1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/compat.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/security.h> 39 #include <linux/xattr.h> 40 #include <linux/mm.h> 41 #include <linux/slab.h> 42 #include <linux/blkdev.h> 43 #include <linux/uuid.h> 44 #include <linux/btrfs.h> 45 #include <linux/uaccess.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 #include "backref.h" 55 #include "rcu-string.h" 56 #include "send.h" 57 #include "dev-replace.h" 58 #include "props.h" 59 #include "sysfs.h" 60 #include "qgroup.h" 61 #include "tree-log.h" 62 #include "compression.h" 63 64 #ifdef CONFIG_64BIT 65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 66 * structures are incorrect, as the timespec structure from userspace 67 * is 4 bytes too small. We define these alternatives here to teach 68 * the kernel about the 32-bit struct packing. 69 */ 70 struct btrfs_ioctl_timespec_32 { 71 __u64 sec; 72 __u32 nsec; 73 } __attribute__ ((__packed__)); 74 75 struct btrfs_ioctl_received_subvol_args_32 { 76 char uuid[BTRFS_UUID_SIZE]; /* in */ 77 __u64 stransid; /* in */ 78 __u64 rtransid; /* out */ 79 struct btrfs_ioctl_timespec_32 stime; /* in */ 80 struct btrfs_ioctl_timespec_32 rtime; /* out */ 81 __u64 flags; /* in */ 82 __u64 reserved[16]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 86 struct btrfs_ioctl_received_subvol_args_32) 87 #endif 88 89 90 static int btrfs_clone(struct inode *src, struct inode *inode, 91 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 92 int no_time_update); 93 94 /* Mask out flags that are inappropriate for the given type of inode. */ 95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 96 { 97 if (S_ISDIR(mode)) 98 return flags; 99 else if (S_ISREG(mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 107 */ 108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 109 { 110 unsigned int iflags = 0; 111 112 if (flags & BTRFS_INODE_SYNC) 113 iflags |= FS_SYNC_FL; 114 if (flags & BTRFS_INODE_IMMUTABLE) 115 iflags |= FS_IMMUTABLE_FL; 116 if (flags & BTRFS_INODE_APPEND) 117 iflags |= FS_APPEND_FL; 118 if (flags & BTRFS_INODE_NODUMP) 119 iflags |= FS_NODUMP_FL; 120 if (flags & BTRFS_INODE_NOATIME) 121 iflags |= FS_NOATIME_FL; 122 if (flags & BTRFS_INODE_DIRSYNC) 123 iflags |= FS_DIRSYNC_FL; 124 if (flags & BTRFS_INODE_NODATACOW) 125 iflags |= FS_NOCOW_FL; 126 127 if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 else if (flags & BTRFS_INODE_COMPRESS) 130 iflags |= FS_COMPR_FL; 131 132 return iflags; 133 } 134 135 /* 136 * Update inode->i_flags based on the btrfs internal flags. 137 */ 138 void btrfs_update_iflags(struct inode *inode) 139 { 140 struct btrfs_inode *ip = BTRFS_I(inode); 141 unsigned int new_fl = 0; 142 143 if (ip->flags & BTRFS_INODE_SYNC) 144 new_fl |= S_SYNC; 145 if (ip->flags & BTRFS_INODE_IMMUTABLE) 146 new_fl |= S_IMMUTABLE; 147 if (ip->flags & BTRFS_INODE_APPEND) 148 new_fl |= S_APPEND; 149 if (ip->flags & BTRFS_INODE_NOATIME) 150 new_fl |= S_NOATIME; 151 if (ip->flags & BTRFS_INODE_DIRSYNC) 152 new_fl |= S_DIRSYNC; 153 154 set_mask_bits(&inode->i_flags, 155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 156 new_fl); 157 } 158 159 /* 160 * Inherit flags from the parent inode. 161 * 162 * Currently only the compression flags and the cow flags are inherited. 163 */ 164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 165 { 166 unsigned int flags; 167 168 if (!dir) 169 return; 170 171 flags = BTRFS_I(dir)->flags; 172 173 if (flags & BTRFS_INODE_NOCOMPRESS) { 174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 176 } else if (flags & BTRFS_INODE_COMPRESS) { 177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 179 } 180 181 if (flags & BTRFS_INODE_NODATACOW) { 182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 183 if (S_ISREG(inode->i_mode)) 184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 185 } 186 187 btrfs_update_iflags(inode); 188 } 189 190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 191 { 192 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 194 195 if (copy_to_user(arg, &flags, sizeof(flags))) 196 return -EFAULT; 197 return 0; 198 } 199 200 static int check_flags(unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 216 { 217 struct inode *inode = file_inode(file); 218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assumptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_time(inode); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct inode *inode = file_inode(file); 378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 379 struct btrfs_device *device; 380 struct request_queue *q; 381 struct fstrim_range range; 382 u64 minlen = ULLONG_MAX; 383 u64 num_devices = 0; 384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 385 int ret; 386 387 if (!capable(CAP_SYS_ADMIN)) 388 return -EPERM; 389 390 rcu_read_lock(); 391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 392 dev_list) { 393 if (!device->bdev) 394 continue; 395 q = bdev_get_queue(device->bdev); 396 if (blk_queue_discard(q)) { 397 num_devices++; 398 minlen = min_t(u64, q->limits.discard_granularity, 399 minlen); 400 } 401 } 402 rcu_read_unlock(); 403 404 if (!num_devices) 405 return -EOPNOTSUPP; 406 if (copy_from_user(&range, arg, sizeof(range))) 407 return -EFAULT; 408 if (range.start > total_bytes || 409 range.len < fs_info->sb->s_blocksize) 410 return -EINVAL; 411 412 range.len = min(range.len, total_bytes - range.start); 413 range.minlen = max(range.minlen, minlen); 414 ret = btrfs_trim_fs(fs_info, &range); 415 if (ret < 0) 416 return ret; 417 418 if (copy_to_user(arg, &range, sizeof(range))) 419 return -EFAULT; 420 421 return 0; 422 } 423 424 int btrfs_is_empty_uuid(u8 *uuid) 425 { 426 int i; 427 428 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 429 if (uuid[i]) 430 return 0; 431 } 432 return 1; 433 } 434 435 static noinline int create_subvol(struct inode *dir, 436 struct dentry *dentry, 437 const char *name, int namelen, 438 u64 *async_transid, 439 struct btrfs_qgroup_inherit *inherit) 440 { 441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 442 struct btrfs_trans_handle *trans; 443 struct btrfs_key key; 444 struct btrfs_root_item *root_item; 445 struct btrfs_inode_item *inode_item; 446 struct extent_buffer *leaf; 447 struct btrfs_root *root = BTRFS_I(dir)->root; 448 struct btrfs_root *new_root; 449 struct btrfs_block_rsv block_rsv; 450 struct timespec cur_time = current_time(dir); 451 struct inode *inode; 452 int ret; 453 int err; 454 u64 objectid; 455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 456 u64 index = 0; 457 u64 qgroup_reserved; 458 uuid_le new_uuid; 459 460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 461 if (!root_item) 462 return -ENOMEM; 463 464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 465 if (ret) 466 goto fail_free; 467 468 /* 469 * Don't create subvolume whose level is not zero. Or qgroup will be 470 * screwed up since it assumes subvolume qgroup's level to be 0. 471 */ 472 if (btrfs_qgroup_level(objectid)) { 473 ret = -ENOSPC; 474 goto fail_free; 475 } 476 477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 478 /* 479 * The same as the snapshot creation, please see the comment 480 * of create_snapshot(). 481 */ 482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 483 8, &qgroup_reserved, false); 484 if (ret) 485 goto fail_free; 486 487 trans = btrfs_start_transaction(root, 0); 488 if (IS_ERR(trans)) { 489 ret = PTR_ERR(trans); 490 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 491 goto fail_free; 492 } 493 trans->block_rsv = &block_rsv; 494 trans->bytes_reserved = block_rsv.size; 495 496 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 497 if (ret) 498 goto fail; 499 500 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 501 if (IS_ERR(leaf)) { 502 ret = PTR_ERR(leaf); 503 goto fail; 504 } 505 506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 507 btrfs_set_header_bytenr(leaf, leaf->start); 508 btrfs_set_header_generation(leaf, trans->transid); 509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 510 btrfs_set_header_owner(leaf, objectid); 511 512 write_extent_buffer_fsid(leaf, fs_info->fsid); 513 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 514 btrfs_mark_buffer_dirty(leaf); 515 516 inode_item = &root_item->inode; 517 btrfs_set_stack_inode_generation(inode_item, 1); 518 btrfs_set_stack_inode_size(inode_item, 3); 519 btrfs_set_stack_inode_nlink(inode_item, 1); 520 btrfs_set_stack_inode_nbytes(inode_item, 521 fs_info->nodesize); 522 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 523 524 btrfs_set_root_flags(root_item, 0); 525 btrfs_set_root_limit(root_item, 0); 526 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 527 528 btrfs_set_root_bytenr(root_item, leaf->start); 529 btrfs_set_root_generation(root_item, trans->transid); 530 btrfs_set_root_level(root_item, 0); 531 btrfs_set_root_refs(root_item, 1); 532 btrfs_set_root_used(root_item, leaf->len); 533 btrfs_set_root_last_snapshot(root_item, 0); 534 535 btrfs_set_root_generation_v2(root_item, 536 btrfs_root_generation(root_item)); 537 uuid_le_gen(&new_uuid); 538 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 539 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 540 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 541 root_item->ctime = root_item->otime; 542 btrfs_set_root_ctransid(root_item, trans->transid); 543 btrfs_set_root_otransid(root_item, trans->transid); 544 545 btrfs_tree_unlock(leaf); 546 free_extent_buffer(leaf); 547 leaf = NULL; 548 549 btrfs_set_root_dirid(root_item, new_dirid); 550 551 key.objectid = objectid; 552 key.offset = 0; 553 key.type = BTRFS_ROOT_ITEM_KEY; 554 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 555 root_item); 556 if (ret) 557 goto fail; 558 559 key.offset = (u64)-1; 560 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 561 if (IS_ERR(new_root)) { 562 ret = PTR_ERR(new_root); 563 btrfs_abort_transaction(trans, ret); 564 goto fail; 565 } 566 567 btrfs_record_root_in_trans(trans, new_root); 568 569 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 570 if (ret) { 571 /* We potentially lose an unused inode item here */ 572 btrfs_abort_transaction(trans, ret); 573 goto fail; 574 } 575 576 mutex_lock(&new_root->objectid_mutex); 577 new_root->highest_objectid = new_dirid; 578 mutex_unlock(&new_root->objectid_mutex); 579 580 /* 581 * insert the directory item 582 */ 583 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 584 if (ret) { 585 btrfs_abort_transaction(trans, ret); 586 goto fail; 587 } 588 589 ret = btrfs_insert_dir_item(trans, root, 590 name, namelen, BTRFS_I(dir), &key, 591 BTRFS_FT_DIR, index); 592 if (ret) { 593 btrfs_abort_transaction(trans, ret); 594 goto fail; 595 } 596 597 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 598 ret = btrfs_update_inode(trans, root, dir); 599 BUG_ON(ret); 600 601 ret = btrfs_add_root_ref(trans, fs_info, 602 objectid, root->root_key.objectid, 603 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 604 BUG_ON(ret); 605 606 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid, 607 BTRFS_UUID_KEY_SUBVOL, objectid); 608 if (ret) 609 btrfs_abort_transaction(trans, ret); 610 611 fail: 612 kfree(root_item); 613 trans->block_rsv = NULL; 614 trans->bytes_reserved = 0; 615 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 616 617 if (async_transid) { 618 *async_transid = trans->transid; 619 err = btrfs_commit_transaction_async(trans, 1); 620 if (err) 621 err = btrfs_commit_transaction(trans); 622 } else { 623 err = btrfs_commit_transaction(trans); 624 } 625 if (err && !ret) 626 ret = err; 627 628 if (!ret) { 629 inode = btrfs_lookup_dentry(dir, dentry); 630 if (IS_ERR(inode)) 631 return PTR_ERR(inode); 632 d_instantiate(dentry, inode); 633 } 634 return ret; 635 636 fail_free: 637 kfree(root_item); 638 return ret; 639 } 640 641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 642 { 643 s64 writers; 644 DEFINE_WAIT(wait); 645 646 do { 647 prepare_to_wait(&root->subv_writers->wait, &wait, 648 TASK_UNINTERRUPTIBLE); 649 650 writers = percpu_counter_sum(&root->subv_writers->counter); 651 if (writers) 652 schedule(); 653 654 finish_wait(&root->subv_writers->wait, &wait); 655 } while (writers); 656 } 657 658 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 659 struct dentry *dentry, 660 u64 *async_transid, bool readonly, 661 struct btrfs_qgroup_inherit *inherit) 662 { 663 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 664 struct inode *inode; 665 struct btrfs_pending_snapshot *pending_snapshot; 666 struct btrfs_trans_handle *trans; 667 int ret; 668 669 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 670 return -EINVAL; 671 672 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 673 if (!pending_snapshot) 674 return -ENOMEM; 675 676 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 677 GFP_KERNEL); 678 pending_snapshot->path = btrfs_alloc_path(); 679 if (!pending_snapshot->root_item || !pending_snapshot->path) { 680 ret = -ENOMEM; 681 goto free_pending; 682 } 683 684 atomic_inc(&root->will_be_snapshoted); 685 smp_mb__after_atomic(); 686 btrfs_wait_for_no_snapshoting_writes(root); 687 688 ret = btrfs_start_delalloc_inodes(root, 0); 689 if (ret) 690 goto dec_and_free; 691 692 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 693 694 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 695 BTRFS_BLOCK_RSV_TEMP); 696 /* 697 * 1 - parent dir inode 698 * 2 - dir entries 699 * 1 - root item 700 * 2 - root ref/backref 701 * 1 - root of snapshot 702 * 1 - UUID item 703 */ 704 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 705 &pending_snapshot->block_rsv, 8, 706 &pending_snapshot->qgroup_reserved, 707 false); 708 if (ret) 709 goto dec_and_free; 710 711 pending_snapshot->dentry = dentry; 712 pending_snapshot->root = root; 713 pending_snapshot->readonly = readonly; 714 pending_snapshot->dir = dir; 715 pending_snapshot->inherit = inherit; 716 717 trans = btrfs_start_transaction(root, 0); 718 if (IS_ERR(trans)) { 719 ret = PTR_ERR(trans); 720 goto fail; 721 } 722 723 spin_lock(&fs_info->trans_lock); 724 list_add(&pending_snapshot->list, 725 &trans->transaction->pending_snapshots); 726 spin_unlock(&fs_info->trans_lock); 727 if (async_transid) { 728 *async_transid = trans->transid; 729 ret = btrfs_commit_transaction_async(trans, 1); 730 if (ret) 731 ret = btrfs_commit_transaction(trans); 732 } else { 733 ret = btrfs_commit_transaction(trans); 734 } 735 if (ret) 736 goto fail; 737 738 ret = pending_snapshot->error; 739 if (ret) 740 goto fail; 741 742 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 743 if (ret) 744 goto fail; 745 746 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 747 if (IS_ERR(inode)) { 748 ret = PTR_ERR(inode); 749 goto fail; 750 } 751 752 d_instantiate(dentry, inode); 753 ret = 0; 754 fail: 755 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 756 dec_and_free: 757 if (atomic_dec_and_test(&root->will_be_snapshoted)) 758 wake_up_atomic_t(&root->will_be_snapshoted); 759 free_pending: 760 kfree(pending_snapshot->root_item); 761 btrfs_free_path(pending_snapshot->path); 762 kfree(pending_snapshot); 763 764 return ret; 765 } 766 767 /* copy of may_delete in fs/namei.c() 768 * Check whether we can remove a link victim from directory dir, check 769 * whether the type of victim is right. 770 * 1. We can't do it if dir is read-only (done in permission()) 771 * 2. We should have write and exec permissions on dir 772 * 3. We can't remove anything from append-only dir 773 * 4. We can't do anything with immutable dir (done in permission()) 774 * 5. If the sticky bit on dir is set we should either 775 * a. be owner of dir, or 776 * b. be owner of victim, or 777 * c. have CAP_FOWNER capability 778 * 6. If the victim is append-only or immutable we can't do anything with 779 * links pointing to it. 780 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 781 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 782 * 9. We can't remove a root or mountpoint. 783 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 784 * nfs_async_unlink(). 785 */ 786 787 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 788 { 789 int error; 790 791 if (d_really_is_negative(victim)) 792 return -ENOENT; 793 794 BUG_ON(d_inode(victim->d_parent) != dir); 795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 796 797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 798 if (error) 799 return error; 800 if (IS_APPEND(dir)) 801 return -EPERM; 802 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 803 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 804 return -EPERM; 805 if (isdir) { 806 if (!d_is_dir(victim)) 807 return -ENOTDIR; 808 if (IS_ROOT(victim)) 809 return -EBUSY; 810 } else if (d_is_dir(victim)) 811 return -EISDIR; 812 if (IS_DEADDIR(dir)) 813 return -ENOENT; 814 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 815 return -EBUSY; 816 return 0; 817 } 818 819 /* copy of may_create in fs/namei.c() */ 820 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 821 { 822 if (d_really_is_positive(child)) 823 return -EEXIST; 824 if (IS_DEADDIR(dir)) 825 return -ENOENT; 826 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 827 } 828 829 /* 830 * Create a new subvolume below @parent. This is largely modeled after 831 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 832 * inside this filesystem so it's quite a bit simpler. 833 */ 834 static noinline int btrfs_mksubvol(const struct path *parent, 835 const char *name, int namelen, 836 struct btrfs_root *snap_src, 837 u64 *async_transid, bool readonly, 838 struct btrfs_qgroup_inherit *inherit) 839 { 840 struct inode *dir = d_inode(parent->dentry); 841 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 842 struct dentry *dentry; 843 int error; 844 845 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 846 if (error == -EINTR) 847 return error; 848 849 dentry = lookup_one_len(name, parent->dentry, namelen); 850 error = PTR_ERR(dentry); 851 if (IS_ERR(dentry)) 852 goto out_unlock; 853 854 error = btrfs_may_create(dir, dentry); 855 if (error) 856 goto out_dput; 857 858 /* 859 * even if this name doesn't exist, we may get hash collisions. 860 * check for them now when we can safely fail 861 */ 862 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 863 dir->i_ino, name, 864 namelen); 865 if (error) 866 goto out_dput; 867 868 down_read(&fs_info->subvol_sem); 869 870 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 871 goto out_up_read; 872 873 if (snap_src) { 874 error = create_snapshot(snap_src, dir, dentry, 875 async_transid, readonly, inherit); 876 } else { 877 error = create_subvol(dir, dentry, name, namelen, 878 async_transid, inherit); 879 } 880 if (!error) 881 fsnotify_mkdir(dir, dentry); 882 out_up_read: 883 up_read(&fs_info->subvol_sem); 884 out_dput: 885 dput(dentry); 886 out_unlock: 887 inode_unlock(dir); 888 return error; 889 } 890 891 /* 892 * When we're defragging a range, we don't want to kick it off again 893 * if it is really just waiting for delalloc to send it down. 894 * If we find a nice big extent or delalloc range for the bytes in the 895 * file you want to defrag, we return 0 to let you know to skip this 896 * part of the file 897 */ 898 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 899 { 900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 901 struct extent_map *em = NULL; 902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 903 u64 end; 904 905 read_lock(&em_tree->lock); 906 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 907 read_unlock(&em_tree->lock); 908 909 if (em) { 910 end = extent_map_end(em); 911 free_extent_map(em); 912 if (end - offset > thresh) 913 return 0; 914 } 915 /* if we already have a nice delalloc here, just stop */ 916 thresh /= 2; 917 end = count_range_bits(io_tree, &offset, offset + thresh, 918 thresh, EXTENT_DELALLOC, 1); 919 if (end >= thresh) 920 return 0; 921 return 1; 922 } 923 924 /* 925 * helper function to walk through a file and find extents 926 * newer than a specific transid, and smaller than thresh. 927 * 928 * This is used by the defragging code to find new and small 929 * extents 930 */ 931 static int find_new_extents(struct btrfs_root *root, 932 struct inode *inode, u64 newer_than, 933 u64 *off, u32 thresh) 934 { 935 struct btrfs_path *path; 936 struct btrfs_key min_key; 937 struct extent_buffer *leaf; 938 struct btrfs_file_extent_item *extent; 939 int type; 940 int ret; 941 u64 ino = btrfs_ino(BTRFS_I(inode)); 942 943 path = btrfs_alloc_path(); 944 if (!path) 945 return -ENOMEM; 946 947 min_key.objectid = ino; 948 min_key.type = BTRFS_EXTENT_DATA_KEY; 949 min_key.offset = *off; 950 951 while (1) { 952 ret = btrfs_search_forward(root, &min_key, path, newer_than); 953 if (ret != 0) 954 goto none; 955 process_slot: 956 if (min_key.objectid != ino) 957 goto none; 958 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 959 goto none; 960 961 leaf = path->nodes[0]; 962 extent = btrfs_item_ptr(leaf, path->slots[0], 963 struct btrfs_file_extent_item); 964 965 type = btrfs_file_extent_type(leaf, extent); 966 if (type == BTRFS_FILE_EXTENT_REG && 967 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 968 check_defrag_in_cache(inode, min_key.offset, thresh)) { 969 *off = min_key.offset; 970 btrfs_free_path(path); 971 return 0; 972 } 973 974 path->slots[0]++; 975 if (path->slots[0] < btrfs_header_nritems(leaf)) { 976 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 977 goto process_slot; 978 } 979 980 if (min_key.offset == (u64)-1) 981 goto none; 982 983 min_key.offset++; 984 btrfs_release_path(path); 985 } 986 none: 987 btrfs_free_path(path); 988 return -ENOENT; 989 } 990 991 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 992 { 993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 995 struct extent_map *em; 996 u64 len = PAGE_SIZE; 997 998 /* 999 * hopefully we have this extent in the tree already, try without 1000 * the full extent lock 1001 */ 1002 read_lock(&em_tree->lock); 1003 em = lookup_extent_mapping(em_tree, start, len); 1004 read_unlock(&em_tree->lock); 1005 1006 if (!em) { 1007 struct extent_state *cached = NULL; 1008 u64 end = start + len - 1; 1009 1010 /* get the big lock and read metadata off disk */ 1011 lock_extent_bits(io_tree, start, end, &cached); 1012 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1013 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1014 1015 if (IS_ERR(em)) 1016 return NULL; 1017 } 1018 1019 return em; 1020 } 1021 1022 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1023 { 1024 struct extent_map *next; 1025 bool ret = true; 1026 1027 /* this is the last extent */ 1028 if (em->start + em->len >= i_size_read(inode)) 1029 return false; 1030 1031 next = defrag_lookup_extent(inode, em->start + em->len); 1032 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1033 ret = false; 1034 else if ((em->block_start + em->block_len == next->block_start) && 1035 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1036 ret = false; 1037 1038 free_extent_map(next); 1039 return ret; 1040 } 1041 1042 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1043 u64 *last_len, u64 *skip, u64 *defrag_end, 1044 int compress) 1045 { 1046 struct extent_map *em; 1047 int ret = 1; 1048 bool next_mergeable = true; 1049 bool prev_mergeable = true; 1050 1051 /* 1052 * make sure that once we start defragging an extent, we keep on 1053 * defragging it 1054 */ 1055 if (start < *defrag_end) 1056 return 1; 1057 1058 *skip = 0; 1059 1060 em = defrag_lookup_extent(inode, start); 1061 if (!em) 1062 return 0; 1063 1064 /* this will cover holes, and inline extents */ 1065 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1066 ret = 0; 1067 goto out; 1068 } 1069 1070 if (!*defrag_end) 1071 prev_mergeable = false; 1072 1073 next_mergeable = defrag_check_next_extent(inode, em); 1074 /* 1075 * we hit a real extent, if it is big or the next extent is not a 1076 * real extent, don't bother defragging it 1077 */ 1078 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1079 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1080 ret = 0; 1081 out: 1082 /* 1083 * last_len ends up being a counter of how many bytes we've defragged. 1084 * every time we choose not to defrag an extent, we reset *last_len 1085 * so that the next tiny extent will force a defrag. 1086 * 1087 * The end result of this is that tiny extents before a single big 1088 * extent will force at least part of that big extent to be defragged. 1089 */ 1090 if (ret) { 1091 *defrag_end = extent_map_end(em); 1092 } else { 1093 *last_len = 0; 1094 *skip = extent_map_end(em); 1095 *defrag_end = 0; 1096 } 1097 1098 free_extent_map(em); 1099 return ret; 1100 } 1101 1102 /* 1103 * it doesn't do much good to defrag one or two pages 1104 * at a time. This pulls in a nice chunk of pages 1105 * to COW and defrag. 1106 * 1107 * It also makes sure the delalloc code has enough 1108 * dirty data to avoid making new small extents as part 1109 * of the defrag 1110 * 1111 * It's a good idea to start RA on this range 1112 * before calling this. 1113 */ 1114 static int cluster_pages_for_defrag(struct inode *inode, 1115 struct page **pages, 1116 unsigned long start_index, 1117 unsigned long num_pages) 1118 { 1119 unsigned long file_end; 1120 u64 isize = i_size_read(inode); 1121 u64 page_start; 1122 u64 page_end; 1123 u64 page_cnt; 1124 int ret; 1125 int i; 1126 int i_done; 1127 struct btrfs_ordered_extent *ordered; 1128 struct extent_state *cached_state = NULL; 1129 struct extent_io_tree *tree; 1130 struct extent_changeset *data_reserved = NULL; 1131 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1132 1133 file_end = (isize - 1) >> PAGE_SHIFT; 1134 if (!isize || start_index > file_end) 1135 return 0; 1136 1137 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1138 1139 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1140 start_index << PAGE_SHIFT, 1141 page_cnt << PAGE_SHIFT); 1142 if (ret) 1143 return ret; 1144 i_done = 0; 1145 tree = &BTRFS_I(inode)->io_tree; 1146 1147 /* step one, lock all the pages */ 1148 for (i = 0; i < page_cnt; i++) { 1149 struct page *page; 1150 again: 1151 page = find_or_create_page(inode->i_mapping, 1152 start_index + i, mask); 1153 if (!page) 1154 break; 1155 1156 page_start = page_offset(page); 1157 page_end = page_start + PAGE_SIZE - 1; 1158 while (1) { 1159 lock_extent_bits(tree, page_start, page_end, 1160 &cached_state); 1161 ordered = btrfs_lookup_ordered_extent(inode, 1162 page_start); 1163 unlock_extent_cached(tree, page_start, page_end, 1164 &cached_state, GFP_NOFS); 1165 if (!ordered) 1166 break; 1167 1168 unlock_page(page); 1169 btrfs_start_ordered_extent(inode, ordered, 1); 1170 btrfs_put_ordered_extent(ordered); 1171 lock_page(page); 1172 /* 1173 * we unlocked the page above, so we need check if 1174 * it was released or not. 1175 */ 1176 if (page->mapping != inode->i_mapping) { 1177 unlock_page(page); 1178 put_page(page); 1179 goto again; 1180 } 1181 } 1182 1183 if (!PageUptodate(page)) { 1184 btrfs_readpage(NULL, page); 1185 lock_page(page); 1186 if (!PageUptodate(page)) { 1187 unlock_page(page); 1188 put_page(page); 1189 ret = -EIO; 1190 break; 1191 } 1192 } 1193 1194 if (page->mapping != inode->i_mapping) { 1195 unlock_page(page); 1196 put_page(page); 1197 goto again; 1198 } 1199 1200 pages[i] = page; 1201 i_done++; 1202 } 1203 if (!i_done || ret) 1204 goto out; 1205 1206 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1207 goto out; 1208 1209 /* 1210 * so now we have a nice long stream of locked 1211 * and up to date pages, lets wait on them 1212 */ 1213 for (i = 0; i < i_done; i++) 1214 wait_on_page_writeback(pages[i]); 1215 1216 page_start = page_offset(pages[0]); 1217 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1218 1219 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1220 page_start, page_end - 1, &cached_state); 1221 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1222 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1223 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1224 &cached_state, GFP_NOFS); 1225 1226 if (i_done != page_cnt) { 1227 spin_lock(&BTRFS_I(inode)->lock); 1228 BTRFS_I(inode)->outstanding_extents++; 1229 spin_unlock(&BTRFS_I(inode)->lock); 1230 btrfs_delalloc_release_space(inode, data_reserved, 1231 start_index << PAGE_SHIFT, 1232 (page_cnt - i_done) << PAGE_SHIFT); 1233 } 1234 1235 1236 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1237 &cached_state); 1238 1239 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1240 page_start, page_end - 1, &cached_state, 1241 GFP_NOFS); 1242 1243 for (i = 0; i < i_done; i++) { 1244 clear_page_dirty_for_io(pages[i]); 1245 ClearPageChecked(pages[i]); 1246 set_page_extent_mapped(pages[i]); 1247 set_page_dirty(pages[i]); 1248 unlock_page(pages[i]); 1249 put_page(pages[i]); 1250 } 1251 extent_changeset_free(data_reserved); 1252 return i_done; 1253 out: 1254 for (i = 0; i < i_done; i++) { 1255 unlock_page(pages[i]); 1256 put_page(pages[i]); 1257 } 1258 btrfs_delalloc_release_space(inode, data_reserved, 1259 start_index << PAGE_SHIFT, 1260 page_cnt << PAGE_SHIFT); 1261 extent_changeset_free(data_reserved); 1262 return ret; 1263 1264 } 1265 1266 int btrfs_defrag_file(struct inode *inode, struct file *file, 1267 struct btrfs_ioctl_defrag_range_args *range, 1268 u64 newer_than, unsigned long max_to_defrag) 1269 { 1270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1271 struct btrfs_root *root = BTRFS_I(inode)->root; 1272 struct file_ra_state *ra = NULL; 1273 unsigned long last_index; 1274 u64 isize = i_size_read(inode); 1275 u64 last_len = 0; 1276 u64 skip = 0; 1277 u64 defrag_end = 0; 1278 u64 newer_off = range->start; 1279 unsigned long i; 1280 unsigned long ra_index = 0; 1281 int ret; 1282 int defrag_count = 0; 1283 int compress_type = BTRFS_COMPRESS_ZLIB; 1284 u32 extent_thresh = range->extent_thresh; 1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1286 unsigned long cluster = max_cluster; 1287 u64 new_align = ~((u64)SZ_128K - 1); 1288 struct page **pages = NULL; 1289 1290 if (isize == 0) 1291 return 0; 1292 1293 if (range->start >= isize) 1294 return -EINVAL; 1295 1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1297 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1298 return -EINVAL; 1299 if (range->compress_type) 1300 compress_type = range->compress_type; 1301 } 1302 1303 if (extent_thresh == 0) 1304 extent_thresh = SZ_256K; 1305 1306 /* 1307 * if we were not given a file, allocate a readahead 1308 * context 1309 */ 1310 if (!file) { 1311 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1312 if (!ra) 1313 return -ENOMEM; 1314 file_ra_state_init(ra, inode->i_mapping); 1315 } else { 1316 ra = &file->f_ra; 1317 } 1318 1319 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1320 GFP_NOFS); 1321 if (!pages) { 1322 ret = -ENOMEM; 1323 goto out_ra; 1324 } 1325 1326 /* find the last page to defrag */ 1327 if (range->start + range->len > range->start) { 1328 last_index = min_t(u64, isize - 1, 1329 range->start + range->len - 1) >> PAGE_SHIFT; 1330 } else { 1331 last_index = (isize - 1) >> PAGE_SHIFT; 1332 } 1333 1334 if (newer_than) { 1335 ret = find_new_extents(root, inode, newer_than, 1336 &newer_off, SZ_64K); 1337 if (!ret) { 1338 range->start = newer_off; 1339 /* 1340 * we always align our defrag to help keep 1341 * the extents in the file evenly spaced 1342 */ 1343 i = (newer_off & new_align) >> PAGE_SHIFT; 1344 } else 1345 goto out_ra; 1346 } else { 1347 i = range->start >> PAGE_SHIFT; 1348 } 1349 if (!max_to_defrag) 1350 max_to_defrag = last_index - i + 1; 1351 1352 /* 1353 * make writeback starts from i, so the defrag range can be 1354 * written sequentially. 1355 */ 1356 if (i < inode->i_mapping->writeback_index) 1357 inode->i_mapping->writeback_index = i; 1358 1359 while (i <= last_index && defrag_count < max_to_defrag && 1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1361 /* 1362 * make sure we stop running if someone unmounts 1363 * the FS 1364 */ 1365 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1366 break; 1367 1368 if (btrfs_defrag_cancelled(fs_info)) { 1369 btrfs_debug(fs_info, "defrag_file cancelled"); 1370 ret = -EAGAIN; 1371 break; 1372 } 1373 1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1375 extent_thresh, &last_len, &skip, 1376 &defrag_end, range->flags & 1377 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1378 unsigned long next; 1379 /* 1380 * the should_defrag function tells us how much to skip 1381 * bump our counter by the suggested amount 1382 */ 1383 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1384 i = max(i + 1, next); 1385 continue; 1386 } 1387 1388 if (!newer_than) { 1389 cluster = (PAGE_ALIGN(defrag_end) >> 1390 PAGE_SHIFT) - i; 1391 cluster = min(cluster, max_cluster); 1392 } else { 1393 cluster = max_cluster; 1394 } 1395 1396 if (i + cluster > ra_index) { 1397 ra_index = max(i, ra_index); 1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1399 cluster); 1400 ra_index += cluster; 1401 } 1402 1403 inode_lock(inode); 1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1405 BTRFS_I(inode)->force_compress = compress_type; 1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1407 if (ret < 0) { 1408 inode_unlock(inode); 1409 goto out_ra; 1410 } 1411 1412 defrag_count += ret; 1413 balance_dirty_pages_ratelimited(inode->i_mapping); 1414 inode_unlock(inode); 1415 1416 if (newer_than) { 1417 if (newer_off == (u64)-1) 1418 break; 1419 1420 if (ret > 0) 1421 i += ret; 1422 1423 newer_off = max(newer_off + 1, 1424 (u64)i << PAGE_SHIFT); 1425 1426 ret = find_new_extents(root, inode, newer_than, 1427 &newer_off, SZ_64K); 1428 if (!ret) { 1429 range->start = newer_off; 1430 i = (newer_off & new_align) >> PAGE_SHIFT; 1431 } else { 1432 break; 1433 } 1434 } else { 1435 if (ret > 0) { 1436 i += ret; 1437 last_len += ret << PAGE_SHIFT; 1438 } else { 1439 i++; 1440 last_len = 0; 1441 } 1442 } 1443 } 1444 1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1446 filemap_flush(inode->i_mapping); 1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1448 &BTRFS_I(inode)->runtime_flags)) 1449 filemap_flush(inode->i_mapping); 1450 } 1451 1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1453 /* the filemap_flush will queue IO into the worker threads, but 1454 * we have to make sure the IO is actually started and that 1455 * ordered extents get created before we return 1456 */ 1457 atomic_inc(&fs_info->async_submit_draining); 1458 while (atomic_read(&fs_info->nr_async_submits) || 1459 atomic_read(&fs_info->async_delalloc_pages)) { 1460 wait_event(fs_info->async_submit_wait, 1461 (atomic_read(&fs_info->nr_async_submits) == 0 && 1462 atomic_read(&fs_info->async_delalloc_pages) == 0)); 1463 } 1464 atomic_dec(&fs_info->async_submit_draining); 1465 } 1466 1467 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1468 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1469 } 1470 1471 ret = defrag_count; 1472 1473 out_ra: 1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1475 inode_lock(inode); 1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1477 inode_unlock(inode); 1478 } 1479 if (!file) 1480 kfree(ra); 1481 kfree(pages); 1482 return ret; 1483 } 1484 1485 static noinline int btrfs_ioctl_resize(struct file *file, 1486 void __user *arg) 1487 { 1488 struct inode *inode = file_inode(file); 1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1490 u64 new_size; 1491 u64 old_size; 1492 u64 devid = 1; 1493 struct btrfs_root *root = BTRFS_I(inode)->root; 1494 struct btrfs_ioctl_vol_args *vol_args; 1495 struct btrfs_trans_handle *trans; 1496 struct btrfs_device *device = NULL; 1497 char *sizestr; 1498 char *retptr; 1499 char *devstr = NULL; 1500 int ret = 0; 1501 int mod = 0; 1502 1503 if (!capable(CAP_SYS_ADMIN)) 1504 return -EPERM; 1505 1506 ret = mnt_want_write_file(file); 1507 if (ret) 1508 return ret; 1509 1510 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1511 mnt_drop_write_file(file); 1512 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1513 } 1514 1515 mutex_lock(&fs_info->volume_mutex); 1516 vol_args = memdup_user(arg, sizeof(*vol_args)); 1517 if (IS_ERR(vol_args)) { 1518 ret = PTR_ERR(vol_args); 1519 goto out; 1520 } 1521 1522 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1523 1524 sizestr = vol_args->name; 1525 devstr = strchr(sizestr, ':'); 1526 if (devstr) { 1527 sizestr = devstr + 1; 1528 *devstr = '\0'; 1529 devstr = vol_args->name; 1530 ret = kstrtoull(devstr, 10, &devid); 1531 if (ret) 1532 goto out_free; 1533 if (!devid) { 1534 ret = -EINVAL; 1535 goto out_free; 1536 } 1537 btrfs_info(fs_info, "resizing devid %llu", devid); 1538 } 1539 1540 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1541 if (!device) { 1542 btrfs_info(fs_info, "resizer unable to find device %llu", 1543 devid); 1544 ret = -ENODEV; 1545 goto out_free; 1546 } 1547 1548 if (!device->writeable) { 1549 btrfs_info(fs_info, 1550 "resizer unable to apply on readonly device %llu", 1551 devid); 1552 ret = -EPERM; 1553 goto out_free; 1554 } 1555 1556 if (!strcmp(sizestr, "max")) 1557 new_size = device->bdev->bd_inode->i_size; 1558 else { 1559 if (sizestr[0] == '-') { 1560 mod = -1; 1561 sizestr++; 1562 } else if (sizestr[0] == '+') { 1563 mod = 1; 1564 sizestr++; 1565 } 1566 new_size = memparse(sizestr, &retptr); 1567 if (*retptr != '\0' || new_size == 0) { 1568 ret = -EINVAL; 1569 goto out_free; 1570 } 1571 } 1572 1573 if (device->is_tgtdev_for_dev_replace) { 1574 ret = -EPERM; 1575 goto out_free; 1576 } 1577 1578 old_size = btrfs_device_get_total_bytes(device); 1579 1580 if (mod < 0) { 1581 if (new_size > old_size) { 1582 ret = -EINVAL; 1583 goto out_free; 1584 } 1585 new_size = old_size - new_size; 1586 } else if (mod > 0) { 1587 if (new_size > ULLONG_MAX - old_size) { 1588 ret = -ERANGE; 1589 goto out_free; 1590 } 1591 new_size = old_size + new_size; 1592 } 1593 1594 if (new_size < SZ_256M) { 1595 ret = -EINVAL; 1596 goto out_free; 1597 } 1598 if (new_size > device->bdev->bd_inode->i_size) { 1599 ret = -EFBIG; 1600 goto out_free; 1601 } 1602 1603 new_size = div_u64(new_size, fs_info->sectorsize); 1604 new_size *= fs_info->sectorsize; 1605 1606 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1607 rcu_str_deref(device->name), new_size); 1608 1609 if (new_size > old_size) { 1610 trans = btrfs_start_transaction(root, 0); 1611 if (IS_ERR(trans)) { 1612 ret = PTR_ERR(trans); 1613 goto out_free; 1614 } 1615 ret = btrfs_grow_device(trans, device, new_size); 1616 btrfs_commit_transaction(trans); 1617 } else if (new_size < old_size) { 1618 ret = btrfs_shrink_device(device, new_size); 1619 } /* equal, nothing need to do */ 1620 1621 out_free: 1622 kfree(vol_args); 1623 out: 1624 mutex_unlock(&fs_info->volume_mutex); 1625 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1626 mnt_drop_write_file(file); 1627 return ret; 1628 } 1629 1630 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1631 const char *name, unsigned long fd, int subvol, 1632 u64 *transid, bool readonly, 1633 struct btrfs_qgroup_inherit *inherit) 1634 { 1635 int namelen; 1636 int ret = 0; 1637 1638 if (!S_ISDIR(file_inode(file)->i_mode)) 1639 return -ENOTDIR; 1640 1641 ret = mnt_want_write_file(file); 1642 if (ret) 1643 goto out; 1644 1645 namelen = strlen(name); 1646 if (strchr(name, '/')) { 1647 ret = -EINVAL; 1648 goto out_drop_write; 1649 } 1650 1651 if (name[0] == '.' && 1652 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1653 ret = -EEXIST; 1654 goto out_drop_write; 1655 } 1656 1657 if (subvol) { 1658 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1659 NULL, transid, readonly, inherit); 1660 } else { 1661 struct fd src = fdget(fd); 1662 struct inode *src_inode; 1663 if (!src.file) { 1664 ret = -EINVAL; 1665 goto out_drop_write; 1666 } 1667 1668 src_inode = file_inode(src.file); 1669 if (src_inode->i_sb != file_inode(file)->i_sb) { 1670 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1671 "Snapshot src from another FS"); 1672 ret = -EXDEV; 1673 } else if (!inode_owner_or_capable(src_inode)) { 1674 /* 1675 * Subvolume creation is not restricted, but snapshots 1676 * are limited to own subvolumes only 1677 */ 1678 ret = -EPERM; 1679 } else { 1680 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1681 BTRFS_I(src_inode)->root, 1682 transid, readonly, inherit); 1683 } 1684 fdput(src); 1685 } 1686 out_drop_write: 1687 mnt_drop_write_file(file); 1688 out: 1689 return ret; 1690 } 1691 1692 static noinline int btrfs_ioctl_snap_create(struct file *file, 1693 void __user *arg, int subvol) 1694 { 1695 struct btrfs_ioctl_vol_args *vol_args; 1696 int ret; 1697 1698 if (!S_ISDIR(file_inode(file)->i_mode)) 1699 return -ENOTDIR; 1700 1701 vol_args = memdup_user(arg, sizeof(*vol_args)); 1702 if (IS_ERR(vol_args)) 1703 return PTR_ERR(vol_args); 1704 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1705 1706 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1707 vol_args->fd, subvol, 1708 NULL, false, NULL); 1709 1710 kfree(vol_args); 1711 return ret; 1712 } 1713 1714 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1715 void __user *arg, int subvol) 1716 { 1717 struct btrfs_ioctl_vol_args_v2 *vol_args; 1718 int ret; 1719 u64 transid = 0; 1720 u64 *ptr = NULL; 1721 bool readonly = false; 1722 struct btrfs_qgroup_inherit *inherit = NULL; 1723 1724 if (!S_ISDIR(file_inode(file)->i_mode)) 1725 return -ENOTDIR; 1726 1727 vol_args = memdup_user(arg, sizeof(*vol_args)); 1728 if (IS_ERR(vol_args)) 1729 return PTR_ERR(vol_args); 1730 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1731 1732 if (vol_args->flags & 1733 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1734 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1735 ret = -EOPNOTSUPP; 1736 goto free_args; 1737 } 1738 1739 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1740 ptr = &transid; 1741 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1742 readonly = true; 1743 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1744 if (vol_args->size > PAGE_SIZE) { 1745 ret = -EINVAL; 1746 goto free_args; 1747 } 1748 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1749 if (IS_ERR(inherit)) { 1750 ret = PTR_ERR(inherit); 1751 goto free_args; 1752 } 1753 } 1754 1755 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1756 vol_args->fd, subvol, ptr, 1757 readonly, inherit); 1758 if (ret) 1759 goto free_inherit; 1760 1761 if (ptr && copy_to_user(arg + 1762 offsetof(struct btrfs_ioctl_vol_args_v2, 1763 transid), 1764 ptr, sizeof(*ptr))) 1765 ret = -EFAULT; 1766 1767 free_inherit: 1768 kfree(inherit); 1769 free_args: 1770 kfree(vol_args); 1771 return ret; 1772 } 1773 1774 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1775 void __user *arg) 1776 { 1777 struct inode *inode = file_inode(file); 1778 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1779 struct btrfs_root *root = BTRFS_I(inode)->root; 1780 int ret = 0; 1781 u64 flags = 0; 1782 1783 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1784 return -EINVAL; 1785 1786 down_read(&fs_info->subvol_sem); 1787 if (btrfs_root_readonly(root)) 1788 flags |= BTRFS_SUBVOL_RDONLY; 1789 up_read(&fs_info->subvol_sem); 1790 1791 if (copy_to_user(arg, &flags, sizeof(flags))) 1792 ret = -EFAULT; 1793 1794 return ret; 1795 } 1796 1797 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1798 void __user *arg) 1799 { 1800 struct inode *inode = file_inode(file); 1801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1802 struct btrfs_root *root = BTRFS_I(inode)->root; 1803 struct btrfs_trans_handle *trans; 1804 u64 root_flags; 1805 u64 flags; 1806 int ret = 0; 1807 1808 if (!inode_owner_or_capable(inode)) 1809 return -EPERM; 1810 1811 ret = mnt_want_write_file(file); 1812 if (ret) 1813 goto out; 1814 1815 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1816 ret = -EINVAL; 1817 goto out_drop_write; 1818 } 1819 1820 if (copy_from_user(&flags, arg, sizeof(flags))) { 1821 ret = -EFAULT; 1822 goto out_drop_write; 1823 } 1824 1825 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1826 ret = -EINVAL; 1827 goto out_drop_write; 1828 } 1829 1830 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1831 ret = -EOPNOTSUPP; 1832 goto out_drop_write; 1833 } 1834 1835 down_write(&fs_info->subvol_sem); 1836 1837 /* nothing to do */ 1838 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1839 goto out_drop_sem; 1840 1841 root_flags = btrfs_root_flags(&root->root_item); 1842 if (flags & BTRFS_SUBVOL_RDONLY) { 1843 btrfs_set_root_flags(&root->root_item, 1844 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1845 } else { 1846 /* 1847 * Block RO -> RW transition if this subvolume is involved in 1848 * send 1849 */ 1850 spin_lock(&root->root_item_lock); 1851 if (root->send_in_progress == 0) { 1852 btrfs_set_root_flags(&root->root_item, 1853 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1854 spin_unlock(&root->root_item_lock); 1855 } else { 1856 spin_unlock(&root->root_item_lock); 1857 btrfs_warn(fs_info, 1858 "Attempt to set subvolume %llu read-write during send", 1859 root->root_key.objectid); 1860 ret = -EPERM; 1861 goto out_drop_sem; 1862 } 1863 } 1864 1865 trans = btrfs_start_transaction(root, 1); 1866 if (IS_ERR(trans)) { 1867 ret = PTR_ERR(trans); 1868 goto out_reset; 1869 } 1870 1871 ret = btrfs_update_root(trans, fs_info->tree_root, 1872 &root->root_key, &root->root_item); 1873 1874 btrfs_commit_transaction(trans); 1875 out_reset: 1876 if (ret) 1877 btrfs_set_root_flags(&root->root_item, root_flags); 1878 out_drop_sem: 1879 up_write(&fs_info->subvol_sem); 1880 out_drop_write: 1881 mnt_drop_write_file(file); 1882 out: 1883 return ret; 1884 } 1885 1886 /* 1887 * helper to check if the subvolume references other subvolumes 1888 */ 1889 static noinline int may_destroy_subvol(struct btrfs_root *root) 1890 { 1891 struct btrfs_fs_info *fs_info = root->fs_info; 1892 struct btrfs_path *path; 1893 struct btrfs_dir_item *di; 1894 struct btrfs_key key; 1895 u64 dir_id; 1896 int ret; 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 /* Make sure this root isn't set as the default subvol */ 1903 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1904 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 1905 dir_id, "default", 7, 0); 1906 if (di && !IS_ERR(di)) { 1907 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1908 if (key.objectid == root->root_key.objectid) { 1909 ret = -EPERM; 1910 btrfs_err(fs_info, 1911 "deleting default subvolume %llu is not allowed", 1912 key.objectid); 1913 goto out; 1914 } 1915 btrfs_release_path(path); 1916 } 1917 1918 key.objectid = root->root_key.objectid; 1919 key.type = BTRFS_ROOT_REF_KEY; 1920 key.offset = (u64)-1; 1921 1922 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1923 if (ret < 0) 1924 goto out; 1925 BUG_ON(ret == 0); 1926 1927 ret = 0; 1928 if (path->slots[0] > 0) { 1929 path->slots[0]--; 1930 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1931 if (key.objectid == root->root_key.objectid && 1932 key.type == BTRFS_ROOT_REF_KEY) 1933 ret = -ENOTEMPTY; 1934 } 1935 out: 1936 btrfs_free_path(path); 1937 return ret; 1938 } 1939 1940 static noinline int key_in_sk(struct btrfs_key *key, 1941 struct btrfs_ioctl_search_key *sk) 1942 { 1943 struct btrfs_key test; 1944 int ret; 1945 1946 test.objectid = sk->min_objectid; 1947 test.type = sk->min_type; 1948 test.offset = sk->min_offset; 1949 1950 ret = btrfs_comp_cpu_keys(key, &test); 1951 if (ret < 0) 1952 return 0; 1953 1954 test.objectid = sk->max_objectid; 1955 test.type = sk->max_type; 1956 test.offset = sk->max_offset; 1957 1958 ret = btrfs_comp_cpu_keys(key, &test); 1959 if (ret > 0) 1960 return 0; 1961 return 1; 1962 } 1963 1964 static noinline int copy_to_sk(struct btrfs_path *path, 1965 struct btrfs_key *key, 1966 struct btrfs_ioctl_search_key *sk, 1967 size_t *buf_size, 1968 char __user *ubuf, 1969 unsigned long *sk_offset, 1970 int *num_found) 1971 { 1972 u64 found_transid; 1973 struct extent_buffer *leaf; 1974 struct btrfs_ioctl_search_header sh; 1975 struct btrfs_key test; 1976 unsigned long item_off; 1977 unsigned long item_len; 1978 int nritems; 1979 int i; 1980 int slot; 1981 int ret = 0; 1982 1983 leaf = path->nodes[0]; 1984 slot = path->slots[0]; 1985 nritems = btrfs_header_nritems(leaf); 1986 1987 if (btrfs_header_generation(leaf) > sk->max_transid) { 1988 i = nritems; 1989 goto advance_key; 1990 } 1991 found_transid = btrfs_header_generation(leaf); 1992 1993 for (i = slot; i < nritems; i++) { 1994 item_off = btrfs_item_ptr_offset(leaf, i); 1995 item_len = btrfs_item_size_nr(leaf, i); 1996 1997 btrfs_item_key_to_cpu(leaf, key, i); 1998 if (!key_in_sk(key, sk)) 1999 continue; 2000 2001 if (sizeof(sh) + item_len > *buf_size) { 2002 if (*num_found) { 2003 ret = 1; 2004 goto out; 2005 } 2006 2007 /* 2008 * return one empty item back for v1, which does not 2009 * handle -EOVERFLOW 2010 */ 2011 2012 *buf_size = sizeof(sh) + item_len; 2013 item_len = 0; 2014 ret = -EOVERFLOW; 2015 } 2016 2017 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2018 ret = 1; 2019 goto out; 2020 } 2021 2022 sh.objectid = key->objectid; 2023 sh.offset = key->offset; 2024 sh.type = key->type; 2025 sh.len = item_len; 2026 sh.transid = found_transid; 2027 2028 /* copy search result header */ 2029 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2030 ret = -EFAULT; 2031 goto out; 2032 } 2033 2034 *sk_offset += sizeof(sh); 2035 2036 if (item_len) { 2037 char __user *up = ubuf + *sk_offset; 2038 /* copy the item */ 2039 if (read_extent_buffer_to_user(leaf, up, 2040 item_off, item_len)) { 2041 ret = -EFAULT; 2042 goto out; 2043 } 2044 2045 *sk_offset += item_len; 2046 } 2047 (*num_found)++; 2048 2049 if (ret) /* -EOVERFLOW from above */ 2050 goto out; 2051 2052 if (*num_found >= sk->nr_items) { 2053 ret = 1; 2054 goto out; 2055 } 2056 } 2057 advance_key: 2058 ret = 0; 2059 test.objectid = sk->max_objectid; 2060 test.type = sk->max_type; 2061 test.offset = sk->max_offset; 2062 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2063 ret = 1; 2064 else if (key->offset < (u64)-1) 2065 key->offset++; 2066 else if (key->type < (u8)-1) { 2067 key->offset = 0; 2068 key->type++; 2069 } else if (key->objectid < (u64)-1) { 2070 key->offset = 0; 2071 key->type = 0; 2072 key->objectid++; 2073 } else 2074 ret = 1; 2075 out: 2076 /* 2077 * 0: all items from this leaf copied, continue with next 2078 * 1: * more items can be copied, but unused buffer is too small 2079 * * all items were found 2080 * Either way, it will stops the loop which iterates to the next 2081 * leaf 2082 * -EOVERFLOW: item was to large for buffer 2083 * -EFAULT: could not copy extent buffer back to userspace 2084 */ 2085 return ret; 2086 } 2087 2088 static noinline int search_ioctl(struct inode *inode, 2089 struct btrfs_ioctl_search_key *sk, 2090 size_t *buf_size, 2091 char __user *ubuf) 2092 { 2093 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2094 struct btrfs_root *root; 2095 struct btrfs_key key; 2096 struct btrfs_path *path; 2097 int ret; 2098 int num_found = 0; 2099 unsigned long sk_offset = 0; 2100 2101 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2102 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2103 return -EOVERFLOW; 2104 } 2105 2106 path = btrfs_alloc_path(); 2107 if (!path) 2108 return -ENOMEM; 2109 2110 if (sk->tree_id == 0) { 2111 /* search the root of the inode that was passed */ 2112 root = BTRFS_I(inode)->root; 2113 } else { 2114 key.objectid = sk->tree_id; 2115 key.type = BTRFS_ROOT_ITEM_KEY; 2116 key.offset = (u64)-1; 2117 root = btrfs_read_fs_root_no_name(info, &key); 2118 if (IS_ERR(root)) { 2119 btrfs_free_path(path); 2120 return -ENOENT; 2121 } 2122 } 2123 2124 key.objectid = sk->min_objectid; 2125 key.type = sk->min_type; 2126 key.offset = sk->min_offset; 2127 2128 while (1) { 2129 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2130 if (ret != 0) { 2131 if (ret > 0) 2132 ret = 0; 2133 goto err; 2134 } 2135 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2136 &sk_offset, &num_found); 2137 btrfs_release_path(path); 2138 if (ret) 2139 break; 2140 2141 } 2142 if (ret > 0) 2143 ret = 0; 2144 err: 2145 sk->nr_items = num_found; 2146 btrfs_free_path(path); 2147 return ret; 2148 } 2149 2150 static noinline int btrfs_ioctl_tree_search(struct file *file, 2151 void __user *argp) 2152 { 2153 struct btrfs_ioctl_search_args __user *uargs; 2154 struct btrfs_ioctl_search_key sk; 2155 struct inode *inode; 2156 int ret; 2157 size_t buf_size; 2158 2159 if (!capable(CAP_SYS_ADMIN)) 2160 return -EPERM; 2161 2162 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2163 2164 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2165 return -EFAULT; 2166 2167 buf_size = sizeof(uargs->buf); 2168 2169 inode = file_inode(file); 2170 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2171 2172 /* 2173 * In the origin implementation an overflow is handled by returning a 2174 * search header with a len of zero, so reset ret. 2175 */ 2176 if (ret == -EOVERFLOW) 2177 ret = 0; 2178 2179 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2180 ret = -EFAULT; 2181 return ret; 2182 } 2183 2184 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2185 void __user *argp) 2186 { 2187 struct btrfs_ioctl_search_args_v2 __user *uarg; 2188 struct btrfs_ioctl_search_args_v2 args; 2189 struct inode *inode; 2190 int ret; 2191 size_t buf_size; 2192 const size_t buf_limit = SZ_16M; 2193 2194 if (!capable(CAP_SYS_ADMIN)) 2195 return -EPERM; 2196 2197 /* copy search header and buffer size */ 2198 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2199 if (copy_from_user(&args, uarg, sizeof(args))) 2200 return -EFAULT; 2201 2202 buf_size = args.buf_size; 2203 2204 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2205 return -EOVERFLOW; 2206 2207 /* limit result size to 16MB */ 2208 if (buf_size > buf_limit) 2209 buf_size = buf_limit; 2210 2211 inode = file_inode(file); 2212 ret = search_ioctl(inode, &args.key, &buf_size, 2213 (char *)(&uarg->buf[0])); 2214 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2215 ret = -EFAULT; 2216 else if (ret == -EOVERFLOW && 2217 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2218 ret = -EFAULT; 2219 2220 return ret; 2221 } 2222 2223 /* 2224 * Search INODE_REFs to identify path name of 'dirid' directory 2225 * in a 'tree_id' tree. and sets path name to 'name'. 2226 */ 2227 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2228 u64 tree_id, u64 dirid, char *name) 2229 { 2230 struct btrfs_root *root; 2231 struct btrfs_key key; 2232 char *ptr; 2233 int ret = -1; 2234 int slot; 2235 int len; 2236 int total_len = 0; 2237 struct btrfs_inode_ref *iref; 2238 struct extent_buffer *l; 2239 struct btrfs_path *path; 2240 2241 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2242 name[0]='\0'; 2243 return 0; 2244 } 2245 2246 path = btrfs_alloc_path(); 2247 if (!path) 2248 return -ENOMEM; 2249 2250 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2251 2252 key.objectid = tree_id; 2253 key.type = BTRFS_ROOT_ITEM_KEY; 2254 key.offset = (u64)-1; 2255 root = btrfs_read_fs_root_no_name(info, &key); 2256 if (IS_ERR(root)) { 2257 btrfs_err(info, "could not find root %llu", tree_id); 2258 ret = -ENOENT; 2259 goto out; 2260 } 2261 2262 key.objectid = dirid; 2263 key.type = BTRFS_INODE_REF_KEY; 2264 key.offset = (u64)-1; 2265 2266 while (1) { 2267 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2268 if (ret < 0) 2269 goto out; 2270 else if (ret > 0) { 2271 ret = btrfs_previous_item(root, path, dirid, 2272 BTRFS_INODE_REF_KEY); 2273 if (ret < 0) 2274 goto out; 2275 else if (ret > 0) { 2276 ret = -ENOENT; 2277 goto out; 2278 } 2279 } 2280 2281 l = path->nodes[0]; 2282 slot = path->slots[0]; 2283 btrfs_item_key_to_cpu(l, &key, slot); 2284 2285 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2286 len = btrfs_inode_ref_name_len(l, iref); 2287 ptr -= len + 1; 2288 total_len += len + 1; 2289 if (ptr < name) { 2290 ret = -ENAMETOOLONG; 2291 goto out; 2292 } 2293 2294 *(ptr + len) = '/'; 2295 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2296 2297 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2298 break; 2299 2300 btrfs_release_path(path); 2301 key.objectid = key.offset; 2302 key.offset = (u64)-1; 2303 dirid = key.objectid; 2304 } 2305 memmove(name, ptr, total_len); 2306 name[total_len] = '\0'; 2307 ret = 0; 2308 out: 2309 btrfs_free_path(path); 2310 return ret; 2311 } 2312 2313 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2314 void __user *argp) 2315 { 2316 struct btrfs_ioctl_ino_lookup_args *args; 2317 struct inode *inode; 2318 int ret = 0; 2319 2320 args = memdup_user(argp, sizeof(*args)); 2321 if (IS_ERR(args)) 2322 return PTR_ERR(args); 2323 2324 inode = file_inode(file); 2325 2326 /* 2327 * Unprivileged query to obtain the containing subvolume root id. The 2328 * path is reset so it's consistent with btrfs_search_path_in_tree. 2329 */ 2330 if (args->treeid == 0) 2331 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2332 2333 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2334 args->name[0] = 0; 2335 goto out; 2336 } 2337 2338 if (!capable(CAP_SYS_ADMIN)) { 2339 ret = -EPERM; 2340 goto out; 2341 } 2342 2343 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2344 args->treeid, args->objectid, 2345 args->name); 2346 2347 out: 2348 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2349 ret = -EFAULT; 2350 2351 kfree(args); 2352 return ret; 2353 } 2354 2355 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2356 void __user *arg) 2357 { 2358 struct dentry *parent = file->f_path.dentry; 2359 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2360 struct dentry *dentry; 2361 struct inode *dir = d_inode(parent); 2362 struct inode *inode; 2363 struct btrfs_root *root = BTRFS_I(dir)->root; 2364 struct btrfs_root *dest = NULL; 2365 struct btrfs_ioctl_vol_args *vol_args; 2366 struct btrfs_trans_handle *trans; 2367 struct btrfs_block_rsv block_rsv; 2368 u64 root_flags; 2369 u64 qgroup_reserved; 2370 int namelen; 2371 int ret; 2372 int err = 0; 2373 2374 if (!S_ISDIR(dir->i_mode)) 2375 return -ENOTDIR; 2376 2377 vol_args = memdup_user(arg, sizeof(*vol_args)); 2378 if (IS_ERR(vol_args)) 2379 return PTR_ERR(vol_args); 2380 2381 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2382 namelen = strlen(vol_args->name); 2383 if (strchr(vol_args->name, '/') || 2384 strncmp(vol_args->name, "..", namelen) == 0) { 2385 err = -EINVAL; 2386 goto out; 2387 } 2388 2389 err = mnt_want_write_file(file); 2390 if (err) 2391 goto out; 2392 2393 2394 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2395 if (err == -EINTR) 2396 goto out_drop_write; 2397 dentry = lookup_one_len(vol_args->name, parent, namelen); 2398 if (IS_ERR(dentry)) { 2399 err = PTR_ERR(dentry); 2400 goto out_unlock_dir; 2401 } 2402 2403 if (d_really_is_negative(dentry)) { 2404 err = -ENOENT; 2405 goto out_dput; 2406 } 2407 2408 inode = d_inode(dentry); 2409 dest = BTRFS_I(inode)->root; 2410 if (!capable(CAP_SYS_ADMIN)) { 2411 /* 2412 * Regular user. Only allow this with a special mount 2413 * option, when the user has write+exec access to the 2414 * subvol root, and when rmdir(2) would have been 2415 * allowed. 2416 * 2417 * Note that this is _not_ check that the subvol is 2418 * empty or doesn't contain data that we wouldn't 2419 * otherwise be able to delete. 2420 * 2421 * Users who want to delete empty subvols should try 2422 * rmdir(2). 2423 */ 2424 err = -EPERM; 2425 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2426 goto out_dput; 2427 2428 /* 2429 * Do not allow deletion if the parent dir is the same 2430 * as the dir to be deleted. That means the ioctl 2431 * must be called on the dentry referencing the root 2432 * of the subvol, not a random directory contained 2433 * within it. 2434 */ 2435 err = -EINVAL; 2436 if (root == dest) 2437 goto out_dput; 2438 2439 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2440 if (err) 2441 goto out_dput; 2442 } 2443 2444 /* check if subvolume may be deleted by a user */ 2445 err = btrfs_may_delete(dir, dentry, 1); 2446 if (err) 2447 goto out_dput; 2448 2449 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2450 err = -EINVAL; 2451 goto out_dput; 2452 } 2453 2454 inode_lock(inode); 2455 2456 /* 2457 * Don't allow to delete a subvolume with send in progress. This is 2458 * inside the i_mutex so the error handling that has to drop the bit 2459 * again is not run concurrently. 2460 */ 2461 spin_lock(&dest->root_item_lock); 2462 root_flags = btrfs_root_flags(&dest->root_item); 2463 if (dest->send_in_progress == 0) { 2464 btrfs_set_root_flags(&dest->root_item, 2465 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2466 spin_unlock(&dest->root_item_lock); 2467 } else { 2468 spin_unlock(&dest->root_item_lock); 2469 btrfs_warn(fs_info, 2470 "Attempt to delete subvolume %llu during send", 2471 dest->root_key.objectid); 2472 err = -EPERM; 2473 goto out_unlock_inode; 2474 } 2475 2476 down_write(&fs_info->subvol_sem); 2477 2478 err = may_destroy_subvol(dest); 2479 if (err) 2480 goto out_up_write; 2481 2482 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2483 /* 2484 * One for dir inode, two for dir entries, two for root 2485 * ref/backref. 2486 */ 2487 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2488 5, &qgroup_reserved, true); 2489 if (err) 2490 goto out_up_write; 2491 2492 trans = btrfs_start_transaction(root, 0); 2493 if (IS_ERR(trans)) { 2494 err = PTR_ERR(trans); 2495 goto out_release; 2496 } 2497 trans->block_rsv = &block_rsv; 2498 trans->bytes_reserved = block_rsv.size; 2499 2500 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 2501 2502 ret = btrfs_unlink_subvol(trans, root, dir, 2503 dest->root_key.objectid, 2504 dentry->d_name.name, 2505 dentry->d_name.len); 2506 if (ret) { 2507 err = ret; 2508 btrfs_abort_transaction(trans, ret); 2509 goto out_end_trans; 2510 } 2511 2512 btrfs_record_root_in_trans(trans, dest); 2513 2514 memset(&dest->root_item.drop_progress, 0, 2515 sizeof(dest->root_item.drop_progress)); 2516 dest->root_item.drop_level = 0; 2517 btrfs_set_root_refs(&dest->root_item, 0); 2518 2519 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2520 ret = btrfs_insert_orphan_item(trans, 2521 fs_info->tree_root, 2522 dest->root_key.objectid); 2523 if (ret) { 2524 btrfs_abort_transaction(trans, ret); 2525 err = ret; 2526 goto out_end_trans; 2527 } 2528 } 2529 2530 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid, 2531 BTRFS_UUID_KEY_SUBVOL, 2532 dest->root_key.objectid); 2533 if (ret && ret != -ENOENT) { 2534 btrfs_abort_transaction(trans, ret); 2535 err = ret; 2536 goto out_end_trans; 2537 } 2538 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2539 ret = btrfs_uuid_tree_rem(trans, fs_info, 2540 dest->root_item.received_uuid, 2541 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2542 dest->root_key.objectid); 2543 if (ret && ret != -ENOENT) { 2544 btrfs_abort_transaction(trans, ret); 2545 err = ret; 2546 goto out_end_trans; 2547 } 2548 } 2549 2550 out_end_trans: 2551 trans->block_rsv = NULL; 2552 trans->bytes_reserved = 0; 2553 ret = btrfs_end_transaction(trans); 2554 if (ret && !err) 2555 err = ret; 2556 inode->i_flags |= S_DEAD; 2557 out_release: 2558 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 2559 out_up_write: 2560 up_write(&fs_info->subvol_sem); 2561 if (err) { 2562 spin_lock(&dest->root_item_lock); 2563 root_flags = btrfs_root_flags(&dest->root_item); 2564 btrfs_set_root_flags(&dest->root_item, 2565 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2566 spin_unlock(&dest->root_item_lock); 2567 } 2568 out_unlock_inode: 2569 inode_unlock(inode); 2570 if (!err) { 2571 d_invalidate(dentry); 2572 btrfs_invalidate_inodes(dest); 2573 d_delete(dentry); 2574 ASSERT(dest->send_in_progress == 0); 2575 2576 /* the last ref */ 2577 if (dest->ino_cache_inode) { 2578 iput(dest->ino_cache_inode); 2579 dest->ino_cache_inode = NULL; 2580 } 2581 } 2582 out_dput: 2583 dput(dentry); 2584 out_unlock_dir: 2585 inode_unlock(dir); 2586 out_drop_write: 2587 mnt_drop_write_file(file); 2588 out: 2589 kfree(vol_args); 2590 return err; 2591 } 2592 2593 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2594 { 2595 struct inode *inode = file_inode(file); 2596 struct btrfs_root *root = BTRFS_I(inode)->root; 2597 struct btrfs_ioctl_defrag_range_args *range; 2598 int ret; 2599 2600 ret = mnt_want_write_file(file); 2601 if (ret) 2602 return ret; 2603 2604 if (btrfs_root_readonly(root)) { 2605 ret = -EROFS; 2606 goto out; 2607 } 2608 2609 switch (inode->i_mode & S_IFMT) { 2610 case S_IFDIR: 2611 if (!capable(CAP_SYS_ADMIN)) { 2612 ret = -EPERM; 2613 goto out; 2614 } 2615 ret = btrfs_defrag_root(root); 2616 break; 2617 case S_IFREG: 2618 if (!(file->f_mode & FMODE_WRITE)) { 2619 ret = -EINVAL; 2620 goto out; 2621 } 2622 2623 range = kzalloc(sizeof(*range), GFP_KERNEL); 2624 if (!range) { 2625 ret = -ENOMEM; 2626 goto out; 2627 } 2628 2629 if (argp) { 2630 if (copy_from_user(range, argp, 2631 sizeof(*range))) { 2632 ret = -EFAULT; 2633 kfree(range); 2634 goto out; 2635 } 2636 /* compression requires us to start the IO */ 2637 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2638 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2639 range->extent_thresh = (u32)-1; 2640 } 2641 } else { 2642 /* the rest are all set to zero by kzalloc */ 2643 range->len = (u64)-1; 2644 } 2645 ret = btrfs_defrag_file(file_inode(file), file, 2646 range, 0, 0); 2647 if (ret > 0) 2648 ret = 0; 2649 kfree(range); 2650 break; 2651 default: 2652 ret = -EINVAL; 2653 } 2654 out: 2655 mnt_drop_write_file(file); 2656 return ret; 2657 } 2658 2659 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2660 { 2661 struct btrfs_ioctl_vol_args *vol_args; 2662 int ret; 2663 2664 if (!capable(CAP_SYS_ADMIN)) 2665 return -EPERM; 2666 2667 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 2668 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2669 2670 mutex_lock(&fs_info->volume_mutex); 2671 vol_args = memdup_user(arg, sizeof(*vol_args)); 2672 if (IS_ERR(vol_args)) { 2673 ret = PTR_ERR(vol_args); 2674 goto out; 2675 } 2676 2677 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2678 ret = btrfs_init_new_device(fs_info, vol_args->name); 2679 2680 if (!ret) 2681 btrfs_info(fs_info, "disk added %s", vol_args->name); 2682 2683 kfree(vol_args); 2684 out: 2685 mutex_unlock(&fs_info->volume_mutex); 2686 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2687 return ret; 2688 } 2689 2690 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2691 { 2692 struct inode *inode = file_inode(file); 2693 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2694 struct btrfs_ioctl_vol_args_v2 *vol_args; 2695 int ret; 2696 2697 if (!capable(CAP_SYS_ADMIN)) 2698 return -EPERM; 2699 2700 ret = mnt_want_write_file(file); 2701 if (ret) 2702 return ret; 2703 2704 vol_args = memdup_user(arg, sizeof(*vol_args)); 2705 if (IS_ERR(vol_args)) { 2706 ret = PTR_ERR(vol_args); 2707 goto err_drop; 2708 } 2709 2710 /* Check for compatibility reject unknown flags */ 2711 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2712 return -EOPNOTSUPP; 2713 2714 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2715 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2716 goto out; 2717 } 2718 2719 mutex_lock(&fs_info->volume_mutex); 2720 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2721 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 2722 } else { 2723 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2724 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2725 } 2726 mutex_unlock(&fs_info->volume_mutex); 2727 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2728 2729 if (!ret) { 2730 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2731 btrfs_info(fs_info, "device deleted: id %llu", 2732 vol_args->devid); 2733 else 2734 btrfs_info(fs_info, "device deleted: %s", 2735 vol_args->name); 2736 } 2737 out: 2738 kfree(vol_args); 2739 err_drop: 2740 mnt_drop_write_file(file); 2741 return ret; 2742 } 2743 2744 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2745 { 2746 struct inode *inode = file_inode(file); 2747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2748 struct btrfs_ioctl_vol_args *vol_args; 2749 int ret; 2750 2751 if (!capable(CAP_SYS_ADMIN)) 2752 return -EPERM; 2753 2754 ret = mnt_want_write_file(file); 2755 if (ret) 2756 return ret; 2757 2758 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2759 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2760 goto out_drop_write; 2761 } 2762 2763 vol_args = memdup_user(arg, sizeof(*vol_args)); 2764 if (IS_ERR(vol_args)) { 2765 ret = PTR_ERR(vol_args); 2766 goto out; 2767 } 2768 2769 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2770 mutex_lock(&fs_info->volume_mutex); 2771 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2772 mutex_unlock(&fs_info->volume_mutex); 2773 2774 if (!ret) 2775 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2776 kfree(vol_args); 2777 out: 2778 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2779 out_drop_write: 2780 mnt_drop_write_file(file); 2781 2782 return ret; 2783 } 2784 2785 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2786 void __user *arg) 2787 { 2788 struct btrfs_ioctl_fs_info_args *fi_args; 2789 struct btrfs_device *device; 2790 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2791 int ret = 0; 2792 2793 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2794 if (!fi_args) 2795 return -ENOMEM; 2796 2797 mutex_lock(&fs_devices->device_list_mutex); 2798 fi_args->num_devices = fs_devices->num_devices; 2799 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 2800 2801 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2802 if (device->devid > fi_args->max_id) 2803 fi_args->max_id = device->devid; 2804 } 2805 mutex_unlock(&fs_devices->device_list_mutex); 2806 2807 fi_args->nodesize = fs_info->super_copy->nodesize; 2808 fi_args->sectorsize = fs_info->super_copy->sectorsize; 2809 fi_args->clone_alignment = fs_info->super_copy->sectorsize; 2810 2811 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2812 ret = -EFAULT; 2813 2814 kfree(fi_args); 2815 return ret; 2816 } 2817 2818 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2819 void __user *arg) 2820 { 2821 struct btrfs_ioctl_dev_info_args *di_args; 2822 struct btrfs_device *dev; 2823 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2824 int ret = 0; 2825 char *s_uuid = NULL; 2826 2827 di_args = memdup_user(arg, sizeof(*di_args)); 2828 if (IS_ERR(di_args)) 2829 return PTR_ERR(di_args); 2830 2831 if (!btrfs_is_empty_uuid(di_args->uuid)) 2832 s_uuid = di_args->uuid; 2833 2834 mutex_lock(&fs_devices->device_list_mutex); 2835 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 2836 2837 if (!dev) { 2838 ret = -ENODEV; 2839 goto out; 2840 } 2841 2842 di_args->devid = dev->devid; 2843 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2844 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2845 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2846 if (dev->name) { 2847 struct rcu_string *name; 2848 2849 rcu_read_lock(); 2850 name = rcu_dereference(dev->name); 2851 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2852 rcu_read_unlock(); 2853 di_args->path[sizeof(di_args->path) - 1] = 0; 2854 } else { 2855 di_args->path[0] = '\0'; 2856 } 2857 2858 out: 2859 mutex_unlock(&fs_devices->device_list_mutex); 2860 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2861 ret = -EFAULT; 2862 2863 kfree(di_args); 2864 return ret; 2865 } 2866 2867 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2868 { 2869 struct page *page; 2870 2871 page = grab_cache_page(inode->i_mapping, index); 2872 if (!page) 2873 return ERR_PTR(-ENOMEM); 2874 2875 if (!PageUptodate(page)) { 2876 int ret; 2877 2878 ret = btrfs_readpage(NULL, page); 2879 if (ret) 2880 return ERR_PTR(ret); 2881 lock_page(page); 2882 if (!PageUptodate(page)) { 2883 unlock_page(page); 2884 put_page(page); 2885 return ERR_PTR(-EIO); 2886 } 2887 if (page->mapping != inode->i_mapping) { 2888 unlock_page(page); 2889 put_page(page); 2890 return ERR_PTR(-EAGAIN); 2891 } 2892 } 2893 2894 return page; 2895 } 2896 2897 static int gather_extent_pages(struct inode *inode, struct page **pages, 2898 int num_pages, u64 off) 2899 { 2900 int i; 2901 pgoff_t index = off >> PAGE_SHIFT; 2902 2903 for (i = 0; i < num_pages; i++) { 2904 again: 2905 pages[i] = extent_same_get_page(inode, index + i); 2906 if (IS_ERR(pages[i])) { 2907 int err = PTR_ERR(pages[i]); 2908 2909 if (err == -EAGAIN) 2910 goto again; 2911 pages[i] = NULL; 2912 return err; 2913 } 2914 } 2915 return 0; 2916 } 2917 2918 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2919 bool retry_range_locking) 2920 { 2921 /* 2922 * Do any pending delalloc/csum calculations on inode, one way or 2923 * another, and lock file content. 2924 * The locking order is: 2925 * 2926 * 1) pages 2927 * 2) range in the inode's io tree 2928 */ 2929 while (1) { 2930 struct btrfs_ordered_extent *ordered; 2931 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2932 ordered = btrfs_lookup_first_ordered_extent(inode, 2933 off + len - 1); 2934 if ((!ordered || 2935 ordered->file_offset + ordered->len <= off || 2936 ordered->file_offset >= off + len) && 2937 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2938 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2939 if (ordered) 2940 btrfs_put_ordered_extent(ordered); 2941 break; 2942 } 2943 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2944 if (ordered) 2945 btrfs_put_ordered_extent(ordered); 2946 if (!retry_range_locking) 2947 return -EAGAIN; 2948 btrfs_wait_ordered_range(inode, off, len); 2949 } 2950 return 0; 2951 } 2952 2953 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2954 { 2955 inode_unlock(inode1); 2956 inode_unlock(inode2); 2957 } 2958 2959 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2960 { 2961 if (inode1 < inode2) 2962 swap(inode1, inode2); 2963 2964 inode_lock_nested(inode1, I_MUTEX_PARENT); 2965 inode_lock_nested(inode2, I_MUTEX_CHILD); 2966 } 2967 2968 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2969 struct inode *inode2, u64 loff2, u64 len) 2970 { 2971 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2972 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2973 } 2974 2975 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2976 struct inode *inode2, u64 loff2, u64 len, 2977 bool retry_range_locking) 2978 { 2979 int ret; 2980 2981 if (inode1 < inode2) { 2982 swap(inode1, inode2); 2983 swap(loff1, loff2); 2984 } 2985 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2986 if (ret) 2987 return ret; 2988 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2989 if (ret) 2990 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2991 loff1 + len - 1); 2992 return ret; 2993 } 2994 2995 struct cmp_pages { 2996 int num_pages; 2997 struct page **src_pages; 2998 struct page **dst_pages; 2999 }; 3000 3001 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 3002 { 3003 int i; 3004 struct page *pg; 3005 3006 for (i = 0; i < cmp->num_pages; i++) { 3007 pg = cmp->src_pages[i]; 3008 if (pg) { 3009 unlock_page(pg); 3010 put_page(pg); 3011 } 3012 pg = cmp->dst_pages[i]; 3013 if (pg) { 3014 unlock_page(pg); 3015 put_page(pg); 3016 } 3017 } 3018 kfree(cmp->src_pages); 3019 kfree(cmp->dst_pages); 3020 } 3021 3022 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3023 struct inode *dst, u64 dst_loff, 3024 u64 len, struct cmp_pages *cmp) 3025 { 3026 int ret; 3027 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3028 struct page **src_pgarr, **dst_pgarr; 3029 3030 /* 3031 * We must gather up all the pages before we initiate our 3032 * extent locking. We use an array for the page pointers. Size 3033 * of the array is bounded by len, which is in turn bounded by 3034 * BTRFS_MAX_DEDUPE_LEN. 3035 */ 3036 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3037 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3038 if (!src_pgarr || !dst_pgarr) { 3039 kfree(src_pgarr); 3040 kfree(dst_pgarr); 3041 return -ENOMEM; 3042 } 3043 cmp->num_pages = num_pages; 3044 cmp->src_pages = src_pgarr; 3045 cmp->dst_pages = dst_pgarr; 3046 3047 /* 3048 * If deduping ranges in the same inode, locking rules make it mandatory 3049 * to always lock pages in ascending order to avoid deadlocks with 3050 * concurrent tasks (such as starting writeback/delalloc). 3051 */ 3052 if (src == dst && dst_loff < loff) { 3053 swap(src_pgarr, dst_pgarr); 3054 swap(loff, dst_loff); 3055 } 3056 3057 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff); 3058 if (ret) 3059 goto out; 3060 3061 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff); 3062 3063 out: 3064 if (ret) 3065 btrfs_cmp_data_free(cmp); 3066 return 0; 3067 } 3068 3069 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3070 { 3071 int ret = 0; 3072 int i; 3073 struct page *src_page, *dst_page; 3074 unsigned int cmp_len = PAGE_SIZE; 3075 void *addr, *dst_addr; 3076 3077 i = 0; 3078 while (len) { 3079 if (len < PAGE_SIZE) 3080 cmp_len = len; 3081 3082 BUG_ON(i >= cmp->num_pages); 3083 3084 src_page = cmp->src_pages[i]; 3085 dst_page = cmp->dst_pages[i]; 3086 ASSERT(PageLocked(src_page)); 3087 ASSERT(PageLocked(dst_page)); 3088 3089 addr = kmap_atomic(src_page); 3090 dst_addr = kmap_atomic(dst_page); 3091 3092 flush_dcache_page(src_page); 3093 flush_dcache_page(dst_page); 3094 3095 if (memcmp(addr, dst_addr, cmp_len)) 3096 ret = -EBADE; 3097 3098 kunmap_atomic(addr); 3099 kunmap_atomic(dst_addr); 3100 3101 if (ret) 3102 break; 3103 3104 len -= cmp_len; 3105 i++; 3106 } 3107 3108 return ret; 3109 } 3110 3111 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3112 u64 olen) 3113 { 3114 u64 len = *plen; 3115 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3116 3117 if (off + olen > inode->i_size || off + olen < off) 3118 return -EINVAL; 3119 3120 /* if we extend to eof, continue to block boundary */ 3121 if (off + len == inode->i_size) 3122 *plen = len = ALIGN(inode->i_size, bs) - off; 3123 3124 /* Check that we are block aligned - btrfs_clone() requires this */ 3125 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3126 return -EINVAL; 3127 3128 return 0; 3129 } 3130 3131 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3132 struct inode *dst, u64 dst_loff) 3133 { 3134 int ret; 3135 u64 len = olen; 3136 struct cmp_pages cmp; 3137 bool same_inode = (src == dst); 3138 u64 same_lock_start = 0; 3139 u64 same_lock_len = 0; 3140 3141 if (len == 0) 3142 return 0; 3143 3144 if (same_inode) 3145 inode_lock(src); 3146 else 3147 btrfs_double_inode_lock(src, dst); 3148 3149 ret = extent_same_check_offsets(src, loff, &len, olen); 3150 if (ret) 3151 goto out_unlock; 3152 3153 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3154 if (ret) 3155 goto out_unlock; 3156 3157 if (same_inode) { 3158 /* 3159 * Single inode case wants the same checks, except we 3160 * don't want our length pushed out past i_size as 3161 * comparing that data range makes no sense. 3162 * 3163 * extent_same_check_offsets() will do this for an 3164 * unaligned length at i_size, so catch it here and 3165 * reject the request. 3166 * 3167 * This effectively means we require aligned extents 3168 * for the single-inode case, whereas the other cases 3169 * allow an unaligned length so long as it ends at 3170 * i_size. 3171 */ 3172 if (len != olen) { 3173 ret = -EINVAL; 3174 goto out_unlock; 3175 } 3176 3177 /* Check for overlapping ranges */ 3178 if (dst_loff + len > loff && dst_loff < loff + len) { 3179 ret = -EINVAL; 3180 goto out_unlock; 3181 } 3182 3183 same_lock_start = min_t(u64, loff, dst_loff); 3184 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3185 } 3186 3187 /* don't make the dst file partly checksummed */ 3188 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3189 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3190 ret = -EINVAL; 3191 goto out_unlock; 3192 } 3193 3194 again: 3195 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3196 if (ret) 3197 goto out_unlock; 3198 3199 if (same_inode) 3200 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3201 false); 3202 else 3203 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3204 false); 3205 /* 3206 * If one of the inodes has dirty pages in the respective range or 3207 * ordered extents, we need to flush dellaloc and wait for all ordered 3208 * extents in the range. We must unlock the pages and the ranges in the 3209 * io trees to avoid deadlocks when flushing delalloc (requires locking 3210 * pages) and when waiting for ordered extents to complete (they require 3211 * range locking). 3212 */ 3213 if (ret == -EAGAIN) { 3214 /* 3215 * Ranges in the io trees already unlocked. Now unlock all 3216 * pages before waiting for all IO to complete. 3217 */ 3218 btrfs_cmp_data_free(&cmp); 3219 if (same_inode) { 3220 btrfs_wait_ordered_range(src, same_lock_start, 3221 same_lock_len); 3222 } else { 3223 btrfs_wait_ordered_range(src, loff, len); 3224 btrfs_wait_ordered_range(dst, dst_loff, len); 3225 } 3226 goto again; 3227 } 3228 ASSERT(ret == 0); 3229 if (WARN_ON(ret)) { 3230 /* ranges in the io trees already unlocked */ 3231 btrfs_cmp_data_free(&cmp); 3232 return ret; 3233 } 3234 3235 /* pass original length for comparison so we stay within i_size */ 3236 ret = btrfs_cmp_data(olen, &cmp); 3237 if (ret == 0) 3238 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3239 3240 if (same_inode) 3241 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3242 same_lock_start + same_lock_len - 1); 3243 else 3244 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3245 3246 btrfs_cmp_data_free(&cmp); 3247 out_unlock: 3248 if (same_inode) 3249 inode_unlock(src); 3250 else 3251 btrfs_double_inode_unlock(src, dst); 3252 3253 return ret; 3254 } 3255 3256 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3257 3258 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3259 struct file *dst_file, u64 dst_loff) 3260 { 3261 struct inode *src = file_inode(src_file); 3262 struct inode *dst = file_inode(dst_file); 3263 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3264 ssize_t res; 3265 3266 if (olen > BTRFS_MAX_DEDUPE_LEN) 3267 olen = BTRFS_MAX_DEDUPE_LEN; 3268 3269 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3270 /* 3271 * Btrfs does not support blocksize < page_size. As a 3272 * result, btrfs_cmp_data() won't correctly handle 3273 * this situation without an update. 3274 */ 3275 return -EINVAL; 3276 } 3277 3278 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3279 if (res) 3280 return res; 3281 return olen; 3282 } 3283 3284 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3285 struct inode *inode, 3286 u64 endoff, 3287 const u64 destoff, 3288 const u64 olen, 3289 int no_time_update) 3290 { 3291 struct btrfs_root *root = BTRFS_I(inode)->root; 3292 int ret; 3293 3294 inode_inc_iversion(inode); 3295 if (!no_time_update) 3296 inode->i_mtime = inode->i_ctime = current_time(inode); 3297 /* 3298 * We round up to the block size at eof when determining which 3299 * extents to clone above, but shouldn't round up the file size. 3300 */ 3301 if (endoff > destoff + olen) 3302 endoff = destoff + olen; 3303 if (endoff > inode->i_size) 3304 btrfs_i_size_write(BTRFS_I(inode), endoff); 3305 3306 ret = btrfs_update_inode(trans, root, inode); 3307 if (ret) { 3308 btrfs_abort_transaction(trans, ret); 3309 btrfs_end_transaction(trans); 3310 goto out; 3311 } 3312 ret = btrfs_end_transaction(trans); 3313 out: 3314 return ret; 3315 } 3316 3317 static void clone_update_extent_map(struct btrfs_inode *inode, 3318 const struct btrfs_trans_handle *trans, 3319 const struct btrfs_path *path, 3320 const u64 hole_offset, 3321 const u64 hole_len) 3322 { 3323 struct extent_map_tree *em_tree = &inode->extent_tree; 3324 struct extent_map *em; 3325 int ret; 3326 3327 em = alloc_extent_map(); 3328 if (!em) { 3329 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3330 return; 3331 } 3332 3333 if (path) { 3334 struct btrfs_file_extent_item *fi; 3335 3336 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3337 struct btrfs_file_extent_item); 3338 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3339 em->generation = -1; 3340 if (btrfs_file_extent_type(path->nodes[0], fi) == 3341 BTRFS_FILE_EXTENT_INLINE) 3342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3343 &inode->runtime_flags); 3344 } else { 3345 em->start = hole_offset; 3346 em->len = hole_len; 3347 em->ram_bytes = em->len; 3348 em->orig_start = hole_offset; 3349 em->block_start = EXTENT_MAP_HOLE; 3350 em->block_len = 0; 3351 em->orig_block_len = 0; 3352 em->compress_type = BTRFS_COMPRESS_NONE; 3353 em->generation = trans->transid; 3354 } 3355 3356 while (1) { 3357 write_lock(&em_tree->lock); 3358 ret = add_extent_mapping(em_tree, em, 1); 3359 write_unlock(&em_tree->lock); 3360 if (ret != -EEXIST) { 3361 free_extent_map(em); 3362 break; 3363 } 3364 btrfs_drop_extent_cache(inode, em->start, 3365 em->start + em->len - 1, 0); 3366 } 3367 3368 if (ret) 3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3370 } 3371 3372 /* 3373 * Make sure we do not end up inserting an inline extent into a file that has 3374 * already other (non-inline) extents. If a file has an inline extent it can 3375 * not have any other extents and the (single) inline extent must start at the 3376 * file offset 0. Failing to respect these rules will lead to file corruption, 3377 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3378 * 3379 * We can have extents that have been already written to disk or we can have 3380 * dirty ranges still in delalloc, in which case the extent maps and items are 3381 * created only when we run delalloc, and the delalloc ranges might fall outside 3382 * the range we are currently locking in the inode's io tree. So we check the 3383 * inode's i_size because of that (i_size updates are done while holding the 3384 * i_mutex, which we are holding here). 3385 * We also check to see if the inode has a size not greater than "datal" but has 3386 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3387 * protected against such concurrent fallocate calls by the i_mutex). 3388 * 3389 * If the file has no extents but a size greater than datal, do not allow the 3390 * copy because we would need turn the inline extent into a non-inline one (even 3391 * with NO_HOLES enabled). If we find our destination inode only has one inline 3392 * extent, just overwrite it with the source inline extent if its size is less 3393 * than the source extent's size, or we could copy the source inline extent's 3394 * data into the destination inode's inline extent if the later is greater then 3395 * the former. 3396 */ 3397 static int clone_copy_inline_extent(struct inode *dst, 3398 struct btrfs_trans_handle *trans, 3399 struct btrfs_path *path, 3400 struct btrfs_key *new_key, 3401 const u64 drop_start, 3402 const u64 datal, 3403 const u64 skip, 3404 const u64 size, 3405 char *inline_data) 3406 { 3407 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3408 struct btrfs_root *root = BTRFS_I(dst)->root; 3409 const u64 aligned_end = ALIGN(new_key->offset + datal, 3410 fs_info->sectorsize); 3411 int ret; 3412 struct btrfs_key key; 3413 3414 if (new_key->offset > 0) 3415 return -EOPNOTSUPP; 3416 3417 key.objectid = btrfs_ino(BTRFS_I(dst)); 3418 key.type = BTRFS_EXTENT_DATA_KEY; 3419 key.offset = 0; 3420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3421 if (ret < 0) { 3422 return ret; 3423 } else if (ret > 0) { 3424 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3425 ret = btrfs_next_leaf(root, path); 3426 if (ret < 0) 3427 return ret; 3428 else if (ret > 0) 3429 goto copy_inline_extent; 3430 } 3431 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3432 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3433 key.type == BTRFS_EXTENT_DATA_KEY) { 3434 ASSERT(key.offset > 0); 3435 return -EOPNOTSUPP; 3436 } 3437 } else if (i_size_read(dst) <= datal) { 3438 struct btrfs_file_extent_item *ei; 3439 u64 ext_len; 3440 3441 /* 3442 * If the file size is <= datal, make sure there are no other 3443 * extents following (can happen do to an fallocate call with 3444 * the flag FALLOC_FL_KEEP_SIZE). 3445 */ 3446 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3447 struct btrfs_file_extent_item); 3448 /* 3449 * If it's an inline extent, it can not have other extents 3450 * following it. 3451 */ 3452 if (btrfs_file_extent_type(path->nodes[0], ei) == 3453 BTRFS_FILE_EXTENT_INLINE) 3454 goto copy_inline_extent; 3455 3456 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3457 if (ext_len > aligned_end) 3458 return -EOPNOTSUPP; 3459 3460 ret = btrfs_next_item(root, path); 3461 if (ret < 0) { 3462 return ret; 3463 } else if (ret == 0) { 3464 btrfs_item_key_to_cpu(path->nodes[0], &key, 3465 path->slots[0]); 3466 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3467 key.type == BTRFS_EXTENT_DATA_KEY) 3468 return -EOPNOTSUPP; 3469 } 3470 } 3471 3472 copy_inline_extent: 3473 /* 3474 * We have no extent items, or we have an extent at offset 0 which may 3475 * or may not be inlined. All these cases are dealt the same way. 3476 */ 3477 if (i_size_read(dst) > datal) { 3478 /* 3479 * If the destination inode has an inline extent... 3480 * This would require copying the data from the source inline 3481 * extent into the beginning of the destination's inline extent. 3482 * But this is really complex, both extents can be compressed 3483 * or just one of them, which would require decompressing and 3484 * re-compressing data (which could increase the new compressed 3485 * size, not allowing the compressed data to fit anymore in an 3486 * inline extent). 3487 * So just don't support this case for now (it should be rare, 3488 * we are not really saving space when cloning inline extents). 3489 */ 3490 return -EOPNOTSUPP; 3491 } 3492 3493 btrfs_release_path(path); 3494 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3495 if (ret) 3496 return ret; 3497 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3498 if (ret) 3499 return ret; 3500 3501 if (skip) { 3502 const u32 start = btrfs_file_extent_calc_inline_size(0); 3503 3504 memmove(inline_data + start, inline_data + start + skip, datal); 3505 } 3506 3507 write_extent_buffer(path->nodes[0], inline_data, 3508 btrfs_item_ptr_offset(path->nodes[0], 3509 path->slots[0]), 3510 size); 3511 inode_add_bytes(dst, datal); 3512 3513 return 0; 3514 } 3515 3516 /** 3517 * btrfs_clone() - clone a range from inode file to another 3518 * 3519 * @src: Inode to clone from 3520 * @inode: Inode to clone to 3521 * @off: Offset within source to start clone from 3522 * @olen: Original length, passed by user, of range to clone 3523 * @olen_aligned: Block-aligned value of olen 3524 * @destoff: Offset within @inode to start clone 3525 * @no_time_update: Whether to update mtime/ctime on the target inode 3526 */ 3527 static int btrfs_clone(struct inode *src, struct inode *inode, 3528 const u64 off, const u64 olen, const u64 olen_aligned, 3529 const u64 destoff, int no_time_update) 3530 { 3531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3532 struct btrfs_root *root = BTRFS_I(inode)->root; 3533 struct btrfs_path *path = NULL; 3534 struct extent_buffer *leaf; 3535 struct btrfs_trans_handle *trans; 3536 char *buf = NULL; 3537 struct btrfs_key key; 3538 u32 nritems; 3539 int slot; 3540 int ret; 3541 const u64 len = olen_aligned; 3542 u64 last_dest_end = destoff; 3543 3544 ret = -ENOMEM; 3545 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3546 if (!buf) 3547 return ret; 3548 3549 path = btrfs_alloc_path(); 3550 if (!path) { 3551 kvfree(buf); 3552 return ret; 3553 } 3554 3555 path->reada = READA_FORWARD; 3556 /* clone data */ 3557 key.objectid = btrfs_ino(BTRFS_I(src)); 3558 key.type = BTRFS_EXTENT_DATA_KEY; 3559 key.offset = off; 3560 3561 while (1) { 3562 u64 next_key_min_offset = key.offset + 1; 3563 3564 /* 3565 * note the key will change type as we walk through the 3566 * tree. 3567 */ 3568 path->leave_spinning = 1; 3569 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3570 0, 0); 3571 if (ret < 0) 3572 goto out; 3573 /* 3574 * First search, if no extent item that starts at offset off was 3575 * found but the previous item is an extent item, it's possible 3576 * it might overlap our target range, therefore process it. 3577 */ 3578 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3579 btrfs_item_key_to_cpu(path->nodes[0], &key, 3580 path->slots[0] - 1); 3581 if (key.type == BTRFS_EXTENT_DATA_KEY) 3582 path->slots[0]--; 3583 } 3584 3585 nritems = btrfs_header_nritems(path->nodes[0]); 3586 process_slot: 3587 if (path->slots[0] >= nritems) { 3588 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3589 if (ret < 0) 3590 goto out; 3591 if (ret > 0) 3592 break; 3593 nritems = btrfs_header_nritems(path->nodes[0]); 3594 } 3595 leaf = path->nodes[0]; 3596 slot = path->slots[0]; 3597 3598 btrfs_item_key_to_cpu(leaf, &key, slot); 3599 if (key.type > BTRFS_EXTENT_DATA_KEY || 3600 key.objectid != btrfs_ino(BTRFS_I(src))) 3601 break; 3602 3603 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3604 struct btrfs_file_extent_item *extent; 3605 int type; 3606 u32 size; 3607 struct btrfs_key new_key; 3608 u64 disko = 0, diskl = 0; 3609 u64 datao = 0, datal = 0; 3610 u8 comp; 3611 u64 drop_start; 3612 3613 extent = btrfs_item_ptr(leaf, slot, 3614 struct btrfs_file_extent_item); 3615 comp = btrfs_file_extent_compression(leaf, extent); 3616 type = btrfs_file_extent_type(leaf, extent); 3617 if (type == BTRFS_FILE_EXTENT_REG || 3618 type == BTRFS_FILE_EXTENT_PREALLOC) { 3619 disko = btrfs_file_extent_disk_bytenr(leaf, 3620 extent); 3621 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3622 extent); 3623 datao = btrfs_file_extent_offset(leaf, extent); 3624 datal = btrfs_file_extent_num_bytes(leaf, 3625 extent); 3626 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3627 /* take upper bound, may be compressed */ 3628 datal = btrfs_file_extent_ram_bytes(leaf, 3629 extent); 3630 } 3631 3632 /* 3633 * The first search might have left us at an extent 3634 * item that ends before our target range's start, can 3635 * happen if we have holes and NO_HOLES feature enabled. 3636 */ 3637 if (key.offset + datal <= off) { 3638 path->slots[0]++; 3639 goto process_slot; 3640 } else if (key.offset >= off + len) { 3641 break; 3642 } 3643 next_key_min_offset = key.offset + datal; 3644 size = btrfs_item_size_nr(leaf, slot); 3645 read_extent_buffer(leaf, buf, 3646 btrfs_item_ptr_offset(leaf, slot), 3647 size); 3648 3649 btrfs_release_path(path); 3650 path->leave_spinning = 0; 3651 3652 memcpy(&new_key, &key, sizeof(new_key)); 3653 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3654 if (off <= key.offset) 3655 new_key.offset = key.offset + destoff - off; 3656 else 3657 new_key.offset = destoff; 3658 3659 /* 3660 * Deal with a hole that doesn't have an extent item 3661 * that represents it (NO_HOLES feature enabled). 3662 * This hole is either in the middle of the cloning 3663 * range or at the beginning (fully overlaps it or 3664 * partially overlaps it). 3665 */ 3666 if (new_key.offset != last_dest_end) 3667 drop_start = last_dest_end; 3668 else 3669 drop_start = new_key.offset; 3670 3671 /* 3672 * 1 - adjusting old extent (we may have to split it) 3673 * 1 - add new extent 3674 * 1 - inode update 3675 */ 3676 trans = btrfs_start_transaction(root, 3); 3677 if (IS_ERR(trans)) { 3678 ret = PTR_ERR(trans); 3679 goto out; 3680 } 3681 3682 if (type == BTRFS_FILE_EXTENT_REG || 3683 type == BTRFS_FILE_EXTENT_PREALLOC) { 3684 /* 3685 * a | --- range to clone ---| b 3686 * | ------------- extent ------------- | 3687 */ 3688 3689 /* subtract range b */ 3690 if (key.offset + datal > off + len) 3691 datal = off + len - key.offset; 3692 3693 /* subtract range a */ 3694 if (off > key.offset) { 3695 datao += off - key.offset; 3696 datal -= off - key.offset; 3697 } 3698 3699 ret = btrfs_drop_extents(trans, root, inode, 3700 drop_start, 3701 new_key.offset + datal, 3702 1); 3703 if (ret) { 3704 if (ret != -EOPNOTSUPP) 3705 btrfs_abort_transaction(trans, 3706 ret); 3707 btrfs_end_transaction(trans); 3708 goto out; 3709 } 3710 3711 ret = btrfs_insert_empty_item(trans, root, path, 3712 &new_key, size); 3713 if (ret) { 3714 btrfs_abort_transaction(trans, ret); 3715 btrfs_end_transaction(trans); 3716 goto out; 3717 } 3718 3719 leaf = path->nodes[0]; 3720 slot = path->slots[0]; 3721 write_extent_buffer(leaf, buf, 3722 btrfs_item_ptr_offset(leaf, slot), 3723 size); 3724 3725 extent = btrfs_item_ptr(leaf, slot, 3726 struct btrfs_file_extent_item); 3727 3728 /* disko == 0 means it's a hole */ 3729 if (!disko) 3730 datao = 0; 3731 3732 btrfs_set_file_extent_offset(leaf, extent, 3733 datao); 3734 btrfs_set_file_extent_num_bytes(leaf, extent, 3735 datal); 3736 3737 if (disko) { 3738 inode_add_bytes(inode, datal); 3739 ret = btrfs_inc_extent_ref(trans, 3740 fs_info, 3741 disko, diskl, 0, 3742 root->root_key.objectid, 3743 btrfs_ino(BTRFS_I(inode)), 3744 new_key.offset - datao); 3745 if (ret) { 3746 btrfs_abort_transaction(trans, 3747 ret); 3748 btrfs_end_transaction(trans); 3749 goto out; 3750 3751 } 3752 } 3753 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3754 u64 skip = 0; 3755 u64 trim = 0; 3756 3757 if (off > key.offset) { 3758 skip = off - key.offset; 3759 new_key.offset += skip; 3760 } 3761 3762 if (key.offset + datal > off + len) 3763 trim = key.offset + datal - (off + len); 3764 3765 if (comp && (skip || trim)) { 3766 ret = -EINVAL; 3767 btrfs_end_transaction(trans); 3768 goto out; 3769 } 3770 size -= skip + trim; 3771 datal -= skip + trim; 3772 3773 ret = clone_copy_inline_extent(inode, 3774 trans, path, 3775 &new_key, 3776 drop_start, 3777 datal, 3778 skip, size, buf); 3779 if (ret) { 3780 if (ret != -EOPNOTSUPP) 3781 btrfs_abort_transaction(trans, 3782 ret); 3783 btrfs_end_transaction(trans); 3784 goto out; 3785 } 3786 leaf = path->nodes[0]; 3787 slot = path->slots[0]; 3788 } 3789 3790 /* If we have an implicit hole (NO_HOLES feature). */ 3791 if (drop_start < new_key.offset) 3792 clone_update_extent_map(BTRFS_I(inode), trans, 3793 NULL, drop_start, 3794 new_key.offset - drop_start); 3795 3796 clone_update_extent_map(BTRFS_I(inode), trans, 3797 path, 0, 0); 3798 3799 btrfs_mark_buffer_dirty(leaf); 3800 btrfs_release_path(path); 3801 3802 last_dest_end = ALIGN(new_key.offset + datal, 3803 fs_info->sectorsize); 3804 ret = clone_finish_inode_update(trans, inode, 3805 last_dest_end, 3806 destoff, olen, 3807 no_time_update); 3808 if (ret) 3809 goto out; 3810 if (new_key.offset + datal >= destoff + len) 3811 break; 3812 } 3813 btrfs_release_path(path); 3814 key.offset = next_key_min_offset; 3815 3816 if (fatal_signal_pending(current)) { 3817 ret = -EINTR; 3818 goto out; 3819 } 3820 } 3821 ret = 0; 3822 3823 if (last_dest_end < destoff + len) { 3824 /* 3825 * We have an implicit hole (NO_HOLES feature is enabled) that 3826 * fully or partially overlaps our cloning range at its end. 3827 */ 3828 btrfs_release_path(path); 3829 3830 /* 3831 * 1 - remove extent(s) 3832 * 1 - inode update 3833 */ 3834 trans = btrfs_start_transaction(root, 2); 3835 if (IS_ERR(trans)) { 3836 ret = PTR_ERR(trans); 3837 goto out; 3838 } 3839 ret = btrfs_drop_extents(trans, root, inode, 3840 last_dest_end, destoff + len, 1); 3841 if (ret) { 3842 if (ret != -EOPNOTSUPP) 3843 btrfs_abort_transaction(trans, ret); 3844 btrfs_end_transaction(trans); 3845 goto out; 3846 } 3847 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3848 last_dest_end, 3849 destoff + len - last_dest_end); 3850 ret = clone_finish_inode_update(trans, inode, destoff + len, 3851 destoff, olen, no_time_update); 3852 } 3853 3854 out: 3855 btrfs_free_path(path); 3856 kvfree(buf); 3857 return ret; 3858 } 3859 3860 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3861 u64 off, u64 olen, u64 destoff) 3862 { 3863 struct inode *inode = file_inode(file); 3864 struct inode *src = file_inode(file_src); 3865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3866 struct btrfs_root *root = BTRFS_I(inode)->root; 3867 int ret; 3868 u64 len = olen; 3869 u64 bs = fs_info->sb->s_blocksize; 3870 int same_inode = src == inode; 3871 3872 /* 3873 * TODO: 3874 * - split compressed inline extents. annoying: we need to 3875 * decompress into destination's address_space (the file offset 3876 * may change, so source mapping won't do), then recompress (or 3877 * otherwise reinsert) a subrange. 3878 * 3879 * - split destination inode's inline extents. The inline extents can 3880 * be either compressed or non-compressed. 3881 */ 3882 3883 if (btrfs_root_readonly(root)) 3884 return -EROFS; 3885 3886 if (file_src->f_path.mnt != file->f_path.mnt || 3887 src->i_sb != inode->i_sb) 3888 return -EXDEV; 3889 3890 /* don't make the dst file partly checksummed */ 3891 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3892 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3893 return -EINVAL; 3894 3895 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3896 return -EISDIR; 3897 3898 if (!same_inode) { 3899 btrfs_double_inode_lock(src, inode); 3900 } else { 3901 inode_lock(src); 3902 } 3903 3904 /* determine range to clone */ 3905 ret = -EINVAL; 3906 if (off + len > src->i_size || off + len < off) 3907 goto out_unlock; 3908 if (len == 0) 3909 olen = len = src->i_size - off; 3910 /* if we extend to eof, continue to block boundary */ 3911 if (off + len == src->i_size) 3912 len = ALIGN(src->i_size, bs) - off; 3913 3914 if (len == 0) { 3915 ret = 0; 3916 goto out_unlock; 3917 } 3918 3919 /* verify the end result is block aligned */ 3920 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3921 !IS_ALIGNED(destoff, bs)) 3922 goto out_unlock; 3923 3924 /* verify if ranges are overlapped within the same file */ 3925 if (same_inode) { 3926 if (destoff + len > off && destoff < off + len) 3927 goto out_unlock; 3928 } 3929 3930 if (destoff > inode->i_size) { 3931 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3932 if (ret) 3933 goto out_unlock; 3934 } 3935 3936 /* 3937 * Lock the target range too. Right after we replace the file extent 3938 * items in the fs tree (which now point to the cloned data), we might 3939 * have a worker replace them with extent items relative to a write 3940 * operation that was issued before this clone operation (i.e. confront 3941 * with inode.c:btrfs_finish_ordered_io). 3942 */ 3943 if (same_inode) { 3944 u64 lock_start = min_t(u64, off, destoff); 3945 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3946 3947 ret = lock_extent_range(src, lock_start, lock_len, true); 3948 } else { 3949 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3950 true); 3951 } 3952 ASSERT(ret == 0); 3953 if (WARN_ON(ret)) { 3954 /* ranges in the io trees already unlocked */ 3955 goto out_unlock; 3956 } 3957 3958 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3959 3960 if (same_inode) { 3961 u64 lock_start = min_t(u64, off, destoff); 3962 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3963 3964 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3965 } else { 3966 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3967 } 3968 /* 3969 * Truncate page cache pages so that future reads will see the cloned 3970 * data immediately and not the previous data. 3971 */ 3972 truncate_inode_pages_range(&inode->i_data, 3973 round_down(destoff, PAGE_SIZE), 3974 round_up(destoff + len, PAGE_SIZE) - 1); 3975 out_unlock: 3976 if (!same_inode) 3977 btrfs_double_inode_unlock(src, inode); 3978 else 3979 inode_unlock(src); 3980 return ret; 3981 } 3982 3983 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3984 struct file *dst_file, loff_t destoff, u64 len) 3985 { 3986 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3987 } 3988 3989 /* 3990 * there are many ways the trans_start and trans_end ioctls can lead 3991 * to deadlocks. They should only be used by applications that 3992 * basically own the machine, and have a very in depth understanding 3993 * of all the possible deadlocks and enospc problems. 3994 */ 3995 static long btrfs_ioctl_trans_start(struct file *file) 3996 { 3997 struct inode *inode = file_inode(file); 3998 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3999 struct btrfs_root *root = BTRFS_I(inode)->root; 4000 struct btrfs_trans_handle *trans; 4001 int ret; 4002 4003 ret = -EPERM; 4004 if (!capable(CAP_SYS_ADMIN)) 4005 goto out; 4006 4007 ret = -EINPROGRESS; 4008 if (file->private_data) 4009 goto out; 4010 4011 ret = -EROFS; 4012 if (btrfs_root_readonly(root)) 4013 goto out; 4014 4015 ret = mnt_want_write_file(file); 4016 if (ret) 4017 goto out; 4018 4019 atomic_inc(&fs_info->open_ioctl_trans); 4020 4021 ret = -ENOMEM; 4022 trans = btrfs_start_ioctl_transaction(root); 4023 if (IS_ERR(trans)) 4024 goto out_drop; 4025 4026 file->private_data = trans; 4027 return 0; 4028 4029 out_drop: 4030 atomic_dec(&fs_info->open_ioctl_trans); 4031 mnt_drop_write_file(file); 4032 out: 4033 return ret; 4034 } 4035 4036 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4037 { 4038 struct inode *inode = file_inode(file); 4039 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4040 struct btrfs_root *root = BTRFS_I(inode)->root; 4041 struct btrfs_root *new_root; 4042 struct btrfs_dir_item *di; 4043 struct btrfs_trans_handle *trans; 4044 struct btrfs_path *path; 4045 struct btrfs_key location; 4046 struct btrfs_disk_key disk_key; 4047 u64 objectid = 0; 4048 u64 dir_id; 4049 int ret; 4050 4051 if (!capable(CAP_SYS_ADMIN)) 4052 return -EPERM; 4053 4054 ret = mnt_want_write_file(file); 4055 if (ret) 4056 return ret; 4057 4058 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4059 ret = -EFAULT; 4060 goto out; 4061 } 4062 4063 if (!objectid) 4064 objectid = BTRFS_FS_TREE_OBJECTID; 4065 4066 location.objectid = objectid; 4067 location.type = BTRFS_ROOT_ITEM_KEY; 4068 location.offset = (u64)-1; 4069 4070 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4071 if (IS_ERR(new_root)) { 4072 ret = PTR_ERR(new_root); 4073 goto out; 4074 } 4075 4076 path = btrfs_alloc_path(); 4077 if (!path) { 4078 ret = -ENOMEM; 4079 goto out; 4080 } 4081 path->leave_spinning = 1; 4082 4083 trans = btrfs_start_transaction(root, 1); 4084 if (IS_ERR(trans)) { 4085 btrfs_free_path(path); 4086 ret = PTR_ERR(trans); 4087 goto out; 4088 } 4089 4090 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4091 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4092 dir_id, "default", 7, 1); 4093 if (IS_ERR_OR_NULL(di)) { 4094 btrfs_free_path(path); 4095 btrfs_end_transaction(trans); 4096 btrfs_err(fs_info, 4097 "Umm, you don't have the default diritem, this isn't going to work"); 4098 ret = -ENOENT; 4099 goto out; 4100 } 4101 4102 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4103 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4104 btrfs_mark_buffer_dirty(path->nodes[0]); 4105 btrfs_free_path(path); 4106 4107 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4108 btrfs_end_transaction(trans); 4109 out: 4110 mnt_drop_write_file(file); 4111 return ret; 4112 } 4113 4114 void btrfs_get_block_group_info(struct list_head *groups_list, 4115 struct btrfs_ioctl_space_info *space) 4116 { 4117 struct btrfs_block_group_cache *block_group; 4118 4119 space->total_bytes = 0; 4120 space->used_bytes = 0; 4121 space->flags = 0; 4122 list_for_each_entry(block_group, groups_list, list) { 4123 space->flags = block_group->flags; 4124 space->total_bytes += block_group->key.offset; 4125 space->used_bytes += 4126 btrfs_block_group_used(&block_group->item); 4127 } 4128 } 4129 4130 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4131 void __user *arg) 4132 { 4133 struct btrfs_ioctl_space_args space_args; 4134 struct btrfs_ioctl_space_info space; 4135 struct btrfs_ioctl_space_info *dest; 4136 struct btrfs_ioctl_space_info *dest_orig; 4137 struct btrfs_ioctl_space_info __user *user_dest; 4138 struct btrfs_space_info *info; 4139 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4140 BTRFS_BLOCK_GROUP_SYSTEM, 4141 BTRFS_BLOCK_GROUP_METADATA, 4142 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4143 int num_types = 4; 4144 int alloc_size; 4145 int ret = 0; 4146 u64 slot_count = 0; 4147 int i, c; 4148 4149 if (copy_from_user(&space_args, 4150 (struct btrfs_ioctl_space_args __user *)arg, 4151 sizeof(space_args))) 4152 return -EFAULT; 4153 4154 for (i = 0; i < num_types; i++) { 4155 struct btrfs_space_info *tmp; 4156 4157 info = NULL; 4158 rcu_read_lock(); 4159 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4160 list) { 4161 if (tmp->flags == types[i]) { 4162 info = tmp; 4163 break; 4164 } 4165 } 4166 rcu_read_unlock(); 4167 4168 if (!info) 4169 continue; 4170 4171 down_read(&info->groups_sem); 4172 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4173 if (!list_empty(&info->block_groups[c])) 4174 slot_count++; 4175 } 4176 up_read(&info->groups_sem); 4177 } 4178 4179 /* 4180 * Global block reserve, exported as a space_info 4181 */ 4182 slot_count++; 4183 4184 /* space_slots == 0 means they are asking for a count */ 4185 if (space_args.space_slots == 0) { 4186 space_args.total_spaces = slot_count; 4187 goto out; 4188 } 4189 4190 slot_count = min_t(u64, space_args.space_slots, slot_count); 4191 4192 alloc_size = sizeof(*dest) * slot_count; 4193 4194 /* we generally have at most 6 or so space infos, one for each raid 4195 * level. So, a whole page should be more than enough for everyone 4196 */ 4197 if (alloc_size > PAGE_SIZE) 4198 return -ENOMEM; 4199 4200 space_args.total_spaces = 0; 4201 dest = kmalloc(alloc_size, GFP_KERNEL); 4202 if (!dest) 4203 return -ENOMEM; 4204 dest_orig = dest; 4205 4206 /* now we have a buffer to copy into */ 4207 for (i = 0; i < num_types; i++) { 4208 struct btrfs_space_info *tmp; 4209 4210 if (!slot_count) 4211 break; 4212 4213 info = NULL; 4214 rcu_read_lock(); 4215 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4216 list) { 4217 if (tmp->flags == types[i]) { 4218 info = tmp; 4219 break; 4220 } 4221 } 4222 rcu_read_unlock(); 4223 4224 if (!info) 4225 continue; 4226 down_read(&info->groups_sem); 4227 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4228 if (!list_empty(&info->block_groups[c])) { 4229 btrfs_get_block_group_info( 4230 &info->block_groups[c], &space); 4231 memcpy(dest, &space, sizeof(space)); 4232 dest++; 4233 space_args.total_spaces++; 4234 slot_count--; 4235 } 4236 if (!slot_count) 4237 break; 4238 } 4239 up_read(&info->groups_sem); 4240 } 4241 4242 /* 4243 * Add global block reserve 4244 */ 4245 if (slot_count) { 4246 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4247 4248 spin_lock(&block_rsv->lock); 4249 space.total_bytes = block_rsv->size; 4250 space.used_bytes = block_rsv->size - block_rsv->reserved; 4251 spin_unlock(&block_rsv->lock); 4252 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4253 memcpy(dest, &space, sizeof(space)); 4254 space_args.total_spaces++; 4255 } 4256 4257 user_dest = (struct btrfs_ioctl_space_info __user *) 4258 (arg + sizeof(struct btrfs_ioctl_space_args)); 4259 4260 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4261 ret = -EFAULT; 4262 4263 kfree(dest_orig); 4264 out: 4265 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4266 ret = -EFAULT; 4267 4268 return ret; 4269 } 4270 4271 /* 4272 * there are many ways the trans_start and trans_end ioctls can lead 4273 * to deadlocks. They should only be used by applications that 4274 * basically own the machine, and have a very in depth understanding 4275 * of all the possible deadlocks and enospc problems. 4276 */ 4277 long btrfs_ioctl_trans_end(struct file *file) 4278 { 4279 struct inode *inode = file_inode(file); 4280 struct btrfs_root *root = BTRFS_I(inode)->root; 4281 struct btrfs_trans_handle *trans; 4282 4283 trans = file->private_data; 4284 if (!trans) 4285 return -EINVAL; 4286 file->private_data = NULL; 4287 4288 btrfs_end_transaction(trans); 4289 4290 atomic_dec(&root->fs_info->open_ioctl_trans); 4291 4292 mnt_drop_write_file(file); 4293 return 0; 4294 } 4295 4296 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4297 void __user *argp) 4298 { 4299 struct btrfs_trans_handle *trans; 4300 u64 transid; 4301 int ret; 4302 4303 trans = btrfs_attach_transaction_barrier(root); 4304 if (IS_ERR(trans)) { 4305 if (PTR_ERR(trans) != -ENOENT) 4306 return PTR_ERR(trans); 4307 4308 /* No running transaction, don't bother */ 4309 transid = root->fs_info->last_trans_committed; 4310 goto out; 4311 } 4312 transid = trans->transid; 4313 ret = btrfs_commit_transaction_async(trans, 0); 4314 if (ret) { 4315 btrfs_end_transaction(trans); 4316 return ret; 4317 } 4318 out: 4319 if (argp) 4320 if (copy_to_user(argp, &transid, sizeof(transid))) 4321 return -EFAULT; 4322 return 0; 4323 } 4324 4325 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4326 void __user *argp) 4327 { 4328 u64 transid; 4329 4330 if (argp) { 4331 if (copy_from_user(&transid, argp, sizeof(transid))) 4332 return -EFAULT; 4333 } else { 4334 transid = 0; /* current trans */ 4335 } 4336 return btrfs_wait_for_commit(fs_info, transid); 4337 } 4338 4339 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4340 { 4341 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4342 struct btrfs_ioctl_scrub_args *sa; 4343 int ret; 4344 4345 if (!capable(CAP_SYS_ADMIN)) 4346 return -EPERM; 4347 4348 sa = memdup_user(arg, sizeof(*sa)); 4349 if (IS_ERR(sa)) 4350 return PTR_ERR(sa); 4351 4352 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4353 ret = mnt_want_write_file(file); 4354 if (ret) 4355 goto out; 4356 } 4357 4358 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4359 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4360 0); 4361 4362 if (copy_to_user(arg, sa, sizeof(*sa))) 4363 ret = -EFAULT; 4364 4365 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4366 mnt_drop_write_file(file); 4367 out: 4368 kfree(sa); 4369 return ret; 4370 } 4371 4372 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4373 { 4374 if (!capable(CAP_SYS_ADMIN)) 4375 return -EPERM; 4376 4377 return btrfs_scrub_cancel(fs_info); 4378 } 4379 4380 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4381 void __user *arg) 4382 { 4383 struct btrfs_ioctl_scrub_args *sa; 4384 int ret; 4385 4386 if (!capable(CAP_SYS_ADMIN)) 4387 return -EPERM; 4388 4389 sa = memdup_user(arg, sizeof(*sa)); 4390 if (IS_ERR(sa)) 4391 return PTR_ERR(sa); 4392 4393 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4394 4395 if (copy_to_user(arg, sa, sizeof(*sa))) 4396 ret = -EFAULT; 4397 4398 kfree(sa); 4399 return ret; 4400 } 4401 4402 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4403 void __user *arg) 4404 { 4405 struct btrfs_ioctl_get_dev_stats *sa; 4406 int ret; 4407 4408 sa = memdup_user(arg, sizeof(*sa)); 4409 if (IS_ERR(sa)) 4410 return PTR_ERR(sa); 4411 4412 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4413 kfree(sa); 4414 return -EPERM; 4415 } 4416 4417 ret = btrfs_get_dev_stats(fs_info, sa); 4418 4419 if (copy_to_user(arg, sa, sizeof(*sa))) 4420 ret = -EFAULT; 4421 4422 kfree(sa); 4423 return ret; 4424 } 4425 4426 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4427 void __user *arg) 4428 { 4429 struct btrfs_ioctl_dev_replace_args *p; 4430 int ret; 4431 4432 if (!capable(CAP_SYS_ADMIN)) 4433 return -EPERM; 4434 4435 p = memdup_user(arg, sizeof(*p)); 4436 if (IS_ERR(p)) 4437 return PTR_ERR(p); 4438 4439 switch (p->cmd) { 4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4441 if (fs_info->sb->s_flags & MS_RDONLY) { 4442 ret = -EROFS; 4443 goto out; 4444 } 4445 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4446 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4447 } else { 4448 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4449 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4450 } 4451 break; 4452 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4453 btrfs_dev_replace_status(fs_info, p); 4454 ret = 0; 4455 break; 4456 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4457 ret = btrfs_dev_replace_cancel(fs_info, p); 4458 break; 4459 default: 4460 ret = -EINVAL; 4461 break; 4462 } 4463 4464 if (copy_to_user(arg, p, sizeof(*p))) 4465 ret = -EFAULT; 4466 out: 4467 kfree(p); 4468 return ret; 4469 } 4470 4471 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4472 { 4473 int ret = 0; 4474 int i; 4475 u64 rel_ptr; 4476 int size; 4477 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4478 struct inode_fs_paths *ipath = NULL; 4479 struct btrfs_path *path; 4480 4481 if (!capable(CAP_DAC_READ_SEARCH)) 4482 return -EPERM; 4483 4484 path = btrfs_alloc_path(); 4485 if (!path) { 4486 ret = -ENOMEM; 4487 goto out; 4488 } 4489 4490 ipa = memdup_user(arg, sizeof(*ipa)); 4491 if (IS_ERR(ipa)) { 4492 ret = PTR_ERR(ipa); 4493 ipa = NULL; 4494 goto out; 4495 } 4496 4497 size = min_t(u32, ipa->size, 4096); 4498 ipath = init_ipath(size, root, path); 4499 if (IS_ERR(ipath)) { 4500 ret = PTR_ERR(ipath); 4501 ipath = NULL; 4502 goto out; 4503 } 4504 4505 ret = paths_from_inode(ipa->inum, ipath); 4506 if (ret < 0) 4507 goto out; 4508 4509 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4510 rel_ptr = ipath->fspath->val[i] - 4511 (u64)(unsigned long)ipath->fspath->val; 4512 ipath->fspath->val[i] = rel_ptr; 4513 } 4514 4515 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4516 (void *)(unsigned long)ipath->fspath, size); 4517 if (ret) { 4518 ret = -EFAULT; 4519 goto out; 4520 } 4521 4522 out: 4523 btrfs_free_path(path); 4524 free_ipath(ipath); 4525 kfree(ipa); 4526 4527 return ret; 4528 } 4529 4530 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4531 { 4532 struct btrfs_data_container *inodes = ctx; 4533 const size_t c = 3 * sizeof(u64); 4534 4535 if (inodes->bytes_left >= c) { 4536 inodes->bytes_left -= c; 4537 inodes->val[inodes->elem_cnt] = inum; 4538 inodes->val[inodes->elem_cnt + 1] = offset; 4539 inodes->val[inodes->elem_cnt + 2] = root; 4540 inodes->elem_cnt += 3; 4541 } else { 4542 inodes->bytes_missing += c - inodes->bytes_left; 4543 inodes->bytes_left = 0; 4544 inodes->elem_missed += 3; 4545 } 4546 4547 return 0; 4548 } 4549 4550 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4551 void __user *arg) 4552 { 4553 int ret = 0; 4554 int size; 4555 struct btrfs_ioctl_logical_ino_args *loi; 4556 struct btrfs_data_container *inodes = NULL; 4557 struct btrfs_path *path = NULL; 4558 4559 if (!capable(CAP_SYS_ADMIN)) 4560 return -EPERM; 4561 4562 loi = memdup_user(arg, sizeof(*loi)); 4563 if (IS_ERR(loi)) 4564 return PTR_ERR(loi); 4565 4566 path = btrfs_alloc_path(); 4567 if (!path) { 4568 ret = -ENOMEM; 4569 goto out; 4570 } 4571 4572 size = min_t(u32, loi->size, SZ_64K); 4573 inodes = init_data_container(size); 4574 if (IS_ERR(inodes)) { 4575 ret = PTR_ERR(inodes); 4576 inodes = NULL; 4577 goto out; 4578 } 4579 4580 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4581 build_ino_list, inodes); 4582 if (ret == -EINVAL) 4583 ret = -ENOENT; 4584 if (ret < 0) 4585 goto out; 4586 4587 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4588 (void *)(unsigned long)inodes, size); 4589 if (ret) 4590 ret = -EFAULT; 4591 4592 out: 4593 btrfs_free_path(path); 4594 kvfree(inodes); 4595 kfree(loi); 4596 4597 return ret; 4598 } 4599 4600 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4601 struct btrfs_ioctl_balance_args *bargs) 4602 { 4603 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4604 4605 bargs->flags = bctl->flags; 4606 4607 if (atomic_read(&fs_info->balance_running)) 4608 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4609 if (atomic_read(&fs_info->balance_pause_req)) 4610 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4611 if (atomic_read(&fs_info->balance_cancel_req)) 4612 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4613 4614 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4615 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4616 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4617 4618 if (lock) { 4619 spin_lock(&fs_info->balance_lock); 4620 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4621 spin_unlock(&fs_info->balance_lock); 4622 } else { 4623 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4624 } 4625 } 4626 4627 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4628 { 4629 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4630 struct btrfs_fs_info *fs_info = root->fs_info; 4631 struct btrfs_ioctl_balance_args *bargs; 4632 struct btrfs_balance_control *bctl; 4633 bool need_unlock; /* for mut. excl. ops lock */ 4634 int ret; 4635 4636 if (!capable(CAP_SYS_ADMIN)) 4637 return -EPERM; 4638 4639 ret = mnt_want_write_file(file); 4640 if (ret) 4641 return ret; 4642 4643 again: 4644 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4645 mutex_lock(&fs_info->volume_mutex); 4646 mutex_lock(&fs_info->balance_mutex); 4647 need_unlock = true; 4648 goto locked; 4649 } 4650 4651 /* 4652 * mut. excl. ops lock is locked. Three possibilities: 4653 * (1) some other op is running 4654 * (2) balance is running 4655 * (3) balance is paused -- special case (think resume) 4656 */ 4657 mutex_lock(&fs_info->balance_mutex); 4658 if (fs_info->balance_ctl) { 4659 /* this is either (2) or (3) */ 4660 if (!atomic_read(&fs_info->balance_running)) { 4661 mutex_unlock(&fs_info->balance_mutex); 4662 if (!mutex_trylock(&fs_info->volume_mutex)) 4663 goto again; 4664 mutex_lock(&fs_info->balance_mutex); 4665 4666 if (fs_info->balance_ctl && 4667 !atomic_read(&fs_info->balance_running)) { 4668 /* this is (3) */ 4669 need_unlock = false; 4670 goto locked; 4671 } 4672 4673 mutex_unlock(&fs_info->balance_mutex); 4674 mutex_unlock(&fs_info->volume_mutex); 4675 goto again; 4676 } else { 4677 /* this is (2) */ 4678 mutex_unlock(&fs_info->balance_mutex); 4679 ret = -EINPROGRESS; 4680 goto out; 4681 } 4682 } else { 4683 /* this is (1) */ 4684 mutex_unlock(&fs_info->balance_mutex); 4685 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4686 goto out; 4687 } 4688 4689 locked: 4690 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4691 4692 if (arg) { 4693 bargs = memdup_user(arg, sizeof(*bargs)); 4694 if (IS_ERR(bargs)) { 4695 ret = PTR_ERR(bargs); 4696 goto out_unlock; 4697 } 4698 4699 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4700 if (!fs_info->balance_ctl) { 4701 ret = -ENOTCONN; 4702 goto out_bargs; 4703 } 4704 4705 bctl = fs_info->balance_ctl; 4706 spin_lock(&fs_info->balance_lock); 4707 bctl->flags |= BTRFS_BALANCE_RESUME; 4708 spin_unlock(&fs_info->balance_lock); 4709 4710 goto do_balance; 4711 } 4712 } else { 4713 bargs = NULL; 4714 } 4715 4716 if (fs_info->balance_ctl) { 4717 ret = -EINPROGRESS; 4718 goto out_bargs; 4719 } 4720 4721 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4722 if (!bctl) { 4723 ret = -ENOMEM; 4724 goto out_bargs; 4725 } 4726 4727 bctl->fs_info = fs_info; 4728 if (arg) { 4729 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4730 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4731 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4732 4733 bctl->flags = bargs->flags; 4734 } else { 4735 /* balance everything - no filters */ 4736 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4737 } 4738 4739 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4740 ret = -EINVAL; 4741 goto out_bctl; 4742 } 4743 4744 do_balance: 4745 /* 4746 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP 4747 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4748 * or, if restriper was paused all the way until unmount, in 4749 * free_fs_info. The flag is cleared in __cancel_balance. 4750 */ 4751 need_unlock = false; 4752 4753 ret = btrfs_balance(bctl, bargs); 4754 bctl = NULL; 4755 4756 if (arg) { 4757 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4758 ret = -EFAULT; 4759 } 4760 4761 out_bctl: 4762 kfree(bctl); 4763 out_bargs: 4764 kfree(bargs); 4765 out_unlock: 4766 mutex_unlock(&fs_info->balance_mutex); 4767 mutex_unlock(&fs_info->volume_mutex); 4768 if (need_unlock) 4769 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4770 out: 4771 mnt_drop_write_file(file); 4772 return ret; 4773 } 4774 4775 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4776 { 4777 if (!capable(CAP_SYS_ADMIN)) 4778 return -EPERM; 4779 4780 switch (cmd) { 4781 case BTRFS_BALANCE_CTL_PAUSE: 4782 return btrfs_pause_balance(fs_info); 4783 case BTRFS_BALANCE_CTL_CANCEL: 4784 return btrfs_cancel_balance(fs_info); 4785 } 4786 4787 return -EINVAL; 4788 } 4789 4790 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4791 void __user *arg) 4792 { 4793 struct btrfs_ioctl_balance_args *bargs; 4794 int ret = 0; 4795 4796 if (!capable(CAP_SYS_ADMIN)) 4797 return -EPERM; 4798 4799 mutex_lock(&fs_info->balance_mutex); 4800 if (!fs_info->balance_ctl) { 4801 ret = -ENOTCONN; 4802 goto out; 4803 } 4804 4805 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4806 if (!bargs) { 4807 ret = -ENOMEM; 4808 goto out; 4809 } 4810 4811 update_ioctl_balance_args(fs_info, 1, bargs); 4812 4813 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4814 ret = -EFAULT; 4815 4816 kfree(bargs); 4817 out: 4818 mutex_unlock(&fs_info->balance_mutex); 4819 return ret; 4820 } 4821 4822 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4823 { 4824 struct inode *inode = file_inode(file); 4825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4826 struct btrfs_ioctl_quota_ctl_args *sa; 4827 struct btrfs_trans_handle *trans = NULL; 4828 int ret; 4829 int err; 4830 4831 if (!capable(CAP_SYS_ADMIN)) 4832 return -EPERM; 4833 4834 ret = mnt_want_write_file(file); 4835 if (ret) 4836 return ret; 4837 4838 sa = memdup_user(arg, sizeof(*sa)); 4839 if (IS_ERR(sa)) { 4840 ret = PTR_ERR(sa); 4841 goto drop_write; 4842 } 4843 4844 down_write(&fs_info->subvol_sem); 4845 trans = btrfs_start_transaction(fs_info->tree_root, 2); 4846 if (IS_ERR(trans)) { 4847 ret = PTR_ERR(trans); 4848 goto out; 4849 } 4850 4851 switch (sa->cmd) { 4852 case BTRFS_QUOTA_CTL_ENABLE: 4853 ret = btrfs_quota_enable(trans, fs_info); 4854 break; 4855 case BTRFS_QUOTA_CTL_DISABLE: 4856 ret = btrfs_quota_disable(trans, fs_info); 4857 break; 4858 default: 4859 ret = -EINVAL; 4860 break; 4861 } 4862 4863 err = btrfs_commit_transaction(trans); 4864 if (err && !ret) 4865 ret = err; 4866 out: 4867 kfree(sa); 4868 up_write(&fs_info->subvol_sem); 4869 drop_write: 4870 mnt_drop_write_file(file); 4871 return ret; 4872 } 4873 4874 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4875 { 4876 struct inode *inode = file_inode(file); 4877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4878 struct btrfs_root *root = BTRFS_I(inode)->root; 4879 struct btrfs_ioctl_qgroup_assign_args *sa; 4880 struct btrfs_trans_handle *trans; 4881 int ret; 4882 int err; 4883 4884 if (!capable(CAP_SYS_ADMIN)) 4885 return -EPERM; 4886 4887 ret = mnt_want_write_file(file); 4888 if (ret) 4889 return ret; 4890 4891 sa = memdup_user(arg, sizeof(*sa)); 4892 if (IS_ERR(sa)) { 4893 ret = PTR_ERR(sa); 4894 goto drop_write; 4895 } 4896 4897 trans = btrfs_join_transaction(root); 4898 if (IS_ERR(trans)) { 4899 ret = PTR_ERR(trans); 4900 goto out; 4901 } 4902 4903 if (sa->assign) { 4904 ret = btrfs_add_qgroup_relation(trans, fs_info, 4905 sa->src, sa->dst); 4906 } else { 4907 ret = btrfs_del_qgroup_relation(trans, fs_info, 4908 sa->src, sa->dst); 4909 } 4910 4911 /* update qgroup status and info */ 4912 err = btrfs_run_qgroups(trans, fs_info); 4913 if (err < 0) 4914 btrfs_handle_fs_error(fs_info, err, 4915 "failed to update qgroup status and info"); 4916 err = btrfs_end_transaction(trans); 4917 if (err && !ret) 4918 ret = err; 4919 4920 out: 4921 kfree(sa); 4922 drop_write: 4923 mnt_drop_write_file(file); 4924 return ret; 4925 } 4926 4927 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4928 { 4929 struct inode *inode = file_inode(file); 4930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4931 struct btrfs_root *root = BTRFS_I(inode)->root; 4932 struct btrfs_ioctl_qgroup_create_args *sa; 4933 struct btrfs_trans_handle *trans; 4934 int ret; 4935 int err; 4936 4937 if (!capable(CAP_SYS_ADMIN)) 4938 return -EPERM; 4939 4940 ret = mnt_want_write_file(file); 4941 if (ret) 4942 return ret; 4943 4944 sa = memdup_user(arg, sizeof(*sa)); 4945 if (IS_ERR(sa)) { 4946 ret = PTR_ERR(sa); 4947 goto drop_write; 4948 } 4949 4950 if (!sa->qgroupid) { 4951 ret = -EINVAL; 4952 goto out; 4953 } 4954 4955 trans = btrfs_join_transaction(root); 4956 if (IS_ERR(trans)) { 4957 ret = PTR_ERR(trans); 4958 goto out; 4959 } 4960 4961 if (sa->create) { 4962 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 4963 } else { 4964 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 4965 } 4966 4967 err = btrfs_end_transaction(trans); 4968 if (err && !ret) 4969 ret = err; 4970 4971 out: 4972 kfree(sa); 4973 drop_write: 4974 mnt_drop_write_file(file); 4975 return ret; 4976 } 4977 4978 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4979 { 4980 struct inode *inode = file_inode(file); 4981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4982 struct btrfs_root *root = BTRFS_I(inode)->root; 4983 struct btrfs_ioctl_qgroup_limit_args *sa; 4984 struct btrfs_trans_handle *trans; 4985 int ret; 4986 int err; 4987 u64 qgroupid; 4988 4989 if (!capable(CAP_SYS_ADMIN)) 4990 return -EPERM; 4991 4992 ret = mnt_want_write_file(file); 4993 if (ret) 4994 return ret; 4995 4996 sa = memdup_user(arg, sizeof(*sa)); 4997 if (IS_ERR(sa)) { 4998 ret = PTR_ERR(sa); 4999 goto drop_write; 5000 } 5001 5002 trans = btrfs_join_transaction(root); 5003 if (IS_ERR(trans)) { 5004 ret = PTR_ERR(trans); 5005 goto out; 5006 } 5007 5008 qgroupid = sa->qgroupid; 5009 if (!qgroupid) { 5010 /* take the current subvol as qgroup */ 5011 qgroupid = root->root_key.objectid; 5012 } 5013 5014 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 5015 5016 err = btrfs_end_transaction(trans); 5017 if (err && !ret) 5018 ret = err; 5019 5020 out: 5021 kfree(sa); 5022 drop_write: 5023 mnt_drop_write_file(file); 5024 return ret; 5025 } 5026 5027 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5028 { 5029 struct inode *inode = file_inode(file); 5030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5031 struct btrfs_ioctl_quota_rescan_args *qsa; 5032 int ret; 5033 5034 if (!capable(CAP_SYS_ADMIN)) 5035 return -EPERM; 5036 5037 ret = mnt_want_write_file(file); 5038 if (ret) 5039 return ret; 5040 5041 qsa = memdup_user(arg, sizeof(*qsa)); 5042 if (IS_ERR(qsa)) { 5043 ret = PTR_ERR(qsa); 5044 goto drop_write; 5045 } 5046 5047 if (qsa->flags) { 5048 ret = -EINVAL; 5049 goto out; 5050 } 5051 5052 ret = btrfs_qgroup_rescan(fs_info); 5053 5054 out: 5055 kfree(qsa); 5056 drop_write: 5057 mnt_drop_write_file(file); 5058 return ret; 5059 } 5060 5061 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5062 { 5063 struct inode *inode = file_inode(file); 5064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5065 struct btrfs_ioctl_quota_rescan_args *qsa; 5066 int ret = 0; 5067 5068 if (!capable(CAP_SYS_ADMIN)) 5069 return -EPERM; 5070 5071 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5072 if (!qsa) 5073 return -ENOMEM; 5074 5075 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5076 qsa->flags = 1; 5077 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5078 } 5079 5080 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5081 ret = -EFAULT; 5082 5083 kfree(qsa); 5084 return ret; 5085 } 5086 5087 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5088 { 5089 struct inode *inode = file_inode(file); 5090 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5091 5092 if (!capable(CAP_SYS_ADMIN)) 5093 return -EPERM; 5094 5095 return btrfs_qgroup_wait_for_completion(fs_info, true); 5096 } 5097 5098 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5099 struct btrfs_ioctl_received_subvol_args *sa) 5100 { 5101 struct inode *inode = file_inode(file); 5102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5103 struct btrfs_root *root = BTRFS_I(inode)->root; 5104 struct btrfs_root_item *root_item = &root->root_item; 5105 struct btrfs_trans_handle *trans; 5106 struct timespec ct = current_time(inode); 5107 int ret = 0; 5108 int received_uuid_changed; 5109 5110 if (!inode_owner_or_capable(inode)) 5111 return -EPERM; 5112 5113 ret = mnt_want_write_file(file); 5114 if (ret < 0) 5115 return ret; 5116 5117 down_write(&fs_info->subvol_sem); 5118 5119 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5120 ret = -EINVAL; 5121 goto out; 5122 } 5123 5124 if (btrfs_root_readonly(root)) { 5125 ret = -EROFS; 5126 goto out; 5127 } 5128 5129 /* 5130 * 1 - root item 5131 * 2 - uuid items (received uuid + subvol uuid) 5132 */ 5133 trans = btrfs_start_transaction(root, 3); 5134 if (IS_ERR(trans)) { 5135 ret = PTR_ERR(trans); 5136 trans = NULL; 5137 goto out; 5138 } 5139 5140 sa->rtransid = trans->transid; 5141 sa->rtime.sec = ct.tv_sec; 5142 sa->rtime.nsec = ct.tv_nsec; 5143 5144 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5145 BTRFS_UUID_SIZE); 5146 if (received_uuid_changed && 5147 !btrfs_is_empty_uuid(root_item->received_uuid)) 5148 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid, 5149 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5150 root->root_key.objectid); 5151 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5152 btrfs_set_root_stransid(root_item, sa->stransid); 5153 btrfs_set_root_rtransid(root_item, sa->rtransid); 5154 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5155 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5156 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5157 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5158 5159 ret = btrfs_update_root(trans, fs_info->tree_root, 5160 &root->root_key, &root->root_item); 5161 if (ret < 0) { 5162 btrfs_end_transaction(trans); 5163 goto out; 5164 } 5165 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5166 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid, 5167 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5168 root->root_key.objectid); 5169 if (ret < 0 && ret != -EEXIST) { 5170 btrfs_abort_transaction(trans, ret); 5171 goto out; 5172 } 5173 } 5174 ret = btrfs_commit_transaction(trans); 5175 if (ret < 0) { 5176 btrfs_abort_transaction(trans, ret); 5177 goto out; 5178 } 5179 5180 out: 5181 up_write(&fs_info->subvol_sem); 5182 mnt_drop_write_file(file); 5183 return ret; 5184 } 5185 5186 #ifdef CONFIG_64BIT 5187 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5188 void __user *arg) 5189 { 5190 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5191 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5192 int ret = 0; 5193 5194 args32 = memdup_user(arg, sizeof(*args32)); 5195 if (IS_ERR(args32)) 5196 return PTR_ERR(args32); 5197 5198 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5199 if (!args64) { 5200 ret = -ENOMEM; 5201 goto out; 5202 } 5203 5204 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5205 args64->stransid = args32->stransid; 5206 args64->rtransid = args32->rtransid; 5207 args64->stime.sec = args32->stime.sec; 5208 args64->stime.nsec = args32->stime.nsec; 5209 args64->rtime.sec = args32->rtime.sec; 5210 args64->rtime.nsec = args32->rtime.nsec; 5211 args64->flags = args32->flags; 5212 5213 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5214 if (ret) 5215 goto out; 5216 5217 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5218 args32->stransid = args64->stransid; 5219 args32->rtransid = args64->rtransid; 5220 args32->stime.sec = args64->stime.sec; 5221 args32->stime.nsec = args64->stime.nsec; 5222 args32->rtime.sec = args64->rtime.sec; 5223 args32->rtime.nsec = args64->rtime.nsec; 5224 args32->flags = args64->flags; 5225 5226 ret = copy_to_user(arg, args32, sizeof(*args32)); 5227 if (ret) 5228 ret = -EFAULT; 5229 5230 out: 5231 kfree(args32); 5232 kfree(args64); 5233 return ret; 5234 } 5235 #endif 5236 5237 static long btrfs_ioctl_set_received_subvol(struct file *file, 5238 void __user *arg) 5239 { 5240 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5241 int ret = 0; 5242 5243 sa = memdup_user(arg, sizeof(*sa)); 5244 if (IS_ERR(sa)) 5245 return PTR_ERR(sa); 5246 5247 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5248 5249 if (ret) 5250 goto out; 5251 5252 ret = copy_to_user(arg, sa, sizeof(*sa)); 5253 if (ret) 5254 ret = -EFAULT; 5255 5256 out: 5257 kfree(sa); 5258 return ret; 5259 } 5260 5261 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5262 { 5263 struct inode *inode = file_inode(file); 5264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5265 size_t len; 5266 int ret; 5267 char label[BTRFS_LABEL_SIZE]; 5268 5269 spin_lock(&fs_info->super_lock); 5270 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5271 spin_unlock(&fs_info->super_lock); 5272 5273 len = strnlen(label, BTRFS_LABEL_SIZE); 5274 5275 if (len == BTRFS_LABEL_SIZE) { 5276 btrfs_warn(fs_info, 5277 "label is too long, return the first %zu bytes", 5278 --len); 5279 } 5280 5281 ret = copy_to_user(arg, label, len); 5282 5283 return ret ? -EFAULT : 0; 5284 } 5285 5286 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5287 { 5288 struct inode *inode = file_inode(file); 5289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5290 struct btrfs_root *root = BTRFS_I(inode)->root; 5291 struct btrfs_super_block *super_block = fs_info->super_copy; 5292 struct btrfs_trans_handle *trans; 5293 char label[BTRFS_LABEL_SIZE]; 5294 int ret; 5295 5296 if (!capable(CAP_SYS_ADMIN)) 5297 return -EPERM; 5298 5299 if (copy_from_user(label, arg, sizeof(label))) 5300 return -EFAULT; 5301 5302 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5303 btrfs_err(fs_info, 5304 "unable to set label with more than %d bytes", 5305 BTRFS_LABEL_SIZE - 1); 5306 return -EINVAL; 5307 } 5308 5309 ret = mnt_want_write_file(file); 5310 if (ret) 5311 return ret; 5312 5313 trans = btrfs_start_transaction(root, 0); 5314 if (IS_ERR(trans)) { 5315 ret = PTR_ERR(trans); 5316 goto out_unlock; 5317 } 5318 5319 spin_lock(&fs_info->super_lock); 5320 strcpy(super_block->label, label); 5321 spin_unlock(&fs_info->super_lock); 5322 ret = btrfs_commit_transaction(trans); 5323 5324 out_unlock: 5325 mnt_drop_write_file(file); 5326 return ret; 5327 } 5328 5329 #define INIT_FEATURE_FLAGS(suffix) \ 5330 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5331 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5332 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5333 5334 int btrfs_ioctl_get_supported_features(void __user *arg) 5335 { 5336 static const struct btrfs_ioctl_feature_flags features[3] = { 5337 INIT_FEATURE_FLAGS(SUPP), 5338 INIT_FEATURE_FLAGS(SAFE_SET), 5339 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5340 }; 5341 5342 if (copy_to_user(arg, &features, sizeof(features))) 5343 return -EFAULT; 5344 5345 return 0; 5346 } 5347 5348 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5349 { 5350 struct inode *inode = file_inode(file); 5351 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5352 struct btrfs_super_block *super_block = fs_info->super_copy; 5353 struct btrfs_ioctl_feature_flags features; 5354 5355 features.compat_flags = btrfs_super_compat_flags(super_block); 5356 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5357 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5358 5359 if (copy_to_user(arg, &features, sizeof(features))) 5360 return -EFAULT; 5361 5362 return 0; 5363 } 5364 5365 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5366 enum btrfs_feature_set set, 5367 u64 change_mask, u64 flags, u64 supported_flags, 5368 u64 safe_set, u64 safe_clear) 5369 { 5370 const char *type = btrfs_feature_set_names[set]; 5371 char *names; 5372 u64 disallowed, unsupported; 5373 u64 set_mask = flags & change_mask; 5374 u64 clear_mask = ~flags & change_mask; 5375 5376 unsupported = set_mask & ~supported_flags; 5377 if (unsupported) { 5378 names = btrfs_printable_features(set, unsupported); 5379 if (names) { 5380 btrfs_warn(fs_info, 5381 "this kernel does not support the %s feature bit%s", 5382 names, strchr(names, ',') ? "s" : ""); 5383 kfree(names); 5384 } else 5385 btrfs_warn(fs_info, 5386 "this kernel does not support %s bits 0x%llx", 5387 type, unsupported); 5388 return -EOPNOTSUPP; 5389 } 5390 5391 disallowed = set_mask & ~safe_set; 5392 if (disallowed) { 5393 names = btrfs_printable_features(set, disallowed); 5394 if (names) { 5395 btrfs_warn(fs_info, 5396 "can't set the %s feature bit%s while mounted", 5397 names, strchr(names, ',') ? "s" : ""); 5398 kfree(names); 5399 } else 5400 btrfs_warn(fs_info, 5401 "can't set %s bits 0x%llx while mounted", 5402 type, disallowed); 5403 return -EPERM; 5404 } 5405 5406 disallowed = clear_mask & ~safe_clear; 5407 if (disallowed) { 5408 names = btrfs_printable_features(set, disallowed); 5409 if (names) { 5410 btrfs_warn(fs_info, 5411 "can't clear the %s feature bit%s while mounted", 5412 names, strchr(names, ',') ? "s" : ""); 5413 kfree(names); 5414 } else 5415 btrfs_warn(fs_info, 5416 "can't clear %s bits 0x%llx while mounted", 5417 type, disallowed); 5418 return -EPERM; 5419 } 5420 5421 return 0; 5422 } 5423 5424 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5425 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5426 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5427 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5428 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5429 5430 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5431 { 5432 struct inode *inode = file_inode(file); 5433 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5434 struct btrfs_root *root = BTRFS_I(inode)->root; 5435 struct btrfs_super_block *super_block = fs_info->super_copy; 5436 struct btrfs_ioctl_feature_flags flags[2]; 5437 struct btrfs_trans_handle *trans; 5438 u64 newflags; 5439 int ret; 5440 5441 if (!capable(CAP_SYS_ADMIN)) 5442 return -EPERM; 5443 5444 if (copy_from_user(flags, arg, sizeof(flags))) 5445 return -EFAULT; 5446 5447 /* Nothing to do */ 5448 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5449 !flags[0].incompat_flags) 5450 return 0; 5451 5452 ret = check_feature(fs_info, flags[0].compat_flags, 5453 flags[1].compat_flags, COMPAT); 5454 if (ret) 5455 return ret; 5456 5457 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5458 flags[1].compat_ro_flags, COMPAT_RO); 5459 if (ret) 5460 return ret; 5461 5462 ret = check_feature(fs_info, flags[0].incompat_flags, 5463 flags[1].incompat_flags, INCOMPAT); 5464 if (ret) 5465 return ret; 5466 5467 ret = mnt_want_write_file(file); 5468 if (ret) 5469 return ret; 5470 5471 trans = btrfs_start_transaction(root, 0); 5472 if (IS_ERR(trans)) { 5473 ret = PTR_ERR(trans); 5474 goto out_drop_write; 5475 } 5476 5477 spin_lock(&fs_info->super_lock); 5478 newflags = btrfs_super_compat_flags(super_block); 5479 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5480 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5481 btrfs_set_super_compat_flags(super_block, newflags); 5482 5483 newflags = btrfs_super_compat_ro_flags(super_block); 5484 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5485 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5486 btrfs_set_super_compat_ro_flags(super_block, newflags); 5487 5488 newflags = btrfs_super_incompat_flags(super_block); 5489 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5490 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5491 btrfs_set_super_incompat_flags(super_block, newflags); 5492 spin_unlock(&fs_info->super_lock); 5493 5494 ret = btrfs_commit_transaction(trans); 5495 out_drop_write: 5496 mnt_drop_write_file(file); 5497 5498 return ret; 5499 } 5500 5501 long btrfs_ioctl(struct file *file, unsigned int 5502 cmd, unsigned long arg) 5503 { 5504 struct inode *inode = file_inode(file); 5505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5506 struct btrfs_root *root = BTRFS_I(inode)->root; 5507 void __user *argp = (void __user *)arg; 5508 5509 switch (cmd) { 5510 case FS_IOC_GETFLAGS: 5511 return btrfs_ioctl_getflags(file, argp); 5512 case FS_IOC_SETFLAGS: 5513 return btrfs_ioctl_setflags(file, argp); 5514 case FS_IOC_GETVERSION: 5515 return btrfs_ioctl_getversion(file, argp); 5516 case FITRIM: 5517 return btrfs_ioctl_fitrim(file, argp); 5518 case BTRFS_IOC_SNAP_CREATE: 5519 return btrfs_ioctl_snap_create(file, argp, 0); 5520 case BTRFS_IOC_SNAP_CREATE_V2: 5521 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5522 case BTRFS_IOC_SUBVOL_CREATE: 5523 return btrfs_ioctl_snap_create(file, argp, 1); 5524 case BTRFS_IOC_SUBVOL_CREATE_V2: 5525 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5526 case BTRFS_IOC_SNAP_DESTROY: 5527 return btrfs_ioctl_snap_destroy(file, argp); 5528 case BTRFS_IOC_SUBVOL_GETFLAGS: 5529 return btrfs_ioctl_subvol_getflags(file, argp); 5530 case BTRFS_IOC_SUBVOL_SETFLAGS: 5531 return btrfs_ioctl_subvol_setflags(file, argp); 5532 case BTRFS_IOC_DEFAULT_SUBVOL: 5533 return btrfs_ioctl_default_subvol(file, argp); 5534 case BTRFS_IOC_DEFRAG: 5535 return btrfs_ioctl_defrag(file, NULL); 5536 case BTRFS_IOC_DEFRAG_RANGE: 5537 return btrfs_ioctl_defrag(file, argp); 5538 case BTRFS_IOC_RESIZE: 5539 return btrfs_ioctl_resize(file, argp); 5540 case BTRFS_IOC_ADD_DEV: 5541 return btrfs_ioctl_add_dev(fs_info, argp); 5542 case BTRFS_IOC_RM_DEV: 5543 return btrfs_ioctl_rm_dev(file, argp); 5544 case BTRFS_IOC_RM_DEV_V2: 5545 return btrfs_ioctl_rm_dev_v2(file, argp); 5546 case BTRFS_IOC_FS_INFO: 5547 return btrfs_ioctl_fs_info(fs_info, argp); 5548 case BTRFS_IOC_DEV_INFO: 5549 return btrfs_ioctl_dev_info(fs_info, argp); 5550 case BTRFS_IOC_BALANCE: 5551 return btrfs_ioctl_balance(file, NULL); 5552 case BTRFS_IOC_TRANS_START: 5553 return btrfs_ioctl_trans_start(file); 5554 case BTRFS_IOC_TRANS_END: 5555 return btrfs_ioctl_trans_end(file); 5556 case BTRFS_IOC_TREE_SEARCH: 5557 return btrfs_ioctl_tree_search(file, argp); 5558 case BTRFS_IOC_TREE_SEARCH_V2: 5559 return btrfs_ioctl_tree_search_v2(file, argp); 5560 case BTRFS_IOC_INO_LOOKUP: 5561 return btrfs_ioctl_ino_lookup(file, argp); 5562 case BTRFS_IOC_INO_PATHS: 5563 return btrfs_ioctl_ino_to_path(root, argp); 5564 case BTRFS_IOC_LOGICAL_INO: 5565 return btrfs_ioctl_logical_to_ino(fs_info, argp); 5566 case BTRFS_IOC_SPACE_INFO: 5567 return btrfs_ioctl_space_info(fs_info, argp); 5568 case BTRFS_IOC_SYNC: { 5569 int ret; 5570 5571 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 5572 if (ret) 5573 return ret; 5574 ret = btrfs_sync_fs(inode->i_sb, 1); 5575 /* 5576 * The transaction thread may want to do more work, 5577 * namely it pokes the cleaner kthread that will start 5578 * processing uncleaned subvols. 5579 */ 5580 wake_up_process(fs_info->transaction_kthread); 5581 return ret; 5582 } 5583 case BTRFS_IOC_START_SYNC: 5584 return btrfs_ioctl_start_sync(root, argp); 5585 case BTRFS_IOC_WAIT_SYNC: 5586 return btrfs_ioctl_wait_sync(fs_info, argp); 5587 case BTRFS_IOC_SCRUB: 5588 return btrfs_ioctl_scrub(file, argp); 5589 case BTRFS_IOC_SCRUB_CANCEL: 5590 return btrfs_ioctl_scrub_cancel(fs_info); 5591 case BTRFS_IOC_SCRUB_PROGRESS: 5592 return btrfs_ioctl_scrub_progress(fs_info, argp); 5593 case BTRFS_IOC_BALANCE_V2: 5594 return btrfs_ioctl_balance(file, argp); 5595 case BTRFS_IOC_BALANCE_CTL: 5596 return btrfs_ioctl_balance_ctl(fs_info, arg); 5597 case BTRFS_IOC_BALANCE_PROGRESS: 5598 return btrfs_ioctl_balance_progress(fs_info, argp); 5599 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5600 return btrfs_ioctl_set_received_subvol(file, argp); 5601 #ifdef CONFIG_64BIT 5602 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5603 return btrfs_ioctl_set_received_subvol_32(file, argp); 5604 #endif 5605 case BTRFS_IOC_SEND: 5606 return btrfs_ioctl_send(file, argp); 5607 case BTRFS_IOC_GET_DEV_STATS: 5608 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5609 case BTRFS_IOC_QUOTA_CTL: 5610 return btrfs_ioctl_quota_ctl(file, argp); 5611 case BTRFS_IOC_QGROUP_ASSIGN: 5612 return btrfs_ioctl_qgroup_assign(file, argp); 5613 case BTRFS_IOC_QGROUP_CREATE: 5614 return btrfs_ioctl_qgroup_create(file, argp); 5615 case BTRFS_IOC_QGROUP_LIMIT: 5616 return btrfs_ioctl_qgroup_limit(file, argp); 5617 case BTRFS_IOC_QUOTA_RESCAN: 5618 return btrfs_ioctl_quota_rescan(file, argp); 5619 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5620 return btrfs_ioctl_quota_rescan_status(file, argp); 5621 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5622 return btrfs_ioctl_quota_rescan_wait(file, argp); 5623 case BTRFS_IOC_DEV_REPLACE: 5624 return btrfs_ioctl_dev_replace(fs_info, argp); 5625 case BTRFS_IOC_GET_FSLABEL: 5626 return btrfs_ioctl_get_fslabel(file, argp); 5627 case BTRFS_IOC_SET_FSLABEL: 5628 return btrfs_ioctl_set_fslabel(file, argp); 5629 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5630 return btrfs_ioctl_get_supported_features(argp); 5631 case BTRFS_IOC_GET_FEATURES: 5632 return btrfs_ioctl_get_features(file, argp); 5633 case BTRFS_IOC_SET_FEATURES: 5634 return btrfs_ioctl_set_features(file, argp); 5635 } 5636 5637 return -ENOTTY; 5638 } 5639 5640 #ifdef CONFIG_COMPAT 5641 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5642 { 5643 /* 5644 * These all access 32-bit values anyway so no further 5645 * handling is necessary. 5646 */ 5647 switch (cmd) { 5648 case FS_IOC32_GETFLAGS: 5649 cmd = FS_IOC_GETFLAGS; 5650 break; 5651 case FS_IOC32_SETFLAGS: 5652 cmd = FS_IOC_SETFLAGS; 5653 break; 5654 case FS_IOC32_GETVERSION: 5655 cmd = FS_IOC_GETVERSION; 5656 break; 5657 } 5658 5659 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5660 } 5661 #endif 5662