xref: /linux/fs/btrfs/ioctl.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63 
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66  * structures are incorrect, as the timespec structure from userspace
67  * is 4 bytes too small. We define these alternatives here to teach
68  * the kernel about the 32-bit struct packing.
69  */
70 struct btrfs_ioctl_timespec_32 {
71 	__u64 sec;
72 	__u32 nsec;
73 } __attribute__ ((__packed__));
74 
75 struct btrfs_ioctl_received_subvol_args_32 {
76 	char	uuid[BTRFS_UUID_SIZE];	/* in */
77 	__u64	stransid;		/* in */
78 	__u64	rtransid;		/* out */
79 	struct btrfs_ioctl_timespec_32 stime; /* in */
80 	struct btrfs_ioctl_timespec_32 rtime; /* out */
81 	__u64	flags;			/* in */
82 	__u64	reserved[16];		/* in */
83 } __attribute__ ((__packed__));
84 
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 				struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88 
89 
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 		       int no_time_update);
93 
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 	if (S_ISDIR(mode))
98 		return flags;
99 	else if (S_ISREG(mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107  */
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 	unsigned int iflags = 0;
111 
112 	if (flags & BTRFS_INODE_SYNC)
113 		iflags |= FS_SYNC_FL;
114 	if (flags & BTRFS_INODE_IMMUTABLE)
115 		iflags |= FS_IMMUTABLE_FL;
116 	if (flags & BTRFS_INODE_APPEND)
117 		iflags |= FS_APPEND_FL;
118 	if (flags & BTRFS_INODE_NODUMP)
119 		iflags |= FS_NODUMP_FL;
120 	if (flags & BTRFS_INODE_NOATIME)
121 		iflags |= FS_NOATIME_FL;
122 	if (flags & BTRFS_INODE_DIRSYNC)
123 		iflags |= FS_DIRSYNC_FL;
124 	if (flags & BTRFS_INODE_NODATACOW)
125 		iflags |= FS_NOCOW_FL;
126 
127 	if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 	else if (flags & BTRFS_INODE_COMPRESS)
130 		iflags |= FS_COMPR_FL;
131 
132 	return iflags;
133 }
134 
135 /*
136  * Update inode->i_flags based on the btrfs internal flags.
137  */
138 void btrfs_update_iflags(struct inode *inode)
139 {
140 	struct btrfs_inode *ip = BTRFS_I(inode);
141 	unsigned int new_fl = 0;
142 
143 	if (ip->flags & BTRFS_INODE_SYNC)
144 		new_fl |= S_SYNC;
145 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 		new_fl |= S_IMMUTABLE;
147 	if (ip->flags & BTRFS_INODE_APPEND)
148 		new_fl |= S_APPEND;
149 	if (ip->flags & BTRFS_INODE_NOATIME)
150 		new_fl |= S_NOATIME;
151 	if (ip->flags & BTRFS_INODE_DIRSYNC)
152 		new_fl |= S_DIRSYNC;
153 
154 	set_mask_bits(&inode->i_flags,
155 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 		      new_fl);
157 }
158 
159 /*
160  * Inherit flags from the parent inode.
161  *
162  * Currently only the compression flags and the cow flags are inherited.
163  */
164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
165 {
166 	unsigned int flags;
167 
168 	if (!dir)
169 		return;
170 
171 	flags = BTRFS_I(dir)->flags;
172 
173 	if (flags & BTRFS_INODE_NOCOMPRESS) {
174 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 	} else if (flags & BTRFS_INODE_COMPRESS) {
177 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
179 	}
180 
181 	if (flags & BTRFS_INODE_NODATACOW) {
182 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 		if (S_ISREG(inode->i_mode))
184 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
185 	}
186 
187 	btrfs_update_iflags(inode);
188 }
189 
190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191 {
192 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194 
195 	if (copy_to_user(arg, &flags, sizeof(flags)))
196 		return -EFAULT;
197 	return 0;
198 }
199 
200 static int check_flags(unsigned int flags)
201 {
202 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 		      FS_NOATIME_FL | FS_NODUMP_FL | \
204 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205 		      FS_NOCOMP_FL | FS_COMPR_FL |
206 		      FS_NOCOW_FL))
207 		return -EOPNOTSUPP;
208 
209 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216 {
217 	struct inode *inode = file_inode(file);
218 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 	struct btrfs_inode *ip = BTRFS_I(inode);
220 	struct btrfs_root *root = ip->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int flags, oldflags;
223 	int ret;
224 	u64 ip_oldflags;
225 	unsigned int i_oldflags;
226 	umode_t mode;
227 
228 	if (!inode_owner_or_capable(inode))
229 		return -EPERM;
230 
231 	if (btrfs_root_readonly(root))
232 		return -EROFS;
233 
234 	if (copy_from_user(&flags, arg, sizeof(flags)))
235 		return -EFAULT;
236 
237 	ret = check_flags(flags);
238 	if (ret)
239 		return ret;
240 
241 	ret = mnt_want_write_file(file);
242 	if (ret)
243 		return ret;
244 
245 	inode_lock(inode);
246 
247 	ip_oldflags = ip->flags;
248 	i_oldflags = inode->i_flags;
249 	mode = inode->i_mode;
250 
251 	flags = btrfs_mask_flags(inode->i_mode, flags);
252 	oldflags = btrfs_flags_to_ioctl(ip->flags);
253 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 		if (!capable(CAP_LINUX_IMMUTABLE)) {
255 			ret = -EPERM;
256 			goto out_unlock;
257 		}
258 	}
259 
260 	if (flags & FS_SYNC_FL)
261 		ip->flags |= BTRFS_INODE_SYNC;
262 	else
263 		ip->flags &= ~BTRFS_INODE_SYNC;
264 	if (flags & FS_IMMUTABLE_FL)
265 		ip->flags |= BTRFS_INODE_IMMUTABLE;
266 	else
267 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 	if (flags & FS_APPEND_FL)
269 		ip->flags |= BTRFS_INODE_APPEND;
270 	else
271 		ip->flags &= ~BTRFS_INODE_APPEND;
272 	if (flags & FS_NODUMP_FL)
273 		ip->flags |= BTRFS_INODE_NODUMP;
274 	else
275 		ip->flags &= ~BTRFS_INODE_NODUMP;
276 	if (flags & FS_NOATIME_FL)
277 		ip->flags |= BTRFS_INODE_NOATIME;
278 	else
279 		ip->flags &= ~BTRFS_INODE_NOATIME;
280 	if (flags & FS_DIRSYNC_FL)
281 		ip->flags |= BTRFS_INODE_DIRSYNC;
282 	else
283 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 	if (flags & FS_NOCOW_FL) {
285 		if (S_ISREG(mode)) {
286 			/*
287 			 * It's safe to turn csums off here, no extents exist.
288 			 * Otherwise we want the flag to reflect the real COW
289 			 * status of the file and will not set it.
290 			 */
291 			if (inode->i_size == 0)
292 				ip->flags |= BTRFS_INODE_NODATACOW
293 					   | BTRFS_INODE_NODATASUM;
294 		} else {
295 			ip->flags |= BTRFS_INODE_NODATACOW;
296 		}
297 	} else {
298 		/*
299 		 * Revert back under same assumptions as above
300 		 */
301 		if (S_ISREG(mode)) {
302 			if (inode->i_size == 0)
303 				ip->flags &= ~(BTRFS_INODE_NODATACOW
304 				             | BTRFS_INODE_NODATASUM);
305 		} else {
306 			ip->flags &= ~BTRFS_INODE_NODATACOW;
307 		}
308 	}
309 
310 	/*
311 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 	 * flag may be changed automatically if compression code won't make
313 	 * things smaller.
314 	 */
315 	if (flags & FS_NOCOMP_FL) {
316 		ip->flags &= ~BTRFS_INODE_COMPRESS;
317 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
318 
319 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 		if (ret && ret != -ENODATA)
321 			goto out_drop;
322 	} else if (flags & FS_COMPR_FL) {
323 		const char *comp;
324 
325 		ip->flags |= BTRFS_INODE_COMPRESS;
326 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327 
328 		if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 			comp = "lzo";
330 		else
331 			comp = "zlib";
332 		ret = btrfs_set_prop(inode, "btrfs.compression",
333 				     comp, strlen(comp), 0);
334 		if (ret)
335 			goto out_drop;
336 
337 	} else {
338 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 		if (ret && ret != -ENODATA)
340 			goto out_drop;
341 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 	}
343 
344 	trans = btrfs_start_transaction(root, 1);
345 	if (IS_ERR(trans)) {
346 		ret = PTR_ERR(trans);
347 		goto out_drop;
348 	}
349 
350 	btrfs_update_iflags(inode);
351 	inode_inc_iversion(inode);
352 	inode->i_ctime = current_time(inode);
353 	ret = btrfs_update_inode(trans, root, inode);
354 
355 	btrfs_end_transaction(trans);
356  out_drop:
357 	if (ret) {
358 		ip->flags = ip_oldflags;
359 		inode->i_flags = i_oldflags;
360 	}
361 
362  out_unlock:
363 	inode_unlock(inode);
364 	mnt_drop_write_file(file);
365 	return ret;
366 }
367 
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 	struct inode *inode = file_inode(file);
371 
372 	return put_user(inode->i_generation, arg);
373 }
374 
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 	struct inode *inode = file_inode(file);
378 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
379 	struct btrfs_device *device;
380 	struct request_queue *q;
381 	struct fstrim_range range;
382 	u64 minlen = ULLONG_MAX;
383 	u64 num_devices = 0;
384 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
385 	int ret;
386 
387 	if (!capable(CAP_SYS_ADMIN))
388 		return -EPERM;
389 
390 	rcu_read_lock();
391 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
392 				dev_list) {
393 		if (!device->bdev)
394 			continue;
395 		q = bdev_get_queue(device->bdev);
396 		if (blk_queue_discard(q)) {
397 			num_devices++;
398 			minlen = min_t(u64, q->limits.discard_granularity,
399 				     minlen);
400 		}
401 	}
402 	rcu_read_unlock();
403 
404 	if (!num_devices)
405 		return -EOPNOTSUPP;
406 	if (copy_from_user(&range, arg, sizeof(range)))
407 		return -EFAULT;
408 	if (range.start > total_bytes ||
409 	    range.len < fs_info->sb->s_blocksize)
410 		return -EINVAL;
411 
412 	range.len = min(range.len, total_bytes - range.start);
413 	range.minlen = max(range.minlen, minlen);
414 	ret = btrfs_trim_fs(fs_info, &range);
415 	if (ret < 0)
416 		return ret;
417 
418 	if (copy_to_user(arg, &range, sizeof(range)))
419 		return -EFAULT;
420 
421 	return 0;
422 }
423 
424 int btrfs_is_empty_uuid(u8 *uuid)
425 {
426 	int i;
427 
428 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
429 		if (uuid[i])
430 			return 0;
431 	}
432 	return 1;
433 }
434 
435 static noinline int create_subvol(struct inode *dir,
436 				  struct dentry *dentry,
437 				  const char *name, int namelen,
438 				  u64 *async_transid,
439 				  struct btrfs_qgroup_inherit *inherit)
440 {
441 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
442 	struct btrfs_trans_handle *trans;
443 	struct btrfs_key key;
444 	struct btrfs_root_item *root_item;
445 	struct btrfs_inode_item *inode_item;
446 	struct extent_buffer *leaf;
447 	struct btrfs_root *root = BTRFS_I(dir)->root;
448 	struct btrfs_root *new_root;
449 	struct btrfs_block_rsv block_rsv;
450 	struct timespec cur_time = current_time(dir);
451 	struct inode *inode;
452 	int ret;
453 	int err;
454 	u64 objectid;
455 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
456 	u64 index = 0;
457 	u64 qgroup_reserved;
458 	uuid_le new_uuid;
459 
460 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
461 	if (!root_item)
462 		return -ENOMEM;
463 
464 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
465 	if (ret)
466 		goto fail_free;
467 
468 	/*
469 	 * Don't create subvolume whose level is not zero. Or qgroup will be
470 	 * screwed up since it assumes subvolume qgroup's level to be 0.
471 	 */
472 	if (btrfs_qgroup_level(objectid)) {
473 		ret = -ENOSPC;
474 		goto fail_free;
475 	}
476 
477 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
478 	/*
479 	 * The same as the snapshot creation, please see the comment
480 	 * of create_snapshot().
481 	 */
482 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
483 					       8, &qgroup_reserved, false);
484 	if (ret)
485 		goto fail_free;
486 
487 	trans = btrfs_start_transaction(root, 0);
488 	if (IS_ERR(trans)) {
489 		ret = PTR_ERR(trans);
490 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
491 		goto fail_free;
492 	}
493 	trans->block_rsv = &block_rsv;
494 	trans->bytes_reserved = block_rsv.size;
495 
496 	ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
497 	if (ret)
498 		goto fail;
499 
500 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
501 	if (IS_ERR(leaf)) {
502 		ret = PTR_ERR(leaf);
503 		goto fail;
504 	}
505 
506 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
507 	btrfs_set_header_bytenr(leaf, leaf->start);
508 	btrfs_set_header_generation(leaf, trans->transid);
509 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
510 	btrfs_set_header_owner(leaf, objectid);
511 
512 	write_extent_buffer_fsid(leaf, fs_info->fsid);
513 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
514 	btrfs_mark_buffer_dirty(leaf);
515 
516 	inode_item = &root_item->inode;
517 	btrfs_set_stack_inode_generation(inode_item, 1);
518 	btrfs_set_stack_inode_size(inode_item, 3);
519 	btrfs_set_stack_inode_nlink(inode_item, 1);
520 	btrfs_set_stack_inode_nbytes(inode_item,
521 				     fs_info->nodesize);
522 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
523 
524 	btrfs_set_root_flags(root_item, 0);
525 	btrfs_set_root_limit(root_item, 0);
526 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
527 
528 	btrfs_set_root_bytenr(root_item, leaf->start);
529 	btrfs_set_root_generation(root_item, trans->transid);
530 	btrfs_set_root_level(root_item, 0);
531 	btrfs_set_root_refs(root_item, 1);
532 	btrfs_set_root_used(root_item, leaf->len);
533 	btrfs_set_root_last_snapshot(root_item, 0);
534 
535 	btrfs_set_root_generation_v2(root_item,
536 			btrfs_root_generation(root_item));
537 	uuid_le_gen(&new_uuid);
538 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
539 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
540 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
541 	root_item->ctime = root_item->otime;
542 	btrfs_set_root_ctransid(root_item, trans->transid);
543 	btrfs_set_root_otransid(root_item, trans->transid);
544 
545 	btrfs_tree_unlock(leaf);
546 	free_extent_buffer(leaf);
547 	leaf = NULL;
548 
549 	btrfs_set_root_dirid(root_item, new_dirid);
550 
551 	key.objectid = objectid;
552 	key.offset = 0;
553 	key.type = BTRFS_ROOT_ITEM_KEY;
554 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
555 				root_item);
556 	if (ret)
557 		goto fail;
558 
559 	key.offset = (u64)-1;
560 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
561 	if (IS_ERR(new_root)) {
562 		ret = PTR_ERR(new_root);
563 		btrfs_abort_transaction(trans, ret);
564 		goto fail;
565 	}
566 
567 	btrfs_record_root_in_trans(trans, new_root);
568 
569 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
570 	if (ret) {
571 		/* We potentially lose an unused inode item here */
572 		btrfs_abort_transaction(trans, ret);
573 		goto fail;
574 	}
575 
576 	mutex_lock(&new_root->objectid_mutex);
577 	new_root->highest_objectid = new_dirid;
578 	mutex_unlock(&new_root->objectid_mutex);
579 
580 	/*
581 	 * insert the directory item
582 	 */
583 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
584 	if (ret) {
585 		btrfs_abort_transaction(trans, ret);
586 		goto fail;
587 	}
588 
589 	ret = btrfs_insert_dir_item(trans, root,
590 				    name, namelen, BTRFS_I(dir), &key,
591 				    BTRFS_FT_DIR, index);
592 	if (ret) {
593 		btrfs_abort_transaction(trans, ret);
594 		goto fail;
595 	}
596 
597 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
598 	ret = btrfs_update_inode(trans, root, dir);
599 	BUG_ON(ret);
600 
601 	ret = btrfs_add_root_ref(trans, fs_info,
602 				 objectid, root->root_key.objectid,
603 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
604 	BUG_ON(ret);
605 
606 	ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
607 				  BTRFS_UUID_KEY_SUBVOL, objectid);
608 	if (ret)
609 		btrfs_abort_transaction(trans, ret);
610 
611 fail:
612 	kfree(root_item);
613 	trans->block_rsv = NULL;
614 	trans->bytes_reserved = 0;
615 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
616 
617 	if (async_transid) {
618 		*async_transid = trans->transid;
619 		err = btrfs_commit_transaction_async(trans, 1);
620 		if (err)
621 			err = btrfs_commit_transaction(trans);
622 	} else {
623 		err = btrfs_commit_transaction(trans);
624 	}
625 	if (err && !ret)
626 		ret = err;
627 
628 	if (!ret) {
629 		inode = btrfs_lookup_dentry(dir, dentry);
630 		if (IS_ERR(inode))
631 			return PTR_ERR(inode);
632 		d_instantiate(dentry, inode);
633 	}
634 	return ret;
635 
636 fail_free:
637 	kfree(root_item);
638 	return ret;
639 }
640 
641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
642 {
643 	s64 writers;
644 	DEFINE_WAIT(wait);
645 
646 	do {
647 		prepare_to_wait(&root->subv_writers->wait, &wait,
648 				TASK_UNINTERRUPTIBLE);
649 
650 		writers = percpu_counter_sum(&root->subv_writers->counter);
651 		if (writers)
652 			schedule();
653 
654 		finish_wait(&root->subv_writers->wait, &wait);
655 	} while (writers);
656 }
657 
658 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
659 			   struct dentry *dentry,
660 			   u64 *async_transid, bool readonly,
661 			   struct btrfs_qgroup_inherit *inherit)
662 {
663 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
664 	struct inode *inode;
665 	struct btrfs_pending_snapshot *pending_snapshot;
666 	struct btrfs_trans_handle *trans;
667 	int ret;
668 
669 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
670 		return -EINVAL;
671 
672 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
673 	if (!pending_snapshot)
674 		return -ENOMEM;
675 
676 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
677 			GFP_KERNEL);
678 	pending_snapshot->path = btrfs_alloc_path();
679 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
680 		ret = -ENOMEM;
681 		goto free_pending;
682 	}
683 
684 	atomic_inc(&root->will_be_snapshoted);
685 	smp_mb__after_atomic();
686 	btrfs_wait_for_no_snapshoting_writes(root);
687 
688 	ret = btrfs_start_delalloc_inodes(root, 0);
689 	if (ret)
690 		goto dec_and_free;
691 
692 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
693 
694 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
695 			     BTRFS_BLOCK_RSV_TEMP);
696 	/*
697 	 * 1 - parent dir inode
698 	 * 2 - dir entries
699 	 * 1 - root item
700 	 * 2 - root ref/backref
701 	 * 1 - root of snapshot
702 	 * 1 - UUID item
703 	 */
704 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
705 					&pending_snapshot->block_rsv, 8,
706 					&pending_snapshot->qgroup_reserved,
707 					false);
708 	if (ret)
709 		goto dec_and_free;
710 
711 	pending_snapshot->dentry = dentry;
712 	pending_snapshot->root = root;
713 	pending_snapshot->readonly = readonly;
714 	pending_snapshot->dir = dir;
715 	pending_snapshot->inherit = inherit;
716 
717 	trans = btrfs_start_transaction(root, 0);
718 	if (IS_ERR(trans)) {
719 		ret = PTR_ERR(trans);
720 		goto fail;
721 	}
722 
723 	spin_lock(&fs_info->trans_lock);
724 	list_add(&pending_snapshot->list,
725 		 &trans->transaction->pending_snapshots);
726 	spin_unlock(&fs_info->trans_lock);
727 	if (async_transid) {
728 		*async_transid = trans->transid;
729 		ret = btrfs_commit_transaction_async(trans, 1);
730 		if (ret)
731 			ret = btrfs_commit_transaction(trans);
732 	} else {
733 		ret = btrfs_commit_transaction(trans);
734 	}
735 	if (ret)
736 		goto fail;
737 
738 	ret = pending_snapshot->error;
739 	if (ret)
740 		goto fail;
741 
742 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
743 	if (ret)
744 		goto fail;
745 
746 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
747 	if (IS_ERR(inode)) {
748 		ret = PTR_ERR(inode);
749 		goto fail;
750 	}
751 
752 	d_instantiate(dentry, inode);
753 	ret = 0;
754 fail:
755 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
756 dec_and_free:
757 	if (atomic_dec_and_test(&root->will_be_snapshoted))
758 		wake_up_atomic_t(&root->will_be_snapshoted);
759 free_pending:
760 	kfree(pending_snapshot->root_item);
761 	btrfs_free_path(pending_snapshot->path);
762 	kfree(pending_snapshot);
763 
764 	return ret;
765 }
766 
767 /*  copy of may_delete in fs/namei.c()
768  *	Check whether we can remove a link victim from directory dir, check
769  *  whether the type of victim is right.
770  *  1. We can't do it if dir is read-only (done in permission())
771  *  2. We should have write and exec permissions on dir
772  *  3. We can't remove anything from append-only dir
773  *  4. We can't do anything with immutable dir (done in permission())
774  *  5. If the sticky bit on dir is set we should either
775  *	a. be owner of dir, or
776  *	b. be owner of victim, or
777  *	c. have CAP_FOWNER capability
778  *  6. If the victim is append-only or immutable we can't do anything with
779  *     links pointing to it.
780  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
781  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
782  *  9. We can't remove a root or mountpoint.
783  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
784  *     nfs_async_unlink().
785  */
786 
787 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
788 {
789 	int error;
790 
791 	if (d_really_is_negative(victim))
792 		return -ENOENT;
793 
794 	BUG_ON(d_inode(victim->d_parent) != dir);
795 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
796 
797 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
798 	if (error)
799 		return error;
800 	if (IS_APPEND(dir))
801 		return -EPERM;
802 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
803 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
804 		return -EPERM;
805 	if (isdir) {
806 		if (!d_is_dir(victim))
807 			return -ENOTDIR;
808 		if (IS_ROOT(victim))
809 			return -EBUSY;
810 	} else if (d_is_dir(victim))
811 		return -EISDIR;
812 	if (IS_DEADDIR(dir))
813 		return -ENOENT;
814 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
815 		return -EBUSY;
816 	return 0;
817 }
818 
819 /* copy of may_create in fs/namei.c() */
820 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
821 {
822 	if (d_really_is_positive(child))
823 		return -EEXIST;
824 	if (IS_DEADDIR(dir))
825 		return -ENOENT;
826 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
827 }
828 
829 /*
830  * Create a new subvolume below @parent.  This is largely modeled after
831  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
832  * inside this filesystem so it's quite a bit simpler.
833  */
834 static noinline int btrfs_mksubvol(const struct path *parent,
835 				   const char *name, int namelen,
836 				   struct btrfs_root *snap_src,
837 				   u64 *async_transid, bool readonly,
838 				   struct btrfs_qgroup_inherit *inherit)
839 {
840 	struct inode *dir = d_inode(parent->dentry);
841 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
842 	struct dentry *dentry;
843 	int error;
844 
845 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
846 	if (error == -EINTR)
847 		return error;
848 
849 	dentry = lookup_one_len(name, parent->dentry, namelen);
850 	error = PTR_ERR(dentry);
851 	if (IS_ERR(dentry))
852 		goto out_unlock;
853 
854 	error = btrfs_may_create(dir, dentry);
855 	if (error)
856 		goto out_dput;
857 
858 	/*
859 	 * even if this name doesn't exist, we may get hash collisions.
860 	 * check for them now when we can safely fail
861 	 */
862 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
863 					       dir->i_ino, name,
864 					       namelen);
865 	if (error)
866 		goto out_dput;
867 
868 	down_read(&fs_info->subvol_sem);
869 
870 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
871 		goto out_up_read;
872 
873 	if (snap_src) {
874 		error = create_snapshot(snap_src, dir, dentry,
875 					async_transid, readonly, inherit);
876 	} else {
877 		error = create_subvol(dir, dentry, name, namelen,
878 				      async_transid, inherit);
879 	}
880 	if (!error)
881 		fsnotify_mkdir(dir, dentry);
882 out_up_read:
883 	up_read(&fs_info->subvol_sem);
884 out_dput:
885 	dput(dentry);
886 out_unlock:
887 	inode_unlock(dir);
888 	return error;
889 }
890 
891 /*
892  * When we're defragging a range, we don't want to kick it off again
893  * if it is really just waiting for delalloc to send it down.
894  * If we find a nice big extent or delalloc range for the bytes in the
895  * file you want to defrag, we return 0 to let you know to skip this
896  * part of the file
897  */
898 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
899 {
900 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
901 	struct extent_map *em = NULL;
902 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903 	u64 end;
904 
905 	read_lock(&em_tree->lock);
906 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
907 	read_unlock(&em_tree->lock);
908 
909 	if (em) {
910 		end = extent_map_end(em);
911 		free_extent_map(em);
912 		if (end - offset > thresh)
913 			return 0;
914 	}
915 	/* if we already have a nice delalloc here, just stop */
916 	thresh /= 2;
917 	end = count_range_bits(io_tree, &offset, offset + thresh,
918 			       thresh, EXTENT_DELALLOC, 1);
919 	if (end >= thresh)
920 		return 0;
921 	return 1;
922 }
923 
924 /*
925  * helper function to walk through a file and find extents
926  * newer than a specific transid, and smaller than thresh.
927  *
928  * This is used by the defragging code to find new and small
929  * extents
930  */
931 static int find_new_extents(struct btrfs_root *root,
932 			    struct inode *inode, u64 newer_than,
933 			    u64 *off, u32 thresh)
934 {
935 	struct btrfs_path *path;
936 	struct btrfs_key min_key;
937 	struct extent_buffer *leaf;
938 	struct btrfs_file_extent_item *extent;
939 	int type;
940 	int ret;
941 	u64 ino = btrfs_ino(BTRFS_I(inode));
942 
943 	path = btrfs_alloc_path();
944 	if (!path)
945 		return -ENOMEM;
946 
947 	min_key.objectid = ino;
948 	min_key.type = BTRFS_EXTENT_DATA_KEY;
949 	min_key.offset = *off;
950 
951 	while (1) {
952 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
953 		if (ret != 0)
954 			goto none;
955 process_slot:
956 		if (min_key.objectid != ino)
957 			goto none;
958 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
959 			goto none;
960 
961 		leaf = path->nodes[0];
962 		extent = btrfs_item_ptr(leaf, path->slots[0],
963 					struct btrfs_file_extent_item);
964 
965 		type = btrfs_file_extent_type(leaf, extent);
966 		if (type == BTRFS_FILE_EXTENT_REG &&
967 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
968 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
969 			*off = min_key.offset;
970 			btrfs_free_path(path);
971 			return 0;
972 		}
973 
974 		path->slots[0]++;
975 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
976 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
977 			goto process_slot;
978 		}
979 
980 		if (min_key.offset == (u64)-1)
981 			goto none;
982 
983 		min_key.offset++;
984 		btrfs_release_path(path);
985 	}
986 none:
987 	btrfs_free_path(path);
988 	return -ENOENT;
989 }
990 
991 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
992 {
993 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
994 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
995 	struct extent_map *em;
996 	u64 len = PAGE_SIZE;
997 
998 	/*
999 	 * hopefully we have this extent in the tree already, try without
1000 	 * the full extent lock
1001 	 */
1002 	read_lock(&em_tree->lock);
1003 	em = lookup_extent_mapping(em_tree, start, len);
1004 	read_unlock(&em_tree->lock);
1005 
1006 	if (!em) {
1007 		struct extent_state *cached = NULL;
1008 		u64 end = start + len - 1;
1009 
1010 		/* get the big lock and read metadata off disk */
1011 		lock_extent_bits(io_tree, start, end, &cached);
1012 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1013 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1014 
1015 		if (IS_ERR(em))
1016 			return NULL;
1017 	}
1018 
1019 	return em;
1020 }
1021 
1022 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1023 {
1024 	struct extent_map *next;
1025 	bool ret = true;
1026 
1027 	/* this is the last extent */
1028 	if (em->start + em->len >= i_size_read(inode))
1029 		return false;
1030 
1031 	next = defrag_lookup_extent(inode, em->start + em->len);
1032 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1033 		ret = false;
1034 	else if ((em->block_start + em->block_len == next->block_start) &&
1035 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1036 		ret = false;
1037 
1038 	free_extent_map(next);
1039 	return ret;
1040 }
1041 
1042 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1043 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1044 			       int compress)
1045 {
1046 	struct extent_map *em;
1047 	int ret = 1;
1048 	bool next_mergeable = true;
1049 	bool prev_mergeable = true;
1050 
1051 	/*
1052 	 * make sure that once we start defragging an extent, we keep on
1053 	 * defragging it
1054 	 */
1055 	if (start < *defrag_end)
1056 		return 1;
1057 
1058 	*skip = 0;
1059 
1060 	em = defrag_lookup_extent(inode, start);
1061 	if (!em)
1062 		return 0;
1063 
1064 	/* this will cover holes, and inline extents */
1065 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1066 		ret = 0;
1067 		goto out;
1068 	}
1069 
1070 	if (!*defrag_end)
1071 		prev_mergeable = false;
1072 
1073 	next_mergeable = defrag_check_next_extent(inode, em);
1074 	/*
1075 	 * we hit a real extent, if it is big or the next extent is not a
1076 	 * real extent, don't bother defragging it
1077 	 */
1078 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1079 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1080 		ret = 0;
1081 out:
1082 	/*
1083 	 * last_len ends up being a counter of how many bytes we've defragged.
1084 	 * every time we choose not to defrag an extent, we reset *last_len
1085 	 * so that the next tiny extent will force a defrag.
1086 	 *
1087 	 * The end result of this is that tiny extents before a single big
1088 	 * extent will force at least part of that big extent to be defragged.
1089 	 */
1090 	if (ret) {
1091 		*defrag_end = extent_map_end(em);
1092 	} else {
1093 		*last_len = 0;
1094 		*skip = extent_map_end(em);
1095 		*defrag_end = 0;
1096 	}
1097 
1098 	free_extent_map(em);
1099 	return ret;
1100 }
1101 
1102 /*
1103  * it doesn't do much good to defrag one or two pages
1104  * at a time.  This pulls in a nice chunk of pages
1105  * to COW and defrag.
1106  *
1107  * It also makes sure the delalloc code has enough
1108  * dirty data to avoid making new small extents as part
1109  * of the defrag
1110  *
1111  * It's a good idea to start RA on this range
1112  * before calling this.
1113  */
1114 static int cluster_pages_for_defrag(struct inode *inode,
1115 				    struct page **pages,
1116 				    unsigned long start_index,
1117 				    unsigned long num_pages)
1118 {
1119 	unsigned long file_end;
1120 	u64 isize = i_size_read(inode);
1121 	u64 page_start;
1122 	u64 page_end;
1123 	u64 page_cnt;
1124 	int ret;
1125 	int i;
1126 	int i_done;
1127 	struct btrfs_ordered_extent *ordered;
1128 	struct extent_state *cached_state = NULL;
1129 	struct extent_io_tree *tree;
1130 	struct extent_changeset *data_reserved = NULL;
1131 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1132 
1133 	file_end = (isize - 1) >> PAGE_SHIFT;
1134 	if (!isize || start_index > file_end)
1135 		return 0;
1136 
1137 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1138 
1139 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1140 			start_index << PAGE_SHIFT,
1141 			page_cnt << PAGE_SHIFT);
1142 	if (ret)
1143 		return ret;
1144 	i_done = 0;
1145 	tree = &BTRFS_I(inode)->io_tree;
1146 
1147 	/* step one, lock all the pages */
1148 	for (i = 0; i < page_cnt; i++) {
1149 		struct page *page;
1150 again:
1151 		page = find_or_create_page(inode->i_mapping,
1152 					   start_index + i, mask);
1153 		if (!page)
1154 			break;
1155 
1156 		page_start = page_offset(page);
1157 		page_end = page_start + PAGE_SIZE - 1;
1158 		while (1) {
1159 			lock_extent_bits(tree, page_start, page_end,
1160 					 &cached_state);
1161 			ordered = btrfs_lookup_ordered_extent(inode,
1162 							      page_start);
1163 			unlock_extent_cached(tree, page_start, page_end,
1164 					     &cached_state, GFP_NOFS);
1165 			if (!ordered)
1166 				break;
1167 
1168 			unlock_page(page);
1169 			btrfs_start_ordered_extent(inode, ordered, 1);
1170 			btrfs_put_ordered_extent(ordered);
1171 			lock_page(page);
1172 			/*
1173 			 * we unlocked the page above, so we need check if
1174 			 * it was released or not.
1175 			 */
1176 			if (page->mapping != inode->i_mapping) {
1177 				unlock_page(page);
1178 				put_page(page);
1179 				goto again;
1180 			}
1181 		}
1182 
1183 		if (!PageUptodate(page)) {
1184 			btrfs_readpage(NULL, page);
1185 			lock_page(page);
1186 			if (!PageUptodate(page)) {
1187 				unlock_page(page);
1188 				put_page(page);
1189 				ret = -EIO;
1190 				break;
1191 			}
1192 		}
1193 
1194 		if (page->mapping != inode->i_mapping) {
1195 			unlock_page(page);
1196 			put_page(page);
1197 			goto again;
1198 		}
1199 
1200 		pages[i] = page;
1201 		i_done++;
1202 	}
1203 	if (!i_done || ret)
1204 		goto out;
1205 
1206 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1207 		goto out;
1208 
1209 	/*
1210 	 * so now we have a nice long stream of locked
1211 	 * and up to date pages, lets wait on them
1212 	 */
1213 	for (i = 0; i < i_done; i++)
1214 		wait_on_page_writeback(pages[i]);
1215 
1216 	page_start = page_offset(pages[0]);
1217 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1218 
1219 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1220 			 page_start, page_end - 1, &cached_state);
1221 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1222 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1223 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1224 			  &cached_state, GFP_NOFS);
1225 
1226 	if (i_done != page_cnt) {
1227 		spin_lock(&BTRFS_I(inode)->lock);
1228 		BTRFS_I(inode)->outstanding_extents++;
1229 		spin_unlock(&BTRFS_I(inode)->lock);
1230 		btrfs_delalloc_release_space(inode, data_reserved,
1231 				start_index << PAGE_SHIFT,
1232 				(page_cnt - i_done) << PAGE_SHIFT);
1233 	}
1234 
1235 
1236 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1237 			  &cached_state);
1238 
1239 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1240 			     page_start, page_end - 1, &cached_state,
1241 			     GFP_NOFS);
1242 
1243 	for (i = 0; i < i_done; i++) {
1244 		clear_page_dirty_for_io(pages[i]);
1245 		ClearPageChecked(pages[i]);
1246 		set_page_extent_mapped(pages[i]);
1247 		set_page_dirty(pages[i]);
1248 		unlock_page(pages[i]);
1249 		put_page(pages[i]);
1250 	}
1251 	extent_changeset_free(data_reserved);
1252 	return i_done;
1253 out:
1254 	for (i = 0; i < i_done; i++) {
1255 		unlock_page(pages[i]);
1256 		put_page(pages[i]);
1257 	}
1258 	btrfs_delalloc_release_space(inode, data_reserved,
1259 			start_index << PAGE_SHIFT,
1260 			page_cnt << PAGE_SHIFT);
1261 	extent_changeset_free(data_reserved);
1262 	return ret;
1263 
1264 }
1265 
1266 int btrfs_defrag_file(struct inode *inode, struct file *file,
1267 		      struct btrfs_ioctl_defrag_range_args *range,
1268 		      u64 newer_than, unsigned long max_to_defrag)
1269 {
1270 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1271 	struct btrfs_root *root = BTRFS_I(inode)->root;
1272 	struct file_ra_state *ra = NULL;
1273 	unsigned long last_index;
1274 	u64 isize = i_size_read(inode);
1275 	u64 last_len = 0;
1276 	u64 skip = 0;
1277 	u64 defrag_end = 0;
1278 	u64 newer_off = range->start;
1279 	unsigned long i;
1280 	unsigned long ra_index = 0;
1281 	int ret;
1282 	int defrag_count = 0;
1283 	int compress_type = BTRFS_COMPRESS_ZLIB;
1284 	u32 extent_thresh = range->extent_thresh;
1285 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 	unsigned long cluster = max_cluster;
1287 	u64 new_align = ~((u64)SZ_128K - 1);
1288 	struct page **pages = NULL;
1289 
1290 	if (isize == 0)
1291 		return 0;
1292 
1293 	if (range->start >= isize)
1294 		return -EINVAL;
1295 
1296 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1298 			return -EINVAL;
1299 		if (range->compress_type)
1300 			compress_type = range->compress_type;
1301 	}
1302 
1303 	if (extent_thresh == 0)
1304 		extent_thresh = SZ_256K;
1305 
1306 	/*
1307 	 * if we were not given a file, allocate a readahead
1308 	 * context
1309 	 */
1310 	if (!file) {
1311 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1312 		if (!ra)
1313 			return -ENOMEM;
1314 		file_ra_state_init(ra, inode->i_mapping);
1315 	} else {
1316 		ra = &file->f_ra;
1317 	}
1318 
1319 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1320 			GFP_NOFS);
1321 	if (!pages) {
1322 		ret = -ENOMEM;
1323 		goto out_ra;
1324 	}
1325 
1326 	/* find the last page to defrag */
1327 	if (range->start + range->len > range->start) {
1328 		last_index = min_t(u64, isize - 1,
1329 			 range->start + range->len - 1) >> PAGE_SHIFT;
1330 	} else {
1331 		last_index = (isize - 1) >> PAGE_SHIFT;
1332 	}
1333 
1334 	if (newer_than) {
1335 		ret = find_new_extents(root, inode, newer_than,
1336 				       &newer_off, SZ_64K);
1337 		if (!ret) {
1338 			range->start = newer_off;
1339 			/*
1340 			 * we always align our defrag to help keep
1341 			 * the extents in the file evenly spaced
1342 			 */
1343 			i = (newer_off & new_align) >> PAGE_SHIFT;
1344 		} else
1345 			goto out_ra;
1346 	} else {
1347 		i = range->start >> PAGE_SHIFT;
1348 	}
1349 	if (!max_to_defrag)
1350 		max_to_defrag = last_index - i + 1;
1351 
1352 	/*
1353 	 * make writeback starts from i, so the defrag range can be
1354 	 * written sequentially.
1355 	 */
1356 	if (i < inode->i_mapping->writeback_index)
1357 		inode->i_mapping->writeback_index = i;
1358 
1359 	while (i <= last_index && defrag_count < max_to_defrag &&
1360 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1361 		/*
1362 		 * make sure we stop running if someone unmounts
1363 		 * the FS
1364 		 */
1365 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1366 			break;
1367 
1368 		if (btrfs_defrag_cancelled(fs_info)) {
1369 			btrfs_debug(fs_info, "defrag_file cancelled");
1370 			ret = -EAGAIN;
1371 			break;
1372 		}
1373 
1374 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 					 extent_thresh, &last_len, &skip,
1376 					 &defrag_end, range->flags &
1377 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1378 			unsigned long next;
1379 			/*
1380 			 * the should_defrag function tells us how much to skip
1381 			 * bump our counter by the suggested amount
1382 			 */
1383 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 			i = max(i + 1, next);
1385 			continue;
1386 		}
1387 
1388 		if (!newer_than) {
1389 			cluster = (PAGE_ALIGN(defrag_end) >>
1390 				   PAGE_SHIFT) - i;
1391 			cluster = min(cluster, max_cluster);
1392 		} else {
1393 			cluster = max_cluster;
1394 		}
1395 
1396 		if (i + cluster > ra_index) {
1397 			ra_index = max(i, ra_index);
1398 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1399 				       cluster);
1400 			ra_index += cluster;
1401 		}
1402 
1403 		inode_lock(inode);
1404 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 			BTRFS_I(inode)->force_compress = compress_type;
1406 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1407 		if (ret < 0) {
1408 			inode_unlock(inode);
1409 			goto out_ra;
1410 		}
1411 
1412 		defrag_count += ret;
1413 		balance_dirty_pages_ratelimited(inode->i_mapping);
1414 		inode_unlock(inode);
1415 
1416 		if (newer_than) {
1417 			if (newer_off == (u64)-1)
1418 				break;
1419 
1420 			if (ret > 0)
1421 				i += ret;
1422 
1423 			newer_off = max(newer_off + 1,
1424 					(u64)i << PAGE_SHIFT);
1425 
1426 			ret = find_new_extents(root, inode, newer_than,
1427 					       &newer_off, SZ_64K);
1428 			if (!ret) {
1429 				range->start = newer_off;
1430 				i = (newer_off & new_align) >> PAGE_SHIFT;
1431 			} else {
1432 				break;
1433 			}
1434 		} else {
1435 			if (ret > 0) {
1436 				i += ret;
1437 				last_len += ret << PAGE_SHIFT;
1438 			} else {
1439 				i++;
1440 				last_len = 0;
1441 			}
1442 		}
1443 	}
1444 
1445 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 		filemap_flush(inode->i_mapping);
1447 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 			     &BTRFS_I(inode)->runtime_flags))
1449 			filemap_flush(inode->i_mapping);
1450 	}
1451 
1452 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 		/* the filemap_flush will queue IO into the worker threads, but
1454 		 * we have to make sure the IO is actually started and that
1455 		 * ordered extents get created before we return
1456 		 */
1457 		atomic_inc(&fs_info->async_submit_draining);
1458 		while (atomic_read(&fs_info->nr_async_submits) ||
1459 		       atomic_read(&fs_info->async_delalloc_pages)) {
1460 			wait_event(fs_info->async_submit_wait,
1461 				   (atomic_read(&fs_info->nr_async_submits) == 0 &&
1462 				    atomic_read(&fs_info->async_delalloc_pages) == 0));
1463 		}
1464 		atomic_dec(&fs_info->async_submit_draining);
1465 	}
1466 
1467 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1469 	}
1470 
1471 	ret = defrag_count;
1472 
1473 out_ra:
1474 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1475 		inode_lock(inode);
1476 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 		inode_unlock(inode);
1478 	}
1479 	if (!file)
1480 		kfree(ra);
1481 	kfree(pages);
1482 	return ret;
1483 }
1484 
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1486 					void __user *arg)
1487 {
1488 	struct inode *inode = file_inode(file);
1489 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1490 	u64 new_size;
1491 	u64 old_size;
1492 	u64 devid = 1;
1493 	struct btrfs_root *root = BTRFS_I(inode)->root;
1494 	struct btrfs_ioctl_vol_args *vol_args;
1495 	struct btrfs_trans_handle *trans;
1496 	struct btrfs_device *device = NULL;
1497 	char *sizestr;
1498 	char *retptr;
1499 	char *devstr = NULL;
1500 	int ret = 0;
1501 	int mod = 0;
1502 
1503 	if (!capable(CAP_SYS_ADMIN))
1504 		return -EPERM;
1505 
1506 	ret = mnt_want_write_file(file);
1507 	if (ret)
1508 		return ret;
1509 
1510 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1511 		mnt_drop_write_file(file);
1512 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1513 	}
1514 
1515 	mutex_lock(&fs_info->volume_mutex);
1516 	vol_args = memdup_user(arg, sizeof(*vol_args));
1517 	if (IS_ERR(vol_args)) {
1518 		ret = PTR_ERR(vol_args);
1519 		goto out;
1520 	}
1521 
1522 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1523 
1524 	sizestr = vol_args->name;
1525 	devstr = strchr(sizestr, ':');
1526 	if (devstr) {
1527 		sizestr = devstr + 1;
1528 		*devstr = '\0';
1529 		devstr = vol_args->name;
1530 		ret = kstrtoull(devstr, 10, &devid);
1531 		if (ret)
1532 			goto out_free;
1533 		if (!devid) {
1534 			ret = -EINVAL;
1535 			goto out_free;
1536 		}
1537 		btrfs_info(fs_info, "resizing devid %llu", devid);
1538 	}
1539 
1540 	device = btrfs_find_device(fs_info, devid, NULL, NULL);
1541 	if (!device) {
1542 		btrfs_info(fs_info, "resizer unable to find device %llu",
1543 			   devid);
1544 		ret = -ENODEV;
1545 		goto out_free;
1546 	}
1547 
1548 	if (!device->writeable) {
1549 		btrfs_info(fs_info,
1550 			   "resizer unable to apply on readonly device %llu",
1551 		       devid);
1552 		ret = -EPERM;
1553 		goto out_free;
1554 	}
1555 
1556 	if (!strcmp(sizestr, "max"))
1557 		new_size = device->bdev->bd_inode->i_size;
1558 	else {
1559 		if (sizestr[0] == '-') {
1560 			mod = -1;
1561 			sizestr++;
1562 		} else if (sizestr[0] == '+') {
1563 			mod = 1;
1564 			sizestr++;
1565 		}
1566 		new_size = memparse(sizestr, &retptr);
1567 		if (*retptr != '\0' || new_size == 0) {
1568 			ret = -EINVAL;
1569 			goto out_free;
1570 		}
1571 	}
1572 
1573 	if (device->is_tgtdev_for_dev_replace) {
1574 		ret = -EPERM;
1575 		goto out_free;
1576 	}
1577 
1578 	old_size = btrfs_device_get_total_bytes(device);
1579 
1580 	if (mod < 0) {
1581 		if (new_size > old_size) {
1582 			ret = -EINVAL;
1583 			goto out_free;
1584 		}
1585 		new_size = old_size - new_size;
1586 	} else if (mod > 0) {
1587 		if (new_size > ULLONG_MAX - old_size) {
1588 			ret = -ERANGE;
1589 			goto out_free;
1590 		}
1591 		new_size = old_size + new_size;
1592 	}
1593 
1594 	if (new_size < SZ_256M) {
1595 		ret = -EINVAL;
1596 		goto out_free;
1597 	}
1598 	if (new_size > device->bdev->bd_inode->i_size) {
1599 		ret = -EFBIG;
1600 		goto out_free;
1601 	}
1602 
1603 	new_size = div_u64(new_size, fs_info->sectorsize);
1604 	new_size *= fs_info->sectorsize;
1605 
1606 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1607 			  rcu_str_deref(device->name), new_size);
1608 
1609 	if (new_size > old_size) {
1610 		trans = btrfs_start_transaction(root, 0);
1611 		if (IS_ERR(trans)) {
1612 			ret = PTR_ERR(trans);
1613 			goto out_free;
1614 		}
1615 		ret = btrfs_grow_device(trans, device, new_size);
1616 		btrfs_commit_transaction(trans);
1617 	} else if (new_size < old_size) {
1618 		ret = btrfs_shrink_device(device, new_size);
1619 	} /* equal, nothing need to do */
1620 
1621 out_free:
1622 	kfree(vol_args);
1623 out:
1624 	mutex_unlock(&fs_info->volume_mutex);
1625 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1626 	mnt_drop_write_file(file);
1627 	return ret;
1628 }
1629 
1630 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1631 				const char *name, unsigned long fd, int subvol,
1632 				u64 *transid, bool readonly,
1633 				struct btrfs_qgroup_inherit *inherit)
1634 {
1635 	int namelen;
1636 	int ret = 0;
1637 
1638 	if (!S_ISDIR(file_inode(file)->i_mode))
1639 		return -ENOTDIR;
1640 
1641 	ret = mnt_want_write_file(file);
1642 	if (ret)
1643 		goto out;
1644 
1645 	namelen = strlen(name);
1646 	if (strchr(name, '/')) {
1647 		ret = -EINVAL;
1648 		goto out_drop_write;
1649 	}
1650 
1651 	if (name[0] == '.' &&
1652 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1653 		ret = -EEXIST;
1654 		goto out_drop_write;
1655 	}
1656 
1657 	if (subvol) {
1658 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1659 				     NULL, transid, readonly, inherit);
1660 	} else {
1661 		struct fd src = fdget(fd);
1662 		struct inode *src_inode;
1663 		if (!src.file) {
1664 			ret = -EINVAL;
1665 			goto out_drop_write;
1666 		}
1667 
1668 		src_inode = file_inode(src.file);
1669 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1670 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1671 				   "Snapshot src from another FS");
1672 			ret = -EXDEV;
1673 		} else if (!inode_owner_or_capable(src_inode)) {
1674 			/*
1675 			 * Subvolume creation is not restricted, but snapshots
1676 			 * are limited to own subvolumes only
1677 			 */
1678 			ret = -EPERM;
1679 		} else {
1680 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1681 					     BTRFS_I(src_inode)->root,
1682 					     transid, readonly, inherit);
1683 		}
1684 		fdput(src);
1685 	}
1686 out_drop_write:
1687 	mnt_drop_write_file(file);
1688 out:
1689 	return ret;
1690 }
1691 
1692 static noinline int btrfs_ioctl_snap_create(struct file *file,
1693 					    void __user *arg, int subvol)
1694 {
1695 	struct btrfs_ioctl_vol_args *vol_args;
1696 	int ret;
1697 
1698 	if (!S_ISDIR(file_inode(file)->i_mode))
1699 		return -ENOTDIR;
1700 
1701 	vol_args = memdup_user(arg, sizeof(*vol_args));
1702 	if (IS_ERR(vol_args))
1703 		return PTR_ERR(vol_args);
1704 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1705 
1706 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1707 					      vol_args->fd, subvol,
1708 					      NULL, false, NULL);
1709 
1710 	kfree(vol_args);
1711 	return ret;
1712 }
1713 
1714 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1715 					       void __user *arg, int subvol)
1716 {
1717 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1718 	int ret;
1719 	u64 transid = 0;
1720 	u64 *ptr = NULL;
1721 	bool readonly = false;
1722 	struct btrfs_qgroup_inherit *inherit = NULL;
1723 
1724 	if (!S_ISDIR(file_inode(file)->i_mode))
1725 		return -ENOTDIR;
1726 
1727 	vol_args = memdup_user(arg, sizeof(*vol_args));
1728 	if (IS_ERR(vol_args))
1729 		return PTR_ERR(vol_args);
1730 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1731 
1732 	if (vol_args->flags &
1733 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1734 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1735 		ret = -EOPNOTSUPP;
1736 		goto free_args;
1737 	}
1738 
1739 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1740 		ptr = &transid;
1741 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1742 		readonly = true;
1743 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1744 		if (vol_args->size > PAGE_SIZE) {
1745 			ret = -EINVAL;
1746 			goto free_args;
1747 		}
1748 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1749 		if (IS_ERR(inherit)) {
1750 			ret = PTR_ERR(inherit);
1751 			goto free_args;
1752 		}
1753 	}
1754 
1755 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1756 					      vol_args->fd, subvol, ptr,
1757 					      readonly, inherit);
1758 	if (ret)
1759 		goto free_inherit;
1760 
1761 	if (ptr && copy_to_user(arg +
1762 				offsetof(struct btrfs_ioctl_vol_args_v2,
1763 					transid),
1764 				ptr, sizeof(*ptr)))
1765 		ret = -EFAULT;
1766 
1767 free_inherit:
1768 	kfree(inherit);
1769 free_args:
1770 	kfree(vol_args);
1771 	return ret;
1772 }
1773 
1774 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1775 						void __user *arg)
1776 {
1777 	struct inode *inode = file_inode(file);
1778 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1779 	struct btrfs_root *root = BTRFS_I(inode)->root;
1780 	int ret = 0;
1781 	u64 flags = 0;
1782 
1783 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1784 		return -EINVAL;
1785 
1786 	down_read(&fs_info->subvol_sem);
1787 	if (btrfs_root_readonly(root))
1788 		flags |= BTRFS_SUBVOL_RDONLY;
1789 	up_read(&fs_info->subvol_sem);
1790 
1791 	if (copy_to_user(arg, &flags, sizeof(flags)))
1792 		ret = -EFAULT;
1793 
1794 	return ret;
1795 }
1796 
1797 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1798 					      void __user *arg)
1799 {
1800 	struct inode *inode = file_inode(file);
1801 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1802 	struct btrfs_root *root = BTRFS_I(inode)->root;
1803 	struct btrfs_trans_handle *trans;
1804 	u64 root_flags;
1805 	u64 flags;
1806 	int ret = 0;
1807 
1808 	if (!inode_owner_or_capable(inode))
1809 		return -EPERM;
1810 
1811 	ret = mnt_want_write_file(file);
1812 	if (ret)
1813 		goto out;
1814 
1815 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1816 		ret = -EINVAL;
1817 		goto out_drop_write;
1818 	}
1819 
1820 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1821 		ret = -EFAULT;
1822 		goto out_drop_write;
1823 	}
1824 
1825 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1826 		ret = -EINVAL;
1827 		goto out_drop_write;
1828 	}
1829 
1830 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1831 		ret = -EOPNOTSUPP;
1832 		goto out_drop_write;
1833 	}
1834 
1835 	down_write(&fs_info->subvol_sem);
1836 
1837 	/* nothing to do */
1838 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1839 		goto out_drop_sem;
1840 
1841 	root_flags = btrfs_root_flags(&root->root_item);
1842 	if (flags & BTRFS_SUBVOL_RDONLY) {
1843 		btrfs_set_root_flags(&root->root_item,
1844 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1845 	} else {
1846 		/*
1847 		 * Block RO -> RW transition if this subvolume is involved in
1848 		 * send
1849 		 */
1850 		spin_lock(&root->root_item_lock);
1851 		if (root->send_in_progress == 0) {
1852 			btrfs_set_root_flags(&root->root_item,
1853 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1854 			spin_unlock(&root->root_item_lock);
1855 		} else {
1856 			spin_unlock(&root->root_item_lock);
1857 			btrfs_warn(fs_info,
1858 				   "Attempt to set subvolume %llu read-write during send",
1859 				   root->root_key.objectid);
1860 			ret = -EPERM;
1861 			goto out_drop_sem;
1862 		}
1863 	}
1864 
1865 	trans = btrfs_start_transaction(root, 1);
1866 	if (IS_ERR(trans)) {
1867 		ret = PTR_ERR(trans);
1868 		goto out_reset;
1869 	}
1870 
1871 	ret = btrfs_update_root(trans, fs_info->tree_root,
1872 				&root->root_key, &root->root_item);
1873 
1874 	btrfs_commit_transaction(trans);
1875 out_reset:
1876 	if (ret)
1877 		btrfs_set_root_flags(&root->root_item, root_flags);
1878 out_drop_sem:
1879 	up_write(&fs_info->subvol_sem);
1880 out_drop_write:
1881 	mnt_drop_write_file(file);
1882 out:
1883 	return ret;
1884 }
1885 
1886 /*
1887  * helper to check if the subvolume references other subvolumes
1888  */
1889 static noinline int may_destroy_subvol(struct btrfs_root *root)
1890 {
1891 	struct btrfs_fs_info *fs_info = root->fs_info;
1892 	struct btrfs_path *path;
1893 	struct btrfs_dir_item *di;
1894 	struct btrfs_key key;
1895 	u64 dir_id;
1896 	int ret;
1897 
1898 	path = btrfs_alloc_path();
1899 	if (!path)
1900 		return -ENOMEM;
1901 
1902 	/* Make sure this root isn't set as the default subvol */
1903 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1904 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1905 				   dir_id, "default", 7, 0);
1906 	if (di && !IS_ERR(di)) {
1907 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1908 		if (key.objectid == root->root_key.objectid) {
1909 			ret = -EPERM;
1910 			btrfs_err(fs_info,
1911 				  "deleting default subvolume %llu is not allowed",
1912 				  key.objectid);
1913 			goto out;
1914 		}
1915 		btrfs_release_path(path);
1916 	}
1917 
1918 	key.objectid = root->root_key.objectid;
1919 	key.type = BTRFS_ROOT_REF_KEY;
1920 	key.offset = (u64)-1;
1921 
1922 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1923 	if (ret < 0)
1924 		goto out;
1925 	BUG_ON(ret == 0);
1926 
1927 	ret = 0;
1928 	if (path->slots[0] > 0) {
1929 		path->slots[0]--;
1930 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1931 		if (key.objectid == root->root_key.objectid &&
1932 		    key.type == BTRFS_ROOT_REF_KEY)
1933 			ret = -ENOTEMPTY;
1934 	}
1935 out:
1936 	btrfs_free_path(path);
1937 	return ret;
1938 }
1939 
1940 static noinline int key_in_sk(struct btrfs_key *key,
1941 			      struct btrfs_ioctl_search_key *sk)
1942 {
1943 	struct btrfs_key test;
1944 	int ret;
1945 
1946 	test.objectid = sk->min_objectid;
1947 	test.type = sk->min_type;
1948 	test.offset = sk->min_offset;
1949 
1950 	ret = btrfs_comp_cpu_keys(key, &test);
1951 	if (ret < 0)
1952 		return 0;
1953 
1954 	test.objectid = sk->max_objectid;
1955 	test.type = sk->max_type;
1956 	test.offset = sk->max_offset;
1957 
1958 	ret = btrfs_comp_cpu_keys(key, &test);
1959 	if (ret > 0)
1960 		return 0;
1961 	return 1;
1962 }
1963 
1964 static noinline int copy_to_sk(struct btrfs_path *path,
1965 			       struct btrfs_key *key,
1966 			       struct btrfs_ioctl_search_key *sk,
1967 			       size_t *buf_size,
1968 			       char __user *ubuf,
1969 			       unsigned long *sk_offset,
1970 			       int *num_found)
1971 {
1972 	u64 found_transid;
1973 	struct extent_buffer *leaf;
1974 	struct btrfs_ioctl_search_header sh;
1975 	struct btrfs_key test;
1976 	unsigned long item_off;
1977 	unsigned long item_len;
1978 	int nritems;
1979 	int i;
1980 	int slot;
1981 	int ret = 0;
1982 
1983 	leaf = path->nodes[0];
1984 	slot = path->slots[0];
1985 	nritems = btrfs_header_nritems(leaf);
1986 
1987 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1988 		i = nritems;
1989 		goto advance_key;
1990 	}
1991 	found_transid = btrfs_header_generation(leaf);
1992 
1993 	for (i = slot; i < nritems; i++) {
1994 		item_off = btrfs_item_ptr_offset(leaf, i);
1995 		item_len = btrfs_item_size_nr(leaf, i);
1996 
1997 		btrfs_item_key_to_cpu(leaf, key, i);
1998 		if (!key_in_sk(key, sk))
1999 			continue;
2000 
2001 		if (sizeof(sh) + item_len > *buf_size) {
2002 			if (*num_found) {
2003 				ret = 1;
2004 				goto out;
2005 			}
2006 
2007 			/*
2008 			 * return one empty item back for v1, which does not
2009 			 * handle -EOVERFLOW
2010 			 */
2011 
2012 			*buf_size = sizeof(sh) + item_len;
2013 			item_len = 0;
2014 			ret = -EOVERFLOW;
2015 		}
2016 
2017 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2018 			ret = 1;
2019 			goto out;
2020 		}
2021 
2022 		sh.objectid = key->objectid;
2023 		sh.offset = key->offset;
2024 		sh.type = key->type;
2025 		sh.len = item_len;
2026 		sh.transid = found_transid;
2027 
2028 		/* copy search result header */
2029 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2030 			ret = -EFAULT;
2031 			goto out;
2032 		}
2033 
2034 		*sk_offset += sizeof(sh);
2035 
2036 		if (item_len) {
2037 			char __user *up = ubuf + *sk_offset;
2038 			/* copy the item */
2039 			if (read_extent_buffer_to_user(leaf, up,
2040 						       item_off, item_len)) {
2041 				ret = -EFAULT;
2042 				goto out;
2043 			}
2044 
2045 			*sk_offset += item_len;
2046 		}
2047 		(*num_found)++;
2048 
2049 		if (ret) /* -EOVERFLOW from above */
2050 			goto out;
2051 
2052 		if (*num_found >= sk->nr_items) {
2053 			ret = 1;
2054 			goto out;
2055 		}
2056 	}
2057 advance_key:
2058 	ret = 0;
2059 	test.objectid = sk->max_objectid;
2060 	test.type = sk->max_type;
2061 	test.offset = sk->max_offset;
2062 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2063 		ret = 1;
2064 	else if (key->offset < (u64)-1)
2065 		key->offset++;
2066 	else if (key->type < (u8)-1) {
2067 		key->offset = 0;
2068 		key->type++;
2069 	} else if (key->objectid < (u64)-1) {
2070 		key->offset = 0;
2071 		key->type = 0;
2072 		key->objectid++;
2073 	} else
2074 		ret = 1;
2075 out:
2076 	/*
2077 	 *  0: all items from this leaf copied, continue with next
2078 	 *  1: * more items can be copied, but unused buffer is too small
2079 	 *     * all items were found
2080 	 *     Either way, it will stops the loop which iterates to the next
2081 	 *     leaf
2082 	 *  -EOVERFLOW: item was to large for buffer
2083 	 *  -EFAULT: could not copy extent buffer back to userspace
2084 	 */
2085 	return ret;
2086 }
2087 
2088 static noinline int search_ioctl(struct inode *inode,
2089 				 struct btrfs_ioctl_search_key *sk,
2090 				 size_t *buf_size,
2091 				 char __user *ubuf)
2092 {
2093 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2094 	struct btrfs_root *root;
2095 	struct btrfs_key key;
2096 	struct btrfs_path *path;
2097 	int ret;
2098 	int num_found = 0;
2099 	unsigned long sk_offset = 0;
2100 
2101 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2102 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2103 		return -EOVERFLOW;
2104 	}
2105 
2106 	path = btrfs_alloc_path();
2107 	if (!path)
2108 		return -ENOMEM;
2109 
2110 	if (sk->tree_id == 0) {
2111 		/* search the root of the inode that was passed */
2112 		root = BTRFS_I(inode)->root;
2113 	} else {
2114 		key.objectid = sk->tree_id;
2115 		key.type = BTRFS_ROOT_ITEM_KEY;
2116 		key.offset = (u64)-1;
2117 		root = btrfs_read_fs_root_no_name(info, &key);
2118 		if (IS_ERR(root)) {
2119 			btrfs_free_path(path);
2120 			return -ENOENT;
2121 		}
2122 	}
2123 
2124 	key.objectid = sk->min_objectid;
2125 	key.type = sk->min_type;
2126 	key.offset = sk->min_offset;
2127 
2128 	while (1) {
2129 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2130 		if (ret != 0) {
2131 			if (ret > 0)
2132 				ret = 0;
2133 			goto err;
2134 		}
2135 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2136 				 &sk_offset, &num_found);
2137 		btrfs_release_path(path);
2138 		if (ret)
2139 			break;
2140 
2141 	}
2142 	if (ret > 0)
2143 		ret = 0;
2144 err:
2145 	sk->nr_items = num_found;
2146 	btrfs_free_path(path);
2147 	return ret;
2148 }
2149 
2150 static noinline int btrfs_ioctl_tree_search(struct file *file,
2151 					   void __user *argp)
2152 {
2153 	struct btrfs_ioctl_search_args __user *uargs;
2154 	struct btrfs_ioctl_search_key sk;
2155 	struct inode *inode;
2156 	int ret;
2157 	size_t buf_size;
2158 
2159 	if (!capable(CAP_SYS_ADMIN))
2160 		return -EPERM;
2161 
2162 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2163 
2164 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2165 		return -EFAULT;
2166 
2167 	buf_size = sizeof(uargs->buf);
2168 
2169 	inode = file_inode(file);
2170 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2171 
2172 	/*
2173 	 * In the origin implementation an overflow is handled by returning a
2174 	 * search header with a len of zero, so reset ret.
2175 	 */
2176 	if (ret == -EOVERFLOW)
2177 		ret = 0;
2178 
2179 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2180 		ret = -EFAULT;
2181 	return ret;
2182 }
2183 
2184 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2185 					       void __user *argp)
2186 {
2187 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2188 	struct btrfs_ioctl_search_args_v2 args;
2189 	struct inode *inode;
2190 	int ret;
2191 	size_t buf_size;
2192 	const size_t buf_limit = SZ_16M;
2193 
2194 	if (!capable(CAP_SYS_ADMIN))
2195 		return -EPERM;
2196 
2197 	/* copy search header and buffer size */
2198 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2199 	if (copy_from_user(&args, uarg, sizeof(args)))
2200 		return -EFAULT;
2201 
2202 	buf_size = args.buf_size;
2203 
2204 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2205 		return -EOVERFLOW;
2206 
2207 	/* limit result size to 16MB */
2208 	if (buf_size > buf_limit)
2209 		buf_size = buf_limit;
2210 
2211 	inode = file_inode(file);
2212 	ret = search_ioctl(inode, &args.key, &buf_size,
2213 			   (char *)(&uarg->buf[0]));
2214 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2215 		ret = -EFAULT;
2216 	else if (ret == -EOVERFLOW &&
2217 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2218 		ret = -EFAULT;
2219 
2220 	return ret;
2221 }
2222 
2223 /*
2224  * Search INODE_REFs to identify path name of 'dirid' directory
2225  * in a 'tree_id' tree. and sets path name to 'name'.
2226  */
2227 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2228 				u64 tree_id, u64 dirid, char *name)
2229 {
2230 	struct btrfs_root *root;
2231 	struct btrfs_key key;
2232 	char *ptr;
2233 	int ret = -1;
2234 	int slot;
2235 	int len;
2236 	int total_len = 0;
2237 	struct btrfs_inode_ref *iref;
2238 	struct extent_buffer *l;
2239 	struct btrfs_path *path;
2240 
2241 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2242 		name[0]='\0';
2243 		return 0;
2244 	}
2245 
2246 	path = btrfs_alloc_path();
2247 	if (!path)
2248 		return -ENOMEM;
2249 
2250 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2251 
2252 	key.objectid = tree_id;
2253 	key.type = BTRFS_ROOT_ITEM_KEY;
2254 	key.offset = (u64)-1;
2255 	root = btrfs_read_fs_root_no_name(info, &key);
2256 	if (IS_ERR(root)) {
2257 		btrfs_err(info, "could not find root %llu", tree_id);
2258 		ret = -ENOENT;
2259 		goto out;
2260 	}
2261 
2262 	key.objectid = dirid;
2263 	key.type = BTRFS_INODE_REF_KEY;
2264 	key.offset = (u64)-1;
2265 
2266 	while (1) {
2267 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2268 		if (ret < 0)
2269 			goto out;
2270 		else if (ret > 0) {
2271 			ret = btrfs_previous_item(root, path, dirid,
2272 						  BTRFS_INODE_REF_KEY);
2273 			if (ret < 0)
2274 				goto out;
2275 			else if (ret > 0) {
2276 				ret = -ENOENT;
2277 				goto out;
2278 			}
2279 		}
2280 
2281 		l = path->nodes[0];
2282 		slot = path->slots[0];
2283 		btrfs_item_key_to_cpu(l, &key, slot);
2284 
2285 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2286 		len = btrfs_inode_ref_name_len(l, iref);
2287 		ptr -= len + 1;
2288 		total_len += len + 1;
2289 		if (ptr < name) {
2290 			ret = -ENAMETOOLONG;
2291 			goto out;
2292 		}
2293 
2294 		*(ptr + len) = '/';
2295 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2296 
2297 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2298 			break;
2299 
2300 		btrfs_release_path(path);
2301 		key.objectid = key.offset;
2302 		key.offset = (u64)-1;
2303 		dirid = key.objectid;
2304 	}
2305 	memmove(name, ptr, total_len);
2306 	name[total_len] = '\0';
2307 	ret = 0;
2308 out:
2309 	btrfs_free_path(path);
2310 	return ret;
2311 }
2312 
2313 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2314 					   void __user *argp)
2315 {
2316 	 struct btrfs_ioctl_ino_lookup_args *args;
2317 	 struct inode *inode;
2318 	int ret = 0;
2319 
2320 	args = memdup_user(argp, sizeof(*args));
2321 	if (IS_ERR(args))
2322 		return PTR_ERR(args);
2323 
2324 	inode = file_inode(file);
2325 
2326 	/*
2327 	 * Unprivileged query to obtain the containing subvolume root id. The
2328 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2329 	 */
2330 	if (args->treeid == 0)
2331 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2332 
2333 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2334 		args->name[0] = 0;
2335 		goto out;
2336 	}
2337 
2338 	if (!capable(CAP_SYS_ADMIN)) {
2339 		ret = -EPERM;
2340 		goto out;
2341 	}
2342 
2343 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2344 					args->treeid, args->objectid,
2345 					args->name);
2346 
2347 out:
2348 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2349 		ret = -EFAULT;
2350 
2351 	kfree(args);
2352 	return ret;
2353 }
2354 
2355 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2356 					     void __user *arg)
2357 {
2358 	struct dentry *parent = file->f_path.dentry;
2359 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2360 	struct dentry *dentry;
2361 	struct inode *dir = d_inode(parent);
2362 	struct inode *inode;
2363 	struct btrfs_root *root = BTRFS_I(dir)->root;
2364 	struct btrfs_root *dest = NULL;
2365 	struct btrfs_ioctl_vol_args *vol_args;
2366 	struct btrfs_trans_handle *trans;
2367 	struct btrfs_block_rsv block_rsv;
2368 	u64 root_flags;
2369 	u64 qgroup_reserved;
2370 	int namelen;
2371 	int ret;
2372 	int err = 0;
2373 
2374 	if (!S_ISDIR(dir->i_mode))
2375 		return -ENOTDIR;
2376 
2377 	vol_args = memdup_user(arg, sizeof(*vol_args));
2378 	if (IS_ERR(vol_args))
2379 		return PTR_ERR(vol_args);
2380 
2381 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2382 	namelen = strlen(vol_args->name);
2383 	if (strchr(vol_args->name, '/') ||
2384 	    strncmp(vol_args->name, "..", namelen) == 0) {
2385 		err = -EINVAL;
2386 		goto out;
2387 	}
2388 
2389 	err = mnt_want_write_file(file);
2390 	if (err)
2391 		goto out;
2392 
2393 
2394 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2395 	if (err == -EINTR)
2396 		goto out_drop_write;
2397 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2398 	if (IS_ERR(dentry)) {
2399 		err = PTR_ERR(dentry);
2400 		goto out_unlock_dir;
2401 	}
2402 
2403 	if (d_really_is_negative(dentry)) {
2404 		err = -ENOENT;
2405 		goto out_dput;
2406 	}
2407 
2408 	inode = d_inode(dentry);
2409 	dest = BTRFS_I(inode)->root;
2410 	if (!capable(CAP_SYS_ADMIN)) {
2411 		/*
2412 		 * Regular user.  Only allow this with a special mount
2413 		 * option, when the user has write+exec access to the
2414 		 * subvol root, and when rmdir(2) would have been
2415 		 * allowed.
2416 		 *
2417 		 * Note that this is _not_ check that the subvol is
2418 		 * empty or doesn't contain data that we wouldn't
2419 		 * otherwise be able to delete.
2420 		 *
2421 		 * Users who want to delete empty subvols should try
2422 		 * rmdir(2).
2423 		 */
2424 		err = -EPERM;
2425 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2426 			goto out_dput;
2427 
2428 		/*
2429 		 * Do not allow deletion if the parent dir is the same
2430 		 * as the dir to be deleted.  That means the ioctl
2431 		 * must be called on the dentry referencing the root
2432 		 * of the subvol, not a random directory contained
2433 		 * within it.
2434 		 */
2435 		err = -EINVAL;
2436 		if (root == dest)
2437 			goto out_dput;
2438 
2439 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2440 		if (err)
2441 			goto out_dput;
2442 	}
2443 
2444 	/* check if subvolume may be deleted by a user */
2445 	err = btrfs_may_delete(dir, dentry, 1);
2446 	if (err)
2447 		goto out_dput;
2448 
2449 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2450 		err = -EINVAL;
2451 		goto out_dput;
2452 	}
2453 
2454 	inode_lock(inode);
2455 
2456 	/*
2457 	 * Don't allow to delete a subvolume with send in progress. This is
2458 	 * inside the i_mutex so the error handling that has to drop the bit
2459 	 * again is not run concurrently.
2460 	 */
2461 	spin_lock(&dest->root_item_lock);
2462 	root_flags = btrfs_root_flags(&dest->root_item);
2463 	if (dest->send_in_progress == 0) {
2464 		btrfs_set_root_flags(&dest->root_item,
2465 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2466 		spin_unlock(&dest->root_item_lock);
2467 	} else {
2468 		spin_unlock(&dest->root_item_lock);
2469 		btrfs_warn(fs_info,
2470 			   "Attempt to delete subvolume %llu during send",
2471 			   dest->root_key.objectid);
2472 		err = -EPERM;
2473 		goto out_unlock_inode;
2474 	}
2475 
2476 	down_write(&fs_info->subvol_sem);
2477 
2478 	err = may_destroy_subvol(dest);
2479 	if (err)
2480 		goto out_up_write;
2481 
2482 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2483 	/*
2484 	 * One for dir inode, two for dir entries, two for root
2485 	 * ref/backref.
2486 	 */
2487 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2488 					       5, &qgroup_reserved, true);
2489 	if (err)
2490 		goto out_up_write;
2491 
2492 	trans = btrfs_start_transaction(root, 0);
2493 	if (IS_ERR(trans)) {
2494 		err = PTR_ERR(trans);
2495 		goto out_release;
2496 	}
2497 	trans->block_rsv = &block_rsv;
2498 	trans->bytes_reserved = block_rsv.size;
2499 
2500 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2501 
2502 	ret = btrfs_unlink_subvol(trans, root, dir,
2503 				dest->root_key.objectid,
2504 				dentry->d_name.name,
2505 				dentry->d_name.len);
2506 	if (ret) {
2507 		err = ret;
2508 		btrfs_abort_transaction(trans, ret);
2509 		goto out_end_trans;
2510 	}
2511 
2512 	btrfs_record_root_in_trans(trans, dest);
2513 
2514 	memset(&dest->root_item.drop_progress, 0,
2515 		sizeof(dest->root_item.drop_progress));
2516 	dest->root_item.drop_level = 0;
2517 	btrfs_set_root_refs(&dest->root_item, 0);
2518 
2519 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2520 		ret = btrfs_insert_orphan_item(trans,
2521 					fs_info->tree_root,
2522 					dest->root_key.objectid);
2523 		if (ret) {
2524 			btrfs_abort_transaction(trans, ret);
2525 			err = ret;
2526 			goto out_end_trans;
2527 		}
2528 	}
2529 
2530 	ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2531 				  BTRFS_UUID_KEY_SUBVOL,
2532 				  dest->root_key.objectid);
2533 	if (ret && ret != -ENOENT) {
2534 		btrfs_abort_transaction(trans, ret);
2535 		err = ret;
2536 		goto out_end_trans;
2537 	}
2538 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2539 		ret = btrfs_uuid_tree_rem(trans, fs_info,
2540 					  dest->root_item.received_uuid,
2541 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2542 					  dest->root_key.objectid);
2543 		if (ret && ret != -ENOENT) {
2544 			btrfs_abort_transaction(trans, ret);
2545 			err = ret;
2546 			goto out_end_trans;
2547 		}
2548 	}
2549 
2550 out_end_trans:
2551 	trans->block_rsv = NULL;
2552 	trans->bytes_reserved = 0;
2553 	ret = btrfs_end_transaction(trans);
2554 	if (ret && !err)
2555 		err = ret;
2556 	inode->i_flags |= S_DEAD;
2557 out_release:
2558 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2559 out_up_write:
2560 	up_write(&fs_info->subvol_sem);
2561 	if (err) {
2562 		spin_lock(&dest->root_item_lock);
2563 		root_flags = btrfs_root_flags(&dest->root_item);
2564 		btrfs_set_root_flags(&dest->root_item,
2565 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2566 		spin_unlock(&dest->root_item_lock);
2567 	}
2568 out_unlock_inode:
2569 	inode_unlock(inode);
2570 	if (!err) {
2571 		d_invalidate(dentry);
2572 		btrfs_invalidate_inodes(dest);
2573 		d_delete(dentry);
2574 		ASSERT(dest->send_in_progress == 0);
2575 
2576 		/* the last ref */
2577 		if (dest->ino_cache_inode) {
2578 			iput(dest->ino_cache_inode);
2579 			dest->ino_cache_inode = NULL;
2580 		}
2581 	}
2582 out_dput:
2583 	dput(dentry);
2584 out_unlock_dir:
2585 	inode_unlock(dir);
2586 out_drop_write:
2587 	mnt_drop_write_file(file);
2588 out:
2589 	kfree(vol_args);
2590 	return err;
2591 }
2592 
2593 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2594 {
2595 	struct inode *inode = file_inode(file);
2596 	struct btrfs_root *root = BTRFS_I(inode)->root;
2597 	struct btrfs_ioctl_defrag_range_args *range;
2598 	int ret;
2599 
2600 	ret = mnt_want_write_file(file);
2601 	if (ret)
2602 		return ret;
2603 
2604 	if (btrfs_root_readonly(root)) {
2605 		ret = -EROFS;
2606 		goto out;
2607 	}
2608 
2609 	switch (inode->i_mode & S_IFMT) {
2610 	case S_IFDIR:
2611 		if (!capable(CAP_SYS_ADMIN)) {
2612 			ret = -EPERM;
2613 			goto out;
2614 		}
2615 		ret = btrfs_defrag_root(root);
2616 		break;
2617 	case S_IFREG:
2618 		if (!(file->f_mode & FMODE_WRITE)) {
2619 			ret = -EINVAL;
2620 			goto out;
2621 		}
2622 
2623 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2624 		if (!range) {
2625 			ret = -ENOMEM;
2626 			goto out;
2627 		}
2628 
2629 		if (argp) {
2630 			if (copy_from_user(range, argp,
2631 					   sizeof(*range))) {
2632 				ret = -EFAULT;
2633 				kfree(range);
2634 				goto out;
2635 			}
2636 			/* compression requires us to start the IO */
2637 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2638 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2639 				range->extent_thresh = (u32)-1;
2640 			}
2641 		} else {
2642 			/* the rest are all set to zero by kzalloc */
2643 			range->len = (u64)-1;
2644 		}
2645 		ret = btrfs_defrag_file(file_inode(file), file,
2646 					range, 0, 0);
2647 		if (ret > 0)
2648 			ret = 0;
2649 		kfree(range);
2650 		break;
2651 	default:
2652 		ret = -EINVAL;
2653 	}
2654 out:
2655 	mnt_drop_write_file(file);
2656 	return ret;
2657 }
2658 
2659 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2660 {
2661 	struct btrfs_ioctl_vol_args *vol_args;
2662 	int ret;
2663 
2664 	if (!capable(CAP_SYS_ADMIN))
2665 		return -EPERM;
2666 
2667 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2668 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2669 
2670 	mutex_lock(&fs_info->volume_mutex);
2671 	vol_args = memdup_user(arg, sizeof(*vol_args));
2672 	if (IS_ERR(vol_args)) {
2673 		ret = PTR_ERR(vol_args);
2674 		goto out;
2675 	}
2676 
2677 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2678 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2679 
2680 	if (!ret)
2681 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2682 
2683 	kfree(vol_args);
2684 out:
2685 	mutex_unlock(&fs_info->volume_mutex);
2686 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2687 	return ret;
2688 }
2689 
2690 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2691 {
2692 	struct inode *inode = file_inode(file);
2693 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2694 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2695 	int ret;
2696 
2697 	if (!capable(CAP_SYS_ADMIN))
2698 		return -EPERM;
2699 
2700 	ret = mnt_want_write_file(file);
2701 	if (ret)
2702 		return ret;
2703 
2704 	vol_args = memdup_user(arg, sizeof(*vol_args));
2705 	if (IS_ERR(vol_args)) {
2706 		ret = PTR_ERR(vol_args);
2707 		goto err_drop;
2708 	}
2709 
2710 	/* Check for compatibility reject unknown flags */
2711 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2712 		return -EOPNOTSUPP;
2713 
2714 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2715 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2716 		goto out;
2717 	}
2718 
2719 	mutex_lock(&fs_info->volume_mutex);
2720 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2721 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2722 	} else {
2723 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2724 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2725 	}
2726 	mutex_unlock(&fs_info->volume_mutex);
2727 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2728 
2729 	if (!ret) {
2730 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2731 			btrfs_info(fs_info, "device deleted: id %llu",
2732 					vol_args->devid);
2733 		else
2734 			btrfs_info(fs_info, "device deleted: %s",
2735 					vol_args->name);
2736 	}
2737 out:
2738 	kfree(vol_args);
2739 err_drop:
2740 	mnt_drop_write_file(file);
2741 	return ret;
2742 }
2743 
2744 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2745 {
2746 	struct inode *inode = file_inode(file);
2747 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2748 	struct btrfs_ioctl_vol_args *vol_args;
2749 	int ret;
2750 
2751 	if (!capable(CAP_SYS_ADMIN))
2752 		return -EPERM;
2753 
2754 	ret = mnt_want_write_file(file);
2755 	if (ret)
2756 		return ret;
2757 
2758 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2759 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2760 		goto out_drop_write;
2761 	}
2762 
2763 	vol_args = memdup_user(arg, sizeof(*vol_args));
2764 	if (IS_ERR(vol_args)) {
2765 		ret = PTR_ERR(vol_args);
2766 		goto out;
2767 	}
2768 
2769 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2770 	mutex_lock(&fs_info->volume_mutex);
2771 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2772 	mutex_unlock(&fs_info->volume_mutex);
2773 
2774 	if (!ret)
2775 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2776 	kfree(vol_args);
2777 out:
2778 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2779 out_drop_write:
2780 	mnt_drop_write_file(file);
2781 
2782 	return ret;
2783 }
2784 
2785 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2786 				void __user *arg)
2787 {
2788 	struct btrfs_ioctl_fs_info_args *fi_args;
2789 	struct btrfs_device *device;
2790 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2791 	int ret = 0;
2792 
2793 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2794 	if (!fi_args)
2795 		return -ENOMEM;
2796 
2797 	mutex_lock(&fs_devices->device_list_mutex);
2798 	fi_args->num_devices = fs_devices->num_devices;
2799 	memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2800 
2801 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2802 		if (device->devid > fi_args->max_id)
2803 			fi_args->max_id = device->devid;
2804 	}
2805 	mutex_unlock(&fs_devices->device_list_mutex);
2806 
2807 	fi_args->nodesize = fs_info->super_copy->nodesize;
2808 	fi_args->sectorsize = fs_info->super_copy->sectorsize;
2809 	fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2810 
2811 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2812 		ret = -EFAULT;
2813 
2814 	kfree(fi_args);
2815 	return ret;
2816 }
2817 
2818 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2819 				 void __user *arg)
2820 {
2821 	struct btrfs_ioctl_dev_info_args *di_args;
2822 	struct btrfs_device *dev;
2823 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2824 	int ret = 0;
2825 	char *s_uuid = NULL;
2826 
2827 	di_args = memdup_user(arg, sizeof(*di_args));
2828 	if (IS_ERR(di_args))
2829 		return PTR_ERR(di_args);
2830 
2831 	if (!btrfs_is_empty_uuid(di_args->uuid))
2832 		s_uuid = di_args->uuid;
2833 
2834 	mutex_lock(&fs_devices->device_list_mutex);
2835 	dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2836 
2837 	if (!dev) {
2838 		ret = -ENODEV;
2839 		goto out;
2840 	}
2841 
2842 	di_args->devid = dev->devid;
2843 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2844 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2845 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2846 	if (dev->name) {
2847 		struct rcu_string *name;
2848 
2849 		rcu_read_lock();
2850 		name = rcu_dereference(dev->name);
2851 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2852 		rcu_read_unlock();
2853 		di_args->path[sizeof(di_args->path) - 1] = 0;
2854 	} else {
2855 		di_args->path[0] = '\0';
2856 	}
2857 
2858 out:
2859 	mutex_unlock(&fs_devices->device_list_mutex);
2860 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2861 		ret = -EFAULT;
2862 
2863 	kfree(di_args);
2864 	return ret;
2865 }
2866 
2867 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2868 {
2869 	struct page *page;
2870 
2871 	page = grab_cache_page(inode->i_mapping, index);
2872 	if (!page)
2873 		return ERR_PTR(-ENOMEM);
2874 
2875 	if (!PageUptodate(page)) {
2876 		int ret;
2877 
2878 		ret = btrfs_readpage(NULL, page);
2879 		if (ret)
2880 			return ERR_PTR(ret);
2881 		lock_page(page);
2882 		if (!PageUptodate(page)) {
2883 			unlock_page(page);
2884 			put_page(page);
2885 			return ERR_PTR(-EIO);
2886 		}
2887 		if (page->mapping != inode->i_mapping) {
2888 			unlock_page(page);
2889 			put_page(page);
2890 			return ERR_PTR(-EAGAIN);
2891 		}
2892 	}
2893 
2894 	return page;
2895 }
2896 
2897 static int gather_extent_pages(struct inode *inode, struct page **pages,
2898 			       int num_pages, u64 off)
2899 {
2900 	int i;
2901 	pgoff_t index = off >> PAGE_SHIFT;
2902 
2903 	for (i = 0; i < num_pages; i++) {
2904 again:
2905 		pages[i] = extent_same_get_page(inode, index + i);
2906 		if (IS_ERR(pages[i])) {
2907 			int err = PTR_ERR(pages[i]);
2908 
2909 			if (err == -EAGAIN)
2910 				goto again;
2911 			pages[i] = NULL;
2912 			return err;
2913 		}
2914 	}
2915 	return 0;
2916 }
2917 
2918 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2919 			     bool retry_range_locking)
2920 {
2921 	/*
2922 	 * Do any pending delalloc/csum calculations on inode, one way or
2923 	 * another, and lock file content.
2924 	 * The locking order is:
2925 	 *
2926 	 *   1) pages
2927 	 *   2) range in the inode's io tree
2928 	 */
2929 	while (1) {
2930 		struct btrfs_ordered_extent *ordered;
2931 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2932 		ordered = btrfs_lookup_first_ordered_extent(inode,
2933 							    off + len - 1);
2934 		if ((!ordered ||
2935 		     ordered->file_offset + ordered->len <= off ||
2936 		     ordered->file_offset >= off + len) &&
2937 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2938 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2939 			if (ordered)
2940 				btrfs_put_ordered_extent(ordered);
2941 			break;
2942 		}
2943 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2944 		if (ordered)
2945 			btrfs_put_ordered_extent(ordered);
2946 		if (!retry_range_locking)
2947 			return -EAGAIN;
2948 		btrfs_wait_ordered_range(inode, off, len);
2949 	}
2950 	return 0;
2951 }
2952 
2953 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2954 {
2955 	inode_unlock(inode1);
2956 	inode_unlock(inode2);
2957 }
2958 
2959 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2960 {
2961 	if (inode1 < inode2)
2962 		swap(inode1, inode2);
2963 
2964 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2965 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2966 }
2967 
2968 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2969 				      struct inode *inode2, u64 loff2, u64 len)
2970 {
2971 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2972 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2973 }
2974 
2975 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2976 				    struct inode *inode2, u64 loff2, u64 len,
2977 				    bool retry_range_locking)
2978 {
2979 	int ret;
2980 
2981 	if (inode1 < inode2) {
2982 		swap(inode1, inode2);
2983 		swap(loff1, loff2);
2984 	}
2985 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2986 	if (ret)
2987 		return ret;
2988 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2989 	if (ret)
2990 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2991 			      loff1 + len - 1);
2992 	return ret;
2993 }
2994 
2995 struct cmp_pages {
2996 	int		num_pages;
2997 	struct page	**src_pages;
2998 	struct page	**dst_pages;
2999 };
3000 
3001 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3002 {
3003 	int i;
3004 	struct page *pg;
3005 
3006 	for (i = 0; i < cmp->num_pages; i++) {
3007 		pg = cmp->src_pages[i];
3008 		if (pg) {
3009 			unlock_page(pg);
3010 			put_page(pg);
3011 		}
3012 		pg = cmp->dst_pages[i];
3013 		if (pg) {
3014 			unlock_page(pg);
3015 			put_page(pg);
3016 		}
3017 	}
3018 	kfree(cmp->src_pages);
3019 	kfree(cmp->dst_pages);
3020 }
3021 
3022 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3023 				  struct inode *dst, u64 dst_loff,
3024 				  u64 len, struct cmp_pages *cmp)
3025 {
3026 	int ret;
3027 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3028 	struct page **src_pgarr, **dst_pgarr;
3029 
3030 	/*
3031 	 * We must gather up all the pages before we initiate our
3032 	 * extent locking. We use an array for the page pointers. Size
3033 	 * of the array is bounded by len, which is in turn bounded by
3034 	 * BTRFS_MAX_DEDUPE_LEN.
3035 	 */
3036 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3037 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3038 	if (!src_pgarr || !dst_pgarr) {
3039 		kfree(src_pgarr);
3040 		kfree(dst_pgarr);
3041 		return -ENOMEM;
3042 	}
3043 	cmp->num_pages = num_pages;
3044 	cmp->src_pages = src_pgarr;
3045 	cmp->dst_pages = dst_pgarr;
3046 
3047 	/*
3048 	 * If deduping ranges in the same inode, locking rules make it mandatory
3049 	 * to always lock pages in ascending order to avoid deadlocks with
3050 	 * concurrent tasks (such as starting writeback/delalloc).
3051 	 */
3052 	if (src == dst && dst_loff < loff) {
3053 		swap(src_pgarr, dst_pgarr);
3054 		swap(loff, dst_loff);
3055 	}
3056 
3057 	ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3058 	if (ret)
3059 		goto out;
3060 
3061 	ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3062 
3063 out:
3064 	if (ret)
3065 		btrfs_cmp_data_free(cmp);
3066 	return 0;
3067 }
3068 
3069 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3070 {
3071 	int ret = 0;
3072 	int i;
3073 	struct page *src_page, *dst_page;
3074 	unsigned int cmp_len = PAGE_SIZE;
3075 	void *addr, *dst_addr;
3076 
3077 	i = 0;
3078 	while (len) {
3079 		if (len < PAGE_SIZE)
3080 			cmp_len = len;
3081 
3082 		BUG_ON(i >= cmp->num_pages);
3083 
3084 		src_page = cmp->src_pages[i];
3085 		dst_page = cmp->dst_pages[i];
3086 		ASSERT(PageLocked(src_page));
3087 		ASSERT(PageLocked(dst_page));
3088 
3089 		addr = kmap_atomic(src_page);
3090 		dst_addr = kmap_atomic(dst_page);
3091 
3092 		flush_dcache_page(src_page);
3093 		flush_dcache_page(dst_page);
3094 
3095 		if (memcmp(addr, dst_addr, cmp_len))
3096 			ret = -EBADE;
3097 
3098 		kunmap_atomic(addr);
3099 		kunmap_atomic(dst_addr);
3100 
3101 		if (ret)
3102 			break;
3103 
3104 		len -= cmp_len;
3105 		i++;
3106 	}
3107 
3108 	return ret;
3109 }
3110 
3111 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3112 				     u64 olen)
3113 {
3114 	u64 len = *plen;
3115 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3116 
3117 	if (off + olen > inode->i_size || off + olen < off)
3118 		return -EINVAL;
3119 
3120 	/* if we extend to eof, continue to block boundary */
3121 	if (off + len == inode->i_size)
3122 		*plen = len = ALIGN(inode->i_size, bs) - off;
3123 
3124 	/* Check that we are block aligned - btrfs_clone() requires this */
3125 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3126 		return -EINVAL;
3127 
3128 	return 0;
3129 }
3130 
3131 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3132 			     struct inode *dst, u64 dst_loff)
3133 {
3134 	int ret;
3135 	u64 len = olen;
3136 	struct cmp_pages cmp;
3137 	bool same_inode = (src == dst);
3138 	u64 same_lock_start = 0;
3139 	u64 same_lock_len = 0;
3140 
3141 	if (len == 0)
3142 		return 0;
3143 
3144 	if (same_inode)
3145 		inode_lock(src);
3146 	else
3147 		btrfs_double_inode_lock(src, dst);
3148 
3149 	ret = extent_same_check_offsets(src, loff, &len, olen);
3150 	if (ret)
3151 		goto out_unlock;
3152 
3153 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3154 	if (ret)
3155 		goto out_unlock;
3156 
3157 	if (same_inode) {
3158 		/*
3159 		 * Single inode case wants the same checks, except we
3160 		 * don't want our length pushed out past i_size as
3161 		 * comparing that data range makes no sense.
3162 		 *
3163 		 * extent_same_check_offsets() will do this for an
3164 		 * unaligned length at i_size, so catch it here and
3165 		 * reject the request.
3166 		 *
3167 		 * This effectively means we require aligned extents
3168 		 * for the single-inode case, whereas the other cases
3169 		 * allow an unaligned length so long as it ends at
3170 		 * i_size.
3171 		 */
3172 		if (len != olen) {
3173 			ret = -EINVAL;
3174 			goto out_unlock;
3175 		}
3176 
3177 		/* Check for overlapping ranges */
3178 		if (dst_loff + len > loff && dst_loff < loff + len) {
3179 			ret = -EINVAL;
3180 			goto out_unlock;
3181 		}
3182 
3183 		same_lock_start = min_t(u64, loff, dst_loff);
3184 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3185 	}
3186 
3187 	/* don't make the dst file partly checksummed */
3188 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3189 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3190 		ret = -EINVAL;
3191 		goto out_unlock;
3192 	}
3193 
3194 again:
3195 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3196 	if (ret)
3197 		goto out_unlock;
3198 
3199 	if (same_inode)
3200 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3201 					false);
3202 	else
3203 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3204 					       false);
3205 	/*
3206 	 * If one of the inodes has dirty pages in the respective range or
3207 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3208 	 * extents in the range. We must unlock the pages and the ranges in the
3209 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3210 	 * pages) and when waiting for ordered extents to complete (they require
3211 	 * range locking).
3212 	 */
3213 	if (ret == -EAGAIN) {
3214 		/*
3215 		 * Ranges in the io trees already unlocked. Now unlock all
3216 		 * pages before waiting for all IO to complete.
3217 		 */
3218 		btrfs_cmp_data_free(&cmp);
3219 		if (same_inode) {
3220 			btrfs_wait_ordered_range(src, same_lock_start,
3221 						 same_lock_len);
3222 		} else {
3223 			btrfs_wait_ordered_range(src, loff, len);
3224 			btrfs_wait_ordered_range(dst, dst_loff, len);
3225 		}
3226 		goto again;
3227 	}
3228 	ASSERT(ret == 0);
3229 	if (WARN_ON(ret)) {
3230 		/* ranges in the io trees already unlocked */
3231 		btrfs_cmp_data_free(&cmp);
3232 		return ret;
3233 	}
3234 
3235 	/* pass original length for comparison so we stay within i_size */
3236 	ret = btrfs_cmp_data(olen, &cmp);
3237 	if (ret == 0)
3238 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3239 
3240 	if (same_inode)
3241 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3242 			      same_lock_start + same_lock_len - 1);
3243 	else
3244 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3245 
3246 	btrfs_cmp_data_free(&cmp);
3247 out_unlock:
3248 	if (same_inode)
3249 		inode_unlock(src);
3250 	else
3251 		btrfs_double_inode_unlock(src, dst);
3252 
3253 	return ret;
3254 }
3255 
3256 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3257 
3258 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3259 				struct file *dst_file, u64 dst_loff)
3260 {
3261 	struct inode *src = file_inode(src_file);
3262 	struct inode *dst = file_inode(dst_file);
3263 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3264 	ssize_t res;
3265 
3266 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3267 		olen = BTRFS_MAX_DEDUPE_LEN;
3268 
3269 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3270 		/*
3271 		 * Btrfs does not support blocksize < page_size. As a
3272 		 * result, btrfs_cmp_data() won't correctly handle
3273 		 * this situation without an update.
3274 		 */
3275 		return -EINVAL;
3276 	}
3277 
3278 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3279 	if (res)
3280 		return res;
3281 	return olen;
3282 }
3283 
3284 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3285 				     struct inode *inode,
3286 				     u64 endoff,
3287 				     const u64 destoff,
3288 				     const u64 olen,
3289 				     int no_time_update)
3290 {
3291 	struct btrfs_root *root = BTRFS_I(inode)->root;
3292 	int ret;
3293 
3294 	inode_inc_iversion(inode);
3295 	if (!no_time_update)
3296 		inode->i_mtime = inode->i_ctime = current_time(inode);
3297 	/*
3298 	 * We round up to the block size at eof when determining which
3299 	 * extents to clone above, but shouldn't round up the file size.
3300 	 */
3301 	if (endoff > destoff + olen)
3302 		endoff = destoff + olen;
3303 	if (endoff > inode->i_size)
3304 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3305 
3306 	ret = btrfs_update_inode(trans, root, inode);
3307 	if (ret) {
3308 		btrfs_abort_transaction(trans, ret);
3309 		btrfs_end_transaction(trans);
3310 		goto out;
3311 	}
3312 	ret = btrfs_end_transaction(trans);
3313 out:
3314 	return ret;
3315 }
3316 
3317 static void clone_update_extent_map(struct btrfs_inode *inode,
3318 				    const struct btrfs_trans_handle *trans,
3319 				    const struct btrfs_path *path,
3320 				    const u64 hole_offset,
3321 				    const u64 hole_len)
3322 {
3323 	struct extent_map_tree *em_tree = &inode->extent_tree;
3324 	struct extent_map *em;
3325 	int ret;
3326 
3327 	em = alloc_extent_map();
3328 	if (!em) {
3329 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3330 		return;
3331 	}
3332 
3333 	if (path) {
3334 		struct btrfs_file_extent_item *fi;
3335 
3336 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3337 				    struct btrfs_file_extent_item);
3338 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3339 		em->generation = -1;
3340 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3341 		    BTRFS_FILE_EXTENT_INLINE)
3342 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3343 					&inode->runtime_flags);
3344 	} else {
3345 		em->start = hole_offset;
3346 		em->len = hole_len;
3347 		em->ram_bytes = em->len;
3348 		em->orig_start = hole_offset;
3349 		em->block_start = EXTENT_MAP_HOLE;
3350 		em->block_len = 0;
3351 		em->orig_block_len = 0;
3352 		em->compress_type = BTRFS_COMPRESS_NONE;
3353 		em->generation = trans->transid;
3354 	}
3355 
3356 	while (1) {
3357 		write_lock(&em_tree->lock);
3358 		ret = add_extent_mapping(em_tree, em, 1);
3359 		write_unlock(&em_tree->lock);
3360 		if (ret != -EEXIST) {
3361 			free_extent_map(em);
3362 			break;
3363 		}
3364 		btrfs_drop_extent_cache(inode, em->start,
3365 					em->start + em->len - 1, 0);
3366 	}
3367 
3368 	if (ret)
3369 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3370 }
3371 
3372 /*
3373  * Make sure we do not end up inserting an inline extent into a file that has
3374  * already other (non-inline) extents. If a file has an inline extent it can
3375  * not have any other extents and the (single) inline extent must start at the
3376  * file offset 0. Failing to respect these rules will lead to file corruption,
3377  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3378  *
3379  * We can have extents that have been already written to disk or we can have
3380  * dirty ranges still in delalloc, in which case the extent maps and items are
3381  * created only when we run delalloc, and the delalloc ranges might fall outside
3382  * the range we are currently locking in the inode's io tree. So we check the
3383  * inode's i_size because of that (i_size updates are done while holding the
3384  * i_mutex, which we are holding here).
3385  * We also check to see if the inode has a size not greater than "datal" but has
3386  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3387  * protected against such concurrent fallocate calls by the i_mutex).
3388  *
3389  * If the file has no extents but a size greater than datal, do not allow the
3390  * copy because we would need turn the inline extent into a non-inline one (even
3391  * with NO_HOLES enabled). If we find our destination inode only has one inline
3392  * extent, just overwrite it with the source inline extent if its size is less
3393  * than the source extent's size, or we could copy the source inline extent's
3394  * data into the destination inode's inline extent if the later is greater then
3395  * the former.
3396  */
3397 static int clone_copy_inline_extent(struct inode *dst,
3398 				    struct btrfs_trans_handle *trans,
3399 				    struct btrfs_path *path,
3400 				    struct btrfs_key *new_key,
3401 				    const u64 drop_start,
3402 				    const u64 datal,
3403 				    const u64 skip,
3404 				    const u64 size,
3405 				    char *inline_data)
3406 {
3407 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3408 	struct btrfs_root *root = BTRFS_I(dst)->root;
3409 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3410 				      fs_info->sectorsize);
3411 	int ret;
3412 	struct btrfs_key key;
3413 
3414 	if (new_key->offset > 0)
3415 		return -EOPNOTSUPP;
3416 
3417 	key.objectid = btrfs_ino(BTRFS_I(dst));
3418 	key.type = BTRFS_EXTENT_DATA_KEY;
3419 	key.offset = 0;
3420 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3421 	if (ret < 0) {
3422 		return ret;
3423 	} else if (ret > 0) {
3424 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3425 			ret = btrfs_next_leaf(root, path);
3426 			if (ret < 0)
3427 				return ret;
3428 			else if (ret > 0)
3429 				goto copy_inline_extent;
3430 		}
3431 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3432 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3433 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3434 			ASSERT(key.offset > 0);
3435 			return -EOPNOTSUPP;
3436 		}
3437 	} else if (i_size_read(dst) <= datal) {
3438 		struct btrfs_file_extent_item *ei;
3439 		u64 ext_len;
3440 
3441 		/*
3442 		 * If the file size is <= datal, make sure there are no other
3443 		 * extents following (can happen do to an fallocate call with
3444 		 * the flag FALLOC_FL_KEEP_SIZE).
3445 		 */
3446 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3447 				    struct btrfs_file_extent_item);
3448 		/*
3449 		 * If it's an inline extent, it can not have other extents
3450 		 * following it.
3451 		 */
3452 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3453 		    BTRFS_FILE_EXTENT_INLINE)
3454 			goto copy_inline_extent;
3455 
3456 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3457 		if (ext_len > aligned_end)
3458 			return -EOPNOTSUPP;
3459 
3460 		ret = btrfs_next_item(root, path);
3461 		if (ret < 0) {
3462 			return ret;
3463 		} else if (ret == 0) {
3464 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3465 					      path->slots[0]);
3466 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3467 			    key.type == BTRFS_EXTENT_DATA_KEY)
3468 				return -EOPNOTSUPP;
3469 		}
3470 	}
3471 
3472 copy_inline_extent:
3473 	/*
3474 	 * We have no extent items, or we have an extent at offset 0 which may
3475 	 * or may not be inlined. All these cases are dealt the same way.
3476 	 */
3477 	if (i_size_read(dst) > datal) {
3478 		/*
3479 		 * If the destination inode has an inline extent...
3480 		 * This would require copying the data from the source inline
3481 		 * extent into the beginning of the destination's inline extent.
3482 		 * But this is really complex, both extents can be compressed
3483 		 * or just one of them, which would require decompressing and
3484 		 * re-compressing data (which could increase the new compressed
3485 		 * size, not allowing the compressed data to fit anymore in an
3486 		 * inline extent).
3487 		 * So just don't support this case for now (it should be rare,
3488 		 * we are not really saving space when cloning inline extents).
3489 		 */
3490 		return -EOPNOTSUPP;
3491 	}
3492 
3493 	btrfs_release_path(path);
3494 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3495 	if (ret)
3496 		return ret;
3497 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3498 	if (ret)
3499 		return ret;
3500 
3501 	if (skip) {
3502 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3503 
3504 		memmove(inline_data + start, inline_data + start + skip, datal);
3505 	}
3506 
3507 	write_extent_buffer(path->nodes[0], inline_data,
3508 			    btrfs_item_ptr_offset(path->nodes[0],
3509 						  path->slots[0]),
3510 			    size);
3511 	inode_add_bytes(dst, datal);
3512 
3513 	return 0;
3514 }
3515 
3516 /**
3517  * btrfs_clone() - clone a range from inode file to another
3518  *
3519  * @src: Inode to clone from
3520  * @inode: Inode to clone to
3521  * @off: Offset within source to start clone from
3522  * @olen: Original length, passed by user, of range to clone
3523  * @olen_aligned: Block-aligned value of olen
3524  * @destoff: Offset within @inode to start clone
3525  * @no_time_update: Whether to update mtime/ctime on the target inode
3526  */
3527 static int btrfs_clone(struct inode *src, struct inode *inode,
3528 		       const u64 off, const u64 olen, const u64 olen_aligned,
3529 		       const u64 destoff, int no_time_update)
3530 {
3531 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3532 	struct btrfs_root *root = BTRFS_I(inode)->root;
3533 	struct btrfs_path *path = NULL;
3534 	struct extent_buffer *leaf;
3535 	struct btrfs_trans_handle *trans;
3536 	char *buf = NULL;
3537 	struct btrfs_key key;
3538 	u32 nritems;
3539 	int slot;
3540 	int ret;
3541 	const u64 len = olen_aligned;
3542 	u64 last_dest_end = destoff;
3543 
3544 	ret = -ENOMEM;
3545 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3546 	if (!buf)
3547 		return ret;
3548 
3549 	path = btrfs_alloc_path();
3550 	if (!path) {
3551 		kvfree(buf);
3552 		return ret;
3553 	}
3554 
3555 	path->reada = READA_FORWARD;
3556 	/* clone data */
3557 	key.objectid = btrfs_ino(BTRFS_I(src));
3558 	key.type = BTRFS_EXTENT_DATA_KEY;
3559 	key.offset = off;
3560 
3561 	while (1) {
3562 		u64 next_key_min_offset = key.offset + 1;
3563 
3564 		/*
3565 		 * note the key will change type as we walk through the
3566 		 * tree.
3567 		 */
3568 		path->leave_spinning = 1;
3569 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3570 				0, 0);
3571 		if (ret < 0)
3572 			goto out;
3573 		/*
3574 		 * First search, if no extent item that starts at offset off was
3575 		 * found but the previous item is an extent item, it's possible
3576 		 * it might overlap our target range, therefore process it.
3577 		 */
3578 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3579 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3580 					      path->slots[0] - 1);
3581 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3582 				path->slots[0]--;
3583 		}
3584 
3585 		nritems = btrfs_header_nritems(path->nodes[0]);
3586 process_slot:
3587 		if (path->slots[0] >= nritems) {
3588 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3589 			if (ret < 0)
3590 				goto out;
3591 			if (ret > 0)
3592 				break;
3593 			nritems = btrfs_header_nritems(path->nodes[0]);
3594 		}
3595 		leaf = path->nodes[0];
3596 		slot = path->slots[0];
3597 
3598 		btrfs_item_key_to_cpu(leaf, &key, slot);
3599 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3600 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3601 			break;
3602 
3603 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3604 			struct btrfs_file_extent_item *extent;
3605 			int type;
3606 			u32 size;
3607 			struct btrfs_key new_key;
3608 			u64 disko = 0, diskl = 0;
3609 			u64 datao = 0, datal = 0;
3610 			u8 comp;
3611 			u64 drop_start;
3612 
3613 			extent = btrfs_item_ptr(leaf, slot,
3614 						struct btrfs_file_extent_item);
3615 			comp = btrfs_file_extent_compression(leaf, extent);
3616 			type = btrfs_file_extent_type(leaf, extent);
3617 			if (type == BTRFS_FILE_EXTENT_REG ||
3618 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3619 				disko = btrfs_file_extent_disk_bytenr(leaf,
3620 								      extent);
3621 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3622 								 extent);
3623 				datao = btrfs_file_extent_offset(leaf, extent);
3624 				datal = btrfs_file_extent_num_bytes(leaf,
3625 								    extent);
3626 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3627 				/* take upper bound, may be compressed */
3628 				datal = btrfs_file_extent_ram_bytes(leaf,
3629 								    extent);
3630 			}
3631 
3632 			/*
3633 			 * The first search might have left us at an extent
3634 			 * item that ends before our target range's start, can
3635 			 * happen if we have holes and NO_HOLES feature enabled.
3636 			 */
3637 			if (key.offset + datal <= off) {
3638 				path->slots[0]++;
3639 				goto process_slot;
3640 			} else if (key.offset >= off + len) {
3641 				break;
3642 			}
3643 			next_key_min_offset = key.offset + datal;
3644 			size = btrfs_item_size_nr(leaf, slot);
3645 			read_extent_buffer(leaf, buf,
3646 					   btrfs_item_ptr_offset(leaf, slot),
3647 					   size);
3648 
3649 			btrfs_release_path(path);
3650 			path->leave_spinning = 0;
3651 
3652 			memcpy(&new_key, &key, sizeof(new_key));
3653 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3654 			if (off <= key.offset)
3655 				new_key.offset = key.offset + destoff - off;
3656 			else
3657 				new_key.offset = destoff;
3658 
3659 			/*
3660 			 * Deal with a hole that doesn't have an extent item
3661 			 * that represents it (NO_HOLES feature enabled).
3662 			 * This hole is either in the middle of the cloning
3663 			 * range or at the beginning (fully overlaps it or
3664 			 * partially overlaps it).
3665 			 */
3666 			if (new_key.offset != last_dest_end)
3667 				drop_start = last_dest_end;
3668 			else
3669 				drop_start = new_key.offset;
3670 
3671 			/*
3672 			 * 1 - adjusting old extent (we may have to split it)
3673 			 * 1 - add new extent
3674 			 * 1 - inode update
3675 			 */
3676 			trans = btrfs_start_transaction(root, 3);
3677 			if (IS_ERR(trans)) {
3678 				ret = PTR_ERR(trans);
3679 				goto out;
3680 			}
3681 
3682 			if (type == BTRFS_FILE_EXTENT_REG ||
3683 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3684 				/*
3685 				 *    a  | --- range to clone ---|  b
3686 				 * | ------------- extent ------------- |
3687 				 */
3688 
3689 				/* subtract range b */
3690 				if (key.offset + datal > off + len)
3691 					datal = off + len - key.offset;
3692 
3693 				/* subtract range a */
3694 				if (off > key.offset) {
3695 					datao += off - key.offset;
3696 					datal -= off - key.offset;
3697 				}
3698 
3699 				ret = btrfs_drop_extents(trans, root, inode,
3700 							 drop_start,
3701 							 new_key.offset + datal,
3702 							 1);
3703 				if (ret) {
3704 					if (ret != -EOPNOTSUPP)
3705 						btrfs_abort_transaction(trans,
3706 									ret);
3707 					btrfs_end_transaction(trans);
3708 					goto out;
3709 				}
3710 
3711 				ret = btrfs_insert_empty_item(trans, root, path,
3712 							      &new_key, size);
3713 				if (ret) {
3714 					btrfs_abort_transaction(trans, ret);
3715 					btrfs_end_transaction(trans);
3716 					goto out;
3717 				}
3718 
3719 				leaf = path->nodes[0];
3720 				slot = path->slots[0];
3721 				write_extent_buffer(leaf, buf,
3722 					    btrfs_item_ptr_offset(leaf, slot),
3723 					    size);
3724 
3725 				extent = btrfs_item_ptr(leaf, slot,
3726 						struct btrfs_file_extent_item);
3727 
3728 				/* disko == 0 means it's a hole */
3729 				if (!disko)
3730 					datao = 0;
3731 
3732 				btrfs_set_file_extent_offset(leaf, extent,
3733 							     datao);
3734 				btrfs_set_file_extent_num_bytes(leaf, extent,
3735 								datal);
3736 
3737 				if (disko) {
3738 					inode_add_bytes(inode, datal);
3739 					ret = btrfs_inc_extent_ref(trans,
3740 							fs_info,
3741 							disko, diskl, 0,
3742 							root->root_key.objectid,
3743 							btrfs_ino(BTRFS_I(inode)),
3744 							new_key.offset - datao);
3745 					if (ret) {
3746 						btrfs_abort_transaction(trans,
3747 									ret);
3748 						btrfs_end_transaction(trans);
3749 						goto out;
3750 
3751 					}
3752 				}
3753 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3754 				u64 skip = 0;
3755 				u64 trim = 0;
3756 
3757 				if (off > key.offset) {
3758 					skip = off - key.offset;
3759 					new_key.offset += skip;
3760 				}
3761 
3762 				if (key.offset + datal > off + len)
3763 					trim = key.offset + datal - (off + len);
3764 
3765 				if (comp && (skip || trim)) {
3766 					ret = -EINVAL;
3767 					btrfs_end_transaction(trans);
3768 					goto out;
3769 				}
3770 				size -= skip + trim;
3771 				datal -= skip + trim;
3772 
3773 				ret = clone_copy_inline_extent(inode,
3774 							       trans, path,
3775 							       &new_key,
3776 							       drop_start,
3777 							       datal,
3778 							       skip, size, buf);
3779 				if (ret) {
3780 					if (ret != -EOPNOTSUPP)
3781 						btrfs_abort_transaction(trans,
3782 									ret);
3783 					btrfs_end_transaction(trans);
3784 					goto out;
3785 				}
3786 				leaf = path->nodes[0];
3787 				slot = path->slots[0];
3788 			}
3789 
3790 			/* If we have an implicit hole (NO_HOLES feature). */
3791 			if (drop_start < new_key.offset)
3792 				clone_update_extent_map(BTRFS_I(inode), trans,
3793 						NULL, drop_start,
3794 						new_key.offset - drop_start);
3795 
3796 			clone_update_extent_map(BTRFS_I(inode), trans,
3797 					path, 0, 0);
3798 
3799 			btrfs_mark_buffer_dirty(leaf);
3800 			btrfs_release_path(path);
3801 
3802 			last_dest_end = ALIGN(new_key.offset + datal,
3803 					      fs_info->sectorsize);
3804 			ret = clone_finish_inode_update(trans, inode,
3805 							last_dest_end,
3806 							destoff, olen,
3807 							no_time_update);
3808 			if (ret)
3809 				goto out;
3810 			if (new_key.offset + datal >= destoff + len)
3811 				break;
3812 		}
3813 		btrfs_release_path(path);
3814 		key.offset = next_key_min_offset;
3815 
3816 		if (fatal_signal_pending(current)) {
3817 			ret = -EINTR;
3818 			goto out;
3819 		}
3820 	}
3821 	ret = 0;
3822 
3823 	if (last_dest_end < destoff + len) {
3824 		/*
3825 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3826 		 * fully or partially overlaps our cloning range at its end.
3827 		 */
3828 		btrfs_release_path(path);
3829 
3830 		/*
3831 		 * 1 - remove extent(s)
3832 		 * 1 - inode update
3833 		 */
3834 		trans = btrfs_start_transaction(root, 2);
3835 		if (IS_ERR(trans)) {
3836 			ret = PTR_ERR(trans);
3837 			goto out;
3838 		}
3839 		ret = btrfs_drop_extents(trans, root, inode,
3840 					 last_dest_end, destoff + len, 1);
3841 		if (ret) {
3842 			if (ret != -EOPNOTSUPP)
3843 				btrfs_abort_transaction(trans, ret);
3844 			btrfs_end_transaction(trans);
3845 			goto out;
3846 		}
3847 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3848 				last_dest_end,
3849 				destoff + len - last_dest_end);
3850 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3851 						destoff, olen, no_time_update);
3852 	}
3853 
3854 out:
3855 	btrfs_free_path(path);
3856 	kvfree(buf);
3857 	return ret;
3858 }
3859 
3860 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3861 					u64 off, u64 olen, u64 destoff)
3862 {
3863 	struct inode *inode = file_inode(file);
3864 	struct inode *src = file_inode(file_src);
3865 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3866 	struct btrfs_root *root = BTRFS_I(inode)->root;
3867 	int ret;
3868 	u64 len = olen;
3869 	u64 bs = fs_info->sb->s_blocksize;
3870 	int same_inode = src == inode;
3871 
3872 	/*
3873 	 * TODO:
3874 	 * - split compressed inline extents.  annoying: we need to
3875 	 *   decompress into destination's address_space (the file offset
3876 	 *   may change, so source mapping won't do), then recompress (or
3877 	 *   otherwise reinsert) a subrange.
3878 	 *
3879 	 * - split destination inode's inline extents.  The inline extents can
3880 	 *   be either compressed or non-compressed.
3881 	 */
3882 
3883 	if (btrfs_root_readonly(root))
3884 		return -EROFS;
3885 
3886 	if (file_src->f_path.mnt != file->f_path.mnt ||
3887 	    src->i_sb != inode->i_sb)
3888 		return -EXDEV;
3889 
3890 	/* don't make the dst file partly checksummed */
3891 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3892 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3893 		return -EINVAL;
3894 
3895 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3896 		return -EISDIR;
3897 
3898 	if (!same_inode) {
3899 		btrfs_double_inode_lock(src, inode);
3900 	} else {
3901 		inode_lock(src);
3902 	}
3903 
3904 	/* determine range to clone */
3905 	ret = -EINVAL;
3906 	if (off + len > src->i_size || off + len < off)
3907 		goto out_unlock;
3908 	if (len == 0)
3909 		olen = len = src->i_size - off;
3910 	/* if we extend to eof, continue to block boundary */
3911 	if (off + len == src->i_size)
3912 		len = ALIGN(src->i_size, bs) - off;
3913 
3914 	if (len == 0) {
3915 		ret = 0;
3916 		goto out_unlock;
3917 	}
3918 
3919 	/* verify the end result is block aligned */
3920 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3921 	    !IS_ALIGNED(destoff, bs))
3922 		goto out_unlock;
3923 
3924 	/* verify if ranges are overlapped within the same file */
3925 	if (same_inode) {
3926 		if (destoff + len > off && destoff < off + len)
3927 			goto out_unlock;
3928 	}
3929 
3930 	if (destoff > inode->i_size) {
3931 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3932 		if (ret)
3933 			goto out_unlock;
3934 	}
3935 
3936 	/*
3937 	 * Lock the target range too. Right after we replace the file extent
3938 	 * items in the fs tree (which now point to the cloned data), we might
3939 	 * have a worker replace them with extent items relative to a write
3940 	 * operation that was issued before this clone operation (i.e. confront
3941 	 * with inode.c:btrfs_finish_ordered_io).
3942 	 */
3943 	if (same_inode) {
3944 		u64 lock_start = min_t(u64, off, destoff);
3945 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3946 
3947 		ret = lock_extent_range(src, lock_start, lock_len, true);
3948 	} else {
3949 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3950 					       true);
3951 	}
3952 	ASSERT(ret == 0);
3953 	if (WARN_ON(ret)) {
3954 		/* ranges in the io trees already unlocked */
3955 		goto out_unlock;
3956 	}
3957 
3958 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3959 
3960 	if (same_inode) {
3961 		u64 lock_start = min_t(u64, off, destoff);
3962 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3963 
3964 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3965 	} else {
3966 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3967 	}
3968 	/*
3969 	 * Truncate page cache pages so that future reads will see the cloned
3970 	 * data immediately and not the previous data.
3971 	 */
3972 	truncate_inode_pages_range(&inode->i_data,
3973 				round_down(destoff, PAGE_SIZE),
3974 				round_up(destoff + len, PAGE_SIZE) - 1);
3975 out_unlock:
3976 	if (!same_inode)
3977 		btrfs_double_inode_unlock(src, inode);
3978 	else
3979 		inode_unlock(src);
3980 	return ret;
3981 }
3982 
3983 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3984 		struct file *dst_file, loff_t destoff, u64 len)
3985 {
3986 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3987 }
3988 
3989 /*
3990  * there are many ways the trans_start and trans_end ioctls can lead
3991  * to deadlocks.  They should only be used by applications that
3992  * basically own the machine, and have a very in depth understanding
3993  * of all the possible deadlocks and enospc problems.
3994  */
3995 static long btrfs_ioctl_trans_start(struct file *file)
3996 {
3997 	struct inode *inode = file_inode(file);
3998 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3999 	struct btrfs_root *root = BTRFS_I(inode)->root;
4000 	struct btrfs_trans_handle *trans;
4001 	int ret;
4002 
4003 	ret = -EPERM;
4004 	if (!capable(CAP_SYS_ADMIN))
4005 		goto out;
4006 
4007 	ret = -EINPROGRESS;
4008 	if (file->private_data)
4009 		goto out;
4010 
4011 	ret = -EROFS;
4012 	if (btrfs_root_readonly(root))
4013 		goto out;
4014 
4015 	ret = mnt_want_write_file(file);
4016 	if (ret)
4017 		goto out;
4018 
4019 	atomic_inc(&fs_info->open_ioctl_trans);
4020 
4021 	ret = -ENOMEM;
4022 	trans = btrfs_start_ioctl_transaction(root);
4023 	if (IS_ERR(trans))
4024 		goto out_drop;
4025 
4026 	file->private_data = trans;
4027 	return 0;
4028 
4029 out_drop:
4030 	atomic_dec(&fs_info->open_ioctl_trans);
4031 	mnt_drop_write_file(file);
4032 out:
4033 	return ret;
4034 }
4035 
4036 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4037 {
4038 	struct inode *inode = file_inode(file);
4039 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4040 	struct btrfs_root *root = BTRFS_I(inode)->root;
4041 	struct btrfs_root *new_root;
4042 	struct btrfs_dir_item *di;
4043 	struct btrfs_trans_handle *trans;
4044 	struct btrfs_path *path;
4045 	struct btrfs_key location;
4046 	struct btrfs_disk_key disk_key;
4047 	u64 objectid = 0;
4048 	u64 dir_id;
4049 	int ret;
4050 
4051 	if (!capable(CAP_SYS_ADMIN))
4052 		return -EPERM;
4053 
4054 	ret = mnt_want_write_file(file);
4055 	if (ret)
4056 		return ret;
4057 
4058 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4059 		ret = -EFAULT;
4060 		goto out;
4061 	}
4062 
4063 	if (!objectid)
4064 		objectid = BTRFS_FS_TREE_OBJECTID;
4065 
4066 	location.objectid = objectid;
4067 	location.type = BTRFS_ROOT_ITEM_KEY;
4068 	location.offset = (u64)-1;
4069 
4070 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4071 	if (IS_ERR(new_root)) {
4072 		ret = PTR_ERR(new_root);
4073 		goto out;
4074 	}
4075 
4076 	path = btrfs_alloc_path();
4077 	if (!path) {
4078 		ret = -ENOMEM;
4079 		goto out;
4080 	}
4081 	path->leave_spinning = 1;
4082 
4083 	trans = btrfs_start_transaction(root, 1);
4084 	if (IS_ERR(trans)) {
4085 		btrfs_free_path(path);
4086 		ret = PTR_ERR(trans);
4087 		goto out;
4088 	}
4089 
4090 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4091 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4092 				   dir_id, "default", 7, 1);
4093 	if (IS_ERR_OR_NULL(di)) {
4094 		btrfs_free_path(path);
4095 		btrfs_end_transaction(trans);
4096 		btrfs_err(fs_info,
4097 			  "Umm, you don't have the default diritem, this isn't going to work");
4098 		ret = -ENOENT;
4099 		goto out;
4100 	}
4101 
4102 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4103 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4104 	btrfs_mark_buffer_dirty(path->nodes[0]);
4105 	btrfs_free_path(path);
4106 
4107 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4108 	btrfs_end_transaction(trans);
4109 out:
4110 	mnt_drop_write_file(file);
4111 	return ret;
4112 }
4113 
4114 void btrfs_get_block_group_info(struct list_head *groups_list,
4115 				struct btrfs_ioctl_space_info *space)
4116 {
4117 	struct btrfs_block_group_cache *block_group;
4118 
4119 	space->total_bytes = 0;
4120 	space->used_bytes = 0;
4121 	space->flags = 0;
4122 	list_for_each_entry(block_group, groups_list, list) {
4123 		space->flags = block_group->flags;
4124 		space->total_bytes += block_group->key.offset;
4125 		space->used_bytes +=
4126 			btrfs_block_group_used(&block_group->item);
4127 	}
4128 }
4129 
4130 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4131 				   void __user *arg)
4132 {
4133 	struct btrfs_ioctl_space_args space_args;
4134 	struct btrfs_ioctl_space_info space;
4135 	struct btrfs_ioctl_space_info *dest;
4136 	struct btrfs_ioctl_space_info *dest_orig;
4137 	struct btrfs_ioctl_space_info __user *user_dest;
4138 	struct btrfs_space_info *info;
4139 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4140 		       BTRFS_BLOCK_GROUP_SYSTEM,
4141 		       BTRFS_BLOCK_GROUP_METADATA,
4142 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4143 	int num_types = 4;
4144 	int alloc_size;
4145 	int ret = 0;
4146 	u64 slot_count = 0;
4147 	int i, c;
4148 
4149 	if (copy_from_user(&space_args,
4150 			   (struct btrfs_ioctl_space_args __user *)arg,
4151 			   sizeof(space_args)))
4152 		return -EFAULT;
4153 
4154 	for (i = 0; i < num_types; i++) {
4155 		struct btrfs_space_info *tmp;
4156 
4157 		info = NULL;
4158 		rcu_read_lock();
4159 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4160 					list) {
4161 			if (tmp->flags == types[i]) {
4162 				info = tmp;
4163 				break;
4164 			}
4165 		}
4166 		rcu_read_unlock();
4167 
4168 		if (!info)
4169 			continue;
4170 
4171 		down_read(&info->groups_sem);
4172 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4173 			if (!list_empty(&info->block_groups[c]))
4174 				slot_count++;
4175 		}
4176 		up_read(&info->groups_sem);
4177 	}
4178 
4179 	/*
4180 	 * Global block reserve, exported as a space_info
4181 	 */
4182 	slot_count++;
4183 
4184 	/* space_slots == 0 means they are asking for a count */
4185 	if (space_args.space_slots == 0) {
4186 		space_args.total_spaces = slot_count;
4187 		goto out;
4188 	}
4189 
4190 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4191 
4192 	alloc_size = sizeof(*dest) * slot_count;
4193 
4194 	/* we generally have at most 6 or so space infos, one for each raid
4195 	 * level.  So, a whole page should be more than enough for everyone
4196 	 */
4197 	if (alloc_size > PAGE_SIZE)
4198 		return -ENOMEM;
4199 
4200 	space_args.total_spaces = 0;
4201 	dest = kmalloc(alloc_size, GFP_KERNEL);
4202 	if (!dest)
4203 		return -ENOMEM;
4204 	dest_orig = dest;
4205 
4206 	/* now we have a buffer to copy into */
4207 	for (i = 0; i < num_types; i++) {
4208 		struct btrfs_space_info *tmp;
4209 
4210 		if (!slot_count)
4211 			break;
4212 
4213 		info = NULL;
4214 		rcu_read_lock();
4215 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4216 					list) {
4217 			if (tmp->flags == types[i]) {
4218 				info = tmp;
4219 				break;
4220 			}
4221 		}
4222 		rcu_read_unlock();
4223 
4224 		if (!info)
4225 			continue;
4226 		down_read(&info->groups_sem);
4227 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4228 			if (!list_empty(&info->block_groups[c])) {
4229 				btrfs_get_block_group_info(
4230 					&info->block_groups[c], &space);
4231 				memcpy(dest, &space, sizeof(space));
4232 				dest++;
4233 				space_args.total_spaces++;
4234 				slot_count--;
4235 			}
4236 			if (!slot_count)
4237 				break;
4238 		}
4239 		up_read(&info->groups_sem);
4240 	}
4241 
4242 	/*
4243 	 * Add global block reserve
4244 	 */
4245 	if (slot_count) {
4246 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4247 
4248 		spin_lock(&block_rsv->lock);
4249 		space.total_bytes = block_rsv->size;
4250 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4251 		spin_unlock(&block_rsv->lock);
4252 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4253 		memcpy(dest, &space, sizeof(space));
4254 		space_args.total_spaces++;
4255 	}
4256 
4257 	user_dest = (struct btrfs_ioctl_space_info __user *)
4258 		(arg + sizeof(struct btrfs_ioctl_space_args));
4259 
4260 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4261 		ret = -EFAULT;
4262 
4263 	kfree(dest_orig);
4264 out:
4265 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4266 		ret = -EFAULT;
4267 
4268 	return ret;
4269 }
4270 
4271 /*
4272  * there are many ways the trans_start and trans_end ioctls can lead
4273  * to deadlocks.  They should only be used by applications that
4274  * basically own the machine, and have a very in depth understanding
4275  * of all the possible deadlocks and enospc problems.
4276  */
4277 long btrfs_ioctl_trans_end(struct file *file)
4278 {
4279 	struct inode *inode = file_inode(file);
4280 	struct btrfs_root *root = BTRFS_I(inode)->root;
4281 	struct btrfs_trans_handle *trans;
4282 
4283 	trans = file->private_data;
4284 	if (!trans)
4285 		return -EINVAL;
4286 	file->private_data = NULL;
4287 
4288 	btrfs_end_transaction(trans);
4289 
4290 	atomic_dec(&root->fs_info->open_ioctl_trans);
4291 
4292 	mnt_drop_write_file(file);
4293 	return 0;
4294 }
4295 
4296 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4297 					    void __user *argp)
4298 {
4299 	struct btrfs_trans_handle *trans;
4300 	u64 transid;
4301 	int ret;
4302 
4303 	trans = btrfs_attach_transaction_barrier(root);
4304 	if (IS_ERR(trans)) {
4305 		if (PTR_ERR(trans) != -ENOENT)
4306 			return PTR_ERR(trans);
4307 
4308 		/* No running transaction, don't bother */
4309 		transid = root->fs_info->last_trans_committed;
4310 		goto out;
4311 	}
4312 	transid = trans->transid;
4313 	ret = btrfs_commit_transaction_async(trans, 0);
4314 	if (ret) {
4315 		btrfs_end_transaction(trans);
4316 		return ret;
4317 	}
4318 out:
4319 	if (argp)
4320 		if (copy_to_user(argp, &transid, sizeof(transid)))
4321 			return -EFAULT;
4322 	return 0;
4323 }
4324 
4325 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4326 					   void __user *argp)
4327 {
4328 	u64 transid;
4329 
4330 	if (argp) {
4331 		if (copy_from_user(&transid, argp, sizeof(transid)))
4332 			return -EFAULT;
4333 	} else {
4334 		transid = 0;  /* current trans */
4335 	}
4336 	return btrfs_wait_for_commit(fs_info, transid);
4337 }
4338 
4339 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4340 {
4341 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4342 	struct btrfs_ioctl_scrub_args *sa;
4343 	int ret;
4344 
4345 	if (!capable(CAP_SYS_ADMIN))
4346 		return -EPERM;
4347 
4348 	sa = memdup_user(arg, sizeof(*sa));
4349 	if (IS_ERR(sa))
4350 		return PTR_ERR(sa);
4351 
4352 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4353 		ret = mnt_want_write_file(file);
4354 		if (ret)
4355 			goto out;
4356 	}
4357 
4358 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4359 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4360 			      0);
4361 
4362 	if (copy_to_user(arg, sa, sizeof(*sa)))
4363 		ret = -EFAULT;
4364 
4365 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4366 		mnt_drop_write_file(file);
4367 out:
4368 	kfree(sa);
4369 	return ret;
4370 }
4371 
4372 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4373 {
4374 	if (!capable(CAP_SYS_ADMIN))
4375 		return -EPERM;
4376 
4377 	return btrfs_scrub_cancel(fs_info);
4378 }
4379 
4380 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4381 				       void __user *arg)
4382 {
4383 	struct btrfs_ioctl_scrub_args *sa;
4384 	int ret;
4385 
4386 	if (!capable(CAP_SYS_ADMIN))
4387 		return -EPERM;
4388 
4389 	sa = memdup_user(arg, sizeof(*sa));
4390 	if (IS_ERR(sa))
4391 		return PTR_ERR(sa);
4392 
4393 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4394 
4395 	if (copy_to_user(arg, sa, sizeof(*sa)))
4396 		ret = -EFAULT;
4397 
4398 	kfree(sa);
4399 	return ret;
4400 }
4401 
4402 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4403 				      void __user *arg)
4404 {
4405 	struct btrfs_ioctl_get_dev_stats *sa;
4406 	int ret;
4407 
4408 	sa = memdup_user(arg, sizeof(*sa));
4409 	if (IS_ERR(sa))
4410 		return PTR_ERR(sa);
4411 
4412 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4413 		kfree(sa);
4414 		return -EPERM;
4415 	}
4416 
4417 	ret = btrfs_get_dev_stats(fs_info, sa);
4418 
4419 	if (copy_to_user(arg, sa, sizeof(*sa)))
4420 		ret = -EFAULT;
4421 
4422 	kfree(sa);
4423 	return ret;
4424 }
4425 
4426 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4427 				    void __user *arg)
4428 {
4429 	struct btrfs_ioctl_dev_replace_args *p;
4430 	int ret;
4431 
4432 	if (!capable(CAP_SYS_ADMIN))
4433 		return -EPERM;
4434 
4435 	p = memdup_user(arg, sizeof(*p));
4436 	if (IS_ERR(p))
4437 		return PTR_ERR(p);
4438 
4439 	switch (p->cmd) {
4440 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4441 		if (fs_info->sb->s_flags & MS_RDONLY) {
4442 			ret = -EROFS;
4443 			goto out;
4444 		}
4445 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4446 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4447 		} else {
4448 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4449 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4450 		}
4451 		break;
4452 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4453 		btrfs_dev_replace_status(fs_info, p);
4454 		ret = 0;
4455 		break;
4456 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4457 		ret = btrfs_dev_replace_cancel(fs_info, p);
4458 		break;
4459 	default:
4460 		ret = -EINVAL;
4461 		break;
4462 	}
4463 
4464 	if (copy_to_user(arg, p, sizeof(*p)))
4465 		ret = -EFAULT;
4466 out:
4467 	kfree(p);
4468 	return ret;
4469 }
4470 
4471 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4472 {
4473 	int ret = 0;
4474 	int i;
4475 	u64 rel_ptr;
4476 	int size;
4477 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4478 	struct inode_fs_paths *ipath = NULL;
4479 	struct btrfs_path *path;
4480 
4481 	if (!capable(CAP_DAC_READ_SEARCH))
4482 		return -EPERM;
4483 
4484 	path = btrfs_alloc_path();
4485 	if (!path) {
4486 		ret = -ENOMEM;
4487 		goto out;
4488 	}
4489 
4490 	ipa = memdup_user(arg, sizeof(*ipa));
4491 	if (IS_ERR(ipa)) {
4492 		ret = PTR_ERR(ipa);
4493 		ipa = NULL;
4494 		goto out;
4495 	}
4496 
4497 	size = min_t(u32, ipa->size, 4096);
4498 	ipath = init_ipath(size, root, path);
4499 	if (IS_ERR(ipath)) {
4500 		ret = PTR_ERR(ipath);
4501 		ipath = NULL;
4502 		goto out;
4503 	}
4504 
4505 	ret = paths_from_inode(ipa->inum, ipath);
4506 	if (ret < 0)
4507 		goto out;
4508 
4509 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4510 		rel_ptr = ipath->fspath->val[i] -
4511 			  (u64)(unsigned long)ipath->fspath->val;
4512 		ipath->fspath->val[i] = rel_ptr;
4513 	}
4514 
4515 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4516 			   (void *)(unsigned long)ipath->fspath, size);
4517 	if (ret) {
4518 		ret = -EFAULT;
4519 		goto out;
4520 	}
4521 
4522 out:
4523 	btrfs_free_path(path);
4524 	free_ipath(ipath);
4525 	kfree(ipa);
4526 
4527 	return ret;
4528 }
4529 
4530 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4531 {
4532 	struct btrfs_data_container *inodes = ctx;
4533 	const size_t c = 3 * sizeof(u64);
4534 
4535 	if (inodes->bytes_left >= c) {
4536 		inodes->bytes_left -= c;
4537 		inodes->val[inodes->elem_cnt] = inum;
4538 		inodes->val[inodes->elem_cnt + 1] = offset;
4539 		inodes->val[inodes->elem_cnt + 2] = root;
4540 		inodes->elem_cnt += 3;
4541 	} else {
4542 		inodes->bytes_missing += c - inodes->bytes_left;
4543 		inodes->bytes_left = 0;
4544 		inodes->elem_missed += 3;
4545 	}
4546 
4547 	return 0;
4548 }
4549 
4550 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4551 					void __user *arg)
4552 {
4553 	int ret = 0;
4554 	int size;
4555 	struct btrfs_ioctl_logical_ino_args *loi;
4556 	struct btrfs_data_container *inodes = NULL;
4557 	struct btrfs_path *path = NULL;
4558 
4559 	if (!capable(CAP_SYS_ADMIN))
4560 		return -EPERM;
4561 
4562 	loi = memdup_user(arg, sizeof(*loi));
4563 	if (IS_ERR(loi))
4564 		return PTR_ERR(loi);
4565 
4566 	path = btrfs_alloc_path();
4567 	if (!path) {
4568 		ret = -ENOMEM;
4569 		goto out;
4570 	}
4571 
4572 	size = min_t(u32, loi->size, SZ_64K);
4573 	inodes = init_data_container(size);
4574 	if (IS_ERR(inodes)) {
4575 		ret = PTR_ERR(inodes);
4576 		inodes = NULL;
4577 		goto out;
4578 	}
4579 
4580 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4581 					  build_ino_list, inodes);
4582 	if (ret == -EINVAL)
4583 		ret = -ENOENT;
4584 	if (ret < 0)
4585 		goto out;
4586 
4587 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4588 			   (void *)(unsigned long)inodes, size);
4589 	if (ret)
4590 		ret = -EFAULT;
4591 
4592 out:
4593 	btrfs_free_path(path);
4594 	kvfree(inodes);
4595 	kfree(loi);
4596 
4597 	return ret;
4598 }
4599 
4600 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4601 			       struct btrfs_ioctl_balance_args *bargs)
4602 {
4603 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4604 
4605 	bargs->flags = bctl->flags;
4606 
4607 	if (atomic_read(&fs_info->balance_running))
4608 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4609 	if (atomic_read(&fs_info->balance_pause_req))
4610 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4611 	if (atomic_read(&fs_info->balance_cancel_req))
4612 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4613 
4614 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4615 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4616 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4617 
4618 	if (lock) {
4619 		spin_lock(&fs_info->balance_lock);
4620 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4621 		spin_unlock(&fs_info->balance_lock);
4622 	} else {
4623 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4624 	}
4625 }
4626 
4627 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4628 {
4629 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4630 	struct btrfs_fs_info *fs_info = root->fs_info;
4631 	struct btrfs_ioctl_balance_args *bargs;
4632 	struct btrfs_balance_control *bctl;
4633 	bool need_unlock; /* for mut. excl. ops lock */
4634 	int ret;
4635 
4636 	if (!capable(CAP_SYS_ADMIN))
4637 		return -EPERM;
4638 
4639 	ret = mnt_want_write_file(file);
4640 	if (ret)
4641 		return ret;
4642 
4643 again:
4644 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4645 		mutex_lock(&fs_info->volume_mutex);
4646 		mutex_lock(&fs_info->balance_mutex);
4647 		need_unlock = true;
4648 		goto locked;
4649 	}
4650 
4651 	/*
4652 	 * mut. excl. ops lock is locked.  Three possibilities:
4653 	 *   (1) some other op is running
4654 	 *   (2) balance is running
4655 	 *   (3) balance is paused -- special case (think resume)
4656 	 */
4657 	mutex_lock(&fs_info->balance_mutex);
4658 	if (fs_info->balance_ctl) {
4659 		/* this is either (2) or (3) */
4660 		if (!atomic_read(&fs_info->balance_running)) {
4661 			mutex_unlock(&fs_info->balance_mutex);
4662 			if (!mutex_trylock(&fs_info->volume_mutex))
4663 				goto again;
4664 			mutex_lock(&fs_info->balance_mutex);
4665 
4666 			if (fs_info->balance_ctl &&
4667 			    !atomic_read(&fs_info->balance_running)) {
4668 				/* this is (3) */
4669 				need_unlock = false;
4670 				goto locked;
4671 			}
4672 
4673 			mutex_unlock(&fs_info->balance_mutex);
4674 			mutex_unlock(&fs_info->volume_mutex);
4675 			goto again;
4676 		} else {
4677 			/* this is (2) */
4678 			mutex_unlock(&fs_info->balance_mutex);
4679 			ret = -EINPROGRESS;
4680 			goto out;
4681 		}
4682 	} else {
4683 		/* this is (1) */
4684 		mutex_unlock(&fs_info->balance_mutex);
4685 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4686 		goto out;
4687 	}
4688 
4689 locked:
4690 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4691 
4692 	if (arg) {
4693 		bargs = memdup_user(arg, sizeof(*bargs));
4694 		if (IS_ERR(bargs)) {
4695 			ret = PTR_ERR(bargs);
4696 			goto out_unlock;
4697 		}
4698 
4699 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4700 			if (!fs_info->balance_ctl) {
4701 				ret = -ENOTCONN;
4702 				goto out_bargs;
4703 			}
4704 
4705 			bctl = fs_info->balance_ctl;
4706 			spin_lock(&fs_info->balance_lock);
4707 			bctl->flags |= BTRFS_BALANCE_RESUME;
4708 			spin_unlock(&fs_info->balance_lock);
4709 
4710 			goto do_balance;
4711 		}
4712 	} else {
4713 		bargs = NULL;
4714 	}
4715 
4716 	if (fs_info->balance_ctl) {
4717 		ret = -EINPROGRESS;
4718 		goto out_bargs;
4719 	}
4720 
4721 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4722 	if (!bctl) {
4723 		ret = -ENOMEM;
4724 		goto out_bargs;
4725 	}
4726 
4727 	bctl->fs_info = fs_info;
4728 	if (arg) {
4729 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4730 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4731 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4732 
4733 		bctl->flags = bargs->flags;
4734 	} else {
4735 		/* balance everything - no filters */
4736 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4737 	}
4738 
4739 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4740 		ret = -EINVAL;
4741 		goto out_bctl;
4742 	}
4743 
4744 do_balance:
4745 	/*
4746 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4747 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4748 	 * or, if restriper was paused all the way until unmount, in
4749 	 * free_fs_info.  The flag is cleared in __cancel_balance.
4750 	 */
4751 	need_unlock = false;
4752 
4753 	ret = btrfs_balance(bctl, bargs);
4754 	bctl = NULL;
4755 
4756 	if (arg) {
4757 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4758 			ret = -EFAULT;
4759 	}
4760 
4761 out_bctl:
4762 	kfree(bctl);
4763 out_bargs:
4764 	kfree(bargs);
4765 out_unlock:
4766 	mutex_unlock(&fs_info->balance_mutex);
4767 	mutex_unlock(&fs_info->volume_mutex);
4768 	if (need_unlock)
4769 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4770 out:
4771 	mnt_drop_write_file(file);
4772 	return ret;
4773 }
4774 
4775 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4776 {
4777 	if (!capable(CAP_SYS_ADMIN))
4778 		return -EPERM;
4779 
4780 	switch (cmd) {
4781 	case BTRFS_BALANCE_CTL_PAUSE:
4782 		return btrfs_pause_balance(fs_info);
4783 	case BTRFS_BALANCE_CTL_CANCEL:
4784 		return btrfs_cancel_balance(fs_info);
4785 	}
4786 
4787 	return -EINVAL;
4788 }
4789 
4790 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4791 					 void __user *arg)
4792 {
4793 	struct btrfs_ioctl_balance_args *bargs;
4794 	int ret = 0;
4795 
4796 	if (!capable(CAP_SYS_ADMIN))
4797 		return -EPERM;
4798 
4799 	mutex_lock(&fs_info->balance_mutex);
4800 	if (!fs_info->balance_ctl) {
4801 		ret = -ENOTCONN;
4802 		goto out;
4803 	}
4804 
4805 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4806 	if (!bargs) {
4807 		ret = -ENOMEM;
4808 		goto out;
4809 	}
4810 
4811 	update_ioctl_balance_args(fs_info, 1, bargs);
4812 
4813 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4814 		ret = -EFAULT;
4815 
4816 	kfree(bargs);
4817 out:
4818 	mutex_unlock(&fs_info->balance_mutex);
4819 	return ret;
4820 }
4821 
4822 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4823 {
4824 	struct inode *inode = file_inode(file);
4825 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4826 	struct btrfs_ioctl_quota_ctl_args *sa;
4827 	struct btrfs_trans_handle *trans = NULL;
4828 	int ret;
4829 	int err;
4830 
4831 	if (!capable(CAP_SYS_ADMIN))
4832 		return -EPERM;
4833 
4834 	ret = mnt_want_write_file(file);
4835 	if (ret)
4836 		return ret;
4837 
4838 	sa = memdup_user(arg, sizeof(*sa));
4839 	if (IS_ERR(sa)) {
4840 		ret = PTR_ERR(sa);
4841 		goto drop_write;
4842 	}
4843 
4844 	down_write(&fs_info->subvol_sem);
4845 	trans = btrfs_start_transaction(fs_info->tree_root, 2);
4846 	if (IS_ERR(trans)) {
4847 		ret = PTR_ERR(trans);
4848 		goto out;
4849 	}
4850 
4851 	switch (sa->cmd) {
4852 	case BTRFS_QUOTA_CTL_ENABLE:
4853 		ret = btrfs_quota_enable(trans, fs_info);
4854 		break;
4855 	case BTRFS_QUOTA_CTL_DISABLE:
4856 		ret = btrfs_quota_disable(trans, fs_info);
4857 		break;
4858 	default:
4859 		ret = -EINVAL;
4860 		break;
4861 	}
4862 
4863 	err = btrfs_commit_transaction(trans);
4864 	if (err && !ret)
4865 		ret = err;
4866 out:
4867 	kfree(sa);
4868 	up_write(&fs_info->subvol_sem);
4869 drop_write:
4870 	mnt_drop_write_file(file);
4871 	return ret;
4872 }
4873 
4874 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4875 {
4876 	struct inode *inode = file_inode(file);
4877 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4878 	struct btrfs_root *root = BTRFS_I(inode)->root;
4879 	struct btrfs_ioctl_qgroup_assign_args *sa;
4880 	struct btrfs_trans_handle *trans;
4881 	int ret;
4882 	int err;
4883 
4884 	if (!capable(CAP_SYS_ADMIN))
4885 		return -EPERM;
4886 
4887 	ret = mnt_want_write_file(file);
4888 	if (ret)
4889 		return ret;
4890 
4891 	sa = memdup_user(arg, sizeof(*sa));
4892 	if (IS_ERR(sa)) {
4893 		ret = PTR_ERR(sa);
4894 		goto drop_write;
4895 	}
4896 
4897 	trans = btrfs_join_transaction(root);
4898 	if (IS_ERR(trans)) {
4899 		ret = PTR_ERR(trans);
4900 		goto out;
4901 	}
4902 
4903 	if (sa->assign) {
4904 		ret = btrfs_add_qgroup_relation(trans, fs_info,
4905 						sa->src, sa->dst);
4906 	} else {
4907 		ret = btrfs_del_qgroup_relation(trans, fs_info,
4908 						sa->src, sa->dst);
4909 	}
4910 
4911 	/* update qgroup status and info */
4912 	err = btrfs_run_qgroups(trans, fs_info);
4913 	if (err < 0)
4914 		btrfs_handle_fs_error(fs_info, err,
4915 				      "failed to update qgroup status and info");
4916 	err = btrfs_end_transaction(trans);
4917 	if (err && !ret)
4918 		ret = err;
4919 
4920 out:
4921 	kfree(sa);
4922 drop_write:
4923 	mnt_drop_write_file(file);
4924 	return ret;
4925 }
4926 
4927 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4928 {
4929 	struct inode *inode = file_inode(file);
4930 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4931 	struct btrfs_root *root = BTRFS_I(inode)->root;
4932 	struct btrfs_ioctl_qgroup_create_args *sa;
4933 	struct btrfs_trans_handle *trans;
4934 	int ret;
4935 	int err;
4936 
4937 	if (!capable(CAP_SYS_ADMIN))
4938 		return -EPERM;
4939 
4940 	ret = mnt_want_write_file(file);
4941 	if (ret)
4942 		return ret;
4943 
4944 	sa = memdup_user(arg, sizeof(*sa));
4945 	if (IS_ERR(sa)) {
4946 		ret = PTR_ERR(sa);
4947 		goto drop_write;
4948 	}
4949 
4950 	if (!sa->qgroupid) {
4951 		ret = -EINVAL;
4952 		goto out;
4953 	}
4954 
4955 	trans = btrfs_join_transaction(root);
4956 	if (IS_ERR(trans)) {
4957 		ret = PTR_ERR(trans);
4958 		goto out;
4959 	}
4960 
4961 	if (sa->create) {
4962 		ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4963 	} else {
4964 		ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4965 	}
4966 
4967 	err = btrfs_end_transaction(trans);
4968 	if (err && !ret)
4969 		ret = err;
4970 
4971 out:
4972 	kfree(sa);
4973 drop_write:
4974 	mnt_drop_write_file(file);
4975 	return ret;
4976 }
4977 
4978 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4979 {
4980 	struct inode *inode = file_inode(file);
4981 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4982 	struct btrfs_root *root = BTRFS_I(inode)->root;
4983 	struct btrfs_ioctl_qgroup_limit_args *sa;
4984 	struct btrfs_trans_handle *trans;
4985 	int ret;
4986 	int err;
4987 	u64 qgroupid;
4988 
4989 	if (!capable(CAP_SYS_ADMIN))
4990 		return -EPERM;
4991 
4992 	ret = mnt_want_write_file(file);
4993 	if (ret)
4994 		return ret;
4995 
4996 	sa = memdup_user(arg, sizeof(*sa));
4997 	if (IS_ERR(sa)) {
4998 		ret = PTR_ERR(sa);
4999 		goto drop_write;
5000 	}
5001 
5002 	trans = btrfs_join_transaction(root);
5003 	if (IS_ERR(trans)) {
5004 		ret = PTR_ERR(trans);
5005 		goto out;
5006 	}
5007 
5008 	qgroupid = sa->qgroupid;
5009 	if (!qgroupid) {
5010 		/* take the current subvol as qgroup */
5011 		qgroupid = root->root_key.objectid;
5012 	}
5013 
5014 	ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5015 
5016 	err = btrfs_end_transaction(trans);
5017 	if (err && !ret)
5018 		ret = err;
5019 
5020 out:
5021 	kfree(sa);
5022 drop_write:
5023 	mnt_drop_write_file(file);
5024 	return ret;
5025 }
5026 
5027 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5028 {
5029 	struct inode *inode = file_inode(file);
5030 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5031 	struct btrfs_ioctl_quota_rescan_args *qsa;
5032 	int ret;
5033 
5034 	if (!capable(CAP_SYS_ADMIN))
5035 		return -EPERM;
5036 
5037 	ret = mnt_want_write_file(file);
5038 	if (ret)
5039 		return ret;
5040 
5041 	qsa = memdup_user(arg, sizeof(*qsa));
5042 	if (IS_ERR(qsa)) {
5043 		ret = PTR_ERR(qsa);
5044 		goto drop_write;
5045 	}
5046 
5047 	if (qsa->flags) {
5048 		ret = -EINVAL;
5049 		goto out;
5050 	}
5051 
5052 	ret = btrfs_qgroup_rescan(fs_info);
5053 
5054 out:
5055 	kfree(qsa);
5056 drop_write:
5057 	mnt_drop_write_file(file);
5058 	return ret;
5059 }
5060 
5061 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5062 {
5063 	struct inode *inode = file_inode(file);
5064 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5065 	struct btrfs_ioctl_quota_rescan_args *qsa;
5066 	int ret = 0;
5067 
5068 	if (!capable(CAP_SYS_ADMIN))
5069 		return -EPERM;
5070 
5071 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5072 	if (!qsa)
5073 		return -ENOMEM;
5074 
5075 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5076 		qsa->flags = 1;
5077 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5078 	}
5079 
5080 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5081 		ret = -EFAULT;
5082 
5083 	kfree(qsa);
5084 	return ret;
5085 }
5086 
5087 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5088 {
5089 	struct inode *inode = file_inode(file);
5090 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5091 
5092 	if (!capable(CAP_SYS_ADMIN))
5093 		return -EPERM;
5094 
5095 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5096 }
5097 
5098 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5099 					    struct btrfs_ioctl_received_subvol_args *sa)
5100 {
5101 	struct inode *inode = file_inode(file);
5102 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5103 	struct btrfs_root *root = BTRFS_I(inode)->root;
5104 	struct btrfs_root_item *root_item = &root->root_item;
5105 	struct btrfs_trans_handle *trans;
5106 	struct timespec ct = current_time(inode);
5107 	int ret = 0;
5108 	int received_uuid_changed;
5109 
5110 	if (!inode_owner_or_capable(inode))
5111 		return -EPERM;
5112 
5113 	ret = mnt_want_write_file(file);
5114 	if (ret < 0)
5115 		return ret;
5116 
5117 	down_write(&fs_info->subvol_sem);
5118 
5119 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5120 		ret = -EINVAL;
5121 		goto out;
5122 	}
5123 
5124 	if (btrfs_root_readonly(root)) {
5125 		ret = -EROFS;
5126 		goto out;
5127 	}
5128 
5129 	/*
5130 	 * 1 - root item
5131 	 * 2 - uuid items (received uuid + subvol uuid)
5132 	 */
5133 	trans = btrfs_start_transaction(root, 3);
5134 	if (IS_ERR(trans)) {
5135 		ret = PTR_ERR(trans);
5136 		trans = NULL;
5137 		goto out;
5138 	}
5139 
5140 	sa->rtransid = trans->transid;
5141 	sa->rtime.sec = ct.tv_sec;
5142 	sa->rtime.nsec = ct.tv_nsec;
5143 
5144 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5145 				       BTRFS_UUID_SIZE);
5146 	if (received_uuid_changed &&
5147 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5148 		btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5149 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5150 				    root->root_key.objectid);
5151 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5152 	btrfs_set_root_stransid(root_item, sa->stransid);
5153 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5154 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5155 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5156 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5157 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5158 
5159 	ret = btrfs_update_root(trans, fs_info->tree_root,
5160 				&root->root_key, &root->root_item);
5161 	if (ret < 0) {
5162 		btrfs_end_transaction(trans);
5163 		goto out;
5164 	}
5165 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5166 		ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5167 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5168 					  root->root_key.objectid);
5169 		if (ret < 0 && ret != -EEXIST) {
5170 			btrfs_abort_transaction(trans, ret);
5171 			goto out;
5172 		}
5173 	}
5174 	ret = btrfs_commit_transaction(trans);
5175 	if (ret < 0) {
5176 		btrfs_abort_transaction(trans, ret);
5177 		goto out;
5178 	}
5179 
5180 out:
5181 	up_write(&fs_info->subvol_sem);
5182 	mnt_drop_write_file(file);
5183 	return ret;
5184 }
5185 
5186 #ifdef CONFIG_64BIT
5187 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5188 						void __user *arg)
5189 {
5190 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5191 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5192 	int ret = 0;
5193 
5194 	args32 = memdup_user(arg, sizeof(*args32));
5195 	if (IS_ERR(args32))
5196 		return PTR_ERR(args32);
5197 
5198 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5199 	if (!args64) {
5200 		ret = -ENOMEM;
5201 		goto out;
5202 	}
5203 
5204 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5205 	args64->stransid = args32->stransid;
5206 	args64->rtransid = args32->rtransid;
5207 	args64->stime.sec = args32->stime.sec;
5208 	args64->stime.nsec = args32->stime.nsec;
5209 	args64->rtime.sec = args32->rtime.sec;
5210 	args64->rtime.nsec = args32->rtime.nsec;
5211 	args64->flags = args32->flags;
5212 
5213 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5214 	if (ret)
5215 		goto out;
5216 
5217 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5218 	args32->stransid = args64->stransid;
5219 	args32->rtransid = args64->rtransid;
5220 	args32->stime.sec = args64->stime.sec;
5221 	args32->stime.nsec = args64->stime.nsec;
5222 	args32->rtime.sec = args64->rtime.sec;
5223 	args32->rtime.nsec = args64->rtime.nsec;
5224 	args32->flags = args64->flags;
5225 
5226 	ret = copy_to_user(arg, args32, sizeof(*args32));
5227 	if (ret)
5228 		ret = -EFAULT;
5229 
5230 out:
5231 	kfree(args32);
5232 	kfree(args64);
5233 	return ret;
5234 }
5235 #endif
5236 
5237 static long btrfs_ioctl_set_received_subvol(struct file *file,
5238 					    void __user *arg)
5239 {
5240 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5241 	int ret = 0;
5242 
5243 	sa = memdup_user(arg, sizeof(*sa));
5244 	if (IS_ERR(sa))
5245 		return PTR_ERR(sa);
5246 
5247 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5248 
5249 	if (ret)
5250 		goto out;
5251 
5252 	ret = copy_to_user(arg, sa, sizeof(*sa));
5253 	if (ret)
5254 		ret = -EFAULT;
5255 
5256 out:
5257 	kfree(sa);
5258 	return ret;
5259 }
5260 
5261 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5262 {
5263 	struct inode *inode = file_inode(file);
5264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5265 	size_t len;
5266 	int ret;
5267 	char label[BTRFS_LABEL_SIZE];
5268 
5269 	spin_lock(&fs_info->super_lock);
5270 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5271 	spin_unlock(&fs_info->super_lock);
5272 
5273 	len = strnlen(label, BTRFS_LABEL_SIZE);
5274 
5275 	if (len == BTRFS_LABEL_SIZE) {
5276 		btrfs_warn(fs_info,
5277 			   "label is too long, return the first %zu bytes",
5278 			   --len);
5279 	}
5280 
5281 	ret = copy_to_user(arg, label, len);
5282 
5283 	return ret ? -EFAULT : 0;
5284 }
5285 
5286 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5287 {
5288 	struct inode *inode = file_inode(file);
5289 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5290 	struct btrfs_root *root = BTRFS_I(inode)->root;
5291 	struct btrfs_super_block *super_block = fs_info->super_copy;
5292 	struct btrfs_trans_handle *trans;
5293 	char label[BTRFS_LABEL_SIZE];
5294 	int ret;
5295 
5296 	if (!capable(CAP_SYS_ADMIN))
5297 		return -EPERM;
5298 
5299 	if (copy_from_user(label, arg, sizeof(label)))
5300 		return -EFAULT;
5301 
5302 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5303 		btrfs_err(fs_info,
5304 			  "unable to set label with more than %d bytes",
5305 			  BTRFS_LABEL_SIZE - 1);
5306 		return -EINVAL;
5307 	}
5308 
5309 	ret = mnt_want_write_file(file);
5310 	if (ret)
5311 		return ret;
5312 
5313 	trans = btrfs_start_transaction(root, 0);
5314 	if (IS_ERR(trans)) {
5315 		ret = PTR_ERR(trans);
5316 		goto out_unlock;
5317 	}
5318 
5319 	spin_lock(&fs_info->super_lock);
5320 	strcpy(super_block->label, label);
5321 	spin_unlock(&fs_info->super_lock);
5322 	ret = btrfs_commit_transaction(trans);
5323 
5324 out_unlock:
5325 	mnt_drop_write_file(file);
5326 	return ret;
5327 }
5328 
5329 #define INIT_FEATURE_FLAGS(suffix) \
5330 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5331 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5332 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5333 
5334 int btrfs_ioctl_get_supported_features(void __user *arg)
5335 {
5336 	static const struct btrfs_ioctl_feature_flags features[3] = {
5337 		INIT_FEATURE_FLAGS(SUPP),
5338 		INIT_FEATURE_FLAGS(SAFE_SET),
5339 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5340 	};
5341 
5342 	if (copy_to_user(arg, &features, sizeof(features)))
5343 		return -EFAULT;
5344 
5345 	return 0;
5346 }
5347 
5348 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5349 {
5350 	struct inode *inode = file_inode(file);
5351 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5352 	struct btrfs_super_block *super_block = fs_info->super_copy;
5353 	struct btrfs_ioctl_feature_flags features;
5354 
5355 	features.compat_flags = btrfs_super_compat_flags(super_block);
5356 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5357 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5358 
5359 	if (copy_to_user(arg, &features, sizeof(features)))
5360 		return -EFAULT;
5361 
5362 	return 0;
5363 }
5364 
5365 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5366 			      enum btrfs_feature_set set,
5367 			      u64 change_mask, u64 flags, u64 supported_flags,
5368 			      u64 safe_set, u64 safe_clear)
5369 {
5370 	const char *type = btrfs_feature_set_names[set];
5371 	char *names;
5372 	u64 disallowed, unsupported;
5373 	u64 set_mask = flags & change_mask;
5374 	u64 clear_mask = ~flags & change_mask;
5375 
5376 	unsupported = set_mask & ~supported_flags;
5377 	if (unsupported) {
5378 		names = btrfs_printable_features(set, unsupported);
5379 		if (names) {
5380 			btrfs_warn(fs_info,
5381 				   "this kernel does not support the %s feature bit%s",
5382 				   names, strchr(names, ',') ? "s" : "");
5383 			kfree(names);
5384 		} else
5385 			btrfs_warn(fs_info,
5386 				   "this kernel does not support %s bits 0x%llx",
5387 				   type, unsupported);
5388 		return -EOPNOTSUPP;
5389 	}
5390 
5391 	disallowed = set_mask & ~safe_set;
5392 	if (disallowed) {
5393 		names = btrfs_printable_features(set, disallowed);
5394 		if (names) {
5395 			btrfs_warn(fs_info,
5396 				   "can't set the %s feature bit%s while mounted",
5397 				   names, strchr(names, ',') ? "s" : "");
5398 			kfree(names);
5399 		} else
5400 			btrfs_warn(fs_info,
5401 				   "can't set %s bits 0x%llx while mounted",
5402 				   type, disallowed);
5403 		return -EPERM;
5404 	}
5405 
5406 	disallowed = clear_mask & ~safe_clear;
5407 	if (disallowed) {
5408 		names = btrfs_printable_features(set, disallowed);
5409 		if (names) {
5410 			btrfs_warn(fs_info,
5411 				   "can't clear the %s feature bit%s while mounted",
5412 				   names, strchr(names, ',') ? "s" : "");
5413 			kfree(names);
5414 		} else
5415 			btrfs_warn(fs_info,
5416 				   "can't clear %s bits 0x%llx while mounted",
5417 				   type, disallowed);
5418 		return -EPERM;
5419 	}
5420 
5421 	return 0;
5422 }
5423 
5424 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5425 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5426 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5427 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5428 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5429 
5430 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5431 {
5432 	struct inode *inode = file_inode(file);
5433 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5434 	struct btrfs_root *root = BTRFS_I(inode)->root;
5435 	struct btrfs_super_block *super_block = fs_info->super_copy;
5436 	struct btrfs_ioctl_feature_flags flags[2];
5437 	struct btrfs_trans_handle *trans;
5438 	u64 newflags;
5439 	int ret;
5440 
5441 	if (!capable(CAP_SYS_ADMIN))
5442 		return -EPERM;
5443 
5444 	if (copy_from_user(flags, arg, sizeof(flags)))
5445 		return -EFAULT;
5446 
5447 	/* Nothing to do */
5448 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5449 	    !flags[0].incompat_flags)
5450 		return 0;
5451 
5452 	ret = check_feature(fs_info, flags[0].compat_flags,
5453 			    flags[1].compat_flags, COMPAT);
5454 	if (ret)
5455 		return ret;
5456 
5457 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5458 			    flags[1].compat_ro_flags, COMPAT_RO);
5459 	if (ret)
5460 		return ret;
5461 
5462 	ret = check_feature(fs_info, flags[0].incompat_flags,
5463 			    flags[1].incompat_flags, INCOMPAT);
5464 	if (ret)
5465 		return ret;
5466 
5467 	ret = mnt_want_write_file(file);
5468 	if (ret)
5469 		return ret;
5470 
5471 	trans = btrfs_start_transaction(root, 0);
5472 	if (IS_ERR(trans)) {
5473 		ret = PTR_ERR(trans);
5474 		goto out_drop_write;
5475 	}
5476 
5477 	spin_lock(&fs_info->super_lock);
5478 	newflags = btrfs_super_compat_flags(super_block);
5479 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5480 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5481 	btrfs_set_super_compat_flags(super_block, newflags);
5482 
5483 	newflags = btrfs_super_compat_ro_flags(super_block);
5484 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5485 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5486 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5487 
5488 	newflags = btrfs_super_incompat_flags(super_block);
5489 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5490 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5491 	btrfs_set_super_incompat_flags(super_block, newflags);
5492 	spin_unlock(&fs_info->super_lock);
5493 
5494 	ret = btrfs_commit_transaction(trans);
5495 out_drop_write:
5496 	mnt_drop_write_file(file);
5497 
5498 	return ret;
5499 }
5500 
5501 long btrfs_ioctl(struct file *file, unsigned int
5502 		cmd, unsigned long arg)
5503 {
5504 	struct inode *inode = file_inode(file);
5505 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5506 	struct btrfs_root *root = BTRFS_I(inode)->root;
5507 	void __user *argp = (void __user *)arg;
5508 
5509 	switch (cmd) {
5510 	case FS_IOC_GETFLAGS:
5511 		return btrfs_ioctl_getflags(file, argp);
5512 	case FS_IOC_SETFLAGS:
5513 		return btrfs_ioctl_setflags(file, argp);
5514 	case FS_IOC_GETVERSION:
5515 		return btrfs_ioctl_getversion(file, argp);
5516 	case FITRIM:
5517 		return btrfs_ioctl_fitrim(file, argp);
5518 	case BTRFS_IOC_SNAP_CREATE:
5519 		return btrfs_ioctl_snap_create(file, argp, 0);
5520 	case BTRFS_IOC_SNAP_CREATE_V2:
5521 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5522 	case BTRFS_IOC_SUBVOL_CREATE:
5523 		return btrfs_ioctl_snap_create(file, argp, 1);
5524 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5525 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5526 	case BTRFS_IOC_SNAP_DESTROY:
5527 		return btrfs_ioctl_snap_destroy(file, argp);
5528 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5529 		return btrfs_ioctl_subvol_getflags(file, argp);
5530 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5531 		return btrfs_ioctl_subvol_setflags(file, argp);
5532 	case BTRFS_IOC_DEFAULT_SUBVOL:
5533 		return btrfs_ioctl_default_subvol(file, argp);
5534 	case BTRFS_IOC_DEFRAG:
5535 		return btrfs_ioctl_defrag(file, NULL);
5536 	case BTRFS_IOC_DEFRAG_RANGE:
5537 		return btrfs_ioctl_defrag(file, argp);
5538 	case BTRFS_IOC_RESIZE:
5539 		return btrfs_ioctl_resize(file, argp);
5540 	case BTRFS_IOC_ADD_DEV:
5541 		return btrfs_ioctl_add_dev(fs_info, argp);
5542 	case BTRFS_IOC_RM_DEV:
5543 		return btrfs_ioctl_rm_dev(file, argp);
5544 	case BTRFS_IOC_RM_DEV_V2:
5545 		return btrfs_ioctl_rm_dev_v2(file, argp);
5546 	case BTRFS_IOC_FS_INFO:
5547 		return btrfs_ioctl_fs_info(fs_info, argp);
5548 	case BTRFS_IOC_DEV_INFO:
5549 		return btrfs_ioctl_dev_info(fs_info, argp);
5550 	case BTRFS_IOC_BALANCE:
5551 		return btrfs_ioctl_balance(file, NULL);
5552 	case BTRFS_IOC_TRANS_START:
5553 		return btrfs_ioctl_trans_start(file);
5554 	case BTRFS_IOC_TRANS_END:
5555 		return btrfs_ioctl_trans_end(file);
5556 	case BTRFS_IOC_TREE_SEARCH:
5557 		return btrfs_ioctl_tree_search(file, argp);
5558 	case BTRFS_IOC_TREE_SEARCH_V2:
5559 		return btrfs_ioctl_tree_search_v2(file, argp);
5560 	case BTRFS_IOC_INO_LOOKUP:
5561 		return btrfs_ioctl_ino_lookup(file, argp);
5562 	case BTRFS_IOC_INO_PATHS:
5563 		return btrfs_ioctl_ino_to_path(root, argp);
5564 	case BTRFS_IOC_LOGICAL_INO:
5565 		return btrfs_ioctl_logical_to_ino(fs_info, argp);
5566 	case BTRFS_IOC_SPACE_INFO:
5567 		return btrfs_ioctl_space_info(fs_info, argp);
5568 	case BTRFS_IOC_SYNC: {
5569 		int ret;
5570 
5571 		ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5572 		if (ret)
5573 			return ret;
5574 		ret = btrfs_sync_fs(inode->i_sb, 1);
5575 		/*
5576 		 * The transaction thread may want to do more work,
5577 		 * namely it pokes the cleaner kthread that will start
5578 		 * processing uncleaned subvols.
5579 		 */
5580 		wake_up_process(fs_info->transaction_kthread);
5581 		return ret;
5582 	}
5583 	case BTRFS_IOC_START_SYNC:
5584 		return btrfs_ioctl_start_sync(root, argp);
5585 	case BTRFS_IOC_WAIT_SYNC:
5586 		return btrfs_ioctl_wait_sync(fs_info, argp);
5587 	case BTRFS_IOC_SCRUB:
5588 		return btrfs_ioctl_scrub(file, argp);
5589 	case BTRFS_IOC_SCRUB_CANCEL:
5590 		return btrfs_ioctl_scrub_cancel(fs_info);
5591 	case BTRFS_IOC_SCRUB_PROGRESS:
5592 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5593 	case BTRFS_IOC_BALANCE_V2:
5594 		return btrfs_ioctl_balance(file, argp);
5595 	case BTRFS_IOC_BALANCE_CTL:
5596 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5597 	case BTRFS_IOC_BALANCE_PROGRESS:
5598 		return btrfs_ioctl_balance_progress(fs_info, argp);
5599 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5600 		return btrfs_ioctl_set_received_subvol(file, argp);
5601 #ifdef CONFIG_64BIT
5602 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5603 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5604 #endif
5605 	case BTRFS_IOC_SEND:
5606 		return btrfs_ioctl_send(file, argp);
5607 	case BTRFS_IOC_GET_DEV_STATS:
5608 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5609 	case BTRFS_IOC_QUOTA_CTL:
5610 		return btrfs_ioctl_quota_ctl(file, argp);
5611 	case BTRFS_IOC_QGROUP_ASSIGN:
5612 		return btrfs_ioctl_qgroup_assign(file, argp);
5613 	case BTRFS_IOC_QGROUP_CREATE:
5614 		return btrfs_ioctl_qgroup_create(file, argp);
5615 	case BTRFS_IOC_QGROUP_LIMIT:
5616 		return btrfs_ioctl_qgroup_limit(file, argp);
5617 	case BTRFS_IOC_QUOTA_RESCAN:
5618 		return btrfs_ioctl_quota_rescan(file, argp);
5619 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5620 		return btrfs_ioctl_quota_rescan_status(file, argp);
5621 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5622 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5623 	case BTRFS_IOC_DEV_REPLACE:
5624 		return btrfs_ioctl_dev_replace(fs_info, argp);
5625 	case BTRFS_IOC_GET_FSLABEL:
5626 		return btrfs_ioctl_get_fslabel(file, argp);
5627 	case BTRFS_IOC_SET_FSLABEL:
5628 		return btrfs_ioctl_set_fslabel(file, argp);
5629 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5630 		return btrfs_ioctl_get_supported_features(argp);
5631 	case BTRFS_IOC_GET_FEATURES:
5632 		return btrfs_ioctl_get_features(file, argp);
5633 	case BTRFS_IOC_SET_FEATURES:
5634 		return btrfs_ioctl_set_features(file, argp);
5635 	}
5636 
5637 	return -ENOTTY;
5638 }
5639 
5640 #ifdef CONFIG_COMPAT
5641 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5642 {
5643 	/*
5644 	 * These all access 32-bit values anyway so no further
5645 	 * handling is necessary.
5646 	 */
5647 	switch (cmd) {
5648 	case FS_IOC32_GETFLAGS:
5649 		cmd = FS_IOC_GETFLAGS;
5650 		break;
5651 	case FS_IOC32_SETFLAGS:
5652 		cmd = FS_IOC_SETFLAGS;
5653 		break;
5654 	case FS_IOC32_GETVERSION:
5655 		cmd = FS_IOC_GETVERSION;
5656 		break;
5657 	}
5658 
5659 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5660 }
5661 #endif
5662