1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "rcu-string.h" 22 #include "dev-replace.h" 23 #include "sysfs.h" 24 #include "tree-checker.h" 25 #include "space-info.h" 26 #include "block-group.h" 27 #include "discard.h" 28 #include "zoned.h" 29 #include "fs.h" 30 #include "accessors.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "super.h" 36 #include "raid-stripe-tree.h" 37 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 39 BTRFS_BLOCK_GROUP_RAID10 | \ 40 BTRFS_BLOCK_GROUP_RAID56_MASK) 41 42 struct btrfs_io_geometry { 43 u32 stripe_index; 44 u32 stripe_nr; 45 int mirror_num; 46 int num_stripes; 47 u64 stripe_offset; 48 u64 raid56_full_stripe_start; 49 int max_errors; 50 enum btrfs_map_op op; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) { 217 strcpy(bp, "NONE"); 218 return; 219 } 220 221 #define DESCRIBE_FLAG(flag, desc) \ 222 do { \ 223 if (flags & (flag)) { \ 224 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 225 if (ret < 0 || ret >= size_bp) \ 226 goto out_overflow; \ 227 size_bp -= ret; \ 228 bp += ret; \ 229 flags &= ~(flag); \ 230 } \ 231 } while (0) 232 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 236 237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 240 btrfs_raid_array[i].raid_name); 241 #undef DESCRIBE_FLAG 242 243 if (flags) { 244 ret = snprintf(bp, size_bp, "0x%llx|", flags); 245 size_bp -= ret; 246 } 247 248 if (size_bp < size_buf) 249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 250 251 /* 252 * The text is trimmed, it's up to the caller to provide sufficiently 253 * large buffer 254 */ 255 out_overflow:; 256 } 257 258 static int init_first_rw_device(struct btrfs_trans_handle *trans); 259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 261 262 /* 263 * Device locking 264 * ============== 265 * 266 * There are several mutexes that protect manipulation of devices and low-level 267 * structures like chunks but not block groups, extents or files 268 * 269 * uuid_mutex (global lock) 270 * ------------------------ 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 273 * device) or requested by the device= mount option 274 * 275 * the mutex can be very coarse and can cover long-running operations 276 * 277 * protects: updates to fs_devices counters like missing devices, rw devices, 278 * seeding, structure cloning, opening/closing devices at mount/umount time 279 * 280 * global::fs_devs - add, remove, updates to the global list 281 * 282 * does not protect: manipulation of the fs_devices::devices list in general 283 * but in mount context it could be used to exclude list modifications by eg. 284 * scan ioctl 285 * 286 * btrfs_device::name - renames (write side), read is RCU 287 * 288 * fs_devices::device_list_mutex (per-fs, with RCU) 289 * ------------------------------------------------ 290 * protects updates to fs_devices::devices, ie. adding and deleting 291 * 292 * simple list traversal with read-only actions can be done with RCU protection 293 * 294 * may be used to exclude some operations from running concurrently without any 295 * modifications to the list (see write_all_supers) 296 * 297 * Is not required at mount and close times, because our device list is 298 * protected by the uuid_mutex at that point. 299 * 300 * balance_mutex 301 * ------------- 302 * protects balance structures (status, state) and context accessed from 303 * several places (internally, ioctl) 304 * 305 * chunk_mutex 306 * ----------- 307 * protects chunks, adding or removing during allocation, trim or when a new 308 * device is added/removed. Additionally it also protects post_commit_list of 309 * individual devices, since they can be added to the transaction's 310 * post_commit_list only with chunk_mutex held. 311 * 312 * cleaner_mutex 313 * ------------- 314 * a big lock that is held by the cleaner thread and prevents running subvolume 315 * cleaning together with relocation or delayed iputs 316 * 317 * 318 * Lock nesting 319 * ============ 320 * 321 * uuid_mutex 322 * device_list_mutex 323 * chunk_mutex 324 * balance_mutex 325 * 326 * 327 * Exclusive operations 328 * ==================== 329 * 330 * Maintains the exclusivity of the following operations that apply to the 331 * whole filesystem and cannot run in parallel. 332 * 333 * - Balance (*) 334 * - Device add 335 * - Device remove 336 * - Device replace (*) 337 * - Resize 338 * 339 * The device operations (as above) can be in one of the following states: 340 * 341 * - Running state 342 * - Paused state 343 * - Completed state 344 * 345 * Only device operations marked with (*) can go into the Paused state for the 346 * following reasons: 347 * 348 * - ioctl (only Balance can be Paused through ioctl) 349 * - filesystem remounted as read-only 350 * - filesystem unmounted and mounted as read-only 351 * - system power-cycle and filesystem mounted as read-only 352 * - filesystem or device errors leading to forced read-only 353 * 354 * The status of exclusive operation is set and cleared atomically. 355 * During the course of Paused state, fs_info::exclusive_operation remains set. 356 * A device operation in Paused or Running state can be canceled or resumed 357 * either by ioctl (Balance only) or when remounted as read-write. 358 * The exclusive status is cleared when the device operation is canceled or 359 * completed. 360 */ 361 362 DEFINE_MUTEX(uuid_mutex); 363 static LIST_HEAD(fs_uuids); 364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 365 { 366 return &fs_uuids; 367 } 368 369 /* 370 * Allocate new btrfs_fs_devices structure identified by a fsid. 371 * 372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 373 * fs_devices::metadata_fsid 374 * 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 376 * The returned struct is not linked onto any lists and can be destroyed with 377 * kfree() right away. 378 */ 379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 380 { 381 struct btrfs_fs_devices *fs_devs; 382 383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 384 if (!fs_devs) 385 return ERR_PTR(-ENOMEM); 386 387 mutex_init(&fs_devs->device_list_mutex); 388 389 INIT_LIST_HEAD(&fs_devs->devices); 390 INIT_LIST_HEAD(&fs_devs->alloc_list); 391 INIT_LIST_HEAD(&fs_devs->fs_list); 392 INIT_LIST_HEAD(&fs_devs->seed_list); 393 394 if (fsid) { 395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 397 } 398 399 return fs_devs; 400 } 401 402 static void btrfs_free_device(struct btrfs_device *device) 403 { 404 WARN_ON(!list_empty(&device->post_commit_list)); 405 rcu_string_free(device->name); 406 extent_io_tree_release(&device->alloc_state); 407 btrfs_destroy_dev_zone_info(device); 408 kfree(device); 409 } 410 411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 412 { 413 struct btrfs_device *device; 414 415 WARN_ON(fs_devices->opened); 416 while (!list_empty(&fs_devices->devices)) { 417 device = list_entry(fs_devices->devices.next, 418 struct btrfs_device, dev_list); 419 list_del(&device->dev_list); 420 btrfs_free_device(device); 421 } 422 kfree(fs_devices); 423 } 424 425 void __exit btrfs_cleanup_fs_uuids(void) 426 { 427 struct btrfs_fs_devices *fs_devices; 428 429 while (!list_empty(&fs_uuids)) { 430 fs_devices = list_entry(fs_uuids.next, 431 struct btrfs_fs_devices, fs_list); 432 list_del(&fs_devices->fs_list); 433 free_fs_devices(fs_devices); 434 } 435 } 436 437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 438 const u8 *fsid, const u8 *metadata_fsid) 439 { 440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 441 return false; 442 443 if (!metadata_fsid) 444 return true; 445 446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 447 return false; 448 449 return true; 450 } 451 452 static noinline struct btrfs_fs_devices *find_fsid( 453 const u8 *fsid, const u8 *metadata_fsid) 454 { 455 struct btrfs_fs_devices *fs_devices; 456 457 ASSERT(fsid); 458 459 /* Handle non-split brain cases */ 460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 462 return fs_devices; 463 } 464 return NULL; 465 } 466 467 static int 468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 469 int flush, struct file **bdev_file, 470 struct btrfs_super_block **disk_super) 471 { 472 struct block_device *bdev; 473 int ret; 474 475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL); 476 477 if (IS_ERR(*bdev_file)) { 478 ret = PTR_ERR(*bdev_file); 479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 480 device_path, flags, ret); 481 goto error; 482 } 483 bdev = file_bdev(*bdev_file); 484 485 if (flush) 486 sync_blockdev(bdev); 487 if (holder) { 488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 489 if (ret) { 490 fput(*bdev_file); 491 goto error; 492 } 493 } 494 invalidate_bdev(bdev); 495 *disk_super = btrfs_read_dev_super(bdev); 496 if (IS_ERR(*disk_super)) { 497 ret = PTR_ERR(*disk_super); 498 fput(*bdev_file); 499 goto error; 500 } 501 502 return 0; 503 504 error: 505 *disk_super = NULL; 506 *bdev_file = NULL; 507 return ret; 508 } 509 510 /* 511 * Search and remove all stale devices (which are not mounted). When both 512 * inputs are NULL, it will search and release all stale devices. 513 * 514 * @devt: Optional. When provided will it release all unmounted devices 515 * matching this devt only. 516 * @skip_device: Optional. Will skip this device when searching for the stale 517 * devices. 518 * 519 * Return: 0 for success or if @devt is 0. 520 * -EBUSY if @devt is a mounted device. 521 * -ENOENT if @devt does not match any device in the list. 522 */ 523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 524 { 525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 526 struct btrfs_device *device, *tmp_device; 527 int ret; 528 bool freed = false; 529 530 lockdep_assert_held(&uuid_mutex); 531 532 /* Return good status if there is no instance of devt. */ 533 ret = 0; 534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 535 536 mutex_lock(&fs_devices->device_list_mutex); 537 list_for_each_entry_safe(device, tmp_device, 538 &fs_devices->devices, dev_list) { 539 if (skip_device && skip_device == device) 540 continue; 541 if (devt && devt != device->devt) 542 continue; 543 if (fs_devices->opened) { 544 if (devt) 545 ret = -EBUSY; 546 break; 547 } 548 549 /* delete the stale device */ 550 fs_devices->num_devices--; 551 list_del(&device->dev_list); 552 btrfs_free_device(device); 553 554 freed = true; 555 } 556 mutex_unlock(&fs_devices->device_list_mutex); 557 558 if (fs_devices->num_devices == 0) { 559 btrfs_sysfs_remove_fsid(fs_devices); 560 list_del(&fs_devices->fs_list); 561 free_fs_devices(fs_devices); 562 } 563 } 564 565 /* If there is at least one freed device return 0. */ 566 if (freed) 567 return 0; 568 569 return ret; 570 } 571 572 static struct btrfs_fs_devices *find_fsid_by_device( 573 struct btrfs_super_block *disk_super, 574 dev_t devt, bool *same_fsid_diff_dev) 575 { 576 struct btrfs_fs_devices *fsid_fs_devices; 577 struct btrfs_fs_devices *devt_fs_devices; 578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 580 bool found_by_devt = false; 581 582 /* Find the fs_device by the usual method, if found use it. */ 583 fsid_fs_devices = find_fsid(disk_super->fsid, 584 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 585 586 /* The temp_fsid feature is supported only with single device filesystem. */ 587 if (btrfs_super_num_devices(disk_super) != 1) 588 return fsid_fs_devices; 589 590 /* 591 * A seed device is an integral component of the sprout device, which 592 * functions as a multi-device filesystem. So, temp-fsid feature is 593 * not supported. 594 */ 595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 596 return fsid_fs_devices; 597 598 /* Try to find a fs_devices by matching devt. */ 599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 600 struct btrfs_device *device; 601 602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 603 if (device->devt == devt) { 604 found_by_devt = true; 605 break; 606 } 607 } 608 if (found_by_devt) 609 break; 610 } 611 612 if (found_by_devt) { 613 /* Existing device. */ 614 if (fsid_fs_devices == NULL) { 615 if (devt_fs_devices->opened == 0) { 616 /* Stale device. */ 617 return NULL; 618 } else { 619 /* temp_fsid is mounting a subvol. */ 620 return devt_fs_devices; 621 } 622 } else { 623 /* Regular or temp_fsid device mounting a subvol. */ 624 return devt_fs_devices; 625 } 626 } else { 627 /* New device. */ 628 if (fsid_fs_devices == NULL) { 629 return NULL; 630 } else { 631 /* sb::fsid is already used create a new temp_fsid. */ 632 *same_fsid_diff_dev = true; 633 return NULL; 634 } 635 } 636 637 /* Not reached. */ 638 } 639 640 /* 641 * This is only used on mount, and we are protected from competing things 642 * messing with our fs_devices by the uuid_mutex, thus we do not need the 643 * fs_devices->device_list_mutex here. 644 */ 645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 646 struct btrfs_device *device, blk_mode_t flags, 647 void *holder) 648 { 649 struct file *bdev_file; 650 struct btrfs_super_block *disk_super; 651 u64 devid; 652 int ret; 653 654 if (device->bdev) 655 return -EINVAL; 656 if (!device->name) 657 return -EINVAL; 658 659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 660 &bdev_file, &disk_super); 661 if (ret) 662 return ret; 663 664 devid = btrfs_stack_device_id(&disk_super->dev_item); 665 if (devid != device->devid) 666 goto error_free_page; 667 668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 669 goto error_free_page; 670 671 device->generation = btrfs_super_generation(disk_super); 672 673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 674 if (btrfs_super_incompat_flags(disk_super) & 675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 676 pr_err( 677 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 678 goto error_free_page; 679 } 680 681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 682 fs_devices->seeding = true; 683 } else { 684 if (bdev_read_only(file_bdev(bdev_file))) 685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 686 else 687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 688 } 689 690 if (!bdev_nonrot(file_bdev(bdev_file))) 691 fs_devices->rotating = true; 692 693 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 694 fs_devices->discardable = true; 695 696 device->bdev_file = bdev_file; 697 device->bdev = file_bdev(bdev_file); 698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 699 700 if (device->devt != device->bdev->bd_dev) { 701 btrfs_warn(NULL, 702 "device %s maj:min changed from %d:%d to %d:%d", 703 device->name->str, MAJOR(device->devt), 704 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 705 MINOR(device->bdev->bd_dev)); 706 707 device->devt = device->bdev->bd_dev; 708 } 709 710 fs_devices->open_devices++; 711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 712 device->devid != BTRFS_DEV_REPLACE_DEVID) { 713 fs_devices->rw_devices++; 714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 715 } 716 btrfs_release_disk_super(disk_super); 717 718 return 0; 719 720 error_free_page: 721 btrfs_release_disk_super(disk_super); 722 fput(bdev_file); 723 724 return -EINVAL; 725 } 726 727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 728 { 729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 731 732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 733 } 734 735 /* 736 * Add new device to list of registered devices 737 * 738 * Returns: 739 * device pointer which was just added or updated when successful 740 * error pointer when failed 741 */ 742 static noinline struct btrfs_device *device_list_add(const char *path, 743 struct btrfs_super_block *disk_super, 744 bool *new_device_added) 745 { 746 struct btrfs_device *device; 747 struct btrfs_fs_devices *fs_devices = NULL; 748 struct rcu_string *name; 749 u64 found_transid = btrfs_super_generation(disk_super); 750 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 751 dev_t path_devt; 752 int error; 753 bool same_fsid_diff_dev = false; 754 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 755 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 756 757 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 758 btrfs_err(NULL, 759 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 760 path); 761 return ERR_PTR(-EAGAIN); 762 } 763 764 error = lookup_bdev(path, &path_devt); 765 if (error) { 766 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 767 path, error); 768 return ERR_PTR(error); 769 } 770 771 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 772 773 if (!fs_devices) { 774 fs_devices = alloc_fs_devices(disk_super->fsid); 775 if (IS_ERR(fs_devices)) 776 return ERR_CAST(fs_devices); 777 778 if (has_metadata_uuid) 779 memcpy(fs_devices->metadata_uuid, 780 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 781 782 if (same_fsid_diff_dev) { 783 generate_random_uuid(fs_devices->fsid); 784 fs_devices->temp_fsid = true; 785 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n", 786 path, MAJOR(path_devt), MINOR(path_devt), 787 fs_devices->fsid); 788 } 789 790 mutex_lock(&fs_devices->device_list_mutex); 791 list_add(&fs_devices->fs_list, &fs_uuids); 792 793 device = NULL; 794 } else { 795 struct btrfs_dev_lookup_args args = { 796 .devid = devid, 797 .uuid = disk_super->dev_item.uuid, 798 }; 799 800 mutex_lock(&fs_devices->device_list_mutex); 801 device = btrfs_find_device(fs_devices, &args); 802 803 if (found_transid > fs_devices->latest_generation) { 804 memcpy(fs_devices->fsid, disk_super->fsid, 805 BTRFS_FSID_SIZE); 806 memcpy(fs_devices->metadata_uuid, 807 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 808 } 809 } 810 811 if (!device) { 812 unsigned int nofs_flag; 813 814 if (fs_devices->opened) { 815 btrfs_err(NULL, 816 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 817 path, MAJOR(path_devt), MINOR(path_devt), 818 fs_devices->fsid, current->comm, 819 task_pid_nr(current)); 820 mutex_unlock(&fs_devices->device_list_mutex); 821 return ERR_PTR(-EBUSY); 822 } 823 824 nofs_flag = memalloc_nofs_save(); 825 device = btrfs_alloc_device(NULL, &devid, 826 disk_super->dev_item.uuid, path); 827 memalloc_nofs_restore(nofs_flag); 828 if (IS_ERR(device)) { 829 mutex_unlock(&fs_devices->device_list_mutex); 830 /* we can safely leave the fs_devices entry around */ 831 return device; 832 } 833 834 device->devt = path_devt; 835 836 list_add_rcu(&device->dev_list, &fs_devices->devices); 837 fs_devices->num_devices++; 838 839 device->fs_devices = fs_devices; 840 *new_device_added = true; 841 842 if (disk_super->label[0]) 843 pr_info( 844 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 845 disk_super->label, devid, found_transid, path, 846 MAJOR(path_devt), MINOR(path_devt), 847 current->comm, task_pid_nr(current)); 848 else 849 pr_info( 850 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 851 disk_super->fsid, devid, found_transid, path, 852 MAJOR(path_devt), MINOR(path_devt), 853 current->comm, task_pid_nr(current)); 854 855 } else if (!device->name || strcmp(device->name->str, path)) { 856 /* 857 * When FS is already mounted. 858 * 1. If you are here and if the device->name is NULL that 859 * means this device was missing at time of FS mount. 860 * 2. If you are here and if the device->name is different 861 * from 'path' that means either 862 * a. The same device disappeared and reappeared with 863 * different name. or 864 * b. The missing-disk-which-was-replaced, has 865 * reappeared now. 866 * 867 * We must allow 1 and 2a above. But 2b would be a spurious 868 * and unintentional. 869 * 870 * Further in case of 1 and 2a above, the disk at 'path' 871 * would have missed some transaction when it was away and 872 * in case of 2a the stale bdev has to be updated as well. 873 * 2b must not be allowed at all time. 874 */ 875 876 /* 877 * For now, we do allow update to btrfs_fs_device through the 878 * btrfs dev scan cli after FS has been mounted. We're still 879 * tracking a problem where systems fail mount by subvolume id 880 * when we reject replacement on a mounted FS. 881 */ 882 if (!fs_devices->opened && found_transid < device->generation) { 883 /* 884 * That is if the FS is _not_ mounted and if you 885 * are here, that means there is more than one 886 * disk with same uuid and devid.We keep the one 887 * with larger generation number or the last-in if 888 * generation are equal. 889 */ 890 mutex_unlock(&fs_devices->device_list_mutex); 891 btrfs_err(NULL, 892 "device %s already registered with a higher generation, found %llu expect %llu", 893 path, found_transid, device->generation); 894 return ERR_PTR(-EEXIST); 895 } 896 897 /* 898 * We are going to replace the device path for a given devid, 899 * make sure it's the same device if the device is mounted 900 * 901 * NOTE: the device->fs_info may not be reliable here so pass 902 * in a NULL to message helpers instead. This avoids a possible 903 * use-after-free when the fs_info and fs_info->sb are already 904 * torn down. 905 */ 906 if (device->bdev) { 907 if (device->devt != path_devt) { 908 mutex_unlock(&fs_devices->device_list_mutex); 909 btrfs_warn_in_rcu(NULL, 910 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 911 path, devid, found_transid, 912 current->comm, 913 task_pid_nr(current)); 914 return ERR_PTR(-EEXIST); 915 } 916 btrfs_info_in_rcu(NULL, 917 "devid %llu device path %s changed to %s scanned by %s (%d)", 918 devid, btrfs_dev_name(device), 919 path, current->comm, 920 task_pid_nr(current)); 921 } 922 923 name = rcu_string_strdup(path, GFP_NOFS); 924 if (!name) { 925 mutex_unlock(&fs_devices->device_list_mutex); 926 return ERR_PTR(-ENOMEM); 927 } 928 rcu_string_free(device->name); 929 rcu_assign_pointer(device->name, name); 930 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 931 fs_devices->missing_devices--; 932 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 933 } 934 device->devt = path_devt; 935 } 936 937 /* 938 * Unmount does not free the btrfs_device struct but would zero 939 * generation along with most of the other members. So just update 940 * it back. We need it to pick the disk with largest generation 941 * (as above). 942 */ 943 if (!fs_devices->opened) { 944 device->generation = found_transid; 945 fs_devices->latest_generation = max_t(u64, found_transid, 946 fs_devices->latest_generation); 947 } 948 949 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 950 951 mutex_unlock(&fs_devices->device_list_mutex); 952 return device; 953 } 954 955 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 956 { 957 struct btrfs_fs_devices *fs_devices; 958 struct btrfs_device *device; 959 struct btrfs_device *orig_dev; 960 int ret = 0; 961 962 lockdep_assert_held(&uuid_mutex); 963 964 fs_devices = alloc_fs_devices(orig->fsid); 965 if (IS_ERR(fs_devices)) 966 return fs_devices; 967 968 fs_devices->total_devices = orig->total_devices; 969 970 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 971 const char *dev_path = NULL; 972 973 /* 974 * This is ok to do without RCU read locked because we hold the 975 * uuid mutex so nothing we touch in here is going to disappear. 976 */ 977 if (orig_dev->name) 978 dev_path = orig_dev->name->str; 979 980 device = btrfs_alloc_device(NULL, &orig_dev->devid, 981 orig_dev->uuid, dev_path); 982 if (IS_ERR(device)) { 983 ret = PTR_ERR(device); 984 goto error; 985 } 986 987 if (orig_dev->zone_info) { 988 struct btrfs_zoned_device_info *zone_info; 989 990 zone_info = btrfs_clone_dev_zone_info(orig_dev); 991 if (!zone_info) { 992 btrfs_free_device(device); 993 ret = -ENOMEM; 994 goto error; 995 } 996 device->zone_info = zone_info; 997 } 998 999 list_add(&device->dev_list, &fs_devices->devices); 1000 device->fs_devices = fs_devices; 1001 fs_devices->num_devices++; 1002 } 1003 return fs_devices; 1004 error: 1005 free_fs_devices(fs_devices); 1006 return ERR_PTR(ret); 1007 } 1008 1009 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1010 struct btrfs_device **latest_dev) 1011 { 1012 struct btrfs_device *device, *next; 1013 1014 /* This is the initialized path, it is safe to release the devices. */ 1015 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1016 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1017 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1018 &device->dev_state) && 1019 !test_bit(BTRFS_DEV_STATE_MISSING, 1020 &device->dev_state) && 1021 (!*latest_dev || 1022 device->generation > (*latest_dev)->generation)) { 1023 *latest_dev = device; 1024 } 1025 continue; 1026 } 1027 1028 /* 1029 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1030 * in btrfs_init_dev_replace() so just continue. 1031 */ 1032 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1033 continue; 1034 1035 if (device->bdev_file) { 1036 fput(device->bdev_file); 1037 device->bdev = NULL; 1038 device->bdev_file = NULL; 1039 fs_devices->open_devices--; 1040 } 1041 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1042 list_del_init(&device->dev_alloc_list); 1043 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1044 fs_devices->rw_devices--; 1045 } 1046 list_del_init(&device->dev_list); 1047 fs_devices->num_devices--; 1048 btrfs_free_device(device); 1049 } 1050 1051 } 1052 1053 /* 1054 * After we have read the system tree and know devids belonging to this 1055 * filesystem, remove the device which does not belong there. 1056 */ 1057 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1058 { 1059 struct btrfs_device *latest_dev = NULL; 1060 struct btrfs_fs_devices *seed_dev; 1061 1062 mutex_lock(&uuid_mutex); 1063 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1064 1065 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1066 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1067 1068 fs_devices->latest_dev = latest_dev; 1069 1070 mutex_unlock(&uuid_mutex); 1071 } 1072 1073 static void btrfs_close_bdev(struct btrfs_device *device) 1074 { 1075 if (!device->bdev) 1076 return; 1077 1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1079 sync_blockdev(device->bdev); 1080 invalidate_bdev(device->bdev); 1081 } 1082 1083 fput(device->bdev_file); 1084 } 1085 1086 static void btrfs_close_one_device(struct btrfs_device *device) 1087 { 1088 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1089 1090 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1091 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1092 list_del_init(&device->dev_alloc_list); 1093 fs_devices->rw_devices--; 1094 } 1095 1096 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1097 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1098 1099 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1100 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1101 fs_devices->missing_devices--; 1102 } 1103 1104 btrfs_close_bdev(device); 1105 if (device->bdev) { 1106 fs_devices->open_devices--; 1107 device->bdev = NULL; 1108 } 1109 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1110 btrfs_destroy_dev_zone_info(device); 1111 1112 device->fs_info = NULL; 1113 atomic_set(&device->dev_stats_ccnt, 0); 1114 extent_io_tree_release(&device->alloc_state); 1115 1116 /* 1117 * Reset the flush error record. We might have a transient flush error 1118 * in this mount, and if so we aborted the current transaction and set 1119 * the fs to an error state, guaranteeing no super blocks can be further 1120 * committed. However that error might be transient and if we unmount the 1121 * filesystem and mount it again, we should allow the mount to succeed 1122 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1123 * filesystem again we still get flush errors, then we will again abort 1124 * any transaction and set the error state, guaranteeing no commits of 1125 * unsafe super blocks. 1126 */ 1127 device->last_flush_error = 0; 1128 1129 /* Verify the device is back in a pristine state */ 1130 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1131 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1132 WARN_ON(!list_empty(&device->dev_alloc_list)); 1133 WARN_ON(!list_empty(&device->post_commit_list)); 1134 } 1135 1136 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1137 { 1138 struct btrfs_device *device, *tmp; 1139 1140 lockdep_assert_held(&uuid_mutex); 1141 1142 if (--fs_devices->opened > 0) 1143 return; 1144 1145 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1146 btrfs_close_one_device(device); 1147 1148 WARN_ON(fs_devices->open_devices); 1149 WARN_ON(fs_devices->rw_devices); 1150 fs_devices->opened = 0; 1151 fs_devices->seeding = false; 1152 fs_devices->fs_info = NULL; 1153 } 1154 1155 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1156 { 1157 LIST_HEAD(list); 1158 struct btrfs_fs_devices *tmp; 1159 1160 mutex_lock(&uuid_mutex); 1161 close_fs_devices(fs_devices); 1162 if (!fs_devices->opened) { 1163 list_splice_init(&fs_devices->seed_list, &list); 1164 1165 /* 1166 * If the struct btrfs_fs_devices is not assembled with any 1167 * other device, it can be re-initialized during the next mount 1168 * without the needing device-scan step. Therefore, it can be 1169 * fully freed. 1170 */ 1171 if (fs_devices->num_devices == 1) { 1172 list_del(&fs_devices->fs_list); 1173 free_fs_devices(fs_devices); 1174 } 1175 } 1176 1177 1178 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1179 close_fs_devices(fs_devices); 1180 list_del(&fs_devices->seed_list); 1181 free_fs_devices(fs_devices); 1182 } 1183 mutex_unlock(&uuid_mutex); 1184 } 1185 1186 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1187 blk_mode_t flags, void *holder) 1188 { 1189 struct btrfs_device *device; 1190 struct btrfs_device *latest_dev = NULL; 1191 struct btrfs_device *tmp_device; 1192 int ret = 0; 1193 1194 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1195 dev_list) { 1196 int ret2; 1197 1198 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1199 if (ret2 == 0 && 1200 (!latest_dev || device->generation > latest_dev->generation)) { 1201 latest_dev = device; 1202 } else if (ret2 == -ENODATA) { 1203 fs_devices->num_devices--; 1204 list_del(&device->dev_list); 1205 btrfs_free_device(device); 1206 } 1207 if (ret == 0 && ret2 != 0) 1208 ret = ret2; 1209 } 1210 1211 if (fs_devices->open_devices == 0) { 1212 if (ret) 1213 return ret; 1214 return -EINVAL; 1215 } 1216 1217 fs_devices->opened = 1; 1218 fs_devices->latest_dev = latest_dev; 1219 fs_devices->total_rw_bytes = 0; 1220 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1221 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1222 1223 return 0; 1224 } 1225 1226 static int devid_cmp(void *priv, const struct list_head *a, 1227 const struct list_head *b) 1228 { 1229 const struct btrfs_device *dev1, *dev2; 1230 1231 dev1 = list_entry(a, struct btrfs_device, dev_list); 1232 dev2 = list_entry(b, struct btrfs_device, dev_list); 1233 1234 if (dev1->devid < dev2->devid) 1235 return -1; 1236 else if (dev1->devid > dev2->devid) 1237 return 1; 1238 return 0; 1239 } 1240 1241 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1242 blk_mode_t flags, void *holder) 1243 { 1244 int ret; 1245 1246 lockdep_assert_held(&uuid_mutex); 1247 /* 1248 * The device_list_mutex cannot be taken here in case opening the 1249 * underlying device takes further locks like open_mutex. 1250 * 1251 * We also don't need the lock here as this is called during mount and 1252 * exclusion is provided by uuid_mutex 1253 */ 1254 1255 if (fs_devices->opened) { 1256 fs_devices->opened++; 1257 ret = 0; 1258 } else { 1259 list_sort(NULL, &fs_devices->devices, devid_cmp); 1260 ret = open_fs_devices(fs_devices, flags, holder); 1261 } 1262 1263 return ret; 1264 } 1265 1266 void btrfs_release_disk_super(struct btrfs_super_block *super) 1267 { 1268 struct page *page = virt_to_page(super); 1269 1270 put_page(page); 1271 } 1272 1273 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1274 u64 bytenr, u64 bytenr_orig) 1275 { 1276 struct btrfs_super_block *disk_super; 1277 struct page *page; 1278 void *p; 1279 pgoff_t index; 1280 1281 /* make sure our super fits in the device */ 1282 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1283 return ERR_PTR(-EINVAL); 1284 1285 /* make sure our super fits in the page */ 1286 if (sizeof(*disk_super) > PAGE_SIZE) 1287 return ERR_PTR(-EINVAL); 1288 1289 /* make sure our super doesn't straddle pages on disk */ 1290 index = bytenr >> PAGE_SHIFT; 1291 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1292 return ERR_PTR(-EINVAL); 1293 1294 /* pull in the page with our super */ 1295 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL); 1296 1297 if (IS_ERR(page)) 1298 return ERR_CAST(page); 1299 1300 p = page_address(page); 1301 1302 /* align our pointer to the offset of the super block */ 1303 disk_super = p + offset_in_page(bytenr); 1304 1305 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1306 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1307 btrfs_release_disk_super(p); 1308 return ERR_PTR(-EINVAL); 1309 } 1310 1311 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1312 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1313 1314 return disk_super; 1315 } 1316 1317 int btrfs_forget_devices(dev_t devt) 1318 { 1319 int ret; 1320 1321 mutex_lock(&uuid_mutex); 1322 ret = btrfs_free_stale_devices(devt, NULL); 1323 mutex_unlock(&uuid_mutex); 1324 1325 return ret; 1326 } 1327 1328 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1329 const char *path, dev_t devt, 1330 bool mount_arg_dev) 1331 { 1332 struct btrfs_fs_devices *fs_devices; 1333 1334 /* 1335 * Do not skip device registration for mounted devices with matching 1336 * maj:min but different paths. Booting without initrd relies on 1337 * /dev/root initially, later replaced with the actual root device. 1338 * A successful scan ensures grub2-probe selects the correct device. 1339 */ 1340 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1341 struct btrfs_device *device; 1342 1343 mutex_lock(&fs_devices->device_list_mutex); 1344 1345 if (!fs_devices->opened) { 1346 mutex_unlock(&fs_devices->device_list_mutex); 1347 continue; 1348 } 1349 1350 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1351 if (device->bdev && (device->bdev->bd_dev == devt) && 1352 strcmp(device->name->str, path) != 0) { 1353 mutex_unlock(&fs_devices->device_list_mutex); 1354 1355 /* Do not skip registration. */ 1356 return false; 1357 } 1358 } 1359 mutex_unlock(&fs_devices->device_list_mutex); 1360 } 1361 1362 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1363 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1364 return true; 1365 1366 return false; 1367 } 1368 1369 /* 1370 * Look for a btrfs signature on a device. This may be called out of the mount path 1371 * and we are not allowed to call set_blocksize during the scan. The superblock 1372 * is read via pagecache. 1373 * 1374 * With @mount_arg_dev it's a scan during mount time that will always register 1375 * the device or return an error. Multi-device and seeding devices are registered 1376 * in both cases. 1377 */ 1378 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 1379 bool mount_arg_dev) 1380 { 1381 struct btrfs_super_block *disk_super; 1382 bool new_device_added = false; 1383 struct btrfs_device *device = NULL; 1384 struct file *bdev_file; 1385 u64 bytenr; 1386 dev_t devt; 1387 int ret; 1388 1389 lockdep_assert_held(&uuid_mutex); 1390 1391 /* 1392 * Avoid an exclusive open here, as the systemd-udev may initiate the 1393 * device scan which may race with the user's mount or mkfs command, 1394 * resulting in failure. 1395 * Since the device scan is solely for reading purposes, there is no 1396 * need for an exclusive open. Additionally, the devices are read again 1397 * during the mount process. It is ok to get some inconsistent 1398 * values temporarily, as the device paths of the fsid are the only 1399 * required information for assembling the volume. 1400 */ 1401 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL); 1402 if (IS_ERR(bdev_file)) 1403 return ERR_CAST(bdev_file); 1404 1405 /* 1406 * We would like to check all the super blocks, but doing so would 1407 * allow a mount to succeed after a mkfs from a different filesystem. 1408 * Currently, recovery from a bad primary btrfs superblock is done 1409 * using the userspace command 'btrfs check --super'. 1410 */ 1411 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr); 1412 if (ret) { 1413 device = ERR_PTR(ret); 1414 goto error_bdev_put; 1415 } 1416 1417 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr, 1418 btrfs_sb_offset(0)); 1419 if (IS_ERR(disk_super)) { 1420 device = ERR_CAST(disk_super); 1421 goto error_bdev_put; 1422 } 1423 1424 devt = file_bdev(bdev_file)->bd_dev; 1425 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1426 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n", 1427 path, MAJOR(devt), MINOR(devt)); 1428 1429 btrfs_free_stale_devices(devt, NULL); 1430 1431 device = NULL; 1432 goto free_disk_super; 1433 } 1434 1435 device = device_list_add(path, disk_super, &new_device_added); 1436 if (!IS_ERR(device) && new_device_added) 1437 btrfs_free_stale_devices(device->devt, device); 1438 1439 free_disk_super: 1440 btrfs_release_disk_super(disk_super); 1441 1442 error_bdev_put: 1443 fput(bdev_file); 1444 1445 return device; 1446 } 1447 1448 /* 1449 * Try to find a chunk that intersects [start, start + len] range and when one 1450 * such is found, record the end of it in *start 1451 */ 1452 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1453 u64 len) 1454 { 1455 u64 physical_start, physical_end; 1456 1457 lockdep_assert_held(&device->fs_info->chunk_mutex); 1458 1459 if (find_first_extent_bit(&device->alloc_state, *start, 1460 &physical_start, &physical_end, 1461 CHUNK_ALLOCATED, NULL)) { 1462 1463 if (in_range(physical_start, *start, len) || 1464 in_range(*start, physical_start, 1465 physical_end + 1 - physical_start)) { 1466 *start = physical_end + 1; 1467 return true; 1468 } 1469 } 1470 return false; 1471 } 1472 1473 static u64 dev_extent_search_start(struct btrfs_device *device) 1474 { 1475 switch (device->fs_devices->chunk_alloc_policy) { 1476 case BTRFS_CHUNK_ALLOC_REGULAR: 1477 return BTRFS_DEVICE_RANGE_RESERVED; 1478 case BTRFS_CHUNK_ALLOC_ZONED: 1479 /* 1480 * We don't care about the starting region like regular 1481 * allocator, because we anyway use/reserve the first two zones 1482 * for superblock logging. 1483 */ 1484 return 0; 1485 default: 1486 BUG(); 1487 } 1488 } 1489 1490 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1491 u64 *hole_start, u64 *hole_size, 1492 u64 num_bytes) 1493 { 1494 u64 zone_size = device->zone_info->zone_size; 1495 u64 pos; 1496 int ret; 1497 bool changed = false; 1498 1499 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1500 1501 while (*hole_size > 0) { 1502 pos = btrfs_find_allocatable_zones(device, *hole_start, 1503 *hole_start + *hole_size, 1504 num_bytes); 1505 if (pos != *hole_start) { 1506 *hole_size = *hole_start + *hole_size - pos; 1507 *hole_start = pos; 1508 changed = true; 1509 if (*hole_size < num_bytes) 1510 break; 1511 } 1512 1513 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1514 1515 /* Range is ensured to be empty */ 1516 if (!ret) 1517 return changed; 1518 1519 /* Given hole range was invalid (outside of device) */ 1520 if (ret == -ERANGE) { 1521 *hole_start += *hole_size; 1522 *hole_size = 0; 1523 return true; 1524 } 1525 1526 *hole_start += zone_size; 1527 *hole_size -= zone_size; 1528 changed = true; 1529 } 1530 1531 return changed; 1532 } 1533 1534 /* 1535 * Check if specified hole is suitable for allocation. 1536 * 1537 * @device: the device which we have the hole 1538 * @hole_start: starting position of the hole 1539 * @hole_size: the size of the hole 1540 * @num_bytes: the size of the free space that we need 1541 * 1542 * This function may modify @hole_start and @hole_size to reflect the suitable 1543 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1544 */ 1545 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1546 u64 *hole_size, u64 num_bytes) 1547 { 1548 bool changed = false; 1549 u64 hole_end = *hole_start + *hole_size; 1550 1551 for (;;) { 1552 /* 1553 * Check before we set max_hole_start, otherwise we could end up 1554 * sending back this offset anyway. 1555 */ 1556 if (contains_pending_extent(device, hole_start, *hole_size)) { 1557 if (hole_end >= *hole_start) 1558 *hole_size = hole_end - *hole_start; 1559 else 1560 *hole_size = 0; 1561 changed = true; 1562 } 1563 1564 switch (device->fs_devices->chunk_alloc_policy) { 1565 case BTRFS_CHUNK_ALLOC_REGULAR: 1566 /* No extra check */ 1567 break; 1568 case BTRFS_CHUNK_ALLOC_ZONED: 1569 if (dev_extent_hole_check_zoned(device, hole_start, 1570 hole_size, num_bytes)) { 1571 changed = true; 1572 /* 1573 * The changed hole can contain pending extent. 1574 * Loop again to check that. 1575 */ 1576 continue; 1577 } 1578 break; 1579 default: 1580 BUG(); 1581 } 1582 1583 break; 1584 } 1585 1586 return changed; 1587 } 1588 1589 /* 1590 * Find free space in the specified device. 1591 * 1592 * @device: the device which we search the free space in 1593 * @num_bytes: the size of the free space that we need 1594 * @search_start: the position from which to begin the search 1595 * @start: store the start of the free space. 1596 * @len: the size of the free space. that we find, or the size 1597 * of the max free space if we don't find suitable free space 1598 * 1599 * This does a pretty simple search, the expectation is that it is called very 1600 * infrequently and that a given device has a small number of extents. 1601 * 1602 * @start is used to store the start of the free space if we find. But if we 1603 * don't find suitable free space, it will be used to store the start position 1604 * of the max free space. 1605 * 1606 * @len is used to store the size of the free space that we find. 1607 * But if we don't find suitable free space, it is used to store the size of 1608 * the max free space. 1609 * 1610 * NOTE: This function will search *commit* root of device tree, and does extra 1611 * check to ensure dev extents are not double allocated. 1612 * This makes the function safe to allocate dev extents but may not report 1613 * correct usable device space, as device extent freed in current transaction 1614 * is not reported as available. 1615 */ 1616 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1617 u64 *start, u64 *len) 1618 { 1619 struct btrfs_fs_info *fs_info = device->fs_info; 1620 struct btrfs_root *root = fs_info->dev_root; 1621 struct btrfs_key key; 1622 struct btrfs_dev_extent *dev_extent; 1623 struct btrfs_path *path; 1624 u64 search_start; 1625 u64 hole_size; 1626 u64 max_hole_start; 1627 u64 max_hole_size = 0; 1628 u64 extent_end; 1629 u64 search_end = device->total_bytes; 1630 int ret; 1631 int slot; 1632 struct extent_buffer *l; 1633 1634 search_start = dev_extent_search_start(device); 1635 max_hole_start = search_start; 1636 1637 WARN_ON(device->zone_info && 1638 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1639 1640 path = btrfs_alloc_path(); 1641 if (!path) { 1642 ret = -ENOMEM; 1643 goto out; 1644 } 1645 again: 1646 if (search_start >= search_end || 1647 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1648 ret = -ENOSPC; 1649 goto out; 1650 } 1651 1652 path->reada = READA_FORWARD; 1653 path->search_commit_root = 1; 1654 path->skip_locking = 1; 1655 1656 key.objectid = device->devid; 1657 key.offset = search_start; 1658 key.type = BTRFS_DEV_EXTENT_KEY; 1659 1660 ret = btrfs_search_backwards(root, &key, path); 1661 if (ret < 0) 1662 goto out; 1663 1664 while (search_start < search_end) { 1665 l = path->nodes[0]; 1666 slot = path->slots[0]; 1667 if (slot >= btrfs_header_nritems(l)) { 1668 ret = btrfs_next_leaf(root, path); 1669 if (ret == 0) 1670 continue; 1671 if (ret < 0) 1672 goto out; 1673 1674 break; 1675 } 1676 btrfs_item_key_to_cpu(l, &key, slot); 1677 1678 if (key.objectid < device->devid) 1679 goto next; 1680 1681 if (key.objectid > device->devid) 1682 break; 1683 1684 if (key.type != BTRFS_DEV_EXTENT_KEY) 1685 goto next; 1686 1687 if (key.offset > search_end) 1688 break; 1689 1690 if (key.offset > search_start) { 1691 hole_size = key.offset - search_start; 1692 dev_extent_hole_check(device, &search_start, &hole_size, 1693 num_bytes); 1694 1695 if (hole_size > max_hole_size) { 1696 max_hole_start = search_start; 1697 max_hole_size = hole_size; 1698 } 1699 1700 /* 1701 * If this free space is greater than which we need, 1702 * it must be the max free space that we have found 1703 * until now, so max_hole_start must point to the start 1704 * of this free space and the length of this free space 1705 * is stored in max_hole_size. Thus, we return 1706 * max_hole_start and max_hole_size and go back to the 1707 * caller. 1708 */ 1709 if (hole_size >= num_bytes) { 1710 ret = 0; 1711 goto out; 1712 } 1713 } 1714 1715 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1716 extent_end = key.offset + btrfs_dev_extent_length(l, 1717 dev_extent); 1718 if (extent_end > search_start) 1719 search_start = extent_end; 1720 next: 1721 path->slots[0]++; 1722 cond_resched(); 1723 } 1724 1725 /* 1726 * At this point, search_start should be the end of 1727 * allocated dev extents, and when shrinking the device, 1728 * search_end may be smaller than search_start. 1729 */ 1730 if (search_end > search_start) { 1731 hole_size = search_end - search_start; 1732 if (dev_extent_hole_check(device, &search_start, &hole_size, 1733 num_bytes)) { 1734 btrfs_release_path(path); 1735 goto again; 1736 } 1737 1738 if (hole_size > max_hole_size) { 1739 max_hole_start = search_start; 1740 max_hole_size = hole_size; 1741 } 1742 } 1743 1744 /* See above. */ 1745 if (max_hole_size < num_bytes) 1746 ret = -ENOSPC; 1747 else 1748 ret = 0; 1749 1750 ASSERT(max_hole_start + max_hole_size <= search_end); 1751 out: 1752 btrfs_free_path(path); 1753 *start = max_hole_start; 1754 if (len) 1755 *len = max_hole_size; 1756 return ret; 1757 } 1758 1759 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1760 struct btrfs_device *device, 1761 u64 start, u64 *dev_extent_len) 1762 { 1763 struct btrfs_fs_info *fs_info = device->fs_info; 1764 struct btrfs_root *root = fs_info->dev_root; 1765 int ret; 1766 struct btrfs_path *path; 1767 struct btrfs_key key; 1768 struct btrfs_key found_key; 1769 struct extent_buffer *leaf = NULL; 1770 struct btrfs_dev_extent *extent = NULL; 1771 1772 path = btrfs_alloc_path(); 1773 if (!path) 1774 return -ENOMEM; 1775 1776 key.objectid = device->devid; 1777 key.offset = start; 1778 key.type = BTRFS_DEV_EXTENT_KEY; 1779 again: 1780 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1781 if (ret > 0) { 1782 ret = btrfs_previous_item(root, path, key.objectid, 1783 BTRFS_DEV_EXTENT_KEY); 1784 if (ret) 1785 goto out; 1786 leaf = path->nodes[0]; 1787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1788 extent = btrfs_item_ptr(leaf, path->slots[0], 1789 struct btrfs_dev_extent); 1790 BUG_ON(found_key.offset > start || found_key.offset + 1791 btrfs_dev_extent_length(leaf, extent) < start); 1792 key = found_key; 1793 btrfs_release_path(path); 1794 goto again; 1795 } else if (ret == 0) { 1796 leaf = path->nodes[0]; 1797 extent = btrfs_item_ptr(leaf, path->slots[0], 1798 struct btrfs_dev_extent); 1799 } else { 1800 goto out; 1801 } 1802 1803 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1804 1805 ret = btrfs_del_item(trans, root, path); 1806 if (ret == 0) 1807 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1808 out: 1809 btrfs_free_path(path); 1810 return ret; 1811 } 1812 1813 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1814 { 1815 struct rb_node *n; 1816 u64 ret = 0; 1817 1818 read_lock(&fs_info->mapping_tree_lock); 1819 n = rb_last(&fs_info->mapping_tree.rb_root); 1820 if (n) { 1821 struct btrfs_chunk_map *map; 1822 1823 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1824 ret = map->start + map->chunk_len; 1825 } 1826 read_unlock(&fs_info->mapping_tree_lock); 1827 1828 return ret; 1829 } 1830 1831 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1832 u64 *devid_ret) 1833 { 1834 int ret; 1835 struct btrfs_key key; 1836 struct btrfs_key found_key; 1837 struct btrfs_path *path; 1838 1839 path = btrfs_alloc_path(); 1840 if (!path) 1841 return -ENOMEM; 1842 1843 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1844 key.type = BTRFS_DEV_ITEM_KEY; 1845 key.offset = (u64)-1; 1846 1847 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1848 if (ret < 0) 1849 goto error; 1850 1851 if (ret == 0) { 1852 /* Corruption */ 1853 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1854 ret = -EUCLEAN; 1855 goto error; 1856 } 1857 1858 ret = btrfs_previous_item(fs_info->chunk_root, path, 1859 BTRFS_DEV_ITEMS_OBJECTID, 1860 BTRFS_DEV_ITEM_KEY); 1861 if (ret) { 1862 *devid_ret = 1; 1863 } else { 1864 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1865 path->slots[0]); 1866 *devid_ret = found_key.offset + 1; 1867 } 1868 ret = 0; 1869 error: 1870 btrfs_free_path(path); 1871 return ret; 1872 } 1873 1874 /* 1875 * the device information is stored in the chunk root 1876 * the btrfs_device struct should be fully filled in 1877 */ 1878 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1879 struct btrfs_device *device) 1880 { 1881 int ret; 1882 struct btrfs_path *path; 1883 struct btrfs_dev_item *dev_item; 1884 struct extent_buffer *leaf; 1885 struct btrfs_key key; 1886 unsigned long ptr; 1887 1888 path = btrfs_alloc_path(); 1889 if (!path) 1890 return -ENOMEM; 1891 1892 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1893 key.type = BTRFS_DEV_ITEM_KEY; 1894 key.offset = device->devid; 1895 1896 btrfs_reserve_chunk_metadata(trans, true); 1897 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1898 &key, sizeof(*dev_item)); 1899 btrfs_trans_release_chunk_metadata(trans); 1900 if (ret) 1901 goto out; 1902 1903 leaf = path->nodes[0]; 1904 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1905 1906 btrfs_set_device_id(leaf, dev_item, device->devid); 1907 btrfs_set_device_generation(leaf, dev_item, 0); 1908 btrfs_set_device_type(leaf, dev_item, device->type); 1909 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1910 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1911 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1912 btrfs_set_device_total_bytes(leaf, dev_item, 1913 btrfs_device_get_disk_total_bytes(device)); 1914 btrfs_set_device_bytes_used(leaf, dev_item, 1915 btrfs_device_get_bytes_used(device)); 1916 btrfs_set_device_group(leaf, dev_item, 0); 1917 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1918 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1919 btrfs_set_device_start_offset(leaf, dev_item, 0); 1920 1921 ptr = btrfs_device_uuid(dev_item); 1922 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1923 ptr = btrfs_device_fsid(dev_item); 1924 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1925 ptr, BTRFS_FSID_SIZE); 1926 btrfs_mark_buffer_dirty(trans, leaf); 1927 1928 ret = 0; 1929 out: 1930 btrfs_free_path(path); 1931 return ret; 1932 } 1933 1934 /* 1935 * Function to update ctime/mtime for a given device path. 1936 * Mainly used for ctime/mtime based probe like libblkid. 1937 * 1938 * We don't care about errors here, this is just to be kind to userspace. 1939 */ 1940 static void update_dev_time(const char *device_path) 1941 { 1942 struct path path; 1943 int ret; 1944 1945 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1946 if (ret) 1947 return; 1948 1949 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1950 path_put(&path); 1951 } 1952 1953 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1954 struct btrfs_device *device) 1955 { 1956 struct btrfs_root *root = device->fs_info->chunk_root; 1957 int ret; 1958 struct btrfs_path *path; 1959 struct btrfs_key key; 1960 1961 path = btrfs_alloc_path(); 1962 if (!path) 1963 return -ENOMEM; 1964 1965 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1966 key.type = BTRFS_DEV_ITEM_KEY; 1967 key.offset = device->devid; 1968 1969 btrfs_reserve_chunk_metadata(trans, false); 1970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1971 btrfs_trans_release_chunk_metadata(trans); 1972 if (ret) { 1973 if (ret > 0) 1974 ret = -ENOENT; 1975 goto out; 1976 } 1977 1978 ret = btrfs_del_item(trans, root, path); 1979 out: 1980 btrfs_free_path(path); 1981 return ret; 1982 } 1983 1984 /* 1985 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1986 * filesystem. It's up to the caller to adjust that number regarding eg. device 1987 * replace. 1988 */ 1989 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1990 u64 num_devices) 1991 { 1992 u64 all_avail; 1993 unsigned seq; 1994 int i; 1995 1996 do { 1997 seq = read_seqbegin(&fs_info->profiles_lock); 1998 1999 all_avail = fs_info->avail_data_alloc_bits | 2000 fs_info->avail_system_alloc_bits | 2001 fs_info->avail_metadata_alloc_bits; 2002 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2003 2004 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2005 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2006 continue; 2007 2008 if (num_devices < btrfs_raid_array[i].devs_min) 2009 return btrfs_raid_array[i].mindev_error; 2010 } 2011 2012 return 0; 2013 } 2014 2015 static struct btrfs_device * btrfs_find_next_active_device( 2016 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2017 { 2018 struct btrfs_device *next_device; 2019 2020 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2021 if (next_device != device && 2022 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2023 && next_device->bdev) 2024 return next_device; 2025 } 2026 2027 return NULL; 2028 } 2029 2030 /* 2031 * Helper function to check if the given device is part of s_bdev / latest_dev 2032 * and replace it with the provided or the next active device, in the context 2033 * where this function called, there should be always be another device (or 2034 * this_dev) which is active. 2035 */ 2036 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2037 struct btrfs_device *next_device) 2038 { 2039 struct btrfs_fs_info *fs_info = device->fs_info; 2040 2041 if (!next_device) 2042 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2043 device); 2044 ASSERT(next_device); 2045 2046 if (fs_info->sb->s_bdev && 2047 (fs_info->sb->s_bdev == device->bdev)) 2048 fs_info->sb->s_bdev = next_device->bdev; 2049 2050 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2051 fs_info->fs_devices->latest_dev = next_device; 2052 } 2053 2054 /* 2055 * Return btrfs_fs_devices::num_devices excluding the device that's being 2056 * currently replaced. 2057 */ 2058 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2059 { 2060 u64 num_devices = fs_info->fs_devices->num_devices; 2061 2062 down_read(&fs_info->dev_replace.rwsem); 2063 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2064 ASSERT(num_devices > 1); 2065 num_devices--; 2066 } 2067 up_read(&fs_info->dev_replace.rwsem); 2068 2069 return num_devices; 2070 } 2071 2072 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2073 struct block_device *bdev, int copy_num) 2074 { 2075 struct btrfs_super_block *disk_super; 2076 const size_t len = sizeof(disk_super->magic); 2077 const u64 bytenr = btrfs_sb_offset(copy_num); 2078 int ret; 2079 2080 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2081 if (IS_ERR(disk_super)) 2082 return; 2083 2084 memset(&disk_super->magic, 0, len); 2085 folio_mark_dirty(virt_to_folio(disk_super)); 2086 btrfs_release_disk_super(disk_super); 2087 2088 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2089 if (ret) 2090 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2091 copy_num, ret); 2092 } 2093 2094 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2095 { 2096 int copy_num; 2097 struct block_device *bdev = device->bdev; 2098 2099 if (!bdev) 2100 return; 2101 2102 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2103 if (bdev_is_zoned(bdev)) 2104 btrfs_reset_sb_log_zones(bdev, copy_num); 2105 else 2106 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2107 } 2108 2109 /* Notify udev that device has changed */ 2110 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2111 2112 /* Update ctime/mtime for device path for libblkid */ 2113 update_dev_time(device->name->str); 2114 } 2115 2116 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2117 struct btrfs_dev_lookup_args *args, 2118 struct file **bdev_file) 2119 { 2120 struct btrfs_trans_handle *trans; 2121 struct btrfs_device *device; 2122 struct btrfs_fs_devices *cur_devices; 2123 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2124 u64 num_devices; 2125 int ret = 0; 2126 2127 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2128 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2129 return -EINVAL; 2130 } 2131 2132 /* 2133 * The device list in fs_devices is accessed without locks (neither 2134 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2135 * filesystem and another device rm cannot run. 2136 */ 2137 num_devices = btrfs_num_devices(fs_info); 2138 2139 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2140 if (ret) 2141 return ret; 2142 2143 device = btrfs_find_device(fs_info->fs_devices, args); 2144 if (!device) { 2145 if (args->missing) 2146 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2147 else 2148 ret = -ENOENT; 2149 return ret; 2150 } 2151 2152 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2153 btrfs_warn_in_rcu(fs_info, 2154 "cannot remove device %s (devid %llu) due to active swapfile", 2155 btrfs_dev_name(device), device->devid); 2156 return -ETXTBSY; 2157 } 2158 2159 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2160 return BTRFS_ERROR_DEV_TGT_REPLACE; 2161 2162 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2163 fs_info->fs_devices->rw_devices == 1) 2164 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2165 2166 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2167 mutex_lock(&fs_info->chunk_mutex); 2168 list_del_init(&device->dev_alloc_list); 2169 device->fs_devices->rw_devices--; 2170 mutex_unlock(&fs_info->chunk_mutex); 2171 } 2172 2173 ret = btrfs_shrink_device(device, 0); 2174 if (ret) 2175 goto error_undo; 2176 2177 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2178 if (IS_ERR(trans)) { 2179 ret = PTR_ERR(trans); 2180 goto error_undo; 2181 } 2182 2183 ret = btrfs_rm_dev_item(trans, device); 2184 if (ret) { 2185 /* Any error in dev item removal is critical */ 2186 btrfs_crit(fs_info, 2187 "failed to remove device item for devid %llu: %d", 2188 device->devid, ret); 2189 btrfs_abort_transaction(trans, ret); 2190 btrfs_end_transaction(trans); 2191 return ret; 2192 } 2193 2194 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2195 btrfs_scrub_cancel_dev(device); 2196 2197 /* 2198 * the device list mutex makes sure that we don't change 2199 * the device list while someone else is writing out all 2200 * the device supers. Whoever is writing all supers, should 2201 * lock the device list mutex before getting the number of 2202 * devices in the super block (super_copy). Conversely, 2203 * whoever updates the number of devices in the super block 2204 * (super_copy) should hold the device list mutex. 2205 */ 2206 2207 /* 2208 * In normal cases the cur_devices == fs_devices. But in case 2209 * of deleting a seed device, the cur_devices should point to 2210 * its own fs_devices listed under the fs_devices->seed_list. 2211 */ 2212 cur_devices = device->fs_devices; 2213 mutex_lock(&fs_devices->device_list_mutex); 2214 list_del_rcu(&device->dev_list); 2215 2216 cur_devices->num_devices--; 2217 cur_devices->total_devices--; 2218 /* Update total_devices of the parent fs_devices if it's seed */ 2219 if (cur_devices != fs_devices) 2220 fs_devices->total_devices--; 2221 2222 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2223 cur_devices->missing_devices--; 2224 2225 btrfs_assign_next_active_device(device, NULL); 2226 2227 if (device->bdev_file) { 2228 cur_devices->open_devices--; 2229 /* remove sysfs entry */ 2230 btrfs_sysfs_remove_device(device); 2231 } 2232 2233 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2234 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2235 mutex_unlock(&fs_devices->device_list_mutex); 2236 2237 /* 2238 * At this point, the device is zero sized and detached from the 2239 * devices list. All that's left is to zero out the old supers and 2240 * free the device. 2241 * 2242 * We cannot call btrfs_close_bdev() here because we're holding the sb 2243 * write lock, and fput() on the block device will pull in the 2244 * ->open_mutex on the block device and it's dependencies. Instead 2245 * just flush the device and let the caller do the final bdev_release. 2246 */ 2247 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2248 btrfs_scratch_superblocks(fs_info, device); 2249 if (device->bdev) { 2250 sync_blockdev(device->bdev); 2251 invalidate_bdev(device->bdev); 2252 } 2253 } 2254 2255 *bdev_file = device->bdev_file; 2256 synchronize_rcu(); 2257 btrfs_free_device(device); 2258 2259 /* 2260 * This can happen if cur_devices is the private seed devices list. We 2261 * cannot call close_fs_devices() here because it expects the uuid_mutex 2262 * to be held, but in fact we don't need that for the private 2263 * seed_devices, we can simply decrement cur_devices->opened and then 2264 * remove it from our list and free the fs_devices. 2265 */ 2266 if (cur_devices->num_devices == 0) { 2267 list_del_init(&cur_devices->seed_list); 2268 ASSERT(cur_devices->opened == 1); 2269 cur_devices->opened--; 2270 free_fs_devices(cur_devices); 2271 } 2272 2273 ret = btrfs_commit_transaction(trans); 2274 2275 return ret; 2276 2277 error_undo: 2278 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2279 mutex_lock(&fs_info->chunk_mutex); 2280 list_add(&device->dev_alloc_list, 2281 &fs_devices->alloc_list); 2282 device->fs_devices->rw_devices++; 2283 mutex_unlock(&fs_info->chunk_mutex); 2284 } 2285 return ret; 2286 } 2287 2288 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2289 { 2290 struct btrfs_fs_devices *fs_devices; 2291 2292 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2293 2294 /* 2295 * in case of fs with no seed, srcdev->fs_devices will point 2296 * to fs_devices of fs_info. However when the dev being replaced is 2297 * a seed dev it will point to the seed's local fs_devices. In short 2298 * srcdev will have its correct fs_devices in both the cases. 2299 */ 2300 fs_devices = srcdev->fs_devices; 2301 2302 list_del_rcu(&srcdev->dev_list); 2303 list_del(&srcdev->dev_alloc_list); 2304 fs_devices->num_devices--; 2305 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2306 fs_devices->missing_devices--; 2307 2308 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2309 fs_devices->rw_devices--; 2310 2311 if (srcdev->bdev) 2312 fs_devices->open_devices--; 2313 } 2314 2315 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2316 { 2317 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2318 2319 mutex_lock(&uuid_mutex); 2320 2321 btrfs_close_bdev(srcdev); 2322 synchronize_rcu(); 2323 btrfs_free_device(srcdev); 2324 2325 /* if this is no devs we rather delete the fs_devices */ 2326 if (!fs_devices->num_devices) { 2327 /* 2328 * On a mounted FS, num_devices can't be zero unless it's a 2329 * seed. In case of a seed device being replaced, the replace 2330 * target added to the sprout FS, so there will be no more 2331 * device left under the seed FS. 2332 */ 2333 ASSERT(fs_devices->seeding); 2334 2335 list_del_init(&fs_devices->seed_list); 2336 close_fs_devices(fs_devices); 2337 free_fs_devices(fs_devices); 2338 } 2339 mutex_unlock(&uuid_mutex); 2340 } 2341 2342 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2343 { 2344 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2345 2346 mutex_lock(&fs_devices->device_list_mutex); 2347 2348 btrfs_sysfs_remove_device(tgtdev); 2349 2350 if (tgtdev->bdev) 2351 fs_devices->open_devices--; 2352 2353 fs_devices->num_devices--; 2354 2355 btrfs_assign_next_active_device(tgtdev, NULL); 2356 2357 list_del_rcu(&tgtdev->dev_list); 2358 2359 mutex_unlock(&fs_devices->device_list_mutex); 2360 2361 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2362 2363 btrfs_close_bdev(tgtdev); 2364 synchronize_rcu(); 2365 btrfs_free_device(tgtdev); 2366 } 2367 2368 /* 2369 * Populate args from device at path. 2370 * 2371 * @fs_info: the filesystem 2372 * @args: the args to populate 2373 * @path: the path to the device 2374 * 2375 * This will read the super block of the device at @path and populate @args with 2376 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2377 * lookup a device to operate on, but need to do it before we take any locks. 2378 * This properly handles the special case of "missing" that a user may pass in, 2379 * and does some basic sanity checks. The caller must make sure that @path is 2380 * properly NUL terminated before calling in, and must call 2381 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2382 * uuid buffers. 2383 * 2384 * Return: 0 for success, -errno for failure 2385 */ 2386 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2387 struct btrfs_dev_lookup_args *args, 2388 const char *path) 2389 { 2390 struct btrfs_super_block *disk_super; 2391 struct file *bdev_file; 2392 int ret; 2393 2394 if (!path || !path[0]) 2395 return -EINVAL; 2396 if (!strcmp(path, "missing")) { 2397 args->missing = true; 2398 return 0; 2399 } 2400 2401 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2402 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2403 if (!args->uuid || !args->fsid) { 2404 btrfs_put_dev_args_from_path(args); 2405 return -ENOMEM; 2406 } 2407 2408 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2409 &bdev_file, &disk_super); 2410 if (ret) { 2411 btrfs_put_dev_args_from_path(args); 2412 return ret; 2413 } 2414 2415 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2416 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2417 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2418 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2419 else 2420 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2421 btrfs_release_disk_super(disk_super); 2422 fput(bdev_file); 2423 return 0; 2424 } 2425 2426 /* 2427 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2428 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2429 * that don't need to be freed. 2430 */ 2431 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2432 { 2433 kfree(args->uuid); 2434 kfree(args->fsid); 2435 args->uuid = NULL; 2436 args->fsid = NULL; 2437 } 2438 2439 struct btrfs_device *btrfs_find_device_by_devspec( 2440 struct btrfs_fs_info *fs_info, u64 devid, 2441 const char *device_path) 2442 { 2443 BTRFS_DEV_LOOKUP_ARGS(args); 2444 struct btrfs_device *device; 2445 int ret; 2446 2447 if (devid) { 2448 args.devid = devid; 2449 device = btrfs_find_device(fs_info->fs_devices, &args); 2450 if (!device) 2451 return ERR_PTR(-ENOENT); 2452 return device; 2453 } 2454 2455 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2456 if (ret) 2457 return ERR_PTR(ret); 2458 device = btrfs_find_device(fs_info->fs_devices, &args); 2459 btrfs_put_dev_args_from_path(&args); 2460 if (!device) 2461 return ERR_PTR(-ENOENT); 2462 return device; 2463 } 2464 2465 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2466 { 2467 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2468 struct btrfs_fs_devices *old_devices; 2469 struct btrfs_fs_devices *seed_devices; 2470 2471 lockdep_assert_held(&uuid_mutex); 2472 if (!fs_devices->seeding) 2473 return ERR_PTR(-EINVAL); 2474 2475 /* 2476 * Private copy of the seed devices, anchored at 2477 * fs_info->fs_devices->seed_list 2478 */ 2479 seed_devices = alloc_fs_devices(NULL); 2480 if (IS_ERR(seed_devices)) 2481 return seed_devices; 2482 2483 /* 2484 * It's necessary to retain a copy of the original seed fs_devices in 2485 * fs_uuids so that filesystems which have been seeded can successfully 2486 * reference the seed device from open_seed_devices. This also supports 2487 * multiple fs seed. 2488 */ 2489 old_devices = clone_fs_devices(fs_devices); 2490 if (IS_ERR(old_devices)) { 2491 kfree(seed_devices); 2492 return old_devices; 2493 } 2494 2495 list_add(&old_devices->fs_list, &fs_uuids); 2496 2497 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2498 seed_devices->opened = 1; 2499 INIT_LIST_HEAD(&seed_devices->devices); 2500 INIT_LIST_HEAD(&seed_devices->alloc_list); 2501 mutex_init(&seed_devices->device_list_mutex); 2502 2503 return seed_devices; 2504 } 2505 2506 /* 2507 * Splice seed devices into the sprout fs_devices. 2508 * Generate a new fsid for the sprouted read-write filesystem. 2509 */ 2510 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2511 struct btrfs_fs_devices *seed_devices) 2512 { 2513 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2514 struct btrfs_super_block *disk_super = fs_info->super_copy; 2515 struct btrfs_device *device; 2516 u64 super_flags; 2517 2518 /* 2519 * We are updating the fsid, the thread leading to device_list_add() 2520 * could race, so uuid_mutex is needed. 2521 */ 2522 lockdep_assert_held(&uuid_mutex); 2523 2524 /* 2525 * The threads listed below may traverse dev_list but can do that without 2526 * device_list_mutex: 2527 * - All device ops and balance - as we are in btrfs_exclop_start. 2528 * - Various dev_list readers - are using RCU. 2529 * - btrfs_ioctl_fitrim() - is using RCU. 2530 * 2531 * For-read threads as below are using device_list_mutex: 2532 * - Readonly scrub btrfs_scrub_dev() 2533 * - Readonly scrub btrfs_scrub_progress() 2534 * - btrfs_get_dev_stats() 2535 */ 2536 lockdep_assert_held(&fs_devices->device_list_mutex); 2537 2538 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2539 synchronize_rcu); 2540 list_for_each_entry(device, &seed_devices->devices, dev_list) 2541 device->fs_devices = seed_devices; 2542 2543 fs_devices->seeding = false; 2544 fs_devices->num_devices = 0; 2545 fs_devices->open_devices = 0; 2546 fs_devices->missing_devices = 0; 2547 fs_devices->rotating = false; 2548 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2549 2550 generate_random_uuid(fs_devices->fsid); 2551 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2552 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2553 2554 super_flags = btrfs_super_flags(disk_super) & 2555 ~BTRFS_SUPER_FLAG_SEEDING; 2556 btrfs_set_super_flags(disk_super, super_flags); 2557 } 2558 2559 /* 2560 * Store the expected generation for seed devices in device items. 2561 */ 2562 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2563 { 2564 BTRFS_DEV_LOOKUP_ARGS(args); 2565 struct btrfs_fs_info *fs_info = trans->fs_info; 2566 struct btrfs_root *root = fs_info->chunk_root; 2567 struct btrfs_path *path; 2568 struct extent_buffer *leaf; 2569 struct btrfs_dev_item *dev_item; 2570 struct btrfs_device *device; 2571 struct btrfs_key key; 2572 u8 fs_uuid[BTRFS_FSID_SIZE]; 2573 u8 dev_uuid[BTRFS_UUID_SIZE]; 2574 int ret; 2575 2576 path = btrfs_alloc_path(); 2577 if (!path) 2578 return -ENOMEM; 2579 2580 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2581 key.offset = 0; 2582 key.type = BTRFS_DEV_ITEM_KEY; 2583 2584 while (1) { 2585 btrfs_reserve_chunk_metadata(trans, false); 2586 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2587 btrfs_trans_release_chunk_metadata(trans); 2588 if (ret < 0) 2589 goto error; 2590 2591 leaf = path->nodes[0]; 2592 next_slot: 2593 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2594 ret = btrfs_next_leaf(root, path); 2595 if (ret > 0) 2596 break; 2597 if (ret < 0) 2598 goto error; 2599 leaf = path->nodes[0]; 2600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2601 btrfs_release_path(path); 2602 continue; 2603 } 2604 2605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2606 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2607 key.type != BTRFS_DEV_ITEM_KEY) 2608 break; 2609 2610 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2611 struct btrfs_dev_item); 2612 args.devid = btrfs_device_id(leaf, dev_item); 2613 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2614 BTRFS_UUID_SIZE); 2615 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2616 BTRFS_FSID_SIZE); 2617 args.uuid = dev_uuid; 2618 args.fsid = fs_uuid; 2619 device = btrfs_find_device(fs_info->fs_devices, &args); 2620 BUG_ON(!device); /* Logic error */ 2621 2622 if (device->fs_devices->seeding) { 2623 btrfs_set_device_generation(leaf, dev_item, 2624 device->generation); 2625 btrfs_mark_buffer_dirty(trans, leaf); 2626 } 2627 2628 path->slots[0]++; 2629 goto next_slot; 2630 } 2631 ret = 0; 2632 error: 2633 btrfs_free_path(path); 2634 return ret; 2635 } 2636 2637 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2638 { 2639 struct btrfs_root *root = fs_info->dev_root; 2640 struct btrfs_trans_handle *trans; 2641 struct btrfs_device *device; 2642 struct file *bdev_file; 2643 struct super_block *sb = fs_info->sb; 2644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2645 struct btrfs_fs_devices *seed_devices = NULL; 2646 u64 orig_super_total_bytes; 2647 u64 orig_super_num_devices; 2648 int ret = 0; 2649 bool seeding_dev = false; 2650 bool locked = false; 2651 2652 if (sb_rdonly(sb) && !fs_devices->seeding) 2653 return -EROFS; 2654 2655 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2656 fs_info->bdev_holder, NULL); 2657 if (IS_ERR(bdev_file)) 2658 return PTR_ERR(bdev_file); 2659 2660 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2661 ret = -EINVAL; 2662 goto error; 2663 } 2664 2665 if (fs_devices->seeding) { 2666 seeding_dev = true; 2667 down_write(&sb->s_umount); 2668 mutex_lock(&uuid_mutex); 2669 locked = true; 2670 } 2671 2672 sync_blockdev(file_bdev(bdev_file)); 2673 2674 rcu_read_lock(); 2675 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2676 if (device->bdev == file_bdev(bdev_file)) { 2677 ret = -EEXIST; 2678 rcu_read_unlock(); 2679 goto error; 2680 } 2681 } 2682 rcu_read_unlock(); 2683 2684 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2685 if (IS_ERR(device)) { 2686 /* we can safely leave the fs_devices entry around */ 2687 ret = PTR_ERR(device); 2688 goto error; 2689 } 2690 2691 device->fs_info = fs_info; 2692 device->bdev_file = bdev_file; 2693 device->bdev = file_bdev(bdev_file); 2694 ret = lookup_bdev(device_path, &device->devt); 2695 if (ret) 2696 goto error_free_device; 2697 2698 ret = btrfs_get_dev_zone_info(device, false); 2699 if (ret) 2700 goto error_free_device; 2701 2702 trans = btrfs_start_transaction(root, 0); 2703 if (IS_ERR(trans)) { 2704 ret = PTR_ERR(trans); 2705 goto error_free_zone; 2706 } 2707 2708 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2709 device->generation = trans->transid; 2710 device->io_width = fs_info->sectorsize; 2711 device->io_align = fs_info->sectorsize; 2712 device->sector_size = fs_info->sectorsize; 2713 device->total_bytes = 2714 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2715 device->disk_total_bytes = device->total_bytes; 2716 device->commit_total_bytes = device->total_bytes; 2717 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2718 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2719 device->dev_stats_valid = 1; 2720 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2721 2722 if (seeding_dev) { 2723 btrfs_clear_sb_rdonly(sb); 2724 2725 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2726 seed_devices = btrfs_init_sprout(fs_info); 2727 if (IS_ERR(seed_devices)) { 2728 ret = PTR_ERR(seed_devices); 2729 btrfs_abort_transaction(trans, ret); 2730 goto error_trans; 2731 } 2732 } 2733 2734 mutex_lock(&fs_devices->device_list_mutex); 2735 if (seeding_dev) { 2736 btrfs_setup_sprout(fs_info, seed_devices); 2737 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2738 device); 2739 } 2740 2741 device->fs_devices = fs_devices; 2742 2743 mutex_lock(&fs_info->chunk_mutex); 2744 list_add_rcu(&device->dev_list, &fs_devices->devices); 2745 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2746 fs_devices->num_devices++; 2747 fs_devices->open_devices++; 2748 fs_devices->rw_devices++; 2749 fs_devices->total_devices++; 2750 fs_devices->total_rw_bytes += device->total_bytes; 2751 2752 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2753 2754 if (!bdev_nonrot(device->bdev)) 2755 fs_devices->rotating = true; 2756 2757 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2758 btrfs_set_super_total_bytes(fs_info->super_copy, 2759 round_down(orig_super_total_bytes + device->total_bytes, 2760 fs_info->sectorsize)); 2761 2762 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2763 btrfs_set_super_num_devices(fs_info->super_copy, 2764 orig_super_num_devices + 1); 2765 2766 /* 2767 * we've got more storage, clear any full flags on the space 2768 * infos 2769 */ 2770 btrfs_clear_space_info_full(fs_info); 2771 2772 mutex_unlock(&fs_info->chunk_mutex); 2773 2774 /* Add sysfs device entry */ 2775 btrfs_sysfs_add_device(device); 2776 2777 mutex_unlock(&fs_devices->device_list_mutex); 2778 2779 if (seeding_dev) { 2780 mutex_lock(&fs_info->chunk_mutex); 2781 ret = init_first_rw_device(trans); 2782 mutex_unlock(&fs_info->chunk_mutex); 2783 if (ret) { 2784 btrfs_abort_transaction(trans, ret); 2785 goto error_sysfs; 2786 } 2787 } 2788 2789 ret = btrfs_add_dev_item(trans, device); 2790 if (ret) { 2791 btrfs_abort_transaction(trans, ret); 2792 goto error_sysfs; 2793 } 2794 2795 if (seeding_dev) { 2796 ret = btrfs_finish_sprout(trans); 2797 if (ret) { 2798 btrfs_abort_transaction(trans, ret); 2799 goto error_sysfs; 2800 } 2801 2802 /* 2803 * fs_devices now represents the newly sprouted filesystem and 2804 * its fsid has been changed by btrfs_sprout_splice(). 2805 */ 2806 btrfs_sysfs_update_sprout_fsid(fs_devices); 2807 } 2808 2809 ret = btrfs_commit_transaction(trans); 2810 2811 if (seeding_dev) { 2812 mutex_unlock(&uuid_mutex); 2813 up_write(&sb->s_umount); 2814 locked = false; 2815 2816 if (ret) /* transaction commit */ 2817 return ret; 2818 2819 ret = btrfs_relocate_sys_chunks(fs_info); 2820 if (ret < 0) 2821 btrfs_handle_fs_error(fs_info, ret, 2822 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2823 trans = btrfs_attach_transaction(root); 2824 if (IS_ERR(trans)) { 2825 if (PTR_ERR(trans) == -ENOENT) 2826 return 0; 2827 ret = PTR_ERR(trans); 2828 trans = NULL; 2829 goto error_sysfs; 2830 } 2831 ret = btrfs_commit_transaction(trans); 2832 } 2833 2834 /* 2835 * Now that we have written a new super block to this device, check all 2836 * other fs_devices list if device_path alienates any other scanned 2837 * device. 2838 * We can ignore the return value as it typically returns -EINVAL and 2839 * only succeeds if the device was an alien. 2840 */ 2841 btrfs_forget_devices(device->devt); 2842 2843 /* Update ctime/mtime for blkid or udev */ 2844 update_dev_time(device_path); 2845 2846 return ret; 2847 2848 error_sysfs: 2849 btrfs_sysfs_remove_device(device); 2850 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2851 mutex_lock(&fs_info->chunk_mutex); 2852 list_del_rcu(&device->dev_list); 2853 list_del(&device->dev_alloc_list); 2854 fs_info->fs_devices->num_devices--; 2855 fs_info->fs_devices->open_devices--; 2856 fs_info->fs_devices->rw_devices--; 2857 fs_info->fs_devices->total_devices--; 2858 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2859 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2860 btrfs_set_super_total_bytes(fs_info->super_copy, 2861 orig_super_total_bytes); 2862 btrfs_set_super_num_devices(fs_info->super_copy, 2863 orig_super_num_devices); 2864 mutex_unlock(&fs_info->chunk_mutex); 2865 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2866 error_trans: 2867 if (seeding_dev) 2868 btrfs_set_sb_rdonly(sb); 2869 if (trans) 2870 btrfs_end_transaction(trans); 2871 error_free_zone: 2872 btrfs_destroy_dev_zone_info(device); 2873 error_free_device: 2874 btrfs_free_device(device); 2875 error: 2876 fput(bdev_file); 2877 if (locked) { 2878 mutex_unlock(&uuid_mutex); 2879 up_write(&sb->s_umount); 2880 } 2881 return ret; 2882 } 2883 2884 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2885 struct btrfs_device *device) 2886 { 2887 int ret; 2888 struct btrfs_path *path; 2889 struct btrfs_root *root = device->fs_info->chunk_root; 2890 struct btrfs_dev_item *dev_item; 2891 struct extent_buffer *leaf; 2892 struct btrfs_key key; 2893 2894 path = btrfs_alloc_path(); 2895 if (!path) 2896 return -ENOMEM; 2897 2898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2899 key.type = BTRFS_DEV_ITEM_KEY; 2900 key.offset = device->devid; 2901 2902 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2903 if (ret < 0) 2904 goto out; 2905 2906 if (ret > 0) { 2907 ret = -ENOENT; 2908 goto out; 2909 } 2910 2911 leaf = path->nodes[0]; 2912 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2913 2914 btrfs_set_device_id(leaf, dev_item, device->devid); 2915 btrfs_set_device_type(leaf, dev_item, device->type); 2916 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2917 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2918 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2919 btrfs_set_device_total_bytes(leaf, dev_item, 2920 btrfs_device_get_disk_total_bytes(device)); 2921 btrfs_set_device_bytes_used(leaf, dev_item, 2922 btrfs_device_get_bytes_used(device)); 2923 btrfs_mark_buffer_dirty(trans, leaf); 2924 2925 out: 2926 btrfs_free_path(path); 2927 return ret; 2928 } 2929 2930 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2931 struct btrfs_device *device, u64 new_size) 2932 { 2933 struct btrfs_fs_info *fs_info = device->fs_info; 2934 struct btrfs_super_block *super_copy = fs_info->super_copy; 2935 u64 old_total; 2936 u64 diff; 2937 int ret; 2938 2939 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2940 return -EACCES; 2941 2942 new_size = round_down(new_size, fs_info->sectorsize); 2943 2944 mutex_lock(&fs_info->chunk_mutex); 2945 old_total = btrfs_super_total_bytes(super_copy); 2946 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2947 2948 if (new_size <= device->total_bytes || 2949 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2950 mutex_unlock(&fs_info->chunk_mutex); 2951 return -EINVAL; 2952 } 2953 2954 btrfs_set_super_total_bytes(super_copy, 2955 round_down(old_total + diff, fs_info->sectorsize)); 2956 device->fs_devices->total_rw_bytes += diff; 2957 atomic64_add(diff, &fs_info->free_chunk_space); 2958 2959 btrfs_device_set_total_bytes(device, new_size); 2960 btrfs_device_set_disk_total_bytes(device, new_size); 2961 btrfs_clear_space_info_full(device->fs_info); 2962 if (list_empty(&device->post_commit_list)) 2963 list_add_tail(&device->post_commit_list, 2964 &trans->transaction->dev_update_list); 2965 mutex_unlock(&fs_info->chunk_mutex); 2966 2967 btrfs_reserve_chunk_metadata(trans, false); 2968 ret = btrfs_update_device(trans, device); 2969 btrfs_trans_release_chunk_metadata(trans); 2970 2971 return ret; 2972 } 2973 2974 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2975 { 2976 struct btrfs_fs_info *fs_info = trans->fs_info; 2977 struct btrfs_root *root = fs_info->chunk_root; 2978 int ret; 2979 struct btrfs_path *path; 2980 struct btrfs_key key; 2981 2982 path = btrfs_alloc_path(); 2983 if (!path) 2984 return -ENOMEM; 2985 2986 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2987 key.offset = chunk_offset; 2988 key.type = BTRFS_CHUNK_ITEM_KEY; 2989 2990 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2991 if (ret < 0) 2992 goto out; 2993 else if (ret > 0) { /* Logic error or corruption */ 2994 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 2995 chunk_offset); 2996 btrfs_abort_transaction(trans, -ENOENT); 2997 ret = -EUCLEAN; 2998 goto out; 2999 } 3000 3001 ret = btrfs_del_item(trans, root, path); 3002 if (ret < 0) { 3003 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3004 btrfs_abort_transaction(trans, ret); 3005 goto out; 3006 } 3007 out: 3008 btrfs_free_path(path); 3009 return ret; 3010 } 3011 3012 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3013 { 3014 struct btrfs_super_block *super_copy = fs_info->super_copy; 3015 struct btrfs_disk_key *disk_key; 3016 struct btrfs_chunk *chunk; 3017 u8 *ptr; 3018 int ret = 0; 3019 u32 num_stripes; 3020 u32 array_size; 3021 u32 len = 0; 3022 u32 cur; 3023 struct btrfs_key key; 3024 3025 lockdep_assert_held(&fs_info->chunk_mutex); 3026 array_size = btrfs_super_sys_array_size(super_copy); 3027 3028 ptr = super_copy->sys_chunk_array; 3029 cur = 0; 3030 3031 while (cur < array_size) { 3032 disk_key = (struct btrfs_disk_key *)ptr; 3033 btrfs_disk_key_to_cpu(&key, disk_key); 3034 3035 len = sizeof(*disk_key); 3036 3037 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3038 chunk = (struct btrfs_chunk *)(ptr + len); 3039 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3040 len += btrfs_chunk_item_size(num_stripes); 3041 } else { 3042 ret = -EIO; 3043 break; 3044 } 3045 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3046 key.offset == chunk_offset) { 3047 memmove(ptr, ptr + len, array_size - (cur + len)); 3048 array_size -= len; 3049 btrfs_set_super_sys_array_size(super_copy, array_size); 3050 } else { 3051 ptr += len; 3052 cur += len; 3053 } 3054 } 3055 return ret; 3056 } 3057 3058 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3059 u64 logical, u64 length) 3060 { 3061 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3062 struct rb_node *prev = NULL; 3063 struct rb_node *orig_prev; 3064 struct btrfs_chunk_map *map; 3065 struct btrfs_chunk_map *prev_map = NULL; 3066 3067 while (node) { 3068 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3069 prev = node; 3070 prev_map = map; 3071 3072 if (logical < map->start) { 3073 node = node->rb_left; 3074 } else if (logical >= map->start + map->chunk_len) { 3075 node = node->rb_right; 3076 } else { 3077 refcount_inc(&map->refs); 3078 return map; 3079 } 3080 } 3081 3082 if (!prev) 3083 return NULL; 3084 3085 orig_prev = prev; 3086 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3087 prev = rb_next(prev); 3088 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3089 } 3090 3091 if (!prev) { 3092 prev = orig_prev; 3093 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3094 while (prev && logical < prev_map->start) { 3095 prev = rb_prev(prev); 3096 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3097 } 3098 } 3099 3100 if (prev) { 3101 u64 end = logical + length; 3102 3103 /* 3104 * Caller can pass a U64_MAX length when it wants to get any 3105 * chunk starting at an offset of 'logical' or higher, so deal 3106 * with underflow by resetting the end offset to U64_MAX. 3107 */ 3108 if (end < logical) 3109 end = U64_MAX; 3110 3111 if (end > prev_map->start && 3112 logical < prev_map->start + prev_map->chunk_len) { 3113 refcount_inc(&prev_map->refs); 3114 return prev_map; 3115 } 3116 } 3117 3118 return NULL; 3119 } 3120 3121 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3122 u64 logical, u64 length) 3123 { 3124 struct btrfs_chunk_map *map; 3125 3126 read_lock(&fs_info->mapping_tree_lock); 3127 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3128 read_unlock(&fs_info->mapping_tree_lock); 3129 3130 return map; 3131 } 3132 3133 /* 3134 * Find the mapping containing the given logical extent. 3135 * 3136 * @logical: Logical block offset in bytes. 3137 * @length: Length of extent in bytes. 3138 * 3139 * Return: Chunk mapping or ERR_PTR. 3140 */ 3141 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3142 u64 logical, u64 length) 3143 { 3144 struct btrfs_chunk_map *map; 3145 3146 map = btrfs_find_chunk_map(fs_info, logical, length); 3147 3148 if (unlikely(!map)) { 3149 btrfs_crit(fs_info, 3150 "unable to find chunk map for logical %llu length %llu", 3151 logical, length); 3152 return ERR_PTR(-EINVAL); 3153 } 3154 3155 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3156 btrfs_crit(fs_info, 3157 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3158 logical, logical + length, map->start, 3159 map->start + map->chunk_len); 3160 btrfs_free_chunk_map(map); 3161 return ERR_PTR(-EINVAL); 3162 } 3163 3164 /* Callers are responsible for dropping the reference. */ 3165 return map; 3166 } 3167 3168 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3169 struct btrfs_chunk_map *map, u64 chunk_offset) 3170 { 3171 int i; 3172 3173 /* 3174 * Removing chunk items and updating the device items in the chunks btree 3175 * requires holding the chunk_mutex. 3176 * See the comment at btrfs_chunk_alloc() for the details. 3177 */ 3178 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3179 3180 for (i = 0; i < map->num_stripes; i++) { 3181 int ret; 3182 3183 ret = btrfs_update_device(trans, map->stripes[i].dev); 3184 if (ret) 3185 return ret; 3186 } 3187 3188 return btrfs_free_chunk(trans, chunk_offset); 3189 } 3190 3191 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3192 { 3193 struct btrfs_fs_info *fs_info = trans->fs_info; 3194 struct btrfs_chunk_map *map; 3195 u64 dev_extent_len = 0; 3196 int i, ret = 0; 3197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3198 3199 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3200 if (IS_ERR(map)) { 3201 /* 3202 * This is a logic error, but we don't want to just rely on the 3203 * user having built with ASSERT enabled, so if ASSERT doesn't 3204 * do anything we still error out. 3205 */ 3206 ASSERT(0); 3207 return PTR_ERR(map); 3208 } 3209 3210 /* 3211 * First delete the device extent items from the devices btree. 3212 * We take the device_list_mutex to avoid racing with the finishing phase 3213 * of a device replace operation. See the comment below before acquiring 3214 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3215 * because that can result in a deadlock when deleting the device extent 3216 * items from the devices btree - COWing an extent buffer from the btree 3217 * may result in allocating a new metadata chunk, which would attempt to 3218 * lock again fs_info->chunk_mutex. 3219 */ 3220 mutex_lock(&fs_devices->device_list_mutex); 3221 for (i = 0; i < map->num_stripes; i++) { 3222 struct btrfs_device *device = map->stripes[i].dev; 3223 ret = btrfs_free_dev_extent(trans, device, 3224 map->stripes[i].physical, 3225 &dev_extent_len); 3226 if (ret) { 3227 mutex_unlock(&fs_devices->device_list_mutex); 3228 btrfs_abort_transaction(trans, ret); 3229 goto out; 3230 } 3231 3232 if (device->bytes_used > 0) { 3233 mutex_lock(&fs_info->chunk_mutex); 3234 btrfs_device_set_bytes_used(device, 3235 device->bytes_used - dev_extent_len); 3236 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3237 btrfs_clear_space_info_full(fs_info); 3238 mutex_unlock(&fs_info->chunk_mutex); 3239 } 3240 } 3241 mutex_unlock(&fs_devices->device_list_mutex); 3242 3243 /* 3244 * We acquire fs_info->chunk_mutex for 2 reasons: 3245 * 3246 * 1) Just like with the first phase of the chunk allocation, we must 3247 * reserve system space, do all chunk btree updates and deletions, and 3248 * update the system chunk array in the superblock while holding this 3249 * mutex. This is for similar reasons as explained on the comment at 3250 * the top of btrfs_chunk_alloc(); 3251 * 3252 * 2) Prevent races with the final phase of a device replace operation 3253 * that replaces the device object associated with the map's stripes, 3254 * because the device object's id can change at any time during that 3255 * final phase of the device replace operation 3256 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3257 * replaced device and then see it with an ID of 3258 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3259 * the device item, which does not exists on the chunk btree. 3260 * The finishing phase of device replace acquires both the 3261 * device_list_mutex and the chunk_mutex, in that order, so we are 3262 * safe by just acquiring the chunk_mutex. 3263 */ 3264 trans->removing_chunk = true; 3265 mutex_lock(&fs_info->chunk_mutex); 3266 3267 check_system_chunk(trans, map->type); 3268 3269 ret = remove_chunk_item(trans, map, chunk_offset); 3270 /* 3271 * Normally we should not get -ENOSPC since we reserved space before 3272 * through the call to check_system_chunk(). 3273 * 3274 * Despite our system space_info having enough free space, we may not 3275 * be able to allocate extents from its block groups, because all have 3276 * an incompatible profile, which will force us to allocate a new system 3277 * block group with the right profile, or right after we called 3278 * check_system_space() above, a scrub turned the only system block group 3279 * with enough free space into RO mode. 3280 * This is explained with more detail at do_chunk_alloc(). 3281 * 3282 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3283 */ 3284 if (ret == -ENOSPC) { 3285 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3286 struct btrfs_block_group *sys_bg; 3287 3288 sys_bg = btrfs_create_chunk(trans, sys_flags); 3289 if (IS_ERR(sys_bg)) { 3290 ret = PTR_ERR(sys_bg); 3291 btrfs_abort_transaction(trans, ret); 3292 goto out; 3293 } 3294 3295 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3296 if (ret) { 3297 btrfs_abort_transaction(trans, ret); 3298 goto out; 3299 } 3300 3301 ret = remove_chunk_item(trans, map, chunk_offset); 3302 if (ret) { 3303 btrfs_abort_transaction(trans, ret); 3304 goto out; 3305 } 3306 } else if (ret) { 3307 btrfs_abort_transaction(trans, ret); 3308 goto out; 3309 } 3310 3311 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3312 3313 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3314 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3315 if (ret) { 3316 btrfs_abort_transaction(trans, ret); 3317 goto out; 3318 } 3319 } 3320 3321 mutex_unlock(&fs_info->chunk_mutex); 3322 trans->removing_chunk = false; 3323 3324 /* 3325 * We are done with chunk btree updates and deletions, so release the 3326 * system space we previously reserved (with check_system_chunk()). 3327 */ 3328 btrfs_trans_release_chunk_metadata(trans); 3329 3330 ret = btrfs_remove_block_group(trans, map); 3331 if (ret) { 3332 btrfs_abort_transaction(trans, ret); 3333 goto out; 3334 } 3335 3336 out: 3337 if (trans->removing_chunk) { 3338 mutex_unlock(&fs_info->chunk_mutex); 3339 trans->removing_chunk = false; 3340 } 3341 /* once for us */ 3342 btrfs_free_chunk_map(map); 3343 return ret; 3344 } 3345 3346 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3347 { 3348 struct btrfs_root *root = fs_info->chunk_root; 3349 struct btrfs_trans_handle *trans; 3350 struct btrfs_block_group *block_group; 3351 u64 length; 3352 int ret; 3353 3354 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3355 btrfs_err(fs_info, 3356 "relocate: not supported on extent tree v2 yet"); 3357 return -EINVAL; 3358 } 3359 3360 /* 3361 * Prevent races with automatic removal of unused block groups. 3362 * After we relocate and before we remove the chunk with offset 3363 * chunk_offset, automatic removal of the block group can kick in, 3364 * resulting in a failure when calling btrfs_remove_chunk() below. 3365 * 3366 * Make sure to acquire this mutex before doing a tree search (dev 3367 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3368 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3369 * we release the path used to search the chunk/dev tree and before 3370 * the current task acquires this mutex and calls us. 3371 */ 3372 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3373 3374 /* step one, relocate all the extents inside this chunk */ 3375 btrfs_scrub_pause(fs_info); 3376 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3377 btrfs_scrub_continue(fs_info); 3378 if (ret) { 3379 /* 3380 * If we had a transaction abort, stop all running scrubs. 3381 * See transaction.c:cleanup_transaction() why we do it here. 3382 */ 3383 if (BTRFS_FS_ERROR(fs_info)) 3384 btrfs_scrub_cancel(fs_info); 3385 return ret; 3386 } 3387 3388 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3389 if (!block_group) 3390 return -ENOENT; 3391 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3392 length = block_group->length; 3393 btrfs_put_block_group(block_group); 3394 3395 /* 3396 * On a zoned file system, discard the whole block group, this will 3397 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3398 * resetting the zone fails, don't treat it as a fatal problem from the 3399 * filesystem's point of view. 3400 */ 3401 if (btrfs_is_zoned(fs_info)) { 3402 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3403 if (ret) 3404 btrfs_info(fs_info, 3405 "failed to reset zone %llu after relocation", 3406 chunk_offset); 3407 } 3408 3409 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3410 chunk_offset); 3411 if (IS_ERR(trans)) { 3412 ret = PTR_ERR(trans); 3413 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3414 return ret; 3415 } 3416 3417 /* 3418 * step two, delete the device extents and the 3419 * chunk tree entries 3420 */ 3421 ret = btrfs_remove_chunk(trans, chunk_offset); 3422 btrfs_end_transaction(trans); 3423 return ret; 3424 } 3425 3426 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3427 { 3428 struct btrfs_root *chunk_root = fs_info->chunk_root; 3429 struct btrfs_path *path; 3430 struct extent_buffer *leaf; 3431 struct btrfs_chunk *chunk; 3432 struct btrfs_key key; 3433 struct btrfs_key found_key; 3434 u64 chunk_type; 3435 bool retried = false; 3436 int failed = 0; 3437 int ret; 3438 3439 path = btrfs_alloc_path(); 3440 if (!path) 3441 return -ENOMEM; 3442 3443 again: 3444 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3445 key.offset = (u64)-1; 3446 key.type = BTRFS_CHUNK_ITEM_KEY; 3447 3448 while (1) { 3449 mutex_lock(&fs_info->reclaim_bgs_lock); 3450 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3451 if (ret < 0) { 3452 mutex_unlock(&fs_info->reclaim_bgs_lock); 3453 goto error; 3454 } 3455 if (ret == 0) { 3456 /* 3457 * On the first search we would find chunk tree with 3458 * offset -1, which is not possible. On subsequent 3459 * loops this would find an existing item on an invalid 3460 * offset (one less than the previous one, wrong 3461 * alignment and size). 3462 */ 3463 ret = -EUCLEAN; 3464 mutex_unlock(&fs_info->reclaim_bgs_lock); 3465 goto error; 3466 } 3467 3468 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3469 key.type); 3470 if (ret) 3471 mutex_unlock(&fs_info->reclaim_bgs_lock); 3472 if (ret < 0) 3473 goto error; 3474 if (ret > 0) 3475 break; 3476 3477 leaf = path->nodes[0]; 3478 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3479 3480 chunk = btrfs_item_ptr(leaf, path->slots[0], 3481 struct btrfs_chunk); 3482 chunk_type = btrfs_chunk_type(leaf, chunk); 3483 btrfs_release_path(path); 3484 3485 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3486 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3487 if (ret == -ENOSPC) 3488 failed++; 3489 else 3490 BUG_ON(ret); 3491 } 3492 mutex_unlock(&fs_info->reclaim_bgs_lock); 3493 3494 if (found_key.offset == 0) 3495 break; 3496 key.offset = found_key.offset - 1; 3497 } 3498 ret = 0; 3499 if (failed && !retried) { 3500 failed = 0; 3501 retried = true; 3502 goto again; 3503 } else if (WARN_ON(failed && retried)) { 3504 ret = -ENOSPC; 3505 } 3506 error: 3507 btrfs_free_path(path); 3508 return ret; 3509 } 3510 3511 /* 3512 * return 1 : allocate a data chunk successfully, 3513 * return <0: errors during allocating a data chunk, 3514 * return 0 : no need to allocate a data chunk. 3515 */ 3516 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3517 u64 chunk_offset) 3518 { 3519 struct btrfs_block_group *cache; 3520 u64 bytes_used; 3521 u64 chunk_type; 3522 3523 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3524 ASSERT(cache); 3525 chunk_type = cache->flags; 3526 btrfs_put_block_group(cache); 3527 3528 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3529 return 0; 3530 3531 spin_lock(&fs_info->data_sinfo->lock); 3532 bytes_used = fs_info->data_sinfo->bytes_used; 3533 spin_unlock(&fs_info->data_sinfo->lock); 3534 3535 if (!bytes_used) { 3536 struct btrfs_trans_handle *trans; 3537 int ret; 3538 3539 trans = btrfs_join_transaction(fs_info->tree_root); 3540 if (IS_ERR(trans)) 3541 return PTR_ERR(trans); 3542 3543 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3544 btrfs_end_transaction(trans); 3545 if (ret < 0) 3546 return ret; 3547 return 1; 3548 } 3549 3550 return 0; 3551 } 3552 3553 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3554 const struct btrfs_disk_balance_args *disk) 3555 { 3556 memset(cpu, 0, sizeof(*cpu)); 3557 3558 cpu->profiles = le64_to_cpu(disk->profiles); 3559 cpu->usage = le64_to_cpu(disk->usage); 3560 cpu->devid = le64_to_cpu(disk->devid); 3561 cpu->pstart = le64_to_cpu(disk->pstart); 3562 cpu->pend = le64_to_cpu(disk->pend); 3563 cpu->vstart = le64_to_cpu(disk->vstart); 3564 cpu->vend = le64_to_cpu(disk->vend); 3565 cpu->target = le64_to_cpu(disk->target); 3566 cpu->flags = le64_to_cpu(disk->flags); 3567 cpu->limit = le64_to_cpu(disk->limit); 3568 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3569 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3570 } 3571 3572 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3573 const struct btrfs_balance_args *cpu) 3574 { 3575 memset(disk, 0, sizeof(*disk)); 3576 3577 disk->profiles = cpu_to_le64(cpu->profiles); 3578 disk->usage = cpu_to_le64(cpu->usage); 3579 disk->devid = cpu_to_le64(cpu->devid); 3580 disk->pstart = cpu_to_le64(cpu->pstart); 3581 disk->pend = cpu_to_le64(cpu->pend); 3582 disk->vstart = cpu_to_le64(cpu->vstart); 3583 disk->vend = cpu_to_le64(cpu->vend); 3584 disk->target = cpu_to_le64(cpu->target); 3585 disk->flags = cpu_to_le64(cpu->flags); 3586 disk->limit = cpu_to_le64(cpu->limit); 3587 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3588 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3589 } 3590 3591 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3592 struct btrfs_balance_control *bctl) 3593 { 3594 struct btrfs_root *root = fs_info->tree_root; 3595 struct btrfs_trans_handle *trans; 3596 struct btrfs_balance_item *item; 3597 struct btrfs_disk_balance_args disk_bargs; 3598 struct btrfs_path *path; 3599 struct extent_buffer *leaf; 3600 struct btrfs_key key; 3601 int ret, err; 3602 3603 path = btrfs_alloc_path(); 3604 if (!path) 3605 return -ENOMEM; 3606 3607 trans = btrfs_start_transaction(root, 0); 3608 if (IS_ERR(trans)) { 3609 btrfs_free_path(path); 3610 return PTR_ERR(trans); 3611 } 3612 3613 key.objectid = BTRFS_BALANCE_OBJECTID; 3614 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3615 key.offset = 0; 3616 3617 ret = btrfs_insert_empty_item(trans, root, path, &key, 3618 sizeof(*item)); 3619 if (ret) 3620 goto out; 3621 3622 leaf = path->nodes[0]; 3623 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3624 3625 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3626 3627 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3628 btrfs_set_balance_data(leaf, item, &disk_bargs); 3629 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3630 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3631 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3632 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3633 3634 btrfs_set_balance_flags(leaf, item, bctl->flags); 3635 3636 btrfs_mark_buffer_dirty(trans, leaf); 3637 out: 3638 btrfs_free_path(path); 3639 err = btrfs_commit_transaction(trans); 3640 if (err && !ret) 3641 ret = err; 3642 return ret; 3643 } 3644 3645 static int del_balance_item(struct btrfs_fs_info *fs_info) 3646 { 3647 struct btrfs_root *root = fs_info->tree_root; 3648 struct btrfs_trans_handle *trans; 3649 struct btrfs_path *path; 3650 struct btrfs_key key; 3651 int ret, err; 3652 3653 path = btrfs_alloc_path(); 3654 if (!path) 3655 return -ENOMEM; 3656 3657 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3658 if (IS_ERR(trans)) { 3659 btrfs_free_path(path); 3660 return PTR_ERR(trans); 3661 } 3662 3663 key.objectid = BTRFS_BALANCE_OBJECTID; 3664 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3665 key.offset = 0; 3666 3667 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3668 if (ret < 0) 3669 goto out; 3670 if (ret > 0) { 3671 ret = -ENOENT; 3672 goto out; 3673 } 3674 3675 ret = btrfs_del_item(trans, root, path); 3676 out: 3677 btrfs_free_path(path); 3678 err = btrfs_commit_transaction(trans); 3679 if (err && !ret) 3680 ret = err; 3681 return ret; 3682 } 3683 3684 /* 3685 * This is a heuristic used to reduce the number of chunks balanced on 3686 * resume after balance was interrupted. 3687 */ 3688 static void update_balance_args(struct btrfs_balance_control *bctl) 3689 { 3690 /* 3691 * Turn on soft mode for chunk types that were being converted. 3692 */ 3693 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3694 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3695 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3696 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3697 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3698 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3699 3700 /* 3701 * Turn on usage filter if is not already used. The idea is 3702 * that chunks that we have already balanced should be 3703 * reasonably full. Don't do it for chunks that are being 3704 * converted - that will keep us from relocating unconverted 3705 * (albeit full) chunks. 3706 */ 3707 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3708 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3709 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3710 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3711 bctl->data.usage = 90; 3712 } 3713 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3714 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3715 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3716 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3717 bctl->sys.usage = 90; 3718 } 3719 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3720 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3721 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3722 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3723 bctl->meta.usage = 90; 3724 } 3725 } 3726 3727 /* 3728 * Clear the balance status in fs_info and delete the balance item from disk. 3729 */ 3730 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3731 { 3732 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3733 int ret; 3734 3735 ASSERT(fs_info->balance_ctl); 3736 3737 spin_lock(&fs_info->balance_lock); 3738 fs_info->balance_ctl = NULL; 3739 spin_unlock(&fs_info->balance_lock); 3740 3741 kfree(bctl); 3742 ret = del_balance_item(fs_info); 3743 if (ret) 3744 btrfs_handle_fs_error(fs_info, ret, NULL); 3745 } 3746 3747 /* 3748 * Balance filters. Return 1 if chunk should be filtered out 3749 * (should not be balanced). 3750 */ 3751 static int chunk_profiles_filter(u64 chunk_type, 3752 struct btrfs_balance_args *bargs) 3753 { 3754 chunk_type = chunk_to_extended(chunk_type) & 3755 BTRFS_EXTENDED_PROFILE_MASK; 3756 3757 if (bargs->profiles & chunk_type) 3758 return 0; 3759 3760 return 1; 3761 } 3762 3763 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3764 struct btrfs_balance_args *bargs) 3765 { 3766 struct btrfs_block_group *cache; 3767 u64 chunk_used; 3768 u64 user_thresh_min; 3769 u64 user_thresh_max; 3770 int ret = 1; 3771 3772 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3773 chunk_used = cache->used; 3774 3775 if (bargs->usage_min == 0) 3776 user_thresh_min = 0; 3777 else 3778 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3779 3780 if (bargs->usage_max == 0) 3781 user_thresh_max = 1; 3782 else if (bargs->usage_max > 100) 3783 user_thresh_max = cache->length; 3784 else 3785 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3786 3787 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3788 ret = 0; 3789 3790 btrfs_put_block_group(cache); 3791 return ret; 3792 } 3793 3794 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3795 u64 chunk_offset, struct btrfs_balance_args *bargs) 3796 { 3797 struct btrfs_block_group *cache; 3798 u64 chunk_used, user_thresh; 3799 int ret = 1; 3800 3801 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3802 chunk_used = cache->used; 3803 3804 if (bargs->usage_min == 0) 3805 user_thresh = 1; 3806 else if (bargs->usage > 100) 3807 user_thresh = cache->length; 3808 else 3809 user_thresh = mult_perc(cache->length, bargs->usage); 3810 3811 if (chunk_used < user_thresh) 3812 ret = 0; 3813 3814 btrfs_put_block_group(cache); 3815 return ret; 3816 } 3817 3818 static int chunk_devid_filter(struct extent_buffer *leaf, 3819 struct btrfs_chunk *chunk, 3820 struct btrfs_balance_args *bargs) 3821 { 3822 struct btrfs_stripe *stripe; 3823 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3824 int i; 3825 3826 for (i = 0; i < num_stripes; i++) { 3827 stripe = btrfs_stripe_nr(chunk, i); 3828 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3829 return 0; 3830 } 3831 3832 return 1; 3833 } 3834 3835 static u64 calc_data_stripes(u64 type, int num_stripes) 3836 { 3837 const int index = btrfs_bg_flags_to_raid_index(type); 3838 const int ncopies = btrfs_raid_array[index].ncopies; 3839 const int nparity = btrfs_raid_array[index].nparity; 3840 3841 return (num_stripes - nparity) / ncopies; 3842 } 3843 3844 /* [pstart, pend) */ 3845 static int chunk_drange_filter(struct extent_buffer *leaf, 3846 struct btrfs_chunk *chunk, 3847 struct btrfs_balance_args *bargs) 3848 { 3849 struct btrfs_stripe *stripe; 3850 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3851 u64 stripe_offset; 3852 u64 stripe_length; 3853 u64 type; 3854 int factor; 3855 int i; 3856 3857 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3858 return 0; 3859 3860 type = btrfs_chunk_type(leaf, chunk); 3861 factor = calc_data_stripes(type, num_stripes); 3862 3863 for (i = 0; i < num_stripes; i++) { 3864 stripe = btrfs_stripe_nr(chunk, i); 3865 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3866 continue; 3867 3868 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3869 stripe_length = btrfs_chunk_length(leaf, chunk); 3870 stripe_length = div_u64(stripe_length, factor); 3871 3872 if (stripe_offset < bargs->pend && 3873 stripe_offset + stripe_length > bargs->pstart) 3874 return 0; 3875 } 3876 3877 return 1; 3878 } 3879 3880 /* [vstart, vend) */ 3881 static int chunk_vrange_filter(struct extent_buffer *leaf, 3882 struct btrfs_chunk *chunk, 3883 u64 chunk_offset, 3884 struct btrfs_balance_args *bargs) 3885 { 3886 if (chunk_offset < bargs->vend && 3887 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3888 /* at least part of the chunk is inside this vrange */ 3889 return 0; 3890 3891 return 1; 3892 } 3893 3894 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3895 struct btrfs_chunk *chunk, 3896 struct btrfs_balance_args *bargs) 3897 { 3898 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3899 3900 if (bargs->stripes_min <= num_stripes 3901 && num_stripes <= bargs->stripes_max) 3902 return 0; 3903 3904 return 1; 3905 } 3906 3907 static int chunk_soft_convert_filter(u64 chunk_type, 3908 struct btrfs_balance_args *bargs) 3909 { 3910 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3911 return 0; 3912 3913 chunk_type = chunk_to_extended(chunk_type) & 3914 BTRFS_EXTENDED_PROFILE_MASK; 3915 3916 if (bargs->target == chunk_type) 3917 return 1; 3918 3919 return 0; 3920 } 3921 3922 static int should_balance_chunk(struct extent_buffer *leaf, 3923 struct btrfs_chunk *chunk, u64 chunk_offset) 3924 { 3925 struct btrfs_fs_info *fs_info = leaf->fs_info; 3926 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3927 struct btrfs_balance_args *bargs = NULL; 3928 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3929 3930 /* type filter */ 3931 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3932 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3933 return 0; 3934 } 3935 3936 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3937 bargs = &bctl->data; 3938 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3939 bargs = &bctl->sys; 3940 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3941 bargs = &bctl->meta; 3942 3943 /* profiles filter */ 3944 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3945 chunk_profiles_filter(chunk_type, bargs)) { 3946 return 0; 3947 } 3948 3949 /* usage filter */ 3950 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3951 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3952 return 0; 3953 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3954 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3955 return 0; 3956 } 3957 3958 /* devid filter */ 3959 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3960 chunk_devid_filter(leaf, chunk, bargs)) { 3961 return 0; 3962 } 3963 3964 /* drange filter, makes sense only with devid filter */ 3965 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3966 chunk_drange_filter(leaf, chunk, bargs)) { 3967 return 0; 3968 } 3969 3970 /* vrange filter */ 3971 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3972 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3973 return 0; 3974 } 3975 3976 /* stripes filter */ 3977 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3978 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3979 return 0; 3980 } 3981 3982 /* soft profile changing mode */ 3983 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3984 chunk_soft_convert_filter(chunk_type, bargs)) { 3985 return 0; 3986 } 3987 3988 /* 3989 * limited by count, must be the last filter 3990 */ 3991 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3992 if (bargs->limit == 0) 3993 return 0; 3994 else 3995 bargs->limit--; 3996 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3997 /* 3998 * Same logic as the 'limit' filter; the minimum cannot be 3999 * determined here because we do not have the global information 4000 * about the count of all chunks that satisfy the filters. 4001 */ 4002 if (bargs->limit_max == 0) 4003 return 0; 4004 else 4005 bargs->limit_max--; 4006 } 4007 4008 return 1; 4009 } 4010 4011 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4012 { 4013 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4014 struct btrfs_root *chunk_root = fs_info->chunk_root; 4015 u64 chunk_type; 4016 struct btrfs_chunk *chunk; 4017 struct btrfs_path *path = NULL; 4018 struct btrfs_key key; 4019 struct btrfs_key found_key; 4020 struct extent_buffer *leaf; 4021 int slot; 4022 int ret; 4023 int enospc_errors = 0; 4024 bool counting = true; 4025 /* The single value limit and min/max limits use the same bytes in the */ 4026 u64 limit_data = bctl->data.limit; 4027 u64 limit_meta = bctl->meta.limit; 4028 u64 limit_sys = bctl->sys.limit; 4029 u32 count_data = 0; 4030 u32 count_meta = 0; 4031 u32 count_sys = 0; 4032 int chunk_reserved = 0; 4033 4034 path = btrfs_alloc_path(); 4035 if (!path) { 4036 ret = -ENOMEM; 4037 goto error; 4038 } 4039 4040 /* zero out stat counters */ 4041 spin_lock(&fs_info->balance_lock); 4042 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4043 spin_unlock(&fs_info->balance_lock); 4044 again: 4045 if (!counting) { 4046 /* 4047 * The single value limit and min/max limits use the same bytes 4048 * in the 4049 */ 4050 bctl->data.limit = limit_data; 4051 bctl->meta.limit = limit_meta; 4052 bctl->sys.limit = limit_sys; 4053 } 4054 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4055 key.offset = (u64)-1; 4056 key.type = BTRFS_CHUNK_ITEM_KEY; 4057 4058 while (1) { 4059 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4060 atomic_read(&fs_info->balance_cancel_req)) { 4061 ret = -ECANCELED; 4062 goto error; 4063 } 4064 4065 mutex_lock(&fs_info->reclaim_bgs_lock); 4066 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4067 if (ret < 0) { 4068 mutex_unlock(&fs_info->reclaim_bgs_lock); 4069 goto error; 4070 } 4071 4072 /* 4073 * this shouldn't happen, it means the last relocate 4074 * failed 4075 */ 4076 if (ret == 0) 4077 BUG(); /* FIXME break ? */ 4078 4079 ret = btrfs_previous_item(chunk_root, path, 0, 4080 BTRFS_CHUNK_ITEM_KEY); 4081 if (ret) { 4082 mutex_unlock(&fs_info->reclaim_bgs_lock); 4083 ret = 0; 4084 break; 4085 } 4086 4087 leaf = path->nodes[0]; 4088 slot = path->slots[0]; 4089 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4090 4091 if (found_key.objectid != key.objectid) { 4092 mutex_unlock(&fs_info->reclaim_bgs_lock); 4093 break; 4094 } 4095 4096 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4097 chunk_type = btrfs_chunk_type(leaf, chunk); 4098 4099 if (!counting) { 4100 spin_lock(&fs_info->balance_lock); 4101 bctl->stat.considered++; 4102 spin_unlock(&fs_info->balance_lock); 4103 } 4104 4105 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4106 4107 btrfs_release_path(path); 4108 if (!ret) { 4109 mutex_unlock(&fs_info->reclaim_bgs_lock); 4110 goto loop; 4111 } 4112 4113 if (counting) { 4114 mutex_unlock(&fs_info->reclaim_bgs_lock); 4115 spin_lock(&fs_info->balance_lock); 4116 bctl->stat.expected++; 4117 spin_unlock(&fs_info->balance_lock); 4118 4119 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4120 count_data++; 4121 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4122 count_sys++; 4123 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4124 count_meta++; 4125 4126 goto loop; 4127 } 4128 4129 /* 4130 * Apply limit_min filter, no need to check if the LIMITS 4131 * filter is used, limit_min is 0 by default 4132 */ 4133 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4134 count_data < bctl->data.limit_min) 4135 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4136 count_meta < bctl->meta.limit_min) 4137 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4138 count_sys < bctl->sys.limit_min)) { 4139 mutex_unlock(&fs_info->reclaim_bgs_lock); 4140 goto loop; 4141 } 4142 4143 if (!chunk_reserved) { 4144 /* 4145 * We may be relocating the only data chunk we have, 4146 * which could potentially end up with losing data's 4147 * raid profile, so lets allocate an empty one in 4148 * advance. 4149 */ 4150 ret = btrfs_may_alloc_data_chunk(fs_info, 4151 found_key.offset); 4152 if (ret < 0) { 4153 mutex_unlock(&fs_info->reclaim_bgs_lock); 4154 goto error; 4155 } else if (ret == 1) { 4156 chunk_reserved = 1; 4157 } 4158 } 4159 4160 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4161 mutex_unlock(&fs_info->reclaim_bgs_lock); 4162 if (ret == -ENOSPC) { 4163 enospc_errors++; 4164 } else if (ret == -ETXTBSY) { 4165 btrfs_info(fs_info, 4166 "skipping relocation of block group %llu due to active swapfile", 4167 found_key.offset); 4168 ret = 0; 4169 } else if (ret) { 4170 goto error; 4171 } else { 4172 spin_lock(&fs_info->balance_lock); 4173 bctl->stat.completed++; 4174 spin_unlock(&fs_info->balance_lock); 4175 } 4176 loop: 4177 if (found_key.offset == 0) 4178 break; 4179 key.offset = found_key.offset - 1; 4180 } 4181 4182 if (counting) { 4183 btrfs_release_path(path); 4184 counting = false; 4185 goto again; 4186 } 4187 error: 4188 btrfs_free_path(path); 4189 if (enospc_errors) { 4190 btrfs_info(fs_info, "%d enospc errors during balance", 4191 enospc_errors); 4192 if (!ret) 4193 ret = -ENOSPC; 4194 } 4195 4196 return ret; 4197 } 4198 4199 /* 4200 * See if a given profile is valid and reduced. 4201 * 4202 * @flags: profile to validate 4203 * @extended: if true @flags is treated as an extended profile 4204 */ 4205 static int alloc_profile_is_valid(u64 flags, int extended) 4206 { 4207 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4208 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4209 4210 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4211 4212 /* 1) check that all other bits are zeroed */ 4213 if (flags & ~mask) 4214 return 0; 4215 4216 /* 2) see if profile is reduced */ 4217 if (flags == 0) 4218 return !extended; /* "0" is valid for usual profiles */ 4219 4220 return has_single_bit_set(flags); 4221 } 4222 4223 /* 4224 * Validate target profile against allowed profiles and return true if it's OK. 4225 * Otherwise print the error message and return false. 4226 */ 4227 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4228 const struct btrfs_balance_args *bargs, 4229 u64 allowed, const char *type) 4230 { 4231 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4232 return true; 4233 4234 /* Profile is valid and does not have bits outside of the allowed set */ 4235 if (alloc_profile_is_valid(bargs->target, 1) && 4236 (bargs->target & ~allowed) == 0) 4237 return true; 4238 4239 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4240 type, btrfs_bg_type_to_raid_name(bargs->target)); 4241 return false; 4242 } 4243 4244 /* 4245 * Fill @buf with textual description of balance filter flags @bargs, up to 4246 * @size_buf including the terminating null. The output may be trimmed if it 4247 * does not fit into the provided buffer. 4248 */ 4249 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4250 u32 size_buf) 4251 { 4252 int ret; 4253 u32 size_bp = size_buf; 4254 char *bp = buf; 4255 u64 flags = bargs->flags; 4256 char tmp_buf[128] = {'\0'}; 4257 4258 if (!flags) 4259 return; 4260 4261 #define CHECK_APPEND_NOARG(a) \ 4262 do { \ 4263 ret = snprintf(bp, size_bp, (a)); \ 4264 if (ret < 0 || ret >= size_bp) \ 4265 goto out_overflow; \ 4266 size_bp -= ret; \ 4267 bp += ret; \ 4268 } while (0) 4269 4270 #define CHECK_APPEND_1ARG(a, v1) \ 4271 do { \ 4272 ret = snprintf(bp, size_bp, (a), (v1)); \ 4273 if (ret < 0 || ret >= size_bp) \ 4274 goto out_overflow; \ 4275 size_bp -= ret; \ 4276 bp += ret; \ 4277 } while (0) 4278 4279 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4280 do { \ 4281 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4282 if (ret < 0 || ret >= size_bp) \ 4283 goto out_overflow; \ 4284 size_bp -= ret; \ 4285 bp += ret; \ 4286 } while (0) 4287 4288 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4289 CHECK_APPEND_1ARG("convert=%s,", 4290 btrfs_bg_type_to_raid_name(bargs->target)); 4291 4292 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4293 CHECK_APPEND_NOARG("soft,"); 4294 4295 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4296 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4297 sizeof(tmp_buf)); 4298 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4299 } 4300 4301 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4302 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4303 4304 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4305 CHECK_APPEND_2ARG("usage=%u..%u,", 4306 bargs->usage_min, bargs->usage_max); 4307 4308 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4309 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4310 4311 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4312 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4313 bargs->pstart, bargs->pend); 4314 4315 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4316 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4317 bargs->vstart, bargs->vend); 4318 4319 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4320 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4321 4322 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4323 CHECK_APPEND_2ARG("limit=%u..%u,", 4324 bargs->limit_min, bargs->limit_max); 4325 4326 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4327 CHECK_APPEND_2ARG("stripes=%u..%u,", 4328 bargs->stripes_min, bargs->stripes_max); 4329 4330 #undef CHECK_APPEND_2ARG 4331 #undef CHECK_APPEND_1ARG 4332 #undef CHECK_APPEND_NOARG 4333 4334 out_overflow: 4335 4336 if (size_bp < size_buf) 4337 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4338 else 4339 buf[0] = '\0'; 4340 } 4341 4342 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4343 { 4344 u32 size_buf = 1024; 4345 char tmp_buf[192] = {'\0'}; 4346 char *buf; 4347 char *bp; 4348 u32 size_bp = size_buf; 4349 int ret; 4350 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4351 4352 buf = kzalloc(size_buf, GFP_KERNEL); 4353 if (!buf) 4354 return; 4355 4356 bp = buf; 4357 4358 #define CHECK_APPEND_1ARG(a, v1) \ 4359 do { \ 4360 ret = snprintf(bp, size_bp, (a), (v1)); \ 4361 if (ret < 0 || ret >= size_bp) \ 4362 goto out_overflow; \ 4363 size_bp -= ret; \ 4364 bp += ret; \ 4365 } while (0) 4366 4367 if (bctl->flags & BTRFS_BALANCE_FORCE) 4368 CHECK_APPEND_1ARG("%s", "-f "); 4369 4370 if (bctl->flags & BTRFS_BALANCE_DATA) { 4371 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4372 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4373 } 4374 4375 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4376 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4377 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4378 } 4379 4380 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4381 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4382 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4383 } 4384 4385 #undef CHECK_APPEND_1ARG 4386 4387 out_overflow: 4388 4389 if (size_bp < size_buf) 4390 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4391 btrfs_info(fs_info, "balance: %s %s", 4392 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4393 "resume" : "start", buf); 4394 4395 kfree(buf); 4396 } 4397 4398 /* 4399 * Should be called with balance mutexe held 4400 */ 4401 int btrfs_balance(struct btrfs_fs_info *fs_info, 4402 struct btrfs_balance_control *bctl, 4403 struct btrfs_ioctl_balance_args *bargs) 4404 { 4405 u64 meta_target, data_target; 4406 u64 allowed; 4407 int mixed = 0; 4408 int ret; 4409 u64 num_devices; 4410 unsigned seq; 4411 bool reducing_redundancy; 4412 bool paused = false; 4413 int i; 4414 4415 if (btrfs_fs_closing(fs_info) || 4416 atomic_read(&fs_info->balance_pause_req) || 4417 btrfs_should_cancel_balance(fs_info)) { 4418 ret = -EINVAL; 4419 goto out; 4420 } 4421 4422 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4423 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4424 mixed = 1; 4425 4426 /* 4427 * In case of mixed groups both data and meta should be picked, 4428 * and identical options should be given for both of them. 4429 */ 4430 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4431 if (mixed && (bctl->flags & allowed)) { 4432 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4433 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4434 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4435 btrfs_err(fs_info, 4436 "balance: mixed groups data and metadata options must be the same"); 4437 ret = -EINVAL; 4438 goto out; 4439 } 4440 } 4441 4442 /* 4443 * rw_devices will not change at the moment, device add/delete/replace 4444 * are exclusive 4445 */ 4446 num_devices = fs_info->fs_devices->rw_devices; 4447 4448 /* 4449 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4450 * special bit for it, to make it easier to distinguish. Thus we need 4451 * to set it manually, or balance would refuse the profile. 4452 */ 4453 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4454 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4455 if (num_devices >= btrfs_raid_array[i].devs_min) 4456 allowed |= btrfs_raid_array[i].bg_flag; 4457 4458 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4459 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4460 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4461 ret = -EINVAL; 4462 goto out; 4463 } 4464 4465 /* 4466 * Allow to reduce metadata or system integrity only if force set for 4467 * profiles with redundancy (copies, parity) 4468 */ 4469 allowed = 0; 4470 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4471 if (btrfs_raid_array[i].ncopies >= 2 || 4472 btrfs_raid_array[i].tolerated_failures >= 1) 4473 allowed |= btrfs_raid_array[i].bg_flag; 4474 } 4475 do { 4476 seq = read_seqbegin(&fs_info->profiles_lock); 4477 4478 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4479 (fs_info->avail_system_alloc_bits & allowed) && 4480 !(bctl->sys.target & allowed)) || 4481 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4482 (fs_info->avail_metadata_alloc_bits & allowed) && 4483 !(bctl->meta.target & allowed))) 4484 reducing_redundancy = true; 4485 else 4486 reducing_redundancy = false; 4487 4488 /* if we're not converting, the target field is uninitialized */ 4489 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4490 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4491 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4492 bctl->data.target : fs_info->avail_data_alloc_bits; 4493 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4494 4495 if (reducing_redundancy) { 4496 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4497 btrfs_info(fs_info, 4498 "balance: force reducing metadata redundancy"); 4499 } else { 4500 btrfs_err(fs_info, 4501 "balance: reduces metadata redundancy, use --force if you want this"); 4502 ret = -EINVAL; 4503 goto out; 4504 } 4505 } 4506 4507 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4508 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4509 btrfs_warn(fs_info, 4510 "balance: metadata profile %s has lower redundancy than data profile %s", 4511 btrfs_bg_type_to_raid_name(meta_target), 4512 btrfs_bg_type_to_raid_name(data_target)); 4513 } 4514 4515 ret = insert_balance_item(fs_info, bctl); 4516 if (ret && ret != -EEXIST) 4517 goto out; 4518 4519 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4520 BUG_ON(ret == -EEXIST); 4521 BUG_ON(fs_info->balance_ctl); 4522 spin_lock(&fs_info->balance_lock); 4523 fs_info->balance_ctl = bctl; 4524 spin_unlock(&fs_info->balance_lock); 4525 } else { 4526 BUG_ON(ret != -EEXIST); 4527 spin_lock(&fs_info->balance_lock); 4528 update_balance_args(bctl); 4529 spin_unlock(&fs_info->balance_lock); 4530 } 4531 4532 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4533 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4534 describe_balance_start_or_resume(fs_info); 4535 mutex_unlock(&fs_info->balance_mutex); 4536 4537 ret = __btrfs_balance(fs_info); 4538 4539 mutex_lock(&fs_info->balance_mutex); 4540 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4541 btrfs_info(fs_info, "balance: paused"); 4542 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4543 paused = true; 4544 } 4545 /* 4546 * Balance can be canceled by: 4547 * 4548 * - Regular cancel request 4549 * Then ret == -ECANCELED and balance_cancel_req > 0 4550 * 4551 * - Fatal signal to "btrfs" process 4552 * Either the signal caught by wait_reserve_ticket() and callers 4553 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4554 * got -ECANCELED. 4555 * Either way, in this case balance_cancel_req = 0, and 4556 * ret == -EINTR or ret == -ECANCELED. 4557 * 4558 * So here we only check the return value to catch canceled balance. 4559 */ 4560 else if (ret == -ECANCELED || ret == -EINTR) 4561 btrfs_info(fs_info, "balance: canceled"); 4562 else 4563 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4564 4565 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4566 4567 if (bargs) { 4568 memset(bargs, 0, sizeof(*bargs)); 4569 btrfs_update_ioctl_balance_args(fs_info, bargs); 4570 } 4571 4572 /* We didn't pause, we can clean everything up. */ 4573 if (!paused) { 4574 reset_balance_state(fs_info); 4575 btrfs_exclop_finish(fs_info); 4576 } 4577 4578 wake_up(&fs_info->balance_wait_q); 4579 4580 return ret; 4581 out: 4582 if (bctl->flags & BTRFS_BALANCE_RESUME) 4583 reset_balance_state(fs_info); 4584 else 4585 kfree(bctl); 4586 btrfs_exclop_finish(fs_info); 4587 4588 return ret; 4589 } 4590 4591 static int balance_kthread(void *data) 4592 { 4593 struct btrfs_fs_info *fs_info = data; 4594 int ret = 0; 4595 4596 sb_start_write(fs_info->sb); 4597 mutex_lock(&fs_info->balance_mutex); 4598 if (fs_info->balance_ctl) 4599 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4600 mutex_unlock(&fs_info->balance_mutex); 4601 sb_end_write(fs_info->sb); 4602 4603 return ret; 4604 } 4605 4606 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4607 { 4608 struct task_struct *tsk; 4609 4610 mutex_lock(&fs_info->balance_mutex); 4611 if (!fs_info->balance_ctl) { 4612 mutex_unlock(&fs_info->balance_mutex); 4613 return 0; 4614 } 4615 mutex_unlock(&fs_info->balance_mutex); 4616 4617 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4618 btrfs_info(fs_info, "balance: resume skipped"); 4619 return 0; 4620 } 4621 4622 spin_lock(&fs_info->super_lock); 4623 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4624 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4625 spin_unlock(&fs_info->super_lock); 4626 /* 4627 * A ro->rw remount sequence should continue with the paused balance 4628 * regardless of who pauses it, system or the user as of now, so set 4629 * the resume flag. 4630 */ 4631 spin_lock(&fs_info->balance_lock); 4632 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4633 spin_unlock(&fs_info->balance_lock); 4634 4635 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4636 return PTR_ERR_OR_ZERO(tsk); 4637 } 4638 4639 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4640 { 4641 struct btrfs_balance_control *bctl; 4642 struct btrfs_balance_item *item; 4643 struct btrfs_disk_balance_args disk_bargs; 4644 struct btrfs_path *path; 4645 struct extent_buffer *leaf; 4646 struct btrfs_key key; 4647 int ret; 4648 4649 path = btrfs_alloc_path(); 4650 if (!path) 4651 return -ENOMEM; 4652 4653 key.objectid = BTRFS_BALANCE_OBJECTID; 4654 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4655 key.offset = 0; 4656 4657 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4658 if (ret < 0) 4659 goto out; 4660 if (ret > 0) { /* ret = -ENOENT; */ 4661 ret = 0; 4662 goto out; 4663 } 4664 4665 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4666 if (!bctl) { 4667 ret = -ENOMEM; 4668 goto out; 4669 } 4670 4671 leaf = path->nodes[0]; 4672 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4673 4674 bctl->flags = btrfs_balance_flags(leaf, item); 4675 bctl->flags |= BTRFS_BALANCE_RESUME; 4676 4677 btrfs_balance_data(leaf, item, &disk_bargs); 4678 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4679 btrfs_balance_meta(leaf, item, &disk_bargs); 4680 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4681 btrfs_balance_sys(leaf, item, &disk_bargs); 4682 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4683 4684 /* 4685 * This should never happen, as the paused balance state is recovered 4686 * during mount without any chance of other exclusive ops to collide. 4687 * 4688 * This gives the exclusive op status to balance and keeps in paused 4689 * state until user intervention (cancel or umount). If the ownership 4690 * cannot be assigned, show a message but do not fail. The balance 4691 * is in a paused state and must have fs_info::balance_ctl properly 4692 * set up. 4693 */ 4694 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4695 btrfs_warn(fs_info, 4696 "balance: cannot set exclusive op status, resume manually"); 4697 4698 btrfs_release_path(path); 4699 4700 mutex_lock(&fs_info->balance_mutex); 4701 BUG_ON(fs_info->balance_ctl); 4702 spin_lock(&fs_info->balance_lock); 4703 fs_info->balance_ctl = bctl; 4704 spin_unlock(&fs_info->balance_lock); 4705 mutex_unlock(&fs_info->balance_mutex); 4706 out: 4707 btrfs_free_path(path); 4708 return ret; 4709 } 4710 4711 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4712 { 4713 int ret = 0; 4714 4715 mutex_lock(&fs_info->balance_mutex); 4716 if (!fs_info->balance_ctl) { 4717 mutex_unlock(&fs_info->balance_mutex); 4718 return -ENOTCONN; 4719 } 4720 4721 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4722 atomic_inc(&fs_info->balance_pause_req); 4723 mutex_unlock(&fs_info->balance_mutex); 4724 4725 wait_event(fs_info->balance_wait_q, 4726 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4727 4728 mutex_lock(&fs_info->balance_mutex); 4729 /* we are good with balance_ctl ripped off from under us */ 4730 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4731 atomic_dec(&fs_info->balance_pause_req); 4732 } else { 4733 ret = -ENOTCONN; 4734 } 4735 4736 mutex_unlock(&fs_info->balance_mutex); 4737 return ret; 4738 } 4739 4740 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4741 { 4742 mutex_lock(&fs_info->balance_mutex); 4743 if (!fs_info->balance_ctl) { 4744 mutex_unlock(&fs_info->balance_mutex); 4745 return -ENOTCONN; 4746 } 4747 4748 /* 4749 * A paused balance with the item stored on disk can be resumed at 4750 * mount time if the mount is read-write. Otherwise it's still paused 4751 * and we must not allow cancelling as it deletes the item. 4752 */ 4753 if (sb_rdonly(fs_info->sb)) { 4754 mutex_unlock(&fs_info->balance_mutex); 4755 return -EROFS; 4756 } 4757 4758 atomic_inc(&fs_info->balance_cancel_req); 4759 /* 4760 * if we are running just wait and return, balance item is 4761 * deleted in btrfs_balance in this case 4762 */ 4763 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4764 mutex_unlock(&fs_info->balance_mutex); 4765 wait_event(fs_info->balance_wait_q, 4766 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4767 mutex_lock(&fs_info->balance_mutex); 4768 } else { 4769 mutex_unlock(&fs_info->balance_mutex); 4770 /* 4771 * Lock released to allow other waiters to continue, we'll 4772 * reexamine the status again. 4773 */ 4774 mutex_lock(&fs_info->balance_mutex); 4775 4776 if (fs_info->balance_ctl) { 4777 reset_balance_state(fs_info); 4778 btrfs_exclop_finish(fs_info); 4779 btrfs_info(fs_info, "balance: canceled"); 4780 } 4781 } 4782 4783 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4784 atomic_dec(&fs_info->balance_cancel_req); 4785 mutex_unlock(&fs_info->balance_mutex); 4786 return 0; 4787 } 4788 4789 /* 4790 * shrinking a device means finding all of the device extents past 4791 * the new size, and then following the back refs to the chunks. 4792 * The chunk relocation code actually frees the device extent 4793 */ 4794 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4795 { 4796 struct btrfs_fs_info *fs_info = device->fs_info; 4797 struct btrfs_root *root = fs_info->dev_root; 4798 struct btrfs_trans_handle *trans; 4799 struct btrfs_dev_extent *dev_extent = NULL; 4800 struct btrfs_path *path; 4801 u64 length; 4802 u64 chunk_offset; 4803 int ret; 4804 int slot; 4805 int failed = 0; 4806 bool retried = false; 4807 struct extent_buffer *l; 4808 struct btrfs_key key; 4809 struct btrfs_super_block *super_copy = fs_info->super_copy; 4810 u64 old_total = btrfs_super_total_bytes(super_copy); 4811 u64 old_size = btrfs_device_get_total_bytes(device); 4812 u64 diff; 4813 u64 start; 4814 u64 free_diff = 0; 4815 4816 new_size = round_down(new_size, fs_info->sectorsize); 4817 start = new_size; 4818 diff = round_down(old_size - new_size, fs_info->sectorsize); 4819 4820 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4821 return -EINVAL; 4822 4823 path = btrfs_alloc_path(); 4824 if (!path) 4825 return -ENOMEM; 4826 4827 path->reada = READA_BACK; 4828 4829 trans = btrfs_start_transaction(root, 0); 4830 if (IS_ERR(trans)) { 4831 btrfs_free_path(path); 4832 return PTR_ERR(trans); 4833 } 4834 4835 mutex_lock(&fs_info->chunk_mutex); 4836 4837 btrfs_device_set_total_bytes(device, new_size); 4838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4839 device->fs_devices->total_rw_bytes -= diff; 4840 4841 /* 4842 * The new free_chunk_space is new_size - used, so we have to 4843 * subtract the delta of the old free_chunk_space which included 4844 * old_size - used. If used > new_size then just subtract this 4845 * entire device's free space. 4846 */ 4847 if (device->bytes_used < new_size) 4848 free_diff = (old_size - device->bytes_used) - 4849 (new_size - device->bytes_used); 4850 else 4851 free_diff = old_size - device->bytes_used; 4852 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4853 } 4854 4855 /* 4856 * Once the device's size has been set to the new size, ensure all 4857 * in-memory chunks are synced to disk so that the loop below sees them 4858 * and relocates them accordingly. 4859 */ 4860 if (contains_pending_extent(device, &start, diff)) { 4861 mutex_unlock(&fs_info->chunk_mutex); 4862 ret = btrfs_commit_transaction(trans); 4863 if (ret) 4864 goto done; 4865 } else { 4866 mutex_unlock(&fs_info->chunk_mutex); 4867 btrfs_end_transaction(trans); 4868 } 4869 4870 again: 4871 key.objectid = device->devid; 4872 key.offset = (u64)-1; 4873 key.type = BTRFS_DEV_EXTENT_KEY; 4874 4875 do { 4876 mutex_lock(&fs_info->reclaim_bgs_lock); 4877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4878 if (ret < 0) { 4879 mutex_unlock(&fs_info->reclaim_bgs_lock); 4880 goto done; 4881 } 4882 4883 ret = btrfs_previous_item(root, path, 0, key.type); 4884 if (ret) { 4885 mutex_unlock(&fs_info->reclaim_bgs_lock); 4886 if (ret < 0) 4887 goto done; 4888 ret = 0; 4889 btrfs_release_path(path); 4890 break; 4891 } 4892 4893 l = path->nodes[0]; 4894 slot = path->slots[0]; 4895 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4896 4897 if (key.objectid != device->devid) { 4898 mutex_unlock(&fs_info->reclaim_bgs_lock); 4899 btrfs_release_path(path); 4900 break; 4901 } 4902 4903 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4904 length = btrfs_dev_extent_length(l, dev_extent); 4905 4906 if (key.offset + length <= new_size) { 4907 mutex_unlock(&fs_info->reclaim_bgs_lock); 4908 btrfs_release_path(path); 4909 break; 4910 } 4911 4912 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4913 btrfs_release_path(path); 4914 4915 /* 4916 * We may be relocating the only data chunk we have, 4917 * which could potentially end up with losing data's 4918 * raid profile, so lets allocate an empty one in 4919 * advance. 4920 */ 4921 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4922 if (ret < 0) { 4923 mutex_unlock(&fs_info->reclaim_bgs_lock); 4924 goto done; 4925 } 4926 4927 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4928 mutex_unlock(&fs_info->reclaim_bgs_lock); 4929 if (ret == -ENOSPC) { 4930 failed++; 4931 } else if (ret) { 4932 if (ret == -ETXTBSY) { 4933 btrfs_warn(fs_info, 4934 "could not shrink block group %llu due to active swapfile", 4935 chunk_offset); 4936 } 4937 goto done; 4938 } 4939 } while (key.offset-- > 0); 4940 4941 if (failed && !retried) { 4942 failed = 0; 4943 retried = true; 4944 goto again; 4945 } else if (failed && retried) { 4946 ret = -ENOSPC; 4947 goto done; 4948 } 4949 4950 /* Shrinking succeeded, else we would be at "done". */ 4951 trans = btrfs_start_transaction(root, 0); 4952 if (IS_ERR(trans)) { 4953 ret = PTR_ERR(trans); 4954 goto done; 4955 } 4956 4957 mutex_lock(&fs_info->chunk_mutex); 4958 /* Clear all state bits beyond the shrunk device size */ 4959 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4960 CHUNK_STATE_MASK); 4961 4962 btrfs_device_set_disk_total_bytes(device, new_size); 4963 if (list_empty(&device->post_commit_list)) 4964 list_add_tail(&device->post_commit_list, 4965 &trans->transaction->dev_update_list); 4966 4967 WARN_ON(diff > old_total); 4968 btrfs_set_super_total_bytes(super_copy, 4969 round_down(old_total - diff, fs_info->sectorsize)); 4970 mutex_unlock(&fs_info->chunk_mutex); 4971 4972 btrfs_reserve_chunk_metadata(trans, false); 4973 /* Now btrfs_update_device() will change the on-disk size. */ 4974 ret = btrfs_update_device(trans, device); 4975 btrfs_trans_release_chunk_metadata(trans); 4976 if (ret < 0) { 4977 btrfs_abort_transaction(trans, ret); 4978 btrfs_end_transaction(trans); 4979 } else { 4980 ret = btrfs_commit_transaction(trans); 4981 } 4982 done: 4983 btrfs_free_path(path); 4984 if (ret) { 4985 mutex_lock(&fs_info->chunk_mutex); 4986 btrfs_device_set_total_bytes(device, old_size); 4987 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4988 device->fs_devices->total_rw_bytes += diff; 4989 atomic64_add(free_diff, &fs_info->free_chunk_space); 4990 } 4991 mutex_unlock(&fs_info->chunk_mutex); 4992 } 4993 return ret; 4994 } 4995 4996 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4997 struct btrfs_key *key, 4998 struct btrfs_chunk *chunk, int item_size) 4999 { 5000 struct btrfs_super_block *super_copy = fs_info->super_copy; 5001 struct btrfs_disk_key disk_key; 5002 u32 array_size; 5003 u8 *ptr; 5004 5005 lockdep_assert_held(&fs_info->chunk_mutex); 5006 5007 array_size = btrfs_super_sys_array_size(super_copy); 5008 if (array_size + item_size + sizeof(disk_key) 5009 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5010 return -EFBIG; 5011 5012 ptr = super_copy->sys_chunk_array + array_size; 5013 btrfs_cpu_key_to_disk(&disk_key, key); 5014 memcpy(ptr, &disk_key, sizeof(disk_key)); 5015 ptr += sizeof(disk_key); 5016 memcpy(ptr, chunk, item_size); 5017 item_size += sizeof(disk_key); 5018 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5019 5020 return 0; 5021 } 5022 5023 /* 5024 * sort the devices in descending order by max_avail, total_avail 5025 */ 5026 static int btrfs_cmp_device_info(const void *a, const void *b) 5027 { 5028 const struct btrfs_device_info *di_a = a; 5029 const struct btrfs_device_info *di_b = b; 5030 5031 if (di_a->max_avail > di_b->max_avail) 5032 return -1; 5033 if (di_a->max_avail < di_b->max_avail) 5034 return 1; 5035 if (di_a->total_avail > di_b->total_avail) 5036 return -1; 5037 if (di_a->total_avail < di_b->total_avail) 5038 return 1; 5039 return 0; 5040 } 5041 5042 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5043 { 5044 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5045 return; 5046 5047 btrfs_set_fs_incompat(info, RAID56); 5048 } 5049 5050 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5051 { 5052 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5053 return; 5054 5055 btrfs_set_fs_incompat(info, RAID1C34); 5056 } 5057 5058 /* 5059 * Structure used internally for btrfs_create_chunk() function. 5060 * Wraps needed parameters. 5061 */ 5062 struct alloc_chunk_ctl { 5063 u64 start; 5064 u64 type; 5065 /* Total number of stripes to allocate */ 5066 int num_stripes; 5067 /* sub_stripes info for map */ 5068 int sub_stripes; 5069 /* Stripes per device */ 5070 int dev_stripes; 5071 /* Maximum number of devices to use */ 5072 int devs_max; 5073 /* Minimum number of devices to use */ 5074 int devs_min; 5075 /* ndevs has to be a multiple of this */ 5076 int devs_increment; 5077 /* Number of copies */ 5078 int ncopies; 5079 /* Number of stripes worth of bytes to store parity information */ 5080 int nparity; 5081 u64 max_stripe_size; 5082 u64 max_chunk_size; 5083 u64 dev_extent_min; 5084 u64 stripe_size; 5085 u64 chunk_size; 5086 int ndevs; 5087 }; 5088 5089 static void init_alloc_chunk_ctl_policy_regular( 5090 struct btrfs_fs_devices *fs_devices, 5091 struct alloc_chunk_ctl *ctl) 5092 { 5093 struct btrfs_space_info *space_info; 5094 5095 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5096 ASSERT(space_info); 5097 5098 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5099 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5100 5101 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5102 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5103 5104 /* We don't want a chunk larger than 10% of writable space */ 5105 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5106 ctl->max_chunk_size); 5107 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5108 } 5109 5110 static void init_alloc_chunk_ctl_policy_zoned( 5111 struct btrfs_fs_devices *fs_devices, 5112 struct alloc_chunk_ctl *ctl) 5113 { 5114 u64 zone_size = fs_devices->fs_info->zone_size; 5115 u64 limit; 5116 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5117 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5118 u64 min_chunk_size = min_data_stripes * zone_size; 5119 u64 type = ctl->type; 5120 5121 ctl->max_stripe_size = zone_size; 5122 if (type & BTRFS_BLOCK_GROUP_DATA) { 5123 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5124 zone_size); 5125 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5126 ctl->max_chunk_size = ctl->max_stripe_size; 5127 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5128 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5129 ctl->devs_max = min_t(int, ctl->devs_max, 5130 BTRFS_MAX_DEVS_SYS_CHUNK); 5131 } else { 5132 BUG(); 5133 } 5134 5135 /* We don't want a chunk larger than 10% of writable space */ 5136 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5137 zone_size), 5138 min_chunk_size); 5139 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5140 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5141 } 5142 5143 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5144 struct alloc_chunk_ctl *ctl) 5145 { 5146 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5147 5148 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5149 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5150 ctl->devs_max = btrfs_raid_array[index].devs_max; 5151 if (!ctl->devs_max) 5152 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5153 ctl->devs_min = btrfs_raid_array[index].devs_min; 5154 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5155 ctl->ncopies = btrfs_raid_array[index].ncopies; 5156 ctl->nparity = btrfs_raid_array[index].nparity; 5157 ctl->ndevs = 0; 5158 5159 switch (fs_devices->chunk_alloc_policy) { 5160 case BTRFS_CHUNK_ALLOC_REGULAR: 5161 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5162 break; 5163 case BTRFS_CHUNK_ALLOC_ZONED: 5164 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5165 break; 5166 default: 5167 BUG(); 5168 } 5169 } 5170 5171 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5172 struct alloc_chunk_ctl *ctl, 5173 struct btrfs_device_info *devices_info) 5174 { 5175 struct btrfs_fs_info *info = fs_devices->fs_info; 5176 struct btrfs_device *device; 5177 u64 total_avail; 5178 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5179 int ret; 5180 int ndevs = 0; 5181 u64 max_avail; 5182 u64 dev_offset; 5183 5184 /* 5185 * in the first pass through the devices list, we gather information 5186 * about the available holes on each device. 5187 */ 5188 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5189 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5190 WARN(1, KERN_ERR 5191 "BTRFS: read-only device in alloc_list\n"); 5192 continue; 5193 } 5194 5195 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5196 &device->dev_state) || 5197 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5198 continue; 5199 5200 if (device->total_bytes > device->bytes_used) 5201 total_avail = device->total_bytes - device->bytes_used; 5202 else 5203 total_avail = 0; 5204 5205 /* If there is no space on this device, skip it. */ 5206 if (total_avail < ctl->dev_extent_min) 5207 continue; 5208 5209 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5210 &max_avail); 5211 if (ret && ret != -ENOSPC) 5212 return ret; 5213 5214 if (ret == 0) 5215 max_avail = dev_extent_want; 5216 5217 if (max_avail < ctl->dev_extent_min) { 5218 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5219 btrfs_debug(info, 5220 "%s: devid %llu has no free space, have=%llu want=%llu", 5221 __func__, device->devid, max_avail, 5222 ctl->dev_extent_min); 5223 continue; 5224 } 5225 5226 if (ndevs == fs_devices->rw_devices) { 5227 WARN(1, "%s: found more than %llu devices\n", 5228 __func__, fs_devices->rw_devices); 5229 break; 5230 } 5231 devices_info[ndevs].dev_offset = dev_offset; 5232 devices_info[ndevs].max_avail = max_avail; 5233 devices_info[ndevs].total_avail = total_avail; 5234 devices_info[ndevs].dev = device; 5235 ++ndevs; 5236 } 5237 ctl->ndevs = ndevs; 5238 5239 /* 5240 * now sort the devices by hole size / available space 5241 */ 5242 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5243 btrfs_cmp_device_info, NULL); 5244 5245 return 0; 5246 } 5247 5248 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5249 struct btrfs_device_info *devices_info) 5250 { 5251 /* Number of stripes that count for block group size */ 5252 int data_stripes; 5253 5254 /* 5255 * The primary goal is to maximize the number of stripes, so use as 5256 * many devices as possible, even if the stripes are not maximum sized. 5257 * 5258 * The DUP profile stores more than one stripe per device, the 5259 * max_avail is the total size so we have to adjust. 5260 */ 5261 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5262 ctl->dev_stripes); 5263 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5264 5265 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5266 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5267 5268 /* 5269 * Use the number of data stripes to figure out how big this chunk is 5270 * really going to be in terms of logical address space, and compare 5271 * that answer with the max chunk size. If it's higher, we try to 5272 * reduce stripe_size. 5273 */ 5274 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5275 /* 5276 * Reduce stripe_size, round it up to a 16MB boundary again and 5277 * then use it, unless it ends up being even bigger than the 5278 * previous value we had already. 5279 */ 5280 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5281 data_stripes), SZ_16M), 5282 ctl->stripe_size); 5283 } 5284 5285 /* Stripe size should not go beyond 1G. */ 5286 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5287 5288 /* Align to BTRFS_STRIPE_LEN */ 5289 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5290 ctl->chunk_size = ctl->stripe_size * data_stripes; 5291 5292 return 0; 5293 } 5294 5295 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5296 struct btrfs_device_info *devices_info) 5297 { 5298 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5299 /* Number of stripes that count for block group size */ 5300 int data_stripes; 5301 5302 /* 5303 * It should hold because: 5304 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5305 */ 5306 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5307 5308 ctl->stripe_size = zone_size; 5309 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5310 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5311 5312 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5313 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5314 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5315 ctl->stripe_size) + ctl->nparity, 5316 ctl->dev_stripes); 5317 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5318 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5319 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5320 } 5321 5322 ctl->chunk_size = ctl->stripe_size * data_stripes; 5323 5324 return 0; 5325 } 5326 5327 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5328 struct alloc_chunk_ctl *ctl, 5329 struct btrfs_device_info *devices_info) 5330 { 5331 struct btrfs_fs_info *info = fs_devices->fs_info; 5332 5333 /* 5334 * Round down to number of usable stripes, devs_increment can be any 5335 * number so we can't use round_down() that requires power of 2, while 5336 * rounddown is safe. 5337 */ 5338 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5339 5340 if (ctl->ndevs < ctl->devs_min) { 5341 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5342 btrfs_debug(info, 5343 "%s: not enough devices with free space: have=%d minimum required=%d", 5344 __func__, ctl->ndevs, ctl->devs_min); 5345 } 5346 return -ENOSPC; 5347 } 5348 5349 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5350 5351 switch (fs_devices->chunk_alloc_policy) { 5352 case BTRFS_CHUNK_ALLOC_REGULAR: 5353 return decide_stripe_size_regular(ctl, devices_info); 5354 case BTRFS_CHUNK_ALLOC_ZONED: 5355 return decide_stripe_size_zoned(ctl, devices_info); 5356 default: 5357 BUG(); 5358 } 5359 } 5360 5361 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5362 { 5363 for (int i = 0; i < map->num_stripes; i++) { 5364 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5365 struct btrfs_device *device = stripe->dev; 5366 5367 set_extent_bit(&device->alloc_state, stripe->physical, 5368 stripe->physical + map->stripe_size - 1, 5369 bits | EXTENT_NOWAIT, NULL); 5370 } 5371 } 5372 5373 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5374 { 5375 for (int i = 0; i < map->num_stripes; i++) { 5376 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5377 struct btrfs_device *device = stripe->dev; 5378 5379 __clear_extent_bit(&device->alloc_state, stripe->physical, 5380 stripe->physical + map->stripe_size - 1, 5381 bits | EXTENT_NOWAIT, 5382 NULL, NULL); 5383 } 5384 } 5385 5386 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5387 { 5388 write_lock(&fs_info->mapping_tree_lock); 5389 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5390 RB_CLEAR_NODE(&map->rb_node); 5391 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5392 write_unlock(&fs_info->mapping_tree_lock); 5393 5394 /* Once for the tree reference. */ 5395 btrfs_free_chunk_map(map); 5396 } 5397 5398 EXPORT_FOR_TESTS 5399 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5400 { 5401 struct rb_node **p; 5402 struct rb_node *parent = NULL; 5403 bool leftmost = true; 5404 5405 write_lock(&fs_info->mapping_tree_lock); 5406 p = &fs_info->mapping_tree.rb_root.rb_node; 5407 while (*p) { 5408 struct btrfs_chunk_map *entry; 5409 5410 parent = *p; 5411 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node); 5412 5413 if (map->start < entry->start) { 5414 p = &(*p)->rb_left; 5415 } else if (map->start > entry->start) { 5416 p = &(*p)->rb_right; 5417 leftmost = false; 5418 } else { 5419 write_unlock(&fs_info->mapping_tree_lock); 5420 return -EEXIST; 5421 } 5422 } 5423 rb_link_node(&map->rb_node, parent, p); 5424 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost); 5425 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5426 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5427 write_unlock(&fs_info->mapping_tree_lock); 5428 5429 return 0; 5430 } 5431 5432 EXPORT_FOR_TESTS 5433 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5434 { 5435 struct btrfs_chunk_map *map; 5436 5437 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5438 if (!map) 5439 return NULL; 5440 5441 refcount_set(&map->refs, 1); 5442 RB_CLEAR_NODE(&map->rb_node); 5443 5444 return map; 5445 } 5446 5447 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5448 struct alloc_chunk_ctl *ctl, 5449 struct btrfs_device_info *devices_info) 5450 { 5451 struct btrfs_fs_info *info = trans->fs_info; 5452 struct btrfs_chunk_map *map; 5453 struct btrfs_block_group *block_group; 5454 u64 start = ctl->start; 5455 u64 type = ctl->type; 5456 int ret; 5457 5458 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5459 if (!map) 5460 return ERR_PTR(-ENOMEM); 5461 5462 map->start = start; 5463 map->chunk_len = ctl->chunk_size; 5464 map->stripe_size = ctl->stripe_size; 5465 map->type = type; 5466 map->io_align = BTRFS_STRIPE_LEN; 5467 map->io_width = BTRFS_STRIPE_LEN; 5468 map->sub_stripes = ctl->sub_stripes; 5469 map->num_stripes = ctl->num_stripes; 5470 5471 for (int i = 0; i < ctl->ndevs; i++) { 5472 for (int j = 0; j < ctl->dev_stripes; j++) { 5473 int s = i * ctl->dev_stripes + j; 5474 map->stripes[s].dev = devices_info[i].dev; 5475 map->stripes[s].physical = devices_info[i].dev_offset + 5476 j * ctl->stripe_size; 5477 } 5478 } 5479 5480 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5481 5482 ret = btrfs_add_chunk_map(info, map); 5483 if (ret) { 5484 btrfs_free_chunk_map(map); 5485 return ERR_PTR(ret); 5486 } 5487 5488 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5489 if (IS_ERR(block_group)) { 5490 btrfs_remove_chunk_map(info, map); 5491 return block_group; 5492 } 5493 5494 for (int i = 0; i < map->num_stripes; i++) { 5495 struct btrfs_device *dev = map->stripes[i].dev; 5496 5497 btrfs_device_set_bytes_used(dev, 5498 dev->bytes_used + ctl->stripe_size); 5499 if (list_empty(&dev->post_commit_list)) 5500 list_add_tail(&dev->post_commit_list, 5501 &trans->transaction->dev_update_list); 5502 } 5503 5504 atomic64_sub(ctl->stripe_size * map->num_stripes, 5505 &info->free_chunk_space); 5506 5507 check_raid56_incompat_flag(info, type); 5508 check_raid1c34_incompat_flag(info, type); 5509 5510 return block_group; 5511 } 5512 5513 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5514 u64 type) 5515 { 5516 struct btrfs_fs_info *info = trans->fs_info; 5517 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5518 struct btrfs_device_info *devices_info = NULL; 5519 struct alloc_chunk_ctl ctl; 5520 struct btrfs_block_group *block_group; 5521 int ret; 5522 5523 lockdep_assert_held(&info->chunk_mutex); 5524 5525 if (!alloc_profile_is_valid(type, 0)) { 5526 ASSERT(0); 5527 return ERR_PTR(-EINVAL); 5528 } 5529 5530 if (list_empty(&fs_devices->alloc_list)) { 5531 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5532 btrfs_debug(info, "%s: no writable device", __func__); 5533 return ERR_PTR(-ENOSPC); 5534 } 5535 5536 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5537 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5538 ASSERT(0); 5539 return ERR_PTR(-EINVAL); 5540 } 5541 5542 ctl.start = find_next_chunk(info); 5543 ctl.type = type; 5544 init_alloc_chunk_ctl(fs_devices, &ctl); 5545 5546 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5547 GFP_NOFS); 5548 if (!devices_info) 5549 return ERR_PTR(-ENOMEM); 5550 5551 ret = gather_device_info(fs_devices, &ctl, devices_info); 5552 if (ret < 0) { 5553 block_group = ERR_PTR(ret); 5554 goto out; 5555 } 5556 5557 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5558 if (ret < 0) { 5559 block_group = ERR_PTR(ret); 5560 goto out; 5561 } 5562 5563 block_group = create_chunk(trans, &ctl, devices_info); 5564 5565 out: 5566 kfree(devices_info); 5567 return block_group; 5568 } 5569 5570 /* 5571 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5572 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5573 * chunks. 5574 * 5575 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5576 * phases. 5577 */ 5578 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5579 struct btrfs_block_group *bg) 5580 { 5581 struct btrfs_fs_info *fs_info = trans->fs_info; 5582 struct btrfs_root *chunk_root = fs_info->chunk_root; 5583 struct btrfs_key key; 5584 struct btrfs_chunk *chunk; 5585 struct btrfs_stripe *stripe; 5586 struct btrfs_chunk_map *map; 5587 size_t item_size; 5588 int i; 5589 int ret; 5590 5591 /* 5592 * We take the chunk_mutex for 2 reasons: 5593 * 5594 * 1) Updates and insertions in the chunk btree must be done while holding 5595 * the chunk_mutex, as well as updating the system chunk array in the 5596 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5597 * details; 5598 * 5599 * 2) To prevent races with the final phase of a device replace operation 5600 * that replaces the device object associated with the map's stripes, 5601 * because the device object's id can change at any time during that 5602 * final phase of the device replace operation 5603 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5604 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5605 * which would cause a failure when updating the device item, which does 5606 * not exists, or persisting a stripe of the chunk item with such ID. 5607 * Here we can't use the device_list_mutex because our caller already 5608 * has locked the chunk_mutex, and the final phase of device replace 5609 * acquires both mutexes - first the device_list_mutex and then the 5610 * chunk_mutex. Using any of those two mutexes protects us from a 5611 * concurrent device replace. 5612 */ 5613 lockdep_assert_held(&fs_info->chunk_mutex); 5614 5615 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5616 if (IS_ERR(map)) { 5617 ret = PTR_ERR(map); 5618 btrfs_abort_transaction(trans, ret); 5619 return ret; 5620 } 5621 5622 item_size = btrfs_chunk_item_size(map->num_stripes); 5623 5624 chunk = kzalloc(item_size, GFP_NOFS); 5625 if (!chunk) { 5626 ret = -ENOMEM; 5627 btrfs_abort_transaction(trans, ret); 5628 goto out; 5629 } 5630 5631 for (i = 0; i < map->num_stripes; i++) { 5632 struct btrfs_device *device = map->stripes[i].dev; 5633 5634 ret = btrfs_update_device(trans, device); 5635 if (ret) 5636 goto out; 5637 } 5638 5639 stripe = &chunk->stripe; 5640 for (i = 0; i < map->num_stripes; i++) { 5641 struct btrfs_device *device = map->stripes[i].dev; 5642 const u64 dev_offset = map->stripes[i].physical; 5643 5644 btrfs_set_stack_stripe_devid(stripe, device->devid); 5645 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5646 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5647 stripe++; 5648 } 5649 5650 btrfs_set_stack_chunk_length(chunk, bg->length); 5651 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5652 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5653 btrfs_set_stack_chunk_type(chunk, map->type); 5654 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5655 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5656 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5657 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5658 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5659 5660 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5661 key.type = BTRFS_CHUNK_ITEM_KEY; 5662 key.offset = bg->start; 5663 5664 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5665 if (ret) 5666 goto out; 5667 5668 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5669 5670 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5671 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5672 if (ret) 5673 goto out; 5674 } 5675 5676 out: 5677 kfree(chunk); 5678 btrfs_free_chunk_map(map); 5679 return ret; 5680 } 5681 5682 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5683 { 5684 struct btrfs_fs_info *fs_info = trans->fs_info; 5685 u64 alloc_profile; 5686 struct btrfs_block_group *meta_bg; 5687 struct btrfs_block_group *sys_bg; 5688 5689 /* 5690 * When adding a new device for sprouting, the seed device is read-only 5691 * so we must first allocate a metadata and a system chunk. But before 5692 * adding the block group items to the extent, device and chunk btrees, 5693 * we must first: 5694 * 5695 * 1) Create both chunks without doing any changes to the btrees, as 5696 * otherwise we would get -ENOSPC since the block groups from the 5697 * seed device are read-only; 5698 * 5699 * 2) Add the device item for the new sprout device - finishing the setup 5700 * of a new block group requires updating the device item in the chunk 5701 * btree, so it must exist when we attempt to do it. The previous step 5702 * ensures this does not fail with -ENOSPC. 5703 * 5704 * After that we can add the block group items to their btrees: 5705 * update existing device item in the chunk btree, add a new block group 5706 * item to the extent btree, add a new chunk item to the chunk btree and 5707 * finally add the new device extent items to the devices btree. 5708 */ 5709 5710 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5711 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5712 if (IS_ERR(meta_bg)) 5713 return PTR_ERR(meta_bg); 5714 5715 alloc_profile = btrfs_system_alloc_profile(fs_info); 5716 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5717 if (IS_ERR(sys_bg)) 5718 return PTR_ERR(sys_bg); 5719 5720 return 0; 5721 } 5722 5723 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5724 { 5725 const int index = btrfs_bg_flags_to_raid_index(map->type); 5726 5727 return btrfs_raid_array[index].tolerated_failures; 5728 } 5729 5730 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5731 { 5732 struct btrfs_chunk_map *map; 5733 int miss_ndevs = 0; 5734 int i; 5735 bool ret = true; 5736 5737 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5738 if (IS_ERR(map)) 5739 return false; 5740 5741 for (i = 0; i < map->num_stripes; i++) { 5742 if (test_bit(BTRFS_DEV_STATE_MISSING, 5743 &map->stripes[i].dev->dev_state)) { 5744 miss_ndevs++; 5745 continue; 5746 } 5747 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5748 &map->stripes[i].dev->dev_state)) { 5749 ret = false; 5750 goto end; 5751 } 5752 } 5753 5754 /* 5755 * If the number of missing devices is larger than max errors, we can 5756 * not write the data into that chunk successfully. 5757 */ 5758 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5759 ret = false; 5760 end: 5761 btrfs_free_chunk_map(map); 5762 return ret; 5763 } 5764 5765 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5766 { 5767 write_lock(&fs_info->mapping_tree_lock); 5768 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5769 struct btrfs_chunk_map *map; 5770 struct rb_node *node; 5771 5772 node = rb_first_cached(&fs_info->mapping_tree); 5773 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5774 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5775 RB_CLEAR_NODE(&map->rb_node); 5776 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5777 /* Once for the tree ref. */ 5778 btrfs_free_chunk_map(map); 5779 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5780 } 5781 write_unlock(&fs_info->mapping_tree_lock); 5782 } 5783 5784 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5785 { 5786 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5787 5788 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5789 return 2; 5790 5791 /* 5792 * There could be two corrupted data stripes, we need to loop retry in 5793 * order to rebuild the correct data. 5794 * 5795 * Fail a stripe at a time on every retry except the stripe under 5796 * reconstruction. 5797 */ 5798 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5799 return map->num_stripes; 5800 5801 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5802 return btrfs_raid_array[index].ncopies; 5803 } 5804 5805 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5806 { 5807 struct btrfs_chunk_map *map; 5808 int ret; 5809 5810 map = btrfs_get_chunk_map(fs_info, logical, len); 5811 if (IS_ERR(map)) 5812 /* 5813 * We could return errors for these cases, but that could get 5814 * ugly and we'd probably do the same thing which is just not do 5815 * anything else and exit, so return 1 so the callers don't try 5816 * to use other copies. 5817 */ 5818 return 1; 5819 5820 ret = btrfs_chunk_map_num_copies(map); 5821 btrfs_free_chunk_map(map); 5822 return ret; 5823 } 5824 5825 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5826 u64 logical) 5827 { 5828 struct btrfs_chunk_map *map; 5829 unsigned long len = fs_info->sectorsize; 5830 5831 if (!btrfs_fs_incompat(fs_info, RAID56)) 5832 return len; 5833 5834 map = btrfs_get_chunk_map(fs_info, logical, len); 5835 5836 if (!WARN_ON(IS_ERR(map))) { 5837 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5838 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5839 btrfs_free_chunk_map(map); 5840 } 5841 return len; 5842 } 5843 5844 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5845 { 5846 struct btrfs_chunk_map *map; 5847 int ret = 0; 5848 5849 if (!btrfs_fs_incompat(fs_info, RAID56)) 5850 return 0; 5851 5852 map = btrfs_get_chunk_map(fs_info, logical, len); 5853 5854 if (!WARN_ON(IS_ERR(map))) { 5855 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5856 ret = 1; 5857 btrfs_free_chunk_map(map); 5858 } 5859 return ret; 5860 } 5861 5862 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5863 struct btrfs_chunk_map *map, int first, 5864 int dev_replace_is_ongoing) 5865 { 5866 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 5867 int i; 5868 int num_stripes; 5869 int preferred_mirror; 5870 int tolerance; 5871 struct btrfs_device *srcdev; 5872 5873 ASSERT((map->type & 5874 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5875 5876 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5877 num_stripes = map->sub_stripes; 5878 else 5879 num_stripes = map->num_stripes; 5880 5881 switch (policy) { 5882 default: 5883 /* Shouldn't happen, just warn and use pid instead of failing */ 5884 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 5885 policy); 5886 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 5887 fallthrough; 5888 case BTRFS_READ_POLICY_PID: 5889 preferred_mirror = first + (current->pid % num_stripes); 5890 break; 5891 } 5892 5893 if (dev_replace_is_ongoing && 5894 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5895 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5896 srcdev = fs_info->dev_replace.srcdev; 5897 else 5898 srcdev = NULL; 5899 5900 /* 5901 * try to avoid the drive that is the source drive for a 5902 * dev-replace procedure, only choose it if no other non-missing 5903 * mirror is available 5904 */ 5905 for (tolerance = 0; tolerance < 2; tolerance++) { 5906 if (map->stripes[preferred_mirror].dev->bdev && 5907 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5908 return preferred_mirror; 5909 for (i = first; i < first + num_stripes; i++) { 5910 if (map->stripes[i].dev->bdev && 5911 (tolerance || map->stripes[i].dev != srcdev)) 5912 return i; 5913 } 5914 } 5915 5916 /* we couldn't find one that doesn't fail. Just return something 5917 * and the io error handling code will clean up eventually 5918 */ 5919 return preferred_mirror; 5920 } 5921 5922 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5923 u64 logical, 5924 u16 total_stripes) 5925 { 5926 struct btrfs_io_context *bioc; 5927 5928 bioc = kzalloc( 5929 /* The size of btrfs_io_context */ 5930 sizeof(struct btrfs_io_context) + 5931 /* Plus the variable array for the stripes */ 5932 sizeof(struct btrfs_io_stripe) * (total_stripes), 5933 GFP_NOFS); 5934 5935 if (!bioc) 5936 return NULL; 5937 5938 refcount_set(&bioc->refs, 1); 5939 5940 bioc->fs_info = fs_info; 5941 bioc->replace_stripe_src = -1; 5942 bioc->full_stripe_logical = (u64)-1; 5943 bioc->logical = logical; 5944 5945 return bioc; 5946 } 5947 5948 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5949 { 5950 WARN_ON(!refcount_read(&bioc->refs)); 5951 refcount_inc(&bioc->refs); 5952 } 5953 5954 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5955 { 5956 if (!bioc) 5957 return; 5958 if (refcount_dec_and_test(&bioc->refs)) 5959 kfree(bioc); 5960 } 5961 5962 /* 5963 * Please note that, discard won't be sent to target device of device 5964 * replace. 5965 */ 5966 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5967 u64 logical, u64 *length_ret, 5968 u32 *num_stripes) 5969 { 5970 struct btrfs_chunk_map *map; 5971 struct btrfs_discard_stripe *stripes; 5972 u64 length = *length_ret; 5973 u64 offset; 5974 u32 stripe_nr; 5975 u32 stripe_nr_end; 5976 u32 stripe_cnt; 5977 u64 stripe_end_offset; 5978 u64 stripe_offset; 5979 u32 stripe_index; 5980 u32 factor = 0; 5981 u32 sub_stripes = 0; 5982 u32 stripes_per_dev = 0; 5983 u32 remaining_stripes = 0; 5984 u32 last_stripe = 0; 5985 int ret; 5986 int i; 5987 5988 map = btrfs_get_chunk_map(fs_info, logical, length); 5989 if (IS_ERR(map)) 5990 return ERR_CAST(map); 5991 5992 /* we don't discard raid56 yet */ 5993 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5994 ret = -EOPNOTSUPP; 5995 goto out_free_map; 5996 } 5997 5998 offset = logical - map->start; 5999 length = min_t(u64, map->start + map->chunk_len - logical, length); 6000 *length_ret = length; 6001 6002 /* 6003 * stripe_nr counts the total number of stripes we have to stride 6004 * to get to this block 6005 */ 6006 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6007 6008 /* stripe_offset is the offset of this block in its stripe */ 6009 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6010 6011 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6012 BTRFS_STRIPE_LEN_SHIFT; 6013 stripe_cnt = stripe_nr_end - stripe_nr; 6014 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6015 (offset + length); 6016 /* 6017 * after this, stripe_nr is the number of stripes on this 6018 * device we have to walk to find the data, and stripe_index is 6019 * the number of our device in the stripe array 6020 */ 6021 *num_stripes = 1; 6022 stripe_index = 0; 6023 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6024 BTRFS_BLOCK_GROUP_RAID10)) { 6025 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6026 sub_stripes = 1; 6027 else 6028 sub_stripes = map->sub_stripes; 6029 6030 factor = map->num_stripes / sub_stripes; 6031 *num_stripes = min_t(u64, map->num_stripes, 6032 sub_stripes * stripe_cnt); 6033 stripe_index = stripe_nr % factor; 6034 stripe_nr /= factor; 6035 stripe_index *= sub_stripes; 6036 6037 remaining_stripes = stripe_cnt % factor; 6038 stripes_per_dev = stripe_cnt / factor; 6039 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6040 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6041 BTRFS_BLOCK_GROUP_DUP)) { 6042 *num_stripes = map->num_stripes; 6043 } else { 6044 stripe_index = stripe_nr % map->num_stripes; 6045 stripe_nr /= map->num_stripes; 6046 } 6047 6048 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6049 if (!stripes) { 6050 ret = -ENOMEM; 6051 goto out_free_map; 6052 } 6053 6054 for (i = 0; i < *num_stripes; i++) { 6055 stripes[i].physical = 6056 map->stripes[stripe_index].physical + 6057 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6058 stripes[i].dev = map->stripes[stripe_index].dev; 6059 6060 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6061 BTRFS_BLOCK_GROUP_RAID10)) { 6062 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6063 6064 if (i / sub_stripes < remaining_stripes) 6065 stripes[i].length += BTRFS_STRIPE_LEN; 6066 6067 /* 6068 * Special for the first stripe and 6069 * the last stripe: 6070 * 6071 * |-------|...|-------| 6072 * |----------| 6073 * off end_off 6074 */ 6075 if (i < sub_stripes) 6076 stripes[i].length -= stripe_offset; 6077 6078 if (stripe_index >= last_stripe && 6079 stripe_index <= (last_stripe + 6080 sub_stripes - 1)) 6081 stripes[i].length -= stripe_end_offset; 6082 6083 if (i == sub_stripes - 1) 6084 stripe_offset = 0; 6085 } else { 6086 stripes[i].length = length; 6087 } 6088 6089 stripe_index++; 6090 if (stripe_index == map->num_stripes) { 6091 stripe_index = 0; 6092 stripe_nr++; 6093 } 6094 } 6095 6096 btrfs_free_chunk_map(map); 6097 return stripes; 6098 out_free_map: 6099 btrfs_free_chunk_map(map); 6100 return ERR_PTR(ret); 6101 } 6102 6103 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6104 { 6105 struct btrfs_block_group *cache; 6106 bool ret; 6107 6108 /* Non zoned filesystem does not use "to_copy" flag */ 6109 if (!btrfs_is_zoned(fs_info)) 6110 return false; 6111 6112 cache = btrfs_lookup_block_group(fs_info, logical); 6113 6114 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6115 6116 btrfs_put_block_group(cache); 6117 return ret; 6118 } 6119 6120 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6121 struct btrfs_dev_replace *dev_replace, 6122 u64 logical, 6123 struct btrfs_io_geometry *io_geom) 6124 { 6125 u64 srcdev_devid = dev_replace->srcdev->devid; 6126 /* 6127 * At this stage, num_stripes is still the real number of stripes, 6128 * excluding the duplicated stripes. 6129 */ 6130 int num_stripes = io_geom->num_stripes; 6131 int max_errors = io_geom->max_errors; 6132 int nr_extra_stripes = 0; 6133 int i; 6134 6135 /* 6136 * A block group which has "to_copy" set will eventually be copied by 6137 * the dev-replace process. We can avoid cloning IO here. 6138 */ 6139 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6140 return; 6141 6142 /* 6143 * Duplicate the write operations while the dev-replace procedure is 6144 * running. Since the copying of the old disk to the new disk takes 6145 * place at run time while the filesystem is mounted writable, the 6146 * regular write operations to the old disk have to be duplicated to go 6147 * to the new disk as well. 6148 * 6149 * Note that device->missing is handled by the caller, and that the 6150 * write to the old disk is already set up in the stripes array. 6151 */ 6152 for (i = 0; i < num_stripes; i++) { 6153 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6154 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6155 6156 if (old->dev->devid != srcdev_devid) 6157 continue; 6158 6159 new->physical = old->physical; 6160 new->dev = dev_replace->tgtdev; 6161 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6162 bioc->replace_stripe_src = i; 6163 nr_extra_stripes++; 6164 } 6165 6166 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6167 ASSERT(nr_extra_stripes <= 2); 6168 /* 6169 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6170 * replace. 6171 * If we have 2 extra stripes, only choose the one with smaller physical. 6172 */ 6173 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6174 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6175 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6176 6177 /* Only DUP can have two extra stripes. */ 6178 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6179 6180 /* 6181 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6182 * The extra stripe would still be there, but won't be accessed. 6183 */ 6184 if (first->physical > second->physical) { 6185 swap(second->physical, first->physical); 6186 swap(second->dev, first->dev); 6187 nr_extra_stripes--; 6188 } 6189 } 6190 6191 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6192 io_geom->max_errors = max_errors + nr_extra_stripes; 6193 bioc->replace_nr_stripes = nr_extra_stripes; 6194 } 6195 6196 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6197 struct btrfs_io_geometry *io_geom) 6198 { 6199 /* 6200 * Stripe_nr is the stripe where this block falls. stripe_offset is 6201 * the offset of this block in its stripe. 6202 */ 6203 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6204 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6205 ASSERT(io_geom->stripe_offset < U32_MAX); 6206 6207 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6208 unsigned long full_stripe_len = 6209 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6210 6211 /* 6212 * For full stripe start, we use previously calculated 6213 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6214 * STRIPE_LEN. 6215 * 6216 * By this we can avoid u64 division completely. And we have 6217 * to go rounddown(), not round_down(), as nr_data_stripes is 6218 * not ensured to be power of 2. 6219 */ 6220 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6221 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6222 6223 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset); 6224 ASSERT(io_geom->raid56_full_stripe_start <= offset); 6225 /* 6226 * For writes to RAID56, allow to write a full stripe set, but 6227 * no straddling of stripe sets. 6228 */ 6229 if (io_geom->op == BTRFS_MAP_WRITE) 6230 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6231 } 6232 6233 /* 6234 * For other RAID types and for RAID56 reads, allow a single stripe (on 6235 * a single disk). 6236 */ 6237 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6238 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6239 return U64_MAX; 6240 } 6241 6242 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6243 u64 *length, struct btrfs_io_stripe *dst, 6244 struct btrfs_chunk_map *map, 6245 struct btrfs_io_geometry *io_geom) 6246 { 6247 dst->dev = map->stripes[io_geom->stripe_index].dev; 6248 6249 if (io_geom->op == BTRFS_MAP_READ && 6250 btrfs_need_stripe_tree_update(fs_info, map->type)) 6251 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6252 map->type, 6253 io_geom->stripe_index, dst); 6254 6255 dst->physical = map->stripes[io_geom->stripe_index].physical + 6256 io_geom->stripe_offset + 6257 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6258 return 0; 6259 } 6260 6261 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6262 const struct btrfs_io_stripe *smap, 6263 const struct btrfs_chunk_map *map, 6264 int num_alloc_stripes, 6265 enum btrfs_map_op op, int mirror_num) 6266 { 6267 if (!smap) 6268 return false; 6269 6270 if (num_alloc_stripes != 1) 6271 return false; 6272 6273 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ) 6274 return false; 6275 6276 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) 6277 return false; 6278 6279 return true; 6280 } 6281 6282 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6283 struct btrfs_io_geometry *io_geom) 6284 { 6285 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6286 io_geom->stripe_nr /= map->num_stripes; 6287 if (io_geom->op == BTRFS_MAP_READ) 6288 io_geom->mirror_num = 1; 6289 } 6290 6291 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6292 struct btrfs_chunk_map *map, 6293 struct btrfs_io_geometry *io_geom, 6294 bool dev_replace_is_ongoing) 6295 { 6296 if (io_geom->op != BTRFS_MAP_READ) { 6297 io_geom->num_stripes = map->num_stripes; 6298 return; 6299 } 6300 6301 if (io_geom->mirror_num) { 6302 io_geom->stripe_index = io_geom->mirror_num - 1; 6303 return; 6304 } 6305 6306 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6307 dev_replace_is_ongoing); 6308 io_geom->mirror_num = io_geom->stripe_index + 1; 6309 } 6310 6311 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6312 struct btrfs_io_geometry *io_geom) 6313 { 6314 if (io_geom->op != BTRFS_MAP_READ) { 6315 io_geom->num_stripes = map->num_stripes; 6316 return; 6317 } 6318 6319 if (io_geom->mirror_num) { 6320 io_geom->stripe_index = io_geom->mirror_num - 1; 6321 return; 6322 } 6323 6324 io_geom->mirror_num = 1; 6325 } 6326 6327 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6328 struct btrfs_chunk_map *map, 6329 struct btrfs_io_geometry *io_geom, 6330 bool dev_replace_is_ongoing) 6331 { 6332 u32 factor = map->num_stripes / map->sub_stripes; 6333 int old_stripe_index; 6334 6335 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6336 io_geom->stripe_nr /= factor; 6337 6338 if (io_geom->op != BTRFS_MAP_READ) { 6339 io_geom->num_stripes = map->sub_stripes; 6340 return; 6341 } 6342 6343 if (io_geom->mirror_num) { 6344 io_geom->stripe_index += io_geom->mirror_num - 1; 6345 return; 6346 } 6347 6348 old_stripe_index = io_geom->stripe_index; 6349 io_geom->stripe_index = find_live_mirror(fs_info, map, 6350 io_geom->stripe_index, 6351 dev_replace_is_ongoing); 6352 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6353 } 6354 6355 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6356 struct btrfs_io_geometry *io_geom, 6357 u64 logical, u64 *length) 6358 { 6359 int data_stripes = nr_data_stripes(map); 6360 6361 /* 6362 * Needs full stripe mapping. 6363 * 6364 * Push stripe_nr back to the start of the full stripe For those cases 6365 * needing a full stripe, @stripe_nr is the full stripe number. 6366 * 6367 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6368 * that can be expensive. Here we just divide @stripe_nr with 6369 * @data_stripes. 6370 */ 6371 io_geom->stripe_nr /= data_stripes; 6372 6373 /* RAID[56] write or recovery. Return all stripes */ 6374 io_geom->num_stripes = map->num_stripes; 6375 io_geom->max_errors = btrfs_chunk_max_errors(map); 6376 6377 /* Return the length to the full stripe end. */ 6378 *length = min(logical + *length, 6379 io_geom->raid56_full_stripe_start + map->start + 6380 btrfs_stripe_nr_to_offset(data_stripes)) - 6381 logical; 6382 io_geom->stripe_index = 0; 6383 io_geom->stripe_offset = 0; 6384 } 6385 6386 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6387 struct btrfs_io_geometry *io_geom) 6388 { 6389 int data_stripes = nr_data_stripes(map); 6390 6391 ASSERT(io_geom->mirror_num <= 1); 6392 /* Just grab the data stripe directly. */ 6393 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6394 io_geom->stripe_nr /= data_stripes; 6395 6396 /* We distribute the parity blocks across stripes. */ 6397 io_geom->stripe_index = 6398 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6399 6400 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6401 io_geom->mirror_num = 1; 6402 } 6403 6404 static void map_blocks_single(const struct btrfs_chunk_map *map, 6405 struct btrfs_io_geometry *io_geom) 6406 { 6407 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6408 io_geom->stripe_nr /= map->num_stripes; 6409 io_geom->mirror_num = io_geom->stripe_index + 1; 6410 } 6411 6412 /* 6413 * Map one logical range to one or more physical ranges. 6414 * 6415 * @length: (Mandatory) mapped length of this run. 6416 * One logical range can be split into different segments 6417 * due to factors like zones and RAID0/5/6/10 stripe 6418 * boundaries. 6419 * 6420 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6421 * which has one or more physical ranges (btrfs_io_stripe) 6422 * recorded inside. 6423 * Caller should call btrfs_put_bioc() to free it after use. 6424 * 6425 * @smap: (Optional) single physical range optimization. 6426 * If the map request can be fulfilled by one single 6427 * physical range, and this is parameter is not NULL, 6428 * then @bioc_ret would be NULL, and @smap would be 6429 * updated. 6430 * 6431 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6432 * value is 0. 6433 * 6434 * Mirror number 0 means to choose any live mirrors. 6435 * 6436 * For non-RAID56 profiles, non-zero mirror_num means 6437 * the Nth mirror. (e.g. mirror_num 1 means the first 6438 * copy). 6439 * 6440 * For RAID56 profile, mirror 1 means rebuild from P and 6441 * the remaining data stripes. 6442 * 6443 * For RAID6 profile, mirror > 2 means mark another 6444 * data/P stripe error and rebuild from the remaining 6445 * stripes.. 6446 */ 6447 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6448 u64 logical, u64 *length, 6449 struct btrfs_io_context **bioc_ret, 6450 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6451 { 6452 struct btrfs_chunk_map *map; 6453 struct btrfs_io_geometry io_geom = { 0 }; 6454 u64 map_offset; 6455 int ret = 0; 6456 int num_copies; 6457 struct btrfs_io_context *bioc = NULL; 6458 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6459 int dev_replace_is_ongoing = 0; 6460 u16 num_alloc_stripes; 6461 u64 max_len; 6462 6463 ASSERT(bioc_ret); 6464 6465 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6466 io_geom.num_stripes = 1; 6467 io_geom.stripe_index = 0; 6468 io_geom.op = op; 6469 6470 map = btrfs_get_chunk_map(fs_info, logical, *length); 6471 if (IS_ERR(map)) 6472 return PTR_ERR(map); 6473 6474 num_copies = btrfs_chunk_map_num_copies(map); 6475 if (io_geom.mirror_num > num_copies) 6476 return -EINVAL; 6477 6478 map_offset = logical - map->start; 6479 io_geom.raid56_full_stripe_start = (u64)-1; 6480 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6481 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6482 6483 down_read(&dev_replace->rwsem); 6484 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6485 /* 6486 * Hold the semaphore for read during the whole operation, write is 6487 * requested at commit time but must wait. 6488 */ 6489 if (!dev_replace_is_ongoing) 6490 up_read(&dev_replace->rwsem); 6491 6492 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6493 case BTRFS_BLOCK_GROUP_RAID0: 6494 map_blocks_raid0(map, &io_geom); 6495 break; 6496 case BTRFS_BLOCK_GROUP_RAID1: 6497 case BTRFS_BLOCK_GROUP_RAID1C3: 6498 case BTRFS_BLOCK_GROUP_RAID1C4: 6499 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6500 break; 6501 case BTRFS_BLOCK_GROUP_DUP: 6502 map_blocks_dup(map, &io_geom); 6503 break; 6504 case BTRFS_BLOCK_GROUP_RAID10: 6505 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6506 break; 6507 case BTRFS_BLOCK_GROUP_RAID5: 6508 case BTRFS_BLOCK_GROUP_RAID6: 6509 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6510 map_blocks_raid56_write(map, &io_geom, logical, length); 6511 else 6512 map_blocks_raid56_read(map, &io_geom); 6513 break; 6514 default: 6515 /* 6516 * After this, stripe_nr is the number of stripes on this 6517 * device we have to walk to find the data, and stripe_index is 6518 * the number of our device in the stripe array 6519 */ 6520 map_blocks_single(map, &io_geom); 6521 break; 6522 } 6523 if (io_geom.stripe_index >= map->num_stripes) { 6524 btrfs_crit(fs_info, 6525 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6526 io_geom.stripe_index, map->num_stripes); 6527 ret = -EINVAL; 6528 goto out; 6529 } 6530 6531 num_alloc_stripes = io_geom.num_stripes; 6532 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6533 op != BTRFS_MAP_READ) 6534 /* 6535 * For replace case, we need to add extra stripes for extra 6536 * duplicated stripes. 6537 * 6538 * For both WRITE and GET_READ_MIRRORS, we may have at most 6539 * 2 more stripes (DUP types, otherwise 1). 6540 */ 6541 num_alloc_stripes += 2; 6542 6543 /* 6544 * If this I/O maps to a single device, try to return the device and 6545 * physical block information on the stack instead of allocating an 6546 * I/O context structure. 6547 */ 6548 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op, 6549 io_geom.mirror_num)) { 6550 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6551 if (mirror_num_ret) 6552 *mirror_num_ret = io_geom.mirror_num; 6553 *bioc_ret = NULL; 6554 goto out; 6555 } 6556 6557 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6558 if (!bioc) { 6559 ret = -ENOMEM; 6560 goto out; 6561 } 6562 bioc->map_type = map->type; 6563 6564 /* 6565 * For RAID56 full map, we need to make sure the stripes[] follows the 6566 * rule that data stripes are all ordered, then followed with P and Q 6567 * (if we have). 6568 * 6569 * It's still mostly the same as other profiles, just with extra rotation. 6570 */ 6571 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6572 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6573 /* 6574 * For RAID56 @stripe_nr is already the number of full stripes 6575 * before us, which is also the rotation value (needs to modulo 6576 * with num_stripes). 6577 * 6578 * In this case, we just add @stripe_nr with @i, then do the 6579 * modulo, to reduce one modulo call. 6580 */ 6581 bioc->full_stripe_logical = map->start + 6582 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6583 nr_data_stripes(map)); 6584 for (int i = 0; i < io_geom.num_stripes; i++) { 6585 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6586 u32 stripe_index; 6587 6588 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6589 dst->dev = map->stripes[stripe_index].dev; 6590 dst->physical = 6591 map->stripes[stripe_index].physical + 6592 io_geom.stripe_offset + 6593 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6594 } 6595 } else { 6596 /* 6597 * For all other non-RAID56 profiles, just copy the target 6598 * stripe into the bioc. 6599 */ 6600 for (int i = 0; i < io_geom.num_stripes; i++) { 6601 ret = set_io_stripe(fs_info, logical, length, 6602 &bioc->stripes[i], map, &io_geom); 6603 if (ret < 0) 6604 break; 6605 io_geom.stripe_index++; 6606 } 6607 } 6608 6609 if (ret) { 6610 *bioc_ret = NULL; 6611 btrfs_put_bioc(bioc); 6612 goto out; 6613 } 6614 6615 if (op != BTRFS_MAP_READ) 6616 io_geom.max_errors = btrfs_chunk_max_errors(map); 6617 6618 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6619 op != BTRFS_MAP_READ) { 6620 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6621 } 6622 6623 *bioc_ret = bioc; 6624 bioc->num_stripes = io_geom.num_stripes; 6625 bioc->max_errors = io_geom.max_errors; 6626 bioc->mirror_num = io_geom.mirror_num; 6627 6628 out: 6629 if (dev_replace_is_ongoing) { 6630 lockdep_assert_held(&dev_replace->rwsem); 6631 /* Unlock and let waiting writers proceed */ 6632 up_read(&dev_replace->rwsem); 6633 } 6634 btrfs_free_chunk_map(map); 6635 return ret; 6636 } 6637 6638 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6639 const struct btrfs_fs_devices *fs_devices) 6640 { 6641 if (args->fsid == NULL) 6642 return true; 6643 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6644 return true; 6645 return false; 6646 } 6647 6648 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6649 const struct btrfs_device *device) 6650 { 6651 if (args->missing) { 6652 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6653 !device->bdev) 6654 return true; 6655 return false; 6656 } 6657 6658 if (device->devid != args->devid) 6659 return false; 6660 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6661 return false; 6662 return true; 6663 } 6664 6665 /* 6666 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6667 * return NULL. 6668 * 6669 * If devid and uuid are both specified, the match must be exact, otherwise 6670 * only devid is used. 6671 */ 6672 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6673 const struct btrfs_dev_lookup_args *args) 6674 { 6675 struct btrfs_device *device; 6676 struct btrfs_fs_devices *seed_devs; 6677 6678 if (dev_args_match_fs_devices(args, fs_devices)) { 6679 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6680 if (dev_args_match_device(args, device)) 6681 return device; 6682 } 6683 } 6684 6685 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6686 if (!dev_args_match_fs_devices(args, seed_devs)) 6687 continue; 6688 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6689 if (dev_args_match_device(args, device)) 6690 return device; 6691 } 6692 } 6693 6694 return NULL; 6695 } 6696 6697 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6698 u64 devid, u8 *dev_uuid) 6699 { 6700 struct btrfs_device *device; 6701 unsigned int nofs_flag; 6702 6703 /* 6704 * We call this under the chunk_mutex, so we want to use NOFS for this 6705 * allocation, however we don't want to change btrfs_alloc_device() to 6706 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6707 * places. 6708 */ 6709 6710 nofs_flag = memalloc_nofs_save(); 6711 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6712 memalloc_nofs_restore(nofs_flag); 6713 if (IS_ERR(device)) 6714 return device; 6715 6716 list_add(&device->dev_list, &fs_devices->devices); 6717 device->fs_devices = fs_devices; 6718 fs_devices->num_devices++; 6719 6720 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6721 fs_devices->missing_devices++; 6722 6723 return device; 6724 } 6725 6726 /* 6727 * Allocate new device struct, set up devid and UUID. 6728 * 6729 * @fs_info: used only for generating a new devid, can be NULL if 6730 * devid is provided (i.e. @devid != NULL). 6731 * @devid: a pointer to devid for this device. If NULL a new devid 6732 * is generated. 6733 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6734 * is generated. 6735 * @path: a pointer to device path if available, NULL otherwise. 6736 * 6737 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6738 * on error. Returned struct is not linked onto any lists and must be 6739 * destroyed with btrfs_free_device. 6740 */ 6741 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6742 const u64 *devid, const u8 *uuid, 6743 const char *path) 6744 { 6745 struct btrfs_device *dev; 6746 u64 tmp; 6747 6748 if (WARN_ON(!devid && !fs_info)) 6749 return ERR_PTR(-EINVAL); 6750 6751 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6752 if (!dev) 6753 return ERR_PTR(-ENOMEM); 6754 6755 INIT_LIST_HEAD(&dev->dev_list); 6756 INIT_LIST_HEAD(&dev->dev_alloc_list); 6757 INIT_LIST_HEAD(&dev->post_commit_list); 6758 6759 atomic_set(&dev->dev_stats_ccnt, 0); 6760 btrfs_device_data_ordered_init(dev); 6761 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6762 6763 if (devid) 6764 tmp = *devid; 6765 else { 6766 int ret; 6767 6768 ret = find_next_devid(fs_info, &tmp); 6769 if (ret) { 6770 btrfs_free_device(dev); 6771 return ERR_PTR(ret); 6772 } 6773 } 6774 dev->devid = tmp; 6775 6776 if (uuid) 6777 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6778 else 6779 generate_random_uuid(dev->uuid); 6780 6781 if (path) { 6782 struct rcu_string *name; 6783 6784 name = rcu_string_strdup(path, GFP_KERNEL); 6785 if (!name) { 6786 btrfs_free_device(dev); 6787 return ERR_PTR(-ENOMEM); 6788 } 6789 rcu_assign_pointer(dev->name, name); 6790 } 6791 6792 return dev; 6793 } 6794 6795 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6796 u64 devid, u8 *uuid, bool error) 6797 { 6798 if (error) 6799 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6800 devid, uuid); 6801 else 6802 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6803 devid, uuid); 6804 } 6805 6806 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6807 { 6808 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6809 6810 return div_u64(map->chunk_len, data_stripes); 6811 } 6812 6813 #if BITS_PER_LONG == 32 6814 /* 6815 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6816 * can't be accessed on 32bit systems. 6817 * 6818 * This function do mount time check to reject the fs if it already has 6819 * metadata chunk beyond that limit. 6820 */ 6821 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6822 u64 logical, u64 length, u64 type) 6823 { 6824 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6825 return 0; 6826 6827 if (logical + length < MAX_LFS_FILESIZE) 6828 return 0; 6829 6830 btrfs_err_32bit_limit(fs_info); 6831 return -EOVERFLOW; 6832 } 6833 6834 /* 6835 * This is to give early warning for any metadata chunk reaching 6836 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6837 * Although we can still access the metadata, it's not going to be possible 6838 * once the limit is reached. 6839 */ 6840 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6841 u64 logical, u64 length, u64 type) 6842 { 6843 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6844 return; 6845 6846 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6847 return; 6848 6849 btrfs_warn_32bit_limit(fs_info); 6850 } 6851 #endif 6852 6853 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6854 u64 devid, u8 *uuid) 6855 { 6856 struct btrfs_device *dev; 6857 6858 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6859 btrfs_report_missing_device(fs_info, devid, uuid, true); 6860 return ERR_PTR(-ENOENT); 6861 } 6862 6863 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6864 if (IS_ERR(dev)) { 6865 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6866 devid, PTR_ERR(dev)); 6867 return dev; 6868 } 6869 btrfs_report_missing_device(fs_info, devid, uuid, false); 6870 6871 return dev; 6872 } 6873 6874 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6875 struct btrfs_chunk *chunk) 6876 { 6877 BTRFS_DEV_LOOKUP_ARGS(args); 6878 struct btrfs_fs_info *fs_info = leaf->fs_info; 6879 struct btrfs_chunk_map *map; 6880 u64 logical; 6881 u64 length; 6882 u64 devid; 6883 u64 type; 6884 u8 uuid[BTRFS_UUID_SIZE]; 6885 int index; 6886 int num_stripes; 6887 int ret; 6888 int i; 6889 6890 logical = key->offset; 6891 length = btrfs_chunk_length(leaf, chunk); 6892 type = btrfs_chunk_type(leaf, chunk); 6893 index = btrfs_bg_flags_to_raid_index(type); 6894 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6895 6896 #if BITS_PER_LONG == 32 6897 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6898 if (ret < 0) 6899 return ret; 6900 warn_32bit_meta_chunk(fs_info, logical, length, type); 6901 #endif 6902 6903 /* 6904 * Only need to verify chunk item if we're reading from sys chunk array, 6905 * as chunk item in tree block is already verified by tree-checker. 6906 */ 6907 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6908 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6909 if (ret) 6910 return ret; 6911 } 6912 6913 map = btrfs_find_chunk_map(fs_info, logical, 1); 6914 6915 /* already mapped? */ 6916 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 6917 btrfs_free_chunk_map(map); 6918 return 0; 6919 } else if (map) { 6920 btrfs_free_chunk_map(map); 6921 } 6922 6923 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 6924 if (!map) 6925 return -ENOMEM; 6926 6927 map->start = logical; 6928 map->chunk_len = length; 6929 map->num_stripes = num_stripes; 6930 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6931 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6932 map->type = type; 6933 /* 6934 * We can't use the sub_stripes value, as for profiles other than 6935 * RAID10, they may have 0 as sub_stripes for filesystems created by 6936 * older mkfs (<v5.4). 6937 * In that case, it can cause divide-by-zero errors later. 6938 * Since currently sub_stripes is fixed for each profile, let's 6939 * use the trusted value instead. 6940 */ 6941 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6942 map->verified_stripes = 0; 6943 map->stripe_size = btrfs_calc_stripe_length(map); 6944 for (i = 0; i < num_stripes; i++) { 6945 map->stripes[i].physical = 6946 btrfs_stripe_offset_nr(leaf, chunk, i); 6947 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6948 args.devid = devid; 6949 read_extent_buffer(leaf, uuid, (unsigned long) 6950 btrfs_stripe_dev_uuid_nr(chunk, i), 6951 BTRFS_UUID_SIZE); 6952 args.uuid = uuid; 6953 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6954 if (!map->stripes[i].dev) { 6955 map->stripes[i].dev = handle_missing_device(fs_info, 6956 devid, uuid); 6957 if (IS_ERR(map->stripes[i].dev)) { 6958 ret = PTR_ERR(map->stripes[i].dev); 6959 btrfs_free_chunk_map(map); 6960 return ret; 6961 } 6962 } 6963 6964 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6965 &(map->stripes[i].dev->dev_state)); 6966 } 6967 6968 ret = btrfs_add_chunk_map(fs_info, map); 6969 if (ret < 0) { 6970 btrfs_err(fs_info, 6971 "failed to add chunk map, start=%llu len=%llu: %d", 6972 map->start, map->chunk_len, ret); 6973 } 6974 6975 return ret; 6976 } 6977 6978 static void fill_device_from_item(struct extent_buffer *leaf, 6979 struct btrfs_dev_item *dev_item, 6980 struct btrfs_device *device) 6981 { 6982 unsigned long ptr; 6983 6984 device->devid = btrfs_device_id(leaf, dev_item); 6985 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6986 device->total_bytes = device->disk_total_bytes; 6987 device->commit_total_bytes = device->disk_total_bytes; 6988 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6989 device->commit_bytes_used = device->bytes_used; 6990 device->type = btrfs_device_type(leaf, dev_item); 6991 device->io_align = btrfs_device_io_align(leaf, dev_item); 6992 device->io_width = btrfs_device_io_width(leaf, dev_item); 6993 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6994 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6995 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6996 6997 ptr = btrfs_device_uuid(dev_item); 6998 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6999 } 7000 7001 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7002 u8 *fsid) 7003 { 7004 struct btrfs_fs_devices *fs_devices; 7005 int ret; 7006 7007 lockdep_assert_held(&uuid_mutex); 7008 ASSERT(fsid); 7009 7010 /* This will match only for multi-device seed fs */ 7011 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7012 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7013 return fs_devices; 7014 7015 7016 fs_devices = find_fsid(fsid, NULL); 7017 if (!fs_devices) { 7018 if (!btrfs_test_opt(fs_info, DEGRADED)) 7019 return ERR_PTR(-ENOENT); 7020 7021 fs_devices = alloc_fs_devices(fsid); 7022 if (IS_ERR(fs_devices)) 7023 return fs_devices; 7024 7025 fs_devices->seeding = true; 7026 fs_devices->opened = 1; 7027 return fs_devices; 7028 } 7029 7030 /* 7031 * Upon first call for a seed fs fsid, just create a private copy of the 7032 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7033 */ 7034 fs_devices = clone_fs_devices(fs_devices); 7035 if (IS_ERR(fs_devices)) 7036 return fs_devices; 7037 7038 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 7039 if (ret) { 7040 free_fs_devices(fs_devices); 7041 return ERR_PTR(ret); 7042 } 7043 7044 if (!fs_devices->seeding) { 7045 close_fs_devices(fs_devices); 7046 free_fs_devices(fs_devices); 7047 return ERR_PTR(-EINVAL); 7048 } 7049 7050 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7051 7052 return fs_devices; 7053 } 7054 7055 static int read_one_dev(struct extent_buffer *leaf, 7056 struct btrfs_dev_item *dev_item) 7057 { 7058 BTRFS_DEV_LOOKUP_ARGS(args); 7059 struct btrfs_fs_info *fs_info = leaf->fs_info; 7060 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7061 struct btrfs_device *device; 7062 u64 devid; 7063 int ret; 7064 u8 fs_uuid[BTRFS_FSID_SIZE]; 7065 u8 dev_uuid[BTRFS_UUID_SIZE]; 7066 7067 devid = btrfs_device_id(leaf, dev_item); 7068 args.devid = devid; 7069 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7070 BTRFS_UUID_SIZE); 7071 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7072 BTRFS_FSID_SIZE); 7073 args.uuid = dev_uuid; 7074 args.fsid = fs_uuid; 7075 7076 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7077 fs_devices = open_seed_devices(fs_info, fs_uuid); 7078 if (IS_ERR(fs_devices)) 7079 return PTR_ERR(fs_devices); 7080 } 7081 7082 device = btrfs_find_device(fs_info->fs_devices, &args); 7083 if (!device) { 7084 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7085 btrfs_report_missing_device(fs_info, devid, 7086 dev_uuid, true); 7087 return -ENOENT; 7088 } 7089 7090 device = add_missing_dev(fs_devices, devid, dev_uuid); 7091 if (IS_ERR(device)) { 7092 btrfs_err(fs_info, 7093 "failed to add missing dev %llu: %ld", 7094 devid, PTR_ERR(device)); 7095 return PTR_ERR(device); 7096 } 7097 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7098 } else { 7099 if (!device->bdev) { 7100 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7101 btrfs_report_missing_device(fs_info, 7102 devid, dev_uuid, true); 7103 return -ENOENT; 7104 } 7105 btrfs_report_missing_device(fs_info, devid, 7106 dev_uuid, false); 7107 } 7108 7109 if (!device->bdev && 7110 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7111 /* 7112 * this happens when a device that was properly setup 7113 * in the device info lists suddenly goes bad. 7114 * device->bdev is NULL, and so we have to set 7115 * device->missing to one here 7116 */ 7117 device->fs_devices->missing_devices++; 7118 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7119 } 7120 7121 /* Move the device to its own fs_devices */ 7122 if (device->fs_devices != fs_devices) { 7123 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7124 &device->dev_state)); 7125 7126 list_move(&device->dev_list, &fs_devices->devices); 7127 device->fs_devices->num_devices--; 7128 fs_devices->num_devices++; 7129 7130 device->fs_devices->missing_devices--; 7131 fs_devices->missing_devices++; 7132 7133 device->fs_devices = fs_devices; 7134 } 7135 } 7136 7137 if (device->fs_devices != fs_info->fs_devices) { 7138 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7139 if (device->generation != 7140 btrfs_device_generation(leaf, dev_item)) 7141 return -EINVAL; 7142 } 7143 7144 fill_device_from_item(leaf, dev_item, device); 7145 if (device->bdev) { 7146 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7147 7148 if (device->total_bytes > max_total_bytes) { 7149 btrfs_err(fs_info, 7150 "device total_bytes should be at most %llu but found %llu", 7151 max_total_bytes, device->total_bytes); 7152 return -EINVAL; 7153 } 7154 } 7155 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7156 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7157 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7158 device->fs_devices->total_rw_bytes += device->total_bytes; 7159 atomic64_add(device->total_bytes - device->bytes_used, 7160 &fs_info->free_chunk_space); 7161 } 7162 ret = 0; 7163 return ret; 7164 } 7165 7166 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7167 { 7168 struct btrfs_super_block *super_copy = fs_info->super_copy; 7169 struct extent_buffer *sb; 7170 struct btrfs_disk_key *disk_key; 7171 struct btrfs_chunk *chunk; 7172 u8 *array_ptr; 7173 unsigned long sb_array_offset; 7174 int ret = 0; 7175 u32 num_stripes; 7176 u32 array_size; 7177 u32 len = 0; 7178 u32 cur_offset; 7179 u64 type; 7180 struct btrfs_key key; 7181 7182 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7183 7184 /* 7185 * We allocated a dummy extent, just to use extent buffer accessors. 7186 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7187 * that's fine, we will not go beyond system chunk array anyway. 7188 */ 7189 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7190 if (!sb) 7191 return -ENOMEM; 7192 set_extent_buffer_uptodate(sb); 7193 7194 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7195 array_size = btrfs_super_sys_array_size(super_copy); 7196 7197 array_ptr = super_copy->sys_chunk_array; 7198 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7199 cur_offset = 0; 7200 7201 while (cur_offset < array_size) { 7202 disk_key = (struct btrfs_disk_key *)array_ptr; 7203 len = sizeof(*disk_key); 7204 if (cur_offset + len > array_size) 7205 goto out_short_read; 7206 7207 btrfs_disk_key_to_cpu(&key, disk_key); 7208 7209 array_ptr += len; 7210 sb_array_offset += len; 7211 cur_offset += len; 7212 7213 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7214 btrfs_err(fs_info, 7215 "unexpected item type %u in sys_array at offset %u", 7216 (u32)key.type, cur_offset); 7217 ret = -EIO; 7218 break; 7219 } 7220 7221 chunk = (struct btrfs_chunk *)sb_array_offset; 7222 /* 7223 * At least one btrfs_chunk with one stripe must be present, 7224 * exact stripe count check comes afterwards 7225 */ 7226 len = btrfs_chunk_item_size(1); 7227 if (cur_offset + len > array_size) 7228 goto out_short_read; 7229 7230 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7231 if (!num_stripes) { 7232 btrfs_err(fs_info, 7233 "invalid number of stripes %u in sys_array at offset %u", 7234 num_stripes, cur_offset); 7235 ret = -EIO; 7236 break; 7237 } 7238 7239 type = btrfs_chunk_type(sb, chunk); 7240 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7241 btrfs_err(fs_info, 7242 "invalid chunk type %llu in sys_array at offset %u", 7243 type, cur_offset); 7244 ret = -EIO; 7245 break; 7246 } 7247 7248 len = btrfs_chunk_item_size(num_stripes); 7249 if (cur_offset + len > array_size) 7250 goto out_short_read; 7251 7252 ret = read_one_chunk(&key, sb, chunk); 7253 if (ret) 7254 break; 7255 7256 array_ptr += len; 7257 sb_array_offset += len; 7258 cur_offset += len; 7259 } 7260 clear_extent_buffer_uptodate(sb); 7261 free_extent_buffer_stale(sb); 7262 return ret; 7263 7264 out_short_read: 7265 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7266 len, cur_offset); 7267 clear_extent_buffer_uptodate(sb); 7268 free_extent_buffer_stale(sb); 7269 return -EIO; 7270 } 7271 7272 /* 7273 * Check if all chunks in the fs are OK for read-write degraded mount 7274 * 7275 * If the @failing_dev is specified, it's accounted as missing. 7276 * 7277 * Return true if all chunks meet the minimal RW mount requirements. 7278 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7279 */ 7280 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7281 struct btrfs_device *failing_dev) 7282 { 7283 struct btrfs_chunk_map *map; 7284 u64 next_start; 7285 bool ret = true; 7286 7287 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7288 /* No chunk at all? Return false anyway */ 7289 if (!map) { 7290 ret = false; 7291 goto out; 7292 } 7293 while (map) { 7294 int missing = 0; 7295 int max_tolerated; 7296 int i; 7297 7298 max_tolerated = 7299 btrfs_get_num_tolerated_disk_barrier_failures( 7300 map->type); 7301 for (i = 0; i < map->num_stripes; i++) { 7302 struct btrfs_device *dev = map->stripes[i].dev; 7303 7304 if (!dev || !dev->bdev || 7305 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7306 dev->last_flush_error) 7307 missing++; 7308 else if (failing_dev && failing_dev == dev) 7309 missing++; 7310 } 7311 if (missing > max_tolerated) { 7312 if (!failing_dev) 7313 btrfs_warn(fs_info, 7314 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7315 map->start, missing, max_tolerated); 7316 btrfs_free_chunk_map(map); 7317 ret = false; 7318 goto out; 7319 } 7320 next_start = map->start + map->chunk_len; 7321 btrfs_free_chunk_map(map); 7322 7323 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7324 } 7325 out: 7326 return ret; 7327 } 7328 7329 static void readahead_tree_node_children(struct extent_buffer *node) 7330 { 7331 int i; 7332 const int nr_items = btrfs_header_nritems(node); 7333 7334 for (i = 0; i < nr_items; i++) 7335 btrfs_readahead_node_child(node, i); 7336 } 7337 7338 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7339 { 7340 struct btrfs_root *root = fs_info->chunk_root; 7341 struct btrfs_path *path; 7342 struct extent_buffer *leaf; 7343 struct btrfs_key key; 7344 struct btrfs_key found_key; 7345 int ret; 7346 int slot; 7347 int iter_ret = 0; 7348 u64 total_dev = 0; 7349 u64 last_ra_node = 0; 7350 7351 path = btrfs_alloc_path(); 7352 if (!path) 7353 return -ENOMEM; 7354 7355 /* 7356 * uuid_mutex is needed only if we are mounting a sprout FS 7357 * otherwise we don't need it. 7358 */ 7359 mutex_lock(&uuid_mutex); 7360 7361 /* 7362 * It is possible for mount and umount to race in such a way that 7363 * we execute this code path, but open_fs_devices failed to clear 7364 * total_rw_bytes. We certainly want it cleared before reading the 7365 * device items, so clear it here. 7366 */ 7367 fs_info->fs_devices->total_rw_bytes = 0; 7368 7369 /* 7370 * Lockdep complains about possible circular locking dependency between 7371 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7372 * used for freeze procection of a fs (struct super_block.s_writers), 7373 * which we take when starting a transaction, and extent buffers of the 7374 * chunk tree if we call read_one_dev() while holding a lock on an 7375 * extent buffer of the chunk tree. Since we are mounting the filesystem 7376 * and at this point there can't be any concurrent task modifying the 7377 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7378 */ 7379 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7380 path->skip_locking = 1; 7381 7382 /* 7383 * Read all device items, and then all the chunk items. All 7384 * device items are found before any chunk item (their object id 7385 * is smaller than the lowest possible object id for a chunk 7386 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7387 */ 7388 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7389 key.offset = 0; 7390 key.type = 0; 7391 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7392 struct extent_buffer *node = path->nodes[1]; 7393 7394 leaf = path->nodes[0]; 7395 slot = path->slots[0]; 7396 7397 if (node) { 7398 if (last_ra_node != node->start) { 7399 readahead_tree_node_children(node); 7400 last_ra_node = node->start; 7401 } 7402 } 7403 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7404 struct btrfs_dev_item *dev_item; 7405 dev_item = btrfs_item_ptr(leaf, slot, 7406 struct btrfs_dev_item); 7407 ret = read_one_dev(leaf, dev_item); 7408 if (ret) 7409 goto error; 7410 total_dev++; 7411 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7412 struct btrfs_chunk *chunk; 7413 7414 /* 7415 * We are only called at mount time, so no need to take 7416 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7417 * we always lock first fs_info->chunk_mutex before 7418 * acquiring any locks on the chunk tree. This is a 7419 * requirement for chunk allocation, see the comment on 7420 * top of btrfs_chunk_alloc() for details. 7421 */ 7422 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7423 ret = read_one_chunk(&found_key, leaf, chunk); 7424 if (ret) 7425 goto error; 7426 } 7427 } 7428 /* Catch error found during iteration */ 7429 if (iter_ret < 0) { 7430 ret = iter_ret; 7431 goto error; 7432 } 7433 7434 /* 7435 * After loading chunk tree, we've got all device information, 7436 * do another round of validation checks. 7437 */ 7438 if (total_dev != fs_info->fs_devices->total_devices) { 7439 btrfs_warn(fs_info, 7440 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7441 btrfs_super_num_devices(fs_info->super_copy), 7442 total_dev); 7443 fs_info->fs_devices->total_devices = total_dev; 7444 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7445 } 7446 if (btrfs_super_total_bytes(fs_info->super_copy) < 7447 fs_info->fs_devices->total_rw_bytes) { 7448 btrfs_err(fs_info, 7449 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7450 btrfs_super_total_bytes(fs_info->super_copy), 7451 fs_info->fs_devices->total_rw_bytes); 7452 ret = -EINVAL; 7453 goto error; 7454 } 7455 ret = 0; 7456 error: 7457 mutex_unlock(&uuid_mutex); 7458 7459 btrfs_free_path(path); 7460 return ret; 7461 } 7462 7463 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7464 { 7465 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7466 struct btrfs_device *device; 7467 int ret = 0; 7468 7469 fs_devices->fs_info = fs_info; 7470 7471 mutex_lock(&fs_devices->device_list_mutex); 7472 list_for_each_entry(device, &fs_devices->devices, dev_list) 7473 device->fs_info = fs_info; 7474 7475 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7476 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7477 device->fs_info = fs_info; 7478 ret = btrfs_get_dev_zone_info(device, false); 7479 if (ret) 7480 break; 7481 } 7482 7483 seed_devs->fs_info = fs_info; 7484 } 7485 mutex_unlock(&fs_devices->device_list_mutex); 7486 7487 return ret; 7488 } 7489 7490 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7491 const struct btrfs_dev_stats_item *ptr, 7492 int index) 7493 { 7494 u64 val; 7495 7496 read_extent_buffer(eb, &val, 7497 offsetof(struct btrfs_dev_stats_item, values) + 7498 ((unsigned long)ptr) + (index * sizeof(u64)), 7499 sizeof(val)); 7500 return val; 7501 } 7502 7503 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7504 struct btrfs_dev_stats_item *ptr, 7505 int index, u64 val) 7506 { 7507 write_extent_buffer(eb, &val, 7508 offsetof(struct btrfs_dev_stats_item, values) + 7509 ((unsigned long)ptr) + (index * sizeof(u64)), 7510 sizeof(val)); 7511 } 7512 7513 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7514 struct btrfs_path *path) 7515 { 7516 struct btrfs_dev_stats_item *ptr; 7517 struct extent_buffer *eb; 7518 struct btrfs_key key; 7519 int item_size; 7520 int i, ret, slot; 7521 7522 if (!device->fs_info->dev_root) 7523 return 0; 7524 7525 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7526 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7527 key.offset = device->devid; 7528 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7529 if (ret) { 7530 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7531 btrfs_dev_stat_set(device, i, 0); 7532 device->dev_stats_valid = 1; 7533 btrfs_release_path(path); 7534 return ret < 0 ? ret : 0; 7535 } 7536 slot = path->slots[0]; 7537 eb = path->nodes[0]; 7538 item_size = btrfs_item_size(eb, slot); 7539 7540 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7541 7542 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7543 if (item_size >= (1 + i) * sizeof(__le64)) 7544 btrfs_dev_stat_set(device, i, 7545 btrfs_dev_stats_value(eb, ptr, i)); 7546 else 7547 btrfs_dev_stat_set(device, i, 0); 7548 } 7549 7550 device->dev_stats_valid = 1; 7551 btrfs_dev_stat_print_on_load(device); 7552 btrfs_release_path(path); 7553 7554 return 0; 7555 } 7556 7557 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7558 { 7559 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7560 struct btrfs_device *device; 7561 struct btrfs_path *path = NULL; 7562 int ret = 0; 7563 7564 path = btrfs_alloc_path(); 7565 if (!path) 7566 return -ENOMEM; 7567 7568 mutex_lock(&fs_devices->device_list_mutex); 7569 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7570 ret = btrfs_device_init_dev_stats(device, path); 7571 if (ret) 7572 goto out; 7573 } 7574 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7575 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7576 ret = btrfs_device_init_dev_stats(device, path); 7577 if (ret) 7578 goto out; 7579 } 7580 } 7581 out: 7582 mutex_unlock(&fs_devices->device_list_mutex); 7583 7584 btrfs_free_path(path); 7585 return ret; 7586 } 7587 7588 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7589 struct btrfs_device *device) 7590 { 7591 struct btrfs_fs_info *fs_info = trans->fs_info; 7592 struct btrfs_root *dev_root = fs_info->dev_root; 7593 struct btrfs_path *path; 7594 struct btrfs_key key; 7595 struct extent_buffer *eb; 7596 struct btrfs_dev_stats_item *ptr; 7597 int ret; 7598 int i; 7599 7600 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7601 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7602 key.offset = device->devid; 7603 7604 path = btrfs_alloc_path(); 7605 if (!path) 7606 return -ENOMEM; 7607 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7608 if (ret < 0) { 7609 btrfs_warn_in_rcu(fs_info, 7610 "error %d while searching for dev_stats item for device %s", 7611 ret, btrfs_dev_name(device)); 7612 goto out; 7613 } 7614 7615 if (ret == 0 && 7616 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7617 /* need to delete old one and insert a new one */ 7618 ret = btrfs_del_item(trans, dev_root, path); 7619 if (ret != 0) { 7620 btrfs_warn_in_rcu(fs_info, 7621 "delete too small dev_stats item for device %s failed %d", 7622 btrfs_dev_name(device), ret); 7623 goto out; 7624 } 7625 ret = 1; 7626 } 7627 7628 if (ret == 1) { 7629 /* need to insert a new item */ 7630 btrfs_release_path(path); 7631 ret = btrfs_insert_empty_item(trans, dev_root, path, 7632 &key, sizeof(*ptr)); 7633 if (ret < 0) { 7634 btrfs_warn_in_rcu(fs_info, 7635 "insert dev_stats item for device %s failed %d", 7636 btrfs_dev_name(device), ret); 7637 goto out; 7638 } 7639 } 7640 7641 eb = path->nodes[0]; 7642 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7643 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7644 btrfs_set_dev_stats_value(eb, ptr, i, 7645 btrfs_dev_stat_read(device, i)); 7646 btrfs_mark_buffer_dirty(trans, eb); 7647 7648 out: 7649 btrfs_free_path(path); 7650 return ret; 7651 } 7652 7653 /* 7654 * called from commit_transaction. Writes all changed device stats to disk. 7655 */ 7656 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7657 { 7658 struct btrfs_fs_info *fs_info = trans->fs_info; 7659 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7660 struct btrfs_device *device; 7661 int stats_cnt; 7662 int ret = 0; 7663 7664 mutex_lock(&fs_devices->device_list_mutex); 7665 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7666 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7667 if (!device->dev_stats_valid || stats_cnt == 0) 7668 continue; 7669 7670 7671 /* 7672 * There is a LOAD-LOAD control dependency between the value of 7673 * dev_stats_ccnt and updating the on-disk values which requires 7674 * reading the in-memory counters. Such control dependencies 7675 * require explicit read memory barriers. 7676 * 7677 * This memory barriers pairs with smp_mb__before_atomic in 7678 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7679 * barrier implied by atomic_xchg in 7680 * btrfs_dev_stats_read_and_reset 7681 */ 7682 smp_rmb(); 7683 7684 ret = update_dev_stat_item(trans, device); 7685 if (!ret) 7686 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7687 } 7688 mutex_unlock(&fs_devices->device_list_mutex); 7689 7690 return ret; 7691 } 7692 7693 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7694 { 7695 btrfs_dev_stat_inc(dev, index); 7696 7697 if (!dev->dev_stats_valid) 7698 return; 7699 btrfs_err_rl_in_rcu(dev->fs_info, 7700 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7701 btrfs_dev_name(dev), 7702 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7703 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7704 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7705 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7706 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7707 } 7708 7709 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7710 { 7711 int i; 7712 7713 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7714 if (btrfs_dev_stat_read(dev, i) != 0) 7715 break; 7716 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7717 return; /* all values == 0, suppress message */ 7718 7719 btrfs_info_in_rcu(dev->fs_info, 7720 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7721 btrfs_dev_name(dev), 7722 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7723 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7724 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7725 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7726 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7727 } 7728 7729 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7730 struct btrfs_ioctl_get_dev_stats *stats) 7731 { 7732 BTRFS_DEV_LOOKUP_ARGS(args); 7733 struct btrfs_device *dev; 7734 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7735 int i; 7736 7737 mutex_lock(&fs_devices->device_list_mutex); 7738 args.devid = stats->devid; 7739 dev = btrfs_find_device(fs_info->fs_devices, &args); 7740 mutex_unlock(&fs_devices->device_list_mutex); 7741 7742 if (!dev) { 7743 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7744 return -ENODEV; 7745 } else if (!dev->dev_stats_valid) { 7746 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7747 return -ENODEV; 7748 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7749 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7750 if (stats->nr_items > i) 7751 stats->values[i] = 7752 btrfs_dev_stat_read_and_reset(dev, i); 7753 else 7754 btrfs_dev_stat_set(dev, i, 0); 7755 } 7756 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7757 current->comm, task_pid_nr(current)); 7758 } else { 7759 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7760 if (stats->nr_items > i) 7761 stats->values[i] = btrfs_dev_stat_read(dev, i); 7762 } 7763 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7764 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7765 return 0; 7766 } 7767 7768 /* 7769 * Update the size and bytes used for each device where it changed. This is 7770 * delayed since we would otherwise get errors while writing out the 7771 * superblocks. 7772 * 7773 * Must be invoked during transaction commit. 7774 */ 7775 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7776 { 7777 struct btrfs_device *curr, *next; 7778 7779 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7780 7781 if (list_empty(&trans->dev_update_list)) 7782 return; 7783 7784 /* 7785 * We don't need the device_list_mutex here. This list is owned by the 7786 * transaction and the transaction must complete before the device is 7787 * released. 7788 */ 7789 mutex_lock(&trans->fs_info->chunk_mutex); 7790 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7791 post_commit_list) { 7792 list_del_init(&curr->post_commit_list); 7793 curr->commit_total_bytes = curr->disk_total_bytes; 7794 curr->commit_bytes_used = curr->bytes_used; 7795 } 7796 mutex_unlock(&trans->fs_info->chunk_mutex); 7797 } 7798 7799 /* 7800 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7801 */ 7802 int btrfs_bg_type_to_factor(u64 flags) 7803 { 7804 const int index = btrfs_bg_flags_to_raid_index(flags); 7805 7806 return btrfs_raid_array[index].ncopies; 7807 } 7808 7809 7810 7811 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7812 u64 chunk_offset, u64 devid, 7813 u64 physical_offset, u64 physical_len) 7814 { 7815 struct btrfs_dev_lookup_args args = { .devid = devid }; 7816 struct btrfs_chunk_map *map; 7817 struct btrfs_device *dev; 7818 u64 stripe_len; 7819 bool found = false; 7820 int ret = 0; 7821 int i; 7822 7823 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7824 if (!map) { 7825 btrfs_err(fs_info, 7826 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7827 physical_offset, devid); 7828 ret = -EUCLEAN; 7829 goto out; 7830 } 7831 7832 stripe_len = btrfs_calc_stripe_length(map); 7833 if (physical_len != stripe_len) { 7834 btrfs_err(fs_info, 7835 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7836 physical_offset, devid, map->start, physical_len, 7837 stripe_len); 7838 ret = -EUCLEAN; 7839 goto out; 7840 } 7841 7842 /* 7843 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7844 * space. Although kernel can handle it without problem, better to warn 7845 * the users. 7846 */ 7847 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7848 btrfs_warn(fs_info, 7849 "devid %llu physical %llu len %llu inside the reserved space", 7850 devid, physical_offset, physical_len); 7851 7852 for (i = 0; i < map->num_stripes; i++) { 7853 if (map->stripes[i].dev->devid == devid && 7854 map->stripes[i].physical == physical_offset) { 7855 found = true; 7856 if (map->verified_stripes >= map->num_stripes) { 7857 btrfs_err(fs_info, 7858 "too many dev extents for chunk %llu found", 7859 map->start); 7860 ret = -EUCLEAN; 7861 goto out; 7862 } 7863 map->verified_stripes++; 7864 break; 7865 } 7866 } 7867 if (!found) { 7868 btrfs_err(fs_info, 7869 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7870 physical_offset, devid); 7871 ret = -EUCLEAN; 7872 } 7873 7874 /* Make sure no dev extent is beyond device boundary */ 7875 dev = btrfs_find_device(fs_info->fs_devices, &args); 7876 if (!dev) { 7877 btrfs_err(fs_info, "failed to find devid %llu", devid); 7878 ret = -EUCLEAN; 7879 goto out; 7880 } 7881 7882 if (physical_offset + physical_len > dev->disk_total_bytes) { 7883 btrfs_err(fs_info, 7884 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7885 devid, physical_offset, physical_len, 7886 dev->disk_total_bytes); 7887 ret = -EUCLEAN; 7888 goto out; 7889 } 7890 7891 if (dev->zone_info) { 7892 u64 zone_size = dev->zone_info->zone_size; 7893 7894 if (!IS_ALIGNED(physical_offset, zone_size) || 7895 !IS_ALIGNED(physical_len, zone_size)) { 7896 btrfs_err(fs_info, 7897 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7898 devid, physical_offset, physical_len); 7899 ret = -EUCLEAN; 7900 goto out; 7901 } 7902 } 7903 7904 out: 7905 btrfs_free_chunk_map(map); 7906 return ret; 7907 } 7908 7909 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7910 { 7911 struct rb_node *node; 7912 int ret = 0; 7913 7914 read_lock(&fs_info->mapping_tree_lock); 7915 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 7916 struct btrfs_chunk_map *map; 7917 7918 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 7919 if (map->num_stripes != map->verified_stripes) { 7920 btrfs_err(fs_info, 7921 "chunk %llu has missing dev extent, have %d expect %d", 7922 map->start, map->verified_stripes, map->num_stripes); 7923 ret = -EUCLEAN; 7924 goto out; 7925 } 7926 } 7927 out: 7928 read_unlock(&fs_info->mapping_tree_lock); 7929 return ret; 7930 } 7931 7932 /* 7933 * Ensure that all dev extents are mapped to correct chunk, otherwise 7934 * later chunk allocation/free would cause unexpected behavior. 7935 * 7936 * NOTE: This will iterate through the whole device tree, which should be of 7937 * the same size level as the chunk tree. This slightly increases mount time. 7938 */ 7939 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7940 { 7941 struct btrfs_path *path; 7942 struct btrfs_root *root = fs_info->dev_root; 7943 struct btrfs_key key; 7944 u64 prev_devid = 0; 7945 u64 prev_dev_ext_end = 0; 7946 int ret = 0; 7947 7948 /* 7949 * We don't have a dev_root because we mounted with ignorebadroots and 7950 * failed to load the root, so we want to skip the verification in this 7951 * case for sure. 7952 * 7953 * However if the dev root is fine, but the tree itself is corrupted 7954 * we'd still fail to mount. This verification is only to make sure 7955 * writes can happen safely, so instead just bypass this check 7956 * completely in the case of IGNOREBADROOTS. 7957 */ 7958 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7959 return 0; 7960 7961 key.objectid = 1; 7962 key.type = BTRFS_DEV_EXTENT_KEY; 7963 key.offset = 0; 7964 7965 path = btrfs_alloc_path(); 7966 if (!path) 7967 return -ENOMEM; 7968 7969 path->reada = READA_FORWARD; 7970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7971 if (ret < 0) 7972 goto out; 7973 7974 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7975 ret = btrfs_next_leaf(root, path); 7976 if (ret < 0) 7977 goto out; 7978 /* No dev extents at all? Not good */ 7979 if (ret > 0) { 7980 ret = -EUCLEAN; 7981 goto out; 7982 } 7983 } 7984 while (1) { 7985 struct extent_buffer *leaf = path->nodes[0]; 7986 struct btrfs_dev_extent *dext; 7987 int slot = path->slots[0]; 7988 u64 chunk_offset; 7989 u64 physical_offset; 7990 u64 physical_len; 7991 u64 devid; 7992 7993 btrfs_item_key_to_cpu(leaf, &key, slot); 7994 if (key.type != BTRFS_DEV_EXTENT_KEY) 7995 break; 7996 devid = key.objectid; 7997 physical_offset = key.offset; 7998 7999 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8000 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8001 physical_len = btrfs_dev_extent_length(leaf, dext); 8002 8003 /* Check if this dev extent overlaps with the previous one */ 8004 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8005 btrfs_err(fs_info, 8006 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8007 devid, physical_offset, prev_dev_ext_end); 8008 ret = -EUCLEAN; 8009 goto out; 8010 } 8011 8012 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8013 physical_offset, physical_len); 8014 if (ret < 0) 8015 goto out; 8016 prev_devid = devid; 8017 prev_dev_ext_end = physical_offset + physical_len; 8018 8019 ret = btrfs_next_item(root, path); 8020 if (ret < 0) 8021 goto out; 8022 if (ret > 0) { 8023 ret = 0; 8024 break; 8025 } 8026 } 8027 8028 /* Ensure all chunks have corresponding dev extents */ 8029 ret = verify_chunk_dev_extent_mapping(fs_info); 8030 out: 8031 btrfs_free_path(path); 8032 return ret; 8033 } 8034 8035 /* 8036 * Check whether the given block group or device is pinned by any inode being 8037 * used as a swapfile. 8038 */ 8039 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8040 { 8041 struct btrfs_swapfile_pin *sp; 8042 struct rb_node *node; 8043 8044 spin_lock(&fs_info->swapfile_pins_lock); 8045 node = fs_info->swapfile_pins.rb_node; 8046 while (node) { 8047 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8048 if (ptr < sp->ptr) 8049 node = node->rb_left; 8050 else if (ptr > sp->ptr) 8051 node = node->rb_right; 8052 else 8053 break; 8054 } 8055 spin_unlock(&fs_info->swapfile_pins_lock); 8056 return node != NULL; 8057 } 8058 8059 static int relocating_repair_kthread(void *data) 8060 { 8061 struct btrfs_block_group *cache = data; 8062 struct btrfs_fs_info *fs_info = cache->fs_info; 8063 u64 target; 8064 int ret = 0; 8065 8066 target = cache->start; 8067 btrfs_put_block_group(cache); 8068 8069 sb_start_write(fs_info->sb); 8070 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8071 btrfs_info(fs_info, 8072 "zoned: skip relocating block group %llu to repair: EBUSY", 8073 target); 8074 sb_end_write(fs_info->sb); 8075 return -EBUSY; 8076 } 8077 8078 mutex_lock(&fs_info->reclaim_bgs_lock); 8079 8080 /* Ensure block group still exists */ 8081 cache = btrfs_lookup_block_group(fs_info, target); 8082 if (!cache) 8083 goto out; 8084 8085 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8086 goto out; 8087 8088 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8089 if (ret < 0) 8090 goto out; 8091 8092 btrfs_info(fs_info, 8093 "zoned: relocating block group %llu to repair IO failure", 8094 target); 8095 ret = btrfs_relocate_chunk(fs_info, target); 8096 8097 out: 8098 if (cache) 8099 btrfs_put_block_group(cache); 8100 mutex_unlock(&fs_info->reclaim_bgs_lock); 8101 btrfs_exclop_finish(fs_info); 8102 sb_end_write(fs_info->sb); 8103 8104 return ret; 8105 } 8106 8107 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8108 { 8109 struct btrfs_block_group *cache; 8110 8111 if (!btrfs_is_zoned(fs_info)) 8112 return false; 8113 8114 /* Do not attempt to repair in degraded state */ 8115 if (btrfs_test_opt(fs_info, DEGRADED)) 8116 return true; 8117 8118 cache = btrfs_lookup_block_group(fs_info, logical); 8119 if (!cache) 8120 return true; 8121 8122 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8123 btrfs_put_block_group(cache); 8124 return true; 8125 } 8126 8127 kthread_run(relocating_repair_kthread, cache, 8128 "btrfs-relocating-repair"); 8129 8130 return true; 8131 } 8132 8133 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8134 struct btrfs_io_stripe *smap, 8135 u64 logical) 8136 { 8137 int data_stripes = nr_bioc_data_stripes(bioc); 8138 int i; 8139 8140 for (i = 0; i < data_stripes; i++) { 8141 u64 stripe_start = bioc->full_stripe_logical + 8142 btrfs_stripe_nr_to_offset(i); 8143 8144 if (logical >= stripe_start && 8145 logical < stripe_start + BTRFS_STRIPE_LEN) 8146 break; 8147 } 8148 ASSERT(i < data_stripes); 8149 smap->dev = bioc->stripes[i].dev; 8150 smap->physical = bioc->stripes[i].physical + 8151 ((logical - bioc->full_stripe_logical) & 8152 BTRFS_STRIPE_LEN_MASK); 8153 } 8154 8155 /* 8156 * Map a repair write into a single device. 8157 * 8158 * A repair write is triggered by read time repair or scrub, which would only 8159 * update the contents of a single device. 8160 * Not update any other mirrors nor go through RMW path. 8161 * 8162 * Callers should ensure: 8163 * 8164 * - Call btrfs_bio_counter_inc_blocked() first 8165 * - The range does not cross stripe boundary 8166 * - Has a valid @mirror_num passed in. 8167 */ 8168 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8169 struct btrfs_io_stripe *smap, u64 logical, 8170 u32 length, int mirror_num) 8171 { 8172 struct btrfs_io_context *bioc = NULL; 8173 u64 map_length = length; 8174 int mirror_ret = mirror_num; 8175 int ret; 8176 8177 ASSERT(mirror_num > 0); 8178 8179 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8180 &bioc, smap, &mirror_ret); 8181 if (ret < 0) 8182 return ret; 8183 8184 /* The map range should not cross stripe boundary. */ 8185 ASSERT(map_length >= length); 8186 8187 /* Already mapped to single stripe. */ 8188 if (!bioc) 8189 goto out; 8190 8191 /* Map the RAID56 multi-stripe writes to a single one. */ 8192 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8193 map_raid56_repair_block(bioc, smap, logical); 8194 goto out; 8195 } 8196 8197 ASSERT(mirror_num <= bioc->num_stripes); 8198 smap->dev = bioc->stripes[mirror_num - 1].dev; 8199 smap->physical = bioc->stripes[mirror_num - 1].physical; 8200 out: 8201 btrfs_put_bioc(bioc); 8202 ASSERT(smap->dev); 8203 return 0; 8204 } 8205