xref: /linux/fs/btrfs/ioctl.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 	__s64 send_fd;			/* in */
93 	__u64 clone_sources_count;	/* in */
94 	compat_uptr_t clone_sources;	/* in */
95 	__u64 parent_root;		/* in */
96 	__u64 flags;			/* in */
97 	__u32 version;			/* in */
98 	__u8  reserved[28];		/* in */
99 } __attribute__ ((__packed__));
100 
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 			       struct btrfs_ioctl_send_args_32)
103 
104 struct btrfs_ioctl_encoded_io_args_32 {
105 	compat_uptr_t iov;
106 	compat_ulong_t iovcnt;
107 	__s64 offset;
108 	__u64 flags;
109 	__u64 len;
110 	__u64 unencoded_len;
111 	__u64 unencoded_offset;
112 	__u32 compression;
113 	__u32 encryption;
114 	__u8 reserved[64];
115 };
116 
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 				       struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 					struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122 
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 		unsigned int flags)
126 {
127 	if (S_ISDIR(inode->i_mode))
128 		return flags;
129 	else if (S_ISREG(inode->i_mode))
130 		return flags & ~FS_DIRSYNC_FL;
131 	else
132 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134 
135 /*
136  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137  * ioctl.
138  */
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141 	unsigned int iflags = 0;
142 	u32 flags = binode->flags;
143 	u32 ro_flags = binode->ro_flags;
144 
145 	if (flags & BTRFS_INODE_SYNC)
146 		iflags |= FS_SYNC_FL;
147 	if (flags & BTRFS_INODE_IMMUTABLE)
148 		iflags |= FS_IMMUTABLE_FL;
149 	if (flags & BTRFS_INODE_APPEND)
150 		iflags |= FS_APPEND_FL;
151 	if (flags & BTRFS_INODE_NODUMP)
152 		iflags |= FS_NODUMP_FL;
153 	if (flags & BTRFS_INODE_NOATIME)
154 		iflags |= FS_NOATIME_FL;
155 	if (flags & BTRFS_INODE_DIRSYNC)
156 		iflags |= FS_DIRSYNC_FL;
157 	if (flags & BTRFS_INODE_NODATACOW)
158 		iflags |= FS_NOCOW_FL;
159 	if (ro_flags & BTRFS_INODE_RO_VERITY)
160 		iflags |= FS_VERITY_FL;
161 
162 	if (flags & BTRFS_INODE_NOCOMPRESS)
163 		iflags |= FS_NOCOMP_FL;
164 	else if (flags & BTRFS_INODE_COMPRESS)
165 		iflags |= FS_COMPR_FL;
166 
167 	return iflags;
168 }
169 
170 /*
171  * Update inode->i_flags based on the btrfs internal flags.
172  */
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175 	struct btrfs_inode *binode = BTRFS_I(inode);
176 	unsigned int new_fl = 0;
177 
178 	if (binode->flags & BTRFS_INODE_SYNC)
179 		new_fl |= S_SYNC;
180 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 		new_fl |= S_IMMUTABLE;
182 	if (binode->flags & BTRFS_INODE_APPEND)
183 		new_fl |= S_APPEND;
184 	if (binode->flags & BTRFS_INODE_NOATIME)
185 		new_fl |= S_NOATIME;
186 	if (binode->flags & BTRFS_INODE_DIRSYNC)
187 		new_fl |= S_DIRSYNC;
188 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 		new_fl |= S_VERITY;
190 
191 	set_mask_bits(&inode->i_flags,
192 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 		      S_VERITY, new_fl);
194 }
195 
196 /*
197  * Check if @flags are a supported and valid set of FS_*_FL flags and that
198  * the old and new flags are not conflicting
199  */
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 		      FS_NOATIME_FL | FS_NODUMP_FL | \
204 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205 		      FS_NOCOMP_FL | FS_COMPR_FL |
206 		      FS_NOCOW_FL))
207 		return -EOPNOTSUPP;
208 
209 	/* COMPR and NOCOMP on new/old are valid */
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 		return -EINVAL;
215 
216 	/* NOCOW and compression options are mutually exclusive */
217 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 		return -EINVAL;
219 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 		return -EINVAL;
221 
222 	return 0;
223 }
224 
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 				    unsigned int flags)
227 {
228 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 		return -EPERM;
230 
231 	return 0;
232 }
233 
234 /*
235  * Set flags/xflags from the internal inode flags. The remaining items of
236  * fsxattr are zeroed.
237  */
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241 
242 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 	return 0;
244 }
245 
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 		       struct dentry *dentry, struct fileattr *fa)
248 {
249 	struct inode *inode = d_inode(dentry);
250 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 	struct btrfs_inode *binode = BTRFS_I(inode);
252 	struct btrfs_root *root = binode->root;
253 	struct btrfs_trans_handle *trans;
254 	unsigned int fsflags, old_fsflags;
255 	int ret;
256 	const char *comp = NULL;
257 	u32 binode_flags;
258 
259 	if (btrfs_root_readonly(root))
260 		return -EROFS;
261 
262 	if (fileattr_has_fsx(fa))
263 		return -EOPNOTSUPP;
264 
265 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 	ret = check_fsflags(old_fsflags, fsflags);
268 	if (ret)
269 		return ret;
270 
271 	ret = check_fsflags_compatible(fs_info, fsflags);
272 	if (ret)
273 		return ret;
274 
275 	binode_flags = binode->flags;
276 	if (fsflags & FS_SYNC_FL)
277 		binode_flags |= BTRFS_INODE_SYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_SYNC;
280 	if (fsflags & FS_IMMUTABLE_FL)
281 		binode_flags |= BTRFS_INODE_IMMUTABLE;
282 	else
283 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 	if (fsflags & FS_APPEND_FL)
285 		binode_flags |= BTRFS_INODE_APPEND;
286 	else
287 		binode_flags &= ~BTRFS_INODE_APPEND;
288 	if (fsflags & FS_NODUMP_FL)
289 		binode_flags |= BTRFS_INODE_NODUMP;
290 	else
291 		binode_flags &= ~BTRFS_INODE_NODUMP;
292 	if (fsflags & FS_NOATIME_FL)
293 		binode_flags |= BTRFS_INODE_NOATIME;
294 	else
295 		binode_flags &= ~BTRFS_INODE_NOATIME;
296 
297 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 	if (!fa->flags_valid) {
299 		/* 1 item for the inode */
300 		trans = btrfs_start_transaction(root, 1);
301 		if (IS_ERR(trans))
302 			return PTR_ERR(trans);
303 		goto update_flags;
304 	}
305 
306 	if (fsflags & FS_DIRSYNC_FL)
307 		binode_flags |= BTRFS_INODE_DIRSYNC;
308 	else
309 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 	if (fsflags & FS_NOCOW_FL) {
311 		if (S_ISREG(inode->i_mode)) {
312 			/*
313 			 * It's safe to turn csums off here, no extents exist.
314 			 * Otherwise we want the flag to reflect the real COW
315 			 * status of the file and will not set it.
316 			 */
317 			if (inode->i_size == 0)
318 				binode_flags |= BTRFS_INODE_NODATACOW |
319 						BTRFS_INODE_NODATASUM;
320 		} else {
321 			binode_flags |= BTRFS_INODE_NODATACOW;
322 		}
323 	} else {
324 		/*
325 		 * Revert back under same assumptions as above
326 		 */
327 		if (S_ISREG(inode->i_mode)) {
328 			if (inode->i_size == 0)
329 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 						  BTRFS_INODE_NODATASUM);
331 		} else {
332 			binode_flags &= ~BTRFS_INODE_NODATACOW;
333 		}
334 	}
335 
336 	/*
337 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 	 * flag may be changed automatically if compression code won't make
339 	 * things smaller.
340 	 */
341 	if (fsflags & FS_NOCOMP_FL) {
342 		binode_flags &= ~BTRFS_INODE_COMPRESS;
343 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 	} else if (fsflags & FS_COMPR_FL) {
345 
346 		if (IS_SWAPFILE(inode))
347 			return -ETXTBSY;
348 
349 		binode_flags |= BTRFS_INODE_COMPRESS;
350 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351 
352 		comp = btrfs_compress_type2str(fs_info->compress_type);
353 		if (!comp || comp[0] == 0)
354 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 	} else {
356 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 	}
358 
359 	/*
360 	 * 1 for inode item
361 	 * 2 for properties
362 	 */
363 	trans = btrfs_start_transaction(root, 3);
364 	if (IS_ERR(trans))
365 		return PTR_ERR(trans);
366 
367 	if (comp) {
368 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 				     strlen(comp), 0);
370 		if (ret) {
371 			btrfs_abort_transaction(trans, ret);
372 			goto out_end_trans;
373 		}
374 	} else {
375 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 				     0, 0);
377 		if (ret && ret != -ENODATA) {
378 			btrfs_abort_transaction(trans, ret);
379 			goto out_end_trans;
380 		}
381 	}
382 
383 update_flags:
384 	binode->flags = binode_flags;
385 	btrfs_sync_inode_flags_to_i_flags(inode);
386 	inode_inc_iversion(inode);
387 	inode_set_ctime_current(inode);
388 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
389 
390  out_end_trans:
391 	btrfs_end_transaction(trans);
392 	return ret;
393 }
394 
395 /*
396  * Start exclusive operation @type, return true on success
397  */
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 			enum btrfs_exclusive_operation type)
400 {
401 	bool ret = false;
402 
403 	spin_lock(&fs_info->super_lock);
404 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 		fs_info->exclusive_operation = type;
406 		ret = true;
407 	}
408 	spin_unlock(&fs_info->super_lock);
409 
410 	return ret;
411 }
412 
413 /*
414  * Conditionally allow to enter the exclusive operation in case it's compatible
415  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
416  * btrfs_exclop_finish.
417  *
418  * Compatibility:
419  * - the same type is already running
420  * - when trying to add a device and balance has been paused
421  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422  *   must check the condition first that would allow none -> @type
423  */
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 				 enum btrfs_exclusive_operation type)
426 {
427 	spin_lock(&fs_info->super_lock);
428 	if (fs_info->exclusive_operation == type ||
429 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 	     type == BTRFS_EXCLOP_DEV_ADD))
431 		return true;
432 
433 	spin_unlock(&fs_info->super_lock);
434 	return false;
435 }
436 
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439 	spin_unlock(&fs_info->super_lock);
440 }
441 
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444 	spin_lock(&fs_info->super_lock);
445 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 	spin_unlock(&fs_info->super_lock);
447 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449 
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 			  enum btrfs_exclusive_operation op)
452 {
453 	switch (op) {
454 	case BTRFS_EXCLOP_BALANCE_PAUSED:
455 		spin_lock(&fs_info->super_lock);
456 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 		spin_unlock(&fs_info->super_lock);
462 		break;
463 	case BTRFS_EXCLOP_BALANCE:
464 		spin_lock(&fs_info->super_lock);
465 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 		spin_unlock(&fs_info->super_lock);
468 		break;
469 	default:
470 		btrfs_warn(fs_info,
471 			"invalid exclop balance operation %d requested", op);
472 	}
473 }
474 
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477 	return put_user(inode->i_generation, arg);
478 }
479 
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 					void __user *arg)
482 {
483 	struct btrfs_device *device;
484 	struct fstrim_range range;
485 	u64 minlen = ULLONG_MAX;
486 	u64 num_devices = 0;
487 	int ret;
488 
489 	if (!capable(CAP_SYS_ADMIN))
490 		return -EPERM;
491 
492 	/*
493 	 * btrfs_trim_block_group() depends on space cache, which is not
494 	 * available in zoned filesystem. So, disallow fitrim on a zoned
495 	 * filesystem for now.
496 	 */
497 	if (btrfs_is_zoned(fs_info))
498 		return -EOPNOTSUPP;
499 
500 	/*
501 	 * If the fs is mounted with nologreplay, which requires it to be
502 	 * mounted in RO mode as well, we can not allow discard on free space
503 	 * inside block groups, because log trees refer to extents that are not
504 	 * pinned in a block group's free space cache (pinning the extents is
505 	 * precisely the first phase of replaying a log tree).
506 	 */
507 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 		return -EROFS;
509 
510 	rcu_read_lock();
511 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 				dev_list) {
513 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 			continue;
515 		num_devices++;
516 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 				    minlen);
518 	}
519 	rcu_read_unlock();
520 
521 	if (!num_devices)
522 		return -EOPNOTSUPP;
523 	if (copy_from_user(&range, arg, sizeof(range)))
524 		return -EFAULT;
525 
526 	/*
527 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
528 	 * block group is in the logical address space, which can be any
529 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
530 	 */
531 	if (range.len < fs_info->sb->s_blocksize)
532 		return -EINVAL;
533 
534 	range.minlen = max(range.minlen, minlen);
535 	ret = btrfs_trim_fs(fs_info, &range);
536 	if (ret < 0)
537 		return ret;
538 
539 	if (copy_to_user(arg, &range, sizeof(range)))
540 		return -EFAULT;
541 
542 	return 0;
543 }
544 
545 int __pure btrfs_is_empty_uuid(u8 *uuid)
546 {
547 	int i;
548 
549 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 		if (uuid[i])
551 			return 0;
552 	}
553 	return 1;
554 }
555 
556 /*
557  * Calculate the number of transaction items to reserve for creating a subvolume
558  * or snapshot, not including the inode, directory entries, or parent directory.
559  */
560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561 {
562 	/*
563 	 * 1 to add root block
564 	 * 1 to add root item
565 	 * 1 to add root ref
566 	 * 1 to add root backref
567 	 * 1 to add UUID item
568 	 * 1 to add qgroup info
569 	 * 1 to add qgroup limit
570 	 *
571 	 * Ideally the last two would only be accounted if qgroups are enabled,
572 	 * but that can change between now and the time we would insert them.
573 	 */
574 	unsigned int num_items = 7;
575 
576 	if (inherit) {
577 		/* 2 to add qgroup relations for each inherited qgroup */
578 		num_items += 2 * inherit->num_qgroups;
579 	}
580 	return num_items;
581 }
582 
583 static noinline int create_subvol(struct mnt_idmap *idmap,
584 				  struct inode *dir, struct dentry *dentry,
585 				  struct btrfs_qgroup_inherit *inherit)
586 {
587 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 	struct btrfs_trans_handle *trans;
589 	struct btrfs_key key;
590 	struct btrfs_root_item *root_item;
591 	struct btrfs_inode_item *inode_item;
592 	struct extent_buffer *leaf;
593 	struct btrfs_root *root = BTRFS_I(dir)->root;
594 	struct btrfs_root *new_root;
595 	struct btrfs_block_rsv block_rsv;
596 	struct timespec64 cur_time = current_time(dir);
597 	struct btrfs_new_inode_args new_inode_args = {
598 		.dir = dir,
599 		.dentry = dentry,
600 		.subvol = true,
601 	};
602 	unsigned int trans_num_items;
603 	int ret;
604 	dev_t anon_dev;
605 	u64 objectid;
606 
607 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
608 	if (!root_item)
609 		return -ENOMEM;
610 
611 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
612 	if (ret)
613 		goto out_root_item;
614 
615 	/*
616 	 * Don't create subvolume whose level is not zero. Or qgroup will be
617 	 * screwed up since it assumes subvolume qgroup's level to be 0.
618 	 */
619 	if (btrfs_qgroup_level(objectid)) {
620 		ret = -ENOSPC;
621 		goto out_root_item;
622 	}
623 
624 	ret = get_anon_bdev(&anon_dev);
625 	if (ret < 0)
626 		goto out_root_item;
627 
628 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 	if (!new_inode_args.inode) {
630 		ret = -ENOMEM;
631 		goto out_anon_dev;
632 	}
633 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
634 	if (ret)
635 		goto out_inode;
636 	trans_num_items += create_subvol_num_items(inherit);
637 
638 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640 					       trans_num_items, false);
641 	if (ret)
642 		goto out_new_inode_args;
643 
644 	trans = btrfs_start_transaction(root, 0);
645 	if (IS_ERR(trans)) {
646 		ret = PTR_ERR(trans);
647 		btrfs_subvolume_release_metadata(root, &block_rsv);
648 		goto out_new_inode_args;
649 	}
650 	trans->block_rsv = &block_rsv;
651 	trans->bytes_reserved = block_rsv.size;
652 	/* Tree log can't currently deal with an inode which is a new root. */
653 	btrfs_set_log_full_commit(trans);
654 
655 	ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
656 	if (ret)
657 		goto out;
658 
659 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
660 				      0, BTRFS_NESTING_NORMAL);
661 	if (IS_ERR(leaf)) {
662 		ret = PTR_ERR(leaf);
663 		goto out;
664 	}
665 
666 	btrfs_mark_buffer_dirty(trans, leaf);
667 
668 	inode_item = &root_item->inode;
669 	btrfs_set_stack_inode_generation(inode_item, 1);
670 	btrfs_set_stack_inode_size(inode_item, 3);
671 	btrfs_set_stack_inode_nlink(inode_item, 1);
672 	btrfs_set_stack_inode_nbytes(inode_item,
673 				     fs_info->nodesize);
674 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
675 
676 	btrfs_set_root_flags(root_item, 0);
677 	btrfs_set_root_limit(root_item, 0);
678 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
679 
680 	btrfs_set_root_bytenr(root_item, leaf->start);
681 	btrfs_set_root_generation(root_item, trans->transid);
682 	btrfs_set_root_level(root_item, 0);
683 	btrfs_set_root_refs(root_item, 1);
684 	btrfs_set_root_used(root_item, leaf->len);
685 	btrfs_set_root_last_snapshot(root_item, 0);
686 
687 	btrfs_set_root_generation_v2(root_item,
688 			btrfs_root_generation(root_item));
689 	generate_random_guid(root_item->uuid);
690 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
691 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
692 	root_item->ctime = root_item->otime;
693 	btrfs_set_root_ctransid(root_item, trans->transid);
694 	btrfs_set_root_otransid(root_item, trans->transid);
695 
696 	btrfs_tree_unlock(leaf);
697 
698 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
699 
700 	key.objectid = objectid;
701 	key.offset = 0;
702 	key.type = BTRFS_ROOT_ITEM_KEY;
703 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
704 				root_item);
705 	if (ret) {
706 		/*
707 		 * Since we don't abort the transaction in this case, free the
708 		 * tree block so that we don't leak space and leave the
709 		 * filesystem in an inconsistent state (an extent item in the
710 		 * extent tree with a backreference for a root that does not
711 		 * exists).
712 		 */
713 		btrfs_tree_lock(leaf);
714 		btrfs_clear_buffer_dirty(trans, leaf);
715 		btrfs_tree_unlock(leaf);
716 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
717 		free_extent_buffer(leaf);
718 		goto out;
719 	}
720 
721 	free_extent_buffer(leaf);
722 	leaf = NULL;
723 
724 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
725 	if (IS_ERR(new_root)) {
726 		ret = PTR_ERR(new_root);
727 		btrfs_abort_transaction(trans, ret);
728 		goto out;
729 	}
730 	/* anon_dev is owned by new_root now. */
731 	anon_dev = 0;
732 	BTRFS_I(new_inode_args.inode)->root = new_root;
733 	/* ... and new_root is owned by new_inode_args.inode now. */
734 
735 	ret = btrfs_record_root_in_trans(trans, new_root);
736 	if (ret) {
737 		btrfs_abort_transaction(trans, ret);
738 		goto out;
739 	}
740 
741 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
742 				  BTRFS_UUID_KEY_SUBVOL, objectid);
743 	if (ret) {
744 		btrfs_abort_transaction(trans, ret);
745 		goto out;
746 	}
747 
748 	ret = btrfs_create_new_inode(trans, &new_inode_args);
749 	if (ret) {
750 		btrfs_abort_transaction(trans, ret);
751 		goto out;
752 	}
753 
754 	d_instantiate_new(dentry, new_inode_args.inode);
755 	new_inode_args.inode = NULL;
756 
757 out:
758 	trans->block_rsv = NULL;
759 	trans->bytes_reserved = 0;
760 	btrfs_subvolume_release_metadata(root, &block_rsv);
761 
762 	btrfs_end_transaction(trans);
763 out_new_inode_args:
764 	btrfs_new_inode_args_destroy(&new_inode_args);
765 out_inode:
766 	iput(new_inode_args.inode);
767 out_anon_dev:
768 	if (anon_dev)
769 		free_anon_bdev(anon_dev);
770 out_root_item:
771 	kfree(root_item);
772 	return ret;
773 }
774 
775 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776 			   struct dentry *dentry, bool readonly,
777 			   struct btrfs_qgroup_inherit *inherit)
778 {
779 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
780 	struct inode *inode;
781 	struct btrfs_pending_snapshot *pending_snapshot;
782 	unsigned int trans_num_items;
783 	struct btrfs_trans_handle *trans;
784 	int ret;
785 
786 	/* We do not support snapshotting right now. */
787 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
788 		btrfs_warn(fs_info,
789 			   "extent tree v2 doesn't support snapshotting yet");
790 		return -EOPNOTSUPP;
791 	}
792 
793 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
794 		return -EINVAL;
795 
796 	if (atomic_read(&root->nr_swapfiles)) {
797 		btrfs_warn(fs_info,
798 			   "cannot snapshot subvolume with active swapfile");
799 		return -ETXTBSY;
800 	}
801 
802 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
803 	if (!pending_snapshot)
804 		return -ENOMEM;
805 
806 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
807 	if (ret < 0)
808 		goto free_pending;
809 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
810 			GFP_KERNEL);
811 	pending_snapshot->path = btrfs_alloc_path();
812 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
813 		ret = -ENOMEM;
814 		goto free_pending;
815 	}
816 
817 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
818 			     BTRFS_BLOCK_RSV_TEMP);
819 	/*
820 	 * 1 to add dir item
821 	 * 1 to add dir index
822 	 * 1 to update parent inode item
823 	 */
824 	trans_num_items = create_subvol_num_items(inherit) + 3;
825 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
826 					       &pending_snapshot->block_rsv,
827 					       trans_num_items, false);
828 	if (ret)
829 		goto free_pending;
830 
831 	pending_snapshot->dentry = dentry;
832 	pending_snapshot->root = root;
833 	pending_snapshot->readonly = readonly;
834 	pending_snapshot->dir = dir;
835 	pending_snapshot->inherit = inherit;
836 
837 	trans = btrfs_start_transaction(root, 0);
838 	if (IS_ERR(trans)) {
839 		ret = PTR_ERR(trans);
840 		goto fail;
841 	}
842 
843 	trans->pending_snapshot = pending_snapshot;
844 
845 	ret = btrfs_commit_transaction(trans);
846 	if (ret)
847 		goto fail;
848 
849 	ret = pending_snapshot->error;
850 	if (ret)
851 		goto fail;
852 
853 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
854 	if (ret)
855 		goto fail;
856 
857 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
858 	if (IS_ERR(inode)) {
859 		ret = PTR_ERR(inode);
860 		goto fail;
861 	}
862 
863 	d_instantiate(dentry, inode);
864 	ret = 0;
865 	pending_snapshot->anon_dev = 0;
866 fail:
867 	/* Prevent double freeing of anon_dev */
868 	if (ret && pending_snapshot->snap)
869 		pending_snapshot->snap->anon_dev = 0;
870 	btrfs_put_root(pending_snapshot->snap);
871 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
872 free_pending:
873 	if (pending_snapshot->anon_dev)
874 		free_anon_bdev(pending_snapshot->anon_dev);
875 	kfree(pending_snapshot->root_item);
876 	btrfs_free_path(pending_snapshot->path);
877 	kfree(pending_snapshot);
878 
879 	return ret;
880 }
881 
882 /*  copy of may_delete in fs/namei.c()
883  *	Check whether we can remove a link victim from directory dir, check
884  *  whether the type of victim is right.
885  *  1. We can't do it if dir is read-only (done in permission())
886  *  2. We should have write and exec permissions on dir
887  *  3. We can't remove anything from append-only dir
888  *  4. We can't do anything with immutable dir (done in permission())
889  *  5. If the sticky bit on dir is set we should either
890  *	a. be owner of dir, or
891  *	b. be owner of victim, or
892  *	c. have CAP_FOWNER capability
893  *  6. If the victim is append-only or immutable we can't do anything with
894  *     links pointing to it.
895  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
896  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
897  *  9. We can't remove a root or mountpoint.
898  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
899  *     nfs_async_unlink().
900  */
901 
902 static int btrfs_may_delete(struct mnt_idmap *idmap,
903 			    struct inode *dir, struct dentry *victim, int isdir)
904 {
905 	int error;
906 
907 	if (d_really_is_negative(victim))
908 		return -ENOENT;
909 
910 	BUG_ON(d_inode(victim->d_parent) != dir);
911 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
912 
913 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
914 	if (error)
915 		return error;
916 	if (IS_APPEND(dir))
917 		return -EPERM;
918 	if (check_sticky(idmap, dir, d_inode(victim)) ||
919 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
920 	    IS_SWAPFILE(d_inode(victim)))
921 		return -EPERM;
922 	if (isdir) {
923 		if (!d_is_dir(victim))
924 			return -ENOTDIR;
925 		if (IS_ROOT(victim))
926 			return -EBUSY;
927 	} else if (d_is_dir(victim))
928 		return -EISDIR;
929 	if (IS_DEADDIR(dir))
930 		return -ENOENT;
931 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
932 		return -EBUSY;
933 	return 0;
934 }
935 
936 /* copy of may_create in fs/namei.c() */
937 static inline int btrfs_may_create(struct mnt_idmap *idmap,
938 				   struct inode *dir, struct dentry *child)
939 {
940 	if (d_really_is_positive(child))
941 		return -EEXIST;
942 	if (IS_DEADDIR(dir))
943 		return -ENOENT;
944 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
945 		return -EOVERFLOW;
946 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
947 }
948 
949 /*
950  * Create a new subvolume below @parent.  This is largely modeled after
951  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
952  * inside this filesystem so it's quite a bit simpler.
953  */
954 static noinline int btrfs_mksubvol(const struct path *parent,
955 				   struct mnt_idmap *idmap,
956 				   const char *name, int namelen,
957 				   struct btrfs_root *snap_src,
958 				   bool readonly,
959 				   struct btrfs_qgroup_inherit *inherit)
960 {
961 	struct inode *dir = d_inode(parent->dentry);
962 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
963 	struct dentry *dentry;
964 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
965 	int error;
966 
967 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
968 	if (error == -EINTR)
969 		return error;
970 
971 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
972 	error = PTR_ERR(dentry);
973 	if (IS_ERR(dentry))
974 		goto out_unlock;
975 
976 	error = btrfs_may_create(idmap, dir, dentry);
977 	if (error)
978 		goto out_dput;
979 
980 	/*
981 	 * even if this name doesn't exist, we may get hash collisions.
982 	 * check for them now when we can safely fail
983 	 */
984 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
985 					       dir->i_ino, &name_str);
986 	if (error)
987 		goto out_dput;
988 
989 	down_read(&fs_info->subvol_sem);
990 
991 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
992 		goto out_up_read;
993 
994 	if (snap_src)
995 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
996 	else
997 		error = create_subvol(idmap, dir, dentry, inherit);
998 
999 	if (!error)
1000 		fsnotify_mkdir(dir, dentry);
1001 out_up_read:
1002 	up_read(&fs_info->subvol_sem);
1003 out_dput:
1004 	dput(dentry);
1005 out_unlock:
1006 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1007 	return error;
1008 }
1009 
1010 static noinline int btrfs_mksnapshot(const struct path *parent,
1011 				   struct mnt_idmap *idmap,
1012 				   const char *name, int namelen,
1013 				   struct btrfs_root *root,
1014 				   bool readonly,
1015 				   struct btrfs_qgroup_inherit *inherit)
1016 {
1017 	int ret;
1018 	bool snapshot_force_cow = false;
1019 
1020 	/*
1021 	 * Force new buffered writes to reserve space even when NOCOW is
1022 	 * possible. This is to avoid later writeback (running dealloc) to
1023 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1024 	 */
1025 	btrfs_drew_read_lock(&root->snapshot_lock);
1026 
1027 	ret = btrfs_start_delalloc_snapshot(root, false);
1028 	if (ret)
1029 		goto out;
1030 
1031 	/*
1032 	 * All previous writes have started writeback in NOCOW mode, so now
1033 	 * we force future writes to fallback to COW mode during snapshot
1034 	 * creation.
1035 	 */
1036 	atomic_inc(&root->snapshot_force_cow);
1037 	snapshot_force_cow = true;
1038 
1039 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1040 
1041 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1042 			     root, readonly, inherit);
1043 out:
1044 	if (snapshot_force_cow)
1045 		atomic_dec(&root->snapshot_force_cow);
1046 	btrfs_drew_read_unlock(&root->snapshot_lock);
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Try to start exclusive operation @type or cancel it if it's running.
1052  *
1053  * Return:
1054  *   0        - normal mode, newly claimed op started
1055  *  >0        - normal mode, something else is running,
1056  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1057  * ECANCELED  - cancel mode, successful cancel
1058  * ENOTCONN   - cancel mode, operation not running anymore
1059  */
1060 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1061 			enum btrfs_exclusive_operation type, bool cancel)
1062 {
1063 	if (!cancel) {
1064 		/* Start normal op */
1065 		if (!btrfs_exclop_start(fs_info, type))
1066 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1067 		/* Exclusive operation is now claimed */
1068 		return 0;
1069 	}
1070 
1071 	/* Cancel running op */
1072 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1073 		/*
1074 		 * This blocks any exclop finish from setting it to NONE, so we
1075 		 * request cancellation. Either it runs and we will wait for it,
1076 		 * or it has finished and no waiting will happen.
1077 		 */
1078 		atomic_inc(&fs_info->reloc_cancel_req);
1079 		btrfs_exclop_start_unlock(fs_info);
1080 
1081 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1082 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1083 				    TASK_INTERRUPTIBLE);
1084 
1085 		return -ECANCELED;
1086 	}
1087 
1088 	/* Something else is running or none */
1089 	return -ENOTCONN;
1090 }
1091 
1092 static noinline int btrfs_ioctl_resize(struct file *file,
1093 					void __user *arg)
1094 {
1095 	BTRFS_DEV_LOOKUP_ARGS(args);
1096 	struct inode *inode = file_inode(file);
1097 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1098 	u64 new_size;
1099 	u64 old_size;
1100 	u64 devid = 1;
1101 	struct btrfs_root *root = BTRFS_I(inode)->root;
1102 	struct btrfs_ioctl_vol_args *vol_args;
1103 	struct btrfs_trans_handle *trans;
1104 	struct btrfs_device *device = NULL;
1105 	char *sizestr;
1106 	char *retptr;
1107 	char *devstr = NULL;
1108 	int ret = 0;
1109 	int mod = 0;
1110 	bool cancel;
1111 
1112 	if (!capable(CAP_SYS_ADMIN))
1113 		return -EPERM;
1114 
1115 	ret = mnt_want_write_file(file);
1116 	if (ret)
1117 		return ret;
1118 
1119 	/*
1120 	 * Read the arguments before checking exclusivity to be able to
1121 	 * distinguish regular resize and cancel
1122 	 */
1123 	vol_args = memdup_user(arg, sizeof(*vol_args));
1124 	if (IS_ERR(vol_args)) {
1125 		ret = PTR_ERR(vol_args);
1126 		goto out_drop;
1127 	}
1128 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1129 	sizestr = vol_args->name;
1130 	cancel = (strcmp("cancel", sizestr) == 0);
1131 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1132 	if (ret)
1133 		goto out_free;
1134 	/* Exclusive operation is now claimed */
1135 
1136 	devstr = strchr(sizestr, ':');
1137 	if (devstr) {
1138 		sizestr = devstr + 1;
1139 		*devstr = '\0';
1140 		devstr = vol_args->name;
1141 		ret = kstrtoull(devstr, 10, &devid);
1142 		if (ret)
1143 			goto out_finish;
1144 		if (!devid) {
1145 			ret = -EINVAL;
1146 			goto out_finish;
1147 		}
1148 		btrfs_info(fs_info, "resizing devid %llu", devid);
1149 	}
1150 
1151 	args.devid = devid;
1152 	device = btrfs_find_device(fs_info->fs_devices, &args);
1153 	if (!device) {
1154 		btrfs_info(fs_info, "resizer unable to find device %llu",
1155 			   devid);
1156 		ret = -ENODEV;
1157 		goto out_finish;
1158 	}
1159 
1160 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1161 		btrfs_info(fs_info,
1162 			   "resizer unable to apply on readonly device %llu",
1163 		       devid);
1164 		ret = -EPERM;
1165 		goto out_finish;
1166 	}
1167 
1168 	if (!strcmp(sizestr, "max"))
1169 		new_size = bdev_nr_bytes(device->bdev);
1170 	else {
1171 		if (sizestr[0] == '-') {
1172 			mod = -1;
1173 			sizestr++;
1174 		} else if (sizestr[0] == '+') {
1175 			mod = 1;
1176 			sizestr++;
1177 		}
1178 		new_size = memparse(sizestr, &retptr);
1179 		if (*retptr != '\0' || new_size == 0) {
1180 			ret = -EINVAL;
1181 			goto out_finish;
1182 		}
1183 	}
1184 
1185 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1186 		ret = -EPERM;
1187 		goto out_finish;
1188 	}
1189 
1190 	old_size = btrfs_device_get_total_bytes(device);
1191 
1192 	if (mod < 0) {
1193 		if (new_size > old_size) {
1194 			ret = -EINVAL;
1195 			goto out_finish;
1196 		}
1197 		new_size = old_size - new_size;
1198 	} else if (mod > 0) {
1199 		if (new_size > ULLONG_MAX - old_size) {
1200 			ret = -ERANGE;
1201 			goto out_finish;
1202 		}
1203 		new_size = old_size + new_size;
1204 	}
1205 
1206 	if (new_size < SZ_256M) {
1207 		ret = -EINVAL;
1208 		goto out_finish;
1209 	}
1210 	if (new_size > bdev_nr_bytes(device->bdev)) {
1211 		ret = -EFBIG;
1212 		goto out_finish;
1213 	}
1214 
1215 	new_size = round_down(new_size, fs_info->sectorsize);
1216 
1217 	if (new_size > old_size) {
1218 		trans = btrfs_start_transaction(root, 0);
1219 		if (IS_ERR(trans)) {
1220 			ret = PTR_ERR(trans);
1221 			goto out_finish;
1222 		}
1223 		ret = btrfs_grow_device(trans, device, new_size);
1224 		btrfs_commit_transaction(trans);
1225 	} else if (new_size < old_size) {
1226 		ret = btrfs_shrink_device(device, new_size);
1227 	} /* equal, nothing need to do */
1228 
1229 	if (ret == 0 && new_size != old_size)
1230 		btrfs_info_in_rcu(fs_info,
1231 			"resize device %s (devid %llu) from %llu to %llu",
1232 			btrfs_dev_name(device), device->devid,
1233 			old_size, new_size);
1234 out_finish:
1235 	btrfs_exclop_finish(fs_info);
1236 out_free:
1237 	kfree(vol_args);
1238 out_drop:
1239 	mnt_drop_write_file(file);
1240 	return ret;
1241 }
1242 
1243 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1244 				struct mnt_idmap *idmap,
1245 				const char *name, unsigned long fd, int subvol,
1246 				bool readonly,
1247 				struct btrfs_qgroup_inherit *inherit)
1248 {
1249 	int namelen;
1250 	int ret = 0;
1251 
1252 	if (!S_ISDIR(file_inode(file)->i_mode))
1253 		return -ENOTDIR;
1254 
1255 	ret = mnt_want_write_file(file);
1256 	if (ret)
1257 		goto out;
1258 
1259 	namelen = strlen(name);
1260 	if (strchr(name, '/')) {
1261 		ret = -EINVAL;
1262 		goto out_drop_write;
1263 	}
1264 
1265 	if (name[0] == '.' &&
1266 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1267 		ret = -EEXIST;
1268 		goto out_drop_write;
1269 	}
1270 
1271 	if (subvol) {
1272 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1273 				     namelen, NULL, readonly, inherit);
1274 	} else {
1275 		struct fd src = fdget(fd);
1276 		struct inode *src_inode;
1277 		if (!src.file) {
1278 			ret = -EINVAL;
1279 			goto out_drop_write;
1280 		}
1281 
1282 		src_inode = file_inode(src.file);
1283 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1284 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1285 				   "Snapshot src from another FS");
1286 			ret = -EXDEV;
1287 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1288 			/*
1289 			 * Subvolume creation is not restricted, but snapshots
1290 			 * are limited to own subvolumes only
1291 			 */
1292 			ret = -EPERM;
1293 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1294 			/*
1295 			 * Snapshots must be made with the src_inode referring
1296 			 * to the subvolume inode, otherwise the permission
1297 			 * checking above is useless because we may have
1298 			 * permission on a lower directory but not the subvol
1299 			 * itself.
1300 			 */
1301 			ret = -EINVAL;
1302 		} else {
1303 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1304 					       name, namelen,
1305 					       BTRFS_I(src_inode)->root,
1306 					       readonly, inherit);
1307 		}
1308 		fdput(src);
1309 	}
1310 out_drop_write:
1311 	mnt_drop_write_file(file);
1312 out:
1313 	return ret;
1314 }
1315 
1316 static noinline int btrfs_ioctl_snap_create(struct file *file,
1317 					    void __user *arg, int subvol)
1318 {
1319 	struct btrfs_ioctl_vol_args *vol_args;
1320 	int ret;
1321 
1322 	if (!S_ISDIR(file_inode(file)->i_mode))
1323 		return -ENOTDIR;
1324 
1325 	vol_args = memdup_user(arg, sizeof(*vol_args));
1326 	if (IS_ERR(vol_args))
1327 		return PTR_ERR(vol_args);
1328 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1329 
1330 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1331 					vol_args->name, vol_args->fd, subvol,
1332 					false, NULL);
1333 
1334 	kfree(vol_args);
1335 	return ret;
1336 }
1337 
1338 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1339 					       void __user *arg, int subvol)
1340 {
1341 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1342 	int ret;
1343 	bool readonly = false;
1344 	struct btrfs_qgroup_inherit *inherit = NULL;
1345 
1346 	if (!S_ISDIR(file_inode(file)->i_mode))
1347 		return -ENOTDIR;
1348 
1349 	vol_args = memdup_user(arg, sizeof(*vol_args));
1350 	if (IS_ERR(vol_args))
1351 		return PTR_ERR(vol_args);
1352 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1353 
1354 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1355 		ret = -EOPNOTSUPP;
1356 		goto free_args;
1357 	}
1358 
1359 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1360 		readonly = true;
1361 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1362 		u64 nums;
1363 
1364 		if (vol_args->size < sizeof(*inherit) ||
1365 		    vol_args->size > PAGE_SIZE) {
1366 			ret = -EINVAL;
1367 			goto free_args;
1368 		}
1369 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1370 		if (IS_ERR(inherit)) {
1371 			ret = PTR_ERR(inherit);
1372 			goto free_args;
1373 		}
1374 
1375 		if (inherit->num_qgroups > PAGE_SIZE ||
1376 		    inherit->num_ref_copies > PAGE_SIZE ||
1377 		    inherit->num_excl_copies > PAGE_SIZE) {
1378 			ret = -EINVAL;
1379 			goto free_inherit;
1380 		}
1381 
1382 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1383 		       2 * inherit->num_excl_copies;
1384 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1385 			ret = -EINVAL;
1386 			goto free_inherit;
1387 		}
1388 	}
1389 
1390 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1391 					vol_args->name, vol_args->fd, subvol,
1392 					readonly, inherit);
1393 	if (ret)
1394 		goto free_inherit;
1395 free_inherit:
1396 	kfree(inherit);
1397 free_args:
1398 	kfree(vol_args);
1399 	return ret;
1400 }
1401 
1402 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1403 						void __user *arg)
1404 {
1405 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1406 	struct btrfs_root *root = BTRFS_I(inode)->root;
1407 	int ret = 0;
1408 	u64 flags = 0;
1409 
1410 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1411 		return -EINVAL;
1412 
1413 	down_read(&fs_info->subvol_sem);
1414 	if (btrfs_root_readonly(root))
1415 		flags |= BTRFS_SUBVOL_RDONLY;
1416 	up_read(&fs_info->subvol_sem);
1417 
1418 	if (copy_to_user(arg, &flags, sizeof(flags)))
1419 		ret = -EFAULT;
1420 
1421 	return ret;
1422 }
1423 
1424 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1425 					      void __user *arg)
1426 {
1427 	struct inode *inode = file_inode(file);
1428 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1429 	struct btrfs_root *root = BTRFS_I(inode)->root;
1430 	struct btrfs_trans_handle *trans;
1431 	u64 root_flags;
1432 	u64 flags;
1433 	int ret = 0;
1434 
1435 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1436 		return -EPERM;
1437 
1438 	ret = mnt_want_write_file(file);
1439 	if (ret)
1440 		goto out;
1441 
1442 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1443 		ret = -EINVAL;
1444 		goto out_drop_write;
1445 	}
1446 
1447 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1448 		ret = -EFAULT;
1449 		goto out_drop_write;
1450 	}
1451 
1452 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1453 		ret = -EOPNOTSUPP;
1454 		goto out_drop_write;
1455 	}
1456 
1457 	down_write(&fs_info->subvol_sem);
1458 
1459 	/* nothing to do */
1460 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1461 		goto out_drop_sem;
1462 
1463 	root_flags = btrfs_root_flags(&root->root_item);
1464 	if (flags & BTRFS_SUBVOL_RDONLY) {
1465 		btrfs_set_root_flags(&root->root_item,
1466 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1467 	} else {
1468 		/*
1469 		 * Block RO -> RW transition if this subvolume is involved in
1470 		 * send
1471 		 */
1472 		spin_lock(&root->root_item_lock);
1473 		if (root->send_in_progress == 0) {
1474 			btrfs_set_root_flags(&root->root_item,
1475 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1476 			spin_unlock(&root->root_item_lock);
1477 		} else {
1478 			spin_unlock(&root->root_item_lock);
1479 			btrfs_warn(fs_info,
1480 				   "Attempt to set subvolume %llu read-write during send",
1481 				   root->root_key.objectid);
1482 			ret = -EPERM;
1483 			goto out_drop_sem;
1484 		}
1485 	}
1486 
1487 	trans = btrfs_start_transaction(root, 1);
1488 	if (IS_ERR(trans)) {
1489 		ret = PTR_ERR(trans);
1490 		goto out_reset;
1491 	}
1492 
1493 	ret = btrfs_update_root(trans, fs_info->tree_root,
1494 				&root->root_key, &root->root_item);
1495 	if (ret < 0) {
1496 		btrfs_end_transaction(trans);
1497 		goto out_reset;
1498 	}
1499 
1500 	ret = btrfs_commit_transaction(trans);
1501 
1502 out_reset:
1503 	if (ret)
1504 		btrfs_set_root_flags(&root->root_item, root_flags);
1505 out_drop_sem:
1506 	up_write(&fs_info->subvol_sem);
1507 out_drop_write:
1508 	mnt_drop_write_file(file);
1509 out:
1510 	return ret;
1511 }
1512 
1513 static noinline int key_in_sk(struct btrfs_key *key,
1514 			      struct btrfs_ioctl_search_key *sk)
1515 {
1516 	struct btrfs_key test;
1517 	int ret;
1518 
1519 	test.objectid = sk->min_objectid;
1520 	test.type = sk->min_type;
1521 	test.offset = sk->min_offset;
1522 
1523 	ret = btrfs_comp_cpu_keys(key, &test);
1524 	if (ret < 0)
1525 		return 0;
1526 
1527 	test.objectid = sk->max_objectid;
1528 	test.type = sk->max_type;
1529 	test.offset = sk->max_offset;
1530 
1531 	ret = btrfs_comp_cpu_keys(key, &test);
1532 	if (ret > 0)
1533 		return 0;
1534 	return 1;
1535 }
1536 
1537 static noinline int copy_to_sk(struct btrfs_path *path,
1538 			       struct btrfs_key *key,
1539 			       struct btrfs_ioctl_search_key *sk,
1540 			       u64 *buf_size,
1541 			       char __user *ubuf,
1542 			       unsigned long *sk_offset,
1543 			       int *num_found)
1544 {
1545 	u64 found_transid;
1546 	struct extent_buffer *leaf;
1547 	struct btrfs_ioctl_search_header sh;
1548 	struct btrfs_key test;
1549 	unsigned long item_off;
1550 	unsigned long item_len;
1551 	int nritems;
1552 	int i;
1553 	int slot;
1554 	int ret = 0;
1555 
1556 	leaf = path->nodes[0];
1557 	slot = path->slots[0];
1558 	nritems = btrfs_header_nritems(leaf);
1559 
1560 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1561 		i = nritems;
1562 		goto advance_key;
1563 	}
1564 	found_transid = btrfs_header_generation(leaf);
1565 
1566 	for (i = slot; i < nritems; i++) {
1567 		item_off = btrfs_item_ptr_offset(leaf, i);
1568 		item_len = btrfs_item_size(leaf, i);
1569 
1570 		btrfs_item_key_to_cpu(leaf, key, i);
1571 		if (!key_in_sk(key, sk))
1572 			continue;
1573 
1574 		if (sizeof(sh) + item_len > *buf_size) {
1575 			if (*num_found) {
1576 				ret = 1;
1577 				goto out;
1578 			}
1579 
1580 			/*
1581 			 * return one empty item back for v1, which does not
1582 			 * handle -EOVERFLOW
1583 			 */
1584 
1585 			*buf_size = sizeof(sh) + item_len;
1586 			item_len = 0;
1587 			ret = -EOVERFLOW;
1588 		}
1589 
1590 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1591 			ret = 1;
1592 			goto out;
1593 		}
1594 
1595 		sh.objectid = key->objectid;
1596 		sh.offset = key->offset;
1597 		sh.type = key->type;
1598 		sh.len = item_len;
1599 		sh.transid = found_transid;
1600 
1601 		/*
1602 		 * Copy search result header. If we fault then loop again so we
1603 		 * can fault in the pages and -EFAULT there if there's a
1604 		 * problem. Otherwise we'll fault and then copy the buffer in
1605 		 * properly this next time through
1606 		 */
1607 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1608 			ret = 0;
1609 			goto out;
1610 		}
1611 
1612 		*sk_offset += sizeof(sh);
1613 
1614 		if (item_len) {
1615 			char __user *up = ubuf + *sk_offset;
1616 			/*
1617 			 * Copy the item, same behavior as above, but reset the
1618 			 * * sk_offset so we copy the full thing again.
1619 			 */
1620 			if (read_extent_buffer_to_user_nofault(leaf, up,
1621 						item_off, item_len)) {
1622 				ret = 0;
1623 				*sk_offset -= sizeof(sh);
1624 				goto out;
1625 			}
1626 
1627 			*sk_offset += item_len;
1628 		}
1629 		(*num_found)++;
1630 
1631 		if (ret) /* -EOVERFLOW from above */
1632 			goto out;
1633 
1634 		if (*num_found >= sk->nr_items) {
1635 			ret = 1;
1636 			goto out;
1637 		}
1638 	}
1639 advance_key:
1640 	ret = 0;
1641 	test.objectid = sk->max_objectid;
1642 	test.type = sk->max_type;
1643 	test.offset = sk->max_offset;
1644 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1645 		ret = 1;
1646 	else if (key->offset < (u64)-1)
1647 		key->offset++;
1648 	else if (key->type < (u8)-1) {
1649 		key->offset = 0;
1650 		key->type++;
1651 	} else if (key->objectid < (u64)-1) {
1652 		key->offset = 0;
1653 		key->type = 0;
1654 		key->objectid++;
1655 	} else
1656 		ret = 1;
1657 out:
1658 	/*
1659 	 *  0: all items from this leaf copied, continue with next
1660 	 *  1: * more items can be copied, but unused buffer is too small
1661 	 *     * all items were found
1662 	 *     Either way, it will stops the loop which iterates to the next
1663 	 *     leaf
1664 	 *  -EOVERFLOW: item was to large for buffer
1665 	 *  -EFAULT: could not copy extent buffer back to userspace
1666 	 */
1667 	return ret;
1668 }
1669 
1670 static noinline int search_ioctl(struct inode *inode,
1671 				 struct btrfs_ioctl_search_key *sk,
1672 				 u64 *buf_size,
1673 				 char __user *ubuf)
1674 {
1675 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1676 	struct btrfs_root *root;
1677 	struct btrfs_key key;
1678 	struct btrfs_path *path;
1679 	int ret;
1680 	int num_found = 0;
1681 	unsigned long sk_offset = 0;
1682 
1683 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1684 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1685 		return -EOVERFLOW;
1686 	}
1687 
1688 	path = btrfs_alloc_path();
1689 	if (!path)
1690 		return -ENOMEM;
1691 
1692 	if (sk->tree_id == 0) {
1693 		/* search the root of the inode that was passed */
1694 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1695 	} else {
1696 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1697 		if (IS_ERR(root)) {
1698 			btrfs_free_path(path);
1699 			return PTR_ERR(root);
1700 		}
1701 	}
1702 
1703 	key.objectid = sk->min_objectid;
1704 	key.type = sk->min_type;
1705 	key.offset = sk->min_offset;
1706 
1707 	while (1) {
1708 		ret = -EFAULT;
1709 		/*
1710 		 * Ensure that the whole user buffer is faulted in at sub-page
1711 		 * granularity, otherwise the loop may live-lock.
1712 		 */
1713 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1714 					       *buf_size - sk_offset))
1715 			break;
1716 
1717 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1718 		if (ret != 0) {
1719 			if (ret > 0)
1720 				ret = 0;
1721 			goto err;
1722 		}
1723 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1724 				 &sk_offset, &num_found);
1725 		btrfs_release_path(path);
1726 		if (ret)
1727 			break;
1728 
1729 	}
1730 	if (ret > 0)
1731 		ret = 0;
1732 err:
1733 	sk->nr_items = num_found;
1734 	btrfs_put_root(root);
1735 	btrfs_free_path(path);
1736 	return ret;
1737 }
1738 
1739 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1740 					    void __user *argp)
1741 {
1742 	struct btrfs_ioctl_search_args __user *uargs = argp;
1743 	struct btrfs_ioctl_search_key sk;
1744 	int ret;
1745 	u64 buf_size;
1746 
1747 	if (!capable(CAP_SYS_ADMIN))
1748 		return -EPERM;
1749 
1750 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1751 		return -EFAULT;
1752 
1753 	buf_size = sizeof(uargs->buf);
1754 
1755 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1756 
1757 	/*
1758 	 * In the origin implementation an overflow is handled by returning a
1759 	 * search header with a len of zero, so reset ret.
1760 	 */
1761 	if (ret == -EOVERFLOW)
1762 		ret = 0;
1763 
1764 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1765 		ret = -EFAULT;
1766 	return ret;
1767 }
1768 
1769 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1770 					       void __user *argp)
1771 {
1772 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1773 	struct btrfs_ioctl_search_args_v2 args;
1774 	int ret;
1775 	u64 buf_size;
1776 	const u64 buf_limit = SZ_16M;
1777 
1778 	if (!capable(CAP_SYS_ADMIN))
1779 		return -EPERM;
1780 
1781 	/* copy search header and buffer size */
1782 	if (copy_from_user(&args, uarg, sizeof(args)))
1783 		return -EFAULT;
1784 
1785 	buf_size = args.buf_size;
1786 
1787 	/* limit result size to 16MB */
1788 	if (buf_size > buf_limit)
1789 		buf_size = buf_limit;
1790 
1791 	ret = search_ioctl(inode, &args.key, &buf_size,
1792 			   (char __user *)(&uarg->buf[0]));
1793 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1794 		ret = -EFAULT;
1795 	else if (ret == -EOVERFLOW &&
1796 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1797 		ret = -EFAULT;
1798 
1799 	return ret;
1800 }
1801 
1802 /*
1803  * Search INODE_REFs to identify path name of 'dirid' directory
1804  * in a 'tree_id' tree. and sets path name to 'name'.
1805  */
1806 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1807 				u64 tree_id, u64 dirid, char *name)
1808 {
1809 	struct btrfs_root *root;
1810 	struct btrfs_key key;
1811 	char *ptr;
1812 	int ret = -1;
1813 	int slot;
1814 	int len;
1815 	int total_len = 0;
1816 	struct btrfs_inode_ref *iref;
1817 	struct extent_buffer *l;
1818 	struct btrfs_path *path;
1819 
1820 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1821 		name[0]='\0';
1822 		return 0;
1823 	}
1824 
1825 	path = btrfs_alloc_path();
1826 	if (!path)
1827 		return -ENOMEM;
1828 
1829 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1830 
1831 	root = btrfs_get_fs_root(info, tree_id, true);
1832 	if (IS_ERR(root)) {
1833 		ret = PTR_ERR(root);
1834 		root = NULL;
1835 		goto out;
1836 	}
1837 
1838 	key.objectid = dirid;
1839 	key.type = BTRFS_INODE_REF_KEY;
1840 	key.offset = (u64)-1;
1841 
1842 	while (1) {
1843 		ret = btrfs_search_backwards(root, &key, path);
1844 		if (ret < 0)
1845 			goto out;
1846 		else if (ret > 0) {
1847 			ret = -ENOENT;
1848 			goto out;
1849 		}
1850 
1851 		l = path->nodes[0];
1852 		slot = path->slots[0];
1853 
1854 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1855 		len = btrfs_inode_ref_name_len(l, iref);
1856 		ptr -= len + 1;
1857 		total_len += len + 1;
1858 		if (ptr < name) {
1859 			ret = -ENAMETOOLONG;
1860 			goto out;
1861 		}
1862 
1863 		*(ptr + len) = '/';
1864 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1865 
1866 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1867 			break;
1868 
1869 		btrfs_release_path(path);
1870 		key.objectid = key.offset;
1871 		key.offset = (u64)-1;
1872 		dirid = key.objectid;
1873 	}
1874 	memmove(name, ptr, total_len);
1875 	name[total_len] = '\0';
1876 	ret = 0;
1877 out:
1878 	btrfs_put_root(root);
1879 	btrfs_free_path(path);
1880 	return ret;
1881 }
1882 
1883 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1884 				struct inode *inode,
1885 				struct btrfs_ioctl_ino_lookup_user_args *args)
1886 {
1887 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1888 	struct super_block *sb = inode->i_sb;
1889 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1890 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1891 	u64 dirid = args->dirid;
1892 	unsigned long item_off;
1893 	unsigned long item_len;
1894 	struct btrfs_inode_ref *iref;
1895 	struct btrfs_root_ref *rref;
1896 	struct btrfs_root *root = NULL;
1897 	struct btrfs_path *path;
1898 	struct btrfs_key key, key2;
1899 	struct extent_buffer *leaf;
1900 	struct inode *temp_inode;
1901 	char *ptr;
1902 	int slot;
1903 	int len;
1904 	int total_len = 0;
1905 	int ret;
1906 
1907 	path = btrfs_alloc_path();
1908 	if (!path)
1909 		return -ENOMEM;
1910 
1911 	/*
1912 	 * If the bottom subvolume does not exist directly under upper_limit,
1913 	 * construct the path in from the bottom up.
1914 	 */
1915 	if (dirid != upper_limit.objectid) {
1916 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1917 
1918 		root = btrfs_get_fs_root(fs_info, treeid, true);
1919 		if (IS_ERR(root)) {
1920 			ret = PTR_ERR(root);
1921 			goto out;
1922 		}
1923 
1924 		key.objectid = dirid;
1925 		key.type = BTRFS_INODE_REF_KEY;
1926 		key.offset = (u64)-1;
1927 		while (1) {
1928 			ret = btrfs_search_backwards(root, &key, path);
1929 			if (ret < 0)
1930 				goto out_put;
1931 			else if (ret > 0) {
1932 				ret = -ENOENT;
1933 				goto out_put;
1934 			}
1935 
1936 			leaf = path->nodes[0];
1937 			slot = path->slots[0];
1938 
1939 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1940 			len = btrfs_inode_ref_name_len(leaf, iref);
1941 			ptr -= len + 1;
1942 			total_len += len + 1;
1943 			if (ptr < args->path) {
1944 				ret = -ENAMETOOLONG;
1945 				goto out_put;
1946 			}
1947 
1948 			*(ptr + len) = '/';
1949 			read_extent_buffer(leaf, ptr,
1950 					(unsigned long)(iref + 1), len);
1951 
1952 			/* Check the read+exec permission of this directory */
1953 			ret = btrfs_previous_item(root, path, dirid,
1954 						  BTRFS_INODE_ITEM_KEY);
1955 			if (ret < 0) {
1956 				goto out_put;
1957 			} else if (ret > 0) {
1958 				ret = -ENOENT;
1959 				goto out_put;
1960 			}
1961 
1962 			leaf = path->nodes[0];
1963 			slot = path->slots[0];
1964 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1965 			if (key2.objectid != dirid) {
1966 				ret = -ENOENT;
1967 				goto out_put;
1968 			}
1969 
1970 			/*
1971 			 * We don't need the path anymore, so release it and
1972 			 * avoid deadlocks and lockdep warnings in case
1973 			 * btrfs_iget() needs to lookup the inode from its root
1974 			 * btree and lock the same leaf.
1975 			 */
1976 			btrfs_release_path(path);
1977 			temp_inode = btrfs_iget(sb, key2.objectid, root);
1978 			if (IS_ERR(temp_inode)) {
1979 				ret = PTR_ERR(temp_inode);
1980 				goto out_put;
1981 			}
1982 			ret = inode_permission(idmap, temp_inode,
1983 					       MAY_READ | MAY_EXEC);
1984 			iput(temp_inode);
1985 			if (ret) {
1986 				ret = -EACCES;
1987 				goto out_put;
1988 			}
1989 
1990 			if (key.offset == upper_limit.objectid)
1991 				break;
1992 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1993 				ret = -EACCES;
1994 				goto out_put;
1995 			}
1996 
1997 			key.objectid = key.offset;
1998 			key.offset = (u64)-1;
1999 			dirid = key.objectid;
2000 		}
2001 
2002 		memmove(args->path, ptr, total_len);
2003 		args->path[total_len] = '\0';
2004 		btrfs_put_root(root);
2005 		root = NULL;
2006 		btrfs_release_path(path);
2007 	}
2008 
2009 	/* Get the bottom subvolume's name from ROOT_REF */
2010 	key.objectid = treeid;
2011 	key.type = BTRFS_ROOT_REF_KEY;
2012 	key.offset = args->treeid;
2013 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2014 	if (ret < 0) {
2015 		goto out;
2016 	} else if (ret > 0) {
2017 		ret = -ENOENT;
2018 		goto out;
2019 	}
2020 
2021 	leaf = path->nodes[0];
2022 	slot = path->slots[0];
2023 	btrfs_item_key_to_cpu(leaf, &key, slot);
2024 
2025 	item_off = btrfs_item_ptr_offset(leaf, slot);
2026 	item_len = btrfs_item_size(leaf, slot);
2027 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2028 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2029 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2030 		ret = -EINVAL;
2031 		goto out;
2032 	}
2033 
2034 	/* Copy subvolume's name */
2035 	item_off += sizeof(struct btrfs_root_ref);
2036 	item_len -= sizeof(struct btrfs_root_ref);
2037 	read_extent_buffer(leaf, args->name, item_off, item_len);
2038 	args->name[item_len] = 0;
2039 
2040 out_put:
2041 	btrfs_put_root(root);
2042 out:
2043 	btrfs_free_path(path);
2044 	return ret;
2045 }
2046 
2047 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2048 					   void __user *argp)
2049 {
2050 	struct btrfs_ioctl_ino_lookup_args *args;
2051 	int ret = 0;
2052 
2053 	args = memdup_user(argp, sizeof(*args));
2054 	if (IS_ERR(args))
2055 		return PTR_ERR(args);
2056 
2057 	/*
2058 	 * Unprivileged query to obtain the containing subvolume root id. The
2059 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2060 	 */
2061 	if (args->treeid == 0)
2062 		args->treeid = root->root_key.objectid;
2063 
2064 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2065 		args->name[0] = 0;
2066 		goto out;
2067 	}
2068 
2069 	if (!capable(CAP_SYS_ADMIN)) {
2070 		ret = -EPERM;
2071 		goto out;
2072 	}
2073 
2074 	ret = btrfs_search_path_in_tree(root->fs_info,
2075 					args->treeid, args->objectid,
2076 					args->name);
2077 
2078 out:
2079 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2080 		ret = -EFAULT;
2081 
2082 	kfree(args);
2083 	return ret;
2084 }
2085 
2086 /*
2087  * Version of ino_lookup ioctl (unprivileged)
2088  *
2089  * The main differences from ino_lookup ioctl are:
2090  *
2091  *   1. Read + Exec permission will be checked using inode_permission() during
2092  *      path construction. -EACCES will be returned in case of failure.
2093  *   2. Path construction will be stopped at the inode number which corresponds
2094  *      to the fd with which this ioctl is called. If constructed path does not
2095  *      exist under fd's inode, -EACCES will be returned.
2096  *   3. The name of bottom subvolume is also searched and filled.
2097  */
2098 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2099 {
2100 	struct btrfs_ioctl_ino_lookup_user_args *args;
2101 	struct inode *inode;
2102 	int ret;
2103 
2104 	args = memdup_user(argp, sizeof(*args));
2105 	if (IS_ERR(args))
2106 		return PTR_ERR(args);
2107 
2108 	inode = file_inode(file);
2109 
2110 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2111 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2112 		/*
2113 		 * The subvolume does not exist under fd with which this is
2114 		 * called
2115 		 */
2116 		kfree(args);
2117 		return -EACCES;
2118 	}
2119 
2120 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2121 
2122 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2123 		ret = -EFAULT;
2124 
2125 	kfree(args);
2126 	return ret;
2127 }
2128 
2129 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2130 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2131 {
2132 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2133 	struct btrfs_fs_info *fs_info;
2134 	struct btrfs_root *root;
2135 	struct btrfs_path *path;
2136 	struct btrfs_key key;
2137 	struct btrfs_root_item *root_item;
2138 	struct btrfs_root_ref *rref;
2139 	struct extent_buffer *leaf;
2140 	unsigned long item_off;
2141 	unsigned long item_len;
2142 	int slot;
2143 	int ret = 0;
2144 
2145 	path = btrfs_alloc_path();
2146 	if (!path)
2147 		return -ENOMEM;
2148 
2149 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2150 	if (!subvol_info) {
2151 		btrfs_free_path(path);
2152 		return -ENOMEM;
2153 	}
2154 
2155 	fs_info = BTRFS_I(inode)->root->fs_info;
2156 
2157 	/* Get root_item of inode's subvolume */
2158 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2159 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2160 	if (IS_ERR(root)) {
2161 		ret = PTR_ERR(root);
2162 		goto out_free;
2163 	}
2164 	root_item = &root->root_item;
2165 
2166 	subvol_info->treeid = key.objectid;
2167 
2168 	subvol_info->generation = btrfs_root_generation(root_item);
2169 	subvol_info->flags = btrfs_root_flags(root_item);
2170 
2171 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2172 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2173 						    BTRFS_UUID_SIZE);
2174 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2175 						    BTRFS_UUID_SIZE);
2176 
2177 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2178 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2179 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2180 
2181 	subvol_info->otransid = btrfs_root_otransid(root_item);
2182 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2183 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2184 
2185 	subvol_info->stransid = btrfs_root_stransid(root_item);
2186 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2187 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2188 
2189 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2190 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2191 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2192 
2193 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2194 		/* Search root tree for ROOT_BACKREF of this subvolume */
2195 		key.type = BTRFS_ROOT_BACKREF_KEY;
2196 		key.offset = 0;
2197 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2198 		if (ret < 0) {
2199 			goto out;
2200 		} else if (path->slots[0] >=
2201 			   btrfs_header_nritems(path->nodes[0])) {
2202 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2203 			if (ret < 0) {
2204 				goto out;
2205 			} else if (ret > 0) {
2206 				ret = -EUCLEAN;
2207 				goto out;
2208 			}
2209 		}
2210 
2211 		leaf = path->nodes[0];
2212 		slot = path->slots[0];
2213 		btrfs_item_key_to_cpu(leaf, &key, slot);
2214 		if (key.objectid == subvol_info->treeid &&
2215 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2216 			subvol_info->parent_id = key.offset;
2217 
2218 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2219 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2220 
2221 			item_off = btrfs_item_ptr_offset(leaf, slot)
2222 					+ sizeof(struct btrfs_root_ref);
2223 			item_len = btrfs_item_size(leaf, slot)
2224 					- sizeof(struct btrfs_root_ref);
2225 			read_extent_buffer(leaf, subvol_info->name,
2226 					   item_off, item_len);
2227 		} else {
2228 			ret = -ENOENT;
2229 			goto out;
2230 		}
2231 	}
2232 
2233 	btrfs_free_path(path);
2234 	path = NULL;
2235 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2236 		ret = -EFAULT;
2237 
2238 out:
2239 	btrfs_put_root(root);
2240 out_free:
2241 	btrfs_free_path(path);
2242 	kfree(subvol_info);
2243 	return ret;
2244 }
2245 
2246 /*
2247  * Return ROOT_REF information of the subvolume containing this inode
2248  * except the subvolume name.
2249  */
2250 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2251 					  void __user *argp)
2252 {
2253 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2254 	struct btrfs_root_ref *rref;
2255 	struct btrfs_path *path;
2256 	struct btrfs_key key;
2257 	struct extent_buffer *leaf;
2258 	u64 objectid;
2259 	int slot;
2260 	int ret;
2261 	u8 found;
2262 
2263 	path = btrfs_alloc_path();
2264 	if (!path)
2265 		return -ENOMEM;
2266 
2267 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2268 	if (IS_ERR(rootrefs)) {
2269 		btrfs_free_path(path);
2270 		return PTR_ERR(rootrefs);
2271 	}
2272 
2273 	objectid = root->root_key.objectid;
2274 	key.objectid = objectid;
2275 	key.type = BTRFS_ROOT_REF_KEY;
2276 	key.offset = rootrefs->min_treeid;
2277 	found = 0;
2278 
2279 	root = root->fs_info->tree_root;
2280 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2281 	if (ret < 0) {
2282 		goto out;
2283 	} else if (path->slots[0] >=
2284 		   btrfs_header_nritems(path->nodes[0])) {
2285 		ret = btrfs_next_leaf(root, path);
2286 		if (ret < 0) {
2287 			goto out;
2288 		} else if (ret > 0) {
2289 			ret = -EUCLEAN;
2290 			goto out;
2291 		}
2292 	}
2293 	while (1) {
2294 		leaf = path->nodes[0];
2295 		slot = path->slots[0];
2296 
2297 		btrfs_item_key_to_cpu(leaf, &key, slot);
2298 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2299 			ret = 0;
2300 			goto out;
2301 		}
2302 
2303 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2304 			ret = -EOVERFLOW;
2305 			goto out;
2306 		}
2307 
2308 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2309 		rootrefs->rootref[found].treeid = key.offset;
2310 		rootrefs->rootref[found].dirid =
2311 				  btrfs_root_ref_dirid(leaf, rref);
2312 		found++;
2313 
2314 		ret = btrfs_next_item(root, path);
2315 		if (ret < 0) {
2316 			goto out;
2317 		} else if (ret > 0) {
2318 			ret = -EUCLEAN;
2319 			goto out;
2320 		}
2321 	}
2322 
2323 out:
2324 	btrfs_free_path(path);
2325 
2326 	if (!ret || ret == -EOVERFLOW) {
2327 		rootrefs->num_items = found;
2328 		/* update min_treeid for next search */
2329 		if (found)
2330 			rootrefs->min_treeid =
2331 				rootrefs->rootref[found - 1].treeid + 1;
2332 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2333 			ret = -EFAULT;
2334 	}
2335 
2336 	kfree(rootrefs);
2337 
2338 	return ret;
2339 }
2340 
2341 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2342 					     void __user *arg,
2343 					     bool destroy_v2)
2344 {
2345 	struct dentry *parent = file->f_path.dentry;
2346 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2347 	struct dentry *dentry;
2348 	struct inode *dir = d_inode(parent);
2349 	struct inode *inode;
2350 	struct btrfs_root *root = BTRFS_I(dir)->root;
2351 	struct btrfs_root *dest = NULL;
2352 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2353 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2354 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2355 	char *subvol_name, *subvol_name_ptr = NULL;
2356 	int subvol_namelen;
2357 	int err = 0;
2358 	bool destroy_parent = false;
2359 
2360 	/* We don't support snapshots with extent tree v2 yet. */
2361 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2362 		btrfs_err(fs_info,
2363 			  "extent tree v2 doesn't support snapshot deletion yet");
2364 		return -EOPNOTSUPP;
2365 	}
2366 
2367 	if (destroy_v2) {
2368 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2369 		if (IS_ERR(vol_args2))
2370 			return PTR_ERR(vol_args2);
2371 
2372 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2373 			err = -EOPNOTSUPP;
2374 			goto out;
2375 		}
2376 
2377 		/*
2378 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2379 		 * name, same as v1 currently does.
2380 		 */
2381 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2382 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2383 			subvol_name = vol_args2->name;
2384 
2385 			err = mnt_want_write_file(file);
2386 			if (err)
2387 				goto out;
2388 		} else {
2389 			struct inode *old_dir;
2390 
2391 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2392 				err = -EINVAL;
2393 				goto out;
2394 			}
2395 
2396 			err = mnt_want_write_file(file);
2397 			if (err)
2398 				goto out;
2399 
2400 			dentry = btrfs_get_dentry(fs_info->sb,
2401 					BTRFS_FIRST_FREE_OBJECTID,
2402 					vol_args2->subvolid, 0);
2403 			if (IS_ERR(dentry)) {
2404 				err = PTR_ERR(dentry);
2405 				goto out_drop_write;
2406 			}
2407 
2408 			/*
2409 			 * Change the default parent since the subvolume being
2410 			 * deleted can be outside of the current mount point.
2411 			 */
2412 			parent = btrfs_get_parent(dentry);
2413 
2414 			/*
2415 			 * At this point dentry->d_name can point to '/' if the
2416 			 * subvolume we want to destroy is outsite of the
2417 			 * current mount point, so we need to release the
2418 			 * current dentry and execute the lookup to return a new
2419 			 * one with ->d_name pointing to the
2420 			 * <mount point>/subvol_name.
2421 			 */
2422 			dput(dentry);
2423 			if (IS_ERR(parent)) {
2424 				err = PTR_ERR(parent);
2425 				goto out_drop_write;
2426 			}
2427 			old_dir = dir;
2428 			dir = d_inode(parent);
2429 
2430 			/*
2431 			 * If v2 was used with SPEC_BY_ID, a new parent was
2432 			 * allocated since the subvolume can be outside of the
2433 			 * current mount point. Later on we need to release this
2434 			 * new parent dentry.
2435 			 */
2436 			destroy_parent = true;
2437 
2438 			/*
2439 			 * On idmapped mounts, deletion via subvolid is
2440 			 * restricted to subvolumes that are immediate
2441 			 * ancestors of the inode referenced by the file
2442 			 * descriptor in the ioctl. Otherwise the idmapping
2443 			 * could potentially be abused to delete subvolumes
2444 			 * anywhere in the filesystem the user wouldn't be able
2445 			 * to delete without an idmapped mount.
2446 			 */
2447 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2448 				err = -EOPNOTSUPP;
2449 				goto free_parent;
2450 			}
2451 
2452 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2453 						fs_info, vol_args2->subvolid);
2454 			if (IS_ERR(subvol_name_ptr)) {
2455 				err = PTR_ERR(subvol_name_ptr);
2456 				goto free_parent;
2457 			}
2458 			/* subvol_name_ptr is already nul terminated */
2459 			subvol_name = (char *)kbasename(subvol_name_ptr);
2460 		}
2461 	} else {
2462 		vol_args = memdup_user(arg, sizeof(*vol_args));
2463 		if (IS_ERR(vol_args))
2464 			return PTR_ERR(vol_args);
2465 
2466 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2467 		subvol_name = vol_args->name;
2468 
2469 		err = mnt_want_write_file(file);
2470 		if (err)
2471 			goto out;
2472 	}
2473 
2474 	subvol_namelen = strlen(subvol_name);
2475 
2476 	if (strchr(subvol_name, '/') ||
2477 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2478 		err = -EINVAL;
2479 		goto free_subvol_name;
2480 	}
2481 
2482 	if (!S_ISDIR(dir->i_mode)) {
2483 		err = -ENOTDIR;
2484 		goto free_subvol_name;
2485 	}
2486 
2487 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2488 	if (err == -EINTR)
2489 		goto free_subvol_name;
2490 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2491 	if (IS_ERR(dentry)) {
2492 		err = PTR_ERR(dentry);
2493 		goto out_unlock_dir;
2494 	}
2495 
2496 	if (d_really_is_negative(dentry)) {
2497 		err = -ENOENT;
2498 		goto out_dput;
2499 	}
2500 
2501 	inode = d_inode(dentry);
2502 	dest = BTRFS_I(inode)->root;
2503 	if (!capable(CAP_SYS_ADMIN)) {
2504 		/*
2505 		 * Regular user.  Only allow this with a special mount
2506 		 * option, when the user has write+exec access to the
2507 		 * subvol root, and when rmdir(2) would have been
2508 		 * allowed.
2509 		 *
2510 		 * Note that this is _not_ check that the subvol is
2511 		 * empty or doesn't contain data that we wouldn't
2512 		 * otherwise be able to delete.
2513 		 *
2514 		 * Users who want to delete empty subvols should try
2515 		 * rmdir(2).
2516 		 */
2517 		err = -EPERM;
2518 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2519 			goto out_dput;
2520 
2521 		/*
2522 		 * Do not allow deletion if the parent dir is the same
2523 		 * as the dir to be deleted.  That means the ioctl
2524 		 * must be called on the dentry referencing the root
2525 		 * of the subvol, not a random directory contained
2526 		 * within it.
2527 		 */
2528 		err = -EINVAL;
2529 		if (root == dest)
2530 			goto out_dput;
2531 
2532 		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2533 		if (err)
2534 			goto out_dput;
2535 	}
2536 
2537 	/* check if subvolume may be deleted by a user */
2538 	err = btrfs_may_delete(idmap, dir, dentry, 1);
2539 	if (err)
2540 		goto out_dput;
2541 
2542 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2543 		err = -EINVAL;
2544 		goto out_dput;
2545 	}
2546 
2547 	btrfs_inode_lock(BTRFS_I(inode), 0);
2548 	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2549 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2550 	if (!err)
2551 		d_delete_notify(dir, dentry);
2552 
2553 out_dput:
2554 	dput(dentry);
2555 out_unlock_dir:
2556 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2557 free_subvol_name:
2558 	kfree(subvol_name_ptr);
2559 free_parent:
2560 	if (destroy_parent)
2561 		dput(parent);
2562 out_drop_write:
2563 	mnt_drop_write_file(file);
2564 out:
2565 	kfree(vol_args2);
2566 	kfree(vol_args);
2567 	return err;
2568 }
2569 
2570 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2571 {
2572 	struct inode *inode = file_inode(file);
2573 	struct btrfs_root *root = BTRFS_I(inode)->root;
2574 	struct btrfs_ioctl_defrag_range_args range = {0};
2575 	int ret;
2576 
2577 	ret = mnt_want_write_file(file);
2578 	if (ret)
2579 		return ret;
2580 
2581 	if (btrfs_root_readonly(root)) {
2582 		ret = -EROFS;
2583 		goto out;
2584 	}
2585 
2586 	switch (inode->i_mode & S_IFMT) {
2587 	case S_IFDIR:
2588 		if (!capable(CAP_SYS_ADMIN)) {
2589 			ret = -EPERM;
2590 			goto out;
2591 		}
2592 		ret = btrfs_defrag_root(root);
2593 		break;
2594 	case S_IFREG:
2595 		/*
2596 		 * Note that this does not check the file descriptor for write
2597 		 * access. This prevents defragmenting executables that are
2598 		 * running and allows defrag on files open in read-only mode.
2599 		 */
2600 		if (!capable(CAP_SYS_ADMIN) &&
2601 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2602 			ret = -EPERM;
2603 			goto out;
2604 		}
2605 
2606 		if (argp) {
2607 			if (copy_from_user(&range, argp, sizeof(range))) {
2608 				ret = -EFAULT;
2609 				goto out;
2610 			}
2611 			/* compression requires us to start the IO */
2612 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2613 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2614 				range.extent_thresh = (u32)-1;
2615 			}
2616 		} else {
2617 			/* the rest are all set to zero by kzalloc */
2618 			range.len = (u64)-1;
2619 		}
2620 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2621 					&range, BTRFS_OLDEST_GENERATION, 0);
2622 		if (ret > 0)
2623 			ret = 0;
2624 		break;
2625 	default:
2626 		ret = -EINVAL;
2627 	}
2628 out:
2629 	mnt_drop_write_file(file);
2630 	return ret;
2631 }
2632 
2633 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2634 {
2635 	struct btrfs_ioctl_vol_args *vol_args;
2636 	bool restore_op = false;
2637 	int ret;
2638 
2639 	if (!capable(CAP_SYS_ADMIN))
2640 		return -EPERM;
2641 
2642 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2643 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2644 		return -EINVAL;
2645 	}
2646 
2647 	if (fs_info->fs_devices->temp_fsid) {
2648 		btrfs_err(fs_info,
2649 			  "device add not supported on cloned temp-fsid mount");
2650 		return -EINVAL;
2651 	}
2652 
2653 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2654 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2655 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2656 
2657 		/*
2658 		 * We can do the device add because we have a paused balanced,
2659 		 * change the exclusive op type and remember we should bring
2660 		 * back the paused balance
2661 		 */
2662 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2663 		btrfs_exclop_start_unlock(fs_info);
2664 		restore_op = true;
2665 	}
2666 
2667 	vol_args = memdup_user(arg, sizeof(*vol_args));
2668 	if (IS_ERR(vol_args)) {
2669 		ret = PTR_ERR(vol_args);
2670 		goto out;
2671 	}
2672 
2673 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2674 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2675 
2676 	if (!ret)
2677 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2678 
2679 	kfree(vol_args);
2680 out:
2681 	if (restore_op)
2682 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2683 	else
2684 		btrfs_exclop_finish(fs_info);
2685 	return ret;
2686 }
2687 
2688 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2689 {
2690 	BTRFS_DEV_LOOKUP_ARGS(args);
2691 	struct inode *inode = file_inode(file);
2692 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2693 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2694 	struct bdev_handle *bdev_handle = NULL;
2695 	int ret;
2696 	bool cancel = false;
2697 
2698 	if (!capable(CAP_SYS_ADMIN))
2699 		return -EPERM;
2700 
2701 	vol_args = memdup_user(arg, sizeof(*vol_args));
2702 	if (IS_ERR(vol_args))
2703 		return PTR_ERR(vol_args);
2704 
2705 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2706 		ret = -EOPNOTSUPP;
2707 		goto out;
2708 	}
2709 
2710 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2711 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2712 		args.devid = vol_args->devid;
2713 	} else if (!strcmp("cancel", vol_args->name)) {
2714 		cancel = true;
2715 	} else {
2716 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2717 		if (ret)
2718 			goto out;
2719 	}
2720 
2721 	ret = mnt_want_write_file(file);
2722 	if (ret)
2723 		goto out;
2724 
2725 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2726 					   cancel);
2727 	if (ret)
2728 		goto err_drop;
2729 
2730 	/* Exclusive operation is now claimed */
2731 	ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2732 
2733 	btrfs_exclop_finish(fs_info);
2734 
2735 	if (!ret) {
2736 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2737 			btrfs_info(fs_info, "device deleted: id %llu",
2738 					vol_args->devid);
2739 		else
2740 			btrfs_info(fs_info, "device deleted: %s",
2741 					vol_args->name);
2742 	}
2743 err_drop:
2744 	mnt_drop_write_file(file);
2745 	if (bdev_handle)
2746 		bdev_release(bdev_handle);
2747 out:
2748 	btrfs_put_dev_args_from_path(&args);
2749 	kfree(vol_args);
2750 	return ret;
2751 }
2752 
2753 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2754 {
2755 	BTRFS_DEV_LOOKUP_ARGS(args);
2756 	struct inode *inode = file_inode(file);
2757 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2758 	struct btrfs_ioctl_vol_args *vol_args;
2759 	struct bdev_handle *bdev_handle = NULL;
2760 	int ret;
2761 	bool cancel = false;
2762 
2763 	if (!capable(CAP_SYS_ADMIN))
2764 		return -EPERM;
2765 
2766 	vol_args = memdup_user(arg, sizeof(*vol_args));
2767 	if (IS_ERR(vol_args))
2768 		return PTR_ERR(vol_args);
2769 
2770 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2771 	if (!strcmp("cancel", vol_args->name)) {
2772 		cancel = true;
2773 	} else {
2774 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2775 		if (ret)
2776 			goto out;
2777 	}
2778 
2779 	ret = mnt_want_write_file(file);
2780 	if (ret)
2781 		goto out;
2782 
2783 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2784 					   cancel);
2785 	if (ret == 0) {
2786 		ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2787 		if (!ret)
2788 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2789 		btrfs_exclop_finish(fs_info);
2790 	}
2791 
2792 	mnt_drop_write_file(file);
2793 	if (bdev_handle)
2794 		bdev_release(bdev_handle);
2795 out:
2796 	btrfs_put_dev_args_from_path(&args);
2797 	kfree(vol_args);
2798 	return ret;
2799 }
2800 
2801 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2802 				void __user *arg)
2803 {
2804 	struct btrfs_ioctl_fs_info_args *fi_args;
2805 	struct btrfs_device *device;
2806 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2807 	u64 flags_in;
2808 	int ret = 0;
2809 
2810 	fi_args = memdup_user(arg, sizeof(*fi_args));
2811 	if (IS_ERR(fi_args))
2812 		return PTR_ERR(fi_args);
2813 
2814 	flags_in = fi_args->flags;
2815 	memset(fi_args, 0, sizeof(*fi_args));
2816 
2817 	rcu_read_lock();
2818 	fi_args->num_devices = fs_devices->num_devices;
2819 
2820 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2821 		if (device->devid > fi_args->max_id)
2822 			fi_args->max_id = device->devid;
2823 	}
2824 	rcu_read_unlock();
2825 
2826 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2827 	fi_args->nodesize = fs_info->nodesize;
2828 	fi_args->sectorsize = fs_info->sectorsize;
2829 	fi_args->clone_alignment = fs_info->sectorsize;
2830 
2831 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2832 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2833 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2834 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2835 	}
2836 
2837 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2838 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2839 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2840 	}
2841 
2842 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2843 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2844 		       sizeof(fi_args->metadata_uuid));
2845 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2846 	}
2847 
2848 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2849 		ret = -EFAULT;
2850 
2851 	kfree(fi_args);
2852 	return ret;
2853 }
2854 
2855 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2856 				 void __user *arg)
2857 {
2858 	BTRFS_DEV_LOOKUP_ARGS(args);
2859 	struct btrfs_ioctl_dev_info_args *di_args;
2860 	struct btrfs_device *dev;
2861 	int ret = 0;
2862 
2863 	di_args = memdup_user(arg, sizeof(*di_args));
2864 	if (IS_ERR(di_args))
2865 		return PTR_ERR(di_args);
2866 
2867 	args.devid = di_args->devid;
2868 	if (!btrfs_is_empty_uuid(di_args->uuid))
2869 		args.uuid = di_args->uuid;
2870 
2871 	rcu_read_lock();
2872 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2873 	if (!dev) {
2874 		ret = -ENODEV;
2875 		goto out;
2876 	}
2877 
2878 	di_args->devid = dev->devid;
2879 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2880 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2881 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2882 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2883 	if (dev->name)
2884 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2885 	else
2886 		di_args->path[0] = '\0';
2887 
2888 out:
2889 	rcu_read_unlock();
2890 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2891 		ret = -EFAULT;
2892 
2893 	kfree(di_args);
2894 	return ret;
2895 }
2896 
2897 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2898 {
2899 	struct inode *inode = file_inode(file);
2900 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2901 	struct btrfs_root *root = BTRFS_I(inode)->root;
2902 	struct btrfs_root *new_root;
2903 	struct btrfs_dir_item *di;
2904 	struct btrfs_trans_handle *trans;
2905 	struct btrfs_path *path = NULL;
2906 	struct btrfs_disk_key disk_key;
2907 	struct fscrypt_str name = FSTR_INIT("default", 7);
2908 	u64 objectid = 0;
2909 	u64 dir_id;
2910 	int ret;
2911 
2912 	if (!capable(CAP_SYS_ADMIN))
2913 		return -EPERM;
2914 
2915 	ret = mnt_want_write_file(file);
2916 	if (ret)
2917 		return ret;
2918 
2919 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2920 		ret = -EFAULT;
2921 		goto out;
2922 	}
2923 
2924 	if (!objectid)
2925 		objectid = BTRFS_FS_TREE_OBJECTID;
2926 
2927 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2928 	if (IS_ERR(new_root)) {
2929 		ret = PTR_ERR(new_root);
2930 		goto out;
2931 	}
2932 	if (!is_fstree(new_root->root_key.objectid)) {
2933 		ret = -ENOENT;
2934 		goto out_free;
2935 	}
2936 
2937 	path = btrfs_alloc_path();
2938 	if (!path) {
2939 		ret = -ENOMEM;
2940 		goto out_free;
2941 	}
2942 
2943 	trans = btrfs_start_transaction(root, 1);
2944 	if (IS_ERR(trans)) {
2945 		ret = PTR_ERR(trans);
2946 		goto out_free;
2947 	}
2948 
2949 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2950 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2951 				   dir_id, &name, 1);
2952 	if (IS_ERR_OR_NULL(di)) {
2953 		btrfs_release_path(path);
2954 		btrfs_end_transaction(trans);
2955 		btrfs_err(fs_info,
2956 			  "Umm, you don't have the default diritem, this isn't going to work");
2957 		ret = -ENOENT;
2958 		goto out_free;
2959 	}
2960 
2961 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2962 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2963 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2964 	btrfs_release_path(path);
2965 
2966 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2967 	btrfs_end_transaction(trans);
2968 out_free:
2969 	btrfs_put_root(new_root);
2970 	btrfs_free_path(path);
2971 out:
2972 	mnt_drop_write_file(file);
2973 	return ret;
2974 }
2975 
2976 static void get_block_group_info(struct list_head *groups_list,
2977 				 struct btrfs_ioctl_space_info *space)
2978 {
2979 	struct btrfs_block_group *block_group;
2980 
2981 	space->total_bytes = 0;
2982 	space->used_bytes = 0;
2983 	space->flags = 0;
2984 	list_for_each_entry(block_group, groups_list, list) {
2985 		space->flags = block_group->flags;
2986 		space->total_bytes += block_group->length;
2987 		space->used_bytes += block_group->used;
2988 	}
2989 }
2990 
2991 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2992 				   void __user *arg)
2993 {
2994 	struct btrfs_ioctl_space_args space_args = { 0 };
2995 	struct btrfs_ioctl_space_info space;
2996 	struct btrfs_ioctl_space_info *dest;
2997 	struct btrfs_ioctl_space_info *dest_orig;
2998 	struct btrfs_ioctl_space_info __user *user_dest;
2999 	struct btrfs_space_info *info;
3000 	static const u64 types[] = {
3001 		BTRFS_BLOCK_GROUP_DATA,
3002 		BTRFS_BLOCK_GROUP_SYSTEM,
3003 		BTRFS_BLOCK_GROUP_METADATA,
3004 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3005 	};
3006 	int num_types = 4;
3007 	int alloc_size;
3008 	int ret = 0;
3009 	u64 slot_count = 0;
3010 	int i, c;
3011 
3012 	if (copy_from_user(&space_args,
3013 			   (struct btrfs_ioctl_space_args __user *)arg,
3014 			   sizeof(space_args)))
3015 		return -EFAULT;
3016 
3017 	for (i = 0; i < num_types; i++) {
3018 		struct btrfs_space_info *tmp;
3019 
3020 		info = NULL;
3021 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3022 			if (tmp->flags == types[i]) {
3023 				info = tmp;
3024 				break;
3025 			}
3026 		}
3027 
3028 		if (!info)
3029 			continue;
3030 
3031 		down_read(&info->groups_sem);
3032 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3033 			if (!list_empty(&info->block_groups[c]))
3034 				slot_count++;
3035 		}
3036 		up_read(&info->groups_sem);
3037 	}
3038 
3039 	/*
3040 	 * Global block reserve, exported as a space_info
3041 	 */
3042 	slot_count++;
3043 
3044 	/* space_slots == 0 means they are asking for a count */
3045 	if (space_args.space_slots == 0) {
3046 		space_args.total_spaces = slot_count;
3047 		goto out;
3048 	}
3049 
3050 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3051 
3052 	alloc_size = sizeof(*dest) * slot_count;
3053 
3054 	/* we generally have at most 6 or so space infos, one for each raid
3055 	 * level.  So, a whole page should be more than enough for everyone
3056 	 */
3057 	if (alloc_size > PAGE_SIZE)
3058 		return -ENOMEM;
3059 
3060 	space_args.total_spaces = 0;
3061 	dest = kmalloc(alloc_size, GFP_KERNEL);
3062 	if (!dest)
3063 		return -ENOMEM;
3064 	dest_orig = dest;
3065 
3066 	/* now we have a buffer to copy into */
3067 	for (i = 0; i < num_types; i++) {
3068 		struct btrfs_space_info *tmp;
3069 
3070 		if (!slot_count)
3071 			break;
3072 
3073 		info = NULL;
3074 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3075 			if (tmp->flags == types[i]) {
3076 				info = tmp;
3077 				break;
3078 			}
3079 		}
3080 
3081 		if (!info)
3082 			continue;
3083 		down_read(&info->groups_sem);
3084 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3085 			if (!list_empty(&info->block_groups[c])) {
3086 				get_block_group_info(&info->block_groups[c],
3087 						     &space);
3088 				memcpy(dest, &space, sizeof(space));
3089 				dest++;
3090 				space_args.total_spaces++;
3091 				slot_count--;
3092 			}
3093 			if (!slot_count)
3094 				break;
3095 		}
3096 		up_read(&info->groups_sem);
3097 	}
3098 
3099 	/*
3100 	 * Add global block reserve
3101 	 */
3102 	if (slot_count) {
3103 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3104 
3105 		spin_lock(&block_rsv->lock);
3106 		space.total_bytes = block_rsv->size;
3107 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3108 		spin_unlock(&block_rsv->lock);
3109 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3110 		memcpy(dest, &space, sizeof(space));
3111 		space_args.total_spaces++;
3112 	}
3113 
3114 	user_dest = (struct btrfs_ioctl_space_info __user *)
3115 		(arg + sizeof(struct btrfs_ioctl_space_args));
3116 
3117 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3118 		ret = -EFAULT;
3119 
3120 	kfree(dest_orig);
3121 out:
3122 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3123 		ret = -EFAULT;
3124 
3125 	return ret;
3126 }
3127 
3128 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3129 					    void __user *argp)
3130 {
3131 	struct btrfs_trans_handle *trans;
3132 	u64 transid;
3133 
3134 	/*
3135 	 * Start orphan cleanup here for the given root in case it hasn't been
3136 	 * started already by other means. Errors are handled in the other
3137 	 * functions during transaction commit.
3138 	 */
3139 	btrfs_orphan_cleanup(root);
3140 
3141 	trans = btrfs_attach_transaction_barrier(root);
3142 	if (IS_ERR(trans)) {
3143 		if (PTR_ERR(trans) != -ENOENT)
3144 			return PTR_ERR(trans);
3145 
3146 		/* No running transaction, don't bother */
3147 		transid = btrfs_get_last_trans_committed(root->fs_info);
3148 		goto out;
3149 	}
3150 	transid = trans->transid;
3151 	btrfs_commit_transaction_async(trans);
3152 out:
3153 	if (argp)
3154 		if (copy_to_user(argp, &transid, sizeof(transid)))
3155 			return -EFAULT;
3156 	return 0;
3157 }
3158 
3159 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3160 					   void __user *argp)
3161 {
3162 	/* By default wait for the current transaction. */
3163 	u64 transid = 0;
3164 
3165 	if (argp)
3166 		if (copy_from_user(&transid, argp, sizeof(transid)))
3167 			return -EFAULT;
3168 
3169 	return btrfs_wait_for_commit(fs_info, transid);
3170 }
3171 
3172 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3173 {
3174 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3175 	struct btrfs_ioctl_scrub_args *sa;
3176 	int ret;
3177 
3178 	if (!capable(CAP_SYS_ADMIN))
3179 		return -EPERM;
3180 
3181 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3182 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3183 		return -EINVAL;
3184 	}
3185 
3186 	sa = memdup_user(arg, sizeof(*sa));
3187 	if (IS_ERR(sa))
3188 		return PTR_ERR(sa);
3189 
3190 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3191 		ret = -EOPNOTSUPP;
3192 		goto out;
3193 	}
3194 
3195 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3196 		ret = mnt_want_write_file(file);
3197 		if (ret)
3198 			goto out;
3199 	}
3200 
3201 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3202 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3203 			      0);
3204 
3205 	/*
3206 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3207 	 * error. This is important as it allows user space to know how much
3208 	 * progress scrub has done. For example, if scrub is canceled we get
3209 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3210 	 * space. Later user space can inspect the progress from the structure
3211 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3212 	 * previously (btrfs-progs does this).
3213 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3214 	 * then return -EFAULT to signal the structure was not copied or it may
3215 	 * be corrupt and unreliable due to a partial copy.
3216 	 */
3217 	if (copy_to_user(arg, sa, sizeof(*sa)))
3218 		ret = -EFAULT;
3219 
3220 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3221 		mnt_drop_write_file(file);
3222 out:
3223 	kfree(sa);
3224 	return ret;
3225 }
3226 
3227 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3228 {
3229 	if (!capable(CAP_SYS_ADMIN))
3230 		return -EPERM;
3231 
3232 	return btrfs_scrub_cancel(fs_info);
3233 }
3234 
3235 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3236 				       void __user *arg)
3237 {
3238 	struct btrfs_ioctl_scrub_args *sa;
3239 	int ret;
3240 
3241 	if (!capable(CAP_SYS_ADMIN))
3242 		return -EPERM;
3243 
3244 	sa = memdup_user(arg, sizeof(*sa));
3245 	if (IS_ERR(sa))
3246 		return PTR_ERR(sa);
3247 
3248 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3249 
3250 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3251 		ret = -EFAULT;
3252 
3253 	kfree(sa);
3254 	return ret;
3255 }
3256 
3257 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3258 				      void __user *arg)
3259 {
3260 	struct btrfs_ioctl_get_dev_stats *sa;
3261 	int ret;
3262 
3263 	sa = memdup_user(arg, sizeof(*sa));
3264 	if (IS_ERR(sa))
3265 		return PTR_ERR(sa);
3266 
3267 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3268 		kfree(sa);
3269 		return -EPERM;
3270 	}
3271 
3272 	ret = btrfs_get_dev_stats(fs_info, sa);
3273 
3274 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3275 		ret = -EFAULT;
3276 
3277 	kfree(sa);
3278 	return ret;
3279 }
3280 
3281 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3282 				    void __user *arg)
3283 {
3284 	struct btrfs_ioctl_dev_replace_args *p;
3285 	int ret;
3286 
3287 	if (!capable(CAP_SYS_ADMIN))
3288 		return -EPERM;
3289 
3290 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3291 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3292 		return -EINVAL;
3293 	}
3294 
3295 	p = memdup_user(arg, sizeof(*p));
3296 	if (IS_ERR(p))
3297 		return PTR_ERR(p);
3298 
3299 	switch (p->cmd) {
3300 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3301 		if (sb_rdonly(fs_info->sb)) {
3302 			ret = -EROFS;
3303 			goto out;
3304 		}
3305 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3306 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3307 		} else {
3308 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3309 			btrfs_exclop_finish(fs_info);
3310 		}
3311 		break;
3312 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3313 		btrfs_dev_replace_status(fs_info, p);
3314 		ret = 0;
3315 		break;
3316 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3317 		p->result = btrfs_dev_replace_cancel(fs_info);
3318 		ret = 0;
3319 		break;
3320 	default:
3321 		ret = -EINVAL;
3322 		break;
3323 	}
3324 
3325 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3326 		ret = -EFAULT;
3327 out:
3328 	kfree(p);
3329 	return ret;
3330 }
3331 
3332 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3333 {
3334 	int ret = 0;
3335 	int i;
3336 	u64 rel_ptr;
3337 	int size;
3338 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3339 	struct inode_fs_paths *ipath = NULL;
3340 	struct btrfs_path *path;
3341 
3342 	if (!capable(CAP_DAC_READ_SEARCH))
3343 		return -EPERM;
3344 
3345 	path = btrfs_alloc_path();
3346 	if (!path) {
3347 		ret = -ENOMEM;
3348 		goto out;
3349 	}
3350 
3351 	ipa = memdup_user(arg, sizeof(*ipa));
3352 	if (IS_ERR(ipa)) {
3353 		ret = PTR_ERR(ipa);
3354 		ipa = NULL;
3355 		goto out;
3356 	}
3357 
3358 	size = min_t(u32, ipa->size, 4096);
3359 	ipath = init_ipath(size, root, path);
3360 	if (IS_ERR(ipath)) {
3361 		ret = PTR_ERR(ipath);
3362 		ipath = NULL;
3363 		goto out;
3364 	}
3365 
3366 	ret = paths_from_inode(ipa->inum, ipath);
3367 	if (ret < 0)
3368 		goto out;
3369 
3370 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3371 		rel_ptr = ipath->fspath->val[i] -
3372 			  (u64)(unsigned long)ipath->fspath->val;
3373 		ipath->fspath->val[i] = rel_ptr;
3374 	}
3375 
3376 	btrfs_free_path(path);
3377 	path = NULL;
3378 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3379 			   ipath->fspath, size);
3380 	if (ret) {
3381 		ret = -EFAULT;
3382 		goto out;
3383 	}
3384 
3385 out:
3386 	btrfs_free_path(path);
3387 	free_ipath(ipath);
3388 	kfree(ipa);
3389 
3390 	return ret;
3391 }
3392 
3393 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3394 					void __user *arg, int version)
3395 {
3396 	int ret = 0;
3397 	int size;
3398 	struct btrfs_ioctl_logical_ino_args *loi;
3399 	struct btrfs_data_container *inodes = NULL;
3400 	struct btrfs_path *path = NULL;
3401 	bool ignore_offset;
3402 
3403 	if (!capable(CAP_SYS_ADMIN))
3404 		return -EPERM;
3405 
3406 	loi = memdup_user(arg, sizeof(*loi));
3407 	if (IS_ERR(loi))
3408 		return PTR_ERR(loi);
3409 
3410 	if (version == 1) {
3411 		ignore_offset = false;
3412 		size = min_t(u32, loi->size, SZ_64K);
3413 	} else {
3414 		/* All reserved bits must be 0 for now */
3415 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3416 			ret = -EINVAL;
3417 			goto out_loi;
3418 		}
3419 		/* Only accept flags we have defined so far */
3420 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3421 			ret = -EINVAL;
3422 			goto out_loi;
3423 		}
3424 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3425 		size = min_t(u32, loi->size, SZ_16M);
3426 	}
3427 
3428 	inodes = init_data_container(size);
3429 	if (IS_ERR(inodes)) {
3430 		ret = PTR_ERR(inodes);
3431 		goto out_loi;
3432 	}
3433 
3434 	path = btrfs_alloc_path();
3435 	if (!path) {
3436 		ret = -ENOMEM;
3437 		goto out;
3438 	}
3439 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3440 					  inodes, ignore_offset);
3441 	btrfs_free_path(path);
3442 	if (ret == -EINVAL)
3443 		ret = -ENOENT;
3444 	if (ret < 0)
3445 		goto out;
3446 
3447 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3448 			   size);
3449 	if (ret)
3450 		ret = -EFAULT;
3451 
3452 out:
3453 	kvfree(inodes);
3454 out_loi:
3455 	kfree(loi);
3456 
3457 	return ret;
3458 }
3459 
3460 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3461 			       struct btrfs_ioctl_balance_args *bargs)
3462 {
3463 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3464 
3465 	bargs->flags = bctl->flags;
3466 
3467 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3468 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3469 	if (atomic_read(&fs_info->balance_pause_req))
3470 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3471 	if (atomic_read(&fs_info->balance_cancel_req))
3472 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3473 
3474 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3475 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3476 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3477 
3478 	spin_lock(&fs_info->balance_lock);
3479 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3480 	spin_unlock(&fs_info->balance_lock);
3481 }
3482 
3483 /*
3484  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3485  * required.
3486  *
3487  * @fs_info:       the filesystem
3488  * @excl_acquired: ptr to boolean value which is set to false in case balance
3489  *                 is being resumed
3490  *
3491  * Return 0 on success in which case both fs_info::balance is acquired as well
3492  * as exclusive ops are blocked. In case of failure return an error code.
3493  */
3494 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3495 {
3496 	int ret;
3497 
3498 	/*
3499 	 * Exclusive operation is locked. Three possibilities:
3500 	 *   (1) some other op is running
3501 	 *   (2) balance is running
3502 	 *   (3) balance is paused -- special case (think resume)
3503 	 */
3504 	while (1) {
3505 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3506 			*excl_acquired = true;
3507 			mutex_lock(&fs_info->balance_mutex);
3508 			return 0;
3509 		}
3510 
3511 		mutex_lock(&fs_info->balance_mutex);
3512 		if (fs_info->balance_ctl) {
3513 			/* This is either (2) or (3) */
3514 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3515 				/* This is (2) */
3516 				ret = -EINPROGRESS;
3517 				goto out_failure;
3518 
3519 			} else {
3520 				mutex_unlock(&fs_info->balance_mutex);
3521 				/*
3522 				 * Lock released to allow other waiters to
3523 				 * continue, we'll reexamine the status again.
3524 				 */
3525 				mutex_lock(&fs_info->balance_mutex);
3526 
3527 				if (fs_info->balance_ctl &&
3528 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3529 					/* This is (3) */
3530 					*excl_acquired = false;
3531 					return 0;
3532 				}
3533 			}
3534 		} else {
3535 			/* This is (1) */
3536 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3537 			goto out_failure;
3538 		}
3539 
3540 		mutex_unlock(&fs_info->balance_mutex);
3541 	}
3542 
3543 out_failure:
3544 	mutex_unlock(&fs_info->balance_mutex);
3545 	*excl_acquired = false;
3546 	return ret;
3547 }
3548 
3549 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3550 {
3551 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3552 	struct btrfs_fs_info *fs_info = root->fs_info;
3553 	struct btrfs_ioctl_balance_args *bargs;
3554 	struct btrfs_balance_control *bctl;
3555 	bool need_unlock = true;
3556 	int ret;
3557 
3558 	if (!capable(CAP_SYS_ADMIN))
3559 		return -EPERM;
3560 
3561 	ret = mnt_want_write_file(file);
3562 	if (ret)
3563 		return ret;
3564 
3565 	bargs = memdup_user(arg, sizeof(*bargs));
3566 	if (IS_ERR(bargs)) {
3567 		ret = PTR_ERR(bargs);
3568 		bargs = NULL;
3569 		goto out;
3570 	}
3571 
3572 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3573 	if (ret)
3574 		goto out;
3575 
3576 	lockdep_assert_held(&fs_info->balance_mutex);
3577 
3578 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3579 		if (!fs_info->balance_ctl) {
3580 			ret = -ENOTCONN;
3581 			goto out_unlock;
3582 		}
3583 
3584 		bctl = fs_info->balance_ctl;
3585 		spin_lock(&fs_info->balance_lock);
3586 		bctl->flags |= BTRFS_BALANCE_RESUME;
3587 		spin_unlock(&fs_info->balance_lock);
3588 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3589 
3590 		goto do_balance;
3591 	}
3592 
3593 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3594 		ret = -EINVAL;
3595 		goto out_unlock;
3596 	}
3597 
3598 	if (fs_info->balance_ctl) {
3599 		ret = -EINPROGRESS;
3600 		goto out_unlock;
3601 	}
3602 
3603 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3604 	if (!bctl) {
3605 		ret = -ENOMEM;
3606 		goto out_unlock;
3607 	}
3608 
3609 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3610 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3611 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3612 
3613 	bctl->flags = bargs->flags;
3614 do_balance:
3615 	/*
3616 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3617 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3618 	 * all the way until unmount, in free_fs_info.  The flag should be
3619 	 * cleared after reset_balance_state.
3620 	 */
3621 	need_unlock = false;
3622 
3623 	ret = btrfs_balance(fs_info, bctl, bargs);
3624 	bctl = NULL;
3625 
3626 	if (ret == 0 || ret == -ECANCELED) {
3627 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3628 			ret = -EFAULT;
3629 	}
3630 
3631 	kfree(bctl);
3632 out_unlock:
3633 	mutex_unlock(&fs_info->balance_mutex);
3634 	if (need_unlock)
3635 		btrfs_exclop_finish(fs_info);
3636 out:
3637 	mnt_drop_write_file(file);
3638 	kfree(bargs);
3639 	return ret;
3640 }
3641 
3642 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3643 {
3644 	if (!capable(CAP_SYS_ADMIN))
3645 		return -EPERM;
3646 
3647 	switch (cmd) {
3648 	case BTRFS_BALANCE_CTL_PAUSE:
3649 		return btrfs_pause_balance(fs_info);
3650 	case BTRFS_BALANCE_CTL_CANCEL:
3651 		return btrfs_cancel_balance(fs_info);
3652 	}
3653 
3654 	return -EINVAL;
3655 }
3656 
3657 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3658 					 void __user *arg)
3659 {
3660 	struct btrfs_ioctl_balance_args *bargs;
3661 	int ret = 0;
3662 
3663 	if (!capable(CAP_SYS_ADMIN))
3664 		return -EPERM;
3665 
3666 	mutex_lock(&fs_info->balance_mutex);
3667 	if (!fs_info->balance_ctl) {
3668 		ret = -ENOTCONN;
3669 		goto out;
3670 	}
3671 
3672 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3673 	if (!bargs) {
3674 		ret = -ENOMEM;
3675 		goto out;
3676 	}
3677 
3678 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3679 
3680 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3681 		ret = -EFAULT;
3682 
3683 	kfree(bargs);
3684 out:
3685 	mutex_unlock(&fs_info->balance_mutex);
3686 	return ret;
3687 }
3688 
3689 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3690 {
3691 	struct inode *inode = file_inode(file);
3692 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3693 	struct btrfs_ioctl_quota_ctl_args *sa;
3694 	int ret;
3695 
3696 	if (!capable(CAP_SYS_ADMIN))
3697 		return -EPERM;
3698 
3699 	ret = mnt_want_write_file(file);
3700 	if (ret)
3701 		return ret;
3702 
3703 	sa = memdup_user(arg, sizeof(*sa));
3704 	if (IS_ERR(sa)) {
3705 		ret = PTR_ERR(sa);
3706 		goto drop_write;
3707 	}
3708 
3709 	down_write(&fs_info->subvol_sem);
3710 
3711 	switch (sa->cmd) {
3712 	case BTRFS_QUOTA_CTL_ENABLE:
3713 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3714 		ret = btrfs_quota_enable(fs_info, sa);
3715 		break;
3716 	case BTRFS_QUOTA_CTL_DISABLE:
3717 		ret = btrfs_quota_disable(fs_info);
3718 		break;
3719 	default:
3720 		ret = -EINVAL;
3721 		break;
3722 	}
3723 
3724 	kfree(sa);
3725 	up_write(&fs_info->subvol_sem);
3726 drop_write:
3727 	mnt_drop_write_file(file);
3728 	return ret;
3729 }
3730 
3731 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3732 {
3733 	struct inode *inode = file_inode(file);
3734 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3735 	struct btrfs_root *root = BTRFS_I(inode)->root;
3736 	struct btrfs_ioctl_qgroup_assign_args *sa;
3737 	struct btrfs_trans_handle *trans;
3738 	int ret;
3739 	int err;
3740 
3741 	if (!capable(CAP_SYS_ADMIN))
3742 		return -EPERM;
3743 
3744 	ret = mnt_want_write_file(file);
3745 	if (ret)
3746 		return ret;
3747 
3748 	sa = memdup_user(arg, sizeof(*sa));
3749 	if (IS_ERR(sa)) {
3750 		ret = PTR_ERR(sa);
3751 		goto drop_write;
3752 	}
3753 
3754 	trans = btrfs_join_transaction(root);
3755 	if (IS_ERR(trans)) {
3756 		ret = PTR_ERR(trans);
3757 		goto out;
3758 	}
3759 
3760 	if (sa->assign) {
3761 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3762 	} else {
3763 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3764 	}
3765 
3766 	/* update qgroup status and info */
3767 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3768 	err = btrfs_run_qgroups(trans);
3769 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3770 	if (err < 0)
3771 		btrfs_handle_fs_error(fs_info, err,
3772 				      "failed to update qgroup status and info");
3773 	err = btrfs_end_transaction(trans);
3774 	if (err && !ret)
3775 		ret = err;
3776 
3777 out:
3778 	kfree(sa);
3779 drop_write:
3780 	mnt_drop_write_file(file);
3781 	return ret;
3782 }
3783 
3784 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3785 {
3786 	struct inode *inode = file_inode(file);
3787 	struct btrfs_root *root = BTRFS_I(inode)->root;
3788 	struct btrfs_ioctl_qgroup_create_args *sa;
3789 	struct btrfs_trans_handle *trans;
3790 	int ret;
3791 	int err;
3792 
3793 	if (!capable(CAP_SYS_ADMIN))
3794 		return -EPERM;
3795 
3796 	ret = mnt_want_write_file(file);
3797 	if (ret)
3798 		return ret;
3799 
3800 	sa = memdup_user(arg, sizeof(*sa));
3801 	if (IS_ERR(sa)) {
3802 		ret = PTR_ERR(sa);
3803 		goto drop_write;
3804 	}
3805 
3806 	if (!sa->qgroupid) {
3807 		ret = -EINVAL;
3808 		goto out;
3809 	}
3810 
3811 	trans = btrfs_join_transaction(root);
3812 	if (IS_ERR(trans)) {
3813 		ret = PTR_ERR(trans);
3814 		goto out;
3815 	}
3816 
3817 	if (sa->create) {
3818 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3819 	} else {
3820 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3821 	}
3822 
3823 	err = btrfs_end_transaction(trans);
3824 	if (err && !ret)
3825 		ret = err;
3826 
3827 out:
3828 	kfree(sa);
3829 drop_write:
3830 	mnt_drop_write_file(file);
3831 	return ret;
3832 }
3833 
3834 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3835 {
3836 	struct inode *inode = file_inode(file);
3837 	struct btrfs_root *root = BTRFS_I(inode)->root;
3838 	struct btrfs_ioctl_qgroup_limit_args *sa;
3839 	struct btrfs_trans_handle *trans;
3840 	int ret;
3841 	int err;
3842 	u64 qgroupid;
3843 
3844 	if (!capable(CAP_SYS_ADMIN))
3845 		return -EPERM;
3846 
3847 	ret = mnt_want_write_file(file);
3848 	if (ret)
3849 		return ret;
3850 
3851 	sa = memdup_user(arg, sizeof(*sa));
3852 	if (IS_ERR(sa)) {
3853 		ret = PTR_ERR(sa);
3854 		goto drop_write;
3855 	}
3856 
3857 	trans = btrfs_join_transaction(root);
3858 	if (IS_ERR(trans)) {
3859 		ret = PTR_ERR(trans);
3860 		goto out;
3861 	}
3862 
3863 	qgroupid = sa->qgroupid;
3864 	if (!qgroupid) {
3865 		/* take the current subvol as qgroup */
3866 		qgroupid = root->root_key.objectid;
3867 	}
3868 
3869 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3870 
3871 	err = btrfs_end_transaction(trans);
3872 	if (err && !ret)
3873 		ret = err;
3874 
3875 out:
3876 	kfree(sa);
3877 drop_write:
3878 	mnt_drop_write_file(file);
3879 	return ret;
3880 }
3881 
3882 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3883 {
3884 	struct inode *inode = file_inode(file);
3885 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3886 	struct btrfs_ioctl_quota_rescan_args *qsa;
3887 	int ret;
3888 
3889 	if (!capable(CAP_SYS_ADMIN))
3890 		return -EPERM;
3891 
3892 	ret = mnt_want_write_file(file);
3893 	if (ret)
3894 		return ret;
3895 
3896 	qsa = memdup_user(arg, sizeof(*qsa));
3897 	if (IS_ERR(qsa)) {
3898 		ret = PTR_ERR(qsa);
3899 		goto drop_write;
3900 	}
3901 
3902 	if (qsa->flags) {
3903 		ret = -EINVAL;
3904 		goto out;
3905 	}
3906 
3907 	ret = btrfs_qgroup_rescan(fs_info);
3908 
3909 out:
3910 	kfree(qsa);
3911 drop_write:
3912 	mnt_drop_write_file(file);
3913 	return ret;
3914 }
3915 
3916 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3917 						void __user *arg)
3918 {
3919 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3920 
3921 	if (!capable(CAP_SYS_ADMIN))
3922 		return -EPERM;
3923 
3924 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3925 		qsa.flags = 1;
3926 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3927 	}
3928 
3929 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3930 		return -EFAULT;
3931 
3932 	return 0;
3933 }
3934 
3935 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3936 						void __user *arg)
3937 {
3938 	if (!capable(CAP_SYS_ADMIN))
3939 		return -EPERM;
3940 
3941 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3942 }
3943 
3944 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3945 					    struct mnt_idmap *idmap,
3946 					    struct btrfs_ioctl_received_subvol_args *sa)
3947 {
3948 	struct inode *inode = file_inode(file);
3949 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3950 	struct btrfs_root *root = BTRFS_I(inode)->root;
3951 	struct btrfs_root_item *root_item = &root->root_item;
3952 	struct btrfs_trans_handle *trans;
3953 	struct timespec64 ct = current_time(inode);
3954 	int ret = 0;
3955 	int received_uuid_changed;
3956 
3957 	if (!inode_owner_or_capable(idmap, inode))
3958 		return -EPERM;
3959 
3960 	ret = mnt_want_write_file(file);
3961 	if (ret < 0)
3962 		return ret;
3963 
3964 	down_write(&fs_info->subvol_sem);
3965 
3966 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3967 		ret = -EINVAL;
3968 		goto out;
3969 	}
3970 
3971 	if (btrfs_root_readonly(root)) {
3972 		ret = -EROFS;
3973 		goto out;
3974 	}
3975 
3976 	/*
3977 	 * 1 - root item
3978 	 * 2 - uuid items (received uuid + subvol uuid)
3979 	 */
3980 	trans = btrfs_start_transaction(root, 3);
3981 	if (IS_ERR(trans)) {
3982 		ret = PTR_ERR(trans);
3983 		trans = NULL;
3984 		goto out;
3985 	}
3986 
3987 	sa->rtransid = trans->transid;
3988 	sa->rtime.sec = ct.tv_sec;
3989 	sa->rtime.nsec = ct.tv_nsec;
3990 
3991 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3992 				       BTRFS_UUID_SIZE);
3993 	if (received_uuid_changed &&
3994 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
3995 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3996 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3997 					  root->root_key.objectid);
3998 		if (ret && ret != -ENOENT) {
3999 		        btrfs_abort_transaction(trans, ret);
4000 		        btrfs_end_transaction(trans);
4001 		        goto out;
4002 		}
4003 	}
4004 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4005 	btrfs_set_root_stransid(root_item, sa->stransid);
4006 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4007 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4008 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4009 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4010 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4011 
4012 	ret = btrfs_update_root(trans, fs_info->tree_root,
4013 				&root->root_key, &root->root_item);
4014 	if (ret < 0) {
4015 		btrfs_end_transaction(trans);
4016 		goto out;
4017 	}
4018 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4019 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4020 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4021 					  root->root_key.objectid);
4022 		if (ret < 0 && ret != -EEXIST) {
4023 			btrfs_abort_transaction(trans, ret);
4024 			btrfs_end_transaction(trans);
4025 			goto out;
4026 		}
4027 	}
4028 	ret = btrfs_commit_transaction(trans);
4029 out:
4030 	up_write(&fs_info->subvol_sem);
4031 	mnt_drop_write_file(file);
4032 	return ret;
4033 }
4034 
4035 #ifdef CONFIG_64BIT
4036 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4037 						void __user *arg)
4038 {
4039 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4040 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4041 	int ret = 0;
4042 
4043 	args32 = memdup_user(arg, sizeof(*args32));
4044 	if (IS_ERR(args32))
4045 		return PTR_ERR(args32);
4046 
4047 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4048 	if (!args64) {
4049 		ret = -ENOMEM;
4050 		goto out;
4051 	}
4052 
4053 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4054 	args64->stransid = args32->stransid;
4055 	args64->rtransid = args32->rtransid;
4056 	args64->stime.sec = args32->stime.sec;
4057 	args64->stime.nsec = args32->stime.nsec;
4058 	args64->rtime.sec = args32->rtime.sec;
4059 	args64->rtime.nsec = args32->rtime.nsec;
4060 	args64->flags = args32->flags;
4061 
4062 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4063 	if (ret)
4064 		goto out;
4065 
4066 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4067 	args32->stransid = args64->stransid;
4068 	args32->rtransid = args64->rtransid;
4069 	args32->stime.sec = args64->stime.sec;
4070 	args32->stime.nsec = args64->stime.nsec;
4071 	args32->rtime.sec = args64->rtime.sec;
4072 	args32->rtime.nsec = args64->rtime.nsec;
4073 	args32->flags = args64->flags;
4074 
4075 	ret = copy_to_user(arg, args32, sizeof(*args32));
4076 	if (ret)
4077 		ret = -EFAULT;
4078 
4079 out:
4080 	kfree(args32);
4081 	kfree(args64);
4082 	return ret;
4083 }
4084 #endif
4085 
4086 static long btrfs_ioctl_set_received_subvol(struct file *file,
4087 					    void __user *arg)
4088 {
4089 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4090 	int ret = 0;
4091 
4092 	sa = memdup_user(arg, sizeof(*sa));
4093 	if (IS_ERR(sa))
4094 		return PTR_ERR(sa);
4095 
4096 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4097 
4098 	if (ret)
4099 		goto out;
4100 
4101 	ret = copy_to_user(arg, sa, sizeof(*sa));
4102 	if (ret)
4103 		ret = -EFAULT;
4104 
4105 out:
4106 	kfree(sa);
4107 	return ret;
4108 }
4109 
4110 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4111 					void __user *arg)
4112 {
4113 	size_t len;
4114 	int ret;
4115 	char label[BTRFS_LABEL_SIZE];
4116 
4117 	spin_lock(&fs_info->super_lock);
4118 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4119 	spin_unlock(&fs_info->super_lock);
4120 
4121 	len = strnlen(label, BTRFS_LABEL_SIZE);
4122 
4123 	if (len == BTRFS_LABEL_SIZE) {
4124 		btrfs_warn(fs_info,
4125 			   "label is too long, return the first %zu bytes",
4126 			   --len);
4127 	}
4128 
4129 	ret = copy_to_user(arg, label, len);
4130 
4131 	return ret ? -EFAULT : 0;
4132 }
4133 
4134 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4135 {
4136 	struct inode *inode = file_inode(file);
4137 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4138 	struct btrfs_root *root = BTRFS_I(inode)->root;
4139 	struct btrfs_super_block *super_block = fs_info->super_copy;
4140 	struct btrfs_trans_handle *trans;
4141 	char label[BTRFS_LABEL_SIZE];
4142 	int ret;
4143 
4144 	if (!capable(CAP_SYS_ADMIN))
4145 		return -EPERM;
4146 
4147 	if (copy_from_user(label, arg, sizeof(label)))
4148 		return -EFAULT;
4149 
4150 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4151 		btrfs_err(fs_info,
4152 			  "unable to set label with more than %d bytes",
4153 			  BTRFS_LABEL_SIZE - 1);
4154 		return -EINVAL;
4155 	}
4156 
4157 	ret = mnt_want_write_file(file);
4158 	if (ret)
4159 		return ret;
4160 
4161 	trans = btrfs_start_transaction(root, 0);
4162 	if (IS_ERR(trans)) {
4163 		ret = PTR_ERR(trans);
4164 		goto out_unlock;
4165 	}
4166 
4167 	spin_lock(&fs_info->super_lock);
4168 	strcpy(super_block->label, label);
4169 	spin_unlock(&fs_info->super_lock);
4170 	ret = btrfs_commit_transaction(trans);
4171 
4172 out_unlock:
4173 	mnt_drop_write_file(file);
4174 	return ret;
4175 }
4176 
4177 #define INIT_FEATURE_FLAGS(suffix) \
4178 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4179 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4180 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4181 
4182 int btrfs_ioctl_get_supported_features(void __user *arg)
4183 {
4184 	static const struct btrfs_ioctl_feature_flags features[3] = {
4185 		INIT_FEATURE_FLAGS(SUPP),
4186 		INIT_FEATURE_FLAGS(SAFE_SET),
4187 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4188 	};
4189 
4190 	if (copy_to_user(arg, &features, sizeof(features)))
4191 		return -EFAULT;
4192 
4193 	return 0;
4194 }
4195 
4196 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4197 					void __user *arg)
4198 {
4199 	struct btrfs_super_block *super_block = fs_info->super_copy;
4200 	struct btrfs_ioctl_feature_flags features;
4201 
4202 	features.compat_flags = btrfs_super_compat_flags(super_block);
4203 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4204 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4205 
4206 	if (copy_to_user(arg, &features, sizeof(features)))
4207 		return -EFAULT;
4208 
4209 	return 0;
4210 }
4211 
4212 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4213 			      enum btrfs_feature_set set,
4214 			      u64 change_mask, u64 flags, u64 supported_flags,
4215 			      u64 safe_set, u64 safe_clear)
4216 {
4217 	const char *type = btrfs_feature_set_name(set);
4218 	char *names;
4219 	u64 disallowed, unsupported;
4220 	u64 set_mask = flags & change_mask;
4221 	u64 clear_mask = ~flags & change_mask;
4222 
4223 	unsupported = set_mask & ~supported_flags;
4224 	if (unsupported) {
4225 		names = btrfs_printable_features(set, unsupported);
4226 		if (names) {
4227 			btrfs_warn(fs_info,
4228 				   "this kernel does not support the %s feature bit%s",
4229 				   names, strchr(names, ',') ? "s" : "");
4230 			kfree(names);
4231 		} else
4232 			btrfs_warn(fs_info,
4233 				   "this kernel does not support %s bits 0x%llx",
4234 				   type, unsupported);
4235 		return -EOPNOTSUPP;
4236 	}
4237 
4238 	disallowed = set_mask & ~safe_set;
4239 	if (disallowed) {
4240 		names = btrfs_printable_features(set, disallowed);
4241 		if (names) {
4242 			btrfs_warn(fs_info,
4243 				   "can't set the %s feature bit%s while mounted",
4244 				   names, strchr(names, ',') ? "s" : "");
4245 			kfree(names);
4246 		} else
4247 			btrfs_warn(fs_info,
4248 				   "can't set %s bits 0x%llx while mounted",
4249 				   type, disallowed);
4250 		return -EPERM;
4251 	}
4252 
4253 	disallowed = clear_mask & ~safe_clear;
4254 	if (disallowed) {
4255 		names = btrfs_printable_features(set, disallowed);
4256 		if (names) {
4257 			btrfs_warn(fs_info,
4258 				   "can't clear the %s feature bit%s while mounted",
4259 				   names, strchr(names, ',') ? "s" : "");
4260 			kfree(names);
4261 		} else
4262 			btrfs_warn(fs_info,
4263 				   "can't clear %s bits 0x%llx while mounted",
4264 				   type, disallowed);
4265 		return -EPERM;
4266 	}
4267 
4268 	return 0;
4269 }
4270 
4271 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4272 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4273 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4274 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4275 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4276 
4277 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4278 {
4279 	struct inode *inode = file_inode(file);
4280 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4281 	struct btrfs_root *root = BTRFS_I(inode)->root;
4282 	struct btrfs_super_block *super_block = fs_info->super_copy;
4283 	struct btrfs_ioctl_feature_flags flags[2];
4284 	struct btrfs_trans_handle *trans;
4285 	u64 newflags;
4286 	int ret;
4287 
4288 	if (!capable(CAP_SYS_ADMIN))
4289 		return -EPERM;
4290 
4291 	if (copy_from_user(flags, arg, sizeof(flags)))
4292 		return -EFAULT;
4293 
4294 	/* Nothing to do */
4295 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4296 	    !flags[0].incompat_flags)
4297 		return 0;
4298 
4299 	ret = check_feature(fs_info, flags[0].compat_flags,
4300 			    flags[1].compat_flags, COMPAT);
4301 	if (ret)
4302 		return ret;
4303 
4304 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4305 			    flags[1].compat_ro_flags, COMPAT_RO);
4306 	if (ret)
4307 		return ret;
4308 
4309 	ret = check_feature(fs_info, flags[0].incompat_flags,
4310 			    flags[1].incompat_flags, INCOMPAT);
4311 	if (ret)
4312 		return ret;
4313 
4314 	ret = mnt_want_write_file(file);
4315 	if (ret)
4316 		return ret;
4317 
4318 	trans = btrfs_start_transaction(root, 0);
4319 	if (IS_ERR(trans)) {
4320 		ret = PTR_ERR(trans);
4321 		goto out_drop_write;
4322 	}
4323 
4324 	spin_lock(&fs_info->super_lock);
4325 	newflags = btrfs_super_compat_flags(super_block);
4326 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4327 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4328 	btrfs_set_super_compat_flags(super_block, newflags);
4329 
4330 	newflags = btrfs_super_compat_ro_flags(super_block);
4331 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4332 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4333 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4334 
4335 	newflags = btrfs_super_incompat_flags(super_block);
4336 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4337 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4338 	btrfs_set_super_incompat_flags(super_block, newflags);
4339 	spin_unlock(&fs_info->super_lock);
4340 
4341 	ret = btrfs_commit_transaction(trans);
4342 out_drop_write:
4343 	mnt_drop_write_file(file);
4344 
4345 	return ret;
4346 }
4347 
4348 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4349 {
4350 	struct btrfs_ioctl_send_args *arg;
4351 	int ret;
4352 
4353 	if (compat) {
4354 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4355 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4356 
4357 		ret = copy_from_user(&args32, argp, sizeof(args32));
4358 		if (ret)
4359 			return -EFAULT;
4360 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4361 		if (!arg)
4362 			return -ENOMEM;
4363 		arg->send_fd = args32.send_fd;
4364 		arg->clone_sources_count = args32.clone_sources_count;
4365 		arg->clone_sources = compat_ptr(args32.clone_sources);
4366 		arg->parent_root = args32.parent_root;
4367 		arg->flags = args32.flags;
4368 		arg->version = args32.version;
4369 		memcpy(arg->reserved, args32.reserved,
4370 		       sizeof(args32.reserved));
4371 #else
4372 		return -ENOTTY;
4373 #endif
4374 	} else {
4375 		arg = memdup_user(argp, sizeof(*arg));
4376 		if (IS_ERR(arg))
4377 			return PTR_ERR(arg);
4378 	}
4379 	ret = btrfs_ioctl_send(inode, arg);
4380 	kfree(arg);
4381 	return ret;
4382 }
4383 
4384 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4385 				    bool compat)
4386 {
4387 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4388 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4389 					     flags);
4390 	size_t copy_end;
4391 	struct iovec iovstack[UIO_FASTIOV];
4392 	struct iovec *iov = iovstack;
4393 	struct iov_iter iter;
4394 	loff_t pos;
4395 	struct kiocb kiocb;
4396 	ssize_t ret;
4397 
4398 	if (!capable(CAP_SYS_ADMIN)) {
4399 		ret = -EPERM;
4400 		goto out_acct;
4401 	}
4402 
4403 	if (compat) {
4404 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4405 		struct btrfs_ioctl_encoded_io_args_32 args32;
4406 
4407 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4408 				       flags);
4409 		if (copy_from_user(&args32, argp, copy_end)) {
4410 			ret = -EFAULT;
4411 			goto out_acct;
4412 		}
4413 		args.iov = compat_ptr(args32.iov);
4414 		args.iovcnt = args32.iovcnt;
4415 		args.offset = args32.offset;
4416 		args.flags = args32.flags;
4417 #else
4418 		return -ENOTTY;
4419 #endif
4420 	} else {
4421 		copy_end = copy_end_kernel;
4422 		if (copy_from_user(&args, argp, copy_end)) {
4423 			ret = -EFAULT;
4424 			goto out_acct;
4425 		}
4426 	}
4427 	if (args.flags != 0) {
4428 		ret = -EINVAL;
4429 		goto out_acct;
4430 	}
4431 
4432 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4433 			   &iov, &iter);
4434 	if (ret < 0)
4435 		goto out_acct;
4436 
4437 	if (iov_iter_count(&iter) == 0) {
4438 		ret = 0;
4439 		goto out_iov;
4440 	}
4441 	pos = args.offset;
4442 	ret = rw_verify_area(READ, file, &pos, args.len);
4443 	if (ret < 0)
4444 		goto out_iov;
4445 
4446 	init_sync_kiocb(&kiocb, file);
4447 	kiocb.ki_pos = pos;
4448 
4449 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4450 	if (ret >= 0) {
4451 		fsnotify_access(file);
4452 		if (copy_to_user(argp + copy_end,
4453 				 (char *)&args + copy_end_kernel,
4454 				 sizeof(args) - copy_end_kernel))
4455 			ret = -EFAULT;
4456 	}
4457 
4458 out_iov:
4459 	kfree(iov);
4460 out_acct:
4461 	if (ret > 0)
4462 		add_rchar(current, ret);
4463 	inc_syscr(current);
4464 	return ret;
4465 }
4466 
4467 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4468 {
4469 	struct btrfs_ioctl_encoded_io_args args;
4470 	struct iovec iovstack[UIO_FASTIOV];
4471 	struct iovec *iov = iovstack;
4472 	struct iov_iter iter;
4473 	loff_t pos;
4474 	struct kiocb kiocb;
4475 	ssize_t ret;
4476 
4477 	if (!capable(CAP_SYS_ADMIN)) {
4478 		ret = -EPERM;
4479 		goto out_acct;
4480 	}
4481 
4482 	if (!(file->f_mode & FMODE_WRITE)) {
4483 		ret = -EBADF;
4484 		goto out_acct;
4485 	}
4486 
4487 	if (compat) {
4488 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4489 		struct btrfs_ioctl_encoded_io_args_32 args32;
4490 
4491 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4492 			ret = -EFAULT;
4493 			goto out_acct;
4494 		}
4495 		args.iov = compat_ptr(args32.iov);
4496 		args.iovcnt = args32.iovcnt;
4497 		args.offset = args32.offset;
4498 		args.flags = args32.flags;
4499 		args.len = args32.len;
4500 		args.unencoded_len = args32.unencoded_len;
4501 		args.unencoded_offset = args32.unencoded_offset;
4502 		args.compression = args32.compression;
4503 		args.encryption = args32.encryption;
4504 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4505 #else
4506 		return -ENOTTY;
4507 #endif
4508 	} else {
4509 		if (copy_from_user(&args, argp, sizeof(args))) {
4510 			ret = -EFAULT;
4511 			goto out_acct;
4512 		}
4513 	}
4514 
4515 	ret = -EINVAL;
4516 	if (args.flags != 0)
4517 		goto out_acct;
4518 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4519 		goto out_acct;
4520 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4521 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4522 		goto out_acct;
4523 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4524 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4525 		goto out_acct;
4526 	if (args.unencoded_offset > args.unencoded_len)
4527 		goto out_acct;
4528 	if (args.len > args.unencoded_len - args.unencoded_offset)
4529 		goto out_acct;
4530 
4531 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4532 			   &iov, &iter);
4533 	if (ret < 0)
4534 		goto out_acct;
4535 
4536 	if (iov_iter_count(&iter) == 0) {
4537 		ret = 0;
4538 		goto out_iov;
4539 	}
4540 	pos = args.offset;
4541 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4542 	if (ret < 0)
4543 		goto out_iov;
4544 
4545 	init_sync_kiocb(&kiocb, file);
4546 	ret = kiocb_set_rw_flags(&kiocb, 0);
4547 	if (ret)
4548 		goto out_iov;
4549 	kiocb.ki_pos = pos;
4550 
4551 	file_start_write(file);
4552 
4553 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4554 	if (ret > 0)
4555 		fsnotify_modify(file);
4556 
4557 	file_end_write(file);
4558 out_iov:
4559 	kfree(iov);
4560 out_acct:
4561 	if (ret > 0)
4562 		add_wchar(current, ret);
4563 	inc_syscw(current);
4564 	return ret;
4565 }
4566 
4567 long btrfs_ioctl(struct file *file, unsigned int
4568 		cmd, unsigned long arg)
4569 {
4570 	struct inode *inode = file_inode(file);
4571 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4572 	struct btrfs_root *root = BTRFS_I(inode)->root;
4573 	void __user *argp = (void __user *)arg;
4574 
4575 	switch (cmd) {
4576 	case FS_IOC_GETVERSION:
4577 		return btrfs_ioctl_getversion(inode, argp);
4578 	case FS_IOC_GETFSLABEL:
4579 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4580 	case FS_IOC_SETFSLABEL:
4581 		return btrfs_ioctl_set_fslabel(file, argp);
4582 	case FITRIM:
4583 		return btrfs_ioctl_fitrim(fs_info, argp);
4584 	case BTRFS_IOC_SNAP_CREATE:
4585 		return btrfs_ioctl_snap_create(file, argp, 0);
4586 	case BTRFS_IOC_SNAP_CREATE_V2:
4587 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4588 	case BTRFS_IOC_SUBVOL_CREATE:
4589 		return btrfs_ioctl_snap_create(file, argp, 1);
4590 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4591 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4592 	case BTRFS_IOC_SNAP_DESTROY:
4593 		return btrfs_ioctl_snap_destroy(file, argp, false);
4594 	case BTRFS_IOC_SNAP_DESTROY_V2:
4595 		return btrfs_ioctl_snap_destroy(file, argp, true);
4596 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4597 		return btrfs_ioctl_subvol_getflags(inode, argp);
4598 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4599 		return btrfs_ioctl_subvol_setflags(file, argp);
4600 	case BTRFS_IOC_DEFAULT_SUBVOL:
4601 		return btrfs_ioctl_default_subvol(file, argp);
4602 	case BTRFS_IOC_DEFRAG:
4603 		return btrfs_ioctl_defrag(file, NULL);
4604 	case BTRFS_IOC_DEFRAG_RANGE:
4605 		return btrfs_ioctl_defrag(file, argp);
4606 	case BTRFS_IOC_RESIZE:
4607 		return btrfs_ioctl_resize(file, argp);
4608 	case BTRFS_IOC_ADD_DEV:
4609 		return btrfs_ioctl_add_dev(fs_info, argp);
4610 	case BTRFS_IOC_RM_DEV:
4611 		return btrfs_ioctl_rm_dev(file, argp);
4612 	case BTRFS_IOC_RM_DEV_V2:
4613 		return btrfs_ioctl_rm_dev_v2(file, argp);
4614 	case BTRFS_IOC_FS_INFO:
4615 		return btrfs_ioctl_fs_info(fs_info, argp);
4616 	case BTRFS_IOC_DEV_INFO:
4617 		return btrfs_ioctl_dev_info(fs_info, argp);
4618 	case BTRFS_IOC_TREE_SEARCH:
4619 		return btrfs_ioctl_tree_search(inode, argp);
4620 	case BTRFS_IOC_TREE_SEARCH_V2:
4621 		return btrfs_ioctl_tree_search_v2(inode, argp);
4622 	case BTRFS_IOC_INO_LOOKUP:
4623 		return btrfs_ioctl_ino_lookup(root, argp);
4624 	case BTRFS_IOC_INO_PATHS:
4625 		return btrfs_ioctl_ino_to_path(root, argp);
4626 	case BTRFS_IOC_LOGICAL_INO:
4627 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4628 	case BTRFS_IOC_LOGICAL_INO_V2:
4629 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4630 	case BTRFS_IOC_SPACE_INFO:
4631 		return btrfs_ioctl_space_info(fs_info, argp);
4632 	case BTRFS_IOC_SYNC: {
4633 		int ret;
4634 
4635 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4636 		if (ret)
4637 			return ret;
4638 		ret = btrfs_sync_fs(inode->i_sb, 1);
4639 		/*
4640 		 * The transaction thread may want to do more work,
4641 		 * namely it pokes the cleaner kthread that will start
4642 		 * processing uncleaned subvols.
4643 		 */
4644 		wake_up_process(fs_info->transaction_kthread);
4645 		return ret;
4646 	}
4647 	case BTRFS_IOC_START_SYNC:
4648 		return btrfs_ioctl_start_sync(root, argp);
4649 	case BTRFS_IOC_WAIT_SYNC:
4650 		return btrfs_ioctl_wait_sync(fs_info, argp);
4651 	case BTRFS_IOC_SCRUB:
4652 		return btrfs_ioctl_scrub(file, argp);
4653 	case BTRFS_IOC_SCRUB_CANCEL:
4654 		return btrfs_ioctl_scrub_cancel(fs_info);
4655 	case BTRFS_IOC_SCRUB_PROGRESS:
4656 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4657 	case BTRFS_IOC_BALANCE_V2:
4658 		return btrfs_ioctl_balance(file, argp);
4659 	case BTRFS_IOC_BALANCE_CTL:
4660 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4661 	case BTRFS_IOC_BALANCE_PROGRESS:
4662 		return btrfs_ioctl_balance_progress(fs_info, argp);
4663 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4664 		return btrfs_ioctl_set_received_subvol(file, argp);
4665 #ifdef CONFIG_64BIT
4666 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4667 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4668 #endif
4669 	case BTRFS_IOC_SEND:
4670 		return _btrfs_ioctl_send(inode, argp, false);
4671 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4672 	case BTRFS_IOC_SEND_32:
4673 		return _btrfs_ioctl_send(inode, argp, true);
4674 #endif
4675 	case BTRFS_IOC_GET_DEV_STATS:
4676 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4677 	case BTRFS_IOC_QUOTA_CTL:
4678 		return btrfs_ioctl_quota_ctl(file, argp);
4679 	case BTRFS_IOC_QGROUP_ASSIGN:
4680 		return btrfs_ioctl_qgroup_assign(file, argp);
4681 	case BTRFS_IOC_QGROUP_CREATE:
4682 		return btrfs_ioctl_qgroup_create(file, argp);
4683 	case BTRFS_IOC_QGROUP_LIMIT:
4684 		return btrfs_ioctl_qgroup_limit(file, argp);
4685 	case BTRFS_IOC_QUOTA_RESCAN:
4686 		return btrfs_ioctl_quota_rescan(file, argp);
4687 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4688 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4689 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4690 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4691 	case BTRFS_IOC_DEV_REPLACE:
4692 		return btrfs_ioctl_dev_replace(fs_info, argp);
4693 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4694 		return btrfs_ioctl_get_supported_features(argp);
4695 	case BTRFS_IOC_GET_FEATURES:
4696 		return btrfs_ioctl_get_features(fs_info, argp);
4697 	case BTRFS_IOC_SET_FEATURES:
4698 		return btrfs_ioctl_set_features(file, argp);
4699 	case BTRFS_IOC_GET_SUBVOL_INFO:
4700 		return btrfs_ioctl_get_subvol_info(inode, argp);
4701 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4702 		return btrfs_ioctl_get_subvol_rootref(root, argp);
4703 	case BTRFS_IOC_INO_LOOKUP_USER:
4704 		return btrfs_ioctl_ino_lookup_user(file, argp);
4705 	case FS_IOC_ENABLE_VERITY:
4706 		return fsverity_ioctl_enable(file, (const void __user *)argp);
4707 	case FS_IOC_MEASURE_VERITY:
4708 		return fsverity_ioctl_measure(file, argp);
4709 	case BTRFS_IOC_ENCODED_READ:
4710 		return btrfs_ioctl_encoded_read(file, argp, false);
4711 	case BTRFS_IOC_ENCODED_WRITE:
4712 		return btrfs_ioctl_encoded_write(file, argp, false);
4713 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4714 	case BTRFS_IOC_ENCODED_READ_32:
4715 		return btrfs_ioctl_encoded_read(file, argp, true);
4716 	case BTRFS_IOC_ENCODED_WRITE_32:
4717 		return btrfs_ioctl_encoded_write(file, argp, true);
4718 #endif
4719 	}
4720 
4721 	return -ENOTTY;
4722 }
4723 
4724 #ifdef CONFIG_COMPAT
4725 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4726 {
4727 	/*
4728 	 * These all access 32-bit values anyway so no further
4729 	 * handling is necessary.
4730 	 */
4731 	switch (cmd) {
4732 	case FS_IOC32_GETVERSION:
4733 		cmd = FS_IOC_GETVERSION;
4734 		break;
4735 	}
4736 
4737 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4738 }
4739 #endif
4740