xref: /linux/fs/btrfs/ioctl.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "block-group.h"
49 #include "fs.h"
50 #include "accessors.h"
51 #include "extent-tree.h"
52 #include "root-tree.h"
53 #include "defrag.h"
54 #include "dir-item.h"
55 #include "uuid-tree.h"
56 #include "ioctl.h"
57 #include "file.h"
58 #include "scrub.h"
59 #include "super.h"
60 
61 #ifdef CONFIG_64BIT
62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63  * structures are incorrect, as the timespec structure from userspace
64  * is 4 bytes too small. We define these alternatives here to teach
65  * the kernel about the 32-bit struct packing.
66  */
67 struct btrfs_ioctl_timespec_32 {
68 	__u64 sec;
69 	__u32 nsec;
70 } __attribute__ ((__packed__));
71 
72 struct btrfs_ioctl_received_subvol_args_32 {
73 	char	uuid[BTRFS_UUID_SIZE];	/* in */
74 	__u64	stransid;		/* in */
75 	__u64	rtransid;		/* out */
76 	struct btrfs_ioctl_timespec_32 stime; /* in */
77 	struct btrfs_ioctl_timespec_32 rtime; /* out */
78 	__u64	flags;			/* in */
79 	__u64	reserved[16];		/* in */
80 } __attribute__ ((__packed__));
81 
82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 				struct btrfs_ioctl_received_subvol_args_32)
84 #endif
85 
86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87 struct btrfs_ioctl_send_args_32 {
88 	__s64 send_fd;			/* in */
89 	__u64 clone_sources_count;	/* in */
90 	compat_uptr_t clone_sources;	/* in */
91 	__u64 parent_root;		/* in */
92 	__u64 flags;			/* in */
93 	__u32 version;			/* in */
94 	__u8  reserved[28];		/* in */
95 } __attribute__ ((__packed__));
96 
97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 			       struct btrfs_ioctl_send_args_32)
99 
100 struct btrfs_ioctl_encoded_io_args_32 {
101 	compat_uptr_t iov;
102 	compat_ulong_t iovcnt;
103 	__s64 offset;
104 	__u64 flags;
105 	__u64 len;
106 	__u64 unencoded_len;
107 	__u64 unencoded_offset;
108 	__u32 compression;
109 	__u32 encryption;
110 	__u8 reserved[64];
111 };
112 
113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 				       struct btrfs_ioctl_encoded_io_args_32)
115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 					struct btrfs_ioctl_encoded_io_args_32)
117 #endif
118 
119 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121 		unsigned int flags)
122 {
123 	if (S_ISDIR(inode->i_mode))
124 		return flags;
125 	else if (S_ISREG(inode->i_mode))
126 		return flags & ~FS_DIRSYNC_FL;
127 	else
128 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129 }
130 
131 /*
132  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133  * ioctl.
134  */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136 {
137 	unsigned int iflags = 0;
138 	u32 flags = binode->flags;
139 	u32 ro_flags = binode->ro_flags;
140 
141 	if (flags & BTRFS_INODE_SYNC)
142 		iflags |= FS_SYNC_FL;
143 	if (flags & BTRFS_INODE_IMMUTABLE)
144 		iflags |= FS_IMMUTABLE_FL;
145 	if (flags & BTRFS_INODE_APPEND)
146 		iflags |= FS_APPEND_FL;
147 	if (flags & BTRFS_INODE_NODUMP)
148 		iflags |= FS_NODUMP_FL;
149 	if (flags & BTRFS_INODE_NOATIME)
150 		iflags |= FS_NOATIME_FL;
151 	if (flags & BTRFS_INODE_DIRSYNC)
152 		iflags |= FS_DIRSYNC_FL;
153 	if (flags & BTRFS_INODE_NODATACOW)
154 		iflags |= FS_NOCOW_FL;
155 	if (ro_flags & BTRFS_INODE_RO_VERITY)
156 		iflags |= FS_VERITY_FL;
157 
158 	if (flags & BTRFS_INODE_NOCOMPRESS)
159 		iflags |= FS_NOCOMP_FL;
160 	else if (flags & BTRFS_INODE_COMPRESS)
161 		iflags |= FS_COMPR_FL;
162 
163 	return iflags;
164 }
165 
166 /*
167  * Update inode->i_flags based on the btrfs internal flags.
168  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170 {
171 	struct btrfs_inode *binode = BTRFS_I(inode);
172 	unsigned int new_fl = 0;
173 
174 	if (binode->flags & BTRFS_INODE_SYNC)
175 		new_fl |= S_SYNC;
176 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 		new_fl |= S_IMMUTABLE;
178 	if (binode->flags & BTRFS_INODE_APPEND)
179 		new_fl |= S_APPEND;
180 	if (binode->flags & BTRFS_INODE_NOATIME)
181 		new_fl |= S_NOATIME;
182 	if (binode->flags & BTRFS_INODE_DIRSYNC)
183 		new_fl |= S_DIRSYNC;
184 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185 		new_fl |= S_VERITY;
186 
187 	set_mask_bits(&inode->i_flags,
188 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 		      S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
check_fsflags(unsigned int old_flags,unsigned int flags)196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 		      FS_NOATIME_FL | FS_NODUMP_FL | \
200 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
201 		      FS_NOCOMP_FL | FS_COMPR_FL |
202 		      FS_NOCOW_FL))
203 		return -EOPNOTSUPP;
204 
205 	/* COMPR and NOCOMP on new/old are valid */
206 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 		return -EINVAL;
208 
209 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 		return -EINVAL;
211 
212 	/* NOCOW and compression options are mutually exclusive */
213 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 		return -EINVAL;
215 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222 				    unsigned int flags)
223 {
224 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 		return -EPERM;
226 
227 	return 0;
228 }
229 
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 		return -ENAMETOOLONG;
234 	return 0;
235 }
236 
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 		return -ENAMETOOLONG;
241 	return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249 {
250 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
251 
252 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
253 	return 0;
254 }
255 
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 		       struct dentry *dentry, struct fileattr *fa)
258 {
259 	struct inode *inode = d_inode(dentry);
260 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 	struct btrfs_inode *binode = BTRFS_I(inode);
262 	struct btrfs_root *root = binode->root;
263 	struct btrfs_trans_handle *trans;
264 	unsigned int fsflags, old_fsflags;
265 	int ret;
266 	const char *comp = NULL;
267 	u32 binode_flags;
268 
269 	if (btrfs_root_readonly(root))
270 		return -EROFS;
271 
272 	if (fileattr_has_fsx(fa))
273 		return -EOPNOTSUPP;
274 
275 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 	ret = check_fsflags(old_fsflags, fsflags);
278 	if (ret)
279 		return ret;
280 
281 	ret = check_fsflags_compatible(fs_info, fsflags);
282 	if (ret)
283 		return ret;
284 
285 	binode_flags = binode->flags;
286 	if (fsflags & FS_SYNC_FL)
287 		binode_flags |= BTRFS_INODE_SYNC;
288 	else
289 		binode_flags &= ~BTRFS_INODE_SYNC;
290 	if (fsflags & FS_IMMUTABLE_FL)
291 		binode_flags |= BTRFS_INODE_IMMUTABLE;
292 	else
293 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 	if (fsflags & FS_APPEND_FL)
295 		binode_flags |= BTRFS_INODE_APPEND;
296 	else
297 		binode_flags &= ~BTRFS_INODE_APPEND;
298 	if (fsflags & FS_NODUMP_FL)
299 		binode_flags |= BTRFS_INODE_NODUMP;
300 	else
301 		binode_flags &= ~BTRFS_INODE_NODUMP;
302 	if (fsflags & FS_NOATIME_FL)
303 		binode_flags |= BTRFS_INODE_NOATIME;
304 	else
305 		binode_flags &= ~BTRFS_INODE_NOATIME;
306 
307 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 	if (!fa->flags_valid) {
309 		/* 1 item for the inode */
310 		trans = btrfs_start_transaction(root, 1);
311 		if (IS_ERR(trans))
312 			return PTR_ERR(trans);
313 		goto update_flags;
314 	}
315 
316 	if (fsflags & FS_DIRSYNC_FL)
317 		binode_flags |= BTRFS_INODE_DIRSYNC;
318 	else
319 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 	if (fsflags & FS_NOCOW_FL) {
321 		if (S_ISREG(inode->i_mode)) {
322 			/*
323 			 * It's safe to turn csums off here, no extents exist.
324 			 * Otherwise we want the flag to reflect the real COW
325 			 * status of the file and will not set it.
326 			 */
327 			if (inode->i_size == 0)
328 				binode_flags |= BTRFS_INODE_NODATACOW |
329 						BTRFS_INODE_NODATASUM;
330 		} else {
331 			binode_flags |= BTRFS_INODE_NODATACOW;
332 		}
333 	} else {
334 		/*
335 		 * Revert back under same assumptions as above
336 		 */
337 		if (S_ISREG(inode->i_mode)) {
338 			if (inode->i_size == 0)
339 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 						  BTRFS_INODE_NODATASUM);
341 		} else {
342 			binode_flags &= ~BTRFS_INODE_NODATACOW;
343 		}
344 	}
345 
346 	/*
347 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 	 * flag may be changed automatically if compression code won't make
349 	 * things smaller.
350 	 */
351 	if (fsflags & FS_NOCOMP_FL) {
352 		binode_flags &= ~BTRFS_INODE_COMPRESS;
353 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 	} else if (fsflags & FS_COMPR_FL) {
355 
356 		if (IS_SWAPFILE(inode))
357 			return -ETXTBSY;
358 
359 		binode_flags |= BTRFS_INODE_COMPRESS;
360 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
361 
362 		comp = btrfs_compress_type2str(fs_info->compress_type);
363 		if (!comp || comp[0] == 0)
364 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
365 	} else {
366 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
367 	}
368 
369 	/*
370 	 * 1 for inode item
371 	 * 2 for properties
372 	 */
373 	trans = btrfs_start_transaction(root, 3);
374 	if (IS_ERR(trans))
375 		return PTR_ERR(trans);
376 
377 	if (comp) {
378 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
379 				     comp, strlen(comp), 0);
380 		if (ret) {
381 			btrfs_abort_transaction(trans, ret);
382 			goto out_end_trans;
383 		}
384 	} else {
385 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
386 				     NULL, 0, 0);
387 		if (ret && ret != -ENODATA) {
388 			btrfs_abort_transaction(trans, ret);
389 			goto out_end_trans;
390 		}
391 	}
392 
393 update_flags:
394 	binode->flags = binode_flags;
395 	btrfs_sync_inode_flags_to_i_flags(inode);
396 	inode_inc_iversion(inode);
397 	inode_set_ctime_current(inode);
398 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
399 
400  out_end_trans:
401 	btrfs_end_transaction(trans);
402 	return ret;
403 }
404 
405 /*
406  * Start exclusive operation @type, return true on success
407  */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 			enum btrfs_exclusive_operation type)
410 {
411 	bool ret = false;
412 
413 	spin_lock(&fs_info->super_lock);
414 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 		fs_info->exclusive_operation = type;
416 		ret = true;
417 	}
418 	spin_unlock(&fs_info->super_lock);
419 
420 	return ret;
421 }
422 
423 /*
424  * Conditionally allow to enter the exclusive operation in case it's compatible
425  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
426  * btrfs_exclop_finish.
427  *
428  * Compatibility:
429  * - the same type is already running
430  * - when trying to add a device and balance has been paused
431  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432  *   must check the condition first that would allow none -> @type
433  */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 				 enum btrfs_exclusive_operation type)
436 {
437 	spin_lock(&fs_info->super_lock);
438 	if (fs_info->exclusive_operation == type ||
439 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 	     type == BTRFS_EXCLOP_DEV_ADD))
441 		return true;
442 
443 	spin_unlock(&fs_info->super_lock);
444 	return false;
445 }
446 
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
448 {
449 	spin_unlock(&fs_info->super_lock);
450 }
451 
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
453 {
454 	spin_lock(&fs_info->super_lock);
455 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 	spin_unlock(&fs_info->super_lock);
457 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
458 }
459 
btrfs_exclop_balance(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation op)460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 			  enum btrfs_exclusive_operation op)
462 {
463 	switch (op) {
464 	case BTRFS_EXCLOP_BALANCE_PAUSED:
465 		spin_lock(&fs_info->super_lock);
466 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 		spin_unlock(&fs_info->super_lock);
472 		break;
473 	case BTRFS_EXCLOP_BALANCE:
474 		spin_lock(&fs_info->super_lock);
475 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 		spin_unlock(&fs_info->super_lock);
478 		break;
479 	default:
480 		btrfs_warn(fs_info,
481 			"invalid exclop balance operation %d requested", op);
482 	}
483 }
484 
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
486 {
487 	return put_user(inode->i_generation, arg);
488 }
489 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
491 					void __user *arg)
492 {
493 	struct btrfs_device *device;
494 	struct fstrim_range range;
495 	u64 minlen = ULLONG_MAX;
496 	u64 num_devices = 0;
497 	int ret;
498 
499 	if (!capable(CAP_SYS_ADMIN))
500 		return -EPERM;
501 
502 	/*
503 	 * btrfs_trim_block_group() depends on space cache, which is not
504 	 * available in zoned filesystem. So, disallow fitrim on a zoned
505 	 * filesystem for now.
506 	 */
507 	if (btrfs_is_zoned(fs_info))
508 		return -EOPNOTSUPP;
509 
510 	/*
511 	 * If the fs is mounted with nologreplay, which requires it to be
512 	 * mounted in RO mode as well, we can not allow discard on free space
513 	 * inside block groups, because log trees refer to extents that are not
514 	 * pinned in a block group's free space cache (pinning the extents is
515 	 * precisely the first phase of replaying a log tree).
516 	 */
517 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518 		return -EROFS;
519 
520 	rcu_read_lock();
521 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522 				dev_list) {
523 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
524 			continue;
525 		num_devices++;
526 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
527 				    minlen);
528 	}
529 	rcu_read_unlock();
530 
531 	if (!num_devices)
532 		return -EOPNOTSUPP;
533 	if (copy_from_user(&range, arg, sizeof(range)))
534 		return -EFAULT;
535 
536 	/*
537 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
538 	 * block group is in the logical address space, which can be any
539 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
540 	 */
541 	if (range.len < fs_info->sectorsize)
542 		return -EINVAL;
543 
544 	range.minlen = max(range.minlen, minlen);
545 	ret = btrfs_trim_fs(fs_info, &range);
546 
547 	if (copy_to_user(arg, &range, sizeof(range)))
548 		return -EFAULT;
549 
550 	return ret;
551 }
552 
btrfs_is_empty_uuid(const u8 * uuid)553 int __pure btrfs_is_empty_uuid(const u8 *uuid)
554 {
555 	int i;
556 
557 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
558 		if (uuid[i])
559 			return 0;
560 	}
561 	return 1;
562 }
563 
564 /*
565  * Calculate the number of transaction items to reserve for creating a subvolume
566  * or snapshot, not including the inode, directory entries, or parent directory.
567  */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)568 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
569 {
570 	/*
571 	 * 1 to add root block
572 	 * 1 to add root item
573 	 * 1 to add root ref
574 	 * 1 to add root backref
575 	 * 1 to add UUID item
576 	 * 1 to add qgroup info
577 	 * 1 to add qgroup limit
578 	 *
579 	 * Ideally the last two would only be accounted if qgroups are enabled,
580 	 * but that can change between now and the time we would insert them.
581 	 */
582 	unsigned int num_items = 7;
583 
584 	if (inherit) {
585 		/* 2 to add qgroup relations for each inherited qgroup */
586 		num_items += 2 * inherit->num_qgroups;
587 	}
588 	return num_items;
589 }
590 
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)591 static noinline int create_subvol(struct mnt_idmap *idmap,
592 				  struct inode *dir, struct dentry *dentry,
593 				  struct btrfs_qgroup_inherit *inherit)
594 {
595 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
596 	struct btrfs_trans_handle *trans;
597 	struct btrfs_key key;
598 	struct btrfs_root_item *root_item;
599 	struct btrfs_inode_item *inode_item;
600 	struct extent_buffer *leaf;
601 	struct btrfs_root *root = BTRFS_I(dir)->root;
602 	struct btrfs_root *new_root;
603 	struct btrfs_block_rsv block_rsv;
604 	struct timespec64 cur_time = current_time(dir);
605 	struct btrfs_new_inode_args new_inode_args = {
606 		.dir = dir,
607 		.dentry = dentry,
608 		.subvol = true,
609 	};
610 	unsigned int trans_num_items;
611 	int ret;
612 	dev_t anon_dev;
613 	u64 objectid;
614 	u64 qgroup_reserved = 0;
615 
616 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
617 	if (!root_item)
618 		return -ENOMEM;
619 
620 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
621 	if (ret)
622 		goto out_root_item;
623 
624 	/*
625 	 * Don't create subvolume whose level is not zero. Or qgroup will be
626 	 * screwed up since it assumes subvolume qgroup's level to be 0.
627 	 */
628 	if (btrfs_qgroup_level(objectid)) {
629 		ret = -ENOSPC;
630 		goto out_root_item;
631 	}
632 
633 	ret = get_anon_bdev(&anon_dev);
634 	if (ret < 0)
635 		goto out_root_item;
636 
637 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
638 	if (!new_inode_args.inode) {
639 		ret = -ENOMEM;
640 		goto out_anon_dev;
641 	}
642 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
643 	if (ret)
644 		goto out_inode;
645 	trans_num_items += create_subvol_num_items(inherit);
646 
647 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
648 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
649 					       trans_num_items, false);
650 	if (ret)
651 		goto out_new_inode_args;
652 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
653 
654 	trans = btrfs_start_transaction(root, 0);
655 	if (IS_ERR(trans)) {
656 		ret = PTR_ERR(trans);
657 		goto out_release_rsv;
658 	}
659 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
660 	qgroup_reserved = 0;
661 	trans->block_rsv = &block_rsv;
662 	trans->bytes_reserved = block_rsv.size;
663 
664 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
665 	if (ret)
666 		goto out;
667 
668 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
669 				      0, BTRFS_NESTING_NORMAL);
670 	if (IS_ERR(leaf)) {
671 		ret = PTR_ERR(leaf);
672 		goto out;
673 	}
674 
675 	btrfs_mark_buffer_dirty(trans, leaf);
676 
677 	inode_item = &root_item->inode;
678 	btrfs_set_stack_inode_generation(inode_item, 1);
679 	btrfs_set_stack_inode_size(inode_item, 3);
680 	btrfs_set_stack_inode_nlink(inode_item, 1);
681 	btrfs_set_stack_inode_nbytes(inode_item,
682 				     fs_info->nodesize);
683 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
684 
685 	btrfs_set_root_flags(root_item, 0);
686 	btrfs_set_root_limit(root_item, 0);
687 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
688 
689 	btrfs_set_root_bytenr(root_item, leaf->start);
690 	btrfs_set_root_generation(root_item, trans->transid);
691 	btrfs_set_root_level(root_item, 0);
692 	btrfs_set_root_refs(root_item, 1);
693 	btrfs_set_root_used(root_item, leaf->len);
694 	btrfs_set_root_last_snapshot(root_item, 0);
695 
696 	btrfs_set_root_generation_v2(root_item,
697 			btrfs_root_generation(root_item));
698 	generate_random_guid(root_item->uuid);
699 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
700 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
701 	root_item->ctime = root_item->otime;
702 	btrfs_set_root_ctransid(root_item, trans->transid);
703 	btrfs_set_root_otransid(root_item, trans->transid);
704 
705 	btrfs_tree_unlock(leaf);
706 
707 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
708 
709 	key.objectid = objectid;
710 	key.offset = 0;
711 	key.type = BTRFS_ROOT_ITEM_KEY;
712 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
713 				root_item);
714 	if (ret) {
715 		int ret2;
716 
717 		/*
718 		 * Since we don't abort the transaction in this case, free the
719 		 * tree block so that we don't leak space and leave the
720 		 * filesystem in an inconsistent state (an extent item in the
721 		 * extent tree with a backreference for a root that does not
722 		 * exists).
723 		 */
724 		btrfs_tree_lock(leaf);
725 		btrfs_clear_buffer_dirty(trans, leaf);
726 		btrfs_tree_unlock(leaf);
727 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
728 		if (ret2 < 0)
729 			btrfs_abort_transaction(trans, ret2);
730 		free_extent_buffer(leaf);
731 		goto out;
732 	}
733 
734 	free_extent_buffer(leaf);
735 	leaf = NULL;
736 
737 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
738 	if (IS_ERR(new_root)) {
739 		ret = PTR_ERR(new_root);
740 		btrfs_abort_transaction(trans, ret);
741 		goto out;
742 	}
743 	/* anon_dev is owned by new_root now. */
744 	anon_dev = 0;
745 	BTRFS_I(new_inode_args.inode)->root = new_root;
746 	/* ... and new_root is owned by new_inode_args.inode now. */
747 
748 	ret = btrfs_record_root_in_trans(trans, new_root);
749 	if (ret) {
750 		btrfs_abort_transaction(trans, ret);
751 		goto out;
752 	}
753 
754 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
755 				  BTRFS_UUID_KEY_SUBVOL, objectid);
756 	if (ret) {
757 		btrfs_abort_transaction(trans, ret);
758 		goto out;
759 	}
760 
761 	ret = btrfs_create_new_inode(trans, &new_inode_args);
762 	if (ret) {
763 		btrfs_abort_transaction(trans, ret);
764 		goto out;
765 	}
766 
767 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
768 
769 	d_instantiate_new(dentry, new_inode_args.inode);
770 	new_inode_args.inode = NULL;
771 
772 out:
773 	trans->block_rsv = NULL;
774 	trans->bytes_reserved = 0;
775 	btrfs_end_transaction(trans);
776 out_release_rsv:
777 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
778 	if (qgroup_reserved)
779 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
780 out_new_inode_args:
781 	btrfs_new_inode_args_destroy(&new_inode_args);
782 out_inode:
783 	iput(new_inode_args.inode);
784 out_anon_dev:
785 	if (anon_dev)
786 		free_anon_bdev(anon_dev);
787 out_root_item:
788 	kfree(root_item);
789 	return ret;
790 }
791 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)792 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
793 			   struct dentry *dentry, bool readonly,
794 			   struct btrfs_qgroup_inherit *inherit)
795 {
796 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
797 	struct inode *inode;
798 	struct btrfs_pending_snapshot *pending_snapshot;
799 	unsigned int trans_num_items;
800 	struct btrfs_trans_handle *trans;
801 	struct btrfs_block_rsv *block_rsv;
802 	u64 qgroup_reserved = 0;
803 	int ret;
804 
805 	/* We do not support snapshotting right now. */
806 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
807 		btrfs_warn(fs_info,
808 			   "extent tree v2 doesn't support snapshotting yet");
809 		return -EOPNOTSUPP;
810 	}
811 
812 	if (btrfs_root_refs(&root->root_item) == 0)
813 		return -ENOENT;
814 
815 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
816 		return -EINVAL;
817 
818 	if (atomic_read(&root->nr_swapfiles)) {
819 		btrfs_warn(fs_info,
820 			   "cannot snapshot subvolume with active swapfile");
821 		return -ETXTBSY;
822 	}
823 
824 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
825 	if (!pending_snapshot)
826 		return -ENOMEM;
827 
828 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
829 	if (ret < 0)
830 		goto free_pending;
831 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
832 			GFP_KERNEL);
833 	pending_snapshot->path = btrfs_alloc_path();
834 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
835 		ret = -ENOMEM;
836 		goto free_pending;
837 	}
838 
839 	block_rsv = &pending_snapshot->block_rsv;
840 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
841 	/*
842 	 * 1 to add dir item
843 	 * 1 to add dir index
844 	 * 1 to update parent inode item
845 	 */
846 	trans_num_items = create_subvol_num_items(inherit) + 3;
847 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
848 					       trans_num_items, false);
849 	if (ret)
850 		goto free_pending;
851 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
852 
853 	pending_snapshot->dentry = dentry;
854 	pending_snapshot->root = root;
855 	pending_snapshot->readonly = readonly;
856 	pending_snapshot->dir = BTRFS_I(dir);
857 	pending_snapshot->inherit = inherit;
858 
859 	trans = btrfs_start_transaction(root, 0);
860 	if (IS_ERR(trans)) {
861 		ret = PTR_ERR(trans);
862 		goto fail;
863 	}
864 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
865 	if (ret) {
866 		btrfs_end_transaction(trans);
867 		goto fail;
868 	}
869 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
870 	qgroup_reserved = 0;
871 
872 	trans->pending_snapshot = pending_snapshot;
873 
874 	ret = btrfs_commit_transaction(trans);
875 	if (ret)
876 		goto fail;
877 
878 	ret = pending_snapshot->error;
879 	if (ret)
880 		goto fail;
881 
882 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
883 	if (ret)
884 		goto fail;
885 
886 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
887 	if (IS_ERR(inode)) {
888 		ret = PTR_ERR(inode);
889 		goto fail;
890 	}
891 
892 	d_instantiate(dentry, inode);
893 	ret = 0;
894 	pending_snapshot->anon_dev = 0;
895 fail:
896 	/* Prevent double freeing of anon_dev */
897 	if (ret && pending_snapshot->snap)
898 		pending_snapshot->snap->anon_dev = 0;
899 	btrfs_put_root(pending_snapshot->snap);
900 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
901 	if (qgroup_reserved)
902 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
903 free_pending:
904 	if (pending_snapshot->anon_dev)
905 		free_anon_bdev(pending_snapshot->anon_dev);
906 	kfree(pending_snapshot->root_item);
907 	btrfs_free_path(pending_snapshot->path);
908 	kfree(pending_snapshot);
909 
910 	return ret;
911 }
912 
913 /*  copy of may_delete in fs/namei.c()
914  *	Check whether we can remove a link victim from directory dir, check
915  *  whether the type of victim is right.
916  *  1. We can't do it if dir is read-only (done in permission())
917  *  2. We should have write and exec permissions on dir
918  *  3. We can't remove anything from append-only dir
919  *  4. We can't do anything with immutable dir (done in permission())
920  *  5. If the sticky bit on dir is set we should either
921  *	a. be owner of dir, or
922  *	b. be owner of victim, or
923  *	c. have CAP_FOWNER capability
924  *  6. If the victim is append-only or immutable we can't do anything with
925  *     links pointing to it.
926  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
927  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
928  *  9. We can't remove a root or mountpoint.
929  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
930  *     nfs_async_unlink().
931  */
932 
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)933 static int btrfs_may_delete(struct mnt_idmap *idmap,
934 			    struct inode *dir, struct dentry *victim, int isdir)
935 {
936 	int error;
937 
938 	if (d_really_is_negative(victim))
939 		return -ENOENT;
940 
941 	/* The @victim is not inside @dir. */
942 	if (d_inode(victim->d_parent) != dir)
943 		return -EINVAL;
944 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
945 
946 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
947 	if (error)
948 		return error;
949 	if (IS_APPEND(dir))
950 		return -EPERM;
951 	if (check_sticky(idmap, dir, d_inode(victim)) ||
952 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
953 	    IS_SWAPFILE(d_inode(victim)))
954 		return -EPERM;
955 	if (isdir) {
956 		if (!d_is_dir(victim))
957 			return -ENOTDIR;
958 		if (IS_ROOT(victim))
959 			return -EBUSY;
960 	} else if (d_is_dir(victim))
961 		return -EISDIR;
962 	if (IS_DEADDIR(dir))
963 		return -ENOENT;
964 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
965 		return -EBUSY;
966 	return 0;
967 }
968 
969 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)970 static inline int btrfs_may_create(struct mnt_idmap *idmap,
971 				   struct inode *dir, struct dentry *child)
972 {
973 	if (d_really_is_positive(child))
974 		return -EEXIST;
975 	if (IS_DEADDIR(dir))
976 		return -ENOENT;
977 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
978 		return -EOVERFLOW;
979 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
980 }
981 
982 /*
983  * Create a new subvolume below @parent.  This is largely modeled after
984  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
985  * inside this filesystem so it's quite a bit simpler.
986  */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)987 static noinline int btrfs_mksubvol(const struct path *parent,
988 				   struct mnt_idmap *idmap,
989 				   const char *name, int namelen,
990 				   struct btrfs_root *snap_src,
991 				   bool readonly,
992 				   struct btrfs_qgroup_inherit *inherit)
993 {
994 	struct inode *dir = d_inode(parent->dentry);
995 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
996 	struct dentry *dentry;
997 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
998 	int error;
999 
1000 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1001 	if (error == -EINTR)
1002 		return error;
1003 
1004 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
1005 	error = PTR_ERR(dentry);
1006 	if (IS_ERR(dentry))
1007 		goto out_unlock;
1008 
1009 	error = btrfs_may_create(idmap, dir, dentry);
1010 	if (error)
1011 		goto out_dput;
1012 
1013 	/*
1014 	 * even if this name doesn't exist, we may get hash collisions.
1015 	 * check for them now when we can safely fail
1016 	 */
1017 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1018 					       dir->i_ino, &name_str);
1019 	if (error)
1020 		goto out_dput;
1021 
1022 	down_read(&fs_info->subvol_sem);
1023 
1024 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1025 		goto out_up_read;
1026 
1027 	if (snap_src)
1028 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1029 	else
1030 		error = create_subvol(idmap, dir, dentry, inherit);
1031 
1032 	if (!error)
1033 		fsnotify_mkdir(dir, dentry);
1034 out_up_read:
1035 	up_read(&fs_info->subvol_sem);
1036 out_dput:
1037 	dput(dentry);
1038 out_unlock:
1039 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1040 	return error;
1041 }
1042 
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1043 static noinline int btrfs_mksnapshot(const struct path *parent,
1044 				   struct mnt_idmap *idmap,
1045 				   const char *name, int namelen,
1046 				   struct btrfs_root *root,
1047 				   bool readonly,
1048 				   struct btrfs_qgroup_inherit *inherit)
1049 {
1050 	int ret;
1051 	bool snapshot_force_cow = false;
1052 
1053 	/*
1054 	 * Force new buffered writes to reserve space even when NOCOW is
1055 	 * possible. This is to avoid later writeback (running dealloc) to
1056 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1057 	 */
1058 	btrfs_drew_read_lock(&root->snapshot_lock);
1059 
1060 	ret = btrfs_start_delalloc_snapshot(root, false);
1061 	if (ret)
1062 		goto out;
1063 
1064 	/*
1065 	 * All previous writes have started writeback in NOCOW mode, so now
1066 	 * we force future writes to fallback to COW mode during snapshot
1067 	 * creation.
1068 	 */
1069 	atomic_inc(&root->snapshot_force_cow);
1070 	snapshot_force_cow = true;
1071 
1072 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1073 
1074 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1075 			     root, readonly, inherit);
1076 out:
1077 	if (snapshot_force_cow)
1078 		atomic_dec(&root->snapshot_force_cow);
1079 	btrfs_drew_read_unlock(&root->snapshot_lock);
1080 	return ret;
1081 }
1082 
1083 /*
1084  * Try to start exclusive operation @type or cancel it if it's running.
1085  *
1086  * Return:
1087  *   0        - normal mode, newly claimed op started
1088  *  >0        - normal mode, something else is running,
1089  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1090  * ECANCELED  - cancel mode, successful cancel
1091  * ENOTCONN   - cancel mode, operation not running anymore
1092  */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1093 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1094 			enum btrfs_exclusive_operation type, bool cancel)
1095 {
1096 	if (!cancel) {
1097 		/* Start normal op */
1098 		if (!btrfs_exclop_start(fs_info, type))
1099 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1100 		/* Exclusive operation is now claimed */
1101 		return 0;
1102 	}
1103 
1104 	/* Cancel running op */
1105 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1106 		/*
1107 		 * This blocks any exclop finish from setting it to NONE, so we
1108 		 * request cancellation. Either it runs and we will wait for it,
1109 		 * or it has finished and no waiting will happen.
1110 		 */
1111 		atomic_inc(&fs_info->reloc_cancel_req);
1112 		btrfs_exclop_start_unlock(fs_info);
1113 
1114 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1115 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1116 				    TASK_INTERRUPTIBLE);
1117 
1118 		return -ECANCELED;
1119 	}
1120 
1121 	/* Something else is running or none */
1122 	return -ENOTCONN;
1123 }
1124 
btrfs_ioctl_resize(struct file * file,void __user * arg)1125 static noinline int btrfs_ioctl_resize(struct file *file,
1126 					void __user *arg)
1127 {
1128 	BTRFS_DEV_LOOKUP_ARGS(args);
1129 	struct inode *inode = file_inode(file);
1130 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1131 	u64 new_size;
1132 	u64 old_size;
1133 	u64 devid = 1;
1134 	struct btrfs_root *root = BTRFS_I(inode)->root;
1135 	struct btrfs_ioctl_vol_args *vol_args;
1136 	struct btrfs_trans_handle *trans;
1137 	struct btrfs_device *device = NULL;
1138 	char *sizestr;
1139 	char *retptr;
1140 	char *devstr = NULL;
1141 	int ret = 0;
1142 	int mod = 0;
1143 	bool cancel;
1144 
1145 	if (!capable(CAP_SYS_ADMIN))
1146 		return -EPERM;
1147 
1148 	ret = mnt_want_write_file(file);
1149 	if (ret)
1150 		return ret;
1151 
1152 	/*
1153 	 * Read the arguments before checking exclusivity to be able to
1154 	 * distinguish regular resize and cancel
1155 	 */
1156 	vol_args = memdup_user(arg, sizeof(*vol_args));
1157 	if (IS_ERR(vol_args)) {
1158 		ret = PTR_ERR(vol_args);
1159 		goto out_drop;
1160 	}
1161 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1162 	if (ret < 0)
1163 		goto out_free;
1164 
1165 	sizestr = vol_args->name;
1166 	cancel = (strcmp("cancel", sizestr) == 0);
1167 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1168 	if (ret)
1169 		goto out_free;
1170 	/* Exclusive operation is now claimed */
1171 
1172 	devstr = strchr(sizestr, ':');
1173 	if (devstr) {
1174 		sizestr = devstr + 1;
1175 		*devstr = '\0';
1176 		devstr = vol_args->name;
1177 		ret = kstrtoull(devstr, 10, &devid);
1178 		if (ret)
1179 			goto out_finish;
1180 		if (!devid) {
1181 			ret = -EINVAL;
1182 			goto out_finish;
1183 		}
1184 		btrfs_info(fs_info, "resizing devid %llu", devid);
1185 	}
1186 
1187 	args.devid = devid;
1188 	device = btrfs_find_device(fs_info->fs_devices, &args);
1189 	if (!device) {
1190 		btrfs_info(fs_info, "resizer unable to find device %llu",
1191 			   devid);
1192 		ret = -ENODEV;
1193 		goto out_finish;
1194 	}
1195 
1196 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1197 		btrfs_info(fs_info,
1198 			   "resizer unable to apply on readonly device %llu",
1199 		       devid);
1200 		ret = -EPERM;
1201 		goto out_finish;
1202 	}
1203 
1204 	if (!strcmp(sizestr, "max"))
1205 		new_size = bdev_nr_bytes(device->bdev);
1206 	else {
1207 		if (sizestr[0] == '-') {
1208 			mod = -1;
1209 			sizestr++;
1210 		} else if (sizestr[0] == '+') {
1211 			mod = 1;
1212 			sizestr++;
1213 		}
1214 		new_size = memparse(sizestr, &retptr);
1215 		if (*retptr != '\0' || new_size == 0) {
1216 			ret = -EINVAL;
1217 			goto out_finish;
1218 		}
1219 	}
1220 
1221 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1222 		ret = -EPERM;
1223 		goto out_finish;
1224 	}
1225 
1226 	old_size = btrfs_device_get_total_bytes(device);
1227 
1228 	if (mod < 0) {
1229 		if (new_size > old_size) {
1230 			ret = -EINVAL;
1231 			goto out_finish;
1232 		}
1233 		new_size = old_size - new_size;
1234 	} else if (mod > 0) {
1235 		if (new_size > ULLONG_MAX - old_size) {
1236 			ret = -ERANGE;
1237 			goto out_finish;
1238 		}
1239 		new_size = old_size + new_size;
1240 	}
1241 
1242 	if (new_size < SZ_256M) {
1243 		ret = -EINVAL;
1244 		goto out_finish;
1245 	}
1246 	if (new_size > bdev_nr_bytes(device->bdev)) {
1247 		ret = -EFBIG;
1248 		goto out_finish;
1249 	}
1250 
1251 	new_size = round_down(new_size, fs_info->sectorsize);
1252 
1253 	if (new_size > old_size) {
1254 		trans = btrfs_start_transaction(root, 0);
1255 		if (IS_ERR(trans)) {
1256 			ret = PTR_ERR(trans);
1257 			goto out_finish;
1258 		}
1259 		ret = btrfs_grow_device(trans, device, new_size);
1260 		btrfs_commit_transaction(trans);
1261 	} else if (new_size < old_size) {
1262 		ret = btrfs_shrink_device(device, new_size);
1263 	} /* equal, nothing need to do */
1264 
1265 	if (ret == 0 && new_size != old_size)
1266 		btrfs_info_in_rcu(fs_info,
1267 			"resize device %s (devid %llu) from %llu to %llu",
1268 			btrfs_dev_name(device), device->devid,
1269 			old_size, new_size);
1270 out_finish:
1271 	btrfs_exclop_finish(fs_info);
1272 out_free:
1273 	kfree(vol_args);
1274 out_drop:
1275 	mnt_drop_write_file(file);
1276 	return ret;
1277 }
1278 
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1279 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1280 				struct mnt_idmap *idmap,
1281 				const char *name, unsigned long fd, int subvol,
1282 				bool readonly,
1283 				struct btrfs_qgroup_inherit *inherit)
1284 {
1285 	int namelen;
1286 	int ret = 0;
1287 
1288 	if (!S_ISDIR(file_inode(file)->i_mode))
1289 		return -ENOTDIR;
1290 
1291 	ret = mnt_want_write_file(file);
1292 	if (ret)
1293 		goto out;
1294 
1295 	namelen = strlen(name);
1296 	if (strchr(name, '/')) {
1297 		ret = -EINVAL;
1298 		goto out_drop_write;
1299 	}
1300 
1301 	if (name[0] == '.' &&
1302 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1303 		ret = -EEXIST;
1304 		goto out_drop_write;
1305 	}
1306 
1307 	if (subvol) {
1308 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1309 				     namelen, NULL, readonly, inherit);
1310 	} else {
1311 		struct fd src = fdget(fd);
1312 		struct inode *src_inode;
1313 		if (!fd_file(src)) {
1314 			ret = -EINVAL;
1315 			goto out_drop_write;
1316 		}
1317 
1318 		src_inode = file_inode(fd_file(src));
1319 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1320 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1321 				   "Snapshot src from another FS");
1322 			ret = -EXDEV;
1323 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1324 			/*
1325 			 * Subvolume creation is not restricted, but snapshots
1326 			 * are limited to own subvolumes only
1327 			 */
1328 			ret = -EPERM;
1329 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1330 			/*
1331 			 * Snapshots must be made with the src_inode referring
1332 			 * to the subvolume inode, otherwise the permission
1333 			 * checking above is useless because we may have
1334 			 * permission on a lower directory but not the subvol
1335 			 * itself.
1336 			 */
1337 			ret = -EINVAL;
1338 		} else {
1339 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1340 					       name, namelen,
1341 					       BTRFS_I(src_inode)->root,
1342 					       readonly, inherit);
1343 		}
1344 		fdput(src);
1345 	}
1346 out_drop_write:
1347 	mnt_drop_write_file(file);
1348 out:
1349 	return ret;
1350 }
1351 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1352 static noinline int btrfs_ioctl_snap_create(struct file *file,
1353 					    void __user *arg, int subvol)
1354 {
1355 	struct btrfs_ioctl_vol_args *vol_args;
1356 	int ret;
1357 
1358 	if (!S_ISDIR(file_inode(file)->i_mode))
1359 		return -ENOTDIR;
1360 
1361 	vol_args = memdup_user(arg, sizeof(*vol_args));
1362 	if (IS_ERR(vol_args))
1363 		return PTR_ERR(vol_args);
1364 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1365 	if (ret < 0)
1366 		goto out;
1367 
1368 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1369 					vol_args->name, vol_args->fd, subvol,
1370 					false, NULL);
1371 
1372 out:
1373 	kfree(vol_args);
1374 	return ret;
1375 }
1376 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1377 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1378 					       void __user *arg, int subvol)
1379 {
1380 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1381 	int ret;
1382 	bool readonly = false;
1383 	struct btrfs_qgroup_inherit *inherit = NULL;
1384 
1385 	if (!S_ISDIR(file_inode(file)->i_mode))
1386 		return -ENOTDIR;
1387 
1388 	vol_args = memdup_user(arg, sizeof(*vol_args));
1389 	if (IS_ERR(vol_args))
1390 		return PTR_ERR(vol_args);
1391 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1392 	if (ret < 0)
1393 		goto free_args;
1394 
1395 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1396 		ret = -EOPNOTSUPP;
1397 		goto free_args;
1398 	}
1399 
1400 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1401 		readonly = true;
1402 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1403 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1404 
1405 		if (vol_args->size < sizeof(*inherit) ||
1406 		    vol_args->size > PAGE_SIZE) {
1407 			ret = -EINVAL;
1408 			goto free_args;
1409 		}
1410 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1411 		if (IS_ERR(inherit)) {
1412 			ret = PTR_ERR(inherit);
1413 			goto free_args;
1414 		}
1415 
1416 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1417 		if (ret < 0)
1418 			goto free_inherit;
1419 	}
1420 
1421 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1422 					vol_args->name, vol_args->fd, subvol,
1423 					readonly, inherit);
1424 	if (ret)
1425 		goto free_inherit;
1426 free_inherit:
1427 	kfree(inherit);
1428 free_args:
1429 	kfree(vol_args);
1430 	return ret;
1431 }
1432 
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)1433 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1434 						void __user *arg)
1435 {
1436 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1437 	struct btrfs_root *root = BTRFS_I(inode)->root;
1438 	int ret = 0;
1439 	u64 flags = 0;
1440 
1441 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1442 		return -EINVAL;
1443 
1444 	down_read(&fs_info->subvol_sem);
1445 	if (btrfs_root_readonly(root))
1446 		flags |= BTRFS_SUBVOL_RDONLY;
1447 	up_read(&fs_info->subvol_sem);
1448 
1449 	if (copy_to_user(arg, &flags, sizeof(flags)))
1450 		ret = -EFAULT;
1451 
1452 	return ret;
1453 }
1454 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1455 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1456 					      void __user *arg)
1457 {
1458 	struct inode *inode = file_inode(file);
1459 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1460 	struct btrfs_root *root = BTRFS_I(inode)->root;
1461 	struct btrfs_trans_handle *trans;
1462 	u64 root_flags;
1463 	u64 flags;
1464 	int ret = 0;
1465 
1466 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1467 		return -EPERM;
1468 
1469 	ret = mnt_want_write_file(file);
1470 	if (ret)
1471 		goto out;
1472 
1473 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1474 		ret = -EINVAL;
1475 		goto out_drop_write;
1476 	}
1477 
1478 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1479 		ret = -EFAULT;
1480 		goto out_drop_write;
1481 	}
1482 
1483 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1484 		ret = -EOPNOTSUPP;
1485 		goto out_drop_write;
1486 	}
1487 
1488 	down_write(&fs_info->subvol_sem);
1489 
1490 	/* nothing to do */
1491 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1492 		goto out_drop_sem;
1493 
1494 	root_flags = btrfs_root_flags(&root->root_item);
1495 	if (flags & BTRFS_SUBVOL_RDONLY) {
1496 		btrfs_set_root_flags(&root->root_item,
1497 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1498 	} else {
1499 		/*
1500 		 * Block RO -> RW transition if this subvolume is involved in
1501 		 * send
1502 		 */
1503 		spin_lock(&root->root_item_lock);
1504 		if (root->send_in_progress == 0) {
1505 			btrfs_set_root_flags(&root->root_item,
1506 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1507 			spin_unlock(&root->root_item_lock);
1508 		} else {
1509 			spin_unlock(&root->root_item_lock);
1510 			btrfs_warn(fs_info,
1511 				   "Attempt to set subvolume %llu read-write during send",
1512 				   btrfs_root_id(root));
1513 			ret = -EPERM;
1514 			goto out_drop_sem;
1515 		}
1516 	}
1517 
1518 	trans = btrfs_start_transaction(root, 1);
1519 	if (IS_ERR(trans)) {
1520 		ret = PTR_ERR(trans);
1521 		goto out_reset;
1522 	}
1523 
1524 	ret = btrfs_update_root(trans, fs_info->tree_root,
1525 				&root->root_key, &root->root_item);
1526 	if (ret < 0) {
1527 		btrfs_end_transaction(trans);
1528 		goto out_reset;
1529 	}
1530 
1531 	ret = btrfs_commit_transaction(trans);
1532 
1533 out_reset:
1534 	if (ret)
1535 		btrfs_set_root_flags(&root->root_item, root_flags);
1536 out_drop_sem:
1537 	up_write(&fs_info->subvol_sem);
1538 out_drop_write:
1539 	mnt_drop_write_file(file);
1540 out:
1541 	return ret;
1542 }
1543 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1544 static noinline int key_in_sk(struct btrfs_key *key,
1545 			      struct btrfs_ioctl_search_key *sk)
1546 {
1547 	struct btrfs_key test;
1548 	int ret;
1549 
1550 	test.objectid = sk->min_objectid;
1551 	test.type = sk->min_type;
1552 	test.offset = sk->min_offset;
1553 
1554 	ret = btrfs_comp_cpu_keys(key, &test);
1555 	if (ret < 0)
1556 		return 0;
1557 
1558 	test.objectid = sk->max_objectid;
1559 	test.type = sk->max_type;
1560 	test.offset = sk->max_offset;
1561 
1562 	ret = btrfs_comp_cpu_keys(key, &test);
1563 	if (ret > 0)
1564 		return 0;
1565 	return 1;
1566 }
1567 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1568 static noinline int copy_to_sk(struct btrfs_path *path,
1569 			       struct btrfs_key *key,
1570 			       struct btrfs_ioctl_search_key *sk,
1571 			       u64 *buf_size,
1572 			       char __user *ubuf,
1573 			       unsigned long *sk_offset,
1574 			       int *num_found)
1575 {
1576 	u64 found_transid;
1577 	struct extent_buffer *leaf;
1578 	struct btrfs_ioctl_search_header sh;
1579 	struct btrfs_key test;
1580 	unsigned long item_off;
1581 	unsigned long item_len;
1582 	int nritems;
1583 	int i;
1584 	int slot;
1585 	int ret = 0;
1586 
1587 	leaf = path->nodes[0];
1588 	slot = path->slots[0];
1589 	nritems = btrfs_header_nritems(leaf);
1590 
1591 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1592 		i = nritems;
1593 		goto advance_key;
1594 	}
1595 	found_transid = btrfs_header_generation(leaf);
1596 
1597 	for (i = slot; i < nritems; i++) {
1598 		item_off = btrfs_item_ptr_offset(leaf, i);
1599 		item_len = btrfs_item_size(leaf, i);
1600 
1601 		btrfs_item_key_to_cpu(leaf, key, i);
1602 		if (!key_in_sk(key, sk))
1603 			continue;
1604 
1605 		if (sizeof(sh) + item_len > *buf_size) {
1606 			if (*num_found) {
1607 				ret = 1;
1608 				goto out;
1609 			}
1610 
1611 			/*
1612 			 * return one empty item back for v1, which does not
1613 			 * handle -EOVERFLOW
1614 			 */
1615 
1616 			*buf_size = sizeof(sh) + item_len;
1617 			item_len = 0;
1618 			ret = -EOVERFLOW;
1619 		}
1620 
1621 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1622 			ret = 1;
1623 			goto out;
1624 		}
1625 
1626 		sh.objectid = key->objectid;
1627 		sh.offset = key->offset;
1628 		sh.type = key->type;
1629 		sh.len = item_len;
1630 		sh.transid = found_transid;
1631 
1632 		/*
1633 		 * Copy search result header. If we fault then loop again so we
1634 		 * can fault in the pages and -EFAULT there if there's a
1635 		 * problem. Otherwise we'll fault and then copy the buffer in
1636 		 * properly this next time through
1637 		 */
1638 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1639 			ret = 0;
1640 			goto out;
1641 		}
1642 
1643 		*sk_offset += sizeof(sh);
1644 
1645 		if (item_len) {
1646 			char __user *up = ubuf + *sk_offset;
1647 			/*
1648 			 * Copy the item, same behavior as above, but reset the
1649 			 * * sk_offset so we copy the full thing again.
1650 			 */
1651 			if (read_extent_buffer_to_user_nofault(leaf, up,
1652 						item_off, item_len)) {
1653 				ret = 0;
1654 				*sk_offset -= sizeof(sh);
1655 				goto out;
1656 			}
1657 
1658 			*sk_offset += item_len;
1659 		}
1660 		(*num_found)++;
1661 
1662 		if (ret) /* -EOVERFLOW from above */
1663 			goto out;
1664 
1665 		if (*num_found >= sk->nr_items) {
1666 			ret = 1;
1667 			goto out;
1668 		}
1669 	}
1670 advance_key:
1671 	ret = 0;
1672 	test.objectid = sk->max_objectid;
1673 	test.type = sk->max_type;
1674 	test.offset = sk->max_offset;
1675 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1676 		ret = 1;
1677 	else if (key->offset < (u64)-1)
1678 		key->offset++;
1679 	else if (key->type < (u8)-1) {
1680 		key->offset = 0;
1681 		key->type++;
1682 	} else if (key->objectid < (u64)-1) {
1683 		key->offset = 0;
1684 		key->type = 0;
1685 		key->objectid++;
1686 	} else
1687 		ret = 1;
1688 out:
1689 	/*
1690 	 *  0: all items from this leaf copied, continue with next
1691 	 *  1: * more items can be copied, but unused buffer is too small
1692 	 *     * all items were found
1693 	 *     Either way, it will stops the loop which iterates to the next
1694 	 *     leaf
1695 	 *  -EOVERFLOW: item was to large for buffer
1696 	 *  -EFAULT: could not copy extent buffer back to userspace
1697 	 */
1698 	return ret;
1699 }
1700 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1701 static noinline int search_ioctl(struct inode *inode,
1702 				 struct btrfs_ioctl_search_key *sk,
1703 				 u64 *buf_size,
1704 				 char __user *ubuf)
1705 {
1706 	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1707 	struct btrfs_root *root;
1708 	struct btrfs_key key;
1709 	struct btrfs_path *path;
1710 	int ret;
1711 	int num_found = 0;
1712 	unsigned long sk_offset = 0;
1713 
1714 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1715 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1716 		return -EOVERFLOW;
1717 	}
1718 
1719 	path = btrfs_alloc_path();
1720 	if (!path)
1721 		return -ENOMEM;
1722 
1723 	if (sk->tree_id == 0) {
1724 		/* search the root of the inode that was passed */
1725 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1726 	} else {
1727 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1728 		if (IS_ERR(root)) {
1729 			btrfs_free_path(path);
1730 			return PTR_ERR(root);
1731 		}
1732 	}
1733 
1734 	key.objectid = sk->min_objectid;
1735 	key.type = sk->min_type;
1736 	key.offset = sk->min_offset;
1737 
1738 	while (1) {
1739 		ret = -EFAULT;
1740 		/*
1741 		 * Ensure that the whole user buffer is faulted in at sub-page
1742 		 * granularity, otherwise the loop may live-lock.
1743 		 */
1744 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1745 					       *buf_size - sk_offset))
1746 			break;
1747 
1748 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1749 		if (ret != 0) {
1750 			if (ret > 0)
1751 				ret = 0;
1752 			goto err;
1753 		}
1754 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1755 				 &sk_offset, &num_found);
1756 		btrfs_release_path(path);
1757 		if (ret)
1758 			break;
1759 
1760 	}
1761 	if (ret > 0)
1762 		ret = 0;
1763 err:
1764 	sk->nr_items = num_found;
1765 	btrfs_put_root(root);
1766 	btrfs_free_path(path);
1767 	return ret;
1768 }
1769 
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)1770 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1771 					    void __user *argp)
1772 {
1773 	struct btrfs_ioctl_search_args __user *uargs = argp;
1774 	struct btrfs_ioctl_search_key sk;
1775 	int ret;
1776 	u64 buf_size;
1777 
1778 	if (!capable(CAP_SYS_ADMIN))
1779 		return -EPERM;
1780 
1781 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1782 		return -EFAULT;
1783 
1784 	buf_size = sizeof(uargs->buf);
1785 
1786 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1787 
1788 	/*
1789 	 * In the origin implementation an overflow is handled by returning a
1790 	 * search header with a len of zero, so reset ret.
1791 	 */
1792 	if (ret == -EOVERFLOW)
1793 		ret = 0;
1794 
1795 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1796 		ret = -EFAULT;
1797 	return ret;
1798 }
1799 
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)1800 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1801 					       void __user *argp)
1802 {
1803 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1804 	struct btrfs_ioctl_search_args_v2 args;
1805 	int ret;
1806 	u64 buf_size;
1807 	const u64 buf_limit = SZ_16M;
1808 
1809 	if (!capable(CAP_SYS_ADMIN))
1810 		return -EPERM;
1811 
1812 	/* copy search header and buffer size */
1813 	if (copy_from_user(&args, uarg, sizeof(args)))
1814 		return -EFAULT;
1815 
1816 	buf_size = args.buf_size;
1817 
1818 	/* limit result size to 16MB */
1819 	if (buf_size > buf_limit)
1820 		buf_size = buf_limit;
1821 
1822 	ret = search_ioctl(inode, &args.key, &buf_size,
1823 			   (char __user *)(&uarg->buf[0]));
1824 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1825 		ret = -EFAULT;
1826 	else if (ret == -EOVERFLOW &&
1827 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1828 		ret = -EFAULT;
1829 
1830 	return ret;
1831 }
1832 
1833 /*
1834  * Search INODE_REFs to identify path name of 'dirid' directory
1835  * in a 'tree_id' tree. and sets path name to 'name'.
1836  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1837 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1838 				u64 tree_id, u64 dirid, char *name)
1839 {
1840 	struct btrfs_root *root;
1841 	struct btrfs_key key;
1842 	char *ptr;
1843 	int ret = -1;
1844 	int slot;
1845 	int len;
1846 	int total_len = 0;
1847 	struct btrfs_inode_ref *iref;
1848 	struct extent_buffer *l;
1849 	struct btrfs_path *path;
1850 
1851 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1852 		name[0]='\0';
1853 		return 0;
1854 	}
1855 
1856 	path = btrfs_alloc_path();
1857 	if (!path)
1858 		return -ENOMEM;
1859 
1860 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1861 
1862 	root = btrfs_get_fs_root(info, tree_id, true);
1863 	if (IS_ERR(root)) {
1864 		ret = PTR_ERR(root);
1865 		root = NULL;
1866 		goto out;
1867 	}
1868 
1869 	key.objectid = dirid;
1870 	key.type = BTRFS_INODE_REF_KEY;
1871 	key.offset = (u64)-1;
1872 
1873 	while (1) {
1874 		ret = btrfs_search_backwards(root, &key, path);
1875 		if (ret < 0)
1876 			goto out;
1877 		else if (ret > 0) {
1878 			ret = -ENOENT;
1879 			goto out;
1880 		}
1881 
1882 		l = path->nodes[0];
1883 		slot = path->slots[0];
1884 
1885 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1886 		len = btrfs_inode_ref_name_len(l, iref);
1887 		ptr -= len + 1;
1888 		total_len += len + 1;
1889 		if (ptr < name) {
1890 			ret = -ENAMETOOLONG;
1891 			goto out;
1892 		}
1893 
1894 		*(ptr + len) = '/';
1895 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1896 
1897 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1898 			break;
1899 
1900 		btrfs_release_path(path);
1901 		key.objectid = key.offset;
1902 		key.offset = (u64)-1;
1903 		dirid = key.objectid;
1904 	}
1905 	memmove(name, ptr, total_len);
1906 	name[total_len] = '\0';
1907 	ret = 0;
1908 out:
1909 	btrfs_put_root(root);
1910 	btrfs_free_path(path);
1911 	return ret;
1912 }
1913 
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1914 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1915 				struct inode *inode,
1916 				struct btrfs_ioctl_ino_lookup_user_args *args)
1917 {
1918 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1919 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1920 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1921 	u64 dirid = args->dirid;
1922 	unsigned long item_off;
1923 	unsigned long item_len;
1924 	struct btrfs_inode_ref *iref;
1925 	struct btrfs_root_ref *rref;
1926 	struct btrfs_root *root = NULL;
1927 	struct btrfs_path *path;
1928 	struct btrfs_key key, key2;
1929 	struct extent_buffer *leaf;
1930 	struct inode *temp_inode;
1931 	char *ptr;
1932 	int slot;
1933 	int len;
1934 	int total_len = 0;
1935 	int ret;
1936 
1937 	path = btrfs_alloc_path();
1938 	if (!path)
1939 		return -ENOMEM;
1940 
1941 	/*
1942 	 * If the bottom subvolume does not exist directly under upper_limit,
1943 	 * construct the path in from the bottom up.
1944 	 */
1945 	if (dirid != upper_limit) {
1946 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1947 
1948 		root = btrfs_get_fs_root(fs_info, treeid, true);
1949 		if (IS_ERR(root)) {
1950 			ret = PTR_ERR(root);
1951 			goto out;
1952 		}
1953 
1954 		key.objectid = dirid;
1955 		key.type = BTRFS_INODE_REF_KEY;
1956 		key.offset = (u64)-1;
1957 		while (1) {
1958 			ret = btrfs_search_backwards(root, &key, path);
1959 			if (ret < 0)
1960 				goto out_put;
1961 			else if (ret > 0) {
1962 				ret = -ENOENT;
1963 				goto out_put;
1964 			}
1965 
1966 			leaf = path->nodes[0];
1967 			slot = path->slots[0];
1968 
1969 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1970 			len = btrfs_inode_ref_name_len(leaf, iref);
1971 			ptr -= len + 1;
1972 			total_len += len + 1;
1973 			if (ptr < args->path) {
1974 				ret = -ENAMETOOLONG;
1975 				goto out_put;
1976 			}
1977 
1978 			*(ptr + len) = '/';
1979 			read_extent_buffer(leaf, ptr,
1980 					(unsigned long)(iref + 1), len);
1981 
1982 			/* Check the read+exec permission of this directory */
1983 			ret = btrfs_previous_item(root, path, dirid,
1984 						  BTRFS_INODE_ITEM_KEY);
1985 			if (ret < 0) {
1986 				goto out_put;
1987 			} else if (ret > 0) {
1988 				ret = -ENOENT;
1989 				goto out_put;
1990 			}
1991 
1992 			leaf = path->nodes[0];
1993 			slot = path->slots[0];
1994 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1995 			if (key2.objectid != dirid) {
1996 				ret = -ENOENT;
1997 				goto out_put;
1998 			}
1999 
2000 			/*
2001 			 * We don't need the path anymore, so release it and
2002 			 * avoid deadlocks and lockdep warnings in case
2003 			 * btrfs_iget() needs to lookup the inode from its root
2004 			 * btree and lock the same leaf.
2005 			 */
2006 			btrfs_release_path(path);
2007 			temp_inode = btrfs_iget(key2.objectid, root);
2008 			if (IS_ERR(temp_inode)) {
2009 				ret = PTR_ERR(temp_inode);
2010 				goto out_put;
2011 			}
2012 			ret = inode_permission(idmap, temp_inode,
2013 					       MAY_READ | MAY_EXEC);
2014 			iput(temp_inode);
2015 			if (ret) {
2016 				ret = -EACCES;
2017 				goto out_put;
2018 			}
2019 
2020 			if (key.offset == upper_limit)
2021 				break;
2022 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2023 				ret = -EACCES;
2024 				goto out_put;
2025 			}
2026 
2027 			key.objectid = key.offset;
2028 			key.offset = (u64)-1;
2029 			dirid = key.objectid;
2030 		}
2031 
2032 		memmove(args->path, ptr, total_len);
2033 		args->path[total_len] = '\0';
2034 		btrfs_put_root(root);
2035 		root = NULL;
2036 		btrfs_release_path(path);
2037 	}
2038 
2039 	/* Get the bottom subvolume's name from ROOT_REF */
2040 	key.objectid = treeid;
2041 	key.type = BTRFS_ROOT_REF_KEY;
2042 	key.offset = args->treeid;
2043 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2044 	if (ret < 0) {
2045 		goto out;
2046 	} else if (ret > 0) {
2047 		ret = -ENOENT;
2048 		goto out;
2049 	}
2050 
2051 	leaf = path->nodes[0];
2052 	slot = path->slots[0];
2053 	btrfs_item_key_to_cpu(leaf, &key, slot);
2054 
2055 	item_off = btrfs_item_ptr_offset(leaf, slot);
2056 	item_len = btrfs_item_size(leaf, slot);
2057 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2058 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2059 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2060 		ret = -EINVAL;
2061 		goto out;
2062 	}
2063 
2064 	/* Copy subvolume's name */
2065 	item_off += sizeof(struct btrfs_root_ref);
2066 	item_len -= sizeof(struct btrfs_root_ref);
2067 	read_extent_buffer(leaf, args->name, item_off, item_len);
2068 	args->name[item_len] = 0;
2069 
2070 out_put:
2071 	btrfs_put_root(root);
2072 out:
2073 	btrfs_free_path(path);
2074 	return ret;
2075 }
2076 
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)2077 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2078 					   void __user *argp)
2079 {
2080 	struct btrfs_ioctl_ino_lookup_args *args;
2081 	int ret = 0;
2082 
2083 	args = memdup_user(argp, sizeof(*args));
2084 	if (IS_ERR(args))
2085 		return PTR_ERR(args);
2086 
2087 	/*
2088 	 * Unprivileged query to obtain the containing subvolume root id. The
2089 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2090 	 */
2091 	if (args->treeid == 0)
2092 		args->treeid = btrfs_root_id(root);
2093 
2094 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2095 		args->name[0] = 0;
2096 		goto out;
2097 	}
2098 
2099 	if (!capable(CAP_SYS_ADMIN)) {
2100 		ret = -EPERM;
2101 		goto out;
2102 	}
2103 
2104 	ret = btrfs_search_path_in_tree(root->fs_info,
2105 					args->treeid, args->objectid,
2106 					args->name);
2107 
2108 out:
2109 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2110 		ret = -EFAULT;
2111 
2112 	kfree(args);
2113 	return ret;
2114 }
2115 
2116 /*
2117  * Version of ino_lookup ioctl (unprivileged)
2118  *
2119  * The main differences from ino_lookup ioctl are:
2120  *
2121  *   1. Read + Exec permission will be checked using inode_permission() during
2122  *      path construction. -EACCES will be returned in case of failure.
2123  *   2. Path construction will be stopped at the inode number which corresponds
2124  *      to the fd with which this ioctl is called. If constructed path does not
2125  *      exist under fd's inode, -EACCES will be returned.
2126  *   3. The name of bottom subvolume is also searched and filled.
2127  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2128 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2129 {
2130 	struct btrfs_ioctl_ino_lookup_user_args *args;
2131 	struct inode *inode;
2132 	int ret;
2133 
2134 	args = memdup_user(argp, sizeof(*args));
2135 	if (IS_ERR(args))
2136 		return PTR_ERR(args);
2137 
2138 	inode = file_inode(file);
2139 
2140 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2141 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2142 		/*
2143 		 * The subvolume does not exist under fd with which this is
2144 		 * called
2145 		 */
2146 		kfree(args);
2147 		return -EACCES;
2148 	}
2149 
2150 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2151 
2152 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2153 		ret = -EFAULT;
2154 
2155 	kfree(args);
2156 	return ret;
2157 }
2158 
2159 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2160 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2161 {
2162 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2163 	struct btrfs_fs_info *fs_info;
2164 	struct btrfs_root *root;
2165 	struct btrfs_path *path;
2166 	struct btrfs_key key;
2167 	struct btrfs_root_item *root_item;
2168 	struct btrfs_root_ref *rref;
2169 	struct extent_buffer *leaf;
2170 	unsigned long item_off;
2171 	unsigned long item_len;
2172 	int slot;
2173 	int ret = 0;
2174 
2175 	path = btrfs_alloc_path();
2176 	if (!path)
2177 		return -ENOMEM;
2178 
2179 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2180 	if (!subvol_info) {
2181 		btrfs_free_path(path);
2182 		return -ENOMEM;
2183 	}
2184 
2185 	fs_info = BTRFS_I(inode)->root->fs_info;
2186 
2187 	/* Get root_item of inode's subvolume */
2188 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2189 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2190 	if (IS_ERR(root)) {
2191 		ret = PTR_ERR(root);
2192 		goto out_free;
2193 	}
2194 	root_item = &root->root_item;
2195 
2196 	subvol_info->treeid = key.objectid;
2197 
2198 	subvol_info->generation = btrfs_root_generation(root_item);
2199 	subvol_info->flags = btrfs_root_flags(root_item);
2200 
2201 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2202 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2203 						    BTRFS_UUID_SIZE);
2204 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2205 						    BTRFS_UUID_SIZE);
2206 
2207 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2208 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2209 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2210 
2211 	subvol_info->otransid = btrfs_root_otransid(root_item);
2212 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2213 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2214 
2215 	subvol_info->stransid = btrfs_root_stransid(root_item);
2216 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2217 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2218 
2219 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2220 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2221 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2222 
2223 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2224 		/* Search root tree for ROOT_BACKREF of this subvolume */
2225 		key.type = BTRFS_ROOT_BACKREF_KEY;
2226 		key.offset = 0;
2227 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2228 		if (ret < 0) {
2229 			goto out;
2230 		} else if (path->slots[0] >=
2231 			   btrfs_header_nritems(path->nodes[0])) {
2232 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2233 			if (ret < 0) {
2234 				goto out;
2235 			} else if (ret > 0) {
2236 				ret = -EUCLEAN;
2237 				goto out;
2238 			}
2239 		}
2240 
2241 		leaf = path->nodes[0];
2242 		slot = path->slots[0];
2243 		btrfs_item_key_to_cpu(leaf, &key, slot);
2244 		if (key.objectid == subvol_info->treeid &&
2245 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2246 			subvol_info->parent_id = key.offset;
2247 
2248 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2249 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2250 
2251 			item_off = btrfs_item_ptr_offset(leaf, slot)
2252 					+ sizeof(struct btrfs_root_ref);
2253 			item_len = btrfs_item_size(leaf, slot)
2254 					- sizeof(struct btrfs_root_ref);
2255 			read_extent_buffer(leaf, subvol_info->name,
2256 					   item_off, item_len);
2257 		} else {
2258 			ret = -ENOENT;
2259 			goto out;
2260 		}
2261 	}
2262 
2263 	btrfs_free_path(path);
2264 	path = NULL;
2265 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2266 		ret = -EFAULT;
2267 
2268 out:
2269 	btrfs_put_root(root);
2270 out_free:
2271 	btrfs_free_path(path);
2272 	kfree(subvol_info);
2273 	return ret;
2274 }
2275 
2276 /*
2277  * Return ROOT_REF information of the subvolume containing this inode
2278  * except the subvolume name.
2279  */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2280 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2281 					  void __user *argp)
2282 {
2283 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2284 	struct btrfs_root_ref *rref;
2285 	struct btrfs_path *path;
2286 	struct btrfs_key key;
2287 	struct extent_buffer *leaf;
2288 	u64 objectid;
2289 	int slot;
2290 	int ret;
2291 	u8 found;
2292 
2293 	path = btrfs_alloc_path();
2294 	if (!path)
2295 		return -ENOMEM;
2296 
2297 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2298 	if (IS_ERR(rootrefs)) {
2299 		btrfs_free_path(path);
2300 		return PTR_ERR(rootrefs);
2301 	}
2302 
2303 	objectid = btrfs_root_id(root);
2304 	key.objectid = objectid;
2305 	key.type = BTRFS_ROOT_REF_KEY;
2306 	key.offset = rootrefs->min_treeid;
2307 	found = 0;
2308 
2309 	root = root->fs_info->tree_root;
2310 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311 	if (ret < 0) {
2312 		goto out;
2313 	} else if (path->slots[0] >=
2314 		   btrfs_header_nritems(path->nodes[0])) {
2315 		ret = btrfs_next_leaf(root, path);
2316 		if (ret < 0) {
2317 			goto out;
2318 		} else if (ret > 0) {
2319 			ret = -EUCLEAN;
2320 			goto out;
2321 		}
2322 	}
2323 	while (1) {
2324 		leaf = path->nodes[0];
2325 		slot = path->slots[0];
2326 
2327 		btrfs_item_key_to_cpu(leaf, &key, slot);
2328 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2329 			ret = 0;
2330 			goto out;
2331 		}
2332 
2333 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2334 			ret = -EOVERFLOW;
2335 			goto out;
2336 		}
2337 
2338 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2339 		rootrefs->rootref[found].treeid = key.offset;
2340 		rootrefs->rootref[found].dirid =
2341 				  btrfs_root_ref_dirid(leaf, rref);
2342 		found++;
2343 
2344 		ret = btrfs_next_item(root, path);
2345 		if (ret < 0) {
2346 			goto out;
2347 		} else if (ret > 0) {
2348 			ret = -EUCLEAN;
2349 			goto out;
2350 		}
2351 	}
2352 
2353 out:
2354 	btrfs_free_path(path);
2355 
2356 	if (!ret || ret == -EOVERFLOW) {
2357 		rootrefs->num_items = found;
2358 		/* update min_treeid for next search */
2359 		if (found)
2360 			rootrefs->min_treeid =
2361 				rootrefs->rootref[found - 1].treeid + 1;
2362 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2363 			ret = -EFAULT;
2364 	}
2365 
2366 	kfree(rootrefs);
2367 
2368 	return ret;
2369 }
2370 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2371 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2372 					     void __user *arg,
2373 					     bool destroy_v2)
2374 {
2375 	struct dentry *parent = file->f_path.dentry;
2376 	struct dentry *dentry;
2377 	struct inode *dir = d_inode(parent);
2378 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2379 	struct inode *inode;
2380 	struct btrfs_root *root = BTRFS_I(dir)->root;
2381 	struct btrfs_root *dest = NULL;
2382 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2383 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2384 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2385 	char *subvol_name, *subvol_name_ptr = NULL;
2386 	int subvol_namelen;
2387 	int ret = 0;
2388 	bool destroy_parent = false;
2389 
2390 	/* We don't support snapshots with extent tree v2 yet. */
2391 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2392 		btrfs_err(fs_info,
2393 			  "extent tree v2 doesn't support snapshot deletion yet");
2394 		return -EOPNOTSUPP;
2395 	}
2396 
2397 	if (destroy_v2) {
2398 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2399 		if (IS_ERR(vol_args2))
2400 			return PTR_ERR(vol_args2);
2401 
2402 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2403 			ret = -EOPNOTSUPP;
2404 			goto out;
2405 		}
2406 
2407 		/*
2408 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2409 		 * name, same as v1 currently does.
2410 		 */
2411 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2412 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2413 			if (ret < 0)
2414 				goto out;
2415 			subvol_name = vol_args2->name;
2416 
2417 			ret = mnt_want_write_file(file);
2418 			if (ret)
2419 				goto out;
2420 		} else {
2421 			struct inode *old_dir;
2422 
2423 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2424 				ret = -EINVAL;
2425 				goto out;
2426 			}
2427 
2428 			ret = mnt_want_write_file(file);
2429 			if (ret)
2430 				goto out;
2431 
2432 			dentry = btrfs_get_dentry(fs_info->sb,
2433 					BTRFS_FIRST_FREE_OBJECTID,
2434 					vol_args2->subvolid, 0);
2435 			if (IS_ERR(dentry)) {
2436 				ret = PTR_ERR(dentry);
2437 				goto out_drop_write;
2438 			}
2439 
2440 			/*
2441 			 * Change the default parent since the subvolume being
2442 			 * deleted can be outside of the current mount point.
2443 			 */
2444 			parent = btrfs_get_parent(dentry);
2445 
2446 			/*
2447 			 * At this point dentry->d_name can point to '/' if the
2448 			 * subvolume we want to destroy is outsite of the
2449 			 * current mount point, so we need to release the
2450 			 * current dentry and execute the lookup to return a new
2451 			 * one with ->d_name pointing to the
2452 			 * <mount point>/subvol_name.
2453 			 */
2454 			dput(dentry);
2455 			if (IS_ERR(parent)) {
2456 				ret = PTR_ERR(parent);
2457 				goto out_drop_write;
2458 			}
2459 			old_dir = dir;
2460 			dir = d_inode(parent);
2461 
2462 			/*
2463 			 * If v2 was used with SPEC_BY_ID, a new parent was
2464 			 * allocated since the subvolume can be outside of the
2465 			 * current mount point. Later on we need to release this
2466 			 * new parent dentry.
2467 			 */
2468 			destroy_parent = true;
2469 
2470 			/*
2471 			 * On idmapped mounts, deletion via subvolid is
2472 			 * restricted to subvolumes that are immediate
2473 			 * ancestors of the inode referenced by the file
2474 			 * descriptor in the ioctl. Otherwise the idmapping
2475 			 * could potentially be abused to delete subvolumes
2476 			 * anywhere in the filesystem the user wouldn't be able
2477 			 * to delete without an idmapped mount.
2478 			 */
2479 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2480 				ret = -EOPNOTSUPP;
2481 				goto free_parent;
2482 			}
2483 
2484 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2485 						fs_info, vol_args2->subvolid);
2486 			if (IS_ERR(subvol_name_ptr)) {
2487 				ret = PTR_ERR(subvol_name_ptr);
2488 				goto free_parent;
2489 			}
2490 			/* subvol_name_ptr is already nul terminated */
2491 			subvol_name = (char *)kbasename(subvol_name_ptr);
2492 		}
2493 	} else {
2494 		vol_args = memdup_user(arg, sizeof(*vol_args));
2495 		if (IS_ERR(vol_args))
2496 			return PTR_ERR(vol_args);
2497 
2498 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2499 		if (ret < 0)
2500 			goto out;
2501 
2502 		subvol_name = vol_args->name;
2503 
2504 		ret = mnt_want_write_file(file);
2505 		if (ret)
2506 			goto out;
2507 	}
2508 
2509 	subvol_namelen = strlen(subvol_name);
2510 
2511 	if (strchr(subvol_name, '/') ||
2512 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2513 		ret = -EINVAL;
2514 		goto free_subvol_name;
2515 	}
2516 
2517 	if (!S_ISDIR(dir->i_mode)) {
2518 		ret = -ENOTDIR;
2519 		goto free_subvol_name;
2520 	}
2521 
2522 	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2523 	if (ret == -EINTR)
2524 		goto free_subvol_name;
2525 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2526 	if (IS_ERR(dentry)) {
2527 		ret = PTR_ERR(dentry);
2528 		goto out_unlock_dir;
2529 	}
2530 
2531 	if (d_really_is_negative(dentry)) {
2532 		ret = -ENOENT;
2533 		goto out_dput;
2534 	}
2535 
2536 	inode = d_inode(dentry);
2537 	dest = BTRFS_I(inode)->root;
2538 	if (!capable(CAP_SYS_ADMIN)) {
2539 		/*
2540 		 * Regular user.  Only allow this with a special mount
2541 		 * option, when the user has write+exec access to the
2542 		 * subvol root, and when rmdir(2) would have been
2543 		 * allowed.
2544 		 *
2545 		 * Note that this is _not_ check that the subvol is
2546 		 * empty or doesn't contain data that we wouldn't
2547 		 * otherwise be able to delete.
2548 		 *
2549 		 * Users who want to delete empty subvols should try
2550 		 * rmdir(2).
2551 		 */
2552 		ret = -EPERM;
2553 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2554 			goto out_dput;
2555 
2556 		/*
2557 		 * Do not allow deletion if the parent dir is the same
2558 		 * as the dir to be deleted.  That means the ioctl
2559 		 * must be called on the dentry referencing the root
2560 		 * of the subvol, not a random directory contained
2561 		 * within it.
2562 		 */
2563 		ret = -EINVAL;
2564 		if (root == dest)
2565 			goto out_dput;
2566 
2567 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2568 		if (ret)
2569 			goto out_dput;
2570 	}
2571 
2572 	/* check if subvolume may be deleted by a user */
2573 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2574 	if (ret)
2575 		goto out_dput;
2576 
2577 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2578 		ret = -EINVAL;
2579 		goto out_dput;
2580 	}
2581 
2582 	btrfs_inode_lock(BTRFS_I(inode), 0);
2583 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2584 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2585 	if (!ret)
2586 		d_delete_notify(dir, dentry);
2587 
2588 out_dput:
2589 	dput(dentry);
2590 out_unlock_dir:
2591 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2592 free_subvol_name:
2593 	kfree(subvol_name_ptr);
2594 free_parent:
2595 	if (destroy_parent)
2596 		dput(parent);
2597 out_drop_write:
2598 	mnt_drop_write_file(file);
2599 out:
2600 	kfree(vol_args2);
2601 	kfree(vol_args);
2602 	return ret;
2603 }
2604 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2605 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2606 {
2607 	struct inode *inode = file_inode(file);
2608 	struct btrfs_root *root = BTRFS_I(inode)->root;
2609 	struct btrfs_ioctl_defrag_range_args range = {0};
2610 	int ret;
2611 
2612 	ret = mnt_want_write_file(file);
2613 	if (ret)
2614 		return ret;
2615 
2616 	if (btrfs_root_readonly(root)) {
2617 		ret = -EROFS;
2618 		goto out;
2619 	}
2620 
2621 	switch (inode->i_mode & S_IFMT) {
2622 	case S_IFDIR:
2623 		if (!capable(CAP_SYS_ADMIN)) {
2624 			ret = -EPERM;
2625 			goto out;
2626 		}
2627 		ret = btrfs_defrag_root(root);
2628 		break;
2629 	case S_IFREG:
2630 		/*
2631 		 * Note that this does not check the file descriptor for write
2632 		 * access. This prevents defragmenting executables that are
2633 		 * running and allows defrag on files open in read-only mode.
2634 		 */
2635 		if (!capable(CAP_SYS_ADMIN) &&
2636 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2637 			ret = -EPERM;
2638 			goto out;
2639 		}
2640 
2641 		if (argp) {
2642 			if (copy_from_user(&range, argp, sizeof(range))) {
2643 				ret = -EFAULT;
2644 				goto out;
2645 			}
2646 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2647 				ret = -EOPNOTSUPP;
2648 				goto out;
2649 			}
2650 			/* compression requires us to start the IO */
2651 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2652 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2653 				range.extent_thresh = (u32)-1;
2654 			}
2655 		} else {
2656 			/* the rest are all set to zero by kzalloc */
2657 			range.len = (u64)-1;
2658 		}
2659 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2660 					&range, BTRFS_OLDEST_GENERATION, 0);
2661 		if (ret > 0)
2662 			ret = 0;
2663 		break;
2664 	default:
2665 		ret = -EINVAL;
2666 	}
2667 out:
2668 	mnt_drop_write_file(file);
2669 	return ret;
2670 }
2671 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2672 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2673 {
2674 	struct btrfs_ioctl_vol_args *vol_args;
2675 	bool restore_op = false;
2676 	int ret;
2677 
2678 	if (!capable(CAP_SYS_ADMIN))
2679 		return -EPERM;
2680 
2681 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2682 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2683 		return -EINVAL;
2684 	}
2685 
2686 	if (fs_info->fs_devices->temp_fsid) {
2687 		btrfs_err(fs_info,
2688 			  "device add not supported on cloned temp-fsid mount");
2689 		return -EINVAL;
2690 	}
2691 
2692 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2693 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2694 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2695 
2696 		/*
2697 		 * We can do the device add because we have a paused balanced,
2698 		 * change the exclusive op type and remember we should bring
2699 		 * back the paused balance
2700 		 */
2701 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2702 		btrfs_exclop_start_unlock(fs_info);
2703 		restore_op = true;
2704 	}
2705 
2706 	vol_args = memdup_user(arg, sizeof(*vol_args));
2707 	if (IS_ERR(vol_args)) {
2708 		ret = PTR_ERR(vol_args);
2709 		goto out;
2710 	}
2711 
2712 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2713 	if (ret < 0)
2714 		goto out_free;
2715 
2716 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2717 
2718 	if (!ret)
2719 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2720 
2721 out_free:
2722 	kfree(vol_args);
2723 out:
2724 	if (restore_op)
2725 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2726 	else
2727 		btrfs_exclop_finish(fs_info);
2728 	return ret;
2729 }
2730 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2731 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2732 {
2733 	BTRFS_DEV_LOOKUP_ARGS(args);
2734 	struct inode *inode = file_inode(file);
2735 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2736 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2737 	struct file *bdev_file = NULL;
2738 	int ret;
2739 	bool cancel = false;
2740 
2741 	if (!capable(CAP_SYS_ADMIN))
2742 		return -EPERM;
2743 
2744 	vol_args = memdup_user(arg, sizeof(*vol_args));
2745 	if (IS_ERR(vol_args))
2746 		return PTR_ERR(vol_args);
2747 
2748 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2749 		ret = -EOPNOTSUPP;
2750 		goto out;
2751 	}
2752 
2753 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2754 	if (ret < 0)
2755 		goto out;
2756 
2757 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2758 		args.devid = vol_args->devid;
2759 	} else if (!strcmp("cancel", vol_args->name)) {
2760 		cancel = true;
2761 	} else {
2762 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2763 		if (ret)
2764 			goto out;
2765 	}
2766 
2767 	ret = mnt_want_write_file(file);
2768 	if (ret)
2769 		goto out;
2770 
2771 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2772 					   cancel);
2773 	if (ret)
2774 		goto err_drop;
2775 
2776 	/* Exclusive operation is now claimed */
2777 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2778 
2779 	btrfs_exclop_finish(fs_info);
2780 
2781 	if (!ret) {
2782 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2783 			btrfs_info(fs_info, "device deleted: id %llu",
2784 					vol_args->devid);
2785 		else
2786 			btrfs_info(fs_info, "device deleted: %s",
2787 					vol_args->name);
2788 	}
2789 err_drop:
2790 	mnt_drop_write_file(file);
2791 	if (bdev_file)
2792 		fput(bdev_file);
2793 out:
2794 	btrfs_put_dev_args_from_path(&args);
2795 	kfree(vol_args);
2796 	return ret;
2797 }
2798 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2799 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2800 {
2801 	BTRFS_DEV_LOOKUP_ARGS(args);
2802 	struct inode *inode = file_inode(file);
2803 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2804 	struct btrfs_ioctl_vol_args *vol_args;
2805 	struct file *bdev_file = NULL;
2806 	int ret;
2807 	bool cancel = false;
2808 
2809 	if (!capable(CAP_SYS_ADMIN))
2810 		return -EPERM;
2811 
2812 	vol_args = memdup_user(arg, sizeof(*vol_args));
2813 	if (IS_ERR(vol_args))
2814 		return PTR_ERR(vol_args);
2815 
2816 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2817 	if (ret < 0)
2818 		goto out_free;
2819 
2820 	if (!strcmp("cancel", vol_args->name)) {
2821 		cancel = true;
2822 	} else {
2823 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2824 		if (ret)
2825 			goto out;
2826 	}
2827 
2828 	ret = mnt_want_write_file(file);
2829 	if (ret)
2830 		goto out;
2831 
2832 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2833 					   cancel);
2834 	if (ret == 0) {
2835 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2836 		if (!ret)
2837 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2838 		btrfs_exclop_finish(fs_info);
2839 	}
2840 
2841 	mnt_drop_write_file(file);
2842 	if (bdev_file)
2843 		fput(bdev_file);
2844 out:
2845 	btrfs_put_dev_args_from_path(&args);
2846 out_free:
2847 	kfree(vol_args);
2848 	return ret;
2849 }
2850 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)2851 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2852 				void __user *arg)
2853 {
2854 	struct btrfs_ioctl_fs_info_args *fi_args;
2855 	struct btrfs_device *device;
2856 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2857 	u64 flags_in;
2858 	int ret = 0;
2859 
2860 	fi_args = memdup_user(arg, sizeof(*fi_args));
2861 	if (IS_ERR(fi_args))
2862 		return PTR_ERR(fi_args);
2863 
2864 	flags_in = fi_args->flags;
2865 	memset(fi_args, 0, sizeof(*fi_args));
2866 
2867 	rcu_read_lock();
2868 	fi_args->num_devices = fs_devices->num_devices;
2869 
2870 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2871 		if (device->devid > fi_args->max_id)
2872 			fi_args->max_id = device->devid;
2873 	}
2874 	rcu_read_unlock();
2875 
2876 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2877 	fi_args->nodesize = fs_info->nodesize;
2878 	fi_args->sectorsize = fs_info->sectorsize;
2879 	fi_args->clone_alignment = fs_info->sectorsize;
2880 
2881 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2882 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2883 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2884 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2885 	}
2886 
2887 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2888 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2889 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2890 	}
2891 
2892 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2893 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2894 		       sizeof(fi_args->metadata_uuid));
2895 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2896 	}
2897 
2898 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2899 		ret = -EFAULT;
2900 
2901 	kfree(fi_args);
2902 	return ret;
2903 }
2904 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)2905 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2906 				 void __user *arg)
2907 {
2908 	BTRFS_DEV_LOOKUP_ARGS(args);
2909 	struct btrfs_ioctl_dev_info_args *di_args;
2910 	struct btrfs_device *dev;
2911 	int ret = 0;
2912 
2913 	di_args = memdup_user(arg, sizeof(*di_args));
2914 	if (IS_ERR(di_args))
2915 		return PTR_ERR(di_args);
2916 
2917 	args.devid = di_args->devid;
2918 	if (!btrfs_is_empty_uuid(di_args->uuid))
2919 		args.uuid = di_args->uuid;
2920 
2921 	rcu_read_lock();
2922 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2923 	if (!dev) {
2924 		ret = -ENODEV;
2925 		goto out;
2926 	}
2927 
2928 	di_args->devid = dev->devid;
2929 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2930 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2931 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2932 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2933 	if (dev->name)
2934 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2935 	else
2936 		di_args->path[0] = '\0';
2937 
2938 out:
2939 	rcu_read_unlock();
2940 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2941 		ret = -EFAULT;
2942 
2943 	kfree(di_args);
2944 	return ret;
2945 }
2946 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2947 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2948 {
2949 	struct inode *inode = file_inode(file);
2950 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2951 	struct btrfs_root *root = BTRFS_I(inode)->root;
2952 	struct btrfs_root *new_root;
2953 	struct btrfs_dir_item *di;
2954 	struct btrfs_trans_handle *trans;
2955 	struct btrfs_path *path = NULL;
2956 	struct btrfs_disk_key disk_key;
2957 	struct fscrypt_str name = FSTR_INIT("default", 7);
2958 	u64 objectid = 0;
2959 	u64 dir_id;
2960 	int ret;
2961 
2962 	if (!capable(CAP_SYS_ADMIN))
2963 		return -EPERM;
2964 
2965 	ret = mnt_want_write_file(file);
2966 	if (ret)
2967 		return ret;
2968 
2969 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2970 		ret = -EFAULT;
2971 		goto out;
2972 	}
2973 
2974 	if (!objectid)
2975 		objectid = BTRFS_FS_TREE_OBJECTID;
2976 
2977 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2978 	if (IS_ERR(new_root)) {
2979 		ret = PTR_ERR(new_root);
2980 		goto out;
2981 	}
2982 	if (!is_fstree(btrfs_root_id(new_root))) {
2983 		ret = -ENOENT;
2984 		goto out_free;
2985 	}
2986 
2987 	path = btrfs_alloc_path();
2988 	if (!path) {
2989 		ret = -ENOMEM;
2990 		goto out_free;
2991 	}
2992 
2993 	trans = btrfs_start_transaction(root, 1);
2994 	if (IS_ERR(trans)) {
2995 		ret = PTR_ERR(trans);
2996 		goto out_free;
2997 	}
2998 
2999 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3000 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3001 				   dir_id, &name, 1);
3002 	if (IS_ERR_OR_NULL(di)) {
3003 		btrfs_release_path(path);
3004 		btrfs_end_transaction(trans);
3005 		btrfs_err(fs_info,
3006 			  "Umm, you don't have the default diritem, this isn't going to work");
3007 		ret = -ENOENT;
3008 		goto out_free;
3009 	}
3010 
3011 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3012 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3013 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3014 	btrfs_release_path(path);
3015 
3016 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3017 	btrfs_end_transaction(trans);
3018 out_free:
3019 	btrfs_put_root(new_root);
3020 	btrfs_free_path(path);
3021 out:
3022 	mnt_drop_write_file(file);
3023 	return ret;
3024 }
3025 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3026 static void get_block_group_info(struct list_head *groups_list,
3027 				 struct btrfs_ioctl_space_info *space)
3028 {
3029 	struct btrfs_block_group *block_group;
3030 
3031 	space->total_bytes = 0;
3032 	space->used_bytes = 0;
3033 	space->flags = 0;
3034 	list_for_each_entry(block_group, groups_list, list) {
3035 		space->flags = block_group->flags;
3036 		space->total_bytes += block_group->length;
3037 		space->used_bytes += block_group->used;
3038 	}
3039 }
3040 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3041 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3042 				   void __user *arg)
3043 {
3044 	struct btrfs_ioctl_space_args space_args = { 0 };
3045 	struct btrfs_ioctl_space_info space;
3046 	struct btrfs_ioctl_space_info *dest;
3047 	struct btrfs_ioctl_space_info *dest_orig;
3048 	struct btrfs_ioctl_space_info __user *user_dest;
3049 	struct btrfs_space_info *info;
3050 	static const u64 types[] = {
3051 		BTRFS_BLOCK_GROUP_DATA,
3052 		BTRFS_BLOCK_GROUP_SYSTEM,
3053 		BTRFS_BLOCK_GROUP_METADATA,
3054 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3055 	};
3056 	int num_types = 4;
3057 	int alloc_size;
3058 	int ret = 0;
3059 	u64 slot_count = 0;
3060 	int i, c;
3061 
3062 	if (copy_from_user(&space_args,
3063 			   (struct btrfs_ioctl_space_args __user *)arg,
3064 			   sizeof(space_args)))
3065 		return -EFAULT;
3066 
3067 	for (i = 0; i < num_types; i++) {
3068 		struct btrfs_space_info *tmp;
3069 
3070 		info = NULL;
3071 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3072 			if (tmp->flags == types[i]) {
3073 				info = tmp;
3074 				break;
3075 			}
3076 		}
3077 
3078 		if (!info)
3079 			continue;
3080 
3081 		down_read(&info->groups_sem);
3082 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3083 			if (!list_empty(&info->block_groups[c]))
3084 				slot_count++;
3085 		}
3086 		up_read(&info->groups_sem);
3087 	}
3088 
3089 	/*
3090 	 * Global block reserve, exported as a space_info
3091 	 */
3092 	slot_count++;
3093 
3094 	/* space_slots == 0 means they are asking for a count */
3095 	if (space_args.space_slots == 0) {
3096 		space_args.total_spaces = slot_count;
3097 		goto out;
3098 	}
3099 
3100 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3101 
3102 	alloc_size = sizeof(*dest) * slot_count;
3103 
3104 	/* we generally have at most 6 or so space infos, one for each raid
3105 	 * level.  So, a whole page should be more than enough for everyone
3106 	 */
3107 	if (alloc_size > PAGE_SIZE)
3108 		return -ENOMEM;
3109 
3110 	space_args.total_spaces = 0;
3111 	dest = kmalloc(alloc_size, GFP_KERNEL);
3112 	if (!dest)
3113 		return -ENOMEM;
3114 	dest_orig = dest;
3115 
3116 	/* now we have a buffer to copy into */
3117 	for (i = 0; i < num_types; i++) {
3118 		struct btrfs_space_info *tmp;
3119 
3120 		if (!slot_count)
3121 			break;
3122 
3123 		info = NULL;
3124 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3125 			if (tmp->flags == types[i]) {
3126 				info = tmp;
3127 				break;
3128 			}
3129 		}
3130 
3131 		if (!info)
3132 			continue;
3133 		down_read(&info->groups_sem);
3134 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3135 			if (!list_empty(&info->block_groups[c])) {
3136 				get_block_group_info(&info->block_groups[c],
3137 						     &space);
3138 				memcpy(dest, &space, sizeof(space));
3139 				dest++;
3140 				space_args.total_spaces++;
3141 				slot_count--;
3142 			}
3143 			if (!slot_count)
3144 				break;
3145 		}
3146 		up_read(&info->groups_sem);
3147 	}
3148 
3149 	/*
3150 	 * Add global block reserve
3151 	 */
3152 	if (slot_count) {
3153 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3154 
3155 		spin_lock(&block_rsv->lock);
3156 		space.total_bytes = block_rsv->size;
3157 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3158 		spin_unlock(&block_rsv->lock);
3159 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3160 		memcpy(dest, &space, sizeof(space));
3161 		space_args.total_spaces++;
3162 	}
3163 
3164 	user_dest = (struct btrfs_ioctl_space_info __user *)
3165 		(arg + sizeof(struct btrfs_ioctl_space_args));
3166 
3167 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3168 		ret = -EFAULT;
3169 
3170 	kfree(dest_orig);
3171 out:
3172 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3173 		ret = -EFAULT;
3174 
3175 	return ret;
3176 }
3177 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3178 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3179 					    void __user *argp)
3180 {
3181 	struct btrfs_trans_handle *trans;
3182 	u64 transid;
3183 
3184 	/*
3185 	 * Start orphan cleanup here for the given root in case it hasn't been
3186 	 * started already by other means. Errors are handled in the other
3187 	 * functions during transaction commit.
3188 	 */
3189 	btrfs_orphan_cleanup(root);
3190 
3191 	trans = btrfs_attach_transaction_barrier(root);
3192 	if (IS_ERR(trans)) {
3193 		if (PTR_ERR(trans) != -ENOENT)
3194 			return PTR_ERR(trans);
3195 
3196 		/* No running transaction, don't bother */
3197 		transid = btrfs_get_last_trans_committed(root->fs_info);
3198 		goto out;
3199 	}
3200 	transid = trans->transid;
3201 	btrfs_commit_transaction_async(trans);
3202 out:
3203 	if (argp)
3204 		if (copy_to_user(argp, &transid, sizeof(transid)))
3205 			return -EFAULT;
3206 	return 0;
3207 }
3208 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3209 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3210 					   void __user *argp)
3211 {
3212 	/* By default wait for the current transaction. */
3213 	u64 transid = 0;
3214 
3215 	if (argp)
3216 		if (copy_from_user(&transid, argp, sizeof(transid)))
3217 			return -EFAULT;
3218 
3219 	return btrfs_wait_for_commit(fs_info, transid);
3220 }
3221 
btrfs_ioctl_scrub(struct file * file,void __user * arg)3222 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3223 {
3224 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3225 	struct btrfs_ioctl_scrub_args *sa;
3226 	int ret;
3227 
3228 	if (!capable(CAP_SYS_ADMIN))
3229 		return -EPERM;
3230 
3231 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3232 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3233 		return -EINVAL;
3234 	}
3235 
3236 	sa = memdup_user(arg, sizeof(*sa));
3237 	if (IS_ERR(sa))
3238 		return PTR_ERR(sa);
3239 
3240 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3241 		ret = -EOPNOTSUPP;
3242 		goto out;
3243 	}
3244 
3245 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3246 		ret = mnt_want_write_file(file);
3247 		if (ret)
3248 			goto out;
3249 	}
3250 
3251 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3252 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3253 			      0);
3254 
3255 	/*
3256 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3257 	 * error. This is important as it allows user space to know how much
3258 	 * progress scrub has done. For example, if scrub is canceled we get
3259 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3260 	 * space. Later user space can inspect the progress from the structure
3261 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3262 	 * previously (btrfs-progs does this).
3263 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3264 	 * then return -EFAULT to signal the structure was not copied or it may
3265 	 * be corrupt and unreliable due to a partial copy.
3266 	 */
3267 	if (copy_to_user(arg, sa, sizeof(*sa)))
3268 		ret = -EFAULT;
3269 
3270 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3271 		mnt_drop_write_file(file);
3272 out:
3273 	kfree(sa);
3274 	return ret;
3275 }
3276 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3277 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3278 {
3279 	if (!capable(CAP_SYS_ADMIN))
3280 		return -EPERM;
3281 
3282 	return btrfs_scrub_cancel(fs_info);
3283 }
3284 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3285 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3286 				       void __user *arg)
3287 {
3288 	struct btrfs_ioctl_scrub_args *sa;
3289 	int ret;
3290 
3291 	if (!capable(CAP_SYS_ADMIN))
3292 		return -EPERM;
3293 
3294 	sa = memdup_user(arg, sizeof(*sa));
3295 	if (IS_ERR(sa))
3296 		return PTR_ERR(sa);
3297 
3298 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3299 
3300 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3301 		ret = -EFAULT;
3302 
3303 	kfree(sa);
3304 	return ret;
3305 }
3306 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3307 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3308 				      void __user *arg)
3309 {
3310 	struct btrfs_ioctl_get_dev_stats *sa;
3311 	int ret;
3312 
3313 	sa = memdup_user(arg, sizeof(*sa));
3314 	if (IS_ERR(sa))
3315 		return PTR_ERR(sa);
3316 
3317 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3318 		kfree(sa);
3319 		return -EPERM;
3320 	}
3321 
3322 	ret = btrfs_get_dev_stats(fs_info, sa);
3323 
3324 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3325 		ret = -EFAULT;
3326 
3327 	kfree(sa);
3328 	return ret;
3329 }
3330 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3331 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3332 				    void __user *arg)
3333 {
3334 	struct btrfs_ioctl_dev_replace_args *p;
3335 	int ret;
3336 
3337 	if (!capable(CAP_SYS_ADMIN))
3338 		return -EPERM;
3339 
3340 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3341 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3342 		return -EINVAL;
3343 	}
3344 
3345 	p = memdup_user(arg, sizeof(*p));
3346 	if (IS_ERR(p))
3347 		return PTR_ERR(p);
3348 
3349 	switch (p->cmd) {
3350 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3351 		if (sb_rdonly(fs_info->sb)) {
3352 			ret = -EROFS;
3353 			goto out;
3354 		}
3355 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3356 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3357 		} else {
3358 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3359 			btrfs_exclop_finish(fs_info);
3360 		}
3361 		break;
3362 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3363 		btrfs_dev_replace_status(fs_info, p);
3364 		ret = 0;
3365 		break;
3366 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3367 		p->result = btrfs_dev_replace_cancel(fs_info);
3368 		ret = 0;
3369 		break;
3370 	default:
3371 		ret = -EINVAL;
3372 		break;
3373 	}
3374 
3375 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3376 		ret = -EFAULT;
3377 out:
3378 	kfree(p);
3379 	return ret;
3380 }
3381 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3382 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3383 {
3384 	int ret = 0;
3385 	int i;
3386 	u64 rel_ptr;
3387 	int size;
3388 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3389 	struct inode_fs_paths *ipath = NULL;
3390 	struct btrfs_path *path;
3391 
3392 	if (!capable(CAP_DAC_READ_SEARCH))
3393 		return -EPERM;
3394 
3395 	path = btrfs_alloc_path();
3396 	if (!path) {
3397 		ret = -ENOMEM;
3398 		goto out;
3399 	}
3400 
3401 	ipa = memdup_user(arg, sizeof(*ipa));
3402 	if (IS_ERR(ipa)) {
3403 		ret = PTR_ERR(ipa);
3404 		ipa = NULL;
3405 		goto out;
3406 	}
3407 
3408 	size = min_t(u32, ipa->size, 4096);
3409 	ipath = init_ipath(size, root, path);
3410 	if (IS_ERR(ipath)) {
3411 		ret = PTR_ERR(ipath);
3412 		ipath = NULL;
3413 		goto out;
3414 	}
3415 
3416 	ret = paths_from_inode(ipa->inum, ipath);
3417 	if (ret < 0)
3418 		goto out;
3419 
3420 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3421 		rel_ptr = ipath->fspath->val[i] -
3422 			  (u64)(unsigned long)ipath->fspath->val;
3423 		ipath->fspath->val[i] = rel_ptr;
3424 	}
3425 
3426 	btrfs_free_path(path);
3427 	path = NULL;
3428 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3429 			   ipath->fspath, size);
3430 	if (ret) {
3431 		ret = -EFAULT;
3432 		goto out;
3433 	}
3434 
3435 out:
3436 	btrfs_free_path(path);
3437 	free_ipath(ipath);
3438 	kfree(ipa);
3439 
3440 	return ret;
3441 }
3442 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3443 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3444 					void __user *arg, int version)
3445 {
3446 	int ret = 0;
3447 	int size;
3448 	struct btrfs_ioctl_logical_ino_args *loi;
3449 	struct btrfs_data_container *inodes = NULL;
3450 	struct btrfs_path *path = NULL;
3451 	bool ignore_offset;
3452 
3453 	if (!capable(CAP_SYS_ADMIN))
3454 		return -EPERM;
3455 
3456 	loi = memdup_user(arg, sizeof(*loi));
3457 	if (IS_ERR(loi))
3458 		return PTR_ERR(loi);
3459 
3460 	if (version == 1) {
3461 		ignore_offset = false;
3462 		size = min_t(u32, loi->size, SZ_64K);
3463 	} else {
3464 		/* All reserved bits must be 0 for now */
3465 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3466 			ret = -EINVAL;
3467 			goto out_loi;
3468 		}
3469 		/* Only accept flags we have defined so far */
3470 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3471 			ret = -EINVAL;
3472 			goto out_loi;
3473 		}
3474 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3475 		size = min_t(u32, loi->size, SZ_16M);
3476 	}
3477 
3478 	inodes = init_data_container(size);
3479 	if (IS_ERR(inodes)) {
3480 		ret = PTR_ERR(inodes);
3481 		goto out_loi;
3482 	}
3483 
3484 	path = btrfs_alloc_path();
3485 	if (!path) {
3486 		ret = -ENOMEM;
3487 		goto out;
3488 	}
3489 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3490 					  inodes, ignore_offset);
3491 	btrfs_free_path(path);
3492 	if (ret == -EINVAL)
3493 		ret = -ENOENT;
3494 	if (ret < 0)
3495 		goto out;
3496 
3497 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3498 			   size);
3499 	if (ret)
3500 		ret = -EFAULT;
3501 
3502 out:
3503 	kvfree(inodes);
3504 out_loi:
3505 	kfree(loi);
3506 
3507 	return ret;
3508 }
3509 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3510 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3511 			       struct btrfs_ioctl_balance_args *bargs)
3512 {
3513 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3514 
3515 	bargs->flags = bctl->flags;
3516 
3517 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3518 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3519 	if (atomic_read(&fs_info->balance_pause_req))
3520 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3521 	if (atomic_read(&fs_info->balance_cancel_req))
3522 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3523 
3524 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3525 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3526 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3527 
3528 	spin_lock(&fs_info->balance_lock);
3529 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3530 	spin_unlock(&fs_info->balance_lock);
3531 }
3532 
3533 /*
3534  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3535  * required.
3536  *
3537  * @fs_info:       the filesystem
3538  * @excl_acquired: ptr to boolean value which is set to false in case balance
3539  *                 is being resumed
3540  *
3541  * Return 0 on success in which case both fs_info::balance is acquired as well
3542  * as exclusive ops are blocked. In case of failure return an error code.
3543  */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3544 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3545 {
3546 	int ret;
3547 
3548 	/*
3549 	 * Exclusive operation is locked. Three possibilities:
3550 	 *   (1) some other op is running
3551 	 *   (2) balance is running
3552 	 *   (3) balance is paused -- special case (think resume)
3553 	 */
3554 	while (1) {
3555 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3556 			*excl_acquired = true;
3557 			mutex_lock(&fs_info->balance_mutex);
3558 			return 0;
3559 		}
3560 
3561 		mutex_lock(&fs_info->balance_mutex);
3562 		if (fs_info->balance_ctl) {
3563 			/* This is either (2) or (3) */
3564 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3565 				/* This is (2) */
3566 				ret = -EINPROGRESS;
3567 				goto out_failure;
3568 
3569 			} else {
3570 				mutex_unlock(&fs_info->balance_mutex);
3571 				/*
3572 				 * Lock released to allow other waiters to
3573 				 * continue, we'll reexamine the status again.
3574 				 */
3575 				mutex_lock(&fs_info->balance_mutex);
3576 
3577 				if (fs_info->balance_ctl &&
3578 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3579 					/* This is (3) */
3580 					*excl_acquired = false;
3581 					return 0;
3582 				}
3583 			}
3584 		} else {
3585 			/* This is (1) */
3586 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3587 			goto out_failure;
3588 		}
3589 
3590 		mutex_unlock(&fs_info->balance_mutex);
3591 	}
3592 
3593 out_failure:
3594 	mutex_unlock(&fs_info->balance_mutex);
3595 	*excl_acquired = false;
3596 	return ret;
3597 }
3598 
btrfs_ioctl_balance(struct file * file,void __user * arg)3599 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3600 {
3601 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3602 	struct btrfs_fs_info *fs_info = root->fs_info;
3603 	struct btrfs_ioctl_balance_args *bargs;
3604 	struct btrfs_balance_control *bctl;
3605 	bool need_unlock = true;
3606 	int ret;
3607 
3608 	if (!capable(CAP_SYS_ADMIN))
3609 		return -EPERM;
3610 
3611 	ret = mnt_want_write_file(file);
3612 	if (ret)
3613 		return ret;
3614 
3615 	bargs = memdup_user(arg, sizeof(*bargs));
3616 	if (IS_ERR(bargs)) {
3617 		ret = PTR_ERR(bargs);
3618 		bargs = NULL;
3619 		goto out;
3620 	}
3621 
3622 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3623 	if (ret)
3624 		goto out;
3625 
3626 	lockdep_assert_held(&fs_info->balance_mutex);
3627 
3628 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3629 		if (!fs_info->balance_ctl) {
3630 			ret = -ENOTCONN;
3631 			goto out_unlock;
3632 		}
3633 
3634 		bctl = fs_info->balance_ctl;
3635 		spin_lock(&fs_info->balance_lock);
3636 		bctl->flags |= BTRFS_BALANCE_RESUME;
3637 		spin_unlock(&fs_info->balance_lock);
3638 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3639 
3640 		goto do_balance;
3641 	}
3642 
3643 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3644 		ret = -EINVAL;
3645 		goto out_unlock;
3646 	}
3647 
3648 	if (fs_info->balance_ctl) {
3649 		ret = -EINPROGRESS;
3650 		goto out_unlock;
3651 	}
3652 
3653 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3654 	if (!bctl) {
3655 		ret = -ENOMEM;
3656 		goto out_unlock;
3657 	}
3658 
3659 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3660 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3661 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3662 
3663 	bctl->flags = bargs->flags;
3664 do_balance:
3665 	/*
3666 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3667 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3668 	 * all the way until unmount, in free_fs_info.  The flag should be
3669 	 * cleared after reset_balance_state.
3670 	 */
3671 	need_unlock = false;
3672 
3673 	ret = btrfs_balance(fs_info, bctl, bargs);
3674 	bctl = NULL;
3675 
3676 	if (ret == 0 || ret == -ECANCELED) {
3677 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3678 			ret = -EFAULT;
3679 	}
3680 
3681 	kfree(bctl);
3682 out_unlock:
3683 	mutex_unlock(&fs_info->balance_mutex);
3684 	if (need_unlock)
3685 		btrfs_exclop_finish(fs_info);
3686 out:
3687 	mnt_drop_write_file(file);
3688 	kfree(bargs);
3689 	return ret;
3690 }
3691 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3692 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3693 {
3694 	if (!capable(CAP_SYS_ADMIN))
3695 		return -EPERM;
3696 
3697 	switch (cmd) {
3698 	case BTRFS_BALANCE_CTL_PAUSE:
3699 		return btrfs_pause_balance(fs_info);
3700 	case BTRFS_BALANCE_CTL_CANCEL:
3701 		return btrfs_cancel_balance(fs_info);
3702 	}
3703 
3704 	return -EINVAL;
3705 }
3706 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3707 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3708 					 void __user *arg)
3709 {
3710 	struct btrfs_ioctl_balance_args *bargs;
3711 	int ret = 0;
3712 
3713 	if (!capable(CAP_SYS_ADMIN))
3714 		return -EPERM;
3715 
3716 	mutex_lock(&fs_info->balance_mutex);
3717 	if (!fs_info->balance_ctl) {
3718 		ret = -ENOTCONN;
3719 		goto out;
3720 	}
3721 
3722 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3723 	if (!bargs) {
3724 		ret = -ENOMEM;
3725 		goto out;
3726 	}
3727 
3728 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3729 
3730 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3731 		ret = -EFAULT;
3732 
3733 	kfree(bargs);
3734 out:
3735 	mutex_unlock(&fs_info->balance_mutex);
3736 	return ret;
3737 }
3738 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3739 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3740 {
3741 	struct inode *inode = file_inode(file);
3742 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3743 	struct btrfs_ioctl_quota_ctl_args *sa;
3744 	int ret;
3745 
3746 	if (!capable(CAP_SYS_ADMIN))
3747 		return -EPERM;
3748 
3749 	ret = mnt_want_write_file(file);
3750 	if (ret)
3751 		return ret;
3752 
3753 	sa = memdup_user(arg, sizeof(*sa));
3754 	if (IS_ERR(sa)) {
3755 		ret = PTR_ERR(sa);
3756 		goto drop_write;
3757 	}
3758 
3759 	switch (sa->cmd) {
3760 	case BTRFS_QUOTA_CTL_ENABLE:
3761 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3762 		down_write(&fs_info->subvol_sem);
3763 		ret = btrfs_quota_enable(fs_info, sa);
3764 		up_write(&fs_info->subvol_sem);
3765 		break;
3766 	case BTRFS_QUOTA_CTL_DISABLE:
3767 		/*
3768 		 * Lock the cleaner mutex to prevent races with concurrent
3769 		 * relocation, because relocation may be building backrefs for
3770 		 * blocks of the quota root while we are deleting the root. This
3771 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3772 		 * need the same protection.
3773 		 *
3774 		 * This also prevents races between concurrent tasks trying to
3775 		 * disable quotas, because we will unlock and relock
3776 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3777 		 *
3778 		 * We take this here because we have the dependency of
3779 		 *
3780 		 * inode_lock -> subvol_sem
3781 		 *
3782 		 * because of rename.  With relocation we can prealloc extents,
3783 		 * so that makes the dependency chain
3784 		 *
3785 		 * cleaner_mutex -> inode_lock -> subvol_sem
3786 		 *
3787 		 * so we must take the cleaner_mutex here before we take the
3788 		 * subvol_sem.  The deadlock can't actually happen, but this
3789 		 * quiets lockdep.
3790 		 */
3791 		mutex_lock(&fs_info->cleaner_mutex);
3792 		down_write(&fs_info->subvol_sem);
3793 		ret = btrfs_quota_disable(fs_info);
3794 		up_write(&fs_info->subvol_sem);
3795 		mutex_unlock(&fs_info->cleaner_mutex);
3796 		break;
3797 	default:
3798 		ret = -EINVAL;
3799 		break;
3800 	}
3801 
3802 	kfree(sa);
3803 drop_write:
3804 	mnt_drop_write_file(file);
3805 	return ret;
3806 }
3807 
3808 /*
3809  * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3810  * done before any operations.
3811  */
qgroup_enabled(struct btrfs_fs_info * fs_info)3812 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3813 {
3814 	bool ret = true;
3815 
3816 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3817 	if (!fs_info->quota_root)
3818 		ret = false;
3819 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3820 
3821 	return ret;
3822 }
3823 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3824 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3825 {
3826 	struct inode *inode = file_inode(file);
3827 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3828 	struct btrfs_root *root = BTRFS_I(inode)->root;
3829 	struct btrfs_ioctl_qgroup_assign_args *sa;
3830 	struct btrfs_qgroup_list *prealloc = NULL;
3831 	struct btrfs_trans_handle *trans;
3832 	int ret;
3833 	int err;
3834 
3835 	if (!capable(CAP_SYS_ADMIN))
3836 		return -EPERM;
3837 
3838 	if (!qgroup_enabled(root->fs_info))
3839 		return -ENOTCONN;
3840 
3841 	ret = mnt_want_write_file(file);
3842 	if (ret)
3843 		return ret;
3844 
3845 	sa = memdup_user(arg, sizeof(*sa));
3846 	if (IS_ERR(sa)) {
3847 		ret = PTR_ERR(sa);
3848 		goto drop_write;
3849 	}
3850 
3851 	if (sa->assign) {
3852 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3853 		if (!prealloc) {
3854 			ret = -ENOMEM;
3855 			goto drop_write;
3856 		}
3857 	}
3858 
3859 	trans = btrfs_join_transaction(root);
3860 	if (IS_ERR(trans)) {
3861 		ret = PTR_ERR(trans);
3862 		goto out;
3863 	}
3864 
3865 	/*
3866 	 * Prealloc ownership is moved to the relation handler, there it's used
3867 	 * or freed on error.
3868 	 */
3869 	if (sa->assign) {
3870 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3871 		prealloc = NULL;
3872 	} else {
3873 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3874 	}
3875 
3876 	/* update qgroup status and info */
3877 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3878 	err = btrfs_run_qgroups(trans);
3879 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3880 	if (err < 0)
3881 		btrfs_warn(fs_info,
3882 			   "qgroup status update failed after %s relation, marked as inconsistent",
3883 			   sa->assign ? "adding" : "deleting");
3884 	err = btrfs_end_transaction(trans);
3885 	if (err && !ret)
3886 		ret = err;
3887 
3888 out:
3889 	kfree(prealloc);
3890 	kfree(sa);
3891 drop_write:
3892 	mnt_drop_write_file(file);
3893 	return ret;
3894 }
3895 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3896 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3897 {
3898 	struct inode *inode = file_inode(file);
3899 	struct btrfs_root *root = BTRFS_I(inode)->root;
3900 	struct btrfs_ioctl_qgroup_create_args *sa;
3901 	struct btrfs_trans_handle *trans;
3902 	int ret;
3903 	int err;
3904 
3905 	if (!capable(CAP_SYS_ADMIN))
3906 		return -EPERM;
3907 
3908 	if (!qgroup_enabled(root->fs_info))
3909 		return -ENOTCONN;
3910 
3911 	ret = mnt_want_write_file(file);
3912 	if (ret)
3913 		return ret;
3914 
3915 	sa = memdup_user(arg, sizeof(*sa));
3916 	if (IS_ERR(sa)) {
3917 		ret = PTR_ERR(sa);
3918 		goto drop_write;
3919 	}
3920 
3921 	if (!sa->qgroupid) {
3922 		ret = -EINVAL;
3923 		goto out;
3924 	}
3925 
3926 	if (sa->create && is_fstree(sa->qgroupid)) {
3927 		ret = -EINVAL;
3928 		goto out;
3929 	}
3930 
3931 	trans = btrfs_join_transaction(root);
3932 	if (IS_ERR(trans)) {
3933 		ret = PTR_ERR(trans);
3934 		goto out;
3935 	}
3936 
3937 	if (sa->create) {
3938 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3939 	} else {
3940 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3941 	}
3942 
3943 	err = btrfs_end_transaction(trans);
3944 	if (err && !ret)
3945 		ret = err;
3946 
3947 out:
3948 	kfree(sa);
3949 drop_write:
3950 	mnt_drop_write_file(file);
3951 	return ret;
3952 }
3953 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3954 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3955 {
3956 	struct inode *inode = file_inode(file);
3957 	struct btrfs_root *root = BTRFS_I(inode)->root;
3958 	struct btrfs_ioctl_qgroup_limit_args *sa;
3959 	struct btrfs_trans_handle *trans;
3960 	int ret;
3961 	int err;
3962 	u64 qgroupid;
3963 
3964 	if (!capable(CAP_SYS_ADMIN))
3965 		return -EPERM;
3966 
3967 	if (!qgroup_enabled(root->fs_info))
3968 		return -ENOTCONN;
3969 
3970 	ret = mnt_want_write_file(file);
3971 	if (ret)
3972 		return ret;
3973 
3974 	sa = memdup_user(arg, sizeof(*sa));
3975 	if (IS_ERR(sa)) {
3976 		ret = PTR_ERR(sa);
3977 		goto drop_write;
3978 	}
3979 
3980 	trans = btrfs_join_transaction(root);
3981 	if (IS_ERR(trans)) {
3982 		ret = PTR_ERR(trans);
3983 		goto out;
3984 	}
3985 
3986 	qgroupid = sa->qgroupid;
3987 	if (!qgroupid) {
3988 		/* take the current subvol as qgroup */
3989 		qgroupid = btrfs_root_id(root);
3990 	}
3991 
3992 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3993 
3994 	err = btrfs_end_transaction(trans);
3995 	if (err && !ret)
3996 		ret = err;
3997 
3998 out:
3999 	kfree(sa);
4000 drop_write:
4001 	mnt_drop_write_file(file);
4002 	return ret;
4003 }
4004 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4005 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4006 {
4007 	struct inode *inode = file_inode(file);
4008 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4009 	struct btrfs_ioctl_quota_rescan_args *qsa;
4010 	int ret;
4011 
4012 	if (!capable(CAP_SYS_ADMIN))
4013 		return -EPERM;
4014 
4015 	if (!qgroup_enabled(fs_info))
4016 		return -ENOTCONN;
4017 
4018 	ret = mnt_want_write_file(file);
4019 	if (ret)
4020 		return ret;
4021 
4022 	qsa = memdup_user(arg, sizeof(*qsa));
4023 	if (IS_ERR(qsa)) {
4024 		ret = PTR_ERR(qsa);
4025 		goto drop_write;
4026 	}
4027 
4028 	if (qsa->flags) {
4029 		ret = -EINVAL;
4030 		goto out;
4031 	}
4032 
4033 	ret = btrfs_qgroup_rescan(fs_info);
4034 
4035 out:
4036 	kfree(qsa);
4037 drop_write:
4038 	mnt_drop_write_file(file);
4039 	return ret;
4040 }
4041 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4042 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4043 						void __user *arg)
4044 {
4045 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4046 
4047 	if (!capable(CAP_SYS_ADMIN))
4048 		return -EPERM;
4049 
4050 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4051 		qsa.flags = 1;
4052 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4053 	}
4054 
4055 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4056 		return -EFAULT;
4057 
4058 	return 0;
4059 }
4060 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4061 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4062 						void __user *arg)
4063 {
4064 	if (!capable(CAP_SYS_ADMIN))
4065 		return -EPERM;
4066 
4067 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4068 }
4069 
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)4070 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4071 					    struct mnt_idmap *idmap,
4072 					    struct btrfs_ioctl_received_subvol_args *sa)
4073 {
4074 	struct inode *inode = file_inode(file);
4075 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4076 	struct btrfs_root *root = BTRFS_I(inode)->root;
4077 	struct btrfs_root_item *root_item = &root->root_item;
4078 	struct btrfs_trans_handle *trans;
4079 	struct timespec64 ct = current_time(inode);
4080 	int ret = 0;
4081 	int received_uuid_changed;
4082 
4083 	if (!inode_owner_or_capable(idmap, inode))
4084 		return -EPERM;
4085 
4086 	ret = mnt_want_write_file(file);
4087 	if (ret < 0)
4088 		return ret;
4089 
4090 	down_write(&fs_info->subvol_sem);
4091 
4092 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4093 		ret = -EINVAL;
4094 		goto out;
4095 	}
4096 
4097 	if (btrfs_root_readonly(root)) {
4098 		ret = -EROFS;
4099 		goto out;
4100 	}
4101 
4102 	/*
4103 	 * 1 - root item
4104 	 * 2 - uuid items (received uuid + subvol uuid)
4105 	 */
4106 	trans = btrfs_start_transaction(root, 3);
4107 	if (IS_ERR(trans)) {
4108 		ret = PTR_ERR(trans);
4109 		trans = NULL;
4110 		goto out;
4111 	}
4112 
4113 	sa->rtransid = trans->transid;
4114 	sa->rtime.sec = ct.tv_sec;
4115 	sa->rtime.nsec = ct.tv_nsec;
4116 
4117 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4118 				       BTRFS_UUID_SIZE);
4119 	if (received_uuid_changed &&
4120 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4121 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4122 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4123 					  btrfs_root_id(root));
4124 		if (ret && ret != -ENOENT) {
4125 		        btrfs_abort_transaction(trans, ret);
4126 		        btrfs_end_transaction(trans);
4127 		        goto out;
4128 		}
4129 	}
4130 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4131 	btrfs_set_root_stransid(root_item, sa->stransid);
4132 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4133 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4134 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4135 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4136 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4137 
4138 	ret = btrfs_update_root(trans, fs_info->tree_root,
4139 				&root->root_key, &root->root_item);
4140 	if (ret < 0) {
4141 		btrfs_end_transaction(trans);
4142 		goto out;
4143 	}
4144 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4145 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4146 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4147 					  btrfs_root_id(root));
4148 		if (ret < 0 && ret != -EEXIST) {
4149 			btrfs_abort_transaction(trans, ret);
4150 			btrfs_end_transaction(trans);
4151 			goto out;
4152 		}
4153 	}
4154 	ret = btrfs_commit_transaction(trans);
4155 out:
4156 	up_write(&fs_info->subvol_sem);
4157 	mnt_drop_write_file(file);
4158 	return ret;
4159 }
4160 
4161 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4162 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4163 						void __user *arg)
4164 {
4165 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4166 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4167 	int ret = 0;
4168 
4169 	args32 = memdup_user(arg, sizeof(*args32));
4170 	if (IS_ERR(args32))
4171 		return PTR_ERR(args32);
4172 
4173 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4174 	if (!args64) {
4175 		ret = -ENOMEM;
4176 		goto out;
4177 	}
4178 
4179 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4180 	args64->stransid = args32->stransid;
4181 	args64->rtransid = args32->rtransid;
4182 	args64->stime.sec = args32->stime.sec;
4183 	args64->stime.nsec = args32->stime.nsec;
4184 	args64->rtime.sec = args32->rtime.sec;
4185 	args64->rtime.nsec = args32->rtime.nsec;
4186 	args64->flags = args32->flags;
4187 
4188 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4189 	if (ret)
4190 		goto out;
4191 
4192 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4193 	args32->stransid = args64->stransid;
4194 	args32->rtransid = args64->rtransid;
4195 	args32->stime.sec = args64->stime.sec;
4196 	args32->stime.nsec = args64->stime.nsec;
4197 	args32->rtime.sec = args64->rtime.sec;
4198 	args32->rtime.nsec = args64->rtime.nsec;
4199 	args32->flags = args64->flags;
4200 
4201 	ret = copy_to_user(arg, args32, sizeof(*args32));
4202 	if (ret)
4203 		ret = -EFAULT;
4204 
4205 out:
4206 	kfree(args32);
4207 	kfree(args64);
4208 	return ret;
4209 }
4210 #endif
4211 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4212 static long btrfs_ioctl_set_received_subvol(struct file *file,
4213 					    void __user *arg)
4214 {
4215 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4216 	int ret = 0;
4217 
4218 	sa = memdup_user(arg, sizeof(*sa));
4219 	if (IS_ERR(sa))
4220 		return PTR_ERR(sa);
4221 
4222 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4223 
4224 	if (ret)
4225 		goto out;
4226 
4227 	ret = copy_to_user(arg, sa, sizeof(*sa));
4228 	if (ret)
4229 		ret = -EFAULT;
4230 
4231 out:
4232 	kfree(sa);
4233 	return ret;
4234 }
4235 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4236 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4237 					void __user *arg)
4238 {
4239 	size_t len;
4240 	int ret;
4241 	char label[BTRFS_LABEL_SIZE];
4242 
4243 	spin_lock(&fs_info->super_lock);
4244 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4245 	spin_unlock(&fs_info->super_lock);
4246 
4247 	len = strnlen(label, BTRFS_LABEL_SIZE);
4248 
4249 	if (len == BTRFS_LABEL_SIZE) {
4250 		btrfs_warn(fs_info,
4251 			   "label is too long, return the first %zu bytes",
4252 			   --len);
4253 	}
4254 
4255 	ret = copy_to_user(arg, label, len);
4256 
4257 	return ret ? -EFAULT : 0;
4258 }
4259 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4260 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4261 {
4262 	struct inode *inode = file_inode(file);
4263 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4264 	struct btrfs_root *root = BTRFS_I(inode)->root;
4265 	struct btrfs_super_block *super_block = fs_info->super_copy;
4266 	struct btrfs_trans_handle *trans;
4267 	char label[BTRFS_LABEL_SIZE];
4268 	int ret;
4269 
4270 	if (!capable(CAP_SYS_ADMIN))
4271 		return -EPERM;
4272 
4273 	if (copy_from_user(label, arg, sizeof(label)))
4274 		return -EFAULT;
4275 
4276 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4277 		btrfs_err(fs_info,
4278 			  "unable to set label with more than %d bytes",
4279 			  BTRFS_LABEL_SIZE - 1);
4280 		return -EINVAL;
4281 	}
4282 
4283 	ret = mnt_want_write_file(file);
4284 	if (ret)
4285 		return ret;
4286 
4287 	trans = btrfs_start_transaction(root, 0);
4288 	if (IS_ERR(trans)) {
4289 		ret = PTR_ERR(trans);
4290 		goto out_unlock;
4291 	}
4292 
4293 	spin_lock(&fs_info->super_lock);
4294 	strcpy(super_block->label, label);
4295 	spin_unlock(&fs_info->super_lock);
4296 	ret = btrfs_commit_transaction(trans);
4297 
4298 out_unlock:
4299 	mnt_drop_write_file(file);
4300 	return ret;
4301 }
4302 
4303 #define INIT_FEATURE_FLAGS(suffix) \
4304 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4305 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4306 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4307 
btrfs_ioctl_get_supported_features(void __user * arg)4308 int btrfs_ioctl_get_supported_features(void __user *arg)
4309 {
4310 	static const struct btrfs_ioctl_feature_flags features[3] = {
4311 		INIT_FEATURE_FLAGS(SUPP),
4312 		INIT_FEATURE_FLAGS(SAFE_SET),
4313 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4314 	};
4315 
4316 	if (copy_to_user(arg, &features, sizeof(features)))
4317 		return -EFAULT;
4318 
4319 	return 0;
4320 }
4321 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4322 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4323 					void __user *arg)
4324 {
4325 	struct btrfs_super_block *super_block = fs_info->super_copy;
4326 	struct btrfs_ioctl_feature_flags features;
4327 
4328 	features.compat_flags = btrfs_super_compat_flags(super_block);
4329 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4330 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4331 
4332 	if (copy_to_user(arg, &features, sizeof(features)))
4333 		return -EFAULT;
4334 
4335 	return 0;
4336 }
4337 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4338 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4339 			      enum btrfs_feature_set set,
4340 			      u64 change_mask, u64 flags, u64 supported_flags,
4341 			      u64 safe_set, u64 safe_clear)
4342 {
4343 	const char *type = btrfs_feature_set_name(set);
4344 	char *names;
4345 	u64 disallowed, unsupported;
4346 	u64 set_mask = flags & change_mask;
4347 	u64 clear_mask = ~flags & change_mask;
4348 
4349 	unsupported = set_mask & ~supported_flags;
4350 	if (unsupported) {
4351 		names = btrfs_printable_features(set, unsupported);
4352 		if (names) {
4353 			btrfs_warn(fs_info,
4354 				   "this kernel does not support the %s feature bit%s",
4355 				   names, strchr(names, ',') ? "s" : "");
4356 			kfree(names);
4357 		} else
4358 			btrfs_warn(fs_info,
4359 				   "this kernel does not support %s bits 0x%llx",
4360 				   type, unsupported);
4361 		return -EOPNOTSUPP;
4362 	}
4363 
4364 	disallowed = set_mask & ~safe_set;
4365 	if (disallowed) {
4366 		names = btrfs_printable_features(set, disallowed);
4367 		if (names) {
4368 			btrfs_warn(fs_info,
4369 				   "can't set the %s feature bit%s while mounted",
4370 				   names, strchr(names, ',') ? "s" : "");
4371 			kfree(names);
4372 		} else
4373 			btrfs_warn(fs_info,
4374 				   "can't set %s bits 0x%llx while mounted",
4375 				   type, disallowed);
4376 		return -EPERM;
4377 	}
4378 
4379 	disallowed = clear_mask & ~safe_clear;
4380 	if (disallowed) {
4381 		names = btrfs_printable_features(set, disallowed);
4382 		if (names) {
4383 			btrfs_warn(fs_info,
4384 				   "can't clear the %s feature bit%s while mounted",
4385 				   names, strchr(names, ',') ? "s" : "");
4386 			kfree(names);
4387 		} else
4388 			btrfs_warn(fs_info,
4389 				   "can't clear %s bits 0x%llx while mounted",
4390 				   type, disallowed);
4391 		return -EPERM;
4392 	}
4393 
4394 	return 0;
4395 }
4396 
4397 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4398 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4399 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4400 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4401 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4402 
btrfs_ioctl_set_features(struct file * file,void __user * arg)4403 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4404 {
4405 	struct inode *inode = file_inode(file);
4406 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4407 	struct btrfs_root *root = BTRFS_I(inode)->root;
4408 	struct btrfs_super_block *super_block = fs_info->super_copy;
4409 	struct btrfs_ioctl_feature_flags flags[2];
4410 	struct btrfs_trans_handle *trans;
4411 	u64 newflags;
4412 	int ret;
4413 
4414 	if (!capable(CAP_SYS_ADMIN))
4415 		return -EPERM;
4416 
4417 	if (copy_from_user(flags, arg, sizeof(flags)))
4418 		return -EFAULT;
4419 
4420 	/* Nothing to do */
4421 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4422 	    !flags[0].incompat_flags)
4423 		return 0;
4424 
4425 	ret = check_feature(fs_info, flags[0].compat_flags,
4426 			    flags[1].compat_flags, COMPAT);
4427 	if (ret)
4428 		return ret;
4429 
4430 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4431 			    flags[1].compat_ro_flags, COMPAT_RO);
4432 	if (ret)
4433 		return ret;
4434 
4435 	ret = check_feature(fs_info, flags[0].incompat_flags,
4436 			    flags[1].incompat_flags, INCOMPAT);
4437 	if (ret)
4438 		return ret;
4439 
4440 	ret = mnt_want_write_file(file);
4441 	if (ret)
4442 		return ret;
4443 
4444 	trans = btrfs_start_transaction(root, 0);
4445 	if (IS_ERR(trans)) {
4446 		ret = PTR_ERR(trans);
4447 		goto out_drop_write;
4448 	}
4449 
4450 	spin_lock(&fs_info->super_lock);
4451 	newflags = btrfs_super_compat_flags(super_block);
4452 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4453 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4454 	btrfs_set_super_compat_flags(super_block, newflags);
4455 
4456 	newflags = btrfs_super_compat_ro_flags(super_block);
4457 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4458 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4459 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4460 
4461 	newflags = btrfs_super_incompat_flags(super_block);
4462 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4463 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4464 	btrfs_set_super_incompat_flags(super_block, newflags);
4465 	spin_unlock(&fs_info->super_lock);
4466 
4467 	ret = btrfs_commit_transaction(trans);
4468 out_drop_write:
4469 	mnt_drop_write_file(file);
4470 
4471 	return ret;
4472 }
4473 
_btrfs_ioctl_send(struct btrfs_inode * inode,void __user * argp,bool compat)4474 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4475 {
4476 	struct btrfs_ioctl_send_args *arg;
4477 	int ret;
4478 
4479 	if (compat) {
4480 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4481 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4482 
4483 		ret = copy_from_user(&args32, argp, sizeof(args32));
4484 		if (ret)
4485 			return -EFAULT;
4486 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4487 		if (!arg)
4488 			return -ENOMEM;
4489 		arg->send_fd = args32.send_fd;
4490 		arg->clone_sources_count = args32.clone_sources_count;
4491 		arg->clone_sources = compat_ptr(args32.clone_sources);
4492 		arg->parent_root = args32.parent_root;
4493 		arg->flags = args32.flags;
4494 		arg->version = args32.version;
4495 		memcpy(arg->reserved, args32.reserved,
4496 		       sizeof(args32.reserved));
4497 #else
4498 		return -ENOTTY;
4499 #endif
4500 	} else {
4501 		arg = memdup_user(argp, sizeof(*arg));
4502 		if (IS_ERR(arg))
4503 			return PTR_ERR(arg);
4504 	}
4505 	ret = btrfs_ioctl_send(inode, arg);
4506 	kfree(arg);
4507 	return ret;
4508 }
4509 
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4510 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4511 				    bool compat)
4512 {
4513 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4514 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4515 					     flags);
4516 	size_t copy_end;
4517 	struct iovec iovstack[UIO_FASTIOV];
4518 	struct iovec *iov = iovstack;
4519 	struct iov_iter iter;
4520 	loff_t pos;
4521 	struct kiocb kiocb;
4522 	ssize_t ret;
4523 
4524 	if (!capable(CAP_SYS_ADMIN)) {
4525 		ret = -EPERM;
4526 		goto out_acct;
4527 	}
4528 
4529 	if (compat) {
4530 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4531 		struct btrfs_ioctl_encoded_io_args_32 args32;
4532 
4533 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4534 				       flags);
4535 		if (copy_from_user(&args32, argp, copy_end)) {
4536 			ret = -EFAULT;
4537 			goto out_acct;
4538 		}
4539 		args.iov = compat_ptr(args32.iov);
4540 		args.iovcnt = args32.iovcnt;
4541 		args.offset = args32.offset;
4542 		args.flags = args32.flags;
4543 #else
4544 		return -ENOTTY;
4545 #endif
4546 	} else {
4547 		copy_end = copy_end_kernel;
4548 		if (copy_from_user(&args, argp, copy_end)) {
4549 			ret = -EFAULT;
4550 			goto out_acct;
4551 		}
4552 	}
4553 	if (args.flags != 0) {
4554 		ret = -EINVAL;
4555 		goto out_acct;
4556 	}
4557 
4558 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4559 			   &iov, &iter);
4560 	if (ret < 0)
4561 		goto out_acct;
4562 
4563 	if (iov_iter_count(&iter) == 0) {
4564 		ret = 0;
4565 		goto out_iov;
4566 	}
4567 	pos = args.offset;
4568 	ret = rw_verify_area(READ, file, &pos, args.len);
4569 	if (ret < 0)
4570 		goto out_iov;
4571 
4572 	init_sync_kiocb(&kiocb, file);
4573 	kiocb.ki_pos = pos;
4574 
4575 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4576 	if (ret >= 0) {
4577 		fsnotify_access(file);
4578 		if (copy_to_user(argp + copy_end,
4579 				 (char *)&args + copy_end_kernel,
4580 				 sizeof(args) - copy_end_kernel))
4581 			ret = -EFAULT;
4582 	}
4583 
4584 out_iov:
4585 	kfree(iov);
4586 out_acct:
4587 	if (ret > 0)
4588 		add_rchar(current, ret);
4589 	inc_syscr(current);
4590 	return ret;
4591 }
4592 
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4593 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4594 {
4595 	struct btrfs_ioctl_encoded_io_args args;
4596 	struct iovec iovstack[UIO_FASTIOV];
4597 	struct iovec *iov = iovstack;
4598 	struct iov_iter iter;
4599 	loff_t pos;
4600 	struct kiocb kiocb;
4601 	ssize_t ret;
4602 
4603 	if (!capable(CAP_SYS_ADMIN)) {
4604 		ret = -EPERM;
4605 		goto out_acct;
4606 	}
4607 
4608 	if (!(file->f_mode & FMODE_WRITE)) {
4609 		ret = -EBADF;
4610 		goto out_acct;
4611 	}
4612 
4613 	if (compat) {
4614 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4615 		struct btrfs_ioctl_encoded_io_args_32 args32;
4616 
4617 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4618 			ret = -EFAULT;
4619 			goto out_acct;
4620 		}
4621 		args.iov = compat_ptr(args32.iov);
4622 		args.iovcnt = args32.iovcnt;
4623 		args.offset = args32.offset;
4624 		args.flags = args32.flags;
4625 		args.len = args32.len;
4626 		args.unencoded_len = args32.unencoded_len;
4627 		args.unencoded_offset = args32.unencoded_offset;
4628 		args.compression = args32.compression;
4629 		args.encryption = args32.encryption;
4630 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4631 #else
4632 		return -ENOTTY;
4633 #endif
4634 	} else {
4635 		if (copy_from_user(&args, argp, sizeof(args))) {
4636 			ret = -EFAULT;
4637 			goto out_acct;
4638 		}
4639 	}
4640 
4641 	ret = -EINVAL;
4642 	if (args.flags != 0)
4643 		goto out_acct;
4644 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4645 		goto out_acct;
4646 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4647 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4648 		goto out_acct;
4649 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4650 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4651 		goto out_acct;
4652 	if (args.unencoded_offset > args.unencoded_len)
4653 		goto out_acct;
4654 	if (args.len > args.unencoded_len - args.unencoded_offset)
4655 		goto out_acct;
4656 
4657 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4658 			   &iov, &iter);
4659 	if (ret < 0)
4660 		goto out_acct;
4661 
4662 	if (iov_iter_count(&iter) == 0) {
4663 		ret = 0;
4664 		goto out_iov;
4665 	}
4666 	pos = args.offset;
4667 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4668 	if (ret < 0)
4669 		goto out_iov;
4670 
4671 	init_sync_kiocb(&kiocb, file);
4672 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4673 	if (ret)
4674 		goto out_iov;
4675 	kiocb.ki_pos = pos;
4676 
4677 	file_start_write(file);
4678 
4679 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4680 	if (ret > 0)
4681 		fsnotify_modify(file);
4682 
4683 	file_end_write(file);
4684 out_iov:
4685 	kfree(iov);
4686 out_acct:
4687 	if (ret > 0)
4688 		add_wchar(current, ret);
4689 	inc_syscw(current);
4690 	return ret;
4691 }
4692 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4693 long btrfs_ioctl(struct file *file, unsigned int
4694 		cmd, unsigned long arg)
4695 {
4696 	struct inode *inode = file_inode(file);
4697 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4698 	struct btrfs_root *root = BTRFS_I(inode)->root;
4699 	void __user *argp = (void __user *)arg;
4700 
4701 	switch (cmd) {
4702 	case FS_IOC_GETVERSION:
4703 		return btrfs_ioctl_getversion(inode, argp);
4704 	case FS_IOC_GETFSLABEL:
4705 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4706 	case FS_IOC_SETFSLABEL:
4707 		return btrfs_ioctl_set_fslabel(file, argp);
4708 	case FITRIM:
4709 		return btrfs_ioctl_fitrim(fs_info, argp);
4710 	case BTRFS_IOC_SNAP_CREATE:
4711 		return btrfs_ioctl_snap_create(file, argp, 0);
4712 	case BTRFS_IOC_SNAP_CREATE_V2:
4713 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4714 	case BTRFS_IOC_SUBVOL_CREATE:
4715 		return btrfs_ioctl_snap_create(file, argp, 1);
4716 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4717 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4718 	case BTRFS_IOC_SNAP_DESTROY:
4719 		return btrfs_ioctl_snap_destroy(file, argp, false);
4720 	case BTRFS_IOC_SNAP_DESTROY_V2:
4721 		return btrfs_ioctl_snap_destroy(file, argp, true);
4722 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4723 		return btrfs_ioctl_subvol_getflags(inode, argp);
4724 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4725 		return btrfs_ioctl_subvol_setflags(file, argp);
4726 	case BTRFS_IOC_DEFAULT_SUBVOL:
4727 		return btrfs_ioctl_default_subvol(file, argp);
4728 	case BTRFS_IOC_DEFRAG:
4729 		return btrfs_ioctl_defrag(file, NULL);
4730 	case BTRFS_IOC_DEFRAG_RANGE:
4731 		return btrfs_ioctl_defrag(file, argp);
4732 	case BTRFS_IOC_RESIZE:
4733 		return btrfs_ioctl_resize(file, argp);
4734 	case BTRFS_IOC_ADD_DEV:
4735 		return btrfs_ioctl_add_dev(fs_info, argp);
4736 	case BTRFS_IOC_RM_DEV:
4737 		return btrfs_ioctl_rm_dev(file, argp);
4738 	case BTRFS_IOC_RM_DEV_V2:
4739 		return btrfs_ioctl_rm_dev_v2(file, argp);
4740 	case BTRFS_IOC_FS_INFO:
4741 		return btrfs_ioctl_fs_info(fs_info, argp);
4742 	case BTRFS_IOC_DEV_INFO:
4743 		return btrfs_ioctl_dev_info(fs_info, argp);
4744 	case BTRFS_IOC_TREE_SEARCH:
4745 		return btrfs_ioctl_tree_search(inode, argp);
4746 	case BTRFS_IOC_TREE_SEARCH_V2:
4747 		return btrfs_ioctl_tree_search_v2(inode, argp);
4748 	case BTRFS_IOC_INO_LOOKUP:
4749 		return btrfs_ioctl_ino_lookup(root, argp);
4750 	case BTRFS_IOC_INO_PATHS:
4751 		return btrfs_ioctl_ino_to_path(root, argp);
4752 	case BTRFS_IOC_LOGICAL_INO:
4753 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4754 	case BTRFS_IOC_LOGICAL_INO_V2:
4755 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4756 	case BTRFS_IOC_SPACE_INFO:
4757 		return btrfs_ioctl_space_info(fs_info, argp);
4758 	case BTRFS_IOC_SYNC: {
4759 		int ret;
4760 
4761 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4762 		if (ret)
4763 			return ret;
4764 		ret = btrfs_sync_fs(inode->i_sb, 1);
4765 		/*
4766 		 * There may be work for the cleaner kthread to do (subvolume
4767 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
4768 		 */
4769 		wake_up_process(fs_info->cleaner_kthread);
4770 		return ret;
4771 	}
4772 	case BTRFS_IOC_START_SYNC:
4773 		return btrfs_ioctl_start_sync(root, argp);
4774 	case BTRFS_IOC_WAIT_SYNC:
4775 		return btrfs_ioctl_wait_sync(fs_info, argp);
4776 	case BTRFS_IOC_SCRUB:
4777 		return btrfs_ioctl_scrub(file, argp);
4778 	case BTRFS_IOC_SCRUB_CANCEL:
4779 		return btrfs_ioctl_scrub_cancel(fs_info);
4780 	case BTRFS_IOC_SCRUB_PROGRESS:
4781 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4782 	case BTRFS_IOC_BALANCE_V2:
4783 		return btrfs_ioctl_balance(file, argp);
4784 	case BTRFS_IOC_BALANCE_CTL:
4785 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4786 	case BTRFS_IOC_BALANCE_PROGRESS:
4787 		return btrfs_ioctl_balance_progress(fs_info, argp);
4788 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4789 		return btrfs_ioctl_set_received_subvol(file, argp);
4790 #ifdef CONFIG_64BIT
4791 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4792 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4793 #endif
4794 	case BTRFS_IOC_SEND:
4795 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
4796 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4797 	case BTRFS_IOC_SEND_32:
4798 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
4799 #endif
4800 	case BTRFS_IOC_GET_DEV_STATS:
4801 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4802 	case BTRFS_IOC_QUOTA_CTL:
4803 		return btrfs_ioctl_quota_ctl(file, argp);
4804 	case BTRFS_IOC_QGROUP_ASSIGN:
4805 		return btrfs_ioctl_qgroup_assign(file, argp);
4806 	case BTRFS_IOC_QGROUP_CREATE:
4807 		return btrfs_ioctl_qgroup_create(file, argp);
4808 	case BTRFS_IOC_QGROUP_LIMIT:
4809 		return btrfs_ioctl_qgroup_limit(file, argp);
4810 	case BTRFS_IOC_QUOTA_RESCAN:
4811 		return btrfs_ioctl_quota_rescan(file, argp);
4812 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4813 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4814 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4815 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4816 	case BTRFS_IOC_DEV_REPLACE:
4817 		return btrfs_ioctl_dev_replace(fs_info, argp);
4818 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4819 		return btrfs_ioctl_get_supported_features(argp);
4820 	case BTRFS_IOC_GET_FEATURES:
4821 		return btrfs_ioctl_get_features(fs_info, argp);
4822 	case BTRFS_IOC_SET_FEATURES:
4823 		return btrfs_ioctl_set_features(file, argp);
4824 	case BTRFS_IOC_GET_SUBVOL_INFO:
4825 		return btrfs_ioctl_get_subvol_info(inode, argp);
4826 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4827 		return btrfs_ioctl_get_subvol_rootref(root, argp);
4828 	case BTRFS_IOC_INO_LOOKUP_USER:
4829 		return btrfs_ioctl_ino_lookup_user(file, argp);
4830 	case FS_IOC_ENABLE_VERITY:
4831 		return fsverity_ioctl_enable(file, (const void __user *)argp);
4832 	case FS_IOC_MEASURE_VERITY:
4833 		return fsverity_ioctl_measure(file, argp);
4834 	case BTRFS_IOC_ENCODED_READ:
4835 		return btrfs_ioctl_encoded_read(file, argp, false);
4836 	case BTRFS_IOC_ENCODED_WRITE:
4837 		return btrfs_ioctl_encoded_write(file, argp, false);
4838 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4839 	case BTRFS_IOC_ENCODED_READ_32:
4840 		return btrfs_ioctl_encoded_read(file, argp, true);
4841 	case BTRFS_IOC_ENCODED_WRITE_32:
4842 		return btrfs_ioctl_encoded_write(file, argp, true);
4843 #endif
4844 	}
4845 
4846 	return -ENOTTY;
4847 }
4848 
4849 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4850 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4851 {
4852 	/*
4853 	 * These all access 32-bit values anyway so no further
4854 	 * handling is necessary.
4855 	 */
4856 	switch (cmd) {
4857 	case FS_IOC32_GETVERSION:
4858 		cmd = FS_IOC_GETVERSION;
4859 		break;
4860 	}
4861 
4862 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4863 }
4864 #endif
4865