1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "block-group.h"
49 #include "fs.h"
50 #include "accessors.h"
51 #include "extent-tree.h"
52 #include "root-tree.h"
53 #include "defrag.h"
54 #include "dir-item.h"
55 #include "uuid-tree.h"
56 #include "ioctl.h"
57 #include "file.h"
58 #include "scrub.h"
59 #include "super.h"
60
61 #ifdef CONFIG_64BIT
62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63 * structures are incorrect, as the timespec structure from userspace
64 * is 4 bytes too small. We define these alternatives here to teach
65 * the kernel about the 32-bit struct packing.
66 */
67 struct btrfs_ioctl_timespec_32 {
68 __u64 sec;
69 __u32 nsec;
70 } __attribute__ ((__packed__));
71
72 struct btrfs_ioctl_received_subvol_args_32 {
73 char uuid[BTRFS_UUID_SIZE]; /* in */
74 __u64 stransid; /* in */
75 __u64 rtransid; /* out */
76 struct btrfs_ioctl_timespec_32 stime; /* in */
77 struct btrfs_ioctl_timespec_32 rtime; /* out */
78 __u64 flags; /* in */
79 __u64 reserved[16]; /* in */
80 } __attribute__ ((__packed__));
81
82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 struct btrfs_ioctl_received_subvol_args_32)
84 #endif
85
86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87 struct btrfs_ioctl_send_args_32 {
88 __s64 send_fd; /* in */
89 __u64 clone_sources_count; /* in */
90 compat_uptr_t clone_sources; /* in */
91 __u64 parent_root; /* in */
92 __u64 flags; /* in */
93 __u32 version; /* in */
94 __u8 reserved[28]; /* in */
95 } __attribute__ ((__packed__));
96
97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 struct btrfs_ioctl_send_args_32)
99
100 struct btrfs_ioctl_encoded_io_args_32 {
101 compat_uptr_t iov;
102 compat_ulong_t iovcnt;
103 __s64 offset;
104 __u64 flags;
105 __u64 len;
106 __u64 unencoded_len;
107 __u64 unencoded_offset;
108 __u32 compression;
109 __u32 encryption;
110 __u8 reserved[64];
111 };
112
113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 struct btrfs_ioctl_encoded_io_args_32)
115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 struct btrfs_ioctl_encoded_io_args_32)
117 #endif
118
119 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121 unsigned int flags)
122 {
123 if (S_ISDIR(inode->i_mode))
124 return flags;
125 else if (S_ISREG(inode->i_mode))
126 return flags & ~FS_DIRSYNC_FL;
127 else
128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129 }
130
131 /*
132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133 * ioctl.
134 */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136 {
137 unsigned int iflags = 0;
138 u32 flags = binode->flags;
139 u32 ro_flags = binode->ro_flags;
140
141 if (flags & BTRFS_INODE_SYNC)
142 iflags |= FS_SYNC_FL;
143 if (flags & BTRFS_INODE_IMMUTABLE)
144 iflags |= FS_IMMUTABLE_FL;
145 if (flags & BTRFS_INODE_APPEND)
146 iflags |= FS_APPEND_FL;
147 if (flags & BTRFS_INODE_NODUMP)
148 iflags |= FS_NODUMP_FL;
149 if (flags & BTRFS_INODE_NOATIME)
150 iflags |= FS_NOATIME_FL;
151 if (flags & BTRFS_INODE_DIRSYNC)
152 iflags |= FS_DIRSYNC_FL;
153 if (flags & BTRFS_INODE_NODATACOW)
154 iflags |= FS_NOCOW_FL;
155 if (ro_flags & BTRFS_INODE_RO_VERITY)
156 iflags |= FS_VERITY_FL;
157
158 if (flags & BTRFS_INODE_NOCOMPRESS)
159 iflags |= FS_NOCOMP_FL;
160 else if (flags & BTRFS_INODE_COMPRESS)
161 iflags |= FS_COMPR_FL;
162
163 return iflags;
164 }
165
166 /*
167 * Update inode->i_flags based on the btrfs internal flags.
168 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170 {
171 struct btrfs_inode *binode = BTRFS_I(inode);
172 unsigned int new_fl = 0;
173
174 if (binode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (binode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (binode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (binode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190 }
191
192 /*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
check_fsflags(unsigned int old_flags,unsigned int flags)196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219 }
220
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223 {
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228 }
229
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
234 return 0;
235 }
236
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
241 return 0;
242 }
243
244 /*
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
247 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249 {
250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
251
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
253 return 0;
254 }
255
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
258 {
259 struct inode *inode = d_inode(dentry);
260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 struct btrfs_inode *binode = BTRFS_I(inode);
262 struct btrfs_root *root = binode->root;
263 struct btrfs_trans_handle *trans;
264 unsigned int fsflags, old_fsflags;
265 int ret;
266 const char *comp = NULL;
267 u32 binode_flags;
268
269 if (btrfs_root_readonly(root))
270 return -EROFS;
271
272 if (fileattr_has_fsx(fa))
273 return -EOPNOTSUPP;
274
275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 ret = check_fsflags(old_fsflags, fsflags);
278 if (ret)
279 return ret;
280
281 ret = check_fsflags_compatible(fs_info, fsflags);
282 if (ret)
283 return ret;
284
285 binode_flags = binode->flags;
286 if (fsflags & FS_SYNC_FL)
287 binode_flags |= BTRFS_INODE_SYNC;
288 else
289 binode_flags &= ~BTRFS_INODE_SYNC;
290 if (fsflags & FS_IMMUTABLE_FL)
291 binode_flags |= BTRFS_INODE_IMMUTABLE;
292 else
293 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 if (fsflags & FS_APPEND_FL)
295 binode_flags |= BTRFS_INODE_APPEND;
296 else
297 binode_flags &= ~BTRFS_INODE_APPEND;
298 if (fsflags & FS_NODUMP_FL)
299 binode_flags |= BTRFS_INODE_NODUMP;
300 else
301 binode_flags &= ~BTRFS_INODE_NODUMP;
302 if (fsflags & FS_NOATIME_FL)
303 binode_flags |= BTRFS_INODE_NOATIME;
304 else
305 binode_flags &= ~BTRFS_INODE_NOATIME;
306
307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 if (!fa->flags_valid) {
309 /* 1 item for the inode */
310 trans = btrfs_start_transaction(root, 1);
311 if (IS_ERR(trans))
312 return PTR_ERR(trans);
313 goto update_flags;
314 }
315
316 if (fsflags & FS_DIRSYNC_FL)
317 binode_flags |= BTRFS_INODE_DIRSYNC;
318 else
319 binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 if (fsflags & FS_NOCOW_FL) {
321 if (S_ISREG(inode->i_mode)) {
322 /*
323 * It's safe to turn csums off here, no extents exist.
324 * Otherwise we want the flag to reflect the real COW
325 * status of the file and will not set it.
326 */
327 if (inode->i_size == 0)
328 binode_flags |= BTRFS_INODE_NODATACOW |
329 BTRFS_INODE_NODATASUM;
330 } else {
331 binode_flags |= BTRFS_INODE_NODATACOW;
332 }
333 } else {
334 /*
335 * Revert back under same assumptions as above
336 */
337 if (S_ISREG(inode->i_mode)) {
338 if (inode->i_size == 0)
339 binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 BTRFS_INODE_NODATASUM);
341 } else {
342 binode_flags &= ~BTRFS_INODE_NODATACOW;
343 }
344 }
345
346 /*
347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 * flag may be changed automatically if compression code won't make
349 * things smaller.
350 */
351 if (fsflags & FS_NOCOMP_FL) {
352 binode_flags &= ~BTRFS_INODE_COMPRESS;
353 binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 } else if (fsflags & FS_COMPR_FL) {
355
356 if (IS_SWAPFILE(inode))
357 return -ETXTBSY;
358
359 binode_flags |= BTRFS_INODE_COMPRESS;
360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
361
362 comp = btrfs_compress_type2str(fs_info->compress_type);
363 if (!comp || comp[0] == 0)
364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
365 } else {
366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
367 }
368
369 /*
370 * 1 for inode item
371 * 2 for properties
372 */
373 trans = btrfs_start_transaction(root, 3);
374 if (IS_ERR(trans))
375 return PTR_ERR(trans);
376
377 if (comp) {
378 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
379 comp, strlen(comp), 0);
380 if (ret) {
381 btrfs_abort_transaction(trans, ret);
382 goto out_end_trans;
383 }
384 } else {
385 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
386 NULL, 0, 0);
387 if (ret && ret != -ENODATA) {
388 btrfs_abort_transaction(trans, ret);
389 goto out_end_trans;
390 }
391 }
392
393 update_flags:
394 binode->flags = binode_flags;
395 btrfs_sync_inode_flags_to_i_flags(inode);
396 inode_inc_iversion(inode);
397 inode_set_ctime_current(inode);
398 ret = btrfs_update_inode(trans, BTRFS_I(inode));
399
400 out_end_trans:
401 btrfs_end_transaction(trans);
402 return ret;
403 }
404
405 /*
406 * Start exclusive operation @type, return true on success
407 */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 enum btrfs_exclusive_operation type)
410 {
411 bool ret = false;
412
413 spin_lock(&fs_info->super_lock);
414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 fs_info->exclusive_operation = type;
416 ret = true;
417 }
418 spin_unlock(&fs_info->super_lock);
419
420 return ret;
421 }
422
423 /*
424 * Conditionally allow to enter the exclusive operation in case it's compatible
425 * with the running one. This must be paired with btrfs_exclop_start_unlock and
426 * btrfs_exclop_finish.
427 *
428 * Compatibility:
429 * - the same type is already running
430 * - when trying to add a device and balance has been paused
431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432 * must check the condition first that would allow none -> @type
433 */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 enum btrfs_exclusive_operation type)
436 {
437 spin_lock(&fs_info->super_lock);
438 if (fs_info->exclusive_operation == type ||
439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 type == BTRFS_EXCLOP_DEV_ADD))
441 return true;
442
443 spin_unlock(&fs_info->super_lock);
444 return false;
445 }
446
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
448 {
449 spin_unlock(&fs_info->super_lock);
450 }
451
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
453 {
454 spin_lock(&fs_info->super_lock);
455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 spin_unlock(&fs_info->super_lock);
457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
458 }
459
btrfs_exclop_balance(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation op)460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 enum btrfs_exclusive_operation op)
462 {
463 switch (op) {
464 case BTRFS_EXCLOP_BALANCE_PAUSED:
465 spin_lock(&fs_info->super_lock);
466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 spin_unlock(&fs_info->super_lock);
472 break;
473 case BTRFS_EXCLOP_BALANCE:
474 spin_lock(&fs_info->super_lock);
475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 spin_unlock(&fs_info->super_lock);
478 break;
479 default:
480 btrfs_warn(fs_info,
481 "invalid exclop balance operation %d requested", op);
482 }
483 }
484
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
486 {
487 return put_user(inode->i_generation, arg);
488 }
489
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
491 void __user *arg)
492 {
493 struct btrfs_device *device;
494 struct fstrim_range range;
495 u64 minlen = ULLONG_MAX;
496 u64 num_devices = 0;
497 int ret;
498
499 if (!capable(CAP_SYS_ADMIN))
500 return -EPERM;
501
502 /*
503 * btrfs_trim_block_group() depends on space cache, which is not
504 * available in zoned filesystem. So, disallow fitrim on a zoned
505 * filesystem for now.
506 */
507 if (btrfs_is_zoned(fs_info))
508 return -EOPNOTSUPP;
509
510 /*
511 * If the fs is mounted with nologreplay, which requires it to be
512 * mounted in RO mode as well, we can not allow discard on free space
513 * inside block groups, because log trees refer to extents that are not
514 * pinned in a block group's free space cache (pinning the extents is
515 * precisely the first phase of replaying a log tree).
516 */
517 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518 return -EROFS;
519
520 rcu_read_lock();
521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522 dev_list) {
523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
524 continue;
525 num_devices++;
526 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
527 minlen);
528 }
529 rcu_read_unlock();
530
531 if (!num_devices)
532 return -EOPNOTSUPP;
533 if (copy_from_user(&range, arg, sizeof(range)))
534 return -EFAULT;
535
536 /*
537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
538 * block group is in the logical address space, which can be any
539 * sectorsize aligned bytenr in the range [0, U64_MAX].
540 */
541 if (range.len < fs_info->sectorsize)
542 return -EINVAL;
543
544 range.minlen = max(range.minlen, minlen);
545 ret = btrfs_trim_fs(fs_info, &range);
546
547 if (copy_to_user(arg, &range, sizeof(range)))
548 return -EFAULT;
549
550 return ret;
551 }
552
btrfs_is_empty_uuid(const u8 * uuid)553 int __pure btrfs_is_empty_uuid(const u8 *uuid)
554 {
555 int i;
556
557 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
558 if (uuid[i])
559 return 0;
560 }
561 return 1;
562 }
563
564 /*
565 * Calculate the number of transaction items to reserve for creating a subvolume
566 * or snapshot, not including the inode, directory entries, or parent directory.
567 */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)568 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
569 {
570 /*
571 * 1 to add root block
572 * 1 to add root item
573 * 1 to add root ref
574 * 1 to add root backref
575 * 1 to add UUID item
576 * 1 to add qgroup info
577 * 1 to add qgroup limit
578 *
579 * Ideally the last two would only be accounted if qgroups are enabled,
580 * but that can change between now and the time we would insert them.
581 */
582 unsigned int num_items = 7;
583
584 if (inherit) {
585 /* 2 to add qgroup relations for each inherited qgroup */
586 num_items += 2 * inherit->num_qgroups;
587 }
588 return num_items;
589 }
590
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)591 static noinline int create_subvol(struct mnt_idmap *idmap,
592 struct inode *dir, struct dentry *dentry,
593 struct btrfs_qgroup_inherit *inherit)
594 {
595 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key key;
598 struct btrfs_root_item *root_item;
599 struct btrfs_inode_item *inode_item;
600 struct extent_buffer *leaf;
601 struct btrfs_root *root = BTRFS_I(dir)->root;
602 struct btrfs_root *new_root;
603 struct btrfs_block_rsv block_rsv;
604 struct timespec64 cur_time = current_time(dir);
605 struct btrfs_new_inode_args new_inode_args = {
606 .dir = dir,
607 .dentry = dentry,
608 .subvol = true,
609 };
610 unsigned int trans_num_items;
611 int ret;
612 dev_t anon_dev;
613 u64 objectid;
614 u64 qgroup_reserved = 0;
615
616 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
617 if (!root_item)
618 return -ENOMEM;
619
620 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
621 if (ret)
622 goto out_root_item;
623
624 /*
625 * Don't create subvolume whose level is not zero. Or qgroup will be
626 * screwed up since it assumes subvolume qgroup's level to be 0.
627 */
628 if (btrfs_qgroup_level(objectid)) {
629 ret = -ENOSPC;
630 goto out_root_item;
631 }
632
633 ret = get_anon_bdev(&anon_dev);
634 if (ret < 0)
635 goto out_root_item;
636
637 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
638 if (!new_inode_args.inode) {
639 ret = -ENOMEM;
640 goto out_anon_dev;
641 }
642 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
643 if (ret)
644 goto out_inode;
645 trans_num_items += create_subvol_num_items(inherit);
646
647 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
648 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
649 trans_num_items, false);
650 if (ret)
651 goto out_new_inode_args;
652 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
653
654 trans = btrfs_start_transaction(root, 0);
655 if (IS_ERR(trans)) {
656 ret = PTR_ERR(trans);
657 goto out_release_rsv;
658 }
659 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
660 qgroup_reserved = 0;
661 trans->block_rsv = &block_rsv;
662 trans->bytes_reserved = block_rsv.size;
663
664 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
665 if (ret)
666 goto out;
667
668 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
669 0, BTRFS_NESTING_NORMAL);
670 if (IS_ERR(leaf)) {
671 ret = PTR_ERR(leaf);
672 goto out;
673 }
674
675 btrfs_mark_buffer_dirty(trans, leaf);
676
677 inode_item = &root_item->inode;
678 btrfs_set_stack_inode_generation(inode_item, 1);
679 btrfs_set_stack_inode_size(inode_item, 3);
680 btrfs_set_stack_inode_nlink(inode_item, 1);
681 btrfs_set_stack_inode_nbytes(inode_item,
682 fs_info->nodesize);
683 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
684
685 btrfs_set_root_flags(root_item, 0);
686 btrfs_set_root_limit(root_item, 0);
687 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
688
689 btrfs_set_root_bytenr(root_item, leaf->start);
690 btrfs_set_root_generation(root_item, trans->transid);
691 btrfs_set_root_level(root_item, 0);
692 btrfs_set_root_refs(root_item, 1);
693 btrfs_set_root_used(root_item, leaf->len);
694 btrfs_set_root_last_snapshot(root_item, 0);
695
696 btrfs_set_root_generation_v2(root_item,
697 btrfs_root_generation(root_item));
698 generate_random_guid(root_item->uuid);
699 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
700 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
701 root_item->ctime = root_item->otime;
702 btrfs_set_root_ctransid(root_item, trans->transid);
703 btrfs_set_root_otransid(root_item, trans->transid);
704
705 btrfs_tree_unlock(leaf);
706
707 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
708
709 key.objectid = objectid;
710 key.offset = 0;
711 key.type = BTRFS_ROOT_ITEM_KEY;
712 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
713 root_item);
714 if (ret) {
715 int ret2;
716
717 /*
718 * Since we don't abort the transaction in this case, free the
719 * tree block so that we don't leak space and leave the
720 * filesystem in an inconsistent state (an extent item in the
721 * extent tree with a backreference for a root that does not
722 * exists).
723 */
724 btrfs_tree_lock(leaf);
725 btrfs_clear_buffer_dirty(trans, leaf);
726 btrfs_tree_unlock(leaf);
727 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
728 if (ret2 < 0)
729 btrfs_abort_transaction(trans, ret2);
730 free_extent_buffer(leaf);
731 goto out;
732 }
733
734 free_extent_buffer(leaf);
735 leaf = NULL;
736
737 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
738 if (IS_ERR(new_root)) {
739 ret = PTR_ERR(new_root);
740 btrfs_abort_transaction(trans, ret);
741 goto out;
742 }
743 /* anon_dev is owned by new_root now. */
744 anon_dev = 0;
745 BTRFS_I(new_inode_args.inode)->root = new_root;
746 /* ... and new_root is owned by new_inode_args.inode now. */
747
748 ret = btrfs_record_root_in_trans(trans, new_root);
749 if (ret) {
750 btrfs_abort_transaction(trans, ret);
751 goto out;
752 }
753
754 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
755 BTRFS_UUID_KEY_SUBVOL, objectid);
756 if (ret) {
757 btrfs_abort_transaction(trans, ret);
758 goto out;
759 }
760
761 ret = btrfs_create_new_inode(trans, &new_inode_args);
762 if (ret) {
763 btrfs_abort_transaction(trans, ret);
764 goto out;
765 }
766
767 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
768
769 d_instantiate_new(dentry, new_inode_args.inode);
770 new_inode_args.inode = NULL;
771
772 out:
773 trans->block_rsv = NULL;
774 trans->bytes_reserved = 0;
775 btrfs_end_transaction(trans);
776 out_release_rsv:
777 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
778 if (qgroup_reserved)
779 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
780 out_new_inode_args:
781 btrfs_new_inode_args_destroy(&new_inode_args);
782 out_inode:
783 iput(new_inode_args.inode);
784 out_anon_dev:
785 if (anon_dev)
786 free_anon_bdev(anon_dev);
787 out_root_item:
788 kfree(root_item);
789 return ret;
790 }
791
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)792 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
793 struct dentry *dentry, bool readonly,
794 struct btrfs_qgroup_inherit *inherit)
795 {
796 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
797 struct inode *inode;
798 struct btrfs_pending_snapshot *pending_snapshot;
799 unsigned int trans_num_items;
800 struct btrfs_trans_handle *trans;
801 struct btrfs_block_rsv *block_rsv;
802 u64 qgroup_reserved = 0;
803 int ret;
804
805 /* We do not support snapshotting right now. */
806 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
807 btrfs_warn(fs_info,
808 "extent tree v2 doesn't support snapshotting yet");
809 return -EOPNOTSUPP;
810 }
811
812 if (btrfs_root_refs(&root->root_item) == 0)
813 return -ENOENT;
814
815 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
816 return -EINVAL;
817
818 if (atomic_read(&root->nr_swapfiles)) {
819 btrfs_warn(fs_info,
820 "cannot snapshot subvolume with active swapfile");
821 return -ETXTBSY;
822 }
823
824 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
825 if (!pending_snapshot)
826 return -ENOMEM;
827
828 ret = get_anon_bdev(&pending_snapshot->anon_dev);
829 if (ret < 0)
830 goto free_pending;
831 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
832 GFP_KERNEL);
833 pending_snapshot->path = btrfs_alloc_path();
834 if (!pending_snapshot->root_item || !pending_snapshot->path) {
835 ret = -ENOMEM;
836 goto free_pending;
837 }
838
839 block_rsv = &pending_snapshot->block_rsv;
840 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
841 /*
842 * 1 to add dir item
843 * 1 to add dir index
844 * 1 to update parent inode item
845 */
846 trans_num_items = create_subvol_num_items(inherit) + 3;
847 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
848 trans_num_items, false);
849 if (ret)
850 goto free_pending;
851 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
852
853 pending_snapshot->dentry = dentry;
854 pending_snapshot->root = root;
855 pending_snapshot->readonly = readonly;
856 pending_snapshot->dir = BTRFS_I(dir);
857 pending_snapshot->inherit = inherit;
858
859 trans = btrfs_start_transaction(root, 0);
860 if (IS_ERR(trans)) {
861 ret = PTR_ERR(trans);
862 goto fail;
863 }
864 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
865 if (ret) {
866 btrfs_end_transaction(trans);
867 goto fail;
868 }
869 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
870 qgroup_reserved = 0;
871
872 trans->pending_snapshot = pending_snapshot;
873
874 ret = btrfs_commit_transaction(trans);
875 if (ret)
876 goto fail;
877
878 ret = pending_snapshot->error;
879 if (ret)
880 goto fail;
881
882 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
883 if (ret)
884 goto fail;
885
886 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
887 if (IS_ERR(inode)) {
888 ret = PTR_ERR(inode);
889 goto fail;
890 }
891
892 d_instantiate(dentry, inode);
893 ret = 0;
894 pending_snapshot->anon_dev = 0;
895 fail:
896 /* Prevent double freeing of anon_dev */
897 if (ret && pending_snapshot->snap)
898 pending_snapshot->snap->anon_dev = 0;
899 btrfs_put_root(pending_snapshot->snap);
900 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
901 if (qgroup_reserved)
902 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
903 free_pending:
904 if (pending_snapshot->anon_dev)
905 free_anon_bdev(pending_snapshot->anon_dev);
906 kfree(pending_snapshot->root_item);
907 btrfs_free_path(pending_snapshot->path);
908 kfree(pending_snapshot);
909
910 return ret;
911 }
912
913 /* copy of may_delete in fs/namei.c()
914 * Check whether we can remove a link victim from directory dir, check
915 * whether the type of victim is right.
916 * 1. We can't do it if dir is read-only (done in permission())
917 * 2. We should have write and exec permissions on dir
918 * 3. We can't remove anything from append-only dir
919 * 4. We can't do anything with immutable dir (done in permission())
920 * 5. If the sticky bit on dir is set we should either
921 * a. be owner of dir, or
922 * b. be owner of victim, or
923 * c. have CAP_FOWNER capability
924 * 6. If the victim is append-only or immutable we can't do anything with
925 * links pointing to it.
926 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
927 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
928 * 9. We can't remove a root or mountpoint.
929 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
930 * nfs_async_unlink().
931 */
932
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)933 static int btrfs_may_delete(struct mnt_idmap *idmap,
934 struct inode *dir, struct dentry *victim, int isdir)
935 {
936 int error;
937
938 if (d_really_is_negative(victim))
939 return -ENOENT;
940
941 /* The @victim is not inside @dir. */
942 if (d_inode(victim->d_parent) != dir)
943 return -EINVAL;
944 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
945
946 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
947 if (error)
948 return error;
949 if (IS_APPEND(dir))
950 return -EPERM;
951 if (check_sticky(idmap, dir, d_inode(victim)) ||
952 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
953 IS_SWAPFILE(d_inode(victim)))
954 return -EPERM;
955 if (isdir) {
956 if (!d_is_dir(victim))
957 return -ENOTDIR;
958 if (IS_ROOT(victim))
959 return -EBUSY;
960 } else if (d_is_dir(victim))
961 return -EISDIR;
962 if (IS_DEADDIR(dir))
963 return -ENOENT;
964 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
965 return -EBUSY;
966 return 0;
967 }
968
969 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)970 static inline int btrfs_may_create(struct mnt_idmap *idmap,
971 struct inode *dir, struct dentry *child)
972 {
973 if (d_really_is_positive(child))
974 return -EEXIST;
975 if (IS_DEADDIR(dir))
976 return -ENOENT;
977 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
978 return -EOVERFLOW;
979 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
980 }
981
982 /*
983 * Create a new subvolume below @parent. This is largely modeled after
984 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
985 * inside this filesystem so it's quite a bit simpler.
986 */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)987 static noinline int btrfs_mksubvol(const struct path *parent,
988 struct mnt_idmap *idmap,
989 const char *name, int namelen,
990 struct btrfs_root *snap_src,
991 bool readonly,
992 struct btrfs_qgroup_inherit *inherit)
993 {
994 struct inode *dir = d_inode(parent->dentry);
995 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
996 struct dentry *dentry;
997 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
998 int error;
999
1000 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1001 if (error == -EINTR)
1002 return error;
1003
1004 dentry = lookup_one(idmap, name, parent->dentry, namelen);
1005 error = PTR_ERR(dentry);
1006 if (IS_ERR(dentry))
1007 goto out_unlock;
1008
1009 error = btrfs_may_create(idmap, dir, dentry);
1010 if (error)
1011 goto out_dput;
1012
1013 /*
1014 * even if this name doesn't exist, we may get hash collisions.
1015 * check for them now when we can safely fail
1016 */
1017 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1018 dir->i_ino, &name_str);
1019 if (error)
1020 goto out_dput;
1021
1022 down_read(&fs_info->subvol_sem);
1023
1024 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1025 goto out_up_read;
1026
1027 if (snap_src)
1028 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1029 else
1030 error = create_subvol(idmap, dir, dentry, inherit);
1031
1032 if (!error)
1033 fsnotify_mkdir(dir, dentry);
1034 out_up_read:
1035 up_read(&fs_info->subvol_sem);
1036 out_dput:
1037 dput(dentry);
1038 out_unlock:
1039 btrfs_inode_unlock(BTRFS_I(dir), 0);
1040 return error;
1041 }
1042
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1043 static noinline int btrfs_mksnapshot(const struct path *parent,
1044 struct mnt_idmap *idmap,
1045 const char *name, int namelen,
1046 struct btrfs_root *root,
1047 bool readonly,
1048 struct btrfs_qgroup_inherit *inherit)
1049 {
1050 int ret;
1051 bool snapshot_force_cow = false;
1052
1053 /*
1054 * Force new buffered writes to reserve space even when NOCOW is
1055 * possible. This is to avoid later writeback (running dealloc) to
1056 * fallback to COW mode and unexpectedly fail with ENOSPC.
1057 */
1058 btrfs_drew_read_lock(&root->snapshot_lock);
1059
1060 ret = btrfs_start_delalloc_snapshot(root, false);
1061 if (ret)
1062 goto out;
1063
1064 /*
1065 * All previous writes have started writeback in NOCOW mode, so now
1066 * we force future writes to fallback to COW mode during snapshot
1067 * creation.
1068 */
1069 atomic_inc(&root->snapshot_force_cow);
1070 snapshot_force_cow = true;
1071
1072 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1073
1074 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1075 root, readonly, inherit);
1076 out:
1077 if (snapshot_force_cow)
1078 atomic_dec(&root->snapshot_force_cow);
1079 btrfs_drew_read_unlock(&root->snapshot_lock);
1080 return ret;
1081 }
1082
1083 /*
1084 * Try to start exclusive operation @type or cancel it if it's running.
1085 *
1086 * Return:
1087 * 0 - normal mode, newly claimed op started
1088 * >0 - normal mode, something else is running,
1089 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1090 * ECANCELED - cancel mode, successful cancel
1091 * ENOTCONN - cancel mode, operation not running anymore
1092 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1093 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1094 enum btrfs_exclusive_operation type, bool cancel)
1095 {
1096 if (!cancel) {
1097 /* Start normal op */
1098 if (!btrfs_exclop_start(fs_info, type))
1099 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1100 /* Exclusive operation is now claimed */
1101 return 0;
1102 }
1103
1104 /* Cancel running op */
1105 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1106 /*
1107 * This blocks any exclop finish from setting it to NONE, so we
1108 * request cancellation. Either it runs and we will wait for it,
1109 * or it has finished and no waiting will happen.
1110 */
1111 atomic_inc(&fs_info->reloc_cancel_req);
1112 btrfs_exclop_start_unlock(fs_info);
1113
1114 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1115 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1116 TASK_INTERRUPTIBLE);
1117
1118 return -ECANCELED;
1119 }
1120
1121 /* Something else is running or none */
1122 return -ENOTCONN;
1123 }
1124
btrfs_ioctl_resize(struct file * file,void __user * arg)1125 static noinline int btrfs_ioctl_resize(struct file *file,
1126 void __user *arg)
1127 {
1128 BTRFS_DEV_LOOKUP_ARGS(args);
1129 struct inode *inode = file_inode(file);
1130 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1131 u64 new_size;
1132 u64 old_size;
1133 u64 devid = 1;
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 struct btrfs_ioctl_vol_args *vol_args;
1136 struct btrfs_trans_handle *trans;
1137 struct btrfs_device *device = NULL;
1138 char *sizestr;
1139 char *retptr;
1140 char *devstr = NULL;
1141 int ret = 0;
1142 int mod = 0;
1143 bool cancel;
1144
1145 if (!capable(CAP_SYS_ADMIN))
1146 return -EPERM;
1147
1148 ret = mnt_want_write_file(file);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * Read the arguments before checking exclusivity to be able to
1154 * distinguish regular resize and cancel
1155 */
1156 vol_args = memdup_user(arg, sizeof(*vol_args));
1157 if (IS_ERR(vol_args)) {
1158 ret = PTR_ERR(vol_args);
1159 goto out_drop;
1160 }
1161 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1162 if (ret < 0)
1163 goto out_free;
1164
1165 sizestr = vol_args->name;
1166 cancel = (strcmp("cancel", sizestr) == 0);
1167 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1168 if (ret)
1169 goto out_free;
1170 /* Exclusive operation is now claimed */
1171
1172 devstr = strchr(sizestr, ':');
1173 if (devstr) {
1174 sizestr = devstr + 1;
1175 *devstr = '\0';
1176 devstr = vol_args->name;
1177 ret = kstrtoull(devstr, 10, &devid);
1178 if (ret)
1179 goto out_finish;
1180 if (!devid) {
1181 ret = -EINVAL;
1182 goto out_finish;
1183 }
1184 btrfs_info(fs_info, "resizing devid %llu", devid);
1185 }
1186
1187 args.devid = devid;
1188 device = btrfs_find_device(fs_info->fs_devices, &args);
1189 if (!device) {
1190 btrfs_info(fs_info, "resizer unable to find device %llu",
1191 devid);
1192 ret = -ENODEV;
1193 goto out_finish;
1194 }
1195
1196 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1197 btrfs_info(fs_info,
1198 "resizer unable to apply on readonly device %llu",
1199 devid);
1200 ret = -EPERM;
1201 goto out_finish;
1202 }
1203
1204 if (!strcmp(sizestr, "max"))
1205 new_size = bdev_nr_bytes(device->bdev);
1206 else {
1207 if (sizestr[0] == '-') {
1208 mod = -1;
1209 sizestr++;
1210 } else if (sizestr[0] == '+') {
1211 mod = 1;
1212 sizestr++;
1213 }
1214 new_size = memparse(sizestr, &retptr);
1215 if (*retptr != '\0' || new_size == 0) {
1216 ret = -EINVAL;
1217 goto out_finish;
1218 }
1219 }
1220
1221 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1222 ret = -EPERM;
1223 goto out_finish;
1224 }
1225
1226 old_size = btrfs_device_get_total_bytes(device);
1227
1228 if (mod < 0) {
1229 if (new_size > old_size) {
1230 ret = -EINVAL;
1231 goto out_finish;
1232 }
1233 new_size = old_size - new_size;
1234 } else if (mod > 0) {
1235 if (new_size > ULLONG_MAX - old_size) {
1236 ret = -ERANGE;
1237 goto out_finish;
1238 }
1239 new_size = old_size + new_size;
1240 }
1241
1242 if (new_size < SZ_256M) {
1243 ret = -EINVAL;
1244 goto out_finish;
1245 }
1246 if (new_size > bdev_nr_bytes(device->bdev)) {
1247 ret = -EFBIG;
1248 goto out_finish;
1249 }
1250
1251 new_size = round_down(new_size, fs_info->sectorsize);
1252
1253 if (new_size > old_size) {
1254 trans = btrfs_start_transaction(root, 0);
1255 if (IS_ERR(trans)) {
1256 ret = PTR_ERR(trans);
1257 goto out_finish;
1258 }
1259 ret = btrfs_grow_device(trans, device, new_size);
1260 btrfs_commit_transaction(trans);
1261 } else if (new_size < old_size) {
1262 ret = btrfs_shrink_device(device, new_size);
1263 } /* equal, nothing need to do */
1264
1265 if (ret == 0 && new_size != old_size)
1266 btrfs_info_in_rcu(fs_info,
1267 "resize device %s (devid %llu) from %llu to %llu",
1268 btrfs_dev_name(device), device->devid,
1269 old_size, new_size);
1270 out_finish:
1271 btrfs_exclop_finish(fs_info);
1272 out_free:
1273 kfree(vol_args);
1274 out_drop:
1275 mnt_drop_write_file(file);
1276 return ret;
1277 }
1278
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1279 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1280 struct mnt_idmap *idmap,
1281 const char *name, unsigned long fd, int subvol,
1282 bool readonly,
1283 struct btrfs_qgroup_inherit *inherit)
1284 {
1285 int namelen;
1286 int ret = 0;
1287
1288 if (!S_ISDIR(file_inode(file)->i_mode))
1289 return -ENOTDIR;
1290
1291 ret = mnt_want_write_file(file);
1292 if (ret)
1293 goto out;
1294
1295 namelen = strlen(name);
1296 if (strchr(name, '/')) {
1297 ret = -EINVAL;
1298 goto out_drop_write;
1299 }
1300
1301 if (name[0] == '.' &&
1302 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1303 ret = -EEXIST;
1304 goto out_drop_write;
1305 }
1306
1307 if (subvol) {
1308 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1309 namelen, NULL, readonly, inherit);
1310 } else {
1311 struct fd src = fdget(fd);
1312 struct inode *src_inode;
1313 if (!fd_file(src)) {
1314 ret = -EINVAL;
1315 goto out_drop_write;
1316 }
1317
1318 src_inode = file_inode(fd_file(src));
1319 if (src_inode->i_sb != file_inode(file)->i_sb) {
1320 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1321 "Snapshot src from another FS");
1322 ret = -EXDEV;
1323 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1324 /*
1325 * Subvolume creation is not restricted, but snapshots
1326 * are limited to own subvolumes only
1327 */
1328 ret = -EPERM;
1329 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1330 /*
1331 * Snapshots must be made with the src_inode referring
1332 * to the subvolume inode, otherwise the permission
1333 * checking above is useless because we may have
1334 * permission on a lower directory but not the subvol
1335 * itself.
1336 */
1337 ret = -EINVAL;
1338 } else {
1339 ret = btrfs_mksnapshot(&file->f_path, idmap,
1340 name, namelen,
1341 BTRFS_I(src_inode)->root,
1342 readonly, inherit);
1343 }
1344 fdput(src);
1345 }
1346 out_drop_write:
1347 mnt_drop_write_file(file);
1348 out:
1349 return ret;
1350 }
1351
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1352 static noinline int btrfs_ioctl_snap_create(struct file *file,
1353 void __user *arg, int subvol)
1354 {
1355 struct btrfs_ioctl_vol_args *vol_args;
1356 int ret;
1357
1358 if (!S_ISDIR(file_inode(file)->i_mode))
1359 return -ENOTDIR;
1360
1361 vol_args = memdup_user(arg, sizeof(*vol_args));
1362 if (IS_ERR(vol_args))
1363 return PTR_ERR(vol_args);
1364 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1365 if (ret < 0)
1366 goto out;
1367
1368 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1369 vol_args->name, vol_args->fd, subvol,
1370 false, NULL);
1371
1372 out:
1373 kfree(vol_args);
1374 return ret;
1375 }
1376
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1377 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1378 void __user *arg, int subvol)
1379 {
1380 struct btrfs_ioctl_vol_args_v2 *vol_args;
1381 int ret;
1382 bool readonly = false;
1383 struct btrfs_qgroup_inherit *inherit = NULL;
1384
1385 if (!S_ISDIR(file_inode(file)->i_mode))
1386 return -ENOTDIR;
1387
1388 vol_args = memdup_user(arg, sizeof(*vol_args));
1389 if (IS_ERR(vol_args))
1390 return PTR_ERR(vol_args);
1391 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1392 if (ret < 0)
1393 goto free_args;
1394
1395 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1396 ret = -EOPNOTSUPP;
1397 goto free_args;
1398 }
1399
1400 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1401 readonly = true;
1402 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1403 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1404
1405 if (vol_args->size < sizeof(*inherit) ||
1406 vol_args->size > PAGE_SIZE) {
1407 ret = -EINVAL;
1408 goto free_args;
1409 }
1410 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1411 if (IS_ERR(inherit)) {
1412 ret = PTR_ERR(inherit);
1413 goto free_args;
1414 }
1415
1416 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1417 if (ret < 0)
1418 goto free_inherit;
1419 }
1420
1421 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1422 vol_args->name, vol_args->fd, subvol,
1423 readonly, inherit);
1424 if (ret)
1425 goto free_inherit;
1426 free_inherit:
1427 kfree(inherit);
1428 free_args:
1429 kfree(vol_args);
1430 return ret;
1431 }
1432
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)1433 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1434 void __user *arg)
1435 {
1436 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1437 struct btrfs_root *root = BTRFS_I(inode)->root;
1438 int ret = 0;
1439 u64 flags = 0;
1440
1441 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1442 return -EINVAL;
1443
1444 down_read(&fs_info->subvol_sem);
1445 if (btrfs_root_readonly(root))
1446 flags |= BTRFS_SUBVOL_RDONLY;
1447 up_read(&fs_info->subvol_sem);
1448
1449 if (copy_to_user(arg, &flags, sizeof(flags)))
1450 ret = -EFAULT;
1451
1452 return ret;
1453 }
1454
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1455 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1456 void __user *arg)
1457 {
1458 struct inode *inode = file_inode(file);
1459 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
1461 struct btrfs_trans_handle *trans;
1462 u64 root_flags;
1463 u64 flags;
1464 int ret = 0;
1465
1466 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1467 return -EPERM;
1468
1469 ret = mnt_want_write_file(file);
1470 if (ret)
1471 goto out;
1472
1473 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1474 ret = -EINVAL;
1475 goto out_drop_write;
1476 }
1477
1478 if (copy_from_user(&flags, arg, sizeof(flags))) {
1479 ret = -EFAULT;
1480 goto out_drop_write;
1481 }
1482
1483 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1484 ret = -EOPNOTSUPP;
1485 goto out_drop_write;
1486 }
1487
1488 down_write(&fs_info->subvol_sem);
1489
1490 /* nothing to do */
1491 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1492 goto out_drop_sem;
1493
1494 root_flags = btrfs_root_flags(&root->root_item);
1495 if (flags & BTRFS_SUBVOL_RDONLY) {
1496 btrfs_set_root_flags(&root->root_item,
1497 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1498 } else {
1499 /*
1500 * Block RO -> RW transition if this subvolume is involved in
1501 * send
1502 */
1503 spin_lock(&root->root_item_lock);
1504 if (root->send_in_progress == 0) {
1505 btrfs_set_root_flags(&root->root_item,
1506 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1507 spin_unlock(&root->root_item_lock);
1508 } else {
1509 spin_unlock(&root->root_item_lock);
1510 btrfs_warn(fs_info,
1511 "Attempt to set subvolume %llu read-write during send",
1512 btrfs_root_id(root));
1513 ret = -EPERM;
1514 goto out_drop_sem;
1515 }
1516 }
1517
1518 trans = btrfs_start_transaction(root, 1);
1519 if (IS_ERR(trans)) {
1520 ret = PTR_ERR(trans);
1521 goto out_reset;
1522 }
1523
1524 ret = btrfs_update_root(trans, fs_info->tree_root,
1525 &root->root_key, &root->root_item);
1526 if (ret < 0) {
1527 btrfs_end_transaction(trans);
1528 goto out_reset;
1529 }
1530
1531 ret = btrfs_commit_transaction(trans);
1532
1533 out_reset:
1534 if (ret)
1535 btrfs_set_root_flags(&root->root_item, root_flags);
1536 out_drop_sem:
1537 up_write(&fs_info->subvol_sem);
1538 out_drop_write:
1539 mnt_drop_write_file(file);
1540 out:
1541 return ret;
1542 }
1543
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1544 static noinline int key_in_sk(struct btrfs_key *key,
1545 struct btrfs_ioctl_search_key *sk)
1546 {
1547 struct btrfs_key test;
1548 int ret;
1549
1550 test.objectid = sk->min_objectid;
1551 test.type = sk->min_type;
1552 test.offset = sk->min_offset;
1553
1554 ret = btrfs_comp_cpu_keys(key, &test);
1555 if (ret < 0)
1556 return 0;
1557
1558 test.objectid = sk->max_objectid;
1559 test.type = sk->max_type;
1560 test.offset = sk->max_offset;
1561
1562 ret = btrfs_comp_cpu_keys(key, &test);
1563 if (ret > 0)
1564 return 0;
1565 return 1;
1566 }
1567
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1568 static noinline int copy_to_sk(struct btrfs_path *path,
1569 struct btrfs_key *key,
1570 struct btrfs_ioctl_search_key *sk,
1571 u64 *buf_size,
1572 char __user *ubuf,
1573 unsigned long *sk_offset,
1574 int *num_found)
1575 {
1576 u64 found_transid;
1577 struct extent_buffer *leaf;
1578 struct btrfs_ioctl_search_header sh;
1579 struct btrfs_key test;
1580 unsigned long item_off;
1581 unsigned long item_len;
1582 int nritems;
1583 int i;
1584 int slot;
1585 int ret = 0;
1586
1587 leaf = path->nodes[0];
1588 slot = path->slots[0];
1589 nritems = btrfs_header_nritems(leaf);
1590
1591 if (btrfs_header_generation(leaf) > sk->max_transid) {
1592 i = nritems;
1593 goto advance_key;
1594 }
1595 found_transid = btrfs_header_generation(leaf);
1596
1597 for (i = slot; i < nritems; i++) {
1598 item_off = btrfs_item_ptr_offset(leaf, i);
1599 item_len = btrfs_item_size(leaf, i);
1600
1601 btrfs_item_key_to_cpu(leaf, key, i);
1602 if (!key_in_sk(key, sk))
1603 continue;
1604
1605 if (sizeof(sh) + item_len > *buf_size) {
1606 if (*num_found) {
1607 ret = 1;
1608 goto out;
1609 }
1610
1611 /*
1612 * return one empty item back for v1, which does not
1613 * handle -EOVERFLOW
1614 */
1615
1616 *buf_size = sizeof(sh) + item_len;
1617 item_len = 0;
1618 ret = -EOVERFLOW;
1619 }
1620
1621 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1622 ret = 1;
1623 goto out;
1624 }
1625
1626 sh.objectid = key->objectid;
1627 sh.offset = key->offset;
1628 sh.type = key->type;
1629 sh.len = item_len;
1630 sh.transid = found_transid;
1631
1632 /*
1633 * Copy search result header. If we fault then loop again so we
1634 * can fault in the pages and -EFAULT there if there's a
1635 * problem. Otherwise we'll fault and then copy the buffer in
1636 * properly this next time through
1637 */
1638 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1639 ret = 0;
1640 goto out;
1641 }
1642
1643 *sk_offset += sizeof(sh);
1644
1645 if (item_len) {
1646 char __user *up = ubuf + *sk_offset;
1647 /*
1648 * Copy the item, same behavior as above, but reset the
1649 * * sk_offset so we copy the full thing again.
1650 */
1651 if (read_extent_buffer_to_user_nofault(leaf, up,
1652 item_off, item_len)) {
1653 ret = 0;
1654 *sk_offset -= sizeof(sh);
1655 goto out;
1656 }
1657
1658 *sk_offset += item_len;
1659 }
1660 (*num_found)++;
1661
1662 if (ret) /* -EOVERFLOW from above */
1663 goto out;
1664
1665 if (*num_found >= sk->nr_items) {
1666 ret = 1;
1667 goto out;
1668 }
1669 }
1670 advance_key:
1671 ret = 0;
1672 test.objectid = sk->max_objectid;
1673 test.type = sk->max_type;
1674 test.offset = sk->max_offset;
1675 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1676 ret = 1;
1677 else if (key->offset < (u64)-1)
1678 key->offset++;
1679 else if (key->type < (u8)-1) {
1680 key->offset = 0;
1681 key->type++;
1682 } else if (key->objectid < (u64)-1) {
1683 key->offset = 0;
1684 key->type = 0;
1685 key->objectid++;
1686 } else
1687 ret = 1;
1688 out:
1689 /*
1690 * 0: all items from this leaf copied, continue with next
1691 * 1: * more items can be copied, but unused buffer is too small
1692 * * all items were found
1693 * Either way, it will stops the loop which iterates to the next
1694 * leaf
1695 * -EOVERFLOW: item was to large for buffer
1696 * -EFAULT: could not copy extent buffer back to userspace
1697 */
1698 return ret;
1699 }
1700
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1701 static noinline int search_ioctl(struct inode *inode,
1702 struct btrfs_ioctl_search_key *sk,
1703 u64 *buf_size,
1704 char __user *ubuf)
1705 {
1706 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1707 struct btrfs_root *root;
1708 struct btrfs_key key;
1709 struct btrfs_path *path;
1710 int ret;
1711 int num_found = 0;
1712 unsigned long sk_offset = 0;
1713
1714 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1715 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1716 return -EOVERFLOW;
1717 }
1718
1719 path = btrfs_alloc_path();
1720 if (!path)
1721 return -ENOMEM;
1722
1723 if (sk->tree_id == 0) {
1724 /* search the root of the inode that was passed */
1725 root = btrfs_grab_root(BTRFS_I(inode)->root);
1726 } else {
1727 root = btrfs_get_fs_root(info, sk->tree_id, true);
1728 if (IS_ERR(root)) {
1729 btrfs_free_path(path);
1730 return PTR_ERR(root);
1731 }
1732 }
1733
1734 key.objectid = sk->min_objectid;
1735 key.type = sk->min_type;
1736 key.offset = sk->min_offset;
1737
1738 while (1) {
1739 ret = -EFAULT;
1740 /*
1741 * Ensure that the whole user buffer is faulted in at sub-page
1742 * granularity, otherwise the loop may live-lock.
1743 */
1744 if (fault_in_subpage_writeable(ubuf + sk_offset,
1745 *buf_size - sk_offset))
1746 break;
1747
1748 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1749 if (ret != 0) {
1750 if (ret > 0)
1751 ret = 0;
1752 goto err;
1753 }
1754 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1755 &sk_offset, &num_found);
1756 btrfs_release_path(path);
1757 if (ret)
1758 break;
1759
1760 }
1761 if (ret > 0)
1762 ret = 0;
1763 err:
1764 sk->nr_items = num_found;
1765 btrfs_put_root(root);
1766 btrfs_free_path(path);
1767 return ret;
1768 }
1769
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)1770 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1771 void __user *argp)
1772 {
1773 struct btrfs_ioctl_search_args __user *uargs = argp;
1774 struct btrfs_ioctl_search_key sk;
1775 int ret;
1776 u64 buf_size;
1777
1778 if (!capable(CAP_SYS_ADMIN))
1779 return -EPERM;
1780
1781 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1782 return -EFAULT;
1783
1784 buf_size = sizeof(uargs->buf);
1785
1786 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1787
1788 /*
1789 * In the origin implementation an overflow is handled by returning a
1790 * search header with a len of zero, so reset ret.
1791 */
1792 if (ret == -EOVERFLOW)
1793 ret = 0;
1794
1795 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1796 ret = -EFAULT;
1797 return ret;
1798 }
1799
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)1800 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1801 void __user *argp)
1802 {
1803 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1804 struct btrfs_ioctl_search_args_v2 args;
1805 int ret;
1806 u64 buf_size;
1807 const u64 buf_limit = SZ_16M;
1808
1809 if (!capable(CAP_SYS_ADMIN))
1810 return -EPERM;
1811
1812 /* copy search header and buffer size */
1813 if (copy_from_user(&args, uarg, sizeof(args)))
1814 return -EFAULT;
1815
1816 buf_size = args.buf_size;
1817
1818 /* limit result size to 16MB */
1819 if (buf_size > buf_limit)
1820 buf_size = buf_limit;
1821
1822 ret = search_ioctl(inode, &args.key, &buf_size,
1823 (char __user *)(&uarg->buf[0]));
1824 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1825 ret = -EFAULT;
1826 else if (ret == -EOVERFLOW &&
1827 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1828 ret = -EFAULT;
1829
1830 return ret;
1831 }
1832
1833 /*
1834 * Search INODE_REFs to identify path name of 'dirid' directory
1835 * in a 'tree_id' tree. and sets path name to 'name'.
1836 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1837 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1838 u64 tree_id, u64 dirid, char *name)
1839 {
1840 struct btrfs_root *root;
1841 struct btrfs_key key;
1842 char *ptr;
1843 int ret = -1;
1844 int slot;
1845 int len;
1846 int total_len = 0;
1847 struct btrfs_inode_ref *iref;
1848 struct extent_buffer *l;
1849 struct btrfs_path *path;
1850
1851 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1852 name[0]='\0';
1853 return 0;
1854 }
1855
1856 path = btrfs_alloc_path();
1857 if (!path)
1858 return -ENOMEM;
1859
1860 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1861
1862 root = btrfs_get_fs_root(info, tree_id, true);
1863 if (IS_ERR(root)) {
1864 ret = PTR_ERR(root);
1865 root = NULL;
1866 goto out;
1867 }
1868
1869 key.objectid = dirid;
1870 key.type = BTRFS_INODE_REF_KEY;
1871 key.offset = (u64)-1;
1872
1873 while (1) {
1874 ret = btrfs_search_backwards(root, &key, path);
1875 if (ret < 0)
1876 goto out;
1877 else if (ret > 0) {
1878 ret = -ENOENT;
1879 goto out;
1880 }
1881
1882 l = path->nodes[0];
1883 slot = path->slots[0];
1884
1885 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1886 len = btrfs_inode_ref_name_len(l, iref);
1887 ptr -= len + 1;
1888 total_len += len + 1;
1889 if (ptr < name) {
1890 ret = -ENAMETOOLONG;
1891 goto out;
1892 }
1893
1894 *(ptr + len) = '/';
1895 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1896
1897 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1898 break;
1899
1900 btrfs_release_path(path);
1901 key.objectid = key.offset;
1902 key.offset = (u64)-1;
1903 dirid = key.objectid;
1904 }
1905 memmove(name, ptr, total_len);
1906 name[total_len] = '\0';
1907 ret = 0;
1908 out:
1909 btrfs_put_root(root);
1910 btrfs_free_path(path);
1911 return ret;
1912 }
1913
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1914 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1915 struct inode *inode,
1916 struct btrfs_ioctl_ino_lookup_user_args *args)
1917 {
1918 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1919 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1920 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1921 u64 dirid = args->dirid;
1922 unsigned long item_off;
1923 unsigned long item_len;
1924 struct btrfs_inode_ref *iref;
1925 struct btrfs_root_ref *rref;
1926 struct btrfs_root *root = NULL;
1927 struct btrfs_path *path;
1928 struct btrfs_key key, key2;
1929 struct extent_buffer *leaf;
1930 struct inode *temp_inode;
1931 char *ptr;
1932 int slot;
1933 int len;
1934 int total_len = 0;
1935 int ret;
1936
1937 path = btrfs_alloc_path();
1938 if (!path)
1939 return -ENOMEM;
1940
1941 /*
1942 * If the bottom subvolume does not exist directly under upper_limit,
1943 * construct the path in from the bottom up.
1944 */
1945 if (dirid != upper_limit) {
1946 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1947
1948 root = btrfs_get_fs_root(fs_info, treeid, true);
1949 if (IS_ERR(root)) {
1950 ret = PTR_ERR(root);
1951 goto out;
1952 }
1953
1954 key.objectid = dirid;
1955 key.type = BTRFS_INODE_REF_KEY;
1956 key.offset = (u64)-1;
1957 while (1) {
1958 ret = btrfs_search_backwards(root, &key, path);
1959 if (ret < 0)
1960 goto out_put;
1961 else if (ret > 0) {
1962 ret = -ENOENT;
1963 goto out_put;
1964 }
1965
1966 leaf = path->nodes[0];
1967 slot = path->slots[0];
1968
1969 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1970 len = btrfs_inode_ref_name_len(leaf, iref);
1971 ptr -= len + 1;
1972 total_len += len + 1;
1973 if (ptr < args->path) {
1974 ret = -ENAMETOOLONG;
1975 goto out_put;
1976 }
1977
1978 *(ptr + len) = '/';
1979 read_extent_buffer(leaf, ptr,
1980 (unsigned long)(iref + 1), len);
1981
1982 /* Check the read+exec permission of this directory */
1983 ret = btrfs_previous_item(root, path, dirid,
1984 BTRFS_INODE_ITEM_KEY);
1985 if (ret < 0) {
1986 goto out_put;
1987 } else if (ret > 0) {
1988 ret = -ENOENT;
1989 goto out_put;
1990 }
1991
1992 leaf = path->nodes[0];
1993 slot = path->slots[0];
1994 btrfs_item_key_to_cpu(leaf, &key2, slot);
1995 if (key2.objectid != dirid) {
1996 ret = -ENOENT;
1997 goto out_put;
1998 }
1999
2000 /*
2001 * We don't need the path anymore, so release it and
2002 * avoid deadlocks and lockdep warnings in case
2003 * btrfs_iget() needs to lookup the inode from its root
2004 * btree and lock the same leaf.
2005 */
2006 btrfs_release_path(path);
2007 temp_inode = btrfs_iget(key2.objectid, root);
2008 if (IS_ERR(temp_inode)) {
2009 ret = PTR_ERR(temp_inode);
2010 goto out_put;
2011 }
2012 ret = inode_permission(idmap, temp_inode,
2013 MAY_READ | MAY_EXEC);
2014 iput(temp_inode);
2015 if (ret) {
2016 ret = -EACCES;
2017 goto out_put;
2018 }
2019
2020 if (key.offset == upper_limit)
2021 break;
2022 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2023 ret = -EACCES;
2024 goto out_put;
2025 }
2026
2027 key.objectid = key.offset;
2028 key.offset = (u64)-1;
2029 dirid = key.objectid;
2030 }
2031
2032 memmove(args->path, ptr, total_len);
2033 args->path[total_len] = '\0';
2034 btrfs_put_root(root);
2035 root = NULL;
2036 btrfs_release_path(path);
2037 }
2038
2039 /* Get the bottom subvolume's name from ROOT_REF */
2040 key.objectid = treeid;
2041 key.type = BTRFS_ROOT_REF_KEY;
2042 key.offset = args->treeid;
2043 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2044 if (ret < 0) {
2045 goto out;
2046 } else if (ret > 0) {
2047 ret = -ENOENT;
2048 goto out;
2049 }
2050
2051 leaf = path->nodes[0];
2052 slot = path->slots[0];
2053 btrfs_item_key_to_cpu(leaf, &key, slot);
2054
2055 item_off = btrfs_item_ptr_offset(leaf, slot);
2056 item_len = btrfs_item_size(leaf, slot);
2057 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2058 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2059 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2060 ret = -EINVAL;
2061 goto out;
2062 }
2063
2064 /* Copy subvolume's name */
2065 item_off += sizeof(struct btrfs_root_ref);
2066 item_len -= sizeof(struct btrfs_root_ref);
2067 read_extent_buffer(leaf, args->name, item_off, item_len);
2068 args->name[item_len] = 0;
2069
2070 out_put:
2071 btrfs_put_root(root);
2072 out:
2073 btrfs_free_path(path);
2074 return ret;
2075 }
2076
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)2077 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2078 void __user *argp)
2079 {
2080 struct btrfs_ioctl_ino_lookup_args *args;
2081 int ret = 0;
2082
2083 args = memdup_user(argp, sizeof(*args));
2084 if (IS_ERR(args))
2085 return PTR_ERR(args);
2086
2087 /*
2088 * Unprivileged query to obtain the containing subvolume root id. The
2089 * path is reset so it's consistent with btrfs_search_path_in_tree.
2090 */
2091 if (args->treeid == 0)
2092 args->treeid = btrfs_root_id(root);
2093
2094 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2095 args->name[0] = 0;
2096 goto out;
2097 }
2098
2099 if (!capable(CAP_SYS_ADMIN)) {
2100 ret = -EPERM;
2101 goto out;
2102 }
2103
2104 ret = btrfs_search_path_in_tree(root->fs_info,
2105 args->treeid, args->objectid,
2106 args->name);
2107
2108 out:
2109 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2110 ret = -EFAULT;
2111
2112 kfree(args);
2113 return ret;
2114 }
2115
2116 /*
2117 * Version of ino_lookup ioctl (unprivileged)
2118 *
2119 * The main differences from ino_lookup ioctl are:
2120 *
2121 * 1. Read + Exec permission will be checked using inode_permission() during
2122 * path construction. -EACCES will be returned in case of failure.
2123 * 2. Path construction will be stopped at the inode number which corresponds
2124 * to the fd with which this ioctl is called. If constructed path does not
2125 * exist under fd's inode, -EACCES will be returned.
2126 * 3. The name of bottom subvolume is also searched and filled.
2127 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2128 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2129 {
2130 struct btrfs_ioctl_ino_lookup_user_args *args;
2131 struct inode *inode;
2132 int ret;
2133
2134 args = memdup_user(argp, sizeof(*args));
2135 if (IS_ERR(args))
2136 return PTR_ERR(args);
2137
2138 inode = file_inode(file);
2139
2140 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2141 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2142 /*
2143 * The subvolume does not exist under fd with which this is
2144 * called
2145 */
2146 kfree(args);
2147 return -EACCES;
2148 }
2149
2150 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2151
2152 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2153 ret = -EFAULT;
2154
2155 kfree(args);
2156 return ret;
2157 }
2158
2159 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2160 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2161 {
2162 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2163 struct btrfs_fs_info *fs_info;
2164 struct btrfs_root *root;
2165 struct btrfs_path *path;
2166 struct btrfs_key key;
2167 struct btrfs_root_item *root_item;
2168 struct btrfs_root_ref *rref;
2169 struct extent_buffer *leaf;
2170 unsigned long item_off;
2171 unsigned long item_len;
2172 int slot;
2173 int ret = 0;
2174
2175 path = btrfs_alloc_path();
2176 if (!path)
2177 return -ENOMEM;
2178
2179 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2180 if (!subvol_info) {
2181 btrfs_free_path(path);
2182 return -ENOMEM;
2183 }
2184
2185 fs_info = BTRFS_I(inode)->root->fs_info;
2186
2187 /* Get root_item of inode's subvolume */
2188 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2189 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2190 if (IS_ERR(root)) {
2191 ret = PTR_ERR(root);
2192 goto out_free;
2193 }
2194 root_item = &root->root_item;
2195
2196 subvol_info->treeid = key.objectid;
2197
2198 subvol_info->generation = btrfs_root_generation(root_item);
2199 subvol_info->flags = btrfs_root_flags(root_item);
2200
2201 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2202 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2203 BTRFS_UUID_SIZE);
2204 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2205 BTRFS_UUID_SIZE);
2206
2207 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2208 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2209 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2210
2211 subvol_info->otransid = btrfs_root_otransid(root_item);
2212 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2213 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2214
2215 subvol_info->stransid = btrfs_root_stransid(root_item);
2216 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2217 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2218
2219 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2220 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2221 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2222
2223 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2224 /* Search root tree for ROOT_BACKREF of this subvolume */
2225 key.type = BTRFS_ROOT_BACKREF_KEY;
2226 key.offset = 0;
2227 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2228 if (ret < 0) {
2229 goto out;
2230 } else if (path->slots[0] >=
2231 btrfs_header_nritems(path->nodes[0])) {
2232 ret = btrfs_next_leaf(fs_info->tree_root, path);
2233 if (ret < 0) {
2234 goto out;
2235 } else if (ret > 0) {
2236 ret = -EUCLEAN;
2237 goto out;
2238 }
2239 }
2240
2241 leaf = path->nodes[0];
2242 slot = path->slots[0];
2243 btrfs_item_key_to_cpu(leaf, &key, slot);
2244 if (key.objectid == subvol_info->treeid &&
2245 key.type == BTRFS_ROOT_BACKREF_KEY) {
2246 subvol_info->parent_id = key.offset;
2247
2248 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2249 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2250
2251 item_off = btrfs_item_ptr_offset(leaf, slot)
2252 + sizeof(struct btrfs_root_ref);
2253 item_len = btrfs_item_size(leaf, slot)
2254 - sizeof(struct btrfs_root_ref);
2255 read_extent_buffer(leaf, subvol_info->name,
2256 item_off, item_len);
2257 } else {
2258 ret = -ENOENT;
2259 goto out;
2260 }
2261 }
2262
2263 btrfs_free_path(path);
2264 path = NULL;
2265 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2266 ret = -EFAULT;
2267
2268 out:
2269 btrfs_put_root(root);
2270 out_free:
2271 btrfs_free_path(path);
2272 kfree(subvol_info);
2273 return ret;
2274 }
2275
2276 /*
2277 * Return ROOT_REF information of the subvolume containing this inode
2278 * except the subvolume name.
2279 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2280 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2281 void __user *argp)
2282 {
2283 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2284 struct btrfs_root_ref *rref;
2285 struct btrfs_path *path;
2286 struct btrfs_key key;
2287 struct extent_buffer *leaf;
2288 u64 objectid;
2289 int slot;
2290 int ret;
2291 u8 found;
2292
2293 path = btrfs_alloc_path();
2294 if (!path)
2295 return -ENOMEM;
2296
2297 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2298 if (IS_ERR(rootrefs)) {
2299 btrfs_free_path(path);
2300 return PTR_ERR(rootrefs);
2301 }
2302
2303 objectid = btrfs_root_id(root);
2304 key.objectid = objectid;
2305 key.type = BTRFS_ROOT_REF_KEY;
2306 key.offset = rootrefs->min_treeid;
2307 found = 0;
2308
2309 root = root->fs_info->tree_root;
2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311 if (ret < 0) {
2312 goto out;
2313 } else if (path->slots[0] >=
2314 btrfs_header_nritems(path->nodes[0])) {
2315 ret = btrfs_next_leaf(root, path);
2316 if (ret < 0) {
2317 goto out;
2318 } else if (ret > 0) {
2319 ret = -EUCLEAN;
2320 goto out;
2321 }
2322 }
2323 while (1) {
2324 leaf = path->nodes[0];
2325 slot = path->slots[0];
2326
2327 btrfs_item_key_to_cpu(leaf, &key, slot);
2328 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2329 ret = 0;
2330 goto out;
2331 }
2332
2333 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2334 ret = -EOVERFLOW;
2335 goto out;
2336 }
2337
2338 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2339 rootrefs->rootref[found].treeid = key.offset;
2340 rootrefs->rootref[found].dirid =
2341 btrfs_root_ref_dirid(leaf, rref);
2342 found++;
2343
2344 ret = btrfs_next_item(root, path);
2345 if (ret < 0) {
2346 goto out;
2347 } else if (ret > 0) {
2348 ret = -EUCLEAN;
2349 goto out;
2350 }
2351 }
2352
2353 out:
2354 btrfs_free_path(path);
2355
2356 if (!ret || ret == -EOVERFLOW) {
2357 rootrefs->num_items = found;
2358 /* update min_treeid for next search */
2359 if (found)
2360 rootrefs->min_treeid =
2361 rootrefs->rootref[found - 1].treeid + 1;
2362 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2363 ret = -EFAULT;
2364 }
2365
2366 kfree(rootrefs);
2367
2368 return ret;
2369 }
2370
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2371 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2372 void __user *arg,
2373 bool destroy_v2)
2374 {
2375 struct dentry *parent = file->f_path.dentry;
2376 struct dentry *dentry;
2377 struct inode *dir = d_inode(parent);
2378 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2379 struct inode *inode;
2380 struct btrfs_root *root = BTRFS_I(dir)->root;
2381 struct btrfs_root *dest = NULL;
2382 struct btrfs_ioctl_vol_args *vol_args = NULL;
2383 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2384 struct mnt_idmap *idmap = file_mnt_idmap(file);
2385 char *subvol_name, *subvol_name_ptr = NULL;
2386 int subvol_namelen;
2387 int ret = 0;
2388 bool destroy_parent = false;
2389
2390 /* We don't support snapshots with extent tree v2 yet. */
2391 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2392 btrfs_err(fs_info,
2393 "extent tree v2 doesn't support snapshot deletion yet");
2394 return -EOPNOTSUPP;
2395 }
2396
2397 if (destroy_v2) {
2398 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2399 if (IS_ERR(vol_args2))
2400 return PTR_ERR(vol_args2);
2401
2402 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2403 ret = -EOPNOTSUPP;
2404 goto out;
2405 }
2406
2407 /*
2408 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2409 * name, same as v1 currently does.
2410 */
2411 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2412 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2413 if (ret < 0)
2414 goto out;
2415 subvol_name = vol_args2->name;
2416
2417 ret = mnt_want_write_file(file);
2418 if (ret)
2419 goto out;
2420 } else {
2421 struct inode *old_dir;
2422
2423 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2424 ret = -EINVAL;
2425 goto out;
2426 }
2427
2428 ret = mnt_want_write_file(file);
2429 if (ret)
2430 goto out;
2431
2432 dentry = btrfs_get_dentry(fs_info->sb,
2433 BTRFS_FIRST_FREE_OBJECTID,
2434 vol_args2->subvolid, 0);
2435 if (IS_ERR(dentry)) {
2436 ret = PTR_ERR(dentry);
2437 goto out_drop_write;
2438 }
2439
2440 /*
2441 * Change the default parent since the subvolume being
2442 * deleted can be outside of the current mount point.
2443 */
2444 parent = btrfs_get_parent(dentry);
2445
2446 /*
2447 * At this point dentry->d_name can point to '/' if the
2448 * subvolume we want to destroy is outsite of the
2449 * current mount point, so we need to release the
2450 * current dentry and execute the lookup to return a new
2451 * one with ->d_name pointing to the
2452 * <mount point>/subvol_name.
2453 */
2454 dput(dentry);
2455 if (IS_ERR(parent)) {
2456 ret = PTR_ERR(parent);
2457 goto out_drop_write;
2458 }
2459 old_dir = dir;
2460 dir = d_inode(parent);
2461
2462 /*
2463 * If v2 was used with SPEC_BY_ID, a new parent was
2464 * allocated since the subvolume can be outside of the
2465 * current mount point. Later on we need to release this
2466 * new parent dentry.
2467 */
2468 destroy_parent = true;
2469
2470 /*
2471 * On idmapped mounts, deletion via subvolid is
2472 * restricted to subvolumes that are immediate
2473 * ancestors of the inode referenced by the file
2474 * descriptor in the ioctl. Otherwise the idmapping
2475 * could potentially be abused to delete subvolumes
2476 * anywhere in the filesystem the user wouldn't be able
2477 * to delete without an idmapped mount.
2478 */
2479 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2480 ret = -EOPNOTSUPP;
2481 goto free_parent;
2482 }
2483
2484 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2485 fs_info, vol_args2->subvolid);
2486 if (IS_ERR(subvol_name_ptr)) {
2487 ret = PTR_ERR(subvol_name_ptr);
2488 goto free_parent;
2489 }
2490 /* subvol_name_ptr is already nul terminated */
2491 subvol_name = (char *)kbasename(subvol_name_ptr);
2492 }
2493 } else {
2494 vol_args = memdup_user(arg, sizeof(*vol_args));
2495 if (IS_ERR(vol_args))
2496 return PTR_ERR(vol_args);
2497
2498 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2499 if (ret < 0)
2500 goto out;
2501
2502 subvol_name = vol_args->name;
2503
2504 ret = mnt_want_write_file(file);
2505 if (ret)
2506 goto out;
2507 }
2508
2509 subvol_namelen = strlen(subvol_name);
2510
2511 if (strchr(subvol_name, '/') ||
2512 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2513 ret = -EINVAL;
2514 goto free_subvol_name;
2515 }
2516
2517 if (!S_ISDIR(dir->i_mode)) {
2518 ret = -ENOTDIR;
2519 goto free_subvol_name;
2520 }
2521
2522 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2523 if (ret == -EINTR)
2524 goto free_subvol_name;
2525 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2526 if (IS_ERR(dentry)) {
2527 ret = PTR_ERR(dentry);
2528 goto out_unlock_dir;
2529 }
2530
2531 if (d_really_is_negative(dentry)) {
2532 ret = -ENOENT;
2533 goto out_dput;
2534 }
2535
2536 inode = d_inode(dentry);
2537 dest = BTRFS_I(inode)->root;
2538 if (!capable(CAP_SYS_ADMIN)) {
2539 /*
2540 * Regular user. Only allow this with a special mount
2541 * option, when the user has write+exec access to the
2542 * subvol root, and when rmdir(2) would have been
2543 * allowed.
2544 *
2545 * Note that this is _not_ check that the subvol is
2546 * empty or doesn't contain data that we wouldn't
2547 * otherwise be able to delete.
2548 *
2549 * Users who want to delete empty subvols should try
2550 * rmdir(2).
2551 */
2552 ret = -EPERM;
2553 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2554 goto out_dput;
2555
2556 /*
2557 * Do not allow deletion if the parent dir is the same
2558 * as the dir to be deleted. That means the ioctl
2559 * must be called on the dentry referencing the root
2560 * of the subvol, not a random directory contained
2561 * within it.
2562 */
2563 ret = -EINVAL;
2564 if (root == dest)
2565 goto out_dput;
2566
2567 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2568 if (ret)
2569 goto out_dput;
2570 }
2571
2572 /* check if subvolume may be deleted by a user */
2573 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2574 if (ret)
2575 goto out_dput;
2576
2577 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2578 ret = -EINVAL;
2579 goto out_dput;
2580 }
2581
2582 btrfs_inode_lock(BTRFS_I(inode), 0);
2583 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2584 btrfs_inode_unlock(BTRFS_I(inode), 0);
2585 if (!ret)
2586 d_delete_notify(dir, dentry);
2587
2588 out_dput:
2589 dput(dentry);
2590 out_unlock_dir:
2591 btrfs_inode_unlock(BTRFS_I(dir), 0);
2592 free_subvol_name:
2593 kfree(subvol_name_ptr);
2594 free_parent:
2595 if (destroy_parent)
2596 dput(parent);
2597 out_drop_write:
2598 mnt_drop_write_file(file);
2599 out:
2600 kfree(vol_args2);
2601 kfree(vol_args);
2602 return ret;
2603 }
2604
btrfs_ioctl_defrag(struct file * file,void __user * argp)2605 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2606 {
2607 struct inode *inode = file_inode(file);
2608 struct btrfs_root *root = BTRFS_I(inode)->root;
2609 struct btrfs_ioctl_defrag_range_args range = {0};
2610 int ret;
2611
2612 ret = mnt_want_write_file(file);
2613 if (ret)
2614 return ret;
2615
2616 if (btrfs_root_readonly(root)) {
2617 ret = -EROFS;
2618 goto out;
2619 }
2620
2621 switch (inode->i_mode & S_IFMT) {
2622 case S_IFDIR:
2623 if (!capable(CAP_SYS_ADMIN)) {
2624 ret = -EPERM;
2625 goto out;
2626 }
2627 ret = btrfs_defrag_root(root);
2628 break;
2629 case S_IFREG:
2630 /*
2631 * Note that this does not check the file descriptor for write
2632 * access. This prevents defragmenting executables that are
2633 * running and allows defrag on files open in read-only mode.
2634 */
2635 if (!capable(CAP_SYS_ADMIN) &&
2636 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2637 ret = -EPERM;
2638 goto out;
2639 }
2640
2641 if (argp) {
2642 if (copy_from_user(&range, argp, sizeof(range))) {
2643 ret = -EFAULT;
2644 goto out;
2645 }
2646 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2647 ret = -EOPNOTSUPP;
2648 goto out;
2649 }
2650 /* compression requires us to start the IO */
2651 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2652 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2653 range.extent_thresh = (u32)-1;
2654 }
2655 } else {
2656 /* the rest are all set to zero by kzalloc */
2657 range.len = (u64)-1;
2658 }
2659 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2660 &range, BTRFS_OLDEST_GENERATION, 0);
2661 if (ret > 0)
2662 ret = 0;
2663 break;
2664 default:
2665 ret = -EINVAL;
2666 }
2667 out:
2668 mnt_drop_write_file(file);
2669 return ret;
2670 }
2671
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2672 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2673 {
2674 struct btrfs_ioctl_vol_args *vol_args;
2675 bool restore_op = false;
2676 int ret;
2677
2678 if (!capable(CAP_SYS_ADMIN))
2679 return -EPERM;
2680
2681 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2682 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2683 return -EINVAL;
2684 }
2685
2686 if (fs_info->fs_devices->temp_fsid) {
2687 btrfs_err(fs_info,
2688 "device add not supported on cloned temp-fsid mount");
2689 return -EINVAL;
2690 }
2691
2692 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2693 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2694 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2695
2696 /*
2697 * We can do the device add because we have a paused balanced,
2698 * change the exclusive op type and remember we should bring
2699 * back the paused balance
2700 */
2701 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2702 btrfs_exclop_start_unlock(fs_info);
2703 restore_op = true;
2704 }
2705
2706 vol_args = memdup_user(arg, sizeof(*vol_args));
2707 if (IS_ERR(vol_args)) {
2708 ret = PTR_ERR(vol_args);
2709 goto out;
2710 }
2711
2712 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2713 if (ret < 0)
2714 goto out_free;
2715
2716 ret = btrfs_init_new_device(fs_info, vol_args->name);
2717
2718 if (!ret)
2719 btrfs_info(fs_info, "disk added %s", vol_args->name);
2720
2721 out_free:
2722 kfree(vol_args);
2723 out:
2724 if (restore_op)
2725 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2726 else
2727 btrfs_exclop_finish(fs_info);
2728 return ret;
2729 }
2730
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2731 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2732 {
2733 BTRFS_DEV_LOOKUP_ARGS(args);
2734 struct inode *inode = file_inode(file);
2735 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2736 struct btrfs_ioctl_vol_args_v2 *vol_args;
2737 struct file *bdev_file = NULL;
2738 int ret;
2739 bool cancel = false;
2740
2741 if (!capable(CAP_SYS_ADMIN))
2742 return -EPERM;
2743
2744 vol_args = memdup_user(arg, sizeof(*vol_args));
2745 if (IS_ERR(vol_args))
2746 return PTR_ERR(vol_args);
2747
2748 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2749 ret = -EOPNOTSUPP;
2750 goto out;
2751 }
2752
2753 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2754 if (ret < 0)
2755 goto out;
2756
2757 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2758 args.devid = vol_args->devid;
2759 } else if (!strcmp("cancel", vol_args->name)) {
2760 cancel = true;
2761 } else {
2762 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2763 if (ret)
2764 goto out;
2765 }
2766
2767 ret = mnt_want_write_file(file);
2768 if (ret)
2769 goto out;
2770
2771 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2772 cancel);
2773 if (ret)
2774 goto err_drop;
2775
2776 /* Exclusive operation is now claimed */
2777 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2778
2779 btrfs_exclop_finish(fs_info);
2780
2781 if (!ret) {
2782 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2783 btrfs_info(fs_info, "device deleted: id %llu",
2784 vol_args->devid);
2785 else
2786 btrfs_info(fs_info, "device deleted: %s",
2787 vol_args->name);
2788 }
2789 err_drop:
2790 mnt_drop_write_file(file);
2791 if (bdev_file)
2792 fput(bdev_file);
2793 out:
2794 btrfs_put_dev_args_from_path(&args);
2795 kfree(vol_args);
2796 return ret;
2797 }
2798
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2799 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2800 {
2801 BTRFS_DEV_LOOKUP_ARGS(args);
2802 struct inode *inode = file_inode(file);
2803 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2804 struct btrfs_ioctl_vol_args *vol_args;
2805 struct file *bdev_file = NULL;
2806 int ret;
2807 bool cancel = false;
2808
2809 if (!capable(CAP_SYS_ADMIN))
2810 return -EPERM;
2811
2812 vol_args = memdup_user(arg, sizeof(*vol_args));
2813 if (IS_ERR(vol_args))
2814 return PTR_ERR(vol_args);
2815
2816 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2817 if (ret < 0)
2818 goto out_free;
2819
2820 if (!strcmp("cancel", vol_args->name)) {
2821 cancel = true;
2822 } else {
2823 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2824 if (ret)
2825 goto out;
2826 }
2827
2828 ret = mnt_want_write_file(file);
2829 if (ret)
2830 goto out;
2831
2832 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2833 cancel);
2834 if (ret == 0) {
2835 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2836 if (!ret)
2837 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2838 btrfs_exclop_finish(fs_info);
2839 }
2840
2841 mnt_drop_write_file(file);
2842 if (bdev_file)
2843 fput(bdev_file);
2844 out:
2845 btrfs_put_dev_args_from_path(&args);
2846 out_free:
2847 kfree(vol_args);
2848 return ret;
2849 }
2850
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)2851 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2852 void __user *arg)
2853 {
2854 struct btrfs_ioctl_fs_info_args *fi_args;
2855 struct btrfs_device *device;
2856 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2857 u64 flags_in;
2858 int ret = 0;
2859
2860 fi_args = memdup_user(arg, sizeof(*fi_args));
2861 if (IS_ERR(fi_args))
2862 return PTR_ERR(fi_args);
2863
2864 flags_in = fi_args->flags;
2865 memset(fi_args, 0, sizeof(*fi_args));
2866
2867 rcu_read_lock();
2868 fi_args->num_devices = fs_devices->num_devices;
2869
2870 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2871 if (device->devid > fi_args->max_id)
2872 fi_args->max_id = device->devid;
2873 }
2874 rcu_read_unlock();
2875
2876 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2877 fi_args->nodesize = fs_info->nodesize;
2878 fi_args->sectorsize = fs_info->sectorsize;
2879 fi_args->clone_alignment = fs_info->sectorsize;
2880
2881 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2882 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2883 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2884 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2885 }
2886
2887 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2888 fi_args->generation = btrfs_get_fs_generation(fs_info);
2889 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2890 }
2891
2892 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2893 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2894 sizeof(fi_args->metadata_uuid));
2895 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2896 }
2897
2898 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2899 ret = -EFAULT;
2900
2901 kfree(fi_args);
2902 return ret;
2903 }
2904
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)2905 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2906 void __user *arg)
2907 {
2908 BTRFS_DEV_LOOKUP_ARGS(args);
2909 struct btrfs_ioctl_dev_info_args *di_args;
2910 struct btrfs_device *dev;
2911 int ret = 0;
2912
2913 di_args = memdup_user(arg, sizeof(*di_args));
2914 if (IS_ERR(di_args))
2915 return PTR_ERR(di_args);
2916
2917 args.devid = di_args->devid;
2918 if (!btrfs_is_empty_uuid(di_args->uuid))
2919 args.uuid = di_args->uuid;
2920
2921 rcu_read_lock();
2922 dev = btrfs_find_device(fs_info->fs_devices, &args);
2923 if (!dev) {
2924 ret = -ENODEV;
2925 goto out;
2926 }
2927
2928 di_args->devid = dev->devid;
2929 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2930 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2931 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2932 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2933 if (dev->name)
2934 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2935 else
2936 di_args->path[0] = '\0';
2937
2938 out:
2939 rcu_read_unlock();
2940 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2941 ret = -EFAULT;
2942
2943 kfree(di_args);
2944 return ret;
2945 }
2946
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2947 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2948 {
2949 struct inode *inode = file_inode(file);
2950 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2951 struct btrfs_root *root = BTRFS_I(inode)->root;
2952 struct btrfs_root *new_root;
2953 struct btrfs_dir_item *di;
2954 struct btrfs_trans_handle *trans;
2955 struct btrfs_path *path = NULL;
2956 struct btrfs_disk_key disk_key;
2957 struct fscrypt_str name = FSTR_INIT("default", 7);
2958 u64 objectid = 0;
2959 u64 dir_id;
2960 int ret;
2961
2962 if (!capable(CAP_SYS_ADMIN))
2963 return -EPERM;
2964
2965 ret = mnt_want_write_file(file);
2966 if (ret)
2967 return ret;
2968
2969 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2970 ret = -EFAULT;
2971 goto out;
2972 }
2973
2974 if (!objectid)
2975 objectid = BTRFS_FS_TREE_OBJECTID;
2976
2977 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2978 if (IS_ERR(new_root)) {
2979 ret = PTR_ERR(new_root);
2980 goto out;
2981 }
2982 if (!is_fstree(btrfs_root_id(new_root))) {
2983 ret = -ENOENT;
2984 goto out_free;
2985 }
2986
2987 path = btrfs_alloc_path();
2988 if (!path) {
2989 ret = -ENOMEM;
2990 goto out_free;
2991 }
2992
2993 trans = btrfs_start_transaction(root, 1);
2994 if (IS_ERR(trans)) {
2995 ret = PTR_ERR(trans);
2996 goto out_free;
2997 }
2998
2999 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3000 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3001 dir_id, &name, 1);
3002 if (IS_ERR_OR_NULL(di)) {
3003 btrfs_release_path(path);
3004 btrfs_end_transaction(trans);
3005 btrfs_err(fs_info,
3006 "Umm, you don't have the default diritem, this isn't going to work");
3007 ret = -ENOENT;
3008 goto out_free;
3009 }
3010
3011 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3012 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3013 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3014 btrfs_release_path(path);
3015
3016 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3017 btrfs_end_transaction(trans);
3018 out_free:
3019 btrfs_put_root(new_root);
3020 btrfs_free_path(path);
3021 out:
3022 mnt_drop_write_file(file);
3023 return ret;
3024 }
3025
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3026 static void get_block_group_info(struct list_head *groups_list,
3027 struct btrfs_ioctl_space_info *space)
3028 {
3029 struct btrfs_block_group *block_group;
3030
3031 space->total_bytes = 0;
3032 space->used_bytes = 0;
3033 space->flags = 0;
3034 list_for_each_entry(block_group, groups_list, list) {
3035 space->flags = block_group->flags;
3036 space->total_bytes += block_group->length;
3037 space->used_bytes += block_group->used;
3038 }
3039 }
3040
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3041 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3042 void __user *arg)
3043 {
3044 struct btrfs_ioctl_space_args space_args = { 0 };
3045 struct btrfs_ioctl_space_info space;
3046 struct btrfs_ioctl_space_info *dest;
3047 struct btrfs_ioctl_space_info *dest_orig;
3048 struct btrfs_ioctl_space_info __user *user_dest;
3049 struct btrfs_space_info *info;
3050 static const u64 types[] = {
3051 BTRFS_BLOCK_GROUP_DATA,
3052 BTRFS_BLOCK_GROUP_SYSTEM,
3053 BTRFS_BLOCK_GROUP_METADATA,
3054 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3055 };
3056 int num_types = 4;
3057 int alloc_size;
3058 int ret = 0;
3059 u64 slot_count = 0;
3060 int i, c;
3061
3062 if (copy_from_user(&space_args,
3063 (struct btrfs_ioctl_space_args __user *)arg,
3064 sizeof(space_args)))
3065 return -EFAULT;
3066
3067 for (i = 0; i < num_types; i++) {
3068 struct btrfs_space_info *tmp;
3069
3070 info = NULL;
3071 list_for_each_entry(tmp, &fs_info->space_info, list) {
3072 if (tmp->flags == types[i]) {
3073 info = tmp;
3074 break;
3075 }
3076 }
3077
3078 if (!info)
3079 continue;
3080
3081 down_read(&info->groups_sem);
3082 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3083 if (!list_empty(&info->block_groups[c]))
3084 slot_count++;
3085 }
3086 up_read(&info->groups_sem);
3087 }
3088
3089 /*
3090 * Global block reserve, exported as a space_info
3091 */
3092 slot_count++;
3093
3094 /* space_slots == 0 means they are asking for a count */
3095 if (space_args.space_slots == 0) {
3096 space_args.total_spaces = slot_count;
3097 goto out;
3098 }
3099
3100 slot_count = min_t(u64, space_args.space_slots, slot_count);
3101
3102 alloc_size = sizeof(*dest) * slot_count;
3103
3104 /* we generally have at most 6 or so space infos, one for each raid
3105 * level. So, a whole page should be more than enough for everyone
3106 */
3107 if (alloc_size > PAGE_SIZE)
3108 return -ENOMEM;
3109
3110 space_args.total_spaces = 0;
3111 dest = kmalloc(alloc_size, GFP_KERNEL);
3112 if (!dest)
3113 return -ENOMEM;
3114 dest_orig = dest;
3115
3116 /* now we have a buffer to copy into */
3117 for (i = 0; i < num_types; i++) {
3118 struct btrfs_space_info *tmp;
3119
3120 if (!slot_count)
3121 break;
3122
3123 info = NULL;
3124 list_for_each_entry(tmp, &fs_info->space_info, list) {
3125 if (tmp->flags == types[i]) {
3126 info = tmp;
3127 break;
3128 }
3129 }
3130
3131 if (!info)
3132 continue;
3133 down_read(&info->groups_sem);
3134 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3135 if (!list_empty(&info->block_groups[c])) {
3136 get_block_group_info(&info->block_groups[c],
3137 &space);
3138 memcpy(dest, &space, sizeof(space));
3139 dest++;
3140 space_args.total_spaces++;
3141 slot_count--;
3142 }
3143 if (!slot_count)
3144 break;
3145 }
3146 up_read(&info->groups_sem);
3147 }
3148
3149 /*
3150 * Add global block reserve
3151 */
3152 if (slot_count) {
3153 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3154
3155 spin_lock(&block_rsv->lock);
3156 space.total_bytes = block_rsv->size;
3157 space.used_bytes = block_rsv->size - block_rsv->reserved;
3158 spin_unlock(&block_rsv->lock);
3159 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3160 memcpy(dest, &space, sizeof(space));
3161 space_args.total_spaces++;
3162 }
3163
3164 user_dest = (struct btrfs_ioctl_space_info __user *)
3165 (arg + sizeof(struct btrfs_ioctl_space_args));
3166
3167 if (copy_to_user(user_dest, dest_orig, alloc_size))
3168 ret = -EFAULT;
3169
3170 kfree(dest_orig);
3171 out:
3172 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3173 ret = -EFAULT;
3174
3175 return ret;
3176 }
3177
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3178 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3179 void __user *argp)
3180 {
3181 struct btrfs_trans_handle *trans;
3182 u64 transid;
3183
3184 /*
3185 * Start orphan cleanup here for the given root in case it hasn't been
3186 * started already by other means. Errors are handled in the other
3187 * functions during transaction commit.
3188 */
3189 btrfs_orphan_cleanup(root);
3190
3191 trans = btrfs_attach_transaction_barrier(root);
3192 if (IS_ERR(trans)) {
3193 if (PTR_ERR(trans) != -ENOENT)
3194 return PTR_ERR(trans);
3195
3196 /* No running transaction, don't bother */
3197 transid = btrfs_get_last_trans_committed(root->fs_info);
3198 goto out;
3199 }
3200 transid = trans->transid;
3201 btrfs_commit_transaction_async(trans);
3202 out:
3203 if (argp)
3204 if (copy_to_user(argp, &transid, sizeof(transid)))
3205 return -EFAULT;
3206 return 0;
3207 }
3208
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3209 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3210 void __user *argp)
3211 {
3212 /* By default wait for the current transaction. */
3213 u64 transid = 0;
3214
3215 if (argp)
3216 if (copy_from_user(&transid, argp, sizeof(transid)))
3217 return -EFAULT;
3218
3219 return btrfs_wait_for_commit(fs_info, transid);
3220 }
3221
btrfs_ioctl_scrub(struct file * file,void __user * arg)3222 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3223 {
3224 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3225 struct btrfs_ioctl_scrub_args *sa;
3226 int ret;
3227
3228 if (!capable(CAP_SYS_ADMIN))
3229 return -EPERM;
3230
3231 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3232 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3233 return -EINVAL;
3234 }
3235
3236 sa = memdup_user(arg, sizeof(*sa));
3237 if (IS_ERR(sa))
3238 return PTR_ERR(sa);
3239
3240 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3241 ret = -EOPNOTSUPP;
3242 goto out;
3243 }
3244
3245 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3246 ret = mnt_want_write_file(file);
3247 if (ret)
3248 goto out;
3249 }
3250
3251 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3252 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3253 0);
3254
3255 /*
3256 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3257 * error. This is important as it allows user space to know how much
3258 * progress scrub has done. For example, if scrub is canceled we get
3259 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3260 * space. Later user space can inspect the progress from the structure
3261 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3262 * previously (btrfs-progs does this).
3263 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3264 * then return -EFAULT to signal the structure was not copied or it may
3265 * be corrupt and unreliable due to a partial copy.
3266 */
3267 if (copy_to_user(arg, sa, sizeof(*sa)))
3268 ret = -EFAULT;
3269
3270 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3271 mnt_drop_write_file(file);
3272 out:
3273 kfree(sa);
3274 return ret;
3275 }
3276
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3277 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3278 {
3279 if (!capable(CAP_SYS_ADMIN))
3280 return -EPERM;
3281
3282 return btrfs_scrub_cancel(fs_info);
3283 }
3284
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3285 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3286 void __user *arg)
3287 {
3288 struct btrfs_ioctl_scrub_args *sa;
3289 int ret;
3290
3291 if (!capable(CAP_SYS_ADMIN))
3292 return -EPERM;
3293
3294 sa = memdup_user(arg, sizeof(*sa));
3295 if (IS_ERR(sa))
3296 return PTR_ERR(sa);
3297
3298 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3299
3300 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3301 ret = -EFAULT;
3302
3303 kfree(sa);
3304 return ret;
3305 }
3306
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3307 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3308 void __user *arg)
3309 {
3310 struct btrfs_ioctl_get_dev_stats *sa;
3311 int ret;
3312
3313 sa = memdup_user(arg, sizeof(*sa));
3314 if (IS_ERR(sa))
3315 return PTR_ERR(sa);
3316
3317 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3318 kfree(sa);
3319 return -EPERM;
3320 }
3321
3322 ret = btrfs_get_dev_stats(fs_info, sa);
3323
3324 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3325 ret = -EFAULT;
3326
3327 kfree(sa);
3328 return ret;
3329 }
3330
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3331 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3332 void __user *arg)
3333 {
3334 struct btrfs_ioctl_dev_replace_args *p;
3335 int ret;
3336
3337 if (!capable(CAP_SYS_ADMIN))
3338 return -EPERM;
3339
3340 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3341 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3342 return -EINVAL;
3343 }
3344
3345 p = memdup_user(arg, sizeof(*p));
3346 if (IS_ERR(p))
3347 return PTR_ERR(p);
3348
3349 switch (p->cmd) {
3350 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3351 if (sb_rdonly(fs_info->sb)) {
3352 ret = -EROFS;
3353 goto out;
3354 }
3355 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3356 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3357 } else {
3358 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3359 btrfs_exclop_finish(fs_info);
3360 }
3361 break;
3362 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3363 btrfs_dev_replace_status(fs_info, p);
3364 ret = 0;
3365 break;
3366 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3367 p->result = btrfs_dev_replace_cancel(fs_info);
3368 ret = 0;
3369 break;
3370 default:
3371 ret = -EINVAL;
3372 break;
3373 }
3374
3375 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3376 ret = -EFAULT;
3377 out:
3378 kfree(p);
3379 return ret;
3380 }
3381
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3382 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3383 {
3384 int ret = 0;
3385 int i;
3386 u64 rel_ptr;
3387 int size;
3388 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3389 struct inode_fs_paths *ipath = NULL;
3390 struct btrfs_path *path;
3391
3392 if (!capable(CAP_DAC_READ_SEARCH))
3393 return -EPERM;
3394
3395 path = btrfs_alloc_path();
3396 if (!path) {
3397 ret = -ENOMEM;
3398 goto out;
3399 }
3400
3401 ipa = memdup_user(arg, sizeof(*ipa));
3402 if (IS_ERR(ipa)) {
3403 ret = PTR_ERR(ipa);
3404 ipa = NULL;
3405 goto out;
3406 }
3407
3408 size = min_t(u32, ipa->size, 4096);
3409 ipath = init_ipath(size, root, path);
3410 if (IS_ERR(ipath)) {
3411 ret = PTR_ERR(ipath);
3412 ipath = NULL;
3413 goto out;
3414 }
3415
3416 ret = paths_from_inode(ipa->inum, ipath);
3417 if (ret < 0)
3418 goto out;
3419
3420 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3421 rel_ptr = ipath->fspath->val[i] -
3422 (u64)(unsigned long)ipath->fspath->val;
3423 ipath->fspath->val[i] = rel_ptr;
3424 }
3425
3426 btrfs_free_path(path);
3427 path = NULL;
3428 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3429 ipath->fspath, size);
3430 if (ret) {
3431 ret = -EFAULT;
3432 goto out;
3433 }
3434
3435 out:
3436 btrfs_free_path(path);
3437 free_ipath(ipath);
3438 kfree(ipa);
3439
3440 return ret;
3441 }
3442
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3443 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3444 void __user *arg, int version)
3445 {
3446 int ret = 0;
3447 int size;
3448 struct btrfs_ioctl_logical_ino_args *loi;
3449 struct btrfs_data_container *inodes = NULL;
3450 struct btrfs_path *path = NULL;
3451 bool ignore_offset;
3452
3453 if (!capable(CAP_SYS_ADMIN))
3454 return -EPERM;
3455
3456 loi = memdup_user(arg, sizeof(*loi));
3457 if (IS_ERR(loi))
3458 return PTR_ERR(loi);
3459
3460 if (version == 1) {
3461 ignore_offset = false;
3462 size = min_t(u32, loi->size, SZ_64K);
3463 } else {
3464 /* All reserved bits must be 0 for now */
3465 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3466 ret = -EINVAL;
3467 goto out_loi;
3468 }
3469 /* Only accept flags we have defined so far */
3470 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3471 ret = -EINVAL;
3472 goto out_loi;
3473 }
3474 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3475 size = min_t(u32, loi->size, SZ_16M);
3476 }
3477
3478 inodes = init_data_container(size);
3479 if (IS_ERR(inodes)) {
3480 ret = PTR_ERR(inodes);
3481 goto out_loi;
3482 }
3483
3484 path = btrfs_alloc_path();
3485 if (!path) {
3486 ret = -ENOMEM;
3487 goto out;
3488 }
3489 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3490 inodes, ignore_offset);
3491 btrfs_free_path(path);
3492 if (ret == -EINVAL)
3493 ret = -ENOENT;
3494 if (ret < 0)
3495 goto out;
3496
3497 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3498 size);
3499 if (ret)
3500 ret = -EFAULT;
3501
3502 out:
3503 kvfree(inodes);
3504 out_loi:
3505 kfree(loi);
3506
3507 return ret;
3508 }
3509
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3510 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3511 struct btrfs_ioctl_balance_args *bargs)
3512 {
3513 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3514
3515 bargs->flags = bctl->flags;
3516
3517 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3518 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3519 if (atomic_read(&fs_info->balance_pause_req))
3520 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3521 if (atomic_read(&fs_info->balance_cancel_req))
3522 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3523
3524 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3525 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3526 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3527
3528 spin_lock(&fs_info->balance_lock);
3529 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3530 spin_unlock(&fs_info->balance_lock);
3531 }
3532
3533 /*
3534 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3535 * required.
3536 *
3537 * @fs_info: the filesystem
3538 * @excl_acquired: ptr to boolean value which is set to false in case balance
3539 * is being resumed
3540 *
3541 * Return 0 on success in which case both fs_info::balance is acquired as well
3542 * as exclusive ops are blocked. In case of failure return an error code.
3543 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3544 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3545 {
3546 int ret;
3547
3548 /*
3549 * Exclusive operation is locked. Three possibilities:
3550 * (1) some other op is running
3551 * (2) balance is running
3552 * (3) balance is paused -- special case (think resume)
3553 */
3554 while (1) {
3555 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3556 *excl_acquired = true;
3557 mutex_lock(&fs_info->balance_mutex);
3558 return 0;
3559 }
3560
3561 mutex_lock(&fs_info->balance_mutex);
3562 if (fs_info->balance_ctl) {
3563 /* This is either (2) or (3) */
3564 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3565 /* This is (2) */
3566 ret = -EINPROGRESS;
3567 goto out_failure;
3568
3569 } else {
3570 mutex_unlock(&fs_info->balance_mutex);
3571 /*
3572 * Lock released to allow other waiters to
3573 * continue, we'll reexamine the status again.
3574 */
3575 mutex_lock(&fs_info->balance_mutex);
3576
3577 if (fs_info->balance_ctl &&
3578 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3579 /* This is (3) */
3580 *excl_acquired = false;
3581 return 0;
3582 }
3583 }
3584 } else {
3585 /* This is (1) */
3586 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3587 goto out_failure;
3588 }
3589
3590 mutex_unlock(&fs_info->balance_mutex);
3591 }
3592
3593 out_failure:
3594 mutex_unlock(&fs_info->balance_mutex);
3595 *excl_acquired = false;
3596 return ret;
3597 }
3598
btrfs_ioctl_balance(struct file * file,void __user * arg)3599 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3600 {
3601 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3602 struct btrfs_fs_info *fs_info = root->fs_info;
3603 struct btrfs_ioctl_balance_args *bargs;
3604 struct btrfs_balance_control *bctl;
3605 bool need_unlock = true;
3606 int ret;
3607
3608 if (!capable(CAP_SYS_ADMIN))
3609 return -EPERM;
3610
3611 ret = mnt_want_write_file(file);
3612 if (ret)
3613 return ret;
3614
3615 bargs = memdup_user(arg, sizeof(*bargs));
3616 if (IS_ERR(bargs)) {
3617 ret = PTR_ERR(bargs);
3618 bargs = NULL;
3619 goto out;
3620 }
3621
3622 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3623 if (ret)
3624 goto out;
3625
3626 lockdep_assert_held(&fs_info->balance_mutex);
3627
3628 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3629 if (!fs_info->balance_ctl) {
3630 ret = -ENOTCONN;
3631 goto out_unlock;
3632 }
3633
3634 bctl = fs_info->balance_ctl;
3635 spin_lock(&fs_info->balance_lock);
3636 bctl->flags |= BTRFS_BALANCE_RESUME;
3637 spin_unlock(&fs_info->balance_lock);
3638 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3639
3640 goto do_balance;
3641 }
3642
3643 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3644 ret = -EINVAL;
3645 goto out_unlock;
3646 }
3647
3648 if (fs_info->balance_ctl) {
3649 ret = -EINPROGRESS;
3650 goto out_unlock;
3651 }
3652
3653 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3654 if (!bctl) {
3655 ret = -ENOMEM;
3656 goto out_unlock;
3657 }
3658
3659 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3660 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3661 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3662
3663 bctl->flags = bargs->flags;
3664 do_balance:
3665 /*
3666 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3667 * bctl is freed in reset_balance_state, or, if restriper was paused
3668 * all the way until unmount, in free_fs_info. The flag should be
3669 * cleared after reset_balance_state.
3670 */
3671 need_unlock = false;
3672
3673 ret = btrfs_balance(fs_info, bctl, bargs);
3674 bctl = NULL;
3675
3676 if (ret == 0 || ret == -ECANCELED) {
3677 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3678 ret = -EFAULT;
3679 }
3680
3681 kfree(bctl);
3682 out_unlock:
3683 mutex_unlock(&fs_info->balance_mutex);
3684 if (need_unlock)
3685 btrfs_exclop_finish(fs_info);
3686 out:
3687 mnt_drop_write_file(file);
3688 kfree(bargs);
3689 return ret;
3690 }
3691
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3692 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3693 {
3694 if (!capable(CAP_SYS_ADMIN))
3695 return -EPERM;
3696
3697 switch (cmd) {
3698 case BTRFS_BALANCE_CTL_PAUSE:
3699 return btrfs_pause_balance(fs_info);
3700 case BTRFS_BALANCE_CTL_CANCEL:
3701 return btrfs_cancel_balance(fs_info);
3702 }
3703
3704 return -EINVAL;
3705 }
3706
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3707 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3708 void __user *arg)
3709 {
3710 struct btrfs_ioctl_balance_args *bargs;
3711 int ret = 0;
3712
3713 if (!capable(CAP_SYS_ADMIN))
3714 return -EPERM;
3715
3716 mutex_lock(&fs_info->balance_mutex);
3717 if (!fs_info->balance_ctl) {
3718 ret = -ENOTCONN;
3719 goto out;
3720 }
3721
3722 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3723 if (!bargs) {
3724 ret = -ENOMEM;
3725 goto out;
3726 }
3727
3728 btrfs_update_ioctl_balance_args(fs_info, bargs);
3729
3730 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3731 ret = -EFAULT;
3732
3733 kfree(bargs);
3734 out:
3735 mutex_unlock(&fs_info->balance_mutex);
3736 return ret;
3737 }
3738
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3739 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3740 {
3741 struct inode *inode = file_inode(file);
3742 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3743 struct btrfs_ioctl_quota_ctl_args *sa;
3744 int ret;
3745
3746 if (!capable(CAP_SYS_ADMIN))
3747 return -EPERM;
3748
3749 ret = mnt_want_write_file(file);
3750 if (ret)
3751 return ret;
3752
3753 sa = memdup_user(arg, sizeof(*sa));
3754 if (IS_ERR(sa)) {
3755 ret = PTR_ERR(sa);
3756 goto drop_write;
3757 }
3758
3759 switch (sa->cmd) {
3760 case BTRFS_QUOTA_CTL_ENABLE:
3761 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3762 down_write(&fs_info->subvol_sem);
3763 ret = btrfs_quota_enable(fs_info, sa);
3764 up_write(&fs_info->subvol_sem);
3765 break;
3766 case BTRFS_QUOTA_CTL_DISABLE:
3767 /*
3768 * Lock the cleaner mutex to prevent races with concurrent
3769 * relocation, because relocation may be building backrefs for
3770 * blocks of the quota root while we are deleting the root. This
3771 * is like dropping fs roots of deleted snapshots/subvolumes, we
3772 * need the same protection.
3773 *
3774 * This also prevents races between concurrent tasks trying to
3775 * disable quotas, because we will unlock and relock
3776 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3777 *
3778 * We take this here because we have the dependency of
3779 *
3780 * inode_lock -> subvol_sem
3781 *
3782 * because of rename. With relocation we can prealloc extents,
3783 * so that makes the dependency chain
3784 *
3785 * cleaner_mutex -> inode_lock -> subvol_sem
3786 *
3787 * so we must take the cleaner_mutex here before we take the
3788 * subvol_sem. The deadlock can't actually happen, but this
3789 * quiets lockdep.
3790 */
3791 mutex_lock(&fs_info->cleaner_mutex);
3792 down_write(&fs_info->subvol_sem);
3793 ret = btrfs_quota_disable(fs_info);
3794 up_write(&fs_info->subvol_sem);
3795 mutex_unlock(&fs_info->cleaner_mutex);
3796 break;
3797 default:
3798 ret = -EINVAL;
3799 break;
3800 }
3801
3802 kfree(sa);
3803 drop_write:
3804 mnt_drop_write_file(file);
3805 return ret;
3806 }
3807
3808 /*
3809 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3810 * done before any operations.
3811 */
qgroup_enabled(struct btrfs_fs_info * fs_info)3812 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3813 {
3814 bool ret = true;
3815
3816 mutex_lock(&fs_info->qgroup_ioctl_lock);
3817 if (!fs_info->quota_root)
3818 ret = false;
3819 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3820
3821 return ret;
3822 }
3823
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3824 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3825 {
3826 struct inode *inode = file_inode(file);
3827 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3828 struct btrfs_root *root = BTRFS_I(inode)->root;
3829 struct btrfs_ioctl_qgroup_assign_args *sa;
3830 struct btrfs_qgroup_list *prealloc = NULL;
3831 struct btrfs_trans_handle *trans;
3832 int ret;
3833 int err;
3834
3835 if (!capable(CAP_SYS_ADMIN))
3836 return -EPERM;
3837
3838 if (!qgroup_enabled(root->fs_info))
3839 return -ENOTCONN;
3840
3841 ret = mnt_want_write_file(file);
3842 if (ret)
3843 return ret;
3844
3845 sa = memdup_user(arg, sizeof(*sa));
3846 if (IS_ERR(sa)) {
3847 ret = PTR_ERR(sa);
3848 goto drop_write;
3849 }
3850
3851 if (sa->assign) {
3852 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3853 if (!prealloc) {
3854 ret = -ENOMEM;
3855 goto drop_write;
3856 }
3857 }
3858
3859 trans = btrfs_join_transaction(root);
3860 if (IS_ERR(trans)) {
3861 ret = PTR_ERR(trans);
3862 goto out;
3863 }
3864
3865 /*
3866 * Prealloc ownership is moved to the relation handler, there it's used
3867 * or freed on error.
3868 */
3869 if (sa->assign) {
3870 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3871 prealloc = NULL;
3872 } else {
3873 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3874 }
3875
3876 /* update qgroup status and info */
3877 mutex_lock(&fs_info->qgroup_ioctl_lock);
3878 err = btrfs_run_qgroups(trans);
3879 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3880 if (err < 0)
3881 btrfs_warn(fs_info,
3882 "qgroup status update failed after %s relation, marked as inconsistent",
3883 sa->assign ? "adding" : "deleting");
3884 err = btrfs_end_transaction(trans);
3885 if (err && !ret)
3886 ret = err;
3887
3888 out:
3889 kfree(prealloc);
3890 kfree(sa);
3891 drop_write:
3892 mnt_drop_write_file(file);
3893 return ret;
3894 }
3895
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3896 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3897 {
3898 struct inode *inode = file_inode(file);
3899 struct btrfs_root *root = BTRFS_I(inode)->root;
3900 struct btrfs_ioctl_qgroup_create_args *sa;
3901 struct btrfs_trans_handle *trans;
3902 int ret;
3903 int err;
3904
3905 if (!capable(CAP_SYS_ADMIN))
3906 return -EPERM;
3907
3908 if (!qgroup_enabled(root->fs_info))
3909 return -ENOTCONN;
3910
3911 ret = mnt_want_write_file(file);
3912 if (ret)
3913 return ret;
3914
3915 sa = memdup_user(arg, sizeof(*sa));
3916 if (IS_ERR(sa)) {
3917 ret = PTR_ERR(sa);
3918 goto drop_write;
3919 }
3920
3921 if (!sa->qgroupid) {
3922 ret = -EINVAL;
3923 goto out;
3924 }
3925
3926 if (sa->create && is_fstree(sa->qgroupid)) {
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930
3931 trans = btrfs_join_transaction(root);
3932 if (IS_ERR(trans)) {
3933 ret = PTR_ERR(trans);
3934 goto out;
3935 }
3936
3937 if (sa->create) {
3938 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3939 } else {
3940 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3941 }
3942
3943 err = btrfs_end_transaction(trans);
3944 if (err && !ret)
3945 ret = err;
3946
3947 out:
3948 kfree(sa);
3949 drop_write:
3950 mnt_drop_write_file(file);
3951 return ret;
3952 }
3953
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3954 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3955 {
3956 struct inode *inode = file_inode(file);
3957 struct btrfs_root *root = BTRFS_I(inode)->root;
3958 struct btrfs_ioctl_qgroup_limit_args *sa;
3959 struct btrfs_trans_handle *trans;
3960 int ret;
3961 int err;
3962 u64 qgroupid;
3963
3964 if (!capable(CAP_SYS_ADMIN))
3965 return -EPERM;
3966
3967 if (!qgroup_enabled(root->fs_info))
3968 return -ENOTCONN;
3969
3970 ret = mnt_want_write_file(file);
3971 if (ret)
3972 return ret;
3973
3974 sa = memdup_user(arg, sizeof(*sa));
3975 if (IS_ERR(sa)) {
3976 ret = PTR_ERR(sa);
3977 goto drop_write;
3978 }
3979
3980 trans = btrfs_join_transaction(root);
3981 if (IS_ERR(trans)) {
3982 ret = PTR_ERR(trans);
3983 goto out;
3984 }
3985
3986 qgroupid = sa->qgroupid;
3987 if (!qgroupid) {
3988 /* take the current subvol as qgroup */
3989 qgroupid = btrfs_root_id(root);
3990 }
3991
3992 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3993
3994 err = btrfs_end_transaction(trans);
3995 if (err && !ret)
3996 ret = err;
3997
3998 out:
3999 kfree(sa);
4000 drop_write:
4001 mnt_drop_write_file(file);
4002 return ret;
4003 }
4004
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4005 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4006 {
4007 struct inode *inode = file_inode(file);
4008 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4009 struct btrfs_ioctl_quota_rescan_args *qsa;
4010 int ret;
4011
4012 if (!capable(CAP_SYS_ADMIN))
4013 return -EPERM;
4014
4015 if (!qgroup_enabled(fs_info))
4016 return -ENOTCONN;
4017
4018 ret = mnt_want_write_file(file);
4019 if (ret)
4020 return ret;
4021
4022 qsa = memdup_user(arg, sizeof(*qsa));
4023 if (IS_ERR(qsa)) {
4024 ret = PTR_ERR(qsa);
4025 goto drop_write;
4026 }
4027
4028 if (qsa->flags) {
4029 ret = -EINVAL;
4030 goto out;
4031 }
4032
4033 ret = btrfs_qgroup_rescan(fs_info);
4034
4035 out:
4036 kfree(qsa);
4037 drop_write:
4038 mnt_drop_write_file(file);
4039 return ret;
4040 }
4041
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4042 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4043 void __user *arg)
4044 {
4045 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4046
4047 if (!capable(CAP_SYS_ADMIN))
4048 return -EPERM;
4049
4050 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4051 qsa.flags = 1;
4052 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4053 }
4054
4055 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4056 return -EFAULT;
4057
4058 return 0;
4059 }
4060
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4061 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4062 void __user *arg)
4063 {
4064 if (!capable(CAP_SYS_ADMIN))
4065 return -EPERM;
4066
4067 return btrfs_qgroup_wait_for_completion(fs_info, true);
4068 }
4069
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)4070 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4071 struct mnt_idmap *idmap,
4072 struct btrfs_ioctl_received_subvol_args *sa)
4073 {
4074 struct inode *inode = file_inode(file);
4075 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4076 struct btrfs_root *root = BTRFS_I(inode)->root;
4077 struct btrfs_root_item *root_item = &root->root_item;
4078 struct btrfs_trans_handle *trans;
4079 struct timespec64 ct = current_time(inode);
4080 int ret = 0;
4081 int received_uuid_changed;
4082
4083 if (!inode_owner_or_capable(idmap, inode))
4084 return -EPERM;
4085
4086 ret = mnt_want_write_file(file);
4087 if (ret < 0)
4088 return ret;
4089
4090 down_write(&fs_info->subvol_sem);
4091
4092 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4093 ret = -EINVAL;
4094 goto out;
4095 }
4096
4097 if (btrfs_root_readonly(root)) {
4098 ret = -EROFS;
4099 goto out;
4100 }
4101
4102 /*
4103 * 1 - root item
4104 * 2 - uuid items (received uuid + subvol uuid)
4105 */
4106 trans = btrfs_start_transaction(root, 3);
4107 if (IS_ERR(trans)) {
4108 ret = PTR_ERR(trans);
4109 trans = NULL;
4110 goto out;
4111 }
4112
4113 sa->rtransid = trans->transid;
4114 sa->rtime.sec = ct.tv_sec;
4115 sa->rtime.nsec = ct.tv_nsec;
4116
4117 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4118 BTRFS_UUID_SIZE);
4119 if (received_uuid_changed &&
4120 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4121 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4122 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4123 btrfs_root_id(root));
4124 if (ret && ret != -ENOENT) {
4125 btrfs_abort_transaction(trans, ret);
4126 btrfs_end_transaction(trans);
4127 goto out;
4128 }
4129 }
4130 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4131 btrfs_set_root_stransid(root_item, sa->stransid);
4132 btrfs_set_root_rtransid(root_item, sa->rtransid);
4133 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4134 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4135 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4136 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4137
4138 ret = btrfs_update_root(trans, fs_info->tree_root,
4139 &root->root_key, &root->root_item);
4140 if (ret < 0) {
4141 btrfs_end_transaction(trans);
4142 goto out;
4143 }
4144 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4145 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4146 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4147 btrfs_root_id(root));
4148 if (ret < 0 && ret != -EEXIST) {
4149 btrfs_abort_transaction(trans, ret);
4150 btrfs_end_transaction(trans);
4151 goto out;
4152 }
4153 }
4154 ret = btrfs_commit_transaction(trans);
4155 out:
4156 up_write(&fs_info->subvol_sem);
4157 mnt_drop_write_file(file);
4158 return ret;
4159 }
4160
4161 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4162 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4163 void __user *arg)
4164 {
4165 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4166 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4167 int ret = 0;
4168
4169 args32 = memdup_user(arg, sizeof(*args32));
4170 if (IS_ERR(args32))
4171 return PTR_ERR(args32);
4172
4173 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4174 if (!args64) {
4175 ret = -ENOMEM;
4176 goto out;
4177 }
4178
4179 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4180 args64->stransid = args32->stransid;
4181 args64->rtransid = args32->rtransid;
4182 args64->stime.sec = args32->stime.sec;
4183 args64->stime.nsec = args32->stime.nsec;
4184 args64->rtime.sec = args32->rtime.sec;
4185 args64->rtime.nsec = args32->rtime.nsec;
4186 args64->flags = args32->flags;
4187
4188 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4189 if (ret)
4190 goto out;
4191
4192 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4193 args32->stransid = args64->stransid;
4194 args32->rtransid = args64->rtransid;
4195 args32->stime.sec = args64->stime.sec;
4196 args32->stime.nsec = args64->stime.nsec;
4197 args32->rtime.sec = args64->rtime.sec;
4198 args32->rtime.nsec = args64->rtime.nsec;
4199 args32->flags = args64->flags;
4200
4201 ret = copy_to_user(arg, args32, sizeof(*args32));
4202 if (ret)
4203 ret = -EFAULT;
4204
4205 out:
4206 kfree(args32);
4207 kfree(args64);
4208 return ret;
4209 }
4210 #endif
4211
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4212 static long btrfs_ioctl_set_received_subvol(struct file *file,
4213 void __user *arg)
4214 {
4215 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4216 int ret = 0;
4217
4218 sa = memdup_user(arg, sizeof(*sa));
4219 if (IS_ERR(sa))
4220 return PTR_ERR(sa);
4221
4222 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4223
4224 if (ret)
4225 goto out;
4226
4227 ret = copy_to_user(arg, sa, sizeof(*sa));
4228 if (ret)
4229 ret = -EFAULT;
4230
4231 out:
4232 kfree(sa);
4233 return ret;
4234 }
4235
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4236 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4237 void __user *arg)
4238 {
4239 size_t len;
4240 int ret;
4241 char label[BTRFS_LABEL_SIZE];
4242
4243 spin_lock(&fs_info->super_lock);
4244 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4245 spin_unlock(&fs_info->super_lock);
4246
4247 len = strnlen(label, BTRFS_LABEL_SIZE);
4248
4249 if (len == BTRFS_LABEL_SIZE) {
4250 btrfs_warn(fs_info,
4251 "label is too long, return the first %zu bytes",
4252 --len);
4253 }
4254
4255 ret = copy_to_user(arg, label, len);
4256
4257 return ret ? -EFAULT : 0;
4258 }
4259
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4260 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4261 {
4262 struct inode *inode = file_inode(file);
4263 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4264 struct btrfs_root *root = BTRFS_I(inode)->root;
4265 struct btrfs_super_block *super_block = fs_info->super_copy;
4266 struct btrfs_trans_handle *trans;
4267 char label[BTRFS_LABEL_SIZE];
4268 int ret;
4269
4270 if (!capable(CAP_SYS_ADMIN))
4271 return -EPERM;
4272
4273 if (copy_from_user(label, arg, sizeof(label)))
4274 return -EFAULT;
4275
4276 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4277 btrfs_err(fs_info,
4278 "unable to set label with more than %d bytes",
4279 BTRFS_LABEL_SIZE - 1);
4280 return -EINVAL;
4281 }
4282
4283 ret = mnt_want_write_file(file);
4284 if (ret)
4285 return ret;
4286
4287 trans = btrfs_start_transaction(root, 0);
4288 if (IS_ERR(trans)) {
4289 ret = PTR_ERR(trans);
4290 goto out_unlock;
4291 }
4292
4293 spin_lock(&fs_info->super_lock);
4294 strcpy(super_block->label, label);
4295 spin_unlock(&fs_info->super_lock);
4296 ret = btrfs_commit_transaction(trans);
4297
4298 out_unlock:
4299 mnt_drop_write_file(file);
4300 return ret;
4301 }
4302
4303 #define INIT_FEATURE_FLAGS(suffix) \
4304 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4305 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4306 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4307
btrfs_ioctl_get_supported_features(void __user * arg)4308 int btrfs_ioctl_get_supported_features(void __user *arg)
4309 {
4310 static const struct btrfs_ioctl_feature_flags features[3] = {
4311 INIT_FEATURE_FLAGS(SUPP),
4312 INIT_FEATURE_FLAGS(SAFE_SET),
4313 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4314 };
4315
4316 if (copy_to_user(arg, &features, sizeof(features)))
4317 return -EFAULT;
4318
4319 return 0;
4320 }
4321
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4322 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4323 void __user *arg)
4324 {
4325 struct btrfs_super_block *super_block = fs_info->super_copy;
4326 struct btrfs_ioctl_feature_flags features;
4327
4328 features.compat_flags = btrfs_super_compat_flags(super_block);
4329 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4330 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4331
4332 if (copy_to_user(arg, &features, sizeof(features)))
4333 return -EFAULT;
4334
4335 return 0;
4336 }
4337
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4338 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4339 enum btrfs_feature_set set,
4340 u64 change_mask, u64 flags, u64 supported_flags,
4341 u64 safe_set, u64 safe_clear)
4342 {
4343 const char *type = btrfs_feature_set_name(set);
4344 char *names;
4345 u64 disallowed, unsupported;
4346 u64 set_mask = flags & change_mask;
4347 u64 clear_mask = ~flags & change_mask;
4348
4349 unsupported = set_mask & ~supported_flags;
4350 if (unsupported) {
4351 names = btrfs_printable_features(set, unsupported);
4352 if (names) {
4353 btrfs_warn(fs_info,
4354 "this kernel does not support the %s feature bit%s",
4355 names, strchr(names, ',') ? "s" : "");
4356 kfree(names);
4357 } else
4358 btrfs_warn(fs_info,
4359 "this kernel does not support %s bits 0x%llx",
4360 type, unsupported);
4361 return -EOPNOTSUPP;
4362 }
4363
4364 disallowed = set_mask & ~safe_set;
4365 if (disallowed) {
4366 names = btrfs_printable_features(set, disallowed);
4367 if (names) {
4368 btrfs_warn(fs_info,
4369 "can't set the %s feature bit%s while mounted",
4370 names, strchr(names, ',') ? "s" : "");
4371 kfree(names);
4372 } else
4373 btrfs_warn(fs_info,
4374 "can't set %s bits 0x%llx while mounted",
4375 type, disallowed);
4376 return -EPERM;
4377 }
4378
4379 disallowed = clear_mask & ~safe_clear;
4380 if (disallowed) {
4381 names = btrfs_printable_features(set, disallowed);
4382 if (names) {
4383 btrfs_warn(fs_info,
4384 "can't clear the %s feature bit%s while mounted",
4385 names, strchr(names, ',') ? "s" : "");
4386 kfree(names);
4387 } else
4388 btrfs_warn(fs_info,
4389 "can't clear %s bits 0x%llx while mounted",
4390 type, disallowed);
4391 return -EPERM;
4392 }
4393
4394 return 0;
4395 }
4396
4397 #define check_feature(fs_info, change_mask, flags, mask_base) \
4398 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4399 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4400 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4401 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4402
btrfs_ioctl_set_features(struct file * file,void __user * arg)4403 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4404 {
4405 struct inode *inode = file_inode(file);
4406 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4407 struct btrfs_root *root = BTRFS_I(inode)->root;
4408 struct btrfs_super_block *super_block = fs_info->super_copy;
4409 struct btrfs_ioctl_feature_flags flags[2];
4410 struct btrfs_trans_handle *trans;
4411 u64 newflags;
4412 int ret;
4413
4414 if (!capable(CAP_SYS_ADMIN))
4415 return -EPERM;
4416
4417 if (copy_from_user(flags, arg, sizeof(flags)))
4418 return -EFAULT;
4419
4420 /* Nothing to do */
4421 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4422 !flags[0].incompat_flags)
4423 return 0;
4424
4425 ret = check_feature(fs_info, flags[0].compat_flags,
4426 flags[1].compat_flags, COMPAT);
4427 if (ret)
4428 return ret;
4429
4430 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4431 flags[1].compat_ro_flags, COMPAT_RO);
4432 if (ret)
4433 return ret;
4434
4435 ret = check_feature(fs_info, flags[0].incompat_flags,
4436 flags[1].incompat_flags, INCOMPAT);
4437 if (ret)
4438 return ret;
4439
4440 ret = mnt_want_write_file(file);
4441 if (ret)
4442 return ret;
4443
4444 trans = btrfs_start_transaction(root, 0);
4445 if (IS_ERR(trans)) {
4446 ret = PTR_ERR(trans);
4447 goto out_drop_write;
4448 }
4449
4450 spin_lock(&fs_info->super_lock);
4451 newflags = btrfs_super_compat_flags(super_block);
4452 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4453 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4454 btrfs_set_super_compat_flags(super_block, newflags);
4455
4456 newflags = btrfs_super_compat_ro_flags(super_block);
4457 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4458 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4459 btrfs_set_super_compat_ro_flags(super_block, newflags);
4460
4461 newflags = btrfs_super_incompat_flags(super_block);
4462 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4463 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4464 btrfs_set_super_incompat_flags(super_block, newflags);
4465 spin_unlock(&fs_info->super_lock);
4466
4467 ret = btrfs_commit_transaction(trans);
4468 out_drop_write:
4469 mnt_drop_write_file(file);
4470
4471 return ret;
4472 }
4473
_btrfs_ioctl_send(struct btrfs_inode * inode,void __user * argp,bool compat)4474 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4475 {
4476 struct btrfs_ioctl_send_args *arg;
4477 int ret;
4478
4479 if (compat) {
4480 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4481 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4482
4483 ret = copy_from_user(&args32, argp, sizeof(args32));
4484 if (ret)
4485 return -EFAULT;
4486 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4487 if (!arg)
4488 return -ENOMEM;
4489 arg->send_fd = args32.send_fd;
4490 arg->clone_sources_count = args32.clone_sources_count;
4491 arg->clone_sources = compat_ptr(args32.clone_sources);
4492 arg->parent_root = args32.parent_root;
4493 arg->flags = args32.flags;
4494 arg->version = args32.version;
4495 memcpy(arg->reserved, args32.reserved,
4496 sizeof(args32.reserved));
4497 #else
4498 return -ENOTTY;
4499 #endif
4500 } else {
4501 arg = memdup_user(argp, sizeof(*arg));
4502 if (IS_ERR(arg))
4503 return PTR_ERR(arg);
4504 }
4505 ret = btrfs_ioctl_send(inode, arg);
4506 kfree(arg);
4507 return ret;
4508 }
4509
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4510 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4511 bool compat)
4512 {
4513 struct btrfs_ioctl_encoded_io_args args = { 0 };
4514 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4515 flags);
4516 size_t copy_end;
4517 struct iovec iovstack[UIO_FASTIOV];
4518 struct iovec *iov = iovstack;
4519 struct iov_iter iter;
4520 loff_t pos;
4521 struct kiocb kiocb;
4522 ssize_t ret;
4523
4524 if (!capable(CAP_SYS_ADMIN)) {
4525 ret = -EPERM;
4526 goto out_acct;
4527 }
4528
4529 if (compat) {
4530 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4531 struct btrfs_ioctl_encoded_io_args_32 args32;
4532
4533 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4534 flags);
4535 if (copy_from_user(&args32, argp, copy_end)) {
4536 ret = -EFAULT;
4537 goto out_acct;
4538 }
4539 args.iov = compat_ptr(args32.iov);
4540 args.iovcnt = args32.iovcnt;
4541 args.offset = args32.offset;
4542 args.flags = args32.flags;
4543 #else
4544 return -ENOTTY;
4545 #endif
4546 } else {
4547 copy_end = copy_end_kernel;
4548 if (copy_from_user(&args, argp, copy_end)) {
4549 ret = -EFAULT;
4550 goto out_acct;
4551 }
4552 }
4553 if (args.flags != 0) {
4554 ret = -EINVAL;
4555 goto out_acct;
4556 }
4557
4558 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4559 &iov, &iter);
4560 if (ret < 0)
4561 goto out_acct;
4562
4563 if (iov_iter_count(&iter) == 0) {
4564 ret = 0;
4565 goto out_iov;
4566 }
4567 pos = args.offset;
4568 ret = rw_verify_area(READ, file, &pos, args.len);
4569 if (ret < 0)
4570 goto out_iov;
4571
4572 init_sync_kiocb(&kiocb, file);
4573 kiocb.ki_pos = pos;
4574
4575 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4576 if (ret >= 0) {
4577 fsnotify_access(file);
4578 if (copy_to_user(argp + copy_end,
4579 (char *)&args + copy_end_kernel,
4580 sizeof(args) - copy_end_kernel))
4581 ret = -EFAULT;
4582 }
4583
4584 out_iov:
4585 kfree(iov);
4586 out_acct:
4587 if (ret > 0)
4588 add_rchar(current, ret);
4589 inc_syscr(current);
4590 return ret;
4591 }
4592
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4593 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4594 {
4595 struct btrfs_ioctl_encoded_io_args args;
4596 struct iovec iovstack[UIO_FASTIOV];
4597 struct iovec *iov = iovstack;
4598 struct iov_iter iter;
4599 loff_t pos;
4600 struct kiocb kiocb;
4601 ssize_t ret;
4602
4603 if (!capable(CAP_SYS_ADMIN)) {
4604 ret = -EPERM;
4605 goto out_acct;
4606 }
4607
4608 if (!(file->f_mode & FMODE_WRITE)) {
4609 ret = -EBADF;
4610 goto out_acct;
4611 }
4612
4613 if (compat) {
4614 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4615 struct btrfs_ioctl_encoded_io_args_32 args32;
4616
4617 if (copy_from_user(&args32, argp, sizeof(args32))) {
4618 ret = -EFAULT;
4619 goto out_acct;
4620 }
4621 args.iov = compat_ptr(args32.iov);
4622 args.iovcnt = args32.iovcnt;
4623 args.offset = args32.offset;
4624 args.flags = args32.flags;
4625 args.len = args32.len;
4626 args.unencoded_len = args32.unencoded_len;
4627 args.unencoded_offset = args32.unencoded_offset;
4628 args.compression = args32.compression;
4629 args.encryption = args32.encryption;
4630 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4631 #else
4632 return -ENOTTY;
4633 #endif
4634 } else {
4635 if (copy_from_user(&args, argp, sizeof(args))) {
4636 ret = -EFAULT;
4637 goto out_acct;
4638 }
4639 }
4640
4641 ret = -EINVAL;
4642 if (args.flags != 0)
4643 goto out_acct;
4644 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4645 goto out_acct;
4646 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4647 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4648 goto out_acct;
4649 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4650 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4651 goto out_acct;
4652 if (args.unencoded_offset > args.unencoded_len)
4653 goto out_acct;
4654 if (args.len > args.unencoded_len - args.unencoded_offset)
4655 goto out_acct;
4656
4657 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4658 &iov, &iter);
4659 if (ret < 0)
4660 goto out_acct;
4661
4662 if (iov_iter_count(&iter) == 0) {
4663 ret = 0;
4664 goto out_iov;
4665 }
4666 pos = args.offset;
4667 ret = rw_verify_area(WRITE, file, &pos, args.len);
4668 if (ret < 0)
4669 goto out_iov;
4670
4671 init_sync_kiocb(&kiocb, file);
4672 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4673 if (ret)
4674 goto out_iov;
4675 kiocb.ki_pos = pos;
4676
4677 file_start_write(file);
4678
4679 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4680 if (ret > 0)
4681 fsnotify_modify(file);
4682
4683 file_end_write(file);
4684 out_iov:
4685 kfree(iov);
4686 out_acct:
4687 if (ret > 0)
4688 add_wchar(current, ret);
4689 inc_syscw(current);
4690 return ret;
4691 }
4692
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4693 long btrfs_ioctl(struct file *file, unsigned int
4694 cmd, unsigned long arg)
4695 {
4696 struct inode *inode = file_inode(file);
4697 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4698 struct btrfs_root *root = BTRFS_I(inode)->root;
4699 void __user *argp = (void __user *)arg;
4700
4701 switch (cmd) {
4702 case FS_IOC_GETVERSION:
4703 return btrfs_ioctl_getversion(inode, argp);
4704 case FS_IOC_GETFSLABEL:
4705 return btrfs_ioctl_get_fslabel(fs_info, argp);
4706 case FS_IOC_SETFSLABEL:
4707 return btrfs_ioctl_set_fslabel(file, argp);
4708 case FITRIM:
4709 return btrfs_ioctl_fitrim(fs_info, argp);
4710 case BTRFS_IOC_SNAP_CREATE:
4711 return btrfs_ioctl_snap_create(file, argp, 0);
4712 case BTRFS_IOC_SNAP_CREATE_V2:
4713 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4714 case BTRFS_IOC_SUBVOL_CREATE:
4715 return btrfs_ioctl_snap_create(file, argp, 1);
4716 case BTRFS_IOC_SUBVOL_CREATE_V2:
4717 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4718 case BTRFS_IOC_SNAP_DESTROY:
4719 return btrfs_ioctl_snap_destroy(file, argp, false);
4720 case BTRFS_IOC_SNAP_DESTROY_V2:
4721 return btrfs_ioctl_snap_destroy(file, argp, true);
4722 case BTRFS_IOC_SUBVOL_GETFLAGS:
4723 return btrfs_ioctl_subvol_getflags(inode, argp);
4724 case BTRFS_IOC_SUBVOL_SETFLAGS:
4725 return btrfs_ioctl_subvol_setflags(file, argp);
4726 case BTRFS_IOC_DEFAULT_SUBVOL:
4727 return btrfs_ioctl_default_subvol(file, argp);
4728 case BTRFS_IOC_DEFRAG:
4729 return btrfs_ioctl_defrag(file, NULL);
4730 case BTRFS_IOC_DEFRAG_RANGE:
4731 return btrfs_ioctl_defrag(file, argp);
4732 case BTRFS_IOC_RESIZE:
4733 return btrfs_ioctl_resize(file, argp);
4734 case BTRFS_IOC_ADD_DEV:
4735 return btrfs_ioctl_add_dev(fs_info, argp);
4736 case BTRFS_IOC_RM_DEV:
4737 return btrfs_ioctl_rm_dev(file, argp);
4738 case BTRFS_IOC_RM_DEV_V2:
4739 return btrfs_ioctl_rm_dev_v2(file, argp);
4740 case BTRFS_IOC_FS_INFO:
4741 return btrfs_ioctl_fs_info(fs_info, argp);
4742 case BTRFS_IOC_DEV_INFO:
4743 return btrfs_ioctl_dev_info(fs_info, argp);
4744 case BTRFS_IOC_TREE_SEARCH:
4745 return btrfs_ioctl_tree_search(inode, argp);
4746 case BTRFS_IOC_TREE_SEARCH_V2:
4747 return btrfs_ioctl_tree_search_v2(inode, argp);
4748 case BTRFS_IOC_INO_LOOKUP:
4749 return btrfs_ioctl_ino_lookup(root, argp);
4750 case BTRFS_IOC_INO_PATHS:
4751 return btrfs_ioctl_ino_to_path(root, argp);
4752 case BTRFS_IOC_LOGICAL_INO:
4753 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4754 case BTRFS_IOC_LOGICAL_INO_V2:
4755 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4756 case BTRFS_IOC_SPACE_INFO:
4757 return btrfs_ioctl_space_info(fs_info, argp);
4758 case BTRFS_IOC_SYNC: {
4759 int ret;
4760
4761 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4762 if (ret)
4763 return ret;
4764 ret = btrfs_sync_fs(inode->i_sb, 1);
4765 /*
4766 * There may be work for the cleaner kthread to do (subvolume
4767 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
4768 */
4769 wake_up_process(fs_info->cleaner_kthread);
4770 return ret;
4771 }
4772 case BTRFS_IOC_START_SYNC:
4773 return btrfs_ioctl_start_sync(root, argp);
4774 case BTRFS_IOC_WAIT_SYNC:
4775 return btrfs_ioctl_wait_sync(fs_info, argp);
4776 case BTRFS_IOC_SCRUB:
4777 return btrfs_ioctl_scrub(file, argp);
4778 case BTRFS_IOC_SCRUB_CANCEL:
4779 return btrfs_ioctl_scrub_cancel(fs_info);
4780 case BTRFS_IOC_SCRUB_PROGRESS:
4781 return btrfs_ioctl_scrub_progress(fs_info, argp);
4782 case BTRFS_IOC_BALANCE_V2:
4783 return btrfs_ioctl_balance(file, argp);
4784 case BTRFS_IOC_BALANCE_CTL:
4785 return btrfs_ioctl_balance_ctl(fs_info, arg);
4786 case BTRFS_IOC_BALANCE_PROGRESS:
4787 return btrfs_ioctl_balance_progress(fs_info, argp);
4788 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4789 return btrfs_ioctl_set_received_subvol(file, argp);
4790 #ifdef CONFIG_64BIT
4791 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4792 return btrfs_ioctl_set_received_subvol_32(file, argp);
4793 #endif
4794 case BTRFS_IOC_SEND:
4795 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
4796 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4797 case BTRFS_IOC_SEND_32:
4798 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
4799 #endif
4800 case BTRFS_IOC_GET_DEV_STATS:
4801 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4802 case BTRFS_IOC_QUOTA_CTL:
4803 return btrfs_ioctl_quota_ctl(file, argp);
4804 case BTRFS_IOC_QGROUP_ASSIGN:
4805 return btrfs_ioctl_qgroup_assign(file, argp);
4806 case BTRFS_IOC_QGROUP_CREATE:
4807 return btrfs_ioctl_qgroup_create(file, argp);
4808 case BTRFS_IOC_QGROUP_LIMIT:
4809 return btrfs_ioctl_qgroup_limit(file, argp);
4810 case BTRFS_IOC_QUOTA_RESCAN:
4811 return btrfs_ioctl_quota_rescan(file, argp);
4812 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4813 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4814 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4815 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4816 case BTRFS_IOC_DEV_REPLACE:
4817 return btrfs_ioctl_dev_replace(fs_info, argp);
4818 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4819 return btrfs_ioctl_get_supported_features(argp);
4820 case BTRFS_IOC_GET_FEATURES:
4821 return btrfs_ioctl_get_features(fs_info, argp);
4822 case BTRFS_IOC_SET_FEATURES:
4823 return btrfs_ioctl_set_features(file, argp);
4824 case BTRFS_IOC_GET_SUBVOL_INFO:
4825 return btrfs_ioctl_get_subvol_info(inode, argp);
4826 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4827 return btrfs_ioctl_get_subvol_rootref(root, argp);
4828 case BTRFS_IOC_INO_LOOKUP_USER:
4829 return btrfs_ioctl_ino_lookup_user(file, argp);
4830 case FS_IOC_ENABLE_VERITY:
4831 return fsverity_ioctl_enable(file, (const void __user *)argp);
4832 case FS_IOC_MEASURE_VERITY:
4833 return fsverity_ioctl_measure(file, argp);
4834 case BTRFS_IOC_ENCODED_READ:
4835 return btrfs_ioctl_encoded_read(file, argp, false);
4836 case BTRFS_IOC_ENCODED_WRITE:
4837 return btrfs_ioctl_encoded_write(file, argp, false);
4838 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4839 case BTRFS_IOC_ENCODED_READ_32:
4840 return btrfs_ioctl_encoded_read(file, argp, true);
4841 case BTRFS_IOC_ENCODED_WRITE_32:
4842 return btrfs_ioctl_encoded_write(file, argp, true);
4843 #endif
4844 }
4845
4846 return -ENOTTY;
4847 }
4848
4849 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4850 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4851 {
4852 /*
4853 * These all access 32-bit values anyway so no further
4854 * handling is necessary.
4855 */
4856 switch (cmd) {
4857 case FS_IOC32_GETVERSION:
4858 cmd = FS_IOC_GETVERSION;
4859 break;
4860 }
4861
4862 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4863 }
4864 #endif
4865