xref: /linux/fs/btrfs/ioctl.c (revision 94901b7a74d82bfd30420f1d9d00898278fdc8bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
121 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
122 		unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
136 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = binode->flags;
140 	u32 ro_flags = binode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
170 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
171 {
172 	struct btrfs_inode *binode = BTRFS_I(inode);
173 	unsigned int new_fl = 0;
174 
175 	if (binode->flags & BTRFS_INODE_SYNC)
176 		new_fl |= S_SYNC;
177 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
178 		new_fl |= S_IMMUTABLE;
179 	if (binode->flags & BTRFS_INODE_APPEND)
180 		new_fl |= S_APPEND;
181 	if (binode->flags & BTRFS_INODE_NOATIME)
182 		new_fl |= S_NOATIME;
183 	if (binode->flags & BTRFS_INODE_DIRSYNC)
184 		new_fl |= S_DIRSYNC;
185 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
186 		new_fl |= S_VERITY;
187 
188 	set_mask_bits(&inode->i_flags,
189 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
190 		      S_VERITY, new_fl);
191 }
192 
193 /*
194  * Check if @flags are a supported and valid set of FS_*_FL flags and that
195  * the old and new flags are not conflicting
196  */
197 static int check_fsflags(unsigned int old_flags, unsigned int flags)
198 {
199 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
200 		      FS_NOATIME_FL | FS_NODUMP_FL | \
201 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
202 		      FS_NOCOMP_FL | FS_COMPR_FL |
203 		      FS_NOCOW_FL))
204 		return -EOPNOTSUPP;
205 
206 	/* COMPR and NOCOMP on new/old are valid */
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
211 		return -EINVAL;
212 
213 	/* NOCOW and compression options are mutually exclusive */
214 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
215 		return -EINVAL;
216 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
217 		return -EINVAL;
218 
219 	return 0;
220 }
221 
222 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
223 				    unsigned int flags)
224 {
225 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
226 		return -EPERM;
227 
228 	return 0;
229 }
230 
231 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
232 {
233 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
234 		return -ENAMETOOLONG;
235 	return 0;
236 }
237 
238 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
239 {
240 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
241 		return -ENAMETOOLONG;
242 	return 0;
243 }
244 
245 /*
246  * Set flags/xflags from the internal inode flags. The remaining items of
247  * fsxattr are zeroed.
248  */
249 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
250 {
251 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
252 
253 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
254 	return 0;
255 }
256 
257 int btrfs_fileattr_set(struct mnt_idmap *idmap,
258 		       struct dentry *dentry, struct fileattr *fa)
259 {
260 	struct inode *inode = d_inode(dentry);
261 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
262 	struct btrfs_inode *binode = BTRFS_I(inode);
263 	struct btrfs_root *root = binode->root;
264 	struct btrfs_trans_handle *trans;
265 	unsigned int fsflags, old_fsflags;
266 	int ret;
267 	const char *comp = NULL;
268 	u32 binode_flags;
269 
270 	if (btrfs_root_readonly(root))
271 		return -EROFS;
272 
273 	if (fileattr_has_fsx(fa))
274 		return -EOPNOTSUPP;
275 
276 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
277 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
278 	ret = check_fsflags(old_fsflags, fsflags);
279 	if (ret)
280 		return ret;
281 
282 	ret = check_fsflags_compatible(fs_info, fsflags);
283 	if (ret)
284 		return ret;
285 
286 	binode_flags = binode->flags;
287 	if (fsflags & FS_SYNC_FL)
288 		binode_flags |= BTRFS_INODE_SYNC;
289 	else
290 		binode_flags &= ~BTRFS_INODE_SYNC;
291 	if (fsflags & FS_IMMUTABLE_FL)
292 		binode_flags |= BTRFS_INODE_IMMUTABLE;
293 	else
294 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
295 	if (fsflags & FS_APPEND_FL)
296 		binode_flags |= BTRFS_INODE_APPEND;
297 	else
298 		binode_flags &= ~BTRFS_INODE_APPEND;
299 	if (fsflags & FS_NODUMP_FL)
300 		binode_flags |= BTRFS_INODE_NODUMP;
301 	else
302 		binode_flags &= ~BTRFS_INODE_NODUMP;
303 	if (fsflags & FS_NOATIME_FL)
304 		binode_flags |= BTRFS_INODE_NOATIME;
305 	else
306 		binode_flags &= ~BTRFS_INODE_NOATIME;
307 
308 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
309 	if (!fa->flags_valid) {
310 		/* 1 item for the inode */
311 		trans = btrfs_start_transaction(root, 1);
312 		if (IS_ERR(trans))
313 			return PTR_ERR(trans);
314 		goto update_flags;
315 	}
316 
317 	if (fsflags & FS_DIRSYNC_FL)
318 		binode_flags |= BTRFS_INODE_DIRSYNC;
319 	else
320 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
321 	if (fsflags & FS_NOCOW_FL) {
322 		if (S_ISREG(inode->i_mode)) {
323 			/*
324 			 * It's safe to turn csums off here, no extents exist.
325 			 * Otherwise we want the flag to reflect the real COW
326 			 * status of the file and will not set it.
327 			 */
328 			if (inode->i_size == 0)
329 				binode_flags |= BTRFS_INODE_NODATACOW |
330 						BTRFS_INODE_NODATASUM;
331 		} else {
332 			binode_flags |= BTRFS_INODE_NODATACOW;
333 		}
334 	} else {
335 		/*
336 		 * Revert back under same assumptions as above
337 		 */
338 		if (S_ISREG(inode->i_mode)) {
339 			if (inode->i_size == 0)
340 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
341 						  BTRFS_INODE_NODATASUM);
342 		} else {
343 			binode_flags &= ~BTRFS_INODE_NODATACOW;
344 		}
345 	}
346 
347 	/*
348 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
349 	 * flag may be changed automatically if compression code won't make
350 	 * things smaller.
351 	 */
352 	if (fsflags & FS_NOCOMP_FL) {
353 		binode_flags &= ~BTRFS_INODE_COMPRESS;
354 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
355 	} else if (fsflags & FS_COMPR_FL) {
356 
357 		if (IS_SWAPFILE(inode))
358 			return -ETXTBSY;
359 
360 		binode_flags |= BTRFS_INODE_COMPRESS;
361 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
362 
363 		comp = btrfs_compress_type2str(fs_info->compress_type);
364 		if (!comp || comp[0] == 0)
365 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
366 	} else {
367 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
368 	}
369 
370 	/*
371 	 * 1 for inode item
372 	 * 2 for properties
373 	 */
374 	trans = btrfs_start_transaction(root, 3);
375 	if (IS_ERR(trans))
376 		return PTR_ERR(trans);
377 
378 	if (comp) {
379 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
380 				     comp, strlen(comp), 0);
381 		if (ret) {
382 			btrfs_abort_transaction(trans, ret);
383 			goto out_end_trans;
384 		}
385 	} else {
386 		ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
387 				     NULL, 0, 0);
388 		if (ret && ret != -ENODATA) {
389 			btrfs_abort_transaction(trans, ret);
390 			goto out_end_trans;
391 		}
392 	}
393 
394 update_flags:
395 	binode->flags = binode_flags;
396 	btrfs_sync_inode_flags_to_i_flags(inode);
397 	inode_inc_iversion(inode);
398 	inode_set_ctime_current(inode);
399 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
400 
401  out_end_trans:
402 	btrfs_end_transaction(trans);
403 	return ret;
404 }
405 
406 /*
407  * Start exclusive operation @type, return true on success
408  */
409 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
410 			enum btrfs_exclusive_operation type)
411 {
412 	bool ret = false;
413 
414 	spin_lock(&fs_info->super_lock);
415 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
416 		fs_info->exclusive_operation = type;
417 		ret = true;
418 	}
419 	spin_unlock(&fs_info->super_lock);
420 
421 	return ret;
422 }
423 
424 /*
425  * Conditionally allow to enter the exclusive operation in case it's compatible
426  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
427  * btrfs_exclop_finish.
428  *
429  * Compatibility:
430  * - the same type is already running
431  * - when trying to add a device and balance has been paused
432  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
433  *   must check the condition first that would allow none -> @type
434  */
435 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
436 				 enum btrfs_exclusive_operation type)
437 {
438 	spin_lock(&fs_info->super_lock);
439 	if (fs_info->exclusive_operation == type ||
440 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
441 	     type == BTRFS_EXCLOP_DEV_ADD))
442 		return true;
443 
444 	spin_unlock(&fs_info->super_lock);
445 	return false;
446 }
447 
448 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
449 {
450 	spin_unlock(&fs_info->super_lock);
451 }
452 
453 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
454 {
455 	spin_lock(&fs_info->super_lock);
456 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
457 	spin_unlock(&fs_info->super_lock);
458 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
459 }
460 
461 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
462 			  enum btrfs_exclusive_operation op)
463 {
464 	switch (op) {
465 	case BTRFS_EXCLOP_BALANCE_PAUSED:
466 		spin_lock(&fs_info->super_lock);
467 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
468 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
469 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
470 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
471 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
472 		spin_unlock(&fs_info->super_lock);
473 		break;
474 	case BTRFS_EXCLOP_BALANCE:
475 		spin_lock(&fs_info->super_lock);
476 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
477 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
478 		spin_unlock(&fs_info->super_lock);
479 		break;
480 	default:
481 		btrfs_warn(fs_info,
482 			"invalid exclop balance operation %d requested", op);
483 	}
484 }
485 
486 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
487 {
488 	return put_user(inode->i_generation, arg);
489 }
490 
491 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
492 					void __user *arg)
493 {
494 	struct btrfs_device *device;
495 	struct fstrim_range range;
496 	u64 minlen = ULLONG_MAX;
497 	u64 num_devices = 0;
498 	int ret;
499 
500 	if (!capable(CAP_SYS_ADMIN))
501 		return -EPERM;
502 
503 	/*
504 	 * btrfs_trim_block_group() depends on space cache, which is not
505 	 * available in zoned filesystem. So, disallow fitrim on a zoned
506 	 * filesystem for now.
507 	 */
508 	if (btrfs_is_zoned(fs_info))
509 		return -EOPNOTSUPP;
510 
511 	/*
512 	 * If the fs is mounted with nologreplay, which requires it to be
513 	 * mounted in RO mode as well, we can not allow discard on free space
514 	 * inside block groups, because log trees refer to extents that are not
515 	 * pinned in a block group's free space cache (pinning the extents is
516 	 * precisely the first phase of replaying a log tree).
517 	 */
518 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
519 		return -EROFS;
520 
521 	rcu_read_lock();
522 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
523 				dev_list) {
524 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
525 			continue;
526 		num_devices++;
527 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
528 				    minlen);
529 	}
530 	rcu_read_unlock();
531 
532 	if (!num_devices)
533 		return -EOPNOTSUPP;
534 	if (copy_from_user(&range, arg, sizeof(range)))
535 		return -EFAULT;
536 
537 	/*
538 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
539 	 * block group is in the logical address space, which can be any
540 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
541 	 */
542 	if (range.len < fs_info->sectorsize)
543 		return -EINVAL;
544 
545 	range.minlen = max(range.minlen, minlen);
546 	ret = btrfs_trim_fs(fs_info, &range);
547 
548 	if (copy_to_user(arg, &range, sizeof(range)))
549 		return -EFAULT;
550 
551 	return ret;
552 }
553 
554 int __pure btrfs_is_empty_uuid(const u8 *uuid)
555 {
556 	int i;
557 
558 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
559 		if (uuid[i])
560 			return 0;
561 	}
562 	return 1;
563 }
564 
565 /*
566  * Calculate the number of transaction items to reserve for creating a subvolume
567  * or snapshot, not including the inode, directory entries, or parent directory.
568  */
569 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
570 {
571 	/*
572 	 * 1 to add root block
573 	 * 1 to add root item
574 	 * 1 to add root ref
575 	 * 1 to add root backref
576 	 * 1 to add UUID item
577 	 * 1 to add qgroup info
578 	 * 1 to add qgroup limit
579 	 *
580 	 * Ideally the last two would only be accounted if qgroups are enabled,
581 	 * but that can change between now and the time we would insert them.
582 	 */
583 	unsigned int num_items = 7;
584 
585 	if (inherit) {
586 		/* 2 to add qgroup relations for each inherited qgroup */
587 		num_items += 2 * inherit->num_qgroups;
588 	}
589 	return num_items;
590 }
591 
592 static noinline int create_subvol(struct mnt_idmap *idmap,
593 				  struct inode *dir, struct dentry *dentry,
594 				  struct btrfs_qgroup_inherit *inherit)
595 {
596 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
597 	struct btrfs_trans_handle *trans;
598 	struct btrfs_key key;
599 	struct btrfs_root_item *root_item;
600 	struct btrfs_inode_item *inode_item;
601 	struct extent_buffer *leaf;
602 	struct btrfs_root *root = BTRFS_I(dir)->root;
603 	struct btrfs_root *new_root;
604 	struct btrfs_block_rsv block_rsv;
605 	struct timespec64 cur_time = current_time(dir);
606 	struct btrfs_new_inode_args new_inode_args = {
607 		.dir = dir,
608 		.dentry = dentry,
609 		.subvol = true,
610 	};
611 	unsigned int trans_num_items;
612 	int ret;
613 	dev_t anon_dev;
614 	u64 objectid;
615 	u64 qgroup_reserved = 0;
616 
617 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
618 	if (!root_item)
619 		return -ENOMEM;
620 
621 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
622 	if (ret)
623 		goto out_root_item;
624 
625 	/*
626 	 * Don't create subvolume whose level is not zero. Or qgroup will be
627 	 * screwed up since it assumes subvolume qgroup's level to be 0.
628 	 */
629 	if (btrfs_qgroup_level(objectid)) {
630 		ret = -ENOSPC;
631 		goto out_root_item;
632 	}
633 
634 	ret = get_anon_bdev(&anon_dev);
635 	if (ret < 0)
636 		goto out_root_item;
637 
638 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
639 	if (!new_inode_args.inode) {
640 		ret = -ENOMEM;
641 		goto out_anon_dev;
642 	}
643 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
644 	if (ret)
645 		goto out_inode;
646 	trans_num_items += create_subvol_num_items(inherit);
647 
648 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
649 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
650 					       trans_num_items, false);
651 	if (ret)
652 		goto out_new_inode_args;
653 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
654 
655 	trans = btrfs_start_transaction(root, 0);
656 	if (IS_ERR(trans)) {
657 		ret = PTR_ERR(trans);
658 		goto out_release_rsv;
659 	}
660 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
661 	qgroup_reserved = 0;
662 	trans->block_rsv = &block_rsv;
663 	trans->bytes_reserved = block_rsv.size;
664 
665 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
666 	if (ret)
667 		goto out;
668 
669 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
670 				      0, BTRFS_NESTING_NORMAL);
671 	if (IS_ERR(leaf)) {
672 		ret = PTR_ERR(leaf);
673 		goto out;
674 	}
675 
676 	btrfs_mark_buffer_dirty(trans, leaf);
677 
678 	inode_item = &root_item->inode;
679 	btrfs_set_stack_inode_generation(inode_item, 1);
680 	btrfs_set_stack_inode_size(inode_item, 3);
681 	btrfs_set_stack_inode_nlink(inode_item, 1);
682 	btrfs_set_stack_inode_nbytes(inode_item,
683 				     fs_info->nodesize);
684 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
685 
686 	btrfs_set_root_flags(root_item, 0);
687 	btrfs_set_root_limit(root_item, 0);
688 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
689 
690 	btrfs_set_root_bytenr(root_item, leaf->start);
691 	btrfs_set_root_generation(root_item, trans->transid);
692 	btrfs_set_root_level(root_item, 0);
693 	btrfs_set_root_refs(root_item, 1);
694 	btrfs_set_root_used(root_item, leaf->len);
695 	btrfs_set_root_last_snapshot(root_item, 0);
696 
697 	btrfs_set_root_generation_v2(root_item,
698 			btrfs_root_generation(root_item));
699 	generate_random_guid(root_item->uuid);
700 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
701 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
702 	root_item->ctime = root_item->otime;
703 	btrfs_set_root_ctransid(root_item, trans->transid);
704 	btrfs_set_root_otransid(root_item, trans->transid);
705 
706 	btrfs_tree_unlock(leaf);
707 
708 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
709 
710 	key.objectid = objectid;
711 	key.offset = 0;
712 	key.type = BTRFS_ROOT_ITEM_KEY;
713 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
714 				root_item);
715 	if (ret) {
716 		int ret2;
717 
718 		/*
719 		 * Since we don't abort the transaction in this case, free the
720 		 * tree block so that we don't leak space and leave the
721 		 * filesystem in an inconsistent state (an extent item in the
722 		 * extent tree with a backreference for a root that does not
723 		 * exists).
724 		 */
725 		btrfs_tree_lock(leaf);
726 		btrfs_clear_buffer_dirty(trans, leaf);
727 		btrfs_tree_unlock(leaf);
728 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
729 		if (ret2 < 0)
730 			btrfs_abort_transaction(trans, ret2);
731 		free_extent_buffer(leaf);
732 		goto out;
733 	}
734 
735 	free_extent_buffer(leaf);
736 	leaf = NULL;
737 
738 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
739 	if (IS_ERR(new_root)) {
740 		ret = PTR_ERR(new_root);
741 		btrfs_abort_transaction(trans, ret);
742 		goto out;
743 	}
744 	/* anon_dev is owned by new_root now. */
745 	anon_dev = 0;
746 	BTRFS_I(new_inode_args.inode)->root = new_root;
747 	/* ... and new_root is owned by new_inode_args.inode now. */
748 
749 	ret = btrfs_record_root_in_trans(trans, new_root);
750 	if (ret) {
751 		btrfs_abort_transaction(trans, ret);
752 		goto out;
753 	}
754 
755 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
756 				  BTRFS_UUID_KEY_SUBVOL, objectid);
757 	if (ret) {
758 		btrfs_abort_transaction(trans, ret);
759 		goto out;
760 	}
761 
762 	ret = btrfs_create_new_inode(trans, &new_inode_args);
763 	if (ret) {
764 		btrfs_abort_transaction(trans, ret);
765 		goto out;
766 	}
767 
768 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
769 
770 	d_instantiate_new(dentry, new_inode_args.inode);
771 	new_inode_args.inode = NULL;
772 
773 out:
774 	trans->block_rsv = NULL;
775 	trans->bytes_reserved = 0;
776 	btrfs_end_transaction(trans);
777 out_release_rsv:
778 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
779 	if (qgroup_reserved)
780 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
781 out_new_inode_args:
782 	btrfs_new_inode_args_destroy(&new_inode_args);
783 out_inode:
784 	iput(new_inode_args.inode);
785 out_anon_dev:
786 	if (anon_dev)
787 		free_anon_bdev(anon_dev);
788 out_root_item:
789 	kfree(root_item);
790 	return ret;
791 }
792 
793 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
794 			   struct dentry *dentry, bool readonly,
795 			   struct btrfs_qgroup_inherit *inherit)
796 {
797 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
798 	struct inode *inode;
799 	struct btrfs_pending_snapshot *pending_snapshot;
800 	unsigned int trans_num_items;
801 	struct btrfs_trans_handle *trans;
802 	struct btrfs_block_rsv *block_rsv;
803 	u64 qgroup_reserved = 0;
804 	int ret;
805 
806 	/* We do not support snapshotting right now. */
807 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
808 		btrfs_warn(fs_info,
809 			   "extent tree v2 doesn't support snapshotting yet");
810 		return -EOPNOTSUPP;
811 	}
812 
813 	if (btrfs_root_refs(&root->root_item) == 0)
814 		return -ENOENT;
815 
816 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
817 		return -EINVAL;
818 
819 	if (atomic_read(&root->nr_swapfiles)) {
820 		btrfs_warn(fs_info,
821 			   "cannot snapshot subvolume with active swapfile");
822 		return -ETXTBSY;
823 	}
824 
825 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
826 	if (!pending_snapshot)
827 		return -ENOMEM;
828 
829 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
830 	if (ret < 0)
831 		goto free_pending;
832 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
833 			GFP_KERNEL);
834 	pending_snapshot->path = btrfs_alloc_path();
835 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
836 		ret = -ENOMEM;
837 		goto free_pending;
838 	}
839 
840 	block_rsv = &pending_snapshot->block_rsv;
841 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
842 	/*
843 	 * 1 to add dir item
844 	 * 1 to add dir index
845 	 * 1 to update parent inode item
846 	 */
847 	trans_num_items = create_subvol_num_items(inherit) + 3;
848 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
849 					       trans_num_items, false);
850 	if (ret)
851 		goto free_pending;
852 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
853 
854 	pending_snapshot->dentry = dentry;
855 	pending_snapshot->root = root;
856 	pending_snapshot->readonly = readonly;
857 	pending_snapshot->dir = BTRFS_I(dir);
858 	pending_snapshot->inherit = inherit;
859 
860 	trans = btrfs_start_transaction(root, 0);
861 	if (IS_ERR(trans)) {
862 		ret = PTR_ERR(trans);
863 		goto fail;
864 	}
865 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
866 	if (ret) {
867 		btrfs_end_transaction(trans);
868 		goto fail;
869 	}
870 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
871 	qgroup_reserved = 0;
872 
873 	trans->pending_snapshot = pending_snapshot;
874 
875 	ret = btrfs_commit_transaction(trans);
876 	if (ret)
877 		goto fail;
878 
879 	ret = pending_snapshot->error;
880 	if (ret)
881 		goto fail;
882 
883 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
884 	if (ret)
885 		goto fail;
886 
887 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
888 	if (IS_ERR(inode)) {
889 		ret = PTR_ERR(inode);
890 		goto fail;
891 	}
892 
893 	d_instantiate(dentry, inode);
894 	ret = 0;
895 	pending_snapshot->anon_dev = 0;
896 fail:
897 	/* Prevent double freeing of anon_dev */
898 	if (ret && pending_snapshot->snap)
899 		pending_snapshot->snap->anon_dev = 0;
900 	btrfs_put_root(pending_snapshot->snap);
901 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
902 	if (qgroup_reserved)
903 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
904 free_pending:
905 	if (pending_snapshot->anon_dev)
906 		free_anon_bdev(pending_snapshot->anon_dev);
907 	kfree(pending_snapshot->root_item);
908 	btrfs_free_path(pending_snapshot->path);
909 	kfree(pending_snapshot);
910 
911 	return ret;
912 }
913 
914 /*  copy of may_delete in fs/namei.c()
915  *	Check whether we can remove a link victim from directory dir, check
916  *  whether the type of victim is right.
917  *  1. We can't do it if dir is read-only (done in permission())
918  *  2. We should have write and exec permissions on dir
919  *  3. We can't remove anything from append-only dir
920  *  4. We can't do anything with immutable dir (done in permission())
921  *  5. If the sticky bit on dir is set we should either
922  *	a. be owner of dir, or
923  *	b. be owner of victim, or
924  *	c. have CAP_FOWNER capability
925  *  6. If the victim is append-only or immutable we can't do anything with
926  *     links pointing to it.
927  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
928  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
929  *  9. We can't remove a root or mountpoint.
930  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
931  *     nfs_async_unlink().
932  */
933 
934 static int btrfs_may_delete(struct mnt_idmap *idmap,
935 			    struct inode *dir, struct dentry *victim, int isdir)
936 {
937 	int error;
938 
939 	if (d_really_is_negative(victim))
940 		return -ENOENT;
941 
942 	/* The @victim is not inside @dir. */
943 	if (d_inode(victim->d_parent) != dir)
944 		return -EINVAL;
945 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
946 
947 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
948 	if (error)
949 		return error;
950 	if (IS_APPEND(dir))
951 		return -EPERM;
952 	if (check_sticky(idmap, dir, d_inode(victim)) ||
953 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
954 	    IS_SWAPFILE(d_inode(victim)))
955 		return -EPERM;
956 	if (isdir) {
957 		if (!d_is_dir(victim))
958 			return -ENOTDIR;
959 		if (IS_ROOT(victim))
960 			return -EBUSY;
961 	} else if (d_is_dir(victim))
962 		return -EISDIR;
963 	if (IS_DEADDIR(dir))
964 		return -ENOENT;
965 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
966 		return -EBUSY;
967 	return 0;
968 }
969 
970 /* copy of may_create in fs/namei.c() */
971 static inline int btrfs_may_create(struct mnt_idmap *idmap,
972 				   struct inode *dir, struct dentry *child)
973 {
974 	if (d_really_is_positive(child))
975 		return -EEXIST;
976 	if (IS_DEADDIR(dir))
977 		return -ENOENT;
978 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
979 		return -EOVERFLOW;
980 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
981 }
982 
983 /*
984  * Create a new subvolume below @parent.  This is largely modeled after
985  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
986  * inside this filesystem so it's quite a bit simpler.
987  */
988 static noinline int btrfs_mksubvol(const struct path *parent,
989 				   struct mnt_idmap *idmap,
990 				   const char *name, int namelen,
991 				   struct btrfs_root *snap_src,
992 				   bool readonly,
993 				   struct btrfs_qgroup_inherit *inherit)
994 {
995 	struct inode *dir = d_inode(parent->dentry);
996 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
997 	struct dentry *dentry;
998 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
999 	int error;
1000 
1001 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002 	if (error == -EINTR)
1003 		return error;
1004 
1005 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006 	error = PTR_ERR(dentry);
1007 	if (IS_ERR(dentry))
1008 		goto out_unlock;
1009 
1010 	error = btrfs_may_create(idmap, dir, dentry);
1011 	if (error)
1012 		goto out_dput;
1013 
1014 	/*
1015 	 * even if this name doesn't exist, we may get hash collisions.
1016 	 * check for them now when we can safely fail
1017 	 */
1018 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019 					       dir->i_ino, &name_str);
1020 	if (error)
1021 		goto out_dput;
1022 
1023 	down_read(&fs_info->subvol_sem);
1024 
1025 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026 		goto out_up_read;
1027 
1028 	if (snap_src)
1029 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030 	else
1031 		error = create_subvol(idmap, dir, dentry, inherit);
1032 
1033 	if (!error)
1034 		fsnotify_mkdir(dir, dentry);
1035 out_up_read:
1036 	up_read(&fs_info->subvol_sem);
1037 out_dput:
1038 	dput(dentry);
1039 out_unlock:
1040 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1041 	return error;
1042 }
1043 
1044 static noinline int btrfs_mksnapshot(const struct path *parent,
1045 				   struct mnt_idmap *idmap,
1046 				   const char *name, int namelen,
1047 				   struct btrfs_root *root,
1048 				   bool readonly,
1049 				   struct btrfs_qgroup_inherit *inherit)
1050 {
1051 	int ret;
1052 
1053 	/*
1054 	 * Force new buffered writes to reserve space even when NOCOW is
1055 	 * possible. This is to avoid later writeback (running dealloc) to
1056 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1057 	 */
1058 	btrfs_drew_read_lock(&root->snapshot_lock);
1059 
1060 	ret = btrfs_start_delalloc_snapshot(root, false);
1061 	if (ret)
1062 		goto out;
1063 
1064 	/*
1065 	 * All previous writes have started writeback in NOCOW mode, so now
1066 	 * we force future writes to fallback to COW mode during snapshot
1067 	 * creation.
1068 	 */
1069 	atomic_inc(&root->snapshot_force_cow);
1070 
1071 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1072 
1073 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1074 			     root, readonly, inherit);
1075 	atomic_dec(&root->snapshot_force_cow);
1076 out:
1077 	btrfs_drew_read_unlock(&root->snapshot_lock);
1078 	return ret;
1079 }
1080 
1081 /*
1082  * Try to start exclusive operation @type or cancel it if it's running.
1083  *
1084  * Return:
1085  *   0        - normal mode, newly claimed op started
1086  *  >0        - normal mode, something else is running,
1087  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1088  * ECANCELED  - cancel mode, successful cancel
1089  * ENOTCONN   - cancel mode, operation not running anymore
1090  */
1091 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1092 			enum btrfs_exclusive_operation type, bool cancel)
1093 {
1094 	if (!cancel) {
1095 		/* Start normal op */
1096 		if (!btrfs_exclop_start(fs_info, type))
1097 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1098 		/* Exclusive operation is now claimed */
1099 		return 0;
1100 	}
1101 
1102 	/* Cancel running op */
1103 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1104 		/*
1105 		 * This blocks any exclop finish from setting it to NONE, so we
1106 		 * request cancellation. Either it runs and we will wait for it,
1107 		 * or it has finished and no waiting will happen.
1108 		 */
1109 		atomic_inc(&fs_info->reloc_cancel_req);
1110 		btrfs_exclop_start_unlock(fs_info);
1111 
1112 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1113 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1114 				    TASK_INTERRUPTIBLE);
1115 
1116 		return -ECANCELED;
1117 	}
1118 
1119 	/* Something else is running or none */
1120 	return -ENOTCONN;
1121 }
1122 
1123 static noinline int btrfs_ioctl_resize(struct file *file,
1124 					void __user *arg)
1125 {
1126 	BTRFS_DEV_LOOKUP_ARGS(args);
1127 	struct inode *inode = file_inode(file);
1128 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1129 	u64 new_size;
1130 	u64 old_size;
1131 	u64 devid = 1;
1132 	struct btrfs_root *root = BTRFS_I(inode)->root;
1133 	struct btrfs_ioctl_vol_args *vol_args;
1134 	struct btrfs_trans_handle *trans;
1135 	struct btrfs_device *device = NULL;
1136 	char *sizestr;
1137 	char *retptr;
1138 	char *devstr = NULL;
1139 	int ret = 0;
1140 	int mod = 0;
1141 	bool cancel;
1142 
1143 	if (!capable(CAP_SYS_ADMIN))
1144 		return -EPERM;
1145 
1146 	ret = mnt_want_write_file(file);
1147 	if (ret)
1148 		return ret;
1149 
1150 	/*
1151 	 * Read the arguments before checking exclusivity to be able to
1152 	 * distinguish regular resize and cancel
1153 	 */
1154 	vol_args = memdup_user(arg, sizeof(*vol_args));
1155 	if (IS_ERR(vol_args)) {
1156 		ret = PTR_ERR(vol_args);
1157 		goto out_drop;
1158 	}
1159 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1160 	if (ret < 0)
1161 		goto out_free;
1162 
1163 	sizestr = vol_args->name;
1164 	cancel = (strcmp("cancel", sizestr) == 0);
1165 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1166 	if (ret)
1167 		goto out_free;
1168 	/* Exclusive operation is now claimed */
1169 
1170 	devstr = strchr(sizestr, ':');
1171 	if (devstr) {
1172 		sizestr = devstr + 1;
1173 		*devstr = '\0';
1174 		devstr = vol_args->name;
1175 		ret = kstrtoull(devstr, 10, &devid);
1176 		if (ret)
1177 			goto out_finish;
1178 		if (!devid) {
1179 			ret = -EINVAL;
1180 			goto out_finish;
1181 		}
1182 		btrfs_info(fs_info, "resizing devid %llu", devid);
1183 	}
1184 
1185 	args.devid = devid;
1186 	device = btrfs_find_device(fs_info->fs_devices, &args);
1187 	if (!device) {
1188 		btrfs_info(fs_info, "resizer unable to find device %llu",
1189 			   devid);
1190 		ret = -ENODEV;
1191 		goto out_finish;
1192 	}
1193 
1194 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1195 		btrfs_info(fs_info,
1196 			   "resizer unable to apply on readonly device %llu",
1197 		       devid);
1198 		ret = -EPERM;
1199 		goto out_finish;
1200 	}
1201 
1202 	if (!strcmp(sizestr, "max"))
1203 		new_size = bdev_nr_bytes(device->bdev);
1204 	else {
1205 		if (sizestr[0] == '-') {
1206 			mod = -1;
1207 			sizestr++;
1208 		} else if (sizestr[0] == '+') {
1209 			mod = 1;
1210 			sizestr++;
1211 		}
1212 		new_size = memparse(sizestr, &retptr);
1213 		if (*retptr != '\0' || new_size == 0) {
1214 			ret = -EINVAL;
1215 			goto out_finish;
1216 		}
1217 	}
1218 
1219 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1220 		ret = -EPERM;
1221 		goto out_finish;
1222 	}
1223 
1224 	old_size = btrfs_device_get_total_bytes(device);
1225 
1226 	if (mod < 0) {
1227 		if (new_size > old_size) {
1228 			ret = -EINVAL;
1229 			goto out_finish;
1230 		}
1231 		new_size = old_size - new_size;
1232 	} else if (mod > 0) {
1233 		if (new_size > ULLONG_MAX - old_size) {
1234 			ret = -ERANGE;
1235 			goto out_finish;
1236 		}
1237 		new_size = old_size + new_size;
1238 	}
1239 
1240 	if (new_size < SZ_256M) {
1241 		ret = -EINVAL;
1242 		goto out_finish;
1243 	}
1244 	if (new_size > bdev_nr_bytes(device->bdev)) {
1245 		ret = -EFBIG;
1246 		goto out_finish;
1247 	}
1248 
1249 	new_size = round_down(new_size, fs_info->sectorsize);
1250 
1251 	if (new_size > old_size) {
1252 		trans = btrfs_start_transaction(root, 0);
1253 		if (IS_ERR(trans)) {
1254 			ret = PTR_ERR(trans);
1255 			goto out_finish;
1256 		}
1257 		ret = btrfs_grow_device(trans, device, new_size);
1258 		btrfs_commit_transaction(trans);
1259 	} else if (new_size < old_size) {
1260 		ret = btrfs_shrink_device(device, new_size);
1261 	} /* equal, nothing need to do */
1262 
1263 	if (ret == 0 && new_size != old_size)
1264 		btrfs_info_in_rcu(fs_info,
1265 			"resize device %s (devid %llu) from %llu to %llu",
1266 			btrfs_dev_name(device), device->devid,
1267 			old_size, new_size);
1268 out_finish:
1269 	btrfs_exclop_finish(fs_info);
1270 out_free:
1271 	kfree(vol_args);
1272 out_drop:
1273 	mnt_drop_write_file(file);
1274 	return ret;
1275 }
1276 
1277 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1278 				struct mnt_idmap *idmap,
1279 				const char *name, unsigned long fd, int subvol,
1280 				bool readonly,
1281 				struct btrfs_qgroup_inherit *inherit)
1282 {
1283 	int namelen;
1284 	int ret = 0;
1285 
1286 	if (!S_ISDIR(file_inode(file)->i_mode))
1287 		return -ENOTDIR;
1288 
1289 	ret = mnt_want_write_file(file);
1290 	if (ret)
1291 		goto out;
1292 
1293 	namelen = strlen(name);
1294 	if (strchr(name, '/')) {
1295 		ret = -EINVAL;
1296 		goto out_drop_write;
1297 	}
1298 
1299 	if (name[0] == '.' &&
1300 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1301 		ret = -EEXIST;
1302 		goto out_drop_write;
1303 	}
1304 
1305 	if (subvol) {
1306 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1307 				     namelen, NULL, readonly, inherit);
1308 	} else {
1309 		CLASS(fd, src)(fd);
1310 		struct inode *src_inode;
1311 		if (fd_empty(src)) {
1312 			ret = -EINVAL;
1313 			goto out_drop_write;
1314 		}
1315 
1316 		src_inode = file_inode(fd_file(src));
1317 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1318 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1319 				   "Snapshot src from another FS");
1320 			ret = -EXDEV;
1321 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1322 			/*
1323 			 * Subvolume creation is not restricted, but snapshots
1324 			 * are limited to own subvolumes only
1325 			 */
1326 			ret = -EPERM;
1327 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1328 			/*
1329 			 * Snapshots must be made with the src_inode referring
1330 			 * to the subvolume inode, otherwise the permission
1331 			 * checking above is useless because we may have
1332 			 * permission on a lower directory but not the subvol
1333 			 * itself.
1334 			 */
1335 			ret = -EINVAL;
1336 		} else {
1337 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1338 					       name, namelen,
1339 					       BTRFS_I(src_inode)->root,
1340 					       readonly, inherit);
1341 		}
1342 	}
1343 out_drop_write:
1344 	mnt_drop_write_file(file);
1345 out:
1346 	return ret;
1347 }
1348 
1349 static noinline int btrfs_ioctl_snap_create(struct file *file,
1350 					    void __user *arg, int subvol)
1351 {
1352 	struct btrfs_ioctl_vol_args *vol_args;
1353 	int ret;
1354 
1355 	if (!S_ISDIR(file_inode(file)->i_mode))
1356 		return -ENOTDIR;
1357 
1358 	vol_args = memdup_user(arg, sizeof(*vol_args));
1359 	if (IS_ERR(vol_args))
1360 		return PTR_ERR(vol_args);
1361 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1362 	if (ret < 0)
1363 		goto out;
1364 
1365 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1366 					vol_args->name, vol_args->fd, subvol,
1367 					false, NULL);
1368 
1369 out:
1370 	kfree(vol_args);
1371 	return ret;
1372 }
1373 
1374 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1375 					       void __user *arg, int subvol)
1376 {
1377 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1378 	int ret;
1379 	bool readonly = false;
1380 	struct btrfs_qgroup_inherit *inherit = NULL;
1381 
1382 	if (!S_ISDIR(file_inode(file)->i_mode))
1383 		return -ENOTDIR;
1384 
1385 	vol_args = memdup_user(arg, sizeof(*vol_args));
1386 	if (IS_ERR(vol_args))
1387 		return PTR_ERR(vol_args);
1388 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1389 	if (ret < 0)
1390 		goto free_args;
1391 
1392 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1393 		ret = -EOPNOTSUPP;
1394 		goto free_args;
1395 	}
1396 
1397 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1398 		readonly = true;
1399 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1400 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1401 
1402 		if (vol_args->size < sizeof(*inherit) ||
1403 		    vol_args->size > PAGE_SIZE) {
1404 			ret = -EINVAL;
1405 			goto free_args;
1406 		}
1407 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1408 		if (IS_ERR(inherit)) {
1409 			ret = PTR_ERR(inherit);
1410 			goto free_args;
1411 		}
1412 
1413 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1414 		if (ret < 0)
1415 			goto free_inherit;
1416 	}
1417 
1418 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1419 					vol_args->name, vol_args->fd, subvol,
1420 					readonly, inherit);
1421 	if (ret)
1422 		goto free_inherit;
1423 free_inherit:
1424 	kfree(inherit);
1425 free_args:
1426 	kfree(vol_args);
1427 	return ret;
1428 }
1429 
1430 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1431 						void __user *arg)
1432 {
1433 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1434 	struct btrfs_root *root = BTRFS_I(inode)->root;
1435 	int ret = 0;
1436 	u64 flags = 0;
1437 
1438 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1439 		return -EINVAL;
1440 
1441 	down_read(&fs_info->subvol_sem);
1442 	if (btrfs_root_readonly(root))
1443 		flags |= BTRFS_SUBVOL_RDONLY;
1444 	up_read(&fs_info->subvol_sem);
1445 
1446 	if (copy_to_user(arg, &flags, sizeof(flags)))
1447 		ret = -EFAULT;
1448 
1449 	return ret;
1450 }
1451 
1452 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1453 					      void __user *arg)
1454 {
1455 	struct inode *inode = file_inode(file);
1456 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1457 	struct btrfs_root *root = BTRFS_I(inode)->root;
1458 	struct btrfs_trans_handle *trans;
1459 	u64 root_flags;
1460 	u64 flags;
1461 	int ret = 0;
1462 
1463 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1464 		return -EPERM;
1465 
1466 	ret = mnt_want_write_file(file);
1467 	if (ret)
1468 		goto out;
1469 
1470 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1471 		ret = -EINVAL;
1472 		goto out_drop_write;
1473 	}
1474 
1475 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1476 		ret = -EFAULT;
1477 		goto out_drop_write;
1478 	}
1479 
1480 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1481 		ret = -EOPNOTSUPP;
1482 		goto out_drop_write;
1483 	}
1484 
1485 	down_write(&fs_info->subvol_sem);
1486 
1487 	/* nothing to do */
1488 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1489 		goto out_drop_sem;
1490 
1491 	root_flags = btrfs_root_flags(&root->root_item);
1492 	if (flags & BTRFS_SUBVOL_RDONLY) {
1493 		btrfs_set_root_flags(&root->root_item,
1494 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1495 	} else {
1496 		/*
1497 		 * Block RO -> RW transition if this subvolume is involved in
1498 		 * send
1499 		 */
1500 		spin_lock(&root->root_item_lock);
1501 		if (root->send_in_progress == 0) {
1502 			btrfs_set_root_flags(&root->root_item,
1503 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1504 			spin_unlock(&root->root_item_lock);
1505 		} else {
1506 			spin_unlock(&root->root_item_lock);
1507 			btrfs_warn(fs_info,
1508 				   "Attempt to set subvolume %llu read-write during send",
1509 				   btrfs_root_id(root));
1510 			ret = -EPERM;
1511 			goto out_drop_sem;
1512 		}
1513 	}
1514 
1515 	trans = btrfs_start_transaction(root, 1);
1516 	if (IS_ERR(trans)) {
1517 		ret = PTR_ERR(trans);
1518 		goto out_reset;
1519 	}
1520 
1521 	ret = btrfs_update_root(trans, fs_info->tree_root,
1522 				&root->root_key, &root->root_item);
1523 	if (ret < 0) {
1524 		btrfs_end_transaction(trans);
1525 		goto out_reset;
1526 	}
1527 
1528 	ret = btrfs_commit_transaction(trans);
1529 
1530 out_reset:
1531 	if (ret)
1532 		btrfs_set_root_flags(&root->root_item, root_flags);
1533 out_drop_sem:
1534 	up_write(&fs_info->subvol_sem);
1535 out_drop_write:
1536 	mnt_drop_write_file(file);
1537 out:
1538 	return ret;
1539 }
1540 
1541 static noinline int key_in_sk(struct btrfs_key *key,
1542 			      struct btrfs_ioctl_search_key *sk)
1543 {
1544 	struct btrfs_key test;
1545 	int ret;
1546 
1547 	test.objectid = sk->min_objectid;
1548 	test.type = sk->min_type;
1549 	test.offset = sk->min_offset;
1550 
1551 	ret = btrfs_comp_cpu_keys(key, &test);
1552 	if (ret < 0)
1553 		return 0;
1554 
1555 	test.objectid = sk->max_objectid;
1556 	test.type = sk->max_type;
1557 	test.offset = sk->max_offset;
1558 
1559 	ret = btrfs_comp_cpu_keys(key, &test);
1560 	if (ret > 0)
1561 		return 0;
1562 	return 1;
1563 }
1564 
1565 static noinline int copy_to_sk(struct btrfs_path *path,
1566 			       struct btrfs_key *key,
1567 			       struct btrfs_ioctl_search_key *sk,
1568 			       u64 *buf_size,
1569 			       char __user *ubuf,
1570 			       unsigned long *sk_offset,
1571 			       int *num_found)
1572 {
1573 	u64 found_transid;
1574 	struct extent_buffer *leaf;
1575 	struct btrfs_ioctl_search_header sh;
1576 	struct btrfs_key test;
1577 	unsigned long item_off;
1578 	unsigned long item_len;
1579 	int nritems;
1580 	int i;
1581 	int slot;
1582 	int ret = 0;
1583 
1584 	leaf = path->nodes[0];
1585 	slot = path->slots[0];
1586 	nritems = btrfs_header_nritems(leaf);
1587 
1588 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1589 		i = nritems;
1590 		goto advance_key;
1591 	}
1592 	found_transid = btrfs_header_generation(leaf);
1593 
1594 	for (i = slot; i < nritems; i++) {
1595 		item_off = btrfs_item_ptr_offset(leaf, i);
1596 		item_len = btrfs_item_size(leaf, i);
1597 
1598 		btrfs_item_key_to_cpu(leaf, key, i);
1599 		if (!key_in_sk(key, sk))
1600 			continue;
1601 
1602 		if (sizeof(sh) + item_len > *buf_size) {
1603 			if (*num_found) {
1604 				ret = 1;
1605 				goto out;
1606 			}
1607 
1608 			/*
1609 			 * return one empty item back for v1, which does not
1610 			 * handle -EOVERFLOW
1611 			 */
1612 
1613 			*buf_size = sizeof(sh) + item_len;
1614 			item_len = 0;
1615 			ret = -EOVERFLOW;
1616 		}
1617 
1618 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1619 			ret = 1;
1620 			goto out;
1621 		}
1622 
1623 		sh.objectid = key->objectid;
1624 		sh.offset = key->offset;
1625 		sh.type = key->type;
1626 		sh.len = item_len;
1627 		sh.transid = found_transid;
1628 
1629 		/*
1630 		 * Copy search result header. If we fault then loop again so we
1631 		 * can fault in the pages and -EFAULT there if there's a
1632 		 * problem. Otherwise we'll fault and then copy the buffer in
1633 		 * properly this next time through
1634 		 */
1635 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1636 			ret = 0;
1637 			goto out;
1638 		}
1639 
1640 		*sk_offset += sizeof(sh);
1641 
1642 		if (item_len) {
1643 			char __user *up = ubuf + *sk_offset;
1644 			/*
1645 			 * Copy the item, same behavior as above, but reset the
1646 			 * * sk_offset so we copy the full thing again.
1647 			 */
1648 			if (read_extent_buffer_to_user_nofault(leaf, up,
1649 						item_off, item_len)) {
1650 				ret = 0;
1651 				*sk_offset -= sizeof(sh);
1652 				goto out;
1653 			}
1654 
1655 			*sk_offset += item_len;
1656 		}
1657 		(*num_found)++;
1658 
1659 		if (ret) /* -EOVERFLOW from above */
1660 			goto out;
1661 
1662 		if (*num_found >= sk->nr_items) {
1663 			ret = 1;
1664 			goto out;
1665 		}
1666 	}
1667 advance_key:
1668 	ret = 0;
1669 	test.objectid = sk->max_objectid;
1670 	test.type = sk->max_type;
1671 	test.offset = sk->max_offset;
1672 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1673 		ret = 1;
1674 	else if (key->offset < (u64)-1)
1675 		key->offset++;
1676 	else if (key->type < (u8)-1) {
1677 		key->offset = 0;
1678 		key->type++;
1679 	} else if (key->objectid < (u64)-1) {
1680 		key->offset = 0;
1681 		key->type = 0;
1682 		key->objectid++;
1683 	} else
1684 		ret = 1;
1685 out:
1686 	/*
1687 	 *  0: all items from this leaf copied, continue with next
1688 	 *  1: * more items can be copied, but unused buffer is too small
1689 	 *     * all items were found
1690 	 *     Either way, it will stops the loop which iterates to the next
1691 	 *     leaf
1692 	 *  -EOVERFLOW: item was to large for buffer
1693 	 *  -EFAULT: could not copy extent buffer back to userspace
1694 	 */
1695 	return ret;
1696 }
1697 
1698 static noinline int search_ioctl(struct inode *inode,
1699 				 struct btrfs_ioctl_search_key *sk,
1700 				 u64 *buf_size,
1701 				 char __user *ubuf)
1702 {
1703 	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1704 	struct btrfs_root *root;
1705 	struct btrfs_key key;
1706 	struct btrfs_path *path;
1707 	int ret;
1708 	int num_found = 0;
1709 	unsigned long sk_offset = 0;
1710 
1711 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1712 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1713 		return -EOVERFLOW;
1714 	}
1715 
1716 	path = btrfs_alloc_path();
1717 	if (!path)
1718 		return -ENOMEM;
1719 
1720 	if (sk->tree_id == 0) {
1721 		/* search the root of the inode that was passed */
1722 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1723 	} else {
1724 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1725 		if (IS_ERR(root)) {
1726 			btrfs_free_path(path);
1727 			return PTR_ERR(root);
1728 		}
1729 	}
1730 
1731 	key.objectid = sk->min_objectid;
1732 	key.type = sk->min_type;
1733 	key.offset = sk->min_offset;
1734 
1735 	while (1) {
1736 		ret = -EFAULT;
1737 		/*
1738 		 * Ensure that the whole user buffer is faulted in at sub-page
1739 		 * granularity, otherwise the loop may live-lock.
1740 		 */
1741 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1742 					       *buf_size - sk_offset))
1743 			break;
1744 
1745 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1746 		if (ret != 0) {
1747 			if (ret > 0)
1748 				ret = 0;
1749 			goto err;
1750 		}
1751 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1752 				 &sk_offset, &num_found);
1753 		btrfs_release_path(path);
1754 		if (ret)
1755 			break;
1756 
1757 	}
1758 	if (ret > 0)
1759 		ret = 0;
1760 err:
1761 	sk->nr_items = num_found;
1762 	btrfs_put_root(root);
1763 	btrfs_free_path(path);
1764 	return ret;
1765 }
1766 
1767 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1768 					    void __user *argp)
1769 {
1770 	struct btrfs_ioctl_search_args __user *uargs = argp;
1771 	struct btrfs_ioctl_search_key sk;
1772 	int ret;
1773 	u64 buf_size;
1774 
1775 	if (!capable(CAP_SYS_ADMIN))
1776 		return -EPERM;
1777 
1778 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1779 		return -EFAULT;
1780 
1781 	buf_size = sizeof(uargs->buf);
1782 
1783 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1784 
1785 	/*
1786 	 * In the origin implementation an overflow is handled by returning a
1787 	 * search header with a len of zero, so reset ret.
1788 	 */
1789 	if (ret == -EOVERFLOW)
1790 		ret = 0;
1791 
1792 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1793 		ret = -EFAULT;
1794 	return ret;
1795 }
1796 
1797 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1798 					       void __user *argp)
1799 {
1800 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1801 	struct btrfs_ioctl_search_args_v2 args;
1802 	int ret;
1803 	u64 buf_size;
1804 	const u64 buf_limit = SZ_16M;
1805 
1806 	if (!capable(CAP_SYS_ADMIN))
1807 		return -EPERM;
1808 
1809 	/* copy search header and buffer size */
1810 	if (copy_from_user(&args, uarg, sizeof(args)))
1811 		return -EFAULT;
1812 
1813 	buf_size = args.buf_size;
1814 
1815 	/* limit result size to 16MB */
1816 	if (buf_size > buf_limit)
1817 		buf_size = buf_limit;
1818 
1819 	ret = search_ioctl(inode, &args.key, &buf_size,
1820 			   (char __user *)(&uarg->buf[0]));
1821 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1822 		ret = -EFAULT;
1823 	else if (ret == -EOVERFLOW &&
1824 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1825 		ret = -EFAULT;
1826 
1827 	return ret;
1828 }
1829 
1830 /*
1831  * Search INODE_REFs to identify path name of 'dirid' directory
1832  * in a 'tree_id' tree. and sets path name to 'name'.
1833  */
1834 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1835 				u64 tree_id, u64 dirid, char *name)
1836 {
1837 	struct btrfs_root *root;
1838 	struct btrfs_key key;
1839 	char *ptr;
1840 	int ret = -1;
1841 	int slot;
1842 	int len;
1843 	int total_len = 0;
1844 	struct btrfs_inode_ref *iref;
1845 	struct extent_buffer *l;
1846 	struct btrfs_path *path;
1847 
1848 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1849 		name[0]='\0';
1850 		return 0;
1851 	}
1852 
1853 	path = btrfs_alloc_path();
1854 	if (!path)
1855 		return -ENOMEM;
1856 
1857 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1858 
1859 	root = btrfs_get_fs_root(info, tree_id, true);
1860 	if (IS_ERR(root)) {
1861 		ret = PTR_ERR(root);
1862 		root = NULL;
1863 		goto out;
1864 	}
1865 
1866 	key.objectid = dirid;
1867 	key.type = BTRFS_INODE_REF_KEY;
1868 	key.offset = (u64)-1;
1869 
1870 	while (1) {
1871 		ret = btrfs_search_backwards(root, &key, path);
1872 		if (ret < 0)
1873 			goto out;
1874 		else if (ret > 0) {
1875 			ret = -ENOENT;
1876 			goto out;
1877 		}
1878 
1879 		l = path->nodes[0];
1880 		slot = path->slots[0];
1881 
1882 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1883 		len = btrfs_inode_ref_name_len(l, iref);
1884 		ptr -= len + 1;
1885 		total_len += len + 1;
1886 		if (ptr < name) {
1887 			ret = -ENAMETOOLONG;
1888 			goto out;
1889 		}
1890 
1891 		*(ptr + len) = '/';
1892 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1893 
1894 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1895 			break;
1896 
1897 		btrfs_release_path(path);
1898 		key.objectid = key.offset;
1899 		key.offset = (u64)-1;
1900 		dirid = key.objectid;
1901 	}
1902 	memmove(name, ptr, total_len);
1903 	name[total_len] = '\0';
1904 	ret = 0;
1905 out:
1906 	btrfs_put_root(root);
1907 	btrfs_free_path(path);
1908 	return ret;
1909 }
1910 
1911 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1912 				struct inode *inode,
1913 				struct btrfs_ioctl_ino_lookup_user_args *args)
1914 {
1915 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1916 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1917 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1918 	u64 dirid = args->dirid;
1919 	unsigned long item_off;
1920 	unsigned long item_len;
1921 	struct btrfs_inode_ref *iref;
1922 	struct btrfs_root_ref *rref;
1923 	struct btrfs_root *root = NULL;
1924 	struct btrfs_path *path;
1925 	struct btrfs_key key, key2;
1926 	struct extent_buffer *leaf;
1927 	struct inode *temp_inode;
1928 	char *ptr;
1929 	int slot;
1930 	int len;
1931 	int total_len = 0;
1932 	int ret;
1933 
1934 	path = btrfs_alloc_path();
1935 	if (!path)
1936 		return -ENOMEM;
1937 
1938 	/*
1939 	 * If the bottom subvolume does not exist directly under upper_limit,
1940 	 * construct the path in from the bottom up.
1941 	 */
1942 	if (dirid != upper_limit) {
1943 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1944 
1945 		root = btrfs_get_fs_root(fs_info, treeid, true);
1946 		if (IS_ERR(root)) {
1947 			ret = PTR_ERR(root);
1948 			goto out;
1949 		}
1950 
1951 		key.objectid = dirid;
1952 		key.type = BTRFS_INODE_REF_KEY;
1953 		key.offset = (u64)-1;
1954 		while (1) {
1955 			ret = btrfs_search_backwards(root, &key, path);
1956 			if (ret < 0)
1957 				goto out_put;
1958 			else if (ret > 0) {
1959 				ret = -ENOENT;
1960 				goto out_put;
1961 			}
1962 
1963 			leaf = path->nodes[0];
1964 			slot = path->slots[0];
1965 
1966 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1967 			len = btrfs_inode_ref_name_len(leaf, iref);
1968 			ptr -= len + 1;
1969 			total_len += len + 1;
1970 			if (ptr < args->path) {
1971 				ret = -ENAMETOOLONG;
1972 				goto out_put;
1973 			}
1974 
1975 			*(ptr + len) = '/';
1976 			read_extent_buffer(leaf, ptr,
1977 					(unsigned long)(iref + 1), len);
1978 
1979 			/* Check the read+exec permission of this directory */
1980 			ret = btrfs_previous_item(root, path, dirid,
1981 						  BTRFS_INODE_ITEM_KEY);
1982 			if (ret < 0) {
1983 				goto out_put;
1984 			} else if (ret > 0) {
1985 				ret = -ENOENT;
1986 				goto out_put;
1987 			}
1988 
1989 			leaf = path->nodes[0];
1990 			slot = path->slots[0];
1991 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1992 			if (key2.objectid != dirid) {
1993 				ret = -ENOENT;
1994 				goto out_put;
1995 			}
1996 
1997 			/*
1998 			 * We don't need the path anymore, so release it and
1999 			 * avoid deadlocks and lockdep warnings in case
2000 			 * btrfs_iget() needs to lookup the inode from its root
2001 			 * btree and lock the same leaf.
2002 			 */
2003 			btrfs_release_path(path);
2004 			temp_inode = btrfs_iget(key2.objectid, root);
2005 			if (IS_ERR(temp_inode)) {
2006 				ret = PTR_ERR(temp_inode);
2007 				goto out_put;
2008 			}
2009 			ret = inode_permission(idmap, temp_inode,
2010 					       MAY_READ | MAY_EXEC);
2011 			iput(temp_inode);
2012 			if (ret) {
2013 				ret = -EACCES;
2014 				goto out_put;
2015 			}
2016 
2017 			if (key.offset == upper_limit)
2018 				break;
2019 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2020 				ret = -EACCES;
2021 				goto out_put;
2022 			}
2023 
2024 			key.objectid = key.offset;
2025 			key.offset = (u64)-1;
2026 			dirid = key.objectid;
2027 		}
2028 
2029 		memmove(args->path, ptr, total_len);
2030 		args->path[total_len] = '\0';
2031 		btrfs_put_root(root);
2032 		root = NULL;
2033 		btrfs_release_path(path);
2034 	}
2035 
2036 	/* Get the bottom subvolume's name from ROOT_REF */
2037 	key.objectid = treeid;
2038 	key.type = BTRFS_ROOT_REF_KEY;
2039 	key.offset = args->treeid;
2040 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2041 	if (ret < 0) {
2042 		goto out;
2043 	} else if (ret > 0) {
2044 		ret = -ENOENT;
2045 		goto out;
2046 	}
2047 
2048 	leaf = path->nodes[0];
2049 	slot = path->slots[0];
2050 	btrfs_item_key_to_cpu(leaf, &key, slot);
2051 
2052 	item_off = btrfs_item_ptr_offset(leaf, slot);
2053 	item_len = btrfs_item_size(leaf, slot);
2054 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2055 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2056 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2057 		ret = -EINVAL;
2058 		goto out;
2059 	}
2060 
2061 	/* Copy subvolume's name */
2062 	item_off += sizeof(struct btrfs_root_ref);
2063 	item_len -= sizeof(struct btrfs_root_ref);
2064 	read_extent_buffer(leaf, args->name, item_off, item_len);
2065 	args->name[item_len] = 0;
2066 
2067 out_put:
2068 	btrfs_put_root(root);
2069 out:
2070 	btrfs_free_path(path);
2071 	return ret;
2072 }
2073 
2074 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2075 					   void __user *argp)
2076 {
2077 	struct btrfs_ioctl_ino_lookup_args *args;
2078 	int ret = 0;
2079 
2080 	args = memdup_user(argp, sizeof(*args));
2081 	if (IS_ERR(args))
2082 		return PTR_ERR(args);
2083 
2084 	/*
2085 	 * Unprivileged query to obtain the containing subvolume root id. The
2086 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2087 	 */
2088 	if (args->treeid == 0)
2089 		args->treeid = btrfs_root_id(root);
2090 
2091 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2092 		args->name[0] = 0;
2093 		goto out;
2094 	}
2095 
2096 	if (!capable(CAP_SYS_ADMIN)) {
2097 		ret = -EPERM;
2098 		goto out;
2099 	}
2100 
2101 	ret = btrfs_search_path_in_tree(root->fs_info,
2102 					args->treeid, args->objectid,
2103 					args->name);
2104 
2105 out:
2106 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2107 		ret = -EFAULT;
2108 
2109 	kfree(args);
2110 	return ret;
2111 }
2112 
2113 /*
2114  * Version of ino_lookup ioctl (unprivileged)
2115  *
2116  * The main differences from ino_lookup ioctl are:
2117  *
2118  *   1. Read + Exec permission will be checked using inode_permission() during
2119  *      path construction. -EACCES will be returned in case of failure.
2120  *   2. Path construction will be stopped at the inode number which corresponds
2121  *      to the fd with which this ioctl is called. If constructed path does not
2122  *      exist under fd's inode, -EACCES will be returned.
2123  *   3. The name of bottom subvolume is also searched and filled.
2124  */
2125 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2126 {
2127 	struct btrfs_ioctl_ino_lookup_user_args *args;
2128 	struct inode *inode;
2129 	int ret;
2130 
2131 	args = memdup_user(argp, sizeof(*args));
2132 	if (IS_ERR(args))
2133 		return PTR_ERR(args);
2134 
2135 	inode = file_inode(file);
2136 
2137 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2138 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2139 		/*
2140 		 * The subvolume does not exist under fd with which this is
2141 		 * called
2142 		 */
2143 		kfree(args);
2144 		return -EACCES;
2145 	}
2146 
2147 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2148 
2149 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2150 		ret = -EFAULT;
2151 
2152 	kfree(args);
2153 	return ret;
2154 }
2155 
2156 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2157 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2158 {
2159 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2160 	struct btrfs_fs_info *fs_info;
2161 	struct btrfs_root *root;
2162 	struct btrfs_path *path;
2163 	struct btrfs_key key;
2164 	struct btrfs_root_item *root_item;
2165 	struct btrfs_root_ref *rref;
2166 	struct extent_buffer *leaf;
2167 	unsigned long item_off;
2168 	unsigned long item_len;
2169 	int slot;
2170 	int ret = 0;
2171 
2172 	path = btrfs_alloc_path();
2173 	if (!path)
2174 		return -ENOMEM;
2175 
2176 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2177 	if (!subvol_info) {
2178 		btrfs_free_path(path);
2179 		return -ENOMEM;
2180 	}
2181 
2182 	fs_info = BTRFS_I(inode)->root->fs_info;
2183 
2184 	/* Get root_item of inode's subvolume */
2185 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2186 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2187 	if (IS_ERR(root)) {
2188 		ret = PTR_ERR(root);
2189 		goto out_free;
2190 	}
2191 	root_item = &root->root_item;
2192 
2193 	subvol_info->treeid = key.objectid;
2194 
2195 	subvol_info->generation = btrfs_root_generation(root_item);
2196 	subvol_info->flags = btrfs_root_flags(root_item);
2197 
2198 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2199 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2200 						    BTRFS_UUID_SIZE);
2201 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2202 						    BTRFS_UUID_SIZE);
2203 
2204 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2205 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2206 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2207 
2208 	subvol_info->otransid = btrfs_root_otransid(root_item);
2209 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2210 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2211 
2212 	subvol_info->stransid = btrfs_root_stransid(root_item);
2213 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2214 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2215 
2216 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2217 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2218 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2219 
2220 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2221 		/* Search root tree for ROOT_BACKREF of this subvolume */
2222 		key.type = BTRFS_ROOT_BACKREF_KEY;
2223 		key.offset = 0;
2224 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2225 		if (ret < 0) {
2226 			goto out;
2227 		} else if (path->slots[0] >=
2228 			   btrfs_header_nritems(path->nodes[0])) {
2229 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2230 			if (ret < 0) {
2231 				goto out;
2232 			} else if (ret > 0) {
2233 				ret = -EUCLEAN;
2234 				goto out;
2235 			}
2236 		}
2237 
2238 		leaf = path->nodes[0];
2239 		slot = path->slots[0];
2240 		btrfs_item_key_to_cpu(leaf, &key, slot);
2241 		if (key.objectid == subvol_info->treeid &&
2242 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2243 			subvol_info->parent_id = key.offset;
2244 
2245 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2246 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2247 
2248 			item_off = btrfs_item_ptr_offset(leaf, slot)
2249 					+ sizeof(struct btrfs_root_ref);
2250 			item_len = btrfs_item_size(leaf, slot)
2251 					- sizeof(struct btrfs_root_ref);
2252 			read_extent_buffer(leaf, subvol_info->name,
2253 					   item_off, item_len);
2254 		} else {
2255 			ret = -ENOENT;
2256 			goto out;
2257 		}
2258 	}
2259 
2260 	btrfs_free_path(path);
2261 	path = NULL;
2262 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2263 		ret = -EFAULT;
2264 
2265 out:
2266 	btrfs_put_root(root);
2267 out_free:
2268 	btrfs_free_path(path);
2269 	kfree(subvol_info);
2270 	return ret;
2271 }
2272 
2273 /*
2274  * Return ROOT_REF information of the subvolume containing this inode
2275  * except the subvolume name.
2276  */
2277 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2278 					  void __user *argp)
2279 {
2280 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2281 	struct btrfs_root_ref *rref;
2282 	struct btrfs_path *path;
2283 	struct btrfs_key key;
2284 	struct extent_buffer *leaf;
2285 	u64 objectid;
2286 	int slot;
2287 	int ret;
2288 	u8 found;
2289 
2290 	path = btrfs_alloc_path();
2291 	if (!path)
2292 		return -ENOMEM;
2293 
2294 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2295 	if (IS_ERR(rootrefs)) {
2296 		btrfs_free_path(path);
2297 		return PTR_ERR(rootrefs);
2298 	}
2299 
2300 	objectid = btrfs_root_id(root);
2301 	key.objectid = objectid;
2302 	key.type = BTRFS_ROOT_REF_KEY;
2303 	key.offset = rootrefs->min_treeid;
2304 	found = 0;
2305 
2306 	root = root->fs_info->tree_root;
2307 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308 	if (ret < 0) {
2309 		goto out;
2310 	} else if (path->slots[0] >=
2311 		   btrfs_header_nritems(path->nodes[0])) {
2312 		ret = btrfs_next_leaf(root, path);
2313 		if (ret < 0) {
2314 			goto out;
2315 		} else if (ret > 0) {
2316 			ret = -EUCLEAN;
2317 			goto out;
2318 		}
2319 	}
2320 	while (1) {
2321 		leaf = path->nodes[0];
2322 		slot = path->slots[0];
2323 
2324 		btrfs_item_key_to_cpu(leaf, &key, slot);
2325 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2326 			ret = 0;
2327 			goto out;
2328 		}
2329 
2330 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2331 			ret = -EOVERFLOW;
2332 			goto out;
2333 		}
2334 
2335 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2336 		rootrefs->rootref[found].treeid = key.offset;
2337 		rootrefs->rootref[found].dirid =
2338 				  btrfs_root_ref_dirid(leaf, rref);
2339 		found++;
2340 
2341 		ret = btrfs_next_item(root, path);
2342 		if (ret < 0) {
2343 			goto out;
2344 		} else if (ret > 0) {
2345 			ret = -EUCLEAN;
2346 			goto out;
2347 		}
2348 	}
2349 
2350 out:
2351 	btrfs_free_path(path);
2352 
2353 	if (!ret || ret == -EOVERFLOW) {
2354 		rootrefs->num_items = found;
2355 		/* update min_treeid for next search */
2356 		if (found)
2357 			rootrefs->min_treeid =
2358 				rootrefs->rootref[found - 1].treeid + 1;
2359 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2360 			ret = -EFAULT;
2361 	}
2362 
2363 	kfree(rootrefs);
2364 
2365 	return ret;
2366 }
2367 
2368 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2369 					     void __user *arg,
2370 					     bool destroy_v2)
2371 {
2372 	struct dentry *parent = file->f_path.dentry;
2373 	struct dentry *dentry;
2374 	struct inode *dir = d_inode(parent);
2375 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2376 	struct inode *inode;
2377 	struct btrfs_root *root = BTRFS_I(dir)->root;
2378 	struct btrfs_root *dest = NULL;
2379 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2380 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2381 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2382 	char *subvol_name, *subvol_name_ptr = NULL;
2383 	int subvol_namelen;
2384 	int ret = 0;
2385 	bool destroy_parent = false;
2386 
2387 	/* We don't support snapshots with extent tree v2 yet. */
2388 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2389 		btrfs_err(fs_info,
2390 			  "extent tree v2 doesn't support snapshot deletion yet");
2391 		return -EOPNOTSUPP;
2392 	}
2393 
2394 	if (destroy_v2) {
2395 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2396 		if (IS_ERR(vol_args2))
2397 			return PTR_ERR(vol_args2);
2398 
2399 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2400 			ret = -EOPNOTSUPP;
2401 			goto out;
2402 		}
2403 
2404 		/*
2405 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2406 		 * name, same as v1 currently does.
2407 		 */
2408 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2409 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2410 			if (ret < 0)
2411 				goto out;
2412 			subvol_name = vol_args2->name;
2413 
2414 			ret = mnt_want_write_file(file);
2415 			if (ret)
2416 				goto out;
2417 		} else {
2418 			struct inode *old_dir;
2419 
2420 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2421 				ret = -EINVAL;
2422 				goto out;
2423 			}
2424 
2425 			ret = mnt_want_write_file(file);
2426 			if (ret)
2427 				goto out;
2428 
2429 			dentry = btrfs_get_dentry(fs_info->sb,
2430 					BTRFS_FIRST_FREE_OBJECTID,
2431 					vol_args2->subvolid, 0);
2432 			if (IS_ERR(dentry)) {
2433 				ret = PTR_ERR(dentry);
2434 				goto out_drop_write;
2435 			}
2436 
2437 			/*
2438 			 * Change the default parent since the subvolume being
2439 			 * deleted can be outside of the current mount point.
2440 			 */
2441 			parent = btrfs_get_parent(dentry);
2442 
2443 			/*
2444 			 * At this point dentry->d_name can point to '/' if the
2445 			 * subvolume we want to destroy is outsite of the
2446 			 * current mount point, so we need to release the
2447 			 * current dentry and execute the lookup to return a new
2448 			 * one with ->d_name pointing to the
2449 			 * <mount point>/subvol_name.
2450 			 */
2451 			dput(dentry);
2452 			if (IS_ERR(parent)) {
2453 				ret = PTR_ERR(parent);
2454 				goto out_drop_write;
2455 			}
2456 			old_dir = dir;
2457 			dir = d_inode(parent);
2458 
2459 			/*
2460 			 * If v2 was used with SPEC_BY_ID, a new parent was
2461 			 * allocated since the subvolume can be outside of the
2462 			 * current mount point. Later on we need to release this
2463 			 * new parent dentry.
2464 			 */
2465 			destroy_parent = true;
2466 
2467 			/*
2468 			 * On idmapped mounts, deletion via subvolid is
2469 			 * restricted to subvolumes that are immediate
2470 			 * ancestors of the inode referenced by the file
2471 			 * descriptor in the ioctl. Otherwise the idmapping
2472 			 * could potentially be abused to delete subvolumes
2473 			 * anywhere in the filesystem the user wouldn't be able
2474 			 * to delete without an idmapped mount.
2475 			 */
2476 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2477 				ret = -EOPNOTSUPP;
2478 				goto free_parent;
2479 			}
2480 
2481 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2482 						fs_info, vol_args2->subvolid);
2483 			if (IS_ERR(subvol_name_ptr)) {
2484 				ret = PTR_ERR(subvol_name_ptr);
2485 				goto free_parent;
2486 			}
2487 			/* subvol_name_ptr is already nul terminated */
2488 			subvol_name = (char *)kbasename(subvol_name_ptr);
2489 		}
2490 	} else {
2491 		vol_args = memdup_user(arg, sizeof(*vol_args));
2492 		if (IS_ERR(vol_args))
2493 			return PTR_ERR(vol_args);
2494 
2495 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2496 		if (ret < 0)
2497 			goto out;
2498 
2499 		subvol_name = vol_args->name;
2500 
2501 		ret = mnt_want_write_file(file);
2502 		if (ret)
2503 			goto out;
2504 	}
2505 
2506 	subvol_namelen = strlen(subvol_name);
2507 
2508 	if (strchr(subvol_name, '/') ||
2509 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2510 		ret = -EINVAL;
2511 		goto free_subvol_name;
2512 	}
2513 
2514 	if (!S_ISDIR(dir->i_mode)) {
2515 		ret = -ENOTDIR;
2516 		goto free_subvol_name;
2517 	}
2518 
2519 	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2520 	if (ret == -EINTR)
2521 		goto free_subvol_name;
2522 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2523 	if (IS_ERR(dentry)) {
2524 		ret = PTR_ERR(dentry);
2525 		goto out_unlock_dir;
2526 	}
2527 
2528 	if (d_really_is_negative(dentry)) {
2529 		ret = -ENOENT;
2530 		goto out_dput;
2531 	}
2532 
2533 	inode = d_inode(dentry);
2534 	dest = BTRFS_I(inode)->root;
2535 	if (!capable(CAP_SYS_ADMIN)) {
2536 		/*
2537 		 * Regular user.  Only allow this with a special mount
2538 		 * option, when the user has write+exec access to the
2539 		 * subvol root, and when rmdir(2) would have been
2540 		 * allowed.
2541 		 *
2542 		 * Note that this is _not_ check that the subvol is
2543 		 * empty or doesn't contain data that we wouldn't
2544 		 * otherwise be able to delete.
2545 		 *
2546 		 * Users who want to delete empty subvols should try
2547 		 * rmdir(2).
2548 		 */
2549 		ret = -EPERM;
2550 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2551 			goto out_dput;
2552 
2553 		/*
2554 		 * Do not allow deletion if the parent dir is the same
2555 		 * as the dir to be deleted.  That means the ioctl
2556 		 * must be called on the dentry referencing the root
2557 		 * of the subvol, not a random directory contained
2558 		 * within it.
2559 		 */
2560 		ret = -EINVAL;
2561 		if (root == dest)
2562 			goto out_dput;
2563 
2564 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2565 		if (ret)
2566 			goto out_dput;
2567 	}
2568 
2569 	/* check if subvolume may be deleted by a user */
2570 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2571 	if (ret)
2572 		goto out_dput;
2573 
2574 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2575 		ret = -EINVAL;
2576 		goto out_dput;
2577 	}
2578 
2579 	btrfs_inode_lock(BTRFS_I(inode), 0);
2580 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2581 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2582 	if (!ret)
2583 		d_delete_notify(dir, dentry);
2584 
2585 out_dput:
2586 	dput(dentry);
2587 out_unlock_dir:
2588 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2589 free_subvol_name:
2590 	kfree(subvol_name_ptr);
2591 free_parent:
2592 	if (destroy_parent)
2593 		dput(parent);
2594 out_drop_write:
2595 	mnt_drop_write_file(file);
2596 out:
2597 	kfree(vol_args2);
2598 	kfree(vol_args);
2599 	return ret;
2600 }
2601 
2602 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2603 {
2604 	struct inode *inode = file_inode(file);
2605 	struct btrfs_root *root = BTRFS_I(inode)->root;
2606 	struct btrfs_ioctl_defrag_range_args range = {0};
2607 	int ret;
2608 
2609 	ret = mnt_want_write_file(file);
2610 	if (ret)
2611 		return ret;
2612 
2613 	if (btrfs_root_readonly(root)) {
2614 		ret = -EROFS;
2615 		goto out;
2616 	}
2617 
2618 	switch (inode->i_mode & S_IFMT) {
2619 	case S_IFDIR:
2620 		if (!capable(CAP_SYS_ADMIN)) {
2621 			ret = -EPERM;
2622 			goto out;
2623 		}
2624 		ret = btrfs_defrag_root(root);
2625 		break;
2626 	case S_IFREG:
2627 		/*
2628 		 * Note that this does not check the file descriptor for write
2629 		 * access. This prevents defragmenting executables that are
2630 		 * running and allows defrag on files open in read-only mode.
2631 		 */
2632 		if (!capable(CAP_SYS_ADMIN) &&
2633 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2634 			ret = -EPERM;
2635 			goto out;
2636 		}
2637 
2638 		if (argp) {
2639 			if (copy_from_user(&range, argp, sizeof(range))) {
2640 				ret = -EFAULT;
2641 				goto out;
2642 			}
2643 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2644 				ret = -EOPNOTSUPP;
2645 				goto out;
2646 			}
2647 			/* compression requires us to start the IO */
2648 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2649 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2650 				range.extent_thresh = (u32)-1;
2651 			}
2652 		} else {
2653 			/* the rest are all set to zero by kzalloc */
2654 			range.len = (u64)-1;
2655 		}
2656 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2657 					&range, BTRFS_OLDEST_GENERATION, 0);
2658 		if (ret > 0)
2659 			ret = 0;
2660 		break;
2661 	default:
2662 		ret = -EINVAL;
2663 	}
2664 out:
2665 	mnt_drop_write_file(file);
2666 	return ret;
2667 }
2668 
2669 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2670 {
2671 	struct btrfs_ioctl_vol_args *vol_args;
2672 	bool restore_op = false;
2673 	int ret;
2674 
2675 	if (!capable(CAP_SYS_ADMIN))
2676 		return -EPERM;
2677 
2678 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2679 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2680 		return -EINVAL;
2681 	}
2682 
2683 	if (fs_info->fs_devices->temp_fsid) {
2684 		btrfs_err(fs_info,
2685 			  "device add not supported on cloned temp-fsid mount");
2686 		return -EINVAL;
2687 	}
2688 
2689 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2690 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2691 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2692 
2693 		/*
2694 		 * We can do the device add because we have a paused balanced,
2695 		 * change the exclusive op type and remember we should bring
2696 		 * back the paused balance
2697 		 */
2698 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2699 		btrfs_exclop_start_unlock(fs_info);
2700 		restore_op = true;
2701 	}
2702 
2703 	vol_args = memdup_user(arg, sizeof(*vol_args));
2704 	if (IS_ERR(vol_args)) {
2705 		ret = PTR_ERR(vol_args);
2706 		goto out;
2707 	}
2708 
2709 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2710 	if (ret < 0)
2711 		goto out_free;
2712 
2713 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2714 
2715 	if (!ret)
2716 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2717 
2718 out_free:
2719 	kfree(vol_args);
2720 out:
2721 	if (restore_op)
2722 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2723 	else
2724 		btrfs_exclop_finish(fs_info);
2725 	return ret;
2726 }
2727 
2728 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2729 {
2730 	BTRFS_DEV_LOOKUP_ARGS(args);
2731 	struct inode *inode = file_inode(file);
2732 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2733 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2734 	struct file *bdev_file = NULL;
2735 	int ret;
2736 	bool cancel = false;
2737 
2738 	if (!capable(CAP_SYS_ADMIN))
2739 		return -EPERM;
2740 
2741 	vol_args = memdup_user(arg, sizeof(*vol_args));
2742 	if (IS_ERR(vol_args))
2743 		return PTR_ERR(vol_args);
2744 
2745 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2746 		ret = -EOPNOTSUPP;
2747 		goto out;
2748 	}
2749 
2750 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2751 	if (ret < 0)
2752 		goto out;
2753 
2754 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2755 		args.devid = vol_args->devid;
2756 	} else if (!strcmp("cancel", vol_args->name)) {
2757 		cancel = true;
2758 	} else {
2759 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2760 		if (ret)
2761 			goto out;
2762 	}
2763 
2764 	ret = mnt_want_write_file(file);
2765 	if (ret)
2766 		goto out;
2767 
2768 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2769 					   cancel);
2770 	if (ret)
2771 		goto err_drop;
2772 
2773 	/* Exclusive operation is now claimed */
2774 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2775 
2776 	btrfs_exclop_finish(fs_info);
2777 
2778 	if (!ret) {
2779 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2780 			btrfs_info(fs_info, "device deleted: id %llu",
2781 					vol_args->devid);
2782 		else
2783 			btrfs_info(fs_info, "device deleted: %s",
2784 					vol_args->name);
2785 	}
2786 err_drop:
2787 	mnt_drop_write_file(file);
2788 	if (bdev_file)
2789 		fput(bdev_file);
2790 out:
2791 	btrfs_put_dev_args_from_path(&args);
2792 	kfree(vol_args);
2793 	return ret;
2794 }
2795 
2796 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2797 {
2798 	BTRFS_DEV_LOOKUP_ARGS(args);
2799 	struct inode *inode = file_inode(file);
2800 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2801 	struct btrfs_ioctl_vol_args *vol_args;
2802 	struct file *bdev_file = NULL;
2803 	int ret;
2804 	bool cancel = false;
2805 
2806 	if (!capable(CAP_SYS_ADMIN))
2807 		return -EPERM;
2808 
2809 	vol_args = memdup_user(arg, sizeof(*vol_args));
2810 	if (IS_ERR(vol_args))
2811 		return PTR_ERR(vol_args);
2812 
2813 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2814 	if (ret < 0)
2815 		goto out_free;
2816 
2817 	if (!strcmp("cancel", vol_args->name)) {
2818 		cancel = true;
2819 	} else {
2820 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2821 		if (ret)
2822 			goto out;
2823 	}
2824 
2825 	ret = mnt_want_write_file(file);
2826 	if (ret)
2827 		goto out;
2828 
2829 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2830 					   cancel);
2831 	if (ret == 0) {
2832 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2833 		if (!ret)
2834 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2835 		btrfs_exclop_finish(fs_info);
2836 	}
2837 
2838 	mnt_drop_write_file(file);
2839 	if (bdev_file)
2840 		fput(bdev_file);
2841 out:
2842 	btrfs_put_dev_args_from_path(&args);
2843 out_free:
2844 	kfree(vol_args);
2845 	return ret;
2846 }
2847 
2848 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2849 				void __user *arg)
2850 {
2851 	struct btrfs_ioctl_fs_info_args *fi_args;
2852 	struct btrfs_device *device;
2853 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2854 	u64 flags_in;
2855 	int ret = 0;
2856 
2857 	fi_args = memdup_user(arg, sizeof(*fi_args));
2858 	if (IS_ERR(fi_args))
2859 		return PTR_ERR(fi_args);
2860 
2861 	flags_in = fi_args->flags;
2862 	memset(fi_args, 0, sizeof(*fi_args));
2863 
2864 	rcu_read_lock();
2865 	fi_args->num_devices = fs_devices->num_devices;
2866 
2867 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2868 		if (device->devid > fi_args->max_id)
2869 			fi_args->max_id = device->devid;
2870 	}
2871 	rcu_read_unlock();
2872 
2873 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2874 	fi_args->nodesize = fs_info->nodesize;
2875 	fi_args->sectorsize = fs_info->sectorsize;
2876 	fi_args->clone_alignment = fs_info->sectorsize;
2877 
2878 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2879 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2880 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2881 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2882 	}
2883 
2884 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2885 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2886 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2887 	}
2888 
2889 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2890 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2891 		       sizeof(fi_args->metadata_uuid));
2892 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2893 	}
2894 
2895 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2896 		ret = -EFAULT;
2897 
2898 	kfree(fi_args);
2899 	return ret;
2900 }
2901 
2902 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2903 				 void __user *arg)
2904 {
2905 	BTRFS_DEV_LOOKUP_ARGS(args);
2906 	struct btrfs_ioctl_dev_info_args *di_args;
2907 	struct btrfs_device *dev;
2908 	int ret = 0;
2909 
2910 	di_args = memdup_user(arg, sizeof(*di_args));
2911 	if (IS_ERR(di_args))
2912 		return PTR_ERR(di_args);
2913 
2914 	args.devid = di_args->devid;
2915 	if (!btrfs_is_empty_uuid(di_args->uuid))
2916 		args.uuid = di_args->uuid;
2917 
2918 	rcu_read_lock();
2919 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2920 	if (!dev) {
2921 		ret = -ENODEV;
2922 		goto out;
2923 	}
2924 
2925 	di_args->devid = dev->devid;
2926 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2927 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2928 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2929 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2930 	if (dev->name)
2931 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2932 	else
2933 		di_args->path[0] = '\0';
2934 
2935 out:
2936 	rcu_read_unlock();
2937 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2938 		ret = -EFAULT;
2939 
2940 	kfree(di_args);
2941 	return ret;
2942 }
2943 
2944 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2945 {
2946 	struct inode *inode = file_inode(file);
2947 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2948 	struct btrfs_root *root = BTRFS_I(inode)->root;
2949 	struct btrfs_root *new_root;
2950 	struct btrfs_dir_item *di;
2951 	struct btrfs_trans_handle *trans;
2952 	struct btrfs_path *path = NULL;
2953 	struct btrfs_disk_key disk_key;
2954 	struct fscrypt_str name = FSTR_INIT("default", 7);
2955 	u64 objectid = 0;
2956 	u64 dir_id;
2957 	int ret;
2958 
2959 	if (!capable(CAP_SYS_ADMIN))
2960 		return -EPERM;
2961 
2962 	ret = mnt_want_write_file(file);
2963 	if (ret)
2964 		return ret;
2965 
2966 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2967 		ret = -EFAULT;
2968 		goto out;
2969 	}
2970 
2971 	if (!objectid)
2972 		objectid = BTRFS_FS_TREE_OBJECTID;
2973 
2974 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2975 	if (IS_ERR(new_root)) {
2976 		ret = PTR_ERR(new_root);
2977 		goto out;
2978 	}
2979 	if (!is_fstree(btrfs_root_id(new_root))) {
2980 		ret = -ENOENT;
2981 		goto out_free;
2982 	}
2983 
2984 	path = btrfs_alloc_path();
2985 	if (!path) {
2986 		ret = -ENOMEM;
2987 		goto out_free;
2988 	}
2989 
2990 	trans = btrfs_start_transaction(root, 1);
2991 	if (IS_ERR(trans)) {
2992 		ret = PTR_ERR(trans);
2993 		goto out_free;
2994 	}
2995 
2996 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2997 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2998 				   dir_id, &name, 1);
2999 	if (IS_ERR_OR_NULL(di)) {
3000 		btrfs_release_path(path);
3001 		btrfs_end_transaction(trans);
3002 		btrfs_err(fs_info,
3003 			  "Umm, you don't have the default diritem, this isn't going to work");
3004 		ret = -ENOENT;
3005 		goto out_free;
3006 	}
3007 
3008 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3009 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3010 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3011 	btrfs_release_path(path);
3012 
3013 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3014 	btrfs_end_transaction(trans);
3015 out_free:
3016 	btrfs_put_root(new_root);
3017 	btrfs_free_path(path);
3018 out:
3019 	mnt_drop_write_file(file);
3020 	return ret;
3021 }
3022 
3023 static void get_block_group_info(struct list_head *groups_list,
3024 				 struct btrfs_ioctl_space_info *space)
3025 {
3026 	struct btrfs_block_group *block_group;
3027 
3028 	space->total_bytes = 0;
3029 	space->used_bytes = 0;
3030 	space->flags = 0;
3031 	list_for_each_entry(block_group, groups_list, list) {
3032 		space->flags = block_group->flags;
3033 		space->total_bytes += block_group->length;
3034 		space->used_bytes += block_group->used;
3035 	}
3036 }
3037 
3038 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3039 				   void __user *arg)
3040 {
3041 	struct btrfs_ioctl_space_args space_args = { 0 };
3042 	struct btrfs_ioctl_space_info space;
3043 	struct btrfs_ioctl_space_info *dest;
3044 	struct btrfs_ioctl_space_info *dest_orig;
3045 	struct btrfs_ioctl_space_info __user *user_dest;
3046 	struct btrfs_space_info *info;
3047 	static const u64 types[] = {
3048 		BTRFS_BLOCK_GROUP_DATA,
3049 		BTRFS_BLOCK_GROUP_SYSTEM,
3050 		BTRFS_BLOCK_GROUP_METADATA,
3051 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3052 	};
3053 	int num_types = 4;
3054 	int alloc_size;
3055 	int ret = 0;
3056 	u64 slot_count = 0;
3057 	int i, c;
3058 
3059 	if (copy_from_user(&space_args,
3060 			   (struct btrfs_ioctl_space_args __user *)arg,
3061 			   sizeof(space_args)))
3062 		return -EFAULT;
3063 
3064 	for (i = 0; i < num_types; i++) {
3065 		struct btrfs_space_info *tmp;
3066 
3067 		info = NULL;
3068 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3069 			if (tmp->flags == types[i]) {
3070 				info = tmp;
3071 				break;
3072 			}
3073 		}
3074 
3075 		if (!info)
3076 			continue;
3077 
3078 		down_read(&info->groups_sem);
3079 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3080 			if (!list_empty(&info->block_groups[c]))
3081 				slot_count++;
3082 		}
3083 		up_read(&info->groups_sem);
3084 	}
3085 
3086 	/*
3087 	 * Global block reserve, exported as a space_info
3088 	 */
3089 	slot_count++;
3090 
3091 	/* space_slots == 0 means they are asking for a count */
3092 	if (space_args.space_slots == 0) {
3093 		space_args.total_spaces = slot_count;
3094 		goto out;
3095 	}
3096 
3097 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3098 
3099 	alloc_size = sizeof(*dest) * slot_count;
3100 
3101 	/* we generally have at most 6 or so space infos, one for each raid
3102 	 * level.  So, a whole page should be more than enough for everyone
3103 	 */
3104 	if (alloc_size > PAGE_SIZE)
3105 		return -ENOMEM;
3106 
3107 	space_args.total_spaces = 0;
3108 	dest = kmalloc(alloc_size, GFP_KERNEL);
3109 	if (!dest)
3110 		return -ENOMEM;
3111 	dest_orig = dest;
3112 
3113 	/* now we have a buffer to copy into */
3114 	for (i = 0; i < num_types; i++) {
3115 		struct btrfs_space_info *tmp;
3116 
3117 		if (!slot_count)
3118 			break;
3119 
3120 		info = NULL;
3121 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3122 			if (tmp->flags == types[i]) {
3123 				info = tmp;
3124 				break;
3125 			}
3126 		}
3127 
3128 		if (!info)
3129 			continue;
3130 		down_read(&info->groups_sem);
3131 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3132 			if (!list_empty(&info->block_groups[c])) {
3133 				get_block_group_info(&info->block_groups[c],
3134 						     &space);
3135 				memcpy(dest, &space, sizeof(space));
3136 				dest++;
3137 				space_args.total_spaces++;
3138 				slot_count--;
3139 			}
3140 			if (!slot_count)
3141 				break;
3142 		}
3143 		up_read(&info->groups_sem);
3144 	}
3145 
3146 	/*
3147 	 * Add global block reserve
3148 	 */
3149 	if (slot_count) {
3150 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3151 
3152 		spin_lock(&block_rsv->lock);
3153 		space.total_bytes = block_rsv->size;
3154 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3155 		spin_unlock(&block_rsv->lock);
3156 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3157 		memcpy(dest, &space, sizeof(space));
3158 		space_args.total_spaces++;
3159 	}
3160 
3161 	user_dest = (struct btrfs_ioctl_space_info __user *)
3162 		(arg + sizeof(struct btrfs_ioctl_space_args));
3163 
3164 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3165 		ret = -EFAULT;
3166 
3167 	kfree(dest_orig);
3168 out:
3169 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3170 		ret = -EFAULT;
3171 
3172 	return ret;
3173 }
3174 
3175 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3176 					    void __user *argp)
3177 {
3178 	struct btrfs_trans_handle *trans;
3179 	u64 transid;
3180 
3181 	/*
3182 	 * Start orphan cleanup here for the given root in case it hasn't been
3183 	 * started already by other means. Errors are handled in the other
3184 	 * functions during transaction commit.
3185 	 */
3186 	btrfs_orphan_cleanup(root);
3187 
3188 	trans = btrfs_attach_transaction_barrier(root);
3189 	if (IS_ERR(trans)) {
3190 		if (PTR_ERR(trans) != -ENOENT)
3191 			return PTR_ERR(trans);
3192 
3193 		/* No running transaction, don't bother */
3194 		transid = btrfs_get_last_trans_committed(root->fs_info);
3195 		goto out;
3196 	}
3197 	transid = trans->transid;
3198 	btrfs_commit_transaction_async(trans);
3199 out:
3200 	if (argp)
3201 		if (copy_to_user(argp, &transid, sizeof(transid)))
3202 			return -EFAULT;
3203 	return 0;
3204 }
3205 
3206 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3207 					   void __user *argp)
3208 {
3209 	/* By default wait for the current transaction. */
3210 	u64 transid = 0;
3211 
3212 	if (argp)
3213 		if (copy_from_user(&transid, argp, sizeof(transid)))
3214 			return -EFAULT;
3215 
3216 	return btrfs_wait_for_commit(fs_info, transid);
3217 }
3218 
3219 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3220 {
3221 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3222 	struct btrfs_ioctl_scrub_args *sa;
3223 	int ret;
3224 
3225 	if (!capable(CAP_SYS_ADMIN))
3226 		return -EPERM;
3227 
3228 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3229 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3230 		return -EINVAL;
3231 	}
3232 
3233 	sa = memdup_user(arg, sizeof(*sa));
3234 	if (IS_ERR(sa))
3235 		return PTR_ERR(sa);
3236 
3237 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3238 		ret = -EOPNOTSUPP;
3239 		goto out;
3240 	}
3241 
3242 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3243 		ret = mnt_want_write_file(file);
3244 		if (ret)
3245 			goto out;
3246 	}
3247 
3248 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3249 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3250 			      0);
3251 
3252 	/*
3253 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3254 	 * error. This is important as it allows user space to know how much
3255 	 * progress scrub has done. For example, if scrub is canceled we get
3256 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3257 	 * space. Later user space can inspect the progress from the structure
3258 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3259 	 * previously (btrfs-progs does this).
3260 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3261 	 * then return -EFAULT to signal the structure was not copied or it may
3262 	 * be corrupt and unreliable due to a partial copy.
3263 	 */
3264 	if (copy_to_user(arg, sa, sizeof(*sa)))
3265 		ret = -EFAULT;
3266 
3267 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3268 		mnt_drop_write_file(file);
3269 out:
3270 	kfree(sa);
3271 	return ret;
3272 }
3273 
3274 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3275 {
3276 	if (!capable(CAP_SYS_ADMIN))
3277 		return -EPERM;
3278 
3279 	return btrfs_scrub_cancel(fs_info);
3280 }
3281 
3282 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3283 				       void __user *arg)
3284 {
3285 	struct btrfs_ioctl_scrub_args *sa;
3286 	int ret;
3287 
3288 	if (!capable(CAP_SYS_ADMIN))
3289 		return -EPERM;
3290 
3291 	sa = memdup_user(arg, sizeof(*sa));
3292 	if (IS_ERR(sa))
3293 		return PTR_ERR(sa);
3294 
3295 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3296 
3297 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3298 		ret = -EFAULT;
3299 
3300 	kfree(sa);
3301 	return ret;
3302 }
3303 
3304 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3305 				      void __user *arg)
3306 {
3307 	struct btrfs_ioctl_get_dev_stats *sa;
3308 	int ret;
3309 
3310 	sa = memdup_user(arg, sizeof(*sa));
3311 	if (IS_ERR(sa))
3312 		return PTR_ERR(sa);
3313 
3314 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3315 		kfree(sa);
3316 		return -EPERM;
3317 	}
3318 
3319 	ret = btrfs_get_dev_stats(fs_info, sa);
3320 
3321 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3322 		ret = -EFAULT;
3323 
3324 	kfree(sa);
3325 	return ret;
3326 }
3327 
3328 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3329 				    void __user *arg)
3330 {
3331 	struct btrfs_ioctl_dev_replace_args *p;
3332 	int ret;
3333 
3334 	if (!capable(CAP_SYS_ADMIN))
3335 		return -EPERM;
3336 
3337 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3338 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3339 		return -EINVAL;
3340 	}
3341 
3342 	p = memdup_user(arg, sizeof(*p));
3343 	if (IS_ERR(p))
3344 		return PTR_ERR(p);
3345 
3346 	switch (p->cmd) {
3347 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3348 		if (sb_rdonly(fs_info->sb)) {
3349 			ret = -EROFS;
3350 			goto out;
3351 		}
3352 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3353 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3354 		} else {
3355 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3356 			btrfs_exclop_finish(fs_info);
3357 		}
3358 		break;
3359 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3360 		btrfs_dev_replace_status(fs_info, p);
3361 		ret = 0;
3362 		break;
3363 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3364 		p->result = btrfs_dev_replace_cancel(fs_info);
3365 		ret = 0;
3366 		break;
3367 	default:
3368 		ret = -EINVAL;
3369 		break;
3370 	}
3371 
3372 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3373 		ret = -EFAULT;
3374 out:
3375 	kfree(p);
3376 	return ret;
3377 }
3378 
3379 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3380 {
3381 	int ret = 0;
3382 	int i;
3383 	u64 rel_ptr;
3384 	int size;
3385 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3386 	struct inode_fs_paths *ipath = NULL;
3387 	struct btrfs_path *path;
3388 
3389 	if (!capable(CAP_DAC_READ_SEARCH))
3390 		return -EPERM;
3391 
3392 	path = btrfs_alloc_path();
3393 	if (!path) {
3394 		ret = -ENOMEM;
3395 		goto out;
3396 	}
3397 
3398 	ipa = memdup_user(arg, sizeof(*ipa));
3399 	if (IS_ERR(ipa)) {
3400 		ret = PTR_ERR(ipa);
3401 		ipa = NULL;
3402 		goto out;
3403 	}
3404 
3405 	size = min_t(u32, ipa->size, 4096);
3406 	ipath = init_ipath(size, root, path);
3407 	if (IS_ERR(ipath)) {
3408 		ret = PTR_ERR(ipath);
3409 		ipath = NULL;
3410 		goto out;
3411 	}
3412 
3413 	ret = paths_from_inode(ipa->inum, ipath);
3414 	if (ret < 0)
3415 		goto out;
3416 
3417 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3418 		rel_ptr = ipath->fspath->val[i] -
3419 			  (u64)(unsigned long)ipath->fspath->val;
3420 		ipath->fspath->val[i] = rel_ptr;
3421 	}
3422 
3423 	btrfs_free_path(path);
3424 	path = NULL;
3425 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3426 			   ipath->fspath, size);
3427 	if (ret) {
3428 		ret = -EFAULT;
3429 		goto out;
3430 	}
3431 
3432 out:
3433 	btrfs_free_path(path);
3434 	free_ipath(ipath);
3435 	kfree(ipa);
3436 
3437 	return ret;
3438 }
3439 
3440 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3441 					void __user *arg, int version)
3442 {
3443 	int ret = 0;
3444 	int size;
3445 	struct btrfs_ioctl_logical_ino_args *loi;
3446 	struct btrfs_data_container *inodes = NULL;
3447 	struct btrfs_path *path = NULL;
3448 	bool ignore_offset;
3449 
3450 	if (!capable(CAP_SYS_ADMIN))
3451 		return -EPERM;
3452 
3453 	loi = memdup_user(arg, sizeof(*loi));
3454 	if (IS_ERR(loi))
3455 		return PTR_ERR(loi);
3456 
3457 	if (version == 1) {
3458 		ignore_offset = false;
3459 		size = min_t(u32, loi->size, SZ_64K);
3460 	} else {
3461 		/* All reserved bits must be 0 for now */
3462 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3463 			ret = -EINVAL;
3464 			goto out_loi;
3465 		}
3466 		/* Only accept flags we have defined so far */
3467 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3468 			ret = -EINVAL;
3469 			goto out_loi;
3470 		}
3471 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3472 		size = min_t(u32, loi->size, SZ_16M);
3473 	}
3474 
3475 	inodes = init_data_container(size);
3476 	if (IS_ERR(inodes)) {
3477 		ret = PTR_ERR(inodes);
3478 		goto out_loi;
3479 	}
3480 
3481 	path = btrfs_alloc_path();
3482 	if (!path) {
3483 		ret = -ENOMEM;
3484 		goto out;
3485 	}
3486 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3487 					  inodes, ignore_offset);
3488 	btrfs_free_path(path);
3489 	if (ret == -EINVAL)
3490 		ret = -ENOENT;
3491 	if (ret < 0)
3492 		goto out;
3493 
3494 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3495 			   size);
3496 	if (ret)
3497 		ret = -EFAULT;
3498 
3499 out:
3500 	kvfree(inodes);
3501 out_loi:
3502 	kfree(loi);
3503 
3504 	return ret;
3505 }
3506 
3507 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3508 			       struct btrfs_ioctl_balance_args *bargs)
3509 {
3510 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3511 
3512 	bargs->flags = bctl->flags;
3513 
3514 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3515 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3516 	if (atomic_read(&fs_info->balance_pause_req))
3517 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3518 	if (atomic_read(&fs_info->balance_cancel_req))
3519 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3520 
3521 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3522 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3523 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3524 
3525 	spin_lock(&fs_info->balance_lock);
3526 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3527 	spin_unlock(&fs_info->balance_lock);
3528 }
3529 
3530 /*
3531  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3532  * required.
3533  *
3534  * @fs_info:       the filesystem
3535  * @excl_acquired: ptr to boolean value which is set to false in case balance
3536  *                 is being resumed
3537  *
3538  * Return 0 on success in which case both fs_info::balance is acquired as well
3539  * as exclusive ops are blocked. In case of failure return an error code.
3540  */
3541 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3542 {
3543 	int ret;
3544 
3545 	/*
3546 	 * Exclusive operation is locked. Three possibilities:
3547 	 *   (1) some other op is running
3548 	 *   (2) balance is running
3549 	 *   (3) balance is paused -- special case (think resume)
3550 	 */
3551 	while (1) {
3552 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3553 			*excl_acquired = true;
3554 			mutex_lock(&fs_info->balance_mutex);
3555 			return 0;
3556 		}
3557 
3558 		mutex_lock(&fs_info->balance_mutex);
3559 		if (fs_info->balance_ctl) {
3560 			/* This is either (2) or (3) */
3561 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3562 				/* This is (2) */
3563 				ret = -EINPROGRESS;
3564 				goto out_failure;
3565 
3566 			} else {
3567 				mutex_unlock(&fs_info->balance_mutex);
3568 				/*
3569 				 * Lock released to allow other waiters to
3570 				 * continue, we'll reexamine the status again.
3571 				 */
3572 				mutex_lock(&fs_info->balance_mutex);
3573 
3574 				if (fs_info->balance_ctl &&
3575 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3576 					/* This is (3) */
3577 					*excl_acquired = false;
3578 					return 0;
3579 				}
3580 			}
3581 		} else {
3582 			/* This is (1) */
3583 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3584 			goto out_failure;
3585 		}
3586 
3587 		mutex_unlock(&fs_info->balance_mutex);
3588 	}
3589 
3590 out_failure:
3591 	mutex_unlock(&fs_info->balance_mutex);
3592 	*excl_acquired = false;
3593 	return ret;
3594 }
3595 
3596 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3597 {
3598 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3599 	struct btrfs_fs_info *fs_info = root->fs_info;
3600 	struct btrfs_ioctl_balance_args *bargs;
3601 	struct btrfs_balance_control *bctl;
3602 	bool need_unlock = true;
3603 	int ret;
3604 
3605 	if (!capable(CAP_SYS_ADMIN))
3606 		return -EPERM;
3607 
3608 	ret = mnt_want_write_file(file);
3609 	if (ret)
3610 		return ret;
3611 
3612 	bargs = memdup_user(arg, sizeof(*bargs));
3613 	if (IS_ERR(bargs)) {
3614 		ret = PTR_ERR(bargs);
3615 		bargs = NULL;
3616 		goto out;
3617 	}
3618 
3619 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3620 	if (ret)
3621 		goto out;
3622 
3623 	lockdep_assert_held(&fs_info->balance_mutex);
3624 
3625 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3626 		if (!fs_info->balance_ctl) {
3627 			ret = -ENOTCONN;
3628 			goto out_unlock;
3629 		}
3630 
3631 		bctl = fs_info->balance_ctl;
3632 		spin_lock(&fs_info->balance_lock);
3633 		bctl->flags |= BTRFS_BALANCE_RESUME;
3634 		spin_unlock(&fs_info->balance_lock);
3635 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3636 
3637 		goto do_balance;
3638 	}
3639 
3640 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3641 		ret = -EINVAL;
3642 		goto out_unlock;
3643 	}
3644 
3645 	if (fs_info->balance_ctl) {
3646 		ret = -EINPROGRESS;
3647 		goto out_unlock;
3648 	}
3649 
3650 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3651 	if (!bctl) {
3652 		ret = -ENOMEM;
3653 		goto out_unlock;
3654 	}
3655 
3656 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3657 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3658 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3659 
3660 	bctl->flags = bargs->flags;
3661 do_balance:
3662 	/*
3663 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3664 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3665 	 * all the way until unmount, in free_fs_info.  The flag should be
3666 	 * cleared after reset_balance_state.
3667 	 */
3668 	need_unlock = false;
3669 
3670 	ret = btrfs_balance(fs_info, bctl, bargs);
3671 	bctl = NULL;
3672 
3673 	if (ret == 0 || ret == -ECANCELED) {
3674 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3675 			ret = -EFAULT;
3676 	}
3677 
3678 	kfree(bctl);
3679 out_unlock:
3680 	mutex_unlock(&fs_info->balance_mutex);
3681 	if (need_unlock)
3682 		btrfs_exclop_finish(fs_info);
3683 out:
3684 	mnt_drop_write_file(file);
3685 	kfree(bargs);
3686 	return ret;
3687 }
3688 
3689 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3690 {
3691 	if (!capable(CAP_SYS_ADMIN))
3692 		return -EPERM;
3693 
3694 	switch (cmd) {
3695 	case BTRFS_BALANCE_CTL_PAUSE:
3696 		return btrfs_pause_balance(fs_info);
3697 	case BTRFS_BALANCE_CTL_CANCEL:
3698 		return btrfs_cancel_balance(fs_info);
3699 	}
3700 
3701 	return -EINVAL;
3702 }
3703 
3704 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3705 					 void __user *arg)
3706 {
3707 	struct btrfs_ioctl_balance_args *bargs;
3708 	int ret = 0;
3709 
3710 	if (!capable(CAP_SYS_ADMIN))
3711 		return -EPERM;
3712 
3713 	mutex_lock(&fs_info->balance_mutex);
3714 	if (!fs_info->balance_ctl) {
3715 		ret = -ENOTCONN;
3716 		goto out;
3717 	}
3718 
3719 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3720 	if (!bargs) {
3721 		ret = -ENOMEM;
3722 		goto out;
3723 	}
3724 
3725 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3726 
3727 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3728 		ret = -EFAULT;
3729 
3730 	kfree(bargs);
3731 out:
3732 	mutex_unlock(&fs_info->balance_mutex);
3733 	return ret;
3734 }
3735 
3736 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3737 {
3738 	struct inode *inode = file_inode(file);
3739 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3740 	struct btrfs_ioctl_quota_ctl_args *sa;
3741 	int ret;
3742 
3743 	if (!capable(CAP_SYS_ADMIN))
3744 		return -EPERM;
3745 
3746 	ret = mnt_want_write_file(file);
3747 	if (ret)
3748 		return ret;
3749 
3750 	sa = memdup_user(arg, sizeof(*sa));
3751 	if (IS_ERR(sa)) {
3752 		ret = PTR_ERR(sa);
3753 		goto drop_write;
3754 	}
3755 
3756 	switch (sa->cmd) {
3757 	case BTRFS_QUOTA_CTL_ENABLE:
3758 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3759 		down_write(&fs_info->subvol_sem);
3760 		ret = btrfs_quota_enable(fs_info, sa);
3761 		up_write(&fs_info->subvol_sem);
3762 		break;
3763 	case BTRFS_QUOTA_CTL_DISABLE:
3764 		/*
3765 		 * Lock the cleaner mutex to prevent races with concurrent
3766 		 * relocation, because relocation may be building backrefs for
3767 		 * blocks of the quota root while we are deleting the root. This
3768 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3769 		 * need the same protection.
3770 		 *
3771 		 * This also prevents races between concurrent tasks trying to
3772 		 * disable quotas, because we will unlock and relock
3773 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3774 		 *
3775 		 * We take this here because we have the dependency of
3776 		 *
3777 		 * inode_lock -> subvol_sem
3778 		 *
3779 		 * because of rename.  With relocation we can prealloc extents,
3780 		 * so that makes the dependency chain
3781 		 *
3782 		 * cleaner_mutex -> inode_lock -> subvol_sem
3783 		 *
3784 		 * so we must take the cleaner_mutex here before we take the
3785 		 * subvol_sem.  The deadlock can't actually happen, but this
3786 		 * quiets lockdep.
3787 		 */
3788 		mutex_lock(&fs_info->cleaner_mutex);
3789 		down_write(&fs_info->subvol_sem);
3790 		ret = btrfs_quota_disable(fs_info);
3791 		up_write(&fs_info->subvol_sem);
3792 		mutex_unlock(&fs_info->cleaner_mutex);
3793 		break;
3794 	default:
3795 		ret = -EINVAL;
3796 		break;
3797 	}
3798 
3799 	kfree(sa);
3800 drop_write:
3801 	mnt_drop_write_file(file);
3802 	return ret;
3803 }
3804 
3805 /*
3806  * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3807  * done before any operations.
3808  */
3809 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3810 {
3811 	bool ret = true;
3812 
3813 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3814 	if (!fs_info->quota_root)
3815 		ret = false;
3816 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3817 
3818 	return ret;
3819 }
3820 
3821 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3822 {
3823 	struct inode *inode = file_inode(file);
3824 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3825 	struct btrfs_root *root = BTRFS_I(inode)->root;
3826 	struct btrfs_ioctl_qgroup_assign_args *sa;
3827 	struct btrfs_qgroup_list *prealloc = NULL;
3828 	struct btrfs_trans_handle *trans;
3829 	int ret;
3830 	int err;
3831 
3832 	if (!capable(CAP_SYS_ADMIN))
3833 		return -EPERM;
3834 
3835 	if (!qgroup_enabled(root->fs_info))
3836 		return -ENOTCONN;
3837 
3838 	ret = mnt_want_write_file(file);
3839 	if (ret)
3840 		return ret;
3841 
3842 	sa = memdup_user(arg, sizeof(*sa));
3843 	if (IS_ERR(sa)) {
3844 		ret = PTR_ERR(sa);
3845 		goto drop_write;
3846 	}
3847 
3848 	if (sa->assign) {
3849 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3850 		if (!prealloc) {
3851 			ret = -ENOMEM;
3852 			goto drop_write;
3853 		}
3854 	}
3855 
3856 	trans = btrfs_join_transaction(root);
3857 	if (IS_ERR(trans)) {
3858 		ret = PTR_ERR(trans);
3859 		goto out;
3860 	}
3861 
3862 	/*
3863 	 * Prealloc ownership is moved to the relation handler, there it's used
3864 	 * or freed on error.
3865 	 */
3866 	if (sa->assign) {
3867 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3868 		prealloc = NULL;
3869 	} else {
3870 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3871 	}
3872 
3873 	/* update qgroup status and info */
3874 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3875 	err = btrfs_run_qgroups(trans);
3876 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3877 	if (err < 0)
3878 		btrfs_warn(fs_info,
3879 			   "qgroup status update failed after %s relation, marked as inconsistent",
3880 			   sa->assign ? "adding" : "deleting");
3881 	err = btrfs_end_transaction(trans);
3882 	if (err && !ret)
3883 		ret = err;
3884 
3885 out:
3886 	kfree(prealloc);
3887 	kfree(sa);
3888 drop_write:
3889 	mnt_drop_write_file(file);
3890 	return ret;
3891 }
3892 
3893 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3894 {
3895 	struct inode *inode = file_inode(file);
3896 	struct btrfs_root *root = BTRFS_I(inode)->root;
3897 	struct btrfs_ioctl_qgroup_create_args *sa;
3898 	struct btrfs_trans_handle *trans;
3899 	int ret;
3900 	int err;
3901 
3902 	if (!capable(CAP_SYS_ADMIN))
3903 		return -EPERM;
3904 
3905 	if (!qgroup_enabled(root->fs_info))
3906 		return -ENOTCONN;
3907 
3908 	ret = mnt_want_write_file(file);
3909 	if (ret)
3910 		return ret;
3911 
3912 	sa = memdup_user(arg, sizeof(*sa));
3913 	if (IS_ERR(sa)) {
3914 		ret = PTR_ERR(sa);
3915 		goto drop_write;
3916 	}
3917 
3918 	if (!sa->qgroupid) {
3919 		ret = -EINVAL;
3920 		goto out;
3921 	}
3922 
3923 	if (sa->create && is_fstree(sa->qgroupid)) {
3924 		ret = -EINVAL;
3925 		goto out;
3926 	}
3927 
3928 	trans = btrfs_join_transaction(root);
3929 	if (IS_ERR(trans)) {
3930 		ret = PTR_ERR(trans);
3931 		goto out;
3932 	}
3933 
3934 	if (sa->create) {
3935 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3936 	} else {
3937 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3938 	}
3939 
3940 	err = btrfs_end_transaction(trans);
3941 	if (err && !ret)
3942 		ret = err;
3943 
3944 out:
3945 	kfree(sa);
3946 drop_write:
3947 	mnt_drop_write_file(file);
3948 	return ret;
3949 }
3950 
3951 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3952 {
3953 	struct inode *inode = file_inode(file);
3954 	struct btrfs_root *root = BTRFS_I(inode)->root;
3955 	struct btrfs_ioctl_qgroup_limit_args *sa;
3956 	struct btrfs_trans_handle *trans;
3957 	int ret;
3958 	int err;
3959 	u64 qgroupid;
3960 
3961 	if (!capable(CAP_SYS_ADMIN))
3962 		return -EPERM;
3963 
3964 	if (!qgroup_enabled(root->fs_info))
3965 		return -ENOTCONN;
3966 
3967 	ret = mnt_want_write_file(file);
3968 	if (ret)
3969 		return ret;
3970 
3971 	sa = memdup_user(arg, sizeof(*sa));
3972 	if (IS_ERR(sa)) {
3973 		ret = PTR_ERR(sa);
3974 		goto drop_write;
3975 	}
3976 
3977 	trans = btrfs_join_transaction(root);
3978 	if (IS_ERR(trans)) {
3979 		ret = PTR_ERR(trans);
3980 		goto out;
3981 	}
3982 
3983 	qgroupid = sa->qgroupid;
3984 	if (!qgroupid) {
3985 		/* take the current subvol as qgroup */
3986 		qgroupid = btrfs_root_id(root);
3987 	}
3988 
3989 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3990 
3991 	err = btrfs_end_transaction(trans);
3992 	if (err && !ret)
3993 		ret = err;
3994 
3995 out:
3996 	kfree(sa);
3997 drop_write:
3998 	mnt_drop_write_file(file);
3999 	return ret;
4000 }
4001 
4002 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4003 {
4004 	struct inode *inode = file_inode(file);
4005 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4006 	struct btrfs_ioctl_quota_rescan_args *qsa;
4007 	int ret;
4008 
4009 	if (!capable(CAP_SYS_ADMIN))
4010 		return -EPERM;
4011 
4012 	if (!qgroup_enabled(fs_info))
4013 		return -ENOTCONN;
4014 
4015 	ret = mnt_want_write_file(file);
4016 	if (ret)
4017 		return ret;
4018 
4019 	qsa = memdup_user(arg, sizeof(*qsa));
4020 	if (IS_ERR(qsa)) {
4021 		ret = PTR_ERR(qsa);
4022 		goto drop_write;
4023 	}
4024 
4025 	if (qsa->flags) {
4026 		ret = -EINVAL;
4027 		goto out;
4028 	}
4029 
4030 	ret = btrfs_qgroup_rescan(fs_info);
4031 
4032 out:
4033 	kfree(qsa);
4034 drop_write:
4035 	mnt_drop_write_file(file);
4036 	return ret;
4037 }
4038 
4039 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4040 						void __user *arg)
4041 {
4042 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4043 
4044 	if (!capable(CAP_SYS_ADMIN))
4045 		return -EPERM;
4046 
4047 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4048 		qsa.flags = 1;
4049 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4050 	}
4051 
4052 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4053 		return -EFAULT;
4054 
4055 	return 0;
4056 }
4057 
4058 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
4059 {
4060 	if (!capable(CAP_SYS_ADMIN))
4061 		return -EPERM;
4062 
4063 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4064 }
4065 
4066 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4067 					    struct mnt_idmap *idmap,
4068 					    struct btrfs_ioctl_received_subvol_args *sa)
4069 {
4070 	struct inode *inode = file_inode(file);
4071 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4072 	struct btrfs_root *root = BTRFS_I(inode)->root;
4073 	struct btrfs_root_item *root_item = &root->root_item;
4074 	struct btrfs_trans_handle *trans;
4075 	struct timespec64 ct = current_time(inode);
4076 	int ret = 0;
4077 	int received_uuid_changed;
4078 
4079 	if (!inode_owner_or_capable(idmap, inode))
4080 		return -EPERM;
4081 
4082 	ret = mnt_want_write_file(file);
4083 	if (ret < 0)
4084 		return ret;
4085 
4086 	down_write(&fs_info->subvol_sem);
4087 
4088 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4089 		ret = -EINVAL;
4090 		goto out;
4091 	}
4092 
4093 	if (btrfs_root_readonly(root)) {
4094 		ret = -EROFS;
4095 		goto out;
4096 	}
4097 
4098 	/*
4099 	 * 1 - root item
4100 	 * 2 - uuid items (received uuid + subvol uuid)
4101 	 */
4102 	trans = btrfs_start_transaction(root, 3);
4103 	if (IS_ERR(trans)) {
4104 		ret = PTR_ERR(trans);
4105 		trans = NULL;
4106 		goto out;
4107 	}
4108 
4109 	sa->rtransid = trans->transid;
4110 	sa->rtime.sec = ct.tv_sec;
4111 	sa->rtime.nsec = ct.tv_nsec;
4112 
4113 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4114 				       BTRFS_UUID_SIZE);
4115 	if (received_uuid_changed &&
4116 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4117 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4118 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4119 					  btrfs_root_id(root));
4120 		if (ret && ret != -ENOENT) {
4121 		        btrfs_abort_transaction(trans, ret);
4122 		        btrfs_end_transaction(trans);
4123 		        goto out;
4124 		}
4125 	}
4126 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4127 	btrfs_set_root_stransid(root_item, sa->stransid);
4128 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4129 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4130 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4131 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4132 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4133 
4134 	ret = btrfs_update_root(trans, fs_info->tree_root,
4135 				&root->root_key, &root->root_item);
4136 	if (ret < 0) {
4137 		btrfs_end_transaction(trans);
4138 		goto out;
4139 	}
4140 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4141 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4142 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4143 					  btrfs_root_id(root));
4144 		if (ret < 0 && ret != -EEXIST) {
4145 			btrfs_abort_transaction(trans, ret);
4146 			btrfs_end_transaction(trans);
4147 			goto out;
4148 		}
4149 	}
4150 	ret = btrfs_commit_transaction(trans);
4151 out:
4152 	up_write(&fs_info->subvol_sem);
4153 	mnt_drop_write_file(file);
4154 	return ret;
4155 }
4156 
4157 #ifdef CONFIG_64BIT
4158 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4159 						void __user *arg)
4160 {
4161 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4162 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4163 	int ret = 0;
4164 
4165 	args32 = memdup_user(arg, sizeof(*args32));
4166 	if (IS_ERR(args32))
4167 		return PTR_ERR(args32);
4168 
4169 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4170 	if (!args64) {
4171 		ret = -ENOMEM;
4172 		goto out;
4173 	}
4174 
4175 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4176 	args64->stransid = args32->stransid;
4177 	args64->rtransid = args32->rtransid;
4178 	args64->stime.sec = args32->stime.sec;
4179 	args64->stime.nsec = args32->stime.nsec;
4180 	args64->rtime.sec = args32->rtime.sec;
4181 	args64->rtime.nsec = args32->rtime.nsec;
4182 	args64->flags = args32->flags;
4183 
4184 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4185 	if (ret)
4186 		goto out;
4187 
4188 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4189 	args32->stransid = args64->stransid;
4190 	args32->rtransid = args64->rtransid;
4191 	args32->stime.sec = args64->stime.sec;
4192 	args32->stime.nsec = args64->stime.nsec;
4193 	args32->rtime.sec = args64->rtime.sec;
4194 	args32->rtime.nsec = args64->rtime.nsec;
4195 	args32->flags = args64->flags;
4196 
4197 	ret = copy_to_user(arg, args32, sizeof(*args32));
4198 	if (ret)
4199 		ret = -EFAULT;
4200 
4201 out:
4202 	kfree(args32);
4203 	kfree(args64);
4204 	return ret;
4205 }
4206 #endif
4207 
4208 static long btrfs_ioctl_set_received_subvol(struct file *file,
4209 					    void __user *arg)
4210 {
4211 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4212 	int ret = 0;
4213 
4214 	sa = memdup_user(arg, sizeof(*sa));
4215 	if (IS_ERR(sa))
4216 		return PTR_ERR(sa);
4217 
4218 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4219 
4220 	if (ret)
4221 		goto out;
4222 
4223 	ret = copy_to_user(arg, sa, sizeof(*sa));
4224 	if (ret)
4225 		ret = -EFAULT;
4226 
4227 out:
4228 	kfree(sa);
4229 	return ret;
4230 }
4231 
4232 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4233 					void __user *arg)
4234 {
4235 	size_t len;
4236 	int ret;
4237 	char label[BTRFS_LABEL_SIZE];
4238 
4239 	spin_lock(&fs_info->super_lock);
4240 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4241 	spin_unlock(&fs_info->super_lock);
4242 
4243 	len = strnlen(label, BTRFS_LABEL_SIZE);
4244 
4245 	if (len == BTRFS_LABEL_SIZE) {
4246 		btrfs_warn(fs_info,
4247 			   "label is too long, return the first %zu bytes",
4248 			   --len);
4249 	}
4250 
4251 	ret = copy_to_user(arg, label, len);
4252 
4253 	return ret ? -EFAULT : 0;
4254 }
4255 
4256 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4257 {
4258 	struct inode *inode = file_inode(file);
4259 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4260 	struct btrfs_root *root = BTRFS_I(inode)->root;
4261 	struct btrfs_super_block *super_block = fs_info->super_copy;
4262 	struct btrfs_trans_handle *trans;
4263 	char label[BTRFS_LABEL_SIZE];
4264 	int ret;
4265 
4266 	if (!capable(CAP_SYS_ADMIN))
4267 		return -EPERM;
4268 
4269 	if (copy_from_user(label, arg, sizeof(label)))
4270 		return -EFAULT;
4271 
4272 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4273 		btrfs_err(fs_info,
4274 			  "unable to set label with more than %d bytes",
4275 			  BTRFS_LABEL_SIZE - 1);
4276 		return -EINVAL;
4277 	}
4278 
4279 	ret = mnt_want_write_file(file);
4280 	if (ret)
4281 		return ret;
4282 
4283 	trans = btrfs_start_transaction(root, 0);
4284 	if (IS_ERR(trans)) {
4285 		ret = PTR_ERR(trans);
4286 		goto out_unlock;
4287 	}
4288 
4289 	spin_lock(&fs_info->super_lock);
4290 	strcpy(super_block->label, label);
4291 	spin_unlock(&fs_info->super_lock);
4292 	ret = btrfs_commit_transaction(trans);
4293 
4294 out_unlock:
4295 	mnt_drop_write_file(file);
4296 	return ret;
4297 }
4298 
4299 #define INIT_FEATURE_FLAGS(suffix) \
4300 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4301 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4302 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4303 
4304 int btrfs_ioctl_get_supported_features(void __user *arg)
4305 {
4306 	static const struct btrfs_ioctl_feature_flags features[3] = {
4307 		INIT_FEATURE_FLAGS(SUPP),
4308 		INIT_FEATURE_FLAGS(SAFE_SET),
4309 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4310 	};
4311 
4312 	if (copy_to_user(arg, &features, sizeof(features)))
4313 		return -EFAULT;
4314 
4315 	return 0;
4316 }
4317 
4318 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4319 					void __user *arg)
4320 {
4321 	struct btrfs_super_block *super_block = fs_info->super_copy;
4322 	struct btrfs_ioctl_feature_flags features;
4323 
4324 	features.compat_flags = btrfs_super_compat_flags(super_block);
4325 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4326 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4327 
4328 	if (copy_to_user(arg, &features, sizeof(features)))
4329 		return -EFAULT;
4330 
4331 	return 0;
4332 }
4333 
4334 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4335 			      enum btrfs_feature_set set,
4336 			      u64 change_mask, u64 flags, u64 supported_flags,
4337 			      u64 safe_set, u64 safe_clear)
4338 {
4339 	const char *type = btrfs_feature_set_name(set);
4340 	char *names;
4341 	u64 disallowed, unsupported;
4342 	u64 set_mask = flags & change_mask;
4343 	u64 clear_mask = ~flags & change_mask;
4344 
4345 	unsupported = set_mask & ~supported_flags;
4346 	if (unsupported) {
4347 		names = btrfs_printable_features(set, unsupported);
4348 		if (names) {
4349 			btrfs_warn(fs_info,
4350 				   "this kernel does not support the %s feature bit%s",
4351 				   names, strchr(names, ',') ? "s" : "");
4352 			kfree(names);
4353 		} else
4354 			btrfs_warn(fs_info,
4355 				   "this kernel does not support %s bits 0x%llx",
4356 				   type, unsupported);
4357 		return -EOPNOTSUPP;
4358 	}
4359 
4360 	disallowed = set_mask & ~safe_set;
4361 	if (disallowed) {
4362 		names = btrfs_printable_features(set, disallowed);
4363 		if (names) {
4364 			btrfs_warn(fs_info,
4365 				   "can't set the %s feature bit%s while mounted",
4366 				   names, strchr(names, ',') ? "s" : "");
4367 			kfree(names);
4368 		} else
4369 			btrfs_warn(fs_info,
4370 				   "can't set %s bits 0x%llx while mounted",
4371 				   type, disallowed);
4372 		return -EPERM;
4373 	}
4374 
4375 	disallowed = clear_mask & ~safe_clear;
4376 	if (disallowed) {
4377 		names = btrfs_printable_features(set, disallowed);
4378 		if (names) {
4379 			btrfs_warn(fs_info,
4380 				   "can't clear the %s feature bit%s while mounted",
4381 				   names, strchr(names, ',') ? "s" : "");
4382 			kfree(names);
4383 		} else
4384 			btrfs_warn(fs_info,
4385 				   "can't clear %s bits 0x%llx while mounted",
4386 				   type, disallowed);
4387 		return -EPERM;
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4394 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4395 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4396 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4397 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4398 
4399 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4400 {
4401 	struct inode *inode = file_inode(file);
4402 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4403 	struct btrfs_root *root = BTRFS_I(inode)->root;
4404 	struct btrfs_super_block *super_block = fs_info->super_copy;
4405 	struct btrfs_ioctl_feature_flags flags[2];
4406 	struct btrfs_trans_handle *trans;
4407 	u64 newflags;
4408 	int ret;
4409 
4410 	if (!capable(CAP_SYS_ADMIN))
4411 		return -EPERM;
4412 
4413 	if (copy_from_user(flags, arg, sizeof(flags)))
4414 		return -EFAULT;
4415 
4416 	/* Nothing to do */
4417 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4418 	    !flags[0].incompat_flags)
4419 		return 0;
4420 
4421 	ret = check_feature(fs_info, flags[0].compat_flags,
4422 			    flags[1].compat_flags, COMPAT);
4423 	if (ret)
4424 		return ret;
4425 
4426 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4427 			    flags[1].compat_ro_flags, COMPAT_RO);
4428 	if (ret)
4429 		return ret;
4430 
4431 	ret = check_feature(fs_info, flags[0].incompat_flags,
4432 			    flags[1].incompat_flags, INCOMPAT);
4433 	if (ret)
4434 		return ret;
4435 
4436 	ret = mnt_want_write_file(file);
4437 	if (ret)
4438 		return ret;
4439 
4440 	trans = btrfs_start_transaction(root, 0);
4441 	if (IS_ERR(trans)) {
4442 		ret = PTR_ERR(trans);
4443 		goto out_drop_write;
4444 	}
4445 
4446 	spin_lock(&fs_info->super_lock);
4447 	newflags = btrfs_super_compat_flags(super_block);
4448 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4449 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4450 	btrfs_set_super_compat_flags(super_block, newflags);
4451 
4452 	newflags = btrfs_super_compat_ro_flags(super_block);
4453 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4454 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4455 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4456 
4457 	newflags = btrfs_super_incompat_flags(super_block);
4458 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4459 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4460 	btrfs_set_super_incompat_flags(super_block, newflags);
4461 	spin_unlock(&fs_info->super_lock);
4462 
4463 	ret = btrfs_commit_transaction(trans);
4464 out_drop_write:
4465 	mnt_drop_write_file(file);
4466 
4467 	return ret;
4468 }
4469 
4470 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4471 {
4472 	struct btrfs_ioctl_send_args *arg;
4473 	int ret;
4474 
4475 	if (compat) {
4476 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4477 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4478 
4479 		ret = copy_from_user(&args32, argp, sizeof(args32));
4480 		if (ret)
4481 			return -EFAULT;
4482 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4483 		if (!arg)
4484 			return -ENOMEM;
4485 		arg->send_fd = args32.send_fd;
4486 		arg->clone_sources_count = args32.clone_sources_count;
4487 		arg->clone_sources = compat_ptr(args32.clone_sources);
4488 		arg->parent_root = args32.parent_root;
4489 		arg->flags = args32.flags;
4490 		arg->version = args32.version;
4491 		memcpy(arg->reserved, args32.reserved,
4492 		       sizeof(args32.reserved));
4493 #else
4494 		return -ENOTTY;
4495 #endif
4496 	} else {
4497 		arg = memdup_user(argp, sizeof(*arg));
4498 		if (IS_ERR(arg))
4499 			return PTR_ERR(arg);
4500 	}
4501 	ret = btrfs_ioctl_send(inode, arg);
4502 	kfree(arg);
4503 	return ret;
4504 }
4505 
4506 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4507 				    bool compat)
4508 {
4509 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4510 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4511 					     flags);
4512 	size_t copy_end;
4513 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4514 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4515 	struct extent_io_tree *io_tree = &inode->io_tree;
4516 	struct iovec iovstack[UIO_FASTIOV];
4517 	struct iovec *iov = iovstack;
4518 	struct iov_iter iter;
4519 	loff_t pos;
4520 	struct kiocb kiocb;
4521 	ssize_t ret;
4522 	u64 disk_bytenr, disk_io_size;
4523 	struct extent_state *cached_state = NULL;
4524 
4525 	if (!capable(CAP_SYS_ADMIN)) {
4526 		ret = -EPERM;
4527 		goto out_acct;
4528 	}
4529 
4530 	if (compat) {
4531 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4532 		struct btrfs_ioctl_encoded_io_args_32 args32;
4533 
4534 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4535 				       flags);
4536 		if (copy_from_user(&args32, argp, copy_end)) {
4537 			ret = -EFAULT;
4538 			goto out_acct;
4539 		}
4540 		args.iov = compat_ptr(args32.iov);
4541 		args.iovcnt = args32.iovcnt;
4542 		args.offset = args32.offset;
4543 		args.flags = args32.flags;
4544 #else
4545 		return -ENOTTY;
4546 #endif
4547 	} else {
4548 		copy_end = copy_end_kernel;
4549 		if (copy_from_user(&args, argp, copy_end)) {
4550 			ret = -EFAULT;
4551 			goto out_acct;
4552 		}
4553 	}
4554 	if (args.flags != 0) {
4555 		ret = -EINVAL;
4556 		goto out_acct;
4557 	}
4558 
4559 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4560 			   &iov, &iter);
4561 	if (ret < 0)
4562 		goto out_acct;
4563 
4564 	if (iov_iter_count(&iter) == 0) {
4565 		ret = 0;
4566 		goto out_iov;
4567 	}
4568 	pos = args.offset;
4569 	ret = rw_verify_area(READ, file, &pos, args.len);
4570 	if (ret < 0)
4571 		goto out_iov;
4572 
4573 	init_sync_kiocb(&kiocb, file);
4574 	kiocb.ki_pos = pos;
4575 
4576 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4577 				 &disk_bytenr, &disk_io_size);
4578 
4579 	if (ret == -EIOCBQUEUED) {
4580 		bool unlocked = false;
4581 		u64 start, lockend, count;
4582 
4583 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4584 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4585 
4586 		if (args.compression)
4587 			count = disk_io_size;
4588 		else
4589 			count = args.len;
4590 
4591 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4592 						 &cached_state, disk_bytenr,
4593 						 disk_io_size, count,
4594 						 args.compression, &unlocked);
4595 
4596 		if (!unlocked) {
4597 			unlock_extent(io_tree, start, lockend, &cached_state);
4598 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4599 		}
4600 	}
4601 
4602 	if (ret >= 0) {
4603 		fsnotify_access(file);
4604 		if (copy_to_user(argp + copy_end,
4605 				 (char *)&args + copy_end_kernel,
4606 				 sizeof(args) - copy_end_kernel))
4607 			ret = -EFAULT;
4608 	}
4609 
4610 out_iov:
4611 	kfree(iov);
4612 out_acct:
4613 	if (ret > 0)
4614 		add_rchar(current, ret);
4615 	inc_syscr(current);
4616 	return ret;
4617 }
4618 
4619 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4620 {
4621 	struct btrfs_ioctl_encoded_io_args args;
4622 	struct iovec iovstack[UIO_FASTIOV];
4623 	struct iovec *iov = iovstack;
4624 	struct iov_iter iter;
4625 	loff_t pos;
4626 	struct kiocb kiocb;
4627 	ssize_t ret;
4628 
4629 	if (!capable(CAP_SYS_ADMIN)) {
4630 		ret = -EPERM;
4631 		goto out_acct;
4632 	}
4633 
4634 	if (!(file->f_mode & FMODE_WRITE)) {
4635 		ret = -EBADF;
4636 		goto out_acct;
4637 	}
4638 
4639 	if (compat) {
4640 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4641 		struct btrfs_ioctl_encoded_io_args_32 args32;
4642 
4643 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4644 			ret = -EFAULT;
4645 			goto out_acct;
4646 		}
4647 		args.iov = compat_ptr(args32.iov);
4648 		args.iovcnt = args32.iovcnt;
4649 		args.offset = args32.offset;
4650 		args.flags = args32.flags;
4651 		args.len = args32.len;
4652 		args.unencoded_len = args32.unencoded_len;
4653 		args.unencoded_offset = args32.unencoded_offset;
4654 		args.compression = args32.compression;
4655 		args.encryption = args32.encryption;
4656 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4657 #else
4658 		return -ENOTTY;
4659 #endif
4660 	} else {
4661 		if (copy_from_user(&args, argp, sizeof(args))) {
4662 			ret = -EFAULT;
4663 			goto out_acct;
4664 		}
4665 	}
4666 
4667 	ret = -EINVAL;
4668 	if (args.flags != 0)
4669 		goto out_acct;
4670 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4671 		goto out_acct;
4672 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4673 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4674 		goto out_acct;
4675 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4676 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4677 		goto out_acct;
4678 	if (args.unencoded_offset > args.unencoded_len)
4679 		goto out_acct;
4680 	if (args.len > args.unencoded_len - args.unencoded_offset)
4681 		goto out_acct;
4682 
4683 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4684 			   &iov, &iter);
4685 	if (ret < 0)
4686 		goto out_acct;
4687 
4688 	if (iov_iter_count(&iter) == 0) {
4689 		ret = 0;
4690 		goto out_iov;
4691 	}
4692 	pos = args.offset;
4693 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4694 	if (ret < 0)
4695 		goto out_iov;
4696 
4697 	init_sync_kiocb(&kiocb, file);
4698 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4699 	if (ret)
4700 		goto out_iov;
4701 	kiocb.ki_pos = pos;
4702 
4703 	file_start_write(file);
4704 
4705 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4706 	if (ret > 0)
4707 		fsnotify_modify(file);
4708 
4709 	file_end_write(file);
4710 out_iov:
4711 	kfree(iov);
4712 out_acct:
4713 	if (ret > 0)
4714 		add_wchar(current, ret);
4715 	inc_syscw(current);
4716 	return ret;
4717 }
4718 
4719 /*
4720  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4721  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4722  * off and cleanup the I/O in btrfs_uring_read_finished.
4723  */
4724 struct btrfs_uring_priv {
4725 	struct io_uring_cmd *cmd;
4726 	struct page **pages;
4727 	unsigned long nr_pages;
4728 	struct kiocb iocb;
4729 	struct iovec *iov;
4730 	struct iov_iter iter;
4731 	struct extent_state *cached_state;
4732 	u64 count;
4733 	u64 start;
4734 	u64 lockend;
4735 	int err;
4736 	bool compressed;
4737 };
4738 
4739 struct io_btrfs_cmd {
4740 	struct btrfs_uring_priv *priv;
4741 };
4742 
4743 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4744 {
4745 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4746 	struct btrfs_uring_priv *priv = bc->priv;
4747 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4748 	struct extent_io_tree *io_tree = &inode->io_tree;
4749 	unsigned long index;
4750 	u64 cur;
4751 	size_t page_offset;
4752 	ssize_t ret;
4753 
4754 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4755 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4756 
4757 	if (priv->err) {
4758 		ret = priv->err;
4759 		goto out;
4760 	}
4761 
4762 	if (priv->compressed) {
4763 		index = 0;
4764 		page_offset = 0;
4765 	} else {
4766 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4767 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4768 	}
4769 	cur = 0;
4770 	while (cur < priv->count) {
4771 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4772 
4773 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4774 				      &priv->iter) != bytes) {
4775 			ret = -EFAULT;
4776 			goto out;
4777 		}
4778 
4779 		index++;
4780 		cur += bytes;
4781 		page_offset = 0;
4782 	}
4783 	ret = priv->count;
4784 
4785 out:
4786 	unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4787 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4788 
4789 	io_uring_cmd_done(cmd, ret, 0, issue_flags);
4790 	add_rchar(current, ret);
4791 
4792 	for (index = 0; index < priv->nr_pages; index++)
4793 		__free_page(priv->pages[index]);
4794 
4795 	kfree(priv->pages);
4796 	kfree(priv->iov);
4797 	kfree(priv);
4798 }
4799 
4800 void btrfs_uring_read_extent_endio(void *ctx, int err)
4801 {
4802 	struct btrfs_uring_priv *priv = ctx;
4803 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4804 
4805 	priv->err = err;
4806 	bc->priv = priv;
4807 
4808 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4809 }
4810 
4811 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4812 				   u64 start, u64 lockend,
4813 				   struct extent_state *cached_state,
4814 				   u64 disk_bytenr, u64 disk_io_size,
4815 				   size_t count, bool compressed,
4816 				   struct iovec *iov, struct io_uring_cmd *cmd)
4817 {
4818 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4819 	struct extent_io_tree *io_tree = &inode->io_tree;
4820 	struct page **pages;
4821 	struct btrfs_uring_priv *priv = NULL;
4822 	unsigned long nr_pages;
4823 	int ret;
4824 
4825 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4826 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4827 	if (!pages)
4828 		return -ENOMEM;
4829 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4830 	if (ret) {
4831 		ret = -ENOMEM;
4832 		goto out_fail;
4833 	}
4834 
4835 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4836 	if (!priv) {
4837 		ret = -ENOMEM;
4838 		goto out_fail;
4839 	}
4840 
4841 	priv->iocb = *iocb;
4842 	priv->iov = iov;
4843 	priv->iter = *iter;
4844 	priv->count = count;
4845 	priv->cmd = cmd;
4846 	priv->cached_state = cached_state;
4847 	priv->compressed = compressed;
4848 	priv->nr_pages = nr_pages;
4849 	priv->pages = pages;
4850 	priv->start = start;
4851 	priv->lockend = lockend;
4852 	priv->err = 0;
4853 
4854 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4855 						    disk_io_size, pages, priv);
4856 	if (ret && ret != -EIOCBQUEUED)
4857 		goto out_fail;
4858 
4859 	/*
4860 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4861 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4862 	 * and inode and freeing the allocations.
4863 	 */
4864 
4865 	/*
4866 	 * We're returning to userspace with the inode lock held, and that's
4867 	 * okay - it'll get unlocked in a worker thread.  Call
4868 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4869 	 */
4870 	btrfs_lockdep_inode_release(inode, i_rwsem);
4871 
4872 	return -EIOCBQUEUED;
4873 
4874 out_fail:
4875 	unlock_extent(io_tree, start, lockend, &cached_state);
4876 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4877 	kfree(priv);
4878 	return ret;
4879 }
4880 
4881 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4882 {
4883 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4884 	size_t copy_end;
4885 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4886 	int ret;
4887 	u64 disk_bytenr, disk_io_size;
4888 	struct file *file;
4889 	struct btrfs_inode *inode;
4890 	struct btrfs_fs_info *fs_info;
4891 	struct extent_io_tree *io_tree;
4892 	struct iovec iovstack[UIO_FASTIOV];
4893 	struct iovec *iov = iovstack;
4894 	struct iov_iter iter;
4895 	loff_t pos;
4896 	struct kiocb kiocb;
4897 	struct extent_state *cached_state = NULL;
4898 	u64 start, lockend;
4899 	void __user *sqe_addr;
4900 
4901 	if (!capable(CAP_SYS_ADMIN)) {
4902 		ret = -EPERM;
4903 		goto out_acct;
4904 	}
4905 	file = cmd->file;
4906 	inode = BTRFS_I(file->f_inode);
4907 	fs_info = inode->root->fs_info;
4908 	io_tree = &inode->io_tree;
4909 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4910 
4911 	if (issue_flags & IO_URING_F_COMPAT) {
4912 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4913 		struct btrfs_ioctl_encoded_io_args_32 args32;
4914 
4915 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4916 		if (copy_from_user(&args32, sqe_addr, copy_end)) {
4917 			ret = -EFAULT;
4918 			goto out_acct;
4919 		}
4920 		args.iov = compat_ptr(args32.iov);
4921 		args.iovcnt = args32.iovcnt;
4922 		args.offset = args32.offset;
4923 		args.flags = args32.flags;
4924 #else
4925 		return -ENOTTY;
4926 #endif
4927 	} else {
4928 		copy_end = copy_end_kernel;
4929 		if (copy_from_user(&args, sqe_addr, copy_end)) {
4930 			ret = -EFAULT;
4931 			goto out_acct;
4932 		}
4933 	}
4934 
4935 	if (args.flags != 0)
4936 		return -EINVAL;
4937 
4938 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4939 			   &iov, &iter);
4940 	if (ret < 0)
4941 		goto out_acct;
4942 
4943 	if (iov_iter_count(&iter) == 0) {
4944 		ret = 0;
4945 		goto out_free;
4946 	}
4947 
4948 	pos = args.offset;
4949 	ret = rw_verify_area(READ, file, &pos, args.len);
4950 	if (ret < 0)
4951 		goto out_free;
4952 
4953 	init_sync_kiocb(&kiocb, file);
4954 	kiocb.ki_pos = pos;
4955 
4956 	if (issue_flags & IO_URING_F_NONBLOCK)
4957 		kiocb.ki_flags |= IOCB_NOWAIT;
4958 
4959 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4960 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4961 
4962 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4963 				 &disk_bytenr, &disk_io_size);
4964 	if (ret < 0 && ret != -EIOCBQUEUED)
4965 		goto out_free;
4966 
4967 	file_accessed(file);
4968 
4969 	if (copy_to_user(sqe_addr + copy_end, (const char *)&args + copy_end_kernel,
4970 			 sizeof(args) - copy_end_kernel)) {
4971 		if (ret == -EIOCBQUEUED) {
4972 			unlock_extent(io_tree, start, lockend, &cached_state);
4973 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4974 		}
4975 		ret = -EFAULT;
4976 		goto out_free;
4977 	}
4978 
4979 	if (ret == -EIOCBQUEUED) {
4980 		u64 count;
4981 
4982 		/*
4983 		 * If we've optimized things by storing the iovecs on the stack,
4984 		 * undo this.
4985 		 */
4986 		if (!iov) {
4987 			iov = kmalloc(sizeof(struct iovec) * args.iovcnt, GFP_NOFS);
4988 			if (!iov) {
4989 				unlock_extent(io_tree, start, lockend, &cached_state);
4990 				btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4991 				ret = -ENOMEM;
4992 				goto out_acct;
4993 			}
4994 
4995 			memcpy(iov, iovstack, sizeof(struct iovec) * args.iovcnt);
4996 		}
4997 
4998 		count = min_t(u64, iov_iter_count(&iter), disk_io_size);
4999 
5000 		/* Match ioctl by not returning past EOF if uncompressed. */
5001 		if (!args.compression)
5002 			count = min_t(u64, count, args.len);
5003 
5004 		ret = btrfs_uring_read_extent(&kiocb, &iter, start, lockend,
5005 					      cached_state, disk_bytenr,
5006 					      disk_io_size, count,
5007 					      args.compression, iov, cmd);
5008 
5009 		goto out_acct;
5010 	}
5011 
5012 out_free:
5013 	kfree(iov);
5014 
5015 out_acct:
5016 	if (ret > 0)
5017 		add_rchar(current, ret);
5018 	inc_syscr(current);
5019 
5020 	return ret;
5021 }
5022 
5023 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5024 {
5025 	switch (cmd->cmd_op) {
5026 	case BTRFS_IOC_ENCODED_READ:
5027 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5028 	case BTRFS_IOC_ENCODED_READ_32:
5029 #endif
5030 		return btrfs_uring_encoded_read(cmd, issue_flags);
5031 	}
5032 
5033 	return -EINVAL;
5034 }
5035 
5036 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5037 {
5038 	struct btrfs_root *root;
5039 	struct btrfs_ioctl_subvol_wait args = { 0 };
5040 	signed long sched_ret;
5041 	int refs;
5042 	u64 root_flags;
5043 	bool wait_for_deletion = false;
5044 	bool found = false;
5045 
5046 	if (copy_from_user(&args, argp, sizeof(args)))
5047 		return -EFAULT;
5048 
5049 	switch (args.mode) {
5050 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5051 		/*
5052 		 * Wait for the first one deleted that waits until all previous
5053 		 * are cleaned.
5054 		 */
5055 		spin_lock(&fs_info->trans_lock);
5056 		if (!list_empty(&fs_info->dead_roots)) {
5057 			root = list_last_entry(&fs_info->dead_roots,
5058 					       struct btrfs_root, root_list);
5059 			args.subvolid = btrfs_root_id(root);
5060 			found = true;
5061 		}
5062 		spin_unlock(&fs_info->trans_lock);
5063 		if (!found)
5064 			return -ENOENT;
5065 
5066 		fallthrough;
5067 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5068 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5069 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5070 			return -EINVAL;
5071 		break;
5072 	case BTRFS_SUBVOL_SYNC_COUNT:
5073 		spin_lock(&fs_info->trans_lock);
5074 		args.count = list_count_nodes(&fs_info->dead_roots);
5075 		spin_unlock(&fs_info->trans_lock);
5076 		if (copy_to_user(argp, &args, sizeof(args)))
5077 			return -EFAULT;
5078 		return 0;
5079 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5080 		spin_lock(&fs_info->trans_lock);
5081 		/* Last in the list was deleted first. */
5082 		if (!list_empty(&fs_info->dead_roots)) {
5083 			root = list_last_entry(&fs_info->dead_roots,
5084 					       struct btrfs_root, root_list);
5085 			args.subvolid = btrfs_root_id(root);
5086 		} else {
5087 			args.subvolid = 0;
5088 		}
5089 		spin_unlock(&fs_info->trans_lock);
5090 		if (copy_to_user(argp, &args, sizeof(args)))
5091 			return -EFAULT;
5092 		return 0;
5093 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5094 		spin_lock(&fs_info->trans_lock);
5095 		/* First in the list was deleted last. */
5096 		if (!list_empty(&fs_info->dead_roots)) {
5097 			root = list_first_entry(&fs_info->dead_roots,
5098 						struct btrfs_root, root_list);
5099 			args.subvolid = btrfs_root_id(root);
5100 		} else {
5101 			args.subvolid = 0;
5102 		}
5103 		spin_unlock(&fs_info->trans_lock);
5104 		if (copy_to_user(argp, &args, sizeof(args)))
5105 			return -EFAULT;
5106 		return 0;
5107 	default:
5108 		return -EINVAL;
5109 	}
5110 
5111 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5112 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5113 		return -EOVERFLOW;
5114 
5115 	while (1) {
5116 		/* Wait for the specific one. */
5117 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5118 			return -EINTR;
5119 		refs = -1;
5120 		spin_lock(&fs_info->fs_roots_radix_lock);
5121 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5122 					 (unsigned long)args.subvolid);
5123 		if (root) {
5124 			spin_lock(&root->root_item_lock);
5125 			refs = btrfs_root_refs(&root->root_item);
5126 			root_flags = btrfs_root_flags(&root->root_item);
5127 			spin_unlock(&root->root_item_lock);
5128 		}
5129 		spin_unlock(&fs_info->fs_roots_radix_lock);
5130 		up_read(&fs_info->subvol_sem);
5131 
5132 		/* Subvolume does not exist. */
5133 		if (!root)
5134 			return -ENOENT;
5135 
5136 		/* Subvolume not deleted at all. */
5137 		if (refs > 0)
5138 			return -EEXIST;
5139 		/* We've waited and now the subvolume is gone. */
5140 		if (wait_for_deletion && refs == -1) {
5141 			/* Return the one we waited for as the last one. */
5142 			if (copy_to_user(argp, &args, sizeof(args)))
5143 				return -EFAULT;
5144 			return 0;
5145 		}
5146 
5147 		/* Subvolume not found on the first try (deleted or never existed). */
5148 		if (refs == -1)
5149 			return -ENOENT;
5150 
5151 		wait_for_deletion = true;
5152 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5153 		sched_ret = schedule_timeout_interruptible(HZ);
5154 		/* Early wake up or error. */
5155 		if (sched_ret != 0)
5156 			return -EINTR;
5157 	}
5158 
5159 	return 0;
5160 }
5161 
5162 long btrfs_ioctl(struct file *file, unsigned int
5163 		cmd, unsigned long arg)
5164 {
5165 	struct inode *inode = file_inode(file);
5166 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5167 	struct btrfs_root *root = BTRFS_I(inode)->root;
5168 	void __user *argp = (void __user *)arg;
5169 
5170 	switch (cmd) {
5171 	case FS_IOC_GETVERSION:
5172 		return btrfs_ioctl_getversion(inode, argp);
5173 	case FS_IOC_GETFSLABEL:
5174 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5175 	case FS_IOC_SETFSLABEL:
5176 		return btrfs_ioctl_set_fslabel(file, argp);
5177 	case FITRIM:
5178 		return btrfs_ioctl_fitrim(fs_info, argp);
5179 	case BTRFS_IOC_SNAP_CREATE:
5180 		return btrfs_ioctl_snap_create(file, argp, 0);
5181 	case BTRFS_IOC_SNAP_CREATE_V2:
5182 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5183 	case BTRFS_IOC_SUBVOL_CREATE:
5184 		return btrfs_ioctl_snap_create(file, argp, 1);
5185 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5186 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5187 	case BTRFS_IOC_SNAP_DESTROY:
5188 		return btrfs_ioctl_snap_destroy(file, argp, false);
5189 	case BTRFS_IOC_SNAP_DESTROY_V2:
5190 		return btrfs_ioctl_snap_destroy(file, argp, true);
5191 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5192 		return btrfs_ioctl_subvol_getflags(inode, argp);
5193 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5194 		return btrfs_ioctl_subvol_setflags(file, argp);
5195 	case BTRFS_IOC_DEFAULT_SUBVOL:
5196 		return btrfs_ioctl_default_subvol(file, argp);
5197 	case BTRFS_IOC_DEFRAG:
5198 		return btrfs_ioctl_defrag(file, NULL);
5199 	case BTRFS_IOC_DEFRAG_RANGE:
5200 		return btrfs_ioctl_defrag(file, argp);
5201 	case BTRFS_IOC_RESIZE:
5202 		return btrfs_ioctl_resize(file, argp);
5203 	case BTRFS_IOC_ADD_DEV:
5204 		return btrfs_ioctl_add_dev(fs_info, argp);
5205 	case BTRFS_IOC_RM_DEV:
5206 		return btrfs_ioctl_rm_dev(file, argp);
5207 	case BTRFS_IOC_RM_DEV_V2:
5208 		return btrfs_ioctl_rm_dev_v2(file, argp);
5209 	case BTRFS_IOC_FS_INFO:
5210 		return btrfs_ioctl_fs_info(fs_info, argp);
5211 	case BTRFS_IOC_DEV_INFO:
5212 		return btrfs_ioctl_dev_info(fs_info, argp);
5213 	case BTRFS_IOC_TREE_SEARCH:
5214 		return btrfs_ioctl_tree_search(inode, argp);
5215 	case BTRFS_IOC_TREE_SEARCH_V2:
5216 		return btrfs_ioctl_tree_search_v2(inode, argp);
5217 	case BTRFS_IOC_INO_LOOKUP:
5218 		return btrfs_ioctl_ino_lookup(root, argp);
5219 	case BTRFS_IOC_INO_PATHS:
5220 		return btrfs_ioctl_ino_to_path(root, argp);
5221 	case BTRFS_IOC_LOGICAL_INO:
5222 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5223 	case BTRFS_IOC_LOGICAL_INO_V2:
5224 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5225 	case BTRFS_IOC_SPACE_INFO:
5226 		return btrfs_ioctl_space_info(fs_info, argp);
5227 	case BTRFS_IOC_SYNC: {
5228 		int ret;
5229 
5230 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5231 		if (ret)
5232 			return ret;
5233 		ret = btrfs_sync_fs(inode->i_sb, 1);
5234 		/*
5235 		 * There may be work for the cleaner kthread to do (subvolume
5236 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5237 		 */
5238 		wake_up_process(fs_info->cleaner_kthread);
5239 		return ret;
5240 	}
5241 	case BTRFS_IOC_START_SYNC:
5242 		return btrfs_ioctl_start_sync(root, argp);
5243 	case BTRFS_IOC_WAIT_SYNC:
5244 		return btrfs_ioctl_wait_sync(fs_info, argp);
5245 	case BTRFS_IOC_SCRUB:
5246 		return btrfs_ioctl_scrub(file, argp);
5247 	case BTRFS_IOC_SCRUB_CANCEL:
5248 		return btrfs_ioctl_scrub_cancel(fs_info);
5249 	case BTRFS_IOC_SCRUB_PROGRESS:
5250 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5251 	case BTRFS_IOC_BALANCE_V2:
5252 		return btrfs_ioctl_balance(file, argp);
5253 	case BTRFS_IOC_BALANCE_CTL:
5254 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5255 	case BTRFS_IOC_BALANCE_PROGRESS:
5256 		return btrfs_ioctl_balance_progress(fs_info, argp);
5257 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5258 		return btrfs_ioctl_set_received_subvol(file, argp);
5259 #ifdef CONFIG_64BIT
5260 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5261 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5262 #endif
5263 	case BTRFS_IOC_SEND:
5264 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
5265 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5266 	case BTRFS_IOC_SEND_32:
5267 		return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
5268 #endif
5269 	case BTRFS_IOC_GET_DEV_STATS:
5270 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5271 	case BTRFS_IOC_QUOTA_CTL:
5272 		return btrfs_ioctl_quota_ctl(file, argp);
5273 	case BTRFS_IOC_QGROUP_ASSIGN:
5274 		return btrfs_ioctl_qgroup_assign(file, argp);
5275 	case BTRFS_IOC_QGROUP_CREATE:
5276 		return btrfs_ioctl_qgroup_create(file, argp);
5277 	case BTRFS_IOC_QGROUP_LIMIT:
5278 		return btrfs_ioctl_qgroup_limit(file, argp);
5279 	case BTRFS_IOC_QUOTA_RESCAN:
5280 		return btrfs_ioctl_quota_rescan(file, argp);
5281 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5282 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5283 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5284 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5285 	case BTRFS_IOC_DEV_REPLACE:
5286 		return btrfs_ioctl_dev_replace(fs_info, argp);
5287 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5288 		return btrfs_ioctl_get_supported_features(argp);
5289 	case BTRFS_IOC_GET_FEATURES:
5290 		return btrfs_ioctl_get_features(fs_info, argp);
5291 	case BTRFS_IOC_SET_FEATURES:
5292 		return btrfs_ioctl_set_features(file, argp);
5293 	case BTRFS_IOC_GET_SUBVOL_INFO:
5294 		return btrfs_ioctl_get_subvol_info(inode, argp);
5295 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5296 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5297 	case BTRFS_IOC_INO_LOOKUP_USER:
5298 		return btrfs_ioctl_ino_lookup_user(file, argp);
5299 	case FS_IOC_ENABLE_VERITY:
5300 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5301 	case FS_IOC_MEASURE_VERITY:
5302 		return fsverity_ioctl_measure(file, argp);
5303 	case BTRFS_IOC_ENCODED_READ:
5304 		return btrfs_ioctl_encoded_read(file, argp, false);
5305 	case BTRFS_IOC_ENCODED_WRITE:
5306 		return btrfs_ioctl_encoded_write(file, argp, false);
5307 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5308 	case BTRFS_IOC_ENCODED_READ_32:
5309 		return btrfs_ioctl_encoded_read(file, argp, true);
5310 	case BTRFS_IOC_ENCODED_WRITE_32:
5311 		return btrfs_ioctl_encoded_write(file, argp, true);
5312 #endif
5313 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5314 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5315 	}
5316 
5317 	return -ENOTTY;
5318 }
5319 
5320 #ifdef CONFIG_COMPAT
5321 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5322 {
5323 	/*
5324 	 * These all access 32-bit values anyway so no further
5325 	 * handling is necessary.
5326 	 */
5327 	switch (cmd) {
5328 	case FS_IOC32_GETVERSION:
5329 		cmd = FS_IOC_GETVERSION;
5330 		break;
5331 	}
5332 
5333 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5334 }
5335 #endif
5336