1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "disk-io.h" 17 #include "extent-tree.h" 18 #include "transaction.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "dev-replace.h" 22 #include "sysfs.h" 23 #include "tree-checker.h" 24 #include "space-info.h" 25 #include "block-group.h" 26 #include "discard.h" 27 #include "zoned.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "uuid-tree.h" 31 #include "ioctl.h" 32 #include "relocation.h" 33 #include "scrub.h" 34 #include "super.h" 35 #include "raid-stripe-tree.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 struct btrfs_io_geometry { 42 u32 stripe_index; 43 u32 stripe_nr; 44 int mirror_num; 45 int num_stripes; 46 u64 stripe_offset; 47 u64 raid56_full_stripe_start; 48 int max_errors; 49 enum btrfs_map_op op; 50 bool use_rst; 51 }; 52 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 54 [BTRFS_RAID_RAID10] = { 55 .sub_stripes = 2, 56 .dev_stripes = 1, 57 .devs_max = 0, /* 0 == as many as possible */ 58 .devs_min = 2, 59 .tolerated_failures = 1, 60 .devs_increment = 2, 61 .ncopies = 2, 62 .nparity = 0, 63 .raid_name = "raid10", 64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 66 }, 67 [BTRFS_RAID_RAID1] = { 68 .sub_stripes = 1, 69 .dev_stripes = 1, 70 .devs_max = 2, 71 .devs_min = 2, 72 .tolerated_failures = 1, 73 .devs_increment = 2, 74 .ncopies = 2, 75 .nparity = 0, 76 .raid_name = "raid1", 77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 79 }, 80 [BTRFS_RAID_RAID1C3] = { 81 .sub_stripes = 1, 82 .dev_stripes = 1, 83 .devs_max = 3, 84 .devs_min = 3, 85 .tolerated_failures = 2, 86 .devs_increment = 3, 87 .ncopies = 3, 88 .nparity = 0, 89 .raid_name = "raid1c3", 90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 92 }, 93 [BTRFS_RAID_RAID1C4] = { 94 .sub_stripes = 1, 95 .dev_stripes = 1, 96 .devs_max = 4, 97 .devs_min = 4, 98 .tolerated_failures = 3, 99 .devs_increment = 4, 100 .ncopies = 4, 101 .nparity = 0, 102 .raid_name = "raid1c4", 103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 105 }, 106 [BTRFS_RAID_DUP] = { 107 .sub_stripes = 1, 108 .dev_stripes = 2, 109 .devs_max = 1, 110 .devs_min = 1, 111 .tolerated_failures = 0, 112 .devs_increment = 1, 113 .ncopies = 2, 114 .nparity = 0, 115 .raid_name = "dup", 116 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 117 .mindev_error = 0, 118 }, 119 [BTRFS_RAID_RAID0] = { 120 .sub_stripes = 1, 121 .dev_stripes = 1, 122 .devs_max = 0, 123 .devs_min = 1, 124 .tolerated_failures = 0, 125 .devs_increment = 1, 126 .ncopies = 1, 127 .nparity = 0, 128 .raid_name = "raid0", 129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 130 .mindev_error = 0, 131 }, 132 [BTRFS_RAID_SINGLE] = { 133 .sub_stripes = 1, 134 .dev_stripes = 1, 135 .devs_max = 1, 136 .devs_min = 1, 137 .tolerated_failures = 0, 138 .devs_increment = 1, 139 .ncopies = 1, 140 .nparity = 0, 141 .raid_name = "single", 142 .bg_flag = 0, 143 .mindev_error = 0, 144 }, 145 [BTRFS_RAID_RAID5] = { 146 .sub_stripes = 1, 147 .dev_stripes = 1, 148 .devs_max = 0, 149 .devs_min = 2, 150 .tolerated_failures = 1, 151 .devs_increment = 1, 152 .ncopies = 1, 153 .nparity = 1, 154 .raid_name = "raid5", 155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 157 }, 158 [BTRFS_RAID_RAID6] = { 159 .sub_stripes = 1, 160 .dev_stripes = 1, 161 .devs_max = 0, 162 .devs_min = 3, 163 .tolerated_failures = 2, 164 .devs_increment = 1, 165 .ncopies = 1, 166 .nparity = 2, 167 .raid_name = "raid6", 168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 170 }, 171 }; 172 173 /* 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 175 * can be used as index to access btrfs_raid_array[]. 176 */ 177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 178 { 179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 180 181 if (!profile) 182 return BTRFS_RAID_SINGLE; 183 184 return BTRFS_BG_FLAG_TO_INDEX(profile); 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 int btrfs_nr_parity_stripes(u64 type) 198 { 199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 200 201 return btrfs_raid_array[index].nparity; 202 } 203 204 /* 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf 206 * bytes including terminating null byte. 207 */ 208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 209 { 210 int i; 211 int ret; 212 char *bp = buf; 213 u64 flags = bg_flags; 214 u32 size_bp = size_buf; 215 216 if (!flags) 217 return; 218 219 #define DESCRIBE_FLAG(flag, desc) \ 220 do { \ 221 if (flags & (flag)) { \ 222 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 223 if (ret < 0 || ret >= size_bp) \ 224 goto out_overflow; \ 225 size_bp -= ret; \ 226 bp += ret; \ 227 flags &= ~(flag); \ 228 } \ 229 } while (0) 230 231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 234 235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 238 btrfs_raid_array[i].raid_name); 239 #undef DESCRIBE_FLAG 240 241 if (flags) { 242 ret = snprintf(bp, size_bp, "0x%llx|", flags); 243 size_bp -= ret; 244 } 245 246 if (size_bp < size_buf) 247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 248 249 /* 250 * The text is trimmed, it's up to the caller to provide sufficiently 251 * large buffer 252 */ 253 out_overflow:; 254 } 255 256 static int init_first_rw_device(struct btrfs_trans_handle *trans); 257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 259 260 /* 261 * Device locking 262 * ============== 263 * 264 * There are several mutexes that protect manipulation of devices and low-level 265 * structures like chunks but not block groups, extents or files 266 * 267 * uuid_mutex (global lock) 268 * ------------------------ 269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 271 * device) or requested by the device= mount option 272 * 273 * the mutex can be very coarse and can cover long-running operations 274 * 275 * protects: updates to fs_devices counters like missing devices, rw devices, 276 * seeding, structure cloning, opening/closing devices at mount/umount time 277 * 278 * global::fs_devs - add, remove, updates to the global list 279 * 280 * does not protect: manipulation of the fs_devices::devices list in general 281 * but in mount context it could be used to exclude list modifications by eg. 282 * scan ioctl 283 * 284 * btrfs_device::name - renames (write side), read is RCU 285 * 286 * fs_devices::device_list_mutex (per-fs, with RCU) 287 * ------------------------------------------------ 288 * protects updates to fs_devices::devices, ie. adding and deleting 289 * 290 * simple list traversal with read-only actions can be done with RCU protection 291 * 292 * may be used to exclude some operations from running concurrently without any 293 * modifications to the list (see write_all_supers) 294 * 295 * Is not required at mount and close times, because our device list is 296 * protected by the uuid_mutex at that point. 297 * 298 * balance_mutex 299 * ------------- 300 * protects balance structures (status, state) and context accessed from 301 * several places (internally, ioctl) 302 * 303 * chunk_mutex 304 * ----------- 305 * protects chunks, adding or removing during allocation, trim or when a new 306 * device is added/removed. Additionally it also protects post_commit_list of 307 * individual devices, since they can be added to the transaction's 308 * post_commit_list only with chunk_mutex held. 309 * 310 * cleaner_mutex 311 * ------------- 312 * a big lock that is held by the cleaner thread and prevents running subvolume 313 * cleaning together with relocation or delayed iputs 314 * 315 * 316 * Lock nesting 317 * ============ 318 * 319 * uuid_mutex 320 * device_list_mutex 321 * chunk_mutex 322 * balance_mutex 323 * 324 * 325 * Exclusive operations 326 * ==================== 327 * 328 * Maintains the exclusivity of the following operations that apply to the 329 * whole filesystem and cannot run in parallel. 330 * 331 * - Balance (*) 332 * - Device add 333 * - Device remove 334 * - Device replace (*) 335 * - Resize 336 * 337 * The device operations (as above) can be in one of the following states: 338 * 339 * - Running state 340 * - Paused state 341 * - Completed state 342 * 343 * Only device operations marked with (*) can go into the Paused state for the 344 * following reasons: 345 * 346 * - ioctl (only Balance can be Paused through ioctl) 347 * - filesystem remounted as read-only 348 * - filesystem unmounted and mounted as read-only 349 * - system power-cycle and filesystem mounted as read-only 350 * - filesystem or device errors leading to forced read-only 351 * 352 * The status of exclusive operation is set and cleared atomically. 353 * During the course of Paused state, fs_info::exclusive_operation remains set. 354 * A device operation in Paused or Running state can be canceled or resumed 355 * either by ioctl (Balance only) or when remounted as read-write. 356 * The exclusive status is cleared when the device operation is canceled or 357 * completed. 358 */ 359 360 DEFINE_MUTEX(uuid_mutex); 361 static LIST_HEAD(fs_uuids); 362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 363 { 364 return &fs_uuids; 365 } 366 367 /* 368 * Allocate new btrfs_fs_devices structure identified by a fsid. 369 * 370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to 371 * fs_devices::metadata_fsid 372 * 373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 374 * The returned struct is not linked onto any lists and can be destroyed with 375 * kfree() right away. 376 */ 377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 378 { 379 struct btrfs_fs_devices *fs_devs; 380 381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 382 if (!fs_devs) 383 return ERR_PTR(-ENOMEM); 384 385 mutex_init(&fs_devs->device_list_mutex); 386 387 INIT_LIST_HEAD(&fs_devs->devices); 388 INIT_LIST_HEAD(&fs_devs->alloc_list); 389 INIT_LIST_HEAD(&fs_devs->fs_list); 390 INIT_LIST_HEAD(&fs_devs->seed_list); 391 392 if (fsid) { 393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 395 } 396 397 return fs_devs; 398 } 399 400 static void btrfs_free_device(struct btrfs_device *device) 401 { 402 WARN_ON(!list_empty(&device->post_commit_list)); 403 /* 404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is 405 * reading the device name. 406 */ 407 kfree(rcu_dereference_raw(device->name)); 408 btrfs_extent_io_tree_release(&device->alloc_state); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 417 WARN_ON(fs_devices->opened); 418 WARN_ON(fs_devices->holding); 419 while (!list_empty(&fs_devices->devices)) { 420 device = list_first_entry(&fs_devices->devices, 421 struct btrfs_device, dev_list); 422 list_del(&device->dev_list); 423 btrfs_free_device(device); 424 } 425 kfree(fs_devices); 426 } 427 428 void __exit btrfs_cleanup_fs_uuids(void) 429 { 430 struct btrfs_fs_devices *fs_devices; 431 432 while (!list_empty(&fs_uuids)) { 433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, 434 fs_list); 435 list_del(&fs_devices->fs_list); 436 free_fs_devices(fs_devices); 437 } 438 } 439 440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 441 const u8 *fsid, const u8 *metadata_fsid) 442 { 443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 444 return false; 445 446 if (!metadata_fsid) 447 return true; 448 449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 450 return false; 451 452 return true; 453 } 454 455 static noinline struct btrfs_fs_devices *find_fsid( 456 const u8 *fsid, const u8 *metadata_fsid) 457 { 458 struct btrfs_fs_devices *fs_devices; 459 460 ASSERT(fsid); 461 462 /* Handle non-split brain cases */ 463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 465 return fs_devices; 466 } 467 return NULL; 468 } 469 470 static int 471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 472 int flush, struct file **bdev_file, 473 struct btrfs_super_block **disk_super) 474 { 475 struct block_device *bdev; 476 int ret; 477 478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops); 479 480 if (IS_ERR(*bdev_file)) { 481 ret = PTR_ERR(*bdev_file); 482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", 483 device_path, flags, ret); 484 goto error; 485 } 486 bdev = file_bdev(*bdev_file); 487 488 if (flush) 489 sync_blockdev(bdev); 490 if (holder) { 491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); 492 if (ret) { 493 bdev_fput(*bdev_file); 494 goto error; 495 } 496 } 497 invalidate_bdev(bdev); 498 *disk_super = btrfs_read_disk_super(bdev, 0, false); 499 if (IS_ERR(*disk_super)) { 500 ret = PTR_ERR(*disk_super); 501 bdev_fput(*bdev_file); 502 goto error; 503 } 504 505 return 0; 506 507 error: 508 *disk_super = NULL; 509 *bdev_file = NULL; 510 return ret; 511 } 512 513 /* 514 * Search and remove all stale devices (which are not mounted). When both 515 * inputs are NULL, it will search and release all stale devices. 516 * 517 * @devt: Optional. When provided will it release all unmounted devices 518 * matching this devt only. 519 * @skip_device: Optional. Will skip this device when searching for the stale 520 * devices. 521 * 522 * Return: 0 for success or if @devt is 0. 523 * -EBUSY if @devt is a mounted device. 524 * -ENOENT if @devt does not match any device in the list. 525 */ 526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 527 { 528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 529 struct btrfs_device *device, *tmp_device; 530 int ret; 531 bool freed = false; 532 533 lockdep_assert_held(&uuid_mutex); 534 535 /* Return good status if there is no instance of devt. */ 536 ret = 0; 537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 538 539 mutex_lock(&fs_devices->device_list_mutex); 540 list_for_each_entry_safe(device, tmp_device, 541 &fs_devices->devices, dev_list) { 542 if (skip_device && skip_device == device) 543 continue; 544 if (devt && devt != device->devt) 545 continue; 546 if (fs_devices->opened || fs_devices->holding) { 547 if (devt) 548 ret = -EBUSY; 549 break; 550 } 551 552 /* delete the stale device */ 553 fs_devices->num_devices--; 554 list_del(&device->dev_list); 555 btrfs_free_device(device); 556 557 freed = true; 558 } 559 mutex_unlock(&fs_devices->device_list_mutex); 560 561 if (fs_devices->num_devices == 0) { 562 btrfs_sysfs_remove_fsid(fs_devices); 563 list_del(&fs_devices->fs_list); 564 free_fs_devices(fs_devices); 565 } 566 } 567 568 /* If there is at least one freed device return 0. */ 569 if (freed) 570 return 0; 571 572 return ret; 573 } 574 575 static struct btrfs_fs_devices *find_fsid_by_device( 576 struct btrfs_super_block *disk_super, 577 dev_t devt, bool *same_fsid_diff_dev) 578 { 579 struct btrfs_fs_devices *fsid_fs_devices; 580 struct btrfs_fs_devices *devt_fs_devices; 581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 583 bool found_by_devt = false; 584 585 /* Find the fs_device by the usual method, if found use it. */ 586 fsid_fs_devices = find_fsid(disk_super->fsid, 587 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 588 589 /* The temp_fsid feature is supported only with single device filesystem. */ 590 if (btrfs_super_num_devices(disk_super) != 1) 591 return fsid_fs_devices; 592 593 /* 594 * A seed device is an integral component of the sprout device, which 595 * functions as a multi-device filesystem. So, temp-fsid feature is 596 * not supported. 597 */ 598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) 599 return fsid_fs_devices; 600 601 /* Try to find a fs_devices by matching devt. */ 602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { 603 struct btrfs_device *device; 604 605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { 606 if (device->devt == devt) { 607 found_by_devt = true; 608 break; 609 } 610 } 611 if (found_by_devt) 612 break; 613 } 614 615 if (found_by_devt) { 616 /* Existing device. */ 617 if (fsid_fs_devices == NULL) { 618 if (devt_fs_devices->opened == 0) { 619 /* Stale device. */ 620 return NULL; 621 } else { 622 /* temp_fsid is mounting a subvol. */ 623 return devt_fs_devices; 624 } 625 } else { 626 /* Regular or temp_fsid device mounting a subvol. */ 627 return devt_fs_devices; 628 } 629 } else { 630 /* New device. */ 631 if (fsid_fs_devices == NULL) { 632 return NULL; 633 } else { 634 /* sb::fsid is already used create a new temp_fsid. */ 635 *same_fsid_diff_dev = true; 636 return NULL; 637 } 638 } 639 640 /* Not reached. */ 641 } 642 643 /* 644 * This is only used on mount, and we are protected from competing things 645 * messing with our fs_devices by the uuid_mutex, thus we do not need the 646 * fs_devices->device_list_mutex here. 647 */ 648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 649 struct btrfs_device *device, blk_mode_t flags, 650 void *holder) 651 { 652 struct file *bdev_file; 653 struct btrfs_super_block *disk_super; 654 u64 devid; 655 int ret; 656 657 if (device->bdev) 658 return -EINVAL; 659 if (!device->name) 660 return -EINVAL; 661 662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1, 663 &bdev_file, &disk_super); 664 if (ret) 665 return ret; 666 667 devid = btrfs_stack_device_id(&disk_super->dev_item); 668 if (devid != device->devid) 669 goto error_free_page; 670 671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 672 goto error_free_page; 673 674 device->generation = btrfs_super_generation(disk_super); 675 676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 677 if (btrfs_super_incompat_flags(disk_super) & 678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 679 btrfs_err(NULL, 680 "invalid seeding and uuid-changed device detected"); 681 goto error_free_page; 682 } 683 684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 685 fs_devices->seeding = true; 686 } else { 687 if (bdev_read_only(file_bdev(bdev_file))) 688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 689 else 690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 691 } 692 693 if (!bdev_nonrot(file_bdev(bdev_file))) 694 fs_devices->rotating = true; 695 696 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 697 fs_devices->discardable = true; 698 699 device->bdev_file = bdev_file; 700 device->bdev = file_bdev(bdev_file); 701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 702 703 if (device->devt != device->bdev->bd_dev) { 704 btrfs_warn(NULL, 705 "device %s maj:min changed from %d:%d to %d:%d", 706 rcu_dereference_raw(device->name), MAJOR(device->devt), 707 MINOR(device->devt), MAJOR(device->bdev->bd_dev), 708 MINOR(device->bdev->bd_dev)); 709 710 device->devt = device->bdev->bd_dev; 711 } 712 713 fs_devices->open_devices++; 714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 715 device->devid != BTRFS_DEV_REPLACE_DEVID) { 716 fs_devices->rw_devices++; 717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 718 } 719 btrfs_release_disk_super(disk_super); 720 721 return 0; 722 723 error_free_page: 724 btrfs_release_disk_super(disk_super); 725 bdev_fput(bdev_file); 726 727 return -EINVAL; 728 } 729 730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) 731 { 732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 734 735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 736 } 737 738 static bool is_same_device(struct btrfs_device *device, const char *new_path) 739 { 740 struct path old = { .mnt = NULL, .dentry = NULL }; 741 struct path new = { .mnt = NULL, .dentry = NULL }; 742 char *old_path = NULL; 743 bool is_same = false; 744 int ret; 745 746 if (!device->name) 747 goto out; 748 749 old_path = kzalloc(PATH_MAX, GFP_NOFS); 750 if (!old_path) 751 goto out; 752 753 rcu_read_lock(); 754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX); 755 rcu_read_unlock(); 756 if (ret < 0) 757 goto out; 758 759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old); 760 if (ret) 761 goto out; 762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new); 763 if (ret) 764 goto out; 765 if (path_equal(&old, &new)) 766 is_same = true; 767 out: 768 kfree(old_path); 769 path_put(&old); 770 path_put(&new); 771 return is_same; 772 } 773 774 /* 775 * Add new device to list of registered devices 776 * 777 * Returns: 778 * device pointer which was just added or updated when successful 779 * error pointer when failed 780 */ 781 static noinline struct btrfs_device *device_list_add(const char *path, 782 struct btrfs_super_block *disk_super, 783 bool *new_device_added) 784 { 785 struct btrfs_device *device; 786 struct btrfs_fs_devices *fs_devices = NULL; 787 const char *name; 788 u64 found_transid = btrfs_super_generation(disk_super); 789 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 790 dev_t path_devt; 791 int ret; 792 bool same_fsid_diff_dev = false; 793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 795 796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 797 btrfs_err(NULL, 798 "device %s has incomplete metadata_uuid change, please use btrfstune to complete", 799 path); 800 return ERR_PTR(-EAGAIN); 801 } 802 803 ret = lookup_bdev(path, &path_devt); 804 if (ret) { 805 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 806 path, ret); 807 return ERR_PTR(ret); 808 } 809 810 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); 811 812 if (!fs_devices) { 813 fs_devices = alloc_fs_devices(disk_super->fsid); 814 if (IS_ERR(fs_devices)) 815 return ERR_CAST(fs_devices); 816 817 if (has_metadata_uuid) 818 memcpy(fs_devices->metadata_uuid, 819 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 820 821 if (same_fsid_diff_dev) { 822 generate_random_uuid(fs_devices->fsid); 823 fs_devices->temp_fsid = true; 824 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU", 825 path, MAJOR(path_devt), MINOR(path_devt), 826 fs_devices->fsid); 827 } 828 829 mutex_lock(&fs_devices->device_list_mutex); 830 list_add(&fs_devices->fs_list, &fs_uuids); 831 832 device = NULL; 833 } else { 834 struct btrfs_dev_lookup_args args = { 835 .devid = devid, 836 .uuid = disk_super->dev_item.uuid, 837 }; 838 839 mutex_lock(&fs_devices->device_list_mutex); 840 device = btrfs_find_device(fs_devices, &args); 841 842 if (found_transid > fs_devices->latest_generation) { 843 memcpy(fs_devices->fsid, disk_super->fsid, 844 BTRFS_FSID_SIZE); 845 memcpy(fs_devices->metadata_uuid, 846 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 847 } 848 } 849 850 if (!device) { 851 unsigned int nofs_flag; 852 853 if (fs_devices->opened) { 854 btrfs_err(NULL, 855 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 856 path, MAJOR(path_devt), MINOR(path_devt), 857 fs_devices->fsid, current->comm, 858 task_pid_nr(current)); 859 mutex_unlock(&fs_devices->device_list_mutex); 860 return ERR_PTR(-EBUSY); 861 } 862 863 nofs_flag = memalloc_nofs_save(); 864 device = btrfs_alloc_device(NULL, &devid, 865 disk_super->dev_item.uuid, path); 866 memalloc_nofs_restore(nofs_flag); 867 if (IS_ERR(device)) { 868 mutex_unlock(&fs_devices->device_list_mutex); 869 /* we can safely leave the fs_devices entry around */ 870 return device; 871 } 872 873 device->devt = path_devt; 874 875 list_add_rcu(&device->dev_list, &fs_devices->devices); 876 fs_devices->num_devices++; 877 878 device->fs_devices = fs_devices; 879 *new_device_added = true; 880 881 if (disk_super->label[0]) 882 pr_info( 883 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 884 disk_super->label, devid, found_transid, path, 885 MAJOR(path_devt), MINOR(path_devt), 886 current->comm, task_pid_nr(current)); 887 else 888 pr_info( 889 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", 890 disk_super->fsid, devid, found_transid, path, 891 MAJOR(path_devt), MINOR(path_devt), 892 current->comm, task_pid_nr(current)); 893 894 } else if (!device->name || !is_same_device(device, path)) { 895 const char *old_name; 896 897 /* 898 * When FS is already mounted. 899 * 1. If you are here and if the device->name is NULL that 900 * means this device was missing at time of FS mount. 901 * 2. If you are here and if the device->name is different 902 * from 'path' that means either 903 * a. The same device disappeared and reappeared with 904 * different name. or 905 * b. The missing-disk-which-was-replaced, has 906 * reappeared now. 907 * 908 * We must allow 1 and 2a above. But 2b would be a spurious 909 * and unintentional. 910 * 911 * Further in case of 1 and 2a above, the disk at 'path' 912 * would have missed some transaction when it was away and 913 * in case of 2a the stale bdev has to be updated as well. 914 * 2b must not be allowed at all time. 915 */ 916 917 /* 918 * For now, we do allow update to btrfs_fs_device through the 919 * btrfs dev scan cli after FS has been mounted. We're still 920 * tracking a problem where systems fail mount by subvolume id 921 * when we reject replacement on a mounted FS. 922 */ 923 if (!fs_devices->opened && found_transid < device->generation) { 924 /* 925 * That is if the FS is _not_ mounted and if you 926 * are here, that means there is more than one 927 * disk with same uuid and devid.We keep the one 928 * with larger generation number or the last-in if 929 * generation are equal. 930 */ 931 mutex_unlock(&fs_devices->device_list_mutex); 932 btrfs_err(NULL, 933 "device %s already registered with a higher generation, found %llu expect %llu", 934 path, found_transid, device->generation); 935 return ERR_PTR(-EEXIST); 936 } 937 938 /* 939 * We are going to replace the device path for a given devid, 940 * make sure it's the same device if the device is mounted 941 * 942 * NOTE: the device->fs_info may not be reliable here so pass 943 * in a NULL to message helpers instead. This avoids a possible 944 * use-after-free when the fs_info and fs_info->sb are already 945 * torn down. 946 */ 947 if (device->bdev) { 948 if (device->devt != path_devt) { 949 mutex_unlock(&fs_devices->device_list_mutex); 950 btrfs_warn(NULL, 951 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 952 path, devid, found_transid, 953 current->comm, 954 task_pid_nr(current)); 955 return ERR_PTR(-EEXIST); 956 } 957 btrfs_info(NULL, 958 "devid %llu device path %s changed to %s scanned by %s (%d)", 959 devid, btrfs_dev_name(device), 960 path, current->comm, 961 task_pid_nr(current)); 962 } 963 964 name = kstrdup(path, GFP_NOFS); 965 if (!name) { 966 mutex_unlock(&fs_devices->device_list_mutex); 967 return ERR_PTR(-ENOMEM); 968 } 969 rcu_read_lock(); 970 old_name = rcu_dereference(device->name); 971 rcu_read_unlock(); 972 rcu_assign_pointer(device->name, name); 973 kfree_rcu_mightsleep(old_name); 974 975 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 976 fs_devices->missing_devices--; 977 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 978 } 979 device->devt = path_devt; 980 } 981 982 /* 983 * Unmount does not free the btrfs_device struct but would zero 984 * generation along with most of the other members. So just update 985 * it back. We need it to pick the disk with largest generation 986 * (as above). 987 */ 988 if (!fs_devices->opened) { 989 device->generation = found_transid; 990 fs_devices->latest_generation = max_t(u64, found_transid, 991 fs_devices->latest_generation); 992 } 993 994 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 995 996 mutex_unlock(&fs_devices->device_list_mutex); 997 return device; 998 } 999 1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1001 { 1002 struct btrfs_fs_devices *fs_devices; 1003 struct btrfs_device *device; 1004 struct btrfs_device *orig_dev; 1005 int ret = 0; 1006 1007 lockdep_assert_held(&uuid_mutex); 1008 1009 fs_devices = alloc_fs_devices(orig->fsid); 1010 if (IS_ERR(fs_devices)) 1011 return fs_devices; 1012 1013 fs_devices->total_devices = orig->total_devices; 1014 1015 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1016 const char *dev_path = NULL; 1017 1018 /* 1019 * This is ok to do without RCU read locked because we hold the 1020 * uuid mutex so nothing we touch in here is going to disappear. 1021 */ 1022 if (orig_dev->name) 1023 dev_path = rcu_dereference_raw(orig_dev->name); 1024 1025 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1026 orig_dev->uuid, dev_path); 1027 if (IS_ERR(device)) { 1028 ret = PTR_ERR(device); 1029 goto error; 1030 } 1031 1032 if (orig_dev->zone_info) { 1033 struct btrfs_zoned_device_info *zone_info; 1034 1035 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1036 if (!zone_info) { 1037 btrfs_free_device(device); 1038 ret = -ENOMEM; 1039 goto error; 1040 } 1041 device->zone_info = zone_info; 1042 } 1043 1044 list_add(&device->dev_list, &fs_devices->devices); 1045 device->fs_devices = fs_devices; 1046 fs_devices->num_devices++; 1047 } 1048 return fs_devices; 1049 error: 1050 free_fs_devices(fs_devices); 1051 return ERR_PTR(ret); 1052 } 1053 1054 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1055 struct btrfs_device **latest_dev) 1056 { 1057 struct btrfs_device *device, *next; 1058 1059 /* This is the initialized path, it is safe to release the devices. */ 1060 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1061 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1062 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1063 &device->dev_state) && 1064 !test_bit(BTRFS_DEV_STATE_MISSING, 1065 &device->dev_state) && 1066 (!*latest_dev || 1067 device->generation > (*latest_dev)->generation)) { 1068 *latest_dev = device; 1069 } 1070 continue; 1071 } 1072 1073 /* 1074 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1075 * in btrfs_init_dev_replace() so just continue. 1076 */ 1077 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1078 continue; 1079 1080 if (device->bdev_file) { 1081 bdev_fput(device->bdev_file); 1082 device->bdev = NULL; 1083 device->bdev_file = NULL; 1084 fs_devices->open_devices--; 1085 } 1086 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1087 list_del_init(&device->dev_alloc_list); 1088 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1089 fs_devices->rw_devices--; 1090 } 1091 list_del_init(&device->dev_list); 1092 fs_devices->num_devices--; 1093 btrfs_free_device(device); 1094 } 1095 1096 } 1097 1098 /* 1099 * After we have read the system tree and know devids belonging to this 1100 * filesystem, remove the device which does not belong there. 1101 */ 1102 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1103 { 1104 struct btrfs_device *latest_dev = NULL; 1105 struct btrfs_fs_devices *seed_dev; 1106 1107 mutex_lock(&uuid_mutex); 1108 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1109 1110 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1111 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1112 1113 fs_devices->latest_dev = latest_dev; 1114 1115 mutex_unlock(&uuid_mutex); 1116 } 1117 1118 static void btrfs_close_bdev(struct btrfs_device *device) 1119 { 1120 if (!device->bdev) 1121 return; 1122 1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1124 sync_blockdev(device->bdev); 1125 invalidate_bdev(device->bdev); 1126 } 1127 1128 bdev_fput(device->bdev_file); 1129 } 1130 1131 static void btrfs_close_one_device(struct btrfs_device *device) 1132 { 1133 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1134 1135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1136 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1137 list_del_init(&device->dev_alloc_list); 1138 fs_devices->rw_devices--; 1139 } 1140 1141 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1143 1144 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1145 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1146 fs_devices->missing_devices--; 1147 } 1148 1149 btrfs_close_bdev(device); 1150 if (device->bdev) { 1151 fs_devices->open_devices--; 1152 device->bdev = NULL; 1153 device->bdev_file = NULL; 1154 } 1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1156 btrfs_destroy_dev_zone_info(device); 1157 1158 device->fs_info = NULL; 1159 atomic_set(&device->dev_stats_ccnt, 0); 1160 btrfs_extent_io_tree_release(&device->alloc_state); 1161 1162 /* 1163 * Reset the flush error record. We might have a transient flush error 1164 * in this mount, and if so we aborted the current transaction and set 1165 * the fs to an error state, guaranteeing no super blocks can be further 1166 * committed. However that error might be transient and if we unmount the 1167 * filesystem and mount it again, we should allow the mount to succeed 1168 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1169 * filesystem again we still get flush errors, then we will again abort 1170 * any transaction and set the error state, guaranteeing no commits of 1171 * unsafe super blocks. 1172 */ 1173 device->last_flush_error = 0; 1174 1175 /* Verify the device is back in a pristine state */ 1176 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1177 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1178 WARN_ON(!list_empty(&device->dev_alloc_list)); 1179 WARN_ON(!list_empty(&device->post_commit_list)); 1180 } 1181 1182 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1183 { 1184 struct btrfs_device *device, *tmp; 1185 1186 lockdep_assert_held(&uuid_mutex); 1187 1188 if (--fs_devices->opened > 0) 1189 return; 1190 1191 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1192 btrfs_close_one_device(device); 1193 1194 WARN_ON(fs_devices->open_devices); 1195 WARN_ON(fs_devices->rw_devices); 1196 fs_devices->opened = 0; 1197 fs_devices->seeding = false; 1198 fs_devices->fs_info = NULL; 1199 } 1200 1201 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1202 { 1203 LIST_HEAD(list); 1204 struct btrfs_fs_devices *tmp; 1205 1206 mutex_lock(&uuid_mutex); 1207 close_fs_devices(fs_devices); 1208 if (!fs_devices->opened && !fs_devices->holding) { 1209 list_splice_init(&fs_devices->seed_list, &list); 1210 1211 /* 1212 * If the struct btrfs_fs_devices is not assembled with any 1213 * other device, it can be re-initialized during the next mount 1214 * without the needing device-scan step. Therefore, it can be 1215 * fully freed. 1216 */ 1217 if (fs_devices->num_devices == 1) { 1218 list_del(&fs_devices->fs_list); 1219 free_fs_devices(fs_devices); 1220 } 1221 } 1222 1223 1224 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1225 close_fs_devices(fs_devices); 1226 list_del(&fs_devices->seed_list); 1227 free_fs_devices(fs_devices); 1228 } 1229 mutex_unlock(&uuid_mutex); 1230 } 1231 1232 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1233 blk_mode_t flags, void *holder) 1234 { 1235 struct btrfs_device *device; 1236 struct btrfs_device *latest_dev = NULL; 1237 struct btrfs_device *tmp_device; 1238 s64 __maybe_unused value = 0; 1239 int ret = 0; 1240 1241 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1242 dev_list) { 1243 int ret2; 1244 1245 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); 1246 if (ret2 == 0 && 1247 (!latest_dev || device->generation > latest_dev->generation)) { 1248 latest_dev = device; 1249 } else if (ret2 == -ENODATA) { 1250 fs_devices->num_devices--; 1251 list_del(&device->dev_list); 1252 btrfs_free_device(device); 1253 } 1254 if (ret == 0 && ret2 != 0) 1255 ret = ret2; 1256 } 1257 1258 if (fs_devices->open_devices == 0) { 1259 if (ret) 1260 return ret; 1261 return -EINVAL; 1262 } 1263 1264 fs_devices->opened = 1; 1265 fs_devices->latest_dev = latest_dev; 1266 fs_devices->total_rw_bytes = 0; 1267 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1268 #ifdef CONFIG_BTRFS_EXPERIMENTAL 1269 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; 1270 fs_devices->read_devid = latest_dev->devid; 1271 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), 1272 &value); 1273 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1274 fs_devices->collect_fs_stats = true; 1275 1276 if (value) { 1277 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) 1278 fs_devices->rr_min_contig_read = value; 1279 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) 1280 fs_devices->read_devid = value; 1281 } 1282 #else 1283 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1284 #endif 1285 1286 return 0; 1287 } 1288 1289 static int devid_cmp(void *priv, const struct list_head *a, 1290 const struct list_head *b) 1291 { 1292 const struct btrfs_device *dev1, *dev2; 1293 1294 dev1 = list_entry(a, struct btrfs_device, dev_list); 1295 dev2 = list_entry(b, struct btrfs_device, dev_list); 1296 1297 if (dev1->devid < dev2->devid) 1298 return -1; 1299 else if (dev1->devid > dev2->devid) 1300 return 1; 1301 return 0; 1302 } 1303 1304 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1305 blk_mode_t flags, void *holder) 1306 { 1307 int ret; 1308 1309 lockdep_assert_held(&uuid_mutex); 1310 /* 1311 * The device_list_mutex cannot be taken here in case opening the 1312 * underlying device takes further locks like open_mutex. 1313 * 1314 * We also don't need the lock here as this is called during mount and 1315 * exclusion is provided by uuid_mutex 1316 */ 1317 1318 if (fs_devices->opened) { 1319 fs_devices->opened++; 1320 ret = 0; 1321 } else { 1322 list_sort(NULL, &fs_devices->devices, devid_cmp); 1323 ret = open_fs_devices(fs_devices, flags, holder); 1324 } 1325 1326 return ret; 1327 } 1328 1329 void btrfs_release_disk_super(struct btrfs_super_block *super) 1330 { 1331 struct page *page = virt_to_page(super); 1332 1333 put_page(page); 1334 } 1335 1336 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1337 int copy_num, bool drop_cache) 1338 { 1339 struct btrfs_super_block *super; 1340 struct page *page; 1341 u64 bytenr, bytenr_orig; 1342 struct address_space *mapping = bdev->bd_mapping; 1343 int ret; 1344 1345 bytenr_orig = btrfs_sb_offset(copy_num); 1346 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 1347 if (ret < 0) { 1348 if (ret == -ENOENT) 1349 ret = -EINVAL; 1350 return ERR_PTR(ret); 1351 } 1352 1353 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 1354 return ERR_PTR(-EINVAL); 1355 1356 if (drop_cache) { 1357 /* This should only be called with the primary sb. */ 1358 ASSERT(copy_num == 0); 1359 1360 /* 1361 * Drop the page of the primary superblock, so later read will 1362 * always read from the device. 1363 */ 1364 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, 1365 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 1366 } 1367 1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 1369 if (IS_ERR(page)) 1370 return ERR_CAST(page); 1371 1372 super = page_address(page); 1373 if (btrfs_super_magic(super) != BTRFS_MAGIC || 1374 btrfs_super_bytenr(super) != bytenr_orig) { 1375 btrfs_release_disk_super(super); 1376 return ERR_PTR(-EINVAL); 1377 } 1378 1379 /* 1380 * Make sure the last byte of label is properly NUL termiated. We use 1381 * '%s' to print the label, if not properly NUL termiated we can access 1382 * beyond the label. 1383 */ 1384 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) 1385 super->label[BTRFS_LABEL_SIZE - 1] = 0; 1386 1387 return super; 1388 } 1389 1390 int btrfs_forget_devices(dev_t devt) 1391 { 1392 int ret; 1393 1394 mutex_lock(&uuid_mutex); 1395 ret = btrfs_free_stale_devices(devt, NULL); 1396 mutex_unlock(&uuid_mutex); 1397 1398 return ret; 1399 } 1400 1401 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, 1402 const char *path, dev_t devt, 1403 bool mount_arg_dev) 1404 { 1405 struct btrfs_fs_devices *fs_devices; 1406 1407 /* 1408 * Do not skip device registration for mounted devices with matching 1409 * maj:min but different paths. Booting without initrd relies on 1410 * /dev/root initially, later replaced with the actual root device. 1411 * A successful scan ensures grub2-probe selects the correct device. 1412 */ 1413 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 1414 struct btrfs_device *device; 1415 1416 mutex_lock(&fs_devices->device_list_mutex); 1417 1418 if (!fs_devices->opened) { 1419 mutex_unlock(&fs_devices->device_list_mutex); 1420 continue; 1421 } 1422 1423 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1424 if (device->bdev && (device->bdev->bd_dev == devt) && 1425 strcmp(rcu_dereference_raw(device->name), path) != 0) { 1426 mutex_unlock(&fs_devices->device_list_mutex); 1427 1428 /* Do not skip registration. */ 1429 return false; 1430 } 1431 } 1432 mutex_unlock(&fs_devices->device_list_mutex); 1433 } 1434 1435 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && 1436 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) 1437 return true; 1438 1439 return false; 1440 } 1441 1442 /* 1443 * Look for a btrfs signature on a device. This may be called out of the mount path 1444 * and we are not allowed to call set_blocksize during the scan. The superblock 1445 * is read via pagecache. 1446 * 1447 * With @mount_arg_dev it's a scan during mount time that will always register 1448 * the device or return an error. Multi-device and seeding devices are registered 1449 * in both cases. 1450 */ 1451 struct btrfs_device *btrfs_scan_one_device(const char *path, 1452 bool mount_arg_dev) 1453 { 1454 struct btrfs_super_block *disk_super; 1455 bool new_device_added = false; 1456 struct btrfs_device *device = NULL; 1457 struct file *bdev_file; 1458 dev_t devt; 1459 1460 lockdep_assert_held(&uuid_mutex); 1461 1462 /* 1463 * Avoid an exclusive open here, as the systemd-udev may initiate the 1464 * device scan which may race with the user's mount or mkfs command, 1465 * resulting in failure. 1466 * Since the device scan is solely for reading purposes, there is no 1467 * need for an exclusive open. Additionally, the devices are read again 1468 * during the mount process. It is ok to get some inconsistent 1469 * values temporarily, as the device paths of the fsid are the only 1470 * required information for assembling the volume. 1471 */ 1472 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL); 1473 if (IS_ERR(bdev_file)) 1474 return ERR_CAST(bdev_file); 1475 1476 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); 1477 if (IS_ERR(disk_super)) { 1478 device = ERR_CAST(disk_super); 1479 goto error_bdev_put; 1480 } 1481 1482 devt = file_bdev(bdev_file)->bd_dev; 1483 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { 1484 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)", 1485 path, MAJOR(devt), MINOR(devt)); 1486 1487 btrfs_free_stale_devices(devt, NULL); 1488 1489 device = NULL; 1490 goto free_disk_super; 1491 } 1492 1493 device = device_list_add(path, disk_super, &new_device_added); 1494 if (!IS_ERR(device) && new_device_added) 1495 btrfs_free_stale_devices(device->devt, device); 1496 1497 free_disk_super: 1498 btrfs_release_disk_super(disk_super); 1499 1500 error_bdev_put: 1501 bdev_fput(bdev_file); 1502 1503 return device; 1504 } 1505 1506 /* 1507 * Try to find a chunk that intersects [start, start + len] range and when one 1508 * such is found, record the end of it in *start 1509 */ 1510 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1511 u64 len) 1512 { 1513 u64 physical_start, physical_end; 1514 1515 lockdep_assert_held(&device->fs_info->chunk_mutex); 1516 1517 if (btrfs_find_first_extent_bit(&device->alloc_state, *start, 1518 &physical_start, &physical_end, 1519 CHUNK_ALLOCATED, NULL)) { 1520 1521 if (in_range(physical_start, *start, len) || 1522 in_range(*start, physical_start, 1523 physical_end + 1 - physical_start)) { 1524 *start = physical_end + 1; 1525 return true; 1526 } 1527 } 1528 return false; 1529 } 1530 1531 static u64 dev_extent_search_start(struct btrfs_device *device) 1532 { 1533 switch (device->fs_devices->chunk_alloc_policy) { 1534 default: 1535 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1536 fallthrough; 1537 case BTRFS_CHUNK_ALLOC_REGULAR: 1538 return BTRFS_DEVICE_RANGE_RESERVED; 1539 case BTRFS_CHUNK_ALLOC_ZONED: 1540 /* 1541 * We don't care about the starting region like regular 1542 * allocator, because we anyway use/reserve the first two zones 1543 * for superblock logging. 1544 */ 1545 return 0; 1546 } 1547 } 1548 1549 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1550 u64 *hole_start, u64 *hole_size, 1551 u64 num_bytes) 1552 { 1553 u64 zone_size = device->zone_info->zone_size; 1554 u64 pos; 1555 int ret; 1556 bool changed = false; 1557 1558 ASSERT(IS_ALIGNED(*hole_start, zone_size), 1559 "hole_start=%llu zone_size=%llu", *hole_start, zone_size); 1560 1561 while (*hole_size > 0) { 1562 pos = btrfs_find_allocatable_zones(device, *hole_start, 1563 *hole_start + *hole_size, 1564 num_bytes); 1565 if (pos != *hole_start) { 1566 *hole_size = *hole_start + *hole_size - pos; 1567 *hole_start = pos; 1568 changed = true; 1569 if (*hole_size < num_bytes) 1570 break; 1571 } 1572 1573 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1574 1575 /* Range is ensured to be empty */ 1576 if (!ret) 1577 return changed; 1578 1579 /* Given hole range was invalid (outside of device) */ 1580 if (ret == -ERANGE) { 1581 *hole_start += *hole_size; 1582 *hole_size = 0; 1583 return true; 1584 } 1585 1586 *hole_start += zone_size; 1587 *hole_size -= zone_size; 1588 changed = true; 1589 } 1590 1591 return changed; 1592 } 1593 1594 /* 1595 * Check if specified hole is suitable for allocation. 1596 * 1597 * @device: the device which we have the hole 1598 * @hole_start: starting position of the hole 1599 * @hole_size: the size of the hole 1600 * @num_bytes: the size of the free space that we need 1601 * 1602 * This function may modify @hole_start and @hole_size to reflect the suitable 1603 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1604 */ 1605 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1606 u64 *hole_size, u64 num_bytes) 1607 { 1608 bool changed = false; 1609 u64 hole_end = *hole_start + *hole_size; 1610 1611 for (;;) { 1612 /* 1613 * Check before we set max_hole_start, otherwise we could end up 1614 * sending back this offset anyway. 1615 */ 1616 if (contains_pending_extent(device, hole_start, *hole_size)) { 1617 if (hole_end >= *hole_start) 1618 *hole_size = hole_end - *hole_start; 1619 else 1620 *hole_size = 0; 1621 changed = true; 1622 } 1623 1624 switch (device->fs_devices->chunk_alloc_policy) { 1625 default: 1626 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); 1627 fallthrough; 1628 case BTRFS_CHUNK_ALLOC_REGULAR: 1629 /* No extra check */ 1630 break; 1631 case BTRFS_CHUNK_ALLOC_ZONED: 1632 if (dev_extent_hole_check_zoned(device, hole_start, 1633 hole_size, num_bytes)) { 1634 changed = true; 1635 /* 1636 * The changed hole can contain pending extent. 1637 * Loop again to check that. 1638 */ 1639 continue; 1640 } 1641 break; 1642 } 1643 1644 break; 1645 } 1646 1647 return changed; 1648 } 1649 1650 /* 1651 * Find free space in the specified device. 1652 * 1653 * @device: the device which we search the free space in 1654 * @num_bytes: the size of the free space that we need 1655 * @search_start: the position from which to begin the search 1656 * @start: store the start of the free space. 1657 * @len: the size of the free space. that we find, or the size 1658 * of the max free space if we don't find suitable free space 1659 * 1660 * This does a pretty simple search, the expectation is that it is called very 1661 * infrequently and that a given device has a small number of extents. 1662 * 1663 * @start is used to store the start of the free space if we find. But if we 1664 * don't find suitable free space, it will be used to store the start position 1665 * of the max free space. 1666 * 1667 * @len is used to store the size of the free space that we find. 1668 * But if we don't find suitable free space, it is used to store the size of 1669 * the max free space. 1670 * 1671 * NOTE: This function will search *commit* root of device tree, and does extra 1672 * check to ensure dev extents are not double allocated. 1673 * This makes the function safe to allocate dev extents but may not report 1674 * correct usable device space, as device extent freed in current transaction 1675 * is not reported as available. 1676 */ 1677 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1678 u64 *start, u64 *len) 1679 { 1680 struct btrfs_fs_info *fs_info = device->fs_info; 1681 struct btrfs_root *root = fs_info->dev_root; 1682 struct btrfs_key key; 1683 struct btrfs_dev_extent *dev_extent; 1684 struct btrfs_path *path; 1685 u64 search_start; 1686 u64 hole_size; 1687 u64 max_hole_start; 1688 u64 max_hole_size = 0; 1689 u64 extent_end; 1690 u64 search_end = device->total_bytes; 1691 int ret; 1692 int slot; 1693 struct extent_buffer *l; 1694 1695 search_start = dev_extent_search_start(device); 1696 max_hole_start = search_start; 1697 1698 WARN_ON(device->zone_info && 1699 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1700 1701 path = btrfs_alloc_path(); 1702 if (!path) { 1703 ret = -ENOMEM; 1704 goto out; 1705 } 1706 again: 1707 if (search_start >= search_end || 1708 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1709 ret = -ENOSPC; 1710 goto out; 1711 } 1712 1713 path->reada = READA_FORWARD; 1714 path->search_commit_root = 1; 1715 path->skip_locking = 1; 1716 1717 key.objectid = device->devid; 1718 key.type = BTRFS_DEV_EXTENT_KEY; 1719 key.offset = search_start; 1720 1721 ret = btrfs_search_backwards(root, &key, path); 1722 if (ret < 0) 1723 goto out; 1724 1725 while (search_start < search_end) { 1726 l = path->nodes[0]; 1727 slot = path->slots[0]; 1728 if (slot >= btrfs_header_nritems(l)) { 1729 ret = btrfs_next_leaf(root, path); 1730 if (ret == 0) 1731 continue; 1732 if (ret < 0) 1733 goto out; 1734 1735 break; 1736 } 1737 btrfs_item_key_to_cpu(l, &key, slot); 1738 1739 if (key.objectid < device->devid) 1740 goto next; 1741 1742 if (key.objectid > device->devid) 1743 break; 1744 1745 if (key.type != BTRFS_DEV_EXTENT_KEY) 1746 goto next; 1747 1748 if (key.offset > search_end) 1749 break; 1750 1751 if (key.offset > search_start) { 1752 hole_size = key.offset - search_start; 1753 dev_extent_hole_check(device, &search_start, &hole_size, 1754 num_bytes); 1755 1756 if (hole_size > max_hole_size) { 1757 max_hole_start = search_start; 1758 max_hole_size = hole_size; 1759 } 1760 1761 /* 1762 * If this free space is greater than which we need, 1763 * it must be the max free space that we have found 1764 * until now, so max_hole_start must point to the start 1765 * of this free space and the length of this free space 1766 * is stored in max_hole_size. Thus, we return 1767 * max_hole_start and max_hole_size and go back to the 1768 * caller. 1769 */ 1770 if (hole_size >= num_bytes) { 1771 ret = 0; 1772 goto out; 1773 } 1774 } 1775 1776 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1777 extent_end = key.offset + btrfs_dev_extent_length(l, 1778 dev_extent); 1779 if (extent_end > search_start) 1780 search_start = extent_end; 1781 next: 1782 path->slots[0]++; 1783 cond_resched(); 1784 } 1785 1786 /* 1787 * At this point, search_start should be the end of 1788 * allocated dev extents, and when shrinking the device, 1789 * search_end may be smaller than search_start. 1790 */ 1791 if (search_end > search_start) { 1792 hole_size = search_end - search_start; 1793 if (dev_extent_hole_check(device, &search_start, &hole_size, 1794 num_bytes)) { 1795 btrfs_release_path(path); 1796 goto again; 1797 } 1798 1799 if (hole_size > max_hole_size) { 1800 max_hole_start = search_start; 1801 max_hole_size = hole_size; 1802 } 1803 } 1804 1805 /* See above. */ 1806 if (max_hole_size < num_bytes) 1807 ret = -ENOSPC; 1808 else 1809 ret = 0; 1810 1811 ASSERT(max_hole_start + max_hole_size <= search_end, 1812 "max_hole_start=%llu max_hole_size=%llu search_end=%llu", 1813 max_hole_start, max_hole_size, search_end); 1814 out: 1815 btrfs_free_path(path); 1816 *start = max_hole_start; 1817 if (len) 1818 *len = max_hole_size; 1819 return ret; 1820 } 1821 1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1823 struct btrfs_device *device, 1824 u64 start, u64 *dev_extent_len) 1825 { 1826 struct btrfs_fs_info *fs_info = device->fs_info; 1827 struct btrfs_root *root = fs_info->dev_root; 1828 int ret; 1829 struct btrfs_path *path; 1830 struct btrfs_key key; 1831 struct btrfs_key found_key; 1832 struct extent_buffer *leaf = NULL; 1833 struct btrfs_dev_extent *extent = NULL; 1834 1835 path = btrfs_alloc_path(); 1836 if (!path) 1837 return -ENOMEM; 1838 1839 key.objectid = device->devid; 1840 key.type = BTRFS_DEV_EXTENT_KEY; 1841 key.offset = start; 1842 again: 1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1844 if (ret > 0) { 1845 ret = btrfs_previous_item(root, path, key.objectid, 1846 BTRFS_DEV_EXTENT_KEY); 1847 if (ret) 1848 goto out; 1849 leaf = path->nodes[0]; 1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1851 extent = btrfs_item_ptr(leaf, path->slots[0], 1852 struct btrfs_dev_extent); 1853 BUG_ON(found_key.offset > start || found_key.offset + 1854 btrfs_dev_extent_length(leaf, extent) < start); 1855 key = found_key; 1856 btrfs_release_path(path); 1857 goto again; 1858 } else if (ret == 0) { 1859 leaf = path->nodes[0]; 1860 extent = btrfs_item_ptr(leaf, path->slots[0], 1861 struct btrfs_dev_extent); 1862 } else { 1863 goto out; 1864 } 1865 1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1867 1868 ret = btrfs_del_item(trans, root, path); 1869 if (ret == 0) 1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1871 out: 1872 btrfs_free_path(path); 1873 return ret; 1874 } 1875 1876 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1877 { 1878 struct rb_node *n; 1879 u64 ret = 0; 1880 1881 read_lock(&fs_info->mapping_tree_lock); 1882 n = rb_last(&fs_info->mapping_tree.rb_root); 1883 if (n) { 1884 struct btrfs_chunk_map *map; 1885 1886 map = rb_entry(n, struct btrfs_chunk_map, rb_node); 1887 ret = map->start + map->chunk_len; 1888 } 1889 read_unlock(&fs_info->mapping_tree_lock); 1890 1891 return ret; 1892 } 1893 1894 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1895 u64 *devid_ret) 1896 { 1897 int ret; 1898 struct btrfs_key key; 1899 struct btrfs_key found_key; 1900 struct btrfs_path *path; 1901 1902 path = btrfs_alloc_path(); 1903 if (!path) 1904 return -ENOMEM; 1905 1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1907 key.type = BTRFS_DEV_ITEM_KEY; 1908 key.offset = (u64)-1; 1909 1910 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1911 if (ret < 0) 1912 goto error; 1913 1914 if (ret == 0) { 1915 /* Corruption */ 1916 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1917 ret = -EUCLEAN; 1918 goto error; 1919 } 1920 1921 ret = btrfs_previous_item(fs_info->chunk_root, path, 1922 BTRFS_DEV_ITEMS_OBJECTID, 1923 BTRFS_DEV_ITEM_KEY); 1924 if (ret) { 1925 *devid_ret = 1; 1926 } else { 1927 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1928 path->slots[0]); 1929 *devid_ret = found_key.offset + 1; 1930 } 1931 ret = 0; 1932 error: 1933 btrfs_free_path(path); 1934 return ret; 1935 } 1936 1937 /* 1938 * the device information is stored in the chunk root 1939 * the btrfs_device struct should be fully filled in 1940 */ 1941 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1942 struct btrfs_device *device) 1943 { 1944 int ret; 1945 struct btrfs_path *path; 1946 struct btrfs_dev_item *dev_item; 1947 struct extent_buffer *leaf; 1948 struct btrfs_key key; 1949 unsigned long ptr; 1950 1951 path = btrfs_alloc_path(); 1952 if (!path) 1953 return -ENOMEM; 1954 1955 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1956 key.type = BTRFS_DEV_ITEM_KEY; 1957 key.offset = device->devid; 1958 1959 btrfs_reserve_chunk_metadata(trans, true); 1960 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1961 &key, sizeof(*dev_item)); 1962 btrfs_trans_release_chunk_metadata(trans); 1963 if (ret) 1964 goto out; 1965 1966 leaf = path->nodes[0]; 1967 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1968 1969 btrfs_set_device_id(leaf, dev_item, device->devid); 1970 btrfs_set_device_generation(leaf, dev_item, 0); 1971 btrfs_set_device_type(leaf, dev_item, device->type); 1972 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1973 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1975 btrfs_set_device_total_bytes(leaf, dev_item, 1976 btrfs_device_get_disk_total_bytes(device)); 1977 btrfs_set_device_bytes_used(leaf, dev_item, 1978 btrfs_device_get_bytes_used(device)); 1979 btrfs_set_device_group(leaf, dev_item, 0); 1980 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1981 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1982 btrfs_set_device_start_offset(leaf, dev_item, 0); 1983 1984 ptr = btrfs_device_uuid(dev_item); 1985 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1986 ptr = btrfs_device_fsid(dev_item); 1987 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1988 ptr, BTRFS_FSID_SIZE); 1989 1990 ret = 0; 1991 out: 1992 btrfs_free_path(path); 1993 return ret; 1994 } 1995 1996 /* 1997 * Function to update ctime/mtime for a given device path. 1998 * Mainly used for ctime/mtime based probe like libblkid. 1999 * 2000 * We don't care about errors here, this is just to be kind to userspace. 2001 */ 2002 static void update_dev_time(const char *device_path) 2003 { 2004 struct path path; 2005 int ret; 2006 2007 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 2008 if (ret) 2009 return; 2010 2011 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 2012 path_put(&path); 2013 } 2014 2015 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 2016 struct btrfs_device *device) 2017 { 2018 struct btrfs_root *root = device->fs_info->chunk_root; 2019 int ret; 2020 struct btrfs_path *path; 2021 struct btrfs_key key; 2022 2023 path = btrfs_alloc_path(); 2024 if (!path) 2025 return -ENOMEM; 2026 2027 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2028 key.type = BTRFS_DEV_ITEM_KEY; 2029 key.offset = device->devid; 2030 2031 btrfs_reserve_chunk_metadata(trans, false); 2032 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2033 btrfs_trans_release_chunk_metadata(trans); 2034 if (ret) { 2035 if (ret > 0) 2036 ret = -ENOENT; 2037 goto out; 2038 } 2039 2040 ret = btrfs_del_item(trans, root, path); 2041 out: 2042 btrfs_free_path(path); 2043 return ret; 2044 } 2045 2046 /* 2047 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2048 * filesystem. It's up to the caller to adjust that number regarding eg. device 2049 * replace. 2050 */ 2051 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2052 u64 num_devices) 2053 { 2054 u64 all_avail; 2055 unsigned seq; 2056 int i; 2057 2058 do { 2059 seq = read_seqbegin(&fs_info->profiles_lock); 2060 2061 all_avail = fs_info->avail_data_alloc_bits | 2062 fs_info->avail_system_alloc_bits | 2063 fs_info->avail_metadata_alloc_bits; 2064 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2065 2066 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2067 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2068 continue; 2069 2070 if (num_devices < btrfs_raid_array[i].devs_min) 2071 return btrfs_raid_array[i].mindev_error; 2072 } 2073 2074 return 0; 2075 } 2076 2077 static struct btrfs_device * btrfs_find_next_active_device( 2078 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2079 { 2080 struct btrfs_device *next_device; 2081 2082 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2083 if (next_device != device && 2084 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2085 && next_device->bdev) 2086 return next_device; 2087 } 2088 2089 return NULL; 2090 } 2091 2092 /* 2093 * Helper function to check if the given device is part of s_bdev / latest_dev 2094 * and replace it with the provided or the next active device, in the context 2095 * where this function called, there should be always be another device (or 2096 * this_dev) which is active. 2097 */ 2098 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2099 struct btrfs_device *next_device) 2100 { 2101 struct btrfs_fs_info *fs_info = device->fs_info; 2102 2103 if (!next_device) 2104 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2105 device); 2106 ASSERT(next_device); 2107 2108 if (fs_info->sb->s_bdev && 2109 (fs_info->sb->s_bdev == device->bdev)) 2110 fs_info->sb->s_bdev = next_device->bdev; 2111 2112 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2113 fs_info->fs_devices->latest_dev = next_device; 2114 } 2115 2116 /* 2117 * Return btrfs_fs_devices::num_devices excluding the device that's being 2118 * currently replaced. 2119 */ 2120 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2121 { 2122 u64 num_devices = fs_info->fs_devices->num_devices; 2123 2124 down_read(&fs_info->dev_replace.rwsem); 2125 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2126 ASSERT(num_devices > 1, "num_devices=%llu", num_devices); 2127 num_devices--; 2128 } 2129 up_read(&fs_info->dev_replace.rwsem); 2130 2131 return num_devices; 2132 } 2133 2134 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2135 struct block_device *bdev, int copy_num) 2136 { 2137 struct btrfs_super_block *disk_super; 2138 const size_t len = sizeof(disk_super->magic); 2139 const u64 bytenr = btrfs_sb_offset(copy_num); 2140 int ret; 2141 2142 disk_super = btrfs_read_disk_super(bdev, copy_num, false); 2143 if (IS_ERR(disk_super)) 2144 return; 2145 2146 memset(&disk_super->magic, 0, len); 2147 folio_mark_dirty(virt_to_folio(disk_super)); 2148 btrfs_release_disk_super(disk_super); 2149 2150 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2151 if (ret) 2152 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2153 copy_num, ret); 2154 } 2155 2156 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) 2157 { 2158 int copy_num; 2159 struct block_device *bdev = device->bdev; 2160 2161 if (!bdev) 2162 return; 2163 2164 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2165 if (bdev_is_zoned(bdev)) 2166 btrfs_reset_sb_log_zones(bdev, copy_num); 2167 else 2168 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2169 } 2170 2171 /* Notify udev that device has changed */ 2172 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2173 2174 /* Update ctime/mtime for device path for libblkid */ 2175 update_dev_time(rcu_dereference_raw(device->name)); 2176 } 2177 2178 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2179 struct btrfs_dev_lookup_args *args, 2180 struct file **bdev_file) 2181 { 2182 struct btrfs_trans_handle *trans; 2183 struct btrfs_device *device; 2184 struct btrfs_fs_devices *cur_devices; 2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2186 u64 num_devices; 2187 int ret = 0; 2188 2189 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2190 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2191 return -EINVAL; 2192 } 2193 2194 /* 2195 * The device list in fs_devices is accessed without locks (neither 2196 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2197 * filesystem and another device rm cannot run. 2198 */ 2199 num_devices = btrfs_num_devices(fs_info); 2200 2201 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2202 if (ret) 2203 return ret; 2204 2205 device = btrfs_find_device(fs_info->fs_devices, args); 2206 if (!device) { 2207 if (args->missing) 2208 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2209 else 2210 ret = -ENOENT; 2211 return ret; 2212 } 2213 2214 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2215 btrfs_warn(fs_info, 2216 "cannot remove device %s (devid %llu) due to active swapfile", 2217 btrfs_dev_name(device), device->devid); 2218 return -ETXTBSY; 2219 } 2220 2221 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2222 return BTRFS_ERROR_DEV_TGT_REPLACE; 2223 2224 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2225 fs_info->fs_devices->rw_devices == 1) 2226 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2227 2228 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2229 mutex_lock(&fs_info->chunk_mutex); 2230 list_del_init(&device->dev_alloc_list); 2231 device->fs_devices->rw_devices--; 2232 mutex_unlock(&fs_info->chunk_mutex); 2233 } 2234 2235 ret = btrfs_shrink_device(device, 0); 2236 if (ret) 2237 goto error_undo; 2238 2239 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2240 if (IS_ERR(trans)) { 2241 ret = PTR_ERR(trans); 2242 goto error_undo; 2243 } 2244 2245 ret = btrfs_rm_dev_item(trans, device); 2246 if (ret) { 2247 /* Any error in dev item removal is critical */ 2248 btrfs_crit(fs_info, 2249 "failed to remove device item for devid %llu: %d", 2250 device->devid, ret); 2251 btrfs_abort_transaction(trans, ret); 2252 btrfs_end_transaction(trans); 2253 return ret; 2254 } 2255 2256 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2257 btrfs_scrub_cancel_dev(device); 2258 2259 /* 2260 * the device list mutex makes sure that we don't change 2261 * the device list while someone else is writing out all 2262 * the device supers. Whoever is writing all supers, should 2263 * lock the device list mutex before getting the number of 2264 * devices in the super block (super_copy). Conversely, 2265 * whoever updates the number of devices in the super block 2266 * (super_copy) should hold the device list mutex. 2267 */ 2268 2269 /* 2270 * In normal cases the cur_devices == fs_devices. But in case 2271 * of deleting a seed device, the cur_devices should point to 2272 * its own fs_devices listed under the fs_devices->seed_list. 2273 */ 2274 cur_devices = device->fs_devices; 2275 mutex_lock(&fs_devices->device_list_mutex); 2276 list_del_rcu(&device->dev_list); 2277 2278 cur_devices->num_devices--; 2279 cur_devices->total_devices--; 2280 /* Update total_devices of the parent fs_devices if it's seed */ 2281 if (cur_devices != fs_devices) 2282 fs_devices->total_devices--; 2283 2284 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2285 cur_devices->missing_devices--; 2286 2287 btrfs_assign_next_active_device(device, NULL); 2288 2289 if (device->bdev_file) { 2290 cur_devices->open_devices--; 2291 /* remove sysfs entry */ 2292 btrfs_sysfs_remove_device(device); 2293 } 2294 2295 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2296 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2297 mutex_unlock(&fs_devices->device_list_mutex); 2298 2299 /* 2300 * At this point, the device is zero sized and detached from the 2301 * devices list. All that's left is to zero out the old supers and 2302 * free the device. 2303 * 2304 * We cannot call btrfs_close_bdev() here because we're holding the sb 2305 * write lock, and bdev_fput() on the block device will pull in the 2306 * ->open_mutex on the block device and it's dependencies. Instead 2307 * just flush the device and let the caller do the final bdev_release. 2308 */ 2309 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2310 btrfs_scratch_superblocks(fs_info, device); 2311 if (device->bdev) { 2312 sync_blockdev(device->bdev); 2313 invalidate_bdev(device->bdev); 2314 } 2315 } 2316 2317 *bdev_file = device->bdev_file; 2318 synchronize_rcu(); 2319 btrfs_free_device(device); 2320 2321 /* 2322 * This can happen if cur_devices is the private seed devices list. We 2323 * cannot call close_fs_devices() here because it expects the uuid_mutex 2324 * to be held, but in fact we don't need that for the private 2325 * seed_devices, we can simply decrement cur_devices->opened and then 2326 * remove it from our list and free the fs_devices. 2327 */ 2328 if (cur_devices->num_devices == 0) { 2329 list_del_init(&cur_devices->seed_list); 2330 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); 2331 cur_devices->opened--; 2332 free_fs_devices(cur_devices); 2333 } 2334 2335 ret = btrfs_commit_transaction(trans); 2336 2337 return ret; 2338 2339 error_undo: 2340 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2341 mutex_lock(&fs_info->chunk_mutex); 2342 list_add(&device->dev_alloc_list, 2343 &fs_devices->alloc_list); 2344 device->fs_devices->rw_devices++; 2345 mutex_unlock(&fs_info->chunk_mutex); 2346 } 2347 return ret; 2348 } 2349 2350 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2351 { 2352 struct btrfs_fs_devices *fs_devices; 2353 2354 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2355 2356 /* 2357 * in case of fs with no seed, srcdev->fs_devices will point 2358 * to fs_devices of fs_info. However when the dev being replaced is 2359 * a seed dev it will point to the seed's local fs_devices. In short 2360 * srcdev will have its correct fs_devices in both the cases. 2361 */ 2362 fs_devices = srcdev->fs_devices; 2363 2364 list_del_rcu(&srcdev->dev_list); 2365 list_del(&srcdev->dev_alloc_list); 2366 fs_devices->num_devices--; 2367 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2368 fs_devices->missing_devices--; 2369 2370 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2371 fs_devices->rw_devices--; 2372 2373 if (srcdev->bdev) 2374 fs_devices->open_devices--; 2375 } 2376 2377 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2378 { 2379 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2380 2381 mutex_lock(&uuid_mutex); 2382 2383 btrfs_close_bdev(srcdev); 2384 synchronize_rcu(); 2385 btrfs_free_device(srcdev); 2386 2387 /* if this is no devs we rather delete the fs_devices */ 2388 if (!fs_devices->num_devices) { 2389 /* 2390 * On a mounted FS, num_devices can't be zero unless it's a 2391 * seed. In case of a seed device being replaced, the replace 2392 * target added to the sprout FS, so there will be no more 2393 * device left under the seed FS. 2394 */ 2395 ASSERT(fs_devices->seeding); 2396 2397 list_del_init(&fs_devices->seed_list); 2398 close_fs_devices(fs_devices); 2399 free_fs_devices(fs_devices); 2400 } 2401 mutex_unlock(&uuid_mutex); 2402 } 2403 2404 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2405 { 2406 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2407 2408 mutex_lock(&fs_devices->device_list_mutex); 2409 2410 btrfs_sysfs_remove_device(tgtdev); 2411 2412 if (tgtdev->bdev) 2413 fs_devices->open_devices--; 2414 2415 fs_devices->num_devices--; 2416 2417 btrfs_assign_next_active_device(tgtdev, NULL); 2418 2419 list_del_rcu(&tgtdev->dev_list); 2420 2421 mutex_unlock(&fs_devices->device_list_mutex); 2422 2423 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); 2424 2425 btrfs_close_bdev(tgtdev); 2426 synchronize_rcu(); 2427 btrfs_free_device(tgtdev); 2428 } 2429 2430 /* 2431 * Populate args from device at path. 2432 * 2433 * @fs_info: the filesystem 2434 * @args: the args to populate 2435 * @path: the path to the device 2436 * 2437 * This will read the super block of the device at @path and populate @args with 2438 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2439 * lookup a device to operate on, but need to do it before we take any locks. 2440 * This properly handles the special case of "missing" that a user may pass in, 2441 * and does some basic sanity checks. The caller must make sure that @path is 2442 * properly NUL terminated before calling in, and must call 2443 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2444 * uuid buffers. 2445 * 2446 * Return: 0 for success, -errno for failure 2447 */ 2448 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2449 struct btrfs_dev_lookup_args *args, 2450 const char *path) 2451 { 2452 struct btrfs_super_block *disk_super; 2453 struct file *bdev_file; 2454 int ret; 2455 2456 if (!path || !path[0]) 2457 return -EINVAL; 2458 if (!strcmp(path, "missing")) { 2459 args->missing = true; 2460 return 0; 2461 } 2462 2463 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2464 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2465 if (!args->uuid || !args->fsid) { 2466 btrfs_put_dev_args_from_path(args); 2467 return -ENOMEM; 2468 } 2469 2470 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2471 &bdev_file, &disk_super); 2472 if (ret) { 2473 btrfs_put_dev_args_from_path(args); 2474 return ret; 2475 } 2476 2477 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2478 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2479 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2480 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2481 else 2482 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2483 btrfs_release_disk_super(disk_super); 2484 bdev_fput(bdev_file); 2485 return 0; 2486 } 2487 2488 /* 2489 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2490 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2491 * that don't need to be freed. 2492 */ 2493 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2494 { 2495 kfree(args->uuid); 2496 kfree(args->fsid); 2497 args->uuid = NULL; 2498 args->fsid = NULL; 2499 } 2500 2501 struct btrfs_device *btrfs_find_device_by_devspec( 2502 struct btrfs_fs_info *fs_info, u64 devid, 2503 const char *device_path) 2504 { 2505 BTRFS_DEV_LOOKUP_ARGS(args); 2506 struct btrfs_device *device; 2507 int ret; 2508 2509 if (devid) { 2510 args.devid = devid; 2511 device = btrfs_find_device(fs_info->fs_devices, &args); 2512 if (!device) 2513 return ERR_PTR(-ENOENT); 2514 return device; 2515 } 2516 2517 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2518 if (ret) 2519 return ERR_PTR(ret); 2520 device = btrfs_find_device(fs_info->fs_devices, &args); 2521 btrfs_put_dev_args_from_path(&args); 2522 if (!device) 2523 return ERR_PTR(-ENOENT); 2524 return device; 2525 } 2526 2527 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2528 { 2529 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2530 struct btrfs_fs_devices *old_devices; 2531 struct btrfs_fs_devices *seed_devices; 2532 2533 lockdep_assert_held(&uuid_mutex); 2534 if (!fs_devices->seeding) 2535 return ERR_PTR(-EINVAL); 2536 2537 /* 2538 * Private copy of the seed devices, anchored at 2539 * fs_info->fs_devices->seed_list 2540 */ 2541 seed_devices = alloc_fs_devices(NULL); 2542 if (IS_ERR(seed_devices)) 2543 return seed_devices; 2544 2545 /* 2546 * It's necessary to retain a copy of the original seed fs_devices in 2547 * fs_uuids so that filesystems which have been seeded can successfully 2548 * reference the seed device from open_seed_devices. This also supports 2549 * multiple fs seed. 2550 */ 2551 old_devices = clone_fs_devices(fs_devices); 2552 if (IS_ERR(old_devices)) { 2553 kfree(seed_devices); 2554 return old_devices; 2555 } 2556 2557 list_add(&old_devices->fs_list, &fs_uuids); 2558 2559 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2560 seed_devices->opened = 1; 2561 INIT_LIST_HEAD(&seed_devices->devices); 2562 INIT_LIST_HEAD(&seed_devices->alloc_list); 2563 mutex_init(&seed_devices->device_list_mutex); 2564 2565 return seed_devices; 2566 } 2567 2568 /* 2569 * Splice seed devices into the sprout fs_devices. 2570 * Generate a new fsid for the sprouted read-write filesystem. 2571 */ 2572 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2573 struct btrfs_fs_devices *seed_devices) 2574 { 2575 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2576 struct btrfs_super_block *disk_super = fs_info->super_copy; 2577 struct btrfs_device *device; 2578 u64 super_flags; 2579 2580 /* 2581 * We are updating the fsid, the thread leading to device_list_add() 2582 * could race, so uuid_mutex is needed. 2583 */ 2584 lockdep_assert_held(&uuid_mutex); 2585 2586 /* 2587 * The threads listed below may traverse dev_list but can do that without 2588 * device_list_mutex: 2589 * - All device ops and balance - as we are in btrfs_exclop_start. 2590 * - Various dev_list readers - are using RCU. 2591 * - btrfs_ioctl_fitrim() - is using RCU. 2592 * 2593 * For-read threads as below are using device_list_mutex: 2594 * - Readonly scrub btrfs_scrub_dev() 2595 * - Readonly scrub btrfs_scrub_progress() 2596 * - btrfs_get_dev_stats() 2597 */ 2598 lockdep_assert_held(&fs_devices->device_list_mutex); 2599 2600 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2601 synchronize_rcu); 2602 list_for_each_entry(device, &seed_devices->devices, dev_list) 2603 device->fs_devices = seed_devices; 2604 2605 fs_devices->seeding = false; 2606 fs_devices->num_devices = 0; 2607 fs_devices->open_devices = 0; 2608 fs_devices->missing_devices = 0; 2609 fs_devices->rotating = false; 2610 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2611 2612 generate_random_uuid(fs_devices->fsid); 2613 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2614 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2615 2616 super_flags = btrfs_super_flags(disk_super) & 2617 ~BTRFS_SUPER_FLAG_SEEDING; 2618 btrfs_set_super_flags(disk_super, super_flags); 2619 } 2620 2621 /* 2622 * Store the expected generation for seed devices in device items. 2623 */ 2624 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2625 { 2626 BTRFS_DEV_LOOKUP_ARGS(args); 2627 struct btrfs_fs_info *fs_info = trans->fs_info; 2628 struct btrfs_root *root = fs_info->chunk_root; 2629 struct btrfs_path *path; 2630 struct extent_buffer *leaf; 2631 struct btrfs_dev_item *dev_item; 2632 struct btrfs_device *device; 2633 struct btrfs_key key; 2634 u8 fs_uuid[BTRFS_FSID_SIZE]; 2635 u8 dev_uuid[BTRFS_UUID_SIZE]; 2636 int ret; 2637 2638 path = btrfs_alloc_path(); 2639 if (!path) 2640 return -ENOMEM; 2641 2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2643 key.type = BTRFS_DEV_ITEM_KEY; 2644 key.offset = 0; 2645 2646 while (1) { 2647 btrfs_reserve_chunk_metadata(trans, false); 2648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2649 btrfs_trans_release_chunk_metadata(trans); 2650 if (ret < 0) 2651 goto error; 2652 2653 leaf = path->nodes[0]; 2654 next_slot: 2655 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2656 ret = btrfs_next_leaf(root, path); 2657 if (ret > 0) 2658 break; 2659 if (ret < 0) 2660 goto error; 2661 leaf = path->nodes[0]; 2662 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2663 btrfs_release_path(path); 2664 continue; 2665 } 2666 2667 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2668 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2669 key.type != BTRFS_DEV_ITEM_KEY) 2670 break; 2671 2672 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2673 struct btrfs_dev_item); 2674 args.devid = btrfs_device_id(leaf, dev_item); 2675 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2676 BTRFS_UUID_SIZE); 2677 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2678 BTRFS_FSID_SIZE); 2679 args.uuid = dev_uuid; 2680 args.fsid = fs_uuid; 2681 device = btrfs_find_device(fs_info->fs_devices, &args); 2682 BUG_ON(!device); /* Logic error */ 2683 2684 if (device->fs_devices->seeding) 2685 btrfs_set_device_generation(leaf, dev_item, 2686 device->generation); 2687 2688 path->slots[0]++; 2689 goto next_slot; 2690 } 2691 ret = 0; 2692 error: 2693 btrfs_free_path(path); 2694 return ret; 2695 } 2696 2697 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2698 { 2699 struct btrfs_root *root = fs_info->dev_root; 2700 struct btrfs_trans_handle *trans; 2701 struct btrfs_device *device; 2702 struct file *bdev_file; 2703 struct super_block *sb = fs_info->sb; 2704 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2705 struct btrfs_fs_devices *seed_devices = NULL; 2706 u64 orig_super_total_bytes; 2707 u64 orig_super_num_devices; 2708 int ret = 0; 2709 bool seeding_dev = false; 2710 bool locked = false; 2711 2712 if (sb_rdonly(sb) && !fs_devices->seeding) 2713 return -EROFS; 2714 2715 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, 2716 fs_info->sb, &fs_holder_ops); 2717 if (IS_ERR(bdev_file)) 2718 return PTR_ERR(bdev_file); 2719 2720 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { 2721 ret = -EINVAL; 2722 goto error; 2723 } 2724 2725 if (fs_devices->seeding) { 2726 seeding_dev = true; 2727 down_write(&sb->s_umount); 2728 mutex_lock(&uuid_mutex); 2729 locked = true; 2730 } 2731 2732 sync_blockdev(file_bdev(bdev_file)); 2733 2734 rcu_read_lock(); 2735 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2736 if (device->bdev == file_bdev(bdev_file)) { 2737 ret = -EEXIST; 2738 rcu_read_unlock(); 2739 goto error; 2740 } 2741 } 2742 rcu_read_unlock(); 2743 2744 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2745 if (IS_ERR(device)) { 2746 /* we can safely leave the fs_devices entry around */ 2747 ret = PTR_ERR(device); 2748 goto error; 2749 } 2750 2751 device->fs_info = fs_info; 2752 device->bdev_file = bdev_file; 2753 device->bdev = file_bdev(bdev_file); 2754 ret = lookup_bdev(device_path, &device->devt); 2755 if (ret) 2756 goto error_free_device; 2757 2758 ret = btrfs_get_dev_zone_info(device, false); 2759 if (ret) 2760 goto error_free_device; 2761 2762 trans = btrfs_start_transaction(root, 0); 2763 if (IS_ERR(trans)) { 2764 ret = PTR_ERR(trans); 2765 goto error_free_zone; 2766 } 2767 2768 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2769 device->generation = trans->transid; 2770 device->io_width = fs_info->sectorsize; 2771 device->io_align = fs_info->sectorsize; 2772 device->sector_size = fs_info->sectorsize; 2773 device->total_bytes = 2774 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); 2775 device->disk_total_bytes = device->total_bytes; 2776 device->commit_total_bytes = device->total_bytes; 2777 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2778 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2779 device->dev_stats_valid = 1; 2780 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); 2781 2782 if (seeding_dev) { 2783 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2784 seed_devices = btrfs_init_sprout(fs_info); 2785 if (IS_ERR(seed_devices)) { 2786 ret = PTR_ERR(seed_devices); 2787 btrfs_abort_transaction(trans, ret); 2788 goto error_trans; 2789 } 2790 } 2791 2792 mutex_lock(&fs_devices->device_list_mutex); 2793 if (seeding_dev) { 2794 btrfs_setup_sprout(fs_info, seed_devices); 2795 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2796 device); 2797 } 2798 2799 device->fs_devices = fs_devices; 2800 2801 mutex_lock(&fs_info->chunk_mutex); 2802 list_add_rcu(&device->dev_list, &fs_devices->devices); 2803 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2804 fs_devices->num_devices++; 2805 fs_devices->open_devices++; 2806 fs_devices->rw_devices++; 2807 fs_devices->total_devices++; 2808 fs_devices->total_rw_bytes += device->total_bytes; 2809 2810 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2811 2812 if (!bdev_nonrot(device->bdev)) 2813 fs_devices->rotating = true; 2814 2815 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2816 btrfs_set_super_total_bytes(fs_info->super_copy, 2817 round_down(orig_super_total_bytes + device->total_bytes, 2818 fs_info->sectorsize)); 2819 2820 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2821 btrfs_set_super_num_devices(fs_info->super_copy, 2822 orig_super_num_devices + 1); 2823 2824 /* 2825 * we've got more storage, clear any full flags on the space 2826 * infos 2827 */ 2828 btrfs_clear_space_info_full(fs_info); 2829 2830 mutex_unlock(&fs_info->chunk_mutex); 2831 2832 /* Add sysfs device entry */ 2833 btrfs_sysfs_add_device(device); 2834 2835 mutex_unlock(&fs_devices->device_list_mutex); 2836 2837 if (seeding_dev) { 2838 mutex_lock(&fs_info->chunk_mutex); 2839 ret = init_first_rw_device(trans); 2840 mutex_unlock(&fs_info->chunk_mutex); 2841 if (ret) { 2842 btrfs_abort_transaction(trans, ret); 2843 goto error_sysfs; 2844 } 2845 } 2846 2847 ret = btrfs_add_dev_item(trans, device); 2848 if (ret) { 2849 btrfs_abort_transaction(trans, ret); 2850 goto error_sysfs; 2851 } 2852 2853 if (seeding_dev) { 2854 ret = btrfs_finish_sprout(trans); 2855 if (ret) { 2856 btrfs_abort_transaction(trans, ret); 2857 goto error_sysfs; 2858 } 2859 2860 /* 2861 * fs_devices now represents the newly sprouted filesystem and 2862 * its fsid has been changed by btrfs_sprout_splice(). 2863 */ 2864 btrfs_sysfs_update_sprout_fsid(fs_devices); 2865 } 2866 2867 ret = btrfs_commit_transaction(trans); 2868 2869 if (seeding_dev) { 2870 mutex_unlock(&uuid_mutex); 2871 up_write(&sb->s_umount); 2872 locked = false; 2873 2874 if (ret) /* transaction commit */ 2875 return ret; 2876 2877 ret = btrfs_relocate_sys_chunks(fs_info); 2878 if (ret < 0) 2879 btrfs_handle_fs_error(fs_info, ret, 2880 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2881 trans = btrfs_attach_transaction(root); 2882 if (IS_ERR(trans)) { 2883 if (PTR_ERR(trans) == -ENOENT) 2884 return 0; 2885 ret = PTR_ERR(trans); 2886 trans = NULL; 2887 goto error_sysfs; 2888 } 2889 ret = btrfs_commit_transaction(trans); 2890 } 2891 2892 /* 2893 * Now that we have written a new super block to this device, check all 2894 * other fs_devices list if device_path alienates any other scanned 2895 * device. 2896 * We can ignore the return value as it typically returns -EINVAL and 2897 * only succeeds if the device was an alien. 2898 */ 2899 btrfs_forget_devices(device->devt); 2900 2901 /* Update ctime/mtime for blkid or udev */ 2902 update_dev_time(device_path); 2903 2904 return ret; 2905 2906 error_sysfs: 2907 btrfs_sysfs_remove_device(device); 2908 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2909 mutex_lock(&fs_info->chunk_mutex); 2910 list_del_rcu(&device->dev_list); 2911 list_del(&device->dev_alloc_list); 2912 fs_info->fs_devices->num_devices--; 2913 fs_info->fs_devices->open_devices--; 2914 fs_info->fs_devices->rw_devices--; 2915 fs_info->fs_devices->total_devices--; 2916 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2917 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2918 btrfs_set_super_total_bytes(fs_info->super_copy, 2919 orig_super_total_bytes); 2920 btrfs_set_super_num_devices(fs_info->super_copy, 2921 orig_super_num_devices); 2922 mutex_unlock(&fs_info->chunk_mutex); 2923 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2924 error_trans: 2925 if (trans) 2926 btrfs_end_transaction(trans); 2927 error_free_zone: 2928 btrfs_destroy_dev_zone_info(device); 2929 error_free_device: 2930 btrfs_free_device(device); 2931 error: 2932 bdev_fput(bdev_file); 2933 if (locked) { 2934 mutex_unlock(&uuid_mutex); 2935 up_write(&sb->s_umount); 2936 } 2937 return ret; 2938 } 2939 2940 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2941 struct btrfs_device *device) 2942 { 2943 int ret; 2944 struct btrfs_path *path; 2945 struct btrfs_root *root = device->fs_info->chunk_root; 2946 struct btrfs_dev_item *dev_item; 2947 struct extent_buffer *leaf; 2948 struct btrfs_key key; 2949 2950 path = btrfs_alloc_path(); 2951 if (!path) 2952 return -ENOMEM; 2953 2954 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2955 key.type = BTRFS_DEV_ITEM_KEY; 2956 key.offset = device->devid; 2957 2958 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2959 if (ret < 0) 2960 goto out; 2961 2962 if (ret > 0) { 2963 ret = -ENOENT; 2964 goto out; 2965 } 2966 2967 leaf = path->nodes[0]; 2968 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2969 2970 btrfs_set_device_id(leaf, dev_item, device->devid); 2971 btrfs_set_device_type(leaf, dev_item, device->type); 2972 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2973 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2975 btrfs_set_device_total_bytes(leaf, dev_item, 2976 btrfs_device_get_disk_total_bytes(device)); 2977 btrfs_set_device_bytes_used(leaf, dev_item, 2978 btrfs_device_get_bytes_used(device)); 2979 out: 2980 btrfs_free_path(path); 2981 return ret; 2982 } 2983 2984 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2985 struct btrfs_device *device, u64 new_size) 2986 { 2987 struct btrfs_fs_info *fs_info = device->fs_info; 2988 struct btrfs_super_block *super_copy = fs_info->super_copy; 2989 u64 old_total; 2990 u64 diff; 2991 int ret; 2992 2993 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2994 return -EACCES; 2995 2996 new_size = round_down(new_size, fs_info->sectorsize); 2997 2998 mutex_lock(&fs_info->chunk_mutex); 2999 old_total = btrfs_super_total_bytes(super_copy); 3000 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 3001 3002 if (new_size <= device->total_bytes || 3003 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 3004 mutex_unlock(&fs_info->chunk_mutex); 3005 return -EINVAL; 3006 } 3007 3008 btrfs_set_super_total_bytes(super_copy, 3009 round_down(old_total + diff, fs_info->sectorsize)); 3010 device->fs_devices->total_rw_bytes += diff; 3011 atomic64_add(diff, &fs_info->free_chunk_space); 3012 3013 btrfs_device_set_total_bytes(device, new_size); 3014 btrfs_device_set_disk_total_bytes(device, new_size); 3015 btrfs_clear_space_info_full(device->fs_info); 3016 if (list_empty(&device->post_commit_list)) 3017 list_add_tail(&device->post_commit_list, 3018 &trans->transaction->dev_update_list); 3019 mutex_unlock(&fs_info->chunk_mutex); 3020 3021 btrfs_reserve_chunk_metadata(trans, false); 3022 ret = btrfs_update_device(trans, device); 3023 btrfs_trans_release_chunk_metadata(trans); 3024 3025 return ret; 3026 } 3027 3028 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3029 { 3030 struct btrfs_fs_info *fs_info = trans->fs_info; 3031 struct btrfs_root *root = fs_info->chunk_root; 3032 int ret; 3033 struct btrfs_path *path; 3034 struct btrfs_key key; 3035 3036 path = btrfs_alloc_path(); 3037 if (!path) 3038 return -ENOMEM; 3039 3040 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3041 key.type = BTRFS_CHUNK_ITEM_KEY; 3042 key.offset = chunk_offset; 3043 3044 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3045 if (ret < 0) 3046 goto out; 3047 else if (ret > 0) { /* Logic error or corruption */ 3048 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", 3049 chunk_offset); 3050 btrfs_abort_transaction(trans, -ENOENT); 3051 ret = -EUCLEAN; 3052 goto out; 3053 } 3054 3055 ret = btrfs_del_item(trans, root, path); 3056 if (ret < 0) { 3057 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); 3058 btrfs_abort_transaction(trans, ret); 3059 goto out; 3060 } 3061 out: 3062 btrfs_free_path(path); 3063 return ret; 3064 } 3065 3066 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3067 { 3068 struct btrfs_super_block *super_copy = fs_info->super_copy; 3069 struct btrfs_disk_key *disk_key; 3070 struct btrfs_chunk *chunk; 3071 u8 *ptr; 3072 int ret = 0; 3073 u32 num_stripes; 3074 u32 array_size; 3075 u32 len = 0; 3076 u32 cur; 3077 struct btrfs_key key; 3078 3079 lockdep_assert_held(&fs_info->chunk_mutex); 3080 array_size = btrfs_super_sys_array_size(super_copy); 3081 3082 ptr = super_copy->sys_chunk_array; 3083 cur = 0; 3084 3085 while (cur < array_size) { 3086 disk_key = (struct btrfs_disk_key *)ptr; 3087 btrfs_disk_key_to_cpu(&key, disk_key); 3088 3089 len = sizeof(*disk_key); 3090 3091 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3092 chunk = (struct btrfs_chunk *)(ptr + len); 3093 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3094 len += btrfs_chunk_item_size(num_stripes); 3095 } else { 3096 ret = -EIO; 3097 break; 3098 } 3099 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3100 key.offset == chunk_offset) { 3101 memmove(ptr, ptr + len, array_size - (cur + len)); 3102 array_size -= len; 3103 btrfs_set_super_sys_array_size(super_copy, array_size); 3104 } else { 3105 ptr += len; 3106 cur += len; 3107 } 3108 } 3109 return ret; 3110 } 3111 3112 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 3113 u64 logical, u64 length) 3114 { 3115 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; 3116 struct rb_node *prev = NULL; 3117 struct rb_node *orig_prev; 3118 struct btrfs_chunk_map *map; 3119 struct btrfs_chunk_map *prev_map = NULL; 3120 3121 while (node) { 3122 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 3123 prev = node; 3124 prev_map = map; 3125 3126 if (logical < map->start) { 3127 node = node->rb_left; 3128 } else if (logical >= map->start + map->chunk_len) { 3129 node = node->rb_right; 3130 } else { 3131 refcount_inc(&map->refs); 3132 return map; 3133 } 3134 } 3135 3136 if (!prev) 3137 return NULL; 3138 3139 orig_prev = prev; 3140 while (prev && logical >= prev_map->start + prev_map->chunk_len) { 3141 prev = rb_next(prev); 3142 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3143 } 3144 3145 if (!prev) { 3146 prev = orig_prev; 3147 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3148 while (prev && logical < prev_map->start) { 3149 prev = rb_prev(prev); 3150 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); 3151 } 3152 } 3153 3154 if (prev) { 3155 u64 end = logical + length; 3156 3157 /* 3158 * Caller can pass a U64_MAX length when it wants to get any 3159 * chunk starting at an offset of 'logical' or higher, so deal 3160 * with underflow by resetting the end offset to U64_MAX. 3161 */ 3162 if (end < logical) 3163 end = U64_MAX; 3164 3165 if (end > prev_map->start && 3166 logical < prev_map->start + prev_map->chunk_len) { 3167 refcount_inc(&prev_map->refs); 3168 return prev_map; 3169 } 3170 } 3171 3172 return NULL; 3173 } 3174 3175 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 3176 u64 logical, u64 length) 3177 { 3178 struct btrfs_chunk_map *map; 3179 3180 read_lock(&fs_info->mapping_tree_lock); 3181 map = btrfs_find_chunk_map_nolock(fs_info, logical, length); 3182 read_unlock(&fs_info->mapping_tree_lock); 3183 3184 return map; 3185 } 3186 3187 /* 3188 * Find the mapping containing the given logical extent. 3189 * 3190 * @logical: Logical block offset in bytes. 3191 * @length: Length of extent in bytes. 3192 * 3193 * Return: Chunk mapping or ERR_PTR. 3194 */ 3195 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3196 u64 logical, u64 length) 3197 { 3198 struct btrfs_chunk_map *map; 3199 3200 map = btrfs_find_chunk_map(fs_info, logical, length); 3201 3202 if (unlikely(!map)) { 3203 btrfs_crit(fs_info, 3204 "unable to find chunk map for logical %llu length %llu", 3205 logical, length); 3206 return ERR_PTR(-EINVAL); 3207 } 3208 3209 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { 3210 btrfs_crit(fs_info, 3211 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3212 logical, logical + length, map->start, 3213 map->start + map->chunk_len); 3214 btrfs_free_chunk_map(map); 3215 return ERR_PTR(-EINVAL); 3216 } 3217 3218 /* Callers are responsible for dropping the reference. */ 3219 return map; 3220 } 3221 3222 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3223 struct btrfs_chunk_map *map, u64 chunk_offset) 3224 { 3225 int i; 3226 3227 /* 3228 * Removing chunk items and updating the device items in the chunks btree 3229 * requires holding the chunk_mutex. 3230 * See the comment at btrfs_chunk_alloc() for the details. 3231 */ 3232 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3233 3234 for (i = 0; i < map->num_stripes; i++) { 3235 int ret; 3236 3237 ret = btrfs_update_device(trans, map->stripes[i].dev); 3238 if (ret) 3239 return ret; 3240 } 3241 3242 return btrfs_free_chunk(trans, chunk_offset); 3243 } 3244 3245 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3246 { 3247 struct btrfs_fs_info *fs_info = trans->fs_info; 3248 struct btrfs_chunk_map *map; 3249 u64 dev_extent_len = 0; 3250 int i, ret = 0; 3251 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3252 3253 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3254 if (IS_ERR(map)) { 3255 /* 3256 * This is a logic error, but we don't want to just rely on the 3257 * user having built with ASSERT enabled, so if ASSERT doesn't 3258 * do anything we still error out. 3259 */ 3260 DEBUG_WARN("errr %ld reading chunk map at offset %llu", 3261 PTR_ERR(map), chunk_offset); 3262 return PTR_ERR(map); 3263 } 3264 3265 /* 3266 * First delete the device extent items from the devices btree. 3267 * We take the device_list_mutex to avoid racing with the finishing phase 3268 * of a device replace operation. See the comment below before acquiring 3269 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3270 * because that can result in a deadlock when deleting the device extent 3271 * items from the devices btree - COWing an extent buffer from the btree 3272 * may result in allocating a new metadata chunk, which would attempt to 3273 * lock again fs_info->chunk_mutex. 3274 */ 3275 mutex_lock(&fs_devices->device_list_mutex); 3276 for (i = 0; i < map->num_stripes; i++) { 3277 struct btrfs_device *device = map->stripes[i].dev; 3278 ret = btrfs_free_dev_extent(trans, device, 3279 map->stripes[i].physical, 3280 &dev_extent_len); 3281 if (ret) { 3282 mutex_unlock(&fs_devices->device_list_mutex); 3283 btrfs_abort_transaction(trans, ret); 3284 goto out; 3285 } 3286 3287 if (device->bytes_used > 0) { 3288 mutex_lock(&fs_info->chunk_mutex); 3289 btrfs_device_set_bytes_used(device, 3290 device->bytes_used - dev_extent_len); 3291 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3292 btrfs_clear_space_info_full(fs_info); 3293 3294 if (list_empty(&device->post_commit_list)) { 3295 list_add_tail(&device->post_commit_list, 3296 &trans->transaction->dev_update_list); 3297 } 3298 3299 mutex_unlock(&fs_info->chunk_mutex); 3300 } 3301 } 3302 mutex_unlock(&fs_devices->device_list_mutex); 3303 3304 /* 3305 * We acquire fs_info->chunk_mutex for 2 reasons: 3306 * 3307 * 1) Just like with the first phase of the chunk allocation, we must 3308 * reserve system space, do all chunk btree updates and deletions, and 3309 * update the system chunk array in the superblock while holding this 3310 * mutex. This is for similar reasons as explained on the comment at 3311 * the top of btrfs_chunk_alloc(); 3312 * 3313 * 2) Prevent races with the final phase of a device replace operation 3314 * that replaces the device object associated with the map's stripes, 3315 * because the device object's id can change at any time during that 3316 * final phase of the device replace operation 3317 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3318 * replaced device and then see it with an ID of 3319 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3320 * the device item, which does not exists on the chunk btree. 3321 * The finishing phase of device replace acquires both the 3322 * device_list_mutex and the chunk_mutex, in that order, so we are 3323 * safe by just acquiring the chunk_mutex. 3324 */ 3325 trans->removing_chunk = true; 3326 mutex_lock(&fs_info->chunk_mutex); 3327 3328 check_system_chunk(trans, map->type); 3329 3330 ret = remove_chunk_item(trans, map, chunk_offset); 3331 /* 3332 * Normally we should not get -ENOSPC since we reserved space before 3333 * through the call to check_system_chunk(). 3334 * 3335 * Despite our system space_info having enough free space, we may not 3336 * be able to allocate extents from its block groups, because all have 3337 * an incompatible profile, which will force us to allocate a new system 3338 * block group with the right profile, or right after we called 3339 * check_system_space() above, a scrub turned the only system block group 3340 * with enough free space into RO mode. 3341 * This is explained with more detail at do_chunk_alloc(). 3342 * 3343 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3344 */ 3345 if (ret == -ENOSPC) { 3346 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3347 struct btrfs_block_group *sys_bg; 3348 struct btrfs_space_info *space_info; 3349 3350 space_info = btrfs_find_space_info(fs_info, sys_flags); 3351 if (!space_info) { 3352 ret = -EINVAL; 3353 btrfs_abort_transaction(trans, ret); 3354 goto out; 3355 } 3356 3357 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); 3358 if (IS_ERR(sys_bg)) { 3359 ret = PTR_ERR(sys_bg); 3360 btrfs_abort_transaction(trans, ret); 3361 goto out; 3362 } 3363 3364 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3365 if (ret) { 3366 btrfs_abort_transaction(trans, ret); 3367 goto out; 3368 } 3369 3370 ret = remove_chunk_item(trans, map, chunk_offset); 3371 if (ret) { 3372 btrfs_abort_transaction(trans, ret); 3373 goto out; 3374 } 3375 } else if (ret) { 3376 btrfs_abort_transaction(trans, ret); 3377 goto out; 3378 } 3379 3380 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); 3381 3382 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3383 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3384 if (ret) { 3385 btrfs_abort_transaction(trans, ret); 3386 goto out; 3387 } 3388 } 3389 3390 mutex_unlock(&fs_info->chunk_mutex); 3391 trans->removing_chunk = false; 3392 3393 /* 3394 * We are done with chunk btree updates and deletions, so release the 3395 * system space we previously reserved (with check_system_chunk()). 3396 */ 3397 btrfs_trans_release_chunk_metadata(trans); 3398 3399 ret = btrfs_remove_block_group(trans, map); 3400 if (ret) { 3401 btrfs_abort_transaction(trans, ret); 3402 goto out; 3403 } 3404 3405 out: 3406 if (trans->removing_chunk) { 3407 mutex_unlock(&fs_info->chunk_mutex); 3408 trans->removing_chunk = false; 3409 } 3410 /* once for us */ 3411 btrfs_free_chunk_map(map); 3412 return ret; 3413 } 3414 3415 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3416 bool verbose) 3417 { 3418 struct btrfs_root *root = fs_info->chunk_root; 3419 struct btrfs_trans_handle *trans; 3420 struct btrfs_block_group *block_group; 3421 u64 length; 3422 int ret; 3423 3424 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3425 btrfs_err(fs_info, 3426 "relocate: not supported on extent tree v2 yet"); 3427 return -EINVAL; 3428 } 3429 3430 /* 3431 * Prevent races with automatic removal of unused block groups. 3432 * After we relocate and before we remove the chunk with offset 3433 * chunk_offset, automatic removal of the block group can kick in, 3434 * resulting in a failure when calling btrfs_remove_chunk() below. 3435 * 3436 * Make sure to acquire this mutex before doing a tree search (dev 3437 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3438 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3439 * we release the path used to search the chunk/dev tree and before 3440 * the current task acquires this mutex and calls us. 3441 */ 3442 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3443 3444 /* step one, relocate all the extents inside this chunk */ 3445 btrfs_scrub_pause(fs_info); 3446 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true); 3447 btrfs_scrub_continue(fs_info); 3448 if (ret) { 3449 /* 3450 * If we had a transaction abort, stop all running scrubs. 3451 * See transaction.c:cleanup_transaction() why we do it here. 3452 */ 3453 if (BTRFS_FS_ERROR(fs_info)) 3454 btrfs_scrub_cancel(fs_info); 3455 return ret; 3456 } 3457 3458 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3459 if (!block_group) 3460 return -ENOENT; 3461 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3462 length = block_group->length; 3463 btrfs_put_block_group(block_group); 3464 3465 /* 3466 * On a zoned file system, discard the whole block group, this will 3467 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3468 * resetting the zone fails, don't treat it as a fatal problem from the 3469 * filesystem's point of view. 3470 */ 3471 if (btrfs_is_zoned(fs_info)) { 3472 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3473 if (ret) 3474 btrfs_info(fs_info, 3475 "failed to reset zone %llu after relocation", 3476 chunk_offset); 3477 } 3478 3479 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3480 chunk_offset); 3481 if (IS_ERR(trans)) { 3482 ret = PTR_ERR(trans); 3483 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3484 return ret; 3485 } 3486 3487 /* 3488 * step two, delete the device extents and the 3489 * chunk tree entries 3490 */ 3491 ret = btrfs_remove_chunk(trans, chunk_offset); 3492 btrfs_end_transaction(trans); 3493 return ret; 3494 } 3495 3496 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3497 { 3498 struct btrfs_root *chunk_root = fs_info->chunk_root; 3499 struct btrfs_path *path; 3500 struct extent_buffer *leaf; 3501 struct btrfs_chunk *chunk; 3502 struct btrfs_key key; 3503 struct btrfs_key found_key; 3504 u64 chunk_type; 3505 bool retried = false; 3506 int failed = 0; 3507 int ret; 3508 3509 path = btrfs_alloc_path(); 3510 if (!path) 3511 return -ENOMEM; 3512 3513 again: 3514 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3515 key.type = BTRFS_CHUNK_ITEM_KEY; 3516 key.offset = (u64)-1; 3517 3518 while (1) { 3519 mutex_lock(&fs_info->reclaim_bgs_lock); 3520 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3521 if (ret < 0) { 3522 mutex_unlock(&fs_info->reclaim_bgs_lock); 3523 goto error; 3524 } 3525 if (ret == 0) { 3526 /* 3527 * On the first search we would find chunk tree with 3528 * offset -1, which is not possible. On subsequent 3529 * loops this would find an existing item on an invalid 3530 * offset (one less than the previous one, wrong 3531 * alignment and size). 3532 */ 3533 ret = -EUCLEAN; 3534 mutex_unlock(&fs_info->reclaim_bgs_lock); 3535 goto error; 3536 } 3537 3538 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3539 key.type); 3540 if (ret) 3541 mutex_unlock(&fs_info->reclaim_bgs_lock); 3542 if (ret < 0) 3543 goto error; 3544 if (ret > 0) 3545 break; 3546 3547 leaf = path->nodes[0]; 3548 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3549 3550 chunk = btrfs_item_ptr(leaf, path->slots[0], 3551 struct btrfs_chunk); 3552 chunk_type = btrfs_chunk_type(leaf, chunk); 3553 btrfs_release_path(path); 3554 3555 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3556 ret = btrfs_relocate_chunk(fs_info, found_key.offset, 3557 true); 3558 if (ret == -ENOSPC) 3559 failed++; 3560 else 3561 BUG_ON(ret); 3562 } 3563 mutex_unlock(&fs_info->reclaim_bgs_lock); 3564 3565 if (found_key.offset == 0) 3566 break; 3567 key.offset = found_key.offset - 1; 3568 } 3569 ret = 0; 3570 if (failed && !retried) { 3571 failed = 0; 3572 retried = true; 3573 goto again; 3574 } else if (WARN_ON(failed && retried)) { 3575 ret = -ENOSPC; 3576 } 3577 error: 3578 btrfs_free_path(path); 3579 return ret; 3580 } 3581 3582 /* 3583 * return 1 : allocate a data chunk successfully, 3584 * return <0: errors during allocating a data chunk, 3585 * return 0 : no need to allocate a data chunk. 3586 */ 3587 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3588 u64 chunk_offset) 3589 { 3590 struct btrfs_block_group *cache; 3591 u64 bytes_used; 3592 u64 chunk_type; 3593 3594 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3595 ASSERT(cache); 3596 chunk_type = cache->flags; 3597 btrfs_put_block_group(cache); 3598 3599 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3600 return 0; 3601 3602 spin_lock(&fs_info->data_sinfo->lock); 3603 bytes_used = fs_info->data_sinfo->bytes_used; 3604 spin_unlock(&fs_info->data_sinfo->lock); 3605 3606 if (!bytes_used) { 3607 struct btrfs_trans_handle *trans; 3608 int ret; 3609 3610 trans = btrfs_join_transaction(fs_info->tree_root); 3611 if (IS_ERR(trans)) 3612 return PTR_ERR(trans); 3613 3614 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3615 btrfs_end_transaction(trans); 3616 if (ret < 0) 3617 return ret; 3618 return 1; 3619 } 3620 3621 return 0; 3622 } 3623 3624 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 3625 const struct btrfs_disk_balance_args *disk) 3626 { 3627 memset(cpu, 0, sizeof(*cpu)); 3628 3629 cpu->profiles = le64_to_cpu(disk->profiles); 3630 cpu->usage = le64_to_cpu(disk->usage); 3631 cpu->devid = le64_to_cpu(disk->devid); 3632 cpu->pstart = le64_to_cpu(disk->pstart); 3633 cpu->pend = le64_to_cpu(disk->pend); 3634 cpu->vstart = le64_to_cpu(disk->vstart); 3635 cpu->vend = le64_to_cpu(disk->vend); 3636 cpu->target = le64_to_cpu(disk->target); 3637 cpu->flags = le64_to_cpu(disk->flags); 3638 cpu->limit = le64_to_cpu(disk->limit); 3639 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 3640 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 3641 } 3642 3643 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 3644 const struct btrfs_balance_args *cpu) 3645 { 3646 memset(disk, 0, sizeof(*disk)); 3647 3648 disk->profiles = cpu_to_le64(cpu->profiles); 3649 disk->usage = cpu_to_le64(cpu->usage); 3650 disk->devid = cpu_to_le64(cpu->devid); 3651 disk->pstart = cpu_to_le64(cpu->pstart); 3652 disk->pend = cpu_to_le64(cpu->pend); 3653 disk->vstart = cpu_to_le64(cpu->vstart); 3654 disk->vend = cpu_to_le64(cpu->vend); 3655 disk->target = cpu_to_le64(cpu->target); 3656 disk->flags = cpu_to_le64(cpu->flags); 3657 disk->limit = cpu_to_le64(cpu->limit); 3658 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 3659 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 3660 } 3661 3662 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3663 struct btrfs_balance_control *bctl) 3664 { 3665 struct btrfs_root *root = fs_info->tree_root; 3666 struct btrfs_trans_handle *trans; 3667 struct btrfs_balance_item *item; 3668 struct btrfs_disk_balance_args disk_bargs; 3669 struct btrfs_path *path; 3670 struct extent_buffer *leaf; 3671 struct btrfs_key key; 3672 int ret, err; 3673 3674 path = btrfs_alloc_path(); 3675 if (!path) 3676 return -ENOMEM; 3677 3678 trans = btrfs_start_transaction(root, 0); 3679 if (IS_ERR(trans)) { 3680 btrfs_free_path(path); 3681 return PTR_ERR(trans); 3682 } 3683 3684 key.objectid = BTRFS_BALANCE_OBJECTID; 3685 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3686 key.offset = 0; 3687 3688 ret = btrfs_insert_empty_item(trans, root, path, &key, 3689 sizeof(*item)); 3690 if (ret) 3691 goto out; 3692 3693 leaf = path->nodes[0]; 3694 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3695 3696 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3697 3698 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3699 btrfs_set_balance_data(leaf, item, &disk_bargs); 3700 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3701 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3702 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3703 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3704 btrfs_set_balance_flags(leaf, item, bctl->flags); 3705 out: 3706 btrfs_free_path(path); 3707 err = btrfs_commit_transaction(trans); 3708 if (err && !ret) 3709 ret = err; 3710 return ret; 3711 } 3712 3713 static int del_balance_item(struct btrfs_fs_info *fs_info) 3714 { 3715 struct btrfs_root *root = fs_info->tree_root; 3716 struct btrfs_trans_handle *trans; 3717 struct btrfs_path *path; 3718 struct btrfs_key key; 3719 int ret, err; 3720 3721 path = btrfs_alloc_path(); 3722 if (!path) 3723 return -ENOMEM; 3724 3725 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3726 if (IS_ERR(trans)) { 3727 btrfs_free_path(path); 3728 return PTR_ERR(trans); 3729 } 3730 3731 key.objectid = BTRFS_BALANCE_OBJECTID; 3732 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3733 key.offset = 0; 3734 3735 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3736 if (ret < 0) 3737 goto out; 3738 if (ret > 0) { 3739 ret = -ENOENT; 3740 goto out; 3741 } 3742 3743 ret = btrfs_del_item(trans, root, path); 3744 out: 3745 btrfs_free_path(path); 3746 err = btrfs_commit_transaction(trans); 3747 if (err && !ret) 3748 ret = err; 3749 return ret; 3750 } 3751 3752 /* 3753 * This is a heuristic used to reduce the number of chunks balanced on 3754 * resume after balance was interrupted. 3755 */ 3756 static void update_balance_args(struct btrfs_balance_control *bctl) 3757 { 3758 /* 3759 * Turn on soft mode for chunk types that were being converted. 3760 */ 3761 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3762 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3763 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3764 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3765 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3766 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3767 3768 /* 3769 * Turn on usage filter if is not already used. The idea is 3770 * that chunks that we have already balanced should be 3771 * reasonably full. Don't do it for chunks that are being 3772 * converted - that will keep us from relocating unconverted 3773 * (albeit full) chunks. 3774 */ 3775 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3776 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3777 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3778 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3779 bctl->data.usage = 90; 3780 } 3781 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3782 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3783 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3784 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3785 bctl->sys.usage = 90; 3786 } 3787 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3788 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3789 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3790 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3791 bctl->meta.usage = 90; 3792 } 3793 } 3794 3795 /* 3796 * Clear the balance status in fs_info and delete the balance item from disk. 3797 */ 3798 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3799 { 3800 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3801 int ret; 3802 3803 ASSERT(fs_info->balance_ctl); 3804 3805 spin_lock(&fs_info->balance_lock); 3806 fs_info->balance_ctl = NULL; 3807 spin_unlock(&fs_info->balance_lock); 3808 3809 kfree(bctl); 3810 ret = del_balance_item(fs_info); 3811 if (ret) 3812 btrfs_handle_fs_error(fs_info, ret, NULL); 3813 } 3814 3815 /* 3816 * Balance filters. Return 1 if chunk should be filtered out 3817 * (should not be balanced). 3818 */ 3819 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3820 { 3821 chunk_type = chunk_to_extended(chunk_type) & 3822 BTRFS_EXTENDED_PROFILE_MASK; 3823 3824 if (bargs->profiles & chunk_type) 3825 return false; 3826 3827 return true; 3828 } 3829 3830 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3831 struct btrfs_balance_args *bargs) 3832 { 3833 struct btrfs_block_group *cache; 3834 u64 chunk_used; 3835 u64 user_thresh_min; 3836 u64 user_thresh_max; 3837 bool ret = true; 3838 3839 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3840 chunk_used = cache->used; 3841 3842 if (bargs->usage_min == 0) 3843 user_thresh_min = 0; 3844 else 3845 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3846 3847 if (bargs->usage_max == 0) 3848 user_thresh_max = 1; 3849 else if (bargs->usage_max > 100) 3850 user_thresh_max = cache->length; 3851 else 3852 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3853 3854 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3855 ret = false; 3856 3857 btrfs_put_block_group(cache); 3858 return ret; 3859 } 3860 3861 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3862 struct btrfs_balance_args *bargs) 3863 { 3864 struct btrfs_block_group *cache; 3865 u64 chunk_used, user_thresh; 3866 bool ret = true; 3867 3868 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3869 chunk_used = cache->used; 3870 3871 if (bargs->usage_min == 0) 3872 user_thresh = 1; 3873 else if (bargs->usage > 100) 3874 user_thresh = cache->length; 3875 else 3876 user_thresh = mult_perc(cache->length, bargs->usage); 3877 3878 if (chunk_used < user_thresh) 3879 ret = false; 3880 3881 btrfs_put_block_group(cache); 3882 return ret; 3883 } 3884 3885 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3886 struct btrfs_balance_args *bargs) 3887 { 3888 struct btrfs_stripe *stripe; 3889 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3890 int i; 3891 3892 for (i = 0; i < num_stripes; i++) { 3893 stripe = btrfs_stripe_nr(chunk, i); 3894 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3895 return false; 3896 } 3897 3898 return true; 3899 } 3900 3901 static u64 calc_data_stripes(u64 type, int num_stripes) 3902 { 3903 const int index = btrfs_bg_flags_to_raid_index(type); 3904 const int ncopies = btrfs_raid_array[index].ncopies; 3905 const int nparity = btrfs_raid_array[index].nparity; 3906 3907 return (num_stripes - nparity) / ncopies; 3908 } 3909 3910 /* [pstart, pend) */ 3911 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3912 struct btrfs_balance_args *bargs) 3913 { 3914 struct btrfs_stripe *stripe; 3915 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3916 u64 stripe_offset; 3917 u64 stripe_length; 3918 u64 type; 3919 int factor; 3920 int i; 3921 3922 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3923 return false; 3924 3925 type = btrfs_chunk_type(leaf, chunk); 3926 factor = calc_data_stripes(type, num_stripes); 3927 3928 for (i = 0; i < num_stripes; i++) { 3929 stripe = btrfs_stripe_nr(chunk, i); 3930 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3931 continue; 3932 3933 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3934 stripe_length = btrfs_chunk_length(leaf, chunk); 3935 stripe_length = div_u64(stripe_length, factor); 3936 3937 if (stripe_offset < bargs->pend && 3938 stripe_offset + stripe_length > bargs->pstart) 3939 return false; 3940 } 3941 3942 return true; 3943 } 3944 3945 /* [vstart, vend) */ 3946 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3947 u64 chunk_offset, struct btrfs_balance_args *bargs) 3948 { 3949 if (chunk_offset < bargs->vend && 3950 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3951 /* at least part of the chunk is inside this vrange */ 3952 return false; 3953 3954 return true; 3955 } 3956 3957 static bool chunk_stripes_range_filter(struct extent_buffer *leaf, 3958 struct btrfs_chunk *chunk, 3959 struct btrfs_balance_args *bargs) 3960 { 3961 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3962 3963 if (bargs->stripes_min <= num_stripes 3964 && num_stripes <= bargs->stripes_max) 3965 return false; 3966 3967 return true; 3968 } 3969 3970 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) 3971 { 3972 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3973 return false; 3974 3975 chunk_type = chunk_to_extended(chunk_type) & 3976 BTRFS_EXTENDED_PROFILE_MASK; 3977 3978 if (bargs->target == chunk_type) 3979 return true; 3980 3981 return false; 3982 } 3983 3984 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, 3985 u64 chunk_offset) 3986 { 3987 struct btrfs_fs_info *fs_info = leaf->fs_info; 3988 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3989 struct btrfs_balance_args *bargs = NULL; 3990 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3991 3992 /* type filter */ 3993 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3994 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3995 return false; 3996 } 3997 3998 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3999 bargs = &bctl->data; 4000 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4001 bargs = &bctl->sys; 4002 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4003 bargs = &bctl->meta; 4004 4005 /* profiles filter */ 4006 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 4007 chunk_profiles_filter(chunk_type, bargs)) { 4008 return false; 4009 } 4010 4011 /* usage filter */ 4012 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 4013 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 4014 return false; 4015 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 4016 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 4017 return false; 4018 } 4019 4020 /* devid filter */ 4021 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 4022 chunk_devid_filter(leaf, chunk, bargs)) { 4023 return false; 4024 } 4025 4026 /* drange filter, makes sense only with devid filter */ 4027 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 4028 chunk_drange_filter(leaf, chunk, bargs)) { 4029 return false; 4030 } 4031 4032 /* vrange filter */ 4033 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 4034 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 4035 return false; 4036 } 4037 4038 /* stripes filter */ 4039 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 4040 chunk_stripes_range_filter(leaf, chunk, bargs)) { 4041 return false; 4042 } 4043 4044 /* soft profile changing mode */ 4045 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 4046 chunk_soft_convert_filter(chunk_type, bargs)) { 4047 return false; 4048 } 4049 4050 /* 4051 * limited by count, must be the last filter 4052 */ 4053 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 4054 if (bargs->limit == 0) 4055 return false; 4056 else 4057 bargs->limit--; 4058 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 4059 /* 4060 * Same logic as the 'limit' filter; the minimum cannot be 4061 * determined here because we do not have the global information 4062 * about the count of all chunks that satisfy the filters. 4063 */ 4064 if (bargs->limit_max == 0) 4065 return false; 4066 else 4067 bargs->limit_max--; 4068 } 4069 4070 return true; 4071 } 4072 4073 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 4074 { 4075 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4076 struct btrfs_root *chunk_root = fs_info->chunk_root; 4077 u64 chunk_type; 4078 struct btrfs_chunk *chunk; 4079 struct btrfs_path *path = NULL; 4080 struct btrfs_key key; 4081 struct btrfs_key found_key; 4082 struct extent_buffer *leaf; 4083 int slot; 4084 int ret; 4085 int enospc_errors = 0; 4086 bool counting = true; 4087 /* The single value limit and min/max limits use the same bytes in the */ 4088 u64 limit_data = bctl->data.limit; 4089 u64 limit_meta = bctl->meta.limit; 4090 u64 limit_sys = bctl->sys.limit; 4091 u32 count_data = 0; 4092 u32 count_meta = 0; 4093 u32 count_sys = 0; 4094 int chunk_reserved = 0; 4095 4096 path = btrfs_alloc_path(); 4097 if (!path) { 4098 ret = -ENOMEM; 4099 goto error; 4100 } 4101 4102 /* zero out stat counters */ 4103 spin_lock(&fs_info->balance_lock); 4104 memset(&bctl->stat, 0, sizeof(bctl->stat)); 4105 spin_unlock(&fs_info->balance_lock); 4106 again: 4107 if (!counting) { 4108 /* 4109 * The single value limit and min/max limits use the same bytes 4110 * in the 4111 */ 4112 bctl->data.limit = limit_data; 4113 bctl->meta.limit = limit_meta; 4114 bctl->sys.limit = limit_sys; 4115 } 4116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4117 key.type = BTRFS_CHUNK_ITEM_KEY; 4118 key.offset = (u64)-1; 4119 4120 while (1) { 4121 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 4122 atomic_read(&fs_info->balance_cancel_req)) { 4123 ret = -ECANCELED; 4124 goto error; 4125 } 4126 4127 mutex_lock(&fs_info->reclaim_bgs_lock); 4128 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 4129 if (ret < 0) { 4130 mutex_unlock(&fs_info->reclaim_bgs_lock); 4131 goto error; 4132 } 4133 4134 /* 4135 * this shouldn't happen, it means the last relocate 4136 * failed 4137 */ 4138 if (ret == 0) 4139 BUG(); /* FIXME break ? */ 4140 4141 ret = btrfs_previous_item(chunk_root, path, 0, 4142 BTRFS_CHUNK_ITEM_KEY); 4143 if (ret) { 4144 mutex_unlock(&fs_info->reclaim_bgs_lock); 4145 ret = 0; 4146 break; 4147 } 4148 4149 leaf = path->nodes[0]; 4150 slot = path->slots[0]; 4151 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4152 4153 if (found_key.objectid != key.objectid) { 4154 mutex_unlock(&fs_info->reclaim_bgs_lock); 4155 break; 4156 } 4157 4158 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 4159 chunk_type = btrfs_chunk_type(leaf, chunk); 4160 4161 if (!counting) { 4162 spin_lock(&fs_info->balance_lock); 4163 bctl->stat.considered++; 4164 spin_unlock(&fs_info->balance_lock); 4165 } 4166 4167 ret = should_balance_chunk(leaf, chunk, found_key.offset); 4168 4169 btrfs_release_path(path); 4170 if (!ret) { 4171 mutex_unlock(&fs_info->reclaim_bgs_lock); 4172 goto loop; 4173 } 4174 4175 if (counting) { 4176 mutex_unlock(&fs_info->reclaim_bgs_lock); 4177 spin_lock(&fs_info->balance_lock); 4178 bctl->stat.expected++; 4179 spin_unlock(&fs_info->balance_lock); 4180 4181 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 4182 count_data++; 4183 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 4184 count_sys++; 4185 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 4186 count_meta++; 4187 4188 goto loop; 4189 } 4190 4191 /* 4192 * Apply limit_min filter, no need to check if the LIMITS 4193 * filter is used, limit_min is 0 by default 4194 */ 4195 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 4196 count_data < bctl->data.limit_min) 4197 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 4198 count_meta < bctl->meta.limit_min) 4199 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 4200 count_sys < bctl->sys.limit_min)) { 4201 mutex_unlock(&fs_info->reclaim_bgs_lock); 4202 goto loop; 4203 } 4204 4205 if (!chunk_reserved) { 4206 /* 4207 * We may be relocating the only data chunk we have, 4208 * which could potentially end up with losing data's 4209 * raid profile, so lets allocate an empty one in 4210 * advance. 4211 */ 4212 ret = btrfs_may_alloc_data_chunk(fs_info, 4213 found_key.offset); 4214 if (ret < 0) { 4215 mutex_unlock(&fs_info->reclaim_bgs_lock); 4216 goto error; 4217 } else if (ret == 1) { 4218 chunk_reserved = 1; 4219 } 4220 } 4221 4222 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true); 4223 mutex_unlock(&fs_info->reclaim_bgs_lock); 4224 if (ret == -ENOSPC) { 4225 enospc_errors++; 4226 } else if (ret == -ETXTBSY) { 4227 btrfs_info(fs_info, 4228 "skipping relocation of block group %llu due to active swapfile", 4229 found_key.offset); 4230 ret = 0; 4231 } else if (ret) { 4232 goto error; 4233 } else { 4234 spin_lock(&fs_info->balance_lock); 4235 bctl->stat.completed++; 4236 spin_unlock(&fs_info->balance_lock); 4237 } 4238 loop: 4239 if (found_key.offset == 0) 4240 break; 4241 key.offset = found_key.offset - 1; 4242 } 4243 4244 if (counting) { 4245 btrfs_release_path(path); 4246 counting = false; 4247 goto again; 4248 } 4249 error: 4250 btrfs_free_path(path); 4251 if (enospc_errors) { 4252 btrfs_info(fs_info, "%d enospc errors during balance", 4253 enospc_errors); 4254 if (!ret) 4255 ret = -ENOSPC; 4256 } 4257 4258 return ret; 4259 } 4260 4261 /* 4262 * See if a given profile is valid and reduced. 4263 * 4264 * @flags: profile to validate 4265 * @extended: if true @flags is treated as an extended profile 4266 */ 4267 static int alloc_profile_is_valid(u64 flags, int extended) 4268 { 4269 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4270 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4271 4272 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4273 4274 /* 1) check that all other bits are zeroed */ 4275 if (flags & ~mask) 4276 return 0; 4277 4278 /* 2) see if profile is reduced */ 4279 if (flags == 0) 4280 return !extended; /* "0" is valid for usual profiles */ 4281 4282 return has_single_bit_set(flags); 4283 } 4284 4285 /* 4286 * Validate target profile against allowed profiles and return true if it's OK. 4287 * Otherwise print the error message and return false. 4288 */ 4289 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4290 const struct btrfs_balance_args *bargs, 4291 u64 allowed, const char *type) 4292 { 4293 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4294 return true; 4295 4296 /* Profile is valid and does not have bits outside of the allowed set */ 4297 if (alloc_profile_is_valid(bargs->target, 1) && 4298 (bargs->target & ~allowed) == 0) 4299 return true; 4300 4301 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4302 type, btrfs_bg_type_to_raid_name(bargs->target)); 4303 return false; 4304 } 4305 4306 /* 4307 * Fill @buf with textual description of balance filter flags @bargs, up to 4308 * @size_buf including the terminating null. The output may be trimmed if it 4309 * does not fit into the provided buffer. 4310 */ 4311 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4312 u32 size_buf) 4313 { 4314 int ret; 4315 u32 size_bp = size_buf; 4316 char *bp = buf; 4317 u64 flags = bargs->flags; 4318 char tmp_buf[128] = {'\0'}; 4319 4320 if (!flags) 4321 return; 4322 4323 #define CHECK_APPEND_NOARG(a) \ 4324 do { \ 4325 ret = snprintf(bp, size_bp, (a)); \ 4326 if (ret < 0 || ret >= size_bp) \ 4327 goto out_overflow; \ 4328 size_bp -= ret; \ 4329 bp += ret; \ 4330 } while (0) 4331 4332 #define CHECK_APPEND_1ARG(a, v1) \ 4333 do { \ 4334 ret = snprintf(bp, size_bp, (a), (v1)); \ 4335 if (ret < 0 || ret >= size_bp) \ 4336 goto out_overflow; \ 4337 size_bp -= ret; \ 4338 bp += ret; \ 4339 } while (0) 4340 4341 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4342 do { \ 4343 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4344 if (ret < 0 || ret >= size_bp) \ 4345 goto out_overflow; \ 4346 size_bp -= ret; \ 4347 bp += ret; \ 4348 } while (0) 4349 4350 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4351 CHECK_APPEND_1ARG("convert=%s,", 4352 btrfs_bg_type_to_raid_name(bargs->target)); 4353 4354 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4355 CHECK_APPEND_NOARG("soft,"); 4356 4357 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4358 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4359 sizeof(tmp_buf)); 4360 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4361 } 4362 4363 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4364 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4365 4366 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4367 CHECK_APPEND_2ARG("usage=%u..%u,", 4368 bargs->usage_min, bargs->usage_max); 4369 4370 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4371 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4372 4373 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4374 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4375 bargs->pstart, bargs->pend); 4376 4377 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4378 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4379 bargs->vstart, bargs->vend); 4380 4381 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4382 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4383 4384 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4385 CHECK_APPEND_2ARG("limit=%u..%u,", 4386 bargs->limit_min, bargs->limit_max); 4387 4388 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4389 CHECK_APPEND_2ARG("stripes=%u..%u,", 4390 bargs->stripes_min, bargs->stripes_max); 4391 4392 #undef CHECK_APPEND_2ARG 4393 #undef CHECK_APPEND_1ARG 4394 #undef CHECK_APPEND_NOARG 4395 4396 out_overflow: 4397 4398 if (size_bp < size_buf) 4399 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4400 else 4401 buf[0] = '\0'; 4402 } 4403 4404 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4405 { 4406 u32 size_buf = 1024; 4407 char tmp_buf[192] = {'\0'}; 4408 char *buf; 4409 char *bp; 4410 u32 size_bp = size_buf; 4411 int ret; 4412 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4413 4414 buf = kzalloc(size_buf, GFP_KERNEL); 4415 if (!buf) 4416 return; 4417 4418 bp = buf; 4419 4420 #define CHECK_APPEND_1ARG(a, v1) \ 4421 do { \ 4422 ret = snprintf(bp, size_bp, (a), (v1)); \ 4423 if (ret < 0 || ret >= size_bp) \ 4424 goto out_overflow; \ 4425 size_bp -= ret; \ 4426 bp += ret; \ 4427 } while (0) 4428 4429 if (bctl->flags & BTRFS_BALANCE_FORCE) 4430 CHECK_APPEND_1ARG("%s", "-f "); 4431 4432 if (bctl->flags & BTRFS_BALANCE_DATA) { 4433 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4434 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4435 } 4436 4437 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4438 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4439 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4440 } 4441 4442 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4443 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4444 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4445 } 4446 4447 #undef CHECK_APPEND_1ARG 4448 4449 out_overflow: 4450 4451 if (size_bp < size_buf) 4452 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4453 btrfs_info(fs_info, "balance: %s %s", 4454 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4455 "resume" : "start", buf); 4456 4457 kfree(buf); 4458 } 4459 4460 /* 4461 * Should be called with balance mutexe held 4462 */ 4463 int btrfs_balance(struct btrfs_fs_info *fs_info, 4464 struct btrfs_balance_control *bctl, 4465 struct btrfs_ioctl_balance_args *bargs) 4466 { 4467 u64 meta_target, data_target; 4468 u64 allowed; 4469 int mixed = 0; 4470 int ret; 4471 u64 num_devices; 4472 unsigned seq; 4473 bool reducing_redundancy; 4474 bool paused = false; 4475 int i; 4476 4477 if (btrfs_fs_closing(fs_info) || 4478 atomic_read(&fs_info->balance_pause_req) || 4479 btrfs_should_cancel_balance(fs_info)) { 4480 ret = -EINVAL; 4481 goto out; 4482 } 4483 4484 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4485 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4486 mixed = 1; 4487 4488 /* 4489 * In case of mixed groups both data and meta should be picked, 4490 * and identical options should be given for both of them. 4491 */ 4492 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4493 if (mixed && (bctl->flags & allowed)) { 4494 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4495 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4496 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4497 btrfs_err(fs_info, 4498 "balance: mixed groups data and metadata options must be the same"); 4499 ret = -EINVAL; 4500 goto out; 4501 } 4502 } 4503 4504 /* 4505 * rw_devices will not change at the moment, device add/delete/replace 4506 * are exclusive 4507 */ 4508 num_devices = fs_info->fs_devices->rw_devices; 4509 4510 /* 4511 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4512 * special bit for it, to make it easier to distinguish. Thus we need 4513 * to set it manually, or balance would refuse the profile. 4514 */ 4515 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4516 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4517 if (num_devices >= btrfs_raid_array[i].devs_min) 4518 allowed |= btrfs_raid_array[i].bg_flag; 4519 4520 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4521 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4522 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4523 ret = -EINVAL; 4524 goto out; 4525 } 4526 4527 /* 4528 * Allow to reduce metadata or system integrity only if force set for 4529 * profiles with redundancy (copies, parity) 4530 */ 4531 allowed = 0; 4532 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4533 if (btrfs_raid_array[i].ncopies >= 2 || 4534 btrfs_raid_array[i].tolerated_failures >= 1) 4535 allowed |= btrfs_raid_array[i].bg_flag; 4536 } 4537 do { 4538 seq = read_seqbegin(&fs_info->profiles_lock); 4539 4540 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4541 (fs_info->avail_system_alloc_bits & allowed) && 4542 !(bctl->sys.target & allowed)) || 4543 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4544 (fs_info->avail_metadata_alloc_bits & allowed) && 4545 !(bctl->meta.target & allowed))) 4546 reducing_redundancy = true; 4547 else 4548 reducing_redundancy = false; 4549 4550 /* if we're not converting, the target field is uninitialized */ 4551 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4552 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4553 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4554 bctl->data.target : fs_info->avail_data_alloc_bits; 4555 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4556 4557 if (reducing_redundancy) { 4558 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4559 btrfs_info(fs_info, 4560 "balance: force reducing metadata redundancy"); 4561 } else { 4562 btrfs_err(fs_info, 4563 "balance: reduces metadata redundancy, use --force if you want this"); 4564 ret = -EINVAL; 4565 goto out; 4566 } 4567 } 4568 4569 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4570 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4571 btrfs_warn(fs_info, 4572 "balance: metadata profile %s has lower redundancy than data profile %s", 4573 btrfs_bg_type_to_raid_name(meta_target), 4574 btrfs_bg_type_to_raid_name(data_target)); 4575 } 4576 4577 ret = insert_balance_item(fs_info, bctl); 4578 if (ret && ret != -EEXIST) 4579 goto out; 4580 4581 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4582 BUG_ON(ret == -EEXIST); 4583 BUG_ON(fs_info->balance_ctl); 4584 spin_lock(&fs_info->balance_lock); 4585 fs_info->balance_ctl = bctl; 4586 spin_unlock(&fs_info->balance_lock); 4587 } else { 4588 BUG_ON(ret != -EEXIST); 4589 spin_lock(&fs_info->balance_lock); 4590 update_balance_args(bctl); 4591 spin_unlock(&fs_info->balance_lock); 4592 } 4593 4594 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4595 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4596 describe_balance_start_or_resume(fs_info); 4597 mutex_unlock(&fs_info->balance_mutex); 4598 4599 ret = __btrfs_balance(fs_info); 4600 4601 mutex_lock(&fs_info->balance_mutex); 4602 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4603 btrfs_info(fs_info, "balance: paused"); 4604 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4605 paused = true; 4606 } 4607 /* 4608 * Balance can be canceled by: 4609 * 4610 * - Regular cancel request 4611 * Then ret == -ECANCELED and balance_cancel_req > 0 4612 * 4613 * - Fatal signal to "btrfs" process 4614 * Either the signal caught by wait_reserve_ticket() and callers 4615 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4616 * got -ECANCELED. 4617 * Either way, in this case balance_cancel_req = 0, and 4618 * ret == -EINTR or ret == -ECANCELED. 4619 * 4620 * So here we only check the return value to catch canceled balance. 4621 */ 4622 else if (ret == -ECANCELED || ret == -EINTR) 4623 btrfs_info(fs_info, "balance: canceled"); 4624 else 4625 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4626 4627 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4628 4629 if (bargs) { 4630 memset(bargs, 0, sizeof(*bargs)); 4631 btrfs_update_ioctl_balance_args(fs_info, bargs); 4632 } 4633 4634 /* We didn't pause, we can clean everything up. */ 4635 if (!paused) { 4636 reset_balance_state(fs_info); 4637 btrfs_exclop_finish(fs_info); 4638 } 4639 4640 wake_up(&fs_info->balance_wait_q); 4641 4642 return ret; 4643 out: 4644 if (bctl->flags & BTRFS_BALANCE_RESUME) 4645 reset_balance_state(fs_info); 4646 else 4647 kfree(bctl); 4648 btrfs_exclop_finish(fs_info); 4649 4650 return ret; 4651 } 4652 4653 static int balance_kthread(void *data) 4654 { 4655 struct btrfs_fs_info *fs_info = data; 4656 int ret = 0; 4657 4658 sb_start_write(fs_info->sb); 4659 mutex_lock(&fs_info->balance_mutex); 4660 if (fs_info->balance_ctl) 4661 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4662 mutex_unlock(&fs_info->balance_mutex); 4663 sb_end_write(fs_info->sb); 4664 4665 return ret; 4666 } 4667 4668 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4669 { 4670 struct task_struct *tsk; 4671 4672 mutex_lock(&fs_info->balance_mutex); 4673 if (!fs_info->balance_ctl) { 4674 mutex_unlock(&fs_info->balance_mutex); 4675 return 0; 4676 } 4677 mutex_unlock(&fs_info->balance_mutex); 4678 4679 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4680 btrfs_info(fs_info, "balance: resume skipped"); 4681 return 0; 4682 } 4683 4684 spin_lock(&fs_info->super_lock); 4685 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, 4686 "exclusive_operation=%d", fs_info->exclusive_operation); 4687 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4688 spin_unlock(&fs_info->super_lock); 4689 /* 4690 * A ro->rw remount sequence should continue with the paused balance 4691 * regardless of who pauses it, system or the user as of now, so set 4692 * the resume flag. 4693 */ 4694 spin_lock(&fs_info->balance_lock); 4695 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4696 spin_unlock(&fs_info->balance_lock); 4697 4698 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4699 return PTR_ERR_OR_ZERO(tsk); 4700 } 4701 4702 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4703 { 4704 struct btrfs_balance_control *bctl; 4705 struct btrfs_balance_item *item; 4706 struct btrfs_disk_balance_args disk_bargs; 4707 struct btrfs_path *path; 4708 struct extent_buffer *leaf; 4709 struct btrfs_key key; 4710 int ret; 4711 4712 path = btrfs_alloc_path(); 4713 if (!path) 4714 return -ENOMEM; 4715 4716 key.objectid = BTRFS_BALANCE_OBJECTID; 4717 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4718 key.offset = 0; 4719 4720 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4721 if (ret < 0) 4722 goto out; 4723 if (ret > 0) { /* ret = -ENOENT; */ 4724 ret = 0; 4725 goto out; 4726 } 4727 4728 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4729 if (!bctl) { 4730 ret = -ENOMEM; 4731 goto out; 4732 } 4733 4734 leaf = path->nodes[0]; 4735 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4736 4737 bctl->flags = btrfs_balance_flags(leaf, item); 4738 bctl->flags |= BTRFS_BALANCE_RESUME; 4739 4740 btrfs_balance_data(leaf, item, &disk_bargs); 4741 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4742 btrfs_balance_meta(leaf, item, &disk_bargs); 4743 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4744 btrfs_balance_sys(leaf, item, &disk_bargs); 4745 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4746 4747 /* 4748 * This should never happen, as the paused balance state is recovered 4749 * during mount without any chance of other exclusive ops to collide. 4750 * 4751 * This gives the exclusive op status to balance and keeps in paused 4752 * state until user intervention (cancel or umount). If the ownership 4753 * cannot be assigned, show a message but do not fail. The balance 4754 * is in a paused state and must have fs_info::balance_ctl properly 4755 * set up. 4756 */ 4757 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4758 btrfs_warn(fs_info, 4759 "balance: cannot set exclusive op status, resume manually"); 4760 4761 btrfs_release_path(path); 4762 4763 mutex_lock(&fs_info->balance_mutex); 4764 BUG_ON(fs_info->balance_ctl); 4765 spin_lock(&fs_info->balance_lock); 4766 fs_info->balance_ctl = bctl; 4767 spin_unlock(&fs_info->balance_lock); 4768 mutex_unlock(&fs_info->balance_mutex); 4769 out: 4770 btrfs_free_path(path); 4771 return ret; 4772 } 4773 4774 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4775 { 4776 int ret = 0; 4777 4778 mutex_lock(&fs_info->balance_mutex); 4779 if (!fs_info->balance_ctl) { 4780 mutex_unlock(&fs_info->balance_mutex); 4781 return -ENOTCONN; 4782 } 4783 4784 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4785 atomic_inc(&fs_info->balance_pause_req); 4786 mutex_unlock(&fs_info->balance_mutex); 4787 4788 wait_event(fs_info->balance_wait_q, 4789 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4790 4791 mutex_lock(&fs_info->balance_mutex); 4792 /* we are good with balance_ctl ripped off from under us */ 4793 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4794 atomic_dec(&fs_info->balance_pause_req); 4795 } else { 4796 ret = -ENOTCONN; 4797 } 4798 4799 mutex_unlock(&fs_info->balance_mutex); 4800 return ret; 4801 } 4802 4803 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4804 { 4805 mutex_lock(&fs_info->balance_mutex); 4806 if (!fs_info->balance_ctl) { 4807 mutex_unlock(&fs_info->balance_mutex); 4808 return -ENOTCONN; 4809 } 4810 4811 /* 4812 * A paused balance with the item stored on disk can be resumed at 4813 * mount time if the mount is read-write. Otherwise it's still paused 4814 * and we must not allow cancelling as it deletes the item. 4815 */ 4816 if (sb_rdonly(fs_info->sb)) { 4817 mutex_unlock(&fs_info->balance_mutex); 4818 return -EROFS; 4819 } 4820 4821 atomic_inc(&fs_info->balance_cancel_req); 4822 /* 4823 * if we are running just wait and return, balance item is 4824 * deleted in btrfs_balance in this case 4825 */ 4826 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4827 mutex_unlock(&fs_info->balance_mutex); 4828 wait_event(fs_info->balance_wait_q, 4829 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4830 mutex_lock(&fs_info->balance_mutex); 4831 } else { 4832 mutex_unlock(&fs_info->balance_mutex); 4833 /* 4834 * Lock released to allow other waiters to continue, we'll 4835 * reexamine the status again. 4836 */ 4837 mutex_lock(&fs_info->balance_mutex); 4838 4839 if (fs_info->balance_ctl) { 4840 reset_balance_state(fs_info); 4841 btrfs_exclop_finish(fs_info); 4842 btrfs_info(fs_info, "balance: canceled"); 4843 } 4844 } 4845 4846 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4847 atomic_dec(&fs_info->balance_cancel_req); 4848 mutex_unlock(&fs_info->balance_mutex); 4849 return 0; 4850 } 4851 4852 /* 4853 * shrinking a device means finding all of the device extents past 4854 * the new size, and then following the back refs to the chunks. 4855 * The chunk relocation code actually frees the device extent 4856 */ 4857 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4858 { 4859 struct btrfs_fs_info *fs_info = device->fs_info; 4860 struct btrfs_root *root = fs_info->dev_root; 4861 struct btrfs_trans_handle *trans; 4862 struct btrfs_dev_extent *dev_extent = NULL; 4863 struct btrfs_path *path; 4864 u64 length; 4865 u64 chunk_offset; 4866 int ret; 4867 int slot; 4868 int failed = 0; 4869 bool retried = false; 4870 struct extent_buffer *l; 4871 struct btrfs_key key; 4872 struct btrfs_super_block *super_copy = fs_info->super_copy; 4873 u64 old_total = btrfs_super_total_bytes(super_copy); 4874 u64 old_size = btrfs_device_get_total_bytes(device); 4875 u64 diff; 4876 u64 start; 4877 u64 free_diff = 0; 4878 4879 new_size = round_down(new_size, fs_info->sectorsize); 4880 start = new_size; 4881 diff = round_down(old_size - new_size, fs_info->sectorsize); 4882 4883 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4884 return -EINVAL; 4885 4886 path = btrfs_alloc_path(); 4887 if (!path) 4888 return -ENOMEM; 4889 4890 path->reada = READA_BACK; 4891 4892 trans = btrfs_start_transaction(root, 0); 4893 if (IS_ERR(trans)) { 4894 btrfs_free_path(path); 4895 return PTR_ERR(trans); 4896 } 4897 4898 mutex_lock(&fs_info->chunk_mutex); 4899 4900 btrfs_device_set_total_bytes(device, new_size); 4901 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4902 device->fs_devices->total_rw_bytes -= diff; 4903 4904 /* 4905 * The new free_chunk_space is new_size - used, so we have to 4906 * subtract the delta of the old free_chunk_space which included 4907 * old_size - used. If used > new_size then just subtract this 4908 * entire device's free space. 4909 */ 4910 if (device->bytes_used < new_size) 4911 free_diff = (old_size - device->bytes_used) - 4912 (new_size - device->bytes_used); 4913 else 4914 free_diff = old_size - device->bytes_used; 4915 atomic64_sub(free_diff, &fs_info->free_chunk_space); 4916 } 4917 4918 /* 4919 * Once the device's size has been set to the new size, ensure all 4920 * in-memory chunks are synced to disk so that the loop below sees them 4921 * and relocates them accordingly. 4922 */ 4923 if (contains_pending_extent(device, &start, diff)) { 4924 mutex_unlock(&fs_info->chunk_mutex); 4925 ret = btrfs_commit_transaction(trans); 4926 if (ret) 4927 goto done; 4928 } else { 4929 mutex_unlock(&fs_info->chunk_mutex); 4930 btrfs_end_transaction(trans); 4931 } 4932 4933 again: 4934 key.objectid = device->devid; 4935 key.type = BTRFS_DEV_EXTENT_KEY; 4936 key.offset = (u64)-1; 4937 4938 do { 4939 mutex_lock(&fs_info->reclaim_bgs_lock); 4940 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4941 if (ret < 0) { 4942 mutex_unlock(&fs_info->reclaim_bgs_lock); 4943 goto done; 4944 } 4945 4946 ret = btrfs_previous_item(root, path, 0, key.type); 4947 if (ret) { 4948 mutex_unlock(&fs_info->reclaim_bgs_lock); 4949 if (ret < 0) 4950 goto done; 4951 ret = 0; 4952 btrfs_release_path(path); 4953 break; 4954 } 4955 4956 l = path->nodes[0]; 4957 slot = path->slots[0]; 4958 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4959 4960 if (key.objectid != device->devid) { 4961 mutex_unlock(&fs_info->reclaim_bgs_lock); 4962 btrfs_release_path(path); 4963 break; 4964 } 4965 4966 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4967 length = btrfs_dev_extent_length(l, dev_extent); 4968 4969 if (key.offset + length <= new_size) { 4970 mutex_unlock(&fs_info->reclaim_bgs_lock); 4971 btrfs_release_path(path); 4972 break; 4973 } 4974 4975 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4976 btrfs_release_path(path); 4977 4978 /* 4979 * We may be relocating the only data chunk we have, 4980 * which could potentially end up with losing data's 4981 * raid profile, so lets allocate an empty one in 4982 * advance. 4983 */ 4984 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4985 if (ret < 0) { 4986 mutex_unlock(&fs_info->reclaim_bgs_lock); 4987 goto done; 4988 } 4989 4990 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true); 4991 mutex_unlock(&fs_info->reclaim_bgs_lock); 4992 if (ret == -ENOSPC) { 4993 failed++; 4994 } else if (ret) { 4995 if (ret == -ETXTBSY) { 4996 btrfs_warn(fs_info, 4997 "could not shrink block group %llu due to active swapfile", 4998 chunk_offset); 4999 } 5000 goto done; 5001 } 5002 } while (key.offset-- > 0); 5003 5004 if (failed && !retried) { 5005 failed = 0; 5006 retried = true; 5007 goto again; 5008 } else if (failed && retried) { 5009 ret = -ENOSPC; 5010 goto done; 5011 } 5012 5013 /* Shrinking succeeded, else we would be at "done". */ 5014 trans = btrfs_start_transaction(root, 0); 5015 if (IS_ERR(trans)) { 5016 ret = PTR_ERR(trans); 5017 goto done; 5018 } 5019 5020 mutex_lock(&fs_info->chunk_mutex); 5021 /* Clear all state bits beyond the shrunk device size */ 5022 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1, 5023 CHUNK_STATE_MASK, NULL); 5024 5025 btrfs_device_set_disk_total_bytes(device, new_size); 5026 if (list_empty(&device->post_commit_list)) 5027 list_add_tail(&device->post_commit_list, 5028 &trans->transaction->dev_update_list); 5029 5030 WARN_ON(diff > old_total); 5031 btrfs_set_super_total_bytes(super_copy, 5032 round_down(old_total - diff, fs_info->sectorsize)); 5033 mutex_unlock(&fs_info->chunk_mutex); 5034 5035 btrfs_reserve_chunk_metadata(trans, false); 5036 /* Now btrfs_update_device() will change the on-disk size. */ 5037 ret = btrfs_update_device(trans, device); 5038 btrfs_trans_release_chunk_metadata(trans); 5039 if (ret < 0) { 5040 btrfs_abort_transaction(trans, ret); 5041 btrfs_end_transaction(trans); 5042 } else { 5043 ret = btrfs_commit_transaction(trans); 5044 } 5045 done: 5046 btrfs_free_path(path); 5047 if (ret) { 5048 mutex_lock(&fs_info->chunk_mutex); 5049 btrfs_device_set_total_bytes(device, old_size); 5050 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5051 device->fs_devices->total_rw_bytes += diff; 5052 atomic64_add(free_diff, &fs_info->free_chunk_space); 5053 } 5054 mutex_unlock(&fs_info->chunk_mutex); 5055 } 5056 return ret; 5057 } 5058 5059 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5060 struct btrfs_key *key, 5061 struct btrfs_chunk *chunk, int item_size) 5062 { 5063 struct btrfs_super_block *super_copy = fs_info->super_copy; 5064 struct btrfs_disk_key disk_key; 5065 u32 array_size; 5066 u8 *ptr; 5067 5068 lockdep_assert_held(&fs_info->chunk_mutex); 5069 5070 array_size = btrfs_super_sys_array_size(super_copy); 5071 if (array_size + item_size + sizeof(disk_key) 5072 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5073 return -EFBIG; 5074 5075 ptr = super_copy->sys_chunk_array + array_size; 5076 btrfs_cpu_key_to_disk(&disk_key, key); 5077 memcpy(ptr, &disk_key, sizeof(disk_key)); 5078 ptr += sizeof(disk_key); 5079 memcpy(ptr, chunk, item_size); 5080 item_size += sizeof(disk_key); 5081 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5082 5083 return 0; 5084 } 5085 5086 /* 5087 * sort the devices in descending order by max_avail, total_avail 5088 */ 5089 static int btrfs_cmp_device_info(const void *a, const void *b) 5090 { 5091 const struct btrfs_device_info *di_a = a; 5092 const struct btrfs_device_info *di_b = b; 5093 5094 if (di_a->max_avail > di_b->max_avail) 5095 return -1; 5096 if (di_a->max_avail < di_b->max_avail) 5097 return 1; 5098 if (di_a->total_avail > di_b->total_avail) 5099 return -1; 5100 if (di_a->total_avail < di_b->total_avail) 5101 return 1; 5102 return 0; 5103 } 5104 5105 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5106 { 5107 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5108 return; 5109 5110 btrfs_set_fs_incompat(info, RAID56); 5111 } 5112 5113 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5114 { 5115 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5116 return; 5117 5118 btrfs_set_fs_incompat(info, RAID1C34); 5119 } 5120 5121 /* 5122 * Structure used internally for btrfs_create_chunk() function. 5123 * Wraps needed parameters. 5124 */ 5125 struct alloc_chunk_ctl { 5126 u64 start; 5127 u64 type; 5128 /* Total number of stripes to allocate */ 5129 int num_stripes; 5130 /* sub_stripes info for map */ 5131 int sub_stripes; 5132 /* Stripes per device */ 5133 int dev_stripes; 5134 /* Maximum number of devices to use */ 5135 int devs_max; 5136 /* Minimum number of devices to use */ 5137 int devs_min; 5138 /* ndevs has to be a multiple of this */ 5139 int devs_increment; 5140 /* Number of copies */ 5141 int ncopies; 5142 /* Number of stripes worth of bytes to store parity information */ 5143 int nparity; 5144 u64 max_stripe_size; 5145 u64 max_chunk_size; 5146 u64 dev_extent_min; 5147 u64 stripe_size; 5148 u64 chunk_size; 5149 int ndevs; 5150 /* Space_info the block group is going to belong. */ 5151 struct btrfs_space_info *space_info; 5152 }; 5153 5154 static void init_alloc_chunk_ctl_policy_regular( 5155 struct btrfs_fs_devices *fs_devices, 5156 struct alloc_chunk_ctl *ctl) 5157 { 5158 struct btrfs_space_info *space_info; 5159 5160 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5161 ASSERT(space_info); 5162 5163 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5164 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5165 5166 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5167 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5168 5169 /* We don't want a chunk larger than 10% of writable space */ 5170 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5171 ctl->max_chunk_size); 5172 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5173 } 5174 5175 static void init_alloc_chunk_ctl_policy_zoned( 5176 struct btrfs_fs_devices *fs_devices, 5177 struct alloc_chunk_ctl *ctl) 5178 { 5179 u64 zone_size = fs_devices->fs_info->zone_size; 5180 u64 limit; 5181 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5182 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5183 u64 min_chunk_size = min_data_stripes * zone_size; 5184 u64 type = ctl->type; 5185 5186 ctl->max_stripe_size = zone_size; 5187 if (type & BTRFS_BLOCK_GROUP_DATA) { 5188 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5189 zone_size); 5190 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5191 ctl->max_chunk_size = ctl->max_stripe_size; 5192 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5193 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5194 ctl->devs_max = min_t(int, ctl->devs_max, 5195 BTRFS_MAX_DEVS_SYS_CHUNK); 5196 } else { 5197 BUG(); 5198 } 5199 5200 /* We don't want a chunk larger than 10% of writable space */ 5201 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5202 zone_size), 5203 min_chunk_size); 5204 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5205 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5206 } 5207 5208 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5209 struct alloc_chunk_ctl *ctl) 5210 { 5211 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5212 5213 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5214 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5215 ctl->devs_max = btrfs_raid_array[index].devs_max; 5216 if (!ctl->devs_max) 5217 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5218 ctl->devs_min = btrfs_raid_array[index].devs_min; 5219 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5220 ctl->ncopies = btrfs_raid_array[index].ncopies; 5221 ctl->nparity = btrfs_raid_array[index].nparity; 5222 ctl->ndevs = 0; 5223 5224 switch (fs_devices->chunk_alloc_policy) { 5225 default: 5226 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5227 fallthrough; 5228 case BTRFS_CHUNK_ALLOC_REGULAR: 5229 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5230 break; 5231 case BTRFS_CHUNK_ALLOC_ZONED: 5232 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5233 break; 5234 } 5235 } 5236 5237 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5238 struct alloc_chunk_ctl *ctl, 5239 struct btrfs_device_info *devices_info) 5240 { 5241 struct btrfs_fs_info *info = fs_devices->fs_info; 5242 struct btrfs_device *device; 5243 u64 total_avail; 5244 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5245 int ret; 5246 int ndevs = 0; 5247 u64 max_avail; 5248 u64 dev_offset; 5249 5250 /* 5251 * in the first pass through the devices list, we gather information 5252 * about the available holes on each device. 5253 */ 5254 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5255 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5256 WARN(1, KERN_ERR 5257 "BTRFS: read-only device in alloc_list\n"); 5258 continue; 5259 } 5260 5261 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5262 &device->dev_state) || 5263 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5264 continue; 5265 5266 if (device->total_bytes > device->bytes_used) 5267 total_avail = device->total_bytes - device->bytes_used; 5268 else 5269 total_avail = 0; 5270 5271 /* If there is no space on this device, skip it. */ 5272 if (total_avail < ctl->dev_extent_min) 5273 continue; 5274 5275 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5276 &max_avail); 5277 if (ret && ret != -ENOSPC) 5278 return ret; 5279 5280 if (ret == 0) 5281 max_avail = dev_extent_want; 5282 5283 if (max_avail < ctl->dev_extent_min) { 5284 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5285 btrfs_debug(info, 5286 "%s: devid %llu has no free space, have=%llu want=%llu", 5287 __func__, device->devid, max_avail, 5288 ctl->dev_extent_min); 5289 continue; 5290 } 5291 5292 if (ndevs == fs_devices->rw_devices) { 5293 WARN(1, "%s: found more than %llu devices\n", 5294 __func__, fs_devices->rw_devices); 5295 break; 5296 } 5297 devices_info[ndevs].dev_offset = dev_offset; 5298 devices_info[ndevs].max_avail = max_avail; 5299 devices_info[ndevs].total_avail = total_avail; 5300 devices_info[ndevs].dev = device; 5301 ++ndevs; 5302 } 5303 ctl->ndevs = ndevs; 5304 5305 /* 5306 * now sort the devices by hole size / available space 5307 */ 5308 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5309 btrfs_cmp_device_info, NULL); 5310 5311 return 0; 5312 } 5313 5314 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5315 struct btrfs_device_info *devices_info) 5316 { 5317 /* Number of stripes that count for block group size */ 5318 int data_stripes; 5319 5320 /* 5321 * The primary goal is to maximize the number of stripes, so use as 5322 * many devices as possible, even if the stripes are not maximum sized. 5323 * 5324 * The DUP profile stores more than one stripe per device, the 5325 * max_avail is the total size so we have to adjust. 5326 */ 5327 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5328 ctl->dev_stripes); 5329 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5330 5331 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5332 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5333 5334 /* 5335 * Use the number of data stripes to figure out how big this chunk is 5336 * really going to be in terms of logical address space, and compare 5337 * that answer with the max chunk size. If it's higher, we try to 5338 * reduce stripe_size. 5339 */ 5340 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5341 /* 5342 * Reduce stripe_size, round it up to a 16MB boundary again and 5343 * then use it, unless it ends up being even bigger than the 5344 * previous value we had already. 5345 */ 5346 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5347 data_stripes), SZ_16M), 5348 ctl->stripe_size); 5349 } 5350 5351 /* Stripe size should not go beyond 1G. */ 5352 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5353 5354 /* Align to BTRFS_STRIPE_LEN */ 5355 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5356 ctl->chunk_size = ctl->stripe_size * data_stripes; 5357 5358 return 0; 5359 } 5360 5361 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5362 struct btrfs_device_info *devices_info) 5363 { 5364 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5365 /* Number of stripes that count for block group size */ 5366 int data_stripes; 5367 5368 /* 5369 * It should hold because: 5370 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5371 */ 5372 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, 5373 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, 5374 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); 5375 5376 ctl->stripe_size = zone_size; 5377 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5378 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5379 5380 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ 5381 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5382 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5383 ctl->stripe_size) + ctl->nparity, 5384 ctl->dev_stripes); 5385 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5386 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5387 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, 5388 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", 5389 ctl->stripe_size, data_stripes, ctl->max_chunk_size); 5390 } 5391 5392 ctl->chunk_size = ctl->stripe_size * data_stripes; 5393 5394 return 0; 5395 } 5396 5397 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5398 struct alloc_chunk_ctl *ctl, 5399 struct btrfs_device_info *devices_info) 5400 { 5401 struct btrfs_fs_info *info = fs_devices->fs_info; 5402 5403 /* 5404 * Round down to number of usable stripes, devs_increment can be any 5405 * number so we can't use round_down() that requires power of 2, while 5406 * rounddown is safe. 5407 */ 5408 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5409 5410 if (ctl->ndevs < ctl->devs_min) { 5411 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5412 btrfs_debug(info, 5413 "%s: not enough devices with free space: have=%d minimum required=%d", 5414 __func__, ctl->ndevs, ctl->devs_min); 5415 } 5416 return -ENOSPC; 5417 } 5418 5419 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5420 5421 switch (fs_devices->chunk_alloc_policy) { 5422 default: 5423 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); 5424 fallthrough; 5425 case BTRFS_CHUNK_ALLOC_REGULAR: 5426 return decide_stripe_size_regular(ctl, devices_info); 5427 case BTRFS_CHUNK_ALLOC_ZONED: 5428 return decide_stripe_size_zoned(ctl, devices_info); 5429 } 5430 } 5431 5432 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) 5433 { 5434 for (int i = 0; i < map->num_stripes; i++) { 5435 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5436 struct btrfs_device *device = stripe->dev; 5437 5438 btrfs_set_extent_bit(&device->alloc_state, stripe->physical, 5439 stripe->physical + map->stripe_size - 1, 5440 bits | EXTENT_NOWAIT, NULL); 5441 } 5442 } 5443 5444 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) 5445 { 5446 for (int i = 0; i < map->num_stripes; i++) { 5447 struct btrfs_io_stripe *stripe = &map->stripes[i]; 5448 struct btrfs_device *device = stripe->dev; 5449 5450 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical, 5451 stripe->physical + map->stripe_size - 1, 5452 bits | EXTENT_NOWAIT, NULL); 5453 } 5454 } 5455 5456 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5457 { 5458 write_lock(&fs_info->mapping_tree_lock); 5459 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5460 RB_CLEAR_NODE(&map->rb_node); 5461 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5462 write_unlock(&fs_info->mapping_tree_lock); 5463 5464 /* Once for the tree reference. */ 5465 btrfs_free_chunk_map(map); 5466 } 5467 5468 static int btrfs_chunk_map_cmp(const struct rb_node *new, 5469 const struct rb_node *exist) 5470 { 5471 const struct btrfs_chunk_map *new_map = 5472 rb_entry(new, struct btrfs_chunk_map, rb_node); 5473 const struct btrfs_chunk_map *exist_map = 5474 rb_entry(exist, struct btrfs_chunk_map, rb_node); 5475 5476 if (new_map->start == exist_map->start) 5477 return 0; 5478 if (new_map->start < exist_map->start) 5479 return -1; 5480 return 1; 5481 } 5482 5483 EXPORT_FOR_TESTS 5484 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) 5485 { 5486 struct rb_node *exist; 5487 5488 write_lock(&fs_info->mapping_tree_lock); 5489 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, 5490 btrfs_chunk_map_cmp); 5491 5492 if (exist) { 5493 write_unlock(&fs_info->mapping_tree_lock); 5494 return -EEXIST; 5495 } 5496 chunk_map_device_set_bits(map, CHUNK_ALLOCATED); 5497 chunk_map_device_clear_bits(map, CHUNK_TRIMMED); 5498 write_unlock(&fs_info->mapping_tree_lock); 5499 5500 return 0; 5501 } 5502 5503 EXPORT_FOR_TESTS 5504 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) 5505 { 5506 struct btrfs_chunk_map *map; 5507 5508 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); 5509 if (!map) 5510 return NULL; 5511 5512 refcount_set(&map->refs, 1); 5513 RB_CLEAR_NODE(&map->rb_node); 5514 5515 return map; 5516 } 5517 5518 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5519 struct alloc_chunk_ctl *ctl, 5520 struct btrfs_device_info *devices_info) 5521 { 5522 struct btrfs_fs_info *info = trans->fs_info; 5523 struct btrfs_chunk_map *map; 5524 struct btrfs_block_group *block_group; 5525 u64 start = ctl->start; 5526 u64 type = ctl->type; 5527 int ret; 5528 5529 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); 5530 if (!map) 5531 return ERR_PTR(-ENOMEM); 5532 5533 map->start = start; 5534 map->chunk_len = ctl->chunk_size; 5535 map->stripe_size = ctl->stripe_size; 5536 map->type = type; 5537 map->io_align = BTRFS_STRIPE_LEN; 5538 map->io_width = BTRFS_STRIPE_LEN; 5539 map->sub_stripes = ctl->sub_stripes; 5540 map->num_stripes = ctl->num_stripes; 5541 5542 for (int i = 0; i < ctl->ndevs; i++) { 5543 for (int j = 0; j < ctl->dev_stripes; j++) { 5544 int s = i * ctl->dev_stripes + j; 5545 map->stripes[s].dev = devices_info[i].dev; 5546 map->stripes[s].physical = devices_info[i].dev_offset + 5547 j * ctl->stripe_size; 5548 } 5549 } 5550 5551 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5552 5553 ret = btrfs_add_chunk_map(info, map); 5554 if (ret) { 5555 btrfs_free_chunk_map(map); 5556 return ERR_PTR(ret); 5557 } 5558 5559 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, 5560 ctl->chunk_size); 5561 if (IS_ERR(block_group)) { 5562 btrfs_remove_chunk_map(info, map); 5563 return block_group; 5564 } 5565 5566 for (int i = 0; i < map->num_stripes; i++) { 5567 struct btrfs_device *dev = map->stripes[i].dev; 5568 5569 btrfs_device_set_bytes_used(dev, 5570 dev->bytes_used + ctl->stripe_size); 5571 if (list_empty(&dev->post_commit_list)) 5572 list_add_tail(&dev->post_commit_list, 5573 &trans->transaction->dev_update_list); 5574 } 5575 5576 atomic64_sub(ctl->stripe_size * map->num_stripes, 5577 &info->free_chunk_space); 5578 5579 check_raid56_incompat_flag(info, type); 5580 check_raid1c34_incompat_flag(info, type); 5581 5582 return block_group; 5583 } 5584 5585 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5586 struct btrfs_space_info *space_info, 5587 u64 type) 5588 { 5589 struct btrfs_fs_info *info = trans->fs_info; 5590 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5591 struct btrfs_device_info *devices_info = NULL; 5592 struct alloc_chunk_ctl ctl; 5593 struct btrfs_block_group *block_group; 5594 int ret; 5595 5596 lockdep_assert_held(&info->chunk_mutex); 5597 5598 if (!alloc_profile_is_valid(type, 0)) { 5599 DEBUG_WARN("invalid alloc profile for type %llu", type); 5600 return ERR_PTR(-EINVAL); 5601 } 5602 5603 if (list_empty(&fs_devices->alloc_list)) { 5604 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5605 btrfs_debug(info, "%s: no writable device", __func__); 5606 return ERR_PTR(-ENOSPC); 5607 } 5608 5609 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5610 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5611 DEBUG_WARN(); 5612 return ERR_PTR(-EINVAL); 5613 } 5614 5615 ctl.start = find_next_chunk(info); 5616 ctl.type = type; 5617 ctl.space_info = space_info; 5618 init_alloc_chunk_ctl(fs_devices, &ctl); 5619 5620 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5621 GFP_NOFS); 5622 if (!devices_info) 5623 return ERR_PTR(-ENOMEM); 5624 5625 ret = gather_device_info(fs_devices, &ctl, devices_info); 5626 if (ret < 0) { 5627 block_group = ERR_PTR(ret); 5628 goto out; 5629 } 5630 5631 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5632 if (ret < 0) { 5633 block_group = ERR_PTR(ret); 5634 goto out; 5635 } 5636 5637 block_group = create_chunk(trans, &ctl, devices_info); 5638 5639 out: 5640 kfree(devices_info); 5641 return block_group; 5642 } 5643 5644 /* 5645 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5646 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5647 * chunks. 5648 * 5649 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5650 * phases. 5651 */ 5652 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5653 struct btrfs_block_group *bg) 5654 { 5655 struct btrfs_fs_info *fs_info = trans->fs_info; 5656 struct btrfs_root *chunk_root = fs_info->chunk_root; 5657 struct btrfs_key key; 5658 struct btrfs_chunk *chunk; 5659 struct btrfs_stripe *stripe; 5660 struct btrfs_chunk_map *map; 5661 size_t item_size; 5662 int i; 5663 int ret; 5664 5665 /* 5666 * We take the chunk_mutex for 2 reasons: 5667 * 5668 * 1) Updates and insertions in the chunk btree must be done while holding 5669 * the chunk_mutex, as well as updating the system chunk array in the 5670 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5671 * details; 5672 * 5673 * 2) To prevent races with the final phase of a device replace operation 5674 * that replaces the device object associated with the map's stripes, 5675 * because the device object's id can change at any time during that 5676 * final phase of the device replace operation 5677 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5678 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5679 * which would cause a failure when updating the device item, which does 5680 * not exists, or persisting a stripe of the chunk item with such ID. 5681 * Here we can't use the device_list_mutex because our caller already 5682 * has locked the chunk_mutex, and the final phase of device replace 5683 * acquires both mutexes - first the device_list_mutex and then the 5684 * chunk_mutex. Using any of those two mutexes protects us from a 5685 * concurrent device replace. 5686 */ 5687 lockdep_assert_held(&fs_info->chunk_mutex); 5688 5689 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5690 if (IS_ERR(map)) { 5691 ret = PTR_ERR(map); 5692 btrfs_abort_transaction(trans, ret); 5693 return ret; 5694 } 5695 5696 item_size = btrfs_chunk_item_size(map->num_stripes); 5697 5698 chunk = kzalloc(item_size, GFP_NOFS); 5699 if (!chunk) { 5700 ret = -ENOMEM; 5701 btrfs_abort_transaction(trans, ret); 5702 goto out; 5703 } 5704 5705 for (i = 0; i < map->num_stripes; i++) { 5706 struct btrfs_device *device = map->stripes[i].dev; 5707 5708 ret = btrfs_update_device(trans, device); 5709 if (ret) 5710 goto out; 5711 } 5712 5713 stripe = &chunk->stripe; 5714 for (i = 0; i < map->num_stripes; i++) { 5715 struct btrfs_device *device = map->stripes[i].dev; 5716 const u64 dev_offset = map->stripes[i].physical; 5717 5718 btrfs_set_stack_stripe_devid(stripe, device->devid); 5719 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5720 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5721 stripe++; 5722 } 5723 5724 btrfs_set_stack_chunk_length(chunk, bg->length); 5725 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5726 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5727 btrfs_set_stack_chunk_type(chunk, map->type); 5728 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5729 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5730 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5731 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5732 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5733 5734 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5735 key.type = BTRFS_CHUNK_ITEM_KEY; 5736 key.offset = bg->start; 5737 5738 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5739 if (ret) 5740 goto out; 5741 5742 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5743 5744 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5745 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5746 if (ret) 5747 goto out; 5748 } 5749 5750 out: 5751 kfree(chunk); 5752 btrfs_free_chunk_map(map); 5753 return ret; 5754 } 5755 5756 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5757 { 5758 struct btrfs_fs_info *fs_info = trans->fs_info; 5759 u64 alloc_profile; 5760 struct btrfs_block_group *meta_bg; 5761 struct btrfs_space_info *meta_space_info; 5762 struct btrfs_block_group *sys_bg; 5763 struct btrfs_space_info *sys_space_info; 5764 5765 /* 5766 * When adding a new device for sprouting, the seed device is read-only 5767 * so we must first allocate a metadata and a system chunk. But before 5768 * adding the block group items to the extent, device and chunk btrees, 5769 * we must first: 5770 * 5771 * 1) Create both chunks without doing any changes to the btrees, as 5772 * otherwise we would get -ENOSPC since the block groups from the 5773 * seed device are read-only; 5774 * 5775 * 2) Add the device item for the new sprout device - finishing the setup 5776 * of a new block group requires updating the device item in the chunk 5777 * btree, so it must exist when we attempt to do it. The previous step 5778 * ensures this does not fail with -ENOSPC. 5779 * 5780 * After that we can add the block group items to their btrees: 5781 * update existing device item in the chunk btree, add a new block group 5782 * item to the extent btree, add a new chunk item to the chunk btree and 5783 * finally add the new device extent items to the devices btree. 5784 */ 5785 5786 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5787 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5788 if (!meta_space_info) { 5789 DEBUG_WARN(); 5790 return -EINVAL; 5791 } 5792 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); 5793 if (IS_ERR(meta_bg)) 5794 return PTR_ERR(meta_bg); 5795 5796 alloc_profile = btrfs_system_alloc_profile(fs_info); 5797 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); 5798 if (!sys_space_info) { 5799 DEBUG_WARN(); 5800 return -EINVAL; 5801 } 5802 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); 5803 if (IS_ERR(sys_bg)) 5804 return PTR_ERR(sys_bg); 5805 5806 return 0; 5807 } 5808 5809 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) 5810 { 5811 const int index = btrfs_bg_flags_to_raid_index(map->type); 5812 5813 return btrfs_raid_array[index].tolerated_failures; 5814 } 5815 5816 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5817 { 5818 struct btrfs_chunk_map *map; 5819 int miss_ndevs = 0; 5820 int i; 5821 bool ret = true; 5822 5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5824 if (IS_ERR(map)) 5825 return false; 5826 5827 for (i = 0; i < map->num_stripes; i++) { 5828 if (test_bit(BTRFS_DEV_STATE_MISSING, 5829 &map->stripes[i].dev->dev_state)) { 5830 miss_ndevs++; 5831 continue; 5832 } 5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5834 &map->stripes[i].dev->dev_state)) { 5835 ret = false; 5836 goto end; 5837 } 5838 } 5839 5840 /* 5841 * If the number of missing devices is larger than max errors, we can 5842 * not write the data into that chunk successfully. 5843 */ 5844 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5845 ret = false; 5846 end: 5847 btrfs_free_chunk_map(map); 5848 return ret; 5849 } 5850 5851 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) 5852 { 5853 write_lock(&fs_info->mapping_tree_lock); 5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { 5855 struct btrfs_chunk_map *map; 5856 struct rb_node *node; 5857 5858 node = rb_first_cached(&fs_info->mapping_tree); 5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); 5861 RB_CLEAR_NODE(&map->rb_node); 5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); 5863 /* Once for the tree ref. */ 5864 btrfs_free_chunk_map(map); 5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock); 5866 } 5867 write_unlock(&fs_info->mapping_tree_lock); 5868 } 5869 5870 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) 5871 { 5872 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); 5873 5874 if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5875 return 2; 5876 5877 /* 5878 * There could be two corrupted data stripes, we need to loop retry in 5879 * order to rebuild the correct data. 5880 * 5881 * Fail a stripe at a time on every retry except the stripe under 5882 * reconstruction. 5883 */ 5884 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5885 return map->num_stripes; 5886 5887 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5888 return btrfs_raid_array[index].ncopies; 5889 } 5890 5891 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5892 { 5893 struct btrfs_chunk_map *map; 5894 int ret; 5895 5896 map = btrfs_get_chunk_map(fs_info, logical, len); 5897 if (IS_ERR(map)) 5898 /* 5899 * We could return errors for these cases, but that could get 5900 * ugly and we'd probably do the same thing which is just not do 5901 * anything else and exit, so return 1 so the callers don't try 5902 * to use other copies. 5903 */ 5904 return 1; 5905 5906 ret = btrfs_chunk_map_num_copies(map); 5907 btrfs_free_chunk_map(map); 5908 return ret; 5909 } 5910 5911 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5912 u64 logical) 5913 { 5914 struct btrfs_chunk_map *map; 5915 unsigned long len = fs_info->sectorsize; 5916 5917 if (!btrfs_fs_incompat(fs_info, RAID56)) 5918 return len; 5919 5920 map = btrfs_get_chunk_map(fs_info, logical, len); 5921 5922 if (!WARN_ON(IS_ERR(map))) { 5923 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5924 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5925 btrfs_free_chunk_map(map); 5926 } 5927 return len; 5928 } 5929 5930 #ifdef CONFIG_BTRFS_EXPERIMENTAL 5931 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) 5932 { 5933 for (int index = first; index < first + num_stripes; index++) { 5934 const struct btrfs_device *device = map->stripes[index].dev; 5935 5936 if (device->devid == READ_ONCE(device->fs_devices->read_devid)) 5937 return index; 5938 } 5939 5940 /* If no read-preferred device is set use the first stripe. */ 5941 return first; 5942 } 5943 5944 struct stripe_mirror { 5945 u64 devid; 5946 int num; 5947 }; 5948 5949 static int btrfs_cmp_devid(const void *a, const void *b) 5950 { 5951 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; 5952 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; 5953 5954 if (s1->devid < s2->devid) 5955 return -1; 5956 if (s1->devid > s2->devid) 5957 return 1; 5958 return 0; 5959 } 5960 5961 /* 5962 * Select a stripe for reading using the round-robin algorithm. 5963 * 5964 * 1. Compute the read cycle as the total sectors read divided by the minimum 5965 * sectors per device. 5966 * 2. Determine the stripe number for the current read by taking the modulus 5967 * of the read cycle with the total number of stripes: 5968 * 5969 * stripe index = (total sectors / min sectors per dev) % num stripes 5970 * 5971 * The calculated stripe index is then used to select the corresponding device 5972 * from the list of devices, which is ordered by devid. 5973 */ 5974 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) 5975 { 5976 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; 5977 struct btrfs_device *device = map->stripes[first].dev; 5978 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; 5979 unsigned int read_cycle; 5980 unsigned int total_reads; 5981 unsigned int min_reads_per_dev; 5982 5983 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); 5984 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> 5985 fs_info->sectorsize_bits; 5986 5987 for (int index = 0, i = first; i < first + num_stripes; i++) { 5988 stripes[index].devid = map->stripes[i].dev->devid; 5989 stripes[index].num = i; 5990 index++; 5991 } 5992 sort(stripes, num_stripes, sizeof(struct stripe_mirror), 5993 btrfs_cmp_devid, NULL); 5994 5995 read_cycle = total_reads / min_reads_per_dev; 5996 return stripes[read_cycle % num_stripes].num; 5997 } 5998 #endif 5999 6000 static int find_live_mirror(struct btrfs_fs_info *fs_info, 6001 struct btrfs_chunk_map *map, int first, 6002 bool dev_replace_is_ongoing) 6003 { 6004 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); 6005 int i; 6006 int num_stripes; 6007 int preferred_mirror; 6008 int tolerance; 6009 struct btrfs_device *srcdev; 6010 6011 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), 6012 "type=%llu", map->type); 6013 6014 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6015 num_stripes = map->sub_stripes; 6016 else 6017 num_stripes = map->num_stripes; 6018 6019 switch (policy) { 6020 default: 6021 /* Shouldn't happen, just warn and use pid instead of failing */ 6022 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", 6023 policy); 6024 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); 6025 fallthrough; 6026 case BTRFS_READ_POLICY_PID: 6027 preferred_mirror = first + (current->pid % num_stripes); 6028 break; 6029 #ifdef CONFIG_BTRFS_EXPERIMENTAL 6030 case BTRFS_READ_POLICY_RR: 6031 preferred_mirror = btrfs_read_rr(map, first, num_stripes); 6032 break; 6033 case BTRFS_READ_POLICY_DEVID: 6034 preferred_mirror = btrfs_read_preferred(map, first, num_stripes); 6035 break; 6036 #endif 6037 } 6038 6039 if (dev_replace_is_ongoing && 6040 fs_info->dev_replace.cont_reading_from_srcdev_mode == 6041 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 6042 srcdev = fs_info->dev_replace.srcdev; 6043 else 6044 srcdev = NULL; 6045 6046 /* 6047 * try to avoid the drive that is the source drive for a 6048 * dev-replace procedure, only choose it if no other non-missing 6049 * mirror is available 6050 */ 6051 for (tolerance = 0; tolerance < 2; tolerance++) { 6052 if (map->stripes[preferred_mirror].dev->bdev && 6053 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 6054 return preferred_mirror; 6055 for (i = first; i < first + num_stripes; i++) { 6056 if (map->stripes[i].dev->bdev && 6057 (tolerance || map->stripes[i].dev != srcdev)) 6058 return i; 6059 } 6060 } 6061 6062 /* we couldn't find one that doesn't fail. Just return something 6063 * and the io error handling code will clean up eventually 6064 */ 6065 return preferred_mirror; 6066 } 6067 6068 EXPORT_FOR_TESTS 6069 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 6070 u64 logical, u16 total_stripes) 6071 { 6072 struct btrfs_io_context *bioc; 6073 6074 bioc = kzalloc( 6075 /* The size of btrfs_io_context */ 6076 sizeof(struct btrfs_io_context) + 6077 /* Plus the variable array for the stripes */ 6078 sizeof(struct btrfs_io_stripe) * (total_stripes), 6079 GFP_NOFS); 6080 6081 if (!bioc) 6082 return NULL; 6083 6084 refcount_set(&bioc->refs, 1); 6085 6086 bioc->fs_info = fs_info; 6087 bioc->replace_stripe_src = -1; 6088 bioc->full_stripe_logical = (u64)-1; 6089 bioc->logical = logical; 6090 6091 return bioc; 6092 } 6093 6094 void btrfs_get_bioc(struct btrfs_io_context *bioc) 6095 { 6096 WARN_ON(!refcount_read(&bioc->refs)); 6097 refcount_inc(&bioc->refs); 6098 } 6099 6100 void btrfs_put_bioc(struct btrfs_io_context *bioc) 6101 { 6102 if (!bioc) 6103 return; 6104 if (refcount_dec_and_test(&bioc->refs)) 6105 kfree(bioc); 6106 } 6107 6108 /* 6109 * Please note that, discard won't be sent to target device of device 6110 * replace. 6111 */ 6112 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 6113 u64 logical, u64 *length_ret, 6114 u32 *num_stripes) 6115 { 6116 struct btrfs_chunk_map *map; 6117 struct btrfs_discard_stripe *stripes; 6118 u64 length = *length_ret; 6119 u64 offset; 6120 u32 stripe_nr; 6121 u32 stripe_nr_end; 6122 u32 stripe_cnt; 6123 u64 stripe_end_offset; 6124 u64 stripe_offset; 6125 u32 stripe_index; 6126 u32 factor = 0; 6127 u32 sub_stripes = 0; 6128 u32 stripes_per_dev = 0; 6129 u32 remaining_stripes = 0; 6130 u32 last_stripe = 0; 6131 int ret; 6132 int i; 6133 6134 map = btrfs_get_chunk_map(fs_info, logical, length); 6135 if (IS_ERR(map)) 6136 return ERR_CAST(map); 6137 6138 /* we don't discard raid56 yet */ 6139 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6140 ret = -EOPNOTSUPP; 6141 goto out_free_map; 6142 } 6143 6144 offset = logical - map->start; 6145 length = min_t(u64, map->start + map->chunk_len - logical, length); 6146 *length_ret = length; 6147 6148 /* 6149 * stripe_nr counts the total number of stripes we have to stride 6150 * to get to this block 6151 */ 6152 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6153 6154 /* stripe_offset is the offset of this block in its stripe */ 6155 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 6156 6157 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 6158 BTRFS_STRIPE_LEN_SHIFT; 6159 stripe_cnt = stripe_nr_end - stripe_nr; 6160 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 6161 (offset + length); 6162 /* 6163 * after this, stripe_nr is the number of stripes on this 6164 * device we have to walk to find the data, and stripe_index is 6165 * the number of our device in the stripe array 6166 */ 6167 *num_stripes = 1; 6168 stripe_index = 0; 6169 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6170 BTRFS_BLOCK_GROUP_RAID10)) { 6171 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6172 sub_stripes = 1; 6173 else 6174 sub_stripes = map->sub_stripes; 6175 6176 factor = map->num_stripes / sub_stripes; 6177 *num_stripes = min_t(u64, map->num_stripes, 6178 sub_stripes * stripe_cnt); 6179 stripe_index = stripe_nr % factor; 6180 stripe_nr /= factor; 6181 stripe_index *= sub_stripes; 6182 6183 remaining_stripes = stripe_cnt % factor; 6184 stripes_per_dev = stripe_cnt / factor; 6185 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6186 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6187 BTRFS_BLOCK_GROUP_DUP)) { 6188 *num_stripes = map->num_stripes; 6189 } else { 6190 stripe_index = stripe_nr % map->num_stripes; 6191 stripe_nr /= map->num_stripes; 6192 } 6193 6194 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6195 if (!stripes) { 6196 ret = -ENOMEM; 6197 goto out_free_map; 6198 } 6199 6200 for (i = 0; i < *num_stripes; i++) { 6201 stripes[i].physical = 6202 map->stripes[stripe_index].physical + 6203 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6204 stripes[i].dev = map->stripes[stripe_index].dev; 6205 6206 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6207 BTRFS_BLOCK_GROUP_RAID10)) { 6208 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6209 6210 if (i / sub_stripes < remaining_stripes) 6211 stripes[i].length += BTRFS_STRIPE_LEN; 6212 6213 /* 6214 * Special for the first stripe and 6215 * the last stripe: 6216 * 6217 * |-------|...|-------| 6218 * |----------| 6219 * off end_off 6220 */ 6221 if (i < sub_stripes) 6222 stripes[i].length -= stripe_offset; 6223 6224 if (stripe_index >= last_stripe && 6225 stripe_index <= (last_stripe + 6226 sub_stripes - 1)) 6227 stripes[i].length -= stripe_end_offset; 6228 6229 if (i == sub_stripes - 1) 6230 stripe_offset = 0; 6231 } else { 6232 stripes[i].length = length; 6233 } 6234 6235 stripe_index++; 6236 if (stripe_index == map->num_stripes) { 6237 stripe_index = 0; 6238 stripe_nr++; 6239 } 6240 } 6241 6242 btrfs_free_chunk_map(map); 6243 return stripes; 6244 out_free_map: 6245 btrfs_free_chunk_map(map); 6246 return ERR_PTR(ret); 6247 } 6248 6249 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6250 { 6251 struct btrfs_block_group *cache; 6252 bool ret; 6253 6254 /* Non zoned filesystem does not use "to_copy" flag */ 6255 if (!btrfs_is_zoned(fs_info)) 6256 return false; 6257 6258 cache = btrfs_lookup_block_group(fs_info, logical); 6259 6260 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6261 6262 btrfs_put_block_group(cache); 6263 return ret; 6264 } 6265 6266 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, 6267 struct btrfs_dev_replace *dev_replace, 6268 u64 logical, 6269 struct btrfs_io_geometry *io_geom) 6270 { 6271 u64 srcdev_devid = dev_replace->srcdev->devid; 6272 /* 6273 * At this stage, num_stripes is still the real number of stripes, 6274 * excluding the duplicated stripes. 6275 */ 6276 int num_stripes = io_geom->num_stripes; 6277 int max_errors = io_geom->max_errors; 6278 int nr_extra_stripes = 0; 6279 int i; 6280 6281 /* 6282 * A block group which has "to_copy" set will eventually be copied by 6283 * the dev-replace process. We can avoid cloning IO here. 6284 */ 6285 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6286 return; 6287 6288 /* 6289 * Duplicate the write operations while the dev-replace procedure is 6290 * running. Since the copying of the old disk to the new disk takes 6291 * place at run time while the filesystem is mounted writable, the 6292 * regular write operations to the old disk have to be duplicated to go 6293 * to the new disk as well. 6294 * 6295 * Note that device->missing is handled by the caller, and that the 6296 * write to the old disk is already set up in the stripes array. 6297 */ 6298 for (i = 0; i < num_stripes; i++) { 6299 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6300 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6301 6302 if (old->dev->devid != srcdev_devid) 6303 continue; 6304 6305 new->physical = old->physical; 6306 new->dev = dev_replace->tgtdev; 6307 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6308 bioc->replace_stripe_src = i; 6309 nr_extra_stripes++; 6310 } 6311 6312 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6313 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); 6314 /* 6315 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6316 * replace. 6317 * If we have 2 extra stripes, only choose the one with smaller physical. 6318 */ 6319 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6320 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6321 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6322 6323 /* Only DUP can have two extra stripes. */ 6324 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, 6325 "map_type=%llu", bioc->map_type); 6326 6327 /* 6328 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6329 * The extra stripe would still be there, but won't be accessed. 6330 */ 6331 if (first->physical > second->physical) { 6332 swap(second->physical, first->physical); 6333 swap(second->dev, first->dev); 6334 nr_extra_stripes--; 6335 } 6336 } 6337 6338 io_geom->num_stripes = num_stripes + nr_extra_stripes; 6339 io_geom->max_errors = max_errors + nr_extra_stripes; 6340 bioc->replace_nr_stripes = nr_extra_stripes; 6341 } 6342 6343 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, 6344 struct btrfs_io_geometry *io_geom) 6345 { 6346 /* 6347 * Stripe_nr is the stripe where this block falls. stripe_offset is 6348 * the offset of this block in its stripe. 6349 */ 6350 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6351 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6352 ASSERT(io_geom->stripe_offset < U32_MAX, 6353 "stripe_offset=%llu", io_geom->stripe_offset); 6354 6355 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6356 unsigned long full_stripe_len = 6357 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6358 6359 /* 6360 * For full stripe start, we use previously calculated 6361 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6362 * STRIPE_LEN. 6363 * 6364 * By this we can avoid u64 division completely. And we have 6365 * to go rounddown(), not round_down(), as nr_data_stripes is 6366 * not ensured to be power of 2. 6367 */ 6368 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( 6369 rounddown(io_geom->stripe_nr, nr_data_stripes(map))); 6370 6371 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, 6372 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", 6373 io_geom->raid56_full_stripe_start, full_stripe_len, offset); 6374 ASSERT(io_geom->raid56_full_stripe_start <= offset, 6375 "raid56_full_stripe_start=%llu offset=%llu", 6376 io_geom->raid56_full_stripe_start, offset); 6377 /* 6378 * For writes to RAID56, allow to write a full stripe set, but 6379 * no straddling of stripe sets. 6380 */ 6381 if (io_geom->op == BTRFS_MAP_WRITE) 6382 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); 6383 } 6384 6385 /* 6386 * For other RAID types and for RAID56 reads, allow a single stripe (on 6387 * a single disk). 6388 */ 6389 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6390 return BTRFS_STRIPE_LEN - io_geom->stripe_offset; 6391 return U64_MAX; 6392 } 6393 6394 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, 6395 u64 *length, struct btrfs_io_stripe *dst, 6396 struct btrfs_chunk_map *map, 6397 struct btrfs_io_geometry *io_geom) 6398 { 6399 dst->dev = map->stripes[io_geom->stripe_index].dev; 6400 6401 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) 6402 return btrfs_get_raid_extent_offset(fs_info, logical, length, 6403 map->type, 6404 io_geom->stripe_index, dst); 6405 6406 dst->physical = map->stripes[io_geom->stripe_index].physical + 6407 io_geom->stripe_offset + 6408 btrfs_stripe_nr_to_offset(io_geom->stripe_nr); 6409 return 0; 6410 } 6411 6412 static bool is_single_device_io(struct btrfs_fs_info *fs_info, 6413 const struct btrfs_io_stripe *smap, 6414 const struct btrfs_chunk_map *map, 6415 int num_alloc_stripes, 6416 struct btrfs_io_geometry *io_geom) 6417 { 6418 if (!smap) 6419 return false; 6420 6421 if (num_alloc_stripes != 1) 6422 return false; 6423 6424 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) 6425 return false; 6426 6427 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) 6428 return false; 6429 6430 return true; 6431 } 6432 6433 static void map_blocks_raid0(const struct btrfs_chunk_map *map, 6434 struct btrfs_io_geometry *io_geom) 6435 { 6436 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6437 io_geom->stripe_nr /= map->num_stripes; 6438 if (io_geom->op == BTRFS_MAP_READ) 6439 io_geom->mirror_num = 1; 6440 } 6441 6442 static void map_blocks_raid1(struct btrfs_fs_info *fs_info, 6443 struct btrfs_chunk_map *map, 6444 struct btrfs_io_geometry *io_geom, 6445 bool dev_replace_is_ongoing) 6446 { 6447 if (io_geom->op != BTRFS_MAP_READ) { 6448 io_geom->num_stripes = map->num_stripes; 6449 return; 6450 } 6451 6452 if (io_geom->mirror_num) { 6453 io_geom->stripe_index = io_geom->mirror_num - 1; 6454 return; 6455 } 6456 6457 io_geom->stripe_index = find_live_mirror(fs_info, map, 0, 6458 dev_replace_is_ongoing); 6459 io_geom->mirror_num = io_geom->stripe_index + 1; 6460 } 6461 6462 static void map_blocks_dup(const struct btrfs_chunk_map *map, 6463 struct btrfs_io_geometry *io_geom) 6464 { 6465 if (io_geom->op != BTRFS_MAP_READ) { 6466 io_geom->num_stripes = map->num_stripes; 6467 return; 6468 } 6469 6470 if (io_geom->mirror_num) { 6471 io_geom->stripe_index = io_geom->mirror_num - 1; 6472 return; 6473 } 6474 6475 io_geom->mirror_num = 1; 6476 } 6477 6478 static void map_blocks_raid10(struct btrfs_fs_info *fs_info, 6479 struct btrfs_chunk_map *map, 6480 struct btrfs_io_geometry *io_geom, 6481 bool dev_replace_is_ongoing) 6482 { 6483 u32 factor = map->num_stripes / map->sub_stripes; 6484 int old_stripe_index; 6485 6486 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; 6487 io_geom->stripe_nr /= factor; 6488 6489 if (io_geom->op != BTRFS_MAP_READ) { 6490 io_geom->num_stripes = map->sub_stripes; 6491 return; 6492 } 6493 6494 if (io_geom->mirror_num) { 6495 io_geom->stripe_index += io_geom->mirror_num - 1; 6496 return; 6497 } 6498 6499 old_stripe_index = io_geom->stripe_index; 6500 io_geom->stripe_index = find_live_mirror(fs_info, map, 6501 io_geom->stripe_index, 6502 dev_replace_is_ongoing); 6503 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; 6504 } 6505 6506 static void map_blocks_raid56_write(struct btrfs_chunk_map *map, 6507 struct btrfs_io_geometry *io_geom, 6508 u64 logical, u64 *length) 6509 { 6510 int data_stripes = nr_data_stripes(map); 6511 6512 /* 6513 * Needs full stripe mapping. 6514 * 6515 * Push stripe_nr back to the start of the full stripe For those cases 6516 * needing a full stripe, @stripe_nr is the full stripe number. 6517 * 6518 * Originally we go raid56_full_stripe_start / full_stripe_len, but 6519 * that can be expensive. Here we just divide @stripe_nr with 6520 * @data_stripes. 6521 */ 6522 io_geom->stripe_nr /= data_stripes; 6523 6524 /* RAID[56] write or recovery. Return all stripes */ 6525 io_geom->num_stripes = map->num_stripes; 6526 io_geom->max_errors = btrfs_chunk_max_errors(map); 6527 6528 /* Return the length to the full stripe end. */ 6529 *length = min(logical + *length, 6530 io_geom->raid56_full_stripe_start + map->start + 6531 btrfs_stripe_nr_to_offset(data_stripes)) - 6532 logical; 6533 io_geom->stripe_index = 0; 6534 io_geom->stripe_offset = 0; 6535 } 6536 6537 static void map_blocks_raid56_read(struct btrfs_chunk_map *map, 6538 struct btrfs_io_geometry *io_geom) 6539 { 6540 int data_stripes = nr_data_stripes(map); 6541 6542 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); 6543 /* Just grab the data stripe directly. */ 6544 io_geom->stripe_index = io_geom->stripe_nr % data_stripes; 6545 io_geom->stripe_nr /= data_stripes; 6546 6547 /* We distribute the parity blocks across stripes. */ 6548 io_geom->stripe_index = 6549 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; 6550 6551 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) 6552 io_geom->mirror_num = 1; 6553 } 6554 6555 static void map_blocks_single(const struct btrfs_chunk_map *map, 6556 struct btrfs_io_geometry *io_geom) 6557 { 6558 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; 6559 io_geom->stripe_nr /= map->num_stripes; 6560 io_geom->mirror_num = io_geom->stripe_index + 1; 6561 } 6562 6563 /* 6564 * Map one logical range to one or more physical ranges. 6565 * 6566 * @length: (Mandatory) mapped length of this run. 6567 * One logical range can be split into different segments 6568 * due to factors like zones and RAID0/5/6/10 stripe 6569 * boundaries. 6570 * 6571 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6572 * which has one or more physical ranges (btrfs_io_stripe) 6573 * recorded inside. 6574 * Caller should call btrfs_put_bioc() to free it after use. 6575 * 6576 * @smap: (Optional) single physical range optimization. 6577 * If the map request can be fulfilled by one single 6578 * physical range, and this is parameter is not NULL, 6579 * then @bioc_ret would be NULL, and @smap would be 6580 * updated. 6581 * 6582 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6583 * value is 0. 6584 * 6585 * Mirror number 0 means to choose any live mirrors. 6586 * 6587 * For non-RAID56 profiles, non-zero mirror_num means 6588 * the Nth mirror. (e.g. mirror_num 1 means the first 6589 * copy). 6590 * 6591 * For RAID56 profile, mirror 1 means rebuild from P and 6592 * the remaining data stripes. 6593 * 6594 * For RAID6 profile, mirror > 2 means mark another 6595 * data/P stripe error and rebuild from the remaining 6596 * stripes.. 6597 */ 6598 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6599 u64 logical, u64 *length, 6600 struct btrfs_io_context **bioc_ret, 6601 struct btrfs_io_stripe *smap, int *mirror_num_ret) 6602 { 6603 struct btrfs_chunk_map *map; 6604 struct btrfs_io_geometry io_geom = { 0 }; 6605 u64 map_offset; 6606 int ret = 0; 6607 int num_copies; 6608 struct btrfs_io_context *bioc = NULL; 6609 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6610 bool dev_replace_is_ongoing = false; 6611 u16 num_alloc_stripes; 6612 u64 max_len; 6613 6614 ASSERT(bioc_ret); 6615 6616 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6617 io_geom.num_stripes = 1; 6618 io_geom.stripe_index = 0; 6619 io_geom.op = op; 6620 6621 map = btrfs_get_chunk_map(fs_info, logical, *length); 6622 if (IS_ERR(map)) 6623 return PTR_ERR(map); 6624 6625 num_copies = btrfs_chunk_map_num_copies(map); 6626 if (io_geom.mirror_num > num_copies) 6627 return -EINVAL; 6628 6629 map_offset = logical - map->start; 6630 io_geom.raid56_full_stripe_start = (u64)-1; 6631 max_len = btrfs_max_io_len(map, map_offset, &io_geom); 6632 *length = min_t(u64, map->chunk_len - map_offset, max_len); 6633 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); 6634 6635 if (dev_replace->replace_task != current) 6636 down_read(&dev_replace->rwsem); 6637 6638 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6639 /* 6640 * Hold the semaphore for read during the whole operation, write is 6641 * requested at commit time but must wait. 6642 */ 6643 if (!dev_replace_is_ongoing && dev_replace->replace_task != current) 6644 up_read(&dev_replace->rwsem); 6645 6646 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6647 case BTRFS_BLOCK_GROUP_RAID0: 6648 map_blocks_raid0(map, &io_geom); 6649 break; 6650 case BTRFS_BLOCK_GROUP_RAID1: 6651 case BTRFS_BLOCK_GROUP_RAID1C3: 6652 case BTRFS_BLOCK_GROUP_RAID1C4: 6653 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); 6654 break; 6655 case BTRFS_BLOCK_GROUP_DUP: 6656 map_blocks_dup(map, &io_geom); 6657 break; 6658 case BTRFS_BLOCK_GROUP_RAID10: 6659 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); 6660 break; 6661 case BTRFS_BLOCK_GROUP_RAID5: 6662 case BTRFS_BLOCK_GROUP_RAID6: 6663 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) 6664 map_blocks_raid56_write(map, &io_geom, logical, length); 6665 else 6666 map_blocks_raid56_read(map, &io_geom); 6667 break; 6668 default: 6669 /* 6670 * After this, stripe_nr is the number of stripes on this 6671 * device we have to walk to find the data, and stripe_index is 6672 * the number of our device in the stripe array 6673 */ 6674 map_blocks_single(map, &io_geom); 6675 break; 6676 } 6677 if (io_geom.stripe_index >= map->num_stripes) { 6678 btrfs_crit(fs_info, 6679 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6680 io_geom.stripe_index, map->num_stripes); 6681 ret = -EINVAL; 6682 goto out; 6683 } 6684 6685 num_alloc_stripes = io_geom.num_stripes; 6686 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6687 op != BTRFS_MAP_READ) 6688 /* 6689 * For replace case, we need to add extra stripes for extra 6690 * duplicated stripes. 6691 * 6692 * For both WRITE and GET_READ_MIRRORS, we may have at most 6693 * 2 more stripes (DUP types, otherwise 1). 6694 */ 6695 num_alloc_stripes += 2; 6696 6697 /* 6698 * If this I/O maps to a single device, try to return the device and 6699 * physical block information on the stack instead of allocating an 6700 * I/O context structure. 6701 */ 6702 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { 6703 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); 6704 if (mirror_num_ret) 6705 *mirror_num_ret = io_geom.mirror_num; 6706 *bioc_ret = NULL; 6707 goto out; 6708 } 6709 6710 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); 6711 if (!bioc) { 6712 ret = -ENOMEM; 6713 goto out; 6714 } 6715 bioc->map_type = map->type; 6716 bioc->use_rst = io_geom.use_rst; 6717 6718 /* 6719 * For RAID56 full map, we need to make sure the stripes[] follows the 6720 * rule that data stripes are all ordered, then followed with P and Q 6721 * (if we have). 6722 * 6723 * It's still mostly the same as other profiles, just with extra rotation. 6724 */ 6725 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 6726 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { 6727 /* 6728 * For RAID56 @stripe_nr is already the number of full stripes 6729 * before us, which is also the rotation value (needs to modulo 6730 * with num_stripes). 6731 * 6732 * In this case, we just add @stripe_nr with @i, then do the 6733 * modulo, to reduce one modulo call. 6734 */ 6735 bioc->full_stripe_logical = map->start + 6736 btrfs_stripe_nr_to_offset(io_geom.stripe_nr * 6737 nr_data_stripes(map)); 6738 for (int i = 0; i < io_geom.num_stripes; i++) { 6739 struct btrfs_io_stripe *dst = &bioc->stripes[i]; 6740 u32 stripe_index; 6741 6742 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; 6743 dst->dev = map->stripes[stripe_index].dev; 6744 dst->physical = 6745 map->stripes[stripe_index].physical + 6746 io_geom.stripe_offset + 6747 btrfs_stripe_nr_to_offset(io_geom.stripe_nr); 6748 } 6749 } else { 6750 /* 6751 * For all other non-RAID56 profiles, just copy the target 6752 * stripe into the bioc. 6753 */ 6754 for (int i = 0; i < io_geom.num_stripes; i++) { 6755 ret = set_io_stripe(fs_info, logical, length, 6756 &bioc->stripes[i], map, &io_geom); 6757 if (ret < 0) 6758 break; 6759 io_geom.stripe_index++; 6760 } 6761 } 6762 6763 if (ret) { 6764 *bioc_ret = NULL; 6765 btrfs_put_bioc(bioc); 6766 goto out; 6767 } 6768 6769 if (op != BTRFS_MAP_READ) 6770 io_geom.max_errors = btrfs_chunk_max_errors(map); 6771 6772 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6773 op != BTRFS_MAP_READ) { 6774 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); 6775 } 6776 6777 *bioc_ret = bioc; 6778 bioc->num_stripes = io_geom.num_stripes; 6779 bioc->max_errors = io_geom.max_errors; 6780 bioc->mirror_num = io_geom.mirror_num; 6781 6782 out: 6783 if (dev_replace_is_ongoing && dev_replace->replace_task != current) { 6784 lockdep_assert_held(&dev_replace->rwsem); 6785 /* Unlock and let waiting writers proceed */ 6786 up_read(&dev_replace->rwsem); 6787 } 6788 btrfs_free_chunk_map(map); 6789 return ret; 6790 } 6791 6792 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6793 const struct btrfs_fs_devices *fs_devices) 6794 { 6795 if (args->fsid == NULL) 6796 return true; 6797 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6798 return true; 6799 return false; 6800 } 6801 6802 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6803 const struct btrfs_device *device) 6804 { 6805 if (args->missing) { 6806 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6807 !device->bdev) 6808 return true; 6809 return false; 6810 } 6811 6812 if (device->devid != args->devid) 6813 return false; 6814 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6815 return false; 6816 return true; 6817 } 6818 6819 /* 6820 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6821 * return NULL. 6822 * 6823 * If devid and uuid are both specified, the match must be exact, otherwise 6824 * only devid is used. 6825 */ 6826 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6827 const struct btrfs_dev_lookup_args *args) 6828 { 6829 struct btrfs_device *device; 6830 struct btrfs_fs_devices *seed_devs; 6831 6832 if (dev_args_match_fs_devices(args, fs_devices)) { 6833 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6834 if (dev_args_match_device(args, device)) 6835 return device; 6836 } 6837 } 6838 6839 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6840 if (!dev_args_match_fs_devices(args, seed_devs)) 6841 continue; 6842 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6843 if (dev_args_match_device(args, device)) 6844 return device; 6845 } 6846 } 6847 6848 return NULL; 6849 } 6850 6851 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6852 u64 devid, u8 *dev_uuid) 6853 { 6854 struct btrfs_device *device; 6855 unsigned int nofs_flag; 6856 6857 /* 6858 * We call this under the chunk_mutex, so we want to use NOFS for this 6859 * allocation, however we don't want to change btrfs_alloc_device() to 6860 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6861 * places. 6862 */ 6863 6864 nofs_flag = memalloc_nofs_save(); 6865 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6866 memalloc_nofs_restore(nofs_flag); 6867 if (IS_ERR(device)) 6868 return device; 6869 6870 list_add(&device->dev_list, &fs_devices->devices); 6871 device->fs_devices = fs_devices; 6872 fs_devices->num_devices++; 6873 6874 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6875 fs_devices->missing_devices++; 6876 6877 return device; 6878 } 6879 6880 /* 6881 * Allocate new device struct, set up devid and UUID. 6882 * 6883 * @fs_info: used only for generating a new devid, can be NULL if 6884 * devid is provided (i.e. @devid != NULL). 6885 * @devid: a pointer to devid for this device. If NULL a new devid 6886 * is generated. 6887 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6888 * is generated. 6889 * @path: a pointer to device path if available, NULL otherwise. 6890 * 6891 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6892 * on error. Returned struct is not linked onto any lists and must be 6893 * destroyed with btrfs_free_device. 6894 */ 6895 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6896 const u64 *devid, const u8 *uuid, 6897 const char *path) 6898 { 6899 struct btrfs_device *dev; 6900 u64 tmp; 6901 6902 if (WARN_ON(!devid && !fs_info)) 6903 return ERR_PTR(-EINVAL); 6904 6905 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6906 if (!dev) 6907 return ERR_PTR(-ENOMEM); 6908 6909 INIT_LIST_HEAD(&dev->dev_list); 6910 INIT_LIST_HEAD(&dev->dev_alloc_list); 6911 INIT_LIST_HEAD(&dev->post_commit_list); 6912 6913 atomic_set(&dev->dev_stats_ccnt, 0); 6914 btrfs_device_data_ordered_init(dev); 6915 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6916 6917 if (devid) 6918 tmp = *devid; 6919 else { 6920 int ret; 6921 6922 ret = find_next_devid(fs_info, &tmp); 6923 if (ret) { 6924 btrfs_free_device(dev); 6925 return ERR_PTR(ret); 6926 } 6927 } 6928 dev->devid = tmp; 6929 6930 if (uuid) 6931 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6932 else 6933 generate_random_uuid(dev->uuid); 6934 6935 if (path) { 6936 const char *name; 6937 6938 name = kstrdup(path, GFP_KERNEL); 6939 if (!name) { 6940 btrfs_free_device(dev); 6941 return ERR_PTR(-ENOMEM); 6942 } 6943 rcu_assign_pointer(dev->name, name); 6944 } 6945 6946 return dev; 6947 } 6948 6949 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6950 u64 devid, u8 *uuid, bool error) 6951 { 6952 if (error) 6953 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6954 devid, uuid); 6955 else 6956 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6957 devid, uuid); 6958 } 6959 6960 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) 6961 { 6962 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6963 6964 return div_u64(map->chunk_len, data_stripes); 6965 } 6966 6967 #if BITS_PER_LONG == 32 6968 /* 6969 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6970 * can't be accessed on 32bit systems. 6971 * 6972 * This function do mount time check to reject the fs if it already has 6973 * metadata chunk beyond that limit. 6974 */ 6975 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6976 u64 logical, u64 length, u64 type) 6977 { 6978 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6979 return 0; 6980 6981 if (logical + length < MAX_LFS_FILESIZE) 6982 return 0; 6983 6984 btrfs_err_32bit_limit(fs_info); 6985 return -EOVERFLOW; 6986 } 6987 6988 /* 6989 * This is to give early warning for any metadata chunk reaching 6990 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6991 * Although we can still access the metadata, it's not going to be possible 6992 * once the limit is reached. 6993 */ 6994 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6995 u64 logical, u64 length, u64 type) 6996 { 6997 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6998 return; 6999 7000 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7001 return; 7002 7003 btrfs_warn_32bit_limit(fs_info); 7004 } 7005 #endif 7006 7007 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7008 u64 devid, u8 *uuid) 7009 { 7010 struct btrfs_device *dev; 7011 7012 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7013 btrfs_report_missing_device(fs_info, devid, uuid, true); 7014 return ERR_PTR(-ENOENT); 7015 } 7016 7017 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7018 if (IS_ERR(dev)) { 7019 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7020 devid, PTR_ERR(dev)); 7021 return dev; 7022 } 7023 btrfs_report_missing_device(fs_info, devid, uuid, false); 7024 7025 return dev; 7026 } 7027 7028 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7029 struct btrfs_chunk *chunk) 7030 { 7031 BTRFS_DEV_LOOKUP_ARGS(args); 7032 struct btrfs_fs_info *fs_info = leaf->fs_info; 7033 struct btrfs_chunk_map *map; 7034 u64 logical; 7035 u64 length; 7036 u64 devid; 7037 u64 type; 7038 u8 uuid[BTRFS_UUID_SIZE]; 7039 int index; 7040 int num_stripes; 7041 int ret; 7042 int i; 7043 7044 logical = key->offset; 7045 length = btrfs_chunk_length(leaf, chunk); 7046 type = btrfs_chunk_type(leaf, chunk); 7047 index = btrfs_bg_flags_to_raid_index(type); 7048 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7049 7050 #if BITS_PER_LONG == 32 7051 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7052 if (ret < 0) 7053 return ret; 7054 warn_32bit_meta_chunk(fs_info, logical, length, type); 7055 #endif 7056 7057 map = btrfs_find_chunk_map(fs_info, logical, 1); 7058 7059 /* already mapped? */ 7060 if (map && map->start <= logical && map->start + map->chunk_len > logical) { 7061 btrfs_free_chunk_map(map); 7062 return 0; 7063 } else if (map) { 7064 btrfs_free_chunk_map(map); 7065 } 7066 7067 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); 7068 if (!map) 7069 return -ENOMEM; 7070 7071 map->start = logical; 7072 map->chunk_len = length; 7073 map->num_stripes = num_stripes; 7074 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7075 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7076 map->type = type; 7077 /* 7078 * We can't use the sub_stripes value, as for profiles other than 7079 * RAID10, they may have 0 as sub_stripes for filesystems created by 7080 * older mkfs (<v5.4). 7081 * In that case, it can cause divide-by-zero errors later. 7082 * Since currently sub_stripes is fixed for each profile, let's 7083 * use the trusted value instead. 7084 */ 7085 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7086 map->verified_stripes = 0; 7087 map->stripe_size = btrfs_calc_stripe_length(map); 7088 for (i = 0; i < num_stripes; i++) { 7089 map->stripes[i].physical = 7090 btrfs_stripe_offset_nr(leaf, chunk, i); 7091 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7092 args.devid = devid; 7093 read_extent_buffer(leaf, uuid, (unsigned long) 7094 btrfs_stripe_dev_uuid_nr(chunk, i), 7095 BTRFS_UUID_SIZE); 7096 args.uuid = uuid; 7097 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7098 if (!map->stripes[i].dev) { 7099 map->stripes[i].dev = handle_missing_device(fs_info, 7100 devid, uuid); 7101 if (IS_ERR(map->stripes[i].dev)) { 7102 ret = PTR_ERR(map->stripes[i].dev); 7103 btrfs_free_chunk_map(map); 7104 return ret; 7105 } 7106 } 7107 7108 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7109 &(map->stripes[i].dev->dev_state)); 7110 } 7111 7112 ret = btrfs_add_chunk_map(fs_info, map); 7113 if (ret < 0) { 7114 btrfs_err(fs_info, 7115 "failed to add chunk map, start=%llu len=%llu: %d", 7116 map->start, map->chunk_len, ret); 7117 btrfs_free_chunk_map(map); 7118 } 7119 7120 return ret; 7121 } 7122 7123 static void fill_device_from_item(struct extent_buffer *leaf, 7124 struct btrfs_dev_item *dev_item, 7125 struct btrfs_device *device) 7126 { 7127 unsigned long ptr; 7128 7129 device->devid = btrfs_device_id(leaf, dev_item); 7130 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7131 device->total_bytes = device->disk_total_bytes; 7132 device->commit_total_bytes = device->disk_total_bytes; 7133 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7134 device->commit_bytes_used = device->bytes_used; 7135 device->type = btrfs_device_type(leaf, dev_item); 7136 device->io_align = btrfs_device_io_align(leaf, dev_item); 7137 device->io_width = btrfs_device_io_width(leaf, dev_item); 7138 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7139 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7140 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7141 7142 ptr = btrfs_device_uuid(dev_item); 7143 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7144 } 7145 7146 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7147 u8 *fsid) 7148 { 7149 struct btrfs_fs_devices *fs_devices; 7150 int ret; 7151 7152 lockdep_assert_held(&uuid_mutex); 7153 ASSERT(fsid); 7154 7155 /* This will match only for multi-device seed fs */ 7156 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7157 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7158 return fs_devices; 7159 7160 7161 fs_devices = find_fsid(fsid, NULL); 7162 if (!fs_devices) { 7163 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7164 btrfs_err(fs_info, 7165 "failed to find fsid %pU when attempting to open seed devices", 7166 fsid); 7167 return ERR_PTR(-ENOENT); 7168 } 7169 7170 fs_devices = alloc_fs_devices(fsid); 7171 if (IS_ERR(fs_devices)) 7172 return fs_devices; 7173 7174 fs_devices->seeding = true; 7175 fs_devices->opened = 1; 7176 return fs_devices; 7177 } 7178 7179 /* 7180 * Upon first call for a seed fs fsid, just create a private copy of the 7181 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7182 */ 7183 fs_devices = clone_fs_devices(fs_devices); 7184 if (IS_ERR(fs_devices)) 7185 return fs_devices; 7186 7187 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb); 7188 if (ret) { 7189 free_fs_devices(fs_devices); 7190 return ERR_PTR(ret); 7191 } 7192 7193 if (!fs_devices->seeding) { 7194 close_fs_devices(fs_devices); 7195 free_fs_devices(fs_devices); 7196 return ERR_PTR(-EINVAL); 7197 } 7198 7199 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7200 7201 return fs_devices; 7202 } 7203 7204 static int read_one_dev(struct extent_buffer *leaf, 7205 struct btrfs_dev_item *dev_item) 7206 { 7207 BTRFS_DEV_LOOKUP_ARGS(args); 7208 struct btrfs_fs_info *fs_info = leaf->fs_info; 7209 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7210 struct btrfs_device *device; 7211 u64 devid; 7212 int ret; 7213 u8 fs_uuid[BTRFS_FSID_SIZE]; 7214 u8 dev_uuid[BTRFS_UUID_SIZE]; 7215 7216 devid = btrfs_device_id(leaf, dev_item); 7217 args.devid = devid; 7218 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7219 BTRFS_UUID_SIZE); 7220 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7221 BTRFS_FSID_SIZE); 7222 args.uuid = dev_uuid; 7223 args.fsid = fs_uuid; 7224 7225 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7226 fs_devices = open_seed_devices(fs_info, fs_uuid); 7227 if (IS_ERR(fs_devices)) 7228 return PTR_ERR(fs_devices); 7229 } 7230 7231 device = btrfs_find_device(fs_info->fs_devices, &args); 7232 if (!device) { 7233 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7234 btrfs_report_missing_device(fs_info, devid, 7235 dev_uuid, true); 7236 return -ENOENT; 7237 } 7238 7239 device = add_missing_dev(fs_devices, devid, dev_uuid); 7240 if (IS_ERR(device)) { 7241 btrfs_err(fs_info, 7242 "failed to add missing dev %llu: %ld", 7243 devid, PTR_ERR(device)); 7244 return PTR_ERR(device); 7245 } 7246 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7247 } else { 7248 if (!device->bdev) { 7249 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7250 btrfs_report_missing_device(fs_info, 7251 devid, dev_uuid, true); 7252 return -ENOENT; 7253 } 7254 btrfs_report_missing_device(fs_info, devid, 7255 dev_uuid, false); 7256 } 7257 7258 if (!device->bdev && 7259 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7260 /* 7261 * this happens when a device that was properly setup 7262 * in the device info lists suddenly goes bad. 7263 * device->bdev is NULL, and so we have to set 7264 * device->missing to one here 7265 */ 7266 device->fs_devices->missing_devices++; 7267 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7268 } 7269 7270 /* Move the device to its own fs_devices */ 7271 if (device->fs_devices != fs_devices) { 7272 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7273 &device->dev_state)); 7274 7275 list_move(&device->dev_list, &fs_devices->devices); 7276 device->fs_devices->num_devices--; 7277 fs_devices->num_devices++; 7278 7279 device->fs_devices->missing_devices--; 7280 fs_devices->missing_devices++; 7281 7282 device->fs_devices = fs_devices; 7283 } 7284 } 7285 7286 if (device->fs_devices != fs_info->fs_devices) { 7287 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7288 if (device->generation != 7289 btrfs_device_generation(leaf, dev_item)) 7290 return -EINVAL; 7291 } 7292 7293 fill_device_from_item(leaf, dev_item, device); 7294 if (device->bdev) { 7295 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7296 7297 if (device->total_bytes > max_total_bytes) { 7298 btrfs_err(fs_info, 7299 "device total_bytes should be at most %llu but found %llu", 7300 max_total_bytes, device->total_bytes); 7301 return -EINVAL; 7302 } 7303 } 7304 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7305 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7306 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7307 device->fs_devices->total_rw_bytes += device->total_bytes; 7308 atomic64_add(device->total_bytes - device->bytes_used, 7309 &fs_info->free_chunk_space); 7310 } 7311 ret = 0; 7312 return ret; 7313 } 7314 7315 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7316 { 7317 struct btrfs_super_block *super_copy = fs_info->super_copy; 7318 struct extent_buffer *sb; 7319 u8 *array_ptr; 7320 unsigned long sb_array_offset; 7321 int ret = 0; 7322 u32 array_size; 7323 u32 cur_offset; 7324 struct btrfs_key key; 7325 7326 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7327 7328 /* 7329 * We allocated a dummy extent, just to use extent buffer accessors. 7330 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7331 * that's fine, we will not go beyond system chunk array anyway. 7332 */ 7333 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7334 if (!sb) 7335 return -ENOMEM; 7336 set_extent_buffer_uptodate(sb); 7337 7338 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7339 array_size = btrfs_super_sys_array_size(super_copy); 7340 7341 array_ptr = super_copy->sys_chunk_array; 7342 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7343 cur_offset = 0; 7344 7345 while (cur_offset < array_size) { 7346 struct btrfs_chunk *chunk; 7347 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; 7348 u32 len = sizeof(*disk_key); 7349 7350 /* 7351 * The sys_chunk_array has been already verified at super block 7352 * read time. Only do ASSERT()s for basic checks. 7353 */ 7354 ASSERT(cur_offset + len <= array_size); 7355 7356 btrfs_disk_key_to_cpu(&key, disk_key); 7357 7358 array_ptr += len; 7359 sb_array_offset += len; 7360 cur_offset += len; 7361 7362 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); 7363 7364 chunk = (struct btrfs_chunk *)sb_array_offset; 7365 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); 7366 7367 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); 7368 7369 ASSERT(cur_offset + len <= array_size); 7370 7371 ret = read_one_chunk(&key, sb, chunk); 7372 if (ret) 7373 break; 7374 7375 array_ptr += len; 7376 sb_array_offset += len; 7377 cur_offset += len; 7378 } 7379 clear_extent_buffer_uptodate(sb); 7380 free_extent_buffer_stale(sb); 7381 return ret; 7382 } 7383 7384 /* 7385 * Check if all chunks in the fs are OK for read-write degraded mount 7386 * 7387 * If the @failing_dev is specified, it's accounted as missing. 7388 * 7389 * Return true if all chunks meet the minimal RW mount requirements. 7390 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7391 */ 7392 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7393 struct btrfs_device *failing_dev) 7394 { 7395 struct btrfs_chunk_map *map; 7396 u64 next_start; 7397 bool ret = true; 7398 7399 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); 7400 /* No chunk at all? Return false anyway */ 7401 if (!map) { 7402 ret = false; 7403 goto out; 7404 } 7405 while (map) { 7406 int missing = 0; 7407 int max_tolerated; 7408 int i; 7409 7410 max_tolerated = 7411 btrfs_get_num_tolerated_disk_barrier_failures( 7412 map->type); 7413 for (i = 0; i < map->num_stripes; i++) { 7414 struct btrfs_device *dev = map->stripes[i].dev; 7415 7416 if (!dev || !dev->bdev || 7417 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7418 dev->last_flush_error) 7419 missing++; 7420 else if (failing_dev && failing_dev == dev) 7421 missing++; 7422 } 7423 if (missing > max_tolerated) { 7424 if (!failing_dev) 7425 btrfs_warn(fs_info, 7426 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7427 map->start, missing, max_tolerated); 7428 btrfs_free_chunk_map(map); 7429 ret = false; 7430 goto out; 7431 } 7432 next_start = map->start + map->chunk_len; 7433 btrfs_free_chunk_map(map); 7434 7435 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); 7436 } 7437 out: 7438 return ret; 7439 } 7440 7441 static void readahead_tree_node_children(struct extent_buffer *node) 7442 { 7443 int i; 7444 const int nr_items = btrfs_header_nritems(node); 7445 7446 for (i = 0; i < nr_items; i++) 7447 btrfs_readahead_node_child(node, i); 7448 } 7449 7450 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7451 { 7452 struct btrfs_root *root = fs_info->chunk_root; 7453 struct btrfs_path *path; 7454 struct extent_buffer *leaf; 7455 struct btrfs_key key; 7456 struct btrfs_key found_key; 7457 int ret; 7458 int slot; 7459 int iter_ret = 0; 7460 u64 total_dev = 0; 7461 u64 last_ra_node = 0; 7462 7463 path = btrfs_alloc_path(); 7464 if (!path) 7465 return -ENOMEM; 7466 7467 /* 7468 * uuid_mutex is needed only if we are mounting a sprout FS 7469 * otherwise we don't need it. 7470 */ 7471 mutex_lock(&uuid_mutex); 7472 7473 /* 7474 * It is possible for mount and umount to race in such a way that 7475 * we execute this code path, but open_fs_devices failed to clear 7476 * total_rw_bytes. We certainly want it cleared before reading the 7477 * device items, so clear it here. 7478 */ 7479 fs_info->fs_devices->total_rw_bytes = 0; 7480 7481 /* 7482 * Lockdep complains about possible circular locking dependency between 7483 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7484 * used for freeze procection of a fs (struct super_block.s_writers), 7485 * which we take when starting a transaction, and extent buffers of the 7486 * chunk tree if we call read_one_dev() while holding a lock on an 7487 * extent buffer of the chunk tree. Since we are mounting the filesystem 7488 * and at this point there can't be any concurrent task modifying the 7489 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7490 */ 7491 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7492 path->skip_locking = 1; 7493 7494 /* 7495 * Read all device items, and then all the chunk items. All 7496 * device items are found before any chunk item (their object id 7497 * is smaller than the lowest possible object id for a chunk 7498 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7499 */ 7500 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7501 key.type = 0; 7502 key.offset = 0; 7503 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7504 struct extent_buffer *node = path->nodes[1]; 7505 7506 leaf = path->nodes[0]; 7507 slot = path->slots[0]; 7508 7509 if (node) { 7510 if (last_ra_node != node->start) { 7511 readahead_tree_node_children(node); 7512 last_ra_node = node->start; 7513 } 7514 } 7515 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7516 struct btrfs_dev_item *dev_item; 7517 dev_item = btrfs_item_ptr(leaf, slot, 7518 struct btrfs_dev_item); 7519 ret = read_one_dev(leaf, dev_item); 7520 if (ret) 7521 goto error; 7522 total_dev++; 7523 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7524 struct btrfs_chunk *chunk; 7525 7526 /* 7527 * We are only called at mount time, so no need to take 7528 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7529 * we always lock first fs_info->chunk_mutex before 7530 * acquiring any locks on the chunk tree. This is a 7531 * requirement for chunk allocation, see the comment on 7532 * top of btrfs_chunk_alloc() for details. 7533 */ 7534 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7535 ret = read_one_chunk(&found_key, leaf, chunk); 7536 if (ret) 7537 goto error; 7538 } 7539 } 7540 /* Catch error found during iteration */ 7541 if (iter_ret < 0) { 7542 ret = iter_ret; 7543 goto error; 7544 } 7545 7546 /* 7547 * After loading chunk tree, we've got all device information, 7548 * do another round of validation checks. 7549 */ 7550 if (total_dev != fs_info->fs_devices->total_devices) { 7551 btrfs_warn(fs_info, 7552 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7553 btrfs_super_num_devices(fs_info->super_copy), 7554 total_dev); 7555 fs_info->fs_devices->total_devices = total_dev; 7556 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7557 } 7558 if (btrfs_super_total_bytes(fs_info->super_copy) < 7559 fs_info->fs_devices->total_rw_bytes) { 7560 btrfs_err(fs_info, 7561 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7562 btrfs_super_total_bytes(fs_info->super_copy), 7563 fs_info->fs_devices->total_rw_bytes); 7564 ret = -EINVAL; 7565 goto error; 7566 } 7567 ret = 0; 7568 error: 7569 mutex_unlock(&uuid_mutex); 7570 7571 btrfs_free_path(path); 7572 return ret; 7573 } 7574 7575 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7576 { 7577 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7578 struct btrfs_device *device; 7579 int ret = 0; 7580 7581 mutex_lock(&fs_devices->device_list_mutex); 7582 list_for_each_entry(device, &fs_devices->devices, dev_list) 7583 device->fs_info = fs_info; 7584 7585 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7586 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7587 device->fs_info = fs_info; 7588 ret = btrfs_get_dev_zone_info(device, false); 7589 if (ret) 7590 break; 7591 } 7592 7593 seed_devs->fs_info = fs_info; 7594 } 7595 mutex_unlock(&fs_devices->device_list_mutex); 7596 7597 return ret; 7598 } 7599 7600 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7601 const struct btrfs_dev_stats_item *ptr, 7602 int index) 7603 { 7604 u64 val; 7605 7606 read_extent_buffer(eb, &val, 7607 offsetof(struct btrfs_dev_stats_item, values) + 7608 ((unsigned long)ptr) + (index * sizeof(u64)), 7609 sizeof(val)); 7610 return val; 7611 } 7612 7613 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7614 struct btrfs_dev_stats_item *ptr, 7615 int index, u64 val) 7616 { 7617 write_extent_buffer(eb, &val, 7618 offsetof(struct btrfs_dev_stats_item, values) + 7619 ((unsigned long)ptr) + (index * sizeof(u64)), 7620 sizeof(val)); 7621 } 7622 7623 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7624 struct btrfs_path *path) 7625 { 7626 struct btrfs_dev_stats_item *ptr; 7627 struct extent_buffer *eb; 7628 struct btrfs_key key; 7629 int item_size; 7630 int i, ret, slot; 7631 7632 if (!device->fs_info->dev_root) 7633 return 0; 7634 7635 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7636 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7637 key.offset = device->devid; 7638 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7639 if (ret) { 7640 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7641 btrfs_dev_stat_set(device, i, 0); 7642 device->dev_stats_valid = 1; 7643 btrfs_release_path(path); 7644 return ret < 0 ? ret : 0; 7645 } 7646 slot = path->slots[0]; 7647 eb = path->nodes[0]; 7648 item_size = btrfs_item_size(eb, slot); 7649 7650 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7651 7652 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7653 if (item_size >= (1 + i) * sizeof(__le64)) 7654 btrfs_dev_stat_set(device, i, 7655 btrfs_dev_stats_value(eb, ptr, i)); 7656 else 7657 btrfs_dev_stat_set(device, i, 0); 7658 } 7659 7660 device->dev_stats_valid = 1; 7661 btrfs_dev_stat_print_on_load(device); 7662 btrfs_release_path(path); 7663 7664 return 0; 7665 } 7666 7667 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7668 { 7669 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7670 struct btrfs_device *device; 7671 struct btrfs_path *path = NULL; 7672 int ret = 0; 7673 7674 path = btrfs_alloc_path(); 7675 if (!path) 7676 return -ENOMEM; 7677 7678 mutex_lock(&fs_devices->device_list_mutex); 7679 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7680 ret = btrfs_device_init_dev_stats(device, path); 7681 if (ret) 7682 goto out; 7683 } 7684 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7685 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7686 ret = btrfs_device_init_dev_stats(device, path); 7687 if (ret) 7688 goto out; 7689 } 7690 } 7691 out: 7692 mutex_unlock(&fs_devices->device_list_mutex); 7693 7694 btrfs_free_path(path); 7695 return ret; 7696 } 7697 7698 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7699 struct btrfs_device *device) 7700 { 7701 struct btrfs_fs_info *fs_info = trans->fs_info; 7702 struct btrfs_root *dev_root = fs_info->dev_root; 7703 struct btrfs_path *path; 7704 struct btrfs_key key; 7705 struct extent_buffer *eb; 7706 struct btrfs_dev_stats_item *ptr; 7707 int ret; 7708 int i; 7709 7710 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7711 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7712 key.offset = device->devid; 7713 7714 path = btrfs_alloc_path(); 7715 if (!path) 7716 return -ENOMEM; 7717 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7718 if (ret < 0) { 7719 btrfs_warn(fs_info, 7720 "error %d while searching for dev_stats item for device %s", 7721 ret, btrfs_dev_name(device)); 7722 goto out; 7723 } 7724 7725 if (ret == 0 && 7726 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7727 /* need to delete old one and insert a new one */ 7728 ret = btrfs_del_item(trans, dev_root, path); 7729 if (ret != 0) { 7730 btrfs_warn(fs_info, 7731 "delete too small dev_stats item for device %s failed %d", 7732 btrfs_dev_name(device), ret); 7733 goto out; 7734 } 7735 ret = 1; 7736 } 7737 7738 if (ret == 1) { 7739 /* need to insert a new item */ 7740 btrfs_release_path(path); 7741 ret = btrfs_insert_empty_item(trans, dev_root, path, 7742 &key, sizeof(*ptr)); 7743 if (ret < 0) { 7744 btrfs_warn(fs_info, 7745 "insert dev_stats item for device %s failed %d", 7746 btrfs_dev_name(device), ret); 7747 goto out; 7748 } 7749 } 7750 7751 eb = path->nodes[0]; 7752 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7753 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7754 btrfs_set_dev_stats_value(eb, ptr, i, 7755 btrfs_dev_stat_read(device, i)); 7756 out: 7757 btrfs_free_path(path); 7758 return ret; 7759 } 7760 7761 /* 7762 * called from commit_transaction. Writes all changed device stats to disk. 7763 */ 7764 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7765 { 7766 struct btrfs_fs_info *fs_info = trans->fs_info; 7767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7768 struct btrfs_device *device; 7769 int stats_cnt; 7770 int ret = 0; 7771 7772 mutex_lock(&fs_devices->device_list_mutex); 7773 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7774 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7775 if (!device->dev_stats_valid || stats_cnt == 0) 7776 continue; 7777 7778 7779 /* 7780 * There is a LOAD-LOAD control dependency between the value of 7781 * dev_stats_ccnt and updating the on-disk values which requires 7782 * reading the in-memory counters. Such control dependencies 7783 * require explicit read memory barriers. 7784 * 7785 * This memory barriers pairs with smp_mb__before_atomic in 7786 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7787 * barrier implied by atomic_xchg in 7788 * btrfs_dev_stats_read_and_reset 7789 */ 7790 smp_rmb(); 7791 7792 ret = update_dev_stat_item(trans, device); 7793 if (!ret) 7794 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7795 } 7796 mutex_unlock(&fs_devices->device_list_mutex); 7797 7798 return ret; 7799 } 7800 7801 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7802 { 7803 btrfs_dev_stat_inc(dev, index); 7804 7805 if (!dev->dev_stats_valid) 7806 return; 7807 btrfs_err_rl(dev->fs_info, 7808 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7809 btrfs_dev_name(dev), 7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7813 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7815 } 7816 7817 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7818 { 7819 int i; 7820 7821 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7822 if (btrfs_dev_stat_read(dev, i) != 0) 7823 break; 7824 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7825 return; /* all values == 0, suppress message */ 7826 7827 btrfs_info(dev->fs_info, 7828 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7829 btrfs_dev_name(dev), 7830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7833 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7834 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7835 } 7836 7837 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7838 struct btrfs_ioctl_get_dev_stats *stats) 7839 { 7840 BTRFS_DEV_LOOKUP_ARGS(args); 7841 struct btrfs_device *dev; 7842 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7843 int i; 7844 7845 mutex_lock(&fs_devices->device_list_mutex); 7846 args.devid = stats->devid; 7847 dev = btrfs_find_device(fs_info->fs_devices, &args); 7848 mutex_unlock(&fs_devices->device_list_mutex); 7849 7850 if (!dev) { 7851 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7852 return -ENODEV; 7853 } else if (!dev->dev_stats_valid) { 7854 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7855 return -ENODEV; 7856 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7857 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7858 if (stats->nr_items > i) 7859 stats->values[i] = 7860 btrfs_dev_stat_read_and_reset(dev, i); 7861 else 7862 btrfs_dev_stat_set(dev, i, 0); 7863 } 7864 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7865 current->comm, task_pid_nr(current)); 7866 } else { 7867 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7868 if (stats->nr_items > i) 7869 stats->values[i] = btrfs_dev_stat_read(dev, i); 7870 } 7871 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7872 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7873 return 0; 7874 } 7875 7876 /* 7877 * Update the size and bytes used for each device where it changed. This is 7878 * delayed since we would otherwise get errors while writing out the 7879 * superblocks. 7880 * 7881 * Must be invoked during transaction commit. 7882 */ 7883 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7884 { 7885 struct btrfs_device *curr, *next; 7886 7887 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); 7888 7889 if (list_empty(&trans->dev_update_list)) 7890 return; 7891 7892 /* 7893 * We don't need the device_list_mutex here. This list is owned by the 7894 * transaction and the transaction must complete before the device is 7895 * released. 7896 */ 7897 mutex_lock(&trans->fs_info->chunk_mutex); 7898 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7899 post_commit_list) { 7900 list_del_init(&curr->post_commit_list); 7901 curr->commit_total_bytes = curr->disk_total_bytes; 7902 curr->commit_bytes_used = curr->bytes_used; 7903 } 7904 mutex_unlock(&trans->fs_info->chunk_mutex); 7905 } 7906 7907 /* 7908 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7909 */ 7910 int btrfs_bg_type_to_factor(u64 flags) 7911 { 7912 const int index = btrfs_bg_flags_to_raid_index(flags); 7913 7914 return btrfs_raid_array[index].ncopies; 7915 } 7916 7917 7918 7919 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7920 u64 chunk_offset, u64 devid, 7921 u64 physical_offset, u64 physical_len) 7922 { 7923 struct btrfs_dev_lookup_args args = { .devid = devid }; 7924 struct btrfs_chunk_map *map; 7925 struct btrfs_device *dev; 7926 u64 stripe_len; 7927 bool found = false; 7928 int ret = 0; 7929 int i; 7930 7931 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); 7932 if (!map) { 7933 btrfs_err(fs_info, 7934 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7935 physical_offset, devid); 7936 ret = -EUCLEAN; 7937 goto out; 7938 } 7939 7940 stripe_len = btrfs_calc_stripe_length(map); 7941 if (physical_len != stripe_len) { 7942 btrfs_err(fs_info, 7943 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7944 physical_offset, devid, map->start, physical_len, 7945 stripe_len); 7946 ret = -EUCLEAN; 7947 goto out; 7948 } 7949 7950 /* 7951 * Very old mkfs.btrfs (before v4.15) will not respect the reserved 7952 * space. Although kernel can handle it without problem, better to warn 7953 * the users. 7954 */ 7955 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7956 btrfs_warn(fs_info, 7957 "devid %llu physical %llu len %llu inside the reserved space", 7958 devid, physical_offset, physical_len); 7959 7960 for (i = 0; i < map->num_stripes; i++) { 7961 if (map->stripes[i].dev->devid == devid && 7962 map->stripes[i].physical == physical_offset) { 7963 found = true; 7964 if (map->verified_stripes >= map->num_stripes) { 7965 btrfs_err(fs_info, 7966 "too many dev extents for chunk %llu found", 7967 map->start); 7968 ret = -EUCLEAN; 7969 goto out; 7970 } 7971 map->verified_stripes++; 7972 break; 7973 } 7974 } 7975 if (!found) { 7976 btrfs_err(fs_info, 7977 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7978 physical_offset, devid); 7979 ret = -EUCLEAN; 7980 } 7981 7982 /* Make sure no dev extent is beyond device boundary */ 7983 dev = btrfs_find_device(fs_info->fs_devices, &args); 7984 if (!dev) { 7985 btrfs_err(fs_info, "failed to find devid %llu", devid); 7986 ret = -EUCLEAN; 7987 goto out; 7988 } 7989 7990 if (physical_offset + physical_len > dev->disk_total_bytes) { 7991 btrfs_err(fs_info, 7992 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7993 devid, physical_offset, physical_len, 7994 dev->disk_total_bytes); 7995 ret = -EUCLEAN; 7996 goto out; 7997 } 7998 7999 if (dev->zone_info) { 8000 u64 zone_size = dev->zone_info->zone_size; 8001 8002 if (!IS_ALIGNED(physical_offset, zone_size) || 8003 !IS_ALIGNED(physical_len, zone_size)) { 8004 btrfs_err(fs_info, 8005 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8006 devid, physical_offset, physical_len); 8007 ret = -EUCLEAN; 8008 goto out; 8009 } 8010 } 8011 8012 out: 8013 btrfs_free_chunk_map(map); 8014 return ret; 8015 } 8016 8017 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8018 { 8019 struct rb_node *node; 8020 int ret = 0; 8021 8022 read_lock(&fs_info->mapping_tree_lock); 8023 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { 8024 struct btrfs_chunk_map *map; 8025 8026 map = rb_entry(node, struct btrfs_chunk_map, rb_node); 8027 if (map->num_stripes != map->verified_stripes) { 8028 btrfs_err(fs_info, 8029 "chunk %llu has missing dev extent, have %d expect %d", 8030 map->start, map->verified_stripes, map->num_stripes); 8031 ret = -EUCLEAN; 8032 goto out; 8033 } 8034 } 8035 out: 8036 read_unlock(&fs_info->mapping_tree_lock); 8037 return ret; 8038 } 8039 8040 /* 8041 * Ensure that all dev extents are mapped to correct chunk, otherwise 8042 * later chunk allocation/free would cause unexpected behavior. 8043 * 8044 * NOTE: This will iterate through the whole device tree, which should be of 8045 * the same size level as the chunk tree. This slightly increases mount time. 8046 */ 8047 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8048 { 8049 struct btrfs_path *path; 8050 struct btrfs_root *root = fs_info->dev_root; 8051 struct btrfs_key key; 8052 u64 prev_devid = 0; 8053 u64 prev_dev_ext_end = 0; 8054 int ret = 0; 8055 8056 /* 8057 * We don't have a dev_root because we mounted with ignorebadroots and 8058 * failed to load the root, so we want to skip the verification in this 8059 * case for sure. 8060 * 8061 * However if the dev root is fine, but the tree itself is corrupted 8062 * we'd still fail to mount. This verification is only to make sure 8063 * writes can happen safely, so instead just bypass this check 8064 * completely in the case of IGNOREBADROOTS. 8065 */ 8066 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8067 return 0; 8068 8069 key.objectid = 1; 8070 key.type = BTRFS_DEV_EXTENT_KEY; 8071 key.offset = 0; 8072 8073 path = btrfs_alloc_path(); 8074 if (!path) 8075 return -ENOMEM; 8076 8077 path->reada = READA_FORWARD; 8078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8079 if (ret < 0) 8080 goto out; 8081 8082 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8083 ret = btrfs_next_leaf(root, path); 8084 if (ret < 0) 8085 goto out; 8086 /* No dev extents at all? Not good */ 8087 if (ret > 0) { 8088 ret = -EUCLEAN; 8089 goto out; 8090 } 8091 } 8092 while (1) { 8093 struct extent_buffer *leaf = path->nodes[0]; 8094 struct btrfs_dev_extent *dext; 8095 int slot = path->slots[0]; 8096 u64 chunk_offset; 8097 u64 physical_offset; 8098 u64 physical_len; 8099 u64 devid; 8100 8101 btrfs_item_key_to_cpu(leaf, &key, slot); 8102 if (key.type != BTRFS_DEV_EXTENT_KEY) 8103 break; 8104 devid = key.objectid; 8105 physical_offset = key.offset; 8106 8107 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8108 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8109 physical_len = btrfs_dev_extent_length(leaf, dext); 8110 8111 /* Check if this dev extent overlaps with the previous one */ 8112 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8113 btrfs_err(fs_info, 8114 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8115 devid, physical_offset, prev_dev_ext_end); 8116 ret = -EUCLEAN; 8117 goto out; 8118 } 8119 8120 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8121 physical_offset, physical_len); 8122 if (ret < 0) 8123 goto out; 8124 prev_devid = devid; 8125 prev_dev_ext_end = physical_offset + physical_len; 8126 8127 ret = btrfs_next_item(root, path); 8128 if (ret < 0) 8129 goto out; 8130 if (ret > 0) { 8131 ret = 0; 8132 break; 8133 } 8134 } 8135 8136 /* Ensure all chunks have corresponding dev extents */ 8137 ret = verify_chunk_dev_extent_mapping(fs_info); 8138 out: 8139 btrfs_free_path(path); 8140 return ret; 8141 } 8142 8143 /* 8144 * Check whether the given block group or device is pinned by any inode being 8145 * used as a swapfile. 8146 */ 8147 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8148 { 8149 struct btrfs_swapfile_pin *sp; 8150 struct rb_node *node; 8151 8152 spin_lock(&fs_info->swapfile_pins_lock); 8153 node = fs_info->swapfile_pins.rb_node; 8154 while (node) { 8155 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8156 if (ptr < sp->ptr) 8157 node = node->rb_left; 8158 else if (ptr > sp->ptr) 8159 node = node->rb_right; 8160 else 8161 break; 8162 } 8163 spin_unlock(&fs_info->swapfile_pins_lock); 8164 return node != NULL; 8165 } 8166 8167 static int relocating_repair_kthread(void *data) 8168 { 8169 struct btrfs_block_group *cache = data; 8170 struct btrfs_fs_info *fs_info = cache->fs_info; 8171 u64 target; 8172 int ret = 0; 8173 8174 target = cache->start; 8175 btrfs_put_block_group(cache); 8176 8177 sb_start_write(fs_info->sb); 8178 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8179 btrfs_info(fs_info, 8180 "zoned: skip relocating block group %llu to repair: EBUSY", 8181 target); 8182 sb_end_write(fs_info->sb); 8183 return -EBUSY; 8184 } 8185 8186 mutex_lock(&fs_info->reclaim_bgs_lock); 8187 8188 /* Ensure block group still exists */ 8189 cache = btrfs_lookup_block_group(fs_info, target); 8190 if (!cache) 8191 goto out; 8192 8193 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8194 goto out; 8195 8196 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8197 if (ret < 0) 8198 goto out; 8199 8200 btrfs_info(fs_info, 8201 "zoned: relocating block group %llu to repair IO failure", 8202 target); 8203 ret = btrfs_relocate_chunk(fs_info, target, true); 8204 8205 out: 8206 if (cache) 8207 btrfs_put_block_group(cache); 8208 mutex_unlock(&fs_info->reclaim_bgs_lock); 8209 btrfs_exclop_finish(fs_info); 8210 sb_end_write(fs_info->sb); 8211 8212 return ret; 8213 } 8214 8215 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8216 { 8217 struct btrfs_block_group *cache; 8218 8219 if (!btrfs_is_zoned(fs_info)) 8220 return false; 8221 8222 /* Do not attempt to repair in degraded state */ 8223 if (btrfs_test_opt(fs_info, DEGRADED)) 8224 return true; 8225 8226 cache = btrfs_lookup_block_group(fs_info, logical); 8227 if (!cache) 8228 return true; 8229 8230 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8231 btrfs_put_block_group(cache); 8232 return true; 8233 } 8234 8235 kthread_run(relocating_repair_kthread, cache, 8236 "btrfs-relocating-repair"); 8237 8238 return true; 8239 } 8240 8241 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8242 struct btrfs_io_stripe *smap, 8243 u64 logical) 8244 { 8245 int data_stripes = nr_bioc_data_stripes(bioc); 8246 int i; 8247 8248 for (i = 0; i < data_stripes; i++) { 8249 u64 stripe_start = bioc->full_stripe_logical + 8250 btrfs_stripe_nr_to_offset(i); 8251 8252 if (logical >= stripe_start && 8253 logical < stripe_start + BTRFS_STRIPE_LEN) 8254 break; 8255 } 8256 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); 8257 smap->dev = bioc->stripes[i].dev; 8258 smap->physical = bioc->stripes[i].physical + 8259 ((logical - bioc->full_stripe_logical) & 8260 BTRFS_STRIPE_LEN_MASK); 8261 } 8262 8263 /* 8264 * Map a repair write into a single device. 8265 * 8266 * A repair write is triggered by read time repair or scrub, which would only 8267 * update the contents of a single device. 8268 * Not update any other mirrors nor go through RMW path. 8269 * 8270 * Callers should ensure: 8271 * 8272 * - Call btrfs_bio_counter_inc_blocked() first 8273 * - The range does not cross stripe boundary 8274 * - Has a valid @mirror_num passed in. 8275 */ 8276 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8277 struct btrfs_io_stripe *smap, u64 logical, 8278 u32 length, int mirror_num) 8279 { 8280 struct btrfs_io_context *bioc = NULL; 8281 u64 map_length = length; 8282 int mirror_ret = mirror_num; 8283 int ret; 8284 8285 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); 8286 8287 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8288 &bioc, smap, &mirror_ret); 8289 if (ret < 0) 8290 return ret; 8291 8292 /* The map range should not cross stripe boundary. */ 8293 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); 8294 8295 /* Already mapped to single stripe. */ 8296 if (!bioc) 8297 goto out; 8298 8299 /* Map the RAID56 multi-stripe writes to a single one. */ 8300 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8301 map_raid56_repair_block(bioc, smap, logical); 8302 goto out; 8303 } 8304 8305 ASSERT(mirror_num <= bioc->num_stripes, 8306 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes); 8307 smap->dev = bioc->stripes[mirror_num - 1].dev; 8308 smap->physical = bioc->stripes[mirror_num - 1].physical; 8309 out: 8310 btrfs_put_bioc(bioc); 8311 ASSERT(smap->dev); 8312 return 0; 8313 } 8314