1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 #include "tree-log.h" 63 #include "compression.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 97 { 98 if (S_ISDIR(mode)) 99 return flags; 100 else if (S_ISREG(mode)) 101 return flags & ~FS_DIRSYNC_FL; 102 else 103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 104 } 105 106 /* 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 108 */ 109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_update_iflags(struct inode *inode) 140 { 141 struct btrfs_inode *ip = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (ip->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (ip->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (ip->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (ip->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (ip->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 /* 161 * Inherit flags from the parent inode. 162 * 163 * Currently only the compression flags and the cow flags are inherited. 164 */ 165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 166 { 167 unsigned int flags; 168 169 if (!dir) 170 return; 171 172 flags = BTRFS_I(dir)->flags; 173 174 if (flags & BTRFS_INODE_NOCOMPRESS) { 175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 177 } else if (flags & BTRFS_INODE_COMPRESS) { 178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 180 } 181 182 if (flags & BTRFS_INODE_NODATACOW) { 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 184 if (S_ISREG(inode->i_mode)) 185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 186 } 187 188 btrfs_update_iflags(inode); 189 } 190 191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 192 { 193 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 195 196 if (copy_to_user(arg, &flags, sizeof(flags))) 197 return -EFAULT; 198 return 0; 199 } 200 201 static int check_flags(unsigned int flags) 202 { 203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 204 FS_NOATIME_FL | FS_NODUMP_FL | \ 205 FS_SYNC_FL | FS_DIRSYNC_FL | \ 206 FS_NOCOMP_FL | FS_COMPR_FL | 207 FS_NOCOW_FL)) 208 return -EOPNOTSUPP; 209 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 217 { 218 struct inode *inode = file_inode(file); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assumptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_fs_time(inode->i_sb); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans, root); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 378 struct btrfs_device *device; 379 struct request_queue *q; 380 struct fstrim_range range; 381 u64 minlen = ULLONG_MAX; 382 u64 num_devices = 0; 383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 384 int ret; 385 386 if (!capable(CAP_SYS_ADMIN)) 387 return -EPERM; 388 389 rcu_read_lock(); 390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 391 dev_list) { 392 if (!device->bdev) 393 continue; 394 q = bdev_get_queue(device->bdev); 395 if (blk_queue_discard(q)) { 396 num_devices++; 397 minlen = min((u64)q->limits.discard_granularity, 398 minlen); 399 } 400 } 401 rcu_read_unlock(); 402 403 if (!num_devices) 404 return -EOPNOTSUPP; 405 if (copy_from_user(&range, arg, sizeof(range))) 406 return -EFAULT; 407 if (range.start > total_bytes || 408 range.len < fs_info->sb->s_blocksize) 409 return -EINVAL; 410 411 range.len = min(range.len, total_bytes - range.start); 412 range.minlen = max(range.minlen, minlen); 413 ret = btrfs_trim_fs(fs_info->tree_root, &range); 414 if (ret < 0) 415 return ret; 416 417 if (copy_to_user(arg, &range, sizeof(range))) 418 return -EFAULT; 419 420 return 0; 421 } 422 423 int btrfs_is_empty_uuid(u8 *uuid) 424 { 425 int i; 426 427 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 428 if (uuid[i]) 429 return 0; 430 } 431 return 1; 432 } 433 434 static noinline int create_subvol(struct inode *dir, 435 struct dentry *dentry, 436 char *name, int namelen, 437 u64 *async_transid, 438 struct btrfs_qgroup_inherit *inherit) 439 { 440 struct btrfs_trans_handle *trans; 441 struct btrfs_key key; 442 struct btrfs_root_item *root_item; 443 struct btrfs_inode_item *inode_item; 444 struct extent_buffer *leaf; 445 struct btrfs_root *root = BTRFS_I(dir)->root; 446 struct btrfs_root *new_root; 447 struct btrfs_block_rsv block_rsv; 448 struct timespec cur_time = current_fs_time(dir->i_sb); 449 struct inode *inode; 450 int ret; 451 int err; 452 u64 objectid; 453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 454 u64 index = 0; 455 u64 qgroup_reserved; 456 uuid_le new_uuid; 457 458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 459 if (!root_item) 460 return -ENOMEM; 461 462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 463 if (ret) 464 goto fail_free; 465 466 /* 467 * Don't create subvolume whose level is not zero. Or qgroup will be 468 * screwed up since it assumes subvolume qgroup's level to be 0. 469 */ 470 if (btrfs_qgroup_level(objectid)) { 471 ret = -ENOSPC; 472 goto fail_free; 473 } 474 475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 476 /* 477 * The same as the snapshot creation, please see the comment 478 * of create_snapshot(). 479 */ 480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 481 8, &qgroup_reserved, false); 482 if (ret) 483 goto fail_free; 484 485 trans = btrfs_start_transaction(root, 0); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 btrfs_subvolume_release_metadata(root, &block_rsv, 489 qgroup_reserved); 490 goto fail_free; 491 } 492 trans->block_rsv = &block_rsv; 493 trans->bytes_reserved = block_rsv.size; 494 495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 496 if (ret) 497 goto fail; 498 499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 500 if (IS_ERR(leaf)) { 501 ret = PTR_ERR(leaf); 502 goto fail; 503 } 504 505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 506 btrfs_set_header_bytenr(leaf, leaf->start); 507 btrfs_set_header_generation(leaf, trans->transid); 508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 509 btrfs_set_header_owner(leaf, objectid); 510 511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 512 BTRFS_FSID_SIZE); 513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 514 btrfs_header_chunk_tree_uuid(leaf), 515 BTRFS_UUID_SIZE); 516 btrfs_mark_buffer_dirty(leaf); 517 518 inode_item = &root_item->inode; 519 btrfs_set_stack_inode_generation(inode_item, 1); 520 btrfs_set_stack_inode_size(inode_item, 3); 521 btrfs_set_stack_inode_nlink(inode_item, 1); 522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 524 525 btrfs_set_root_flags(root_item, 0); 526 btrfs_set_root_limit(root_item, 0); 527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 528 529 btrfs_set_root_bytenr(root_item, leaf->start); 530 btrfs_set_root_generation(root_item, trans->transid); 531 btrfs_set_root_level(root_item, 0); 532 btrfs_set_root_refs(root_item, 1); 533 btrfs_set_root_used(root_item, leaf->len); 534 btrfs_set_root_last_snapshot(root_item, 0); 535 536 btrfs_set_root_generation_v2(root_item, 537 btrfs_root_generation(root_item)); 538 uuid_le_gen(&new_uuid); 539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 542 root_item->ctime = root_item->otime; 543 btrfs_set_root_ctransid(root_item, trans->transid); 544 btrfs_set_root_otransid(root_item, trans->transid); 545 546 btrfs_tree_unlock(leaf); 547 free_extent_buffer(leaf); 548 leaf = NULL; 549 550 btrfs_set_root_dirid(root_item, new_dirid); 551 552 key.objectid = objectid; 553 key.offset = 0; 554 key.type = BTRFS_ROOT_ITEM_KEY; 555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 556 root_item); 557 if (ret) 558 goto fail; 559 560 key.offset = (u64)-1; 561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 562 if (IS_ERR(new_root)) { 563 ret = PTR_ERR(new_root); 564 btrfs_abort_transaction(trans, ret); 565 goto fail; 566 } 567 568 btrfs_record_root_in_trans(trans, new_root); 569 570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 571 if (ret) { 572 /* We potentially lose an unused inode item here */ 573 btrfs_abort_transaction(trans, ret); 574 goto fail; 575 } 576 577 mutex_lock(&new_root->objectid_mutex); 578 new_root->highest_objectid = new_dirid; 579 mutex_unlock(&new_root->objectid_mutex); 580 581 /* 582 * insert the directory item 583 */ 584 ret = btrfs_set_inode_index(dir, &index); 585 if (ret) { 586 btrfs_abort_transaction(trans, ret); 587 goto fail; 588 } 589 590 ret = btrfs_insert_dir_item(trans, root, 591 name, namelen, dir, &key, 592 BTRFS_FT_DIR, index); 593 if (ret) { 594 btrfs_abort_transaction(trans, ret); 595 goto fail; 596 } 597 598 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 599 ret = btrfs_update_inode(trans, root, dir); 600 BUG_ON(ret); 601 602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 603 objectid, root->root_key.objectid, 604 btrfs_ino(dir), index, name, namelen); 605 BUG_ON(ret); 606 607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL, 609 objectid); 610 if (ret) 611 btrfs_abort_transaction(trans, ret); 612 613 fail: 614 kfree(root_item); 615 trans->block_rsv = NULL; 616 trans->bytes_reserved = 0; 617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 618 619 if (async_transid) { 620 *async_transid = trans->transid; 621 err = btrfs_commit_transaction_async(trans, root, 1); 622 if (err) 623 err = btrfs_commit_transaction(trans, root); 624 } else { 625 err = btrfs_commit_transaction(trans, root); 626 } 627 if (err && !ret) 628 ret = err; 629 630 if (!ret) { 631 inode = btrfs_lookup_dentry(dir, dentry); 632 if (IS_ERR(inode)) 633 return PTR_ERR(inode); 634 d_instantiate(dentry, inode); 635 } 636 return ret; 637 638 fail_free: 639 kfree(root_item); 640 return ret; 641 } 642 643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 644 { 645 s64 writers; 646 DEFINE_WAIT(wait); 647 648 do { 649 prepare_to_wait(&root->subv_writers->wait, &wait, 650 TASK_UNINTERRUPTIBLE); 651 652 writers = percpu_counter_sum(&root->subv_writers->counter); 653 if (writers) 654 schedule(); 655 656 finish_wait(&root->subv_writers->wait, &wait); 657 } while (writers); 658 } 659 660 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 661 struct dentry *dentry, char *name, int namelen, 662 u64 *async_transid, bool readonly, 663 struct btrfs_qgroup_inherit *inherit) 664 { 665 struct inode *inode; 666 struct btrfs_pending_snapshot *pending_snapshot; 667 struct btrfs_trans_handle *trans; 668 int ret; 669 670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 671 return -EINVAL; 672 673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 674 if (!pending_snapshot) 675 return -ENOMEM; 676 677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 678 GFP_NOFS); 679 pending_snapshot->path = btrfs_alloc_path(); 680 if (!pending_snapshot->root_item || !pending_snapshot->path) { 681 ret = -ENOMEM; 682 goto free_pending; 683 } 684 685 atomic_inc(&root->will_be_snapshoted); 686 smp_mb__after_atomic(); 687 btrfs_wait_for_no_snapshoting_writes(root); 688 689 ret = btrfs_start_delalloc_inodes(root, 0); 690 if (ret) 691 goto dec_and_free; 692 693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1); 694 695 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 696 BTRFS_BLOCK_RSV_TEMP); 697 /* 698 * 1 - parent dir inode 699 * 2 - dir entries 700 * 1 - root item 701 * 2 - root ref/backref 702 * 1 - root of snapshot 703 * 1 - UUID item 704 */ 705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 706 &pending_snapshot->block_rsv, 8, 707 &pending_snapshot->qgroup_reserved, 708 false); 709 if (ret) 710 goto dec_and_free; 711 712 pending_snapshot->dentry = dentry; 713 pending_snapshot->root = root; 714 pending_snapshot->readonly = readonly; 715 pending_snapshot->dir = dir; 716 pending_snapshot->inherit = inherit; 717 718 trans = btrfs_start_transaction(root, 0); 719 if (IS_ERR(trans)) { 720 ret = PTR_ERR(trans); 721 goto fail; 722 } 723 724 spin_lock(&root->fs_info->trans_lock); 725 list_add(&pending_snapshot->list, 726 &trans->transaction->pending_snapshots); 727 spin_unlock(&root->fs_info->trans_lock); 728 if (async_transid) { 729 *async_transid = trans->transid; 730 ret = btrfs_commit_transaction_async(trans, 731 root->fs_info->extent_root, 1); 732 if (ret) 733 ret = btrfs_commit_transaction(trans, root); 734 } else { 735 ret = btrfs_commit_transaction(trans, 736 root->fs_info->extent_root); 737 } 738 if (ret) 739 goto fail; 740 741 ret = pending_snapshot->error; 742 if (ret) 743 goto fail; 744 745 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 746 if (ret) 747 goto fail; 748 749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 750 if (IS_ERR(inode)) { 751 ret = PTR_ERR(inode); 752 goto fail; 753 } 754 755 d_instantiate(dentry, inode); 756 ret = 0; 757 fail: 758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 759 &pending_snapshot->block_rsv, 760 pending_snapshot->qgroup_reserved); 761 dec_and_free: 762 if (atomic_dec_and_test(&root->will_be_snapshoted)) 763 wake_up_atomic_t(&root->will_be_snapshoted); 764 free_pending: 765 kfree(pending_snapshot->root_item); 766 btrfs_free_path(pending_snapshot->path); 767 kfree(pending_snapshot); 768 769 return ret; 770 } 771 772 /* copy of may_delete in fs/namei.c() 773 * Check whether we can remove a link victim from directory dir, check 774 * whether the type of victim is right. 775 * 1. We can't do it if dir is read-only (done in permission()) 776 * 2. We should have write and exec permissions on dir 777 * 3. We can't remove anything from append-only dir 778 * 4. We can't do anything with immutable dir (done in permission()) 779 * 5. If the sticky bit on dir is set we should either 780 * a. be owner of dir, or 781 * b. be owner of victim, or 782 * c. have CAP_FOWNER capability 783 * 6. If the victim is append-only or immutable we can't do anything with 784 * links pointing to it. 785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 787 * 9. We can't remove a root or mountpoint. 788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 789 * nfs_async_unlink(). 790 */ 791 792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 793 { 794 int error; 795 796 if (d_really_is_negative(victim)) 797 return -ENOENT; 798 799 BUG_ON(d_inode(victim->d_parent) != dir); 800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 801 802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 803 if (error) 804 return error; 805 if (IS_APPEND(dir)) 806 return -EPERM; 807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 809 return -EPERM; 810 if (isdir) { 811 if (!d_is_dir(victim)) 812 return -ENOTDIR; 813 if (IS_ROOT(victim)) 814 return -EBUSY; 815 } else if (d_is_dir(victim)) 816 return -EISDIR; 817 if (IS_DEADDIR(dir)) 818 return -ENOENT; 819 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 820 return -EBUSY; 821 return 0; 822 } 823 824 /* copy of may_create in fs/namei.c() */ 825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 826 { 827 if (d_really_is_positive(child)) 828 return -EEXIST; 829 if (IS_DEADDIR(dir)) 830 return -ENOENT; 831 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 832 } 833 834 /* 835 * Create a new subvolume below @parent. This is largely modeled after 836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 837 * inside this filesystem so it's quite a bit simpler. 838 */ 839 static noinline int btrfs_mksubvol(struct path *parent, 840 char *name, int namelen, 841 struct btrfs_root *snap_src, 842 u64 *async_transid, bool readonly, 843 struct btrfs_qgroup_inherit *inherit) 844 { 845 struct inode *dir = d_inode(parent->dentry); 846 struct dentry *dentry; 847 int error; 848 849 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 850 if (error == -EINTR) 851 return error; 852 853 dentry = lookup_one_len(name, parent->dentry, namelen); 854 error = PTR_ERR(dentry); 855 if (IS_ERR(dentry)) 856 goto out_unlock; 857 858 error = btrfs_may_create(dir, dentry); 859 if (error) 860 goto out_dput; 861 862 /* 863 * even if this name doesn't exist, we may get hash collisions. 864 * check for them now when we can safely fail 865 */ 866 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 867 dir->i_ino, name, 868 namelen); 869 if (error) 870 goto out_dput; 871 872 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 873 874 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 875 goto out_up_read; 876 877 if (snap_src) { 878 error = create_snapshot(snap_src, dir, dentry, name, namelen, 879 async_transid, readonly, inherit); 880 } else { 881 error = create_subvol(dir, dentry, name, namelen, 882 async_transid, inherit); 883 } 884 if (!error) 885 fsnotify_mkdir(dir, dentry); 886 out_up_read: 887 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 888 out_dput: 889 dput(dentry); 890 out_unlock: 891 inode_unlock(dir); 892 return error; 893 } 894 895 /* 896 * When we're defragging a range, we don't want to kick it off again 897 * if it is really just waiting for delalloc to send it down. 898 * If we find a nice big extent or delalloc range for the bytes in the 899 * file you want to defrag, we return 0 to let you know to skip this 900 * part of the file 901 */ 902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 903 { 904 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 905 struct extent_map *em = NULL; 906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 907 u64 end; 908 909 read_lock(&em_tree->lock); 910 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 911 read_unlock(&em_tree->lock); 912 913 if (em) { 914 end = extent_map_end(em); 915 free_extent_map(em); 916 if (end - offset > thresh) 917 return 0; 918 } 919 /* if we already have a nice delalloc here, just stop */ 920 thresh /= 2; 921 end = count_range_bits(io_tree, &offset, offset + thresh, 922 thresh, EXTENT_DELALLOC, 1); 923 if (end >= thresh) 924 return 0; 925 return 1; 926 } 927 928 /* 929 * helper function to walk through a file and find extents 930 * newer than a specific transid, and smaller than thresh. 931 * 932 * This is used by the defragging code to find new and small 933 * extents 934 */ 935 static int find_new_extents(struct btrfs_root *root, 936 struct inode *inode, u64 newer_than, 937 u64 *off, u32 thresh) 938 { 939 struct btrfs_path *path; 940 struct btrfs_key min_key; 941 struct extent_buffer *leaf; 942 struct btrfs_file_extent_item *extent; 943 int type; 944 int ret; 945 u64 ino = btrfs_ino(inode); 946 947 path = btrfs_alloc_path(); 948 if (!path) 949 return -ENOMEM; 950 951 min_key.objectid = ino; 952 min_key.type = BTRFS_EXTENT_DATA_KEY; 953 min_key.offset = *off; 954 955 while (1) { 956 ret = btrfs_search_forward(root, &min_key, path, newer_than); 957 if (ret != 0) 958 goto none; 959 process_slot: 960 if (min_key.objectid != ino) 961 goto none; 962 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 963 goto none; 964 965 leaf = path->nodes[0]; 966 extent = btrfs_item_ptr(leaf, path->slots[0], 967 struct btrfs_file_extent_item); 968 969 type = btrfs_file_extent_type(leaf, extent); 970 if (type == BTRFS_FILE_EXTENT_REG && 971 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 972 check_defrag_in_cache(inode, min_key.offset, thresh)) { 973 *off = min_key.offset; 974 btrfs_free_path(path); 975 return 0; 976 } 977 978 path->slots[0]++; 979 if (path->slots[0] < btrfs_header_nritems(leaf)) { 980 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 981 goto process_slot; 982 } 983 984 if (min_key.offset == (u64)-1) 985 goto none; 986 987 min_key.offset++; 988 btrfs_release_path(path); 989 } 990 none: 991 btrfs_free_path(path); 992 return -ENOENT; 993 } 994 995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 996 { 997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 998 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 999 struct extent_map *em; 1000 u64 len = PAGE_SIZE; 1001 1002 /* 1003 * hopefully we have this extent in the tree already, try without 1004 * the full extent lock 1005 */ 1006 read_lock(&em_tree->lock); 1007 em = lookup_extent_mapping(em_tree, start, len); 1008 read_unlock(&em_tree->lock); 1009 1010 if (!em) { 1011 struct extent_state *cached = NULL; 1012 u64 end = start + len - 1; 1013 1014 /* get the big lock and read metadata off disk */ 1015 lock_extent_bits(io_tree, start, end, &cached); 1016 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1017 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1018 1019 if (IS_ERR(em)) 1020 return NULL; 1021 } 1022 1023 return em; 1024 } 1025 1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1027 { 1028 struct extent_map *next; 1029 bool ret = true; 1030 1031 /* this is the last extent */ 1032 if (em->start + em->len >= i_size_read(inode)) 1033 return false; 1034 1035 next = defrag_lookup_extent(inode, em->start + em->len); 1036 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1037 ret = false; 1038 else if ((em->block_start + em->block_len == next->block_start) && 1039 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1040 ret = false; 1041 1042 free_extent_map(next); 1043 return ret; 1044 } 1045 1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1047 u64 *last_len, u64 *skip, u64 *defrag_end, 1048 int compress) 1049 { 1050 struct extent_map *em; 1051 int ret = 1; 1052 bool next_mergeable = true; 1053 bool prev_mergeable = true; 1054 1055 /* 1056 * make sure that once we start defragging an extent, we keep on 1057 * defragging it 1058 */ 1059 if (start < *defrag_end) 1060 return 1; 1061 1062 *skip = 0; 1063 1064 em = defrag_lookup_extent(inode, start); 1065 if (!em) 1066 return 0; 1067 1068 /* this will cover holes, and inline extents */ 1069 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1070 ret = 0; 1071 goto out; 1072 } 1073 1074 if (!*defrag_end) 1075 prev_mergeable = false; 1076 1077 next_mergeable = defrag_check_next_extent(inode, em); 1078 /* 1079 * we hit a real extent, if it is big or the next extent is not a 1080 * real extent, don't bother defragging it 1081 */ 1082 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1083 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1084 ret = 0; 1085 out: 1086 /* 1087 * last_len ends up being a counter of how many bytes we've defragged. 1088 * every time we choose not to defrag an extent, we reset *last_len 1089 * so that the next tiny extent will force a defrag. 1090 * 1091 * The end result of this is that tiny extents before a single big 1092 * extent will force at least part of that big extent to be defragged. 1093 */ 1094 if (ret) { 1095 *defrag_end = extent_map_end(em); 1096 } else { 1097 *last_len = 0; 1098 *skip = extent_map_end(em); 1099 *defrag_end = 0; 1100 } 1101 1102 free_extent_map(em); 1103 return ret; 1104 } 1105 1106 /* 1107 * it doesn't do much good to defrag one or two pages 1108 * at a time. This pulls in a nice chunk of pages 1109 * to COW and defrag. 1110 * 1111 * It also makes sure the delalloc code has enough 1112 * dirty data to avoid making new small extents as part 1113 * of the defrag 1114 * 1115 * It's a good idea to start RA on this range 1116 * before calling this. 1117 */ 1118 static int cluster_pages_for_defrag(struct inode *inode, 1119 struct page **pages, 1120 unsigned long start_index, 1121 unsigned long num_pages) 1122 { 1123 unsigned long file_end; 1124 u64 isize = i_size_read(inode); 1125 u64 page_start; 1126 u64 page_end; 1127 u64 page_cnt; 1128 int ret; 1129 int i; 1130 int i_done; 1131 struct btrfs_ordered_extent *ordered; 1132 struct extent_state *cached_state = NULL; 1133 struct extent_io_tree *tree; 1134 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1135 1136 file_end = (isize - 1) >> PAGE_SHIFT; 1137 if (!isize || start_index > file_end) 1138 return 0; 1139 1140 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1141 1142 ret = btrfs_delalloc_reserve_space(inode, 1143 start_index << PAGE_SHIFT, 1144 page_cnt << PAGE_SHIFT); 1145 if (ret) 1146 return ret; 1147 i_done = 0; 1148 tree = &BTRFS_I(inode)->io_tree; 1149 1150 /* step one, lock all the pages */ 1151 for (i = 0; i < page_cnt; i++) { 1152 struct page *page; 1153 again: 1154 page = find_or_create_page(inode->i_mapping, 1155 start_index + i, mask); 1156 if (!page) 1157 break; 1158 1159 page_start = page_offset(page); 1160 page_end = page_start + PAGE_SIZE - 1; 1161 while (1) { 1162 lock_extent_bits(tree, page_start, page_end, 1163 &cached_state); 1164 ordered = btrfs_lookup_ordered_extent(inode, 1165 page_start); 1166 unlock_extent_cached(tree, page_start, page_end, 1167 &cached_state, GFP_NOFS); 1168 if (!ordered) 1169 break; 1170 1171 unlock_page(page); 1172 btrfs_start_ordered_extent(inode, ordered, 1); 1173 btrfs_put_ordered_extent(ordered); 1174 lock_page(page); 1175 /* 1176 * we unlocked the page above, so we need check if 1177 * it was released or not. 1178 */ 1179 if (page->mapping != inode->i_mapping) { 1180 unlock_page(page); 1181 put_page(page); 1182 goto again; 1183 } 1184 } 1185 1186 if (!PageUptodate(page)) { 1187 btrfs_readpage(NULL, page); 1188 lock_page(page); 1189 if (!PageUptodate(page)) { 1190 unlock_page(page); 1191 put_page(page); 1192 ret = -EIO; 1193 break; 1194 } 1195 } 1196 1197 if (page->mapping != inode->i_mapping) { 1198 unlock_page(page); 1199 put_page(page); 1200 goto again; 1201 } 1202 1203 pages[i] = page; 1204 i_done++; 1205 } 1206 if (!i_done || ret) 1207 goto out; 1208 1209 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1210 goto out; 1211 1212 /* 1213 * so now we have a nice long stream of locked 1214 * and up to date pages, lets wait on them 1215 */ 1216 for (i = 0; i < i_done; i++) 1217 wait_on_page_writeback(pages[i]); 1218 1219 page_start = page_offset(pages[0]); 1220 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1221 1222 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1223 page_start, page_end - 1, &cached_state); 1224 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1225 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1226 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1227 &cached_state, GFP_NOFS); 1228 1229 if (i_done != page_cnt) { 1230 spin_lock(&BTRFS_I(inode)->lock); 1231 BTRFS_I(inode)->outstanding_extents++; 1232 spin_unlock(&BTRFS_I(inode)->lock); 1233 btrfs_delalloc_release_space(inode, 1234 start_index << PAGE_SHIFT, 1235 (page_cnt - i_done) << PAGE_SHIFT); 1236 } 1237 1238 1239 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1240 &cached_state); 1241 1242 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1243 page_start, page_end - 1, &cached_state, 1244 GFP_NOFS); 1245 1246 for (i = 0; i < i_done; i++) { 1247 clear_page_dirty_for_io(pages[i]); 1248 ClearPageChecked(pages[i]); 1249 set_page_extent_mapped(pages[i]); 1250 set_page_dirty(pages[i]); 1251 unlock_page(pages[i]); 1252 put_page(pages[i]); 1253 } 1254 return i_done; 1255 out: 1256 for (i = 0; i < i_done; i++) { 1257 unlock_page(pages[i]); 1258 put_page(pages[i]); 1259 } 1260 btrfs_delalloc_release_space(inode, 1261 start_index << PAGE_SHIFT, 1262 page_cnt << PAGE_SHIFT); 1263 return ret; 1264 1265 } 1266 1267 int btrfs_defrag_file(struct inode *inode, struct file *file, 1268 struct btrfs_ioctl_defrag_range_args *range, 1269 u64 newer_than, unsigned long max_to_defrag) 1270 { 1271 struct btrfs_root *root = BTRFS_I(inode)->root; 1272 struct file_ra_state *ra = NULL; 1273 unsigned long last_index; 1274 u64 isize = i_size_read(inode); 1275 u64 last_len = 0; 1276 u64 skip = 0; 1277 u64 defrag_end = 0; 1278 u64 newer_off = range->start; 1279 unsigned long i; 1280 unsigned long ra_index = 0; 1281 int ret; 1282 int defrag_count = 0; 1283 int compress_type = BTRFS_COMPRESS_ZLIB; 1284 u32 extent_thresh = range->extent_thresh; 1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1286 unsigned long cluster = max_cluster; 1287 u64 new_align = ~((u64)SZ_128K - 1); 1288 struct page **pages = NULL; 1289 1290 if (isize == 0) 1291 return 0; 1292 1293 if (range->start >= isize) 1294 return -EINVAL; 1295 1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1297 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1298 return -EINVAL; 1299 if (range->compress_type) 1300 compress_type = range->compress_type; 1301 } 1302 1303 if (extent_thresh == 0) 1304 extent_thresh = SZ_256K; 1305 1306 /* 1307 * if we were not given a file, allocate a readahead 1308 * context 1309 */ 1310 if (!file) { 1311 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1312 if (!ra) 1313 return -ENOMEM; 1314 file_ra_state_init(ra, inode->i_mapping); 1315 } else { 1316 ra = &file->f_ra; 1317 } 1318 1319 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1320 GFP_NOFS); 1321 if (!pages) { 1322 ret = -ENOMEM; 1323 goto out_ra; 1324 } 1325 1326 /* find the last page to defrag */ 1327 if (range->start + range->len > range->start) { 1328 last_index = min_t(u64, isize - 1, 1329 range->start + range->len - 1) >> PAGE_SHIFT; 1330 } else { 1331 last_index = (isize - 1) >> PAGE_SHIFT; 1332 } 1333 1334 if (newer_than) { 1335 ret = find_new_extents(root, inode, newer_than, 1336 &newer_off, SZ_64K); 1337 if (!ret) { 1338 range->start = newer_off; 1339 /* 1340 * we always align our defrag to help keep 1341 * the extents in the file evenly spaced 1342 */ 1343 i = (newer_off & new_align) >> PAGE_SHIFT; 1344 } else 1345 goto out_ra; 1346 } else { 1347 i = range->start >> PAGE_SHIFT; 1348 } 1349 if (!max_to_defrag) 1350 max_to_defrag = last_index - i + 1; 1351 1352 /* 1353 * make writeback starts from i, so the defrag range can be 1354 * written sequentially. 1355 */ 1356 if (i < inode->i_mapping->writeback_index) 1357 inode->i_mapping->writeback_index = i; 1358 1359 while (i <= last_index && defrag_count < max_to_defrag && 1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1361 /* 1362 * make sure we stop running if someone unmounts 1363 * the FS 1364 */ 1365 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1366 break; 1367 1368 if (btrfs_defrag_cancelled(root->fs_info)) { 1369 btrfs_debug(root->fs_info, "defrag_file cancelled"); 1370 ret = -EAGAIN; 1371 break; 1372 } 1373 1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1375 extent_thresh, &last_len, &skip, 1376 &defrag_end, range->flags & 1377 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1378 unsigned long next; 1379 /* 1380 * the should_defrag function tells us how much to skip 1381 * bump our counter by the suggested amount 1382 */ 1383 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1384 i = max(i + 1, next); 1385 continue; 1386 } 1387 1388 if (!newer_than) { 1389 cluster = (PAGE_ALIGN(defrag_end) >> 1390 PAGE_SHIFT) - i; 1391 cluster = min(cluster, max_cluster); 1392 } else { 1393 cluster = max_cluster; 1394 } 1395 1396 if (i + cluster > ra_index) { 1397 ra_index = max(i, ra_index); 1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1399 cluster); 1400 ra_index += cluster; 1401 } 1402 1403 inode_lock(inode); 1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1405 BTRFS_I(inode)->force_compress = compress_type; 1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1407 if (ret < 0) { 1408 inode_unlock(inode); 1409 goto out_ra; 1410 } 1411 1412 defrag_count += ret; 1413 balance_dirty_pages_ratelimited(inode->i_mapping); 1414 inode_unlock(inode); 1415 1416 if (newer_than) { 1417 if (newer_off == (u64)-1) 1418 break; 1419 1420 if (ret > 0) 1421 i += ret; 1422 1423 newer_off = max(newer_off + 1, 1424 (u64)i << PAGE_SHIFT); 1425 1426 ret = find_new_extents(root, inode, newer_than, 1427 &newer_off, SZ_64K); 1428 if (!ret) { 1429 range->start = newer_off; 1430 i = (newer_off & new_align) >> PAGE_SHIFT; 1431 } else { 1432 break; 1433 } 1434 } else { 1435 if (ret > 0) { 1436 i += ret; 1437 last_len += ret << PAGE_SHIFT; 1438 } else { 1439 i++; 1440 last_len = 0; 1441 } 1442 } 1443 } 1444 1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1446 filemap_flush(inode->i_mapping); 1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1448 &BTRFS_I(inode)->runtime_flags)) 1449 filemap_flush(inode->i_mapping); 1450 } 1451 1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1453 /* the filemap_flush will queue IO into the worker threads, but 1454 * we have to make sure the IO is actually started and that 1455 * ordered extents get created before we return 1456 */ 1457 atomic_inc(&root->fs_info->async_submit_draining); 1458 while (atomic_read(&root->fs_info->nr_async_submits) || 1459 atomic_read(&root->fs_info->async_delalloc_pages)) { 1460 wait_event(root->fs_info->async_submit_wait, 1461 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1462 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1463 } 1464 atomic_dec(&root->fs_info->async_submit_draining); 1465 } 1466 1467 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1468 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1469 } 1470 1471 ret = defrag_count; 1472 1473 out_ra: 1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1475 inode_lock(inode); 1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1477 inode_unlock(inode); 1478 } 1479 if (!file) 1480 kfree(ra); 1481 kfree(pages); 1482 return ret; 1483 } 1484 1485 static noinline int btrfs_ioctl_resize(struct file *file, 1486 void __user *arg) 1487 { 1488 u64 new_size; 1489 u64 old_size; 1490 u64 devid = 1; 1491 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1492 struct btrfs_ioctl_vol_args *vol_args; 1493 struct btrfs_trans_handle *trans; 1494 struct btrfs_device *device = NULL; 1495 char *sizestr; 1496 char *retptr; 1497 char *devstr = NULL; 1498 int ret = 0; 1499 int mod = 0; 1500 1501 if (!capable(CAP_SYS_ADMIN)) 1502 return -EPERM; 1503 1504 ret = mnt_want_write_file(file); 1505 if (ret) 1506 return ret; 1507 1508 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1509 1)) { 1510 mnt_drop_write_file(file); 1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1512 } 1513 1514 mutex_lock(&root->fs_info->volume_mutex); 1515 vol_args = memdup_user(arg, sizeof(*vol_args)); 1516 if (IS_ERR(vol_args)) { 1517 ret = PTR_ERR(vol_args); 1518 goto out; 1519 } 1520 1521 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1522 1523 sizestr = vol_args->name; 1524 devstr = strchr(sizestr, ':'); 1525 if (devstr) { 1526 sizestr = devstr + 1; 1527 *devstr = '\0'; 1528 devstr = vol_args->name; 1529 ret = kstrtoull(devstr, 10, &devid); 1530 if (ret) 1531 goto out_free; 1532 if (!devid) { 1533 ret = -EINVAL; 1534 goto out_free; 1535 } 1536 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1537 } 1538 1539 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1540 if (!device) { 1541 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1542 devid); 1543 ret = -ENODEV; 1544 goto out_free; 1545 } 1546 1547 if (!device->writeable) { 1548 btrfs_info(root->fs_info, 1549 "resizer unable to apply on readonly device %llu", 1550 devid); 1551 ret = -EPERM; 1552 goto out_free; 1553 } 1554 1555 if (!strcmp(sizestr, "max")) 1556 new_size = device->bdev->bd_inode->i_size; 1557 else { 1558 if (sizestr[0] == '-') { 1559 mod = -1; 1560 sizestr++; 1561 } else if (sizestr[0] == '+') { 1562 mod = 1; 1563 sizestr++; 1564 } 1565 new_size = memparse(sizestr, &retptr); 1566 if (*retptr != '\0' || new_size == 0) { 1567 ret = -EINVAL; 1568 goto out_free; 1569 } 1570 } 1571 1572 if (device->is_tgtdev_for_dev_replace) { 1573 ret = -EPERM; 1574 goto out_free; 1575 } 1576 1577 old_size = btrfs_device_get_total_bytes(device); 1578 1579 if (mod < 0) { 1580 if (new_size > old_size) { 1581 ret = -EINVAL; 1582 goto out_free; 1583 } 1584 new_size = old_size - new_size; 1585 } else if (mod > 0) { 1586 if (new_size > ULLONG_MAX - old_size) { 1587 ret = -ERANGE; 1588 goto out_free; 1589 } 1590 new_size = old_size + new_size; 1591 } 1592 1593 if (new_size < SZ_256M) { 1594 ret = -EINVAL; 1595 goto out_free; 1596 } 1597 if (new_size > device->bdev->bd_inode->i_size) { 1598 ret = -EFBIG; 1599 goto out_free; 1600 } 1601 1602 new_size = div_u64(new_size, root->sectorsize); 1603 new_size *= root->sectorsize; 1604 1605 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu", 1606 rcu_str_deref(device->name), new_size); 1607 1608 if (new_size > old_size) { 1609 trans = btrfs_start_transaction(root, 0); 1610 if (IS_ERR(trans)) { 1611 ret = PTR_ERR(trans); 1612 goto out_free; 1613 } 1614 ret = btrfs_grow_device(trans, device, new_size); 1615 btrfs_commit_transaction(trans, root); 1616 } else if (new_size < old_size) { 1617 ret = btrfs_shrink_device(device, new_size); 1618 } /* equal, nothing need to do */ 1619 1620 out_free: 1621 kfree(vol_args); 1622 out: 1623 mutex_unlock(&root->fs_info->volume_mutex); 1624 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1625 mnt_drop_write_file(file); 1626 return ret; 1627 } 1628 1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1630 char *name, unsigned long fd, int subvol, 1631 u64 *transid, bool readonly, 1632 struct btrfs_qgroup_inherit *inherit) 1633 { 1634 int namelen; 1635 int ret = 0; 1636 1637 if (!S_ISDIR(file_inode(file)->i_mode)) 1638 return -ENOTDIR; 1639 1640 ret = mnt_want_write_file(file); 1641 if (ret) 1642 goto out; 1643 1644 namelen = strlen(name); 1645 if (strchr(name, '/')) { 1646 ret = -EINVAL; 1647 goto out_drop_write; 1648 } 1649 1650 if (name[0] == '.' && 1651 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1652 ret = -EEXIST; 1653 goto out_drop_write; 1654 } 1655 1656 if (subvol) { 1657 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1658 NULL, transid, readonly, inherit); 1659 } else { 1660 struct fd src = fdget(fd); 1661 struct inode *src_inode; 1662 if (!src.file) { 1663 ret = -EINVAL; 1664 goto out_drop_write; 1665 } 1666 1667 src_inode = file_inode(src.file); 1668 if (src_inode->i_sb != file_inode(file)->i_sb) { 1669 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1670 "Snapshot src from another FS"); 1671 ret = -EXDEV; 1672 } else if (!inode_owner_or_capable(src_inode)) { 1673 /* 1674 * Subvolume creation is not restricted, but snapshots 1675 * are limited to own subvolumes only 1676 */ 1677 ret = -EPERM; 1678 } else { 1679 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1680 BTRFS_I(src_inode)->root, 1681 transid, readonly, inherit); 1682 } 1683 fdput(src); 1684 } 1685 out_drop_write: 1686 mnt_drop_write_file(file); 1687 out: 1688 return ret; 1689 } 1690 1691 static noinline int btrfs_ioctl_snap_create(struct file *file, 1692 void __user *arg, int subvol) 1693 { 1694 struct btrfs_ioctl_vol_args *vol_args; 1695 int ret; 1696 1697 if (!S_ISDIR(file_inode(file)->i_mode)) 1698 return -ENOTDIR; 1699 1700 vol_args = memdup_user(arg, sizeof(*vol_args)); 1701 if (IS_ERR(vol_args)) 1702 return PTR_ERR(vol_args); 1703 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1704 1705 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1706 vol_args->fd, subvol, 1707 NULL, false, NULL); 1708 1709 kfree(vol_args); 1710 return ret; 1711 } 1712 1713 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1714 void __user *arg, int subvol) 1715 { 1716 struct btrfs_ioctl_vol_args_v2 *vol_args; 1717 int ret; 1718 u64 transid = 0; 1719 u64 *ptr = NULL; 1720 bool readonly = false; 1721 struct btrfs_qgroup_inherit *inherit = NULL; 1722 1723 if (!S_ISDIR(file_inode(file)->i_mode)) 1724 return -ENOTDIR; 1725 1726 vol_args = memdup_user(arg, sizeof(*vol_args)); 1727 if (IS_ERR(vol_args)) 1728 return PTR_ERR(vol_args); 1729 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1730 1731 if (vol_args->flags & 1732 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1733 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1734 ret = -EOPNOTSUPP; 1735 goto free_args; 1736 } 1737 1738 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1739 ptr = &transid; 1740 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1741 readonly = true; 1742 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1743 if (vol_args->size > PAGE_SIZE) { 1744 ret = -EINVAL; 1745 goto free_args; 1746 } 1747 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1748 if (IS_ERR(inherit)) { 1749 ret = PTR_ERR(inherit); 1750 goto free_args; 1751 } 1752 } 1753 1754 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1755 vol_args->fd, subvol, ptr, 1756 readonly, inherit); 1757 if (ret) 1758 goto free_inherit; 1759 1760 if (ptr && copy_to_user(arg + 1761 offsetof(struct btrfs_ioctl_vol_args_v2, 1762 transid), 1763 ptr, sizeof(*ptr))) 1764 ret = -EFAULT; 1765 1766 free_inherit: 1767 kfree(inherit); 1768 free_args: 1769 kfree(vol_args); 1770 return ret; 1771 } 1772 1773 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1774 void __user *arg) 1775 { 1776 struct inode *inode = file_inode(file); 1777 struct btrfs_root *root = BTRFS_I(inode)->root; 1778 int ret = 0; 1779 u64 flags = 0; 1780 1781 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1782 return -EINVAL; 1783 1784 down_read(&root->fs_info->subvol_sem); 1785 if (btrfs_root_readonly(root)) 1786 flags |= BTRFS_SUBVOL_RDONLY; 1787 up_read(&root->fs_info->subvol_sem); 1788 1789 if (copy_to_user(arg, &flags, sizeof(flags))) 1790 ret = -EFAULT; 1791 1792 return ret; 1793 } 1794 1795 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1796 void __user *arg) 1797 { 1798 struct inode *inode = file_inode(file); 1799 struct btrfs_root *root = BTRFS_I(inode)->root; 1800 struct btrfs_trans_handle *trans; 1801 u64 root_flags; 1802 u64 flags; 1803 int ret = 0; 1804 1805 if (!inode_owner_or_capable(inode)) 1806 return -EPERM; 1807 1808 ret = mnt_want_write_file(file); 1809 if (ret) 1810 goto out; 1811 1812 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1813 ret = -EINVAL; 1814 goto out_drop_write; 1815 } 1816 1817 if (copy_from_user(&flags, arg, sizeof(flags))) { 1818 ret = -EFAULT; 1819 goto out_drop_write; 1820 } 1821 1822 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1823 ret = -EINVAL; 1824 goto out_drop_write; 1825 } 1826 1827 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1828 ret = -EOPNOTSUPP; 1829 goto out_drop_write; 1830 } 1831 1832 down_write(&root->fs_info->subvol_sem); 1833 1834 /* nothing to do */ 1835 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1836 goto out_drop_sem; 1837 1838 root_flags = btrfs_root_flags(&root->root_item); 1839 if (flags & BTRFS_SUBVOL_RDONLY) { 1840 btrfs_set_root_flags(&root->root_item, 1841 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1842 } else { 1843 /* 1844 * Block RO -> RW transition if this subvolume is involved in 1845 * send 1846 */ 1847 spin_lock(&root->root_item_lock); 1848 if (root->send_in_progress == 0) { 1849 btrfs_set_root_flags(&root->root_item, 1850 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1851 spin_unlock(&root->root_item_lock); 1852 } else { 1853 spin_unlock(&root->root_item_lock); 1854 btrfs_warn(root->fs_info, 1855 "Attempt to set subvolume %llu read-write during send", 1856 root->root_key.objectid); 1857 ret = -EPERM; 1858 goto out_drop_sem; 1859 } 1860 } 1861 1862 trans = btrfs_start_transaction(root, 1); 1863 if (IS_ERR(trans)) { 1864 ret = PTR_ERR(trans); 1865 goto out_reset; 1866 } 1867 1868 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1869 &root->root_key, &root->root_item); 1870 1871 btrfs_commit_transaction(trans, root); 1872 out_reset: 1873 if (ret) 1874 btrfs_set_root_flags(&root->root_item, root_flags); 1875 out_drop_sem: 1876 up_write(&root->fs_info->subvol_sem); 1877 out_drop_write: 1878 mnt_drop_write_file(file); 1879 out: 1880 return ret; 1881 } 1882 1883 /* 1884 * helper to check if the subvolume references other subvolumes 1885 */ 1886 static noinline int may_destroy_subvol(struct btrfs_root *root) 1887 { 1888 struct btrfs_path *path; 1889 struct btrfs_dir_item *di; 1890 struct btrfs_key key; 1891 u64 dir_id; 1892 int ret; 1893 1894 path = btrfs_alloc_path(); 1895 if (!path) 1896 return -ENOMEM; 1897 1898 /* Make sure this root isn't set as the default subvol */ 1899 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1900 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1901 dir_id, "default", 7, 0); 1902 if (di && !IS_ERR(di)) { 1903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1904 if (key.objectid == root->root_key.objectid) { 1905 ret = -EPERM; 1906 btrfs_err(root->fs_info, "deleting default subvolume " 1907 "%llu is not allowed", key.objectid); 1908 goto out; 1909 } 1910 btrfs_release_path(path); 1911 } 1912 1913 key.objectid = root->root_key.objectid; 1914 key.type = BTRFS_ROOT_REF_KEY; 1915 key.offset = (u64)-1; 1916 1917 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1918 &key, path, 0, 0); 1919 if (ret < 0) 1920 goto out; 1921 BUG_ON(ret == 0); 1922 1923 ret = 0; 1924 if (path->slots[0] > 0) { 1925 path->slots[0]--; 1926 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1927 if (key.objectid == root->root_key.objectid && 1928 key.type == BTRFS_ROOT_REF_KEY) 1929 ret = -ENOTEMPTY; 1930 } 1931 out: 1932 btrfs_free_path(path); 1933 return ret; 1934 } 1935 1936 static noinline int key_in_sk(struct btrfs_key *key, 1937 struct btrfs_ioctl_search_key *sk) 1938 { 1939 struct btrfs_key test; 1940 int ret; 1941 1942 test.objectid = sk->min_objectid; 1943 test.type = sk->min_type; 1944 test.offset = sk->min_offset; 1945 1946 ret = btrfs_comp_cpu_keys(key, &test); 1947 if (ret < 0) 1948 return 0; 1949 1950 test.objectid = sk->max_objectid; 1951 test.type = sk->max_type; 1952 test.offset = sk->max_offset; 1953 1954 ret = btrfs_comp_cpu_keys(key, &test); 1955 if (ret > 0) 1956 return 0; 1957 return 1; 1958 } 1959 1960 static noinline int copy_to_sk(struct btrfs_path *path, 1961 struct btrfs_key *key, 1962 struct btrfs_ioctl_search_key *sk, 1963 size_t *buf_size, 1964 char __user *ubuf, 1965 unsigned long *sk_offset, 1966 int *num_found) 1967 { 1968 u64 found_transid; 1969 struct extent_buffer *leaf; 1970 struct btrfs_ioctl_search_header sh; 1971 struct btrfs_key test; 1972 unsigned long item_off; 1973 unsigned long item_len; 1974 int nritems; 1975 int i; 1976 int slot; 1977 int ret = 0; 1978 1979 leaf = path->nodes[0]; 1980 slot = path->slots[0]; 1981 nritems = btrfs_header_nritems(leaf); 1982 1983 if (btrfs_header_generation(leaf) > sk->max_transid) { 1984 i = nritems; 1985 goto advance_key; 1986 } 1987 found_transid = btrfs_header_generation(leaf); 1988 1989 for (i = slot; i < nritems; i++) { 1990 item_off = btrfs_item_ptr_offset(leaf, i); 1991 item_len = btrfs_item_size_nr(leaf, i); 1992 1993 btrfs_item_key_to_cpu(leaf, key, i); 1994 if (!key_in_sk(key, sk)) 1995 continue; 1996 1997 if (sizeof(sh) + item_len > *buf_size) { 1998 if (*num_found) { 1999 ret = 1; 2000 goto out; 2001 } 2002 2003 /* 2004 * return one empty item back for v1, which does not 2005 * handle -EOVERFLOW 2006 */ 2007 2008 *buf_size = sizeof(sh) + item_len; 2009 item_len = 0; 2010 ret = -EOVERFLOW; 2011 } 2012 2013 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2014 ret = 1; 2015 goto out; 2016 } 2017 2018 sh.objectid = key->objectid; 2019 sh.offset = key->offset; 2020 sh.type = key->type; 2021 sh.len = item_len; 2022 sh.transid = found_transid; 2023 2024 /* copy search result header */ 2025 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2026 ret = -EFAULT; 2027 goto out; 2028 } 2029 2030 *sk_offset += sizeof(sh); 2031 2032 if (item_len) { 2033 char __user *up = ubuf + *sk_offset; 2034 /* copy the item */ 2035 if (read_extent_buffer_to_user(leaf, up, 2036 item_off, item_len)) { 2037 ret = -EFAULT; 2038 goto out; 2039 } 2040 2041 *sk_offset += item_len; 2042 } 2043 (*num_found)++; 2044 2045 if (ret) /* -EOVERFLOW from above */ 2046 goto out; 2047 2048 if (*num_found >= sk->nr_items) { 2049 ret = 1; 2050 goto out; 2051 } 2052 } 2053 advance_key: 2054 ret = 0; 2055 test.objectid = sk->max_objectid; 2056 test.type = sk->max_type; 2057 test.offset = sk->max_offset; 2058 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2059 ret = 1; 2060 else if (key->offset < (u64)-1) 2061 key->offset++; 2062 else if (key->type < (u8)-1) { 2063 key->offset = 0; 2064 key->type++; 2065 } else if (key->objectid < (u64)-1) { 2066 key->offset = 0; 2067 key->type = 0; 2068 key->objectid++; 2069 } else 2070 ret = 1; 2071 out: 2072 /* 2073 * 0: all items from this leaf copied, continue with next 2074 * 1: * more items can be copied, but unused buffer is too small 2075 * * all items were found 2076 * Either way, it will stops the loop which iterates to the next 2077 * leaf 2078 * -EOVERFLOW: item was to large for buffer 2079 * -EFAULT: could not copy extent buffer back to userspace 2080 */ 2081 return ret; 2082 } 2083 2084 static noinline int search_ioctl(struct inode *inode, 2085 struct btrfs_ioctl_search_key *sk, 2086 size_t *buf_size, 2087 char __user *ubuf) 2088 { 2089 struct btrfs_root *root; 2090 struct btrfs_key key; 2091 struct btrfs_path *path; 2092 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2093 int ret; 2094 int num_found = 0; 2095 unsigned long sk_offset = 0; 2096 2097 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2098 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2099 return -EOVERFLOW; 2100 } 2101 2102 path = btrfs_alloc_path(); 2103 if (!path) 2104 return -ENOMEM; 2105 2106 if (sk->tree_id == 0) { 2107 /* search the root of the inode that was passed */ 2108 root = BTRFS_I(inode)->root; 2109 } else { 2110 key.objectid = sk->tree_id; 2111 key.type = BTRFS_ROOT_ITEM_KEY; 2112 key.offset = (u64)-1; 2113 root = btrfs_read_fs_root_no_name(info, &key); 2114 if (IS_ERR(root)) { 2115 btrfs_free_path(path); 2116 return -ENOENT; 2117 } 2118 } 2119 2120 key.objectid = sk->min_objectid; 2121 key.type = sk->min_type; 2122 key.offset = sk->min_offset; 2123 2124 while (1) { 2125 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2126 if (ret != 0) { 2127 if (ret > 0) 2128 ret = 0; 2129 goto err; 2130 } 2131 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2132 &sk_offset, &num_found); 2133 btrfs_release_path(path); 2134 if (ret) 2135 break; 2136 2137 } 2138 if (ret > 0) 2139 ret = 0; 2140 err: 2141 sk->nr_items = num_found; 2142 btrfs_free_path(path); 2143 return ret; 2144 } 2145 2146 static noinline int btrfs_ioctl_tree_search(struct file *file, 2147 void __user *argp) 2148 { 2149 struct btrfs_ioctl_search_args __user *uargs; 2150 struct btrfs_ioctl_search_key sk; 2151 struct inode *inode; 2152 int ret; 2153 size_t buf_size; 2154 2155 if (!capable(CAP_SYS_ADMIN)) 2156 return -EPERM; 2157 2158 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2159 2160 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2161 return -EFAULT; 2162 2163 buf_size = sizeof(uargs->buf); 2164 2165 inode = file_inode(file); 2166 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2167 2168 /* 2169 * In the origin implementation an overflow is handled by returning a 2170 * search header with a len of zero, so reset ret. 2171 */ 2172 if (ret == -EOVERFLOW) 2173 ret = 0; 2174 2175 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2176 ret = -EFAULT; 2177 return ret; 2178 } 2179 2180 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2181 void __user *argp) 2182 { 2183 struct btrfs_ioctl_search_args_v2 __user *uarg; 2184 struct btrfs_ioctl_search_args_v2 args; 2185 struct inode *inode; 2186 int ret; 2187 size_t buf_size; 2188 const size_t buf_limit = SZ_16M; 2189 2190 if (!capable(CAP_SYS_ADMIN)) 2191 return -EPERM; 2192 2193 /* copy search header and buffer size */ 2194 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2195 if (copy_from_user(&args, uarg, sizeof(args))) 2196 return -EFAULT; 2197 2198 buf_size = args.buf_size; 2199 2200 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2201 return -EOVERFLOW; 2202 2203 /* limit result size to 16MB */ 2204 if (buf_size > buf_limit) 2205 buf_size = buf_limit; 2206 2207 inode = file_inode(file); 2208 ret = search_ioctl(inode, &args.key, &buf_size, 2209 (char *)(&uarg->buf[0])); 2210 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2211 ret = -EFAULT; 2212 else if (ret == -EOVERFLOW && 2213 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2214 ret = -EFAULT; 2215 2216 return ret; 2217 } 2218 2219 /* 2220 * Search INODE_REFs to identify path name of 'dirid' directory 2221 * in a 'tree_id' tree. and sets path name to 'name'. 2222 */ 2223 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2224 u64 tree_id, u64 dirid, char *name) 2225 { 2226 struct btrfs_root *root; 2227 struct btrfs_key key; 2228 char *ptr; 2229 int ret = -1; 2230 int slot; 2231 int len; 2232 int total_len = 0; 2233 struct btrfs_inode_ref *iref; 2234 struct extent_buffer *l; 2235 struct btrfs_path *path; 2236 2237 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2238 name[0]='\0'; 2239 return 0; 2240 } 2241 2242 path = btrfs_alloc_path(); 2243 if (!path) 2244 return -ENOMEM; 2245 2246 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2247 2248 key.objectid = tree_id; 2249 key.type = BTRFS_ROOT_ITEM_KEY; 2250 key.offset = (u64)-1; 2251 root = btrfs_read_fs_root_no_name(info, &key); 2252 if (IS_ERR(root)) { 2253 btrfs_err(info, "could not find root %llu", tree_id); 2254 ret = -ENOENT; 2255 goto out; 2256 } 2257 2258 key.objectid = dirid; 2259 key.type = BTRFS_INODE_REF_KEY; 2260 key.offset = (u64)-1; 2261 2262 while (1) { 2263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2264 if (ret < 0) 2265 goto out; 2266 else if (ret > 0) { 2267 ret = btrfs_previous_item(root, path, dirid, 2268 BTRFS_INODE_REF_KEY); 2269 if (ret < 0) 2270 goto out; 2271 else if (ret > 0) { 2272 ret = -ENOENT; 2273 goto out; 2274 } 2275 } 2276 2277 l = path->nodes[0]; 2278 slot = path->slots[0]; 2279 btrfs_item_key_to_cpu(l, &key, slot); 2280 2281 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2282 len = btrfs_inode_ref_name_len(l, iref); 2283 ptr -= len + 1; 2284 total_len += len + 1; 2285 if (ptr < name) { 2286 ret = -ENAMETOOLONG; 2287 goto out; 2288 } 2289 2290 *(ptr + len) = '/'; 2291 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2292 2293 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2294 break; 2295 2296 btrfs_release_path(path); 2297 key.objectid = key.offset; 2298 key.offset = (u64)-1; 2299 dirid = key.objectid; 2300 } 2301 memmove(name, ptr, total_len); 2302 name[total_len] = '\0'; 2303 ret = 0; 2304 out: 2305 btrfs_free_path(path); 2306 return ret; 2307 } 2308 2309 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2310 void __user *argp) 2311 { 2312 struct btrfs_ioctl_ino_lookup_args *args; 2313 struct inode *inode; 2314 int ret = 0; 2315 2316 args = memdup_user(argp, sizeof(*args)); 2317 if (IS_ERR(args)) 2318 return PTR_ERR(args); 2319 2320 inode = file_inode(file); 2321 2322 /* 2323 * Unprivileged query to obtain the containing subvolume root id. The 2324 * path is reset so it's consistent with btrfs_search_path_in_tree. 2325 */ 2326 if (args->treeid == 0) 2327 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2328 2329 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2330 args->name[0] = 0; 2331 goto out; 2332 } 2333 2334 if (!capable(CAP_SYS_ADMIN)) { 2335 ret = -EPERM; 2336 goto out; 2337 } 2338 2339 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2340 args->treeid, args->objectid, 2341 args->name); 2342 2343 out: 2344 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2345 ret = -EFAULT; 2346 2347 kfree(args); 2348 return ret; 2349 } 2350 2351 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2352 void __user *arg) 2353 { 2354 struct dentry *parent = file->f_path.dentry; 2355 struct dentry *dentry; 2356 struct inode *dir = d_inode(parent); 2357 struct inode *inode; 2358 struct btrfs_root *root = BTRFS_I(dir)->root; 2359 struct btrfs_root *dest = NULL; 2360 struct btrfs_ioctl_vol_args *vol_args; 2361 struct btrfs_trans_handle *trans; 2362 struct btrfs_block_rsv block_rsv; 2363 u64 root_flags; 2364 u64 qgroup_reserved; 2365 int namelen; 2366 int ret; 2367 int err = 0; 2368 2369 if (!S_ISDIR(dir->i_mode)) 2370 return -ENOTDIR; 2371 2372 vol_args = memdup_user(arg, sizeof(*vol_args)); 2373 if (IS_ERR(vol_args)) 2374 return PTR_ERR(vol_args); 2375 2376 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2377 namelen = strlen(vol_args->name); 2378 if (strchr(vol_args->name, '/') || 2379 strncmp(vol_args->name, "..", namelen) == 0) { 2380 err = -EINVAL; 2381 goto out; 2382 } 2383 2384 err = mnt_want_write_file(file); 2385 if (err) 2386 goto out; 2387 2388 2389 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2390 if (err == -EINTR) 2391 goto out_drop_write; 2392 dentry = lookup_one_len(vol_args->name, parent, namelen); 2393 if (IS_ERR(dentry)) { 2394 err = PTR_ERR(dentry); 2395 goto out_unlock_dir; 2396 } 2397 2398 if (d_really_is_negative(dentry)) { 2399 err = -ENOENT; 2400 goto out_dput; 2401 } 2402 2403 inode = d_inode(dentry); 2404 dest = BTRFS_I(inode)->root; 2405 if (!capable(CAP_SYS_ADMIN)) { 2406 /* 2407 * Regular user. Only allow this with a special mount 2408 * option, when the user has write+exec access to the 2409 * subvol root, and when rmdir(2) would have been 2410 * allowed. 2411 * 2412 * Note that this is _not_ check that the subvol is 2413 * empty or doesn't contain data that we wouldn't 2414 * otherwise be able to delete. 2415 * 2416 * Users who want to delete empty subvols should try 2417 * rmdir(2). 2418 */ 2419 err = -EPERM; 2420 if (!btrfs_test_opt(root->fs_info, USER_SUBVOL_RM_ALLOWED)) 2421 goto out_dput; 2422 2423 /* 2424 * Do not allow deletion if the parent dir is the same 2425 * as the dir to be deleted. That means the ioctl 2426 * must be called on the dentry referencing the root 2427 * of the subvol, not a random directory contained 2428 * within it. 2429 */ 2430 err = -EINVAL; 2431 if (root == dest) 2432 goto out_dput; 2433 2434 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2435 if (err) 2436 goto out_dput; 2437 } 2438 2439 /* check if subvolume may be deleted by a user */ 2440 err = btrfs_may_delete(dir, dentry, 1); 2441 if (err) 2442 goto out_dput; 2443 2444 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2445 err = -EINVAL; 2446 goto out_dput; 2447 } 2448 2449 inode_lock(inode); 2450 2451 /* 2452 * Don't allow to delete a subvolume with send in progress. This is 2453 * inside the i_mutex so the error handling that has to drop the bit 2454 * again is not run concurrently. 2455 */ 2456 spin_lock(&dest->root_item_lock); 2457 root_flags = btrfs_root_flags(&dest->root_item); 2458 if (dest->send_in_progress == 0) { 2459 btrfs_set_root_flags(&dest->root_item, 2460 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2461 spin_unlock(&dest->root_item_lock); 2462 } else { 2463 spin_unlock(&dest->root_item_lock); 2464 btrfs_warn(root->fs_info, 2465 "Attempt to delete subvolume %llu during send", 2466 dest->root_key.objectid); 2467 err = -EPERM; 2468 goto out_unlock_inode; 2469 } 2470 2471 down_write(&root->fs_info->subvol_sem); 2472 2473 err = may_destroy_subvol(dest); 2474 if (err) 2475 goto out_up_write; 2476 2477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2478 /* 2479 * One for dir inode, two for dir entries, two for root 2480 * ref/backref. 2481 */ 2482 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2483 5, &qgroup_reserved, true); 2484 if (err) 2485 goto out_up_write; 2486 2487 trans = btrfs_start_transaction(root, 0); 2488 if (IS_ERR(trans)) { 2489 err = PTR_ERR(trans); 2490 goto out_release; 2491 } 2492 trans->block_rsv = &block_rsv; 2493 trans->bytes_reserved = block_rsv.size; 2494 2495 btrfs_record_snapshot_destroy(trans, dir); 2496 2497 ret = btrfs_unlink_subvol(trans, root, dir, 2498 dest->root_key.objectid, 2499 dentry->d_name.name, 2500 dentry->d_name.len); 2501 if (ret) { 2502 err = ret; 2503 btrfs_abort_transaction(trans, ret); 2504 goto out_end_trans; 2505 } 2506 2507 btrfs_record_root_in_trans(trans, dest); 2508 2509 memset(&dest->root_item.drop_progress, 0, 2510 sizeof(dest->root_item.drop_progress)); 2511 dest->root_item.drop_level = 0; 2512 btrfs_set_root_refs(&dest->root_item, 0); 2513 2514 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2515 ret = btrfs_insert_orphan_item(trans, 2516 root->fs_info->tree_root, 2517 dest->root_key.objectid); 2518 if (ret) { 2519 btrfs_abort_transaction(trans, ret); 2520 err = ret; 2521 goto out_end_trans; 2522 } 2523 } 2524 2525 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2526 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2527 dest->root_key.objectid); 2528 if (ret && ret != -ENOENT) { 2529 btrfs_abort_transaction(trans, ret); 2530 err = ret; 2531 goto out_end_trans; 2532 } 2533 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2534 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2535 dest->root_item.received_uuid, 2536 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2537 dest->root_key.objectid); 2538 if (ret && ret != -ENOENT) { 2539 btrfs_abort_transaction(trans, ret); 2540 err = ret; 2541 goto out_end_trans; 2542 } 2543 } 2544 2545 out_end_trans: 2546 trans->block_rsv = NULL; 2547 trans->bytes_reserved = 0; 2548 ret = btrfs_end_transaction(trans, root); 2549 if (ret && !err) 2550 err = ret; 2551 inode->i_flags |= S_DEAD; 2552 out_release: 2553 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2554 out_up_write: 2555 up_write(&root->fs_info->subvol_sem); 2556 if (err) { 2557 spin_lock(&dest->root_item_lock); 2558 root_flags = btrfs_root_flags(&dest->root_item); 2559 btrfs_set_root_flags(&dest->root_item, 2560 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2561 spin_unlock(&dest->root_item_lock); 2562 } 2563 out_unlock_inode: 2564 inode_unlock(inode); 2565 if (!err) { 2566 d_invalidate(dentry); 2567 btrfs_invalidate_inodes(dest); 2568 d_delete(dentry); 2569 ASSERT(dest->send_in_progress == 0); 2570 2571 /* the last ref */ 2572 if (dest->ino_cache_inode) { 2573 iput(dest->ino_cache_inode); 2574 dest->ino_cache_inode = NULL; 2575 } 2576 } 2577 out_dput: 2578 dput(dentry); 2579 out_unlock_dir: 2580 inode_unlock(dir); 2581 out_drop_write: 2582 mnt_drop_write_file(file); 2583 out: 2584 kfree(vol_args); 2585 return err; 2586 } 2587 2588 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2589 { 2590 struct inode *inode = file_inode(file); 2591 struct btrfs_root *root = BTRFS_I(inode)->root; 2592 struct btrfs_ioctl_defrag_range_args *range; 2593 int ret; 2594 2595 ret = mnt_want_write_file(file); 2596 if (ret) 2597 return ret; 2598 2599 if (btrfs_root_readonly(root)) { 2600 ret = -EROFS; 2601 goto out; 2602 } 2603 2604 switch (inode->i_mode & S_IFMT) { 2605 case S_IFDIR: 2606 if (!capable(CAP_SYS_ADMIN)) { 2607 ret = -EPERM; 2608 goto out; 2609 } 2610 ret = btrfs_defrag_root(root); 2611 if (ret) 2612 goto out; 2613 ret = btrfs_defrag_root(root->fs_info->extent_root); 2614 break; 2615 case S_IFREG: 2616 if (!(file->f_mode & FMODE_WRITE)) { 2617 ret = -EINVAL; 2618 goto out; 2619 } 2620 2621 range = kzalloc(sizeof(*range), GFP_KERNEL); 2622 if (!range) { 2623 ret = -ENOMEM; 2624 goto out; 2625 } 2626 2627 if (argp) { 2628 if (copy_from_user(range, argp, 2629 sizeof(*range))) { 2630 ret = -EFAULT; 2631 kfree(range); 2632 goto out; 2633 } 2634 /* compression requires us to start the IO */ 2635 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2636 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2637 range->extent_thresh = (u32)-1; 2638 } 2639 } else { 2640 /* the rest are all set to zero by kzalloc */ 2641 range->len = (u64)-1; 2642 } 2643 ret = btrfs_defrag_file(file_inode(file), file, 2644 range, 0, 0); 2645 if (ret > 0) 2646 ret = 0; 2647 kfree(range); 2648 break; 2649 default: 2650 ret = -EINVAL; 2651 } 2652 out: 2653 mnt_drop_write_file(file); 2654 return ret; 2655 } 2656 2657 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2658 { 2659 struct btrfs_ioctl_vol_args *vol_args; 2660 int ret; 2661 2662 if (!capable(CAP_SYS_ADMIN)) 2663 return -EPERM; 2664 2665 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2666 1)) { 2667 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2668 } 2669 2670 mutex_lock(&root->fs_info->volume_mutex); 2671 vol_args = memdup_user(arg, sizeof(*vol_args)); 2672 if (IS_ERR(vol_args)) { 2673 ret = PTR_ERR(vol_args); 2674 goto out; 2675 } 2676 2677 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2678 ret = btrfs_init_new_device(root, vol_args->name); 2679 2680 if (!ret) 2681 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2682 2683 kfree(vol_args); 2684 out: 2685 mutex_unlock(&root->fs_info->volume_mutex); 2686 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2687 return ret; 2688 } 2689 2690 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2691 { 2692 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2693 struct btrfs_ioctl_vol_args_v2 *vol_args; 2694 int ret; 2695 2696 if (!capable(CAP_SYS_ADMIN)) 2697 return -EPERM; 2698 2699 ret = mnt_want_write_file(file); 2700 if (ret) 2701 return ret; 2702 2703 vol_args = memdup_user(arg, sizeof(*vol_args)); 2704 if (IS_ERR(vol_args)) { 2705 ret = PTR_ERR(vol_args); 2706 goto err_drop; 2707 } 2708 2709 /* Check for compatibility reject unknown flags */ 2710 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2711 return -EOPNOTSUPP; 2712 2713 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2714 1)) { 2715 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2716 goto out; 2717 } 2718 2719 mutex_lock(&root->fs_info->volume_mutex); 2720 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2721 ret = btrfs_rm_device(root, NULL, vol_args->devid); 2722 } else { 2723 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2724 ret = btrfs_rm_device(root, vol_args->name, 0); 2725 } 2726 mutex_unlock(&root->fs_info->volume_mutex); 2727 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2728 2729 if (!ret) { 2730 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2731 btrfs_info(root->fs_info, "device deleted: id %llu", 2732 vol_args->devid); 2733 else 2734 btrfs_info(root->fs_info, "device deleted: %s", 2735 vol_args->name); 2736 } 2737 out: 2738 kfree(vol_args); 2739 err_drop: 2740 mnt_drop_write_file(file); 2741 return ret; 2742 } 2743 2744 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2745 { 2746 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2747 struct btrfs_ioctl_vol_args *vol_args; 2748 int ret; 2749 2750 if (!capable(CAP_SYS_ADMIN)) 2751 return -EPERM; 2752 2753 ret = mnt_want_write_file(file); 2754 if (ret) 2755 return ret; 2756 2757 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2758 1)) { 2759 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2760 goto out_drop_write; 2761 } 2762 2763 vol_args = memdup_user(arg, sizeof(*vol_args)); 2764 if (IS_ERR(vol_args)) { 2765 ret = PTR_ERR(vol_args); 2766 goto out; 2767 } 2768 2769 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2770 mutex_lock(&root->fs_info->volume_mutex); 2771 ret = btrfs_rm_device(root, vol_args->name, 0); 2772 mutex_unlock(&root->fs_info->volume_mutex); 2773 2774 if (!ret) 2775 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2776 kfree(vol_args); 2777 out: 2778 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2779 out_drop_write: 2780 mnt_drop_write_file(file); 2781 2782 return ret; 2783 } 2784 2785 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2786 { 2787 struct btrfs_ioctl_fs_info_args *fi_args; 2788 struct btrfs_device *device; 2789 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2790 int ret = 0; 2791 2792 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2793 if (!fi_args) 2794 return -ENOMEM; 2795 2796 mutex_lock(&fs_devices->device_list_mutex); 2797 fi_args->num_devices = fs_devices->num_devices; 2798 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2799 2800 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2801 if (device->devid > fi_args->max_id) 2802 fi_args->max_id = device->devid; 2803 } 2804 mutex_unlock(&fs_devices->device_list_mutex); 2805 2806 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2807 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2808 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2809 2810 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2811 ret = -EFAULT; 2812 2813 kfree(fi_args); 2814 return ret; 2815 } 2816 2817 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2818 { 2819 struct btrfs_ioctl_dev_info_args *di_args; 2820 struct btrfs_device *dev; 2821 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2822 int ret = 0; 2823 char *s_uuid = NULL; 2824 2825 di_args = memdup_user(arg, sizeof(*di_args)); 2826 if (IS_ERR(di_args)) 2827 return PTR_ERR(di_args); 2828 2829 if (!btrfs_is_empty_uuid(di_args->uuid)) 2830 s_uuid = di_args->uuid; 2831 2832 mutex_lock(&fs_devices->device_list_mutex); 2833 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2834 2835 if (!dev) { 2836 ret = -ENODEV; 2837 goto out; 2838 } 2839 2840 di_args->devid = dev->devid; 2841 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2842 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2843 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2844 if (dev->name) { 2845 struct rcu_string *name; 2846 2847 rcu_read_lock(); 2848 name = rcu_dereference(dev->name); 2849 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2850 rcu_read_unlock(); 2851 di_args->path[sizeof(di_args->path) - 1] = 0; 2852 } else { 2853 di_args->path[0] = '\0'; 2854 } 2855 2856 out: 2857 mutex_unlock(&fs_devices->device_list_mutex); 2858 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2859 ret = -EFAULT; 2860 2861 kfree(di_args); 2862 return ret; 2863 } 2864 2865 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2866 { 2867 struct page *page; 2868 2869 page = grab_cache_page(inode->i_mapping, index); 2870 if (!page) 2871 return ERR_PTR(-ENOMEM); 2872 2873 if (!PageUptodate(page)) { 2874 int ret; 2875 2876 ret = btrfs_readpage(NULL, page); 2877 if (ret) 2878 return ERR_PTR(ret); 2879 lock_page(page); 2880 if (!PageUptodate(page)) { 2881 unlock_page(page); 2882 put_page(page); 2883 return ERR_PTR(-EIO); 2884 } 2885 if (page->mapping != inode->i_mapping) { 2886 unlock_page(page); 2887 put_page(page); 2888 return ERR_PTR(-EAGAIN); 2889 } 2890 } 2891 2892 return page; 2893 } 2894 2895 static int gather_extent_pages(struct inode *inode, struct page **pages, 2896 int num_pages, u64 off) 2897 { 2898 int i; 2899 pgoff_t index = off >> PAGE_SHIFT; 2900 2901 for (i = 0; i < num_pages; i++) { 2902 again: 2903 pages[i] = extent_same_get_page(inode, index + i); 2904 if (IS_ERR(pages[i])) { 2905 int err = PTR_ERR(pages[i]); 2906 2907 if (err == -EAGAIN) 2908 goto again; 2909 pages[i] = NULL; 2910 return err; 2911 } 2912 } 2913 return 0; 2914 } 2915 2916 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2917 bool retry_range_locking) 2918 { 2919 /* 2920 * Do any pending delalloc/csum calculations on inode, one way or 2921 * another, and lock file content. 2922 * The locking order is: 2923 * 2924 * 1) pages 2925 * 2) range in the inode's io tree 2926 */ 2927 while (1) { 2928 struct btrfs_ordered_extent *ordered; 2929 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2930 ordered = btrfs_lookup_first_ordered_extent(inode, 2931 off + len - 1); 2932 if ((!ordered || 2933 ordered->file_offset + ordered->len <= off || 2934 ordered->file_offset >= off + len) && 2935 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2936 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2937 if (ordered) 2938 btrfs_put_ordered_extent(ordered); 2939 break; 2940 } 2941 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2942 if (ordered) 2943 btrfs_put_ordered_extent(ordered); 2944 if (!retry_range_locking) 2945 return -EAGAIN; 2946 btrfs_wait_ordered_range(inode, off, len); 2947 } 2948 return 0; 2949 } 2950 2951 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2952 { 2953 inode_unlock(inode1); 2954 inode_unlock(inode2); 2955 } 2956 2957 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2958 { 2959 if (inode1 < inode2) 2960 swap(inode1, inode2); 2961 2962 inode_lock_nested(inode1, I_MUTEX_PARENT); 2963 inode_lock_nested(inode2, I_MUTEX_CHILD); 2964 } 2965 2966 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2967 struct inode *inode2, u64 loff2, u64 len) 2968 { 2969 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2970 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2971 } 2972 2973 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2974 struct inode *inode2, u64 loff2, u64 len, 2975 bool retry_range_locking) 2976 { 2977 int ret; 2978 2979 if (inode1 < inode2) { 2980 swap(inode1, inode2); 2981 swap(loff1, loff2); 2982 } 2983 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2984 if (ret) 2985 return ret; 2986 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2987 if (ret) 2988 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2989 loff1 + len - 1); 2990 return ret; 2991 } 2992 2993 struct cmp_pages { 2994 int num_pages; 2995 struct page **src_pages; 2996 struct page **dst_pages; 2997 }; 2998 2999 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 3000 { 3001 int i; 3002 struct page *pg; 3003 3004 for (i = 0; i < cmp->num_pages; i++) { 3005 pg = cmp->src_pages[i]; 3006 if (pg) { 3007 unlock_page(pg); 3008 put_page(pg); 3009 } 3010 pg = cmp->dst_pages[i]; 3011 if (pg) { 3012 unlock_page(pg); 3013 put_page(pg); 3014 } 3015 } 3016 kfree(cmp->src_pages); 3017 kfree(cmp->dst_pages); 3018 } 3019 3020 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3021 struct inode *dst, u64 dst_loff, 3022 u64 len, struct cmp_pages *cmp) 3023 { 3024 int ret; 3025 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3026 struct page **src_pgarr, **dst_pgarr; 3027 3028 /* 3029 * We must gather up all the pages before we initiate our 3030 * extent locking. We use an array for the page pointers. Size 3031 * of the array is bounded by len, which is in turn bounded by 3032 * BTRFS_MAX_DEDUPE_LEN. 3033 */ 3034 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3035 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3036 if (!src_pgarr || !dst_pgarr) { 3037 kfree(src_pgarr); 3038 kfree(dst_pgarr); 3039 return -ENOMEM; 3040 } 3041 cmp->num_pages = num_pages; 3042 cmp->src_pages = src_pgarr; 3043 cmp->dst_pages = dst_pgarr; 3044 3045 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 3046 if (ret) 3047 goto out; 3048 3049 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 3050 3051 out: 3052 if (ret) 3053 btrfs_cmp_data_free(cmp); 3054 return 0; 3055 } 3056 3057 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 3058 u64 dst_loff, u64 len, struct cmp_pages *cmp) 3059 { 3060 int ret = 0; 3061 int i; 3062 struct page *src_page, *dst_page; 3063 unsigned int cmp_len = PAGE_SIZE; 3064 void *addr, *dst_addr; 3065 3066 i = 0; 3067 while (len) { 3068 if (len < PAGE_SIZE) 3069 cmp_len = len; 3070 3071 BUG_ON(i >= cmp->num_pages); 3072 3073 src_page = cmp->src_pages[i]; 3074 dst_page = cmp->dst_pages[i]; 3075 ASSERT(PageLocked(src_page)); 3076 ASSERT(PageLocked(dst_page)); 3077 3078 addr = kmap_atomic(src_page); 3079 dst_addr = kmap_atomic(dst_page); 3080 3081 flush_dcache_page(src_page); 3082 flush_dcache_page(dst_page); 3083 3084 if (memcmp(addr, dst_addr, cmp_len)) 3085 ret = -EBADE; 3086 3087 kunmap_atomic(addr); 3088 kunmap_atomic(dst_addr); 3089 3090 if (ret) 3091 break; 3092 3093 len -= cmp_len; 3094 i++; 3095 } 3096 3097 return ret; 3098 } 3099 3100 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3101 u64 olen) 3102 { 3103 u64 len = *plen; 3104 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3105 3106 if (off + olen > inode->i_size || off + olen < off) 3107 return -EINVAL; 3108 3109 /* if we extend to eof, continue to block boundary */ 3110 if (off + len == inode->i_size) 3111 *plen = len = ALIGN(inode->i_size, bs) - off; 3112 3113 /* Check that we are block aligned - btrfs_clone() requires this */ 3114 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3115 return -EINVAL; 3116 3117 return 0; 3118 } 3119 3120 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3121 struct inode *dst, u64 dst_loff) 3122 { 3123 int ret; 3124 u64 len = olen; 3125 struct cmp_pages cmp; 3126 int same_inode = 0; 3127 u64 same_lock_start = 0; 3128 u64 same_lock_len = 0; 3129 3130 if (src == dst) 3131 same_inode = 1; 3132 3133 if (len == 0) 3134 return 0; 3135 3136 if (same_inode) { 3137 inode_lock(src); 3138 3139 ret = extent_same_check_offsets(src, loff, &len, olen); 3140 if (ret) 3141 goto out_unlock; 3142 ret = extent_same_check_offsets(src, dst_loff, &len, olen); 3143 if (ret) 3144 goto out_unlock; 3145 3146 /* 3147 * Single inode case wants the same checks, except we 3148 * don't want our length pushed out past i_size as 3149 * comparing that data range makes no sense. 3150 * 3151 * extent_same_check_offsets() will do this for an 3152 * unaligned length at i_size, so catch it here and 3153 * reject the request. 3154 * 3155 * This effectively means we require aligned extents 3156 * for the single-inode case, whereas the other cases 3157 * allow an unaligned length so long as it ends at 3158 * i_size. 3159 */ 3160 if (len != olen) { 3161 ret = -EINVAL; 3162 goto out_unlock; 3163 } 3164 3165 /* Check for overlapping ranges */ 3166 if (dst_loff + len > loff && dst_loff < loff + len) { 3167 ret = -EINVAL; 3168 goto out_unlock; 3169 } 3170 3171 same_lock_start = min_t(u64, loff, dst_loff); 3172 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3173 } else { 3174 btrfs_double_inode_lock(src, dst); 3175 3176 ret = extent_same_check_offsets(src, loff, &len, olen); 3177 if (ret) 3178 goto out_unlock; 3179 3180 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3181 if (ret) 3182 goto out_unlock; 3183 } 3184 3185 /* don't make the dst file partly checksummed */ 3186 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3187 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3188 ret = -EINVAL; 3189 goto out_unlock; 3190 } 3191 3192 again: 3193 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3194 if (ret) 3195 goto out_unlock; 3196 3197 if (same_inode) 3198 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3199 false); 3200 else 3201 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3202 false); 3203 /* 3204 * If one of the inodes has dirty pages in the respective range or 3205 * ordered extents, we need to flush dellaloc and wait for all ordered 3206 * extents in the range. We must unlock the pages and the ranges in the 3207 * io trees to avoid deadlocks when flushing delalloc (requires locking 3208 * pages) and when waiting for ordered extents to complete (they require 3209 * range locking). 3210 */ 3211 if (ret == -EAGAIN) { 3212 /* 3213 * Ranges in the io trees already unlocked. Now unlock all 3214 * pages before waiting for all IO to complete. 3215 */ 3216 btrfs_cmp_data_free(&cmp); 3217 if (same_inode) { 3218 btrfs_wait_ordered_range(src, same_lock_start, 3219 same_lock_len); 3220 } else { 3221 btrfs_wait_ordered_range(src, loff, len); 3222 btrfs_wait_ordered_range(dst, dst_loff, len); 3223 } 3224 goto again; 3225 } 3226 ASSERT(ret == 0); 3227 if (WARN_ON(ret)) { 3228 /* ranges in the io trees already unlocked */ 3229 btrfs_cmp_data_free(&cmp); 3230 return ret; 3231 } 3232 3233 /* pass original length for comparison so we stay within i_size */ 3234 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3235 if (ret == 0) 3236 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3237 3238 if (same_inode) 3239 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3240 same_lock_start + same_lock_len - 1); 3241 else 3242 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3243 3244 btrfs_cmp_data_free(&cmp); 3245 out_unlock: 3246 if (same_inode) 3247 inode_unlock(src); 3248 else 3249 btrfs_double_inode_unlock(src, dst); 3250 3251 return ret; 3252 } 3253 3254 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3255 3256 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3257 struct file *dst_file, u64 dst_loff) 3258 { 3259 struct inode *src = file_inode(src_file); 3260 struct inode *dst = file_inode(dst_file); 3261 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3262 ssize_t res; 3263 3264 if (olen > BTRFS_MAX_DEDUPE_LEN) 3265 olen = BTRFS_MAX_DEDUPE_LEN; 3266 3267 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3268 /* 3269 * Btrfs does not support blocksize < page_size. As a 3270 * result, btrfs_cmp_data() won't correctly handle 3271 * this situation without an update. 3272 */ 3273 return -EINVAL; 3274 } 3275 3276 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3277 if (res) 3278 return res; 3279 return olen; 3280 } 3281 3282 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3283 struct inode *inode, 3284 u64 endoff, 3285 const u64 destoff, 3286 const u64 olen, 3287 int no_time_update) 3288 { 3289 struct btrfs_root *root = BTRFS_I(inode)->root; 3290 int ret; 3291 3292 inode_inc_iversion(inode); 3293 if (!no_time_update) 3294 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 3295 /* 3296 * We round up to the block size at eof when determining which 3297 * extents to clone above, but shouldn't round up the file size. 3298 */ 3299 if (endoff > destoff + olen) 3300 endoff = destoff + olen; 3301 if (endoff > inode->i_size) 3302 btrfs_i_size_write(inode, endoff); 3303 3304 ret = btrfs_update_inode(trans, root, inode); 3305 if (ret) { 3306 btrfs_abort_transaction(trans, ret); 3307 btrfs_end_transaction(trans, root); 3308 goto out; 3309 } 3310 ret = btrfs_end_transaction(trans, root); 3311 out: 3312 return ret; 3313 } 3314 3315 static void clone_update_extent_map(struct inode *inode, 3316 const struct btrfs_trans_handle *trans, 3317 const struct btrfs_path *path, 3318 const u64 hole_offset, 3319 const u64 hole_len) 3320 { 3321 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3322 struct extent_map *em; 3323 int ret; 3324 3325 em = alloc_extent_map(); 3326 if (!em) { 3327 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3328 &BTRFS_I(inode)->runtime_flags); 3329 return; 3330 } 3331 3332 if (path) { 3333 struct btrfs_file_extent_item *fi; 3334 3335 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3336 struct btrfs_file_extent_item); 3337 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3338 em->generation = -1; 3339 if (btrfs_file_extent_type(path->nodes[0], fi) == 3340 BTRFS_FILE_EXTENT_INLINE) 3341 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3342 &BTRFS_I(inode)->runtime_flags); 3343 } else { 3344 em->start = hole_offset; 3345 em->len = hole_len; 3346 em->ram_bytes = em->len; 3347 em->orig_start = hole_offset; 3348 em->block_start = EXTENT_MAP_HOLE; 3349 em->block_len = 0; 3350 em->orig_block_len = 0; 3351 em->compress_type = BTRFS_COMPRESS_NONE; 3352 em->generation = trans->transid; 3353 } 3354 3355 while (1) { 3356 write_lock(&em_tree->lock); 3357 ret = add_extent_mapping(em_tree, em, 1); 3358 write_unlock(&em_tree->lock); 3359 if (ret != -EEXIST) { 3360 free_extent_map(em); 3361 break; 3362 } 3363 btrfs_drop_extent_cache(inode, em->start, 3364 em->start + em->len - 1, 0); 3365 } 3366 3367 if (ret) 3368 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3369 &BTRFS_I(inode)->runtime_flags); 3370 } 3371 3372 /* 3373 * Make sure we do not end up inserting an inline extent into a file that has 3374 * already other (non-inline) extents. If a file has an inline extent it can 3375 * not have any other extents and the (single) inline extent must start at the 3376 * file offset 0. Failing to respect these rules will lead to file corruption, 3377 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3378 * 3379 * We can have extents that have been already written to disk or we can have 3380 * dirty ranges still in delalloc, in which case the extent maps and items are 3381 * created only when we run delalloc, and the delalloc ranges might fall outside 3382 * the range we are currently locking in the inode's io tree. So we check the 3383 * inode's i_size because of that (i_size updates are done while holding the 3384 * i_mutex, which we are holding here). 3385 * We also check to see if the inode has a size not greater than "datal" but has 3386 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3387 * protected against such concurrent fallocate calls by the i_mutex). 3388 * 3389 * If the file has no extents but a size greater than datal, do not allow the 3390 * copy because we would need turn the inline extent into a non-inline one (even 3391 * with NO_HOLES enabled). If we find our destination inode only has one inline 3392 * extent, just overwrite it with the source inline extent if its size is less 3393 * than the source extent's size, or we could copy the source inline extent's 3394 * data into the destination inode's inline extent if the later is greater then 3395 * the former. 3396 */ 3397 static int clone_copy_inline_extent(struct inode *src, 3398 struct inode *dst, 3399 struct btrfs_trans_handle *trans, 3400 struct btrfs_path *path, 3401 struct btrfs_key *new_key, 3402 const u64 drop_start, 3403 const u64 datal, 3404 const u64 skip, 3405 const u64 size, 3406 char *inline_data) 3407 { 3408 struct btrfs_root *root = BTRFS_I(dst)->root; 3409 const u64 aligned_end = ALIGN(new_key->offset + datal, 3410 root->sectorsize); 3411 int ret; 3412 struct btrfs_key key; 3413 3414 if (new_key->offset > 0) 3415 return -EOPNOTSUPP; 3416 3417 key.objectid = btrfs_ino(dst); 3418 key.type = BTRFS_EXTENT_DATA_KEY; 3419 key.offset = 0; 3420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3421 if (ret < 0) { 3422 return ret; 3423 } else if (ret > 0) { 3424 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3425 ret = btrfs_next_leaf(root, path); 3426 if (ret < 0) 3427 return ret; 3428 else if (ret > 0) 3429 goto copy_inline_extent; 3430 } 3431 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3432 if (key.objectid == btrfs_ino(dst) && 3433 key.type == BTRFS_EXTENT_DATA_KEY) { 3434 ASSERT(key.offset > 0); 3435 return -EOPNOTSUPP; 3436 } 3437 } else if (i_size_read(dst) <= datal) { 3438 struct btrfs_file_extent_item *ei; 3439 u64 ext_len; 3440 3441 /* 3442 * If the file size is <= datal, make sure there are no other 3443 * extents following (can happen do to an fallocate call with 3444 * the flag FALLOC_FL_KEEP_SIZE). 3445 */ 3446 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3447 struct btrfs_file_extent_item); 3448 /* 3449 * If it's an inline extent, it can not have other extents 3450 * following it. 3451 */ 3452 if (btrfs_file_extent_type(path->nodes[0], ei) == 3453 BTRFS_FILE_EXTENT_INLINE) 3454 goto copy_inline_extent; 3455 3456 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3457 if (ext_len > aligned_end) 3458 return -EOPNOTSUPP; 3459 3460 ret = btrfs_next_item(root, path); 3461 if (ret < 0) { 3462 return ret; 3463 } else if (ret == 0) { 3464 btrfs_item_key_to_cpu(path->nodes[0], &key, 3465 path->slots[0]); 3466 if (key.objectid == btrfs_ino(dst) && 3467 key.type == BTRFS_EXTENT_DATA_KEY) 3468 return -EOPNOTSUPP; 3469 } 3470 } 3471 3472 copy_inline_extent: 3473 /* 3474 * We have no extent items, or we have an extent at offset 0 which may 3475 * or may not be inlined. All these cases are dealt the same way. 3476 */ 3477 if (i_size_read(dst) > datal) { 3478 /* 3479 * If the destination inode has an inline extent... 3480 * This would require copying the data from the source inline 3481 * extent into the beginning of the destination's inline extent. 3482 * But this is really complex, both extents can be compressed 3483 * or just one of them, which would require decompressing and 3484 * re-compressing data (which could increase the new compressed 3485 * size, not allowing the compressed data to fit anymore in an 3486 * inline extent). 3487 * So just don't support this case for now (it should be rare, 3488 * we are not really saving space when cloning inline extents). 3489 */ 3490 return -EOPNOTSUPP; 3491 } 3492 3493 btrfs_release_path(path); 3494 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3495 if (ret) 3496 return ret; 3497 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3498 if (ret) 3499 return ret; 3500 3501 if (skip) { 3502 const u32 start = btrfs_file_extent_calc_inline_size(0); 3503 3504 memmove(inline_data + start, inline_data + start + skip, datal); 3505 } 3506 3507 write_extent_buffer(path->nodes[0], inline_data, 3508 btrfs_item_ptr_offset(path->nodes[0], 3509 path->slots[0]), 3510 size); 3511 inode_add_bytes(dst, datal); 3512 3513 return 0; 3514 } 3515 3516 /** 3517 * btrfs_clone() - clone a range from inode file to another 3518 * 3519 * @src: Inode to clone from 3520 * @inode: Inode to clone to 3521 * @off: Offset within source to start clone from 3522 * @olen: Original length, passed by user, of range to clone 3523 * @olen_aligned: Block-aligned value of olen 3524 * @destoff: Offset within @inode to start clone 3525 * @no_time_update: Whether to update mtime/ctime on the target inode 3526 */ 3527 static int btrfs_clone(struct inode *src, struct inode *inode, 3528 const u64 off, const u64 olen, const u64 olen_aligned, 3529 const u64 destoff, int no_time_update) 3530 { 3531 struct btrfs_root *root = BTRFS_I(inode)->root; 3532 struct btrfs_path *path = NULL; 3533 struct extent_buffer *leaf; 3534 struct btrfs_trans_handle *trans; 3535 char *buf = NULL; 3536 struct btrfs_key key; 3537 u32 nritems; 3538 int slot; 3539 int ret; 3540 const u64 len = olen_aligned; 3541 u64 last_dest_end = destoff; 3542 3543 ret = -ENOMEM; 3544 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN); 3545 if (!buf) { 3546 buf = vmalloc(root->nodesize); 3547 if (!buf) 3548 return ret; 3549 } 3550 3551 path = btrfs_alloc_path(); 3552 if (!path) { 3553 kvfree(buf); 3554 return ret; 3555 } 3556 3557 path->reada = READA_FORWARD; 3558 /* clone data */ 3559 key.objectid = btrfs_ino(src); 3560 key.type = BTRFS_EXTENT_DATA_KEY; 3561 key.offset = off; 3562 3563 while (1) { 3564 u64 next_key_min_offset = key.offset + 1; 3565 3566 /* 3567 * note the key will change type as we walk through the 3568 * tree. 3569 */ 3570 path->leave_spinning = 1; 3571 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3572 0, 0); 3573 if (ret < 0) 3574 goto out; 3575 /* 3576 * First search, if no extent item that starts at offset off was 3577 * found but the previous item is an extent item, it's possible 3578 * it might overlap our target range, therefore process it. 3579 */ 3580 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3581 btrfs_item_key_to_cpu(path->nodes[0], &key, 3582 path->slots[0] - 1); 3583 if (key.type == BTRFS_EXTENT_DATA_KEY) 3584 path->slots[0]--; 3585 } 3586 3587 nritems = btrfs_header_nritems(path->nodes[0]); 3588 process_slot: 3589 if (path->slots[0] >= nritems) { 3590 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3591 if (ret < 0) 3592 goto out; 3593 if (ret > 0) 3594 break; 3595 nritems = btrfs_header_nritems(path->nodes[0]); 3596 } 3597 leaf = path->nodes[0]; 3598 slot = path->slots[0]; 3599 3600 btrfs_item_key_to_cpu(leaf, &key, slot); 3601 if (key.type > BTRFS_EXTENT_DATA_KEY || 3602 key.objectid != btrfs_ino(src)) 3603 break; 3604 3605 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3606 struct btrfs_file_extent_item *extent; 3607 int type; 3608 u32 size; 3609 struct btrfs_key new_key; 3610 u64 disko = 0, diskl = 0; 3611 u64 datao = 0, datal = 0; 3612 u8 comp; 3613 u64 drop_start; 3614 3615 extent = btrfs_item_ptr(leaf, slot, 3616 struct btrfs_file_extent_item); 3617 comp = btrfs_file_extent_compression(leaf, extent); 3618 type = btrfs_file_extent_type(leaf, extent); 3619 if (type == BTRFS_FILE_EXTENT_REG || 3620 type == BTRFS_FILE_EXTENT_PREALLOC) { 3621 disko = btrfs_file_extent_disk_bytenr(leaf, 3622 extent); 3623 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3624 extent); 3625 datao = btrfs_file_extent_offset(leaf, extent); 3626 datal = btrfs_file_extent_num_bytes(leaf, 3627 extent); 3628 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3629 /* take upper bound, may be compressed */ 3630 datal = btrfs_file_extent_ram_bytes(leaf, 3631 extent); 3632 } 3633 3634 /* 3635 * The first search might have left us at an extent 3636 * item that ends before our target range's start, can 3637 * happen if we have holes and NO_HOLES feature enabled. 3638 */ 3639 if (key.offset + datal <= off) { 3640 path->slots[0]++; 3641 goto process_slot; 3642 } else if (key.offset >= off + len) { 3643 break; 3644 } 3645 next_key_min_offset = key.offset + datal; 3646 size = btrfs_item_size_nr(leaf, slot); 3647 read_extent_buffer(leaf, buf, 3648 btrfs_item_ptr_offset(leaf, slot), 3649 size); 3650 3651 btrfs_release_path(path); 3652 path->leave_spinning = 0; 3653 3654 memcpy(&new_key, &key, sizeof(new_key)); 3655 new_key.objectid = btrfs_ino(inode); 3656 if (off <= key.offset) 3657 new_key.offset = key.offset + destoff - off; 3658 else 3659 new_key.offset = destoff; 3660 3661 /* 3662 * Deal with a hole that doesn't have an extent item 3663 * that represents it (NO_HOLES feature enabled). 3664 * This hole is either in the middle of the cloning 3665 * range or at the beginning (fully overlaps it or 3666 * partially overlaps it). 3667 */ 3668 if (new_key.offset != last_dest_end) 3669 drop_start = last_dest_end; 3670 else 3671 drop_start = new_key.offset; 3672 3673 /* 3674 * 1 - adjusting old extent (we may have to split it) 3675 * 1 - add new extent 3676 * 1 - inode update 3677 */ 3678 trans = btrfs_start_transaction(root, 3); 3679 if (IS_ERR(trans)) { 3680 ret = PTR_ERR(trans); 3681 goto out; 3682 } 3683 3684 if (type == BTRFS_FILE_EXTENT_REG || 3685 type == BTRFS_FILE_EXTENT_PREALLOC) { 3686 /* 3687 * a | --- range to clone ---| b 3688 * | ------------- extent ------------- | 3689 */ 3690 3691 /* subtract range b */ 3692 if (key.offset + datal > off + len) 3693 datal = off + len - key.offset; 3694 3695 /* subtract range a */ 3696 if (off > key.offset) { 3697 datao += off - key.offset; 3698 datal -= off - key.offset; 3699 } 3700 3701 ret = btrfs_drop_extents(trans, root, inode, 3702 drop_start, 3703 new_key.offset + datal, 3704 1); 3705 if (ret) { 3706 if (ret != -EOPNOTSUPP) 3707 btrfs_abort_transaction(trans, 3708 ret); 3709 btrfs_end_transaction(trans, root); 3710 goto out; 3711 } 3712 3713 ret = btrfs_insert_empty_item(trans, root, path, 3714 &new_key, size); 3715 if (ret) { 3716 btrfs_abort_transaction(trans, ret); 3717 btrfs_end_transaction(trans, root); 3718 goto out; 3719 } 3720 3721 leaf = path->nodes[0]; 3722 slot = path->slots[0]; 3723 write_extent_buffer(leaf, buf, 3724 btrfs_item_ptr_offset(leaf, slot), 3725 size); 3726 3727 extent = btrfs_item_ptr(leaf, slot, 3728 struct btrfs_file_extent_item); 3729 3730 /* disko == 0 means it's a hole */ 3731 if (!disko) 3732 datao = 0; 3733 3734 btrfs_set_file_extent_offset(leaf, extent, 3735 datao); 3736 btrfs_set_file_extent_num_bytes(leaf, extent, 3737 datal); 3738 3739 if (disko) { 3740 inode_add_bytes(inode, datal); 3741 ret = btrfs_inc_extent_ref(trans, root, 3742 disko, diskl, 0, 3743 root->root_key.objectid, 3744 btrfs_ino(inode), 3745 new_key.offset - datao); 3746 if (ret) { 3747 btrfs_abort_transaction(trans, 3748 ret); 3749 btrfs_end_transaction(trans, 3750 root); 3751 goto out; 3752 3753 } 3754 } 3755 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3756 u64 skip = 0; 3757 u64 trim = 0; 3758 3759 if (off > key.offset) { 3760 skip = off - key.offset; 3761 new_key.offset += skip; 3762 } 3763 3764 if (key.offset + datal > off + len) 3765 trim = key.offset + datal - (off + len); 3766 3767 if (comp && (skip || trim)) { 3768 ret = -EINVAL; 3769 btrfs_end_transaction(trans, root); 3770 goto out; 3771 } 3772 size -= skip + trim; 3773 datal -= skip + trim; 3774 3775 ret = clone_copy_inline_extent(src, inode, 3776 trans, path, 3777 &new_key, 3778 drop_start, 3779 datal, 3780 skip, size, buf); 3781 if (ret) { 3782 if (ret != -EOPNOTSUPP) 3783 btrfs_abort_transaction(trans, 3784 ret); 3785 btrfs_end_transaction(trans, root); 3786 goto out; 3787 } 3788 leaf = path->nodes[0]; 3789 slot = path->slots[0]; 3790 } 3791 3792 /* If we have an implicit hole (NO_HOLES feature). */ 3793 if (drop_start < new_key.offset) 3794 clone_update_extent_map(inode, trans, 3795 NULL, drop_start, 3796 new_key.offset - drop_start); 3797 3798 clone_update_extent_map(inode, trans, path, 0, 0); 3799 3800 btrfs_mark_buffer_dirty(leaf); 3801 btrfs_release_path(path); 3802 3803 last_dest_end = ALIGN(new_key.offset + datal, 3804 root->sectorsize); 3805 ret = clone_finish_inode_update(trans, inode, 3806 last_dest_end, 3807 destoff, olen, 3808 no_time_update); 3809 if (ret) 3810 goto out; 3811 if (new_key.offset + datal >= destoff + len) 3812 break; 3813 } 3814 btrfs_release_path(path); 3815 key.offset = next_key_min_offset; 3816 } 3817 ret = 0; 3818 3819 if (last_dest_end < destoff + len) { 3820 /* 3821 * We have an implicit hole (NO_HOLES feature is enabled) that 3822 * fully or partially overlaps our cloning range at its end. 3823 */ 3824 btrfs_release_path(path); 3825 3826 /* 3827 * 1 - remove extent(s) 3828 * 1 - inode update 3829 */ 3830 trans = btrfs_start_transaction(root, 2); 3831 if (IS_ERR(trans)) { 3832 ret = PTR_ERR(trans); 3833 goto out; 3834 } 3835 ret = btrfs_drop_extents(trans, root, inode, 3836 last_dest_end, destoff + len, 1); 3837 if (ret) { 3838 if (ret != -EOPNOTSUPP) 3839 btrfs_abort_transaction(trans, ret); 3840 btrfs_end_transaction(trans, root); 3841 goto out; 3842 } 3843 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3844 destoff + len - last_dest_end); 3845 ret = clone_finish_inode_update(trans, inode, destoff + len, 3846 destoff, olen, no_time_update); 3847 } 3848 3849 out: 3850 btrfs_free_path(path); 3851 kvfree(buf); 3852 return ret; 3853 } 3854 3855 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3856 u64 off, u64 olen, u64 destoff) 3857 { 3858 struct inode *inode = file_inode(file); 3859 struct inode *src = file_inode(file_src); 3860 struct btrfs_root *root = BTRFS_I(inode)->root; 3861 int ret; 3862 u64 len = olen; 3863 u64 bs = root->fs_info->sb->s_blocksize; 3864 int same_inode = src == inode; 3865 3866 /* 3867 * TODO: 3868 * - split compressed inline extents. annoying: we need to 3869 * decompress into destination's address_space (the file offset 3870 * may change, so source mapping won't do), then recompress (or 3871 * otherwise reinsert) a subrange. 3872 * 3873 * - split destination inode's inline extents. The inline extents can 3874 * be either compressed or non-compressed. 3875 */ 3876 3877 if (btrfs_root_readonly(root)) 3878 return -EROFS; 3879 3880 if (file_src->f_path.mnt != file->f_path.mnt || 3881 src->i_sb != inode->i_sb) 3882 return -EXDEV; 3883 3884 /* don't make the dst file partly checksummed */ 3885 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3886 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3887 return -EINVAL; 3888 3889 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3890 return -EISDIR; 3891 3892 if (!same_inode) { 3893 btrfs_double_inode_lock(src, inode); 3894 } else { 3895 inode_lock(src); 3896 } 3897 3898 /* determine range to clone */ 3899 ret = -EINVAL; 3900 if (off + len > src->i_size || off + len < off) 3901 goto out_unlock; 3902 if (len == 0) 3903 olen = len = src->i_size - off; 3904 /* if we extend to eof, continue to block boundary */ 3905 if (off + len == src->i_size) 3906 len = ALIGN(src->i_size, bs) - off; 3907 3908 if (len == 0) { 3909 ret = 0; 3910 goto out_unlock; 3911 } 3912 3913 /* verify the end result is block aligned */ 3914 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3915 !IS_ALIGNED(destoff, bs)) 3916 goto out_unlock; 3917 3918 /* verify if ranges are overlapped within the same file */ 3919 if (same_inode) { 3920 if (destoff + len > off && destoff < off + len) 3921 goto out_unlock; 3922 } 3923 3924 if (destoff > inode->i_size) { 3925 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3926 if (ret) 3927 goto out_unlock; 3928 } 3929 3930 /* 3931 * Lock the target range too. Right after we replace the file extent 3932 * items in the fs tree (which now point to the cloned data), we might 3933 * have a worker replace them with extent items relative to a write 3934 * operation that was issued before this clone operation (i.e. confront 3935 * with inode.c:btrfs_finish_ordered_io). 3936 */ 3937 if (same_inode) { 3938 u64 lock_start = min_t(u64, off, destoff); 3939 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3940 3941 ret = lock_extent_range(src, lock_start, lock_len, true); 3942 } else { 3943 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3944 true); 3945 } 3946 ASSERT(ret == 0); 3947 if (WARN_ON(ret)) { 3948 /* ranges in the io trees already unlocked */ 3949 goto out_unlock; 3950 } 3951 3952 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3953 3954 if (same_inode) { 3955 u64 lock_start = min_t(u64, off, destoff); 3956 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3957 3958 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3959 } else { 3960 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3961 } 3962 /* 3963 * Truncate page cache pages so that future reads will see the cloned 3964 * data immediately and not the previous data. 3965 */ 3966 truncate_inode_pages_range(&inode->i_data, 3967 round_down(destoff, PAGE_SIZE), 3968 round_up(destoff + len, PAGE_SIZE) - 1); 3969 out_unlock: 3970 if (!same_inode) 3971 btrfs_double_inode_unlock(src, inode); 3972 else 3973 inode_unlock(src); 3974 return ret; 3975 } 3976 3977 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in, 3978 struct file *file_out, loff_t pos_out, 3979 size_t len, unsigned int flags) 3980 { 3981 ssize_t ret; 3982 3983 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out); 3984 if (ret == 0) 3985 ret = len; 3986 return ret; 3987 } 3988 3989 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3990 struct file *dst_file, loff_t destoff, u64 len) 3991 { 3992 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3993 } 3994 3995 /* 3996 * there are many ways the trans_start and trans_end ioctls can lead 3997 * to deadlocks. They should only be used by applications that 3998 * basically own the machine, and have a very in depth understanding 3999 * of all the possible deadlocks and enospc problems. 4000 */ 4001 static long btrfs_ioctl_trans_start(struct file *file) 4002 { 4003 struct inode *inode = file_inode(file); 4004 struct btrfs_root *root = BTRFS_I(inode)->root; 4005 struct btrfs_trans_handle *trans; 4006 int ret; 4007 4008 ret = -EPERM; 4009 if (!capable(CAP_SYS_ADMIN)) 4010 goto out; 4011 4012 ret = -EINPROGRESS; 4013 if (file->private_data) 4014 goto out; 4015 4016 ret = -EROFS; 4017 if (btrfs_root_readonly(root)) 4018 goto out; 4019 4020 ret = mnt_want_write_file(file); 4021 if (ret) 4022 goto out; 4023 4024 atomic_inc(&root->fs_info->open_ioctl_trans); 4025 4026 ret = -ENOMEM; 4027 trans = btrfs_start_ioctl_transaction(root); 4028 if (IS_ERR(trans)) 4029 goto out_drop; 4030 4031 file->private_data = trans; 4032 return 0; 4033 4034 out_drop: 4035 atomic_dec(&root->fs_info->open_ioctl_trans); 4036 mnt_drop_write_file(file); 4037 out: 4038 return ret; 4039 } 4040 4041 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4042 { 4043 struct inode *inode = file_inode(file); 4044 struct btrfs_root *root = BTRFS_I(inode)->root; 4045 struct btrfs_root *new_root; 4046 struct btrfs_dir_item *di; 4047 struct btrfs_trans_handle *trans; 4048 struct btrfs_path *path; 4049 struct btrfs_key location; 4050 struct btrfs_disk_key disk_key; 4051 u64 objectid = 0; 4052 u64 dir_id; 4053 int ret; 4054 4055 if (!capable(CAP_SYS_ADMIN)) 4056 return -EPERM; 4057 4058 ret = mnt_want_write_file(file); 4059 if (ret) 4060 return ret; 4061 4062 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4063 ret = -EFAULT; 4064 goto out; 4065 } 4066 4067 if (!objectid) 4068 objectid = BTRFS_FS_TREE_OBJECTID; 4069 4070 location.objectid = objectid; 4071 location.type = BTRFS_ROOT_ITEM_KEY; 4072 location.offset = (u64)-1; 4073 4074 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 4075 if (IS_ERR(new_root)) { 4076 ret = PTR_ERR(new_root); 4077 goto out; 4078 } 4079 4080 path = btrfs_alloc_path(); 4081 if (!path) { 4082 ret = -ENOMEM; 4083 goto out; 4084 } 4085 path->leave_spinning = 1; 4086 4087 trans = btrfs_start_transaction(root, 1); 4088 if (IS_ERR(trans)) { 4089 btrfs_free_path(path); 4090 ret = PTR_ERR(trans); 4091 goto out; 4092 } 4093 4094 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 4095 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 4096 dir_id, "default", 7, 1); 4097 if (IS_ERR_OR_NULL(di)) { 4098 btrfs_free_path(path); 4099 btrfs_end_transaction(trans, root); 4100 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4101 "item, this isn't going to work"); 4102 ret = -ENOENT; 4103 goto out; 4104 } 4105 4106 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4107 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4108 btrfs_mark_buffer_dirty(path->nodes[0]); 4109 btrfs_free_path(path); 4110 4111 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4112 btrfs_end_transaction(trans, root); 4113 out: 4114 mnt_drop_write_file(file); 4115 return ret; 4116 } 4117 4118 void btrfs_get_block_group_info(struct list_head *groups_list, 4119 struct btrfs_ioctl_space_info *space) 4120 { 4121 struct btrfs_block_group_cache *block_group; 4122 4123 space->total_bytes = 0; 4124 space->used_bytes = 0; 4125 space->flags = 0; 4126 list_for_each_entry(block_group, groups_list, list) { 4127 space->flags = block_group->flags; 4128 space->total_bytes += block_group->key.offset; 4129 space->used_bytes += 4130 btrfs_block_group_used(&block_group->item); 4131 } 4132 } 4133 4134 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4135 { 4136 struct btrfs_ioctl_space_args space_args; 4137 struct btrfs_ioctl_space_info space; 4138 struct btrfs_ioctl_space_info *dest; 4139 struct btrfs_ioctl_space_info *dest_orig; 4140 struct btrfs_ioctl_space_info __user *user_dest; 4141 struct btrfs_space_info *info; 4142 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4143 BTRFS_BLOCK_GROUP_SYSTEM, 4144 BTRFS_BLOCK_GROUP_METADATA, 4145 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4146 int num_types = 4; 4147 int alloc_size; 4148 int ret = 0; 4149 u64 slot_count = 0; 4150 int i, c; 4151 4152 if (copy_from_user(&space_args, 4153 (struct btrfs_ioctl_space_args __user *)arg, 4154 sizeof(space_args))) 4155 return -EFAULT; 4156 4157 for (i = 0; i < num_types; i++) { 4158 struct btrfs_space_info *tmp; 4159 4160 info = NULL; 4161 rcu_read_lock(); 4162 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4163 list) { 4164 if (tmp->flags == types[i]) { 4165 info = tmp; 4166 break; 4167 } 4168 } 4169 rcu_read_unlock(); 4170 4171 if (!info) 4172 continue; 4173 4174 down_read(&info->groups_sem); 4175 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4176 if (!list_empty(&info->block_groups[c])) 4177 slot_count++; 4178 } 4179 up_read(&info->groups_sem); 4180 } 4181 4182 /* 4183 * Global block reserve, exported as a space_info 4184 */ 4185 slot_count++; 4186 4187 /* space_slots == 0 means they are asking for a count */ 4188 if (space_args.space_slots == 0) { 4189 space_args.total_spaces = slot_count; 4190 goto out; 4191 } 4192 4193 slot_count = min_t(u64, space_args.space_slots, slot_count); 4194 4195 alloc_size = sizeof(*dest) * slot_count; 4196 4197 /* we generally have at most 6 or so space infos, one for each raid 4198 * level. So, a whole page should be more than enough for everyone 4199 */ 4200 if (alloc_size > PAGE_SIZE) 4201 return -ENOMEM; 4202 4203 space_args.total_spaces = 0; 4204 dest = kmalloc(alloc_size, GFP_KERNEL); 4205 if (!dest) 4206 return -ENOMEM; 4207 dest_orig = dest; 4208 4209 /* now we have a buffer to copy into */ 4210 for (i = 0; i < num_types; i++) { 4211 struct btrfs_space_info *tmp; 4212 4213 if (!slot_count) 4214 break; 4215 4216 info = NULL; 4217 rcu_read_lock(); 4218 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4219 list) { 4220 if (tmp->flags == types[i]) { 4221 info = tmp; 4222 break; 4223 } 4224 } 4225 rcu_read_unlock(); 4226 4227 if (!info) 4228 continue; 4229 down_read(&info->groups_sem); 4230 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4231 if (!list_empty(&info->block_groups[c])) { 4232 btrfs_get_block_group_info( 4233 &info->block_groups[c], &space); 4234 memcpy(dest, &space, sizeof(space)); 4235 dest++; 4236 space_args.total_spaces++; 4237 slot_count--; 4238 } 4239 if (!slot_count) 4240 break; 4241 } 4242 up_read(&info->groups_sem); 4243 } 4244 4245 /* 4246 * Add global block reserve 4247 */ 4248 if (slot_count) { 4249 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4250 4251 spin_lock(&block_rsv->lock); 4252 space.total_bytes = block_rsv->size; 4253 space.used_bytes = block_rsv->size - block_rsv->reserved; 4254 spin_unlock(&block_rsv->lock); 4255 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4256 memcpy(dest, &space, sizeof(space)); 4257 space_args.total_spaces++; 4258 } 4259 4260 user_dest = (struct btrfs_ioctl_space_info __user *) 4261 (arg + sizeof(struct btrfs_ioctl_space_args)); 4262 4263 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4264 ret = -EFAULT; 4265 4266 kfree(dest_orig); 4267 out: 4268 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4269 ret = -EFAULT; 4270 4271 return ret; 4272 } 4273 4274 /* 4275 * there are many ways the trans_start and trans_end ioctls can lead 4276 * to deadlocks. They should only be used by applications that 4277 * basically own the machine, and have a very in depth understanding 4278 * of all the possible deadlocks and enospc problems. 4279 */ 4280 long btrfs_ioctl_trans_end(struct file *file) 4281 { 4282 struct inode *inode = file_inode(file); 4283 struct btrfs_root *root = BTRFS_I(inode)->root; 4284 struct btrfs_trans_handle *trans; 4285 4286 trans = file->private_data; 4287 if (!trans) 4288 return -EINVAL; 4289 file->private_data = NULL; 4290 4291 btrfs_end_transaction(trans, root); 4292 4293 atomic_dec(&root->fs_info->open_ioctl_trans); 4294 4295 mnt_drop_write_file(file); 4296 return 0; 4297 } 4298 4299 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4300 void __user *argp) 4301 { 4302 struct btrfs_trans_handle *trans; 4303 u64 transid; 4304 int ret; 4305 4306 trans = btrfs_attach_transaction_barrier(root); 4307 if (IS_ERR(trans)) { 4308 if (PTR_ERR(trans) != -ENOENT) 4309 return PTR_ERR(trans); 4310 4311 /* No running transaction, don't bother */ 4312 transid = root->fs_info->last_trans_committed; 4313 goto out; 4314 } 4315 transid = trans->transid; 4316 ret = btrfs_commit_transaction_async(trans, root, 0); 4317 if (ret) { 4318 btrfs_end_transaction(trans, root); 4319 return ret; 4320 } 4321 out: 4322 if (argp) 4323 if (copy_to_user(argp, &transid, sizeof(transid))) 4324 return -EFAULT; 4325 return 0; 4326 } 4327 4328 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4329 void __user *argp) 4330 { 4331 u64 transid; 4332 4333 if (argp) { 4334 if (copy_from_user(&transid, argp, sizeof(transid))) 4335 return -EFAULT; 4336 } else { 4337 transid = 0; /* current trans */ 4338 } 4339 return btrfs_wait_for_commit(root, transid); 4340 } 4341 4342 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4343 { 4344 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4345 struct btrfs_ioctl_scrub_args *sa; 4346 int ret; 4347 4348 if (!capable(CAP_SYS_ADMIN)) 4349 return -EPERM; 4350 4351 sa = memdup_user(arg, sizeof(*sa)); 4352 if (IS_ERR(sa)) 4353 return PTR_ERR(sa); 4354 4355 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4356 ret = mnt_want_write_file(file); 4357 if (ret) 4358 goto out; 4359 } 4360 4361 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4362 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4363 0); 4364 4365 if (copy_to_user(arg, sa, sizeof(*sa))) 4366 ret = -EFAULT; 4367 4368 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4369 mnt_drop_write_file(file); 4370 out: 4371 kfree(sa); 4372 return ret; 4373 } 4374 4375 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4376 { 4377 if (!capable(CAP_SYS_ADMIN)) 4378 return -EPERM; 4379 4380 return btrfs_scrub_cancel(root->fs_info); 4381 } 4382 4383 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4384 void __user *arg) 4385 { 4386 struct btrfs_ioctl_scrub_args *sa; 4387 int ret; 4388 4389 if (!capable(CAP_SYS_ADMIN)) 4390 return -EPERM; 4391 4392 sa = memdup_user(arg, sizeof(*sa)); 4393 if (IS_ERR(sa)) 4394 return PTR_ERR(sa); 4395 4396 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4397 4398 if (copy_to_user(arg, sa, sizeof(*sa))) 4399 ret = -EFAULT; 4400 4401 kfree(sa); 4402 return ret; 4403 } 4404 4405 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4406 void __user *arg) 4407 { 4408 struct btrfs_ioctl_get_dev_stats *sa; 4409 int ret; 4410 4411 sa = memdup_user(arg, sizeof(*sa)); 4412 if (IS_ERR(sa)) 4413 return PTR_ERR(sa); 4414 4415 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4416 kfree(sa); 4417 return -EPERM; 4418 } 4419 4420 ret = btrfs_get_dev_stats(root, sa); 4421 4422 if (copy_to_user(arg, sa, sizeof(*sa))) 4423 ret = -EFAULT; 4424 4425 kfree(sa); 4426 return ret; 4427 } 4428 4429 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4430 { 4431 struct btrfs_ioctl_dev_replace_args *p; 4432 int ret; 4433 4434 if (!capable(CAP_SYS_ADMIN)) 4435 return -EPERM; 4436 4437 p = memdup_user(arg, sizeof(*p)); 4438 if (IS_ERR(p)) 4439 return PTR_ERR(p); 4440 4441 switch (p->cmd) { 4442 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4443 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4444 ret = -EROFS; 4445 goto out; 4446 } 4447 if (atomic_xchg( 4448 &root->fs_info->mutually_exclusive_operation_running, 4449 1)) { 4450 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4451 } else { 4452 ret = btrfs_dev_replace_by_ioctl(root, p); 4453 atomic_set( 4454 &root->fs_info->mutually_exclusive_operation_running, 4455 0); 4456 } 4457 break; 4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4459 btrfs_dev_replace_status(root->fs_info, p); 4460 ret = 0; 4461 break; 4462 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4463 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4464 break; 4465 default: 4466 ret = -EINVAL; 4467 break; 4468 } 4469 4470 if (copy_to_user(arg, p, sizeof(*p))) 4471 ret = -EFAULT; 4472 out: 4473 kfree(p); 4474 return ret; 4475 } 4476 4477 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4478 { 4479 int ret = 0; 4480 int i; 4481 u64 rel_ptr; 4482 int size; 4483 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4484 struct inode_fs_paths *ipath = NULL; 4485 struct btrfs_path *path; 4486 4487 if (!capable(CAP_DAC_READ_SEARCH)) 4488 return -EPERM; 4489 4490 path = btrfs_alloc_path(); 4491 if (!path) { 4492 ret = -ENOMEM; 4493 goto out; 4494 } 4495 4496 ipa = memdup_user(arg, sizeof(*ipa)); 4497 if (IS_ERR(ipa)) { 4498 ret = PTR_ERR(ipa); 4499 ipa = NULL; 4500 goto out; 4501 } 4502 4503 size = min_t(u32, ipa->size, 4096); 4504 ipath = init_ipath(size, root, path); 4505 if (IS_ERR(ipath)) { 4506 ret = PTR_ERR(ipath); 4507 ipath = NULL; 4508 goto out; 4509 } 4510 4511 ret = paths_from_inode(ipa->inum, ipath); 4512 if (ret < 0) 4513 goto out; 4514 4515 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4516 rel_ptr = ipath->fspath->val[i] - 4517 (u64)(unsigned long)ipath->fspath->val; 4518 ipath->fspath->val[i] = rel_ptr; 4519 } 4520 4521 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4522 (void *)(unsigned long)ipath->fspath, size); 4523 if (ret) { 4524 ret = -EFAULT; 4525 goto out; 4526 } 4527 4528 out: 4529 btrfs_free_path(path); 4530 free_ipath(ipath); 4531 kfree(ipa); 4532 4533 return ret; 4534 } 4535 4536 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4537 { 4538 struct btrfs_data_container *inodes = ctx; 4539 const size_t c = 3 * sizeof(u64); 4540 4541 if (inodes->bytes_left >= c) { 4542 inodes->bytes_left -= c; 4543 inodes->val[inodes->elem_cnt] = inum; 4544 inodes->val[inodes->elem_cnt + 1] = offset; 4545 inodes->val[inodes->elem_cnt + 2] = root; 4546 inodes->elem_cnt += 3; 4547 } else { 4548 inodes->bytes_missing += c - inodes->bytes_left; 4549 inodes->bytes_left = 0; 4550 inodes->elem_missed += 3; 4551 } 4552 4553 return 0; 4554 } 4555 4556 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4557 void __user *arg) 4558 { 4559 int ret = 0; 4560 int size; 4561 struct btrfs_ioctl_logical_ino_args *loi; 4562 struct btrfs_data_container *inodes = NULL; 4563 struct btrfs_path *path = NULL; 4564 4565 if (!capable(CAP_SYS_ADMIN)) 4566 return -EPERM; 4567 4568 loi = memdup_user(arg, sizeof(*loi)); 4569 if (IS_ERR(loi)) { 4570 ret = PTR_ERR(loi); 4571 loi = NULL; 4572 goto out; 4573 } 4574 4575 path = btrfs_alloc_path(); 4576 if (!path) { 4577 ret = -ENOMEM; 4578 goto out; 4579 } 4580 4581 size = min_t(u32, loi->size, SZ_64K); 4582 inodes = init_data_container(size); 4583 if (IS_ERR(inodes)) { 4584 ret = PTR_ERR(inodes); 4585 inodes = NULL; 4586 goto out; 4587 } 4588 4589 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4590 build_ino_list, inodes); 4591 if (ret == -EINVAL) 4592 ret = -ENOENT; 4593 if (ret < 0) 4594 goto out; 4595 4596 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4597 (void *)(unsigned long)inodes, size); 4598 if (ret) 4599 ret = -EFAULT; 4600 4601 out: 4602 btrfs_free_path(path); 4603 vfree(inodes); 4604 kfree(loi); 4605 4606 return ret; 4607 } 4608 4609 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4610 struct btrfs_ioctl_balance_args *bargs) 4611 { 4612 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4613 4614 bargs->flags = bctl->flags; 4615 4616 if (atomic_read(&fs_info->balance_running)) 4617 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4618 if (atomic_read(&fs_info->balance_pause_req)) 4619 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4620 if (atomic_read(&fs_info->balance_cancel_req)) 4621 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4622 4623 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4624 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4625 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4626 4627 if (lock) { 4628 spin_lock(&fs_info->balance_lock); 4629 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4630 spin_unlock(&fs_info->balance_lock); 4631 } else { 4632 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4633 } 4634 } 4635 4636 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4637 { 4638 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4639 struct btrfs_fs_info *fs_info = root->fs_info; 4640 struct btrfs_ioctl_balance_args *bargs; 4641 struct btrfs_balance_control *bctl; 4642 bool need_unlock; /* for mut. excl. ops lock */ 4643 int ret; 4644 4645 if (!capable(CAP_SYS_ADMIN)) 4646 return -EPERM; 4647 4648 ret = mnt_want_write_file(file); 4649 if (ret) 4650 return ret; 4651 4652 again: 4653 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4654 mutex_lock(&fs_info->volume_mutex); 4655 mutex_lock(&fs_info->balance_mutex); 4656 need_unlock = true; 4657 goto locked; 4658 } 4659 4660 /* 4661 * mut. excl. ops lock is locked. Three possibilities: 4662 * (1) some other op is running 4663 * (2) balance is running 4664 * (3) balance is paused -- special case (think resume) 4665 */ 4666 mutex_lock(&fs_info->balance_mutex); 4667 if (fs_info->balance_ctl) { 4668 /* this is either (2) or (3) */ 4669 if (!atomic_read(&fs_info->balance_running)) { 4670 mutex_unlock(&fs_info->balance_mutex); 4671 if (!mutex_trylock(&fs_info->volume_mutex)) 4672 goto again; 4673 mutex_lock(&fs_info->balance_mutex); 4674 4675 if (fs_info->balance_ctl && 4676 !atomic_read(&fs_info->balance_running)) { 4677 /* this is (3) */ 4678 need_unlock = false; 4679 goto locked; 4680 } 4681 4682 mutex_unlock(&fs_info->balance_mutex); 4683 mutex_unlock(&fs_info->volume_mutex); 4684 goto again; 4685 } else { 4686 /* this is (2) */ 4687 mutex_unlock(&fs_info->balance_mutex); 4688 ret = -EINPROGRESS; 4689 goto out; 4690 } 4691 } else { 4692 /* this is (1) */ 4693 mutex_unlock(&fs_info->balance_mutex); 4694 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4695 goto out; 4696 } 4697 4698 locked: 4699 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4700 4701 if (arg) { 4702 bargs = memdup_user(arg, sizeof(*bargs)); 4703 if (IS_ERR(bargs)) { 4704 ret = PTR_ERR(bargs); 4705 goto out_unlock; 4706 } 4707 4708 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4709 if (!fs_info->balance_ctl) { 4710 ret = -ENOTCONN; 4711 goto out_bargs; 4712 } 4713 4714 bctl = fs_info->balance_ctl; 4715 spin_lock(&fs_info->balance_lock); 4716 bctl->flags |= BTRFS_BALANCE_RESUME; 4717 spin_unlock(&fs_info->balance_lock); 4718 4719 goto do_balance; 4720 } 4721 } else { 4722 bargs = NULL; 4723 } 4724 4725 if (fs_info->balance_ctl) { 4726 ret = -EINPROGRESS; 4727 goto out_bargs; 4728 } 4729 4730 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4731 if (!bctl) { 4732 ret = -ENOMEM; 4733 goto out_bargs; 4734 } 4735 4736 bctl->fs_info = fs_info; 4737 if (arg) { 4738 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4739 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4740 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4741 4742 bctl->flags = bargs->flags; 4743 } else { 4744 /* balance everything - no filters */ 4745 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4746 } 4747 4748 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4749 ret = -EINVAL; 4750 goto out_bctl; 4751 } 4752 4753 do_balance: 4754 /* 4755 * Ownership of bctl and mutually_exclusive_operation_running 4756 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4757 * or, if restriper was paused all the way until unmount, in 4758 * free_fs_info. mutually_exclusive_operation_running is 4759 * cleared in __cancel_balance. 4760 */ 4761 need_unlock = false; 4762 4763 ret = btrfs_balance(bctl, bargs); 4764 bctl = NULL; 4765 4766 if (arg) { 4767 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4768 ret = -EFAULT; 4769 } 4770 4771 out_bctl: 4772 kfree(bctl); 4773 out_bargs: 4774 kfree(bargs); 4775 out_unlock: 4776 mutex_unlock(&fs_info->balance_mutex); 4777 mutex_unlock(&fs_info->volume_mutex); 4778 if (need_unlock) 4779 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4780 out: 4781 mnt_drop_write_file(file); 4782 return ret; 4783 } 4784 4785 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4786 { 4787 if (!capable(CAP_SYS_ADMIN)) 4788 return -EPERM; 4789 4790 switch (cmd) { 4791 case BTRFS_BALANCE_CTL_PAUSE: 4792 return btrfs_pause_balance(root->fs_info); 4793 case BTRFS_BALANCE_CTL_CANCEL: 4794 return btrfs_cancel_balance(root->fs_info); 4795 } 4796 4797 return -EINVAL; 4798 } 4799 4800 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4801 void __user *arg) 4802 { 4803 struct btrfs_fs_info *fs_info = root->fs_info; 4804 struct btrfs_ioctl_balance_args *bargs; 4805 int ret = 0; 4806 4807 if (!capable(CAP_SYS_ADMIN)) 4808 return -EPERM; 4809 4810 mutex_lock(&fs_info->balance_mutex); 4811 if (!fs_info->balance_ctl) { 4812 ret = -ENOTCONN; 4813 goto out; 4814 } 4815 4816 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4817 if (!bargs) { 4818 ret = -ENOMEM; 4819 goto out; 4820 } 4821 4822 update_ioctl_balance_args(fs_info, 1, bargs); 4823 4824 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4825 ret = -EFAULT; 4826 4827 kfree(bargs); 4828 out: 4829 mutex_unlock(&fs_info->balance_mutex); 4830 return ret; 4831 } 4832 4833 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4834 { 4835 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4836 struct btrfs_ioctl_quota_ctl_args *sa; 4837 struct btrfs_trans_handle *trans = NULL; 4838 int ret; 4839 int err; 4840 4841 if (!capable(CAP_SYS_ADMIN)) 4842 return -EPERM; 4843 4844 ret = mnt_want_write_file(file); 4845 if (ret) 4846 return ret; 4847 4848 sa = memdup_user(arg, sizeof(*sa)); 4849 if (IS_ERR(sa)) { 4850 ret = PTR_ERR(sa); 4851 goto drop_write; 4852 } 4853 4854 down_write(&root->fs_info->subvol_sem); 4855 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4856 if (IS_ERR(trans)) { 4857 ret = PTR_ERR(trans); 4858 goto out; 4859 } 4860 4861 switch (sa->cmd) { 4862 case BTRFS_QUOTA_CTL_ENABLE: 4863 ret = btrfs_quota_enable(trans, root->fs_info); 4864 break; 4865 case BTRFS_QUOTA_CTL_DISABLE: 4866 ret = btrfs_quota_disable(trans, root->fs_info); 4867 break; 4868 default: 4869 ret = -EINVAL; 4870 break; 4871 } 4872 4873 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4874 if (err && !ret) 4875 ret = err; 4876 out: 4877 kfree(sa); 4878 up_write(&root->fs_info->subvol_sem); 4879 drop_write: 4880 mnt_drop_write_file(file); 4881 return ret; 4882 } 4883 4884 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4885 { 4886 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4887 struct btrfs_ioctl_qgroup_assign_args *sa; 4888 struct btrfs_trans_handle *trans; 4889 int ret; 4890 int err; 4891 4892 if (!capable(CAP_SYS_ADMIN)) 4893 return -EPERM; 4894 4895 ret = mnt_want_write_file(file); 4896 if (ret) 4897 return ret; 4898 4899 sa = memdup_user(arg, sizeof(*sa)); 4900 if (IS_ERR(sa)) { 4901 ret = PTR_ERR(sa); 4902 goto drop_write; 4903 } 4904 4905 trans = btrfs_join_transaction(root); 4906 if (IS_ERR(trans)) { 4907 ret = PTR_ERR(trans); 4908 goto out; 4909 } 4910 4911 /* FIXME: check if the IDs really exist */ 4912 if (sa->assign) { 4913 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4914 sa->src, sa->dst); 4915 } else { 4916 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4917 sa->src, sa->dst); 4918 } 4919 4920 /* update qgroup status and info */ 4921 err = btrfs_run_qgroups(trans, root->fs_info); 4922 if (err < 0) 4923 btrfs_handle_fs_error(root->fs_info, err, 4924 "failed to update qgroup status and info"); 4925 err = btrfs_end_transaction(trans, root); 4926 if (err && !ret) 4927 ret = err; 4928 4929 out: 4930 kfree(sa); 4931 drop_write: 4932 mnt_drop_write_file(file); 4933 return ret; 4934 } 4935 4936 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4937 { 4938 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4939 struct btrfs_ioctl_qgroup_create_args *sa; 4940 struct btrfs_trans_handle *trans; 4941 int ret; 4942 int err; 4943 4944 if (!capable(CAP_SYS_ADMIN)) 4945 return -EPERM; 4946 4947 ret = mnt_want_write_file(file); 4948 if (ret) 4949 return ret; 4950 4951 sa = memdup_user(arg, sizeof(*sa)); 4952 if (IS_ERR(sa)) { 4953 ret = PTR_ERR(sa); 4954 goto drop_write; 4955 } 4956 4957 if (!sa->qgroupid) { 4958 ret = -EINVAL; 4959 goto out; 4960 } 4961 4962 trans = btrfs_join_transaction(root); 4963 if (IS_ERR(trans)) { 4964 ret = PTR_ERR(trans); 4965 goto out; 4966 } 4967 4968 /* FIXME: check if the IDs really exist */ 4969 if (sa->create) { 4970 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4971 } else { 4972 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4973 } 4974 4975 err = btrfs_end_transaction(trans, root); 4976 if (err && !ret) 4977 ret = err; 4978 4979 out: 4980 kfree(sa); 4981 drop_write: 4982 mnt_drop_write_file(file); 4983 return ret; 4984 } 4985 4986 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4987 { 4988 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4989 struct btrfs_ioctl_qgroup_limit_args *sa; 4990 struct btrfs_trans_handle *trans; 4991 int ret; 4992 int err; 4993 u64 qgroupid; 4994 4995 if (!capable(CAP_SYS_ADMIN)) 4996 return -EPERM; 4997 4998 ret = mnt_want_write_file(file); 4999 if (ret) 5000 return ret; 5001 5002 sa = memdup_user(arg, sizeof(*sa)); 5003 if (IS_ERR(sa)) { 5004 ret = PTR_ERR(sa); 5005 goto drop_write; 5006 } 5007 5008 trans = btrfs_join_transaction(root); 5009 if (IS_ERR(trans)) { 5010 ret = PTR_ERR(trans); 5011 goto out; 5012 } 5013 5014 qgroupid = sa->qgroupid; 5015 if (!qgroupid) { 5016 /* take the current subvol as qgroup */ 5017 qgroupid = root->root_key.objectid; 5018 } 5019 5020 /* FIXME: check if the IDs really exist */ 5021 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 5022 5023 err = btrfs_end_transaction(trans, root); 5024 if (err && !ret) 5025 ret = err; 5026 5027 out: 5028 kfree(sa); 5029 drop_write: 5030 mnt_drop_write_file(file); 5031 return ret; 5032 } 5033 5034 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5035 { 5036 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5037 struct btrfs_ioctl_quota_rescan_args *qsa; 5038 int ret; 5039 5040 if (!capable(CAP_SYS_ADMIN)) 5041 return -EPERM; 5042 5043 ret = mnt_want_write_file(file); 5044 if (ret) 5045 return ret; 5046 5047 qsa = memdup_user(arg, sizeof(*qsa)); 5048 if (IS_ERR(qsa)) { 5049 ret = PTR_ERR(qsa); 5050 goto drop_write; 5051 } 5052 5053 if (qsa->flags) { 5054 ret = -EINVAL; 5055 goto out; 5056 } 5057 5058 ret = btrfs_qgroup_rescan(root->fs_info); 5059 5060 out: 5061 kfree(qsa); 5062 drop_write: 5063 mnt_drop_write_file(file); 5064 return ret; 5065 } 5066 5067 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5068 { 5069 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5070 struct btrfs_ioctl_quota_rescan_args *qsa; 5071 int ret = 0; 5072 5073 if (!capable(CAP_SYS_ADMIN)) 5074 return -EPERM; 5075 5076 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5077 if (!qsa) 5078 return -ENOMEM; 5079 5080 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5081 qsa->flags = 1; 5082 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 5083 } 5084 5085 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5086 ret = -EFAULT; 5087 5088 kfree(qsa); 5089 return ret; 5090 } 5091 5092 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5093 { 5094 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5095 5096 if (!capable(CAP_SYS_ADMIN)) 5097 return -EPERM; 5098 5099 return btrfs_qgroup_wait_for_completion(root->fs_info, true); 5100 } 5101 5102 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5103 struct btrfs_ioctl_received_subvol_args *sa) 5104 { 5105 struct inode *inode = file_inode(file); 5106 struct btrfs_root *root = BTRFS_I(inode)->root; 5107 struct btrfs_root_item *root_item = &root->root_item; 5108 struct btrfs_trans_handle *trans; 5109 struct timespec ct = current_fs_time(inode->i_sb); 5110 int ret = 0; 5111 int received_uuid_changed; 5112 5113 if (!inode_owner_or_capable(inode)) 5114 return -EPERM; 5115 5116 ret = mnt_want_write_file(file); 5117 if (ret < 0) 5118 return ret; 5119 5120 down_write(&root->fs_info->subvol_sem); 5121 5122 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5123 ret = -EINVAL; 5124 goto out; 5125 } 5126 5127 if (btrfs_root_readonly(root)) { 5128 ret = -EROFS; 5129 goto out; 5130 } 5131 5132 /* 5133 * 1 - root item 5134 * 2 - uuid items (received uuid + subvol uuid) 5135 */ 5136 trans = btrfs_start_transaction(root, 3); 5137 if (IS_ERR(trans)) { 5138 ret = PTR_ERR(trans); 5139 trans = NULL; 5140 goto out; 5141 } 5142 5143 sa->rtransid = trans->transid; 5144 sa->rtime.sec = ct.tv_sec; 5145 sa->rtime.nsec = ct.tv_nsec; 5146 5147 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5148 BTRFS_UUID_SIZE); 5149 if (received_uuid_changed && 5150 !btrfs_is_empty_uuid(root_item->received_uuid)) 5151 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5152 root_item->received_uuid, 5153 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5154 root->root_key.objectid); 5155 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5156 btrfs_set_root_stransid(root_item, sa->stransid); 5157 btrfs_set_root_rtransid(root_item, sa->rtransid); 5158 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5159 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5160 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5161 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5162 5163 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5164 &root->root_key, &root->root_item); 5165 if (ret < 0) { 5166 btrfs_end_transaction(trans, root); 5167 goto out; 5168 } 5169 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5170 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5171 sa->uuid, 5172 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5173 root->root_key.objectid); 5174 if (ret < 0 && ret != -EEXIST) { 5175 btrfs_abort_transaction(trans, ret); 5176 goto out; 5177 } 5178 } 5179 ret = btrfs_commit_transaction(trans, root); 5180 if (ret < 0) { 5181 btrfs_abort_transaction(trans, ret); 5182 goto out; 5183 } 5184 5185 out: 5186 up_write(&root->fs_info->subvol_sem); 5187 mnt_drop_write_file(file); 5188 return ret; 5189 } 5190 5191 #ifdef CONFIG_64BIT 5192 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5193 void __user *arg) 5194 { 5195 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5196 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5197 int ret = 0; 5198 5199 args32 = memdup_user(arg, sizeof(*args32)); 5200 if (IS_ERR(args32)) { 5201 ret = PTR_ERR(args32); 5202 args32 = NULL; 5203 goto out; 5204 } 5205 5206 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5207 if (!args64) { 5208 ret = -ENOMEM; 5209 goto out; 5210 } 5211 5212 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5213 args64->stransid = args32->stransid; 5214 args64->rtransid = args32->rtransid; 5215 args64->stime.sec = args32->stime.sec; 5216 args64->stime.nsec = args32->stime.nsec; 5217 args64->rtime.sec = args32->rtime.sec; 5218 args64->rtime.nsec = args32->rtime.nsec; 5219 args64->flags = args32->flags; 5220 5221 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5222 if (ret) 5223 goto out; 5224 5225 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5226 args32->stransid = args64->stransid; 5227 args32->rtransid = args64->rtransid; 5228 args32->stime.sec = args64->stime.sec; 5229 args32->stime.nsec = args64->stime.nsec; 5230 args32->rtime.sec = args64->rtime.sec; 5231 args32->rtime.nsec = args64->rtime.nsec; 5232 args32->flags = args64->flags; 5233 5234 ret = copy_to_user(arg, args32, sizeof(*args32)); 5235 if (ret) 5236 ret = -EFAULT; 5237 5238 out: 5239 kfree(args32); 5240 kfree(args64); 5241 return ret; 5242 } 5243 #endif 5244 5245 static long btrfs_ioctl_set_received_subvol(struct file *file, 5246 void __user *arg) 5247 { 5248 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5249 int ret = 0; 5250 5251 sa = memdup_user(arg, sizeof(*sa)); 5252 if (IS_ERR(sa)) { 5253 ret = PTR_ERR(sa); 5254 sa = NULL; 5255 goto out; 5256 } 5257 5258 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5259 5260 if (ret) 5261 goto out; 5262 5263 ret = copy_to_user(arg, sa, sizeof(*sa)); 5264 if (ret) 5265 ret = -EFAULT; 5266 5267 out: 5268 kfree(sa); 5269 return ret; 5270 } 5271 5272 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5273 { 5274 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5275 size_t len; 5276 int ret; 5277 char label[BTRFS_LABEL_SIZE]; 5278 5279 spin_lock(&root->fs_info->super_lock); 5280 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5281 spin_unlock(&root->fs_info->super_lock); 5282 5283 len = strnlen(label, BTRFS_LABEL_SIZE); 5284 5285 if (len == BTRFS_LABEL_SIZE) { 5286 btrfs_warn(root->fs_info, 5287 "label is too long, return the first %zu bytes", --len); 5288 } 5289 5290 ret = copy_to_user(arg, label, len); 5291 5292 return ret ? -EFAULT : 0; 5293 } 5294 5295 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5296 { 5297 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5298 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5299 struct btrfs_trans_handle *trans; 5300 char label[BTRFS_LABEL_SIZE]; 5301 int ret; 5302 5303 if (!capable(CAP_SYS_ADMIN)) 5304 return -EPERM; 5305 5306 if (copy_from_user(label, arg, sizeof(label))) 5307 return -EFAULT; 5308 5309 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5310 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5311 BTRFS_LABEL_SIZE - 1); 5312 return -EINVAL; 5313 } 5314 5315 ret = mnt_want_write_file(file); 5316 if (ret) 5317 return ret; 5318 5319 trans = btrfs_start_transaction(root, 0); 5320 if (IS_ERR(trans)) { 5321 ret = PTR_ERR(trans); 5322 goto out_unlock; 5323 } 5324 5325 spin_lock(&root->fs_info->super_lock); 5326 strcpy(super_block->label, label); 5327 spin_unlock(&root->fs_info->super_lock); 5328 ret = btrfs_commit_transaction(trans, root); 5329 5330 out_unlock: 5331 mnt_drop_write_file(file); 5332 return ret; 5333 } 5334 5335 #define INIT_FEATURE_FLAGS(suffix) \ 5336 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5337 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5338 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5339 5340 int btrfs_ioctl_get_supported_features(void __user *arg) 5341 { 5342 static const struct btrfs_ioctl_feature_flags features[3] = { 5343 INIT_FEATURE_FLAGS(SUPP), 5344 INIT_FEATURE_FLAGS(SAFE_SET), 5345 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5346 }; 5347 5348 if (copy_to_user(arg, &features, sizeof(features))) 5349 return -EFAULT; 5350 5351 return 0; 5352 } 5353 5354 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5355 { 5356 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5357 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5358 struct btrfs_ioctl_feature_flags features; 5359 5360 features.compat_flags = btrfs_super_compat_flags(super_block); 5361 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5362 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5363 5364 if (copy_to_user(arg, &features, sizeof(features))) 5365 return -EFAULT; 5366 5367 return 0; 5368 } 5369 5370 static int check_feature_bits(struct btrfs_root *root, 5371 enum btrfs_feature_set set, 5372 u64 change_mask, u64 flags, u64 supported_flags, 5373 u64 safe_set, u64 safe_clear) 5374 { 5375 const char *type = btrfs_feature_set_names[set]; 5376 char *names; 5377 u64 disallowed, unsupported; 5378 u64 set_mask = flags & change_mask; 5379 u64 clear_mask = ~flags & change_mask; 5380 5381 unsupported = set_mask & ~supported_flags; 5382 if (unsupported) { 5383 names = btrfs_printable_features(set, unsupported); 5384 if (names) { 5385 btrfs_warn(root->fs_info, 5386 "this kernel does not support the %s feature bit%s", 5387 names, strchr(names, ',') ? "s" : ""); 5388 kfree(names); 5389 } else 5390 btrfs_warn(root->fs_info, 5391 "this kernel does not support %s bits 0x%llx", 5392 type, unsupported); 5393 return -EOPNOTSUPP; 5394 } 5395 5396 disallowed = set_mask & ~safe_set; 5397 if (disallowed) { 5398 names = btrfs_printable_features(set, disallowed); 5399 if (names) { 5400 btrfs_warn(root->fs_info, 5401 "can't set the %s feature bit%s while mounted", 5402 names, strchr(names, ',') ? "s" : ""); 5403 kfree(names); 5404 } else 5405 btrfs_warn(root->fs_info, 5406 "can't set %s bits 0x%llx while mounted", 5407 type, disallowed); 5408 return -EPERM; 5409 } 5410 5411 disallowed = clear_mask & ~safe_clear; 5412 if (disallowed) { 5413 names = btrfs_printable_features(set, disallowed); 5414 if (names) { 5415 btrfs_warn(root->fs_info, 5416 "can't clear the %s feature bit%s while mounted", 5417 names, strchr(names, ',') ? "s" : ""); 5418 kfree(names); 5419 } else 5420 btrfs_warn(root->fs_info, 5421 "can't clear %s bits 0x%llx while mounted", 5422 type, disallowed); 5423 return -EPERM; 5424 } 5425 5426 return 0; 5427 } 5428 5429 #define check_feature(root, change_mask, flags, mask_base) \ 5430 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5431 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5432 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5433 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5434 5435 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5436 { 5437 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5438 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5439 struct btrfs_ioctl_feature_flags flags[2]; 5440 struct btrfs_trans_handle *trans; 5441 u64 newflags; 5442 int ret; 5443 5444 if (!capable(CAP_SYS_ADMIN)) 5445 return -EPERM; 5446 5447 if (copy_from_user(flags, arg, sizeof(flags))) 5448 return -EFAULT; 5449 5450 /* Nothing to do */ 5451 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5452 !flags[0].incompat_flags) 5453 return 0; 5454 5455 ret = check_feature(root, flags[0].compat_flags, 5456 flags[1].compat_flags, COMPAT); 5457 if (ret) 5458 return ret; 5459 5460 ret = check_feature(root, flags[0].compat_ro_flags, 5461 flags[1].compat_ro_flags, COMPAT_RO); 5462 if (ret) 5463 return ret; 5464 5465 ret = check_feature(root, flags[0].incompat_flags, 5466 flags[1].incompat_flags, INCOMPAT); 5467 if (ret) 5468 return ret; 5469 5470 ret = mnt_want_write_file(file); 5471 if (ret) 5472 return ret; 5473 5474 trans = btrfs_start_transaction(root, 0); 5475 if (IS_ERR(trans)) { 5476 ret = PTR_ERR(trans); 5477 goto out_drop_write; 5478 } 5479 5480 spin_lock(&root->fs_info->super_lock); 5481 newflags = btrfs_super_compat_flags(super_block); 5482 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5483 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5484 btrfs_set_super_compat_flags(super_block, newflags); 5485 5486 newflags = btrfs_super_compat_ro_flags(super_block); 5487 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5488 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5489 btrfs_set_super_compat_ro_flags(super_block, newflags); 5490 5491 newflags = btrfs_super_incompat_flags(super_block); 5492 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5493 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5494 btrfs_set_super_incompat_flags(super_block, newflags); 5495 spin_unlock(&root->fs_info->super_lock); 5496 5497 ret = btrfs_commit_transaction(trans, root); 5498 out_drop_write: 5499 mnt_drop_write_file(file); 5500 5501 return ret; 5502 } 5503 5504 long btrfs_ioctl(struct file *file, unsigned int 5505 cmd, unsigned long arg) 5506 { 5507 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5508 void __user *argp = (void __user *)arg; 5509 5510 switch (cmd) { 5511 case FS_IOC_GETFLAGS: 5512 return btrfs_ioctl_getflags(file, argp); 5513 case FS_IOC_SETFLAGS: 5514 return btrfs_ioctl_setflags(file, argp); 5515 case FS_IOC_GETVERSION: 5516 return btrfs_ioctl_getversion(file, argp); 5517 case FITRIM: 5518 return btrfs_ioctl_fitrim(file, argp); 5519 case BTRFS_IOC_SNAP_CREATE: 5520 return btrfs_ioctl_snap_create(file, argp, 0); 5521 case BTRFS_IOC_SNAP_CREATE_V2: 5522 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5523 case BTRFS_IOC_SUBVOL_CREATE: 5524 return btrfs_ioctl_snap_create(file, argp, 1); 5525 case BTRFS_IOC_SUBVOL_CREATE_V2: 5526 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5527 case BTRFS_IOC_SNAP_DESTROY: 5528 return btrfs_ioctl_snap_destroy(file, argp); 5529 case BTRFS_IOC_SUBVOL_GETFLAGS: 5530 return btrfs_ioctl_subvol_getflags(file, argp); 5531 case BTRFS_IOC_SUBVOL_SETFLAGS: 5532 return btrfs_ioctl_subvol_setflags(file, argp); 5533 case BTRFS_IOC_DEFAULT_SUBVOL: 5534 return btrfs_ioctl_default_subvol(file, argp); 5535 case BTRFS_IOC_DEFRAG: 5536 return btrfs_ioctl_defrag(file, NULL); 5537 case BTRFS_IOC_DEFRAG_RANGE: 5538 return btrfs_ioctl_defrag(file, argp); 5539 case BTRFS_IOC_RESIZE: 5540 return btrfs_ioctl_resize(file, argp); 5541 case BTRFS_IOC_ADD_DEV: 5542 return btrfs_ioctl_add_dev(root, argp); 5543 case BTRFS_IOC_RM_DEV: 5544 return btrfs_ioctl_rm_dev(file, argp); 5545 case BTRFS_IOC_RM_DEV_V2: 5546 return btrfs_ioctl_rm_dev_v2(file, argp); 5547 case BTRFS_IOC_FS_INFO: 5548 return btrfs_ioctl_fs_info(root, argp); 5549 case BTRFS_IOC_DEV_INFO: 5550 return btrfs_ioctl_dev_info(root, argp); 5551 case BTRFS_IOC_BALANCE: 5552 return btrfs_ioctl_balance(file, NULL); 5553 case BTRFS_IOC_TRANS_START: 5554 return btrfs_ioctl_trans_start(file); 5555 case BTRFS_IOC_TRANS_END: 5556 return btrfs_ioctl_trans_end(file); 5557 case BTRFS_IOC_TREE_SEARCH: 5558 return btrfs_ioctl_tree_search(file, argp); 5559 case BTRFS_IOC_TREE_SEARCH_V2: 5560 return btrfs_ioctl_tree_search_v2(file, argp); 5561 case BTRFS_IOC_INO_LOOKUP: 5562 return btrfs_ioctl_ino_lookup(file, argp); 5563 case BTRFS_IOC_INO_PATHS: 5564 return btrfs_ioctl_ino_to_path(root, argp); 5565 case BTRFS_IOC_LOGICAL_INO: 5566 return btrfs_ioctl_logical_to_ino(root, argp); 5567 case BTRFS_IOC_SPACE_INFO: 5568 return btrfs_ioctl_space_info(root, argp); 5569 case BTRFS_IOC_SYNC: { 5570 int ret; 5571 5572 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5573 if (ret) 5574 return ret; 5575 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5576 /* 5577 * The transaction thread may want to do more work, 5578 * namely it pokes the cleaner kthread that will start 5579 * processing uncleaned subvols. 5580 */ 5581 wake_up_process(root->fs_info->transaction_kthread); 5582 return ret; 5583 } 5584 case BTRFS_IOC_START_SYNC: 5585 return btrfs_ioctl_start_sync(root, argp); 5586 case BTRFS_IOC_WAIT_SYNC: 5587 return btrfs_ioctl_wait_sync(root, argp); 5588 case BTRFS_IOC_SCRUB: 5589 return btrfs_ioctl_scrub(file, argp); 5590 case BTRFS_IOC_SCRUB_CANCEL: 5591 return btrfs_ioctl_scrub_cancel(root, argp); 5592 case BTRFS_IOC_SCRUB_PROGRESS: 5593 return btrfs_ioctl_scrub_progress(root, argp); 5594 case BTRFS_IOC_BALANCE_V2: 5595 return btrfs_ioctl_balance(file, argp); 5596 case BTRFS_IOC_BALANCE_CTL: 5597 return btrfs_ioctl_balance_ctl(root, arg); 5598 case BTRFS_IOC_BALANCE_PROGRESS: 5599 return btrfs_ioctl_balance_progress(root, argp); 5600 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5601 return btrfs_ioctl_set_received_subvol(file, argp); 5602 #ifdef CONFIG_64BIT 5603 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5604 return btrfs_ioctl_set_received_subvol_32(file, argp); 5605 #endif 5606 case BTRFS_IOC_SEND: 5607 return btrfs_ioctl_send(file, argp); 5608 case BTRFS_IOC_GET_DEV_STATS: 5609 return btrfs_ioctl_get_dev_stats(root, argp); 5610 case BTRFS_IOC_QUOTA_CTL: 5611 return btrfs_ioctl_quota_ctl(file, argp); 5612 case BTRFS_IOC_QGROUP_ASSIGN: 5613 return btrfs_ioctl_qgroup_assign(file, argp); 5614 case BTRFS_IOC_QGROUP_CREATE: 5615 return btrfs_ioctl_qgroup_create(file, argp); 5616 case BTRFS_IOC_QGROUP_LIMIT: 5617 return btrfs_ioctl_qgroup_limit(file, argp); 5618 case BTRFS_IOC_QUOTA_RESCAN: 5619 return btrfs_ioctl_quota_rescan(file, argp); 5620 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5621 return btrfs_ioctl_quota_rescan_status(file, argp); 5622 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5623 return btrfs_ioctl_quota_rescan_wait(file, argp); 5624 case BTRFS_IOC_DEV_REPLACE: 5625 return btrfs_ioctl_dev_replace(root, argp); 5626 case BTRFS_IOC_GET_FSLABEL: 5627 return btrfs_ioctl_get_fslabel(file, argp); 5628 case BTRFS_IOC_SET_FSLABEL: 5629 return btrfs_ioctl_set_fslabel(file, argp); 5630 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5631 return btrfs_ioctl_get_supported_features(argp); 5632 case BTRFS_IOC_GET_FEATURES: 5633 return btrfs_ioctl_get_features(file, argp); 5634 case BTRFS_IOC_SET_FEATURES: 5635 return btrfs_ioctl_set_features(file, argp); 5636 } 5637 5638 return -ENOTTY; 5639 } 5640 5641 #ifdef CONFIG_COMPAT 5642 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5643 { 5644 switch (cmd) { 5645 case FS_IOC32_GETFLAGS: 5646 cmd = FS_IOC_GETFLAGS; 5647 break; 5648 case FS_IOC32_SETFLAGS: 5649 cmd = FS_IOC_SETFLAGS; 5650 break; 5651 case FS_IOC32_GETVERSION: 5652 cmd = FS_IOC_GETVERSION; 5653 break; 5654 default: 5655 return -ENOIOCTLCMD; 5656 } 5657 5658 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5659 } 5660 #endif 5661