1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 95 { 96 if (S_ISDIR(mode)) 97 return flags; 98 else if (S_ISREG(mode)) 99 return flags & ~FS_DIRSYNC_FL; 100 else 101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 102 } 103 104 /* 105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 106 */ 107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 108 { 109 unsigned int iflags = 0; 110 111 if (flags & BTRFS_INODE_SYNC) 112 iflags |= FS_SYNC_FL; 113 if (flags & BTRFS_INODE_IMMUTABLE) 114 iflags |= FS_IMMUTABLE_FL; 115 if (flags & BTRFS_INODE_APPEND) 116 iflags |= FS_APPEND_FL; 117 if (flags & BTRFS_INODE_NODUMP) 118 iflags |= FS_NODUMP_FL; 119 if (flags & BTRFS_INODE_NOATIME) 120 iflags |= FS_NOATIME_FL; 121 if (flags & BTRFS_INODE_DIRSYNC) 122 iflags |= FS_DIRSYNC_FL; 123 if (flags & BTRFS_INODE_NODATACOW) 124 iflags |= FS_NOCOW_FL; 125 126 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 127 iflags |= FS_COMPR_FL; 128 else if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 131 return iflags; 132 } 133 134 /* 135 * Update inode->i_flags based on the btrfs internal flags. 136 */ 137 void btrfs_update_iflags(struct inode *inode) 138 { 139 struct btrfs_inode *ip = BTRFS_I(inode); 140 unsigned int new_fl = 0; 141 142 if (ip->flags & BTRFS_INODE_SYNC) 143 new_fl |= S_SYNC; 144 if (ip->flags & BTRFS_INODE_IMMUTABLE) 145 new_fl |= S_IMMUTABLE; 146 if (ip->flags & BTRFS_INODE_APPEND) 147 new_fl |= S_APPEND; 148 if (ip->flags & BTRFS_INODE_NOATIME) 149 new_fl |= S_NOATIME; 150 if (ip->flags & BTRFS_INODE_DIRSYNC) 151 new_fl |= S_DIRSYNC; 152 153 set_mask_bits(&inode->i_flags, 154 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 155 new_fl); 156 } 157 158 /* 159 * Inherit flags from the parent inode. 160 * 161 * Currently only the compression flags and the cow flags are inherited. 162 */ 163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 164 { 165 unsigned int flags; 166 167 if (!dir) 168 return; 169 170 flags = BTRFS_I(dir)->flags; 171 172 if (flags & BTRFS_INODE_NOCOMPRESS) { 173 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 174 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 175 } else if (flags & BTRFS_INODE_COMPRESS) { 176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 177 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 178 } 179 180 if (flags & BTRFS_INODE_NODATACOW) { 181 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 182 if (S_ISREG(inode->i_mode)) 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 184 } 185 186 btrfs_update_iflags(inode); 187 } 188 189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 190 { 191 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 192 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 193 194 if (copy_to_user(arg, &flags, sizeof(flags))) 195 return -EFAULT; 196 return 0; 197 } 198 199 static int check_flags(unsigned int flags) 200 { 201 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 202 FS_NOATIME_FL | FS_NODUMP_FL | \ 203 FS_SYNC_FL | FS_DIRSYNC_FL | \ 204 FS_NOCOMP_FL | FS_COMPR_FL | 205 FS_NOCOW_FL)) 206 return -EOPNOTSUPP; 207 208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 215 { 216 struct inode *inode = file_inode(file); 217 struct btrfs_inode *ip = BTRFS_I(inode); 218 struct btrfs_root *root = ip->root; 219 struct btrfs_trans_handle *trans; 220 unsigned int flags, oldflags; 221 int ret; 222 u64 ip_oldflags; 223 unsigned int i_oldflags; 224 umode_t mode; 225 226 if (!inode_owner_or_capable(inode)) 227 return -EPERM; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (copy_from_user(&flags, arg, sizeof(flags))) 233 return -EFAULT; 234 235 ret = check_flags(flags); 236 if (ret) 237 return ret; 238 239 ret = mnt_want_write_file(file); 240 if (ret) 241 return ret; 242 243 mutex_lock(&inode->i_mutex); 244 245 ip_oldflags = ip->flags; 246 i_oldflags = inode->i_flags; 247 mode = inode->i_mode; 248 249 flags = btrfs_mask_flags(inode->i_mode, flags); 250 oldflags = btrfs_flags_to_ioctl(ip->flags); 251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 252 if (!capable(CAP_LINUX_IMMUTABLE)) { 253 ret = -EPERM; 254 goto out_unlock; 255 } 256 } 257 258 if (flags & FS_SYNC_FL) 259 ip->flags |= BTRFS_INODE_SYNC; 260 else 261 ip->flags &= ~BTRFS_INODE_SYNC; 262 if (flags & FS_IMMUTABLE_FL) 263 ip->flags |= BTRFS_INODE_IMMUTABLE; 264 else 265 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 266 if (flags & FS_APPEND_FL) 267 ip->flags |= BTRFS_INODE_APPEND; 268 else 269 ip->flags &= ~BTRFS_INODE_APPEND; 270 if (flags & FS_NODUMP_FL) 271 ip->flags |= BTRFS_INODE_NODUMP; 272 else 273 ip->flags &= ~BTRFS_INODE_NODUMP; 274 if (flags & FS_NOATIME_FL) 275 ip->flags |= BTRFS_INODE_NOATIME; 276 else 277 ip->flags &= ~BTRFS_INODE_NOATIME; 278 if (flags & FS_DIRSYNC_FL) 279 ip->flags |= BTRFS_INODE_DIRSYNC; 280 else 281 ip->flags &= ~BTRFS_INODE_DIRSYNC; 282 if (flags & FS_NOCOW_FL) { 283 if (S_ISREG(mode)) { 284 /* 285 * It's safe to turn csums off here, no extents exist. 286 * Otherwise we want the flag to reflect the real COW 287 * status of the file and will not set it. 288 */ 289 if (inode->i_size == 0) 290 ip->flags |= BTRFS_INODE_NODATACOW 291 | BTRFS_INODE_NODATASUM; 292 } else { 293 ip->flags |= BTRFS_INODE_NODATACOW; 294 } 295 } else { 296 /* 297 * Revert back under same assuptions as above 298 */ 299 if (S_ISREG(mode)) { 300 if (inode->i_size == 0) 301 ip->flags &= ~(BTRFS_INODE_NODATACOW 302 | BTRFS_INODE_NODATASUM); 303 } else { 304 ip->flags &= ~BTRFS_INODE_NODATACOW; 305 } 306 } 307 308 /* 309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 310 * flag may be changed automatically if compression code won't make 311 * things smaller. 312 */ 313 if (flags & FS_NOCOMP_FL) { 314 ip->flags &= ~BTRFS_INODE_COMPRESS; 315 ip->flags |= BTRFS_INODE_NOCOMPRESS; 316 317 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 318 if (ret && ret != -ENODATA) 319 goto out_drop; 320 } else if (flags & FS_COMPR_FL) { 321 const char *comp; 322 323 ip->flags |= BTRFS_INODE_COMPRESS; 324 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 325 326 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 327 comp = "lzo"; 328 else 329 comp = "zlib"; 330 ret = btrfs_set_prop(inode, "btrfs.compression", 331 comp, strlen(comp), 0); 332 if (ret) 333 goto out_drop; 334 335 } else { 336 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 337 if (ret && ret != -ENODATA) 338 goto out_drop; 339 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 340 } 341 342 trans = btrfs_start_transaction(root, 1); 343 if (IS_ERR(trans)) { 344 ret = PTR_ERR(trans); 345 goto out_drop; 346 } 347 348 btrfs_update_iflags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = CURRENT_TIME; 351 ret = btrfs_update_inode(trans, root, inode); 352 353 btrfs_end_transaction(trans, root); 354 out_drop: 355 if (ret) { 356 ip->flags = ip_oldflags; 357 inode->i_flags = i_oldflags; 358 } 359 360 out_unlock: 361 mutex_unlock(&inode->i_mutex); 362 mnt_drop_write_file(file); 363 return ret; 364 } 365 366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 367 { 368 struct inode *inode = file_inode(file); 369 370 return put_user(inode->i_generation, arg); 371 } 372 373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 374 { 375 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 376 struct btrfs_device *device; 377 struct request_queue *q; 378 struct fstrim_range range; 379 u64 minlen = ULLONG_MAX; 380 u64 num_devices = 0; 381 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 382 int ret; 383 384 if (!capable(CAP_SYS_ADMIN)) 385 return -EPERM; 386 387 rcu_read_lock(); 388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 389 dev_list) { 390 if (!device->bdev) 391 continue; 392 q = bdev_get_queue(device->bdev); 393 if (blk_queue_discard(q)) { 394 num_devices++; 395 minlen = min((u64)q->limits.discard_granularity, 396 minlen); 397 } 398 } 399 rcu_read_unlock(); 400 401 if (!num_devices) 402 return -EOPNOTSUPP; 403 if (copy_from_user(&range, arg, sizeof(range))) 404 return -EFAULT; 405 if (range.start > total_bytes || 406 range.len < fs_info->sb->s_blocksize) 407 return -EINVAL; 408 409 range.len = min(range.len, total_bytes - range.start); 410 range.minlen = max(range.minlen, minlen); 411 ret = btrfs_trim_fs(fs_info->tree_root, &range); 412 if (ret < 0) 413 return ret; 414 415 if (copy_to_user(arg, &range, sizeof(range))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 int btrfs_is_empty_uuid(u8 *uuid) 422 { 423 int i; 424 425 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 426 if (uuid[i]) 427 return 0; 428 } 429 return 1; 430 } 431 432 static noinline int create_subvol(struct inode *dir, 433 struct dentry *dentry, 434 char *name, int namelen, 435 u64 *async_transid, 436 struct btrfs_qgroup_inherit *inherit) 437 { 438 struct btrfs_trans_handle *trans; 439 struct btrfs_key key; 440 struct btrfs_root_item root_item; 441 struct btrfs_inode_item *inode_item; 442 struct extent_buffer *leaf; 443 struct btrfs_root *root = BTRFS_I(dir)->root; 444 struct btrfs_root *new_root; 445 struct btrfs_block_rsv block_rsv; 446 struct timespec cur_time = CURRENT_TIME; 447 struct inode *inode; 448 int ret; 449 int err; 450 u64 objectid; 451 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 452 u64 index = 0; 453 u64 qgroup_reserved; 454 uuid_le new_uuid; 455 456 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 457 if (ret) 458 return ret; 459 460 /* 461 * Don't create subvolume whose level is not zero. Or qgroup will be 462 * screwed up since it assume subvolme qgroup's level to be 0. 463 */ 464 if (btrfs_qgroup_level(objectid)) 465 return -ENOSPC; 466 467 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 468 /* 469 * The same as the snapshot creation, please see the comment 470 * of create_snapshot(). 471 */ 472 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 473 8, &qgroup_reserved, false); 474 if (ret) 475 return ret; 476 477 trans = btrfs_start_transaction(root, 0); 478 if (IS_ERR(trans)) { 479 ret = PTR_ERR(trans); 480 btrfs_subvolume_release_metadata(root, &block_rsv, 481 qgroup_reserved); 482 return ret; 483 } 484 trans->block_rsv = &block_rsv; 485 trans->bytes_reserved = block_rsv.size; 486 487 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 488 if (ret) 489 goto fail; 490 491 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 492 if (IS_ERR(leaf)) { 493 ret = PTR_ERR(leaf); 494 goto fail; 495 } 496 497 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 498 btrfs_set_header_bytenr(leaf, leaf->start); 499 btrfs_set_header_generation(leaf, trans->transid); 500 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 501 btrfs_set_header_owner(leaf, objectid); 502 503 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 504 BTRFS_FSID_SIZE); 505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 506 btrfs_header_chunk_tree_uuid(leaf), 507 BTRFS_UUID_SIZE); 508 btrfs_mark_buffer_dirty(leaf); 509 510 memset(&root_item, 0, sizeof(root_item)); 511 512 inode_item = &root_item.inode; 513 btrfs_set_stack_inode_generation(inode_item, 1); 514 btrfs_set_stack_inode_size(inode_item, 3); 515 btrfs_set_stack_inode_nlink(inode_item, 1); 516 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 517 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 518 519 btrfs_set_root_flags(&root_item, 0); 520 btrfs_set_root_limit(&root_item, 0); 521 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 522 523 btrfs_set_root_bytenr(&root_item, leaf->start); 524 btrfs_set_root_generation(&root_item, trans->transid); 525 btrfs_set_root_level(&root_item, 0); 526 btrfs_set_root_refs(&root_item, 1); 527 btrfs_set_root_used(&root_item, leaf->len); 528 btrfs_set_root_last_snapshot(&root_item, 0); 529 530 btrfs_set_root_generation_v2(&root_item, 531 btrfs_root_generation(&root_item)); 532 uuid_le_gen(&new_uuid); 533 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 534 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 535 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 536 root_item.ctime = root_item.otime; 537 btrfs_set_root_ctransid(&root_item, trans->transid); 538 btrfs_set_root_otransid(&root_item, trans->transid); 539 540 btrfs_tree_unlock(leaf); 541 free_extent_buffer(leaf); 542 leaf = NULL; 543 544 btrfs_set_root_dirid(&root_item, new_dirid); 545 546 key.objectid = objectid; 547 key.offset = 0; 548 key.type = BTRFS_ROOT_ITEM_KEY; 549 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 550 &root_item); 551 if (ret) 552 goto fail; 553 554 key.offset = (u64)-1; 555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 556 if (IS_ERR(new_root)) { 557 ret = PTR_ERR(new_root); 558 btrfs_abort_transaction(trans, root, ret); 559 goto fail; 560 } 561 562 btrfs_record_root_in_trans(trans, new_root); 563 564 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 565 if (ret) { 566 /* We potentially lose an unused inode item here */ 567 btrfs_abort_transaction(trans, root, ret); 568 goto fail; 569 } 570 571 /* 572 * insert the directory item 573 */ 574 ret = btrfs_set_inode_index(dir, &index); 575 if (ret) { 576 btrfs_abort_transaction(trans, root, ret); 577 goto fail; 578 } 579 580 ret = btrfs_insert_dir_item(trans, root, 581 name, namelen, dir, &key, 582 BTRFS_FT_DIR, index); 583 if (ret) { 584 btrfs_abort_transaction(trans, root, ret); 585 goto fail; 586 } 587 588 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 589 ret = btrfs_update_inode(trans, root, dir); 590 BUG_ON(ret); 591 592 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 593 objectid, root->root_key.objectid, 594 btrfs_ino(dir), index, name, namelen); 595 BUG_ON(ret); 596 597 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 598 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 599 objectid); 600 if (ret) 601 btrfs_abort_transaction(trans, root, ret); 602 603 fail: 604 trans->block_rsv = NULL; 605 trans->bytes_reserved = 0; 606 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 607 608 if (async_transid) { 609 *async_transid = trans->transid; 610 err = btrfs_commit_transaction_async(trans, root, 1); 611 if (err) 612 err = btrfs_commit_transaction(trans, root); 613 } else { 614 err = btrfs_commit_transaction(trans, root); 615 } 616 if (err && !ret) 617 ret = err; 618 619 if (!ret) { 620 inode = btrfs_lookup_dentry(dir, dentry); 621 if (IS_ERR(inode)) 622 return PTR_ERR(inode); 623 d_instantiate(dentry, inode); 624 } 625 return ret; 626 } 627 628 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 629 { 630 s64 writers; 631 DEFINE_WAIT(wait); 632 633 do { 634 prepare_to_wait(&root->subv_writers->wait, &wait, 635 TASK_UNINTERRUPTIBLE); 636 637 writers = percpu_counter_sum(&root->subv_writers->counter); 638 if (writers) 639 schedule(); 640 641 finish_wait(&root->subv_writers->wait, &wait); 642 } while (writers); 643 } 644 645 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 646 struct dentry *dentry, char *name, int namelen, 647 u64 *async_transid, bool readonly, 648 struct btrfs_qgroup_inherit *inherit) 649 { 650 struct inode *inode; 651 struct btrfs_pending_snapshot *pending_snapshot; 652 struct btrfs_trans_handle *trans; 653 int ret; 654 655 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 656 return -EINVAL; 657 658 atomic_inc(&root->will_be_snapshoted); 659 smp_mb__after_atomic(); 660 btrfs_wait_for_no_snapshoting_writes(root); 661 662 ret = btrfs_start_delalloc_inodes(root, 0); 663 if (ret) 664 goto out; 665 666 btrfs_wait_ordered_extents(root, -1); 667 668 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 669 if (!pending_snapshot) { 670 ret = -ENOMEM; 671 goto out; 672 } 673 674 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 675 BTRFS_BLOCK_RSV_TEMP); 676 /* 677 * 1 - parent dir inode 678 * 2 - dir entries 679 * 1 - root item 680 * 2 - root ref/backref 681 * 1 - root of snapshot 682 * 1 - UUID item 683 */ 684 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 685 &pending_snapshot->block_rsv, 8, 686 &pending_snapshot->qgroup_reserved, 687 false); 688 if (ret) 689 goto free; 690 691 pending_snapshot->dentry = dentry; 692 pending_snapshot->root = root; 693 pending_snapshot->readonly = readonly; 694 pending_snapshot->dir = dir; 695 pending_snapshot->inherit = inherit; 696 697 trans = btrfs_start_transaction(root, 0); 698 if (IS_ERR(trans)) { 699 ret = PTR_ERR(trans); 700 goto fail; 701 } 702 703 spin_lock(&root->fs_info->trans_lock); 704 list_add(&pending_snapshot->list, 705 &trans->transaction->pending_snapshots); 706 spin_unlock(&root->fs_info->trans_lock); 707 if (async_transid) { 708 *async_transid = trans->transid; 709 ret = btrfs_commit_transaction_async(trans, 710 root->fs_info->extent_root, 1); 711 if (ret) 712 ret = btrfs_commit_transaction(trans, root); 713 } else { 714 ret = btrfs_commit_transaction(trans, 715 root->fs_info->extent_root); 716 } 717 if (ret) 718 goto fail; 719 720 ret = pending_snapshot->error; 721 if (ret) 722 goto fail; 723 724 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 725 if (ret) 726 goto fail; 727 728 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 729 if (IS_ERR(inode)) { 730 ret = PTR_ERR(inode); 731 goto fail; 732 } 733 734 d_instantiate(dentry, inode); 735 ret = 0; 736 fail: 737 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 738 &pending_snapshot->block_rsv, 739 pending_snapshot->qgroup_reserved); 740 free: 741 kfree(pending_snapshot); 742 out: 743 if (atomic_dec_and_test(&root->will_be_snapshoted)) 744 wake_up_atomic_t(&root->will_be_snapshoted); 745 return ret; 746 } 747 748 /* copy of may_delete in fs/namei.c() 749 * Check whether we can remove a link victim from directory dir, check 750 * whether the type of victim is right. 751 * 1. We can't do it if dir is read-only (done in permission()) 752 * 2. We should have write and exec permissions on dir 753 * 3. We can't remove anything from append-only dir 754 * 4. We can't do anything with immutable dir (done in permission()) 755 * 5. If the sticky bit on dir is set we should either 756 * a. be owner of dir, or 757 * b. be owner of victim, or 758 * c. have CAP_FOWNER capability 759 * 6. If the victim is append-only or immutable we can't do antyhing with 760 * links pointing to it. 761 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 762 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 763 * 9. We can't remove a root or mountpoint. 764 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 765 * nfs_async_unlink(). 766 */ 767 768 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 769 { 770 int error; 771 772 if (d_really_is_negative(victim)) 773 return -ENOENT; 774 775 BUG_ON(d_inode(victim->d_parent) != dir); 776 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 777 778 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 779 if (error) 780 return error; 781 if (IS_APPEND(dir)) 782 return -EPERM; 783 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 784 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 785 return -EPERM; 786 if (isdir) { 787 if (!d_is_dir(victim)) 788 return -ENOTDIR; 789 if (IS_ROOT(victim)) 790 return -EBUSY; 791 } else if (d_is_dir(victim)) 792 return -EISDIR; 793 if (IS_DEADDIR(dir)) 794 return -ENOENT; 795 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 796 return -EBUSY; 797 return 0; 798 } 799 800 /* copy of may_create in fs/namei.c() */ 801 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 802 { 803 if (d_really_is_positive(child)) 804 return -EEXIST; 805 if (IS_DEADDIR(dir)) 806 return -ENOENT; 807 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 808 } 809 810 /* 811 * Create a new subvolume below @parent. This is largely modeled after 812 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 813 * inside this filesystem so it's quite a bit simpler. 814 */ 815 static noinline int btrfs_mksubvol(struct path *parent, 816 char *name, int namelen, 817 struct btrfs_root *snap_src, 818 u64 *async_transid, bool readonly, 819 struct btrfs_qgroup_inherit *inherit) 820 { 821 struct inode *dir = d_inode(parent->dentry); 822 struct dentry *dentry; 823 int error; 824 825 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 826 if (error == -EINTR) 827 return error; 828 829 dentry = lookup_one_len(name, parent->dentry, namelen); 830 error = PTR_ERR(dentry); 831 if (IS_ERR(dentry)) 832 goto out_unlock; 833 834 error = -EEXIST; 835 if (d_really_is_positive(dentry)) 836 goto out_dput; 837 838 error = btrfs_may_create(dir, dentry); 839 if (error) 840 goto out_dput; 841 842 /* 843 * even if this name doesn't exist, we may get hash collisions. 844 * check for them now when we can safely fail 845 */ 846 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 847 dir->i_ino, name, 848 namelen); 849 if (error) 850 goto out_dput; 851 852 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 853 854 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 855 goto out_up_read; 856 857 if (snap_src) { 858 error = create_snapshot(snap_src, dir, dentry, name, namelen, 859 async_transid, readonly, inherit); 860 } else { 861 error = create_subvol(dir, dentry, name, namelen, 862 async_transid, inherit); 863 } 864 if (!error) 865 fsnotify_mkdir(dir, dentry); 866 out_up_read: 867 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 868 out_dput: 869 dput(dentry); 870 out_unlock: 871 mutex_unlock(&dir->i_mutex); 872 return error; 873 } 874 875 /* 876 * When we're defragging a range, we don't want to kick it off again 877 * if it is really just waiting for delalloc to send it down. 878 * If we find a nice big extent or delalloc range for the bytes in the 879 * file you want to defrag, we return 0 to let you know to skip this 880 * part of the file 881 */ 882 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 883 { 884 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 885 struct extent_map *em = NULL; 886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 887 u64 end; 888 889 read_lock(&em_tree->lock); 890 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 891 read_unlock(&em_tree->lock); 892 893 if (em) { 894 end = extent_map_end(em); 895 free_extent_map(em); 896 if (end - offset > thresh) 897 return 0; 898 } 899 /* if we already have a nice delalloc here, just stop */ 900 thresh /= 2; 901 end = count_range_bits(io_tree, &offset, offset + thresh, 902 thresh, EXTENT_DELALLOC, 1); 903 if (end >= thresh) 904 return 0; 905 return 1; 906 } 907 908 /* 909 * helper function to walk through a file and find extents 910 * newer than a specific transid, and smaller than thresh. 911 * 912 * This is used by the defragging code to find new and small 913 * extents 914 */ 915 static int find_new_extents(struct btrfs_root *root, 916 struct inode *inode, u64 newer_than, 917 u64 *off, u32 thresh) 918 { 919 struct btrfs_path *path; 920 struct btrfs_key min_key; 921 struct extent_buffer *leaf; 922 struct btrfs_file_extent_item *extent; 923 int type; 924 int ret; 925 u64 ino = btrfs_ino(inode); 926 927 path = btrfs_alloc_path(); 928 if (!path) 929 return -ENOMEM; 930 931 min_key.objectid = ino; 932 min_key.type = BTRFS_EXTENT_DATA_KEY; 933 min_key.offset = *off; 934 935 while (1) { 936 ret = btrfs_search_forward(root, &min_key, path, newer_than); 937 if (ret != 0) 938 goto none; 939 process_slot: 940 if (min_key.objectid != ino) 941 goto none; 942 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 943 goto none; 944 945 leaf = path->nodes[0]; 946 extent = btrfs_item_ptr(leaf, path->slots[0], 947 struct btrfs_file_extent_item); 948 949 type = btrfs_file_extent_type(leaf, extent); 950 if (type == BTRFS_FILE_EXTENT_REG && 951 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 952 check_defrag_in_cache(inode, min_key.offset, thresh)) { 953 *off = min_key.offset; 954 btrfs_free_path(path); 955 return 0; 956 } 957 958 path->slots[0]++; 959 if (path->slots[0] < btrfs_header_nritems(leaf)) { 960 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 961 goto process_slot; 962 } 963 964 if (min_key.offset == (u64)-1) 965 goto none; 966 967 min_key.offset++; 968 btrfs_release_path(path); 969 } 970 none: 971 btrfs_free_path(path); 972 return -ENOENT; 973 } 974 975 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 976 { 977 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 979 struct extent_map *em; 980 u64 len = PAGE_CACHE_SIZE; 981 982 /* 983 * hopefully we have this extent in the tree already, try without 984 * the full extent lock 985 */ 986 read_lock(&em_tree->lock); 987 em = lookup_extent_mapping(em_tree, start, len); 988 read_unlock(&em_tree->lock); 989 990 if (!em) { 991 struct extent_state *cached = NULL; 992 u64 end = start + len - 1; 993 994 /* get the big lock and read metadata off disk */ 995 lock_extent_bits(io_tree, start, end, 0, &cached); 996 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 997 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 998 999 if (IS_ERR(em)) 1000 return NULL; 1001 } 1002 1003 return em; 1004 } 1005 1006 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1007 { 1008 struct extent_map *next; 1009 bool ret = true; 1010 1011 /* this is the last extent */ 1012 if (em->start + em->len >= i_size_read(inode)) 1013 return false; 1014 1015 next = defrag_lookup_extent(inode, em->start + em->len); 1016 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1017 ret = false; 1018 else if ((em->block_start + em->block_len == next->block_start) && 1019 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024)) 1020 ret = false; 1021 1022 free_extent_map(next); 1023 return ret; 1024 } 1025 1026 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1027 u64 *last_len, u64 *skip, u64 *defrag_end, 1028 int compress) 1029 { 1030 struct extent_map *em; 1031 int ret = 1; 1032 bool next_mergeable = true; 1033 1034 /* 1035 * make sure that once we start defragging an extent, we keep on 1036 * defragging it 1037 */ 1038 if (start < *defrag_end) 1039 return 1; 1040 1041 *skip = 0; 1042 1043 em = defrag_lookup_extent(inode, start); 1044 if (!em) 1045 return 0; 1046 1047 /* this will cover holes, and inline extents */ 1048 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1049 ret = 0; 1050 goto out; 1051 } 1052 1053 next_mergeable = defrag_check_next_extent(inode, em); 1054 /* 1055 * we hit a real extent, if it is big or the next extent is not a 1056 * real extent, don't bother defragging it 1057 */ 1058 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1059 (em->len >= thresh || !next_mergeable)) 1060 ret = 0; 1061 out: 1062 /* 1063 * last_len ends up being a counter of how many bytes we've defragged. 1064 * every time we choose not to defrag an extent, we reset *last_len 1065 * so that the next tiny extent will force a defrag. 1066 * 1067 * The end result of this is that tiny extents before a single big 1068 * extent will force at least part of that big extent to be defragged. 1069 */ 1070 if (ret) { 1071 *defrag_end = extent_map_end(em); 1072 } else { 1073 *last_len = 0; 1074 *skip = extent_map_end(em); 1075 *defrag_end = 0; 1076 } 1077 1078 free_extent_map(em); 1079 return ret; 1080 } 1081 1082 /* 1083 * it doesn't do much good to defrag one or two pages 1084 * at a time. This pulls in a nice chunk of pages 1085 * to COW and defrag. 1086 * 1087 * It also makes sure the delalloc code has enough 1088 * dirty data to avoid making new small extents as part 1089 * of the defrag 1090 * 1091 * It's a good idea to start RA on this range 1092 * before calling this. 1093 */ 1094 static int cluster_pages_for_defrag(struct inode *inode, 1095 struct page **pages, 1096 unsigned long start_index, 1097 unsigned long num_pages) 1098 { 1099 unsigned long file_end; 1100 u64 isize = i_size_read(inode); 1101 u64 page_start; 1102 u64 page_end; 1103 u64 page_cnt; 1104 int ret; 1105 int i; 1106 int i_done; 1107 struct btrfs_ordered_extent *ordered; 1108 struct extent_state *cached_state = NULL; 1109 struct extent_io_tree *tree; 1110 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1111 1112 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1113 if (!isize || start_index > file_end) 1114 return 0; 1115 1116 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1117 1118 ret = btrfs_delalloc_reserve_space(inode, 1119 page_cnt << PAGE_CACHE_SHIFT); 1120 if (ret) 1121 return ret; 1122 i_done = 0; 1123 tree = &BTRFS_I(inode)->io_tree; 1124 1125 /* step one, lock all the pages */ 1126 for (i = 0; i < page_cnt; i++) { 1127 struct page *page; 1128 again: 1129 page = find_or_create_page(inode->i_mapping, 1130 start_index + i, mask); 1131 if (!page) 1132 break; 1133 1134 page_start = page_offset(page); 1135 page_end = page_start + PAGE_CACHE_SIZE - 1; 1136 while (1) { 1137 lock_extent_bits(tree, page_start, page_end, 1138 0, &cached_state); 1139 ordered = btrfs_lookup_ordered_extent(inode, 1140 page_start); 1141 unlock_extent_cached(tree, page_start, page_end, 1142 &cached_state, GFP_NOFS); 1143 if (!ordered) 1144 break; 1145 1146 unlock_page(page); 1147 btrfs_start_ordered_extent(inode, ordered, 1); 1148 btrfs_put_ordered_extent(ordered); 1149 lock_page(page); 1150 /* 1151 * we unlocked the page above, so we need check if 1152 * it was released or not. 1153 */ 1154 if (page->mapping != inode->i_mapping) { 1155 unlock_page(page); 1156 page_cache_release(page); 1157 goto again; 1158 } 1159 } 1160 1161 if (!PageUptodate(page)) { 1162 btrfs_readpage(NULL, page); 1163 lock_page(page); 1164 if (!PageUptodate(page)) { 1165 unlock_page(page); 1166 page_cache_release(page); 1167 ret = -EIO; 1168 break; 1169 } 1170 } 1171 1172 if (page->mapping != inode->i_mapping) { 1173 unlock_page(page); 1174 page_cache_release(page); 1175 goto again; 1176 } 1177 1178 pages[i] = page; 1179 i_done++; 1180 } 1181 if (!i_done || ret) 1182 goto out; 1183 1184 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1185 goto out; 1186 1187 /* 1188 * so now we have a nice long stream of locked 1189 * and up to date pages, lets wait on them 1190 */ 1191 for (i = 0; i < i_done; i++) 1192 wait_on_page_writeback(pages[i]); 1193 1194 page_start = page_offset(pages[0]); 1195 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1196 1197 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1198 page_start, page_end - 1, 0, &cached_state); 1199 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1200 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1201 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1202 &cached_state, GFP_NOFS); 1203 1204 if (i_done != page_cnt) { 1205 spin_lock(&BTRFS_I(inode)->lock); 1206 BTRFS_I(inode)->outstanding_extents++; 1207 spin_unlock(&BTRFS_I(inode)->lock); 1208 btrfs_delalloc_release_space(inode, 1209 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1210 } 1211 1212 1213 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1214 &cached_state, GFP_NOFS); 1215 1216 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1217 page_start, page_end - 1, &cached_state, 1218 GFP_NOFS); 1219 1220 for (i = 0; i < i_done; i++) { 1221 clear_page_dirty_for_io(pages[i]); 1222 ClearPageChecked(pages[i]); 1223 set_page_extent_mapped(pages[i]); 1224 set_page_dirty(pages[i]); 1225 unlock_page(pages[i]); 1226 page_cache_release(pages[i]); 1227 } 1228 return i_done; 1229 out: 1230 for (i = 0; i < i_done; i++) { 1231 unlock_page(pages[i]); 1232 page_cache_release(pages[i]); 1233 } 1234 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1235 return ret; 1236 1237 } 1238 1239 int btrfs_defrag_file(struct inode *inode, struct file *file, 1240 struct btrfs_ioctl_defrag_range_args *range, 1241 u64 newer_than, unsigned long max_to_defrag) 1242 { 1243 struct btrfs_root *root = BTRFS_I(inode)->root; 1244 struct file_ra_state *ra = NULL; 1245 unsigned long last_index; 1246 u64 isize = i_size_read(inode); 1247 u64 last_len = 0; 1248 u64 skip = 0; 1249 u64 defrag_end = 0; 1250 u64 newer_off = range->start; 1251 unsigned long i; 1252 unsigned long ra_index = 0; 1253 int ret; 1254 int defrag_count = 0; 1255 int compress_type = BTRFS_COMPRESS_ZLIB; 1256 u32 extent_thresh = range->extent_thresh; 1257 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1258 unsigned long cluster = max_cluster; 1259 u64 new_align = ~((u64)128 * 1024 - 1); 1260 struct page **pages = NULL; 1261 1262 if (isize == 0) 1263 return 0; 1264 1265 if (range->start >= isize) 1266 return -EINVAL; 1267 1268 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1269 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1270 return -EINVAL; 1271 if (range->compress_type) 1272 compress_type = range->compress_type; 1273 } 1274 1275 if (extent_thresh == 0) 1276 extent_thresh = 256 * 1024; 1277 1278 /* 1279 * if we were not given a file, allocate a readahead 1280 * context 1281 */ 1282 if (!file) { 1283 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1284 if (!ra) 1285 return -ENOMEM; 1286 file_ra_state_init(ra, inode->i_mapping); 1287 } else { 1288 ra = &file->f_ra; 1289 } 1290 1291 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1292 GFP_NOFS); 1293 if (!pages) { 1294 ret = -ENOMEM; 1295 goto out_ra; 1296 } 1297 1298 /* find the last page to defrag */ 1299 if (range->start + range->len > range->start) { 1300 last_index = min_t(u64, isize - 1, 1301 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1302 } else { 1303 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1304 } 1305 1306 if (newer_than) { 1307 ret = find_new_extents(root, inode, newer_than, 1308 &newer_off, 64 * 1024); 1309 if (!ret) { 1310 range->start = newer_off; 1311 /* 1312 * we always align our defrag to help keep 1313 * the extents in the file evenly spaced 1314 */ 1315 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1316 } else 1317 goto out_ra; 1318 } else { 1319 i = range->start >> PAGE_CACHE_SHIFT; 1320 } 1321 if (!max_to_defrag) 1322 max_to_defrag = last_index - i + 1; 1323 1324 /* 1325 * make writeback starts from i, so the defrag range can be 1326 * written sequentially. 1327 */ 1328 if (i < inode->i_mapping->writeback_index) 1329 inode->i_mapping->writeback_index = i; 1330 1331 while (i <= last_index && defrag_count < max_to_defrag && 1332 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) { 1333 /* 1334 * make sure we stop running if someone unmounts 1335 * the FS 1336 */ 1337 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1338 break; 1339 1340 if (btrfs_defrag_cancelled(root->fs_info)) { 1341 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n"); 1342 ret = -EAGAIN; 1343 break; 1344 } 1345 1346 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1347 extent_thresh, &last_len, &skip, 1348 &defrag_end, range->flags & 1349 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1350 unsigned long next; 1351 /* 1352 * the should_defrag function tells us how much to skip 1353 * bump our counter by the suggested amount 1354 */ 1355 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE); 1356 i = max(i + 1, next); 1357 continue; 1358 } 1359 1360 if (!newer_than) { 1361 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1362 PAGE_CACHE_SHIFT) - i; 1363 cluster = min(cluster, max_cluster); 1364 } else { 1365 cluster = max_cluster; 1366 } 1367 1368 if (i + cluster > ra_index) { 1369 ra_index = max(i, ra_index); 1370 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1371 cluster); 1372 ra_index += cluster; 1373 } 1374 1375 mutex_lock(&inode->i_mutex); 1376 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1377 BTRFS_I(inode)->force_compress = compress_type; 1378 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1379 if (ret < 0) { 1380 mutex_unlock(&inode->i_mutex); 1381 goto out_ra; 1382 } 1383 1384 defrag_count += ret; 1385 balance_dirty_pages_ratelimited(inode->i_mapping); 1386 mutex_unlock(&inode->i_mutex); 1387 1388 if (newer_than) { 1389 if (newer_off == (u64)-1) 1390 break; 1391 1392 if (ret > 0) 1393 i += ret; 1394 1395 newer_off = max(newer_off + 1, 1396 (u64)i << PAGE_CACHE_SHIFT); 1397 1398 ret = find_new_extents(root, inode, 1399 newer_than, &newer_off, 1400 64 * 1024); 1401 if (!ret) { 1402 range->start = newer_off; 1403 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1404 } else { 1405 break; 1406 } 1407 } else { 1408 if (ret > 0) { 1409 i += ret; 1410 last_len += ret << PAGE_CACHE_SHIFT; 1411 } else { 1412 i++; 1413 last_len = 0; 1414 } 1415 } 1416 } 1417 1418 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1419 filemap_flush(inode->i_mapping); 1420 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1421 &BTRFS_I(inode)->runtime_flags)) 1422 filemap_flush(inode->i_mapping); 1423 } 1424 1425 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1426 /* the filemap_flush will queue IO into the worker threads, but 1427 * we have to make sure the IO is actually started and that 1428 * ordered extents get created before we return 1429 */ 1430 atomic_inc(&root->fs_info->async_submit_draining); 1431 while (atomic_read(&root->fs_info->nr_async_submits) || 1432 atomic_read(&root->fs_info->async_delalloc_pages)) { 1433 wait_event(root->fs_info->async_submit_wait, 1434 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1435 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1436 } 1437 atomic_dec(&root->fs_info->async_submit_draining); 1438 } 1439 1440 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1441 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1442 } 1443 1444 ret = defrag_count; 1445 1446 out_ra: 1447 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1448 mutex_lock(&inode->i_mutex); 1449 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1450 mutex_unlock(&inode->i_mutex); 1451 } 1452 if (!file) 1453 kfree(ra); 1454 kfree(pages); 1455 return ret; 1456 } 1457 1458 static noinline int btrfs_ioctl_resize(struct file *file, 1459 void __user *arg) 1460 { 1461 u64 new_size; 1462 u64 old_size; 1463 u64 devid = 1; 1464 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1465 struct btrfs_ioctl_vol_args *vol_args; 1466 struct btrfs_trans_handle *trans; 1467 struct btrfs_device *device = NULL; 1468 char *sizestr; 1469 char *retptr; 1470 char *devstr = NULL; 1471 int ret = 0; 1472 int mod = 0; 1473 1474 if (!capable(CAP_SYS_ADMIN)) 1475 return -EPERM; 1476 1477 ret = mnt_want_write_file(file); 1478 if (ret) 1479 return ret; 1480 1481 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1482 1)) { 1483 mnt_drop_write_file(file); 1484 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1485 } 1486 1487 mutex_lock(&root->fs_info->volume_mutex); 1488 vol_args = memdup_user(arg, sizeof(*vol_args)); 1489 if (IS_ERR(vol_args)) { 1490 ret = PTR_ERR(vol_args); 1491 goto out; 1492 } 1493 1494 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1495 1496 sizestr = vol_args->name; 1497 devstr = strchr(sizestr, ':'); 1498 if (devstr) { 1499 sizestr = devstr + 1; 1500 *devstr = '\0'; 1501 devstr = vol_args->name; 1502 ret = kstrtoull(devstr, 10, &devid); 1503 if (ret) 1504 goto out_free; 1505 if (!devid) { 1506 ret = -EINVAL; 1507 goto out_free; 1508 } 1509 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1510 } 1511 1512 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1513 if (!device) { 1514 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1515 devid); 1516 ret = -ENODEV; 1517 goto out_free; 1518 } 1519 1520 if (!device->writeable) { 1521 btrfs_info(root->fs_info, 1522 "resizer unable to apply on readonly device %llu", 1523 devid); 1524 ret = -EPERM; 1525 goto out_free; 1526 } 1527 1528 if (!strcmp(sizestr, "max")) 1529 new_size = device->bdev->bd_inode->i_size; 1530 else { 1531 if (sizestr[0] == '-') { 1532 mod = -1; 1533 sizestr++; 1534 } else if (sizestr[0] == '+') { 1535 mod = 1; 1536 sizestr++; 1537 } 1538 new_size = memparse(sizestr, &retptr); 1539 if (*retptr != '\0' || new_size == 0) { 1540 ret = -EINVAL; 1541 goto out_free; 1542 } 1543 } 1544 1545 if (device->is_tgtdev_for_dev_replace) { 1546 ret = -EPERM; 1547 goto out_free; 1548 } 1549 1550 old_size = btrfs_device_get_total_bytes(device); 1551 1552 if (mod < 0) { 1553 if (new_size > old_size) { 1554 ret = -EINVAL; 1555 goto out_free; 1556 } 1557 new_size = old_size - new_size; 1558 } else if (mod > 0) { 1559 if (new_size > ULLONG_MAX - old_size) { 1560 ret = -ERANGE; 1561 goto out_free; 1562 } 1563 new_size = old_size + new_size; 1564 } 1565 1566 if (new_size < 256 * 1024 * 1024) { 1567 ret = -EINVAL; 1568 goto out_free; 1569 } 1570 if (new_size > device->bdev->bd_inode->i_size) { 1571 ret = -EFBIG; 1572 goto out_free; 1573 } 1574 1575 new_size = div_u64(new_size, root->sectorsize); 1576 new_size *= root->sectorsize; 1577 1578 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n", 1579 rcu_str_deref(device->name), new_size); 1580 1581 if (new_size > old_size) { 1582 trans = btrfs_start_transaction(root, 0); 1583 if (IS_ERR(trans)) { 1584 ret = PTR_ERR(trans); 1585 goto out_free; 1586 } 1587 ret = btrfs_grow_device(trans, device, new_size); 1588 btrfs_commit_transaction(trans, root); 1589 } else if (new_size < old_size) { 1590 ret = btrfs_shrink_device(device, new_size); 1591 } /* equal, nothing need to do */ 1592 1593 out_free: 1594 kfree(vol_args); 1595 out: 1596 mutex_unlock(&root->fs_info->volume_mutex); 1597 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1598 mnt_drop_write_file(file); 1599 return ret; 1600 } 1601 1602 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1603 char *name, unsigned long fd, int subvol, 1604 u64 *transid, bool readonly, 1605 struct btrfs_qgroup_inherit *inherit) 1606 { 1607 int namelen; 1608 int ret = 0; 1609 1610 ret = mnt_want_write_file(file); 1611 if (ret) 1612 goto out; 1613 1614 namelen = strlen(name); 1615 if (strchr(name, '/')) { 1616 ret = -EINVAL; 1617 goto out_drop_write; 1618 } 1619 1620 if (name[0] == '.' && 1621 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1622 ret = -EEXIST; 1623 goto out_drop_write; 1624 } 1625 1626 if (subvol) { 1627 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1628 NULL, transid, readonly, inherit); 1629 } else { 1630 struct fd src = fdget(fd); 1631 struct inode *src_inode; 1632 if (!src.file) { 1633 ret = -EINVAL; 1634 goto out_drop_write; 1635 } 1636 1637 src_inode = file_inode(src.file); 1638 if (src_inode->i_sb != file_inode(file)->i_sb) { 1639 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1640 "Snapshot src from another FS"); 1641 ret = -EXDEV; 1642 } else if (!inode_owner_or_capable(src_inode)) { 1643 /* 1644 * Subvolume creation is not restricted, but snapshots 1645 * are limited to own subvolumes only 1646 */ 1647 ret = -EPERM; 1648 } else { 1649 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1650 BTRFS_I(src_inode)->root, 1651 transid, readonly, inherit); 1652 } 1653 fdput(src); 1654 } 1655 out_drop_write: 1656 mnt_drop_write_file(file); 1657 out: 1658 return ret; 1659 } 1660 1661 static noinline int btrfs_ioctl_snap_create(struct file *file, 1662 void __user *arg, int subvol) 1663 { 1664 struct btrfs_ioctl_vol_args *vol_args; 1665 int ret; 1666 1667 vol_args = memdup_user(arg, sizeof(*vol_args)); 1668 if (IS_ERR(vol_args)) 1669 return PTR_ERR(vol_args); 1670 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1671 1672 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1673 vol_args->fd, subvol, 1674 NULL, false, NULL); 1675 1676 kfree(vol_args); 1677 return ret; 1678 } 1679 1680 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1681 void __user *arg, int subvol) 1682 { 1683 struct btrfs_ioctl_vol_args_v2 *vol_args; 1684 int ret; 1685 u64 transid = 0; 1686 u64 *ptr = NULL; 1687 bool readonly = false; 1688 struct btrfs_qgroup_inherit *inherit = NULL; 1689 1690 vol_args = memdup_user(arg, sizeof(*vol_args)); 1691 if (IS_ERR(vol_args)) 1692 return PTR_ERR(vol_args); 1693 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1694 1695 if (vol_args->flags & 1696 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1697 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1698 ret = -EOPNOTSUPP; 1699 goto free_args; 1700 } 1701 1702 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1703 ptr = &transid; 1704 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1705 readonly = true; 1706 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1707 if (vol_args->size > PAGE_CACHE_SIZE) { 1708 ret = -EINVAL; 1709 goto free_args; 1710 } 1711 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1712 if (IS_ERR(inherit)) { 1713 ret = PTR_ERR(inherit); 1714 goto free_args; 1715 } 1716 } 1717 1718 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1719 vol_args->fd, subvol, ptr, 1720 readonly, inherit); 1721 if (ret) 1722 goto free_inherit; 1723 1724 if (ptr && copy_to_user(arg + 1725 offsetof(struct btrfs_ioctl_vol_args_v2, 1726 transid), 1727 ptr, sizeof(*ptr))) 1728 ret = -EFAULT; 1729 1730 free_inherit: 1731 kfree(inherit); 1732 free_args: 1733 kfree(vol_args); 1734 return ret; 1735 } 1736 1737 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1738 void __user *arg) 1739 { 1740 struct inode *inode = file_inode(file); 1741 struct btrfs_root *root = BTRFS_I(inode)->root; 1742 int ret = 0; 1743 u64 flags = 0; 1744 1745 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1746 return -EINVAL; 1747 1748 down_read(&root->fs_info->subvol_sem); 1749 if (btrfs_root_readonly(root)) 1750 flags |= BTRFS_SUBVOL_RDONLY; 1751 up_read(&root->fs_info->subvol_sem); 1752 1753 if (copy_to_user(arg, &flags, sizeof(flags))) 1754 ret = -EFAULT; 1755 1756 return ret; 1757 } 1758 1759 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1760 void __user *arg) 1761 { 1762 struct inode *inode = file_inode(file); 1763 struct btrfs_root *root = BTRFS_I(inode)->root; 1764 struct btrfs_trans_handle *trans; 1765 u64 root_flags; 1766 u64 flags; 1767 int ret = 0; 1768 1769 if (!inode_owner_or_capable(inode)) 1770 return -EPERM; 1771 1772 ret = mnt_want_write_file(file); 1773 if (ret) 1774 goto out; 1775 1776 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1777 ret = -EINVAL; 1778 goto out_drop_write; 1779 } 1780 1781 if (copy_from_user(&flags, arg, sizeof(flags))) { 1782 ret = -EFAULT; 1783 goto out_drop_write; 1784 } 1785 1786 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1787 ret = -EINVAL; 1788 goto out_drop_write; 1789 } 1790 1791 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1792 ret = -EOPNOTSUPP; 1793 goto out_drop_write; 1794 } 1795 1796 down_write(&root->fs_info->subvol_sem); 1797 1798 /* nothing to do */ 1799 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1800 goto out_drop_sem; 1801 1802 root_flags = btrfs_root_flags(&root->root_item); 1803 if (flags & BTRFS_SUBVOL_RDONLY) { 1804 btrfs_set_root_flags(&root->root_item, 1805 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1806 } else { 1807 /* 1808 * Block RO -> RW transition if this subvolume is involved in 1809 * send 1810 */ 1811 spin_lock(&root->root_item_lock); 1812 if (root->send_in_progress == 0) { 1813 btrfs_set_root_flags(&root->root_item, 1814 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1815 spin_unlock(&root->root_item_lock); 1816 } else { 1817 spin_unlock(&root->root_item_lock); 1818 btrfs_warn(root->fs_info, 1819 "Attempt to set subvolume %llu read-write during send", 1820 root->root_key.objectid); 1821 ret = -EPERM; 1822 goto out_drop_sem; 1823 } 1824 } 1825 1826 trans = btrfs_start_transaction(root, 1); 1827 if (IS_ERR(trans)) { 1828 ret = PTR_ERR(trans); 1829 goto out_reset; 1830 } 1831 1832 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1833 &root->root_key, &root->root_item); 1834 1835 btrfs_commit_transaction(trans, root); 1836 out_reset: 1837 if (ret) 1838 btrfs_set_root_flags(&root->root_item, root_flags); 1839 out_drop_sem: 1840 up_write(&root->fs_info->subvol_sem); 1841 out_drop_write: 1842 mnt_drop_write_file(file); 1843 out: 1844 return ret; 1845 } 1846 1847 /* 1848 * helper to check if the subvolume references other subvolumes 1849 */ 1850 static noinline int may_destroy_subvol(struct btrfs_root *root) 1851 { 1852 struct btrfs_path *path; 1853 struct btrfs_dir_item *di; 1854 struct btrfs_key key; 1855 u64 dir_id; 1856 int ret; 1857 1858 path = btrfs_alloc_path(); 1859 if (!path) 1860 return -ENOMEM; 1861 1862 /* Make sure this root isn't set as the default subvol */ 1863 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1864 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1865 dir_id, "default", 7, 0); 1866 if (di && !IS_ERR(di)) { 1867 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1868 if (key.objectid == root->root_key.objectid) { 1869 ret = -EPERM; 1870 btrfs_err(root->fs_info, "deleting default subvolume " 1871 "%llu is not allowed", key.objectid); 1872 goto out; 1873 } 1874 btrfs_release_path(path); 1875 } 1876 1877 key.objectid = root->root_key.objectid; 1878 key.type = BTRFS_ROOT_REF_KEY; 1879 key.offset = (u64)-1; 1880 1881 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1882 &key, path, 0, 0); 1883 if (ret < 0) 1884 goto out; 1885 BUG_ON(ret == 0); 1886 1887 ret = 0; 1888 if (path->slots[0] > 0) { 1889 path->slots[0]--; 1890 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1891 if (key.objectid == root->root_key.objectid && 1892 key.type == BTRFS_ROOT_REF_KEY) 1893 ret = -ENOTEMPTY; 1894 } 1895 out: 1896 btrfs_free_path(path); 1897 return ret; 1898 } 1899 1900 static noinline int key_in_sk(struct btrfs_key *key, 1901 struct btrfs_ioctl_search_key *sk) 1902 { 1903 struct btrfs_key test; 1904 int ret; 1905 1906 test.objectid = sk->min_objectid; 1907 test.type = sk->min_type; 1908 test.offset = sk->min_offset; 1909 1910 ret = btrfs_comp_cpu_keys(key, &test); 1911 if (ret < 0) 1912 return 0; 1913 1914 test.objectid = sk->max_objectid; 1915 test.type = sk->max_type; 1916 test.offset = sk->max_offset; 1917 1918 ret = btrfs_comp_cpu_keys(key, &test); 1919 if (ret > 0) 1920 return 0; 1921 return 1; 1922 } 1923 1924 static noinline int copy_to_sk(struct btrfs_root *root, 1925 struct btrfs_path *path, 1926 struct btrfs_key *key, 1927 struct btrfs_ioctl_search_key *sk, 1928 size_t *buf_size, 1929 char __user *ubuf, 1930 unsigned long *sk_offset, 1931 int *num_found) 1932 { 1933 u64 found_transid; 1934 struct extent_buffer *leaf; 1935 struct btrfs_ioctl_search_header sh; 1936 unsigned long item_off; 1937 unsigned long item_len; 1938 int nritems; 1939 int i; 1940 int slot; 1941 int ret = 0; 1942 1943 leaf = path->nodes[0]; 1944 slot = path->slots[0]; 1945 nritems = btrfs_header_nritems(leaf); 1946 1947 if (btrfs_header_generation(leaf) > sk->max_transid) { 1948 i = nritems; 1949 goto advance_key; 1950 } 1951 found_transid = btrfs_header_generation(leaf); 1952 1953 for (i = slot; i < nritems; i++) { 1954 item_off = btrfs_item_ptr_offset(leaf, i); 1955 item_len = btrfs_item_size_nr(leaf, i); 1956 1957 btrfs_item_key_to_cpu(leaf, key, i); 1958 if (!key_in_sk(key, sk)) 1959 continue; 1960 1961 if (sizeof(sh) + item_len > *buf_size) { 1962 if (*num_found) { 1963 ret = 1; 1964 goto out; 1965 } 1966 1967 /* 1968 * return one empty item back for v1, which does not 1969 * handle -EOVERFLOW 1970 */ 1971 1972 *buf_size = sizeof(sh) + item_len; 1973 item_len = 0; 1974 ret = -EOVERFLOW; 1975 } 1976 1977 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1978 ret = 1; 1979 goto out; 1980 } 1981 1982 sh.objectid = key->objectid; 1983 sh.offset = key->offset; 1984 sh.type = key->type; 1985 sh.len = item_len; 1986 sh.transid = found_transid; 1987 1988 /* copy search result header */ 1989 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1990 ret = -EFAULT; 1991 goto out; 1992 } 1993 1994 *sk_offset += sizeof(sh); 1995 1996 if (item_len) { 1997 char __user *up = ubuf + *sk_offset; 1998 /* copy the item */ 1999 if (read_extent_buffer_to_user(leaf, up, 2000 item_off, item_len)) { 2001 ret = -EFAULT; 2002 goto out; 2003 } 2004 2005 *sk_offset += item_len; 2006 } 2007 (*num_found)++; 2008 2009 if (ret) /* -EOVERFLOW from above */ 2010 goto out; 2011 2012 if (*num_found >= sk->nr_items) { 2013 ret = 1; 2014 goto out; 2015 } 2016 } 2017 advance_key: 2018 ret = 0; 2019 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 2020 key->offset++; 2021 else if (key->type < (u8)-1 && key->type < sk->max_type) { 2022 key->offset = 0; 2023 key->type++; 2024 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 2025 key->offset = 0; 2026 key->type = 0; 2027 key->objectid++; 2028 } else 2029 ret = 1; 2030 out: 2031 /* 2032 * 0: all items from this leaf copied, continue with next 2033 * 1: * more items can be copied, but unused buffer is too small 2034 * * all items were found 2035 * Either way, it will stops the loop which iterates to the next 2036 * leaf 2037 * -EOVERFLOW: item was to large for buffer 2038 * -EFAULT: could not copy extent buffer back to userspace 2039 */ 2040 return ret; 2041 } 2042 2043 static noinline int search_ioctl(struct inode *inode, 2044 struct btrfs_ioctl_search_key *sk, 2045 size_t *buf_size, 2046 char __user *ubuf) 2047 { 2048 struct btrfs_root *root; 2049 struct btrfs_key key; 2050 struct btrfs_path *path; 2051 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2052 int ret; 2053 int num_found = 0; 2054 unsigned long sk_offset = 0; 2055 2056 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2057 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2058 return -EOVERFLOW; 2059 } 2060 2061 path = btrfs_alloc_path(); 2062 if (!path) 2063 return -ENOMEM; 2064 2065 if (sk->tree_id == 0) { 2066 /* search the root of the inode that was passed */ 2067 root = BTRFS_I(inode)->root; 2068 } else { 2069 key.objectid = sk->tree_id; 2070 key.type = BTRFS_ROOT_ITEM_KEY; 2071 key.offset = (u64)-1; 2072 root = btrfs_read_fs_root_no_name(info, &key); 2073 if (IS_ERR(root)) { 2074 printk(KERN_ERR "BTRFS: could not find root %llu\n", 2075 sk->tree_id); 2076 btrfs_free_path(path); 2077 return -ENOENT; 2078 } 2079 } 2080 2081 key.objectid = sk->min_objectid; 2082 key.type = sk->min_type; 2083 key.offset = sk->min_offset; 2084 2085 while (1) { 2086 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2087 if (ret != 0) { 2088 if (ret > 0) 2089 ret = 0; 2090 goto err; 2091 } 2092 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2093 &sk_offset, &num_found); 2094 btrfs_release_path(path); 2095 if (ret) 2096 break; 2097 2098 } 2099 if (ret > 0) 2100 ret = 0; 2101 err: 2102 sk->nr_items = num_found; 2103 btrfs_free_path(path); 2104 return ret; 2105 } 2106 2107 static noinline int btrfs_ioctl_tree_search(struct file *file, 2108 void __user *argp) 2109 { 2110 struct btrfs_ioctl_search_args __user *uargs; 2111 struct btrfs_ioctl_search_key sk; 2112 struct inode *inode; 2113 int ret; 2114 size_t buf_size; 2115 2116 if (!capable(CAP_SYS_ADMIN)) 2117 return -EPERM; 2118 2119 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2120 2121 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2122 return -EFAULT; 2123 2124 buf_size = sizeof(uargs->buf); 2125 2126 inode = file_inode(file); 2127 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2128 2129 /* 2130 * In the origin implementation an overflow is handled by returning a 2131 * search header with a len of zero, so reset ret. 2132 */ 2133 if (ret == -EOVERFLOW) 2134 ret = 0; 2135 2136 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2137 ret = -EFAULT; 2138 return ret; 2139 } 2140 2141 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2142 void __user *argp) 2143 { 2144 struct btrfs_ioctl_search_args_v2 __user *uarg; 2145 struct btrfs_ioctl_search_args_v2 args; 2146 struct inode *inode; 2147 int ret; 2148 size_t buf_size; 2149 const size_t buf_limit = 16 * 1024 * 1024; 2150 2151 if (!capable(CAP_SYS_ADMIN)) 2152 return -EPERM; 2153 2154 /* copy search header and buffer size */ 2155 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2156 if (copy_from_user(&args, uarg, sizeof(args))) 2157 return -EFAULT; 2158 2159 buf_size = args.buf_size; 2160 2161 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2162 return -EOVERFLOW; 2163 2164 /* limit result size to 16MB */ 2165 if (buf_size > buf_limit) 2166 buf_size = buf_limit; 2167 2168 inode = file_inode(file); 2169 ret = search_ioctl(inode, &args.key, &buf_size, 2170 (char *)(&uarg->buf[0])); 2171 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2172 ret = -EFAULT; 2173 else if (ret == -EOVERFLOW && 2174 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2175 ret = -EFAULT; 2176 2177 return ret; 2178 } 2179 2180 /* 2181 * Search INODE_REFs to identify path name of 'dirid' directory 2182 * in a 'tree_id' tree. and sets path name to 'name'. 2183 */ 2184 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2185 u64 tree_id, u64 dirid, char *name) 2186 { 2187 struct btrfs_root *root; 2188 struct btrfs_key key; 2189 char *ptr; 2190 int ret = -1; 2191 int slot; 2192 int len; 2193 int total_len = 0; 2194 struct btrfs_inode_ref *iref; 2195 struct extent_buffer *l; 2196 struct btrfs_path *path; 2197 2198 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2199 name[0]='\0'; 2200 return 0; 2201 } 2202 2203 path = btrfs_alloc_path(); 2204 if (!path) 2205 return -ENOMEM; 2206 2207 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2208 2209 key.objectid = tree_id; 2210 key.type = BTRFS_ROOT_ITEM_KEY; 2211 key.offset = (u64)-1; 2212 root = btrfs_read_fs_root_no_name(info, &key); 2213 if (IS_ERR(root)) { 2214 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id); 2215 ret = -ENOENT; 2216 goto out; 2217 } 2218 2219 key.objectid = dirid; 2220 key.type = BTRFS_INODE_REF_KEY; 2221 key.offset = (u64)-1; 2222 2223 while (1) { 2224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2225 if (ret < 0) 2226 goto out; 2227 else if (ret > 0) { 2228 ret = btrfs_previous_item(root, path, dirid, 2229 BTRFS_INODE_REF_KEY); 2230 if (ret < 0) 2231 goto out; 2232 else if (ret > 0) { 2233 ret = -ENOENT; 2234 goto out; 2235 } 2236 } 2237 2238 l = path->nodes[0]; 2239 slot = path->slots[0]; 2240 btrfs_item_key_to_cpu(l, &key, slot); 2241 2242 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2243 len = btrfs_inode_ref_name_len(l, iref); 2244 ptr -= len + 1; 2245 total_len += len + 1; 2246 if (ptr < name) { 2247 ret = -ENAMETOOLONG; 2248 goto out; 2249 } 2250 2251 *(ptr + len) = '/'; 2252 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2253 2254 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2255 break; 2256 2257 btrfs_release_path(path); 2258 key.objectid = key.offset; 2259 key.offset = (u64)-1; 2260 dirid = key.objectid; 2261 } 2262 memmove(name, ptr, total_len); 2263 name[total_len] = '\0'; 2264 ret = 0; 2265 out: 2266 btrfs_free_path(path); 2267 return ret; 2268 } 2269 2270 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2271 void __user *argp) 2272 { 2273 struct btrfs_ioctl_ino_lookup_args *args; 2274 struct inode *inode; 2275 int ret = 0; 2276 2277 args = memdup_user(argp, sizeof(*args)); 2278 if (IS_ERR(args)) 2279 return PTR_ERR(args); 2280 2281 inode = file_inode(file); 2282 2283 /* 2284 * Unprivileged query to obtain the containing subvolume root id. The 2285 * path is reset so it's consistent with btrfs_search_path_in_tree. 2286 */ 2287 if (args->treeid == 0) 2288 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2289 2290 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2291 args->name[0] = 0; 2292 goto out; 2293 } 2294 2295 if (!capable(CAP_SYS_ADMIN)) { 2296 ret = -EPERM; 2297 goto out; 2298 } 2299 2300 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2301 args->treeid, args->objectid, 2302 args->name); 2303 2304 out: 2305 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2306 ret = -EFAULT; 2307 2308 kfree(args); 2309 return ret; 2310 } 2311 2312 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2313 void __user *arg) 2314 { 2315 struct dentry *parent = file->f_path.dentry; 2316 struct dentry *dentry; 2317 struct inode *dir = d_inode(parent); 2318 struct inode *inode; 2319 struct btrfs_root *root = BTRFS_I(dir)->root; 2320 struct btrfs_root *dest = NULL; 2321 struct btrfs_ioctl_vol_args *vol_args; 2322 struct btrfs_trans_handle *trans; 2323 struct btrfs_block_rsv block_rsv; 2324 u64 root_flags; 2325 u64 qgroup_reserved; 2326 int namelen; 2327 int ret; 2328 int err = 0; 2329 2330 vol_args = memdup_user(arg, sizeof(*vol_args)); 2331 if (IS_ERR(vol_args)) 2332 return PTR_ERR(vol_args); 2333 2334 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2335 namelen = strlen(vol_args->name); 2336 if (strchr(vol_args->name, '/') || 2337 strncmp(vol_args->name, "..", namelen) == 0) { 2338 err = -EINVAL; 2339 goto out; 2340 } 2341 2342 err = mnt_want_write_file(file); 2343 if (err) 2344 goto out; 2345 2346 2347 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2348 if (err == -EINTR) 2349 goto out_drop_write; 2350 dentry = lookup_one_len(vol_args->name, parent, namelen); 2351 if (IS_ERR(dentry)) { 2352 err = PTR_ERR(dentry); 2353 goto out_unlock_dir; 2354 } 2355 2356 if (d_really_is_negative(dentry)) { 2357 err = -ENOENT; 2358 goto out_dput; 2359 } 2360 2361 inode = d_inode(dentry); 2362 dest = BTRFS_I(inode)->root; 2363 if (!capable(CAP_SYS_ADMIN)) { 2364 /* 2365 * Regular user. Only allow this with a special mount 2366 * option, when the user has write+exec access to the 2367 * subvol root, and when rmdir(2) would have been 2368 * allowed. 2369 * 2370 * Note that this is _not_ check that the subvol is 2371 * empty or doesn't contain data that we wouldn't 2372 * otherwise be able to delete. 2373 * 2374 * Users who want to delete empty subvols should try 2375 * rmdir(2). 2376 */ 2377 err = -EPERM; 2378 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2379 goto out_dput; 2380 2381 /* 2382 * Do not allow deletion if the parent dir is the same 2383 * as the dir to be deleted. That means the ioctl 2384 * must be called on the dentry referencing the root 2385 * of the subvol, not a random directory contained 2386 * within it. 2387 */ 2388 err = -EINVAL; 2389 if (root == dest) 2390 goto out_dput; 2391 2392 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2393 if (err) 2394 goto out_dput; 2395 } 2396 2397 /* check if subvolume may be deleted by a user */ 2398 err = btrfs_may_delete(dir, dentry, 1); 2399 if (err) 2400 goto out_dput; 2401 2402 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2403 err = -EINVAL; 2404 goto out_dput; 2405 } 2406 2407 mutex_lock(&inode->i_mutex); 2408 2409 /* 2410 * Don't allow to delete a subvolume with send in progress. This is 2411 * inside the i_mutex so the error handling that has to drop the bit 2412 * again is not run concurrently. 2413 */ 2414 spin_lock(&dest->root_item_lock); 2415 root_flags = btrfs_root_flags(&dest->root_item); 2416 if (dest->send_in_progress == 0) { 2417 btrfs_set_root_flags(&dest->root_item, 2418 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2419 spin_unlock(&dest->root_item_lock); 2420 } else { 2421 spin_unlock(&dest->root_item_lock); 2422 btrfs_warn(root->fs_info, 2423 "Attempt to delete subvolume %llu during send", 2424 dest->root_key.objectid); 2425 err = -EPERM; 2426 goto out_unlock_inode; 2427 } 2428 2429 down_write(&root->fs_info->subvol_sem); 2430 2431 err = may_destroy_subvol(dest); 2432 if (err) 2433 goto out_up_write; 2434 2435 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2436 /* 2437 * One for dir inode, two for dir entries, two for root 2438 * ref/backref. 2439 */ 2440 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2441 5, &qgroup_reserved, true); 2442 if (err) 2443 goto out_up_write; 2444 2445 trans = btrfs_start_transaction(root, 0); 2446 if (IS_ERR(trans)) { 2447 err = PTR_ERR(trans); 2448 goto out_release; 2449 } 2450 trans->block_rsv = &block_rsv; 2451 trans->bytes_reserved = block_rsv.size; 2452 2453 ret = btrfs_unlink_subvol(trans, root, dir, 2454 dest->root_key.objectid, 2455 dentry->d_name.name, 2456 dentry->d_name.len); 2457 if (ret) { 2458 err = ret; 2459 btrfs_abort_transaction(trans, root, ret); 2460 goto out_end_trans; 2461 } 2462 2463 btrfs_record_root_in_trans(trans, dest); 2464 2465 memset(&dest->root_item.drop_progress, 0, 2466 sizeof(dest->root_item.drop_progress)); 2467 dest->root_item.drop_level = 0; 2468 btrfs_set_root_refs(&dest->root_item, 0); 2469 2470 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2471 ret = btrfs_insert_orphan_item(trans, 2472 root->fs_info->tree_root, 2473 dest->root_key.objectid); 2474 if (ret) { 2475 btrfs_abort_transaction(trans, root, ret); 2476 err = ret; 2477 goto out_end_trans; 2478 } 2479 } 2480 2481 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2482 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2483 dest->root_key.objectid); 2484 if (ret && ret != -ENOENT) { 2485 btrfs_abort_transaction(trans, root, ret); 2486 err = ret; 2487 goto out_end_trans; 2488 } 2489 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2490 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2491 dest->root_item.received_uuid, 2492 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2493 dest->root_key.objectid); 2494 if (ret && ret != -ENOENT) { 2495 btrfs_abort_transaction(trans, root, ret); 2496 err = ret; 2497 goto out_end_trans; 2498 } 2499 } 2500 2501 out_end_trans: 2502 trans->block_rsv = NULL; 2503 trans->bytes_reserved = 0; 2504 ret = btrfs_end_transaction(trans, root); 2505 if (ret && !err) 2506 err = ret; 2507 inode->i_flags |= S_DEAD; 2508 out_release: 2509 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2510 out_up_write: 2511 up_write(&root->fs_info->subvol_sem); 2512 if (err) { 2513 spin_lock(&dest->root_item_lock); 2514 root_flags = btrfs_root_flags(&dest->root_item); 2515 btrfs_set_root_flags(&dest->root_item, 2516 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2517 spin_unlock(&dest->root_item_lock); 2518 } 2519 out_unlock_inode: 2520 mutex_unlock(&inode->i_mutex); 2521 if (!err) { 2522 d_invalidate(dentry); 2523 btrfs_invalidate_inodes(dest); 2524 d_delete(dentry); 2525 ASSERT(dest->send_in_progress == 0); 2526 2527 /* the last ref */ 2528 if (dest->ino_cache_inode) { 2529 iput(dest->ino_cache_inode); 2530 dest->ino_cache_inode = NULL; 2531 } 2532 } 2533 out_dput: 2534 dput(dentry); 2535 out_unlock_dir: 2536 mutex_unlock(&dir->i_mutex); 2537 out_drop_write: 2538 mnt_drop_write_file(file); 2539 out: 2540 kfree(vol_args); 2541 return err; 2542 } 2543 2544 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2545 { 2546 struct inode *inode = file_inode(file); 2547 struct btrfs_root *root = BTRFS_I(inode)->root; 2548 struct btrfs_ioctl_defrag_range_args *range; 2549 int ret; 2550 2551 ret = mnt_want_write_file(file); 2552 if (ret) 2553 return ret; 2554 2555 if (btrfs_root_readonly(root)) { 2556 ret = -EROFS; 2557 goto out; 2558 } 2559 2560 switch (inode->i_mode & S_IFMT) { 2561 case S_IFDIR: 2562 if (!capable(CAP_SYS_ADMIN)) { 2563 ret = -EPERM; 2564 goto out; 2565 } 2566 ret = btrfs_defrag_root(root); 2567 if (ret) 2568 goto out; 2569 ret = btrfs_defrag_root(root->fs_info->extent_root); 2570 break; 2571 case S_IFREG: 2572 if (!(file->f_mode & FMODE_WRITE)) { 2573 ret = -EINVAL; 2574 goto out; 2575 } 2576 2577 range = kzalloc(sizeof(*range), GFP_KERNEL); 2578 if (!range) { 2579 ret = -ENOMEM; 2580 goto out; 2581 } 2582 2583 if (argp) { 2584 if (copy_from_user(range, argp, 2585 sizeof(*range))) { 2586 ret = -EFAULT; 2587 kfree(range); 2588 goto out; 2589 } 2590 /* compression requires us to start the IO */ 2591 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2592 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2593 range->extent_thresh = (u32)-1; 2594 } 2595 } else { 2596 /* the rest are all set to zero by kzalloc */ 2597 range->len = (u64)-1; 2598 } 2599 ret = btrfs_defrag_file(file_inode(file), file, 2600 range, 0, 0); 2601 if (ret > 0) 2602 ret = 0; 2603 kfree(range); 2604 break; 2605 default: 2606 ret = -EINVAL; 2607 } 2608 out: 2609 mnt_drop_write_file(file); 2610 return ret; 2611 } 2612 2613 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2614 { 2615 struct btrfs_ioctl_vol_args *vol_args; 2616 int ret; 2617 2618 if (!capable(CAP_SYS_ADMIN)) 2619 return -EPERM; 2620 2621 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2622 1)) { 2623 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2624 } 2625 2626 mutex_lock(&root->fs_info->volume_mutex); 2627 vol_args = memdup_user(arg, sizeof(*vol_args)); 2628 if (IS_ERR(vol_args)) { 2629 ret = PTR_ERR(vol_args); 2630 goto out; 2631 } 2632 2633 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2634 ret = btrfs_init_new_device(root, vol_args->name); 2635 2636 if (!ret) 2637 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2638 2639 kfree(vol_args); 2640 out: 2641 mutex_unlock(&root->fs_info->volume_mutex); 2642 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2643 return ret; 2644 } 2645 2646 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2647 { 2648 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2649 struct btrfs_ioctl_vol_args *vol_args; 2650 int ret; 2651 2652 if (!capable(CAP_SYS_ADMIN)) 2653 return -EPERM; 2654 2655 ret = mnt_want_write_file(file); 2656 if (ret) 2657 return ret; 2658 2659 vol_args = memdup_user(arg, sizeof(*vol_args)); 2660 if (IS_ERR(vol_args)) { 2661 ret = PTR_ERR(vol_args); 2662 goto err_drop; 2663 } 2664 2665 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2666 2667 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2668 1)) { 2669 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2670 goto out; 2671 } 2672 2673 mutex_lock(&root->fs_info->volume_mutex); 2674 ret = btrfs_rm_device(root, vol_args->name); 2675 mutex_unlock(&root->fs_info->volume_mutex); 2676 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2677 2678 if (!ret) 2679 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2680 2681 out: 2682 kfree(vol_args); 2683 err_drop: 2684 mnt_drop_write_file(file); 2685 return ret; 2686 } 2687 2688 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2689 { 2690 struct btrfs_ioctl_fs_info_args *fi_args; 2691 struct btrfs_device *device; 2692 struct btrfs_device *next; 2693 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2694 int ret = 0; 2695 2696 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2697 if (!fi_args) 2698 return -ENOMEM; 2699 2700 mutex_lock(&fs_devices->device_list_mutex); 2701 fi_args->num_devices = fs_devices->num_devices; 2702 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2703 2704 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2705 if (device->devid > fi_args->max_id) 2706 fi_args->max_id = device->devid; 2707 } 2708 mutex_unlock(&fs_devices->device_list_mutex); 2709 2710 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2711 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2712 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2713 2714 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2715 ret = -EFAULT; 2716 2717 kfree(fi_args); 2718 return ret; 2719 } 2720 2721 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2722 { 2723 struct btrfs_ioctl_dev_info_args *di_args; 2724 struct btrfs_device *dev; 2725 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2726 int ret = 0; 2727 char *s_uuid = NULL; 2728 2729 di_args = memdup_user(arg, sizeof(*di_args)); 2730 if (IS_ERR(di_args)) 2731 return PTR_ERR(di_args); 2732 2733 if (!btrfs_is_empty_uuid(di_args->uuid)) 2734 s_uuid = di_args->uuid; 2735 2736 mutex_lock(&fs_devices->device_list_mutex); 2737 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2738 2739 if (!dev) { 2740 ret = -ENODEV; 2741 goto out; 2742 } 2743 2744 di_args->devid = dev->devid; 2745 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2746 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2747 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2748 if (dev->name) { 2749 struct rcu_string *name; 2750 2751 rcu_read_lock(); 2752 name = rcu_dereference(dev->name); 2753 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2754 rcu_read_unlock(); 2755 di_args->path[sizeof(di_args->path) - 1] = 0; 2756 } else { 2757 di_args->path[0] = '\0'; 2758 } 2759 2760 out: 2761 mutex_unlock(&fs_devices->device_list_mutex); 2762 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2763 ret = -EFAULT; 2764 2765 kfree(di_args); 2766 return ret; 2767 } 2768 2769 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2770 { 2771 struct page *page; 2772 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2773 2774 page = grab_cache_page(inode->i_mapping, index); 2775 if (!page) 2776 return NULL; 2777 2778 if (!PageUptodate(page)) { 2779 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2780 0)) 2781 return NULL; 2782 lock_page(page); 2783 if (!PageUptodate(page)) { 2784 unlock_page(page); 2785 page_cache_release(page); 2786 return NULL; 2787 } 2788 } 2789 unlock_page(page); 2790 2791 return page; 2792 } 2793 2794 static int gather_extent_pages(struct inode *inode, struct page **pages, 2795 int num_pages, u64 off) 2796 { 2797 int i; 2798 pgoff_t index = off >> PAGE_CACHE_SHIFT; 2799 2800 for (i = 0; i < num_pages; i++) { 2801 pages[i] = extent_same_get_page(inode, index + i); 2802 if (!pages[i]) 2803 return -ENOMEM; 2804 } 2805 return 0; 2806 } 2807 2808 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2809 { 2810 /* do any pending delalloc/csum calc on src, one way or 2811 another, and lock file content */ 2812 while (1) { 2813 struct btrfs_ordered_extent *ordered; 2814 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2815 ordered = btrfs_lookup_first_ordered_extent(inode, 2816 off + len - 1); 2817 if ((!ordered || 2818 ordered->file_offset + ordered->len <= off || 2819 ordered->file_offset >= off + len) && 2820 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2821 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2822 if (ordered) 2823 btrfs_put_ordered_extent(ordered); 2824 break; 2825 } 2826 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2827 if (ordered) 2828 btrfs_put_ordered_extent(ordered); 2829 btrfs_wait_ordered_range(inode, off, len); 2830 } 2831 } 2832 2833 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2834 { 2835 mutex_unlock(&inode1->i_mutex); 2836 mutex_unlock(&inode2->i_mutex); 2837 } 2838 2839 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2840 { 2841 if (inode1 < inode2) 2842 swap(inode1, inode2); 2843 2844 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2845 if (inode1 != inode2) 2846 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2847 } 2848 2849 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2850 struct inode *inode2, u64 loff2, u64 len) 2851 { 2852 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2853 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2854 } 2855 2856 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2857 struct inode *inode2, u64 loff2, u64 len) 2858 { 2859 if (inode1 < inode2) { 2860 swap(inode1, inode2); 2861 swap(loff1, loff2); 2862 } 2863 lock_extent_range(inode1, loff1, len); 2864 if (inode1 != inode2) 2865 lock_extent_range(inode2, loff2, len); 2866 } 2867 2868 struct cmp_pages { 2869 int num_pages; 2870 struct page **src_pages; 2871 struct page **dst_pages; 2872 }; 2873 2874 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2875 { 2876 int i; 2877 struct page *pg; 2878 2879 for (i = 0; i < cmp->num_pages; i++) { 2880 pg = cmp->src_pages[i]; 2881 if (pg) 2882 page_cache_release(pg); 2883 pg = cmp->dst_pages[i]; 2884 if (pg) 2885 page_cache_release(pg); 2886 } 2887 kfree(cmp->src_pages); 2888 kfree(cmp->dst_pages); 2889 } 2890 2891 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2892 struct inode *dst, u64 dst_loff, 2893 u64 len, struct cmp_pages *cmp) 2894 { 2895 int ret; 2896 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT; 2897 struct page **src_pgarr, **dst_pgarr; 2898 2899 /* 2900 * We must gather up all the pages before we initiate our 2901 * extent locking. We use an array for the page pointers. Size 2902 * of the array is bounded by len, which is in turn bounded by 2903 * BTRFS_MAX_DEDUPE_LEN. 2904 */ 2905 src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2906 dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2907 if (!src_pgarr || !dst_pgarr) { 2908 kfree(src_pgarr); 2909 kfree(dst_pgarr); 2910 return -ENOMEM; 2911 } 2912 cmp->num_pages = num_pages; 2913 cmp->src_pages = src_pgarr; 2914 cmp->dst_pages = dst_pgarr; 2915 2916 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 2917 if (ret) 2918 goto out; 2919 2920 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 2921 2922 out: 2923 if (ret) 2924 btrfs_cmp_data_free(cmp); 2925 return 0; 2926 } 2927 2928 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2929 u64 dst_loff, u64 len, struct cmp_pages *cmp) 2930 { 2931 int ret = 0; 2932 int i; 2933 struct page *src_page, *dst_page; 2934 unsigned int cmp_len = PAGE_CACHE_SIZE; 2935 void *addr, *dst_addr; 2936 2937 i = 0; 2938 while (len) { 2939 if (len < PAGE_CACHE_SIZE) 2940 cmp_len = len; 2941 2942 BUG_ON(i >= cmp->num_pages); 2943 2944 src_page = cmp->src_pages[i]; 2945 dst_page = cmp->dst_pages[i]; 2946 2947 addr = kmap_atomic(src_page); 2948 dst_addr = kmap_atomic(dst_page); 2949 2950 flush_dcache_page(src_page); 2951 flush_dcache_page(dst_page); 2952 2953 if (memcmp(addr, dst_addr, cmp_len)) 2954 ret = BTRFS_SAME_DATA_DIFFERS; 2955 2956 kunmap_atomic(addr); 2957 kunmap_atomic(dst_addr); 2958 2959 if (ret) 2960 break; 2961 2962 len -= cmp_len; 2963 i++; 2964 } 2965 2966 return ret; 2967 } 2968 2969 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 2970 u64 olen) 2971 { 2972 u64 len = *plen; 2973 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2974 2975 if (off + olen > inode->i_size || off + olen < off) 2976 return -EINVAL; 2977 2978 /* if we extend to eof, continue to block boundary */ 2979 if (off + len == inode->i_size) 2980 *plen = len = ALIGN(inode->i_size, bs) - off; 2981 2982 /* Check that we are block aligned - btrfs_clone() requires this */ 2983 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2984 return -EINVAL; 2985 2986 return 0; 2987 } 2988 2989 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 2990 struct inode *dst, u64 dst_loff) 2991 { 2992 int ret; 2993 u64 len = olen; 2994 struct cmp_pages cmp; 2995 int same_inode = 0; 2996 u64 same_lock_start = 0; 2997 u64 same_lock_len = 0; 2998 2999 if (src == dst) 3000 same_inode = 1; 3001 3002 if (len == 0) 3003 return 0; 3004 3005 if (same_inode) { 3006 mutex_lock(&src->i_mutex); 3007 3008 ret = extent_same_check_offsets(src, loff, &len, olen); 3009 if (ret) 3010 goto out_unlock; 3011 3012 /* 3013 * Single inode case wants the same checks, except we 3014 * don't want our length pushed out past i_size as 3015 * comparing that data range makes no sense. 3016 * 3017 * extent_same_check_offsets() will do this for an 3018 * unaligned length at i_size, so catch it here and 3019 * reject the request. 3020 * 3021 * This effectively means we require aligned extents 3022 * for the single-inode case, whereas the other cases 3023 * allow an unaligned length so long as it ends at 3024 * i_size. 3025 */ 3026 if (len != olen) { 3027 ret = -EINVAL; 3028 goto out_unlock; 3029 } 3030 3031 /* Check for overlapping ranges */ 3032 if (dst_loff + len > loff && dst_loff < loff + len) { 3033 ret = -EINVAL; 3034 goto out_unlock; 3035 } 3036 3037 same_lock_start = min_t(u64, loff, dst_loff); 3038 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3039 } else { 3040 btrfs_double_inode_lock(src, dst); 3041 3042 ret = extent_same_check_offsets(src, loff, &len, olen); 3043 if (ret) 3044 goto out_unlock; 3045 3046 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3047 if (ret) 3048 goto out_unlock; 3049 } 3050 3051 /* don't make the dst file partly checksummed */ 3052 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3053 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3054 ret = -EINVAL; 3055 goto out_unlock; 3056 } 3057 3058 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3059 if (ret) 3060 goto out_unlock; 3061 3062 if (same_inode) 3063 lock_extent_range(src, same_lock_start, same_lock_len); 3064 else 3065 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3066 3067 /* pass original length for comparison so we stay within i_size */ 3068 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3069 if (ret == 0) 3070 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3071 3072 if (same_inode) 3073 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3074 same_lock_start + same_lock_len - 1); 3075 else 3076 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3077 3078 btrfs_cmp_data_free(&cmp); 3079 out_unlock: 3080 if (same_inode) 3081 mutex_unlock(&src->i_mutex); 3082 else 3083 btrfs_double_inode_unlock(src, dst); 3084 3085 return ret; 3086 } 3087 3088 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 3089 3090 static long btrfs_ioctl_file_extent_same(struct file *file, 3091 struct btrfs_ioctl_same_args __user *argp) 3092 { 3093 struct btrfs_ioctl_same_args *same = NULL; 3094 struct btrfs_ioctl_same_extent_info *info; 3095 struct inode *src = file_inode(file); 3096 u64 off; 3097 u64 len; 3098 int i; 3099 int ret; 3100 unsigned long size; 3101 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3102 bool is_admin = capable(CAP_SYS_ADMIN); 3103 u16 count; 3104 3105 if (!(file->f_mode & FMODE_READ)) 3106 return -EINVAL; 3107 3108 ret = mnt_want_write_file(file); 3109 if (ret) 3110 return ret; 3111 3112 if (get_user(count, &argp->dest_count)) { 3113 ret = -EFAULT; 3114 goto out; 3115 } 3116 3117 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]); 3118 3119 same = memdup_user(argp, size); 3120 3121 if (IS_ERR(same)) { 3122 ret = PTR_ERR(same); 3123 same = NULL; 3124 goto out; 3125 } 3126 3127 off = same->logical_offset; 3128 len = same->length; 3129 3130 /* 3131 * Limit the total length we will dedupe for each operation. 3132 * This is intended to bound the total time spent in this 3133 * ioctl to something sane. 3134 */ 3135 if (len > BTRFS_MAX_DEDUPE_LEN) 3136 len = BTRFS_MAX_DEDUPE_LEN; 3137 3138 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 3139 /* 3140 * Btrfs does not support blocksize < page_size. As a 3141 * result, btrfs_cmp_data() won't correctly handle 3142 * this situation without an update. 3143 */ 3144 ret = -EINVAL; 3145 goto out; 3146 } 3147 3148 ret = -EISDIR; 3149 if (S_ISDIR(src->i_mode)) 3150 goto out; 3151 3152 ret = -EACCES; 3153 if (!S_ISREG(src->i_mode)) 3154 goto out; 3155 3156 /* pre-format output fields to sane values */ 3157 for (i = 0; i < count; i++) { 3158 same->info[i].bytes_deduped = 0ULL; 3159 same->info[i].status = 0; 3160 } 3161 3162 for (i = 0, info = same->info; i < count; i++, info++) { 3163 struct inode *dst; 3164 struct fd dst_file = fdget(info->fd); 3165 if (!dst_file.file) { 3166 info->status = -EBADF; 3167 continue; 3168 } 3169 dst = file_inode(dst_file.file); 3170 3171 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) { 3172 info->status = -EINVAL; 3173 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) { 3174 info->status = -EXDEV; 3175 } else if (S_ISDIR(dst->i_mode)) { 3176 info->status = -EISDIR; 3177 } else if (!S_ISREG(dst->i_mode)) { 3178 info->status = -EACCES; 3179 } else { 3180 info->status = btrfs_extent_same(src, off, len, dst, 3181 info->logical_offset); 3182 if (info->status == 0) 3183 info->bytes_deduped += len; 3184 } 3185 fdput(dst_file); 3186 } 3187 3188 ret = copy_to_user(argp, same, size); 3189 if (ret) 3190 ret = -EFAULT; 3191 3192 out: 3193 mnt_drop_write_file(file); 3194 kfree(same); 3195 return ret; 3196 } 3197 3198 /* Helper to check and see if this root currently has a ref on the given disk 3199 * bytenr. If it does then we need to update the quota for this root. This 3200 * doesn't do anything if quotas aren't enabled. 3201 */ 3202 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3203 u64 disko) 3204 { 3205 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 3206 struct ulist *roots; 3207 struct ulist_iterator uiter; 3208 struct ulist_node *root_node = NULL; 3209 int ret; 3210 3211 if (!root->fs_info->quota_enabled) 3212 return 1; 3213 3214 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3215 ret = btrfs_find_all_roots(trans, root->fs_info, disko, 3216 tree_mod_seq_elem.seq, &roots); 3217 if (ret < 0) 3218 goto out; 3219 ret = 0; 3220 ULIST_ITER_INIT(&uiter); 3221 while ((root_node = ulist_next(roots, &uiter))) { 3222 if (root_node->val == root->objectid) { 3223 ret = 1; 3224 break; 3225 } 3226 } 3227 ulist_free(roots); 3228 out: 3229 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3230 return ret; 3231 } 3232 3233 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3234 struct inode *inode, 3235 u64 endoff, 3236 const u64 destoff, 3237 const u64 olen, 3238 int no_time_update) 3239 { 3240 struct btrfs_root *root = BTRFS_I(inode)->root; 3241 int ret; 3242 3243 inode_inc_iversion(inode); 3244 if (!no_time_update) 3245 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3246 /* 3247 * We round up to the block size at eof when determining which 3248 * extents to clone above, but shouldn't round up the file size. 3249 */ 3250 if (endoff > destoff + olen) 3251 endoff = destoff + olen; 3252 if (endoff > inode->i_size) 3253 btrfs_i_size_write(inode, endoff); 3254 3255 ret = btrfs_update_inode(trans, root, inode); 3256 if (ret) { 3257 btrfs_abort_transaction(trans, root, ret); 3258 btrfs_end_transaction(trans, root); 3259 goto out; 3260 } 3261 ret = btrfs_end_transaction(trans, root); 3262 out: 3263 return ret; 3264 } 3265 3266 static void clone_update_extent_map(struct inode *inode, 3267 const struct btrfs_trans_handle *trans, 3268 const struct btrfs_path *path, 3269 const u64 hole_offset, 3270 const u64 hole_len) 3271 { 3272 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3273 struct extent_map *em; 3274 int ret; 3275 3276 em = alloc_extent_map(); 3277 if (!em) { 3278 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3279 &BTRFS_I(inode)->runtime_flags); 3280 return; 3281 } 3282 3283 if (path) { 3284 struct btrfs_file_extent_item *fi; 3285 3286 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3287 struct btrfs_file_extent_item); 3288 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3289 em->generation = -1; 3290 if (btrfs_file_extent_type(path->nodes[0], fi) == 3291 BTRFS_FILE_EXTENT_INLINE) 3292 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3293 &BTRFS_I(inode)->runtime_flags); 3294 } else { 3295 em->start = hole_offset; 3296 em->len = hole_len; 3297 em->ram_bytes = em->len; 3298 em->orig_start = hole_offset; 3299 em->block_start = EXTENT_MAP_HOLE; 3300 em->block_len = 0; 3301 em->orig_block_len = 0; 3302 em->compress_type = BTRFS_COMPRESS_NONE; 3303 em->generation = trans->transid; 3304 } 3305 3306 while (1) { 3307 write_lock(&em_tree->lock); 3308 ret = add_extent_mapping(em_tree, em, 1); 3309 write_unlock(&em_tree->lock); 3310 if (ret != -EEXIST) { 3311 free_extent_map(em); 3312 break; 3313 } 3314 btrfs_drop_extent_cache(inode, em->start, 3315 em->start + em->len - 1, 0); 3316 } 3317 3318 if (ret) 3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3320 &BTRFS_I(inode)->runtime_flags); 3321 } 3322 3323 /** 3324 * btrfs_clone() - clone a range from inode file to another 3325 * 3326 * @src: Inode to clone from 3327 * @inode: Inode to clone to 3328 * @off: Offset within source to start clone from 3329 * @olen: Original length, passed by user, of range to clone 3330 * @olen_aligned: Block-aligned value of olen 3331 * @destoff: Offset within @inode to start clone 3332 * @no_time_update: Whether to update mtime/ctime on the target inode 3333 */ 3334 static int btrfs_clone(struct inode *src, struct inode *inode, 3335 const u64 off, const u64 olen, const u64 olen_aligned, 3336 const u64 destoff, int no_time_update) 3337 { 3338 struct btrfs_root *root = BTRFS_I(inode)->root; 3339 struct btrfs_path *path = NULL; 3340 struct extent_buffer *leaf; 3341 struct btrfs_trans_handle *trans; 3342 char *buf = NULL; 3343 struct btrfs_key key; 3344 u32 nritems; 3345 int slot; 3346 int ret; 3347 int no_quota; 3348 const u64 len = olen_aligned; 3349 u64 last_disko = 0; 3350 u64 last_dest_end = destoff; 3351 3352 ret = -ENOMEM; 3353 buf = vmalloc(root->nodesize); 3354 if (!buf) 3355 return ret; 3356 3357 path = btrfs_alloc_path(); 3358 if (!path) { 3359 vfree(buf); 3360 return ret; 3361 } 3362 3363 path->reada = 2; 3364 /* clone data */ 3365 key.objectid = btrfs_ino(src); 3366 key.type = BTRFS_EXTENT_DATA_KEY; 3367 key.offset = off; 3368 3369 while (1) { 3370 u64 next_key_min_offset = key.offset + 1; 3371 3372 /* 3373 * note the key will change type as we walk through the 3374 * tree. 3375 */ 3376 path->leave_spinning = 1; 3377 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3378 0, 0); 3379 if (ret < 0) 3380 goto out; 3381 /* 3382 * First search, if no extent item that starts at offset off was 3383 * found but the previous item is an extent item, it's possible 3384 * it might overlap our target range, therefore process it. 3385 */ 3386 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3387 btrfs_item_key_to_cpu(path->nodes[0], &key, 3388 path->slots[0] - 1); 3389 if (key.type == BTRFS_EXTENT_DATA_KEY) 3390 path->slots[0]--; 3391 } 3392 3393 nritems = btrfs_header_nritems(path->nodes[0]); 3394 process_slot: 3395 no_quota = 1; 3396 if (path->slots[0] >= nritems) { 3397 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3398 if (ret < 0) 3399 goto out; 3400 if (ret > 0) 3401 break; 3402 nritems = btrfs_header_nritems(path->nodes[0]); 3403 } 3404 leaf = path->nodes[0]; 3405 slot = path->slots[0]; 3406 3407 btrfs_item_key_to_cpu(leaf, &key, slot); 3408 if (key.type > BTRFS_EXTENT_DATA_KEY || 3409 key.objectid != btrfs_ino(src)) 3410 break; 3411 3412 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3413 struct btrfs_file_extent_item *extent; 3414 int type; 3415 u32 size; 3416 struct btrfs_key new_key; 3417 u64 disko = 0, diskl = 0; 3418 u64 datao = 0, datal = 0; 3419 u8 comp; 3420 u64 drop_start; 3421 3422 extent = btrfs_item_ptr(leaf, slot, 3423 struct btrfs_file_extent_item); 3424 comp = btrfs_file_extent_compression(leaf, extent); 3425 type = btrfs_file_extent_type(leaf, extent); 3426 if (type == BTRFS_FILE_EXTENT_REG || 3427 type == BTRFS_FILE_EXTENT_PREALLOC) { 3428 disko = btrfs_file_extent_disk_bytenr(leaf, 3429 extent); 3430 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3431 extent); 3432 datao = btrfs_file_extent_offset(leaf, extent); 3433 datal = btrfs_file_extent_num_bytes(leaf, 3434 extent); 3435 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3436 /* take upper bound, may be compressed */ 3437 datal = btrfs_file_extent_ram_bytes(leaf, 3438 extent); 3439 } 3440 3441 /* 3442 * The first search might have left us at an extent 3443 * item that ends before our target range's start, can 3444 * happen if we have holes and NO_HOLES feature enabled. 3445 */ 3446 if (key.offset + datal <= off) { 3447 path->slots[0]++; 3448 goto process_slot; 3449 } else if (key.offset >= off + len) { 3450 break; 3451 } 3452 next_key_min_offset = key.offset + datal; 3453 size = btrfs_item_size_nr(leaf, slot); 3454 read_extent_buffer(leaf, buf, 3455 btrfs_item_ptr_offset(leaf, slot), 3456 size); 3457 3458 btrfs_release_path(path); 3459 path->leave_spinning = 0; 3460 3461 memcpy(&new_key, &key, sizeof(new_key)); 3462 new_key.objectid = btrfs_ino(inode); 3463 if (off <= key.offset) 3464 new_key.offset = key.offset + destoff - off; 3465 else 3466 new_key.offset = destoff; 3467 3468 /* 3469 * Deal with a hole that doesn't have an extent item 3470 * that represents it (NO_HOLES feature enabled). 3471 * This hole is either in the middle of the cloning 3472 * range or at the beginning (fully overlaps it or 3473 * partially overlaps it). 3474 */ 3475 if (new_key.offset != last_dest_end) 3476 drop_start = last_dest_end; 3477 else 3478 drop_start = new_key.offset; 3479 3480 /* 3481 * 1 - adjusting old extent (we may have to split it) 3482 * 1 - add new extent 3483 * 1 - inode update 3484 */ 3485 trans = btrfs_start_transaction(root, 3); 3486 if (IS_ERR(trans)) { 3487 ret = PTR_ERR(trans); 3488 goto out; 3489 } 3490 3491 if (type == BTRFS_FILE_EXTENT_REG || 3492 type == BTRFS_FILE_EXTENT_PREALLOC) { 3493 /* 3494 * a | --- range to clone ---| b 3495 * | ------------- extent ------------- | 3496 */ 3497 3498 /* subtract range b */ 3499 if (key.offset + datal > off + len) 3500 datal = off + len - key.offset; 3501 3502 /* subtract range a */ 3503 if (off > key.offset) { 3504 datao += off - key.offset; 3505 datal -= off - key.offset; 3506 } 3507 3508 ret = btrfs_drop_extents(trans, root, inode, 3509 drop_start, 3510 new_key.offset + datal, 3511 1); 3512 if (ret) { 3513 if (ret != -EOPNOTSUPP) 3514 btrfs_abort_transaction(trans, 3515 root, ret); 3516 btrfs_end_transaction(trans, root); 3517 goto out; 3518 } 3519 3520 ret = btrfs_insert_empty_item(trans, root, path, 3521 &new_key, size); 3522 if (ret) { 3523 btrfs_abort_transaction(trans, root, 3524 ret); 3525 btrfs_end_transaction(trans, root); 3526 goto out; 3527 } 3528 3529 leaf = path->nodes[0]; 3530 slot = path->slots[0]; 3531 write_extent_buffer(leaf, buf, 3532 btrfs_item_ptr_offset(leaf, slot), 3533 size); 3534 3535 extent = btrfs_item_ptr(leaf, slot, 3536 struct btrfs_file_extent_item); 3537 3538 /* disko == 0 means it's a hole */ 3539 if (!disko) 3540 datao = 0; 3541 3542 btrfs_set_file_extent_offset(leaf, extent, 3543 datao); 3544 btrfs_set_file_extent_num_bytes(leaf, extent, 3545 datal); 3546 3547 /* 3548 * We need to look up the roots that point at 3549 * this bytenr and see if the new root does. If 3550 * it does not we need to make sure we update 3551 * quotas appropriately. 3552 */ 3553 if (disko && root != BTRFS_I(src)->root && 3554 disko != last_disko) { 3555 no_quota = check_ref(trans, root, 3556 disko); 3557 if (no_quota < 0) { 3558 btrfs_abort_transaction(trans, 3559 root, 3560 ret); 3561 btrfs_end_transaction(trans, 3562 root); 3563 ret = no_quota; 3564 goto out; 3565 } 3566 } 3567 3568 if (disko) { 3569 inode_add_bytes(inode, datal); 3570 ret = btrfs_inc_extent_ref(trans, root, 3571 disko, diskl, 0, 3572 root->root_key.objectid, 3573 btrfs_ino(inode), 3574 new_key.offset - datao, 3575 no_quota); 3576 if (ret) { 3577 btrfs_abort_transaction(trans, 3578 root, 3579 ret); 3580 btrfs_end_transaction(trans, 3581 root); 3582 goto out; 3583 3584 } 3585 } 3586 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3587 u64 skip = 0; 3588 u64 trim = 0; 3589 u64 aligned_end = 0; 3590 3591 /* 3592 * Don't copy an inline extent into an offset 3593 * greater than zero. Having an inline extent 3594 * at such an offset results in chaos as btrfs 3595 * isn't prepared for such cases. Just skip 3596 * this case for the same reasons as commented 3597 * at btrfs_ioctl_clone(). 3598 */ 3599 if (last_dest_end > 0) { 3600 ret = -EOPNOTSUPP; 3601 btrfs_end_transaction(trans, root); 3602 goto out; 3603 } 3604 3605 if (off > key.offset) { 3606 skip = off - key.offset; 3607 new_key.offset += skip; 3608 } 3609 3610 if (key.offset + datal > off + len) 3611 trim = key.offset + datal - (off + len); 3612 3613 if (comp && (skip || trim)) { 3614 ret = -EINVAL; 3615 btrfs_end_transaction(trans, root); 3616 goto out; 3617 } 3618 size -= skip + trim; 3619 datal -= skip + trim; 3620 3621 aligned_end = ALIGN(new_key.offset + datal, 3622 root->sectorsize); 3623 ret = btrfs_drop_extents(trans, root, inode, 3624 drop_start, 3625 aligned_end, 3626 1); 3627 if (ret) { 3628 if (ret != -EOPNOTSUPP) 3629 btrfs_abort_transaction(trans, 3630 root, ret); 3631 btrfs_end_transaction(trans, root); 3632 goto out; 3633 } 3634 3635 ret = btrfs_insert_empty_item(trans, root, path, 3636 &new_key, size); 3637 if (ret) { 3638 btrfs_abort_transaction(trans, root, 3639 ret); 3640 btrfs_end_transaction(trans, root); 3641 goto out; 3642 } 3643 3644 if (skip) { 3645 u32 start = 3646 btrfs_file_extent_calc_inline_size(0); 3647 memmove(buf+start, buf+start+skip, 3648 datal); 3649 } 3650 3651 leaf = path->nodes[0]; 3652 slot = path->slots[0]; 3653 write_extent_buffer(leaf, buf, 3654 btrfs_item_ptr_offset(leaf, slot), 3655 size); 3656 inode_add_bytes(inode, datal); 3657 } 3658 3659 /* If we have an implicit hole (NO_HOLES feature). */ 3660 if (drop_start < new_key.offset) 3661 clone_update_extent_map(inode, trans, 3662 NULL, drop_start, 3663 new_key.offset - drop_start); 3664 3665 clone_update_extent_map(inode, trans, path, 0, 0); 3666 3667 btrfs_mark_buffer_dirty(leaf); 3668 btrfs_release_path(path); 3669 3670 last_dest_end = ALIGN(new_key.offset + datal, 3671 root->sectorsize); 3672 ret = clone_finish_inode_update(trans, inode, 3673 last_dest_end, 3674 destoff, olen, 3675 no_time_update); 3676 if (ret) 3677 goto out; 3678 if (new_key.offset + datal >= destoff + len) 3679 break; 3680 } 3681 btrfs_release_path(path); 3682 key.offset = next_key_min_offset; 3683 } 3684 ret = 0; 3685 3686 if (last_dest_end < destoff + len) { 3687 /* 3688 * We have an implicit hole (NO_HOLES feature is enabled) that 3689 * fully or partially overlaps our cloning range at its end. 3690 */ 3691 btrfs_release_path(path); 3692 3693 /* 3694 * 1 - remove extent(s) 3695 * 1 - inode update 3696 */ 3697 trans = btrfs_start_transaction(root, 2); 3698 if (IS_ERR(trans)) { 3699 ret = PTR_ERR(trans); 3700 goto out; 3701 } 3702 ret = btrfs_drop_extents(trans, root, inode, 3703 last_dest_end, destoff + len, 1); 3704 if (ret) { 3705 if (ret != -EOPNOTSUPP) 3706 btrfs_abort_transaction(trans, root, ret); 3707 btrfs_end_transaction(trans, root); 3708 goto out; 3709 } 3710 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3711 destoff + len - last_dest_end); 3712 ret = clone_finish_inode_update(trans, inode, destoff + len, 3713 destoff, olen, no_time_update); 3714 } 3715 3716 out: 3717 btrfs_free_path(path); 3718 vfree(buf); 3719 return ret; 3720 } 3721 3722 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3723 u64 off, u64 olen, u64 destoff) 3724 { 3725 struct inode *inode = file_inode(file); 3726 struct btrfs_root *root = BTRFS_I(inode)->root; 3727 struct fd src_file; 3728 struct inode *src; 3729 int ret; 3730 u64 len = olen; 3731 u64 bs = root->fs_info->sb->s_blocksize; 3732 int same_inode = 0; 3733 3734 /* 3735 * TODO: 3736 * - split compressed inline extents. annoying: we need to 3737 * decompress into destination's address_space (the file offset 3738 * may change, so source mapping won't do), then recompress (or 3739 * otherwise reinsert) a subrange. 3740 * 3741 * - split destination inode's inline extents. The inline extents can 3742 * be either compressed or non-compressed. 3743 */ 3744 3745 /* the destination must be opened for writing */ 3746 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3747 return -EINVAL; 3748 3749 if (btrfs_root_readonly(root)) 3750 return -EROFS; 3751 3752 ret = mnt_want_write_file(file); 3753 if (ret) 3754 return ret; 3755 3756 src_file = fdget(srcfd); 3757 if (!src_file.file) { 3758 ret = -EBADF; 3759 goto out_drop_write; 3760 } 3761 3762 ret = -EXDEV; 3763 if (src_file.file->f_path.mnt != file->f_path.mnt) 3764 goto out_fput; 3765 3766 src = file_inode(src_file.file); 3767 3768 ret = -EINVAL; 3769 if (src == inode) 3770 same_inode = 1; 3771 3772 /* the src must be open for reading */ 3773 if (!(src_file.file->f_mode & FMODE_READ)) 3774 goto out_fput; 3775 3776 /* don't make the dst file partly checksummed */ 3777 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3778 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3779 goto out_fput; 3780 3781 ret = -EISDIR; 3782 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3783 goto out_fput; 3784 3785 ret = -EXDEV; 3786 if (src->i_sb != inode->i_sb) 3787 goto out_fput; 3788 3789 if (!same_inode) { 3790 if (inode < src) { 3791 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 3792 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 3793 } else { 3794 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 3795 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 3796 } 3797 } else { 3798 mutex_lock(&src->i_mutex); 3799 } 3800 3801 /* determine range to clone */ 3802 ret = -EINVAL; 3803 if (off + len > src->i_size || off + len < off) 3804 goto out_unlock; 3805 if (len == 0) 3806 olen = len = src->i_size - off; 3807 /* if we extend to eof, continue to block boundary */ 3808 if (off + len == src->i_size) 3809 len = ALIGN(src->i_size, bs) - off; 3810 3811 if (len == 0) { 3812 ret = 0; 3813 goto out_unlock; 3814 } 3815 3816 /* verify the end result is block aligned */ 3817 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3818 !IS_ALIGNED(destoff, bs)) 3819 goto out_unlock; 3820 3821 /* verify if ranges are overlapped within the same file */ 3822 if (same_inode) { 3823 if (destoff + len > off && destoff < off + len) 3824 goto out_unlock; 3825 } 3826 3827 if (destoff > inode->i_size) { 3828 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3829 if (ret) 3830 goto out_unlock; 3831 } 3832 3833 /* 3834 * Lock the target range too. Right after we replace the file extent 3835 * items in the fs tree (which now point to the cloned data), we might 3836 * have a worker replace them with extent items relative to a write 3837 * operation that was issued before this clone operation (i.e. confront 3838 * with inode.c:btrfs_finish_ordered_io). 3839 */ 3840 if (same_inode) { 3841 u64 lock_start = min_t(u64, off, destoff); 3842 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3843 3844 lock_extent_range(src, lock_start, lock_len); 3845 } else { 3846 lock_extent_range(src, off, len); 3847 lock_extent_range(inode, destoff, len); 3848 } 3849 3850 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3851 3852 if (same_inode) { 3853 u64 lock_start = min_t(u64, off, destoff); 3854 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3855 3856 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3857 } else { 3858 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 3859 unlock_extent(&BTRFS_I(inode)->io_tree, destoff, 3860 destoff + len - 1); 3861 } 3862 /* 3863 * Truncate page cache pages so that future reads will see the cloned 3864 * data immediately and not the previous data. 3865 */ 3866 truncate_inode_pages_range(&inode->i_data, destoff, 3867 PAGE_CACHE_ALIGN(destoff + len) - 1); 3868 out_unlock: 3869 if (!same_inode) { 3870 if (inode < src) { 3871 mutex_unlock(&src->i_mutex); 3872 mutex_unlock(&inode->i_mutex); 3873 } else { 3874 mutex_unlock(&inode->i_mutex); 3875 mutex_unlock(&src->i_mutex); 3876 } 3877 } else { 3878 mutex_unlock(&src->i_mutex); 3879 } 3880 out_fput: 3881 fdput(src_file); 3882 out_drop_write: 3883 mnt_drop_write_file(file); 3884 return ret; 3885 } 3886 3887 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3888 { 3889 struct btrfs_ioctl_clone_range_args args; 3890 3891 if (copy_from_user(&args, argp, sizeof(args))) 3892 return -EFAULT; 3893 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3894 args.src_length, args.dest_offset); 3895 } 3896 3897 /* 3898 * there are many ways the trans_start and trans_end ioctls can lead 3899 * to deadlocks. They should only be used by applications that 3900 * basically own the machine, and have a very in depth understanding 3901 * of all the possible deadlocks and enospc problems. 3902 */ 3903 static long btrfs_ioctl_trans_start(struct file *file) 3904 { 3905 struct inode *inode = file_inode(file); 3906 struct btrfs_root *root = BTRFS_I(inode)->root; 3907 struct btrfs_trans_handle *trans; 3908 int ret; 3909 3910 ret = -EPERM; 3911 if (!capable(CAP_SYS_ADMIN)) 3912 goto out; 3913 3914 ret = -EINPROGRESS; 3915 if (file->private_data) 3916 goto out; 3917 3918 ret = -EROFS; 3919 if (btrfs_root_readonly(root)) 3920 goto out; 3921 3922 ret = mnt_want_write_file(file); 3923 if (ret) 3924 goto out; 3925 3926 atomic_inc(&root->fs_info->open_ioctl_trans); 3927 3928 ret = -ENOMEM; 3929 trans = btrfs_start_ioctl_transaction(root); 3930 if (IS_ERR(trans)) 3931 goto out_drop; 3932 3933 file->private_data = trans; 3934 return 0; 3935 3936 out_drop: 3937 atomic_dec(&root->fs_info->open_ioctl_trans); 3938 mnt_drop_write_file(file); 3939 out: 3940 return ret; 3941 } 3942 3943 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3944 { 3945 struct inode *inode = file_inode(file); 3946 struct btrfs_root *root = BTRFS_I(inode)->root; 3947 struct btrfs_root *new_root; 3948 struct btrfs_dir_item *di; 3949 struct btrfs_trans_handle *trans; 3950 struct btrfs_path *path; 3951 struct btrfs_key location; 3952 struct btrfs_disk_key disk_key; 3953 u64 objectid = 0; 3954 u64 dir_id; 3955 int ret; 3956 3957 if (!capable(CAP_SYS_ADMIN)) 3958 return -EPERM; 3959 3960 ret = mnt_want_write_file(file); 3961 if (ret) 3962 return ret; 3963 3964 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3965 ret = -EFAULT; 3966 goto out; 3967 } 3968 3969 if (!objectid) 3970 objectid = BTRFS_FS_TREE_OBJECTID; 3971 3972 location.objectid = objectid; 3973 location.type = BTRFS_ROOT_ITEM_KEY; 3974 location.offset = (u64)-1; 3975 3976 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 3977 if (IS_ERR(new_root)) { 3978 ret = PTR_ERR(new_root); 3979 goto out; 3980 } 3981 3982 path = btrfs_alloc_path(); 3983 if (!path) { 3984 ret = -ENOMEM; 3985 goto out; 3986 } 3987 path->leave_spinning = 1; 3988 3989 trans = btrfs_start_transaction(root, 1); 3990 if (IS_ERR(trans)) { 3991 btrfs_free_path(path); 3992 ret = PTR_ERR(trans); 3993 goto out; 3994 } 3995 3996 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 3997 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 3998 dir_id, "default", 7, 1); 3999 if (IS_ERR_OR_NULL(di)) { 4000 btrfs_free_path(path); 4001 btrfs_end_transaction(trans, root); 4002 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4003 "item, this isn't going to work"); 4004 ret = -ENOENT; 4005 goto out; 4006 } 4007 4008 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4009 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4010 btrfs_mark_buffer_dirty(path->nodes[0]); 4011 btrfs_free_path(path); 4012 4013 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4014 btrfs_end_transaction(trans, root); 4015 out: 4016 mnt_drop_write_file(file); 4017 return ret; 4018 } 4019 4020 void btrfs_get_block_group_info(struct list_head *groups_list, 4021 struct btrfs_ioctl_space_info *space) 4022 { 4023 struct btrfs_block_group_cache *block_group; 4024 4025 space->total_bytes = 0; 4026 space->used_bytes = 0; 4027 space->flags = 0; 4028 list_for_each_entry(block_group, groups_list, list) { 4029 space->flags = block_group->flags; 4030 space->total_bytes += block_group->key.offset; 4031 space->used_bytes += 4032 btrfs_block_group_used(&block_group->item); 4033 } 4034 } 4035 4036 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4037 { 4038 struct btrfs_ioctl_space_args space_args; 4039 struct btrfs_ioctl_space_info space; 4040 struct btrfs_ioctl_space_info *dest; 4041 struct btrfs_ioctl_space_info *dest_orig; 4042 struct btrfs_ioctl_space_info __user *user_dest; 4043 struct btrfs_space_info *info; 4044 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4045 BTRFS_BLOCK_GROUP_SYSTEM, 4046 BTRFS_BLOCK_GROUP_METADATA, 4047 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4048 int num_types = 4; 4049 int alloc_size; 4050 int ret = 0; 4051 u64 slot_count = 0; 4052 int i, c; 4053 4054 if (copy_from_user(&space_args, 4055 (struct btrfs_ioctl_space_args __user *)arg, 4056 sizeof(space_args))) 4057 return -EFAULT; 4058 4059 for (i = 0; i < num_types; i++) { 4060 struct btrfs_space_info *tmp; 4061 4062 info = NULL; 4063 rcu_read_lock(); 4064 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4065 list) { 4066 if (tmp->flags == types[i]) { 4067 info = tmp; 4068 break; 4069 } 4070 } 4071 rcu_read_unlock(); 4072 4073 if (!info) 4074 continue; 4075 4076 down_read(&info->groups_sem); 4077 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4078 if (!list_empty(&info->block_groups[c])) 4079 slot_count++; 4080 } 4081 up_read(&info->groups_sem); 4082 } 4083 4084 /* 4085 * Global block reserve, exported as a space_info 4086 */ 4087 slot_count++; 4088 4089 /* space_slots == 0 means they are asking for a count */ 4090 if (space_args.space_slots == 0) { 4091 space_args.total_spaces = slot_count; 4092 goto out; 4093 } 4094 4095 slot_count = min_t(u64, space_args.space_slots, slot_count); 4096 4097 alloc_size = sizeof(*dest) * slot_count; 4098 4099 /* we generally have at most 6 or so space infos, one for each raid 4100 * level. So, a whole page should be more than enough for everyone 4101 */ 4102 if (alloc_size > PAGE_CACHE_SIZE) 4103 return -ENOMEM; 4104 4105 space_args.total_spaces = 0; 4106 dest = kmalloc(alloc_size, GFP_NOFS); 4107 if (!dest) 4108 return -ENOMEM; 4109 dest_orig = dest; 4110 4111 /* now we have a buffer to copy into */ 4112 for (i = 0; i < num_types; i++) { 4113 struct btrfs_space_info *tmp; 4114 4115 if (!slot_count) 4116 break; 4117 4118 info = NULL; 4119 rcu_read_lock(); 4120 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4121 list) { 4122 if (tmp->flags == types[i]) { 4123 info = tmp; 4124 break; 4125 } 4126 } 4127 rcu_read_unlock(); 4128 4129 if (!info) 4130 continue; 4131 down_read(&info->groups_sem); 4132 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4133 if (!list_empty(&info->block_groups[c])) { 4134 btrfs_get_block_group_info( 4135 &info->block_groups[c], &space); 4136 memcpy(dest, &space, sizeof(space)); 4137 dest++; 4138 space_args.total_spaces++; 4139 slot_count--; 4140 } 4141 if (!slot_count) 4142 break; 4143 } 4144 up_read(&info->groups_sem); 4145 } 4146 4147 /* 4148 * Add global block reserve 4149 */ 4150 if (slot_count) { 4151 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4152 4153 spin_lock(&block_rsv->lock); 4154 space.total_bytes = block_rsv->size; 4155 space.used_bytes = block_rsv->size - block_rsv->reserved; 4156 spin_unlock(&block_rsv->lock); 4157 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4158 memcpy(dest, &space, sizeof(space)); 4159 space_args.total_spaces++; 4160 } 4161 4162 user_dest = (struct btrfs_ioctl_space_info __user *) 4163 (arg + sizeof(struct btrfs_ioctl_space_args)); 4164 4165 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4166 ret = -EFAULT; 4167 4168 kfree(dest_orig); 4169 out: 4170 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4171 ret = -EFAULT; 4172 4173 return ret; 4174 } 4175 4176 /* 4177 * there are many ways the trans_start and trans_end ioctls can lead 4178 * to deadlocks. They should only be used by applications that 4179 * basically own the machine, and have a very in depth understanding 4180 * of all the possible deadlocks and enospc problems. 4181 */ 4182 long btrfs_ioctl_trans_end(struct file *file) 4183 { 4184 struct inode *inode = file_inode(file); 4185 struct btrfs_root *root = BTRFS_I(inode)->root; 4186 struct btrfs_trans_handle *trans; 4187 4188 trans = file->private_data; 4189 if (!trans) 4190 return -EINVAL; 4191 file->private_data = NULL; 4192 4193 btrfs_end_transaction(trans, root); 4194 4195 atomic_dec(&root->fs_info->open_ioctl_trans); 4196 4197 mnt_drop_write_file(file); 4198 return 0; 4199 } 4200 4201 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4202 void __user *argp) 4203 { 4204 struct btrfs_trans_handle *trans; 4205 u64 transid; 4206 int ret; 4207 4208 trans = btrfs_attach_transaction_barrier(root); 4209 if (IS_ERR(trans)) { 4210 if (PTR_ERR(trans) != -ENOENT) 4211 return PTR_ERR(trans); 4212 4213 /* No running transaction, don't bother */ 4214 transid = root->fs_info->last_trans_committed; 4215 goto out; 4216 } 4217 transid = trans->transid; 4218 ret = btrfs_commit_transaction_async(trans, root, 0); 4219 if (ret) { 4220 btrfs_end_transaction(trans, root); 4221 return ret; 4222 } 4223 out: 4224 if (argp) 4225 if (copy_to_user(argp, &transid, sizeof(transid))) 4226 return -EFAULT; 4227 return 0; 4228 } 4229 4230 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4231 void __user *argp) 4232 { 4233 u64 transid; 4234 4235 if (argp) { 4236 if (copy_from_user(&transid, argp, sizeof(transid))) 4237 return -EFAULT; 4238 } else { 4239 transid = 0; /* current trans */ 4240 } 4241 return btrfs_wait_for_commit(root, transid); 4242 } 4243 4244 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4245 { 4246 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4247 struct btrfs_ioctl_scrub_args *sa; 4248 int ret; 4249 4250 if (!capable(CAP_SYS_ADMIN)) 4251 return -EPERM; 4252 4253 sa = memdup_user(arg, sizeof(*sa)); 4254 if (IS_ERR(sa)) 4255 return PTR_ERR(sa); 4256 4257 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4258 ret = mnt_want_write_file(file); 4259 if (ret) 4260 goto out; 4261 } 4262 4263 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4264 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4265 0); 4266 4267 if (copy_to_user(arg, sa, sizeof(*sa))) 4268 ret = -EFAULT; 4269 4270 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4271 mnt_drop_write_file(file); 4272 out: 4273 kfree(sa); 4274 return ret; 4275 } 4276 4277 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4278 { 4279 if (!capable(CAP_SYS_ADMIN)) 4280 return -EPERM; 4281 4282 return btrfs_scrub_cancel(root->fs_info); 4283 } 4284 4285 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4286 void __user *arg) 4287 { 4288 struct btrfs_ioctl_scrub_args *sa; 4289 int ret; 4290 4291 if (!capable(CAP_SYS_ADMIN)) 4292 return -EPERM; 4293 4294 sa = memdup_user(arg, sizeof(*sa)); 4295 if (IS_ERR(sa)) 4296 return PTR_ERR(sa); 4297 4298 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4299 4300 if (copy_to_user(arg, sa, sizeof(*sa))) 4301 ret = -EFAULT; 4302 4303 kfree(sa); 4304 return ret; 4305 } 4306 4307 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4308 void __user *arg) 4309 { 4310 struct btrfs_ioctl_get_dev_stats *sa; 4311 int ret; 4312 4313 sa = memdup_user(arg, sizeof(*sa)); 4314 if (IS_ERR(sa)) 4315 return PTR_ERR(sa); 4316 4317 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4318 kfree(sa); 4319 return -EPERM; 4320 } 4321 4322 ret = btrfs_get_dev_stats(root, sa); 4323 4324 if (copy_to_user(arg, sa, sizeof(*sa))) 4325 ret = -EFAULT; 4326 4327 kfree(sa); 4328 return ret; 4329 } 4330 4331 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4332 { 4333 struct btrfs_ioctl_dev_replace_args *p; 4334 int ret; 4335 4336 if (!capable(CAP_SYS_ADMIN)) 4337 return -EPERM; 4338 4339 p = memdup_user(arg, sizeof(*p)); 4340 if (IS_ERR(p)) 4341 return PTR_ERR(p); 4342 4343 switch (p->cmd) { 4344 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4345 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4346 ret = -EROFS; 4347 goto out; 4348 } 4349 if (atomic_xchg( 4350 &root->fs_info->mutually_exclusive_operation_running, 4351 1)) { 4352 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4353 } else { 4354 ret = btrfs_dev_replace_start(root, p); 4355 atomic_set( 4356 &root->fs_info->mutually_exclusive_operation_running, 4357 0); 4358 } 4359 break; 4360 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4361 btrfs_dev_replace_status(root->fs_info, p); 4362 ret = 0; 4363 break; 4364 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4365 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4366 break; 4367 default: 4368 ret = -EINVAL; 4369 break; 4370 } 4371 4372 if (copy_to_user(arg, p, sizeof(*p))) 4373 ret = -EFAULT; 4374 out: 4375 kfree(p); 4376 return ret; 4377 } 4378 4379 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4380 { 4381 int ret = 0; 4382 int i; 4383 u64 rel_ptr; 4384 int size; 4385 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4386 struct inode_fs_paths *ipath = NULL; 4387 struct btrfs_path *path; 4388 4389 if (!capable(CAP_DAC_READ_SEARCH)) 4390 return -EPERM; 4391 4392 path = btrfs_alloc_path(); 4393 if (!path) { 4394 ret = -ENOMEM; 4395 goto out; 4396 } 4397 4398 ipa = memdup_user(arg, sizeof(*ipa)); 4399 if (IS_ERR(ipa)) { 4400 ret = PTR_ERR(ipa); 4401 ipa = NULL; 4402 goto out; 4403 } 4404 4405 size = min_t(u32, ipa->size, 4096); 4406 ipath = init_ipath(size, root, path); 4407 if (IS_ERR(ipath)) { 4408 ret = PTR_ERR(ipath); 4409 ipath = NULL; 4410 goto out; 4411 } 4412 4413 ret = paths_from_inode(ipa->inum, ipath); 4414 if (ret < 0) 4415 goto out; 4416 4417 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4418 rel_ptr = ipath->fspath->val[i] - 4419 (u64)(unsigned long)ipath->fspath->val; 4420 ipath->fspath->val[i] = rel_ptr; 4421 } 4422 4423 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4424 (void *)(unsigned long)ipath->fspath, size); 4425 if (ret) { 4426 ret = -EFAULT; 4427 goto out; 4428 } 4429 4430 out: 4431 btrfs_free_path(path); 4432 free_ipath(ipath); 4433 kfree(ipa); 4434 4435 return ret; 4436 } 4437 4438 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4439 { 4440 struct btrfs_data_container *inodes = ctx; 4441 const size_t c = 3 * sizeof(u64); 4442 4443 if (inodes->bytes_left >= c) { 4444 inodes->bytes_left -= c; 4445 inodes->val[inodes->elem_cnt] = inum; 4446 inodes->val[inodes->elem_cnt + 1] = offset; 4447 inodes->val[inodes->elem_cnt + 2] = root; 4448 inodes->elem_cnt += 3; 4449 } else { 4450 inodes->bytes_missing += c - inodes->bytes_left; 4451 inodes->bytes_left = 0; 4452 inodes->elem_missed += 3; 4453 } 4454 4455 return 0; 4456 } 4457 4458 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4459 void __user *arg) 4460 { 4461 int ret = 0; 4462 int size; 4463 struct btrfs_ioctl_logical_ino_args *loi; 4464 struct btrfs_data_container *inodes = NULL; 4465 struct btrfs_path *path = NULL; 4466 4467 if (!capable(CAP_SYS_ADMIN)) 4468 return -EPERM; 4469 4470 loi = memdup_user(arg, sizeof(*loi)); 4471 if (IS_ERR(loi)) { 4472 ret = PTR_ERR(loi); 4473 loi = NULL; 4474 goto out; 4475 } 4476 4477 path = btrfs_alloc_path(); 4478 if (!path) { 4479 ret = -ENOMEM; 4480 goto out; 4481 } 4482 4483 size = min_t(u32, loi->size, 64 * 1024); 4484 inodes = init_data_container(size); 4485 if (IS_ERR(inodes)) { 4486 ret = PTR_ERR(inodes); 4487 inodes = NULL; 4488 goto out; 4489 } 4490 4491 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4492 build_ino_list, inodes); 4493 if (ret == -EINVAL) 4494 ret = -ENOENT; 4495 if (ret < 0) 4496 goto out; 4497 4498 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4499 (void *)(unsigned long)inodes, size); 4500 if (ret) 4501 ret = -EFAULT; 4502 4503 out: 4504 btrfs_free_path(path); 4505 vfree(inodes); 4506 kfree(loi); 4507 4508 return ret; 4509 } 4510 4511 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4512 struct btrfs_ioctl_balance_args *bargs) 4513 { 4514 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4515 4516 bargs->flags = bctl->flags; 4517 4518 if (atomic_read(&fs_info->balance_running)) 4519 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4520 if (atomic_read(&fs_info->balance_pause_req)) 4521 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4522 if (atomic_read(&fs_info->balance_cancel_req)) 4523 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4524 4525 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4526 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4527 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4528 4529 if (lock) { 4530 spin_lock(&fs_info->balance_lock); 4531 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4532 spin_unlock(&fs_info->balance_lock); 4533 } else { 4534 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4535 } 4536 } 4537 4538 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4539 { 4540 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4541 struct btrfs_fs_info *fs_info = root->fs_info; 4542 struct btrfs_ioctl_balance_args *bargs; 4543 struct btrfs_balance_control *bctl; 4544 bool need_unlock; /* for mut. excl. ops lock */ 4545 int ret; 4546 4547 if (!capable(CAP_SYS_ADMIN)) 4548 return -EPERM; 4549 4550 ret = mnt_want_write_file(file); 4551 if (ret) 4552 return ret; 4553 4554 again: 4555 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4556 mutex_lock(&fs_info->volume_mutex); 4557 mutex_lock(&fs_info->balance_mutex); 4558 need_unlock = true; 4559 goto locked; 4560 } 4561 4562 /* 4563 * mut. excl. ops lock is locked. Three possibilites: 4564 * (1) some other op is running 4565 * (2) balance is running 4566 * (3) balance is paused -- special case (think resume) 4567 */ 4568 mutex_lock(&fs_info->balance_mutex); 4569 if (fs_info->balance_ctl) { 4570 /* this is either (2) or (3) */ 4571 if (!atomic_read(&fs_info->balance_running)) { 4572 mutex_unlock(&fs_info->balance_mutex); 4573 if (!mutex_trylock(&fs_info->volume_mutex)) 4574 goto again; 4575 mutex_lock(&fs_info->balance_mutex); 4576 4577 if (fs_info->balance_ctl && 4578 !atomic_read(&fs_info->balance_running)) { 4579 /* this is (3) */ 4580 need_unlock = false; 4581 goto locked; 4582 } 4583 4584 mutex_unlock(&fs_info->balance_mutex); 4585 mutex_unlock(&fs_info->volume_mutex); 4586 goto again; 4587 } else { 4588 /* this is (2) */ 4589 mutex_unlock(&fs_info->balance_mutex); 4590 ret = -EINPROGRESS; 4591 goto out; 4592 } 4593 } else { 4594 /* this is (1) */ 4595 mutex_unlock(&fs_info->balance_mutex); 4596 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4597 goto out; 4598 } 4599 4600 locked: 4601 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4602 4603 if (arg) { 4604 bargs = memdup_user(arg, sizeof(*bargs)); 4605 if (IS_ERR(bargs)) { 4606 ret = PTR_ERR(bargs); 4607 goto out_unlock; 4608 } 4609 4610 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4611 if (!fs_info->balance_ctl) { 4612 ret = -ENOTCONN; 4613 goto out_bargs; 4614 } 4615 4616 bctl = fs_info->balance_ctl; 4617 spin_lock(&fs_info->balance_lock); 4618 bctl->flags |= BTRFS_BALANCE_RESUME; 4619 spin_unlock(&fs_info->balance_lock); 4620 4621 goto do_balance; 4622 } 4623 } else { 4624 bargs = NULL; 4625 } 4626 4627 if (fs_info->balance_ctl) { 4628 ret = -EINPROGRESS; 4629 goto out_bargs; 4630 } 4631 4632 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4633 if (!bctl) { 4634 ret = -ENOMEM; 4635 goto out_bargs; 4636 } 4637 4638 bctl->fs_info = fs_info; 4639 if (arg) { 4640 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4641 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4642 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4643 4644 bctl->flags = bargs->flags; 4645 } else { 4646 /* balance everything - no filters */ 4647 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4648 } 4649 4650 do_balance: 4651 /* 4652 * Ownership of bctl and mutually_exclusive_operation_running 4653 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4654 * or, if restriper was paused all the way until unmount, in 4655 * free_fs_info. mutually_exclusive_operation_running is 4656 * cleared in __cancel_balance. 4657 */ 4658 need_unlock = false; 4659 4660 ret = btrfs_balance(bctl, bargs); 4661 4662 if (arg) { 4663 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4664 ret = -EFAULT; 4665 } 4666 4667 out_bargs: 4668 kfree(bargs); 4669 out_unlock: 4670 mutex_unlock(&fs_info->balance_mutex); 4671 mutex_unlock(&fs_info->volume_mutex); 4672 if (need_unlock) 4673 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4674 out: 4675 mnt_drop_write_file(file); 4676 return ret; 4677 } 4678 4679 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4680 { 4681 if (!capable(CAP_SYS_ADMIN)) 4682 return -EPERM; 4683 4684 switch (cmd) { 4685 case BTRFS_BALANCE_CTL_PAUSE: 4686 return btrfs_pause_balance(root->fs_info); 4687 case BTRFS_BALANCE_CTL_CANCEL: 4688 return btrfs_cancel_balance(root->fs_info); 4689 } 4690 4691 return -EINVAL; 4692 } 4693 4694 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4695 void __user *arg) 4696 { 4697 struct btrfs_fs_info *fs_info = root->fs_info; 4698 struct btrfs_ioctl_balance_args *bargs; 4699 int ret = 0; 4700 4701 if (!capable(CAP_SYS_ADMIN)) 4702 return -EPERM; 4703 4704 mutex_lock(&fs_info->balance_mutex); 4705 if (!fs_info->balance_ctl) { 4706 ret = -ENOTCONN; 4707 goto out; 4708 } 4709 4710 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4711 if (!bargs) { 4712 ret = -ENOMEM; 4713 goto out; 4714 } 4715 4716 update_ioctl_balance_args(fs_info, 1, bargs); 4717 4718 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4719 ret = -EFAULT; 4720 4721 kfree(bargs); 4722 out: 4723 mutex_unlock(&fs_info->balance_mutex); 4724 return ret; 4725 } 4726 4727 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4728 { 4729 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4730 struct btrfs_ioctl_quota_ctl_args *sa; 4731 struct btrfs_trans_handle *trans = NULL; 4732 int ret; 4733 int err; 4734 4735 if (!capable(CAP_SYS_ADMIN)) 4736 return -EPERM; 4737 4738 ret = mnt_want_write_file(file); 4739 if (ret) 4740 return ret; 4741 4742 sa = memdup_user(arg, sizeof(*sa)); 4743 if (IS_ERR(sa)) { 4744 ret = PTR_ERR(sa); 4745 goto drop_write; 4746 } 4747 4748 down_write(&root->fs_info->subvol_sem); 4749 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4750 if (IS_ERR(trans)) { 4751 ret = PTR_ERR(trans); 4752 goto out; 4753 } 4754 4755 switch (sa->cmd) { 4756 case BTRFS_QUOTA_CTL_ENABLE: 4757 ret = btrfs_quota_enable(trans, root->fs_info); 4758 break; 4759 case BTRFS_QUOTA_CTL_DISABLE: 4760 ret = btrfs_quota_disable(trans, root->fs_info); 4761 break; 4762 default: 4763 ret = -EINVAL; 4764 break; 4765 } 4766 4767 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4768 if (err && !ret) 4769 ret = err; 4770 out: 4771 kfree(sa); 4772 up_write(&root->fs_info->subvol_sem); 4773 drop_write: 4774 mnt_drop_write_file(file); 4775 return ret; 4776 } 4777 4778 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4779 { 4780 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4781 struct btrfs_ioctl_qgroup_assign_args *sa; 4782 struct btrfs_trans_handle *trans; 4783 int ret; 4784 int err; 4785 4786 if (!capable(CAP_SYS_ADMIN)) 4787 return -EPERM; 4788 4789 ret = mnt_want_write_file(file); 4790 if (ret) 4791 return ret; 4792 4793 sa = memdup_user(arg, sizeof(*sa)); 4794 if (IS_ERR(sa)) { 4795 ret = PTR_ERR(sa); 4796 goto drop_write; 4797 } 4798 4799 trans = btrfs_join_transaction(root); 4800 if (IS_ERR(trans)) { 4801 ret = PTR_ERR(trans); 4802 goto out; 4803 } 4804 4805 /* FIXME: check if the IDs really exist */ 4806 if (sa->assign) { 4807 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4808 sa->src, sa->dst); 4809 } else { 4810 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4811 sa->src, sa->dst); 4812 } 4813 4814 /* update qgroup status and info */ 4815 err = btrfs_run_qgroups(trans, root->fs_info); 4816 if (err < 0) 4817 btrfs_error(root->fs_info, ret, 4818 "failed to update qgroup status and info\n"); 4819 err = btrfs_end_transaction(trans, root); 4820 if (err && !ret) 4821 ret = err; 4822 4823 out: 4824 kfree(sa); 4825 drop_write: 4826 mnt_drop_write_file(file); 4827 return ret; 4828 } 4829 4830 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4831 { 4832 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4833 struct btrfs_ioctl_qgroup_create_args *sa; 4834 struct btrfs_trans_handle *trans; 4835 int ret; 4836 int err; 4837 4838 if (!capable(CAP_SYS_ADMIN)) 4839 return -EPERM; 4840 4841 ret = mnt_want_write_file(file); 4842 if (ret) 4843 return ret; 4844 4845 sa = memdup_user(arg, sizeof(*sa)); 4846 if (IS_ERR(sa)) { 4847 ret = PTR_ERR(sa); 4848 goto drop_write; 4849 } 4850 4851 if (!sa->qgroupid) { 4852 ret = -EINVAL; 4853 goto out; 4854 } 4855 4856 trans = btrfs_join_transaction(root); 4857 if (IS_ERR(trans)) { 4858 ret = PTR_ERR(trans); 4859 goto out; 4860 } 4861 4862 /* FIXME: check if the IDs really exist */ 4863 if (sa->create) { 4864 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4865 } else { 4866 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4867 } 4868 4869 err = btrfs_end_transaction(trans, root); 4870 if (err && !ret) 4871 ret = err; 4872 4873 out: 4874 kfree(sa); 4875 drop_write: 4876 mnt_drop_write_file(file); 4877 return ret; 4878 } 4879 4880 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4881 { 4882 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4883 struct btrfs_ioctl_qgroup_limit_args *sa; 4884 struct btrfs_trans_handle *trans; 4885 int ret; 4886 int err; 4887 u64 qgroupid; 4888 4889 if (!capable(CAP_SYS_ADMIN)) 4890 return -EPERM; 4891 4892 ret = mnt_want_write_file(file); 4893 if (ret) 4894 return ret; 4895 4896 sa = memdup_user(arg, sizeof(*sa)); 4897 if (IS_ERR(sa)) { 4898 ret = PTR_ERR(sa); 4899 goto drop_write; 4900 } 4901 4902 trans = btrfs_join_transaction(root); 4903 if (IS_ERR(trans)) { 4904 ret = PTR_ERR(trans); 4905 goto out; 4906 } 4907 4908 qgroupid = sa->qgroupid; 4909 if (!qgroupid) { 4910 /* take the current subvol as qgroup */ 4911 qgroupid = root->root_key.objectid; 4912 } 4913 4914 /* FIXME: check if the IDs really exist */ 4915 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4916 4917 err = btrfs_end_transaction(trans, root); 4918 if (err && !ret) 4919 ret = err; 4920 4921 out: 4922 kfree(sa); 4923 drop_write: 4924 mnt_drop_write_file(file); 4925 return ret; 4926 } 4927 4928 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4929 { 4930 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4931 struct btrfs_ioctl_quota_rescan_args *qsa; 4932 int ret; 4933 4934 if (!capable(CAP_SYS_ADMIN)) 4935 return -EPERM; 4936 4937 ret = mnt_want_write_file(file); 4938 if (ret) 4939 return ret; 4940 4941 qsa = memdup_user(arg, sizeof(*qsa)); 4942 if (IS_ERR(qsa)) { 4943 ret = PTR_ERR(qsa); 4944 goto drop_write; 4945 } 4946 4947 if (qsa->flags) { 4948 ret = -EINVAL; 4949 goto out; 4950 } 4951 4952 ret = btrfs_qgroup_rescan(root->fs_info); 4953 4954 out: 4955 kfree(qsa); 4956 drop_write: 4957 mnt_drop_write_file(file); 4958 return ret; 4959 } 4960 4961 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4962 { 4963 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4964 struct btrfs_ioctl_quota_rescan_args *qsa; 4965 int ret = 0; 4966 4967 if (!capable(CAP_SYS_ADMIN)) 4968 return -EPERM; 4969 4970 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 4971 if (!qsa) 4972 return -ENOMEM; 4973 4974 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4975 qsa->flags = 1; 4976 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 4977 } 4978 4979 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4980 ret = -EFAULT; 4981 4982 kfree(qsa); 4983 return ret; 4984 } 4985 4986 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4987 { 4988 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4989 4990 if (!capable(CAP_SYS_ADMIN)) 4991 return -EPERM; 4992 4993 return btrfs_qgroup_wait_for_completion(root->fs_info); 4994 } 4995 4996 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4997 struct btrfs_ioctl_received_subvol_args *sa) 4998 { 4999 struct inode *inode = file_inode(file); 5000 struct btrfs_root *root = BTRFS_I(inode)->root; 5001 struct btrfs_root_item *root_item = &root->root_item; 5002 struct btrfs_trans_handle *trans; 5003 struct timespec ct = CURRENT_TIME; 5004 int ret = 0; 5005 int received_uuid_changed; 5006 5007 if (!inode_owner_or_capable(inode)) 5008 return -EPERM; 5009 5010 ret = mnt_want_write_file(file); 5011 if (ret < 0) 5012 return ret; 5013 5014 down_write(&root->fs_info->subvol_sem); 5015 5016 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5017 ret = -EINVAL; 5018 goto out; 5019 } 5020 5021 if (btrfs_root_readonly(root)) { 5022 ret = -EROFS; 5023 goto out; 5024 } 5025 5026 /* 5027 * 1 - root item 5028 * 2 - uuid items (received uuid + subvol uuid) 5029 */ 5030 trans = btrfs_start_transaction(root, 3); 5031 if (IS_ERR(trans)) { 5032 ret = PTR_ERR(trans); 5033 trans = NULL; 5034 goto out; 5035 } 5036 5037 sa->rtransid = trans->transid; 5038 sa->rtime.sec = ct.tv_sec; 5039 sa->rtime.nsec = ct.tv_nsec; 5040 5041 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5042 BTRFS_UUID_SIZE); 5043 if (received_uuid_changed && 5044 !btrfs_is_empty_uuid(root_item->received_uuid)) 5045 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5046 root_item->received_uuid, 5047 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5048 root->root_key.objectid); 5049 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5050 btrfs_set_root_stransid(root_item, sa->stransid); 5051 btrfs_set_root_rtransid(root_item, sa->rtransid); 5052 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5053 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5054 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5055 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5056 5057 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5058 &root->root_key, &root->root_item); 5059 if (ret < 0) { 5060 btrfs_end_transaction(trans, root); 5061 goto out; 5062 } 5063 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5064 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5065 sa->uuid, 5066 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5067 root->root_key.objectid); 5068 if (ret < 0 && ret != -EEXIST) { 5069 btrfs_abort_transaction(trans, root, ret); 5070 goto out; 5071 } 5072 } 5073 ret = btrfs_commit_transaction(trans, root); 5074 if (ret < 0) { 5075 btrfs_abort_transaction(trans, root, ret); 5076 goto out; 5077 } 5078 5079 out: 5080 up_write(&root->fs_info->subvol_sem); 5081 mnt_drop_write_file(file); 5082 return ret; 5083 } 5084 5085 #ifdef CONFIG_64BIT 5086 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5087 void __user *arg) 5088 { 5089 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5090 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5091 int ret = 0; 5092 5093 args32 = memdup_user(arg, sizeof(*args32)); 5094 if (IS_ERR(args32)) { 5095 ret = PTR_ERR(args32); 5096 args32 = NULL; 5097 goto out; 5098 } 5099 5100 args64 = kmalloc(sizeof(*args64), GFP_NOFS); 5101 if (!args64) { 5102 ret = -ENOMEM; 5103 goto out; 5104 } 5105 5106 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5107 args64->stransid = args32->stransid; 5108 args64->rtransid = args32->rtransid; 5109 args64->stime.sec = args32->stime.sec; 5110 args64->stime.nsec = args32->stime.nsec; 5111 args64->rtime.sec = args32->rtime.sec; 5112 args64->rtime.nsec = args32->rtime.nsec; 5113 args64->flags = args32->flags; 5114 5115 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5116 if (ret) 5117 goto out; 5118 5119 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5120 args32->stransid = args64->stransid; 5121 args32->rtransid = args64->rtransid; 5122 args32->stime.sec = args64->stime.sec; 5123 args32->stime.nsec = args64->stime.nsec; 5124 args32->rtime.sec = args64->rtime.sec; 5125 args32->rtime.nsec = args64->rtime.nsec; 5126 args32->flags = args64->flags; 5127 5128 ret = copy_to_user(arg, args32, sizeof(*args32)); 5129 if (ret) 5130 ret = -EFAULT; 5131 5132 out: 5133 kfree(args32); 5134 kfree(args64); 5135 return ret; 5136 } 5137 #endif 5138 5139 static long btrfs_ioctl_set_received_subvol(struct file *file, 5140 void __user *arg) 5141 { 5142 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5143 int ret = 0; 5144 5145 sa = memdup_user(arg, sizeof(*sa)); 5146 if (IS_ERR(sa)) { 5147 ret = PTR_ERR(sa); 5148 sa = NULL; 5149 goto out; 5150 } 5151 5152 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5153 5154 if (ret) 5155 goto out; 5156 5157 ret = copy_to_user(arg, sa, sizeof(*sa)); 5158 if (ret) 5159 ret = -EFAULT; 5160 5161 out: 5162 kfree(sa); 5163 return ret; 5164 } 5165 5166 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5167 { 5168 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5169 size_t len; 5170 int ret; 5171 char label[BTRFS_LABEL_SIZE]; 5172 5173 spin_lock(&root->fs_info->super_lock); 5174 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5175 spin_unlock(&root->fs_info->super_lock); 5176 5177 len = strnlen(label, BTRFS_LABEL_SIZE); 5178 5179 if (len == BTRFS_LABEL_SIZE) { 5180 btrfs_warn(root->fs_info, 5181 "label is too long, return the first %zu bytes", --len); 5182 } 5183 5184 ret = copy_to_user(arg, label, len); 5185 5186 return ret ? -EFAULT : 0; 5187 } 5188 5189 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5190 { 5191 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5192 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5193 struct btrfs_trans_handle *trans; 5194 char label[BTRFS_LABEL_SIZE]; 5195 int ret; 5196 5197 if (!capable(CAP_SYS_ADMIN)) 5198 return -EPERM; 5199 5200 if (copy_from_user(label, arg, sizeof(label))) 5201 return -EFAULT; 5202 5203 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5204 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5205 BTRFS_LABEL_SIZE - 1); 5206 return -EINVAL; 5207 } 5208 5209 ret = mnt_want_write_file(file); 5210 if (ret) 5211 return ret; 5212 5213 trans = btrfs_start_transaction(root, 0); 5214 if (IS_ERR(trans)) { 5215 ret = PTR_ERR(trans); 5216 goto out_unlock; 5217 } 5218 5219 spin_lock(&root->fs_info->super_lock); 5220 strcpy(super_block->label, label); 5221 spin_unlock(&root->fs_info->super_lock); 5222 ret = btrfs_commit_transaction(trans, root); 5223 5224 out_unlock: 5225 mnt_drop_write_file(file); 5226 return ret; 5227 } 5228 5229 #define INIT_FEATURE_FLAGS(suffix) \ 5230 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5231 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5232 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5233 5234 static int btrfs_ioctl_get_supported_features(struct file *file, 5235 void __user *arg) 5236 { 5237 static struct btrfs_ioctl_feature_flags features[3] = { 5238 INIT_FEATURE_FLAGS(SUPP), 5239 INIT_FEATURE_FLAGS(SAFE_SET), 5240 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5241 }; 5242 5243 if (copy_to_user(arg, &features, sizeof(features))) 5244 return -EFAULT; 5245 5246 return 0; 5247 } 5248 5249 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5250 { 5251 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5252 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5253 struct btrfs_ioctl_feature_flags features; 5254 5255 features.compat_flags = btrfs_super_compat_flags(super_block); 5256 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5257 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5258 5259 if (copy_to_user(arg, &features, sizeof(features))) 5260 return -EFAULT; 5261 5262 return 0; 5263 } 5264 5265 static int check_feature_bits(struct btrfs_root *root, 5266 enum btrfs_feature_set set, 5267 u64 change_mask, u64 flags, u64 supported_flags, 5268 u64 safe_set, u64 safe_clear) 5269 { 5270 const char *type = btrfs_feature_set_names[set]; 5271 char *names; 5272 u64 disallowed, unsupported; 5273 u64 set_mask = flags & change_mask; 5274 u64 clear_mask = ~flags & change_mask; 5275 5276 unsupported = set_mask & ~supported_flags; 5277 if (unsupported) { 5278 names = btrfs_printable_features(set, unsupported); 5279 if (names) { 5280 btrfs_warn(root->fs_info, 5281 "this kernel does not support the %s feature bit%s", 5282 names, strchr(names, ',') ? "s" : ""); 5283 kfree(names); 5284 } else 5285 btrfs_warn(root->fs_info, 5286 "this kernel does not support %s bits 0x%llx", 5287 type, unsupported); 5288 return -EOPNOTSUPP; 5289 } 5290 5291 disallowed = set_mask & ~safe_set; 5292 if (disallowed) { 5293 names = btrfs_printable_features(set, disallowed); 5294 if (names) { 5295 btrfs_warn(root->fs_info, 5296 "can't set the %s feature bit%s while mounted", 5297 names, strchr(names, ',') ? "s" : ""); 5298 kfree(names); 5299 } else 5300 btrfs_warn(root->fs_info, 5301 "can't set %s bits 0x%llx while mounted", 5302 type, disallowed); 5303 return -EPERM; 5304 } 5305 5306 disallowed = clear_mask & ~safe_clear; 5307 if (disallowed) { 5308 names = btrfs_printable_features(set, disallowed); 5309 if (names) { 5310 btrfs_warn(root->fs_info, 5311 "can't clear the %s feature bit%s while mounted", 5312 names, strchr(names, ',') ? "s" : ""); 5313 kfree(names); 5314 } else 5315 btrfs_warn(root->fs_info, 5316 "can't clear %s bits 0x%llx while mounted", 5317 type, disallowed); 5318 return -EPERM; 5319 } 5320 5321 return 0; 5322 } 5323 5324 #define check_feature(root, change_mask, flags, mask_base) \ 5325 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5326 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5327 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5328 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5329 5330 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5331 { 5332 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5333 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5334 struct btrfs_ioctl_feature_flags flags[2]; 5335 struct btrfs_trans_handle *trans; 5336 u64 newflags; 5337 int ret; 5338 5339 if (!capable(CAP_SYS_ADMIN)) 5340 return -EPERM; 5341 5342 if (copy_from_user(flags, arg, sizeof(flags))) 5343 return -EFAULT; 5344 5345 /* Nothing to do */ 5346 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5347 !flags[0].incompat_flags) 5348 return 0; 5349 5350 ret = check_feature(root, flags[0].compat_flags, 5351 flags[1].compat_flags, COMPAT); 5352 if (ret) 5353 return ret; 5354 5355 ret = check_feature(root, flags[0].compat_ro_flags, 5356 flags[1].compat_ro_flags, COMPAT_RO); 5357 if (ret) 5358 return ret; 5359 5360 ret = check_feature(root, flags[0].incompat_flags, 5361 flags[1].incompat_flags, INCOMPAT); 5362 if (ret) 5363 return ret; 5364 5365 trans = btrfs_start_transaction(root, 0); 5366 if (IS_ERR(trans)) 5367 return PTR_ERR(trans); 5368 5369 spin_lock(&root->fs_info->super_lock); 5370 newflags = btrfs_super_compat_flags(super_block); 5371 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5372 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5373 btrfs_set_super_compat_flags(super_block, newflags); 5374 5375 newflags = btrfs_super_compat_ro_flags(super_block); 5376 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5377 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5378 btrfs_set_super_compat_ro_flags(super_block, newflags); 5379 5380 newflags = btrfs_super_incompat_flags(super_block); 5381 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5382 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5383 btrfs_set_super_incompat_flags(super_block, newflags); 5384 spin_unlock(&root->fs_info->super_lock); 5385 5386 return btrfs_commit_transaction(trans, root); 5387 } 5388 5389 long btrfs_ioctl(struct file *file, unsigned int 5390 cmd, unsigned long arg) 5391 { 5392 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5393 void __user *argp = (void __user *)arg; 5394 5395 switch (cmd) { 5396 case FS_IOC_GETFLAGS: 5397 return btrfs_ioctl_getflags(file, argp); 5398 case FS_IOC_SETFLAGS: 5399 return btrfs_ioctl_setflags(file, argp); 5400 case FS_IOC_GETVERSION: 5401 return btrfs_ioctl_getversion(file, argp); 5402 case FITRIM: 5403 return btrfs_ioctl_fitrim(file, argp); 5404 case BTRFS_IOC_SNAP_CREATE: 5405 return btrfs_ioctl_snap_create(file, argp, 0); 5406 case BTRFS_IOC_SNAP_CREATE_V2: 5407 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5408 case BTRFS_IOC_SUBVOL_CREATE: 5409 return btrfs_ioctl_snap_create(file, argp, 1); 5410 case BTRFS_IOC_SUBVOL_CREATE_V2: 5411 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5412 case BTRFS_IOC_SNAP_DESTROY: 5413 return btrfs_ioctl_snap_destroy(file, argp); 5414 case BTRFS_IOC_SUBVOL_GETFLAGS: 5415 return btrfs_ioctl_subvol_getflags(file, argp); 5416 case BTRFS_IOC_SUBVOL_SETFLAGS: 5417 return btrfs_ioctl_subvol_setflags(file, argp); 5418 case BTRFS_IOC_DEFAULT_SUBVOL: 5419 return btrfs_ioctl_default_subvol(file, argp); 5420 case BTRFS_IOC_DEFRAG: 5421 return btrfs_ioctl_defrag(file, NULL); 5422 case BTRFS_IOC_DEFRAG_RANGE: 5423 return btrfs_ioctl_defrag(file, argp); 5424 case BTRFS_IOC_RESIZE: 5425 return btrfs_ioctl_resize(file, argp); 5426 case BTRFS_IOC_ADD_DEV: 5427 return btrfs_ioctl_add_dev(root, argp); 5428 case BTRFS_IOC_RM_DEV: 5429 return btrfs_ioctl_rm_dev(file, argp); 5430 case BTRFS_IOC_FS_INFO: 5431 return btrfs_ioctl_fs_info(root, argp); 5432 case BTRFS_IOC_DEV_INFO: 5433 return btrfs_ioctl_dev_info(root, argp); 5434 case BTRFS_IOC_BALANCE: 5435 return btrfs_ioctl_balance(file, NULL); 5436 case BTRFS_IOC_CLONE: 5437 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 5438 case BTRFS_IOC_CLONE_RANGE: 5439 return btrfs_ioctl_clone_range(file, argp); 5440 case BTRFS_IOC_TRANS_START: 5441 return btrfs_ioctl_trans_start(file); 5442 case BTRFS_IOC_TRANS_END: 5443 return btrfs_ioctl_trans_end(file); 5444 case BTRFS_IOC_TREE_SEARCH: 5445 return btrfs_ioctl_tree_search(file, argp); 5446 case BTRFS_IOC_TREE_SEARCH_V2: 5447 return btrfs_ioctl_tree_search_v2(file, argp); 5448 case BTRFS_IOC_INO_LOOKUP: 5449 return btrfs_ioctl_ino_lookup(file, argp); 5450 case BTRFS_IOC_INO_PATHS: 5451 return btrfs_ioctl_ino_to_path(root, argp); 5452 case BTRFS_IOC_LOGICAL_INO: 5453 return btrfs_ioctl_logical_to_ino(root, argp); 5454 case BTRFS_IOC_SPACE_INFO: 5455 return btrfs_ioctl_space_info(root, argp); 5456 case BTRFS_IOC_SYNC: { 5457 int ret; 5458 5459 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5460 if (ret) 5461 return ret; 5462 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5463 /* 5464 * The transaction thread may want to do more work, 5465 * namely it pokes the cleaner ktread that will start 5466 * processing uncleaned subvols. 5467 */ 5468 wake_up_process(root->fs_info->transaction_kthread); 5469 return ret; 5470 } 5471 case BTRFS_IOC_START_SYNC: 5472 return btrfs_ioctl_start_sync(root, argp); 5473 case BTRFS_IOC_WAIT_SYNC: 5474 return btrfs_ioctl_wait_sync(root, argp); 5475 case BTRFS_IOC_SCRUB: 5476 return btrfs_ioctl_scrub(file, argp); 5477 case BTRFS_IOC_SCRUB_CANCEL: 5478 return btrfs_ioctl_scrub_cancel(root, argp); 5479 case BTRFS_IOC_SCRUB_PROGRESS: 5480 return btrfs_ioctl_scrub_progress(root, argp); 5481 case BTRFS_IOC_BALANCE_V2: 5482 return btrfs_ioctl_balance(file, argp); 5483 case BTRFS_IOC_BALANCE_CTL: 5484 return btrfs_ioctl_balance_ctl(root, arg); 5485 case BTRFS_IOC_BALANCE_PROGRESS: 5486 return btrfs_ioctl_balance_progress(root, argp); 5487 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5488 return btrfs_ioctl_set_received_subvol(file, argp); 5489 #ifdef CONFIG_64BIT 5490 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5491 return btrfs_ioctl_set_received_subvol_32(file, argp); 5492 #endif 5493 case BTRFS_IOC_SEND: 5494 return btrfs_ioctl_send(file, argp); 5495 case BTRFS_IOC_GET_DEV_STATS: 5496 return btrfs_ioctl_get_dev_stats(root, argp); 5497 case BTRFS_IOC_QUOTA_CTL: 5498 return btrfs_ioctl_quota_ctl(file, argp); 5499 case BTRFS_IOC_QGROUP_ASSIGN: 5500 return btrfs_ioctl_qgroup_assign(file, argp); 5501 case BTRFS_IOC_QGROUP_CREATE: 5502 return btrfs_ioctl_qgroup_create(file, argp); 5503 case BTRFS_IOC_QGROUP_LIMIT: 5504 return btrfs_ioctl_qgroup_limit(file, argp); 5505 case BTRFS_IOC_QUOTA_RESCAN: 5506 return btrfs_ioctl_quota_rescan(file, argp); 5507 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5508 return btrfs_ioctl_quota_rescan_status(file, argp); 5509 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5510 return btrfs_ioctl_quota_rescan_wait(file, argp); 5511 case BTRFS_IOC_DEV_REPLACE: 5512 return btrfs_ioctl_dev_replace(root, argp); 5513 case BTRFS_IOC_GET_FSLABEL: 5514 return btrfs_ioctl_get_fslabel(file, argp); 5515 case BTRFS_IOC_SET_FSLABEL: 5516 return btrfs_ioctl_set_fslabel(file, argp); 5517 case BTRFS_IOC_FILE_EXTENT_SAME: 5518 return btrfs_ioctl_file_extent_same(file, argp); 5519 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5520 return btrfs_ioctl_get_supported_features(file, argp); 5521 case BTRFS_IOC_GET_FEATURES: 5522 return btrfs_ioctl_get_features(file, argp); 5523 case BTRFS_IOC_SET_FEATURES: 5524 return btrfs_ioctl_set_features(file, argp); 5525 } 5526 5527 return -ENOTTY; 5528 } 5529