xref: /linux/fs/btrfs/ioctl.c (revision da51bbcdbace8f43adf6066934c3926b656376e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "block-group.h"
49 #include "fs.h"
50 #include "accessors.h"
51 #include "extent-tree.h"
52 #include "root-tree.h"
53 #include "defrag.h"
54 #include "dir-item.h"
55 #include "uuid-tree.h"
56 #include "ioctl.h"
57 #include "file.h"
58 #include "scrub.h"
59 #include "super.h"
60 
61 #ifdef CONFIG_64BIT
62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63  * structures are incorrect, as the timespec structure from userspace
64  * is 4 bytes too small. We define these alternatives here to teach
65  * the kernel about the 32-bit struct packing.
66  */
67 struct btrfs_ioctl_timespec_32 {
68 	__u64 sec;
69 	__u32 nsec;
70 } __attribute__ ((__packed__));
71 
72 struct btrfs_ioctl_received_subvol_args_32 {
73 	char	uuid[BTRFS_UUID_SIZE];	/* in */
74 	__u64	stransid;		/* in */
75 	__u64	rtransid;		/* out */
76 	struct btrfs_ioctl_timespec_32 stime; /* in */
77 	struct btrfs_ioctl_timespec_32 rtime; /* out */
78 	__u64	flags;			/* in */
79 	__u64	reserved[16];		/* in */
80 } __attribute__ ((__packed__));
81 
82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 				struct btrfs_ioctl_received_subvol_args_32)
84 #endif
85 
86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87 struct btrfs_ioctl_send_args_32 {
88 	__s64 send_fd;			/* in */
89 	__u64 clone_sources_count;	/* in */
90 	compat_uptr_t clone_sources;	/* in */
91 	__u64 parent_root;		/* in */
92 	__u64 flags;			/* in */
93 	__u32 version;			/* in */
94 	__u8  reserved[28];		/* in */
95 } __attribute__ ((__packed__));
96 
97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 			       struct btrfs_ioctl_send_args_32)
99 
100 struct btrfs_ioctl_encoded_io_args_32 {
101 	compat_uptr_t iov;
102 	compat_ulong_t iovcnt;
103 	__s64 offset;
104 	__u64 flags;
105 	__u64 len;
106 	__u64 unencoded_len;
107 	__u64 unencoded_offset;
108 	__u32 compression;
109 	__u32 encryption;
110 	__u8 reserved[64];
111 };
112 
113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 				       struct btrfs_ioctl_encoded_io_args_32)
115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 					struct btrfs_ioctl_encoded_io_args_32)
117 #endif
118 
119 /* Mask out flags that are inappropriate for the given type of inode. */
120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121 		unsigned int flags)
122 {
123 	if (S_ISDIR(inode->i_mode))
124 		return flags;
125 	else if (S_ISREG(inode->i_mode))
126 		return flags & ~FS_DIRSYNC_FL;
127 	else
128 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129 }
130 
131 /*
132  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133  * ioctl.
134  */
135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136 {
137 	unsigned int iflags = 0;
138 	u32 flags = binode->flags;
139 	u32 ro_flags = binode->ro_flags;
140 
141 	if (flags & BTRFS_INODE_SYNC)
142 		iflags |= FS_SYNC_FL;
143 	if (flags & BTRFS_INODE_IMMUTABLE)
144 		iflags |= FS_IMMUTABLE_FL;
145 	if (flags & BTRFS_INODE_APPEND)
146 		iflags |= FS_APPEND_FL;
147 	if (flags & BTRFS_INODE_NODUMP)
148 		iflags |= FS_NODUMP_FL;
149 	if (flags & BTRFS_INODE_NOATIME)
150 		iflags |= FS_NOATIME_FL;
151 	if (flags & BTRFS_INODE_DIRSYNC)
152 		iflags |= FS_DIRSYNC_FL;
153 	if (flags & BTRFS_INODE_NODATACOW)
154 		iflags |= FS_NOCOW_FL;
155 	if (ro_flags & BTRFS_INODE_RO_VERITY)
156 		iflags |= FS_VERITY_FL;
157 
158 	if (flags & BTRFS_INODE_NOCOMPRESS)
159 		iflags |= FS_NOCOMP_FL;
160 	else if (flags & BTRFS_INODE_COMPRESS)
161 		iflags |= FS_COMPR_FL;
162 
163 	return iflags;
164 }
165 
166 /*
167  * Update inode->i_flags based on the btrfs internal flags.
168  */
169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170 {
171 	struct btrfs_inode *binode = BTRFS_I(inode);
172 	unsigned int new_fl = 0;
173 
174 	if (binode->flags & BTRFS_INODE_SYNC)
175 		new_fl |= S_SYNC;
176 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 		new_fl |= S_IMMUTABLE;
178 	if (binode->flags & BTRFS_INODE_APPEND)
179 		new_fl |= S_APPEND;
180 	if (binode->flags & BTRFS_INODE_NOATIME)
181 		new_fl |= S_NOATIME;
182 	if (binode->flags & BTRFS_INODE_DIRSYNC)
183 		new_fl |= S_DIRSYNC;
184 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185 		new_fl |= S_VERITY;
186 
187 	set_mask_bits(&inode->i_flags,
188 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 		      S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 		      FS_NOATIME_FL | FS_NODUMP_FL | \
200 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
201 		      FS_NOCOMP_FL | FS_COMPR_FL |
202 		      FS_NOCOW_FL))
203 		return -EOPNOTSUPP;
204 
205 	/* COMPR and NOCOMP on new/old are valid */
206 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 		return -EINVAL;
208 
209 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 		return -EINVAL;
211 
212 	/* NOCOW and compression options are mutually exclusive */
213 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 		return -EINVAL;
215 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222 				    unsigned int flags)
223 {
224 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 		return -EPERM;
226 
227 	return 0;
228 }
229 
230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 		return -ENAMETOOLONG;
234 	return 0;
235 }
236 
237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 		return -ENAMETOOLONG;
241 	return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249 {
250 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
251 
252 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
253 	return 0;
254 }
255 
256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 		       struct dentry *dentry, struct fileattr *fa)
258 {
259 	struct inode *inode = d_inode(dentry);
260 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 	struct btrfs_inode *binode = BTRFS_I(inode);
262 	struct btrfs_root *root = binode->root;
263 	struct btrfs_trans_handle *trans;
264 	unsigned int fsflags, old_fsflags;
265 	int ret;
266 	const char *comp = NULL;
267 	u32 binode_flags;
268 
269 	if (btrfs_root_readonly(root))
270 		return -EROFS;
271 
272 	if (fileattr_has_fsx(fa))
273 		return -EOPNOTSUPP;
274 
275 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 	ret = check_fsflags(old_fsflags, fsflags);
278 	if (ret)
279 		return ret;
280 
281 	ret = check_fsflags_compatible(fs_info, fsflags);
282 	if (ret)
283 		return ret;
284 
285 	binode_flags = binode->flags;
286 	if (fsflags & FS_SYNC_FL)
287 		binode_flags |= BTRFS_INODE_SYNC;
288 	else
289 		binode_flags &= ~BTRFS_INODE_SYNC;
290 	if (fsflags & FS_IMMUTABLE_FL)
291 		binode_flags |= BTRFS_INODE_IMMUTABLE;
292 	else
293 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 	if (fsflags & FS_APPEND_FL)
295 		binode_flags |= BTRFS_INODE_APPEND;
296 	else
297 		binode_flags &= ~BTRFS_INODE_APPEND;
298 	if (fsflags & FS_NODUMP_FL)
299 		binode_flags |= BTRFS_INODE_NODUMP;
300 	else
301 		binode_flags &= ~BTRFS_INODE_NODUMP;
302 	if (fsflags & FS_NOATIME_FL)
303 		binode_flags |= BTRFS_INODE_NOATIME;
304 	else
305 		binode_flags &= ~BTRFS_INODE_NOATIME;
306 
307 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 	if (!fa->flags_valid) {
309 		/* 1 item for the inode */
310 		trans = btrfs_start_transaction(root, 1);
311 		if (IS_ERR(trans))
312 			return PTR_ERR(trans);
313 		goto update_flags;
314 	}
315 
316 	if (fsflags & FS_DIRSYNC_FL)
317 		binode_flags |= BTRFS_INODE_DIRSYNC;
318 	else
319 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 	if (fsflags & FS_NOCOW_FL) {
321 		if (S_ISREG(inode->i_mode)) {
322 			/*
323 			 * It's safe to turn csums off here, no extents exist.
324 			 * Otherwise we want the flag to reflect the real COW
325 			 * status of the file and will not set it.
326 			 */
327 			if (inode->i_size == 0)
328 				binode_flags |= BTRFS_INODE_NODATACOW |
329 						BTRFS_INODE_NODATASUM;
330 		} else {
331 			binode_flags |= BTRFS_INODE_NODATACOW;
332 		}
333 	} else {
334 		/*
335 		 * Revert back under same assumptions as above
336 		 */
337 		if (S_ISREG(inode->i_mode)) {
338 			if (inode->i_size == 0)
339 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 						  BTRFS_INODE_NODATASUM);
341 		} else {
342 			binode_flags &= ~BTRFS_INODE_NODATACOW;
343 		}
344 	}
345 
346 	/*
347 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 	 * flag may be changed automatically if compression code won't make
349 	 * things smaller.
350 	 */
351 	if (fsflags & FS_NOCOMP_FL) {
352 		binode_flags &= ~BTRFS_INODE_COMPRESS;
353 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 	} else if (fsflags & FS_COMPR_FL) {
355 
356 		if (IS_SWAPFILE(inode))
357 			return -ETXTBSY;
358 
359 		binode_flags |= BTRFS_INODE_COMPRESS;
360 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
361 
362 		comp = btrfs_compress_type2str(fs_info->compress_type);
363 		if (!comp || comp[0] == 0)
364 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
365 	} else {
366 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
367 	}
368 
369 	/*
370 	 * 1 for inode item
371 	 * 2 for properties
372 	 */
373 	trans = btrfs_start_transaction(root, 3);
374 	if (IS_ERR(trans))
375 		return PTR_ERR(trans);
376 
377 	if (comp) {
378 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
379 				     strlen(comp), 0);
380 		if (ret) {
381 			btrfs_abort_transaction(trans, ret);
382 			goto out_end_trans;
383 		}
384 	} else {
385 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
386 				     0, 0);
387 		if (ret && ret != -ENODATA) {
388 			btrfs_abort_transaction(trans, ret);
389 			goto out_end_trans;
390 		}
391 	}
392 
393 update_flags:
394 	binode->flags = binode_flags;
395 	btrfs_sync_inode_flags_to_i_flags(inode);
396 	inode_inc_iversion(inode);
397 	inode_set_ctime_current(inode);
398 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
399 
400  out_end_trans:
401 	btrfs_end_transaction(trans);
402 	return ret;
403 }
404 
405 /*
406  * Start exclusive operation @type, return true on success
407  */
408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 			enum btrfs_exclusive_operation type)
410 {
411 	bool ret = false;
412 
413 	spin_lock(&fs_info->super_lock);
414 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 		fs_info->exclusive_operation = type;
416 		ret = true;
417 	}
418 	spin_unlock(&fs_info->super_lock);
419 
420 	return ret;
421 }
422 
423 /*
424  * Conditionally allow to enter the exclusive operation in case it's compatible
425  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
426  * btrfs_exclop_finish.
427  *
428  * Compatibility:
429  * - the same type is already running
430  * - when trying to add a device and balance has been paused
431  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432  *   must check the condition first that would allow none -> @type
433  */
434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 				 enum btrfs_exclusive_operation type)
436 {
437 	spin_lock(&fs_info->super_lock);
438 	if (fs_info->exclusive_operation == type ||
439 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 	     type == BTRFS_EXCLOP_DEV_ADD))
441 		return true;
442 
443 	spin_unlock(&fs_info->super_lock);
444 	return false;
445 }
446 
447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
448 {
449 	spin_unlock(&fs_info->super_lock);
450 }
451 
452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
453 {
454 	spin_lock(&fs_info->super_lock);
455 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 	spin_unlock(&fs_info->super_lock);
457 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
458 }
459 
460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 			  enum btrfs_exclusive_operation op)
462 {
463 	switch (op) {
464 	case BTRFS_EXCLOP_BALANCE_PAUSED:
465 		spin_lock(&fs_info->super_lock);
466 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 		spin_unlock(&fs_info->super_lock);
472 		break;
473 	case BTRFS_EXCLOP_BALANCE:
474 		spin_lock(&fs_info->super_lock);
475 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 		spin_unlock(&fs_info->super_lock);
478 		break;
479 	default:
480 		btrfs_warn(fs_info,
481 			"invalid exclop balance operation %d requested", op);
482 	}
483 }
484 
485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
486 {
487 	return put_user(inode->i_generation, arg);
488 }
489 
490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
491 					void __user *arg)
492 {
493 	struct btrfs_device *device;
494 	struct fstrim_range range;
495 	u64 minlen = ULLONG_MAX;
496 	u64 num_devices = 0;
497 	int ret;
498 
499 	if (!capable(CAP_SYS_ADMIN))
500 		return -EPERM;
501 
502 	/*
503 	 * btrfs_trim_block_group() depends on space cache, which is not
504 	 * available in zoned filesystem. So, disallow fitrim on a zoned
505 	 * filesystem for now.
506 	 */
507 	if (btrfs_is_zoned(fs_info))
508 		return -EOPNOTSUPP;
509 
510 	/*
511 	 * If the fs is mounted with nologreplay, which requires it to be
512 	 * mounted in RO mode as well, we can not allow discard on free space
513 	 * inside block groups, because log trees refer to extents that are not
514 	 * pinned in a block group's free space cache (pinning the extents is
515 	 * precisely the first phase of replaying a log tree).
516 	 */
517 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518 		return -EROFS;
519 
520 	rcu_read_lock();
521 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522 				dev_list) {
523 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
524 			continue;
525 		num_devices++;
526 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
527 				    minlen);
528 	}
529 	rcu_read_unlock();
530 
531 	if (!num_devices)
532 		return -EOPNOTSUPP;
533 	if (copy_from_user(&range, arg, sizeof(range)))
534 		return -EFAULT;
535 
536 	/*
537 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
538 	 * block group is in the logical address space, which can be any
539 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
540 	 */
541 	if (range.len < fs_info->sectorsize)
542 		return -EINVAL;
543 
544 	range.minlen = max(range.minlen, minlen);
545 	ret = btrfs_trim_fs(fs_info, &range);
546 	if (ret < 0)
547 		return ret;
548 
549 	if (copy_to_user(arg, &range, sizeof(range)))
550 		return -EFAULT;
551 
552 	return 0;
553 }
554 
555 int __pure btrfs_is_empty_uuid(u8 *uuid)
556 {
557 	int i;
558 
559 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
560 		if (uuid[i])
561 			return 0;
562 	}
563 	return 1;
564 }
565 
566 /*
567  * Calculate the number of transaction items to reserve for creating a subvolume
568  * or snapshot, not including the inode, directory entries, or parent directory.
569  */
570 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
571 {
572 	/*
573 	 * 1 to add root block
574 	 * 1 to add root item
575 	 * 1 to add root ref
576 	 * 1 to add root backref
577 	 * 1 to add UUID item
578 	 * 1 to add qgroup info
579 	 * 1 to add qgroup limit
580 	 *
581 	 * Ideally the last two would only be accounted if qgroups are enabled,
582 	 * but that can change between now and the time we would insert them.
583 	 */
584 	unsigned int num_items = 7;
585 
586 	if (inherit) {
587 		/* 2 to add qgroup relations for each inherited qgroup */
588 		num_items += 2 * inherit->num_qgroups;
589 	}
590 	return num_items;
591 }
592 
593 static noinline int create_subvol(struct mnt_idmap *idmap,
594 				  struct inode *dir, struct dentry *dentry,
595 				  struct btrfs_qgroup_inherit *inherit)
596 {
597 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
598 	struct btrfs_trans_handle *trans;
599 	struct btrfs_key key;
600 	struct btrfs_root_item *root_item;
601 	struct btrfs_inode_item *inode_item;
602 	struct extent_buffer *leaf;
603 	struct btrfs_root *root = BTRFS_I(dir)->root;
604 	struct btrfs_root *new_root;
605 	struct btrfs_block_rsv block_rsv;
606 	struct timespec64 cur_time = current_time(dir);
607 	struct btrfs_new_inode_args new_inode_args = {
608 		.dir = dir,
609 		.dentry = dentry,
610 		.subvol = true,
611 	};
612 	unsigned int trans_num_items;
613 	int ret;
614 	dev_t anon_dev;
615 	u64 objectid;
616 
617 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
618 	if (!root_item)
619 		return -ENOMEM;
620 
621 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
622 	if (ret)
623 		goto out_root_item;
624 
625 	/*
626 	 * Don't create subvolume whose level is not zero. Or qgroup will be
627 	 * screwed up since it assumes subvolume qgroup's level to be 0.
628 	 */
629 	if (btrfs_qgroup_level(objectid)) {
630 		ret = -ENOSPC;
631 		goto out_root_item;
632 	}
633 
634 	ret = get_anon_bdev(&anon_dev);
635 	if (ret < 0)
636 		goto out_root_item;
637 
638 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
639 	if (!new_inode_args.inode) {
640 		ret = -ENOMEM;
641 		goto out_anon_dev;
642 	}
643 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
644 	if (ret)
645 		goto out_inode;
646 	trans_num_items += create_subvol_num_items(inherit);
647 
648 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
649 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
650 					       trans_num_items, false);
651 	if (ret)
652 		goto out_new_inode_args;
653 
654 	trans = btrfs_start_transaction(root, 0);
655 	if (IS_ERR(trans)) {
656 		ret = PTR_ERR(trans);
657 		btrfs_subvolume_release_metadata(root, &block_rsv);
658 		goto out_new_inode_args;
659 	}
660 	trans->block_rsv = &block_rsv;
661 	trans->bytes_reserved = block_rsv.size;
662 	/* Tree log can't currently deal with an inode which is a new root. */
663 	btrfs_set_log_full_commit(trans);
664 
665 	ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
666 	if (ret)
667 		goto out;
668 
669 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
670 				      0, BTRFS_NESTING_NORMAL);
671 	if (IS_ERR(leaf)) {
672 		ret = PTR_ERR(leaf);
673 		goto out;
674 	}
675 
676 	btrfs_mark_buffer_dirty(trans, leaf);
677 
678 	inode_item = &root_item->inode;
679 	btrfs_set_stack_inode_generation(inode_item, 1);
680 	btrfs_set_stack_inode_size(inode_item, 3);
681 	btrfs_set_stack_inode_nlink(inode_item, 1);
682 	btrfs_set_stack_inode_nbytes(inode_item,
683 				     fs_info->nodesize);
684 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
685 
686 	btrfs_set_root_flags(root_item, 0);
687 	btrfs_set_root_limit(root_item, 0);
688 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
689 
690 	btrfs_set_root_bytenr(root_item, leaf->start);
691 	btrfs_set_root_generation(root_item, trans->transid);
692 	btrfs_set_root_level(root_item, 0);
693 	btrfs_set_root_refs(root_item, 1);
694 	btrfs_set_root_used(root_item, leaf->len);
695 	btrfs_set_root_last_snapshot(root_item, 0);
696 
697 	btrfs_set_root_generation_v2(root_item,
698 			btrfs_root_generation(root_item));
699 	generate_random_guid(root_item->uuid);
700 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
701 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
702 	root_item->ctime = root_item->otime;
703 	btrfs_set_root_ctransid(root_item, trans->transid);
704 	btrfs_set_root_otransid(root_item, trans->transid);
705 
706 	btrfs_tree_unlock(leaf);
707 
708 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
709 
710 	key.objectid = objectid;
711 	key.offset = 0;
712 	key.type = BTRFS_ROOT_ITEM_KEY;
713 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
714 				root_item);
715 	if (ret) {
716 		/*
717 		 * Since we don't abort the transaction in this case, free the
718 		 * tree block so that we don't leak space and leave the
719 		 * filesystem in an inconsistent state (an extent item in the
720 		 * extent tree with a backreference for a root that does not
721 		 * exists).
722 		 */
723 		btrfs_tree_lock(leaf);
724 		btrfs_clear_buffer_dirty(trans, leaf);
725 		btrfs_tree_unlock(leaf);
726 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
727 		free_extent_buffer(leaf);
728 		goto out;
729 	}
730 
731 	free_extent_buffer(leaf);
732 	leaf = NULL;
733 
734 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
735 	if (IS_ERR(new_root)) {
736 		ret = PTR_ERR(new_root);
737 		btrfs_abort_transaction(trans, ret);
738 		goto out;
739 	}
740 	/* anon_dev is owned by new_root now. */
741 	anon_dev = 0;
742 	BTRFS_I(new_inode_args.inode)->root = new_root;
743 	/* ... and new_root is owned by new_inode_args.inode now. */
744 
745 	ret = btrfs_record_root_in_trans(trans, new_root);
746 	if (ret) {
747 		btrfs_abort_transaction(trans, ret);
748 		goto out;
749 	}
750 
751 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
752 				  BTRFS_UUID_KEY_SUBVOL, objectid);
753 	if (ret) {
754 		btrfs_abort_transaction(trans, ret);
755 		goto out;
756 	}
757 
758 	ret = btrfs_create_new_inode(trans, &new_inode_args);
759 	if (ret) {
760 		btrfs_abort_transaction(trans, ret);
761 		goto out;
762 	}
763 
764 	d_instantiate_new(dentry, new_inode_args.inode);
765 	new_inode_args.inode = NULL;
766 
767 out:
768 	trans->block_rsv = NULL;
769 	trans->bytes_reserved = 0;
770 	btrfs_subvolume_release_metadata(root, &block_rsv);
771 
772 	btrfs_end_transaction(trans);
773 out_new_inode_args:
774 	btrfs_new_inode_args_destroy(&new_inode_args);
775 out_inode:
776 	iput(new_inode_args.inode);
777 out_anon_dev:
778 	if (anon_dev)
779 		free_anon_bdev(anon_dev);
780 out_root_item:
781 	kfree(root_item);
782 	return ret;
783 }
784 
785 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
786 			   struct dentry *dentry, bool readonly,
787 			   struct btrfs_qgroup_inherit *inherit)
788 {
789 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
790 	struct inode *inode;
791 	struct btrfs_pending_snapshot *pending_snapshot;
792 	unsigned int trans_num_items;
793 	struct btrfs_trans_handle *trans;
794 	int ret;
795 
796 	/* We do not support snapshotting right now. */
797 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
798 		btrfs_warn(fs_info,
799 			   "extent tree v2 doesn't support snapshotting yet");
800 		return -EOPNOTSUPP;
801 	}
802 
803 	if (btrfs_root_refs(&root->root_item) == 0)
804 		return -ENOENT;
805 
806 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
807 		return -EINVAL;
808 
809 	if (atomic_read(&root->nr_swapfiles)) {
810 		btrfs_warn(fs_info,
811 			   "cannot snapshot subvolume with active swapfile");
812 		return -ETXTBSY;
813 	}
814 
815 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
816 	if (!pending_snapshot)
817 		return -ENOMEM;
818 
819 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
820 	if (ret < 0)
821 		goto free_pending;
822 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
823 			GFP_KERNEL);
824 	pending_snapshot->path = btrfs_alloc_path();
825 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
826 		ret = -ENOMEM;
827 		goto free_pending;
828 	}
829 
830 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
831 			     BTRFS_BLOCK_RSV_TEMP);
832 	/*
833 	 * 1 to add dir item
834 	 * 1 to add dir index
835 	 * 1 to update parent inode item
836 	 */
837 	trans_num_items = create_subvol_num_items(inherit) + 3;
838 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
839 					       &pending_snapshot->block_rsv,
840 					       trans_num_items, false);
841 	if (ret)
842 		goto free_pending;
843 
844 	pending_snapshot->dentry = dentry;
845 	pending_snapshot->root = root;
846 	pending_snapshot->readonly = readonly;
847 	pending_snapshot->dir = dir;
848 	pending_snapshot->inherit = inherit;
849 
850 	trans = btrfs_start_transaction(root, 0);
851 	if (IS_ERR(trans)) {
852 		ret = PTR_ERR(trans);
853 		goto fail;
854 	}
855 
856 	trans->pending_snapshot = pending_snapshot;
857 
858 	ret = btrfs_commit_transaction(trans);
859 	if (ret)
860 		goto fail;
861 
862 	ret = pending_snapshot->error;
863 	if (ret)
864 		goto fail;
865 
866 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
867 	if (ret)
868 		goto fail;
869 
870 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
871 	if (IS_ERR(inode)) {
872 		ret = PTR_ERR(inode);
873 		goto fail;
874 	}
875 
876 	d_instantiate(dentry, inode);
877 	ret = 0;
878 	pending_snapshot->anon_dev = 0;
879 fail:
880 	/* Prevent double freeing of anon_dev */
881 	if (ret && pending_snapshot->snap)
882 		pending_snapshot->snap->anon_dev = 0;
883 	btrfs_put_root(pending_snapshot->snap);
884 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
885 free_pending:
886 	if (pending_snapshot->anon_dev)
887 		free_anon_bdev(pending_snapshot->anon_dev);
888 	kfree(pending_snapshot->root_item);
889 	btrfs_free_path(pending_snapshot->path);
890 	kfree(pending_snapshot);
891 
892 	return ret;
893 }
894 
895 /*  copy of may_delete in fs/namei.c()
896  *	Check whether we can remove a link victim from directory dir, check
897  *  whether the type of victim is right.
898  *  1. We can't do it if dir is read-only (done in permission())
899  *  2. We should have write and exec permissions on dir
900  *  3. We can't remove anything from append-only dir
901  *  4. We can't do anything with immutable dir (done in permission())
902  *  5. If the sticky bit on dir is set we should either
903  *	a. be owner of dir, or
904  *	b. be owner of victim, or
905  *	c. have CAP_FOWNER capability
906  *  6. If the victim is append-only or immutable we can't do anything with
907  *     links pointing to it.
908  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
909  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
910  *  9. We can't remove a root or mountpoint.
911  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
912  *     nfs_async_unlink().
913  */
914 
915 static int btrfs_may_delete(struct mnt_idmap *idmap,
916 			    struct inode *dir, struct dentry *victim, int isdir)
917 {
918 	int error;
919 
920 	if (d_really_is_negative(victim))
921 		return -ENOENT;
922 
923 	/* The @victim is not inside @dir. */
924 	if (d_inode(victim->d_parent) != dir)
925 		return -EINVAL;
926 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
927 
928 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
929 	if (error)
930 		return error;
931 	if (IS_APPEND(dir))
932 		return -EPERM;
933 	if (check_sticky(idmap, dir, d_inode(victim)) ||
934 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
935 	    IS_SWAPFILE(d_inode(victim)))
936 		return -EPERM;
937 	if (isdir) {
938 		if (!d_is_dir(victim))
939 			return -ENOTDIR;
940 		if (IS_ROOT(victim))
941 			return -EBUSY;
942 	} else if (d_is_dir(victim))
943 		return -EISDIR;
944 	if (IS_DEADDIR(dir))
945 		return -ENOENT;
946 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
947 		return -EBUSY;
948 	return 0;
949 }
950 
951 /* copy of may_create in fs/namei.c() */
952 static inline int btrfs_may_create(struct mnt_idmap *idmap,
953 				   struct inode *dir, struct dentry *child)
954 {
955 	if (d_really_is_positive(child))
956 		return -EEXIST;
957 	if (IS_DEADDIR(dir))
958 		return -ENOENT;
959 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
960 		return -EOVERFLOW;
961 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
962 }
963 
964 /*
965  * Create a new subvolume below @parent.  This is largely modeled after
966  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
967  * inside this filesystem so it's quite a bit simpler.
968  */
969 static noinline int btrfs_mksubvol(const struct path *parent,
970 				   struct mnt_idmap *idmap,
971 				   const char *name, int namelen,
972 				   struct btrfs_root *snap_src,
973 				   bool readonly,
974 				   struct btrfs_qgroup_inherit *inherit)
975 {
976 	struct inode *dir = d_inode(parent->dentry);
977 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
978 	struct dentry *dentry;
979 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
980 	int error;
981 
982 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
983 	if (error == -EINTR)
984 		return error;
985 
986 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
987 	error = PTR_ERR(dentry);
988 	if (IS_ERR(dentry))
989 		goto out_unlock;
990 
991 	error = btrfs_may_create(idmap, dir, dentry);
992 	if (error)
993 		goto out_dput;
994 
995 	/*
996 	 * even if this name doesn't exist, we may get hash collisions.
997 	 * check for them now when we can safely fail
998 	 */
999 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1000 					       dir->i_ino, &name_str);
1001 	if (error)
1002 		goto out_dput;
1003 
1004 	down_read(&fs_info->subvol_sem);
1005 
1006 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1007 		goto out_up_read;
1008 
1009 	if (snap_src)
1010 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1011 	else
1012 		error = create_subvol(idmap, dir, dentry, inherit);
1013 
1014 	if (!error)
1015 		fsnotify_mkdir(dir, dentry);
1016 out_up_read:
1017 	up_read(&fs_info->subvol_sem);
1018 out_dput:
1019 	dput(dentry);
1020 out_unlock:
1021 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1022 	return error;
1023 }
1024 
1025 static noinline int btrfs_mksnapshot(const struct path *parent,
1026 				   struct mnt_idmap *idmap,
1027 				   const char *name, int namelen,
1028 				   struct btrfs_root *root,
1029 				   bool readonly,
1030 				   struct btrfs_qgroup_inherit *inherit)
1031 {
1032 	int ret;
1033 	bool snapshot_force_cow = false;
1034 
1035 	/*
1036 	 * Force new buffered writes to reserve space even when NOCOW is
1037 	 * possible. This is to avoid later writeback (running dealloc) to
1038 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1039 	 */
1040 	btrfs_drew_read_lock(&root->snapshot_lock);
1041 
1042 	ret = btrfs_start_delalloc_snapshot(root, false);
1043 	if (ret)
1044 		goto out;
1045 
1046 	/*
1047 	 * All previous writes have started writeback in NOCOW mode, so now
1048 	 * we force future writes to fallback to COW mode during snapshot
1049 	 * creation.
1050 	 */
1051 	atomic_inc(&root->snapshot_force_cow);
1052 	snapshot_force_cow = true;
1053 
1054 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1055 
1056 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1057 			     root, readonly, inherit);
1058 out:
1059 	if (snapshot_force_cow)
1060 		atomic_dec(&root->snapshot_force_cow);
1061 	btrfs_drew_read_unlock(&root->snapshot_lock);
1062 	return ret;
1063 }
1064 
1065 /*
1066  * Try to start exclusive operation @type or cancel it if it's running.
1067  *
1068  * Return:
1069  *   0        - normal mode, newly claimed op started
1070  *  >0        - normal mode, something else is running,
1071  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1072  * ECANCELED  - cancel mode, successful cancel
1073  * ENOTCONN   - cancel mode, operation not running anymore
1074  */
1075 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1076 			enum btrfs_exclusive_operation type, bool cancel)
1077 {
1078 	if (!cancel) {
1079 		/* Start normal op */
1080 		if (!btrfs_exclop_start(fs_info, type))
1081 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1082 		/* Exclusive operation is now claimed */
1083 		return 0;
1084 	}
1085 
1086 	/* Cancel running op */
1087 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1088 		/*
1089 		 * This blocks any exclop finish from setting it to NONE, so we
1090 		 * request cancellation. Either it runs and we will wait for it,
1091 		 * or it has finished and no waiting will happen.
1092 		 */
1093 		atomic_inc(&fs_info->reloc_cancel_req);
1094 		btrfs_exclop_start_unlock(fs_info);
1095 
1096 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1097 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1098 				    TASK_INTERRUPTIBLE);
1099 
1100 		return -ECANCELED;
1101 	}
1102 
1103 	/* Something else is running or none */
1104 	return -ENOTCONN;
1105 }
1106 
1107 static noinline int btrfs_ioctl_resize(struct file *file,
1108 					void __user *arg)
1109 {
1110 	BTRFS_DEV_LOOKUP_ARGS(args);
1111 	struct inode *inode = file_inode(file);
1112 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1113 	u64 new_size;
1114 	u64 old_size;
1115 	u64 devid = 1;
1116 	struct btrfs_root *root = BTRFS_I(inode)->root;
1117 	struct btrfs_ioctl_vol_args *vol_args;
1118 	struct btrfs_trans_handle *trans;
1119 	struct btrfs_device *device = NULL;
1120 	char *sizestr;
1121 	char *retptr;
1122 	char *devstr = NULL;
1123 	int ret = 0;
1124 	int mod = 0;
1125 	bool cancel;
1126 
1127 	if (!capable(CAP_SYS_ADMIN))
1128 		return -EPERM;
1129 
1130 	ret = mnt_want_write_file(file);
1131 	if (ret)
1132 		return ret;
1133 
1134 	/*
1135 	 * Read the arguments before checking exclusivity to be able to
1136 	 * distinguish regular resize and cancel
1137 	 */
1138 	vol_args = memdup_user(arg, sizeof(*vol_args));
1139 	if (IS_ERR(vol_args)) {
1140 		ret = PTR_ERR(vol_args);
1141 		goto out_drop;
1142 	}
1143 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1144 	if (ret < 0)
1145 		goto out_free;
1146 
1147 	sizestr = vol_args->name;
1148 	cancel = (strcmp("cancel", sizestr) == 0);
1149 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1150 	if (ret)
1151 		goto out_free;
1152 	/* Exclusive operation is now claimed */
1153 
1154 	devstr = strchr(sizestr, ':');
1155 	if (devstr) {
1156 		sizestr = devstr + 1;
1157 		*devstr = '\0';
1158 		devstr = vol_args->name;
1159 		ret = kstrtoull(devstr, 10, &devid);
1160 		if (ret)
1161 			goto out_finish;
1162 		if (!devid) {
1163 			ret = -EINVAL;
1164 			goto out_finish;
1165 		}
1166 		btrfs_info(fs_info, "resizing devid %llu", devid);
1167 	}
1168 
1169 	args.devid = devid;
1170 	device = btrfs_find_device(fs_info->fs_devices, &args);
1171 	if (!device) {
1172 		btrfs_info(fs_info, "resizer unable to find device %llu",
1173 			   devid);
1174 		ret = -ENODEV;
1175 		goto out_finish;
1176 	}
1177 
1178 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1179 		btrfs_info(fs_info,
1180 			   "resizer unable to apply on readonly device %llu",
1181 		       devid);
1182 		ret = -EPERM;
1183 		goto out_finish;
1184 	}
1185 
1186 	if (!strcmp(sizestr, "max"))
1187 		new_size = bdev_nr_bytes(device->bdev);
1188 	else {
1189 		if (sizestr[0] == '-') {
1190 			mod = -1;
1191 			sizestr++;
1192 		} else if (sizestr[0] == '+') {
1193 			mod = 1;
1194 			sizestr++;
1195 		}
1196 		new_size = memparse(sizestr, &retptr);
1197 		if (*retptr != '\0' || new_size == 0) {
1198 			ret = -EINVAL;
1199 			goto out_finish;
1200 		}
1201 	}
1202 
1203 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1204 		ret = -EPERM;
1205 		goto out_finish;
1206 	}
1207 
1208 	old_size = btrfs_device_get_total_bytes(device);
1209 
1210 	if (mod < 0) {
1211 		if (new_size > old_size) {
1212 			ret = -EINVAL;
1213 			goto out_finish;
1214 		}
1215 		new_size = old_size - new_size;
1216 	} else if (mod > 0) {
1217 		if (new_size > ULLONG_MAX - old_size) {
1218 			ret = -ERANGE;
1219 			goto out_finish;
1220 		}
1221 		new_size = old_size + new_size;
1222 	}
1223 
1224 	if (new_size < SZ_256M) {
1225 		ret = -EINVAL;
1226 		goto out_finish;
1227 	}
1228 	if (new_size > bdev_nr_bytes(device->bdev)) {
1229 		ret = -EFBIG;
1230 		goto out_finish;
1231 	}
1232 
1233 	new_size = round_down(new_size, fs_info->sectorsize);
1234 
1235 	if (new_size > old_size) {
1236 		trans = btrfs_start_transaction(root, 0);
1237 		if (IS_ERR(trans)) {
1238 			ret = PTR_ERR(trans);
1239 			goto out_finish;
1240 		}
1241 		ret = btrfs_grow_device(trans, device, new_size);
1242 		btrfs_commit_transaction(trans);
1243 	} else if (new_size < old_size) {
1244 		ret = btrfs_shrink_device(device, new_size);
1245 	} /* equal, nothing need to do */
1246 
1247 	if (ret == 0 && new_size != old_size)
1248 		btrfs_info_in_rcu(fs_info,
1249 			"resize device %s (devid %llu) from %llu to %llu",
1250 			btrfs_dev_name(device), device->devid,
1251 			old_size, new_size);
1252 out_finish:
1253 	btrfs_exclop_finish(fs_info);
1254 out_free:
1255 	kfree(vol_args);
1256 out_drop:
1257 	mnt_drop_write_file(file);
1258 	return ret;
1259 }
1260 
1261 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1262 				struct mnt_idmap *idmap,
1263 				const char *name, unsigned long fd, int subvol,
1264 				bool readonly,
1265 				struct btrfs_qgroup_inherit *inherit)
1266 {
1267 	int namelen;
1268 	int ret = 0;
1269 
1270 	if (!S_ISDIR(file_inode(file)->i_mode))
1271 		return -ENOTDIR;
1272 
1273 	ret = mnt_want_write_file(file);
1274 	if (ret)
1275 		goto out;
1276 
1277 	namelen = strlen(name);
1278 	if (strchr(name, '/')) {
1279 		ret = -EINVAL;
1280 		goto out_drop_write;
1281 	}
1282 
1283 	if (name[0] == '.' &&
1284 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1285 		ret = -EEXIST;
1286 		goto out_drop_write;
1287 	}
1288 
1289 	if (subvol) {
1290 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1291 				     namelen, NULL, readonly, inherit);
1292 	} else {
1293 		struct fd src = fdget(fd);
1294 		struct inode *src_inode;
1295 		if (!src.file) {
1296 			ret = -EINVAL;
1297 			goto out_drop_write;
1298 		}
1299 
1300 		src_inode = file_inode(src.file);
1301 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1302 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1303 				   "Snapshot src from another FS");
1304 			ret = -EXDEV;
1305 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1306 			/*
1307 			 * Subvolume creation is not restricted, but snapshots
1308 			 * are limited to own subvolumes only
1309 			 */
1310 			ret = -EPERM;
1311 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1312 			/*
1313 			 * Snapshots must be made with the src_inode referring
1314 			 * to the subvolume inode, otherwise the permission
1315 			 * checking above is useless because we may have
1316 			 * permission on a lower directory but not the subvol
1317 			 * itself.
1318 			 */
1319 			ret = -EINVAL;
1320 		} else {
1321 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1322 					       name, namelen,
1323 					       BTRFS_I(src_inode)->root,
1324 					       readonly, inherit);
1325 		}
1326 		fdput(src);
1327 	}
1328 out_drop_write:
1329 	mnt_drop_write_file(file);
1330 out:
1331 	return ret;
1332 }
1333 
1334 static noinline int btrfs_ioctl_snap_create(struct file *file,
1335 					    void __user *arg, int subvol)
1336 {
1337 	struct btrfs_ioctl_vol_args *vol_args;
1338 	int ret;
1339 
1340 	if (!S_ISDIR(file_inode(file)->i_mode))
1341 		return -ENOTDIR;
1342 
1343 	vol_args = memdup_user(arg, sizeof(*vol_args));
1344 	if (IS_ERR(vol_args))
1345 		return PTR_ERR(vol_args);
1346 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1347 	if (ret < 0)
1348 		goto out;
1349 
1350 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1351 					vol_args->name, vol_args->fd, subvol,
1352 					false, NULL);
1353 
1354 out:
1355 	kfree(vol_args);
1356 	return ret;
1357 }
1358 
1359 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1360 					       void __user *arg, int subvol)
1361 {
1362 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1363 	int ret;
1364 	bool readonly = false;
1365 	struct btrfs_qgroup_inherit *inherit = NULL;
1366 
1367 	if (!S_ISDIR(file_inode(file)->i_mode))
1368 		return -ENOTDIR;
1369 
1370 	vol_args = memdup_user(arg, sizeof(*vol_args));
1371 	if (IS_ERR(vol_args))
1372 		return PTR_ERR(vol_args);
1373 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1374 	if (ret < 0)
1375 		goto free_args;
1376 
1377 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1378 		ret = -EOPNOTSUPP;
1379 		goto free_args;
1380 	}
1381 
1382 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1383 		readonly = true;
1384 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1385 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1386 
1387 		if (vol_args->size < sizeof(*inherit) ||
1388 		    vol_args->size > PAGE_SIZE) {
1389 			ret = -EINVAL;
1390 			goto free_args;
1391 		}
1392 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1393 		if (IS_ERR(inherit)) {
1394 			ret = PTR_ERR(inherit);
1395 			goto free_args;
1396 		}
1397 
1398 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1399 		if (ret < 0)
1400 			goto free_inherit;
1401 	}
1402 
1403 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1404 					vol_args->name, vol_args->fd, subvol,
1405 					readonly, inherit);
1406 	if (ret)
1407 		goto free_inherit;
1408 free_inherit:
1409 	kfree(inherit);
1410 free_args:
1411 	kfree(vol_args);
1412 	return ret;
1413 }
1414 
1415 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1416 						void __user *arg)
1417 {
1418 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1419 	struct btrfs_root *root = BTRFS_I(inode)->root;
1420 	int ret = 0;
1421 	u64 flags = 0;
1422 
1423 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1424 		return -EINVAL;
1425 
1426 	down_read(&fs_info->subvol_sem);
1427 	if (btrfs_root_readonly(root))
1428 		flags |= BTRFS_SUBVOL_RDONLY;
1429 	up_read(&fs_info->subvol_sem);
1430 
1431 	if (copy_to_user(arg, &flags, sizeof(flags)))
1432 		ret = -EFAULT;
1433 
1434 	return ret;
1435 }
1436 
1437 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1438 					      void __user *arg)
1439 {
1440 	struct inode *inode = file_inode(file);
1441 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1442 	struct btrfs_root *root = BTRFS_I(inode)->root;
1443 	struct btrfs_trans_handle *trans;
1444 	u64 root_flags;
1445 	u64 flags;
1446 	int ret = 0;
1447 
1448 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1449 		return -EPERM;
1450 
1451 	ret = mnt_want_write_file(file);
1452 	if (ret)
1453 		goto out;
1454 
1455 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1456 		ret = -EINVAL;
1457 		goto out_drop_write;
1458 	}
1459 
1460 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1461 		ret = -EFAULT;
1462 		goto out_drop_write;
1463 	}
1464 
1465 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1466 		ret = -EOPNOTSUPP;
1467 		goto out_drop_write;
1468 	}
1469 
1470 	down_write(&fs_info->subvol_sem);
1471 
1472 	/* nothing to do */
1473 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1474 		goto out_drop_sem;
1475 
1476 	root_flags = btrfs_root_flags(&root->root_item);
1477 	if (flags & BTRFS_SUBVOL_RDONLY) {
1478 		btrfs_set_root_flags(&root->root_item,
1479 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1480 	} else {
1481 		/*
1482 		 * Block RO -> RW transition if this subvolume is involved in
1483 		 * send
1484 		 */
1485 		spin_lock(&root->root_item_lock);
1486 		if (root->send_in_progress == 0) {
1487 			btrfs_set_root_flags(&root->root_item,
1488 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1489 			spin_unlock(&root->root_item_lock);
1490 		} else {
1491 			spin_unlock(&root->root_item_lock);
1492 			btrfs_warn(fs_info,
1493 				   "Attempt to set subvolume %llu read-write during send",
1494 				   root->root_key.objectid);
1495 			ret = -EPERM;
1496 			goto out_drop_sem;
1497 		}
1498 	}
1499 
1500 	trans = btrfs_start_transaction(root, 1);
1501 	if (IS_ERR(trans)) {
1502 		ret = PTR_ERR(trans);
1503 		goto out_reset;
1504 	}
1505 
1506 	ret = btrfs_update_root(trans, fs_info->tree_root,
1507 				&root->root_key, &root->root_item);
1508 	if (ret < 0) {
1509 		btrfs_end_transaction(trans);
1510 		goto out_reset;
1511 	}
1512 
1513 	ret = btrfs_commit_transaction(trans);
1514 
1515 out_reset:
1516 	if (ret)
1517 		btrfs_set_root_flags(&root->root_item, root_flags);
1518 out_drop_sem:
1519 	up_write(&fs_info->subvol_sem);
1520 out_drop_write:
1521 	mnt_drop_write_file(file);
1522 out:
1523 	return ret;
1524 }
1525 
1526 static noinline int key_in_sk(struct btrfs_key *key,
1527 			      struct btrfs_ioctl_search_key *sk)
1528 {
1529 	struct btrfs_key test;
1530 	int ret;
1531 
1532 	test.objectid = sk->min_objectid;
1533 	test.type = sk->min_type;
1534 	test.offset = sk->min_offset;
1535 
1536 	ret = btrfs_comp_cpu_keys(key, &test);
1537 	if (ret < 0)
1538 		return 0;
1539 
1540 	test.objectid = sk->max_objectid;
1541 	test.type = sk->max_type;
1542 	test.offset = sk->max_offset;
1543 
1544 	ret = btrfs_comp_cpu_keys(key, &test);
1545 	if (ret > 0)
1546 		return 0;
1547 	return 1;
1548 }
1549 
1550 static noinline int copy_to_sk(struct btrfs_path *path,
1551 			       struct btrfs_key *key,
1552 			       struct btrfs_ioctl_search_key *sk,
1553 			       u64 *buf_size,
1554 			       char __user *ubuf,
1555 			       unsigned long *sk_offset,
1556 			       int *num_found)
1557 {
1558 	u64 found_transid;
1559 	struct extent_buffer *leaf;
1560 	struct btrfs_ioctl_search_header sh;
1561 	struct btrfs_key test;
1562 	unsigned long item_off;
1563 	unsigned long item_len;
1564 	int nritems;
1565 	int i;
1566 	int slot;
1567 	int ret = 0;
1568 
1569 	leaf = path->nodes[0];
1570 	slot = path->slots[0];
1571 	nritems = btrfs_header_nritems(leaf);
1572 
1573 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1574 		i = nritems;
1575 		goto advance_key;
1576 	}
1577 	found_transid = btrfs_header_generation(leaf);
1578 
1579 	for (i = slot; i < nritems; i++) {
1580 		item_off = btrfs_item_ptr_offset(leaf, i);
1581 		item_len = btrfs_item_size(leaf, i);
1582 
1583 		btrfs_item_key_to_cpu(leaf, key, i);
1584 		if (!key_in_sk(key, sk))
1585 			continue;
1586 
1587 		if (sizeof(sh) + item_len > *buf_size) {
1588 			if (*num_found) {
1589 				ret = 1;
1590 				goto out;
1591 			}
1592 
1593 			/*
1594 			 * return one empty item back for v1, which does not
1595 			 * handle -EOVERFLOW
1596 			 */
1597 
1598 			*buf_size = sizeof(sh) + item_len;
1599 			item_len = 0;
1600 			ret = -EOVERFLOW;
1601 		}
1602 
1603 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1604 			ret = 1;
1605 			goto out;
1606 		}
1607 
1608 		sh.objectid = key->objectid;
1609 		sh.offset = key->offset;
1610 		sh.type = key->type;
1611 		sh.len = item_len;
1612 		sh.transid = found_transid;
1613 
1614 		/*
1615 		 * Copy search result header. If we fault then loop again so we
1616 		 * can fault in the pages and -EFAULT there if there's a
1617 		 * problem. Otherwise we'll fault and then copy the buffer in
1618 		 * properly this next time through
1619 		 */
1620 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1621 			ret = 0;
1622 			goto out;
1623 		}
1624 
1625 		*sk_offset += sizeof(sh);
1626 
1627 		if (item_len) {
1628 			char __user *up = ubuf + *sk_offset;
1629 			/*
1630 			 * Copy the item, same behavior as above, but reset the
1631 			 * * sk_offset so we copy the full thing again.
1632 			 */
1633 			if (read_extent_buffer_to_user_nofault(leaf, up,
1634 						item_off, item_len)) {
1635 				ret = 0;
1636 				*sk_offset -= sizeof(sh);
1637 				goto out;
1638 			}
1639 
1640 			*sk_offset += item_len;
1641 		}
1642 		(*num_found)++;
1643 
1644 		if (ret) /* -EOVERFLOW from above */
1645 			goto out;
1646 
1647 		if (*num_found >= sk->nr_items) {
1648 			ret = 1;
1649 			goto out;
1650 		}
1651 	}
1652 advance_key:
1653 	ret = 0;
1654 	test.objectid = sk->max_objectid;
1655 	test.type = sk->max_type;
1656 	test.offset = sk->max_offset;
1657 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1658 		ret = 1;
1659 	else if (key->offset < (u64)-1)
1660 		key->offset++;
1661 	else if (key->type < (u8)-1) {
1662 		key->offset = 0;
1663 		key->type++;
1664 	} else if (key->objectid < (u64)-1) {
1665 		key->offset = 0;
1666 		key->type = 0;
1667 		key->objectid++;
1668 	} else
1669 		ret = 1;
1670 out:
1671 	/*
1672 	 *  0: all items from this leaf copied, continue with next
1673 	 *  1: * more items can be copied, but unused buffer is too small
1674 	 *     * all items were found
1675 	 *     Either way, it will stops the loop which iterates to the next
1676 	 *     leaf
1677 	 *  -EOVERFLOW: item was to large for buffer
1678 	 *  -EFAULT: could not copy extent buffer back to userspace
1679 	 */
1680 	return ret;
1681 }
1682 
1683 static noinline int search_ioctl(struct inode *inode,
1684 				 struct btrfs_ioctl_search_key *sk,
1685 				 u64 *buf_size,
1686 				 char __user *ubuf)
1687 {
1688 	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1689 	struct btrfs_root *root;
1690 	struct btrfs_key key;
1691 	struct btrfs_path *path;
1692 	int ret;
1693 	int num_found = 0;
1694 	unsigned long sk_offset = 0;
1695 
1696 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1697 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1698 		return -EOVERFLOW;
1699 	}
1700 
1701 	path = btrfs_alloc_path();
1702 	if (!path)
1703 		return -ENOMEM;
1704 
1705 	if (sk->tree_id == 0) {
1706 		/* search the root of the inode that was passed */
1707 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1708 	} else {
1709 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1710 		if (IS_ERR(root)) {
1711 			btrfs_free_path(path);
1712 			return PTR_ERR(root);
1713 		}
1714 	}
1715 
1716 	key.objectid = sk->min_objectid;
1717 	key.type = sk->min_type;
1718 	key.offset = sk->min_offset;
1719 
1720 	while (1) {
1721 		ret = -EFAULT;
1722 		/*
1723 		 * Ensure that the whole user buffer is faulted in at sub-page
1724 		 * granularity, otherwise the loop may live-lock.
1725 		 */
1726 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1727 					       *buf_size - sk_offset))
1728 			break;
1729 
1730 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1731 		if (ret != 0) {
1732 			if (ret > 0)
1733 				ret = 0;
1734 			goto err;
1735 		}
1736 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1737 				 &sk_offset, &num_found);
1738 		btrfs_release_path(path);
1739 		if (ret)
1740 			break;
1741 
1742 	}
1743 	if (ret > 0)
1744 		ret = 0;
1745 err:
1746 	sk->nr_items = num_found;
1747 	btrfs_put_root(root);
1748 	btrfs_free_path(path);
1749 	return ret;
1750 }
1751 
1752 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1753 					    void __user *argp)
1754 {
1755 	struct btrfs_ioctl_search_args __user *uargs = argp;
1756 	struct btrfs_ioctl_search_key sk;
1757 	int ret;
1758 	u64 buf_size;
1759 
1760 	if (!capable(CAP_SYS_ADMIN))
1761 		return -EPERM;
1762 
1763 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1764 		return -EFAULT;
1765 
1766 	buf_size = sizeof(uargs->buf);
1767 
1768 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1769 
1770 	/*
1771 	 * In the origin implementation an overflow is handled by returning a
1772 	 * search header with a len of zero, so reset ret.
1773 	 */
1774 	if (ret == -EOVERFLOW)
1775 		ret = 0;
1776 
1777 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1778 		ret = -EFAULT;
1779 	return ret;
1780 }
1781 
1782 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1783 					       void __user *argp)
1784 {
1785 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1786 	struct btrfs_ioctl_search_args_v2 args;
1787 	int ret;
1788 	u64 buf_size;
1789 	const u64 buf_limit = SZ_16M;
1790 
1791 	if (!capable(CAP_SYS_ADMIN))
1792 		return -EPERM;
1793 
1794 	/* copy search header and buffer size */
1795 	if (copy_from_user(&args, uarg, sizeof(args)))
1796 		return -EFAULT;
1797 
1798 	buf_size = args.buf_size;
1799 
1800 	/* limit result size to 16MB */
1801 	if (buf_size > buf_limit)
1802 		buf_size = buf_limit;
1803 
1804 	ret = search_ioctl(inode, &args.key, &buf_size,
1805 			   (char __user *)(&uarg->buf[0]));
1806 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1807 		ret = -EFAULT;
1808 	else if (ret == -EOVERFLOW &&
1809 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1810 		ret = -EFAULT;
1811 
1812 	return ret;
1813 }
1814 
1815 /*
1816  * Search INODE_REFs to identify path name of 'dirid' directory
1817  * in a 'tree_id' tree. and sets path name to 'name'.
1818  */
1819 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1820 				u64 tree_id, u64 dirid, char *name)
1821 {
1822 	struct btrfs_root *root;
1823 	struct btrfs_key key;
1824 	char *ptr;
1825 	int ret = -1;
1826 	int slot;
1827 	int len;
1828 	int total_len = 0;
1829 	struct btrfs_inode_ref *iref;
1830 	struct extent_buffer *l;
1831 	struct btrfs_path *path;
1832 
1833 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1834 		name[0]='\0';
1835 		return 0;
1836 	}
1837 
1838 	path = btrfs_alloc_path();
1839 	if (!path)
1840 		return -ENOMEM;
1841 
1842 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1843 
1844 	root = btrfs_get_fs_root(info, tree_id, true);
1845 	if (IS_ERR(root)) {
1846 		ret = PTR_ERR(root);
1847 		root = NULL;
1848 		goto out;
1849 	}
1850 
1851 	key.objectid = dirid;
1852 	key.type = BTRFS_INODE_REF_KEY;
1853 	key.offset = (u64)-1;
1854 
1855 	while (1) {
1856 		ret = btrfs_search_backwards(root, &key, path);
1857 		if (ret < 0)
1858 			goto out;
1859 		else if (ret > 0) {
1860 			ret = -ENOENT;
1861 			goto out;
1862 		}
1863 
1864 		l = path->nodes[0];
1865 		slot = path->slots[0];
1866 
1867 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1868 		len = btrfs_inode_ref_name_len(l, iref);
1869 		ptr -= len + 1;
1870 		total_len += len + 1;
1871 		if (ptr < name) {
1872 			ret = -ENAMETOOLONG;
1873 			goto out;
1874 		}
1875 
1876 		*(ptr + len) = '/';
1877 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1878 
1879 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1880 			break;
1881 
1882 		btrfs_release_path(path);
1883 		key.objectid = key.offset;
1884 		key.offset = (u64)-1;
1885 		dirid = key.objectid;
1886 	}
1887 	memmove(name, ptr, total_len);
1888 	name[total_len] = '\0';
1889 	ret = 0;
1890 out:
1891 	btrfs_put_root(root);
1892 	btrfs_free_path(path);
1893 	return ret;
1894 }
1895 
1896 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1897 				struct inode *inode,
1898 				struct btrfs_ioctl_ino_lookup_user_args *args)
1899 {
1900 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1901 	struct super_block *sb = inode->i_sb;
1902 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1903 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1904 	u64 dirid = args->dirid;
1905 	unsigned long item_off;
1906 	unsigned long item_len;
1907 	struct btrfs_inode_ref *iref;
1908 	struct btrfs_root_ref *rref;
1909 	struct btrfs_root *root = NULL;
1910 	struct btrfs_path *path;
1911 	struct btrfs_key key, key2;
1912 	struct extent_buffer *leaf;
1913 	struct inode *temp_inode;
1914 	char *ptr;
1915 	int slot;
1916 	int len;
1917 	int total_len = 0;
1918 	int ret;
1919 
1920 	path = btrfs_alloc_path();
1921 	if (!path)
1922 		return -ENOMEM;
1923 
1924 	/*
1925 	 * If the bottom subvolume does not exist directly under upper_limit,
1926 	 * construct the path in from the bottom up.
1927 	 */
1928 	if (dirid != upper_limit.objectid) {
1929 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1930 
1931 		root = btrfs_get_fs_root(fs_info, treeid, true);
1932 		if (IS_ERR(root)) {
1933 			ret = PTR_ERR(root);
1934 			goto out;
1935 		}
1936 
1937 		key.objectid = dirid;
1938 		key.type = BTRFS_INODE_REF_KEY;
1939 		key.offset = (u64)-1;
1940 		while (1) {
1941 			ret = btrfs_search_backwards(root, &key, path);
1942 			if (ret < 0)
1943 				goto out_put;
1944 			else if (ret > 0) {
1945 				ret = -ENOENT;
1946 				goto out_put;
1947 			}
1948 
1949 			leaf = path->nodes[0];
1950 			slot = path->slots[0];
1951 
1952 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1953 			len = btrfs_inode_ref_name_len(leaf, iref);
1954 			ptr -= len + 1;
1955 			total_len += len + 1;
1956 			if (ptr < args->path) {
1957 				ret = -ENAMETOOLONG;
1958 				goto out_put;
1959 			}
1960 
1961 			*(ptr + len) = '/';
1962 			read_extent_buffer(leaf, ptr,
1963 					(unsigned long)(iref + 1), len);
1964 
1965 			/* Check the read+exec permission of this directory */
1966 			ret = btrfs_previous_item(root, path, dirid,
1967 						  BTRFS_INODE_ITEM_KEY);
1968 			if (ret < 0) {
1969 				goto out_put;
1970 			} else if (ret > 0) {
1971 				ret = -ENOENT;
1972 				goto out_put;
1973 			}
1974 
1975 			leaf = path->nodes[0];
1976 			slot = path->slots[0];
1977 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1978 			if (key2.objectid != dirid) {
1979 				ret = -ENOENT;
1980 				goto out_put;
1981 			}
1982 
1983 			/*
1984 			 * We don't need the path anymore, so release it and
1985 			 * avoid deadlocks and lockdep warnings in case
1986 			 * btrfs_iget() needs to lookup the inode from its root
1987 			 * btree and lock the same leaf.
1988 			 */
1989 			btrfs_release_path(path);
1990 			temp_inode = btrfs_iget(sb, key2.objectid, root);
1991 			if (IS_ERR(temp_inode)) {
1992 				ret = PTR_ERR(temp_inode);
1993 				goto out_put;
1994 			}
1995 			ret = inode_permission(idmap, temp_inode,
1996 					       MAY_READ | MAY_EXEC);
1997 			iput(temp_inode);
1998 			if (ret) {
1999 				ret = -EACCES;
2000 				goto out_put;
2001 			}
2002 
2003 			if (key.offset == upper_limit.objectid)
2004 				break;
2005 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2006 				ret = -EACCES;
2007 				goto out_put;
2008 			}
2009 
2010 			key.objectid = key.offset;
2011 			key.offset = (u64)-1;
2012 			dirid = key.objectid;
2013 		}
2014 
2015 		memmove(args->path, ptr, total_len);
2016 		args->path[total_len] = '\0';
2017 		btrfs_put_root(root);
2018 		root = NULL;
2019 		btrfs_release_path(path);
2020 	}
2021 
2022 	/* Get the bottom subvolume's name from ROOT_REF */
2023 	key.objectid = treeid;
2024 	key.type = BTRFS_ROOT_REF_KEY;
2025 	key.offset = args->treeid;
2026 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2027 	if (ret < 0) {
2028 		goto out;
2029 	} else if (ret > 0) {
2030 		ret = -ENOENT;
2031 		goto out;
2032 	}
2033 
2034 	leaf = path->nodes[0];
2035 	slot = path->slots[0];
2036 	btrfs_item_key_to_cpu(leaf, &key, slot);
2037 
2038 	item_off = btrfs_item_ptr_offset(leaf, slot);
2039 	item_len = btrfs_item_size(leaf, slot);
2040 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2041 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2042 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2043 		ret = -EINVAL;
2044 		goto out;
2045 	}
2046 
2047 	/* Copy subvolume's name */
2048 	item_off += sizeof(struct btrfs_root_ref);
2049 	item_len -= sizeof(struct btrfs_root_ref);
2050 	read_extent_buffer(leaf, args->name, item_off, item_len);
2051 	args->name[item_len] = 0;
2052 
2053 out_put:
2054 	btrfs_put_root(root);
2055 out:
2056 	btrfs_free_path(path);
2057 	return ret;
2058 }
2059 
2060 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2061 					   void __user *argp)
2062 {
2063 	struct btrfs_ioctl_ino_lookup_args *args;
2064 	int ret = 0;
2065 
2066 	args = memdup_user(argp, sizeof(*args));
2067 	if (IS_ERR(args))
2068 		return PTR_ERR(args);
2069 
2070 	/*
2071 	 * Unprivileged query to obtain the containing subvolume root id. The
2072 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2073 	 */
2074 	if (args->treeid == 0)
2075 		args->treeid = root->root_key.objectid;
2076 
2077 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2078 		args->name[0] = 0;
2079 		goto out;
2080 	}
2081 
2082 	if (!capable(CAP_SYS_ADMIN)) {
2083 		ret = -EPERM;
2084 		goto out;
2085 	}
2086 
2087 	ret = btrfs_search_path_in_tree(root->fs_info,
2088 					args->treeid, args->objectid,
2089 					args->name);
2090 
2091 out:
2092 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2093 		ret = -EFAULT;
2094 
2095 	kfree(args);
2096 	return ret;
2097 }
2098 
2099 /*
2100  * Version of ino_lookup ioctl (unprivileged)
2101  *
2102  * The main differences from ino_lookup ioctl are:
2103  *
2104  *   1. Read + Exec permission will be checked using inode_permission() during
2105  *      path construction. -EACCES will be returned in case of failure.
2106  *   2. Path construction will be stopped at the inode number which corresponds
2107  *      to the fd with which this ioctl is called. If constructed path does not
2108  *      exist under fd's inode, -EACCES will be returned.
2109  *   3. The name of bottom subvolume is also searched and filled.
2110  */
2111 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2112 {
2113 	struct btrfs_ioctl_ino_lookup_user_args *args;
2114 	struct inode *inode;
2115 	int ret;
2116 
2117 	args = memdup_user(argp, sizeof(*args));
2118 	if (IS_ERR(args))
2119 		return PTR_ERR(args);
2120 
2121 	inode = file_inode(file);
2122 
2123 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2124 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2125 		/*
2126 		 * The subvolume does not exist under fd with which this is
2127 		 * called
2128 		 */
2129 		kfree(args);
2130 		return -EACCES;
2131 	}
2132 
2133 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2134 
2135 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2136 		ret = -EFAULT;
2137 
2138 	kfree(args);
2139 	return ret;
2140 }
2141 
2142 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2143 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2144 {
2145 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2146 	struct btrfs_fs_info *fs_info;
2147 	struct btrfs_root *root;
2148 	struct btrfs_path *path;
2149 	struct btrfs_key key;
2150 	struct btrfs_root_item *root_item;
2151 	struct btrfs_root_ref *rref;
2152 	struct extent_buffer *leaf;
2153 	unsigned long item_off;
2154 	unsigned long item_len;
2155 	int slot;
2156 	int ret = 0;
2157 
2158 	path = btrfs_alloc_path();
2159 	if (!path)
2160 		return -ENOMEM;
2161 
2162 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2163 	if (!subvol_info) {
2164 		btrfs_free_path(path);
2165 		return -ENOMEM;
2166 	}
2167 
2168 	fs_info = BTRFS_I(inode)->root->fs_info;
2169 
2170 	/* Get root_item of inode's subvolume */
2171 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2172 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2173 	if (IS_ERR(root)) {
2174 		ret = PTR_ERR(root);
2175 		goto out_free;
2176 	}
2177 	root_item = &root->root_item;
2178 
2179 	subvol_info->treeid = key.objectid;
2180 
2181 	subvol_info->generation = btrfs_root_generation(root_item);
2182 	subvol_info->flags = btrfs_root_flags(root_item);
2183 
2184 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2185 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2186 						    BTRFS_UUID_SIZE);
2187 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2188 						    BTRFS_UUID_SIZE);
2189 
2190 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2191 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2192 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2193 
2194 	subvol_info->otransid = btrfs_root_otransid(root_item);
2195 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2196 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2197 
2198 	subvol_info->stransid = btrfs_root_stransid(root_item);
2199 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2200 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2201 
2202 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2203 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2204 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2205 
2206 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2207 		/* Search root tree for ROOT_BACKREF of this subvolume */
2208 		key.type = BTRFS_ROOT_BACKREF_KEY;
2209 		key.offset = 0;
2210 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2211 		if (ret < 0) {
2212 			goto out;
2213 		} else if (path->slots[0] >=
2214 			   btrfs_header_nritems(path->nodes[0])) {
2215 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2216 			if (ret < 0) {
2217 				goto out;
2218 			} else if (ret > 0) {
2219 				ret = -EUCLEAN;
2220 				goto out;
2221 			}
2222 		}
2223 
2224 		leaf = path->nodes[0];
2225 		slot = path->slots[0];
2226 		btrfs_item_key_to_cpu(leaf, &key, slot);
2227 		if (key.objectid == subvol_info->treeid &&
2228 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2229 			subvol_info->parent_id = key.offset;
2230 
2231 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2232 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2233 
2234 			item_off = btrfs_item_ptr_offset(leaf, slot)
2235 					+ sizeof(struct btrfs_root_ref);
2236 			item_len = btrfs_item_size(leaf, slot)
2237 					- sizeof(struct btrfs_root_ref);
2238 			read_extent_buffer(leaf, subvol_info->name,
2239 					   item_off, item_len);
2240 		} else {
2241 			ret = -ENOENT;
2242 			goto out;
2243 		}
2244 	}
2245 
2246 	btrfs_free_path(path);
2247 	path = NULL;
2248 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2249 		ret = -EFAULT;
2250 
2251 out:
2252 	btrfs_put_root(root);
2253 out_free:
2254 	btrfs_free_path(path);
2255 	kfree(subvol_info);
2256 	return ret;
2257 }
2258 
2259 /*
2260  * Return ROOT_REF information of the subvolume containing this inode
2261  * except the subvolume name.
2262  */
2263 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2264 					  void __user *argp)
2265 {
2266 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2267 	struct btrfs_root_ref *rref;
2268 	struct btrfs_path *path;
2269 	struct btrfs_key key;
2270 	struct extent_buffer *leaf;
2271 	u64 objectid;
2272 	int slot;
2273 	int ret;
2274 	u8 found;
2275 
2276 	path = btrfs_alloc_path();
2277 	if (!path)
2278 		return -ENOMEM;
2279 
2280 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2281 	if (IS_ERR(rootrefs)) {
2282 		btrfs_free_path(path);
2283 		return PTR_ERR(rootrefs);
2284 	}
2285 
2286 	objectid = root->root_key.objectid;
2287 	key.objectid = objectid;
2288 	key.type = BTRFS_ROOT_REF_KEY;
2289 	key.offset = rootrefs->min_treeid;
2290 	found = 0;
2291 
2292 	root = root->fs_info->tree_root;
2293 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2294 	if (ret < 0) {
2295 		goto out;
2296 	} else if (path->slots[0] >=
2297 		   btrfs_header_nritems(path->nodes[0])) {
2298 		ret = btrfs_next_leaf(root, path);
2299 		if (ret < 0) {
2300 			goto out;
2301 		} else if (ret > 0) {
2302 			ret = -EUCLEAN;
2303 			goto out;
2304 		}
2305 	}
2306 	while (1) {
2307 		leaf = path->nodes[0];
2308 		slot = path->slots[0];
2309 
2310 		btrfs_item_key_to_cpu(leaf, &key, slot);
2311 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2312 			ret = 0;
2313 			goto out;
2314 		}
2315 
2316 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2317 			ret = -EOVERFLOW;
2318 			goto out;
2319 		}
2320 
2321 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2322 		rootrefs->rootref[found].treeid = key.offset;
2323 		rootrefs->rootref[found].dirid =
2324 				  btrfs_root_ref_dirid(leaf, rref);
2325 		found++;
2326 
2327 		ret = btrfs_next_item(root, path);
2328 		if (ret < 0) {
2329 			goto out;
2330 		} else if (ret > 0) {
2331 			ret = -EUCLEAN;
2332 			goto out;
2333 		}
2334 	}
2335 
2336 out:
2337 	btrfs_free_path(path);
2338 
2339 	if (!ret || ret == -EOVERFLOW) {
2340 		rootrefs->num_items = found;
2341 		/* update min_treeid for next search */
2342 		if (found)
2343 			rootrefs->min_treeid =
2344 				rootrefs->rootref[found - 1].treeid + 1;
2345 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2346 			ret = -EFAULT;
2347 	}
2348 
2349 	kfree(rootrefs);
2350 
2351 	return ret;
2352 }
2353 
2354 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2355 					     void __user *arg,
2356 					     bool destroy_v2)
2357 {
2358 	struct dentry *parent = file->f_path.dentry;
2359 	struct dentry *dentry;
2360 	struct inode *dir = d_inode(parent);
2361 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2362 	struct inode *inode;
2363 	struct btrfs_root *root = BTRFS_I(dir)->root;
2364 	struct btrfs_root *dest = NULL;
2365 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2366 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2367 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2368 	char *subvol_name, *subvol_name_ptr = NULL;
2369 	int subvol_namelen;
2370 	int err = 0;
2371 	bool destroy_parent = false;
2372 
2373 	/* We don't support snapshots with extent tree v2 yet. */
2374 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2375 		btrfs_err(fs_info,
2376 			  "extent tree v2 doesn't support snapshot deletion yet");
2377 		return -EOPNOTSUPP;
2378 	}
2379 
2380 	if (destroy_v2) {
2381 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2382 		if (IS_ERR(vol_args2))
2383 			return PTR_ERR(vol_args2);
2384 
2385 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2386 			err = -EOPNOTSUPP;
2387 			goto out;
2388 		}
2389 
2390 		/*
2391 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2392 		 * name, same as v1 currently does.
2393 		 */
2394 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2395 			err = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2396 			if (err < 0)
2397 				goto out;
2398 			subvol_name = vol_args2->name;
2399 
2400 			err = mnt_want_write_file(file);
2401 			if (err)
2402 				goto out;
2403 		} else {
2404 			struct inode *old_dir;
2405 
2406 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2407 				err = -EINVAL;
2408 				goto out;
2409 			}
2410 
2411 			err = mnt_want_write_file(file);
2412 			if (err)
2413 				goto out;
2414 
2415 			dentry = btrfs_get_dentry(fs_info->sb,
2416 					BTRFS_FIRST_FREE_OBJECTID,
2417 					vol_args2->subvolid, 0);
2418 			if (IS_ERR(dentry)) {
2419 				err = PTR_ERR(dentry);
2420 				goto out_drop_write;
2421 			}
2422 
2423 			/*
2424 			 * Change the default parent since the subvolume being
2425 			 * deleted can be outside of the current mount point.
2426 			 */
2427 			parent = btrfs_get_parent(dentry);
2428 
2429 			/*
2430 			 * At this point dentry->d_name can point to '/' if the
2431 			 * subvolume we want to destroy is outsite of the
2432 			 * current mount point, so we need to release the
2433 			 * current dentry and execute the lookup to return a new
2434 			 * one with ->d_name pointing to the
2435 			 * <mount point>/subvol_name.
2436 			 */
2437 			dput(dentry);
2438 			if (IS_ERR(parent)) {
2439 				err = PTR_ERR(parent);
2440 				goto out_drop_write;
2441 			}
2442 			old_dir = dir;
2443 			dir = d_inode(parent);
2444 
2445 			/*
2446 			 * If v2 was used with SPEC_BY_ID, a new parent was
2447 			 * allocated since the subvolume can be outside of the
2448 			 * current mount point. Later on we need to release this
2449 			 * new parent dentry.
2450 			 */
2451 			destroy_parent = true;
2452 
2453 			/*
2454 			 * On idmapped mounts, deletion via subvolid is
2455 			 * restricted to subvolumes that are immediate
2456 			 * ancestors of the inode referenced by the file
2457 			 * descriptor in the ioctl. Otherwise the idmapping
2458 			 * could potentially be abused to delete subvolumes
2459 			 * anywhere in the filesystem the user wouldn't be able
2460 			 * to delete without an idmapped mount.
2461 			 */
2462 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2463 				err = -EOPNOTSUPP;
2464 				goto free_parent;
2465 			}
2466 
2467 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2468 						fs_info, vol_args2->subvolid);
2469 			if (IS_ERR(subvol_name_ptr)) {
2470 				err = PTR_ERR(subvol_name_ptr);
2471 				goto free_parent;
2472 			}
2473 			/* subvol_name_ptr is already nul terminated */
2474 			subvol_name = (char *)kbasename(subvol_name_ptr);
2475 		}
2476 	} else {
2477 		vol_args = memdup_user(arg, sizeof(*vol_args));
2478 		if (IS_ERR(vol_args))
2479 			return PTR_ERR(vol_args);
2480 
2481 		err = btrfs_check_ioctl_vol_args_path(vol_args);
2482 		if (err < 0)
2483 			goto out;
2484 
2485 		subvol_name = vol_args->name;
2486 
2487 		err = mnt_want_write_file(file);
2488 		if (err)
2489 			goto out;
2490 	}
2491 
2492 	subvol_namelen = strlen(subvol_name);
2493 
2494 	if (strchr(subvol_name, '/') ||
2495 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2496 		err = -EINVAL;
2497 		goto free_subvol_name;
2498 	}
2499 
2500 	if (!S_ISDIR(dir->i_mode)) {
2501 		err = -ENOTDIR;
2502 		goto free_subvol_name;
2503 	}
2504 
2505 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2506 	if (err == -EINTR)
2507 		goto free_subvol_name;
2508 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2509 	if (IS_ERR(dentry)) {
2510 		err = PTR_ERR(dentry);
2511 		goto out_unlock_dir;
2512 	}
2513 
2514 	if (d_really_is_negative(dentry)) {
2515 		err = -ENOENT;
2516 		goto out_dput;
2517 	}
2518 
2519 	inode = d_inode(dentry);
2520 	dest = BTRFS_I(inode)->root;
2521 	if (!capable(CAP_SYS_ADMIN)) {
2522 		/*
2523 		 * Regular user.  Only allow this with a special mount
2524 		 * option, when the user has write+exec access to the
2525 		 * subvol root, and when rmdir(2) would have been
2526 		 * allowed.
2527 		 *
2528 		 * Note that this is _not_ check that the subvol is
2529 		 * empty or doesn't contain data that we wouldn't
2530 		 * otherwise be able to delete.
2531 		 *
2532 		 * Users who want to delete empty subvols should try
2533 		 * rmdir(2).
2534 		 */
2535 		err = -EPERM;
2536 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2537 			goto out_dput;
2538 
2539 		/*
2540 		 * Do not allow deletion if the parent dir is the same
2541 		 * as the dir to be deleted.  That means the ioctl
2542 		 * must be called on the dentry referencing the root
2543 		 * of the subvol, not a random directory contained
2544 		 * within it.
2545 		 */
2546 		err = -EINVAL;
2547 		if (root == dest)
2548 			goto out_dput;
2549 
2550 		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2551 		if (err)
2552 			goto out_dput;
2553 	}
2554 
2555 	/* check if subvolume may be deleted by a user */
2556 	err = btrfs_may_delete(idmap, dir, dentry, 1);
2557 	if (err)
2558 		goto out_dput;
2559 
2560 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2561 		err = -EINVAL;
2562 		goto out_dput;
2563 	}
2564 
2565 	btrfs_inode_lock(BTRFS_I(inode), 0);
2566 	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2567 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2568 	if (!err)
2569 		d_delete_notify(dir, dentry);
2570 
2571 out_dput:
2572 	dput(dentry);
2573 out_unlock_dir:
2574 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2575 free_subvol_name:
2576 	kfree(subvol_name_ptr);
2577 free_parent:
2578 	if (destroy_parent)
2579 		dput(parent);
2580 out_drop_write:
2581 	mnt_drop_write_file(file);
2582 out:
2583 	kfree(vol_args2);
2584 	kfree(vol_args);
2585 	return err;
2586 }
2587 
2588 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2589 {
2590 	struct inode *inode = file_inode(file);
2591 	struct btrfs_root *root = BTRFS_I(inode)->root;
2592 	struct btrfs_ioctl_defrag_range_args range = {0};
2593 	int ret;
2594 
2595 	ret = mnt_want_write_file(file);
2596 	if (ret)
2597 		return ret;
2598 
2599 	if (btrfs_root_readonly(root)) {
2600 		ret = -EROFS;
2601 		goto out;
2602 	}
2603 
2604 	switch (inode->i_mode & S_IFMT) {
2605 	case S_IFDIR:
2606 		if (!capable(CAP_SYS_ADMIN)) {
2607 			ret = -EPERM;
2608 			goto out;
2609 		}
2610 		ret = btrfs_defrag_root(root);
2611 		break;
2612 	case S_IFREG:
2613 		/*
2614 		 * Note that this does not check the file descriptor for write
2615 		 * access. This prevents defragmenting executables that are
2616 		 * running and allows defrag on files open in read-only mode.
2617 		 */
2618 		if (!capable(CAP_SYS_ADMIN) &&
2619 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2620 			ret = -EPERM;
2621 			goto out;
2622 		}
2623 
2624 		if (argp) {
2625 			if (copy_from_user(&range, argp, sizeof(range))) {
2626 				ret = -EFAULT;
2627 				goto out;
2628 			}
2629 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2630 				ret = -EOPNOTSUPP;
2631 				goto out;
2632 			}
2633 			/* compression requires us to start the IO */
2634 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2635 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2636 				range.extent_thresh = (u32)-1;
2637 			}
2638 		} else {
2639 			/* the rest are all set to zero by kzalloc */
2640 			range.len = (u64)-1;
2641 		}
2642 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2643 					&range, BTRFS_OLDEST_GENERATION, 0);
2644 		if (ret > 0)
2645 			ret = 0;
2646 		break;
2647 	default:
2648 		ret = -EINVAL;
2649 	}
2650 out:
2651 	mnt_drop_write_file(file);
2652 	return ret;
2653 }
2654 
2655 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2656 {
2657 	struct btrfs_ioctl_vol_args *vol_args;
2658 	bool restore_op = false;
2659 	int ret;
2660 
2661 	if (!capable(CAP_SYS_ADMIN))
2662 		return -EPERM;
2663 
2664 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2665 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2666 		return -EINVAL;
2667 	}
2668 
2669 	if (fs_info->fs_devices->temp_fsid) {
2670 		btrfs_err(fs_info,
2671 			  "device add not supported on cloned temp-fsid mount");
2672 		return -EINVAL;
2673 	}
2674 
2675 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2676 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2677 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2678 
2679 		/*
2680 		 * We can do the device add because we have a paused balanced,
2681 		 * change the exclusive op type and remember we should bring
2682 		 * back the paused balance
2683 		 */
2684 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2685 		btrfs_exclop_start_unlock(fs_info);
2686 		restore_op = true;
2687 	}
2688 
2689 	vol_args = memdup_user(arg, sizeof(*vol_args));
2690 	if (IS_ERR(vol_args)) {
2691 		ret = PTR_ERR(vol_args);
2692 		goto out;
2693 	}
2694 
2695 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2696 	if (ret < 0)
2697 		goto out_free;
2698 
2699 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2700 
2701 	if (!ret)
2702 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2703 
2704 out_free:
2705 	kfree(vol_args);
2706 out:
2707 	if (restore_op)
2708 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2709 	else
2710 		btrfs_exclop_finish(fs_info);
2711 	return ret;
2712 }
2713 
2714 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2715 {
2716 	BTRFS_DEV_LOOKUP_ARGS(args);
2717 	struct inode *inode = file_inode(file);
2718 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2719 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2720 	struct file *bdev_file = NULL;
2721 	int ret;
2722 	bool cancel = false;
2723 
2724 	if (!capable(CAP_SYS_ADMIN))
2725 		return -EPERM;
2726 
2727 	vol_args = memdup_user(arg, sizeof(*vol_args));
2728 	if (IS_ERR(vol_args))
2729 		return PTR_ERR(vol_args);
2730 
2731 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2732 		ret = -EOPNOTSUPP;
2733 		goto out;
2734 	}
2735 
2736 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2737 	if (ret < 0)
2738 		goto out;
2739 
2740 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2741 		args.devid = vol_args->devid;
2742 	} else if (!strcmp("cancel", vol_args->name)) {
2743 		cancel = true;
2744 	} else {
2745 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2746 		if (ret)
2747 			goto out;
2748 	}
2749 
2750 	ret = mnt_want_write_file(file);
2751 	if (ret)
2752 		goto out;
2753 
2754 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2755 					   cancel);
2756 	if (ret)
2757 		goto err_drop;
2758 
2759 	/* Exclusive operation is now claimed */
2760 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2761 
2762 	btrfs_exclop_finish(fs_info);
2763 
2764 	if (!ret) {
2765 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2766 			btrfs_info(fs_info, "device deleted: id %llu",
2767 					vol_args->devid);
2768 		else
2769 			btrfs_info(fs_info, "device deleted: %s",
2770 					vol_args->name);
2771 	}
2772 err_drop:
2773 	mnt_drop_write_file(file);
2774 	if (bdev_file)
2775 		fput(bdev_file);
2776 out:
2777 	btrfs_put_dev_args_from_path(&args);
2778 	kfree(vol_args);
2779 	return ret;
2780 }
2781 
2782 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2783 {
2784 	BTRFS_DEV_LOOKUP_ARGS(args);
2785 	struct inode *inode = file_inode(file);
2786 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2787 	struct btrfs_ioctl_vol_args *vol_args;
2788 	struct file *bdev_file = NULL;
2789 	int ret;
2790 	bool cancel = false;
2791 
2792 	if (!capable(CAP_SYS_ADMIN))
2793 		return -EPERM;
2794 
2795 	vol_args = memdup_user(arg, sizeof(*vol_args));
2796 	if (IS_ERR(vol_args))
2797 		return PTR_ERR(vol_args);
2798 
2799 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2800 	if (ret < 0)
2801 		goto out_free;
2802 
2803 	if (!strcmp("cancel", vol_args->name)) {
2804 		cancel = true;
2805 	} else {
2806 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2807 		if (ret)
2808 			goto out;
2809 	}
2810 
2811 	ret = mnt_want_write_file(file);
2812 	if (ret)
2813 		goto out;
2814 
2815 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2816 					   cancel);
2817 	if (ret == 0) {
2818 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2819 		if (!ret)
2820 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2821 		btrfs_exclop_finish(fs_info);
2822 	}
2823 
2824 	mnt_drop_write_file(file);
2825 	if (bdev_file)
2826 		fput(bdev_file);
2827 out:
2828 	btrfs_put_dev_args_from_path(&args);
2829 out_free:
2830 	kfree(vol_args);
2831 	return ret;
2832 }
2833 
2834 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2835 				void __user *arg)
2836 {
2837 	struct btrfs_ioctl_fs_info_args *fi_args;
2838 	struct btrfs_device *device;
2839 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2840 	u64 flags_in;
2841 	int ret = 0;
2842 
2843 	fi_args = memdup_user(arg, sizeof(*fi_args));
2844 	if (IS_ERR(fi_args))
2845 		return PTR_ERR(fi_args);
2846 
2847 	flags_in = fi_args->flags;
2848 	memset(fi_args, 0, sizeof(*fi_args));
2849 
2850 	rcu_read_lock();
2851 	fi_args->num_devices = fs_devices->num_devices;
2852 
2853 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2854 		if (device->devid > fi_args->max_id)
2855 			fi_args->max_id = device->devid;
2856 	}
2857 	rcu_read_unlock();
2858 
2859 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2860 	fi_args->nodesize = fs_info->nodesize;
2861 	fi_args->sectorsize = fs_info->sectorsize;
2862 	fi_args->clone_alignment = fs_info->sectorsize;
2863 
2864 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2865 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2866 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2867 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2868 	}
2869 
2870 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2871 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2872 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2873 	}
2874 
2875 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2876 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2877 		       sizeof(fi_args->metadata_uuid));
2878 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2879 	}
2880 
2881 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2882 		ret = -EFAULT;
2883 
2884 	kfree(fi_args);
2885 	return ret;
2886 }
2887 
2888 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2889 				 void __user *arg)
2890 {
2891 	BTRFS_DEV_LOOKUP_ARGS(args);
2892 	struct btrfs_ioctl_dev_info_args *di_args;
2893 	struct btrfs_device *dev;
2894 	int ret = 0;
2895 
2896 	di_args = memdup_user(arg, sizeof(*di_args));
2897 	if (IS_ERR(di_args))
2898 		return PTR_ERR(di_args);
2899 
2900 	args.devid = di_args->devid;
2901 	if (!btrfs_is_empty_uuid(di_args->uuid))
2902 		args.uuid = di_args->uuid;
2903 
2904 	rcu_read_lock();
2905 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2906 	if (!dev) {
2907 		ret = -ENODEV;
2908 		goto out;
2909 	}
2910 
2911 	di_args->devid = dev->devid;
2912 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2913 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2914 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2915 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2916 	if (dev->name)
2917 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2918 	else
2919 		di_args->path[0] = '\0';
2920 
2921 out:
2922 	rcu_read_unlock();
2923 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2924 		ret = -EFAULT;
2925 
2926 	kfree(di_args);
2927 	return ret;
2928 }
2929 
2930 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2931 {
2932 	struct inode *inode = file_inode(file);
2933 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2934 	struct btrfs_root *root = BTRFS_I(inode)->root;
2935 	struct btrfs_root *new_root;
2936 	struct btrfs_dir_item *di;
2937 	struct btrfs_trans_handle *trans;
2938 	struct btrfs_path *path = NULL;
2939 	struct btrfs_disk_key disk_key;
2940 	struct fscrypt_str name = FSTR_INIT("default", 7);
2941 	u64 objectid = 0;
2942 	u64 dir_id;
2943 	int ret;
2944 
2945 	if (!capable(CAP_SYS_ADMIN))
2946 		return -EPERM;
2947 
2948 	ret = mnt_want_write_file(file);
2949 	if (ret)
2950 		return ret;
2951 
2952 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2953 		ret = -EFAULT;
2954 		goto out;
2955 	}
2956 
2957 	if (!objectid)
2958 		objectid = BTRFS_FS_TREE_OBJECTID;
2959 
2960 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2961 	if (IS_ERR(new_root)) {
2962 		ret = PTR_ERR(new_root);
2963 		goto out;
2964 	}
2965 	if (!is_fstree(new_root->root_key.objectid)) {
2966 		ret = -ENOENT;
2967 		goto out_free;
2968 	}
2969 
2970 	path = btrfs_alloc_path();
2971 	if (!path) {
2972 		ret = -ENOMEM;
2973 		goto out_free;
2974 	}
2975 
2976 	trans = btrfs_start_transaction(root, 1);
2977 	if (IS_ERR(trans)) {
2978 		ret = PTR_ERR(trans);
2979 		goto out_free;
2980 	}
2981 
2982 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2983 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2984 				   dir_id, &name, 1);
2985 	if (IS_ERR_OR_NULL(di)) {
2986 		btrfs_release_path(path);
2987 		btrfs_end_transaction(trans);
2988 		btrfs_err(fs_info,
2989 			  "Umm, you don't have the default diritem, this isn't going to work");
2990 		ret = -ENOENT;
2991 		goto out_free;
2992 	}
2993 
2994 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2995 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2996 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2997 	btrfs_release_path(path);
2998 
2999 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3000 	btrfs_end_transaction(trans);
3001 out_free:
3002 	btrfs_put_root(new_root);
3003 	btrfs_free_path(path);
3004 out:
3005 	mnt_drop_write_file(file);
3006 	return ret;
3007 }
3008 
3009 static void get_block_group_info(struct list_head *groups_list,
3010 				 struct btrfs_ioctl_space_info *space)
3011 {
3012 	struct btrfs_block_group *block_group;
3013 
3014 	space->total_bytes = 0;
3015 	space->used_bytes = 0;
3016 	space->flags = 0;
3017 	list_for_each_entry(block_group, groups_list, list) {
3018 		space->flags = block_group->flags;
3019 		space->total_bytes += block_group->length;
3020 		space->used_bytes += block_group->used;
3021 	}
3022 }
3023 
3024 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3025 				   void __user *arg)
3026 {
3027 	struct btrfs_ioctl_space_args space_args = { 0 };
3028 	struct btrfs_ioctl_space_info space;
3029 	struct btrfs_ioctl_space_info *dest;
3030 	struct btrfs_ioctl_space_info *dest_orig;
3031 	struct btrfs_ioctl_space_info __user *user_dest;
3032 	struct btrfs_space_info *info;
3033 	static const u64 types[] = {
3034 		BTRFS_BLOCK_GROUP_DATA,
3035 		BTRFS_BLOCK_GROUP_SYSTEM,
3036 		BTRFS_BLOCK_GROUP_METADATA,
3037 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3038 	};
3039 	int num_types = 4;
3040 	int alloc_size;
3041 	int ret = 0;
3042 	u64 slot_count = 0;
3043 	int i, c;
3044 
3045 	if (copy_from_user(&space_args,
3046 			   (struct btrfs_ioctl_space_args __user *)arg,
3047 			   sizeof(space_args)))
3048 		return -EFAULT;
3049 
3050 	for (i = 0; i < num_types; i++) {
3051 		struct btrfs_space_info *tmp;
3052 
3053 		info = NULL;
3054 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3055 			if (tmp->flags == types[i]) {
3056 				info = tmp;
3057 				break;
3058 			}
3059 		}
3060 
3061 		if (!info)
3062 			continue;
3063 
3064 		down_read(&info->groups_sem);
3065 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3066 			if (!list_empty(&info->block_groups[c]))
3067 				slot_count++;
3068 		}
3069 		up_read(&info->groups_sem);
3070 	}
3071 
3072 	/*
3073 	 * Global block reserve, exported as a space_info
3074 	 */
3075 	slot_count++;
3076 
3077 	/* space_slots == 0 means they are asking for a count */
3078 	if (space_args.space_slots == 0) {
3079 		space_args.total_spaces = slot_count;
3080 		goto out;
3081 	}
3082 
3083 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3084 
3085 	alloc_size = sizeof(*dest) * slot_count;
3086 
3087 	/* we generally have at most 6 or so space infos, one for each raid
3088 	 * level.  So, a whole page should be more than enough for everyone
3089 	 */
3090 	if (alloc_size > PAGE_SIZE)
3091 		return -ENOMEM;
3092 
3093 	space_args.total_spaces = 0;
3094 	dest = kmalloc(alloc_size, GFP_KERNEL);
3095 	if (!dest)
3096 		return -ENOMEM;
3097 	dest_orig = dest;
3098 
3099 	/* now we have a buffer to copy into */
3100 	for (i = 0; i < num_types; i++) {
3101 		struct btrfs_space_info *tmp;
3102 
3103 		if (!slot_count)
3104 			break;
3105 
3106 		info = NULL;
3107 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3108 			if (tmp->flags == types[i]) {
3109 				info = tmp;
3110 				break;
3111 			}
3112 		}
3113 
3114 		if (!info)
3115 			continue;
3116 		down_read(&info->groups_sem);
3117 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3118 			if (!list_empty(&info->block_groups[c])) {
3119 				get_block_group_info(&info->block_groups[c],
3120 						     &space);
3121 				memcpy(dest, &space, sizeof(space));
3122 				dest++;
3123 				space_args.total_spaces++;
3124 				slot_count--;
3125 			}
3126 			if (!slot_count)
3127 				break;
3128 		}
3129 		up_read(&info->groups_sem);
3130 	}
3131 
3132 	/*
3133 	 * Add global block reserve
3134 	 */
3135 	if (slot_count) {
3136 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3137 
3138 		spin_lock(&block_rsv->lock);
3139 		space.total_bytes = block_rsv->size;
3140 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3141 		spin_unlock(&block_rsv->lock);
3142 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3143 		memcpy(dest, &space, sizeof(space));
3144 		space_args.total_spaces++;
3145 	}
3146 
3147 	user_dest = (struct btrfs_ioctl_space_info __user *)
3148 		(arg + sizeof(struct btrfs_ioctl_space_args));
3149 
3150 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3151 		ret = -EFAULT;
3152 
3153 	kfree(dest_orig);
3154 out:
3155 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3156 		ret = -EFAULT;
3157 
3158 	return ret;
3159 }
3160 
3161 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3162 					    void __user *argp)
3163 {
3164 	struct btrfs_trans_handle *trans;
3165 	u64 transid;
3166 
3167 	/*
3168 	 * Start orphan cleanup here for the given root in case it hasn't been
3169 	 * started already by other means. Errors are handled in the other
3170 	 * functions during transaction commit.
3171 	 */
3172 	btrfs_orphan_cleanup(root);
3173 
3174 	trans = btrfs_attach_transaction_barrier(root);
3175 	if (IS_ERR(trans)) {
3176 		if (PTR_ERR(trans) != -ENOENT)
3177 			return PTR_ERR(trans);
3178 
3179 		/* No running transaction, don't bother */
3180 		transid = btrfs_get_last_trans_committed(root->fs_info);
3181 		goto out;
3182 	}
3183 	transid = trans->transid;
3184 	btrfs_commit_transaction_async(trans);
3185 out:
3186 	if (argp)
3187 		if (copy_to_user(argp, &transid, sizeof(transid)))
3188 			return -EFAULT;
3189 	return 0;
3190 }
3191 
3192 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3193 					   void __user *argp)
3194 {
3195 	/* By default wait for the current transaction. */
3196 	u64 transid = 0;
3197 
3198 	if (argp)
3199 		if (copy_from_user(&transid, argp, sizeof(transid)))
3200 			return -EFAULT;
3201 
3202 	return btrfs_wait_for_commit(fs_info, transid);
3203 }
3204 
3205 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3206 {
3207 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3208 	struct btrfs_ioctl_scrub_args *sa;
3209 	int ret;
3210 
3211 	if (!capable(CAP_SYS_ADMIN))
3212 		return -EPERM;
3213 
3214 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3215 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3216 		return -EINVAL;
3217 	}
3218 
3219 	sa = memdup_user(arg, sizeof(*sa));
3220 	if (IS_ERR(sa))
3221 		return PTR_ERR(sa);
3222 
3223 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3224 		ret = -EOPNOTSUPP;
3225 		goto out;
3226 	}
3227 
3228 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3229 		ret = mnt_want_write_file(file);
3230 		if (ret)
3231 			goto out;
3232 	}
3233 
3234 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3235 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3236 			      0);
3237 
3238 	/*
3239 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3240 	 * error. This is important as it allows user space to know how much
3241 	 * progress scrub has done. For example, if scrub is canceled we get
3242 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3243 	 * space. Later user space can inspect the progress from the structure
3244 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3245 	 * previously (btrfs-progs does this).
3246 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3247 	 * then return -EFAULT to signal the structure was not copied or it may
3248 	 * be corrupt and unreliable due to a partial copy.
3249 	 */
3250 	if (copy_to_user(arg, sa, sizeof(*sa)))
3251 		ret = -EFAULT;
3252 
3253 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3254 		mnt_drop_write_file(file);
3255 out:
3256 	kfree(sa);
3257 	return ret;
3258 }
3259 
3260 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3261 {
3262 	if (!capable(CAP_SYS_ADMIN))
3263 		return -EPERM;
3264 
3265 	return btrfs_scrub_cancel(fs_info);
3266 }
3267 
3268 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3269 				       void __user *arg)
3270 {
3271 	struct btrfs_ioctl_scrub_args *sa;
3272 	int ret;
3273 
3274 	if (!capable(CAP_SYS_ADMIN))
3275 		return -EPERM;
3276 
3277 	sa = memdup_user(arg, sizeof(*sa));
3278 	if (IS_ERR(sa))
3279 		return PTR_ERR(sa);
3280 
3281 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3282 
3283 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3284 		ret = -EFAULT;
3285 
3286 	kfree(sa);
3287 	return ret;
3288 }
3289 
3290 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3291 				      void __user *arg)
3292 {
3293 	struct btrfs_ioctl_get_dev_stats *sa;
3294 	int ret;
3295 
3296 	sa = memdup_user(arg, sizeof(*sa));
3297 	if (IS_ERR(sa))
3298 		return PTR_ERR(sa);
3299 
3300 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3301 		kfree(sa);
3302 		return -EPERM;
3303 	}
3304 
3305 	ret = btrfs_get_dev_stats(fs_info, sa);
3306 
3307 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3308 		ret = -EFAULT;
3309 
3310 	kfree(sa);
3311 	return ret;
3312 }
3313 
3314 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3315 				    void __user *arg)
3316 {
3317 	struct btrfs_ioctl_dev_replace_args *p;
3318 	int ret;
3319 
3320 	if (!capable(CAP_SYS_ADMIN))
3321 		return -EPERM;
3322 
3323 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3324 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3325 		return -EINVAL;
3326 	}
3327 
3328 	p = memdup_user(arg, sizeof(*p));
3329 	if (IS_ERR(p))
3330 		return PTR_ERR(p);
3331 
3332 	switch (p->cmd) {
3333 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3334 		if (sb_rdonly(fs_info->sb)) {
3335 			ret = -EROFS;
3336 			goto out;
3337 		}
3338 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3339 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3340 		} else {
3341 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3342 			btrfs_exclop_finish(fs_info);
3343 		}
3344 		break;
3345 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3346 		btrfs_dev_replace_status(fs_info, p);
3347 		ret = 0;
3348 		break;
3349 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3350 		p->result = btrfs_dev_replace_cancel(fs_info);
3351 		ret = 0;
3352 		break;
3353 	default:
3354 		ret = -EINVAL;
3355 		break;
3356 	}
3357 
3358 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3359 		ret = -EFAULT;
3360 out:
3361 	kfree(p);
3362 	return ret;
3363 }
3364 
3365 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3366 {
3367 	int ret = 0;
3368 	int i;
3369 	u64 rel_ptr;
3370 	int size;
3371 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3372 	struct inode_fs_paths *ipath = NULL;
3373 	struct btrfs_path *path;
3374 
3375 	if (!capable(CAP_DAC_READ_SEARCH))
3376 		return -EPERM;
3377 
3378 	path = btrfs_alloc_path();
3379 	if (!path) {
3380 		ret = -ENOMEM;
3381 		goto out;
3382 	}
3383 
3384 	ipa = memdup_user(arg, sizeof(*ipa));
3385 	if (IS_ERR(ipa)) {
3386 		ret = PTR_ERR(ipa);
3387 		ipa = NULL;
3388 		goto out;
3389 	}
3390 
3391 	size = min_t(u32, ipa->size, 4096);
3392 	ipath = init_ipath(size, root, path);
3393 	if (IS_ERR(ipath)) {
3394 		ret = PTR_ERR(ipath);
3395 		ipath = NULL;
3396 		goto out;
3397 	}
3398 
3399 	ret = paths_from_inode(ipa->inum, ipath);
3400 	if (ret < 0)
3401 		goto out;
3402 
3403 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3404 		rel_ptr = ipath->fspath->val[i] -
3405 			  (u64)(unsigned long)ipath->fspath->val;
3406 		ipath->fspath->val[i] = rel_ptr;
3407 	}
3408 
3409 	btrfs_free_path(path);
3410 	path = NULL;
3411 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3412 			   ipath->fspath, size);
3413 	if (ret) {
3414 		ret = -EFAULT;
3415 		goto out;
3416 	}
3417 
3418 out:
3419 	btrfs_free_path(path);
3420 	free_ipath(ipath);
3421 	kfree(ipa);
3422 
3423 	return ret;
3424 }
3425 
3426 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3427 					void __user *arg, int version)
3428 {
3429 	int ret = 0;
3430 	int size;
3431 	struct btrfs_ioctl_logical_ino_args *loi;
3432 	struct btrfs_data_container *inodes = NULL;
3433 	struct btrfs_path *path = NULL;
3434 	bool ignore_offset;
3435 
3436 	if (!capable(CAP_SYS_ADMIN))
3437 		return -EPERM;
3438 
3439 	loi = memdup_user(arg, sizeof(*loi));
3440 	if (IS_ERR(loi))
3441 		return PTR_ERR(loi);
3442 
3443 	if (version == 1) {
3444 		ignore_offset = false;
3445 		size = min_t(u32, loi->size, SZ_64K);
3446 	} else {
3447 		/* All reserved bits must be 0 for now */
3448 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3449 			ret = -EINVAL;
3450 			goto out_loi;
3451 		}
3452 		/* Only accept flags we have defined so far */
3453 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3454 			ret = -EINVAL;
3455 			goto out_loi;
3456 		}
3457 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3458 		size = min_t(u32, loi->size, SZ_16M);
3459 	}
3460 
3461 	inodes = init_data_container(size);
3462 	if (IS_ERR(inodes)) {
3463 		ret = PTR_ERR(inodes);
3464 		goto out_loi;
3465 	}
3466 
3467 	path = btrfs_alloc_path();
3468 	if (!path) {
3469 		ret = -ENOMEM;
3470 		goto out;
3471 	}
3472 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3473 					  inodes, ignore_offset);
3474 	btrfs_free_path(path);
3475 	if (ret == -EINVAL)
3476 		ret = -ENOENT;
3477 	if (ret < 0)
3478 		goto out;
3479 
3480 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3481 			   size);
3482 	if (ret)
3483 		ret = -EFAULT;
3484 
3485 out:
3486 	kvfree(inodes);
3487 out_loi:
3488 	kfree(loi);
3489 
3490 	return ret;
3491 }
3492 
3493 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3494 			       struct btrfs_ioctl_balance_args *bargs)
3495 {
3496 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3497 
3498 	bargs->flags = bctl->flags;
3499 
3500 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3501 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3502 	if (atomic_read(&fs_info->balance_pause_req))
3503 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3504 	if (atomic_read(&fs_info->balance_cancel_req))
3505 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3506 
3507 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3508 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3509 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3510 
3511 	spin_lock(&fs_info->balance_lock);
3512 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3513 	spin_unlock(&fs_info->balance_lock);
3514 }
3515 
3516 /*
3517  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3518  * required.
3519  *
3520  * @fs_info:       the filesystem
3521  * @excl_acquired: ptr to boolean value which is set to false in case balance
3522  *                 is being resumed
3523  *
3524  * Return 0 on success in which case both fs_info::balance is acquired as well
3525  * as exclusive ops are blocked. In case of failure return an error code.
3526  */
3527 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3528 {
3529 	int ret;
3530 
3531 	/*
3532 	 * Exclusive operation is locked. Three possibilities:
3533 	 *   (1) some other op is running
3534 	 *   (2) balance is running
3535 	 *   (3) balance is paused -- special case (think resume)
3536 	 */
3537 	while (1) {
3538 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3539 			*excl_acquired = true;
3540 			mutex_lock(&fs_info->balance_mutex);
3541 			return 0;
3542 		}
3543 
3544 		mutex_lock(&fs_info->balance_mutex);
3545 		if (fs_info->balance_ctl) {
3546 			/* This is either (2) or (3) */
3547 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3548 				/* This is (2) */
3549 				ret = -EINPROGRESS;
3550 				goto out_failure;
3551 
3552 			} else {
3553 				mutex_unlock(&fs_info->balance_mutex);
3554 				/*
3555 				 * Lock released to allow other waiters to
3556 				 * continue, we'll reexamine the status again.
3557 				 */
3558 				mutex_lock(&fs_info->balance_mutex);
3559 
3560 				if (fs_info->balance_ctl &&
3561 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3562 					/* This is (3) */
3563 					*excl_acquired = false;
3564 					return 0;
3565 				}
3566 			}
3567 		} else {
3568 			/* This is (1) */
3569 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3570 			goto out_failure;
3571 		}
3572 
3573 		mutex_unlock(&fs_info->balance_mutex);
3574 	}
3575 
3576 out_failure:
3577 	mutex_unlock(&fs_info->balance_mutex);
3578 	*excl_acquired = false;
3579 	return ret;
3580 }
3581 
3582 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3583 {
3584 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3585 	struct btrfs_fs_info *fs_info = root->fs_info;
3586 	struct btrfs_ioctl_balance_args *bargs;
3587 	struct btrfs_balance_control *bctl;
3588 	bool need_unlock = true;
3589 	int ret;
3590 
3591 	if (!capable(CAP_SYS_ADMIN))
3592 		return -EPERM;
3593 
3594 	ret = mnt_want_write_file(file);
3595 	if (ret)
3596 		return ret;
3597 
3598 	bargs = memdup_user(arg, sizeof(*bargs));
3599 	if (IS_ERR(bargs)) {
3600 		ret = PTR_ERR(bargs);
3601 		bargs = NULL;
3602 		goto out;
3603 	}
3604 
3605 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3606 	if (ret)
3607 		goto out;
3608 
3609 	lockdep_assert_held(&fs_info->balance_mutex);
3610 
3611 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3612 		if (!fs_info->balance_ctl) {
3613 			ret = -ENOTCONN;
3614 			goto out_unlock;
3615 		}
3616 
3617 		bctl = fs_info->balance_ctl;
3618 		spin_lock(&fs_info->balance_lock);
3619 		bctl->flags |= BTRFS_BALANCE_RESUME;
3620 		spin_unlock(&fs_info->balance_lock);
3621 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3622 
3623 		goto do_balance;
3624 	}
3625 
3626 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3627 		ret = -EINVAL;
3628 		goto out_unlock;
3629 	}
3630 
3631 	if (fs_info->balance_ctl) {
3632 		ret = -EINPROGRESS;
3633 		goto out_unlock;
3634 	}
3635 
3636 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3637 	if (!bctl) {
3638 		ret = -ENOMEM;
3639 		goto out_unlock;
3640 	}
3641 
3642 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3643 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3644 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3645 
3646 	bctl->flags = bargs->flags;
3647 do_balance:
3648 	/*
3649 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3650 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3651 	 * all the way until unmount, in free_fs_info.  The flag should be
3652 	 * cleared after reset_balance_state.
3653 	 */
3654 	need_unlock = false;
3655 
3656 	ret = btrfs_balance(fs_info, bctl, bargs);
3657 	bctl = NULL;
3658 
3659 	if (ret == 0 || ret == -ECANCELED) {
3660 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3661 			ret = -EFAULT;
3662 	}
3663 
3664 	kfree(bctl);
3665 out_unlock:
3666 	mutex_unlock(&fs_info->balance_mutex);
3667 	if (need_unlock)
3668 		btrfs_exclop_finish(fs_info);
3669 out:
3670 	mnt_drop_write_file(file);
3671 	kfree(bargs);
3672 	return ret;
3673 }
3674 
3675 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3676 {
3677 	if (!capable(CAP_SYS_ADMIN))
3678 		return -EPERM;
3679 
3680 	switch (cmd) {
3681 	case BTRFS_BALANCE_CTL_PAUSE:
3682 		return btrfs_pause_balance(fs_info);
3683 	case BTRFS_BALANCE_CTL_CANCEL:
3684 		return btrfs_cancel_balance(fs_info);
3685 	}
3686 
3687 	return -EINVAL;
3688 }
3689 
3690 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3691 					 void __user *arg)
3692 {
3693 	struct btrfs_ioctl_balance_args *bargs;
3694 	int ret = 0;
3695 
3696 	if (!capable(CAP_SYS_ADMIN))
3697 		return -EPERM;
3698 
3699 	mutex_lock(&fs_info->balance_mutex);
3700 	if (!fs_info->balance_ctl) {
3701 		ret = -ENOTCONN;
3702 		goto out;
3703 	}
3704 
3705 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3706 	if (!bargs) {
3707 		ret = -ENOMEM;
3708 		goto out;
3709 	}
3710 
3711 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3712 
3713 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3714 		ret = -EFAULT;
3715 
3716 	kfree(bargs);
3717 out:
3718 	mutex_unlock(&fs_info->balance_mutex);
3719 	return ret;
3720 }
3721 
3722 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3723 {
3724 	struct inode *inode = file_inode(file);
3725 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3726 	struct btrfs_ioctl_quota_ctl_args *sa;
3727 	int ret;
3728 
3729 	if (!capable(CAP_SYS_ADMIN))
3730 		return -EPERM;
3731 
3732 	ret = mnt_want_write_file(file);
3733 	if (ret)
3734 		return ret;
3735 
3736 	sa = memdup_user(arg, sizeof(*sa));
3737 	if (IS_ERR(sa)) {
3738 		ret = PTR_ERR(sa);
3739 		goto drop_write;
3740 	}
3741 
3742 	down_write(&fs_info->subvol_sem);
3743 
3744 	switch (sa->cmd) {
3745 	case BTRFS_QUOTA_CTL_ENABLE:
3746 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3747 		ret = btrfs_quota_enable(fs_info, sa);
3748 		break;
3749 	case BTRFS_QUOTA_CTL_DISABLE:
3750 		ret = btrfs_quota_disable(fs_info);
3751 		break;
3752 	default:
3753 		ret = -EINVAL;
3754 		break;
3755 	}
3756 
3757 	kfree(sa);
3758 	up_write(&fs_info->subvol_sem);
3759 drop_write:
3760 	mnt_drop_write_file(file);
3761 	return ret;
3762 }
3763 
3764 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3765 {
3766 	struct inode *inode = file_inode(file);
3767 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3768 	struct btrfs_root *root = BTRFS_I(inode)->root;
3769 	struct btrfs_ioctl_qgroup_assign_args *sa;
3770 	struct btrfs_trans_handle *trans;
3771 	int ret;
3772 	int err;
3773 
3774 	if (!capable(CAP_SYS_ADMIN))
3775 		return -EPERM;
3776 
3777 	ret = mnt_want_write_file(file);
3778 	if (ret)
3779 		return ret;
3780 
3781 	sa = memdup_user(arg, sizeof(*sa));
3782 	if (IS_ERR(sa)) {
3783 		ret = PTR_ERR(sa);
3784 		goto drop_write;
3785 	}
3786 
3787 	trans = btrfs_join_transaction(root);
3788 	if (IS_ERR(trans)) {
3789 		ret = PTR_ERR(trans);
3790 		goto out;
3791 	}
3792 
3793 	if (sa->assign) {
3794 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3795 	} else {
3796 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3797 	}
3798 
3799 	/* update qgroup status and info */
3800 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3801 	err = btrfs_run_qgroups(trans);
3802 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3803 	if (err < 0)
3804 		btrfs_handle_fs_error(fs_info, err,
3805 				      "failed to update qgroup status and info");
3806 	err = btrfs_end_transaction(trans);
3807 	if (err && !ret)
3808 		ret = err;
3809 
3810 out:
3811 	kfree(sa);
3812 drop_write:
3813 	mnt_drop_write_file(file);
3814 	return ret;
3815 }
3816 
3817 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3818 {
3819 	struct inode *inode = file_inode(file);
3820 	struct btrfs_root *root = BTRFS_I(inode)->root;
3821 	struct btrfs_ioctl_qgroup_create_args *sa;
3822 	struct btrfs_trans_handle *trans;
3823 	int ret;
3824 	int err;
3825 
3826 	if (!capable(CAP_SYS_ADMIN))
3827 		return -EPERM;
3828 
3829 	ret = mnt_want_write_file(file);
3830 	if (ret)
3831 		return ret;
3832 
3833 	sa = memdup_user(arg, sizeof(*sa));
3834 	if (IS_ERR(sa)) {
3835 		ret = PTR_ERR(sa);
3836 		goto drop_write;
3837 	}
3838 
3839 	if (!sa->qgroupid) {
3840 		ret = -EINVAL;
3841 		goto out;
3842 	}
3843 
3844 	if (sa->create && is_fstree(sa->qgroupid)) {
3845 		ret = -EINVAL;
3846 		goto out;
3847 	}
3848 
3849 	trans = btrfs_join_transaction(root);
3850 	if (IS_ERR(trans)) {
3851 		ret = PTR_ERR(trans);
3852 		goto out;
3853 	}
3854 
3855 	if (sa->create) {
3856 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3857 	} else {
3858 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3859 	}
3860 
3861 	err = btrfs_end_transaction(trans);
3862 	if (err && !ret)
3863 		ret = err;
3864 
3865 out:
3866 	kfree(sa);
3867 drop_write:
3868 	mnt_drop_write_file(file);
3869 	return ret;
3870 }
3871 
3872 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3873 {
3874 	struct inode *inode = file_inode(file);
3875 	struct btrfs_root *root = BTRFS_I(inode)->root;
3876 	struct btrfs_ioctl_qgroup_limit_args *sa;
3877 	struct btrfs_trans_handle *trans;
3878 	int ret;
3879 	int err;
3880 	u64 qgroupid;
3881 
3882 	if (!capable(CAP_SYS_ADMIN))
3883 		return -EPERM;
3884 
3885 	ret = mnt_want_write_file(file);
3886 	if (ret)
3887 		return ret;
3888 
3889 	sa = memdup_user(arg, sizeof(*sa));
3890 	if (IS_ERR(sa)) {
3891 		ret = PTR_ERR(sa);
3892 		goto drop_write;
3893 	}
3894 
3895 	trans = btrfs_join_transaction(root);
3896 	if (IS_ERR(trans)) {
3897 		ret = PTR_ERR(trans);
3898 		goto out;
3899 	}
3900 
3901 	qgroupid = sa->qgroupid;
3902 	if (!qgroupid) {
3903 		/* take the current subvol as qgroup */
3904 		qgroupid = root->root_key.objectid;
3905 	}
3906 
3907 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3908 
3909 	err = btrfs_end_transaction(trans);
3910 	if (err && !ret)
3911 		ret = err;
3912 
3913 out:
3914 	kfree(sa);
3915 drop_write:
3916 	mnt_drop_write_file(file);
3917 	return ret;
3918 }
3919 
3920 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3921 {
3922 	struct inode *inode = file_inode(file);
3923 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3924 	struct btrfs_ioctl_quota_rescan_args *qsa;
3925 	int ret;
3926 
3927 	if (!capable(CAP_SYS_ADMIN))
3928 		return -EPERM;
3929 
3930 	ret = mnt_want_write_file(file);
3931 	if (ret)
3932 		return ret;
3933 
3934 	qsa = memdup_user(arg, sizeof(*qsa));
3935 	if (IS_ERR(qsa)) {
3936 		ret = PTR_ERR(qsa);
3937 		goto drop_write;
3938 	}
3939 
3940 	if (qsa->flags) {
3941 		ret = -EINVAL;
3942 		goto out;
3943 	}
3944 
3945 	ret = btrfs_qgroup_rescan(fs_info);
3946 
3947 out:
3948 	kfree(qsa);
3949 drop_write:
3950 	mnt_drop_write_file(file);
3951 	return ret;
3952 }
3953 
3954 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3955 						void __user *arg)
3956 {
3957 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3958 
3959 	if (!capable(CAP_SYS_ADMIN))
3960 		return -EPERM;
3961 
3962 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3963 		qsa.flags = 1;
3964 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3965 	}
3966 
3967 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3968 		return -EFAULT;
3969 
3970 	return 0;
3971 }
3972 
3973 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3974 						void __user *arg)
3975 {
3976 	if (!capable(CAP_SYS_ADMIN))
3977 		return -EPERM;
3978 
3979 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3980 }
3981 
3982 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3983 					    struct mnt_idmap *idmap,
3984 					    struct btrfs_ioctl_received_subvol_args *sa)
3985 {
3986 	struct inode *inode = file_inode(file);
3987 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3988 	struct btrfs_root *root = BTRFS_I(inode)->root;
3989 	struct btrfs_root_item *root_item = &root->root_item;
3990 	struct btrfs_trans_handle *trans;
3991 	struct timespec64 ct = current_time(inode);
3992 	int ret = 0;
3993 	int received_uuid_changed;
3994 
3995 	if (!inode_owner_or_capable(idmap, inode))
3996 		return -EPERM;
3997 
3998 	ret = mnt_want_write_file(file);
3999 	if (ret < 0)
4000 		return ret;
4001 
4002 	down_write(&fs_info->subvol_sem);
4003 
4004 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4005 		ret = -EINVAL;
4006 		goto out;
4007 	}
4008 
4009 	if (btrfs_root_readonly(root)) {
4010 		ret = -EROFS;
4011 		goto out;
4012 	}
4013 
4014 	/*
4015 	 * 1 - root item
4016 	 * 2 - uuid items (received uuid + subvol uuid)
4017 	 */
4018 	trans = btrfs_start_transaction(root, 3);
4019 	if (IS_ERR(trans)) {
4020 		ret = PTR_ERR(trans);
4021 		trans = NULL;
4022 		goto out;
4023 	}
4024 
4025 	sa->rtransid = trans->transid;
4026 	sa->rtime.sec = ct.tv_sec;
4027 	sa->rtime.nsec = ct.tv_nsec;
4028 
4029 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4030 				       BTRFS_UUID_SIZE);
4031 	if (received_uuid_changed &&
4032 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4033 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4034 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4035 					  root->root_key.objectid);
4036 		if (ret && ret != -ENOENT) {
4037 		        btrfs_abort_transaction(trans, ret);
4038 		        btrfs_end_transaction(trans);
4039 		        goto out;
4040 		}
4041 	}
4042 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4043 	btrfs_set_root_stransid(root_item, sa->stransid);
4044 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4045 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4046 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4047 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4048 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4049 
4050 	ret = btrfs_update_root(trans, fs_info->tree_root,
4051 				&root->root_key, &root->root_item);
4052 	if (ret < 0) {
4053 		btrfs_end_transaction(trans);
4054 		goto out;
4055 	}
4056 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4057 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4058 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4059 					  root->root_key.objectid);
4060 		if (ret < 0 && ret != -EEXIST) {
4061 			btrfs_abort_transaction(trans, ret);
4062 			btrfs_end_transaction(trans);
4063 			goto out;
4064 		}
4065 	}
4066 	ret = btrfs_commit_transaction(trans);
4067 out:
4068 	up_write(&fs_info->subvol_sem);
4069 	mnt_drop_write_file(file);
4070 	return ret;
4071 }
4072 
4073 #ifdef CONFIG_64BIT
4074 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4075 						void __user *arg)
4076 {
4077 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4078 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4079 	int ret = 0;
4080 
4081 	args32 = memdup_user(arg, sizeof(*args32));
4082 	if (IS_ERR(args32))
4083 		return PTR_ERR(args32);
4084 
4085 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4086 	if (!args64) {
4087 		ret = -ENOMEM;
4088 		goto out;
4089 	}
4090 
4091 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4092 	args64->stransid = args32->stransid;
4093 	args64->rtransid = args32->rtransid;
4094 	args64->stime.sec = args32->stime.sec;
4095 	args64->stime.nsec = args32->stime.nsec;
4096 	args64->rtime.sec = args32->rtime.sec;
4097 	args64->rtime.nsec = args32->rtime.nsec;
4098 	args64->flags = args32->flags;
4099 
4100 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4101 	if (ret)
4102 		goto out;
4103 
4104 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4105 	args32->stransid = args64->stransid;
4106 	args32->rtransid = args64->rtransid;
4107 	args32->stime.sec = args64->stime.sec;
4108 	args32->stime.nsec = args64->stime.nsec;
4109 	args32->rtime.sec = args64->rtime.sec;
4110 	args32->rtime.nsec = args64->rtime.nsec;
4111 	args32->flags = args64->flags;
4112 
4113 	ret = copy_to_user(arg, args32, sizeof(*args32));
4114 	if (ret)
4115 		ret = -EFAULT;
4116 
4117 out:
4118 	kfree(args32);
4119 	kfree(args64);
4120 	return ret;
4121 }
4122 #endif
4123 
4124 static long btrfs_ioctl_set_received_subvol(struct file *file,
4125 					    void __user *arg)
4126 {
4127 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4128 	int ret = 0;
4129 
4130 	sa = memdup_user(arg, sizeof(*sa));
4131 	if (IS_ERR(sa))
4132 		return PTR_ERR(sa);
4133 
4134 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4135 
4136 	if (ret)
4137 		goto out;
4138 
4139 	ret = copy_to_user(arg, sa, sizeof(*sa));
4140 	if (ret)
4141 		ret = -EFAULT;
4142 
4143 out:
4144 	kfree(sa);
4145 	return ret;
4146 }
4147 
4148 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4149 					void __user *arg)
4150 {
4151 	size_t len;
4152 	int ret;
4153 	char label[BTRFS_LABEL_SIZE];
4154 
4155 	spin_lock(&fs_info->super_lock);
4156 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4157 	spin_unlock(&fs_info->super_lock);
4158 
4159 	len = strnlen(label, BTRFS_LABEL_SIZE);
4160 
4161 	if (len == BTRFS_LABEL_SIZE) {
4162 		btrfs_warn(fs_info,
4163 			   "label is too long, return the first %zu bytes",
4164 			   --len);
4165 	}
4166 
4167 	ret = copy_to_user(arg, label, len);
4168 
4169 	return ret ? -EFAULT : 0;
4170 }
4171 
4172 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4173 {
4174 	struct inode *inode = file_inode(file);
4175 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4176 	struct btrfs_root *root = BTRFS_I(inode)->root;
4177 	struct btrfs_super_block *super_block = fs_info->super_copy;
4178 	struct btrfs_trans_handle *trans;
4179 	char label[BTRFS_LABEL_SIZE];
4180 	int ret;
4181 
4182 	if (!capable(CAP_SYS_ADMIN))
4183 		return -EPERM;
4184 
4185 	if (copy_from_user(label, arg, sizeof(label)))
4186 		return -EFAULT;
4187 
4188 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4189 		btrfs_err(fs_info,
4190 			  "unable to set label with more than %d bytes",
4191 			  BTRFS_LABEL_SIZE - 1);
4192 		return -EINVAL;
4193 	}
4194 
4195 	ret = mnt_want_write_file(file);
4196 	if (ret)
4197 		return ret;
4198 
4199 	trans = btrfs_start_transaction(root, 0);
4200 	if (IS_ERR(trans)) {
4201 		ret = PTR_ERR(trans);
4202 		goto out_unlock;
4203 	}
4204 
4205 	spin_lock(&fs_info->super_lock);
4206 	strcpy(super_block->label, label);
4207 	spin_unlock(&fs_info->super_lock);
4208 	ret = btrfs_commit_transaction(trans);
4209 
4210 out_unlock:
4211 	mnt_drop_write_file(file);
4212 	return ret;
4213 }
4214 
4215 #define INIT_FEATURE_FLAGS(suffix) \
4216 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4217 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4218 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4219 
4220 int btrfs_ioctl_get_supported_features(void __user *arg)
4221 {
4222 	static const struct btrfs_ioctl_feature_flags features[3] = {
4223 		INIT_FEATURE_FLAGS(SUPP),
4224 		INIT_FEATURE_FLAGS(SAFE_SET),
4225 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4226 	};
4227 
4228 	if (copy_to_user(arg, &features, sizeof(features)))
4229 		return -EFAULT;
4230 
4231 	return 0;
4232 }
4233 
4234 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4235 					void __user *arg)
4236 {
4237 	struct btrfs_super_block *super_block = fs_info->super_copy;
4238 	struct btrfs_ioctl_feature_flags features;
4239 
4240 	features.compat_flags = btrfs_super_compat_flags(super_block);
4241 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4242 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4243 
4244 	if (copy_to_user(arg, &features, sizeof(features)))
4245 		return -EFAULT;
4246 
4247 	return 0;
4248 }
4249 
4250 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4251 			      enum btrfs_feature_set set,
4252 			      u64 change_mask, u64 flags, u64 supported_flags,
4253 			      u64 safe_set, u64 safe_clear)
4254 {
4255 	const char *type = btrfs_feature_set_name(set);
4256 	char *names;
4257 	u64 disallowed, unsupported;
4258 	u64 set_mask = flags & change_mask;
4259 	u64 clear_mask = ~flags & change_mask;
4260 
4261 	unsupported = set_mask & ~supported_flags;
4262 	if (unsupported) {
4263 		names = btrfs_printable_features(set, unsupported);
4264 		if (names) {
4265 			btrfs_warn(fs_info,
4266 				   "this kernel does not support the %s feature bit%s",
4267 				   names, strchr(names, ',') ? "s" : "");
4268 			kfree(names);
4269 		} else
4270 			btrfs_warn(fs_info,
4271 				   "this kernel does not support %s bits 0x%llx",
4272 				   type, unsupported);
4273 		return -EOPNOTSUPP;
4274 	}
4275 
4276 	disallowed = set_mask & ~safe_set;
4277 	if (disallowed) {
4278 		names = btrfs_printable_features(set, disallowed);
4279 		if (names) {
4280 			btrfs_warn(fs_info,
4281 				   "can't set the %s feature bit%s while mounted",
4282 				   names, strchr(names, ',') ? "s" : "");
4283 			kfree(names);
4284 		} else
4285 			btrfs_warn(fs_info,
4286 				   "can't set %s bits 0x%llx while mounted",
4287 				   type, disallowed);
4288 		return -EPERM;
4289 	}
4290 
4291 	disallowed = clear_mask & ~safe_clear;
4292 	if (disallowed) {
4293 		names = btrfs_printable_features(set, disallowed);
4294 		if (names) {
4295 			btrfs_warn(fs_info,
4296 				   "can't clear the %s feature bit%s while mounted",
4297 				   names, strchr(names, ',') ? "s" : "");
4298 			kfree(names);
4299 		} else
4300 			btrfs_warn(fs_info,
4301 				   "can't clear %s bits 0x%llx while mounted",
4302 				   type, disallowed);
4303 		return -EPERM;
4304 	}
4305 
4306 	return 0;
4307 }
4308 
4309 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4310 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4311 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4312 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4313 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4314 
4315 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4316 {
4317 	struct inode *inode = file_inode(file);
4318 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4319 	struct btrfs_root *root = BTRFS_I(inode)->root;
4320 	struct btrfs_super_block *super_block = fs_info->super_copy;
4321 	struct btrfs_ioctl_feature_flags flags[2];
4322 	struct btrfs_trans_handle *trans;
4323 	u64 newflags;
4324 	int ret;
4325 
4326 	if (!capable(CAP_SYS_ADMIN))
4327 		return -EPERM;
4328 
4329 	if (copy_from_user(flags, arg, sizeof(flags)))
4330 		return -EFAULT;
4331 
4332 	/* Nothing to do */
4333 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4334 	    !flags[0].incompat_flags)
4335 		return 0;
4336 
4337 	ret = check_feature(fs_info, flags[0].compat_flags,
4338 			    flags[1].compat_flags, COMPAT);
4339 	if (ret)
4340 		return ret;
4341 
4342 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4343 			    flags[1].compat_ro_flags, COMPAT_RO);
4344 	if (ret)
4345 		return ret;
4346 
4347 	ret = check_feature(fs_info, flags[0].incompat_flags,
4348 			    flags[1].incompat_flags, INCOMPAT);
4349 	if (ret)
4350 		return ret;
4351 
4352 	ret = mnt_want_write_file(file);
4353 	if (ret)
4354 		return ret;
4355 
4356 	trans = btrfs_start_transaction(root, 0);
4357 	if (IS_ERR(trans)) {
4358 		ret = PTR_ERR(trans);
4359 		goto out_drop_write;
4360 	}
4361 
4362 	spin_lock(&fs_info->super_lock);
4363 	newflags = btrfs_super_compat_flags(super_block);
4364 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4365 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4366 	btrfs_set_super_compat_flags(super_block, newflags);
4367 
4368 	newflags = btrfs_super_compat_ro_flags(super_block);
4369 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4370 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4371 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4372 
4373 	newflags = btrfs_super_incompat_flags(super_block);
4374 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4375 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4376 	btrfs_set_super_incompat_flags(super_block, newflags);
4377 	spin_unlock(&fs_info->super_lock);
4378 
4379 	ret = btrfs_commit_transaction(trans);
4380 out_drop_write:
4381 	mnt_drop_write_file(file);
4382 
4383 	return ret;
4384 }
4385 
4386 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4387 {
4388 	struct btrfs_ioctl_send_args *arg;
4389 	int ret;
4390 
4391 	if (compat) {
4392 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4393 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4394 
4395 		ret = copy_from_user(&args32, argp, sizeof(args32));
4396 		if (ret)
4397 			return -EFAULT;
4398 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4399 		if (!arg)
4400 			return -ENOMEM;
4401 		arg->send_fd = args32.send_fd;
4402 		arg->clone_sources_count = args32.clone_sources_count;
4403 		arg->clone_sources = compat_ptr(args32.clone_sources);
4404 		arg->parent_root = args32.parent_root;
4405 		arg->flags = args32.flags;
4406 		arg->version = args32.version;
4407 		memcpy(arg->reserved, args32.reserved,
4408 		       sizeof(args32.reserved));
4409 #else
4410 		return -ENOTTY;
4411 #endif
4412 	} else {
4413 		arg = memdup_user(argp, sizeof(*arg));
4414 		if (IS_ERR(arg))
4415 			return PTR_ERR(arg);
4416 	}
4417 	ret = btrfs_ioctl_send(inode, arg);
4418 	kfree(arg);
4419 	return ret;
4420 }
4421 
4422 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4423 				    bool compat)
4424 {
4425 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4426 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4427 					     flags);
4428 	size_t copy_end;
4429 	struct iovec iovstack[UIO_FASTIOV];
4430 	struct iovec *iov = iovstack;
4431 	struct iov_iter iter;
4432 	loff_t pos;
4433 	struct kiocb kiocb;
4434 	ssize_t ret;
4435 
4436 	if (!capable(CAP_SYS_ADMIN)) {
4437 		ret = -EPERM;
4438 		goto out_acct;
4439 	}
4440 
4441 	if (compat) {
4442 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4443 		struct btrfs_ioctl_encoded_io_args_32 args32;
4444 
4445 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4446 				       flags);
4447 		if (copy_from_user(&args32, argp, copy_end)) {
4448 			ret = -EFAULT;
4449 			goto out_acct;
4450 		}
4451 		args.iov = compat_ptr(args32.iov);
4452 		args.iovcnt = args32.iovcnt;
4453 		args.offset = args32.offset;
4454 		args.flags = args32.flags;
4455 #else
4456 		return -ENOTTY;
4457 #endif
4458 	} else {
4459 		copy_end = copy_end_kernel;
4460 		if (copy_from_user(&args, argp, copy_end)) {
4461 			ret = -EFAULT;
4462 			goto out_acct;
4463 		}
4464 	}
4465 	if (args.flags != 0) {
4466 		ret = -EINVAL;
4467 		goto out_acct;
4468 	}
4469 
4470 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4471 			   &iov, &iter);
4472 	if (ret < 0)
4473 		goto out_acct;
4474 
4475 	if (iov_iter_count(&iter) == 0) {
4476 		ret = 0;
4477 		goto out_iov;
4478 	}
4479 	pos = args.offset;
4480 	ret = rw_verify_area(READ, file, &pos, args.len);
4481 	if (ret < 0)
4482 		goto out_iov;
4483 
4484 	init_sync_kiocb(&kiocb, file);
4485 	kiocb.ki_pos = pos;
4486 
4487 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4488 	if (ret >= 0) {
4489 		fsnotify_access(file);
4490 		if (copy_to_user(argp + copy_end,
4491 				 (char *)&args + copy_end_kernel,
4492 				 sizeof(args) - copy_end_kernel))
4493 			ret = -EFAULT;
4494 	}
4495 
4496 out_iov:
4497 	kfree(iov);
4498 out_acct:
4499 	if (ret > 0)
4500 		add_rchar(current, ret);
4501 	inc_syscr(current);
4502 	return ret;
4503 }
4504 
4505 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4506 {
4507 	struct btrfs_ioctl_encoded_io_args args;
4508 	struct iovec iovstack[UIO_FASTIOV];
4509 	struct iovec *iov = iovstack;
4510 	struct iov_iter iter;
4511 	loff_t pos;
4512 	struct kiocb kiocb;
4513 	ssize_t ret;
4514 
4515 	if (!capable(CAP_SYS_ADMIN)) {
4516 		ret = -EPERM;
4517 		goto out_acct;
4518 	}
4519 
4520 	if (!(file->f_mode & FMODE_WRITE)) {
4521 		ret = -EBADF;
4522 		goto out_acct;
4523 	}
4524 
4525 	if (compat) {
4526 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4527 		struct btrfs_ioctl_encoded_io_args_32 args32;
4528 
4529 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4530 			ret = -EFAULT;
4531 			goto out_acct;
4532 		}
4533 		args.iov = compat_ptr(args32.iov);
4534 		args.iovcnt = args32.iovcnt;
4535 		args.offset = args32.offset;
4536 		args.flags = args32.flags;
4537 		args.len = args32.len;
4538 		args.unencoded_len = args32.unencoded_len;
4539 		args.unencoded_offset = args32.unencoded_offset;
4540 		args.compression = args32.compression;
4541 		args.encryption = args32.encryption;
4542 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4543 #else
4544 		return -ENOTTY;
4545 #endif
4546 	} else {
4547 		if (copy_from_user(&args, argp, sizeof(args))) {
4548 			ret = -EFAULT;
4549 			goto out_acct;
4550 		}
4551 	}
4552 
4553 	ret = -EINVAL;
4554 	if (args.flags != 0)
4555 		goto out_acct;
4556 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4557 		goto out_acct;
4558 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4559 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4560 		goto out_acct;
4561 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4562 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4563 		goto out_acct;
4564 	if (args.unencoded_offset > args.unencoded_len)
4565 		goto out_acct;
4566 	if (args.len > args.unencoded_len - args.unencoded_offset)
4567 		goto out_acct;
4568 
4569 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4570 			   &iov, &iter);
4571 	if (ret < 0)
4572 		goto out_acct;
4573 
4574 	if (iov_iter_count(&iter) == 0) {
4575 		ret = 0;
4576 		goto out_iov;
4577 	}
4578 	pos = args.offset;
4579 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4580 	if (ret < 0)
4581 		goto out_iov;
4582 
4583 	init_sync_kiocb(&kiocb, file);
4584 	ret = kiocb_set_rw_flags(&kiocb, 0);
4585 	if (ret)
4586 		goto out_iov;
4587 	kiocb.ki_pos = pos;
4588 
4589 	file_start_write(file);
4590 
4591 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4592 	if (ret > 0)
4593 		fsnotify_modify(file);
4594 
4595 	file_end_write(file);
4596 out_iov:
4597 	kfree(iov);
4598 out_acct:
4599 	if (ret > 0)
4600 		add_wchar(current, ret);
4601 	inc_syscw(current);
4602 	return ret;
4603 }
4604 
4605 long btrfs_ioctl(struct file *file, unsigned int
4606 		cmd, unsigned long arg)
4607 {
4608 	struct inode *inode = file_inode(file);
4609 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4610 	struct btrfs_root *root = BTRFS_I(inode)->root;
4611 	void __user *argp = (void __user *)arg;
4612 
4613 	switch (cmd) {
4614 	case FS_IOC_GETVERSION:
4615 		return btrfs_ioctl_getversion(inode, argp);
4616 	case FS_IOC_GETFSLABEL:
4617 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4618 	case FS_IOC_SETFSLABEL:
4619 		return btrfs_ioctl_set_fslabel(file, argp);
4620 	case FITRIM:
4621 		return btrfs_ioctl_fitrim(fs_info, argp);
4622 	case BTRFS_IOC_SNAP_CREATE:
4623 		return btrfs_ioctl_snap_create(file, argp, 0);
4624 	case BTRFS_IOC_SNAP_CREATE_V2:
4625 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4626 	case BTRFS_IOC_SUBVOL_CREATE:
4627 		return btrfs_ioctl_snap_create(file, argp, 1);
4628 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4629 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4630 	case BTRFS_IOC_SNAP_DESTROY:
4631 		return btrfs_ioctl_snap_destroy(file, argp, false);
4632 	case BTRFS_IOC_SNAP_DESTROY_V2:
4633 		return btrfs_ioctl_snap_destroy(file, argp, true);
4634 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4635 		return btrfs_ioctl_subvol_getflags(inode, argp);
4636 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4637 		return btrfs_ioctl_subvol_setflags(file, argp);
4638 	case BTRFS_IOC_DEFAULT_SUBVOL:
4639 		return btrfs_ioctl_default_subvol(file, argp);
4640 	case BTRFS_IOC_DEFRAG:
4641 		return btrfs_ioctl_defrag(file, NULL);
4642 	case BTRFS_IOC_DEFRAG_RANGE:
4643 		return btrfs_ioctl_defrag(file, argp);
4644 	case BTRFS_IOC_RESIZE:
4645 		return btrfs_ioctl_resize(file, argp);
4646 	case BTRFS_IOC_ADD_DEV:
4647 		return btrfs_ioctl_add_dev(fs_info, argp);
4648 	case BTRFS_IOC_RM_DEV:
4649 		return btrfs_ioctl_rm_dev(file, argp);
4650 	case BTRFS_IOC_RM_DEV_V2:
4651 		return btrfs_ioctl_rm_dev_v2(file, argp);
4652 	case BTRFS_IOC_FS_INFO:
4653 		return btrfs_ioctl_fs_info(fs_info, argp);
4654 	case BTRFS_IOC_DEV_INFO:
4655 		return btrfs_ioctl_dev_info(fs_info, argp);
4656 	case BTRFS_IOC_TREE_SEARCH:
4657 		return btrfs_ioctl_tree_search(inode, argp);
4658 	case BTRFS_IOC_TREE_SEARCH_V2:
4659 		return btrfs_ioctl_tree_search_v2(inode, argp);
4660 	case BTRFS_IOC_INO_LOOKUP:
4661 		return btrfs_ioctl_ino_lookup(root, argp);
4662 	case BTRFS_IOC_INO_PATHS:
4663 		return btrfs_ioctl_ino_to_path(root, argp);
4664 	case BTRFS_IOC_LOGICAL_INO:
4665 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4666 	case BTRFS_IOC_LOGICAL_INO_V2:
4667 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4668 	case BTRFS_IOC_SPACE_INFO:
4669 		return btrfs_ioctl_space_info(fs_info, argp);
4670 	case BTRFS_IOC_SYNC: {
4671 		int ret;
4672 
4673 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4674 		if (ret)
4675 			return ret;
4676 		ret = btrfs_sync_fs(inode->i_sb, 1);
4677 		/*
4678 		 * The transaction thread may want to do more work,
4679 		 * namely it pokes the cleaner kthread that will start
4680 		 * processing uncleaned subvols.
4681 		 */
4682 		wake_up_process(fs_info->transaction_kthread);
4683 		return ret;
4684 	}
4685 	case BTRFS_IOC_START_SYNC:
4686 		return btrfs_ioctl_start_sync(root, argp);
4687 	case BTRFS_IOC_WAIT_SYNC:
4688 		return btrfs_ioctl_wait_sync(fs_info, argp);
4689 	case BTRFS_IOC_SCRUB:
4690 		return btrfs_ioctl_scrub(file, argp);
4691 	case BTRFS_IOC_SCRUB_CANCEL:
4692 		return btrfs_ioctl_scrub_cancel(fs_info);
4693 	case BTRFS_IOC_SCRUB_PROGRESS:
4694 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4695 	case BTRFS_IOC_BALANCE_V2:
4696 		return btrfs_ioctl_balance(file, argp);
4697 	case BTRFS_IOC_BALANCE_CTL:
4698 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4699 	case BTRFS_IOC_BALANCE_PROGRESS:
4700 		return btrfs_ioctl_balance_progress(fs_info, argp);
4701 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4702 		return btrfs_ioctl_set_received_subvol(file, argp);
4703 #ifdef CONFIG_64BIT
4704 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4705 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4706 #endif
4707 	case BTRFS_IOC_SEND:
4708 		return _btrfs_ioctl_send(inode, argp, false);
4709 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4710 	case BTRFS_IOC_SEND_32:
4711 		return _btrfs_ioctl_send(inode, argp, true);
4712 #endif
4713 	case BTRFS_IOC_GET_DEV_STATS:
4714 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4715 	case BTRFS_IOC_QUOTA_CTL:
4716 		return btrfs_ioctl_quota_ctl(file, argp);
4717 	case BTRFS_IOC_QGROUP_ASSIGN:
4718 		return btrfs_ioctl_qgroup_assign(file, argp);
4719 	case BTRFS_IOC_QGROUP_CREATE:
4720 		return btrfs_ioctl_qgroup_create(file, argp);
4721 	case BTRFS_IOC_QGROUP_LIMIT:
4722 		return btrfs_ioctl_qgroup_limit(file, argp);
4723 	case BTRFS_IOC_QUOTA_RESCAN:
4724 		return btrfs_ioctl_quota_rescan(file, argp);
4725 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4726 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4727 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4728 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4729 	case BTRFS_IOC_DEV_REPLACE:
4730 		return btrfs_ioctl_dev_replace(fs_info, argp);
4731 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4732 		return btrfs_ioctl_get_supported_features(argp);
4733 	case BTRFS_IOC_GET_FEATURES:
4734 		return btrfs_ioctl_get_features(fs_info, argp);
4735 	case BTRFS_IOC_SET_FEATURES:
4736 		return btrfs_ioctl_set_features(file, argp);
4737 	case BTRFS_IOC_GET_SUBVOL_INFO:
4738 		return btrfs_ioctl_get_subvol_info(inode, argp);
4739 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4740 		return btrfs_ioctl_get_subvol_rootref(root, argp);
4741 	case BTRFS_IOC_INO_LOOKUP_USER:
4742 		return btrfs_ioctl_ino_lookup_user(file, argp);
4743 	case FS_IOC_ENABLE_VERITY:
4744 		return fsverity_ioctl_enable(file, (const void __user *)argp);
4745 	case FS_IOC_MEASURE_VERITY:
4746 		return fsverity_ioctl_measure(file, argp);
4747 	case BTRFS_IOC_ENCODED_READ:
4748 		return btrfs_ioctl_encoded_read(file, argp, false);
4749 	case BTRFS_IOC_ENCODED_WRITE:
4750 		return btrfs_ioctl_encoded_write(file, argp, false);
4751 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4752 	case BTRFS_IOC_ENCODED_READ_32:
4753 		return btrfs_ioctl_encoded_read(file, argp, true);
4754 	case BTRFS_IOC_ENCODED_WRITE_32:
4755 		return btrfs_ioctl_encoded_write(file, argp, true);
4756 #endif
4757 	}
4758 
4759 	return -ENOTTY;
4760 }
4761 
4762 #ifdef CONFIG_COMPAT
4763 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4764 {
4765 	/*
4766 	 * These all access 32-bit values anyway so no further
4767 	 * handling is necessary.
4768 	 */
4769 	switch (cmd) {
4770 	case FS_IOC32_GETVERSION:
4771 		cmd = FS_IOC_GETVERSION;
4772 		break;
4773 	}
4774 
4775 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4776 }
4777 #endif
4778