xref: /linux/fs/btrfs/ioctl.c (revision f9aec1648df09d55436a0e3a94acff1df507751f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 
52 #ifdef CONFIG_64BIT
53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54  * structures are incorrect, as the timespec structure from userspace
55  * is 4 bytes too small. We define these alternatives here to teach
56  * the kernel about the 32-bit struct packing.
57  */
58 struct btrfs_ioctl_timespec_32 {
59 	__u64 sec;
60 	__u32 nsec;
61 } __attribute__ ((__packed__));
62 
63 struct btrfs_ioctl_received_subvol_args_32 {
64 	char	uuid[BTRFS_UUID_SIZE];	/* in */
65 	__u64	stransid;		/* in */
66 	__u64	rtransid;		/* out */
67 	struct btrfs_ioctl_timespec_32 stime; /* in */
68 	struct btrfs_ioctl_timespec_32 rtime; /* out */
69 	__u64	flags;			/* in */
70 	__u64	reserved[16];		/* in */
71 } __attribute__ ((__packed__));
72 
73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 				struct btrfs_ioctl_received_subvol_args_32)
75 #endif
76 
77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78 struct btrfs_ioctl_send_args_32 {
79 	__s64 send_fd;			/* in */
80 	__u64 clone_sources_count;	/* in */
81 	compat_uptr_t clone_sources;	/* in */
82 	__u64 parent_root;		/* in */
83 	__u64 flags;			/* in */
84 	__u64 reserved[4];		/* in */
85 } __attribute__ ((__packed__));
86 
87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 			       struct btrfs_ioctl_send_args_32)
89 #endif
90 
91 /* Mask out flags that are inappropriate for the given type of inode. */
92 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
93 		unsigned int flags)
94 {
95 	if (S_ISDIR(inode->i_mode))
96 		return flags;
97 	else if (S_ISREG(inode->i_mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
105  * ioctl.
106  */
107 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
108 {
109 	unsigned int iflags = 0;
110 	u32 flags = binode->flags;
111 	u32 ro_flags = binode->ro_flags;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 	if (ro_flags & BTRFS_INODE_RO_VERITY)
128 		iflags |= FS_VERITY_FL;
129 
130 	if (flags & BTRFS_INODE_NOCOMPRESS)
131 		iflags |= FS_NOCOMP_FL;
132 	else if (flags & BTRFS_INODE_COMPRESS)
133 		iflags |= FS_COMPR_FL;
134 
135 	return iflags;
136 }
137 
138 /*
139  * Update inode->i_flags based on the btrfs internal flags.
140  */
141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
142 {
143 	struct btrfs_inode *binode = BTRFS_I(inode);
144 	unsigned int new_fl = 0;
145 
146 	if (binode->flags & BTRFS_INODE_SYNC)
147 		new_fl |= S_SYNC;
148 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
149 		new_fl |= S_IMMUTABLE;
150 	if (binode->flags & BTRFS_INODE_APPEND)
151 		new_fl |= S_APPEND;
152 	if (binode->flags & BTRFS_INODE_NOATIME)
153 		new_fl |= S_NOATIME;
154 	if (binode->flags & BTRFS_INODE_DIRSYNC)
155 		new_fl |= S_DIRSYNC;
156 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
157 		new_fl |= S_VERITY;
158 
159 	set_mask_bits(&inode->i_flags,
160 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
161 		      S_VERITY, new_fl);
162 }
163 
164 /*
165  * Check if @flags are a supported and valid set of FS_*_FL flags and that
166  * the old and new flags are not conflicting
167  */
168 static int check_fsflags(unsigned int old_flags, unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	/* COMPR and NOCOMP on new/old are valid */
178 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 		return -EINVAL;
180 
181 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
182 		return -EINVAL;
183 
184 	/* NOCOW and compression options are mutually exclusive */
185 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
186 		return -EINVAL;
187 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
194 				    unsigned int flags)
195 {
196 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
197 		return -EPERM;
198 
199 	return 0;
200 }
201 
202 /*
203  * Set flags/xflags from the internal inode flags. The remaining items of
204  * fsxattr are zeroed.
205  */
206 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
207 {
208 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
209 
210 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
211 	return 0;
212 }
213 
214 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
215 		       struct dentry *dentry, struct fileattr *fa)
216 {
217 	struct inode *inode = d_inode(dentry);
218 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 	struct btrfs_inode *binode = BTRFS_I(inode);
220 	struct btrfs_root *root = binode->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int fsflags, old_fsflags;
223 	int ret;
224 	const char *comp = NULL;
225 	u32 binode_flags;
226 
227 	if (btrfs_root_readonly(root))
228 		return -EROFS;
229 
230 	if (fileattr_has_fsx(fa))
231 		return -EOPNOTSUPP;
232 
233 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
234 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
235 	ret = check_fsflags(old_fsflags, fsflags);
236 	if (ret)
237 		return ret;
238 
239 	ret = check_fsflags_compatible(fs_info, fsflags);
240 	if (ret)
241 		return ret;
242 
243 	binode_flags = binode->flags;
244 	if (fsflags & FS_SYNC_FL)
245 		binode_flags |= BTRFS_INODE_SYNC;
246 	else
247 		binode_flags &= ~BTRFS_INODE_SYNC;
248 	if (fsflags & FS_IMMUTABLE_FL)
249 		binode_flags |= BTRFS_INODE_IMMUTABLE;
250 	else
251 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
252 	if (fsflags & FS_APPEND_FL)
253 		binode_flags |= BTRFS_INODE_APPEND;
254 	else
255 		binode_flags &= ~BTRFS_INODE_APPEND;
256 	if (fsflags & FS_NODUMP_FL)
257 		binode_flags |= BTRFS_INODE_NODUMP;
258 	else
259 		binode_flags &= ~BTRFS_INODE_NODUMP;
260 	if (fsflags & FS_NOATIME_FL)
261 		binode_flags |= BTRFS_INODE_NOATIME;
262 	else
263 		binode_flags &= ~BTRFS_INODE_NOATIME;
264 
265 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
266 	if (!fa->flags_valid) {
267 		/* 1 item for the inode */
268 		trans = btrfs_start_transaction(root, 1);
269 		if (IS_ERR(trans))
270 			return PTR_ERR(trans);
271 		goto update_flags;
272 	}
273 
274 	if (fsflags & FS_DIRSYNC_FL)
275 		binode_flags |= BTRFS_INODE_DIRSYNC;
276 	else
277 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
278 	if (fsflags & FS_NOCOW_FL) {
279 		if (S_ISREG(inode->i_mode)) {
280 			/*
281 			 * It's safe to turn csums off here, no extents exist.
282 			 * Otherwise we want the flag to reflect the real COW
283 			 * status of the file and will not set it.
284 			 */
285 			if (inode->i_size == 0)
286 				binode_flags |= BTRFS_INODE_NODATACOW |
287 						BTRFS_INODE_NODATASUM;
288 		} else {
289 			binode_flags |= BTRFS_INODE_NODATACOW;
290 		}
291 	} else {
292 		/*
293 		 * Revert back under same assumptions as above
294 		 */
295 		if (S_ISREG(inode->i_mode)) {
296 			if (inode->i_size == 0)
297 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
298 						  BTRFS_INODE_NODATASUM);
299 		} else {
300 			binode_flags &= ~BTRFS_INODE_NODATACOW;
301 		}
302 	}
303 
304 	/*
305 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
306 	 * flag may be changed automatically if compression code won't make
307 	 * things smaller.
308 	 */
309 	if (fsflags & FS_NOCOMP_FL) {
310 		binode_flags &= ~BTRFS_INODE_COMPRESS;
311 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
312 	} else if (fsflags & FS_COMPR_FL) {
313 
314 		if (IS_SWAPFILE(inode))
315 			return -ETXTBSY;
316 
317 		binode_flags |= BTRFS_INODE_COMPRESS;
318 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
319 
320 		comp = btrfs_compress_type2str(fs_info->compress_type);
321 		if (!comp || comp[0] == 0)
322 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
323 	} else {
324 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
325 	}
326 
327 	/*
328 	 * 1 for inode item
329 	 * 2 for properties
330 	 */
331 	trans = btrfs_start_transaction(root, 3);
332 	if (IS_ERR(trans))
333 		return PTR_ERR(trans);
334 
335 	if (comp) {
336 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
337 				     strlen(comp), 0);
338 		if (ret) {
339 			btrfs_abort_transaction(trans, ret);
340 			goto out_end_trans;
341 		}
342 	} else {
343 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
344 				     0, 0);
345 		if (ret && ret != -ENODATA) {
346 			btrfs_abort_transaction(trans, ret);
347 			goto out_end_trans;
348 		}
349 	}
350 
351 update_flags:
352 	binode->flags = binode_flags;
353 	btrfs_sync_inode_flags_to_i_flags(inode);
354 	inode_inc_iversion(inode);
355 	inode->i_ctime = current_time(inode);
356 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
357 
358  out_end_trans:
359 	btrfs_end_transaction(trans);
360 	return ret;
361 }
362 
363 /*
364  * Start exclusive operation @type, return true on success
365  */
366 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
367 			enum btrfs_exclusive_operation type)
368 {
369 	bool ret = false;
370 
371 	spin_lock(&fs_info->super_lock);
372 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
373 		fs_info->exclusive_operation = type;
374 		ret = true;
375 	}
376 	spin_unlock(&fs_info->super_lock);
377 
378 	return ret;
379 }
380 
381 /*
382  * Conditionally allow to enter the exclusive operation in case it's compatible
383  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
384  * btrfs_exclop_finish.
385  *
386  * Compatibility:
387  * - the same type is already running
388  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
389  *   must check the condition first that would allow none -> @type
390  */
391 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
392 				 enum btrfs_exclusive_operation type)
393 {
394 	spin_lock(&fs_info->super_lock);
395 	if (fs_info->exclusive_operation == type)
396 		return true;
397 
398 	spin_unlock(&fs_info->super_lock);
399 	return false;
400 }
401 
402 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
403 {
404 	spin_unlock(&fs_info->super_lock);
405 }
406 
407 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
408 {
409 	spin_lock(&fs_info->super_lock);
410 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
411 	spin_unlock(&fs_info->super_lock);
412 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
413 }
414 
415 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
416 {
417 	struct inode *inode = file_inode(file);
418 
419 	return put_user(inode->i_generation, arg);
420 }
421 
422 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
423 					void __user *arg)
424 {
425 	struct btrfs_device *device;
426 	struct request_queue *q;
427 	struct fstrim_range range;
428 	u64 minlen = ULLONG_MAX;
429 	u64 num_devices = 0;
430 	int ret;
431 
432 	if (!capable(CAP_SYS_ADMIN))
433 		return -EPERM;
434 
435 	/*
436 	 * btrfs_trim_block_group() depends on space cache, which is not
437 	 * available in zoned filesystem. So, disallow fitrim on a zoned
438 	 * filesystem for now.
439 	 */
440 	if (btrfs_is_zoned(fs_info))
441 		return -EOPNOTSUPP;
442 
443 	/*
444 	 * If the fs is mounted with nologreplay, which requires it to be
445 	 * mounted in RO mode as well, we can not allow discard on free space
446 	 * inside block groups, because log trees refer to extents that are not
447 	 * pinned in a block group's free space cache (pinning the extents is
448 	 * precisely the first phase of replaying a log tree).
449 	 */
450 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
451 		return -EROFS;
452 
453 	rcu_read_lock();
454 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
455 				dev_list) {
456 		if (!device->bdev)
457 			continue;
458 		q = bdev_get_queue(device->bdev);
459 		if (blk_queue_discard(q)) {
460 			num_devices++;
461 			minlen = min_t(u64, q->limits.discard_granularity,
462 				     minlen);
463 		}
464 	}
465 	rcu_read_unlock();
466 
467 	if (!num_devices)
468 		return -EOPNOTSUPP;
469 	if (copy_from_user(&range, arg, sizeof(range)))
470 		return -EFAULT;
471 
472 	/*
473 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
474 	 * block group is in the logical address space, which can be any
475 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
476 	 */
477 	if (range.len < fs_info->sb->s_blocksize)
478 		return -EINVAL;
479 
480 	range.minlen = max(range.minlen, minlen);
481 	ret = btrfs_trim_fs(fs_info, &range);
482 	if (ret < 0)
483 		return ret;
484 
485 	if (copy_to_user(arg, &range, sizeof(range)))
486 		return -EFAULT;
487 
488 	return 0;
489 }
490 
491 int __pure btrfs_is_empty_uuid(u8 *uuid)
492 {
493 	int i;
494 
495 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
496 		if (uuid[i])
497 			return 0;
498 	}
499 	return 1;
500 }
501 
502 static noinline int create_subvol(struct user_namespace *mnt_userns,
503 				  struct inode *dir, struct dentry *dentry,
504 				  const char *name, int namelen,
505 				  struct btrfs_qgroup_inherit *inherit)
506 {
507 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
508 	struct btrfs_trans_handle *trans;
509 	struct btrfs_key key;
510 	struct btrfs_root_item *root_item;
511 	struct btrfs_inode_item *inode_item;
512 	struct extent_buffer *leaf;
513 	struct btrfs_root *root = BTRFS_I(dir)->root;
514 	struct btrfs_root *new_root;
515 	struct btrfs_block_rsv block_rsv;
516 	struct timespec64 cur_time = current_time(dir);
517 	struct inode *inode;
518 	int ret;
519 	int err;
520 	dev_t anon_dev = 0;
521 	u64 objectid;
522 	u64 index = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		goto fail_free;
531 
532 	ret = get_anon_bdev(&anon_dev);
533 	if (ret < 0)
534 		goto fail_free;
535 
536 	/*
537 	 * Don't create subvolume whose level is not zero. Or qgroup will be
538 	 * screwed up since it assumes subvolume qgroup's level to be 0.
539 	 */
540 	if (btrfs_qgroup_level(objectid)) {
541 		ret = -ENOSPC;
542 		goto fail_free;
543 	}
544 
545 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
546 	/*
547 	 * The same as the snapshot creation, please see the comment
548 	 * of create_snapshot().
549 	 */
550 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
551 	if (ret)
552 		goto fail_free;
553 
554 	trans = btrfs_start_transaction(root, 0);
555 	if (IS_ERR(trans)) {
556 		ret = PTR_ERR(trans);
557 		btrfs_subvolume_release_metadata(root, &block_rsv);
558 		goto fail_free;
559 	}
560 	trans->block_rsv = &block_rsv;
561 	trans->bytes_reserved = block_rsv.size;
562 
563 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
564 	if (ret)
565 		goto fail;
566 
567 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
568 				      BTRFS_NESTING_NORMAL);
569 	if (IS_ERR(leaf)) {
570 		ret = PTR_ERR(leaf);
571 		goto fail;
572 	}
573 
574 	btrfs_mark_buffer_dirty(leaf);
575 
576 	inode_item = &root_item->inode;
577 	btrfs_set_stack_inode_generation(inode_item, 1);
578 	btrfs_set_stack_inode_size(inode_item, 3);
579 	btrfs_set_stack_inode_nlink(inode_item, 1);
580 	btrfs_set_stack_inode_nbytes(inode_item,
581 				     fs_info->nodesize);
582 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
583 
584 	btrfs_set_root_flags(root_item, 0);
585 	btrfs_set_root_limit(root_item, 0);
586 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
587 
588 	btrfs_set_root_bytenr(root_item, leaf->start);
589 	btrfs_set_root_generation(root_item, trans->transid);
590 	btrfs_set_root_level(root_item, 0);
591 	btrfs_set_root_refs(root_item, 1);
592 	btrfs_set_root_used(root_item, leaf->len);
593 	btrfs_set_root_last_snapshot(root_item, 0);
594 
595 	btrfs_set_root_generation_v2(root_item,
596 			btrfs_root_generation(root_item));
597 	generate_random_guid(root_item->uuid);
598 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
599 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
600 	root_item->ctime = root_item->otime;
601 	btrfs_set_root_ctransid(root_item, trans->transid);
602 	btrfs_set_root_otransid(root_item, trans->transid);
603 
604 	btrfs_tree_unlock(leaf);
605 
606 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
607 
608 	key.objectid = objectid;
609 	key.offset = 0;
610 	key.type = BTRFS_ROOT_ITEM_KEY;
611 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
612 				root_item);
613 	if (ret) {
614 		/*
615 		 * Since we don't abort the transaction in this case, free the
616 		 * tree block so that we don't leak space and leave the
617 		 * filesystem in an inconsistent state (an extent item in the
618 		 * extent tree without backreferences). Also no need to have
619 		 * the tree block locked since it is not in any tree at this
620 		 * point, so no other task can find it and use it.
621 		 */
622 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
623 		free_extent_buffer(leaf);
624 		goto fail;
625 	}
626 
627 	free_extent_buffer(leaf);
628 	leaf = NULL;
629 
630 	key.offset = (u64)-1;
631 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
632 	if (IS_ERR(new_root)) {
633 		free_anon_bdev(anon_dev);
634 		ret = PTR_ERR(new_root);
635 		btrfs_abort_transaction(trans, ret);
636 		goto fail;
637 	}
638 	/* Freeing will be done in btrfs_put_root() of new_root */
639 	anon_dev = 0;
640 
641 	ret = btrfs_record_root_in_trans(trans, new_root);
642 	if (ret) {
643 		btrfs_put_root(new_root);
644 		btrfs_abort_transaction(trans, ret);
645 		goto fail;
646 	}
647 
648 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
649 	btrfs_put_root(new_root);
650 	if (ret) {
651 		/* We potentially lose an unused inode item here */
652 		btrfs_abort_transaction(trans, ret);
653 		goto fail;
654 	}
655 
656 	/*
657 	 * insert the directory item
658 	 */
659 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
660 	if (ret) {
661 		btrfs_abort_transaction(trans, ret);
662 		goto fail;
663 	}
664 
665 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
666 				    BTRFS_FT_DIR, index);
667 	if (ret) {
668 		btrfs_abort_transaction(trans, ret);
669 		goto fail;
670 	}
671 
672 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
673 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
674 	if (ret) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto fail;
677 	}
678 
679 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
680 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
681 	if (ret) {
682 		btrfs_abort_transaction(trans, ret);
683 		goto fail;
684 	}
685 
686 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
687 				  BTRFS_UUID_KEY_SUBVOL, objectid);
688 	if (ret)
689 		btrfs_abort_transaction(trans, ret);
690 
691 fail:
692 	kfree(root_item);
693 	trans->block_rsv = NULL;
694 	trans->bytes_reserved = 0;
695 	btrfs_subvolume_release_metadata(root, &block_rsv);
696 
697 	err = btrfs_commit_transaction(trans);
698 	if (err && !ret)
699 		ret = err;
700 
701 	if (!ret) {
702 		inode = btrfs_lookup_dentry(dir, dentry);
703 		if (IS_ERR(inode))
704 			return PTR_ERR(inode);
705 		d_instantiate(dentry, inode);
706 	}
707 	return ret;
708 
709 fail_free:
710 	if (anon_dev)
711 		free_anon_bdev(anon_dev);
712 	kfree(root_item);
713 	return ret;
714 }
715 
716 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
717 			   struct dentry *dentry, bool readonly,
718 			   struct btrfs_qgroup_inherit *inherit)
719 {
720 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
721 	struct inode *inode;
722 	struct btrfs_pending_snapshot *pending_snapshot;
723 	struct btrfs_trans_handle *trans;
724 	int ret;
725 
726 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
727 		return -EINVAL;
728 
729 	if (atomic_read(&root->nr_swapfiles)) {
730 		btrfs_warn(fs_info,
731 			   "cannot snapshot subvolume with active swapfile");
732 		return -ETXTBSY;
733 	}
734 
735 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
736 	if (!pending_snapshot)
737 		return -ENOMEM;
738 
739 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
740 	if (ret < 0)
741 		goto free_pending;
742 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
743 			GFP_KERNEL);
744 	pending_snapshot->path = btrfs_alloc_path();
745 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
746 		ret = -ENOMEM;
747 		goto free_pending;
748 	}
749 
750 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
751 			     BTRFS_BLOCK_RSV_TEMP);
752 	/*
753 	 * 1 - parent dir inode
754 	 * 2 - dir entries
755 	 * 1 - root item
756 	 * 2 - root ref/backref
757 	 * 1 - root of snapshot
758 	 * 1 - UUID item
759 	 */
760 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
761 					&pending_snapshot->block_rsv, 8,
762 					false);
763 	if (ret)
764 		goto free_pending;
765 
766 	pending_snapshot->dentry = dentry;
767 	pending_snapshot->root = root;
768 	pending_snapshot->readonly = readonly;
769 	pending_snapshot->dir = dir;
770 	pending_snapshot->inherit = inherit;
771 
772 	trans = btrfs_start_transaction(root, 0);
773 	if (IS_ERR(trans)) {
774 		ret = PTR_ERR(trans);
775 		goto fail;
776 	}
777 
778 	spin_lock(&fs_info->trans_lock);
779 	list_add(&pending_snapshot->list,
780 		 &trans->transaction->pending_snapshots);
781 	spin_unlock(&fs_info->trans_lock);
782 
783 	ret = btrfs_commit_transaction(trans);
784 	if (ret)
785 		goto fail;
786 
787 	ret = pending_snapshot->error;
788 	if (ret)
789 		goto fail;
790 
791 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
792 	if (ret)
793 		goto fail;
794 
795 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
796 	if (IS_ERR(inode)) {
797 		ret = PTR_ERR(inode);
798 		goto fail;
799 	}
800 
801 	d_instantiate(dentry, inode);
802 	ret = 0;
803 	pending_snapshot->anon_dev = 0;
804 fail:
805 	/* Prevent double freeing of anon_dev */
806 	if (ret && pending_snapshot->snap)
807 		pending_snapshot->snap->anon_dev = 0;
808 	btrfs_put_root(pending_snapshot->snap);
809 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
810 free_pending:
811 	if (pending_snapshot->anon_dev)
812 		free_anon_bdev(pending_snapshot->anon_dev);
813 	kfree(pending_snapshot->root_item);
814 	btrfs_free_path(pending_snapshot->path);
815 	kfree(pending_snapshot);
816 
817 	return ret;
818 }
819 
820 /*  copy of may_delete in fs/namei.c()
821  *	Check whether we can remove a link victim from directory dir, check
822  *  whether the type of victim is right.
823  *  1. We can't do it if dir is read-only (done in permission())
824  *  2. We should have write and exec permissions on dir
825  *  3. We can't remove anything from append-only dir
826  *  4. We can't do anything with immutable dir (done in permission())
827  *  5. If the sticky bit on dir is set we should either
828  *	a. be owner of dir, or
829  *	b. be owner of victim, or
830  *	c. have CAP_FOWNER capability
831  *  6. If the victim is append-only or immutable we can't do anything with
832  *     links pointing to it.
833  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
834  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
835  *  9. We can't remove a root or mountpoint.
836  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
837  *     nfs_async_unlink().
838  */
839 
840 static int btrfs_may_delete(struct user_namespace *mnt_userns,
841 			    struct inode *dir, struct dentry *victim, int isdir)
842 {
843 	int error;
844 
845 	if (d_really_is_negative(victim))
846 		return -ENOENT;
847 
848 	BUG_ON(d_inode(victim->d_parent) != dir);
849 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
850 
851 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
852 	if (error)
853 		return error;
854 	if (IS_APPEND(dir))
855 		return -EPERM;
856 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
857 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
858 	    IS_SWAPFILE(d_inode(victim)))
859 		return -EPERM;
860 	if (isdir) {
861 		if (!d_is_dir(victim))
862 			return -ENOTDIR;
863 		if (IS_ROOT(victim))
864 			return -EBUSY;
865 	} else if (d_is_dir(victim))
866 		return -EISDIR;
867 	if (IS_DEADDIR(dir))
868 		return -ENOENT;
869 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
870 		return -EBUSY;
871 	return 0;
872 }
873 
874 /* copy of may_create in fs/namei.c() */
875 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
876 				   struct inode *dir, struct dentry *child)
877 {
878 	if (d_really_is_positive(child))
879 		return -EEXIST;
880 	if (IS_DEADDIR(dir))
881 		return -ENOENT;
882 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
883 		return -EOVERFLOW;
884 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
885 }
886 
887 /*
888  * Create a new subvolume below @parent.  This is largely modeled after
889  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
890  * inside this filesystem so it's quite a bit simpler.
891  */
892 static noinline int btrfs_mksubvol(const struct path *parent,
893 				   struct user_namespace *mnt_userns,
894 				   const char *name, int namelen,
895 				   struct btrfs_root *snap_src,
896 				   bool readonly,
897 				   struct btrfs_qgroup_inherit *inherit)
898 {
899 	struct inode *dir = d_inode(parent->dentry);
900 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
901 	struct dentry *dentry;
902 	int error;
903 
904 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
905 	if (error == -EINTR)
906 		return error;
907 
908 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
909 	error = PTR_ERR(dentry);
910 	if (IS_ERR(dentry))
911 		goto out_unlock;
912 
913 	error = btrfs_may_create(mnt_userns, dir, dentry);
914 	if (error)
915 		goto out_dput;
916 
917 	/*
918 	 * even if this name doesn't exist, we may get hash collisions.
919 	 * check for them now when we can safely fail
920 	 */
921 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
922 					       dir->i_ino, name,
923 					       namelen);
924 	if (error)
925 		goto out_dput;
926 
927 	down_read(&fs_info->subvol_sem);
928 
929 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
930 		goto out_up_read;
931 
932 	if (snap_src)
933 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
934 	else
935 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
936 
937 	if (!error)
938 		fsnotify_mkdir(dir, dentry);
939 out_up_read:
940 	up_read(&fs_info->subvol_sem);
941 out_dput:
942 	dput(dentry);
943 out_unlock:
944 	btrfs_inode_unlock(dir, 0);
945 	return error;
946 }
947 
948 static noinline int btrfs_mksnapshot(const struct path *parent,
949 				   struct user_namespace *mnt_userns,
950 				   const char *name, int namelen,
951 				   struct btrfs_root *root,
952 				   bool readonly,
953 				   struct btrfs_qgroup_inherit *inherit)
954 {
955 	int ret;
956 	bool snapshot_force_cow = false;
957 
958 	/*
959 	 * Force new buffered writes to reserve space even when NOCOW is
960 	 * possible. This is to avoid later writeback (running dealloc) to
961 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
962 	 */
963 	btrfs_drew_read_lock(&root->snapshot_lock);
964 
965 	ret = btrfs_start_delalloc_snapshot(root, false);
966 	if (ret)
967 		goto out;
968 
969 	/*
970 	 * All previous writes have started writeback in NOCOW mode, so now
971 	 * we force future writes to fallback to COW mode during snapshot
972 	 * creation.
973 	 */
974 	atomic_inc(&root->snapshot_force_cow);
975 	snapshot_force_cow = true;
976 
977 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
978 
979 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
980 			     root, readonly, inherit);
981 out:
982 	if (snapshot_force_cow)
983 		atomic_dec(&root->snapshot_force_cow);
984 	btrfs_drew_read_unlock(&root->snapshot_lock);
985 	return ret;
986 }
987 
988 /*
989  * When we're defragging a range, we don't want to kick it off again
990  * if it is really just waiting for delalloc to send it down.
991  * If we find a nice big extent or delalloc range for the bytes in the
992  * file you want to defrag, we return 0 to let you know to skip this
993  * part of the file
994  */
995 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
996 {
997 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
998 	struct extent_map *em = NULL;
999 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1000 	u64 end;
1001 
1002 	read_lock(&em_tree->lock);
1003 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1004 	read_unlock(&em_tree->lock);
1005 
1006 	if (em) {
1007 		end = extent_map_end(em);
1008 		free_extent_map(em);
1009 		if (end - offset > thresh)
1010 			return 0;
1011 	}
1012 	/* if we already have a nice delalloc here, just stop */
1013 	thresh /= 2;
1014 	end = count_range_bits(io_tree, &offset, offset + thresh,
1015 			       thresh, EXTENT_DELALLOC, 1);
1016 	if (end >= thresh)
1017 		return 0;
1018 	return 1;
1019 }
1020 
1021 /*
1022  * helper function to walk through a file and find extents
1023  * newer than a specific transid, and smaller than thresh.
1024  *
1025  * This is used by the defragging code to find new and small
1026  * extents
1027  */
1028 static int find_new_extents(struct btrfs_root *root,
1029 			    struct inode *inode, u64 newer_than,
1030 			    u64 *off, u32 thresh)
1031 {
1032 	struct btrfs_path *path;
1033 	struct btrfs_key min_key;
1034 	struct extent_buffer *leaf;
1035 	struct btrfs_file_extent_item *extent;
1036 	int type;
1037 	int ret;
1038 	u64 ino = btrfs_ino(BTRFS_I(inode));
1039 
1040 	path = btrfs_alloc_path();
1041 	if (!path)
1042 		return -ENOMEM;
1043 
1044 	min_key.objectid = ino;
1045 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1046 	min_key.offset = *off;
1047 
1048 	while (1) {
1049 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1050 		if (ret != 0)
1051 			goto none;
1052 process_slot:
1053 		if (min_key.objectid != ino)
1054 			goto none;
1055 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1056 			goto none;
1057 
1058 		leaf = path->nodes[0];
1059 		extent = btrfs_item_ptr(leaf, path->slots[0],
1060 					struct btrfs_file_extent_item);
1061 
1062 		type = btrfs_file_extent_type(leaf, extent);
1063 		if (type == BTRFS_FILE_EXTENT_REG &&
1064 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1065 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1066 			*off = min_key.offset;
1067 			btrfs_free_path(path);
1068 			return 0;
1069 		}
1070 
1071 		path->slots[0]++;
1072 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1073 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1074 			goto process_slot;
1075 		}
1076 
1077 		if (min_key.offset == (u64)-1)
1078 			goto none;
1079 
1080 		min_key.offset++;
1081 		btrfs_release_path(path);
1082 	}
1083 none:
1084 	btrfs_free_path(path);
1085 	return -ENOENT;
1086 }
1087 
1088 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1089 {
1090 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1091 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1092 	struct extent_map *em;
1093 	u64 len = PAGE_SIZE;
1094 
1095 	/*
1096 	 * hopefully we have this extent in the tree already, try without
1097 	 * the full extent lock
1098 	 */
1099 	read_lock(&em_tree->lock);
1100 	em = lookup_extent_mapping(em_tree, start, len);
1101 	read_unlock(&em_tree->lock);
1102 
1103 	if (!em) {
1104 		struct extent_state *cached = NULL;
1105 		u64 end = start + len - 1;
1106 
1107 		/* get the big lock and read metadata off disk */
1108 		lock_extent_bits(io_tree, start, end, &cached);
1109 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1110 		unlock_extent_cached(io_tree, start, end, &cached);
1111 
1112 		if (IS_ERR(em))
1113 			return NULL;
1114 	}
1115 
1116 	return em;
1117 }
1118 
1119 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1120 {
1121 	struct extent_map *next;
1122 	bool ret = true;
1123 
1124 	/* this is the last extent */
1125 	if (em->start + em->len >= i_size_read(inode))
1126 		return false;
1127 
1128 	next = defrag_lookup_extent(inode, em->start + em->len);
1129 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1130 		ret = false;
1131 	else if ((em->block_start + em->block_len == next->block_start) &&
1132 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1133 		ret = false;
1134 
1135 	free_extent_map(next);
1136 	return ret;
1137 }
1138 
1139 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1140 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1141 			       int compress)
1142 {
1143 	struct extent_map *em;
1144 	int ret = 1;
1145 	bool next_mergeable = true;
1146 	bool prev_mergeable = true;
1147 
1148 	/*
1149 	 * make sure that once we start defragging an extent, we keep on
1150 	 * defragging it
1151 	 */
1152 	if (start < *defrag_end)
1153 		return 1;
1154 
1155 	*skip = 0;
1156 
1157 	em = defrag_lookup_extent(inode, start);
1158 	if (!em)
1159 		return 0;
1160 
1161 	/* this will cover holes, and inline extents */
1162 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1163 		ret = 0;
1164 		goto out;
1165 	}
1166 
1167 	if (!*defrag_end)
1168 		prev_mergeable = false;
1169 
1170 	next_mergeable = defrag_check_next_extent(inode, em);
1171 	/*
1172 	 * we hit a real extent, if it is big or the next extent is not a
1173 	 * real extent, don't bother defragging it
1174 	 */
1175 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1176 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1177 		ret = 0;
1178 out:
1179 	/*
1180 	 * last_len ends up being a counter of how many bytes we've defragged.
1181 	 * every time we choose not to defrag an extent, we reset *last_len
1182 	 * so that the next tiny extent will force a defrag.
1183 	 *
1184 	 * The end result of this is that tiny extents before a single big
1185 	 * extent will force at least part of that big extent to be defragged.
1186 	 */
1187 	if (ret) {
1188 		*defrag_end = extent_map_end(em);
1189 	} else {
1190 		*last_len = 0;
1191 		*skip = extent_map_end(em);
1192 		*defrag_end = 0;
1193 	}
1194 
1195 	free_extent_map(em);
1196 	return ret;
1197 }
1198 
1199 /*
1200  * it doesn't do much good to defrag one or two pages
1201  * at a time.  This pulls in a nice chunk of pages
1202  * to COW and defrag.
1203  *
1204  * It also makes sure the delalloc code has enough
1205  * dirty data to avoid making new small extents as part
1206  * of the defrag
1207  *
1208  * It's a good idea to start RA on this range
1209  * before calling this.
1210  */
1211 static int cluster_pages_for_defrag(struct inode *inode,
1212 				    struct page **pages,
1213 				    unsigned long start_index,
1214 				    unsigned long num_pages)
1215 {
1216 	unsigned long file_end;
1217 	u64 isize = i_size_read(inode);
1218 	u64 page_start;
1219 	u64 page_end;
1220 	u64 page_cnt;
1221 	u64 start = (u64)start_index << PAGE_SHIFT;
1222 	u64 search_start;
1223 	int ret;
1224 	int i;
1225 	int i_done;
1226 	struct btrfs_ordered_extent *ordered;
1227 	struct extent_state *cached_state = NULL;
1228 	struct extent_io_tree *tree;
1229 	struct extent_changeset *data_reserved = NULL;
1230 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1231 
1232 	file_end = (isize - 1) >> PAGE_SHIFT;
1233 	if (!isize || start_index > file_end)
1234 		return 0;
1235 
1236 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1237 
1238 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1239 			start, page_cnt << PAGE_SHIFT);
1240 	if (ret)
1241 		return ret;
1242 	i_done = 0;
1243 	tree = &BTRFS_I(inode)->io_tree;
1244 
1245 	/* step one, lock all the pages */
1246 	for (i = 0; i < page_cnt; i++) {
1247 		struct page *page;
1248 again:
1249 		page = find_or_create_page(inode->i_mapping,
1250 					   start_index + i, mask);
1251 		if (!page)
1252 			break;
1253 
1254 		ret = set_page_extent_mapped(page);
1255 		if (ret < 0) {
1256 			unlock_page(page);
1257 			put_page(page);
1258 			break;
1259 		}
1260 
1261 		page_start = page_offset(page);
1262 		page_end = page_start + PAGE_SIZE - 1;
1263 		while (1) {
1264 			lock_extent_bits(tree, page_start, page_end,
1265 					 &cached_state);
1266 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1267 							      page_start);
1268 			unlock_extent_cached(tree, page_start, page_end,
1269 					     &cached_state);
1270 			if (!ordered)
1271 				break;
1272 
1273 			unlock_page(page);
1274 			btrfs_start_ordered_extent(ordered, 1);
1275 			btrfs_put_ordered_extent(ordered);
1276 			lock_page(page);
1277 			/*
1278 			 * we unlocked the page above, so we need check if
1279 			 * it was released or not.
1280 			 */
1281 			if (page->mapping != inode->i_mapping) {
1282 				unlock_page(page);
1283 				put_page(page);
1284 				goto again;
1285 			}
1286 		}
1287 
1288 		if (!PageUptodate(page)) {
1289 			btrfs_readpage(NULL, page);
1290 			lock_page(page);
1291 			if (!PageUptodate(page)) {
1292 				unlock_page(page);
1293 				put_page(page);
1294 				ret = -EIO;
1295 				break;
1296 			}
1297 		}
1298 
1299 		if (page->mapping != inode->i_mapping) {
1300 			unlock_page(page);
1301 			put_page(page);
1302 			goto again;
1303 		}
1304 
1305 		pages[i] = page;
1306 		i_done++;
1307 	}
1308 	if (!i_done || ret)
1309 		goto out;
1310 
1311 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1312 		goto out;
1313 
1314 	/*
1315 	 * so now we have a nice long stream of locked
1316 	 * and up to date pages, lets wait on them
1317 	 */
1318 	for (i = 0; i < i_done; i++)
1319 		wait_on_page_writeback(pages[i]);
1320 
1321 	page_start = page_offset(pages[0]);
1322 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1323 
1324 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1325 			 page_start, page_end - 1, &cached_state);
1326 
1327 	/*
1328 	 * When defragmenting we skip ranges that have holes or inline extents,
1329 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1330 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1331 	 * before locking the inode and then, if it should, we trigger a sync
1332 	 * page cache readahead - we lock the inode only after that to avoid
1333 	 * blocking for too long other tasks that possibly want to operate on
1334 	 * other file ranges. But before we were able to get the inode lock,
1335 	 * some other task may have punched a hole in the range, or we may have
1336 	 * now an inline extent, in which case we should not defrag. So check
1337 	 * for that here, where we have the inode and the range locked, and bail
1338 	 * out if that happened.
1339 	 */
1340 	search_start = page_start;
1341 	while (search_start < page_end) {
1342 		struct extent_map *em;
1343 
1344 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1345 				      page_end - search_start);
1346 		if (IS_ERR(em)) {
1347 			ret = PTR_ERR(em);
1348 			goto out_unlock_range;
1349 		}
1350 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1351 			free_extent_map(em);
1352 			/* Ok, 0 means we did not defrag anything */
1353 			ret = 0;
1354 			goto out_unlock_range;
1355 		}
1356 		search_start = extent_map_end(em);
1357 		free_extent_map(em);
1358 	}
1359 
1360 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1361 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1362 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1363 
1364 	if (i_done != page_cnt) {
1365 		spin_lock(&BTRFS_I(inode)->lock);
1366 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1367 		spin_unlock(&BTRFS_I(inode)->lock);
1368 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1369 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1370 	}
1371 
1372 
1373 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1374 			  &cached_state);
1375 
1376 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1377 			     page_start, page_end - 1, &cached_state);
1378 
1379 	for (i = 0; i < i_done; i++) {
1380 		clear_page_dirty_for_io(pages[i]);
1381 		ClearPageChecked(pages[i]);
1382 		set_page_dirty(pages[i]);
1383 		unlock_page(pages[i]);
1384 		put_page(pages[i]);
1385 	}
1386 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1387 	extent_changeset_free(data_reserved);
1388 	return i_done;
1389 
1390 out_unlock_range:
1391 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1392 			     page_start, page_end - 1, &cached_state);
1393 out:
1394 	for (i = 0; i < i_done; i++) {
1395 		unlock_page(pages[i]);
1396 		put_page(pages[i]);
1397 	}
1398 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1399 			start, page_cnt << PAGE_SHIFT, true);
1400 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1401 	extent_changeset_free(data_reserved);
1402 	return ret;
1403 
1404 }
1405 
1406 int btrfs_defrag_file(struct inode *inode, struct file *file,
1407 		      struct btrfs_ioctl_defrag_range_args *range,
1408 		      u64 newer_than, unsigned long max_to_defrag)
1409 {
1410 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1411 	struct btrfs_root *root = BTRFS_I(inode)->root;
1412 	struct file_ra_state *ra = NULL;
1413 	unsigned long last_index;
1414 	u64 isize = i_size_read(inode);
1415 	u64 last_len = 0;
1416 	u64 skip = 0;
1417 	u64 defrag_end = 0;
1418 	u64 newer_off = range->start;
1419 	unsigned long i;
1420 	unsigned long ra_index = 0;
1421 	int ret;
1422 	int defrag_count = 0;
1423 	int compress_type = BTRFS_COMPRESS_ZLIB;
1424 	u32 extent_thresh = range->extent_thresh;
1425 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1426 	unsigned long cluster = max_cluster;
1427 	u64 new_align = ~((u64)SZ_128K - 1);
1428 	struct page **pages = NULL;
1429 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1430 
1431 	if (isize == 0)
1432 		return 0;
1433 
1434 	if (range->start >= isize)
1435 		return -EINVAL;
1436 
1437 	if (do_compress) {
1438 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1439 			return -EINVAL;
1440 		if (range->compress_type)
1441 			compress_type = range->compress_type;
1442 	}
1443 
1444 	if (extent_thresh == 0)
1445 		extent_thresh = SZ_256K;
1446 
1447 	/*
1448 	 * If we were not given a file, allocate a readahead context. As
1449 	 * readahead is just an optimization, defrag will work without it so
1450 	 * we don't error out.
1451 	 */
1452 	if (!file) {
1453 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1454 		if (ra)
1455 			file_ra_state_init(ra, inode->i_mapping);
1456 	} else {
1457 		ra = &file->f_ra;
1458 	}
1459 
1460 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1461 	if (!pages) {
1462 		ret = -ENOMEM;
1463 		goto out_ra;
1464 	}
1465 
1466 	/* find the last page to defrag */
1467 	if (range->start + range->len > range->start) {
1468 		last_index = min_t(u64, isize - 1,
1469 			 range->start + range->len - 1) >> PAGE_SHIFT;
1470 	} else {
1471 		last_index = (isize - 1) >> PAGE_SHIFT;
1472 	}
1473 
1474 	if (newer_than) {
1475 		ret = find_new_extents(root, inode, newer_than,
1476 				       &newer_off, SZ_64K);
1477 		if (!ret) {
1478 			range->start = newer_off;
1479 			/*
1480 			 * we always align our defrag to help keep
1481 			 * the extents in the file evenly spaced
1482 			 */
1483 			i = (newer_off & new_align) >> PAGE_SHIFT;
1484 		} else
1485 			goto out_ra;
1486 	} else {
1487 		i = range->start >> PAGE_SHIFT;
1488 	}
1489 	if (!max_to_defrag)
1490 		max_to_defrag = last_index - i + 1;
1491 
1492 	/*
1493 	 * make writeback starts from i, so the defrag range can be
1494 	 * written sequentially.
1495 	 */
1496 	if (i < inode->i_mapping->writeback_index)
1497 		inode->i_mapping->writeback_index = i;
1498 
1499 	while (i <= last_index && defrag_count < max_to_defrag &&
1500 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1501 		/*
1502 		 * make sure we stop running if someone unmounts
1503 		 * the FS
1504 		 */
1505 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1506 			break;
1507 
1508 		if (btrfs_defrag_cancelled(fs_info)) {
1509 			btrfs_debug(fs_info, "defrag_file cancelled");
1510 			ret = -EAGAIN;
1511 			goto error;
1512 		}
1513 
1514 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1515 					 extent_thresh, &last_len, &skip,
1516 					 &defrag_end, do_compress)){
1517 			unsigned long next;
1518 			/*
1519 			 * the should_defrag function tells us how much to skip
1520 			 * bump our counter by the suggested amount
1521 			 */
1522 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1523 			i = max(i + 1, next);
1524 			continue;
1525 		}
1526 
1527 		if (!newer_than) {
1528 			cluster = (PAGE_ALIGN(defrag_end) >>
1529 				   PAGE_SHIFT) - i;
1530 			cluster = min(cluster, max_cluster);
1531 		} else {
1532 			cluster = max_cluster;
1533 		}
1534 
1535 		if (i + cluster > ra_index) {
1536 			ra_index = max(i, ra_index);
1537 			if (ra)
1538 				page_cache_sync_readahead(inode->i_mapping, ra,
1539 						file, ra_index, cluster);
1540 			ra_index += cluster;
1541 		}
1542 
1543 		btrfs_inode_lock(inode, 0);
1544 		if (IS_SWAPFILE(inode)) {
1545 			ret = -ETXTBSY;
1546 		} else {
1547 			if (do_compress)
1548 				BTRFS_I(inode)->defrag_compress = compress_type;
1549 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1550 		}
1551 		if (ret < 0) {
1552 			btrfs_inode_unlock(inode, 0);
1553 			goto out_ra;
1554 		}
1555 
1556 		defrag_count += ret;
1557 		balance_dirty_pages_ratelimited(inode->i_mapping);
1558 		btrfs_inode_unlock(inode, 0);
1559 
1560 		if (newer_than) {
1561 			if (newer_off == (u64)-1)
1562 				break;
1563 
1564 			if (ret > 0)
1565 				i += ret;
1566 
1567 			newer_off = max(newer_off + 1,
1568 					(u64)i << PAGE_SHIFT);
1569 
1570 			ret = find_new_extents(root, inode, newer_than,
1571 					       &newer_off, SZ_64K);
1572 			if (!ret) {
1573 				range->start = newer_off;
1574 				i = (newer_off & new_align) >> PAGE_SHIFT;
1575 			} else {
1576 				break;
1577 			}
1578 		} else {
1579 			if (ret > 0) {
1580 				i += ret;
1581 				last_len += ret << PAGE_SHIFT;
1582 			} else {
1583 				i++;
1584 				last_len = 0;
1585 			}
1586 		}
1587 	}
1588 
1589 	ret = defrag_count;
1590 error:
1591 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1592 		filemap_flush(inode->i_mapping);
1593 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1594 			     &BTRFS_I(inode)->runtime_flags))
1595 			filemap_flush(inode->i_mapping);
1596 	}
1597 
1598 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1599 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1600 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1601 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1602 	}
1603 
1604 out_ra:
1605 	if (do_compress) {
1606 		btrfs_inode_lock(inode, 0);
1607 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1608 		btrfs_inode_unlock(inode, 0);
1609 	}
1610 	if (!file)
1611 		kfree(ra);
1612 	kfree(pages);
1613 	return ret;
1614 }
1615 
1616 /*
1617  * Try to start exclusive operation @type or cancel it if it's running.
1618  *
1619  * Return:
1620  *   0        - normal mode, newly claimed op started
1621  *  >0        - normal mode, something else is running,
1622  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1623  * ECANCELED  - cancel mode, successful cancel
1624  * ENOTCONN   - cancel mode, operation not running anymore
1625  */
1626 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1627 			enum btrfs_exclusive_operation type, bool cancel)
1628 {
1629 	if (!cancel) {
1630 		/* Start normal op */
1631 		if (!btrfs_exclop_start(fs_info, type))
1632 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1633 		/* Exclusive operation is now claimed */
1634 		return 0;
1635 	}
1636 
1637 	/* Cancel running op */
1638 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1639 		/*
1640 		 * This blocks any exclop finish from setting it to NONE, so we
1641 		 * request cancellation. Either it runs and we will wait for it,
1642 		 * or it has finished and no waiting will happen.
1643 		 */
1644 		atomic_inc(&fs_info->reloc_cancel_req);
1645 		btrfs_exclop_start_unlock(fs_info);
1646 
1647 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1648 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1649 				    TASK_INTERRUPTIBLE);
1650 
1651 		return -ECANCELED;
1652 	}
1653 
1654 	/* Something else is running or none */
1655 	return -ENOTCONN;
1656 }
1657 
1658 static noinline int btrfs_ioctl_resize(struct file *file,
1659 					void __user *arg)
1660 {
1661 	struct inode *inode = file_inode(file);
1662 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1663 	u64 new_size;
1664 	u64 old_size;
1665 	u64 devid = 1;
1666 	struct btrfs_root *root = BTRFS_I(inode)->root;
1667 	struct btrfs_ioctl_vol_args *vol_args;
1668 	struct btrfs_trans_handle *trans;
1669 	struct btrfs_device *device = NULL;
1670 	char *sizestr;
1671 	char *retptr;
1672 	char *devstr = NULL;
1673 	int ret = 0;
1674 	int mod = 0;
1675 	bool cancel;
1676 
1677 	if (!capable(CAP_SYS_ADMIN))
1678 		return -EPERM;
1679 
1680 	ret = mnt_want_write_file(file);
1681 	if (ret)
1682 		return ret;
1683 
1684 	/*
1685 	 * Read the arguments before checking exclusivity to be able to
1686 	 * distinguish regular resize and cancel
1687 	 */
1688 	vol_args = memdup_user(arg, sizeof(*vol_args));
1689 	if (IS_ERR(vol_args)) {
1690 		ret = PTR_ERR(vol_args);
1691 		goto out_drop;
1692 	}
1693 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1694 	sizestr = vol_args->name;
1695 	cancel = (strcmp("cancel", sizestr) == 0);
1696 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1697 	if (ret)
1698 		goto out_free;
1699 	/* Exclusive operation is now claimed */
1700 
1701 	devstr = strchr(sizestr, ':');
1702 	if (devstr) {
1703 		sizestr = devstr + 1;
1704 		*devstr = '\0';
1705 		devstr = vol_args->name;
1706 		ret = kstrtoull(devstr, 10, &devid);
1707 		if (ret)
1708 			goto out_finish;
1709 		if (!devid) {
1710 			ret = -EINVAL;
1711 			goto out_finish;
1712 		}
1713 		btrfs_info(fs_info, "resizing devid %llu", devid);
1714 	}
1715 
1716 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1717 	if (!device) {
1718 		btrfs_info(fs_info, "resizer unable to find device %llu",
1719 			   devid);
1720 		ret = -ENODEV;
1721 		goto out_finish;
1722 	}
1723 
1724 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1725 		btrfs_info(fs_info,
1726 			   "resizer unable to apply on readonly device %llu",
1727 		       devid);
1728 		ret = -EPERM;
1729 		goto out_finish;
1730 	}
1731 
1732 	if (!strcmp(sizestr, "max"))
1733 		new_size = device->bdev->bd_inode->i_size;
1734 	else {
1735 		if (sizestr[0] == '-') {
1736 			mod = -1;
1737 			sizestr++;
1738 		} else if (sizestr[0] == '+') {
1739 			mod = 1;
1740 			sizestr++;
1741 		}
1742 		new_size = memparse(sizestr, &retptr);
1743 		if (*retptr != '\0' || new_size == 0) {
1744 			ret = -EINVAL;
1745 			goto out_finish;
1746 		}
1747 	}
1748 
1749 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1750 		ret = -EPERM;
1751 		goto out_finish;
1752 	}
1753 
1754 	old_size = btrfs_device_get_total_bytes(device);
1755 
1756 	if (mod < 0) {
1757 		if (new_size > old_size) {
1758 			ret = -EINVAL;
1759 			goto out_finish;
1760 		}
1761 		new_size = old_size - new_size;
1762 	} else if (mod > 0) {
1763 		if (new_size > ULLONG_MAX - old_size) {
1764 			ret = -ERANGE;
1765 			goto out_finish;
1766 		}
1767 		new_size = old_size + new_size;
1768 	}
1769 
1770 	if (new_size < SZ_256M) {
1771 		ret = -EINVAL;
1772 		goto out_finish;
1773 	}
1774 	if (new_size > device->bdev->bd_inode->i_size) {
1775 		ret = -EFBIG;
1776 		goto out_finish;
1777 	}
1778 
1779 	new_size = round_down(new_size, fs_info->sectorsize);
1780 
1781 	if (new_size > old_size) {
1782 		trans = btrfs_start_transaction(root, 0);
1783 		if (IS_ERR(trans)) {
1784 			ret = PTR_ERR(trans);
1785 			goto out_finish;
1786 		}
1787 		ret = btrfs_grow_device(trans, device, new_size);
1788 		btrfs_commit_transaction(trans);
1789 	} else if (new_size < old_size) {
1790 		ret = btrfs_shrink_device(device, new_size);
1791 	} /* equal, nothing need to do */
1792 
1793 	if (ret == 0 && new_size != old_size)
1794 		btrfs_info_in_rcu(fs_info,
1795 			"resize device %s (devid %llu) from %llu to %llu",
1796 			rcu_str_deref(device->name), device->devid,
1797 			old_size, new_size);
1798 out_finish:
1799 	btrfs_exclop_finish(fs_info);
1800 out_free:
1801 	kfree(vol_args);
1802 out_drop:
1803 	mnt_drop_write_file(file);
1804 	return ret;
1805 }
1806 
1807 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1808 				struct user_namespace *mnt_userns,
1809 				const char *name, unsigned long fd, int subvol,
1810 				bool readonly,
1811 				struct btrfs_qgroup_inherit *inherit)
1812 {
1813 	int namelen;
1814 	int ret = 0;
1815 
1816 	if (!S_ISDIR(file_inode(file)->i_mode))
1817 		return -ENOTDIR;
1818 
1819 	ret = mnt_want_write_file(file);
1820 	if (ret)
1821 		goto out;
1822 
1823 	namelen = strlen(name);
1824 	if (strchr(name, '/')) {
1825 		ret = -EINVAL;
1826 		goto out_drop_write;
1827 	}
1828 
1829 	if (name[0] == '.' &&
1830 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1831 		ret = -EEXIST;
1832 		goto out_drop_write;
1833 	}
1834 
1835 	if (subvol) {
1836 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1837 				     namelen, NULL, readonly, inherit);
1838 	} else {
1839 		struct fd src = fdget(fd);
1840 		struct inode *src_inode;
1841 		if (!src.file) {
1842 			ret = -EINVAL;
1843 			goto out_drop_write;
1844 		}
1845 
1846 		src_inode = file_inode(src.file);
1847 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1848 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1849 				   "Snapshot src from another FS");
1850 			ret = -EXDEV;
1851 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1852 			/*
1853 			 * Subvolume creation is not restricted, but snapshots
1854 			 * are limited to own subvolumes only
1855 			 */
1856 			ret = -EPERM;
1857 		} else {
1858 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1859 					       name, namelen,
1860 					       BTRFS_I(src_inode)->root,
1861 					       readonly, inherit);
1862 		}
1863 		fdput(src);
1864 	}
1865 out_drop_write:
1866 	mnt_drop_write_file(file);
1867 out:
1868 	return ret;
1869 }
1870 
1871 static noinline int btrfs_ioctl_snap_create(struct file *file,
1872 					    void __user *arg, int subvol)
1873 {
1874 	struct btrfs_ioctl_vol_args *vol_args;
1875 	int ret;
1876 
1877 	if (!S_ISDIR(file_inode(file)->i_mode))
1878 		return -ENOTDIR;
1879 
1880 	vol_args = memdup_user(arg, sizeof(*vol_args));
1881 	if (IS_ERR(vol_args))
1882 		return PTR_ERR(vol_args);
1883 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1884 
1885 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1886 					vol_args->name, vol_args->fd, subvol,
1887 					false, NULL);
1888 
1889 	kfree(vol_args);
1890 	return ret;
1891 }
1892 
1893 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1894 					       void __user *arg, int subvol)
1895 {
1896 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1897 	int ret;
1898 	bool readonly = false;
1899 	struct btrfs_qgroup_inherit *inherit = NULL;
1900 
1901 	if (!S_ISDIR(file_inode(file)->i_mode))
1902 		return -ENOTDIR;
1903 
1904 	vol_args = memdup_user(arg, sizeof(*vol_args));
1905 	if (IS_ERR(vol_args))
1906 		return PTR_ERR(vol_args);
1907 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1908 
1909 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1910 		ret = -EOPNOTSUPP;
1911 		goto free_args;
1912 	}
1913 
1914 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1915 		readonly = true;
1916 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1917 		u64 nums;
1918 
1919 		if (vol_args->size < sizeof(*inherit) ||
1920 		    vol_args->size > PAGE_SIZE) {
1921 			ret = -EINVAL;
1922 			goto free_args;
1923 		}
1924 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1925 		if (IS_ERR(inherit)) {
1926 			ret = PTR_ERR(inherit);
1927 			goto free_args;
1928 		}
1929 
1930 		if (inherit->num_qgroups > PAGE_SIZE ||
1931 		    inherit->num_ref_copies > PAGE_SIZE ||
1932 		    inherit->num_excl_copies > PAGE_SIZE) {
1933 			ret = -EINVAL;
1934 			goto free_inherit;
1935 		}
1936 
1937 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1938 		       2 * inherit->num_excl_copies;
1939 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1940 			ret = -EINVAL;
1941 			goto free_inherit;
1942 		}
1943 	}
1944 
1945 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1946 					vol_args->name, vol_args->fd, subvol,
1947 					readonly, inherit);
1948 	if (ret)
1949 		goto free_inherit;
1950 free_inherit:
1951 	kfree(inherit);
1952 free_args:
1953 	kfree(vol_args);
1954 	return ret;
1955 }
1956 
1957 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1958 						void __user *arg)
1959 {
1960 	struct inode *inode = file_inode(file);
1961 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1962 	struct btrfs_root *root = BTRFS_I(inode)->root;
1963 	int ret = 0;
1964 	u64 flags = 0;
1965 
1966 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1967 		return -EINVAL;
1968 
1969 	down_read(&fs_info->subvol_sem);
1970 	if (btrfs_root_readonly(root))
1971 		flags |= BTRFS_SUBVOL_RDONLY;
1972 	up_read(&fs_info->subvol_sem);
1973 
1974 	if (copy_to_user(arg, &flags, sizeof(flags)))
1975 		ret = -EFAULT;
1976 
1977 	return ret;
1978 }
1979 
1980 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1981 					      void __user *arg)
1982 {
1983 	struct inode *inode = file_inode(file);
1984 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1985 	struct btrfs_root *root = BTRFS_I(inode)->root;
1986 	struct btrfs_trans_handle *trans;
1987 	u64 root_flags;
1988 	u64 flags;
1989 	int ret = 0;
1990 
1991 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1992 		return -EPERM;
1993 
1994 	ret = mnt_want_write_file(file);
1995 	if (ret)
1996 		goto out;
1997 
1998 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1999 		ret = -EINVAL;
2000 		goto out_drop_write;
2001 	}
2002 
2003 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2004 		ret = -EFAULT;
2005 		goto out_drop_write;
2006 	}
2007 
2008 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2009 		ret = -EOPNOTSUPP;
2010 		goto out_drop_write;
2011 	}
2012 
2013 	down_write(&fs_info->subvol_sem);
2014 
2015 	/* nothing to do */
2016 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2017 		goto out_drop_sem;
2018 
2019 	root_flags = btrfs_root_flags(&root->root_item);
2020 	if (flags & BTRFS_SUBVOL_RDONLY) {
2021 		btrfs_set_root_flags(&root->root_item,
2022 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2023 	} else {
2024 		/*
2025 		 * Block RO -> RW transition if this subvolume is involved in
2026 		 * send
2027 		 */
2028 		spin_lock(&root->root_item_lock);
2029 		if (root->send_in_progress == 0) {
2030 			btrfs_set_root_flags(&root->root_item,
2031 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2032 			spin_unlock(&root->root_item_lock);
2033 		} else {
2034 			spin_unlock(&root->root_item_lock);
2035 			btrfs_warn(fs_info,
2036 				   "Attempt to set subvolume %llu read-write during send",
2037 				   root->root_key.objectid);
2038 			ret = -EPERM;
2039 			goto out_drop_sem;
2040 		}
2041 	}
2042 
2043 	trans = btrfs_start_transaction(root, 1);
2044 	if (IS_ERR(trans)) {
2045 		ret = PTR_ERR(trans);
2046 		goto out_reset;
2047 	}
2048 
2049 	ret = btrfs_update_root(trans, fs_info->tree_root,
2050 				&root->root_key, &root->root_item);
2051 	if (ret < 0) {
2052 		btrfs_end_transaction(trans);
2053 		goto out_reset;
2054 	}
2055 
2056 	ret = btrfs_commit_transaction(trans);
2057 
2058 out_reset:
2059 	if (ret)
2060 		btrfs_set_root_flags(&root->root_item, root_flags);
2061 out_drop_sem:
2062 	up_write(&fs_info->subvol_sem);
2063 out_drop_write:
2064 	mnt_drop_write_file(file);
2065 out:
2066 	return ret;
2067 }
2068 
2069 static noinline int key_in_sk(struct btrfs_key *key,
2070 			      struct btrfs_ioctl_search_key *sk)
2071 {
2072 	struct btrfs_key test;
2073 	int ret;
2074 
2075 	test.objectid = sk->min_objectid;
2076 	test.type = sk->min_type;
2077 	test.offset = sk->min_offset;
2078 
2079 	ret = btrfs_comp_cpu_keys(key, &test);
2080 	if (ret < 0)
2081 		return 0;
2082 
2083 	test.objectid = sk->max_objectid;
2084 	test.type = sk->max_type;
2085 	test.offset = sk->max_offset;
2086 
2087 	ret = btrfs_comp_cpu_keys(key, &test);
2088 	if (ret > 0)
2089 		return 0;
2090 	return 1;
2091 }
2092 
2093 static noinline int copy_to_sk(struct btrfs_path *path,
2094 			       struct btrfs_key *key,
2095 			       struct btrfs_ioctl_search_key *sk,
2096 			       size_t *buf_size,
2097 			       char __user *ubuf,
2098 			       unsigned long *sk_offset,
2099 			       int *num_found)
2100 {
2101 	u64 found_transid;
2102 	struct extent_buffer *leaf;
2103 	struct btrfs_ioctl_search_header sh;
2104 	struct btrfs_key test;
2105 	unsigned long item_off;
2106 	unsigned long item_len;
2107 	int nritems;
2108 	int i;
2109 	int slot;
2110 	int ret = 0;
2111 
2112 	leaf = path->nodes[0];
2113 	slot = path->slots[0];
2114 	nritems = btrfs_header_nritems(leaf);
2115 
2116 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2117 		i = nritems;
2118 		goto advance_key;
2119 	}
2120 	found_transid = btrfs_header_generation(leaf);
2121 
2122 	for (i = slot; i < nritems; i++) {
2123 		item_off = btrfs_item_ptr_offset(leaf, i);
2124 		item_len = btrfs_item_size_nr(leaf, i);
2125 
2126 		btrfs_item_key_to_cpu(leaf, key, i);
2127 		if (!key_in_sk(key, sk))
2128 			continue;
2129 
2130 		if (sizeof(sh) + item_len > *buf_size) {
2131 			if (*num_found) {
2132 				ret = 1;
2133 				goto out;
2134 			}
2135 
2136 			/*
2137 			 * return one empty item back for v1, which does not
2138 			 * handle -EOVERFLOW
2139 			 */
2140 
2141 			*buf_size = sizeof(sh) + item_len;
2142 			item_len = 0;
2143 			ret = -EOVERFLOW;
2144 		}
2145 
2146 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2147 			ret = 1;
2148 			goto out;
2149 		}
2150 
2151 		sh.objectid = key->objectid;
2152 		sh.offset = key->offset;
2153 		sh.type = key->type;
2154 		sh.len = item_len;
2155 		sh.transid = found_transid;
2156 
2157 		/*
2158 		 * Copy search result header. If we fault then loop again so we
2159 		 * can fault in the pages and -EFAULT there if there's a
2160 		 * problem. Otherwise we'll fault and then copy the buffer in
2161 		 * properly this next time through
2162 		 */
2163 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2164 			ret = 0;
2165 			goto out;
2166 		}
2167 
2168 		*sk_offset += sizeof(sh);
2169 
2170 		if (item_len) {
2171 			char __user *up = ubuf + *sk_offset;
2172 			/*
2173 			 * Copy the item, same behavior as above, but reset the
2174 			 * * sk_offset so we copy the full thing again.
2175 			 */
2176 			if (read_extent_buffer_to_user_nofault(leaf, up,
2177 						item_off, item_len)) {
2178 				ret = 0;
2179 				*sk_offset -= sizeof(sh);
2180 				goto out;
2181 			}
2182 
2183 			*sk_offset += item_len;
2184 		}
2185 		(*num_found)++;
2186 
2187 		if (ret) /* -EOVERFLOW from above */
2188 			goto out;
2189 
2190 		if (*num_found >= sk->nr_items) {
2191 			ret = 1;
2192 			goto out;
2193 		}
2194 	}
2195 advance_key:
2196 	ret = 0;
2197 	test.objectid = sk->max_objectid;
2198 	test.type = sk->max_type;
2199 	test.offset = sk->max_offset;
2200 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2201 		ret = 1;
2202 	else if (key->offset < (u64)-1)
2203 		key->offset++;
2204 	else if (key->type < (u8)-1) {
2205 		key->offset = 0;
2206 		key->type++;
2207 	} else if (key->objectid < (u64)-1) {
2208 		key->offset = 0;
2209 		key->type = 0;
2210 		key->objectid++;
2211 	} else
2212 		ret = 1;
2213 out:
2214 	/*
2215 	 *  0: all items from this leaf copied, continue with next
2216 	 *  1: * more items can be copied, but unused buffer is too small
2217 	 *     * all items were found
2218 	 *     Either way, it will stops the loop which iterates to the next
2219 	 *     leaf
2220 	 *  -EOVERFLOW: item was to large for buffer
2221 	 *  -EFAULT: could not copy extent buffer back to userspace
2222 	 */
2223 	return ret;
2224 }
2225 
2226 static noinline int search_ioctl(struct inode *inode,
2227 				 struct btrfs_ioctl_search_key *sk,
2228 				 size_t *buf_size,
2229 				 char __user *ubuf)
2230 {
2231 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2232 	struct btrfs_root *root;
2233 	struct btrfs_key key;
2234 	struct btrfs_path *path;
2235 	int ret;
2236 	int num_found = 0;
2237 	unsigned long sk_offset = 0;
2238 
2239 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2240 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2241 		return -EOVERFLOW;
2242 	}
2243 
2244 	path = btrfs_alloc_path();
2245 	if (!path)
2246 		return -ENOMEM;
2247 
2248 	if (sk->tree_id == 0) {
2249 		/* search the root of the inode that was passed */
2250 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2251 	} else {
2252 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2253 		if (IS_ERR(root)) {
2254 			btrfs_free_path(path);
2255 			return PTR_ERR(root);
2256 		}
2257 	}
2258 
2259 	key.objectid = sk->min_objectid;
2260 	key.type = sk->min_type;
2261 	key.offset = sk->min_offset;
2262 
2263 	while (1) {
2264 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2265 					       *buf_size - sk_offset);
2266 		if (ret)
2267 			break;
2268 
2269 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2270 		if (ret != 0) {
2271 			if (ret > 0)
2272 				ret = 0;
2273 			goto err;
2274 		}
2275 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2276 				 &sk_offset, &num_found);
2277 		btrfs_release_path(path);
2278 		if (ret)
2279 			break;
2280 
2281 	}
2282 	if (ret > 0)
2283 		ret = 0;
2284 err:
2285 	sk->nr_items = num_found;
2286 	btrfs_put_root(root);
2287 	btrfs_free_path(path);
2288 	return ret;
2289 }
2290 
2291 static noinline int btrfs_ioctl_tree_search(struct file *file,
2292 					   void __user *argp)
2293 {
2294 	struct btrfs_ioctl_search_args __user *uargs;
2295 	struct btrfs_ioctl_search_key sk;
2296 	struct inode *inode;
2297 	int ret;
2298 	size_t buf_size;
2299 
2300 	if (!capable(CAP_SYS_ADMIN))
2301 		return -EPERM;
2302 
2303 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2304 
2305 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2306 		return -EFAULT;
2307 
2308 	buf_size = sizeof(uargs->buf);
2309 
2310 	inode = file_inode(file);
2311 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2312 
2313 	/*
2314 	 * In the origin implementation an overflow is handled by returning a
2315 	 * search header with a len of zero, so reset ret.
2316 	 */
2317 	if (ret == -EOVERFLOW)
2318 		ret = 0;
2319 
2320 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2321 		ret = -EFAULT;
2322 	return ret;
2323 }
2324 
2325 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2326 					       void __user *argp)
2327 {
2328 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2329 	struct btrfs_ioctl_search_args_v2 args;
2330 	struct inode *inode;
2331 	int ret;
2332 	size_t buf_size;
2333 	const size_t buf_limit = SZ_16M;
2334 
2335 	if (!capable(CAP_SYS_ADMIN))
2336 		return -EPERM;
2337 
2338 	/* copy search header and buffer size */
2339 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2340 	if (copy_from_user(&args, uarg, sizeof(args)))
2341 		return -EFAULT;
2342 
2343 	buf_size = args.buf_size;
2344 
2345 	/* limit result size to 16MB */
2346 	if (buf_size > buf_limit)
2347 		buf_size = buf_limit;
2348 
2349 	inode = file_inode(file);
2350 	ret = search_ioctl(inode, &args.key, &buf_size,
2351 			   (char __user *)(&uarg->buf[0]));
2352 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2353 		ret = -EFAULT;
2354 	else if (ret == -EOVERFLOW &&
2355 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2356 		ret = -EFAULT;
2357 
2358 	return ret;
2359 }
2360 
2361 /*
2362  * Search INODE_REFs to identify path name of 'dirid' directory
2363  * in a 'tree_id' tree. and sets path name to 'name'.
2364  */
2365 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2366 				u64 tree_id, u64 dirid, char *name)
2367 {
2368 	struct btrfs_root *root;
2369 	struct btrfs_key key;
2370 	char *ptr;
2371 	int ret = -1;
2372 	int slot;
2373 	int len;
2374 	int total_len = 0;
2375 	struct btrfs_inode_ref *iref;
2376 	struct extent_buffer *l;
2377 	struct btrfs_path *path;
2378 
2379 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2380 		name[0]='\0';
2381 		return 0;
2382 	}
2383 
2384 	path = btrfs_alloc_path();
2385 	if (!path)
2386 		return -ENOMEM;
2387 
2388 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2389 
2390 	root = btrfs_get_fs_root(info, tree_id, true);
2391 	if (IS_ERR(root)) {
2392 		ret = PTR_ERR(root);
2393 		root = NULL;
2394 		goto out;
2395 	}
2396 
2397 	key.objectid = dirid;
2398 	key.type = BTRFS_INODE_REF_KEY;
2399 	key.offset = (u64)-1;
2400 
2401 	while (1) {
2402 		ret = btrfs_search_backwards(root, &key, path);
2403 		if (ret < 0)
2404 			goto out;
2405 		else if (ret > 0) {
2406 			ret = -ENOENT;
2407 			goto out;
2408 		}
2409 
2410 		l = path->nodes[0];
2411 		slot = path->slots[0];
2412 
2413 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2414 		len = btrfs_inode_ref_name_len(l, iref);
2415 		ptr -= len + 1;
2416 		total_len += len + 1;
2417 		if (ptr < name) {
2418 			ret = -ENAMETOOLONG;
2419 			goto out;
2420 		}
2421 
2422 		*(ptr + len) = '/';
2423 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2424 
2425 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2426 			break;
2427 
2428 		btrfs_release_path(path);
2429 		key.objectid = key.offset;
2430 		key.offset = (u64)-1;
2431 		dirid = key.objectid;
2432 	}
2433 	memmove(name, ptr, total_len);
2434 	name[total_len] = '\0';
2435 	ret = 0;
2436 out:
2437 	btrfs_put_root(root);
2438 	btrfs_free_path(path);
2439 	return ret;
2440 }
2441 
2442 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2443 				struct inode *inode,
2444 				struct btrfs_ioctl_ino_lookup_user_args *args)
2445 {
2446 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2447 	struct super_block *sb = inode->i_sb;
2448 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2449 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2450 	u64 dirid = args->dirid;
2451 	unsigned long item_off;
2452 	unsigned long item_len;
2453 	struct btrfs_inode_ref *iref;
2454 	struct btrfs_root_ref *rref;
2455 	struct btrfs_root *root = NULL;
2456 	struct btrfs_path *path;
2457 	struct btrfs_key key, key2;
2458 	struct extent_buffer *leaf;
2459 	struct inode *temp_inode;
2460 	char *ptr;
2461 	int slot;
2462 	int len;
2463 	int total_len = 0;
2464 	int ret;
2465 
2466 	path = btrfs_alloc_path();
2467 	if (!path)
2468 		return -ENOMEM;
2469 
2470 	/*
2471 	 * If the bottom subvolume does not exist directly under upper_limit,
2472 	 * construct the path in from the bottom up.
2473 	 */
2474 	if (dirid != upper_limit.objectid) {
2475 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2476 
2477 		root = btrfs_get_fs_root(fs_info, treeid, true);
2478 		if (IS_ERR(root)) {
2479 			ret = PTR_ERR(root);
2480 			goto out;
2481 		}
2482 
2483 		key.objectid = dirid;
2484 		key.type = BTRFS_INODE_REF_KEY;
2485 		key.offset = (u64)-1;
2486 		while (1) {
2487 			ret = btrfs_search_backwards(root, &key, path);
2488 			if (ret < 0)
2489 				goto out_put;
2490 			else if (ret > 0) {
2491 				ret = -ENOENT;
2492 				goto out_put;
2493 			}
2494 
2495 			leaf = path->nodes[0];
2496 			slot = path->slots[0];
2497 
2498 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2499 			len = btrfs_inode_ref_name_len(leaf, iref);
2500 			ptr -= len + 1;
2501 			total_len += len + 1;
2502 			if (ptr < args->path) {
2503 				ret = -ENAMETOOLONG;
2504 				goto out_put;
2505 			}
2506 
2507 			*(ptr + len) = '/';
2508 			read_extent_buffer(leaf, ptr,
2509 					(unsigned long)(iref + 1), len);
2510 
2511 			/* Check the read+exec permission of this directory */
2512 			ret = btrfs_previous_item(root, path, dirid,
2513 						  BTRFS_INODE_ITEM_KEY);
2514 			if (ret < 0) {
2515 				goto out_put;
2516 			} else if (ret > 0) {
2517 				ret = -ENOENT;
2518 				goto out_put;
2519 			}
2520 
2521 			leaf = path->nodes[0];
2522 			slot = path->slots[0];
2523 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2524 			if (key2.objectid != dirid) {
2525 				ret = -ENOENT;
2526 				goto out_put;
2527 			}
2528 
2529 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2530 			if (IS_ERR(temp_inode)) {
2531 				ret = PTR_ERR(temp_inode);
2532 				goto out_put;
2533 			}
2534 			ret = inode_permission(mnt_userns, temp_inode,
2535 					       MAY_READ | MAY_EXEC);
2536 			iput(temp_inode);
2537 			if (ret) {
2538 				ret = -EACCES;
2539 				goto out_put;
2540 			}
2541 
2542 			if (key.offset == upper_limit.objectid)
2543 				break;
2544 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2545 				ret = -EACCES;
2546 				goto out_put;
2547 			}
2548 
2549 			btrfs_release_path(path);
2550 			key.objectid = key.offset;
2551 			key.offset = (u64)-1;
2552 			dirid = key.objectid;
2553 		}
2554 
2555 		memmove(args->path, ptr, total_len);
2556 		args->path[total_len] = '\0';
2557 		btrfs_put_root(root);
2558 		root = NULL;
2559 		btrfs_release_path(path);
2560 	}
2561 
2562 	/* Get the bottom subvolume's name from ROOT_REF */
2563 	key.objectid = treeid;
2564 	key.type = BTRFS_ROOT_REF_KEY;
2565 	key.offset = args->treeid;
2566 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2567 	if (ret < 0) {
2568 		goto out;
2569 	} else if (ret > 0) {
2570 		ret = -ENOENT;
2571 		goto out;
2572 	}
2573 
2574 	leaf = path->nodes[0];
2575 	slot = path->slots[0];
2576 	btrfs_item_key_to_cpu(leaf, &key, slot);
2577 
2578 	item_off = btrfs_item_ptr_offset(leaf, slot);
2579 	item_len = btrfs_item_size_nr(leaf, slot);
2580 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2581 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2582 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2583 		ret = -EINVAL;
2584 		goto out;
2585 	}
2586 
2587 	/* Copy subvolume's name */
2588 	item_off += sizeof(struct btrfs_root_ref);
2589 	item_len -= sizeof(struct btrfs_root_ref);
2590 	read_extent_buffer(leaf, args->name, item_off, item_len);
2591 	args->name[item_len] = 0;
2592 
2593 out_put:
2594 	btrfs_put_root(root);
2595 out:
2596 	btrfs_free_path(path);
2597 	return ret;
2598 }
2599 
2600 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2601 					   void __user *argp)
2602 {
2603 	struct btrfs_ioctl_ino_lookup_args *args;
2604 	struct inode *inode;
2605 	int ret = 0;
2606 
2607 	args = memdup_user(argp, sizeof(*args));
2608 	if (IS_ERR(args))
2609 		return PTR_ERR(args);
2610 
2611 	inode = file_inode(file);
2612 
2613 	/*
2614 	 * Unprivileged query to obtain the containing subvolume root id. The
2615 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2616 	 */
2617 	if (args->treeid == 0)
2618 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2619 
2620 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2621 		args->name[0] = 0;
2622 		goto out;
2623 	}
2624 
2625 	if (!capable(CAP_SYS_ADMIN)) {
2626 		ret = -EPERM;
2627 		goto out;
2628 	}
2629 
2630 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2631 					args->treeid, args->objectid,
2632 					args->name);
2633 
2634 out:
2635 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2636 		ret = -EFAULT;
2637 
2638 	kfree(args);
2639 	return ret;
2640 }
2641 
2642 /*
2643  * Version of ino_lookup ioctl (unprivileged)
2644  *
2645  * The main differences from ino_lookup ioctl are:
2646  *
2647  *   1. Read + Exec permission will be checked using inode_permission() during
2648  *      path construction. -EACCES will be returned in case of failure.
2649  *   2. Path construction will be stopped at the inode number which corresponds
2650  *      to the fd with which this ioctl is called. If constructed path does not
2651  *      exist under fd's inode, -EACCES will be returned.
2652  *   3. The name of bottom subvolume is also searched and filled.
2653  */
2654 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2655 {
2656 	struct btrfs_ioctl_ino_lookup_user_args *args;
2657 	struct inode *inode;
2658 	int ret;
2659 
2660 	args = memdup_user(argp, sizeof(*args));
2661 	if (IS_ERR(args))
2662 		return PTR_ERR(args);
2663 
2664 	inode = file_inode(file);
2665 
2666 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2667 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2668 		/*
2669 		 * The subvolume does not exist under fd with which this is
2670 		 * called
2671 		 */
2672 		kfree(args);
2673 		return -EACCES;
2674 	}
2675 
2676 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2677 
2678 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2679 		ret = -EFAULT;
2680 
2681 	kfree(args);
2682 	return ret;
2683 }
2684 
2685 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2686 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2687 {
2688 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2689 	struct btrfs_fs_info *fs_info;
2690 	struct btrfs_root *root;
2691 	struct btrfs_path *path;
2692 	struct btrfs_key key;
2693 	struct btrfs_root_item *root_item;
2694 	struct btrfs_root_ref *rref;
2695 	struct extent_buffer *leaf;
2696 	unsigned long item_off;
2697 	unsigned long item_len;
2698 	struct inode *inode;
2699 	int slot;
2700 	int ret = 0;
2701 
2702 	path = btrfs_alloc_path();
2703 	if (!path)
2704 		return -ENOMEM;
2705 
2706 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2707 	if (!subvol_info) {
2708 		btrfs_free_path(path);
2709 		return -ENOMEM;
2710 	}
2711 
2712 	inode = file_inode(file);
2713 	fs_info = BTRFS_I(inode)->root->fs_info;
2714 
2715 	/* Get root_item of inode's subvolume */
2716 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2717 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2718 	if (IS_ERR(root)) {
2719 		ret = PTR_ERR(root);
2720 		goto out_free;
2721 	}
2722 	root_item = &root->root_item;
2723 
2724 	subvol_info->treeid = key.objectid;
2725 
2726 	subvol_info->generation = btrfs_root_generation(root_item);
2727 	subvol_info->flags = btrfs_root_flags(root_item);
2728 
2729 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2730 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2731 						    BTRFS_UUID_SIZE);
2732 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2733 						    BTRFS_UUID_SIZE);
2734 
2735 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2736 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2737 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2738 
2739 	subvol_info->otransid = btrfs_root_otransid(root_item);
2740 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2741 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2742 
2743 	subvol_info->stransid = btrfs_root_stransid(root_item);
2744 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2745 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2746 
2747 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2748 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2749 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2750 
2751 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2752 		/* Search root tree for ROOT_BACKREF of this subvolume */
2753 		key.type = BTRFS_ROOT_BACKREF_KEY;
2754 		key.offset = 0;
2755 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2756 		if (ret < 0) {
2757 			goto out;
2758 		} else if (path->slots[0] >=
2759 			   btrfs_header_nritems(path->nodes[0])) {
2760 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2761 			if (ret < 0) {
2762 				goto out;
2763 			} else if (ret > 0) {
2764 				ret = -EUCLEAN;
2765 				goto out;
2766 			}
2767 		}
2768 
2769 		leaf = path->nodes[0];
2770 		slot = path->slots[0];
2771 		btrfs_item_key_to_cpu(leaf, &key, slot);
2772 		if (key.objectid == subvol_info->treeid &&
2773 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2774 			subvol_info->parent_id = key.offset;
2775 
2776 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2777 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2778 
2779 			item_off = btrfs_item_ptr_offset(leaf, slot)
2780 					+ sizeof(struct btrfs_root_ref);
2781 			item_len = btrfs_item_size_nr(leaf, slot)
2782 					- sizeof(struct btrfs_root_ref);
2783 			read_extent_buffer(leaf, subvol_info->name,
2784 					   item_off, item_len);
2785 		} else {
2786 			ret = -ENOENT;
2787 			goto out;
2788 		}
2789 	}
2790 
2791 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2792 		ret = -EFAULT;
2793 
2794 out:
2795 	btrfs_put_root(root);
2796 out_free:
2797 	btrfs_free_path(path);
2798 	kfree(subvol_info);
2799 	return ret;
2800 }
2801 
2802 /*
2803  * Return ROOT_REF information of the subvolume containing this inode
2804  * except the subvolume name.
2805  */
2806 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2807 {
2808 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2809 	struct btrfs_root_ref *rref;
2810 	struct btrfs_root *root;
2811 	struct btrfs_path *path;
2812 	struct btrfs_key key;
2813 	struct extent_buffer *leaf;
2814 	struct inode *inode;
2815 	u64 objectid;
2816 	int slot;
2817 	int ret;
2818 	u8 found;
2819 
2820 	path = btrfs_alloc_path();
2821 	if (!path)
2822 		return -ENOMEM;
2823 
2824 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2825 	if (IS_ERR(rootrefs)) {
2826 		btrfs_free_path(path);
2827 		return PTR_ERR(rootrefs);
2828 	}
2829 
2830 	inode = file_inode(file);
2831 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2832 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2833 
2834 	key.objectid = objectid;
2835 	key.type = BTRFS_ROOT_REF_KEY;
2836 	key.offset = rootrefs->min_treeid;
2837 	found = 0;
2838 
2839 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2840 	if (ret < 0) {
2841 		goto out;
2842 	} else if (path->slots[0] >=
2843 		   btrfs_header_nritems(path->nodes[0])) {
2844 		ret = btrfs_next_leaf(root, path);
2845 		if (ret < 0) {
2846 			goto out;
2847 		} else if (ret > 0) {
2848 			ret = -EUCLEAN;
2849 			goto out;
2850 		}
2851 	}
2852 	while (1) {
2853 		leaf = path->nodes[0];
2854 		slot = path->slots[0];
2855 
2856 		btrfs_item_key_to_cpu(leaf, &key, slot);
2857 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2858 			ret = 0;
2859 			goto out;
2860 		}
2861 
2862 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2863 			ret = -EOVERFLOW;
2864 			goto out;
2865 		}
2866 
2867 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2868 		rootrefs->rootref[found].treeid = key.offset;
2869 		rootrefs->rootref[found].dirid =
2870 				  btrfs_root_ref_dirid(leaf, rref);
2871 		found++;
2872 
2873 		ret = btrfs_next_item(root, path);
2874 		if (ret < 0) {
2875 			goto out;
2876 		} else if (ret > 0) {
2877 			ret = -EUCLEAN;
2878 			goto out;
2879 		}
2880 	}
2881 
2882 out:
2883 	if (!ret || ret == -EOVERFLOW) {
2884 		rootrefs->num_items = found;
2885 		/* update min_treeid for next search */
2886 		if (found)
2887 			rootrefs->min_treeid =
2888 				rootrefs->rootref[found - 1].treeid + 1;
2889 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2890 			ret = -EFAULT;
2891 	}
2892 
2893 	kfree(rootrefs);
2894 	btrfs_free_path(path);
2895 
2896 	return ret;
2897 }
2898 
2899 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2900 					     void __user *arg,
2901 					     bool destroy_v2)
2902 {
2903 	struct dentry *parent = file->f_path.dentry;
2904 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2905 	struct dentry *dentry;
2906 	struct inode *dir = d_inode(parent);
2907 	struct inode *inode;
2908 	struct btrfs_root *root = BTRFS_I(dir)->root;
2909 	struct btrfs_root *dest = NULL;
2910 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2911 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2912 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2913 	char *subvol_name, *subvol_name_ptr = NULL;
2914 	int subvol_namelen;
2915 	int err = 0;
2916 	bool destroy_parent = false;
2917 
2918 	if (destroy_v2) {
2919 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2920 		if (IS_ERR(vol_args2))
2921 			return PTR_ERR(vol_args2);
2922 
2923 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2924 			err = -EOPNOTSUPP;
2925 			goto out;
2926 		}
2927 
2928 		/*
2929 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2930 		 * name, same as v1 currently does.
2931 		 */
2932 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2933 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2934 			subvol_name = vol_args2->name;
2935 
2936 			err = mnt_want_write_file(file);
2937 			if (err)
2938 				goto out;
2939 		} else {
2940 			struct inode *old_dir;
2941 
2942 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2943 				err = -EINVAL;
2944 				goto out;
2945 			}
2946 
2947 			err = mnt_want_write_file(file);
2948 			if (err)
2949 				goto out;
2950 
2951 			dentry = btrfs_get_dentry(fs_info->sb,
2952 					BTRFS_FIRST_FREE_OBJECTID,
2953 					vol_args2->subvolid, 0, 0);
2954 			if (IS_ERR(dentry)) {
2955 				err = PTR_ERR(dentry);
2956 				goto out_drop_write;
2957 			}
2958 
2959 			/*
2960 			 * Change the default parent since the subvolume being
2961 			 * deleted can be outside of the current mount point.
2962 			 */
2963 			parent = btrfs_get_parent(dentry);
2964 
2965 			/*
2966 			 * At this point dentry->d_name can point to '/' if the
2967 			 * subvolume we want to destroy is outsite of the
2968 			 * current mount point, so we need to release the
2969 			 * current dentry and execute the lookup to return a new
2970 			 * one with ->d_name pointing to the
2971 			 * <mount point>/subvol_name.
2972 			 */
2973 			dput(dentry);
2974 			if (IS_ERR(parent)) {
2975 				err = PTR_ERR(parent);
2976 				goto out_drop_write;
2977 			}
2978 			old_dir = dir;
2979 			dir = d_inode(parent);
2980 
2981 			/*
2982 			 * If v2 was used with SPEC_BY_ID, a new parent was
2983 			 * allocated since the subvolume can be outside of the
2984 			 * current mount point. Later on we need to release this
2985 			 * new parent dentry.
2986 			 */
2987 			destroy_parent = true;
2988 
2989 			/*
2990 			 * On idmapped mounts, deletion via subvolid is
2991 			 * restricted to subvolumes that are immediate
2992 			 * ancestors of the inode referenced by the file
2993 			 * descriptor in the ioctl. Otherwise the idmapping
2994 			 * could potentially be abused to delete subvolumes
2995 			 * anywhere in the filesystem the user wouldn't be able
2996 			 * to delete without an idmapped mount.
2997 			 */
2998 			if (old_dir != dir && mnt_userns != &init_user_ns) {
2999 				err = -EOPNOTSUPP;
3000 				goto free_parent;
3001 			}
3002 
3003 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3004 						fs_info, vol_args2->subvolid);
3005 			if (IS_ERR(subvol_name_ptr)) {
3006 				err = PTR_ERR(subvol_name_ptr);
3007 				goto free_parent;
3008 			}
3009 			/* subvol_name_ptr is already nul terminated */
3010 			subvol_name = (char *)kbasename(subvol_name_ptr);
3011 		}
3012 	} else {
3013 		vol_args = memdup_user(arg, sizeof(*vol_args));
3014 		if (IS_ERR(vol_args))
3015 			return PTR_ERR(vol_args);
3016 
3017 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3018 		subvol_name = vol_args->name;
3019 
3020 		err = mnt_want_write_file(file);
3021 		if (err)
3022 			goto out;
3023 	}
3024 
3025 	subvol_namelen = strlen(subvol_name);
3026 
3027 	if (strchr(subvol_name, '/') ||
3028 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3029 		err = -EINVAL;
3030 		goto free_subvol_name;
3031 	}
3032 
3033 	if (!S_ISDIR(dir->i_mode)) {
3034 		err = -ENOTDIR;
3035 		goto free_subvol_name;
3036 	}
3037 
3038 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3039 	if (err == -EINTR)
3040 		goto free_subvol_name;
3041 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3042 	if (IS_ERR(dentry)) {
3043 		err = PTR_ERR(dentry);
3044 		goto out_unlock_dir;
3045 	}
3046 
3047 	if (d_really_is_negative(dentry)) {
3048 		err = -ENOENT;
3049 		goto out_dput;
3050 	}
3051 
3052 	inode = d_inode(dentry);
3053 	dest = BTRFS_I(inode)->root;
3054 	if (!capable(CAP_SYS_ADMIN)) {
3055 		/*
3056 		 * Regular user.  Only allow this with a special mount
3057 		 * option, when the user has write+exec access to the
3058 		 * subvol root, and when rmdir(2) would have been
3059 		 * allowed.
3060 		 *
3061 		 * Note that this is _not_ check that the subvol is
3062 		 * empty or doesn't contain data that we wouldn't
3063 		 * otherwise be able to delete.
3064 		 *
3065 		 * Users who want to delete empty subvols should try
3066 		 * rmdir(2).
3067 		 */
3068 		err = -EPERM;
3069 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3070 			goto out_dput;
3071 
3072 		/*
3073 		 * Do not allow deletion if the parent dir is the same
3074 		 * as the dir to be deleted.  That means the ioctl
3075 		 * must be called on the dentry referencing the root
3076 		 * of the subvol, not a random directory contained
3077 		 * within it.
3078 		 */
3079 		err = -EINVAL;
3080 		if (root == dest)
3081 			goto out_dput;
3082 
3083 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3084 		if (err)
3085 			goto out_dput;
3086 	}
3087 
3088 	/* check if subvolume may be deleted by a user */
3089 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3090 	if (err)
3091 		goto out_dput;
3092 
3093 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3094 		err = -EINVAL;
3095 		goto out_dput;
3096 	}
3097 
3098 	btrfs_inode_lock(inode, 0);
3099 	err = btrfs_delete_subvolume(dir, dentry);
3100 	btrfs_inode_unlock(inode, 0);
3101 	if (!err) {
3102 		fsnotify_rmdir(dir, dentry);
3103 		d_delete(dentry);
3104 	}
3105 
3106 out_dput:
3107 	dput(dentry);
3108 out_unlock_dir:
3109 	btrfs_inode_unlock(dir, 0);
3110 free_subvol_name:
3111 	kfree(subvol_name_ptr);
3112 free_parent:
3113 	if (destroy_parent)
3114 		dput(parent);
3115 out_drop_write:
3116 	mnt_drop_write_file(file);
3117 out:
3118 	kfree(vol_args2);
3119 	kfree(vol_args);
3120 	return err;
3121 }
3122 
3123 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3124 {
3125 	struct inode *inode = file_inode(file);
3126 	struct btrfs_root *root = BTRFS_I(inode)->root;
3127 	struct btrfs_ioctl_defrag_range_args range = {0};
3128 	int ret;
3129 
3130 	ret = mnt_want_write_file(file);
3131 	if (ret)
3132 		return ret;
3133 
3134 	if (btrfs_root_readonly(root)) {
3135 		ret = -EROFS;
3136 		goto out;
3137 	}
3138 
3139 	/* Subpage defrag will be supported in later commits */
3140 	if (root->fs_info->sectorsize < PAGE_SIZE) {
3141 		ret = -ENOTTY;
3142 		goto out;
3143 	}
3144 
3145 	switch (inode->i_mode & S_IFMT) {
3146 	case S_IFDIR:
3147 		if (!capable(CAP_SYS_ADMIN)) {
3148 			ret = -EPERM;
3149 			goto out;
3150 		}
3151 		ret = btrfs_defrag_root(root);
3152 		break;
3153 	case S_IFREG:
3154 		/*
3155 		 * Note that this does not check the file descriptor for write
3156 		 * access. This prevents defragmenting executables that are
3157 		 * running and allows defrag on files open in read-only mode.
3158 		 */
3159 		if (!capable(CAP_SYS_ADMIN) &&
3160 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3161 			ret = -EPERM;
3162 			goto out;
3163 		}
3164 
3165 		if (argp) {
3166 			if (copy_from_user(&range, argp, sizeof(range))) {
3167 				ret = -EFAULT;
3168 				goto out;
3169 			}
3170 			/* compression requires us to start the IO */
3171 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3172 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3173 				range.extent_thresh = (u32)-1;
3174 			}
3175 		} else {
3176 			/* the rest are all set to zero by kzalloc */
3177 			range.len = (u64)-1;
3178 		}
3179 		ret = btrfs_defrag_file(file_inode(file), file,
3180 					&range, BTRFS_OLDEST_GENERATION, 0);
3181 		if (ret > 0)
3182 			ret = 0;
3183 		break;
3184 	default:
3185 		ret = -EINVAL;
3186 	}
3187 out:
3188 	mnt_drop_write_file(file);
3189 	return ret;
3190 }
3191 
3192 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3193 {
3194 	struct btrfs_ioctl_vol_args *vol_args;
3195 	int ret;
3196 
3197 	if (!capable(CAP_SYS_ADMIN))
3198 		return -EPERM;
3199 
3200 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3201 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3202 
3203 	vol_args = memdup_user(arg, sizeof(*vol_args));
3204 	if (IS_ERR(vol_args)) {
3205 		ret = PTR_ERR(vol_args);
3206 		goto out;
3207 	}
3208 
3209 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3210 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3211 
3212 	if (!ret)
3213 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3214 
3215 	kfree(vol_args);
3216 out:
3217 	btrfs_exclop_finish(fs_info);
3218 	return ret;
3219 }
3220 
3221 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3222 {
3223 	struct inode *inode = file_inode(file);
3224 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3225 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3226 	struct block_device *bdev = NULL;
3227 	fmode_t mode;
3228 	int ret;
3229 	bool cancel = false;
3230 
3231 	if (!capable(CAP_SYS_ADMIN))
3232 		return -EPERM;
3233 
3234 	ret = mnt_want_write_file(file);
3235 	if (ret)
3236 		return ret;
3237 
3238 	vol_args = memdup_user(arg, sizeof(*vol_args));
3239 	if (IS_ERR(vol_args)) {
3240 		ret = PTR_ERR(vol_args);
3241 		goto err_drop;
3242 	}
3243 
3244 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3245 		ret = -EOPNOTSUPP;
3246 		goto out;
3247 	}
3248 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3249 	if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3250 	    strcmp("cancel", vol_args->name) == 0)
3251 		cancel = true;
3252 
3253 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3254 					   cancel);
3255 	if (ret)
3256 		goto out;
3257 	/* Exclusive operation is now claimed */
3258 
3259 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3260 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid, &bdev, &mode);
3261 	else
3262 		ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3263 
3264 	btrfs_exclop_finish(fs_info);
3265 
3266 	if (!ret) {
3267 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3268 			btrfs_info(fs_info, "device deleted: id %llu",
3269 					vol_args->devid);
3270 		else
3271 			btrfs_info(fs_info, "device deleted: %s",
3272 					vol_args->name);
3273 	}
3274 out:
3275 	kfree(vol_args);
3276 err_drop:
3277 	mnt_drop_write_file(file);
3278 	if (bdev)
3279 		blkdev_put(bdev, mode);
3280 	return ret;
3281 }
3282 
3283 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3284 {
3285 	struct inode *inode = file_inode(file);
3286 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3287 	struct btrfs_ioctl_vol_args *vol_args;
3288 	struct block_device *bdev = NULL;
3289 	fmode_t mode;
3290 	int ret;
3291 	bool cancel;
3292 
3293 	if (!capable(CAP_SYS_ADMIN))
3294 		return -EPERM;
3295 
3296 	ret = mnt_want_write_file(file);
3297 	if (ret)
3298 		return ret;
3299 
3300 	vol_args = memdup_user(arg, sizeof(*vol_args));
3301 	if (IS_ERR(vol_args)) {
3302 		ret = PTR_ERR(vol_args);
3303 		goto out_drop_write;
3304 	}
3305 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3306 	cancel = (strcmp("cancel", vol_args->name) == 0);
3307 
3308 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3309 					   cancel);
3310 	if (ret == 0) {
3311 		ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3312 		if (!ret)
3313 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3314 		btrfs_exclop_finish(fs_info);
3315 	}
3316 
3317 	kfree(vol_args);
3318 out_drop_write:
3319 	mnt_drop_write_file(file);
3320 	if (bdev)
3321 		blkdev_put(bdev, mode);
3322 	return ret;
3323 }
3324 
3325 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3326 				void __user *arg)
3327 {
3328 	struct btrfs_ioctl_fs_info_args *fi_args;
3329 	struct btrfs_device *device;
3330 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3331 	u64 flags_in;
3332 	int ret = 0;
3333 
3334 	fi_args = memdup_user(arg, sizeof(*fi_args));
3335 	if (IS_ERR(fi_args))
3336 		return PTR_ERR(fi_args);
3337 
3338 	flags_in = fi_args->flags;
3339 	memset(fi_args, 0, sizeof(*fi_args));
3340 
3341 	rcu_read_lock();
3342 	fi_args->num_devices = fs_devices->num_devices;
3343 
3344 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3345 		if (device->devid > fi_args->max_id)
3346 			fi_args->max_id = device->devid;
3347 	}
3348 	rcu_read_unlock();
3349 
3350 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3351 	fi_args->nodesize = fs_info->nodesize;
3352 	fi_args->sectorsize = fs_info->sectorsize;
3353 	fi_args->clone_alignment = fs_info->sectorsize;
3354 
3355 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3356 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3357 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3358 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3359 	}
3360 
3361 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3362 		fi_args->generation = fs_info->generation;
3363 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3364 	}
3365 
3366 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3367 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3368 		       sizeof(fi_args->metadata_uuid));
3369 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3370 	}
3371 
3372 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3373 		ret = -EFAULT;
3374 
3375 	kfree(fi_args);
3376 	return ret;
3377 }
3378 
3379 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3380 				 void __user *arg)
3381 {
3382 	struct btrfs_ioctl_dev_info_args *di_args;
3383 	struct btrfs_device *dev;
3384 	int ret = 0;
3385 	char *s_uuid = NULL;
3386 
3387 	di_args = memdup_user(arg, sizeof(*di_args));
3388 	if (IS_ERR(di_args))
3389 		return PTR_ERR(di_args);
3390 
3391 	if (!btrfs_is_empty_uuid(di_args->uuid))
3392 		s_uuid = di_args->uuid;
3393 
3394 	rcu_read_lock();
3395 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3396 				NULL);
3397 
3398 	if (!dev) {
3399 		ret = -ENODEV;
3400 		goto out;
3401 	}
3402 
3403 	di_args->devid = dev->devid;
3404 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3405 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3406 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3407 	if (dev->name) {
3408 		strncpy(di_args->path, rcu_str_deref(dev->name),
3409 				sizeof(di_args->path) - 1);
3410 		di_args->path[sizeof(di_args->path) - 1] = 0;
3411 	} else {
3412 		di_args->path[0] = '\0';
3413 	}
3414 
3415 out:
3416 	rcu_read_unlock();
3417 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3418 		ret = -EFAULT;
3419 
3420 	kfree(di_args);
3421 	return ret;
3422 }
3423 
3424 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3425 {
3426 	struct inode *inode = file_inode(file);
3427 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3428 	struct btrfs_root *root = BTRFS_I(inode)->root;
3429 	struct btrfs_root *new_root;
3430 	struct btrfs_dir_item *di;
3431 	struct btrfs_trans_handle *trans;
3432 	struct btrfs_path *path = NULL;
3433 	struct btrfs_disk_key disk_key;
3434 	u64 objectid = 0;
3435 	u64 dir_id;
3436 	int ret;
3437 
3438 	if (!capable(CAP_SYS_ADMIN))
3439 		return -EPERM;
3440 
3441 	ret = mnt_want_write_file(file);
3442 	if (ret)
3443 		return ret;
3444 
3445 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3446 		ret = -EFAULT;
3447 		goto out;
3448 	}
3449 
3450 	if (!objectid)
3451 		objectid = BTRFS_FS_TREE_OBJECTID;
3452 
3453 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3454 	if (IS_ERR(new_root)) {
3455 		ret = PTR_ERR(new_root);
3456 		goto out;
3457 	}
3458 	if (!is_fstree(new_root->root_key.objectid)) {
3459 		ret = -ENOENT;
3460 		goto out_free;
3461 	}
3462 
3463 	path = btrfs_alloc_path();
3464 	if (!path) {
3465 		ret = -ENOMEM;
3466 		goto out_free;
3467 	}
3468 
3469 	trans = btrfs_start_transaction(root, 1);
3470 	if (IS_ERR(trans)) {
3471 		ret = PTR_ERR(trans);
3472 		goto out_free;
3473 	}
3474 
3475 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3476 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3477 				   dir_id, "default", 7, 1);
3478 	if (IS_ERR_OR_NULL(di)) {
3479 		btrfs_release_path(path);
3480 		btrfs_end_transaction(trans);
3481 		btrfs_err(fs_info,
3482 			  "Umm, you don't have the default diritem, this isn't going to work");
3483 		ret = -ENOENT;
3484 		goto out_free;
3485 	}
3486 
3487 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3488 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3489 	btrfs_mark_buffer_dirty(path->nodes[0]);
3490 	btrfs_release_path(path);
3491 
3492 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3493 	btrfs_end_transaction(trans);
3494 out_free:
3495 	btrfs_put_root(new_root);
3496 	btrfs_free_path(path);
3497 out:
3498 	mnt_drop_write_file(file);
3499 	return ret;
3500 }
3501 
3502 static void get_block_group_info(struct list_head *groups_list,
3503 				 struct btrfs_ioctl_space_info *space)
3504 {
3505 	struct btrfs_block_group *block_group;
3506 
3507 	space->total_bytes = 0;
3508 	space->used_bytes = 0;
3509 	space->flags = 0;
3510 	list_for_each_entry(block_group, groups_list, list) {
3511 		space->flags = block_group->flags;
3512 		space->total_bytes += block_group->length;
3513 		space->used_bytes += block_group->used;
3514 	}
3515 }
3516 
3517 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3518 				   void __user *arg)
3519 {
3520 	struct btrfs_ioctl_space_args space_args;
3521 	struct btrfs_ioctl_space_info space;
3522 	struct btrfs_ioctl_space_info *dest;
3523 	struct btrfs_ioctl_space_info *dest_orig;
3524 	struct btrfs_ioctl_space_info __user *user_dest;
3525 	struct btrfs_space_info *info;
3526 	static const u64 types[] = {
3527 		BTRFS_BLOCK_GROUP_DATA,
3528 		BTRFS_BLOCK_GROUP_SYSTEM,
3529 		BTRFS_BLOCK_GROUP_METADATA,
3530 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3531 	};
3532 	int num_types = 4;
3533 	int alloc_size;
3534 	int ret = 0;
3535 	u64 slot_count = 0;
3536 	int i, c;
3537 
3538 	if (copy_from_user(&space_args,
3539 			   (struct btrfs_ioctl_space_args __user *)arg,
3540 			   sizeof(space_args)))
3541 		return -EFAULT;
3542 
3543 	for (i = 0; i < num_types; i++) {
3544 		struct btrfs_space_info *tmp;
3545 
3546 		info = NULL;
3547 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3548 			if (tmp->flags == types[i]) {
3549 				info = tmp;
3550 				break;
3551 			}
3552 		}
3553 
3554 		if (!info)
3555 			continue;
3556 
3557 		down_read(&info->groups_sem);
3558 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3559 			if (!list_empty(&info->block_groups[c]))
3560 				slot_count++;
3561 		}
3562 		up_read(&info->groups_sem);
3563 	}
3564 
3565 	/*
3566 	 * Global block reserve, exported as a space_info
3567 	 */
3568 	slot_count++;
3569 
3570 	/* space_slots == 0 means they are asking for a count */
3571 	if (space_args.space_slots == 0) {
3572 		space_args.total_spaces = slot_count;
3573 		goto out;
3574 	}
3575 
3576 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3577 
3578 	alloc_size = sizeof(*dest) * slot_count;
3579 
3580 	/* we generally have at most 6 or so space infos, one for each raid
3581 	 * level.  So, a whole page should be more than enough for everyone
3582 	 */
3583 	if (alloc_size > PAGE_SIZE)
3584 		return -ENOMEM;
3585 
3586 	space_args.total_spaces = 0;
3587 	dest = kmalloc(alloc_size, GFP_KERNEL);
3588 	if (!dest)
3589 		return -ENOMEM;
3590 	dest_orig = dest;
3591 
3592 	/* now we have a buffer to copy into */
3593 	for (i = 0; i < num_types; i++) {
3594 		struct btrfs_space_info *tmp;
3595 
3596 		if (!slot_count)
3597 			break;
3598 
3599 		info = NULL;
3600 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3601 			if (tmp->flags == types[i]) {
3602 				info = tmp;
3603 				break;
3604 			}
3605 		}
3606 
3607 		if (!info)
3608 			continue;
3609 		down_read(&info->groups_sem);
3610 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3611 			if (!list_empty(&info->block_groups[c])) {
3612 				get_block_group_info(&info->block_groups[c],
3613 						     &space);
3614 				memcpy(dest, &space, sizeof(space));
3615 				dest++;
3616 				space_args.total_spaces++;
3617 				slot_count--;
3618 			}
3619 			if (!slot_count)
3620 				break;
3621 		}
3622 		up_read(&info->groups_sem);
3623 	}
3624 
3625 	/*
3626 	 * Add global block reserve
3627 	 */
3628 	if (slot_count) {
3629 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3630 
3631 		spin_lock(&block_rsv->lock);
3632 		space.total_bytes = block_rsv->size;
3633 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3634 		spin_unlock(&block_rsv->lock);
3635 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3636 		memcpy(dest, &space, sizeof(space));
3637 		space_args.total_spaces++;
3638 	}
3639 
3640 	user_dest = (struct btrfs_ioctl_space_info __user *)
3641 		(arg + sizeof(struct btrfs_ioctl_space_args));
3642 
3643 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3644 		ret = -EFAULT;
3645 
3646 	kfree(dest_orig);
3647 out:
3648 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3649 		ret = -EFAULT;
3650 
3651 	return ret;
3652 }
3653 
3654 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3655 					    void __user *argp)
3656 {
3657 	struct btrfs_trans_handle *trans;
3658 	u64 transid;
3659 	int ret;
3660 
3661 	trans = btrfs_attach_transaction_barrier(root);
3662 	if (IS_ERR(trans)) {
3663 		if (PTR_ERR(trans) != -ENOENT)
3664 			return PTR_ERR(trans);
3665 
3666 		/* No running transaction, don't bother */
3667 		transid = root->fs_info->last_trans_committed;
3668 		goto out;
3669 	}
3670 	transid = trans->transid;
3671 	ret = btrfs_commit_transaction_async(trans);
3672 	if (ret) {
3673 		btrfs_end_transaction(trans);
3674 		return ret;
3675 	}
3676 out:
3677 	if (argp)
3678 		if (copy_to_user(argp, &transid, sizeof(transid)))
3679 			return -EFAULT;
3680 	return 0;
3681 }
3682 
3683 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3684 					   void __user *argp)
3685 {
3686 	u64 transid;
3687 
3688 	if (argp) {
3689 		if (copy_from_user(&transid, argp, sizeof(transid)))
3690 			return -EFAULT;
3691 	} else {
3692 		transid = 0;  /* current trans */
3693 	}
3694 	return btrfs_wait_for_commit(fs_info, transid);
3695 }
3696 
3697 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3698 {
3699 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3700 	struct btrfs_ioctl_scrub_args *sa;
3701 	int ret;
3702 
3703 	if (!capable(CAP_SYS_ADMIN))
3704 		return -EPERM;
3705 
3706 	sa = memdup_user(arg, sizeof(*sa));
3707 	if (IS_ERR(sa))
3708 		return PTR_ERR(sa);
3709 
3710 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3711 		ret = mnt_want_write_file(file);
3712 		if (ret)
3713 			goto out;
3714 	}
3715 
3716 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3717 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3718 			      0);
3719 
3720 	/*
3721 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3722 	 * error. This is important as it allows user space to know how much
3723 	 * progress scrub has done. For example, if scrub is canceled we get
3724 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3725 	 * space. Later user space can inspect the progress from the structure
3726 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3727 	 * previously (btrfs-progs does this).
3728 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3729 	 * then return -EFAULT to signal the structure was not copied or it may
3730 	 * be corrupt and unreliable due to a partial copy.
3731 	 */
3732 	if (copy_to_user(arg, sa, sizeof(*sa)))
3733 		ret = -EFAULT;
3734 
3735 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3736 		mnt_drop_write_file(file);
3737 out:
3738 	kfree(sa);
3739 	return ret;
3740 }
3741 
3742 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3743 {
3744 	if (!capable(CAP_SYS_ADMIN))
3745 		return -EPERM;
3746 
3747 	return btrfs_scrub_cancel(fs_info);
3748 }
3749 
3750 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3751 				       void __user *arg)
3752 {
3753 	struct btrfs_ioctl_scrub_args *sa;
3754 	int ret;
3755 
3756 	if (!capable(CAP_SYS_ADMIN))
3757 		return -EPERM;
3758 
3759 	sa = memdup_user(arg, sizeof(*sa));
3760 	if (IS_ERR(sa))
3761 		return PTR_ERR(sa);
3762 
3763 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3764 
3765 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3766 		ret = -EFAULT;
3767 
3768 	kfree(sa);
3769 	return ret;
3770 }
3771 
3772 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3773 				      void __user *arg)
3774 {
3775 	struct btrfs_ioctl_get_dev_stats *sa;
3776 	int ret;
3777 
3778 	sa = memdup_user(arg, sizeof(*sa));
3779 	if (IS_ERR(sa))
3780 		return PTR_ERR(sa);
3781 
3782 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3783 		kfree(sa);
3784 		return -EPERM;
3785 	}
3786 
3787 	ret = btrfs_get_dev_stats(fs_info, sa);
3788 
3789 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3790 		ret = -EFAULT;
3791 
3792 	kfree(sa);
3793 	return ret;
3794 }
3795 
3796 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3797 				    void __user *arg)
3798 {
3799 	struct btrfs_ioctl_dev_replace_args *p;
3800 	int ret;
3801 
3802 	if (!capable(CAP_SYS_ADMIN))
3803 		return -EPERM;
3804 
3805 	p = memdup_user(arg, sizeof(*p));
3806 	if (IS_ERR(p))
3807 		return PTR_ERR(p);
3808 
3809 	switch (p->cmd) {
3810 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3811 		if (sb_rdonly(fs_info->sb)) {
3812 			ret = -EROFS;
3813 			goto out;
3814 		}
3815 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3816 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3817 		} else {
3818 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3819 			btrfs_exclop_finish(fs_info);
3820 		}
3821 		break;
3822 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3823 		btrfs_dev_replace_status(fs_info, p);
3824 		ret = 0;
3825 		break;
3826 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3827 		p->result = btrfs_dev_replace_cancel(fs_info);
3828 		ret = 0;
3829 		break;
3830 	default:
3831 		ret = -EINVAL;
3832 		break;
3833 	}
3834 
3835 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3836 		ret = -EFAULT;
3837 out:
3838 	kfree(p);
3839 	return ret;
3840 }
3841 
3842 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843 {
3844 	int ret = 0;
3845 	int i;
3846 	u64 rel_ptr;
3847 	int size;
3848 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849 	struct inode_fs_paths *ipath = NULL;
3850 	struct btrfs_path *path;
3851 
3852 	if (!capable(CAP_DAC_READ_SEARCH))
3853 		return -EPERM;
3854 
3855 	path = btrfs_alloc_path();
3856 	if (!path) {
3857 		ret = -ENOMEM;
3858 		goto out;
3859 	}
3860 
3861 	ipa = memdup_user(arg, sizeof(*ipa));
3862 	if (IS_ERR(ipa)) {
3863 		ret = PTR_ERR(ipa);
3864 		ipa = NULL;
3865 		goto out;
3866 	}
3867 
3868 	size = min_t(u32, ipa->size, 4096);
3869 	ipath = init_ipath(size, root, path);
3870 	if (IS_ERR(ipath)) {
3871 		ret = PTR_ERR(ipath);
3872 		ipath = NULL;
3873 		goto out;
3874 	}
3875 
3876 	ret = paths_from_inode(ipa->inum, ipath);
3877 	if (ret < 0)
3878 		goto out;
3879 
3880 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881 		rel_ptr = ipath->fspath->val[i] -
3882 			  (u64)(unsigned long)ipath->fspath->val;
3883 		ipath->fspath->val[i] = rel_ptr;
3884 	}
3885 
3886 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3887 			   ipath->fspath, size);
3888 	if (ret) {
3889 		ret = -EFAULT;
3890 		goto out;
3891 	}
3892 
3893 out:
3894 	btrfs_free_path(path);
3895 	free_ipath(ipath);
3896 	kfree(ipa);
3897 
3898 	return ret;
3899 }
3900 
3901 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3902 {
3903 	struct btrfs_data_container *inodes = ctx;
3904 	const size_t c = 3 * sizeof(u64);
3905 
3906 	if (inodes->bytes_left >= c) {
3907 		inodes->bytes_left -= c;
3908 		inodes->val[inodes->elem_cnt] = inum;
3909 		inodes->val[inodes->elem_cnt + 1] = offset;
3910 		inodes->val[inodes->elem_cnt + 2] = root;
3911 		inodes->elem_cnt += 3;
3912 	} else {
3913 		inodes->bytes_missing += c - inodes->bytes_left;
3914 		inodes->bytes_left = 0;
3915 		inodes->elem_missed += 3;
3916 	}
3917 
3918 	return 0;
3919 }
3920 
3921 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3922 					void __user *arg, int version)
3923 {
3924 	int ret = 0;
3925 	int size;
3926 	struct btrfs_ioctl_logical_ino_args *loi;
3927 	struct btrfs_data_container *inodes = NULL;
3928 	struct btrfs_path *path = NULL;
3929 	bool ignore_offset;
3930 
3931 	if (!capable(CAP_SYS_ADMIN))
3932 		return -EPERM;
3933 
3934 	loi = memdup_user(arg, sizeof(*loi));
3935 	if (IS_ERR(loi))
3936 		return PTR_ERR(loi);
3937 
3938 	if (version == 1) {
3939 		ignore_offset = false;
3940 		size = min_t(u32, loi->size, SZ_64K);
3941 	} else {
3942 		/* All reserved bits must be 0 for now */
3943 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3944 			ret = -EINVAL;
3945 			goto out_loi;
3946 		}
3947 		/* Only accept flags we have defined so far */
3948 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3949 			ret = -EINVAL;
3950 			goto out_loi;
3951 		}
3952 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3953 		size = min_t(u32, loi->size, SZ_16M);
3954 	}
3955 
3956 	path = btrfs_alloc_path();
3957 	if (!path) {
3958 		ret = -ENOMEM;
3959 		goto out;
3960 	}
3961 
3962 	inodes = init_data_container(size);
3963 	if (IS_ERR(inodes)) {
3964 		ret = PTR_ERR(inodes);
3965 		inodes = NULL;
3966 		goto out;
3967 	}
3968 
3969 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3970 					  build_ino_list, inodes, ignore_offset);
3971 	if (ret == -EINVAL)
3972 		ret = -ENOENT;
3973 	if (ret < 0)
3974 		goto out;
3975 
3976 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3977 			   size);
3978 	if (ret)
3979 		ret = -EFAULT;
3980 
3981 out:
3982 	btrfs_free_path(path);
3983 	kvfree(inodes);
3984 out_loi:
3985 	kfree(loi);
3986 
3987 	return ret;
3988 }
3989 
3990 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3991 			       struct btrfs_ioctl_balance_args *bargs)
3992 {
3993 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3994 
3995 	bargs->flags = bctl->flags;
3996 
3997 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3998 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3999 	if (atomic_read(&fs_info->balance_pause_req))
4000 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4001 	if (atomic_read(&fs_info->balance_cancel_req))
4002 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4003 
4004 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4005 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4006 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4007 
4008 	spin_lock(&fs_info->balance_lock);
4009 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4010 	spin_unlock(&fs_info->balance_lock);
4011 }
4012 
4013 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4014 {
4015 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4016 	struct btrfs_fs_info *fs_info = root->fs_info;
4017 	struct btrfs_ioctl_balance_args *bargs;
4018 	struct btrfs_balance_control *bctl;
4019 	bool need_unlock; /* for mut. excl. ops lock */
4020 	int ret;
4021 
4022 	if (!capable(CAP_SYS_ADMIN))
4023 		return -EPERM;
4024 
4025 	ret = mnt_want_write_file(file);
4026 	if (ret)
4027 		return ret;
4028 
4029 again:
4030 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4031 		mutex_lock(&fs_info->balance_mutex);
4032 		need_unlock = true;
4033 		goto locked;
4034 	}
4035 
4036 	/*
4037 	 * mut. excl. ops lock is locked.  Three possibilities:
4038 	 *   (1) some other op is running
4039 	 *   (2) balance is running
4040 	 *   (3) balance is paused -- special case (think resume)
4041 	 */
4042 	mutex_lock(&fs_info->balance_mutex);
4043 	if (fs_info->balance_ctl) {
4044 		/* this is either (2) or (3) */
4045 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4046 			mutex_unlock(&fs_info->balance_mutex);
4047 			/*
4048 			 * Lock released to allow other waiters to continue,
4049 			 * we'll reexamine the status again.
4050 			 */
4051 			mutex_lock(&fs_info->balance_mutex);
4052 
4053 			if (fs_info->balance_ctl &&
4054 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4055 				/* this is (3) */
4056 				need_unlock = false;
4057 				goto locked;
4058 			}
4059 
4060 			mutex_unlock(&fs_info->balance_mutex);
4061 			goto again;
4062 		} else {
4063 			/* this is (2) */
4064 			mutex_unlock(&fs_info->balance_mutex);
4065 			ret = -EINPROGRESS;
4066 			goto out;
4067 		}
4068 	} else {
4069 		/* this is (1) */
4070 		mutex_unlock(&fs_info->balance_mutex);
4071 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4072 		goto out;
4073 	}
4074 
4075 locked:
4076 
4077 	if (arg) {
4078 		bargs = memdup_user(arg, sizeof(*bargs));
4079 		if (IS_ERR(bargs)) {
4080 			ret = PTR_ERR(bargs);
4081 			goto out_unlock;
4082 		}
4083 
4084 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4085 			if (!fs_info->balance_ctl) {
4086 				ret = -ENOTCONN;
4087 				goto out_bargs;
4088 			}
4089 
4090 			bctl = fs_info->balance_ctl;
4091 			spin_lock(&fs_info->balance_lock);
4092 			bctl->flags |= BTRFS_BALANCE_RESUME;
4093 			spin_unlock(&fs_info->balance_lock);
4094 
4095 			goto do_balance;
4096 		}
4097 	} else {
4098 		bargs = NULL;
4099 	}
4100 
4101 	if (fs_info->balance_ctl) {
4102 		ret = -EINPROGRESS;
4103 		goto out_bargs;
4104 	}
4105 
4106 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4107 	if (!bctl) {
4108 		ret = -ENOMEM;
4109 		goto out_bargs;
4110 	}
4111 
4112 	if (arg) {
4113 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4114 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4115 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4116 
4117 		bctl->flags = bargs->flags;
4118 	} else {
4119 		/* balance everything - no filters */
4120 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4121 	}
4122 
4123 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4124 		ret = -EINVAL;
4125 		goto out_bctl;
4126 	}
4127 
4128 do_balance:
4129 	/*
4130 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4131 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4132 	 * all the way until unmount, in free_fs_info.  The flag should be
4133 	 * cleared after reset_balance_state.
4134 	 */
4135 	need_unlock = false;
4136 
4137 	ret = btrfs_balance(fs_info, bctl, bargs);
4138 	bctl = NULL;
4139 
4140 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4141 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4142 			ret = -EFAULT;
4143 	}
4144 
4145 out_bctl:
4146 	kfree(bctl);
4147 out_bargs:
4148 	kfree(bargs);
4149 out_unlock:
4150 	mutex_unlock(&fs_info->balance_mutex);
4151 	if (need_unlock)
4152 		btrfs_exclop_finish(fs_info);
4153 out:
4154 	mnt_drop_write_file(file);
4155 	return ret;
4156 }
4157 
4158 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4159 {
4160 	if (!capable(CAP_SYS_ADMIN))
4161 		return -EPERM;
4162 
4163 	switch (cmd) {
4164 	case BTRFS_BALANCE_CTL_PAUSE:
4165 		return btrfs_pause_balance(fs_info);
4166 	case BTRFS_BALANCE_CTL_CANCEL:
4167 		return btrfs_cancel_balance(fs_info);
4168 	}
4169 
4170 	return -EINVAL;
4171 }
4172 
4173 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4174 					 void __user *arg)
4175 {
4176 	struct btrfs_ioctl_balance_args *bargs;
4177 	int ret = 0;
4178 
4179 	if (!capable(CAP_SYS_ADMIN))
4180 		return -EPERM;
4181 
4182 	mutex_lock(&fs_info->balance_mutex);
4183 	if (!fs_info->balance_ctl) {
4184 		ret = -ENOTCONN;
4185 		goto out;
4186 	}
4187 
4188 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4189 	if (!bargs) {
4190 		ret = -ENOMEM;
4191 		goto out;
4192 	}
4193 
4194 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4195 
4196 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4197 		ret = -EFAULT;
4198 
4199 	kfree(bargs);
4200 out:
4201 	mutex_unlock(&fs_info->balance_mutex);
4202 	return ret;
4203 }
4204 
4205 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4206 {
4207 	struct inode *inode = file_inode(file);
4208 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4209 	struct btrfs_ioctl_quota_ctl_args *sa;
4210 	int ret;
4211 
4212 	if (!capable(CAP_SYS_ADMIN))
4213 		return -EPERM;
4214 
4215 	ret = mnt_want_write_file(file);
4216 	if (ret)
4217 		return ret;
4218 
4219 	sa = memdup_user(arg, sizeof(*sa));
4220 	if (IS_ERR(sa)) {
4221 		ret = PTR_ERR(sa);
4222 		goto drop_write;
4223 	}
4224 
4225 	down_write(&fs_info->subvol_sem);
4226 
4227 	switch (sa->cmd) {
4228 	case BTRFS_QUOTA_CTL_ENABLE:
4229 		ret = btrfs_quota_enable(fs_info);
4230 		break;
4231 	case BTRFS_QUOTA_CTL_DISABLE:
4232 		ret = btrfs_quota_disable(fs_info);
4233 		break;
4234 	default:
4235 		ret = -EINVAL;
4236 		break;
4237 	}
4238 
4239 	kfree(sa);
4240 	up_write(&fs_info->subvol_sem);
4241 drop_write:
4242 	mnt_drop_write_file(file);
4243 	return ret;
4244 }
4245 
4246 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4247 {
4248 	struct inode *inode = file_inode(file);
4249 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4250 	struct btrfs_root *root = BTRFS_I(inode)->root;
4251 	struct btrfs_ioctl_qgroup_assign_args *sa;
4252 	struct btrfs_trans_handle *trans;
4253 	int ret;
4254 	int err;
4255 
4256 	if (!capable(CAP_SYS_ADMIN))
4257 		return -EPERM;
4258 
4259 	ret = mnt_want_write_file(file);
4260 	if (ret)
4261 		return ret;
4262 
4263 	sa = memdup_user(arg, sizeof(*sa));
4264 	if (IS_ERR(sa)) {
4265 		ret = PTR_ERR(sa);
4266 		goto drop_write;
4267 	}
4268 
4269 	trans = btrfs_join_transaction(root);
4270 	if (IS_ERR(trans)) {
4271 		ret = PTR_ERR(trans);
4272 		goto out;
4273 	}
4274 
4275 	if (sa->assign) {
4276 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4277 	} else {
4278 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4279 	}
4280 
4281 	/* update qgroup status and info */
4282 	err = btrfs_run_qgroups(trans);
4283 	if (err < 0)
4284 		btrfs_handle_fs_error(fs_info, err,
4285 				      "failed to update qgroup status and info");
4286 	err = btrfs_end_transaction(trans);
4287 	if (err && !ret)
4288 		ret = err;
4289 
4290 out:
4291 	kfree(sa);
4292 drop_write:
4293 	mnt_drop_write_file(file);
4294 	return ret;
4295 }
4296 
4297 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4298 {
4299 	struct inode *inode = file_inode(file);
4300 	struct btrfs_root *root = BTRFS_I(inode)->root;
4301 	struct btrfs_ioctl_qgroup_create_args *sa;
4302 	struct btrfs_trans_handle *trans;
4303 	int ret;
4304 	int err;
4305 
4306 	if (!capable(CAP_SYS_ADMIN))
4307 		return -EPERM;
4308 
4309 	ret = mnt_want_write_file(file);
4310 	if (ret)
4311 		return ret;
4312 
4313 	sa = memdup_user(arg, sizeof(*sa));
4314 	if (IS_ERR(sa)) {
4315 		ret = PTR_ERR(sa);
4316 		goto drop_write;
4317 	}
4318 
4319 	if (!sa->qgroupid) {
4320 		ret = -EINVAL;
4321 		goto out;
4322 	}
4323 
4324 	trans = btrfs_join_transaction(root);
4325 	if (IS_ERR(trans)) {
4326 		ret = PTR_ERR(trans);
4327 		goto out;
4328 	}
4329 
4330 	if (sa->create) {
4331 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4332 	} else {
4333 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4334 	}
4335 
4336 	err = btrfs_end_transaction(trans);
4337 	if (err && !ret)
4338 		ret = err;
4339 
4340 out:
4341 	kfree(sa);
4342 drop_write:
4343 	mnt_drop_write_file(file);
4344 	return ret;
4345 }
4346 
4347 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4348 {
4349 	struct inode *inode = file_inode(file);
4350 	struct btrfs_root *root = BTRFS_I(inode)->root;
4351 	struct btrfs_ioctl_qgroup_limit_args *sa;
4352 	struct btrfs_trans_handle *trans;
4353 	int ret;
4354 	int err;
4355 	u64 qgroupid;
4356 
4357 	if (!capable(CAP_SYS_ADMIN))
4358 		return -EPERM;
4359 
4360 	ret = mnt_want_write_file(file);
4361 	if (ret)
4362 		return ret;
4363 
4364 	sa = memdup_user(arg, sizeof(*sa));
4365 	if (IS_ERR(sa)) {
4366 		ret = PTR_ERR(sa);
4367 		goto drop_write;
4368 	}
4369 
4370 	trans = btrfs_join_transaction(root);
4371 	if (IS_ERR(trans)) {
4372 		ret = PTR_ERR(trans);
4373 		goto out;
4374 	}
4375 
4376 	qgroupid = sa->qgroupid;
4377 	if (!qgroupid) {
4378 		/* take the current subvol as qgroup */
4379 		qgroupid = root->root_key.objectid;
4380 	}
4381 
4382 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4383 
4384 	err = btrfs_end_transaction(trans);
4385 	if (err && !ret)
4386 		ret = err;
4387 
4388 out:
4389 	kfree(sa);
4390 drop_write:
4391 	mnt_drop_write_file(file);
4392 	return ret;
4393 }
4394 
4395 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4396 {
4397 	struct inode *inode = file_inode(file);
4398 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4399 	struct btrfs_ioctl_quota_rescan_args *qsa;
4400 	int ret;
4401 
4402 	if (!capable(CAP_SYS_ADMIN))
4403 		return -EPERM;
4404 
4405 	ret = mnt_want_write_file(file);
4406 	if (ret)
4407 		return ret;
4408 
4409 	qsa = memdup_user(arg, sizeof(*qsa));
4410 	if (IS_ERR(qsa)) {
4411 		ret = PTR_ERR(qsa);
4412 		goto drop_write;
4413 	}
4414 
4415 	if (qsa->flags) {
4416 		ret = -EINVAL;
4417 		goto out;
4418 	}
4419 
4420 	ret = btrfs_qgroup_rescan(fs_info);
4421 
4422 out:
4423 	kfree(qsa);
4424 drop_write:
4425 	mnt_drop_write_file(file);
4426 	return ret;
4427 }
4428 
4429 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4430 						void __user *arg)
4431 {
4432 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4433 	int ret = 0;
4434 
4435 	if (!capable(CAP_SYS_ADMIN))
4436 		return -EPERM;
4437 
4438 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4439 		qsa.flags = 1;
4440 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4441 	}
4442 
4443 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4444 		ret = -EFAULT;
4445 
4446 	return ret;
4447 }
4448 
4449 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4450 						void __user *arg)
4451 {
4452 	if (!capable(CAP_SYS_ADMIN))
4453 		return -EPERM;
4454 
4455 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4456 }
4457 
4458 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4459 					    struct user_namespace *mnt_userns,
4460 					    struct btrfs_ioctl_received_subvol_args *sa)
4461 {
4462 	struct inode *inode = file_inode(file);
4463 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4464 	struct btrfs_root *root = BTRFS_I(inode)->root;
4465 	struct btrfs_root_item *root_item = &root->root_item;
4466 	struct btrfs_trans_handle *trans;
4467 	struct timespec64 ct = current_time(inode);
4468 	int ret = 0;
4469 	int received_uuid_changed;
4470 
4471 	if (!inode_owner_or_capable(mnt_userns, inode))
4472 		return -EPERM;
4473 
4474 	ret = mnt_want_write_file(file);
4475 	if (ret < 0)
4476 		return ret;
4477 
4478 	down_write(&fs_info->subvol_sem);
4479 
4480 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4481 		ret = -EINVAL;
4482 		goto out;
4483 	}
4484 
4485 	if (btrfs_root_readonly(root)) {
4486 		ret = -EROFS;
4487 		goto out;
4488 	}
4489 
4490 	/*
4491 	 * 1 - root item
4492 	 * 2 - uuid items (received uuid + subvol uuid)
4493 	 */
4494 	trans = btrfs_start_transaction(root, 3);
4495 	if (IS_ERR(trans)) {
4496 		ret = PTR_ERR(trans);
4497 		trans = NULL;
4498 		goto out;
4499 	}
4500 
4501 	sa->rtransid = trans->transid;
4502 	sa->rtime.sec = ct.tv_sec;
4503 	sa->rtime.nsec = ct.tv_nsec;
4504 
4505 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4506 				       BTRFS_UUID_SIZE);
4507 	if (received_uuid_changed &&
4508 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4509 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4510 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4511 					  root->root_key.objectid);
4512 		if (ret && ret != -ENOENT) {
4513 		        btrfs_abort_transaction(trans, ret);
4514 		        btrfs_end_transaction(trans);
4515 		        goto out;
4516 		}
4517 	}
4518 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4519 	btrfs_set_root_stransid(root_item, sa->stransid);
4520 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4521 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4522 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4523 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4524 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4525 
4526 	ret = btrfs_update_root(trans, fs_info->tree_root,
4527 				&root->root_key, &root->root_item);
4528 	if (ret < 0) {
4529 		btrfs_end_transaction(trans);
4530 		goto out;
4531 	}
4532 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4533 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4534 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4535 					  root->root_key.objectid);
4536 		if (ret < 0 && ret != -EEXIST) {
4537 			btrfs_abort_transaction(trans, ret);
4538 			btrfs_end_transaction(trans);
4539 			goto out;
4540 		}
4541 	}
4542 	ret = btrfs_commit_transaction(trans);
4543 out:
4544 	up_write(&fs_info->subvol_sem);
4545 	mnt_drop_write_file(file);
4546 	return ret;
4547 }
4548 
4549 #ifdef CONFIG_64BIT
4550 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4551 						void __user *arg)
4552 {
4553 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4554 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4555 	int ret = 0;
4556 
4557 	args32 = memdup_user(arg, sizeof(*args32));
4558 	if (IS_ERR(args32))
4559 		return PTR_ERR(args32);
4560 
4561 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4562 	if (!args64) {
4563 		ret = -ENOMEM;
4564 		goto out;
4565 	}
4566 
4567 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4568 	args64->stransid = args32->stransid;
4569 	args64->rtransid = args32->rtransid;
4570 	args64->stime.sec = args32->stime.sec;
4571 	args64->stime.nsec = args32->stime.nsec;
4572 	args64->rtime.sec = args32->rtime.sec;
4573 	args64->rtime.nsec = args32->rtime.nsec;
4574 	args64->flags = args32->flags;
4575 
4576 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4577 	if (ret)
4578 		goto out;
4579 
4580 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4581 	args32->stransid = args64->stransid;
4582 	args32->rtransid = args64->rtransid;
4583 	args32->stime.sec = args64->stime.sec;
4584 	args32->stime.nsec = args64->stime.nsec;
4585 	args32->rtime.sec = args64->rtime.sec;
4586 	args32->rtime.nsec = args64->rtime.nsec;
4587 	args32->flags = args64->flags;
4588 
4589 	ret = copy_to_user(arg, args32, sizeof(*args32));
4590 	if (ret)
4591 		ret = -EFAULT;
4592 
4593 out:
4594 	kfree(args32);
4595 	kfree(args64);
4596 	return ret;
4597 }
4598 #endif
4599 
4600 static long btrfs_ioctl_set_received_subvol(struct file *file,
4601 					    void __user *arg)
4602 {
4603 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4604 	int ret = 0;
4605 
4606 	sa = memdup_user(arg, sizeof(*sa));
4607 	if (IS_ERR(sa))
4608 		return PTR_ERR(sa);
4609 
4610 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4611 
4612 	if (ret)
4613 		goto out;
4614 
4615 	ret = copy_to_user(arg, sa, sizeof(*sa));
4616 	if (ret)
4617 		ret = -EFAULT;
4618 
4619 out:
4620 	kfree(sa);
4621 	return ret;
4622 }
4623 
4624 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4625 					void __user *arg)
4626 {
4627 	size_t len;
4628 	int ret;
4629 	char label[BTRFS_LABEL_SIZE];
4630 
4631 	spin_lock(&fs_info->super_lock);
4632 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4633 	spin_unlock(&fs_info->super_lock);
4634 
4635 	len = strnlen(label, BTRFS_LABEL_SIZE);
4636 
4637 	if (len == BTRFS_LABEL_SIZE) {
4638 		btrfs_warn(fs_info,
4639 			   "label is too long, return the first %zu bytes",
4640 			   --len);
4641 	}
4642 
4643 	ret = copy_to_user(arg, label, len);
4644 
4645 	return ret ? -EFAULT : 0;
4646 }
4647 
4648 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4649 {
4650 	struct inode *inode = file_inode(file);
4651 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4652 	struct btrfs_root *root = BTRFS_I(inode)->root;
4653 	struct btrfs_super_block *super_block = fs_info->super_copy;
4654 	struct btrfs_trans_handle *trans;
4655 	char label[BTRFS_LABEL_SIZE];
4656 	int ret;
4657 
4658 	if (!capable(CAP_SYS_ADMIN))
4659 		return -EPERM;
4660 
4661 	if (copy_from_user(label, arg, sizeof(label)))
4662 		return -EFAULT;
4663 
4664 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4665 		btrfs_err(fs_info,
4666 			  "unable to set label with more than %d bytes",
4667 			  BTRFS_LABEL_SIZE - 1);
4668 		return -EINVAL;
4669 	}
4670 
4671 	ret = mnt_want_write_file(file);
4672 	if (ret)
4673 		return ret;
4674 
4675 	trans = btrfs_start_transaction(root, 0);
4676 	if (IS_ERR(trans)) {
4677 		ret = PTR_ERR(trans);
4678 		goto out_unlock;
4679 	}
4680 
4681 	spin_lock(&fs_info->super_lock);
4682 	strcpy(super_block->label, label);
4683 	spin_unlock(&fs_info->super_lock);
4684 	ret = btrfs_commit_transaction(trans);
4685 
4686 out_unlock:
4687 	mnt_drop_write_file(file);
4688 	return ret;
4689 }
4690 
4691 #define INIT_FEATURE_FLAGS(suffix) \
4692 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4693 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4694 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4695 
4696 int btrfs_ioctl_get_supported_features(void __user *arg)
4697 {
4698 	static const struct btrfs_ioctl_feature_flags features[3] = {
4699 		INIT_FEATURE_FLAGS(SUPP),
4700 		INIT_FEATURE_FLAGS(SAFE_SET),
4701 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4702 	};
4703 
4704 	if (copy_to_user(arg, &features, sizeof(features)))
4705 		return -EFAULT;
4706 
4707 	return 0;
4708 }
4709 
4710 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4711 					void __user *arg)
4712 {
4713 	struct btrfs_super_block *super_block = fs_info->super_copy;
4714 	struct btrfs_ioctl_feature_flags features;
4715 
4716 	features.compat_flags = btrfs_super_compat_flags(super_block);
4717 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4718 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4719 
4720 	if (copy_to_user(arg, &features, sizeof(features)))
4721 		return -EFAULT;
4722 
4723 	return 0;
4724 }
4725 
4726 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4727 			      enum btrfs_feature_set set,
4728 			      u64 change_mask, u64 flags, u64 supported_flags,
4729 			      u64 safe_set, u64 safe_clear)
4730 {
4731 	const char *type = btrfs_feature_set_name(set);
4732 	char *names;
4733 	u64 disallowed, unsupported;
4734 	u64 set_mask = flags & change_mask;
4735 	u64 clear_mask = ~flags & change_mask;
4736 
4737 	unsupported = set_mask & ~supported_flags;
4738 	if (unsupported) {
4739 		names = btrfs_printable_features(set, unsupported);
4740 		if (names) {
4741 			btrfs_warn(fs_info,
4742 				   "this kernel does not support the %s feature bit%s",
4743 				   names, strchr(names, ',') ? "s" : "");
4744 			kfree(names);
4745 		} else
4746 			btrfs_warn(fs_info,
4747 				   "this kernel does not support %s bits 0x%llx",
4748 				   type, unsupported);
4749 		return -EOPNOTSUPP;
4750 	}
4751 
4752 	disallowed = set_mask & ~safe_set;
4753 	if (disallowed) {
4754 		names = btrfs_printable_features(set, disallowed);
4755 		if (names) {
4756 			btrfs_warn(fs_info,
4757 				   "can't set the %s feature bit%s while mounted",
4758 				   names, strchr(names, ',') ? "s" : "");
4759 			kfree(names);
4760 		} else
4761 			btrfs_warn(fs_info,
4762 				   "can't set %s bits 0x%llx while mounted",
4763 				   type, disallowed);
4764 		return -EPERM;
4765 	}
4766 
4767 	disallowed = clear_mask & ~safe_clear;
4768 	if (disallowed) {
4769 		names = btrfs_printable_features(set, disallowed);
4770 		if (names) {
4771 			btrfs_warn(fs_info,
4772 				   "can't clear the %s feature bit%s while mounted",
4773 				   names, strchr(names, ',') ? "s" : "");
4774 			kfree(names);
4775 		} else
4776 			btrfs_warn(fs_info,
4777 				   "can't clear %s bits 0x%llx while mounted",
4778 				   type, disallowed);
4779 		return -EPERM;
4780 	}
4781 
4782 	return 0;
4783 }
4784 
4785 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4786 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4787 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4788 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4789 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4790 
4791 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4792 {
4793 	struct inode *inode = file_inode(file);
4794 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4795 	struct btrfs_root *root = BTRFS_I(inode)->root;
4796 	struct btrfs_super_block *super_block = fs_info->super_copy;
4797 	struct btrfs_ioctl_feature_flags flags[2];
4798 	struct btrfs_trans_handle *trans;
4799 	u64 newflags;
4800 	int ret;
4801 
4802 	if (!capable(CAP_SYS_ADMIN))
4803 		return -EPERM;
4804 
4805 	if (copy_from_user(flags, arg, sizeof(flags)))
4806 		return -EFAULT;
4807 
4808 	/* Nothing to do */
4809 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4810 	    !flags[0].incompat_flags)
4811 		return 0;
4812 
4813 	ret = check_feature(fs_info, flags[0].compat_flags,
4814 			    flags[1].compat_flags, COMPAT);
4815 	if (ret)
4816 		return ret;
4817 
4818 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4819 			    flags[1].compat_ro_flags, COMPAT_RO);
4820 	if (ret)
4821 		return ret;
4822 
4823 	ret = check_feature(fs_info, flags[0].incompat_flags,
4824 			    flags[1].incompat_flags, INCOMPAT);
4825 	if (ret)
4826 		return ret;
4827 
4828 	ret = mnt_want_write_file(file);
4829 	if (ret)
4830 		return ret;
4831 
4832 	trans = btrfs_start_transaction(root, 0);
4833 	if (IS_ERR(trans)) {
4834 		ret = PTR_ERR(trans);
4835 		goto out_drop_write;
4836 	}
4837 
4838 	spin_lock(&fs_info->super_lock);
4839 	newflags = btrfs_super_compat_flags(super_block);
4840 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4841 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4842 	btrfs_set_super_compat_flags(super_block, newflags);
4843 
4844 	newflags = btrfs_super_compat_ro_flags(super_block);
4845 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4846 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4847 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4848 
4849 	newflags = btrfs_super_incompat_flags(super_block);
4850 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4851 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4852 	btrfs_set_super_incompat_flags(super_block, newflags);
4853 	spin_unlock(&fs_info->super_lock);
4854 
4855 	ret = btrfs_commit_transaction(trans);
4856 out_drop_write:
4857 	mnt_drop_write_file(file);
4858 
4859 	return ret;
4860 }
4861 
4862 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4863 {
4864 	struct btrfs_ioctl_send_args *arg;
4865 	int ret;
4866 
4867 	if (compat) {
4868 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4869 		struct btrfs_ioctl_send_args_32 args32;
4870 
4871 		ret = copy_from_user(&args32, argp, sizeof(args32));
4872 		if (ret)
4873 			return -EFAULT;
4874 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4875 		if (!arg)
4876 			return -ENOMEM;
4877 		arg->send_fd = args32.send_fd;
4878 		arg->clone_sources_count = args32.clone_sources_count;
4879 		arg->clone_sources = compat_ptr(args32.clone_sources);
4880 		arg->parent_root = args32.parent_root;
4881 		arg->flags = args32.flags;
4882 		memcpy(arg->reserved, args32.reserved,
4883 		       sizeof(args32.reserved));
4884 #else
4885 		return -ENOTTY;
4886 #endif
4887 	} else {
4888 		arg = memdup_user(argp, sizeof(*arg));
4889 		if (IS_ERR(arg))
4890 			return PTR_ERR(arg);
4891 	}
4892 	ret = btrfs_ioctl_send(file, arg);
4893 	kfree(arg);
4894 	return ret;
4895 }
4896 
4897 long btrfs_ioctl(struct file *file, unsigned int
4898 		cmd, unsigned long arg)
4899 {
4900 	struct inode *inode = file_inode(file);
4901 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4902 	struct btrfs_root *root = BTRFS_I(inode)->root;
4903 	void __user *argp = (void __user *)arg;
4904 
4905 	switch (cmd) {
4906 	case FS_IOC_GETVERSION:
4907 		return btrfs_ioctl_getversion(file, argp);
4908 	case FS_IOC_GETFSLABEL:
4909 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4910 	case FS_IOC_SETFSLABEL:
4911 		return btrfs_ioctl_set_fslabel(file, argp);
4912 	case FITRIM:
4913 		return btrfs_ioctl_fitrim(fs_info, argp);
4914 	case BTRFS_IOC_SNAP_CREATE:
4915 		return btrfs_ioctl_snap_create(file, argp, 0);
4916 	case BTRFS_IOC_SNAP_CREATE_V2:
4917 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4918 	case BTRFS_IOC_SUBVOL_CREATE:
4919 		return btrfs_ioctl_snap_create(file, argp, 1);
4920 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4921 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4922 	case BTRFS_IOC_SNAP_DESTROY:
4923 		return btrfs_ioctl_snap_destroy(file, argp, false);
4924 	case BTRFS_IOC_SNAP_DESTROY_V2:
4925 		return btrfs_ioctl_snap_destroy(file, argp, true);
4926 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4927 		return btrfs_ioctl_subvol_getflags(file, argp);
4928 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4929 		return btrfs_ioctl_subvol_setflags(file, argp);
4930 	case BTRFS_IOC_DEFAULT_SUBVOL:
4931 		return btrfs_ioctl_default_subvol(file, argp);
4932 	case BTRFS_IOC_DEFRAG:
4933 		return btrfs_ioctl_defrag(file, NULL);
4934 	case BTRFS_IOC_DEFRAG_RANGE:
4935 		return btrfs_ioctl_defrag(file, argp);
4936 	case BTRFS_IOC_RESIZE:
4937 		return btrfs_ioctl_resize(file, argp);
4938 	case BTRFS_IOC_ADD_DEV:
4939 		return btrfs_ioctl_add_dev(fs_info, argp);
4940 	case BTRFS_IOC_RM_DEV:
4941 		return btrfs_ioctl_rm_dev(file, argp);
4942 	case BTRFS_IOC_RM_DEV_V2:
4943 		return btrfs_ioctl_rm_dev_v2(file, argp);
4944 	case BTRFS_IOC_FS_INFO:
4945 		return btrfs_ioctl_fs_info(fs_info, argp);
4946 	case BTRFS_IOC_DEV_INFO:
4947 		return btrfs_ioctl_dev_info(fs_info, argp);
4948 	case BTRFS_IOC_BALANCE:
4949 		return btrfs_ioctl_balance(file, NULL);
4950 	case BTRFS_IOC_TREE_SEARCH:
4951 		return btrfs_ioctl_tree_search(file, argp);
4952 	case BTRFS_IOC_TREE_SEARCH_V2:
4953 		return btrfs_ioctl_tree_search_v2(file, argp);
4954 	case BTRFS_IOC_INO_LOOKUP:
4955 		return btrfs_ioctl_ino_lookup(file, argp);
4956 	case BTRFS_IOC_INO_PATHS:
4957 		return btrfs_ioctl_ino_to_path(root, argp);
4958 	case BTRFS_IOC_LOGICAL_INO:
4959 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4960 	case BTRFS_IOC_LOGICAL_INO_V2:
4961 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4962 	case BTRFS_IOC_SPACE_INFO:
4963 		return btrfs_ioctl_space_info(fs_info, argp);
4964 	case BTRFS_IOC_SYNC: {
4965 		int ret;
4966 
4967 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4968 		if (ret)
4969 			return ret;
4970 		ret = btrfs_sync_fs(inode->i_sb, 1);
4971 		/*
4972 		 * The transaction thread may want to do more work,
4973 		 * namely it pokes the cleaner kthread that will start
4974 		 * processing uncleaned subvols.
4975 		 */
4976 		wake_up_process(fs_info->transaction_kthread);
4977 		return ret;
4978 	}
4979 	case BTRFS_IOC_START_SYNC:
4980 		return btrfs_ioctl_start_sync(root, argp);
4981 	case BTRFS_IOC_WAIT_SYNC:
4982 		return btrfs_ioctl_wait_sync(fs_info, argp);
4983 	case BTRFS_IOC_SCRUB:
4984 		return btrfs_ioctl_scrub(file, argp);
4985 	case BTRFS_IOC_SCRUB_CANCEL:
4986 		return btrfs_ioctl_scrub_cancel(fs_info);
4987 	case BTRFS_IOC_SCRUB_PROGRESS:
4988 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4989 	case BTRFS_IOC_BALANCE_V2:
4990 		return btrfs_ioctl_balance(file, argp);
4991 	case BTRFS_IOC_BALANCE_CTL:
4992 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4993 	case BTRFS_IOC_BALANCE_PROGRESS:
4994 		return btrfs_ioctl_balance_progress(fs_info, argp);
4995 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4996 		return btrfs_ioctl_set_received_subvol(file, argp);
4997 #ifdef CONFIG_64BIT
4998 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4999 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5000 #endif
5001 	case BTRFS_IOC_SEND:
5002 		return _btrfs_ioctl_send(file, argp, false);
5003 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5004 	case BTRFS_IOC_SEND_32:
5005 		return _btrfs_ioctl_send(file, argp, true);
5006 #endif
5007 	case BTRFS_IOC_GET_DEV_STATS:
5008 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5009 	case BTRFS_IOC_QUOTA_CTL:
5010 		return btrfs_ioctl_quota_ctl(file, argp);
5011 	case BTRFS_IOC_QGROUP_ASSIGN:
5012 		return btrfs_ioctl_qgroup_assign(file, argp);
5013 	case BTRFS_IOC_QGROUP_CREATE:
5014 		return btrfs_ioctl_qgroup_create(file, argp);
5015 	case BTRFS_IOC_QGROUP_LIMIT:
5016 		return btrfs_ioctl_qgroup_limit(file, argp);
5017 	case BTRFS_IOC_QUOTA_RESCAN:
5018 		return btrfs_ioctl_quota_rescan(file, argp);
5019 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5020 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5021 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5022 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5023 	case BTRFS_IOC_DEV_REPLACE:
5024 		return btrfs_ioctl_dev_replace(fs_info, argp);
5025 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5026 		return btrfs_ioctl_get_supported_features(argp);
5027 	case BTRFS_IOC_GET_FEATURES:
5028 		return btrfs_ioctl_get_features(fs_info, argp);
5029 	case BTRFS_IOC_SET_FEATURES:
5030 		return btrfs_ioctl_set_features(file, argp);
5031 	case BTRFS_IOC_GET_SUBVOL_INFO:
5032 		return btrfs_ioctl_get_subvol_info(file, argp);
5033 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5034 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5035 	case BTRFS_IOC_INO_LOOKUP_USER:
5036 		return btrfs_ioctl_ino_lookup_user(file, argp);
5037 	case FS_IOC_ENABLE_VERITY:
5038 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5039 	case FS_IOC_MEASURE_VERITY:
5040 		return fsverity_ioctl_measure(file, argp);
5041 	}
5042 
5043 	return -ENOTTY;
5044 }
5045 
5046 #ifdef CONFIG_COMPAT
5047 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5048 {
5049 	/*
5050 	 * These all access 32-bit values anyway so no further
5051 	 * handling is necessary.
5052 	 */
5053 	switch (cmd) {
5054 	case FS_IOC32_GETVERSION:
5055 		cmd = FS_IOC_GETVERSION;
5056 		break;
5057 	}
5058 
5059 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5060 }
5061 #endif
5062