xref: /linux/fs/btrfs/ioctl.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "compat.h"
48 #include "ctree.h"
49 #include "disk-io.h"
50 #include "transaction.h"
51 #include "btrfs_inode.h"
52 #include "print-tree.h"
53 #include "volumes.h"
54 #include "locking.h"
55 #include "inode-map.h"
56 #include "backref.h"
57 #include "rcu-string.h"
58 #include "send.h"
59 #include "dev-replace.h"
60 
61 static int btrfs_clone(struct inode *src, struct inode *inode,
62 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
63 
64 /* Mask out flags that are inappropriate for the given type of inode. */
65 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
66 {
67 	if (S_ISDIR(mode))
68 		return flags;
69 	else if (S_ISREG(mode))
70 		return flags & ~FS_DIRSYNC_FL;
71 	else
72 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
73 }
74 
75 /*
76  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
77  */
78 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
79 {
80 	unsigned int iflags = 0;
81 
82 	if (flags & BTRFS_INODE_SYNC)
83 		iflags |= FS_SYNC_FL;
84 	if (flags & BTRFS_INODE_IMMUTABLE)
85 		iflags |= FS_IMMUTABLE_FL;
86 	if (flags & BTRFS_INODE_APPEND)
87 		iflags |= FS_APPEND_FL;
88 	if (flags & BTRFS_INODE_NODUMP)
89 		iflags |= FS_NODUMP_FL;
90 	if (flags & BTRFS_INODE_NOATIME)
91 		iflags |= FS_NOATIME_FL;
92 	if (flags & BTRFS_INODE_DIRSYNC)
93 		iflags |= FS_DIRSYNC_FL;
94 	if (flags & BTRFS_INODE_NODATACOW)
95 		iflags |= FS_NOCOW_FL;
96 
97 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
98 		iflags |= FS_COMPR_FL;
99 	else if (flags & BTRFS_INODE_NOCOMPRESS)
100 		iflags |= FS_NOCOMP_FL;
101 
102 	return iflags;
103 }
104 
105 /*
106  * Update inode->i_flags based on the btrfs internal flags.
107  */
108 void btrfs_update_iflags(struct inode *inode)
109 {
110 	struct btrfs_inode *ip = BTRFS_I(inode);
111 
112 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
113 
114 	if (ip->flags & BTRFS_INODE_SYNC)
115 		inode->i_flags |= S_SYNC;
116 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
117 		inode->i_flags |= S_IMMUTABLE;
118 	if (ip->flags & BTRFS_INODE_APPEND)
119 		inode->i_flags |= S_APPEND;
120 	if (ip->flags & BTRFS_INODE_NOATIME)
121 		inode->i_flags |= S_NOATIME;
122 	if (ip->flags & BTRFS_INODE_DIRSYNC)
123 		inode->i_flags |= S_DIRSYNC;
124 }
125 
126 /*
127  * Inherit flags from the parent inode.
128  *
129  * Currently only the compression flags and the cow flags are inherited.
130  */
131 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
132 {
133 	unsigned int flags;
134 
135 	if (!dir)
136 		return;
137 
138 	flags = BTRFS_I(dir)->flags;
139 
140 	if (flags & BTRFS_INODE_NOCOMPRESS) {
141 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
142 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
143 	} else if (flags & BTRFS_INODE_COMPRESS) {
144 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
145 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
146 	}
147 
148 	if (flags & BTRFS_INODE_NODATACOW) {
149 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
150 		if (S_ISREG(inode->i_mode))
151 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
152 	}
153 
154 	btrfs_update_iflags(inode);
155 }
156 
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 static int check_flags(unsigned int flags)
168 {
169 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
170 		      FS_NOATIME_FL | FS_NODUMP_FL | \
171 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
172 		      FS_NOCOMP_FL | FS_COMPR_FL |
173 		      FS_NOCOW_FL))
174 		return -EOPNOTSUPP;
175 
176 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
177 		return -EINVAL;
178 
179 	return 0;
180 }
181 
182 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
183 {
184 	struct inode *inode = file_inode(file);
185 	struct btrfs_inode *ip = BTRFS_I(inode);
186 	struct btrfs_root *root = ip->root;
187 	struct btrfs_trans_handle *trans;
188 	unsigned int flags, oldflags;
189 	int ret;
190 	u64 ip_oldflags;
191 	unsigned int i_oldflags;
192 	umode_t mode;
193 
194 	if (btrfs_root_readonly(root))
195 		return -EROFS;
196 
197 	if (copy_from_user(&flags, arg, sizeof(flags)))
198 		return -EFAULT;
199 
200 	ret = check_flags(flags);
201 	if (ret)
202 		return ret;
203 
204 	if (!inode_owner_or_capable(inode))
205 		return -EACCES;
206 
207 	ret = mnt_want_write_file(file);
208 	if (ret)
209 		return ret;
210 
211 	mutex_lock(&inode->i_mutex);
212 
213 	ip_oldflags = ip->flags;
214 	i_oldflags = inode->i_flags;
215 	mode = inode->i_mode;
216 
217 	flags = btrfs_mask_flags(inode->i_mode, flags);
218 	oldflags = btrfs_flags_to_ioctl(ip->flags);
219 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
220 		if (!capable(CAP_LINUX_IMMUTABLE)) {
221 			ret = -EPERM;
222 			goto out_unlock;
223 		}
224 	}
225 
226 	if (flags & FS_SYNC_FL)
227 		ip->flags |= BTRFS_INODE_SYNC;
228 	else
229 		ip->flags &= ~BTRFS_INODE_SYNC;
230 	if (flags & FS_IMMUTABLE_FL)
231 		ip->flags |= BTRFS_INODE_IMMUTABLE;
232 	else
233 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
234 	if (flags & FS_APPEND_FL)
235 		ip->flags |= BTRFS_INODE_APPEND;
236 	else
237 		ip->flags &= ~BTRFS_INODE_APPEND;
238 	if (flags & FS_NODUMP_FL)
239 		ip->flags |= BTRFS_INODE_NODUMP;
240 	else
241 		ip->flags &= ~BTRFS_INODE_NODUMP;
242 	if (flags & FS_NOATIME_FL)
243 		ip->flags |= BTRFS_INODE_NOATIME;
244 	else
245 		ip->flags &= ~BTRFS_INODE_NOATIME;
246 	if (flags & FS_DIRSYNC_FL)
247 		ip->flags |= BTRFS_INODE_DIRSYNC;
248 	else
249 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
250 	if (flags & FS_NOCOW_FL) {
251 		if (S_ISREG(mode)) {
252 			/*
253 			 * It's safe to turn csums off here, no extents exist.
254 			 * Otherwise we want the flag to reflect the real COW
255 			 * status of the file and will not set it.
256 			 */
257 			if (inode->i_size == 0)
258 				ip->flags |= BTRFS_INODE_NODATACOW
259 					   | BTRFS_INODE_NODATASUM;
260 		} else {
261 			ip->flags |= BTRFS_INODE_NODATACOW;
262 		}
263 	} else {
264 		/*
265 		 * Revert back under same assuptions as above
266 		 */
267 		if (S_ISREG(mode)) {
268 			if (inode->i_size == 0)
269 				ip->flags &= ~(BTRFS_INODE_NODATACOW
270 				             | BTRFS_INODE_NODATASUM);
271 		} else {
272 			ip->flags &= ~BTRFS_INODE_NODATACOW;
273 		}
274 	}
275 
276 	/*
277 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
278 	 * flag may be changed automatically if compression code won't make
279 	 * things smaller.
280 	 */
281 	if (flags & FS_NOCOMP_FL) {
282 		ip->flags &= ~BTRFS_INODE_COMPRESS;
283 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
284 	} else if (flags & FS_COMPR_FL) {
285 		ip->flags |= BTRFS_INODE_COMPRESS;
286 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
287 	} else {
288 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
289 	}
290 
291 	trans = btrfs_start_transaction(root, 1);
292 	if (IS_ERR(trans)) {
293 		ret = PTR_ERR(trans);
294 		goto out_drop;
295 	}
296 
297 	btrfs_update_iflags(inode);
298 	inode_inc_iversion(inode);
299 	inode->i_ctime = CURRENT_TIME;
300 	ret = btrfs_update_inode(trans, root, inode);
301 
302 	btrfs_end_transaction(trans, root);
303  out_drop:
304 	if (ret) {
305 		ip->flags = ip_oldflags;
306 		inode->i_flags = i_oldflags;
307 	}
308 
309  out_unlock:
310 	mutex_unlock(&inode->i_mutex);
311 	mnt_drop_write_file(file);
312 	return ret;
313 }
314 
315 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
316 {
317 	struct inode *inode = file_inode(file);
318 
319 	return put_user(inode->i_generation, arg);
320 }
321 
322 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
323 {
324 	struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
325 	struct btrfs_device *device;
326 	struct request_queue *q;
327 	struct fstrim_range range;
328 	u64 minlen = ULLONG_MAX;
329 	u64 num_devices = 0;
330 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
331 	int ret;
332 
333 	if (!capable(CAP_SYS_ADMIN))
334 		return -EPERM;
335 
336 	rcu_read_lock();
337 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
338 				dev_list) {
339 		if (!device->bdev)
340 			continue;
341 		q = bdev_get_queue(device->bdev);
342 		if (blk_queue_discard(q)) {
343 			num_devices++;
344 			minlen = min((u64)q->limits.discard_granularity,
345 				     minlen);
346 		}
347 	}
348 	rcu_read_unlock();
349 
350 	if (!num_devices)
351 		return -EOPNOTSUPP;
352 	if (copy_from_user(&range, arg, sizeof(range)))
353 		return -EFAULT;
354 	if (range.start > total_bytes ||
355 	    range.len < fs_info->sb->s_blocksize)
356 		return -EINVAL;
357 
358 	range.len = min(range.len, total_bytes - range.start);
359 	range.minlen = max(range.minlen, minlen);
360 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
361 	if (ret < 0)
362 		return ret;
363 
364 	if (copy_to_user(arg, &range, sizeof(range)))
365 		return -EFAULT;
366 
367 	return 0;
368 }
369 
370 int btrfs_is_empty_uuid(u8 *uuid)
371 {
372 	static char empty_uuid[BTRFS_UUID_SIZE] = {0};
373 
374 	return !memcmp(uuid, empty_uuid, BTRFS_UUID_SIZE);
375 }
376 
377 static noinline int create_subvol(struct inode *dir,
378 				  struct dentry *dentry,
379 				  char *name, int namelen,
380 				  u64 *async_transid,
381 				  struct btrfs_qgroup_inherit *inherit)
382 {
383 	struct btrfs_trans_handle *trans;
384 	struct btrfs_key key;
385 	struct btrfs_root_item root_item;
386 	struct btrfs_inode_item *inode_item;
387 	struct extent_buffer *leaf;
388 	struct btrfs_root *root = BTRFS_I(dir)->root;
389 	struct btrfs_root *new_root;
390 	struct btrfs_block_rsv block_rsv;
391 	struct timespec cur_time = CURRENT_TIME;
392 	int ret;
393 	int err;
394 	u64 objectid;
395 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
396 	u64 index = 0;
397 	u64 qgroup_reserved;
398 	uuid_le new_uuid;
399 
400 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
401 	if (ret)
402 		return ret;
403 
404 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
405 	/*
406 	 * The same as the snapshot creation, please see the comment
407 	 * of create_snapshot().
408 	 */
409 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
410 					       8, &qgroup_reserved, false);
411 	if (ret)
412 		return ret;
413 
414 	trans = btrfs_start_transaction(root, 0);
415 	if (IS_ERR(trans)) {
416 		ret = PTR_ERR(trans);
417 		goto out;
418 	}
419 	trans->block_rsv = &block_rsv;
420 	trans->bytes_reserved = block_rsv.size;
421 
422 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
423 	if (ret)
424 		goto fail;
425 
426 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
427 				      0, objectid, NULL, 0, 0, 0);
428 	if (IS_ERR(leaf)) {
429 		ret = PTR_ERR(leaf);
430 		goto fail;
431 	}
432 
433 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
434 	btrfs_set_header_bytenr(leaf, leaf->start);
435 	btrfs_set_header_generation(leaf, trans->transid);
436 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
437 	btrfs_set_header_owner(leaf, objectid);
438 
439 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(leaf),
440 			    BTRFS_FSID_SIZE);
441 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
442 			    btrfs_header_chunk_tree_uuid(leaf),
443 			    BTRFS_UUID_SIZE);
444 	btrfs_mark_buffer_dirty(leaf);
445 
446 	memset(&root_item, 0, sizeof(root_item));
447 
448 	inode_item = &root_item.inode;
449 	btrfs_set_stack_inode_generation(inode_item, 1);
450 	btrfs_set_stack_inode_size(inode_item, 3);
451 	btrfs_set_stack_inode_nlink(inode_item, 1);
452 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
453 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
454 
455 	btrfs_set_root_flags(&root_item, 0);
456 	btrfs_set_root_limit(&root_item, 0);
457 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
458 
459 	btrfs_set_root_bytenr(&root_item, leaf->start);
460 	btrfs_set_root_generation(&root_item, trans->transid);
461 	btrfs_set_root_level(&root_item, 0);
462 	btrfs_set_root_refs(&root_item, 1);
463 	btrfs_set_root_used(&root_item, leaf->len);
464 	btrfs_set_root_last_snapshot(&root_item, 0);
465 
466 	btrfs_set_root_generation_v2(&root_item,
467 			btrfs_root_generation(&root_item));
468 	uuid_le_gen(&new_uuid);
469 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
470 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
471 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
472 	root_item.ctime = root_item.otime;
473 	btrfs_set_root_ctransid(&root_item, trans->transid);
474 	btrfs_set_root_otransid(&root_item, trans->transid);
475 
476 	btrfs_tree_unlock(leaf);
477 	free_extent_buffer(leaf);
478 	leaf = NULL;
479 
480 	btrfs_set_root_dirid(&root_item, new_dirid);
481 
482 	key.objectid = objectid;
483 	key.offset = 0;
484 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
485 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
486 				&root_item);
487 	if (ret)
488 		goto fail;
489 
490 	key.offset = (u64)-1;
491 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
492 	if (IS_ERR(new_root)) {
493 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
494 		ret = PTR_ERR(new_root);
495 		goto fail;
496 	}
497 
498 	btrfs_record_root_in_trans(trans, new_root);
499 
500 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
501 	if (ret) {
502 		/* We potentially lose an unused inode item here */
503 		btrfs_abort_transaction(trans, root, ret);
504 		goto fail;
505 	}
506 
507 	/*
508 	 * insert the directory item
509 	 */
510 	ret = btrfs_set_inode_index(dir, &index);
511 	if (ret) {
512 		btrfs_abort_transaction(trans, root, ret);
513 		goto fail;
514 	}
515 
516 	ret = btrfs_insert_dir_item(trans, root,
517 				    name, namelen, dir, &key,
518 				    BTRFS_FT_DIR, index);
519 	if (ret) {
520 		btrfs_abort_transaction(trans, root, ret);
521 		goto fail;
522 	}
523 
524 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
525 	ret = btrfs_update_inode(trans, root, dir);
526 	BUG_ON(ret);
527 
528 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
529 				 objectid, root->root_key.objectid,
530 				 btrfs_ino(dir), index, name, namelen);
531 	BUG_ON(ret);
532 
533 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
534 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
535 				  objectid);
536 	if (ret)
537 		btrfs_abort_transaction(trans, root, ret);
538 
539 fail:
540 	trans->block_rsv = NULL;
541 	trans->bytes_reserved = 0;
542 	if (async_transid) {
543 		*async_transid = trans->transid;
544 		err = btrfs_commit_transaction_async(trans, root, 1);
545 		if (err)
546 			err = btrfs_commit_transaction(trans, root);
547 	} else {
548 		err = btrfs_commit_transaction(trans, root);
549 	}
550 	if (err && !ret)
551 		ret = err;
552 
553 	if (!ret)
554 		d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
555 out:
556 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
557 	return ret;
558 }
559 
560 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
561 			   struct dentry *dentry, char *name, int namelen,
562 			   u64 *async_transid, bool readonly,
563 			   struct btrfs_qgroup_inherit *inherit)
564 {
565 	struct inode *inode;
566 	struct btrfs_pending_snapshot *pending_snapshot;
567 	struct btrfs_trans_handle *trans;
568 	int ret;
569 
570 	if (!root->ref_cows)
571 		return -EINVAL;
572 
573 	ret = btrfs_start_delalloc_inodes(root, 0);
574 	if (ret)
575 		return ret;
576 
577 	btrfs_wait_ordered_extents(root, 0);
578 
579 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
580 	if (!pending_snapshot)
581 		return -ENOMEM;
582 
583 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
584 			     BTRFS_BLOCK_RSV_TEMP);
585 	/*
586 	 * 1 - parent dir inode
587 	 * 2 - dir entries
588 	 * 1 - root item
589 	 * 2 - root ref/backref
590 	 * 1 - root of snapshot
591 	 * 1 - UUID item
592 	 */
593 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
594 					&pending_snapshot->block_rsv, 8,
595 					&pending_snapshot->qgroup_reserved,
596 					false);
597 	if (ret)
598 		goto out;
599 
600 	pending_snapshot->dentry = dentry;
601 	pending_snapshot->root = root;
602 	pending_snapshot->readonly = readonly;
603 	pending_snapshot->dir = dir;
604 	pending_snapshot->inherit = inherit;
605 
606 	trans = btrfs_start_transaction(root, 0);
607 	if (IS_ERR(trans)) {
608 		ret = PTR_ERR(trans);
609 		goto fail;
610 	}
611 
612 	spin_lock(&root->fs_info->trans_lock);
613 	list_add(&pending_snapshot->list,
614 		 &trans->transaction->pending_snapshots);
615 	spin_unlock(&root->fs_info->trans_lock);
616 	if (async_transid) {
617 		*async_transid = trans->transid;
618 		ret = btrfs_commit_transaction_async(trans,
619 				     root->fs_info->extent_root, 1);
620 		if (ret)
621 			ret = btrfs_commit_transaction(trans, root);
622 	} else {
623 		ret = btrfs_commit_transaction(trans,
624 					       root->fs_info->extent_root);
625 	}
626 	if (ret)
627 		goto fail;
628 
629 	ret = pending_snapshot->error;
630 	if (ret)
631 		goto fail;
632 
633 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
634 	if (ret)
635 		goto fail;
636 
637 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
638 	if (IS_ERR(inode)) {
639 		ret = PTR_ERR(inode);
640 		goto fail;
641 	}
642 	BUG_ON(!inode);
643 	d_instantiate(dentry, inode);
644 	ret = 0;
645 fail:
646 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
647 					 &pending_snapshot->block_rsv,
648 					 pending_snapshot->qgroup_reserved);
649 out:
650 	kfree(pending_snapshot);
651 	return ret;
652 }
653 
654 /*  copy of check_sticky in fs/namei.c()
655 * It's inline, so penalty for filesystems that don't use sticky bit is
656 * minimal.
657 */
658 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
659 {
660 	kuid_t fsuid = current_fsuid();
661 
662 	if (!(dir->i_mode & S_ISVTX))
663 		return 0;
664 	if (uid_eq(inode->i_uid, fsuid))
665 		return 0;
666 	if (uid_eq(dir->i_uid, fsuid))
667 		return 0;
668 	return !capable(CAP_FOWNER);
669 }
670 
671 /*  copy of may_delete in fs/namei.c()
672  *	Check whether we can remove a link victim from directory dir, check
673  *  whether the type of victim is right.
674  *  1. We can't do it if dir is read-only (done in permission())
675  *  2. We should have write and exec permissions on dir
676  *  3. We can't remove anything from append-only dir
677  *  4. We can't do anything with immutable dir (done in permission())
678  *  5. If the sticky bit on dir is set we should either
679  *	a. be owner of dir, or
680  *	b. be owner of victim, or
681  *	c. have CAP_FOWNER capability
682  *  6. If the victim is append-only or immutable we can't do antyhing with
683  *     links pointing to it.
684  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
685  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
686  *  9. We can't remove a root or mountpoint.
687  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
688  *     nfs_async_unlink().
689  */
690 
691 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
692 {
693 	int error;
694 
695 	if (!victim->d_inode)
696 		return -ENOENT;
697 
698 	BUG_ON(victim->d_parent->d_inode != dir);
699 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
700 
701 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
702 	if (error)
703 		return error;
704 	if (IS_APPEND(dir))
705 		return -EPERM;
706 	if (btrfs_check_sticky(dir, victim->d_inode)||
707 		IS_APPEND(victim->d_inode)||
708 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
709 		return -EPERM;
710 	if (isdir) {
711 		if (!S_ISDIR(victim->d_inode->i_mode))
712 			return -ENOTDIR;
713 		if (IS_ROOT(victim))
714 			return -EBUSY;
715 	} else if (S_ISDIR(victim->d_inode->i_mode))
716 		return -EISDIR;
717 	if (IS_DEADDIR(dir))
718 		return -ENOENT;
719 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
720 		return -EBUSY;
721 	return 0;
722 }
723 
724 /* copy of may_create in fs/namei.c() */
725 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
726 {
727 	if (child->d_inode)
728 		return -EEXIST;
729 	if (IS_DEADDIR(dir))
730 		return -ENOENT;
731 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
732 }
733 
734 /*
735  * Create a new subvolume below @parent.  This is largely modeled after
736  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
737  * inside this filesystem so it's quite a bit simpler.
738  */
739 static noinline int btrfs_mksubvol(struct path *parent,
740 				   char *name, int namelen,
741 				   struct btrfs_root *snap_src,
742 				   u64 *async_transid, bool readonly,
743 				   struct btrfs_qgroup_inherit *inherit)
744 {
745 	struct inode *dir  = parent->dentry->d_inode;
746 	struct dentry *dentry;
747 	int error;
748 
749 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
750 	if (error == -EINTR)
751 		return error;
752 
753 	dentry = lookup_one_len(name, parent->dentry, namelen);
754 	error = PTR_ERR(dentry);
755 	if (IS_ERR(dentry))
756 		goto out_unlock;
757 
758 	error = -EEXIST;
759 	if (dentry->d_inode)
760 		goto out_dput;
761 
762 	error = btrfs_may_create(dir, dentry);
763 	if (error)
764 		goto out_dput;
765 
766 	/*
767 	 * even if this name doesn't exist, we may get hash collisions.
768 	 * check for them now when we can safely fail
769 	 */
770 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
771 					       dir->i_ino, name,
772 					       namelen);
773 	if (error)
774 		goto out_dput;
775 
776 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
777 
778 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
779 		goto out_up_read;
780 
781 	if (snap_src) {
782 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
783 					async_transid, readonly, inherit);
784 	} else {
785 		error = create_subvol(dir, dentry, name, namelen,
786 				      async_transid, inherit);
787 	}
788 	if (!error)
789 		fsnotify_mkdir(dir, dentry);
790 out_up_read:
791 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
792 out_dput:
793 	dput(dentry);
794 out_unlock:
795 	mutex_unlock(&dir->i_mutex);
796 	return error;
797 }
798 
799 /*
800  * When we're defragging a range, we don't want to kick it off again
801  * if it is really just waiting for delalloc to send it down.
802  * If we find a nice big extent or delalloc range for the bytes in the
803  * file you want to defrag, we return 0 to let you know to skip this
804  * part of the file
805  */
806 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
807 {
808 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
809 	struct extent_map *em = NULL;
810 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
811 	u64 end;
812 
813 	read_lock(&em_tree->lock);
814 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
815 	read_unlock(&em_tree->lock);
816 
817 	if (em) {
818 		end = extent_map_end(em);
819 		free_extent_map(em);
820 		if (end - offset > thresh)
821 			return 0;
822 	}
823 	/* if we already have a nice delalloc here, just stop */
824 	thresh /= 2;
825 	end = count_range_bits(io_tree, &offset, offset + thresh,
826 			       thresh, EXTENT_DELALLOC, 1);
827 	if (end >= thresh)
828 		return 0;
829 	return 1;
830 }
831 
832 /*
833  * helper function to walk through a file and find extents
834  * newer than a specific transid, and smaller than thresh.
835  *
836  * This is used by the defragging code to find new and small
837  * extents
838  */
839 static int find_new_extents(struct btrfs_root *root,
840 			    struct inode *inode, u64 newer_than,
841 			    u64 *off, int thresh)
842 {
843 	struct btrfs_path *path;
844 	struct btrfs_key min_key;
845 	struct btrfs_key max_key;
846 	struct extent_buffer *leaf;
847 	struct btrfs_file_extent_item *extent;
848 	int type;
849 	int ret;
850 	u64 ino = btrfs_ino(inode);
851 
852 	path = btrfs_alloc_path();
853 	if (!path)
854 		return -ENOMEM;
855 
856 	min_key.objectid = ino;
857 	min_key.type = BTRFS_EXTENT_DATA_KEY;
858 	min_key.offset = *off;
859 
860 	max_key.objectid = ino;
861 	max_key.type = (u8)-1;
862 	max_key.offset = (u64)-1;
863 
864 	path->keep_locks = 1;
865 
866 	while(1) {
867 		ret = btrfs_search_forward(root, &min_key, &max_key,
868 					   path, newer_than);
869 		if (ret != 0)
870 			goto none;
871 		if (min_key.objectid != ino)
872 			goto none;
873 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
874 			goto none;
875 
876 		leaf = path->nodes[0];
877 		extent = btrfs_item_ptr(leaf, path->slots[0],
878 					struct btrfs_file_extent_item);
879 
880 		type = btrfs_file_extent_type(leaf, extent);
881 		if (type == BTRFS_FILE_EXTENT_REG &&
882 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
883 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
884 			*off = min_key.offset;
885 			btrfs_free_path(path);
886 			return 0;
887 		}
888 
889 		if (min_key.offset == (u64)-1)
890 			goto none;
891 
892 		min_key.offset++;
893 		btrfs_release_path(path);
894 	}
895 none:
896 	btrfs_free_path(path);
897 	return -ENOENT;
898 }
899 
900 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
901 {
902 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
904 	struct extent_map *em;
905 	u64 len = PAGE_CACHE_SIZE;
906 
907 	/*
908 	 * hopefully we have this extent in the tree already, try without
909 	 * the full extent lock
910 	 */
911 	read_lock(&em_tree->lock);
912 	em = lookup_extent_mapping(em_tree, start, len);
913 	read_unlock(&em_tree->lock);
914 
915 	if (!em) {
916 		/* get the big lock and read metadata off disk */
917 		lock_extent(io_tree, start, start + len - 1);
918 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
919 		unlock_extent(io_tree, start, start + len - 1);
920 
921 		if (IS_ERR(em))
922 			return NULL;
923 	}
924 
925 	return em;
926 }
927 
928 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
929 {
930 	struct extent_map *next;
931 	bool ret = true;
932 
933 	/* this is the last extent */
934 	if (em->start + em->len >= i_size_read(inode))
935 		return false;
936 
937 	next = defrag_lookup_extent(inode, em->start + em->len);
938 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
939 		ret = false;
940 
941 	free_extent_map(next);
942 	return ret;
943 }
944 
945 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
946 			       u64 *last_len, u64 *skip, u64 *defrag_end,
947 			       int compress)
948 {
949 	struct extent_map *em;
950 	int ret = 1;
951 	bool next_mergeable = true;
952 
953 	/*
954 	 * make sure that once we start defragging an extent, we keep on
955 	 * defragging it
956 	 */
957 	if (start < *defrag_end)
958 		return 1;
959 
960 	*skip = 0;
961 
962 	em = defrag_lookup_extent(inode, start);
963 	if (!em)
964 		return 0;
965 
966 	/* this will cover holes, and inline extents */
967 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
968 		ret = 0;
969 		goto out;
970 	}
971 
972 	next_mergeable = defrag_check_next_extent(inode, em);
973 
974 	/*
975 	 * we hit a real extent, if it is big or the next extent is not a
976 	 * real extent, don't bother defragging it
977 	 */
978 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
979 	    (em->len >= thresh || !next_mergeable))
980 		ret = 0;
981 out:
982 	/*
983 	 * last_len ends up being a counter of how many bytes we've defragged.
984 	 * every time we choose not to defrag an extent, we reset *last_len
985 	 * so that the next tiny extent will force a defrag.
986 	 *
987 	 * The end result of this is that tiny extents before a single big
988 	 * extent will force at least part of that big extent to be defragged.
989 	 */
990 	if (ret) {
991 		*defrag_end = extent_map_end(em);
992 	} else {
993 		*last_len = 0;
994 		*skip = extent_map_end(em);
995 		*defrag_end = 0;
996 	}
997 
998 	free_extent_map(em);
999 	return ret;
1000 }
1001 
1002 /*
1003  * it doesn't do much good to defrag one or two pages
1004  * at a time.  This pulls in a nice chunk of pages
1005  * to COW and defrag.
1006  *
1007  * It also makes sure the delalloc code has enough
1008  * dirty data to avoid making new small extents as part
1009  * of the defrag
1010  *
1011  * It's a good idea to start RA on this range
1012  * before calling this.
1013  */
1014 static int cluster_pages_for_defrag(struct inode *inode,
1015 				    struct page **pages,
1016 				    unsigned long start_index,
1017 				    int num_pages)
1018 {
1019 	unsigned long file_end;
1020 	u64 isize = i_size_read(inode);
1021 	u64 page_start;
1022 	u64 page_end;
1023 	u64 page_cnt;
1024 	int ret;
1025 	int i;
1026 	int i_done;
1027 	struct btrfs_ordered_extent *ordered;
1028 	struct extent_state *cached_state = NULL;
1029 	struct extent_io_tree *tree;
1030 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1031 
1032 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1033 	if (!isize || start_index > file_end)
1034 		return 0;
1035 
1036 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1037 
1038 	ret = btrfs_delalloc_reserve_space(inode,
1039 					   page_cnt << PAGE_CACHE_SHIFT);
1040 	if (ret)
1041 		return ret;
1042 	i_done = 0;
1043 	tree = &BTRFS_I(inode)->io_tree;
1044 
1045 	/* step one, lock all the pages */
1046 	for (i = 0; i < page_cnt; i++) {
1047 		struct page *page;
1048 again:
1049 		page = find_or_create_page(inode->i_mapping,
1050 					   start_index + i, mask);
1051 		if (!page)
1052 			break;
1053 
1054 		page_start = page_offset(page);
1055 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1056 		while (1) {
1057 			lock_extent(tree, page_start, page_end);
1058 			ordered = btrfs_lookup_ordered_extent(inode,
1059 							      page_start);
1060 			unlock_extent(tree, page_start, page_end);
1061 			if (!ordered)
1062 				break;
1063 
1064 			unlock_page(page);
1065 			btrfs_start_ordered_extent(inode, ordered, 1);
1066 			btrfs_put_ordered_extent(ordered);
1067 			lock_page(page);
1068 			/*
1069 			 * we unlocked the page above, so we need check if
1070 			 * it was released or not.
1071 			 */
1072 			if (page->mapping != inode->i_mapping) {
1073 				unlock_page(page);
1074 				page_cache_release(page);
1075 				goto again;
1076 			}
1077 		}
1078 
1079 		if (!PageUptodate(page)) {
1080 			btrfs_readpage(NULL, page);
1081 			lock_page(page);
1082 			if (!PageUptodate(page)) {
1083 				unlock_page(page);
1084 				page_cache_release(page);
1085 				ret = -EIO;
1086 				break;
1087 			}
1088 		}
1089 
1090 		if (page->mapping != inode->i_mapping) {
1091 			unlock_page(page);
1092 			page_cache_release(page);
1093 			goto again;
1094 		}
1095 
1096 		pages[i] = page;
1097 		i_done++;
1098 	}
1099 	if (!i_done || ret)
1100 		goto out;
1101 
1102 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1103 		goto out;
1104 
1105 	/*
1106 	 * so now we have a nice long stream of locked
1107 	 * and up to date pages, lets wait on them
1108 	 */
1109 	for (i = 0; i < i_done; i++)
1110 		wait_on_page_writeback(pages[i]);
1111 
1112 	page_start = page_offset(pages[0]);
1113 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1114 
1115 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1116 			 page_start, page_end - 1, 0, &cached_state);
1117 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1118 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1119 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1120 			  &cached_state, GFP_NOFS);
1121 
1122 	if (i_done != page_cnt) {
1123 		spin_lock(&BTRFS_I(inode)->lock);
1124 		BTRFS_I(inode)->outstanding_extents++;
1125 		spin_unlock(&BTRFS_I(inode)->lock);
1126 		btrfs_delalloc_release_space(inode,
1127 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1128 	}
1129 
1130 
1131 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1132 			  &cached_state, GFP_NOFS);
1133 
1134 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1135 			     page_start, page_end - 1, &cached_state,
1136 			     GFP_NOFS);
1137 
1138 	for (i = 0; i < i_done; i++) {
1139 		clear_page_dirty_for_io(pages[i]);
1140 		ClearPageChecked(pages[i]);
1141 		set_page_extent_mapped(pages[i]);
1142 		set_page_dirty(pages[i]);
1143 		unlock_page(pages[i]);
1144 		page_cache_release(pages[i]);
1145 	}
1146 	return i_done;
1147 out:
1148 	for (i = 0; i < i_done; i++) {
1149 		unlock_page(pages[i]);
1150 		page_cache_release(pages[i]);
1151 	}
1152 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1153 	return ret;
1154 
1155 }
1156 
1157 int btrfs_defrag_file(struct inode *inode, struct file *file,
1158 		      struct btrfs_ioctl_defrag_range_args *range,
1159 		      u64 newer_than, unsigned long max_to_defrag)
1160 {
1161 	struct btrfs_root *root = BTRFS_I(inode)->root;
1162 	struct file_ra_state *ra = NULL;
1163 	unsigned long last_index;
1164 	u64 isize = i_size_read(inode);
1165 	u64 last_len = 0;
1166 	u64 skip = 0;
1167 	u64 defrag_end = 0;
1168 	u64 newer_off = range->start;
1169 	unsigned long i;
1170 	unsigned long ra_index = 0;
1171 	int ret;
1172 	int defrag_count = 0;
1173 	int compress_type = BTRFS_COMPRESS_ZLIB;
1174 	int extent_thresh = range->extent_thresh;
1175 	int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1176 	int cluster = max_cluster;
1177 	u64 new_align = ~((u64)128 * 1024 - 1);
1178 	struct page **pages = NULL;
1179 
1180 	if (isize == 0)
1181 		return 0;
1182 
1183 	if (range->start >= isize)
1184 		return -EINVAL;
1185 
1186 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1187 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1188 			return -EINVAL;
1189 		if (range->compress_type)
1190 			compress_type = range->compress_type;
1191 	}
1192 
1193 	if (extent_thresh == 0)
1194 		extent_thresh = 256 * 1024;
1195 
1196 	/*
1197 	 * if we were not given a file, allocate a readahead
1198 	 * context
1199 	 */
1200 	if (!file) {
1201 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1202 		if (!ra)
1203 			return -ENOMEM;
1204 		file_ra_state_init(ra, inode->i_mapping);
1205 	} else {
1206 		ra = &file->f_ra;
1207 	}
1208 
1209 	pages = kmalloc(sizeof(struct page *) * max_cluster,
1210 			GFP_NOFS);
1211 	if (!pages) {
1212 		ret = -ENOMEM;
1213 		goto out_ra;
1214 	}
1215 
1216 	/* find the last page to defrag */
1217 	if (range->start + range->len > range->start) {
1218 		last_index = min_t(u64, isize - 1,
1219 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1220 	} else {
1221 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1222 	}
1223 
1224 	if (newer_than) {
1225 		ret = find_new_extents(root, inode, newer_than,
1226 				       &newer_off, 64 * 1024);
1227 		if (!ret) {
1228 			range->start = newer_off;
1229 			/*
1230 			 * we always align our defrag to help keep
1231 			 * the extents in the file evenly spaced
1232 			 */
1233 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1234 		} else
1235 			goto out_ra;
1236 	} else {
1237 		i = range->start >> PAGE_CACHE_SHIFT;
1238 	}
1239 	if (!max_to_defrag)
1240 		max_to_defrag = last_index + 1;
1241 
1242 	/*
1243 	 * make writeback starts from i, so the defrag range can be
1244 	 * written sequentially.
1245 	 */
1246 	if (i < inode->i_mapping->writeback_index)
1247 		inode->i_mapping->writeback_index = i;
1248 
1249 	while (i <= last_index && defrag_count < max_to_defrag &&
1250 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1251 		PAGE_CACHE_SHIFT)) {
1252 		/*
1253 		 * make sure we stop running if someone unmounts
1254 		 * the FS
1255 		 */
1256 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1257 			break;
1258 
1259 		if (btrfs_defrag_cancelled(root->fs_info)) {
1260 			printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1261 			ret = -EAGAIN;
1262 			break;
1263 		}
1264 
1265 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1266 					 extent_thresh, &last_len, &skip,
1267 					 &defrag_end, range->flags &
1268 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1269 			unsigned long next;
1270 			/*
1271 			 * the should_defrag function tells us how much to skip
1272 			 * bump our counter by the suggested amount
1273 			 */
1274 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1275 			i = max(i + 1, next);
1276 			continue;
1277 		}
1278 
1279 		if (!newer_than) {
1280 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1281 				   PAGE_CACHE_SHIFT) - i;
1282 			cluster = min(cluster, max_cluster);
1283 		} else {
1284 			cluster = max_cluster;
1285 		}
1286 
1287 		if (i + cluster > ra_index) {
1288 			ra_index = max(i, ra_index);
1289 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1290 				       cluster);
1291 			ra_index += max_cluster;
1292 		}
1293 
1294 		mutex_lock(&inode->i_mutex);
1295 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1296 			BTRFS_I(inode)->force_compress = compress_type;
1297 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1298 		if (ret < 0) {
1299 			mutex_unlock(&inode->i_mutex);
1300 			goto out_ra;
1301 		}
1302 
1303 		defrag_count += ret;
1304 		balance_dirty_pages_ratelimited(inode->i_mapping);
1305 		mutex_unlock(&inode->i_mutex);
1306 
1307 		if (newer_than) {
1308 			if (newer_off == (u64)-1)
1309 				break;
1310 
1311 			if (ret > 0)
1312 				i += ret;
1313 
1314 			newer_off = max(newer_off + 1,
1315 					(u64)i << PAGE_CACHE_SHIFT);
1316 
1317 			ret = find_new_extents(root, inode,
1318 					       newer_than, &newer_off,
1319 					       64 * 1024);
1320 			if (!ret) {
1321 				range->start = newer_off;
1322 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1323 			} else {
1324 				break;
1325 			}
1326 		} else {
1327 			if (ret > 0) {
1328 				i += ret;
1329 				last_len += ret << PAGE_CACHE_SHIFT;
1330 			} else {
1331 				i++;
1332 				last_len = 0;
1333 			}
1334 		}
1335 	}
1336 
1337 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1338 		filemap_flush(inode->i_mapping);
1339 
1340 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1341 		/* the filemap_flush will queue IO into the worker threads, but
1342 		 * we have to make sure the IO is actually started and that
1343 		 * ordered extents get created before we return
1344 		 */
1345 		atomic_inc(&root->fs_info->async_submit_draining);
1346 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1347 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1348 			wait_event(root->fs_info->async_submit_wait,
1349 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1350 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1351 		}
1352 		atomic_dec(&root->fs_info->async_submit_draining);
1353 	}
1354 
1355 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1356 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1357 	}
1358 
1359 	ret = defrag_count;
1360 
1361 out_ra:
1362 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1363 		mutex_lock(&inode->i_mutex);
1364 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1365 		mutex_unlock(&inode->i_mutex);
1366 	}
1367 	if (!file)
1368 		kfree(ra);
1369 	kfree(pages);
1370 	return ret;
1371 }
1372 
1373 static noinline int btrfs_ioctl_resize(struct file *file,
1374 					void __user *arg)
1375 {
1376 	u64 new_size;
1377 	u64 old_size;
1378 	u64 devid = 1;
1379 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1380 	struct btrfs_ioctl_vol_args *vol_args;
1381 	struct btrfs_trans_handle *trans;
1382 	struct btrfs_device *device = NULL;
1383 	char *sizestr;
1384 	char *devstr = NULL;
1385 	int ret = 0;
1386 	int mod = 0;
1387 
1388 	if (!capable(CAP_SYS_ADMIN))
1389 		return -EPERM;
1390 
1391 	ret = mnt_want_write_file(file);
1392 	if (ret)
1393 		return ret;
1394 
1395 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1396 			1)) {
1397 		mnt_drop_write_file(file);
1398 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1399 	}
1400 
1401 	mutex_lock(&root->fs_info->volume_mutex);
1402 	vol_args = memdup_user(arg, sizeof(*vol_args));
1403 	if (IS_ERR(vol_args)) {
1404 		ret = PTR_ERR(vol_args);
1405 		goto out;
1406 	}
1407 
1408 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1409 
1410 	sizestr = vol_args->name;
1411 	devstr = strchr(sizestr, ':');
1412 	if (devstr) {
1413 		char *end;
1414 		sizestr = devstr + 1;
1415 		*devstr = '\0';
1416 		devstr = vol_args->name;
1417 		devid = simple_strtoull(devstr, &end, 10);
1418 		if (!devid) {
1419 			ret = -EINVAL;
1420 			goto out_free;
1421 		}
1422 		printk(KERN_INFO "btrfs: resizing devid %llu\n", devid);
1423 	}
1424 
1425 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1426 	if (!device) {
1427 		printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1428 		       devid);
1429 		ret = -ENODEV;
1430 		goto out_free;
1431 	}
1432 
1433 	if (!device->writeable) {
1434 		printk(KERN_INFO "btrfs: resizer unable to apply on "
1435 		       "readonly device %llu\n",
1436 		       devid);
1437 		ret = -EPERM;
1438 		goto out_free;
1439 	}
1440 
1441 	if (!strcmp(sizestr, "max"))
1442 		new_size = device->bdev->bd_inode->i_size;
1443 	else {
1444 		if (sizestr[0] == '-') {
1445 			mod = -1;
1446 			sizestr++;
1447 		} else if (sizestr[0] == '+') {
1448 			mod = 1;
1449 			sizestr++;
1450 		}
1451 		new_size = memparse(sizestr, NULL);
1452 		if (new_size == 0) {
1453 			ret = -EINVAL;
1454 			goto out_free;
1455 		}
1456 	}
1457 
1458 	if (device->is_tgtdev_for_dev_replace) {
1459 		ret = -EPERM;
1460 		goto out_free;
1461 	}
1462 
1463 	old_size = device->total_bytes;
1464 
1465 	if (mod < 0) {
1466 		if (new_size > old_size) {
1467 			ret = -EINVAL;
1468 			goto out_free;
1469 		}
1470 		new_size = old_size - new_size;
1471 	} else if (mod > 0) {
1472 		new_size = old_size + new_size;
1473 	}
1474 
1475 	if (new_size < 256 * 1024 * 1024) {
1476 		ret = -EINVAL;
1477 		goto out_free;
1478 	}
1479 	if (new_size > device->bdev->bd_inode->i_size) {
1480 		ret = -EFBIG;
1481 		goto out_free;
1482 	}
1483 
1484 	do_div(new_size, root->sectorsize);
1485 	new_size *= root->sectorsize;
1486 
1487 	printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1488 		      rcu_str_deref(device->name), new_size);
1489 
1490 	if (new_size > old_size) {
1491 		trans = btrfs_start_transaction(root, 0);
1492 		if (IS_ERR(trans)) {
1493 			ret = PTR_ERR(trans);
1494 			goto out_free;
1495 		}
1496 		ret = btrfs_grow_device(trans, device, new_size);
1497 		btrfs_commit_transaction(trans, root);
1498 	} else if (new_size < old_size) {
1499 		ret = btrfs_shrink_device(device, new_size);
1500 	} /* equal, nothing need to do */
1501 
1502 out_free:
1503 	kfree(vol_args);
1504 out:
1505 	mutex_unlock(&root->fs_info->volume_mutex);
1506 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1507 	mnt_drop_write_file(file);
1508 	return ret;
1509 }
1510 
1511 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1512 				char *name, unsigned long fd, int subvol,
1513 				u64 *transid, bool readonly,
1514 				struct btrfs_qgroup_inherit *inherit)
1515 {
1516 	int namelen;
1517 	int ret = 0;
1518 
1519 	ret = mnt_want_write_file(file);
1520 	if (ret)
1521 		goto out;
1522 
1523 	namelen = strlen(name);
1524 	if (strchr(name, '/')) {
1525 		ret = -EINVAL;
1526 		goto out_drop_write;
1527 	}
1528 
1529 	if (name[0] == '.' &&
1530 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1531 		ret = -EEXIST;
1532 		goto out_drop_write;
1533 	}
1534 
1535 	if (subvol) {
1536 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1537 				     NULL, transid, readonly, inherit);
1538 	} else {
1539 		struct fd src = fdget(fd);
1540 		struct inode *src_inode;
1541 		if (!src.file) {
1542 			ret = -EINVAL;
1543 			goto out_drop_write;
1544 		}
1545 
1546 		src_inode = file_inode(src.file);
1547 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1548 			printk(KERN_INFO "btrfs: Snapshot src from "
1549 			       "another FS\n");
1550 			ret = -EINVAL;
1551 		} else {
1552 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1553 					     BTRFS_I(src_inode)->root,
1554 					     transid, readonly, inherit);
1555 		}
1556 		fdput(src);
1557 	}
1558 out_drop_write:
1559 	mnt_drop_write_file(file);
1560 out:
1561 	return ret;
1562 }
1563 
1564 static noinline int btrfs_ioctl_snap_create(struct file *file,
1565 					    void __user *arg, int subvol)
1566 {
1567 	struct btrfs_ioctl_vol_args *vol_args;
1568 	int ret;
1569 
1570 	vol_args = memdup_user(arg, sizeof(*vol_args));
1571 	if (IS_ERR(vol_args))
1572 		return PTR_ERR(vol_args);
1573 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1574 
1575 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1576 					      vol_args->fd, subvol,
1577 					      NULL, false, NULL);
1578 
1579 	kfree(vol_args);
1580 	return ret;
1581 }
1582 
1583 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1584 					       void __user *arg, int subvol)
1585 {
1586 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1587 	int ret;
1588 	u64 transid = 0;
1589 	u64 *ptr = NULL;
1590 	bool readonly = false;
1591 	struct btrfs_qgroup_inherit *inherit = NULL;
1592 
1593 	vol_args = memdup_user(arg, sizeof(*vol_args));
1594 	if (IS_ERR(vol_args))
1595 		return PTR_ERR(vol_args);
1596 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1597 
1598 	if (vol_args->flags &
1599 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1600 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1601 		ret = -EOPNOTSUPP;
1602 		goto out;
1603 	}
1604 
1605 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1606 		ptr = &transid;
1607 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1608 		readonly = true;
1609 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1610 		if (vol_args->size > PAGE_CACHE_SIZE) {
1611 			ret = -EINVAL;
1612 			goto out;
1613 		}
1614 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1615 		if (IS_ERR(inherit)) {
1616 			ret = PTR_ERR(inherit);
1617 			goto out;
1618 		}
1619 	}
1620 
1621 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1622 					      vol_args->fd, subvol, ptr,
1623 					      readonly, inherit);
1624 
1625 	if (ret == 0 && ptr &&
1626 	    copy_to_user(arg +
1627 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1628 				  transid), ptr, sizeof(*ptr)))
1629 		ret = -EFAULT;
1630 out:
1631 	kfree(vol_args);
1632 	kfree(inherit);
1633 	return ret;
1634 }
1635 
1636 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1637 						void __user *arg)
1638 {
1639 	struct inode *inode = file_inode(file);
1640 	struct btrfs_root *root = BTRFS_I(inode)->root;
1641 	int ret = 0;
1642 	u64 flags = 0;
1643 
1644 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1645 		return -EINVAL;
1646 
1647 	down_read(&root->fs_info->subvol_sem);
1648 	if (btrfs_root_readonly(root))
1649 		flags |= BTRFS_SUBVOL_RDONLY;
1650 	up_read(&root->fs_info->subvol_sem);
1651 
1652 	if (copy_to_user(arg, &flags, sizeof(flags)))
1653 		ret = -EFAULT;
1654 
1655 	return ret;
1656 }
1657 
1658 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1659 					      void __user *arg)
1660 {
1661 	struct inode *inode = file_inode(file);
1662 	struct btrfs_root *root = BTRFS_I(inode)->root;
1663 	struct btrfs_trans_handle *trans;
1664 	u64 root_flags;
1665 	u64 flags;
1666 	int ret = 0;
1667 
1668 	ret = mnt_want_write_file(file);
1669 	if (ret)
1670 		goto out;
1671 
1672 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1673 		ret = -EINVAL;
1674 		goto out_drop_write;
1675 	}
1676 
1677 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1678 		ret = -EFAULT;
1679 		goto out_drop_write;
1680 	}
1681 
1682 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1683 		ret = -EINVAL;
1684 		goto out_drop_write;
1685 	}
1686 
1687 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1688 		ret = -EOPNOTSUPP;
1689 		goto out_drop_write;
1690 	}
1691 
1692 	if (!inode_owner_or_capable(inode)) {
1693 		ret = -EACCES;
1694 		goto out_drop_write;
1695 	}
1696 
1697 	down_write(&root->fs_info->subvol_sem);
1698 
1699 	/* nothing to do */
1700 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1701 		goto out_drop_sem;
1702 
1703 	root_flags = btrfs_root_flags(&root->root_item);
1704 	if (flags & BTRFS_SUBVOL_RDONLY)
1705 		btrfs_set_root_flags(&root->root_item,
1706 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1707 	else
1708 		btrfs_set_root_flags(&root->root_item,
1709 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1710 
1711 	trans = btrfs_start_transaction(root, 1);
1712 	if (IS_ERR(trans)) {
1713 		ret = PTR_ERR(trans);
1714 		goto out_reset;
1715 	}
1716 
1717 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1718 				&root->root_key, &root->root_item);
1719 
1720 	btrfs_commit_transaction(trans, root);
1721 out_reset:
1722 	if (ret)
1723 		btrfs_set_root_flags(&root->root_item, root_flags);
1724 out_drop_sem:
1725 	up_write(&root->fs_info->subvol_sem);
1726 out_drop_write:
1727 	mnt_drop_write_file(file);
1728 out:
1729 	return ret;
1730 }
1731 
1732 /*
1733  * helper to check if the subvolume references other subvolumes
1734  */
1735 static noinline int may_destroy_subvol(struct btrfs_root *root)
1736 {
1737 	struct btrfs_path *path;
1738 	struct btrfs_dir_item *di;
1739 	struct btrfs_key key;
1740 	u64 dir_id;
1741 	int ret;
1742 
1743 	path = btrfs_alloc_path();
1744 	if (!path)
1745 		return -ENOMEM;
1746 
1747 	/* Make sure this root isn't set as the default subvol */
1748 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1749 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1750 				   dir_id, "default", 7, 0);
1751 	if (di && !IS_ERR(di)) {
1752 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1753 		if (key.objectid == root->root_key.objectid) {
1754 			ret = -ENOTEMPTY;
1755 			goto out;
1756 		}
1757 		btrfs_release_path(path);
1758 	}
1759 
1760 	key.objectid = root->root_key.objectid;
1761 	key.type = BTRFS_ROOT_REF_KEY;
1762 	key.offset = (u64)-1;
1763 
1764 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1765 				&key, path, 0, 0);
1766 	if (ret < 0)
1767 		goto out;
1768 	BUG_ON(ret == 0);
1769 
1770 	ret = 0;
1771 	if (path->slots[0] > 0) {
1772 		path->slots[0]--;
1773 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1774 		if (key.objectid == root->root_key.objectid &&
1775 		    key.type == BTRFS_ROOT_REF_KEY)
1776 			ret = -ENOTEMPTY;
1777 	}
1778 out:
1779 	btrfs_free_path(path);
1780 	return ret;
1781 }
1782 
1783 static noinline int key_in_sk(struct btrfs_key *key,
1784 			      struct btrfs_ioctl_search_key *sk)
1785 {
1786 	struct btrfs_key test;
1787 	int ret;
1788 
1789 	test.objectid = sk->min_objectid;
1790 	test.type = sk->min_type;
1791 	test.offset = sk->min_offset;
1792 
1793 	ret = btrfs_comp_cpu_keys(key, &test);
1794 	if (ret < 0)
1795 		return 0;
1796 
1797 	test.objectid = sk->max_objectid;
1798 	test.type = sk->max_type;
1799 	test.offset = sk->max_offset;
1800 
1801 	ret = btrfs_comp_cpu_keys(key, &test);
1802 	if (ret > 0)
1803 		return 0;
1804 	return 1;
1805 }
1806 
1807 static noinline int copy_to_sk(struct btrfs_root *root,
1808 			       struct btrfs_path *path,
1809 			       struct btrfs_key *key,
1810 			       struct btrfs_ioctl_search_key *sk,
1811 			       char *buf,
1812 			       unsigned long *sk_offset,
1813 			       int *num_found)
1814 {
1815 	u64 found_transid;
1816 	struct extent_buffer *leaf;
1817 	struct btrfs_ioctl_search_header sh;
1818 	unsigned long item_off;
1819 	unsigned long item_len;
1820 	int nritems;
1821 	int i;
1822 	int slot;
1823 	int ret = 0;
1824 
1825 	leaf = path->nodes[0];
1826 	slot = path->slots[0];
1827 	nritems = btrfs_header_nritems(leaf);
1828 
1829 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1830 		i = nritems;
1831 		goto advance_key;
1832 	}
1833 	found_transid = btrfs_header_generation(leaf);
1834 
1835 	for (i = slot; i < nritems; i++) {
1836 		item_off = btrfs_item_ptr_offset(leaf, i);
1837 		item_len = btrfs_item_size_nr(leaf, i);
1838 
1839 		btrfs_item_key_to_cpu(leaf, key, i);
1840 		if (!key_in_sk(key, sk))
1841 			continue;
1842 
1843 		if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1844 			item_len = 0;
1845 
1846 		if (sizeof(sh) + item_len + *sk_offset >
1847 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1848 			ret = 1;
1849 			goto overflow;
1850 		}
1851 
1852 		sh.objectid = key->objectid;
1853 		sh.offset = key->offset;
1854 		sh.type = key->type;
1855 		sh.len = item_len;
1856 		sh.transid = found_transid;
1857 
1858 		/* copy search result header */
1859 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1860 		*sk_offset += sizeof(sh);
1861 
1862 		if (item_len) {
1863 			char *p = buf + *sk_offset;
1864 			/* copy the item */
1865 			read_extent_buffer(leaf, p,
1866 					   item_off, item_len);
1867 			*sk_offset += item_len;
1868 		}
1869 		(*num_found)++;
1870 
1871 		if (*num_found >= sk->nr_items)
1872 			break;
1873 	}
1874 advance_key:
1875 	ret = 0;
1876 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1877 		key->offset++;
1878 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1879 		key->offset = 0;
1880 		key->type++;
1881 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1882 		key->offset = 0;
1883 		key->type = 0;
1884 		key->objectid++;
1885 	} else
1886 		ret = 1;
1887 overflow:
1888 	return ret;
1889 }
1890 
1891 static noinline int search_ioctl(struct inode *inode,
1892 				 struct btrfs_ioctl_search_args *args)
1893 {
1894 	struct btrfs_root *root;
1895 	struct btrfs_key key;
1896 	struct btrfs_key max_key;
1897 	struct btrfs_path *path;
1898 	struct btrfs_ioctl_search_key *sk = &args->key;
1899 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1900 	int ret;
1901 	int num_found = 0;
1902 	unsigned long sk_offset = 0;
1903 
1904 	path = btrfs_alloc_path();
1905 	if (!path)
1906 		return -ENOMEM;
1907 
1908 	if (sk->tree_id == 0) {
1909 		/* search the root of the inode that was passed */
1910 		root = BTRFS_I(inode)->root;
1911 	} else {
1912 		key.objectid = sk->tree_id;
1913 		key.type = BTRFS_ROOT_ITEM_KEY;
1914 		key.offset = (u64)-1;
1915 		root = btrfs_read_fs_root_no_name(info, &key);
1916 		if (IS_ERR(root)) {
1917 			printk(KERN_ERR "could not find root %llu\n",
1918 			       sk->tree_id);
1919 			btrfs_free_path(path);
1920 			return -ENOENT;
1921 		}
1922 	}
1923 
1924 	key.objectid = sk->min_objectid;
1925 	key.type = sk->min_type;
1926 	key.offset = sk->min_offset;
1927 
1928 	max_key.objectid = sk->max_objectid;
1929 	max_key.type = sk->max_type;
1930 	max_key.offset = sk->max_offset;
1931 
1932 	path->keep_locks = 1;
1933 
1934 	while(1) {
1935 		ret = btrfs_search_forward(root, &key, &max_key, path,
1936 					   sk->min_transid);
1937 		if (ret != 0) {
1938 			if (ret > 0)
1939 				ret = 0;
1940 			goto err;
1941 		}
1942 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1943 				 &sk_offset, &num_found);
1944 		btrfs_release_path(path);
1945 		if (ret || num_found >= sk->nr_items)
1946 			break;
1947 
1948 	}
1949 	ret = 0;
1950 err:
1951 	sk->nr_items = num_found;
1952 	btrfs_free_path(path);
1953 	return ret;
1954 }
1955 
1956 static noinline int btrfs_ioctl_tree_search(struct file *file,
1957 					   void __user *argp)
1958 {
1959 	 struct btrfs_ioctl_search_args *args;
1960 	 struct inode *inode;
1961 	 int ret;
1962 
1963 	if (!capable(CAP_SYS_ADMIN))
1964 		return -EPERM;
1965 
1966 	args = memdup_user(argp, sizeof(*args));
1967 	if (IS_ERR(args))
1968 		return PTR_ERR(args);
1969 
1970 	inode = file_inode(file);
1971 	ret = search_ioctl(inode, args);
1972 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1973 		ret = -EFAULT;
1974 	kfree(args);
1975 	return ret;
1976 }
1977 
1978 /*
1979  * Search INODE_REFs to identify path name of 'dirid' directory
1980  * in a 'tree_id' tree. and sets path name to 'name'.
1981  */
1982 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1983 				u64 tree_id, u64 dirid, char *name)
1984 {
1985 	struct btrfs_root *root;
1986 	struct btrfs_key key;
1987 	char *ptr;
1988 	int ret = -1;
1989 	int slot;
1990 	int len;
1991 	int total_len = 0;
1992 	struct btrfs_inode_ref *iref;
1993 	struct extent_buffer *l;
1994 	struct btrfs_path *path;
1995 
1996 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1997 		name[0]='\0';
1998 		return 0;
1999 	}
2000 
2001 	path = btrfs_alloc_path();
2002 	if (!path)
2003 		return -ENOMEM;
2004 
2005 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2006 
2007 	key.objectid = tree_id;
2008 	key.type = BTRFS_ROOT_ITEM_KEY;
2009 	key.offset = (u64)-1;
2010 	root = btrfs_read_fs_root_no_name(info, &key);
2011 	if (IS_ERR(root)) {
2012 		printk(KERN_ERR "could not find root %llu\n", tree_id);
2013 		ret = -ENOENT;
2014 		goto out;
2015 	}
2016 
2017 	key.objectid = dirid;
2018 	key.type = BTRFS_INODE_REF_KEY;
2019 	key.offset = (u64)-1;
2020 
2021 	while(1) {
2022 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2023 		if (ret < 0)
2024 			goto out;
2025 		else if (ret > 0) {
2026 			ret = btrfs_previous_item(root, path, dirid,
2027 						  BTRFS_INODE_REF_KEY);
2028 			if (ret < 0)
2029 				goto out;
2030 			else if (ret > 0) {
2031 				ret = -ENOENT;
2032 				goto out;
2033 			}
2034 		}
2035 
2036 		l = path->nodes[0];
2037 		slot = path->slots[0];
2038 		btrfs_item_key_to_cpu(l, &key, slot);
2039 
2040 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2041 		len = btrfs_inode_ref_name_len(l, iref);
2042 		ptr -= len + 1;
2043 		total_len += len + 1;
2044 		if (ptr < name) {
2045 			ret = -ENAMETOOLONG;
2046 			goto out;
2047 		}
2048 
2049 		*(ptr + len) = '/';
2050 		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
2051 
2052 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2053 			break;
2054 
2055 		btrfs_release_path(path);
2056 		key.objectid = key.offset;
2057 		key.offset = (u64)-1;
2058 		dirid = key.objectid;
2059 	}
2060 	memmove(name, ptr, total_len);
2061 	name[total_len]='\0';
2062 	ret = 0;
2063 out:
2064 	btrfs_free_path(path);
2065 	return ret;
2066 }
2067 
2068 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2069 					   void __user *argp)
2070 {
2071 	 struct btrfs_ioctl_ino_lookup_args *args;
2072 	 struct inode *inode;
2073 	 int ret;
2074 
2075 	if (!capable(CAP_SYS_ADMIN))
2076 		return -EPERM;
2077 
2078 	args = memdup_user(argp, sizeof(*args));
2079 	if (IS_ERR(args))
2080 		return PTR_ERR(args);
2081 
2082 	inode = file_inode(file);
2083 
2084 	if (args->treeid == 0)
2085 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2086 
2087 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2088 					args->treeid, args->objectid,
2089 					args->name);
2090 
2091 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2092 		ret = -EFAULT;
2093 
2094 	kfree(args);
2095 	return ret;
2096 }
2097 
2098 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2099 					     void __user *arg)
2100 {
2101 	struct dentry *parent = fdentry(file);
2102 	struct dentry *dentry;
2103 	struct inode *dir = parent->d_inode;
2104 	struct inode *inode;
2105 	struct btrfs_root *root = BTRFS_I(dir)->root;
2106 	struct btrfs_root *dest = NULL;
2107 	struct btrfs_ioctl_vol_args *vol_args;
2108 	struct btrfs_trans_handle *trans;
2109 	struct btrfs_block_rsv block_rsv;
2110 	u64 qgroup_reserved;
2111 	int namelen;
2112 	int ret;
2113 	int err = 0;
2114 
2115 	vol_args = memdup_user(arg, sizeof(*vol_args));
2116 	if (IS_ERR(vol_args))
2117 		return PTR_ERR(vol_args);
2118 
2119 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2120 	namelen = strlen(vol_args->name);
2121 	if (strchr(vol_args->name, '/') ||
2122 	    strncmp(vol_args->name, "..", namelen) == 0) {
2123 		err = -EINVAL;
2124 		goto out;
2125 	}
2126 
2127 	err = mnt_want_write_file(file);
2128 	if (err)
2129 		goto out;
2130 
2131 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2132 	if (err == -EINTR)
2133 		goto out;
2134 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2135 	if (IS_ERR(dentry)) {
2136 		err = PTR_ERR(dentry);
2137 		goto out_unlock_dir;
2138 	}
2139 
2140 	if (!dentry->d_inode) {
2141 		err = -ENOENT;
2142 		goto out_dput;
2143 	}
2144 
2145 	inode = dentry->d_inode;
2146 	dest = BTRFS_I(inode)->root;
2147 	if (!capable(CAP_SYS_ADMIN)){
2148 		/*
2149 		 * Regular user.  Only allow this with a special mount
2150 		 * option, when the user has write+exec access to the
2151 		 * subvol root, and when rmdir(2) would have been
2152 		 * allowed.
2153 		 *
2154 		 * Note that this is _not_ check that the subvol is
2155 		 * empty or doesn't contain data that we wouldn't
2156 		 * otherwise be able to delete.
2157 		 *
2158 		 * Users who want to delete empty subvols should try
2159 		 * rmdir(2).
2160 		 */
2161 		err = -EPERM;
2162 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2163 			goto out_dput;
2164 
2165 		/*
2166 		 * Do not allow deletion if the parent dir is the same
2167 		 * as the dir to be deleted.  That means the ioctl
2168 		 * must be called on the dentry referencing the root
2169 		 * of the subvol, not a random directory contained
2170 		 * within it.
2171 		 */
2172 		err = -EINVAL;
2173 		if (root == dest)
2174 			goto out_dput;
2175 
2176 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2177 		if (err)
2178 			goto out_dput;
2179 	}
2180 
2181 	/* check if subvolume may be deleted by a user */
2182 	err = btrfs_may_delete(dir, dentry, 1);
2183 	if (err)
2184 		goto out_dput;
2185 
2186 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2187 		err = -EINVAL;
2188 		goto out_dput;
2189 	}
2190 
2191 	mutex_lock(&inode->i_mutex);
2192 	err = d_invalidate(dentry);
2193 	if (err)
2194 		goto out_unlock;
2195 
2196 	down_write(&root->fs_info->subvol_sem);
2197 
2198 	err = may_destroy_subvol(dest);
2199 	if (err)
2200 		goto out_up_write;
2201 
2202 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2203 	/*
2204 	 * One for dir inode, two for dir entries, two for root
2205 	 * ref/backref.
2206 	 */
2207 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2208 					       5, &qgroup_reserved, true);
2209 	if (err)
2210 		goto out_up_write;
2211 
2212 	trans = btrfs_start_transaction(root, 0);
2213 	if (IS_ERR(trans)) {
2214 		err = PTR_ERR(trans);
2215 		goto out_release;
2216 	}
2217 	trans->block_rsv = &block_rsv;
2218 	trans->bytes_reserved = block_rsv.size;
2219 
2220 	ret = btrfs_unlink_subvol(trans, root, dir,
2221 				dest->root_key.objectid,
2222 				dentry->d_name.name,
2223 				dentry->d_name.len);
2224 	if (ret) {
2225 		err = ret;
2226 		btrfs_abort_transaction(trans, root, ret);
2227 		goto out_end_trans;
2228 	}
2229 
2230 	btrfs_record_root_in_trans(trans, dest);
2231 
2232 	memset(&dest->root_item.drop_progress, 0,
2233 		sizeof(dest->root_item.drop_progress));
2234 	dest->root_item.drop_level = 0;
2235 	btrfs_set_root_refs(&dest->root_item, 0);
2236 
2237 	if (!xchg(&dest->orphan_item_inserted, 1)) {
2238 		ret = btrfs_insert_orphan_item(trans,
2239 					root->fs_info->tree_root,
2240 					dest->root_key.objectid);
2241 		if (ret) {
2242 			btrfs_abort_transaction(trans, root, ret);
2243 			err = ret;
2244 			goto out_end_trans;
2245 		}
2246 	}
2247 
2248 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2249 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2250 				  dest->root_key.objectid);
2251 	if (ret && ret != -ENOENT) {
2252 		btrfs_abort_transaction(trans, root, ret);
2253 		err = ret;
2254 		goto out_end_trans;
2255 	}
2256 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2257 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2258 					  dest->root_item.received_uuid,
2259 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2260 					  dest->root_key.objectid);
2261 		if (ret && ret != -ENOENT) {
2262 			btrfs_abort_transaction(trans, root, ret);
2263 			err = ret;
2264 			goto out_end_trans;
2265 		}
2266 	}
2267 
2268 out_end_trans:
2269 	trans->block_rsv = NULL;
2270 	trans->bytes_reserved = 0;
2271 	ret = btrfs_end_transaction(trans, root);
2272 	if (ret && !err)
2273 		err = ret;
2274 	inode->i_flags |= S_DEAD;
2275 out_release:
2276 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2277 out_up_write:
2278 	up_write(&root->fs_info->subvol_sem);
2279 out_unlock:
2280 	mutex_unlock(&inode->i_mutex);
2281 	if (!err) {
2282 		shrink_dcache_sb(root->fs_info->sb);
2283 		btrfs_invalidate_inodes(dest);
2284 		d_delete(dentry);
2285 
2286 		/* the last ref */
2287 		if (dest->cache_inode) {
2288 			iput(dest->cache_inode);
2289 			dest->cache_inode = NULL;
2290 		}
2291 	}
2292 out_dput:
2293 	dput(dentry);
2294 out_unlock_dir:
2295 	mutex_unlock(&dir->i_mutex);
2296 	mnt_drop_write_file(file);
2297 out:
2298 	kfree(vol_args);
2299 	return err;
2300 }
2301 
2302 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2303 {
2304 	struct inode *inode = file_inode(file);
2305 	struct btrfs_root *root = BTRFS_I(inode)->root;
2306 	struct btrfs_ioctl_defrag_range_args *range;
2307 	int ret;
2308 
2309 	ret = mnt_want_write_file(file);
2310 	if (ret)
2311 		return ret;
2312 
2313 	if (btrfs_root_readonly(root)) {
2314 		ret = -EROFS;
2315 		goto out;
2316 	}
2317 
2318 	switch (inode->i_mode & S_IFMT) {
2319 	case S_IFDIR:
2320 		if (!capable(CAP_SYS_ADMIN)) {
2321 			ret = -EPERM;
2322 			goto out;
2323 		}
2324 		ret = btrfs_defrag_root(root);
2325 		if (ret)
2326 			goto out;
2327 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2328 		break;
2329 	case S_IFREG:
2330 		if (!(file->f_mode & FMODE_WRITE)) {
2331 			ret = -EINVAL;
2332 			goto out;
2333 		}
2334 
2335 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2336 		if (!range) {
2337 			ret = -ENOMEM;
2338 			goto out;
2339 		}
2340 
2341 		if (argp) {
2342 			if (copy_from_user(range, argp,
2343 					   sizeof(*range))) {
2344 				ret = -EFAULT;
2345 				kfree(range);
2346 				goto out;
2347 			}
2348 			/* compression requires us to start the IO */
2349 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2350 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2351 				range->extent_thresh = (u32)-1;
2352 			}
2353 		} else {
2354 			/* the rest are all set to zero by kzalloc */
2355 			range->len = (u64)-1;
2356 		}
2357 		ret = btrfs_defrag_file(file_inode(file), file,
2358 					range, 0, 0);
2359 		if (ret > 0)
2360 			ret = 0;
2361 		kfree(range);
2362 		break;
2363 	default:
2364 		ret = -EINVAL;
2365 	}
2366 out:
2367 	mnt_drop_write_file(file);
2368 	return ret;
2369 }
2370 
2371 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2372 {
2373 	struct btrfs_ioctl_vol_args *vol_args;
2374 	int ret;
2375 
2376 	if (!capable(CAP_SYS_ADMIN))
2377 		return -EPERM;
2378 
2379 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2380 			1)) {
2381 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2382 	}
2383 
2384 	mutex_lock(&root->fs_info->volume_mutex);
2385 	vol_args = memdup_user(arg, sizeof(*vol_args));
2386 	if (IS_ERR(vol_args)) {
2387 		ret = PTR_ERR(vol_args);
2388 		goto out;
2389 	}
2390 
2391 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2392 	ret = btrfs_init_new_device(root, vol_args->name);
2393 
2394 	kfree(vol_args);
2395 out:
2396 	mutex_unlock(&root->fs_info->volume_mutex);
2397 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2398 	return ret;
2399 }
2400 
2401 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2402 {
2403 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2404 	struct btrfs_ioctl_vol_args *vol_args;
2405 	int ret;
2406 
2407 	if (!capable(CAP_SYS_ADMIN))
2408 		return -EPERM;
2409 
2410 	ret = mnt_want_write_file(file);
2411 	if (ret)
2412 		return ret;
2413 
2414 	vol_args = memdup_user(arg, sizeof(*vol_args));
2415 	if (IS_ERR(vol_args)) {
2416 		ret = PTR_ERR(vol_args);
2417 		goto out;
2418 	}
2419 
2420 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2421 
2422 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2423 			1)) {
2424 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2425 		goto out;
2426 	}
2427 
2428 	mutex_lock(&root->fs_info->volume_mutex);
2429 	ret = btrfs_rm_device(root, vol_args->name);
2430 	mutex_unlock(&root->fs_info->volume_mutex);
2431 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2432 
2433 out:
2434 	kfree(vol_args);
2435 	mnt_drop_write_file(file);
2436 	return ret;
2437 }
2438 
2439 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2440 {
2441 	struct btrfs_ioctl_fs_info_args *fi_args;
2442 	struct btrfs_device *device;
2443 	struct btrfs_device *next;
2444 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2445 	int ret = 0;
2446 
2447 	if (!capable(CAP_SYS_ADMIN))
2448 		return -EPERM;
2449 
2450 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2451 	if (!fi_args)
2452 		return -ENOMEM;
2453 
2454 	mutex_lock(&fs_devices->device_list_mutex);
2455 	fi_args->num_devices = fs_devices->num_devices;
2456 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2457 
2458 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2459 		if (device->devid > fi_args->max_id)
2460 			fi_args->max_id = device->devid;
2461 	}
2462 	mutex_unlock(&fs_devices->device_list_mutex);
2463 
2464 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2465 		ret = -EFAULT;
2466 
2467 	kfree(fi_args);
2468 	return ret;
2469 }
2470 
2471 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2472 {
2473 	struct btrfs_ioctl_dev_info_args *di_args;
2474 	struct btrfs_device *dev;
2475 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2476 	int ret = 0;
2477 	char *s_uuid = NULL;
2478 
2479 	if (!capable(CAP_SYS_ADMIN))
2480 		return -EPERM;
2481 
2482 	di_args = memdup_user(arg, sizeof(*di_args));
2483 	if (IS_ERR(di_args))
2484 		return PTR_ERR(di_args);
2485 
2486 	if (!btrfs_is_empty_uuid(di_args->uuid))
2487 		s_uuid = di_args->uuid;
2488 
2489 	mutex_lock(&fs_devices->device_list_mutex);
2490 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2491 
2492 	if (!dev) {
2493 		ret = -ENODEV;
2494 		goto out;
2495 	}
2496 
2497 	di_args->devid = dev->devid;
2498 	di_args->bytes_used = dev->bytes_used;
2499 	di_args->total_bytes = dev->total_bytes;
2500 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2501 	if (dev->name) {
2502 		struct rcu_string *name;
2503 
2504 		rcu_read_lock();
2505 		name = rcu_dereference(dev->name);
2506 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2507 		rcu_read_unlock();
2508 		di_args->path[sizeof(di_args->path) - 1] = 0;
2509 	} else {
2510 		di_args->path[0] = '\0';
2511 	}
2512 
2513 out:
2514 	mutex_unlock(&fs_devices->device_list_mutex);
2515 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2516 		ret = -EFAULT;
2517 
2518 	kfree(di_args);
2519 	return ret;
2520 }
2521 
2522 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2523 {
2524 	struct page *page;
2525 	pgoff_t index;
2526 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2527 
2528 	index = off >> PAGE_CACHE_SHIFT;
2529 
2530 	page = grab_cache_page(inode->i_mapping, index);
2531 	if (!page)
2532 		return NULL;
2533 
2534 	if (!PageUptodate(page)) {
2535 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2536 						 0))
2537 			return NULL;
2538 		lock_page(page);
2539 		if (!PageUptodate(page)) {
2540 			unlock_page(page);
2541 			page_cache_release(page);
2542 			return NULL;
2543 		}
2544 	}
2545 	unlock_page(page);
2546 
2547 	return page;
2548 }
2549 
2550 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2551 {
2552 	/* do any pending delalloc/csum calc on src, one way or
2553 	   another, and lock file content */
2554 	while (1) {
2555 		struct btrfs_ordered_extent *ordered;
2556 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2557 		ordered = btrfs_lookup_first_ordered_extent(inode,
2558 							    off + len - 1);
2559 		if (!ordered &&
2560 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2561 				    off + len - 1, EXTENT_DELALLOC, 0, NULL))
2562 			break;
2563 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2564 		if (ordered)
2565 			btrfs_put_ordered_extent(ordered);
2566 		btrfs_wait_ordered_range(inode, off, len);
2567 	}
2568 }
2569 
2570 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2571 				struct inode *inode2, u64 loff2, u64 len)
2572 {
2573 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2574 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2575 
2576 	mutex_unlock(&inode1->i_mutex);
2577 	mutex_unlock(&inode2->i_mutex);
2578 }
2579 
2580 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2581 			      struct inode *inode2, u64 loff2, u64 len)
2582 {
2583 	if (inode1 < inode2) {
2584 		swap(inode1, inode2);
2585 		swap(loff1, loff2);
2586 	}
2587 
2588 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2589 	lock_extent_range(inode1, loff1, len);
2590 	if (inode1 != inode2) {
2591 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2592 		lock_extent_range(inode2, loff2, len);
2593 	}
2594 }
2595 
2596 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2597 			  u64 dst_loff, u64 len)
2598 {
2599 	int ret = 0;
2600 	struct page *src_page, *dst_page;
2601 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2602 	void *addr, *dst_addr;
2603 
2604 	while (len) {
2605 		if (len < PAGE_CACHE_SIZE)
2606 			cmp_len = len;
2607 
2608 		src_page = extent_same_get_page(src, loff);
2609 		if (!src_page)
2610 			return -EINVAL;
2611 		dst_page = extent_same_get_page(dst, dst_loff);
2612 		if (!dst_page) {
2613 			page_cache_release(src_page);
2614 			return -EINVAL;
2615 		}
2616 		addr = kmap_atomic(src_page);
2617 		dst_addr = kmap_atomic(dst_page);
2618 
2619 		flush_dcache_page(src_page);
2620 		flush_dcache_page(dst_page);
2621 
2622 		if (memcmp(addr, dst_addr, cmp_len))
2623 			ret = BTRFS_SAME_DATA_DIFFERS;
2624 
2625 		kunmap_atomic(addr);
2626 		kunmap_atomic(dst_addr);
2627 		page_cache_release(src_page);
2628 		page_cache_release(dst_page);
2629 
2630 		if (ret)
2631 			break;
2632 
2633 		loff += cmp_len;
2634 		dst_loff += cmp_len;
2635 		len -= cmp_len;
2636 	}
2637 
2638 	return ret;
2639 }
2640 
2641 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2642 {
2643 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2644 
2645 	if (off + len > inode->i_size || off + len < off)
2646 		return -EINVAL;
2647 	/* Check that we are block aligned - btrfs_clone() requires this */
2648 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2649 		return -EINVAL;
2650 
2651 	return 0;
2652 }
2653 
2654 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2655 			     struct inode *dst, u64 dst_loff)
2656 {
2657 	int ret;
2658 
2659 	/*
2660 	 * btrfs_clone() can't handle extents in the same file
2661 	 * yet. Once that works, we can drop this check and replace it
2662 	 * with a check for the same inode, but overlapping extents.
2663 	 */
2664 	if (src == dst)
2665 		return -EINVAL;
2666 
2667 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2668 
2669 	ret = extent_same_check_offsets(src, loff, len);
2670 	if (ret)
2671 		goto out_unlock;
2672 
2673 	ret = extent_same_check_offsets(dst, dst_loff, len);
2674 	if (ret)
2675 		goto out_unlock;
2676 
2677 	/* don't make the dst file partly checksummed */
2678 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2679 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2680 		ret = -EINVAL;
2681 		goto out_unlock;
2682 	}
2683 
2684 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2685 	if (ret == 0)
2686 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2687 
2688 out_unlock:
2689 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2690 
2691 	return ret;
2692 }
2693 
2694 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2695 
2696 static long btrfs_ioctl_file_extent_same(struct file *file,
2697 					 void __user *argp)
2698 {
2699 	struct btrfs_ioctl_same_args *args = argp;
2700 	struct btrfs_ioctl_same_args same;
2701 	struct btrfs_ioctl_same_extent_info info;
2702 	struct inode *src = file->f_dentry->d_inode;
2703 	struct file *dst_file = NULL;
2704 	struct inode *dst;
2705 	u64 off;
2706 	u64 len;
2707 	int i;
2708 	int ret;
2709 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2710 	bool is_admin = capable(CAP_SYS_ADMIN);
2711 
2712 	if (!(file->f_mode & FMODE_READ))
2713 		return -EINVAL;
2714 
2715 	ret = mnt_want_write_file(file);
2716 	if (ret)
2717 		return ret;
2718 
2719 	if (copy_from_user(&same,
2720 			   (struct btrfs_ioctl_same_args __user *)argp,
2721 			   sizeof(same))) {
2722 		ret = -EFAULT;
2723 		goto out;
2724 	}
2725 
2726 	off = same.logical_offset;
2727 	len = same.length;
2728 
2729 	/*
2730 	 * Limit the total length we will dedupe for each operation.
2731 	 * This is intended to bound the total time spent in this
2732 	 * ioctl to something sane.
2733 	 */
2734 	if (len > BTRFS_MAX_DEDUPE_LEN)
2735 		len = BTRFS_MAX_DEDUPE_LEN;
2736 
2737 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2738 		/*
2739 		 * Btrfs does not support blocksize < page_size. As a
2740 		 * result, btrfs_cmp_data() won't correctly handle
2741 		 * this situation without an update.
2742 		 */
2743 		ret = -EINVAL;
2744 		goto out;
2745 	}
2746 
2747 	ret = -EISDIR;
2748 	if (S_ISDIR(src->i_mode))
2749 		goto out;
2750 
2751 	ret = -EACCES;
2752 	if (!S_ISREG(src->i_mode))
2753 		goto out;
2754 
2755 	ret = 0;
2756 	for (i = 0; i < same.dest_count; i++) {
2757 		if (copy_from_user(&info, &args->info[i], sizeof(info))) {
2758 			ret = -EFAULT;
2759 			goto out;
2760 		}
2761 
2762 		info.bytes_deduped = 0;
2763 
2764 		dst_file = fget(info.fd);
2765 		if (!dst_file) {
2766 			info.status = -EBADF;
2767 			goto next;
2768 		}
2769 
2770 		if (!(is_admin || (dst_file->f_mode & FMODE_WRITE))) {
2771 			info.status = -EINVAL;
2772 			goto next;
2773 		}
2774 
2775 		info.status = -EXDEV;
2776 		if (file->f_path.mnt != dst_file->f_path.mnt)
2777 			goto next;
2778 
2779 		dst = dst_file->f_dentry->d_inode;
2780 		if (src->i_sb != dst->i_sb)
2781 			goto next;
2782 
2783 		if (S_ISDIR(dst->i_mode)) {
2784 			info.status = -EISDIR;
2785 			goto next;
2786 		}
2787 
2788 		if (!S_ISREG(dst->i_mode)) {
2789 			info.status = -EACCES;
2790 			goto next;
2791 		}
2792 
2793 		info.status = btrfs_extent_same(src, off, len, dst,
2794 						info.logical_offset);
2795 		if (info.status == 0)
2796 			info.bytes_deduped += len;
2797 
2798 next:
2799 		if (dst_file)
2800 			fput(dst_file);
2801 
2802 		if (__put_user_unaligned(info.status, &args->info[i].status) ||
2803 		    __put_user_unaligned(info.bytes_deduped,
2804 					 &args->info[i].bytes_deduped)) {
2805 			ret = -EFAULT;
2806 			goto out;
2807 		}
2808 	}
2809 
2810 out:
2811 	mnt_drop_write_file(file);
2812 	return ret;
2813 }
2814 
2815 /**
2816  * btrfs_clone() - clone a range from inode file to another
2817  *
2818  * @src: Inode to clone from
2819  * @inode: Inode to clone to
2820  * @off: Offset within source to start clone from
2821  * @olen: Original length, passed by user, of range to clone
2822  * @olen_aligned: Block-aligned value of olen, extent_same uses
2823  *               identical values here
2824  * @destoff: Offset within @inode to start clone
2825  */
2826 static int btrfs_clone(struct inode *src, struct inode *inode,
2827 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2828 {
2829 	struct btrfs_root *root = BTRFS_I(inode)->root;
2830 	struct btrfs_path *path = NULL;
2831 	struct extent_buffer *leaf;
2832 	struct btrfs_trans_handle *trans;
2833 	char *buf = NULL;
2834 	struct btrfs_key key;
2835 	u32 nritems;
2836 	int slot;
2837 	int ret;
2838 	u64 len = olen_aligned;
2839 
2840 	ret = -ENOMEM;
2841 	buf = vmalloc(btrfs_level_size(root, 0));
2842 	if (!buf)
2843 		return ret;
2844 
2845 	path = btrfs_alloc_path();
2846 	if (!path) {
2847 		vfree(buf);
2848 		return ret;
2849 	}
2850 
2851 	path->reada = 2;
2852 	/* clone data */
2853 	key.objectid = btrfs_ino(src);
2854 	key.type = BTRFS_EXTENT_DATA_KEY;
2855 	key.offset = 0;
2856 
2857 	while (1) {
2858 		/*
2859 		 * note the key will change type as we walk through the
2860 		 * tree.
2861 		 */
2862 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2863 				0, 0);
2864 		if (ret < 0)
2865 			goto out;
2866 
2867 		nritems = btrfs_header_nritems(path->nodes[0]);
2868 		if (path->slots[0] >= nritems) {
2869 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2870 			if (ret < 0)
2871 				goto out;
2872 			if (ret > 0)
2873 				break;
2874 			nritems = btrfs_header_nritems(path->nodes[0]);
2875 		}
2876 		leaf = path->nodes[0];
2877 		slot = path->slots[0];
2878 
2879 		btrfs_item_key_to_cpu(leaf, &key, slot);
2880 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2881 		    key.objectid != btrfs_ino(src))
2882 			break;
2883 
2884 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2885 			struct btrfs_file_extent_item *extent;
2886 			int type;
2887 			u32 size;
2888 			struct btrfs_key new_key;
2889 			u64 disko = 0, diskl = 0;
2890 			u64 datao = 0, datal = 0;
2891 			u8 comp;
2892 			u64 endoff;
2893 
2894 			size = btrfs_item_size_nr(leaf, slot);
2895 			read_extent_buffer(leaf, buf,
2896 					   btrfs_item_ptr_offset(leaf, slot),
2897 					   size);
2898 
2899 			extent = btrfs_item_ptr(leaf, slot,
2900 						struct btrfs_file_extent_item);
2901 			comp = btrfs_file_extent_compression(leaf, extent);
2902 			type = btrfs_file_extent_type(leaf, extent);
2903 			if (type == BTRFS_FILE_EXTENT_REG ||
2904 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2905 				disko = btrfs_file_extent_disk_bytenr(leaf,
2906 								      extent);
2907 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2908 								 extent);
2909 				datao = btrfs_file_extent_offset(leaf, extent);
2910 				datal = btrfs_file_extent_num_bytes(leaf,
2911 								    extent);
2912 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2913 				/* take upper bound, may be compressed */
2914 				datal = btrfs_file_extent_ram_bytes(leaf,
2915 								    extent);
2916 			}
2917 			btrfs_release_path(path);
2918 
2919 			if (key.offset + datal <= off ||
2920 			    key.offset >= off + len - 1)
2921 				goto next;
2922 
2923 			memcpy(&new_key, &key, sizeof(new_key));
2924 			new_key.objectid = btrfs_ino(inode);
2925 			if (off <= key.offset)
2926 				new_key.offset = key.offset + destoff - off;
2927 			else
2928 				new_key.offset = destoff;
2929 
2930 			/*
2931 			 * 1 - adjusting old extent (we may have to split it)
2932 			 * 1 - add new extent
2933 			 * 1 - inode update
2934 			 */
2935 			trans = btrfs_start_transaction(root, 3);
2936 			if (IS_ERR(trans)) {
2937 				ret = PTR_ERR(trans);
2938 				goto out;
2939 			}
2940 
2941 			if (type == BTRFS_FILE_EXTENT_REG ||
2942 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2943 				/*
2944 				 *    a  | --- range to clone ---|  b
2945 				 * | ------------- extent ------------- |
2946 				 */
2947 
2948 				/* substract range b */
2949 				if (key.offset + datal > off + len)
2950 					datal = off + len - key.offset;
2951 
2952 				/* substract range a */
2953 				if (off > key.offset) {
2954 					datao += off - key.offset;
2955 					datal -= off - key.offset;
2956 				}
2957 
2958 				ret = btrfs_drop_extents(trans, root, inode,
2959 							 new_key.offset,
2960 							 new_key.offset + datal,
2961 							 1);
2962 				if (ret) {
2963 					btrfs_abort_transaction(trans, root,
2964 								ret);
2965 					btrfs_end_transaction(trans, root);
2966 					goto out;
2967 				}
2968 
2969 				ret = btrfs_insert_empty_item(trans, root, path,
2970 							      &new_key, size);
2971 				if (ret) {
2972 					btrfs_abort_transaction(trans, root,
2973 								ret);
2974 					btrfs_end_transaction(trans, root);
2975 					goto out;
2976 				}
2977 
2978 				leaf = path->nodes[0];
2979 				slot = path->slots[0];
2980 				write_extent_buffer(leaf, buf,
2981 					    btrfs_item_ptr_offset(leaf, slot),
2982 					    size);
2983 
2984 				extent = btrfs_item_ptr(leaf, slot,
2985 						struct btrfs_file_extent_item);
2986 
2987 				/* disko == 0 means it's a hole */
2988 				if (!disko)
2989 					datao = 0;
2990 
2991 				btrfs_set_file_extent_offset(leaf, extent,
2992 							     datao);
2993 				btrfs_set_file_extent_num_bytes(leaf, extent,
2994 								datal);
2995 				if (disko) {
2996 					inode_add_bytes(inode, datal);
2997 					ret = btrfs_inc_extent_ref(trans, root,
2998 							disko, diskl, 0,
2999 							root->root_key.objectid,
3000 							btrfs_ino(inode),
3001 							new_key.offset - datao,
3002 							0);
3003 					if (ret) {
3004 						btrfs_abort_transaction(trans,
3005 									root,
3006 									ret);
3007 						btrfs_end_transaction(trans,
3008 								      root);
3009 						goto out;
3010 
3011 					}
3012 				}
3013 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3014 				u64 skip = 0;
3015 				u64 trim = 0;
3016 				if (off > key.offset) {
3017 					skip = off - key.offset;
3018 					new_key.offset += skip;
3019 				}
3020 
3021 				if (key.offset + datal > off + len)
3022 					trim = key.offset + datal - (off + len);
3023 
3024 				if (comp && (skip || trim)) {
3025 					ret = -EINVAL;
3026 					btrfs_end_transaction(trans, root);
3027 					goto out;
3028 				}
3029 				size -= skip + trim;
3030 				datal -= skip + trim;
3031 
3032 				ret = btrfs_drop_extents(trans, root, inode,
3033 							 new_key.offset,
3034 							 new_key.offset + datal,
3035 							 1);
3036 				if (ret) {
3037 					btrfs_abort_transaction(trans, root,
3038 								ret);
3039 					btrfs_end_transaction(trans, root);
3040 					goto out;
3041 				}
3042 
3043 				ret = btrfs_insert_empty_item(trans, root, path,
3044 							      &new_key, size);
3045 				if (ret) {
3046 					btrfs_abort_transaction(trans, root,
3047 								ret);
3048 					btrfs_end_transaction(trans, root);
3049 					goto out;
3050 				}
3051 
3052 				if (skip) {
3053 					u32 start =
3054 					  btrfs_file_extent_calc_inline_size(0);
3055 					memmove(buf+start, buf+start+skip,
3056 						datal);
3057 				}
3058 
3059 				leaf = path->nodes[0];
3060 				slot = path->slots[0];
3061 				write_extent_buffer(leaf, buf,
3062 					    btrfs_item_ptr_offset(leaf, slot),
3063 					    size);
3064 				inode_add_bytes(inode, datal);
3065 			}
3066 
3067 			btrfs_mark_buffer_dirty(leaf);
3068 			btrfs_release_path(path);
3069 
3070 			inode_inc_iversion(inode);
3071 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3072 
3073 			/*
3074 			 * we round up to the block size at eof when
3075 			 * determining which extents to clone above,
3076 			 * but shouldn't round up the file size
3077 			 */
3078 			endoff = new_key.offset + datal;
3079 			if (endoff > destoff+olen)
3080 				endoff = destoff+olen;
3081 			if (endoff > inode->i_size)
3082 				btrfs_i_size_write(inode, endoff);
3083 
3084 			ret = btrfs_update_inode(trans, root, inode);
3085 			if (ret) {
3086 				btrfs_abort_transaction(trans, root, ret);
3087 				btrfs_end_transaction(trans, root);
3088 				goto out;
3089 			}
3090 			ret = btrfs_end_transaction(trans, root);
3091 		}
3092 next:
3093 		btrfs_release_path(path);
3094 		key.offset++;
3095 	}
3096 	ret = 0;
3097 
3098 out:
3099 	btrfs_release_path(path);
3100 	btrfs_free_path(path);
3101 	vfree(buf);
3102 	return ret;
3103 }
3104 
3105 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3106 				       u64 off, u64 olen, u64 destoff)
3107 {
3108 	struct inode *inode = fdentry(file)->d_inode;
3109 	struct btrfs_root *root = BTRFS_I(inode)->root;
3110 	struct fd src_file;
3111 	struct inode *src;
3112 	int ret;
3113 	u64 len = olen;
3114 	u64 bs = root->fs_info->sb->s_blocksize;
3115 	int same_inode = 0;
3116 
3117 	/*
3118 	 * TODO:
3119 	 * - split compressed inline extents.  annoying: we need to
3120 	 *   decompress into destination's address_space (the file offset
3121 	 *   may change, so source mapping won't do), then recompress (or
3122 	 *   otherwise reinsert) a subrange.
3123 	 * - allow ranges within the same file to be cloned (provided
3124 	 *   they don't overlap)?
3125 	 */
3126 
3127 	/* the destination must be opened for writing */
3128 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3129 		return -EINVAL;
3130 
3131 	if (btrfs_root_readonly(root))
3132 		return -EROFS;
3133 
3134 	ret = mnt_want_write_file(file);
3135 	if (ret)
3136 		return ret;
3137 
3138 	src_file = fdget(srcfd);
3139 	if (!src_file.file) {
3140 		ret = -EBADF;
3141 		goto out_drop_write;
3142 	}
3143 
3144 	ret = -EXDEV;
3145 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3146 		goto out_fput;
3147 
3148 	src = file_inode(src_file.file);
3149 
3150 	ret = -EINVAL;
3151 	if (src == inode)
3152 		same_inode = 1;
3153 
3154 	/* the src must be open for reading */
3155 	if (!(src_file.file->f_mode & FMODE_READ))
3156 		goto out_fput;
3157 
3158 	/* don't make the dst file partly checksummed */
3159 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3160 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3161 		goto out_fput;
3162 
3163 	ret = -EISDIR;
3164 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3165 		goto out_fput;
3166 
3167 	ret = -EXDEV;
3168 	if (src->i_sb != inode->i_sb)
3169 		goto out_fput;
3170 
3171 	if (!same_inode) {
3172 		if (inode < src) {
3173 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3174 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3175 		} else {
3176 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3177 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3178 		}
3179 	} else {
3180 		mutex_lock(&src->i_mutex);
3181 	}
3182 
3183 	/* determine range to clone */
3184 	ret = -EINVAL;
3185 	if (off + len > src->i_size || off + len < off)
3186 		goto out_unlock;
3187 	if (len == 0)
3188 		olen = len = src->i_size - off;
3189 	/* if we extend to eof, continue to block boundary */
3190 	if (off + len == src->i_size)
3191 		len = ALIGN(src->i_size, bs) - off;
3192 
3193 	/* verify the end result is block aligned */
3194 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3195 	    !IS_ALIGNED(destoff, bs))
3196 		goto out_unlock;
3197 
3198 	/* verify if ranges are overlapped within the same file */
3199 	if (same_inode) {
3200 		if (destoff + len > off && destoff < off + len)
3201 			goto out_unlock;
3202 	}
3203 
3204 	if (destoff > inode->i_size) {
3205 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3206 		if (ret)
3207 			goto out_unlock;
3208 	}
3209 
3210 	/* truncate page cache pages from target inode range */
3211 	truncate_inode_pages_range(&inode->i_data, destoff,
3212 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3213 
3214 	lock_extent_range(src, off, len);
3215 
3216 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3217 
3218 	unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3219 out_unlock:
3220 	mutex_unlock(&src->i_mutex);
3221 	if (!same_inode)
3222 		mutex_unlock(&inode->i_mutex);
3223 out_fput:
3224 	fdput(src_file);
3225 out_drop_write:
3226 	mnt_drop_write_file(file);
3227 	return ret;
3228 }
3229 
3230 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3231 {
3232 	struct btrfs_ioctl_clone_range_args args;
3233 
3234 	if (copy_from_user(&args, argp, sizeof(args)))
3235 		return -EFAULT;
3236 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3237 				 args.src_length, args.dest_offset);
3238 }
3239 
3240 /*
3241  * there are many ways the trans_start and trans_end ioctls can lead
3242  * to deadlocks.  They should only be used by applications that
3243  * basically own the machine, and have a very in depth understanding
3244  * of all the possible deadlocks and enospc problems.
3245  */
3246 static long btrfs_ioctl_trans_start(struct file *file)
3247 {
3248 	struct inode *inode = file_inode(file);
3249 	struct btrfs_root *root = BTRFS_I(inode)->root;
3250 	struct btrfs_trans_handle *trans;
3251 	int ret;
3252 
3253 	ret = -EPERM;
3254 	if (!capable(CAP_SYS_ADMIN))
3255 		goto out;
3256 
3257 	ret = -EINPROGRESS;
3258 	if (file->private_data)
3259 		goto out;
3260 
3261 	ret = -EROFS;
3262 	if (btrfs_root_readonly(root))
3263 		goto out;
3264 
3265 	ret = mnt_want_write_file(file);
3266 	if (ret)
3267 		goto out;
3268 
3269 	atomic_inc(&root->fs_info->open_ioctl_trans);
3270 
3271 	ret = -ENOMEM;
3272 	trans = btrfs_start_ioctl_transaction(root);
3273 	if (IS_ERR(trans))
3274 		goto out_drop;
3275 
3276 	file->private_data = trans;
3277 	return 0;
3278 
3279 out_drop:
3280 	atomic_dec(&root->fs_info->open_ioctl_trans);
3281 	mnt_drop_write_file(file);
3282 out:
3283 	return ret;
3284 }
3285 
3286 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3287 {
3288 	struct inode *inode = file_inode(file);
3289 	struct btrfs_root *root = BTRFS_I(inode)->root;
3290 	struct btrfs_root *new_root;
3291 	struct btrfs_dir_item *di;
3292 	struct btrfs_trans_handle *trans;
3293 	struct btrfs_path *path;
3294 	struct btrfs_key location;
3295 	struct btrfs_disk_key disk_key;
3296 	u64 objectid = 0;
3297 	u64 dir_id;
3298 	int ret;
3299 
3300 	if (!capable(CAP_SYS_ADMIN))
3301 		return -EPERM;
3302 
3303 	ret = mnt_want_write_file(file);
3304 	if (ret)
3305 		return ret;
3306 
3307 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3308 		ret = -EFAULT;
3309 		goto out;
3310 	}
3311 
3312 	if (!objectid)
3313 		objectid = root->root_key.objectid;
3314 
3315 	location.objectid = objectid;
3316 	location.type = BTRFS_ROOT_ITEM_KEY;
3317 	location.offset = (u64)-1;
3318 
3319 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3320 	if (IS_ERR(new_root)) {
3321 		ret = PTR_ERR(new_root);
3322 		goto out;
3323 	}
3324 
3325 	path = btrfs_alloc_path();
3326 	if (!path) {
3327 		ret = -ENOMEM;
3328 		goto out;
3329 	}
3330 	path->leave_spinning = 1;
3331 
3332 	trans = btrfs_start_transaction(root, 1);
3333 	if (IS_ERR(trans)) {
3334 		btrfs_free_path(path);
3335 		ret = PTR_ERR(trans);
3336 		goto out;
3337 	}
3338 
3339 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3340 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3341 				   dir_id, "default", 7, 1);
3342 	if (IS_ERR_OR_NULL(di)) {
3343 		btrfs_free_path(path);
3344 		btrfs_end_transaction(trans, root);
3345 		printk(KERN_ERR "Umm, you don't have the default dir item, "
3346 		       "this isn't going to work\n");
3347 		ret = -ENOENT;
3348 		goto out;
3349 	}
3350 
3351 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3352 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3353 	btrfs_mark_buffer_dirty(path->nodes[0]);
3354 	btrfs_free_path(path);
3355 
3356 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3357 	btrfs_end_transaction(trans, root);
3358 out:
3359 	mnt_drop_write_file(file);
3360 	return ret;
3361 }
3362 
3363 void btrfs_get_block_group_info(struct list_head *groups_list,
3364 				struct btrfs_ioctl_space_info *space)
3365 {
3366 	struct btrfs_block_group_cache *block_group;
3367 
3368 	space->total_bytes = 0;
3369 	space->used_bytes = 0;
3370 	space->flags = 0;
3371 	list_for_each_entry(block_group, groups_list, list) {
3372 		space->flags = block_group->flags;
3373 		space->total_bytes += block_group->key.offset;
3374 		space->used_bytes +=
3375 			btrfs_block_group_used(&block_group->item);
3376 	}
3377 }
3378 
3379 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3380 {
3381 	struct btrfs_ioctl_space_args space_args;
3382 	struct btrfs_ioctl_space_info space;
3383 	struct btrfs_ioctl_space_info *dest;
3384 	struct btrfs_ioctl_space_info *dest_orig;
3385 	struct btrfs_ioctl_space_info __user *user_dest;
3386 	struct btrfs_space_info *info;
3387 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3388 		       BTRFS_BLOCK_GROUP_SYSTEM,
3389 		       BTRFS_BLOCK_GROUP_METADATA,
3390 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3391 	int num_types = 4;
3392 	int alloc_size;
3393 	int ret = 0;
3394 	u64 slot_count = 0;
3395 	int i, c;
3396 
3397 	if (copy_from_user(&space_args,
3398 			   (struct btrfs_ioctl_space_args __user *)arg,
3399 			   sizeof(space_args)))
3400 		return -EFAULT;
3401 
3402 	for (i = 0; i < num_types; i++) {
3403 		struct btrfs_space_info *tmp;
3404 
3405 		info = NULL;
3406 		rcu_read_lock();
3407 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3408 					list) {
3409 			if (tmp->flags == types[i]) {
3410 				info = tmp;
3411 				break;
3412 			}
3413 		}
3414 		rcu_read_unlock();
3415 
3416 		if (!info)
3417 			continue;
3418 
3419 		down_read(&info->groups_sem);
3420 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3421 			if (!list_empty(&info->block_groups[c]))
3422 				slot_count++;
3423 		}
3424 		up_read(&info->groups_sem);
3425 	}
3426 
3427 	/* space_slots == 0 means they are asking for a count */
3428 	if (space_args.space_slots == 0) {
3429 		space_args.total_spaces = slot_count;
3430 		goto out;
3431 	}
3432 
3433 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3434 
3435 	alloc_size = sizeof(*dest) * slot_count;
3436 
3437 	/* we generally have at most 6 or so space infos, one for each raid
3438 	 * level.  So, a whole page should be more than enough for everyone
3439 	 */
3440 	if (alloc_size > PAGE_CACHE_SIZE)
3441 		return -ENOMEM;
3442 
3443 	space_args.total_spaces = 0;
3444 	dest = kmalloc(alloc_size, GFP_NOFS);
3445 	if (!dest)
3446 		return -ENOMEM;
3447 	dest_orig = dest;
3448 
3449 	/* now we have a buffer to copy into */
3450 	for (i = 0; i < num_types; i++) {
3451 		struct btrfs_space_info *tmp;
3452 
3453 		if (!slot_count)
3454 			break;
3455 
3456 		info = NULL;
3457 		rcu_read_lock();
3458 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3459 					list) {
3460 			if (tmp->flags == types[i]) {
3461 				info = tmp;
3462 				break;
3463 			}
3464 		}
3465 		rcu_read_unlock();
3466 
3467 		if (!info)
3468 			continue;
3469 		down_read(&info->groups_sem);
3470 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3471 			if (!list_empty(&info->block_groups[c])) {
3472 				btrfs_get_block_group_info(
3473 					&info->block_groups[c], &space);
3474 				memcpy(dest, &space, sizeof(space));
3475 				dest++;
3476 				space_args.total_spaces++;
3477 				slot_count--;
3478 			}
3479 			if (!slot_count)
3480 				break;
3481 		}
3482 		up_read(&info->groups_sem);
3483 	}
3484 
3485 	user_dest = (struct btrfs_ioctl_space_info __user *)
3486 		(arg + sizeof(struct btrfs_ioctl_space_args));
3487 
3488 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3489 		ret = -EFAULT;
3490 
3491 	kfree(dest_orig);
3492 out:
3493 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3494 		ret = -EFAULT;
3495 
3496 	return ret;
3497 }
3498 
3499 /*
3500  * there are many ways the trans_start and trans_end ioctls can lead
3501  * to deadlocks.  They should only be used by applications that
3502  * basically own the machine, and have a very in depth understanding
3503  * of all the possible deadlocks and enospc problems.
3504  */
3505 long btrfs_ioctl_trans_end(struct file *file)
3506 {
3507 	struct inode *inode = file_inode(file);
3508 	struct btrfs_root *root = BTRFS_I(inode)->root;
3509 	struct btrfs_trans_handle *trans;
3510 
3511 	trans = file->private_data;
3512 	if (!trans)
3513 		return -EINVAL;
3514 	file->private_data = NULL;
3515 
3516 	btrfs_end_transaction(trans, root);
3517 
3518 	atomic_dec(&root->fs_info->open_ioctl_trans);
3519 
3520 	mnt_drop_write_file(file);
3521 	return 0;
3522 }
3523 
3524 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3525 					    void __user *argp)
3526 {
3527 	struct btrfs_trans_handle *trans;
3528 	u64 transid;
3529 	int ret;
3530 
3531 	trans = btrfs_attach_transaction_barrier(root);
3532 	if (IS_ERR(trans)) {
3533 		if (PTR_ERR(trans) != -ENOENT)
3534 			return PTR_ERR(trans);
3535 
3536 		/* No running transaction, don't bother */
3537 		transid = root->fs_info->last_trans_committed;
3538 		goto out;
3539 	}
3540 	transid = trans->transid;
3541 	ret = btrfs_commit_transaction_async(trans, root, 0);
3542 	if (ret) {
3543 		btrfs_end_transaction(trans, root);
3544 		return ret;
3545 	}
3546 out:
3547 	if (argp)
3548 		if (copy_to_user(argp, &transid, sizeof(transid)))
3549 			return -EFAULT;
3550 	return 0;
3551 }
3552 
3553 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3554 					   void __user *argp)
3555 {
3556 	u64 transid;
3557 
3558 	if (argp) {
3559 		if (copy_from_user(&transid, argp, sizeof(transid)))
3560 			return -EFAULT;
3561 	} else {
3562 		transid = 0;  /* current trans */
3563 	}
3564 	return btrfs_wait_for_commit(root, transid);
3565 }
3566 
3567 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3568 {
3569 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3570 	struct btrfs_ioctl_scrub_args *sa;
3571 	int ret;
3572 
3573 	if (!capable(CAP_SYS_ADMIN))
3574 		return -EPERM;
3575 
3576 	sa = memdup_user(arg, sizeof(*sa));
3577 	if (IS_ERR(sa))
3578 		return PTR_ERR(sa);
3579 
3580 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3581 		ret = mnt_want_write_file(file);
3582 		if (ret)
3583 			goto out;
3584 	}
3585 
3586 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3587 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3588 			      0);
3589 
3590 	if (copy_to_user(arg, sa, sizeof(*sa)))
3591 		ret = -EFAULT;
3592 
3593 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3594 		mnt_drop_write_file(file);
3595 out:
3596 	kfree(sa);
3597 	return ret;
3598 }
3599 
3600 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3601 {
3602 	if (!capable(CAP_SYS_ADMIN))
3603 		return -EPERM;
3604 
3605 	return btrfs_scrub_cancel(root->fs_info);
3606 }
3607 
3608 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3609 				       void __user *arg)
3610 {
3611 	struct btrfs_ioctl_scrub_args *sa;
3612 	int ret;
3613 
3614 	if (!capable(CAP_SYS_ADMIN))
3615 		return -EPERM;
3616 
3617 	sa = memdup_user(arg, sizeof(*sa));
3618 	if (IS_ERR(sa))
3619 		return PTR_ERR(sa);
3620 
3621 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3622 
3623 	if (copy_to_user(arg, sa, sizeof(*sa)))
3624 		ret = -EFAULT;
3625 
3626 	kfree(sa);
3627 	return ret;
3628 }
3629 
3630 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3631 				      void __user *arg)
3632 {
3633 	struct btrfs_ioctl_get_dev_stats *sa;
3634 	int ret;
3635 
3636 	sa = memdup_user(arg, sizeof(*sa));
3637 	if (IS_ERR(sa))
3638 		return PTR_ERR(sa);
3639 
3640 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3641 		kfree(sa);
3642 		return -EPERM;
3643 	}
3644 
3645 	ret = btrfs_get_dev_stats(root, sa);
3646 
3647 	if (copy_to_user(arg, sa, sizeof(*sa)))
3648 		ret = -EFAULT;
3649 
3650 	kfree(sa);
3651 	return ret;
3652 }
3653 
3654 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3655 {
3656 	struct btrfs_ioctl_dev_replace_args *p;
3657 	int ret;
3658 
3659 	if (!capable(CAP_SYS_ADMIN))
3660 		return -EPERM;
3661 
3662 	p = memdup_user(arg, sizeof(*p));
3663 	if (IS_ERR(p))
3664 		return PTR_ERR(p);
3665 
3666 	switch (p->cmd) {
3667 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3668 		if (root->fs_info->sb->s_flags & MS_RDONLY)
3669 			return -EROFS;
3670 
3671 		if (atomic_xchg(
3672 			&root->fs_info->mutually_exclusive_operation_running,
3673 			1)) {
3674 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3675 		} else {
3676 			ret = btrfs_dev_replace_start(root, p);
3677 			atomic_set(
3678 			 &root->fs_info->mutually_exclusive_operation_running,
3679 			 0);
3680 		}
3681 		break;
3682 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3683 		btrfs_dev_replace_status(root->fs_info, p);
3684 		ret = 0;
3685 		break;
3686 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3687 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
3688 		break;
3689 	default:
3690 		ret = -EINVAL;
3691 		break;
3692 	}
3693 
3694 	if (copy_to_user(arg, p, sizeof(*p)))
3695 		ret = -EFAULT;
3696 
3697 	kfree(p);
3698 	return ret;
3699 }
3700 
3701 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3702 {
3703 	int ret = 0;
3704 	int i;
3705 	u64 rel_ptr;
3706 	int size;
3707 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3708 	struct inode_fs_paths *ipath = NULL;
3709 	struct btrfs_path *path;
3710 
3711 	if (!capable(CAP_DAC_READ_SEARCH))
3712 		return -EPERM;
3713 
3714 	path = btrfs_alloc_path();
3715 	if (!path) {
3716 		ret = -ENOMEM;
3717 		goto out;
3718 	}
3719 
3720 	ipa = memdup_user(arg, sizeof(*ipa));
3721 	if (IS_ERR(ipa)) {
3722 		ret = PTR_ERR(ipa);
3723 		ipa = NULL;
3724 		goto out;
3725 	}
3726 
3727 	size = min_t(u32, ipa->size, 4096);
3728 	ipath = init_ipath(size, root, path);
3729 	if (IS_ERR(ipath)) {
3730 		ret = PTR_ERR(ipath);
3731 		ipath = NULL;
3732 		goto out;
3733 	}
3734 
3735 	ret = paths_from_inode(ipa->inum, ipath);
3736 	if (ret < 0)
3737 		goto out;
3738 
3739 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3740 		rel_ptr = ipath->fspath->val[i] -
3741 			  (u64)(unsigned long)ipath->fspath->val;
3742 		ipath->fspath->val[i] = rel_ptr;
3743 	}
3744 
3745 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3746 			   (void *)(unsigned long)ipath->fspath, size);
3747 	if (ret) {
3748 		ret = -EFAULT;
3749 		goto out;
3750 	}
3751 
3752 out:
3753 	btrfs_free_path(path);
3754 	free_ipath(ipath);
3755 	kfree(ipa);
3756 
3757 	return ret;
3758 }
3759 
3760 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3761 {
3762 	struct btrfs_data_container *inodes = ctx;
3763 	const size_t c = 3 * sizeof(u64);
3764 
3765 	if (inodes->bytes_left >= c) {
3766 		inodes->bytes_left -= c;
3767 		inodes->val[inodes->elem_cnt] = inum;
3768 		inodes->val[inodes->elem_cnt + 1] = offset;
3769 		inodes->val[inodes->elem_cnt + 2] = root;
3770 		inodes->elem_cnt += 3;
3771 	} else {
3772 		inodes->bytes_missing += c - inodes->bytes_left;
3773 		inodes->bytes_left = 0;
3774 		inodes->elem_missed += 3;
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3781 					void __user *arg)
3782 {
3783 	int ret = 0;
3784 	int size;
3785 	struct btrfs_ioctl_logical_ino_args *loi;
3786 	struct btrfs_data_container *inodes = NULL;
3787 	struct btrfs_path *path = NULL;
3788 
3789 	if (!capable(CAP_SYS_ADMIN))
3790 		return -EPERM;
3791 
3792 	loi = memdup_user(arg, sizeof(*loi));
3793 	if (IS_ERR(loi)) {
3794 		ret = PTR_ERR(loi);
3795 		loi = NULL;
3796 		goto out;
3797 	}
3798 
3799 	path = btrfs_alloc_path();
3800 	if (!path) {
3801 		ret = -ENOMEM;
3802 		goto out;
3803 	}
3804 
3805 	size = min_t(u32, loi->size, 64 * 1024);
3806 	inodes = init_data_container(size);
3807 	if (IS_ERR(inodes)) {
3808 		ret = PTR_ERR(inodes);
3809 		inodes = NULL;
3810 		goto out;
3811 	}
3812 
3813 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3814 					  build_ino_list, inodes);
3815 	if (ret == -EINVAL)
3816 		ret = -ENOENT;
3817 	if (ret < 0)
3818 		goto out;
3819 
3820 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3821 			   (void *)(unsigned long)inodes, size);
3822 	if (ret)
3823 		ret = -EFAULT;
3824 
3825 out:
3826 	btrfs_free_path(path);
3827 	vfree(inodes);
3828 	kfree(loi);
3829 
3830 	return ret;
3831 }
3832 
3833 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3834 			       struct btrfs_ioctl_balance_args *bargs)
3835 {
3836 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3837 
3838 	bargs->flags = bctl->flags;
3839 
3840 	if (atomic_read(&fs_info->balance_running))
3841 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3842 	if (atomic_read(&fs_info->balance_pause_req))
3843 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3844 	if (atomic_read(&fs_info->balance_cancel_req))
3845 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3846 
3847 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3848 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3849 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3850 
3851 	if (lock) {
3852 		spin_lock(&fs_info->balance_lock);
3853 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3854 		spin_unlock(&fs_info->balance_lock);
3855 	} else {
3856 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3857 	}
3858 }
3859 
3860 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3861 {
3862 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3863 	struct btrfs_fs_info *fs_info = root->fs_info;
3864 	struct btrfs_ioctl_balance_args *bargs;
3865 	struct btrfs_balance_control *bctl;
3866 	bool need_unlock; /* for mut. excl. ops lock */
3867 	int ret;
3868 
3869 	if (!capable(CAP_SYS_ADMIN))
3870 		return -EPERM;
3871 
3872 	ret = mnt_want_write_file(file);
3873 	if (ret)
3874 		return ret;
3875 
3876 again:
3877 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3878 		mutex_lock(&fs_info->volume_mutex);
3879 		mutex_lock(&fs_info->balance_mutex);
3880 		need_unlock = true;
3881 		goto locked;
3882 	}
3883 
3884 	/*
3885 	 * mut. excl. ops lock is locked.  Three possibilites:
3886 	 *   (1) some other op is running
3887 	 *   (2) balance is running
3888 	 *   (3) balance is paused -- special case (think resume)
3889 	 */
3890 	mutex_lock(&fs_info->balance_mutex);
3891 	if (fs_info->balance_ctl) {
3892 		/* this is either (2) or (3) */
3893 		if (!atomic_read(&fs_info->balance_running)) {
3894 			mutex_unlock(&fs_info->balance_mutex);
3895 			if (!mutex_trylock(&fs_info->volume_mutex))
3896 				goto again;
3897 			mutex_lock(&fs_info->balance_mutex);
3898 
3899 			if (fs_info->balance_ctl &&
3900 			    !atomic_read(&fs_info->balance_running)) {
3901 				/* this is (3) */
3902 				need_unlock = false;
3903 				goto locked;
3904 			}
3905 
3906 			mutex_unlock(&fs_info->balance_mutex);
3907 			mutex_unlock(&fs_info->volume_mutex);
3908 			goto again;
3909 		} else {
3910 			/* this is (2) */
3911 			mutex_unlock(&fs_info->balance_mutex);
3912 			ret = -EINPROGRESS;
3913 			goto out;
3914 		}
3915 	} else {
3916 		/* this is (1) */
3917 		mutex_unlock(&fs_info->balance_mutex);
3918 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3919 		goto out;
3920 	}
3921 
3922 locked:
3923 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3924 
3925 	if (arg) {
3926 		bargs = memdup_user(arg, sizeof(*bargs));
3927 		if (IS_ERR(bargs)) {
3928 			ret = PTR_ERR(bargs);
3929 			goto out_unlock;
3930 		}
3931 
3932 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
3933 			if (!fs_info->balance_ctl) {
3934 				ret = -ENOTCONN;
3935 				goto out_bargs;
3936 			}
3937 
3938 			bctl = fs_info->balance_ctl;
3939 			spin_lock(&fs_info->balance_lock);
3940 			bctl->flags |= BTRFS_BALANCE_RESUME;
3941 			spin_unlock(&fs_info->balance_lock);
3942 
3943 			goto do_balance;
3944 		}
3945 	} else {
3946 		bargs = NULL;
3947 	}
3948 
3949 	if (fs_info->balance_ctl) {
3950 		ret = -EINPROGRESS;
3951 		goto out_bargs;
3952 	}
3953 
3954 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3955 	if (!bctl) {
3956 		ret = -ENOMEM;
3957 		goto out_bargs;
3958 	}
3959 
3960 	bctl->fs_info = fs_info;
3961 	if (arg) {
3962 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3963 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3964 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3965 
3966 		bctl->flags = bargs->flags;
3967 	} else {
3968 		/* balance everything - no filters */
3969 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3970 	}
3971 
3972 do_balance:
3973 	/*
3974 	 * Ownership of bctl and mutually_exclusive_operation_running
3975 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
3976 	 * or, if restriper was paused all the way until unmount, in
3977 	 * free_fs_info.  mutually_exclusive_operation_running is
3978 	 * cleared in __cancel_balance.
3979 	 */
3980 	need_unlock = false;
3981 
3982 	ret = btrfs_balance(bctl, bargs);
3983 
3984 	if (arg) {
3985 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3986 			ret = -EFAULT;
3987 	}
3988 
3989 out_bargs:
3990 	kfree(bargs);
3991 out_unlock:
3992 	mutex_unlock(&fs_info->balance_mutex);
3993 	mutex_unlock(&fs_info->volume_mutex);
3994 	if (need_unlock)
3995 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3996 out:
3997 	mnt_drop_write_file(file);
3998 	return ret;
3999 }
4000 
4001 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4002 {
4003 	if (!capable(CAP_SYS_ADMIN))
4004 		return -EPERM;
4005 
4006 	switch (cmd) {
4007 	case BTRFS_BALANCE_CTL_PAUSE:
4008 		return btrfs_pause_balance(root->fs_info);
4009 	case BTRFS_BALANCE_CTL_CANCEL:
4010 		return btrfs_cancel_balance(root->fs_info);
4011 	}
4012 
4013 	return -EINVAL;
4014 }
4015 
4016 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4017 					 void __user *arg)
4018 {
4019 	struct btrfs_fs_info *fs_info = root->fs_info;
4020 	struct btrfs_ioctl_balance_args *bargs;
4021 	int ret = 0;
4022 
4023 	if (!capable(CAP_SYS_ADMIN))
4024 		return -EPERM;
4025 
4026 	mutex_lock(&fs_info->balance_mutex);
4027 	if (!fs_info->balance_ctl) {
4028 		ret = -ENOTCONN;
4029 		goto out;
4030 	}
4031 
4032 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4033 	if (!bargs) {
4034 		ret = -ENOMEM;
4035 		goto out;
4036 	}
4037 
4038 	update_ioctl_balance_args(fs_info, 1, bargs);
4039 
4040 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4041 		ret = -EFAULT;
4042 
4043 	kfree(bargs);
4044 out:
4045 	mutex_unlock(&fs_info->balance_mutex);
4046 	return ret;
4047 }
4048 
4049 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4050 {
4051 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4052 	struct btrfs_ioctl_quota_ctl_args *sa;
4053 	struct btrfs_trans_handle *trans = NULL;
4054 	int ret;
4055 	int err;
4056 
4057 	if (!capable(CAP_SYS_ADMIN))
4058 		return -EPERM;
4059 
4060 	ret = mnt_want_write_file(file);
4061 	if (ret)
4062 		return ret;
4063 
4064 	sa = memdup_user(arg, sizeof(*sa));
4065 	if (IS_ERR(sa)) {
4066 		ret = PTR_ERR(sa);
4067 		goto drop_write;
4068 	}
4069 
4070 	down_write(&root->fs_info->subvol_sem);
4071 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4072 	if (IS_ERR(trans)) {
4073 		ret = PTR_ERR(trans);
4074 		goto out;
4075 	}
4076 
4077 	switch (sa->cmd) {
4078 	case BTRFS_QUOTA_CTL_ENABLE:
4079 		ret = btrfs_quota_enable(trans, root->fs_info);
4080 		break;
4081 	case BTRFS_QUOTA_CTL_DISABLE:
4082 		ret = btrfs_quota_disable(trans, root->fs_info);
4083 		break;
4084 	default:
4085 		ret = -EINVAL;
4086 		break;
4087 	}
4088 
4089 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4090 	if (err && !ret)
4091 		ret = err;
4092 out:
4093 	kfree(sa);
4094 	up_write(&root->fs_info->subvol_sem);
4095 drop_write:
4096 	mnt_drop_write_file(file);
4097 	return ret;
4098 }
4099 
4100 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4101 {
4102 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4103 	struct btrfs_ioctl_qgroup_assign_args *sa;
4104 	struct btrfs_trans_handle *trans;
4105 	int ret;
4106 	int err;
4107 
4108 	if (!capable(CAP_SYS_ADMIN))
4109 		return -EPERM;
4110 
4111 	ret = mnt_want_write_file(file);
4112 	if (ret)
4113 		return ret;
4114 
4115 	sa = memdup_user(arg, sizeof(*sa));
4116 	if (IS_ERR(sa)) {
4117 		ret = PTR_ERR(sa);
4118 		goto drop_write;
4119 	}
4120 
4121 	trans = btrfs_join_transaction(root);
4122 	if (IS_ERR(trans)) {
4123 		ret = PTR_ERR(trans);
4124 		goto out;
4125 	}
4126 
4127 	/* FIXME: check if the IDs really exist */
4128 	if (sa->assign) {
4129 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4130 						sa->src, sa->dst);
4131 	} else {
4132 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4133 						sa->src, sa->dst);
4134 	}
4135 
4136 	err = btrfs_end_transaction(trans, root);
4137 	if (err && !ret)
4138 		ret = err;
4139 
4140 out:
4141 	kfree(sa);
4142 drop_write:
4143 	mnt_drop_write_file(file);
4144 	return ret;
4145 }
4146 
4147 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4148 {
4149 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4150 	struct btrfs_ioctl_qgroup_create_args *sa;
4151 	struct btrfs_trans_handle *trans;
4152 	int ret;
4153 	int err;
4154 
4155 	if (!capable(CAP_SYS_ADMIN))
4156 		return -EPERM;
4157 
4158 	ret = mnt_want_write_file(file);
4159 	if (ret)
4160 		return ret;
4161 
4162 	sa = memdup_user(arg, sizeof(*sa));
4163 	if (IS_ERR(sa)) {
4164 		ret = PTR_ERR(sa);
4165 		goto drop_write;
4166 	}
4167 
4168 	if (!sa->qgroupid) {
4169 		ret = -EINVAL;
4170 		goto out;
4171 	}
4172 
4173 	trans = btrfs_join_transaction(root);
4174 	if (IS_ERR(trans)) {
4175 		ret = PTR_ERR(trans);
4176 		goto out;
4177 	}
4178 
4179 	/* FIXME: check if the IDs really exist */
4180 	if (sa->create) {
4181 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4182 					  NULL);
4183 	} else {
4184 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4185 	}
4186 
4187 	err = btrfs_end_transaction(trans, root);
4188 	if (err && !ret)
4189 		ret = err;
4190 
4191 out:
4192 	kfree(sa);
4193 drop_write:
4194 	mnt_drop_write_file(file);
4195 	return ret;
4196 }
4197 
4198 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4199 {
4200 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4201 	struct btrfs_ioctl_qgroup_limit_args *sa;
4202 	struct btrfs_trans_handle *trans;
4203 	int ret;
4204 	int err;
4205 	u64 qgroupid;
4206 
4207 	if (!capable(CAP_SYS_ADMIN))
4208 		return -EPERM;
4209 
4210 	ret = mnt_want_write_file(file);
4211 	if (ret)
4212 		return ret;
4213 
4214 	sa = memdup_user(arg, sizeof(*sa));
4215 	if (IS_ERR(sa)) {
4216 		ret = PTR_ERR(sa);
4217 		goto drop_write;
4218 	}
4219 
4220 	trans = btrfs_join_transaction(root);
4221 	if (IS_ERR(trans)) {
4222 		ret = PTR_ERR(trans);
4223 		goto out;
4224 	}
4225 
4226 	qgroupid = sa->qgroupid;
4227 	if (!qgroupid) {
4228 		/* take the current subvol as qgroup */
4229 		qgroupid = root->root_key.objectid;
4230 	}
4231 
4232 	/* FIXME: check if the IDs really exist */
4233 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4234 
4235 	err = btrfs_end_transaction(trans, root);
4236 	if (err && !ret)
4237 		ret = err;
4238 
4239 out:
4240 	kfree(sa);
4241 drop_write:
4242 	mnt_drop_write_file(file);
4243 	return ret;
4244 }
4245 
4246 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4247 {
4248 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4249 	struct btrfs_ioctl_quota_rescan_args *qsa;
4250 	int ret;
4251 
4252 	if (!capable(CAP_SYS_ADMIN))
4253 		return -EPERM;
4254 
4255 	ret = mnt_want_write_file(file);
4256 	if (ret)
4257 		return ret;
4258 
4259 	qsa = memdup_user(arg, sizeof(*qsa));
4260 	if (IS_ERR(qsa)) {
4261 		ret = PTR_ERR(qsa);
4262 		goto drop_write;
4263 	}
4264 
4265 	if (qsa->flags) {
4266 		ret = -EINVAL;
4267 		goto out;
4268 	}
4269 
4270 	ret = btrfs_qgroup_rescan(root->fs_info);
4271 
4272 out:
4273 	kfree(qsa);
4274 drop_write:
4275 	mnt_drop_write_file(file);
4276 	return ret;
4277 }
4278 
4279 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4280 {
4281 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4282 	struct btrfs_ioctl_quota_rescan_args *qsa;
4283 	int ret = 0;
4284 
4285 	if (!capable(CAP_SYS_ADMIN))
4286 		return -EPERM;
4287 
4288 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4289 	if (!qsa)
4290 		return -ENOMEM;
4291 
4292 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4293 		qsa->flags = 1;
4294 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4295 	}
4296 
4297 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4298 		ret = -EFAULT;
4299 
4300 	kfree(qsa);
4301 	return ret;
4302 }
4303 
4304 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4305 {
4306 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
4307 
4308 	if (!capable(CAP_SYS_ADMIN))
4309 		return -EPERM;
4310 
4311 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4312 }
4313 
4314 static long btrfs_ioctl_set_received_subvol(struct file *file,
4315 					    void __user *arg)
4316 {
4317 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4318 	struct inode *inode = file_inode(file);
4319 	struct btrfs_root *root = BTRFS_I(inode)->root;
4320 	struct btrfs_root_item *root_item = &root->root_item;
4321 	struct btrfs_trans_handle *trans;
4322 	struct timespec ct = CURRENT_TIME;
4323 	int ret = 0;
4324 	int received_uuid_changed;
4325 
4326 	ret = mnt_want_write_file(file);
4327 	if (ret < 0)
4328 		return ret;
4329 
4330 	down_write(&root->fs_info->subvol_sem);
4331 
4332 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4333 		ret = -EINVAL;
4334 		goto out;
4335 	}
4336 
4337 	if (btrfs_root_readonly(root)) {
4338 		ret = -EROFS;
4339 		goto out;
4340 	}
4341 
4342 	if (!inode_owner_or_capable(inode)) {
4343 		ret = -EACCES;
4344 		goto out;
4345 	}
4346 
4347 	sa = memdup_user(arg, sizeof(*sa));
4348 	if (IS_ERR(sa)) {
4349 		ret = PTR_ERR(sa);
4350 		sa = NULL;
4351 		goto out;
4352 	}
4353 
4354 	/*
4355 	 * 1 - root item
4356 	 * 2 - uuid items (received uuid + subvol uuid)
4357 	 */
4358 	trans = btrfs_start_transaction(root, 3);
4359 	if (IS_ERR(trans)) {
4360 		ret = PTR_ERR(trans);
4361 		trans = NULL;
4362 		goto out;
4363 	}
4364 
4365 	sa->rtransid = trans->transid;
4366 	sa->rtime.sec = ct.tv_sec;
4367 	sa->rtime.nsec = ct.tv_nsec;
4368 
4369 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4370 				       BTRFS_UUID_SIZE);
4371 	if (received_uuid_changed &&
4372 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4373 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4374 				    root_item->received_uuid,
4375 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4376 				    root->root_key.objectid);
4377 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4378 	btrfs_set_root_stransid(root_item, sa->stransid);
4379 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4380 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4381 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4382 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4383 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4384 
4385 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4386 				&root->root_key, &root->root_item);
4387 	if (ret < 0) {
4388 		btrfs_end_transaction(trans, root);
4389 		goto out;
4390 	}
4391 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4392 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4393 					  sa->uuid,
4394 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4395 					  root->root_key.objectid);
4396 		if (ret < 0 && ret != -EEXIST) {
4397 			btrfs_abort_transaction(trans, root, ret);
4398 			goto out;
4399 		}
4400 	}
4401 	ret = btrfs_commit_transaction(trans, root);
4402 	if (ret < 0) {
4403 		btrfs_abort_transaction(trans, root, ret);
4404 		goto out;
4405 	}
4406 
4407 	ret = copy_to_user(arg, sa, sizeof(*sa));
4408 	if (ret)
4409 		ret = -EFAULT;
4410 
4411 out:
4412 	kfree(sa);
4413 	up_write(&root->fs_info->subvol_sem);
4414 	mnt_drop_write_file(file);
4415 	return ret;
4416 }
4417 
4418 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4419 {
4420 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4421 	size_t len;
4422 	int ret;
4423 	char label[BTRFS_LABEL_SIZE];
4424 
4425 	spin_lock(&root->fs_info->super_lock);
4426 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4427 	spin_unlock(&root->fs_info->super_lock);
4428 
4429 	len = strnlen(label, BTRFS_LABEL_SIZE);
4430 
4431 	if (len == BTRFS_LABEL_SIZE) {
4432 		pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4433 			--len);
4434 	}
4435 
4436 	ret = copy_to_user(arg, label, len);
4437 
4438 	return ret ? -EFAULT : 0;
4439 }
4440 
4441 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4442 {
4443 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4444 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4445 	struct btrfs_trans_handle *trans;
4446 	char label[BTRFS_LABEL_SIZE];
4447 	int ret;
4448 
4449 	if (!capable(CAP_SYS_ADMIN))
4450 		return -EPERM;
4451 
4452 	if (copy_from_user(label, arg, sizeof(label)))
4453 		return -EFAULT;
4454 
4455 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4456 		pr_err("btrfs: unable to set label with more than %d bytes\n",
4457 		       BTRFS_LABEL_SIZE - 1);
4458 		return -EINVAL;
4459 	}
4460 
4461 	ret = mnt_want_write_file(file);
4462 	if (ret)
4463 		return ret;
4464 
4465 	trans = btrfs_start_transaction(root, 0);
4466 	if (IS_ERR(trans)) {
4467 		ret = PTR_ERR(trans);
4468 		goto out_unlock;
4469 	}
4470 
4471 	spin_lock(&root->fs_info->super_lock);
4472 	strcpy(super_block->label, label);
4473 	spin_unlock(&root->fs_info->super_lock);
4474 	ret = btrfs_end_transaction(trans, root);
4475 
4476 out_unlock:
4477 	mnt_drop_write_file(file);
4478 	return ret;
4479 }
4480 
4481 long btrfs_ioctl(struct file *file, unsigned int
4482 		cmd, unsigned long arg)
4483 {
4484 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4485 	void __user *argp = (void __user *)arg;
4486 
4487 	switch (cmd) {
4488 	case FS_IOC_GETFLAGS:
4489 		return btrfs_ioctl_getflags(file, argp);
4490 	case FS_IOC_SETFLAGS:
4491 		return btrfs_ioctl_setflags(file, argp);
4492 	case FS_IOC_GETVERSION:
4493 		return btrfs_ioctl_getversion(file, argp);
4494 	case FITRIM:
4495 		return btrfs_ioctl_fitrim(file, argp);
4496 	case BTRFS_IOC_SNAP_CREATE:
4497 		return btrfs_ioctl_snap_create(file, argp, 0);
4498 	case BTRFS_IOC_SNAP_CREATE_V2:
4499 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4500 	case BTRFS_IOC_SUBVOL_CREATE:
4501 		return btrfs_ioctl_snap_create(file, argp, 1);
4502 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4503 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4504 	case BTRFS_IOC_SNAP_DESTROY:
4505 		return btrfs_ioctl_snap_destroy(file, argp);
4506 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4507 		return btrfs_ioctl_subvol_getflags(file, argp);
4508 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4509 		return btrfs_ioctl_subvol_setflags(file, argp);
4510 	case BTRFS_IOC_DEFAULT_SUBVOL:
4511 		return btrfs_ioctl_default_subvol(file, argp);
4512 	case BTRFS_IOC_DEFRAG:
4513 		return btrfs_ioctl_defrag(file, NULL);
4514 	case BTRFS_IOC_DEFRAG_RANGE:
4515 		return btrfs_ioctl_defrag(file, argp);
4516 	case BTRFS_IOC_RESIZE:
4517 		return btrfs_ioctl_resize(file, argp);
4518 	case BTRFS_IOC_ADD_DEV:
4519 		return btrfs_ioctl_add_dev(root, argp);
4520 	case BTRFS_IOC_RM_DEV:
4521 		return btrfs_ioctl_rm_dev(file, argp);
4522 	case BTRFS_IOC_FS_INFO:
4523 		return btrfs_ioctl_fs_info(root, argp);
4524 	case BTRFS_IOC_DEV_INFO:
4525 		return btrfs_ioctl_dev_info(root, argp);
4526 	case BTRFS_IOC_BALANCE:
4527 		return btrfs_ioctl_balance(file, NULL);
4528 	case BTRFS_IOC_CLONE:
4529 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4530 	case BTRFS_IOC_CLONE_RANGE:
4531 		return btrfs_ioctl_clone_range(file, argp);
4532 	case BTRFS_IOC_TRANS_START:
4533 		return btrfs_ioctl_trans_start(file);
4534 	case BTRFS_IOC_TRANS_END:
4535 		return btrfs_ioctl_trans_end(file);
4536 	case BTRFS_IOC_TREE_SEARCH:
4537 		return btrfs_ioctl_tree_search(file, argp);
4538 	case BTRFS_IOC_INO_LOOKUP:
4539 		return btrfs_ioctl_ino_lookup(file, argp);
4540 	case BTRFS_IOC_INO_PATHS:
4541 		return btrfs_ioctl_ino_to_path(root, argp);
4542 	case BTRFS_IOC_LOGICAL_INO:
4543 		return btrfs_ioctl_logical_to_ino(root, argp);
4544 	case BTRFS_IOC_SPACE_INFO:
4545 		return btrfs_ioctl_space_info(root, argp);
4546 	case BTRFS_IOC_SYNC:
4547 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
4548 		return 0;
4549 	case BTRFS_IOC_START_SYNC:
4550 		return btrfs_ioctl_start_sync(root, argp);
4551 	case BTRFS_IOC_WAIT_SYNC:
4552 		return btrfs_ioctl_wait_sync(root, argp);
4553 	case BTRFS_IOC_SCRUB:
4554 		return btrfs_ioctl_scrub(file, argp);
4555 	case BTRFS_IOC_SCRUB_CANCEL:
4556 		return btrfs_ioctl_scrub_cancel(root, argp);
4557 	case BTRFS_IOC_SCRUB_PROGRESS:
4558 		return btrfs_ioctl_scrub_progress(root, argp);
4559 	case BTRFS_IOC_BALANCE_V2:
4560 		return btrfs_ioctl_balance(file, argp);
4561 	case BTRFS_IOC_BALANCE_CTL:
4562 		return btrfs_ioctl_balance_ctl(root, arg);
4563 	case BTRFS_IOC_BALANCE_PROGRESS:
4564 		return btrfs_ioctl_balance_progress(root, argp);
4565 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4566 		return btrfs_ioctl_set_received_subvol(file, argp);
4567 	case BTRFS_IOC_SEND:
4568 		return btrfs_ioctl_send(file, argp);
4569 	case BTRFS_IOC_GET_DEV_STATS:
4570 		return btrfs_ioctl_get_dev_stats(root, argp);
4571 	case BTRFS_IOC_QUOTA_CTL:
4572 		return btrfs_ioctl_quota_ctl(file, argp);
4573 	case BTRFS_IOC_QGROUP_ASSIGN:
4574 		return btrfs_ioctl_qgroup_assign(file, argp);
4575 	case BTRFS_IOC_QGROUP_CREATE:
4576 		return btrfs_ioctl_qgroup_create(file, argp);
4577 	case BTRFS_IOC_QGROUP_LIMIT:
4578 		return btrfs_ioctl_qgroup_limit(file, argp);
4579 	case BTRFS_IOC_QUOTA_RESCAN:
4580 		return btrfs_ioctl_quota_rescan(file, argp);
4581 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4582 		return btrfs_ioctl_quota_rescan_status(file, argp);
4583 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4584 		return btrfs_ioctl_quota_rescan_wait(file, argp);
4585 	case BTRFS_IOC_DEV_REPLACE:
4586 		return btrfs_ioctl_dev_replace(root, argp);
4587 	case BTRFS_IOC_GET_FSLABEL:
4588 		return btrfs_ioctl_get_fslabel(file, argp);
4589 	case BTRFS_IOC_SET_FSLABEL:
4590 		return btrfs_ioctl_set_fslabel(file, argp);
4591 	case BTRFS_IOC_FILE_EXTENT_SAME:
4592 		return btrfs_ioctl_file_extent_same(file, argp);
4593 	}
4594 
4595 	return -ENOTTY;
4596 }
4597