xref: /linux/fs/btrfs/ioctl.c (revision dadf03cfd4eaa09f1d0e8b2521de1e11d3e3bec1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
121 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
122 		unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
136 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = binode->flags;
140 	u32 ro_flags = binode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
170 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
171 {
172 	struct btrfs_inode *binode = BTRFS_I(inode);
173 	unsigned int new_fl = 0;
174 
175 	if (binode->flags & BTRFS_INODE_SYNC)
176 		new_fl |= S_SYNC;
177 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
178 		new_fl |= S_IMMUTABLE;
179 	if (binode->flags & BTRFS_INODE_APPEND)
180 		new_fl |= S_APPEND;
181 	if (binode->flags & BTRFS_INODE_NOATIME)
182 		new_fl |= S_NOATIME;
183 	if (binode->flags & BTRFS_INODE_DIRSYNC)
184 		new_fl |= S_DIRSYNC;
185 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
186 		new_fl |= S_VERITY;
187 
188 	set_mask_bits(&inode->i_flags,
189 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
190 		      S_VERITY, new_fl);
191 }
192 
193 /*
194  * Check if @flags are a supported and valid set of FS_*_FL flags and that
195  * the old and new flags are not conflicting
196  */
197 static int check_fsflags(unsigned int old_flags, unsigned int flags)
198 {
199 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
200 		      FS_NOATIME_FL | FS_NODUMP_FL | \
201 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
202 		      FS_NOCOMP_FL | FS_COMPR_FL |
203 		      FS_NOCOW_FL))
204 		return -EOPNOTSUPP;
205 
206 	/* COMPR and NOCOMP on new/old are valid */
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
211 		return -EINVAL;
212 
213 	/* NOCOW and compression options are mutually exclusive */
214 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
215 		return -EINVAL;
216 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
217 		return -EINVAL;
218 
219 	return 0;
220 }
221 
222 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
223 				    unsigned int flags)
224 {
225 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
226 		return -EPERM;
227 
228 	return 0;
229 }
230 
231 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
232 {
233 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
234 		return -ENAMETOOLONG;
235 	return 0;
236 }
237 
238 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
239 {
240 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
241 		return -ENAMETOOLONG;
242 	return 0;
243 }
244 
245 /*
246  * Set flags/xflags from the internal inode flags. The remaining items of
247  * fsxattr are zeroed.
248  */
249 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
250 {
251 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
252 
253 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
254 	return 0;
255 }
256 
257 int btrfs_fileattr_set(struct mnt_idmap *idmap,
258 		       struct dentry *dentry, struct fileattr *fa)
259 {
260 	struct inode *inode = d_inode(dentry);
261 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
262 	struct btrfs_inode *binode = BTRFS_I(inode);
263 	struct btrfs_root *root = binode->root;
264 	struct btrfs_trans_handle *trans;
265 	unsigned int fsflags, old_fsflags;
266 	int ret;
267 	const char *comp = NULL;
268 	u32 binode_flags;
269 
270 	if (btrfs_root_readonly(root))
271 		return -EROFS;
272 
273 	if (fileattr_has_fsx(fa))
274 		return -EOPNOTSUPP;
275 
276 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
277 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
278 	ret = check_fsflags(old_fsflags, fsflags);
279 	if (ret)
280 		return ret;
281 
282 	ret = check_fsflags_compatible(fs_info, fsflags);
283 	if (ret)
284 		return ret;
285 
286 	binode_flags = binode->flags;
287 	if (fsflags & FS_SYNC_FL)
288 		binode_flags |= BTRFS_INODE_SYNC;
289 	else
290 		binode_flags &= ~BTRFS_INODE_SYNC;
291 	if (fsflags & FS_IMMUTABLE_FL)
292 		binode_flags |= BTRFS_INODE_IMMUTABLE;
293 	else
294 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
295 	if (fsflags & FS_APPEND_FL)
296 		binode_flags |= BTRFS_INODE_APPEND;
297 	else
298 		binode_flags &= ~BTRFS_INODE_APPEND;
299 	if (fsflags & FS_NODUMP_FL)
300 		binode_flags |= BTRFS_INODE_NODUMP;
301 	else
302 		binode_flags &= ~BTRFS_INODE_NODUMP;
303 	if (fsflags & FS_NOATIME_FL)
304 		binode_flags |= BTRFS_INODE_NOATIME;
305 	else
306 		binode_flags &= ~BTRFS_INODE_NOATIME;
307 
308 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
309 	if (!fa->flags_valid) {
310 		/* 1 item for the inode */
311 		trans = btrfs_start_transaction(root, 1);
312 		if (IS_ERR(trans))
313 			return PTR_ERR(trans);
314 		goto update_flags;
315 	}
316 
317 	if (fsflags & FS_DIRSYNC_FL)
318 		binode_flags |= BTRFS_INODE_DIRSYNC;
319 	else
320 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
321 	if (fsflags & FS_NOCOW_FL) {
322 		if (S_ISREG(inode->i_mode)) {
323 			/*
324 			 * It's safe to turn csums off here, no extents exist.
325 			 * Otherwise we want the flag to reflect the real COW
326 			 * status of the file and will not set it.
327 			 */
328 			if (inode->i_size == 0)
329 				binode_flags |= BTRFS_INODE_NODATACOW |
330 						BTRFS_INODE_NODATASUM;
331 		} else {
332 			binode_flags |= BTRFS_INODE_NODATACOW;
333 		}
334 	} else {
335 		/*
336 		 * Revert back under same assumptions as above
337 		 */
338 		if (S_ISREG(inode->i_mode)) {
339 			if (inode->i_size == 0)
340 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
341 						  BTRFS_INODE_NODATASUM);
342 		} else {
343 			binode_flags &= ~BTRFS_INODE_NODATACOW;
344 		}
345 	}
346 
347 	/*
348 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
349 	 * flag may be changed automatically if compression code won't make
350 	 * things smaller.
351 	 */
352 	if (fsflags & FS_NOCOMP_FL) {
353 		binode_flags &= ~BTRFS_INODE_COMPRESS;
354 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
355 	} else if (fsflags & FS_COMPR_FL) {
356 
357 		if (IS_SWAPFILE(inode))
358 			return -ETXTBSY;
359 
360 		binode_flags |= BTRFS_INODE_COMPRESS;
361 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
362 
363 		comp = btrfs_compress_type2str(fs_info->compress_type);
364 		if (!comp || comp[0] == 0)
365 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
366 	} else {
367 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
368 	}
369 
370 	/*
371 	 * 1 for inode item
372 	 * 2 for properties
373 	 */
374 	trans = btrfs_start_transaction(root, 3);
375 	if (IS_ERR(trans))
376 		return PTR_ERR(trans);
377 
378 	if (comp) {
379 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
380 				     comp, strlen(comp), 0);
381 		if (ret) {
382 			btrfs_abort_transaction(trans, ret);
383 			goto out_end_trans;
384 		}
385 	} else {
386 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
387 				     NULL, 0, 0);
388 		if (ret && ret != -ENODATA) {
389 			btrfs_abort_transaction(trans, ret);
390 			goto out_end_trans;
391 		}
392 	}
393 
394 update_flags:
395 	binode->flags = binode_flags;
396 	btrfs_sync_inode_flags_to_i_flags(inode);
397 	inode_inc_iversion(inode);
398 	inode_set_ctime_current(inode);
399 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
400 
401  out_end_trans:
402 	btrfs_end_transaction(trans);
403 	return ret;
404 }
405 
406 /*
407  * Start exclusive operation @type, return true on success
408  */
409 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
410 			enum btrfs_exclusive_operation type)
411 {
412 	bool ret = false;
413 
414 	spin_lock(&fs_info->super_lock);
415 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
416 		fs_info->exclusive_operation = type;
417 		ret = true;
418 	}
419 	spin_unlock(&fs_info->super_lock);
420 
421 	return ret;
422 }
423 
424 /*
425  * Conditionally allow to enter the exclusive operation in case it's compatible
426  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
427  * btrfs_exclop_finish.
428  *
429  * Compatibility:
430  * - the same type is already running
431  * - when trying to add a device and balance has been paused
432  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
433  *   must check the condition first that would allow none -> @type
434  */
435 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
436 				 enum btrfs_exclusive_operation type)
437 {
438 	spin_lock(&fs_info->super_lock);
439 	if (fs_info->exclusive_operation == type ||
440 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
441 	     type == BTRFS_EXCLOP_DEV_ADD))
442 		return true;
443 
444 	spin_unlock(&fs_info->super_lock);
445 	return false;
446 }
447 
448 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
449 {
450 	spin_unlock(&fs_info->super_lock);
451 }
452 
453 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
454 {
455 	spin_lock(&fs_info->super_lock);
456 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
457 	spin_unlock(&fs_info->super_lock);
458 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
459 }
460 
461 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
462 			  enum btrfs_exclusive_operation op)
463 {
464 	switch (op) {
465 	case BTRFS_EXCLOP_BALANCE_PAUSED:
466 		spin_lock(&fs_info->super_lock);
467 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
468 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
469 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
470 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
471 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
472 		spin_unlock(&fs_info->super_lock);
473 		break;
474 	case BTRFS_EXCLOP_BALANCE:
475 		spin_lock(&fs_info->super_lock);
476 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
477 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
478 		spin_unlock(&fs_info->super_lock);
479 		break;
480 	default:
481 		btrfs_warn(fs_info,
482 			"invalid exclop balance operation %d requested", op);
483 	}
484 }
485 
486 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
487 {
488 	return put_user(inode->i_generation, arg);
489 }
490 
491 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
492 					void __user *arg)
493 {
494 	struct btrfs_device *device;
495 	struct fstrim_range range;
496 	u64 minlen = ULLONG_MAX;
497 	u64 num_devices = 0;
498 	int ret;
499 
500 	if (!capable(CAP_SYS_ADMIN))
501 		return -EPERM;
502 
503 	/*
504 	 * btrfs_trim_block_group() depends on space cache, which is not
505 	 * available in zoned filesystem. So, disallow fitrim on a zoned
506 	 * filesystem for now.
507 	 */
508 	if (btrfs_is_zoned(fs_info))
509 		return -EOPNOTSUPP;
510 
511 	/*
512 	 * If the fs is mounted with nologreplay, which requires it to be
513 	 * mounted in RO mode as well, we can not allow discard on free space
514 	 * inside block groups, because log trees refer to extents that are not
515 	 * pinned in a block group's free space cache (pinning the extents is
516 	 * precisely the first phase of replaying a log tree).
517 	 */
518 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
519 		return -EROFS;
520 
521 	rcu_read_lock();
522 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
523 				dev_list) {
524 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
525 			continue;
526 		num_devices++;
527 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
528 				    minlen);
529 	}
530 	rcu_read_unlock();
531 
532 	if (!num_devices)
533 		return -EOPNOTSUPP;
534 	if (copy_from_user(&range, arg, sizeof(range)))
535 		return -EFAULT;
536 
537 	/*
538 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
539 	 * block group is in the logical address space, which can be any
540 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
541 	 */
542 	if (range.len < fs_info->sectorsize)
543 		return -EINVAL;
544 
545 	range.minlen = max(range.minlen, minlen);
546 	ret = btrfs_trim_fs(fs_info, &range);
547 
548 	if (copy_to_user(arg, &range, sizeof(range)))
549 		return -EFAULT;
550 
551 	return ret;
552 }
553 
554 int __pure btrfs_is_empty_uuid(const u8 *uuid)
555 {
556 	int i;
557 
558 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
559 		if (uuid[i])
560 			return 0;
561 	}
562 	return 1;
563 }
564 
565 /*
566  * Calculate the number of transaction items to reserve for creating a subvolume
567  * or snapshot, not including the inode, directory entries, or parent directory.
568  */
569 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
570 {
571 	/*
572 	 * 1 to add root block
573 	 * 1 to add root item
574 	 * 1 to add root ref
575 	 * 1 to add root backref
576 	 * 1 to add UUID item
577 	 * 1 to add qgroup info
578 	 * 1 to add qgroup limit
579 	 *
580 	 * Ideally the last two would only be accounted if qgroups are enabled,
581 	 * but that can change between now and the time we would insert them.
582 	 */
583 	unsigned int num_items = 7;
584 
585 	if (inherit) {
586 		/* 2 to add qgroup relations for each inherited qgroup */
587 		num_items += 2 * inherit->num_qgroups;
588 	}
589 	return num_items;
590 }
591 
592 static noinline int create_subvol(struct mnt_idmap *idmap,
593 				  struct inode *dir, struct dentry *dentry,
594 				  struct btrfs_qgroup_inherit *inherit)
595 {
596 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
597 	struct btrfs_trans_handle *trans;
598 	struct btrfs_key key;
599 	struct btrfs_root_item *root_item;
600 	struct btrfs_inode_item *inode_item;
601 	struct extent_buffer *leaf;
602 	struct btrfs_root *root = BTRFS_I(dir)->root;
603 	struct btrfs_root *new_root;
604 	struct btrfs_block_rsv block_rsv;
605 	struct timespec64 cur_time = current_time(dir);
606 	struct btrfs_new_inode_args new_inode_args = {
607 		.dir = dir,
608 		.dentry = dentry,
609 		.subvol = true,
610 	};
611 	unsigned int trans_num_items;
612 	int ret;
613 	dev_t anon_dev;
614 	u64 objectid;
615 	u64 qgroup_reserved = 0;
616 
617 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
618 	if (!root_item)
619 		return -ENOMEM;
620 
621 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
622 	if (ret)
623 		goto out_root_item;
624 
625 	/*
626 	 * Don't create subvolume whose level is not zero. Or qgroup will be
627 	 * screwed up since it assumes subvolume qgroup's level to be 0.
628 	 */
629 	if (btrfs_qgroup_level(objectid)) {
630 		ret = -ENOSPC;
631 		goto out_root_item;
632 	}
633 
634 	ret = get_anon_bdev(&anon_dev);
635 	if (ret < 0)
636 		goto out_root_item;
637 
638 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
639 	if (!new_inode_args.inode) {
640 		ret = -ENOMEM;
641 		goto out_anon_dev;
642 	}
643 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
644 	if (ret)
645 		goto out_inode;
646 	trans_num_items += create_subvol_num_items(inherit);
647 
648 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
649 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
650 					       trans_num_items, false);
651 	if (ret)
652 		goto out_new_inode_args;
653 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
654 
655 	trans = btrfs_start_transaction(root, 0);
656 	if (IS_ERR(trans)) {
657 		ret = PTR_ERR(trans);
658 		goto out_release_rsv;
659 	}
660 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
661 	qgroup_reserved = 0;
662 	trans->block_rsv = &block_rsv;
663 	trans->bytes_reserved = block_rsv.size;
664 
665 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
666 	if (ret)
667 		goto out;
668 
669 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
670 				      0, BTRFS_NESTING_NORMAL);
671 	if (IS_ERR(leaf)) {
672 		ret = PTR_ERR(leaf);
673 		goto out;
674 	}
675 
676 	btrfs_mark_buffer_dirty(trans, leaf);
677 
678 	inode_item = &root_item->inode;
679 	btrfs_set_stack_inode_generation(inode_item, 1);
680 	btrfs_set_stack_inode_size(inode_item, 3);
681 	btrfs_set_stack_inode_nlink(inode_item, 1);
682 	btrfs_set_stack_inode_nbytes(inode_item,
683 				     fs_info->nodesize);
684 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
685 
686 	btrfs_set_root_flags(root_item, 0);
687 	btrfs_set_root_limit(root_item, 0);
688 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
689 
690 	btrfs_set_root_bytenr(root_item, leaf->start);
691 	btrfs_set_root_generation(root_item, trans->transid);
692 	btrfs_set_root_level(root_item, 0);
693 	btrfs_set_root_refs(root_item, 1);
694 	btrfs_set_root_used(root_item, leaf->len);
695 	btrfs_set_root_last_snapshot(root_item, 0);
696 
697 	btrfs_set_root_generation_v2(root_item,
698 			btrfs_root_generation(root_item));
699 	generate_random_guid(root_item->uuid);
700 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
701 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
702 	root_item->ctime = root_item->otime;
703 	btrfs_set_root_ctransid(root_item, trans->transid);
704 	btrfs_set_root_otransid(root_item, trans->transid);
705 
706 	btrfs_tree_unlock(leaf);
707 
708 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
709 
710 	key.objectid = objectid;
711 	key.offset = 0;
712 	key.type = BTRFS_ROOT_ITEM_KEY;
713 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
714 				root_item);
715 	if (ret) {
716 		int ret2;
717 
718 		/*
719 		 * Since we don't abort the transaction in this case, free the
720 		 * tree block so that we don't leak space and leave the
721 		 * filesystem in an inconsistent state (an extent item in the
722 		 * extent tree with a backreference for a root that does not
723 		 * exists).
724 		 */
725 		btrfs_tree_lock(leaf);
726 		btrfs_clear_buffer_dirty(trans, leaf);
727 		btrfs_tree_unlock(leaf);
728 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
729 		if (ret2 < 0)
730 			btrfs_abort_transaction(trans, ret2);
731 		free_extent_buffer(leaf);
732 		goto out;
733 	}
734 
735 	free_extent_buffer(leaf);
736 	leaf = NULL;
737 
738 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
739 	if (IS_ERR(new_root)) {
740 		ret = PTR_ERR(new_root);
741 		btrfs_abort_transaction(trans, ret);
742 		goto out;
743 	}
744 	/* anon_dev is owned by new_root now. */
745 	anon_dev = 0;
746 	BTRFS_I(new_inode_args.inode)->root = new_root;
747 	/* ... and new_root is owned by new_inode_args.inode now. */
748 
749 	ret = btrfs_record_root_in_trans(trans, new_root);
750 	if (ret) {
751 		btrfs_abort_transaction(trans, ret);
752 		goto out;
753 	}
754 
755 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
756 				  BTRFS_UUID_KEY_SUBVOL, objectid);
757 	if (ret) {
758 		btrfs_abort_transaction(trans, ret);
759 		goto out;
760 	}
761 
762 	ret = btrfs_create_new_inode(trans, &new_inode_args);
763 	if (ret) {
764 		btrfs_abort_transaction(trans, ret);
765 		goto out;
766 	}
767 
768 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
769 
770 	d_instantiate_new(dentry, new_inode_args.inode);
771 	new_inode_args.inode = NULL;
772 
773 out:
774 	trans->block_rsv = NULL;
775 	trans->bytes_reserved = 0;
776 	btrfs_end_transaction(trans);
777 out_release_rsv:
778 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
779 	if (qgroup_reserved)
780 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
781 out_new_inode_args:
782 	btrfs_new_inode_args_destroy(&new_inode_args);
783 out_inode:
784 	iput(new_inode_args.inode);
785 out_anon_dev:
786 	if (anon_dev)
787 		free_anon_bdev(anon_dev);
788 out_root_item:
789 	kfree(root_item);
790 	return ret;
791 }
792 
793 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
794 			   struct dentry *dentry, bool readonly,
795 			   struct btrfs_qgroup_inherit *inherit)
796 {
797 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
798 	struct inode *inode;
799 	struct btrfs_pending_snapshot *pending_snapshot;
800 	unsigned int trans_num_items;
801 	struct btrfs_trans_handle *trans;
802 	struct btrfs_block_rsv *block_rsv;
803 	u64 qgroup_reserved = 0;
804 	int ret;
805 
806 	/* We do not support snapshotting right now. */
807 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
808 		btrfs_warn(fs_info,
809 			   "extent tree v2 doesn't support snapshotting yet");
810 		return -EOPNOTSUPP;
811 	}
812 
813 	if (btrfs_root_refs(&root->root_item) == 0)
814 		return -ENOENT;
815 
816 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
817 		return -EINVAL;
818 
819 	if (atomic_read(&root->nr_swapfiles)) {
820 		btrfs_warn(fs_info,
821 			   "cannot snapshot subvolume with active swapfile");
822 		return -ETXTBSY;
823 	}
824 
825 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
826 	if (!pending_snapshot)
827 		return -ENOMEM;
828 
829 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
830 	if (ret < 0)
831 		goto free_pending;
832 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
833 			GFP_KERNEL);
834 	pending_snapshot->path = btrfs_alloc_path();
835 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
836 		ret = -ENOMEM;
837 		goto free_pending;
838 	}
839 
840 	block_rsv = &pending_snapshot->block_rsv;
841 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
842 	/*
843 	 * 1 to add dir item
844 	 * 1 to add dir index
845 	 * 1 to update parent inode item
846 	 */
847 	trans_num_items = create_subvol_num_items(inherit) + 3;
848 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
849 					       trans_num_items, false);
850 	if (ret)
851 		goto free_pending;
852 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
853 
854 	pending_snapshot->dentry = dentry;
855 	pending_snapshot->root = root;
856 	pending_snapshot->readonly = readonly;
857 	pending_snapshot->dir = BTRFS_I(dir);
858 	pending_snapshot->inherit = inherit;
859 
860 	trans = btrfs_start_transaction(root, 0);
861 	if (IS_ERR(trans)) {
862 		ret = PTR_ERR(trans);
863 		goto fail;
864 	}
865 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
866 	if (ret) {
867 		btrfs_end_transaction(trans);
868 		goto fail;
869 	}
870 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
871 	qgroup_reserved = 0;
872 
873 	trans->pending_snapshot = pending_snapshot;
874 
875 	ret = btrfs_commit_transaction(trans);
876 	if (ret)
877 		goto fail;
878 
879 	ret = pending_snapshot->error;
880 	if (ret)
881 		goto fail;
882 
883 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
884 	if (ret)
885 		goto fail;
886 
887 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
888 	if (IS_ERR(inode)) {
889 		ret = PTR_ERR(inode);
890 		goto fail;
891 	}
892 
893 	d_instantiate(dentry, inode);
894 	ret = 0;
895 	pending_snapshot->anon_dev = 0;
896 fail:
897 	/* Prevent double freeing of anon_dev */
898 	if (ret && pending_snapshot->snap)
899 		pending_snapshot->snap->anon_dev = 0;
900 	btrfs_put_root(pending_snapshot->snap);
901 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
902 	if (qgroup_reserved)
903 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
904 free_pending:
905 	if (pending_snapshot->anon_dev)
906 		free_anon_bdev(pending_snapshot->anon_dev);
907 	kfree(pending_snapshot->root_item);
908 	btrfs_free_path(pending_snapshot->path);
909 	kfree(pending_snapshot);
910 
911 	return ret;
912 }
913 
914 /*  copy of may_delete in fs/namei.c()
915  *	Check whether we can remove a link victim from directory dir, check
916  *  whether the type of victim is right.
917  *  1. We can't do it if dir is read-only (done in permission())
918  *  2. We should have write and exec permissions on dir
919  *  3. We can't remove anything from append-only dir
920  *  4. We can't do anything with immutable dir (done in permission())
921  *  5. If the sticky bit on dir is set we should either
922  *	a. be owner of dir, or
923  *	b. be owner of victim, or
924  *	c. have CAP_FOWNER capability
925  *  6. If the victim is append-only or immutable we can't do anything with
926  *     links pointing to it.
927  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
928  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
929  *  9. We can't remove a root or mountpoint.
930  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
931  *     nfs_async_unlink().
932  */
933 
934 static int btrfs_may_delete(struct mnt_idmap *idmap,
935 			    struct inode *dir, struct dentry *victim, int isdir)
936 {
937 	int error;
938 
939 	if (d_really_is_negative(victim))
940 		return -ENOENT;
941 
942 	/* The @victim is not inside @dir. */
943 	if (d_inode(victim->d_parent) != dir)
944 		return -EINVAL;
945 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
946 
947 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
948 	if (error)
949 		return error;
950 	if (IS_APPEND(dir))
951 		return -EPERM;
952 	if (check_sticky(idmap, dir, d_inode(victim)) ||
953 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
954 	    IS_SWAPFILE(d_inode(victim)))
955 		return -EPERM;
956 	if (isdir) {
957 		if (!d_is_dir(victim))
958 			return -ENOTDIR;
959 		if (IS_ROOT(victim))
960 			return -EBUSY;
961 	} else if (d_is_dir(victim))
962 		return -EISDIR;
963 	if (IS_DEADDIR(dir))
964 		return -ENOENT;
965 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
966 		return -EBUSY;
967 	return 0;
968 }
969 
970 /* copy of may_create in fs/namei.c() */
971 static inline int btrfs_may_create(struct mnt_idmap *idmap,
972 				   struct inode *dir, struct dentry *child)
973 {
974 	if (d_really_is_positive(child))
975 		return -EEXIST;
976 	if (IS_DEADDIR(dir))
977 		return -ENOENT;
978 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
979 		return -EOVERFLOW;
980 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
981 }
982 
983 /*
984  * Create a new subvolume below @parent.  This is largely modeled after
985  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
986  * inside this filesystem so it's quite a bit simpler.
987  */
988 static noinline int btrfs_mksubvol(const struct path *parent,
989 				   struct mnt_idmap *idmap,
990 				   const char *name, int namelen,
991 				   struct btrfs_root *snap_src,
992 				   bool readonly,
993 				   struct btrfs_qgroup_inherit *inherit)
994 {
995 	struct inode *dir = d_inode(parent->dentry);
996 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
997 	struct dentry *dentry;
998 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
999 	int error;
1000 
1001 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002 	if (error == -EINTR)
1003 		return error;
1004 
1005 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006 	error = PTR_ERR(dentry);
1007 	if (IS_ERR(dentry))
1008 		goto out_unlock;
1009 
1010 	error = btrfs_may_create(idmap, dir, dentry);
1011 	if (error)
1012 		goto out_dput;
1013 
1014 	/*
1015 	 * even if this name doesn't exist, we may get hash collisions.
1016 	 * check for them now when we can safely fail
1017 	 */
1018 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019 					       dir->i_ino, &name_str);
1020 	if (error)
1021 		goto out_dput;
1022 
1023 	down_read(&fs_info->subvol_sem);
1024 
1025 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026 		goto out_up_read;
1027 
1028 	if (snap_src)
1029 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030 	else
1031 		error = create_subvol(idmap, dir, dentry, inherit);
1032 
1033 	if (!error)
1034 		fsnotify_mkdir(dir, dentry);
1035 out_up_read:
1036 	up_read(&fs_info->subvol_sem);
1037 out_dput:
1038 	dput(dentry);
1039 out_unlock:
1040 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1041 	return error;
1042 }
1043 
1044 static noinline int btrfs_mksnapshot(const struct path *parent,
1045 				   struct mnt_idmap *idmap,
1046 				   const char *name, int namelen,
1047 				   struct btrfs_root *root,
1048 				   bool readonly,
1049 				   struct btrfs_qgroup_inherit *inherit)
1050 {
1051 	int ret;
1052 
1053 	/*
1054 	 * Force new buffered writes to reserve space even when NOCOW is
1055 	 * possible. This is to avoid later writeback (running dealloc) to
1056 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1057 	 */
1058 	btrfs_drew_read_lock(&root->snapshot_lock);
1059 
1060 	ret = btrfs_start_delalloc_snapshot(root, false);
1061 	if (ret)
1062 		goto out;
1063 
1064 	/*
1065 	 * All previous writes have started writeback in NOCOW mode, so now
1066 	 * we force future writes to fallback to COW mode during snapshot
1067 	 * creation.
1068 	 */
1069 	atomic_inc(&root->snapshot_force_cow);
1070 
1071 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1072 
1073 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1074 			     root, readonly, inherit);
1075 	atomic_dec(&root->snapshot_force_cow);
1076 out:
1077 	btrfs_drew_read_unlock(&root->snapshot_lock);
1078 	return ret;
1079 }
1080 
1081 /*
1082  * Try to start exclusive operation @type or cancel it if it's running.
1083  *
1084  * Return:
1085  *   0        - normal mode, newly claimed op started
1086  *  >0        - normal mode, something else is running,
1087  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1088  * ECANCELED  - cancel mode, successful cancel
1089  * ENOTCONN   - cancel mode, operation not running anymore
1090  */
1091 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1092 			enum btrfs_exclusive_operation type, bool cancel)
1093 {
1094 	if (!cancel) {
1095 		/* Start normal op */
1096 		if (!btrfs_exclop_start(fs_info, type))
1097 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1098 		/* Exclusive operation is now claimed */
1099 		return 0;
1100 	}
1101 
1102 	/* Cancel running op */
1103 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1104 		/*
1105 		 * This blocks any exclop finish from setting it to NONE, so we
1106 		 * request cancellation. Either it runs and we will wait for it,
1107 		 * or it has finished and no waiting will happen.
1108 		 */
1109 		atomic_inc(&fs_info->reloc_cancel_req);
1110 		btrfs_exclop_start_unlock(fs_info);
1111 
1112 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1113 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1114 				    TASK_INTERRUPTIBLE);
1115 
1116 		return -ECANCELED;
1117 	}
1118 
1119 	/* Something else is running or none */
1120 	return -ENOTCONN;
1121 }
1122 
1123 static noinline int btrfs_ioctl_resize(struct file *file,
1124 					void __user *arg)
1125 {
1126 	BTRFS_DEV_LOOKUP_ARGS(args);
1127 	struct inode *inode = file_inode(file);
1128 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1129 	u64 new_size;
1130 	u64 old_size;
1131 	u64 devid = 1;
1132 	struct btrfs_root *root = BTRFS_I(inode)->root;
1133 	struct btrfs_ioctl_vol_args *vol_args;
1134 	struct btrfs_trans_handle *trans;
1135 	struct btrfs_device *device = NULL;
1136 	char *sizestr;
1137 	char *retptr;
1138 	char *devstr = NULL;
1139 	int ret = 0;
1140 	int mod = 0;
1141 	bool cancel;
1142 
1143 	if (!capable(CAP_SYS_ADMIN))
1144 		return -EPERM;
1145 
1146 	ret = mnt_want_write_file(file);
1147 	if (ret)
1148 		return ret;
1149 
1150 	/*
1151 	 * Read the arguments before checking exclusivity to be able to
1152 	 * distinguish regular resize and cancel
1153 	 */
1154 	vol_args = memdup_user(arg, sizeof(*vol_args));
1155 	if (IS_ERR(vol_args)) {
1156 		ret = PTR_ERR(vol_args);
1157 		goto out_drop;
1158 	}
1159 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1160 	if (ret < 0)
1161 		goto out_free;
1162 
1163 	sizestr = vol_args->name;
1164 	cancel = (strcmp("cancel", sizestr) == 0);
1165 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1166 	if (ret)
1167 		goto out_free;
1168 	/* Exclusive operation is now claimed */
1169 
1170 	devstr = strchr(sizestr, ':');
1171 	if (devstr) {
1172 		sizestr = devstr + 1;
1173 		*devstr = '\0';
1174 		devstr = vol_args->name;
1175 		ret = kstrtoull(devstr, 10, &devid);
1176 		if (ret)
1177 			goto out_finish;
1178 		if (!devid) {
1179 			ret = -EINVAL;
1180 			goto out_finish;
1181 		}
1182 		btrfs_info(fs_info, "resizing devid %llu", devid);
1183 	}
1184 
1185 	args.devid = devid;
1186 	device = btrfs_find_device(fs_info->fs_devices, &args);
1187 	if (!device) {
1188 		btrfs_info(fs_info, "resizer unable to find device %llu",
1189 			   devid);
1190 		ret = -ENODEV;
1191 		goto out_finish;
1192 	}
1193 
1194 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1195 		btrfs_info(fs_info,
1196 			   "resizer unable to apply on readonly device %llu",
1197 		       devid);
1198 		ret = -EPERM;
1199 		goto out_finish;
1200 	}
1201 
1202 	if (!strcmp(sizestr, "max"))
1203 		new_size = bdev_nr_bytes(device->bdev);
1204 	else {
1205 		if (sizestr[0] == '-') {
1206 			mod = -1;
1207 			sizestr++;
1208 		} else if (sizestr[0] == '+') {
1209 			mod = 1;
1210 			sizestr++;
1211 		}
1212 		new_size = memparse(sizestr, &retptr);
1213 		if (*retptr != '\0' || new_size == 0) {
1214 			ret = -EINVAL;
1215 			goto out_finish;
1216 		}
1217 	}
1218 
1219 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1220 		ret = -EPERM;
1221 		goto out_finish;
1222 	}
1223 
1224 	old_size = btrfs_device_get_total_bytes(device);
1225 
1226 	if (mod < 0) {
1227 		if (new_size > old_size) {
1228 			ret = -EINVAL;
1229 			goto out_finish;
1230 		}
1231 		new_size = old_size - new_size;
1232 	} else if (mod > 0) {
1233 		if (new_size > ULLONG_MAX - old_size) {
1234 			ret = -ERANGE;
1235 			goto out_finish;
1236 		}
1237 		new_size = old_size + new_size;
1238 	}
1239 
1240 	if (new_size < SZ_256M) {
1241 		ret = -EINVAL;
1242 		goto out_finish;
1243 	}
1244 	if (new_size > bdev_nr_bytes(device->bdev)) {
1245 		ret = -EFBIG;
1246 		goto out_finish;
1247 	}
1248 
1249 	new_size = round_down(new_size, fs_info->sectorsize);
1250 
1251 	if (new_size > old_size) {
1252 		trans = btrfs_start_transaction(root, 0);
1253 		if (IS_ERR(trans)) {
1254 			ret = PTR_ERR(trans);
1255 			goto out_finish;
1256 		}
1257 		ret = btrfs_grow_device(trans, device, new_size);
1258 		btrfs_commit_transaction(trans);
1259 	} else if (new_size < old_size) {
1260 		ret = btrfs_shrink_device(device, new_size);
1261 	} /* equal, nothing need to do */
1262 
1263 	if (ret == 0 && new_size != old_size)
1264 		btrfs_info_in_rcu(fs_info,
1265 			"resize device %s (devid %llu) from %llu to %llu",
1266 			btrfs_dev_name(device), device->devid,
1267 			old_size, new_size);
1268 out_finish:
1269 	btrfs_exclop_finish(fs_info);
1270 out_free:
1271 	kfree(vol_args);
1272 out_drop:
1273 	mnt_drop_write_file(file);
1274 	return ret;
1275 }
1276 
1277 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1278 				struct mnt_idmap *idmap,
1279 				const char *name, unsigned long fd, int subvol,
1280 				bool readonly,
1281 				struct btrfs_qgroup_inherit *inherit)
1282 {
1283 	int namelen;
1284 	int ret = 0;
1285 
1286 	if (!S_ISDIR(file_inode(file)->i_mode))
1287 		return -ENOTDIR;
1288 
1289 	ret = mnt_want_write_file(file);
1290 	if (ret)
1291 		goto out;
1292 
1293 	namelen = strlen(name);
1294 	if (strchr(name, '/')) {
1295 		ret = -EINVAL;
1296 		goto out_drop_write;
1297 	}
1298 
1299 	if (name[0] == '.' &&
1300 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1301 		ret = -EEXIST;
1302 		goto out_drop_write;
1303 	}
1304 
1305 	if (subvol) {
1306 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1307 				     namelen, NULL, readonly, inherit);
1308 	} else {
1309 		struct fd src = fdget(fd);
1310 		struct inode *src_inode;
1311 		if (!fd_file(src)) {
1312 			ret = -EINVAL;
1313 			goto out_drop_write;
1314 		}
1315 
1316 		src_inode = file_inode(fd_file(src));
1317 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1318 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1319 				   "Snapshot src from another FS");
1320 			ret = -EXDEV;
1321 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1322 			/*
1323 			 * Subvolume creation is not restricted, but snapshots
1324 			 * are limited to own subvolumes only
1325 			 */
1326 			ret = -EPERM;
1327 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1328 			/*
1329 			 * Snapshots must be made with the src_inode referring
1330 			 * to the subvolume inode, otherwise the permission
1331 			 * checking above is useless because we may have
1332 			 * permission on a lower directory but not the subvol
1333 			 * itself.
1334 			 */
1335 			ret = -EINVAL;
1336 		} else {
1337 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1338 					       name, namelen,
1339 					       BTRFS_I(src_inode)->root,
1340 					       readonly, inherit);
1341 		}
1342 		fdput(src);
1343 	}
1344 out_drop_write:
1345 	mnt_drop_write_file(file);
1346 out:
1347 	return ret;
1348 }
1349 
1350 static noinline int btrfs_ioctl_snap_create(struct file *file,
1351 					    void __user *arg, int subvol)
1352 {
1353 	struct btrfs_ioctl_vol_args *vol_args;
1354 	int ret;
1355 
1356 	if (!S_ISDIR(file_inode(file)->i_mode))
1357 		return -ENOTDIR;
1358 
1359 	vol_args = memdup_user(arg, sizeof(*vol_args));
1360 	if (IS_ERR(vol_args))
1361 		return PTR_ERR(vol_args);
1362 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1363 	if (ret < 0)
1364 		goto out;
1365 
1366 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1367 					vol_args->name, vol_args->fd, subvol,
1368 					false, NULL);
1369 
1370 out:
1371 	kfree(vol_args);
1372 	return ret;
1373 }
1374 
1375 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1376 					       void __user *arg, int subvol)
1377 {
1378 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1379 	int ret;
1380 	bool readonly = false;
1381 	struct btrfs_qgroup_inherit *inherit = NULL;
1382 
1383 	if (!S_ISDIR(file_inode(file)->i_mode))
1384 		return -ENOTDIR;
1385 
1386 	vol_args = memdup_user(arg, sizeof(*vol_args));
1387 	if (IS_ERR(vol_args))
1388 		return PTR_ERR(vol_args);
1389 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1390 	if (ret < 0)
1391 		goto free_args;
1392 
1393 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1394 		ret = -EOPNOTSUPP;
1395 		goto free_args;
1396 	}
1397 
1398 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1399 		readonly = true;
1400 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1401 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1402 
1403 		if (vol_args->size < sizeof(*inherit) ||
1404 		    vol_args->size > PAGE_SIZE) {
1405 			ret = -EINVAL;
1406 			goto free_args;
1407 		}
1408 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1409 		if (IS_ERR(inherit)) {
1410 			ret = PTR_ERR(inherit);
1411 			goto free_args;
1412 		}
1413 
1414 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1415 		if (ret < 0)
1416 			goto free_inherit;
1417 	}
1418 
1419 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1420 					vol_args->name, vol_args->fd, subvol,
1421 					readonly, inherit);
1422 	if (ret)
1423 		goto free_inherit;
1424 free_inherit:
1425 	kfree(inherit);
1426 free_args:
1427 	kfree(vol_args);
1428 	return ret;
1429 }
1430 
1431 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1432 						void __user *arg)
1433 {
1434 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1435 	struct btrfs_root *root = BTRFS_I(inode)->root;
1436 	int ret = 0;
1437 	u64 flags = 0;
1438 
1439 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1440 		return -EINVAL;
1441 
1442 	down_read(&fs_info->subvol_sem);
1443 	if (btrfs_root_readonly(root))
1444 		flags |= BTRFS_SUBVOL_RDONLY;
1445 	up_read(&fs_info->subvol_sem);
1446 
1447 	if (copy_to_user(arg, &flags, sizeof(flags)))
1448 		ret = -EFAULT;
1449 
1450 	return ret;
1451 }
1452 
1453 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1454 					      void __user *arg)
1455 {
1456 	struct inode *inode = file_inode(file);
1457 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1458 	struct btrfs_root *root = BTRFS_I(inode)->root;
1459 	struct btrfs_trans_handle *trans;
1460 	u64 root_flags;
1461 	u64 flags;
1462 	int ret = 0;
1463 
1464 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1465 		return -EPERM;
1466 
1467 	ret = mnt_want_write_file(file);
1468 	if (ret)
1469 		goto out;
1470 
1471 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1472 		ret = -EINVAL;
1473 		goto out_drop_write;
1474 	}
1475 
1476 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1477 		ret = -EFAULT;
1478 		goto out_drop_write;
1479 	}
1480 
1481 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1482 		ret = -EOPNOTSUPP;
1483 		goto out_drop_write;
1484 	}
1485 
1486 	down_write(&fs_info->subvol_sem);
1487 
1488 	/* nothing to do */
1489 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1490 		goto out_drop_sem;
1491 
1492 	root_flags = btrfs_root_flags(&root->root_item);
1493 	if (flags & BTRFS_SUBVOL_RDONLY) {
1494 		btrfs_set_root_flags(&root->root_item,
1495 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1496 	} else {
1497 		/*
1498 		 * Block RO -> RW transition if this subvolume is involved in
1499 		 * send
1500 		 */
1501 		spin_lock(&root->root_item_lock);
1502 		if (root->send_in_progress == 0) {
1503 			btrfs_set_root_flags(&root->root_item,
1504 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1505 			spin_unlock(&root->root_item_lock);
1506 		} else {
1507 			spin_unlock(&root->root_item_lock);
1508 			btrfs_warn(fs_info,
1509 				   "Attempt to set subvolume %llu read-write during send",
1510 				   btrfs_root_id(root));
1511 			ret = -EPERM;
1512 			goto out_drop_sem;
1513 		}
1514 	}
1515 
1516 	trans = btrfs_start_transaction(root, 1);
1517 	if (IS_ERR(trans)) {
1518 		ret = PTR_ERR(trans);
1519 		goto out_reset;
1520 	}
1521 
1522 	ret = btrfs_update_root(trans, fs_info->tree_root,
1523 				&root->root_key, &root->root_item);
1524 	if (ret < 0) {
1525 		btrfs_end_transaction(trans);
1526 		goto out_reset;
1527 	}
1528 
1529 	ret = btrfs_commit_transaction(trans);
1530 
1531 out_reset:
1532 	if (ret)
1533 		btrfs_set_root_flags(&root->root_item, root_flags);
1534 out_drop_sem:
1535 	up_write(&fs_info->subvol_sem);
1536 out_drop_write:
1537 	mnt_drop_write_file(file);
1538 out:
1539 	return ret;
1540 }
1541 
1542 static noinline int key_in_sk(struct btrfs_key *key,
1543 			      struct btrfs_ioctl_search_key *sk)
1544 {
1545 	struct btrfs_key test;
1546 	int ret;
1547 
1548 	test.objectid = sk->min_objectid;
1549 	test.type = sk->min_type;
1550 	test.offset = sk->min_offset;
1551 
1552 	ret = btrfs_comp_cpu_keys(key, &test);
1553 	if (ret < 0)
1554 		return 0;
1555 
1556 	test.objectid = sk->max_objectid;
1557 	test.type = sk->max_type;
1558 	test.offset = sk->max_offset;
1559 
1560 	ret = btrfs_comp_cpu_keys(key, &test);
1561 	if (ret > 0)
1562 		return 0;
1563 	return 1;
1564 }
1565 
1566 static noinline int copy_to_sk(struct btrfs_path *path,
1567 			       struct btrfs_key *key,
1568 			       struct btrfs_ioctl_search_key *sk,
1569 			       u64 *buf_size,
1570 			       char __user *ubuf,
1571 			       unsigned long *sk_offset,
1572 			       int *num_found)
1573 {
1574 	u64 found_transid;
1575 	struct extent_buffer *leaf;
1576 	struct btrfs_ioctl_search_header sh;
1577 	struct btrfs_key test;
1578 	unsigned long item_off;
1579 	unsigned long item_len;
1580 	int nritems;
1581 	int i;
1582 	int slot;
1583 	int ret = 0;
1584 
1585 	leaf = path->nodes[0];
1586 	slot = path->slots[0];
1587 	nritems = btrfs_header_nritems(leaf);
1588 
1589 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1590 		i = nritems;
1591 		goto advance_key;
1592 	}
1593 	found_transid = btrfs_header_generation(leaf);
1594 
1595 	for (i = slot; i < nritems; i++) {
1596 		item_off = btrfs_item_ptr_offset(leaf, i);
1597 		item_len = btrfs_item_size(leaf, i);
1598 
1599 		btrfs_item_key_to_cpu(leaf, key, i);
1600 		if (!key_in_sk(key, sk))
1601 			continue;
1602 
1603 		if (sizeof(sh) + item_len > *buf_size) {
1604 			if (*num_found) {
1605 				ret = 1;
1606 				goto out;
1607 			}
1608 
1609 			/*
1610 			 * return one empty item back for v1, which does not
1611 			 * handle -EOVERFLOW
1612 			 */
1613 
1614 			*buf_size = sizeof(sh) + item_len;
1615 			item_len = 0;
1616 			ret = -EOVERFLOW;
1617 		}
1618 
1619 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1620 			ret = 1;
1621 			goto out;
1622 		}
1623 
1624 		sh.objectid = key->objectid;
1625 		sh.offset = key->offset;
1626 		sh.type = key->type;
1627 		sh.len = item_len;
1628 		sh.transid = found_transid;
1629 
1630 		/*
1631 		 * Copy search result header. If we fault then loop again so we
1632 		 * can fault in the pages and -EFAULT there if there's a
1633 		 * problem. Otherwise we'll fault and then copy the buffer in
1634 		 * properly this next time through
1635 		 */
1636 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1637 			ret = 0;
1638 			goto out;
1639 		}
1640 
1641 		*sk_offset += sizeof(sh);
1642 
1643 		if (item_len) {
1644 			char __user *up = ubuf + *sk_offset;
1645 			/*
1646 			 * Copy the item, same behavior as above, but reset the
1647 			 * * sk_offset so we copy the full thing again.
1648 			 */
1649 			if (read_extent_buffer_to_user_nofault(leaf, up,
1650 						item_off, item_len)) {
1651 				ret = 0;
1652 				*sk_offset -= sizeof(sh);
1653 				goto out;
1654 			}
1655 
1656 			*sk_offset += item_len;
1657 		}
1658 		(*num_found)++;
1659 
1660 		if (ret) /* -EOVERFLOW from above */
1661 			goto out;
1662 
1663 		if (*num_found >= sk->nr_items) {
1664 			ret = 1;
1665 			goto out;
1666 		}
1667 	}
1668 advance_key:
1669 	ret = 0;
1670 	test.objectid = sk->max_objectid;
1671 	test.type = sk->max_type;
1672 	test.offset = sk->max_offset;
1673 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1674 		ret = 1;
1675 	else if (key->offset < (u64)-1)
1676 		key->offset++;
1677 	else if (key->type < (u8)-1) {
1678 		key->offset = 0;
1679 		key->type++;
1680 	} else if (key->objectid < (u64)-1) {
1681 		key->offset = 0;
1682 		key->type = 0;
1683 		key->objectid++;
1684 	} else
1685 		ret = 1;
1686 out:
1687 	/*
1688 	 *  0: all items from this leaf copied, continue with next
1689 	 *  1: * more items can be copied, but unused buffer is too small
1690 	 *     * all items were found
1691 	 *     Either way, it will stops the loop which iterates to the next
1692 	 *     leaf
1693 	 *  -EOVERFLOW: item was to large for buffer
1694 	 *  -EFAULT: could not copy extent buffer back to userspace
1695 	 */
1696 	return ret;
1697 }
1698 
1699 static noinline int search_ioctl(struct inode *inode,
1700 				 struct btrfs_ioctl_search_key *sk,
1701 				 u64 *buf_size,
1702 				 char __user *ubuf)
1703 {
1704 	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1705 	struct btrfs_root *root;
1706 	struct btrfs_key key;
1707 	struct btrfs_path *path;
1708 	int ret;
1709 	int num_found = 0;
1710 	unsigned long sk_offset = 0;
1711 
1712 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1713 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1714 		return -EOVERFLOW;
1715 	}
1716 
1717 	path = btrfs_alloc_path();
1718 	if (!path)
1719 		return -ENOMEM;
1720 
1721 	if (sk->tree_id == 0) {
1722 		/* search the root of the inode that was passed */
1723 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1724 	} else {
1725 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1726 		if (IS_ERR(root)) {
1727 			btrfs_free_path(path);
1728 			return PTR_ERR(root);
1729 		}
1730 	}
1731 
1732 	key.objectid = sk->min_objectid;
1733 	key.type = sk->min_type;
1734 	key.offset = sk->min_offset;
1735 
1736 	while (1) {
1737 		ret = -EFAULT;
1738 		/*
1739 		 * Ensure that the whole user buffer is faulted in at sub-page
1740 		 * granularity, otherwise the loop may live-lock.
1741 		 */
1742 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1743 					       *buf_size - sk_offset))
1744 			break;
1745 
1746 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1747 		if (ret != 0) {
1748 			if (ret > 0)
1749 				ret = 0;
1750 			goto err;
1751 		}
1752 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1753 				 &sk_offset, &num_found);
1754 		btrfs_release_path(path);
1755 		if (ret)
1756 			break;
1757 
1758 	}
1759 	if (ret > 0)
1760 		ret = 0;
1761 err:
1762 	sk->nr_items = num_found;
1763 	btrfs_put_root(root);
1764 	btrfs_free_path(path);
1765 	return ret;
1766 }
1767 
1768 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1769 					    void __user *argp)
1770 {
1771 	struct btrfs_ioctl_search_args __user *uargs = argp;
1772 	struct btrfs_ioctl_search_key sk;
1773 	int ret;
1774 	u64 buf_size;
1775 
1776 	if (!capable(CAP_SYS_ADMIN))
1777 		return -EPERM;
1778 
1779 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1780 		return -EFAULT;
1781 
1782 	buf_size = sizeof(uargs->buf);
1783 
1784 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1785 
1786 	/*
1787 	 * In the origin implementation an overflow is handled by returning a
1788 	 * search header with a len of zero, so reset ret.
1789 	 */
1790 	if (ret == -EOVERFLOW)
1791 		ret = 0;
1792 
1793 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1794 		ret = -EFAULT;
1795 	return ret;
1796 }
1797 
1798 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1799 					       void __user *argp)
1800 {
1801 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1802 	struct btrfs_ioctl_search_args_v2 args;
1803 	int ret;
1804 	u64 buf_size;
1805 	const u64 buf_limit = SZ_16M;
1806 
1807 	if (!capable(CAP_SYS_ADMIN))
1808 		return -EPERM;
1809 
1810 	/* copy search header and buffer size */
1811 	if (copy_from_user(&args, uarg, sizeof(args)))
1812 		return -EFAULT;
1813 
1814 	buf_size = args.buf_size;
1815 
1816 	/* limit result size to 16MB */
1817 	if (buf_size > buf_limit)
1818 		buf_size = buf_limit;
1819 
1820 	ret = search_ioctl(inode, &args.key, &buf_size,
1821 			   (char __user *)(&uarg->buf[0]));
1822 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1823 		ret = -EFAULT;
1824 	else if (ret == -EOVERFLOW &&
1825 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1826 		ret = -EFAULT;
1827 
1828 	return ret;
1829 }
1830 
1831 /*
1832  * Search INODE_REFs to identify path name of 'dirid' directory
1833  * in a 'tree_id' tree. and sets path name to 'name'.
1834  */
1835 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1836 				u64 tree_id, u64 dirid, char *name)
1837 {
1838 	struct btrfs_root *root;
1839 	struct btrfs_key key;
1840 	char *ptr;
1841 	int ret = -1;
1842 	int slot;
1843 	int len;
1844 	int total_len = 0;
1845 	struct btrfs_inode_ref *iref;
1846 	struct extent_buffer *l;
1847 	struct btrfs_path *path;
1848 
1849 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1850 		name[0]='\0';
1851 		return 0;
1852 	}
1853 
1854 	path = btrfs_alloc_path();
1855 	if (!path)
1856 		return -ENOMEM;
1857 
1858 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1859 
1860 	root = btrfs_get_fs_root(info, tree_id, true);
1861 	if (IS_ERR(root)) {
1862 		ret = PTR_ERR(root);
1863 		root = NULL;
1864 		goto out;
1865 	}
1866 
1867 	key.objectid = dirid;
1868 	key.type = BTRFS_INODE_REF_KEY;
1869 	key.offset = (u64)-1;
1870 
1871 	while (1) {
1872 		ret = btrfs_search_backwards(root, &key, path);
1873 		if (ret < 0)
1874 			goto out;
1875 		else if (ret > 0) {
1876 			ret = -ENOENT;
1877 			goto out;
1878 		}
1879 
1880 		l = path->nodes[0];
1881 		slot = path->slots[0];
1882 
1883 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1884 		len = btrfs_inode_ref_name_len(l, iref);
1885 		ptr -= len + 1;
1886 		total_len += len + 1;
1887 		if (ptr < name) {
1888 			ret = -ENAMETOOLONG;
1889 			goto out;
1890 		}
1891 
1892 		*(ptr + len) = '/';
1893 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1894 
1895 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1896 			break;
1897 
1898 		btrfs_release_path(path);
1899 		key.objectid = key.offset;
1900 		key.offset = (u64)-1;
1901 		dirid = key.objectid;
1902 	}
1903 	memmove(name, ptr, total_len);
1904 	name[total_len] = '\0';
1905 	ret = 0;
1906 out:
1907 	btrfs_put_root(root);
1908 	btrfs_free_path(path);
1909 	return ret;
1910 }
1911 
1912 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1913 				struct inode *inode,
1914 				struct btrfs_ioctl_ino_lookup_user_args *args)
1915 {
1916 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1917 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1918 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1919 	u64 dirid = args->dirid;
1920 	unsigned long item_off;
1921 	unsigned long item_len;
1922 	struct btrfs_inode_ref *iref;
1923 	struct btrfs_root_ref *rref;
1924 	struct btrfs_root *root = NULL;
1925 	struct btrfs_path *path;
1926 	struct btrfs_key key, key2;
1927 	struct extent_buffer *leaf;
1928 	struct inode *temp_inode;
1929 	char *ptr;
1930 	int slot;
1931 	int len;
1932 	int total_len = 0;
1933 	int ret;
1934 
1935 	path = btrfs_alloc_path();
1936 	if (!path)
1937 		return -ENOMEM;
1938 
1939 	/*
1940 	 * If the bottom subvolume does not exist directly under upper_limit,
1941 	 * construct the path in from the bottom up.
1942 	 */
1943 	if (dirid != upper_limit) {
1944 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1945 
1946 		root = btrfs_get_fs_root(fs_info, treeid, true);
1947 		if (IS_ERR(root)) {
1948 			ret = PTR_ERR(root);
1949 			goto out;
1950 		}
1951 
1952 		key.objectid = dirid;
1953 		key.type = BTRFS_INODE_REF_KEY;
1954 		key.offset = (u64)-1;
1955 		while (1) {
1956 			ret = btrfs_search_backwards(root, &key, path);
1957 			if (ret < 0)
1958 				goto out_put;
1959 			else if (ret > 0) {
1960 				ret = -ENOENT;
1961 				goto out_put;
1962 			}
1963 
1964 			leaf = path->nodes[0];
1965 			slot = path->slots[0];
1966 
1967 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1968 			len = btrfs_inode_ref_name_len(leaf, iref);
1969 			ptr -= len + 1;
1970 			total_len += len + 1;
1971 			if (ptr < args->path) {
1972 				ret = -ENAMETOOLONG;
1973 				goto out_put;
1974 			}
1975 
1976 			*(ptr + len) = '/';
1977 			read_extent_buffer(leaf, ptr,
1978 					(unsigned long)(iref + 1), len);
1979 
1980 			/* Check the read+exec permission of this directory */
1981 			ret = btrfs_previous_item(root, path, dirid,
1982 						  BTRFS_INODE_ITEM_KEY);
1983 			if (ret < 0) {
1984 				goto out_put;
1985 			} else if (ret > 0) {
1986 				ret = -ENOENT;
1987 				goto out_put;
1988 			}
1989 
1990 			leaf = path->nodes[0];
1991 			slot = path->slots[0];
1992 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1993 			if (key2.objectid != dirid) {
1994 				ret = -ENOENT;
1995 				goto out_put;
1996 			}
1997 
1998 			/*
1999 			 * We don't need the path anymore, so release it and
2000 			 * avoid deadlocks and lockdep warnings in case
2001 			 * btrfs_iget() needs to lookup the inode from its root
2002 			 * btree and lock the same leaf.
2003 			 */
2004 			btrfs_release_path(path);
2005 			temp_inode = btrfs_iget(key2.objectid, root);
2006 			if (IS_ERR(temp_inode)) {
2007 				ret = PTR_ERR(temp_inode);
2008 				goto out_put;
2009 			}
2010 			ret = inode_permission(idmap, temp_inode,
2011 					       MAY_READ | MAY_EXEC);
2012 			iput(temp_inode);
2013 			if (ret) {
2014 				ret = -EACCES;
2015 				goto out_put;
2016 			}
2017 
2018 			if (key.offset == upper_limit)
2019 				break;
2020 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2021 				ret = -EACCES;
2022 				goto out_put;
2023 			}
2024 
2025 			key.objectid = key.offset;
2026 			key.offset = (u64)-1;
2027 			dirid = key.objectid;
2028 		}
2029 
2030 		memmove(args->path, ptr, total_len);
2031 		args->path[total_len] = '\0';
2032 		btrfs_put_root(root);
2033 		root = NULL;
2034 		btrfs_release_path(path);
2035 	}
2036 
2037 	/* Get the bottom subvolume's name from ROOT_REF */
2038 	key.objectid = treeid;
2039 	key.type = BTRFS_ROOT_REF_KEY;
2040 	key.offset = args->treeid;
2041 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2042 	if (ret < 0) {
2043 		goto out;
2044 	} else if (ret > 0) {
2045 		ret = -ENOENT;
2046 		goto out;
2047 	}
2048 
2049 	leaf = path->nodes[0];
2050 	slot = path->slots[0];
2051 	btrfs_item_key_to_cpu(leaf, &key, slot);
2052 
2053 	item_off = btrfs_item_ptr_offset(leaf, slot);
2054 	item_len = btrfs_item_size(leaf, slot);
2055 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2056 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2057 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2058 		ret = -EINVAL;
2059 		goto out;
2060 	}
2061 
2062 	/* Copy subvolume's name */
2063 	item_off += sizeof(struct btrfs_root_ref);
2064 	item_len -= sizeof(struct btrfs_root_ref);
2065 	read_extent_buffer(leaf, args->name, item_off, item_len);
2066 	args->name[item_len] = 0;
2067 
2068 out_put:
2069 	btrfs_put_root(root);
2070 out:
2071 	btrfs_free_path(path);
2072 	return ret;
2073 }
2074 
2075 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2076 					   void __user *argp)
2077 {
2078 	struct btrfs_ioctl_ino_lookup_args *args;
2079 	int ret = 0;
2080 
2081 	args = memdup_user(argp, sizeof(*args));
2082 	if (IS_ERR(args))
2083 		return PTR_ERR(args);
2084 
2085 	/*
2086 	 * Unprivileged query to obtain the containing subvolume root id. The
2087 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2088 	 */
2089 	if (args->treeid == 0)
2090 		args->treeid = btrfs_root_id(root);
2091 
2092 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2093 		args->name[0] = 0;
2094 		goto out;
2095 	}
2096 
2097 	if (!capable(CAP_SYS_ADMIN)) {
2098 		ret = -EPERM;
2099 		goto out;
2100 	}
2101 
2102 	ret = btrfs_search_path_in_tree(root->fs_info,
2103 					args->treeid, args->objectid,
2104 					args->name);
2105 
2106 out:
2107 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2108 		ret = -EFAULT;
2109 
2110 	kfree(args);
2111 	return ret;
2112 }
2113 
2114 /*
2115  * Version of ino_lookup ioctl (unprivileged)
2116  *
2117  * The main differences from ino_lookup ioctl are:
2118  *
2119  *   1. Read + Exec permission will be checked using inode_permission() during
2120  *      path construction. -EACCES will be returned in case of failure.
2121  *   2. Path construction will be stopped at the inode number which corresponds
2122  *      to the fd with which this ioctl is called. If constructed path does not
2123  *      exist under fd's inode, -EACCES will be returned.
2124  *   3. The name of bottom subvolume is also searched and filled.
2125  */
2126 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2127 {
2128 	struct btrfs_ioctl_ino_lookup_user_args *args;
2129 	struct inode *inode;
2130 	int ret;
2131 
2132 	args = memdup_user(argp, sizeof(*args));
2133 	if (IS_ERR(args))
2134 		return PTR_ERR(args);
2135 
2136 	inode = file_inode(file);
2137 
2138 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2139 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2140 		/*
2141 		 * The subvolume does not exist under fd with which this is
2142 		 * called
2143 		 */
2144 		kfree(args);
2145 		return -EACCES;
2146 	}
2147 
2148 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2149 
2150 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2151 		ret = -EFAULT;
2152 
2153 	kfree(args);
2154 	return ret;
2155 }
2156 
2157 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2158 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2159 {
2160 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2161 	struct btrfs_fs_info *fs_info;
2162 	struct btrfs_root *root;
2163 	struct btrfs_path *path;
2164 	struct btrfs_key key;
2165 	struct btrfs_root_item *root_item;
2166 	struct btrfs_root_ref *rref;
2167 	struct extent_buffer *leaf;
2168 	unsigned long item_off;
2169 	unsigned long item_len;
2170 	int slot;
2171 	int ret = 0;
2172 
2173 	path = btrfs_alloc_path();
2174 	if (!path)
2175 		return -ENOMEM;
2176 
2177 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2178 	if (!subvol_info) {
2179 		btrfs_free_path(path);
2180 		return -ENOMEM;
2181 	}
2182 
2183 	fs_info = BTRFS_I(inode)->root->fs_info;
2184 
2185 	/* Get root_item of inode's subvolume */
2186 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2187 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2188 	if (IS_ERR(root)) {
2189 		ret = PTR_ERR(root);
2190 		goto out_free;
2191 	}
2192 	root_item = &root->root_item;
2193 
2194 	subvol_info->treeid = key.objectid;
2195 
2196 	subvol_info->generation = btrfs_root_generation(root_item);
2197 	subvol_info->flags = btrfs_root_flags(root_item);
2198 
2199 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2200 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2201 						    BTRFS_UUID_SIZE);
2202 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2203 						    BTRFS_UUID_SIZE);
2204 
2205 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2206 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2207 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2208 
2209 	subvol_info->otransid = btrfs_root_otransid(root_item);
2210 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2211 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2212 
2213 	subvol_info->stransid = btrfs_root_stransid(root_item);
2214 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2215 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2216 
2217 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2218 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2219 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2220 
2221 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2222 		/* Search root tree for ROOT_BACKREF of this subvolume */
2223 		key.type = BTRFS_ROOT_BACKREF_KEY;
2224 		key.offset = 0;
2225 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2226 		if (ret < 0) {
2227 			goto out;
2228 		} else if (path->slots[0] >=
2229 			   btrfs_header_nritems(path->nodes[0])) {
2230 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2231 			if (ret < 0) {
2232 				goto out;
2233 			} else if (ret > 0) {
2234 				ret = -EUCLEAN;
2235 				goto out;
2236 			}
2237 		}
2238 
2239 		leaf = path->nodes[0];
2240 		slot = path->slots[0];
2241 		btrfs_item_key_to_cpu(leaf, &key, slot);
2242 		if (key.objectid == subvol_info->treeid &&
2243 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2244 			subvol_info->parent_id = key.offset;
2245 
2246 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2247 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2248 
2249 			item_off = btrfs_item_ptr_offset(leaf, slot)
2250 					+ sizeof(struct btrfs_root_ref);
2251 			item_len = btrfs_item_size(leaf, slot)
2252 					- sizeof(struct btrfs_root_ref);
2253 			read_extent_buffer(leaf, subvol_info->name,
2254 					   item_off, item_len);
2255 		} else {
2256 			ret = -ENOENT;
2257 			goto out;
2258 		}
2259 	}
2260 
2261 	btrfs_free_path(path);
2262 	path = NULL;
2263 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2264 		ret = -EFAULT;
2265 
2266 out:
2267 	btrfs_put_root(root);
2268 out_free:
2269 	btrfs_free_path(path);
2270 	kfree(subvol_info);
2271 	return ret;
2272 }
2273 
2274 /*
2275  * Return ROOT_REF information of the subvolume containing this inode
2276  * except the subvolume name.
2277  */
2278 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2279 					  void __user *argp)
2280 {
2281 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2282 	struct btrfs_root_ref *rref;
2283 	struct btrfs_path *path;
2284 	struct btrfs_key key;
2285 	struct extent_buffer *leaf;
2286 	u64 objectid;
2287 	int slot;
2288 	int ret;
2289 	u8 found;
2290 
2291 	path = btrfs_alloc_path();
2292 	if (!path)
2293 		return -ENOMEM;
2294 
2295 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2296 	if (IS_ERR(rootrefs)) {
2297 		btrfs_free_path(path);
2298 		return PTR_ERR(rootrefs);
2299 	}
2300 
2301 	objectid = btrfs_root_id(root);
2302 	key.objectid = objectid;
2303 	key.type = BTRFS_ROOT_REF_KEY;
2304 	key.offset = rootrefs->min_treeid;
2305 	found = 0;
2306 
2307 	root = root->fs_info->tree_root;
2308 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2309 	if (ret < 0) {
2310 		goto out;
2311 	} else if (path->slots[0] >=
2312 		   btrfs_header_nritems(path->nodes[0])) {
2313 		ret = btrfs_next_leaf(root, path);
2314 		if (ret < 0) {
2315 			goto out;
2316 		} else if (ret > 0) {
2317 			ret = -EUCLEAN;
2318 			goto out;
2319 		}
2320 	}
2321 	while (1) {
2322 		leaf = path->nodes[0];
2323 		slot = path->slots[0];
2324 
2325 		btrfs_item_key_to_cpu(leaf, &key, slot);
2326 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2327 			ret = 0;
2328 			goto out;
2329 		}
2330 
2331 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2332 			ret = -EOVERFLOW;
2333 			goto out;
2334 		}
2335 
2336 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2337 		rootrefs->rootref[found].treeid = key.offset;
2338 		rootrefs->rootref[found].dirid =
2339 				  btrfs_root_ref_dirid(leaf, rref);
2340 		found++;
2341 
2342 		ret = btrfs_next_item(root, path);
2343 		if (ret < 0) {
2344 			goto out;
2345 		} else if (ret > 0) {
2346 			ret = -EUCLEAN;
2347 			goto out;
2348 		}
2349 	}
2350 
2351 out:
2352 	btrfs_free_path(path);
2353 
2354 	if (!ret || ret == -EOVERFLOW) {
2355 		rootrefs->num_items = found;
2356 		/* update min_treeid for next search */
2357 		if (found)
2358 			rootrefs->min_treeid =
2359 				rootrefs->rootref[found - 1].treeid + 1;
2360 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2361 			ret = -EFAULT;
2362 	}
2363 
2364 	kfree(rootrefs);
2365 
2366 	return ret;
2367 }
2368 
2369 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2370 					     void __user *arg,
2371 					     bool destroy_v2)
2372 {
2373 	struct dentry *parent = file->f_path.dentry;
2374 	struct dentry *dentry;
2375 	struct inode *dir = d_inode(parent);
2376 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2377 	struct inode *inode;
2378 	struct btrfs_root *root = BTRFS_I(dir)->root;
2379 	struct btrfs_root *dest = NULL;
2380 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2381 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2382 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2383 	char *subvol_name, *subvol_name_ptr = NULL;
2384 	int subvol_namelen;
2385 	int ret = 0;
2386 	bool destroy_parent = false;
2387 
2388 	/* We don't support snapshots with extent tree v2 yet. */
2389 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2390 		btrfs_err(fs_info,
2391 			  "extent tree v2 doesn't support snapshot deletion yet");
2392 		return -EOPNOTSUPP;
2393 	}
2394 
2395 	if (destroy_v2) {
2396 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2397 		if (IS_ERR(vol_args2))
2398 			return PTR_ERR(vol_args2);
2399 
2400 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2401 			ret = -EOPNOTSUPP;
2402 			goto out;
2403 		}
2404 
2405 		/*
2406 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2407 		 * name, same as v1 currently does.
2408 		 */
2409 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2410 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2411 			if (ret < 0)
2412 				goto out;
2413 			subvol_name = vol_args2->name;
2414 
2415 			ret = mnt_want_write_file(file);
2416 			if (ret)
2417 				goto out;
2418 		} else {
2419 			struct inode *old_dir;
2420 
2421 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2422 				ret = -EINVAL;
2423 				goto out;
2424 			}
2425 
2426 			ret = mnt_want_write_file(file);
2427 			if (ret)
2428 				goto out;
2429 
2430 			dentry = btrfs_get_dentry(fs_info->sb,
2431 					BTRFS_FIRST_FREE_OBJECTID,
2432 					vol_args2->subvolid, 0);
2433 			if (IS_ERR(dentry)) {
2434 				ret = PTR_ERR(dentry);
2435 				goto out_drop_write;
2436 			}
2437 
2438 			/*
2439 			 * Change the default parent since the subvolume being
2440 			 * deleted can be outside of the current mount point.
2441 			 */
2442 			parent = btrfs_get_parent(dentry);
2443 
2444 			/*
2445 			 * At this point dentry->d_name can point to '/' if the
2446 			 * subvolume we want to destroy is outsite of the
2447 			 * current mount point, so we need to release the
2448 			 * current dentry and execute the lookup to return a new
2449 			 * one with ->d_name pointing to the
2450 			 * <mount point>/subvol_name.
2451 			 */
2452 			dput(dentry);
2453 			if (IS_ERR(parent)) {
2454 				ret = PTR_ERR(parent);
2455 				goto out_drop_write;
2456 			}
2457 			old_dir = dir;
2458 			dir = d_inode(parent);
2459 
2460 			/*
2461 			 * If v2 was used with SPEC_BY_ID, a new parent was
2462 			 * allocated since the subvolume can be outside of the
2463 			 * current mount point. Later on we need to release this
2464 			 * new parent dentry.
2465 			 */
2466 			destroy_parent = true;
2467 
2468 			/*
2469 			 * On idmapped mounts, deletion via subvolid is
2470 			 * restricted to subvolumes that are immediate
2471 			 * ancestors of the inode referenced by the file
2472 			 * descriptor in the ioctl. Otherwise the idmapping
2473 			 * could potentially be abused to delete subvolumes
2474 			 * anywhere in the filesystem the user wouldn't be able
2475 			 * to delete without an idmapped mount.
2476 			 */
2477 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2478 				ret = -EOPNOTSUPP;
2479 				goto free_parent;
2480 			}
2481 
2482 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2483 						fs_info, vol_args2->subvolid);
2484 			if (IS_ERR(subvol_name_ptr)) {
2485 				ret = PTR_ERR(subvol_name_ptr);
2486 				goto free_parent;
2487 			}
2488 			/* subvol_name_ptr is already nul terminated */
2489 			subvol_name = (char *)kbasename(subvol_name_ptr);
2490 		}
2491 	} else {
2492 		vol_args = memdup_user(arg, sizeof(*vol_args));
2493 		if (IS_ERR(vol_args))
2494 			return PTR_ERR(vol_args);
2495 
2496 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2497 		if (ret < 0)
2498 			goto out;
2499 
2500 		subvol_name = vol_args->name;
2501 
2502 		ret = mnt_want_write_file(file);
2503 		if (ret)
2504 			goto out;
2505 	}
2506 
2507 	subvol_namelen = strlen(subvol_name);
2508 
2509 	if (strchr(subvol_name, '/') ||
2510 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2511 		ret = -EINVAL;
2512 		goto free_subvol_name;
2513 	}
2514 
2515 	if (!S_ISDIR(dir->i_mode)) {
2516 		ret = -ENOTDIR;
2517 		goto free_subvol_name;
2518 	}
2519 
2520 	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2521 	if (ret == -EINTR)
2522 		goto free_subvol_name;
2523 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2524 	if (IS_ERR(dentry)) {
2525 		ret = PTR_ERR(dentry);
2526 		goto out_unlock_dir;
2527 	}
2528 
2529 	if (d_really_is_negative(dentry)) {
2530 		ret = -ENOENT;
2531 		goto out_dput;
2532 	}
2533 
2534 	inode = d_inode(dentry);
2535 	dest = BTRFS_I(inode)->root;
2536 	if (!capable(CAP_SYS_ADMIN)) {
2537 		/*
2538 		 * Regular user.  Only allow this with a special mount
2539 		 * option, when the user has write+exec access to the
2540 		 * subvol root, and when rmdir(2) would have been
2541 		 * allowed.
2542 		 *
2543 		 * Note that this is _not_ check that the subvol is
2544 		 * empty or doesn't contain data that we wouldn't
2545 		 * otherwise be able to delete.
2546 		 *
2547 		 * Users who want to delete empty subvols should try
2548 		 * rmdir(2).
2549 		 */
2550 		ret = -EPERM;
2551 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2552 			goto out_dput;
2553 
2554 		/*
2555 		 * Do not allow deletion if the parent dir is the same
2556 		 * as the dir to be deleted.  That means the ioctl
2557 		 * must be called on the dentry referencing the root
2558 		 * of the subvol, not a random directory contained
2559 		 * within it.
2560 		 */
2561 		ret = -EINVAL;
2562 		if (root == dest)
2563 			goto out_dput;
2564 
2565 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2566 		if (ret)
2567 			goto out_dput;
2568 	}
2569 
2570 	/* check if subvolume may be deleted by a user */
2571 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2572 	if (ret)
2573 		goto out_dput;
2574 
2575 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2576 		ret = -EINVAL;
2577 		goto out_dput;
2578 	}
2579 
2580 	btrfs_inode_lock(BTRFS_I(inode), 0);
2581 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2582 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2583 	if (!ret)
2584 		d_delete_notify(dir, dentry);
2585 
2586 out_dput:
2587 	dput(dentry);
2588 out_unlock_dir:
2589 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2590 free_subvol_name:
2591 	kfree(subvol_name_ptr);
2592 free_parent:
2593 	if (destroy_parent)
2594 		dput(parent);
2595 out_drop_write:
2596 	mnt_drop_write_file(file);
2597 out:
2598 	kfree(vol_args2);
2599 	kfree(vol_args);
2600 	return ret;
2601 }
2602 
2603 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2604 {
2605 	struct inode *inode = file_inode(file);
2606 	struct btrfs_root *root = BTRFS_I(inode)->root;
2607 	struct btrfs_ioctl_defrag_range_args range = {0};
2608 	int ret;
2609 
2610 	ret = mnt_want_write_file(file);
2611 	if (ret)
2612 		return ret;
2613 
2614 	if (btrfs_root_readonly(root)) {
2615 		ret = -EROFS;
2616 		goto out;
2617 	}
2618 
2619 	switch (inode->i_mode & S_IFMT) {
2620 	case S_IFDIR:
2621 		if (!capable(CAP_SYS_ADMIN)) {
2622 			ret = -EPERM;
2623 			goto out;
2624 		}
2625 		ret = btrfs_defrag_root(root);
2626 		break;
2627 	case S_IFREG:
2628 		/*
2629 		 * Note that this does not check the file descriptor for write
2630 		 * access. This prevents defragmenting executables that are
2631 		 * running and allows defrag on files open in read-only mode.
2632 		 */
2633 		if (!capable(CAP_SYS_ADMIN) &&
2634 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2635 			ret = -EPERM;
2636 			goto out;
2637 		}
2638 
2639 		if (argp) {
2640 			if (copy_from_user(&range, argp, sizeof(range))) {
2641 				ret = -EFAULT;
2642 				goto out;
2643 			}
2644 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2645 				ret = -EOPNOTSUPP;
2646 				goto out;
2647 			}
2648 			/* compression requires us to start the IO */
2649 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2650 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2651 				range.extent_thresh = (u32)-1;
2652 			}
2653 		} else {
2654 			/* the rest are all set to zero by kzalloc */
2655 			range.len = (u64)-1;
2656 		}
2657 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2658 					&range, BTRFS_OLDEST_GENERATION, 0);
2659 		if (ret > 0)
2660 			ret = 0;
2661 		break;
2662 	default:
2663 		ret = -EINVAL;
2664 	}
2665 out:
2666 	mnt_drop_write_file(file);
2667 	return ret;
2668 }
2669 
2670 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2671 {
2672 	struct btrfs_ioctl_vol_args *vol_args;
2673 	bool restore_op = false;
2674 	int ret;
2675 
2676 	if (!capable(CAP_SYS_ADMIN))
2677 		return -EPERM;
2678 
2679 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2680 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2681 		return -EINVAL;
2682 	}
2683 
2684 	if (fs_info->fs_devices->temp_fsid) {
2685 		btrfs_err(fs_info,
2686 			  "device add not supported on cloned temp-fsid mount");
2687 		return -EINVAL;
2688 	}
2689 
2690 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2691 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2692 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2693 
2694 		/*
2695 		 * We can do the device add because we have a paused balanced,
2696 		 * change the exclusive op type and remember we should bring
2697 		 * back the paused balance
2698 		 */
2699 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2700 		btrfs_exclop_start_unlock(fs_info);
2701 		restore_op = true;
2702 	}
2703 
2704 	vol_args = memdup_user(arg, sizeof(*vol_args));
2705 	if (IS_ERR(vol_args)) {
2706 		ret = PTR_ERR(vol_args);
2707 		goto out;
2708 	}
2709 
2710 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2711 	if (ret < 0)
2712 		goto out_free;
2713 
2714 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2715 
2716 	if (!ret)
2717 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2718 
2719 out_free:
2720 	kfree(vol_args);
2721 out:
2722 	if (restore_op)
2723 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2724 	else
2725 		btrfs_exclop_finish(fs_info);
2726 	return ret;
2727 }
2728 
2729 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2730 {
2731 	BTRFS_DEV_LOOKUP_ARGS(args);
2732 	struct inode *inode = file_inode(file);
2733 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2734 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2735 	struct file *bdev_file = NULL;
2736 	int ret;
2737 	bool cancel = false;
2738 
2739 	if (!capable(CAP_SYS_ADMIN))
2740 		return -EPERM;
2741 
2742 	vol_args = memdup_user(arg, sizeof(*vol_args));
2743 	if (IS_ERR(vol_args))
2744 		return PTR_ERR(vol_args);
2745 
2746 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2747 		ret = -EOPNOTSUPP;
2748 		goto out;
2749 	}
2750 
2751 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2752 	if (ret < 0)
2753 		goto out;
2754 
2755 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2756 		args.devid = vol_args->devid;
2757 	} else if (!strcmp("cancel", vol_args->name)) {
2758 		cancel = true;
2759 	} else {
2760 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2761 		if (ret)
2762 			goto out;
2763 	}
2764 
2765 	ret = mnt_want_write_file(file);
2766 	if (ret)
2767 		goto out;
2768 
2769 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2770 					   cancel);
2771 	if (ret)
2772 		goto err_drop;
2773 
2774 	/* Exclusive operation is now claimed */
2775 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2776 
2777 	btrfs_exclop_finish(fs_info);
2778 
2779 	if (!ret) {
2780 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2781 			btrfs_info(fs_info, "device deleted: id %llu",
2782 					vol_args->devid);
2783 		else
2784 			btrfs_info(fs_info, "device deleted: %s",
2785 					vol_args->name);
2786 	}
2787 err_drop:
2788 	mnt_drop_write_file(file);
2789 	if (bdev_file)
2790 		fput(bdev_file);
2791 out:
2792 	btrfs_put_dev_args_from_path(&args);
2793 	kfree(vol_args);
2794 	return ret;
2795 }
2796 
2797 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2798 {
2799 	BTRFS_DEV_LOOKUP_ARGS(args);
2800 	struct inode *inode = file_inode(file);
2801 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2802 	struct btrfs_ioctl_vol_args *vol_args;
2803 	struct file *bdev_file = NULL;
2804 	int ret;
2805 	bool cancel = false;
2806 
2807 	if (!capable(CAP_SYS_ADMIN))
2808 		return -EPERM;
2809 
2810 	vol_args = memdup_user(arg, sizeof(*vol_args));
2811 	if (IS_ERR(vol_args))
2812 		return PTR_ERR(vol_args);
2813 
2814 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2815 	if (ret < 0)
2816 		goto out_free;
2817 
2818 	if (!strcmp("cancel", vol_args->name)) {
2819 		cancel = true;
2820 	} else {
2821 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2822 		if (ret)
2823 			goto out;
2824 	}
2825 
2826 	ret = mnt_want_write_file(file);
2827 	if (ret)
2828 		goto out;
2829 
2830 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2831 					   cancel);
2832 	if (ret == 0) {
2833 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2834 		if (!ret)
2835 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2836 		btrfs_exclop_finish(fs_info);
2837 	}
2838 
2839 	mnt_drop_write_file(file);
2840 	if (bdev_file)
2841 		fput(bdev_file);
2842 out:
2843 	btrfs_put_dev_args_from_path(&args);
2844 out_free:
2845 	kfree(vol_args);
2846 	return ret;
2847 }
2848 
2849 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2850 				void __user *arg)
2851 {
2852 	struct btrfs_ioctl_fs_info_args *fi_args;
2853 	struct btrfs_device *device;
2854 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2855 	u64 flags_in;
2856 	int ret = 0;
2857 
2858 	fi_args = memdup_user(arg, sizeof(*fi_args));
2859 	if (IS_ERR(fi_args))
2860 		return PTR_ERR(fi_args);
2861 
2862 	flags_in = fi_args->flags;
2863 	memset(fi_args, 0, sizeof(*fi_args));
2864 
2865 	rcu_read_lock();
2866 	fi_args->num_devices = fs_devices->num_devices;
2867 
2868 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2869 		if (device->devid > fi_args->max_id)
2870 			fi_args->max_id = device->devid;
2871 	}
2872 	rcu_read_unlock();
2873 
2874 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2875 	fi_args->nodesize = fs_info->nodesize;
2876 	fi_args->sectorsize = fs_info->sectorsize;
2877 	fi_args->clone_alignment = fs_info->sectorsize;
2878 
2879 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2880 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2881 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2882 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2883 	}
2884 
2885 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2886 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2887 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2888 	}
2889 
2890 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2891 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2892 		       sizeof(fi_args->metadata_uuid));
2893 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2894 	}
2895 
2896 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2897 		ret = -EFAULT;
2898 
2899 	kfree(fi_args);
2900 	return ret;
2901 }
2902 
2903 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2904 				 void __user *arg)
2905 {
2906 	BTRFS_DEV_LOOKUP_ARGS(args);
2907 	struct btrfs_ioctl_dev_info_args *di_args;
2908 	struct btrfs_device *dev;
2909 	int ret = 0;
2910 
2911 	di_args = memdup_user(arg, sizeof(*di_args));
2912 	if (IS_ERR(di_args))
2913 		return PTR_ERR(di_args);
2914 
2915 	args.devid = di_args->devid;
2916 	if (!btrfs_is_empty_uuid(di_args->uuid))
2917 		args.uuid = di_args->uuid;
2918 
2919 	rcu_read_lock();
2920 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2921 	if (!dev) {
2922 		ret = -ENODEV;
2923 		goto out;
2924 	}
2925 
2926 	di_args->devid = dev->devid;
2927 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2928 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2929 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2930 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2931 	if (dev->name)
2932 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2933 	else
2934 		di_args->path[0] = '\0';
2935 
2936 out:
2937 	rcu_read_unlock();
2938 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2939 		ret = -EFAULT;
2940 
2941 	kfree(di_args);
2942 	return ret;
2943 }
2944 
2945 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2946 {
2947 	struct inode *inode = file_inode(file);
2948 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2949 	struct btrfs_root *root = BTRFS_I(inode)->root;
2950 	struct btrfs_root *new_root;
2951 	struct btrfs_dir_item *di;
2952 	struct btrfs_trans_handle *trans;
2953 	struct btrfs_path *path = NULL;
2954 	struct btrfs_disk_key disk_key;
2955 	struct fscrypt_str name = FSTR_INIT("default", 7);
2956 	u64 objectid = 0;
2957 	u64 dir_id;
2958 	int ret;
2959 
2960 	if (!capable(CAP_SYS_ADMIN))
2961 		return -EPERM;
2962 
2963 	ret = mnt_want_write_file(file);
2964 	if (ret)
2965 		return ret;
2966 
2967 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2968 		ret = -EFAULT;
2969 		goto out;
2970 	}
2971 
2972 	if (!objectid)
2973 		objectid = BTRFS_FS_TREE_OBJECTID;
2974 
2975 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2976 	if (IS_ERR(new_root)) {
2977 		ret = PTR_ERR(new_root);
2978 		goto out;
2979 	}
2980 	if (!is_fstree(btrfs_root_id(new_root))) {
2981 		ret = -ENOENT;
2982 		goto out_free;
2983 	}
2984 
2985 	path = btrfs_alloc_path();
2986 	if (!path) {
2987 		ret = -ENOMEM;
2988 		goto out_free;
2989 	}
2990 
2991 	trans = btrfs_start_transaction(root, 1);
2992 	if (IS_ERR(trans)) {
2993 		ret = PTR_ERR(trans);
2994 		goto out_free;
2995 	}
2996 
2997 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2998 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2999 				   dir_id, &name, 1);
3000 	if (IS_ERR_OR_NULL(di)) {
3001 		btrfs_release_path(path);
3002 		btrfs_end_transaction(trans);
3003 		btrfs_err(fs_info,
3004 			  "Umm, you don't have the default diritem, this isn't going to work");
3005 		ret = -ENOENT;
3006 		goto out_free;
3007 	}
3008 
3009 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3010 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3011 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3012 	btrfs_release_path(path);
3013 
3014 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3015 	btrfs_end_transaction(trans);
3016 out_free:
3017 	btrfs_put_root(new_root);
3018 	btrfs_free_path(path);
3019 out:
3020 	mnt_drop_write_file(file);
3021 	return ret;
3022 }
3023 
3024 static void get_block_group_info(struct list_head *groups_list,
3025 				 struct btrfs_ioctl_space_info *space)
3026 {
3027 	struct btrfs_block_group *block_group;
3028 
3029 	space->total_bytes = 0;
3030 	space->used_bytes = 0;
3031 	space->flags = 0;
3032 	list_for_each_entry(block_group, groups_list, list) {
3033 		space->flags = block_group->flags;
3034 		space->total_bytes += block_group->length;
3035 		space->used_bytes += block_group->used;
3036 	}
3037 }
3038 
3039 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3040 				   void __user *arg)
3041 {
3042 	struct btrfs_ioctl_space_args space_args = { 0 };
3043 	struct btrfs_ioctl_space_info space;
3044 	struct btrfs_ioctl_space_info *dest;
3045 	struct btrfs_ioctl_space_info *dest_orig;
3046 	struct btrfs_ioctl_space_info __user *user_dest;
3047 	struct btrfs_space_info *info;
3048 	static const u64 types[] = {
3049 		BTRFS_BLOCK_GROUP_DATA,
3050 		BTRFS_BLOCK_GROUP_SYSTEM,
3051 		BTRFS_BLOCK_GROUP_METADATA,
3052 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3053 	};
3054 	int num_types = 4;
3055 	int alloc_size;
3056 	int ret = 0;
3057 	u64 slot_count = 0;
3058 	int i, c;
3059 
3060 	if (copy_from_user(&space_args,
3061 			   (struct btrfs_ioctl_space_args __user *)arg,
3062 			   sizeof(space_args)))
3063 		return -EFAULT;
3064 
3065 	for (i = 0; i < num_types; i++) {
3066 		struct btrfs_space_info *tmp;
3067 
3068 		info = NULL;
3069 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3070 			if (tmp->flags == types[i]) {
3071 				info = tmp;
3072 				break;
3073 			}
3074 		}
3075 
3076 		if (!info)
3077 			continue;
3078 
3079 		down_read(&info->groups_sem);
3080 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3081 			if (!list_empty(&info->block_groups[c]))
3082 				slot_count++;
3083 		}
3084 		up_read(&info->groups_sem);
3085 	}
3086 
3087 	/*
3088 	 * Global block reserve, exported as a space_info
3089 	 */
3090 	slot_count++;
3091 
3092 	/* space_slots == 0 means they are asking for a count */
3093 	if (space_args.space_slots == 0) {
3094 		space_args.total_spaces = slot_count;
3095 		goto out;
3096 	}
3097 
3098 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3099 
3100 	alloc_size = sizeof(*dest) * slot_count;
3101 
3102 	/* we generally have at most 6 or so space infos, one for each raid
3103 	 * level.  So, a whole page should be more than enough for everyone
3104 	 */
3105 	if (alloc_size > PAGE_SIZE)
3106 		return -ENOMEM;
3107 
3108 	space_args.total_spaces = 0;
3109 	dest = kmalloc(alloc_size, GFP_KERNEL);
3110 	if (!dest)
3111 		return -ENOMEM;
3112 	dest_orig = dest;
3113 
3114 	/* now we have a buffer to copy into */
3115 	for (i = 0; i < num_types; i++) {
3116 		struct btrfs_space_info *tmp;
3117 
3118 		if (!slot_count)
3119 			break;
3120 
3121 		info = NULL;
3122 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3123 			if (tmp->flags == types[i]) {
3124 				info = tmp;
3125 				break;
3126 			}
3127 		}
3128 
3129 		if (!info)
3130 			continue;
3131 		down_read(&info->groups_sem);
3132 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3133 			if (!list_empty(&info->block_groups[c])) {
3134 				get_block_group_info(&info->block_groups[c],
3135 						     &space);
3136 				memcpy(dest, &space, sizeof(space));
3137 				dest++;
3138 				space_args.total_spaces++;
3139 				slot_count--;
3140 			}
3141 			if (!slot_count)
3142 				break;
3143 		}
3144 		up_read(&info->groups_sem);
3145 	}
3146 
3147 	/*
3148 	 * Add global block reserve
3149 	 */
3150 	if (slot_count) {
3151 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3152 
3153 		spin_lock(&block_rsv->lock);
3154 		space.total_bytes = block_rsv->size;
3155 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3156 		spin_unlock(&block_rsv->lock);
3157 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3158 		memcpy(dest, &space, sizeof(space));
3159 		space_args.total_spaces++;
3160 	}
3161 
3162 	user_dest = (struct btrfs_ioctl_space_info __user *)
3163 		(arg + sizeof(struct btrfs_ioctl_space_args));
3164 
3165 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3166 		ret = -EFAULT;
3167 
3168 	kfree(dest_orig);
3169 out:
3170 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3171 		ret = -EFAULT;
3172 
3173 	return ret;
3174 }
3175 
3176 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3177 					    void __user *argp)
3178 {
3179 	struct btrfs_trans_handle *trans;
3180 	u64 transid;
3181 
3182 	/*
3183 	 * Start orphan cleanup here for the given root in case it hasn't been
3184 	 * started already by other means. Errors are handled in the other
3185 	 * functions during transaction commit.
3186 	 */
3187 	btrfs_orphan_cleanup(root);
3188 
3189 	trans = btrfs_attach_transaction_barrier(root);
3190 	if (IS_ERR(trans)) {
3191 		if (PTR_ERR(trans) != -ENOENT)
3192 			return PTR_ERR(trans);
3193 
3194 		/* No running transaction, don't bother */
3195 		transid = btrfs_get_last_trans_committed(root->fs_info);
3196 		goto out;
3197 	}
3198 	transid = trans->transid;
3199 	btrfs_commit_transaction_async(trans);
3200 out:
3201 	if (argp)
3202 		if (copy_to_user(argp, &transid, sizeof(transid)))
3203 			return -EFAULT;
3204 	return 0;
3205 }
3206 
3207 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3208 					   void __user *argp)
3209 {
3210 	/* By default wait for the current transaction. */
3211 	u64 transid = 0;
3212 
3213 	if (argp)
3214 		if (copy_from_user(&transid, argp, sizeof(transid)))
3215 			return -EFAULT;
3216 
3217 	return btrfs_wait_for_commit(fs_info, transid);
3218 }
3219 
3220 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3221 {
3222 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3223 	struct btrfs_ioctl_scrub_args *sa;
3224 	int ret;
3225 
3226 	if (!capable(CAP_SYS_ADMIN))
3227 		return -EPERM;
3228 
3229 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3230 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3231 		return -EINVAL;
3232 	}
3233 
3234 	sa = memdup_user(arg, sizeof(*sa));
3235 	if (IS_ERR(sa))
3236 		return PTR_ERR(sa);
3237 
3238 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3239 		ret = -EOPNOTSUPP;
3240 		goto out;
3241 	}
3242 
3243 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3244 		ret = mnt_want_write_file(file);
3245 		if (ret)
3246 			goto out;
3247 	}
3248 
3249 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3250 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3251 			      0);
3252 
3253 	/*
3254 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3255 	 * error. This is important as it allows user space to know how much
3256 	 * progress scrub has done. For example, if scrub is canceled we get
3257 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3258 	 * space. Later user space can inspect the progress from the structure
3259 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3260 	 * previously (btrfs-progs does this).
3261 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3262 	 * then return -EFAULT to signal the structure was not copied or it may
3263 	 * be corrupt and unreliable due to a partial copy.
3264 	 */
3265 	if (copy_to_user(arg, sa, sizeof(*sa)))
3266 		ret = -EFAULT;
3267 
3268 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3269 		mnt_drop_write_file(file);
3270 out:
3271 	kfree(sa);
3272 	return ret;
3273 }
3274 
3275 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3276 {
3277 	if (!capable(CAP_SYS_ADMIN))
3278 		return -EPERM;
3279 
3280 	return btrfs_scrub_cancel(fs_info);
3281 }
3282 
3283 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3284 				       void __user *arg)
3285 {
3286 	struct btrfs_ioctl_scrub_args *sa;
3287 	int ret;
3288 
3289 	if (!capable(CAP_SYS_ADMIN))
3290 		return -EPERM;
3291 
3292 	sa = memdup_user(arg, sizeof(*sa));
3293 	if (IS_ERR(sa))
3294 		return PTR_ERR(sa);
3295 
3296 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3297 
3298 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3299 		ret = -EFAULT;
3300 
3301 	kfree(sa);
3302 	return ret;
3303 }
3304 
3305 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3306 				      void __user *arg)
3307 {
3308 	struct btrfs_ioctl_get_dev_stats *sa;
3309 	int ret;
3310 
3311 	sa = memdup_user(arg, sizeof(*sa));
3312 	if (IS_ERR(sa))
3313 		return PTR_ERR(sa);
3314 
3315 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3316 		kfree(sa);
3317 		return -EPERM;
3318 	}
3319 
3320 	ret = btrfs_get_dev_stats(fs_info, sa);
3321 
3322 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3323 		ret = -EFAULT;
3324 
3325 	kfree(sa);
3326 	return ret;
3327 }
3328 
3329 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3330 				    void __user *arg)
3331 {
3332 	struct btrfs_ioctl_dev_replace_args *p;
3333 	int ret;
3334 
3335 	if (!capable(CAP_SYS_ADMIN))
3336 		return -EPERM;
3337 
3338 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3339 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3340 		return -EINVAL;
3341 	}
3342 
3343 	p = memdup_user(arg, sizeof(*p));
3344 	if (IS_ERR(p))
3345 		return PTR_ERR(p);
3346 
3347 	switch (p->cmd) {
3348 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3349 		if (sb_rdonly(fs_info->sb)) {
3350 			ret = -EROFS;
3351 			goto out;
3352 		}
3353 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3354 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3355 		} else {
3356 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3357 			btrfs_exclop_finish(fs_info);
3358 		}
3359 		break;
3360 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3361 		btrfs_dev_replace_status(fs_info, p);
3362 		ret = 0;
3363 		break;
3364 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3365 		p->result = btrfs_dev_replace_cancel(fs_info);
3366 		ret = 0;
3367 		break;
3368 	default:
3369 		ret = -EINVAL;
3370 		break;
3371 	}
3372 
3373 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3374 		ret = -EFAULT;
3375 out:
3376 	kfree(p);
3377 	return ret;
3378 }
3379 
3380 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3381 {
3382 	int ret = 0;
3383 	int i;
3384 	u64 rel_ptr;
3385 	int size;
3386 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3387 	struct inode_fs_paths *ipath = NULL;
3388 	struct btrfs_path *path;
3389 
3390 	if (!capable(CAP_DAC_READ_SEARCH))
3391 		return -EPERM;
3392 
3393 	path = btrfs_alloc_path();
3394 	if (!path) {
3395 		ret = -ENOMEM;
3396 		goto out;
3397 	}
3398 
3399 	ipa = memdup_user(arg, sizeof(*ipa));
3400 	if (IS_ERR(ipa)) {
3401 		ret = PTR_ERR(ipa);
3402 		ipa = NULL;
3403 		goto out;
3404 	}
3405 
3406 	size = min_t(u32, ipa->size, 4096);
3407 	ipath = init_ipath(size, root, path);
3408 	if (IS_ERR(ipath)) {
3409 		ret = PTR_ERR(ipath);
3410 		ipath = NULL;
3411 		goto out;
3412 	}
3413 
3414 	ret = paths_from_inode(ipa->inum, ipath);
3415 	if (ret < 0)
3416 		goto out;
3417 
3418 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3419 		rel_ptr = ipath->fspath->val[i] -
3420 			  (u64)(unsigned long)ipath->fspath->val;
3421 		ipath->fspath->val[i] = rel_ptr;
3422 	}
3423 
3424 	btrfs_free_path(path);
3425 	path = NULL;
3426 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3427 			   ipath->fspath, size);
3428 	if (ret) {
3429 		ret = -EFAULT;
3430 		goto out;
3431 	}
3432 
3433 out:
3434 	btrfs_free_path(path);
3435 	free_ipath(ipath);
3436 	kfree(ipa);
3437 
3438 	return ret;
3439 }
3440 
3441 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3442 					void __user *arg, int version)
3443 {
3444 	int ret = 0;
3445 	int size;
3446 	struct btrfs_ioctl_logical_ino_args *loi;
3447 	struct btrfs_data_container *inodes = NULL;
3448 	struct btrfs_path *path = NULL;
3449 	bool ignore_offset;
3450 
3451 	if (!capable(CAP_SYS_ADMIN))
3452 		return -EPERM;
3453 
3454 	loi = memdup_user(arg, sizeof(*loi));
3455 	if (IS_ERR(loi))
3456 		return PTR_ERR(loi);
3457 
3458 	if (version == 1) {
3459 		ignore_offset = false;
3460 		size = min_t(u32, loi->size, SZ_64K);
3461 	} else {
3462 		/* All reserved bits must be 0 for now */
3463 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3464 			ret = -EINVAL;
3465 			goto out_loi;
3466 		}
3467 		/* Only accept flags we have defined so far */
3468 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3469 			ret = -EINVAL;
3470 			goto out_loi;
3471 		}
3472 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3473 		size = min_t(u32, loi->size, SZ_16M);
3474 	}
3475 
3476 	inodes = init_data_container(size);
3477 	if (IS_ERR(inodes)) {
3478 		ret = PTR_ERR(inodes);
3479 		goto out_loi;
3480 	}
3481 
3482 	path = btrfs_alloc_path();
3483 	if (!path) {
3484 		ret = -ENOMEM;
3485 		goto out;
3486 	}
3487 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3488 					  inodes, ignore_offset);
3489 	btrfs_free_path(path);
3490 	if (ret == -EINVAL)
3491 		ret = -ENOENT;
3492 	if (ret < 0)
3493 		goto out;
3494 
3495 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3496 			   size);
3497 	if (ret)
3498 		ret = -EFAULT;
3499 
3500 out:
3501 	kvfree(inodes);
3502 out_loi:
3503 	kfree(loi);
3504 
3505 	return ret;
3506 }
3507 
3508 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3509 			       struct btrfs_ioctl_balance_args *bargs)
3510 {
3511 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3512 
3513 	bargs->flags = bctl->flags;
3514 
3515 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3516 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3517 	if (atomic_read(&fs_info->balance_pause_req))
3518 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3519 	if (atomic_read(&fs_info->balance_cancel_req))
3520 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3521 
3522 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3523 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3524 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3525 
3526 	spin_lock(&fs_info->balance_lock);
3527 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3528 	spin_unlock(&fs_info->balance_lock);
3529 }
3530 
3531 /*
3532  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3533  * required.
3534  *
3535  * @fs_info:       the filesystem
3536  * @excl_acquired: ptr to boolean value which is set to false in case balance
3537  *                 is being resumed
3538  *
3539  * Return 0 on success in which case both fs_info::balance is acquired as well
3540  * as exclusive ops are blocked. In case of failure return an error code.
3541  */
3542 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3543 {
3544 	int ret;
3545 
3546 	/*
3547 	 * Exclusive operation is locked. Three possibilities:
3548 	 *   (1) some other op is running
3549 	 *   (2) balance is running
3550 	 *   (3) balance is paused -- special case (think resume)
3551 	 */
3552 	while (1) {
3553 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3554 			*excl_acquired = true;
3555 			mutex_lock(&fs_info->balance_mutex);
3556 			return 0;
3557 		}
3558 
3559 		mutex_lock(&fs_info->balance_mutex);
3560 		if (fs_info->balance_ctl) {
3561 			/* This is either (2) or (3) */
3562 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3563 				/* This is (2) */
3564 				ret = -EINPROGRESS;
3565 				goto out_failure;
3566 
3567 			} else {
3568 				mutex_unlock(&fs_info->balance_mutex);
3569 				/*
3570 				 * Lock released to allow other waiters to
3571 				 * continue, we'll reexamine the status again.
3572 				 */
3573 				mutex_lock(&fs_info->balance_mutex);
3574 
3575 				if (fs_info->balance_ctl &&
3576 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3577 					/* This is (3) */
3578 					*excl_acquired = false;
3579 					return 0;
3580 				}
3581 			}
3582 		} else {
3583 			/* This is (1) */
3584 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3585 			goto out_failure;
3586 		}
3587 
3588 		mutex_unlock(&fs_info->balance_mutex);
3589 	}
3590 
3591 out_failure:
3592 	mutex_unlock(&fs_info->balance_mutex);
3593 	*excl_acquired = false;
3594 	return ret;
3595 }
3596 
3597 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3598 {
3599 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3600 	struct btrfs_fs_info *fs_info = root->fs_info;
3601 	struct btrfs_ioctl_balance_args *bargs;
3602 	struct btrfs_balance_control *bctl;
3603 	bool need_unlock = true;
3604 	int ret;
3605 
3606 	if (!capable(CAP_SYS_ADMIN))
3607 		return -EPERM;
3608 
3609 	ret = mnt_want_write_file(file);
3610 	if (ret)
3611 		return ret;
3612 
3613 	bargs = memdup_user(arg, sizeof(*bargs));
3614 	if (IS_ERR(bargs)) {
3615 		ret = PTR_ERR(bargs);
3616 		bargs = NULL;
3617 		goto out;
3618 	}
3619 
3620 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3621 	if (ret)
3622 		goto out;
3623 
3624 	lockdep_assert_held(&fs_info->balance_mutex);
3625 
3626 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3627 		if (!fs_info->balance_ctl) {
3628 			ret = -ENOTCONN;
3629 			goto out_unlock;
3630 		}
3631 
3632 		bctl = fs_info->balance_ctl;
3633 		spin_lock(&fs_info->balance_lock);
3634 		bctl->flags |= BTRFS_BALANCE_RESUME;
3635 		spin_unlock(&fs_info->balance_lock);
3636 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3637 
3638 		goto do_balance;
3639 	}
3640 
3641 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3642 		ret = -EINVAL;
3643 		goto out_unlock;
3644 	}
3645 
3646 	if (fs_info->balance_ctl) {
3647 		ret = -EINPROGRESS;
3648 		goto out_unlock;
3649 	}
3650 
3651 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3652 	if (!bctl) {
3653 		ret = -ENOMEM;
3654 		goto out_unlock;
3655 	}
3656 
3657 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3658 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3659 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3660 
3661 	bctl->flags = bargs->flags;
3662 do_balance:
3663 	/*
3664 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3665 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3666 	 * all the way until unmount, in free_fs_info.  The flag should be
3667 	 * cleared after reset_balance_state.
3668 	 */
3669 	need_unlock = false;
3670 
3671 	ret = btrfs_balance(fs_info, bctl, bargs);
3672 	bctl = NULL;
3673 
3674 	if (ret == 0 || ret == -ECANCELED) {
3675 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3676 			ret = -EFAULT;
3677 	}
3678 
3679 	kfree(bctl);
3680 out_unlock:
3681 	mutex_unlock(&fs_info->balance_mutex);
3682 	if (need_unlock)
3683 		btrfs_exclop_finish(fs_info);
3684 out:
3685 	mnt_drop_write_file(file);
3686 	kfree(bargs);
3687 	return ret;
3688 }
3689 
3690 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3691 {
3692 	if (!capable(CAP_SYS_ADMIN))
3693 		return -EPERM;
3694 
3695 	switch (cmd) {
3696 	case BTRFS_BALANCE_CTL_PAUSE:
3697 		return btrfs_pause_balance(fs_info);
3698 	case BTRFS_BALANCE_CTL_CANCEL:
3699 		return btrfs_cancel_balance(fs_info);
3700 	}
3701 
3702 	return -EINVAL;
3703 }
3704 
3705 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3706 					 void __user *arg)
3707 {
3708 	struct btrfs_ioctl_balance_args *bargs;
3709 	int ret = 0;
3710 
3711 	if (!capable(CAP_SYS_ADMIN))
3712 		return -EPERM;
3713 
3714 	mutex_lock(&fs_info->balance_mutex);
3715 	if (!fs_info->balance_ctl) {
3716 		ret = -ENOTCONN;
3717 		goto out;
3718 	}
3719 
3720 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3721 	if (!bargs) {
3722 		ret = -ENOMEM;
3723 		goto out;
3724 	}
3725 
3726 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3727 
3728 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3729 		ret = -EFAULT;
3730 
3731 	kfree(bargs);
3732 out:
3733 	mutex_unlock(&fs_info->balance_mutex);
3734 	return ret;
3735 }
3736 
3737 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3738 {
3739 	struct inode *inode = file_inode(file);
3740 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3741 	struct btrfs_ioctl_quota_ctl_args *sa;
3742 	int ret;
3743 
3744 	if (!capable(CAP_SYS_ADMIN))
3745 		return -EPERM;
3746 
3747 	ret = mnt_want_write_file(file);
3748 	if (ret)
3749 		return ret;
3750 
3751 	sa = memdup_user(arg, sizeof(*sa));
3752 	if (IS_ERR(sa)) {
3753 		ret = PTR_ERR(sa);
3754 		goto drop_write;
3755 	}
3756 
3757 	switch (sa->cmd) {
3758 	case BTRFS_QUOTA_CTL_ENABLE:
3759 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3760 		down_write(&fs_info->subvol_sem);
3761 		ret = btrfs_quota_enable(fs_info, sa);
3762 		up_write(&fs_info->subvol_sem);
3763 		break;
3764 	case BTRFS_QUOTA_CTL_DISABLE:
3765 		/*
3766 		 * Lock the cleaner mutex to prevent races with concurrent
3767 		 * relocation, because relocation may be building backrefs for
3768 		 * blocks of the quota root while we are deleting the root. This
3769 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3770 		 * need the same protection.
3771 		 *
3772 		 * This also prevents races between concurrent tasks trying to
3773 		 * disable quotas, because we will unlock and relock
3774 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3775 		 *
3776 		 * We take this here because we have the dependency of
3777 		 *
3778 		 * inode_lock -> subvol_sem
3779 		 *
3780 		 * because of rename.  With relocation we can prealloc extents,
3781 		 * so that makes the dependency chain
3782 		 *
3783 		 * cleaner_mutex -> inode_lock -> subvol_sem
3784 		 *
3785 		 * so we must take the cleaner_mutex here before we take the
3786 		 * subvol_sem.  The deadlock can't actually happen, but this
3787 		 * quiets lockdep.
3788 		 */
3789 		mutex_lock(&fs_info->cleaner_mutex);
3790 		down_write(&fs_info->subvol_sem);
3791 		ret = btrfs_quota_disable(fs_info);
3792 		up_write(&fs_info->subvol_sem);
3793 		mutex_unlock(&fs_info->cleaner_mutex);
3794 		break;
3795 	default:
3796 		ret = -EINVAL;
3797 		break;
3798 	}
3799 
3800 	kfree(sa);
3801 drop_write:
3802 	mnt_drop_write_file(file);
3803 	return ret;
3804 }
3805 
3806 /*
3807  * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3808  * done before any operations.
3809  */
3810 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3811 {
3812 	bool ret = true;
3813 
3814 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3815 	if (!fs_info->quota_root)
3816 		ret = false;
3817 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3818 
3819 	return ret;
3820 }
3821 
3822 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3823 {
3824 	struct inode *inode = file_inode(file);
3825 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3826 	struct btrfs_root *root = BTRFS_I(inode)->root;
3827 	struct btrfs_ioctl_qgroup_assign_args *sa;
3828 	struct btrfs_qgroup_list *prealloc = NULL;
3829 	struct btrfs_trans_handle *trans;
3830 	int ret;
3831 	int err;
3832 
3833 	if (!capable(CAP_SYS_ADMIN))
3834 		return -EPERM;
3835 
3836 	if (!qgroup_enabled(root->fs_info))
3837 		return -ENOTCONN;
3838 
3839 	ret = mnt_want_write_file(file);
3840 	if (ret)
3841 		return ret;
3842 
3843 	sa = memdup_user(arg, sizeof(*sa));
3844 	if (IS_ERR(sa)) {
3845 		ret = PTR_ERR(sa);
3846 		goto drop_write;
3847 	}
3848 
3849 	if (sa->assign) {
3850 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3851 		if (!prealloc) {
3852 			ret = -ENOMEM;
3853 			goto drop_write;
3854 		}
3855 	}
3856 
3857 	trans = btrfs_join_transaction(root);
3858 	if (IS_ERR(trans)) {
3859 		ret = PTR_ERR(trans);
3860 		goto out;
3861 	}
3862 
3863 	/*
3864 	 * Prealloc ownership is moved to the relation handler, there it's used
3865 	 * or freed on error.
3866 	 */
3867 	if (sa->assign) {
3868 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3869 		prealloc = NULL;
3870 	} else {
3871 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3872 	}
3873 
3874 	/* update qgroup status and info */
3875 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3876 	err = btrfs_run_qgroups(trans);
3877 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3878 	if (err < 0)
3879 		btrfs_warn(fs_info,
3880 			   "qgroup status update failed after %s relation, marked as inconsistent",
3881 			   sa->assign ? "adding" : "deleting");
3882 	err = btrfs_end_transaction(trans);
3883 	if (err && !ret)
3884 		ret = err;
3885 
3886 out:
3887 	kfree(prealloc);
3888 	kfree(sa);
3889 drop_write:
3890 	mnt_drop_write_file(file);
3891 	return ret;
3892 }
3893 
3894 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3895 {
3896 	struct inode *inode = file_inode(file);
3897 	struct btrfs_root *root = BTRFS_I(inode)->root;
3898 	struct btrfs_ioctl_qgroup_create_args *sa;
3899 	struct btrfs_trans_handle *trans;
3900 	int ret;
3901 	int err;
3902 
3903 	if (!capable(CAP_SYS_ADMIN))
3904 		return -EPERM;
3905 
3906 	if (!qgroup_enabled(root->fs_info))
3907 		return -ENOTCONN;
3908 
3909 	ret = mnt_want_write_file(file);
3910 	if (ret)
3911 		return ret;
3912 
3913 	sa = memdup_user(arg, sizeof(*sa));
3914 	if (IS_ERR(sa)) {
3915 		ret = PTR_ERR(sa);
3916 		goto drop_write;
3917 	}
3918 
3919 	if (!sa->qgroupid) {
3920 		ret = -EINVAL;
3921 		goto out;
3922 	}
3923 
3924 	if (sa->create && is_fstree(sa->qgroupid)) {
3925 		ret = -EINVAL;
3926 		goto out;
3927 	}
3928 
3929 	trans = btrfs_join_transaction(root);
3930 	if (IS_ERR(trans)) {
3931 		ret = PTR_ERR(trans);
3932 		goto out;
3933 	}
3934 
3935 	if (sa->create) {
3936 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3937 	} else {
3938 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3939 	}
3940 
3941 	err = btrfs_end_transaction(trans);
3942 	if (err && !ret)
3943 		ret = err;
3944 
3945 out:
3946 	kfree(sa);
3947 drop_write:
3948 	mnt_drop_write_file(file);
3949 	return ret;
3950 }
3951 
3952 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3953 {
3954 	struct inode *inode = file_inode(file);
3955 	struct btrfs_root *root = BTRFS_I(inode)->root;
3956 	struct btrfs_ioctl_qgroup_limit_args *sa;
3957 	struct btrfs_trans_handle *trans;
3958 	int ret;
3959 	int err;
3960 	u64 qgroupid;
3961 
3962 	if (!capable(CAP_SYS_ADMIN))
3963 		return -EPERM;
3964 
3965 	if (!qgroup_enabled(root->fs_info))
3966 		return -ENOTCONN;
3967 
3968 	ret = mnt_want_write_file(file);
3969 	if (ret)
3970 		return ret;
3971 
3972 	sa = memdup_user(arg, sizeof(*sa));
3973 	if (IS_ERR(sa)) {
3974 		ret = PTR_ERR(sa);
3975 		goto drop_write;
3976 	}
3977 
3978 	trans = btrfs_join_transaction(root);
3979 	if (IS_ERR(trans)) {
3980 		ret = PTR_ERR(trans);
3981 		goto out;
3982 	}
3983 
3984 	qgroupid = sa->qgroupid;
3985 	if (!qgroupid) {
3986 		/* take the current subvol as qgroup */
3987 		qgroupid = btrfs_root_id(root);
3988 	}
3989 
3990 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3991 
3992 	err = btrfs_end_transaction(trans);
3993 	if (err && !ret)
3994 		ret = err;
3995 
3996 out:
3997 	kfree(sa);
3998 drop_write:
3999 	mnt_drop_write_file(file);
4000 	return ret;
4001 }
4002 
4003 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4004 {
4005 	struct inode *inode = file_inode(file);
4006 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4007 	struct btrfs_ioctl_quota_rescan_args *qsa;
4008 	int ret;
4009 
4010 	if (!capable(CAP_SYS_ADMIN))
4011 		return -EPERM;
4012 
4013 	if (!qgroup_enabled(fs_info))
4014 		return -ENOTCONN;
4015 
4016 	ret = mnt_want_write_file(file);
4017 	if (ret)
4018 		return ret;
4019 
4020 	qsa = memdup_user(arg, sizeof(*qsa));
4021 	if (IS_ERR(qsa)) {
4022 		ret = PTR_ERR(qsa);
4023 		goto drop_write;
4024 	}
4025 
4026 	if (qsa->flags) {
4027 		ret = -EINVAL;
4028 		goto out;
4029 	}
4030 
4031 	ret = btrfs_qgroup_rescan(fs_info);
4032 
4033 out:
4034 	kfree(qsa);
4035 drop_write:
4036 	mnt_drop_write_file(file);
4037 	return ret;
4038 }
4039 
4040 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4041 						void __user *arg)
4042 {
4043 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4044 
4045 	if (!capable(CAP_SYS_ADMIN))
4046 		return -EPERM;
4047 
4048 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4049 		qsa.flags = 1;
4050 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4051 	}
4052 
4053 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4054 		return -EFAULT;
4055 
4056 	return 0;
4057 }
4058 
4059 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
4060 {
4061 	if (!capable(CAP_SYS_ADMIN))
4062 		return -EPERM;
4063 
4064 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4065 }
4066 
4067 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4068 					    struct mnt_idmap *idmap,
4069 					    struct btrfs_ioctl_received_subvol_args *sa)
4070 {
4071 	struct inode *inode = file_inode(file);
4072 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4073 	struct btrfs_root *root = BTRFS_I(inode)->root;
4074 	struct btrfs_root_item *root_item = &root->root_item;
4075 	struct btrfs_trans_handle *trans;
4076 	struct timespec64 ct = current_time(inode);
4077 	int ret = 0;
4078 	int received_uuid_changed;
4079 
4080 	if (!inode_owner_or_capable(idmap, inode))
4081 		return -EPERM;
4082 
4083 	ret = mnt_want_write_file(file);
4084 	if (ret < 0)
4085 		return ret;
4086 
4087 	down_write(&fs_info->subvol_sem);
4088 
4089 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4090 		ret = -EINVAL;
4091 		goto out;
4092 	}
4093 
4094 	if (btrfs_root_readonly(root)) {
4095 		ret = -EROFS;
4096 		goto out;
4097 	}
4098 
4099 	/*
4100 	 * 1 - root item
4101 	 * 2 - uuid items (received uuid + subvol uuid)
4102 	 */
4103 	trans = btrfs_start_transaction(root, 3);
4104 	if (IS_ERR(trans)) {
4105 		ret = PTR_ERR(trans);
4106 		trans = NULL;
4107 		goto out;
4108 	}
4109 
4110 	sa->rtransid = trans->transid;
4111 	sa->rtime.sec = ct.tv_sec;
4112 	sa->rtime.nsec = ct.tv_nsec;
4113 
4114 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4115 				       BTRFS_UUID_SIZE);
4116 	if (received_uuid_changed &&
4117 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4118 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4119 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4120 					  btrfs_root_id(root));
4121 		if (ret && ret != -ENOENT) {
4122 		        btrfs_abort_transaction(trans, ret);
4123 		        btrfs_end_transaction(trans);
4124 		        goto out;
4125 		}
4126 	}
4127 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4128 	btrfs_set_root_stransid(root_item, sa->stransid);
4129 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4130 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4131 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4132 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4133 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4134 
4135 	ret = btrfs_update_root(trans, fs_info->tree_root,
4136 				&root->root_key, &root->root_item);
4137 	if (ret < 0) {
4138 		btrfs_end_transaction(trans);
4139 		goto out;
4140 	}
4141 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4142 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4143 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4144 					  btrfs_root_id(root));
4145 		if (ret < 0 && ret != -EEXIST) {
4146 			btrfs_abort_transaction(trans, ret);
4147 			btrfs_end_transaction(trans);
4148 			goto out;
4149 		}
4150 	}
4151 	ret = btrfs_commit_transaction(trans);
4152 out:
4153 	up_write(&fs_info->subvol_sem);
4154 	mnt_drop_write_file(file);
4155 	return ret;
4156 }
4157 
4158 #ifdef CONFIG_64BIT
4159 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4160 						void __user *arg)
4161 {
4162 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4163 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4164 	int ret = 0;
4165 
4166 	args32 = memdup_user(arg, sizeof(*args32));
4167 	if (IS_ERR(args32))
4168 		return PTR_ERR(args32);
4169 
4170 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4171 	if (!args64) {
4172 		ret = -ENOMEM;
4173 		goto out;
4174 	}
4175 
4176 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4177 	args64->stransid = args32->stransid;
4178 	args64->rtransid = args32->rtransid;
4179 	args64->stime.sec = args32->stime.sec;
4180 	args64->stime.nsec = args32->stime.nsec;
4181 	args64->rtime.sec = args32->rtime.sec;
4182 	args64->rtime.nsec = args32->rtime.nsec;
4183 	args64->flags = args32->flags;
4184 
4185 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4186 	if (ret)
4187 		goto out;
4188 
4189 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4190 	args32->stransid = args64->stransid;
4191 	args32->rtransid = args64->rtransid;
4192 	args32->stime.sec = args64->stime.sec;
4193 	args32->stime.nsec = args64->stime.nsec;
4194 	args32->rtime.sec = args64->rtime.sec;
4195 	args32->rtime.nsec = args64->rtime.nsec;
4196 	args32->flags = args64->flags;
4197 
4198 	ret = copy_to_user(arg, args32, sizeof(*args32));
4199 	if (ret)
4200 		ret = -EFAULT;
4201 
4202 out:
4203 	kfree(args32);
4204 	kfree(args64);
4205 	return ret;
4206 }
4207 #endif
4208 
4209 static long btrfs_ioctl_set_received_subvol(struct file *file,
4210 					    void __user *arg)
4211 {
4212 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4213 	int ret = 0;
4214 
4215 	sa = memdup_user(arg, sizeof(*sa));
4216 	if (IS_ERR(sa))
4217 		return PTR_ERR(sa);
4218 
4219 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4220 
4221 	if (ret)
4222 		goto out;
4223 
4224 	ret = copy_to_user(arg, sa, sizeof(*sa));
4225 	if (ret)
4226 		ret = -EFAULT;
4227 
4228 out:
4229 	kfree(sa);
4230 	return ret;
4231 }
4232 
4233 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4234 					void __user *arg)
4235 {
4236 	size_t len;
4237 	int ret;
4238 	char label[BTRFS_LABEL_SIZE];
4239 
4240 	spin_lock(&fs_info->super_lock);
4241 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4242 	spin_unlock(&fs_info->super_lock);
4243 
4244 	len = strnlen(label, BTRFS_LABEL_SIZE);
4245 
4246 	if (len == BTRFS_LABEL_SIZE) {
4247 		btrfs_warn(fs_info,
4248 			   "label is too long, return the first %zu bytes",
4249 			   --len);
4250 	}
4251 
4252 	ret = copy_to_user(arg, label, len);
4253 
4254 	return ret ? -EFAULT : 0;
4255 }
4256 
4257 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4258 {
4259 	struct inode *inode = file_inode(file);
4260 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4261 	struct btrfs_root *root = BTRFS_I(inode)->root;
4262 	struct btrfs_super_block *super_block = fs_info->super_copy;
4263 	struct btrfs_trans_handle *trans;
4264 	char label[BTRFS_LABEL_SIZE];
4265 	int ret;
4266 
4267 	if (!capable(CAP_SYS_ADMIN))
4268 		return -EPERM;
4269 
4270 	if (copy_from_user(label, arg, sizeof(label)))
4271 		return -EFAULT;
4272 
4273 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4274 		btrfs_err(fs_info,
4275 			  "unable to set label with more than %d bytes",
4276 			  BTRFS_LABEL_SIZE - 1);
4277 		return -EINVAL;
4278 	}
4279 
4280 	ret = mnt_want_write_file(file);
4281 	if (ret)
4282 		return ret;
4283 
4284 	trans = btrfs_start_transaction(root, 0);
4285 	if (IS_ERR(trans)) {
4286 		ret = PTR_ERR(trans);
4287 		goto out_unlock;
4288 	}
4289 
4290 	spin_lock(&fs_info->super_lock);
4291 	strcpy(super_block->label, label);
4292 	spin_unlock(&fs_info->super_lock);
4293 	ret = btrfs_commit_transaction(trans);
4294 
4295 out_unlock:
4296 	mnt_drop_write_file(file);
4297 	return ret;
4298 }
4299 
4300 #define INIT_FEATURE_FLAGS(suffix) \
4301 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4302 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4303 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4304 
4305 int btrfs_ioctl_get_supported_features(void __user *arg)
4306 {
4307 	static const struct btrfs_ioctl_feature_flags features[3] = {
4308 		INIT_FEATURE_FLAGS(SUPP),
4309 		INIT_FEATURE_FLAGS(SAFE_SET),
4310 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4311 	};
4312 
4313 	if (copy_to_user(arg, &features, sizeof(features)))
4314 		return -EFAULT;
4315 
4316 	return 0;
4317 }
4318 
4319 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4320 					void __user *arg)
4321 {
4322 	struct btrfs_super_block *super_block = fs_info->super_copy;
4323 	struct btrfs_ioctl_feature_flags features;
4324 
4325 	features.compat_flags = btrfs_super_compat_flags(super_block);
4326 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4327 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4328 
4329 	if (copy_to_user(arg, &features, sizeof(features)))
4330 		return -EFAULT;
4331 
4332 	return 0;
4333 }
4334 
4335 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4336 			      enum btrfs_feature_set set,
4337 			      u64 change_mask, u64 flags, u64 supported_flags,
4338 			      u64 safe_set, u64 safe_clear)
4339 {
4340 	const char *type = btrfs_feature_set_name(set);
4341 	char *names;
4342 	u64 disallowed, unsupported;
4343 	u64 set_mask = flags & change_mask;
4344 	u64 clear_mask = ~flags & change_mask;
4345 
4346 	unsupported = set_mask & ~supported_flags;
4347 	if (unsupported) {
4348 		names = btrfs_printable_features(set, unsupported);
4349 		if (names) {
4350 			btrfs_warn(fs_info,
4351 				   "this kernel does not support the %s feature bit%s",
4352 				   names, strchr(names, ',') ? "s" : "");
4353 			kfree(names);
4354 		} else
4355 			btrfs_warn(fs_info,
4356 				   "this kernel does not support %s bits 0x%llx",
4357 				   type, unsupported);
4358 		return -EOPNOTSUPP;
4359 	}
4360 
4361 	disallowed = set_mask & ~safe_set;
4362 	if (disallowed) {
4363 		names = btrfs_printable_features(set, disallowed);
4364 		if (names) {
4365 			btrfs_warn(fs_info,
4366 				   "can't set the %s feature bit%s while mounted",
4367 				   names, strchr(names, ',') ? "s" : "");
4368 			kfree(names);
4369 		} else
4370 			btrfs_warn(fs_info,
4371 				   "can't set %s bits 0x%llx while mounted",
4372 				   type, disallowed);
4373 		return -EPERM;
4374 	}
4375 
4376 	disallowed = clear_mask & ~safe_clear;
4377 	if (disallowed) {
4378 		names = btrfs_printable_features(set, disallowed);
4379 		if (names) {
4380 			btrfs_warn(fs_info,
4381 				   "can't clear the %s feature bit%s while mounted",
4382 				   names, strchr(names, ',') ? "s" : "");
4383 			kfree(names);
4384 		} else
4385 			btrfs_warn(fs_info,
4386 				   "can't clear %s bits 0x%llx while mounted",
4387 				   type, disallowed);
4388 		return -EPERM;
4389 	}
4390 
4391 	return 0;
4392 }
4393 
4394 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4395 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4396 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4397 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4398 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4399 
4400 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4401 {
4402 	struct inode *inode = file_inode(file);
4403 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4404 	struct btrfs_root *root = BTRFS_I(inode)->root;
4405 	struct btrfs_super_block *super_block = fs_info->super_copy;
4406 	struct btrfs_ioctl_feature_flags flags[2];
4407 	struct btrfs_trans_handle *trans;
4408 	u64 newflags;
4409 	int ret;
4410 
4411 	if (!capable(CAP_SYS_ADMIN))
4412 		return -EPERM;
4413 
4414 	if (copy_from_user(flags, arg, sizeof(flags)))
4415 		return -EFAULT;
4416 
4417 	/* Nothing to do */
4418 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4419 	    !flags[0].incompat_flags)
4420 		return 0;
4421 
4422 	ret = check_feature(fs_info, flags[0].compat_flags,
4423 			    flags[1].compat_flags, COMPAT);
4424 	if (ret)
4425 		return ret;
4426 
4427 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4428 			    flags[1].compat_ro_flags, COMPAT_RO);
4429 	if (ret)
4430 		return ret;
4431 
4432 	ret = check_feature(fs_info, flags[0].incompat_flags,
4433 			    flags[1].incompat_flags, INCOMPAT);
4434 	if (ret)
4435 		return ret;
4436 
4437 	ret = mnt_want_write_file(file);
4438 	if (ret)
4439 		return ret;
4440 
4441 	trans = btrfs_start_transaction(root, 0);
4442 	if (IS_ERR(trans)) {
4443 		ret = PTR_ERR(trans);
4444 		goto out_drop_write;
4445 	}
4446 
4447 	spin_lock(&fs_info->super_lock);
4448 	newflags = btrfs_super_compat_flags(super_block);
4449 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4450 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4451 	btrfs_set_super_compat_flags(super_block, newflags);
4452 
4453 	newflags = btrfs_super_compat_ro_flags(super_block);
4454 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4455 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4456 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4457 
4458 	newflags = btrfs_super_incompat_flags(super_block);
4459 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4460 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4461 	btrfs_set_super_incompat_flags(super_block, newflags);
4462 	spin_unlock(&fs_info->super_lock);
4463 
4464 	ret = btrfs_commit_transaction(trans);
4465 out_drop_write:
4466 	mnt_drop_write_file(file);
4467 
4468 	return ret;
4469 }
4470 
4471 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4472 {
4473 	struct btrfs_ioctl_send_args *arg;
4474 	int ret;
4475 
4476 	if (compat) {
4477 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4478 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4479 
4480 		ret = copy_from_user(&args32, argp, sizeof(args32));
4481 		if (ret)
4482 			return -EFAULT;
4483 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4484 		if (!arg)
4485 			return -ENOMEM;
4486 		arg->send_fd = args32.send_fd;
4487 		arg->clone_sources_count = args32.clone_sources_count;
4488 		arg->clone_sources = compat_ptr(args32.clone_sources);
4489 		arg->parent_root = args32.parent_root;
4490 		arg->flags = args32.flags;
4491 		arg->version = args32.version;
4492 		memcpy(arg->reserved, args32.reserved,
4493 		       sizeof(args32.reserved));
4494 #else
4495 		return -ENOTTY;
4496 #endif
4497 	} else {
4498 		arg = memdup_user(argp, sizeof(*arg));
4499 		if (IS_ERR(arg))
4500 			return PTR_ERR(arg);
4501 	}
4502 	ret = btrfs_ioctl_send(inode, arg);
4503 	kfree(arg);
4504 	return ret;
4505 }
4506 
4507 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4508 				    bool compat)
4509 {
4510 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4511 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4512 					     flags);
4513 	size_t copy_end;
4514 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4515 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4516 	struct extent_io_tree *io_tree = &inode->io_tree;
4517 	struct iovec iovstack[UIO_FASTIOV];
4518 	struct iovec *iov = iovstack;
4519 	struct iov_iter iter;
4520 	loff_t pos;
4521 	struct kiocb kiocb;
4522 	ssize_t ret;
4523 	u64 disk_bytenr, disk_io_size;
4524 	struct extent_state *cached_state = NULL;
4525 
4526 	if (!capable(CAP_SYS_ADMIN)) {
4527 		ret = -EPERM;
4528 		goto out_acct;
4529 	}
4530 
4531 	if (compat) {
4532 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4533 		struct btrfs_ioctl_encoded_io_args_32 args32;
4534 
4535 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4536 				       flags);
4537 		if (copy_from_user(&args32, argp, copy_end)) {
4538 			ret = -EFAULT;
4539 			goto out_acct;
4540 		}
4541 		args.iov = compat_ptr(args32.iov);
4542 		args.iovcnt = args32.iovcnt;
4543 		args.offset = args32.offset;
4544 		args.flags = args32.flags;
4545 #else
4546 		return -ENOTTY;
4547 #endif
4548 	} else {
4549 		copy_end = copy_end_kernel;
4550 		if (copy_from_user(&args, argp, copy_end)) {
4551 			ret = -EFAULT;
4552 			goto out_acct;
4553 		}
4554 	}
4555 	if (args.flags != 0) {
4556 		ret = -EINVAL;
4557 		goto out_acct;
4558 	}
4559 
4560 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4561 			   &iov, &iter);
4562 	if (ret < 0)
4563 		goto out_acct;
4564 
4565 	if (iov_iter_count(&iter) == 0) {
4566 		ret = 0;
4567 		goto out_iov;
4568 	}
4569 	pos = args.offset;
4570 	ret = rw_verify_area(READ, file, &pos, args.len);
4571 	if (ret < 0)
4572 		goto out_iov;
4573 
4574 	init_sync_kiocb(&kiocb, file);
4575 	kiocb.ki_pos = pos;
4576 
4577 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4578 				 &disk_bytenr, &disk_io_size);
4579 
4580 	if (ret == -EIOCBQUEUED) {
4581 		bool unlocked = false;
4582 		u64 start, lockend, count;
4583 
4584 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4585 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4586 
4587 		if (args.compression)
4588 			count = disk_io_size;
4589 		else
4590 			count = args.len;
4591 
4592 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4593 						 &cached_state, disk_bytenr,
4594 						 disk_io_size, count,
4595 						 args.compression, &unlocked);
4596 
4597 		if (!unlocked) {
4598 			unlock_extent(io_tree, start, lockend, &cached_state);
4599 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4600 		}
4601 	}
4602 
4603 	if (ret >= 0) {
4604 		fsnotify_access(file);
4605 		if (copy_to_user(argp + copy_end,
4606 				 (char *)&args + copy_end_kernel,
4607 				 sizeof(args) - copy_end_kernel))
4608 			ret = -EFAULT;
4609 	}
4610 
4611 out_iov:
4612 	kfree(iov);
4613 out_acct:
4614 	if (ret > 0)
4615 		add_rchar(current, ret);
4616 	inc_syscr(current);
4617 	return ret;
4618 }
4619 
4620 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4621 {
4622 	struct btrfs_ioctl_encoded_io_args args;
4623 	struct iovec iovstack[UIO_FASTIOV];
4624 	struct iovec *iov = iovstack;
4625 	struct iov_iter iter;
4626 	loff_t pos;
4627 	struct kiocb kiocb;
4628 	ssize_t ret;
4629 
4630 	if (!capable(CAP_SYS_ADMIN)) {
4631 		ret = -EPERM;
4632 		goto out_acct;
4633 	}
4634 
4635 	if (!(file->f_mode & FMODE_WRITE)) {
4636 		ret = -EBADF;
4637 		goto out_acct;
4638 	}
4639 
4640 	if (compat) {
4641 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4642 		struct btrfs_ioctl_encoded_io_args_32 args32;
4643 
4644 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4645 			ret = -EFAULT;
4646 			goto out_acct;
4647 		}
4648 		args.iov = compat_ptr(args32.iov);
4649 		args.iovcnt = args32.iovcnt;
4650 		args.offset = args32.offset;
4651 		args.flags = args32.flags;
4652 		args.len = args32.len;
4653 		args.unencoded_len = args32.unencoded_len;
4654 		args.unencoded_offset = args32.unencoded_offset;
4655 		args.compression = args32.compression;
4656 		args.encryption = args32.encryption;
4657 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4658 #else
4659 		return -ENOTTY;
4660 #endif
4661 	} else {
4662 		if (copy_from_user(&args, argp, sizeof(args))) {
4663 			ret = -EFAULT;
4664 			goto out_acct;
4665 		}
4666 	}
4667 
4668 	ret = -EINVAL;
4669 	if (args.flags != 0)
4670 		goto out_acct;
4671 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4672 		goto out_acct;
4673 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4674 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4675 		goto out_acct;
4676 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4677 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4678 		goto out_acct;
4679 	if (args.unencoded_offset > args.unencoded_len)
4680 		goto out_acct;
4681 	if (args.len > args.unencoded_len - args.unencoded_offset)
4682 		goto out_acct;
4683 
4684 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4685 			   &iov, &iter);
4686 	if (ret < 0)
4687 		goto out_acct;
4688 
4689 	if (iov_iter_count(&iter) == 0) {
4690 		ret = 0;
4691 		goto out_iov;
4692 	}
4693 	pos = args.offset;
4694 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4695 	if (ret < 0)
4696 		goto out_iov;
4697 
4698 	init_sync_kiocb(&kiocb, file);
4699 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4700 	if (ret)
4701 		goto out_iov;
4702 	kiocb.ki_pos = pos;
4703 
4704 	file_start_write(file);
4705 
4706 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4707 	if (ret > 0)
4708 		fsnotify_modify(file);
4709 
4710 	file_end_write(file);
4711 out_iov:
4712 	kfree(iov);
4713 out_acct:
4714 	if (ret > 0)
4715 		add_wchar(current, ret);
4716 	inc_syscw(current);
4717 	return ret;
4718 }
4719 
4720 /*
4721  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4722  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4723  * off and cleanup the I/O in btrfs_uring_read_finished.
4724  */
4725 struct btrfs_uring_priv {
4726 	struct io_uring_cmd *cmd;
4727 	struct page **pages;
4728 	unsigned long nr_pages;
4729 	struct kiocb iocb;
4730 	struct iovec *iov;
4731 	struct iov_iter iter;
4732 	struct extent_state *cached_state;
4733 	u64 count;
4734 	u64 start;
4735 	u64 lockend;
4736 	int err;
4737 	bool compressed;
4738 };
4739 
4740 struct io_btrfs_cmd {
4741 	struct btrfs_uring_priv *priv;
4742 };
4743 
4744 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4745 {
4746 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4747 	struct btrfs_uring_priv *priv = bc->priv;
4748 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4749 	struct extent_io_tree *io_tree = &inode->io_tree;
4750 	unsigned long index;
4751 	u64 cur;
4752 	size_t page_offset;
4753 	ssize_t ret;
4754 
4755 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4756 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4757 
4758 	if (priv->err) {
4759 		ret = priv->err;
4760 		goto out;
4761 	}
4762 
4763 	if (priv->compressed) {
4764 		index = 0;
4765 		page_offset = 0;
4766 	} else {
4767 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4768 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4769 	}
4770 	cur = 0;
4771 	while (cur < priv->count) {
4772 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4773 
4774 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4775 				      &priv->iter) != bytes) {
4776 			ret = -EFAULT;
4777 			goto out;
4778 		}
4779 
4780 		index++;
4781 		cur += bytes;
4782 		page_offset = 0;
4783 	}
4784 	ret = priv->count;
4785 
4786 out:
4787 	unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4788 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4789 
4790 	io_uring_cmd_done(cmd, ret, 0, issue_flags);
4791 	add_rchar(current, ret);
4792 
4793 	for (index = 0; index < priv->nr_pages; index++)
4794 		__free_page(priv->pages[index]);
4795 
4796 	kfree(priv->pages);
4797 	kfree(priv->iov);
4798 	kfree(priv);
4799 }
4800 
4801 void btrfs_uring_read_extent_endio(void *ctx, int err)
4802 {
4803 	struct btrfs_uring_priv *priv = ctx;
4804 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4805 
4806 	priv->err = err;
4807 	bc->priv = priv;
4808 
4809 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4810 }
4811 
4812 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4813 				   u64 start, u64 lockend,
4814 				   struct extent_state *cached_state,
4815 				   u64 disk_bytenr, u64 disk_io_size,
4816 				   size_t count, bool compressed,
4817 				   struct iovec *iov, struct io_uring_cmd *cmd)
4818 {
4819 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4820 	struct extent_io_tree *io_tree = &inode->io_tree;
4821 	struct page **pages;
4822 	struct btrfs_uring_priv *priv = NULL;
4823 	unsigned long nr_pages;
4824 	int ret;
4825 
4826 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4827 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4828 	if (!pages)
4829 		return -ENOMEM;
4830 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4831 	if (ret) {
4832 		ret = -ENOMEM;
4833 		goto out_fail;
4834 	}
4835 
4836 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4837 	if (!priv) {
4838 		ret = -ENOMEM;
4839 		goto out_fail;
4840 	}
4841 
4842 	priv->iocb = *iocb;
4843 	priv->iov = iov;
4844 	priv->iter = *iter;
4845 	priv->count = count;
4846 	priv->cmd = cmd;
4847 	priv->cached_state = cached_state;
4848 	priv->compressed = compressed;
4849 	priv->nr_pages = nr_pages;
4850 	priv->pages = pages;
4851 	priv->start = start;
4852 	priv->lockend = lockend;
4853 	priv->err = 0;
4854 
4855 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4856 						    disk_io_size, pages, priv);
4857 	if (ret && ret != -EIOCBQUEUED)
4858 		goto out_fail;
4859 
4860 	/*
4861 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4862 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4863 	 * and inode and freeing the allocations.
4864 	 */
4865 
4866 	/*
4867 	 * We're returning to userspace with the inode lock held, and that's
4868 	 * okay - it'll get unlocked in a worker thread.  Call
4869 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4870 	 */
4871 	btrfs_lockdep_inode_release(inode, i_rwsem);
4872 
4873 	return -EIOCBQUEUED;
4874 
4875 out_fail:
4876 	unlock_extent(io_tree, start, lockend, &cached_state);
4877 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4878 	kfree(priv);
4879 	return ret;
4880 }
4881 
4882 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4883 {
4884 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4885 	size_t copy_end;
4886 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4887 	int ret;
4888 	u64 disk_bytenr, disk_io_size;
4889 	struct file *file;
4890 	struct btrfs_inode *inode;
4891 	struct btrfs_fs_info *fs_info;
4892 	struct extent_io_tree *io_tree;
4893 	struct iovec iovstack[UIO_FASTIOV];
4894 	struct iovec *iov = iovstack;
4895 	struct iov_iter iter;
4896 	loff_t pos;
4897 	struct kiocb kiocb;
4898 	struct extent_state *cached_state = NULL;
4899 	u64 start, lockend;
4900 	void __user *sqe_addr;
4901 
4902 	if (!capable(CAP_SYS_ADMIN)) {
4903 		ret = -EPERM;
4904 		goto out_acct;
4905 	}
4906 	file = cmd->file;
4907 	inode = BTRFS_I(file->f_inode);
4908 	fs_info = inode->root->fs_info;
4909 	io_tree = &inode->io_tree;
4910 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4911 
4912 	if (issue_flags & IO_URING_F_COMPAT) {
4913 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4914 		struct btrfs_ioctl_encoded_io_args_32 args32;
4915 
4916 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4917 		if (copy_from_user(&args32, sqe_addr, copy_end)) {
4918 			ret = -EFAULT;
4919 			goto out_acct;
4920 		}
4921 		args.iov = compat_ptr(args32.iov);
4922 		args.iovcnt = args32.iovcnt;
4923 		args.offset = args32.offset;
4924 		args.flags = args32.flags;
4925 #else
4926 		return -ENOTTY;
4927 #endif
4928 	} else {
4929 		copy_end = copy_end_kernel;
4930 		if (copy_from_user(&args, sqe_addr, copy_end)) {
4931 			ret = -EFAULT;
4932 			goto out_acct;
4933 		}
4934 	}
4935 
4936 	if (args.flags != 0)
4937 		return -EINVAL;
4938 
4939 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4940 			   &iov, &iter);
4941 	if (ret < 0)
4942 		goto out_acct;
4943 
4944 	if (iov_iter_count(&iter) == 0) {
4945 		ret = 0;
4946 		goto out_free;
4947 	}
4948 
4949 	pos = args.offset;
4950 	ret = rw_verify_area(READ, file, &pos, args.len);
4951 	if (ret < 0)
4952 		goto out_free;
4953 
4954 	init_sync_kiocb(&kiocb, file);
4955 	kiocb.ki_pos = pos;
4956 
4957 	if (issue_flags & IO_URING_F_NONBLOCK)
4958 		kiocb.ki_flags |= IOCB_NOWAIT;
4959 
4960 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4961 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4962 
4963 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4964 				 &disk_bytenr, &disk_io_size);
4965 	if (ret < 0 && ret != -EIOCBQUEUED)
4966 		goto out_free;
4967 
4968 	file_accessed(file);
4969 
4970 	if (copy_to_user(sqe_addr + copy_end, (const char *)&args + copy_end_kernel,
4971 			 sizeof(args) - copy_end_kernel)) {
4972 		if (ret == -EIOCBQUEUED) {
4973 			unlock_extent(io_tree, start, lockend, &cached_state);
4974 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4975 		}
4976 		ret = -EFAULT;
4977 		goto out_free;
4978 	}
4979 
4980 	if (ret == -EIOCBQUEUED) {
4981 		u64 count;
4982 
4983 		/*
4984 		 * If we've optimized things by storing the iovecs on the stack,
4985 		 * undo this.
4986 		 */
4987 		if (!iov) {
4988 			iov = kmalloc(sizeof(struct iovec) * args.iovcnt, GFP_NOFS);
4989 			if (!iov) {
4990 				unlock_extent(io_tree, start, lockend, &cached_state);
4991 				btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4992 				ret = -ENOMEM;
4993 				goto out_acct;
4994 			}
4995 
4996 			memcpy(iov, iovstack, sizeof(struct iovec) * args.iovcnt);
4997 		}
4998 
4999 		count = min_t(u64, iov_iter_count(&iter), disk_io_size);
5000 
5001 		/* Match ioctl by not returning past EOF if uncompressed. */
5002 		if (!args.compression)
5003 			count = min_t(u64, count, args.len);
5004 
5005 		ret = btrfs_uring_read_extent(&kiocb, &iter, start, lockend,
5006 					      cached_state, disk_bytenr,
5007 					      disk_io_size, count,
5008 					      args.compression, iov, cmd);
5009 
5010 		goto out_acct;
5011 	}
5012 
5013 out_free:
5014 	kfree(iov);
5015 
5016 out_acct:
5017 	if (ret > 0)
5018 		add_rchar(current, ret);
5019 	inc_syscr(current);
5020 
5021 	return ret;
5022 }
5023 
5024 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5025 {
5026 	switch (cmd->cmd_op) {
5027 	case BTRFS_IOC_ENCODED_READ:
5028 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5029 	case BTRFS_IOC_ENCODED_READ_32:
5030 #endif
5031 		return btrfs_uring_encoded_read(cmd, issue_flags);
5032 	}
5033 
5034 	return -EINVAL;
5035 }
5036 
5037 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5038 {
5039 	struct btrfs_root *root;
5040 	struct btrfs_ioctl_subvol_wait args = { 0 };
5041 	signed long sched_ret;
5042 	int refs;
5043 	u64 root_flags;
5044 	bool wait_for_deletion = false;
5045 	bool found = false;
5046 
5047 	if (copy_from_user(&args, argp, sizeof(args)))
5048 		return -EFAULT;
5049 
5050 	switch (args.mode) {
5051 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5052 		/*
5053 		 * Wait for the first one deleted that waits until all previous
5054 		 * are cleaned.
5055 		 */
5056 		spin_lock(&fs_info->trans_lock);
5057 		if (!list_empty(&fs_info->dead_roots)) {
5058 			root = list_last_entry(&fs_info->dead_roots,
5059 					       struct btrfs_root, root_list);
5060 			args.subvolid = btrfs_root_id(root);
5061 			found = true;
5062 		}
5063 		spin_unlock(&fs_info->trans_lock);
5064 		if (!found)
5065 			return -ENOENT;
5066 
5067 		fallthrough;
5068 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5069 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5070 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5071 			return -EINVAL;
5072 		break;
5073 	case BTRFS_SUBVOL_SYNC_COUNT:
5074 		spin_lock(&fs_info->trans_lock);
5075 		args.count = list_count_nodes(&fs_info->dead_roots);
5076 		spin_unlock(&fs_info->trans_lock);
5077 		if (copy_to_user(argp, &args, sizeof(args)))
5078 			return -EFAULT;
5079 		return 0;
5080 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5081 		spin_lock(&fs_info->trans_lock);
5082 		/* Last in the list was deleted first. */
5083 		if (!list_empty(&fs_info->dead_roots)) {
5084 			root = list_last_entry(&fs_info->dead_roots,
5085 					       struct btrfs_root, root_list);
5086 			args.subvolid = btrfs_root_id(root);
5087 		} else {
5088 			args.subvolid = 0;
5089 		}
5090 		spin_unlock(&fs_info->trans_lock);
5091 		if (copy_to_user(argp, &args, sizeof(args)))
5092 			return -EFAULT;
5093 		return 0;
5094 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5095 		spin_lock(&fs_info->trans_lock);
5096 		/* First in the list was deleted last. */
5097 		if (!list_empty(&fs_info->dead_roots)) {
5098 			root = list_first_entry(&fs_info->dead_roots,
5099 						struct btrfs_root, root_list);
5100 			args.subvolid = btrfs_root_id(root);
5101 		} else {
5102 			args.subvolid = 0;
5103 		}
5104 		spin_unlock(&fs_info->trans_lock);
5105 		if (copy_to_user(argp, &args, sizeof(args)))
5106 			return -EFAULT;
5107 		return 0;
5108 	default:
5109 		return -EINVAL;
5110 	}
5111 
5112 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5113 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5114 		return -EOVERFLOW;
5115 
5116 	while (1) {
5117 		/* Wait for the specific one. */
5118 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5119 			return -EINTR;
5120 		refs = -1;
5121 		spin_lock(&fs_info->fs_roots_radix_lock);
5122 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5123 					 (unsigned long)args.subvolid);
5124 		if (root) {
5125 			spin_lock(&root->root_item_lock);
5126 			refs = btrfs_root_refs(&root->root_item);
5127 			root_flags = btrfs_root_flags(&root->root_item);
5128 			spin_unlock(&root->root_item_lock);
5129 		}
5130 		spin_unlock(&fs_info->fs_roots_radix_lock);
5131 		up_read(&fs_info->subvol_sem);
5132 
5133 		/* Subvolume does not exist. */
5134 		if (!root)
5135 			return -ENOENT;
5136 
5137 		/* Subvolume not deleted at all. */
5138 		if (refs > 0)
5139 			return -EEXIST;
5140 		/* We've waited and now the subvolume is gone. */
5141 		if (wait_for_deletion && refs == -1) {
5142 			/* Return the one we waited for as the last one. */
5143 			if (copy_to_user(argp, &args, sizeof(args)))
5144 				return -EFAULT;
5145 			return 0;
5146 		}
5147 
5148 		/* Subvolume not found on the first try (deleted or never existed). */
5149 		if (refs == -1)
5150 			return -ENOENT;
5151 
5152 		wait_for_deletion = true;
5153 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5154 		sched_ret = schedule_timeout_interruptible(HZ);
5155 		/* Early wake up or error. */
5156 		if (sched_ret != 0)
5157 			return -EINTR;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 long btrfs_ioctl(struct file *file, unsigned int
5164 		cmd, unsigned long arg)
5165 {
5166 	struct inode *inode = file_inode(file);
5167 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5168 	struct btrfs_root *root = BTRFS_I(inode)->root;
5169 	void __user *argp = (void __user *)arg;
5170 
5171 	switch (cmd) {
5172 	case FS_IOC_GETVERSION:
5173 		return btrfs_ioctl_getversion(inode, argp);
5174 	case FS_IOC_GETFSLABEL:
5175 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5176 	case FS_IOC_SETFSLABEL:
5177 		return btrfs_ioctl_set_fslabel(file, argp);
5178 	case FITRIM:
5179 		return btrfs_ioctl_fitrim(fs_info, argp);
5180 	case BTRFS_IOC_SNAP_CREATE:
5181 		return btrfs_ioctl_snap_create(file, argp, 0);
5182 	case BTRFS_IOC_SNAP_CREATE_V2:
5183 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5184 	case BTRFS_IOC_SUBVOL_CREATE:
5185 		return btrfs_ioctl_snap_create(file, argp, 1);
5186 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5187 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5188 	case BTRFS_IOC_SNAP_DESTROY:
5189 		return btrfs_ioctl_snap_destroy(file, argp, false);
5190 	case BTRFS_IOC_SNAP_DESTROY_V2:
5191 		return btrfs_ioctl_snap_destroy(file, argp, true);
5192 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5193 		return btrfs_ioctl_subvol_getflags(inode, argp);
5194 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5195 		return btrfs_ioctl_subvol_setflags(file, argp);
5196 	case BTRFS_IOC_DEFAULT_SUBVOL:
5197 		return btrfs_ioctl_default_subvol(file, argp);
5198 	case BTRFS_IOC_DEFRAG:
5199 		return btrfs_ioctl_defrag(file, NULL);
5200 	case BTRFS_IOC_DEFRAG_RANGE:
5201 		return btrfs_ioctl_defrag(file, argp);
5202 	case BTRFS_IOC_RESIZE:
5203 		return btrfs_ioctl_resize(file, argp);
5204 	case BTRFS_IOC_ADD_DEV:
5205 		return btrfs_ioctl_add_dev(fs_info, argp);
5206 	case BTRFS_IOC_RM_DEV:
5207 		return btrfs_ioctl_rm_dev(file, argp);
5208 	case BTRFS_IOC_RM_DEV_V2:
5209 		return btrfs_ioctl_rm_dev_v2(file, argp);
5210 	case BTRFS_IOC_FS_INFO:
5211 		return btrfs_ioctl_fs_info(fs_info, argp);
5212 	case BTRFS_IOC_DEV_INFO:
5213 		return btrfs_ioctl_dev_info(fs_info, argp);
5214 	case BTRFS_IOC_TREE_SEARCH:
5215 		return btrfs_ioctl_tree_search(inode, argp);
5216 	case BTRFS_IOC_TREE_SEARCH_V2:
5217 		return btrfs_ioctl_tree_search_v2(inode, argp);
5218 	case BTRFS_IOC_INO_LOOKUP:
5219 		return btrfs_ioctl_ino_lookup(root, argp);
5220 	case BTRFS_IOC_INO_PATHS:
5221 		return btrfs_ioctl_ino_to_path(root, argp);
5222 	case BTRFS_IOC_LOGICAL_INO:
5223 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5224 	case BTRFS_IOC_LOGICAL_INO_V2:
5225 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5226 	case BTRFS_IOC_SPACE_INFO:
5227 		return btrfs_ioctl_space_info(fs_info, argp);
5228 	case BTRFS_IOC_SYNC: {
5229 		int ret;
5230 
5231 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5232 		if (ret)
5233 			return ret;
5234 		ret = btrfs_sync_fs(inode->i_sb, 1);
5235 		/*
5236 		 * There may be work for the cleaner kthread to do (subvolume
5237 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5238 		 */
5239 		wake_up_process(fs_info->cleaner_kthread);
5240 		return ret;
5241 	}
5242 	case BTRFS_IOC_START_SYNC:
5243 		return btrfs_ioctl_start_sync(root, argp);
5244 	case BTRFS_IOC_WAIT_SYNC:
5245 		return btrfs_ioctl_wait_sync(fs_info, argp);
5246 	case BTRFS_IOC_SCRUB:
5247 		return btrfs_ioctl_scrub(file, argp);
5248 	case BTRFS_IOC_SCRUB_CANCEL:
5249 		return btrfs_ioctl_scrub_cancel(fs_info);
5250 	case BTRFS_IOC_SCRUB_PROGRESS:
5251 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5252 	case BTRFS_IOC_BALANCE_V2:
5253 		return btrfs_ioctl_balance(file, argp);
5254 	case BTRFS_IOC_BALANCE_CTL:
5255 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5256 	case BTRFS_IOC_BALANCE_PROGRESS:
5257 		return btrfs_ioctl_balance_progress(fs_info, argp);
5258 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5259 		return btrfs_ioctl_set_received_subvol(file, argp);
5260 #ifdef CONFIG_64BIT
5261 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5262 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5263 #endif
5264 	case BTRFS_IOC_SEND:
5265 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
5266 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5267 	case BTRFS_IOC_SEND_32:
5268 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
5269 #endif
5270 	case BTRFS_IOC_GET_DEV_STATS:
5271 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5272 	case BTRFS_IOC_QUOTA_CTL:
5273 		return btrfs_ioctl_quota_ctl(file, argp);
5274 	case BTRFS_IOC_QGROUP_ASSIGN:
5275 		return btrfs_ioctl_qgroup_assign(file, argp);
5276 	case BTRFS_IOC_QGROUP_CREATE:
5277 		return btrfs_ioctl_qgroup_create(file, argp);
5278 	case BTRFS_IOC_QGROUP_LIMIT:
5279 		return btrfs_ioctl_qgroup_limit(file, argp);
5280 	case BTRFS_IOC_QUOTA_RESCAN:
5281 		return btrfs_ioctl_quota_rescan(file, argp);
5282 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5283 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5284 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5285 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5286 	case BTRFS_IOC_DEV_REPLACE:
5287 		return btrfs_ioctl_dev_replace(fs_info, argp);
5288 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5289 		return btrfs_ioctl_get_supported_features(argp);
5290 	case BTRFS_IOC_GET_FEATURES:
5291 		return btrfs_ioctl_get_features(fs_info, argp);
5292 	case BTRFS_IOC_SET_FEATURES:
5293 		return btrfs_ioctl_set_features(file, argp);
5294 	case BTRFS_IOC_GET_SUBVOL_INFO:
5295 		return btrfs_ioctl_get_subvol_info(inode, argp);
5296 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5297 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5298 	case BTRFS_IOC_INO_LOOKUP_USER:
5299 		return btrfs_ioctl_ino_lookup_user(file, argp);
5300 	case FS_IOC_ENABLE_VERITY:
5301 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5302 	case FS_IOC_MEASURE_VERITY:
5303 		return fsverity_ioctl_measure(file, argp);
5304 	case BTRFS_IOC_ENCODED_READ:
5305 		return btrfs_ioctl_encoded_read(file, argp, false);
5306 	case BTRFS_IOC_ENCODED_WRITE:
5307 		return btrfs_ioctl_encoded_write(file, argp, false);
5308 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5309 	case BTRFS_IOC_ENCODED_READ_32:
5310 		return btrfs_ioctl_encoded_read(file, argp, true);
5311 	case BTRFS_IOC_ENCODED_WRITE_32:
5312 		return btrfs_ioctl_encoded_write(file, argp, true);
5313 #endif
5314 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5315 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5316 	}
5317 
5318 	return -ENOTTY;
5319 }
5320 
5321 #ifdef CONFIG_COMPAT
5322 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5323 {
5324 	/*
5325 	 * These all access 32-bit values anyway so no further
5326 	 * handling is necessary.
5327 	 */
5328 	switch (cmd) {
5329 	case FS_IOC32_GETVERSION:
5330 		cmd = FS_IOC_GETVERSION;
5331 		break;
5332 	}
5333 
5334 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5335 }
5336 #endif
5337