xref: /linux/fs/btrfs/ioctl.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include "compat.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "volumes.h"
51 #include "locking.h"
52 
53 /* Mask out flags that are inappropriate for the given type of inode. */
54 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
55 {
56 	if (S_ISDIR(mode))
57 		return flags;
58 	else if (S_ISREG(mode))
59 		return flags & ~FS_DIRSYNC_FL;
60 	else
61 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
62 }
63 
64 /*
65  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
66  */
67 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
68 {
69 	unsigned int iflags = 0;
70 
71 	if (flags & BTRFS_INODE_SYNC)
72 		iflags |= FS_SYNC_FL;
73 	if (flags & BTRFS_INODE_IMMUTABLE)
74 		iflags |= FS_IMMUTABLE_FL;
75 	if (flags & BTRFS_INODE_APPEND)
76 		iflags |= FS_APPEND_FL;
77 	if (flags & BTRFS_INODE_NODUMP)
78 		iflags |= FS_NODUMP_FL;
79 	if (flags & BTRFS_INODE_NOATIME)
80 		iflags |= FS_NOATIME_FL;
81 	if (flags & BTRFS_INODE_DIRSYNC)
82 		iflags |= FS_DIRSYNC_FL;
83 
84 	return iflags;
85 }
86 
87 /*
88  * Update inode->i_flags based on the btrfs internal flags.
89  */
90 void btrfs_update_iflags(struct inode *inode)
91 {
92 	struct btrfs_inode *ip = BTRFS_I(inode);
93 
94 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
95 
96 	if (ip->flags & BTRFS_INODE_SYNC)
97 		inode->i_flags |= S_SYNC;
98 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
99 		inode->i_flags |= S_IMMUTABLE;
100 	if (ip->flags & BTRFS_INODE_APPEND)
101 		inode->i_flags |= S_APPEND;
102 	if (ip->flags & BTRFS_INODE_NOATIME)
103 		inode->i_flags |= S_NOATIME;
104 	if (ip->flags & BTRFS_INODE_DIRSYNC)
105 		inode->i_flags |= S_DIRSYNC;
106 }
107 
108 /*
109  * Inherit flags from the parent inode.
110  *
111  * Unlike extN we don't have any flags we don't want to inherit currently.
112  */
113 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
114 {
115 	unsigned int flags;
116 
117 	if (!dir)
118 		return;
119 
120 	flags = BTRFS_I(dir)->flags;
121 
122 	if (S_ISREG(inode->i_mode))
123 		flags &= ~BTRFS_INODE_DIRSYNC;
124 	else if (!S_ISDIR(inode->i_mode))
125 		flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
126 
127 	BTRFS_I(inode)->flags = flags;
128 	btrfs_update_iflags(inode);
129 }
130 
131 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
132 {
133 	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
134 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
135 
136 	if (copy_to_user(arg, &flags, sizeof(flags)))
137 		return -EFAULT;
138 	return 0;
139 }
140 
141 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
142 {
143 	struct inode *inode = file->f_path.dentry->d_inode;
144 	struct btrfs_inode *ip = BTRFS_I(inode);
145 	struct btrfs_root *root = ip->root;
146 	struct btrfs_trans_handle *trans;
147 	unsigned int flags, oldflags;
148 	int ret;
149 
150 	if (copy_from_user(&flags, arg, sizeof(flags)))
151 		return -EFAULT;
152 
153 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
154 		      FS_NOATIME_FL | FS_NODUMP_FL | \
155 		      FS_SYNC_FL | FS_DIRSYNC_FL))
156 		return -EOPNOTSUPP;
157 
158 	if (!is_owner_or_cap(inode))
159 		return -EACCES;
160 
161 	mutex_lock(&inode->i_mutex);
162 
163 	flags = btrfs_mask_flags(inode->i_mode, flags);
164 	oldflags = btrfs_flags_to_ioctl(ip->flags);
165 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
166 		if (!capable(CAP_LINUX_IMMUTABLE)) {
167 			ret = -EPERM;
168 			goto out_unlock;
169 		}
170 	}
171 
172 	ret = mnt_want_write(file->f_path.mnt);
173 	if (ret)
174 		goto out_unlock;
175 
176 	if (flags & FS_SYNC_FL)
177 		ip->flags |= BTRFS_INODE_SYNC;
178 	else
179 		ip->flags &= ~BTRFS_INODE_SYNC;
180 	if (flags & FS_IMMUTABLE_FL)
181 		ip->flags |= BTRFS_INODE_IMMUTABLE;
182 	else
183 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
184 	if (flags & FS_APPEND_FL)
185 		ip->flags |= BTRFS_INODE_APPEND;
186 	else
187 		ip->flags &= ~BTRFS_INODE_APPEND;
188 	if (flags & FS_NODUMP_FL)
189 		ip->flags |= BTRFS_INODE_NODUMP;
190 	else
191 		ip->flags &= ~BTRFS_INODE_NODUMP;
192 	if (flags & FS_NOATIME_FL)
193 		ip->flags |= BTRFS_INODE_NOATIME;
194 	else
195 		ip->flags &= ~BTRFS_INODE_NOATIME;
196 	if (flags & FS_DIRSYNC_FL)
197 		ip->flags |= BTRFS_INODE_DIRSYNC;
198 	else
199 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
200 
201 
202 	trans = btrfs_join_transaction(root, 1);
203 	BUG_ON(!trans);
204 
205 	ret = btrfs_update_inode(trans, root, inode);
206 	BUG_ON(ret);
207 
208 	btrfs_update_iflags(inode);
209 	inode->i_ctime = CURRENT_TIME;
210 	btrfs_end_transaction(trans, root);
211 
212 	mnt_drop_write(file->f_path.mnt);
213  out_unlock:
214 	mutex_unlock(&inode->i_mutex);
215 	return 0;
216 }
217 
218 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
219 {
220 	struct inode *inode = file->f_path.dentry->d_inode;
221 
222 	return put_user(inode->i_generation, arg);
223 }
224 
225 static noinline int create_subvol(struct btrfs_root *root,
226 				  struct dentry *dentry,
227 				  char *name, int namelen)
228 {
229 	struct btrfs_trans_handle *trans;
230 	struct btrfs_key key;
231 	struct btrfs_root_item root_item;
232 	struct btrfs_inode_item *inode_item;
233 	struct extent_buffer *leaf;
234 	struct btrfs_root *new_root;
235 	struct inode *dir = dentry->d_parent->d_inode;
236 	int ret;
237 	int err;
238 	u64 objectid;
239 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
240 	u64 index = 0;
241 
242 	/*
243 	 * 1 - inode item
244 	 * 2 - refs
245 	 * 1 - root item
246 	 * 2 - dir items
247 	 */
248 	ret = btrfs_reserve_metadata_space(root, 6);
249 	if (ret)
250 		return ret;
251 
252 	trans = btrfs_start_transaction(root, 1);
253 	BUG_ON(!trans);
254 
255 	ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
256 				       0, &objectid);
257 	if (ret)
258 		goto fail;
259 
260 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
261 				      0, objectid, NULL, 0, 0, 0);
262 	if (IS_ERR(leaf)) {
263 		ret = PTR_ERR(leaf);
264 		goto fail;
265 	}
266 
267 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
268 	btrfs_set_header_bytenr(leaf, leaf->start);
269 	btrfs_set_header_generation(leaf, trans->transid);
270 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
271 	btrfs_set_header_owner(leaf, objectid);
272 
273 	write_extent_buffer(leaf, root->fs_info->fsid,
274 			    (unsigned long)btrfs_header_fsid(leaf),
275 			    BTRFS_FSID_SIZE);
276 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
277 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
278 			    BTRFS_UUID_SIZE);
279 	btrfs_mark_buffer_dirty(leaf);
280 
281 	inode_item = &root_item.inode;
282 	memset(inode_item, 0, sizeof(*inode_item));
283 	inode_item->generation = cpu_to_le64(1);
284 	inode_item->size = cpu_to_le64(3);
285 	inode_item->nlink = cpu_to_le32(1);
286 	inode_item->nbytes = cpu_to_le64(root->leafsize);
287 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
288 
289 	btrfs_set_root_bytenr(&root_item, leaf->start);
290 	btrfs_set_root_generation(&root_item, trans->transid);
291 	btrfs_set_root_level(&root_item, 0);
292 	btrfs_set_root_refs(&root_item, 1);
293 	btrfs_set_root_used(&root_item, leaf->len);
294 	btrfs_set_root_last_snapshot(&root_item, 0);
295 
296 	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
297 	root_item.drop_level = 0;
298 
299 	btrfs_tree_unlock(leaf);
300 	free_extent_buffer(leaf);
301 	leaf = NULL;
302 
303 	btrfs_set_root_dirid(&root_item, new_dirid);
304 
305 	key.objectid = objectid;
306 	key.offset = 0;
307 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
308 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
309 				&root_item);
310 	if (ret)
311 		goto fail;
312 
313 	key.offset = (u64)-1;
314 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
315 	BUG_ON(IS_ERR(new_root));
316 
317 	btrfs_record_root_in_trans(trans, new_root);
318 
319 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid,
320 				       BTRFS_I(dir)->block_group);
321 	/*
322 	 * insert the directory item
323 	 */
324 	ret = btrfs_set_inode_index(dir, &index);
325 	BUG_ON(ret);
326 
327 	ret = btrfs_insert_dir_item(trans, root,
328 				    name, namelen, dir->i_ino, &key,
329 				    BTRFS_FT_DIR, index);
330 	if (ret)
331 		goto fail;
332 
333 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
334 	ret = btrfs_update_inode(trans, root, dir);
335 	BUG_ON(ret);
336 
337 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
338 				 objectid, root->root_key.objectid,
339 				 dir->i_ino, index, name, namelen);
340 
341 	BUG_ON(ret);
342 
343 	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
344 fail:
345 	err = btrfs_commit_transaction(trans, root);
346 	if (err && !ret)
347 		ret = err;
348 
349 	btrfs_unreserve_metadata_space(root, 6);
350 	return ret;
351 }
352 
353 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
354 			   char *name, int namelen)
355 {
356 	struct inode *inode;
357 	struct btrfs_pending_snapshot *pending_snapshot;
358 	struct btrfs_trans_handle *trans;
359 	int ret;
360 
361 	if (!root->ref_cows)
362 		return -EINVAL;
363 
364 	/*
365 	 * 1 - inode item
366 	 * 2 - refs
367 	 * 1 - root item
368 	 * 2 - dir items
369 	 */
370 	ret = btrfs_reserve_metadata_space(root, 6);
371 	if (ret)
372 		goto fail;
373 
374 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
375 	if (!pending_snapshot) {
376 		ret = -ENOMEM;
377 		btrfs_unreserve_metadata_space(root, 6);
378 		goto fail;
379 	}
380 	pending_snapshot->name = kmalloc(namelen + 1, GFP_NOFS);
381 	if (!pending_snapshot->name) {
382 		ret = -ENOMEM;
383 		kfree(pending_snapshot);
384 		btrfs_unreserve_metadata_space(root, 6);
385 		goto fail;
386 	}
387 	memcpy(pending_snapshot->name, name, namelen);
388 	pending_snapshot->name[namelen] = '\0';
389 	pending_snapshot->dentry = dentry;
390 	trans = btrfs_start_transaction(root, 1);
391 	BUG_ON(!trans);
392 	pending_snapshot->root = root;
393 	list_add(&pending_snapshot->list,
394 		 &trans->transaction->pending_snapshots);
395 	ret = btrfs_commit_transaction(trans, root);
396 	BUG_ON(ret);
397 	btrfs_unreserve_metadata_space(root, 6);
398 
399 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
400 	if (IS_ERR(inode)) {
401 		ret = PTR_ERR(inode);
402 		goto fail;
403 	}
404 	BUG_ON(!inode);
405 	d_instantiate(dentry, inode);
406 	ret = 0;
407 fail:
408 	return ret;
409 }
410 
411 /* copy of may_create in fs/namei.c() */
412 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
413 {
414 	if (child->d_inode)
415 		return -EEXIST;
416 	if (IS_DEADDIR(dir))
417 		return -ENOENT;
418 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
419 }
420 
421 /*
422  * Create a new subvolume below @parent.  This is largely modeled after
423  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
424  * inside this filesystem so it's quite a bit simpler.
425  */
426 static noinline int btrfs_mksubvol(struct path *parent,
427 				   char *name, int namelen,
428 				   struct btrfs_root *snap_src)
429 {
430 	struct inode *dir  = parent->dentry->d_inode;
431 	struct dentry *dentry;
432 	int error;
433 
434 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
435 
436 	dentry = lookup_one_len(name, parent->dentry, namelen);
437 	error = PTR_ERR(dentry);
438 	if (IS_ERR(dentry))
439 		goto out_unlock;
440 
441 	error = -EEXIST;
442 	if (dentry->d_inode)
443 		goto out_dput;
444 
445 	error = mnt_want_write(parent->mnt);
446 	if (error)
447 		goto out_dput;
448 
449 	error = btrfs_may_create(dir, dentry);
450 	if (error)
451 		goto out_drop_write;
452 
453 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
454 
455 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
456 		goto out_up_read;
457 
458 	if (snap_src) {
459 		error = create_snapshot(snap_src, dentry,
460 					name, namelen);
461 	} else {
462 		error = create_subvol(BTRFS_I(dir)->root, dentry,
463 				      name, namelen);
464 	}
465 	if (!error)
466 		fsnotify_mkdir(dir, dentry);
467 out_up_read:
468 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
469 out_drop_write:
470 	mnt_drop_write(parent->mnt);
471 out_dput:
472 	dput(dentry);
473 out_unlock:
474 	mutex_unlock(&dir->i_mutex);
475 	return error;
476 }
477 
478 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
479 			       int thresh, u64 *last_len, u64 *skip,
480 			       u64 *defrag_end)
481 {
482 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
483 	struct extent_map *em = NULL;
484 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
485 	int ret = 1;
486 
487 
488 	if (thresh == 0)
489 		thresh = 256 * 1024;
490 
491 	/*
492 	 * make sure that once we start defragging and extent, we keep on
493 	 * defragging it
494 	 */
495 	if (start < *defrag_end)
496 		return 1;
497 
498 	*skip = 0;
499 
500 	/*
501 	 * hopefully we have this extent in the tree already, try without
502 	 * the full extent lock
503 	 */
504 	read_lock(&em_tree->lock);
505 	em = lookup_extent_mapping(em_tree, start, len);
506 	read_unlock(&em_tree->lock);
507 
508 	if (!em) {
509 		/* get the big lock and read metadata off disk */
510 		lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
511 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
512 		unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
513 
514 		if (IS_ERR(em))
515 			return 0;
516 	}
517 
518 	/* this will cover holes, and inline extents */
519 	if (em->block_start >= EXTENT_MAP_LAST_BYTE)
520 		ret = 0;
521 
522 	/*
523 	 * we hit a real extent, if it is big don't bother defragging it again
524 	 */
525 	if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
526 		ret = 0;
527 
528 	/*
529 	 * last_len ends up being a counter of how many bytes we've defragged.
530 	 * every time we choose not to defrag an extent, we reset *last_len
531 	 * so that the next tiny extent will force a defrag.
532 	 *
533 	 * The end result of this is that tiny extents before a single big
534 	 * extent will force at least part of that big extent to be defragged.
535 	 */
536 	if (ret) {
537 		*last_len += len;
538 		*defrag_end = extent_map_end(em);
539 	} else {
540 		*last_len = 0;
541 		*skip = extent_map_end(em);
542 		*defrag_end = 0;
543 	}
544 
545 	free_extent_map(em);
546 	return ret;
547 }
548 
549 static int btrfs_defrag_file(struct file *file,
550 			     struct btrfs_ioctl_defrag_range_args *range)
551 {
552 	struct inode *inode = fdentry(file)->d_inode;
553 	struct btrfs_root *root = BTRFS_I(inode)->root;
554 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
555 	struct btrfs_ordered_extent *ordered;
556 	struct page *page;
557 	unsigned long last_index;
558 	unsigned long ra_pages = root->fs_info->bdi.ra_pages;
559 	unsigned long total_read = 0;
560 	u64 page_start;
561 	u64 page_end;
562 	u64 last_len = 0;
563 	u64 skip = 0;
564 	u64 defrag_end = 0;
565 	unsigned long i;
566 	int ret;
567 
568 	if (inode->i_size == 0)
569 		return 0;
570 
571 	if (range->start + range->len > range->start) {
572 		last_index = min_t(u64, inode->i_size - 1,
573 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
574 	} else {
575 		last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
576 	}
577 
578 	i = range->start >> PAGE_CACHE_SHIFT;
579 	while (i <= last_index) {
580 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
581 					PAGE_CACHE_SIZE,
582 					range->extent_thresh,
583 					&last_len, &skip,
584 					&defrag_end)) {
585 			unsigned long next;
586 			/*
587 			 * the should_defrag function tells us how much to skip
588 			 * bump our counter by the suggested amount
589 			 */
590 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
591 			i = max(i + 1, next);
592 			continue;
593 		}
594 
595 		if (total_read % ra_pages == 0) {
596 			btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
597 				       min(last_index, i + ra_pages - 1));
598 		}
599 		total_read++;
600 		mutex_lock(&inode->i_mutex);
601 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
602 			BTRFS_I(inode)->force_compress = 1;
603 
604 		ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
605 		if (ret) {
606 			ret = -ENOSPC;
607 			break;
608 		}
609 
610 		ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
611 		if (ret) {
612 			btrfs_free_reserved_data_space(root, inode,
613 						       PAGE_CACHE_SIZE);
614 			ret = -ENOSPC;
615 			break;
616 		}
617 again:
618 		if (inode->i_size == 0 ||
619 		    i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) {
620 			ret = 0;
621 			goto err_reservations;
622 		}
623 
624 		page = grab_cache_page(inode->i_mapping, i);
625 		if (!page)
626 			goto err_reservations;
627 
628 		if (!PageUptodate(page)) {
629 			btrfs_readpage(NULL, page);
630 			lock_page(page);
631 			if (!PageUptodate(page)) {
632 				unlock_page(page);
633 				page_cache_release(page);
634 				goto err_reservations;
635 			}
636 		}
637 
638 		if (page->mapping != inode->i_mapping) {
639 			unlock_page(page);
640 			page_cache_release(page);
641 			goto again;
642 		}
643 
644 		wait_on_page_writeback(page);
645 
646 		if (PageDirty(page)) {
647 			btrfs_free_reserved_data_space(root, inode,
648 						       PAGE_CACHE_SIZE);
649 			goto loop_unlock;
650 		}
651 
652 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
653 		page_end = page_start + PAGE_CACHE_SIZE - 1;
654 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
655 
656 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
657 		if (ordered) {
658 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
659 			unlock_page(page);
660 			page_cache_release(page);
661 			btrfs_start_ordered_extent(inode, ordered, 1);
662 			btrfs_put_ordered_extent(ordered);
663 			goto again;
664 		}
665 		set_page_extent_mapped(page);
666 
667 		/*
668 		 * this makes sure page_mkwrite is called on the
669 		 * page if it is dirtied again later
670 		 */
671 		clear_page_dirty_for_io(page);
672 		clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start,
673 				  page_end, EXTENT_DIRTY | EXTENT_DELALLOC |
674 				  EXTENT_DO_ACCOUNTING, GFP_NOFS);
675 
676 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
677 		ClearPageChecked(page);
678 		set_page_dirty(page);
679 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
680 
681 loop_unlock:
682 		unlock_page(page);
683 		page_cache_release(page);
684 		mutex_unlock(&inode->i_mutex);
685 
686 		btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
687 		balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
688 		i++;
689 	}
690 
691 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
692 		filemap_flush(inode->i_mapping);
693 
694 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
695 		/* the filemap_flush will queue IO into the worker threads, but
696 		 * we have to make sure the IO is actually started and that
697 		 * ordered extents get created before we return
698 		 */
699 		atomic_inc(&root->fs_info->async_submit_draining);
700 		while (atomic_read(&root->fs_info->nr_async_submits) ||
701 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
702 			wait_event(root->fs_info->async_submit_wait,
703 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
704 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
705 		}
706 		atomic_dec(&root->fs_info->async_submit_draining);
707 
708 		mutex_lock(&inode->i_mutex);
709 		BTRFS_I(inode)->force_compress = 0;
710 		mutex_unlock(&inode->i_mutex);
711 	}
712 
713 	return 0;
714 
715 err_reservations:
716 	mutex_unlock(&inode->i_mutex);
717 	btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
718 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
719 	return ret;
720 }
721 
722 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
723 					void __user *arg)
724 {
725 	u64 new_size;
726 	u64 old_size;
727 	u64 devid = 1;
728 	struct btrfs_ioctl_vol_args *vol_args;
729 	struct btrfs_trans_handle *trans;
730 	struct btrfs_device *device = NULL;
731 	char *sizestr;
732 	char *devstr = NULL;
733 	int ret = 0;
734 	int namelen;
735 	int mod = 0;
736 
737 	if (root->fs_info->sb->s_flags & MS_RDONLY)
738 		return -EROFS;
739 
740 	if (!capable(CAP_SYS_ADMIN))
741 		return -EPERM;
742 
743 	vol_args = memdup_user(arg, sizeof(*vol_args));
744 	if (IS_ERR(vol_args))
745 		return PTR_ERR(vol_args);
746 
747 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
748 	namelen = strlen(vol_args->name);
749 
750 	mutex_lock(&root->fs_info->volume_mutex);
751 	sizestr = vol_args->name;
752 	devstr = strchr(sizestr, ':');
753 	if (devstr) {
754 		char *end;
755 		sizestr = devstr + 1;
756 		*devstr = '\0';
757 		devstr = vol_args->name;
758 		devid = simple_strtoull(devstr, &end, 10);
759 		printk(KERN_INFO "resizing devid %llu\n",
760 		       (unsigned long long)devid);
761 	}
762 	device = btrfs_find_device(root, devid, NULL, NULL);
763 	if (!device) {
764 		printk(KERN_INFO "resizer unable to find device %llu\n",
765 		       (unsigned long long)devid);
766 		ret = -EINVAL;
767 		goto out_unlock;
768 	}
769 	if (!strcmp(sizestr, "max"))
770 		new_size = device->bdev->bd_inode->i_size;
771 	else {
772 		if (sizestr[0] == '-') {
773 			mod = -1;
774 			sizestr++;
775 		} else if (sizestr[0] == '+') {
776 			mod = 1;
777 			sizestr++;
778 		}
779 		new_size = memparse(sizestr, NULL);
780 		if (new_size == 0) {
781 			ret = -EINVAL;
782 			goto out_unlock;
783 		}
784 	}
785 
786 	old_size = device->total_bytes;
787 
788 	if (mod < 0) {
789 		if (new_size > old_size) {
790 			ret = -EINVAL;
791 			goto out_unlock;
792 		}
793 		new_size = old_size - new_size;
794 	} else if (mod > 0) {
795 		new_size = old_size + new_size;
796 	}
797 
798 	if (new_size < 256 * 1024 * 1024) {
799 		ret = -EINVAL;
800 		goto out_unlock;
801 	}
802 	if (new_size > device->bdev->bd_inode->i_size) {
803 		ret = -EFBIG;
804 		goto out_unlock;
805 	}
806 
807 	do_div(new_size, root->sectorsize);
808 	new_size *= root->sectorsize;
809 
810 	printk(KERN_INFO "new size for %s is %llu\n",
811 		device->name, (unsigned long long)new_size);
812 
813 	if (new_size > old_size) {
814 		trans = btrfs_start_transaction(root, 1);
815 		ret = btrfs_grow_device(trans, device, new_size);
816 		btrfs_commit_transaction(trans, root);
817 	} else {
818 		ret = btrfs_shrink_device(device, new_size);
819 	}
820 
821 out_unlock:
822 	mutex_unlock(&root->fs_info->volume_mutex);
823 	kfree(vol_args);
824 	return ret;
825 }
826 
827 static noinline int btrfs_ioctl_snap_create(struct file *file,
828 					    void __user *arg, int subvol)
829 {
830 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
831 	struct btrfs_ioctl_vol_args *vol_args;
832 	struct file *src_file;
833 	int namelen;
834 	int ret = 0;
835 
836 	if (root->fs_info->sb->s_flags & MS_RDONLY)
837 		return -EROFS;
838 
839 	vol_args = memdup_user(arg, sizeof(*vol_args));
840 	if (IS_ERR(vol_args))
841 		return PTR_ERR(vol_args);
842 
843 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
844 	namelen = strlen(vol_args->name);
845 	if (strchr(vol_args->name, '/')) {
846 		ret = -EINVAL;
847 		goto out;
848 	}
849 
850 	if (subvol) {
851 		ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
852 				     NULL);
853 	} else {
854 		struct inode *src_inode;
855 		src_file = fget(vol_args->fd);
856 		if (!src_file) {
857 			ret = -EINVAL;
858 			goto out;
859 		}
860 
861 		src_inode = src_file->f_path.dentry->d_inode;
862 		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
863 			printk(KERN_INFO "btrfs: Snapshot src from "
864 			       "another FS\n");
865 			ret = -EINVAL;
866 			fput(src_file);
867 			goto out;
868 		}
869 		ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
870 				     BTRFS_I(src_inode)->root);
871 		fput(src_file);
872 	}
873 out:
874 	kfree(vol_args);
875 	return ret;
876 }
877 
878 /*
879  * helper to check if the subvolume references other subvolumes
880  */
881 static noinline int may_destroy_subvol(struct btrfs_root *root)
882 {
883 	struct btrfs_path *path;
884 	struct btrfs_key key;
885 	int ret;
886 
887 	path = btrfs_alloc_path();
888 	if (!path)
889 		return -ENOMEM;
890 
891 	key.objectid = root->root_key.objectid;
892 	key.type = BTRFS_ROOT_REF_KEY;
893 	key.offset = (u64)-1;
894 
895 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
896 				&key, path, 0, 0);
897 	if (ret < 0)
898 		goto out;
899 	BUG_ON(ret == 0);
900 
901 	ret = 0;
902 	if (path->slots[0] > 0) {
903 		path->slots[0]--;
904 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
905 		if (key.objectid == root->root_key.objectid &&
906 		    key.type == BTRFS_ROOT_REF_KEY)
907 			ret = -ENOTEMPTY;
908 	}
909 out:
910 	btrfs_free_path(path);
911 	return ret;
912 }
913 
914 static noinline int key_in_sk(struct btrfs_key *key,
915 			      struct btrfs_ioctl_search_key *sk)
916 {
917 	struct btrfs_key test;
918 	int ret;
919 
920 	test.objectid = sk->min_objectid;
921 	test.type = sk->min_type;
922 	test.offset = sk->min_offset;
923 
924 	ret = btrfs_comp_cpu_keys(key, &test);
925 	if (ret < 0)
926 		return 0;
927 
928 	test.objectid = sk->max_objectid;
929 	test.type = sk->max_type;
930 	test.offset = sk->max_offset;
931 
932 	ret = btrfs_comp_cpu_keys(key, &test);
933 	if (ret > 0)
934 		return 0;
935 	return 1;
936 }
937 
938 static noinline int copy_to_sk(struct btrfs_root *root,
939 			       struct btrfs_path *path,
940 			       struct btrfs_key *key,
941 			       struct btrfs_ioctl_search_key *sk,
942 			       char *buf,
943 			       unsigned long *sk_offset,
944 			       int *num_found)
945 {
946 	u64 found_transid;
947 	struct extent_buffer *leaf;
948 	struct btrfs_ioctl_search_header sh;
949 	unsigned long item_off;
950 	unsigned long item_len;
951 	int nritems;
952 	int i;
953 	int slot;
954 	int found = 0;
955 	int ret = 0;
956 
957 	leaf = path->nodes[0];
958 	slot = path->slots[0];
959 	nritems = btrfs_header_nritems(leaf);
960 
961 	if (btrfs_header_generation(leaf) > sk->max_transid) {
962 		i = nritems;
963 		goto advance_key;
964 	}
965 	found_transid = btrfs_header_generation(leaf);
966 
967 	for (i = slot; i < nritems; i++) {
968 		item_off = btrfs_item_ptr_offset(leaf, i);
969 		item_len = btrfs_item_size_nr(leaf, i);
970 
971 		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
972 			item_len = 0;
973 
974 		if (sizeof(sh) + item_len + *sk_offset >
975 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
976 			ret = 1;
977 			goto overflow;
978 		}
979 
980 		btrfs_item_key_to_cpu(leaf, key, i);
981 		if (!key_in_sk(key, sk))
982 			continue;
983 
984 		sh.objectid = key->objectid;
985 		sh.offset = key->offset;
986 		sh.type = key->type;
987 		sh.len = item_len;
988 		sh.transid = found_transid;
989 
990 		/* copy search result header */
991 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
992 		*sk_offset += sizeof(sh);
993 
994 		if (item_len) {
995 			char *p = buf + *sk_offset;
996 			/* copy the item */
997 			read_extent_buffer(leaf, p,
998 					   item_off, item_len);
999 			*sk_offset += item_len;
1000 		}
1001 		found++;
1002 
1003 		if (*num_found >= sk->nr_items)
1004 			break;
1005 	}
1006 advance_key:
1007 	ret = 0;
1008 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1009 		key->offset++;
1010 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1011 		key->offset = 0;
1012 		key->type++;
1013 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1014 		key->offset = 0;
1015 		key->type = 0;
1016 		key->objectid++;
1017 	} else
1018 		ret = 1;
1019 overflow:
1020 	*num_found += found;
1021 	return ret;
1022 }
1023 
1024 static noinline int search_ioctl(struct inode *inode,
1025 				 struct btrfs_ioctl_search_args *args)
1026 {
1027 	struct btrfs_root *root;
1028 	struct btrfs_key key;
1029 	struct btrfs_key max_key;
1030 	struct btrfs_path *path;
1031 	struct btrfs_ioctl_search_key *sk = &args->key;
1032 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1033 	int ret;
1034 	int num_found = 0;
1035 	unsigned long sk_offset = 0;
1036 
1037 	path = btrfs_alloc_path();
1038 	if (!path)
1039 		return -ENOMEM;
1040 
1041 	if (sk->tree_id == 0) {
1042 		/* search the root of the inode that was passed */
1043 		root = BTRFS_I(inode)->root;
1044 	} else {
1045 		key.objectid = sk->tree_id;
1046 		key.type = BTRFS_ROOT_ITEM_KEY;
1047 		key.offset = (u64)-1;
1048 		root = btrfs_read_fs_root_no_name(info, &key);
1049 		if (IS_ERR(root)) {
1050 			printk(KERN_ERR "could not find root %llu\n",
1051 			       sk->tree_id);
1052 			btrfs_free_path(path);
1053 			return -ENOENT;
1054 		}
1055 	}
1056 
1057 	key.objectid = sk->min_objectid;
1058 	key.type = sk->min_type;
1059 	key.offset = sk->min_offset;
1060 
1061 	max_key.objectid = sk->max_objectid;
1062 	max_key.type = sk->max_type;
1063 	max_key.offset = sk->max_offset;
1064 
1065 	path->keep_locks = 1;
1066 
1067 	while(1) {
1068 		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1069 					   sk->min_transid);
1070 		if (ret != 0) {
1071 			if (ret > 0)
1072 				ret = 0;
1073 			goto err;
1074 		}
1075 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1076 				 &sk_offset, &num_found);
1077 		btrfs_release_path(root, path);
1078 		if (ret || num_found >= sk->nr_items)
1079 			break;
1080 
1081 	}
1082 	ret = 0;
1083 err:
1084 	sk->nr_items = num_found;
1085 	btrfs_free_path(path);
1086 	return ret;
1087 }
1088 
1089 static noinline int btrfs_ioctl_tree_search(struct file *file,
1090 					   void __user *argp)
1091 {
1092 	 struct btrfs_ioctl_search_args *args;
1093 	 struct inode *inode;
1094 	 int ret;
1095 
1096 	if (!capable(CAP_SYS_ADMIN))
1097 		return -EPERM;
1098 
1099 	args = kmalloc(sizeof(*args), GFP_KERNEL);
1100 	if (!args)
1101 		return -ENOMEM;
1102 
1103 	if (copy_from_user(args, argp, sizeof(*args))) {
1104 		kfree(args);
1105 		return -EFAULT;
1106 	}
1107 	inode = fdentry(file)->d_inode;
1108 	ret = search_ioctl(inode, args);
1109 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1110 		ret = -EFAULT;
1111 	kfree(args);
1112 	return ret;
1113 }
1114 
1115 /*
1116  * Search INODE_REFs to identify path name of 'dirid' directory
1117  * in a 'tree_id' tree. and sets path name to 'name'.
1118  */
1119 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1120 				u64 tree_id, u64 dirid, char *name)
1121 {
1122 	struct btrfs_root *root;
1123 	struct btrfs_key key;
1124 	char *ptr;
1125 	int ret = -1;
1126 	int slot;
1127 	int len;
1128 	int total_len = 0;
1129 	struct btrfs_inode_ref *iref;
1130 	struct extent_buffer *l;
1131 	struct btrfs_path *path;
1132 
1133 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1134 		name[0]='\0';
1135 		return 0;
1136 	}
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path)
1140 		return -ENOMEM;
1141 
1142 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1143 
1144 	key.objectid = tree_id;
1145 	key.type = BTRFS_ROOT_ITEM_KEY;
1146 	key.offset = (u64)-1;
1147 	root = btrfs_read_fs_root_no_name(info, &key);
1148 	if (IS_ERR(root)) {
1149 		printk(KERN_ERR "could not find root %llu\n", tree_id);
1150 		ret = -ENOENT;
1151 		goto out;
1152 	}
1153 
1154 	key.objectid = dirid;
1155 	key.type = BTRFS_INODE_REF_KEY;
1156 	key.offset = (u64)-1;
1157 
1158 	while(1) {
1159 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1160 		if (ret < 0)
1161 			goto out;
1162 
1163 		l = path->nodes[0];
1164 		slot = path->slots[0];
1165 		if (ret > 0 && slot > 0)
1166 			slot--;
1167 		btrfs_item_key_to_cpu(l, &key, slot);
1168 
1169 		if (ret > 0 && (key.objectid != dirid ||
1170 				key.type != BTRFS_INODE_REF_KEY)) {
1171 			ret = -ENOENT;
1172 			goto out;
1173 		}
1174 
1175 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1176 		len = btrfs_inode_ref_name_len(l, iref);
1177 		ptr -= len + 1;
1178 		total_len += len + 1;
1179 		if (ptr < name)
1180 			goto out;
1181 
1182 		*(ptr + len) = '/';
1183 		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1184 
1185 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1186 			break;
1187 
1188 		btrfs_release_path(root, path);
1189 		key.objectid = key.offset;
1190 		key.offset = (u64)-1;
1191 		dirid = key.objectid;
1192 
1193 	}
1194 	if (ptr < name)
1195 		goto out;
1196 	memcpy(name, ptr, total_len);
1197 	name[total_len]='\0';
1198 	ret = 0;
1199 out:
1200 	btrfs_free_path(path);
1201 	return ret;
1202 }
1203 
1204 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1205 					   void __user *argp)
1206 {
1207 	 struct btrfs_ioctl_ino_lookup_args *args;
1208 	 struct inode *inode;
1209 	 int ret;
1210 
1211 	if (!capable(CAP_SYS_ADMIN))
1212 		return -EPERM;
1213 
1214 	args = kmalloc(sizeof(*args), GFP_KERNEL);
1215 	if (!args)
1216 		return -ENOMEM;
1217 
1218 	if (copy_from_user(args, argp, sizeof(*args))) {
1219 		kfree(args);
1220 		return -EFAULT;
1221 	}
1222 	inode = fdentry(file)->d_inode;
1223 
1224 	if (args->treeid == 0)
1225 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1226 
1227 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1228 					args->treeid, args->objectid,
1229 					args->name);
1230 
1231 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1232 		ret = -EFAULT;
1233 
1234 	kfree(args);
1235 	return ret;
1236 }
1237 
1238 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1239 					     void __user *arg)
1240 {
1241 	struct dentry *parent = fdentry(file);
1242 	struct dentry *dentry;
1243 	struct inode *dir = parent->d_inode;
1244 	struct inode *inode;
1245 	struct btrfs_root *root = BTRFS_I(dir)->root;
1246 	struct btrfs_root *dest = NULL;
1247 	struct btrfs_ioctl_vol_args *vol_args;
1248 	struct btrfs_trans_handle *trans;
1249 	int namelen;
1250 	int ret;
1251 	int err = 0;
1252 
1253 	if (!capable(CAP_SYS_ADMIN))
1254 		return -EPERM;
1255 
1256 	vol_args = memdup_user(arg, sizeof(*vol_args));
1257 	if (IS_ERR(vol_args))
1258 		return PTR_ERR(vol_args);
1259 
1260 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1261 	namelen = strlen(vol_args->name);
1262 	if (strchr(vol_args->name, '/') ||
1263 	    strncmp(vol_args->name, "..", namelen) == 0) {
1264 		err = -EINVAL;
1265 		goto out;
1266 	}
1267 
1268 	err = mnt_want_write(file->f_path.mnt);
1269 	if (err)
1270 		goto out;
1271 
1272 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1273 	dentry = lookup_one_len(vol_args->name, parent, namelen);
1274 	if (IS_ERR(dentry)) {
1275 		err = PTR_ERR(dentry);
1276 		goto out_unlock_dir;
1277 	}
1278 
1279 	if (!dentry->d_inode) {
1280 		err = -ENOENT;
1281 		goto out_dput;
1282 	}
1283 
1284 	inode = dentry->d_inode;
1285 	if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
1286 		err = -EINVAL;
1287 		goto out_dput;
1288 	}
1289 
1290 	dest = BTRFS_I(inode)->root;
1291 
1292 	mutex_lock(&inode->i_mutex);
1293 	err = d_invalidate(dentry);
1294 	if (err)
1295 		goto out_unlock;
1296 
1297 	down_write(&root->fs_info->subvol_sem);
1298 
1299 	err = may_destroy_subvol(dest);
1300 	if (err)
1301 		goto out_up_write;
1302 
1303 	trans = btrfs_start_transaction(root, 1);
1304 	ret = btrfs_unlink_subvol(trans, root, dir,
1305 				dest->root_key.objectid,
1306 				dentry->d_name.name,
1307 				dentry->d_name.len);
1308 	BUG_ON(ret);
1309 
1310 	btrfs_record_root_in_trans(trans, dest);
1311 
1312 	memset(&dest->root_item.drop_progress, 0,
1313 		sizeof(dest->root_item.drop_progress));
1314 	dest->root_item.drop_level = 0;
1315 	btrfs_set_root_refs(&dest->root_item, 0);
1316 
1317 	ret = btrfs_insert_orphan_item(trans,
1318 				root->fs_info->tree_root,
1319 				dest->root_key.objectid);
1320 	BUG_ON(ret);
1321 
1322 	ret = btrfs_commit_transaction(trans, root);
1323 	BUG_ON(ret);
1324 	inode->i_flags |= S_DEAD;
1325 out_up_write:
1326 	up_write(&root->fs_info->subvol_sem);
1327 out_unlock:
1328 	mutex_unlock(&inode->i_mutex);
1329 	if (!err) {
1330 		shrink_dcache_sb(root->fs_info->sb);
1331 		btrfs_invalidate_inodes(dest);
1332 		d_delete(dentry);
1333 	}
1334 out_dput:
1335 	dput(dentry);
1336 out_unlock_dir:
1337 	mutex_unlock(&dir->i_mutex);
1338 	mnt_drop_write(file->f_path.mnt);
1339 out:
1340 	kfree(vol_args);
1341 	return err;
1342 }
1343 
1344 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1345 {
1346 	struct inode *inode = fdentry(file)->d_inode;
1347 	struct btrfs_root *root = BTRFS_I(inode)->root;
1348 	struct btrfs_ioctl_defrag_range_args *range;
1349 	int ret;
1350 
1351 	ret = mnt_want_write(file->f_path.mnt);
1352 	if (ret)
1353 		return ret;
1354 
1355 	switch (inode->i_mode & S_IFMT) {
1356 	case S_IFDIR:
1357 		if (!capable(CAP_SYS_ADMIN)) {
1358 			ret = -EPERM;
1359 			goto out;
1360 		}
1361 		btrfs_defrag_root(root, 0);
1362 		btrfs_defrag_root(root->fs_info->extent_root, 0);
1363 		break;
1364 	case S_IFREG:
1365 		if (!(file->f_mode & FMODE_WRITE)) {
1366 			ret = -EINVAL;
1367 			goto out;
1368 		}
1369 
1370 		range = kzalloc(sizeof(*range), GFP_KERNEL);
1371 		if (!range) {
1372 			ret = -ENOMEM;
1373 			goto out;
1374 		}
1375 
1376 		if (argp) {
1377 			if (copy_from_user(range, argp,
1378 					   sizeof(*range))) {
1379 				ret = -EFAULT;
1380 				kfree(range);
1381 				goto out;
1382 			}
1383 			/* compression requires us to start the IO */
1384 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1385 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1386 				range->extent_thresh = (u32)-1;
1387 			}
1388 		} else {
1389 			/* the rest are all set to zero by kzalloc */
1390 			range->len = (u64)-1;
1391 		}
1392 		btrfs_defrag_file(file, range);
1393 		kfree(range);
1394 		break;
1395 	}
1396 out:
1397 	mnt_drop_write(file->f_path.mnt);
1398 	return ret;
1399 }
1400 
1401 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
1402 {
1403 	struct btrfs_ioctl_vol_args *vol_args;
1404 	int ret;
1405 
1406 	if (!capable(CAP_SYS_ADMIN))
1407 		return -EPERM;
1408 
1409 	vol_args = memdup_user(arg, sizeof(*vol_args));
1410 	if (IS_ERR(vol_args))
1411 		return PTR_ERR(vol_args);
1412 
1413 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1414 	ret = btrfs_init_new_device(root, vol_args->name);
1415 
1416 	kfree(vol_args);
1417 	return ret;
1418 }
1419 
1420 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
1421 {
1422 	struct btrfs_ioctl_vol_args *vol_args;
1423 	int ret;
1424 
1425 	if (!capable(CAP_SYS_ADMIN))
1426 		return -EPERM;
1427 
1428 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1429 		return -EROFS;
1430 
1431 	vol_args = memdup_user(arg, sizeof(*vol_args));
1432 	if (IS_ERR(vol_args))
1433 		return PTR_ERR(vol_args);
1434 
1435 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1436 	ret = btrfs_rm_device(root, vol_args->name);
1437 
1438 	kfree(vol_args);
1439 	return ret;
1440 }
1441 
1442 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
1443 				       u64 off, u64 olen, u64 destoff)
1444 {
1445 	struct inode *inode = fdentry(file)->d_inode;
1446 	struct btrfs_root *root = BTRFS_I(inode)->root;
1447 	struct file *src_file;
1448 	struct inode *src;
1449 	struct btrfs_trans_handle *trans;
1450 	struct btrfs_path *path;
1451 	struct extent_buffer *leaf;
1452 	char *buf;
1453 	struct btrfs_key key;
1454 	u32 nritems;
1455 	int slot;
1456 	int ret;
1457 	u64 len = olen;
1458 	u64 bs = root->fs_info->sb->s_blocksize;
1459 	u64 hint_byte;
1460 
1461 	/*
1462 	 * TODO:
1463 	 * - split compressed inline extents.  annoying: we need to
1464 	 *   decompress into destination's address_space (the file offset
1465 	 *   may change, so source mapping won't do), then recompress (or
1466 	 *   otherwise reinsert) a subrange.
1467 	 * - allow ranges within the same file to be cloned (provided
1468 	 *   they don't overlap)?
1469 	 */
1470 
1471 	/* the destination must be opened for writing */
1472 	if (!(file->f_mode & FMODE_WRITE))
1473 		return -EINVAL;
1474 
1475 	ret = mnt_want_write(file->f_path.mnt);
1476 	if (ret)
1477 		return ret;
1478 
1479 	src_file = fget(srcfd);
1480 	if (!src_file) {
1481 		ret = -EBADF;
1482 		goto out_drop_write;
1483 	}
1484 
1485 	src = src_file->f_dentry->d_inode;
1486 
1487 	ret = -EINVAL;
1488 	if (src == inode)
1489 		goto out_fput;
1490 
1491 	/* the src must be open for reading */
1492 	if (!(src_file->f_mode & FMODE_READ))
1493 		goto out_fput;
1494 
1495 	ret = -EISDIR;
1496 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
1497 		goto out_fput;
1498 
1499 	ret = -EXDEV;
1500 	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
1501 		goto out_fput;
1502 
1503 	ret = -ENOMEM;
1504 	buf = vmalloc(btrfs_level_size(root, 0));
1505 	if (!buf)
1506 		goto out_fput;
1507 
1508 	path = btrfs_alloc_path();
1509 	if (!path) {
1510 		vfree(buf);
1511 		goto out_fput;
1512 	}
1513 	path->reada = 2;
1514 
1515 	if (inode < src) {
1516 		mutex_lock(&inode->i_mutex);
1517 		mutex_lock(&src->i_mutex);
1518 	} else {
1519 		mutex_lock(&src->i_mutex);
1520 		mutex_lock(&inode->i_mutex);
1521 	}
1522 
1523 	/* determine range to clone */
1524 	ret = -EINVAL;
1525 	if (off >= src->i_size || off + len > src->i_size)
1526 		goto out_unlock;
1527 	if (len == 0)
1528 		olen = len = src->i_size - off;
1529 	/* if we extend to eof, continue to block boundary */
1530 	if (off + len == src->i_size)
1531 		len = ((src->i_size + bs-1) & ~(bs-1))
1532 			- off;
1533 
1534 	/* verify the end result is block aligned */
1535 	if ((off & (bs-1)) ||
1536 	    ((off + len) & (bs-1)))
1537 		goto out_unlock;
1538 
1539 	/* do any pending delalloc/csum calc on src, one way or
1540 	   another, and lock file content */
1541 	while (1) {
1542 		struct btrfs_ordered_extent *ordered;
1543 		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1544 		ordered = btrfs_lookup_first_ordered_extent(inode, off+len);
1545 		if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
1546 			break;
1547 		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1548 		if (ordered)
1549 			btrfs_put_ordered_extent(ordered);
1550 		btrfs_wait_ordered_range(src, off, off+len);
1551 	}
1552 
1553 	trans = btrfs_start_transaction(root, 1);
1554 	BUG_ON(!trans);
1555 
1556 	/* punch hole in destination first */
1557 	btrfs_drop_extents(trans, inode, off, off + len, &hint_byte, 1);
1558 
1559 	/* clone data */
1560 	key.objectid = src->i_ino;
1561 	key.type = BTRFS_EXTENT_DATA_KEY;
1562 	key.offset = 0;
1563 
1564 	while (1) {
1565 		/*
1566 		 * note the key will change type as we walk through the
1567 		 * tree.
1568 		 */
1569 		ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
1570 		if (ret < 0)
1571 			goto out;
1572 
1573 		nritems = btrfs_header_nritems(path->nodes[0]);
1574 		if (path->slots[0] >= nritems) {
1575 			ret = btrfs_next_leaf(root, path);
1576 			if (ret < 0)
1577 				goto out;
1578 			if (ret > 0)
1579 				break;
1580 			nritems = btrfs_header_nritems(path->nodes[0]);
1581 		}
1582 		leaf = path->nodes[0];
1583 		slot = path->slots[0];
1584 
1585 		btrfs_item_key_to_cpu(leaf, &key, slot);
1586 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
1587 		    key.objectid != src->i_ino)
1588 			break;
1589 
1590 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
1591 			struct btrfs_file_extent_item *extent;
1592 			int type;
1593 			u32 size;
1594 			struct btrfs_key new_key;
1595 			u64 disko = 0, diskl = 0;
1596 			u64 datao = 0, datal = 0;
1597 			u8 comp;
1598 
1599 			size = btrfs_item_size_nr(leaf, slot);
1600 			read_extent_buffer(leaf, buf,
1601 					   btrfs_item_ptr_offset(leaf, slot),
1602 					   size);
1603 
1604 			extent = btrfs_item_ptr(leaf, slot,
1605 						struct btrfs_file_extent_item);
1606 			comp = btrfs_file_extent_compression(leaf, extent);
1607 			type = btrfs_file_extent_type(leaf, extent);
1608 			if (type == BTRFS_FILE_EXTENT_REG ||
1609 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
1610 				disko = btrfs_file_extent_disk_bytenr(leaf,
1611 								      extent);
1612 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
1613 								 extent);
1614 				datao = btrfs_file_extent_offset(leaf, extent);
1615 				datal = btrfs_file_extent_num_bytes(leaf,
1616 								    extent);
1617 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1618 				/* take upper bound, may be compressed */
1619 				datal = btrfs_file_extent_ram_bytes(leaf,
1620 								    extent);
1621 			}
1622 			btrfs_release_path(root, path);
1623 
1624 			if (key.offset + datal < off ||
1625 			    key.offset >= off+len)
1626 				goto next;
1627 
1628 			memcpy(&new_key, &key, sizeof(new_key));
1629 			new_key.objectid = inode->i_ino;
1630 			new_key.offset = key.offset + destoff - off;
1631 
1632 			if (type == BTRFS_FILE_EXTENT_REG ||
1633 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
1634 				ret = btrfs_insert_empty_item(trans, root, path,
1635 							      &new_key, size);
1636 				if (ret)
1637 					goto out;
1638 
1639 				leaf = path->nodes[0];
1640 				slot = path->slots[0];
1641 				write_extent_buffer(leaf, buf,
1642 					    btrfs_item_ptr_offset(leaf, slot),
1643 					    size);
1644 
1645 				extent = btrfs_item_ptr(leaf, slot,
1646 						struct btrfs_file_extent_item);
1647 
1648 				if (off > key.offset) {
1649 					datao += off - key.offset;
1650 					datal -= off - key.offset;
1651 				}
1652 
1653 				if (key.offset + datal > off + len)
1654 					datal = off + len - key.offset;
1655 
1656 				/* disko == 0 means it's a hole */
1657 				if (!disko)
1658 					datao = 0;
1659 
1660 				btrfs_set_file_extent_offset(leaf, extent,
1661 							     datao);
1662 				btrfs_set_file_extent_num_bytes(leaf, extent,
1663 								datal);
1664 				if (disko) {
1665 					inode_add_bytes(inode, datal);
1666 					ret = btrfs_inc_extent_ref(trans, root,
1667 							disko, diskl, 0,
1668 							root->root_key.objectid,
1669 							inode->i_ino,
1670 							new_key.offset - datao);
1671 					BUG_ON(ret);
1672 				}
1673 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1674 				u64 skip = 0;
1675 				u64 trim = 0;
1676 				if (off > key.offset) {
1677 					skip = off - key.offset;
1678 					new_key.offset += skip;
1679 				}
1680 
1681 				if (key.offset + datal > off+len)
1682 					trim = key.offset + datal - (off+len);
1683 
1684 				if (comp && (skip || trim)) {
1685 					ret = -EINVAL;
1686 					goto out;
1687 				}
1688 				size -= skip + trim;
1689 				datal -= skip + trim;
1690 				ret = btrfs_insert_empty_item(trans, root, path,
1691 							      &new_key, size);
1692 				if (ret)
1693 					goto out;
1694 
1695 				if (skip) {
1696 					u32 start =
1697 					  btrfs_file_extent_calc_inline_size(0);
1698 					memmove(buf+start, buf+start+skip,
1699 						datal);
1700 				}
1701 
1702 				leaf = path->nodes[0];
1703 				slot = path->slots[0];
1704 				write_extent_buffer(leaf, buf,
1705 					    btrfs_item_ptr_offset(leaf, slot),
1706 					    size);
1707 				inode_add_bytes(inode, datal);
1708 			}
1709 
1710 			btrfs_mark_buffer_dirty(leaf);
1711 		}
1712 
1713 next:
1714 		btrfs_release_path(root, path);
1715 		key.offset++;
1716 	}
1717 	ret = 0;
1718 out:
1719 	btrfs_release_path(root, path);
1720 	if (ret == 0) {
1721 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1722 		if (destoff + olen > inode->i_size)
1723 			btrfs_i_size_write(inode, destoff + olen);
1724 		BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
1725 		ret = btrfs_update_inode(trans, root, inode);
1726 	}
1727 	btrfs_end_transaction(trans, root);
1728 	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1729 	if (ret)
1730 		vmtruncate(inode, 0);
1731 out_unlock:
1732 	mutex_unlock(&src->i_mutex);
1733 	mutex_unlock(&inode->i_mutex);
1734 	vfree(buf);
1735 	btrfs_free_path(path);
1736 out_fput:
1737 	fput(src_file);
1738 out_drop_write:
1739 	mnt_drop_write(file->f_path.mnt);
1740 	return ret;
1741 }
1742 
1743 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
1744 {
1745 	struct btrfs_ioctl_clone_range_args args;
1746 
1747 	if (copy_from_user(&args, argp, sizeof(args)))
1748 		return -EFAULT;
1749 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
1750 				 args.src_length, args.dest_offset);
1751 }
1752 
1753 /*
1754  * there are many ways the trans_start and trans_end ioctls can lead
1755  * to deadlocks.  They should only be used by applications that
1756  * basically own the machine, and have a very in depth understanding
1757  * of all the possible deadlocks and enospc problems.
1758  */
1759 static long btrfs_ioctl_trans_start(struct file *file)
1760 {
1761 	struct inode *inode = fdentry(file)->d_inode;
1762 	struct btrfs_root *root = BTRFS_I(inode)->root;
1763 	struct btrfs_trans_handle *trans;
1764 	int ret;
1765 
1766 	ret = -EPERM;
1767 	if (!capable(CAP_SYS_ADMIN))
1768 		goto out;
1769 
1770 	ret = -EINPROGRESS;
1771 	if (file->private_data)
1772 		goto out;
1773 
1774 	ret = mnt_want_write(file->f_path.mnt);
1775 	if (ret)
1776 		goto out;
1777 
1778 	mutex_lock(&root->fs_info->trans_mutex);
1779 	root->fs_info->open_ioctl_trans++;
1780 	mutex_unlock(&root->fs_info->trans_mutex);
1781 
1782 	ret = -ENOMEM;
1783 	trans = btrfs_start_ioctl_transaction(root, 0);
1784 	if (!trans)
1785 		goto out_drop;
1786 
1787 	file->private_data = trans;
1788 	return 0;
1789 
1790 out_drop:
1791 	mutex_lock(&root->fs_info->trans_mutex);
1792 	root->fs_info->open_ioctl_trans--;
1793 	mutex_unlock(&root->fs_info->trans_mutex);
1794 	mnt_drop_write(file->f_path.mnt);
1795 out:
1796 	return ret;
1797 }
1798 
1799 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
1800 {
1801 	struct inode *inode = fdentry(file)->d_inode;
1802 	struct btrfs_root *root = BTRFS_I(inode)->root;
1803 	struct btrfs_root *new_root;
1804 	struct btrfs_dir_item *di;
1805 	struct btrfs_trans_handle *trans;
1806 	struct btrfs_path *path;
1807 	struct btrfs_key location;
1808 	struct btrfs_disk_key disk_key;
1809 	struct btrfs_super_block *disk_super;
1810 	u64 features;
1811 	u64 objectid = 0;
1812 	u64 dir_id;
1813 
1814 	if (!capable(CAP_SYS_ADMIN))
1815 		return -EPERM;
1816 
1817 	if (copy_from_user(&objectid, argp, sizeof(objectid)))
1818 		return -EFAULT;
1819 
1820 	if (!objectid)
1821 		objectid = root->root_key.objectid;
1822 
1823 	location.objectid = objectid;
1824 	location.type = BTRFS_ROOT_ITEM_KEY;
1825 	location.offset = (u64)-1;
1826 
1827 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
1828 	if (IS_ERR(new_root))
1829 		return PTR_ERR(new_root);
1830 
1831 	if (btrfs_root_refs(&new_root->root_item) == 0)
1832 		return -ENOENT;
1833 
1834 	path = btrfs_alloc_path();
1835 	if (!path)
1836 		return -ENOMEM;
1837 	path->leave_spinning = 1;
1838 
1839 	trans = btrfs_start_transaction(root, 1);
1840 	if (!trans) {
1841 		btrfs_free_path(path);
1842 		return -ENOMEM;
1843 	}
1844 
1845 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
1846 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
1847 				   dir_id, "default", 7, 1);
1848 	if (!di) {
1849 		btrfs_free_path(path);
1850 		btrfs_end_transaction(trans, root);
1851 		printk(KERN_ERR "Umm, you don't have the default dir item, "
1852 		       "this isn't going to work\n");
1853 		return -ENOENT;
1854 	}
1855 
1856 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
1857 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
1858 	btrfs_mark_buffer_dirty(path->nodes[0]);
1859 	btrfs_free_path(path);
1860 
1861 	disk_super = &root->fs_info->super_copy;
1862 	features = btrfs_super_incompat_flags(disk_super);
1863 	if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
1864 		features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
1865 		btrfs_set_super_incompat_flags(disk_super, features);
1866 	}
1867 	btrfs_end_transaction(trans, root);
1868 
1869 	return 0;
1870 }
1871 
1872 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
1873 {
1874 	struct btrfs_ioctl_space_args space_args;
1875 	struct btrfs_ioctl_space_info space;
1876 	struct btrfs_ioctl_space_info *dest;
1877 	struct btrfs_ioctl_space_info *dest_orig;
1878 	struct btrfs_ioctl_space_info *user_dest;
1879 	struct btrfs_space_info *info;
1880 	int alloc_size;
1881 	int ret = 0;
1882 	int slot_count = 0;
1883 
1884 	if (copy_from_user(&space_args,
1885 			   (struct btrfs_ioctl_space_args __user *)arg,
1886 			   sizeof(space_args)))
1887 		return -EFAULT;
1888 
1889 	/* first we count slots */
1890 	rcu_read_lock();
1891 	list_for_each_entry_rcu(info, &root->fs_info->space_info, list)
1892 		slot_count++;
1893 	rcu_read_unlock();
1894 
1895 	/* space_slots == 0 means they are asking for a count */
1896 	if (space_args.space_slots == 0) {
1897 		space_args.total_spaces = slot_count;
1898 		goto out;
1899 	}
1900 	alloc_size = sizeof(*dest) * slot_count;
1901 	/* we generally have at most 6 or so space infos, one for each raid
1902 	 * level.  So, a whole page should be more than enough for everyone
1903 	 */
1904 	if (alloc_size > PAGE_CACHE_SIZE)
1905 		return -ENOMEM;
1906 
1907 	space_args.total_spaces = 0;
1908 	dest = kmalloc(alloc_size, GFP_NOFS);
1909 	if (!dest)
1910 		return -ENOMEM;
1911 	dest_orig = dest;
1912 
1913 	/* now we have a buffer to copy into */
1914 	rcu_read_lock();
1915 	list_for_each_entry_rcu(info, &root->fs_info->space_info, list) {
1916 		/* make sure we don't copy more than we allocated
1917 		 * in our buffer
1918 		 */
1919 		if (slot_count == 0)
1920 			break;
1921 		slot_count--;
1922 
1923 		/* make sure userland has enough room in their buffer */
1924 		if (space_args.total_spaces >= space_args.space_slots)
1925 			break;
1926 
1927 		space.flags = info->flags;
1928 		space.total_bytes = info->total_bytes;
1929 		space.used_bytes = info->bytes_used;
1930 		memcpy(dest, &space, sizeof(space));
1931 		dest++;
1932 		space_args.total_spaces++;
1933 	}
1934 	rcu_read_unlock();
1935 
1936 	user_dest = (struct btrfs_ioctl_space_info *)
1937 		(arg + sizeof(struct btrfs_ioctl_space_args));
1938 
1939 	if (copy_to_user(user_dest, dest_orig, alloc_size))
1940 		ret = -EFAULT;
1941 
1942 	kfree(dest_orig);
1943 out:
1944 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
1945 		ret = -EFAULT;
1946 
1947 	return ret;
1948 }
1949 
1950 /*
1951  * there are many ways the trans_start and trans_end ioctls can lead
1952  * to deadlocks.  They should only be used by applications that
1953  * basically own the machine, and have a very in depth understanding
1954  * of all the possible deadlocks and enospc problems.
1955  */
1956 long btrfs_ioctl_trans_end(struct file *file)
1957 {
1958 	struct inode *inode = fdentry(file)->d_inode;
1959 	struct btrfs_root *root = BTRFS_I(inode)->root;
1960 	struct btrfs_trans_handle *trans;
1961 
1962 	trans = file->private_data;
1963 	if (!trans)
1964 		return -EINVAL;
1965 	file->private_data = NULL;
1966 
1967 	btrfs_end_transaction(trans, root);
1968 
1969 	mutex_lock(&root->fs_info->trans_mutex);
1970 	root->fs_info->open_ioctl_trans--;
1971 	mutex_unlock(&root->fs_info->trans_mutex);
1972 
1973 	mnt_drop_write(file->f_path.mnt);
1974 	return 0;
1975 }
1976 
1977 long btrfs_ioctl(struct file *file, unsigned int
1978 		cmd, unsigned long arg)
1979 {
1980 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1981 	void __user *argp = (void __user *)arg;
1982 
1983 	switch (cmd) {
1984 	case FS_IOC_GETFLAGS:
1985 		return btrfs_ioctl_getflags(file, argp);
1986 	case FS_IOC_SETFLAGS:
1987 		return btrfs_ioctl_setflags(file, argp);
1988 	case FS_IOC_GETVERSION:
1989 		return btrfs_ioctl_getversion(file, argp);
1990 	case BTRFS_IOC_SNAP_CREATE:
1991 		return btrfs_ioctl_snap_create(file, argp, 0);
1992 	case BTRFS_IOC_SUBVOL_CREATE:
1993 		return btrfs_ioctl_snap_create(file, argp, 1);
1994 	case BTRFS_IOC_SNAP_DESTROY:
1995 		return btrfs_ioctl_snap_destroy(file, argp);
1996 	case BTRFS_IOC_DEFAULT_SUBVOL:
1997 		return btrfs_ioctl_default_subvol(file, argp);
1998 	case BTRFS_IOC_DEFRAG:
1999 		return btrfs_ioctl_defrag(file, NULL);
2000 	case BTRFS_IOC_DEFRAG_RANGE:
2001 		return btrfs_ioctl_defrag(file, argp);
2002 	case BTRFS_IOC_RESIZE:
2003 		return btrfs_ioctl_resize(root, argp);
2004 	case BTRFS_IOC_ADD_DEV:
2005 		return btrfs_ioctl_add_dev(root, argp);
2006 	case BTRFS_IOC_RM_DEV:
2007 		return btrfs_ioctl_rm_dev(root, argp);
2008 	case BTRFS_IOC_BALANCE:
2009 		return btrfs_balance(root->fs_info->dev_root);
2010 	case BTRFS_IOC_CLONE:
2011 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2012 	case BTRFS_IOC_CLONE_RANGE:
2013 		return btrfs_ioctl_clone_range(file, argp);
2014 	case BTRFS_IOC_TRANS_START:
2015 		return btrfs_ioctl_trans_start(file);
2016 	case BTRFS_IOC_TRANS_END:
2017 		return btrfs_ioctl_trans_end(file);
2018 	case BTRFS_IOC_TREE_SEARCH:
2019 		return btrfs_ioctl_tree_search(file, argp);
2020 	case BTRFS_IOC_INO_LOOKUP:
2021 		return btrfs_ioctl_ino_lookup(file, argp);
2022 	case BTRFS_IOC_SPACE_INFO:
2023 		return btrfs_ioctl_space_info(root, argp);
2024 	case BTRFS_IOC_SYNC:
2025 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
2026 		return 0;
2027 	}
2028 
2029 	return -ENOTTY;
2030 }
2031