1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "block-group.h" 49 #include "fs.h" 50 #include "accessors.h" 51 #include "extent-tree.h" 52 #include "root-tree.h" 53 #include "defrag.h" 54 #include "dir-item.h" 55 #include "uuid-tree.h" 56 #include "ioctl.h" 57 #include "file.h" 58 #include "scrub.h" 59 #include "super.h" 60 61 #ifdef CONFIG_64BIT 62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 63 * structures are incorrect, as the timespec structure from userspace 64 * is 4 bytes too small. We define these alternatives here to teach 65 * the kernel about the 32-bit struct packing. 66 */ 67 struct btrfs_ioctl_timespec_32 { 68 __u64 sec; 69 __u32 nsec; 70 } __attribute__ ((__packed__)); 71 72 struct btrfs_ioctl_received_subvol_args_32 { 73 char uuid[BTRFS_UUID_SIZE]; /* in */ 74 __u64 stransid; /* in */ 75 __u64 rtransid; /* out */ 76 struct btrfs_ioctl_timespec_32 stime; /* in */ 77 struct btrfs_ioctl_timespec_32 rtime; /* out */ 78 __u64 flags; /* in */ 79 __u64 reserved[16]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 83 struct btrfs_ioctl_received_subvol_args_32) 84 #endif 85 86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 87 struct btrfs_ioctl_send_args_32 { 88 __s64 send_fd; /* in */ 89 __u64 clone_sources_count; /* in */ 90 compat_uptr_t clone_sources; /* in */ 91 __u64 parent_root; /* in */ 92 __u64 flags; /* in */ 93 __u32 version; /* in */ 94 __u8 reserved[28]; /* in */ 95 } __attribute__ ((__packed__)); 96 97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 98 struct btrfs_ioctl_send_args_32) 99 100 struct btrfs_ioctl_encoded_io_args_32 { 101 compat_uptr_t iov; 102 compat_ulong_t iovcnt; 103 __s64 offset; 104 __u64 flags; 105 __u64 len; 106 __u64 unencoded_len; 107 __u64 unencoded_offset; 108 __u32 compression; 109 __u32 encryption; 110 __u8 reserved[64]; 111 }; 112 113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 114 struct btrfs_ioctl_encoded_io_args_32) 115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 116 struct btrfs_ioctl_encoded_io_args_32) 117 #endif 118 119 /* Mask out flags that are inappropriate for the given type of inode. */ 120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 121 unsigned int flags) 122 { 123 if (S_ISDIR(inode->i_mode)) 124 return flags; 125 else if (S_ISREG(inode->i_mode)) 126 return flags & ~FS_DIRSYNC_FL; 127 else 128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 129 } 130 131 /* 132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 133 * ioctl. 134 */ 135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 136 { 137 unsigned int iflags = 0; 138 u32 flags = binode->flags; 139 u32 ro_flags = binode->ro_flags; 140 141 if (flags & BTRFS_INODE_SYNC) 142 iflags |= FS_SYNC_FL; 143 if (flags & BTRFS_INODE_IMMUTABLE) 144 iflags |= FS_IMMUTABLE_FL; 145 if (flags & BTRFS_INODE_APPEND) 146 iflags |= FS_APPEND_FL; 147 if (flags & BTRFS_INODE_NODUMP) 148 iflags |= FS_NODUMP_FL; 149 if (flags & BTRFS_INODE_NOATIME) 150 iflags |= FS_NOATIME_FL; 151 if (flags & BTRFS_INODE_DIRSYNC) 152 iflags |= FS_DIRSYNC_FL; 153 if (flags & BTRFS_INODE_NODATACOW) 154 iflags |= FS_NOCOW_FL; 155 if (ro_flags & BTRFS_INODE_RO_VERITY) 156 iflags |= FS_VERITY_FL; 157 158 if (flags & BTRFS_INODE_NOCOMPRESS) 159 iflags |= FS_NOCOMP_FL; 160 else if (flags & BTRFS_INODE_COMPRESS) 161 iflags |= FS_COMPR_FL; 162 163 return iflags; 164 } 165 166 /* 167 * Update inode->i_flags based on the btrfs internal flags. 168 */ 169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 170 { 171 struct btrfs_inode *binode = BTRFS_I(inode); 172 unsigned int new_fl = 0; 173 174 if (binode->flags & BTRFS_INODE_SYNC) 175 new_fl |= S_SYNC; 176 if (binode->flags & BTRFS_INODE_IMMUTABLE) 177 new_fl |= S_IMMUTABLE; 178 if (binode->flags & BTRFS_INODE_APPEND) 179 new_fl |= S_APPEND; 180 if (binode->flags & BTRFS_INODE_NOATIME) 181 new_fl |= S_NOATIME; 182 if (binode->flags & BTRFS_INODE_DIRSYNC) 183 new_fl |= S_DIRSYNC; 184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 185 new_fl |= S_VERITY; 186 187 set_mask_bits(&inode->i_flags, 188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 189 S_VERITY, new_fl); 190 } 191 192 /* 193 * Check if @flags are a supported and valid set of FS_*_FL flags and that 194 * the old and new flags are not conflicting 195 */ 196 static int check_fsflags(unsigned int old_flags, unsigned int flags) 197 { 198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 199 FS_NOATIME_FL | FS_NODUMP_FL | \ 200 FS_SYNC_FL | FS_DIRSYNC_FL | \ 201 FS_NOCOMP_FL | FS_COMPR_FL | 202 FS_NOCOW_FL)) 203 return -EOPNOTSUPP; 204 205 /* COMPR and NOCOMP on new/old are valid */ 206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 207 return -EINVAL; 208 209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 210 return -EINVAL; 211 212 /* NOCOW and compression options are mutually exclusive */ 213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 214 return -EINVAL; 215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 222 unsigned int flags) 223 { 224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 225 return -EPERM; 226 227 return 0; 228 } 229 230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args) 231 { 232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL) 233 return -ENAMETOOLONG; 234 return 0; 235 } 236 237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2) 238 { 239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL) 240 return -ENAMETOOLONG; 241 return 0; 242 } 243 244 /* 245 * Set flags/xflags from the internal inode flags. The remaining items of 246 * fsxattr are zeroed. 247 */ 248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 249 { 250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 251 252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 253 return 0; 254 } 255 256 int btrfs_fileattr_set(struct mnt_idmap *idmap, 257 struct dentry *dentry, struct fileattr *fa) 258 { 259 struct inode *inode = d_inode(dentry); 260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 261 struct btrfs_inode *binode = BTRFS_I(inode); 262 struct btrfs_root *root = binode->root; 263 struct btrfs_trans_handle *trans; 264 unsigned int fsflags, old_fsflags; 265 int ret; 266 const char *comp = NULL; 267 u32 binode_flags; 268 269 if (btrfs_root_readonly(root)) 270 return -EROFS; 271 272 if (fileattr_has_fsx(fa)) 273 return -EOPNOTSUPP; 274 275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 276 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 277 ret = check_fsflags(old_fsflags, fsflags); 278 if (ret) 279 return ret; 280 281 ret = check_fsflags_compatible(fs_info, fsflags); 282 if (ret) 283 return ret; 284 285 binode_flags = binode->flags; 286 if (fsflags & FS_SYNC_FL) 287 binode_flags |= BTRFS_INODE_SYNC; 288 else 289 binode_flags &= ~BTRFS_INODE_SYNC; 290 if (fsflags & FS_IMMUTABLE_FL) 291 binode_flags |= BTRFS_INODE_IMMUTABLE; 292 else 293 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 294 if (fsflags & FS_APPEND_FL) 295 binode_flags |= BTRFS_INODE_APPEND; 296 else 297 binode_flags &= ~BTRFS_INODE_APPEND; 298 if (fsflags & FS_NODUMP_FL) 299 binode_flags |= BTRFS_INODE_NODUMP; 300 else 301 binode_flags &= ~BTRFS_INODE_NODUMP; 302 if (fsflags & FS_NOATIME_FL) 303 binode_flags |= BTRFS_INODE_NOATIME; 304 else 305 binode_flags &= ~BTRFS_INODE_NOATIME; 306 307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 308 if (!fa->flags_valid) { 309 /* 1 item for the inode */ 310 trans = btrfs_start_transaction(root, 1); 311 if (IS_ERR(trans)) 312 return PTR_ERR(trans); 313 goto update_flags; 314 } 315 316 if (fsflags & FS_DIRSYNC_FL) 317 binode_flags |= BTRFS_INODE_DIRSYNC; 318 else 319 binode_flags &= ~BTRFS_INODE_DIRSYNC; 320 if (fsflags & FS_NOCOW_FL) { 321 if (S_ISREG(inode->i_mode)) { 322 /* 323 * It's safe to turn csums off here, no extents exist. 324 * Otherwise we want the flag to reflect the real COW 325 * status of the file and will not set it. 326 */ 327 if (inode->i_size == 0) 328 binode_flags |= BTRFS_INODE_NODATACOW | 329 BTRFS_INODE_NODATASUM; 330 } else { 331 binode_flags |= BTRFS_INODE_NODATACOW; 332 } 333 } else { 334 /* 335 * Revert back under same assumptions as above 336 */ 337 if (S_ISREG(inode->i_mode)) { 338 if (inode->i_size == 0) 339 binode_flags &= ~(BTRFS_INODE_NODATACOW | 340 BTRFS_INODE_NODATASUM); 341 } else { 342 binode_flags &= ~BTRFS_INODE_NODATACOW; 343 } 344 } 345 346 /* 347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 348 * flag may be changed automatically if compression code won't make 349 * things smaller. 350 */ 351 if (fsflags & FS_NOCOMP_FL) { 352 binode_flags &= ~BTRFS_INODE_COMPRESS; 353 binode_flags |= BTRFS_INODE_NOCOMPRESS; 354 } else if (fsflags & FS_COMPR_FL) { 355 356 if (IS_SWAPFILE(inode)) 357 return -ETXTBSY; 358 359 binode_flags |= BTRFS_INODE_COMPRESS; 360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 361 362 comp = btrfs_compress_type2str(fs_info->compress_type); 363 if (!comp || comp[0] == 0) 364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 365 } else { 366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 367 } 368 369 /* 370 * 1 for inode item 371 * 2 for properties 372 */ 373 trans = btrfs_start_transaction(root, 3); 374 if (IS_ERR(trans)) 375 return PTR_ERR(trans); 376 377 if (comp) { 378 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 379 strlen(comp), 0); 380 if (ret) { 381 btrfs_abort_transaction(trans, ret); 382 goto out_end_trans; 383 } 384 } else { 385 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 386 0, 0); 387 if (ret && ret != -ENODATA) { 388 btrfs_abort_transaction(trans, ret); 389 goto out_end_trans; 390 } 391 } 392 393 update_flags: 394 binode->flags = binode_flags; 395 btrfs_sync_inode_flags_to_i_flags(inode); 396 inode_inc_iversion(inode); 397 inode_set_ctime_current(inode); 398 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 399 400 out_end_trans: 401 btrfs_end_transaction(trans); 402 return ret; 403 } 404 405 /* 406 * Start exclusive operation @type, return true on success 407 */ 408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 409 enum btrfs_exclusive_operation type) 410 { 411 bool ret = false; 412 413 spin_lock(&fs_info->super_lock); 414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 415 fs_info->exclusive_operation = type; 416 ret = true; 417 } 418 spin_unlock(&fs_info->super_lock); 419 420 return ret; 421 } 422 423 /* 424 * Conditionally allow to enter the exclusive operation in case it's compatible 425 * with the running one. This must be paired with btrfs_exclop_start_unlock and 426 * btrfs_exclop_finish. 427 * 428 * Compatibility: 429 * - the same type is already running 430 * - when trying to add a device and balance has been paused 431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 432 * must check the condition first that would allow none -> @type 433 */ 434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 435 enum btrfs_exclusive_operation type) 436 { 437 spin_lock(&fs_info->super_lock); 438 if (fs_info->exclusive_operation == type || 439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 440 type == BTRFS_EXCLOP_DEV_ADD)) 441 return true; 442 443 spin_unlock(&fs_info->super_lock); 444 return false; 445 } 446 447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 448 { 449 spin_unlock(&fs_info->super_lock); 450 } 451 452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 453 { 454 spin_lock(&fs_info->super_lock); 455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 456 spin_unlock(&fs_info->super_lock); 457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 458 } 459 460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 461 enum btrfs_exclusive_operation op) 462 { 463 switch (op) { 464 case BTRFS_EXCLOP_BALANCE_PAUSED: 465 spin_lock(&fs_info->super_lock); 466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 471 spin_unlock(&fs_info->super_lock); 472 break; 473 case BTRFS_EXCLOP_BALANCE: 474 spin_lock(&fs_info->super_lock); 475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 477 spin_unlock(&fs_info->super_lock); 478 break; 479 default: 480 btrfs_warn(fs_info, 481 "invalid exclop balance operation %d requested", op); 482 } 483 } 484 485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 486 { 487 return put_user(inode->i_generation, arg); 488 } 489 490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 491 void __user *arg) 492 { 493 struct btrfs_device *device; 494 struct fstrim_range range; 495 u64 minlen = ULLONG_MAX; 496 u64 num_devices = 0; 497 int ret; 498 499 if (!capable(CAP_SYS_ADMIN)) 500 return -EPERM; 501 502 /* 503 * btrfs_trim_block_group() depends on space cache, which is not 504 * available in zoned filesystem. So, disallow fitrim on a zoned 505 * filesystem for now. 506 */ 507 if (btrfs_is_zoned(fs_info)) 508 return -EOPNOTSUPP; 509 510 /* 511 * If the fs is mounted with nologreplay, which requires it to be 512 * mounted in RO mode as well, we can not allow discard on free space 513 * inside block groups, because log trees refer to extents that are not 514 * pinned in a block group's free space cache (pinning the extents is 515 * precisely the first phase of replaying a log tree). 516 */ 517 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 518 return -EROFS; 519 520 rcu_read_lock(); 521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 522 dev_list) { 523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 524 continue; 525 num_devices++; 526 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 527 minlen); 528 } 529 rcu_read_unlock(); 530 531 if (!num_devices) 532 return -EOPNOTSUPP; 533 if (copy_from_user(&range, arg, sizeof(range))) 534 return -EFAULT; 535 536 /* 537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 538 * block group is in the logical address space, which can be any 539 * sectorsize aligned bytenr in the range [0, U64_MAX]. 540 */ 541 if (range.len < fs_info->sectorsize) 542 return -EINVAL; 543 544 range.minlen = max(range.minlen, minlen); 545 ret = btrfs_trim_fs(fs_info, &range); 546 if (ret < 0) 547 return ret; 548 549 if (copy_to_user(arg, &range, sizeof(range))) 550 return -EFAULT; 551 552 return 0; 553 } 554 555 int __pure btrfs_is_empty_uuid(u8 *uuid) 556 { 557 int i; 558 559 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 560 if (uuid[i]) 561 return 0; 562 } 563 return 1; 564 } 565 566 /* 567 * Calculate the number of transaction items to reserve for creating a subvolume 568 * or snapshot, not including the inode, directory entries, or parent directory. 569 */ 570 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 571 { 572 /* 573 * 1 to add root block 574 * 1 to add root item 575 * 1 to add root ref 576 * 1 to add root backref 577 * 1 to add UUID item 578 * 1 to add qgroup info 579 * 1 to add qgroup limit 580 * 581 * Ideally the last two would only be accounted if qgroups are enabled, 582 * but that can change between now and the time we would insert them. 583 */ 584 unsigned int num_items = 7; 585 586 if (inherit) { 587 /* 2 to add qgroup relations for each inherited qgroup */ 588 num_items += 2 * inherit->num_qgroups; 589 } 590 return num_items; 591 } 592 593 static noinline int create_subvol(struct mnt_idmap *idmap, 594 struct inode *dir, struct dentry *dentry, 595 struct btrfs_qgroup_inherit *inherit) 596 { 597 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 598 struct btrfs_trans_handle *trans; 599 struct btrfs_key key; 600 struct btrfs_root_item *root_item; 601 struct btrfs_inode_item *inode_item; 602 struct extent_buffer *leaf; 603 struct btrfs_root *root = BTRFS_I(dir)->root; 604 struct btrfs_root *new_root; 605 struct btrfs_block_rsv block_rsv; 606 struct timespec64 cur_time = current_time(dir); 607 struct btrfs_new_inode_args new_inode_args = { 608 .dir = dir, 609 .dentry = dentry, 610 .subvol = true, 611 }; 612 unsigned int trans_num_items; 613 int ret; 614 dev_t anon_dev; 615 u64 objectid; 616 617 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 618 if (!root_item) 619 return -ENOMEM; 620 621 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 622 if (ret) 623 goto out_root_item; 624 625 /* 626 * Don't create subvolume whose level is not zero. Or qgroup will be 627 * screwed up since it assumes subvolume qgroup's level to be 0. 628 */ 629 if (btrfs_qgroup_level(objectid)) { 630 ret = -ENOSPC; 631 goto out_root_item; 632 } 633 634 ret = get_anon_bdev(&anon_dev); 635 if (ret < 0) 636 goto out_root_item; 637 638 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 639 if (!new_inode_args.inode) { 640 ret = -ENOMEM; 641 goto out_anon_dev; 642 } 643 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 644 if (ret) 645 goto out_inode; 646 trans_num_items += create_subvol_num_items(inherit); 647 648 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 649 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 650 trans_num_items, false); 651 if (ret) 652 goto out_new_inode_args; 653 654 trans = btrfs_start_transaction(root, 0); 655 if (IS_ERR(trans)) { 656 ret = PTR_ERR(trans); 657 btrfs_subvolume_release_metadata(root, &block_rsv); 658 goto out_new_inode_args; 659 } 660 trans->block_rsv = &block_rsv; 661 trans->bytes_reserved = block_rsv.size; 662 /* Tree log can't currently deal with an inode which is a new root. */ 663 btrfs_set_log_full_commit(trans); 664 665 ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit); 666 if (ret) 667 goto out; 668 669 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 670 0, BTRFS_NESTING_NORMAL); 671 if (IS_ERR(leaf)) { 672 ret = PTR_ERR(leaf); 673 goto out; 674 } 675 676 btrfs_mark_buffer_dirty(trans, leaf); 677 678 inode_item = &root_item->inode; 679 btrfs_set_stack_inode_generation(inode_item, 1); 680 btrfs_set_stack_inode_size(inode_item, 3); 681 btrfs_set_stack_inode_nlink(inode_item, 1); 682 btrfs_set_stack_inode_nbytes(inode_item, 683 fs_info->nodesize); 684 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 685 686 btrfs_set_root_flags(root_item, 0); 687 btrfs_set_root_limit(root_item, 0); 688 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 689 690 btrfs_set_root_bytenr(root_item, leaf->start); 691 btrfs_set_root_generation(root_item, trans->transid); 692 btrfs_set_root_level(root_item, 0); 693 btrfs_set_root_refs(root_item, 1); 694 btrfs_set_root_used(root_item, leaf->len); 695 btrfs_set_root_last_snapshot(root_item, 0); 696 697 btrfs_set_root_generation_v2(root_item, 698 btrfs_root_generation(root_item)); 699 generate_random_guid(root_item->uuid); 700 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 701 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 702 root_item->ctime = root_item->otime; 703 btrfs_set_root_ctransid(root_item, trans->transid); 704 btrfs_set_root_otransid(root_item, trans->transid); 705 706 btrfs_tree_unlock(leaf); 707 708 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 709 710 key.objectid = objectid; 711 key.offset = 0; 712 key.type = BTRFS_ROOT_ITEM_KEY; 713 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 714 root_item); 715 if (ret) { 716 /* 717 * Since we don't abort the transaction in this case, free the 718 * tree block so that we don't leak space and leave the 719 * filesystem in an inconsistent state (an extent item in the 720 * extent tree with a backreference for a root that does not 721 * exists). 722 */ 723 btrfs_tree_lock(leaf); 724 btrfs_clear_buffer_dirty(trans, leaf); 725 btrfs_tree_unlock(leaf); 726 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 727 free_extent_buffer(leaf); 728 goto out; 729 } 730 731 free_extent_buffer(leaf); 732 leaf = NULL; 733 734 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 735 if (IS_ERR(new_root)) { 736 ret = PTR_ERR(new_root); 737 btrfs_abort_transaction(trans, ret); 738 goto out; 739 } 740 /* anon_dev is owned by new_root now. */ 741 anon_dev = 0; 742 BTRFS_I(new_inode_args.inode)->root = new_root; 743 /* ... and new_root is owned by new_inode_args.inode now. */ 744 745 ret = btrfs_record_root_in_trans(trans, new_root); 746 if (ret) { 747 btrfs_abort_transaction(trans, ret); 748 goto out; 749 } 750 751 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 752 BTRFS_UUID_KEY_SUBVOL, objectid); 753 if (ret) { 754 btrfs_abort_transaction(trans, ret); 755 goto out; 756 } 757 758 ret = btrfs_create_new_inode(trans, &new_inode_args); 759 if (ret) { 760 btrfs_abort_transaction(trans, ret); 761 goto out; 762 } 763 764 d_instantiate_new(dentry, new_inode_args.inode); 765 new_inode_args.inode = NULL; 766 767 out: 768 trans->block_rsv = NULL; 769 trans->bytes_reserved = 0; 770 btrfs_subvolume_release_metadata(root, &block_rsv); 771 772 btrfs_end_transaction(trans); 773 out_new_inode_args: 774 btrfs_new_inode_args_destroy(&new_inode_args); 775 out_inode: 776 iput(new_inode_args.inode); 777 out_anon_dev: 778 if (anon_dev) 779 free_anon_bdev(anon_dev); 780 out_root_item: 781 kfree(root_item); 782 return ret; 783 } 784 785 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 786 struct dentry *dentry, bool readonly, 787 struct btrfs_qgroup_inherit *inherit) 788 { 789 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 790 struct inode *inode; 791 struct btrfs_pending_snapshot *pending_snapshot; 792 unsigned int trans_num_items; 793 struct btrfs_trans_handle *trans; 794 int ret; 795 796 /* We do not support snapshotting right now. */ 797 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 798 btrfs_warn(fs_info, 799 "extent tree v2 doesn't support snapshotting yet"); 800 return -EOPNOTSUPP; 801 } 802 803 if (btrfs_root_refs(&root->root_item) == 0) 804 return -ENOENT; 805 806 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 807 return -EINVAL; 808 809 if (atomic_read(&root->nr_swapfiles)) { 810 btrfs_warn(fs_info, 811 "cannot snapshot subvolume with active swapfile"); 812 return -ETXTBSY; 813 } 814 815 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 816 if (!pending_snapshot) 817 return -ENOMEM; 818 819 ret = get_anon_bdev(&pending_snapshot->anon_dev); 820 if (ret < 0) 821 goto free_pending; 822 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 823 GFP_KERNEL); 824 pending_snapshot->path = btrfs_alloc_path(); 825 if (!pending_snapshot->root_item || !pending_snapshot->path) { 826 ret = -ENOMEM; 827 goto free_pending; 828 } 829 830 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 831 BTRFS_BLOCK_RSV_TEMP); 832 /* 833 * 1 to add dir item 834 * 1 to add dir index 835 * 1 to update parent inode item 836 */ 837 trans_num_items = create_subvol_num_items(inherit) + 3; 838 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 839 &pending_snapshot->block_rsv, 840 trans_num_items, false); 841 if (ret) 842 goto free_pending; 843 844 pending_snapshot->dentry = dentry; 845 pending_snapshot->root = root; 846 pending_snapshot->readonly = readonly; 847 pending_snapshot->dir = dir; 848 pending_snapshot->inherit = inherit; 849 850 trans = btrfs_start_transaction(root, 0); 851 if (IS_ERR(trans)) { 852 ret = PTR_ERR(trans); 853 goto fail; 854 } 855 856 trans->pending_snapshot = pending_snapshot; 857 858 ret = btrfs_commit_transaction(trans); 859 if (ret) 860 goto fail; 861 862 ret = pending_snapshot->error; 863 if (ret) 864 goto fail; 865 866 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 867 if (ret) 868 goto fail; 869 870 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 871 if (IS_ERR(inode)) { 872 ret = PTR_ERR(inode); 873 goto fail; 874 } 875 876 d_instantiate(dentry, inode); 877 ret = 0; 878 pending_snapshot->anon_dev = 0; 879 fail: 880 /* Prevent double freeing of anon_dev */ 881 if (ret && pending_snapshot->snap) 882 pending_snapshot->snap->anon_dev = 0; 883 btrfs_put_root(pending_snapshot->snap); 884 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 885 free_pending: 886 if (pending_snapshot->anon_dev) 887 free_anon_bdev(pending_snapshot->anon_dev); 888 kfree(pending_snapshot->root_item); 889 btrfs_free_path(pending_snapshot->path); 890 kfree(pending_snapshot); 891 892 return ret; 893 } 894 895 /* copy of may_delete in fs/namei.c() 896 * Check whether we can remove a link victim from directory dir, check 897 * whether the type of victim is right. 898 * 1. We can't do it if dir is read-only (done in permission()) 899 * 2. We should have write and exec permissions on dir 900 * 3. We can't remove anything from append-only dir 901 * 4. We can't do anything with immutable dir (done in permission()) 902 * 5. If the sticky bit on dir is set we should either 903 * a. be owner of dir, or 904 * b. be owner of victim, or 905 * c. have CAP_FOWNER capability 906 * 6. If the victim is append-only or immutable we can't do anything with 907 * links pointing to it. 908 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 909 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 910 * 9. We can't remove a root or mountpoint. 911 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 912 * nfs_async_unlink(). 913 */ 914 915 static int btrfs_may_delete(struct mnt_idmap *idmap, 916 struct inode *dir, struct dentry *victim, int isdir) 917 { 918 int error; 919 920 if (d_really_is_negative(victim)) 921 return -ENOENT; 922 923 /* The @victim is not inside @dir. */ 924 if (d_inode(victim->d_parent) != dir) 925 return -EINVAL; 926 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 927 928 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 929 if (error) 930 return error; 931 if (IS_APPEND(dir)) 932 return -EPERM; 933 if (check_sticky(idmap, dir, d_inode(victim)) || 934 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 935 IS_SWAPFILE(d_inode(victim))) 936 return -EPERM; 937 if (isdir) { 938 if (!d_is_dir(victim)) 939 return -ENOTDIR; 940 if (IS_ROOT(victim)) 941 return -EBUSY; 942 } else if (d_is_dir(victim)) 943 return -EISDIR; 944 if (IS_DEADDIR(dir)) 945 return -ENOENT; 946 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 947 return -EBUSY; 948 return 0; 949 } 950 951 /* copy of may_create in fs/namei.c() */ 952 static inline int btrfs_may_create(struct mnt_idmap *idmap, 953 struct inode *dir, struct dentry *child) 954 { 955 if (d_really_is_positive(child)) 956 return -EEXIST; 957 if (IS_DEADDIR(dir)) 958 return -ENOENT; 959 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 960 return -EOVERFLOW; 961 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 962 } 963 964 /* 965 * Create a new subvolume below @parent. This is largely modeled after 966 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 967 * inside this filesystem so it's quite a bit simpler. 968 */ 969 static noinline int btrfs_mksubvol(const struct path *parent, 970 struct mnt_idmap *idmap, 971 const char *name, int namelen, 972 struct btrfs_root *snap_src, 973 bool readonly, 974 struct btrfs_qgroup_inherit *inherit) 975 { 976 struct inode *dir = d_inode(parent->dentry); 977 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 978 struct dentry *dentry; 979 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 980 int error; 981 982 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 983 if (error == -EINTR) 984 return error; 985 986 dentry = lookup_one(idmap, name, parent->dentry, namelen); 987 error = PTR_ERR(dentry); 988 if (IS_ERR(dentry)) 989 goto out_unlock; 990 991 error = btrfs_may_create(idmap, dir, dentry); 992 if (error) 993 goto out_dput; 994 995 /* 996 * even if this name doesn't exist, we may get hash collisions. 997 * check for them now when we can safely fail 998 */ 999 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 1000 dir->i_ino, &name_str); 1001 if (error) 1002 goto out_dput; 1003 1004 down_read(&fs_info->subvol_sem); 1005 1006 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1007 goto out_up_read; 1008 1009 if (snap_src) 1010 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1011 else 1012 error = create_subvol(idmap, dir, dentry, inherit); 1013 1014 if (!error) 1015 fsnotify_mkdir(dir, dentry); 1016 out_up_read: 1017 up_read(&fs_info->subvol_sem); 1018 out_dput: 1019 dput(dentry); 1020 out_unlock: 1021 btrfs_inode_unlock(BTRFS_I(dir), 0); 1022 return error; 1023 } 1024 1025 static noinline int btrfs_mksnapshot(const struct path *parent, 1026 struct mnt_idmap *idmap, 1027 const char *name, int namelen, 1028 struct btrfs_root *root, 1029 bool readonly, 1030 struct btrfs_qgroup_inherit *inherit) 1031 { 1032 int ret; 1033 bool snapshot_force_cow = false; 1034 1035 /* 1036 * Force new buffered writes to reserve space even when NOCOW is 1037 * possible. This is to avoid later writeback (running dealloc) to 1038 * fallback to COW mode and unexpectedly fail with ENOSPC. 1039 */ 1040 btrfs_drew_read_lock(&root->snapshot_lock); 1041 1042 ret = btrfs_start_delalloc_snapshot(root, false); 1043 if (ret) 1044 goto out; 1045 1046 /* 1047 * All previous writes have started writeback in NOCOW mode, so now 1048 * we force future writes to fallback to COW mode during snapshot 1049 * creation. 1050 */ 1051 atomic_inc(&root->snapshot_force_cow); 1052 snapshot_force_cow = true; 1053 1054 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1055 1056 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1057 root, readonly, inherit); 1058 out: 1059 if (snapshot_force_cow) 1060 atomic_dec(&root->snapshot_force_cow); 1061 btrfs_drew_read_unlock(&root->snapshot_lock); 1062 return ret; 1063 } 1064 1065 /* 1066 * Try to start exclusive operation @type or cancel it if it's running. 1067 * 1068 * Return: 1069 * 0 - normal mode, newly claimed op started 1070 * >0 - normal mode, something else is running, 1071 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1072 * ECANCELED - cancel mode, successful cancel 1073 * ENOTCONN - cancel mode, operation not running anymore 1074 */ 1075 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1076 enum btrfs_exclusive_operation type, bool cancel) 1077 { 1078 if (!cancel) { 1079 /* Start normal op */ 1080 if (!btrfs_exclop_start(fs_info, type)) 1081 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1082 /* Exclusive operation is now claimed */ 1083 return 0; 1084 } 1085 1086 /* Cancel running op */ 1087 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1088 /* 1089 * This blocks any exclop finish from setting it to NONE, so we 1090 * request cancellation. Either it runs and we will wait for it, 1091 * or it has finished and no waiting will happen. 1092 */ 1093 atomic_inc(&fs_info->reloc_cancel_req); 1094 btrfs_exclop_start_unlock(fs_info); 1095 1096 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1097 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1098 TASK_INTERRUPTIBLE); 1099 1100 return -ECANCELED; 1101 } 1102 1103 /* Something else is running or none */ 1104 return -ENOTCONN; 1105 } 1106 1107 static noinline int btrfs_ioctl_resize(struct file *file, 1108 void __user *arg) 1109 { 1110 BTRFS_DEV_LOOKUP_ARGS(args); 1111 struct inode *inode = file_inode(file); 1112 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1113 u64 new_size; 1114 u64 old_size; 1115 u64 devid = 1; 1116 struct btrfs_root *root = BTRFS_I(inode)->root; 1117 struct btrfs_ioctl_vol_args *vol_args; 1118 struct btrfs_trans_handle *trans; 1119 struct btrfs_device *device = NULL; 1120 char *sizestr; 1121 char *retptr; 1122 char *devstr = NULL; 1123 int ret = 0; 1124 int mod = 0; 1125 bool cancel; 1126 1127 if (!capable(CAP_SYS_ADMIN)) 1128 return -EPERM; 1129 1130 ret = mnt_want_write_file(file); 1131 if (ret) 1132 return ret; 1133 1134 /* 1135 * Read the arguments before checking exclusivity to be able to 1136 * distinguish regular resize and cancel 1137 */ 1138 vol_args = memdup_user(arg, sizeof(*vol_args)); 1139 if (IS_ERR(vol_args)) { 1140 ret = PTR_ERR(vol_args); 1141 goto out_drop; 1142 } 1143 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1144 if (ret < 0) 1145 goto out_free; 1146 1147 sizestr = vol_args->name; 1148 cancel = (strcmp("cancel", sizestr) == 0); 1149 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1150 if (ret) 1151 goto out_free; 1152 /* Exclusive operation is now claimed */ 1153 1154 devstr = strchr(sizestr, ':'); 1155 if (devstr) { 1156 sizestr = devstr + 1; 1157 *devstr = '\0'; 1158 devstr = vol_args->name; 1159 ret = kstrtoull(devstr, 10, &devid); 1160 if (ret) 1161 goto out_finish; 1162 if (!devid) { 1163 ret = -EINVAL; 1164 goto out_finish; 1165 } 1166 btrfs_info(fs_info, "resizing devid %llu", devid); 1167 } 1168 1169 args.devid = devid; 1170 device = btrfs_find_device(fs_info->fs_devices, &args); 1171 if (!device) { 1172 btrfs_info(fs_info, "resizer unable to find device %llu", 1173 devid); 1174 ret = -ENODEV; 1175 goto out_finish; 1176 } 1177 1178 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1179 btrfs_info(fs_info, 1180 "resizer unable to apply on readonly device %llu", 1181 devid); 1182 ret = -EPERM; 1183 goto out_finish; 1184 } 1185 1186 if (!strcmp(sizestr, "max")) 1187 new_size = bdev_nr_bytes(device->bdev); 1188 else { 1189 if (sizestr[0] == '-') { 1190 mod = -1; 1191 sizestr++; 1192 } else if (sizestr[0] == '+') { 1193 mod = 1; 1194 sizestr++; 1195 } 1196 new_size = memparse(sizestr, &retptr); 1197 if (*retptr != '\0' || new_size == 0) { 1198 ret = -EINVAL; 1199 goto out_finish; 1200 } 1201 } 1202 1203 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1204 ret = -EPERM; 1205 goto out_finish; 1206 } 1207 1208 old_size = btrfs_device_get_total_bytes(device); 1209 1210 if (mod < 0) { 1211 if (new_size > old_size) { 1212 ret = -EINVAL; 1213 goto out_finish; 1214 } 1215 new_size = old_size - new_size; 1216 } else if (mod > 0) { 1217 if (new_size > ULLONG_MAX - old_size) { 1218 ret = -ERANGE; 1219 goto out_finish; 1220 } 1221 new_size = old_size + new_size; 1222 } 1223 1224 if (new_size < SZ_256M) { 1225 ret = -EINVAL; 1226 goto out_finish; 1227 } 1228 if (new_size > bdev_nr_bytes(device->bdev)) { 1229 ret = -EFBIG; 1230 goto out_finish; 1231 } 1232 1233 new_size = round_down(new_size, fs_info->sectorsize); 1234 1235 if (new_size > old_size) { 1236 trans = btrfs_start_transaction(root, 0); 1237 if (IS_ERR(trans)) { 1238 ret = PTR_ERR(trans); 1239 goto out_finish; 1240 } 1241 ret = btrfs_grow_device(trans, device, new_size); 1242 btrfs_commit_transaction(trans); 1243 } else if (new_size < old_size) { 1244 ret = btrfs_shrink_device(device, new_size); 1245 } /* equal, nothing need to do */ 1246 1247 if (ret == 0 && new_size != old_size) 1248 btrfs_info_in_rcu(fs_info, 1249 "resize device %s (devid %llu) from %llu to %llu", 1250 btrfs_dev_name(device), device->devid, 1251 old_size, new_size); 1252 out_finish: 1253 btrfs_exclop_finish(fs_info); 1254 out_free: 1255 kfree(vol_args); 1256 out_drop: 1257 mnt_drop_write_file(file); 1258 return ret; 1259 } 1260 1261 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1262 struct mnt_idmap *idmap, 1263 const char *name, unsigned long fd, int subvol, 1264 bool readonly, 1265 struct btrfs_qgroup_inherit *inherit) 1266 { 1267 int namelen; 1268 int ret = 0; 1269 1270 if (!S_ISDIR(file_inode(file)->i_mode)) 1271 return -ENOTDIR; 1272 1273 ret = mnt_want_write_file(file); 1274 if (ret) 1275 goto out; 1276 1277 namelen = strlen(name); 1278 if (strchr(name, '/')) { 1279 ret = -EINVAL; 1280 goto out_drop_write; 1281 } 1282 1283 if (name[0] == '.' && 1284 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1285 ret = -EEXIST; 1286 goto out_drop_write; 1287 } 1288 1289 if (subvol) { 1290 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1291 namelen, NULL, readonly, inherit); 1292 } else { 1293 struct fd src = fdget(fd); 1294 struct inode *src_inode; 1295 if (!src.file) { 1296 ret = -EINVAL; 1297 goto out_drop_write; 1298 } 1299 1300 src_inode = file_inode(src.file); 1301 if (src_inode->i_sb != file_inode(file)->i_sb) { 1302 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1303 "Snapshot src from another FS"); 1304 ret = -EXDEV; 1305 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1306 /* 1307 * Subvolume creation is not restricted, but snapshots 1308 * are limited to own subvolumes only 1309 */ 1310 ret = -EPERM; 1311 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1312 /* 1313 * Snapshots must be made with the src_inode referring 1314 * to the subvolume inode, otherwise the permission 1315 * checking above is useless because we may have 1316 * permission on a lower directory but not the subvol 1317 * itself. 1318 */ 1319 ret = -EINVAL; 1320 } else { 1321 ret = btrfs_mksnapshot(&file->f_path, idmap, 1322 name, namelen, 1323 BTRFS_I(src_inode)->root, 1324 readonly, inherit); 1325 } 1326 fdput(src); 1327 } 1328 out_drop_write: 1329 mnt_drop_write_file(file); 1330 out: 1331 return ret; 1332 } 1333 1334 static noinline int btrfs_ioctl_snap_create(struct file *file, 1335 void __user *arg, int subvol) 1336 { 1337 struct btrfs_ioctl_vol_args *vol_args; 1338 int ret; 1339 1340 if (!S_ISDIR(file_inode(file)->i_mode)) 1341 return -ENOTDIR; 1342 1343 vol_args = memdup_user(arg, sizeof(*vol_args)); 1344 if (IS_ERR(vol_args)) 1345 return PTR_ERR(vol_args); 1346 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1347 if (ret < 0) 1348 goto out; 1349 1350 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1351 vol_args->name, vol_args->fd, subvol, 1352 false, NULL); 1353 1354 out: 1355 kfree(vol_args); 1356 return ret; 1357 } 1358 1359 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1360 void __user *arg, int subvol) 1361 { 1362 struct btrfs_ioctl_vol_args_v2 *vol_args; 1363 int ret; 1364 bool readonly = false; 1365 struct btrfs_qgroup_inherit *inherit = NULL; 1366 1367 if (!S_ISDIR(file_inode(file)->i_mode)) 1368 return -ENOTDIR; 1369 1370 vol_args = memdup_user(arg, sizeof(*vol_args)); 1371 if (IS_ERR(vol_args)) 1372 return PTR_ERR(vol_args); 1373 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 1374 if (ret < 0) 1375 goto free_args; 1376 1377 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1378 ret = -EOPNOTSUPP; 1379 goto free_args; 1380 } 1381 1382 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1383 readonly = true; 1384 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1385 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 1386 1387 if (vol_args->size < sizeof(*inherit) || 1388 vol_args->size > PAGE_SIZE) { 1389 ret = -EINVAL; 1390 goto free_args; 1391 } 1392 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1393 if (IS_ERR(inherit)) { 1394 ret = PTR_ERR(inherit); 1395 goto free_args; 1396 } 1397 1398 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size); 1399 if (ret < 0) 1400 goto free_inherit; 1401 } 1402 1403 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1404 vol_args->name, vol_args->fd, subvol, 1405 readonly, inherit); 1406 if (ret) 1407 goto free_inherit; 1408 free_inherit: 1409 kfree(inherit); 1410 free_args: 1411 kfree(vol_args); 1412 return ret; 1413 } 1414 1415 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1416 void __user *arg) 1417 { 1418 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1419 struct btrfs_root *root = BTRFS_I(inode)->root; 1420 int ret = 0; 1421 u64 flags = 0; 1422 1423 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1424 return -EINVAL; 1425 1426 down_read(&fs_info->subvol_sem); 1427 if (btrfs_root_readonly(root)) 1428 flags |= BTRFS_SUBVOL_RDONLY; 1429 up_read(&fs_info->subvol_sem); 1430 1431 if (copy_to_user(arg, &flags, sizeof(flags))) 1432 ret = -EFAULT; 1433 1434 return ret; 1435 } 1436 1437 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1438 void __user *arg) 1439 { 1440 struct inode *inode = file_inode(file); 1441 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1442 struct btrfs_root *root = BTRFS_I(inode)->root; 1443 struct btrfs_trans_handle *trans; 1444 u64 root_flags; 1445 u64 flags; 1446 int ret = 0; 1447 1448 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1449 return -EPERM; 1450 1451 ret = mnt_want_write_file(file); 1452 if (ret) 1453 goto out; 1454 1455 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1456 ret = -EINVAL; 1457 goto out_drop_write; 1458 } 1459 1460 if (copy_from_user(&flags, arg, sizeof(flags))) { 1461 ret = -EFAULT; 1462 goto out_drop_write; 1463 } 1464 1465 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1466 ret = -EOPNOTSUPP; 1467 goto out_drop_write; 1468 } 1469 1470 down_write(&fs_info->subvol_sem); 1471 1472 /* nothing to do */ 1473 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1474 goto out_drop_sem; 1475 1476 root_flags = btrfs_root_flags(&root->root_item); 1477 if (flags & BTRFS_SUBVOL_RDONLY) { 1478 btrfs_set_root_flags(&root->root_item, 1479 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1480 } else { 1481 /* 1482 * Block RO -> RW transition if this subvolume is involved in 1483 * send 1484 */ 1485 spin_lock(&root->root_item_lock); 1486 if (root->send_in_progress == 0) { 1487 btrfs_set_root_flags(&root->root_item, 1488 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1489 spin_unlock(&root->root_item_lock); 1490 } else { 1491 spin_unlock(&root->root_item_lock); 1492 btrfs_warn(fs_info, 1493 "Attempt to set subvolume %llu read-write during send", 1494 root->root_key.objectid); 1495 ret = -EPERM; 1496 goto out_drop_sem; 1497 } 1498 } 1499 1500 trans = btrfs_start_transaction(root, 1); 1501 if (IS_ERR(trans)) { 1502 ret = PTR_ERR(trans); 1503 goto out_reset; 1504 } 1505 1506 ret = btrfs_update_root(trans, fs_info->tree_root, 1507 &root->root_key, &root->root_item); 1508 if (ret < 0) { 1509 btrfs_end_transaction(trans); 1510 goto out_reset; 1511 } 1512 1513 ret = btrfs_commit_transaction(trans); 1514 1515 out_reset: 1516 if (ret) 1517 btrfs_set_root_flags(&root->root_item, root_flags); 1518 out_drop_sem: 1519 up_write(&fs_info->subvol_sem); 1520 out_drop_write: 1521 mnt_drop_write_file(file); 1522 out: 1523 return ret; 1524 } 1525 1526 static noinline int key_in_sk(struct btrfs_key *key, 1527 struct btrfs_ioctl_search_key *sk) 1528 { 1529 struct btrfs_key test; 1530 int ret; 1531 1532 test.objectid = sk->min_objectid; 1533 test.type = sk->min_type; 1534 test.offset = sk->min_offset; 1535 1536 ret = btrfs_comp_cpu_keys(key, &test); 1537 if (ret < 0) 1538 return 0; 1539 1540 test.objectid = sk->max_objectid; 1541 test.type = sk->max_type; 1542 test.offset = sk->max_offset; 1543 1544 ret = btrfs_comp_cpu_keys(key, &test); 1545 if (ret > 0) 1546 return 0; 1547 return 1; 1548 } 1549 1550 static noinline int copy_to_sk(struct btrfs_path *path, 1551 struct btrfs_key *key, 1552 struct btrfs_ioctl_search_key *sk, 1553 u64 *buf_size, 1554 char __user *ubuf, 1555 unsigned long *sk_offset, 1556 int *num_found) 1557 { 1558 u64 found_transid; 1559 struct extent_buffer *leaf; 1560 struct btrfs_ioctl_search_header sh; 1561 struct btrfs_key test; 1562 unsigned long item_off; 1563 unsigned long item_len; 1564 int nritems; 1565 int i; 1566 int slot; 1567 int ret = 0; 1568 1569 leaf = path->nodes[0]; 1570 slot = path->slots[0]; 1571 nritems = btrfs_header_nritems(leaf); 1572 1573 if (btrfs_header_generation(leaf) > sk->max_transid) { 1574 i = nritems; 1575 goto advance_key; 1576 } 1577 found_transid = btrfs_header_generation(leaf); 1578 1579 for (i = slot; i < nritems; i++) { 1580 item_off = btrfs_item_ptr_offset(leaf, i); 1581 item_len = btrfs_item_size(leaf, i); 1582 1583 btrfs_item_key_to_cpu(leaf, key, i); 1584 if (!key_in_sk(key, sk)) 1585 continue; 1586 1587 if (sizeof(sh) + item_len > *buf_size) { 1588 if (*num_found) { 1589 ret = 1; 1590 goto out; 1591 } 1592 1593 /* 1594 * return one empty item back for v1, which does not 1595 * handle -EOVERFLOW 1596 */ 1597 1598 *buf_size = sizeof(sh) + item_len; 1599 item_len = 0; 1600 ret = -EOVERFLOW; 1601 } 1602 1603 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1604 ret = 1; 1605 goto out; 1606 } 1607 1608 sh.objectid = key->objectid; 1609 sh.offset = key->offset; 1610 sh.type = key->type; 1611 sh.len = item_len; 1612 sh.transid = found_transid; 1613 1614 /* 1615 * Copy search result header. If we fault then loop again so we 1616 * can fault in the pages and -EFAULT there if there's a 1617 * problem. Otherwise we'll fault and then copy the buffer in 1618 * properly this next time through 1619 */ 1620 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1621 ret = 0; 1622 goto out; 1623 } 1624 1625 *sk_offset += sizeof(sh); 1626 1627 if (item_len) { 1628 char __user *up = ubuf + *sk_offset; 1629 /* 1630 * Copy the item, same behavior as above, but reset the 1631 * * sk_offset so we copy the full thing again. 1632 */ 1633 if (read_extent_buffer_to_user_nofault(leaf, up, 1634 item_off, item_len)) { 1635 ret = 0; 1636 *sk_offset -= sizeof(sh); 1637 goto out; 1638 } 1639 1640 *sk_offset += item_len; 1641 } 1642 (*num_found)++; 1643 1644 if (ret) /* -EOVERFLOW from above */ 1645 goto out; 1646 1647 if (*num_found >= sk->nr_items) { 1648 ret = 1; 1649 goto out; 1650 } 1651 } 1652 advance_key: 1653 ret = 0; 1654 test.objectid = sk->max_objectid; 1655 test.type = sk->max_type; 1656 test.offset = sk->max_offset; 1657 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1658 ret = 1; 1659 else if (key->offset < (u64)-1) 1660 key->offset++; 1661 else if (key->type < (u8)-1) { 1662 key->offset = 0; 1663 key->type++; 1664 } else if (key->objectid < (u64)-1) { 1665 key->offset = 0; 1666 key->type = 0; 1667 key->objectid++; 1668 } else 1669 ret = 1; 1670 out: 1671 /* 1672 * 0: all items from this leaf copied, continue with next 1673 * 1: * more items can be copied, but unused buffer is too small 1674 * * all items were found 1675 * Either way, it will stops the loop which iterates to the next 1676 * leaf 1677 * -EOVERFLOW: item was to large for buffer 1678 * -EFAULT: could not copy extent buffer back to userspace 1679 */ 1680 return ret; 1681 } 1682 1683 static noinline int search_ioctl(struct inode *inode, 1684 struct btrfs_ioctl_search_key *sk, 1685 u64 *buf_size, 1686 char __user *ubuf) 1687 { 1688 struct btrfs_fs_info *info = inode_to_fs_info(inode); 1689 struct btrfs_root *root; 1690 struct btrfs_key key; 1691 struct btrfs_path *path; 1692 int ret; 1693 int num_found = 0; 1694 unsigned long sk_offset = 0; 1695 1696 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1697 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1698 return -EOVERFLOW; 1699 } 1700 1701 path = btrfs_alloc_path(); 1702 if (!path) 1703 return -ENOMEM; 1704 1705 if (sk->tree_id == 0) { 1706 /* search the root of the inode that was passed */ 1707 root = btrfs_grab_root(BTRFS_I(inode)->root); 1708 } else { 1709 root = btrfs_get_fs_root(info, sk->tree_id, true); 1710 if (IS_ERR(root)) { 1711 btrfs_free_path(path); 1712 return PTR_ERR(root); 1713 } 1714 } 1715 1716 key.objectid = sk->min_objectid; 1717 key.type = sk->min_type; 1718 key.offset = sk->min_offset; 1719 1720 while (1) { 1721 ret = -EFAULT; 1722 /* 1723 * Ensure that the whole user buffer is faulted in at sub-page 1724 * granularity, otherwise the loop may live-lock. 1725 */ 1726 if (fault_in_subpage_writeable(ubuf + sk_offset, 1727 *buf_size - sk_offset)) 1728 break; 1729 1730 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1731 if (ret != 0) { 1732 if (ret > 0) 1733 ret = 0; 1734 goto err; 1735 } 1736 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1737 &sk_offset, &num_found); 1738 btrfs_release_path(path); 1739 if (ret) 1740 break; 1741 1742 } 1743 if (ret > 0) 1744 ret = 0; 1745 err: 1746 sk->nr_items = num_found; 1747 btrfs_put_root(root); 1748 btrfs_free_path(path); 1749 return ret; 1750 } 1751 1752 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1753 void __user *argp) 1754 { 1755 struct btrfs_ioctl_search_args __user *uargs = argp; 1756 struct btrfs_ioctl_search_key sk; 1757 int ret; 1758 u64 buf_size; 1759 1760 if (!capable(CAP_SYS_ADMIN)) 1761 return -EPERM; 1762 1763 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1764 return -EFAULT; 1765 1766 buf_size = sizeof(uargs->buf); 1767 1768 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1769 1770 /* 1771 * In the origin implementation an overflow is handled by returning a 1772 * search header with a len of zero, so reset ret. 1773 */ 1774 if (ret == -EOVERFLOW) 1775 ret = 0; 1776 1777 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1778 ret = -EFAULT; 1779 return ret; 1780 } 1781 1782 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1783 void __user *argp) 1784 { 1785 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1786 struct btrfs_ioctl_search_args_v2 args; 1787 int ret; 1788 u64 buf_size; 1789 const u64 buf_limit = SZ_16M; 1790 1791 if (!capable(CAP_SYS_ADMIN)) 1792 return -EPERM; 1793 1794 /* copy search header and buffer size */ 1795 if (copy_from_user(&args, uarg, sizeof(args))) 1796 return -EFAULT; 1797 1798 buf_size = args.buf_size; 1799 1800 /* limit result size to 16MB */ 1801 if (buf_size > buf_limit) 1802 buf_size = buf_limit; 1803 1804 ret = search_ioctl(inode, &args.key, &buf_size, 1805 (char __user *)(&uarg->buf[0])); 1806 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1807 ret = -EFAULT; 1808 else if (ret == -EOVERFLOW && 1809 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1810 ret = -EFAULT; 1811 1812 return ret; 1813 } 1814 1815 /* 1816 * Search INODE_REFs to identify path name of 'dirid' directory 1817 * in a 'tree_id' tree. and sets path name to 'name'. 1818 */ 1819 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1820 u64 tree_id, u64 dirid, char *name) 1821 { 1822 struct btrfs_root *root; 1823 struct btrfs_key key; 1824 char *ptr; 1825 int ret = -1; 1826 int slot; 1827 int len; 1828 int total_len = 0; 1829 struct btrfs_inode_ref *iref; 1830 struct extent_buffer *l; 1831 struct btrfs_path *path; 1832 1833 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1834 name[0]='\0'; 1835 return 0; 1836 } 1837 1838 path = btrfs_alloc_path(); 1839 if (!path) 1840 return -ENOMEM; 1841 1842 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1843 1844 root = btrfs_get_fs_root(info, tree_id, true); 1845 if (IS_ERR(root)) { 1846 ret = PTR_ERR(root); 1847 root = NULL; 1848 goto out; 1849 } 1850 1851 key.objectid = dirid; 1852 key.type = BTRFS_INODE_REF_KEY; 1853 key.offset = (u64)-1; 1854 1855 while (1) { 1856 ret = btrfs_search_backwards(root, &key, path); 1857 if (ret < 0) 1858 goto out; 1859 else if (ret > 0) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 1864 l = path->nodes[0]; 1865 slot = path->slots[0]; 1866 1867 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1868 len = btrfs_inode_ref_name_len(l, iref); 1869 ptr -= len + 1; 1870 total_len += len + 1; 1871 if (ptr < name) { 1872 ret = -ENAMETOOLONG; 1873 goto out; 1874 } 1875 1876 *(ptr + len) = '/'; 1877 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1878 1879 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1880 break; 1881 1882 btrfs_release_path(path); 1883 key.objectid = key.offset; 1884 key.offset = (u64)-1; 1885 dirid = key.objectid; 1886 } 1887 memmove(name, ptr, total_len); 1888 name[total_len] = '\0'; 1889 ret = 0; 1890 out: 1891 btrfs_put_root(root); 1892 btrfs_free_path(path); 1893 return ret; 1894 } 1895 1896 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1897 struct inode *inode, 1898 struct btrfs_ioctl_ino_lookup_user_args *args) 1899 { 1900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1901 struct super_block *sb = inode->i_sb; 1902 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1903 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1904 u64 dirid = args->dirid; 1905 unsigned long item_off; 1906 unsigned long item_len; 1907 struct btrfs_inode_ref *iref; 1908 struct btrfs_root_ref *rref; 1909 struct btrfs_root *root = NULL; 1910 struct btrfs_path *path; 1911 struct btrfs_key key, key2; 1912 struct extent_buffer *leaf; 1913 struct inode *temp_inode; 1914 char *ptr; 1915 int slot; 1916 int len; 1917 int total_len = 0; 1918 int ret; 1919 1920 path = btrfs_alloc_path(); 1921 if (!path) 1922 return -ENOMEM; 1923 1924 /* 1925 * If the bottom subvolume does not exist directly under upper_limit, 1926 * construct the path in from the bottom up. 1927 */ 1928 if (dirid != upper_limit.objectid) { 1929 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1930 1931 root = btrfs_get_fs_root(fs_info, treeid, true); 1932 if (IS_ERR(root)) { 1933 ret = PTR_ERR(root); 1934 goto out; 1935 } 1936 1937 key.objectid = dirid; 1938 key.type = BTRFS_INODE_REF_KEY; 1939 key.offset = (u64)-1; 1940 while (1) { 1941 ret = btrfs_search_backwards(root, &key, path); 1942 if (ret < 0) 1943 goto out_put; 1944 else if (ret > 0) { 1945 ret = -ENOENT; 1946 goto out_put; 1947 } 1948 1949 leaf = path->nodes[0]; 1950 slot = path->slots[0]; 1951 1952 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1953 len = btrfs_inode_ref_name_len(leaf, iref); 1954 ptr -= len + 1; 1955 total_len += len + 1; 1956 if (ptr < args->path) { 1957 ret = -ENAMETOOLONG; 1958 goto out_put; 1959 } 1960 1961 *(ptr + len) = '/'; 1962 read_extent_buffer(leaf, ptr, 1963 (unsigned long)(iref + 1), len); 1964 1965 /* Check the read+exec permission of this directory */ 1966 ret = btrfs_previous_item(root, path, dirid, 1967 BTRFS_INODE_ITEM_KEY); 1968 if (ret < 0) { 1969 goto out_put; 1970 } else if (ret > 0) { 1971 ret = -ENOENT; 1972 goto out_put; 1973 } 1974 1975 leaf = path->nodes[0]; 1976 slot = path->slots[0]; 1977 btrfs_item_key_to_cpu(leaf, &key2, slot); 1978 if (key2.objectid != dirid) { 1979 ret = -ENOENT; 1980 goto out_put; 1981 } 1982 1983 /* 1984 * We don't need the path anymore, so release it and 1985 * avoid deadlocks and lockdep warnings in case 1986 * btrfs_iget() needs to lookup the inode from its root 1987 * btree and lock the same leaf. 1988 */ 1989 btrfs_release_path(path); 1990 temp_inode = btrfs_iget(sb, key2.objectid, root); 1991 if (IS_ERR(temp_inode)) { 1992 ret = PTR_ERR(temp_inode); 1993 goto out_put; 1994 } 1995 ret = inode_permission(idmap, temp_inode, 1996 MAY_READ | MAY_EXEC); 1997 iput(temp_inode); 1998 if (ret) { 1999 ret = -EACCES; 2000 goto out_put; 2001 } 2002 2003 if (key.offset == upper_limit.objectid) 2004 break; 2005 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2006 ret = -EACCES; 2007 goto out_put; 2008 } 2009 2010 key.objectid = key.offset; 2011 key.offset = (u64)-1; 2012 dirid = key.objectid; 2013 } 2014 2015 memmove(args->path, ptr, total_len); 2016 args->path[total_len] = '\0'; 2017 btrfs_put_root(root); 2018 root = NULL; 2019 btrfs_release_path(path); 2020 } 2021 2022 /* Get the bottom subvolume's name from ROOT_REF */ 2023 key.objectid = treeid; 2024 key.type = BTRFS_ROOT_REF_KEY; 2025 key.offset = args->treeid; 2026 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2027 if (ret < 0) { 2028 goto out; 2029 } else if (ret > 0) { 2030 ret = -ENOENT; 2031 goto out; 2032 } 2033 2034 leaf = path->nodes[0]; 2035 slot = path->slots[0]; 2036 btrfs_item_key_to_cpu(leaf, &key, slot); 2037 2038 item_off = btrfs_item_ptr_offset(leaf, slot); 2039 item_len = btrfs_item_size(leaf, slot); 2040 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2041 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2042 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2043 ret = -EINVAL; 2044 goto out; 2045 } 2046 2047 /* Copy subvolume's name */ 2048 item_off += sizeof(struct btrfs_root_ref); 2049 item_len -= sizeof(struct btrfs_root_ref); 2050 read_extent_buffer(leaf, args->name, item_off, item_len); 2051 args->name[item_len] = 0; 2052 2053 out_put: 2054 btrfs_put_root(root); 2055 out: 2056 btrfs_free_path(path); 2057 return ret; 2058 } 2059 2060 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2061 void __user *argp) 2062 { 2063 struct btrfs_ioctl_ino_lookup_args *args; 2064 int ret = 0; 2065 2066 args = memdup_user(argp, sizeof(*args)); 2067 if (IS_ERR(args)) 2068 return PTR_ERR(args); 2069 2070 /* 2071 * Unprivileged query to obtain the containing subvolume root id. The 2072 * path is reset so it's consistent with btrfs_search_path_in_tree. 2073 */ 2074 if (args->treeid == 0) 2075 args->treeid = root->root_key.objectid; 2076 2077 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2078 args->name[0] = 0; 2079 goto out; 2080 } 2081 2082 if (!capable(CAP_SYS_ADMIN)) { 2083 ret = -EPERM; 2084 goto out; 2085 } 2086 2087 ret = btrfs_search_path_in_tree(root->fs_info, 2088 args->treeid, args->objectid, 2089 args->name); 2090 2091 out: 2092 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2093 ret = -EFAULT; 2094 2095 kfree(args); 2096 return ret; 2097 } 2098 2099 /* 2100 * Version of ino_lookup ioctl (unprivileged) 2101 * 2102 * The main differences from ino_lookup ioctl are: 2103 * 2104 * 1. Read + Exec permission will be checked using inode_permission() during 2105 * path construction. -EACCES will be returned in case of failure. 2106 * 2. Path construction will be stopped at the inode number which corresponds 2107 * to the fd with which this ioctl is called. If constructed path does not 2108 * exist under fd's inode, -EACCES will be returned. 2109 * 3. The name of bottom subvolume is also searched and filled. 2110 */ 2111 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2112 { 2113 struct btrfs_ioctl_ino_lookup_user_args *args; 2114 struct inode *inode; 2115 int ret; 2116 2117 args = memdup_user(argp, sizeof(*args)); 2118 if (IS_ERR(args)) 2119 return PTR_ERR(args); 2120 2121 inode = file_inode(file); 2122 2123 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2124 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2125 /* 2126 * The subvolume does not exist under fd with which this is 2127 * called 2128 */ 2129 kfree(args); 2130 return -EACCES; 2131 } 2132 2133 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2134 2135 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2136 ret = -EFAULT; 2137 2138 kfree(args); 2139 return ret; 2140 } 2141 2142 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2143 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2144 { 2145 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2146 struct btrfs_fs_info *fs_info; 2147 struct btrfs_root *root; 2148 struct btrfs_path *path; 2149 struct btrfs_key key; 2150 struct btrfs_root_item *root_item; 2151 struct btrfs_root_ref *rref; 2152 struct extent_buffer *leaf; 2153 unsigned long item_off; 2154 unsigned long item_len; 2155 int slot; 2156 int ret = 0; 2157 2158 path = btrfs_alloc_path(); 2159 if (!path) 2160 return -ENOMEM; 2161 2162 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2163 if (!subvol_info) { 2164 btrfs_free_path(path); 2165 return -ENOMEM; 2166 } 2167 2168 fs_info = BTRFS_I(inode)->root->fs_info; 2169 2170 /* Get root_item of inode's subvolume */ 2171 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2172 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2173 if (IS_ERR(root)) { 2174 ret = PTR_ERR(root); 2175 goto out_free; 2176 } 2177 root_item = &root->root_item; 2178 2179 subvol_info->treeid = key.objectid; 2180 2181 subvol_info->generation = btrfs_root_generation(root_item); 2182 subvol_info->flags = btrfs_root_flags(root_item); 2183 2184 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2185 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2186 BTRFS_UUID_SIZE); 2187 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2188 BTRFS_UUID_SIZE); 2189 2190 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2191 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2192 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2193 2194 subvol_info->otransid = btrfs_root_otransid(root_item); 2195 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2196 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2197 2198 subvol_info->stransid = btrfs_root_stransid(root_item); 2199 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2200 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2201 2202 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2203 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2204 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2205 2206 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2207 /* Search root tree for ROOT_BACKREF of this subvolume */ 2208 key.type = BTRFS_ROOT_BACKREF_KEY; 2209 key.offset = 0; 2210 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2211 if (ret < 0) { 2212 goto out; 2213 } else if (path->slots[0] >= 2214 btrfs_header_nritems(path->nodes[0])) { 2215 ret = btrfs_next_leaf(fs_info->tree_root, path); 2216 if (ret < 0) { 2217 goto out; 2218 } else if (ret > 0) { 2219 ret = -EUCLEAN; 2220 goto out; 2221 } 2222 } 2223 2224 leaf = path->nodes[0]; 2225 slot = path->slots[0]; 2226 btrfs_item_key_to_cpu(leaf, &key, slot); 2227 if (key.objectid == subvol_info->treeid && 2228 key.type == BTRFS_ROOT_BACKREF_KEY) { 2229 subvol_info->parent_id = key.offset; 2230 2231 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2232 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2233 2234 item_off = btrfs_item_ptr_offset(leaf, slot) 2235 + sizeof(struct btrfs_root_ref); 2236 item_len = btrfs_item_size(leaf, slot) 2237 - sizeof(struct btrfs_root_ref); 2238 read_extent_buffer(leaf, subvol_info->name, 2239 item_off, item_len); 2240 } else { 2241 ret = -ENOENT; 2242 goto out; 2243 } 2244 } 2245 2246 btrfs_free_path(path); 2247 path = NULL; 2248 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2249 ret = -EFAULT; 2250 2251 out: 2252 btrfs_put_root(root); 2253 out_free: 2254 btrfs_free_path(path); 2255 kfree(subvol_info); 2256 return ret; 2257 } 2258 2259 /* 2260 * Return ROOT_REF information of the subvolume containing this inode 2261 * except the subvolume name. 2262 */ 2263 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2264 void __user *argp) 2265 { 2266 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2267 struct btrfs_root_ref *rref; 2268 struct btrfs_path *path; 2269 struct btrfs_key key; 2270 struct extent_buffer *leaf; 2271 u64 objectid; 2272 int slot; 2273 int ret; 2274 u8 found; 2275 2276 path = btrfs_alloc_path(); 2277 if (!path) 2278 return -ENOMEM; 2279 2280 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2281 if (IS_ERR(rootrefs)) { 2282 btrfs_free_path(path); 2283 return PTR_ERR(rootrefs); 2284 } 2285 2286 objectid = root->root_key.objectid; 2287 key.objectid = objectid; 2288 key.type = BTRFS_ROOT_REF_KEY; 2289 key.offset = rootrefs->min_treeid; 2290 found = 0; 2291 2292 root = root->fs_info->tree_root; 2293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2294 if (ret < 0) { 2295 goto out; 2296 } else if (path->slots[0] >= 2297 btrfs_header_nritems(path->nodes[0])) { 2298 ret = btrfs_next_leaf(root, path); 2299 if (ret < 0) { 2300 goto out; 2301 } else if (ret > 0) { 2302 ret = -EUCLEAN; 2303 goto out; 2304 } 2305 } 2306 while (1) { 2307 leaf = path->nodes[0]; 2308 slot = path->slots[0]; 2309 2310 btrfs_item_key_to_cpu(leaf, &key, slot); 2311 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2312 ret = 0; 2313 goto out; 2314 } 2315 2316 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2317 ret = -EOVERFLOW; 2318 goto out; 2319 } 2320 2321 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2322 rootrefs->rootref[found].treeid = key.offset; 2323 rootrefs->rootref[found].dirid = 2324 btrfs_root_ref_dirid(leaf, rref); 2325 found++; 2326 2327 ret = btrfs_next_item(root, path); 2328 if (ret < 0) { 2329 goto out; 2330 } else if (ret > 0) { 2331 ret = -EUCLEAN; 2332 goto out; 2333 } 2334 } 2335 2336 out: 2337 btrfs_free_path(path); 2338 2339 if (!ret || ret == -EOVERFLOW) { 2340 rootrefs->num_items = found; 2341 /* update min_treeid for next search */ 2342 if (found) 2343 rootrefs->min_treeid = 2344 rootrefs->rootref[found - 1].treeid + 1; 2345 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2346 ret = -EFAULT; 2347 } 2348 2349 kfree(rootrefs); 2350 2351 return ret; 2352 } 2353 2354 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2355 void __user *arg, 2356 bool destroy_v2) 2357 { 2358 struct dentry *parent = file->f_path.dentry; 2359 struct dentry *dentry; 2360 struct inode *dir = d_inode(parent); 2361 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 2362 struct inode *inode; 2363 struct btrfs_root *root = BTRFS_I(dir)->root; 2364 struct btrfs_root *dest = NULL; 2365 struct btrfs_ioctl_vol_args *vol_args = NULL; 2366 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2367 struct mnt_idmap *idmap = file_mnt_idmap(file); 2368 char *subvol_name, *subvol_name_ptr = NULL; 2369 int subvol_namelen; 2370 int err = 0; 2371 bool destroy_parent = false; 2372 2373 /* We don't support snapshots with extent tree v2 yet. */ 2374 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2375 btrfs_err(fs_info, 2376 "extent tree v2 doesn't support snapshot deletion yet"); 2377 return -EOPNOTSUPP; 2378 } 2379 2380 if (destroy_v2) { 2381 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2382 if (IS_ERR(vol_args2)) 2383 return PTR_ERR(vol_args2); 2384 2385 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2386 err = -EOPNOTSUPP; 2387 goto out; 2388 } 2389 2390 /* 2391 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2392 * name, same as v1 currently does. 2393 */ 2394 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2395 err = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2); 2396 if (err < 0) 2397 goto out; 2398 subvol_name = vol_args2->name; 2399 2400 err = mnt_want_write_file(file); 2401 if (err) 2402 goto out; 2403 } else { 2404 struct inode *old_dir; 2405 2406 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2407 err = -EINVAL; 2408 goto out; 2409 } 2410 2411 err = mnt_want_write_file(file); 2412 if (err) 2413 goto out; 2414 2415 dentry = btrfs_get_dentry(fs_info->sb, 2416 BTRFS_FIRST_FREE_OBJECTID, 2417 vol_args2->subvolid, 0); 2418 if (IS_ERR(dentry)) { 2419 err = PTR_ERR(dentry); 2420 goto out_drop_write; 2421 } 2422 2423 /* 2424 * Change the default parent since the subvolume being 2425 * deleted can be outside of the current mount point. 2426 */ 2427 parent = btrfs_get_parent(dentry); 2428 2429 /* 2430 * At this point dentry->d_name can point to '/' if the 2431 * subvolume we want to destroy is outsite of the 2432 * current mount point, so we need to release the 2433 * current dentry and execute the lookup to return a new 2434 * one with ->d_name pointing to the 2435 * <mount point>/subvol_name. 2436 */ 2437 dput(dentry); 2438 if (IS_ERR(parent)) { 2439 err = PTR_ERR(parent); 2440 goto out_drop_write; 2441 } 2442 old_dir = dir; 2443 dir = d_inode(parent); 2444 2445 /* 2446 * If v2 was used with SPEC_BY_ID, a new parent was 2447 * allocated since the subvolume can be outside of the 2448 * current mount point. Later on we need to release this 2449 * new parent dentry. 2450 */ 2451 destroy_parent = true; 2452 2453 /* 2454 * On idmapped mounts, deletion via subvolid is 2455 * restricted to subvolumes that are immediate 2456 * ancestors of the inode referenced by the file 2457 * descriptor in the ioctl. Otherwise the idmapping 2458 * could potentially be abused to delete subvolumes 2459 * anywhere in the filesystem the user wouldn't be able 2460 * to delete without an idmapped mount. 2461 */ 2462 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2463 err = -EOPNOTSUPP; 2464 goto free_parent; 2465 } 2466 2467 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2468 fs_info, vol_args2->subvolid); 2469 if (IS_ERR(subvol_name_ptr)) { 2470 err = PTR_ERR(subvol_name_ptr); 2471 goto free_parent; 2472 } 2473 /* subvol_name_ptr is already nul terminated */ 2474 subvol_name = (char *)kbasename(subvol_name_ptr); 2475 } 2476 } else { 2477 vol_args = memdup_user(arg, sizeof(*vol_args)); 2478 if (IS_ERR(vol_args)) 2479 return PTR_ERR(vol_args); 2480 2481 err = btrfs_check_ioctl_vol_args_path(vol_args); 2482 if (err < 0) 2483 goto out; 2484 2485 subvol_name = vol_args->name; 2486 2487 err = mnt_want_write_file(file); 2488 if (err) 2489 goto out; 2490 } 2491 2492 subvol_namelen = strlen(subvol_name); 2493 2494 if (strchr(subvol_name, '/') || 2495 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2496 err = -EINVAL; 2497 goto free_subvol_name; 2498 } 2499 2500 if (!S_ISDIR(dir->i_mode)) { 2501 err = -ENOTDIR; 2502 goto free_subvol_name; 2503 } 2504 2505 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2506 if (err == -EINTR) 2507 goto free_subvol_name; 2508 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2509 if (IS_ERR(dentry)) { 2510 err = PTR_ERR(dentry); 2511 goto out_unlock_dir; 2512 } 2513 2514 if (d_really_is_negative(dentry)) { 2515 err = -ENOENT; 2516 goto out_dput; 2517 } 2518 2519 inode = d_inode(dentry); 2520 dest = BTRFS_I(inode)->root; 2521 if (!capable(CAP_SYS_ADMIN)) { 2522 /* 2523 * Regular user. Only allow this with a special mount 2524 * option, when the user has write+exec access to the 2525 * subvol root, and when rmdir(2) would have been 2526 * allowed. 2527 * 2528 * Note that this is _not_ check that the subvol is 2529 * empty or doesn't contain data that we wouldn't 2530 * otherwise be able to delete. 2531 * 2532 * Users who want to delete empty subvols should try 2533 * rmdir(2). 2534 */ 2535 err = -EPERM; 2536 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2537 goto out_dput; 2538 2539 /* 2540 * Do not allow deletion if the parent dir is the same 2541 * as the dir to be deleted. That means the ioctl 2542 * must be called on the dentry referencing the root 2543 * of the subvol, not a random directory contained 2544 * within it. 2545 */ 2546 err = -EINVAL; 2547 if (root == dest) 2548 goto out_dput; 2549 2550 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2551 if (err) 2552 goto out_dput; 2553 } 2554 2555 /* check if subvolume may be deleted by a user */ 2556 err = btrfs_may_delete(idmap, dir, dentry, 1); 2557 if (err) 2558 goto out_dput; 2559 2560 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2561 err = -EINVAL; 2562 goto out_dput; 2563 } 2564 2565 btrfs_inode_lock(BTRFS_I(inode), 0); 2566 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2567 btrfs_inode_unlock(BTRFS_I(inode), 0); 2568 if (!err) 2569 d_delete_notify(dir, dentry); 2570 2571 out_dput: 2572 dput(dentry); 2573 out_unlock_dir: 2574 btrfs_inode_unlock(BTRFS_I(dir), 0); 2575 free_subvol_name: 2576 kfree(subvol_name_ptr); 2577 free_parent: 2578 if (destroy_parent) 2579 dput(parent); 2580 out_drop_write: 2581 mnt_drop_write_file(file); 2582 out: 2583 kfree(vol_args2); 2584 kfree(vol_args); 2585 return err; 2586 } 2587 2588 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2589 { 2590 struct inode *inode = file_inode(file); 2591 struct btrfs_root *root = BTRFS_I(inode)->root; 2592 struct btrfs_ioctl_defrag_range_args range = {0}; 2593 int ret; 2594 2595 ret = mnt_want_write_file(file); 2596 if (ret) 2597 return ret; 2598 2599 if (btrfs_root_readonly(root)) { 2600 ret = -EROFS; 2601 goto out; 2602 } 2603 2604 switch (inode->i_mode & S_IFMT) { 2605 case S_IFDIR: 2606 if (!capable(CAP_SYS_ADMIN)) { 2607 ret = -EPERM; 2608 goto out; 2609 } 2610 ret = btrfs_defrag_root(root); 2611 break; 2612 case S_IFREG: 2613 /* 2614 * Note that this does not check the file descriptor for write 2615 * access. This prevents defragmenting executables that are 2616 * running and allows defrag on files open in read-only mode. 2617 */ 2618 if (!capable(CAP_SYS_ADMIN) && 2619 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2620 ret = -EPERM; 2621 goto out; 2622 } 2623 2624 if (argp) { 2625 if (copy_from_user(&range, argp, sizeof(range))) { 2626 ret = -EFAULT; 2627 goto out; 2628 } 2629 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2630 ret = -EOPNOTSUPP; 2631 goto out; 2632 } 2633 /* compression requires us to start the IO */ 2634 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2635 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2636 range.extent_thresh = (u32)-1; 2637 } 2638 } else { 2639 /* the rest are all set to zero by kzalloc */ 2640 range.len = (u64)-1; 2641 } 2642 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2643 &range, BTRFS_OLDEST_GENERATION, 0); 2644 if (ret > 0) 2645 ret = 0; 2646 break; 2647 default: 2648 ret = -EINVAL; 2649 } 2650 out: 2651 mnt_drop_write_file(file); 2652 return ret; 2653 } 2654 2655 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2656 { 2657 struct btrfs_ioctl_vol_args *vol_args; 2658 bool restore_op = false; 2659 int ret; 2660 2661 if (!capable(CAP_SYS_ADMIN)) 2662 return -EPERM; 2663 2664 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2665 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2666 return -EINVAL; 2667 } 2668 2669 if (fs_info->fs_devices->temp_fsid) { 2670 btrfs_err(fs_info, 2671 "device add not supported on cloned temp-fsid mount"); 2672 return -EINVAL; 2673 } 2674 2675 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2676 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2677 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2678 2679 /* 2680 * We can do the device add because we have a paused balanced, 2681 * change the exclusive op type and remember we should bring 2682 * back the paused balance 2683 */ 2684 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2685 btrfs_exclop_start_unlock(fs_info); 2686 restore_op = true; 2687 } 2688 2689 vol_args = memdup_user(arg, sizeof(*vol_args)); 2690 if (IS_ERR(vol_args)) { 2691 ret = PTR_ERR(vol_args); 2692 goto out; 2693 } 2694 2695 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2696 if (ret < 0) 2697 goto out_free; 2698 2699 ret = btrfs_init_new_device(fs_info, vol_args->name); 2700 2701 if (!ret) 2702 btrfs_info(fs_info, "disk added %s", vol_args->name); 2703 2704 out_free: 2705 kfree(vol_args); 2706 out: 2707 if (restore_op) 2708 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2709 else 2710 btrfs_exclop_finish(fs_info); 2711 return ret; 2712 } 2713 2714 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2715 { 2716 BTRFS_DEV_LOOKUP_ARGS(args); 2717 struct inode *inode = file_inode(file); 2718 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2719 struct btrfs_ioctl_vol_args_v2 *vol_args; 2720 struct file *bdev_file = NULL; 2721 int ret; 2722 bool cancel = false; 2723 2724 if (!capable(CAP_SYS_ADMIN)) 2725 return -EPERM; 2726 2727 vol_args = memdup_user(arg, sizeof(*vol_args)); 2728 if (IS_ERR(vol_args)) 2729 return PTR_ERR(vol_args); 2730 2731 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2732 ret = -EOPNOTSUPP; 2733 goto out; 2734 } 2735 2736 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 2737 if (ret < 0) 2738 goto out; 2739 2740 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2741 args.devid = vol_args->devid; 2742 } else if (!strcmp("cancel", vol_args->name)) { 2743 cancel = true; 2744 } else { 2745 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2746 if (ret) 2747 goto out; 2748 } 2749 2750 ret = mnt_want_write_file(file); 2751 if (ret) 2752 goto out; 2753 2754 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2755 cancel); 2756 if (ret) 2757 goto err_drop; 2758 2759 /* Exclusive operation is now claimed */ 2760 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2761 2762 btrfs_exclop_finish(fs_info); 2763 2764 if (!ret) { 2765 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2766 btrfs_info(fs_info, "device deleted: id %llu", 2767 vol_args->devid); 2768 else 2769 btrfs_info(fs_info, "device deleted: %s", 2770 vol_args->name); 2771 } 2772 err_drop: 2773 mnt_drop_write_file(file); 2774 if (bdev_file) 2775 fput(bdev_file); 2776 out: 2777 btrfs_put_dev_args_from_path(&args); 2778 kfree(vol_args); 2779 return ret; 2780 } 2781 2782 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2783 { 2784 BTRFS_DEV_LOOKUP_ARGS(args); 2785 struct inode *inode = file_inode(file); 2786 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2787 struct btrfs_ioctl_vol_args *vol_args; 2788 struct file *bdev_file = NULL; 2789 int ret; 2790 bool cancel = false; 2791 2792 if (!capable(CAP_SYS_ADMIN)) 2793 return -EPERM; 2794 2795 vol_args = memdup_user(arg, sizeof(*vol_args)); 2796 if (IS_ERR(vol_args)) 2797 return PTR_ERR(vol_args); 2798 2799 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2800 if (ret < 0) 2801 goto out_free; 2802 2803 if (!strcmp("cancel", vol_args->name)) { 2804 cancel = true; 2805 } else { 2806 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2807 if (ret) 2808 goto out; 2809 } 2810 2811 ret = mnt_want_write_file(file); 2812 if (ret) 2813 goto out; 2814 2815 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2816 cancel); 2817 if (ret == 0) { 2818 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2819 if (!ret) 2820 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2821 btrfs_exclop_finish(fs_info); 2822 } 2823 2824 mnt_drop_write_file(file); 2825 if (bdev_file) 2826 fput(bdev_file); 2827 out: 2828 btrfs_put_dev_args_from_path(&args); 2829 out_free: 2830 kfree(vol_args); 2831 return ret; 2832 } 2833 2834 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2835 void __user *arg) 2836 { 2837 struct btrfs_ioctl_fs_info_args *fi_args; 2838 struct btrfs_device *device; 2839 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2840 u64 flags_in; 2841 int ret = 0; 2842 2843 fi_args = memdup_user(arg, sizeof(*fi_args)); 2844 if (IS_ERR(fi_args)) 2845 return PTR_ERR(fi_args); 2846 2847 flags_in = fi_args->flags; 2848 memset(fi_args, 0, sizeof(*fi_args)); 2849 2850 rcu_read_lock(); 2851 fi_args->num_devices = fs_devices->num_devices; 2852 2853 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2854 if (device->devid > fi_args->max_id) 2855 fi_args->max_id = device->devid; 2856 } 2857 rcu_read_unlock(); 2858 2859 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2860 fi_args->nodesize = fs_info->nodesize; 2861 fi_args->sectorsize = fs_info->sectorsize; 2862 fi_args->clone_alignment = fs_info->sectorsize; 2863 2864 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2865 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2866 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2867 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2868 } 2869 2870 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2871 fi_args->generation = btrfs_get_fs_generation(fs_info); 2872 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2873 } 2874 2875 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2876 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2877 sizeof(fi_args->metadata_uuid)); 2878 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2879 } 2880 2881 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2882 ret = -EFAULT; 2883 2884 kfree(fi_args); 2885 return ret; 2886 } 2887 2888 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2889 void __user *arg) 2890 { 2891 BTRFS_DEV_LOOKUP_ARGS(args); 2892 struct btrfs_ioctl_dev_info_args *di_args; 2893 struct btrfs_device *dev; 2894 int ret = 0; 2895 2896 di_args = memdup_user(arg, sizeof(*di_args)); 2897 if (IS_ERR(di_args)) 2898 return PTR_ERR(di_args); 2899 2900 args.devid = di_args->devid; 2901 if (!btrfs_is_empty_uuid(di_args->uuid)) 2902 args.uuid = di_args->uuid; 2903 2904 rcu_read_lock(); 2905 dev = btrfs_find_device(fs_info->fs_devices, &args); 2906 if (!dev) { 2907 ret = -ENODEV; 2908 goto out; 2909 } 2910 2911 di_args->devid = dev->devid; 2912 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2913 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2914 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2915 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2916 if (dev->name) 2917 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2918 else 2919 di_args->path[0] = '\0'; 2920 2921 out: 2922 rcu_read_unlock(); 2923 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2924 ret = -EFAULT; 2925 2926 kfree(di_args); 2927 return ret; 2928 } 2929 2930 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2931 { 2932 struct inode *inode = file_inode(file); 2933 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2934 struct btrfs_root *root = BTRFS_I(inode)->root; 2935 struct btrfs_root *new_root; 2936 struct btrfs_dir_item *di; 2937 struct btrfs_trans_handle *trans; 2938 struct btrfs_path *path = NULL; 2939 struct btrfs_disk_key disk_key; 2940 struct fscrypt_str name = FSTR_INIT("default", 7); 2941 u64 objectid = 0; 2942 u64 dir_id; 2943 int ret; 2944 2945 if (!capable(CAP_SYS_ADMIN)) 2946 return -EPERM; 2947 2948 ret = mnt_want_write_file(file); 2949 if (ret) 2950 return ret; 2951 2952 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2953 ret = -EFAULT; 2954 goto out; 2955 } 2956 2957 if (!objectid) 2958 objectid = BTRFS_FS_TREE_OBJECTID; 2959 2960 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2961 if (IS_ERR(new_root)) { 2962 ret = PTR_ERR(new_root); 2963 goto out; 2964 } 2965 if (!is_fstree(new_root->root_key.objectid)) { 2966 ret = -ENOENT; 2967 goto out_free; 2968 } 2969 2970 path = btrfs_alloc_path(); 2971 if (!path) { 2972 ret = -ENOMEM; 2973 goto out_free; 2974 } 2975 2976 trans = btrfs_start_transaction(root, 1); 2977 if (IS_ERR(trans)) { 2978 ret = PTR_ERR(trans); 2979 goto out_free; 2980 } 2981 2982 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2983 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2984 dir_id, &name, 1); 2985 if (IS_ERR_OR_NULL(di)) { 2986 btrfs_release_path(path); 2987 btrfs_end_transaction(trans); 2988 btrfs_err(fs_info, 2989 "Umm, you don't have the default diritem, this isn't going to work"); 2990 ret = -ENOENT; 2991 goto out_free; 2992 } 2993 2994 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2995 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2996 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 2997 btrfs_release_path(path); 2998 2999 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3000 btrfs_end_transaction(trans); 3001 out_free: 3002 btrfs_put_root(new_root); 3003 btrfs_free_path(path); 3004 out: 3005 mnt_drop_write_file(file); 3006 return ret; 3007 } 3008 3009 static void get_block_group_info(struct list_head *groups_list, 3010 struct btrfs_ioctl_space_info *space) 3011 { 3012 struct btrfs_block_group *block_group; 3013 3014 space->total_bytes = 0; 3015 space->used_bytes = 0; 3016 space->flags = 0; 3017 list_for_each_entry(block_group, groups_list, list) { 3018 space->flags = block_group->flags; 3019 space->total_bytes += block_group->length; 3020 space->used_bytes += block_group->used; 3021 } 3022 } 3023 3024 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3025 void __user *arg) 3026 { 3027 struct btrfs_ioctl_space_args space_args = { 0 }; 3028 struct btrfs_ioctl_space_info space; 3029 struct btrfs_ioctl_space_info *dest; 3030 struct btrfs_ioctl_space_info *dest_orig; 3031 struct btrfs_ioctl_space_info __user *user_dest; 3032 struct btrfs_space_info *info; 3033 static const u64 types[] = { 3034 BTRFS_BLOCK_GROUP_DATA, 3035 BTRFS_BLOCK_GROUP_SYSTEM, 3036 BTRFS_BLOCK_GROUP_METADATA, 3037 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3038 }; 3039 int num_types = 4; 3040 int alloc_size; 3041 int ret = 0; 3042 u64 slot_count = 0; 3043 int i, c; 3044 3045 if (copy_from_user(&space_args, 3046 (struct btrfs_ioctl_space_args __user *)arg, 3047 sizeof(space_args))) 3048 return -EFAULT; 3049 3050 for (i = 0; i < num_types; i++) { 3051 struct btrfs_space_info *tmp; 3052 3053 info = NULL; 3054 list_for_each_entry(tmp, &fs_info->space_info, list) { 3055 if (tmp->flags == types[i]) { 3056 info = tmp; 3057 break; 3058 } 3059 } 3060 3061 if (!info) 3062 continue; 3063 3064 down_read(&info->groups_sem); 3065 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3066 if (!list_empty(&info->block_groups[c])) 3067 slot_count++; 3068 } 3069 up_read(&info->groups_sem); 3070 } 3071 3072 /* 3073 * Global block reserve, exported as a space_info 3074 */ 3075 slot_count++; 3076 3077 /* space_slots == 0 means they are asking for a count */ 3078 if (space_args.space_slots == 0) { 3079 space_args.total_spaces = slot_count; 3080 goto out; 3081 } 3082 3083 slot_count = min_t(u64, space_args.space_slots, slot_count); 3084 3085 alloc_size = sizeof(*dest) * slot_count; 3086 3087 /* we generally have at most 6 or so space infos, one for each raid 3088 * level. So, a whole page should be more than enough for everyone 3089 */ 3090 if (alloc_size > PAGE_SIZE) 3091 return -ENOMEM; 3092 3093 space_args.total_spaces = 0; 3094 dest = kmalloc(alloc_size, GFP_KERNEL); 3095 if (!dest) 3096 return -ENOMEM; 3097 dest_orig = dest; 3098 3099 /* now we have a buffer to copy into */ 3100 for (i = 0; i < num_types; i++) { 3101 struct btrfs_space_info *tmp; 3102 3103 if (!slot_count) 3104 break; 3105 3106 info = NULL; 3107 list_for_each_entry(tmp, &fs_info->space_info, list) { 3108 if (tmp->flags == types[i]) { 3109 info = tmp; 3110 break; 3111 } 3112 } 3113 3114 if (!info) 3115 continue; 3116 down_read(&info->groups_sem); 3117 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3118 if (!list_empty(&info->block_groups[c])) { 3119 get_block_group_info(&info->block_groups[c], 3120 &space); 3121 memcpy(dest, &space, sizeof(space)); 3122 dest++; 3123 space_args.total_spaces++; 3124 slot_count--; 3125 } 3126 if (!slot_count) 3127 break; 3128 } 3129 up_read(&info->groups_sem); 3130 } 3131 3132 /* 3133 * Add global block reserve 3134 */ 3135 if (slot_count) { 3136 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3137 3138 spin_lock(&block_rsv->lock); 3139 space.total_bytes = block_rsv->size; 3140 space.used_bytes = block_rsv->size - block_rsv->reserved; 3141 spin_unlock(&block_rsv->lock); 3142 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3143 memcpy(dest, &space, sizeof(space)); 3144 space_args.total_spaces++; 3145 } 3146 3147 user_dest = (struct btrfs_ioctl_space_info __user *) 3148 (arg + sizeof(struct btrfs_ioctl_space_args)); 3149 3150 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3151 ret = -EFAULT; 3152 3153 kfree(dest_orig); 3154 out: 3155 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3156 ret = -EFAULT; 3157 3158 return ret; 3159 } 3160 3161 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3162 void __user *argp) 3163 { 3164 struct btrfs_trans_handle *trans; 3165 u64 transid; 3166 3167 /* 3168 * Start orphan cleanup here for the given root in case it hasn't been 3169 * started already by other means. Errors are handled in the other 3170 * functions during transaction commit. 3171 */ 3172 btrfs_orphan_cleanup(root); 3173 3174 trans = btrfs_attach_transaction_barrier(root); 3175 if (IS_ERR(trans)) { 3176 if (PTR_ERR(trans) != -ENOENT) 3177 return PTR_ERR(trans); 3178 3179 /* No running transaction, don't bother */ 3180 transid = btrfs_get_last_trans_committed(root->fs_info); 3181 goto out; 3182 } 3183 transid = trans->transid; 3184 btrfs_commit_transaction_async(trans); 3185 out: 3186 if (argp) 3187 if (copy_to_user(argp, &transid, sizeof(transid))) 3188 return -EFAULT; 3189 return 0; 3190 } 3191 3192 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3193 void __user *argp) 3194 { 3195 /* By default wait for the current transaction. */ 3196 u64 transid = 0; 3197 3198 if (argp) 3199 if (copy_from_user(&transid, argp, sizeof(transid))) 3200 return -EFAULT; 3201 3202 return btrfs_wait_for_commit(fs_info, transid); 3203 } 3204 3205 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3206 { 3207 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 3208 struct btrfs_ioctl_scrub_args *sa; 3209 int ret; 3210 3211 if (!capable(CAP_SYS_ADMIN)) 3212 return -EPERM; 3213 3214 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3215 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3216 return -EINVAL; 3217 } 3218 3219 sa = memdup_user(arg, sizeof(*sa)); 3220 if (IS_ERR(sa)) 3221 return PTR_ERR(sa); 3222 3223 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3224 ret = -EOPNOTSUPP; 3225 goto out; 3226 } 3227 3228 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3229 ret = mnt_want_write_file(file); 3230 if (ret) 3231 goto out; 3232 } 3233 3234 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3235 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3236 0); 3237 3238 /* 3239 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3240 * error. This is important as it allows user space to know how much 3241 * progress scrub has done. For example, if scrub is canceled we get 3242 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3243 * space. Later user space can inspect the progress from the structure 3244 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3245 * previously (btrfs-progs does this). 3246 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3247 * then return -EFAULT to signal the structure was not copied or it may 3248 * be corrupt and unreliable due to a partial copy. 3249 */ 3250 if (copy_to_user(arg, sa, sizeof(*sa))) 3251 ret = -EFAULT; 3252 3253 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3254 mnt_drop_write_file(file); 3255 out: 3256 kfree(sa); 3257 return ret; 3258 } 3259 3260 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3261 { 3262 if (!capable(CAP_SYS_ADMIN)) 3263 return -EPERM; 3264 3265 return btrfs_scrub_cancel(fs_info); 3266 } 3267 3268 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3269 void __user *arg) 3270 { 3271 struct btrfs_ioctl_scrub_args *sa; 3272 int ret; 3273 3274 if (!capable(CAP_SYS_ADMIN)) 3275 return -EPERM; 3276 3277 sa = memdup_user(arg, sizeof(*sa)); 3278 if (IS_ERR(sa)) 3279 return PTR_ERR(sa); 3280 3281 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3282 3283 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3284 ret = -EFAULT; 3285 3286 kfree(sa); 3287 return ret; 3288 } 3289 3290 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3291 void __user *arg) 3292 { 3293 struct btrfs_ioctl_get_dev_stats *sa; 3294 int ret; 3295 3296 sa = memdup_user(arg, sizeof(*sa)); 3297 if (IS_ERR(sa)) 3298 return PTR_ERR(sa); 3299 3300 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3301 kfree(sa); 3302 return -EPERM; 3303 } 3304 3305 ret = btrfs_get_dev_stats(fs_info, sa); 3306 3307 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3308 ret = -EFAULT; 3309 3310 kfree(sa); 3311 return ret; 3312 } 3313 3314 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3315 void __user *arg) 3316 { 3317 struct btrfs_ioctl_dev_replace_args *p; 3318 int ret; 3319 3320 if (!capable(CAP_SYS_ADMIN)) 3321 return -EPERM; 3322 3323 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3324 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3325 return -EINVAL; 3326 } 3327 3328 p = memdup_user(arg, sizeof(*p)); 3329 if (IS_ERR(p)) 3330 return PTR_ERR(p); 3331 3332 switch (p->cmd) { 3333 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3334 if (sb_rdonly(fs_info->sb)) { 3335 ret = -EROFS; 3336 goto out; 3337 } 3338 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3339 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3340 } else { 3341 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3342 btrfs_exclop_finish(fs_info); 3343 } 3344 break; 3345 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3346 btrfs_dev_replace_status(fs_info, p); 3347 ret = 0; 3348 break; 3349 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3350 p->result = btrfs_dev_replace_cancel(fs_info); 3351 ret = 0; 3352 break; 3353 default: 3354 ret = -EINVAL; 3355 break; 3356 } 3357 3358 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3359 ret = -EFAULT; 3360 out: 3361 kfree(p); 3362 return ret; 3363 } 3364 3365 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3366 { 3367 int ret = 0; 3368 int i; 3369 u64 rel_ptr; 3370 int size; 3371 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3372 struct inode_fs_paths *ipath = NULL; 3373 struct btrfs_path *path; 3374 3375 if (!capable(CAP_DAC_READ_SEARCH)) 3376 return -EPERM; 3377 3378 path = btrfs_alloc_path(); 3379 if (!path) { 3380 ret = -ENOMEM; 3381 goto out; 3382 } 3383 3384 ipa = memdup_user(arg, sizeof(*ipa)); 3385 if (IS_ERR(ipa)) { 3386 ret = PTR_ERR(ipa); 3387 ipa = NULL; 3388 goto out; 3389 } 3390 3391 size = min_t(u32, ipa->size, 4096); 3392 ipath = init_ipath(size, root, path); 3393 if (IS_ERR(ipath)) { 3394 ret = PTR_ERR(ipath); 3395 ipath = NULL; 3396 goto out; 3397 } 3398 3399 ret = paths_from_inode(ipa->inum, ipath); 3400 if (ret < 0) 3401 goto out; 3402 3403 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3404 rel_ptr = ipath->fspath->val[i] - 3405 (u64)(unsigned long)ipath->fspath->val; 3406 ipath->fspath->val[i] = rel_ptr; 3407 } 3408 3409 btrfs_free_path(path); 3410 path = NULL; 3411 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3412 ipath->fspath, size); 3413 if (ret) { 3414 ret = -EFAULT; 3415 goto out; 3416 } 3417 3418 out: 3419 btrfs_free_path(path); 3420 free_ipath(ipath); 3421 kfree(ipa); 3422 3423 return ret; 3424 } 3425 3426 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3427 void __user *arg, int version) 3428 { 3429 int ret = 0; 3430 int size; 3431 struct btrfs_ioctl_logical_ino_args *loi; 3432 struct btrfs_data_container *inodes = NULL; 3433 struct btrfs_path *path = NULL; 3434 bool ignore_offset; 3435 3436 if (!capable(CAP_SYS_ADMIN)) 3437 return -EPERM; 3438 3439 loi = memdup_user(arg, sizeof(*loi)); 3440 if (IS_ERR(loi)) 3441 return PTR_ERR(loi); 3442 3443 if (version == 1) { 3444 ignore_offset = false; 3445 size = min_t(u32, loi->size, SZ_64K); 3446 } else { 3447 /* All reserved bits must be 0 for now */ 3448 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3449 ret = -EINVAL; 3450 goto out_loi; 3451 } 3452 /* Only accept flags we have defined so far */ 3453 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3454 ret = -EINVAL; 3455 goto out_loi; 3456 } 3457 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3458 size = min_t(u32, loi->size, SZ_16M); 3459 } 3460 3461 inodes = init_data_container(size); 3462 if (IS_ERR(inodes)) { 3463 ret = PTR_ERR(inodes); 3464 goto out_loi; 3465 } 3466 3467 path = btrfs_alloc_path(); 3468 if (!path) { 3469 ret = -ENOMEM; 3470 goto out; 3471 } 3472 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3473 inodes, ignore_offset); 3474 btrfs_free_path(path); 3475 if (ret == -EINVAL) 3476 ret = -ENOENT; 3477 if (ret < 0) 3478 goto out; 3479 3480 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3481 size); 3482 if (ret) 3483 ret = -EFAULT; 3484 3485 out: 3486 kvfree(inodes); 3487 out_loi: 3488 kfree(loi); 3489 3490 return ret; 3491 } 3492 3493 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3494 struct btrfs_ioctl_balance_args *bargs) 3495 { 3496 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3497 3498 bargs->flags = bctl->flags; 3499 3500 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3501 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3502 if (atomic_read(&fs_info->balance_pause_req)) 3503 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3504 if (atomic_read(&fs_info->balance_cancel_req)) 3505 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3506 3507 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3508 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3509 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3510 3511 spin_lock(&fs_info->balance_lock); 3512 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3513 spin_unlock(&fs_info->balance_lock); 3514 } 3515 3516 /* 3517 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3518 * required. 3519 * 3520 * @fs_info: the filesystem 3521 * @excl_acquired: ptr to boolean value which is set to false in case balance 3522 * is being resumed 3523 * 3524 * Return 0 on success in which case both fs_info::balance is acquired as well 3525 * as exclusive ops are blocked. In case of failure return an error code. 3526 */ 3527 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3528 { 3529 int ret; 3530 3531 /* 3532 * Exclusive operation is locked. Three possibilities: 3533 * (1) some other op is running 3534 * (2) balance is running 3535 * (3) balance is paused -- special case (think resume) 3536 */ 3537 while (1) { 3538 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3539 *excl_acquired = true; 3540 mutex_lock(&fs_info->balance_mutex); 3541 return 0; 3542 } 3543 3544 mutex_lock(&fs_info->balance_mutex); 3545 if (fs_info->balance_ctl) { 3546 /* This is either (2) or (3) */ 3547 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3548 /* This is (2) */ 3549 ret = -EINPROGRESS; 3550 goto out_failure; 3551 3552 } else { 3553 mutex_unlock(&fs_info->balance_mutex); 3554 /* 3555 * Lock released to allow other waiters to 3556 * continue, we'll reexamine the status again. 3557 */ 3558 mutex_lock(&fs_info->balance_mutex); 3559 3560 if (fs_info->balance_ctl && 3561 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3562 /* This is (3) */ 3563 *excl_acquired = false; 3564 return 0; 3565 } 3566 } 3567 } else { 3568 /* This is (1) */ 3569 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3570 goto out_failure; 3571 } 3572 3573 mutex_unlock(&fs_info->balance_mutex); 3574 } 3575 3576 out_failure: 3577 mutex_unlock(&fs_info->balance_mutex); 3578 *excl_acquired = false; 3579 return ret; 3580 } 3581 3582 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3583 { 3584 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3585 struct btrfs_fs_info *fs_info = root->fs_info; 3586 struct btrfs_ioctl_balance_args *bargs; 3587 struct btrfs_balance_control *bctl; 3588 bool need_unlock = true; 3589 int ret; 3590 3591 if (!capable(CAP_SYS_ADMIN)) 3592 return -EPERM; 3593 3594 ret = mnt_want_write_file(file); 3595 if (ret) 3596 return ret; 3597 3598 bargs = memdup_user(arg, sizeof(*bargs)); 3599 if (IS_ERR(bargs)) { 3600 ret = PTR_ERR(bargs); 3601 bargs = NULL; 3602 goto out; 3603 } 3604 3605 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3606 if (ret) 3607 goto out; 3608 3609 lockdep_assert_held(&fs_info->balance_mutex); 3610 3611 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3612 if (!fs_info->balance_ctl) { 3613 ret = -ENOTCONN; 3614 goto out_unlock; 3615 } 3616 3617 bctl = fs_info->balance_ctl; 3618 spin_lock(&fs_info->balance_lock); 3619 bctl->flags |= BTRFS_BALANCE_RESUME; 3620 spin_unlock(&fs_info->balance_lock); 3621 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3622 3623 goto do_balance; 3624 } 3625 3626 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3627 ret = -EINVAL; 3628 goto out_unlock; 3629 } 3630 3631 if (fs_info->balance_ctl) { 3632 ret = -EINPROGRESS; 3633 goto out_unlock; 3634 } 3635 3636 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3637 if (!bctl) { 3638 ret = -ENOMEM; 3639 goto out_unlock; 3640 } 3641 3642 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3643 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3644 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3645 3646 bctl->flags = bargs->flags; 3647 do_balance: 3648 /* 3649 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3650 * bctl is freed in reset_balance_state, or, if restriper was paused 3651 * all the way until unmount, in free_fs_info. The flag should be 3652 * cleared after reset_balance_state. 3653 */ 3654 need_unlock = false; 3655 3656 ret = btrfs_balance(fs_info, bctl, bargs); 3657 bctl = NULL; 3658 3659 if (ret == 0 || ret == -ECANCELED) { 3660 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3661 ret = -EFAULT; 3662 } 3663 3664 kfree(bctl); 3665 out_unlock: 3666 mutex_unlock(&fs_info->balance_mutex); 3667 if (need_unlock) 3668 btrfs_exclop_finish(fs_info); 3669 out: 3670 mnt_drop_write_file(file); 3671 kfree(bargs); 3672 return ret; 3673 } 3674 3675 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3676 { 3677 if (!capable(CAP_SYS_ADMIN)) 3678 return -EPERM; 3679 3680 switch (cmd) { 3681 case BTRFS_BALANCE_CTL_PAUSE: 3682 return btrfs_pause_balance(fs_info); 3683 case BTRFS_BALANCE_CTL_CANCEL: 3684 return btrfs_cancel_balance(fs_info); 3685 } 3686 3687 return -EINVAL; 3688 } 3689 3690 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3691 void __user *arg) 3692 { 3693 struct btrfs_ioctl_balance_args *bargs; 3694 int ret = 0; 3695 3696 if (!capable(CAP_SYS_ADMIN)) 3697 return -EPERM; 3698 3699 mutex_lock(&fs_info->balance_mutex); 3700 if (!fs_info->balance_ctl) { 3701 ret = -ENOTCONN; 3702 goto out; 3703 } 3704 3705 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3706 if (!bargs) { 3707 ret = -ENOMEM; 3708 goto out; 3709 } 3710 3711 btrfs_update_ioctl_balance_args(fs_info, bargs); 3712 3713 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3714 ret = -EFAULT; 3715 3716 kfree(bargs); 3717 out: 3718 mutex_unlock(&fs_info->balance_mutex); 3719 return ret; 3720 } 3721 3722 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3723 { 3724 struct inode *inode = file_inode(file); 3725 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3726 struct btrfs_ioctl_quota_ctl_args *sa; 3727 int ret; 3728 3729 if (!capable(CAP_SYS_ADMIN)) 3730 return -EPERM; 3731 3732 ret = mnt_want_write_file(file); 3733 if (ret) 3734 return ret; 3735 3736 sa = memdup_user(arg, sizeof(*sa)); 3737 if (IS_ERR(sa)) { 3738 ret = PTR_ERR(sa); 3739 goto drop_write; 3740 } 3741 3742 down_write(&fs_info->subvol_sem); 3743 3744 switch (sa->cmd) { 3745 case BTRFS_QUOTA_CTL_ENABLE: 3746 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3747 ret = btrfs_quota_enable(fs_info, sa); 3748 break; 3749 case BTRFS_QUOTA_CTL_DISABLE: 3750 ret = btrfs_quota_disable(fs_info); 3751 break; 3752 default: 3753 ret = -EINVAL; 3754 break; 3755 } 3756 3757 kfree(sa); 3758 up_write(&fs_info->subvol_sem); 3759 drop_write: 3760 mnt_drop_write_file(file); 3761 return ret; 3762 } 3763 3764 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3765 { 3766 struct inode *inode = file_inode(file); 3767 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3768 struct btrfs_root *root = BTRFS_I(inode)->root; 3769 struct btrfs_ioctl_qgroup_assign_args *sa; 3770 struct btrfs_trans_handle *trans; 3771 int ret; 3772 int err; 3773 3774 if (!capable(CAP_SYS_ADMIN)) 3775 return -EPERM; 3776 3777 ret = mnt_want_write_file(file); 3778 if (ret) 3779 return ret; 3780 3781 sa = memdup_user(arg, sizeof(*sa)); 3782 if (IS_ERR(sa)) { 3783 ret = PTR_ERR(sa); 3784 goto drop_write; 3785 } 3786 3787 trans = btrfs_join_transaction(root); 3788 if (IS_ERR(trans)) { 3789 ret = PTR_ERR(trans); 3790 goto out; 3791 } 3792 3793 if (sa->assign) { 3794 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3795 } else { 3796 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3797 } 3798 3799 /* update qgroup status and info */ 3800 mutex_lock(&fs_info->qgroup_ioctl_lock); 3801 err = btrfs_run_qgroups(trans); 3802 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3803 if (err < 0) 3804 btrfs_handle_fs_error(fs_info, err, 3805 "failed to update qgroup status and info"); 3806 err = btrfs_end_transaction(trans); 3807 if (err && !ret) 3808 ret = err; 3809 3810 out: 3811 kfree(sa); 3812 drop_write: 3813 mnt_drop_write_file(file); 3814 return ret; 3815 } 3816 3817 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3818 { 3819 struct inode *inode = file_inode(file); 3820 struct btrfs_root *root = BTRFS_I(inode)->root; 3821 struct btrfs_ioctl_qgroup_create_args *sa; 3822 struct btrfs_trans_handle *trans; 3823 int ret; 3824 int err; 3825 3826 if (!capable(CAP_SYS_ADMIN)) 3827 return -EPERM; 3828 3829 ret = mnt_want_write_file(file); 3830 if (ret) 3831 return ret; 3832 3833 sa = memdup_user(arg, sizeof(*sa)); 3834 if (IS_ERR(sa)) { 3835 ret = PTR_ERR(sa); 3836 goto drop_write; 3837 } 3838 3839 if (!sa->qgroupid) { 3840 ret = -EINVAL; 3841 goto out; 3842 } 3843 3844 if (sa->create && is_fstree(sa->qgroupid)) { 3845 ret = -EINVAL; 3846 goto out; 3847 } 3848 3849 trans = btrfs_join_transaction(root); 3850 if (IS_ERR(trans)) { 3851 ret = PTR_ERR(trans); 3852 goto out; 3853 } 3854 3855 if (sa->create) { 3856 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3857 } else { 3858 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3859 } 3860 3861 err = btrfs_end_transaction(trans); 3862 if (err && !ret) 3863 ret = err; 3864 3865 out: 3866 kfree(sa); 3867 drop_write: 3868 mnt_drop_write_file(file); 3869 return ret; 3870 } 3871 3872 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3873 { 3874 struct inode *inode = file_inode(file); 3875 struct btrfs_root *root = BTRFS_I(inode)->root; 3876 struct btrfs_ioctl_qgroup_limit_args *sa; 3877 struct btrfs_trans_handle *trans; 3878 int ret; 3879 int err; 3880 u64 qgroupid; 3881 3882 if (!capable(CAP_SYS_ADMIN)) 3883 return -EPERM; 3884 3885 ret = mnt_want_write_file(file); 3886 if (ret) 3887 return ret; 3888 3889 sa = memdup_user(arg, sizeof(*sa)); 3890 if (IS_ERR(sa)) { 3891 ret = PTR_ERR(sa); 3892 goto drop_write; 3893 } 3894 3895 trans = btrfs_join_transaction(root); 3896 if (IS_ERR(trans)) { 3897 ret = PTR_ERR(trans); 3898 goto out; 3899 } 3900 3901 qgroupid = sa->qgroupid; 3902 if (!qgroupid) { 3903 /* take the current subvol as qgroup */ 3904 qgroupid = root->root_key.objectid; 3905 } 3906 3907 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3908 3909 err = btrfs_end_transaction(trans); 3910 if (err && !ret) 3911 ret = err; 3912 3913 out: 3914 kfree(sa); 3915 drop_write: 3916 mnt_drop_write_file(file); 3917 return ret; 3918 } 3919 3920 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3921 { 3922 struct inode *inode = file_inode(file); 3923 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3924 struct btrfs_ioctl_quota_rescan_args *qsa; 3925 int ret; 3926 3927 if (!capable(CAP_SYS_ADMIN)) 3928 return -EPERM; 3929 3930 ret = mnt_want_write_file(file); 3931 if (ret) 3932 return ret; 3933 3934 qsa = memdup_user(arg, sizeof(*qsa)); 3935 if (IS_ERR(qsa)) { 3936 ret = PTR_ERR(qsa); 3937 goto drop_write; 3938 } 3939 3940 if (qsa->flags) { 3941 ret = -EINVAL; 3942 goto out; 3943 } 3944 3945 ret = btrfs_qgroup_rescan(fs_info); 3946 3947 out: 3948 kfree(qsa); 3949 drop_write: 3950 mnt_drop_write_file(file); 3951 return ret; 3952 } 3953 3954 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3955 void __user *arg) 3956 { 3957 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3958 3959 if (!capable(CAP_SYS_ADMIN)) 3960 return -EPERM; 3961 3962 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3963 qsa.flags = 1; 3964 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3965 } 3966 3967 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3968 return -EFAULT; 3969 3970 return 0; 3971 } 3972 3973 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3974 void __user *arg) 3975 { 3976 if (!capable(CAP_SYS_ADMIN)) 3977 return -EPERM; 3978 3979 return btrfs_qgroup_wait_for_completion(fs_info, true); 3980 } 3981 3982 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3983 struct mnt_idmap *idmap, 3984 struct btrfs_ioctl_received_subvol_args *sa) 3985 { 3986 struct inode *inode = file_inode(file); 3987 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3988 struct btrfs_root *root = BTRFS_I(inode)->root; 3989 struct btrfs_root_item *root_item = &root->root_item; 3990 struct btrfs_trans_handle *trans; 3991 struct timespec64 ct = current_time(inode); 3992 int ret = 0; 3993 int received_uuid_changed; 3994 3995 if (!inode_owner_or_capable(idmap, inode)) 3996 return -EPERM; 3997 3998 ret = mnt_want_write_file(file); 3999 if (ret < 0) 4000 return ret; 4001 4002 down_write(&fs_info->subvol_sem); 4003 4004 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4005 ret = -EINVAL; 4006 goto out; 4007 } 4008 4009 if (btrfs_root_readonly(root)) { 4010 ret = -EROFS; 4011 goto out; 4012 } 4013 4014 /* 4015 * 1 - root item 4016 * 2 - uuid items (received uuid + subvol uuid) 4017 */ 4018 trans = btrfs_start_transaction(root, 3); 4019 if (IS_ERR(trans)) { 4020 ret = PTR_ERR(trans); 4021 trans = NULL; 4022 goto out; 4023 } 4024 4025 sa->rtransid = trans->transid; 4026 sa->rtime.sec = ct.tv_sec; 4027 sa->rtime.nsec = ct.tv_nsec; 4028 4029 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4030 BTRFS_UUID_SIZE); 4031 if (received_uuid_changed && 4032 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4033 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4034 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4035 root->root_key.objectid); 4036 if (ret && ret != -ENOENT) { 4037 btrfs_abort_transaction(trans, ret); 4038 btrfs_end_transaction(trans); 4039 goto out; 4040 } 4041 } 4042 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4043 btrfs_set_root_stransid(root_item, sa->stransid); 4044 btrfs_set_root_rtransid(root_item, sa->rtransid); 4045 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4046 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4047 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4048 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4049 4050 ret = btrfs_update_root(trans, fs_info->tree_root, 4051 &root->root_key, &root->root_item); 4052 if (ret < 0) { 4053 btrfs_end_transaction(trans); 4054 goto out; 4055 } 4056 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4057 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4058 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4059 root->root_key.objectid); 4060 if (ret < 0 && ret != -EEXIST) { 4061 btrfs_abort_transaction(trans, ret); 4062 btrfs_end_transaction(trans); 4063 goto out; 4064 } 4065 } 4066 ret = btrfs_commit_transaction(trans); 4067 out: 4068 up_write(&fs_info->subvol_sem); 4069 mnt_drop_write_file(file); 4070 return ret; 4071 } 4072 4073 #ifdef CONFIG_64BIT 4074 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4075 void __user *arg) 4076 { 4077 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4078 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4079 int ret = 0; 4080 4081 args32 = memdup_user(arg, sizeof(*args32)); 4082 if (IS_ERR(args32)) 4083 return PTR_ERR(args32); 4084 4085 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4086 if (!args64) { 4087 ret = -ENOMEM; 4088 goto out; 4089 } 4090 4091 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4092 args64->stransid = args32->stransid; 4093 args64->rtransid = args32->rtransid; 4094 args64->stime.sec = args32->stime.sec; 4095 args64->stime.nsec = args32->stime.nsec; 4096 args64->rtime.sec = args32->rtime.sec; 4097 args64->rtime.nsec = args32->rtime.nsec; 4098 args64->flags = args32->flags; 4099 4100 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4101 if (ret) 4102 goto out; 4103 4104 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4105 args32->stransid = args64->stransid; 4106 args32->rtransid = args64->rtransid; 4107 args32->stime.sec = args64->stime.sec; 4108 args32->stime.nsec = args64->stime.nsec; 4109 args32->rtime.sec = args64->rtime.sec; 4110 args32->rtime.nsec = args64->rtime.nsec; 4111 args32->flags = args64->flags; 4112 4113 ret = copy_to_user(arg, args32, sizeof(*args32)); 4114 if (ret) 4115 ret = -EFAULT; 4116 4117 out: 4118 kfree(args32); 4119 kfree(args64); 4120 return ret; 4121 } 4122 #endif 4123 4124 static long btrfs_ioctl_set_received_subvol(struct file *file, 4125 void __user *arg) 4126 { 4127 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4128 int ret = 0; 4129 4130 sa = memdup_user(arg, sizeof(*sa)); 4131 if (IS_ERR(sa)) 4132 return PTR_ERR(sa); 4133 4134 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4135 4136 if (ret) 4137 goto out; 4138 4139 ret = copy_to_user(arg, sa, sizeof(*sa)); 4140 if (ret) 4141 ret = -EFAULT; 4142 4143 out: 4144 kfree(sa); 4145 return ret; 4146 } 4147 4148 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4149 void __user *arg) 4150 { 4151 size_t len; 4152 int ret; 4153 char label[BTRFS_LABEL_SIZE]; 4154 4155 spin_lock(&fs_info->super_lock); 4156 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4157 spin_unlock(&fs_info->super_lock); 4158 4159 len = strnlen(label, BTRFS_LABEL_SIZE); 4160 4161 if (len == BTRFS_LABEL_SIZE) { 4162 btrfs_warn(fs_info, 4163 "label is too long, return the first %zu bytes", 4164 --len); 4165 } 4166 4167 ret = copy_to_user(arg, label, len); 4168 4169 return ret ? -EFAULT : 0; 4170 } 4171 4172 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4173 { 4174 struct inode *inode = file_inode(file); 4175 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4176 struct btrfs_root *root = BTRFS_I(inode)->root; 4177 struct btrfs_super_block *super_block = fs_info->super_copy; 4178 struct btrfs_trans_handle *trans; 4179 char label[BTRFS_LABEL_SIZE]; 4180 int ret; 4181 4182 if (!capable(CAP_SYS_ADMIN)) 4183 return -EPERM; 4184 4185 if (copy_from_user(label, arg, sizeof(label))) 4186 return -EFAULT; 4187 4188 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4189 btrfs_err(fs_info, 4190 "unable to set label with more than %d bytes", 4191 BTRFS_LABEL_SIZE - 1); 4192 return -EINVAL; 4193 } 4194 4195 ret = mnt_want_write_file(file); 4196 if (ret) 4197 return ret; 4198 4199 trans = btrfs_start_transaction(root, 0); 4200 if (IS_ERR(trans)) { 4201 ret = PTR_ERR(trans); 4202 goto out_unlock; 4203 } 4204 4205 spin_lock(&fs_info->super_lock); 4206 strcpy(super_block->label, label); 4207 spin_unlock(&fs_info->super_lock); 4208 ret = btrfs_commit_transaction(trans); 4209 4210 out_unlock: 4211 mnt_drop_write_file(file); 4212 return ret; 4213 } 4214 4215 #define INIT_FEATURE_FLAGS(suffix) \ 4216 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4217 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4218 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4219 4220 int btrfs_ioctl_get_supported_features(void __user *arg) 4221 { 4222 static const struct btrfs_ioctl_feature_flags features[3] = { 4223 INIT_FEATURE_FLAGS(SUPP), 4224 INIT_FEATURE_FLAGS(SAFE_SET), 4225 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4226 }; 4227 4228 if (copy_to_user(arg, &features, sizeof(features))) 4229 return -EFAULT; 4230 4231 return 0; 4232 } 4233 4234 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4235 void __user *arg) 4236 { 4237 struct btrfs_super_block *super_block = fs_info->super_copy; 4238 struct btrfs_ioctl_feature_flags features; 4239 4240 features.compat_flags = btrfs_super_compat_flags(super_block); 4241 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4242 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4243 4244 if (copy_to_user(arg, &features, sizeof(features))) 4245 return -EFAULT; 4246 4247 return 0; 4248 } 4249 4250 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4251 enum btrfs_feature_set set, 4252 u64 change_mask, u64 flags, u64 supported_flags, 4253 u64 safe_set, u64 safe_clear) 4254 { 4255 const char *type = btrfs_feature_set_name(set); 4256 char *names; 4257 u64 disallowed, unsupported; 4258 u64 set_mask = flags & change_mask; 4259 u64 clear_mask = ~flags & change_mask; 4260 4261 unsupported = set_mask & ~supported_flags; 4262 if (unsupported) { 4263 names = btrfs_printable_features(set, unsupported); 4264 if (names) { 4265 btrfs_warn(fs_info, 4266 "this kernel does not support the %s feature bit%s", 4267 names, strchr(names, ',') ? "s" : ""); 4268 kfree(names); 4269 } else 4270 btrfs_warn(fs_info, 4271 "this kernel does not support %s bits 0x%llx", 4272 type, unsupported); 4273 return -EOPNOTSUPP; 4274 } 4275 4276 disallowed = set_mask & ~safe_set; 4277 if (disallowed) { 4278 names = btrfs_printable_features(set, disallowed); 4279 if (names) { 4280 btrfs_warn(fs_info, 4281 "can't set the %s feature bit%s while mounted", 4282 names, strchr(names, ',') ? "s" : ""); 4283 kfree(names); 4284 } else 4285 btrfs_warn(fs_info, 4286 "can't set %s bits 0x%llx while mounted", 4287 type, disallowed); 4288 return -EPERM; 4289 } 4290 4291 disallowed = clear_mask & ~safe_clear; 4292 if (disallowed) { 4293 names = btrfs_printable_features(set, disallowed); 4294 if (names) { 4295 btrfs_warn(fs_info, 4296 "can't clear the %s feature bit%s while mounted", 4297 names, strchr(names, ',') ? "s" : ""); 4298 kfree(names); 4299 } else 4300 btrfs_warn(fs_info, 4301 "can't clear %s bits 0x%llx while mounted", 4302 type, disallowed); 4303 return -EPERM; 4304 } 4305 4306 return 0; 4307 } 4308 4309 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4310 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4311 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4312 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4313 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4314 4315 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4316 { 4317 struct inode *inode = file_inode(file); 4318 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4319 struct btrfs_root *root = BTRFS_I(inode)->root; 4320 struct btrfs_super_block *super_block = fs_info->super_copy; 4321 struct btrfs_ioctl_feature_flags flags[2]; 4322 struct btrfs_trans_handle *trans; 4323 u64 newflags; 4324 int ret; 4325 4326 if (!capable(CAP_SYS_ADMIN)) 4327 return -EPERM; 4328 4329 if (copy_from_user(flags, arg, sizeof(flags))) 4330 return -EFAULT; 4331 4332 /* Nothing to do */ 4333 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4334 !flags[0].incompat_flags) 4335 return 0; 4336 4337 ret = check_feature(fs_info, flags[0].compat_flags, 4338 flags[1].compat_flags, COMPAT); 4339 if (ret) 4340 return ret; 4341 4342 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4343 flags[1].compat_ro_flags, COMPAT_RO); 4344 if (ret) 4345 return ret; 4346 4347 ret = check_feature(fs_info, flags[0].incompat_flags, 4348 flags[1].incompat_flags, INCOMPAT); 4349 if (ret) 4350 return ret; 4351 4352 ret = mnt_want_write_file(file); 4353 if (ret) 4354 return ret; 4355 4356 trans = btrfs_start_transaction(root, 0); 4357 if (IS_ERR(trans)) { 4358 ret = PTR_ERR(trans); 4359 goto out_drop_write; 4360 } 4361 4362 spin_lock(&fs_info->super_lock); 4363 newflags = btrfs_super_compat_flags(super_block); 4364 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4365 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4366 btrfs_set_super_compat_flags(super_block, newflags); 4367 4368 newflags = btrfs_super_compat_ro_flags(super_block); 4369 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4370 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4371 btrfs_set_super_compat_ro_flags(super_block, newflags); 4372 4373 newflags = btrfs_super_incompat_flags(super_block); 4374 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4375 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4376 btrfs_set_super_incompat_flags(super_block, newflags); 4377 spin_unlock(&fs_info->super_lock); 4378 4379 ret = btrfs_commit_transaction(trans); 4380 out_drop_write: 4381 mnt_drop_write_file(file); 4382 4383 return ret; 4384 } 4385 4386 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4387 { 4388 struct btrfs_ioctl_send_args *arg; 4389 int ret; 4390 4391 if (compat) { 4392 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4393 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4394 4395 ret = copy_from_user(&args32, argp, sizeof(args32)); 4396 if (ret) 4397 return -EFAULT; 4398 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4399 if (!arg) 4400 return -ENOMEM; 4401 arg->send_fd = args32.send_fd; 4402 arg->clone_sources_count = args32.clone_sources_count; 4403 arg->clone_sources = compat_ptr(args32.clone_sources); 4404 arg->parent_root = args32.parent_root; 4405 arg->flags = args32.flags; 4406 arg->version = args32.version; 4407 memcpy(arg->reserved, args32.reserved, 4408 sizeof(args32.reserved)); 4409 #else 4410 return -ENOTTY; 4411 #endif 4412 } else { 4413 arg = memdup_user(argp, sizeof(*arg)); 4414 if (IS_ERR(arg)) 4415 return PTR_ERR(arg); 4416 } 4417 ret = btrfs_ioctl_send(inode, arg); 4418 kfree(arg); 4419 return ret; 4420 } 4421 4422 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4423 bool compat) 4424 { 4425 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4426 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4427 flags); 4428 size_t copy_end; 4429 struct iovec iovstack[UIO_FASTIOV]; 4430 struct iovec *iov = iovstack; 4431 struct iov_iter iter; 4432 loff_t pos; 4433 struct kiocb kiocb; 4434 ssize_t ret; 4435 4436 if (!capable(CAP_SYS_ADMIN)) { 4437 ret = -EPERM; 4438 goto out_acct; 4439 } 4440 4441 if (compat) { 4442 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4443 struct btrfs_ioctl_encoded_io_args_32 args32; 4444 4445 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4446 flags); 4447 if (copy_from_user(&args32, argp, copy_end)) { 4448 ret = -EFAULT; 4449 goto out_acct; 4450 } 4451 args.iov = compat_ptr(args32.iov); 4452 args.iovcnt = args32.iovcnt; 4453 args.offset = args32.offset; 4454 args.flags = args32.flags; 4455 #else 4456 return -ENOTTY; 4457 #endif 4458 } else { 4459 copy_end = copy_end_kernel; 4460 if (copy_from_user(&args, argp, copy_end)) { 4461 ret = -EFAULT; 4462 goto out_acct; 4463 } 4464 } 4465 if (args.flags != 0) { 4466 ret = -EINVAL; 4467 goto out_acct; 4468 } 4469 4470 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4471 &iov, &iter); 4472 if (ret < 0) 4473 goto out_acct; 4474 4475 if (iov_iter_count(&iter) == 0) { 4476 ret = 0; 4477 goto out_iov; 4478 } 4479 pos = args.offset; 4480 ret = rw_verify_area(READ, file, &pos, args.len); 4481 if (ret < 0) 4482 goto out_iov; 4483 4484 init_sync_kiocb(&kiocb, file); 4485 kiocb.ki_pos = pos; 4486 4487 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4488 if (ret >= 0) { 4489 fsnotify_access(file); 4490 if (copy_to_user(argp + copy_end, 4491 (char *)&args + copy_end_kernel, 4492 sizeof(args) - copy_end_kernel)) 4493 ret = -EFAULT; 4494 } 4495 4496 out_iov: 4497 kfree(iov); 4498 out_acct: 4499 if (ret > 0) 4500 add_rchar(current, ret); 4501 inc_syscr(current); 4502 return ret; 4503 } 4504 4505 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4506 { 4507 struct btrfs_ioctl_encoded_io_args args; 4508 struct iovec iovstack[UIO_FASTIOV]; 4509 struct iovec *iov = iovstack; 4510 struct iov_iter iter; 4511 loff_t pos; 4512 struct kiocb kiocb; 4513 ssize_t ret; 4514 4515 if (!capable(CAP_SYS_ADMIN)) { 4516 ret = -EPERM; 4517 goto out_acct; 4518 } 4519 4520 if (!(file->f_mode & FMODE_WRITE)) { 4521 ret = -EBADF; 4522 goto out_acct; 4523 } 4524 4525 if (compat) { 4526 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4527 struct btrfs_ioctl_encoded_io_args_32 args32; 4528 4529 if (copy_from_user(&args32, argp, sizeof(args32))) { 4530 ret = -EFAULT; 4531 goto out_acct; 4532 } 4533 args.iov = compat_ptr(args32.iov); 4534 args.iovcnt = args32.iovcnt; 4535 args.offset = args32.offset; 4536 args.flags = args32.flags; 4537 args.len = args32.len; 4538 args.unencoded_len = args32.unencoded_len; 4539 args.unencoded_offset = args32.unencoded_offset; 4540 args.compression = args32.compression; 4541 args.encryption = args32.encryption; 4542 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4543 #else 4544 return -ENOTTY; 4545 #endif 4546 } else { 4547 if (copy_from_user(&args, argp, sizeof(args))) { 4548 ret = -EFAULT; 4549 goto out_acct; 4550 } 4551 } 4552 4553 ret = -EINVAL; 4554 if (args.flags != 0) 4555 goto out_acct; 4556 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4557 goto out_acct; 4558 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4559 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4560 goto out_acct; 4561 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4562 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4563 goto out_acct; 4564 if (args.unencoded_offset > args.unencoded_len) 4565 goto out_acct; 4566 if (args.len > args.unencoded_len - args.unencoded_offset) 4567 goto out_acct; 4568 4569 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4570 &iov, &iter); 4571 if (ret < 0) 4572 goto out_acct; 4573 4574 if (iov_iter_count(&iter) == 0) { 4575 ret = 0; 4576 goto out_iov; 4577 } 4578 pos = args.offset; 4579 ret = rw_verify_area(WRITE, file, &pos, args.len); 4580 if (ret < 0) 4581 goto out_iov; 4582 4583 init_sync_kiocb(&kiocb, file); 4584 ret = kiocb_set_rw_flags(&kiocb, 0); 4585 if (ret) 4586 goto out_iov; 4587 kiocb.ki_pos = pos; 4588 4589 file_start_write(file); 4590 4591 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4592 if (ret > 0) 4593 fsnotify_modify(file); 4594 4595 file_end_write(file); 4596 out_iov: 4597 kfree(iov); 4598 out_acct: 4599 if (ret > 0) 4600 add_wchar(current, ret); 4601 inc_syscw(current); 4602 return ret; 4603 } 4604 4605 long btrfs_ioctl(struct file *file, unsigned int 4606 cmd, unsigned long arg) 4607 { 4608 struct inode *inode = file_inode(file); 4609 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4610 struct btrfs_root *root = BTRFS_I(inode)->root; 4611 void __user *argp = (void __user *)arg; 4612 4613 switch (cmd) { 4614 case FS_IOC_GETVERSION: 4615 return btrfs_ioctl_getversion(inode, argp); 4616 case FS_IOC_GETFSLABEL: 4617 return btrfs_ioctl_get_fslabel(fs_info, argp); 4618 case FS_IOC_SETFSLABEL: 4619 return btrfs_ioctl_set_fslabel(file, argp); 4620 case FITRIM: 4621 return btrfs_ioctl_fitrim(fs_info, argp); 4622 case BTRFS_IOC_SNAP_CREATE: 4623 return btrfs_ioctl_snap_create(file, argp, 0); 4624 case BTRFS_IOC_SNAP_CREATE_V2: 4625 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4626 case BTRFS_IOC_SUBVOL_CREATE: 4627 return btrfs_ioctl_snap_create(file, argp, 1); 4628 case BTRFS_IOC_SUBVOL_CREATE_V2: 4629 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4630 case BTRFS_IOC_SNAP_DESTROY: 4631 return btrfs_ioctl_snap_destroy(file, argp, false); 4632 case BTRFS_IOC_SNAP_DESTROY_V2: 4633 return btrfs_ioctl_snap_destroy(file, argp, true); 4634 case BTRFS_IOC_SUBVOL_GETFLAGS: 4635 return btrfs_ioctl_subvol_getflags(inode, argp); 4636 case BTRFS_IOC_SUBVOL_SETFLAGS: 4637 return btrfs_ioctl_subvol_setflags(file, argp); 4638 case BTRFS_IOC_DEFAULT_SUBVOL: 4639 return btrfs_ioctl_default_subvol(file, argp); 4640 case BTRFS_IOC_DEFRAG: 4641 return btrfs_ioctl_defrag(file, NULL); 4642 case BTRFS_IOC_DEFRAG_RANGE: 4643 return btrfs_ioctl_defrag(file, argp); 4644 case BTRFS_IOC_RESIZE: 4645 return btrfs_ioctl_resize(file, argp); 4646 case BTRFS_IOC_ADD_DEV: 4647 return btrfs_ioctl_add_dev(fs_info, argp); 4648 case BTRFS_IOC_RM_DEV: 4649 return btrfs_ioctl_rm_dev(file, argp); 4650 case BTRFS_IOC_RM_DEV_V2: 4651 return btrfs_ioctl_rm_dev_v2(file, argp); 4652 case BTRFS_IOC_FS_INFO: 4653 return btrfs_ioctl_fs_info(fs_info, argp); 4654 case BTRFS_IOC_DEV_INFO: 4655 return btrfs_ioctl_dev_info(fs_info, argp); 4656 case BTRFS_IOC_TREE_SEARCH: 4657 return btrfs_ioctl_tree_search(inode, argp); 4658 case BTRFS_IOC_TREE_SEARCH_V2: 4659 return btrfs_ioctl_tree_search_v2(inode, argp); 4660 case BTRFS_IOC_INO_LOOKUP: 4661 return btrfs_ioctl_ino_lookup(root, argp); 4662 case BTRFS_IOC_INO_PATHS: 4663 return btrfs_ioctl_ino_to_path(root, argp); 4664 case BTRFS_IOC_LOGICAL_INO: 4665 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4666 case BTRFS_IOC_LOGICAL_INO_V2: 4667 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4668 case BTRFS_IOC_SPACE_INFO: 4669 return btrfs_ioctl_space_info(fs_info, argp); 4670 case BTRFS_IOC_SYNC: { 4671 int ret; 4672 4673 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4674 if (ret) 4675 return ret; 4676 ret = btrfs_sync_fs(inode->i_sb, 1); 4677 /* 4678 * The transaction thread may want to do more work, 4679 * namely it pokes the cleaner kthread that will start 4680 * processing uncleaned subvols. 4681 */ 4682 wake_up_process(fs_info->transaction_kthread); 4683 return ret; 4684 } 4685 case BTRFS_IOC_START_SYNC: 4686 return btrfs_ioctl_start_sync(root, argp); 4687 case BTRFS_IOC_WAIT_SYNC: 4688 return btrfs_ioctl_wait_sync(fs_info, argp); 4689 case BTRFS_IOC_SCRUB: 4690 return btrfs_ioctl_scrub(file, argp); 4691 case BTRFS_IOC_SCRUB_CANCEL: 4692 return btrfs_ioctl_scrub_cancel(fs_info); 4693 case BTRFS_IOC_SCRUB_PROGRESS: 4694 return btrfs_ioctl_scrub_progress(fs_info, argp); 4695 case BTRFS_IOC_BALANCE_V2: 4696 return btrfs_ioctl_balance(file, argp); 4697 case BTRFS_IOC_BALANCE_CTL: 4698 return btrfs_ioctl_balance_ctl(fs_info, arg); 4699 case BTRFS_IOC_BALANCE_PROGRESS: 4700 return btrfs_ioctl_balance_progress(fs_info, argp); 4701 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4702 return btrfs_ioctl_set_received_subvol(file, argp); 4703 #ifdef CONFIG_64BIT 4704 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4705 return btrfs_ioctl_set_received_subvol_32(file, argp); 4706 #endif 4707 case BTRFS_IOC_SEND: 4708 return _btrfs_ioctl_send(inode, argp, false); 4709 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4710 case BTRFS_IOC_SEND_32: 4711 return _btrfs_ioctl_send(inode, argp, true); 4712 #endif 4713 case BTRFS_IOC_GET_DEV_STATS: 4714 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4715 case BTRFS_IOC_QUOTA_CTL: 4716 return btrfs_ioctl_quota_ctl(file, argp); 4717 case BTRFS_IOC_QGROUP_ASSIGN: 4718 return btrfs_ioctl_qgroup_assign(file, argp); 4719 case BTRFS_IOC_QGROUP_CREATE: 4720 return btrfs_ioctl_qgroup_create(file, argp); 4721 case BTRFS_IOC_QGROUP_LIMIT: 4722 return btrfs_ioctl_qgroup_limit(file, argp); 4723 case BTRFS_IOC_QUOTA_RESCAN: 4724 return btrfs_ioctl_quota_rescan(file, argp); 4725 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4726 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4727 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4728 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4729 case BTRFS_IOC_DEV_REPLACE: 4730 return btrfs_ioctl_dev_replace(fs_info, argp); 4731 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4732 return btrfs_ioctl_get_supported_features(argp); 4733 case BTRFS_IOC_GET_FEATURES: 4734 return btrfs_ioctl_get_features(fs_info, argp); 4735 case BTRFS_IOC_SET_FEATURES: 4736 return btrfs_ioctl_set_features(file, argp); 4737 case BTRFS_IOC_GET_SUBVOL_INFO: 4738 return btrfs_ioctl_get_subvol_info(inode, argp); 4739 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4740 return btrfs_ioctl_get_subvol_rootref(root, argp); 4741 case BTRFS_IOC_INO_LOOKUP_USER: 4742 return btrfs_ioctl_ino_lookup_user(file, argp); 4743 case FS_IOC_ENABLE_VERITY: 4744 return fsverity_ioctl_enable(file, (const void __user *)argp); 4745 case FS_IOC_MEASURE_VERITY: 4746 return fsverity_ioctl_measure(file, argp); 4747 case BTRFS_IOC_ENCODED_READ: 4748 return btrfs_ioctl_encoded_read(file, argp, false); 4749 case BTRFS_IOC_ENCODED_WRITE: 4750 return btrfs_ioctl_encoded_write(file, argp, false); 4751 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4752 case BTRFS_IOC_ENCODED_READ_32: 4753 return btrfs_ioctl_encoded_read(file, argp, true); 4754 case BTRFS_IOC_ENCODED_WRITE_32: 4755 return btrfs_ioctl_encoded_write(file, argp, true); 4756 #endif 4757 } 4758 4759 return -ENOTTY; 4760 } 4761 4762 #ifdef CONFIG_COMPAT 4763 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4764 { 4765 /* 4766 * These all access 32-bit values anyway so no further 4767 * handling is necessary. 4768 */ 4769 switch (cmd) { 4770 case FS_IOC32_GETVERSION: 4771 cmd = FS_IOC_GETVERSION; 4772 break; 4773 } 4774 4775 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4776 } 4777 #endif 4778