1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "subpage.h" 52 53 #ifdef CONFIG_64BIT 54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 55 * structures are incorrect, as the timespec structure from userspace 56 * is 4 bytes too small. We define these alternatives here to teach 57 * the kernel about the 32-bit struct packing. 58 */ 59 struct btrfs_ioctl_timespec_32 { 60 __u64 sec; 61 __u32 nsec; 62 } __attribute__ ((__packed__)); 63 64 struct btrfs_ioctl_received_subvol_args_32 { 65 char uuid[BTRFS_UUID_SIZE]; /* in */ 66 __u64 stransid; /* in */ 67 __u64 rtransid; /* out */ 68 struct btrfs_ioctl_timespec_32 stime; /* in */ 69 struct btrfs_ioctl_timespec_32 rtime; /* out */ 70 __u64 flags; /* in */ 71 __u64 reserved[16]; /* in */ 72 } __attribute__ ((__packed__)); 73 74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 75 struct btrfs_ioctl_received_subvol_args_32) 76 #endif 77 78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 79 struct btrfs_ioctl_send_args_32 { 80 __s64 send_fd; /* in */ 81 __u64 clone_sources_count; /* in */ 82 compat_uptr_t clone_sources; /* in */ 83 __u64 parent_root; /* in */ 84 __u64 flags; /* in */ 85 __u32 version; /* in */ 86 __u8 reserved[28]; /* in */ 87 } __attribute__ ((__packed__)); 88 89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 90 struct btrfs_ioctl_send_args_32) 91 #endif 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 110 { 111 unsigned int iflags = 0; 112 u32 flags = binode->flags; 113 u32 ro_flags = binode->ro_flags; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 if (ro_flags & BTRFS_INODE_RO_VERITY) 130 iflags |= FS_VERITY_FL; 131 132 if (flags & BTRFS_INODE_NOCOMPRESS) 133 iflags |= FS_NOCOMP_FL; 134 else if (flags & BTRFS_INODE_COMPRESS) 135 iflags |= FS_COMPR_FL; 136 137 return iflags; 138 } 139 140 /* 141 * Update inode->i_flags based on the btrfs internal flags. 142 */ 143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 144 { 145 struct btrfs_inode *binode = BTRFS_I(inode); 146 unsigned int new_fl = 0; 147 148 if (binode->flags & BTRFS_INODE_SYNC) 149 new_fl |= S_SYNC; 150 if (binode->flags & BTRFS_INODE_IMMUTABLE) 151 new_fl |= S_IMMUTABLE; 152 if (binode->flags & BTRFS_INODE_APPEND) 153 new_fl |= S_APPEND; 154 if (binode->flags & BTRFS_INODE_NOATIME) 155 new_fl |= S_NOATIME; 156 if (binode->flags & BTRFS_INODE_DIRSYNC) 157 new_fl |= S_DIRSYNC; 158 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 159 new_fl |= S_VERITY; 160 161 set_mask_bits(&inode->i_flags, 162 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 163 S_VERITY, new_fl); 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 /* 205 * Set flags/xflags from the internal inode flags. The remaining items of 206 * fsxattr are zeroed. 207 */ 208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 209 { 210 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 211 212 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 213 return 0; 214 } 215 216 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 217 struct dentry *dentry, struct fileattr *fa) 218 { 219 struct inode *inode = d_inode(dentry); 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 struct btrfs_inode *binode = BTRFS_I(inode); 222 struct btrfs_root *root = binode->root; 223 struct btrfs_trans_handle *trans; 224 unsigned int fsflags, old_fsflags; 225 int ret; 226 const char *comp = NULL; 227 u32 binode_flags; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (fileattr_has_fsx(fa)) 233 return -EOPNOTSUPP; 234 235 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 236 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 return ret; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 return ret; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 267 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 268 if (!fa->flags_valid) { 269 /* 1 item for the inode */ 270 trans = btrfs_start_transaction(root, 1); 271 if (IS_ERR(trans)) 272 return PTR_ERR(trans); 273 goto update_flags; 274 } 275 276 if (fsflags & FS_DIRSYNC_FL) 277 binode_flags |= BTRFS_INODE_DIRSYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_DIRSYNC; 280 if (fsflags & FS_NOCOW_FL) { 281 if (S_ISREG(inode->i_mode)) { 282 /* 283 * It's safe to turn csums off here, no extents exist. 284 * Otherwise we want the flag to reflect the real COW 285 * status of the file and will not set it. 286 */ 287 if (inode->i_size == 0) 288 binode_flags |= BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM; 290 } else { 291 binode_flags |= BTRFS_INODE_NODATACOW; 292 } 293 } else { 294 /* 295 * Revert back under same assumptions as above 296 */ 297 if (S_ISREG(inode->i_mode)) { 298 if (inode->i_size == 0) 299 binode_flags &= ~(BTRFS_INODE_NODATACOW | 300 BTRFS_INODE_NODATASUM); 301 } else { 302 binode_flags &= ~BTRFS_INODE_NODATACOW; 303 } 304 } 305 306 /* 307 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 308 * flag may be changed automatically if compression code won't make 309 * things smaller. 310 */ 311 if (fsflags & FS_NOCOMP_FL) { 312 binode_flags &= ~BTRFS_INODE_COMPRESS; 313 binode_flags |= BTRFS_INODE_NOCOMPRESS; 314 } else if (fsflags & FS_COMPR_FL) { 315 316 if (IS_SWAPFILE(inode)) 317 return -ETXTBSY; 318 319 binode_flags |= BTRFS_INODE_COMPRESS; 320 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 comp = btrfs_compress_type2str(fs_info->compress_type); 323 if (!comp || comp[0] == 0) 324 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 325 } else { 326 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 327 } 328 329 /* 330 * 1 for inode item 331 * 2 for properties 332 */ 333 trans = btrfs_start_transaction(root, 3); 334 if (IS_ERR(trans)) 335 return PTR_ERR(trans); 336 337 if (comp) { 338 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 339 strlen(comp), 0); 340 if (ret) { 341 btrfs_abort_transaction(trans, ret); 342 goto out_end_trans; 343 } 344 } else { 345 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 346 0, 0); 347 if (ret && ret != -ENODATA) { 348 btrfs_abort_transaction(trans, ret); 349 goto out_end_trans; 350 } 351 } 352 353 update_flags: 354 binode->flags = binode_flags; 355 btrfs_sync_inode_flags_to_i_flags(inode); 356 inode_inc_iversion(inode); 357 inode->i_ctime = current_time(inode); 358 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 359 360 out_end_trans: 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 /* 366 * Start exclusive operation @type, return true on success 367 */ 368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 369 enum btrfs_exclusive_operation type) 370 { 371 bool ret = false; 372 373 spin_lock(&fs_info->super_lock); 374 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 375 fs_info->exclusive_operation = type; 376 ret = true; 377 } 378 spin_unlock(&fs_info->super_lock); 379 380 return ret; 381 } 382 383 /* 384 * Conditionally allow to enter the exclusive operation in case it's compatible 385 * with the running one. This must be paired with btrfs_exclop_start_unlock and 386 * btrfs_exclop_finish. 387 * 388 * Compatibility: 389 * - the same type is already running 390 * - when trying to add a device and balance has been paused 391 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 392 * must check the condition first that would allow none -> @type 393 */ 394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 395 enum btrfs_exclusive_operation type) 396 { 397 spin_lock(&fs_info->super_lock); 398 if (fs_info->exclusive_operation == type || 399 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 400 type == BTRFS_EXCLOP_DEV_ADD)) 401 return true; 402 403 spin_unlock(&fs_info->super_lock); 404 return false; 405 } 406 407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 408 { 409 spin_unlock(&fs_info->super_lock); 410 } 411 412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 413 { 414 spin_lock(&fs_info->super_lock); 415 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 416 spin_unlock(&fs_info->super_lock); 417 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 418 } 419 420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 421 enum btrfs_exclusive_operation op) 422 { 423 switch (op) { 424 case BTRFS_EXCLOP_BALANCE_PAUSED: 425 spin_lock(&fs_info->super_lock); 426 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 427 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 428 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 429 spin_unlock(&fs_info->super_lock); 430 break; 431 case BTRFS_EXCLOP_BALANCE: 432 spin_lock(&fs_info->super_lock); 433 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 434 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 435 spin_unlock(&fs_info->super_lock); 436 break; 437 default: 438 btrfs_warn(fs_info, 439 "invalid exclop balance operation %d requested", op); 440 } 441 } 442 443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 444 { 445 struct inode *inode = file_inode(file); 446 447 return put_user(inode->i_generation, arg); 448 } 449 450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 451 void __user *arg) 452 { 453 struct btrfs_device *device; 454 struct request_queue *q; 455 struct fstrim_range range; 456 u64 minlen = ULLONG_MAX; 457 u64 num_devices = 0; 458 int ret; 459 460 if (!capable(CAP_SYS_ADMIN)) 461 return -EPERM; 462 463 /* 464 * btrfs_trim_block_group() depends on space cache, which is not 465 * available in zoned filesystem. So, disallow fitrim on a zoned 466 * filesystem for now. 467 */ 468 if (btrfs_is_zoned(fs_info)) 469 return -EOPNOTSUPP; 470 471 /* 472 * If the fs is mounted with nologreplay, which requires it to be 473 * mounted in RO mode as well, we can not allow discard on free space 474 * inside block groups, because log trees refer to extents that are not 475 * pinned in a block group's free space cache (pinning the extents is 476 * precisely the first phase of replaying a log tree). 477 */ 478 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 479 return -EROFS; 480 481 rcu_read_lock(); 482 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 483 dev_list) { 484 if (!device->bdev) 485 continue; 486 q = bdev_get_queue(device->bdev); 487 if (blk_queue_discard(q)) { 488 num_devices++; 489 minlen = min_t(u64, q->limits.discard_granularity, 490 minlen); 491 } 492 } 493 rcu_read_unlock(); 494 495 if (!num_devices) 496 return -EOPNOTSUPP; 497 if (copy_from_user(&range, arg, sizeof(range))) 498 return -EFAULT; 499 500 /* 501 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 502 * block group is in the logical address space, which can be any 503 * sectorsize aligned bytenr in the range [0, U64_MAX]. 504 */ 505 if (range.len < fs_info->sb->s_blocksize) 506 return -EINVAL; 507 508 range.minlen = max(range.minlen, minlen); 509 ret = btrfs_trim_fs(fs_info, &range); 510 if (ret < 0) 511 return ret; 512 513 if (copy_to_user(arg, &range, sizeof(range))) 514 return -EFAULT; 515 516 return 0; 517 } 518 519 int __pure btrfs_is_empty_uuid(u8 *uuid) 520 { 521 int i; 522 523 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 524 if (uuid[i]) 525 return 0; 526 } 527 return 1; 528 } 529 530 static noinline int create_subvol(struct user_namespace *mnt_userns, 531 struct inode *dir, struct dentry *dentry, 532 const char *name, int namelen, 533 struct btrfs_qgroup_inherit *inherit) 534 { 535 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 536 struct btrfs_trans_handle *trans; 537 struct btrfs_key key; 538 struct btrfs_root_item *root_item; 539 struct btrfs_inode_item *inode_item; 540 struct extent_buffer *leaf; 541 struct btrfs_root *root = BTRFS_I(dir)->root; 542 struct btrfs_root *new_root; 543 struct btrfs_block_rsv block_rsv; 544 struct timespec64 cur_time = current_time(dir); 545 struct inode *inode; 546 int ret; 547 dev_t anon_dev = 0; 548 u64 objectid; 549 u64 index = 0; 550 551 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 552 if (!root_item) 553 return -ENOMEM; 554 555 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 556 if (ret) 557 goto fail_free; 558 559 ret = get_anon_bdev(&anon_dev); 560 if (ret < 0) 561 goto fail_free; 562 563 /* 564 * Don't create subvolume whose level is not zero. Or qgroup will be 565 * screwed up since it assumes subvolume qgroup's level to be 0. 566 */ 567 if (btrfs_qgroup_level(objectid)) { 568 ret = -ENOSPC; 569 goto fail_free; 570 } 571 572 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 573 /* 574 * The same as the snapshot creation, please see the comment 575 * of create_snapshot(). 576 */ 577 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 578 if (ret) 579 goto fail_free; 580 581 trans = btrfs_start_transaction(root, 0); 582 if (IS_ERR(trans)) { 583 ret = PTR_ERR(trans); 584 btrfs_subvolume_release_metadata(root, &block_rsv); 585 goto fail_free; 586 } 587 trans->block_rsv = &block_rsv; 588 trans->bytes_reserved = block_rsv.size; 589 590 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 591 if (ret) 592 goto fail; 593 594 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 595 BTRFS_NESTING_NORMAL); 596 if (IS_ERR(leaf)) { 597 ret = PTR_ERR(leaf); 598 goto fail; 599 } 600 601 btrfs_mark_buffer_dirty(leaf); 602 603 inode_item = &root_item->inode; 604 btrfs_set_stack_inode_generation(inode_item, 1); 605 btrfs_set_stack_inode_size(inode_item, 3); 606 btrfs_set_stack_inode_nlink(inode_item, 1); 607 btrfs_set_stack_inode_nbytes(inode_item, 608 fs_info->nodesize); 609 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 610 611 btrfs_set_root_flags(root_item, 0); 612 btrfs_set_root_limit(root_item, 0); 613 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 614 615 btrfs_set_root_bytenr(root_item, leaf->start); 616 btrfs_set_root_generation(root_item, trans->transid); 617 btrfs_set_root_level(root_item, 0); 618 btrfs_set_root_refs(root_item, 1); 619 btrfs_set_root_used(root_item, leaf->len); 620 btrfs_set_root_last_snapshot(root_item, 0); 621 622 btrfs_set_root_generation_v2(root_item, 623 btrfs_root_generation(root_item)); 624 generate_random_guid(root_item->uuid); 625 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 626 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 627 root_item->ctime = root_item->otime; 628 btrfs_set_root_ctransid(root_item, trans->transid); 629 btrfs_set_root_otransid(root_item, trans->transid); 630 631 btrfs_tree_unlock(leaf); 632 633 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 634 635 key.objectid = objectid; 636 key.offset = 0; 637 key.type = BTRFS_ROOT_ITEM_KEY; 638 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 639 root_item); 640 if (ret) { 641 /* 642 * Since we don't abort the transaction in this case, free the 643 * tree block so that we don't leak space and leave the 644 * filesystem in an inconsistent state (an extent item in the 645 * extent tree with a backreference for a root that does not 646 * exists). 647 */ 648 btrfs_tree_lock(leaf); 649 btrfs_clean_tree_block(leaf); 650 btrfs_tree_unlock(leaf); 651 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 652 free_extent_buffer(leaf); 653 goto fail; 654 } 655 656 free_extent_buffer(leaf); 657 leaf = NULL; 658 659 key.offset = (u64)-1; 660 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 661 if (IS_ERR(new_root)) { 662 free_anon_bdev(anon_dev); 663 ret = PTR_ERR(new_root); 664 btrfs_abort_transaction(trans, ret); 665 goto fail; 666 } 667 /* Freeing will be done in btrfs_put_root() of new_root */ 668 anon_dev = 0; 669 670 ret = btrfs_record_root_in_trans(trans, new_root); 671 if (ret) { 672 btrfs_put_root(new_root); 673 btrfs_abort_transaction(trans, ret); 674 goto fail; 675 } 676 677 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 678 btrfs_put_root(new_root); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 /* 686 * insert the directory item 687 */ 688 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 689 if (ret) { 690 btrfs_abort_transaction(trans, ret); 691 goto fail; 692 } 693 694 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 695 BTRFS_FT_DIR, index); 696 if (ret) { 697 btrfs_abort_transaction(trans, ret); 698 goto fail; 699 } 700 701 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 702 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 703 if (ret) { 704 btrfs_abort_transaction(trans, ret); 705 goto fail; 706 } 707 708 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 709 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 710 if (ret) { 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 716 BTRFS_UUID_KEY_SUBVOL, objectid); 717 if (ret) 718 btrfs_abort_transaction(trans, ret); 719 720 fail: 721 kfree(root_item); 722 trans->block_rsv = NULL; 723 trans->bytes_reserved = 0; 724 btrfs_subvolume_release_metadata(root, &block_rsv); 725 726 if (ret) 727 btrfs_end_transaction(trans); 728 else 729 ret = btrfs_commit_transaction(trans); 730 731 if (!ret) { 732 inode = btrfs_lookup_dentry(dir, dentry); 733 if (IS_ERR(inode)) 734 return PTR_ERR(inode); 735 d_instantiate(dentry, inode); 736 } 737 return ret; 738 739 fail_free: 740 if (anon_dev) 741 free_anon_bdev(anon_dev); 742 kfree(root_item); 743 return ret; 744 } 745 746 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 747 struct dentry *dentry, bool readonly, 748 struct btrfs_qgroup_inherit *inherit) 749 { 750 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 751 struct inode *inode; 752 struct btrfs_pending_snapshot *pending_snapshot; 753 struct btrfs_trans_handle *trans; 754 int ret; 755 756 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 757 return -EINVAL; 758 759 if (atomic_read(&root->nr_swapfiles)) { 760 btrfs_warn(fs_info, 761 "cannot snapshot subvolume with active swapfile"); 762 return -ETXTBSY; 763 } 764 765 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 766 if (!pending_snapshot) 767 return -ENOMEM; 768 769 ret = get_anon_bdev(&pending_snapshot->anon_dev); 770 if (ret < 0) 771 goto free_pending; 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 781 BTRFS_BLOCK_RSV_TEMP); 782 /* 783 * 1 - parent dir inode 784 * 2 - dir entries 785 * 1 - root item 786 * 2 - root ref/backref 787 * 1 - root of snapshot 788 * 1 - UUID item 789 */ 790 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 791 &pending_snapshot->block_rsv, 8, 792 false); 793 if (ret) 794 goto free_pending; 795 796 pending_snapshot->dentry = dentry; 797 pending_snapshot->root = root; 798 pending_snapshot->readonly = readonly; 799 pending_snapshot->dir = dir; 800 pending_snapshot->inherit = inherit; 801 802 trans = btrfs_start_transaction(root, 0); 803 if (IS_ERR(trans)) { 804 ret = PTR_ERR(trans); 805 goto fail; 806 } 807 808 trans->pending_snapshot = pending_snapshot; 809 810 ret = btrfs_commit_transaction(trans); 811 if (ret) 812 goto fail; 813 814 ret = pending_snapshot->error; 815 if (ret) 816 goto fail; 817 818 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 819 if (ret) 820 goto fail; 821 822 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 823 if (IS_ERR(inode)) { 824 ret = PTR_ERR(inode); 825 goto fail; 826 } 827 828 d_instantiate(dentry, inode); 829 ret = 0; 830 pending_snapshot->anon_dev = 0; 831 fail: 832 /* Prevent double freeing of anon_dev */ 833 if (ret && pending_snapshot->snap) 834 pending_snapshot->snap->anon_dev = 0; 835 btrfs_put_root(pending_snapshot->snap); 836 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 837 free_pending: 838 if (pending_snapshot->anon_dev) 839 free_anon_bdev(pending_snapshot->anon_dev); 840 kfree(pending_snapshot->root_item); 841 btrfs_free_path(pending_snapshot->path); 842 kfree(pending_snapshot); 843 844 return ret; 845 } 846 847 /* copy of may_delete in fs/namei.c() 848 * Check whether we can remove a link victim from directory dir, check 849 * whether the type of victim is right. 850 * 1. We can't do it if dir is read-only (done in permission()) 851 * 2. We should have write and exec permissions on dir 852 * 3. We can't remove anything from append-only dir 853 * 4. We can't do anything with immutable dir (done in permission()) 854 * 5. If the sticky bit on dir is set we should either 855 * a. be owner of dir, or 856 * b. be owner of victim, or 857 * c. have CAP_FOWNER capability 858 * 6. If the victim is append-only or immutable we can't do anything with 859 * links pointing to it. 860 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 861 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 862 * 9. We can't remove a root or mountpoint. 863 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 864 * nfs_async_unlink(). 865 */ 866 867 static int btrfs_may_delete(struct user_namespace *mnt_userns, 868 struct inode *dir, struct dentry *victim, int isdir) 869 { 870 int error; 871 872 if (d_really_is_negative(victim)) 873 return -ENOENT; 874 875 BUG_ON(d_inode(victim->d_parent) != dir); 876 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 877 878 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 879 if (error) 880 return error; 881 if (IS_APPEND(dir)) 882 return -EPERM; 883 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 884 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 885 IS_SWAPFILE(d_inode(victim))) 886 return -EPERM; 887 if (isdir) { 888 if (!d_is_dir(victim)) 889 return -ENOTDIR; 890 if (IS_ROOT(victim)) 891 return -EBUSY; 892 } else if (d_is_dir(victim)) 893 return -EISDIR; 894 if (IS_DEADDIR(dir)) 895 return -ENOENT; 896 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 897 return -EBUSY; 898 return 0; 899 } 900 901 /* copy of may_create in fs/namei.c() */ 902 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 903 struct inode *dir, struct dentry *child) 904 { 905 if (d_really_is_positive(child)) 906 return -EEXIST; 907 if (IS_DEADDIR(dir)) 908 return -ENOENT; 909 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 910 return -EOVERFLOW; 911 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 912 } 913 914 /* 915 * Create a new subvolume below @parent. This is largely modeled after 916 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 917 * inside this filesystem so it's quite a bit simpler. 918 */ 919 static noinline int btrfs_mksubvol(const struct path *parent, 920 struct user_namespace *mnt_userns, 921 const char *name, int namelen, 922 struct btrfs_root *snap_src, 923 bool readonly, 924 struct btrfs_qgroup_inherit *inherit) 925 { 926 struct inode *dir = d_inode(parent->dentry); 927 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 928 struct dentry *dentry; 929 int error; 930 931 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 932 if (error == -EINTR) 933 return error; 934 935 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 936 error = PTR_ERR(dentry); 937 if (IS_ERR(dentry)) 938 goto out_unlock; 939 940 error = btrfs_may_create(mnt_userns, dir, dentry); 941 if (error) 942 goto out_dput; 943 944 /* 945 * even if this name doesn't exist, we may get hash collisions. 946 * check for them now when we can safely fail 947 */ 948 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 949 dir->i_ino, name, 950 namelen); 951 if (error) 952 goto out_dput; 953 954 down_read(&fs_info->subvol_sem); 955 956 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 957 goto out_up_read; 958 959 if (snap_src) 960 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 961 else 962 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 963 964 if (!error) 965 fsnotify_mkdir(dir, dentry); 966 out_up_read: 967 up_read(&fs_info->subvol_sem); 968 out_dput: 969 dput(dentry); 970 out_unlock: 971 btrfs_inode_unlock(dir, 0); 972 return error; 973 } 974 975 static noinline int btrfs_mksnapshot(const struct path *parent, 976 struct user_namespace *mnt_userns, 977 const char *name, int namelen, 978 struct btrfs_root *root, 979 bool readonly, 980 struct btrfs_qgroup_inherit *inherit) 981 { 982 int ret; 983 bool snapshot_force_cow = false; 984 985 /* 986 * Force new buffered writes to reserve space even when NOCOW is 987 * possible. This is to avoid later writeback (running dealloc) to 988 * fallback to COW mode and unexpectedly fail with ENOSPC. 989 */ 990 btrfs_drew_read_lock(&root->snapshot_lock); 991 992 ret = btrfs_start_delalloc_snapshot(root, false); 993 if (ret) 994 goto out; 995 996 /* 997 * All previous writes have started writeback in NOCOW mode, so now 998 * we force future writes to fallback to COW mode during snapshot 999 * creation. 1000 */ 1001 atomic_inc(&root->snapshot_force_cow); 1002 snapshot_force_cow = true; 1003 1004 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1005 1006 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1007 root, readonly, inherit); 1008 out: 1009 if (snapshot_force_cow) 1010 atomic_dec(&root->snapshot_force_cow); 1011 btrfs_drew_read_unlock(&root->snapshot_lock); 1012 return ret; 1013 } 1014 1015 /* 1016 * Defrag specific helper to get an extent map. 1017 * 1018 * Differences between this and btrfs_get_extent() are: 1019 * 1020 * - No extent_map will be added to inode->extent_tree 1021 * To reduce memory usage in the long run. 1022 * 1023 * - Extra optimization to skip file extents older than @newer_than 1024 * By using btrfs_search_forward() we can skip entire file ranges that 1025 * have extents created in past transactions, because btrfs_search_forward() 1026 * will not visit leaves and nodes with a generation smaller than given 1027 * minimal generation threshold (@newer_than). 1028 * 1029 * Return valid em if we find a file extent matching the requirement. 1030 * Return NULL if we can not find a file extent matching the requirement. 1031 * 1032 * Return ERR_PTR() for error. 1033 */ 1034 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 1035 u64 start, u64 newer_than) 1036 { 1037 struct btrfs_root *root = inode->root; 1038 struct btrfs_file_extent_item *fi; 1039 struct btrfs_path path = { 0 }; 1040 struct extent_map *em; 1041 struct btrfs_key key; 1042 u64 ino = btrfs_ino(inode); 1043 int ret; 1044 1045 em = alloc_extent_map(); 1046 if (!em) { 1047 ret = -ENOMEM; 1048 goto err; 1049 } 1050 1051 key.objectid = ino; 1052 key.type = BTRFS_EXTENT_DATA_KEY; 1053 key.offset = start; 1054 1055 if (newer_than) { 1056 ret = btrfs_search_forward(root, &key, &path, newer_than); 1057 if (ret < 0) 1058 goto err; 1059 /* Can't find anything newer */ 1060 if (ret > 0) 1061 goto not_found; 1062 } else { 1063 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 1064 if (ret < 0) 1065 goto err; 1066 } 1067 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 1068 /* 1069 * If btrfs_search_slot() makes path to point beyond nritems, 1070 * we should not have an empty leaf, as this inode must at 1071 * least have its INODE_ITEM. 1072 */ 1073 ASSERT(btrfs_header_nritems(path.nodes[0])); 1074 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 1075 } 1076 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1077 /* Perfect match, no need to go one slot back */ 1078 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 1079 key.offset == start) 1080 goto iterate; 1081 1082 /* We didn't find a perfect match, needs to go one slot back */ 1083 if (path.slots[0] > 0) { 1084 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1085 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 1086 path.slots[0]--; 1087 } 1088 1089 iterate: 1090 /* Iterate through the path to find a file extent covering @start */ 1091 while (true) { 1092 u64 extent_end; 1093 1094 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 1095 goto next; 1096 1097 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1098 1099 /* 1100 * We may go one slot back to INODE_REF/XATTR item, then 1101 * need to go forward until we reach an EXTENT_DATA. 1102 * But we should still has the correct ino as key.objectid. 1103 */ 1104 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 1105 goto next; 1106 1107 /* It's beyond our target range, definitely not extent found */ 1108 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 1109 goto not_found; 1110 1111 /* 1112 * | |<- File extent ->| 1113 * \- start 1114 * 1115 * This means there is a hole between start and key.offset. 1116 */ 1117 if (key.offset > start) { 1118 em->start = start; 1119 em->orig_start = start; 1120 em->block_start = EXTENT_MAP_HOLE; 1121 em->len = key.offset - start; 1122 break; 1123 } 1124 1125 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 1126 struct btrfs_file_extent_item); 1127 extent_end = btrfs_file_extent_end(&path); 1128 1129 /* 1130 * |<- file extent ->| | 1131 * \- start 1132 * 1133 * We haven't reached start, search next slot. 1134 */ 1135 if (extent_end <= start) 1136 goto next; 1137 1138 /* Now this extent covers @start, convert it to em */ 1139 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em); 1140 break; 1141 next: 1142 ret = btrfs_next_item(root, &path); 1143 if (ret < 0) 1144 goto err; 1145 if (ret > 0) 1146 goto not_found; 1147 } 1148 btrfs_release_path(&path); 1149 return em; 1150 1151 not_found: 1152 btrfs_release_path(&path); 1153 free_extent_map(em); 1154 return NULL; 1155 1156 err: 1157 btrfs_release_path(&path); 1158 free_extent_map(em); 1159 return ERR_PTR(ret); 1160 } 1161 1162 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1163 u64 newer_than, bool locked) 1164 { 1165 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1166 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1167 struct extent_map *em; 1168 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1169 1170 /* 1171 * hopefully we have this extent in the tree already, try without 1172 * the full extent lock 1173 */ 1174 read_lock(&em_tree->lock); 1175 em = lookup_extent_mapping(em_tree, start, sectorsize); 1176 read_unlock(&em_tree->lock); 1177 1178 /* 1179 * We can get a merged extent, in that case, we need to re-search 1180 * tree to get the original em for defrag. 1181 * 1182 * If @newer_than is 0 or em::generation < newer_than, we can trust 1183 * this em, as either we don't care about the generation, or the 1184 * merged extent map will be rejected anyway. 1185 */ 1186 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && 1187 newer_than && em->generation >= newer_than) { 1188 free_extent_map(em); 1189 em = NULL; 1190 } 1191 1192 if (!em) { 1193 struct extent_state *cached = NULL; 1194 u64 end = start + sectorsize - 1; 1195 1196 /* get the big lock and read metadata off disk */ 1197 if (!locked) 1198 lock_extent_bits(io_tree, start, end, &cached); 1199 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 1200 if (!locked) 1201 unlock_extent_cached(io_tree, start, end, &cached); 1202 1203 if (IS_ERR(em)) 1204 return NULL; 1205 } 1206 1207 return em; 1208 } 1209 1210 static u32 get_extent_max_capacity(const struct extent_map *em) 1211 { 1212 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1213 return BTRFS_MAX_COMPRESSED; 1214 return BTRFS_MAX_EXTENT_SIZE; 1215 } 1216 1217 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1218 bool locked) 1219 { 1220 struct extent_map *next; 1221 bool ret = false; 1222 1223 /* this is the last extent */ 1224 if (em->start + em->len >= i_size_read(inode)) 1225 return false; 1226 1227 /* 1228 * We want to check if the next extent can be merged with the current 1229 * one, which can be an extent created in a past generation, so we pass 1230 * a minimum generation of 0 to defrag_lookup_extent(). 1231 */ 1232 next = defrag_lookup_extent(inode, em->start + em->len, 0, locked); 1233 /* No more em or hole */ 1234 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1235 goto out; 1236 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) 1237 goto out; 1238 /* 1239 * If the next extent is at its max capacity, defragging current extent 1240 * makes no sense, as the total number of extents won't change. 1241 */ 1242 if (next->len >= get_extent_max_capacity(em)) 1243 goto out; 1244 ret = true; 1245 out: 1246 free_extent_map(next); 1247 return ret; 1248 } 1249 1250 /* 1251 * Prepare one page to be defragged. 1252 * 1253 * This will ensure: 1254 * 1255 * - Returned page is locked and has been set up properly. 1256 * - No ordered extent exists in the page. 1257 * - The page is uptodate. 1258 * 1259 * NOTE: Caller should also wait for page writeback after the cluster is 1260 * prepared, here we don't do writeback wait for each page. 1261 */ 1262 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1263 pgoff_t index) 1264 { 1265 struct address_space *mapping = inode->vfs_inode.i_mapping; 1266 gfp_t mask = btrfs_alloc_write_mask(mapping); 1267 u64 page_start = (u64)index << PAGE_SHIFT; 1268 u64 page_end = page_start + PAGE_SIZE - 1; 1269 struct extent_state *cached_state = NULL; 1270 struct page *page; 1271 int ret; 1272 1273 again: 1274 page = find_or_create_page(mapping, index, mask); 1275 if (!page) 1276 return ERR_PTR(-ENOMEM); 1277 1278 /* 1279 * Since we can defragment files opened read-only, we can encounter 1280 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1281 * can't do I/O using huge pages yet, so return an error for now. 1282 * Filesystem transparent huge pages are typically only used for 1283 * executables that explicitly enable them, so this isn't very 1284 * restrictive. 1285 */ 1286 if (PageCompound(page)) { 1287 unlock_page(page); 1288 put_page(page); 1289 return ERR_PTR(-ETXTBSY); 1290 } 1291 1292 ret = set_page_extent_mapped(page); 1293 if (ret < 0) { 1294 unlock_page(page); 1295 put_page(page); 1296 return ERR_PTR(ret); 1297 } 1298 1299 /* Wait for any existing ordered extent in the range */ 1300 while (1) { 1301 struct btrfs_ordered_extent *ordered; 1302 1303 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1304 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1305 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1306 &cached_state); 1307 if (!ordered) 1308 break; 1309 1310 unlock_page(page); 1311 btrfs_start_ordered_extent(ordered, 1); 1312 btrfs_put_ordered_extent(ordered); 1313 lock_page(page); 1314 /* 1315 * We unlocked the page above, so we need check if it was 1316 * released or not. 1317 */ 1318 if (page->mapping != mapping || !PagePrivate(page)) { 1319 unlock_page(page); 1320 put_page(page); 1321 goto again; 1322 } 1323 } 1324 1325 /* 1326 * Now the page range has no ordered extent any more. Read the page to 1327 * make it uptodate. 1328 */ 1329 if (!PageUptodate(page)) { 1330 btrfs_readpage(NULL, page); 1331 lock_page(page); 1332 if (page->mapping != mapping || !PagePrivate(page)) { 1333 unlock_page(page); 1334 put_page(page); 1335 goto again; 1336 } 1337 if (!PageUptodate(page)) { 1338 unlock_page(page); 1339 put_page(page); 1340 return ERR_PTR(-EIO); 1341 } 1342 } 1343 return page; 1344 } 1345 1346 struct defrag_target_range { 1347 struct list_head list; 1348 u64 start; 1349 u64 len; 1350 }; 1351 1352 /* 1353 * Collect all valid target extents. 1354 * 1355 * @start: file offset to lookup 1356 * @len: length to lookup 1357 * @extent_thresh: file extent size threshold, any extent size >= this value 1358 * will be ignored 1359 * @newer_than: only defrag extents newer than this value 1360 * @do_compress: whether the defrag is doing compression 1361 * if true, @extent_thresh will be ignored and all regular 1362 * file extents meeting @newer_than will be targets. 1363 * @locked: if the range has already held extent lock 1364 * @target_list: list of targets file extents 1365 */ 1366 static int defrag_collect_targets(struct btrfs_inode *inode, 1367 u64 start, u64 len, u32 extent_thresh, 1368 u64 newer_than, bool do_compress, 1369 bool locked, struct list_head *target_list, 1370 u64 *last_scanned_ret) 1371 { 1372 bool last_is_target = false; 1373 u64 cur = start; 1374 int ret = 0; 1375 1376 while (cur < start + len) { 1377 struct extent_map *em; 1378 struct defrag_target_range *new; 1379 bool next_mergeable = true; 1380 u64 range_len; 1381 1382 last_is_target = false; 1383 em = defrag_lookup_extent(&inode->vfs_inode, cur, 1384 newer_than, locked); 1385 if (!em) 1386 break; 1387 1388 /* Skip hole/inline/preallocated extents */ 1389 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1390 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1391 goto next; 1392 1393 /* Skip older extent */ 1394 if (em->generation < newer_than) 1395 goto next; 1396 1397 /* This em is under writeback, no need to defrag */ 1398 if (em->generation == (u64)-1) 1399 goto next; 1400 1401 /* 1402 * Our start offset might be in the middle of an existing extent 1403 * map, so take that into account. 1404 */ 1405 range_len = em->len - (cur - em->start); 1406 /* 1407 * If this range of the extent map is already flagged for delalloc, 1408 * skip it, because: 1409 * 1410 * 1) We could deadlock later, when trying to reserve space for 1411 * delalloc, because in case we can't immediately reserve space 1412 * the flusher can start delalloc and wait for the respective 1413 * ordered extents to complete. The deadlock would happen 1414 * because we do the space reservation while holding the range 1415 * locked, and starting writeback, or finishing an ordered 1416 * extent, requires locking the range; 1417 * 1418 * 2) If there's delalloc there, it means there's dirty pages for 1419 * which writeback has not started yet (we clean the delalloc 1420 * flag when starting writeback and after creating an ordered 1421 * extent). If we mark pages in an adjacent range for defrag, 1422 * then we will have a larger contiguous range for delalloc, 1423 * very likely resulting in a larger extent after writeback is 1424 * triggered (except in a case of free space fragmentation). 1425 */ 1426 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1427 EXTENT_DELALLOC, 0, NULL)) 1428 goto next; 1429 1430 /* 1431 * For do_compress case, we want to compress all valid file 1432 * extents, thus no @extent_thresh or mergeable check. 1433 */ 1434 if (do_compress) 1435 goto add; 1436 1437 /* Skip too large extent */ 1438 if (range_len >= extent_thresh) 1439 goto next; 1440 1441 /* 1442 * Skip extents already at its max capacity, this is mostly for 1443 * compressed extents, which max cap is only 128K. 1444 */ 1445 if (em->len >= get_extent_max_capacity(em)) 1446 goto next; 1447 1448 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1449 locked); 1450 if (!next_mergeable) { 1451 struct defrag_target_range *last; 1452 1453 /* Empty target list, no way to merge with last entry */ 1454 if (list_empty(target_list)) 1455 goto next; 1456 last = list_entry(target_list->prev, 1457 struct defrag_target_range, list); 1458 /* Not mergeable with last entry */ 1459 if (last->start + last->len != cur) 1460 goto next; 1461 1462 /* Mergeable, fall through to add it to @target_list. */ 1463 } 1464 1465 add: 1466 last_is_target = true; 1467 range_len = min(extent_map_end(em), start + len) - cur; 1468 /* 1469 * This one is a good target, check if it can be merged into 1470 * last range of the target list. 1471 */ 1472 if (!list_empty(target_list)) { 1473 struct defrag_target_range *last; 1474 1475 last = list_entry(target_list->prev, 1476 struct defrag_target_range, list); 1477 ASSERT(last->start + last->len <= cur); 1478 if (last->start + last->len == cur) { 1479 /* Mergeable, enlarge the last entry */ 1480 last->len += range_len; 1481 goto next; 1482 } 1483 /* Fall through to allocate a new entry */ 1484 } 1485 1486 /* Allocate new defrag_target_range */ 1487 new = kmalloc(sizeof(*new), GFP_NOFS); 1488 if (!new) { 1489 free_extent_map(em); 1490 ret = -ENOMEM; 1491 break; 1492 } 1493 new->start = cur; 1494 new->len = range_len; 1495 list_add_tail(&new->list, target_list); 1496 1497 next: 1498 cur = extent_map_end(em); 1499 free_extent_map(em); 1500 } 1501 if (ret < 0) { 1502 struct defrag_target_range *entry; 1503 struct defrag_target_range *tmp; 1504 1505 list_for_each_entry_safe(entry, tmp, target_list, list) { 1506 list_del_init(&entry->list); 1507 kfree(entry); 1508 } 1509 } 1510 if (!ret && last_scanned_ret) { 1511 /* 1512 * If the last extent is not a target, the caller can skip to 1513 * the end of that extent. 1514 * Otherwise, we can only go the end of the specified range. 1515 */ 1516 if (!last_is_target) 1517 *last_scanned_ret = max(cur, *last_scanned_ret); 1518 else 1519 *last_scanned_ret = max(start + len, *last_scanned_ret); 1520 } 1521 return ret; 1522 } 1523 1524 #define CLUSTER_SIZE (SZ_256K) 1525 1526 /* 1527 * Defrag one contiguous target range. 1528 * 1529 * @inode: target inode 1530 * @target: target range to defrag 1531 * @pages: locked pages covering the defrag range 1532 * @nr_pages: number of locked pages 1533 * 1534 * Caller should ensure: 1535 * 1536 * - Pages are prepared 1537 * Pages should be locked, no ordered extent in the pages range, 1538 * no writeback. 1539 * 1540 * - Extent bits are locked 1541 */ 1542 static int defrag_one_locked_target(struct btrfs_inode *inode, 1543 struct defrag_target_range *target, 1544 struct page **pages, int nr_pages, 1545 struct extent_state **cached_state) 1546 { 1547 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1548 struct extent_changeset *data_reserved = NULL; 1549 const u64 start = target->start; 1550 const u64 len = target->len; 1551 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1552 unsigned long start_index = start >> PAGE_SHIFT; 1553 unsigned long first_index = page_index(pages[0]); 1554 int ret = 0; 1555 int i; 1556 1557 ASSERT(last_index - first_index + 1 <= nr_pages); 1558 1559 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1560 if (ret < 0) 1561 return ret; 1562 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1563 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1564 EXTENT_DEFRAG, 0, 0, cached_state); 1565 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1566 1567 /* Update the page status */ 1568 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1569 ClearPageChecked(pages[i]); 1570 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1571 } 1572 btrfs_delalloc_release_extents(inode, len); 1573 extent_changeset_free(data_reserved); 1574 1575 return ret; 1576 } 1577 1578 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1579 u32 extent_thresh, u64 newer_than, bool do_compress, 1580 u64 *last_scanned_ret) 1581 { 1582 struct extent_state *cached_state = NULL; 1583 struct defrag_target_range *entry; 1584 struct defrag_target_range *tmp; 1585 LIST_HEAD(target_list); 1586 struct page **pages; 1587 const u32 sectorsize = inode->root->fs_info->sectorsize; 1588 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1589 u64 start_index = start >> PAGE_SHIFT; 1590 unsigned int nr_pages = last_index - start_index + 1; 1591 int ret = 0; 1592 int i; 1593 1594 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1595 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1596 1597 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1598 if (!pages) 1599 return -ENOMEM; 1600 1601 /* Prepare all pages */ 1602 for (i = 0; i < nr_pages; i++) { 1603 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1604 if (IS_ERR(pages[i])) { 1605 ret = PTR_ERR(pages[i]); 1606 pages[i] = NULL; 1607 goto free_pages; 1608 } 1609 } 1610 for (i = 0; i < nr_pages; i++) 1611 wait_on_page_writeback(pages[i]); 1612 1613 /* Lock the pages range */ 1614 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1615 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1616 &cached_state); 1617 /* 1618 * Now we have a consistent view about the extent map, re-check 1619 * which range really needs to be defragged. 1620 * 1621 * And this time we have extent locked already, pass @locked = true 1622 * so that we won't relock the extent range and cause deadlock. 1623 */ 1624 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1625 newer_than, do_compress, true, 1626 &target_list, last_scanned_ret); 1627 if (ret < 0) 1628 goto unlock_extent; 1629 1630 list_for_each_entry(entry, &target_list, list) { 1631 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1632 &cached_state); 1633 if (ret < 0) 1634 break; 1635 } 1636 1637 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1638 list_del_init(&entry->list); 1639 kfree(entry); 1640 } 1641 unlock_extent: 1642 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1643 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1644 &cached_state); 1645 free_pages: 1646 for (i = 0; i < nr_pages; i++) { 1647 if (pages[i]) { 1648 unlock_page(pages[i]); 1649 put_page(pages[i]); 1650 } 1651 } 1652 kfree(pages); 1653 return ret; 1654 } 1655 1656 static int defrag_one_cluster(struct btrfs_inode *inode, 1657 struct file_ra_state *ra, 1658 u64 start, u32 len, u32 extent_thresh, 1659 u64 newer_than, bool do_compress, 1660 unsigned long *sectors_defragged, 1661 unsigned long max_sectors, 1662 u64 *last_scanned_ret) 1663 { 1664 const u32 sectorsize = inode->root->fs_info->sectorsize; 1665 struct defrag_target_range *entry; 1666 struct defrag_target_range *tmp; 1667 LIST_HEAD(target_list); 1668 int ret; 1669 1670 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1671 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1672 newer_than, do_compress, false, 1673 &target_list, NULL); 1674 if (ret < 0) 1675 goto out; 1676 1677 list_for_each_entry(entry, &target_list, list) { 1678 u32 range_len = entry->len; 1679 1680 /* Reached or beyond the limit */ 1681 if (max_sectors && *sectors_defragged >= max_sectors) { 1682 ret = 1; 1683 break; 1684 } 1685 1686 if (max_sectors) 1687 range_len = min_t(u32, range_len, 1688 (max_sectors - *sectors_defragged) * sectorsize); 1689 1690 /* 1691 * If defrag_one_range() has updated last_scanned_ret, 1692 * our range may already be invalid (e.g. hole punched). 1693 * Skip if our range is before last_scanned_ret, as there is 1694 * no need to defrag the range anymore. 1695 */ 1696 if (entry->start + range_len <= *last_scanned_ret) 1697 continue; 1698 1699 if (ra) 1700 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1701 ra, NULL, entry->start >> PAGE_SHIFT, 1702 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1703 (entry->start >> PAGE_SHIFT) + 1); 1704 /* 1705 * Here we may not defrag any range if holes are punched before 1706 * we locked the pages. 1707 * But that's fine, it only affects the @sectors_defragged 1708 * accounting. 1709 */ 1710 ret = defrag_one_range(inode, entry->start, range_len, 1711 extent_thresh, newer_than, do_compress, 1712 last_scanned_ret); 1713 if (ret < 0) 1714 break; 1715 *sectors_defragged += range_len >> 1716 inode->root->fs_info->sectorsize_bits; 1717 } 1718 out: 1719 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1720 list_del_init(&entry->list); 1721 kfree(entry); 1722 } 1723 if (ret >= 0) 1724 *last_scanned_ret = max(*last_scanned_ret, start + len); 1725 return ret; 1726 } 1727 1728 /* 1729 * Entry point to file defragmentation. 1730 * 1731 * @inode: inode to be defragged 1732 * @ra: readahead state (can be NUL) 1733 * @range: defrag options including range and flags 1734 * @newer_than: minimum transid to defrag 1735 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1736 * will be defragged. 1737 * 1738 * Return <0 for error. 1739 * Return >=0 for the number of sectors defragged, and range->start will be updated 1740 * to indicate the file offset where next defrag should be started at. 1741 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1742 * defragging all the range). 1743 */ 1744 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1745 struct btrfs_ioctl_defrag_range_args *range, 1746 u64 newer_than, unsigned long max_to_defrag) 1747 { 1748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1749 unsigned long sectors_defragged = 0; 1750 u64 isize = i_size_read(inode); 1751 u64 cur; 1752 u64 last_byte; 1753 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1754 bool ra_allocated = false; 1755 int compress_type = BTRFS_COMPRESS_ZLIB; 1756 int ret = 0; 1757 u32 extent_thresh = range->extent_thresh; 1758 pgoff_t start_index; 1759 1760 if (isize == 0) 1761 return 0; 1762 1763 if (range->start >= isize) 1764 return -EINVAL; 1765 1766 if (do_compress) { 1767 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1768 return -EINVAL; 1769 if (range->compress_type) 1770 compress_type = range->compress_type; 1771 } 1772 1773 if (extent_thresh == 0) 1774 extent_thresh = SZ_256K; 1775 1776 if (range->start + range->len > range->start) { 1777 /* Got a specific range */ 1778 last_byte = min(isize, range->start + range->len); 1779 } else { 1780 /* Defrag until file end */ 1781 last_byte = isize; 1782 } 1783 1784 /* Align the range */ 1785 cur = round_down(range->start, fs_info->sectorsize); 1786 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1787 1788 /* 1789 * If we were not given a ra, allocate a readahead context. As 1790 * readahead is just an optimization, defrag will work without it so 1791 * we don't error out. 1792 */ 1793 if (!ra) { 1794 ra_allocated = true; 1795 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1796 if (ra) 1797 file_ra_state_init(ra, inode->i_mapping); 1798 } 1799 1800 /* 1801 * Make writeback start from the beginning of the range, so that the 1802 * defrag range can be written sequentially. 1803 */ 1804 start_index = cur >> PAGE_SHIFT; 1805 if (start_index < inode->i_mapping->writeback_index) 1806 inode->i_mapping->writeback_index = start_index; 1807 1808 while (cur < last_byte) { 1809 const unsigned long prev_sectors_defragged = sectors_defragged; 1810 u64 last_scanned = cur; 1811 u64 cluster_end; 1812 1813 /* The cluster size 256K should always be page aligned */ 1814 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1815 1816 if (btrfs_defrag_cancelled(fs_info)) { 1817 ret = -EAGAIN; 1818 break; 1819 } 1820 1821 /* We want the cluster end at page boundary when possible */ 1822 cluster_end = (((cur >> PAGE_SHIFT) + 1823 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1824 cluster_end = min(cluster_end, last_byte); 1825 1826 btrfs_inode_lock(inode, 0); 1827 if (IS_SWAPFILE(inode)) { 1828 ret = -ETXTBSY; 1829 btrfs_inode_unlock(inode, 0); 1830 break; 1831 } 1832 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1833 btrfs_inode_unlock(inode, 0); 1834 break; 1835 } 1836 if (do_compress) 1837 BTRFS_I(inode)->defrag_compress = compress_type; 1838 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1839 cluster_end + 1 - cur, extent_thresh, 1840 newer_than, do_compress, §ors_defragged, 1841 max_to_defrag, &last_scanned); 1842 1843 if (sectors_defragged > prev_sectors_defragged) 1844 balance_dirty_pages_ratelimited(inode->i_mapping); 1845 1846 btrfs_inode_unlock(inode, 0); 1847 if (ret < 0) 1848 break; 1849 cur = max(cluster_end + 1, last_scanned); 1850 if (ret > 0) { 1851 ret = 0; 1852 break; 1853 } 1854 cond_resched(); 1855 } 1856 1857 if (ra_allocated) 1858 kfree(ra); 1859 /* 1860 * Update range.start for autodefrag, this will indicate where to start 1861 * in next run. 1862 */ 1863 range->start = cur; 1864 if (sectors_defragged) { 1865 /* 1866 * We have defragged some sectors, for compression case they 1867 * need to be written back immediately. 1868 */ 1869 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1870 filemap_flush(inode->i_mapping); 1871 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1872 &BTRFS_I(inode)->runtime_flags)) 1873 filemap_flush(inode->i_mapping); 1874 } 1875 if (range->compress_type == BTRFS_COMPRESS_LZO) 1876 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1877 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1878 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1879 ret = sectors_defragged; 1880 } 1881 if (do_compress) { 1882 btrfs_inode_lock(inode, 0); 1883 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1884 btrfs_inode_unlock(inode, 0); 1885 } 1886 return ret; 1887 } 1888 1889 /* 1890 * Try to start exclusive operation @type or cancel it if it's running. 1891 * 1892 * Return: 1893 * 0 - normal mode, newly claimed op started 1894 * >0 - normal mode, something else is running, 1895 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1896 * ECANCELED - cancel mode, successful cancel 1897 * ENOTCONN - cancel mode, operation not running anymore 1898 */ 1899 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1900 enum btrfs_exclusive_operation type, bool cancel) 1901 { 1902 if (!cancel) { 1903 /* Start normal op */ 1904 if (!btrfs_exclop_start(fs_info, type)) 1905 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1906 /* Exclusive operation is now claimed */ 1907 return 0; 1908 } 1909 1910 /* Cancel running op */ 1911 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1912 /* 1913 * This blocks any exclop finish from setting it to NONE, so we 1914 * request cancellation. Either it runs and we will wait for it, 1915 * or it has finished and no waiting will happen. 1916 */ 1917 atomic_inc(&fs_info->reloc_cancel_req); 1918 btrfs_exclop_start_unlock(fs_info); 1919 1920 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1921 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1922 TASK_INTERRUPTIBLE); 1923 1924 return -ECANCELED; 1925 } 1926 1927 /* Something else is running or none */ 1928 return -ENOTCONN; 1929 } 1930 1931 static noinline int btrfs_ioctl_resize(struct file *file, 1932 void __user *arg) 1933 { 1934 BTRFS_DEV_LOOKUP_ARGS(args); 1935 struct inode *inode = file_inode(file); 1936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1937 u64 new_size; 1938 u64 old_size; 1939 u64 devid = 1; 1940 struct btrfs_root *root = BTRFS_I(inode)->root; 1941 struct btrfs_ioctl_vol_args *vol_args; 1942 struct btrfs_trans_handle *trans; 1943 struct btrfs_device *device = NULL; 1944 char *sizestr; 1945 char *retptr; 1946 char *devstr = NULL; 1947 int ret = 0; 1948 int mod = 0; 1949 bool cancel; 1950 1951 if (!capable(CAP_SYS_ADMIN)) 1952 return -EPERM; 1953 1954 ret = mnt_want_write_file(file); 1955 if (ret) 1956 return ret; 1957 1958 /* 1959 * Read the arguments before checking exclusivity to be able to 1960 * distinguish regular resize and cancel 1961 */ 1962 vol_args = memdup_user(arg, sizeof(*vol_args)); 1963 if (IS_ERR(vol_args)) { 1964 ret = PTR_ERR(vol_args); 1965 goto out_drop; 1966 } 1967 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1968 sizestr = vol_args->name; 1969 cancel = (strcmp("cancel", sizestr) == 0); 1970 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1971 if (ret) 1972 goto out_free; 1973 /* Exclusive operation is now claimed */ 1974 1975 devstr = strchr(sizestr, ':'); 1976 if (devstr) { 1977 sizestr = devstr + 1; 1978 *devstr = '\0'; 1979 devstr = vol_args->name; 1980 ret = kstrtoull(devstr, 10, &devid); 1981 if (ret) 1982 goto out_finish; 1983 if (!devid) { 1984 ret = -EINVAL; 1985 goto out_finish; 1986 } 1987 btrfs_info(fs_info, "resizing devid %llu", devid); 1988 } 1989 1990 args.devid = devid; 1991 device = btrfs_find_device(fs_info->fs_devices, &args); 1992 if (!device) { 1993 btrfs_info(fs_info, "resizer unable to find device %llu", 1994 devid); 1995 ret = -ENODEV; 1996 goto out_finish; 1997 } 1998 1999 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2000 btrfs_info(fs_info, 2001 "resizer unable to apply on readonly device %llu", 2002 devid); 2003 ret = -EPERM; 2004 goto out_finish; 2005 } 2006 2007 if (!strcmp(sizestr, "max")) 2008 new_size = bdev_nr_bytes(device->bdev); 2009 else { 2010 if (sizestr[0] == '-') { 2011 mod = -1; 2012 sizestr++; 2013 } else if (sizestr[0] == '+') { 2014 mod = 1; 2015 sizestr++; 2016 } 2017 new_size = memparse(sizestr, &retptr); 2018 if (*retptr != '\0' || new_size == 0) { 2019 ret = -EINVAL; 2020 goto out_finish; 2021 } 2022 } 2023 2024 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2025 ret = -EPERM; 2026 goto out_finish; 2027 } 2028 2029 old_size = btrfs_device_get_total_bytes(device); 2030 2031 if (mod < 0) { 2032 if (new_size > old_size) { 2033 ret = -EINVAL; 2034 goto out_finish; 2035 } 2036 new_size = old_size - new_size; 2037 } else if (mod > 0) { 2038 if (new_size > ULLONG_MAX - old_size) { 2039 ret = -ERANGE; 2040 goto out_finish; 2041 } 2042 new_size = old_size + new_size; 2043 } 2044 2045 if (new_size < SZ_256M) { 2046 ret = -EINVAL; 2047 goto out_finish; 2048 } 2049 if (new_size > bdev_nr_bytes(device->bdev)) { 2050 ret = -EFBIG; 2051 goto out_finish; 2052 } 2053 2054 new_size = round_down(new_size, fs_info->sectorsize); 2055 2056 if (new_size > old_size) { 2057 trans = btrfs_start_transaction(root, 0); 2058 if (IS_ERR(trans)) { 2059 ret = PTR_ERR(trans); 2060 goto out_finish; 2061 } 2062 ret = btrfs_grow_device(trans, device, new_size); 2063 btrfs_commit_transaction(trans); 2064 } else if (new_size < old_size) { 2065 ret = btrfs_shrink_device(device, new_size); 2066 } /* equal, nothing need to do */ 2067 2068 if (ret == 0 && new_size != old_size) 2069 btrfs_info_in_rcu(fs_info, 2070 "resize device %s (devid %llu) from %llu to %llu", 2071 rcu_str_deref(device->name), device->devid, 2072 old_size, new_size); 2073 out_finish: 2074 btrfs_exclop_finish(fs_info); 2075 out_free: 2076 kfree(vol_args); 2077 out_drop: 2078 mnt_drop_write_file(file); 2079 return ret; 2080 } 2081 2082 static noinline int __btrfs_ioctl_snap_create(struct file *file, 2083 struct user_namespace *mnt_userns, 2084 const char *name, unsigned long fd, int subvol, 2085 bool readonly, 2086 struct btrfs_qgroup_inherit *inherit) 2087 { 2088 int namelen; 2089 int ret = 0; 2090 2091 if (!S_ISDIR(file_inode(file)->i_mode)) 2092 return -ENOTDIR; 2093 2094 ret = mnt_want_write_file(file); 2095 if (ret) 2096 goto out; 2097 2098 namelen = strlen(name); 2099 if (strchr(name, '/')) { 2100 ret = -EINVAL; 2101 goto out_drop_write; 2102 } 2103 2104 if (name[0] == '.' && 2105 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 2106 ret = -EEXIST; 2107 goto out_drop_write; 2108 } 2109 2110 if (subvol) { 2111 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 2112 namelen, NULL, readonly, inherit); 2113 } else { 2114 struct fd src = fdget(fd); 2115 struct inode *src_inode; 2116 if (!src.file) { 2117 ret = -EINVAL; 2118 goto out_drop_write; 2119 } 2120 2121 src_inode = file_inode(src.file); 2122 if (src_inode->i_sb != file_inode(file)->i_sb) { 2123 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 2124 "Snapshot src from another FS"); 2125 ret = -EXDEV; 2126 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 2127 /* 2128 * Subvolume creation is not restricted, but snapshots 2129 * are limited to own subvolumes only 2130 */ 2131 ret = -EPERM; 2132 } else { 2133 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 2134 name, namelen, 2135 BTRFS_I(src_inode)->root, 2136 readonly, inherit); 2137 } 2138 fdput(src); 2139 } 2140 out_drop_write: 2141 mnt_drop_write_file(file); 2142 out: 2143 return ret; 2144 } 2145 2146 static noinline int btrfs_ioctl_snap_create(struct file *file, 2147 void __user *arg, int subvol) 2148 { 2149 struct btrfs_ioctl_vol_args *vol_args; 2150 int ret; 2151 2152 if (!S_ISDIR(file_inode(file)->i_mode)) 2153 return -ENOTDIR; 2154 2155 vol_args = memdup_user(arg, sizeof(*vol_args)); 2156 if (IS_ERR(vol_args)) 2157 return PTR_ERR(vol_args); 2158 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2159 2160 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2161 vol_args->name, vol_args->fd, subvol, 2162 false, NULL); 2163 2164 kfree(vol_args); 2165 return ret; 2166 } 2167 2168 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 2169 void __user *arg, int subvol) 2170 { 2171 struct btrfs_ioctl_vol_args_v2 *vol_args; 2172 int ret; 2173 bool readonly = false; 2174 struct btrfs_qgroup_inherit *inherit = NULL; 2175 2176 if (!S_ISDIR(file_inode(file)->i_mode)) 2177 return -ENOTDIR; 2178 2179 vol_args = memdup_user(arg, sizeof(*vol_args)); 2180 if (IS_ERR(vol_args)) 2181 return PTR_ERR(vol_args); 2182 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2183 2184 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 2185 ret = -EOPNOTSUPP; 2186 goto free_args; 2187 } 2188 2189 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 2190 readonly = true; 2191 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 2192 u64 nums; 2193 2194 if (vol_args->size < sizeof(*inherit) || 2195 vol_args->size > PAGE_SIZE) { 2196 ret = -EINVAL; 2197 goto free_args; 2198 } 2199 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 2200 if (IS_ERR(inherit)) { 2201 ret = PTR_ERR(inherit); 2202 goto free_args; 2203 } 2204 2205 if (inherit->num_qgroups > PAGE_SIZE || 2206 inherit->num_ref_copies > PAGE_SIZE || 2207 inherit->num_excl_copies > PAGE_SIZE) { 2208 ret = -EINVAL; 2209 goto free_inherit; 2210 } 2211 2212 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2213 2 * inherit->num_excl_copies; 2214 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 2215 ret = -EINVAL; 2216 goto free_inherit; 2217 } 2218 } 2219 2220 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2221 vol_args->name, vol_args->fd, subvol, 2222 readonly, inherit); 2223 if (ret) 2224 goto free_inherit; 2225 free_inherit: 2226 kfree(inherit); 2227 free_args: 2228 kfree(vol_args); 2229 return ret; 2230 } 2231 2232 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 2233 void __user *arg) 2234 { 2235 struct inode *inode = file_inode(file); 2236 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2237 struct btrfs_root *root = BTRFS_I(inode)->root; 2238 int ret = 0; 2239 u64 flags = 0; 2240 2241 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2242 return -EINVAL; 2243 2244 down_read(&fs_info->subvol_sem); 2245 if (btrfs_root_readonly(root)) 2246 flags |= BTRFS_SUBVOL_RDONLY; 2247 up_read(&fs_info->subvol_sem); 2248 2249 if (copy_to_user(arg, &flags, sizeof(flags))) 2250 ret = -EFAULT; 2251 2252 return ret; 2253 } 2254 2255 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2256 void __user *arg) 2257 { 2258 struct inode *inode = file_inode(file); 2259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2260 struct btrfs_root *root = BTRFS_I(inode)->root; 2261 struct btrfs_trans_handle *trans; 2262 u64 root_flags; 2263 u64 flags; 2264 int ret = 0; 2265 2266 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2267 return -EPERM; 2268 2269 ret = mnt_want_write_file(file); 2270 if (ret) 2271 goto out; 2272 2273 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2274 ret = -EINVAL; 2275 goto out_drop_write; 2276 } 2277 2278 if (copy_from_user(&flags, arg, sizeof(flags))) { 2279 ret = -EFAULT; 2280 goto out_drop_write; 2281 } 2282 2283 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2284 ret = -EOPNOTSUPP; 2285 goto out_drop_write; 2286 } 2287 2288 down_write(&fs_info->subvol_sem); 2289 2290 /* nothing to do */ 2291 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2292 goto out_drop_sem; 2293 2294 root_flags = btrfs_root_flags(&root->root_item); 2295 if (flags & BTRFS_SUBVOL_RDONLY) { 2296 btrfs_set_root_flags(&root->root_item, 2297 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2298 } else { 2299 /* 2300 * Block RO -> RW transition if this subvolume is involved in 2301 * send 2302 */ 2303 spin_lock(&root->root_item_lock); 2304 if (root->send_in_progress == 0) { 2305 btrfs_set_root_flags(&root->root_item, 2306 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2307 spin_unlock(&root->root_item_lock); 2308 } else { 2309 spin_unlock(&root->root_item_lock); 2310 btrfs_warn(fs_info, 2311 "Attempt to set subvolume %llu read-write during send", 2312 root->root_key.objectid); 2313 ret = -EPERM; 2314 goto out_drop_sem; 2315 } 2316 } 2317 2318 trans = btrfs_start_transaction(root, 1); 2319 if (IS_ERR(trans)) { 2320 ret = PTR_ERR(trans); 2321 goto out_reset; 2322 } 2323 2324 ret = btrfs_update_root(trans, fs_info->tree_root, 2325 &root->root_key, &root->root_item); 2326 if (ret < 0) { 2327 btrfs_end_transaction(trans); 2328 goto out_reset; 2329 } 2330 2331 ret = btrfs_commit_transaction(trans); 2332 2333 out_reset: 2334 if (ret) 2335 btrfs_set_root_flags(&root->root_item, root_flags); 2336 out_drop_sem: 2337 up_write(&fs_info->subvol_sem); 2338 out_drop_write: 2339 mnt_drop_write_file(file); 2340 out: 2341 return ret; 2342 } 2343 2344 static noinline int key_in_sk(struct btrfs_key *key, 2345 struct btrfs_ioctl_search_key *sk) 2346 { 2347 struct btrfs_key test; 2348 int ret; 2349 2350 test.objectid = sk->min_objectid; 2351 test.type = sk->min_type; 2352 test.offset = sk->min_offset; 2353 2354 ret = btrfs_comp_cpu_keys(key, &test); 2355 if (ret < 0) 2356 return 0; 2357 2358 test.objectid = sk->max_objectid; 2359 test.type = sk->max_type; 2360 test.offset = sk->max_offset; 2361 2362 ret = btrfs_comp_cpu_keys(key, &test); 2363 if (ret > 0) 2364 return 0; 2365 return 1; 2366 } 2367 2368 static noinline int copy_to_sk(struct btrfs_path *path, 2369 struct btrfs_key *key, 2370 struct btrfs_ioctl_search_key *sk, 2371 size_t *buf_size, 2372 char __user *ubuf, 2373 unsigned long *sk_offset, 2374 int *num_found) 2375 { 2376 u64 found_transid; 2377 struct extent_buffer *leaf; 2378 struct btrfs_ioctl_search_header sh; 2379 struct btrfs_key test; 2380 unsigned long item_off; 2381 unsigned long item_len; 2382 int nritems; 2383 int i; 2384 int slot; 2385 int ret = 0; 2386 2387 leaf = path->nodes[0]; 2388 slot = path->slots[0]; 2389 nritems = btrfs_header_nritems(leaf); 2390 2391 if (btrfs_header_generation(leaf) > sk->max_transid) { 2392 i = nritems; 2393 goto advance_key; 2394 } 2395 found_transid = btrfs_header_generation(leaf); 2396 2397 for (i = slot; i < nritems; i++) { 2398 item_off = btrfs_item_ptr_offset(leaf, i); 2399 item_len = btrfs_item_size(leaf, i); 2400 2401 btrfs_item_key_to_cpu(leaf, key, i); 2402 if (!key_in_sk(key, sk)) 2403 continue; 2404 2405 if (sizeof(sh) + item_len > *buf_size) { 2406 if (*num_found) { 2407 ret = 1; 2408 goto out; 2409 } 2410 2411 /* 2412 * return one empty item back for v1, which does not 2413 * handle -EOVERFLOW 2414 */ 2415 2416 *buf_size = sizeof(sh) + item_len; 2417 item_len = 0; 2418 ret = -EOVERFLOW; 2419 } 2420 2421 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2422 ret = 1; 2423 goto out; 2424 } 2425 2426 sh.objectid = key->objectid; 2427 sh.offset = key->offset; 2428 sh.type = key->type; 2429 sh.len = item_len; 2430 sh.transid = found_transid; 2431 2432 /* 2433 * Copy search result header. If we fault then loop again so we 2434 * can fault in the pages and -EFAULT there if there's a 2435 * problem. Otherwise we'll fault and then copy the buffer in 2436 * properly this next time through 2437 */ 2438 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2439 ret = 0; 2440 goto out; 2441 } 2442 2443 *sk_offset += sizeof(sh); 2444 2445 if (item_len) { 2446 char __user *up = ubuf + *sk_offset; 2447 /* 2448 * Copy the item, same behavior as above, but reset the 2449 * * sk_offset so we copy the full thing again. 2450 */ 2451 if (read_extent_buffer_to_user_nofault(leaf, up, 2452 item_off, item_len)) { 2453 ret = 0; 2454 *sk_offset -= sizeof(sh); 2455 goto out; 2456 } 2457 2458 *sk_offset += item_len; 2459 } 2460 (*num_found)++; 2461 2462 if (ret) /* -EOVERFLOW from above */ 2463 goto out; 2464 2465 if (*num_found >= sk->nr_items) { 2466 ret = 1; 2467 goto out; 2468 } 2469 } 2470 advance_key: 2471 ret = 0; 2472 test.objectid = sk->max_objectid; 2473 test.type = sk->max_type; 2474 test.offset = sk->max_offset; 2475 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2476 ret = 1; 2477 else if (key->offset < (u64)-1) 2478 key->offset++; 2479 else if (key->type < (u8)-1) { 2480 key->offset = 0; 2481 key->type++; 2482 } else if (key->objectid < (u64)-1) { 2483 key->offset = 0; 2484 key->type = 0; 2485 key->objectid++; 2486 } else 2487 ret = 1; 2488 out: 2489 /* 2490 * 0: all items from this leaf copied, continue with next 2491 * 1: * more items can be copied, but unused buffer is too small 2492 * * all items were found 2493 * Either way, it will stops the loop which iterates to the next 2494 * leaf 2495 * -EOVERFLOW: item was to large for buffer 2496 * -EFAULT: could not copy extent buffer back to userspace 2497 */ 2498 return ret; 2499 } 2500 2501 static noinline int search_ioctl(struct inode *inode, 2502 struct btrfs_ioctl_search_key *sk, 2503 size_t *buf_size, 2504 char __user *ubuf) 2505 { 2506 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2507 struct btrfs_root *root; 2508 struct btrfs_key key; 2509 struct btrfs_path *path; 2510 int ret; 2511 int num_found = 0; 2512 unsigned long sk_offset = 0; 2513 2514 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2515 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2516 return -EOVERFLOW; 2517 } 2518 2519 path = btrfs_alloc_path(); 2520 if (!path) 2521 return -ENOMEM; 2522 2523 if (sk->tree_id == 0) { 2524 /* search the root of the inode that was passed */ 2525 root = btrfs_grab_root(BTRFS_I(inode)->root); 2526 } else { 2527 root = btrfs_get_fs_root(info, sk->tree_id, true); 2528 if (IS_ERR(root)) { 2529 btrfs_free_path(path); 2530 return PTR_ERR(root); 2531 } 2532 } 2533 2534 key.objectid = sk->min_objectid; 2535 key.type = sk->min_type; 2536 key.offset = sk->min_offset; 2537 2538 while (1) { 2539 ret = -EFAULT; 2540 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2541 break; 2542 2543 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2544 if (ret != 0) { 2545 if (ret > 0) 2546 ret = 0; 2547 goto err; 2548 } 2549 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2550 &sk_offset, &num_found); 2551 btrfs_release_path(path); 2552 if (ret) 2553 break; 2554 2555 } 2556 if (ret > 0) 2557 ret = 0; 2558 err: 2559 sk->nr_items = num_found; 2560 btrfs_put_root(root); 2561 btrfs_free_path(path); 2562 return ret; 2563 } 2564 2565 static noinline int btrfs_ioctl_tree_search(struct file *file, 2566 void __user *argp) 2567 { 2568 struct btrfs_ioctl_search_args __user *uargs; 2569 struct btrfs_ioctl_search_key sk; 2570 struct inode *inode; 2571 int ret; 2572 size_t buf_size; 2573 2574 if (!capable(CAP_SYS_ADMIN)) 2575 return -EPERM; 2576 2577 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2578 2579 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2580 return -EFAULT; 2581 2582 buf_size = sizeof(uargs->buf); 2583 2584 inode = file_inode(file); 2585 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2586 2587 /* 2588 * In the origin implementation an overflow is handled by returning a 2589 * search header with a len of zero, so reset ret. 2590 */ 2591 if (ret == -EOVERFLOW) 2592 ret = 0; 2593 2594 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2595 ret = -EFAULT; 2596 return ret; 2597 } 2598 2599 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2600 void __user *argp) 2601 { 2602 struct btrfs_ioctl_search_args_v2 __user *uarg; 2603 struct btrfs_ioctl_search_args_v2 args; 2604 struct inode *inode; 2605 int ret; 2606 size_t buf_size; 2607 const size_t buf_limit = SZ_16M; 2608 2609 if (!capable(CAP_SYS_ADMIN)) 2610 return -EPERM; 2611 2612 /* copy search header and buffer size */ 2613 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2614 if (copy_from_user(&args, uarg, sizeof(args))) 2615 return -EFAULT; 2616 2617 buf_size = args.buf_size; 2618 2619 /* limit result size to 16MB */ 2620 if (buf_size > buf_limit) 2621 buf_size = buf_limit; 2622 2623 inode = file_inode(file); 2624 ret = search_ioctl(inode, &args.key, &buf_size, 2625 (char __user *)(&uarg->buf[0])); 2626 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2627 ret = -EFAULT; 2628 else if (ret == -EOVERFLOW && 2629 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2630 ret = -EFAULT; 2631 2632 return ret; 2633 } 2634 2635 /* 2636 * Search INODE_REFs to identify path name of 'dirid' directory 2637 * in a 'tree_id' tree. and sets path name to 'name'. 2638 */ 2639 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2640 u64 tree_id, u64 dirid, char *name) 2641 { 2642 struct btrfs_root *root; 2643 struct btrfs_key key; 2644 char *ptr; 2645 int ret = -1; 2646 int slot; 2647 int len; 2648 int total_len = 0; 2649 struct btrfs_inode_ref *iref; 2650 struct extent_buffer *l; 2651 struct btrfs_path *path; 2652 2653 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2654 name[0]='\0'; 2655 return 0; 2656 } 2657 2658 path = btrfs_alloc_path(); 2659 if (!path) 2660 return -ENOMEM; 2661 2662 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2663 2664 root = btrfs_get_fs_root(info, tree_id, true); 2665 if (IS_ERR(root)) { 2666 ret = PTR_ERR(root); 2667 root = NULL; 2668 goto out; 2669 } 2670 2671 key.objectid = dirid; 2672 key.type = BTRFS_INODE_REF_KEY; 2673 key.offset = (u64)-1; 2674 2675 while (1) { 2676 ret = btrfs_search_backwards(root, &key, path); 2677 if (ret < 0) 2678 goto out; 2679 else if (ret > 0) { 2680 ret = -ENOENT; 2681 goto out; 2682 } 2683 2684 l = path->nodes[0]; 2685 slot = path->slots[0]; 2686 2687 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2688 len = btrfs_inode_ref_name_len(l, iref); 2689 ptr -= len + 1; 2690 total_len += len + 1; 2691 if (ptr < name) { 2692 ret = -ENAMETOOLONG; 2693 goto out; 2694 } 2695 2696 *(ptr + len) = '/'; 2697 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2698 2699 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2700 break; 2701 2702 btrfs_release_path(path); 2703 key.objectid = key.offset; 2704 key.offset = (u64)-1; 2705 dirid = key.objectid; 2706 } 2707 memmove(name, ptr, total_len); 2708 name[total_len] = '\0'; 2709 ret = 0; 2710 out: 2711 btrfs_put_root(root); 2712 btrfs_free_path(path); 2713 return ret; 2714 } 2715 2716 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2717 struct inode *inode, 2718 struct btrfs_ioctl_ino_lookup_user_args *args) 2719 { 2720 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2721 struct super_block *sb = inode->i_sb; 2722 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2723 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2724 u64 dirid = args->dirid; 2725 unsigned long item_off; 2726 unsigned long item_len; 2727 struct btrfs_inode_ref *iref; 2728 struct btrfs_root_ref *rref; 2729 struct btrfs_root *root = NULL; 2730 struct btrfs_path *path; 2731 struct btrfs_key key, key2; 2732 struct extent_buffer *leaf; 2733 struct inode *temp_inode; 2734 char *ptr; 2735 int slot; 2736 int len; 2737 int total_len = 0; 2738 int ret; 2739 2740 path = btrfs_alloc_path(); 2741 if (!path) 2742 return -ENOMEM; 2743 2744 /* 2745 * If the bottom subvolume does not exist directly under upper_limit, 2746 * construct the path in from the bottom up. 2747 */ 2748 if (dirid != upper_limit.objectid) { 2749 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2750 2751 root = btrfs_get_fs_root(fs_info, treeid, true); 2752 if (IS_ERR(root)) { 2753 ret = PTR_ERR(root); 2754 goto out; 2755 } 2756 2757 key.objectid = dirid; 2758 key.type = BTRFS_INODE_REF_KEY; 2759 key.offset = (u64)-1; 2760 while (1) { 2761 ret = btrfs_search_backwards(root, &key, path); 2762 if (ret < 0) 2763 goto out_put; 2764 else if (ret > 0) { 2765 ret = -ENOENT; 2766 goto out_put; 2767 } 2768 2769 leaf = path->nodes[0]; 2770 slot = path->slots[0]; 2771 2772 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2773 len = btrfs_inode_ref_name_len(leaf, iref); 2774 ptr -= len + 1; 2775 total_len += len + 1; 2776 if (ptr < args->path) { 2777 ret = -ENAMETOOLONG; 2778 goto out_put; 2779 } 2780 2781 *(ptr + len) = '/'; 2782 read_extent_buffer(leaf, ptr, 2783 (unsigned long)(iref + 1), len); 2784 2785 /* Check the read+exec permission of this directory */ 2786 ret = btrfs_previous_item(root, path, dirid, 2787 BTRFS_INODE_ITEM_KEY); 2788 if (ret < 0) { 2789 goto out_put; 2790 } else if (ret > 0) { 2791 ret = -ENOENT; 2792 goto out_put; 2793 } 2794 2795 leaf = path->nodes[0]; 2796 slot = path->slots[0]; 2797 btrfs_item_key_to_cpu(leaf, &key2, slot); 2798 if (key2.objectid != dirid) { 2799 ret = -ENOENT; 2800 goto out_put; 2801 } 2802 2803 temp_inode = btrfs_iget(sb, key2.objectid, root); 2804 if (IS_ERR(temp_inode)) { 2805 ret = PTR_ERR(temp_inode); 2806 goto out_put; 2807 } 2808 ret = inode_permission(mnt_userns, temp_inode, 2809 MAY_READ | MAY_EXEC); 2810 iput(temp_inode); 2811 if (ret) { 2812 ret = -EACCES; 2813 goto out_put; 2814 } 2815 2816 if (key.offset == upper_limit.objectid) 2817 break; 2818 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2819 ret = -EACCES; 2820 goto out_put; 2821 } 2822 2823 btrfs_release_path(path); 2824 key.objectid = key.offset; 2825 key.offset = (u64)-1; 2826 dirid = key.objectid; 2827 } 2828 2829 memmove(args->path, ptr, total_len); 2830 args->path[total_len] = '\0'; 2831 btrfs_put_root(root); 2832 root = NULL; 2833 btrfs_release_path(path); 2834 } 2835 2836 /* Get the bottom subvolume's name from ROOT_REF */ 2837 key.objectid = treeid; 2838 key.type = BTRFS_ROOT_REF_KEY; 2839 key.offset = args->treeid; 2840 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2841 if (ret < 0) { 2842 goto out; 2843 } else if (ret > 0) { 2844 ret = -ENOENT; 2845 goto out; 2846 } 2847 2848 leaf = path->nodes[0]; 2849 slot = path->slots[0]; 2850 btrfs_item_key_to_cpu(leaf, &key, slot); 2851 2852 item_off = btrfs_item_ptr_offset(leaf, slot); 2853 item_len = btrfs_item_size(leaf, slot); 2854 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2855 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2856 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2857 ret = -EINVAL; 2858 goto out; 2859 } 2860 2861 /* Copy subvolume's name */ 2862 item_off += sizeof(struct btrfs_root_ref); 2863 item_len -= sizeof(struct btrfs_root_ref); 2864 read_extent_buffer(leaf, args->name, item_off, item_len); 2865 args->name[item_len] = 0; 2866 2867 out_put: 2868 btrfs_put_root(root); 2869 out: 2870 btrfs_free_path(path); 2871 return ret; 2872 } 2873 2874 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2875 void __user *argp) 2876 { 2877 struct btrfs_ioctl_ino_lookup_args *args; 2878 struct inode *inode; 2879 int ret = 0; 2880 2881 args = memdup_user(argp, sizeof(*args)); 2882 if (IS_ERR(args)) 2883 return PTR_ERR(args); 2884 2885 inode = file_inode(file); 2886 2887 /* 2888 * Unprivileged query to obtain the containing subvolume root id. The 2889 * path is reset so it's consistent with btrfs_search_path_in_tree. 2890 */ 2891 if (args->treeid == 0) 2892 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2893 2894 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2895 args->name[0] = 0; 2896 goto out; 2897 } 2898 2899 if (!capable(CAP_SYS_ADMIN)) { 2900 ret = -EPERM; 2901 goto out; 2902 } 2903 2904 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2905 args->treeid, args->objectid, 2906 args->name); 2907 2908 out: 2909 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2910 ret = -EFAULT; 2911 2912 kfree(args); 2913 return ret; 2914 } 2915 2916 /* 2917 * Version of ino_lookup ioctl (unprivileged) 2918 * 2919 * The main differences from ino_lookup ioctl are: 2920 * 2921 * 1. Read + Exec permission will be checked using inode_permission() during 2922 * path construction. -EACCES will be returned in case of failure. 2923 * 2. Path construction will be stopped at the inode number which corresponds 2924 * to the fd with which this ioctl is called. If constructed path does not 2925 * exist under fd's inode, -EACCES will be returned. 2926 * 3. The name of bottom subvolume is also searched and filled. 2927 */ 2928 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2929 { 2930 struct btrfs_ioctl_ino_lookup_user_args *args; 2931 struct inode *inode; 2932 int ret; 2933 2934 args = memdup_user(argp, sizeof(*args)); 2935 if (IS_ERR(args)) 2936 return PTR_ERR(args); 2937 2938 inode = file_inode(file); 2939 2940 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2941 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2942 /* 2943 * The subvolume does not exist under fd with which this is 2944 * called 2945 */ 2946 kfree(args); 2947 return -EACCES; 2948 } 2949 2950 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2951 2952 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2953 ret = -EFAULT; 2954 2955 kfree(args); 2956 return ret; 2957 } 2958 2959 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2960 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2961 { 2962 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2963 struct btrfs_fs_info *fs_info; 2964 struct btrfs_root *root; 2965 struct btrfs_path *path; 2966 struct btrfs_key key; 2967 struct btrfs_root_item *root_item; 2968 struct btrfs_root_ref *rref; 2969 struct extent_buffer *leaf; 2970 unsigned long item_off; 2971 unsigned long item_len; 2972 struct inode *inode; 2973 int slot; 2974 int ret = 0; 2975 2976 path = btrfs_alloc_path(); 2977 if (!path) 2978 return -ENOMEM; 2979 2980 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2981 if (!subvol_info) { 2982 btrfs_free_path(path); 2983 return -ENOMEM; 2984 } 2985 2986 inode = file_inode(file); 2987 fs_info = BTRFS_I(inode)->root->fs_info; 2988 2989 /* Get root_item of inode's subvolume */ 2990 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2991 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2992 if (IS_ERR(root)) { 2993 ret = PTR_ERR(root); 2994 goto out_free; 2995 } 2996 root_item = &root->root_item; 2997 2998 subvol_info->treeid = key.objectid; 2999 3000 subvol_info->generation = btrfs_root_generation(root_item); 3001 subvol_info->flags = btrfs_root_flags(root_item); 3002 3003 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 3004 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 3005 BTRFS_UUID_SIZE); 3006 memcpy(subvol_info->received_uuid, root_item->received_uuid, 3007 BTRFS_UUID_SIZE); 3008 3009 subvol_info->ctransid = btrfs_root_ctransid(root_item); 3010 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 3011 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 3012 3013 subvol_info->otransid = btrfs_root_otransid(root_item); 3014 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 3015 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 3016 3017 subvol_info->stransid = btrfs_root_stransid(root_item); 3018 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 3019 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 3020 3021 subvol_info->rtransid = btrfs_root_rtransid(root_item); 3022 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 3023 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 3024 3025 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 3026 /* Search root tree for ROOT_BACKREF of this subvolume */ 3027 key.type = BTRFS_ROOT_BACKREF_KEY; 3028 key.offset = 0; 3029 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3030 if (ret < 0) { 3031 goto out; 3032 } else if (path->slots[0] >= 3033 btrfs_header_nritems(path->nodes[0])) { 3034 ret = btrfs_next_leaf(fs_info->tree_root, path); 3035 if (ret < 0) { 3036 goto out; 3037 } else if (ret > 0) { 3038 ret = -EUCLEAN; 3039 goto out; 3040 } 3041 } 3042 3043 leaf = path->nodes[0]; 3044 slot = path->slots[0]; 3045 btrfs_item_key_to_cpu(leaf, &key, slot); 3046 if (key.objectid == subvol_info->treeid && 3047 key.type == BTRFS_ROOT_BACKREF_KEY) { 3048 subvol_info->parent_id = key.offset; 3049 3050 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3051 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 3052 3053 item_off = btrfs_item_ptr_offset(leaf, slot) 3054 + sizeof(struct btrfs_root_ref); 3055 item_len = btrfs_item_size(leaf, slot) 3056 - sizeof(struct btrfs_root_ref); 3057 read_extent_buffer(leaf, subvol_info->name, 3058 item_off, item_len); 3059 } else { 3060 ret = -ENOENT; 3061 goto out; 3062 } 3063 } 3064 3065 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 3066 ret = -EFAULT; 3067 3068 out: 3069 btrfs_put_root(root); 3070 out_free: 3071 btrfs_free_path(path); 3072 kfree(subvol_info); 3073 return ret; 3074 } 3075 3076 /* 3077 * Return ROOT_REF information of the subvolume containing this inode 3078 * except the subvolume name. 3079 */ 3080 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 3081 { 3082 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 3083 struct btrfs_root_ref *rref; 3084 struct btrfs_root *root; 3085 struct btrfs_path *path; 3086 struct btrfs_key key; 3087 struct extent_buffer *leaf; 3088 struct inode *inode; 3089 u64 objectid; 3090 int slot; 3091 int ret; 3092 u8 found; 3093 3094 path = btrfs_alloc_path(); 3095 if (!path) 3096 return -ENOMEM; 3097 3098 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 3099 if (IS_ERR(rootrefs)) { 3100 btrfs_free_path(path); 3101 return PTR_ERR(rootrefs); 3102 } 3103 3104 inode = file_inode(file); 3105 root = BTRFS_I(inode)->root->fs_info->tree_root; 3106 objectid = BTRFS_I(inode)->root->root_key.objectid; 3107 3108 key.objectid = objectid; 3109 key.type = BTRFS_ROOT_REF_KEY; 3110 key.offset = rootrefs->min_treeid; 3111 found = 0; 3112 3113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3114 if (ret < 0) { 3115 goto out; 3116 } else if (path->slots[0] >= 3117 btrfs_header_nritems(path->nodes[0])) { 3118 ret = btrfs_next_leaf(root, path); 3119 if (ret < 0) { 3120 goto out; 3121 } else if (ret > 0) { 3122 ret = -EUCLEAN; 3123 goto out; 3124 } 3125 } 3126 while (1) { 3127 leaf = path->nodes[0]; 3128 slot = path->slots[0]; 3129 3130 btrfs_item_key_to_cpu(leaf, &key, slot); 3131 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 3132 ret = 0; 3133 goto out; 3134 } 3135 3136 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 3137 ret = -EOVERFLOW; 3138 goto out; 3139 } 3140 3141 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3142 rootrefs->rootref[found].treeid = key.offset; 3143 rootrefs->rootref[found].dirid = 3144 btrfs_root_ref_dirid(leaf, rref); 3145 found++; 3146 3147 ret = btrfs_next_item(root, path); 3148 if (ret < 0) { 3149 goto out; 3150 } else if (ret > 0) { 3151 ret = -EUCLEAN; 3152 goto out; 3153 } 3154 } 3155 3156 out: 3157 if (!ret || ret == -EOVERFLOW) { 3158 rootrefs->num_items = found; 3159 /* update min_treeid for next search */ 3160 if (found) 3161 rootrefs->min_treeid = 3162 rootrefs->rootref[found - 1].treeid + 1; 3163 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 3164 ret = -EFAULT; 3165 } 3166 3167 kfree(rootrefs); 3168 btrfs_free_path(path); 3169 3170 return ret; 3171 } 3172 3173 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 3174 void __user *arg, 3175 bool destroy_v2) 3176 { 3177 struct dentry *parent = file->f_path.dentry; 3178 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 3179 struct dentry *dentry; 3180 struct inode *dir = d_inode(parent); 3181 struct inode *inode; 3182 struct btrfs_root *root = BTRFS_I(dir)->root; 3183 struct btrfs_root *dest = NULL; 3184 struct btrfs_ioctl_vol_args *vol_args = NULL; 3185 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 3186 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 3187 char *subvol_name, *subvol_name_ptr = NULL; 3188 int subvol_namelen; 3189 int err = 0; 3190 bool destroy_parent = false; 3191 3192 if (destroy_v2) { 3193 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 3194 if (IS_ERR(vol_args2)) 3195 return PTR_ERR(vol_args2); 3196 3197 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 3198 err = -EOPNOTSUPP; 3199 goto out; 3200 } 3201 3202 /* 3203 * If SPEC_BY_ID is not set, we are looking for the subvolume by 3204 * name, same as v1 currently does. 3205 */ 3206 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 3207 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 3208 subvol_name = vol_args2->name; 3209 3210 err = mnt_want_write_file(file); 3211 if (err) 3212 goto out; 3213 } else { 3214 struct inode *old_dir; 3215 3216 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 3217 err = -EINVAL; 3218 goto out; 3219 } 3220 3221 err = mnt_want_write_file(file); 3222 if (err) 3223 goto out; 3224 3225 dentry = btrfs_get_dentry(fs_info->sb, 3226 BTRFS_FIRST_FREE_OBJECTID, 3227 vol_args2->subvolid, 0, 0); 3228 if (IS_ERR(dentry)) { 3229 err = PTR_ERR(dentry); 3230 goto out_drop_write; 3231 } 3232 3233 /* 3234 * Change the default parent since the subvolume being 3235 * deleted can be outside of the current mount point. 3236 */ 3237 parent = btrfs_get_parent(dentry); 3238 3239 /* 3240 * At this point dentry->d_name can point to '/' if the 3241 * subvolume we want to destroy is outsite of the 3242 * current mount point, so we need to release the 3243 * current dentry and execute the lookup to return a new 3244 * one with ->d_name pointing to the 3245 * <mount point>/subvol_name. 3246 */ 3247 dput(dentry); 3248 if (IS_ERR(parent)) { 3249 err = PTR_ERR(parent); 3250 goto out_drop_write; 3251 } 3252 old_dir = dir; 3253 dir = d_inode(parent); 3254 3255 /* 3256 * If v2 was used with SPEC_BY_ID, a new parent was 3257 * allocated since the subvolume can be outside of the 3258 * current mount point. Later on we need to release this 3259 * new parent dentry. 3260 */ 3261 destroy_parent = true; 3262 3263 /* 3264 * On idmapped mounts, deletion via subvolid is 3265 * restricted to subvolumes that are immediate 3266 * ancestors of the inode referenced by the file 3267 * descriptor in the ioctl. Otherwise the idmapping 3268 * could potentially be abused to delete subvolumes 3269 * anywhere in the filesystem the user wouldn't be able 3270 * to delete without an idmapped mount. 3271 */ 3272 if (old_dir != dir && mnt_userns != &init_user_ns) { 3273 err = -EOPNOTSUPP; 3274 goto free_parent; 3275 } 3276 3277 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3278 fs_info, vol_args2->subvolid); 3279 if (IS_ERR(subvol_name_ptr)) { 3280 err = PTR_ERR(subvol_name_ptr); 3281 goto free_parent; 3282 } 3283 /* subvol_name_ptr is already nul terminated */ 3284 subvol_name = (char *)kbasename(subvol_name_ptr); 3285 } 3286 } else { 3287 vol_args = memdup_user(arg, sizeof(*vol_args)); 3288 if (IS_ERR(vol_args)) 3289 return PTR_ERR(vol_args); 3290 3291 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3292 subvol_name = vol_args->name; 3293 3294 err = mnt_want_write_file(file); 3295 if (err) 3296 goto out; 3297 } 3298 3299 subvol_namelen = strlen(subvol_name); 3300 3301 if (strchr(subvol_name, '/') || 3302 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3303 err = -EINVAL; 3304 goto free_subvol_name; 3305 } 3306 3307 if (!S_ISDIR(dir->i_mode)) { 3308 err = -ENOTDIR; 3309 goto free_subvol_name; 3310 } 3311 3312 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3313 if (err == -EINTR) 3314 goto free_subvol_name; 3315 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3316 if (IS_ERR(dentry)) { 3317 err = PTR_ERR(dentry); 3318 goto out_unlock_dir; 3319 } 3320 3321 if (d_really_is_negative(dentry)) { 3322 err = -ENOENT; 3323 goto out_dput; 3324 } 3325 3326 inode = d_inode(dentry); 3327 dest = BTRFS_I(inode)->root; 3328 if (!capable(CAP_SYS_ADMIN)) { 3329 /* 3330 * Regular user. Only allow this with a special mount 3331 * option, when the user has write+exec access to the 3332 * subvol root, and when rmdir(2) would have been 3333 * allowed. 3334 * 3335 * Note that this is _not_ check that the subvol is 3336 * empty or doesn't contain data that we wouldn't 3337 * otherwise be able to delete. 3338 * 3339 * Users who want to delete empty subvols should try 3340 * rmdir(2). 3341 */ 3342 err = -EPERM; 3343 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3344 goto out_dput; 3345 3346 /* 3347 * Do not allow deletion if the parent dir is the same 3348 * as the dir to be deleted. That means the ioctl 3349 * must be called on the dentry referencing the root 3350 * of the subvol, not a random directory contained 3351 * within it. 3352 */ 3353 err = -EINVAL; 3354 if (root == dest) 3355 goto out_dput; 3356 3357 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3358 if (err) 3359 goto out_dput; 3360 } 3361 3362 /* check if subvolume may be deleted by a user */ 3363 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3364 if (err) 3365 goto out_dput; 3366 3367 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3368 err = -EINVAL; 3369 goto out_dput; 3370 } 3371 3372 btrfs_inode_lock(inode, 0); 3373 err = btrfs_delete_subvolume(dir, dentry); 3374 btrfs_inode_unlock(inode, 0); 3375 if (!err) 3376 d_delete_notify(dir, dentry); 3377 3378 out_dput: 3379 dput(dentry); 3380 out_unlock_dir: 3381 btrfs_inode_unlock(dir, 0); 3382 free_subvol_name: 3383 kfree(subvol_name_ptr); 3384 free_parent: 3385 if (destroy_parent) 3386 dput(parent); 3387 out_drop_write: 3388 mnt_drop_write_file(file); 3389 out: 3390 kfree(vol_args2); 3391 kfree(vol_args); 3392 return err; 3393 } 3394 3395 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3396 { 3397 struct inode *inode = file_inode(file); 3398 struct btrfs_root *root = BTRFS_I(inode)->root; 3399 struct btrfs_ioctl_defrag_range_args range = {0}; 3400 int ret; 3401 3402 ret = mnt_want_write_file(file); 3403 if (ret) 3404 return ret; 3405 3406 if (btrfs_root_readonly(root)) { 3407 ret = -EROFS; 3408 goto out; 3409 } 3410 3411 switch (inode->i_mode & S_IFMT) { 3412 case S_IFDIR: 3413 if (!capable(CAP_SYS_ADMIN)) { 3414 ret = -EPERM; 3415 goto out; 3416 } 3417 ret = btrfs_defrag_root(root); 3418 break; 3419 case S_IFREG: 3420 /* 3421 * Note that this does not check the file descriptor for write 3422 * access. This prevents defragmenting executables that are 3423 * running and allows defrag on files open in read-only mode. 3424 */ 3425 if (!capable(CAP_SYS_ADMIN) && 3426 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3427 ret = -EPERM; 3428 goto out; 3429 } 3430 3431 if (argp) { 3432 if (copy_from_user(&range, argp, sizeof(range))) { 3433 ret = -EFAULT; 3434 goto out; 3435 } 3436 /* compression requires us to start the IO */ 3437 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3438 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3439 range.extent_thresh = (u32)-1; 3440 } 3441 } else { 3442 /* the rest are all set to zero by kzalloc */ 3443 range.len = (u64)-1; 3444 } 3445 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3446 &range, BTRFS_OLDEST_GENERATION, 0); 3447 if (ret > 0) 3448 ret = 0; 3449 break; 3450 default: 3451 ret = -EINVAL; 3452 } 3453 out: 3454 mnt_drop_write_file(file); 3455 return ret; 3456 } 3457 3458 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3459 { 3460 struct btrfs_ioctl_vol_args *vol_args; 3461 bool restore_op = false; 3462 int ret; 3463 3464 if (!capable(CAP_SYS_ADMIN)) 3465 return -EPERM; 3466 3467 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3468 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3469 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3470 3471 /* 3472 * We can do the device add because we have a paused balanced, 3473 * change the exclusive op type and remember we should bring 3474 * back the paused balance 3475 */ 3476 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3477 btrfs_exclop_start_unlock(fs_info); 3478 restore_op = true; 3479 } 3480 3481 vol_args = memdup_user(arg, sizeof(*vol_args)); 3482 if (IS_ERR(vol_args)) { 3483 ret = PTR_ERR(vol_args); 3484 goto out; 3485 } 3486 3487 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3488 ret = btrfs_init_new_device(fs_info, vol_args->name); 3489 3490 if (!ret) 3491 btrfs_info(fs_info, "disk added %s", vol_args->name); 3492 3493 kfree(vol_args); 3494 out: 3495 if (restore_op) 3496 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3497 else 3498 btrfs_exclop_finish(fs_info); 3499 return ret; 3500 } 3501 3502 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3503 { 3504 BTRFS_DEV_LOOKUP_ARGS(args); 3505 struct inode *inode = file_inode(file); 3506 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3507 struct btrfs_ioctl_vol_args_v2 *vol_args; 3508 struct block_device *bdev = NULL; 3509 fmode_t mode; 3510 int ret; 3511 bool cancel = false; 3512 3513 if (!capable(CAP_SYS_ADMIN)) 3514 return -EPERM; 3515 3516 vol_args = memdup_user(arg, sizeof(*vol_args)); 3517 if (IS_ERR(vol_args)) 3518 return PTR_ERR(vol_args); 3519 3520 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3521 ret = -EOPNOTSUPP; 3522 goto out; 3523 } 3524 3525 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3526 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3527 args.devid = vol_args->devid; 3528 } else if (!strcmp("cancel", vol_args->name)) { 3529 cancel = true; 3530 } else { 3531 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3532 if (ret) 3533 goto out; 3534 } 3535 3536 ret = mnt_want_write_file(file); 3537 if (ret) 3538 goto out; 3539 3540 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3541 cancel); 3542 if (ret) 3543 goto err_drop; 3544 3545 /* Exclusive operation is now claimed */ 3546 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3547 3548 btrfs_exclop_finish(fs_info); 3549 3550 if (!ret) { 3551 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3552 btrfs_info(fs_info, "device deleted: id %llu", 3553 vol_args->devid); 3554 else 3555 btrfs_info(fs_info, "device deleted: %s", 3556 vol_args->name); 3557 } 3558 err_drop: 3559 mnt_drop_write_file(file); 3560 if (bdev) 3561 blkdev_put(bdev, mode); 3562 out: 3563 btrfs_put_dev_args_from_path(&args); 3564 kfree(vol_args); 3565 return ret; 3566 } 3567 3568 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3569 { 3570 BTRFS_DEV_LOOKUP_ARGS(args); 3571 struct inode *inode = file_inode(file); 3572 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3573 struct btrfs_ioctl_vol_args *vol_args; 3574 struct block_device *bdev = NULL; 3575 fmode_t mode; 3576 int ret; 3577 bool cancel = false; 3578 3579 if (!capable(CAP_SYS_ADMIN)) 3580 return -EPERM; 3581 3582 vol_args = memdup_user(arg, sizeof(*vol_args)); 3583 if (IS_ERR(vol_args)) 3584 return PTR_ERR(vol_args); 3585 3586 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3587 if (!strcmp("cancel", vol_args->name)) { 3588 cancel = true; 3589 } else { 3590 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3591 if (ret) 3592 goto out; 3593 } 3594 3595 ret = mnt_want_write_file(file); 3596 if (ret) 3597 goto out; 3598 3599 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3600 cancel); 3601 if (ret == 0) { 3602 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3603 if (!ret) 3604 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3605 btrfs_exclop_finish(fs_info); 3606 } 3607 3608 mnt_drop_write_file(file); 3609 if (bdev) 3610 blkdev_put(bdev, mode); 3611 out: 3612 btrfs_put_dev_args_from_path(&args); 3613 kfree(vol_args); 3614 return ret; 3615 } 3616 3617 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3618 void __user *arg) 3619 { 3620 struct btrfs_ioctl_fs_info_args *fi_args; 3621 struct btrfs_device *device; 3622 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3623 u64 flags_in; 3624 int ret = 0; 3625 3626 fi_args = memdup_user(arg, sizeof(*fi_args)); 3627 if (IS_ERR(fi_args)) 3628 return PTR_ERR(fi_args); 3629 3630 flags_in = fi_args->flags; 3631 memset(fi_args, 0, sizeof(*fi_args)); 3632 3633 rcu_read_lock(); 3634 fi_args->num_devices = fs_devices->num_devices; 3635 3636 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3637 if (device->devid > fi_args->max_id) 3638 fi_args->max_id = device->devid; 3639 } 3640 rcu_read_unlock(); 3641 3642 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3643 fi_args->nodesize = fs_info->nodesize; 3644 fi_args->sectorsize = fs_info->sectorsize; 3645 fi_args->clone_alignment = fs_info->sectorsize; 3646 3647 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3648 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3649 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3650 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3651 } 3652 3653 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3654 fi_args->generation = fs_info->generation; 3655 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3656 } 3657 3658 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3659 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3660 sizeof(fi_args->metadata_uuid)); 3661 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3662 } 3663 3664 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3665 ret = -EFAULT; 3666 3667 kfree(fi_args); 3668 return ret; 3669 } 3670 3671 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3672 void __user *arg) 3673 { 3674 BTRFS_DEV_LOOKUP_ARGS(args); 3675 struct btrfs_ioctl_dev_info_args *di_args; 3676 struct btrfs_device *dev; 3677 int ret = 0; 3678 3679 di_args = memdup_user(arg, sizeof(*di_args)); 3680 if (IS_ERR(di_args)) 3681 return PTR_ERR(di_args); 3682 3683 args.devid = di_args->devid; 3684 if (!btrfs_is_empty_uuid(di_args->uuid)) 3685 args.uuid = di_args->uuid; 3686 3687 rcu_read_lock(); 3688 dev = btrfs_find_device(fs_info->fs_devices, &args); 3689 if (!dev) { 3690 ret = -ENODEV; 3691 goto out; 3692 } 3693 3694 di_args->devid = dev->devid; 3695 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3696 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3697 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3698 if (dev->name) { 3699 strncpy(di_args->path, rcu_str_deref(dev->name), 3700 sizeof(di_args->path) - 1); 3701 di_args->path[sizeof(di_args->path) - 1] = 0; 3702 } else { 3703 di_args->path[0] = '\0'; 3704 } 3705 3706 out: 3707 rcu_read_unlock(); 3708 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3709 ret = -EFAULT; 3710 3711 kfree(di_args); 3712 return ret; 3713 } 3714 3715 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3716 { 3717 struct inode *inode = file_inode(file); 3718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3719 struct btrfs_root *root = BTRFS_I(inode)->root; 3720 struct btrfs_root *new_root; 3721 struct btrfs_dir_item *di; 3722 struct btrfs_trans_handle *trans; 3723 struct btrfs_path *path = NULL; 3724 struct btrfs_disk_key disk_key; 3725 u64 objectid = 0; 3726 u64 dir_id; 3727 int ret; 3728 3729 if (!capable(CAP_SYS_ADMIN)) 3730 return -EPERM; 3731 3732 ret = mnt_want_write_file(file); 3733 if (ret) 3734 return ret; 3735 3736 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3737 ret = -EFAULT; 3738 goto out; 3739 } 3740 3741 if (!objectid) 3742 objectid = BTRFS_FS_TREE_OBJECTID; 3743 3744 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3745 if (IS_ERR(new_root)) { 3746 ret = PTR_ERR(new_root); 3747 goto out; 3748 } 3749 if (!is_fstree(new_root->root_key.objectid)) { 3750 ret = -ENOENT; 3751 goto out_free; 3752 } 3753 3754 path = btrfs_alloc_path(); 3755 if (!path) { 3756 ret = -ENOMEM; 3757 goto out_free; 3758 } 3759 3760 trans = btrfs_start_transaction(root, 1); 3761 if (IS_ERR(trans)) { 3762 ret = PTR_ERR(trans); 3763 goto out_free; 3764 } 3765 3766 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3767 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3768 dir_id, "default", 7, 1); 3769 if (IS_ERR_OR_NULL(di)) { 3770 btrfs_release_path(path); 3771 btrfs_end_transaction(trans); 3772 btrfs_err(fs_info, 3773 "Umm, you don't have the default diritem, this isn't going to work"); 3774 ret = -ENOENT; 3775 goto out_free; 3776 } 3777 3778 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3779 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3780 btrfs_mark_buffer_dirty(path->nodes[0]); 3781 btrfs_release_path(path); 3782 3783 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3784 btrfs_end_transaction(trans); 3785 out_free: 3786 btrfs_put_root(new_root); 3787 btrfs_free_path(path); 3788 out: 3789 mnt_drop_write_file(file); 3790 return ret; 3791 } 3792 3793 static void get_block_group_info(struct list_head *groups_list, 3794 struct btrfs_ioctl_space_info *space) 3795 { 3796 struct btrfs_block_group *block_group; 3797 3798 space->total_bytes = 0; 3799 space->used_bytes = 0; 3800 space->flags = 0; 3801 list_for_each_entry(block_group, groups_list, list) { 3802 space->flags = block_group->flags; 3803 space->total_bytes += block_group->length; 3804 space->used_bytes += block_group->used; 3805 } 3806 } 3807 3808 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3809 void __user *arg) 3810 { 3811 struct btrfs_ioctl_space_args space_args; 3812 struct btrfs_ioctl_space_info space; 3813 struct btrfs_ioctl_space_info *dest; 3814 struct btrfs_ioctl_space_info *dest_orig; 3815 struct btrfs_ioctl_space_info __user *user_dest; 3816 struct btrfs_space_info *info; 3817 static const u64 types[] = { 3818 BTRFS_BLOCK_GROUP_DATA, 3819 BTRFS_BLOCK_GROUP_SYSTEM, 3820 BTRFS_BLOCK_GROUP_METADATA, 3821 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3822 }; 3823 int num_types = 4; 3824 int alloc_size; 3825 int ret = 0; 3826 u64 slot_count = 0; 3827 int i, c; 3828 3829 if (copy_from_user(&space_args, 3830 (struct btrfs_ioctl_space_args __user *)arg, 3831 sizeof(space_args))) 3832 return -EFAULT; 3833 3834 for (i = 0; i < num_types; i++) { 3835 struct btrfs_space_info *tmp; 3836 3837 info = NULL; 3838 list_for_each_entry(tmp, &fs_info->space_info, list) { 3839 if (tmp->flags == types[i]) { 3840 info = tmp; 3841 break; 3842 } 3843 } 3844 3845 if (!info) 3846 continue; 3847 3848 down_read(&info->groups_sem); 3849 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3850 if (!list_empty(&info->block_groups[c])) 3851 slot_count++; 3852 } 3853 up_read(&info->groups_sem); 3854 } 3855 3856 /* 3857 * Global block reserve, exported as a space_info 3858 */ 3859 slot_count++; 3860 3861 /* space_slots == 0 means they are asking for a count */ 3862 if (space_args.space_slots == 0) { 3863 space_args.total_spaces = slot_count; 3864 goto out; 3865 } 3866 3867 slot_count = min_t(u64, space_args.space_slots, slot_count); 3868 3869 alloc_size = sizeof(*dest) * slot_count; 3870 3871 /* we generally have at most 6 or so space infos, one for each raid 3872 * level. So, a whole page should be more than enough for everyone 3873 */ 3874 if (alloc_size > PAGE_SIZE) 3875 return -ENOMEM; 3876 3877 space_args.total_spaces = 0; 3878 dest = kmalloc(alloc_size, GFP_KERNEL); 3879 if (!dest) 3880 return -ENOMEM; 3881 dest_orig = dest; 3882 3883 /* now we have a buffer to copy into */ 3884 for (i = 0; i < num_types; i++) { 3885 struct btrfs_space_info *tmp; 3886 3887 if (!slot_count) 3888 break; 3889 3890 info = NULL; 3891 list_for_each_entry(tmp, &fs_info->space_info, list) { 3892 if (tmp->flags == types[i]) { 3893 info = tmp; 3894 break; 3895 } 3896 } 3897 3898 if (!info) 3899 continue; 3900 down_read(&info->groups_sem); 3901 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3902 if (!list_empty(&info->block_groups[c])) { 3903 get_block_group_info(&info->block_groups[c], 3904 &space); 3905 memcpy(dest, &space, sizeof(space)); 3906 dest++; 3907 space_args.total_spaces++; 3908 slot_count--; 3909 } 3910 if (!slot_count) 3911 break; 3912 } 3913 up_read(&info->groups_sem); 3914 } 3915 3916 /* 3917 * Add global block reserve 3918 */ 3919 if (slot_count) { 3920 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3921 3922 spin_lock(&block_rsv->lock); 3923 space.total_bytes = block_rsv->size; 3924 space.used_bytes = block_rsv->size - block_rsv->reserved; 3925 spin_unlock(&block_rsv->lock); 3926 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3927 memcpy(dest, &space, sizeof(space)); 3928 space_args.total_spaces++; 3929 } 3930 3931 user_dest = (struct btrfs_ioctl_space_info __user *) 3932 (arg + sizeof(struct btrfs_ioctl_space_args)); 3933 3934 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3935 ret = -EFAULT; 3936 3937 kfree(dest_orig); 3938 out: 3939 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3940 ret = -EFAULT; 3941 3942 return ret; 3943 } 3944 3945 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3946 void __user *argp) 3947 { 3948 struct btrfs_trans_handle *trans; 3949 u64 transid; 3950 3951 trans = btrfs_attach_transaction_barrier(root); 3952 if (IS_ERR(trans)) { 3953 if (PTR_ERR(trans) != -ENOENT) 3954 return PTR_ERR(trans); 3955 3956 /* No running transaction, don't bother */ 3957 transid = root->fs_info->last_trans_committed; 3958 goto out; 3959 } 3960 transid = trans->transid; 3961 btrfs_commit_transaction_async(trans); 3962 out: 3963 if (argp) 3964 if (copy_to_user(argp, &transid, sizeof(transid))) 3965 return -EFAULT; 3966 return 0; 3967 } 3968 3969 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3970 void __user *argp) 3971 { 3972 u64 transid; 3973 3974 if (argp) { 3975 if (copy_from_user(&transid, argp, sizeof(transid))) 3976 return -EFAULT; 3977 } else { 3978 transid = 0; /* current trans */ 3979 } 3980 return btrfs_wait_for_commit(fs_info, transid); 3981 } 3982 3983 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3984 { 3985 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3986 struct btrfs_ioctl_scrub_args *sa; 3987 int ret; 3988 3989 if (!capable(CAP_SYS_ADMIN)) 3990 return -EPERM; 3991 3992 sa = memdup_user(arg, sizeof(*sa)); 3993 if (IS_ERR(sa)) 3994 return PTR_ERR(sa); 3995 3996 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3997 ret = mnt_want_write_file(file); 3998 if (ret) 3999 goto out; 4000 } 4001 4002 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4003 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4004 0); 4005 4006 /* 4007 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 4008 * error. This is important as it allows user space to know how much 4009 * progress scrub has done. For example, if scrub is canceled we get 4010 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 4011 * space. Later user space can inspect the progress from the structure 4012 * btrfs_ioctl_scrub_args and resume scrub from where it left off 4013 * previously (btrfs-progs does this). 4014 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 4015 * then return -EFAULT to signal the structure was not copied or it may 4016 * be corrupt and unreliable due to a partial copy. 4017 */ 4018 if (copy_to_user(arg, sa, sizeof(*sa))) 4019 ret = -EFAULT; 4020 4021 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4022 mnt_drop_write_file(file); 4023 out: 4024 kfree(sa); 4025 return ret; 4026 } 4027 4028 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4029 { 4030 if (!capable(CAP_SYS_ADMIN)) 4031 return -EPERM; 4032 4033 return btrfs_scrub_cancel(fs_info); 4034 } 4035 4036 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4037 void __user *arg) 4038 { 4039 struct btrfs_ioctl_scrub_args *sa; 4040 int ret; 4041 4042 if (!capable(CAP_SYS_ADMIN)) 4043 return -EPERM; 4044 4045 sa = memdup_user(arg, sizeof(*sa)); 4046 if (IS_ERR(sa)) 4047 return PTR_ERR(sa); 4048 4049 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4050 4051 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4052 ret = -EFAULT; 4053 4054 kfree(sa); 4055 return ret; 4056 } 4057 4058 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4059 void __user *arg) 4060 { 4061 struct btrfs_ioctl_get_dev_stats *sa; 4062 int ret; 4063 4064 sa = memdup_user(arg, sizeof(*sa)); 4065 if (IS_ERR(sa)) 4066 return PTR_ERR(sa); 4067 4068 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4069 kfree(sa); 4070 return -EPERM; 4071 } 4072 4073 ret = btrfs_get_dev_stats(fs_info, sa); 4074 4075 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4076 ret = -EFAULT; 4077 4078 kfree(sa); 4079 return ret; 4080 } 4081 4082 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4083 void __user *arg) 4084 { 4085 struct btrfs_ioctl_dev_replace_args *p; 4086 int ret; 4087 4088 if (!capable(CAP_SYS_ADMIN)) 4089 return -EPERM; 4090 4091 p = memdup_user(arg, sizeof(*p)); 4092 if (IS_ERR(p)) 4093 return PTR_ERR(p); 4094 4095 switch (p->cmd) { 4096 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4097 if (sb_rdonly(fs_info->sb)) { 4098 ret = -EROFS; 4099 goto out; 4100 } 4101 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 4102 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4103 } else { 4104 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4105 btrfs_exclop_finish(fs_info); 4106 } 4107 break; 4108 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4109 btrfs_dev_replace_status(fs_info, p); 4110 ret = 0; 4111 break; 4112 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4113 p->result = btrfs_dev_replace_cancel(fs_info); 4114 ret = 0; 4115 break; 4116 default: 4117 ret = -EINVAL; 4118 break; 4119 } 4120 4121 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4122 ret = -EFAULT; 4123 out: 4124 kfree(p); 4125 return ret; 4126 } 4127 4128 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4129 { 4130 int ret = 0; 4131 int i; 4132 u64 rel_ptr; 4133 int size; 4134 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4135 struct inode_fs_paths *ipath = NULL; 4136 struct btrfs_path *path; 4137 4138 if (!capable(CAP_DAC_READ_SEARCH)) 4139 return -EPERM; 4140 4141 path = btrfs_alloc_path(); 4142 if (!path) { 4143 ret = -ENOMEM; 4144 goto out; 4145 } 4146 4147 ipa = memdup_user(arg, sizeof(*ipa)); 4148 if (IS_ERR(ipa)) { 4149 ret = PTR_ERR(ipa); 4150 ipa = NULL; 4151 goto out; 4152 } 4153 4154 size = min_t(u32, ipa->size, 4096); 4155 ipath = init_ipath(size, root, path); 4156 if (IS_ERR(ipath)) { 4157 ret = PTR_ERR(ipath); 4158 ipath = NULL; 4159 goto out; 4160 } 4161 4162 ret = paths_from_inode(ipa->inum, ipath); 4163 if (ret < 0) 4164 goto out; 4165 4166 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4167 rel_ptr = ipath->fspath->val[i] - 4168 (u64)(unsigned long)ipath->fspath->val; 4169 ipath->fspath->val[i] = rel_ptr; 4170 } 4171 4172 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4173 ipath->fspath, size); 4174 if (ret) { 4175 ret = -EFAULT; 4176 goto out; 4177 } 4178 4179 out: 4180 btrfs_free_path(path); 4181 free_ipath(ipath); 4182 kfree(ipa); 4183 4184 return ret; 4185 } 4186 4187 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4188 { 4189 struct btrfs_data_container *inodes = ctx; 4190 const size_t c = 3 * sizeof(u64); 4191 4192 if (inodes->bytes_left >= c) { 4193 inodes->bytes_left -= c; 4194 inodes->val[inodes->elem_cnt] = inum; 4195 inodes->val[inodes->elem_cnt + 1] = offset; 4196 inodes->val[inodes->elem_cnt + 2] = root; 4197 inodes->elem_cnt += 3; 4198 } else { 4199 inodes->bytes_missing += c - inodes->bytes_left; 4200 inodes->bytes_left = 0; 4201 inodes->elem_missed += 3; 4202 } 4203 4204 return 0; 4205 } 4206 4207 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4208 void __user *arg, int version) 4209 { 4210 int ret = 0; 4211 int size; 4212 struct btrfs_ioctl_logical_ino_args *loi; 4213 struct btrfs_data_container *inodes = NULL; 4214 struct btrfs_path *path = NULL; 4215 bool ignore_offset; 4216 4217 if (!capable(CAP_SYS_ADMIN)) 4218 return -EPERM; 4219 4220 loi = memdup_user(arg, sizeof(*loi)); 4221 if (IS_ERR(loi)) 4222 return PTR_ERR(loi); 4223 4224 if (version == 1) { 4225 ignore_offset = false; 4226 size = min_t(u32, loi->size, SZ_64K); 4227 } else { 4228 /* All reserved bits must be 0 for now */ 4229 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4230 ret = -EINVAL; 4231 goto out_loi; 4232 } 4233 /* Only accept flags we have defined so far */ 4234 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4235 ret = -EINVAL; 4236 goto out_loi; 4237 } 4238 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4239 size = min_t(u32, loi->size, SZ_16M); 4240 } 4241 4242 path = btrfs_alloc_path(); 4243 if (!path) { 4244 ret = -ENOMEM; 4245 goto out; 4246 } 4247 4248 inodes = init_data_container(size); 4249 if (IS_ERR(inodes)) { 4250 ret = PTR_ERR(inodes); 4251 inodes = NULL; 4252 goto out; 4253 } 4254 4255 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4256 build_ino_list, inodes, ignore_offset); 4257 if (ret == -EINVAL) 4258 ret = -ENOENT; 4259 if (ret < 0) 4260 goto out; 4261 4262 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4263 size); 4264 if (ret) 4265 ret = -EFAULT; 4266 4267 out: 4268 btrfs_free_path(path); 4269 kvfree(inodes); 4270 out_loi: 4271 kfree(loi); 4272 4273 return ret; 4274 } 4275 4276 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4277 struct btrfs_ioctl_balance_args *bargs) 4278 { 4279 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4280 4281 bargs->flags = bctl->flags; 4282 4283 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4284 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4285 if (atomic_read(&fs_info->balance_pause_req)) 4286 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4287 if (atomic_read(&fs_info->balance_cancel_req)) 4288 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4289 4290 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4291 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4292 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4293 4294 spin_lock(&fs_info->balance_lock); 4295 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4296 spin_unlock(&fs_info->balance_lock); 4297 } 4298 4299 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4300 { 4301 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4302 struct btrfs_fs_info *fs_info = root->fs_info; 4303 struct btrfs_ioctl_balance_args *bargs; 4304 struct btrfs_balance_control *bctl; 4305 bool need_unlock; /* for mut. excl. ops lock */ 4306 int ret; 4307 4308 if (!arg) 4309 btrfs_warn(fs_info, 4310 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 4311 4312 if (!capable(CAP_SYS_ADMIN)) 4313 return -EPERM; 4314 4315 ret = mnt_want_write_file(file); 4316 if (ret) 4317 return ret; 4318 4319 again: 4320 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4321 mutex_lock(&fs_info->balance_mutex); 4322 need_unlock = true; 4323 goto locked; 4324 } 4325 4326 /* 4327 * mut. excl. ops lock is locked. Three possibilities: 4328 * (1) some other op is running 4329 * (2) balance is running 4330 * (3) balance is paused -- special case (think resume) 4331 */ 4332 mutex_lock(&fs_info->balance_mutex); 4333 if (fs_info->balance_ctl) { 4334 /* this is either (2) or (3) */ 4335 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4336 mutex_unlock(&fs_info->balance_mutex); 4337 /* 4338 * Lock released to allow other waiters to continue, 4339 * we'll reexamine the status again. 4340 */ 4341 mutex_lock(&fs_info->balance_mutex); 4342 4343 if (fs_info->balance_ctl && 4344 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4345 /* this is (3) */ 4346 need_unlock = false; 4347 goto locked; 4348 } 4349 4350 mutex_unlock(&fs_info->balance_mutex); 4351 goto again; 4352 } else { 4353 /* this is (2) */ 4354 mutex_unlock(&fs_info->balance_mutex); 4355 ret = -EINPROGRESS; 4356 goto out; 4357 } 4358 } else { 4359 /* this is (1) */ 4360 mutex_unlock(&fs_info->balance_mutex); 4361 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4362 goto out; 4363 } 4364 4365 locked: 4366 4367 if (arg) { 4368 bargs = memdup_user(arg, sizeof(*bargs)); 4369 if (IS_ERR(bargs)) { 4370 ret = PTR_ERR(bargs); 4371 goto out_unlock; 4372 } 4373 4374 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4375 if (!fs_info->balance_ctl) { 4376 ret = -ENOTCONN; 4377 goto out_bargs; 4378 } 4379 4380 bctl = fs_info->balance_ctl; 4381 spin_lock(&fs_info->balance_lock); 4382 bctl->flags |= BTRFS_BALANCE_RESUME; 4383 spin_unlock(&fs_info->balance_lock); 4384 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4385 4386 goto do_balance; 4387 } 4388 } else { 4389 bargs = NULL; 4390 } 4391 4392 if (fs_info->balance_ctl) { 4393 ret = -EINPROGRESS; 4394 goto out_bargs; 4395 } 4396 4397 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4398 if (!bctl) { 4399 ret = -ENOMEM; 4400 goto out_bargs; 4401 } 4402 4403 if (arg) { 4404 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4405 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4406 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4407 4408 bctl->flags = bargs->flags; 4409 } else { 4410 /* balance everything - no filters */ 4411 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4412 } 4413 4414 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4415 ret = -EINVAL; 4416 goto out_bctl; 4417 } 4418 4419 do_balance: 4420 /* 4421 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4422 * bctl is freed in reset_balance_state, or, if restriper was paused 4423 * all the way until unmount, in free_fs_info. The flag should be 4424 * cleared after reset_balance_state. 4425 */ 4426 need_unlock = false; 4427 4428 ret = btrfs_balance(fs_info, bctl, bargs); 4429 bctl = NULL; 4430 4431 if ((ret == 0 || ret == -ECANCELED) && arg) { 4432 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4433 ret = -EFAULT; 4434 } 4435 4436 out_bctl: 4437 kfree(bctl); 4438 out_bargs: 4439 kfree(bargs); 4440 out_unlock: 4441 mutex_unlock(&fs_info->balance_mutex); 4442 if (need_unlock) 4443 btrfs_exclop_finish(fs_info); 4444 out: 4445 mnt_drop_write_file(file); 4446 return ret; 4447 } 4448 4449 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4450 { 4451 if (!capable(CAP_SYS_ADMIN)) 4452 return -EPERM; 4453 4454 switch (cmd) { 4455 case BTRFS_BALANCE_CTL_PAUSE: 4456 return btrfs_pause_balance(fs_info); 4457 case BTRFS_BALANCE_CTL_CANCEL: 4458 return btrfs_cancel_balance(fs_info); 4459 } 4460 4461 return -EINVAL; 4462 } 4463 4464 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4465 void __user *arg) 4466 { 4467 struct btrfs_ioctl_balance_args *bargs; 4468 int ret = 0; 4469 4470 if (!capable(CAP_SYS_ADMIN)) 4471 return -EPERM; 4472 4473 mutex_lock(&fs_info->balance_mutex); 4474 if (!fs_info->balance_ctl) { 4475 ret = -ENOTCONN; 4476 goto out; 4477 } 4478 4479 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4480 if (!bargs) { 4481 ret = -ENOMEM; 4482 goto out; 4483 } 4484 4485 btrfs_update_ioctl_balance_args(fs_info, bargs); 4486 4487 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4488 ret = -EFAULT; 4489 4490 kfree(bargs); 4491 out: 4492 mutex_unlock(&fs_info->balance_mutex); 4493 return ret; 4494 } 4495 4496 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4497 { 4498 struct inode *inode = file_inode(file); 4499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4500 struct btrfs_ioctl_quota_ctl_args *sa; 4501 int ret; 4502 4503 if (!capable(CAP_SYS_ADMIN)) 4504 return -EPERM; 4505 4506 ret = mnt_want_write_file(file); 4507 if (ret) 4508 return ret; 4509 4510 sa = memdup_user(arg, sizeof(*sa)); 4511 if (IS_ERR(sa)) { 4512 ret = PTR_ERR(sa); 4513 goto drop_write; 4514 } 4515 4516 down_write(&fs_info->subvol_sem); 4517 4518 switch (sa->cmd) { 4519 case BTRFS_QUOTA_CTL_ENABLE: 4520 ret = btrfs_quota_enable(fs_info); 4521 break; 4522 case BTRFS_QUOTA_CTL_DISABLE: 4523 ret = btrfs_quota_disable(fs_info); 4524 break; 4525 default: 4526 ret = -EINVAL; 4527 break; 4528 } 4529 4530 kfree(sa); 4531 up_write(&fs_info->subvol_sem); 4532 drop_write: 4533 mnt_drop_write_file(file); 4534 return ret; 4535 } 4536 4537 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4538 { 4539 struct inode *inode = file_inode(file); 4540 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4541 struct btrfs_root *root = BTRFS_I(inode)->root; 4542 struct btrfs_ioctl_qgroup_assign_args *sa; 4543 struct btrfs_trans_handle *trans; 4544 int ret; 4545 int err; 4546 4547 if (!capable(CAP_SYS_ADMIN)) 4548 return -EPERM; 4549 4550 ret = mnt_want_write_file(file); 4551 if (ret) 4552 return ret; 4553 4554 sa = memdup_user(arg, sizeof(*sa)); 4555 if (IS_ERR(sa)) { 4556 ret = PTR_ERR(sa); 4557 goto drop_write; 4558 } 4559 4560 trans = btrfs_join_transaction(root); 4561 if (IS_ERR(trans)) { 4562 ret = PTR_ERR(trans); 4563 goto out; 4564 } 4565 4566 if (sa->assign) { 4567 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4568 } else { 4569 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4570 } 4571 4572 /* update qgroup status and info */ 4573 err = btrfs_run_qgroups(trans); 4574 if (err < 0) 4575 btrfs_handle_fs_error(fs_info, err, 4576 "failed to update qgroup status and info"); 4577 err = btrfs_end_transaction(trans); 4578 if (err && !ret) 4579 ret = err; 4580 4581 out: 4582 kfree(sa); 4583 drop_write: 4584 mnt_drop_write_file(file); 4585 return ret; 4586 } 4587 4588 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4589 { 4590 struct inode *inode = file_inode(file); 4591 struct btrfs_root *root = BTRFS_I(inode)->root; 4592 struct btrfs_ioctl_qgroup_create_args *sa; 4593 struct btrfs_trans_handle *trans; 4594 int ret; 4595 int err; 4596 4597 if (!capable(CAP_SYS_ADMIN)) 4598 return -EPERM; 4599 4600 ret = mnt_want_write_file(file); 4601 if (ret) 4602 return ret; 4603 4604 sa = memdup_user(arg, sizeof(*sa)); 4605 if (IS_ERR(sa)) { 4606 ret = PTR_ERR(sa); 4607 goto drop_write; 4608 } 4609 4610 if (!sa->qgroupid) { 4611 ret = -EINVAL; 4612 goto out; 4613 } 4614 4615 trans = btrfs_join_transaction(root); 4616 if (IS_ERR(trans)) { 4617 ret = PTR_ERR(trans); 4618 goto out; 4619 } 4620 4621 if (sa->create) { 4622 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4623 } else { 4624 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4625 } 4626 4627 err = btrfs_end_transaction(trans); 4628 if (err && !ret) 4629 ret = err; 4630 4631 out: 4632 kfree(sa); 4633 drop_write: 4634 mnt_drop_write_file(file); 4635 return ret; 4636 } 4637 4638 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4639 { 4640 struct inode *inode = file_inode(file); 4641 struct btrfs_root *root = BTRFS_I(inode)->root; 4642 struct btrfs_ioctl_qgroup_limit_args *sa; 4643 struct btrfs_trans_handle *trans; 4644 int ret; 4645 int err; 4646 u64 qgroupid; 4647 4648 if (!capable(CAP_SYS_ADMIN)) 4649 return -EPERM; 4650 4651 ret = mnt_want_write_file(file); 4652 if (ret) 4653 return ret; 4654 4655 sa = memdup_user(arg, sizeof(*sa)); 4656 if (IS_ERR(sa)) { 4657 ret = PTR_ERR(sa); 4658 goto drop_write; 4659 } 4660 4661 trans = btrfs_join_transaction(root); 4662 if (IS_ERR(trans)) { 4663 ret = PTR_ERR(trans); 4664 goto out; 4665 } 4666 4667 qgroupid = sa->qgroupid; 4668 if (!qgroupid) { 4669 /* take the current subvol as qgroup */ 4670 qgroupid = root->root_key.objectid; 4671 } 4672 4673 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4674 4675 err = btrfs_end_transaction(trans); 4676 if (err && !ret) 4677 ret = err; 4678 4679 out: 4680 kfree(sa); 4681 drop_write: 4682 mnt_drop_write_file(file); 4683 return ret; 4684 } 4685 4686 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4687 { 4688 struct inode *inode = file_inode(file); 4689 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4690 struct btrfs_ioctl_quota_rescan_args *qsa; 4691 int ret; 4692 4693 if (!capable(CAP_SYS_ADMIN)) 4694 return -EPERM; 4695 4696 ret = mnt_want_write_file(file); 4697 if (ret) 4698 return ret; 4699 4700 qsa = memdup_user(arg, sizeof(*qsa)); 4701 if (IS_ERR(qsa)) { 4702 ret = PTR_ERR(qsa); 4703 goto drop_write; 4704 } 4705 4706 if (qsa->flags) { 4707 ret = -EINVAL; 4708 goto out; 4709 } 4710 4711 ret = btrfs_qgroup_rescan(fs_info); 4712 4713 out: 4714 kfree(qsa); 4715 drop_write: 4716 mnt_drop_write_file(file); 4717 return ret; 4718 } 4719 4720 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4721 void __user *arg) 4722 { 4723 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4724 4725 if (!capable(CAP_SYS_ADMIN)) 4726 return -EPERM; 4727 4728 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4729 qsa.flags = 1; 4730 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4731 } 4732 4733 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4734 return -EFAULT; 4735 4736 return 0; 4737 } 4738 4739 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4740 void __user *arg) 4741 { 4742 if (!capable(CAP_SYS_ADMIN)) 4743 return -EPERM; 4744 4745 return btrfs_qgroup_wait_for_completion(fs_info, true); 4746 } 4747 4748 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4749 struct user_namespace *mnt_userns, 4750 struct btrfs_ioctl_received_subvol_args *sa) 4751 { 4752 struct inode *inode = file_inode(file); 4753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4754 struct btrfs_root *root = BTRFS_I(inode)->root; 4755 struct btrfs_root_item *root_item = &root->root_item; 4756 struct btrfs_trans_handle *trans; 4757 struct timespec64 ct = current_time(inode); 4758 int ret = 0; 4759 int received_uuid_changed; 4760 4761 if (!inode_owner_or_capable(mnt_userns, inode)) 4762 return -EPERM; 4763 4764 ret = mnt_want_write_file(file); 4765 if (ret < 0) 4766 return ret; 4767 4768 down_write(&fs_info->subvol_sem); 4769 4770 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4771 ret = -EINVAL; 4772 goto out; 4773 } 4774 4775 if (btrfs_root_readonly(root)) { 4776 ret = -EROFS; 4777 goto out; 4778 } 4779 4780 /* 4781 * 1 - root item 4782 * 2 - uuid items (received uuid + subvol uuid) 4783 */ 4784 trans = btrfs_start_transaction(root, 3); 4785 if (IS_ERR(trans)) { 4786 ret = PTR_ERR(trans); 4787 trans = NULL; 4788 goto out; 4789 } 4790 4791 sa->rtransid = trans->transid; 4792 sa->rtime.sec = ct.tv_sec; 4793 sa->rtime.nsec = ct.tv_nsec; 4794 4795 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4796 BTRFS_UUID_SIZE); 4797 if (received_uuid_changed && 4798 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4799 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4800 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4801 root->root_key.objectid); 4802 if (ret && ret != -ENOENT) { 4803 btrfs_abort_transaction(trans, ret); 4804 btrfs_end_transaction(trans); 4805 goto out; 4806 } 4807 } 4808 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4809 btrfs_set_root_stransid(root_item, sa->stransid); 4810 btrfs_set_root_rtransid(root_item, sa->rtransid); 4811 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4812 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4813 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4814 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4815 4816 ret = btrfs_update_root(trans, fs_info->tree_root, 4817 &root->root_key, &root->root_item); 4818 if (ret < 0) { 4819 btrfs_end_transaction(trans); 4820 goto out; 4821 } 4822 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4823 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4824 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4825 root->root_key.objectid); 4826 if (ret < 0 && ret != -EEXIST) { 4827 btrfs_abort_transaction(trans, ret); 4828 btrfs_end_transaction(trans); 4829 goto out; 4830 } 4831 } 4832 ret = btrfs_commit_transaction(trans); 4833 out: 4834 up_write(&fs_info->subvol_sem); 4835 mnt_drop_write_file(file); 4836 return ret; 4837 } 4838 4839 #ifdef CONFIG_64BIT 4840 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4841 void __user *arg) 4842 { 4843 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4844 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4845 int ret = 0; 4846 4847 args32 = memdup_user(arg, sizeof(*args32)); 4848 if (IS_ERR(args32)) 4849 return PTR_ERR(args32); 4850 4851 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4852 if (!args64) { 4853 ret = -ENOMEM; 4854 goto out; 4855 } 4856 4857 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4858 args64->stransid = args32->stransid; 4859 args64->rtransid = args32->rtransid; 4860 args64->stime.sec = args32->stime.sec; 4861 args64->stime.nsec = args32->stime.nsec; 4862 args64->rtime.sec = args32->rtime.sec; 4863 args64->rtime.nsec = args32->rtime.nsec; 4864 args64->flags = args32->flags; 4865 4866 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4867 if (ret) 4868 goto out; 4869 4870 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4871 args32->stransid = args64->stransid; 4872 args32->rtransid = args64->rtransid; 4873 args32->stime.sec = args64->stime.sec; 4874 args32->stime.nsec = args64->stime.nsec; 4875 args32->rtime.sec = args64->rtime.sec; 4876 args32->rtime.nsec = args64->rtime.nsec; 4877 args32->flags = args64->flags; 4878 4879 ret = copy_to_user(arg, args32, sizeof(*args32)); 4880 if (ret) 4881 ret = -EFAULT; 4882 4883 out: 4884 kfree(args32); 4885 kfree(args64); 4886 return ret; 4887 } 4888 #endif 4889 4890 static long btrfs_ioctl_set_received_subvol(struct file *file, 4891 void __user *arg) 4892 { 4893 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4894 int ret = 0; 4895 4896 sa = memdup_user(arg, sizeof(*sa)); 4897 if (IS_ERR(sa)) 4898 return PTR_ERR(sa); 4899 4900 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4901 4902 if (ret) 4903 goto out; 4904 4905 ret = copy_to_user(arg, sa, sizeof(*sa)); 4906 if (ret) 4907 ret = -EFAULT; 4908 4909 out: 4910 kfree(sa); 4911 return ret; 4912 } 4913 4914 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4915 void __user *arg) 4916 { 4917 size_t len; 4918 int ret; 4919 char label[BTRFS_LABEL_SIZE]; 4920 4921 spin_lock(&fs_info->super_lock); 4922 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4923 spin_unlock(&fs_info->super_lock); 4924 4925 len = strnlen(label, BTRFS_LABEL_SIZE); 4926 4927 if (len == BTRFS_LABEL_SIZE) { 4928 btrfs_warn(fs_info, 4929 "label is too long, return the first %zu bytes", 4930 --len); 4931 } 4932 4933 ret = copy_to_user(arg, label, len); 4934 4935 return ret ? -EFAULT : 0; 4936 } 4937 4938 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4939 { 4940 struct inode *inode = file_inode(file); 4941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4942 struct btrfs_root *root = BTRFS_I(inode)->root; 4943 struct btrfs_super_block *super_block = fs_info->super_copy; 4944 struct btrfs_trans_handle *trans; 4945 char label[BTRFS_LABEL_SIZE]; 4946 int ret; 4947 4948 if (!capable(CAP_SYS_ADMIN)) 4949 return -EPERM; 4950 4951 if (copy_from_user(label, arg, sizeof(label))) 4952 return -EFAULT; 4953 4954 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4955 btrfs_err(fs_info, 4956 "unable to set label with more than %d bytes", 4957 BTRFS_LABEL_SIZE - 1); 4958 return -EINVAL; 4959 } 4960 4961 ret = mnt_want_write_file(file); 4962 if (ret) 4963 return ret; 4964 4965 trans = btrfs_start_transaction(root, 0); 4966 if (IS_ERR(trans)) { 4967 ret = PTR_ERR(trans); 4968 goto out_unlock; 4969 } 4970 4971 spin_lock(&fs_info->super_lock); 4972 strcpy(super_block->label, label); 4973 spin_unlock(&fs_info->super_lock); 4974 ret = btrfs_commit_transaction(trans); 4975 4976 out_unlock: 4977 mnt_drop_write_file(file); 4978 return ret; 4979 } 4980 4981 #define INIT_FEATURE_FLAGS(suffix) \ 4982 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4983 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4984 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4985 4986 int btrfs_ioctl_get_supported_features(void __user *arg) 4987 { 4988 static const struct btrfs_ioctl_feature_flags features[3] = { 4989 INIT_FEATURE_FLAGS(SUPP), 4990 INIT_FEATURE_FLAGS(SAFE_SET), 4991 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4992 }; 4993 4994 if (copy_to_user(arg, &features, sizeof(features))) 4995 return -EFAULT; 4996 4997 return 0; 4998 } 4999 5000 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 5001 void __user *arg) 5002 { 5003 struct btrfs_super_block *super_block = fs_info->super_copy; 5004 struct btrfs_ioctl_feature_flags features; 5005 5006 features.compat_flags = btrfs_super_compat_flags(super_block); 5007 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5008 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5009 5010 if (copy_to_user(arg, &features, sizeof(features))) 5011 return -EFAULT; 5012 5013 return 0; 5014 } 5015 5016 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5017 enum btrfs_feature_set set, 5018 u64 change_mask, u64 flags, u64 supported_flags, 5019 u64 safe_set, u64 safe_clear) 5020 { 5021 const char *type = btrfs_feature_set_name(set); 5022 char *names; 5023 u64 disallowed, unsupported; 5024 u64 set_mask = flags & change_mask; 5025 u64 clear_mask = ~flags & change_mask; 5026 5027 unsupported = set_mask & ~supported_flags; 5028 if (unsupported) { 5029 names = btrfs_printable_features(set, unsupported); 5030 if (names) { 5031 btrfs_warn(fs_info, 5032 "this kernel does not support the %s feature bit%s", 5033 names, strchr(names, ',') ? "s" : ""); 5034 kfree(names); 5035 } else 5036 btrfs_warn(fs_info, 5037 "this kernel does not support %s bits 0x%llx", 5038 type, unsupported); 5039 return -EOPNOTSUPP; 5040 } 5041 5042 disallowed = set_mask & ~safe_set; 5043 if (disallowed) { 5044 names = btrfs_printable_features(set, disallowed); 5045 if (names) { 5046 btrfs_warn(fs_info, 5047 "can't set the %s feature bit%s while mounted", 5048 names, strchr(names, ',') ? "s" : ""); 5049 kfree(names); 5050 } else 5051 btrfs_warn(fs_info, 5052 "can't set %s bits 0x%llx while mounted", 5053 type, disallowed); 5054 return -EPERM; 5055 } 5056 5057 disallowed = clear_mask & ~safe_clear; 5058 if (disallowed) { 5059 names = btrfs_printable_features(set, disallowed); 5060 if (names) { 5061 btrfs_warn(fs_info, 5062 "can't clear the %s feature bit%s while mounted", 5063 names, strchr(names, ',') ? "s" : ""); 5064 kfree(names); 5065 } else 5066 btrfs_warn(fs_info, 5067 "can't clear %s bits 0x%llx while mounted", 5068 type, disallowed); 5069 return -EPERM; 5070 } 5071 5072 return 0; 5073 } 5074 5075 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5076 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5077 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5078 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5079 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5080 5081 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5082 { 5083 struct inode *inode = file_inode(file); 5084 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5085 struct btrfs_root *root = BTRFS_I(inode)->root; 5086 struct btrfs_super_block *super_block = fs_info->super_copy; 5087 struct btrfs_ioctl_feature_flags flags[2]; 5088 struct btrfs_trans_handle *trans; 5089 u64 newflags; 5090 int ret; 5091 5092 if (!capable(CAP_SYS_ADMIN)) 5093 return -EPERM; 5094 5095 if (copy_from_user(flags, arg, sizeof(flags))) 5096 return -EFAULT; 5097 5098 /* Nothing to do */ 5099 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5100 !flags[0].incompat_flags) 5101 return 0; 5102 5103 ret = check_feature(fs_info, flags[0].compat_flags, 5104 flags[1].compat_flags, COMPAT); 5105 if (ret) 5106 return ret; 5107 5108 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5109 flags[1].compat_ro_flags, COMPAT_RO); 5110 if (ret) 5111 return ret; 5112 5113 ret = check_feature(fs_info, flags[0].incompat_flags, 5114 flags[1].incompat_flags, INCOMPAT); 5115 if (ret) 5116 return ret; 5117 5118 ret = mnt_want_write_file(file); 5119 if (ret) 5120 return ret; 5121 5122 trans = btrfs_start_transaction(root, 0); 5123 if (IS_ERR(trans)) { 5124 ret = PTR_ERR(trans); 5125 goto out_drop_write; 5126 } 5127 5128 spin_lock(&fs_info->super_lock); 5129 newflags = btrfs_super_compat_flags(super_block); 5130 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5131 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5132 btrfs_set_super_compat_flags(super_block, newflags); 5133 5134 newflags = btrfs_super_compat_ro_flags(super_block); 5135 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5136 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5137 btrfs_set_super_compat_ro_flags(super_block, newflags); 5138 5139 newflags = btrfs_super_incompat_flags(super_block); 5140 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5141 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5142 btrfs_set_super_incompat_flags(super_block, newflags); 5143 spin_unlock(&fs_info->super_lock); 5144 5145 ret = btrfs_commit_transaction(trans); 5146 out_drop_write: 5147 mnt_drop_write_file(file); 5148 5149 return ret; 5150 } 5151 5152 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5153 { 5154 struct btrfs_ioctl_send_args *arg; 5155 int ret; 5156 5157 if (compat) { 5158 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5159 struct btrfs_ioctl_send_args_32 args32; 5160 5161 ret = copy_from_user(&args32, argp, sizeof(args32)); 5162 if (ret) 5163 return -EFAULT; 5164 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5165 if (!arg) 5166 return -ENOMEM; 5167 arg->send_fd = args32.send_fd; 5168 arg->clone_sources_count = args32.clone_sources_count; 5169 arg->clone_sources = compat_ptr(args32.clone_sources); 5170 arg->parent_root = args32.parent_root; 5171 arg->flags = args32.flags; 5172 memcpy(arg->reserved, args32.reserved, 5173 sizeof(args32.reserved)); 5174 #else 5175 return -ENOTTY; 5176 #endif 5177 } else { 5178 arg = memdup_user(argp, sizeof(*arg)); 5179 if (IS_ERR(arg)) 5180 return PTR_ERR(arg); 5181 } 5182 ret = btrfs_ioctl_send(file, arg); 5183 kfree(arg); 5184 return ret; 5185 } 5186 5187 long btrfs_ioctl(struct file *file, unsigned int 5188 cmd, unsigned long arg) 5189 { 5190 struct inode *inode = file_inode(file); 5191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5192 struct btrfs_root *root = BTRFS_I(inode)->root; 5193 void __user *argp = (void __user *)arg; 5194 5195 switch (cmd) { 5196 case FS_IOC_GETVERSION: 5197 return btrfs_ioctl_getversion(file, argp); 5198 case FS_IOC_GETFSLABEL: 5199 return btrfs_ioctl_get_fslabel(fs_info, argp); 5200 case FS_IOC_SETFSLABEL: 5201 return btrfs_ioctl_set_fslabel(file, argp); 5202 case FITRIM: 5203 return btrfs_ioctl_fitrim(fs_info, argp); 5204 case BTRFS_IOC_SNAP_CREATE: 5205 return btrfs_ioctl_snap_create(file, argp, 0); 5206 case BTRFS_IOC_SNAP_CREATE_V2: 5207 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5208 case BTRFS_IOC_SUBVOL_CREATE: 5209 return btrfs_ioctl_snap_create(file, argp, 1); 5210 case BTRFS_IOC_SUBVOL_CREATE_V2: 5211 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5212 case BTRFS_IOC_SNAP_DESTROY: 5213 return btrfs_ioctl_snap_destroy(file, argp, false); 5214 case BTRFS_IOC_SNAP_DESTROY_V2: 5215 return btrfs_ioctl_snap_destroy(file, argp, true); 5216 case BTRFS_IOC_SUBVOL_GETFLAGS: 5217 return btrfs_ioctl_subvol_getflags(file, argp); 5218 case BTRFS_IOC_SUBVOL_SETFLAGS: 5219 return btrfs_ioctl_subvol_setflags(file, argp); 5220 case BTRFS_IOC_DEFAULT_SUBVOL: 5221 return btrfs_ioctl_default_subvol(file, argp); 5222 case BTRFS_IOC_DEFRAG: 5223 return btrfs_ioctl_defrag(file, NULL); 5224 case BTRFS_IOC_DEFRAG_RANGE: 5225 return btrfs_ioctl_defrag(file, argp); 5226 case BTRFS_IOC_RESIZE: 5227 return btrfs_ioctl_resize(file, argp); 5228 case BTRFS_IOC_ADD_DEV: 5229 return btrfs_ioctl_add_dev(fs_info, argp); 5230 case BTRFS_IOC_RM_DEV: 5231 return btrfs_ioctl_rm_dev(file, argp); 5232 case BTRFS_IOC_RM_DEV_V2: 5233 return btrfs_ioctl_rm_dev_v2(file, argp); 5234 case BTRFS_IOC_FS_INFO: 5235 return btrfs_ioctl_fs_info(fs_info, argp); 5236 case BTRFS_IOC_DEV_INFO: 5237 return btrfs_ioctl_dev_info(fs_info, argp); 5238 case BTRFS_IOC_BALANCE: 5239 return btrfs_ioctl_balance(file, NULL); 5240 case BTRFS_IOC_TREE_SEARCH: 5241 return btrfs_ioctl_tree_search(file, argp); 5242 case BTRFS_IOC_TREE_SEARCH_V2: 5243 return btrfs_ioctl_tree_search_v2(file, argp); 5244 case BTRFS_IOC_INO_LOOKUP: 5245 return btrfs_ioctl_ino_lookup(file, argp); 5246 case BTRFS_IOC_INO_PATHS: 5247 return btrfs_ioctl_ino_to_path(root, argp); 5248 case BTRFS_IOC_LOGICAL_INO: 5249 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5250 case BTRFS_IOC_LOGICAL_INO_V2: 5251 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5252 case BTRFS_IOC_SPACE_INFO: 5253 return btrfs_ioctl_space_info(fs_info, argp); 5254 case BTRFS_IOC_SYNC: { 5255 int ret; 5256 5257 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5258 if (ret) 5259 return ret; 5260 ret = btrfs_sync_fs(inode->i_sb, 1); 5261 /* 5262 * The transaction thread may want to do more work, 5263 * namely it pokes the cleaner kthread that will start 5264 * processing uncleaned subvols. 5265 */ 5266 wake_up_process(fs_info->transaction_kthread); 5267 return ret; 5268 } 5269 case BTRFS_IOC_START_SYNC: 5270 return btrfs_ioctl_start_sync(root, argp); 5271 case BTRFS_IOC_WAIT_SYNC: 5272 return btrfs_ioctl_wait_sync(fs_info, argp); 5273 case BTRFS_IOC_SCRUB: 5274 return btrfs_ioctl_scrub(file, argp); 5275 case BTRFS_IOC_SCRUB_CANCEL: 5276 return btrfs_ioctl_scrub_cancel(fs_info); 5277 case BTRFS_IOC_SCRUB_PROGRESS: 5278 return btrfs_ioctl_scrub_progress(fs_info, argp); 5279 case BTRFS_IOC_BALANCE_V2: 5280 return btrfs_ioctl_balance(file, argp); 5281 case BTRFS_IOC_BALANCE_CTL: 5282 return btrfs_ioctl_balance_ctl(fs_info, arg); 5283 case BTRFS_IOC_BALANCE_PROGRESS: 5284 return btrfs_ioctl_balance_progress(fs_info, argp); 5285 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5286 return btrfs_ioctl_set_received_subvol(file, argp); 5287 #ifdef CONFIG_64BIT 5288 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5289 return btrfs_ioctl_set_received_subvol_32(file, argp); 5290 #endif 5291 case BTRFS_IOC_SEND: 5292 return _btrfs_ioctl_send(file, argp, false); 5293 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5294 case BTRFS_IOC_SEND_32: 5295 return _btrfs_ioctl_send(file, argp, true); 5296 #endif 5297 case BTRFS_IOC_GET_DEV_STATS: 5298 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5299 case BTRFS_IOC_QUOTA_CTL: 5300 return btrfs_ioctl_quota_ctl(file, argp); 5301 case BTRFS_IOC_QGROUP_ASSIGN: 5302 return btrfs_ioctl_qgroup_assign(file, argp); 5303 case BTRFS_IOC_QGROUP_CREATE: 5304 return btrfs_ioctl_qgroup_create(file, argp); 5305 case BTRFS_IOC_QGROUP_LIMIT: 5306 return btrfs_ioctl_qgroup_limit(file, argp); 5307 case BTRFS_IOC_QUOTA_RESCAN: 5308 return btrfs_ioctl_quota_rescan(file, argp); 5309 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5310 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5311 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5312 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5313 case BTRFS_IOC_DEV_REPLACE: 5314 return btrfs_ioctl_dev_replace(fs_info, argp); 5315 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5316 return btrfs_ioctl_get_supported_features(argp); 5317 case BTRFS_IOC_GET_FEATURES: 5318 return btrfs_ioctl_get_features(fs_info, argp); 5319 case BTRFS_IOC_SET_FEATURES: 5320 return btrfs_ioctl_set_features(file, argp); 5321 case BTRFS_IOC_GET_SUBVOL_INFO: 5322 return btrfs_ioctl_get_subvol_info(file, argp); 5323 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5324 return btrfs_ioctl_get_subvol_rootref(file, argp); 5325 case BTRFS_IOC_INO_LOOKUP_USER: 5326 return btrfs_ioctl_ino_lookup_user(file, argp); 5327 case FS_IOC_ENABLE_VERITY: 5328 return fsverity_ioctl_enable(file, (const void __user *)argp); 5329 case FS_IOC_MEASURE_VERITY: 5330 return fsverity_ioctl_measure(file, argp); 5331 } 5332 5333 return -ENOTTY; 5334 } 5335 5336 #ifdef CONFIG_COMPAT 5337 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5338 { 5339 /* 5340 * These all access 32-bit values anyway so no further 5341 * handling is necessary. 5342 */ 5343 switch (cmd) { 5344 case FS_IOC32_GETVERSION: 5345 cmd = FS_IOC_GETVERSION; 5346 break; 5347 } 5348 5349 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5350 } 5351 #endif 5352