1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 49 #ifdef CONFIG_64BIT 50 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 51 * structures are incorrect, as the timespec structure from userspace 52 * is 4 bytes too small. We define these alternatives here to teach 53 * the kernel about the 32-bit struct packing. 54 */ 55 struct btrfs_ioctl_timespec_32 { 56 __u64 sec; 57 __u32 nsec; 58 } __attribute__ ((__packed__)); 59 60 struct btrfs_ioctl_received_subvol_args_32 { 61 char uuid[BTRFS_UUID_SIZE]; /* in */ 62 __u64 stransid; /* in */ 63 __u64 rtransid; /* out */ 64 struct btrfs_ioctl_timespec_32 stime; /* in */ 65 struct btrfs_ioctl_timespec_32 rtime; /* out */ 66 __u64 flags; /* in */ 67 __u64 reserved[16]; /* in */ 68 } __attribute__ ((__packed__)); 69 70 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 71 struct btrfs_ioctl_received_subvol_args_32) 72 #endif 73 74 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 75 struct btrfs_ioctl_send_args_32 { 76 __s64 send_fd; /* in */ 77 __u64 clone_sources_count; /* in */ 78 compat_uptr_t clone_sources; /* in */ 79 __u64 parent_root; /* in */ 80 __u64 flags; /* in */ 81 __u64 reserved[4]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 85 struct btrfs_ioctl_send_args_32) 86 #endif 87 88 static int btrfs_clone(struct inode *src, struct inode *inode, 89 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 90 int no_time_update); 91 92 /* Mask out flags that are inappropriate for the given type of inode. */ 93 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 94 unsigned int flags) 95 { 96 if (S_ISDIR(inode->i_mode)) 97 return flags; 98 else if (S_ISREG(inode->i_mode)) 99 return flags & ~FS_DIRSYNC_FL; 100 else 101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 102 } 103 104 /* 105 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 106 * ioctl. 107 */ 108 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 109 { 110 unsigned int iflags = 0; 111 112 if (flags & BTRFS_INODE_SYNC) 113 iflags |= FS_SYNC_FL; 114 if (flags & BTRFS_INODE_IMMUTABLE) 115 iflags |= FS_IMMUTABLE_FL; 116 if (flags & BTRFS_INODE_APPEND) 117 iflags |= FS_APPEND_FL; 118 if (flags & BTRFS_INODE_NODUMP) 119 iflags |= FS_NODUMP_FL; 120 if (flags & BTRFS_INODE_NOATIME) 121 iflags |= FS_NOATIME_FL; 122 if (flags & BTRFS_INODE_DIRSYNC) 123 iflags |= FS_DIRSYNC_FL; 124 if (flags & BTRFS_INODE_NODATACOW) 125 iflags |= FS_NOCOW_FL; 126 127 if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 else if (flags & BTRFS_INODE_COMPRESS) 130 iflags |= FS_COMPR_FL; 131 132 return iflags; 133 } 134 135 /* 136 * Update inode->i_flags based on the btrfs internal flags. 137 */ 138 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 139 { 140 struct btrfs_inode *binode = BTRFS_I(inode); 141 unsigned int new_fl = 0; 142 143 if (binode->flags & BTRFS_INODE_SYNC) 144 new_fl |= S_SYNC; 145 if (binode->flags & BTRFS_INODE_IMMUTABLE) 146 new_fl |= S_IMMUTABLE; 147 if (binode->flags & BTRFS_INODE_APPEND) 148 new_fl |= S_APPEND; 149 if (binode->flags & BTRFS_INODE_NOATIME) 150 new_fl |= S_NOATIME; 151 if (binode->flags & BTRFS_INODE_DIRSYNC) 152 new_fl |= S_DIRSYNC; 153 154 set_mask_bits(&inode->i_flags, 155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 156 new_fl); 157 } 158 159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 160 { 161 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 162 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 163 164 if (copy_to_user(arg, &flags, sizeof(flags))) 165 return -EFAULT; 166 return 0; 167 } 168 169 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 170 static int check_fsflags(unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 180 return -EINVAL; 181 182 return 0; 183 } 184 185 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 186 { 187 struct inode *inode = file_inode(file); 188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 189 struct btrfs_inode *binode = BTRFS_I(inode); 190 struct btrfs_root *root = binode->root; 191 struct btrfs_trans_handle *trans; 192 unsigned int fsflags, old_fsflags; 193 int ret; 194 const char *comp = NULL; 195 u32 binode_flags = binode->flags; 196 197 if (!inode_owner_or_capable(inode)) 198 return -EPERM; 199 200 if (btrfs_root_readonly(root)) 201 return -EROFS; 202 203 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 204 return -EFAULT; 205 206 ret = check_fsflags(fsflags); 207 if (ret) 208 return ret; 209 210 ret = mnt_want_write_file(file); 211 if (ret) 212 return ret; 213 214 inode_lock(inode); 215 216 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 217 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 218 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 219 if (ret) 220 goto out_unlock; 221 222 if (fsflags & FS_SYNC_FL) 223 binode_flags |= BTRFS_INODE_SYNC; 224 else 225 binode_flags &= ~BTRFS_INODE_SYNC; 226 if (fsflags & FS_IMMUTABLE_FL) 227 binode_flags |= BTRFS_INODE_IMMUTABLE; 228 else 229 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 230 if (fsflags & FS_APPEND_FL) 231 binode_flags |= BTRFS_INODE_APPEND; 232 else 233 binode_flags &= ~BTRFS_INODE_APPEND; 234 if (fsflags & FS_NODUMP_FL) 235 binode_flags |= BTRFS_INODE_NODUMP; 236 else 237 binode_flags &= ~BTRFS_INODE_NODUMP; 238 if (fsflags & FS_NOATIME_FL) 239 binode_flags |= BTRFS_INODE_NOATIME; 240 else 241 binode_flags &= ~BTRFS_INODE_NOATIME; 242 if (fsflags & FS_DIRSYNC_FL) 243 binode_flags |= BTRFS_INODE_DIRSYNC; 244 else 245 binode_flags &= ~BTRFS_INODE_DIRSYNC; 246 if (fsflags & FS_NOCOW_FL) { 247 if (S_ISREG(inode->i_mode)) { 248 /* 249 * It's safe to turn csums off here, no extents exist. 250 * Otherwise we want the flag to reflect the real COW 251 * status of the file and will not set it. 252 */ 253 if (inode->i_size == 0) 254 binode_flags |= BTRFS_INODE_NODATACOW | 255 BTRFS_INODE_NODATASUM; 256 } else { 257 binode_flags |= BTRFS_INODE_NODATACOW; 258 } 259 } else { 260 /* 261 * Revert back under same assumptions as above 262 */ 263 if (S_ISREG(inode->i_mode)) { 264 if (inode->i_size == 0) 265 binode_flags &= ~(BTRFS_INODE_NODATACOW | 266 BTRFS_INODE_NODATASUM); 267 } else { 268 binode_flags &= ~BTRFS_INODE_NODATACOW; 269 } 270 } 271 272 /* 273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 274 * flag may be changed automatically if compression code won't make 275 * things smaller. 276 */ 277 if (fsflags & FS_NOCOMP_FL) { 278 binode_flags &= ~BTRFS_INODE_COMPRESS; 279 binode_flags |= BTRFS_INODE_NOCOMPRESS; 280 } else if (fsflags & FS_COMPR_FL) { 281 282 if (IS_SWAPFILE(inode)) { 283 ret = -ETXTBSY; 284 goto out_unlock; 285 } 286 287 binode_flags |= BTRFS_INODE_COMPRESS; 288 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 289 290 comp = btrfs_compress_type2str(fs_info->compress_type); 291 if (!comp || comp[0] == 0) 292 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 293 } else { 294 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 295 } 296 297 /* 298 * 1 for inode item 299 * 2 for properties 300 */ 301 trans = btrfs_start_transaction(root, 3); 302 if (IS_ERR(trans)) { 303 ret = PTR_ERR(trans); 304 goto out_unlock; 305 } 306 307 if (comp) { 308 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 309 strlen(comp), 0); 310 if (ret) { 311 btrfs_abort_transaction(trans, ret); 312 goto out_end_trans; 313 } 314 } else { 315 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 316 0, 0); 317 if (ret && ret != -ENODATA) { 318 btrfs_abort_transaction(trans, ret); 319 goto out_end_trans; 320 } 321 } 322 323 binode->flags = binode_flags; 324 btrfs_sync_inode_flags_to_i_flags(inode); 325 inode_inc_iversion(inode); 326 inode->i_ctime = current_time(inode); 327 ret = btrfs_update_inode(trans, root, inode); 328 329 out_end_trans: 330 btrfs_end_transaction(trans); 331 out_unlock: 332 inode_unlock(inode); 333 mnt_drop_write_file(file); 334 return ret; 335 } 336 337 /* 338 * Translate btrfs internal inode flags to xflags as expected by the 339 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 340 * silently dropped. 341 */ 342 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 343 { 344 unsigned int xflags = 0; 345 346 if (flags & BTRFS_INODE_APPEND) 347 xflags |= FS_XFLAG_APPEND; 348 if (flags & BTRFS_INODE_IMMUTABLE) 349 xflags |= FS_XFLAG_IMMUTABLE; 350 if (flags & BTRFS_INODE_NOATIME) 351 xflags |= FS_XFLAG_NOATIME; 352 if (flags & BTRFS_INODE_NODUMP) 353 xflags |= FS_XFLAG_NODUMP; 354 if (flags & BTRFS_INODE_SYNC) 355 xflags |= FS_XFLAG_SYNC; 356 357 return xflags; 358 } 359 360 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 361 static int check_xflags(unsigned int flags) 362 { 363 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 364 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 365 return -EOPNOTSUPP; 366 return 0; 367 } 368 369 /* 370 * Set the xflags from the internal inode flags. The remaining items of fsxattr 371 * are zeroed. 372 */ 373 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 374 { 375 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 376 struct fsxattr fa; 377 378 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 379 if (copy_to_user(arg, &fa, sizeof(fa))) 380 return -EFAULT; 381 382 return 0; 383 } 384 385 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 386 { 387 struct inode *inode = file_inode(file); 388 struct btrfs_inode *binode = BTRFS_I(inode); 389 struct btrfs_root *root = binode->root; 390 struct btrfs_trans_handle *trans; 391 struct fsxattr fa, old_fa; 392 unsigned old_flags; 393 unsigned old_i_flags; 394 int ret = 0; 395 396 if (!inode_owner_or_capable(inode)) 397 return -EPERM; 398 399 if (btrfs_root_readonly(root)) 400 return -EROFS; 401 402 if (copy_from_user(&fa, arg, sizeof(fa))) 403 return -EFAULT; 404 405 ret = check_xflags(fa.fsx_xflags); 406 if (ret) 407 return ret; 408 409 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 410 return -EOPNOTSUPP; 411 412 ret = mnt_want_write_file(file); 413 if (ret) 414 return ret; 415 416 inode_lock(inode); 417 418 old_flags = binode->flags; 419 old_i_flags = inode->i_flags; 420 421 simple_fill_fsxattr(&old_fa, 422 btrfs_inode_flags_to_xflags(binode->flags)); 423 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 424 if (ret) 425 goto out_unlock; 426 427 if (fa.fsx_xflags & FS_XFLAG_SYNC) 428 binode->flags |= BTRFS_INODE_SYNC; 429 else 430 binode->flags &= ~BTRFS_INODE_SYNC; 431 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 432 binode->flags |= BTRFS_INODE_IMMUTABLE; 433 else 434 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 435 if (fa.fsx_xflags & FS_XFLAG_APPEND) 436 binode->flags |= BTRFS_INODE_APPEND; 437 else 438 binode->flags &= ~BTRFS_INODE_APPEND; 439 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 440 binode->flags |= BTRFS_INODE_NODUMP; 441 else 442 binode->flags &= ~BTRFS_INODE_NODUMP; 443 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 444 binode->flags |= BTRFS_INODE_NOATIME; 445 else 446 binode->flags &= ~BTRFS_INODE_NOATIME; 447 448 /* 1 item for the inode */ 449 trans = btrfs_start_transaction(root, 1); 450 if (IS_ERR(trans)) { 451 ret = PTR_ERR(trans); 452 goto out_unlock; 453 } 454 455 btrfs_sync_inode_flags_to_i_flags(inode); 456 inode_inc_iversion(inode); 457 inode->i_ctime = current_time(inode); 458 ret = btrfs_update_inode(trans, root, inode); 459 460 btrfs_end_transaction(trans); 461 462 out_unlock: 463 if (ret) { 464 binode->flags = old_flags; 465 inode->i_flags = old_i_flags; 466 } 467 468 inode_unlock(inode); 469 mnt_drop_write_file(file); 470 471 return ret; 472 } 473 474 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 475 { 476 struct inode *inode = file_inode(file); 477 478 return put_user(inode->i_generation, arg); 479 } 480 481 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 482 { 483 struct inode *inode = file_inode(file); 484 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 485 struct btrfs_device *device; 486 struct request_queue *q; 487 struct fstrim_range range; 488 u64 minlen = ULLONG_MAX; 489 u64 num_devices = 0; 490 int ret; 491 492 if (!capable(CAP_SYS_ADMIN)) 493 return -EPERM; 494 495 /* 496 * If the fs is mounted with nologreplay, which requires it to be 497 * mounted in RO mode as well, we can not allow discard on free space 498 * inside block groups, because log trees refer to extents that are not 499 * pinned in a block group's free space cache (pinning the extents is 500 * precisely the first phase of replaying a log tree). 501 */ 502 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 503 return -EROFS; 504 505 rcu_read_lock(); 506 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 507 dev_list) { 508 if (!device->bdev) 509 continue; 510 q = bdev_get_queue(device->bdev); 511 if (blk_queue_discard(q)) { 512 num_devices++; 513 minlen = min_t(u64, q->limits.discard_granularity, 514 minlen); 515 } 516 } 517 rcu_read_unlock(); 518 519 if (!num_devices) 520 return -EOPNOTSUPP; 521 if (copy_from_user(&range, arg, sizeof(range))) 522 return -EFAULT; 523 524 /* 525 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 526 * block group is in the logical address space, which can be any 527 * sectorsize aligned bytenr in the range [0, U64_MAX]. 528 */ 529 if (range.len < fs_info->sb->s_blocksize) 530 return -EINVAL; 531 532 range.minlen = max(range.minlen, minlen); 533 ret = btrfs_trim_fs(fs_info, &range); 534 if (ret < 0) 535 return ret; 536 537 if (copy_to_user(arg, &range, sizeof(range))) 538 return -EFAULT; 539 540 return 0; 541 } 542 543 int btrfs_is_empty_uuid(u8 *uuid) 544 { 545 int i; 546 547 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 548 if (uuid[i]) 549 return 0; 550 } 551 return 1; 552 } 553 554 static noinline int create_subvol(struct inode *dir, 555 struct dentry *dentry, 556 const char *name, int namelen, 557 u64 *async_transid, 558 struct btrfs_qgroup_inherit *inherit) 559 { 560 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 561 struct btrfs_trans_handle *trans; 562 struct btrfs_key key; 563 struct btrfs_root_item *root_item; 564 struct btrfs_inode_item *inode_item; 565 struct extent_buffer *leaf; 566 struct btrfs_root *root = BTRFS_I(dir)->root; 567 struct btrfs_root *new_root; 568 struct btrfs_block_rsv block_rsv; 569 struct timespec64 cur_time = current_time(dir); 570 struct inode *inode; 571 int ret; 572 int err; 573 u64 objectid; 574 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 575 u64 index = 0; 576 uuid_le new_uuid; 577 578 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 579 if (!root_item) 580 return -ENOMEM; 581 582 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 583 if (ret) 584 goto fail_free; 585 586 /* 587 * Don't create subvolume whose level is not zero. Or qgroup will be 588 * screwed up since it assumes subvolume qgroup's level to be 0. 589 */ 590 if (btrfs_qgroup_level(objectid)) { 591 ret = -ENOSPC; 592 goto fail_free; 593 } 594 595 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 596 /* 597 * The same as the snapshot creation, please see the comment 598 * of create_snapshot(). 599 */ 600 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 601 if (ret) 602 goto fail_free; 603 604 trans = btrfs_start_transaction(root, 0); 605 if (IS_ERR(trans)) { 606 ret = PTR_ERR(trans); 607 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 608 goto fail_free; 609 } 610 trans->block_rsv = &block_rsv; 611 trans->bytes_reserved = block_rsv.size; 612 613 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 614 if (ret) 615 goto fail; 616 617 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 618 if (IS_ERR(leaf)) { 619 ret = PTR_ERR(leaf); 620 goto fail; 621 } 622 623 btrfs_mark_buffer_dirty(leaf); 624 625 inode_item = &root_item->inode; 626 btrfs_set_stack_inode_generation(inode_item, 1); 627 btrfs_set_stack_inode_size(inode_item, 3); 628 btrfs_set_stack_inode_nlink(inode_item, 1); 629 btrfs_set_stack_inode_nbytes(inode_item, 630 fs_info->nodesize); 631 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 632 633 btrfs_set_root_flags(root_item, 0); 634 btrfs_set_root_limit(root_item, 0); 635 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 636 637 btrfs_set_root_bytenr(root_item, leaf->start); 638 btrfs_set_root_generation(root_item, trans->transid); 639 btrfs_set_root_level(root_item, 0); 640 btrfs_set_root_refs(root_item, 1); 641 btrfs_set_root_used(root_item, leaf->len); 642 btrfs_set_root_last_snapshot(root_item, 0); 643 644 btrfs_set_root_generation_v2(root_item, 645 btrfs_root_generation(root_item)); 646 uuid_le_gen(&new_uuid); 647 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 648 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 649 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 650 root_item->ctime = root_item->otime; 651 btrfs_set_root_ctransid(root_item, trans->transid); 652 btrfs_set_root_otransid(root_item, trans->transid); 653 654 btrfs_tree_unlock(leaf); 655 free_extent_buffer(leaf); 656 leaf = NULL; 657 658 btrfs_set_root_dirid(root_item, new_dirid); 659 660 key.objectid = objectid; 661 key.offset = 0; 662 key.type = BTRFS_ROOT_ITEM_KEY; 663 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 664 root_item); 665 if (ret) 666 goto fail; 667 668 key.offset = (u64)-1; 669 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 670 if (IS_ERR(new_root)) { 671 ret = PTR_ERR(new_root); 672 btrfs_abort_transaction(trans, ret); 673 goto fail; 674 } 675 676 btrfs_record_root_in_trans(trans, new_root); 677 678 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 mutex_lock(&new_root->objectid_mutex); 686 new_root->highest_objectid = new_dirid; 687 mutex_unlock(&new_root->objectid_mutex); 688 689 /* 690 * insert the directory item 691 */ 692 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 693 if (ret) { 694 btrfs_abort_transaction(trans, ret); 695 goto fail; 696 } 697 698 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 699 BTRFS_FT_DIR, index); 700 if (ret) { 701 btrfs_abort_transaction(trans, ret); 702 goto fail; 703 } 704 705 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 706 ret = btrfs_update_inode(trans, root, dir); 707 BUG_ON(ret); 708 709 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 710 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 711 BUG_ON(ret); 712 713 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 714 BTRFS_UUID_KEY_SUBVOL, objectid); 715 if (ret) 716 btrfs_abort_transaction(trans, ret); 717 718 fail: 719 kfree(root_item); 720 trans->block_rsv = NULL; 721 trans->bytes_reserved = 0; 722 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 723 724 if (async_transid) { 725 *async_transid = trans->transid; 726 err = btrfs_commit_transaction_async(trans, 1); 727 if (err) 728 err = btrfs_commit_transaction(trans); 729 } else { 730 err = btrfs_commit_transaction(trans); 731 } 732 if (err && !ret) 733 ret = err; 734 735 if (!ret) { 736 inode = btrfs_lookup_dentry(dir, dentry); 737 if (IS_ERR(inode)) 738 return PTR_ERR(inode); 739 d_instantiate(dentry, inode); 740 } 741 return ret; 742 743 fail_free: 744 kfree(root_item); 745 return ret; 746 } 747 748 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 749 struct dentry *dentry, 750 u64 *async_transid, bool readonly, 751 struct btrfs_qgroup_inherit *inherit) 752 { 753 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 754 struct inode *inode; 755 struct btrfs_pending_snapshot *pending_snapshot; 756 struct btrfs_trans_handle *trans; 757 int ret; 758 bool snapshot_force_cow = false; 759 760 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 761 return -EINVAL; 762 763 if (atomic_read(&root->nr_swapfiles)) { 764 btrfs_warn(fs_info, 765 "cannot snapshot subvolume with active swapfile"); 766 return -ETXTBSY; 767 } 768 769 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 770 if (!pending_snapshot) 771 return -ENOMEM; 772 773 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 774 GFP_KERNEL); 775 pending_snapshot->path = btrfs_alloc_path(); 776 if (!pending_snapshot->root_item || !pending_snapshot->path) { 777 ret = -ENOMEM; 778 goto free_pending; 779 } 780 781 /* 782 * Force new buffered writes to reserve space even when NOCOW is 783 * possible. This is to avoid later writeback (running dealloc) to 784 * fallback to COW mode and unexpectedly fail with ENOSPC. 785 */ 786 atomic_inc(&root->will_be_snapshotted); 787 smp_mb__after_atomic(); 788 /* wait for no snapshot writes */ 789 wait_event(root->subv_writers->wait, 790 percpu_counter_sum(&root->subv_writers->counter) == 0); 791 792 ret = btrfs_start_delalloc_snapshot(root); 793 if (ret) 794 goto dec_and_free; 795 796 /* 797 * All previous writes have started writeback in NOCOW mode, so now 798 * we force future writes to fallback to COW mode during snapshot 799 * creation. 800 */ 801 atomic_inc(&root->snapshot_force_cow); 802 snapshot_force_cow = true; 803 804 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 805 806 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 807 BTRFS_BLOCK_RSV_TEMP); 808 /* 809 * 1 - parent dir inode 810 * 2 - dir entries 811 * 1 - root item 812 * 2 - root ref/backref 813 * 1 - root of snapshot 814 * 1 - UUID item 815 */ 816 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 817 &pending_snapshot->block_rsv, 8, 818 false); 819 if (ret) 820 goto dec_and_free; 821 822 pending_snapshot->dentry = dentry; 823 pending_snapshot->root = root; 824 pending_snapshot->readonly = readonly; 825 pending_snapshot->dir = dir; 826 pending_snapshot->inherit = inherit; 827 828 trans = btrfs_start_transaction(root, 0); 829 if (IS_ERR(trans)) { 830 ret = PTR_ERR(trans); 831 goto fail; 832 } 833 834 spin_lock(&fs_info->trans_lock); 835 list_add(&pending_snapshot->list, 836 &trans->transaction->pending_snapshots); 837 spin_unlock(&fs_info->trans_lock); 838 if (async_transid) { 839 *async_transid = trans->transid; 840 ret = btrfs_commit_transaction_async(trans, 1); 841 if (ret) 842 ret = btrfs_commit_transaction(trans); 843 } else { 844 ret = btrfs_commit_transaction(trans); 845 } 846 if (ret) 847 goto fail; 848 849 ret = pending_snapshot->error; 850 if (ret) 851 goto fail; 852 853 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 854 if (ret) 855 goto fail; 856 857 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 858 if (IS_ERR(inode)) { 859 ret = PTR_ERR(inode); 860 goto fail; 861 } 862 863 d_instantiate(dentry, inode); 864 ret = 0; 865 fail: 866 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 867 dec_and_free: 868 if (snapshot_force_cow) 869 atomic_dec(&root->snapshot_force_cow); 870 if (atomic_dec_and_test(&root->will_be_snapshotted)) 871 wake_up_var(&root->will_be_snapshotted); 872 free_pending: 873 kfree(pending_snapshot->root_item); 874 btrfs_free_path(pending_snapshot->path); 875 kfree(pending_snapshot); 876 877 return ret; 878 } 879 880 /* copy of may_delete in fs/namei.c() 881 * Check whether we can remove a link victim from directory dir, check 882 * whether the type of victim is right. 883 * 1. We can't do it if dir is read-only (done in permission()) 884 * 2. We should have write and exec permissions on dir 885 * 3. We can't remove anything from append-only dir 886 * 4. We can't do anything with immutable dir (done in permission()) 887 * 5. If the sticky bit on dir is set we should either 888 * a. be owner of dir, or 889 * b. be owner of victim, or 890 * c. have CAP_FOWNER capability 891 * 6. If the victim is append-only or immutable we can't do anything with 892 * links pointing to it. 893 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 894 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 895 * 9. We can't remove a root or mountpoint. 896 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 897 * nfs_async_unlink(). 898 */ 899 900 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 901 { 902 int error; 903 904 if (d_really_is_negative(victim)) 905 return -ENOENT; 906 907 BUG_ON(d_inode(victim->d_parent) != dir); 908 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 909 910 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 911 if (error) 912 return error; 913 if (IS_APPEND(dir)) 914 return -EPERM; 915 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 916 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 917 return -EPERM; 918 if (isdir) { 919 if (!d_is_dir(victim)) 920 return -ENOTDIR; 921 if (IS_ROOT(victim)) 922 return -EBUSY; 923 } else if (d_is_dir(victim)) 924 return -EISDIR; 925 if (IS_DEADDIR(dir)) 926 return -ENOENT; 927 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 928 return -EBUSY; 929 return 0; 930 } 931 932 /* copy of may_create in fs/namei.c() */ 933 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 934 { 935 if (d_really_is_positive(child)) 936 return -EEXIST; 937 if (IS_DEADDIR(dir)) 938 return -ENOENT; 939 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 940 } 941 942 /* 943 * Create a new subvolume below @parent. This is largely modeled after 944 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 945 * inside this filesystem so it's quite a bit simpler. 946 */ 947 static noinline int btrfs_mksubvol(const struct path *parent, 948 const char *name, int namelen, 949 struct btrfs_root *snap_src, 950 u64 *async_transid, bool readonly, 951 struct btrfs_qgroup_inherit *inherit) 952 { 953 struct inode *dir = d_inode(parent->dentry); 954 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 955 struct dentry *dentry; 956 int error; 957 958 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 959 if (error == -EINTR) 960 return error; 961 962 dentry = lookup_one_len(name, parent->dentry, namelen); 963 error = PTR_ERR(dentry); 964 if (IS_ERR(dentry)) 965 goto out_unlock; 966 967 error = btrfs_may_create(dir, dentry); 968 if (error) 969 goto out_dput; 970 971 /* 972 * even if this name doesn't exist, we may get hash collisions. 973 * check for them now when we can safely fail 974 */ 975 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 976 dir->i_ino, name, 977 namelen); 978 if (error) 979 goto out_dput; 980 981 down_read(&fs_info->subvol_sem); 982 983 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 984 goto out_up_read; 985 986 if (snap_src) { 987 error = create_snapshot(snap_src, dir, dentry, 988 async_transid, readonly, inherit); 989 } else { 990 error = create_subvol(dir, dentry, name, namelen, 991 async_transid, inherit); 992 } 993 if (!error) 994 fsnotify_mkdir(dir, dentry); 995 out_up_read: 996 up_read(&fs_info->subvol_sem); 997 out_dput: 998 dput(dentry); 999 out_unlock: 1000 inode_unlock(dir); 1001 return error; 1002 } 1003 1004 /* 1005 * When we're defragging a range, we don't want to kick it off again 1006 * if it is really just waiting for delalloc to send it down. 1007 * If we find a nice big extent or delalloc range for the bytes in the 1008 * file you want to defrag, we return 0 to let you know to skip this 1009 * part of the file 1010 */ 1011 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1012 { 1013 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1014 struct extent_map *em = NULL; 1015 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1016 u64 end; 1017 1018 read_lock(&em_tree->lock); 1019 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1020 read_unlock(&em_tree->lock); 1021 1022 if (em) { 1023 end = extent_map_end(em); 1024 free_extent_map(em); 1025 if (end - offset > thresh) 1026 return 0; 1027 } 1028 /* if we already have a nice delalloc here, just stop */ 1029 thresh /= 2; 1030 end = count_range_bits(io_tree, &offset, offset + thresh, 1031 thresh, EXTENT_DELALLOC, 1); 1032 if (end >= thresh) 1033 return 0; 1034 return 1; 1035 } 1036 1037 /* 1038 * helper function to walk through a file and find extents 1039 * newer than a specific transid, and smaller than thresh. 1040 * 1041 * This is used by the defragging code to find new and small 1042 * extents 1043 */ 1044 static int find_new_extents(struct btrfs_root *root, 1045 struct inode *inode, u64 newer_than, 1046 u64 *off, u32 thresh) 1047 { 1048 struct btrfs_path *path; 1049 struct btrfs_key min_key; 1050 struct extent_buffer *leaf; 1051 struct btrfs_file_extent_item *extent; 1052 int type; 1053 int ret; 1054 u64 ino = btrfs_ino(BTRFS_I(inode)); 1055 1056 path = btrfs_alloc_path(); 1057 if (!path) 1058 return -ENOMEM; 1059 1060 min_key.objectid = ino; 1061 min_key.type = BTRFS_EXTENT_DATA_KEY; 1062 min_key.offset = *off; 1063 1064 while (1) { 1065 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1066 if (ret != 0) 1067 goto none; 1068 process_slot: 1069 if (min_key.objectid != ino) 1070 goto none; 1071 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1072 goto none; 1073 1074 leaf = path->nodes[0]; 1075 extent = btrfs_item_ptr(leaf, path->slots[0], 1076 struct btrfs_file_extent_item); 1077 1078 type = btrfs_file_extent_type(leaf, extent); 1079 if (type == BTRFS_FILE_EXTENT_REG && 1080 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1081 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1082 *off = min_key.offset; 1083 btrfs_free_path(path); 1084 return 0; 1085 } 1086 1087 path->slots[0]++; 1088 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1089 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1090 goto process_slot; 1091 } 1092 1093 if (min_key.offset == (u64)-1) 1094 goto none; 1095 1096 min_key.offset++; 1097 btrfs_release_path(path); 1098 } 1099 none: 1100 btrfs_free_path(path); 1101 return -ENOENT; 1102 } 1103 1104 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1105 { 1106 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1107 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1108 struct extent_map *em; 1109 u64 len = PAGE_SIZE; 1110 1111 /* 1112 * hopefully we have this extent in the tree already, try without 1113 * the full extent lock 1114 */ 1115 read_lock(&em_tree->lock); 1116 em = lookup_extent_mapping(em_tree, start, len); 1117 read_unlock(&em_tree->lock); 1118 1119 if (!em) { 1120 struct extent_state *cached = NULL; 1121 u64 end = start + len - 1; 1122 1123 /* get the big lock and read metadata off disk */ 1124 lock_extent_bits(io_tree, start, end, &cached); 1125 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1126 unlock_extent_cached(io_tree, start, end, &cached); 1127 1128 if (IS_ERR(em)) 1129 return NULL; 1130 } 1131 1132 return em; 1133 } 1134 1135 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1136 { 1137 struct extent_map *next; 1138 bool ret = true; 1139 1140 /* this is the last extent */ 1141 if (em->start + em->len >= i_size_read(inode)) 1142 return false; 1143 1144 next = defrag_lookup_extent(inode, em->start + em->len); 1145 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1146 ret = false; 1147 else if ((em->block_start + em->block_len == next->block_start) && 1148 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1149 ret = false; 1150 1151 free_extent_map(next); 1152 return ret; 1153 } 1154 1155 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1156 u64 *last_len, u64 *skip, u64 *defrag_end, 1157 int compress) 1158 { 1159 struct extent_map *em; 1160 int ret = 1; 1161 bool next_mergeable = true; 1162 bool prev_mergeable = true; 1163 1164 /* 1165 * make sure that once we start defragging an extent, we keep on 1166 * defragging it 1167 */ 1168 if (start < *defrag_end) 1169 return 1; 1170 1171 *skip = 0; 1172 1173 em = defrag_lookup_extent(inode, start); 1174 if (!em) 1175 return 0; 1176 1177 /* this will cover holes, and inline extents */ 1178 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1179 ret = 0; 1180 goto out; 1181 } 1182 1183 if (!*defrag_end) 1184 prev_mergeable = false; 1185 1186 next_mergeable = defrag_check_next_extent(inode, em); 1187 /* 1188 * we hit a real extent, if it is big or the next extent is not a 1189 * real extent, don't bother defragging it 1190 */ 1191 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1192 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1193 ret = 0; 1194 out: 1195 /* 1196 * last_len ends up being a counter of how many bytes we've defragged. 1197 * every time we choose not to defrag an extent, we reset *last_len 1198 * so that the next tiny extent will force a defrag. 1199 * 1200 * The end result of this is that tiny extents before a single big 1201 * extent will force at least part of that big extent to be defragged. 1202 */ 1203 if (ret) { 1204 *defrag_end = extent_map_end(em); 1205 } else { 1206 *last_len = 0; 1207 *skip = extent_map_end(em); 1208 *defrag_end = 0; 1209 } 1210 1211 free_extent_map(em); 1212 return ret; 1213 } 1214 1215 /* 1216 * it doesn't do much good to defrag one or two pages 1217 * at a time. This pulls in a nice chunk of pages 1218 * to COW and defrag. 1219 * 1220 * It also makes sure the delalloc code has enough 1221 * dirty data to avoid making new small extents as part 1222 * of the defrag 1223 * 1224 * It's a good idea to start RA on this range 1225 * before calling this. 1226 */ 1227 static int cluster_pages_for_defrag(struct inode *inode, 1228 struct page **pages, 1229 unsigned long start_index, 1230 unsigned long num_pages) 1231 { 1232 unsigned long file_end; 1233 u64 isize = i_size_read(inode); 1234 u64 page_start; 1235 u64 page_end; 1236 u64 page_cnt; 1237 int ret; 1238 int i; 1239 int i_done; 1240 struct btrfs_ordered_extent *ordered; 1241 struct extent_state *cached_state = NULL; 1242 struct extent_io_tree *tree; 1243 struct extent_changeset *data_reserved = NULL; 1244 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1245 1246 file_end = (isize - 1) >> PAGE_SHIFT; 1247 if (!isize || start_index > file_end) 1248 return 0; 1249 1250 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1251 1252 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1253 start_index << PAGE_SHIFT, 1254 page_cnt << PAGE_SHIFT); 1255 if (ret) 1256 return ret; 1257 i_done = 0; 1258 tree = &BTRFS_I(inode)->io_tree; 1259 1260 /* step one, lock all the pages */ 1261 for (i = 0; i < page_cnt; i++) { 1262 struct page *page; 1263 again: 1264 page = find_or_create_page(inode->i_mapping, 1265 start_index + i, mask); 1266 if (!page) 1267 break; 1268 1269 page_start = page_offset(page); 1270 page_end = page_start + PAGE_SIZE - 1; 1271 while (1) { 1272 lock_extent_bits(tree, page_start, page_end, 1273 &cached_state); 1274 ordered = btrfs_lookup_ordered_extent(inode, 1275 page_start); 1276 unlock_extent_cached(tree, page_start, page_end, 1277 &cached_state); 1278 if (!ordered) 1279 break; 1280 1281 unlock_page(page); 1282 btrfs_start_ordered_extent(inode, ordered, 1); 1283 btrfs_put_ordered_extent(ordered); 1284 lock_page(page); 1285 /* 1286 * we unlocked the page above, so we need check if 1287 * it was released or not. 1288 */ 1289 if (page->mapping != inode->i_mapping) { 1290 unlock_page(page); 1291 put_page(page); 1292 goto again; 1293 } 1294 } 1295 1296 if (!PageUptodate(page)) { 1297 btrfs_readpage(NULL, page); 1298 lock_page(page); 1299 if (!PageUptodate(page)) { 1300 unlock_page(page); 1301 put_page(page); 1302 ret = -EIO; 1303 break; 1304 } 1305 } 1306 1307 if (page->mapping != inode->i_mapping) { 1308 unlock_page(page); 1309 put_page(page); 1310 goto again; 1311 } 1312 1313 pages[i] = page; 1314 i_done++; 1315 } 1316 if (!i_done || ret) 1317 goto out; 1318 1319 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1320 goto out; 1321 1322 /* 1323 * so now we have a nice long stream of locked 1324 * and up to date pages, lets wait on them 1325 */ 1326 for (i = 0; i < i_done; i++) 1327 wait_on_page_writeback(pages[i]); 1328 1329 page_start = page_offset(pages[0]); 1330 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1331 1332 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1333 page_start, page_end - 1, &cached_state); 1334 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1335 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1336 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1337 &cached_state); 1338 1339 if (i_done != page_cnt) { 1340 spin_lock(&BTRFS_I(inode)->lock); 1341 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1342 spin_unlock(&BTRFS_I(inode)->lock); 1343 btrfs_delalloc_release_space(inode, data_reserved, 1344 start_index << PAGE_SHIFT, 1345 (page_cnt - i_done) << PAGE_SHIFT, true); 1346 } 1347 1348 1349 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1350 &cached_state); 1351 1352 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1353 page_start, page_end - 1, &cached_state); 1354 1355 for (i = 0; i < i_done; i++) { 1356 clear_page_dirty_for_io(pages[i]); 1357 ClearPageChecked(pages[i]); 1358 set_page_extent_mapped(pages[i]); 1359 set_page_dirty(pages[i]); 1360 unlock_page(pages[i]); 1361 put_page(pages[i]); 1362 } 1363 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1364 false); 1365 extent_changeset_free(data_reserved); 1366 return i_done; 1367 out: 1368 for (i = 0; i < i_done; i++) { 1369 unlock_page(pages[i]); 1370 put_page(pages[i]); 1371 } 1372 btrfs_delalloc_release_space(inode, data_reserved, 1373 start_index << PAGE_SHIFT, 1374 page_cnt << PAGE_SHIFT, true); 1375 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1376 true); 1377 extent_changeset_free(data_reserved); 1378 return ret; 1379 1380 } 1381 1382 int btrfs_defrag_file(struct inode *inode, struct file *file, 1383 struct btrfs_ioctl_defrag_range_args *range, 1384 u64 newer_than, unsigned long max_to_defrag) 1385 { 1386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1387 struct btrfs_root *root = BTRFS_I(inode)->root; 1388 struct file_ra_state *ra = NULL; 1389 unsigned long last_index; 1390 u64 isize = i_size_read(inode); 1391 u64 last_len = 0; 1392 u64 skip = 0; 1393 u64 defrag_end = 0; 1394 u64 newer_off = range->start; 1395 unsigned long i; 1396 unsigned long ra_index = 0; 1397 int ret; 1398 int defrag_count = 0; 1399 int compress_type = BTRFS_COMPRESS_ZLIB; 1400 u32 extent_thresh = range->extent_thresh; 1401 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1402 unsigned long cluster = max_cluster; 1403 u64 new_align = ~((u64)SZ_128K - 1); 1404 struct page **pages = NULL; 1405 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1406 1407 if (isize == 0) 1408 return 0; 1409 1410 if (range->start >= isize) 1411 return -EINVAL; 1412 1413 if (do_compress) { 1414 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1415 return -EINVAL; 1416 if (range->compress_type) 1417 compress_type = range->compress_type; 1418 } 1419 1420 if (extent_thresh == 0) 1421 extent_thresh = SZ_256K; 1422 1423 /* 1424 * If we were not given a file, allocate a readahead context. As 1425 * readahead is just an optimization, defrag will work without it so 1426 * we don't error out. 1427 */ 1428 if (!file) { 1429 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1430 if (ra) 1431 file_ra_state_init(ra, inode->i_mapping); 1432 } else { 1433 ra = &file->f_ra; 1434 } 1435 1436 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1437 if (!pages) { 1438 ret = -ENOMEM; 1439 goto out_ra; 1440 } 1441 1442 /* find the last page to defrag */ 1443 if (range->start + range->len > range->start) { 1444 last_index = min_t(u64, isize - 1, 1445 range->start + range->len - 1) >> PAGE_SHIFT; 1446 } else { 1447 last_index = (isize - 1) >> PAGE_SHIFT; 1448 } 1449 1450 if (newer_than) { 1451 ret = find_new_extents(root, inode, newer_than, 1452 &newer_off, SZ_64K); 1453 if (!ret) { 1454 range->start = newer_off; 1455 /* 1456 * we always align our defrag to help keep 1457 * the extents in the file evenly spaced 1458 */ 1459 i = (newer_off & new_align) >> PAGE_SHIFT; 1460 } else 1461 goto out_ra; 1462 } else { 1463 i = range->start >> PAGE_SHIFT; 1464 } 1465 if (!max_to_defrag) 1466 max_to_defrag = last_index - i + 1; 1467 1468 /* 1469 * make writeback starts from i, so the defrag range can be 1470 * written sequentially. 1471 */ 1472 if (i < inode->i_mapping->writeback_index) 1473 inode->i_mapping->writeback_index = i; 1474 1475 while (i <= last_index && defrag_count < max_to_defrag && 1476 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1477 /* 1478 * make sure we stop running if someone unmounts 1479 * the FS 1480 */ 1481 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1482 break; 1483 1484 if (btrfs_defrag_cancelled(fs_info)) { 1485 btrfs_debug(fs_info, "defrag_file cancelled"); 1486 ret = -EAGAIN; 1487 break; 1488 } 1489 1490 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1491 extent_thresh, &last_len, &skip, 1492 &defrag_end, do_compress)){ 1493 unsigned long next; 1494 /* 1495 * the should_defrag function tells us how much to skip 1496 * bump our counter by the suggested amount 1497 */ 1498 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1499 i = max(i + 1, next); 1500 continue; 1501 } 1502 1503 if (!newer_than) { 1504 cluster = (PAGE_ALIGN(defrag_end) >> 1505 PAGE_SHIFT) - i; 1506 cluster = min(cluster, max_cluster); 1507 } else { 1508 cluster = max_cluster; 1509 } 1510 1511 if (i + cluster > ra_index) { 1512 ra_index = max(i, ra_index); 1513 if (ra) 1514 page_cache_sync_readahead(inode->i_mapping, ra, 1515 file, ra_index, cluster); 1516 ra_index += cluster; 1517 } 1518 1519 inode_lock(inode); 1520 if (IS_SWAPFILE(inode)) { 1521 ret = -ETXTBSY; 1522 } else { 1523 if (do_compress) 1524 BTRFS_I(inode)->defrag_compress = compress_type; 1525 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1526 } 1527 if (ret < 0) { 1528 inode_unlock(inode); 1529 goto out_ra; 1530 } 1531 1532 defrag_count += ret; 1533 balance_dirty_pages_ratelimited(inode->i_mapping); 1534 inode_unlock(inode); 1535 1536 if (newer_than) { 1537 if (newer_off == (u64)-1) 1538 break; 1539 1540 if (ret > 0) 1541 i += ret; 1542 1543 newer_off = max(newer_off + 1, 1544 (u64)i << PAGE_SHIFT); 1545 1546 ret = find_new_extents(root, inode, newer_than, 1547 &newer_off, SZ_64K); 1548 if (!ret) { 1549 range->start = newer_off; 1550 i = (newer_off & new_align) >> PAGE_SHIFT; 1551 } else { 1552 break; 1553 } 1554 } else { 1555 if (ret > 0) { 1556 i += ret; 1557 last_len += ret << PAGE_SHIFT; 1558 } else { 1559 i++; 1560 last_len = 0; 1561 } 1562 } 1563 } 1564 1565 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1566 filemap_flush(inode->i_mapping); 1567 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1568 &BTRFS_I(inode)->runtime_flags)) 1569 filemap_flush(inode->i_mapping); 1570 } 1571 1572 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1573 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1574 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1575 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1576 } 1577 1578 ret = defrag_count; 1579 1580 out_ra: 1581 if (do_compress) { 1582 inode_lock(inode); 1583 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1584 inode_unlock(inode); 1585 } 1586 if (!file) 1587 kfree(ra); 1588 kfree(pages); 1589 return ret; 1590 } 1591 1592 static noinline int btrfs_ioctl_resize(struct file *file, 1593 void __user *arg) 1594 { 1595 struct inode *inode = file_inode(file); 1596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1597 u64 new_size; 1598 u64 old_size; 1599 u64 devid = 1; 1600 struct btrfs_root *root = BTRFS_I(inode)->root; 1601 struct btrfs_ioctl_vol_args *vol_args; 1602 struct btrfs_trans_handle *trans; 1603 struct btrfs_device *device = NULL; 1604 char *sizestr; 1605 char *retptr; 1606 char *devstr = NULL; 1607 int ret = 0; 1608 int mod = 0; 1609 1610 if (!capable(CAP_SYS_ADMIN)) 1611 return -EPERM; 1612 1613 ret = mnt_want_write_file(file); 1614 if (ret) 1615 return ret; 1616 1617 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1618 mnt_drop_write_file(file); 1619 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1620 } 1621 1622 vol_args = memdup_user(arg, sizeof(*vol_args)); 1623 if (IS_ERR(vol_args)) { 1624 ret = PTR_ERR(vol_args); 1625 goto out; 1626 } 1627 1628 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1629 1630 sizestr = vol_args->name; 1631 devstr = strchr(sizestr, ':'); 1632 if (devstr) { 1633 sizestr = devstr + 1; 1634 *devstr = '\0'; 1635 devstr = vol_args->name; 1636 ret = kstrtoull(devstr, 10, &devid); 1637 if (ret) 1638 goto out_free; 1639 if (!devid) { 1640 ret = -EINVAL; 1641 goto out_free; 1642 } 1643 btrfs_info(fs_info, "resizing devid %llu", devid); 1644 } 1645 1646 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1647 if (!device) { 1648 btrfs_info(fs_info, "resizer unable to find device %llu", 1649 devid); 1650 ret = -ENODEV; 1651 goto out_free; 1652 } 1653 1654 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1655 btrfs_info(fs_info, 1656 "resizer unable to apply on readonly device %llu", 1657 devid); 1658 ret = -EPERM; 1659 goto out_free; 1660 } 1661 1662 if (!strcmp(sizestr, "max")) 1663 new_size = device->bdev->bd_inode->i_size; 1664 else { 1665 if (sizestr[0] == '-') { 1666 mod = -1; 1667 sizestr++; 1668 } else if (sizestr[0] == '+') { 1669 mod = 1; 1670 sizestr++; 1671 } 1672 new_size = memparse(sizestr, &retptr); 1673 if (*retptr != '\0' || new_size == 0) { 1674 ret = -EINVAL; 1675 goto out_free; 1676 } 1677 } 1678 1679 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1680 ret = -EPERM; 1681 goto out_free; 1682 } 1683 1684 old_size = btrfs_device_get_total_bytes(device); 1685 1686 if (mod < 0) { 1687 if (new_size > old_size) { 1688 ret = -EINVAL; 1689 goto out_free; 1690 } 1691 new_size = old_size - new_size; 1692 } else if (mod > 0) { 1693 if (new_size > ULLONG_MAX - old_size) { 1694 ret = -ERANGE; 1695 goto out_free; 1696 } 1697 new_size = old_size + new_size; 1698 } 1699 1700 if (new_size < SZ_256M) { 1701 ret = -EINVAL; 1702 goto out_free; 1703 } 1704 if (new_size > device->bdev->bd_inode->i_size) { 1705 ret = -EFBIG; 1706 goto out_free; 1707 } 1708 1709 new_size = round_down(new_size, fs_info->sectorsize); 1710 1711 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1712 rcu_str_deref(device->name), new_size); 1713 1714 if (new_size > old_size) { 1715 trans = btrfs_start_transaction(root, 0); 1716 if (IS_ERR(trans)) { 1717 ret = PTR_ERR(trans); 1718 goto out_free; 1719 } 1720 ret = btrfs_grow_device(trans, device, new_size); 1721 btrfs_commit_transaction(trans); 1722 } else if (new_size < old_size) { 1723 ret = btrfs_shrink_device(device, new_size); 1724 } /* equal, nothing need to do */ 1725 1726 out_free: 1727 kfree(vol_args); 1728 out: 1729 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1730 mnt_drop_write_file(file); 1731 return ret; 1732 } 1733 1734 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1735 const char *name, unsigned long fd, int subvol, 1736 u64 *transid, bool readonly, 1737 struct btrfs_qgroup_inherit *inherit) 1738 { 1739 int namelen; 1740 int ret = 0; 1741 1742 if (!S_ISDIR(file_inode(file)->i_mode)) 1743 return -ENOTDIR; 1744 1745 ret = mnt_want_write_file(file); 1746 if (ret) 1747 goto out; 1748 1749 namelen = strlen(name); 1750 if (strchr(name, '/')) { 1751 ret = -EINVAL; 1752 goto out_drop_write; 1753 } 1754 1755 if (name[0] == '.' && 1756 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1757 ret = -EEXIST; 1758 goto out_drop_write; 1759 } 1760 1761 if (subvol) { 1762 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1763 NULL, transid, readonly, inherit); 1764 } else { 1765 struct fd src = fdget(fd); 1766 struct inode *src_inode; 1767 if (!src.file) { 1768 ret = -EINVAL; 1769 goto out_drop_write; 1770 } 1771 1772 src_inode = file_inode(src.file); 1773 if (src_inode->i_sb != file_inode(file)->i_sb) { 1774 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1775 "Snapshot src from another FS"); 1776 ret = -EXDEV; 1777 } else if (!inode_owner_or_capable(src_inode)) { 1778 /* 1779 * Subvolume creation is not restricted, but snapshots 1780 * are limited to own subvolumes only 1781 */ 1782 ret = -EPERM; 1783 } else { 1784 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1785 BTRFS_I(src_inode)->root, 1786 transid, readonly, inherit); 1787 } 1788 fdput(src); 1789 } 1790 out_drop_write: 1791 mnt_drop_write_file(file); 1792 out: 1793 return ret; 1794 } 1795 1796 static noinline int btrfs_ioctl_snap_create(struct file *file, 1797 void __user *arg, int subvol) 1798 { 1799 struct btrfs_ioctl_vol_args *vol_args; 1800 int ret; 1801 1802 if (!S_ISDIR(file_inode(file)->i_mode)) 1803 return -ENOTDIR; 1804 1805 vol_args = memdup_user(arg, sizeof(*vol_args)); 1806 if (IS_ERR(vol_args)) 1807 return PTR_ERR(vol_args); 1808 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1809 1810 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1811 vol_args->fd, subvol, 1812 NULL, false, NULL); 1813 1814 kfree(vol_args); 1815 return ret; 1816 } 1817 1818 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1819 void __user *arg, int subvol) 1820 { 1821 struct btrfs_ioctl_vol_args_v2 *vol_args; 1822 int ret; 1823 u64 transid = 0; 1824 u64 *ptr = NULL; 1825 bool readonly = false; 1826 struct btrfs_qgroup_inherit *inherit = NULL; 1827 1828 if (!S_ISDIR(file_inode(file)->i_mode)) 1829 return -ENOTDIR; 1830 1831 vol_args = memdup_user(arg, sizeof(*vol_args)); 1832 if (IS_ERR(vol_args)) 1833 return PTR_ERR(vol_args); 1834 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1835 1836 if (vol_args->flags & 1837 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1838 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1839 ret = -EOPNOTSUPP; 1840 goto free_args; 1841 } 1842 1843 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1844 ptr = &transid; 1845 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1846 readonly = true; 1847 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1848 if (vol_args->size > PAGE_SIZE) { 1849 ret = -EINVAL; 1850 goto free_args; 1851 } 1852 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1853 if (IS_ERR(inherit)) { 1854 ret = PTR_ERR(inherit); 1855 goto free_args; 1856 } 1857 } 1858 1859 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1860 vol_args->fd, subvol, ptr, 1861 readonly, inherit); 1862 if (ret) 1863 goto free_inherit; 1864 1865 if (ptr && copy_to_user(arg + 1866 offsetof(struct btrfs_ioctl_vol_args_v2, 1867 transid), 1868 ptr, sizeof(*ptr))) 1869 ret = -EFAULT; 1870 1871 free_inherit: 1872 kfree(inherit); 1873 free_args: 1874 kfree(vol_args); 1875 return ret; 1876 } 1877 1878 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1879 void __user *arg) 1880 { 1881 struct inode *inode = file_inode(file); 1882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1883 struct btrfs_root *root = BTRFS_I(inode)->root; 1884 int ret = 0; 1885 u64 flags = 0; 1886 1887 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1888 return -EINVAL; 1889 1890 down_read(&fs_info->subvol_sem); 1891 if (btrfs_root_readonly(root)) 1892 flags |= BTRFS_SUBVOL_RDONLY; 1893 up_read(&fs_info->subvol_sem); 1894 1895 if (copy_to_user(arg, &flags, sizeof(flags))) 1896 ret = -EFAULT; 1897 1898 return ret; 1899 } 1900 1901 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1902 void __user *arg) 1903 { 1904 struct inode *inode = file_inode(file); 1905 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1906 struct btrfs_root *root = BTRFS_I(inode)->root; 1907 struct btrfs_trans_handle *trans; 1908 u64 root_flags; 1909 u64 flags; 1910 int ret = 0; 1911 1912 if (!inode_owner_or_capable(inode)) 1913 return -EPERM; 1914 1915 ret = mnt_want_write_file(file); 1916 if (ret) 1917 goto out; 1918 1919 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1920 ret = -EINVAL; 1921 goto out_drop_write; 1922 } 1923 1924 if (copy_from_user(&flags, arg, sizeof(flags))) { 1925 ret = -EFAULT; 1926 goto out_drop_write; 1927 } 1928 1929 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1930 ret = -EINVAL; 1931 goto out_drop_write; 1932 } 1933 1934 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1935 ret = -EOPNOTSUPP; 1936 goto out_drop_write; 1937 } 1938 1939 down_write(&fs_info->subvol_sem); 1940 1941 /* nothing to do */ 1942 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1943 goto out_drop_sem; 1944 1945 root_flags = btrfs_root_flags(&root->root_item); 1946 if (flags & BTRFS_SUBVOL_RDONLY) { 1947 btrfs_set_root_flags(&root->root_item, 1948 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1949 } else { 1950 /* 1951 * Block RO -> RW transition if this subvolume is involved in 1952 * send 1953 */ 1954 spin_lock(&root->root_item_lock); 1955 if (root->send_in_progress == 0) { 1956 btrfs_set_root_flags(&root->root_item, 1957 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1958 spin_unlock(&root->root_item_lock); 1959 } else { 1960 spin_unlock(&root->root_item_lock); 1961 btrfs_warn(fs_info, 1962 "Attempt to set subvolume %llu read-write during send", 1963 root->root_key.objectid); 1964 ret = -EPERM; 1965 goto out_drop_sem; 1966 } 1967 } 1968 1969 trans = btrfs_start_transaction(root, 1); 1970 if (IS_ERR(trans)) { 1971 ret = PTR_ERR(trans); 1972 goto out_reset; 1973 } 1974 1975 ret = btrfs_update_root(trans, fs_info->tree_root, 1976 &root->root_key, &root->root_item); 1977 if (ret < 0) { 1978 btrfs_end_transaction(trans); 1979 goto out_reset; 1980 } 1981 1982 ret = btrfs_commit_transaction(trans); 1983 1984 out_reset: 1985 if (ret) 1986 btrfs_set_root_flags(&root->root_item, root_flags); 1987 out_drop_sem: 1988 up_write(&fs_info->subvol_sem); 1989 out_drop_write: 1990 mnt_drop_write_file(file); 1991 out: 1992 return ret; 1993 } 1994 1995 static noinline int key_in_sk(struct btrfs_key *key, 1996 struct btrfs_ioctl_search_key *sk) 1997 { 1998 struct btrfs_key test; 1999 int ret; 2000 2001 test.objectid = sk->min_objectid; 2002 test.type = sk->min_type; 2003 test.offset = sk->min_offset; 2004 2005 ret = btrfs_comp_cpu_keys(key, &test); 2006 if (ret < 0) 2007 return 0; 2008 2009 test.objectid = sk->max_objectid; 2010 test.type = sk->max_type; 2011 test.offset = sk->max_offset; 2012 2013 ret = btrfs_comp_cpu_keys(key, &test); 2014 if (ret > 0) 2015 return 0; 2016 return 1; 2017 } 2018 2019 static noinline int copy_to_sk(struct btrfs_path *path, 2020 struct btrfs_key *key, 2021 struct btrfs_ioctl_search_key *sk, 2022 size_t *buf_size, 2023 char __user *ubuf, 2024 unsigned long *sk_offset, 2025 int *num_found) 2026 { 2027 u64 found_transid; 2028 struct extent_buffer *leaf; 2029 struct btrfs_ioctl_search_header sh; 2030 struct btrfs_key test; 2031 unsigned long item_off; 2032 unsigned long item_len; 2033 int nritems; 2034 int i; 2035 int slot; 2036 int ret = 0; 2037 2038 leaf = path->nodes[0]; 2039 slot = path->slots[0]; 2040 nritems = btrfs_header_nritems(leaf); 2041 2042 if (btrfs_header_generation(leaf) > sk->max_transid) { 2043 i = nritems; 2044 goto advance_key; 2045 } 2046 found_transid = btrfs_header_generation(leaf); 2047 2048 for (i = slot; i < nritems; i++) { 2049 item_off = btrfs_item_ptr_offset(leaf, i); 2050 item_len = btrfs_item_size_nr(leaf, i); 2051 2052 btrfs_item_key_to_cpu(leaf, key, i); 2053 if (!key_in_sk(key, sk)) 2054 continue; 2055 2056 if (sizeof(sh) + item_len > *buf_size) { 2057 if (*num_found) { 2058 ret = 1; 2059 goto out; 2060 } 2061 2062 /* 2063 * return one empty item back for v1, which does not 2064 * handle -EOVERFLOW 2065 */ 2066 2067 *buf_size = sizeof(sh) + item_len; 2068 item_len = 0; 2069 ret = -EOVERFLOW; 2070 } 2071 2072 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2073 ret = 1; 2074 goto out; 2075 } 2076 2077 sh.objectid = key->objectid; 2078 sh.offset = key->offset; 2079 sh.type = key->type; 2080 sh.len = item_len; 2081 sh.transid = found_transid; 2082 2083 /* copy search result header */ 2084 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2085 ret = -EFAULT; 2086 goto out; 2087 } 2088 2089 *sk_offset += sizeof(sh); 2090 2091 if (item_len) { 2092 char __user *up = ubuf + *sk_offset; 2093 /* copy the item */ 2094 if (read_extent_buffer_to_user(leaf, up, 2095 item_off, item_len)) { 2096 ret = -EFAULT; 2097 goto out; 2098 } 2099 2100 *sk_offset += item_len; 2101 } 2102 (*num_found)++; 2103 2104 if (ret) /* -EOVERFLOW from above */ 2105 goto out; 2106 2107 if (*num_found >= sk->nr_items) { 2108 ret = 1; 2109 goto out; 2110 } 2111 } 2112 advance_key: 2113 ret = 0; 2114 test.objectid = sk->max_objectid; 2115 test.type = sk->max_type; 2116 test.offset = sk->max_offset; 2117 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2118 ret = 1; 2119 else if (key->offset < (u64)-1) 2120 key->offset++; 2121 else if (key->type < (u8)-1) { 2122 key->offset = 0; 2123 key->type++; 2124 } else if (key->objectid < (u64)-1) { 2125 key->offset = 0; 2126 key->type = 0; 2127 key->objectid++; 2128 } else 2129 ret = 1; 2130 out: 2131 /* 2132 * 0: all items from this leaf copied, continue with next 2133 * 1: * more items can be copied, but unused buffer is too small 2134 * * all items were found 2135 * Either way, it will stops the loop which iterates to the next 2136 * leaf 2137 * -EOVERFLOW: item was to large for buffer 2138 * -EFAULT: could not copy extent buffer back to userspace 2139 */ 2140 return ret; 2141 } 2142 2143 static noinline int search_ioctl(struct inode *inode, 2144 struct btrfs_ioctl_search_key *sk, 2145 size_t *buf_size, 2146 char __user *ubuf) 2147 { 2148 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2149 struct btrfs_root *root; 2150 struct btrfs_key key; 2151 struct btrfs_path *path; 2152 int ret; 2153 int num_found = 0; 2154 unsigned long sk_offset = 0; 2155 2156 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2157 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2158 return -EOVERFLOW; 2159 } 2160 2161 path = btrfs_alloc_path(); 2162 if (!path) 2163 return -ENOMEM; 2164 2165 if (sk->tree_id == 0) { 2166 /* search the root of the inode that was passed */ 2167 root = BTRFS_I(inode)->root; 2168 } else { 2169 key.objectid = sk->tree_id; 2170 key.type = BTRFS_ROOT_ITEM_KEY; 2171 key.offset = (u64)-1; 2172 root = btrfs_read_fs_root_no_name(info, &key); 2173 if (IS_ERR(root)) { 2174 btrfs_free_path(path); 2175 return PTR_ERR(root); 2176 } 2177 } 2178 2179 key.objectid = sk->min_objectid; 2180 key.type = sk->min_type; 2181 key.offset = sk->min_offset; 2182 2183 while (1) { 2184 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2185 if (ret != 0) { 2186 if (ret > 0) 2187 ret = 0; 2188 goto err; 2189 } 2190 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2191 &sk_offset, &num_found); 2192 btrfs_release_path(path); 2193 if (ret) 2194 break; 2195 2196 } 2197 if (ret > 0) 2198 ret = 0; 2199 err: 2200 sk->nr_items = num_found; 2201 btrfs_free_path(path); 2202 return ret; 2203 } 2204 2205 static noinline int btrfs_ioctl_tree_search(struct file *file, 2206 void __user *argp) 2207 { 2208 struct btrfs_ioctl_search_args __user *uargs; 2209 struct btrfs_ioctl_search_key sk; 2210 struct inode *inode; 2211 int ret; 2212 size_t buf_size; 2213 2214 if (!capable(CAP_SYS_ADMIN)) 2215 return -EPERM; 2216 2217 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2218 2219 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2220 return -EFAULT; 2221 2222 buf_size = sizeof(uargs->buf); 2223 2224 inode = file_inode(file); 2225 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2226 2227 /* 2228 * In the origin implementation an overflow is handled by returning a 2229 * search header with a len of zero, so reset ret. 2230 */ 2231 if (ret == -EOVERFLOW) 2232 ret = 0; 2233 2234 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2235 ret = -EFAULT; 2236 return ret; 2237 } 2238 2239 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2240 void __user *argp) 2241 { 2242 struct btrfs_ioctl_search_args_v2 __user *uarg; 2243 struct btrfs_ioctl_search_args_v2 args; 2244 struct inode *inode; 2245 int ret; 2246 size_t buf_size; 2247 const size_t buf_limit = SZ_16M; 2248 2249 if (!capable(CAP_SYS_ADMIN)) 2250 return -EPERM; 2251 2252 /* copy search header and buffer size */ 2253 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2254 if (copy_from_user(&args, uarg, sizeof(args))) 2255 return -EFAULT; 2256 2257 buf_size = args.buf_size; 2258 2259 /* limit result size to 16MB */ 2260 if (buf_size > buf_limit) 2261 buf_size = buf_limit; 2262 2263 inode = file_inode(file); 2264 ret = search_ioctl(inode, &args.key, &buf_size, 2265 (char __user *)(&uarg->buf[0])); 2266 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2267 ret = -EFAULT; 2268 else if (ret == -EOVERFLOW && 2269 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2270 ret = -EFAULT; 2271 2272 return ret; 2273 } 2274 2275 /* 2276 * Search INODE_REFs to identify path name of 'dirid' directory 2277 * in a 'tree_id' tree. and sets path name to 'name'. 2278 */ 2279 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2280 u64 tree_id, u64 dirid, char *name) 2281 { 2282 struct btrfs_root *root; 2283 struct btrfs_key key; 2284 char *ptr; 2285 int ret = -1; 2286 int slot; 2287 int len; 2288 int total_len = 0; 2289 struct btrfs_inode_ref *iref; 2290 struct extent_buffer *l; 2291 struct btrfs_path *path; 2292 2293 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2294 name[0]='\0'; 2295 return 0; 2296 } 2297 2298 path = btrfs_alloc_path(); 2299 if (!path) 2300 return -ENOMEM; 2301 2302 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2303 2304 key.objectid = tree_id; 2305 key.type = BTRFS_ROOT_ITEM_KEY; 2306 key.offset = (u64)-1; 2307 root = btrfs_read_fs_root_no_name(info, &key); 2308 if (IS_ERR(root)) { 2309 ret = PTR_ERR(root); 2310 goto out; 2311 } 2312 2313 key.objectid = dirid; 2314 key.type = BTRFS_INODE_REF_KEY; 2315 key.offset = (u64)-1; 2316 2317 while (1) { 2318 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2319 if (ret < 0) 2320 goto out; 2321 else if (ret > 0) { 2322 ret = btrfs_previous_item(root, path, dirid, 2323 BTRFS_INODE_REF_KEY); 2324 if (ret < 0) 2325 goto out; 2326 else if (ret > 0) { 2327 ret = -ENOENT; 2328 goto out; 2329 } 2330 } 2331 2332 l = path->nodes[0]; 2333 slot = path->slots[0]; 2334 btrfs_item_key_to_cpu(l, &key, slot); 2335 2336 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2337 len = btrfs_inode_ref_name_len(l, iref); 2338 ptr -= len + 1; 2339 total_len += len + 1; 2340 if (ptr < name) { 2341 ret = -ENAMETOOLONG; 2342 goto out; 2343 } 2344 2345 *(ptr + len) = '/'; 2346 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2347 2348 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2349 break; 2350 2351 btrfs_release_path(path); 2352 key.objectid = key.offset; 2353 key.offset = (u64)-1; 2354 dirid = key.objectid; 2355 } 2356 memmove(name, ptr, total_len); 2357 name[total_len] = '\0'; 2358 ret = 0; 2359 out: 2360 btrfs_free_path(path); 2361 return ret; 2362 } 2363 2364 static int btrfs_search_path_in_tree_user(struct inode *inode, 2365 struct btrfs_ioctl_ino_lookup_user_args *args) 2366 { 2367 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2368 struct super_block *sb = inode->i_sb; 2369 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2370 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2371 u64 dirid = args->dirid; 2372 unsigned long item_off; 2373 unsigned long item_len; 2374 struct btrfs_inode_ref *iref; 2375 struct btrfs_root_ref *rref; 2376 struct btrfs_root *root; 2377 struct btrfs_path *path; 2378 struct btrfs_key key, key2; 2379 struct extent_buffer *leaf; 2380 struct inode *temp_inode; 2381 char *ptr; 2382 int slot; 2383 int len; 2384 int total_len = 0; 2385 int ret; 2386 2387 path = btrfs_alloc_path(); 2388 if (!path) 2389 return -ENOMEM; 2390 2391 /* 2392 * If the bottom subvolume does not exist directly under upper_limit, 2393 * construct the path in from the bottom up. 2394 */ 2395 if (dirid != upper_limit.objectid) { 2396 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2397 2398 key.objectid = treeid; 2399 key.type = BTRFS_ROOT_ITEM_KEY; 2400 key.offset = (u64)-1; 2401 root = btrfs_read_fs_root_no_name(fs_info, &key); 2402 if (IS_ERR(root)) { 2403 ret = PTR_ERR(root); 2404 goto out; 2405 } 2406 2407 key.objectid = dirid; 2408 key.type = BTRFS_INODE_REF_KEY; 2409 key.offset = (u64)-1; 2410 while (1) { 2411 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2412 if (ret < 0) { 2413 goto out; 2414 } else if (ret > 0) { 2415 ret = btrfs_previous_item(root, path, dirid, 2416 BTRFS_INODE_REF_KEY); 2417 if (ret < 0) { 2418 goto out; 2419 } else if (ret > 0) { 2420 ret = -ENOENT; 2421 goto out; 2422 } 2423 } 2424 2425 leaf = path->nodes[0]; 2426 slot = path->slots[0]; 2427 btrfs_item_key_to_cpu(leaf, &key, slot); 2428 2429 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2430 len = btrfs_inode_ref_name_len(leaf, iref); 2431 ptr -= len + 1; 2432 total_len += len + 1; 2433 if (ptr < args->path) { 2434 ret = -ENAMETOOLONG; 2435 goto out; 2436 } 2437 2438 *(ptr + len) = '/'; 2439 read_extent_buffer(leaf, ptr, 2440 (unsigned long)(iref + 1), len); 2441 2442 /* Check the read+exec permission of this directory */ 2443 ret = btrfs_previous_item(root, path, dirid, 2444 BTRFS_INODE_ITEM_KEY); 2445 if (ret < 0) { 2446 goto out; 2447 } else if (ret > 0) { 2448 ret = -ENOENT; 2449 goto out; 2450 } 2451 2452 leaf = path->nodes[0]; 2453 slot = path->slots[0]; 2454 btrfs_item_key_to_cpu(leaf, &key2, slot); 2455 if (key2.objectid != dirid) { 2456 ret = -ENOENT; 2457 goto out; 2458 } 2459 2460 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2461 if (IS_ERR(temp_inode)) { 2462 ret = PTR_ERR(temp_inode); 2463 goto out; 2464 } 2465 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2466 iput(temp_inode); 2467 if (ret) { 2468 ret = -EACCES; 2469 goto out; 2470 } 2471 2472 if (key.offset == upper_limit.objectid) 2473 break; 2474 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2475 ret = -EACCES; 2476 goto out; 2477 } 2478 2479 btrfs_release_path(path); 2480 key.objectid = key.offset; 2481 key.offset = (u64)-1; 2482 dirid = key.objectid; 2483 } 2484 2485 memmove(args->path, ptr, total_len); 2486 args->path[total_len] = '\0'; 2487 btrfs_release_path(path); 2488 } 2489 2490 /* Get the bottom subvolume's name from ROOT_REF */ 2491 root = fs_info->tree_root; 2492 key.objectid = treeid; 2493 key.type = BTRFS_ROOT_REF_KEY; 2494 key.offset = args->treeid; 2495 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2496 if (ret < 0) { 2497 goto out; 2498 } else if (ret > 0) { 2499 ret = -ENOENT; 2500 goto out; 2501 } 2502 2503 leaf = path->nodes[0]; 2504 slot = path->slots[0]; 2505 btrfs_item_key_to_cpu(leaf, &key, slot); 2506 2507 item_off = btrfs_item_ptr_offset(leaf, slot); 2508 item_len = btrfs_item_size_nr(leaf, slot); 2509 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2510 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2511 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2512 ret = -EINVAL; 2513 goto out; 2514 } 2515 2516 /* Copy subvolume's name */ 2517 item_off += sizeof(struct btrfs_root_ref); 2518 item_len -= sizeof(struct btrfs_root_ref); 2519 read_extent_buffer(leaf, args->name, item_off, item_len); 2520 args->name[item_len] = 0; 2521 2522 out: 2523 btrfs_free_path(path); 2524 return ret; 2525 } 2526 2527 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2528 void __user *argp) 2529 { 2530 struct btrfs_ioctl_ino_lookup_args *args; 2531 struct inode *inode; 2532 int ret = 0; 2533 2534 args = memdup_user(argp, sizeof(*args)); 2535 if (IS_ERR(args)) 2536 return PTR_ERR(args); 2537 2538 inode = file_inode(file); 2539 2540 /* 2541 * Unprivileged query to obtain the containing subvolume root id. The 2542 * path is reset so it's consistent with btrfs_search_path_in_tree. 2543 */ 2544 if (args->treeid == 0) 2545 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2546 2547 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2548 args->name[0] = 0; 2549 goto out; 2550 } 2551 2552 if (!capable(CAP_SYS_ADMIN)) { 2553 ret = -EPERM; 2554 goto out; 2555 } 2556 2557 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2558 args->treeid, args->objectid, 2559 args->name); 2560 2561 out: 2562 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2563 ret = -EFAULT; 2564 2565 kfree(args); 2566 return ret; 2567 } 2568 2569 /* 2570 * Version of ino_lookup ioctl (unprivileged) 2571 * 2572 * The main differences from ino_lookup ioctl are: 2573 * 2574 * 1. Read + Exec permission will be checked using inode_permission() during 2575 * path construction. -EACCES will be returned in case of failure. 2576 * 2. Path construction will be stopped at the inode number which corresponds 2577 * to the fd with which this ioctl is called. If constructed path does not 2578 * exist under fd's inode, -EACCES will be returned. 2579 * 3. The name of bottom subvolume is also searched and filled. 2580 */ 2581 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2582 { 2583 struct btrfs_ioctl_ino_lookup_user_args *args; 2584 struct inode *inode; 2585 int ret; 2586 2587 args = memdup_user(argp, sizeof(*args)); 2588 if (IS_ERR(args)) 2589 return PTR_ERR(args); 2590 2591 inode = file_inode(file); 2592 2593 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2594 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2595 /* 2596 * The subvolume does not exist under fd with which this is 2597 * called 2598 */ 2599 kfree(args); 2600 return -EACCES; 2601 } 2602 2603 ret = btrfs_search_path_in_tree_user(inode, args); 2604 2605 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2606 ret = -EFAULT; 2607 2608 kfree(args); 2609 return ret; 2610 } 2611 2612 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2613 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2614 { 2615 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2616 struct btrfs_fs_info *fs_info; 2617 struct btrfs_root *root; 2618 struct btrfs_path *path; 2619 struct btrfs_key key; 2620 struct btrfs_root_item *root_item; 2621 struct btrfs_root_ref *rref; 2622 struct extent_buffer *leaf; 2623 unsigned long item_off; 2624 unsigned long item_len; 2625 struct inode *inode; 2626 int slot; 2627 int ret = 0; 2628 2629 path = btrfs_alloc_path(); 2630 if (!path) 2631 return -ENOMEM; 2632 2633 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2634 if (!subvol_info) { 2635 btrfs_free_path(path); 2636 return -ENOMEM; 2637 } 2638 2639 inode = file_inode(file); 2640 fs_info = BTRFS_I(inode)->root->fs_info; 2641 2642 /* Get root_item of inode's subvolume */ 2643 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2644 key.type = BTRFS_ROOT_ITEM_KEY; 2645 key.offset = (u64)-1; 2646 root = btrfs_read_fs_root_no_name(fs_info, &key); 2647 if (IS_ERR(root)) { 2648 ret = PTR_ERR(root); 2649 goto out; 2650 } 2651 root_item = &root->root_item; 2652 2653 subvol_info->treeid = key.objectid; 2654 2655 subvol_info->generation = btrfs_root_generation(root_item); 2656 subvol_info->flags = btrfs_root_flags(root_item); 2657 2658 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2659 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2660 BTRFS_UUID_SIZE); 2661 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2662 BTRFS_UUID_SIZE); 2663 2664 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2665 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2666 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2667 2668 subvol_info->otransid = btrfs_root_otransid(root_item); 2669 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2670 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2671 2672 subvol_info->stransid = btrfs_root_stransid(root_item); 2673 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2674 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2675 2676 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2677 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2678 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2679 2680 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2681 /* Search root tree for ROOT_BACKREF of this subvolume */ 2682 root = fs_info->tree_root; 2683 2684 key.type = BTRFS_ROOT_BACKREF_KEY; 2685 key.offset = 0; 2686 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2687 if (ret < 0) { 2688 goto out; 2689 } else if (path->slots[0] >= 2690 btrfs_header_nritems(path->nodes[0])) { 2691 ret = btrfs_next_leaf(root, path); 2692 if (ret < 0) { 2693 goto out; 2694 } else if (ret > 0) { 2695 ret = -EUCLEAN; 2696 goto out; 2697 } 2698 } 2699 2700 leaf = path->nodes[0]; 2701 slot = path->slots[0]; 2702 btrfs_item_key_to_cpu(leaf, &key, slot); 2703 if (key.objectid == subvol_info->treeid && 2704 key.type == BTRFS_ROOT_BACKREF_KEY) { 2705 subvol_info->parent_id = key.offset; 2706 2707 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2708 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2709 2710 item_off = btrfs_item_ptr_offset(leaf, slot) 2711 + sizeof(struct btrfs_root_ref); 2712 item_len = btrfs_item_size_nr(leaf, slot) 2713 - sizeof(struct btrfs_root_ref); 2714 read_extent_buffer(leaf, subvol_info->name, 2715 item_off, item_len); 2716 } else { 2717 ret = -ENOENT; 2718 goto out; 2719 } 2720 } 2721 2722 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2723 ret = -EFAULT; 2724 2725 out: 2726 btrfs_free_path(path); 2727 kzfree(subvol_info); 2728 return ret; 2729 } 2730 2731 /* 2732 * Return ROOT_REF information of the subvolume containing this inode 2733 * except the subvolume name. 2734 */ 2735 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2736 { 2737 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2738 struct btrfs_root_ref *rref; 2739 struct btrfs_root *root; 2740 struct btrfs_path *path; 2741 struct btrfs_key key; 2742 struct extent_buffer *leaf; 2743 struct inode *inode; 2744 u64 objectid; 2745 int slot; 2746 int ret; 2747 u8 found; 2748 2749 path = btrfs_alloc_path(); 2750 if (!path) 2751 return -ENOMEM; 2752 2753 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2754 if (IS_ERR(rootrefs)) { 2755 btrfs_free_path(path); 2756 return PTR_ERR(rootrefs); 2757 } 2758 2759 inode = file_inode(file); 2760 root = BTRFS_I(inode)->root->fs_info->tree_root; 2761 objectid = BTRFS_I(inode)->root->root_key.objectid; 2762 2763 key.objectid = objectid; 2764 key.type = BTRFS_ROOT_REF_KEY; 2765 key.offset = rootrefs->min_treeid; 2766 found = 0; 2767 2768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2769 if (ret < 0) { 2770 goto out; 2771 } else if (path->slots[0] >= 2772 btrfs_header_nritems(path->nodes[0])) { 2773 ret = btrfs_next_leaf(root, path); 2774 if (ret < 0) { 2775 goto out; 2776 } else if (ret > 0) { 2777 ret = -EUCLEAN; 2778 goto out; 2779 } 2780 } 2781 while (1) { 2782 leaf = path->nodes[0]; 2783 slot = path->slots[0]; 2784 2785 btrfs_item_key_to_cpu(leaf, &key, slot); 2786 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2787 ret = 0; 2788 goto out; 2789 } 2790 2791 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2792 ret = -EOVERFLOW; 2793 goto out; 2794 } 2795 2796 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2797 rootrefs->rootref[found].treeid = key.offset; 2798 rootrefs->rootref[found].dirid = 2799 btrfs_root_ref_dirid(leaf, rref); 2800 found++; 2801 2802 ret = btrfs_next_item(root, path); 2803 if (ret < 0) { 2804 goto out; 2805 } else if (ret > 0) { 2806 ret = -EUCLEAN; 2807 goto out; 2808 } 2809 } 2810 2811 out: 2812 if (!ret || ret == -EOVERFLOW) { 2813 rootrefs->num_items = found; 2814 /* update min_treeid for next search */ 2815 if (found) 2816 rootrefs->min_treeid = 2817 rootrefs->rootref[found - 1].treeid + 1; 2818 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2819 ret = -EFAULT; 2820 } 2821 2822 kfree(rootrefs); 2823 btrfs_free_path(path); 2824 2825 return ret; 2826 } 2827 2828 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2829 void __user *arg) 2830 { 2831 struct dentry *parent = file->f_path.dentry; 2832 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2833 struct dentry *dentry; 2834 struct inode *dir = d_inode(parent); 2835 struct inode *inode; 2836 struct btrfs_root *root = BTRFS_I(dir)->root; 2837 struct btrfs_root *dest = NULL; 2838 struct btrfs_ioctl_vol_args *vol_args; 2839 int namelen; 2840 int err = 0; 2841 2842 if (!S_ISDIR(dir->i_mode)) 2843 return -ENOTDIR; 2844 2845 vol_args = memdup_user(arg, sizeof(*vol_args)); 2846 if (IS_ERR(vol_args)) 2847 return PTR_ERR(vol_args); 2848 2849 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2850 namelen = strlen(vol_args->name); 2851 if (strchr(vol_args->name, '/') || 2852 strncmp(vol_args->name, "..", namelen) == 0) { 2853 err = -EINVAL; 2854 goto out; 2855 } 2856 2857 err = mnt_want_write_file(file); 2858 if (err) 2859 goto out; 2860 2861 2862 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2863 if (err == -EINTR) 2864 goto out_drop_write; 2865 dentry = lookup_one_len(vol_args->name, parent, namelen); 2866 if (IS_ERR(dentry)) { 2867 err = PTR_ERR(dentry); 2868 goto out_unlock_dir; 2869 } 2870 2871 if (d_really_is_negative(dentry)) { 2872 err = -ENOENT; 2873 goto out_dput; 2874 } 2875 2876 inode = d_inode(dentry); 2877 dest = BTRFS_I(inode)->root; 2878 if (!capable(CAP_SYS_ADMIN)) { 2879 /* 2880 * Regular user. Only allow this with a special mount 2881 * option, when the user has write+exec access to the 2882 * subvol root, and when rmdir(2) would have been 2883 * allowed. 2884 * 2885 * Note that this is _not_ check that the subvol is 2886 * empty or doesn't contain data that we wouldn't 2887 * otherwise be able to delete. 2888 * 2889 * Users who want to delete empty subvols should try 2890 * rmdir(2). 2891 */ 2892 err = -EPERM; 2893 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2894 goto out_dput; 2895 2896 /* 2897 * Do not allow deletion if the parent dir is the same 2898 * as the dir to be deleted. That means the ioctl 2899 * must be called on the dentry referencing the root 2900 * of the subvol, not a random directory contained 2901 * within it. 2902 */ 2903 err = -EINVAL; 2904 if (root == dest) 2905 goto out_dput; 2906 2907 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2908 if (err) 2909 goto out_dput; 2910 } 2911 2912 /* check if subvolume may be deleted by a user */ 2913 err = btrfs_may_delete(dir, dentry, 1); 2914 if (err) 2915 goto out_dput; 2916 2917 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2918 err = -EINVAL; 2919 goto out_dput; 2920 } 2921 2922 inode_lock(inode); 2923 err = btrfs_delete_subvolume(dir, dentry); 2924 inode_unlock(inode); 2925 if (!err) { 2926 fsnotify_rmdir(dir, dentry); 2927 d_delete(dentry); 2928 } 2929 2930 out_dput: 2931 dput(dentry); 2932 out_unlock_dir: 2933 inode_unlock(dir); 2934 out_drop_write: 2935 mnt_drop_write_file(file); 2936 out: 2937 kfree(vol_args); 2938 return err; 2939 } 2940 2941 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2942 { 2943 struct inode *inode = file_inode(file); 2944 struct btrfs_root *root = BTRFS_I(inode)->root; 2945 struct btrfs_ioctl_defrag_range_args *range; 2946 int ret; 2947 2948 ret = mnt_want_write_file(file); 2949 if (ret) 2950 return ret; 2951 2952 if (btrfs_root_readonly(root)) { 2953 ret = -EROFS; 2954 goto out; 2955 } 2956 2957 switch (inode->i_mode & S_IFMT) { 2958 case S_IFDIR: 2959 if (!capable(CAP_SYS_ADMIN)) { 2960 ret = -EPERM; 2961 goto out; 2962 } 2963 ret = btrfs_defrag_root(root); 2964 break; 2965 case S_IFREG: 2966 /* 2967 * Note that this does not check the file descriptor for write 2968 * access. This prevents defragmenting executables that are 2969 * running and allows defrag on files open in read-only mode. 2970 */ 2971 if (!capable(CAP_SYS_ADMIN) && 2972 inode_permission(inode, MAY_WRITE)) { 2973 ret = -EPERM; 2974 goto out; 2975 } 2976 2977 range = kzalloc(sizeof(*range), GFP_KERNEL); 2978 if (!range) { 2979 ret = -ENOMEM; 2980 goto out; 2981 } 2982 2983 if (argp) { 2984 if (copy_from_user(range, argp, 2985 sizeof(*range))) { 2986 ret = -EFAULT; 2987 kfree(range); 2988 goto out; 2989 } 2990 /* compression requires us to start the IO */ 2991 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2992 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2993 range->extent_thresh = (u32)-1; 2994 } 2995 } else { 2996 /* the rest are all set to zero by kzalloc */ 2997 range->len = (u64)-1; 2998 } 2999 ret = btrfs_defrag_file(file_inode(file), file, 3000 range, BTRFS_OLDEST_GENERATION, 0); 3001 if (ret > 0) 3002 ret = 0; 3003 kfree(range); 3004 break; 3005 default: 3006 ret = -EINVAL; 3007 } 3008 out: 3009 mnt_drop_write_file(file); 3010 return ret; 3011 } 3012 3013 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3014 { 3015 struct btrfs_ioctl_vol_args *vol_args; 3016 int ret; 3017 3018 if (!capable(CAP_SYS_ADMIN)) 3019 return -EPERM; 3020 3021 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3022 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3023 3024 vol_args = memdup_user(arg, sizeof(*vol_args)); 3025 if (IS_ERR(vol_args)) { 3026 ret = PTR_ERR(vol_args); 3027 goto out; 3028 } 3029 3030 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3031 ret = btrfs_init_new_device(fs_info, vol_args->name); 3032 3033 if (!ret) 3034 btrfs_info(fs_info, "disk added %s", vol_args->name); 3035 3036 kfree(vol_args); 3037 out: 3038 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3039 return ret; 3040 } 3041 3042 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3043 { 3044 struct inode *inode = file_inode(file); 3045 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3046 struct btrfs_ioctl_vol_args_v2 *vol_args; 3047 int ret; 3048 3049 if (!capable(CAP_SYS_ADMIN)) 3050 return -EPERM; 3051 3052 ret = mnt_want_write_file(file); 3053 if (ret) 3054 return ret; 3055 3056 vol_args = memdup_user(arg, sizeof(*vol_args)); 3057 if (IS_ERR(vol_args)) { 3058 ret = PTR_ERR(vol_args); 3059 goto err_drop; 3060 } 3061 3062 /* Check for compatibility reject unknown flags */ 3063 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3064 ret = -EOPNOTSUPP; 3065 goto out; 3066 } 3067 3068 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3069 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3070 goto out; 3071 } 3072 3073 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3074 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3075 } else { 3076 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3077 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3078 } 3079 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3080 3081 if (!ret) { 3082 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3083 btrfs_info(fs_info, "device deleted: id %llu", 3084 vol_args->devid); 3085 else 3086 btrfs_info(fs_info, "device deleted: %s", 3087 vol_args->name); 3088 } 3089 out: 3090 kfree(vol_args); 3091 err_drop: 3092 mnt_drop_write_file(file); 3093 return ret; 3094 } 3095 3096 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3097 { 3098 struct inode *inode = file_inode(file); 3099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3100 struct btrfs_ioctl_vol_args *vol_args; 3101 int ret; 3102 3103 if (!capable(CAP_SYS_ADMIN)) 3104 return -EPERM; 3105 3106 ret = mnt_want_write_file(file); 3107 if (ret) 3108 return ret; 3109 3110 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3111 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3112 goto out_drop_write; 3113 } 3114 3115 vol_args = memdup_user(arg, sizeof(*vol_args)); 3116 if (IS_ERR(vol_args)) { 3117 ret = PTR_ERR(vol_args); 3118 goto out; 3119 } 3120 3121 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3122 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3123 3124 if (!ret) 3125 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3126 kfree(vol_args); 3127 out: 3128 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3129 out_drop_write: 3130 mnt_drop_write_file(file); 3131 3132 return ret; 3133 } 3134 3135 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3136 void __user *arg) 3137 { 3138 struct btrfs_ioctl_fs_info_args *fi_args; 3139 struct btrfs_device *device; 3140 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3141 int ret = 0; 3142 3143 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3144 if (!fi_args) 3145 return -ENOMEM; 3146 3147 rcu_read_lock(); 3148 fi_args->num_devices = fs_devices->num_devices; 3149 3150 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3151 if (device->devid > fi_args->max_id) 3152 fi_args->max_id = device->devid; 3153 } 3154 rcu_read_unlock(); 3155 3156 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3157 fi_args->nodesize = fs_info->nodesize; 3158 fi_args->sectorsize = fs_info->sectorsize; 3159 fi_args->clone_alignment = fs_info->sectorsize; 3160 3161 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3162 ret = -EFAULT; 3163 3164 kfree(fi_args); 3165 return ret; 3166 } 3167 3168 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3169 void __user *arg) 3170 { 3171 struct btrfs_ioctl_dev_info_args *di_args; 3172 struct btrfs_device *dev; 3173 int ret = 0; 3174 char *s_uuid = NULL; 3175 3176 di_args = memdup_user(arg, sizeof(*di_args)); 3177 if (IS_ERR(di_args)) 3178 return PTR_ERR(di_args); 3179 3180 if (!btrfs_is_empty_uuid(di_args->uuid)) 3181 s_uuid = di_args->uuid; 3182 3183 rcu_read_lock(); 3184 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3185 NULL, true); 3186 3187 if (!dev) { 3188 ret = -ENODEV; 3189 goto out; 3190 } 3191 3192 di_args->devid = dev->devid; 3193 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3194 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3195 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3196 if (dev->name) { 3197 strncpy(di_args->path, rcu_str_deref(dev->name), 3198 sizeof(di_args->path) - 1); 3199 di_args->path[sizeof(di_args->path) - 1] = 0; 3200 } else { 3201 di_args->path[0] = '\0'; 3202 } 3203 3204 out: 3205 rcu_read_unlock(); 3206 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3207 ret = -EFAULT; 3208 3209 kfree(di_args); 3210 return ret; 3211 } 3212 3213 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3214 struct inode *inode2, u64 loff2, u64 len) 3215 { 3216 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3217 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3218 } 3219 3220 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3221 struct inode *inode2, u64 loff2, u64 len) 3222 { 3223 if (inode1 < inode2) { 3224 swap(inode1, inode2); 3225 swap(loff1, loff2); 3226 } else if (inode1 == inode2 && loff2 < loff1) { 3227 swap(loff1, loff2); 3228 } 3229 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3230 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3231 } 3232 3233 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3234 struct inode *dst, u64 dst_loff) 3235 { 3236 int ret; 3237 3238 /* 3239 * Lock destination range to serialize with concurrent readpages() and 3240 * source range to serialize with relocation. 3241 */ 3242 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3243 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3244 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3245 3246 return ret; 3247 } 3248 3249 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3250 3251 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3252 struct inode *dst, u64 dst_loff) 3253 { 3254 int ret; 3255 u64 i, tail_len, chunk_count; 3256 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3257 3258 spin_lock(&root_dst->root_item_lock); 3259 if (root_dst->send_in_progress) { 3260 btrfs_warn_rl(root_dst->fs_info, 3261 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3262 root_dst->root_key.objectid, 3263 root_dst->send_in_progress); 3264 spin_unlock(&root_dst->root_item_lock); 3265 return -EAGAIN; 3266 } 3267 root_dst->dedupe_in_progress++; 3268 spin_unlock(&root_dst->root_item_lock); 3269 3270 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3271 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3272 3273 for (i = 0; i < chunk_count; i++) { 3274 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3275 dst, dst_loff); 3276 if (ret) 3277 goto out; 3278 3279 loff += BTRFS_MAX_DEDUPE_LEN; 3280 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3281 } 3282 3283 if (tail_len > 0) 3284 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3285 dst_loff); 3286 out: 3287 spin_lock(&root_dst->root_item_lock); 3288 root_dst->dedupe_in_progress--; 3289 spin_unlock(&root_dst->root_item_lock); 3290 3291 return ret; 3292 } 3293 3294 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3295 struct inode *inode, 3296 u64 endoff, 3297 const u64 destoff, 3298 const u64 olen, 3299 int no_time_update) 3300 { 3301 struct btrfs_root *root = BTRFS_I(inode)->root; 3302 int ret; 3303 3304 inode_inc_iversion(inode); 3305 if (!no_time_update) 3306 inode->i_mtime = inode->i_ctime = current_time(inode); 3307 /* 3308 * We round up to the block size at eof when determining which 3309 * extents to clone above, but shouldn't round up the file size. 3310 */ 3311 if (endoff > destoff + olen) 3312 endoff = destoff + olen; 3313 if (endoff > inode->i_size) 3314 btrfs_i_size_write(BTRFS_I(inode), endoff); 3315 3316 ret = btrfs_update_inode(trans, root, inode); 3317 if (ret) { 3318 btrfs_abort_transaction(trans, ret); 3319 btrfs_end_transaction(trans); 3320 goto out; 3321 } 3322 ret = btrfs_end_transaction(trans); 3323 out: 3324 return ret; 3325 } 3326 3327 static void clone_update_extent_map(struct btrfs_inode *inode, 3328 const struct btrfs_trans_handle *trans, 3329 const struct btrfs_path *path, 3330 const u64 hole_offset, 3331 const u64 hole_len) 3332 { 3333 struct extent_map_tree *em_tree = &inode->extent_tree; 3334 struct extent_map *em; 3335 int ret; 3336 3337 em = alloc_extent_map(); 3338 if (!em) { 3339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3340 return; 3341 } 3342 3343 if (path) { 3344 struct btrfs_file_extent_item *fi; 3345 3346 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3347 struct btrfs_file_extent_item); 3348 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3349 em->generation = -1; 3350 if (btrfs_file_extent_type(path->nodes[0], fi) == 3351 BTRFS_FILE_EXTENT_INLINE) 3352 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3353 &inode->runtime_flags); 3354 } else { 3355 em->start = hole_offset; 3356 em->len = hole_len; 3357 em->ram_bytes = em->len; 3358 em->orig_start = hole_offset; 3359 em->block_start = EXTENT_MAP_HOLE; 3360 em->block_len = 0; 3361 em->orig_block_len = 0; 3362 em->compress_type = BTRFS_COMPRESS_NONE; 3363 em->generation = trans->transid; 3364 } 3365 3366 while (1) { 3367 write_lock(&em_tree->lock); 3368 ret = add_extent_mapping(em_tree, em, 1); 3369 write_unlock(&em_tree->lock); 3370 if (ret != -EEXIST) { 3371 free_extent_map(em); 3372 break; 3373 } 3374 btrfs_drop_extent_cache(inode, em->start, 3375 em->start + em->len - 1, 0); 3376 } 3377 3378 if (ret) 3379 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3380 } 3381 3382 /* 3383 * Make sure we do not end up inserting an inline extent into a file that has 3384 * already other (non-inline) extents. If a file has an inline extent it can 3385 * not have any other extents and the (single) inline extent must start at the 3386 * file offset 0. Failing to respect these rules will lead to file corruption, 3387 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3388 * 3389 * We can have extents that have been already written to disk or we can have 3390 * dirty ranges still in delalloc, in which case the extent maps and items are 3391 * created only when we run delalloc, and the delalloc ranges might fall outside 3392 * the range we are currently locking in the inode's io tree. So we check the 3393 * inode's i_size because of that (i_size updates are done while holding the 3394 * i_mutex, which we are holding here). 3395 * We also check to see if the inode has a size not greater than "datal" but has 3396 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3397 * protected against such concurrent fallocate calls by the i_mutex). 3398 * 3399 * If the file has no extents but a size greater than datal, do not allow the 3400 * copy because we would need turn the inline extent into a non-inline one (even 3401 * with NO_HOLES enabled). If we find our destination inode only has one inline 3402 * extent, just overwrite it with the source inline extent if its size is less 3403 * than the source extent's size, or we could copy the source inline extent's 3404 * data into the destination inode's inline extent if the later is greater then 3405 * the former. 3406 */ 3407 static int clone_copy_inline_extent(struct inode *dst, 3408 struct btrfs_trans_handle *trans, 3409 struct btrfs_path *path, 3410 struct btrfs_key *new_key, 3411 const u64 drop_start, 3412 const u64 datal, 3413 const u64 skip, 3414 const u64 size, 3415 char *inline_data) 3416 { 3417 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3418 struct btrfs_root *root = BTRFS_I(dst)->root; 3419 const u64 aligned_end = ALIGN(new_key->offset + datal, 3420 fs_info->sectorsize); 3421 int ret; 3422 struct btrfs_key key; 3423 3424 if (new_key->offset > 0) 3425 return -EOPNOTSUPP; 3426 3427 key.objectid = btrfs_ino(BTRFS_I(dst)); 3428 key.type = BTRFS_EXTENT_DATA_KEY; 3429 key.offset = 0; 3430 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3431 if (ret < 0) { 3432 return ret; 3433 } else if (ret > 0) { 3434 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3435 ret = btrfs_next_leaf(root, path); 3436 if (ret < 0) 3437 return ret; 3438 else if (ret > 0) 3439 goto copy_inline_extent; 3440 } 3441 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3442 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3443 key.type == BTRFS_EXTENT_DATA_KEY) { 3444 ASSERT(key.offset > 0); 3445 return -EOPNOTSUPP; 3446 } 3447 } else if (i_size_read(dst) <= datal) { 3448 struct btrfs_file_extent_item *ei; 3449 u64 ext_len; 3450 3451 /* 3452 * If the file size is <= datal, make sure there are no other 3453 * extents following (can happen do to an fallocate call with 3454 * the flag FALLOC_FL_KEEP_SIZE). 3455 */ 3456 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3457 struct btrfs_file_extent_item); 3458 /* 3459 * If it's an inline extent, it can not have other extents 3460 * following it. 3461 */ 3462 if (btrfs_file_extent_type(path->nodes[0], ei) == 3463 BTRFS_FILE_EXTENT_INLINE) 3464 goto copy_inline_extent; 3465 3466 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3467 if (ext_len > aligned_end) 3468 return -EOPNOTSUPP; 3469 3470 ret = btrfs_next_item(root, path); 3471 if (ret < 0) { 3472 return ret; 3473 } else if (ret == 0) { 3474 btrfs_item_key_to_cpu(path->nodes[0], &key, 3475 path->slots[0]); 3476 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3477 key.type == BTRFS_EXTENT_DATA_KEY) 3478 return -EOPNOTSUPP; 3479 } 3480 } 3481 3482 copy_inline_extent: 3483 /* 3484 * We have no extent items, or we have an extent at offset 0 which may 3485 * or may not be inlined. All these cases are dealt the same way. 3486 */ 3487 if (i_size_read(dst) > datal) { 3488 /* 3489 * If the destination inode has an inline extent... 3490 * This would require copying the data from the source inline 3491 * extent into the beginning of the destination's inline extent. 3492 * But this is really complex, both extents can be compressed 3493 * or just one of them, which would require decompressing and 3494 * re-compressing data (which could increase the new compressed 3495 * size, not allowing the compressed data to fit anymore in an 3496 * inline extent). 3497 * So just don't support this case for now (it should be rare, 3498 * we are not really saving space when cloning inline extents). 3499 */ 3500 return -EOPNOTSUPP; 3501 } 3502 3503 btrfs_release_path(path); 3504 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3505 if (ret) 3506 return ret; 3507 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3508 if (ret) 3509 return ret; 3510 3511 if (skip) { 3512 const u32 start = btrfs_file_extent_calc_inline_size(0); 3513 3514 memmove(inline_data + start, inline_data + start + skip, datal); 3515 } 3516 3517 write_extent_buffer(path->nodes[0], inline_data, 3518 btrfs_item_ptr_offset(path->nodes[0], 3519 path->slots[0]), 3520 size); 3521 inode_add_bytes(dst, datal); 3522 3523 return 0; 3524 } 3525 3526 /** 3527 * btrfs_clone() - clone a range from inode file to another 3528 * 3529 * @src: Inode to clone from 3530 * @inode: Inode to clone to 3531 * @off: Offset within source to start clone from 3532 * @olen: Original length, passed by user, of range to clone 3533 * @olen_aligned: Block-aligned value of olen 3534 * @destoff: Offset within @inode to start clone 3535 * @no_time_update: Whether to update mtime/ctime on the target inode 3536 */ 3537 static int btrfs_clone(struct inode *src, struct inode *inode, 3538 const u64 off, const u64 olen, const u64 olen_aligned, 3539 const u64 destoff, int no_time_update) 3540 { 3541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3542 struct btrfs_root *root = BTRFS_I(inode)->root; 3543 struct btrfs_path *path = NULL; 3544 struct extent_buffer *leaf; 3545 struct btrfs_trans_handle *trans; 3546 char *buf = NULL; 3547 struct btrfs_key key; 3548 u32 nritems; 3549 int slot; 3550 int ret; 3551 const u64 len = olen_aligned; 3552 u64 last_dest_end = destoff; 3553 3554 ret = -ENOMEM; 3555 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3556 if (!buf) 3557 return ret; 3558 3559 path = btrfs_alloc_path(); 3560 if (!path) { 3561 kvfree(buf); 3562 return ret; 3563 } 3564 3565 path->reada = READA_FORWARD; 3566 /* clone data */ 3567 key.objectid = btrfs_ino(BTRFS_I(src)); 3568 key.type = BTRFS_EXTENT_DATA_KEY; 3569 key.offset = off; 3570 3571 while (1) { 3572 u64 next_key_min_offset = key.offset + 1; 3573 3574 /* 3575 * note the key will change type as we walk through the 3576 * tree. 3577 */ 3578 path->leave_spinning = 1; 3579 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3580 0, 0); 3581 if (ret < 0) 3582 goto out; 3583 /* 3584 * First search, if no extent item that starts at offset off was 3585 * found but the previous item is an extent item, it's possible 3586 * it might overlap our target range, therefore process it. 3587 */ 3588 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3589 btrfs_item_key_to_cpu(path->nodes[0], &key, 3590 path->slots[0] - 1); 3591 if (key.type == BTRFS_EXTENT_DATA_KEY) 3592 path->slots[0]--; 3593 } 3594 3595 nritems = btrfs_header_nritems(path->nodes[0]); 3596 process_slot: 3597 if (path->slots[0] >= nritems) { 3598 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3599 if (ret < 0) 3600 goto out; 3601 if (ret > 0) 3602 break; 3603 nritems = btrfs_header_nritems(path->nodes[0]); 3604 } 3605 leaf = path->nodes[0]; 3606 slot = path->slots[0]; 3607 3608 btrfs_item_key_to_cpu(leaf, &key, slot); 3609 if (key.type > BTRFS_EXTENT_DATA_KEY || 3610 key.objectid != btrfs_ino(BTRFS_I(src))) 3611 break; 3612 3613 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3614 struct btrfs_file_extent_item *extent; 3615 int type; 3616 u32 size; 3617 struct btrfs_key new_key; 3618 u64 disko = 0, diskl = 0; 3619 u64 datao = 0, datal = 0; 3620 u8 comp; 3621 u64 drop_start; 3622 3623 extent = btrfs_item_ptr(leaf, slot, 3624 struct btrfs_file_extent_item); 3625 comp = btrfs_file_extent_compression(leaf, extent); 3626 type = btrfs_file_extent_type(leaf, extent); 3627 if (type == BTRFS_FILE_EXTENT_REG || 3628 type == BTRFS_FILE_EXTENT_PREALLOC) { 3629 disko = btrfs_file_extent_disk_bytenr(leaf, 3630 extent); 3631 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3632 extent); 3633 datao = btrfs_file_extent_offset(leaf, extent); 3634 datal = btrfs_file_extent_num_bytes(leaf, 3635 extent); 3636 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3637 /* take upper bound, may be compressed */ 3638 datal = btrfs_file_extent_ram_bytes(leaf, 3639 extent); 3640 } 3641 3642 /* 3643 * The first search might have left us at an extent 3644 * item that ends before our target range's start, can 3645 * happen if we have holes and NO_HOLES feature enabled. 3646 */ 3647 if (key.offset + datal <= off) { 3648 path->slots[0]++; 3649 goto process_slot; 3650 } else if (key.offset >= off + len) { 3651 break; 3652 } 3653 next_key_min_offset = key.offset + datal; 3654 size = btrfs_item_size_nr(leaf, slot); 3655 read_extent_buffer(leaf, buf, 3656 btrfs_item_ptr_offset(leaf, slot), 3657 size); 3658 3659 btrfs_release_path(path); 3660 path->leave_spinning = 0; 3661 3662 memcpy(&new_key, &key, sizeof(new_key)); 3663 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3664 if (off <= key.offset) 3665 new_key.offset = key.offset + destoff - off; 3666 else 3667 new_key.offset = destoff; 3668 3669 /* 3670 * Deal with a hole that doesn't have an extent item 3671 * that represents it (NO_HOLES feature enabled). 3672 * This hole is either in the middle of the cloning 3673 * range or at the beginning (fully overlaps it or 3674 * partially overlaps it). 3675 */ 3676 if (new_key.offset != last_dest_end) 3677 drop_start = last_dest_end; 3678 else 3679 drop_start = new_key.offset; 3680 3681 /* 3682 * 1 - adjusting old extent (we may have to split it) 3683 * 1 - add new extent 3684 * 1 - inode update 3685 */ 3686 trans = btrfs_start_transaction(root, 3); 3687 if (IS_ERR(trans)) { 3688 ret = PTR_ERR(trans); 3689 goto out; 3690 } 3691 3692 if (type == BTRFS_FILE_EXTENT_REG || 3693 type == BTRFS_FILE_EXTENT_PREALLOC) { 3694 /* 3695 * a | --- range to clone ---| b 3696 * | ------------- extent ------------- | 3697 */ 3698 3699 /* subtract range b */ 3700 if (key.offset + datal > off + len) 3701 datal = off + len - key.offset; 3702 3703 /* subtract range a */ 3704 if (off > key.offset) { 3705 datao += off - key.offset; 3706 datal -= off - key.offset; 3707 } 3708 3709 ret = btrfs_drop_extents(trans, root, inode, 3710 drop_start, 3711 new_key.offset + datal, 3712 1); 3713 if (ret) { 3714 if (ret != -EOPNOTSUPP) 3715 btrfs_abort_transaction(trans, 3716 ret); 3717 btrfs_end_transaction(trans); 3718 goto out; 3719 } 3720 3721 ret = btrfs_insert_empty_item(trans, root, path, 3722 &new_key, size); 3723 if (ret) { 3724 btrfs_abort_transaction(trans, ret); 3725 btrfs_end_transaction(trans); 3726 goto out; 3727 } 3728 3729 leaf = path->nodes[0]; 3730 slot = path->slots[0]; 3731 write_extent_buffer(leaf, buf, 3732 btrfs_item_ptr_offset(leaf, slot), 3733 size); 3734 3735 extent = btrfs_item_ptr(leaf, slot, 3736 struct btrfs_file_extent_item); 3737 3738 /* disko == 0 means it's a hole */ 3739 if (!disko) 3740 datao = 0; 3741 3742 btrfs_set_file_extent_offset(leaf, extent, 3743 datao); 3744 btrfs_set_file_extent_num_bytes(leaf, extent, 3745 datal); 3746 3747 if (disko) { 3748 struct btrfs_ref ref = { 0 }; 3749 inode_add_bytes(inode, datal); 3750 btrfs_init_generic_ref(&ref, 3751 BTRFS_ADD_DELAYED_REF, disko, 3752 diskl, 0); 3753 btrfs_init_data_ref(&ref, 3754 root->root_key.objectid, 3755 btrfs_ino(BTRFS_I(inode)), 3756 new_key.offset - datao); 3757 ret = btrfs_inc_extent_ref(trans, &ref); 3758 if (ret) { 3759 btrfs_abort_transaction(trans, 3760 ret); 3761 btrfs_end_transaction(trans); 3762 goto out; 3763 3764 } 3765 } 3766 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3767 u64 skip = 0; 3768 u64 trim = 0; 3769 3770 if (off > key.offset) { 3771 skip = off - key.offset; 3772 new_key.offset += skip; 3773 } 3774 3775 if (key.offset + datal > off + len) 3776 trim = key.offset + datal - (off + len); 3777 3778 if (comp && (skip || trim)) { 3779 ret = -EINVAL; 3780 btrfs_end_transaction(trans); 3781 goto out; 3782 } 3783 size -= skip + trim; 3784 datal -= skip + trim; 3785 3786 ret = clone_copy_inline_extent(inode, 3787 trans, path, 3788 &new_key, 3789 drop_start, 3790 datal, 3791 skip, size, buf); 3792 if (ret) { 3793 if (ret != -EOPNOTSUPP) 3794 btrfs_abort_transaction(trans, 3795 ret); 3796 btrfs_end_transaction(trans); 3797 goto out; 3798 } 3799 leaf = path->nodes[0]; 3800 slot = path->slots[0]; 3801 } 3802 3803 /* If we have an implicit hole (NO_HOLES feature). */ 3804 if (drop_start < new_key.offset) 3805 clone_update_extent_map(BTRFS_I(inode), trans, 3806 NULL, drop_start, 3807 new_key.offset - drop_start); 3808 3809 clone_update_extent_map(BTRFS_I(inode), trans, 3810 path, 0, 0); 3811 3812 btrfs_mark_buffer_dirty(leaf); 3813 btrfs_release_path(path); 3814 3815 last_dest_end = ALIGN(new_key.offset + datal, 3816 fs_info->sectorsize); 3817 ret = clone_finish_inode_update(trans, inode, 3818 last_dest_end, 3819 destoff, olen, 3820 no_time_update); 3821 if (ret) 3822 goto out; 3823 if (new_key.offset + datal >= destoff + len) 3824 break; 3825 } 3826 btrfs_release_path(path); 3827 key.offset = next_key_min_offset; 3828 3829 if (fatal_signal_pending(current)) { 3830 ret = -EINTR; 3831 goto out; 3832 } 3833 } 3834 ret = 0; 3835 3836 if (last_dest_end < destoff + len) { 3837 /* 3838 * We have an implicit hole (NO_HOLES feature is enabled) that 3839 * fully or partially overlaps our cloning range at its end. 3840 */ 3841 btrfs_release_path(path); 3842 3843 /* 3844 * 1 - remove extent(s) 3845 * 1 - inode update 3846 */ 3847 trans = btrfs_start_transaction(root, 2); 3848 if (IS_ERR(trans)) { 3849 ret = PTR_ERR(trans); 3850 goto out; 3851 } 3852 ret = btrfs_drop_extents(trans, root, inode, 3853 last_dest_end, destoff + len, 1); 3854 if (ret) { 3855 if (ret != -EOPNOTSUPP) 3856 btrfs_abort_transaction(trans, ret); 3857 btrfs_end_transaction(trans); 3858 goto out; 3859 } 3860 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3861 last_dest_end, 3862 destoff + len - last_dest_end); 3863 ret = clone_finish_inode_update(trans, inode, destoff + len, 3864 destoff, olen, no_time_update); 3865 } 3866 3867 out: 3868 btrfs_free_path(path); 3869 kvfree(buf); 3870 return ret; 3871 } 3872 3873 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3874 u64 off, u64 olen, u64 destoff) 3875 { 3876 struct inode *inode = file_inode(file); 3877 struct inode *src = file_inode(file_src); 3878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3879 int ret; 3880 u64 len = olen; 3881 u64 bs = fs_info->sb->s_blocksize; 3882 3883 /* 3884 * TODO: 3885 * - split compressed inline extents. annoying: we need to 3886 * decompress into destination's address_space (the file offset 3887 * may change, so source mapping won't do), then recompress (or 3888 * otherwise reinsert) a subrange. 3889 * 3890 * - split destination inode's inline extents. The inline extents can 3891 * be either compressed or non-compressed. 3892 */ 3893 3894 /* 3895 * VFS's generic_remap_file_range_prep() protects us from cloning the 3896 * eof block into the middle of a file, which would result in corruption 3897 * if the file size is not blocksize aligned. So we don't need to check 3898 * for that case here. 3899 */ 3900 if (off + len == src->i_size) 3901 len = ALIGN(src->i_size, bs) - off; 3902 3903 if (destoff > inode->i_size) { 3904 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3905 3906 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3907 if (ret) 3908 return ret; 3909 /* 3910 * We may have truncated the last block if the inode's size is 3911 * not sector size aligned, so we need to wait for writeback to 3912 * complete before proceeding further, otherwise we can race 3913 * with cloning and attempt to increment a reference to an 3914 * extent that no longer exists (writeback completed right after 3915 * we found the previous extent covering eof and before we 3916 * attempted to increment its reference count). 3917 */ 3918 ret = btrfs_wait_ordered_range(inode, wb_start, 3919 destoff - wb_start); 3920 if (ret) 3921 return ret; 3922 } 3923 3924 /* 3925 * Lock destination range to serialize with concurrent readpages() and 3926 * source range to serialize with relocation. 3927 */ 3928 btrfs_double_extent_lock(src, off, inode, destoff, len); 3929 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3930 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3931 /* 3932 * Truncate page cache pages so that future reads will see the cloned 3933 * data immediately and not the previous data. 3934 */ 3935 truncate_inode_pages_range(&inode->i_data, 3936 round_down(destoff, PAGE_SIZE), 3937 round_up(destoff + len, PAGE_SIZE) - 1); 3938 3939 return ret; 3940 } 3941 3942 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3943 struct file *file_out, loff_t pos_out, 3944 loff_t *len, unsigned int remap_flags) 3945 { 3946 struct inode *inode_in = file_inode(file_in); 3947 struct inode *inode_out = file_inode(file_out); 3948 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3949 bool same_inode = inode_out == inode_in; 3950 u64 wb_len; 3951 int ret; 3952 3953 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3954 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3955 3956 if (btrfs_root_readonly(root_out)) 3957 return -EROFS; 3958 3959 if (file_in->f_path.mnt != file_out->f_path.mnt || 3960 inode_in->i_sb != inode_out->i_sb) 3961 return -EXDEV; 3962 } 3963 3964 /* don't make the dst file partly checksummed */ 3965 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3966 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3967 return -EINVAL; 3968 } 3969 3970 /* 3971 * Now that the inodes are locked, we need to start writeback ourselves 3972 * and can not rely on the writeback from the VFS's generic helper 3973 * generic_remap_file_range_prep() because: 3974 * 3975 * 1) For compression we must call filemap_fdatawrite_range() range 3976 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3977 * helper only calls it once; 3978 * 3979 * 2) filemap_fdatawrite_range(), called by the generic helper only 3980 * waits for the writeback to complete, i.e. for IO to be done, and 3981 * not for the ordered extents to complete. We need to wait for them 3982 * to complete so that new file extent items are in the fs tree. 3983 */ 3984 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3985 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3986 else 3987 wb_len = ALIGN(*len, bs); 3988 3989 /* 3990 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3991 * any in progress could create its ordered extents after we wait for 3992 * existing ordered extents below). 3993 */ 3994 inode_dio_wait(inode_in); 3995 if (!same_inode) 3996 inode_dio_wait(inode_out); 3997 3998 /* 3999 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 4000 * 4001 * Btrfs' back references do not have a block level granularity, they 4002 * work at the whole extent level. 4003 * NOCOW buffered write without data space reserved may not be able 4004 * to fall back to CoW due to lack of data space, thus could cause 4005 * data loss. 4006 * 4007 * Here we take a shortcut by flushing the whole inode, so that all 4008 * nocow write should reach disk as nocow before we increase the 4009 * reference of the extent. We could do better by only flushing NOCOW 4010 * data, but that needs extra accounting. 4011 * 4012 * Also we don't need to check ASYNC_EXTENT, as async extent will be 4013 * CoWed anyway, not affecting nocow part. 4014 */ 4015 ret = filemap_flush(inode_in->i_mapping); 4016 if (ret < 0) 4017 return ret; 4018 4019 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 4020 wb_len); 4021 if (ret < 0) 4022 return ret; 4023 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 4024 wb_len); 4025 if (ret < 0) 4026 return ret; 4027 4028 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 4029 len, remap_flags); 4030 } 4031 4032 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 4033 struct file *dst_file, loff_t destoff, loff_t len, 4034 unsigned int remap_flags) 4035 { 4036 struct inode *src_inode = file_inode(src_file); 4037 struct inode *dst_inode = file_inode(dst_file); 4038 bool same_inode = dst_inode == src_inode; 4039 int ret; 4040 4041 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 4042 return -EINVAL; 4043 4044 if (same_inode) 4045 inode_lock(src_inode); 4046 else 4047 lock_two_nondirectories(src_inode, dst_inode); 4048 4049 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 4050 &len, remap_flags); 4051 if (ret < 0 || len == 0) 4052 goto out_unlock; 4053 4054 if (remap_flags & REMAP_FILE_DEDUP) 4055 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 4056 else 4057 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 4058 4059 out_unlock: 4060 if (same_inode) 4061 inode_unlock(src_inode); 4062 else 4063 unlock_two_nondirectories(src_inode, dst_inode); 4064 4065 return ret < 0 ? ret : len; 4066 } 4067 4068 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4069 { 4070 struct inode *inode = file_inode(file); 4071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4072 struct btrfs_root *root = BTRFS_I(inode)->root; 4073 struct btrfs_root *new_root; 4074 struct btrfs_dir_item *di; 4075 struct btrfs_trans_handle *trans; 4076 struct btrfs_path *path; 4077 struct btrfs_key location; 4078 struct btrfs_disk_key disk_key; 4079 u64 objectid = 0; 4080 u64 dir_id; 4081 int ret; 4082 4083 if (!capable(CAP_SYS_ADMIN)) 4084 return -EPERM; 4085 4086 ret = mnt_want_write_file(file); 4087 if (ret) 4088 return ret; 4089 4090 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4091 ret = -EFAULT; 4092 goto out; 4093 } 4094 4095 if (!objectid) 4096 objectid = BTRFS_FS_TREE_OBJECTID; 4097 4098 location.objectid = objectid; 4099 location.type = BTRFS_ROOT_ITEM_KEY; 4100 location.offset = (u64)-1; 4101 4102 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4103 if (IS_ERR(new_root)) { 4104 ret = PTR_ERR(new_root); 4105 goto out; 4106 } 4107 if (!is_fstree(new_root->root_key.objectid)) { 4108 ret = -ENOENT; 4109 goto out; 4110 } 4111 4112 path = btrfs_alloc_path(); 4113 if (!path) { 4114 ret = -ENOMEM; 4115 goto out; 4116 } 4117 path->leave_spinning = 1; 4118 4119 trans = btrfs_start_transaction(root, 1); 4120 if (IS_ERR(trans)) { 4121 btrfs_free_path(path); 4122 ret = PTR_ERR(trans); 4123 goto out; 4124 } 4125 4126 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4127 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4128 dir_id, "default", 7, 1); 4129 if (IS_ERR_OR_NULL(di)) { 4130 btrfs_free_path(path); 4131 btrfs_end_transaction(trans); 4132 btrfs_err(fs_info, 4133 "Umm, you don't have the default diritem, this isn't going to work"); 4134 ret = -ENOENT; 4135 goto out; 4136 } 4137 4138 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4139 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4140 btrfs_mark_buffer_dirty(path->nodes[0]); 4141 btrfs_free_path(path); 4142 4143 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4144 btrfs_end_transaction(trans); 4145 out: 4146 mnt_drop_write_file(file); 4147 return ret; 4148 } 4149 4150 static void get_block_group_info(struct list_head *groups_list, 4151 struct btrfs_ioctl_space_info *space) 4152 { 4153 struct btrfs_block_group_cache *block_group; 4154 4155 space->total_bytes = 0; 4156 space->used_bytes = 0; 4157 space->flags = 0; 4158 list_for_each_entry(block_group, groups_list, list) { 4159 space->flags = block_group->flags; 4160 space->total_bytes += block_group->key.offset; 4161 space->used_bytes += 4162 btrfs_block_group_used(&block_group->item); 4163 } 4164 } 4165 4166 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4167 void __user *arg) 4168 { 4169 struct btrfs_ioctl_space_args space_args; 4170 struct btrfs_ioctl_space_info space; 4171 struct btrfs_ioctl_space_info *dest; 4172 struct btrfs_ioctl_space_info *dest_orig; 4173 struct btrfs_ioctl_space_info __user *user_dest; 4174 struct btrfs_space_info *info; 4175 static const u64 types[] = { 4176 BTRFS_BLOCK_GROUP_DATA, 4177 BTRFS_BLOCK_GROUP_SYSTEM, 4178 BTRFS_BLOCK_GROUP_METADATA, 4179 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4180 }; 4181 int num_types = 4; 4182 int alloc_size; 4183 int ret = 0; 4184 u64 slot_count = 0; 4185 int i, c; 4186 4187 if (copy_from_user(&space_args, 4188 (struct btrfs_ioctl_space_args __user *)arg, 4189 sizeof(space_args))) 4190 return -EFAULT; 4191 4192 for (i = 0; i < num_types; i++) { 4193 struct btrfs_space_info *tmp; 4194 4195 info = NULL; 4196 rcu_read_lock(); 4197 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4198 list) { 4199 if (tmp->flags == types[i]) { 4200 info = tmp; 4201 break; 4202 } 4203 } 4204 rcu_read_unlock(); 4205 4206 if (!info) 4207 continue; 4208 4209 down_read(&info->groups_sem); 4210 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4211 if (!list_empty(&info->block_groups[c])) 4212 slot_count++; 4213 } 4214 up_read(&info->groups_sem); 4215 } 4216 4217 /* 4218 * Global block reserve, exported as a space_info 4219 */ 4220 slot_count++; 4221 4222 /* space_slots == 0 means they are asking for a count */ 4223 if (space_args.space_slots == 0) { 4224 space_args.total_spaces = slot_count; 4225 goto out; 4226 } 4227 4228 slot_count = min_t(u64, space_args.space_slots, slot_count); 4229 4230 alloc_size = sizeof(*dest) * slot_count; 4231 4232 /* we generally have at most 6 or so space infos, one for each raid 4233 * level. So, a whole page should be more than enough for everyone 4234 */ 4235 if (alloc_size > PAGE_SIZE) 4236 return -ENOMEM; 4237 4238 space_args.total_spaces = 0; 4239 dest = kmalloc(alloc_size, GFP_KERNEL); 4240 if (!dest) 4241 return -ENOMEM; 4242 dest_orig = dest; 4243 4244 /* now we have a buffer to copy into */ 4245 for (i = 0; i < num_types; i++) { 4246 struct btrfs_space_info *tmp; 4247 4248 if (!slot_count) 4249 break; 4250 4251 info = NULL; 4252 rcu_read_lock(); 4253 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4254 list) { 4255 if (tmp->flags == types[i]) { 4256 info = tmp; 4257 break; 4258 } 4259 } 4260 rcu_read_unlock(); 4261 4262 if (!info) 4263 continue; 4264 down_read(&info->groups_sem); 4265 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4266 if (!list_empty(&info->block_groups[c])) { 4267 get_block_group_info(&info->block_groups[c], 4268 &space); 4269 memcpy(dest, &space, sizeof(space)); 4270 dest++; 4271 space_args.total_spaces++; 4272 slot_count--; 4273 } 4274 if (!slot_count) 4275 break; 4276 } 4277 up_read(&info->groups_sem); 4278 } 4279 4280 /* 4281 * Add global block reserve 4282 */ 4283 if (slot_count) { 4284 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4285 4286 spin_lock(&block_rsv->lock); 4287 space.total_bytes = block_rsv->size; 4288 space.used_bytes = block_rsv->size - block_rsv->reserved; 4289 spin_unlock(&block_rsv->lock); 4290 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4291 memcpy(dest, &space, sizeof(space)); 4292 space_args.total_spaces++; 4293 } 4294 4295 user_dest = (struct btrfs_ioctl_space_info __user *) 4296 (arg + sizeof(struct btrfs_ioctl_space_args)); 4297 4298 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4299 ret = -EFAULT; 4300 4301 kfree(dest_orig); 4302 out: 4303 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4304 ret = -EFAULT; 4305 4306 return ret; 4307 } 4308 4309 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4310 void __user *argp) 4311 { 4312 struct btrfs_trans_handle *trans; 4313 u64 transid; 4314 int ret; 4315 4316 trans = btrfs_attach_transaction_barrier(root); 4317 if (IS_ERR(trans)) { 4318 if (PTR_ERR(trans) != -ENOENT) 4319 return PTR_ERR(trans); 4320 4321 /* No running transaction, don't bother */ 4322 transid = root->fs_info->last_trans_committed; 4323 goto out; 4324 } 4325 transid = trans->transid; 4326 ret = btrfs_commit_transaction_async(trans, 0); 4327 if (ret) { 4328 btrfs_end_transaction(trans); 4329 return ret; 4330 } 4331 out: 4332 if (argp) 4333 if (copy_to_user(argp, &transid, sizeof(transid))) 4334 return -EFAULT; 4335 return 0; 4336 } 4337 4338 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4339 void __user *argp) 4340 { 4341 u64 transid; 4342 4343 if (argp) { 4344 if (copy_from_user(&transid, argp, sizeof(transid))) 4345 return -EFAULT; 4346 } else { 4347 transid = 0; /* current trans */ 4348 } 4349 return btrfs_wait_for_commit(fs_info, transid); 4350 } 4351 4352 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4353 { 4354 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4355 struct btrfs_ioctl_scrub_args *sa; 4356 int ret; 4357 4358 if (!capable(CAP_SYS_ADMIN)) 4359 return -EPERM; 4360 4361 sa = memdup_user(arg, sizeof(*sa)); 4362 if (IS_ERR(sa)) 4363 return PTR_ERR(sa); 4364 4365 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4366 ret = mnt_want_write_file(file); 4367 if (ret) 4368 goto out; 4369 } 4370 4371 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4372 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4373 0); 4374 4375 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4376 ret = -EFAULT; 4377 4378 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4379 mnt_drop_write_file(file); 4380 out: 4381 kfree(sa); 4382 return ret; 4383 } 4384 4385 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4386 { 4387 if (!capable(CAP_SYS_ADMIN)) 4388 return -EPERM; 4389 4390 return btrfs_scrub_cancel(fs_info); 4391 } 4392 4393 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4394 void __user *arg) 4395 { 4396 struct btrfs_ioctl_scrub_args *sa; 4397 int ret; 4398 4399 if (!capable(CAP_SYS_ADMIN)) 4400 return -EPERM; 4401 4402 sa = memdup_user(arg, sizeof(*sa)); 4403 if (IS_ERR(sa)) 4404 return PTR_ERR(sa); 4405 4406 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4407 4408 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4409 ret = -EFAULT; 4410 4411 kfree(sa); 4412 return ret; 4413 } 4414 4415 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4416 void __user *arg) 4417 { 4418 struct btrfs_ioctl_get_dev_stats *sa; 4419 int ret; 4420 4421 sa = memdup_user(arg, sizeof(*sa)); 4422 if (IS_ERR(sa)) 4423 return PTR_ERR(sa); 4424 4425 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4426 kfree(sa); 4427 return -EPERM; 4428 } 4429 4430 ret = btrfs_get_dev_stats(fs_info, sa); 4431 4432 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4433 ret = -EFAULT; 4434 4435 kfree(sa); 4436 return ret; 4437 } 4438 4439 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4440 void __user *arg) 4441 { 4442 struct btrfs_ioctl_dev_replace_args *p; 4443 int ret; 4444 4445 if (!capable(CAP_SYS_ADMIN)) 4446 return -EPERM; 4447 4448 p = memdup_user(arg, sizeof(*p)); 4449 if (IS_ERR(p)) 4450 return PTR_ERR(p); 4451 4452 switch (p->cmd) { 4453 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4454 if (sb_rdonly(fs_info->sb)) { 4455 ret = -EROFS; 4456 goto out; 4457 } 4458 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4459 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4460 } else { 4461 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4462 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4463 } 4464 break; 4465 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4466 btrfs_dev_replace_status(fs_info, p); 4467 ret = 0; 4468 break; 4469 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4470 p->result = btrfs_dev_replace_cancel(fs_info); 4471 ret = 0; 4472 break; 4473 default: 4474 ret = -EINVAL; 4475 break; 4476 } 4477 4478 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4479 ret = -EFAULT; 4480 out: 4481 kfree(p); 4482 return ret; 4483 } 4484 4485 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4486 { 4487 int ret = 0; 4488 int i; 4489 u64 rel_ptr; 4490 int size; 4491 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4492 struct inode_fs_paths *ipath = NULL; 4493 struct btrfs_path *path; 4494 4495 if (!capable(CAP_DAC_READ_SEARCH)) 4496 return -EPERM; 4497 4498 path = btrfs_alloc_path(); 4499 if (!path) { 4500 ret = -ENOMEM; 4501 goto out; 4502 } 4503 4504 ipa = memdup_user(arg, sizeof(*ipa)); 4505 if (IS_ERR(ipa)) { 4506 ret = PTR_ERR(ipa); 4507 ipa = NULL; 4508 goto out; 4509 } 4510 4511 size = min_t(u32, ipa->size, 4096); 4512 ipath = init_ipath(size, root, path); 4513 if (IS_ERR(ipath)) { 4514 ret = PTR_ERR(ipath); 4515 ipath = NULL; 4516 goto out; 4517 } 4518 4519 ret = paths_from_inode(ipa->inum, ipath); 4520 if (ret < 0) 4521 goto out; 4522 4523 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4524 rel_ptr = ipath->fspath->val[i] - 4525 (u64)(unsigned long)ipath->fspath->val; 4526 ipath->fspath->val[i] = rel_ptr; 4527 } 4528 4529 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4530 ipath->fspath, size); 4531 if (ret) { 4532 ret = -EFAULT; 4533 goto out; 4534 } 4535 4536 out: 4537 btrfs_free_path(path); 4538 free_ipath(ipath); 4539 kfree(ipa); 4540 4541 return ret; 4542 } 4543 4544 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4545 { 4546 struct btrfs_data_container *inodes = ctx; 4547 const size_t c = 3 * sizeof(u64); 4548 4549 if (inodes->bytes_left >= c) { 4550 inodes->bytes_left -= c; 4551 inodes->val[inodes->elem_cnt] = inum; 4552 inodes->val[inodes->elem_cnt + 1] = offset; 4553 inodes->val[inodes->elem_cnt + 2] = root; 4554 inodes->elem_cnt += 3; 4555 } else { 4556 inodes->bytes_missing += c - inodes->bytes_left; 4557 inodes->bytes_left = 0; 4558 inodes->elem_missed += 3; 4559 } 4560 4561 return 0; 4562 } 4563 4564 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4565 void __user *arg, int version) 4566 { 4567 int ret = 0; 4568 int size; 4569 struct btrfs_ioctl_logical_ino_args *loi; 4570 struct btrfs_data_container *inodes = NULL; 4571 struct btrfs_path *path = NULL; 4572 bool ignore_offset; 4573 4574 if (!capable(CAP_SYS_ADMIN)) 4575 return -EPERM; 4576 4577 loi = memdup_user(arg, sizeof(*loi)); 4578 if (IS_ERR(loi)) 4579 return PTR_ERR(loi); 4580 4581 if (version == 1) { 4582 ignore_offset = false; 4583 size = min_t(u32, loi->size, SZ_64K); 4584 } else { 4585 /* All reserved bits must be 0 for now */ 4586 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4587 ret = -EINVAL; 4588 goto out_loi; 4589 } 4590 /* Only accept flags we have defined so far */ 4591 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4592 ret = -EINVAL; 4593 goto out_loi; 4594 } 4595 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4596 size = min_t(u32, loi->size, SZ_16M); 4597 } 4598 4599 path = btrfs_alloc_path(); 4600 if (!path) { 4601 ret = -ENOMEM; 4602 goto out; 4603 } 4604 4605 inodes = init_data_container(size); 4606 if (IS_ERR(inodes)) { 4607 ret = PTR_ERR(inodes); 4608 inodes = NULL; 4609 goto out; 4610 } 4611 4612 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4613 build_ino_list, inodes, ignore_offset); 4614 if (ret == -EINVAL) 4615 ret = -ENOENT; 4616 if (ret < 0) 4617 goto out; 4618 4619 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4620 size); 4621 if (ret) 4622 ret = -EFAULT; 4623 4624 out: 4625 btrfs_free_path(path); 4626 kvfree(inodes); 4627 out_loi: 4628 kfree(loi); 4629 4630 return ret; 4631 } 4632 4633 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4634 struct btrfs_ioctl_balance_args *bargs) 4635 { 4636 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4637 4638 bargs->flags = bctl->flags; 4639 4640 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4641 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4642 if (atomic_read(&fs_info->balance_pause_req)) 4643 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4644 if (atomic_read(&fs_info->balance_cancel_req)) 4645 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4646 4647 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4648 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4649 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4650 4651 spin_lock(&fs_info->balance_lock); 4652 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4653 spin_unlock(&fs_info->balance_lock); 4654 } 4655 4656 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4657 { 4658 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4659 struct btrfs_fs_info *fs_info = root->fs_info; 4660 struct btrfs_ioctl_balance_args *bargs; 4661 struct btrfs_balance_control *bctl; 4662 bool need_unlock; /* for mut. excl. ops lock */ 4663 int ret; 4664 4665 if (!capable(CAP_SYS_ADMIN)) 4666 return -EPERM; 4667 4668 ret = mnt_want_write_file(file); 4669 if (ret) 4670 return ret; 4671 4672 again: 4673 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4674 mutex_lock(&fs_info->balance_mutex); 4675 need_unlock = true; 4676 goto locked; 4677 } 4678 4679 /* 4680 * mut. excl. ops lock is locked. Three possibilities: 4681 * (1) some other op is running 4682 * (2) balance is running 4683 * (3) balance is paused -- special case (think resume) 4684 */ 4685 mutex_lock(&fs_info->balance_mutex); 4686 if (fs_info->balance_ctl) { 4687 /* this is either (2) or (3) */ 4688 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4689 mutex_unlock(&fs_info->balance_mutex); 4690 /* 4691 * Lock released to allow other waiters to continue, 4692 * we'll reexamine the status again. 4693 */ 4694 mutex_lock(&fs_info->balance_mutex); 4695 4696 if (fs_info->balance_ctl && 4697 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4698 /* this is (3) */ 4699 need_unlock = false; 4700 goto locked; 4701 } 4702 4703 mutex_unlock(&fs_info->balance_mutex); 4704 goto again; 4705 } else { 4706 /* this is (2) */ 4707 mutex_unlock(&fs_info->balance_mutex); 4708 ret = -EINPROGRESS; 4709 goto out; 4710 } 4711 } else { 4712 /* this is (1) */ 4713 mutex_unlock(&fs_info->balance_mutex); 4714 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4715 goto out; 4716 } 4717 4718 locked: 4719 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4720 4721 if (arg) { 4722 bargs = memdup_user(arg, sizeof(*bargs)); 4723 if (IS_ERR(bargs)) { 4724 ret = PTR_ERR(bargs); 4725 goto out_unlock; 4726 } 4727 4728 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4729 if (!fs_info->balance_ctl) { 4730 ret = -ENOTCONN; 4731 goto out_bargs; 4732 } 4733 4734 bctl = fs_info->balance_ctl; 4735 spin_lock(&fs_info->balance_lock); 4736 bctl->flags |= BTRFS_BALANCE_RESUME; 4737 spin_unlock(&fs_info->balance_lock); 4738 4739 goto do_balance; 4740 } 4741 } else { 4742 bargs = NULL; 4743 } 4744 4745 if (fs_info->balance_ctl) { 4746 ret = -EINPROGRESS; 4747 goto out_bargs; 4748 } 4749 4750 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4751 if (!bctl) { 4752 ret = -ENOMEM; 4753 goto out_bargs; 4754 } 4755 4756 if (arg) { 4757 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4758 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4759 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4760 4761 bctl->flags = bargs->flags; 4762 } else { 4763 /* balance everything - no filters */ 4764 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4765 } 4766 4767 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4768 ret = -EINVAL; 4769 goto out_bctl; 4770 } 4771 4772 do_balance: 4773 /* 4774 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4775 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4776 * restriper was paused all the way until unmount, in free_fs_info. 4777 * The flag should be cleared after reset_balance_state. 4778 */ 4779 need_unlock = false; 4780 4781 ret = btrfs_balance(fs_info, bctl, bargs); 4782 bctl = NULL; 4783 4784 if ((ret == 0 || ret == -ECANCELED) && arg) { 4785 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4786 ret = -EFAULT; 4787 } 4788 4789 out_bctl: 4790 kfree(bctl); 4791 out_bargs: 4792 kfree(bargs); 4793 out_unlock: 4794 mutex_unlock(&fs_info->balance_mutex); 4795 if (need_unlock) 4796 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4797 out: 4798 mnt_drop_write_file(file); 4799 return ret; 4800 } 4801 4802 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4803 { 4804 if (!capable(CAP_SYS_ADMIN)) 4805 return -EPERM; 4806 4807 switch (cmd) { 4808 case BTRFS_BALANCE_CTL_PAUSE: 4809 return btrfs_pause_balance(fs_info); 4810 case BTRFS_BALANCE_CTL_CANCEL: 4811 return btrfs_cancel_balance(fs_info); 4812 } 4813 4814 return -EINVAL; 4815 } 4816 4817 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4818 void __user *arg) 4819 { 4820 struct btrfs_ioctl_balance_args *bargs; 4821 int ret = 0; 4822 4823 if (!capable(CAP_SYS_ADMIN)) 4824 return -EPERM; 4825 4826 mutex_lock(&fs_info->balance_mutex); 4827 if (!fs_info->balance_ctl) { 4828 ret = -ENOTCONN; 4829 goto out; 4830 } 4831 4832 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4833 if (!bargs) { 4834 ret = -ENOMEM; 4835 goto out; 4836 } 4837 4838 btrfs_update_ioctl_balance_args(fs_info, bargs); 4839 4840 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4841 ret = -EFAULT; 4842 4843 kfree(bargs); 4844 out: 4845 mutex_unlock(&fs_info->balance_mutex); 4846 return ret; 4847 } 4848 4849 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4850 { 4851 struct inode *inode = file_inode(file); 4852 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4853 struct btrfs_ioctl_quota_ctl_args *sa; 4854 int ret; 4855 4856 if (!capable(CAP_SYS_ADMIN)) 4857 return -EPERM; 4858 4859 ret = mnt_want_write_file(file); 4860 if (ret) 4861 return ret; 4862 4863 sa = memdup_user(arg, sizeof(*sa)); 4864 if (IS_ERR(sa)) { 4865 ret = PTR_ERR(sa); 4866 goto drop_write; 4867 } 4868 4869 down_write(&fs_info->subvol_sem); 4870 4871 switch (sa->cmd) { 4872 case BTRFS_QUOTA_CTL_ENABLE: 4873 ret = btrfs_quota_enable(fs_info); 4874 break; 4875 case BTRFS_QUOTA_CTL_DISABLE: 4876 ret = btrfs_quota_disable(fs_info); 4877 break; 4878 default: 4879 ret = -EINVAL; 4880 break; 4881 } 4882 4883 kfree(sa); 4884 up_write(&fs_info->subvol_sem); 4885 drop_write: 4886 mnt_drop_write_file(file); 4887 return ret; 4888 } 4889 4890 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4891 { 4892 struct inode *inode = file_inode(file); 4893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4894 struct btrfs_root *root = BTRFS_I(inode)->root; 4895 struct btrfs_ioctl_qgroup_assign_args *sa; 4896 struct btrfs_trans_handle *trans; 4897 int ret; 4898 int err; 4899 4900 if (!capable(CAP_SYS_ADMIN)) 4901 return -EPERM; 4902 4903 ret = mnt_want_write_file(file); 4904 if (ret) 4905 return ret; 4906 4907 sa = memdup_user(arg, sizeof(*sa)); 4908 if (IS_ERR(sa)) { 4909 ret = PTR_ERR(sa); 4910 goto drop_write; 4911 } 4912 4913 trans = btrfs_join_transaction(root); 4914 if (IS_ERR(trans)) { 4915 ret = PTR_ERR(trans); 4916 goto out; 4917 } 4918 4919 if (sa->assign) { 4920 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4921 } else { 4922 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4923 } 4924 4925 /* update qgroup status and info */ 4926 err = btrfs_run_qgroups(trans); 4927 if (err < 0) 4928 btrfs_handle_fs_error(fs_info, err, 4929 "failed to update qgroup status and info"); 4930 err = btrfs_end_transaction(trans); 4931 if (err && !ret) 4932 ret = err; 4933 4934 out: 4935 kfree(sa); 4936 drop_write: 4937 mnt_drop_write_file(file); 4938 return ret; 4939 } 4940 4941 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4942 { 4943 struct inode *inode = file_inode(file); 4944 struct btrfs_root *root = BTRFS_I(inode)->root; 4945 struct btrfs_ioctl_qgroup_create_args *sa; 4946 struct btrfs_trans_handle *trans; 4947 int ret; 4948 int err; 4949 4950 if (!capable(CAP_SYS_ADMIN)) 4951 return -EPERM; 4952 4953 ret = mnt_want_write_file(file); 4954 if (ret) 4955 return ret; 4956 4957 sa = memdup_user(arg, sizeof(*sa)); 4958 if (IS_ERR(sa)) { 4959 ret = PTR_ERR(sa); 4960 goto drop_write; 4961 } 4962 4963 if (!sa->qgroupid) { 4964 ret = -EINVAL; 4965 goto out; 4966 } 4967 4968 trans = btrfs_join_transaction(root); 4969 if (IS_ERR(trans)) { 4970 ret = PTR_ERR(trans); 4971 goto out; 4972 } 4973 4974 if (sa->create) { 4975 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4976 } else { 4977 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4978 } 4979 4980 err = btrfs_end_transaction(trans); 4981 if (err && !ret) 4982 ret = err; 4983 4984 out: 4985 kfree(sa); 4986 drop_write: 4987 mnt_drop_write_file(file); 4988 return ret; 4989 } 4990 4991 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4992 { 4993 struct inode *inode = file_inode(file); 4994 struct btrfs_root *root = BTRFS_I(inode)->root; 4995 struct btrfs_ioctl_qgroup_limit_args *sa; 4996 struct btrfs_trans_handle *trans; 4997 int ret; 4998 int err; 4999 u64 qgroupid; 5000 5001 if (!capable(CAP_SYS_ADMIN)) 5002 return -EPERM; 5003 5004 ret = mnt_want_write_file(file); 5005 if (ret) 5006 return ret; 5007 5008 sa = memdup_user(arg, sizeof(*sa)); 5009 if (IS_ERR(sa)) { 5010 ret = PTR_ERR(sa); 5011 goto drop_write; 5012 } 5013 5014 trans = btrfs_join_transaction(root); 5015 if (IS_ERR(trans)) { 5016 ret = PTR_ERR(trans); 5017 goto out; 5018 } 5019 5020 qgroupid = sa->qgroupid; 5021 if (!qgroupid) { 5022 /* take the current subvol as qgroup */ 5023 qgroupid = root->root_key.objectid; 5024 } 5025 5026 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 5027 5028 err = btrfs_end_transaction(trans); 5029 if (err && !ret) 5030 ret = err; 5031 5032 out: 5033 kfree(sa); 5034 drop_write: 5035 mnt_drop_write_file(file); 5036 return ret; 5037 } 5038 5039 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5040 { 5041 struct inode *inode = file_inode(file); 5042 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5043 struct btrfs_ioctl_quota_rescan_args *qsa; 5044 int ret; 5045 5046 if (!capable(CAP_SYS_ADMIN)) 5047 return -EPERM; 5048 5049 ret = mnt_want_write_file(file); 5050 if (ret) 5051 return ret; 5052 5053 qsa = memdup_user(arg, sizeof(*qsa)); 5054 if (IS_ERR(qsa)) { 5055 ret = PTR_ERR(qsa); 5056 goto drop_write; 5057 } 5058 5059 if (qsa->flags) { 5060 ret = -EINVAL; 5061 goto out; 5062 } 5063 5064 ret = btrfs_qgroup_rescan(fs_info); 5065 5066 out: 5067 kfree(qsa); 5068 drop_write: 5069 mnt_drop_write_file(file); 5070 return ret; 5071 } 5072 5073 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5074 { 5075 struct inode *inode = file_inode(file); 5076 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5077 struct btrfs_ioctl_quota_rescan_args *qsa; 5078 int ret = 0; 5079 5080 if (!capable(CAP_SYS_ADMIN)) 5081 return -EPERM; 5082 5083 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5084 if (!qsa) 5085 return -ENOMEM; 5086 5087 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5088 qsa->flags = 1; 5089 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5090 } 5091 5092 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5093 ret = -EFAULT; 5094 5095 kfree(qsa); 5096 return ret; 5097 } 5098 5099 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5100 { 5101 struct inode *inode = file_inode(file); 5102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5103 5104 if (!capable(CAP_SYS_ADMIN)) 5105 return -EPERM; 5106 5107 return btrfs_qgroup_wait_for_completion(fs_info, true); 5108 } 5109 5110 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5111 struct btrfs_ioctl_received_subvol_args *sa) 5112 { 5113 struct inode *inode = file_inode(file); 5114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5115 struct btrfs_root *root = BTRFS_I(inode)->root; 5116 struct btrfs_root_item *root_item = &root->root_item; 5117 struct btrfs_trans_handle *trans; 5118 struct timespec64 ct = current_time(inode); 5119 int ret = 0; 5120 int received_uuid_changed; 5121 5122 if (!inode_owner_or_capable(inode)) 5123 return -EPERM; 5124 5125 ret = mnt_want_write_file(file); 5126 if (ret < 0) 5127 return ret; 5128 5129 down_write(&fs_info->subvol_sem); 5130 5131 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5132 ret = -EINVAL; 5133 goto out; 5134 } 5135 5136 if (btrfs_root_readonly(root)) { 5137 ret = -EROFS; 5138 goto out; 5139 } 5140 5141 /* 5142 * 1 - root item 5143 * 2 - uuid items (received uuid + subvol uuid) 5144 */ 5145 trans = btrfs_start_transaction(root, 3); 5146 if (IS_ERR(trans)) { 5147 ret = PTR_ERR(trans); 5148 trans = NULL; 5149 goto out; 5150 } 5151 5152 sa->rtransid = trans->transid; 5153 sa->rtime.sec = ct.tv_sec; 5154 sa->rtime.nsec = ct.tv_nsec; 5155 5156 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5157 BTRFS_UUID_SIZE); 5158 if (received_uuid_changed && 5159 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5160 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5161 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5162 root->root_key.objectid); 5163 if (ret && ret != -ENOENT) { 5164 btrfs_abort_transaction(trans, ret); 5165 btrfs_end_transaction(trans); 5166 goto out; 5167 } 5168 } 5169 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5170 btrfs_set_root_stransid(root_item, sa->stransid); 5171 btrfs_set_root_rtransid(root_item, sa->rtransid); 5172 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5173 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5174 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5175 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5176 5177 ret = btrfs_update_root(trans, fs_info->tree_root, 5178 &root->root_key, &root->root_item); 5179 if (ret < 0) { 5180 btrfs_end_transaction(trans); 5181 goto out; 5182 } 5183 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5184 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5185 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5186 root->root_key.objectid); 5187 if (ret < 0 && ret != -EEXIST) { 5188 btrfs_abort_transaction(trans, ret); 5189 btrfs_end_transaction(trans); 5190 goto out; 5191 } 5192 } 5193 ret = btrfs_commit_transaction(trans); 5194 out: 5195 up_write(&fs_info->subvol_sem); 5196 mnt_drop_write_file(file); 5197 return ret; 5198 } 5199 5200 #ifdef CONFIG_64BIT 5201 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5202 void __user *arg) 5203 { 5204 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5205 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5206 int ret = 0; 5207 5208 args32 = memdup_user(arg, sizeof(*args32)); 5209 if (IS_ERR(args32)) 5210 return PTR_ERR(args32); 5211 5212 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5213 if (!args64) { 5214 ret = -ENOMEM; 5215 goto out; 5216 } 5217 5218 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5219 args64->stransid = args32->stransid; 5220 args64->rtransid = args32->rtransid; 5221 args64->stime.sec = args32->stime.sec; 5222 args64->stime.nsec = args32->stime.nsec; 5223 args64->rtime.sec = args32->rtime.sec; 5224 args64->rtime.nsec = args32->rtime.nsec; 5225 args64->flags = args32->flags; 5226 5227 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5228 if (ret) 5229 goto out; 5230 5231 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5232 args32->stransid = args64->stransid; 5233 args32->rtransid = args64->rtransid; 5234 args32->stime.sec = args64->stime.sec; 5235 args32->stime.nsec = args64->stime.nsec; 5236 args32->rtime.sec = args64->rtime.sec; 5237 args32->rtime.nsec = args64->rtime.nsec; 5238 args32->flags = args64->flags; 5239 5240 ret = copy_to_user(arg, args32, sizeof(*args32)); 5241 if (ret) 5242 ret = -EFAULT; 5243 5244 out: 5245 kfree(args32); 5246 kfree(args64); 5247 return ret; 5248 } 5249 #endif 5250 5251 static long btrfs_ioctl_set_received_subvol(struct file *file, 5252 void __user *arg) 5253 { 5254 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5255 int ret = 0; 5256 5257 sa = memdup_user(arg, sizeof(*sa)); 5258 if (IS_ERR(sa)) 5259 return PTR_ERR(sa); 5260 5261 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5262 5263 if (ret) 5264 goto out; 5265 5266 ret = copy_to_user(arg, sa, sizeof(*sa)); 5267 if (ret) 5268 ret = -EFAULT; 5269 5270 out: 5271 kfree(sa); 5272 return ret; 5273 } 5274 5275 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5276 { 5277 struct inode *inode = file_inode(file); 5278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5279 size_t len; 5280 int ret; 5281 char label[BTRFS_LABEL_SIZE]; 5282 5283 spin_lock(&fs_info->super_lock); 5284 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5285 spin_unlock(&fs_info->super_lock); 5286 5287 len = strnlen(label, BTRFS_LABEL_SIZE); 5288 5289 if (len == BTRFS_LABEL_SIZE) { 5290 btrfs_warn(fs_info, 5291 "label is too long, return the first %zu bytes", 5292 --len); 5293 } 5294 5295 ret = copy_to_user(arg, label, len); 5296 5297 return ret ? -EFAULT : 0; 5298 } 5299 5300 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5301 { 5302 struct inode *inode = file_inode(file); 5303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5304 struct btrfs_root *root = BTRFS_I(inode)->root; 5305 struct btrfs_super_block *super_block = fs_info->super_copy; 5306 struct btrfs_trans_handle *trans; 5307 char label[BTRFS_LABEL_SIZE]; 5308 int ret; 5309 5310 if (!capable(CAP_SYS_ADMIN)) 5311 return -EPERM; 5312 5313 if (copy_from_user(label, arg, sizeof(label))) 5314 return -EFAULT; 5315 5316 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5317 btrfs_err(fs_info, 5318 "unable to set label with more than %d bytes", 5319 BTRFS_LABEL_SIZE - 1); 5320 return -EINVAL; 5321 } 5322 5323 ret = mnt_want_write_file(file); 5324 if (ret) 5325 return ret; 5326 5327 trans = btrfs_start_transaction(root, 0); 5328 if (IS_ERR(trans)) { 5329 ret = PTR_ERR(trans); 5330 goto out_unlock; 5331 } 5332 5333 spin_lock(&fs_info->super_lock); 5334 strcpy(super_block->label, label); 5335 spin_unlock(&fs_info->super_lock); 5336 ret = btrfs_commit_transaction(trans); 5337 5338 out_unlock: 5339 mnt_drop_write_file(file); 5340 return ret; 5341 } 5342 5343 #define INIT_FEATURE_FLAGS(suffix) \ 5344 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5345 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5346 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5347 5348 int btrfs_ioctl_get_supported_features(void __user *arg) 5349 { 5350 static const struct btrfs_ioctl_feature_flags features[3] = { 5351 INIT_FEATURE_FLAGS(SUPP), 5352 INIT_FEATURE_FLAGS(SAFE_SET), 5353 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5354 }; 5355 5356 if (copy_to_user(arg, &features, sizeof(features))) 5357 return -EFAULT; 5358 5359 return 0; 5360 } 5361 5362 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5363 { 5364 struct inode *inode = file_inode(file); 5365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5366 struct btrfs_super_block *super_block = fs_info->super_copy; 5367 struct btrfs_ioctl_feature_flags features; 5368 5369 features.compat_flags = btrfs_super_compat_flags(super_block); 5370 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5371 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5372 5373 if (copy_to_user(arg, &features, sizeof(features))) 5374 return -EFAULT; 5375 5376 return 0; 5377 } 5378 5379 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5380 enum btrfs_feature_set set, 5381 u64 change_mask, u64 flags, u64 supported_flags, 5382 u64 safe_set, u64 safe_clear) 5383 { 5384 const char *type = btrfs_feature_set_names[set]; 5385 char *names; 5386 u64 disallowed, unsupported; 5387 u64 set_mask = flags & change_mask; 5388 u64 clear_mask = ~flags & change_mask; 5389 5390 unsupported = set_mask & ~supported_flags; 5391 if (unsupported) { 5392 names = btrfs_printable_features(set, unsupported); 5393 if (names) { 5394 btrfs_warn(fs_info, 5395 "this kernel does not support the %s feature bit%s", 5396 names, strchr(names, ',') ? "s" : ""); 5397 kfree(names); 5398 } else 5399 btrfs_warn(fs_info, 5400 "this kernel does not support %s bits 0x%llx", 5401 type, unsupported); 5402 return -EOPNOTSUPP; 5403 } 5404 5405 disallowed = set_mask & ~safe_set; 5406 if (disallowed) { 5407 names = btrfs_printable_features(set, disallowed); 5408 if (names) { 5409 btrfs_warn(fs_info, 5410 "can't set the %s feature bit%s while mounted", 5411 names, strchr(names, ',') ? "s" : ""); 5412 kfree(names); 5413 } else 5414 btrfs_warn(fs_info, 5415 "can't set %s bits 0x%llx while mounted", 5416 type, disallowed); 5417 return -EPERM; 5418 } 5419 5420 disallowed = clear_mask & ~safe_clear; 5421 if (disallowed) { 5422 names = btrfs_printable_features(set, disallowed); 5423 if (names) { 5424 btrfs_warn(fs_info, 5425 "can't clear the %s feature bit%s while mounted", 5426 names, strchr(names, ',') ? "s" : ""); 5427 kfree(names); 5428 } else 5429 btrfs_warn(fs_info, 5430 "can't clear %s bits 0x%llx while mounted", 5431 type, disallowed); 5432 return -EPERM; 5433 } 5434 5435 return 0; 5436 } 5437 5438 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5439 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5440 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5441 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5442 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5443 5444 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5445 { 5446 struct inode *inode = file_inode(file); 5447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5448 struct btrfs_root *root = BTRFS_I(inode)->root; 5449 struct btrfs_super_block *super_block = fs_info->super_copy; 5450 struct btrfs_ioctl_feature_flags flags[2]; 5451 struct btrfs_trans_handle *trans; 5452 u64 newflags; 5453 int ret; 5454 5455 if (!capable(CAP_SYS_ADMIN)) 5456 return -EPERM; 5457 5458 if (copy_from_user(flags, arg, sizeof(flags))) 5459 return -EFAULT; 5460 5461 /* Nothing to do */ 5462 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5463 !flags[0].incompat_flags) 5464 return 0; 5465 5466 ret = check_feature(fs_info, flags[0].compat_flags, 5467 flags[1].compat_flags, COMPAT); 5468 if (ret) 5469 return ret; 5470 5471 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5472 flags[1].compat_ro_flags, COMPAT_RO); 5473 if (ret) 5474 return ret; 5475 5476 ret = check_feature(fs_info, flags[0].incompat_flags, 5477 flags[1].incompat_flags, INCOMPAT); 5478 if (ret) 5479 return ret; 5480 5481 ret = mnt_want_write_file(file); 5482 if (ret) 5483 return ret; 5484 5485 trans = btrfs_start_transaction(root, 0); 5486 if (IS_ERR(trans)) { 5487 ret = PTR_ERR(trans); 5488 goto out_drop_write; 5489 } 5490 5491 spin_lock(&fs_info->super_lock); 5492 newflags = btrfs_super_compat_flags(super_block); 5493 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5494 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5495 btrfs_set_super_compat_flags(super_block, newflags); 5496 5497 newflags = btrfs_super_compat_ro_flags(super_block); 5498 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5499 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5500 btrfs_set_super_compat_ro_flags(super_block, newflags); 5501 5502 newflags = btrfs_super_incompat_flags(super_block); 5503 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5504 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5505 btrfs_set_super_incompat_flags(super_block, newflags); 5506 spin_unlock(&fs_info->super_lock); 5507 5508 ret = btrfs_commit_transaction(trans); 5509 out_drop_write: 5510 mnt_drop_write_file(file); 5511 5512 return ret; 5513 } 5514 5515 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5516 { 5517 struct btrfs_ioctl_send_args *arg; 5518 int ret; 5519 5520 if (compat) { 5521 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5522 struct btrfs_ioctl_send_args_32 args32; 5523 5524 ret = copy_from_user(&args32, argp, sizeof(args32)); 5525 if (ret) 5526 return -EFAULT; 5527 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5528 if (!arg) 5529 return -ENOMEM; 5530 arg->send_fd = args32.send_fd; 5531 arg->clone_sources_count = args32.clone_sources_count; 5532 arg->clone_sources = compat_ptr(args32.clone_sources); 5533 arg->parent_root = args32.parent_root; 5534 arg->flags = args32.flags; 5535 memcpy(arg->reserved, args32.reserved, 5536 sizeof(args32.reserved)); 5537 #else 5538 return -ENOTTY; 5539 #endif 5540 } else { 5541 arg = memdup_user(argp, sizeof(*arg)); 5542 if (IS_ERR(arg)) 5543 return PTR_ERR(arg); 5544 } 5545 ret = btrfs_ioctl_send(file, arg); 5546 kfree(arg); 5547 return ret; 5548 } 5549 5550 long btrfs_ioctl(struct file *file, unsigned int 5551 cmd, unsigned long arg) 5552 { 5553 struct inode *inode = file_inode(file); 5554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5555 struct btrfs_root *root = BTRFS_I(inode)->root; 5556 void __user *argp = (void __user *)arg; 5557 5558 switch (cmd) { 5559 case FS_IOC_GETFLAGS: 5560 return btrfs_ioctl_getflags(file, argp); 5561 case FS_IOC_SETFLAGS: 5562 return btrfs_ioctl_setflags(file, argp); 5563 case FS_IOC_GETVERSION: 5564 return btrfs_ioctl_getversion(file, argp); 5565 case FITRIM: 5566 return btrfs_ioctl_fitrim(file, argp); 5567 case BTRFS_IOC_SNAP_CREATE: 5568 return btrfs_ioctl_snap_create(file, argp, 0); 5569 case BTRFS_IOC_SNAP_CREATE_V2: 5570 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5571 case BTRFS_IOC_SUBVOL_CREATE: 5572 return btrfs_ioctl_snap_create(file, argp, 1); 5573 case BTRFS_IOC_SUBVOL_CREATE_V2: 5574 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5575 case BTRFS_IOC_SNAP_DESTROY: 5576 return btrfs_ioctl_snap_destroy(file, argp); 5577 case BTRFS_IOC_SUBVOL_GETFLAGS: 5578 return btrfs_ioctl_subvol_getflags(file, argp); 5579 case BTRFS_IOC_SUBVOL_SETFLAGS: 5580 return btrfs_ioctl_subvol_setflags(file, argp); 5581 case BTRFS_IOC_DEFAULT_SUBVOL: 5582 return btrfs_ioctl_default_subvol(file, argp); 5583 case BTRFS_IOC_DEFRAG: 5584 return btrfs_ioctl_defrag(file, NULL); 5585 case BTRFS_IOC_DEFRAG_RANGE: 5586 return btrfs_ioctl_defrag(file, argp); 5587 case BTRFS_IOC_RESIZE: 5588 return btrfs_ioctl_resize(file, argp); 5589 case BTRFS_IOC_ADD_DEV: 5590 return btrfs_ioctl_add_dev(fs_info, argp); 5591 case BTRFS_IOC_RM_DEV: 5592 return btrfs_ioctl_rm_dev(file, argp); 5593 case BTRFS_IOC_RM_DEV_V2: 5594 return btrfs_ioctl_rm_dev_v2(file, argp); 5595 case BTRFS_IOC_FS_INFO: 5596 return btrfs_ioctl_fs_info(fs_info, argp); 5597 case BTRFS_IOC_DEV_INFO: 5598 return btrfs_ioctl_dev_info(fs_info, argp); 5599 case BTRFS_IOC_BALANCE: 5600 return btrfs_ioctl_balance(file, NULL); 5601 case BTRFS_IOC_TREE_SEARCH: 5602 return btrfs_ioctl_tree_search(file, argp); 5603 case BTRFS_IOC_TREE_SEARCH_V2: 5604 return btrfs_ioctl_tree_search_v2(file, argp); 5605 case BTRFS_IOC_INO_LOOKUP: 5606 return btrfs_ioctl_ino_lookup(file, argp); 5607 case BTRFS_IOC_INO_PATHS: 5608 return btrfs_ioctl_ino_to_path(root, argp); 5609 case BTRFS_IOC_LOGICAL_INO: 5610 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5611 case BTRFS_IOC_LOGICAL_INO_V2: 5612 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5613 case BTRFS_IOC_SPACE_INFO: 5614 return btrfs_ioctl_space_info(fs_info, argp); 5615 case BTRFS_IOC_SYNC: { 5616 int ret; 5617 5618 ret = btrfs_start_delalloc_roots(fs_info, -1); 5619 if (ret) 5620 return ret; 5621 ret = btrfs_sync_fs(inode->i_sb, 1); 5622 /* 5623 * The transaction thread may want to do more work, 5624 * namely it pokes the cleaner kthread that will start 5625 * processing uncleaned subvols. 5626 */ 5627 wake_up_process(fs_info->transaction_kthread); 5628 return ret; 5629 } 5630 case BTRFS_IOC_START_SYNC: 5631 return btrfs_ioctl_start_sync(root, argp); 5632 case BTRFS_IOC_WAIT_SYNC: 5633 return btrfs_ioctl_wait_sync(fs_info, argp); 5634 case BTRFS_IOC_SCRUB: 5635 return btrfs_ioctl_scrub(file, argp); 5636 case BTRFS_IOC_SCRUB_CANCEL: 5637 return btrfs_ioctl_scrub_cancel(fs_info); 5638 case BTRFS_IOC_SCRUB_PROGRESS: 5639 return btrfs_ioctl_scrub_progress(fs_info, argp); 5640 case BTRFS_IOC_BALANCE_V2: 5641 return btrfs_ioctl_balance(file, argp); 5642 case BTRFS_IOC_BALANCE_CTL: 5643 return btrfs_ioctl_balance_ctl(fs_info, arg); 5644 case BTRFS_IOC_BALANCE_PROGRESS: 5645 return btrfs_ioctl_balance_progress(fs_info, argp); 5646 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5647 return btrfs_ioctl_set_received_subvol(file, argp); 5648 #ifdef CONFIG_64BIT 5649 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5650 return btrfs_ioctl_set_received_subvol_32(file, argp); 5651 #endif 5652 case BTRFS_IOC_SEND: 5653 return _btrfs_ioctl_send(file, argp, false); 5654 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5655 case BTRFS_IOC_SEND_32: 5656 return _btrfs_ioctl_send(file, argp, true); 5657 #endif 5658 case BTRFS_IOC_GET_DEV_STATS: 5659 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5660 case BTRFS_IOC_QUOTA_CTL: 5661 return btrfs_ioctl_quota_ctl(file, argp); 5662 case BTRFS_IOC_QGROUP_ASSIGN: 5663 return btrfs_ioctl_qgroup_assign(file, argp); 5664 case BTRFS_IOC_QGROUP_CREATE: 5665 return btrfs_ioctl_qgroup_create(file, argp); 5666 case BTRFS_IOC_QGROUP_LIMIT: 5667 return btrfs_ioctl_qgroup_limit(file, argp); 5668 case BTRFS_IOC_QUOTA_RESCAN: 5669 return btrfs_ioctl_quota_rescan(file, argp); 5670 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5671 return btrfs_ioctl_quota_rescan_status(file, argp); 5672 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5673 return btrfs_ioctl_quota_rescan_wait(file, argp); 5674 case BTRFS_IOC_DEV_REPLACE: 5675 return btrfs_ioctl_dev_replace(fs_info, argp); 5676 case BTRFS_IOC_GET_FSLABEL: 5677 return btrfs_ioctl_get_fslabel(file, argp); 5678 case BTRFS_IOC_SET_FSLABEL: 5679 return btrfs_ioctl_set_fslabel(file, argp); 5680 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5681 return btrfs_ioctl_get_supported_features(argp); 5682 case BTRFS_IOC_GET_FEATURES: 5683 return btrfs_ioctl_get_features(file, argp); 5684 case BTRFS_IOC_SET_FEATURES: 5685 return btrfs_ioctl_set_features(file, argp); 5686 case FS_IOC_FSGETXATTR: 5687 return btrfs_ioctl_fsgetxattr(file, argp); 5688 case FS_IOC_FSSETXATTR: 5689 return btrfs_ioctl_fssetxattr(file, argp); 5690 case BTRFS_IOC_GET_SUBVOL_INFO: 5691 return btrfs_ioctl_get_subvol_info(file, argp); 5692 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5693 return btrfs_ioctl_get_subvol_rootref(file, argp); 5694 case BTRFS_IOC_INO_LOOKUP_USER: 5695 return btrfs_ioctl_ino_lookup_user(file, argp); 5696 } 5697 5698 return -ENOTTY; 5699 } 5700 5701 #ifdef CONFIG_COMPAT 5702 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5703 { 5704 /* 5705 * These all access 32-bit values anyway so no further 5706 * handling is necessary. 5707 */ 5708 switch (cmd) { 5709 case FS_IOC32_GETFLAGS: 5710 cmd = FS_IOC_GETFLAGS; 5711 break; 5712 case FS_IOC32_SETFLAGS: 5713 cmd = FS_IOC_SETFLAGS; 5714 break; 5715 case FS_IOC32_GETVERSION: 5716 cmd = FS_IOC_GETVERSION; 5717 break; 5718 } 5719 5720 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5721 } 5722 #endif 5723