1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 52 #ifdef CONFIG_64BIT 53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 54 * structures are incorrect, as the timespec structure from userspace 55 * is 4 bytes too small. We define these alternatives here to teach 56 * the kernel about the 32-bit struct packing. 57 */ 58 struct btrfs_ioctl_timespec_32 { 59 __u64 sec; 60 __u32 nsec; 61 } __attribute__ ((__packed__)); 62 63 struct btrfs_ioctl_received_subvol_args_32 { 64 char uuid[BTRFS_UUID_SIZE]; /* in */ 65 __u64 stransid; /* in */ 66 __u64 rtransid; /* out */ 67 struct btrfs_ioctl_timespec_32 stime; /* in */ 68 struct btrfs_ioctl_timespec_32 rtime; /* out */ 69 __u64 flags; /* in */ 70 __u64 reserved[16]; /* in */ 71 } __attribute__ ((__packed__)); 72 73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 74 struct btrfs_ioctl_received_subvol_args_32) 75 #endif 76 77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 78 struct btrfs_ioctl_send_args_32 { 79 __s64 send_fd; /* in */ 80 __u64 clone_sources_count; /* in */ 81 compat_uptr_t clone_sources; /* in */ 82 __u64 parent_root; /* in */ 83 __u64 flags; /* in */ 84 __u64 reserved[4]; /* in */ 85 } __attribute__ ((__packed__)); 86 87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 88 struct btrfs_ioctl_send_args_32) 89 #endif 90 91 /* Mask out flags that are inappropriate for the given type of inode. */ 92 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 93 unsigned int flags) 94 { 95 if (S_ISDIR(inode->i_mode)) 96 return flags; 97 else if (S_ISREG(inode->i_mode)) 98 return flags & ~FS_DIRSYNC_FL; 99 else 100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 101 } 102 103 /* 104 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 105 * ioctl. 106 */ 107 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 108 { 109 unsigned int iflags = 0; 110 u32 flags = binode->flags; 111 u32 ro_flags = binode->ro_flags; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 if (ro_flags & BTRFS_INODE_RO_VERITY) 128 iflags |= FS_VERITY_FL; 129 130 if (flags & BTRFS_INODE_NOCOMPRESS) 131 iflags |= FS_NOCOMP_FL; 132 else if (flags & BTRFS_INODE_COMPRESS) 133 iflags |= FS_COMPR_FL; 134 135 return iflags; 136 } 137 138 /* 139 * Update inode->i_flags based on the btrfs internal flags. 140 */ 141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 142 { 143 struct btrfs_inode *binode = BTRFS_I(inode); 144 unsigned int new_fl = 0; 145 146 if (binode->flags & BTRFS_INODE_SYNC) 147 new_fl |= S_SYNC; 148 if (binode->flags & BTRFS_INODE_IMMUTABLE) 149 new_fl |= S_IMMUTABLE; 150 if (binode->flags & BTRFS_INODE_APPEND) 151 new_fl |= S_APPEND; 152 if (binode->flags & BTRFS_INODE_NOATIME) 153 new_fl |= S_NOATIME; 154 if (binode->flags & BTRFS_INODE_DIRSYNC) 155 new_fl |= S_DIRSYNC; 156 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 157 new_fl |= S_VERITY; 158 159 set_mask_bits(&inode->i_flags, 160 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 161 S_VERITY, new_fl); 162 } 163 164 /* 165 * Check if @flags are a supported and valid set of FS_*_FL flags and that 166 * the old and new flags are not conflicting 167 */ 168 static int check_fsflags(unsigned int old_flags, unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 /* COMPR and NOCOMP on new/old are valid */ 178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 179 return -EINVAL; 180 181 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 182 return -EINVAL; 183 184 /* NOCOW and compression options are mutually exclusive */ 185 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 186 return -EINVAL; 187 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 194 unsigned int flags) 195 { 196 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 197 return -EPERM; 198 199 return 0; 200 } 201 202 /* 203 * Set flags/xflags from the internal inode flags. The remaining items of 204 * fsxattr are zeroed. 205 */ 206 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 207 { 208 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 209 210 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 211 return 0; 212 } 213 214 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 215 struct dentry *dentry, struct fileattr *fa) 216 { 217 struct inode *inode = d_inode(dentry); 218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 219 struct btrfs_inode *binode = BTRFS_I(inode); 220 struct btrfs_root *root = binode->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int fsflags, old_fsflags; 223 int ret; 224 const char *comp = NULL; 225 u32 binode_flags; 226 227 if (btrfs_root_readonly(root)) 228 return -EROFS; 229 230 if (fileattr_has_fsx(fa)) 231 return -EOPNOTSUPP; 232 233 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 234 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 235 ret = check_fsflags(old_fsflags, fsflags); 236 if (ret) 237 return ret; 238 239 ret = check_fsflags_compatible(fs_info, fsflags); 240 if (ret) 241 return ret; 242 243 binode_flags = binode->flags; 244 if (fsflags & FS_SYNC_FL) 245 binode_flags |= BTRFS_INODE_SYNC; 246 else 247 binode_flags &= ~BTRFS_INODE_SYNC; 248 if (fsflags & FS_IMMUTABLE_FL) 249 binode_flags |= BTRFS_INODE_IMMUTABLE; 250 else 251 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 252 if (fsflags & FS_APPEND_FL) 253 binode_flags |= BTRFS_INODE_APPEND; 254 else 255 binode_flags &= ~BTRFS_INODE_APPEND; 256 if (fsflags & FS_NODUMP_FL) 257 binode_flags |= BTRFS_INODE_NODUMP; 258 else 259 binode_flags &= ~BTRFS_INODE_NODUMP; 260 if (fsflags & FS_NOATIME_FL) 261 binode_flags |= BTRFS_INODE_NOATIME; 262 else 263 binode_flags &= ~BTRFS_INODE_NOATIME; 264 265 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 266 if (!fa->flags_valid) { 267 /* 1 item for the inode */ 268 trans = btrfs_start_transaction(root, 1); 269 if (IS_ERR(trans)) 270 return PTR_ERR(trans); 271 goto update_flags; 272 } 273 274 if (fsflags & FS_DIRSYNC_FL) 275 binode_flags |= BTRFS_INODE_DIRSYNC; 276 else 277 binode_flags &= ~BTRFS_INODE_DIRSYNC; 278 if (fsflags & FS_NOCOW_FL) { 279 if (S_ISREG(inode->i_mode)) { 280 /* 281 * It's safe to turn csums off here, no extents exist. 282 * Otherwise we want the flag to reflect the real COW 283 * status of the file and will not set it. 284 */ 285 if (inode->i_size == 0) 286 binode_flags |= BTRFS_INODE_NODATACOW | 287 BTRFS_INODE_NODATASUM; 288 } else { 289 binode_flags |= BTRFS_INODE_NODATACOW; 290 } 291 } else { 292 /* 293 * Revert back under same assumptions as above 294 */ 295 if (S_ISREG(inode->i_mode)) { 296 if (inode->i_size == 0) 297 binode_flags &= ~(BTRFS_INODE_NODATACOW | 298 BTRFS_INODE_NODATASUM); 299 } else { 300 binode_flags &= ~BTRFS_INODE_NODATACOW; 301 } 302 } 303 304 /* 305 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 306 * flag may be changed automatically if compression code won't make 307 * things smaller. 308 */ 309 if (fsflags & FS_NOCOMP_FL) { 310 binode_flags &= ~BTRFS_INODE_COMPRESS; 311 binode_flags |= BTRFS_INODE_NOCOMPRESS; 312 } else if (fsflags & FS_COMPR_FL) { 313 314 if (IS_SWAPFILE(inode)) 315 return -ETXTBSY; 316 317 binode_flags |= BTRFS_INODE_COMPRESS; 318 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 319 320 comp = btrfs_compress_type2str(fs_info->compress_type); 321 if (!comp || comp[0] == 0) 322 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 323 } else { 324 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 325 } 326 327 /* 328 * 1 for inode item 329 * 2 for properties 330 */ 331 trans = btrfs_start_transaction(root, 3); 332 if (IS_ERR(trans)) 333 return PTR_ERR(trans); 334 335 if (comp) { 336 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 337 strlen(comp), 0); 338 if (ret) { 339 btrfs_abort_transaction(trans, ret); 340 goto out_end_trans; 341 } 342 } else { 343 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 344 0, 0); 345 if (ret && ret != -ENODATA) { 346 btrfs_abort_transaction(trans, ret); 347 goto out_end_trans; 348 } 349 } 350 351 update_flags: 352 binode->flags = binode_flags; 353 btrfs_sync_inode_flags_to_i_flags(inode); 354 inode_inc_iversion(inode); 355 inode->i_ctime = current_time(inode); 356 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 357 358 out_end_trans: 359 btrfs_end_transaction(trans); 360 return ret; 361 } 362 363 /* 364 * Start exclusive operation @type, return true on success 365 */ 366 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 367 enum btrfs_exclusive_operation type) 368 { 369 bool ret = false; 370 371 spin_lock(&fs_info->super_lock); 372 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 373 fs_info->exclusive_operation = type; 374 ret = true; 375 } 376 spin_unlock(&fs_info->super_lock); 377 378 return ret; 379 } 380 381 /* 382 * Conditionally allow to enter the exclusive operation in case it's compatible 383 * with the running one. This must be paired with btrfs_exclop_start_unlock and 384 * btrfs_exclop_finish. 385 * 386 * Compatibility: 387 * - the same type is already running 388 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 389 * must check the condition first that would allow none -> @type 390 */ 391 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 392 enum btrfs_exclusive_operation type) 393 { 394 spin_lock(&fs_info->super_lock); 395 if (fs_info->exclusive_operation == type) 396 return true; 397 398 spin_unlock(&fs_info->super_lock); 399 return false; 400 } 401 402 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 403 { 404 spin_unlock(&fs_info->super_lock); 405 } 406 407 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 408 { 409 spin_lock(&fs_info->super_lock); 410 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 411 spin_unlock(&fs_info->super_lock); 412 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 413 } 414 415 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 416 { 417 struct inode *inode = file_inode(file); 418 419 return put_user(inode->i_generation, arg); 420 } 421 422 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 423 void __user *arg) 424 { 425 struct btrfs_device *device; 426 struct request_queue *q; 427 struct fstrim_range range; 428 u64 minlen = ULLONG_MAX; 429 u64 num_devices = 0; 430 int ret; 431 432 if (!capable(CAP_SYS_ADMIN)) 433 return -EPERM; 434 435 /* 436 * btrfs_trim_block_group() depends on space cache, which is not 437 * available in zoned filesystem. So, disallow fitrim on a zoned 438 * filesystem for now. 439 */ 440 if (btrfs_is_zoned(fs_info)) 441 return -EOPNOTSUPP; 442 443 /* 444 * If the fs is mounted with nologreplay, which requires it to be 445 * mounted in RO mode as well, we can not allow discard on free space 446 * inside block groups, because log trees refer to extents that are not 447 * pinned in a block group's free space cache (pinning the extents is 448 * precisely the first phase of replaying a log tree). 449 */ 450 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 451 return -EROFS; 452 453 rcu_read_lock(); 454 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 455 dev_list) { 456 if (!device->bdev) 457 continue; 458 q = bdev_get_queue(device->bdev); 459 if (blk_queue_discard(q)) { 460 num_devices++; 461 minlen = min_t(u64, q->limits.discard_granularity, 462 minlen); 463 } 464 } 465 rcu_read_unlock(); 466 467 if (!num_devices) 468 return -EOPNOTSUPP; 469 if (copy_from_user(&range, arg, sizeof(range))) 470 return -EFAULT; 471 472 /* 473 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 474 * block group is in the logical address space, which can be any 475 * sectorsize aligned bytenr in the range [0, U64_MAX]. 476 */ 477 if (range.len < fs_info->sb->s_blocksize) 478 return -EINVAL; 479 480 range.minlen = max(range.minlen, minlen); 481 ret = btrfs_trim_fs(fs_info, &range); 482 if (ret < 0) 483 return ret; 484 485 if (copy_to_user(arg, &range, sizeof(range))) 486 return -EFAULT; 487 488 return 0; 489 } 490 491 int __pure btrfs_is_empty_uuid(u8 *uuid) 492 { 493 int i; 494 495 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 496 if (uuid[i]) 497 return 0; 498 } 499 return 1; 500 } 501 502 static noinline int create_subvol(struct user_namespace *mnt_userns, 503 struct inode *dir, struct dentry *dentry, 504 const char *name, int namelen, 505 struct btrfs_qgroup_inherit *inherit) 506 { 507 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 508 struct btrfs_trans_handle *trans; 509 struct btrfs_key key; 510 struct btrfs_root_item *root_item; 511 struct btrfs_inode_item *inode_item; 512 struct extent_buffer *leaf; 513 struct btrfs_root *root = BTRFS_I(dir)->root; 514 struct btrfs_root *new_root; 515 struct btrfs_block_rsv block_rsv; 516 struct timespec64 cur_time = current_time(dir); 517 struct inode *inode; 518 int ret; 519 int err; 520 dev_t anon_dev = 0; 521 u64 objectid; 522 u64 index = 0; 523 524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 525 if (!root_item) 526 return -ENOMEM; 527 528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 529 if (ret) 530 goto fail_free; 531 532 ret = get_anon_bdev(&anon_dev); 533 if (ret < 0) 534 goto fail_free; 535 536 /* 537 * Don't create subvolume whose level is not zero. Or qgroup will be 538 * screwed up since it assumes subvolume qgroup's level to be 0. 539 */ 540 if (btrfs_qgroup_level(objectid)) { 541 ret = -ENOSPC; 542 goto fail_free; 543 } 544 545 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 546 /* 547 * The same as the snapshot creation, please see the comment 548 * of create_snapshot(). 549 */ 550 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 551 if (ret) 552 goto fail_free; 553 554 trans = btrfs_start_transaction(root, 0); 555 if (IS_ERR(trans)) { 556 ret = PTR_ERR(trans); 557 btrfs_subvolume_release_metadata(root, &block_rsv); 558 goto fail_free; 559 } 560 trans->block_rsv = &block_rsv; 561 trans->bytes_reserved = block_rsv.size; 562 563 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 564 if (ret) 565 goto fail; 566 567 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 568 BTRFS_NESTING_NORMAL); 569 if (IS_ERR(leaf)) { 570 ret = PTR_ERR(leaf); 571 goto fail; 572 } 573 574 btrfs_mark_buffer_dirty(leaf); 575 576 inode_item = &root_item->inode; 577 btrfs_set_stack_inode_generation(inode_item, 1); 578 btrfs_set_stack_inode_size(inode_item, 3); 579 btrfs_set_stack_inode_nlink(inode_item, 1); 580 btrfs_set_stack_inode_nbytes(inode_item, 581 fs_info->nodesize); 582 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 583 584 btrfs_set_root_flags(root_item, 0); 585 btrfs_set_root_limit(root_item, 0); 586 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 587 588 btrfs_set_root_bytenr(root_item, leaf->start); 589 btrfs_set_root_generation(root_item, trans->transid); 590 btrfs_set_root_level(root_item, 0); 591 btrfs_set_root_refs(root_item, 1); 592 btrfs_set_root_used(root_item, leaf->len); 593 btrfs_set_root_last_snapshot(root_item, 0); 594 595 btrfs_set_root_generation_v2(root_item, 596 btrfs_root_generation(root_item)); 597 generate_random_guid(root_item->uuid); 598 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 599 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 600 root_item->ctime = root_item->otime; 601 btrfs_set_root_ctransid(root_item, trans->transid); 602 btrfs_set_root_otransid(root_item, trans->transid); 603 604 btrfs_tree_unlock(leaf); 605 606 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 607 608 key.objectid = objectid; 609 key.offset = 0; 610 key.type = BTRFS_ROOT_ITEM_KEY; 611 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 612 root_item); 613 if (ret) { 614 /* 615 * Since we don't abort the transaction in this case, free the 616 * tree block so that we don't leak space and leave the 617 * filesystem in an inconsistent state (an extent item in the 618 * extent tree without backreferences). Also no need to have 619 * the tree block locked since it is not in any tree at this 620 * point, so no other task can find it and use it. 621 */ 622 btrfs_free_tree_block(trans, root, leaf, 0, 1); 623 free_extent_buffer(leaf); 624 goto fail; 625 } 626 627 free_extent_buffer(leaf); 628 leaf = NULL; 629 630 key.offset = (u64)-1; 631 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 632 if (IS_ERR(new_root)) { 633 free_anon_bdev(anon_dev); 634 ret = PTR_ERR(new_root); 635 btrfs_abort_transaction(trans, ret); 636 goto fail; 637 } 638 /* Freeing will be done in btrfs_put_root() of new_root */ 639 anon_dev = 0; 640 641 ret = btrfs_record_root_in_trans(trans, new_root); 642 if (ret) { 643 btrfs_put_root(new_root); 644 btrfs_abort_transaction(trans, ret); 645 goto fail; 646 } 647 648 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 649 btrfs_put_root(new_root); 650 if (ret) { 651 /* We potentially lose an unused inode item here */ 652 btrfs_abort_transaction(trans, ret); 653 goto fail; 654 } 655 656 /* 657 * insert the directory item 658 */ 659 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 660 if (ret) { 661 btrfs_abort_transaction(trans, ret); 662 goto fail; 663 } 664 665 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 666 BTRFS_FT_DIR, index); 667 if (ret) { 668 btrfs_abort_transaction(trans, ret); 669 goto fail; 670 } 671 672 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 673 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 674 if (ret) { 675 btrfs_abort_transaction(trans, ret); 676 goto fail; 677 } 678 679 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 680 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 681 if (ret) { 682 btrfs_abort_transaction(trans, ret); 683 goto fail; 684 } 685 686 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 687 BTRFS_UUID_KEY_SUBVOL, objectid); 688 if (ret) 689 btrfs_abort_transaction(trans, ret); 690 691 fail: 692 kfree(root_item); 693 trans->block_rsv = NULL; 694 trans->bytes_reserved = 0; 695 btrfs_subvolume_release_metadata(root, &block_rsv); 696 697 err = btrfs_commit_transaction(trans); 698 if (err && !ret) 699 ret = err; 700 701 if (!ret) { 702 inode = btrfs_lookup_dentry(dir, dentry); 703 if (IS_ERR(inode)) 704 return PTR_ERR(inode); 705 d_instantiate(dentry, inode); 706 } 707 return ret; 708 709 fail_free: 710 if (anon_dev) 711 free_anon_bdev(anon_dev); 712 kfree(root_item); 713 return ret; 714 } 715 716 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 717 struct dentry *dentry, bool readonly, 718 struct btrfs_qgroup_inherit *inherit) 719 { 720 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 721 struct inode *inode; 722 struct btrfs_pending_snapshot *pending_snapshot; 723 struct btrfs_trans_handle *trans; 724 int ret; 725 726 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 727 return -EINVAL; 728 729 if (atomic_read(&root->nr_swapfiles)) { 730 btrfs_warn(fs_info, 731 "cannot snapshot subvolume with active swapfile"); 732 return -ETXTBSY; 733 } 734 735 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 736 if (!pending_snapshot) 737 return -ENOMEM; 738 739 ret = get_anon_bdev(&pending_snapshot->anon_dev); 740 if (ret < 0) 741 goto free_pending; 742 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 743 GFP_KERNEL); 744 pending_snapshot->path = btrfs_alloc_path(); 745 if (!pending_snapshot->root_item || !pending_snapshot->path) { 746 ret = -ENOMEM; 747 goto free_pending; 748 } 749 750 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 751 BTRFS_BLOCK_RSV_TEMP); 752 /* 753 * 1 - parent dir inode 754 * 2 - dir entries 755 * 1 - root item 756 * 2 - root ref/backref 757 * 1 - root of snapshot 758 * 1 - UUID item 759 */ 760 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 761 &pending_snapshot->block_rsv, 8, 762 false); 763 if (ret) 764 goto free_pending; 765 766 pending_snapshot->dentry = dentry; 767 pending_snapshot->root = root; 768 pending_snapshot->readonly = readonly; 769 pending_snapshot->dir = dir; 770 pending_snapshot->inherit = inherit; 771 772 trans = btrfs_start_transaction(root, 0); 773 if (IS_ERR(trans)) { 774 ret = PTR_ERR(trans); 775 goto fail; 776 } 777 778 spin_lock(&fs_info->trans_lock); 779 list_add(&pending_snapshot->list, 780 &trans->transaction->pending_snapshots); 781 spin_unlock(&fs_info->trans_lock); 782 783 ret = btrfs_commit_transaction(trans); 784 if (ret) 785 goto fail; 786 787 ret = pending_snapshot->error; 788 if (ret) 789 goto fail; 790 791 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 792 if (ret) 793 goto fail; 794 795 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 796 if (IS_ERR(inode)) { 797 ret = PTR_ERR(inode); 798 goto fail; 799 } 800 801 d_instantiate(dentry, inode); 802 ret = 0; 803 pending_snapshot->anon_dev = 0; 804 fail: 805 /* Prevent double freeing of anon_dev */ 806 if (ret && pending_snapshot->snap) 807 pending_snapshot->snap->anon_dev = 0; 808 btrfs_put_root(pending_snapshot->snap); 809 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 810 free_pending: 811 if (pending_snapshot->anon_dev) 812 free_anon_bdev(pending_snapshot->anon_dev); 813 kfree(pending_snapshot->root_item); 814 btrfs_free_path(pending_snapshot->path); 815 kfree(pending_snapshot); 816 817 return ret; 818 } 819 820 /* copy of may_delete in fs/namei.c() 821 * Check whether we can remove a link victim from directory dir, check 822 * whether the type of victim is right. 823 * 1. We can't do it if dir is read-only (done in permission()) 824 * 2. We should have write and exec permissions on dir 825 * 3. We can't remove anything from append-only dir 826 * 4. We can't do anything with immutable dir (done in permission()) 827 * 5. If the sticky bit on dir is set we should either 828 * a. be owner of dir, or 829 * b. be owner of victim, or 830 * c. have CAP_FOWNER capability 831 * 6. If the victim is append-only or immutable we can't do anything with 832 * links pointing to it. 833 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 834 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 835 * 9. We can't remove a root or mountpoint. 836 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 837 * nfs_async_unlink(). 838 */ 839 840 static int btrfs_may_delete(struct user_namespace *mnt_userns, 841 struct inode *dir, struct dentry *victim, int isdir) 842 { 843 int error; 844 845 if (d_really_is_negative(victim)) 846 return -ENOENT; 847 848 BUG_ON(d_inode(victim->d_parent) != dir); 849 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 850 851 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 852 if (error) 853 return error; 854 if (IS_APPEND(dir)) 855 return -EPERM; 856 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 857 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 858 IS_SWAPFILE(d_inode(victim))) 859 return -EPERM; 860 if (isdir) { 861 if (!d_is_dir(victim)) 862 return -ENOTDIR; 863 if (IS_ROOT(victim)) 864 return -EBUSY; 865 } else if (d_is_dir(victim)) 866 return -EISDIR; 867 if (IS_DEADDIR(dir)) 868 return -ENOENT; 869 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 870 return -EBUSY; 871 return 0; 872 } 873 874 /* copy of may_create in fs/namei.c() */ 875 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 876 struct inode *dir, struct dentry *child) 877 { 878 if (d_really_is_positive(child)) 879 return -EEXIST; 880 if (IS_DEADDIR(dir)) 881 return -ENOENT; 882 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 883 return -EOVERFLOW; 884 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 885 } 886 887 /* 888 * Create a new subvolume below @parent. This is largely modeled after 889 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 890 * inside this filesystem so it's quite a bit simpler. 891 */ 892 static noinline int btrfs_mksubvol(const struct path *parent, 893 struct user_namespace *mnt_userns, 894 const char *name, int namelen, 895 struct btrfs_root *snap_src, 896 bool readonly, 897 struct btrfs_qgroup_inherit *inherit) 898 { 899 struct inode *dir = d_inode(parent->dentry); 900 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 901 struct dentry *dentry; 902 int error; 903 904 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 905 if (error == -EINTR) 906 return error; 907 908 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 909 error = PTR_ERR(dentry); 910 if (IS_ERR(dentry)) 911 goto out_unlock; 912 913 error = btrfs_may_create(mnt_userns, dir, dentry); 914 if (error) 915 goto out_dput; 916 917 /* 918 * even if this name doesn't exist, we may get hash collisions. 919 * check for them now when we can safely fail 920 */ 921 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 922 dir->i_ino, name, 923 namelen); 924 if (error) 925 goto out_dput; 926 927 down_read(&fs_info->subvol_sem); 928 929 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 930 goto out_up_read; 931 932 if (snap_src) 933 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 934 else 935 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 936 937 if (!error) 938 fsnotify_mkdir(dir, dentry); 939 out_up_read: 940 up_read(&fs_info->subvol_sem); 941 out_dput: 942 dput(dentry); 943 out_unlock: 944 btrfs_inode_unlock(dir, 0); 945 return error; 946 } 947 948 static noinline int btrfs_mksnapshot(const struct path *parent, 949 struct user_namespace *mnt_userns, 950 const char *name, int namelen, 951 struct btrfs_root *root, 952 bool readonly, 953 struct btrfs_qgroup_inherit *inherit) 954 { 955 int ret; 956 bool snapshot_force_cow = false; 957 958 /* 959 * Force new buffered writes to reserve space even when NOCOW is 960 * possible. This is to avoid later writeback (running dealloc) to 961 * fallback to COW mode and unexpectedly fail with ENOSPC. 962 */ 963 btrfs_drew_read_lock(&root->snapshot_lock); 964 965 ret = btrfs_start_delalloc_snapshot(root, false); 966 if (ret) 967 goto out; 968 969 /* 970 * All previous writes have started writeback in NOCOW mode, so now 971 * we force future writes to fallback to COW mode during snapshot 972 * creation. 973 */ 974 atomic_inc(&root->snapshot_force_cow); 975 snapshot_force_cow = true; 976 977 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 978 979 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 980 root, readonly, inherit); 981 out: 982 if (snapshot_force_cow) 983 atomic_dec(&root->snapshot_force_cow); 984 btrfs_drew_read_unlock(&root->snapshot_lock); 985 return ret; 986 } 987 988 /* 989 * When we're defragging a range, we don't want to kick it off again 990 * if it is really just waiting for delalloc to send it down. 991 * If we find a nice big extent or delalloc range for the bytes in the 992 * file you want to defrag, we return 0 to let you know to skip this 993 * part of the file 994 */ 995 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 996 { 997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 998 struct extent_map *em = NULL; 999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1000 u64 end; 1001 1002 read_lock(&em_tree->lock); 1003 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1004 read_unlock(&em_tree->lock); 1005 1006 if (em) { 1007 end = extent_map_end(em); 1008 free_extent_map(em); 1009 if (end - offset > thresh) 1010 return 0; 1011 } 1012 /* if we already have a nice delalloc here, just stop */ 1013 thresh /= 2; 1014 end = count_range_bits(io_tree, &offset, offset + thresh, 1015 thresh, EXTENT_DELALLOC, 1); 1016 if (end >= thresh) 1017 return 0; 1018 return 1; 1019 } 1020 1021 /* 1022 * helper function to walk through a file and find extents 1023 * newer than a specific transid, and smaller than thresh. 1024 * 1025 * This is used by the defragging code to find new and small 1026 * extents 1027 */ 1028 static int find_new_extents(struct btrfs_root *root, 1029 struct inode *inode, u64 newer_than, 1030 u64 *off, u32 thresh) 1031 { 1032 struct btrfs_path *path; 1033 struct btrfs_key min_key; 1034 struct extent_buffer *leaf; 1035 struct btrfs_file_extent_item *extent; 1036 int type; 1037 int ret; 1038 u64 ino = btrfs_ino(BTRFS_I(inode)); 1039 1040 path = btrfs_alloc_path(); 1041 if (!path) 1042 return -ENOMEM; 1043 1044 min_key.objectid = ino; 1045 min_key.type = BTRFS_EXTENT_DATA_KEY; 1046 min_key.offset = *off; 1047 1048 while (1) { 1049 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1050 if (ret != 0) 1051 goto none; 1052 process_slot: 1053 if (min_key.objectid != ino) 1054 goto none; 1055 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1056 goto none; 1057 1058 leaf = path->nodes[0]; 1059 extent = btrfs_item_ptr(leaf, path->slots[0], 1060 struct btrfs_file_extent_item); 1061 1062 type = btrfs_file_extent_type(leaf, extent); 1063 if (type == BTRFS_FILE_EXTENT_REG && 1064 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1065 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1066 *off = min_key.offset; 1067 btrfs_free_path(path); 1068 return 0; 1069 } 1070 1071 path->slots[0]++; 1072 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1073 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1074 goto process_slot; 1075 } 1076 1077 if (min_key.offset == (u64)-1) 1078 goto none; 1079 1080 min_key.offset++; 1081 btrfs_release_path(path); 1082 } 1083 none: 1084 btrfs_free_path(path); 1085 return -ENOENT; 1086 } 1087 1088 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1089 { 1090 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1091 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1092 struct extent_map *em; 1093 u64 len = PAGE_SIZE; 1094 1095 /* 1096 * hopefully we have this extent in the tree already, try without 1097 * the full extent lock 1098 */ 1099 read_lock(&em_tree->lock); 1100 em = lookup_extent_mapping(em_tree, start, len); 1101 read_unlock(&em_tree->lock); 1102 1103 if (!em) { 1104 struct extent_state *cached = NULL; 1105 u64 end = start + len - 1; 1106 1107 /* get the big lock and read metadata off disk */ 1108 lock_extent_bits(io_tree, start, end, &cached); 1109 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1110 unlock_extent_cached(io_tree, start, end, &cached); 1111 1112 if (IS_ERR(em)) 1113 return NULL; 1114 } 1115 1116 return em; 1117 } 1118 1119 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1120 { 1121 struct extent_map *next; 1122 bool ret = true; 1123 1124 /* this is the last extent */ 1125 if (em->start + em->len >= i_size_read(inode)) 1126 return false; 1127 1128 next = defrag_lookup_extent(inode, em->start + em->len); 1129 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1130 ret = false; 1131 else if ((em->block_start + em->block_len == next->block_start) && 1132 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1133 ret = false; 1134 1135 free_extent_map(next); 1136 return ret; 1137 } 1138 1139 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1140 u64 *last_len, u64 *skip, u64 *defrag_end, 1141 int compress) 1142 { 1143 struct extent_map *em; 1144 int ret = 1; 1145 bool next_mergeable = true; 1146 bool prev_mergeable = true; 1147 1148 /* 1149 * make sure that once we start defragging an extent, we keep on 1150 * defragging it 1151 */ 1152 if (start < *defrag_end) 1153 return 1; 1154 1155 *skip = 0; 1156 1157 em = defrag_lookup_extent(inode, start); 1158 if (!em) 1159 return 0; 1160 1161 /* this will cover holes, and inline extents */ 1162 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1163 ret = 0; 1164 goto out; 1165 } 1166 1167 if (!*defrag_end) 1168 prev_mergeable = false; 1169 1170 next_mergeable = defrag_check_next_extent(inode, em); 1171 /* 1172 * we hit a real extent, if it is big or the next extent is not a 1173 * real extent, don't bother defragging it 1174 */ 1175 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1176 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1177 ret = 0; 1178 out: 1179 /* 1180 * last_len ends up being a counter of how many bytes we've defragged. 1181 * every time we choose not to defrag an extent, we reset *last_len 1182 * so that the next tiny extent will force a defrag. 1183 * 1184 * The end result of this is that tiny extents before a single big 1185 * extent will force at least part of that big extent to be defragged. 1186 */ 1187 if (ret) { 1188 *defrag_end = extent_map_end(em); 1189 } else { 1190 *last_len = 0; 1191 *skip = extent_map_end(em); 1192 *defrag_end = 0; 1193 } 1194 1195 free_extent_map(em); 1196 return ret; 1197 } 1198 1199 /* 1200 * it doesn't do much good to defrag one or two pages 1201 * at a time. This pulls in a nice chunk of pages 1202 * to COW and defrag. 1203 * 1204 * It also makes sure the delalloc code has enough 1205 * dirty data to avoid making new small extents as part 1206 * of the defrag 1207 * 1208 * It's a good idea to start RA on this range 1209 * before calling this. 1210 */ 1211 static int cluster_pages_for_defrag(struct inode *inode, 1212 struct page **pages, 1213 unsigned long start_index, 1214 unsigned long num_pages) 1215 { 1216 unsigned long file_end; 1217 u64 isize = i_size_read(inode); 1218 u64 page_start; 1219 u64 page_end; 1220 u64 page_cnt; 1221 u64 start = (u64)start_index << PAGE_SHIFT; 1222 u64 search_start; 1223 int ret; 1224 int i; 1225 int i_done; 1226 struct btrfs_ordered_extent *ordered; 1227 struct extent_state *cached_state = NULL; 1228 struct extent_io_tree *tree; 1229 struct extent_changeset *data_reserved = NULL; 1230 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1231 1232 file_end = (isize - 1) >> PAGE_SHIFT; 1233 if (!isize || start_index > file_end) 1234 return 0; 1235 1236 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1237 1238 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1239 start, page_cnt << PAGE_SHIFT); 1240 if (ret) 1241 return ret; 1242 i_done = 0; 1243 tree = &BTRFS_I(inode)->io_tree; 1244 1245 /* step one, lock all the pages */ 1246 for (i = 0; i < page_cnt; i++) { 1247 struct page *page; 1248 again: 1249 page = find_or_create_page(inode->i_mapping, 1250 start_index + i, mask); 1251 if (!page) 1252 break; 1253 1254 ret = set_page_extent_mapped(page); 1255 if (ret < 0) { 1256 unlock_page(page); 1257 put_page(page); 1258 break; 1259 } 1260 1261 page_start = page_offset(page); 1262 page_end = page_start + PAGE_SIZE - 1; 1263 while (1) { 1264 lock_extent_bits(tree, page_start, page_end, 1265 &cached_state); 1266 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1267 page_start); 1268 unlock_extent_cached(tree, page_start, page_end, 1269 &cached_state); 1270 if (!ordered) 1271 break; 1272 1273 unlock_page(page); 1274 btrfs_start_ordered_extent(ordered, 1); 1275 btrfs_put_ordered_extent(ordered); 1276 lock_page(page); 1277 /* 1278 * we unlocked the page above, so we need check if 1279 * it was released or not. 1280 */ 1281 if (page->mapping != inode->i_mapping) { 1282 unlock_page(page); 1283 put_page(page); 1284 goto again; 1285 } 1286 } 1287 1288 if (!PageUptodate(page)) { 1289 btrfs_readpage(NULL, page); 1290 lock_page(page); 1291 if (!PageUptodate(page)) { 1292 unlock_page(page); 1293 put_page(page); 1294 ret = -EIO; 1295 break; 1296 } 1297 } 1298 1299 if (page->mapping != inode->i_mapping) { 1300 unlock_page(page); 1301 put_page(page); 1302 goto again; 1303 } 1304 1305 pages[i] = page; 1306 i_done++; 1307 } 1308 if (!i_done || ret) 1309 goto out; 1310 1311 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1312 goto out; 1313 1314 /* 1315 * so now we have a nice long stream of locked 1316 * and up to date pages, lets wait on them 1317 */ 1318 for (i = 0; i < i_done; i++) 1319 wait_on_page_writeback(pages[i]); 1320 1321 page_start = page_offset(pages[0]); 1322 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1323 1324 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1325 page_start, page_end - 1, &cached_state); 1326 1327 /* 1328 * When defragmenting we skip ranges that have holes or inline extents, 1329 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1330 * space. At btrfs_defrag_file(), we check if a range should be defragged 1331 * before locking the inode and then, if it should, we trigger a sync 1332 * page cache readahead - we lock the inode only after that to avoid 1333 * blocking for too long other tasks that possibly want to operate on 1334 * other file ranges. But before we were able to get the inode lock, 1335 * some other task may have punched a hole in the range, or we may have 1336 * now an inline extent, in which case we should not defrag. So check 1337 * for that here, where we have the inode and the range locked, and bail 1338 * out if that happened. 1339 */ 1340 search_start = page_start; 1341 while (search_start < page_end) { 1342 struct extent_map *em; 1343 1344 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1345 page_end - search_start); 1346 if (IS_ERR(em)) { 1347 ret = PTR_ERR(em); 1348 goto out_unlock_range; 1349 } 1350 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1351 free_extent_map(em); 1352 /* Ok, 0 means we did not defrag anything */ 1353 ret = 0; 1354 goto out_unlock_range; 1355 } 1356 search_start = extent_map_end(em); 1357 free_extent_map(em); 1358 } 1359 1360 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1361 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1362 EXTENT_DEFRAG, 0, 0, &cached_state); 1363 1364 if (i_done != page_cnt) { 1365 spin_lock(&BTRFS_I(inode)->lock); 1366 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1367 spin_unlock(&BTRFS_I(inode)->lock); 1368 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1369 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1370 } 1371 1372 1373 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1374 &cached_state); 1375 1376 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1377 page_start, page_end - 1, &cached_state); 1378 1379 for (i = 0; i < i_done; i++) { 1380 clear_page_dirty_for_io(pages[i]); 1381 ClearPageChecked(pages[i]); 1382 set_page_dirty(pages[i]); 1383 unlock_page(pages[i]); 1384 put_page(pages[i]); 1385 } 1386 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1387 extent_changeset_free(data_reserved); 1388 return i_done; 1389 1390 out_unlock_range: 1391 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1392 page_start, page_end - 1, &cached_state); 1393 out: 1394 for (i = 0; i < i_done; i++) { 1395 unlock_page(pages[i]); 1396 put_page(pages[i]); 1397 } 1398 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1399 start, page_cnt << PAGE_SHIFT, true); 1400 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1401 extent_changeset_free(data_reserved); 1402 return ret; 1403 1404 } 1405 1406 int btrfs_defrag_file(struct inode *inode, struct file *file, 1407 struct btrfs_ioctl_defrag_range_args *range, 1408 u64 newer_than, unsigned long max_to_defrag) 1409 { 1410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1411 struct btrfs_root *root = BTRFS_I(inode)->root; 1412 struct file_ra_state *ra = NULL; 1413 unsigned long last_index; 1414 u64 isize = i_size_read(inode); 1415 u64 last_len = 0; 1416 u64 skip = 0; 1417 u64 defrag_end = 0; 1418 u64 newer_off = range->start; 1419 unsigned long i; 1420 unsigned long ra_index = 0; 1421 int ret; 1422 int defrag_count = 0; 1423 int compress_type = BTRFS_COMPRESS_ZLIB; 1424 u32 extent_thresh = range->extent_thresh; 1425 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1426 unsigned long cluster = max_cluster; 1427 u64 new_align = ~((u64)SZ_128K - 1); 1428 struct page **pages = NULL; 1429 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1430 1431 if (isize == 0) 1432 return 0; 1433 1434 if (range->start >= isize) 1435 return -EINVAL; 1436 1437 if (do_compress) { 1438 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1439 return -EINVAL; 1440 if (range->compress_type) 1441 compress_type = range->compress_type; 1442 } 1443 1444 if (extent_thresh == 0) 1445 extent_thresh = SZ_256K; 1446 1447 /* 1448 * If we were not given a file, allocate a readahead context. As 1449 * readahead is just an optimization, defrag will work without it so 1450 * we don't error out. 1451 */ 1452 if (!file) { 1453 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1454 if (ra) 1455 file_ra_state_init(ra, inode->i_mapping); 1456 } else { 1457 ra = &file->f_ra; 1458 } 1459 1460 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1461 if (!pages) { 1462 ret = -ENOMEM; 1463 goto out_ra; 1464 } 1465 1466 /* find the last page to defrag */ 1467 if (range->start + range->len > range->start) { 1468 last_index = min_t(u64, isize - 1, 1469 range->start + range->len - 1) >> PAGE_SHIFT; 1470 } else { 1471 last_index = (isize - 1) >> PAGE_SHIFT; 1472 } 1473 1474 if (newer_than) { 1475 ret = find_new_extents(root, inode, newer_than, 1476 &newer_off, SZ_64K); 1477 if (!ret) { 1478 range->start = newer_off; 1479 /* 1480 * we always align our defrag to help keep 1481 * the extents in the file evenly spaced 1482 */ 1483 i = (newer_off & new_align) >> PAGE_SHIFT; 1484 } else 1485 goto out_ra; 1486 } else { 1487 i = range->start >> PAGE_SHIFT; 1488 } 1489 if (!max_to_defrag) 1490 max_to_defrag = last_index - i + 1; 1491 1492 /* 1493 * make writeback starts from i, so the defrag range can be 1494 * written sequentially. 1495 */ 1496 if (i < inode->i_mapping->writeback_index) 1497 inode->i_mapping->writeback_index = i; 1498 1499 while (i <= last_index && defrag_count < max_to_defrag && 1500 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1501 /* 1502 * make sure we stop running if someone unmounts 1503 * the FS 1504 */ 1505 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1506 break; 1507 1508 if (btrfs_defrag_cancelled(fs_info)) { 1509 btrfs_debug(fs_info, "defrag_file cancelled"); 1510 ret = -EAGAIN; 1511 goto error; 1512 } 1513 1514 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1515 extent_thresh, &last_len, &skip, 1516 &defrag_end, do_compress)){ 1517 unsigned long next; 1518 /* 1519 * the should_defrag function tells us how much to skip 1520 * bump our counter by the suggested amount 1521 */ 1522 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1523 i = max(i + 1, next); 1524 continue; 1525 } 1526 1527 if (!newer_than) { 1528 cluster = (PAGE_ALIGN(defrag_end) >> 1529 PAGE_SHIFT) - i; 1530 cluster = min(cluster, max_cluster); 1531 } else { 1532 cluster = max_cluster; 1533 } 1534 1535 if (i + cluster > ra_index) { 1536 ra_index = max(i, ra_index); 1537 if (ra) 1538 page_cache_sync_readahead(inode->i_mapping, ra, 1539 file, ra_index, cluster); 1540 ra_index += cluster; 1541 } 1542 1543 btrfs_inode_lock(inode, 0); 1544 if (IS_SWAPFILE(inode)) { 1545 ret = -ETXTBSY; 1546 } else { 1547 if (do_compress) 1548 BTRFS_I(inode)->defrag_compress = compress_type; 1549 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1550 } 1551 if (ret < 0) { 1552 btrfs_inode_unlock(inode, 0); 1553 goto out_ra; 1554 } 1555 1556 defrag_count += ret; 1557 balance_dirty_pages_ratelimited(inode->i_mapping); 1558 btrfs_inode_unlock(inode, 0); 1559 1560 if (newer_than) { 1561 if (newer_off == (u64)-1) 1562 break; 1563 1564 if (ret > 0) 1565 i += ret; 1566 1567 newer_off = max(newer_off + 1, 1568 (u64)i << PAGE_SHIFT); 1569 1570 ret = find_new_extents(root, inode, newer_than, 1571 &newer_off, SZ_64K); 1572 if (!ret) { 1573 range->start = newer_off; 1574 i = (newer_off & new_align) >> PAGE_SHIFT; 1575 } else { 1576 break; 1577 } 1578 } else { 1579 if (ret > 0) { 1580 i += ret; 1581 last_len += ret << PAGE_SHIFT; 1582 } else { 1583 i++; 1584 last_len = 0; 1585 } 1586 } 1587 } 1588 1589 ret = defrag_count; 1590 error: 1591 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1592 filemap_flush(inode->i_mapping); 1593 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1594 &BTRFS_I(inode)->runtime_flags)) 1595 filemap_flush(inode->i_mapping); 1596 } 1597 1598 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1599 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1600 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1601 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1602 } 1603 1604 out_ra: 1605 if (do_compress) { 1606 btrfs_inode_lock(inode, 0); 1607 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1608 btrfs_inode_unlock(inode, 0); 1609 } 1610 if (!file) 1611 kfree(ra); 1612 kfree(pages); 1613 return ret; 1614 } 1615 1616 /* 1617 * Try to start exclusive operation @type or cancel it if it's running. 1618 * 1619 * Return: 1620 * 0 - normal mode, newly claimed op started 1621 * >0 - normal mode, something else is running, 1622 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1623 * ECANCELED - cancel mode, successful cancel 1624 * ENOTCONN - cancel mode, operation not running anymore 1625 */ 1626 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1627 enum btrfs_exclusive_operation type, bool cancel) 1628 { 1629 if (!cancel) { 1630 /* Start normal op */ 1631 if (!btrfs_exclop_start(fs_info, type)) 1632 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1633 /* Exclusive operation is now claimed */ 1634 return 0; 1635 } 1636 1637 /* Cancel running op */ 1638 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1639 /* 1640 * This blocks any exclop finish from setting it to NONE, so we 1641 * request cancellation. Either it runs and we will wait for it, 1642 * or it has finished and no waiting will happen. 1643 */ 1644 atomic_inc(&fs_info->reloc_cancel_req); 1645 btrfs_exclop_start_unlock(fs_info); 1646 1647 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1648 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1649 TASK_INTERRUPTIBLE); 1650 1651 return -ECANCELED; 1652 } 1653 1654 /* Something else is running or none */ 1655 return -ENOTCONN; 1656 } 1657 1658 static noinline int btrfs_ioctl_resize(struct file *file, 1659 void __user *arg) 1660 { 1661 struct inode *inode = file_inode(file); 1662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1663 u64 new_size; 1664 u64 old_size; 1665 u64 devid = 1; 1666 struct btrfs_root *root = BTRFS_I(inode)->root; 1667 struct btrfs_ioctl_vol_args *vol_args; 1668 struct btrfs_trans_handle *trans; 1669 struct btrfs_device *device = NULL; 1670 char *sizestr; 1671 char *retptr; 1672 char *devstr = NULL; 1673 int ret = 0; 1674 int mod = 0; 1675 bool cancel; 1676 1677 if (!capable(CAP_SYS_ADMIN)) 1678 return -EPERM; 1679 1680 ret = mnt_want_write_file(file); 1681 if (ret) 1682 return ret; 1683 1684 /* 1685 * Read the arguments before checking exclusivity to be able to 1686 * distinguish regular resize and cancel 1687 */ 1688 vol_args = memdup_user(arg, sizeof(*vol_args)); 1689 if (IS_ERR(vol_args)) { 1690 ret = PTR_ERR(vol_args); 1691 goto out_drop; 1692 } 1693 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1694 sizestr = vol_args->name; 1695 cancel = (strcmp("cancel", sizestr) == 0); 1696 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1697 if (ret) 1698 goto out_free; 1699 /* Exclusive operation is now claimed */ 1700 1701 devstr = strchr(sizestr, ':'); 1702 if (devstr) { 1703 sizestr = devstr + 1; 1704 *devstr = '\0'; 1705 devstr = vol_args->name; 1706 ret = kstrtoull(devstr, 10, &devid); 1707 if (ret) 1708 goto out_finish; 1709 if (!devid) { 1710 ret = -EINVAL; 1711 goto out_finish; 1712 } 1713 btrfs_info(fs_info, "resizing devid %llu", devid); 1714 } 1715 1716 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1717 if (!device) { 1718 btrfs_info(fs_info, "resizer unable to find device %llu", 1719 devid); 1720 ret = -ENODEV; 1721 goto out_finish; 1722 } 1723 1724 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1725 btrfs_info(fs_info, 1726 "resizer unable to apply on readonly device %llu", 1727 devid); 1728 ret = -EPERM; 1729 goto out_finish; 1730 } 1731 1732 if (!strcmp(sizestr, "max")) 1733 new_size = device->bdev->bd_inode->i_size; 1734 else { 1735 if (sizestr[0] == '-') { 1736 mod = -1; 1737 sizestr++; 1738 } else if (sizestr[0] == '+') { 1739 mod = 1; 1740 sizestr++; 1741 } 1742 new_size = memparse(sizestr, &retptr); 1743 if (*retptr != '\0' || new_size == 0) { 1744 ret = -EINVAL; 1745 goto out_finish; 1746 } 1747 } 1748 1749 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1750 ret = -EPERM; 1751 goto out_finish; 1752 } 1753 1754 old_size = btrfs_device_get_total_bytes(device); 1755 1756 if (mod < 0) { 1757 if (new_size > old_size) { 1758 ret = -EINVAL; 1759 goto out_finish; 1760 } 1761 new_size = old_size - new_size; 1762 } else if (mod > 0) { 1763 if (new_size > ULLONG_MAX - old_size) { 1764 ret = -ERANGE; 1765 goto out_finish; 1766 } 1767 new_size = old_size + new_size; 1768 } 1769 1770 if (new_size < SZ_256M) { 1771 ret = -EINVAL; 1772 goto out_finish; 1773 } 1774 if (new_size > device->bdev->bd_inode->i_size) { 1775 ret = -EFBIG; 1776 goto out_finish; 1777 } 1778 1779 new_size = round_down(new_size, fs_info->sectorsize); 1780 1781 if (new_size > old_size) { 1782 trans = btrfs_start_transaction(root, 0); 1783 if (IS_ERR(trans)) { 1784 ret = PTR_ERR(trans); 1785 goto out_finish; 1786 } 1787 ret = btrfs_grow_device(trans, device, new_size); 1788 btrfs_commit_transaction(trans); 1789 } else if (new_size < old_size) { 1790 ret = btrfs_shrink_device(device, new_size); 1791 } /* equal, nothing need to do */ 1792 1793 if (ret == 0 && new_size != old_size) 1794 btrfs_info_in_rcu(fs_info, 1795 "resize device %s (devid %llu) from %llu to %llu", 1796 rcu_str_deref(device->name), device->devid, 1797 old_size, new_size); 1798 out_finish: 1799 btrfs_exclop_finish(fs_info); 1800 out_free: 1801 kfree(vol_args); 1802 out_drop: 1803 mnt_drop_write_file(file); 1804 return ret; 1805 } 1806 1807 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1808 struct user_namespace *mnt_userns, 1809 const char *name, unsigned long fd, int subvol, 1810 bool readonly, 1811 struct btrfs_qgroup_inherit *inherit) 1812 { 1813 int namelen; 1814 int ret = 0; 1815 1816 if (!S_ISDIR(file_inode(file)->i_mode)) 1817 return -ENOTDIR; 1818 1819 ret = mnt_want_write_file(file); 1820 if (ret) 1821 goto out; 1822 1823 namelen = strlen(name); 1824 if (strchr(name, '/')) { 1825 ret = -EINVAL; 1826 goto out_drop_write; 1827 } 1828 1829 if (name[0] == '.' && 1830 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1831 ret = -EEXIST; 1832 goto out_drop_write; 1833 } 1834 1835 if (subvol) { 1836 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1837 namelen, NULL, readonly, inherit); 1838 } else { 1839 struct fd src = fdget(fd); 1840 struct inode *src_inode; 1841 if (!src.file) { 1842 ret = -EINVAL; 1843 goto out_drop_write; 1844 } 1845 1846 src_inode = file_inode(src.file); 1847 if (src_inode->i_sb != file_inode(file)->i_sb) { 1848 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1849 "Snapshot src from another FS"); 1850 ret = -EXDEV; 1851 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1852 /* 1853 * Subvolume creation is not restricted, but snapshots 1854 * are limited to own subvolumes only 1855 */ 1856 ret = -EPERM; 1857 } else { 1858 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1859 name, namelen, 1860 BTRFS_I(src_inode)->root, 1861 readonly, inherit); 1862 } 1863 fdput(src); 1864 } 1865 out_drop_write: 1866 mnt_drop_write_file(file); 1867 out: 1868 return ret; 1869 } 1870 1871 static noinline int btrfs_ioctl_snap_create(struct file *file, 1872 void __user *arg, int subvol) 1873 { 1874 struct btrfs_ioctl_vol_args *vol_args; 1875 int ret; 1876 1877 if (!S_ISDIR(file_inode(file)->i_mode)) 1878 return -ENOTDIR; 1879 1880 vol_args = memdup_user(arg, sizeof(*vol_args)); 1881 if (IS_ERR(vol_args)) 1882 return PTR_ERR(vol_args); 1883 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1884 1885 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1886 vol_args->name, vol_args->fd, subvol, 1887 false, NULL); 1888 1889 kfree(vol_args); 1890 return ret; 1891 } 1892 1893 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1894 void __user *arg, int subvol) 1895 { 1896 struct btrfs_ioctl_vol_args_v2 *vol_args; 1897 int ret; 1898 bool readonly = false; 1899 struct btrfs_qgroup_inherit *inherit = NULL; 1900 1901 if (!S_ISDIR(file_inode(file)->i_mode)) 1902 return -ENOTDIR; 1903 1904 vol_args = memdup_user(arg, sizeof(*vol_args)); 1905 if (IS_ERR(vol_args)) 1906 return PTR_ERR(vol_args); 1907 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1908 1909 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1910 ret = -EOPNOTSUPP; 1911 goto free_args; 1912 } 1913 1914 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1915 readonly = true; 1916 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1917 u64 nums; 1918 1919 if (vol_args->size < sizeof(*inherit) || 1920 vol_args->size > PAGE_SIZE) { 1921 ret = -EINVAL; 1922 goto free_args; 1923 } 1924 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1925 if (IS_ERR(inherit)) { 1926 ret = PTR_ERR(inherit); 1927 goto free_args; 1928 } 1929 1930 if (inherit->num_qgroups > PAGE_SIZE || 1931 inherit->num_ref_copies > PAGE_SIZE || 1932 inherit->num_excl_copies > PAGE_SIZE) { 1933 ret = -EINVAL; 1934 goto free_inherit; 1935 } 1936 1937 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1938 2 * inherit->num_excl_copies; 1939 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1940 ret = -EINVAL; 1941 goto free_inherit; 1942 } 1943 } 1944 1945 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1946 vol_args->name, vol_args->fd, subvol, 1947 readonly, inherit); 1948 if (ret) 1949 goto free_inherit; 1950 free_inherit: 1951 kfree(inherit); 1952 free_args: 1953 kfree(vol_args); 1954 return ret; 1955 } 1956 1957 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1958 void __user *arg) 1959 { 1960 struct inode *inode = file_inode(file); 1961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1962 struct btrfs_root *root = BTRFS_I(inode)->root; 1963 int ret = 0; 1964 u64 flags = 0; 1965 1966 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1967 return -EINVAL; 1968 1969 down_read(&fs_info->subvol_sem); 1970 if (btrfs_root_readonly(root)) 1971 flags |= BTRFS_SUBVOL_RDONLY; 1972 up_read(&fs_info->subvol_sem); 1973 1974 if (copy_to_user(arg, &flags, sizeof(flags))) 1975 ret = -EFAULT; 1976 1977 return ret; 1978 } 1979 1980 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1981 void __user *arg) 1982 { 1983 struct inode *inode = file_inode(file); 1984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1985 struct btrfs_root *root = BTRFS_I(inode)->root; 1986 struct btrfs_trans_handle *trans; 1987 u64 root_flags; 1988 u64 flags; 1989 int ret = 0; 1990 1991 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 1992 return -EPERM; 1993 1994 ret = mnt_want_write_file(file); 1995 if (ret) 1996 goto out; 1997 1998 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1999 ret = -EINVAL; 2000 goto out_drop_write; 2001 } 2002 2003 if (copy_from_user(&flags, arg, sizeof(flags))) { 2004 ret = -EFAULT; 2005 goto out_drop_write; 2006 } 2007 2008 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2009 ret = -EOPNOTSUPP; 2010 goto out_drop_write; 2011 } 2012 2013 down_write(&fs_info->subvol_sem); 2014 2015 /* nothing to do */ 2016 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2017 goto out_drop_sem; 2018 2019 root_flags = btrfs_root_flags(&root->root_item); 2020 if (flags & BTRFS_SUBVOL_RDONLY) { 2021 btrfs_set_root_flags(&root->root_item, 2022 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2023 } else { 2024 /* 2025 * Block RO -> RW transition if this subvolume is involved in 2026 * send 2027 */ 2028 spin_lock(&root->root_item_lock); 2029 if (root->send_in_progress == 0) { 2030 btrfs_set_root_flags(&root->root_item, 2031 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2032 spin_unlock(&root->root_item_lock); 2033 } else { 2034 spin_unlock(&root->root_item_lock); 2035 btrfs_warn(fs_info, 2036 "Attempt to set subvolume %llu read-write during send", 2037 root->root_key.objectid); 2038 ret = -EPERM; 2039 goto out_drop_sem; 2040 } 2041 } 2042 2043 trans = btrfs_start_transaction(root, 1); 2044 if (IS_ERR(trans)) { 2045 ret = PTR_ERR(trans); 2046 goto out_reset; 2047 } 2048 2049 ret = btrfs_update_root(trans, fs_info->tree_root, 2050 &root->root_key, &root->root_item); 2051 if (ret < 0) { 2052 btrfs_end_transaction(trans); 2053 goto out_reset; 2054 } 2055 2056 ret = btrfs_commit_transaction(trans); 2057 2058 out_reset: 2059 if (ret) 2060 btrfs_set_root_flags(&root->root_item, root_flags); 2061 out_drop_sem: 2062 up_write(&fs_info->subvol_sem); 2063 out_drop_write: 2064 mnt_drop_write_file(file); 2065 out: 2066 return ret; 2067 } 2068 2069 static noinline int key_in_sk(struct btrfs_key *key, 2070 struct btrfs_ioctl_search_key *sk) 2071 { 2072 struct btrfs_key test; 2073 int ret; 2074 2075 test.objectid = sk->min_objectid; 2076 test.type = sk->min_type; 2077 test.offset = sk->min_offset; 2078 2079 ret = btrfs_comp_cpu_keys(key, &test); 2080 if (ret < 0) 2081 return 0; 2082 2083 test.objectid = sk->max_objectid; 2084 test.type = sk->max_type; 2085 test.offset = sk->max_offset; 2086 2087 ret = btrfs_comp_cpu_keys(key, &test); 2088 if (ret > 0) 2089 return 0; 2090 return 1; 2091 } 2092 2093 static noinline int copy_to_sk(struct btrfs_path *path, 2094 struct btrfs_key *key, 2095 struct btrfs_ioctl_search_key *sk, 2096 size_t *buf_size, 2097 char __user *ubuf, 2098 unsigned long *sk_offset, 2099 int *num_found) 2100 { 2101 u64 found_transid; 2102 struct extent_buffer *leaf; 2103 struct btrfs_ioctl_search_header sh; 2104 struct btrfs_key test; 2105 unsigned long item_off; 2106 unsigned long item_len; 2107 int nritems; 2108 int i; 2109 int slot; 2110 int ret = 0; 2111 2112 leaf = path->nodes[0]; 2113 slot = path->slots[0]; 2114 nritems = btrfs_header_nritems(leaf); 2115 2116 if (btrfs_header_generation(leaf) > sk->max_transid) { 2117 i = nritems; 2118 goto advance_key; 2119 } 2120 found_transid = btrfs_header_generation(leaf); 2121 2122 for (i = slot; i < nritems; i++) { 2123 item_off = btrfs_item_ptr_offset(leaf, i); 2124 item_len = btrfs_item_size_nr(leaf, i); 2125 2126 btrfs_item_key_to_cpu(leaf, key, i); 2127 if (!key_in_sk(key, sk)) 2128 continue; 2129 2130 if (sizeof(sh) + item_len > *buf_size) { 2131 if (*num_found) { 2132 ret = 1; 2133 goto out; 2134 } 2135 2136 /* 2137 * return one empty item back for v1, which does not 2138 * handle -EOVERFLOW 2139 */ 2140 2141 *buf_size = sizeof(sh) + item_len; 2142 item_len = 0; 2143 ret = -EOVERFLOW; 2144 } 2145 2146 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2147 ret = 1; 2148 goto out; 2149 } 2150 2151 sh.objectid = key->objectid; 2152 sh.offset = key->offset; 2153 sh.type = key->type; 2154 sh.len = item_len; 2155 sh.transid = found_transid; 2156 2157 /* 2158 * Copy search result header. If we fault then loop again so we 2159 * can fault in the pages and -EFAULT there if there's a 2160 * problem. Otherwise we'll fault and then copy the buffer in 2161 * properly this next time through 2162 */ 2163 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2164 ret = 0; 2165 goto out; 2166 } 2167 2168 *sk_offset += sizeof(sh); 2169 2170 if (item_len) { 2171 char __user *up = ubuf + *sk_offset; 2172 /* 2173 * Copy the item, same behavior as above, but reset the 2174 * * sk_offset so we copy the full thing again. 2175 */ 2176 if (read_extent_buffer_to_user_nofault(leaf, up, 2177 item_off, item_len)) { 2178 ret = 0; 2179 *sk_offset -= sizeof(sh); 2180 goto out; 2181 } 2182 2183 *sk_offset += item_len; 2184 } 2185 (*num_found)++; 2186 2187 if (ret) /* -EOVERFLOW from above */ 2188 goto out; 2189 2190 if (*num_found >= sk->nr_items) { 2191 ret = 1; 2192 goto out; 2193 } 2194 } 2195 advance_key: 2196 ret = 0; 2197 test.objectid = sk->max_objectid; 2198 test.type = sk->max_type; 2199 test.offset = sk->max_offset; 2200 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2201 ret = 1; 2202 else if (key->offset < (u64)-1) 2203 key->offset++; 2204 else if (key->type < (u8)-1) { 2205 key->offset = 0; 2206 key->type++; 2207 } else if (key->objectid < (u64)-1) { 2208 key->offset = 0; 2209 key->type = 0; 2210 key->objectid++; 2211 } else 2212 ret = 1; 2213 out: 2214 /* 2215 * 0: all items from this leaf copied, continue with next 2216 * 1: * more items can be copied, but unused buffer is too small 2217 * * all items were found 2218 * Either way, it will stops the loop which iterates to the next 2219 * leaf 2220 * -EOVERFLOW: item was to large for buffer 2221 * -EFAULT: could not copy extent buffer back to userspace 2222 */ 2223 return ret; 2224 } 2225 2226 static noinline int search_ioctl(struct inode *inode, 2227 struct btrfs_ioctl_search_key *sk, 2228 size_t *buf_size, 2229 char __user *ubuf) 2230 { 2231 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2232 struct btrfs_root *root; 2233 struct btrfs_key key; 2234 struct btrfs_path *path; 2235 int ret; 2236 int num_found = 0; 2237 unsigned long sk_offset = 0; 2238 2239 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2240 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2241 return -EOVERFLOW; 2242 } 2243 2244 path = btrfs_alloc_path(); 2245 if (!path) 2246 return -ENOMEM; 2247 2248 if (sk->tree_id == 0) { 2249 /* search the root of the inode that was passed */ 2250 root = btrfs_grab_root(BTRFS_I(inode)->root); 2251 } else { 2252 root = btrfs_get_fs_root(info, sk->tree_id, true); 2253 if (IS_ERR(root)) { 2254 btrfs_free_path(path); 2255 return PTR_ERR(root); 2256 } 2257 } 2258 2259 key.objectid = sk->min_objectid; 2260 key.type = sk->min_type; 2261 key.offset = sk->min_offset; 2262 2263 while (1) { 2264 ret = fault_in_pages_writeable(ubuf + sk_offset, 2265 *buf_size - sk_offset); 2266 if (ret) 2267 break; 2268 2269 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2270 if (ret != 0) { 2271 if (ret > 0) 2272 ret = 0; 2273 goto err; 2274 } 2275 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2276 &sk_offset, &num_found); 2277 btrfs_release_path(path); 2278 if (ret) 2279 break; 2280 2281 } 2282 if (ret > 0) 2283 ret = 0; 2284 err: 2285 sk->nr_items = num_found; 2286 btrfs_put_root(root); 2287 btrfs_free_path(path); 2288 return ret; 2289 } 2290 2291 static noinline int btrfs_ioctl_tree_search(struct file *file, 2292 void __user *argp) 2293 { 2294 struct btrfs_ioctl_search_args __user *uargs; 2295 struct btrfs_ioctl_search_key sk; 2296 struct inode *inode; 2297 int ret; 2298 size_t buf_size; 2299 2300 if (!capable(CAP_SYS_ADMIN)) 2301 return -EPERM; 2302 2303 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2304 2305 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2306 return -EFAULT; 2307 2308 buf_size = sizeof(uargs->buf); 2309 2310 inode = file_inode(file); 2311 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2312 2313 /* 2314 * In the origin implementation an overflow is handled by returning a 2315 * search header with a len of zero, so reset ret. 2316 */ 2317 if (ret == -EOVERFLOW) 2318 ret = 0; 2319 2320 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2321 ret = -EFAULT; 2322 return ret; 2323 } 2324 2325 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2326 void __user *argp) 2327 { 2328 struct btrfs_ioctl_search_args_v2 __user *uarg; 2329 struct btrfs_ioctl_search_args_v2 args; 2330 struct inode *inode; 2331 int ret; 2332 size_t buf_size; 2333 const size_t buf_limit = SZ_16M; 2334 2335 if (!capable(CAP_SYS_ADMIN)) 2336 return -EPERM; 2337 2338 /* copy search header and buffer size */ 2339 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2340 if (copy_from_user(&args, uarg, sizeof(args))) 2341 return -EFAULT; 2342 2343 buf_size = args.buf_size; 2344 2345 /* limit result size to 16MB */ 2346 if (buf_size > buf_limit) 2347 buf_size = buf_limit; 2348 2349 inode = file_inode(file); 2350 ret = search_ioctl(inode, &args.key, &buf_size, 2351 (char __user *)(&uarg->buf[0])); 2352 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2353 ret = -EFAULT; 2354 else if (ret == -EOVERFLOW && 2355 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2356 ret = -EFAULT; 2357 2358 return ret; 2359 } 2360 2361 /* 2362 * Search INODE_REFs to identify path name of 'dirid' directory 2363 * in a 'tree_id' tree. and sets path name to 'name'. 2364 */ 2365 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2366 u64 tree_id, u64 dirid, char *name) 2367 { 2368 struct btrfs_root *root; 2369 struct btrfs_key key; 2370 char *ptr; 2371 int ret = -1; 2372 int slot; 2373 int len; 2374 int total_len = 0; 2375 struct btrfs_inode_ref *iref; 2376 struct extent_buffer *l; 2377 struct btrfs_path *path; 2378 2379 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2380 name[0]='\0'; 2381 return 0; 2382 } 2383 2384 path = btrfs_alloc_path(); 2385 if (!path) 2386 return -ENOMEM; 2387 2388 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2389 2390 root = btrfs_get_fs_root(info, tree_id, true); 2391 if (IS_ERR(root)) { 2392 ret = PTR_ERR(root); 2393 root = NULL; 2394 goto out; 2395 } 2396 2397 key.objectid = dirid; 2398 key.type = BTRFS_INODE_REF_KEY; 2399 key.offset = (u64)-1; 2400 2401 while (1) { 2402 ret = btrfs_search_backwards(root, &key, path); 2403 if (ret < 0) 2404 goto out; 2405 else if (ret > 0) { 2406 ret = -ENOENT; 2407 goto out; 2408 } 2409 2410 l = path->nodes[0]; 2411 slot = path->slots[0]; 2412 2413 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2414 len = btrfs_inode_ref_name_len(l, iref); 2415 ptr -= len + 1; 2416 total_len += len + 1; 2417 if (ptr < name) { 2418 ret = -ENAMETOOLONG; 2419 goto out; 2420 } 2421 2422 *(ptr + len) = '/'; 2423 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2424 2425 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2426 break; 2427 2428 btrfs_release_path(path); 2429 key.objectid = key.offset; 2430 key.offset = (u64)-1; 2431 dirid = key.objectid; 2432 } 2433 memmove(name, ptr, total_len); 2434 name[total_len] = '\0'; 2435 ret = 0; 2436 out: 2437 btrfs_put_root(root); 2438 btrfs_free_path(path); 2439 return ret; 2440 } 2441 2442 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2443 struct inode *inode, 2444 struct btrfs_ioctl_ino_lookup_user_args *args) 2445 { 2446 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2447 struct super_block *sb = inode->i_sb; 2448 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2449 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2450 u64 dirid = args->dirid; 2451 unsigned long item_off; 2452 unsigned long item_len; 2453 struct btrfs_inode_ref *iref; 2454 struct btrfs_root_ref *rref; 2455 struct btrfs_root *root = NULL; 2456 struct btrfs_path *path; 2457 struct btrfs_key key, key2; 2458 struct extent_buffer *leaf; 2459 struct inode *temp_inode; 2460 char *ptr; 2461 int slot; 2462 int len; 2463 int total_len = 0; 2464 int ret; 2465 2466 path = btrfs_alloc_path(); 2467 if (!path) 2468 return -ENOMEM; 2469 2470 /* 2471 * If the bottom subvolume does not exist directly under upper_limit, 2472 * construct the path in from the bottom up. 2473 */ 2474 if (dirid != upper_limit.objectid) { 2475 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2476 2477 root = btrfs_get_fs_root(fs_info, treeid, true); 2478 if (IS_ERR(root)) { 2479 ret = PTR_ERR(root); 2480 goto out; 2481 } 2482 2483 key.objectid = dirid; 2484 key.type = BTRFS_INODE_REF_KEY; 2485 key.offset = (u64)-1; 2486 while (1) { 2487 ret = btrfs_search_backwards(root, &key, path); 2488 if (ret < 0) 2489 goto out_put; 2490 else if (ret > 0) { 2491 ret = -ENOENT; 2492 goto out_put; 2493 } 2494 2495 leaf = path->nodes[0]; 2496 slot = path->slots[0]; 2497 2498 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2499 len = btrfs_inode_ref_name_len(leaf, iref); 2500 ptr -= len + 1; 2501 total_len += len + 1; 2502 if (ptr < args->path) { 2503 ret = -ENAMETOOLONG; 2504 goto out_put; 2505 } 2506 2507 *(ptr + len) = '/'; 2508 read_extent_buffer(leaf, ptr, 2509 (unsigned long)(iref + 1), len); 2510 2511 /* Check the read+exec permission of this directory */ 2512 ret = btrfs_previous_item(root, path, dirid, 2513 BTRFS_INODE_ITEM_KEY); 2514 if (ret < 0) { 2515 goto out_put; 2516 } else if (ret > 0) { 2517 ret = -ENOENT; 2518 goto out_put; 2519 } 2520 2521 leaf = path->nodes[0]; 2522 slot = path->slots[0]; 2523 btrfs_item_key_to_cpu(leaf, &key2, slot); 2524 if (key2.objectid != dirid) { 2525 ret = -ENOENT; 2526 goto out_put; 2527 } 2528 2529 temp_inode = btrfs_iget(sb, key2.objectid, root); 2530 if (IS_ERR(temp_inode)) { 2531 ret = PTR_ERR(temp_inode); 2532 goto out_put; 2533 } 2534 ret = inode_permission(mnt_userns, temp_inode, 2535 MAY_READ | MAY_EXEC); 2536 iput(temp_inode); 2537 if (ret) { 2538 ret = -EACCES; 2539 goto out_put; 2540 } 2541 2542 if (key.offset == upper_limit.objectid) 2543 break; 2544 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2545 ret = -EACCES; 2546 goto out_put; 2547 } 2548 2549 btrfs_release_path(path); 2550 key.objectid = key.offset; 2551 key.offset = (u64)-1; 2552 dirid = key.objectid; 2553 } 2554 2555 memmove(args->path, ptr, total_len); 2556 args->path[total_len] = '\0'; 2557 btrfs_put_root(root); 2558 root = NULL; 2559 btrfs_release_path(path); 2560 } 2561 2562 /* Get the bottom subvolume's name from ROOT_REF */ 2563 key.objectid = treeid; 2564 key.type = BTRFS_ROOT_REF_KEY; 2565 key.offset = args->treeid; 2566 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2567 if (ret < 0) { 2568 goto out; 2569 } else if (ret > 0) { 2570 ret = -ENOENT; 2571 goto out; 2572 } 2573 2574 leaf = path->nodes[0]; 2575 slot = path->slots[0]; 2576 btrfs_item_key_to_cpu(leaf, &key, slot); 2577 2578 item_off = btrfs_item_ptr_offset(leaf, slot); 2579 item_len = btrfs_item_size_nr(leaf, slot); 2580 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2581 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2582 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2583 ret = -EINVAL; 2584 goto out; 2585 } 2586 2587 /* Copy subvolume's name */ 2588 item_off += sizeof(struct btrfs_root_ref); 2589 item_len -= sizeof(struct btrfs_root_ref); 2590 read_extent_buffer(leaf, args->name, item_off, item_len); 2591 args->name[item_len] = 0; 2592 2593 out_put: 2594 btrfs_put_root(root); 2595 out: 2596 btrfs_free_path(path); 2597 return ret; 2598 } 2599 2600 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2601 void __user *argp) 2602 { 2603 struct btrfs_ioctl_ino_lookup_args *args; 2604 struct inode *inode; 2605 int ret = 0; 2606 2607 args = memdup_user(argp, sizeof(*args)); 2608 if (IS_ERR(args)) 2609 return PTR_ERR(args); 2610 2611 inode = file_inode(file); 2612 2613 /* 2614 * Unprivileged query to obtain the containing subvolume root id. The 2615 * path is reset so it's consistent with btrfs_search_path_in_tree. 2616 */ 2617 if (args->treeid == 0) 2618 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2619 2620 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2621 args->name[0] = 0; 2622 goto out; 2623 } 2624 2625 if (!capable(CAP_SYS_ADMIN)) { 2626 ret = -EPERM; 2627 goto out; 2628 } 2629 2630 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2631 args->treeid, args->objectid, 2632 args->name); 2633 2634 out: 2635 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2636 ret = -EFAULT; 2637 2638 kfree(args); 2639 return ret; 2640 } 2641 2642 /* 2643 * Version of ino_lookup ioctl (unprivileged) 2644 * 2645 * The main differences from ino_lookup ioctl are: 2646 * 2647 * 1. Read + Exec permission will be checked using inode_permission() during 2648 * path construction. -EACCES will be returned in case of failure. 2649 * 2. Path construction will be stopped at the inode number which corresponds 2650 * to the fd with which this ioctl is called. If constructed path does not 2651 * exist under fd's inode, -EACCES will be returned. 2652 * 3. The name of bottom subvolume is also searched and filled. 2653 */ 2654 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2655 { 2656 struct btrfs_ioctl_ino_lookup_user_args *args; 2657 struct inode *inode; 2658 int ret; 2659 2660 args = memdup_user(argp, sizeof(*args)); 2661 if (IS_ERR(args)) 2662 return PTR_ERR(args); 2663 2664 inode = file_inode(file); 2665 2666 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2667 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2668 /* 2669 * The subvolume does not exist under fd with which this is 2670 * called 2671 */ 2672 kfree(args); 2673 return -EACCES; 2674 } 2675 2676 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2677 2678 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2679 ret = -EFAULT; 2680 2681 kfree(args); 2682 return ret; 2683 } 2684 2685 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2686 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2687 { 2688 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2689 struct btrfs_fs_info *fs_info; 2690 struct btrfs_root *root; 2691 struct btrfs_path *path; 2692 struct btrfs_key key; 2693 struct btrfs_root_item *root_item; 2694 struct btrfs_root_ref *rref; 2695 struct extent_buffer *leaf; 2696 unsigned long item_off; 2697 unsigned long item_len; 2698 struct inode *inode; 2699 int slot; 2700 int ret = 0; 2701 2702 path = btrfs_alloc_path(); 2703 if (!path) 2704 return -ENOMEM; 2705 2706 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2707 if (!subvol_info) { 2708 btrfs_free_path(path); 2709 return -ENOMEM; 2710 } 2711 2712 inode = file_inode(file); 2713 fs_info = BTRFS_I(inode)->root->fs_info; 2714 2715 /* Get root_item of inode's subvolume */ 2716 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2717 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2718 if (IS_ERR(root)) { 2719 ret = PTR_ERR(root); 2720 goto out_free; 2721 } 2722 root_item = &root->root_item; 2723 2724 subvol_info->treeid = key.objectid; 2725 2726 subvol_info->generation = btrfs_root_generation(root_item); 2727 subvol_info->flags = btrfs_root_flags(root_item); 2728 2729 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2730 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2731 BTRFS_UUID_SIZE); 2732 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2733 BTRFS_UUID_SIZE); 2734 2735 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2736 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2737 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2738 2739 subvol_info->otransid = btrfs_root_otransid(root_item); 2740 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2741 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2742 2743 subvol_info->stransid = btrfs_root_stransid(root_item); 2744 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2745 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2746 2747 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2748 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2749 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2750 2751 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2752 /* Search root tree for ROOT_BACKREF of this subvolume */ 2753 key.type = BTRFS_ROOT_BACKREF_KEY; 2754 key.offset = 0; 2755 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2756 if (ret < 0) { 2757 goto out; 2758 } else if (path->slots[0] >= 2759 btrfs_header_nritems(path->nodes[0])) { 2760 ret = btrfs_next_leaf(fs_info->tree_root, path); 2761 if (ret < 0) { 2762 goto out; 2763 } else if (ret > 0) { 2764 ret = -EUCLEAN; 2765 goto out; 2766 } 2767 } 2768 2769 leaf = path->nodes[0]; 2770 slot = path->slots[0]; 2771 btrfs_item_key_to_cpu(leaf, &key, slot); 2772 if (key.objectid == subvol_info->treeid && 2773 key.type == BTRFS_ROOT_BACKREF_KEY) { 2774 subvol_info->parent_id = key.offset; 2775 2776 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2777 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2778 2779 item_off = btrfs_item_ptr_offset(leaf, slot) 2780 + sizeof(struct btrfs_root_ref); 2781 item_len = btrfs_item_size_nr(leaf, slot) 2782 - sizeof(struct btrfs_root_ref); 2783 read_extent_buffer(leaf, subvol_info->name, 2784 item_off, item_len); 2785 } else { 2786 ret = -ENOENT; 2787 goto out; 2788 } 2789 } 2790 2791 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2792 ret = -EFAULT; 2793 2794 out: 2795 btrfs_put_root(root); 2796 out_free: 2797 btrfs_free_path(path); 2798 kfree(subvol_info); 2799 return ret; 2800 } 2801 2802 /* 2803 * Return ROOT_REF information of the subvolume containing this inode 2804 * except the subvolume name. 2805 */ 2806 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2807 { 2808 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2809 struct btrfs_root_ref *rref; 2810 struct btrfs_root *root; 2811 struct btrfs_path *path; 2812 struct btrfs_key key; 2813 struct extent_buffer *leaf; 2814 struct inode *inode; 2815 u64 objectid; 2816 int slot; 2817 int ret; 2818 u8 found; 2819 2820 path = btrfs_alloc_path(); 2821 if (!path) 2822 return -ENOMEM; 2823 2824 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2825 if (IS_ERR(rootrefs)) { 2826 btrfs_free_path(path); 2827 return PTR_ERR(rootrefs); 2828 } 2829 2830 inode = file_inode(file); 2831 root = BTRFS_I(inode)->root->fs_info->tree_root; 2832 objectid = BTRFS_I(inode)->root->root_key.objectid; 2833 2834 key.objectid = objectid; 2835 key.type = BTRFS_ROOT_REF_KEY; 2836 key.offset = rootrefs->min_treeid; 2837 found = 0; 2838 2839 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2840 if (ret < 0) { 2841 goto out; 2842 } else if (path->slots[0] >= 2843 btrfs_header_nritems(path->nodes[0])) { 2844 ret = btrfs_next_leaf(root, path); 2845 if (ret < 0) { 2846 goto out; 2847 } else if (ret > 0) { 2848 ret = -EUCLEAN; 2849 goto out; 2850 } 2851 } 2852 while (1) { 2853 leaf = path->nodes[0]; 2854 slot = path->slots[0]; 2855 2856 btrfs_item_key_to_cpu(leaf, &key, slot); 2857 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2858 ret = 0; 2859 goto out; 2860 } 2861 2862 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2863 ret = -EOVERFLOW; 2864 goto out; 2865 } 2866 2867 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2868 rootrefs->rootref[found].treeid = key.offset; 2869 rootrefs->rootref[found].dirid = 2870 btrfs_root_ref_dirid(leaf, rref); 2871 found++; 2872 2873 ret = btrfs_next_item(root, path); 2874 if (ret < 0) { 2875 goto out; 2876 } else if (ret > 0) { 2877 ret = -EUCLEAN; 2878 goto out; 2879 } 2880 } 2881 2882 out: 2883 if (!ret || ret == -EOVERFLOW) { 2884 rootrefs->num_items = found; 2885 /* update min_treeid for next search */ 2886 if (found) 2887 rootrefs->min_treeid = 2888 rootrefs->rootref[found - 1].treeid + 1; 2889 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2890 ret = -EFAULT; 2891 } 2892 2893 kfree(rootrefs); 2894 btrfs_free_path(path); 2895 2896 return ret; 2897 } 2898 2899 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2900 void __user *arg, 2901 bool destroy_v2) 2902 { 2903 struct dentry *parent = file->f_path.dentry; 2904 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2905 struct dentry *dentry; 2906 struct inode *dir = d_inode(parent); 2907 struct inode *inode; 2908 struct btrfs_root *root = BTRFS_I(dir)->root; 2909 struct btrfs_root *dest = NULL; 2910 struct btrfs_ioctl_vol_args *vol_args = NULL; 2911 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2912 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2913 char *subvol_name, *subvol_name_ptr = NULL; 2914 int subvol_namelen; 2915 int err = 0; 2916 bool destroy_parent = false; 2917 2918 if (destroy_v2) { 2919 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2920 if (IS_ERR(vol_args2)) 2921 return PTR_ERR(vol_args2); 2922 2923 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2924 err = -EOPNOTSUPP; 2925 goto out; 2926 } 2927 2928 /* 2929 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2930 * name, same as v1 currently does. 2931 */ 2932 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2933 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2934 subvol_name = vol_args2->name; 2935 2936 err = mnt_want_write_file(file); 2937 if (err) 2938 goto out; 2939 } else { 2940 struct inode *old_dir; 2941 2942 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2943 err = -EINVAL; 2944 goto out; 2945 } 2946 2947 err = mnt_want_write_file(file); 2948 if (err) 2949 goto out; 2950 2951 dentry = btrfs_get_dentry(fs_info->sb, 2952 BTRFS_FIRST_FREE_OBJECTID, 2953 vol_args2->subvolid, 0, 0); 2954 if (IS_ERR(dentry)) { 2955 err = PTR_ERR(dentry); 2956 goto out_drop_write; 2957 } 2958 2959 /* 2960 * Change the default parent since the subvolume being 2961 * deleted can be outside of the current mount point. 2962 */ 2963 parent = btrfs_get_parent(dentry); 2964 2965 /* 2966 * At this point dentry->d_name can point to '/' if the 2967 * subvolume we want to destroy is outsite of the 2968 * current mount point, so we need to release the 2969 * current dentry and execute the lookup to return a new 2970 * one with ->d_name pointing to the 2971 * <mount point>/subvol_name. 2972 */ 2973 dput(dentry); 2974 if (IS_ERR(parent)) { 2975 err = PTR_ERR(parent); 2976 goto out_drop_write; 2977 } 2978 old_dir = dir; 2979 dir = d_inode(parent); 2980 2981 /* 2982 * If v2 was used with SPEC_BY_ID, a new parent was 2983 * allocated since the subvolume can be outside of the 2984 * current mount point. Later on we need to release this 2985 * new parent dentry. 2986 */ 2987 destroy_parent = true; 2988 2989 /* 2990 * On idmapped mounts, deletion via subvolid is 2991 * restricted to subvolumes that are immediate 2992 * ancestors of the inode referenced by the file 2993 * descriptor in the ioctl. Otherwise the idmapping 2994 * could potentially be abused to delete subvolumes 2995 * anywhere in the filesystem the user wouldn't be able 2996 * to delete without an idmapped mount. 2997 */ 2998 if (old_dir != dir && mnt_userns != &init_user_ns) { 2999 err = -EOPNOTSUPP; 3000 goto free_parent; 3001 } 3002 3003 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3004 fs_info, vol_args2->subvolid); 3005 if (IS_ERR(subvol_name_ptr)) { 3006 err = PTR_ERR(subvol_name_ptr); 3007 goto free_parent; 3008 } 3009 /* subvol_name_ptr is already nul terminated */ 3010 subvol_name = (char *)kbasename(subvol_name_ptr); 3011 } 3012 } else { 3013 vol_args = memdup_user(arg, sizeof(*vol_args)); 3014 if (IS_ERR(vol_args)) 3015 return PTR_ERR(vol_args); 3016 3017 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3018 subvol_name = vol_args->name; 3019 3020 err = mnt_want_write_file(file); 3021 if (err) 3022 goto out; 3023 } 3024 3025 subvol_namelen = strlen(subvol_name); 3026 3027 if (strchr(subvol_name, '/') || 3028 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3029 err = -EINVAL; 3030 goto free_subvol_name; 3031 } 3032 3033 if (!S_ISDIR(dir->i_mode)) { 3034 err = -ENOTDIR; 3035 goto free_subvol_name; 3036 } 3037 3038 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3039 if (err == -EINTR) 3040 goto free_subvol_name; 3041 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3042 if (IS_ERR(dentry)) { 3043 err = PTR_ERR(dentry); 3044 goto out_unlock_dir; 3045 } 3046 3047 if (d_really_is_negative(dentry)) { 3048 err = -ENOENT; 3049 goto out_dput; 3050 } 3051 3052 inode = d_inode(dentry); 3053 dest = BTRFS_I(inode)->root; 3054 if (!capable(CAP_SYS_ADMIN)) { 3055 /* 3056 * Regular user. Only allow this with a special mount 3057 * option, when the user has write+exec access to the 3058 * subvol root, and when rmdir(2) would have been 3059 * allowed. 3060 * 3061 * Note that this is _not_ check that the subvol is 3062 * empty or doesn't contain data that we wouldn't 3063 * otherwise be able to delete. 3064 * 3065 * Users who want to delete empty subvols should try 3066 * rmdir(2). 3067 */ 3068 err = -EPERM; 3069 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3070 goto out_dput; 3071 3072 /* 3073 * Do not allow deletion if the parent dir is the same 3074 * as the dir to be deleted. That means the ioctl 3075 * must be called on the dentry referencing the root 3076 * of the subvol, not a random directory contained 3077 * within it. 3078 */ 3079 err = -EINVAL; 3080 if (root == dest) 3081 goto out_dput; 3082 3083 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3084 if (err) 3085 goto out_dput; 3086 } 3087 3088 /* check if subvolume may be deleted by a user */ 3089 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3090 if (err) 3091 goto out_dput; 3092 3093 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3094 err = -EINVAL; 3095 goto out_dput; 3096 } 3097 3098 btrfs_inode_lock(inode, 0); 3099 err = btrfs_delete_subvolume(dir, dentry); 3100 btrfs_inode_unlock(inode, 0); 3101 if (!err) { 3102 fsnotify_rmdir(dir, dentry); 3103 d_delete(dentry); 3104 } 3105 3106 out_dput: 3107 dput(dentry); 3108 out_unlock_dir: 3109 btrfs_inode_unlock(dir, 0); 3110 free_subvol_name: 3111 kfree(subvol_name_ptr); 3112 free_parent: 3113 if (destroy_parent) 3114 dput(parent); 3115 out_drop_write: 3116 mnt_drop_write_file(file); 3117 out: 3118 kfree(vol_args2); 3119 kfree(vol_args); 3120 return err; 3121 } 3122 3123 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3124 { 3125 struct inode *inode = file_inode(file); 3126 struct btrfs_root *root = BTRFS_I(inode)->root; 3127 struct btrfs_ioctl_defrag_range_args range = {0}; 3128 int ret; 3129 3130 ret = mnt_want_write_file(file); 3131 if (ret) 3132 return ret; 3133 3134 if (btrfs_root_readonly(root)) { 3135 ret = -EROFS; 3136 goto out; 3137 } 3138 3139 /* Subpage defrag will be supported in later commits */ 3140 if (root->fs_info->sectorsize < PAGE_SIZE) { 3141 ret = -ENOTTY; 3142 goto out; 3143 } 3144 3145 switch (inode->i_mode & S_IFMT) { 3146 case S_IFDIR: 3147 if (!capable(CAP_SYS_ADMIN)) { 3148 ret = -EPERM; 3149 goto out; 3150 } 3151 ret = btrfs_defrag_root(root); 3152 break; 3153 case S_IFREG: 3154 /* 3155 * Note that this does not check the file descriptor for write 3156 * access. This prevents defragmenting executables that are 3157 * running and allows defrag on files open in read-only mode. 3158 */ 3159 if (!capable(CAP_SYS_ADMIN) && 3160 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3161 ret = -EPERM; 3162 goto out; 3163 } 3164 3165 if (argp) { 3166 if (copy_from_user(&range, argp, sizeof(range))) { 3167 ret = -EFAULT; 3168 goto out; 3169 } 3170 /* compression requires us to start the IO */ 3171 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3172 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3173 range.extent_thresh = (u32)-1; 3174 } 3175 } else { 3176 /* the rest are all set to zero by kzalloc */ 3177 range.len = (u64)-1; 3178 } 3179 ret = btrfs_defrag_file(file_inode(file), file, 3180 &range, BTRFS_OLDEST_GENERATION, 0); 3181 if (ret > 0) 3182 ret = 0; 3183 break; 3184 default: 3185 ret = -EINVAL; 3186 } 3187 out: 3188 mnt_drop_write_file(file); 3189 return ret; 3190 } 3191 3192 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3193 { 3194 struct btrfs_ioctl_vol_args *vol_args; 3195 int ret; 3196 3197 if (!capable(CAP_SYS_ADMIN)) 3198 return -EPERM; 3199 3200 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3201 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3202 3203 vol_args = memdup_user(arg, sizeof(*vol_args)); 3204 if (IS_ERR(vol_args)) { 3205 ret = PTR_ERR(vol_args); 3206 goto out; 3207 } 3208 3209 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3210 ret = btrfs_init_new_device(fs_info, vol_args->name); 3211 3212 if (!ret) 3213 btrfs_info(fs_info, "disk added %s", vol_args->name); 3214 3215 kfree(vol_args); 3216 out: 3217 btrfs_exclop_finish(fs_info); 3218 return ret; 3219 } 3220 3221 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3222 { 3223 struct inode *inode = file_inode(file); 3224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3225 struct btrfs_ioctl_vol_args_v2 *vol_args; 3226 struct block_device *bdev = NULL; 3227 fmode_t mode; 3228 int ret; 3229 bool cancel = false; 3230 3231 if (!capable(CAP_SYS_ADMIN)) 3232 return -EPERM; 3233 3234 ret = mnt_want_write_file(file); 3235 if (ret) 3236 return ret; 3237 3238 vol_args = memdup_user(arg, sizeof(*vol_args)); 3239 if (IS_ERR(vol_args)) { 3240 ret = PTR_ERR(vol_args); 3241 goto err_drop; 3242 } 3243 3244 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3245 ret = -EOPNOTSUPP; 3246 goto out; 3247 } 3248 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3249 if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) && 3250 strcmp("cancel", vol_args->name) == 0) 3251 cancel = true; 3252 3253 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3254 cancel); 3255 if (ret) 3256 goto out; 3257 /* Exclusive operation is now claimed */ 3258 3259 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3260 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid, &bdev, &mode); 3261 else 3262 ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode); 3263 3264 btrfs_exclop_finish(fs_info); 3265 3266 if (!ret) { 3267 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3268 btrfs_info(fs_info, "device deleted: id %llu", 3269 vol_args->devid); 3270 else 3271 btrfs_info(fs_info, "device deleted: %s", 3272 vol_args->name); 3273 } 3274 out: 3275 kfree(vol_args); 3276 err_drop: 3277 mnt_drop_write_file(file); 3278 if (bdev) 3279 blkdev_put(bdev, mode); 3280 return ret; 3281 } 3282 3283 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3284 { 3285 struct inode *inode = file_inode(file); 3286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3287 struct btrfs_ioctl_vol_args *vol_args; 3288 struct block_device *bdev = NULL; 3289 fmode_t mode; 3290 int ret; 3291 bool cancel; 3292 3293 if (!capable(CAP_SYS_ADMIN)) 3294 return -EPERM; 3295 3296 ret = mnt_want_write_file(file); 3297 if (ret) 3298 return ret; 3299 3300 vol_args = memdup_user(arg, sizeof(*vol_args)); 3301 if (IS_ERR(vol_args)) { 3302 ret = PTR_ERR(vol_args); 3303 goto out_drop_write; 3304 } 3305 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3306 cancel = (strcmp("cancel", vol_args->name) == 0); 3307 3308 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3309 cancel); 3310 if (ret == 0) { 3311 ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode); 3312 if (!ret) 3313 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3314 btrfs_exclop_finish(fs_info); 3315 } 3316 3317 kfree(vol_args); 3318 out_drop_write: 3319 mnt_drop_write_file(file); 3320 if (bdev) 3321 blkdev_put(bdev, mode); 3322 return ret; 3323 } 3324 3325 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3326 void __user *arg) 3327 { 3328 struct btrfs_ioctl_fs_info_args *fi_args; 3329 struct btrfs_device *device; 3330 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3331 u64 flags_in; 3332 int ret = 0; 3333 3334 fi_args = memdup_user(arg, sizeof(*fi_args)); 3335 if (IS_ERR(fi_args)) 3336 return PTR_ERR(fi_args); 3337 3338 flags_in = fi_args->flags; 3339 memset(fi_args, 0, sizeof(*fi_args)); 3340 3341 rcu_read_lock(); 3342 fi_args->num_devices = fs_devices->num_devices; 3343 3344 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3345 if (device->devid > fi_args->max_id) 3346 fi_args->max_id = device->devid; 3347 } 3348 rcu_read_unlock(); 3349 3350 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3351 fi_args->nodesize = fs_info->nodesize; 3352 fi_args->sectorsize = fs_info->sectorsize; 3353 fi_args->clone_alignment = fs_info->sectorsize; 3354 3355 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3356 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3357 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3358 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3359 } 3360 3361 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3362 fi_args->generation = fs_info->generation; 3363 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3364 } 3365 3366 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3367 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3368 sizeof(fi_args->metadata_uuid)); 3369 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3370 } 3371 3372 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3373 ret = -EFAULT; 3374 3375 kfree(fi_args); 3376 return ret; 3377 } 3378 3379 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3380 void __user *arg) 3381 { 3382 struct btrfs_ioctl_dev_info_args *di_args; 3383 struct btrfs_device *dev; 3384 int ret = 0; 3385 char *s_uuid = NULL; 3386 3387 di_args = memdup_user(arg, sizeof(*di_args)); 3388 if (IS_ERR(di_args)) 3389 return PTR_ERR(di_args); 3390 3391 if (!btrfs_is_empty_uuid(di_args->uuid)) 3392 s_uuid = di_args->uuid; 3393 3394 rcu_read_lock(); 3395 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3396 NULL); 3397 3398 if (!dev) { 3399 ret = -ENODEV; 3400 goto out; 3401 } 3402 3403 di_args->devid = dev->devid; 3404 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3405 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3406 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3407 if (dev->name) { 3408 strncpy(di_args->path, rcu_str_deref(dev->name), 3409 sizeof(di_args->path) - 1); 3410 di_args->path[sizeof(di_args->path) - 1] = 0; 3411 } else { 3412 di_args->path[0] = '\0'; 3413 } 3414 3415 out: 3416 rcu_read_unlock(); 3417 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3418 ret = -EFAULT; 3419 3420 kfree(di_args); 3421 return ret; 3422 } 3423 3424 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3425 { 3426 struct inode *inode = file_inode(file); 3427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3428 struct btrfs_root *root = BTRFS_I(inode)->root; 3429 struct btrfs_root *new_root; 3430 struct btrfs_dir_item *di; 3431 struct btrfs_trans_handle *trans; 3432 struct btrfs_path *path = NULL; 3433 struct btrfs_disk_key disk_key; 3434 u64 objectid = 0; 3435 u64 dir_id; 3436 int ret; 3437 3438 if (!capable(CAP_SYS_ADMIN)) 3439 return -EPERM; 3440 3441 ret = mnt_want_write_file(file); 3442 if (ret) 3443 return ret; 3444 3445 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3446 ret = -EFAULT; 3447 goto out; 3448 } 3449 3450 if (!objectid) 3451 objectid = BTRFS_FS_TREE_OBJECTID; 3452 3453 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3454 if (IS_ERR(new_root)) { 3455 ret = PTR_ERR(new_root); 3456 goto out; 3457 } 3458 if (!is_fstree(new_root->root_key.objectid)) { 3459 ret = -ENOENT; 3460 goto out_free; 3461 } 3462 3463 path = btrfs_alloc_path(); 3464 if (!path) { 3465 ret = -ENOMEM; 3466 goto out_free; 3467 } 3468 3469 trans = btrfs_start_transaction(root, 1); 3470 if (IS_ERR(trans)) { 3471 ret = PTR_ERR(trans); 3472 goto out_free; 3473 } 3474 3475 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3476 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3477 dir_id, "default", 7, 1); 3478 if (IS_ERR_OR_NULL(di)) { 3479 btrfs_release_path(path); 3480 btrfs_end_transaction(trans); 3481 btrfs_err(fs_info, 3482 "Umm, you don't have the default diritem, this isn't going to work"); 3483 ret = -ENOENT; 3484 goto out_free; 3485 } 3486 3487 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3488 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3489 btrfs_mark_buffer_dirty(path->nodes[0]); 3490 btrfs_release_path(path); 3491 3492 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3493 btrfs_end_transaction(trans); 3494 out_free: 3495 btrfs_put_root(new_root); 3496 btrfs_free_path(path); 3497 out: 3498 mnt_drop_write_file(file); 3499 return ret; 3500 } 3501 3502 static void get_block_group_info(struct list_head *groups_list, 3503 struct btrfs_ioctl_space_info *space) 3504 { 3505 struct btrfs_block_group *block_group; 3506 3507 space->total_bytes = 0; 3508 space->used_bytes = 0; 3509 space->flags = 0; 3510 list_for_each_entry(block_group, groups_list, list) { 3511 space->flags = block_group->flags; 3512 space->total_bytes += block_group->length; 3513 space->used_bytes += block_group->used; 3514 } 3515 } 3516 3517 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3518 void __user *arg) 3519 { 3520 struct btrfs_ioctl_space_args space_args; 3521 struct btrfs_ioctl_space_info space; 3522 struct btrfs_ioctl_space_info *dest; 3523 struct btrfs_ioctl_space_info *dest_orig; 3524 struct btrfs_ioctl_space_info __user *user_dest; 3525 struct btrfs_space_info *info; 3526 static const u64 types[] = { 3527 BTRFS_BLOCK_GROUP_DATA, 3528 BTRFS_BLOCK_GROUP_SYSTEM, 3529 BTRFS_BLOCK_GROUP_METADATA, 3530 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3531 }; 3532 int num_types = 4; 3533 int alloc_size; 3534 int ret = 0; 3535 u64 slot_count = 0; 3536 int i, c; 3537 3538 if (copy_from_user(&space_args, 3539 (struct btrfs_ioctl_space_args __user *)arg, 3540 sizeof(space_args))) 3541 return -EFAULT; 3542 3543 for (i = 0; i < num_types; i++) { 3544 struct btrfs_space_info *tmp; 3545 3546 info = NULL; 3547 list_for_each_entry(tmp, &fs_info->space_info, list) { 3548 if (tmp->flags == types[i]) { 3549 info = tmp; 3550 break; 3551 } 3552 } 3553 3554 if (!info) 3555 continue; 3556 3557 down_read(&info->groups_sem); 3558 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3559 if (!list_empty(&info->block_groups[c])) 3560 slot_count++; 3561 } 3562 up_read(&info->groups_sem); 3563 } 3564 3565 /* 3566 * Global block reserve, exported as a space_info 3567 */ 3568 slot_count++; 3569 3570 /* space_slots == 0 means they are asking for a count */ 3571 if (space_args.space_slots == 0) { 3572 space_args.total_spaces = slot_count; 3573 goto out; 3574 } 3575 3576 slot_count = min_t(u64, space_args.space_slots, slot_count); 3577 3578 alloc_size = sizeof(*dest) * slot_count; 3579 3580 /* we generally have at most 6 or so space infos, one for each raid 3581 * level. So, a whole page should be more than enough for everyone 3582 */ 3583 if (alloc_size > PAGE_SIZE) 3584 return -ENOMEM; 3585 3586 space_args.total_spaces = 0; 3587 dest = kmalloc(alloc_size, GFP_KERNEL); 3588 if (!dest) 3589 return -ENOMEM; 3590 dest_orig = dest; 3591 3592 /* now we have a buffer to copy into */ 3593 for (i = 0; i < num_types; i++) { 3594 struct btrfs_space_info *tmp; 3595 3596 if (!slot_count) 3597 break; 3598 3599 info = NULL; 3600 list_for_each_entry(tmp, &fs_info->space_info, list) { 3601 if (tmp->flags == types[i]) { 3602 info = tmp; 3603 break; 3604 } 3605 } 3606 3607 if (!info) 3608 continue; 3609 down_read(&info->groups_sem); 3610 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3611 if (!list_empty(&info->block_groups[c])) { 3612 get_block_group_info(&info->block_groups[c], 3613 &space); 3614 memcpy(dest, &space, sizeof(space)); 3615 dest++; 3616 space_args.total_spaces++; 3617 slot_count--; 3618 } 3619 if (!slot_count) 3620 break; 3621 } 3622 up_read(&info->groups_sem); 3623 } 3624 3625 /* 3626 * Add global block reserve 3627 */ 3628 if (slot_count) { 3629 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3630 3631 spin_lock(&block_rsv->lock); 3632 space.total_bytes = block_rsv->size; 3633 space.used_bytes = block_rsv->size - block_rsv->reserved; 3634 spin_unlock(&block_rsv->lock); 3635 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3636 memcpy(dest, &space, sizeof(space)); 3637 space_args.total_spaces++; 3638 } 3639 3640 user_dest = (struct btrfs_ioctl_space_info __user *) 3641 (arg + sizeof(struct btrfs_ioctl_space_args)); 3642 3643 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3644 ret = -EFAULT; 3645 3646 kfree(dest_orig); 3647 out: 3648 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3649 ret = -EFAULT; 3650 3651 return ret; 3652 } 3653 3654 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3655 void __user *argp) 3656 { 3657 struct btrfs_trans_handle *trans; 3658 u64 transid; 3659 int ret; 3660 3661 trans = btrfs_attach_transaction_barrier(root); 3662 if (IS_ERR(trans)) { 3663 if (PTR_ERR(trans) != -ENOENT) 3664 return PTR_ERR(trans); 3665 3666 /* No running transaction, don't bother */ 3667 transid = root->fs_info->last_trans_committed; 3668 goto out; 3669 } 3670 transid = trans->transid; 3671 ret = btrfs_commit_transaction_async(trans); 3672 if (ret) { 3673 btrfs_end_transaction(trans); 3674 return ret; 3675 } 3676 out: 3677 if (argp) 3678 if (copy_to_user(argp, &transid, sizeof(transid))) 3679 return -EFAULT; 3680 return 0; 3681 } 3682 3683 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3684 void __user *argp) 3685 { 3686 u64 transid; 3687 3688 if (argp) { 3689 if (copy_from_user(&transid, argp, sizeof(transid))) 3690 return -EFAULT; 3691 } else { 3692 transid = 0; /* current trans */ 3693 } 3694 return btrfs_wait_for_commit(fs_info, transid); 3695 } 3696 3697 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3698 { 3699 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3700 struct btrfs_ioctl_scrub_args *sa; 3701 int ret; 3702 3703 if (!capable(CAP_SYS_ADMIN)) 3704 return -EPERM; 3705 3706 sa = memdup_user(arg, sizeof(*sa)); 3707 if (IS_ERR(sa)) 3708 return PTR_ERR(sa); 3709 3710 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3711 ret = mnt_want_write_file(file); 3712 if (ret) 3713 goto out; 3714 } 3715 3716 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3717 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3718 0); 3719 3720 /* 3721 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3722 * error. This is important as it allows user space to know how much 3723 * progress scrub has done. For example, if scrub is canceled we get 3724 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3725 * space. Later user space can inspect the progress from the structure 3726 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3727 * previously (btrfs-progs does this). 3728 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3729 * then return -EFAULT to signal the structure was not copied or it may 3730 * be corrupt and unreliable due to a partial copy. 3731 */ 3732 if (copy_to_user(arg, sa, sizeof(*sa))) 3733 ret = -EFAULT; 3734 3735 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3736 mnt_drop_write_file(file); 3737 out: 3738 kfree(sa); 3739 return ret; 3740 } 3741 3742 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3743 { 3744 if (!capable(CAP_SYS_ADMIN)) 3745 return -EPERM; 3746 3747 return btrfs_scrub_cancel(fs_info); 3748 } 3749 3750 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3751 void __user *arg) 3752 { 3753 struct btrfs_ioctl_scrub_args *sa; 3754 int ret; 3755 3756 if (!capable(CAP_SYS_ADMIN)) 3757 return -EPERM; 3758 3759 sa = memdup_user(arg, sizeof(*sa)); 3760 if (IS_ERR(sa)) 3761 return PTR_ERR(sa); 3762 3763 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3764 3765 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3766 ret = -EFAULT; 3767 3768 kfree(sa); 3769 return ret; 3770 } 3771 3772 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3773 void __user *arg) 3774 { 3775 struct btrfs_ioctl_get_dev_stats *sa; 3776 int ret; 3777 3778 sa = memdup_user(arg, sizeof(*sa)); 3779 if (IS_ERR(sa)) 3780 return PTR_ERR(sa); 3781 3782 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3783 kfree(sa); 3784 return -EPERM; 3785 } 3786 3787 ret = btrfs_get_dev_stats(fs_info, sa); 3788 3789 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3790 ret = -EFAULT; 3791 3792 kfree(sa); 3793 return ret; 3794 } 3795 3796 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3797 void __user *arg) 3798 { 3799 struct btrfs_ioctl_dev_replace_args *p; 3800 int ret; 3801 3802 if (!capable(CAP_SYS_ADMIN)) 3803 return -EPERM; 3804 3805 p = memdup_user(arg, sizeof(*p)); 3806 if (IS_ERR(p)) 3807 return PTR_ERR(p); 3808 3809 switch (p->cmd) { 3810 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3811 if (sb_rdonly(fs_info->sb)) { 3812 ret = -EROFS; 3813 goto out; 3814 } 3815 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3816 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3817 } else { 3818 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3819 btrfs_exclop_finish(fs_info); 3820 } 3821 break; 3822 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3823 btrfs_dev_replace_status(fs_info, p); 3824 ret = 0; 3825 break; 3826 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3827 p->result = btrfs_dev_replace_cancel(fs_info); 3828 ret = 0; 3829 break; 3830 default: 3831 ret = -EINVAL; 3832 break; 3833 } 3834 3835 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3836 ret = -EFAULT; 3837 out: 3838 kfree(p); 3839 return ret; 3840 } 3841 3842 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3843 { 3844 int ret = 0; 3845 int i; 3846 u64 rel_ptr; 3847 int size; 3848 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3849 struct inode_fs_paths *ipath = NULL; 3850 struct btrfs_path *path; 3851 3852 if (!capable(CAP_DAC_READ_SEARCH)) 3853 return -EPERM; 3854 3855 path = btrfs_alloc_path(); 3856 if (!path) { 3857 ret = -ENOMEM; 3858 goto out; 3859 } 3860 3861 ipa = memdup_user(arg, sizeof(*ipa)); 3862 if (IS_ERR(ipa)) { 3863 ret = PTR_ERR(ipa); 3864 ipa = NULL; 3865 goto out; 3866 } 3867 3868 size = min_t(u32, ipa->size, 4096); 3869 ipath = init_ipath(size, root, path); 3870 if (IS_ERR(ipath)) { 3871 ret = PTR_ERR(ipath); 3872 ipath = NULL; 3873 goto out; 3874 } 3875 3876 ret = paths_from_inode(ipa->inum, ipath); 3877 if (ret < 0) 3878 goto out; 3879 3880 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3881 rel_ptr = ipath->fspath->val[i] - 3882 (u64)(unsigned long)ipath->fspath->val; 3883 ipath->fspath->val[i] = rel_ptr; 3884 } 3885 3886 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3887 ipath->fspath, size); 3888 if (ret) { 3889 ret = -EFAULT; 3890 goto out; 3891 } 3892 3893 out: 3894 btrfs_free_path(path); 3895 free_ipath(ipath); 3896 kfree(ipa); 3897 3898 return ret; 3899 } 3900 3901 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3902 { 3903 struct btrfs_data_container *inodes = ctx; 3904 const size_t c = 3 * sizeof(u64); 3905 3906 if (inodes->bytes_left >= c) { 3907 inodes->bytes_left -= c; 3908 inodes->val[inodes->elem_cnt] = inum; 3909 inodes->val[inodes->elem_cnt + 1] = offset; 3910 inodes->val[inodes->elem_cnt + 2] = root; 3911 inodes->elem_cnt += 3; 3912 } else { 3913 inodes->bytes_missing += c - inodes->bytes_left; 3914 inodes->bytes_left = 0; 3915 inodes->elem_missed += 3; 3916 } 3917 3918 return 0; 3919 } 3920 3921 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3922 void __user *arg, int version) 3923 { 3924 int ret = 0; 3925 int size; 3926 struct btrfs_ioctl_logical_ino_args *loi; 3927 struct btrfs_data_container *inodes = NULL; 3928 struct btrfs_path *path = NULL; 3929 bool ignore_offset; 3930 3931 if (!capable(CAP_SYS_ADMIN)) 3932 return -EPERM; 3933 3934 loi = memdup_user(arg, sizeof(*loi)); 3935 if (IS_ERR(loi)) 3936 return PTR_ERR(loi); 3937 3938 if (version == 1) { 3939 ignore_offset = false; 3940 size = min_t(u32, loi->size, SZ_64K); 3941 } else { 3942 /* All reserved bits must be 0 for now */ 3943 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3944 ret = -EINVAL; 3945 goto out_loi; 3946 } 3947 /* Only accept flags we have defined so far */ 3948 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3949 ret = -EINVAL; 3950 goto out_loi; 3951 } 3952 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3953 size = min_t(u32, loi->size, SZ_16M); 3954 } 3955 3956 path = btrfs_alloc_path(); 3957 if (!path) { 3958 ret = -ENOMEM; 3959 goto out; 3960 } 3961 3962 inodes = init_data_container(size); 3963 if (IS_ERR(inodes)) { 3964 ret = PTR_ERR(inodes); 3965 inodes = NULL; 3966 goto out; 3967 } 3968 3969 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3970 build_ino_list, inodes, ignore_offset); 3971 if (ret == -EINVAL) 3972 ret = -ENOENT; 3973 if (ret < 0) 3974 goto out; 3975 3976 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3977 size); 3978 if (ret) 3979 ret = -EFAULT; 3980 3981 out: 3982 btrfs_free_path(path); 3983 kvfree(inodes); 3984 out_loi: 3985 kfree(loi); 3986 3987 return ret; 3988 } 3989 3990 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3991 struct btrfs_ioctl_balance_args *bargs) 3992 { 3993 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3994 3995 bargs->flags = bctl->flags; 3996 3997 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3998 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3999 if (atomic_read(&fs_info->balance_pause_req)) 4000 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4001 if (atomic_read(&fs_info->balance_cancel_req)) 4002 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4003 4004 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4005 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4006 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4007 4008 spin_lock(&fs_info->balance_lock); 4009 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4010 spin_unlock(&fs_info->balance_lock); 4011 } 4012 4013 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4014 { 4015 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4016 struct btrfs_fs_info *fs_info = root->fs_info; 4017 struct btrfs_ioctl_balance_args *bargs; 4018 struct btrfs_balance_control *bctl; 4019 bool need_unlock; /* for mut. excl. ops lock */ 4020 int ret; 4021 4022 if (!capable(CAP_SYS_ADMIN)) 4023 return -EPERM; 4024 4025 ret = mnt_want_write_file(file); 4026 if (ret) 4027 return ret; 4028 4029 again: 4030 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4031 mutex_lock(&fs_info->balance_mutex); 4032 need_unlock = true; 4033 goto locked; 4034 } 4035 4036 /* 4037 * mut. excl. ops lock is locked. Three possibilities: 4038 * (1) some other op is running 4039 * (2) balance is running 4040 * (3) balance is paused -- special case (think resume) 4041 */ 4042 mutex_lock(&fs_info->balance_mutex); 4043 if (fs_info->balance_ctl) { 4044 /* this is either (2) or (3) */ 4045 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4046 mutex_unlock(&fs_info->balance_mutex); 4047 /* 4048 * Lock released to allow other waiters to continue, 4049 * we'll reexamine the status again. 4050 */ 4051 mutex_lock(&fs_info->balance_mutex); 4052 4053 if (fs_info->balance_ctl && 4054 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4055 /* this is (3) */ 4056 need_unlock = false; 4057 goto locked; 4058 } 4059 4060 mutex_unlock(&fs_info->balance_mutex); 4061 goto again; 4062 } else { 4063 /* this is (2) */ 4064 mutex_unlock(&fs_info->balance_mutex); 4065 ret = -EINPROGRESS; 4066 goto out; 4067 } 4068 } else { 4069 /* this is (1) */ 4070 mutex_unlock(&fs_info->balance_mutex); 4071 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4072 goto out; 4073 } 4074 4075 locked: 4076 4077 if (arg) { 4078 bargs = memdup_user(arg, sizeof(*bargs)); 4079 if (IS_ERR(bargs)) { 4080 ret = PTR_ERR(bargs); 4081 goto out_unlock; 4082 } 4083 4084 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4085 if (!fs_info->balance_ctl) { 4086 ret = -ENOTCONN; 4087 goto out_bargs; 4088 } 4089 4090 bctl = fs_info->balance_ctl; 4091 spin_lock(&fs_info->balance_lock); 4092 bctl->flags |= BTRFS_BALANCE_RESUME; 4093 spin_unlock(&fs_info->balance_lock); 4094 4095 goto do_balance; 4096 } 4097 } else { 4098 bargs = NULL; 4099 } 4100 4101 if (fs_info->balance_ctl) { 4102 ret = -EINPROGRESS; 4103 goto out_bargs; 4104 } 4105 4106 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4107 if (!bctl) { 4108 ret = -ENOMEM; 4109 goto out_bargs; 4110 } 4111 4112 if (arg) { 4113 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4114 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4115 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4116 4117 bctl->flags = bargs->flags; 4118 } else { 4119 /* balance everything - no filters */ 4120 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4121 } 4122 4123 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4124 ret = -EINVAL; 4125 goto out_bctl; 4126 } 4127 4128 do_balance: 4129 /* 4130 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4131 * bctl is freed in reset_balance_state, or, if restriper was paused 4132 * all the way until unmount, in free_fs_info. The flag should be 4133 * cleared after reset_balance_state. 4134 */ 4135 need_unlock = false; 4136 4137 ret = btrfs_balance(fs_info, bctl, bargs); 4138 bctl = NULL; 4139 4140 if ((ret == 0 || ret == -ECANCELED) && arg) { 4141 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4142 ret = -EFAULT; 4143 } 4144 4145 out_bctl: 4146 kfree(bctl); 4147 out_bargs: 4148 kfree(bargs); 4149 out_unlock: 4150 mutex_unlock(&fs_info->balance_mutex); 4151 if (need_unlock) 4152 btrfs_exclop_finish(fs_info); 4153 out: 4154 mnt_drop_write_file(file); 4155 return ret; 4156 } 4157 4158 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4159 { 4160 if (!capable(CAP_SYS_ADMIN)) 4161 return -EPERM; 4162 4163 switch (cmd) { 4164 case BTRFS_BALANCE_CTL_PAUSE: 4165 return btrfs_pause_balance(fs_info); 4166 case BTRFS_BALANCE_CTL_CANCEL: 4167 return btrfs_cancel_balance(fs_info); 4168 } 4169 4170 return -EINVAL; 4171 } 4172 4173 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4174 void __user *arg) 4175 { 4176 struct btrfs_ioctl_balance_args *bargs; 4177 int ret = 0; 4178 4179 if (!capable(CAP_SYS_ADMIN)) 4180 return -EPERM; 4181 4182 mutex_lock(&fs_info->balance_mutex); 4183 if (!fs_info->balance_ctl) { 4184 ret = -ENOTCONN; 4185 goto out; 4186 } 4187 4188 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4189 if (!bargs) { 4190 ret = -ENOMEM; 4191 goto out; 4192 } 4193 4194 btrfs_update_ioctl_balance_args(fs_info, bargs); 4195 4196 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4197 ret = -EFAULT; 4198 4199 kfree(bargs); 4200 out: 4201 mutex_unlock(&fs_info->balance_mutex); 4202 return ret; 4203 } 4204 4205 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4206 { 4207 struct inode *inode = file_inode(file); 4208 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4209 struct btrfs_ioctl_quota_ctl_args *sa; 4210 int ret; 4211 4212 if (!capable(CAP_SYS_ADMIN)) 4213 return -EPERM; 4214 4215 ret = mnt_want_write_file(file); 4216 if (ret) 4217 return ret; 4218 4219 sa = memdup_user(arg, sizeof(*sa)); 4220 if (IS_ERR(sa)) { 4221 ret = PTR_ERR(sa); 4222 goto drop_write; 4223 } 4224 4225 down_write(&fs_info->subvol_sem); 4226 4227 switch (sa->cmd) { 4228 case BTRFS_QUOTA_CTL_ENABLE: 4229 ret = btrfs_quota_enable(fs_info); 4230 break; 4231 case BTRFS_QUOTA_CTL_DISABLE: 4232 ret = btrfs_quota_disable(fs_info); 4233 break; 4234 default: 4235 ret = -EINVAL; 4236 break; 4237 } 4238 4239 kfree(sa); 4240 up_write(&fs_info->subvol_sem); 4241 drop_write: 4242 mnt_drop_write_file(file); 4243 return ret; 4244 } 4245 4246 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4247 { 4248 struct inode *inode = file_inode(file); 4249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4250 struct btrfs_root *root = BTRFS_I(inode)->root; 4251 struct btrfs_ioctl_qgroup_assign_args *sa; 4252 struct btrfs_trans_handle *trans; 4253 int ret; 4254 int err; 4255 4256 if (!capable(CAP_SYS_ADMIN)) 4257 return -EPERM; 4258 4259 ret = mnt_want_write_file(file); 4260 if (ret) 4261 return ret; 4262 4263 sa = memdup_user(arg, sizeof(*sa)); 4264 if (IS_ERR(sa)) { 4265 ret = PTR_ERR(sa); 4266 goto drop_write; 4267 } 4268 4269 trans = btrfs_join_transaction(root); 4270 if (IS_ERR(trans)) { 4271 ret = PTR_ERR(trans); 4272 goto out; 4273 } 4274 4275 if (sa->assign) { 4276 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4277 } else { 4278 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4279 } 4280 4281 /* update qgroup status and info */ 4282 err = btrfs_run_qgroups(trans); 4283 if (err < 0) 4284 btrfs_handle_fs_error(fs_info, err, 4285 "failed to update qgroup status and info"); 4286 err = btrfs_end_transaction(trans); 4287 if (err && !ret) 4288 ret = err; 4289 4290 out: 4291 kfree(sa); 4292 drop_write: 4293 mnt_drop_write_file(file); 4294 return ret; 4295 } 4296 4297 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4298 { 4299 struct inode *inode = file_inode(file); 4300 struct btrfs_root *root = BTRFS_I(inode)->root; 4301 struct btrfs_ioctl_qgroup_create_args *sa; 4302 struct btrfs_trans_handle *trans; 4303 int ret; 4304 int err; 4305 4306 if (!capable(CAP_SYS_ADMIN)) 4307 return -EPERM; 4308 4309 ret = mnt_want_write_file(file); 4310 if (ret) 4311 return ret; 4312 4313 sa = memdup_user(arg, sizeof(*sa)); 4314 if (IS_ERR(sa)) { 4315 ret = PTR_ERR(sa); 4316 goto drop_write; 4317 } 4318 4319 if (!sa->qgroupid) { 4320 ret = -EINVAL; 4321 goto out; 4322 } 4323 4324 trans = btrfs_join_transaction(root); 4325 if (IS_ERR(trans)) { 4326 ret = PTR_ERR(trans); 4327 goto out; 4328 } 4329 4330 if (sa->create) { 4331 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4332 } else { 4333 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4334 } 4335 4336 err = btrfs_end_transaction(trans); 4337 if (err && !ret) 4338 ret = err; 4339 4340 out: 4341 kfree(sa); 4342 drop_write: 4343 mnt_drop_write_file(file); 4344 return ret; 4345 } 4346 4347 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4348 { 4349 struct inode *inode = file_inode(file); 4350 struct btrfs_root *root = BTRFS_I(inode)->root; 4351 struct btrfs_ioctl_qgroup_limit_args *sa; 4352 struct btrfs_trans_handle *trans; 4353 int ret; 4354 int err; 4355 u64 qgroupid; 4356 4357 if (!capable(CAP_SYS_ADMIN)) 4358 return -EPERM; 4359 4360 ret = mnt_want_write_file(file); 4361 if (ret) 4362 return ret; 4363 4364 sa = memdup_user(arg, sizeof(*sa)); 4365 if (IS_ERR(sa)) { 4366 ret = PTR_ERR(sa); 4367 goto drop_write; 4368 } 4369 4370 trans = btrfs_join_transaction(root); 4371 if (IS_ERR(trans)) { 4372 ret = PTR_ERR(trans); 4373 goto out; 4374 } 4375 4376 qgroupid = sa->qgroupid; 4377 if (!qgroupid) { 4378 /* take the current subvol as qgroup */ 4379 qgroupid = root->root_key.objectid; 4380 } 4381 4382 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4383 4384 err = btrfs_end_transaction(trans); 4385 if (err && !ret) 4386 ret = err; 4387 4388 out: 4389 kfree(sa); 4390 drop_write: 4391 mnt_drop_write_file(file); 4392 return ret; 4393 } 4394 4395 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4396 { 4397 struct inode *inode = file_inode(file); 4398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4399 struct btrfs_ioctl_quota_rescan_args *qsa; 4400 int ret; 4401 4402 if (!capable(CAP_SYS_ADMIN)) 4403 return -EPERM; 4404 4405 ret = mnt_want_write_file(file); 4406 if (ret) 4407 return ret; 4408 4409 qsa = memdup_user(arg, sizeof(*qsa)); 4410 if (IS_ERR(qsa)) { 4411 ret = PTR_ERR(qsa); 4412 goto drop_write; 4413 } 4414 4415 if (qsa->flags) { 4416 ret = -EINVAL; 4417 goto out; 4418 } 4419 4420 ret = btrfs_qgroup_rescan(fs_info); 4421 4422 out: 4423 kfree(qsa); 4424 drop_write: 4425 mnt_drop_write_file(file); 4426 return ret; 4427 } 4428 4429 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4430 void __user *arg) 4431 { 4432 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4433 int ret = 0; 4434 4435 if (!capable(CAP_SYS_ADMIN)) 4436 return -EPERM; 4437 4438 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4439 qsa.flags = 1; 4440 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4441 } 4442 4443 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4444 ret = -EFAULT; 4445 4446 return ret; 4447 } 4448 4449 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4450 void __user *arg) 4451 { 4452 if (!capable(CAP_SYS_ADMIN)) 4453 return -EPERM; 4454 4455 return btrfs_qgroup_wait_for_completion(fs_info, true); 4456 } 4457 4458 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4459 struct user_namespace *mnt_userns, 4460 struct btrfs_ioctl_received_subvol_args *sa) 4461 { 4462 struct inode *inode = file_inode(file); 4463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4464 struct btrfs_root *root = BTRFS_I(inode)->root; 4465 struct btrfs_root_item *root_item = &root->root_item; 4466 struct btrfs_trans_handle *trans; 4467 struct timespec64 ct = current_time(inode); 4468 int ret = 0; 4469 int received_uuid_changed; 4470 4471 if (!inode_owner_or_capable(mnt_userns, inode)) 4472 return -EPERM; 4473 4474 ret = mnt_want_write_file(file); 4475 if (ret < 0) 4476 return ret; 4477 4478 down_write(&fs_info->subvol_sem); 4479 4480 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4481 ret = -EINVAL; 4482 goto out; 4483 } 4484 4485 if (btrfs_root_readonly(root)) { 4486 ret = -EROFS; 4487 goto out; 4488 } 4489 4490 /* 4491 * 1 - root item 4492 * 2 - uuid items (received uuid + subvol uuid) 4493 */ 4494 trans = btrfs_start_transaction(root, 3); 4495 if (IS_ERR(trans)) { 4496 ret = PTR_ERR(trans); 4497 trans = NULL; 4498 goto out; 4499 } 4500 4501 sa->rtransid = trans->transid; 4502 sa->rtime.sec = ct.tv_sec; 4503 sa->rtime.nsec = ct.tv_nsec; 4504 4505 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4506 BTRFS_UUID_SIZE); 4507 if (received_uuid_changed && 4508 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4509 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4510 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4511 root->root_key.objectid); 4512 if (ret && ret != -ENOENT) { 4513 btrfs_abort_transaction(trans, ret); 4514 btrfs_end_transaction(trans); 4515 goto out; 4516 } 4517 } 4518 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4519 btrfs_set_root_stransid(root_item, sa->stransid); 4520 btrfs_set_root_rtransid(root_item, sa->rtransid); 4521 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4522 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4523 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4524 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4525 4526 ret = btrfs_update_root(trans, fs_info->tree_root, 4527 &root->root_key, &root->root_item); 4528 if (ret < 0) { 4529 btrfs_end_transaction(trans); 4530 goto out; 4531 } 4532 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4533 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4534 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4535 root->root_key.objectid); 4536 if (ret < 0 && ret != -EEXIST) { 4537 btrfs_abort_transaction(trans, ret); 4538 btrfs_end_transaction(trans); 4539 goto out; 4540 } 4541 } 4542 ret = btrfs_commit_transaction(trans); 4543 out: 4544 up_write(&fs_info->subvol_sem); 4545 mnt_drop_write_file(file); 4546 return ret; 4547 } 4548 4549 #ifdef CONFIG_64BIT 4550 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4551 void __user *arg) 4552 { 4553 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4554 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4555 int ret = 0; 4556 4557 args32 = memdup_user(arg, sizeof(*args32)); 4558 if (IS_ERR(args32)) 4559 return PTR_ERR(args32); 4560 4561 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4562 if (!args64) { 4563 ret = -ENOMEM; 4564 goto out; 4565 } 4566 4567 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4568 args64->stransid = args32->stransid; 4569 args64->rtransid = args32->rtransid; 4570 args64->stime.sec = args32->stime.sec; 4571 args64->stime.nsec = args32->stime.nsec; 4572 args64->rtime.sec = args32->rtime.sec; 4573 args64->rtime.nsec = args32->rtime.nsec; 4574 args64->flags = args32->flags; 4575 4576 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4577 if (ret) 4578 goto out; 4579 4580 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4581 args32->stransid = args64->stransid; 4582 args32->rtransid = args64->rtransid; 4583 args32->stime.sec = args64->stime.sec; 4584 args32->stime.nsec = args64->stime.nsec; 4585 args32->rtime.sec = args64->rtime.sec; 4586 args32->rtime.nsec = args64->rtime.nsec; 4587 args32->flags = args64->flags; 4588 4589 ret = copy_to_user(arg, args32, sizeof(*args32)); 4590 if (ret) 4591 ret = -EFAULT; 4592 4593 out: 4594 kfree(args32); 4595 kfree(args64); 4596 return ret; 4597 } 4598 #endif 4599 4600 static long btrfs_ioctl_set_received_subvol(struct file *file, 4601 void __user *arg) 4602 { 4603 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4604 int ret = 0; 4605 4606 sa = memdup_user(arg, sizeof(*sa)); 4607 if (IS_ERR(sa)) 4608 return PTR_ERR(sa); 4609 4610 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4611 4612 if (ret) 4613 goto out; 4614 4615 ret = copy_to_user(arg, sa, sizeof(*sa)); 4616 if (ret) 4617 ret = -EFAULT; 4618 4619 out: 4620 kfree(sa); 4621 return ret; 4622 } 4623 4624 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4625 void __user *arg) 4626 { 4627 size_t len; 4628 int ret; 4629 char label[BTRFS_LABEL_SIZE]; 4630 4631 spin_lock(&fs_info->super_lock); 4632 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4633 spin_unlock(&fs_info->super_lock); 4634 4635 len = strnlen(label, BTRFS_LABEL_SIZE); 4636 4637 if (len == BTRFS_LABEL_SIZE) { 4638 btrfs_warn(fs_info, 4639 "label is too long, return the first %zu bytes", 4640 --len); 4641 } 4642 4643 ret = copy_to_user(arg, label, len); 4644 4645 return ret ? -EFAULT : 0; 4646 } 4647 4648 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4649 { 4650 struct inode *inode = file_inode(file); 4651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4652 struct btrfs_root *root = BTRFS_I(inode)->root; 4653 struct btrfs_super_block *super_block = fs_info->super_copy; 4654 struct btrfs_trans_handle *trans; 4655 char label[BTRFS_LABEL_SIZE]; 4656 int ret; 4657 4658 if (!capable(CAP_SYS_ADMIN)) 4659 return -EPERM; 4660 4661 if (copy_from_user(label, arg, sizeof(label))) 4662 return -EFAULT; 4663 4664 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4665 btrfs_err(fs_info, 4666 "unable to set label with more than %d bytes", 4667 BTRFS_LABEL_SIZE - 1); 4668 return -EINVAL; 4669 } 4670 4671 ret = mnt_want_write_file(file); 4672 if (ret) 4673 return ret; 4674 4675 trans = btrfs_start_transaction(root, 0); 4676 if (IS_ERR(trans)) { 4677 ret = PTR_ERR(trans); 4678 goto out_unlock; 4679 } 4680 4681 spin_lock(&fs_info->super_lock); 4682 strcpy(super_block->label, label); 4683 spin_unlock(&fs_info->super_lock); 4684 ret = btrfs_commit_transaction(trans); 4685 4686 out_unlock: 4687 mnt_drop_write_file(file); 4688 return ret; 4689 } 4690 4691 #define INIT_FEATURE_FLAGS(suffix) \ 4692 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4693 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4694 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4695 4696 int btrfs_ioctl_get_supported_features(void __user *arg) 4697 { 4698 static const struct btrfs_ioctl_feature_flags features[3] = { 4699 INIT_FEATURE_FLAGS(SUPP), 4700 INIT_FEATURE_FLAGS(SAFE_SET), 4701 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4702 }; 4703 4704 if (copy_to_user(arg, &features, sizeof(features))) 4705 return -EFAULT; 4706 4707 return 0; 4708 } 4709 4710 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4711 void __user *arg) 4712 { 4713 struct btrfs_super_block *super_block = fs_info->super_copy; 4714 struct btrfs_ioctl_feature_flags features; 4715 4716 features.compat_flags = btrfs_super_compat_flags(super_block); 4717 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4718 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4719 4720 if (copy_to_user(arg, &features, sizeof(features))) 4721 return -EFAULT; 4722 4723 return 0; 4724 } 4725 4726 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4727 enum btrfs_feature_set set, 4728 u64 change_mask, u64 flags, u64 supported_flags, 4729 u64 safe_set, u64 safe_clear) 4730 { 4731 const char *type = btrfs_feature_set_name(set); 4732 char *names; 4733 u64 disallowed, unsupported; 4734 u64 set_mask = flags & change_mask; 4735 u64 clear_mask = ~flags & change_mask; 4736 4737 unsupported = set_mask & ~supported_flags; 4738 if (unsupported) { 4739 names = btrfs_printable_features(set, unsupported); 4740 if (names) { 4741 btrfs_warn(fs_info, 4742 "this kernel does not support the %s feature bit%s", 4743 names, strchr(names, ',') ? "s" : ""); 4744 kfree(names); 4745 } else 4746 btrfs_warn(fs_info, 4747 "this kernel does not support %s bits 0x%llx", 4748 type, unsupported); 4749 return -EOPNOTSUPP; 4750 } 4751 4752 disallowed = set_mask & ~safe_set; 4753 if (disallowed) { 4754 names = btrfs_printable_features(set, disallowed); 4755 if (names) { 4756 btrfs_warn(fs_info, 4757 "can't set the %s feature bit%s while mounted", 4758 names, strchr(names, ',') ? "s" : ""); 4759 kfree(names); 4760 } else 4761 btrfs_warn(fs_info, 4762 "can't set %s bits 0x%llx while mounted", 4763 type, disallowed); 4764 return -EPERM; 4765 } 4766 4767 disallowed = clear_mask & ~safe_clear; 4768 if (disallowed) { 4769 names = btrfs_printable_features(set, disallowed); 4770 if (names) { 4771 btrfs_warn(fs_info, 4772 "can't clear the %s feature bit%s while mounted", 4773 names, strchr(names, ',') ? "s" : ""); 4774 kfree(names); 4775 } else 4776 btrfs_warn(fs_info, 4777 "can't clear %s bits 0x%llx while mounted", 4778 type, disallowed); 4779 return -EPERM; 4780 } 4781 4782 return 0; 4783 } 4784 4785 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4786 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4787 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4788 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4789 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4790 4791 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4792 { 4793 struct inode *inode = file_inode(file); 4794 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4795 struct btrfs_root *root = BTRFS_I(inode)->root; 4796 struct btrfs_super_block *super_block = fs_info->super_copy; 4797 struct btrfs_ioctl_feature_flags flags[2]; 4798 struct btrfs_trans_handle *trans; 4799 u64 newflags; 4800 int ret; 4801 4802 if (!capable(CAP_SYS_ADMIN)) 4803 return -EPERM; 4804 4805 if (copy_from_user(flags, arg, sizeof(flags))) 4806 return -EFAULT; 4807 4808 /* Nothing to do */ 4809 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4810 !flags[0].incompat_flags) 4811 return 0; 4812 4813 ret = check_feature(fs_info, flags[0].compat_flags, 4814 flags[1].compat_flags, COMPAT); 4815 if (ret) 4816 return ret; 4817 4818 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4819 flags[1].compat_ro_flags, COMPAT_RO); 4820 if (ret) 4821 return ret; 4822 4823 ret = check_feature(fs_info, flags[0].incompat_flags, 4824 flags[1].incompat_flags, INCOMPAT); 4825 if (ret) 4826 return ret; 4827 4828 ret = mnt_want_write_file(file); 4829 if (ret) 4830 return ret; 4831 4832 trans = btrfs_start_transaction(root, 0); 4833 if (IS_ERR(trans)) { 4834 ret = PTR_ERR(trans); 4835 goto out_drop_write; 4836 } 4837 4838 spin_lock(&fs_info->super_lock); 4839 newflags = btrfs_super_compat_flags(super_block); 4840 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4841 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4842 btrfs_set_super_compat_flags(super_block, newflags); 4843 4844 newflags = btrfs_super_compat_ro_flags(super_block); 4845 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4846 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4847 btrfs_set_super_compat_ro_flags(super_block, newflags); 4848 4849 newflags = btrfs_super_incompat_flags(super_block); 4850 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4851 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4852 btrfs_set_super_incompat_flags(super_block, newflags); 4853 spin_unlock(&fs_info->super_lock); 4854 4855 ret = btrfs_commit_transaction(trans); 4856 out_drop_write: 4857 mnt_drop_write_file(file); 4858 4859 return ret; 4860 } 4861 4862 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4863 { 4864 struct btrfs_ioctl_send_args *arg; 4865 int ret; 4866 4867 if (compat) { 4868 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4869 struct btrfs_ioctl_send_args_32 args32; 4870 4871 ret = copy_from_user(&args32, argp, sizeof(args32)); 4872 if (ret) 4873 return -EFAULT; 4874 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4875 if (!arg) 4876 return -ENOMEM; 4877 arg->send_fd = args32.send_fd; 4878 arg->clone_sources_count = args32.clone_sources_count; 4879 arg->clone_sources = compat_ptr(args32.clone_sources); 4880 arg->parent_root = args32.parent_root; 4881 arg->flags = args32.flags; 4882 memcpy(arg->reserved, args32.reserved, 4883 sizeof(args32.reserved)); 4884 #else 4885 return -ENOTTY; 4886 #endif 4887 } else { 4888 arg = memdup_user(argp, sizeof(*arg)); 4889 if (IS_ERR(arg)) 4890 return PTR_ERR(arg); 4891 } 4892 ret = btrfs_ioctl_send(file, arg); 4893 kfree(arg); 4894 return ret; 4895 } 4896 4897 long btrfs_ioctl(struct file *file, unsigned int 4898 cmd, unsigned long arg) 4899 { 4900 struct inode *inode = file_inode(file); 4901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4902 struct btrfs_root *root = BTRFS_I(inode)->root; 4903 void __user *argp = (void __user *)arg; 4904 4905 switch (cmd) { 4906 case FS_IOC_GETVERSION: 4907 return btrfs_ioctl_getversion(file, argp); 4908 case FS_IOC_GETFSLABEL: 4909 return btrfs_ioctl_get_fslabel(fs_info, argp); 4910 case FS_IOC_SETFSLABEL: 4911 return btrfs_ioctl_set_fslabel(file, argp); 4912 case FITRIM: 4913 return btrfs_ioctl_fitrim(fs_info, argp); 4914 case BTRFS_IOC_SNAP_CREATE: 4915 return btrfs_ioctl_snap_create(file, argp, 0); 4916 case BTRFS_IOC_SNAP_CREATE_V2: 4917 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4918 case BTRFS_IOC_SUBVOL_CREATE: 4919 return btrfs_ioctl_snap_create(file, argp, 1); 4920 case BTRFS_IOC_SUBVOL_CREATE_V2: 4921 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4922 case BTRFS_IOC_SNAP_DESTROY: 4923 return btrfs_ioctl_snap_destroy(file, argp, false); 4924 case BTRFS_IOC_SNAP_DESTROY_V2: 4925 return btrfs_ioctl_snap_destroy(file, argp, true); 4926 case BTRFS_IOC_SUBVOL_GETFLAGS: 4927 return btrfs_ioctl_subvol_getflags(file, argp); 4928 case BTRFS_IOC_SUBVOL_SETFLAGS: 4929 return btrfs_ioctl_subvol_setflags(file, argp); 4930 case BTRFS_IOC_DEFAULT_SUBVOL: 4931 return btrfs_ioctl_default_subvol(file, argp); 4932 case BTRFS_IOC_DEFRAG: 4933 return btrfs_ioctl_defrag(file, NULL); 4934 case BTRFS_IOC_DEFRAG_RANGE: 4935 return btrfs_ioctl_defrag(file, argp); 4936 case BTRFS_IOC_RESIZE: 4937 return btrfs_ioctl_resize(file, argp); 4938 case BTRFS_IOC_ADD_DEV: 4939 return btrfs_ioctl_add_dev(fs_info, argp); 4940 case BTRFS_IOC_RM_DEV: 4941 return btrfs_ioctl_rm_dev(file, argp); 4942 case BTRFS_IOC_RM_DEV_V2: 4943 return btrfs_ioctl_rm_dev_v2(file, argp); 4944 case BTRFS_IOC_FS_INFO: 4945 return btrfs_ioctl_fs_info(fs_info, argp); 4946 case BTRFS_IOC_DEV_INFO: 4947 return btrfs_ioctl_dev_info(fs_info, argp); 4948 case BTRFS_IOC_BALANCE: 4949 return btrfs_ioctl_balance(file, NULL); 4950 case BTRFS_IOC_TREE_SEARCH: 4951 return btrfs_ioctl_tree_search(file, argp); 4952 case BTRFS_IOC_TREE_SEARCH_V2: 4953 return btrfs_ioctl_tree_search_v2(file, argp); 4954 case BTRFS_IOC_INO_LOOKUP: 4955 return btrfs_ioctl_ino_lookup(file, argp); 4956 case BTRFS_IOC_INO_PATHS: 4957 return btrfs_ioctl_ino_to_path(root, argp); 4958 case BTRFS_IOC_LOGICAL_INO: 4959 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4960 case BTRFS_IOC_LOGICAL_INO_V2: 4961 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4962 case BTRFS_IOC_SPACE_INFO: 4963 return btrfs_ioctl_space_info(fs_info, argp); 4964 case BTRFS_IOC_SYNC: { 4965 int ret; 4966 4967 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4968 if (ret) 4969 return ret; 4970 ret = btrfs_sync_fs(inode->i_sb, 1); 4971 /* 4972 * The transaction thread may want to do more work, 4973 * namely it pokes the cleaner kthread that will start 4974 * processing uncleaned subvols. 4975 */ 4976 wake_up_process(fs_info->transaction_kthread); 4977 return ret; 4978 } 4979 case BTRFS_IOC_START_SYNC: 4980 return btrfs_ioctl_start_sync(root, argp); 4981 case BTRFS_IOC_WAIT_SYNC: 4982 return btrfs_ioctl_wait_sync(fs_info, argp); 4983 case BTRFS_IOC_SCRUB: 4984 return btrfs_ioctl_scrub(file, argp); 4985 case BTRFS_IOC_SCRUB_CANCEL: 4986 return btrfs_ioctl_scrub_cancel(fs_info); 4987 case BTRFS_IOC_SCRUB_PROGRESS: 4988 return btrfs_ioctl_scrub_progress(fs_info, argp); 4989 case BTRFS_IOC_BALANCE_V2: 4990 return btrfs_ioctl_balance(file, argp); 4991 case BTRFS_IOC_BALANCE_CTL: 4992 return btrfs_ioctl_balance_ctl(fs_info, arg); 4993 case BTRFS_IOC_BALANCE_PROGRESS: 4994 return btrfs_ioctl_balance_progress(fs_info, argp); 4995 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4996 return btrfs_ioctl_set_received_subvol(file, argp); 4997 #ifdef CONFIG_64BIT 4998 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4999 return btrfs_ioctl_set_received_subvol_32(file, argp); 5000 #endif 5001 case BTRFS_IOC_SEND: 5002 return _btrfs_ioctl_send(file, argp, false); 5003 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5004 case BTRFS_IOC_SEND_32: 5005 return _btrfs_ioctl_send(file, argp, true); 5006 #endif 5007 case BTRFS_IOC_GET_DEV_STATS: 5008 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5009 case BTRFS_IOC_QUOTA_CTL: 5010 return btrfs_ioctl_quota_ctl(file, argp); 5011 case BTRFS_IOC_QGROUP_ASSIGN: 5012 return btrfs_ioctl_qgroup_assign(file, argp); 5013 case BTRFS_IOC_QGROUP_CREATE: 5014 return btrfs_ioctl_qgroup_create(file, argp); 5015 case BTRFS_IOC_QGROUP_LIMIT: 5016 return btrfs_ioctl_qgroup_limit(file, argp); 5017 case BTRFS_IOC_QUOTA_RESCAN: 5018 return btrfs_ioctl_quota_rescan(file, argp); 5019 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5020 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5021 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5022 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5023 case BTRFS_IOC_DEV_REPLACE: 5024 return btrfs_ioctl_dev_replace(fs_info, argp); 5025 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5026 return btrfs_ioctl_get_supported_features(argp); 5027 case BTRFS_IOC_GET_FEATURES: 5028 return btrfs_ioctl_get_features(fs_info, argp); 5029 case BTRFS_IOC_SET_FEATURES: 5030 return btrfs_ioctl_set_features(file, argp); 5031 case BTRFS_IOC_GET_SUBVOL_INFO: 5032 return btrfs_ioctl_get_subvol_info(file, argp); 5033 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5034 return btrfs_ioctl_get_subvol_rootref(file, argp); 5035 case BTRFS_IOC_INO_LOOKUP_USER: 5036 return btrfs_ioctl_ino_lookup_user(file, argp); 5037 case FS_IOC_ENABLE_VERITY: 5038 return fsverity_ioctl_enable(file, (const void __user *)argp); 5039 case FS_IOC_MEASURE_VERITY: 5040 return fsverity_ioctl_measure(file, argp); 5041 } 5042 5043 return -ENOTTY; 5044 } 5045 5046 #ifdef CONFIG_COMPAT 5047 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5048 { 5049 /* 5050 * These all access 32-bit values anyway so no further 5051 * handling is necessary. 5052 */ 5053 switch (cmd) { 5054 case FS_IOC32_GETVERSION: 5055 cmd = FS_IOC_GETVERSION; 5056 break; 5057 } 5058 5059 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5060 } 5061 #endif 5062