xref: /linux/fs/btrfs/ioctl.c (revision 9e9f60108423f18a99c9cc93ef7f23490ecc709b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Inherit flags from the parent inode.
159  *
160  * Currently only the compression flags and the cow flags are inherited.
161  */
162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 	unsigned int flags;
165 
166 	if (!dir)
167 		return;
168 
169 	flags = BTRFS_I(dir)->flags;
170 
171 	if (flags & BTRFS_INODE_NOCOMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 	} else if (flags & BTRFS_INODE_COMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 	}
178 
179 	if (flags & BTRFS_INODE_NODATACOW) {
180 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 		if (S_ISREG(inode->i_mode))
182 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 	}
184 
185 	btrfs_update_iflags(inode);
186 }
187 
188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192 
193 	if (copy_to_user(arg, &flags, sizeof(flags)))
194 		return -EFAULT;
195 	return 0;
196 }
197 
198 static int check_flags(unsigned int flags)
199 {
200 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 		      FS_NOATIME_FL | FS_NODUMP_FL | \
202 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
203 		      FS_NOCOMP_FL | FS_COMPR_FL |
204 		      FS_NOCOW_FL))
205 		return -EOPNOTSUPP;
206 
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 	struct inode *inode = file_inode(file);
216 	struct btrfs_inode *ip = BTRFS_I(inode);
217 	struct btrfs_root *root = ip->root;
218 	struct btrfs_trans_handle *trans;
219 	unsigned int flags, oldflags;
220 	int ret;
221 	u64 ip_oldflags;
222 	unsigned int i_oldflags;
223 	umode_t mode;
224 
225 	if (!inode_owner_or_capable(inode))
226 		return -EPERM;
227 
228 	if (btrfs_root_readonly(root))
229 		return -EROFS;
230 
231 	if (copy_from_user(&flags, arg, sizeof(flags)))
232 		return -EFAULT;
233 
234 	ret = check_flags(flags);
235 	if (ret)
236 		return ret;
237 
238 	ret = mnt_want_write_file(file);
239 	if (ret)
240 		return ret;
241 
242 	mutex_lock(&inode->i_mutex);
243 
244 	ip_oldflags = ip->flags;
245 	i_oldflags = inode->i_flags;
246 	mode = inode->i_mode;
247 
248 	flags = btrfs_mask_flags(inode->i_mode, flags);
249 	oldflags = btrfs_flags_to_ioctl(ip->flags);
250 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 		if (!capable(CAP_LINUX_IMMUTABLE)) {
252 			ret = -EPERM;
253 			goto out_unlock;
254 		}
255 	}
256 
257 	if (flags & FS_SYNC_FL)
258 		ip->flags |= BTRFS_INODE_SYNC;
259 	else
260 		ip->flags &= ~BTRFS_INODE_SYNC;
261 	if (flags & FS_IMMUTABLE_FL)
262 		ip->flags |= BTRFS_INODE_IMMUTABLE;
263 	else
264 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 	if (flags & FS_APPEND_FL)
266 		ip->flags |= BTRFS_INODE_APPEND;
267 	else
268 		ip->flags &= ~BTRFS_INODE_APPEND;
269 	if (flags & FS_NODUMP_FL)
270 		ip->flags |= BTRFS_INODE_NODUMP;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NODUMP;
273 	if (flags & FS_NOATIME_FL)
274 		ip->flags |= BTRFS_INODE_NOATIME;
275 	else
276 		ip->flags &= ~BTRFS_INODE_NOATIME;
277 	if (flags & FS_DIRSYNC_FL)
278 		ip->flags |= BTRFS_INODE_DIRSYNC;
279 	else
280 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 	if (flags & FS_NOCOW_FL) {
282 		if (S_ISREG(mode)) {
283 			/*
284 			 * It's safe to turn csums off here, no extents exist.
285 			 * Otherwise we want the flag to reflect the real COW
286 			 * status of the file and will not set it.
287 			 */
288 			if (inode->i_size == 0)
289 				ip->flags |= BTRFS_INODE_NODATACOW
290 					   | BTRFS_INODE_NODATASUM;
291 		} else {
292 			ip->flags |= BTRFS_INODE_NODATACOW;
293 		}
294 	} else {
295 		/*
296 		 * Revert back under same assuptions as above
297 		 */
298 		if (S_ISREG(mode)) {
299 			if (inode->i_size == 0)
300 				ip->flags &= ~(BTRFS_INODE_NODATACOW
301 				             | BTRFS_INODE_NODATASUM);
302 		} else {
303 			ip->flags &= ~BTRFS_INODE_NODATACOW;
304 		}
305 	}
306 
307 	/*
308 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 	 * flag may be changed automatically if compression code won't make
310 	 * things smaller.
311 	 */
312 	if (flags & FS_NOCOMP_FL) {
313 		ip->flags &= ~BTRFS_INODE_COMPRESS;
314 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
315 
316 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 		if (ret && ret != -ENODATA)
318 			goto out_drop;
319 	} else if (flags & FS_COMPR_FL) {
320 		const char *comp;
321 
322 		ip->flags |= BTRFS_INODE_COMPRESS;
323 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324 
325 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 			comp = "lzo";
327 		else
328 			comp = "zlib";
329 		ret = btrfs_set_prop(inode, "btrfs.compression",
330 				     comp, strlen(comp), 0);
331 		if (ret)
332 			goto out_drop;
333 
334 	} else {
335 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
336 		if (ret && ret != -ENODATA)
337 			goto out_drop;
338 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
339 	}
340 
341 	trans = btrfs_start_transaction(root, 1);
342 	if (IS_ERR(trans)) {
343 		ret = PTR_ERR(trans);
344 		goto out_drop;
345 	}
346 
347 	btrfs_update_iflags(inode);
348 	inode_inc_iversion(inode);
349 	inode->i_ctime = CURRENT_TIME;
350 	ret = btrfs_update_inode(trans, root, inode);
351 
352 	btrfs_end_transaction(trans, root);
353  out_drop:
354 	if (ret) {
355 		ip->flags = ip_oldflags;
356 		inode->i_flags = i_oldflags;
357 	}
358 
359  out_unlock:
360 	mutex_unlock(&inode->i_mutex);
361 	mnt_drop_write_file(file);
362 	return ret;
363 }
364 
365 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
366 {
367 	struct inode *inode = file_inode(file);
368 
369 	return put_user(inode->i_generation, arg);
370 }
371 
372 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
373 {
374 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
375 	struct btrfs_device *device;
376 	struct request_queue *q;
377 	struct fstrim_range range;
378 	u64 minlen = ULLONG_MAX;
379 	u64 num_devices = 0;
380 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
381 	int ret;
382 
383 	if (!capable(CAP_SYS_ADMIN))
384 		return -EPERM;
385 
386 	rcu_read_lock();
387 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
388 				dev_list) {
389 		if (!device->bdev)
390 			continue;
391 		q = bdev_get_queue(device->bdev);
392 		if (blk_queue_discard(q)) {
393 			num_devices++;
394 			minlen = min((u64)q->limits.discard_granularity,
395 				     minlen);
396 		}
397 	}
398 	rcu_read_unlock();
399 
400 	if (!num_devices)
401 		return -EOPNOTSUPP;
402 	if (copy_from_user(&range, arg, sizeof(range)))
403 		return -EFAULT;
404 	if (range.start > total_bytes ||
405 	    range.len < fs_info->sb->s_blocksize)
406 		return -EINVAL;
407 
408 	range.len = min(range.len, total_bytes - range.start);
409 	range.minlen = max(range.minlen, minlen);
410 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
411 	if (ret < 0)
412 		return ret;
413 
414 	if (copy_to_user(arg, &range, sizeof(range)))
415 		return -EFAULT;
416 
417 	return 0;
418 }
419 
420 int btrfs_is_empty_uuid(u8 *uuid)
421 {
422 	int i;
423 
424 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
425 		if (uuid[i])
426 			return 0;
427 	}
428 	return 1;
429 }
430 
431 static noinline int create_subvol(struct inode *dir,
432 				  struct dentry *dentry,
433 				  char *name, int namelen,
434 				  u64 *async_transid,
435 				  struct btrfs_qgroup_inherit *inherit)
436 {
437 	struct btrfs_trans_handle *trans;
438 	struct btrfs_key key;
439 	struct btrfs_root_item root_item;
440 	struct btrfs_inode_item *inode_item;
441 	struct extent_buffer *leaf;
442 	struct btrfs_root *root = BTRFS_I(dir)->root;
443 	struct btrfs_root *new_root;
444 	struct btrfs_block_rsv block_rsv;
445 	struct timespec cur_time = CURRENT_TIME;
446 	struct inode *inode;
447 	int ret;
448 	int err;
449 	u64 objectid;
450 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
451 	u64 index = 0;
452 	u64 qgroup_reserved;
453 	uuid_le new_uuid;
454 
455 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
456 	if (ret)
457 		return ret;
458 
459 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
460 	/*
461 	 * The same as the snapshot creation, please see the comment
462 	 * of create_snapshot().
463 	 */
464 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
465 					       8, &qgroup_reserved, false);
466 	if (ret)
467 		return ret;
468 
469 	trans = btrfs_start_transaction(root, 0);
470 	if (IS_ERR(trans)) {
471 		ret = PTR_ERR(trans);
472 		btrfs_subvolume_release_metadata(root, &block_rsv,
473 						 qgroup_reserved);
474 		return ret;
475 	}
476 	trans->block_rsv = &block_rsv;
477 	trans->bytes_reserved = block_rsv.size;
478 
479 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
480 	if (ret)
481 		goto fail;
482 
483 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
484 	if (IS_ERR(leaf)) {
485 		ret = PTR_ERR(leaf);
486 		goto fail;
487 	}
488 
489 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
490 	btrfs_set_header_bytenr(leaf, leaf->start);
491 	btrfs_set_header_generation(leaf, trans->transid);
492 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
493 	btrfs_set_header_owner(leaf, objectid);
494 
495 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
496 			    BTRFS_FSID_SIZE);
497 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
498 			    btrfs_header_chunk_tree_uuid(leaf),
499 			    BTRFS_UUID_SIZE);
500 	btrfs_mark_buffer_dirty(leaf);
501 
502 	memset(&root_item, 0, sizeof(root_item));
503 
504 	inode_item = &root_item.inode;
505 	btrfs_set_stack_inode_generation(inode_item, 1);
506 	btrfs_set_stack_inode_size(inode_item, 3);
507 	btrfs_set_stack_inode_nlink(inode_item, 1);
508 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
509 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
510 
511 	btrfs_set_root_flags(&root_item, 0);
512 	btrfs_set_root_limit(&root_item, 0);
513 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
514 
515 	btrfs_set_root_bytenr(&root_item, leaf->start);
516 	btrfs_set_root_generation(&root_item, trans->transid);
517 	btrfs_set_root_level(&root_item, 0);
518 	btrfs_set_root_refs(&root_item, 1);
519 	btrfs_set_root_used(&root_item, leaf->len);
520 	btrfs_set_root_last_snapshot(&root_item, 0);
521 
522 	btrfs_set_root_generation_v2(&root_item,
523 			btrfs_root_generation(&root_item));
524 	uuid_le_gen(&new_uuid);
525 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
526 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
527 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
528 	root_item.ctime = root_item.otime;
529 	btrfs_set_root_ctransid(&root_item, trans->transid);
530 	btrfs_set_root_otransid(&root_item, trans->transid);
531 
532 	btrfs_tree_unlock(leaf);
533 	free_extent_buffer(leaf);
534 	leaf = NULL;
535 
536 	btrfs_set_root_dirid(&root_item, new_dirid);
537 
538 	key.objectid = objectid;
539 	key.offset = 0;
540 	key.type = BTRFS_ROOT_ITEM_KEY;
541 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
542 				&root_item);
543 	if (ret)
544 		goto fail;
545 
546 	key.offset = (u64)-1;
547 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
548 	if (IS_ERR(new_root)) {
549 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
550 		ret = PTR_ERR(new_root);
551 		goto fail;
552 	}
553 
554 	btrfs_record_root_in_trans(trans, new_root);
555 
556 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
557 	if (ret) {
558 		/* We potentially lose an unused inode item here */
559 		btrfs_abort_transaction(trans, root, ret);
560 		goto fail;
561 	}
562 
563 	/*
564 	 * insert the directory item
565 	 */
566 	ret = btrfs_set_inode_index(dir, &index);
567 	if (ret) {
568 		btrfs_abort_transaction(trans, root, ret);
569 		goto fail;
570 	}
571 
572 	ret = btrfs_insert_dir_item(trans, root,
573 				    name, namelen, dir, &key,
574 				    BTRFS_FT_DIR, index);
575 	if (ret) {
576 		btrfs_abort_transaction(trans, root, ret);
577 		goto fail;
578 	}
579 
580 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
581 	ret = btrfs_update_inode(trans, root, dir);
582 	BUG_ON(ret);
583 
584 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
585 				 objectid, root->root_key.objectid,
586 				 btrfs_ino(dir), index, name, namelen);
587 	BUG_ON(ret);
588 
589 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
590 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
591 				  objectid);
592 	if (ret)
593 		btrfs_abort_transaction(trans, root, ret);
594 
595 fail:
596 	trans->block_rsv = NULL;
597 	trans->bytes_reserved = 0;
598 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
599 
600 	if (async_transid) {
601 		*async_transid = trans->transid;
602 		err = btrfs_commit_transaction_async(trans, root, 1);
603 		if (err)
604 			err = btrfs_commit_transaction(trans, root);
605 	} else {
606 		err = btrfs_commit_transaction(trans, root);
607 	}
608 	if (err && !ret)
609 		ret = err;
610 
611 	if (!ret) {
612 		inode = btrfs_lookup_dentry(dir, dentry);
613 		if (IS_ERR(inode))
614 			return PTR_ERR(inode);
615 		d_instantiate(dentry, inode);
616 	}
617 	return ret;
618 }
619 
620 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
621 {
622 	s64 writers;
623 	DEFINE_WAIT(wait);
624 
625 	do {
626 		prepare_to_wait(&root->subv_writers->wait, &wait,
627 				TASK_UNINTERRUPTIBLE);
628 
629 		writers = percpu_counter_sum(&root->subv_writers->counter);
630 		if (writers)
631 			schedule();
632 
633 		finish_wait(&root->subv_writers->wait, &wait);
634 	} while (writers);
635 }
636 
637 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
638 			   struct dentry *dentry, char *name, int namelen,
639 			   u64 *async_transid, bool readonly,
640 			   struct btrfs_qgroup_inherit *inherit)
641 {
642 	struct inode *inode;
643 	struct btrfs_pending_snapshot *pending_snapshot;
644 	struct btrfs_trans_handle *trans;
645 	int ret;
646 
647 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
648 		return -EINVAL;
649 
650 	atomic_inc(&root->will_be_snapshoted);
651 	smp_mb__after_atomic();
652 	btrfs_wait_for_no_snapshoting_writes(root);
653 
654 	ret = btrfs_start_delalloc_inodes(root, 0);
655 	if (ret)
656 		goto out;
657 
658 	btrfs_wait_ordered_extents(root, -1);
659 
660 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
661 	if (!pending_snapshot) {
662 		ret = -ENOMEM;
663 		goto out;
664 	}
665 
666 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
667 			     BTRFS_BLOCK_RSV_TEMP);
668 	/*
669 	 * 1 - parent dir inode
670 	 * 2 - dir entries
671 	 * 1 - root item
672 	 * 2 - root ref/backref
673 	 * 1 - root of snapshot
674 	 * 1 - UUID item
675 	 */
676 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
677 					&pending_snapshot->block_rsv, 8,
678 					&pending_snapshot->qgroup_reserved,
679 					false);
680 	if (ret)
681 		goto free;
682 
683 	pending_snapshot->dentry = dentry;
684 	pending_snapshot->root = root;
685 	pending_snapshot->readonly = readonly;
686 	pending_snapshot->dir = dir;
687 	pending_snapshot->inherit = inherit;
688 
689 	trans = btrfs_start_transaction(root, 0);
690 	if (IS_ERR(trans)) {
691 		ret = PTR_ERR(trans);
692 		goto fail;
693 	}
694 
695 	spin_lock(&root->fs_info->trans_lock);
696 	list_add(&pending_snapshot->list,
697 		 &trans->transaction->pending_snapshots);
698 	spin_unlock(&root->fs_info->trans_lock);
699 	if (async_transid) {
700 		*async_transid = trans->transid;
701 		ret = btrfs_commit_transaction_async(trans,
702 				     root->fs_info->extent_root, 1);
703 		if (ret)
704 			ret = btrfs_commit_transaction(trans, root);
705 	} else {
706 		ret = btrfs_commit_transaction(trans,
707 					       root->fs_info->extent_root);
708 	}
709 	if (ret)
710 		goto fail;
711 
712 	ret = pending_snapshot->error;
713 	if (ret)
714 		goto fail;
715 
716 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
717 	if (ret)
718 		goto fail;
719 
720 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
721 	if (IS_ERR(inode)) {
722 		ret = PTR_ERR(inode);
723 		goto fail;
724 	}
725 
726 	d_instantiate(dentry, inode);
727 	ret = 0;
728 fail:
729 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
730 					 &pending_snapshot->block_rsv,
731 					 pending_snapshot->qgroup_reserved);
732 free:
733 	kfree(pending_snapshot);
734 out:
735 	if (atomic_dec_and_test(&root->will_be_snapshoted))
736 		wake_up_atomic_t(&root->will_be_snapshoted);
737 	return ret;
738 }
739 
740 /*  copy of may_delete in fs/namei.c()
741  *	Check whether we can remove a link victim from directory dir, check
742  *  whether the type of victim is right.
743  *  1. We can't do it if dir is read-only (done in permission())
744  *  2. We should have write and exec permissions on dir
745  *  3. We can't remove anything from append-only dir
746  *  4. We can't do anything with immutable dir (done in permission())
747  *  5. If the sticky bit on dir is set we should either
748  *	a. be owner of dir, or
749  *	b. be owner of victim, or
750  *	c. have CAP_FOWNER capability
751  *  6. If the victim is append-only or immutable we can't do antyhing with
752  *     links pointing to it.
753  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
754  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
755  *  9. We can't remove a root or mountpoint.
756  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
757  *     nfs_async_unlink().
758  */
759 
760 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
761 {
762 	int error;
763 
764 	if (!victim->d_inode)
765 		return -ENOENT;
766 
767 	BUG_ON(victim->d_parent->d_inode != dir);
768 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
769 
770 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
771 	if (error)
772 		return error;
773 	if (IS_APPEND(dir))
774 		return -EPERM;
775 	if (check_sticky(dir, victim->d_inode) || IS_APPEND(victim->d_inode) ||
776 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
777 		return -EPERM;
778 	if (isdir) {
779 		if (!S_ISDIR(victim->d_inode->i_mode))
780 			return -ENOTDIR;
781 		if (IS_ROOT(victim))
782 			return -EBUSY;
783 	} else if (S_ISDIR(victim->d_inode->i_mode))
784 		return -EISDIR;
785 	if (IS_DEADDIR(dir))
786 		return -ENOENT;
787 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
788 		return -EBUSY;
789 	return 0;
790 }
791 
792 /* copy of may_create in fs/namei.c() */
793 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
794 {
795 	if (child->d_inode)
796 		return -EEXIST;
797 	if (IS_DEADDIR(dir))
798 		return -ENOENT;
799 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
800 }
801 
802 /*
803  * Create a new subvolume below @parent.  This is largely modeled after
804  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
805  * inside this filesystem so it's quite a bit simpler.
806  */
807 static noinline int btrfs_mksubvol(struct path *parent,
808 				   char *name, int namelen,
809 				   struct btrfs_root *snap_src,
810 				   u64 *async_transid, bool readonly,
811 				   struct btrfs_qgroup_inherit *inherit)
812 {
813 	struct inode *dir  = parent->dentry->d_inode;
814 	struct dentry *dentry;
815 	int error;
816 
817 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
818 	if (error == -EINTR)
819 		return error;
820 
821 	dentry = lookup_one_len(name, parent->dentry, namelen);
822 	error = PTR_ERR(dentry);
823 	if (IS_ERR(dentry))
824 		goto out_unlock;
825 
826 	error = -EEXIST;
827 	if (dentry->d_inode)
828 		goto out_dput;
829 
830 	error = btrfs_may_create(dir, dentry);
831 	if (error)
832 		goto out_dput;
833 
834 	/*
835 	 * even if this name doesn't exist, we may get hash collisions.
836 	 * check for them now when we can safely fail
837 	 */
838 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
839 					       dir->i_ino, name,
840 					       namelen);
841 	if (error)
842 		goto out_dput;
843 
844 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
845 
846 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
847 		goto out_up_read;
848 
849 	if (snap_src) {
850 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
851 					async_transid, readonly, inherit);
852 	} else {
853 		error = create_subvol(dir, dentry, name, namelen,
854 				      async_transid, inherit);
855 	}
856 	if (!error)
857 		fsnotify_mkdir(dir, dentry);
858 out_up_read:
859 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
860 out_dput:
861 	dput(dentry);
862 out_unlock:
863 	mutex_unlock(&dir->i_mutex);
864 	return error;
865 }
866 
867 /*
868  * When we're defragging a range, we don't want to kick it off again
869  * if it is really just waiting for delalloc to send it down.
870  * If we find a nice big extent or delalloc range for the bytes in the
871  * file you want to defrag, we return 0 to let you know to skip this
872  * part of the file
873  */
874 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
875 {
876 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
877 	struct extent_map *em = NULL;
878 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
879 	u64 end;
880 
881 	read_lock(&em_tree->lock);
882 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
883 	read_unlock(&em_tree->lock);
884 
885 	if (em) {
886 		end = extent_map_end(em);
887 		free_extent_map(em);
888 		if (end - offset > thresh)
889 			return 0;
890 	}
891 	/* if we already have a nice delalloc here, just stop */
892 	thresh /= 2;
893 	end = count_range_bits(io_tree, &offset, offset + thresh,
894 			       thresh, EXTENT_DELALLOC, 1);
895 	if (end >= thresh)
896 		return 0;
897 	return 1;
898 }
899 
900 /*
901  * helper function to walk through a file and find extents
902  * newer than a specific transid, and smaller than thresh.
903  *
904  * This is used by the defragging code to find new and small
905  * extents
906  */
907 static int find_new_extents(struct btrfs_root *root,
908 			    struct inode *inode, u64 newer_than,
909 			    u64 *off, u32 thresh)
910 {
911 	struct btrfs_path *path;
912 	struct btrfs_key min_key;
913 	struct extent_buffer *leaf;
914 	struct btrfs_file_extent_item *extent;
915 	int type;
916 	int ret;
917 	u64 ino = btrfs_ino(inode);
918 
919 	path = btrfs_alloc_path();
920 	if (!path)
921 		return -ENOMEM;
922 
923 	min_key.objectid = ino;
924 	min_key.type = BTRFS_EXTENT_DATA_KEY;
925 	min_key.offset = *off;
926 
927 	while (1) {
928 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
929 		if (ret != 0)
930 			goto none;
931 process_slot:
932 		if (min_key.objectid != ino)
933 			goto none;
934 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
935 			goto none;
936 
937 		leaf = path->nodes[0];
938 		extent = btrfs_item_ptr(leaf, path->slots[0],
939 					struct btrfs_file_extent_item);
940 
941 		type = btrfs_file_extent_type(leaf, extent);
942 		if (type == BTRFS_FILE_EXTENT_REG &&
943 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
944 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
945 			*off = min_key.offset;
946 			btrfs_free_path(path);
947 			return 0;
948 		}
949 
950 		path->slots[0]++;
951 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
952 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
953 			goto process_slot;
954 		}
955 
956 		if (min_key.offset == (u64)-1)
957 			goto none;
958 
959 		min_key.offset++;
960 		btrfs_release_path(path);
961 	}
962 none:
963 	btrfs_free_path(path);
964 	return -ENOENT;
965 }
966 
967 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
968 {
969 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
970 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
971 	struct extent_map *em;
972 	u64 len = PAGE_CACHE_SIZE;
973 
974 	/*
975 	 * hopefully we have this extent in the tree already, try without
976 	 * the full extent lock
977 	 */
978 	read_lock(&em_tree->lock);
979 	em = lookup_extent_mapping(em_tree, start, len);
980 	read_unlock(&em_tree->lock);
981 
982 	if (!em) {
983 		struct extent_state *cached = NULL;
984 		u64 end = start + len - 1;
985 
986 		/* get the big lock and read metadata off disk */
987 		lock_extent_bits(io_tree, start, end, 0, &cached);
988 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
989 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
990 
991 		if (IS_ERR(em))
992 			return NULL;
993 	}
994 
995 	return em;
996 }
997 
998 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
999 {
1000 	struct extent_map *next;
1001 	bool ret = true;
1002 
1003 	/* this is the last extent */
1004 	if (em->start + em->len >= i_size_read(inode))
1005 		return false;
1006 
1007 	next = defrag_lookup_extent(inode, em->start + em->len);
1008 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1009 		ret = false;
1010 	else if ((em->block_start + em->block_len == next->block_start) &&
1011 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1012 		ret = false;
1013 
1014 	free_extent_map(next);
1015 	return ret;
1016 }
1017 
1018 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1019 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1020 			       int compress)
1021 {
1022 	struct extent_map *em;
1023 	int ret = 1;
1024 	bool next_mergeable = true;
1025 
1026 	/*
1027 	 * make sure that once we start defragging an extent, we keep on
1028 	 * defragging it
1029 	 */
1030 	if (start < *defrag_end)
1031 		return 1;
1032 
1033 	*skip = 0;
1034 
1035 	em = defrag_lookup_extent(inode, start);
1036 	if (!em)
1037 		return 0;
1038 
1039 	/* this will cover holes, and inline extents */
1040 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1041 		ret = 0;
1042 		goto out;
1043 	}
1044 
1045 	next_mergeable = defrag_check_next_extent(inode, em);
1046 	/*
1047 	 * we hit a real extent, if it is big or the next extent is not a
1048 	 * real extent, don't bother defragging it
1049 	 */
1050 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1051 	    (em->len >= thresh || !next_mergeable))
1052 		ret = 0;
1053 out:
1054 	/*
1055 	 * last_len ends up being a counter of how many bytes we've defragged.
1056 	 * every time we choose not to defrag an extent, we reset *last_len
1057 	 * so that the next tiny extent will force a defrag.
1058 	 *
1059 	 * The end result of this is that tiny extents before a single big
1060 	 * extent will force at least part of that big extent to be defragged.
1061 	 */
1062 	if (ret) {
1063 		*defrag_end = extent_map_end(em);
1064 	} else {
1065 		*last_len = 0;
1066 		*skip = extent_map_end(em);
1067 		*defrag_end = 0;
1068 	}
1069 
1070 	free_extent_map(em);
1071 	return ret;
1072 }
1073 
1074 /*
1075  * it doesn't do much good to defrag one or two pages
1076  * at a time.  This pulls in a nice chunk of pages
1077  * to COW and defrag.
1078  *
1079  * It also makes sure the delalloc code has enough
1080  * dirty data to avoid making new small extents as part
1081  * of the defrag
1082  *
1083  * It's a good idea to start RA on this range
1084  * before calling this.
1085  */
1086 static int cluster_pages_for_defrag(struct inode *inode,
1087 				    struct page **pages,
1088 				    unsigned long start_index,
1089 				    unsigned long num_pages)
1090 {
1091 	unsigned long file_end;
1092 	u64 isize = i_size_read(inode);
1093 	u64 page_start;
1094 	u64 page_end;
1095 	u64 page_cnt;
1096 	int ret;
1097 	int i;
1098 	int i_done;
1099 	struct btrfs_ordered_extent *ordered;
1100 	struct extent_state *cached_state = NULL;
1101 	struct extent_io_tree *tree;
1102 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1103 
1104 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1105 	if (!isize || start_index > file_end)
1106 		return 0;
1107 
1108 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1109 
1110 	ret = btrfs_delalloc_reserve_space(inode,
1111 					   page_cnt << PAGE_CACHE_SHIFT);
1112 	if (ret)
1113 		return ret;
1114 	i_done = 0;
1115 	tree = &BTRFS_I(inode)->io_tree;
1116 
1117 	/* step one, lock all the pages */
1118 	for (i = 0; i < page_cnt; i++) {
1119 		struct page *page;
1120 again:
1121 		page = find_or_create_page(inode->i_mapping,
1122 					   start_index + i, mask);
1123 		if (!page)
1124 			break;
1125 
1126 		page_start = page_offset(page);
1127 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1128 		while (1) {
1129 			lock_extent_bits(tree, page_start, page_end,
1130 					 0, &cached_state);
1131 			ordered = btrfs_lookup_ordered_extent(inode,
1132 							      page_start);
1133 			unlock_extent_cached(tree, page_start, page_end,
1134 					     &cached_state, GFP_NOFS);
1135 			if (!ordered)
1136 				break;
1137 
1138 			unlock_page(page);
1139 			btrfs_start_ordered_extent(inode, ordered, 1);
1140 			btrfs_put_ordered_extent(ordered);
1141 			lock_page(page);
1142 			/*
1143 			 * we unlocked the page above, so we need check if
1144 			 * it was released or not.
1145 			 */
1146 			if (page->mapping != inode->i_mapping) {
1147 				unlock_page(page);
1148 				page_cache_release(page);
1149 				goto again;
1150 			}
1151 		}
1152 
1153 		if (!PageUptodate(page)) {
1154 			btrfs_readpage(NULL, page);
1155 			lock_page(page);
1156 			if (!PageUptodate(page)) {
1157 				unlock_page(page);
1158 				page_cache_release(page);
1159 				ret = -EIO;
1160 				break;
1161 			}
1162 		}
1163 
1164 		if (page->mapping != inode->i_mapping) {
1165 			unlock_page(page);
1166 			page_cache_release(page);
1167 			goto again;
1168 		}
1169 
1170 		pages[i] = page;
1171 		i_done++;
1172 	}
1173 	if (!i_done || ret)
1174 		goto out;
1175 
1176 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1177 		goto out;
1178 
1179 	/*
1180 	 * so now we have a nice long stream of locked
1181 	 * and up to date pages, lets wait on them
1182 	 */
1183 	for (i = 0; i < i_done; i++)
1184 		wait_on_page_writeback(pages[i]);
1185 
1186 	page_start = page_offset(pages[0]);
1187 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1188 
1189 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1190 			 page_start, page_end - 1, 0, &cached_state);
1191 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1192 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1193 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1194 			  &cached_state, GFP_NOFS);
1195 
1196 	if (i_done != page_cnt) {
1197 		spin_lock(&BTRFS_I(inode)->lock);
1198 		BTRFS_I(inode)->outstanding_extents++;
1199 		spin_unlock(&BTRFS_I(inode)->lock);
1200 		btrfs_delalloc_release_space(inode,
1201 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1202 	}
1203 
1204 
1205 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1206 			  &cached_state, GFP_NOFS);
1207 
1208 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1209 			     page_start, page_end - 1, &cached_state,
1210 			     GFP_NOFS);
1211 
1212 	for (i = 0; i < i_done; i++) {
1213 		clear_page_dirty_for_io(pages[i]);
1214 		ClearPageChecked(pages[i]);
1215 		set_page_extent_mapped(pages[i]);
1216 		set_page_dirty(pages[i]);
1217 		unlock_page(pages[i]);
1218 		page_cache_release(pages[i]);
1219 	}
1220 	return i_done;
1221 out:
1222 	for (i = 0; i < i_done; i++) {
1223 		unlock_page(pages[i]);
1224 		page_cache_release(pages[i]);
1225 	}
1226 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1227 	return ret;
1228 
1229 }
1230 
1231 int btrfs_defrag_file(struct inode *inode, struct file *file,
1232 		      struct btrfs_ioctl_defrag_range_args *range,
1233 		      u64 newer_than, unsigned long max_to_defrag)
1234 {
1235 	struct btrfs_root *root = BTRFS_I(inode)->root;
1236 	struct file_ra_state *ra = NULL;
1237 	unsigned long last_index;
1238 	u64 isize = i_size_read(inode);
1239 	u64 last_len = 0;
1240 	u64 skip = 0;
1241 	u64 defrag_end = 0;
1242 	u64 newer_off = range->start;
1243 	unsigned long i;
1244 	unsigned long ra_index = 0;
1245 	int ret;
1246 	int defrag_count = 0;
1247 	int compress_type = BTRFS_COMPRESS_ZLIB;
1248 	u32 extent_thresh = range->extent_thresh;
1249 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1250 	unsigned long cluster = max_cluster;
1251 	u64 new_align = ~((u64)128 * 1024 - 1);
1252 	struct page **pages = NULL;
1253 
1254 	if (isize == 0)
1255 		return 0;
1256 
1257 	if (range->start >= isize)
1258 		return -EINVAL;
1259 
1260 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1261 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1262 			return -EINVAL;
1263 		if (range->compress_type)
1264 			compress_type = range->compress_type;
1265 	}
1266 
1267 	if (extent_thresh == 0)
1268 		extent_thresh = 256 * 1024;
1269 
1270 	/*
1271 	 * if we were not given a file, allocate a readahead
1272 	 * context
1273 	 */
1274 	if (!file) {
1275 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1276 		if (!ra)
1277 			return -ENOMEM;
1278 		file_ra_state_init(ra, inode->i_mapping);
1279 	} else {
1280 		ra = &file->f_ra;
1281 	}
1282 
1283 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1284 			GFP_NOFS);
1285 	if (!pages) {
1286 		ret = -ENOMEM;
1287 		goto out_ra;
1288 	}
1289 
1290 	/* find the last page to defrag */
1291 	if (range->start + range->len > range->start) {
1292 		last_index = min_t(u64, isize - 1,
1293 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1294 	} else {
1295 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1296 	}
1297 
1298 	if (newer_than) {
1299 		ret = find_new_extents(root, inode, newer_than,
1300 				       &newer_off, 64 * 1024);
1301 		if (!ret) {
1302 			range->start = newer_off;
1303 			/*
1304 			 * we always align our defrag to help keep
1305 			 * the extents in the file evenly spaced
1306 			 */
1307 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1308 		} else
1309 			goto out_ra;
1310 	} else {
1311 		i = range->start >> PAGE_CACHE_SHIFT;
1312 	}
1313 	if (!max_to_defrag)
1314 		max_to_defrag = last_index + 1;
1315 
1316 	/*
1317 	 * make writeback starts from i, so the defrag range can be
1318 	 * written sequentially.
1319 	 */
1320 	if (i < inode->i_mapping->writeback_index)
1321 		inode->i_mapping->writeback_index = i;
1322 
1323 	while (i <= last_index && defrag_count < max_to_defrag &&
1324 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1325 		/*
1326 		 * make sure we stop running if someone unmounts
1327 		 * the FS
1328 		 */
1329 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1330 			break;
1331 
1332 		if (btrfs_defrag_cancelled(root->fs_info)) {
1333 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1334 			ret = -EAGAIN;
1335 			break;
1336 		}
1337 
1338 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1339 					 extent_thresh, &last_len, &skip,
1340 					 &defrag_end, range->flags &
1341 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1342 			unsigned long next;
1343 			/*
1344 			 * the should_defrag function tells us how much to skip
1345 			 * bump our counter by the suggested amount
1346 			 */
1347 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1348 			i = max(i + 1, next);
1349 			continue;
1350 		}
1351 
1352 		if (!newer_than) {
1353 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1354 				   PAGE_CACHE_SHIFT) - i;
1355 			cluster = min(cluster, max_cluster);
1356 		} else {
1357 			cluster = max_cluster;
1358 		}
1359 
1360 		if (i + cluster > ra_index) {
1361 			ra_index = max(i, ra_index);
1362 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1363 				       cluster);
1364 			ra_index += max_cluster;
1365 		}
1366 
1367 		mutex_lock(&inode->i_mutex);
1368 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1369 			BTRFS_I(inode)->force_compress = compress_type;
1370 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1371 		if (ret < 0) {
1372 			mutex_unlock(&inode->i_mutex);
1373 			goto out_ra;
1374 		}
1375 
1376 		defrag_count += ret;
1377 		balance_dirty_pages_ratelimited(inode->i_mapping);
1378 		mutex_unlock(&inode->i_mutex);
1379 
1380 		if (newer_than) {
1381 			if (newer_off == (u64)-1)
1382 				break;
1383 
1384 			if (ret > 0)
1385 				i += ret;
1386 
1387 			newer_off = max(newer_off + 1,
1388 					(u64)i << PAGE_CACHE_SHIFT);
1389 
1390 			ret = find_new_extents(root, inode,
1391 					       newer_than, &newer_off,
1392 					       64 * 1024);
1393 			if (!ret) {
1394 				range->start = newer_off;
1395 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1396 			} else {
1397 				break;
1398 			}
1399 		} else {
1400 			if (ret > 0) {
1401 				i += ret;
1402 				last_len += ret << PAGE_CACHE_SHIFT;
1403 			} else {
1404 				i++;
1405 				last_len = 0;
1406 			}
1407 		}
1408 	}
1409 
1410 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1411 		filemap_flush(inode->i_mapping);
1412 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413 			     &BTRFS_I(inode)->runtime_flags))
1414 			filemap_flush(inode->i_mapping);
1415 	}
1416 
1417 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1418 		/* the filemap_flush will queue IO into the worker threads, but
1419 		 * we have to make sure the IO is actually started and that
1420 		 * ordered extents get created before we return
1421 		 */
1422 		atomic_inc(&root->fs_info->async_submit_draining);
1423 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1424 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1425 			wait_event(root->fs_info->async_submit_wait,
1426 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1427 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1428 		}
1429 		atomic_dec(&root->fs_info->async_submit_draining);
1430 	}
1431 
1432 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1433 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1434 	}
1435 
1436 	ret = defrag_count;
1437 
1438 out_ra:
1439 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1440 		mutex_lock(&inode->i_mutex);
1441 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1442 		mutex_unlock(&inode->i_mutex);
1443 	}
1444 	if (!file)
1445 		kfree(ra);
1446 	kfree(pages);
1447 	return ret;
1448 }
1449 
1450 static noinline int btrfs_ioctl_resize(struct file *file,
1451 					void __user *arg)
1452 {
1453 	u64 new_size;
1454 	u64 old_size;
1455 	u64 devid = 1;
1456 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1457 	struct btrfs_ioctl_vol_args *vol_args;
1458 	struct btrfs_trans_handle *trans;
1459 	struct btrfs_device *device = NULL;
1460 	char *sizestr;
1461 	char *retptr;
1462 	char *devstr = NULL;
1463 	int ret = 0;
1464 	int mod = 0;
1465 
1466 	if (!capable(CAP_SYS_ADMIN))
1467 		return -EPERM;
1468 
1469 	ret = mnt_want_write_file(file);
1470 	if (ret)
1471 		return ret;
1472 
1473 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1474 			1)) {
1475 		mnt_drop_write_file(file);
1476 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1477 	}
1478 
1479 	mutex_lock(&root->fs_info->volume_mutex);
1480 	vol_args = memdup_user(arg, sizeof(*vol_args));
1481 	if (IS_ERR(vol_args)) {
1482 		ret = PTR_ERR(vol_args);
1483 		goto out;
1484 	}
1485 
1486 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1487 
1488 	sizestr = vol_args->name;
1489 	devstr = strchr(sizestr, ':');
1490 	if (devstr) {
1491 		sizestr = devstr + 1;
1492 		*devstr = '\0';
1493 		devstr = vol_args->name;
1494 		ret = kstrtoull(devstr, 10, &devid);
1495 		if (ret)
1496 			goto out_free;
1497 		if (!devid) {
1498 			ret = -EINVAL;
1499 			goto out_free;
1500 		}
1501 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1502 	}
1503 
1504 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1505 	if (!device) {
1506 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1507 		       devid);
1508 		ret = -ENODEV;
1509 		goto out_free;
1510 	}
1511 
1512 	if (!device->writeable) {
1513 		btrfs_info(root->fs_info,
1514 			   "resizer unable to apply on readonly device %llu",
1515 		       devid);
1516 		ret = -EPERM;
1517 		goto out_free;
1518 	}
1519 
1520 	if (!strcmp(sizestr, "max"))
1521 		new_size = device->bdev->bd_inode->i_size;
1522 	else {
1523 		if (sizestr[0] == '-') {
1524 			mod = -1;
1525 			sizestr++;
1526 		} else if (sizestr[0] == '+') {
1527 			mod = 1;
1528 			sizestr++;
1529 		}
1530 		new_size = memparse(sizestr, &retptr);
1531 		if (*retptr != '\0' || new_size == 0) {
1532 			ret = -EINVAL;
1533 			goto out_free;
1534 		}
1535 	}
1536 
1537 	if (device->is_tgtdev_for_dev_replace) {
1538 		ret = -EPERM;
1539 		goto out_free;
1540 	}
1541 
1542 	old_size = btrfs_device_get_total_bytes(device);
1543 
1544 	if (mod < 0) {
1545 		if (new_size > old_size) {
1546 			ret = -EINVAL;
1547 			goto out_free;
1548 		}
1549 		new_size = old_size - new_size;
1550 	} else if (mod > 0) {
1551 		if (new_size > ULLONG_MAX - old_size) {
1552 			ret = -ERANGE;
1553 			goto out_free;
1554 		}
1555 		new_size = old_size + new_size;
1556 	}
1557 
1558 	if (new_size < 256 * 1024 * 1024) {
1559 		ret = -EINVAL;
1560 		goto out_free;
1561 	}
1562 	if (new_size > device->bdev->bd_inode->i_size) {
1563 		ret = -EFBIG;
1564 		goto out_free;
1565 	}
1566 
1567 	do_div(new_size, root->sectorsize);
1568 	new_size *= root->sectorsize;
1569 
1570 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1571 		      rcu_str_deref(device->name), new_size);
1572 
1573 	if (new_size > old_size) {
1574 		trans = btrfs_start_transaction(root, 0);
1575 		if (IS_ERR(trans)) {
1576 			ret = PTR_ERR(trans);
1577 			goto out_free;
1578 		}
1579 		ret = btrfs_grow_device(trans, device, new_size);
1580 		btrfs_commit_transaction(trans, root);
1581 	} else if (new_size < old_size) {
1582 		ret = btrfs_shrink_device(device, new_size);
1583 	} /* equal, nothing need to do */
1584 
1585 out_free:
1586 	kfree(vol_args);
1587 out:
1588 	mutex_unlock(&root->fs_info->volume_mutex);
1589 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1590 	mnt_drop_write_file(file);
1591 	return ret;
1592 }
1593 
1594 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1595 				char *name, unsigned long fd, int subvol,
1596 				u64 *transid, bool readonly,
1597 				struct btrfs_qgroup_inherit *inherit)
1598 {
1599 	int namelen;
1600 	int ret = 0;
1601 
1602 	ret = mnt_want_write_file(file);
1603 	if (ret)
1604 		goto out;
1605 
1606 	namelen = strlen(name);
1607 	if (strchr(name, '/')) {
1608 		ret = -EINVAL;
1609 		goto out_drop_write;
1610 	}
1611 
1612 	if (name[0] == '.' &&
1613 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1614 		ret = -EEXIST;
1615 		goto out_drop_write;
1616 	}
1617 
1618 	if (subvol) {
1619 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1620 				     NULL, transid, readonly, inherit);
1621 	} else {
1622 		struct fd src = fdget(fd);
1623 		struct inode *src_inode;
1624 		if (!src.file) {
1625 			ret = -EINVAL;
1626 			goto out_drop_write;
1627 		}
1628 
1629 		src_inode = file_inode(src.file);
1630 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1631 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1632 				   "Snapshot src from another FS");
1633 			ret = -EXDEV;
1634 		} else if (!inode_owner_or_capable(src_inode)) {
1635 			/*
1636 			 * Subvolume creation is not restricted, but snapshots
1637 			 * are limited to own subvolumes only
1638 			 */
1639 			ret = -EPERM;
1640 		} else {
1641 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1642 					     BTRFS_I(src_inode)->root,
1643 					     transid, readonly, inherit);
1644 		}
1645 		fdput(src);
1646 	}
1647 out_drop_write:
1648 	mnt_drop_write_file(file);
1649 out:
1650 	return ret;
1651 }
1652 
1653 static noinline int btrfs_ioctl_snap_create(struct file *file,
1654 					    void __user *arg, int subvol)
1655 {
1656 	struct btrfs_ioctl_vol_args *vol_args;
1657 	int ret;
1658 
1659 	vol_args = memdup_user(arg, sizeof(*vol_args));
1660 	if (IS_ERR(vol_args))
1661 		return PTR_ERR(vol_args);
1662 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1663 
1664 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1665 					      vol_args->fd, subvol,
1666 					      NULL, false, NULL);
1667 
1668 	kfree(vol_args);
1669 	return ret;
1670 }
1671 
1672 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1673 					       void __user *arg, int subvol)
1674 {
1675 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1676 	int ret;
1677 	u64 transid = 0;
1678 	u64 *ptr = NULL;
1679 	bool readonly = false;
1680 	struct btrfs_qgroup_inherit *inherit = NULL;
1681 
1682 	vol_args = memdup_user(arg, sizeof(*vol_args));
1683 	if (IS_ERR(vol_args))
1684 		return PTR_ERR(vol_args);
1685 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1686 
1687 	if (vol_args->flags &
1688 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1689 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1690 		ret = -EOPNOTSUPP;
1691 		goto free_args;
1692 	}
1693 
1694 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1695 		ptr = &transid;
1696 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1697 		readonly = true;
1698 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1699 		if (vol_args->size > PAGE_CACHE_SIZE) {
1700 			ret = -EINVAL;
1701 			goto free_args;
1702 		}
1703 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1704 		if (IS_ERR(inherit)) {
1705 			ret = PTR_ERR(inherit);
1706 			goto free_args;
1707 		}
1708 	}
1709 
1710 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1711 					      vol_args->fd, subvol, ptr,
1712 					      readonly, inherit);
1713 	if (ret)
1714 		goto free_inherit;
1715 
1716 	if (ptr && copy_to_user(arg +
1717 				offsetof(struct btrfs_ioctl_vol_args_v2,
1718 					transid),
1719 				ptr, sizeof(*ptr)))
1720 		ret = -EFAULT;
1721 
1722 free_inherit:
1723 	kfree(inherit);
1724 free_args:
1725 	kfree(vol_args);
1726 	return ret;
1727 }
1728 
1729 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1730 						void __user *arg)
1731 {
1732 	struct inode *inode = file_inode(file);
1733 	struct btrfs_root *root = BTRFS_I(inode)->root;
1734 	int ret = 0;
1735 	u64 flags = 0;
1736 
1737 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1738 		return -EINVAL;
1739 
1740 	down_read(&root->fs_info->subvol_sem);
1741 	if (btrfs_root_readonly(root))
1742 		flags |= BTRFS_SUBVOL_RDONLY;
1743 	up_read(&root->fs_info->subvol_sem);
1744 
1745 	if (copy_to_user(arg, &flags, sizeof(flags)))
1746 		ret = -EFAULT;
1747 
1748 	return ret;
1749 }
1750 
1751 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1752 					      void __user *arg)
1753 {
1754 	struct inode *inode = file_inode(file);
1755 	struct btrfs_root *root = BTRFS_I(inode)->root;
1756 	struct btrfs_trans_handle *trans;
1757 	u64 root_flags;
1758 	u64 flags;
1759 	int ret = 0;
1760 
1761 	if (!inode_owner_or_capable(inode))
1762 		return -EPERM;
1763 
1764 	ret = mnt_want_write_file(file);
1765 	if (ret)
1766 		goto out;
1767 
1768 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1769 		ret = -EINVAL;
1770 		goto out_drop_write;
1771 	}
1772 
1773 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1774 		ret = -EFAULT;
1775 		goto out_drop_write;
1776 	}
1777 
1778 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1779 		ret = -EINVAL;
1780 		goto out_drop_write;
1781 	}
1782 
1783 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1784 		ret = -EOPNOTSUPP;
1785 		goto out_drop_write;
1786 	}
1787 
1788 	down_write(&root->fs_info->subvol_sem);
1789 
1790 	/* nothing to do */
1791 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1792 		goto out_drop_sem;
1793 
1794 	root_flags = btrfs_root_flags(&root->root_item);
1795 	if (flags & BTRFS_SUBVOL_RDONLY) {
1796 		btrfs_set_root_flags(&root->root_item,
1797 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1798 	} else {
1799 		/*
1800 		 * Block RO -> RW transition if this subvolume is involved in
1801 		 * send
1802 		 */
1803 		spin_lock(&root->root_item_lock);
1804 		if (root->send_in_progress == 0) {
1805 			btrfs_set_root_flags(&root->root_item,
1806 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1807 			spin_unlock(&root->root_item_lock);
1808 		} else {
1809 			spin_unlock(&root->root_item_lock);
1810 			btrfs_warn(root->fs_info,
1811 			"Attempt to set subvolume %llu read-write during send",
1812 					root->root_key.objectid);
1813 			ret = -EPERM;
1814 			goto out_drop_sem;
1815 		}
1816 	}
1817 
1818 	trans = btrfs_start_transaction(root, 1);
1819 	if (IS_ERR(trans)) {
1820 		ret = PTR_ERR(trans);
1821 		goto out_reset;
1822 	}
1823 
1824 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1825 				&root->root_key, &root->root_item);
1826 
1827 	btrfs_commit_transaction(trans, root);
1828 out_reset:
1829 	if (ret)
1830 		btrfs_set_root_flags(&root->root_item, root_flags);
1831 out_drop_sem:
1832 	up_write(&root->fs_info->subvol_sem);
1833 out_drop_write:
1834 	mnt_drop_write_file(file);
1835 out:
1836 	return ret;
1837 }
1838 
1839 /*
1840  * helper to check if the subvolume references other subvolumes
1841  */
1842 static noinline int may_destroy_subvol(struct btrfs_root *root)
1843 {
1844 	struct btrfs_path *path;
1845 	struct btrfs_dir_item *di;
1846 	struct btrfs_key key;
1847 	u64 dir_id;
1848 	int ret;
1849 
1850 	path = btrfs_alloc_path();
1851 	if (!path)
1852 		return -ENOMEM;
1853 
1854 	/* Make sure this root isn't set as the default subvol */
1855 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1856 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1857 				   dir_id, "default", 7, 0);
1858 	if (di && !IS_ERR(di)) {
1859 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1860 		if (key.objectid == root->root_key.objectid) {
1861 			ret = -EPERM;
1862 			btrfs_err(root->fs_info, "deleting default subvolume "
1863 				  "%llu is not allowed", key.objectid);
1864 			goto out;
1865 		}
1866 		btrfs_release_path(path);
1867 	}
1868 
1869 	key.objectid = root->root_key.objectid;
1870 	key.type = BTRFS_ROOT_REF_KEY;
1871 	key.offset = (u64)-1;
1872 
1873 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1874 				&key, path, 0, 0);
1875 	if (ret < 0)
1876 		goto out;
1877 	BUG_ON(ret == 0);
1878 
1879 	ret = 0;
1880 	if (path->slots[0] > 0) {
1881 		path->slots[0]--;
1882 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1883 		if (key.objectid == root->root_key.objectid &&
1884 		    key.type == BTRFS_ROOT_REF_KEY)
1885 			ret = -ENOTEMPTY;
1886 	}
1887 out:
1888 	btrfs_free_path(path);
1889 	return ret;
1890 }
1891 
1892 static noinline int key_in_sk(struct btrfs_key *key,
1893 			      struct btrfs_ioctl_search_key *sk)
1894 {
1895 	struct btrfs_key test;
1896 	int ret;
1897 
1898 	test.objectid = sk->min_objectid;
1899 	test.type = sk->min_type;
1900 	test.offset = sk->min_offset;
1901 
1902 	ret = btrfs_comp_cpu_keys(key, &test);
1903 	if (ret < 0)
1904 		return 0;
1905 
1906 	test.objectid = sk->max_objectid;
1907 	test.type = sk->max_type;
1908 	test.offset = sk->max_offset;
1909 
1910 	ret = btrfs_comp_cpu_keys(key, &test);
1911 	if (ret > 0)
1912 		return 0;
1913 	return 1;
1914 }
1915 
1916 static noinline int copy_to_sk(struct btrfs_root *root,
1917 			       struct btrfs_path *path,
1918 			       struct btrfs_key *key,
1919 			       struct btrfs_ioctl_search_key *sk,
1920 			       size_t *buf_size,
1921 			       char __user *ubuf,
1922 			       unsigned long *sk_offset,
1923 			       int *num_found)
1924 {
1925 	u64 found_transid;
1926 	struct extent_buffer *leaf;
1927 	struct btrfs_ioctl_search_header sh;
1928 	unsigned long item_off;
1929 	unsigned long item_len;
1930 	int nritems;
1931 	int i;
1932 	int slot;
1933 	int ret = 0;
1934 
1935 	leaf = path->nodes[0];
1936 	slot = path->slots[0];
1937 	nritems = btrfs_header_nritems(leaf);
1938 
1939 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1940 		i = nritems;
1941 		goto advance_key;
1942 	}
1943 	found_transid = btrfs_header_generation(leaf);
1944 
1945 	for (i = slot; i < nritems; i++) {
1946 		item_off = btrfs_item_ptr_offset(leaf, i);
1947 		item_len = btrfs_item_size_nr(leaf, i);
1948 
1949 		btrfs_item_key_to_cpu(leaf, key, i);
1950 		if (!key_in_sk(key, sk))
1951 			continue;
1952 
1953 		if (sizeof(sh) + item_len > *buf_size) {
1954 			if (*num_found) {
1955 				ret = 1;
1956 				goto out;
1957 			}
1958 
1959 			/*
1960 			 * return one empty item back for v1, which does not
1961 			 * handle -EOVERFLOW
1962 			 */
1963 
1964 			*buf_size = sizeof(sh) + item_len;
1965 			item_len = 0;
1966 			ret = -EOVERFLOW;
1967 		}
1968 
1969 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1970 			ret = 1;
1971 			goto out;
1972 		}
1973 
1974 		sh.objectid = key->objectid;
1975 		sh.offset = key->offset;
1976 		sh.type = key->type;
1977 		sh.len = item_len;
1978 		sh.transid = found_transid;
1979 
1980 		/* copy search result header */
1981 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1982 			ret = -EFAULT;
1983 			goto out;
1984 		}
1985 
1986 		*sk_offset += sizeof(sh);
1987 
1988 		if (item_len) {
1989 			char __user *up = ubuf + *sk_offset;
1990 			/* copy the item */
1991 			if (read_extent_buffer_to_user(leaf, up,
1992 						       item_off, item_len)) {
1993 				ret = -EFAULT;
1994 				goto out;
1995 			}
1996 
1997 			*sk_offset += item_len;
1998 		}
1999 		(*num_found)++;
2000 
2001 		if (ret) /* -EOVERFLOW from above */
2002 			goto out;
2003 
2004 		if (*num_found >= sk->nr_items) {
2005 			ret = 1;
2006 			goto out;
2007 		}
2008 	}
2009 advance_key:
2010 	ret = 0;
2011 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2012 		key->offset++;
2013 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2014 		key->offset = 0;
2015 		key->type++;
2016 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2017 		key->offset = 0;
2018 		key->type = 0;
2019 		key->objectid++;
2020 	} else
2021 		ret = 1;
2022 out:
2023 	/*
2024 	 *  0: all items from this leaf copied, continue with next
2025 	 *  1: * more items can be copied, but unused buffer is too small
2026 	 *     * all items were found
2027 	 *     Either way, it will stops the loop which iterates to the next
2028 	 *     leaf
2029 	 *  -EOVERFLOW: item was to large for buffer
2030 	 *  -EFAULT: could not copy extent buffer back to userspace
2031 	 */
2032 	return ret;
2033 }
2034 
2035 static noinline int search_ioctl(struct inode *inode,
2036 				 struct btrfs_ioctl_search_key *sk,
2037 				 size_t *buf_size,
2038 				 char __user *ubuf)
2039 {
2040 	struct btrfs_root *root;
2041 	struct btrfs_key key;
2042 	struct btrfs_path *path;
2043 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2044 	int ret;
2045 	int num_found = 0;
2046 	unsigned long sk_offset = 0;
2047 
2048 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2049 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2050 		return -EOVERFLOW;
2051 	}
2052 
2053 	path = btrfs_alloc_path();
2054 	if (!path)
2055 		return -ENOMEM;
2056 
2057 	if (sk->tree_id == 0) {
2058 		/* search the root of the inode that was passed */
2059 		root = BTRFS_I(inode)->root;
2060 	} else {
2061 		key.objectid = sk->tree_id;
2062 		key.type = BTRFS_ROOT_ITEM_KEY;
2063 		key.offset = (u64)-1;
2064 		root = btrfs_read_fs_root_no_name(info, &key);
2065 		if (IS_ERR(root)) {
2066 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2067 			       sk->tree_id);
2068 			btrfs_free_path(path);
2069 			return -ENOENT;
2070 		}
2071 	}
2072 
2073 	key.objectid = sk->min_objectid;
2074 	key.type = sk->min_type;
2075 	key.offset = sk->min_offset;
2076 
2077 	while (1) {
2078 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2079 		if (ret != 0) {
2080 			if (ret > 0)
2081 				ret = 0;
2082 			goto err;
2083 		}
2084 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2085 				 &sk_offset, &num_found);
2086 		btrfs_release_path(path);
2087 		if (ret)
2088 			break;
2089 
2090 	}
2091 	if (ret > 0)
2092 		ret = 0;
2093 err:
2094 	sk->nr_items = num_found;
2095 	btrfs_free_path(path);
2096 	return ret;
2097 }
2098 
2099 static noinline int btrfs_ioctl_tree_search(struct file *file,
2100 					   void __user *argp)
2101 {
2102 	struct btrfs_ioctl_search_args __user *uargs;
2103 	struct btrfs_ioctl_search_key sk;
2104 	struct inode *inode;
2105 	int ret;
2106 	size_t buf_size;
2107 
2108 	if (!capable(CAP_SYS_ADMIN))
2109 		return -EPERM;
2110 
2111 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2112 
2113 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2114 		return -EFAULT;
2115 
2116 	buf_size = sizeof(uargs->buf);
2117 
2118 	inode = file_inode(file);
2119 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2120 
2121 	/*
2122 	 * In the origin implementation an overflow is handled by returning a
2123 	 * search header with a len of zero, so reset ret.
2124 	 */
2125 	if (ret == -EOVERFLOW)
2126 		ret = 0;
2127 
2128 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2129 		ret = -EFAULT;
2130 	return ret;
2131 }
2132 
2133 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2134 					       void __user *argp)
2135 {
2136 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2137 	struct btrfs_ioctl_search_args_v2 args;
2138 	struct inode *inode;
2139 	int ret;
2140 	size_t buf_size;
2141 	const size_t buf_limit = 16 * 1024 * 1024;
2142 
2143 	if (!capable(CAP_SYS_ADMIN))
2144 		return -EPERM;
2145 
2146 	/* copy search header and buffer size */
2147 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2148 	if (copy_from_user(&args, uarg, sizeof(args)))
2149 		return -EFAULT;
2150 
2151 	buf_size = args.buf_size;
2152 
2153 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2154 		return -EOVERFLOW;
2155 
2156 	/* limit result size to 16MB */
2157 	if (buf_size > buf_limit)
2158 		buf_size = buf_limit;
2159 
2160 	inode = file_inode(file);
2161 	ret = search_ioctl(inode, &args.key, &buf_size,
2162 			   (char *)(&uarg->buf[0]));
2163 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2164 		ret = -EFAULT;
2165 	else if (ret == -EOVERFLOW &&
2166 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2167 		ret = -EFAULT;
2168 
2169 	return ret;
2170 }
2171 
2172 /*
2173  * Search INODE_REFs to identify path name of 'dirid' directory
2174  * in a 'tree_id' tree. and sets path name to 'name'.
2175  */
2176 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2177 				u64 tree_id, u64 dirid, char *name)
2178 {
2179 	struct btrfs_root *root;
2180 	struct btrfs_key key;
2181 	char *ptr;
2182 	int ret = -1;
2183 	int slot;
2184 	int len;
2185 	int total_len = 0;
2186 	struct btrfs_inode_ref *iref;
2187 	struct extent_buffer *l;
2188 	struct btrfs_path *path;
2189 
2190 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2191 		name[0]='\0';
2192 		return 0;
2193 	}
2194 
2195 	path = btrfs_alloc_path();
2196 	if (!path)
2197 		return -ENOMEM;
2198 
2199 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2200 
2201 	key.objectid = tree_id;
2202 	key.type = BTRFS_ROOT_ITEM_KEY;
2203 	key.offset = (u64)-1;
2204 	root = btrfs_read_fs_root_no_name(info, &key);
2205 	if (IS_ERR(root)) {
2206 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2207 		ret = -ENOENT;
2208 		goto out;
2209 	}
2210 
2211 	key.objectid = dirid;
2212 	key.type = BTRFS_INODE_REF_KEY;
2213 	key.offset = (u64)-1;
2214 
2215 	while (1) {
2216 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2217 		if (ret < 0)
2218 			goto out;
2219 		else if (ret > 0) {
2220 			ret = btrfs_previous_item(root, path, dirid,
2221 						  BTRFS_INODE_REF_KEY);
2222 			if (ret < 0)
2223 				goto out;
2224 			else if (ret > 0) {
2225 				ret = -ENOENT;
2226 				goto out;
2227 			}
2228 		}
2229 
2230 		l = path->nodes[0];
2231 		slot = path->slots[0];
2232 		btrfs_item_key_to_cpu(l, &key, slot);
2233 
2234 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2235 		len = btrfs_inode_ref_name_len(l, iref);
2236 		ptr -= len + 1;
2237 		total_len += len + 1;
2238 		if (ptr < name) {
2239 			ret = -ENAMETOOLONG;
2240 			goto out;
2241 		}
2242 
2243 		*(ptr + len) = '/';
2244 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2245 
2246 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2247 			break;
2248 
2249 		btrfs_release_path(path);
2250 		key.objectid = key.offset;
2251 		key.offset = (u64)-1;
2252 		dirid = key.objectid;
2253 	}
2254 	memmove(name, ptr, total_len);
2255 	name[total_len] = '\0';
2256 	ret = 0;
2257 out:
2258 	btrfs_free_path(path);
2259 	return ret;
2260 }
2261 
2262 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2263 					   void __user *argp)
2264 {
2265 	 struct btrfs_ioctl_ino_lookup_args *args;
2266 	 struct inode *inode;
2267 	 int ret;
2268 
2269 	if (!capable(CAP_SYS_ADMIN))
2270 		return -EPERM;
2271 
2272 	args = memdup_user(argp, sizeof(*args));
2273 	if (IS_ERR(args))
2274 		return PTR_ERR(args);
2275 
2276 	inode = file_inode(file);
2277 
2278 	if (args->treeid == 0)
2279 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2280 
2281 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2282 					args->treeid, args->objectid,
2283 					args->name);
2284 
2285 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2286 		ret = -EFAULT;
2287 
2288 	kfree(args);
2289 	return ret;
2290 }
2291 
2292 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2293 					     void __user *arg)
2294 {
2295 	struct dentry *parent = file->f_path.dentry;
2296 	struct dentry *dentry;
2297 	struct inode *dir = parent->d_inode;
2298 	struct inode *inode;
2299 	struct btrfs_root *root = BTRFS_I(dir)->root;
2300 	struct btrfs_root *dest = NULL;
2301 	struct btrfs_ioctl_vol_args *vol_args;
2302 	struct btrfs_trans_handle *trans;
2303 	struct btrfs_block_rsv block_rsv;
2304 	u64 root_flags;
2305 	u64 qgroup_reserved;
2306 	int namelen;
2307 	int ret;
2308 	int err = 0;
2309 
2310 	vol_args = memdup_user(arg, sizeof(*vol_args));
2311 	if (IS_ERR(vol_args))
2312 		return PTR_ERR(vol_args);
2313 
2314 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2315 	namelen = strlen(vol_args->name);
2316 	if (strchr(vol_args->name, '/') ||
2317 	    strncmp(vol_args->name, "..", namelen) == 0) {
2318 		err = -EINVAL;
2319 		goto out;
2320 	}
2321 
2322 	err = mnt_want_write_file(file);
2323 	if (err)
2324 		goto out;
2325 
2326 
2327 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2328 	if (err == -EINTR)
2329 		goto out_drop_write;
2330 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2331 	if (IS_ERR(dentry)) {
2332 		err = PTR_ERR(dentry);
2333 		goto out_unlock_dir;
2334 	}
2335 
2336 	if (!dentry->d_inode) {
2337 		err = -ENOENT;
2338 		goto out_dput;
2339 	}
2340 
2341 	inode = dentry->d_inode;
2342 	dest = BTRFS_I(inode)->root;
2343 	if (!capable(CAP_SYS_ADMIN)) {
2344 		/*
2345 		 * Regular user.  Only allow this with a special mount
2346 		 * option, when the user has write+exec access to the
2347 		 * subvol root, and when rmdir(2) would have been
2348 		 * allowed.
2349 		 *
2350 		 * Note that this is _not_ check that the subvol is
2351 		 * empty or doesn't contain data that we wouldn't
2352 		 * otherwise be able to delete.
2353 		 *
2354 		 * Users who want to delete empty subvols should try
2355 		 * rmdir(2).
2356 		 */
2357 		err = -EPERM;
2358 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2359 			goto out_dput;
2360 
2361 		/*
2362 		 * Do not allow deletion if the parent dir is the same
2363 		 * as the dir to be deleted.  That means the ioctl
2364 		 * must be called on the dentry referencing the root
2365 		 * of the subvol, not a random directory contained
2366 		 * within it.
2367 		 */
2368 		err = -EINVAL;
2369 		if (root == dest)
2370 			goto out_dput;
2371 
2372 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2373 		if (err)
2374 			goto out_dput;
2375 	}
2376 
2377 	/* check if subvolume may be deleted by a user */
2378 	err = btrfs_may_delete(dir, dentry, 1);
2379 	if (err)
2380 		goto out_dput;
2381 
2382 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2383 		err = -EINVAL;
2384 		goto out_dput;
2385 	}
2386 
2387 	mutex_lock(&inode->i_mutex);
2388 
2389 	/*
2390 	 * Don't allow to delete a subvolume with send in progress. This is
2391 	 * inside the i_mutex so the error handling that has to drop the bit
2392 	 * again is not run concurrently.
2393 	 */
2394 	spin_lock(&dest->root_item_lock);
2395 	root_flags = btrfs_root_flags(&dest->root_item);
2396 	if (dest->send_in_progress == 0) {
2397 		btrfs_set_root_flags(&dest->root_item,
2398 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2399 		spin_unlock(&dest->root_item_lock);
2400 	} else {
2401 		spin_unlock(&dest->root_item_lock);
2402 		btrfs_warn(root->fs_info,
2403 			"Attempt to delete subvolume %llu during send",
2404 			dest->root_key.objectid);
2405 		err = -EPERM;
2406 		goto out_dput;
2407 	}
2408 
2409 	d_invalidate(dentry);
2410 
2411 	down_write(&root->fs_info->subvol_sem);
2412 
2413 	err = may_destroy_subvol(dest);
2414 	if (err)
2415 		goto out_up_write;
2416 
2417 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2418 	/*
2419 	 * One for dir inode, two for dir entries, two for root
2420 	 * ref/backref.
2421 	 */
2422 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2423 					       5, &qgroup_reserved, true);
2424 	if (err)
2425 		goto out_up_write;
2426 
2427 	trans = btrfs_start_transaction(root, 0);
2428 	if (IS_ERR(trans)) {
2429 		err = PTR_ERR(trans);
2430 		goto out_release;
2431 	}
2432 	trans->block_rsv = &block_rsv;
2433 	trans->bytes_reserved = block_rsv.size;
2434 
2435 	ret = btrfs_unlink_subvol(trans, root, dir,
2436 				dest->root_key.objectid,
2437 				dentry->d_name.name,
2438 				dentry->d_name.len);
2439 	if (ret) {
2440 		err = ret;
2441 		btrfs_abort_transaction(trans, root, ret);
2442 		goto out_end_trans;
2443 	}
2444 
2445 	btrfs_record_root_in_trans(trans, dest);
2446 
2447 	memset(&dest->root_item.drop_progress, 0,
2448 		sizeof(dest->root_item.drop_progress));
2449 	dest->root_item.drop_level = 0;
2450 	btrfs_set_root_refs(&dest->root_item, 0);
2451 
2452 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2453 		ret = btrfs_insert_orphan_item(trans,
2454 					root->fs_info->tree_root,
2455 					dest->root_key.objectid);
2456 		if (ret) {
2457 			btrfs_abort_transaction(trans, root, ret);
2458 			err = ret;
2459 			goto out_end_trans;
2460 		}
2461 	}
2462 
2463 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2464 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2465 				  dest->root_key.objectid);
2466 	if (ret && ret != -ENOENT) {
2467 		btrfs_abort_transaction(trans, root, ret);
2468 		err = ret;
2469 		goto out_end_trans;
2470 	}
2471 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2472 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2473 					  dest->root_item.received_uuid,
2474 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2475 					  dest->root_key.objectid);
2476 		if (ret && ret != -ENOENT) {
2477 			btrfs_abort_transaction(trans, root, ret);
2478 			err = ret;
2479 			goto out_end_trans;
2480 		}
2481 	}
2482 
2483 out_end_trans:
2484 	trans->block_rsv = NULL;
2485 	trans->bytes_reserved = 0;
2486 	ret = btrfs_end_transaction(trans, root);
2487 	if (ret && !err)
2488 		err = ret;
2489 	inode->i_flags |= S_DEAD;
2490 out_release:
2491 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2492 out_up_write:
2493 	up_write(&root->fs_info->subvol_sem);
2494 	if (err) {
2495 		spin_lock(&dest->root_item_lock);
2496 		root_flags = btrfs_root_flags(&dest->root_item);
2497 		btrfs_set_root_flags(&dest->root_item,
2498 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2499 		spin_unlock(&dest->root_item_lock);
2500 	}
2501 	mutex_unlock(&inode->i_mutex);
2502 	if (!err) {
2503 		shrink_dcache_sb(root->fs_info->sb);
2504 		btrfs_invalidate_inodes(dest);
2505 		d_delete(dentry);
2506 		ASSERT(dest->send_in_progress == 0);
2507 
2508 		/* the last ref */
2509 		if (dest->ino_cache_inode) {
2510 			iput(dest->ino_cache_inode);
2511 			dest->ino_cache_inode = NULL;
2512 		}
2513 	}
2514 out_dput:
2515 	dput(dentry);
2516 out_unlock_dir:
2517 	mutex_unlock(&dir->i_mutex);
2518 out_drop_write:
2519 	mnt_drop_write_file(file);
2520 out:
2521 	kfree(vol_args);
2522 	return err;
2523 }
2524 
2525 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2526 {
2527 	struct inode *inode = file_inode(file);
2528 	struct btrfs_root *root = BTRFS_I(inode)->root;
2529 	struct btrfs_ioctl_defrag_range_args *range;
2530 	int ret;
2531 
2532 	ret = mnt_want_write_file(file);
2533 	if (ret)
2534 		return ret;
2535 
2536 	if (btrfs_root_readonly(root)) {
2537 		ret = -EROFS;
2538 		goto out;
2539 	}
2540 
2541 	switch (inode->i_mode & S_IFMT) {
2542 	case S_IFDIR:
2543 		if (!capable(CAP_SYS_ADMIN)) {
2544 			ret = -EPERM;
2545 			goto out;
2546 		}
2547 		ret = btrfs_defrag_root(root);
2548 		if (ret)
2549 			goto out;
2550 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2551 		break;
2552 	case S_IFREG:
2553 		if (!(file->f_mode & FMODE_WRITE)) {
2554 			ret = -EINVAL;
2555 			goto out;
2556 		}
2557 
2558 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2559 		if (!range) {
2560 			ret = -ENOMEM;
2561 			goto out;
2562 		}
2563 
2564 		if (argp) {
2565 			if (copy_from_user(range, argp,
2566 					   sizeof(*range))) {
2567 				ret = -EFAULT;
2568 				kfree(range);
2569 				goto out;
2570 			}
2571 			/* compression requires us to start the IO */
2572 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2573 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2574 				range->extent_thresh = (u32)-1;
2575 			}
2576 		} else {
2577 			/* the rest are all set to zero by kzalloc */
2578 			range->len = (u64)-1;
2579 		}
2580 		ret = btrfs_defrag_file(file_inode(file), file,
2581 					range, 0, 0);
2582 		if (ret > 0)
2583 			ret = 0;
2584 		kfree(range);
2585 		break;
2586 	default:
2587 		ret = -EINVAL;
2588 	}
2589 out:
2590 	mnt_drop_write_file(file);
2591 	return ret;
2592 }
2593 
2594 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2595 {
2596 	struct btrfs_ioctl_vol_args *vol_args;
2597 	int ret;
2598 
2599 	if (!capable(CAP_SYS_ADMIN))
2600 		return -EPERM;
2601 
2602 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2603 			1)) {
2604 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2605 	}
2606 
2607 	mutex_lock(&root->fs_info->volume_mutex);
2608 	vol_args = memdup_user(arg, sizeof(*vol_args));
2609 	if (IS_ERR(vol_args)) {
2610 		ret = PTR_ERR(vol_args);
2611 		goto out;
2612 	}
2613 
2614 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2615 	ret = btrfs_init_new_device(root, vol_args->name);
2616 
2617 	if (!ret)
2618 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2619 
2620 	kfree(vol_args);
2621 out:
2622 	mutex_unlock(&root->fs_info->volume_mutex);
2623 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2624 	return ret;
2625 }
2626 
2627 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2628 {
2629 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2630 	struct btrfs_ioctl_vol_args *vol_args;
2631 	int ret;
2632 
2633 	if (!capable(CAP_SYS_ADMIN))
2634 		return -EPERM;
2635 
2636 	ret = mnt_want_write_file(file);
2637 	if (ret)
2638 		return ret;
2639 
2640 	vol_args = memdup_user(arg, sizeof(*vol_args));
2641 	if (IS_ERR(vol_args)) {
2642 		ret = PTR_ERR(vol_args);
2643 		goto err_drop;
2644 	}
2645 
2646 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2647 
2648 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2649 			1)) {
2650 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2651 		goto out;
2652 	}
2653 
2654 	mutex_lock(&root->fs_info->volume_mutex);
2655 	ret = btrfs_rm_device(root, vol_args->name);
2656 	mutex_unlock(&root->fs_info->volume_mutex);
2657 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2658 
2659 	if (!ret)
2660 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2661 
2662 out:
2663 	kfree(vol_args);
2664 err_drop:
2665 	mnt_drop_write_file(file);
2666 	return ret;
2667 }
2668 
2669 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2670 {
2671 	struct btrfs_ioctl_fs_info_args *fi_args;
2672 	struct btrfs_device *device;
2673 	struct btrfs_device *next;
2674 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2675 	int ret = 0;
2676 
2677 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2678 	if (!fi_args)
2679 		return -ENOMEM;
2680 
2681 	mutex_lock(&fs_devices->device_list_mutex);
2682 	fi_args->num_devices = fs_devices->num_devices;
2683 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2684 
2685 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2686 		if (device->devid > fi_args->max_id)
2687 			fi_args->max_id = device->devid;
2688 	}
2689 	mutex_unlock(&fs_devices->device_list_mutex);
2690 
2691 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2692 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2693 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2694 
2695 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2696 		ret = -EFAULT;
2697 
2698 	kfree(fi_args);
2699 	return ret;
2700 }
2701 
2702 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2703 {
2704 	struct btrfs_ioctl_dev_info_args *di_args;
2705 	struct btrfs_device *dev;
2706 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2707 	int ret = 0;
2708 	char *s_uuid = NULL;
2709 
2710 	di_args = memdup_user(arg, sizeof(*di_args));
2711 	if (IS_ERR(di_args))
2712 		return PTR_ERR(di_args);
2713 
2714 	if (!btrfs_is_empty_uuid(di_args->uuid))
2715 		s_uuid = di_args->uuid;
2716 
2717 	mutex_lock(&fs_devices->device_list_mutex);
2718 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2719 
2720 	if (!dev) {
2721 		ret = -ENODEV;
2722 		goto out;
2723 	}
2724 
2725 	di_args->devid = dev->devid;
2726 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2727 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2728 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2729 	if (dev->name) {
2730 		struct rcu_string *name;
2731 
2732 		rcu_read_lock();
2733 		name = rcu_dereference(dev->name);
2734 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2735 		rcu_read_unlock();
2736 		di_args->path[sizeof(di_args->path) - 1] = 0;
2737 	} else {
2738 		di_args->path[0] = '\0';
2739 	}
2740 
2741 out:
2742 	mutex_unlock(&fs_devices->device_list_mutex);
2743 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2744 		ret = -EFAULT;
2745 
2746 	kfree(di_args);
2747 	return ret;
2748 }
2749 
2750 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2751 {
2752 	struct page *page;
2753 	pgoff_t index;
2754 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2755 
2756 	index = off >> PAGE_CACHE_SHIFT;
2757 
2758 	page = grab_cache_page(inode->i_mapping, index);
2759 	if (!page)
2760 		return NULL;
2761 
2762 	if (!PageUptodate(page)) {
2763 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2764 						 0))
2765 			return NULL;
2766 		lock_page(page);
2767 		if (!PageUptodate(page)) {
2768 			unlock_page(page);
2769 			page_cache_release(page);
2770 			return NULL;
2771 		}
2772 	}
2773 	unlock_page(page);
2774 
2775 	return page;
2776 }
2777 
2778 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2779 {
2780 	/* do any pending delalloc/csum calc on src, one way or
2781 	   another, and lock file content */
2782 	while (1) {
2783 		struct btrfs_ordered_extent *ordered;
2784 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2785 		ordered = btrfs_lookup_first_ordered_extent(inode,
2786 							    off + len - 1);
2787 		if ((!ordered ||
2788 		     ordered->file_offset + ordered->len <= off ||
2789 		     ordered->file_offset >= off + len) &&
2790 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2791 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2792 			if (ordered)
2793 				btrfs_put_ordered_extent(ordered);
2794 			break;
2795 		}
2796 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2797 		if (ordered)
2798 			btrfs_put_ordered_extent(ordered);
2799 		btrfs_wait_ordered_range(inode, off, len);
2800 	}
2801 }
2802 
2803 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2804 				struct inode *inode2, u64 loff2, u64 len)
2805 {
2806 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2807 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2808 
2809 	mutex_unlock(&inode1->i_mutex);
2810 	mutex_unlock(&inode2->i_mutex);
2811 }
2812 
2813 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2814 			      struct inode *inode2, u64 loff2, u64 len)
2815 {
2816 	if (inode1 < inode2) {
2817 		swap(inode1, inode2);
2818 		swap(loff1, loff2);
2819 	}
2820 
2821 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2822 	lock_extent_range(inode1, loff1, len);
2823 	if (inode1 != inode2) {
2824 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2825 		lock_extent_range(inode2, loff2, len);
2826 	}
2827 }
2828 
2829 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2830 			  u64 dst_loff, u64 len)
2831 {
2832 	int ret = 0;
2833 	struct page *src_page, *dst_page;
2834 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2835 	void *addr, *dst_addr;
2836 
2837 	while (len) {
2838 		if (len < PAGE_CACHE_SIZE)
2839 			cmp_len = len;
2840 
2841 		src_page = extent_same_get_page(src, loff);
2842 		if (!src_page)
2843 			return -EINVAL;
2844 		dst_page = extent_same_get_page(dst, dst_loff);
2845 		if (!dst_page) {
2846 			page_cache_release(src_page);
2847 			return -EINVAL;
2848 		}
2849 		addr = kmap_atomic(src_page);
2850 		dst_addr = kmap_atomic(dst_page);
2851 
2852 		flush_dcache_page(src_page);
2853 		flush_dcache_page(dst_page);
2854 
2855 		if (memcmp(addr, dst_addr, cmp_len))
2856 			ret = BTRFS_SAME_DATA_DIFFERS;
2857 
2858 		kunmap_atomic(addr);
2859 		kunmap_atomic(dst_addr);
2860 		page_cache_release(src_page);
2861 		page_cache_release(dst_page);
2862 
2863 		if (ret)
2864 			break;
2865 
2866 		loff += cmp_len;
2867 		dst_loff += cmp_len;
2868 		len -= cmp_len;
2869 	}
2870 
2871 	return ret;
2872 }
2873 
2874 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2875 {
2876 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2877 
2878 	if (off + len > inode->i_size || off + len < off)
2879 		return -EINVAL;
2880 	/* Check that we are block aligned - btrfs_clone() requires this */
2881 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2882 		return -EINVAL;
2883 
2884 	return 0;
2885 }
2886 
2887 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2888 			     struct inode *dst, u64 dst_loff)
2889 {
2890 	int ret;
2891 
2892 	/*
2893 	 * btrfs_clone() can't handle extents in the same file
2894 	 * yet. Once that works, we can drop this check and replace it
2895 	 * with a check for the same inode, but overlapping extents.
2896 	 */
2897 	if (src == dst)
2898 		return -EINVAL;
2899 
2900 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2901 
2902 	ret = extent_same_check_offsets(src, loff, len);
2903 	if (ret)
2904 		goto out_unlock;
2905 
2906 	ret = extent_same_check_offsets(dst, dst_loff, len);
2907 	if (ret)
2908 		goto out_unlock;
2909 
2910 	/* don't make the dst file partly checksummed */
2911 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2912 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2913 		ret = -EINVAL;
2914 		goto out_unlock;
2915 	}
2916 
2917 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2918 	if (ret == 0)
2919 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2920 
2921 out_unlock:
2922 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2923 
2924 	return ret;
2925 }
2926 
2927 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2928 
2929 static long btrfs_ioctl_file_extent_same(struct file *file,
2930 			struct btrfs_ioctl_same_args __user *argp)
2931 {
2932 	struct btrfs_ioctl_same_args *same;
2933 	struct btrfs_ioctl_same_extent_info *info;
2934 	struct inode *src = file_inode(file);
2935 	u64 off;
2936 	u64 len;
2937 	int i;
2938 	int ret;
2939 	unsigned long size;
2940 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2941 	bool is_admin = capable(CAP_SYS_ADMIN);
2942 	u16 count;
2943 
2944 	if (!(file->f_mode & FMODE_READ))
2945 		return -EINVAL;
2946 
2947 	ret = mnt_want_write_file(file);
2948 	if (ret)
2949 		return ret;
2950 
2951 	if (get_user(count, &argp->dest_count)) {
2952 		ret = -EFAULT;
2953 		goto out;
2954 	}
2955 
2956 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2957 
2958 	same = memdup_user(argp, size);
2959 
2960 	if (IS_ERR(same)) {
2961 		ret = PTR_ERR(same);
2962 		goto out;
2963 	}
2964 
2965 	off = same->logical_offset;
2966 	len = same->length;
2967 
2968 	/*
2969 	 * Limit the total length we will dedupe for each operation.
2970 	 * This is intended to bound the total time spent in this
2971 	 * ioctl to something sane.
2972 	 */
2973 	if (len > BTRFS_MAX_DEDUPE_LEN)
2974 		len = BTRFS_MAX_DEDUPE_LEN;
2975 
2976 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2977 		/*
2978 		 * Btrfs does not support blocksize < page_size. As a
2979 		 * result, btrfs_cmp_data() won't correctly handle
2980 		 * this situation without an update.
2981 		 */
2982 		ret = -EINVAL;
2983 		goto out;
2984 	}
2985 
2986 	ret = -EISDIR;
2987 	if (S_ISDIR(src->i_mode))
2988 		goto out;
2989 
2990 	ret = -EACCES;
2991 	if (!S_ISREG(src->i_mode))
2992 		goto out;
2993 
2994 	/* pre-format output fields to sane values */
2995 	for (i = 0; i < count; i++) {
2996 		same->info[i].bytes_deduped = 0ULL;
2997 		same->info[i].status = 0;
2998 	}
2999 
3000 	for (i = 0, info = same->info; i < count; i++, info++) {
3001 		struct inode *dst;
3002 		struct fd dst_file = fdget(info->fd);
3003 		if (!dst_file.file) {
3004 			info->status = -EBADF;
3005 			continue;
3006 		}
3007 		dst = file_inode(dst_file.file);
3008 
3009 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3010 			info->status = -EINVAL;
3011 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3012 			info->status = -EXDEV;
3013 		} else if (S_ISDIR(dst->i_mode)) {
3014 			info->status = -EISDIR;
3015 		} else if (!S_ISREG(dst->i_mode)) {
3016 			info->status = -EACCES;
3017 		} else {
3018 			info->status = btrfs_extent_same(src, off, len, dst,
3019 							info->logical_offset);
3020 			if (info->status == 0)
3021 				info->bytes_deduped += len;
3022 		}
3023 		fdput(dst_file);
3024 	}
3025 
3026 	ret = copy_to_user(argp, same, size);
3027 	if (ret)
3028 		ret = -EFAULT;
3029 
3030 out:
3031 	mnt_drop_write_file(file);
3032 	return ret;
3033 }
3034 
3035 /* Helper to check and see if this root currently has a ref on the given disk
3036  * bytenr.  If it does then we need to update the quota for this root.  This
3037  * doesn't do anything if quotas aren't enabled.
3038  */
3039 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3040 		     u64 disko)
3041 {
3042 	struct seq_list tree_mod_seq_elem = {};
3043 	struct ulist *roots;
3044 	struct ulist_iterator uiter;
3045 	struct ulist_node *root_node = NULL;
3046 	int ret;
3047 
3048 	if (!root->fs_info->quota_enabled)
3049 		return 1;
3050 
3051 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3052 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3053 				   tree_mod_seq_elem.seq, &roots);
3054 	if (ret < 0)
3055 		goto out;
3056 	ret = 0;
3057 	ULIST_ITER_INIT(&uiter);
3058 	while ((root_node = ulist_next(roots, &uiter))) {
3059 		if (root_node->val == root->objectid) {
3060 			ret = 1;
3061 			break;
3062 		}
3063 	}
3064 	ulist_free(roots);
3065 out:
3066 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3067 	return ret;
3068 }
3069 
3070 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3071 				     struct inode *inode,
3072 				     u64 endoff,
3073 				     const u64 destoff,
3074 				     const u64 olen)
3075 {
3076 	struct btrfs_root *root = BTRFS_I(inode)->root;
3077 	int ret;
3078 
3079 	inode_inc_iversion(inode);
3080 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3081 	/*
3082 	 * We round up to the block size at eof when determining which
3083 	 * extents to clone above, but shouldn't round up the file size.
3084 	 */
3085 	if (endoff > destoff + olen)
3086 		endoff = destoff + olen;
3087 	if (endoff > inode->i_size)
3088 		btrfs_i_size_write(inode, endoff);
3089 
3090 	ret = btrfs_update_inode(trans, root, inode);
3091 	if (ret) {
3092 		btrfs_abort_transaction(trans, root, ret);
3093 		btrfs_end_transaction(trans, root);
3094 		goto out;
3095 	}
3096 	ret = btrfs_end_transaction(trans, root);
3097 out:
3098 	return ret;
3099 }
3100 
3101 static void clone_update_extent_map(struct inode *inode,
3102 				    const struct btrfs_trans_handle *trans,
3103 				    const struct btrfs_path *path,
3104 				    const u64 hole_offset,
3105 				    const u64 hole_len)
3106 {
3107 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3108 	struct extent_map *em;
3109 	int ret;
3110 
3111 	em = alloc_extent_map();
3112 	if (!em) {
3113 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3114 			&BTRFS_I(inode)->runtime_flags);
3115 		return;
3116 	}
3117 
3118 	if (path) {
3119 		struct btrfs_file_extent_item *fi;
3120 
3121 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3122 				    struct btrfs_file_extent_item);
3123 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3124 		em->generation = -1;
3125 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3126 		    BTRFS_FILE_EXTENT_INLINE)
3127 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3128 				&BTRFS_I(inode)->runtime_flags);
3129 	} else {
3130 		em->start = hole_offset;
3131 		em->len = hole_len;
3132 		em->ram_bytes = em->len;
3133 		em->orig_start = hole_offset;
3134 		em->block_start = EXTENT_MAP_HOLE;
3135 		em->block_len = 0;
3136 		em->orig_block_len = 0;
3137 		em->compress_type = BTRFS_COMPRESS_NONE;
3138 		em->generation = trans->transid;
3139 	}
3140 
3141 	while (1) {
3142 		write_lock(&em_tree->lock);
3143 		ret = add_extent_mapping(em_tree, em, 1);
3144 		write_unlock(&em_tree->lock);
3145 		if (ret != -EEXIST) {
3146 			free_extent_map(em);
3147 			break;
3148 		}
3149 		btrfs_drop_extent_cache(inode, em->start,
3150 					em->start + em->len - 1, 0);
3151 	}
3152 
3153 	if (ret)
3154 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3155 			&BTRFS_I(inode)->runtime_flags);
3156 }
3157 
3158 /**
3159  * btrfs_clone() - clone a range from inode file to another
3160  *
3161  * @src: Inode to clone from
3162  * @inode: Inode to clone to
3163  * @off: Offset within source to start clone from
3164  * @olen: Original length, passed by user, of range to clone
3165  * @olen_aligned: Block-aligned value of olen, extent_same uses
3166  *               identical values here
3167  * @destoff: Offset within @inode to start clone
3168  */
3169 static int btrfs_clone(struct inode *src, struct inode *inode,
3170 		       const u64 off, const u64 olen, const u64 olen_aligned,
3171 		       const u64 destoff)
3172 {
3173 	struct btrfs_root *root = BTRFS_I(inode)->root;
3174 	struct btrfs_path *path = NULL;
3175 	struct extent_buffer *leaf;
3176 	struct btrfs_trans_handle *trans;
3177 	char *buf = NULL;
3178 	struct btrfs_key key;
3179 	u32 nritems;
3180 	int slot;
3181 	int ret;
3182 	int no_quota;
3183 	const u64 len = olen_aligned;
3184 	u64 last_disko = 0;
3185 	u64 last_dest_end = destoff;
3186 
3187 	ret = -ENOMEM;
3188 	buf = vmalloc(root->nodesize);
3189 	if (!buf)
3190 		return ret;
3191 
3192 	path = btrfs_alloc_path();
3193 	if (!path) {
3194 		vfree(buf);
3195 		return ret;
3196 	}
3197 
3198 	path->reada = 2;
3199 	/* clone data */
3200 	key.objectid = btrfs_ino(src);
3201 	key.type = BTRFS_EXTENT_DATA_KEY;
3202 	key.offset = off;
3203 
3204 	while (1) {
3205 		/*
3206 		 * note the key will change type as we walk through the
3207 		 * tree.
3208 		 */
3209 		path->leave_spinning = 1;
3210 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3211 				0, 0);
3212 		if (ret < 0)
3213 			goto out;
3214 		/*
3215 		 * First search, if no extent item that starts at offset off was
3216 		 * found but the previous item is an extent item, it's possible
3217 		 * it might overlap our target range, therefore process it.
3218 		 */
3219 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3220 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3221 					      path->slots[0] - 1);
3222 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3223 				path->slots[0]--;
3224 		}
3225 
3226 		nritems = btrfs_header_nritems(path->nodes[0]);
3227 process_slot:
3228 		no_quota = 1;
3229 		if (path->slots[0] >= nritems) {
3230 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3231 			if (ret < 0)
3232 				goto out;
3233 			if (ret > 0)
3234 				break;
3235 			nritems = btrfs_header_nritems(path->nodes[0]);
3236 		}
3237 		leaf = path->nodes[0];
3238 		slot = path->slots[0];
3239 
3240 		btrfs_item_key_to_cpu(leaf, &key, slot);
3241 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3242 		    key.objectid != btrfs_ino(src))
3243 			break;
3244 
3245 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3246 			struct btrfs_file_extent_item *extent;
3247 			int type;
3248 			u32 size;
3249 			struct btrfs_key new_key;
3250 			u64 disko = 0, diskl = 0;
3251 			u64 datao = 0, datal = 0;
3252 			u8 comp;
3253 			u64 drop_start;
3254 
3255 			extent = btrfs_item_ptr(leaf, slot,
3256 						struct btrfs_file_extent_item);
3257 			comp = btrfs_file_extent_compression(leaf, extent);
3258 			type = btrfs_file_extent_type(leaf, extent);
3259 			if (type == BTRFS_FILE_EXTENT_REG ||
3260 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3261 				disko = btrfs_file_extent_disk_bytenr(leaf,
3262 								      extent);
3263 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3264 								 extent);
3265 				datao = btrfs_file_extent_offset(leaf, extent);
3266 				datal = btrfs_file_extent_num_bytes(leaf,
3267 								    extent);
3268 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3269 				/* take upper bound, may be compressed */
3270 				datal = btrfs_file_extent_ram_bytes(leaf,
3271 								    extent);
3272 			}
3273 
3274 			/*
3275 			 * The first search might have left us at an extent
3276 			 * item that ends before our target range's start, can
3277 			 * happen if we have holes and NO_HOLES feature enabled.
3278 			 */
3279 			if (key.offset + datal <= off) {
3280 				path->slots[0]++;
3281 				goto process_slot;
3282 			} else if (key.offset >= off + len) {
3283 				break;
3284 			}
3285 
3286 			size = btrfs_item_size_nr(leaf, slot);
3287 			read_extent_buffer(leaf, buf,
3288 					   btrfs_item_ptr_offset(leaf, slot),
3289 					   size);
3290 
3291 			btrfs_release_path(path);
3292 			path->leave_spinning = 0;
3293 
3294 			memcpy(&new_key, &key, sizeof(new_key));
3295 			new_key.objectid = btrfs_ino(inode);
3296 			if (off <= key.offset)
3297 				new_key.offset = key.offset + destoff - off;
3298 			else
3299 				new_key.offset = destoff;
3300 
3301 			/*
3302 			 * Deal with a hole that doesn't have an extent item
3303 			 * that represents it (NO_HOLES feature enabled).
3304 			 * This hole is either in the middle of the cloning
3305 			 * range or at the beginning (fully overlaps it or
3306 			 * partially overlaps it).
3307 			 */
3308 			if (new_key.offset != last_dest_end)
3309 				drop_start = last_dest_end;
3310 			else
3311 				drop_start = new_key.offset;
3312 
3313 			/*
3314 			 * 1 - adjusting old extent (we may have to split it)
3315 			 * 1 - add new extent
3316 			 * 1 - inode update
3317 			 */
3318 			trans = btrfs_start_transaction(root, 3);
3319 			if (IS_ERR(trans)) {
3320 				ret = PTR_ERR(trans);
3321 				goto out;
3322 			}
3323 
3324 			if (type == BTRFS_FILE_EXTENT_REG ||
3325 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3326 				/*
3327 				 *    a  | --- range to clone ---|  b
3328 				 * | ------------- extent ------------- |
3329 				 */
3330 
3331 				/* subtract range b */
3332 				if (key.offset + datal > off + len)
3333 					datal = off + len - key.offset;
3334 
3335 				/* subtract range a */
3336 				if (off > key.offset) {
3337 					datao += off - key.offset;
3338 					datal -= off - key.offset;
3339 				}
3340 
3341 				ret = btrfs_drop_extents(trans, root, inode,
3342 							 drop_start,
3343 							 new_key.offset + datal,
3344 							 1);
3345 				if (ret) {
3346 					if (ret != -EOPNOTSUPP)
3347 						btrfs_abort_transaction(trans,
3348 								root, ret);
3349 					btrfs_end_transaction(trans, root);
3350 					goto out;
3351 				}
3352 
3353 				ret = btrfs_insert_empty_item(trans, root, path,
3354 							      &new_key, size);
3355 				if (ret) {
3356 					btrfs_abort_transaction(trans, root,
3357 								ret);
3358 					btrfs_end_transaction(trans, root);
3359 					goto out;
3360 				}
3361 
3362 				leaf = path->nodes[0];
3363 				slot = path->slots[0];
3364 				write_extent_buffer(leaf, buf,
3365 					    btrfs_item_ptr_offset(leaf, slot),
3366 					    size);
3367 
3368 				extent = btrfs_item_ptr(leaf, slot,
3369 						struct btrfs_file_extent_item);
3370 
3371 				/* disko == 0 means it's a hole */
3372 				if (!disko)
3373 					datao = 0;
3374 
3375 				btrfs_set_file_extent_offset(leaf, extent,
3376 							     datao);
3377 				btrfs_set_file_extent_num_bytes(leaf, extent,
3378 								datal);
3379 
3380 				/*
3381 				 * We need to look up the roots that point at
3382 				 * this bytenr and see if the new root does.  If
3383 				 * it does not we need to make sure we update
3384 				 * quotas appropriately.
3385 				 */
3386 				if (disko && root != BTRFS_I(src)->root &&
3387 				    disko != last_disko) {
3388 					no_quota = check_ref(trans, root,
3389 							     disko);
3390 					if (no_quota < 0) {
3391 						btrfs_abort_transaction(trans,
3392 									root,
3393 									ret);
3394 						btrfs_end_transaction(trans,
3395 								      root);
3396 						ret = no_quota;
3397 						goto out;
3398 					}
3399 				}
3400 
3401 				if (disko) {
3402 					inode_add_bytes(inode, datal);
3403 					ret = btrfs_inc_extent_ref(trans, root,
3404 							disko, diskl, 0,
3405 							root->root_key.objectid,
3406 							btrfs_ino(inode),
3407 							new_key.offset - datao,
3408 							no_quota);
3409 					if (ret) {
3410 						btrfs_abort_transaction(trans,
3411 									root,
3412 									ret);
3413 						btrfs_end_transaction(trans,
3414 								      root);
3415 						goto out;
3416 
3417 					}
3418 				}
3419 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3420 				u64 skip = 0;
3421 				u64 trim = 0;
3422 				u64 aligned_end = 0;
3423 
3424 				if (off > key.offset) {
3425 					skip = off - key.offset;
3426 					new_key.offset += skip;
3427 				}
3428 
3429 				if (key.offset + datal > off + len)
3430 					trim = key.offset + datal - (off + len);
3431 
3432 				if (comp && (skip || trim)) {
3433 					ret = -EINVAL;
3434 					btrfs_end_transaction(trans, root);
3435 					goto out;
3436 				}
3437 				size -= skip + trim;
3438 				datal -= skip + trim;
3439 
3440 				aligned_end = ALIGN(new_key.offset + datal,
3441 						    root->sectorsize);
3442 				ret = btrfs_drop_extents(trans, root, inode,
3443 							 drop_start,
3444 							 aligned_end,
3445 							 1);
3446 				if (ret) {
3447 					if (ret != -EOPNOTSUPP)
3448 						btrfs_abort_transaction(trans,
3449 							root, ret);
3450 					btrfs_end_transaction(trans, root);
3451 					goto out;
3452 				}
3453 
3454 				ret = btrfs_insert_empty_item(trans, root, path,
3455 							      &new_key, size);
3456 				if (ret) {
3457 					btrfs_abort_transaction(trans, root,
3458 								ret);
3459 					btrfs_end_transaction(trans, root);
3460 					goto out;
3461 				}
3462 
3463 				if (skip) {
3464 					u32 start =
3465 					  btrfs_file_extent_calc_inline_size(0);
3466 					memmove(buf+start, buf+start+skip,
3467 						datal);
3468 				}
3469 
3470 				leaf = path->nodes[0];
3471 				slot = path->slots[0];
3472 				write_extent_buffer(leaf, buf,
3473 					    btrfs_item_ptr_offset(leaf, slot),
3474 					    size);
3475 				inode_add_bytes(inode, datal);
3476 			}
3477 
3478 			/* If we have an implicit hole (NO_HOLES feature). */
3479 			if (drop_start < new_key.offset)
3480 				clone_update_extent_map(inode, trans,
3481 						NULL, drop_start,
3482 						new_key.offset - drop_start);
3483 
3484 			clone_update_extent_map(inode, trans, path, 0, 0);
3485 
3486 			btrfs_mark_buffer_dirty(leaf);
3487 			btrfs_release_path(path);
3488 
3489 			last_dest_end = ALIGN(new_key.offset + datal,
3490 					      root->sectorsize);
3491 			ret = clone_finish_inode_update(trans, inode,
3492 							last_dest_end,
3493 							destoff, olen);
3494 			if (ret)
3495 				goto out;
3496 			if (new_key.offset + datal >= destoff + len)
3497 				break;
3498 		}
3499 		btrfs_release_path(path);
3500 		key.offset++;
3501 	}
3502 	ret = 0;
3503 
3504 	if (last_dest_end < destoff + len) {
3505 		/*
3506 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3507 		 * fully or partially overlaps our cloning range at its end.
3508 		 */
3509 		btrfs_release_path(path);
3510 
3511 		/*
3512 		 * 1 - remove extent(s)
3513 		 * 1 - inode update
3514 		 */
3515 		trans = btrfs_start_transaction(root, 2);
3516 		if (IS_ERR(trans)) {
3517 			ret = PTR_ERR(trans);
3518 			goto out;
3519 		}
3520 		ret = btrfs_drop_extents(trans, root, inode,
3521 					 last_dest_end, destoff + len, 1);
3522 		if (ret) {
3523 			if (ret != -EOPNOTSUPP)
3524 				btrfs_abort_transaction(trans, root, ret);
3525 			btrfs_end_transaction(trans, root);
3526 			goto out;
3527 		}
3528 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3529 					destoff + len - last_dest_end);
3530 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3531 						destoff, olen);
3532 	}
3533 
3534 out:
3535 	btrfs_free_path(path);
3536 	vfree(buf);
3537 	return ret;
3538 }
3539 
3540 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3541 				       u64 off, u64 olen, u64 destoff)
3542 {
3543 	struct inode *inode = file_inode(file);
3544 	struct btrfs_root *root = BTRFS_I(inode)->root;
3545 	struct fd src_file;
3546 	struct inode *src;
3547 	int ret;
3548 	u64 len = olen;
3549 	u64 bs = root->fs_info->sb->s_blocksize;
3550 	int same_inode = 0;
3551 
3552 	/*
3553 	 * TODO:
3554 	 * - split compressed inline extents.  annoying: we need to
3555 	 *   decompress into destination's address_space (the file offset
3556 	 *   may change, so source mapping won't do), then recompress (or
3557 	 *   otherwise reinsert) a subrange.
3558 	 *
3559 	 * - split destination inode's inline extents.  The inline extents can
3560 	 *   be either compressed or non-compressed.
3561 	 */
3562 
3563 	/* the destination must be opened for writing */
3564 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3565 		return -EINVAL;
3566 
3567 	if (btrfs_root_readonly(root))
3568 		return -EROFS;
3569 
3570 	ret = mnt_want_write_file(file);
3571 	if (ret)
3572 		return ret;
3573 
3574 	src_file = fdget(srcfd);
3575 	if (!src_file.file) {
3576 		ret = -EBADF;
3577 		goto out_drop_write;
3578 	}
3579 
3580 	ret = -EXDEV;
3581 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3582 		goto out_fput;
3583 
3584 	src = file_inode(src_file.file);
3585 
3586 	ret = -EINVAL;
3587 	if (src == inode)
3588 		same_inode = 1;
3589 
3590 	/* the src must be open for reading */
3591 	if (!(src_file.file->f_mode & FMODE_READ))
3592 		goto out_fput;
3593 
3594 	/* don't make the dst file partly checksummed */
3595 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3596 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3597 		goto out_fput;
3598 
3599 	ret = -EISDIR;
3600 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3601 		goto out_fput;
3602 
3603 	ret = -EXDEV;
3604 	if (src->i_sb != inode->i_sb)
3605 		goto out_fput;
3606 
3607 	if (!same_inode) {
3608 		if (inode < src) {
3609 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3610 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3611 		} else {
3612 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3613 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3614 		}
3615 	} else {
3616 		mutex_lock(&src->i_mutex);
3617 	}
3618 
3619 	/* determine range to clone */
3620 	ret = -EINVAL;
3621 	if (off + len > src->i_size || off + len < off)
3622 		goto out_unlock;
3623 	if (len == 0)
3624 		olen = len = src->i_size - off;
3625 	/* if we extend to eof, continue to block boundary */
3626 	if (off + len == src->i_size)
3627 		len = ALIGN(src->i_size, bs) - off;
3628 
3629 	/* verify the end result is block aligned */
3630 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3631 	    !IS_ALIGNED(destoff, bs))
3632 		goto out_unlock;
3633 
3634 	/* verify if ranges are overlapped within the same file */
3635 	if (same_inode) {
3636 		if (destoff + len > off && destoff < off + len)
3637 			goto out_unlock;
3638 	}
3639 
3640 	if (destoff > inode->i_size) {
3641 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3642 		if (ret)
3643 			goto out_unlock;
3644 	}
3645 
3646 	/*
3647 	 * Lock the target range too. Right after we replace the file extent
3648 	 * items in the fs tree (which now point to the cloned data), we might
3649 	 * have a worker replace them with extent items relative to a write
3650 	 * operation that was issued before this clone operation (i.e. confront
3651 	 * with inode.c:btrfs_finish_ordered_io).
3652 	 */
3653 	if (same_inode) {
3654 		u64 lock_start = min_t(u64, off, destoff);
3655 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3656 
3657 		lock_extent_range(src, lock_start, lock_len);
3658 	} else {
3659 		lock_extent_range(src, off, len);
3660 		lock_extent_range(inode, destoff, len);
3661 	}
3662 
3663 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3664 
3665 	if (same_inode) {
3666 		u64 lock_start = min_t(u64, off, destoff);
3667 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3668 
3669 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3670 	} else {
3671 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3672 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3673 			      destoff + len - 1);
3674 	}
3675 	/*
3676 	 * Truncate page cache pages so that future reads will see the cloned
3677 	 * data immediately and not the previous data.
3678 	 */
3679 	truncate_inode_pages_range(&inode->i_data, destoff,
3680 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3681 out_unlock:
3682 	if (!same_inode) {
3683 		if (inode < src) {
3684 			mutex_unlock(&src->i_mutex);
3685 			mutex_unlock(&inode->i_mutex);
3686 		} else {
3687 			mutex_unlock(&inode->i_mutex);
3688 			mutex_unlock(&src->i_mutex);
3689 		}
3690 	} else {
3691 		mutex_unlock(&src->i_mutex);
3692 	}
3693 out_fput:
3694 	fdput(src_file);
3695 out_drop_write:
3696 	mnt_drop_write_file(file);
3697 	return ret;
3698 }
3699 
3700 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3701 {
3702 	struct btrfs_ioctl_clone_range_args args;
3703 
3704 	if (copy_from_user(&args, argp, sizeof(args)))
3705 		return -EFAULT;
3706 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3707 				 args.src_length, args.dest_offset);
3708 }
3709 
3710 /*
3711  * there are many ways the trans_start and trans_end ioctls can lead
3712  * to deadlocks.  They should only be used by applications that
3713  * basically own the machine, and have a very in depth understanding
3714  * of all the possible deadlocks and enospc problems.
3715  */
3716 static long btrfs_ioctl_trans_start(struct file *file)
3717 {
3718 	struct inode *inode = file_inode(file);
3719 	struct btrfs_root *root = BTRFS_I(inode)->root;
3720 	struct btrfs_trans_handle *trans;
3721 	int ret;
3722 
3723 	ret = -EPERM;
3724 	if (!capable(CAP_SYS_ADMIN))
3725 		goto out;
3726 
3727 	ret = -EINPROGRESS;
3728 	if (file->private_data)
3729 		goto out;
3730 
3731 	ret = -EROFS;
3732 	if (btrfs_root_readonly(root))
3733 		goto out;
3734 
3735 	ret = mnt_want_write_file(file);
3736 	if (ret)
3737 		goto out;
3738 
3739 	atomic_inc(&root->fs_info->open_ioctl_trans);
3740 
3741 	ret = -ENOMEM;
3742 	trans = btrfs_start_ioctl_transaction(root);
3743 	if (IS_ERR(trans))
3744 		goto out_drop;
3745 
3746 	file->private_data = trans;
3747 	return 0;
3748 
3749 out_drop:
3750 	atomic_dec(&root->fs_info->open_ioctl_trans);
3751 	mnt_drop_write_file(file);
3752 out:
3753 	return ret;
3754 }
3755 
3756 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3757 {
3758 	struct inode *inode = file_inode(file);
3759 	struct btrfs_root *root = BTRFS_I(inode)->root;
3760 	struct btrfs_root *new_root;
3761 	struct btrfs_dir_item *di;
3762 	struct btrfs_trans_handle *trans;
3763 	struct btrfs_path *path;
3764 	struct btrfs_key location;
3765 	struct btrfs_disk_key disk_key;
3766 	u64 objectid = 0;
3767 	u64 dir_id;
3768 	int ret;
3769 
3770 	if (!capable(CAP_SYS_ADMIN))
3771 		return -EPERM;
3772 
3773 	ret = mnt_want_write_file(file);
3774 	if (ret)
3775 		return ret;
3776 
3777 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3778 		ret = -EFAULT;
3779 		goto out;
3780 	}
3781 
3782 	if (!objectid)
3783 		objectid = BTRFS_FS_TREE_OBJECTID;
3784 
3785 	location.objectid = objectid;
3786 	location.type = BTRFS_ROOT_ITEM_KEY;
3787 	location.offset = (u64)-1;
3788 
3789 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3790 	if (IS_ERR(new_root)) {
3791 		ret = PTR_ERR(new_root);
3792 		goto out;
3793 	}
3794 
3795 	path = btrfs_alloc_path();
3796 	if (!path) {
3797 		ret = -ENOMEM;
3798 		goto out;
3799 	}
3800 	path->leave_spinning = 1;
3801 
3802 	trans = btrfs_start_transaction(root, 1);
3803 	if (IS_ERR(trans)) {
3804 		btrfs_free_path(path);
3805 		ret = PTR_ERR(trans);
3806 		goto out;
3807 	}
3808 
3809 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3810 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3811 				   dir_id, "default", 7, 1);
3812 	if (IS_ERR_OR_NULL(di)) {
3813 		btrfs_free_path(path);
3814 		btrfs_end_transaction(trans, root);
3815 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3816 			   "item, this isn't going to work");
3817 		ret = -ENOENT;
3818 		goto out;
3819 	}
3820 
3821 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3822 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3823 	btrfs_mark_buffer_dirty(path->nodes[0]);
3824 	btrfs_free_path(path);
3825 
3826 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3827 	btrfs_end_transaction(trans, root);
3828 out:
3829 	mnt_drop_write_file(file);
3830 	return ret;
3831 }
3832 
3833 void btrfs_get_block_group_info(struct list_head *groups_list,
3834 				struct btrfs_ioctl_space_info *space)
3835 {
3836 	struct btrfs_block_group_cache *block_group;
3837 
3838 	space->total_bytes = 0;
3839 	space->used_bytes = 0;
3840 	space->flags = 0;
3841 	list_for_each_entry(block_group, groups_list, list) {
3842 		space->flags = block_group->flags;
3843 		space->total_bytes += block_group->key.offset;
3844 		space->used_bytes +=
3845 			btrfs_block_group_used(&block_group->item);
3846 	}
3847 }
3848 
3849 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3850 {
3851 	struct btrfs_ioctl_space_args space_args;
3852 	struct btrfs_ioctl_space_info space;
3853 	struct btrfs_ioctl_space_info *dest;
3854 	struct btrfs_ioctl_space_info *dest_orig;
3855 	struct btrfs_ioctl_space_info __user *user_dest;
3856 	struct btrfs_space_info *info;
3857 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3858 		       BTRFS_BLOCK_GROUP_SYSTEM,
3859 		       BTRFS_BLOCK_GROUP_METADATA,
3860 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3861 	int num_types = 4;
3862 	int alloc_size;
3863 	int ret = 0;
3864 	u64 slot_count = 0;
3865 	int i, c;
3866 
3867 	if (copy_from_user(&space_args,
3868 			   (struct btrfs_ioctl_space_args __user *)arg,
3869 			   sizeof(space_args)))
3870 		return -EFAULT;
3871 
3872 	for (i = 0; i < num_types; i++) {
3873 		struct btrfs_space_info *tmp;
3874 
3875 		info = NULL;
3876 		rcu_read_lock();
3877 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3878 					list) {
3879 			if (tmp->flags == types[i]) {
3880 				info = tmp;
3881 				break;
3882 			}
3883 		}
3884 		rcu_read_unlock();
3885 
3886 		if (!info)
3887 			continue;
3888 
3889 		down_read(&info->groups_sem);
3890 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3891 			if (!list_empty(&info->block_groups[c]))
3892 				slot_count++;
3893 		}
3894 		up_read(&info->groups_sem);
3895 	}
3896 
3897 	/*
3898 	 * Global block reserve, exported as a space_info
3899 	 */
3900 	slot_count++;
3901 
3902 	/* space_slots == 0 means they are asking for a count */
3903 	if (space_args.space_slots == 0) {
3904 		space_args.total_spaces = slot_count;
3905 		goto out;
3906 	}
3907 
3908 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3909 
3910 	alloc_size = sizeof(*dest) * slot_count;
3911 
3912 	/* we generally have at most 6 or so space infos, one for each raid
3913 	 * level.  So, a whole page should be more than enough for everyone
3914 	 */
3915 	if (alloc_size > PAGE_CACHE_SIZE)
3916 		return -ENOMEM;
3917 
3918 	space_args.total_spaces = 0;
3919 	dest = kmalloc(alloc_size, GFP_NOFS);
3920 	if (!dest)
3921 		return -ENOMEM;
3922 	dest_orig = dest;
3923 
3924 	/* now we have a buffer to copy into */
3925 	for (i = 0; i < num_types; i++) {
3926 		struct btrfs_space_info *tmp;
3927 
3928 		if (!slot_count)
3929 			break;
3930 
3931 		info = NULL;
3932 		rcu_read_lock();
3933 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3934 					list) {
3935 			if (tmp->flags == types[i]) {
3936 				info = tmp;
3937 				break;
3938 			}
3939 		}
3940 		rcu_read_unlock();
3941 
3942 		if (!info)
3943 			continue;
3944 		down_read(&info->groups_sem);
3945 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3946 			if (!list_empty(&info->block_groups[c])) {
3947 				btrfs_get_block_group_info(
3948 					&info->block_groups[c], &space);
3949 				memcpy(dest, &space, sizeof(space));
3950 				dest++;
3951 				space_args.total_spaces++;
3952 				slot_count--;
3953 			}
3954 			if (!slot_count)
3955 				break;
3956 		}
3957 		up_read(&info->groups_sem);
3958 	}
3959 
3960 	/*
3961 	 * Add global block reserve
3962 	 */
3963 	if (slot_count) {
3964 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3965 
3966 		spin_lock(&block_rsv->lock);
3967 		space.total_bytes = block_rsv->size;
3968 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3969 		spin_unlock(&block_rsv->lock);
3970 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3971 		memcpy(dest, &space, sizeof(space));
3972 		space_args.total_spaces++;
3973 	}
3974 
3975 	user_dest = (struct btrfs_ioctl_space_info __user *)
3976 		(arg + sizeof(struct btrfs_ioctl_space_args));
3977 
3978 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3979 		ret = -EFAULT;
3980 
3981 	kfree(dest_orig);
3982 out:
3983 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3984 		ret = -EFAULT;
3985 
3986 	return ret;
3987 }
3988 
3989 /*
3990  * there are many ways the trans_start and trans_end ioctls can lead
3991  * to deadlocks.  They should only be used by applications that
3992  * basically own the machine, and have a very in depth understanding
3993  * of all the possible deadlocks and enospc problems.
3994  */
3995 long btrfs_ioctl_trans_end(struct file *file)
3996 {
3997 	struct inode *inode = file_inode(file);
3998 	struct btrfs_root *root = BTRFS_I(inode)->root;
3999 	struct btrfs_trans_handle *trans;
4000 
4001 	trans = file->private_data;
4002 	if (!trans)
4003 		return -EINVAL;
4004 	file->private_data = NULL;
4005 
4006 	btrfs_end_transaction(trans, root);
4007 
4008 	atomic_dec(&root->fs_info->open_ioctl_trans);
4009 
4010 	mnt_drop_write_file(file);
4011 	return 0;
4012 }
4013 
4014 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4015 					    void __user *argp)
4016 {
4017 	struct btrfs_trans_handle *trans;
4018 	u64 transid;
4019 	int ret;
4020 
4021 	trans = btrfs_attach_transaction_barrier(root);
4022 	if (IS_ERR(trans)) {
4023 		if (PTR_ERR(trans) != -ENOENT)
4024 			return PTR_ERR(trans);
4025 
4026 		/* No running transaction, don't bother */
4027 		transid = root->fs_info->last_trans_committed;
4028 		goto out;
4029 	}
4030 	transid = trans->transid;
4031 	ret = btrfs_commit_transaction_async(trans, root, 0);
4032 	if (ret) {
4033 		btrfs_end_transaction(trans, root);
4034 		return ret;
4035 	}
4036 out:
4037 	if (argp)
4038 		if (copy_to_user(argp, &transid, sizeof(transid)))
4039 			return -EFAULT;
4040 	return 0;
4041 }
4042 
4043 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4044 					   void __user *argp)
4045 {
4046 	u64 transid;
4047 
4048 	if (argp) {
4049 		if (copy_from_user(&transid, argp, sizeof(transid)))
4050 			return -EFAULT;
4051 	} else {
4052 		transid = 0;  /* current trans */
4053 	}
4054 	return btrfs_wait_for_commit(root, transid);
4055 }
4056 
4057 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4058 {
4059 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4060 	struct btrfs_ioctl_scrub_args *sa;
4061 	int ret;
4062 
4063 	if (!capable(CAP_SYS_ADMIN))
4064 		return -EPERM;
4065 
4066 	sa = memdup_user(arg, sizeof(*sa));
4067 	if (IS_ERR(sa))
4068 		return PTR_ERR(sa);
4069 
4070 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4071 		ret = mnt_want_write_file(file);
4072 		if (ret)
4073 			goto out;
4074 	}
4075 
4076 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4077 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4078 			      0);
4079 
4080 	if (copy_to_user(arg, sa, sizeof(*sa)))
4081 		ret = -EFAULT;
4082 
4083 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4084 		mnt_drop_write_file(file);
4085 out:
4086 	kfree(sa);
4087 	return ret;
4088 }
4089 
4090 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4091 {
4092 	if (!capable(CAP_SYS_ADMIN))
4093 		return -EPERM;
4094 
4095 	return btrfs_scrub_cancel(root->fs_info);
4096 }
4097 
4098 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4099 				       void __user *arg)
4100 {
4101 	struct btrfs_ioctl_scrub_args *sa;
4102 	int ret;
4103 
4104 	if (!capable(CAP_SYS_ADMIN))
4105 		return -EPERM;
4106 
4107 	sa = memdup_user(arg, sizeof(*sa));
4108 	if (IS_ERR(sa))
4109 		return PTR_ERR(sa);
4110 
4111 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4112 
4113 	if (copy_to_user(arg, sa, sizeof(*sa)))
4114 		ret = -EFAULT;
4115 
4116 	kfree(sa);
4117 	return ret;
4118 }
4119 
4120 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4121 				      void __user *arg)
4122 {
4123 	struct btrfs_ioctl_get_dev_stats *sa;
4124 	int ret;
4125 
4126 	sa = memdup_user(arg, sizeof(*sa));
4127 	if (IS_ERR(sa))
4128 		return PTR_ERR(sa);
4129 
4130 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4131 		kfree(sa);
4132 		return -EPERM;
4133 	}
4134 
4135 	ret = btrfs_get_dev_stats(root, sa);
4136 
4137 	if (copy_to_user(arg, sa, sizeof(*sa)))
4138 		ret = -EFAULT;
4139 
4140 	kfree(sa);
4141 	return ret;
4142 }
4143 
4144 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4145 {
4146 	struct btrfs_ioctl_dev_replace_args *p;
4147 	int ret;
4148 
4149 	if (!capable(CAP_SYS_ADMIN))
4150 		return -EPERM;
4151 
4152 	p = memdup_user(arg, sizeof(*p));
4153 	if (IS_ERR(p))
4154 		return PTR_ERR(p);
4155 
4156 	switch (p->cmd) {
4157 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4158 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4159 			ret = -EROFS;
4160 			goto out;
4161 		}
4162 		if (atomic_xchg(
4163 			&root->fs_info->mutually_exclusive_operation_running,
4164 			1)) {
4165 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4166 		} else {
4167 			ret = btrfs_dev_replace_start(root, p);
4168 			atomic_set(
4169 			 &root->fs_info->mutually_exclusive_operation_running,
4170 			 0);
4171 		}
4172 		break;
4173 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4174 		btrfs_dev_replace_status(root->fs_info, p);
4175 		ret = 0;
4176 		break;
4177 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4178 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4179 		break;
4180 	default:
4181 		ret = -EINVAL;
4182 		break;
4183 	}
4184 
4185 	if (copy_to_user(arg, p, sizeof(*p)))
4186 		ret = -EFAULT;
4187 out:
4188 	kfree(p);
4189 	return ret;
4190 }
4191 
4192 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4193 {
4194 	int ret = 0;
4195 	int i;
4196 	u64 rel_ptr;
4197 	int size;
4198 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4199 	struct inode_fs_paths *ipath = NULL;
4200 	struct btrfs_path *path;
4201 
4202 	if (!capable(CAP_DAC_READ_SEARCH))
4203 		return -EPERM;
4204 
4205 	path = btrfs_alloc_path();
4206 	if (!path) {
4207 		ret = -ENOMEM;
4208 		goto out;
4209 	}
4210 
4211 	ipa = memdup_user(arg, sizeof(*ipa));
4212 	if (IS_ERR(ipa)) {
4213 		ret = PTR_ERR(ipa);
4214 		ipa = NULL;
4215 		goto out;
4216 	}
4217 
4218 	size = min_t(u32, ipa->size, 4096);
4219 	ipath = init_ipath(size, root, path);
4220 	if (IS_ERR(ipath)) {
4221 		ret = PTR_ERR(ipath);
4222 		ipath = NULL;
4223 		goto out;
4224 	}
4225 
4226 	ret = paths_from_inode(ipa->inum, ipath);
4227 	if (ret < 0)
4228 		goto out;
4229 
4230 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4231 		rel_ptr = ipath->fspath->val[i] -
4232 			  (u64)(unsigned long)ipath->fspath->val;
4233 		ipath->fspath->val[i] = rel_ptr;
4234 	}
4235 
4236 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4237 			   (void *)(unsigned long)ipath->fspath, size);
4238 	if (ret) {
4239 		ret = -EFAULT;
4240 		goto out;
4241 	}
4242 
4243 out:
4244 	btrfs_free_path(path);
4245 	free_ipath(ipath);
4246 	kfree(ipa);
4247 
4248 	return ret;
4249 }
4250 
4251 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4252 {
4253 	struct btrfs_data_container *inodes = ctx;
4254 	const size_t c = 3 * sizeof(u64);
4255 
4256 	if (inodes->bytes_left >= c) {
4257 		inodes->bytes_left -= c;
4258 		inodes->val[inodes->elem_cnt] = inum;
4259 		inodes->val[inodes->elem_cnt + 1] = offset;
4260 		inodes->val[inodes->elem_cnt + 2] = root;
4261 		inodes->elem_cnt += 3;
4262 	} else {
4263 		inodes->bytes_missing += c - inodes->bytes_left;
4264 		inodes->bytes_left = 0;
4265 		inodes->elem_missed += 3;
4266 	}
4267 
4268 	return 0;
4269 }
4270 
4271 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4272 					void __user *arg)
4273 {
4274 	int ret = 0;
4275 	int size;
4276 	struct btrfs_ioctl_logical_ino_args *loi;
4277 	struct btrfs_data_container *inodes = NULL;
4278 	struct btrfs_path *path = NULL;
4279 
4280 	if (!capable(CAP_SYS_ADMIN))
4281 		return -EPERM;
4282 
4283 	loi = memdup_user(arg, sizeof(*loi));
4284 	if (IS_ERR(loi)) {
4285 		ret = PTR_ERR(loi);
4286 		loi = NULL;
4287 		goto out;
4288 	}
4289 
4290 	path = btrfs_alloc_path();
4291 	if (!path) {
4292 		ret = -ENOMEM;
4293 		goto out;
4294 	}
4295 
4296 	size = min_t(u32, loi->size, 64 * 1024);
4297 	inodes = init_data_container(size);
4298 	if (IS_ERR(inodes)) {
4299 		ret = PTR_ERR(inodes);
4300 		inodes = NULL;
4301 		goto out;
4302 	}
4303 
4304 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4305 					  build_ino_list, inodes);
4306 	if (ret == -EINVAL)
4307 		ret = -ENOENT;
4308 	if (ret < 0)
4309 		goto out;
4310 
4311 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4312 			   (void *)(unsigned long)inodes, size);
4313 	if (ret)
4314 		ret = -EFAULT;
4315 
4316 out:
4317 	btrfs_free_path(path);
4318 	vfree(inodes);
4319 	kfree(loi);
4320 
4321 	return ret;
4322 }
4323 
4324 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4325 			       struct btrfs_ioctl_balance_args *bargs)
4326 {
4327 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4328 
4329 	bargs->flags = bctl->flags;
4330 
4331 	if (atomic_read(&fs_info->balance_running))
4332 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4333 	if (atomic_read(&fs_info->balance_pause_req))
4334 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4335 	if (atomic_read(&fs_info->balance_cancel_req))
4336 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4337 
4338 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4339 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4340 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4341 
4342 	if (lock) {
4343 		spin_lock(&fs_info->balance_lock);
4344 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4345 		spin_unlock(&fs_info->balance_lock);
4346 	} else {
4347 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4348 	}
4349 }
4350 
4351 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4352 {
4353 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4354 	struct btrfs_fs_info *fs_info = root->fs_info;
4355 	struct btrfs_ioctl_balance_args *bargs;
4356 	struct btrfs_balance_control *bctl;
4357 	bool need_unlock; /* for mut. excl. ops lock */
4358 	int ret;
4359 
4360 	if (!capable(CAP_SYS_ADMIN))
4361 		return -EPERM;
4362 
4363 	ret = mnt_want_write_file(file);
4364 	if (ret)
4365 		return ret;
4366 
4367 again:
4368 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4369 		mutex_lock(&fs_info->volume_mutex);
4370 		mutex_lock(&fs_info->balance_mutex);
4371 		need_unlock = true;
4372 		goto locked;
4373 	}
4374 
4375 	/*
4376 	 * mut. excl. ops lock is locked.  Three possibilites:
4377 	 *   (1) some other op is running
4378 	 *   (2) balance is running
4379 	 *   (3) balance is paused -- special case (think resume)
4380 	 */
4381 	mutex_lock(&fs_info->balance_mutex);
4382 	if (fs_info->balance_ctl) {
4383 		/* this is either (2) or (3) */
4384 		if (!atomic_read(&fs_info->balance_running)) {
4385 			mutex_unlock(&fs_info->balance_mutex);
4386 			if (!mutex_trylock(&fs_info->volume_mutex))
4387 				goto again;
4388 			mutex_lock(&fs_info->balance_mutex);
4389 
4390 			if (fs_info->balance_ctl &&
4391 			    !atomic_read(&fs_info->balance_running)) {
4392 				/* this is (3) */
4393 				need_unlock = false;
4394 				goto locked;
4395 			}
4396 
4397 			mutex_unlock(&fs_info->balance_mutex);
4398 			mutex_unlock(&fs_info->volume_mutex);
4399 			goto again;
4400 		} else {
4401 			/* this is (2) */
4402 			mutex_unlock(&fs_info->balance_mutex);
4403 			ret = -EINPROGRESS;
4404 			goto out;
4405 		}
4406 	} else {
4407 		/* this is (1) */
4408 		mutex_unlock(&fs_info->balance_mutex);
4409 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4410 		goto out;
4411 	}
4412 
4413 locked:
4414 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4415 
4416 	if (arg) {
4417 		bargs = memdup_user(arg, sizeof(*bargs));
4418 		if (IS_ERR(bargs)) {
4419 			ret = PTR_ERR(bargs);
4420 			goto out_unlock;
4421 		}
4422 
4423 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4424 			if (!fs_info->balance_ctl) {
4425 				ret = -ENOTCONN;
4426 				goto out_bargs;
4427 			}
4428 
4429 			bctl = fs_info->balance_ctl;
4430 			spin_lock(&fs_info->balance_lock);
4431 			bctl->flags |= BTRFS_BALANCE_RESUME;
4432 			spin_unlock(&fs_info->balance_lock);
4433 
4434 			goto do_balance;
4435 		}
4436 	} else {
4437 		bargs = NULL;
4438 	}
4439 
4440 	if (fs_info->balance_ctl) {
4441 		ret = -EINPROGRESS;
4442 		goto out_bargs;
4443 	}
4444 
4445 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4446 	if (!bctl) {
4447 		ret = -ENOMEM;
4448 		goto out_bargs;
4449 	}
4450 
4451 	bctl->fs_info = fs_info;
4452 	if (arg) {
4453 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4454 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4455 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4456 
4457 		bctl->flags = bargs->flags;
4458 	} else {
4459 		/* balance everything - no filters */
4460 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4461 	}
4462 
4463 do_balance:
4464 	/*
4465 	 * Ownership of bctl and mutually_exclusive_operation_running
4466 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4467 	 * or, if restriper was paused all the way until unmount, in
4468 	 * free_fs_info.  mutually_exclusive_operation_running is
4469 	 * cleared in __cancel_balance.
4470 	 */
4471 	need_unlock = false;
4472 
4473 	ret = btrfs_balance(bctl, bargs);
4474 
4475 	if (arg) {
4476 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4477 			ret = -EFAULT;
4478 	}
4479 
4480 out_bargs:
4481 	kfree(bargs);
4482 out_unlock:
4483 	mutex_unlock(&fs_info->balance_mutex);
4484 	mutex_unlock(&fs_info->volume_mutex);
4485 	if (need_unlock)
4486 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4487 out:
4488 	mnt_drop_write_file(file);
4489 	return ret;
4490 }
4491 
4492 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4493 {
4494 	if (!capable(CAP_SYS_ADMIN))
4495 		return -EPERM;
4496 
4497 	switch (cmd) {
4498 	case BTRFS_BALANCE_CTL_PAUSE:
4499 		return btrfs_pause_balance(root->fs_info);
4500 	case BTRFS_BALANCE_CTL_CANCEL:
4501 		return btrfs_cancel_balance(root->fs_info);
4502 	}
4503 
4504 	return -EINVAL;
4505 }
4506 
4507 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4508 					 void __user *arg)
4509 {
4510 	struct btrfs_fs_info *fs_info = root->fs_info;
4511 	struct btrfs_ioctl_balance_args *bargs;
4512 	int ret = 0;
4513 
4514 	if (!capable(CAP_SYS_ADMIN))
4515 		return -EPERM;
4516 
4517 	mutex_lock(&fs_info->balance_mutex);
4518 	if (!fs_info->balance_ctl) {
4519 		ret = -ENOTCONN;
4520 		goto out;
4521 	}
4522 
4523 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4524 	if (!bargs) {
4525 		ret = -ENOMEM;
4526 		goto out;
4527 	}
4528 
4529 	update_ioctl_balance_args(fs_info, 1, bargs);
4530 
4531 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4532 		ret = -EFAULT;
4533 
4534 	kfree(bargs);
4535 out:
4536 	mutex_unlock(&fs_info->balance_mutex);
4537 	return ret;
4538 }
4539 
4540 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4541 {
4542 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4543 	struct btrfs_ioctl_quota_ctl_args *sa;
4544 	struct btrfs_trans_handle *trans = NULL;
4545 	int ret;
4546 	int err;
4547 
4548 	if (!capable(CAP_SYS_ADMIN))
4549 		return -EPERM;
4550 
4551 	ret = mnt_want_write_file(file);
4552 	if (ret)
4553 		return ret;
4554 
4555 	sa = memdup_user(arg, sizeof(*sa));
4556 	if (IS_ERR(sa)) {
4557 		ret = PTR_ERR(sa);
4558 		goto drop_write;
4559 	}
4560 
4561 	down_write(&root->fs_info->subvol_sem);
4562 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4563 	if (IS_ERR(trans)) {
4564 		ret = PTR_ERR(trans);
4565 		goto out;
4566 	}
4567 
4568 	switch (sa->cmd) {
4569 	case BTRFS_QUOTA_CTL_ENABLE:
4570 		ret = btrfs_quota_enable(trans, root->fs_info);
4571 		break;
4572 	case BTRFS_QUOTA_CTL_DISABLE:
4573 		ret = btrfs_quota_disable(trans, root->fs_info);
4574 		break;
4575 	default:
4576 		ret = -EINVAL;
4577 		break;
4578 	}
4579 
4580 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4581 	if (err && !ret)
4582 		ret = err;
4583 out:
4584 	kfree(sa);
4585 	up_write(&root->fs_info->subvol_sem);
4586 drop_write:
4587 	mnt_drop_write_file(file);
4588 	return ret;
4589 }
4590 
4591 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4592 {
4593 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4594 	struct btrfs_ioctl_qgroup_assign_args *sa;
4595 	struct btrfs_trans_handle *trans;
4596 	int ret;
4597 	int err;
4598 
4599 	if (!capable(CAP_SYS_ADMIN))
4600 		return -EPERM;
4601 
4602 	ret = mnt_want_write_file(file);
4603 	if (ret)
4604 		return ret;
4605 
4606 	sa = memdup_user(arg, sizeof(*sa));
4607 	if (IS_ERR(sa)) {
4608 		ret = PTR_ERR(sa);
4609 		goto drop_write;
4610 	}
4611 
4612 	trans = btrfs_join_transaction(root);
4613 	if (IS_ERR(trans)) {
4614 		ret = PTR_ERR(trans);
4615 		goto out;
4616 	}
4617 
4618 	/* FIXME: check if the IDs really exist */
4619 	if (sa->assign) {
4620 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4621 						sa->src, sa->dst);
4622 	} else {
4623 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4624 						sa->src, sa->dst);
4625 	}
4626 
4627 	err = btrfs_end_transaction(trans, root);
4628 	if (err && !ret)
4629 		ret = err;
4630 
4631 out:
4632 	kfree(sa);
4633 drop_write:
4634 	mnt_drop_write_file(file);
4635 	return ret;
4636 }
4637 
4638 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4639 {
4640 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4641 	struct btrfs_ioctl_qgroup_create_args *sa;
4642 	struct btrfs_trans_handle *trans;
4643 	int ret;
4644 	int err;
4645 
4646 	if (!capable(CAP_SYS_ADMIN))
4647 		return -EPERM;
4648 
4649 	ret = mnt_want_write_file(file);
4650 	if (ret)
4651 		return ret;
4652 
4653 	sa = memdup_user(arg, sizeof(*sa));
4654 	if (IS_ERR(sa)) {
4655 		ret = PTR_ERR(sa);
4656 		goto drop_write;
4657 	}
4658 
4659 	if (!sa->qgroupid) {
4660 		ret = -EINVAL;
4661 		goto out;
4662 	}
4663 
4664 	trans = btrfs_join_transaction(root);
4665 	if (IS_ERR(trans)) {
4666 		ret = PTR_ERR(trans);
4667 		goto out;
4668 	}
4669 
4670 	/* FIXME: check if the IDs really exist */
4671 	if (sa->create) {
4672 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4673 					  NULL);
4674 	} else {
4675 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4676 	}
4677 
4678 	err = btrfs_end_transaction(trans, root);
4679 	if (err && !ret)
4680 		ret = err;
4681 
4682 out:
4683 	kfree(sa);
4684 drop_write:
4685 	mnt_drop_write_file(file);
4686 	return ret;
4687 }
4688 
4689 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4690 {
4691 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4692 	struct btrfs_ioctl_qgroup_limit_args *sa;
4693 	struct btrfs_trans_handle *trans;
4694 	int ret;
4695 	int err;
4696 	u64 qgroupid;
4697 
4698 	if (!capable(CAP_SYS_ADMIN))
4699 		return -EPERM;
4700 
4701 	ret = mnt_want_write_file(file);
4702 	if (ret)
4703 		return ret;
4704 
4705 	sa = memdup_user(arg, sizeof(*sa));
4706 	if (IS_ERR(sa)) {
4707 		ret = PTR_ERR(sa);
4708 		goto drop_write;
4709 	}
4710 
4711 	trans = btrfs_join_transaction(root);
4712 	if (IS_ERR(trans)) {
4713 		ret = PTR_ERR(trans);
4714 		goto out;
4715 	}
4716 
4717 	qgroupid = sa->qgroupid;
4718 	if (!qgroupid) {
4719 		/* take the current subvol as qgroup */
4720 		qgroupid = root->root_key.objectid;
4721 	}
4722 
4723 	/* FIXME: check if the IDs really exist */
4724 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4725 
4726 	err = btrfs_end_transaction(trans, root);
4727 	if (err && !ret)
4728 		ret = err;
4729 
4730 out:
4731 	kfree(sa);
4732 drop_write:
4733 	mnt_drop_write_file(file);
4734 	return ret;
4735 }
4736 
4737 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4738 {
4739 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4740 	struct btrfs_ioctl_quota_rescan_args *qsa;
4741 	int ret;
4742 
4743 	if (!capable(CAP_SYS_ADMIN))
4744 		return -EPERM;
4745 
4746 	ret = mnt_want_write_file(file);
4747 	if (ret)
4748 		return ret;
4749 
4750 	qsa = memdup_user(arg, sizeof(*qsa));
4751 	if (IS_ERR(qsa)) {
4752 		ret = PTR_ERR(qsa);
4753 		goto drop_write;
4754 	}
4755 
4756 	if (qsa->flags) {
4757 		ret = -EINVAL;
4758 		goto out;
4759 	}
4760 
4761 	ret = btrfs_qgroup_rescan(root->fs_info);
4762 
4763 out:
4764 	kfree(qsa);
4765 drop_write:
4766 	mnt_drop_write_file(file);
4767 	return ret;
4768 }
4769 
4770 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4771 {
4772 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4773 	struct btrfs_ioctl_quota_rescan_args *qsa;
4774 	int ret = 0;
4775 
4776 	if (!capable(CAP_SYS_ADMIN))
4777 		return -EPERM;
4778 
4779 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4780 	if (!qsa)
4781 		return -ENOMEM;
4782 
4783 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4784 		qsa->flags = 1;
4785 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4786 	}
4787 
4788 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4789 		ret = -EFAULT;
4790 
4791 	kfree(qsa);
4792 	return ret;
4793 }
4794 
4795 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4796 {
4797 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4798 
4799 	if (!capable(CAP_SYS_ADMIN))
4800 		return -EPERM;
4801 
4802 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4803 }
4804 
4805 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4806 					    struct btrfs_ioctl_received_subvol_args *sa)
4807 {
4808 	struct inode *inode = file_inode(file);
4809 	struct btrfs_root *root = BTRFS_I(inode)->root;
4810 	struct btrfs_root_item *root_item = &root->root_item;
4811 	struct btrfs_trans_handle *trans;
4812 	struct timespec ct = CURRENT_TIME;
4813 	int ret = 0;
4814 	int received_uuid_changed;
4815 
4816 	if (!inode_owner_or_capable(inode))
4817 		return -EPERM;
4818 
4819 	ret = mnt_want_write_file(file);
4820 	if (ret < 0)
4821 		return ret;
4822 
4823 	down_write(&root->fs_info->subvol_sem);
4824 
4825 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4826 		ret = -EINVAL;
4827 		goto out;
4828 	}
4829 
4830 	if (btrfs_root_readonly(root)) {
4831 		ret = -EROFS;
4832 		goto out;
4833 	}
4834 
4835 	/*
4836 	 * 1 - root item
4837 	 * 2 - uuid items (received uuid + subvol uuid)
4838 	 */
4839 	trans = btrfs_start_transaction(root, 3);
4840 	if (IS_ERR(trans)) {
4841 		ret = PTR_ERR(trans);
4842 		trans = NULL;
4843 		goto out;
4844 	}
4845 
4846 	sa->rtransid = trans->transid;
4847 	sa->rtime.sec = ct.tv_sec;
4848 	sa->rtime.nsec = ct.tv_nsec;
4849 
4850 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4851 				       BTRFS_UUID_SIZE);
4852 	if (received_uuid_changed &&
4853 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4854 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4855 				    root_item->received_uuid,
4856 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4857 				    root->root_key.objectid);
4858 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4859 	btrfs_set_root_stransid(root_item, sa->stransid);
4860 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4861 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4862 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4863 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4864 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4865 
4866 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4867 				&root->root_key, &root->root_item);
4868 	if (ret < 0) {
4869 		btrfs_end_transaction(trans, root);
4870 		goto out;
4871 	}
4872 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4873 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4874 					  sa->uuid,
4875 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4876 					  root->root_key.objectid);
4877 		if (ret < 0 && ret != -EEXIST) {
4878 			btrfs_abort_transaction(trans, root, ret);
4879 			goto out;
4880 		}
4881 	}
4882 	ret = btrfs_commit_transaction(trans, root);
4883 	if (ret < 0) {
4884 		btrfs_abort_transaction(trans, root, ret);
4885 		goto out;
4886 	}
4887 
4888 out:
4889 	up_write(&root->fs_info->subvol_sem);
4890 	mnt_drop_write_file(file);
4891 	return ret;
4892 }
4893 
4894 #ifdef CONFIG_64BIT
4895 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4896 						void __user *arg)
4897 {
4898 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4899 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4900 	int ret = 0;
4901 
4902 	args32 = memdup_user(arg, sizeof(*args32));
4903 	if (IS_ERR(args32)) {
4904 		ret = PTR_ERR(args32);
4905 		args32 = NULL;
4906 		goto out;
4907 	}
4908 
4909 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4910 	if (!args64) {
4911 		ret = -ENOMEM;
4912 		goto out;
4913 	}
4914 
4915 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4916 	args64->stransid = args32->stransid;
4917 	args64->rtransid = args32->rtransid;
4918 	args64->stime.sec = args32->stime.sec;
4919 	args64->stime.nsec = args32->stime.nsec;
4920 	args64->rtime.sec = args32->rtime.sec;
4921 	args64->rtime.nsec = args32->rtime.nsec;
4922 	args64->flags = args32->flags;
4923 
4924 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4925 	if (ret)
4926 		goto out;
4927 
4928 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4929 	args32->stransid = args64->stransid;
4930 	args32->rtransid = args64->rtransid;
4931 	args32->stime.sec = args64->stime.sec;
4932 	args32->stime.nsec = args64->stime.nsec;
4933 	args32->rtime.sec = args64->rtime.sec;
4934 	args32->rtime.nsec = args64->rtime.nsec;
4935 	args32->flags = args64->flags;
4936 
4937 	ret = copy_to_user(arg, args32, sizeof(*args32));
4938 	if (ret)
4939 		ret = -EFAULT;
4940 
4941 out:
4942 	kfree(args32);
4943 	kfree(args64);
4944 	return ret;
4945 }
4946 #endif
4947 
4948 static long btrfs_ioctl_set_received_subvol(struct file *file,
4949 					    void __user *arg)
4950 {
4951 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4952 	int ret = 0;
4953 
4954 	sa = memdup_user(arg, sizeof(*sa));
4955 	if (IS_ERR(sa)) {
4956 		ret = PTR_ERR(sa);
4957 		sa = NULL;
4958 		goto out;
4959 	}
4960 
4961 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4962 
4963 	if (ret)
4964 		goto out;
4965 
4966 	ret = copy_to_user(arg, sa, sizeof(*sa));
4967 	if (ret)
4968 		ret = -EFAULT;
4969 
4970 out:
4971 	kfree(sa);
4972 	return ret;
4973 }
4974 
4975 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4976 {
4977 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4978 	size_t len;
4979 	int ret;
4980 	char label[BTRFS_LABEL_SIZE];
4981 
4982 	spin_lock(&root->fs_info->super_lock);
4983 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4984 	spin_unlock(&root->fs_info->super_lock);
4985 
4986 	len = strnlen(label, BTRFS_LABEL_SIZE);
4987 
4988 	if (len == BTRFS_LABEL_SIZE) {
4989 		btrfs_warn(root->fs_info,
4990 			"label is too long, return the first %zu bytes", --len);
4991 	}
4992 
4993 	ret = copy_to_user(arg, label, len);
4994 
4995 	return ret ? -EFAULT : 0;
4996 }
4997 
4998 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4999 {
5000 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5001 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5002 	struct btrfs_trans_handle *trans;
5003 	char label[BTRFS_LABEL_SIZE];
5004 	int ret;
5005 
5006 	if (!capable(CAP_SYS_ADMIN))
5007 		return -EPERM;
5008 
5009 	if (copy_from_user(label, arg, sizeof(label)))
5010 		return -EFAULT;
5011 
5012 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5013 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5014 		       BTRFS_LABEL_SIZE - 1);
5015 		return -EINVAL;
5016 	}
5017 
5018 	ret = mnt_want_write_file(file);
5019 	if (ret)
5020 		return ret;
5021 
5022 	trans = btrfs_start_transaction(root, 0);
5023 	if (IS_ERR(trans)) {
5024 		ret = PTR_ERR(trans);
5025 		goto out_unlock;
5026 	}
5027 
5028 	spin_lock(&root->fs_info->super_lock);
5029 	strcpy(super_block->label, label);
5030 	spin_unlock(&root->fs_info->super_lock);
5031 	ret = btrfs_commit_transaction(trans, root);
5032 
5033 out_unlock:
5034 	mnt_drop_write_file(file);
5035 	return ret;
5036 }
5037 
5038 #define INIT_FEATURE_FLAGS(suffix) \
5039 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5040 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5041 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5042 
5043 static int btrfs_ioctl_get_supported_features(struct file *file,
5044 					      void __user *arg)
5045 {
5046 	static struct btrfs_ioctl_feature_flags features[3] = {
5047 		INIT_FEATURE_FLAGS(SUPP),
5048 		INIT_FEATURE_FLAGS(SAFE_SET),
5049 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5050 	};
5051 
5052 	if (copy_to_user(arg, &features, sizeof(features)))
5053 		return -EFAULT;
5054 
5055 	return 0;
5056 }
5057 
5058 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5059 {
5060 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5061 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5062 	struct btrfs_ioctl_feature_flags features;
5063 
5064 	features.compat_flags = btrfs_super_compat_flags(super_block);
5065 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5066 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5067 
5068 	if (copy_to_user(arg, &features, sizeof(features)))
5069 		return -EFAULT;
5070 
5071 	return 0;
5072 }
5073 
5074 static int check_feature_bits(struct btrfs_root *root,
5075 			      enum btrfs_feature_set set,
5076 			      u64 change_mask, u64 flags, u64 supported_flags,
5077 			      u64 safe_set, u64 safe_clear)
5078 {
5079 	const char *type = btrfs_feature_set_names[set];
5080 	char *names;
5081 	u64 disallowed, unsupported;
5082 	u64 set_mask = flags & change_mask;
5083 	u64 clear_mask = ~flags & change_mask;
5084 
5085 	unsupported = set_mask & ~supported_flags;
5086 	if (unsupported) {
5087 		names = btrfs_printable_features(set, unsupported);
5088 		if (names) {
5089 			btrfs_warn(root->fs_info,
5090 			   "this kernel does not support the %s feature bit%s",
5091 			   names, strchr(names, ',') ? "s" : "");
5092 			kfree(names);
5093 		} else
5094 			btrfs_warn(root->fs_info,
5095 			   "this kernel does not support %s bits 0x%llx",
5096 			   type, unsupported);
5097 		return -EOPNOTSUPP;
5098 	}
5099 
5100 	disallowed = set_mask & ~safe_set;
5101 	if (disallowed) {
5102 		names = btrfs_printable_features(set, disallowed);
5103 		if (names) {
5104 			btrfs_warn(root->fs_info,
5105 			   "can't set the %s feature bit%s while mounted",
5106 			   names, strchr(names, ',') ? "s" : "");
5107 			kfree(names);
5108 		} else
5109 			btrfs_warn(root->fs_info,
5110 			   "can't set %s bits 0x%llx while mounted",
5111 			   type, disallowed);
5112 		return -EPERM;
5113 	}
5114 
5115 	disallowed = clear_mask & ~safe_clear;
5116 	if (disallowed) {
5117 		names = btrfs_printable_features(set, disallowed);
5118 		if (names) {
5119 			btrfs_warn(root->fs_info,
5120 			   "can't clear the %s feature bit%s while mounted",
5121 			   names, strchr(names, ',') ? "s" : "");
5122 			kfree(names);
5123 		} else
5124 			btrfs_warn(root->fs_info,
5125 			   "can't clear %s bits 0x%llx while mounted",
5126 			   type, disallowed);
5127 		return -EPERM;
5128 	}
5129 
5130 	return 0;
5131 }
5132 
5133 #define check_feature(root, change_mask, flags, mask_base)	\
5134 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5135 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5136 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5137 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5138 
5139 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5140 {
5141 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5142 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5143 	struct btrfs_ioctl_feature_flags flags[2];
5144 	struct btrfs_trans_handle *trans;
5145 	u64 newflags;
5146 	int ret;
5147 
5148 	if (!capable(CAP_SYS_ADMIN))
5149 		return -EPERM;
5150 
5151 	if (copy_from_user(flags, arg, sizeof(flags)))
5152 		return -EFAULT;
5153 
5154 	/* Nothing to do */
5155 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5156 	    !flags[0].incompat_flags)
5157 		return 0;
5158 
5159 	ret = check_feature(root, flags[0].compat_flags,
5160 			    flags[1].compat_flags, COMPAT);
5161 	if (ret)
5162 		return ret;
5163 
5164 	ret = check_feature(root, flags[0].compat_ro_flags,
5165 			    flags[1].compat_ro_flags, COMPAT_RO);
5166 	if (ret)
5167 		return ret;
5168 
5169 	ret = check_feature(root, flags[0].incompat_flags,
5170 			    flags[1].incompat_flags, INCOMPAT);
5171 	if (ret)
5172 		return ret;
5173 
5174 	trans = btrfs_start_transaction(root, 0);
5175 	if (IS_ERR(trans))
5176 		return PTR_ERR(trans);
5177 
5178 	spin_lock(&root->fs_info->super_lock);
5179 	newflags = btrfs_super_compat_flags(super_block);
5180 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5181 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5182 	btrfs_set_super_compat_flags(super_block, newflags);
5183 
5184 	newflags = btrfs_super_compat_ro_flags(super_block);
5185 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5186 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5187 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5188 
5189 	newflags = btrfs_super_incompat_flags(super_block);
5190 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5191 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5192 	btrfs_set_super_incompat_flags(super_block, newflags);
5193 	spin_unlock(&root->fs_info->super_lock);
5194 
5195 	return btrfs_commit_transaction(trans, root);
5196 }
5197 
5198 long btrfs_ioctl(struct file *file, unsigned int
5199 		cmd, unsigned long arg)
5200 {
5201 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5202 	void __user *argp = (void __user *)arg;
5203 
5204 	switch (cmd) {
5205 	case FS_IOC_GETFLAGS:
5206 		return btrfs_ioctl_getflags(file, argp);
5207 	case FS_IOC_SETFLAGS:
5208 		return btrfs_ioctl_setflags(file, argp);
5209 	case FS_IOC_GETVERSION:
5210 		return btrfs_ioctl_getversion(file, argp);
5211 	case FITRIM:
5212 		return btrfs_ioctl_fitrim(file, argp);
5213 	case BTRFS_IOC_SNAP_CREATE:
5214 		return btrfs_ioctl_snap_create(file, argp, 0);
5215 	case BTRFS_IOC_SNAP_CREATE_V2:
5216 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5217 	case BTRFS_IOC_SUBVOL_CREATE:
5218 		return btrfs_ioctl_snap_create(file, argp, 1);
5219 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5220 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5221 	case BTRFS_IOC_SNAP_DESTROY:
5222 		return btrfs_ioctl_snap_destroy(file, argp);
5223 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5224 		return btrfs_ioctl_subvol_getflags(file, argp);
5225 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5226 		return btrfs_ioctl_subvol_setflags(file, argp);
5227 	case BTRFS_IOC_DEFAULT_SUBVOL:
5228 		return btrfs_ioctl_default_subvol(file, argp);
5229 	case BTRFS_IOC_DEFRAG:
5230 		return btrfs_ioctl_defrag(file, NULL);
5231 	case BTRFS_IOC_DEFRAG_RANGE:
5232 		return btrfs_ioctl_defrag(file, argp);
5233 	case BTRFS_IOC_RESIZE:
5234 		return btrfs_ioctl_resize(file, argp);
5235 	case BTRFS_IOC_ADD_DEV:
5236 		return btrfs_ioctl_add_dev(root, argp);
5237 	case BTRFS_IOC_RM_DEV:
5238 		return btrfs_ioctl_rm_dev(file, argp);
5239 	case BTRFS_IOC_FS_INFO:
5240 		return btrfs_ioctl_fs_info(root, argp);
5241 	case BTRFS_IOC_DEV_INFO:
5242 		return btrfs_ioctl_dev_info(root, argp);
5243 	case BTRFS_IOC_BALANCE:
5244 		return btrfs_ioctl_balance(file, NULL);
5245 	case BTRFS_IOC_CLONE:
5246 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5247 	case BTRFS_IOC_CLONE_RANGE:
5248 		return btrfs_ioctl_clone_range(file, argp);
5249 	case BTRFS_IOC_TRANS_START:
5250 		return btrfs_ioctl_trans_start(file);
5251 	case BTRFS_IOC_TRANS_END:
5252 		return btrfs_ioctl_trans_end(file);
5253 	case BTRFS_IOC_TREE_SEARCH:
5254 		return btrfs_ioctl_tree_search(file, argp);
5255 	case BTRFS_IOC_TREE_SEARCH_V2:
5256 		return btrfs_ioctl_tree_search_v2(file, argp);
5257 	case BTRFS_IOC_INO_LOOKUP:
5258 		return btrfs_ioctl_ino_lookup(file, argp);
5259 	case BTRFS_IOC_INO_PATHS:
5260 		return btrfs_ioctl_ino_to_path(root, argp);
5261 	case BTRFS_IOC_LOGICAL_INO:
5262 		return btrfs_ioctl_logical_to_ino(root, argp);
5263 	case BTRFS_IOC_SPACE_INFO:
5264 		return btrfs_ioctl_space_info(root, argp);
5265 	case BTRFS_IOC_SYNC: {
5266 		int ret;
5267 
5268 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5269 		if (ret)
5270 			return ret;
5271 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5272 		/*
5273 		 * The transaction thread may want to do more work,
5274 		 * namely it pokes the cleaner ktread that will start
5275 		 * processing uncleaned subvols.
5276 		 */
5277 		wake_up_process(root->fs_info->transaction_kthread);
5278 		return ret;
5279 	}
5280 	case BTRFS_IOC_START_SYNC:
5281 		return btrfs_ioctl_start_sync(root, argp);
5282 	case BTRFS_IOC_WAIT_SYNC:
5283 		return btrfs_ioctl_wait_sync(root, argp);
5284 	case BTRFS_IOC_SCRUB:
5285 		return btrfs_ioctl_scrub(file, argp);
5286 	case BTRFS_IOC_SCRUB_CANCEL:
5287 		return btrfs_ioctl_scrub_cancel(root, argp);
5288 	case BTRFS_IOC_SCRUB_PROGRESS:
5289 		return btrfs_ioctl_scrub_progress(root, argp);
5290 	case BTRFS_IOC_BALANCE_V2:
5291 		return btrfs_ioctl_balance(file, argp);
5292 	case BTRFS_IOC_BALANCE_CTL:
5293 		return btrfs_ioctl_balance_ctl(root, arg);
5294 	case BTRFS_IOC_BALANCE_PROGRESS:
5295 		return btrfs_ioctl_balance_progress(root, argp);
5296 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5297 		return btrfs_ioctl_set_received_subvol(file, argp);
5298 #ifdef CONFIG_64BIT
5299 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5300 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5301 #endif
5302 	case BTRFS_IOC_SEND:
5303 		return btrfs_ioctl_send(file, argp);
5304 	case BTRFS_IOC_GET_DEV_STATS:
5305 		return btrfs_ioctl_get_dev_stats(root, argp);
5306 	case BTRFS_IOC_QUOTA_CTL:
5307 		return btrfs_ioctl_quota_ctl(file, argp);
5308 	case BTRFS_IOC_QGROUP_ASSIGN:
5309 		return btrfs_ioctl_qgroup_assign(file, argp);
5310 	case BTRFS_IOC_QGROUP_CREATE:
5311 		return btrfs_ioctl_qgroup_create(file, argp);
5312 	case BTRFS_IOC_QGROUP_LIMIT:
5313 		return btrfs_ioctl_qgroup_limit(file, argp);
5314 	case BTRFS_IOC_QUOTA_RESCAN:
5315 		return btrfs_ioctl_quota_rescan(file, argp);
5316 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5317 		return btrfs_ioctl_quota_rescan_status(file, argp);
5318 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5319 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5320 	case BTRFS_IOC_DEV_REPLACE:
5321 		return btrfs_ioctl_dev_replace(root, argp);
5322 	case BTRFS_IOC_GET_FSLABEL:
5323 		return btrfs_ioctl_get_fslabel(file, argp);
5324 	case BTRFS_IOC_SET_FSLABEL:
5325 		return btrfs_ioctl_set_fslabel(file, argp);
5326 	case BTRFS_IOC_FILE_EXTENT_SAME:
5327 		return btrfs_ioctl_file_extent_same(file, argp);
5328 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5329 		return btrfs_ioctl_get_supported_features(file, argp);
5330 	case BTRFS_IOC_GET_FEATURES:
5331 		return btrfs_ioctl_get_features(file, argp);
5332 	case BTRFS_IOC_SET_FEATURES:
5333 		return btrfs_ioctl_set_features(file, argp);
5334 	}
5335 
5336 	return -ENOTTY;
5337 }
5338