;
7300 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7301 cur_offset = 0;
7302
7303 while (cur_offset < array_size) {
7304 disk_key = (struct btrfs_disk_key *)array_ptr;
7305 len = sizeof(*disk_key);
7306 if (cur_offset + len > array_size)
7307 goto out_short_read;
7308
7309 btrfs_disk_key_to_cpu(&key, disk_key);
7310
7311 array_ptr += len;
7312 sb_array_offset += len;
7313 cur_offset += len;
7314
7315 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7316 btrfs_err(fs_info,
7317 "unexpected item type %u in sys_array at offset %u",
7318 (u32)key.type, cur_offset);
7319 ret = -EIO;
7320 break;
7321 }
7322
7323 chunk = (struct btrfs_chunk *)sb_array_offset;
7324 /*
7325 * At least one btrfs_chunk with one stripe must be present,
7326 * exact stripe count check comes afterwards
7327 */
7328 len = btrfs_chunk_item_size(1);
7329 if (cur_offset + len > array_size)
7330 goto out_short_read;
7331
7332 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7333 if (!num_stripes) {
7334 btrfs_err(fs_info,
7335 "invalid number of stripes %u in sys_array at offset %u",
7336 num_stripes, cur_offset);
7337 ret = -EIO;
7338 break;
7339 }
7340
7341 type = btrfs_chunk_type(sb, chunk);
7342 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7343 btrfs_err(fs_info,
7344 "invalid chunk type %llu in sys_array at offset %u",
7345 type, cur_offset);
7346 ret = -EIO;
7347 break;
7348 }
7349
7350 len = btrfs_chunk_item_size(num_stripes);
7351 if (cur_offset + len > array_size)
7352 goto out_short_read;
7353
7354 ret = read_one_chunk(&key, sb, chunk);
7355 if (ret)
7356 break;
7357
7358 array_ptr += len;
7359 sb_array_offset += len;
7360 cur_offset += len;
7361 }
7362 clear_extent_buffer_uptodate(sb);
7363 free_extent_buffer_stale(sb);
7364 return ret;
7365
7366 out_short_read:
7367 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7368 len, cur_offset);
7369 clear_extent_buffer_uptodate(sb);
7370 free_extent_buffer_stale(sb);
7371 return -EIO;
7372 }
7373
7374 /*
7375 * Check if all chunks in the fs are OK for read-write degraded mount
7376 *
7377 * If the @failing_dev is specified, it's accounted as missing.
7378 *
7379 * Return true if all chunks meet the minimal RW mount requirements.
7380 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7381 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7382 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7383 struct btrfs_device *failing_dev)
7384 {
7385 struct btrfs_chunk_map *map;
7386 u64 next_start;
7387 bool ret = true;
7388
7389 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7390 /* No chunk at all? Return false anyway */
7391 if (!map) {
7392 ret = false;
7393 goto out;
7394 }
7395 while (map) {
7396 int missing = 0;
7397 int max_tolerated;
7398 int i;
7399
7400 max_tolerated =
7401 btrfs_get_num_tolerated_disk_barrier_failures(
7402 map->type);
7403 for (i = 0; i < map->num_stripes; i++) {
7404 struct btrfs_device *dev = map->stripes[i].dev;
7405
7406 if (!dev || !dev->bdev ||
7407 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7408 dev->last_flush_error)
7409 missing++;
7410 else if (failing_dev && failing_dev == dev)
7411 missing++;
7412 }
7413 if (missing > max_tolerated) {
7414 if (!failing_dev)
7415 btrfs_warn(fs_info,
7416 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7417 map->start, missing, max_tolerated);
7418 btrfs_free_chunk_map(map);
7419 ret = false;
7420 goto out;
7421 }
7422 next_start = map->start + map->chunk_len;
7423 btrfs_free_chunk_map(map);
7424
7425 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7426 }
7427 out:
7428 return ret;
7429 }
7430
readahead_tree_node_children(struct extent_buffer * node)7431 static void readahead_tree_node_children(struct extent_buffer *node)
7432 {
7433 int i;
7434 const int nr_items = btrfs_header_nritems(node);
7435
7436 for (i = 0; i < nr_items; i++)
7437 btrfs_readahead_node_child(node, i);
7438 }
7439
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7440 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7441 {
7442 struct btrfs_root *root = fs_info->chunk_root;
7443 struct btrfs_path *path;
7444 struct extent_buffer *leaf;
7445 struct btrfs_key key;
7446 struct btrfs_key found_key;
7447 int ret;
7448 int slot;
7449 int iter_ret = 0;
7450 u64 total_dev = 0;
7451 u64 last_ra_node = 0;
7452
7453 path = btrfs_alloc_path();
7454 if (!path)
7455 return -ENOMEM;
7456
7457 /*
7458 * uuid_mutex is needed only if we are mounting a sprout FS
7459 * otherwise we don't need it.
7460 */
7461 mutex_lock(&uuid_mutex);
7462
7463 /*
7464 * It is possible for mount and umount to race in such a way that
7465 * we execute this code path, but open_fs_devices failed to clear
7466 * total_rw_bytes. We certainly want it cleared before reading the
7467 * device items, so clear it here.
7468 */
7469 fs_info->fs_devices->total_rw_bytes = 0;
7470
7471 /*
7472 * Lockdep complains about possible circular locking dependency between
7473 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7474 * used for freeze procection of a fs (struct super_block.s_writers),
7475 * which we take when starting a transaction, and extent buffers of the
7476 * chunk tree if we call read_one_dev() while holding a lock on an
7477 * extent buffer of the chunk tree. Since we are mounting the filesystem
7478 * and at this point there can't be any concurrent task modifying the
7479 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7480 */
7481 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7482 path->skip_locking = 1;
7483
7484 /*
7485 * Read all device items, and then all the chunk items. All
7486 * device items are found before any chunk item (their object id
7487 * is smaller than the lowest possible object id for a chunk
7488 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7489 */
7490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7491 key.offset = 0;
7492 key.type = 0;
7493 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7494 struct extent_buffer *node = path->nodes[1];
7495
7496 leaf = path->nodes[0];
7497 slot = path->slots[0];
7498
7499 if (node) {
7500 if (last_ra_node != node->start) {
7501 readahead_tree_node_children(node);
7502 last_ra_node = node->start;
7503 }
7504 }
7505 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7506 struct btrfs_dev_item *dev_item;
7507 dev_item = btrfs_item_ptr(leaf, slot,
7508 struct btrfs_dev_item);
7509 ret = read_one_dev(leaf, dev_item);
7510 if (ret)
7511 goto error;
7512 total_dev++;
7513 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7514 struct btrfs_chunk *chunk;
7515
7516 /*
7517 * We are only called at mount time, so no need to take
7518 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7519 * we always lock first fs_info->chunk_mutex before
7520 * acquiring any locks on the chunk tree. This is a
7521 * requirement for chunk allocation, see the comment on
7522 * top of btrfs_chunk_alloc() for details.
7523 */
7524 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7525 ret = read_one_chunk(&found_key, leaf, chunk);
7526 if (ret)
7527 goto error;
7528 }
7529 }
7530 /* Catch error found during iteration */
7531 if (iter_ret < 0) {
7532 ret = iter_ret;
7533 goto error;
7534 }
7535
7536 /*
7537 * After loading chunk tree, we've got all device information,
7538 * do another round of validation checks.
7539 */
7540 if (total_dev != fs_info->fs_devices->total_devices) {
7541 btrfs_warn(fs_info,
7542 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7543 btrfs_super_num_devices(fs_info->super_copy),
7544 total_dev);
7545 fs_info->fs_devices->total_devices = total_dev;
7546 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7547 }
7548 if (btrfs_super_total_bytes(fs_info->super_copy) <
7549 fs_info->fs_devices->total_rw_bytes) {
7550 btrfs_err(fs_info,
7551 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7552 btrfs_super_total_bytes(fs_info->super_copy),
7553 fs_info->fs_devices->total_rw_bytes);
7554 ret = -EINVAL;
7555 goto error;
7556 }
7557 ret = 0;
7558 error:
7559 mutex_unlock(&uuid_mutex);
7560
7561 btrfs_free_path(path);
7562 return ret;
7563 }
7564
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7565 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7566 {
7567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7568 struct btrfs_device *device;
7569 int ret = 0;
7570
7571 fs_devices->fs_info = fs_info;
7572
7573 mutex_lock(&fs_devices->device_list_mutex);
7574 list_for_each_entry(device, &fs_devices->devices, dev_list)
7575 device->fs_info = fs_info;
7576
7577 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7578 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7579 device->fs_info = fs_info;
7580 ret = btrfs_get_dev_zone_info(device, false);
7581 if (ret)
7582 break;
7583 }
7584
7585 seed_devs->fs_info = fs_info;
7586 }
7587 mutex_unlock(&fs_devices->device_list_mutex);
7588
7589 return ret;
7590 }
7591
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7592 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7593 const struct btrfs_dev_stats_item *ptr,
7594 int index)
7595 {
7596 u64 val;
7597
7598 read_extent_buffer(eb, &val,
7599 offsetof(struct btrfs_dev_stats_item, values) +
7600 ((unsigned long)ptr) + (index * sizeof(u64)),
7601 sizeof(val));
7602 return val;
7603 }
7604
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7605 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7606 struct btrfs_dev_stats_item *ptr,
7607 int index, u64 val)
7608 {
7609 write_extent_buffer(eb, &val,
7610 offsetof(struct btrfs_dev_stats_item, values) +
7611 ((unsigned long)ptr) + (index * sizeof(u64)),
7612 sizeof(val));
7613 }
7614
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7615 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7616 struct btrfs_path *path)
7617 {
7618 struct btrfs_dev_stats_item *ptr;
7619 struct extent_buffer *eb;
7620 struct btrfs_key key;
7621 int item_size;
7622 int i, ret, slot;
7623
7624 if (!device->fs_info->dev_root)
7625 return 0;
7626
7627 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7628 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7629 key.offset = device->devid;
7630 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7631 if (ret) {
7632 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7633 btrfs_dev_stat_set(device, i, 0);
7634 device->dev_stats_valid = 1;
7635 btrfs_release_path(path);
7636 return ret < 0 ? ret : 0;
7637 }
7638 slot = path->slots[0];
7639 eb = path->nodes[0];
7640 item_size = btrfs_item_size(eb, slot);
7641
7642 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7643
7644 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7645 if (item_size >= (1 + i) * sizeof(__le64))
7646 btrfs_dev_stat_set(device, i,
7647 btrfs_dev_stats_value(eb, ptr, i));
7648 else
7649 btrfs_dev_stat_set(device, i, 0);
7650 }
7651
7652 device->dev_stats_valid = 1;
7653 btrfs_dev_stat_print_on_load(device);
7654 btrfs_release_path(path);
7655
7656 return 0;
7657 }
7658
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7659 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7660 {
7661 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7662 struct btrfs_device *device;
7663 struct btrfs_path *path = NULL;
7664 int ret = 0;
7665
7666 path = btrfs_alloc_path();
7667 if (!path)
7668 return -ENOMEM;
7669
7670 mutex_lock(&fs_devices->device_list_mutex);
7671 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7672 ret = btrfs_device_init_dev_stats(device, path);
7673 if (ret)
7674 goto out;
7675 }
7676 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7677 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7678 ret = btrfs_device_init_dev_stats(device, path);
7679 if (ret)
7680 goto out;
7681 }
7682 }
7683 out:
7684 mutex_unlock(&fs_devices->device_list_mutex);
7685
7686 btrfs_free_path(path);
7687 return ret;
7688 }
7689
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7690 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7691 struct btrfs_device *device)
7692 {
7693 struct btrfs_fs_info *fs_info = trans->fs_info;
7694 struct btrfs_root *dev_root = fs_info->dev_root;
7695 struct btrfs_path *path;
7696 struct btrfs_key key;
7697 struct extent_buffer *eb;
7698 struct btrfs_dev_stats_item *ptr;
7699 int ret;
7700 int i;
7701
7702 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7703 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7704 key.offset = device->devid;
7705
7706 path = btrfs_alloc_path();
7707 if (!path)
7708 return -ENOMEM;
7709 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7710 if (ret < 0) {
7711 btrfs_warn_in_rcu(fs_info,
7712 "error %d while searching for dev_stats item for device %s",
7713 ret, btrfs_dev_name(device));
7714 goto out;
7715 }
7716
7717 if (ret == 0 &&
7718 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7719 /* need to delete old one and insert a new one */
7720 ret = btrfs_del_item(trans, dev_root, path);
7721 if (ret != 0) {
7722 btrfs_warn_in_rcu(fs_info,
7723 "delete too small dev_stats item for device %s failed %d",
7724 btrfs_dev_name(device), ret);
7725 goto out;
7726 }
7727 ret = 1;
7728 }
7729
7730 if (ret == 1) {
7731 /* need to insert a new item */
7732 btrfs_release_path(path);
7733 ret = btrfs_insert_empty_item(trans, dev_root, path,
7734 &key, sizeof(*ptr));
7735 if (ret < 0) {
7736 btrfs_warn_in_rcu(fs_info,
7737 "insert dev_stats item for device %s failed %d",
7738 btrfs_dev_name(device), ret);
7739 goto out;
7740 }
7741 }
7742
7743 eb = path->nodes[0];
7744 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7745 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7746 btrfs_set_dev_stats_value(eb, ptr, i,
7747 btrfs_dev_stat_read(device, i));
7748 btrfs_mark_buffer_dirty(trans, eb);
7749
7750 out:
7751 btrfs_free_path(path);
7752 return ret;
7753 }
7754
7755 /*
7756 * called from commit_transaction. Writes all changed device stats to disk.
7757 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7758 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7759 {
7760 struct btrfs_fs_info *fs_info = trans->fs_info;
7761 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7762 struct btrfs_device *device;
7763 int stats_cnt;
7764 int ret = 0;
7765
7766 mutex_lock(&fs_devices->device_list_mutex);
7767 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7768 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7769 if (!device->dev_stats_valid || stats_cnt == 0)
7770 continue;
7771
7772
7773 /*
7774 * There is a LOAD-LOAD control dependency between the value of
7775 * dev_stats_ccnt and updating the on-disk values which requires
7776 * reading the in-memory counters. Such control dependencies
7777 * require explicit read memory barriers.
7778 *
7779 * This memory barriers pairs with smp_mb__before_atomic in
7780 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7781 * barrier implied by atomic_xchg in
7782 * btrfs_dev_stats_read_and_reset
7783 */
7784 smp_rmb();
7785
7786 ret = update_dev_stat_item(trans, device);
7787 if (!ret)
7788 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7789 }
7790 mutex_unlock(&fs_devices->device_list_mutex);
7791
7792 return ret;
7793 }
7794
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7795 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7796 {
7797 btrfs_dev_stat_inc(dev, index);
7798
7799 if (!dev->dev_stats_valid)
7800 return;
7801 btrfs_err_rl_in_rcu(dev->fs_info,
7802 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7803 btrfs_dev_name(dev),
7804 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7805 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7809 }
7810
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7811 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7812 {
7813 int i;
7814
7815 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7816 if (btrfs_dev_stat_read(dev, i) != 0)
7817 break;
7818 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7819 return; /* all values == 0, suppress message */
7820
7821 btrfs_info_in_rcu(dev->fs_info,
7822 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7823 btrfs_dev_name(dev),
7824 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7825 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7826 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7827 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7828 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7829 }
7830
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7831 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7832 struct btrfs_ioctl_get_dev_stats *stats)
7833 {
7834 BTRFS_DEV_LOOKUP_ARGS(args);
7835 struct btrfs_device *dev;
7836 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7837 int i;
7838
7839 mutex_lock(&fs_devices->device_list_mutex);
7840 args.devid = stats->devid;
7841 dev = btrfs_find_device(fs_info->fs_devices, &args);
7842 mutex_unlock(&fs_devices->device_list_mutex);
7843
7844 if (!dev) {
7845 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7846 return -ENODEV;
7847 } else if (!dev->dev_stats_valid) {
7848 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7849 return -ENODEV;
7850 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7851 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7852 if (stats->nr_items > i)
7853 stats->values[i] =
7854 btrfs_dev_stat_read_and_reset(dev, i);
7855 else
7856 btrfs_dev_stat_set(dev, i, 0);
7857 }
7858 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7859 current->comm, task_pid_nr(current));
7860 } else {
7861 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7862 if (stats->nr_items > i)
7863 stats->values[i] = btrfs_dev_stat_read(dev, i);
7864 }
7865 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7866 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7867 return 0;
7868 }
7869
7870 /*
7871 * Update the size and bytes used for each device where it changed. This is
7872 * delayed since we would otherwise get errors while writing out the
7873 * superblocks.
7874 *
7875 * Must be invoked during transaction commit.
7876 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7877 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7878 {
7879 struct btrfs_device *curr, *next;
7880
7881 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7882
7883 if (list_empty(&trans->dev_update_list))
7884 return;
7885
7886 /*
7887 * We don't need the device_list_mutex here. This list is owned by the
7888 * transaction and the transaction must complete before the device is
7889 * released.
7890 */
7891 mutex_lock(&trans->fs_info->chunk_mutex);
7892 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7893 post_commit_list) {
7894 list_del_init(&curr->post_commit_list);
7895 curr->commit_total_bytes = curr->disk_total_bytes;
7896 curr->commit_bytes_used = curr->bytes_used;
7897 }
7898 mutex_unlock(&trans->fs_info->chunk_mutex);
7899 }
7900
7901 /*
7902 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7903 */
btrfs_bg_type_to_factor(u64 flags)7904 int btrfs_bg_type_to_factor(u64 flags)
7905 {
7906 const int index = btrfs_bg_flags_to_raid_index(flags);
7907
7908 return btrfs_raid_array[index].ncopies;
7909 }
7910
7911
7912
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7913 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7914 u64 chunk_offset, u64 devid,
7915 u64 physical_offset, u64 physical_len)
7916 {
7917 struct btrfs_dev_lookup_args args = { .devid = devid };
7918 struct btrfs_chunk_map *map;
7919 struct btrfs_device *dev;
7920 u64 stripe_len;
7921 bool found = false;
7922 int ret = 0;
7923 int i;
7924
7925 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7926 if (!map) {
7927 btrfs_err(fs_info,
7928 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7929 physical_offset, devid);
7930 ret = -EUCLEAN;
7931 goto out;
7932 }
7933
7934 stripe_len = btrfs_calc_stripe_length(map);
7935 if (physical_len != stripe_len) {
7936 btrfs_err(fs_info,
7937 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7938 physical_offset, devid, map->start, physical_len,
7939 stripe_len);
7940 ret = -EUCLEAN;
7941 goto out;
7942 }
7943
7944 /*
7945 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7946 * space. Although kernel can handle it without problem, better to warn
7947 * the users.
7948 */
7949 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7950 btrfs_warn(fs_info,
7951 "devid %llu physical %llu len %llu inside the reserved space",
7952 devid, physical_offset, physical_len);
7953
7954 for (i = 0; i < map->num_stripes; i++) {
7955 if (map->stripes[i].dev->devid == devid &&
7956 map->stripes[i].physical == physical_offset) {
7957 found = true;
7958 if (map->verified_stripes >= map->num_stripes) {
7959 btrfs_err(fs_info,
7960 "too many dev extents for chunk %llu found",
7961 map->start);
7962 ret = -EUCLEAN;
7963 goto out;
7964 }
7965 map->verified_stripes++;
7966 break;
7967 }
7968 }
7969 if (!found) {
7970 btrfs_err(fs_info,
7971 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7972 physical_offset, devid);
7973 ret = -EUCLEAN;
7974 }
7975
7976 /* Make sure no dev extent is beyond device boundary */
7977 dev = btrfs_find_device(fs_info->fs_devices, &args);
7978 if (!dev) {
7979 btrfs_err(fs_info, "failed to find devid %llu", devid);
7980 ret = -EUCLEAN;
7981 goto out;
7982 }
7983
7984 if (physical_offset + physical_len > dev->disk_total_bytes) {
7985 btrfs_err(fs_info,
7986 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7987 devid, physical_offset, physical_len,
7988 dev->disk_total_bytes);
7989 ret = -EUCLEAN;
7990 goto out;
7991 }
7992
7993 if (dev->zone_info) {
7994 u64 zone_size = dev->zone_info->zone_size;
7995
7996 if (!IS_ALIGNED(physical_offset, zone_size) ||
7997 !IS_ALIGNED(physical_len, zone_size)) {
7998 btrfs_err(fs_info,
7999 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8000 devid, physical_offset, physical_len);
8001 ret = -EUCLEAN;
8002 goto out;
8003 }
8004 }
8005
8006 out:
8007 btrfs_free_chunk_map(map);
8008 return ret;
8009 }
8010
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8011 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8012 {
8013 struct rb_node *node;
8014 int ret = 0;
8015
8016 read_lock(&fs_info->mapping_tree_lock);
8017 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8018 struct btrfs_chunk_map *map;
8019
8020 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8021 if (map->num_stripes != map->verified_stripes) {
8022 btrfs_err(fs_info,
8023 "chunk %llu has missing dev extent, have %d expect %d",
8024 map->start, map->verified_stripes, map->num_stripes);
8025 ret = -EUCLEAN;
8026 goto out;
8027 }
8028 }
8029 out:
8030 read_unlock(&fs_info->mapping_tree_lock);
8031 return ret;
8032 }
8033
8034 /*
8035 * Ensure that all dev extents are mapped to correct chunk, otherwise
8036 * later chunk allocation/free would cause unexpected behavior.
8037 *
8038 * NOTE: This will iterate through the whole device tree, which should be of
8039 * the same size level as the chunk tree. This slightly increases mount time.
8040 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8041 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8042 {
8043 struct btrfs_path *path;
8044 struct btrfs_root *root = fs_info->dev_root;
8045 struct btrfs_key key;
8046 u64 prev_devid = 0;
8047 u64 prev_dev_ext_end = 0;
8048 int ret = 0;
8049
8050 /*
8051 * We don't have a dev_root because we mounted with ignorebadroots and
8052 * failed to load the root, so we want to skip the verification in this
8053 * case for sure.
8054 *
8055 * However if the dev root is fine, but the tree itself is corrupted
8056 * we'd still fail to mount. This verification is only to make sure
8057 * writes can happen safely, so instead just bypass this check
8058 * completely in the case of IGNOREBADROOTS.
8059 */
8060 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8061 return 0;
8062
8063 key.objectid = 1;
8064 key.type = BTRFS_DEV_EXTENT_KEY;
8065 key.offset = 0;
8066
8067 path = btrfs_alloc_path();
8068 if (!path)
8069 return -ENOMEM;
8070
8071 path->reada = READA_FORWARD;
8072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8073 if (ret < 0)
8074 goto out;
8075
8076 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8077 ret = btrfs_next_leaf(root, path);
8078 if (ret < 0)
8079 goto out;
8080 /* No dev extents at all? Not good */
8081 if (ret > 0) {
8082 ret = -EUCLEAN;
8083 goto out;
8084 }
8085 }
8086 while (1) {
8087 struct extent_buffer *leaf = path->nodes[0];
8088 struct btrfs_dev_extent *dext;
8089 int slot = path->slots[0];
8090 u64 chunk_offset;
8091 u64 physical_offset;
8092 u64 physical_len;
8093 u64 devid;
8094
8095 btrfs_item_key_to_cpu(leaf, &key, slot);
8096 if (key.type != BTRFS_DEV_EXTENT_KEY)
8097 break;
8098 devid = key.objectid;
8099 physical_offset = key.offset;
8100
8101 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8102 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8103 physical_len = btrfs_dev_extent_length(leaf, dext);
8104
8105 /* Check if this dev extent overlaps with the previous one */
8106 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8107 btrfs_err(fs_info,
8108 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8109 devid, physical_offset, prev_dev_ext_end);
8110 ret = -EUCLEAN;
8111 goto out;
8112 }
8113
8114 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8115 physical_offset, physical_len);
8116 if (ret < 0)
8117 goto out;
8118 prev_devid = devid;
8119 prev_dev_ext_end = physical_offset + physical_len;
8120
8121 ret = btrfs_next_item(root, path);
8122 if (ret < 0)
8123 goto out;
8124 if (ret > 0) {
8125 ret = 0;
8126 break;
8127 }
8128 }
8129
8130 /* Ensure all chunks have corresponding dev extents */
8131 ret = verify_chunk_dev_extent_mapping(fs_info);
8132 out:
8133 btrfs_free_path(path);
8134 return ret;
8135 }
8136
8137 /*
8138 * Check whether the given block group or device is pinned by any inode being
8139 * used as a swapfile.
8140 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8141 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8142 {
8143 struct btrfs_swapfile_pin *sp;
8144 struct rb_node *node;
8145
8146 spin_lock(&fs_info->swapfile_pins_lock);
8147 node = fs_info->swapfile_pins.rb_node;
8148 while (node) {
8149 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8150 if (ptr < sp->ptr)
8151 node = node->rb_left;
8152 else if (ptr > sp->ptr)
8153 node = node->rb_right;
8154 else
8155 break;
8156 }
8157 spin_unlock(&fs_info->swapfile_pins_lock);
8158 return node != NULL;
8159 }
8160
relocating_repair_kthread(void * data)8161 static int relocating_repair_kthread(void *data)
8162 {
8163 struct btrfs_block_group *cache = data;
8164 struct btrfs_fs_info *fs_info = cache->fs_info;
8165 u64 target;
8166 int ret = 0;
8167
8168 target = cache->start;
8169 btrfs_put_block_group(cache);
8170
8171 sb_start_write(fs_info->sb);
8172 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8173 btrfs_info(fs_info,
8174 "zoned: skip relocating block group %llu to repair: EBUSY",
8175 target);
8176 sb_end_write(fs_info->sb);
8177 return -EBUSY;
8178 }
8179
8180 mutex_lock(&fs_info->reclaim_bgs_lock);
8181
8182 /* Ensure block group still exists */
8183 cache = btrfs_lookup_block_group(fs_info, target);
8184 if (!cache)
8185 goto out;
8186
8187 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8188 goto out;
8189
8190 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8191 if (ret < 0)
8192 goto out;
8193
8194 btrfs_info(fs_info,
8195 "zoned: relocating block group %llu to repair IO failure",
8196 target);
8197 ret = btrfs_relocate_chunk(fs_info, target);
8198
8199 out:
8200 if (cache)
8201 btrfs_put_block_group(cache);
8202 mutex_unlock(&fs_info->reclaim_bgs_lock);
8203 btrfs_exclop_finish(fs_info);
8204 sb_end_write(fs_info->sb);
8205
8206 return ret;
8207 }
8208
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8209 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8210 {
8211 struct btrfs_block_group *cache;
8212
8213 if (!btrfs_is_zoned(fs_info))
8214 return false;
8215
8216 /* Do not attempt to repair in degraded state */
8217 if (btrfs_test_opt(fs_info, DEGRADED))
8218 return true;
8219
8220 cache = btrfs_lookup_block_group(fs_info, logical);
8221 if (!cache)
8222 return true;
8223
8224 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8225 btrfs_put_block_group(cache);
8226 return true;
8227 }
8228
8229 kthread_run(relocating_repair_kthread, cache,
8230 "btrfs-relocating-repair");
8231
8232 return true;
8233 }
8234
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8235 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8236 struct btrfs_io_stripe *smap,
8237 u64 logical)
8238 {
8239 int data_stripes = nr_bioc_data_stripes(bioc);
8240 int i;
8241
8242 for (i = 0; i < data_stripes; i++) {
8243 u64 stripe_start = bioc->full_stripe_logical +
8244 btrfs_stripe_nr_to_offset(i);
8245
8246 if (logical >= stripe_start &&
8247 logical < stripe_start + BTRFS_STRIPE_LEN)
8248 break;
8249 }
8250 ASSERT(i < data_stripes);
8251 smap->dev = bioc->stripes[i].dev;
8252 smap->physical = bioc->stripes[i].physical +
8253 ((logical - bioc->full_stripe_logical) &
8254 BTRFS_STRIPE_LEN_MASK);
8255 }
8256
8257 /*
8258 * Map a repair write into a single device.
8259 *
8260 * A repair write is triggered by read time repair or scrub, which would only
8261 * update the contents of a single device.
8262 * Not update any other mirrors nor go through RMW path.
8263 *
8264 * Callers should ensure:
8265 *
8266 * - Call btrfs_bio_counter_inc_blocked() first
8267 * - The range does not cross stripe boundary
8268 * - Has a valid @mirror_num passed in.
8269 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8270 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8271 struct btrfs_io_stripe *smap, u64 logical,
8272 u32 length, int mirror_num)
8273 {
8274 struct btrfs_io_context *bioc = NULL;
8275 u64 map_length = length;
8276 int mirror_ret = mirror_num;
8277 int ret;
8278
8279 ASSERT(mirror_num > 0);
8280
8281 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8282 &bioc, smap, &mirror_ret);
8283 if (ret < 0)
8284 return ret;
8285
8286 /* The map range should not cross stripe boundary. */
8287 ASSERT(map_length >= length);
8288
8289 /* Already mapped to single stripe. */
8290 if (!bioc)
8291 goto out;
8292
8293 /* Map the RAID56 multi-stripe writes to a single one. */
8294 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8295 map_raid56_repair_block(bioc, smap, logical);
8296 goto out;
8297 }
8298
8299 ASSERT(mirror_num <= bioc->num_stripes);
8300 smap->dev = bioc->stripes[mirror_num - 1].dev;
8301 smap->physical = bioc->stripes[mirror_num - 1].physical;
8302 out:
8303 btrfs_put_bioc(bioc);
8304 ASSERT(smap->dev);
8305 return 0;
8306 }
8307