1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include <linux/io_uring/cmd.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "export.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "block-group.h" 50 #include "fs.h" 51 #include "accessors.h" 52 #include "extent-tree.h" 53 #include "root-tree.h" 54 #include "defrag.h" 55 #include "dir-item.h" 56 #include "uuid-tree.h" 57 #include "ioctl.h" 58 #include "file.h" 59 #include "scrub.h" 60 #include "super.h" 61 62 #ifdef CONFIG_64BIT 63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 64 * structures are incorrect, as the timespec structure from userspace 65 * is 4 bytes too small. We define these alternatives here to teach 66 * the kernel about the 32-bit struct packing. 67 */ 68 struct btrfs_ioctl_timespec_32 { 69 __u64 sec; 70 __u32 nsec; 71 } __attribute__ ((__packed__)); 72 73 struct btrfs_ioctl_received_subvol_args_32 { 74 char uuid[BTRFS_UUID_SIZE]; /* in */ 75 __u64 stransid; /* in */ 76 __u64 rtransid; /* out */ 77 struct btrfs_ioctl_timespec_32 stime; /* in */ 78 struct btrfs_ioctl_timespec_32 rtime; /* out */ 79 __u64 flags; /* in */ 80 __u64 reserved[16]; /* in */ 81 } __attribute__ ((__packed__)); 82 83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 84 struct btrfs_ioctl_received_subvol_args_32) 85 #endif 86 87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 88 struct btrfs_ioctl_send_args_32 { 89 __s64 send_fd; /* in */ 90 __u64 clone_sources_count; /* in */ 91 compat_uptr_t clone_sources; /* in */ 92 __u64 parent_root; /* in */ 93 __u64 flags; /* in */ 94 __u32 version; /* in */ 95 __u8 reserved[28]; /* in */ 96 } __attribute__ ((__packed__)); 97 98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 99 struct btrfs_ioctl_send_args_32) 100 101 struct btrfs_ioctl_encoded_io_args_32 { 102 compat_uptr_t iov; 103 compat_ulong_t iovcnt; 104 __s64 offset; 105 __u64 flags; 106 __u64 len; 107 __u64 unencoded_len; 108 __u64 unencoded_offset; 109 __u32 compression; 110 __u32 encryption; 111 __u8 reserved[64]; 112 }; 113 114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 115 struct btrfs_ioctl_encoded_io_args_32) 116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 117 struct btrfs_ioctl_encoded_io_args_32) 118 #endif 119 120 /* Mask out flags that are inappropriate for the given type of inode. */ 121 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 122 unsigned int flags) 123 { 124 if (S_ISDIR(inode->i_mode)) 125 return flags; 126 else if (S_ISREG(inode->i_mode)) 127 return flags & ~FS_DIRSYNC_FL; 128 else 129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 130 } 131 132 /* 133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 134 * ioctl. 135 */ 136 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 137 { 138 unsigned int iflags = 0; 139 u32 flags = binode->flags; 140 u32 ro_flags = binode->ro_flags; 141 142 if (flags & BTRFS_INODE_SYNC) 143 iflags |= FS_SYNC_FL; 144 if (flags & BTRFS_INODE_IMMUTABLE) 145 iflags |= FS_IMMUTABLE_FL; 146 if (flags & BTRFS_INODE_APPEND) 147 iflags |= FS_APPEND_FL; 148 if (flags & BTRFS_INODE_NODUMP) 149 iflags |= FS_NODUMP_FL; 150 if (flags & BTRFS_INODE_NOATIME) 151 iflags |= FS_NOATIME_FL; 152 if (flags & BTRFS_INODE_DIRSYNC) 153 iflags |= FS_DIRSYNC_FL; 154 if (flags & BTRFS_INODE_NODATACOW) 155 iflags |= FS_NOCOW_FL; 156 if (ro_flags & BTRFS_INODE_RO_VERITY) 157 iflags |= FS_VERITY_FL; 158 159 if (flags & BTRFS_INODE_NOCOMPRESS) 160 iflags |= FS_NOCOMP_FL; 161 else if (flags & BTRFS_INODE_COMPRESS) 162 iflags |= FS_COMPR_FL; 163 164 return iflags; 165 } 166 167 /* 168 * Update inode->i_flags based on the btrfs internal flags. 169 */ 170 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 171 { 172 struct btrfs_inode *binode = BTRFS_I(inode); 173 unsigned int new_fl = 0; 174 175 if (binode->flags & BTRFS_INODE_SYNC) 176 new_fl |= S_SYNC; 177 if (binode->flags & BTRFS_INODE_IMMUTABLE) 178 new_fl |= S_IMMUTABLE; 179 if (binode->flags & BTRFS_INODE_APPEND) 180 new_fl |= S_APPEND; 181 if (binode->flags & BTRFS_INODE_NOATIME) 182 new_fl |= S_NOATIME; 183 if (binode->flags & BTRFS_INODE_DIRSYNC) 184 new_fl |= S_DIRSYNC; 185 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 186 new_fl |= S_VERITY; 187 188 set_mask_bits(&inode->i_flags, 189 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 190 S_VERITY, new_fl); 191 } 192 193 /* 194 * Check if @flags are a supported and valid set of FS_*_FL flags and that 195 * the old and new flags are not conflicting 196 */ 197 static int check_fsflags(unsigned int old_flags, unsigned int flags) 198 { 199 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 200 FS_NOATIME_FL | FS_NODUMP_FL | \ 201 FS_SYNC_FL | FS_DIRSYNC_FL | \ 202 FS_NOCOMP_FL | FS_COMPR_FL | 203 FS_NOCOW_FL)) 204 return -EOPNOTSUPP; 205 206 /* COMPR and NOCOMP on new/old are valid */ 207 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 208 return -EINVAL; 209 210 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 211 return -EINVAL; 212 213 /* NOCOW and compression options are mutually exclusive */ 214 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 215 return -EINVAL; 216 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 217 return -EINVAL; 218 219 return 0; 220 } 221 222 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 223 unsigned int flags) 224 { 225 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 226 return -EPERM; 227 228 return 0; 229 } 230 231 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args) 232 { 233 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL) 234 return -ENAMETOOLONG; 235 return 0; 236 } 237 238 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2) 239 { 240 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL) 241 return -ENAMETOOLONG; 242 return 0; 243 } 244 245 /* 246 * Set flags/xflags from the internal inode flags. The remaining items of 247 * fsxattr are zeroed. 248 */ 249 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 250 { 251 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 252 253 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 254 return 0; 255 } 256 257 int btrfs_fileattr_set(struct mnt_idmap *idmap, 258 struct dentry *dentry, struct fileattr *fa) 259 { 260 struct inode *inode = d_inode(dentry); 261 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 262 struct btrfs_inode *binode = BTRFS_I(inode); 263 struct btrfs_root *root = binode->root; 264 struct btrfs_trans_handle *trans; 265 unsigned int fsflags, old_fsflags; 266 int ret; 267 const char *comp = NULL; 268 u32 binode_flags; 269 270 if (btrfs_root_readonly(root)) 271 return -EROFS; 272 273 if (fileattr_has_fsx(fa)) 274 return -EOPNOTSUPP; 275 276 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 277 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 278 ret = check_fsflags(old_fsflags, fsflags); 279 if (ret) 280 return ret; 281 282 ret = check_fsflags_compatible(fs_info, fsflags); 283 if (ret) 284 return ret; 285 286 binode_flags = binode->flags; 287 if (fsflags & FS_SYNC_FL) 288 binode_flags |= BTRFS_INODE_SYNC; 289 else 290 binode_flags &= ~BTRFS_INODE_SYNC; 291 if (fsflags & FS_IMMUTABLE_FL) 292 binode_flags |= BTRFS_INODE_IMMUTABLE; 293 else 294 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 295 if (fsflags & FS_APPEND_FL) 296 binode_flags |= BTRFS_INODE_APPEND; 297 else 298 binode_flags &= ~BTRFS_INODE_APPEND; 299 if (fsflags & FS_NODUMP_FL) 300 binode_flags |= BTRFS_INODE_NODUMP; 301 else 302 binode_flags &= ~BTRFS_INODE_NODUMP; 303 if (fsflags & FS_NOATIME_FL) 304 binode_flags |= BTRFS_INODE_NOATIME; 305 else 306 binode_flags &= ~BTRFS_INODE_NOATIME; 307 308 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 309 if (!fa->flags_valid) { 310 /* 1 item for the inode */ 311 trans = btrfs_start_transaction(root, 1); 312 if (IS_ERR(trans)) 313 return PTR_ERR(trans); 314 goto update_flags; 315 } 316 317 if (fsflags & FS_DIRSYNC_FL) 318 binode_flags |= BTRFS_INODE_DIRSYNC; 319 else 320 binode_flags &= ~BTRFS_INODE_DIRSYNC; 321 if (fsflags & FS_NOCOW_FL) { 322 if (S_ISREG(inode->i_mode)) { 323 /* 324 * It's safe to turn csums off here, no extents exist. 325 * Otherwise we want the flag to reflect the real COW 326 * status of the file and will not set it. 327 */ 328 if (inode->i_size == 0) 329 binode_flags |= BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM; 331 } else { 332 binode_flags |= BTRFS_INODE_NODATACOW; 333 } 334 } else { 335 /* 336 * Revert back under same assumptions as above 337 */ 338 if (S_ISREG(inode->i_mode)) { 339 if (inode->i_size == 0) 340 binode_flags &= ~(BTRFS_INODE_NODATACOW | 341 BTRFS_INODE_NODATASUM); 342 } else { 343 binode_flags &= ~BTRFS_INODE_NODATACOW; 344 } 345 } 346 347 /* 348 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 349 * flag may be changed automatically if compression code won't make 350 * things smaller. 351 */ 352 if (fsflags & FS_NOCOMP_FL) { 353 binode_flags &= ~BTRFS_INODE_COMPRESS; 354 binode_flags |= BTRFS_INODE_NOCOMPRESS; 355 } else if (fsflags & FS_COMPR_FL) { 356 357 if (IS_SWAPFILE(inode)) 358 return -ETXTBSY; 359 360 binode_flags |= BTRFS_INODE_COMPRESS; 361 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 362 363 comp = btrfs_compress_type2str(fs_info->compress_type); 364 if (!comp || comp[0] == 0) 365 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 366 } else { 367 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 368 } 369 370 /* 371 * 1 for inode item 372 * 2 for properties 373 */ 374 trans = btrfs_start_transaction(root, 3); 375 if (IS_ERR(trans)) 376 return PTR_ERR(trans); 377 378 if (comp) { 379 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression", 380 comp, strlen(comp), 0); 381 if (ret) { 382 btrfs_abort_transaction(trans, ret); 383 goto out_end_trans; 384 } 385 } else { 386 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression", 387 NULL, 0, 0); 388 if (ret && ret != -ENODATA) { 389 btrfs_abort_transaction(trans, ret); 390 goto out_end_trans; 391 } 392 } 393 394 update_flags: 395 binode->flags = binode_flags; 396 btrfs_sync_inode_flags_to_i_flags(inode); 397 inode_inc_iversion(inode); 398 inode_set_ctime_current(inode); 399 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 400 401 out_end_trans: 402 btrfs_end_transaction(trans); 403 return ret; 404 } 405 406 /* 407 * Start exclusive operation @type, return true on success 408 */ 409 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 410 enum btrfs_exclusive_operation type) 411 { 412 bool ret = false; 413 414 spin_lock(&fs_info->super_lock); 415 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 416 fs_info->exclusive_operation = type; 417 ret = true; 418 } 419 spin_unlock(&fs_info->super_lock); 420 421 return ret; 422 } 423 424 /* 425 * Conditionally allow to enter the exclusive operation in case it's compatible 426 * with the running one. This must be paired with btrfs_exclop_start_unlock and 427 * btrfs_exclop_finish. 428 * 429 * Compatibility: 430 * - the same type is already running 431 * - when trying to add a device and balance has been paused 432 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 433 * must check the condition first that would allow none -> @type 434 */ 435 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 436 enum btrfs_exclusive_operation type) 437 { 438 spin_lock(&fs_info->super_lock); 439 if (fs_info->exclusive_operation == type || 440 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 441 type == BTRFS_EXCLOP_DEV_ADD)) 442 return true; 443 444 spin_unlock(&fs_info->super_lock); 445 return false; 446 } 447 448 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 449 { 450 spin_unlock(&fs_info->super_lock); 451 } 452 453 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 454 { 455 spin_lock(&fs_info->super_lock); 456 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 457 spin_unlock(&fs_info->super_lock); 458 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 459 } 460 461 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 462 enum btrfs_exclusive_operation op) 463 { 464 switch (op) { 465 case BTRFS_EXCLOP_BALANCE_PAUSED: 466 spin_lock(&fs_info->super_lock); 467 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 468 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 469 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 470 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 471 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 472 spin_unlock(&fs_info->super_lock); 473 break; 474 case BTRFS_EXCLOP_BALANCE: 475 spin_lock(&fs_info->super_lock); 476 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 477 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 478 spin_unlock(&fs_info->super_lock); 479 break; 480 default: 481 btrfs_warn(fs_info, 482 "invalid exclop balance operation %d requested", op); 483 } 484 } 485 486 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 487 { 488 return put_user(inode->i_generation, arg); 489 } 490 491 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 492 void __user *arg) 493 { 494 struct btrfs_device *device; 495 struct fstrim_range range; 496 u64 minlen = ULLONG_MAX; 497 u64 num_devices = 0; 498 int ret; 499 500 if (!capable(CAP_SYS_ADMIN)) 501 return -EPERM; 502 503 /* 504 * btrfs_trim_block_group() depends on space cache, which is not 505 * available in zoned filesystem. So, disallow fitrim on a zoned 506 * filesystem for now. 507 */ 508 if (btrfs_is_zoned(fs_info)) 509 return -EOPNOTSUPP; 510 511 /* 512 * If the fs is mounted with nologreplay, which requires it to be 513 * mounted in RO mode as well, we can not allow discard on free space 514 * inside block groups, because log trees refer to extents that are not 515 * pinned in a block group's free space cache (pinning the extents is 516 * precisely the first phase of replaying a log tree). 517 */ 518 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 519 return -EROFS; 520 521 rcu_read_lock(); 522 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 523 dev_list) { 524 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 525 continue; 526 num_devices++; 527 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 528 minlen); 529 } 530 rcu_read_unlock(); 531 532 if (!num_devices) 533 return -EOPNOTSUPP; 534 if (copy_from_user(&range, arg, sizeof(range))) 535 return -EFAULT; 536 537 /* 538 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 539 * block group is in the logical address space, which can be any 540 * sectorsize aligned bytenr in the range [0, U64_MAX]. 541 */ 542 if (range.len < fs_info->sectorsize) 543 return -EINVAL; 544 545 range.minlen = max(range.minlen, minlen); 546 ret = btrfs_trim_fs(fs_info, &range); 547 548 if (copy_to_user(arg, &range, sizeof(range))) 549 return -EFAULT; 550 551 return ret; 552 } 553 554 int __pure btrfs_is_empty_uuid(const u8 *uuid) 555 { 556 int i; 557 558 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 559 if (uuid[i]) 560 return 0; 561 } 562 return 1; 563 } 564 565 /* 566 * Calculate the number of transaction items to reserve for creating a subvolume 567 * or snapshot, not including the inode, directory entries, or parent directory. 568 */ 569 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 570 { 571 /* 572 * 1 to add root block 573 * 1 to add root item 574 * 1 to add root ref 575 * 1 to add root backref 576 * 1 to add UUID item 577 * 1 to add qgroup info 578 * 1 to add qgroup limit 579 * 580 * Ideally the last two would only be accounted if qgroups are enabled, 581 * but that can change between now and the time we would insert them. 582 */ 583 unsigned int num_items = 7; 584 585 if (inherit) { 586 /* 2 to add qgroup relations for each inherited qgroup */ 587 num_items += 2 * inherit->num_qgroups; 588 } 589 return num_items; 590 } 591 592 static noinline int create_subvol(struct mnt_idmap *idmap, 593 struct inode *dir, struct dentry *dentry, 594 struct btrfs_qgroup_inherit *inherit) 595 { 596 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 597 struct btrfs_trans_handle *trans; 598 struct btrfs_key key; 599 struct btrfs_root_item *root_item; 600 struct btrfs_inode_item *inode_item; 601 struct extent_buffer *leaf; 602 struct btrfs_root *root = BTRFS_I(dir)->root; 603 struct btrfs_root *new_root; 604 struct btrfs_block_rsv block_rsv; 605 struct timespec64 cur_time = current_time(dir); 606 struct btrfs_new_inode_args new_inode_args = { 607 .dir = dir, 608 .dentry = dentry, 609 .subvol = true, 610 }; 611 unsigned int trans_num_items; 612 int ret; 613 dev_t anon_dev; 614 u64 objectid; 615 u64 qgroup_reserved = 0; 616 617 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 618 if (!root_item) 619 return -ENOMEM; 620 621 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 622 if (ret) 623 goto out_root_item; 624 625 /* 626 * Don't create subvolume whose level is not zero. Or qgroup will be 627 * screwed up since it assumes subvolume qgroup's level to be 0. 628 */ 629 if (btrfs_qgroup_level(objectid)) { 630 ret = -ENOSPC; 631 goto out_root_item; 632 } 633 634 ret = get_anon_bdev(&anon_dev); 635 if (ret < 0) 636 goto out_root_item; 637 638 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 639 if (!new_inode_args.inode) { 640 ret = -ENOMEM; 641 goto out_anon_dev; 642 } 643 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 644 if (ret) 645 goto out_inode; 646 trans_num_items += create_subvol_num_items(inherit); 647 648 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 649 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 650 trans_num_items, false); 651 if (ret) 652 goto out_new_inode_args; 653 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 654 655 trans = btrfs_start_transaction(root, 0); 656 if (IS_ERR(trans)) { 657 ret = PTR_ERR(trans); 658 goto out_release_rsv; 659 } 660 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 661 qgroup_reserved = 0; 662 trans->block_rsv = &block_rsv; 663 trans->bytes_reserved = block_rsv.size; 664 665 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit); 666 if (ret) 667 goto out; 668 669 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 670 0, BTRFS_NESTING_NORMAL); 671 if (IS_ERR(leaf)) { 672 ret = PTR_ERR(leaf); 673 goto out; 674 } 675 676 btrfs_mark_buffer_dirty(trans, leaf); 677 678 inode_item = &root_item->inode; 679 btrfs_set_stack_inode_generation(inode_item, 1); 680 btrfs_set_stack_inode_size(inode_item, 3); 681 btrfs_set_stack_inode_nlink(inode_item, 1); 682 btrfs_set_stack_inode_nbytes(inode_item, 683 fs_info->nodesize); 684 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 685 686 btrfs_set_root_flags(root_item, 0); 687 btrfs_set_root_limit(root_item, 0); 688 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 689 690 btrfs_set_root_bytenr(root_item, leaf->start); 691 btrfs_set_root_generation(root_item, trans->transid); 692 btrfs_set_root_level(root_item, 0); 693 btrfs_set_root_refs(root_item, 1); 694 btrfs_set_root_used(root_item, leaf->len); 695 btrfs_set_root_last_snapshot(root_item, 0); 696 697 btrfs_set_root_generation_v2(root_item, 698 btrfs_root_generation(root_item)); 699 generate_random_guid(root_item->uuid); 700 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 701 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 702 root_item->ctime = root_item->otime; 703 btrfs_set_root_ctransid(root_item, trans->transid); 704 btrfs_set_root_otransid(root_item, trans->transid); 705 706 btrfs_tree_unlock(leaf); 707 708 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 709 710 key.objectid = objectid; 711 key.offset = 0; 712 key.type = BTRFS_ROOT_ITEM_KEY; 713 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 714 root_item); 715 if (ret) { 716 int ret2; 717 718 /* 719 * Since we don't abort the transaction in this case, free the 720 * tree block so that we don't leak space and leave the 721 * filesystem in an inconsistent state (an extent item in the 722 * extent tree with a backreference for a root that does not 723 * exists). 724 */ 725 btrfs_tree_lock(leaf); 726 btrfs_clear_buffer_dirty(trans, leaf); 727 btrfs_tree_unlock(leaf); 728 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 729 if (ret2 < 0) 730 btrfs_abort_transaction(trans, ret2); 731 free_extent_buffer(leaf); 732 goto out; 733 } 734 735 free_extent_buffer(leaf); 736 leaf = NULL; 737 738 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 739 if (IS_ERR(new_root)) { 740 ret = PTR_ERR(new_root); 741 btrfs_abort_transaction(trans, ret); 742 goto out; 743 } 744 /* anon_dev is owned by new_root now. */ 745 anon_dev = 0; 746 BTRFS_I(new_inode_args.inode)->root = new_root; 747 /* ... and new_root is owned by new_inode_args.inode now. */ 748 749 ret = btrfs_record_root_in_trans(trans, new_root); 750 if (ret) { 751 btrfs_abort_transaction(trans, ret); 752 goto out; 753 } 754 755 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 756 BTRFS_UUID_KEY_SUBVOL, objectid); 757 if (ret) { 758 btrfs_abort_transaction(trans, ret); 759 goto out; 760 } 761 762 ret = btrfs_create_new_inode(trans, &new_inode_args); 763 if (ret) { 764 btrfs_abort_transaction(trans, ret); 765 goto out; 766 } 767 768 btrfs_record_new_subvolume(trans, BTRFS_I(dir)); 769 770 d_instantiate_new(dentry, new_inode_args.inode); 771 new_inode_args.inode = NULL; 772 773 out: 774 trans->block_rsv = NULL; 775 trans->bytes_reserved = 0; 776 btrfs_end_transaction(trans); 777 out_release_rsv: 778 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 779 if (qgroup_reserved) 780 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 781 out_new_inode_args: 782 btrfs_new_inode_args_destroy(&new_inode_args); 783 out_inode: 784 iput(new_inode_args.inode); 785 out_anon_dev: 786 if (anon_dev) 787 free_anon_bdev(anon_dev); 788 out_root_item: 789 kfree(root_item); 790 return ret; 791 } 792 793 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 794 struct dentry *dentry, bool readonly, 795 struct btrfs_qgroup_inherit *inherit) 796 { 797 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 798 struct inode *inode; 799 struct btrfs_pending_snapshot *pending_snapshot; 800 unsigned int trans_num_items; 801 struct btrfs_trans_handle *trans; 802 struct btrfs_block_rsv *block_rsv; 803 u64 qgroup_reserved = 0; 804 int ret; 805 806 /* We do not support snapshotting right now. */ 807 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 808 btrfs_warn(fs_info, 809 "extent tree v2 doesn't support snapshotting yet"); 810 return -EOPNOTSUPP; 811 } 812 813 if (btrfs_root_refs(&root->root_item) == 0) 814 return -ENOENT; 815 816 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 817 return -EINVAL; 818 819 if (atomic_read(&root->nr_swapfiles)) { 820 btrfs_warn(fs_info, 821 "cannot snapshot subvolume with active swapfile"); 822 return -ETXTBSY; 823 } 824 825 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 826 if (!pending_snapshot) 827 return -ENOMEM; 828 829 ret = get_anon_bdev(&pending_snapshot->anon_dev); 830 if (ret < 0) 831 goto free_pending; 832 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 833 GFP_KERNEL); 834 pending_snapshot->path = btrfs_alloc_path(); 835 if (!pending_snapshot->root_item || !pending_snapshot->path) { 836 ret = -ENOMEM; 837 goto free_pending; 838 } 839 840 block_rsv = &pending_snapshot->block_rsv; 841 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 842 /* 843 * 1 to add dir item 844 * 1 to add dir index 845 * 1 to update parent inode item 846 */ 847 trans_num_items = create_subvol_num_items(inherit) + 3; 848 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 849 trans_num_items, false); 850 if (ret) 851 goto free_pending; 852 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 853 854 pending_snapshot->dentry = dentry; 855 pending_snapshot->root = root; 856 pending_snapshot->readonly = readonly; 857 pending_snapshot->dir = BTRFS_I(dir); 858 pending_snapshot->inherit = inherit; 859 860 trans = btrfs_start_transaction(root, 0); 861 if (IS_ERR(trans)) { 862 ret = PTR_ERR(trans); 863 goto fail; 864 } 865 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 866 if (ret) { 867 btrfs_end_transaction(trans); 868 goto fail; 869 } 870 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 871 qgroup_reserved = 0; 872 873 trans->pending_snapshot = pending_snapshot; 874 875 ret = btrfs_commit_transaction(trans); 876 if (ret) 877 goto fail; 878 879 ret = pending_snapshot->error; 880 if (ret) 881 goto fail; 882 883 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 884 if (ret) 885 goto fail; 886 887 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 888 if (IS_ERR(inode)) { 889 ret = PTR_ERR(inode); 890 goto fail; 891 } 892 893 d_instantiate(dentry, inode); 894 ret = 0; 895 pending_snapshot->anon_dev = 0; 896 fail: 897 /* Prevent double freeing of anon_dev */ 898 if (ret && pending_snapshot->snap) 899 pending_snapshot->snap->anon_dev = 0; 900 btrfs_put_root(pending_snapshot->snap); 901 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 902 if (qgroup_reserved) 903 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 904 free_pending: 905 if (pending_snapshot->anon_dev) 906 free_anon_bdev(pending_snapshot->anon_dev); 907 kfree(pending_snapshot->root_item); 908 btrfs_free_path(pending_snapshot->path); 909 kfree(pending_snapshot); 910 911 return ret; 912 } 913 914 /* copy of may_delete in fs/namei.c() 915 * Check whether we can remove a link victim from directory dir, check 916 * whether the type of victim is right. 917 * 1. We can't do it if dir is read-only (done in permission()) 918 * 2. We should have write and exec permissions on dir 919 * 3. We can't remove anything from append-only dir 920 * 4. We can't do anything with immutable dir (done in permission()) 921 * 5. If the sticky bit on dir is set we should either 922 * a. be owner of dir, or 923 * b. be owner of victim, or 924 * c. have CAP_FOWNER capability 925 * 6. If the victim is append-only or immutable we can't do anything with 926 * links pointing to it. 927 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 928 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 929 * 9. We can't remove a root or mountpoint. 930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 931 * nfs_async_unlink(). 932 */ 933 934 static int btrfs_may_delete(struct mnt_idmap *idmap, 935 struct inode *dir, struct dentry *victim, int isdir) 936 { 937 int error; 938 939 if (d_really_is_negative(victim)) 940 return -ENOENT; 941 942 /* The @victim is not inside @dir. */ 943 if (d_inode(victim->d_parent) != dir) 944 return -EINVAL; 945 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 946 947 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 948 if (error) 949 return error; 950 if (IS_APPEND(dir)) 951 return -EPERM; 952 if (check_sticky(idmap, dir, d_inode(victim)) || 953 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 954 IS_SWAPFILE(d_inode(victim))) 955 return -EPERM; 956 if (isdir) { 957 if (!d_is_dir(victim)) 958 return -ENOTDIR; 959 if (IS_ROOT(victim)) 960 return -EBUSY; 961 } else if (d_is_dir(victim)) 962 return -EISDIR; 963 if (IS_DEADDIR(dir)) 964 return -ENOENT; 965 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 966 return -EBUSY; 967 return 0; 968 } 969 970 /* copy of may_create in fs/namei.c() */ 971 static inline int btrfs_may_create(struct mnt_idmap *idmap, 972 struct inode *dir, struct dentry *child) 973 { 974 if (d_really_is_positive(child)) 975 return -EEXIST; 976 if (IS_DEADDIR(dir)) 977 return -ENOENT; 978 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 979 return -EOVERFLOW; 980 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 981 } 982 983 /* 984 * Create a new subvolume below @parent. This is largely modeled after 985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 986 * inside this filesystem so it's quite a bit simpler. 987 */ 988 static noinline int btrfs_mksubvol(const struct path *parent, 989 struct mnt_idmap *idmap, 990 const char *name, int namelen, 991 struct btrfs_root *snap_src, 992 bool readonly, 993 struct btrfs_qgroup_inherit *inherit) 994 { 995 struct inode *dir = d_inode(parent->dentry); 996 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 997 struct dentry *dentry; 998 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 999 int error; 1000 1001 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 1002 if (error == -EINTR) 1003 return error; 1004 1005 dentry = lookup_one(idmap, name, parent->dentry, namelen); 1006 error = PTR_ERR(dentry); 1007 if (IS_ERR(dentry)) 1008 goto out_unlock; 1009 1010 error = btrfs_may_create(idmap, dir, dentry); 1011 if (error) 1012 goto out_dput; 1013 1014 /* 1015 * even if this name doesn't exist, we may get hash collisions. 1016 * check for them now when we can safely fail 1017 */ 1018 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 1019 dir->i_ino, &name_str); 1020 if (error) 1021 goto out_dput; 1022 1023 down_read(&fs_info->subvol_sem); 1024 1025 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1026 goto out_up_read; 1027 1028 if (snap_src) 1029 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1030 else 1031 error = create_subvol(idmap, dir, dentry, inherit); 1032 1033 if (!error) 1034 fsnotify_mkdir(dir, dentry); 1035 out_up_read: 1036 up_read(&fs_info->subvol_sem); 1037 out_dput: 1038 dput(dentry); 1039 out_unlock: 1040 btrfs_inode_unlock(BTRFS_I(dir), 0); 1041 return error; 1042 } 1043 1044 static noinline int btrfs_mksnapshot(const struct path *parent, 1045 struct mnt_idmap *idmap, 1046 const char *name, int namelen, 1047 struct btrfs_root *root, 1048 bool readonly, 1049 struct btrfs_qgroup_inherit *inherit) 1050 { 1051 int ret; 1052 1053 /* 1054 * Force new buffered writes to reserve space even when NOCOW is 1055 * possible. This is to avoid later writeback (running dealloc) to 1056 * fallback to COW mode and unexpectedly fail with ENOSPC. 1057 */ 1058 btrfs_drew_read_lock(&root->snapshot_lock); 1059 1060 ret = btrfs_start_delalloc_snapshot(root, false); 1061 if (ret) 1062 goto out; 1063 1064 /* 1065 * All previous writes have started writeback in NOCOW mode, so now 1066 * we force future writes to fallback to COW mode during snapshot 1067 * creation. 1068 */ 1069 atomic_inc(&root->snapshot_force_cow); 1070 1071 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 1072 1073 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1074 root, readonly, inherit); 1075 atomic_dec(&root->snapshot_force_cow); 1076 out: 1077 btrfs_drew_read_unlock(&root->snapshot_lock); 1078 return ret; 1079 } 1080 1081 /* 1082 * Try to start exclusive operation @type or cancel it if it's running. 1083 * 1084 * Return: 1085 * 0 - normal mode, newly claimed op started 1086 * >0 - normal mode, something else is running, 1087 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1088 * ECANCELED - cancel mode, successful cancel 1089 * ENOTCONN - cancel mode, operation not running anymore 1090 */ 1091 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1092 enum btrfs_exclusive_operation type, bool cancel) 1093 { 1094 if (!cancel) { 1095 /* Start normal op */ 1096 if (!btrfs_exclop_start(fs_info, type)) 1097 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1098 /* Exclusive operation is now claimed */ 1099 return 0; 1100 } 1101 1102 /* Cancel running op */ 1103 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1104 /* 1105 * This blocks any exclop finish from setting it to NONE, so we 1106 * request cancellation. Either it runs and we will wait for it, 1107 * or it has finished and no waiting will happen. 1108 */ 1109 atomic_inc(&fs_info->reloc_cancel_req); 1110 btrfs_exclop_start_unlock(fs_info); 1111 1112 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1113 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1114 TASK_INTERRUPTIBLE); 1115 1116 return -ECANCELED; 1117 } 1118 1119 /* Something else is running or none */ 1120 return -ENOTCONN; 1121 } 1122 1123 static noinline int btrfs_ioctl_resize(struct file *file, 1124 void __user *arg) 1125 { 1126 BTRFS_DEV_LOOKUP_ARGS(args); 1127 struct inode *inode = file_inode(file); 1128 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1129 u64 new_size; 1130 u64 old_size; 1131 u64 devid = 1; 1132 struct btrfs_root *root = BTRFS_I(inode)->root; 1133 struct btrfs_ioctl_vol_args *vol_args; 1134 struct btrfs_trans_handle *trans; 1135 struct btrfs_device *device = NULL; 1136 char *sizestr; 1137 char *retptr; 1138 char *devstr = NULL; 1139 int ret = 0; 1140 int mod = 0; 1141 bool cancel; 1142 1143 if (!capable(CAP_SYS_ADMIN)) 1144 return -EPERM; 1145 1146 ret = mnt_want_write_file(file); 1147 if (ret) 1148 return ret; 1149 1150 /* 1151 * Read the arguments before checking exclusivity to be able to 1152 * distinguish regular resize and cancel 1153 */ 1154 vol_args = memdup_user(arg, sizeof(*vol_args)); 1155 if (IS_ERR(vol_args)) { 1156 ret = PTR_ERR(vol_args); 1157 goto out_drop; 1158 } 1159 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1160 if (ret < 0) 1161 goto out_free; 1162 1163 sizestr = vol_args->name; 1164 cancel = (strcmp("cancel", sizestr) == 0); 1165 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1166 if (ret) 1167 goto out_free; 1168 /* Exclusive operation is now claimed */ 1169 1170 devstr = strchr(sizestr, ':'); 1171 if (devstr) { 1172 sizestr = devstr + 1; 1173 *devstr = '\0'; 1174 devstr = vol_args->name; 1175 ret = kstrtoull(devstr, 10, &devid); 1176 if (ret) 1177 goto out_finish; 1178 if (!devid) { 1179 ret = -EINVAL; 1180 goto out_finish; 1181 } 1182 btrfs_info(fs_info, "resizing devid %llu", devid); 1183 } 1184 1185 args.devid = devid; 1186 device = btrfs_find_device(fs_info->fs_devices, &args); 1187 if (!device) { 1188 btrfs_info(fs_info, "resizer unable to find device %llu", 1189 devid); 1190 ret = -ENODEV; 1191 goto out_finish; 1192 } 1193 1194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1195 btrfs_info(fs_info, 1196 "resizer unable to apply on readonly device %llu", 1197 devid); 1198 ret = -EPERM; 1199 goto out_finish; 1200 } 1201 1202 if (!strcmp(sizestr, "max")) 1203 new_size = bdev_nr_bytes(device->bdev); 1204 else { 1205 if (sizestr[0] == '-') { 1206 mod = -1; 1207 sizestr++; 1208 } else if (sizestr[0] == '+') { 1209 mod = 1; 1210 sizestr++; 1211 } 1212 new_size = memparse(sizestr, &retptr); 1213 if (*retptr != '\0' || new_size == 0) { 1214 ret = -EINVAL; 1215 goto out_finish; 1216 } 1217 } 1218 1219 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1220 ret = -EPERM; 1221 goto out_finish; 1222 } 1223 1224 old_size = btrfs_device_get_total_bytes(device); 1225 1226 if (mod < 0) { 1227 if (new_size > old_size) { 1228 ret = -EINVAL; 1229 goto out_finish; 1230 } 1231 new_size = old_size - new_size; 1232 } else if (mod > 0) { 1233 if (new_size > ULLONG_MAX - old_size) { 1234 ret = -ERANGE; 1235 goto out_finish; 1236 } 1237 new_size = old_size + new_size; 1238 } 1239 1240 if (new_size < SZ_256M) { 1241 ret = -EINVAL; 1242 goto out_finish; 1243 } 1244 if (new_size > bdev_nr_bytes(device->bdev)) { 1245 ret = -EFBIG; 1246 goto out_finish; 1247 } 1248 1249 new_size = round_down(new_size, fs_info->sectorsize); 1250 1251 if (new_size > old_size) { 1252 trans = btrfs_start_transaction(root, 0); 1253 if (IS_ERR(trans)) { 1254 ret = PTR_ERR(trans); 1255 goto out_finish; 1256 } 1257 ret = btrfs_grow_device(trans, device, new_size); 1258 btrfs_commit_transaction(trans); 1259 } else if (new_size < old_size) { 1260 ret = btrfs_shrink_device(device, new_size); 1261 } /* equal, nothing need to do */ 1262 1263 if (ret == 0 && new_size != old_size) 1264 btrfs_info_in_rcu(fs_info, 1265 "resize device %s (devid %llu) from %llu to %llu", 1266 btrfs_dev_name(device), device->devid, 1267 old_size, new_size); 1268 out_finish: 1269 btrfs_exclop_finish(fs_info); 1270 out_free: 1271 kfree(vol_args); 1272 out_drop: 1273 mnt_drop_write_file(file); 1274 return ret; 1275 } 1276 1277 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1278 struct mnt_idmap *idmap, 1279 const char *name, unsigned long fd, int subvol, 1280 bool readonly, 1281 struct btrfs_qgroup_inherit *inherit) 1282 { 1283 int namelen; 1284 int ret = 0; 1285 1286 if (!S_ISDIR(file_inode(file)->i_mode)) 1287 return -ENOTDIR; 1288 1289 ret = mnt_want_write_file(file); 1290 if (ret) 1291 goto out; 1292 1293 namelen = strlen(name); 1294 if (strchr(name, '/')) { 1295 ret = -EINVAL; 1296 goto out_drop_write; 1297 } 1298 1299 if (name[0] == '.' && 1300 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1301 ret = -EEXIST; 1302 goto out_drop_write; 1303 } 1304 1305 if (subvol) { 1306 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1307 namelen, NULL, readonly, inherit); 1308 } else { 1309 CLASS(fd, src)(fd); 1310 struct inode *src_inode; 1311 if (fd_empty(src)) { 1312 ret = -EINVAL; 1313 goto out_drop_write; 1314 } 1315 1316 src_inode = file_inode(fd_file(src)); 1317 if (src_inode->i_sb != file_inode(file)->i_sb) { 1318 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1319 "Snapshot src from another FS"); 1320 ret = -EXDEV; 1321 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1322 /* 1323 * Subvolume creation is not restricted, but snapshots 1324 * are limited to own subvolumes only 1325 */ 1326 ret = -EPERM; 1327 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1328 /* 1329 * Snapshots must be made with the src_inode referring 1330 * to the subvolume inode, otherwise the permission 1331 * checking above is useless because we may have 1332 * permission on a lower directory but not the subvol 1333 * itself. 1334 */ 1335 ret = -EINVAL; 1336 } else { 1337 ret = btrfs_mksnapshot(&file->f_path, idmap, 1338 name, namelen, 1339 BTRFS_I(src_inode)->root, 1340 readonly, inherit); 1341 } 1342 } 1343 out_drop_write: 1344 mnt_drop_write_file(file); 1345 out: 1346 return ret; 1347 } 1348 1349 static noinline int btrfs_ioctl_snap_create(struct file *file, 1350 void __user *arg, int subvol) 1351 { 1352 struct btrfs_ioctl_vol_args *vol_args; 1353 int ret; 1354 1355 if (!S_ISDIR(file_inode(file)->i_mode)) 1356 return -ENOTDIR; 1357 1358 vol_args = memdup_user(arg, sizeof(*vol_args)); 1359 if (IS_ERR(vol_args)) 1360 return PTR_ERR(vol_args); 1361 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1362 if (ret < 0) 1363 goto out; 1364 1365 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1366 vol_args->name, vol_args->fd, subvol, 1367 false, NULL); 1368 1369 out: 1370 kfree(vol_args); 1371 return ret; 1372 } 1373 1374 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1375 void __user *arg, int subvol) 1376 { 1377 struct btrfs_ioctl_vol_args_v2 *vol_args; 1378 int ret; 1379 bool readonly = false; 1380 struct btrfs_qgroup_inherit *inherit = NULL; 1381 1382 if (!S_ISDIR(file_inode(file)->i_mode)) 1383 return -ENOTDIR; 1384 1385 vol_args = memdup_user(arg, sizeof(*vol_args)); 1386 if (IS_ERR(vol_args)) 1387 return PTR_ERR(vol_args); 1388 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 1389 if (ret < 0) 1390 goto free_args; 1391 1392 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1393 ret = -EOPNOTSUPP; 1394 goto free_args; 1395 } 1396 1397 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1398 readonly = true; 1399 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1400 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 1401 1402 if (vol_args->size < sizeof(*inherit) || 1403 vol_args->size > PAGE_SIZE) { 1404 ret = -EINVAL; 1405 goto free_args; 1406 } 1407 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1408 if (IS_ERR(inherit)) { 1409 ret = PTR_ERR(inherit); 1410 goto free_args; 1411 } 1412 1413 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size); 1414 if (ret < 0) 1415 goto free_inherit; 1416 } 1417 1418 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1419 vol_args->name, vol_args->fd, subvol, 1420 readonly, inherit); 1421 if (ret) 1422 goto free_inherit; 1423 free_inherit: 1424 kfree(inherit); 1425 free_args: 1426 kfree(vol_args); 1427 return ret; 1428 } 1429 1430 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1431 void __user *arg) 1432 { 1433 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1434 struct btrfs_root *root = BTRFS_I(inode)->root; 1435 int ret = 0; 1436 u64 flags = 0; 1437 1438 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1439 return -EINVAL; 1440 1441 down_read(&fs_info->subvol_sem); 1442 if (btrfs_root_readonly(root)) 1443 flags |= BTRFS_SUBVOL_RDONLY; 1444 up_read(&fs_info->subvol_sem); 1445 1446 if (copy_to_user(arg, &flags, sizeof(flags))) 1447 ret = -EFAULT; 1448 1449 return ret; 1450 } 1451 1452 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1453 void __user *arg) 1454 { 1455 struct inode *inode = file_inode(file); 1456 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1457 struct btrfs_root *root = BTRFS_I(inode)->root; 1458 struct btrfs_trans_handle *trans; 1459 u64 root_flags; 1460 u64 flags; 1461 int ret = 0; 1462 1463 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1464 return -EPERM; 1465 1466 ret = mnt_want_write_file(file); 1467 if (ret) 1468 goto out; 1469 1470 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1471 ret = -EINVAL; 1472 goto out_drop_write; 1473 } 1474 1475 if (copy_from_user(&flags, arg, sizeof(flags))) { 1476 ret = -EFAULT; 1477 goto out_drop_write; 1478 } 1479 1480 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1481 ret = -EOPNOTSUPP; 1482 goto out_drop_write; 1483 } 1484 1485 down_write(&fs_info->subvol_sem); 1486 1487 /* nothing to do */ 1488 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1489 goto out_drop_sem; 1490 1491 root_flags = btrfs_root_flags(&root->root_item); 1492 if (flags & BTRFS_SUBVOL_RDONLY) { 1493 btrfs_set_root_flags(&root->root_item, 1494 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1495 } else { 1496 /* 1497 * Block RO -> RW transition if this subvolume is involved in 1498 * send 1499 */ 1500 spin_lock(&root->root_item_lock); 1501 if (root->send_in_progress == 0) { 1502 btrfs_set_root_flags(&root->root_item, 1503 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1504 spin_unlock(&root->root_item_lock); 1505 } else { 1506 spin_unlock(&root->root_item_lock); 1507 btrfs_warn(fs_info, 1508 "Attempt to set subvolume %llu read-write during send", 1509 btrfs_root_id(root)); 1510 ret = -EPERM; 1511 goto out_drop_sem; 1512 } 1513 } 1514 1515 trans = btrfs_start_transaction(root, 1); 1516 if (IS_ERR(trans)) { 1517 ret = PTR_ERR(trans); 1518 goto out_reset; 1519 } 1520 1521 ret = btrfs_update_root(trans, fs_info->tree_root, 1522 &root->root_key, &root->root_item); 1523 if (ret < 0) { 1524 btrfs_end_transaction(trans); 1525 goto out_reset; 1526 } 1527 1528 ret = btrfs_commit_transaction(trans); 1529 1530 out_reset: 1531 if (ret) 1532 btrfs_set_root_flags(&root->root_item, root_flags); 1533 out_drop_sem: 1534 up_write(&fs_info->subvol_sem); 1535 out_drop_write: 1536 mnt_drop_write_file(file); 1537 out: 1538 return ret; 1539 } 1540 1541 static noinline int key_in_sk(struct btrfs_key *key, 1542 struct btrfs_ioctl_search_key *sk) 1543 { 1544 struct btrfs_key test; 1545 int ret; 1546 1547 test.objectid = sk->min_objectid; 1548 test.type = sk->min_type; 1549 test.offset = sk->min_offset; 1550 1551 ret = btrfs_comp_cpu_keys(key, &test); 1552 if (ret < 0) 1553 return 0; 1554 1555 test.objectid = sk->max_objectid; 1556 test.type = sk->max_type; 1557 test.offset = sk->max_offset; 1558 1559 ret = btrfs_comp_cpu_keys(key, &test); 1560 if (ret > 0) 1561 return 0; 1562 return 1; 1563 } 1564 1565 static noinline int copy_to_sk(struct btrfs_path *path, 1566 struct btrfs_key *key, 1567 struct btrfs_ioctl_search_key *sk, 1568 u64 *buf_size, 1569 char __user *ubuf, 1570 unsigned long *sk_offset, 1571 int *num_found) 1572 { 1573 u64 found_transid; 1574 struct extent_buffer *leaf; 1575 struct btrfs_ioctl_search_header sh; 1576 struct btrfs_key test; 1577 unsigned long item_off; 1578 unsigned long item_len; 1579 int nritems; 1580 int i; 1581 int slot; 1582 int ret = 0; 1583 1584 leaf = path->nodes[0]; 1585 slot = path->slots[0]; 1586 nritems = btrfs_header_nritems(leaf); 1587 1588 if (btrfs_header_generation(leaf) > sk->max_transid) { 1589 i = nritems; 1590 goto advance_key; 1591 } 1592 found_transid = btrfs_header_generation(leaf); 1593 1594 for (i = slot; i < nritems; i++) { 1595 item_off = btrfs_item_ptr_offset(leaf, i); 1596 item_len = btrfs_item_size(leaf, i); 1597 1598 btrfs_item_key_to_cpu(leaf, key, i); 1599 if (!key_in_sk(key, sk)) 1600 continue; 1601 1602 if (sizeof(sh) + item_len > *buf_size) { 1603 if (*num_found) { 1604 ret = 1; 1605 goto out; 1606 } 1607 1608 /* 1609 * return one empty item back for v1, which does not 1610 * handle -EOVERFLOW 1611 */ 1612 1613 *buf_size = sizeof(sh) + item_len; 1614 item_len = 0; 1615 ret = -EOVERFLOW; 1616 } 1617 1618 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1619 ret = 1; 1620 goto out; 1621 } 1622 1623 sh.objectid = key->objectid; 1624 sh.offset = key->offset; 1625 sh.type = key->type; 1626 sh.len = item_len; 1627 sh.transid = found_transid; 1628 1629 /* 1630 * Copy search result header. If we fault then loop again so we 1631 * can fault in the pages and -EFAULT there if there's a 1632 * problem. Otherwise we'll fault and then copy the buffer in 1633 * properly this next time through 1634 */ 1635 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1636 ret = 0; 1637 goto out; 1638 } 1639 1640 *sk_offset += sizeof(sh); 1641 1642 if (item_len) { 1643 char __user *up = ubuf + *sk_offset; 1644 /* 1645 * Copy the item, same behavior as above, but reset the 1646 * * sk_offset so we copy the full thing again. 1647 */ 1648 if (read_extent_buffer_to_user_nofault(leaf, up, 1649 item_off, item_len)) { 1650 ret = 0; 1651 *sk_offset -= sizeof(sh); 1652 goto out; 1653 } 1654 1655 *sk_offset += item_len; 1656 } 1657 (*num_found)++; 1658 1659 if (ret) /* -EOVERFLOW from above */ 1660 goto out; 1661 1662 if (*num_found >= sk->nr_items) { 1663 ret = 1; 1664 goto out; 1665 } 1666 } 1667 advance_key: 1668 ret = 0; 1669 test.objectid = sk->max_objectid; 1670 test.type = sk->max_type; 1671 test.offset = sk->max_offset; 1672 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1673 ret = 1; 1674 else if (key->offset < (u64)-1) 1675 key->offset++; 1676 else if (key->type < (u8)-1) { 1677 key->offset = 0; 1678 key->type++; 1679 } else if (key->objectid < (u64)-1) { 1680 key->offset = 0; 1681 key->type = 0; 1682 key->objectid++; 1683 } else 1684 ret = 1; 1685 out: 1686 /* 1687 * 0: all items from this leaf copied, continue with next 1688 * 1: * more items can be copied, but unused buffer is too small 1689 * * all items were found 1690 * Either way, it will stops the loop which iterates to the next 1691 * leaf 1692 * -EOVERFLOW: item was to large for buffer 1693 * -EFAULT: could not copy extent buffer back to userspace 1694 */ 1695 return ret; 1696 } 1697 1698 static noinline int search_ioctl(struct inode *inode, 1699 struct btrfs_ioctl_search_key *sk, 1700 u64 *buf_size, 1701 char __user *ubuf) 1702 { 1703 struct btrfs_fs_info *info = inode_to_fs_info(inode); 1704 struct btrfs_root *root; 1705 struct btrfs_key key; 1706 struct btrfs_path *path; 1707 int ret; 1708 int num_found = 0; 1709 unsigned long sk_offset = 0; 1710 1711 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1712 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1713 return -EOVERFLOW; 1714 } 1715 1716 path = btrfs_alloc_path(); 1717 if (!path) 1718 return -ENOMEM; 1719 1720 if (sk->tree_id == 0) { 1721 /* search the root of the inode that was passed */ 1722 root = btrfs_grab_root(BTRFS_I(inode)->root); 1723 } else { 1724 root = btrfs_get_fs_root(info, sk->tree_id, true); 1725 if (IS_ERR(root)) { 1726 btrfs_free_path(path); 1727 return PTR_ERR(root); 1728 } 1729 } 1730 1731 key.objectid = sk->min_objectid; 1732 key.type = sk->min_type; 1733 key.offset = sk->min_offset; 1734 1735 while (1) { 1736 ret = -EFAULT; 1737 /* 1738 * Ensure that the whole user buffer is faulted in at sub-page 1739 * granularity, otherwise the loop may live-lock. 1740 */ 1741 if (fault_in_subpage_writeable(ubuf + sk_offset, 1742 *buf_size - sk_offset)) 1743 break; 1744 1745 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1746 if (ret != 0) { 1747 if (ret > 0) 1748 ret = 0; 1749 goto err; 1750 } 1751 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1752 &sk_offset, &num_found); 1753 btrfs_release_path(path); 1754 if (ret) 1755 break; 1756 1757 } 1758 if (ret > 0) 1759 ret = 0; 1760 err: 1761 sk->nr_items = num_found; 1762 btrfs_put_root(root); 1763 btrfs_free_path(path); 1764 return ret; 1765 } 1766 1767 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1768 void __user *argp) 1769 { 1770 struct btrfs_ioctl_search_args __user *uargs = argp; 1771 struct btrfs_ioctl_search_key sk; 1772 int ret; 1773 u64 buf_size; 1774 1775 if (!capable(CAP_SYS_ADMIN)) 1776 return -EPERM; 1777 1778 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1779 return -EFAULT; 1780 1781 buf_size = sizeof(uargs->buf); 1782 1783 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1784 1785 /* 1786 * In the origin implementation an overflow is handled by returning a 1787 * search header with a len of zero, so reset ret. 1788 */ 1789 if (ret == -EOVERFLOW) 1790 ret = 0; 1791 1792 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1793 ret = -EFAULT; 1794 return ret; 1795 } 1796 1797 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1798 void __user *argp) 1799 { 1800 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1801 struct btrfs_ioctl_search_args_v2 args; 1802 int ret; 1803 u64 buf_size; 1804 const u64 buf_limit = SZ_16M; 1805 1806 if (!capable(CAP_SYS_ADMIN)) 1807 return -EPERM; 1808 1809 /* copy search header and buffer size */ 1810 if (copy_from_user(&args, uarg, sizeof(args))) 1811 return -EFAULT; 1812 1813 buf_size = args.buf_size; 1814 1815 /* limit result size to 16MB */ 1816 if (buf_size > buf_limit) 1817 buf_size = buf_limit; 1818 1819 ret = search_ioctl(inode, &args.key, &buf_size, 1820 (char __user *)(&uarg->buf[0])); 1821 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1822 ret = -EFAULT; 1823 else if (ret == -EOVERFLOW && 1824 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1825 ret = -EFAULT; 1826 1827 return ret; 1828 } 1829 1830 /* 1831 * Search INODE_REFs to identify path name of 'dirid' directory 1832 * in a 'tree_id' tree. and sets path name to 'name'. 1833 */ 1834 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1835 u64 tree_id, u64 dirid, char *name) 1836 { 1837 struct btrfs_root *root; 1838 struct btrfs_key key; 1839 char *ptr; 1840 int ret = -1; 1841 int slot; 1842 int len; 1843 int total_len = 0; 1844 struct btrfs_inode_ref *iref; 1845 struct extent_buffer *l; 1846 struct btrfs_path *path; 1847 1848 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1849 name[0]='\0'; 1850 return 0; 1851 } 1852 1853 path = btrfs_alloc_path(); 1854 if (!path) 1855 return -ENOMEM; 1856 1857 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1858 1859 root = btrfs_get_fs_root(info, tree_id, true); 1860 if (IS_ERR(root)) { 1861 ret = PTR_ERR(root); 1862 root = NULL; 1863 goto out; 1864 } 1865 1866 key.objectid = dirid; 1867 key.type = BTRFS_INODE_REF_KEY; 1868 key.offset = (u64)-1; 1869 1870 while (1) { 1871 ret = btrfs_search_backwards(root, &key, path); 1872 if (ret < 0) 1873 goto out; 1874 else if (ret > 0) { 1875 ret = -ENOENT; 1876 goto out; 1877 } 1878 1879 l = path->nodes[0]; 1880 slot = path->slots[0]; 1881 1882 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1883 len = btrfs_inode_ref_name_len(l, iref); 1884 ptr -= len + 1; 1885 total_len += len + 1; 1886 if (ptr < name) { 1887 ret = -ENAMETOOLONG; 1888 goto out; 1889 } 1890 1891 *(ptr + len) = '/'; 1892 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1893 1894 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1895 break; 1896 1897 btrfs_release_path(path); 1898 key.objectid = key.offset; 1899 key.offset = (u64)-1; 1900 dirid = key.objectid; 1901 } 1902 memmove(name, ptr, total_len); 1903 name[total_len] = '\0'; 1904 ret = 0; 1905 out: 1906 btrfs_put_root(root); 1907 btrfs_free_path(path); 1908 return ret; 1909 } 1910 1911 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1912 struct inode *inode, 1913 struct btrfs_ioctl_ino_lookup_user_args *args) 1914 { 1915 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1916 u64 upper_limit = btrfs_ino(BTRFS_I(inode)); 1917 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root); 1918 u64 dirid = args->dirid; 1919 unsigned long item_off; 1920 unsigned long item_len; 1921 struct btrfs_inode_ref *iref; 1922 struct btrfs_root_ref *rref; 1923 struct btrfs_root *root = NULL; 1924 struct btrfs_path *path; 1925 struct btrfs_key key, key2; 1926 struct extent_buffer *leaf; 1927 struct inode *temp_inode; 1928 char *ptr; 1929 int slot; 1930 int len; 1931 int total_len = 0; 1932 int ret; 1933 1934 path = btrfs_alloc_path(); 1935 if (!path) 1936 return -ENOMEM; 1937 1938 /* 1939 * If the bottom subvolume does not exist directly under upper_limit, 1940 * construct the path in from the bottom up. 1941 */ 1942 if (dirid != upper_limit) { 1943 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1944 1945 root = btrfs_get_fs_root(fs_info, treeid, true); 1946 if (IS_ERR(root)) { 1947 ret = PTR_ERR(root); 1948 goto out; 1949 } 1950 1951 key.objectid = dirid; 1952 key.type = BTRFS_INODE_REF_KEY; 1953 key.offset = (u64)-1; 1954 while (1) { 1955 ret = btrfs_search_backwards(root, &key, path); 1956 if (ret < 0) 1957 goto out_put; 1958 else if (ret > 0) { 1959 ret = -ENOENT; 1960 goto out_put; 1961 } 1962 1963 leaf = path->nodes[0]; 1964 slot = path->slots[0]; 1965 1966 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1967 len = btrfs_inode_ref_name_len(leaf, iref); 1968 ptr -= len + 1; 1969 total_len += len + 1; 1970 if (ptr < args->path) { 1971 ret = -ENAMETOOLONG; 1972 goto out_put; 1973 } 1974 1975 *(ptr + len) = '/'; 1976 read_extent_buffer(leaf, ptr, 1977 (unsigned long)(iref + 1), len); 1978 1979 /* Check the read+exec permission of this directory */ 1980 ret = btrfs_previous_item(root, path, dirid, 1981 BTRFS_INODE_ITEM_KEY); 1982 if (ret < 0) { 1983 goto out_put; 1984 } else if (ret > 0) { 1985 ret = -ENOENT; 1986 goto out_put; 1987 } 1988 1989 leaf = path->nodes[0]; 1990 slot = path->slots[0]; 1991 btrfs_item_key_to_cpu(leaf, &key2, slot); 1992 if (key2.objectid != dirid) { 1993 ret = -ENOENT; 1994 goto out_put; 1995 } 1996 1997 /* 1998 * We don't need the path anymore, so release it and 1999 * avoid deadlocks and lockdep warnings in case 2000 * btrfs_iget() needs to lookup the inode from its root 2001 * btree and lock the same leaf. 2002 */ 2003 btrfs_release_path(path); 2004 temp_inode = btrfs_iget(key2.objectid, root); 2005 if (IS_ERR(temp_inode)) { 2006 ret = PTR_ERR(temp_inode); 2007 goto out_put; 2008 } 2009 ret = inode_permission(idmap, temp_inode, 2010 MAY_READ | MAY_EXEC); 2011 iput(temp_inode); 2012 if (ret) { 2013 ret = -EACCES; 2014 goto out_put; 2015 } 2016 2017 if (key.offset == upper_limit) 2018 break; 2019 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2020 ret = -EACCES; 2021 goto out_put; 2022 } 2023 2024 key.objectid = key.offset; 2025 key.offset = (u64)-1; 2026 dirid = key.objectid; 2027 } 2028 2029 memmove(args->path, ptr, total_len); 2030 args->path[total_len] = '\0'; 2031 btrfs_put_root(root); 2032 root = NULL; 2033 btrfs_release_path(path); 2034 } 2035 2036 /* Get the bottom subvolume's name from ROOT_REF */ 2037 key.objectid = treeid; 2038 key.type = BTRFS_ROOT_REF_KEY; 2039 key.offset = args->treeid; 2040 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2041 if (ret < 0) { 2042 goto out; 2043 } else if (ret > 0) { 2044 ret = -ENOENT; 2045 goto out; 2046 } 2047 2048 leaf = path->nodes[0]; 2049 slot = path->slots[0]; 2050 btrfs_item_key_to_cpu(leaf, &key, slot); 2051 2052 item_off = btrfs_item_ptr_offset(leaf, slot); 2053 item_len = btrfs_item_size(leaf, slot); 2054 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2055 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2056 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2057 ret = -EINVAL; 2058 goto out; 2059 } 2060 2061 /* Copy subvolume's name */ 2062 item_off += sizeof(struct btrfs_root_ref); 2063 item_len -= sizeof(struct btrfs_root_ref); 2064 read_extent_buffer(leaf, args->name, item_off, item_len); 2065 args->name[item_len] = 0; 2066 2067 out_put: 2068 btrfs_put_root(root); 2069 out: 2070 btrfs_free_path(path); 2071 return ret; 2072 } 2073 2074 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2075 void __user *argp) 2076 { 2077 struct btrfs_ioctl_ino_lookup_args *args; 2078 int ret = 0; 2079 2080 args = memdup_user(argp, sizeof(*args)); 2081 if (IS_ERR(args)) 2082 return PTR_ERR(args); 2083 2084 /* 2085 * Unprivileged query to obtain the containing subvolume root id. The 2086 * path is reset so it's consistent with btrfs_search_path_in_tree. 2087 */ 2088 if (args->treeid == 0) 2089 args->treeid = btrfs_root_id(root); 2090 2091 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2092 args->name[0] = 0; 2093 goto out; 2094 } 2095 2096 if (!capable(CAP_SYS_ADMIN)) { 2097 ret = -EPERM; 2098 goto out; 2099 } 2100 2101 ret = btrfs_search_path_in_tree(root->fs_info, 2102 args->treeid, args->objectid, 2103 args->name); 2104 2105 out: 2106 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2107 ret = -EFAULT; 2108 2109 kfree(args); 2110 return ret; 2111 } 2112 2113 /* 2114 * Version of ino_lookup ioctl (unprivileged) 2115 * 2116 * The main differences from ino_lookup ioctl are: 2117 * 2118 * 1. Read + Exec permission will be checked using inode_permission() during 2119 * path construction. -EACCES will be returned in case of failure. 2120 * 2. Path construction will be stopped at the inode number which corresponds 2121 * to the fd with which this ioctl is called. If constructed path does not 2122 * exist under fd's inode, -EACCES will be returned. 2123 * 3. The name of bottom subvolume is also searched and filled. 2124 */ 2125 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2126 { 2127 struct btrfs_ioctl_ino_lookup_user_args *args; 2128 struct inode *inode; 2129 int ret; 2130 2131 args = memdup_user(argp, sizeof(*args)); 2132 if (IS_ERR(args)) 2133 return PTR_ERR(args); 2134 2135 inode = file_inode(file); 2136 2137 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2138 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2139 /* 2140 * The subvolume does not exist under fd with which this is 2141 * called 2142 */ 2143 kfree(args); 2144 return -EACCES; 2145 } 2146 2147 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2148 2149 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2150 ret = -EFAULT; 2151 2152 kfree(args); 2153 return ret; 2154 } 2155 2156 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2157 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2158 { 2159 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2160 struct btrfs_fs_info *fs_info; 2161 struct btrfs_root *root; 2162 struct btrfs_path *path; 2163 struct btrfs_key key; 2164 struct btrfs_root_item *root_item; 2165 struct btrfs_root_ref *rref; 2166 struct extent_buffer *leaf; 2167 unsigned long item_off; 2168 unsigned long item_len; 2169 int slot; 2170 int ret = 0; 2171 2172 path = btrfs_alloc_path(); 2173 if (!path) 2174 return -ENOMEM; 2175 2176 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2177 if (!subvol_info) { 2178 btrfs_free_path(path); 2179 return -ENOMEM; 2180 } 2181 2182 fs_info = BTRFS_I(inode)->root->fs_info; 2183 2184 /* Get root_item of inode's subvolume */ 2185 key.objectid = btrfs_root_id(BTRFS_I(inode)->root); 2186 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2187 if (IS_ERR(root)) { 2188 ret = PTR_ERR(root); 2189 goto out_free; 2190 } 2191 root_item = &root->root_item; 2192 2193 subvol_info->treeid = key.objectid; 2194 2195 subvol_info->generation = btrfs_root_generation(root_item); 2196 subvol_info->flags = btrfs_root_flags(root_item); 2197 2198 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2199 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2200 BTRFS_UUID_SIZE); 2201 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2202 BTRFS_UUID_SIZE); 2203 2204 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2205 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2206 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2207 2208 subvol_info->otransid = btrfs_root_otransid(root_item); 2209 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2210 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2211 2212 subvol_info->stransid = btrfs_root_stransid(root_item); 2213 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2214 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2215 2216 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2217 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2218 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2219 2220 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2221 /* Search root tree for ROOT_BACKREF of this subvolume */ 2222 key.type = BTRFS_ROOT_BACKREF_KEY; 2223 key.offset = 0; 2224 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2225 if (ret < 0) { 2226 goto out; 2227 } else if (path->slots[0] >= 2228 btrfs_header_nritems(path->nodes[0])) { 2229 ret = btrfs_next_leaf(fs_info->tree_root, path); 2230 if (ret < 0) { 2231 goto out; 2232 } else if (ret > 0) { 2233 ret = -EUCLEAN; 2234 goto out; 2235 } 2236 } 2237 2238 leaf = path->nodes[0]; 2239 slot = path->slots[0]; 2240 btrfs_item_key_to_cpu(leaf, &key, slot); 2241 if (key.objectid == subvol_info->treeid && 2242 key.type == BTRFS_ROOT_BACKREF_KEY) { 2243 subvol_info->parent_id = key.offset; 2244 2245 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2246 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2247 2248 item_off = btrfs_item_ptr_offset(leaf, slot) 2249 + sizeof(struct btrfs_root_ref); 2250 item_len = btrfs_item_size(leaf, slot) 2251 - sizeof(struct btrfs_root_ref); 2252 read_extent_buffer(leaf, subvol_info->name, 2253 item_off, item_len); 2254 } else { 2255 ret = -ENOENT; 2256 goto out; 2257 } 2258 } 2259 2260 btrfs_free_path(path); 2261 path = NULL; 2262 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2263 ret = -EFAULT; 2264 2265 out: 2266 btrfs_put_root(root); 2267 out_free: 2268 btrfs_free_path(path); 2269 kfree(subvol_info); 2270 return ret; 2271 } 2272 2273 /* 2274 * Return ROOT_REF information of the subvolume containing this inode 2275 * except the subvolume name. 2276 */ 2277 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2278 void __user *argp) 2279 { 2280 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2281 struct btrfs_root_ref *rref; 2282 struct btrfs_path *path; 2283 struct btrfs_key key; 2284 struct extent_buffer *leaf; 2285 u64 objectid; 2286 int slot; 2287 int ret; 2288 u8 found; 2289 2290 path = btrfs_alloc_path(); 2291 if (!path) 2292 return -ENOMEM; 2293 2294 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2295 if (IS_ERR(rootrefs)) { 2296 btrfs_free_path(path); 2297 return PTR_ERR(rootrefs); 2298 } 2299 2300 objectid = btrfs_root_id(root); 2301 key.objectid = objectid; 2302 key.type = BTRFS_ROOT_REF_KEY; 2303 key.offset = rootrefs->min_treeid; 2304 found = 0; 2305 2306 root = root->fs_info->tree_root; 2307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2308 if (ret < 0) { 2309 goto out; 2310 } else if (path->slots[0] >= 2311 btrfs_header_nritems(path->nodes[0])) { 2312 ret = btrfs_next_leaf(root, path); 2313 if (ret < 0) { 2314 goto out; 2315 } else if (ret > 0) { 2316 ret = -EUCLEAN; 2317 goto out; 2318 } 2319 } 2320 while (1) { 2321 leaf = path->nodes[0]; 2322 slot = path->slots[0]; 2323 2324 btrfs_item_key_to_cpu(leaf, &key, slot); 2325 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2326 ret = 0; 2327 goto out; 2328 } 2329 2330 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2331 ret = -EOVERFLOW; 2332 goto out; 2333 } 2334 2335 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2336 rootrefs->rootref[found].treeid = key.offset; 2337 rootrefs->rootref[found].dirid = 2338 btrfs_root_ref_dirid(leaf, rref); 2339 found++; 2340 2341 ret = btrfs_next_item(root, path); 2342 if (ret < 0) { 2343 goto out; 2344 } else if (ret > 0) { 2345 ret = -EUCLEAN; 2346 goto out; 2347 } 2348 } 2349 2350 out: 2351 btrfs_free_path(path); 2352 2353 if (!ret || ret == -EOVERFLOW) { 2354 rootrefs->num_items = found; 2355 /* update min_treeid for next search */ 2356 if (found) 2357 rootrefs->min_treeid = 2358 rootrefs->rootref[found - 1].treeid + 1; 2359 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2360 ret = -EFAULT; 2361 } 2362 2363 kfree(rootrefs); 2364 2365 return ret; 2366 } 2367 2368 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2369 void __user *arg, 2370 bool destroy_v2) 2371 { 2372 struct dentry *parent = file->f_path.dentry; 2373 struct dentry *dentry; 2374 struct inode *dir = d_inode(parent); 2375 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 2376 struct inode *inode; 2377 struct btrfs_root *root = BTRFS_I(dir)->root; 2378 struct btrfs_root *dest = NULL; 2379 struct btrfs_ioctl_vol_args *vol_args = NULL; 2380 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2381 struct mnt_idmap *idmap = file_mnt_idmap(file); 2382 char *subvol_name, *subvol_name_ptr = NULL; 2383 int subvol_namelen; 2384 int ret = 0; 2385 bool destroy_parent = false; 2386 2387 /* We don't support snapshots with extent tree v2 yet. */ 2388 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2389 btrfs_err(fs_info, 2390 "extent tree v2 doesn't support snapshot deletion yet"); 2391 return -EOPNOTSUPP; 2392 } 2393 2394 if (destroy_v2) { 2395 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2396 if (IS_ERR(vol_args2)) 2397 return PTR_ERR(vol_args2); 2398 2399 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2400 ret = -EOPNOTSUPP; 2401 goto out; 2402 } 2403 2404 /* 2405 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2406 * name, same as v1 currently does. 2407 */ 2408 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2409 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2); 2410 if (ret < 0) 2411 goto out; 2412 subvol_name = vol_args2->name; 2413 2414 ret = mnt_want_write_file(file); 2415 if (ret) 2416 goto out; 2417 } else { 2418 struct inode *old_dir; 2419 2420 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2421 ret = -EINVAL; 2422 goto out; 2423 } 2424 2425 ret = mnt_want_write_file(file); 2426 if (ret) 2427 goto out; 2428 2429 dentry = btrfs_get_dentry(fs_info->sb, 2430 BTRFS_FIRST_FREE_OBJECTID, 2431 vol_args2->subvolid, 0); 2432 if (IS_ERR(dentry)) { 2433 ret = PTR_ERR(dentry); 2434 goto out_drop_write; 2435 } 2436 2437 /* 2438 * Change the default parent since the subvolume being 2439 * deleted can be outside of the current mount point. 2440 */ 2441 parent = btrfs_get_parent(dentry); 2442 2443 /* 2444 * At this point dentry->d_name can point to '/' if the 2445 * subvolume we want to destroy is outsite of the 2446 * current mount point, so we need to release the 2447 * current dentry and execute the lookup to return a new 2448 * one with ->d_name pointing to the 2449 * <mount point>/subvol_name. 2450 */ 2451 dput(dentry); 2452 if (IS_ERR(parent)) { 2453 ret = PTR_ERR(parent); 2454 goto out_drop_write; 2455 } 2456 old_dir = dir; 2457 dir = d_inode(parent); 2458 2459 /* 2460 * If v2 was used with SPEC_BY_ID, a new parent was 2461 * allocated since the subvolume can be outside of the 2462 * current mount point. Later on we need to release this 2463 * new parent dentry. 2464 */ 2465 destroy_parent = true; 2466 2467 /* 2468 * On idmapped mounts, deletion via subvolid is 2469 * restricted to subvolumes that are immediate 2470 * ancestors of the inode referenced by the file 2471 * descriptor in the ioctl. Otherwise the idmapping 2472 * could potentially be abused to delete subvolumes 2473 * anywhere in the filesystem the user wouldn't be able 2474 * to delete without an idmapped mount. 2475 */ 2476 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2477 ret = -EOPNOTSUPP; 2478 goto free_parent; 2479 } 2480 2481 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2482 fs_info, vol_args2->subvolid); 2483 if (IS_ERR(subvol_name_ptr)) { 2484 ret = PTR_ERR(subvol_name_ptr); 2485 goto free_parent; 2486 } 2487 /* subvol_name_ptr is already nul terminated */ 2488 subvol_name = (char *)kbasename(subvol_name_ptr); 2489 } 2490 } else { 2491 vol_args = memdup_user(arg, sizeof(*vol_args)); 2492 if (IS_ERR(vol_args)) 2493 return PTR_ERR(vol_args); 2494 2495 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2496 if (ret < 0) 2497 goto out; 2498 2499 subvol_name = vol_args->name; 2500 2501 ret = mnt_want_write_file(file); 2502 if (ret) 2503 goto out; 2504 } 2505 2506 subvol_namelen = strlen(subvol_name); 2507 2508 if (strchr(subvol_name, '/') || 2509 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2510 ret = -EINVAL; 2511 goto free_subvol_name; 2512 } 2513 2514 if (!S_ISDIR(dir->i_mode)) { 2515 ret = -ENOTDIR; 2516 goto free_subvol_name; 2517 } 2518 2519 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2520 if (ret == -EINTR) 2521 goto free_subvol_name; 2522 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2523 if (IS_ERR(dentry)) { 2524 ret = PTR_ERR(dentry); 2525 goto out_unlock_dir; 2526 } 2527 2528 if (d_really_is_negative(dentry)) { 2529 ret = -ENOENT; 2530 goto out_dput; 2531 } 2532 2533 inode = d_inode(dentry); 2534 dest = BTRFS_I(inode)->root; 2535 if (!capable(CAP_SYS_ADMIN)) { 2536 /* 2537 * Regular user. Only allow this with a special mount 2538 * option, when the user has write+exec access to the 2539 * subvol root, and when rmdir(2) would have been 2540 * allowed. 2541 * 2542 * Note that this is _not_ check that the subvol is 2543 * empty or doesn't contain data that we wouldn't 2544 * otherwise be able to delete. 2545 * 2546 * Users who want to delete empty subvols should try 2547 * rmdir(2). 2548 */ 2549 ret = -EPERM; 2550 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2551 goto out_dput; 2552 2553 /* 2554 * Do not allow deletion if the parent dir is the same 2555 * as the dir to be deleted. That means the ioctl 2556 * must be called on the dentry referencing the root 2557 * of the subvol, not a random directory contained 2558 * within it. 2559 */ 2560 ret = -EINVAL; 2561 if (root == dest) 2562 goto out_dput; 2563 2564 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2565 if (ret) 2566 goto out_dput; 2567 } 2568 2569 /* check if subvolume may be deleted by a user */ 2570 ret = btrfs_may_delete(idmap, dir, dentry, 1); 2571 if (ret) 2572 goto out_dput; 2573 2574 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2575 ret = -EINVAL; 2576 goto out_dput; 2577 } 2578 2579 btrfs_inode_lock(BTRFS_I(inode), 0); 2580 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2581 btrfs_inode_unlock(BTRFS_I(inode), 0); 2582 if (!ret) 2583 d_delete_notify(dir, dentry); 2584 2585 out_dput: 2586 dput(dentry); 2587 out_unlock_dir: 2588 btrfs_inode_unlock(BTRFS_I(dir), 0); 2589 free_subvol_name: 2590 kfree(subvol_name_ptr); 2591 free_parent: 2592 if (destroy_parent) 2593 dput(parent); 2594 out_drop_write: 2595 mnt_drop_write_file(file); 2596 out: 2597 kfree(vol_args2); 2598 kfree(vol_args); 2599 return ret; 2600 } 2601 2602 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2603 { 2604 struct inode *inode = file_inode(file); 2605 struct btrfs_root *root = BTRFS_I(inode)->root; 2606 struct btrfs_ioctl_defrag_range_args range = {0}; 2607 int ret; 2608 2609 ret = mnt_want_write_file(file); 2610 if (ret) 2611 return ret; 2612 2613 if (btrfs_root_readonly(root)) { 2614 ret = -EROFS; 2615 goto out; 2616 } 2617 2618 switch (inode->i_mode & S_IFMT) { 2619 case S_IFDIR: 2620 if (!capable(CAP_SYS_ADMIN)) { 2621 ret = -EPERM; 2622 goto out; 2623 } 2624 ret = btrfs_defrag_root(root); 2625 break; 2626 case S_IFREG: 2627 /* 2628 * Note that this does not check the file descriptor for write 2629 * access. This prevents defragmenting executables that are 2630 * running and allows defrag on files open in read-only mode. 2631 */ 2632 if (!capable(CAP_SYS_ADMIN) && 2633 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2634 ret = -EPERM; 2635 goto out; 2636 } 2637 2638 if (argp) { 2639 if (copy_from_user(&range, argp, sizeof(range))) { 2640 ret = -EFAULT; 2641 goto out; 2642 } 2643 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2644 ret = -EOPNOTSUPP; 2645 goto out; 2646 } 2647 /* compression requires us to start the IO */ 2648 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2649 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2650 range.extent_thresh = (u32)-1; 2651 } 2652 } else { 2653 /* the rest are all set to zero by kzalloc */ 2654 range.len = (u64)-1; 2655 } 2656 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2657 &range, BTRFS_OLDEST_GENERATION, 0); 2658 if (ret > 0) 2659 ret = 0; 2660 break; 2661 default: 2662 ret = -EINVAL; 2663 } 2664 out: 2665 mnt_drop_write_file(file); 2666 return ret; 2667 } 2668 2669 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2670 { 2671 struct btrfs_ioctl_vol_args *vol_args; 2672 bool restore_op = false; 2673 int ret; 2674 2675 if (!capable(CAP_SYS_ADMIN)) 2676 return -EPERM; 2677 2678 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2679 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2680 return -EINVAL; 2681 } 2682 2683 if (fs_info->fs_devices->temp_fsid) { 2684 btrfs_err(fs_info, 2685 "device add not supported on cloned temp-fsid mount"); 2686 return -EINVAL; 2687 } 2688 2689 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2690 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2691 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2692 2693 /* 2694 * We can do the device add because we have a paused balanced, 2695 * change the exclusive op type and remember we should bring 2696 * back the paused balance 2697 */ 2698 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2699 btrfs_exclop_start_unlock(fs_info); 2700 restore_op = true; 2701 } 2702 2703 vol_args = memdup_user(arg, sizeof(*vol_args)); 2704 if (IS_ERR(vol_args)) { 2705 ret = PTR_ERR(vol_args); 2706 goto out; 2707 } 2708 2709 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2710 if (ret < 0) 2711 goto out_free; 2712 2713 ret = btrfs_init_new_device(fs_info, vol_args->name); 2714 2715 if (!ret) 2716 btrfs_info(fs_info, "disk added %s", vol_args->name); 2717 2718 out_free: 2719 kfree(vol_args); 2720 out: 2721 if (restore_op) 2722 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2723 else 2724 btrfs_exclop_finish(fs_info); 2725 return ret; 2726 } 2727 2728 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2729 { 2730 BTRFS_DEV_LOOKUP_ARGS(args); 2731 struct inode *inode = file_inode(file); 2732 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2733 struct btrfs_ioctl_vol_args_v2 *vol_args; 2734 struct file *bdev_file = NULL; 2735 int ret; 2736 bool cancel = false; 2737 2738 if (!capable(CAP_SYS_ADMIN)) 2739 return -EPERM; 2740 2741 vol_args = memdup_user(arg, sizeof(*vol_args)); 2742 if (IS_ERR(vol_args)) 2743 return PTR_ERR(vol_args); 2744 2745 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2746 ret = -EOPNOTSUPP; 2747 goto out; 2748 } 2749 2750 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 2751 if (ret < 0) 2752 goto out; 2753 2754 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2755 args.devid = vol_args->devid; 2756 } else if (!strcmp("cancel", vol_args->name)) { 2757 cancel = true; 2758 } else { 2759 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2760 if (ret) 2761 goto out; 2762 } 2763 2764 ret = mnt_want_write_file(file); 2765 if (ret) 2766 goto out; 2767 2768 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2769 cancel); 2770 if (ret) 2771 goto err_drop; 2772 2773 /* Exclusive operation is now claimed */ 2774 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2775 2776 btrfs_exclop_finish(fs_info); 2777 2778 if (!ret) { 2779 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2780 btrfs_info(fs_info, "device deleted: id %llu", 2781 vol_args->devid); 2782 else 2783 btrfs_info(fs_info, "device deleted: %s", 2784 vol_args->name); 2785 } 2786 err_drop: 2787 mnt_drop_write_file(file); 2788 if (bdev_file) 2789 fput(bdev_file); 2790 out: 2791 btrfs_put_dev_args_from_path(&args); 2792 kfree(vol_args); 2793 return ret; 2794 } 2795 2796 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2797 { 2798 BTRFS_DEV_LOOKUP_ARGS(args); 2799 struct inode *inode = file_inode(file); 2800 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2801 struct btrfs_ioctl_vol_args *vol_args; 2802 struct file *bdev_file = NULL; 2803 int ret; 2804 bool cancel = false; 2805 2806 if (!capable(CAP_SYS_ADMIN)) 2807 return -EPERM; 2808 2809 vol_args = memdup_user(arg, sizeof(*vol_args)); 2810 if (IS_ERR(vol_args)) 2811 return PTR_ERR(vol_args); 2812 2813 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2814 if (ret < 0) 2815 goto out_free; 2816 2817 if (!strcmp("cancel", vol_args->name)) { 2818 cancel = true; 2819 } else { 2820 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2821 if (ret) 2822 goto out; 2823 } 2824 2825 ret = mnt_want_write_file(file); 2826 if (ret) 2827 goto out; 2828 2829 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2830 cancel); 2831 if (ret == 0) { 2832 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2833 if (!ret) 2834 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2835 btrfs_exclop_finish(fs_info); 2836 } 2837 2838 mnt_drop_write_file(file); 2839 if (bdev_file) 2840 fput(bdev_file); 2841 out: 2842 btrfs_put_dev_args_from_path(&args); 2843 out_free: 2844 kfree(vol_args); 2845 return ret; 2846 } 2847 2848 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2849 void __user *arg) 2850 { 2851 struct btrfs_ioctl_fs_info_args *fi_args; 2852 struct btrfs_device *device; 2853 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2854 u64 flags_in; 2855 int ret = 0; 2856 2857 fi_args = memdup_user(arg, sizeof(*fi_args)); 2858 if (IS_ERR(fi_args)) 2859 return PTR_ERR(fi_args); 2860 2861 flags_in = fi_args->flags; 2862 memset(fi_args, 0, sizeof(*fi_args)); 2863 2864 rcu_read_lock(); 2865 fi_args->num_devices = fs_devices->num_devices; 2866 2867 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2868 if (device->devid > fi_args->max_id) 2869 fi_args->max_id = device->devid; 2870 } 2871 rcu_read_unlock(); 2872 2873 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2874 fi_args->nodesize = fs_info->nodesize; 2875 fi_args->sectorsize = fs_info->sectorsize; 2876 fi_args->clone_alignment = fs_info->sectorsize; 2877 2878 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2879 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2880 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2881 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2882 } 2883 2884 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2885 fi_args->generation = btrfs_get_fs_generation(fs_info); 2886 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2887 } 2888 2889 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2890 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2891 sizeof(fi_args->metadata_uuid)); 2892 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2893 } 2894 2895 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2896 ret = -EFAULT; 2897 2898 kfree(fi_args); 2899 return ret; 2900 } 2901 2902 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2903 void __user *arg) 2904 { 2905 BTRFS_DEV_LOOKUP_ARGS(args); 2906 struct btrfs_ioctl_dev_info_args *di_args; 2907 struct btrfs_device *dev; 2908 int ret = 0; 2909 2910 di_args = memdup_user(arg, sizeof(*di_args)); 2911 if (IS_ERR(di_args)) 2912 return PTR_ERR(di_args); 2913 2914 args.devid = di_args->devid; 2915 if (!btrfs_is_empty_uuid(di_args->uuid)) 2916 args.uuid = di_args->uuid; 2917 2918 rcu_read_lock(); 2919 dev = btrfs_find_device(fs_info->fs_devices, &args); 2920 if (!dev) { 2921 ret = -ENODEV; 2922 goto out; 2923 } 2924 2925 di_args->devid = dev->devid; 2926 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2927 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2928 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2929 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2930 if (dev->name) 2931 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2932 else 2933 di_args->path[0] = '\0'; 2934 2935 out: 2936 rcu_read_unlock(); 2937 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2938 ret = -EFAULT; 2939 2940 kfree(di_args); 2941 return ret; 2942 } 2943 2944 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2945 { 2946 struct inode *inode = file_inode(file); 2947 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2948 struct btrfs_root *root = BTRFS_I(inode)->root; 2949 struct btrfs_root *new_root; 2950 struct btrfs_dir_item *di; 2951 struct btrfs_trans_handle *trans; 2952 struct btrfs_path *path = NULL; 2953 struct btrfs_disk_key disk_key; 2954 struct fscrypt_str name = FSTR_INIT("default", 7); 2955 u64 objectid = 0; 2956 u64 dir_id; 2957 int ret; 2958 2959 if (!capable(CAP_SYS_ADMIN)) 2960 return -EPERM; 2961 2962 ret = mnt_want_write_file(file); 2963 if (ret) 2964 return ret; 2965 2966 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2967 ret = -EFAULT; 2968 goto out; 2969 } 2970 2971 if (!objectid) 2972 objectid = BTRFS_FS_TREE_OBJECTID; 2973 2974 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2975 if (IS_ERR(new_root)) { 2976 ret = PTR_ERR(new_root); 2977 goto out; 2978 } 2979 if (!is_fstree(btrfs_root_id(new_root))) { 2980 ret = -ENOENT; 2981 goto out_free; 2982 } 2983 2984 path = btrfs_alloc_path(); 2985 if (!path) { 2986 ret = -ENOMEM; 2987 goto out_free; 2988 } 2989 2990 trans = btrfs_start_transaction(root, 1); 2991 if (IS_ERR(trans)) { 2992 ret = PTR_ERR(trans); 2993 goto out_free; 2994 } 2995 2996 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2997 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2998 dir_id, &name, 1); 2999 if (IS_ERR_OR_NULL(di)) { 3000 btrfs_release_path(path); 3001 btrfs_end_transaction(trans); 3002 btrfs_err(fs_info, 3003 "Umm, you don't have the default diritem, this isn't going to work"); 3004 ret = -ENOENT; 3005 goto out_free; 3006 } 3007 3008 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3009 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3010 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 3011 btrfs_release_path(path); 3012 3013 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3014 btrfs_end_transaction(trans); 3015 out_free: 3016 btrfs_put_root(new_root); 3017 btrfs_free_path(path); 3018 out: 3019 mnt_drop_write_file(file); 3020 return ret; 3021 } 3022 3023 static void get_block_group_info(struct list_head *groups_list, 3024 struct btrfs_ioctl_space_info *space) 3025 { 3026 struct btrfs_block_group *block_group; 3027 3028 space->total_bytes = 0; 3029 space->used_bytes = 0; 3030 space->flags = 0; 3031 list_for_each_entry(block_group, groups_list, list) { 3032 space->flags = block_group->flags; 3033 space->total_bytes += block_group->length; 3034 space->used_bytes += block_group->used; 3035 } 3036 } 3037 3038 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3039 void __user *arg) 3040 { 3041 struct btrfs_ioctl_space_args space_args = { 0 }; 3042 struct btrfs_ioctl_space_info space; 3043 struct btrfs_ioctl_space_info *dest; 3044 struct btrfs_ioctl_space_info *dest_orig; 3045 struct btrfs_ioctl_space_info __user *user_dest; 3046 struct btrfs_space_info *info; 3047 static const u64 types[] = { 3048 BTRFS_BLOCK_GROUP_DATA, 3049 BTRFS_BLOCK_GROUP_SYSTEM, 3050 BTRFS_BLOCK_GROUP_METADATA, 3051 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3052 }; 3053 int num_types = 4; 3054 int alloc_size; 3055 int ret = 0; 3056 u64 slot_count = 0; 3057 int i, c; 3058 3059 if (copy_from_user(&space_args, 3060 (struct btrfs_ioctl_space_args __user *)arg, 3061 sizeof(space_args))) 3062 return -EFAULT; 3063 3064 for (i = 0; i < num_types; i++) { 3065 struct btrfs_space_info *tmp; 3066 3067 info = NULL; 3068 list_for_each_entry(tmp, &fs_info->space_info, list) { 3069 if (tmp->flags == types[i]) { 3070 info = tmp; 3071 break; 3072 } 3073 } 3074 3075 if (!info) 3076 continue; 3077 3078 down_read(&info->groups_sem); 3079 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3080 if (!list_empty(&info->block_groups[c])) 3081 slot_count++; 3082 } 3083 up_read(&info->groups_sem); 3084 } 3085 3086 /* 3087 * Global block reserve, exported as a space_info 3088 */ 3089 slot_count++; 3090 3091 /* space_slots == 0 means they are asking for a count */ 3092 if (space_args.space_slots == 0) { 3093 space_args.total_spaces = slot_count; 3094 goto out; 3095 } 3096 3097 slot_count = min_t(u64, space_args.space_slots, slot_count); 3098 3099 alloc_size = sizeof(*dest) * slot_count; 3100 3101 /* we generally have at most 6 or so space infos, one for each raid 3102 * level. So, a whole page should be more than enough for everyone 3103 */ 3104 if (alloc_size > PAGE_SIZE) 3105 return -ENOMEM; 3106 3107 space_args.total_spaces = 0; 3108 dest = kmalloc(alloc_size, GFP_KERNEL); 3109 if (!dest) 3110 return -ENOMEM; 3111 dest_orig = dest; 3112 3113 /* now we have a buffer to copy into */ 3114 for (i = 0; i < num_types; i++) { 3115 struct btrfs_space_info *tmp; 3116 3117 if (!slot_count) 3118 break; 3119 3120 info = NULL; 3121 list_for_each_entry(tmp, &fs_info->space_info, list) { 3122 if (tmp->flags == types[i]) { 3123 info = tmp; 3124 break; 3125 } 3126 } 3127 3128 if (!info) 3129 continue; 3130 down_read(&info->groups_sem); 3131 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3132 if (!list_empty(&info->block_groups[c])) { 3133 get_block_group_info(&info->block_groups[c], 3134 &space); 3135 memcpy(dest, &space, sizeof(space)); 3136 dest++; 3137 space_args.total_spaces++; 3138 slot_count--; 3139 } 3140 if (!slot_count) 3141 break; 3142 } 3143 up_read(&info->groups_sem); 3144 } 3145 3146 /* 3147 * Add global block reserve 3148 */ 3149 if (slot_count) { 3150 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3151 3152 spin_lock(&block_rsv->lock); 3153 space.total_bytes = block_rsv->size; 3154 space.used_bytes = block_rsv->size - block_rsv->reserved; 3155 spin_unlock(&block_rsv->lock); 3156 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3157 memcpy(dest, &space, sizeof(space)); 3158 space_args.total_spaces++; 3159 } 3160 3161 user_dest = (struct btrfs_ioctl_space_info __user *) 3162 (arg + sizeof(struct btrfs_ioctl_space_args)); 3163 3164 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3165 ret = -EFAULT; 3166 3167 kfree(dest_orig); 3168 out: 3169 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3170 ret = -EFAULT; 3171 3172 return ret; 3173 } 3174 3175 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3176 void __user *argp) 3177 { 3178 struct btrfs_trans_handle *trans; 3179 u64 transid; 3180 3181 /* 3182 * Start orphan cleanup here for the given root in case it hasn't been 3183 * started already by other means. Errors are handled in the other 3184 * functions during transaction commit. 3185 */ 3186 btrfs_orphan_cleanup(root); 3187 3188 trans = btrfs_attach_transaction_barrier(root); 3189 if (IS_ERR(trans)) { 3190 if (PTR_ERR(trans) != -ENOENT) 3191 return PTR_ERR(trans); 3192 3193 /* No running transaction, don't bother */ 3194 transid = btrfs_get_last_trans_committed(root->fs_info); 3195 goto out; 3196 } 3197 transid = trans->transid; 3198 btrfs_commit_transaction_async(trans); 3199 out: 3200 if (argp) 3201 if (copy_to_user(argp, &transid, sizeof(transid))) 3202 return -EFAULT; 3203 return 0; 3204 } 3205 3206 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3207 void __user *argp) 3208 { 3209 /* By default wait for the current transaction. */ 3210 u64 transid = 0; 3211 3212 if (argp) 3213 if (copy_from_user(&transid, argp, sizeof(transid))) 3214 return -EFAULT; 3215 3216 return btrfs_wait_for_commit(fs_info, transid); 3217 } 3218 3219 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3220 { 3221 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 3222 struct btrfs_ioctl_scrub_args *sa; 3223 int ret; 3224 3225 if (!capable(CAP_SYS_ADMIN)) 3226 return -EPERM; 3227 3228 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3229 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3230 return -EINVAL; 3231 } 3232 3233 sa = memdup_user(arg, sizeof(*sa)); 3234 if (IS_ERR(sa)) 3235 return PTR_ERR(sa); 3236 3237 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3238 ret = -EOPNOTSUPP; 3239 goto out; 3240 } 3241 3242 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3243 ret = mnt_want_write_file(file); 3244 if (ret) 3245 goto out; 3246 } 3247 3248 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3249 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3250 0); 3251 3252 /* 3253 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3254 * error. This is important as it allows user space to know how much 3255 * progress scrub has done. For example, if scrub is canceled we get 3256 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3257 * space. Later user space can inspect the progress from the structure 3258 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3259 * previously (btrfs-progs does this). 3260 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3261 * then return -EFAULT to signal the structure was not copied or it may 3262 * be corrupt and unreliable due to a partial copy. 3263 */ 3264 if (copy_to_user(arg, sa, sizeof(*sa))) 3265 ret = -EFAULT; 3266 3267 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3268 mnt_drop_write_file(file); 3269 out: 3270 kfree(sa); 3271 return ret; 3272 } 3273 3274 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3275 { 3276 if (!capable(CAP_SYS_ADMIN)) 3277 return -EPERM; 3278 3279 return btrfs_scrub_cancel(fs_info); 3280 } 3281 3282 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3283 void __user *arg) 3284 { 3285 struct btrfs_ioctl_scrub_args *sa; 3286 int ret; 3287 3288 if (!capable(CAP_SYS_ADMIN)) 3289 return -EPERM; 3290 3291 sa = memdup_user(arg, sizeof(*sa)); 3292 if (IS_ERR(sa)) 3293 return PTR_ERR(sa); 3294 3295 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3296 3297 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3298 ret = -EFAULT; 3299 3300 kfree(sa); 3301 return ret; 3302 } 3303 3304 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3305 void __user *arg) 3306 { 3307 struct btrfs_ioctl_get_dev_stats *sa; 3308 int ret; 3309 3310 sa = memdup_user(arg, sizeof(*sa)); 3311 if (IS_ERR(sa)) 3312 return PTR_ERR(sa); 3313 3314 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3315 kfree(sa); 3316 return -EPERM; 3317 } 3318 3319 ret = btrfs_get_dev_stats(fs_info, sa); 3320 3321 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3322 ret = -EFAULT; 3323 3324 kfree(sa); 3325 return ret; 3326 } 3327 3328 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3329 void __user *arg) 3330 { 3331 struct btrfs_ioctl_dev_replace_args *p; 3332 int ret; 3333 3334 if (!capable(CAP_SYS_ADMIN)) 3335 return -EPERM; 3336 3337 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3338 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3339 return -EINVAL; 3340 } 3341 3342 p = memdup_user(arg, sizeof(*p)); 3343 if (IS_ERR(p)) 3344 return PTR_ERR(p); 3345 3346 switch (p->cmd) { 3347 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3348 if (sb_rdonly(fs_info->sb)) { 3349 ret = -EROFS; 3350 goto out; 3351 } 3352 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3353 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3354 } else { 3355 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3356 btrfs_exclop_finish(fs_info); 3357 } 3358 break; 3359 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3360 btrfs_dev_replace_status(fs_info, p); 3361 ret = 0; 3362 break; 3363 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3364 p->result = btrfs_dev_replace_cancel(fs_info); 3365 ret = 0; 3366 break; 3367 default: 3368 ret = -EINVAL; 3369 break; 3370 } 3371 3372 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3373 ret = -EFAULT; 3374 out: 3375 kfree(p); 3376 return ret; 3377 } 3378 3379 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3380 { 3381 int ret = 0; 3382 int i; 3383 u64 rel_ptr; 3384 int size; 3385 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3386 struct inode_fs_paths *ipath = NULL; 3387 struct btrfs_path *path; 3388 3389 if (!capable(CAP_DAC_READ_SEARCH)) 3390 return -EPERM; 3391 3392 path = btrfs_alloc_path(); 3393 if (!path) { 3394 ret = -ENOMEM; 3395 goto out; 3396 } 3397 3398 ipa = memdup_user(arg, sizeof(*ipa)); 3399 if (IS_ERR(ipa)) { 3400 ret = PTR_ERR(ipa); 3401 ipa = NULL; 3402 goto out; 3403 } 3404 3405 size = min_t(u32, ipa->size, 4096); 3406 ipath = init_ipath(size, root, path); 3407 if (IS_ERR(ipath)) { 3408 ret = PTR_ERR(ipath); 3409 ipath = NULL; 3410 goto out; 3411 } 3412 3413 ret = paths_from_inode(ipa->inum, ipath); 3414 if (ret < 0) 3415 goto out; 3416 3417 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3418 rel_ptr = ipath->fspath->val[i] - 3419 (u64)(unsigned long)ipath->fspath->val; 3420 ipath->fspath->val[i] = rel_ptr; 3421 } 3422 3423 btrfs_free_path(path); 3424 path = NULL; 3425 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3426 ipath->fspath, size); 3427 if (ret) { 3428 ret = -EFAULT; 3429 goto out; 3430 } 3431 3432 out: 3433 btrfs_free_path(path); 3434 free_ipath(ipath); 3435 kfree(ipa); 3436 3437 return ret; 3438 } 3439 3440 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3441 void __user *arg, int version) 3442 { 3443 int ret = 0; 3444 int size; 3445 struct btrfs_ioctl_logical_ino_args *loi; 3446 struct btrfs_data_container *inodes = NULL; 3447 struct btrfs_path *path = NULL; 3448 bool ignore_offset; 3449 3450 if (!capable(CAP_SYS_ADMIN)) 3451 return -EPERM; 3452 3453 loi = memdup_user(arg, sizeof(*loi)); 3454 if (IS_ERR(loi)) 3455 return PTR_ERR(loi); 3456 3457 if (version == 1) { 3458 ignore_offset = false; 3459 size = min_t(u32, loi->size, SZ_64K); 3460 } else { 3461 /* All reserved bits must be 0 for now */ 3462 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3463 ret = -EINVAL; 3464 goto out_loi; 3465 } 3466 /* Only accept flags we have defined so far */ 3467 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3468 ret = -EINVAL; 3469 goto out_loi; 3470 } 3471 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3472 size = min_t(u32, loi->size, SZ_16M); 3473 } 3474 3475 inodes = init_data_container(size); 3476 if (IS_ERR(inodes)) { 3477 ret = PTR_ERR(inodes); 3478 goto out_loi; 3479 } 3480 3481 path = btrfs_alloc_path(); 3482 if (!path) { 3483 ret = -ENOMEM; 3484 goto out; 3485 } 3486 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3487 inodes, ignore_offset); 3488 btrfs_free_path(path); 3489 if (ret == -EINVAL) 3490 ret = -ENOENT; 3491 if (ret < 0) 3492 goto out; 3493 3494 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3495 size); 3496 if (ret) 3497 ret = -EFAULT; 3498 3499 out: 3500 kvfree(inodes); 3501 out_loi: 3502 kfree(loi); 3503 3504 return ret; 3505 } 3506 3507 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3508 struct btrfs_ioctl_balance_args *bargs) 3509 { 3510 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3511 3512 bargs->flags = bctl->flags; 3513 3514 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3515 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3516 if (atomic_read(&fs_info->balance_pause_req)) 3517 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3518 if (atomic_read(&fs_info->balance_cancel_req)) 3519 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3520 3521 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3522 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3523 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3524 3525 spin_lock(&fs_info->balance_lock); 3526 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3527 spin_unlock(&fs_info->balance_lock); 3528 } 3529 3530 /* 3531 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3532 * required. 3533 * 3534 * @fs_info: the filesystem 3535 * @excl_acquired: ptr to boolean value which is set to false in case balance 3536 * is being resumed 3537 * 3538 * Return 0 on success in which case both fs_info::balance is acquired as well 3539 * as exclusive ops are blocked. In case of failure return an error code. 3540 */ 3541 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3542 { 3543 int ret; 3544 3545 /* 3546 * Exclusive operation is locked. Three possibilities: 3547 * (1) some other op is running 3548 * (2) balance is running 3549 * (3) balance is paused -- special case (think resume) 3550 */ 3551 while (1) { 3552 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3553 *excl_acquired = true; 3554 mutex_lock(&fs_info->balance_mutex); 3555 return 0; 3556 } 3557 3558 mutex_lock(&fs_info->balance_mutex); 3559 if (fs_info->balance_ctl) { 3560 /* This is either (2) or (3) */ 3561 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3562 /* This is (2) */ 3563 ret = -EINPROGRESS; 3564 goto out_failure; 3565 3566 } else { 3567 mutex_unlock(&fs_info->balance_mutex); 3568 /* 3569 * Lock released to allow other waiters to 3570 * continue, we'll reexamine the status again. 3571 */ 3572 mutex_lock(&fs_info->balance_mutex); 3573 3574 if (fs_info->balance_ctl && 3575 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3576 /* This is (3) */ 3577 *excl_acquired = false; 3578 return 0; 3579 } 3580 } 3581 } else { 3582 /* This is (1) */ 3583 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3584 goto out_failure; 3585 } 3586 3587 mutex_unlock(&fs_info->balance_mutex); 3588 } 3589 3590 out_failure: 3591 mutex_unlock(&fs_info->balance_mutex); 3592 *excl_acquired = false; 3593 return ret; 3594 } 3595 3596 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3597 { 3598 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3599 struct btrfs_fs_info *fs_info = root->fs_info; 3600 struct btrfs_ioctl_balance_args *bargs; 3601 struct btrfs_balance_control *bctl; 3602 bool need_unlock = true; 3603 int ret; 3604 3605 if (!capable(CAP_SYS_ADMIN)) 3606 return -EPERM; 3607 3608 ret = mnt_want_write_file(file); 3609 if (ret) 3610 return ret; 3611 3612 bargs = memdup_user(arg, sizeof(*bargs)); 3613 if (IS_ERR(bargs)) { 3614 ret = PTR_ERR(bargs); 3615 bargs = NULL; 3616 goto out; 3617 } 3618 3619 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3620 if (ret) 3621 goto out; 3622 3623 lockdep_assert_held(&fs_info->balance_mutex); 3624 3625 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3626 if (!fs_info->balance_ctl) { 3627 ret = -ENOTCONN; 3628 goto out_unlock; 3629 } 3630 3631 bctl = fs_info->balance_ctl; 3632 spin_lock(&fs_info->balance_lock); 3633 bctl->flags |= BTRFS_BALANCE_RESUME; 3634 spin_unlock(&fs_info->balance_lock); 3635 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3636 3637 goto do_balance; 3638 } 3639 3640 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3641 ret = -EINVAL; 3642 goto out_unlock; 3643 } 3644 3645 if (fs_info->balance_ctl) { 3646 ret = -EINPROGRESS; 3647 goto out_unlock; 3648 } 3649 3650 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3651 if (!bctl) { 3652 ret = -ENOMEM; 3653 goto out_unlock; 3654 } 3655 3656 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3657 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3658 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3659 3660 bctl->flags = bargs->flags; 3661 do_balance: 3662 /* 3663 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3664 * bctl is freed in reset_balance_state, or, if restriper was paused 3665 * all the way until unmount, in free_fs_info. The flag should be 3666 * cleared after reset_balance_state. 3667 */ 3668 need_unlock = false; 3669 3670 ret = btrfs_balance(fs_info, bctl, bargs); 3671 bctl = NULL; 3672 3673 if (ret == 0 || ret == -ECANCELED) { 3674 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3675 ret = -EFAULT; 3676 } 3677 3678 kfree(bctl); 3679 out_unlock: 3680 mutex_unlock(&fs_info->balance_mutex); 3681 if (need_unlock) 3682 btrfs_exclop_finish(fs_info); 3683 out: 3684 mnt_drop_write_file(file); 3685 kfree(bargs); 3686 return ret; 3687 } 3688 3689 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3690 { 3691 if (!capable(CAP_SYS_ADMIN)) 3692 return -EPERM; 3693 3694 switch (cmd) { 3695 case BTRFS_BALANCE_CTL_PAUSE: 3696 return btrfs_pause_balance(fs_info); 3697 case BTRFS_BALANCE_CTL_CANCEL: 3698 return btrfs_cancel_balance(fs_info); 3699 } 3700 3701 return -EINVAL; 3702 } 3703 3704 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3705 void __user *arg) 3706 { 3707 struct btrfs_ioctl_balance_args *bargs; 3708 int ret = 0; 3709 3710 if (!capable(CAP_SYS_ADMIN)) 3711 return -EPERM; 3712 3713 mutex_lock(&fs_info->balance_mutex); 3714 if (!fs_info->balance_ctl) { 3715 ret = -ENOTCONN; 3716 goto out; 3717 } 3718 3719 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3720 if (!bargs) { 3721 ret = -ENOMEM; 3722 goto out; 3723 } 3724 3725 btrfs_update_ioctl_balance_args(fs_info, bargs); 3726 3727 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3728 ret = -EFAULT; 3729 3730 kfree(bargs); 3731 out: 3732 mutex_unlock(&fs_info->balance_mutex); 3733 return ret; 3734 } 3735 3736 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3737 { 3738 struct inode *inode = file_inode(file); 3739 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3740 struct btrfs_ioctl_quota_ctl_args *sa; 3741 int ret; 3742 3743 if (!capable(CAP_SYS_ADMIN)) 3744 return -EPERM; 3745 3746 ret = mnt_want_write_file(file); 3747 if (ret) 3748 return ret; 3749 3750 sa = memdup_user(arg, sizeof(*sa)); 3751 if (IS_ERR(sa)) { 3752 ret = PTR_ERR(sa); 3753 goto drop_write; 3754 } 3755 3756 switch (sa->cmd) { 3757 case BTRFS_QUOTA_CTL_ENABLE: 3758 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3759 down_write(&fs_info->subvol_sem); 3760 ret = btrfs_quota_enable(fs_info, sa); 3761 up_write(&fs_info->subvol_sem); 3762 break; 3763 case BTRFS_QUOTA_CTL_DISABLE: 3764 /* 3765 * Lock the cleaner mutex to prevent races with concurrent 3766 * relocation, because relocation may be building backrefs for 3767 * blocks of the quota root while we are deleting the root. This 3768 * is like dropping fs roots of deleted snapshots/subvolumes, we 3769 * need the same protection. 3770 * 3771 * This also prevents races between concurrent tasks trying to 3772 * disable quotas, because we will unlock and relock 3773 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes. 3774 * 3775 * We take this here because we have the dependency of 3776 * 3777 * inode_lock -> subvol_sem 3778 * 3779 * because of rename. With relocation we can prealloc extents, 3780 * so that makes the dependency chain 3781 * 3782 * cleaner_mutex -> inode_lock -> subvol_sem 3783 * 3784 * so we must take the cleaner_mutex here before we take the 3785 * subvol_sem. The deadlock can't actually happen, but this 3786 * quiets lockdep. 3787 */ 3788 mutex_lock(&fs_info->cleaner_mutex); 3789 down_write(&fs_info->subvol_sem); 3790 ret = btrfs_quota_disable(fs_info); 3791 up_write(&fs_info->subvol_sem); 3792 mutex_unlock(&fs_info->cleaner_mutex); 3793 break; 3794 default: 3795 ret = -EINVAL; 3796 break; 3797 } 3798 3799 kfree(sa); 3800 drop_write: 3801 mnt_drop_write_file(file); 3802 return ret; 3803 } 3804 3805 /* 3806 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be 3807 * done before any operations. 3808 */ 3809 static bool qgroup_enabled(struct btrfs_fs_info *fs_info) 3810 { 3811 bool ret = true; 3812 3813 mutex_lock(&fs_info->qgroup_ioctl_lock); 3814 if (!fs_info->quota_root) 3815 ret = false; 3816 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3817 3818 return ret; 3819 } 3820 3821 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3822 { 3823 struct inode *inode = file_inode(file); 3824 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3825 struct btrfs_root *root = BTRFS_I(inode)->root; 3826 struct btrfs_ioctl_qgroup_assign_args *sa; 3827 struct btrfs_qgroup_list *prealloc = NULL; 3828 struct btrfs_trans_handle *trans; 3829 int ret; 3830 int err; 3831 3832 if (!capable(CAP_SYS_ADMIN)) 3833 return -EPERM; 3834 3835 if (!qgroup_enabled(root->fs_info)) 3836 return -ENOTCONN; 3837 3838 ret = mnt_want_write_file(file); 3839 if (ret) 3840 return ret; 3841 3842 sa = memdup_user(arg, sizeof(*sa)); 3843 if (IS_ERR(sa)) { 3844 ret = PTR_ERR(sa); 3845 goto drop_write; 3846 } 3847 3848 if (sa->assign) { 3849 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL); 3850 if (!prealloc) { 3851 ret = -ENOMEM; 3852 goto drop_write; 3853 } 3854 } 3855 3856 trans = btrfs_join_transaction(root); 3857 if (IS_ERR(trans)) { 3858 ret = PTR_ERR(trans); 3859 goto out; 3860 } 3861 3862 /* 3863 * Prealloc ownership is moved to the relation handler, there it's used 3864 * or freed on error. 3865 */ 3866 if (sa->assign) { 3867 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc); 3868 prealloc = NULL; 3869 } else { 3870 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3871 } 3872 3873 /* update qgroup status and info */ 3874 mutex_lock(&fs_info->qgroup_ioctl_lock); 3875 err = btrfs_run_qgroups(trans); 3876 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3877 if (err < 0) 3878 btrfs_warn(fs_info, 3879 "qgroup status update failed after %s relation, marked as inconsistent", 3880 sa->assign ? "adding" : "deleting"); 3881 err = btrfs_end_transaction(trans); 3882 if (err && !ret) 3883 ret = err; 3884 3885 out: 3886 kfree(prealloc); 3887 kfree(sa); 3888 drop_write: 3889 mnt_drop_write_file(file); 3890 return ret; 3891 } 3892 3893 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3894 { 3895 struct inode *inode = file_inode(file); 3896 struct btrfs_root *root = BTRFS_I(inode)->root; 3897 struct btrfs_ioctl_qgroup_create_args *sa; 3898 struct btrfs_trans_handle *trans; 3899 int ret; 3900 int err; 3901 3902 if (!capable(CAP_SYS_ADMIN)) 3903 return -EPERM; 3904 3905 if (!qgroup_enabled(root->fs_info)) 3906 return -ENOTCONN; 3907 3908 ret = mnt_want_write_file(file); 3909 if (ret) 3910 return ret; 3911 3912 sa = memdup_user(arg, sizeof(*sa)); 3913 if (IS_ERR(sa)) { 3914 ret = PTR_ERR(sa); 3915 goto drop_write; 3916 } 3917 3918 if (!sa->qgroupid) { 3919 ret = -EINVAL; 3920 goto out; 3921 } 3922 3923 if (sa->create && is_fstree(sa->qgroupid)) { 3924 ret = -EINVAL; 3925 goto out; 3926 } 3927 3928 trans = btrfs_join_transaction(root); 3929 if (IS_ERR(trans)) { 3930 ret = PTR_ERR(trans); 3931 goto out; 3932 } 3933 3934 if (sa->create) { 3935 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3936 } else { 3937 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3938 } 3939 3940 err = btrfs_end_transaction(trans); 3941 if (err && !ret) 3942 ret = err; 3943 3944 out: 3945 kfree(sa); 3946 drop_write: 3947 mnt_drop_write_file(file); 3948 return ret; 3949 } 3950 3951 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3952 { 3953 struct inode *inode = file_inode(file); 3954 struct btrfs_root *root = BTRFS_I(inode)->root; 3955 struct btrfs_ioctl_qgroup_limit_args *sa; 3956 struct btrfs_trans_handle *trans; 3957 int ret; 3958 int err; 3959 u64 qgroupid; 3960 3961 if (!capable(CAP_SYS_ADMIN)) 3962 return -EPERM; 3963 3964 if (!qgroup_enabled(root->fs_info)) 3965 return -ENOTCONN; 3966 3967 ret = mnt_want_write_file(file); 3968 if (ret) 3969 return ret; 3970 3971 sa = memdup_user(arg, sizeof(*sa)); 3972 if (IS_ERR(sa)) { 3973 ret = PTR_ERR(sa); 3974 goto drop_write; 3975 } 3976 3977 trans = btrfs_join_transaction(root); 3978 if (IS_ERR(trans)) { 3979 ret = PTR_ERR(trans); 3980 goto out; 3981 } 3982 3983 qgroupid = sa->qgroupid; 3984 if (!qgroupid) { 3985 /* take the current subvol as qgroup */ 3986 qgroupid = btrfs_root_id(root); 3987 } 3988 3989 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3990 3991 err = btrfs_end_transaction(trans); 3992 if (err && !ret) 3993 ret = err; 3994 3995 out: 3996 kfree(sa); 3997 drop_write: 3998 mnt_drop_write_file(file); 3999 return ret; 4000 } 4001 4002 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4003 { 4004 struct inode *inode = file_inode(file); 4005 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4006 struct btrfs_ioctl_quota_rescan_args *qsa; 4007 int ret; 4008 4009 if (!capable(CAP_SYS_ADMIN)) 4010 return -EPERM; 4011 4012 if (!qgroup_enabled(fs_info)) 4013 return -ENOTCONN; 4014 4015 ret = mnt_want_write_file(file); 4016 if (ret) 4017 return ret; 4018 4019 qsa = memdup_user(arg, sizeof(*qsa)); 4020 if (IS_ERR(qsa)) { 4021 ret = PTR_ERR(qsa); 4022 goto drop_write; 4023 } 4024 4025 if (qsa->flags) { 4026 ret = -EINVAL; 4027 goto out; 4028 } 4029 4030 ret = btrfs_qgroup_rescan(fs_info); 4031 4032 out: 4033 kfree(qsa); 4034 drop_write: 4035 mnt_drop_write_file(file); 4036 return ret; 4037 } 4038 4039 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4040 void __user *arg) 4041 { 4042 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4043 4044 if (!capable(CAP_SYS_ADMIN)) 4045 return -EPERM; 4046 4047 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4048 qsa.flags = 1; 4049 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4050 } 4051 4052 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4053 return -EFAULT; 4054 4055 return 0; 4056 } 4057 4058 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info) 4059 { 4060 if (!capable(CAP_SYS_ADMIN)) 4061 return -EPERM; 4062 4063 return btrfs_qgroup_wait_for_completion(fs_info, true); 4064 } 4065 4066 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4067 struct mnt_idmap *idmap, 4068 struct btrfs_ioctl_received_subvol_args *sa) 4069 { 4070 struct inode *inode = file_inode(file); 4071 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4072 struct btrfs_root *root = BTRFS_I(inode)->root; 4073 struct btrfs_root_item *root_item = &root->root_item; 4074 struct btrfs_trans_handle *trans; 4075 struct timespec64 ct = current_time(inode); 4076 int ret = 0; 4077 int received_uuid_changed; 4078 4079 if (!inode_owner_or_capable(idmap, inode)) 4080 return -EPERM; 4081 4082 ret = mnt_want_write_file(file); 4083 if (ret < 0) 4084 return ret; 4085 4086 down_write(&fs_info->subvol_sem); 4087 4088 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4089 ret = -EINVAL; 4090 goto out; 4091 } 4092 4093 if (btrfs_root_readonly(root)) { 4094 ret = -EROFS; 4095 goto out; 4096 } 4097 4098 /* 4099 * 1 - root item 4100 * 2 - uuid items (received uuid + subvol uuid) 4101 */ 4102 trans = btrfs_start_transaction(root, 3); 4103 if (IS_ERR(trans)) { 4104 ret = PTR_ERR(trans); 4105 trans = NULL; 4106 goto out; 4107 } 4108 4109 sa->rtransid = trans->transid; 4110 sa->rtime.sec = ct.tv_sec; 4111 sa->rtime.nsec = ct.tv_nsec; 4112 4113 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4114 BTRFS_UUID_SIZE); 4115 if (received_uuid_changed && 4116 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4117 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4118 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4119 btrfs_root_id(root)); 4120 if (ret && ret != -ENOENT) { 4121 btrfs_abort_transaction(trans, ret); 4122 btrfs_end_transaction(trans); 4123 goto out; 4124 } 4125 } 4126 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4127 btrfs_set_root_stransid(root_item, sa->stransid); 4128 btrfs_set_root_rtransid(root_item, sa->rtransid); 4129 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4130 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4131 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4132 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4133 4134 ret = btrfs_update_root(trans, fs_info->tree_root, 4135 &root->root_key, &root->root_item); 4136 if (ret < 0) { 4137 btrfs_end_transaction(trans); 4138 goto out; 4139 } 4140 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4141 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4142 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4143 btrfs_root_id(root)); 4144 if (ret < 0 && ret != -EEXIST) { 4145 btrfs_abort_transaction(trans, ret); 4146 btrfs_end_transaction(trans); 4147 goto out; 4148 } 4149 } 4150 ret = btrfs_commit_transaction(trans); 4151 out: 4152 up_write(&fs_info->subvol_sem); 4153 mnt_drop_write_file(file); 4154 return ret; 4155 } 4156 4157 #ifdef CONFIG_64BIT 4158 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4159 void __user *arg) 4160 { 4161 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4162 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4163 int ret = 0; 4164 4165 args32 = memdup_user(arg, sizeof(*args32)); 4166 if (IS_ERR(args32)) 4167 return PTR_ERR(args32); 4168 4169 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4170 if (!args64) { 4171 ret = -ENOMEM; 4172 goto out; 4173 } 4174 4175 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4176 args64->stransid = args32->stransid; 4177 args64->rtransid = args32->rtransid; 4178 args64->stime.sec = args32->stime.sec; 4179 args64->stime.nsec = args32->stime.nsec; 4180 args64->rtime.sec = args32->rtime.sec; 4181 args64->rtime.nsec = args32->rtime.nsec; 4182 args64->flags = args32->flags; 4183 4184 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4185 if (ret) 4186 goto out; 4187 4188 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4189 args32->stransid = args64->stransid; 4190 args32->rtransid = args64->rtransid; 4191 args32->stime.sec = args64->stime.sec; 4192 args32->stime.nsec = args64->stime.nsec; 4193 args32->rtime.sec = args64->rtime.sec; 4194 args32->rtime.nsec = args64->rtime.nsec; 4195 args32->flags = args64->flags; 4196 4197 ret = copy_to_user(arg, args32, sizeof(*args32)); 4198 if (ret) 4199 ret = -EFAULT; 4200 4201 out: 4202 kfree(args32); 4203 kfree(args64); 4204 return ret; 4205 } 4206 #endif 4207 4208 static long btrfs_ioctl_set_received_subvol(struct file *file, 4209 void __user *arg) 4210 { 4211 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4212 int ret = 0; 4213 4214 sa = memdup_user(arg, sizeof(*sa)); 4215 if (IS_ERR(sa)) 4216 return PTR_ERR(sa); 4217 4218 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4219 4220 if (ret) 4221 goto out; 4222 4223 ret = copy_to_user(arg, sa, sizeof(*sa)); 4224 if (ret) 4225 ret = -EFAULT; 4226 4227 out: 4228 kfree(sa); 4229 return ret; 4230 } 4231 4232 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4233 void __user *arg) 4234 { 4235 size_t len; 4236 int ret; 4237 char label[BTRFS_LABEL_SIZE]; 4238 4239 spin_lock(&fs_info->super_lock); 4240 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4241 spin_unlock(&fs_info->super_lock); 4242 4243 len = strnlen(label, BTRFS_LABEL_SIZE); 4244 4245 if (len == BTRFS_LABEL_SIZE) { 4246 btrfs_warn(fs_info, 4247 "label is too long, return the first %zu bytes", 4248 --len); 4249 } 4250 4251 ret = copy_to_user(arg, label, len); 4252 4253 return ret ? -EFAULT : 0; 4254 } 4255 4256 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4257 { 4258 struct inode *inode = file_inode(file); 4259 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4260 struct btrfs_root *root = BTRFS_I(inode)->root; 4261 struct btrfs_super_block *super_block = fs_info->super_copy; 4262 struct btrfs_trans_handle *trans; 4263 char label[BTRFS_LABEL_SIZE]; 4264 int ret; 4265 4266 if (!capable(CAP_SYS_ADMIN)) 4267 return -EPERM; 4268 4269 if (copy_from_user(label, arg, sizeof(label))) 4270 return -EFAULT; 4271 4272 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4273 btrfs_err(fs_info, 4274 "unable to set label with more than %d bytes", 4275 BTRFS_LABEL_SIZE - 1); 4276 return -EINVAL; 4277 } 4278 4279 ret = mnt_want_write_file(file); 4280 if (ret) 4281 return ret; 4282 4283 trans = btrfs_start_transaction(root, 0); 4284 if (IS_ERR(trans)) { 4285 ret = PTR_ERR(trans); 4286 goto out_unlock; 4287 } 4288 4289 spin_lock(&fs_info->super_lock); 4290 strcpy(super_block->label, label); 4291 spin_unlock(&fs_info->super_lock); 4292 ret = btrfs_commit_transaction(trans); 4293 4294 out_unlock: 4295 mnt_drop_write_file(file); 4296 return ret; 4297 } 4298 4299 #define INIT_FEATURE_FLAGS(suffix) \ 4300 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4301 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4302 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4303 4304 int btrfs_ioctl_get_supported_features(void __user *arg) 4305 { 4306 static const struct btrfs_ioctl_feature_flags features[3] = { 4307 INIT_FEATURE_FLAGS(SUPP), 4308 INIT_FEATURE_FLAGS(SAFE_SET), 4309 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4310 }; 4311 4312 if (copy_to_user(arg, &features, sizeof(features))) 4313 return -EFAULT; 4314 4315 return 0; 4316 } 4317 4318 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4319 void __user *arg) 4320 { 4321 struct btrfs_super_block *super_block = fs_info->super_copy; 4322 struct btrfs_ioctl_feature_flags features; 4323 4324 features.compat_flags = btrfs_super_compat_flags(super_block); 4325 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4326 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4327 4328 if (copy_to_user(arg, &features, sizeof(features))) 4329 return -EFAULT; 4330 4331 return 0; 4332 } 4333 4334 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4335 enum btrfs_feature_set set, 4336 u64 change_mask, u64 flags, u64 supported_flags, 4337 u64 safe_set, u64 safe_clear) 4338 { 4339 const char *type = btrfs_feature_set_name(set); 4340 char *names; 4341 u64 disallowed, unsupported; 4342 u64 set_mask = flags & change_mask; 4343 u64 clear_mask = ~flags & change_mask; 4344 4345 unsupported = set_mask & ~supported_flags; 4346 if (unsupported) { 4347 names = btrfs_printable_features(set, unsupported); 4348 if (names) { 4349 btrfs_warn(fs_info, 4350 "this kernel does not support the %s feature bit%s", 4351 names, strchr(names, ',') ? "s" : ""); 4352 kfree(names); 4353 } else 4354 btrfs_warn(fs_info, 4355 "this kernel does not support %s bits 0x%llx", 4356 type, unsupported); 4357 return -EOPNOTSUPP; 4358 } 4359 4360 disallowed = set_mask & ~safe_set; 4361 if (disallowed) { 4362 names = btrfs_printable_features(set, disallowed); 4363 if (names) { 4364 btrfs_warn(fs_info, 4365 "can't set the %s feature bit%s while mounted", 4366 names, strchr(names, ',') ? "s" : ""); 4367 kfree(names); 4368 } else 4369 btrfs_warn(fs_info, 4370 "can't set %s bits 0x%llx while mounted", 4371 type, disallowed); 4372 return -EPERM; 4373 } 4374 4375 disallowed = clear_mask & ~safe_clear; 4376 if (disallowed) { 4377 names = btrfs_printable_features(set, disallowed); 4378 if (names) { 4379 btrfs_warn(fs_info, 4380 "can't clear the %s feature bit%s while mounted", 4381 names, strchr(names, ',') ? "s" : ""); 4382 kfree(names); 4383 } else 4384 btrfs_warn(fs_info, 4385 "can't clear %s bits 0x%llx while mounted", 4386 type, disallowed); 4387 return -EPERM; 4388 } 4389 4390 return 0; 4391 } 4392 4393 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4394 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4395 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4396 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4397 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4398 4399 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4400 { 4401 struct inode *inode = file_inode(file); 4402 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4403 struct btrfs_root *root = BTRFS_I(inode)->root; 4404 struct btrfs_super_block *super_block = fs_info->super_copy; 4405 struct btrfs_ioctl_feature_flags flags[2]; 4406 struct btrfs_trans_handle *trans; 4407 u64 newflags; 4408 int ret; 4409 4410 if (!capable(CAP_SYS_ADMIN)) 4411 return -EPERM; 4412 4413 if (copy_from_user(flags, arg, sizeof(flags))) 4414 return -EFAULT; 4415 4416 /* Nothing to do */ 4417 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4418 !flags[0].incompat_flags) 4419 return 0; 4420 4421 ret = check_feature(fs_info, flags[0].compat_flags, 4422 flags[1].compat_flags, COMPAT); 4423 if (ret) 4424 return ret; 4425 4426 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4427 flags[1].compat_ro_flags, COMPAT_RO); 4428 if (ret) 4429 return ret; 4430 4431 ret = check_feature(fs_info, flags[0].incompat_flags, 4432 flags[1].incompat_flags, INCOMPAT); 4433 if (ret) 4434 return ret; 4435 4436 ret = mnt_want_write_file(file); 4437 if (ret) 4438 return ret; 4439 4440 trans = btrfs_start_transaction(root, 0); 4441 if (IS_ERR(trans)) { 4442 ret = PTR_ERR(trans); 4443 goto out_drop_write; 4444 } 4445 4446 spin_lock(&fs_info->super_lock); 4447 newflags = btrfs_super_compat_flags(super_block); 4448 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4449 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4450 btrfs_set_super_compat_flags(super_block, newflags); 4451 4452 newflags = btrfs_super_compat_ro_flags(super_block); 4453 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4454 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4455 btrfs_set_super_compat_ro_flags(super_block, newflags); 4456 4457 newflags = btrfs_super_incompat_flags(super_block); 4458 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4459 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4460 btrfs_set_super_incompat_flags(super_block, newflags); 4461 spin_unlock(&fs_info->super_lock); 4462 4463 ret = btrfs_commit_transaction(trans); 4464 out_drop_write: 4465 mnt_drop_write_file(file); 4466 4467 return ret; 4468 } 4469 4470 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat) 4471 { 4472 struct btrfs_ioctl_send_args *arg; 4473 int ret; 4474 4475 if (compat) { 4476 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4477 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4478 4479 ret = copy_from_user(&args32, argp, sizeof(args32)); 4480 if (ret) 4481 return -EFAULT; 4482 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4483 if (!arg) 4484 return -ENOMEM; 4485 arg->send_fd = args32.send_fd; 4486 arg->clone_sources_count = args32.clone_sources_count; 4487 arg->clone_sources = compat_ptr(args32.clone_sources); 4488 arg->parent_root = args32.parent_root; 4489 arg->flags = args32.flags; 4490 arg->version = args32.version; 4491 memcpy(arg->reserved, args32.reserved, 4492 sizeof(args32.reserved)); 4493 #else 4494 return -ENOTTY; 4495 #endif 4496 } else { 4497 arg = memdup_user(argp, sizeof(*arg)); 4498 if (IS_ERR(arg)) 4499 return PTR_ERR(arg); 4500 } 4501 ret = btrfs_ioctl_send(inode, arg); 4502 kfree(arg); 4503 return ret; 4504 } 4505 4506 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4507 bool compat) 4508 { 4509 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4510 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4511 flags); 4512 size_t copy_end; 4513 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 4514 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4515 struct extent_io_tree *io_tree = &inode->io_tree; 4516 struct iovec iovstack[UIO_FASTIOV]; 4517 struct iovec *iov = iovstack; 4518 struct iov_iter iter; 4519 loff_t pos; 4520 struct kiocb kiocb; 4521 ssize_t ret; 4522 u64 disk_bytenr, disk_io_size; 4523 struct extent_state *cached_state = NULL; 4524 4525 if (!capable(CAP_SYS_ADMIN)) { 4526 ret = -EPERM; 4527 goto out_acct; 4528 } 4529 4530 if (compat) { 4531 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4532 struct btrfs_ioctl_encoded_io_args_32 args32; 4533 4534 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4535 flags); 4536 if (copy_from_user(&args32, argp, copy_end)) { 4537 ret = -EFAULT; 4538 goto out_acct; 4539 } 4540 args.iov = compat_ptr(args32.iov); 4541 args.iovcnt = args32.iovcnt; 4542 args.offset = args32.offset; 4543 args.flags = args32.flags; 4544 #else 4545 return -ENOTTY; 4546 #endif 4547 } else { 4548 copy_end = copy_end_kernel; 4549 if (copy_from_user(&args, argp, copy_end)) { 4550 ret = -EFAULT; 4551 goto out_acct; 4552 } 4553 } 4554 if (args.flags != 0) { 4555 ret = -EINVAL; 4556 goto out_acct; 4557 } 4558 4559 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4560 &iov, &iter); 4561 if (ret < 0) 4562 goto out_acct; 4563 4564 if (iov_iter_count(&iter) == 0) { 4565 ret = 0; 4566 goto out_iov; 4567 } 4568 pos = args.offset; 4569 ret = rw_verify_area(READ, file, &pos, args.len); 4570 if (ret < 0) 4571 goto out_iov; 4572 4573 init_sync_kiocb(&kiocb, file); 4574 kiocb.ki_pos = pos; 4575 4576 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state, 4577 &disk_bytenr, &disk_io_size); 4578 4579 if (ret == -EIOCBQUEUED) { 4580 bool unlocked = false; 4581 u64 start, lockend, count; 4582 4583 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize); 4584 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4585 4586 if (args.compression) 4587 count = disk_io_size; 4588 else 4589 count = args.len; 4590 4591 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend, 4592 &cached_state, disk_bytenr, 4593 disk_io_size, count, 4594 args.compression, &unlocked); 4595 4596 if (!unlocked) { 4597 unlock_extent(io_tree, start, lockend, &cached_state); 4598 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4599 } 4600 } 4601 4602 if (ret >= 0) { 4603 fsnotify_access(file); 4604 if (copy_to_user(argp + copy_end, 4605 (char *)&args + copy_end_kernel, 4606 sizeof(args) - copy_end_kernel)) 4607 ret = -EFAULT; 4608 } 4609 4610 out_iov: 4611 kfree(iov); 4612 out_acct: 4613 if (ret > 0) 4614 add_rchar(current, ret); 4615 inc_syscr(current); 4616 return ret; 4617 } 4618 4619 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4620 { 4621 struct btrfs_ioctl_encoded_io_args args; 4622 struct iovec iovstack[UIO_FASTIOV]; 4623 struct iovec *iov = iovstack; 4624 struct iov_iter iter; 4625 loff_t pos; 4626 struct kiocb kiocb; 4627 ssize_t ret; 4628 4629 if (!capable(CAP_SYS_ADMIN)) { 4630 ret = -EPERM; 4631 goto out_acct; 4632 } 4633 4634 if (!(file->f_mode & FMODE_WRITE)) { 4635 ret = -EBADF; 4636 goto out_acct; 4637 } 4638 4639 if (compat) { 4640 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4641 struct btrfs_ioctl_encoded_io_args_32 args32; 4642 4643 if (copy_from_user(&args32, argp, sizeof(args32))) { 4644 ret = -EFAULT; 4645 goto out_acct; 4646 } 4647 args.iov = compat_ptr(args32.iov); 4648 args.iovcnt = args32.iovcnt; 4649 args.offset = args32.offset; 4650 args.flags = args32.flags; 4651 args.len = args32.len; 4652 args.unencoded_len = args32.unencoded_len; 4653 args.unencoded_offset = args32.unencoded_offset; 4654 args.compression = args32.compression; 4655 args.encryption = args32.encryption; 4656 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4657 #else 4658 return -ENOTTY; 4659 #endif 4660 } else { 4661 if (copy_from_user(&args, argp, sizeof(args))) { 4662 ret = -EFAULT; 4663 goto out_acct; 4664 } 4665 } 4666 4667 ret = -EINVAL; 4668 if (args.flags != 0) 4669 goto out_acct; 4670 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4671 goto out_acct; 4672 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4673 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4674 goto out_acct; 4675 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4676 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4677 goto out_acct; 4678 if (args.unencoded_offset > args.unencoded_len) 4679 goto out_acct; 4680 if (args.len > args.unencoded_len - args.unencoded_offset) 4681 goto out_acct; 4682 4683 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4684 &iov, &iter); 4685 if (ret < 0) 4686 goto out_acct; 4687 4688 if (iov_iter_count(&iter) == 0) { 4689 ret = 0; 4690 goto out_iov; 4691 } 4692 pos = args.offset; 4693 ret = rw_verify_area(WRITE, file, &pos, args.len); 4694 if (ret < 0) 4695 goto out_iov; 4696 4697 init_sync_kiocb(&kiocb, file); 4698 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 4699 if (ret) 4700 goto out_iov; 4701 kiocb.ki_pos = pos; 4702 4703 file_start_write(file); 4704 4705 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4706 if (ret > 0) 4707 fsnotify_modify(file); 4708 4709 file_end_write(file); 4710 out_iov: 4711 kfree(iov); 4712 out_acct: 4713 if (ret > 0) 4714 add_wchar(current, ret); 4715 inc_syscw(current); 4716 return ret; 4717 } 4718 4719 /* 4720 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It 4721 * contains the fields in btrfs_uring_read_extent that are necessary to finish 4722 * off and cleanup the I/O in btrfs_uring_read_finished. 4723 */ 4724 struct btrfs_uring_priv { 4725 struct io_uring_cmd *cmd; 4726 struct page **pages; 4727 unsigned long nr_pages; 4728 struct kiocb iocb; 4729 struct iovec *iov; 4730 struct iov_iter iter; 4731 struct extent_state *cached_state; 4732 u64 count; 4733 u64 start; 4734 u64 lockend; 4735 int err; 4736 bool compressed; 4737 }; 4738 4739 struct io_btrfs_cmd { 4740 struct btrfs_uring_priv *priv; 4741 }; 4742 4743 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags) 4744 { 4745 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4746 struct btrfs_uring_priv *priv = bc->priv; 4747 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp)); 4748 struct extent_io_tree *io_tree = &inode->io_tree; 4749 unsigned long index; 4750 u64 cur; 4751 size_t page_offset; 4752 ssize_t ret; 4753 4754 if (priv->err) { 4755 ret = priv->err; 4756 goto out; 4757 } 4758 4759 if (priv->compressed) { 4760 index = 0; 4761 page_offset = 0; 4762 } else { 4763 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT; 4764 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start); 4765 } 4766 cur = 0; 4767 while (cur < priv->count) { 4768 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset); 4769 4770 if (copy_page_to_iter(priv->pages[index], page_offset, bytes, 4771 &priv->iter) != bytes) { 4772 ret = -EFAULT; 4773 goto out; 4774 } 4775 4776 index++; 4777 cur += bytes; 4778 page_offset = 0; 4779 } 4780 ret = priv->count; 4781 4782 out: 4783 unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state); 4784 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4785 4786 io_uring_cmd_done(cmd, ret, 0, issue_flags); 4787 add_rchar(current, ret); 4788 4789 for (index = 0; index < priv->nr_pages; index++) 4790 __free_page(priv->pages[index]); 4791 4792 kfree(priv->pages); 4793 kfree(priv->iov); 4794 kfree(priv); 4795 } 4796 4797 void btrfs_uring_read_extent_endio(void *ctx, int err) 4798 { 4799 struct btrfs_uring_priv *priv = ctx; 4800 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd); 4801 4802 priv->err = err; 4803 bc->priv = priv; 4804 4805 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished); 4806 } 4807 4808 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter, 4809 u64 start, u64 lockend, 4810 struct extent_state *cached_state, 4811 u64 disk_bytenr, u64 disk_io_size, 4812 size_t count, bool compressed, 4813 struct iovec *iov, struct io_uring_cmd *cmd) 4814 { 4815 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 4816 struct extent_io_tree *io_tree = &inode->io_tree; 4817 struct page **pages; 4818 struct btrfs_uring_priv *priv = NULL; 4819 unsigned long nr_pages; 4820 int ret; 4821 4822 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 4823 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 4824 if (!pages) 4825 return -ENOMEM; 4826 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 4827 if (ret) { 4828 ret = -ENOMEM; 4829 goto out_fail; 4830 } 4831 4832 priv = kmalloc(sizeof(*priv), GFP_NOFS); 4833 if (!priv) { 4834 ret = -ENOMEM; 4835 goto out_fail; 4836 } 4837 4838 priv->iocb = *iocb; 4839 priv->iov = iov; 4840 priv->iter = *iter; 4841 priv->count = count; 4842 priv->cmd = cmd; 4843 priv->cached_state = cached_state; 4844 priv->compressed = compressed; 4845 priv->nr_pages = nr_pages; 4846 priv->pages = pages; 4847 priv->start = start; 4848 priv->lockend = lockend; 4849 priv->err = 0; 4850 4851 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 4852 disk_io_size, pages, priv); 4853 if (ret && ret != -EIOCBQUEUED) 4854 goto out_fail; 4855 4856 /* 4857 * If we return -EIOCBQUEUED, we're deferring the cleanup to 4858 * btrfs_uring_read_finished(), which will handle unlocking the extent 4859 * and inode and freeing the allocations. 4860 */ 4861 4862 return -EIOCBQUEUED; 4863 4864 out_fail: 4865 unlock_extent(io_tree, start, lockend, &cached_state); 4866 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4867 kfree(priv); 4868 return ret; 4869 } 4870 4871 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags) 4872 { 4873 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags); 4874 size_t copy_end; 4875 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4876 int ret; 4877 u64 disk_bytenr, disk_io_size; 4878 struct file *file; 4879 struct btrfs_inode *inode; 4880 struct btrfs_fs_info *fs_info; 4881 struct extent_io_tree *io_tree; 4882 struct iovec iovstack[UIO_FASTIOV]; 4883 struct iovec *iov = iovstack; 4884 struct iov_iter iter; 4885 loff_t pos; 4886 struct kiocb kiocb; 4887 struct extent_state *cached_state = NULL; 4888 u64 start, lockend; 4889 void __user *sqe_addr; 4890 4891 if (!capable(CAP_SYS_ADMIN)) { 4892 ret = -EPERM; 4893 goto out_acct; 4894 } 4895 file = cmd->file; 4896 inode = BTRFS_I(file->f_inode); 4897 fs_info = inode->root->fs_info; 4898 io_tree = &inode->io_tree; 4899 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr)); 4900 4901 if (issue_flags & IO_URING_F_COMPAT) { 4902 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4903 struct btrfs_ioctl_encoded_io_args_32 args32; 4904 4905 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags); 4906 if (copy_from_user(&args32, sqe_addr, copy_end)) { 4907 ret = -EFAULT; 4908 goto out_acct; 4909 } 4910 args.iov = compat_ptr(args32.iov); 4911 args.iovcnt = args32.iovcnt; 4912 args.offset = args32.offset; 4913 args.flags = args32.flags; 4914 #else 4915 return -ENOTTY; 4916 #endif 4917 } else { 4918 copy_end = copy_end_kernel; 4919 if (copy_from_user(&args, sqe_addr, copy_end)) { 4920 ret = -EFAULT; 4921 goto out_acct; 4922 } 4923 } 4924 4925 if (args.flags != 0) 4926 return -EINVAL; 4927 4928 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4929 &iov, &iter); 4930 if (ret < 0) 4931 goto out_acct; 4932 4933 if (iov_iter_count(&iter) == 0) { 4934 ret = 0; 4935 goto out_free; 4936 } 4937 4938 pos = args.offset; 4939 ret = rw_verify_area(READ, file, &pos, args.len); 4940 if (ret < 0) 4941 goto out_free; 4942 4943 init_sync_kiocb(&kiocb, file); 4944 kiocb.ki_pos = pos; 4945 4946 if (issue_flags & IO_URING_F_NONBLOCK) 4947 kiocb.ki_flags |= IOCB_NOWAIT; 4948 4949 start = ALIGN_DOWN(pos, fs_info->sectorsize); 4950 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4951 4952 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state, 4953 &disk_bytenr, &disk_io_size); 4954 if (ret < 0 && ret != -EIOCBQUEUED) 4955 goto out_free; 4956 4957 file_accessed(file); 4958 4959 if (copy_to_user(sqe_addr + copy_end, (const char *)&args + copy_end_kernel, 4960 sizeof(args) - copy_end_kernel)) { 4961 if (ret == -EIOCBQUEUED) { 4962 unlock_extent(io_tree, start, lockend, &cached_state); 4963 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4964 } 4965 ret = -EFAULT; 4966 goto out_free; 4967 } 4968 4969 if (ret == -EIOCBQUEUED) { 4970 u64 count; 4971 4972 /* 4973 * If we've optimized things by storing the iovecs on the stack, 4974 * undo this. 4975 */ 4976 if (!iov) { 4977 iov = kmalloc(sizeof(struct iovec) * args.iovcnt, GFP_NOFS); 4978 if (!iov) { 4979 unlock_extent(io_tree, start, lockend, &cached_state); 4980 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4981 ret = -ENOMEM; 4982 goto out_acct; 4983 } 4984 4985 memcpy(iov, iovstack, sizeof(struct iovec) * args.iovcnt); 4986 } 4987 4988 count = min_t(u64, iov_iter_count(&iter), disk_io_size); 4989 4990 /* Match ioctl by not returning past EOF if uncompressed. */ 4991 if (!args.compression) 4992 count = min_t(u64, count, args.len); 4993 4994 ret = btrfs_uring_read_extent(&kiocb, &iter, start, lockend, 4995 cached_state, disk_bytenr, 4996 disk_io_size, count, 4997 args.compression, iov, cmd); 4998 4999 goto out_acct; 5000 } 5001 5002 out_free: 5003 kfree(iov); 5004 5005 out_acct: 5006 if (ret > 0) 5007 add_rchar(current, ret); 5008 inc_syscr(current); 5009 5010 return ret; 5011 } 5012 5013 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags) 5014 { 5015 switch (cmd->cmd_op) { 5016 case BTRFS_IOC_ENCODED_READ: 5017 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5018 case BTRFS_IOC_ENCODED_READ_32: 5019 #endif 5020 return btrfs_uring_encoded_read(cmd, issue_flags); 5021 } 5022 5023 return -EINVAL; 5024 } 5025 5026 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp) 5027 { 5028 struct btrfs_root *root; 5029 struct btrfs_ioctl_subvol_wait args = { 0 }; 5030 signed long sched_ret; 5031 int refs; 5032 u64 root_flags; 5033 bool wait_for_deletion = false; 5034 bool found = false; 5035 5036 if (copy_from_user(&args, argp, sizeof(args))) 5037 return -EFAULT; 5038 5039 switch (args.mode) { 5040 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED: 5041 /* 5042 * Wait for the first one deleted that waits until all previous 5043 * are cleaned. 5044 */ 5045 spin_lock(&fs_info->trans_lock); 5046 if (!list_empty(&fs_info->dead_roots)) { 5047 root = list_last_entry(&fs_info->dead_roots, 5048 struct btrfs_root, root_list); 5049 args.subvolid = btrfs_root_id(root); 5050 found = true; 5051 } 5052 spin_unlock(&fs_info->trans_lock); 5053 if (!found) 5054 return -ENOENT; 5055 5056 fallthrough; 5057 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE: 5058 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) || 5059 BTRFS_LAST_FREE_OBJECTID < args.subvolid) 5060 return -EINVAL; 5061 break; 5062 case BTRFS_SUBVOL_SYNC_COUNT: 5063 spin_lock(&fs_info->trans_lock); 5064 args.count = list_count_nodes(&fs_info->dead_roots); 5065 spin_unlock(&fs_info->trans_lock); 5066 if (copy_to_user(argp, &args, sizeof(args))) 5067 return -EFAULT; 5068 return 0; 5069 case BTRFS_SUBVOL_SYNC_PEEK_FIRST: 5070 spin_lock(&fs_info->trans_lock); 5071 /* Last in the list was deleted first. */ 5072 if (!list_empty(&fs_info->dead_roots)) { 5073 root = list_last_entry(&fs_info->dead_roots, 5074 struct btrfs_root, root_list); 5075 args.subvolid = btrfs_root_id(root); 5076 } else { 5077 args.subvolid = 0; 5078 } 5079 spin_unlock(&fs_info->trans_lock); 5080 if (copy_to_user(argp, &args, sizeof(args))) 5081 return -EFAULT; 5082 return 0; 5083 case BTRFS_SUBVOL_SYNC_PEEK_LAST: 5084 spin_lock(&fs_info->trans_lock); 5085 /* First in the list was deleted last. */ 5086 if (!list_empty(&fs_info->dead_roots)) { 5087 root = list_first_entry(&fs_info->dead_roots, 5088 struct btrfs_root, root_list); 5089 args.subvolid = btrfs_root_id(root); 5090 } else { 5091 args.subvolid = 0; 5092 } 5093 spin_unlock(&fs_info->trans_lock); 5094 if (copy_to_user(argp, &args, sizeof(args))) 5095 return -EFAULT; 5096 return 0; 5097 default: 5098 return -EINVAL; 5099 } 5100 5101 /* 32bit limitation: fs_roots_radix key is not wide enough. */ 5102 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX) 5103 return -EOVERFLOW; 5104 5105 while (1) { 5106 /* Wait for the specific one. */ 5107 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR) 5108 return -EINTR; 5109 refs = -1; 5110 spin_lock(&fs_info->fs_roots_radix_lock); 5111 root = radix_tree_lookup(&fs_info->fs_roots_radix, 5112 (unsigned long)args.subvolid); 5113 if (root) { 5114 spin_lock(&root->root_item_lock); 5115 refs = btrfs_root_refs(&root->root_item); 5116 root_flags = btrfs_root_flags(&root->root_item); 5117 spin_unlock(&root->root_item_lock); 5118 } 5119 spin_unlock(&fs_info->fs_roots_radix_lock); 5120 up_read(&fs_info->subvol_sem); 5121 5122 /* Subvolume does not exist. */ 5123 if (!root) 5124 return -ENOENT; 5125 5126 /* Subvolume not deleted at all. */ 5127 if (refs > 0) 5128 return -EEXIST; 5129 /* We've waited and now the subvolume is gone. */ 5130 if (wait_for_deletion && refs == -1) { 5131 /* Return the one we waited for as the last one. */ 5132 if (copy_to_user(argp, &args, sizeof(args))) 5133 return -EFAULT; 5134 return 0; 5135 } 5136 5137 /* Subvolume not found on the first try (deleted or never existed). */ 5138 if (refs == -1) 5139 return -ENOENT; 5140 5141 wait_for_deletion = true; 5142 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD); 5143 sched_ret = schedule_timeout_interruptible(HZ); 5144 /* Early wake up or error. */ 5145 if (sched_ret != 0) 5146 return -EINTR; 5147 } 5148 5149 return 0; 5150 } 5151 5152 long btrfs_ioctl(struct file *file, unsigned int 5153 cmd, unsigned long arg) 5154 { 5155 struct inode *inode = file_inode(file); 5156 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5157 struct btrfs_root *root = BTRFS_I(inode)->root; 5158 void __user *argp = (void __user *)arg; 5159 5160 switch (cmd) { 5161 case FS_IOC_GETVERSION: 5162 return btrfs_ioctl_getversion(inode, argp); 5163 case FS_IOC_GETFSLABEL: 5164 return btrfs_ioctl_get_fslabel(fs_info, argp); 5165 case FS_IOC_SETFSLABEL: 5166 return btrfs_ioctl_set_fslabel(file, argp); 5167 case FITRIM: 5168 return btrfs_ioctl_fitrim(fs_info, argp); 5169 case BTRFS_IOC_SNAP_CREATE: 5170 return btrfs_ioctl_snap_create(file, argp, 0); 5171 case BTRFS_IOC_SNAP_CREATE_V2: 5172 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5173 case BTRFS_IOC_SUBVOL_CREATE: 5174 return btrfs_ioctl_snap_create(file, argp, 1); 5175 case BTRFS_IOC_SUBVOL_CREATE_V2: 5176 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5177 case BTRFS_IOC_SNAP_DESTROY: 5178 return btrfs_ioctl_snap_destroy(file, argp, false); 5179 case BTRFS_IOC_SNAP_DESTROY_V2: 5180 return btrfs_ioctl_snap_destroy(file, argp, true); 5181 case BTRFS_IOC_SUBVOL_GETFLAGS: 5182 return btrfs_ioctl_subvol_getflags(inode, argp); 5183 case BTRFS_IOC_SUBVOL_SETFLAGS: 5184 return btrfs_ioctl_subvol_setflags(file, argp); 5185 case BTRFS_IOC_DEFAULT_SUBVOL: 5186 return btrfs_ioctl_default_subvol(file, argp); 5187 case BTRFS_IOC_DEFRAG: 5188 return btrfs_ioctl_defrag(file, NULL); 5189 case BTRFS_IOC_DEFRAG_RANGE: 5190 return btrfs_ioctl_defrag(file, argp); 5191 case BTRFS_IOC_RESIZE: 5192 return btrfs_ioctl_resize(file, argp); 5193 case BTRFS_IOC_ADD_DEV: 5194 return btrfs_ioctl_add_dev(fs_info, argp); 5195 case BTRFS_IOC_RM_DEV: 5196 return btrfs_ioctl_rm_dev(file, argp); 5197 case BTRFS_IOC_RM_DEV_V2: 5198 return btrfs_ioctl_rm_dev_v2(file, argp); 5199 case BTRFS_IOC_FS_INFO: 5200 return btrfs_ioctl_fs_info(fs_info, argp); 5201 case BTRFS_IOC_DEV_INFO: 5202 return btrfs_ioctl_dev_info(fs_info, argp); 5203 case BTRFS_IOC_TREE_SEARCH: 5204 return btrfs_ioctl_tree_search(inode, argp); 5205 case BTRFS_IOC_TREE_SEARCH_V2: 5206 return btrfs_ioctl_tree_search_v2(inode, argp); 5207 case BTRFS_IOC_INO_LOOKUP: 5208 return btrfs_ioctl_ino_lookup(root, argp); 5209 case BTRFS_IOC_INO_PATHS: 5210 return btrfs_ioctl_ino_to_path(root, argp); 5211 case BTRFS_IOC_LOGICAL_INO: 5212 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5213 case BTRFS_IOC_LOGICAL_INO_V2: 5214 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5215 case BTRFS_IOC_SPACE_INFO: 5216 return btrfs_ioctl_space_info(fs_info, argp); 5217 case BTRFS_IOC_SYNC: { 5218 int ret; 5219 5220 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5221 if (ret) 5222 return ret; 5223 ret = btrfs_sync_fs(inode->i_sb, 1); 5224 /* 5225 * There may be work for the cleaner kthread to do (subvolume 5226 * deletion, delayed iputs, defrag inodes, etc), so wake it up. 5227 */ 5228 wake_up_process(fs_info->cleaner_kthread); 5229 return ret; 5230 } 5231 case BTRFS_IOC_START_SYNC: 5232 return btrfs_ioctl_start_sync(root, argp); 5233 case BTRFS_IOC_WAIT_SYNC: 5234 return btrfs_ioctl_wait_sync(fs_info, argp); 5235 case BTRFS_IOC_SCRUB: 5236 return btrfs_ioctl_scrub(file, argp); 5237 case BTRFS_IOC_SCRUB_CANCEL: 5238 return btrfs_ioctl_scrub_cancel(fs_info); 5239 case BTRFS_IOC_SCRUB_PROGRESS: 5240 return btrfs_ioctl_scrub_progress(fs_info, argp); 5241 case BTRFS_IOC_BALANCE_V2: 5242 return btrfs_ioctl_balance(file, argp); 5243 case BTRFS_IOC_BALANCE_CTL: 5244 return btrfs_ioctl_balance_ctl(fs_info, arg); 5245 case BTRFS_IOC_BALANCE_PROGRESS: 5246 return btrfs_ioctl_balance_progress(fs_info, argp); 5247 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5248 return btrfs_ioctl_set_received_subvol(file, argp); 5249 #ifdef CONFIG_64BIT 5250 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5251 return btrfs_ioctl_set_received_subvol_32(file, argp); 5252 #endif 5253 case BTRFS_IOC_SEND: 5254 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false); 5255 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5256 case BTRFS_IOC_SEND_32: 5257 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true); 5258 #endif 5259 case BTRFS_IOC_GET_DEV_STATS: 5260 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5261 case BTRFS_IOC_QUOTA_CTL: 5262 return btrfs_ioctl_quota_ctl(file, argp); 5263 case BTRFS_IOC_QGROUP_ASSIGN: 5264 return btrfs_ioctl_qgroup_assign(file, argp); 5265 case BTRFS_IOC_QGROUP_CREATE: 5266 return btrfs_ioctl_qgroup_create(file, argp); 5267 case BTRFS_IOC_QGROUP_LIMIT: 5268 return btrfs_ioctl_qgroup_limit(file, argp); 5269 case BTRFS_IOC_QUOTA_RESCAN: 5270 return btrfs_ioctl_quota_rescan(file, argp); 5271 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5272 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5273 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5274 return btrfs_ioctl_quota_rescan_wait(fs_info); 5275 case BTRFS_IOC_DEV_REPLACE: 5276 return btrfs_ioctl_dev_replace(fs_info, argp); 5277 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5278 return btrfs_ioctl_get_supported_features(argp); 5279 case BTRFS_IOC_GET_FEATURES: 5280 return btrfs_ioctl_get_features(fs_info, argp); 5281 case BTRFS_IOC_SET_FEATURES: 5282 return btrfs_ioctl_set_features(file, argp); 5283 case BTRFS_IOC_GET_SUBVOL_INFO: 5284 return btrfs_ioctl_get_subvol_info(inode, argp); 5285 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5286 return btrfs_ioctl_get_subvol_rootref(root, argp); 5287 case BTRFS_IOC_INO_LOOKUP_USER: 5288 return btrfs_ioctl_ino_lookup_user(file, argp); 5289 case FS_IOC_ENABLE_VERITY: 5290 return fsverity_ioctl_enable(file, (const void __user *)argp); 5291 case FS_IOC_MEASURE_VERITY: 5292 return fsverity_ioctl_measure(file, argp); 5293 case BTRFS_IOC_ENCODED_READ: 5294 return btrfs_ioctl_encoded_read(file, argp, false); 5295 case BTRFS_IOC_ENCODED_WRITE: 5296 return btrfs_ioctl_encoded_write(file, argp, false); 5297 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5298 case BTRFS_IOC_ENCODED_READ_32: 5299 return btrfs_ioctl_encoded_read(file, argp, true); 5300 case BTRFS_IOC_ENCODED_WRITE_32: 5301 return btrfs_ioctl_encoded_write(file, argp, true); 5302 #endif 5303 case BTRFS_IOC_SUBVOL_SYNC_WAIT: 5304 return btrfs_ioctl_subvol_sync(fs_info, argp); 5305 } 5306 5307 return -ENOTTY; 5308 } 5309 5310 #ifdef CONFIG_COMPAT 5311 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5312 { 5313 /* 5314 * These all access 32-bit values anyway so no further 5315 * handling is necessary. 5316 */ 5317 switch (cmd) { 5318 case FS_IOC32_GETVERSION: 5319 cmd = FS_IOC_GETVERSION; 5320 break; 5321 } 5322 5323 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5324 } 5325 #endif 5326