1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include "compat.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "ioctl.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 59 /* Mask out flags that are inappropriate for the given type of inode. */ 60 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 61 { 62 if (S_ISDIR(mode)) 63 return flags; 64 else if (S_ISREG(mode)) 65 return flags & ~FS_DIRSYNC_FL; 66 else 67 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 68 } 69 70 /* 71 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 72 */ 73 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 74 { 75 unsigned int iflags = 0; 76 77 if (flags & BTRFS_INODE_SYNC) 78 iflags |= FS_SYNC_FL; 79 if (flags & BTRFS_INODE_IMMUTABLE) 80 iflags |= FS_IMMUTABLE_FL; 81 if (flags & BTRFS_INODE_APPEND) 82 iflags |= FS_APPEND_FL; 83 if (flags & BTRFS_INODE_NODUMP) 84 iflags |= FS_NODUMP_FL; 85 if (flags & BTRFS_INODE_NOATIME) 86 iflags |= FS_NOATIME_FL; 87 if (flags & BTRFS_INODE_DIRSYNC) 88 iflags |= FS_DIRSYNC_FL; 89 if (flags & BTRFS_INODE_NODATACOW) 90 iflags |= FS_NOCOW_FL; 91 92 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 93 iflags |= FS_COMPR_FL; 94 else if (flags & BTRFS_INODE_NOCOMPRESS) 95 iflags |= FS_NOCOMP_FL; 96 97 return iflags; 98 } 99 100 /* 101 * Update inode->i_flags based on the btrfs internal flags. 102 */ 103 void btrfs_update_iflags(struct inode *inode) 104 { 105 struct btrfs_inode *ip = BTRFS_I(inode); 106 107 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 108 109 if (ip->flags & BTRFS_INODE_SYNC) 110 inode->i_flags |= S_SYNC; 111 if (ip->flags & BTRFS_INODE_IMMUTABLE) 112 inode->i_flags |= S_IMMUTABLE; 113 if (ip->flags & BTRFS_INODE_APPEND) 114 inode->i_flags |= S_APPEND; 115 if (ip->flags & BTRFS_INODE_NOATIME) 116 inode->i_flags |= S_NOATIME; 117 if (ip->flags & BTRFS_INODE_DIRSYNC) 118 inode->i_flags |= S_DIRSYNC; 119 } 120 121 /* 122 * Inherit flags from the parent inode. 123 * 124 * Currently only the compression flags and the cow flags are inherited. 125 */ 126 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 127 { 128 unsigned int flags; 129 130 if (!dir) 131 return; 132 133 flags = BTRFS_I(dir)->flags; 134 135 if (flags & BTRFS_INODE_NOCOMPRESS) { 136 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 137 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 138 } else if (flags & BTRFS_INODE_COMPRESS) { 139 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 140 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 141 } 142 143 if (flags & BTRFS_INODE_NODATACOW) 144 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 145 146 btrfs_update_iflags(inode); 147 } 148 149 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 150 { 151 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 152 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 153 154 if (copy_to_user(arg, &flags, sizeof(flags))) 155 return -EFAULT; 156 return 0; 157 } 158 159 static int check_flags(unsigned int flags) 160 { 161 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 162 FS_NOATIME_FL | FS_NODUMP_FL | \ 163 FS_SYNC_FL | FS_DIRSYNC_FL | \ 164 FS_NOCOMP_FL | FS_COMPR_FL | 165 FS_NOCOW_FL)) 166 return -EOPNOTSUPP; 167 168 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 169 return -EINVAL; 170 171 return 0; 172 } 173 174 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 175 { 176 struct inode *inode = file->f_path.dentry->d_inode; 177 struct btrfs_inode *ip = BTRFS_I(inode); 178 struct btrfs_root *root = ip->root; 179 struct btrfs_trans_handle *trans; 180 unsigned int flags, oldflags; 181 int ret; 182 u64 ip_oldflags; 183 unsigned int i_oldflags; 184 umode_t mode; 185 186 if (btrfs_root_readonly(root)) 187 return -EROFS; 188 189 if (copy_from_user(&flags, arg, sizeof(flags))) 190 return -EFAULT; 191 192 ret = check_flags(flags); 193 if (ret) 194 return ret; 195 196 if (!inode_owner_or_capable(inode)) 197 return -EACCES; 198 199 ret = mnt_want_write_file(file); 200 if (ret) 201 return ret; 202 203 mutex_lock(&inode->i_mutex); 204 205 ip_oldflags = ip->flags; 206 i_oldflags = inode->i_flags; 207 mode = inode->i_mode; 208 209 flags = btrfs_mask_flags(inode->i_mode, flags); 210 oldflags = btrfs_flags_to_ioctl(ip->flags); 211 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 212 if (!capable(CAP_LINUX_IMMUTABLE)) { 213 ret = -EPERM; 214 goto out_unlock; 215 } 216 } 217 218 if (flags & FS_SYNC_FL) 219 ip->flags |= BTRFS_INODE_SYNC; 220 else 221 ip->flags &= ~BTRFS_INODE_SYNC; 222 if (flags & FS_IMMUTABLE_FL) 223 ip->flags |= BTRFS_INODE_IMMUTABLE; 224 else 225 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 226 if (flags & FS_APPEND_FL) 227 ip->flags |= BTRFS_INODE_APPEND; 228 else 229 ip->flags &= ~BTRFS_INODE_APPEND; 230 if (flags & FS_NODUMP_FL) 231 ip->flags |= BTRFS_INODE_NODUMP; 232 else 233 ip->flags &= ~BTRFS_INODE_NODUMP; 234 if (flags & FS_NOATIME_FL) 235 ip->flags |= BTRFS_INODE_NOATIME; 236 else 237 ip->flags &= ~BTRFS_INODE_NOATIME; 238 if (flags & FS_DIRSYNC_FL) 239 ip->flags |= BTRFS_INODE_DIRSYNC; 240 else 241 ip->flags &= ~BTRFS_INODE_DIRSYNC; 242 if (flags & FS_NOCOW_FL) { 243 if (S_ISREG(mode)) { 244 /* 245 * It's safe to turn csums off here, no extents exist. 246 * Otherwise we want the flag to reflect the real COW 247 * status of the file and will not set it. 248 */ 249 if (inode->i_size == 0) 250 ip->flags |= BTRFS_INODE_NODATACOW 251 | BTRFS_INODE_NODATASUM; 252 } else { 253 ip->flags |= BTRFS_INODE_NODATACOW; 254 } 255 } else { 256 /* 257 * Revert back under same assuptions as above 258 */ 259 if (S_ISREG(mode)) { 260 if (inode->i_size == 0) 261 ip->flags &= ~(BTRFS_INODE_NODATACOW 262 | BTRFS_INODE_NODATASUM); 263 } else { 264 ip->flags &= ~BTRFS_INODE_NODATACOW; 265 } 266 } 267 268 /* 269 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 270 * flag may be changed automatically if compression code won't make 271 * things smaller. 272 */ 273 if (flags & FS_NOCOMP_FL) { 274 ip->flags &= ~BTRFS_INODE_COMPRESS; 275 ip->flags |= BTRFS_INODE_NOCOMPRESS; 276 } else if (flags & FS_COMPR_FL) { 277 ip->flags |= BTRFS_INODE_COMPRESS; 278 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 279 } else { 280 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 281 } 282 283 trans = btrfs_start_transaction(root, 1); 284 if (IS_ERR(trans)) { 285 ret = PTR_ERR(trans); 286 goto out_drop; 287 } 288 289 btrfs_update_iflags(inode); 290 inode_inc_iversion(inode); 291 inode->i_ctime = CURRENT_TIME; 292 ret = btrfs_update_inode(trans, root, inode); 293 294 btrfs_end_transaction(trans, root); 295 out_drop: 296 if (ret) { 297 ip->flags = ip_oldflags; 298 inode->i_flags = i_oldflags; 299 } 300 301 out_unlock: 302 mutex_unlock(&inode->i_mutex); 303 mnt_drop_write_file(file); 304 return ret; 305 } 306 307 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 308 { 309 struct inode *inode = file->f_path.dentry->d_inode; 310 311 return put_user(inode->i_generation, arg); 312 } 313 314 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 315 { 316 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb); 317 struct btrfs_device *device; 318 struct request_queue *q; 319 struct fstrim_range range; 320 u64 minlen = ULLONG_MAX; 321 u64 num_devices = 0; 322 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 323 int ret; 324 325 if (!capable(CAP_SYS_ADMIN)) 326 return -EPERM; 327 328 rcu_read_lock(); 329 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 330 dev_list) { 331 if (!device->bdev) 332 continue; 333 q = bdev_get_queue(device->bdev); 334 if (blk_queue_discard(q)) { 335 num_devices++; 336 minlen = min((u64)q->limits.discard_granularity, 337 minlen); 338 } 339 } 340 rcu_read_unlock(); 341 342 if (!num_devices) 343 return -EOPNOTSUPP; 344 if (copy_from_user(&range, arg, sizeof(range))) 345 return -EFAULT; 346 if (range.start > total_bytes || 347 range.len < fs_info->sb->s_blocksize) 348 return -EINVAL; 349 350 range.len = min(range.len, total_bytes - range.start); 351 range.minlen = max(range.minlen, minlen); 352 ret = btrfs_trim_fs(fs_info->tree_root, &range); 353 if (ret < 0) 354 return ret; 355 356 if (copy_to_user(arg, &range, sizeof(range))) 357 return -EFAULT; 358 359 return 0; 360 } 361 362 static noinline int create_subvol(struct btrfs_root *root, 363 struct dentry *dentry, 364 char *name, int namelen, 365 u64 *async_transid, 366 struct btrfs_qgroup_inherit **inherit) 367 { 368 struct btrfs_trans_handle *trans; 369 struct btrfs_key key; 370 struct btrfs_root_item root_item; 371 struct btrfs_inode_item *inode_item; 372 struct extent_buffer *leaf; 373 struct btrfs_root *new_root; 374 struct dentry *parent = dentry->d_parent; 375 struct inode *dir; 376 struct timespec cur_time = CURRENT_TIME; 377 int ret; 378 int err; 379 u64 objectid; 380 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 381 u64 index = 0; 382 uuid_le new_uuid; 383 384 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 385 if (ret) 386 return ret; 387 388 dir = parent->d_inode; 389 390 /* 391 * 1 - inode item 392 * 2 - refs 393 * 1 - root item 394 * 2 - dir items 395 */ 396 trans = btrfs_start_transaction(root, 6); 397 if (IS_ERR(trans)) 398 return PTR_ERR(trans); 399 400 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, 401 inherit ? *inherit : NULL); 402 if (ret) 403 goto fail; 404 405 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 406 0, objectid, NULL, 0, 0, 0); 407 if (IS_ERR(leaf)) { 408 ret = PTR_ERR(leaf); 409 goto fail; 410 } 411 412 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 413 btrfs_set_header_bytenr(leaf, leaf->start); 414 btrfs_set_header_generation(leaf, trans->transid); 415 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 416 btrfs_set_header_owner(leaf, objectid); 417 418 write_extent_buffer(leaf, root->fs_info->fsid, 419 (unsigned long)btrfs_header_fsid(leaf), 420 BTRFS_FSID_SIZE); 421 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 422 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 423 BTRFS_UUID_SIZE); 424 btrfs_mark_buffer_dirty(leaf); 425 426 memset(&root_item, 0, sizeof(root_item)); 427 428 inode_item = &root_item.inode; 429 inode_item->generation = cpu_to_le64(1); 430 inode_item->size = cpu_to_le64(3); 431 inode_item->nlink = cpu_to_le32(1); 432 inode_item->nbytes = cpu_to_le64(root->leafsize); 433 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 434 435 root_item.flags = 0; 436 root_item.byte_limit = 0; 437 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 438 439 btrfs_set_root_bytenr(&root_item, leaf->start); 440 btrfs_set_root_generation(&root_item, trans->transid); 441 btrfs_set_root_level(&root_item, 0); 442 btrfs_set_root_refs(&root_item, 1); 443 btrfs_set_root_used(&root_item, leaf->len); 444 btrfs_set_root_last_snapshot(&root_item, 0); 445 446 btrfs_set_root_generation_v2(&root_item, 447 btrfs_root_generation(&root_item)); 448 uuid_le_gen(&new_uuid); 449 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 450 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec); 451 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec); 452 root_item.ctime = root_item.otime; 453 btrfs_set_root_ctransid(&root_item, trans->transid); 454 btrfs_set_root_otransid(&root_item, trans->transid); 455 456 btrfs_tree_unlock(leaf); 457 free_extent_buffer(leaf); 458 leaf = NULL; 459 460 btrfs_set_root_dirid(&root_item, new_dirid); 461 462 key.objectid = objectid; 463 key.offset = 0; 464 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 465 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 466 &root_item); 467 if (ret) 468 goto fail; 469 470 key.offset = (u64)-1; 471 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 472 if (IS_ERR(new_root)) { 473 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 474 ret = PTR_ERR(new_root); 475 goto fail; 476 } 477 478 btrfs_record_root_in_trans(trans, new_root); 479 480 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 481 if (ret) { 482 /* We potentially lose an unused inode item here */ 483 btrfs_abort_transaction(trans, root, ret); 484 goto fail; 485 } 486 487 /* 488 * insert the directory item 489 */ 490 ret = btrfs_set_inode_index(dir, &index); 491 if (ret) { 492 btrfs_abort_transaction(trans, root, ret); 493 goto fail; 494 } 495 496 ret = btrfs_insert_dir_item(trans, root, 497 name, namelen, dir, &key, 498 BTRFS_FT_DIR, index); 499 if (ret) { 500 btrfs_abort_transaction(trans, root, ret); 501 goto fail; 502 } 503 504 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 505 ret = btrfs_update_inode(trans, root, dir); 506 BUG_ON(ret); 507 508 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 509 objectid, root->root_key.objectid, 510 btrfs_ino(dir), index, name, namelen); 511 512 BUG_ON(ret); 513 514 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 515 fail: 516 if (async_transid) { 517 *async_transid = trans->transid; 518 err = btrfs_commit_transaction_async(trans, root, 1); 519 } else { 520 err = btrfs_commit_transaction(trans, root); 521 } 522 if (err && !ret) 523 ret = err; 524 return ret; 525 } 526 527 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 528 char *name, int namelen, u64 *async_transid, 529 bool readonly, struct btrfs_qgroup_inherit **inherit) 530 { 531 struct inode *inode; 532 struct btrfs_pending_snapshot *pending_snapshot; 533 struct btrfs_trans_handle *trans; 534 int ret; 535 536 if (!root->ref_cows) 537 return -EINVAL; 538 539 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 540 if (!pending_snapshot) 541 return -ENOMEM; 542 543 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 544 BTRFS_BLOCK_RSV_TEMP); 545 pending_snapshot->dentry = dentry; 546 pending_snapshot->root = root; 547 pending_snapshot->readonly = readonly; 548 if (inherit) { 549 pending_snapshot->inherit = *inherit; 550 *inherit = NULL; /* take responsibility to free it */ 551 } 552 553 trans = btrfs_start_transaction(root->fs_info->extent_root, 6); 554 if (IS_ERR(trans)) { 555 ret = PTR_ERR(trans); 556 goto fail; 557 } 558 559 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 560 BUG_ON(ret); 561 562 spin_lock(&root->fs_info->trans_lock); 563 list_add(&pending_snapshot->list, 564 &trans->transaction->pending_snapshots); 565 spin_unlock(&root->fs_info->trans_lock); 566 if (async_transid) { 567 *async_transid = trans->transid; 568 ret = btrfs_commit_transaction_async(trans, 569 root->fs_info->extent_root, 1); 570 } else { 571 ret = btrfs_commit_transaction(trans, 572 root->fs_info->extent_root); 573 } 574 if (ret) 575 goto fail; 576 577 ret = pending_snapshot->error; 578 if (ret) 579 goto fail; 580 581 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 582 if (ret) 583 goto fail; 584 585 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 586 if (IS_ERR(inode)) { 587 ret = PTR_ERR(inode); 588 goto fail; 589 } 590 BUG_ON(!inode); 591 d_instantiate(dentry, inode); 592 ret = 0; 593 fail: 594 kfree(pending_snapshot); 595 return ret; 596 } 597 598 /* copy of check_sticky in fs/namei.c() 599 * It's inline, so penalty for filesystems that don't use sticky bit is 600 * minimal. 601 */ 602 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 603 { 604 kuid_t fsuid = current_fsuid(); 605 606 if (!(dir->i_mode & S_ISVTX)) 607 return 0; 608 if (uid_eq(inode->i_uid, fsuid)) 609 return 0; 610 if (uid_eq(dir->i_uid, fsuid)) 611 return 0; 612 return !capable(CAP_FOWNER); 613 } 614 615 /* copy of may_delete in fs/namei.c() 616 * Check whether we can remove a link victim from directory dir, check 617 * whether the type of victim is right. 618 * 1. We can't do it if dir is read-only (done in permission()) 619 * 2. We should have write and exec permissions on dir 620 * 3. We can't remove anything from append-only dir 621 * 4. We can't do anything with immutable dir (done in permission()) 622 * 5. If the sticky bit on dir is set we should either 623 * a. be owner of dir, or 624 * b. be owner of victim, or 625 * c. have CAP_FOWNER capability 626 * 6. If the victim is append-only or immutable we can't do antyhing with 627 * links pointing to it. 628 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 629 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 630 * 9. We can't remove a root or mountpoint. 631 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 632 * nfs_async_unlink(). 633 */ 634 635 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 636 { 637 int error; 638 639 if (!victim->d_inode) 640 return -ENOENT; 641 642 BUG_ON(victim->d_parent->d_inode != dir); 643 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 644 645 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 646 if (error) 647 return error; 648 if (IS_APPEND(dir)) 649 return -EPERM; 650 if (btrfs_check_sticky(dir, victim->d_inode)|| 651 IS_APPEND(victim->d_inode)|| 652 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 653 return -EPERM; 654 if (isdir) { 655 if (!S_ISDIR(victim->d_inode->i_mode)) 656 return -ENOTDIR; 657 if (IS_ROOT(victim)) 658 return -EBUSY; 659 } else if (S_ISDIR(victim->d_inode->i_mode)) 660 return -EISDIR; 661 if (IS_DEADDIR(dir)) 662 return -ENOENT; 663 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 664 return -EBUSY; 665 return 0; 666 } 667 668 /* copy of may_create in fs/namei.c() */ 669 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 670 { 671 if (child->d_inode) 672 return -EEXIST; 673 if (IS_DEADDIR(dir)) 674 return -ENOENT; 675 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 676 } 677 678 /* 679 * Create a new subvolume below @parent. This is largely modeled after 680 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 681 * inside this filesystem so it's quite a bit simpler. 682 */ 683 static noinline int btrfs_mksubvol(struct path *parent, 684 char *name, int namelen, 685 struct btrfs_root *snap_src, 686 u64 *async_transid, bool readonly, 687 struct btrfs_qgroup_inherit **inherit) 688 { 689 struct inode *dir = parent->dentry->d_inode; 690 struct dentry *dentry; 691 int error; 692 693 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 694 695 dentry = lookup_one_len(name, parent->dentry, namelen); 696 error = PTR_ERR(dentry); 697 if (IS_ERR(dentry)) 698 goto out_unlock; 699 700 error = -EEXIST; 701 if (dentry->d_inode) 702 goto out_dput; 703 704 error = btrfs_may_create(dir, dentry); 705 if (error) 706 goto out_dput; 707 708 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 709 710 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 711 goto out_up_read; 712 713 if (snap_src) { 714 error = create_snapshot(snap_src, dentry, name, namelen, 715 async_transid, readonly, inherit); 716 } else { 717 error = create_subvol(BTRFS_I(dir)->root, dentry, 718 name, namelen, async_transid, inherit); 719 } 720 if (!error) 721 fsnotify_mkdir(dir, dentry); 722 out_up_read: 723 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 724 out_dput: 725 dput(dentry); 726 out_unlock: 727 mutex_unlock(&dir->i_mutex); 728 return error; 729 } 730 731 /* 732 * When we're defragging a range, we don't want to kick it off again 733 * if it is really just waiting for delalloc to send it down. 734 * If we find a nice big extent or delalloc range for the bytes in the 735 * file you want to defrag, we return 0 to let you know to skip this 736 * part of the file 737 */ 738 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 739 { 740 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 741 struct extent_map *em = NULL; 742 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 743 u64 end; 744 745 read_lock(&em_tree->lock); 746 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 747 read_unlock(&em_tree->lock); 748 749 if (em) { 750 end = extent_map_end(em); 751 free_extent_map(em); 752 if (end - offset > thresh) 753 return 0; 754 } 755 /* if we already have a nice delalloc here, just stop */ 756 thresh /= 2; 757 end = count_range_bits(io_tree, &offset, offset + thresh, 758 thresh, EXTENT_DELALLOC, 1); 759 if (end >= thresh) 760 return 0; 761 return 1; 762 } 763 764 /* 765 * helper function to walk through a file and find extents 766 * newer than a specific transid, and smaller than thresh. 767 * 768 * This is used by the defragging code to find new and small 769 * extents 770 */ 771 static int find_new_extents(struct btrfs_root *root, 772 struct inode *inode, u64 newer_than, 773 u64 *off, int thresh) 774 { 775 struct btrfs_path *path; 776 struct btrfs_key min_key; 777 struct btrfs_key max_key; 778 struct extent_buffer *leaf; 779 struct btrfs_file_extent_item *extent; 780 int type; 781 int ret; 782 u64 ino = btrfs_ino(inode); 783 784 path = btrfs_alloc_path(); 785 if (!path) 786 return -ENOMEM; 787 788 min_key.objectid = ino; 789 min_key.type = BTRFS_EXTENT_DATA_KEY; 790 min_key.offset = *off; 791 792 max_key.objectid = ino; 793 max_key.type = (u8)-1; 794 max_key.offset = (u64)-1; 795 796 path->keep_locks = 1; 797 798 while(1) { 799 ret = btrfs_search_forward(root, &min_key, &max_key, 800 path, 0, newer_than); 801 if (ret != 0) 802 goto none; 803 if (min_key.objectid != ino) 804 goto none; 805 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 806 goto none; 807 808 leaf = path->nodes[0]; 809 extent = btrfs_item_ptr(leaf, path->slots[0], 810 struct btrfs_file_extent_item); 811 812 type = btrfs_file_extent_type(leaf, extent); 813 if (type == BTRFS_FILE_EXTENT_REG && 814 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 815 check_defrag_in_cache(inode, min_key.offset, thresh)) { 816 *off = min_key.offset; 817 btrfs_free_path(path); 818 return 0; 819 } 820 821 if (min_key.offset == (u64)-1) 822 goto none; 823 824 min_key.offset++; 825 btrfs_release_path(path); 826 } 827 none: 828 btrfs_free_path(path); 829 return -ENOENT; 830 } 831 832 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 833 { 834 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 836 struct extent_map *em; 837 u64 len = PAGE_CACHE_SIZE; 838 839 /* 840 * hopefully we have this extent in the tree already, try without 841 * the full extent lock 842 */ 843 read_lock(&em_tree->lock); 844 em = lookup_extent_mapping(em_tree, start, len); 845 read_unlock(&em_tree->lock); 846 847 if (!em) { 848 /* get the big lock and read metadata off disk */ 849 lock_extent(io_tree, start, start + len - 1); 850 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 851 unlock_extent(io_tree, start, start + len - 1); 852 853 if (IS_ERR(em)) 854 return NULL; 855 } 856 857 return em; 858 } 859 860 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 861 { 862 struct extent_map *next; 863 bool ret = true; 864 865 /* this is the last extent */ 866 if (em->start + em->len >= i_size_read(inode)) 867 return false; 868 869 next = defrag_lookup_extent(inode, em->start + em->len); 870 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 871 ret = false; 872 873 free_extent_map(next); 874 return ret; 875 } 876 877 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 878 u64 *last_len, u64 *skip, u64 *defrag_end, 879 int compress) 880 { 881 struct extent_map *em; 882 int ret = 1; 883 bool next_mergeable = true; 884 885 /* 886 * make sure that once we start defragging an extent, we keep on 887 * defragging it 888 */ 889 if (start < *defrag_end) 890 return 1; 891 892 *skip = 0; 893 894 em = defrag_lookup_extent(inode, start); 895 if (!em) 896 return 0; 897 898 /* this will cover holes, and inline extents */ 899 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 900 ret = 0; 901 goto out; 902 } 903 904 next_mergeable = defrag_check_next_extent(inode, em); 905 906 /* 907 * we hit a real extent, if it is big or the next extent is not a 908 * real extent, don't bother defragging it 909 */ 910 if (!compress && (*last_len == 0 || *last_len >= thresh) && 911 (em->len >= thresh || !next_mergeable)) 912 ret = 0; 913 out: 914 /* 915 * last_len ends up being a counter of how many bytes we've defragged. 916 * every time we choose not to defrag an extent, we reset *last_len 917 * so that the next tiny extent will force a defrag. 918 * 919 * The end result of this is that tiny extents before a single big 920 * extent will force at least part of that big extent to be defragged. 921 */ 922 if (ret) { 923 *defrag_end = extent_map_end(em); 924 } else { 925 *last_len = 0; 926 *skip = extent_map_end(em); 927 *defrag_end = 0; 928 } 929 930 free_extent_map(em); 931 return ret; 932 } 933 934 /* 935 * it doesn't do much good to defrag one or two pages 936 * at a time. This pulls in a nice chunk of pages 937 * to COW and defrag. 938 * 939 * It also makes sure the delalloc code has enough 940 * dirty data to avoid making new small extents as part 941 * of the defrag 942 * 943 * It's a good idea to start RA on this range 944 * before calling this. 945 */ 946 static int cluster_pages_for_defrag(struct inode *inode, 947 struct page **pages, 948 unsigned long start_index, 949 int num_pages) 950 { 951 unsigned long file_end; 952 u64 isize = i_size_read(inode); 953 u64 page_start; 954 u64 page_end; 955 u64 page_cnt; 956 int ret; 957 int i; 958 int i_done; 959 struct btrfs_ordered_extent *ordered; 960 struct extent_state *cached_state = NULL; 961 struct extent_io_tree *tree; 962 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 963 964 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 965 if (!isize || start_index > file_end) 966 return 0; 967 968 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 969 970 ret = btrfs_delalloc_reserve_space(inode, 971 page_cnt << PAGE_CACHE_SHIFT); 972 if (ret) 973 return ret; 974 i_done = 0; 975 tree = &BTRFS_I(inode)->io_tree; 976 977 /* step one, lock all the pages */ 978 for (i = 0; i < page_cnt; i++) { 979 struct page *page; 980 again: 981 page = find_or_create_page(inode->i_mapping, 982 start_index + i, mask); 983 if (!page) 984 break; 985 986 page_start = page_offset(page); 987 page_end = page_start + PAGE_CACHE_SIZE - 1; 988 while (1) { 989 lock_extent(tree, page_start, page_end); 990 ordered = btrfs_lookup_ordered_extent(inode, 991 page_start); 992 unlock_extent(tree, page_start, page_end); 993 if (!ordered) 994 break; 995 996 unlock_page(page); 997 btrfs_start_ordered_extent(inode, ordered, 1); 998 btrfs_put_ordered_extent(ordered); 999 lock_page(page); 1000 /* 1001 * we unlocked the page above, so we need check if 1002 * it was released or not. 1003 */ 1004 if (page->mapping != inode->i_mapping) { 1005 unlock_page(page); 1006 page_cache_release(page); 1007 goto again; 1008 } 1009 } 1010 1011 if (!PageUptodate(page)) { 1012 btrfs_readpage(NULL, page); 1013 lock_page(page); 1014 if (!PageUptodate(page)) { 1015 unlock_page(page); 1016 page_cache_release(page); 1017 ret = -EIO; 1018 break; 1019 } 1020 } 1021 1022 if (page->mapping != inode->i_mapping) { 1023 unlock_page(page); 1024 page_cache_release(page); 1025 goto again; 1026 } 1027 1028 pages[i] = page; 1029 i_done++; 1030 } 1031 if (!i_done || ret) 1032 goto out; 1033 1034 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1035 goto out; 1036 1037 /* 1038 * so now we have a nice long stream of locked 1039 * and up to date pages, lets wait on them 1040 */ 1041 for (i = 0; i < i_done; i++) 1042 wait_on_page_writeback(pages[i]); 1043 1044 page_start = page_offset(pages[0]); 1045 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1046 1047 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1048 page_start, page_end - 1, 0, &cached_state); 1049 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1050 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1051 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1052 &cached_state, GFP_NOFS); 1053 1054 if (i_done != page_cnt) { 1055 spin_lock(&BTRFS_I(inode)->lock); 1056 BTRFS_I(inode)->outstanding_extents++; 1057 spin_unlock(&BTRFS_I(inode)->lock); 1058 btrfs_delalloc_release_space(inode, 1059 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1060 } 1061 1062 1063 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1064 &cached_state, GFP_NOFS); 1065 1066 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1067 page_start, page_end - 1, &cached_state, 1068 GFP_NOFS); 1069 1070 for (i = 0; i < i_done; i++) { 1071 clear_page_dirty_for_io(pages[i]); 1072 ClearPageChecked(pages[i]); 1073 set_page_extent_mapped(pages[i]); 1074 set_page_dirty(pages[i]); 1075 unlock_page(pages[i]); 1076 page_cache_release(pages[i]); 1077 } 1078 return i_done; 1079 out: 1080 for (i = 0; i < i_done; i++) { 1081 unlock_page(pages[i]); 1082 page_cache_release(pages[i]); 1083 } 1084 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1085 return ret; 1086 1087 } 1088 1089 int btrfs_defrag_file(struct inode *inode, struct file *file, 1090 struct btrfs_ioctl_defrag_range_args *range, 1091 u64 newer_than, unsigned long max_to_defrag) 1092 { 1093 struct btrfs_root *root = BTRFS_I(inode)->root; 1094 struct file_ra_state *ra = NULL; 1095 unsigned long last_index; 1096 u64 isize = i_size_read(inode); 1097 u64 last_len = 0; 1098 u64 skip = 0; 1099 u64 defrag_end = 0; 1100 u64 newer_off = range->start; 1101 unsigned long i; 1102 unsigned long ra_index = 0; 1103 int ret; 1104 int defrag_count = 0; 1105 int compress_type = BTRFS_COMPRESS_ZLIB; 1106 int extent_thresh = range->extent_thresh; 1107 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1108 int cluster = max_cluster; 1109 u64 new_align = ~((u64)128 * 1024 - 1); 1110 struct page **pages = NULL; 1111 1112 if (extent_thresh == 0) 1113 extent_thresh = 256 * 1024; 1114 1115 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1116 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1117 return -EINVAL; 1118 if (range->compress_type) 1119 compress_type = range->compress_type; 1120 } 1121 1122 if (isize == 0) 1123 return 0; 1124 1125 /* 1126 * if we were not given a file, allocate a readahead 1127 * context 1128 */ 1129 if (!file) { 1130 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1131 if (!ra) 1132 return -ENOMEM; 1133 file_ra_state_init(ra, inode->i_mapping); 1134 } else { 1135 ra = &file->f_ra; 1136 } 1137 1138 pages = kmalloc(sizeof(struct page *) * max_cluster, 1139 GFP_NOFS); 1140 if (!pages) { 1141 ret = -ENOMEM; 1142 goto out_ra; 1143 } 1144 1145 /* find the last page to defrag */ 1146 if (range->start + range->len > range->start) { 1147 last_index = min_t(u64, isize - 1, 1148 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1149 } else { 1150 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1151 } 1152 1153 if (newer_than) { 1154 ret = find_new_extents(root, inode, newer_than, 1155 &newer_off, 64 * 1024); 1156 if (!ret) { 1157 range->start = newer_off; 1158 /* 1159 * we always align our defrag to help keep 1160 * the extents in the file evenly spaced 1161 */ 1162 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1163 } else 1164 goto out_ra; 1165 } else { 1166 i = range->start >> PAGE_CACHE_SHIFT; 1167 } 1168 if (!max_to_defrag) 1169 max_to_defrag = last_index + 1; 1170 1171 /* 1172 * make writeback starts from i, so the defrag range can be 1173 * written sequentially. 1174 */ 1175 if (i < inode->i_mapping->writeback_index) 1176 inode->i_mapping->writeback_index = i; 1177 1178 while (i <= last_index && defrag_count < max_to_defrag && 1179 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1180 PAGE_CACHE_SHIFT)) { 1181 /* 1182 * make sure we stop running if someone unmounts 1183 * the FS 1184 */ 1185 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1186 break; 1187 1188 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1189 extent_thresh, &last_len, &skip, 1190 &defrag_end, range->flags & 1191 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1192 unsigned long next; 1193 /* 1194 * the should_defrag function tells us how much to skip 1195 * bump our counter by the suggested amount 1196 */ 1197 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1198 i = max(i + 1, next); 1199 continue; 1200 } 1201 1202 if (!newer_than) { 1203 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1204 PAGE_CACHE_SHIFT) - i; 1205 cluster = min(cluster, max_cluster); 1206 } else { 1207 cluster = max_cluster; 1208 } 1209 1210 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1211 BTRFS_I(inode)->force_compress = compress_type; 1212 1213 if (i + cluster > ra_index) { 1214 ra_index = max(i, ra_index); 1215 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1216 cluster); 1217 ra_index += max_cluster; 1218 } 1219 1220 mutex_lock(&inode->i_mutex); 1221 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1222 if (ret < 0) { 1223 mutex_unlock(&inode->i_mutex); 1224 goto out_ra; 1225 } 1226 1227 defrag_count += ret; 1228 balance_dirty_pages_ratelimited(inode->i_mapping); 1229 mutex_unlock(&inode->i_mutex); 1230 1231 if (newer_than) { 1232 if (newer_off == (u64)-1) 1233 break; 1234 1235 if (ret > 0) 1236 i += ret; 1237 1238 newer_off = max(newer_off + 1, 1239 (u64)i << PAGE_CACHE_SHIFT); 1240 1241 ret = find_new_extents(root, inode, 1242 newer_than, &newer_off, 1243 64 * 1024); 1244 if (!ret) { 1245 range->start = newer_off; 1246 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1247 } else { 1248 break; 1249 } 1250 } else { 1251 if (ret > 0) { 1252 i += ret; 1253 last_len += ret << PAGE_CACHE_SHIFT; 1254 } else { 1255 i++; 1256 last_len = 0; 1257 } 1258 } 1259 } 1260 1261 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1262 filemap_flush(inode->i_mapping); 1263 1264 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1265 /* the filemap_flush will queue IO into the worker threads, but 1266 * we have to make sure the IO is actually started and that 1267 * ordered extents get created before we return 1268 */ 1269 atomic_inc(&root->fs_info->async_submit_draining); 1270 while (atomic_read(&root->fs_info->nr_async_submits) || 1271 atomic_read(&root->fs_info->async_delalloc_pages)) { 1272 wait_event(root->fs_info->async_submit_wait, 1273 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1274 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1275 } 1276 atomic_dec(&root->fs_info->async_submit_draining); 1277 1278 mutex_lock(&inode->i_mutex); 1279 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1280 mutex_unlock(&inode->i_mutex); 1281 } 1282 1283 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1284 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1285 } 1286 1287 ret = defrag_count; 1288 1289 out_ra: 1290 if (!file) 1291 kfree(ra); 1292 kfree(pages); 1293 return ret; 1294 } 1295 1296 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 1297 void __user *arg) 1298 { 1299 u64 new_size; 1300 u64 old_size; 1301 u64 devid = 1; 1302 struct btrfs_ioctl_vol_args *vol_args; 1303 struct btrfs_trans_handle *trans; 1304 struct btrfs_device *device = NULL; 1305 char *sizestr; 1306 char *devstr = NULL; 1307 int ret = 0; 1308 int mod = 0; 1309 1310 if (root->fs_info->sb->s_flags & MS_RDONLY) 1311 return -EROFS; 1312 1313 if (!capable(CAP_SYS_ADMIN)) 1314 return -EPERM; 1315 1316 mutex_lock(&root->fs_info->volume_mutex); 1317 if (root->fs_info->balance_ctl) { 1318 printk(KERN_INFO "btrfs: balance in progress\n"); 1319 ret = -EINVAL; 1320 goto out; 1321 } 1322 1323 vol_args = memdup_user(arg, sizeof(*vol_args)); 1324 if (IS_ERR(vol_args)) { 1325 ret = PTR_ERR(vol_args); 1326 goto out; 1327 } 1328 1329 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1330 1331 sizestr = vol_args->name; 1332 devstr = strchr(sizestr, ':'); 1333 if (devstr) { 1334 char *end; 1335 sizestr = devstr + 1; 1336 *devstr = '\0'; 1337 devstr = vol_args->name; 1338 devid = simple_strtoull(devstr, &end, 10); 1339 printk(KERN_INFO "btrfs: resizing devid %llu\n", 1340 (unsigned long long)devid); 1341 } 1342 device = btrfs_find_device(root, devid, NULL, NULL); 1343 if (!device) { 1344 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n", 1345 (unsigned long long)devid); 1346 ret = -EINVAL; 1347 goto out_free; 1348 } 1349 if (device->fs_devices && device->fs_devices->seeding) { 1350 printk(KERN_INFO "btrfs: resizer unable to apply on " 1351 "seeding device %llu\n", 1352 (unsigned long long)devid); 1353 ret = -EINVAL; 1354 goto out_free; 1355 } 1356 1357 if (!strcmp(sizestr, "max")) 1358 new_size = device->bdev->bd_inode->i_size; 1359 else { 1360 if (sizestr[0] == '-') { 1361 mod = -1; 1362 sizestr++; 1363 } else if (sizestr[0] == '+') { 1364 mod = 1; 1365 sizestr++; 1366 } 1367 new_size = memparse(sizestr, NULL); 1368 if (new_size == 0) { 1369 ret = -EINVAL; 1370 goto out_free; 1371 } 1372 } 1373 1374 old_size = device->total_bytes; 1375 1376 if (mod < 0) { 1377 if (new_size > old_size) { 1378 ret = -EINVAL; 1379 goto out_free; 1380 } 1381 new_size = old_size - new_size; 1382 } else if (mod > 0) { 1383 new_size = old_size + new_size; 1384 } 1385 1386 if (new_size < 256 * 1024 * 1024) { 1387 ret = -EINVAL; 1388 goto out_free; 1389 } 1390 if (new_size > device->bdev->bd_inode->i_size) { 1391 ret = -EFBIG; 1392 goto out_free; 1393 } 1394 1395 do_div(new_size, root->sectorsize); 1396 new_size *= root->sectorsize; 1397 1398 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n", 1399 rcu_str_deref(device->name), 1400 (unsigned long long)new_size); 1401 1402 if (new_size > old_size) { 1403 trans = btrfs_start_transaction(root, 0); 1404 if (IS_ERR(trans)) { 1405 ret = PTR_ERR(trans); 1406 goto out_free; 1407 } 1408 ret = btrfs_grow_device(trans, device, new_size); 1409 btrfs_commit_transaction(trans, root); 1410 } else if (new_size < old_size) { 1411 ret = btrfs_shrink_device(device, new_size); 1412 } 1413 1414 out_free: 1415 kfree(vol_args); 1416 out: 1417 mutex_unlock(&root->fs_info->volume_mutex); 1418 return ret; 1419 } 1420 1421 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1422 char *name, unsigned long fd, int subvol, 1423 u64 *transid, bool readonly, 1424 struct btrfs_qgroup_inherit **inherit) 1425 { 1426 int namelen; 1427 int ret = 0; 1428 1429 ret = mnt_want_write_file(file); 1430 if (ret) 1431 goto out; 1432 1433 namelen = strlen(name); 1434 if (strchr(name, '/')) { 1435 ret = -EINVAL; 1436 goto out_drop_write; 1437 } 1438 1439 if (name[0] == '.' && 1440 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1441 ret = -EEXIST; 1442 goto out_drop_write; 1443 } 1444 1445 if (subvol) { 1446 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1447 NULL, transid, readonly, inherit); 1448 } else { 1449 struct fd src = fdget(fd); 1450 struct inode *src_inode; 1451 if (!src.file) { 1452 ret = -EINVAL; 1453 goto out_drop_write; 1454 } 1455 1456 src_inode = src.file->f_path.dentry->d_inode; 1457 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1458 printk(KERN_INFO "btrfs: Snapshot src from " 1459 "another FS\n"); 1460 ret = -EINVAL; 1461 } else { 1462 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1463 BTRFS_I(src_inode)->root, 1464 transid, readonly, inherit); 1465 } 1466 fdput(src); 1467 } 1468 out_drop_write: 1469 mnt_drop_write_file(file); 1470 out: 1471 return ret; 1472 } 1473 1474 static noinline int btrfs_ioctl_snap_create(struct file *file, 1475 void __user *arg, int subvol) 1476 { 1477 struct btrfs_ioctl_vol_args *vol_args; 1478 int ret; 1479 1480 vol_args = memdup_user(arg, sizeof(*vol_args)); 1481 if (IS_ERR(vol_args)) 1482 return PTR_ERR(vol_args); 1483 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1484 1485 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1486 vol_args->fd, subvol, 1487 NULL, false, NULL); 1488 1489 kfree(vol_args); 1490 return ret; 1491 } 1492 1493 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1494 void __user *arg, int subvol) 1495 { 1496 struct btrfs_ioctl_vol_args_v2 *vol_args; 1497 int ret; 1498 u64 transid = 0; 1499 u64 *ptr = NULL; 1500 bool readonly = false; 1501 struct btrfs_qgroup_inherit *inherit = NULL; 1502 1503 vol_args = memdup_user(arg, sizeof(*vol_args)); 1504 if (IS_ERR(vol_args)) 1505 return PTR_ERR(vol_args); 1506 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1507 1508 if (vol_args->flags & 1509 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1510 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1511 ret = -EOPNOTSUPP; 1512 goto out; 1513 } 1514 1515 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1516 ptr = &transid; 1517 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1518 readonly = true; 1519 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1520 if (vol_args->size > PAGE_CACHE_SIZE) { 1521 ret = -EINVAL; 1522 goto out; 1523 } 1524 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1525 if (IS_ERR(inherit)) { 1526 ret = PTR_ERR(inherit); 1527 goto out; 1528 } 1529 } 1530 1531 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1532 vol_args->fd, subvol, ptr, 1533 readonly, &inherit); 1534 1535 if (ret == 0 && ptr && 1536 copy_to_user(arg + 1537 offsetof(struct btrfs_ioctl_vol_args_v2, 1538 transid), ptr, sizeof(*ptr))) 1539 ret = -EFAULT; 1540 out: 1541 kfree(vol_args); 1542 kfree(inherit); 1543 return ret; 1544 } 1545 1546 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1547 void __user *arg) 1548 { 1549 struct inode *inode = fdentry(file)->d_inode; 1550 struct btrfs_root *root = BTRFS_I(inode)->root; 1551 int ret = 0; 1552 u64 flags = 0; 1553 1554 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1555 return -EINVAL; 1556 1557 down_read(&root->fs_info->subvol_sem); 1558 if (btrfs_root_readonly(root)) 1559 flags |= BTRFS_SUBVOL_RDONLY; 1560 up_read(&root->fs_info->subvol_sem); 1561 1562 if (copy_to_user(arg, &flags, sizeof(flags))) 1563 ret = -EFAULT; 1564 1565 return ret; 1566 } 1567 1568 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1569 void __user *arg) 1570 { 1571 struct inode *inode = fdentry(file)->d_inode; 1572 struct btrfs_root *root = BTRFS_I(inode)->root; 1573 struct btrfs_trans_handle *trans; 1574 u64 root_flags; 1575 u64 flags; 1576 int ret = 0; 1577 1578 ret = mnt_want_write_file(file); 1579 if (ret) 1580 goto out; 1581 1582 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1583 ret = -EINVAL; 1584 goto out_drop_write; 1585 } 1586 1587 if (copy_from_user(&flags, arg, sizeof(flags))) { 1588 ret = -EFAULT; 1589 goto out_drop_write; 1590 } 1591 1592 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1593 ret = -EINVAL; 1594 goto out_drop_write; 1595 } 1596 1597 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1598 ret = -EOPNOTSUPP; 1599 goto out_drop_write; 1600 } 1601 1602 if (!inode_owner_or_capable(inode)) { 1603 ret = -EACCES; 1604 goto out_drop_write; 1605 } 1606 1607 down_write(&root->fs_info->subvol_sem); 1608 1609 /* nothing to do */ 1610 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1611 goto out_drop_sem; 1612 1613 root_flags = btrfs_root_flags(&root->root_item); 1614 if (flags & BTRFS_SUBVOL_RDONLY) 1615 btrfs_set_root_flags(&root->root_item, 1616 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1617 else 1618 btrfs_set_root_flags(&root->root_item, 1619 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1620 1621 trans = btrfs_start_transaction(root, 1); 1622 if (IS_ERR(trans)) { 1623 ret = PTR_ERR(trans); 1624 goto out_reset; 1625 } 1626 1627 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1628 &root->root_key, &root->root_item); 1629 1630 btrfs_commit_transaction(trans, root); 1631 out_reset: 1632 if (ret) 1633 btrfs_set_root_flags(&root->root_item, root_flags); 1634 out_drop_sem: 1635 up_write(&root->fs_info->subvol_sem); 1636 out_drop_write: 1637 mnt_drop_write_file(file); 1638 out: 1639 return ret; 1640 } 1641 1642 /* 1643 * helper to check if the subvolume references other subvolumes 1644 */ 1645 static noinline int may_destroy_subvol(struct btrfs_root *root) 1646 { 1647 struct btrfs_path *path; 1648 struct btrfs_key key; 1649 int ret; 1650 1651 path = btrfs_alloc_path(); 1652 if (!path) 1653 return -ENOMEM; 1654 1655 key.objectid = root->root_key.objectid; 1656 key.type = BTRFS_ROOT_REF_KEY; 1657 key.offset = (u64)-1; 1658 1659 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1660 &key, path, 0, 0); 1661 if (ret < 0) 1662 goto out; 1663 BUG_ON(ret == 0); 1664 1665 ret = 0; 1666 if (path->slots[0] > 0) { 1667 path->slots[0]--; 1668 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1669 if (key.objectid == root->root_key.objectid && 1670 key.type == BTRFS_ROOT_REF_KEY) 1671 ret = -ENOTEMPTY; 1672 } 1673 out: 1674 btrfs_free_path(path); 1675 return ret; 1676 } 1677 1678 static noinline int key_in_sk(struct btrfs_key *key, 1679 struct btrfs_ioctl_search_key *sk) 1680 { 1681 struct btrfs_key test; 1682 int ret; 1683 1684 test.objectid = sk->min_objectid; 1685 test.type = sk->min_type; 1686 test.offset = sk->min_offset; 1687 1688 ret = btrfs_comp_cpu_keys(key, &test); 1689 if (ret < 0) 1690 return 0; 1691 1692 test.objectid = sk->max_objectid; 1693 test.type = sk->max_type; 1694 test.offset = sk->max_offset; 1695 1696 ret = btrfs_comp_cpu_keys(key, &test); 1697 if (ret > 0) 1698 return 0; 1699 return 1; 1700 } 1701 1702 static noinline int copy_to_sk(struct btrfs_root *root, 1703 struct btrfs_path *path, 1704 struct btrfs_key *key, 1705 struct btrfs_ioctl_search_key *sk, 1706 char *buf, 1707 unsigned long *sk_offset, 1708 int *num_found) 1709 { 1710 u64 found_transid; 1711 struct extent_buffer *leaf; 1712 struct btrfs_ioctl_search_header sh; 1713 unsigned long item_off; 1714 unsigned long item_len; 1715 int nritems; 1716 int i; 1717 int slot; 1718 int ret = 0; 1719 1720 leaf = path->nodes[0]; 1721 slot = path->slots[0]; 1722 nritems = btrfs_header_nritems(leaf); 1723 1724 if (btrfs_header_generation(leaf) > sk->max_transid) { 1725 i = nritems; 1726 goto advance_key; 1727 } 1728 found_transid = btrfs_header_generation(leaf); 1729 1730 for (i = slot; i < nritems; i++) { 1731 item_off = btrfs_item_ptr_offset(leaf, i); 1732 item_len = btrfs_item_size_nr(leaf, i); 1733 1734 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1735 item_len = 0; 1736 1737 if (sizeof(sh) + item_len + *sk_offset > 1738 BTRFS_SEARCH_ARGS_BUFSIZE) { 1739 ret = 1; 1740 goto overflow; 1741 } 1742 1743 btrfs_item_key_to_cpu(leaf, key, i); 1744 if (!key_in_sk(key, sk)) 1745 continue; 1746 1747 sh.objectid = key->objectid; 1748 sh.offset = key->offset; 1749 sh.type = key->type; 1750 sh.len = item_len; 1751 sh.transid = found_transid; 1752 1753 /* copy search result header */ 1754 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1755 *sk_offset += sizeof(sh); 1756 1757 if (item_len) { 1758 char *p = buf + *sk_offset; 1759 /* copy the item */ 1760 read_extent_buffer(leaf, p, 1761 item_off, item_len); 1762 *sk_offset += item_len; 1763 } 1764 (*num_found)++; 1765 1766 if (*num_found >= sk->nr_items) 1767 break; 1768 } 1769 advance_key: 1770 ret = 0; 1771 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1772 key->offset++; 1773 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1774 key->offset = 0; 1775 key->type++; 1776 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1777 key->offset = 0; 1778 key->type = 0; 1779 key->objectid++; 1780 } else 1781 ret = 1; 1782 overflow: 1783 return ret; 1784 } 1785 1786 static noinline int search_ioctl(struct inode *inode, 1787 struct btrfs_ioctl_search_args *args) 1788 { 1789 struct btrfs_root *root; 1790 struct btrfs_key key; 1791 struct btrfs_key max_key; 1792 struct btrfs_path *path; 1793 struct btrfs_ioctl_search_key *sk = &args->key; 1794 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1795 int ret; 1796 int num_found = 0; 1797 unsigned long sk_offset = 0; 1798 1799 path = btrfs_alloc_path(); 1800 if (!path) 1801 return -ENOMEM; 1802 1803 if (sk->tree_id == 0) { 1804 /* search the root of the inode that was passed */ 1805 root = BTRFS_I(inode)->root; 1806 } else { 1807 key.objectid = sk->tree_id; 1808 key.type = BTRFS_ROOT_ITEM_KEY; 1809 key.offset = (u64)-1; 1810 root = btrfs_read_fs_root_no_name(info, &key); 1811 if (IS_ERR(root)) { 1812 printk(KERN_ERR "could not find root %llu\n", 1813 sk->tree_id); 1814 btrfs_free_path(path); 1815 return -ENOENT; 1816 } 1817 } 1818 1819 key.objectid = sk->min_objectid; 1820 key.type = sk->min_type; 1821 key.offset = sk->min_offset; 1822 1823 max_key.objectid = sk->max_objectid; 1824 max_key.type = sk->max_type; 1825 max_key.offset = sk->max_offset; 1826 1827 path->keep_locks = 1; 1828 1829 while(1) { 1830 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1831 sk->min_transid); 1832 if (ret != 0) { 1833 if (ret > 0) 1834 ret = 0; 1835 goto err; 1836 } 1837 ret = copy_to_sk(root, path, &key, sk, args->buf, 1838 &sk_offset, &num_found); 1839 btrfs_release_path(path); 1840 if (ret || num_found >= sk->nr_items) 1841 break; 1842 1843 } 1844 ret = 0; 1845 err: 1846 sk->nr_items = num_found; 1847 btrfs_free_path(path); 1848 return ret; 1849 } 1850 1851 static noinline int btrfs_ioctl_tree_search(struct file *file, 1852 void __user *argp) 1853 { 1854 struct btrfs_ioctl_search_args *args; 1855 struct inode *inode; 1856 int ret; 1857 1858 if (!capable(CAP_SYS_ADMIN)) 1859 return -EPERM; 1860 1861 args = memdup_user(argp, sizeof(*args)); 1862 if (IS_ERR(args)) 1863 return PTR_ERR(args); 1864 1865 inode = fdentry(file)->d_inode; 1866 ret = search_ioctl(inode, args); 1867 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1868 ret = -EFAULT; 1869 kfree(args); 1870 return ret; 1871 } 1872 1873 /* 1874 * Search INODE_REFs to identify path name of 'dirid' directory 1875 * in a 'tree_id' tree. and sets path name to 'name'. 1876 */ 1877 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1878 u64 tree_id, u64 dirid, char *name) 1879 { 1880 struct btrfs_root *root; 1881 struct btrfs_key key; 1882 char *ptr; 1883 int ret = -1; 1884 int slot; 1885 int len; 1886 int total_len = 0; 1887 struct btrfs_inode_ref *iref; 1888 struct extent_buffer *l; 1889 struct btrfs_path *path; 1890 1891 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1892 name[0]='\0'; 1893 return 0; 1894 } 1895 1896 path = btrfs_alloc_path(); 1897 if (!path) 1898 return -ENOMEM; 1899 1900 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1901 1902 key.objectid = tree_id; 1903 key.type = BTRFS_ROOT_ITEM_KEY; 1904 key.offset = (u64)-1; 1905 root = btrfs_read_fs_root_no_name(info, &key); 1906 if (IS_ERR(root)) { 1907 printk(KERN_ERR "could not find root %llu\n", tree_id); 1908 ret = -ENOENT; 1909 goto out; 1910 } 1911 1912 key.objectid = dirid; 1913 key.type = BTRFS_INODE_REF_KEY; 1914 key.offset = (u64)-1; 1915 1916 while(1) { 1917 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1918 if (ret < 0) 1919 goto out; 1920 1921 l = path->nodes[0]; 1922 slot = path->slots[0]; 1923 if (ret > 0 && slot > 0) 1924 slot--; 1925 btrfs_item_key_to_cpu(l, &key, slot); 1926 1927 if (ret > 0 && (key.objectid != dirid || 1928 key.type != BTRFS_INODE_REF_KEY)) { 1929 ret = -ENOENT; 1930 goto out; 1931 } 1932 1933 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1934 len = btrfs_inode_ref_name_len(l, iref); 1935 ptr -= len + 1; 1936 total_len += len + 1; 1937 if (ptr < name) 1938 goto out; 1939 1940 *(ptr + len) = '/'; 1941 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1942 1943 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1944 break; 1945 1946 btrfs_release_path(path); 1947 key.objectid = key.offset; 1948 key.offset = (u64)-1; 1949 dirid = key.objectid; 1950 } 1951 if (ptr < name) 1952 goto out; 1953 memmove(name, ptr, total_len); 1954 name[total_len]='\0'; 1955 ret = 0; 1956 out: 1957 btrfs_free_path(path); 1958 return ret; 1959 } 1960 1961 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1962 void __user *argp) 1963 { 1964 struct btrfs_ioctl_ino_lookup_args *args; 1965 struct inode *inode; 1966 int ret; 1967 1968 if (!capable(CAP_SYS_ADMIN)) 1969 return -EPERM; 1970 1971 args = memdup_user(argp, sizeof(*args)); 1972 if (IS_ERR(args)) 1973 return PTR_ERR(args); 1974 1975 inode = fdentry(file)->d_inode; 1976 1977 if (args->treeid == 0) 1978 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1979 1980 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1981 args->treeid, args->objectid, 1982 args->name); 1983 1984 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1985 ret = -EFAULT; 1986 1987 kfree(args); 1988 return ret; 1989 } 1990 1991 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1992 void __user *arg) 1993 { 1994 struct dentry *parent = fdentry(file); 1995 struct dentry *dentry; 1996 struct inode *dir = parent->d_inode; 1997 struct inode *inode; 1998 struct btrfs_root *root = BTRFS_I(dir)->root; 1999 struct btrfs_root *dest = NULL; 2000 struct btrfs_ioctl_vol_args *vol_args; 2001 struct btrfs_trans_handle *trans; 2002 int namelen; 2003 int ret; 2004 int err = 0; 2005 2006 vol_args = memdup_user(arg, sizeof(*vol_args)); 2007 if (IS_ERR(vol_args)) 2008 return PTR_ERR(vol_args); 2009 2010 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2011 namelen = strlen(vol_args->name); 2012 if (strchr(vol_args->name, '/') || 2013 strncmp(vol_args->name, "..", namelen) == 0) { 2014 err = -EINVAL; 2015 goto out; 2016 } 2017 2018 err = mnt_want_write_file(file); 2019 if (err) 2020 goto out; 2021 2022 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 2023 dentry = lookup_one_len(vol_args->name, parent, namelen); 2024 if (IS_ERR(dentry)) { 2025 err = PTR_ERR(dentry); 2026 goto out_unlock_dir; 2027 } 2028 2029 if (!dentry->d_inode) { 2030 err = -ENOENT; 2031 goto out_dput; 2032 } 2033 2034 inode = dentry->d_inode; 2035 dest = BTRFS_I(inode)->root; 2036 if (!capable(CAP_SYS_ADMIN)){ 2037 /* 2038 * Regular user. Only allow this with a special mount 2039 * option, when the user has write+exec access to the 2040 * subvol root, and when rmdir(2) would have been 2041 * allowed. 2042 * 2043 * Note that this is _not_ check that the subvol is 2044 * empty or doesn't contain data that we wouldn't 2045 * otherwise be able to delete. 2046 * 2047 * Users who want to delete empty subvols should try 2048 * rmdir(2). 2049 */ 2050 err = -EPERM; 2051 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2052 goto out_dput; 2053 2054 /* 2055 * Do not allow deletion if the parent dir is the same 2056 * as the dir to be deleted. That means the ioctl 2057 * must be called on the dentry referencing the root 2058 * of the subvol, not a random directory contained 2059 * within it. 2060 */ 2061 err = -EINVAL; 2062 if (root == dest) 2063 goto out_dput; 2064 2065 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2066 if (err) 2067 goto out_dput; 2068 2069 /* check if subvolume may be deleted by a non-root user */ 2070 err = btrfs_may_delete(dir, dentry, 1); 2071 if (err) 2072 goto out_dput; 2073 } 2074 2075 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2076 err = -EINVAL; 2077 goto out_dput; 2078 } 2079 2080 mutex_lock(&inode->i_mutex); 2081 err = d_invalidate(dentry); 2082 if (err) 2083 goto out_unlock; 2084 2085 down_write(&root->fs_info->subvol_sem); 2086 2087 err = may_destroy_subvol(dest); 2088 if (err) 2089 goto out_up_write; 2090 2091 trans = btrfs_start_transaction(root, 0); 2092 if (IS_ERR(trans)) { 2093 err = PTR_ERR(trans); 2094 goto out_up_write; 2095 } 2096 trans->block_rsv = &root->fs_info->global_block_rsv; 2097 2098 ret = btrfs_unlink_subvol(trans, root, dir, 2099 dest->root_key.objectid, 2100 dentry->d_name.name, 2101 dentry->d_name.len); 2102 if (ret) { 2103 err = ret; 2104 btrfs_abort_transaction(trans, root, ret); 2105 goto out_end_trans; 2106 } 2107 2108 btrfs_record_root_in_trans(trans, dest); 2109 2110 memset(&dest->root_item.drop_progress, 0, 2111 sizeof(dest->root_item.drop_progress)); 2112 dest->root_item.drop_level = 0; 2113 btrfs_set_root_refs(&dest->root_item, 0); 2114 2115 if (!xchg(&dest->orphan_item_inserted, 1)) { 2116 ret = btrfs_insert_orphan_item(trans, 2117 root->fs_info->tree_root, 2118 dest->root_key.objectid); 2119 if (ret) { 2120 btrfs_abort_transaction(trans, root, ret); 2121 err = ret; 2122 goto out_end_trans; 2123 } 2124 } 2125 out_end_trans: 2126 ret = btrfs_end_transaction(trans, root); 2127 if (ret && !err) 2128 err = ret; 2129 inode->i_flags |= S_DEAD; 2130 out_up_write: 2131 up_write(&root->fs_info->subvol_sem); 2132 out_unlock: 2133 mutex_unlock(&inode->i_mutex); 2134 if (!err) { 2135 shrink_dcache_sb(root->fs_info->sb); 2136 btrfs_invalidate_inodes(dest); 2137 d_delete(dentry); 2138 } 2139 out_dput: 2140 dput(dentry); 2141 out_unlock_dir: 2142 mutex_unlock(&dir->i_mutex); 2143 mnt_drop_write_file(file); 2144 out: 2145 kfree(vol_args); 2146 return err; 2147 } 2148 2149 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2150 { 2151 struct inode *inode = fdentry(file)->d_inode; 2152 struct btrfs_root *root = BTRFS_I(inode)->root; 2153 struct btrfs_ioctl_defrag_range_args *range; 2154 int ret; 2155 2156 if (btrfs_root_readonly(root)) 2157 return -EROFS; 2158 2159 ret = mnt_want_write_file(file); 2160 if (ret) 2161 return ret; 2162 2163 switch (inode->i_mode & S_IFMT) { 2164 case S_IFDIR: 2165 if (!capable(CAP_SYS_ADMIN)) { 2166 ret = -EPERM; 2167 goto out; 2168 } 2169 ret = btrfs_defrag_root(root, 0); 2170 if (ret) 2171 goto out; 2172 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 2173 break; 2174 case S_IFREG: 2175 if (!(file->f_mode & FMODE_WRITE)) { 2176 ret = -EINVAL; 2177 goto out; 2178 } 2179 2180 range = kzalloc(sizeof(*range), GFP_KERNEL); 2181 if (!range) { 2182 ret = -ENOMEM; 2183 goto out; 2184 } 2185 2186 if (argp) { 2187 if (copy_from_user(range, argp, 2188 sizeof(*range))) { 2189 ret = -EFAULT; 2190 kfree(range); 2191 goto out; 2192 } 2193 /* compression requires us to start the IO */ 2194 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2195 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2196 range->extent_thresh = (u32)-1; 2197 } 2198 } else { 2199 /* the rest are all set to zero by kzalloc */ 2200 range->len = (u64)-1; 2201 } 2202 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 2203 range, 0, 0); 2204 if (ret > 0) 2205 ret = 0; 2206 kfree(range); 2207 break; 2208 default: 2209 ret = -EINVAL; 2210 } 2211 out: 2212 mnt_drop_write_file(file); 2213 return ret; 2214 } 2215 2216 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2217 { 2218 struct btrfs_ioctl_vol_args *vol_args; 2219 int ret; 2220 2221 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2223 2224 mutex_lock(&root->fs_info->volume_mutex); 2225 if (root->fs_info->balance_ctl) { 2226 printk(KERN_INFO "btrfs: balance in progress\n"); 2227 ret = -EINVAL; 2228 goto out; 2229 } 2230 2231 vol_args = memdup_user(arg, sizeof(*vol_args)); 2232 if (IS_ERR(vol_args)) { 2233 ret = PTR_ERR(vol_args); 2234 goto out; 2235 } 2236 2237 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2238 ret = btrfs_init_new_device(root, vol_args->name); 2239 2240 kfree(vol_args); 2241 out: 2242 mutex_unlock(&root->fs_info->volume_mutex); 2243 return ret; 2244 } 2245 2246 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 2247 { 2248 struct btrfs_ioctl_vol_args *vol_args; 2249 int ret; 2250 2251 if (!capable(CAP_SYS_ADMIN)) 2252 return -EPERM; 2253 2254 if (root->fs_info->sb->s_flags & MS_RDONLY) 2255 return -EROFS; 2256 2257 mutex_lock(&root->fs_info->volume_mutex); 2258 if (root->fs_info->balance_ctl) { 2259 printk(KERN_INFO "btrfs: balance in progress\n"); 2260 ret = -EINVAL; 2261 goto out; 2262 } 2263 2264 vol_args = memdup_user(arg, sizeof(*vol_args)); 2265 if (IS_ERR(vol_args)) { 2266 ret = PTR_ERR(vol_args); 2267 goto out; 2268 } 2269 2270 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2271 ret = btrfs_rm_device(root, vol_args->name); 2272 2273 kfree(vol_args); 2274 out: 2275 mutex_unlock(&root->fs_info->volume_mutex); 2276 return ret; 2277 } 2278 2279 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2280 { 2281 struct btrfs_ioctl_fs_info_args *fi_args; 2282 struct btrfs_device *device; 2283 struct btrfs_device *next; 2284 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2285 int ret = 0; 2286 2287 if (!capable(CAP_SYS_ADMIN)) 2288 return -EPERM; 2289 2290 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2291 if (!fi_args) 2292 return -ENOMEM; 2293 2294 fi_args->num_devices = fs_devices->num_devices; 2295 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2296 2297 mutex_lock(&fs_devices->device_list_mutex); 2298 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2299 if (device->devid > fi_args->max_id) 2300 fi_args->max_id = device->devid; 2301 } 2302 mutex_unlock(&fs_devices->device_list_mutex); 2303 2304 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2305 ret = -EFAULT; 2306 2307 kfree(fi_args); 2308 return ret; 2309 } 2310 2311 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2312 { 2313 struct btrfs_ioctl_dev_info_args *di_args; 2314 struct btrfs_device *dev; 2315 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2316 int ret = 0; 2317 char *s_uuid = NULL; 2318 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2319 2320 if (!capable(CAP_SYS_ADMIN)) 2321 return -EPERM; 2322 2323 di_args = memdup_user(arg, sizeof(*di_args)); 2324 if (IS_ERR(di_args)) 2325 return PTR_ERR(di_args); 2326 2327 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2328 s_uuid = di_args->uuid; 2329 2330 mutex_lock(&fs_devices->device_list_mutex); 2331 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL); 2332 mutex_unlock(&fs_devices->device_list_mutex); 2333 2334 if (!dev) { 2335 ret = -ENODEV; 2336 goto out; 2337 } 2338 2339 di_args->devid = dev->devid; 2340 di_args->bytes_used = dev->bytes_used; 2341 di_args->total_bytes = dev->total_bytes; 2342 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2343 if (dev->name) { 2344 struct rcu_string *name; 2345 2346 rcu_read_lock(); 2347 name = rcu_dereference(dev->name); 2348 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2349 rcu_read_unlock(); 2350 di_args->path[sizeof(di_args->path) - 1] = 0; 2351 } else { 2352 di_args->path[0] = '\0'; 2353 } 2354 2355 out: 2356 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2357 ret = -EFAULT; 2358 2359 kfree(di_args); 2360 return ret; 2361 } 2362 2363 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2364 u64 off, u64 olen, u64 destoff) 2365 { 2366 struct inode *inode = fdentry(file)->d_inode; 2367 struct btrfs_root *root = BTRFS_I(inode)->root; 2368 struct fd src_file; 2369 struct inode *src; 2370 struct btrfs_trans_handle *trans; 2371 struct btrfs_path *path; 2372 struct extent_buffer *leaf; 2373 char *buf; 2374 struct btrfs_key key; 2375 u32 nritems; 2376 int slot; 2377 int ret; 2378 u64 len = olen; 2379 u64 bs = root->fs_info->sb->s_blocksize; 2380 2381 /* 2382 * TODO: 2383 * - split compressed inline extents. annoying: we need to 2384 * decompress into destination's address_space (the file offset 2385 * may change, so source mapping won't do), then recompress (or 2386 * otherwise reinsert) a subrange. 2387 * - allow ranges within the same file to be cloned (provided 2388 * they don't overlap)? 2389 */ 2390 2391 /* the destination must be opened for writing */ 2392 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2393 return -EINVAL; 2394 2395 if (btrfs_root_readonly(root)) 2396 return -EROFS; 2397 2398 ret = mnt_want_write_file(file); 2399 if (ret) 2400 return ret; 2401 2402 src_file = fdget(srcfd); 2403 if (!src_file.file) { 2404 ret = -EBADF; 2405 goto out_drop_write; 2406 } 2407 2408 ret = -EXDEV; 2409 if (src_file.file->f_path.mnt != file->f_path.mnt) 2410 goto out_fput; 2411 2412 src = src_file.file->f_dentry->d_inode; 2413 2414 ret = -EINVAL; 2415 if (src == inode) 2416 goto out_fput; 2417 2418 /* the src must be open for reading */ 2419 if (!(src_file.file->f_mode & FMODE_READ)) 2420 goto out_fput; 2421 2422 /* don't make the dst file partly checksummed */ 2423 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2424 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 2425 goto out_fput; 2426 2427 ret = -EISDIR; 2428 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2429 goto out_fput; 2430 2431 ret = -EXDEV; 2432 if (src->i_sb != inode->i_sb) 2433 goto out_fput; 2434 2435 ret = -ENOMEM; 2436 buf = vmalloc(btrfs_level_size(root, 0)); 2437 if (!buf) 2438 goto out_fput; 2439 2440 path = btrfs_alloc_path(); 2441 if (!path) { 2442 vfree(buf); 2443 goto out_fput; 2444 } 2445 path->reada = 2; 2446 2447 if (inode < src) { 2448 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2449 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2450 } else { 2451 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2452 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2453 } 2454 2455 /* determine range to clone */ 2456 ret = -EINVAL; 2457 if (off + len > src->i_size || off + len < off) 2458 goto out_unlock; 2459 if (len == 0) 2460 olen = len = src->i_size - off; 2461 /* if we extend to eof, continue to block boundary */ 2462 if (off + len == src->i_size) 2463 len = ALIGN(src->i_size, bs) - off; 2464 2465 /* verify the end result is block aligned */ 2466 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2467 !IS_ALIGNED(destoff, bs)) 2468 goto out_unlock; 2469 2470 if (destoff > inode->i_size) { 2471 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 2472 if (ret) 2473 goto out_unlock; 2474 } 2475 2476 /* truncate page cache pages from target inode range */ 2477 truncate_inode_pages_range(&inode->i_data, destoff, 2478 PAGE_CACHE_ALIGN(destoff + len) - 1); 2479 2480 /* do any pending delalloc/csum calc on src, one way or 2481 another, and lock file content */ 2482 while (1) { 2483 struct btrfs_ordered_extent *ordered; 2484 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2485 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1); 2486 if (!ordered && 2487 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1, 2488 EXTENT_DELALLOC, 0, NULL)) 2489 break; 2490 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2491 if (ordered) 2492 btrfs_put_ordered_extent(ordered); 2493 btrfs_wait_ordered_range(src, off, len); 2494 } 2495 2496 /* clone data */ 2497 key.objectid = btrfs_ino(src); 2498 key.type = BTRFS_EXTENT_DATA_KEY; 2499 key.offset = 0; 2500 2501 while (1) { 2502 /* 2503 * note the key will change type as we walk through the 2504 * tree. 2505 */ 2506 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 2507 0, 0); 2508 if (ret < 0) 2509 goto out; 2510 2511 nritems = btrfs_header_nritems(path->nodes[0]); 2512 if (path->slots[0] >= nritems) { 2513 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 2514 if (ret < 0) 2515 goto out; 2516 if (ret > 0) 2517 break; 2518 nritems = btrfs_header_nritems(path->nodes[0]); 2519 } 2520 leaf = path->nodes[0]; 2521 slot = path->slots[0]; 2522 2523 btrfs_item_key_to_cpu(leaf, &key, slot); 2524 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2525 key.objectid != btrfs_ino(src)) 2526 break; 2527 2528 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2529 struct btrfs_file_extent_item *extent; 2530 int type; 2531 u32 size; 2532 struct btrfs_key new_key; 2533 u64 disko = 0, diskl = 0; 2534 u64 datao = 0, datal = 0; 2535 u8 comp; 2536 u64 endoff; 2537 2538 size = btrfs_item_size_nr(leaf, slot); 2539 read_extent_buffer(leaf, buf, 2540 btrfs_item_ptr_offset(leaf, slot), 2541 size); 2542 2543 extent = btrfs_item_ptr(leaf, slot, 2544 struct btrfs_file_extent_item); 2545 comp = btrfs_file_extent_compression(leaf, extent); 2546 type = btrfs_file_extent_type(leaf, extent); 2547 if (type == BTRFS_FILE_EXTENT_REG || 2548 type == BTRFS_FILE_EXTENT_PREALLOC) { 2549 disko = btrfs_file_extent_disk_bytenr(leaf, 2550 extent); 2551 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2552 extent); 2553 datao = btrfs_file_extent_offset(leaf, extent); 2554 datal = btrfs_file_extent_num_bytes(leaf, 2555 extent); 2556 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2557 /* take upper bound, may be compressed */ 2558 datal = btrfs_file_extent_ram_bytes(leaf, 2559 extent); 2560 } 2561 btrfs_release_path(path); 2562 2563 if (key.offset + datal <= off || 2564 key.offset >= off + len - 1) 2565 goto next; 2566 2567 memcpy(&new_key, &key, sizeof(new_key)); 2568 new_key.objectid = btrfs_ino(inode); 2569 if (off <= key.offset) 2570 new_key.offset = key.offset + destoff - off; 2571 else 2572 new_key.offset = destoff; 2573 2574 /* 2575 * 1 - adjusting old extent (we may have to split it) 2576 * 1 - add new extent 2577 * 1 - inode update 2578 */ 2579 trans = btrfs_start_transaction(root, 3); 2580 if (IS_ERR(trans)) { 2581 ret = PTR_ERR(trans); 2582 goto out; 2583 } 2584 2585 if (type == BTRFS_FILE_EXTENT_REG || 2586 type == BTRFS_FILE_EXTENT_PREALLOC) { 2587 /* 2588 * a | --- range to clone ---| b 2589 * | ------------- extent ------------- | 2590 */ 2591 2592 /* substract range b */ 2593 if (key.offset + datal > off + len) 2594 datal = off + len - key.offset; 2595 2596 /* substract range a */ 2597 if (off > key.offset) { 2598 datao += off - key.offset; 2599 datal -= off - key.offset; 2600 } 2601 2602 ret = btrfs_drop_extents(trans, root, inode, 2603 new_key.offset, 2604 new_key.offset + datal, 2605 1); 2606 if (ret) { 2607 btrfs_abort_transaction(trans, root, 2608 ret); 2609 btrfs_end_transaction(trans, root); 2610 goto out; 2611 } 2612 2613 ret = btrfs_insert_empty_item(trans, root, path, 2614 &new_key, size); 2615 if (ret) { 2616 btrfs_abort_transaction(trans, root, 2617 ret); 2618 btrfs_end_transaction(trans, root); 2619 goto out; 2620 } 2621 2622 leaf = path->nodes[0]; 2623 slot = path->slots[0]; 2624 write_extent_buffer(leaf, buf, 2625 btrfs_item_ptr_offset(leaf, slot), 2626 size); 2627 2628 extent = btrfs_item_ptr(leaf, slot, 2629 struct btrfs_file_extent_item); 2630 2631 /* disko == 0 means it's a hole */ 2632 if (!disko) 2633 datao = 0; 2634 2635 btrfs_set_file_extent_offset(leaf, extent, 2636 datao); 2637 btrfs_set_file_extent_num_bytes(leaf, extent, 2638 datal); 2639 if (disko) { 2640 inode_add_bytes(inode, datal); 2641 ret = btrfs_inc_extent_ref(trans, root, 2642 disko, diskl, 0, 2643 root->root_key.objectid, 2644 btrfs_ino(inode), 2645 new_key.offset - datao, 2646 0); 2647 if (ret) { 2648 btrfs_abort_transaction(trans, 2649 root, 2650 ret); 2651 btrfs_end_transaction(trans, 2652 root); 2653 goto out; 2654 2655 } 2656 } 2657 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2658 u64 skip = 0; 2659 u64 trim = 0; 2660 if (off > key.offset) { 2661 skip = off - key.offset; 2662 new_key.offset += skip; 2663 } 2664 2665 if (key.offset + datal > off + len) 2666 trim = key.offset + datal - (off + len); 2667 2668 if (comp && (skip || trim)) { 2669 ret = -EINVAL; 2670 btrfs_end_transaction(trans, root); 2671 goto out; 2672 } 2673 size -= skip + trim; 2674 datal -= skip + trim; 2675 2676 ret = btrfs_drop_extents(trans, root, inode, 2677 new_key.offset, 2678 new_key.offset + datal, 2679 1); 2680 if (ret) { 2681 btrfs_abort_transaction(trans, root, 2682 ret); 2683 btrfs_end_transaction(trans, root); 2684 goto out; 2685 } 2686 2687 ret = btrfs_insert_empty_item(trans, root, path, 2688 &new_key, size); 2689 if (ret) { 2690 btrfs_abort_transaction(trans, root, 2691 ret); 2692 btrfs_end_transaction(trans, root); 2693 goto out; 2694 } 2695 2696 if (skip) { 2697 u32 start = 2698 btrfs_file_extent_calc_inline_size(0); 2699 memmove(buf+start, buf+start+skip, 2700 datal); 2701 } 2702 2703 leaf = path->nodes[0]; 2704 slot = path->slots[0]; 2705 write_extent_buffer(leaf, buf, 2706 btrfs_item_ptr_offset(leaf, slot), 2707 size); 2708 inode_add_bytes(inode, datal); 2709 } 2710 2711 btrfs_mark_buffer_dirty(leaf); 2712 btrfs_release_path(path); 2713 2714 inode_inc_iversion(inode); 2715 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2716 2717 /* 2718 * we round up to the block size at eof when 2719 * determining which extents to clone above, 2720 * but shouldn't round up the file size 2721 */ 2722 endoff = new_key.offset + datal; 2723 if (endoff > destoff+olen) 2724 endoff = destoff+olen; 2725 if (endoff > inode->i_size) 2726 btrfs_i_size_write(inode, endoff); 2727 2728 ret = btrfs_update_inode(trans, root, inode); 2729 if (ret) { 2730 btrfs_abort_transaction(trans, root, ret); 2731 btrfs_end_transaction(trans, root); 2732 goto out; 2733 } 2734 ret = btrfs_end_transaction(trans, root); 2735 } 2736 next: 2737 btrfs_release_path(path); 2738 key.offset++; 2739 } 2740 ret = 0; 2741 out: 2742 btrfs_release_path(path); 2743 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2744 out_unlock: 2745 mutex_unlock(&src->i_mutex); 2746 mutex_unlock(&inode->i_mutex); 2747 vfree(buf); 2748 btrfs_free_path(path); 2749 out_fput: 2750 fdput(src_file); 2751 out_drop_write: 2752 mnt_drop_write_file(file); 2753 return ret; 2754 } 2755 2756 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2757 { 2758 struct btrfs_ioctl_clone_range_args args; 2759 2760 if (copy_from_user(&args, argp, sizeof(args))) 2761 return -EFAULT; 2762 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2763 args.src_length, args.dest_offset); 2764 } 2765 2766 /* 2767 * there are many ways the trans_start and trans_end ioctls can lead 2768 * to deadlocks. They should only be used by applications that 2769 * basically own the machine, and have a very in depth understanding 2770 * of all the possible deadlocks and enospc problems. 2771 */ 2772 static long btrfs_ioctl_trans_start(struct file *file) 2773 { 2774 struct inode *inode = fdentry(file)->d_inode; 2775 struct btrfs_root *root = BTRFS_I(inode)->root; 2776 struct btrfs_trans_handle *trans; 2777 int ret; 2778 2779 ret = -EPERM; 2780 if (!capable(CAP_SYS_ADMIN)) 2781 goto out; 2782 2783 ret = -EINPROGRESS; 2784 if (file->private_data) 2785 goto out; 2786 2787 ret = -EROFS; 2788 if (btrfs_root_readonly(root)) 2789 goto out; 2790 2791 ret = mnt_want_write_file(file); 2792 if (ret) 2793 goto out; 2794 2795 atomic_inc(&root->fs_info->open_ioctl_trans); 2796 2797 ret = -ENOMEM; 2798 trans = btrfs_start_ioctl_transaction(root); 2799 if (IS_ERR(trans)) 2800 goto out_drop; 2801 2802 file->private_data = trans; 2803 return 0; 2804 2805 out_drop: 2806 atomic_dec(&root->fs_info->open_ioctl_trans); 2807 mnt_drop_write_file(file); 2808 out: 2809 return ret; 2810 } 2811 2812 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2813 { 2814 struct inode *inode = fdentry(file)->d_inode; 2815 struct btrfs_root *root = BTRFS_I(inode)->root; 2816 struct btrfs_root *new_root; 2817 struct btrfs_dir_item *di; 2818 struct btrfs_trans_handle *trans; 2819 struct btrfs_path *path; 2820 struct btrfs_key location; 2821 struct btrfs_disk_key disk_key; 2822 u64 objectid = 0; 2823 u64 dir_id; 2824 2825 if (!capable(CAP_SYS_ADMIN)) 2826 return -EPERM; 2827 2828 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2829 return -EFAULT; 2830 2831 if (!objectid) 2832 objectid = root->root_key.objectid; 2833 2834 location.objectid = objectid; 2835 location.type = BTRFS_ROOT_ITEM_KEY; 2836 location.offset = (u64)-1; 2837 2838 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2839 if (IS_ERR(new_root)) 2840 return PTR_ERR(new_root); 2841 2842 if (btrfs_root_refs(&new_root->root_item) == 0) 2843 return -ENOENT; 2844 2845 path = btrfs_alloc_path(); 2846 if (!path) 2847 return -ENOMEM; 2848 path->leave_spinning = 1; 2849 2850 trans = btrfs_start_transaction(root, 1); 2851 if (IS_ERR(trans)) { 2852 btrfs_free_path(path); 2853 return PTR_ERR(trans); 2854 } 2855 2856 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 2857 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2858 dir_id, "default", 7, 1); 2859 if (IS_ERR_OR_NULL(di)) { 2860 btrfs_free_path(path); 2861 btrfs_end_transaction(trans, root); 2862 printk(KERN_ERR "Umm, you don't have the default dir item, " 2863 "this isn't going to work\n"); 2864 return -ENOENT; 2865 } 2866 2867 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2868 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2869 btrfs_mark_buffer_dirty(path->nodes[0]); 2870 btrfs_free_path(path); 2871 2872 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 2873 btrfs_end_transaction(trans, root); 2874 2875 return 0; 2876 } 2877 2878 void btrfs_get_block_group_info(struct list_head *groups_list, 2879 struct btrfs_ioctl_space_info *space) 2880 { 2881 struct btrfs_block_group_cache *block_group; 2882 2883 space->total_bytes = 0; 2884 space->used_bytes = 0; 2885 space->flags = 0; 2886 list_for_each_entry(block_group, groups_list, list) { 2887 space->flags = block_group->flags; 2888 space->total_bytes += block_group->key.offset; 2889 space->used_bytes += 2890 btrfs_block_group_used(&block_group->item); 2891 } 2892 } 2893 2894 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2895 { 2896 struct btrfs_ioctl_space_args space_args; 2897 struct btrfs_ioctl_space_info space; 2898 struct btrfs_ioctl_space_info *dest; 2899 struct btrfs_ioctl_space_info *dest_orig; 2900 struct btrfs_ioctl_space_info __user *user_dest; 2901 struct btrfs_space_info *info; 2902 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2903 BTRFS_BLOCK_GROUP_SYSTEM, 2904 BTRFS_BLOCK_GROUP_METADATA, 2905 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2906 int num_types = 4; 2907 int alloc_size; 2908 int ret = 0; 2909 u64 slot_count = 0; 2910 int i, c; 2911 2912 if (copy_from_user(&space_args, 2913 (struct btrfs_ioctl_space_args __user *)arg, 2914 sizeof(space_args))) 2915 return -EFAULT; 2916 2917 for (i = 0; i < num_types; i++) { 2918 struct btrfs_space_info *tmp; 2919 2920 info = NULL; 2921 rcu_read_lock(); 2922 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2923 list) { 2924 if (tmp->flags == types[i]) { 2925 info = tmp; 2926 break; 2927 } 2928 } 2929 rcu_read_unlock(); 2930 2931 if (!info) 2932 continue; 2933 2934 down_read(&info->groups_sem); 2935 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2936 if (!list_empty(&info->block_groups[c])) 2937 slot_count++; 2938 } 2939 up_read(&info->groups_sem); 2940 } 2941 2942 /* space_slots == 0 means they are asking for a count */ 2943 if (space_args.space_slots == 0) { 2944 space_args.total_spaces = slot_count; 2945 goto out; 2946 } 2947 2948 slot_count = min_t(u64, space_args.space_slots, slot_count); 2949 2950 alloc_size = sizeof(*dest) * slot_count; 2951 2952 /* we generally have at most 6 or so space infos, one for each raid 2953 * level. So, a whole page should be more than enough for everyone 2954 */ 2955 if (alloc_size > PAGE_CACHE_SIZE) 2956 return -ENOMEM; 2957 2958 space_args.total_spaces = 0; 2959 dest = kmalloc(alloc_size, GFP_NOFS); 2960 if (!dest) 2961 return -ENOMEM; 2962 dest_orig = dest; 2963 2964 /* now we have a buffer to copy into */ 2965 for (i = 0; i < num_types; i++) { 2966 struct btrfs_space_info *tmp; 2967 2968 if (!slot_count) 2969 break; 2970 2971 info = NULL; 2972 rcu_read_lock(); 2973 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2974 list) { 2975 if (tmp->flags == types[i]) { 2976 info = tmp; 2977 break; 2978 } 2979 } 2980 rcu_read_unlock(); 2981 2982 if (!info) 2983 continue; 2984 down_read(&info->groups_sem); 2985 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2986 if (!list_empty(&info->block_groups[c])) { 2987 btrfs_get_block_group_info( 2988 &info->block_groups[c], &space); 2989 memcpy(dest, &space, sizeof(space)); 2990 dest++; 2991 space_args.total_spaces++; 2992 slot_count--; 2993 } 2994 if (!slot_count) 2995 break; 2996 } 2997 up_read(&info->groups_sem); 2998 } 2999 3000 user_dest = (struct btrfs_ioctl_space_info __user *) 3001 (arg + sizeof(struct btrfs_ioctl_space_args)); 3002 3003 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3004 ret = -EFAULT; 3005 3006 kfree(dest_orig); 3007 out: 3008 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3009 ret = -EFAULT; 3010 3011 return ret; 3012 } 3013 3014 /* 3015 * there are many ways the trans_start and trans_end ioctls can lead 3016 * to deadlocks. They should only be used by applications that 3017 * basically own the machine, and have a very in depth understanding 3018 * of all the possible deadlocks and enospc problems. 3019 */ 3020 long btrfs_ioctl_trans_end(struct file *file) 3021 { 3022 struct inode *inode = fdentry(file)->d_inode; 3023 struct btrfs_root *root = BTRFS_I(inode)->root; 3024 struct btrfs_trans_handle *trans; 3025 3026 trans = file->private_data; 3027 if (!trans) 3028 return -EINVAL; 3029 file->private_data = NULL; 3030 3031 btrfs_end_transaction(trans, root); 3032 3033 atomic_dec(&root->fs_info->open_ioctl_trans); 3034 3035 mnt_drop_write_file(file); 3036 return 0; 3037 } 3038 3039 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 3040 { 3041 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 3042 struct btrfs_trans_handle *trans; 3043 u64 transid; 3044 int ret; 3045 3046 trans = btrfs_start_transaction(root, 0); 3047 if (IS_ERR(trans)) 3048 return PTR_ERR(trans); 3049 transid = trans->transid; 3050 ret = btrfs_commit_transaction_async(trans, root, 0); 3051 if (ret) { 3052 btrfs_end_transaction(trans, root); 3053 return ret; 3054 } 3055 3056 if (argp) 3057 if (copy_to_user(argp, &transid, sizeof(transid))) 3058 return -EFAULT; 3059 return 0; 3060 } 3061 3062 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 3063 { 3064 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 3065 u64 transid; 3066 3067 if (argp) { 3068 if (copy_from_user(&transid, argp, sizeof(transid))) 3069 return -EFAULT; 3070 } else { 3071 transid = 0; /* current trans */ 3072 } 3073 return btrfs_wait_for_commit(root, transid); 3074 } 3075 3076 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg) 3077 { 3078 int ret; 3079 struct btrfs_ioctl_scrub_args *sa; 3080 3081 if (!capable(CAP_SYS_ADMIN)) 3082 return -EPERM; 3083 3084 sa = memdup_user(arg, sizeof(*sa)); 3085 if (IS_ERR(sa)) 3086 return PTR_ERR(sa); 3087 3088 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end, 3089 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY); 3090 3091 if (copy_to_user(arg, sa, sizeof(*sa))) 3092 ret = -EFAULT; 3093 3094 kfree(sa); 3095 return ret; 3096 } 3097 3098 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3099 { 3100 if (!capable(CAP_SYS_ADMIN)) 3101 return -EPERM; 3102 3103 return btrfs_scrub_cancel(root); 3104 } 3105 3106 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3107 void __user *arg) 3108 { 3109 struct btrfs_ioctl_scrub_args *sa; 3110 int ret; 3111 3112 if (!capable(CAP_SYS_ADMIN)) 3113 return -EPERM; 3114 3115 sa = memdup_user(arg, sizeof(*sa)); 3116 if (IS_ERR(sa)) 3117 return PTR_ERR(sa); 3118 3119 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3120 3121 if (copy_to_user(arg, sa, sizeof(*sa))) 3122 ret = -EFAULT; 3123 3124 kfree(sa); 3125 return ret; 3126 } 3127 3128 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3129 void __user *arg) 3130 { 3131 struct btrfs_ioctl_get_dev_stats *sa; 3132 int ret; 3133 3134 sa = memdup_user(arg, sizeof(*sa)); 3135 if (IS_ERR(sa)) 3136 return PTR_ERR(sa); 3137 3138 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3139 kfree(sa); 3140 return -EPERM; 3141 } 3142 3143 ret = btrfs_get_dev_stats(root, sa); 3144 3145 if (copy_to_user(arg, sa, sizeof(*sa))) 3146 ret = -EFAULT; 3147 3148 kfree(sa); 3149 return ret; 3150 } 3151 3152 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3153 { 3154 int ret = 0; 3155 int i; 3156 u64 rel_ptr; 3157 int size; 3158 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3159 struct inode_fs_paths *ipath = NULL; 3160 struct btrfs_path *path; 3161 3162 if (!capable(CAP_SYS_ADMIN)) 3163 return -EPERM; 3164 3165 path = btrfs_alloc_path(); 3166 if (!path) { 3167 ret = -ENOMEM; 3168 goto out; 3169 } 3170 3171 ipa = memdup_user(arg, sizeof(*ipa)); 3172 if (IS_ERR(ipa)) { 3173 ret = PTR_ERR(ipa); 3174 ipa = NULL; 3175 goto out; 3176 } 3177 3178 size = min_t(u32, ipa->size, 4096); 3179 ipath = init_ipath(size, root, path); 3180 if (IS_ERR(ipath)) { 3181 ret = PTR_ERR(ipath); 3182 ipath = NULL; 3183 goto out; 3184 } 3185 3186 ret = paths_from_inode(ipa->inum, ipath); 3187 if (ret < 0) 3188 goto out; 3189 3190 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3191 rel_ptr = ipath->fspath->val[i] - 3192 (u64)(unsigned long)ipath->fspath->val; 3193 ipath->fspath->val[i] = rel_ptr; 3194 } 3195 3196 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3197 (void *)(unsigned long)ipath->fspath, size); 3198 if (ret) { 3199 ret = -EFAULT; 3200 goto out; 3201 } 3202 3203 out: 3204 btrfs_free_path(path); 3205 free_ipath(ipath); 3206 kfree(ipa); 3207 3208 return ret; 3209 } 3210 3211 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3212 { 3213 struct btrfs_data_container *inodes = ctx; 3214 const size_t c = 3 * sizeof(u64); 3215 3216 if (inodes->bytes_left >= c) { 3217 inodes->bytes_left -= c; 3218 inodes->val[inodes->elem_cnt] = inum; 3219 inodes->val[inodes->elem_cnt + 1] = offset; 3220 inodes->val[inodes->elem_cnt + 2] = root; 3221 inodes->elem_cnt += 3; 3222 } else { 3223 inodes->bytes_missing += c - inodes->bytes_left; 3224 inodes->bytes_left = 0; 3225 inodes->elem_missed += 3; 3226 } 3227 3228 return 0; 3229 } 3230 3231 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3232 void __user *arg) 3233 { 3234 int ret = 0; 3235 int size; 3236 struct btrfs_ioctl_logical_ino_args *loi; 3237 struct btrfs_data_container *inodes = NULL; 3238 struct btrfs_path *path = NULL; 3239 3240 if (!capable(CAP_SYS_ADMIN)) 3241 return -EPERM; 3242 3243 loi = memdup_user(arg, sizeof(*loi)); 3244 if (IS_ERR(loi)) { 3245 ret = PTR_ERR(loi); 3246 loi = NULL; 3247 goto out; 3248 } 3249 3250 path = btrfs_alloc_path(); 3251 if (!path) { 3252 ret = -ENOMEM; 3253 goto out; 3254 } 3255 3256 size = min_t(u32, loi->size, 64 * 1024); 3257 inodes = init_data_container(size); 3258 if (IS_ERR(inodes)) { 3259 ret = PTR_ERR(inodes); 3260 inodes = NULL; 3261 goto out; 3262 } 3263 3264 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 3265 build_ino_list, inodes); 3266 if (ret == -EINVAL) 3267 ret = -ENOENT; 3268 if (ret < 0) 3269 goto out; 3270 3271 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3272 (void *)(unsigned long)inodes, size); 3273 if (ret) 3274 ret = -EFAULT; 3275 3276 out: 3277 btrfs_free_path(path); 3278 vfree(inodes); 3279 kfree(loi); 3280 3281 return ret; 3282 } 3283 3284 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3285 struct btrfs_ioctl_balance_args *bargs) 3286 { 3287 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3288 3289 bargs->flags = bctl->flags; 3290 3291 if (atomic_read(&fs_info->balance_running)) 3292 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3293 if (atomic_read(&fs_info->balance_pause_req)) 3294 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3295 if (atomic_read(&fs_info->balance_cancel_req)) 3296 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3297 3298 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3299 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3300 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3301 3302 if (lock) { 3303 spin_lock(&fs_info->balance_lock); 3304 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3305 spin_unlock(&fs_info->balance_lock); 3306 } else { 3307 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3308 } 3309 } 3310 3311 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3312 { 3313 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3314 struct btrfs_fs_info *fs_info = root->fs_info; 3315 struct btrfs_ioctl_balance_args *bargs; 3316 struct btrfs_balance_control *bctl; 3317 int ret; 3318 3319 if (!capable(CAP_SYS_ADMIN)) 3320 return -EPERM; 3321 3322 ret = mnt_want_write_file(file); 3323 if (ret) 3324 return ret; 3325 3326 mutex_lock(&fs_info->volume_mutex); 3327 mutex_lock(&fs_info->balance_mutex); 3328 3329 if (arg) { 3330 bargs = memdup_user(arg, sizeof(*bargs)); 3331 if (IS_ERR(bargs)) { 3332 ret = PTR_ERR(bargs); 3333 goto out; 3334 } 3335 3336 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3337 if (!fs_info->balance_ctl) { 3338 ret = -ENOTCONN; 3339 goto out_bargs; 3340 } 3341 3342 bctl = fs_info->balance_ctl; 3343 spin_lock(&fs_info->balance_lock); 3344 bctl->flags |= BTRFS_BALANCE_RESUME; 3345 spin_unlock(&fs_info->balance_lock); 3346 3347 goto do_balance; 3348 } 3349 } else { 3350 bargs = NULL; 3351 } 3352 3353 if (fs_info->balance_ctl) { 3354 ret = -EINPROGRESS; 3355 goto out_bargs; 3356 } 3357 3358 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3359 if (!bctl) { 3360 ret = -ENOMEM; 3361 goto out_bargs; 3362 } 3363 3364 bctl->fs_info = fs_info; 3365 if (arg) { 3366 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3367 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3368 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3369 3370 bctl->flags = bargs->flags; 3371 } else { 3372 /* balance everything - no filters */ 3373 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3374 } 3375 3376 do_balance: 3377 ret = btrfs_balance(bctl, bargs); 3378 /* 3379 * bctl is freed in __cancel_balance or in free_fs_info if 3380 * restriper was paused all the way until unmount 3381 */ 3382 if (arg) { 3383 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3384 ret = -EFAULT; 3385 } 3386 3387 out_bargs: 3388 kfree(bargs); 3389 out: 3390 mutex_unlock(&fs_info->balance_mutex); 3391 mutex_unlock(&fs_info->volume_mutex); 3392 mnt_drop_write_file(file); 3393 return ret; 3394 } 3395 3396 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 3397 { 3398 if (!capable(CAP_SYS_ADMIN)) 3399 return -EPERM; 3400 3401 switch (cmd) { 3402 case BTRFS_BALANCE_CTL_PAUSE: 3403 return btrfs_pause_balance(root->fs_info); 3404 case BTRFS_BALANCE_CTL_CANCEL: 3405 return btrfs_cancel_balance(root->fs_info); 3406 } 3407 3408 return -EINVAL; 3409 } 3410 3411 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 3412 void __user *arg) 3413 { 3414 struct btrfs_fs_info *fs_info = root->fs_info; 3415 struct btrfs_ioctl_balance_args *bargs; 3416 int ret = 0; 3417 3418 if (!capable(CAP_SYS_ADMIN)) 3419 return -EPERM; 3420 3421 mutex_lock(&fs_info->balance_mutex); 3422 if (!fs_info->balance_ctl) { 3423 ret = -ENOTCONN; 3424 goto out; 3425 } 3426 3427 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 3428 if (!bargs) { 3429 ret = -ENOMEM; 3430 goto out; 3431 } 3432 3433 update_ioctl_balance_args(fs_info, 1, bargs); 3434 3435 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3436 ret = -EFAULT; 3437 3438 kfree(bargs); 3439 out: 3440 mutex_unlock(&fs_info->balance_mutex); 3441 return ret; 3442 } 3443 3444 static long btrfs_ioctl_quota_ctl(struct btrfs_root *root, void __user *arg) 3445 { 3446 struct btrfs_ioctl_quota_ctl_args *sa; 3447 struct btrfs_trans_handle *trans = NULL; 3448 int ret; 3449 int err; 3450 3451 if (!capable(CAP_SYS_ADMIN)) 3452 return -EPERM; 3453 3454 if (root->fs_info->sb->s_flags & MS_RDONLY) 3455 return -EROFS; 3456 3457 sa = memdup_user(arg, sizeof(*sa)); 3458 if (IS_ERR(sa)) 3459 return PTR_ERR(sa); 3460 3461 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) { 3462 trans = btrfs_start_transaction(root, 2); 3463 if (IS_ERR(trans)) { 3464 ret = PTR_ERR(trans); 3465 goto out; 3466 } 3467 } 3468 3469 switch (sa->cmd) { 3470 case BTRFS_QUOTA_CTL_ENABLE: 3471 ret = btrfs_quota_enable(trans, root->fs_info); 3472 break; 3473 case BTRFS_QUOTA_CTL_DISABLE: 3474 ret = btrfs_quota_disable(trans, root->fs_info); 3475 break; 3476 case BTRFS_QUOTA_CTL_RESCAN: 3477 ret = btrfs_quota_rescan(root->fs_info); 3478 break; 3479 default: 3480 ret = -EINVAL; 3481 break; 3482 } 3483 3484 if (copy_to_user(arg, sa, sizeof(*sa))) 3485 ret = -EFAULT; 3486 3487 if (trans) { 3488 err = btrfs_commit_transaction(trans, root); 3489 if (err && !ret) 3490 ret = err; 3491 } 3492 3493 out: 3494 kfree(sa); 3495 return ret; 3496 } 3497 3498 static long btrfs_ioctl_qgroup_assign(struct btrfs_root *root, void __user *arg) 3499 { 3500 struct btrfs_ioctl_qgroup_assign_args *sa; 3501 struct btrfs_trans_handle *trans; 3502 int ret; 3503 int err; 3504 3505 if (!capable(CAP_SYS_ADMIN)) 3506 return -EPERM; 3507 3508 if (root->fs_info->sb->s_flags & MS_RDONLY) 3509 return -EROFS; 3510 3511 sa = memdup_user(arg, sizeof(*sa)); 3512 if (IS_ERR(sa)) 3513 return PTR_ERR(sa); 3514 3515 trans = btrfs_join_transaction(root); 3516 if (IS_ERR(trans)) { 3517 ret = PTR_ERR(trans); 3518 goto out; 3519 } 3520 3521 /* FIXME: check if the IDs really exist */ 3522 if (sa->assign) { 3523 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 3524 sa->src, sa->dst); 3525 } else { 3526 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 3527 sa->src, sa->dst); 3528 } 3529 3530 err = btrfs_end_transaction(trans, root); 3531 if (err && !ret) 3532 ret = err; 3533 3534 out: 3535 kfree(sa); 3536 return ret; 3537 } 3538 3539 static long btrfs_ioctl_qgroup_create(struct btrfs_root *root, void __user *arg) 3540 { 3541 struct btrfs_ioctl_qgroup_create_args *sa; 3542 struct btrfs_trans_handle *trans; 3543 int ret; 3544 int err; 3545 3546 if (!capable(CAP_SYS_ADMIN)) 3547 return -EPERM; 3548 3549 if (root->fs_info->sb->s_flags & MS_RDONLY) 3550 return -EROFS; 3551 3552 sa = memdup_user(arg, sizeof(*sa)); 3553 if (IS_ERR(sa)) 3554 return PTR_ERR(sa); 3555 3556 trans = btrfs_join_transaction(root); 3557 if (IS_ERR(trans)) { 3558 ret = PTR_ERR(trans); 3559 goto out; 3560 } 3561 3562 /* FIXME: check if the IDs really exist */ 3563 if (sa->create) { 3564 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 3565 NULL); 3566 } else { 3567 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 3568 } 3569 3570 err = btrfs_end_transaction(trans, root); 3571 if (err && !ret) 3572 ret = err; 3573 3574 out: 3575 kfree(sa); 3576 return ret; 3577 } 3578 3579 static long btrfs_ioctl_qgroup_limit(struct btrfs_root *root, void __user *arg) 3580 { 3581 struct btrfs_ioctl_qgroup_limit_args *sa; 3582 struct btrfs_trans_handle *trans; 3583 int ret; 3584 int err; 3585 u64 qgroupid; 3586 3587 if (!capable(CAP_SYS_ADMIN)) 3588 return -EPERM; 3589 3590 if (root->fs_info->sb->s_flags & MS_RDONLY) 3591 return -EROFS; 3592 3593 sa = memdup_user(arg, sizeof(*sa)); 3594 if (IS_ERR(sa)) 3595 return PTR_ERR(sa); 3596 3597 trans = btrfs_join_transaction(root); 3598 if (IS_ERR(trans)) { 3599 ret = PTR_ERR(trans); 3600 goto out; 3601 } 3602 3603 qgroupid = sa->qgroupid; 3604 if (!qgroupid) { 3605 /* take the current subvol as qgroup */ 3606 qgroupid = root->root_key.objectid; 3607 } 3608 3609 /* FIXME: check if the IDs really exist */ 3610 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 3611 3612 err = btrfs_end_transaction(trans, root); 3613 if (err && !ret) 3614 ret = err; 3615 3616 out: 3617 kfree(sa); 3618 return ret; 3619 } 3620 3621 static long btrfs_ioctl_set_received_subvol(struct file *file, 3622 void __user *arg) 3623 { 3624 struct btrfs_ioctl_received_subvol_args *sa = NULL; 3625 struct inode *inode = fdentry(file)->d_inode; 3626 struct btrfs_root *root = BTRFS_I(inode)->root; 3627 struct btrfs_root_item *root_item = &root->root_item; 3628 struct btrfs_trans_handle *trans; 3629 struct timespec ct = CURRENT_TIME; 3630 int ret = 0; 3631 3632 ret = mnt_want_write_file(file); 3633 if (ret < 0) 3634 return ret; 3635 3636 down_write(&root->fs_info->subvol_sem); 3637 3638 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 3639 ret = -EINVAL; 3640 goto out; 3641 } 3642 3643 if (btrfs_root_readonly(root)) { 3644 ret = -EROFS; 3645 goto out; 3646 } 3647 3648 if (!inode_owner_or_capable(inode)) { 3649 ret = -EACCES; 3650 goto out; 3651 } 3652 3653 sa = memdup_user(arg, sizeof(*sa)); 3654 if (IS_ERR(sa)) { 3655 ret = PTR_ERR(sa); 3656 sa = NULL; 3657 goto out; 3658 } 3659 3660 trans = btrfs_start_transaction(root, 1); 3661 if (IS_ERR(trans)) { 3662 ret = PTR_ERR(trans); 3663 trans = NULL; 3664 goto out; 3665 } 3666 3667 sa->rtransid = trans->transid; 3668 sa->rtime.sec = ct.tv_sec; 3669 sa->rtime.nsec = ct.tv_nsec; 3670 3671 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3672 btrfs_set_root_stransid(root_item, sa->stransid); 3673 btrfs_set_root_rtransid(root_item, sa->rtransid); 3674 root_item->stime.sec = cpu_to_le64(sa->stime.sec); 3675 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec); 3676 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec); 3677 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec); 3678 3679 ret = btrfs_update_root(trans, root->fs_info->tree_root, 3680 &root->root_key, &root->root_item); 3681 if (ret < 0) { 3682 btrfs_end_transaction(trans, root); 3683 trans = NULL; 3684 goto out; 3685 } else { 3686 ret = btrfs_commit_transaction(trans, root); 3687 if (ret < 0) 3688 goto out; 3689 } 3690 3691 ret = copy_to_user(arg, sa, sizeof(*sa)); 3692 if (ret) 3693 ret = -EFAULT; 3694 3695 out: 3696 kfree(sa); 3697 up_write(&root->fs_info->subvol_sem); 3698 mnt_drop_write_file(file); 3699 return ret; 3700 } 3701 3702 long btrfs_ioctl(struct file *file, unsigned int 3703 cmd, unsigned long arg) 3704 { 3705 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3706 void __user *argp = (void __user *)arg; 3707 3708 switch (cmd) { 3709 case FS_IOC_GETFLAGS: 3710 return btrfs_ioctl_getflags(file, argp); 3711 case FS_IOC_SETFLAGS: 3712 return btrfs_ioctl_setflags(file, argp); 3713 case FS_IOC_GETVERSION: 3714 return btrfs_ioctl_getversion(file, argp); 3715 case FITRIM: 3716 return btrfs_ioctl_fitrim(file, argp); 3717 case BTRFS_IOC_SNAP_CREATE: 3718 return btrfs_ioctl_snap_create(file, argp, 0); 3719 case BTRFS_IOC_SNAP_CREATE_V2: 3720 return btrfs_ioctl_snap_create_v2(file, argp, 0); 3721 case BTRFS_IOC_SUBVOL_CREATE: 3722 return btrfs_ioctl_snap_create(file, argp, 1); 3723 case BTRFS_IOC_SUBVOL_CREATE_V2: 3724 return btrfs_ioctl_snap_create_v2(file, argp, 1); 3725 case BTRFS_IOC_SNAP_DESTROY: 3726 return btrfs_ioctl_snap_destroy(file, argp); 3727 case BTRFS_IOC_SUBVOL_GETFLAGS: 3728 return btrfs_ioctl_subvol_getflags(file, argp); 3729 case BTRFS_IOC_SUBVOL_SETFLAGS: 3730 return btrfs_ioctl_subvol_setflags(file, argp); 3731 case BTRFS_IOC_DEFAULT_SUBVOL: 3732 return btrfs_ioctl_default_subvol(file, argp); 3733 case BTRFS_IOC_DEFRAG: 3734 return btrfs_ioctl_defrag(file, NULL); 3735 case BTRFS_IOC_DEFRAG_RANGE: 3736 return btrfs_ioctl_defrag(file, argp); 3737 case BTRFS_IOC_RESIZE: 3738 return btrfs_ioctl_resize(root, argp); 3739 case BTRFS_IOC_ADD_DEV: 3740 return btrfs_ioctl_add_dev(root, argp); 3741 case BTRFS_IOC_RM_DEV: 3742 return btrfs_ioctl_rm_dev(root, argp); 3743 case BTRFS_IOC_FS_INFO: 3744 return btrfs_ioctl_fs_info(root, argp); 3745 case BTRFS_IOC_DEV_INFO: 3746 return btrfs_ioctl_dev_info(root, argp); 3747 case BTRFS_IOC_BALANCE: 3748 return btrfs_ioctl_balance(file, NULL); 3749 case BTRFS_IOC_CLONE: 3750 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 3751 case BTRFS_IOC_CLONE_RANGE: 3752 return btrfs_ioctl_clone_range(file, argp); 3753 case BTRFS_IOC_TRANS_START: 3754 return btrfs_ioctl_trans_start(file); 3755 case BTRFS_IOC_TRANS_END: 3756 return btrfs_ioctl_trans_end(file); 3757 case BTRFS_IOC_TREE_SEARCH: 3758 return btrfs_ioctl_tree_search(file, argp); 3759 case BTRFS_IOC_INO_LOOKUP: 3760 return btrfs_ioctl_ino_lookup(file, argp); 3761 case BTRFS_IOC_INO_PATHS: 3762 return btrfs_ioctl_ino_to_path(root, argp); 3763 case BTRFS_IOC_LOGICAL_INO: 3764 return btrfs_ioctl_logical_to_ino(root, argp); 3765 case BTRFS_IOC_SPACE_INFO: 3766 return btrfs_ioctl_space_info(root, argp); 3767 case BTRFS_IOC_SYNC: 3768 btrfs_sync_fs(file->f_dentry->d_sb, 1); 3769 return 0; 3770 case BTRFS_IOC_START_SYNC: 3771 return btrfs_ioctl_start_sync(file, argp); 3772 case BTRFS_IOC_WAIT_SYNC: 3773 return btrfs_ioctl_wait_sync(file, argp); 3774 case BTRFS_IOC_SCRUB: 3775 return btrfs_ioctl_scrub(root, argp); 3776 case BTRFS_IOC_SCRUB_CANCEL: 3777 return btrfs_ioctl_scrub_cancel(root, argp); 3778 case BTRFS_IOC_SCRUB_PROGRESS: 3779 return btrfs_ioctl_scrub_progress(root, argp); 3780 case BTRFS_IOC_BALANCE_V2: 3781 return btrfs_ioctl_balance(file, argp); 3782 case BTRFS_IOC_BALANCE_CTL: 3783 return btrfs_ioctl_balance_ctl(root, arg); 3784 case BTRFS_IOC_BALANCE_PROGRESS: 3785 return btrfs_ioctl_balance_progress(root, argp); 3786 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 3787 return btrfs_ioctl_set_received_subvol(file, argp); 3788 case BTRFS_IOC_SEND: 3789 return btrfs_ioctl_send(file, argp); 3790 case BTRFS_IOC_GET_DEV_STATS: 3791 return btrfs_ioctl_get_dev_stats(root, argp); 3792 case BTRFS_IOC_QUOTA_CTL: 3793 return btrfs_ioctl_quota_ctl(root, argp); 3794 case BTRFS_IOC_QGROUP_ASSIGN: 3795 return btrfs_ioctl_qgroup_assign(root, argp); 3796 case BTRFS_IOC_QGROUP_CREATE: 3797 return btrfs_ioctl_qgroup_create(root, argp); 3798 case BTRFS_IOC_QGROUP_LIMIT: 3799 return btrfs_ioctl_qgroup_limit(root, argp); 3800 } 3801 3802 return -ENOTTY; 3803 } 3804