1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 /* Mask out flags that are inappropriate for the given type of inode. */ 90 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 91 unsigned int flags) 92 { 93 if (S_ISDIR(inode->i_mode)) 94 return flags; 95 else if (S_ISREG(inode->i_mode)) 96 return flags & ~FS_DIRSYNC_FL; 97 else 98 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 99 } 100 101 /* 102 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 103 * ioctl. 104 */ 105 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 106 { 107 unsigned int iflags = 0; 108 109 if (flags & BTRFS_INODE_SYNC) 110 iflags |= FS_SYNC_FL; 111 if (flags & BTRFS_INODE_IMMUTABLE) 112 iflags |= FS_IMMUTABLE_FL; 113 if (flags & BTRFS_INODE_APPEND) 114 iflags |= FS_APPEND_FL; 115 if (flags & BTRFS_INODE_NODUMP) 116 iflags |= FS_NODUMP_FL; 117 if (flags & BTRFS_INODE_NOATIME) 118 iflags |= FS_NOATIME_FL; 119 if (flags & BTRFS_INODE_DIRSYNC) 120 iflags |= FS_DIRSYNC_FL; 121 if (flags & BTRFS_INODE_NODATACOW) 122 iflags |= FS_NOCOW_FL; 123 124 if (flags & BTRFS_INODE_NOCOMPRESS) 125 iflags |= FS_NOCOMP_FL; 126 else if (flags & BTRFS_INODE_COMPRESS) 127 iflags |= FS_COMPR_FL; 128 129 return iflags; 130 } 131 132 /* 133 * Update inode->i_flags based on the btrfs internal flags. 134 */ 135 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 136 { 137 struct btrfs_inode *binode = BTRFS_I(inode); 138 unsigned int new_fl = 0; 139 140 if (binode->flags & BTRFS_INODE_SYNC) 141 new_fl |= S_SYNC; 142 if (binode->flags & BTRFS_INODE_IMMUTABLE) 143 new_fl |= S_IMMUTABLE; 144 if (binode->flags & BTRFS_INODE_APPEND) 145 new_fl |= S_APPEND; 146 if (binode->flags & BTRFS_INODE_NOATIME) 147 new_fl |= S_NOATIME; 148 if (binode->flags & BTRFS_INODE_DIRSYNC) 149 new_fl |= S_DIRSYNC; 150 151 set_mask_bits(&inode->i_flags, 152 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 153 new_fl); 154 } 155 156 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 157 { 158 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 159 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 160 161 if (copy_to_user(arg, &flags, sizeof(flags))) 162 return -EFAULT; 163 return 0; 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 205 { 206 struct inode *inode = file_inode(file); 207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 208 struct btrfs_inode *binode = BTRFS_I(inode); 209 struct btrfs_root *root = binode->root; 210 struct btrfs_trans_handle *trans; 211 unsigned int fsflags, old_fsflags; 212 int ret; 213 const char *comp = NULL; 214 u32 binode_flags; 215 216 if (!inode_owner_or_capable(&init_user_ns, inode)) 217 return -EPERM; 218 219 if (btrfs_root_readonly(root)) 220 return -EROFS; 221 222 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 223 return -EFAULT; 224 225 ret = mnt_want_write_file(file); 226 if (ret) 227 return ret; 228 229 inode_lock(inode); 230 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 231 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 232 233 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 234 if (ret) 235 goto out_unlock; 236 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 goto out_unlock; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 goto out_unlock; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 if (fsflags & FS_DIRSYNC_FL) 267 binode_flags |= BTRFS_INODE_DIRSYNC; 268 else 269 binode_flags &= ~BTRFS_INODE_DIRSYNC; 270 if (fsflags & FS_NOCOW_FL) { 271 if (S_ISREG(inode->i_mode)) { 272 /* 273 * It's safe to turn csums off here, no extents exist. 274 * Otherwise we want the flag to reflect the real COW 275 * status of the file and will not set it. 276 */ 277 if (inode->i_size == 0) 278 binode_flags |= BTRFS_INODE_NODATACOW | 279 BTRFS_INODE_NODATASUM; 280 } else { 281 binode_flags |= BTRFS_INODE_NODATACOW; 282 } 283 } else { 284 /* 285 * Revert back under same assumptions as above 286 */ 287 if (S_ISREG(inode->i_mode)) { 288 if (inode->i_size == 0) 289 binode_flags &= ~(BTRFS_INODE_NODATACOW | 290 BTRFS_INODE_NODATASUM); 291 } else { 292 binode_flags &= ~BTRFS_INODE_NODATACOW; 293 } 294 } 295 296 /* 297 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 298 * flag may be changed automatically if compression code won't make 299 * things smaller. 300 */ 301 if (fsflags & FS_NOCOMP_FL) { 302 binode_flags &= ~BTRFS_INODE_COMPRESS; 303 binode_flags |= BTRFS_INODE_NOCOMPRESS; 304 } else if (fsflags & FS_COMPR_FL) { 305 306 if (IS_SWAPFILE(inode)) { 307 ret = -ETXTBSY; 308 goto out_unlock; 309 } 310 311 binode_flags |= BTRFS_INODE_COMPRESS; 312 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 313 314 comp = btrfs_compress_type2str(fs_info->compress_type); 315 if (!comp || comp[0] == 0) 316 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 317 } else { 318 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 319 } 320 321 /* 322 * 1 for inode item 323 * 2 for properties 324 */ 325 trans = btrfs_start_transaction(root, 3); 326 if (IS_ERR(trans)) { 327 ret = PTR_ERR(trans); 328 goto out_unlock; 329 } 330 331 if (comp) { 332 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 333 strlen(comp), 0); 334 if (ret) { 335 btrfs_abort_transaction(trans, ret); 336 goto out_end_trans; 337 } 338 } else { 339 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 340 0, 0); 341 if (ret && ret != -ENODATA) { 342 btrfs_abort_transaction(trans, ret); 343 goto out_end_trans; 344 } 345 } 346 347 binode->flags = binode_flags; 348 btrfs_sync_inode_flags_to_i_flags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = current_time(inode); 351 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 352 353 out_end_trans: 354 btrfs_end_transaction(trans); 355 out_unlock: 356 inode_unlock(inode); 357 mnt_drop_write_file(file); 358 return ret; 359 } 360 361 /* 362 * Translate btrfs internal inode flags to xflags as expected by the 363 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 364 * silently dropped. 365 */ 366 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 367 { 368 unsigned int xflags = 0; 369 370 if (flags & BTRFS_INODE_APPEND) 371 xflags |= FS_XFLAG_APPEND; 372 if (flags & BTRFS_INODE_IMMUTABLE) 373 xflags |= FS_XFLAG_IMMUTABLE; 374 if (flags & BTRFS_INODE_NOATIME) 375 xflags |= FS_XFLAG_NOATIME; 376 if (flags & BTRFS_INODE_NODUMP) 377 xflags |= FS_XFLAG_NODUMP; 378 if (flags & BTRFS_INODE_SYNC) 379 xflags |= FS_XFLAG_SYNC; 380 381 return xflags; 382 } 383 384 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 385 static int check_xflags(unsigned int flags) 386 { 387 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 388 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 389 return -EOPNOTSUPP; 390 return 0; 391 } 392 393 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 394 enum btrfs_exclusive_operation type) 395 { 396 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 397 } 398 399 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 400 { 401 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 402 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 403 } 404 405 /* 406 * Set the xflags from the internal inode flags. The remaining items of fsxattr 407 * are zeroed. 408 */ 409 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 410 { 411 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 412 struct fsxattr fa; 413 414 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 415 if (copy_to_user(arg, &fa, sizeof(fa))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 422 { 423 struct inode *inode = file_inode(file); 424 struct btrfs_inode *binode = BTRFS_I(inode); 425 struct btrfs_root *root = binode->root; 426 struct btrfs_trans_handle *trans; 427 struct fsxattr fa, old_fa; 428 unsigned old_flags; 429 unsigned old_i_flags; 430 int ret = 0; 431 432 if (!inode_owner_or_capable(&init_user_ns, inode)) 433 return -EPERM; 434 435 if (btrfs_root_readonly(root)) 436 return -EROFS; 437 438 if (copy_from_user(&fa, arg, sizeof(fa))) 439 return -EFAULT; 440 441 ret = check_xflags(fa.fsx_xflags); 442 if (ret) 443 return ret; 444 445 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 446 return -EOPNOTSUPP; 447 448 ret = mnt_want_write_file(file); 449 if (ret) 450 return ret; 451 452 inode_lock(inode); 453 454 old_flags = binode->flags; 455 old_i_flags = inode->i_flags; 456 457 simple_fill_fsxattr(&old_fa, 458 btrfs_inode_flags_to_xflags(binode->flags)); 459 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 460 if (ret) 461 goto out_unlock; 462 463 if (fa.fsx_xflags & FS_XFLAG_SYNC) 464 binode->flags |= BTRFS_INODE_SYNC; 465 else 466 binode->flags &= ~BTRFS_INODE_SYNC; 467 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 468 binode->flags |= BTRFS_INODE_IMMUTABLE; 469 else 470 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 471 if (fa.fsx_xflags & FS_XFLAG_APPEND) 472 binode->flags |= BTRFS_INODE_APPEND; 473 else 474 binode->flags &= ~BTRFS_INODE_APPEND; 475 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 476 binode->flags |= BTRFS_INODE_NODUMP; 477 else 478 binode->flags &= ~BTRFS_INODE_NODUMP; 479 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 480 binode->flags |= BTRFS_INODE_NOATIME; 481 else 482 binode->flags &= ~BTRFS_INODE_NOATIME; 483 484 /* 1 item for the inode */ 485 trans = btrfs_start_transaction(root, 1); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 goto out_unlock; 489 } 490 491 btrfs_sync_inode_flags_to_i_flags(inode); 492 inode_inc_iversion(inode); 493 inode->i_ctime = current_time(inode); 494 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 495 496 btrfs_end_transaction(trans); 497 498 out_unlock: 499 if (ret) { 500 binode->flags = old_flags; 501 inode->i_flags = old_i_flags; 502 } 503 504 inode_unlock(inode); 505 mnt_drop_write_file(file); 506 507 return ret; 508 } 509 510 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 511 { 512 struct inode *inode = file_inode(file); 513 514 return put_user(inode->i_generation, arg); 515 } 516 517 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 518 void __user *arg) 519 { 520 struct btrfs_device *device; 521 struct request_queue *q; 522 struct fstrim_range range; 523 u64 minlen = ULLONG_MAX; 524 u64 num_devices = 0; 525 int ret; 526 527 if (!capable(CAP_SYS_ADMIN)) 528 return -EPERM; 529 530 /* 531 * btrfs_trim_block_group() depends on space cache, which is not 532 * available in zoned filesystem. So, disallow fitrim on a zoned 533 * filesystem for now. 534 */ 535 if (btrfs_is_zoned(fs_info)) 536 return -EOPNOTSUPP; 537 538 /* 539 * If the fs is mounted with nologreplay, which requires it to be 540 * mounted in RO mode as well, we can not allow discard on free space 541 * inside block groups, because log trees refer to extents that are not 542 * pinned in a block group's free space cache (pinning the extents is 543 * precisely the first phase of replaying a log tree). 544 */ 545 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 546 return -EROFS; 547 548 rcu_read_lock(); 549 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 550 dev_list) { 551 if (!device->bdev) 552 continue; 553 q = bdev_get_queue(device->bdev); 554 if (blk_queue_discard(q)) { 555 num_devices++; 556 minlen = min_t(u64, q->limits.discard_granularity, 557 minlen); 558 } 559 } 560 rcu_read_unlock(); 561 562 if (!num_devices) 563 return -EOPNOTSUPP; 564 if (copy_from_user(&range, arg, sizeof(range))) 565 return -EFAULT; 566 567 /* 568 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 569 * block group is in the logical address space, which can be any 570 * sectorsize aligned bytenr in the range [0, U64_MAX]. 571 */ 572 if (range.len < fs_info->sb->s_blocksize) 573 return -EINVAL; 574 575 range.minlen = max(range.minlen, minlen); 576 ret = btrfs_trim_fs(fs_info, &range); 577 if (ret < 0) 578 return ret; 579 580 if (copy_to_user(arg, &range, sizeof(range))) 581 return -EFAULT; 582 583 return 0; 584 } 585 586 int __pure btrfs_is_empty_uuid(u8 *uuid) 587 { 588 int i; 589 590 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 591 if (uuid[i]) 592 return 0; 593 } 594 return 1; 595 } 596 597 static noinline int create_subvol(struct inode *dir, 598 struct dentry *dentry, 599 const char *name, int namelen, 600 struct btrfs_qgroup_inherit *inherit) 601 { 602 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 603 struct btrfs_trans_handle *trans; 604 struct btrfs_key key; 605 struct btrfs_root_item *root_item; 606 struct btrfs_inode_item *inode_item; 607 struct extent_buffer *leaf; 608 struct btrfs_root *root = BTRFS_I(dir)->root; 609 struct btrfs_root *new_root; 610 struct btrfs_block_rsv block_rsv; 611 struct timespec64 cur_time = current_time(dir); 612 struct inode *inode; 613 int ret; 614 int err; 615 dev_t anon_dev = 0; 616 u64 objectid; 617 u64 index = 0; 618 619 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 620 if (!root_item) 621 return -ENOMEM; 622 623 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 624 if (ret) 625 goto fail_free; 626 627 ret = get_anon_bdev(&anon_dev); 628 if (ret < 0) 629 goto fail_free; 630 631 /* 632 * Don't create subvolume whose level is not zero. Or qgroup will be 633 * screwed up since it assumes subvolume qgroup's level to be 0. 634 */ 635 if (btrfs_qgroup_level(objectid)) { 636 ret = -ENOSPC; 637 goto fail_free; 638 } 639 640 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 641 /* 642 * The same as the snapshot creation, please see the comment 643 * of create_snapshot(). 644 */ 645 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 646 if (ret) 647 goto fail_free; 648 649 trans = btrfs_start_transaction(root, 0); 650 if (IS_ERR(trans)) { 651 ret = PTR_ERR(trans); 652 btrfs_subvolume_release_metadata(root, &block_rsv); 653 goto fail_free; 654 } 655 trans->block_rsv = &block_rsv; 656 trans->bytes_reserved = block_rsv.size; 657 658 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 659 if (ret) 660 goto fail; 661 662 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 663 BTRFS_NESTING_NORMAL); 664 if (IS_ERR(leaf)) { 665 ret = PTR_ERR(leaf); 666 goto fail; 667 } 668 669 btrfs_mark_buffer_dirty(leaf); 670 671 inode_item = &root_item->inode; 672 btrfs_set_stack_inode_generation(inode_item, 1); 673 btrfs_set_stack_inode_size(inode_item, 3); 674 btrfs_set_stack_inode_nlink(inode_item, 1); 675 btrfs_set_stack_inode_nbytes(inode_item, 676 fs_info->nodesize); 677 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 678 679 btrfs_set_root_flags(root_item, 0); 680 btrfs_set_root_limit(root_item, 0); 681 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 682 683 btrfs_set_root_bytenr(root_item, leaf->start); 684 btrfs_set_root_generation(root_item, trans->transid); 685 btrfs_set_root_level(root_item, 0); 686 btrfs_set_root_refs(root_item, 1); 687 btrfs_set_root_used(root_item, leaf->len); 688 btrfs_set_root_last_snapshot(root_item, 0); 689 690 btrfs_set_root_generation_v2(root_item, 691 btrfs_root_generation(root_item)); 692 generate_random_guid(root_item->uuid); 693 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 694 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 695 root_item->ctime = root_item->otime; 696 btrfs_set_root_ctransid(root_item, trans->transid); 697 btrfs_set_root_otransid(root_item, trans->transid); 698 699 btrfs_tree_unlock(leaf); 700 free_extent_buffer(leaf); 701 leaf = NULL; 702 703 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 704 705 key.objectid = objectid; 706 key.offset = 0; 707 key.type = BTRFS_ROOT_ITEM_KEY; 708 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 709 root_item); 710 if (ret) 711 goto fail; 712 713 key.offset = (u64)-1; 714 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 715 if (IS_ERR(new_root)) { 716 free_anon_bdev(anon_dev); 717 ret = PTR_ERR(new_root); 718 btrfs_abort_transaction(trans, ret); 719 goto fail; 720 } 721 /* Freeing will be done in btrfs_put_root() of new_root */ 722 anon_dev = 0; 723 724 btrfs_record_root_in_trans(trans, new_root); 725 726 ret = btrfs_create_subvol_root(trans, new_root, root); 727 btrfs_put_root(new_root); 728 if (ret) { 729 /* We potentially lose an unused inode item here */ 730 btrfs_abort_transaction(trans, ret); 731 goto fail; 732 } 733 734 /* 735 * insert the directory item 736 */ 737 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 738 if (ret) { 739 btrfs_abort_transaction(trans, ret); 740 goto fail; 741 } 742 743 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 744 BTRFS_FT_DIR, index); 745 if (ret) { 746 btrfs_abort_transaction(trans, ret); 747 goto fail; 748 } 749 750 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 751 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto fail; 755 } 756 757 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 758 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 759 if (ret) { 760 btrfs_abort_transaction(trans, ret); 761 goto fail; 762 } 763 764 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 765 BTRFS_UUID_KEY_SUBVOL, objectid); 766 if (ret) 767 btrfs_abort_transaction(trans, ret); 768 769 fail: 770 kfree(root_item); 771 trans->block_rsv = NULL; 772 trans->bytes_reserved = 0; 773 btrfs_subvolume_release_metadata(root, &block_rsv); 774 775 err = btrfs_commit_transaction(trans); 776 if (err && !ret) 777 ret = err; 778 779 if (!ret) { 780 inode = btrfs_lookup_dentry(dir, dentry); 781 if (IS_ERR(inode)) 782 return PTR_ERR(inode); 783 d_instantiate(dentry, inode); 784 } 785 return ret; 786 787 fail_free: 788 if (anon_dev) 789 free_anon_bdev(anon_dev); 790 kfree(root_item); 791 return ret; 792 } 793 794 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 795 struct dentry *dentry, bool readonly, 796 struct btrfs_qgroup_inherit *inherit) 797 { 798 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 799 struct inode *inode; 800 struct btrfs_pending_snapshot *pending_snapshot; 801 struct btrfs_trans_handle *trans; 802 int ret; 803 804 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 805 return -EINVAL; 806 807 if (atomic_read(&root->nr_swapfiles)) { 808 btrfs_warn(fs_info, 809 "cannot snapshot subvolume with active swapfile"); 810 return -ETXTBSY; 811 } 812 813 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 814 if (!pending_snapshot) 815 return -ENOMEM; 816 817 ret = get_anon_bdev(&pending_snapshot->anon_dev); 818 if (ret < 0) 819 goto free_pending; 820 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 821 GFP_KERNEL); 822 pending_snapshot->path = btrfs_alloc_path(); 823 if (!pending_snapshot->root_item || !pending_snapshot->path) { 824 ret = -ENOMEM; 825 goto free_pending; 826 } 827 828 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 829 BTRFS_BLOCK_RSV_TEMP); 830 /* 831 * 1 - parent dir inode 832 * 2 - dir entries 833 * 1 - root item 834 * 2 - root ref/backref 835 * 1 - root of snapshot 836 * 1 - UUID item 837 */ 838 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 839 &pending_snapshot->block_rsv, 8, 840 false); 841 if (ret) 842 goto free_pending; 843 844 pending_snapshot->dentry = dentry; 845 pending_snapshot->root = root; 846 pending_snapshot->readonly = readonly; 847 pending_snapshot->dir = dir; 848 pending_snapshot->inherit = inherit; 849 850 trans = btrfs_start_transaction(root, 0); 851 if (IS_ERR(trans)) { 852 ret = PTR_ERR(trans); 853 goto fail; 854 } 855 856 spin_lock(&fs_info->trans_lock); 857 list_add(&pending_snapshot->list, 858 &trans->transaction->pending_snapshots); 859 spin_unlock(&fs_info->trans_lock); 860 861 ret = btrfs_commit_transaction(trans); 862 if (ret) 863 goto fail; 864 865 ret = pending_snapshot->error; 866 if (ret) 867 goto fail; 868 869 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 870 if (ret) 871 goto fail; 872 873 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 874 if (IS_ERR(inode)) { 875 ret = PTR_ERR(inode); 876 goto fail; 877 } 878 879 d_instantiate(dentry, inode); 880 ret = 0; 881 pending_snapshot->anon_dev = 0; 882 fail: 883 /* Prevent double freeing of anon_dev */ 884 if (ret && pending_snapshot->snap) 885 pending_snapshot->snap->anon_dev = 0; 886 btrfs_put_root(pending_snapshot->snap); 887 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 888 free_pending: 889 if (pending_snapshot->anon_dev) 890 free_anon_bdev(pending_snapshot->anon_dev); 891 kfree(pending_snapshot->root_item); 892 btrfs_free_path(pending_snapshot->path); 893 kfree(pending_snapshot); 894 895 return ret; 896 } 897 898 /* copy of may_delete in fs/namei.c() 899 * Check whether we can remove a link victim from directory dir, check 900 * whether the type of victim is right. 901 * 1. We can't do it if dir is read-only (done in permission()) 902 * 2. We should have write and exec permissions on dir 903 * 3. We can't remove anything from append-only dir 904 * 4. We can't do anything with immutable dir (done in permission()) 905 * 5. If the sticky bit on dir is set we should either 906 * a. be owner of dir, or 907 * b. be owner of victim, or 908 * c. have CAP_FOWNER capability 909 * 6. If the victim is append-only or immutable we can't do anything with 910 * links pointing to it. 911 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 912 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 913 * 9. We can't remove a root or mountpoint. 914 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 915 * nfs_async_unlink(). 916 */ 917 918 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 919 { 920 int error; 921 922 if (d_really_is_negative(victim)) 923 return -ENOENT; 924 925 BUG_ON(d_inode(victim->d_parent) != dir); 926 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 927 928 error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 929 if (error) 930 return error; 931 if (IS_APPEND(dir)) 932 return -EPERM; 933 if (check_sticky(&init_user_ns, dir, d_inode(victim)) || 934 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 935 IS_SWAPFILE(d_inode(victim))) 936 return -EPERM; 937 if (isdir) { 938 if (!d_is_dir(victim)) 939 return -ENOTDIR; 940 if (IS_ROOT(victim)) 941 return -EBUSY; 942 } else if (d_is_dir(victim)) 943 return -EISDIR; 944 if (IS_DEADDIR(dir)) 945 return -ENOENT; 946 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 947 return -EBUSY; 948 return 0; 949 } 950 951 /* copy of may_create in fs/namei.c() */ 952 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 953 { 954 if (d_really_is_positive(child)) 955 return -EEXIST; 956 if (IS_DEADDIR(dir)) 957 return -ENOENT; 958 return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 959 } 960 961 /* 962 * Create a new subvolume below @parent. This is largely modeled after 963 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 964 * inside this filesystem so it's quite a bit simpler. 965 */ 966 static noinline int btrfs_mksubvol(const struct path *parent, 967 const char *name, int namelen, 968 struct btrfs_root *snap_src, 969 bool readonly, 970 struct btrfs_qgroup_inherit *inherit) 971 { 972 struct inode *dir = d_inode(parent->dentry); 973 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 974 struct dentry *dentry; 975 int error; 976 977 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 978 if (error == -EINTR) 979 return error; 980 981 dentry = lookup_one_len(name, parent->dentry, namelen); 982 error = PTR_ERR(dentry); 983 if (IS_ERR(dentry)) 984 goto out_unlock; 985 986 error = btrfs_may_create(dir, dentry); 987 if (error) 988 goto out_dput; 989 990 /* 991 * even if this name doesn't exist, we may get hash collisions. 992 * check for them now when we can safely fail 993 */ 994 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 995 dir->i_ino, name, 996 namelen); 997 if (error) 998 goto out_dput; 999 1000 down_read(&fs_info->subvol_sem); 1001 1002 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1003 goto out_up_read; 1004 1005 if (snap_src) 1006 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1007 else 1008 error = create_subvol(dir, dentry, name, namelen, inherit); 1009 1010 if (!error) 1011 fsnotify_mkdir(dir, dentry); 1012 out_up_read: 1013 up_read(&fs_info->subvol_sem); 1014 out_dput: 1015 dput(dentry); 1016 out_unlock: 1017 inode_unlock(dir); 1018 return error; 1019 } 1020 1021 static noinline int btrfs_mksnapshot(const struct path *parent, 1022 const char *name, int namelen, 1023 struct btrfs_root *root, 1024 bool readonly, 1025 struct btrfs_qgroup_inherit *inherit) 1026 { 1027 int ret; 1028 bool snapshot_force_cow = false; 1029 1030 /* 1031 * Force new buffered writes to reserve space even when NOCOW is 1032 * possible. This is to avoid later writeback (running dealloc) to 1033 * fallback to COW mode and unexpectedly fail with ENOSPC. 1034 */ 1035 btrfs_drew_read_lock(&root->snapshot_lock); 1036 1037 ret = btrfs_start_delalloc_snapshot(root); 1038 if (ret) 1039 goto out; 1040 1041 /* 1042 * All previous writes have started writeback in NOCOW mode, so now 1043 * we force future writes to fallback to COW mode during snapshot 1044 * creation. 1045 */ 1046 atomic_inc(&root->snapshot_force_cow); 1047 snapshot_force_cow = true; 1048 1049 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1050 1051 ret = btrfs_mksubvol(parent, name, namelen, 1052 root, readonly, inherit); 1053 out: 1054 if (snapshot_force_cow) 1055 atomic_dec(&root->snapshot_force_cow); 1056 btrfs_drew_read_unlock(&root->snapshot_lock); 1057 return ret; 1058 } 1059 1060 /* 1061 * When we're defragging a range, we don't want to kick it off again 1062 * if it is really just waiting for delalloc to send it down. 1063 * If we find a nice big extent or delalloc range for the bytes in the 1064 * file you want to defrag, we return 0 to let you know to skip this 1065 * part of the file 1066 */ 1067 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1068 { 1069 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1070 struct extent_map *em = NULL; 1071 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1072 u64 end; 1073 1074 read_lock(&em_tree->lock); 1075 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1076 read_unlock(&em_tree->lock); 1077 1078 if (em) { 1079 end = extent_map_end(em); 1080 free_extent_map(em); 1081 if (end - offset > thresh) 1082 return 0; 1083 } 1084 /* if we already have a nice delalloc here, just stop */ 1085 thresh /= 2; 1086 end = count_range_bits(io_tree, &offset, offset + thresh, 1087 thresh, EXTENT_DELALLOC, 1); 1088 if (end >= thresh) 1089 return 0; 1090 return 1; 1091 } 1092 1093 /* 1094 * helper function to walk through a file and find extents 1095 * newer than a specific transid, and smaller than thresh. 1096 * 1097 * This is used by the defragging code to find new and small 1098 * extents 1099 */ 1100 static int find_new_extents(struct btrfs_root *root, 1101 struct inode *inode, u64 newer_than, 1102 u64 *off, u32 thresh) 1103 { 1104 struct btrfs_path *path; 1105 struct btrfs_key min_key; 1106 struct extent_buffer *leaf; 1107 struct btrfs_file_extent_item *extent; 1108 int type; 1109 int ret; 1110 u64 ino = btrfs_ino(BTRFS_I(inode)); 1111 1112 path = btrfs_alloc_path(); 1113 if (!path) 1114 return -ENOMEM; 1115 1116 min_key.objectid = ino; 1117 min_key.type = BTRFS_EXTENT_DATA_KEY; 1118 min_key.offset = *off; 1119 1120 while (1) { 1121 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1122 if (ret != 0) 1123 goto none; 1124 process_slot: 1125 if (min_key.objectid != ino) 1126 goto none; 1127 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1128 goto none; 1129 1130 leaf = path->nodes[0]; 1131 extent = btrfs_item_ptr(leaf, path->slots[0], 1132 struct btrfs_file_extent_item); 1133 1134 type = btrfs_file_extent_type(leaf, extent); 1135 if (type == BTRFS_FILE_EXTENT_REG && 1136 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1137 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1138 *off = min_key.offset; 1139 btrfs_free_path(path); 1140 return 0; 1141 } 1142 1143 path->slots[0]++; 1144 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1145 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1146 goto process_slot; 1147 } 1148 1149 if (min_key.offset == (u64)-1) 1150 goto none; 1151 1152 min_key.offset++; 1153 btrfs_release_path(path); 1154 } 1155 none: 1156 btrfs_free_path(path); 1157 return -ENOENT; 1158 } 1159 1160 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1161 { 1162 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1163 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1164 struct extent_map *em; 1165 u64 len = PAGE_SIZE; 1166 1167 /* 1168 * hopefully we have this extent in the tree already, try without 1169 * the full extent lock 1170 */ 1171 read_lock(&em_tree->lock); 1172 em = lookup_extent_mapping(em_tree, start, len); 1173 read_unlock(&em_tree->lock); 1174 1175 if (!em) { 1176 struct extent_state *cached = NULL; 1177 u64 end = start + len - 1; 1178 1179 /* get the big lock and read metadata off disk */ 1180 lock_extent_bits(io_tree, start, end, &cached); 1181 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1182 unlock_extent_cached(io_tree, start, end, &cached); 1183 1184 if (IS_ERR(em)) 1185 return NULL; 1186 } 1187 1188 return em; 1189 } 1190 1191 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1192 { 1193 struct extent_map *next; 1194 bool ret = true; 1195 1196 /* this is the last extent */ 1197 if (em->start + em->len >= i_size_read(inode)) 1198 return false; 1199 1200 next = defrag_lookup_extent(inode, em->start + em->len); 1201 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1202 ret = false; 1203 else if ((em->block_start + em->block_len == next->block_start) && 1204 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1205 ret = false; 1206 1207 free_extent_map(next); 1208 return ret; 1209 } 1210 1211 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1212 u64 *last_len, u64 *skip, u64 *defrag_end, 1213 int compress) 1214 { 1215 struct extent_map *em; 1216 int ret = 1; 1217 bool next_mergeable = true; 1218 bool prev_mergeable = true; 1219 1220 /* 1221 * make sure that once we start defragging an extent, we keep on 1222 * defragging it 1223 */ 1224 if (start < *defrag_end) 1225 return 1; 1226 1227 *skip = 0; 1228 1229 em = defrag_lookup_extent(inode, start); 1230 if (!em) 1231 return 0; 1232 1233 /* this will cover holes, and inline extents */ 1234 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1235 ret = 0; 1236 goto out; 1237 } 1238 1239 if (!*defrag_end) 1240 prev_mergeable = false; 1241 1242 next_mergeable = defrag_check_next_extent(inode, em); 1243 /* 1244 * we hit a real extent, if it is big or the next extent is not a 1245 * real extent, don't bother defragging it 1246 */ 1247 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1248 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1249 ret = 0; 1250 out: 1251 /* 1252 * last_len ends up being a counter of how many bytes we've defragged. 1253 * every time we choose not to defrag an extent, we reset *last_len 1254 * so that the next tiny extent will force a defrag. 1255 * 1256 * The end result of this is that tiny extents before a single big 1257 * extent will force at least part of that big extent to be defragged. 1258 */ 1259 if (ret) { 1260 *defrag_end = extent_map_end(em); 1261 } else { 1262 *last_len = 0; 1263 *skip = extent_map_end(em); 1264 *defrag_end = 0; 1265 } 1266 1267 free_extent_map(em); 1268 return ret; 1269 } 1270 1271 /* 1272 * it doesn't do much good to defrag one or two pages 1273 * at a time. This pulls in a nice chunk of pages 1274 * to COW and defrag. 1275 * 1276 * It also makes sure the delalloc code has enough 1277 * dirty data to avoid making new small extents as part 1278 * of the defrag 1279 * 1280 * It's a good idea to start RA on this range 1281 * before calling this. 1282 */ 1283 static int cluster_pages_for_defrag(struct inode *inode, 1284 struct page **pages, 1285 unsigned long start_index, 1286 unsigned long num_pages) 1287 { 1288 unsigned long file_end; 1289 u64 isize = i_size_read(inode); 1290 u64 page_start; 1291 u64 page_end; 1292 u64 page_cnt; 1293 u64 start = (u64)start_index << PAGE_SHIFT; 1294 u64 search_start; 1295 int ret; 1296 int i; 1297 int i_done; 1298 struct btrfs_ordered_extent *ordered; 1299 struct extent_state *cached_state = NULL; 1300 struct extent_io_tree *tree; 1301 struct extent_changeset *data_reserved = NULL; 1302 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1303 1304 file_end = (isize - 1) >> PAGE_SHIFT; 1305 if (!isize || start_index > file_end) 1306 return 0; 1307 1308 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1309 1310 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1311 start, page_cnt << PAGE_SHIFT); 1312 if (ret) 1313 return ret; 1314 i_done = 0; 1315 tree = &BTRFS_I(inode)->io_tree; 1316 1317 /* step one, lock all the pages */ 1318 for (i = 0; i < page_cnt; i++) { 1319 struct page *page; 1320 again: 1321 page = find_or_create_page(inode->i_mapping, 1322 start_index + i, mask); 1323 if (!page) 1324 break; 1325 1326 ret = set_page_extent_mapped(page); 1327 if (ret < 0) { 1328 unlock_page(page); 1329 put_page(page); 1330 break; 1331 } 1332 1333 page_start = page_offset(page); 1334 page_end = page_start + PAGE_SIZE - 1; 1335 while (1) { 1336 lock_extent_bits(tree, page_start, page_end, 1337 &cached_state); 1338 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1339 page_start); 1340 unlock_extent_cached(tree, page_start, page_end, 1341 &cached_state); 1342 if (!ordered) 1343 break; 1344 1345 unlock_page(page); 1346 btrfs_start_ordered_extent(ordered, 1); 1347 btrfs_put_ordered_extent(ordered); 1348 lock_page(page); 1349 /* 1350 * we unlocked the page above, so we need check if 1351 * it was released or not. 1352 */ 1353 if (page->mapping != inode->i_mapping) { 1354 unlock_page(page); 1355 put_page(page); 1356 goto again; 1357 } 1358 } 1359 1360 if (!PageUptodate(page)) { 1361 btrfs_readpage(NULL, page); 1362 lock_page(page); 1363 if (!PageUptodate(page)) { 1364 unlock_page(page); 1365 put_page(page); 1366 ret = -EIO; 1367 break; 1368 } 1369 } 1370 1371 if (page->mapping != inode->i_mapping) { 1372 unlock_page(page); 1373 put_page(page); 1374 goto again; 1375 } 1376 1377 pages[i] = page; 1378 i_done++; 1379 } 1380 if (!i_done || ret) 1381 goto out; 1382 1383 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1384 goto out; 1385 1386 /* 1387 * so now we have a nice long stream of locked 1388 * and up to date pages, lets wait on them 1389 */ 1390 for (i = 0; i < i_done; i++) 1391 wait_on_page_writeback(pages[i]); 1392 1393 page_start = page_offset(pages[0]); 1394 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1395 1396 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1397 page_start, page_end - 1, &cached_state); 1398 1399 /* 1400 * When defragmenting we skip ranges that have holes or inline extents, 1401 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1402 * space. At btrfs_defrag_file(), we check if a range should be defragged 1403 * before locking the inode and then, if it should, we trigger a sync 1404 * page cache readahead - we lock the inode only after that to avoid 1405 * blocking for too long other tasks that possibly want to operate on 1406 * other file ranges. But before we were able to get the inode lock, 1407 * some other task may have punched a hole in the range, or we may have 1408 * now an inline extent, in which case we should not defrag. So check 1409 * for that here, where we have the inode and the range locked, and bail 1410 * out if that happened. 1411 */ 1412 search_start = page_start; 1413 while (search_start < page_end) { 1414 struct extent_map *em; 1415 1416 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1417 page_end - search_start); 1418 if (IS_ERR(em)) { 1419 ret = PTR_ERR(em); 1420 goto out_unlock_range; 1421 } 1422 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1423 free_extent_map(em); 1424 /* Ok, 0 means we did not defrag anything */ 1425 ret = 0; 1426 goto out_unlock_range; 1427 } 1428 search_start = extent_map_end(em); 1429 free_extent_map(em); 1430 } 1431 1432 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1433 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1434 EXTENT_DEFRAG, 0, 0, &cached_state); 1435 1436 if (i_done != page_cnt) { 1437 spin_lock(&BTRFS_I(inode)->lock); 1438 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1439 spin_unlock(&BTRFS_I(inode)->lock); 1440 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1441 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1442 } 1443 1444 1445 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1446 &cached_state); 1447 1448 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1449 page_start, page_end - 1, &cached_state); 1450 1451 for (i = 0; i < i_done; i++) { 1452 clear_page_dirty_for_io(pages[i]); 1453 ClearPageChecked(pages[i]); 1454 set_page_dirty(pages[i]); 1455 unlock_page(pages[i]); 1456 put_page(pages[i]); 1457 } 1458 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1459 extent_changeset_free(data_reserved); 1460 return i_done; 1461 1462 out_unlock_range: 1463 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1464 page_start, page_end - 1, &cached_state); 1465 out: 1466 for (i = 0; i < i_done; i++) { 1467 unlock_page(pages[i]); 1468 put_page(pages[i]); 1469 } 1470 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1471 start, page_cnt << PAGE_SHIFT, true); 1472 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1473 extent_changeset_free(data_reserved); 1474 return ret; 1475 1476 } 1477 1478 int btrfs_defrag_file(struct inode *inode, struct file *file, 1479 struct btrfs_ioctl_defrag_range_args *range, 1480 u64 newer_than, unsigned long max_to_defrag) 1481 { 1482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1483 struct btrfs_root *root = BTRFS_I(inode)->root; 1484 struct file_ra_state *ra = NULL; 1485 unsigned long last_index; 1486 u64 isize = i_size_read(inode); 1487 u64 last_len = 0; 1488 u64 skip = 0; 1489 u64 defrag_end = 0; 1490 u64 newer_off = range->start; 1491 unsigned long i; 1492 unsigned long ra_index = 0; 1493 int ret; 1494 int defrag_count = 0; 1495 int compress_type = BTRFS_COMPRESS_ZLIB; 1496 u32 extent_thresh = range->extent_thresh; 1497 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1498 unsigned long cluster = max_cluster; 1499 u64 new_align = ~((u64)SZ_128K - 1); 1500 struct page **pages = NULL; 1501 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1502 1503 if (isize == 0) 1504 return 0; 1505 1506 if (range->start >= isize) 1507 return -EINVAL; 1508 1509 if (do_compress) { 1510 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1511 return -EINVAL; 1512 if (range->compress_type) 1513 compress_type = range->compress_type; 1514 } 1515 1516 if (extent_thresh == 0) 1517 extent_thresh = SZ_256K; 1518 1519 /* 1520 * If we were not given a file, allocate a readahead context. As 1521 * readahead is just an optimization, defrag will work without it so 1522 * we don't error out. 1523 */ 1524 if (!file) { 1525 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1526 if (ra) 1527 file_ra_state_init(ra, inode->i_mapping); 1528 } else { 1529 ra = &file->f_ra; 1530 } 1531 1532 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1533 if (!pages) { 1534 ret = -ENOMEM; 1535 goto out_ra; 1536 } 1537 1538 /* find the last page to defrag */ 1539 if (range->start + range->len > range->start) { 1540 last_index = min_t(u64, isize - 1, 1541 range->start + range->len - 1) >> PAGE_SHIFT; 1542 } else { 1543 last_index = (isize - 1) >> PAGE_SHIFT; 1544 } 1545 1546 if (newer_than) { 1547 ret = find_new_extents(root, inode, newer_than, 1548 &newer_off, SZ_64K); 1549 if (!ret) { 1550 range->start = newer_off; 1551 /* 1552 * we always align our defrag to help keep 1553 * the extents in the file evenly spaced 1554 */ 1555 i = (newer_off & new_align) >> PAGE_SHIFT; 1556 } else 1557 goto out_ra; 1558 } else { 1559 i = range->start >> PAGE_SHIFT; 1560 } 1561 if (!max_to_defrag) 1562 max_to_defrag = last_index - i + 1; 1563 1564 /* 1565 * make writeback starts from i, so the defrag range can be 1566 * written sequentially. 1567 */ 1568 if (i < inode->i_mapping->writeback_index) 1569 inode->i_mapping->writeback_index = i; 1570 1571 while (i <= last_index && defrag_count < max_to_defrag && 1572 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1573 /* 1574 * make sure we stop running if someone unmounts 1575 * the FS 1576 */ 1577 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1578 break; 1579 1580 if (btrfs_defrag_cancelled(fs_info)) { 1581 btrfs_debug(fs_info, "defrag_file cancelled"); 1582 ret = -EAGAIN; 1583 break; 1584 } 1585 1586 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1587 extent_thresh, &last_len, &skip, 1588 &defrag_end, do_compress)){ 1589 unsigned long next; 1590 /* 1591 * the should_defrag function tells us how much to skip 1592 * bump our counter by the suggested amount 1593 */ 1594 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1595 i = max(i + 1, next); 1596 continue; 1597 } 1598 1599 if (!newer_than) { 1600 cluster = (PAGE_ALIGN(defrag_end) >> 1601 PAGE_SHIFT) - i; 1602 cluster = min(cluster, max_cluster); 1603 } else { 1604 cluster = max_cluster; 1605 } 1606 1607 if (i + cluster > ra_index) { 1608 ra_index = max(i, ra_index); 1609 if (ra) 1610 page_cache_sync_readahead(inode->i_mapping, ra, 1611 file, ra_index, cluster); 1612 ra_index += cluster; 1613 } 1614 1615 inode_lock(inode); 1616 if (IS_SWAPFILE(inode)) { 1617 ret = -ETXTBSY; 1618 } else { 1619 if (do_compress) 1620 BTRFS_I(inode)->defrag_compress = compress_type; 1621 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1622 } 1623 if (ret < 0) { 1624 inode_unlock(inode); 1625 goto out_ra; 1626 } 1627 1628 defrag_count += ret; 1629 balance_dirty_pages_ratelimited(inode->i_mapping); 1630 inode_unlock(inode); 1631 1632 if (newer_than) { 1633 if (newer_off == (u64)-1) 1634 break; 1635 1636 if (ret > 0) 1637 i += ret; 1638 1639 newer_off = max(newer_off + 1, 1640 (u64)i << PAGE_SHIFT); 1641 1642 ret = find_new_extents(root, inode, newer_than, 1643 &newer_off, SZ_64K); 1644 if (!ret) { 1645 range->start = newer_off; 1646 i = (newer_off & new_align) >> PAGE_SHIFT; 1647 } else { 1648 break; 1649 } 1650 } else { 1651 if (ret > 0) { 1652 i += ret; 1653 last_len += ret << PAGE_SHIFT; 1654 } else { 1655 i++; 1656 last_len = 0; 1657 } 1658 } 1659 } 1660 1661 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1662 filemap_flush(inode->i_mapping); 1663 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1664 &BTRFS_I(inode)->runtime_flags)) 1665 filemap_flush(inode->i_mapping); 1666 } 1667 1668 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1669 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1670 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1671 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1672 } 1673 1674 ret = defrag_count; 1675 1676 out_ra: 1677 if (do_compress) { 1678 inode_lock(inode); 1679 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1680 inode_unlock(inode); 1681 } 1682 if (!file) 1683 kfree(ra); 1684 kfree(pages); 1685 return ret; 1686 } 1687 1688 static noinline int btrfs_ioctl_resize(struct file *file, 1689 void __user *arg) 1690 { 1691 struct inode *inode = file_inode(file); 1692 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1693 u64 new_size; 1694 u64 old_size; 1695 u64 devid = 1; 1696 struct btrfs_root *root = BTRFS_I(inode)->root; 1697 struct btrfs_ioctl_vol_args *vol_args; 1698 struct btrfs_trans_handle *trans; 1699 struct btrfs_device *device = NULL; 1700 char *sizestr; 1701 char *retptr; 1702 char *devstr = NULL; 1703 int ret = 0; 1704 int mod = 0; 1705 1706 if (!capable(CAP_SYS_ADMIN)) 1707 return -EPERM; 1708 1709 ret = mnt_want_write_file(file); 1710 if (ret) 1711 return ret; 1712 1713 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1714 mnt_drop_write_file(file); 1715 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1716 } 1717 1718 vol_args = memdup_user(arg, sizeof(*vol_args)); 1719 if (IS_ERR(vol_args)) { 1720 ret = PTR_ERR(vol_args); 1721 goto out; 1722 } 1723 1724 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1725 1726 sizestr = vol_args->name; 1727 devstr = strchr(sizestr, ':'); 1728 if (devstr) { 1729 sizestr = devstr + 1; 1730 *devstr = '\0'; 1731 devstr = vol_args->name; 1732 ret = kstrtoull(devstr, 10, &devid); 1733 if (ret) 1734 goto out_free; 1735 if (!devid) { 1736 ret = -EINVAL; 1737 goto out_free; 1738 } 1739 btrfs_info(fs_info, "resizing devid %llu", devid); 1740 } 1741 1742 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1743 if (!device) { 1744 btrfs_info(fs_info, "resizer unable to find device %llu", 1745 devid); 1746 ret = -ENODEV; 1747 goto out_free; 1748 } 1749 1750 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1751 btrfs_info(fs_info, 1752 "resizer unable to apply on readonly device %llu", 1753 devid); 1754 ret = -EPERM; 1755 goto out_free; 1756 } 1757 1758 if (!strcmp(sizestr, "max")) 1759 new_size = device->bdev->bd_inode->i_size; 1760 else { 1761 if (sizestr[0] == '-') { 1762 mod = -1; 1763 sizestr++; 1764 } else if (sizestr[0] == '+') { 1765 mod = 1; 1766 sizestr++; 1767 } 1768 new_size = memparse(sizestr, &retptr); 1769 if (*retptr != '\0' || new_size == 0) { 1770 ret = -EINVAL; 1771 goto out_free; 1772 } 1773 } 1774 1775 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1776 ret = -EPERM; 1777 goto out_free; 1778 } 1779 1780 old_size = btrfs_device_get_total_bytes(device); 1781 1782 if (mod < 0) { 1783 if (new_size > old_size) { 1784 ret = -EINVAL; 1785 goto out_free; 1786 } 1787 new_size = old_size - new_size; 1788 } else if (mod > 0) { 1789 if (new_size > ULLONG_MAX - old_size) { 1790 ret = -ERANGE; 1791 goto out_free; 1792 } 1793 new_size = old_size + new_size; 1794 } 1795 1796 if (new_size < SZ_256M) { 1797 ret = -EINVAL; 1798 goto out_free; 1799 } 1800 if (new_size > device->bdev->bd_inode->i_size) { 1801 ret = -EFBIG; 1802 goto out_free; 1803 } 1804 1805 new_size = round_down(new_size, fs_info->sectorsize); 1806 1807 if (new_size > old_size) { 1808 trans = btrfs_start_transaction(root, 0); 1809 if (IS_ERR(trans)) { 1810 ret = PTR_ERR(trans); 1811 goto out_free; 1812 } 1813 ret = btrfs_grow_device(trans, device, new_size); 1814 btrfs_commit_transaction(trans); 1815 } else if (new_size < old_size) { 1816 ret = btrfs_shrink_device(device, new_size); 1817 } /* equal, nothing need to do */ 1818 1819 if (ret == 0 && new_size != old_size) 1820 btrfs_info_in_rcu(fs_info, 1821 "resize device %s (devid %llu) from %llu to %llu", 1822 rcu_str_deref(device->name), device->devid, 1823 old_size, new_size); 1824 out_free: 1825 kfree(vol_args); 1826 out: 1827 btrfs_exclop_finish(fs_info); 1828 mnt_drop_write_file(file); 1829 return ret; 1830 } 1831 1832 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1833 const char *name, unsigned long fd, int subvol, 1834 bool readonly, 1835 struct btrfs_qgroup_inherit *inherit) 1836 { 1837 int namelen; 1838 int ret = 0; 1839 1840 if (!S_ISDIR(file_inode(file)->i_mode)) 1841 return -ENOTDIR; 1842 1843 ret = mnt_want_write_file(file); 1844 if (ret) 1845 goto out; 1846 1847 namelen = strlen(name); 1848 if (strchr(name, '/')) { 1849 ret = -EINVAL; 1850 goto out_drop_write; 1851 } 1852 1853 if (name[0] == '.' && 1854 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1855 ret = -EEXIST; 1856 goto out_drop_write; 1857 } 1858 1859 if (subvol) { 1860 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1861 NULL, readonly, inherit); 1862 } else { 1863 struct fd src = fdget(fd); 1864 struct inode *src_inode; 1865 if (!src.file) { 1866 ret = -EINVAL; 1867 goto out_drop_write; 1868 } 1869 1870 src_inode = file_inode(src.file); 1871 if (src_inode->i_sb != file_inode(file)->i_sb) { 1872 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1873 "Snapshot src from another FS"); 1874 ret = -EXDEV; 1875 } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) { 1876 /* 1877 * Subvolume creation is not restricted, but snapshots 1878 * are limited to own subvolumes only 1879 */ 1880 ret = -EPERM; 1881 } else { 1882 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1883 BTRFS_I(src_inode)->root, 1884 readonly, inherit); 1885 } 1886 fdput(src); 1887 } 1888 out_drop_write: 1889 mnt_drop_write_file(file); 1890 out: 1891 return ret; 1892 } 1893 1894 static noinline int btrfs_ioctl_snap_create(struct file *file, 1895 void __user *arg, int subvol) 1896 { 1897 struct btrfs_ioctl_vol_args *vol_args; 1898 int ret; 1899 1900 if (!S_ISDIR(file_inode(file)->i_mode)) 1901 return -ENOTDIR; 1902 1903 vol_args = memdup_user(arg, sizeof(*vol_args)); 1904 if (IS_ERR(vol_args)) 1905 return PTR_ERR(vol_args); 1906 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1907 1908 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1909 subvol, false, NULL); 1910 1911 kfree(vol_args); 1912 return ret; 1913 } 1914 1915 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1916 void __user *arg, int subvol) 1917 { 1918 struct btrfs_ioctl_vol_args_v2 *vol_args; 1919 int ret; 1920 bool readonly = false; 1921 struct btrfs_qgroup_inherit *inherit = NULL; 1922 1923 if (!S_ISDIR(file_inode(file)->i_mode)) 1924 return -ENOTDIR; 1925 1926 vol_args = memdup_user(arg, sizeof(*vol_args)); 1927 if (IS_ERR(vol_args)) 1928 return PTR_ERR(vol_args); 1929 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1930 1931 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1932 ret = -EOPNOTSUPP; 1933 goto free_args; 1934 } 1935 1936 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1937 readonly = true; 1938 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1939 if (vol_args->size > PAGE_SIZE) { 1940 ret = -EINVAL; 1941 goto free_args; 1942 } 1943 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1944 if (IS_ERR(inherit)) { 1945 ret = PTR_ERR(inherit); 1946 goto free_args; 1947 } 1948 } 1949 1950 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1951 subvol, readonly, inherit); 1952 if (ret) 1953 goto free_inherit; 1954 free_inherit: 1955 kfree(inherit); 1956 free_args: 1957 kfree(vol_args); 1958 return ret; 1959 } 1960 1961 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1962 void __user *arg) 1963 { 1964 struct inode *inode = file_inode(file); 1965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1966 struct btrfs_root *root = BTRFS_I(inode)->root; 1967 int ret = 0; 1968 u64 flags = 0; 1969 1970 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1971 return -EINVAL; 1972 1973 down_read(&fs_info->subvol_sem); 1974 if (btrfs_root_readonly(root)) 1975 flags |= BTRFS_SUBVOL_RDONLY; 1976 up_read(&fs_info->subvol_sem); 1977 1978 if (copy_to_user(arg, &flags, sizeof(flags))) 1979 ret = -EFAULT; 1980 1981 return ret; 1982 } 1983 1984 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1985 void __user *arg) 1986 { 1987 struct inode *inode = file_inode(file); 1988 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1989 struct btrfs_root *root = BTRFS_I(inode)->root; 1990 struct btrfs_trans_handle *trans; 1991 u64 root_flags; 1992 u64 flags; 1993 int ret = 0; 1994 1995 if (!inode_owner_or_capable(&init_user_ns, inode)) 1996 return -EPERM; 1997 1998 ret = mnt_want_write_file(file); 1999 if (ret) 2000 goto out; 2001 2002 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2003 ret = -EINVAL; 2004 goto out_drop_write; 2005 } 2006 2007 if (copy_from_user(&flags, arg, sizeof(flags))) { 2008 ret = -EFAULT; 2009 goto out_drop_write; 2010 } 2011 2012 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2013 ret = -EOPNOTSUPP; 2014 goto out_drop_write; 2015 } 2016 2017 down_write(&fs_info->subvol_sem); 2018 2019 /* nothing to do */ 2020 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2021 goto out_drop_sem; 2022 2023 root_flags = btrfs_root_flags(&root->root_item); 2024 if (flags & BTRFS_SUBVOL_RDONLY) { 2025 btrfs_set_root_flags(&root->root_item, 2026 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2027 } else { 2028 /* 2029 * Block RO -> RW transition if this subvolume is involved in 2030 * send 2031 */ 2032 spin_lock(&root->root_item_lock); 2033 if (root->send_in_progress == 0) { 2034 btrfs_set_root_flags(&root->root_item, 2035 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2036 spin_unlock(&root->root_item_lock); 2037 } else { 2038 spin_unlock(&root->root_item_lock); 2039 btrfs_warn(fs_info, 2040 "Attempt to set subvolume %llu read-write during send", 2041 root->root_key.objectid); 2042 ret = -EPERM; 2043 goto out_drop_sem; 2044 } 2045 } 2046 2047 trans = btrfs_start_transaction(root, 1); 2048 if (IS_ERR(trans)) { 2049 ret = PTR_ERR(trans); 2050 goto out_reset; 2051 } 2052 2053 ret = btrfs_update_root(trans, fs_info->tree_root, 2054 &root->root_key, &root->root_item); 2055 if (ret < 0) { 2056 btrfs_end_transaction(trans); 2057 goto out_reset; 2058 } 2059 2060 ret = btrfs_commit_transaction(trans); 2061 2062 out_reset: 2063 if (ret) 2064 btrfs_set_root_flags(&root->root_item, root_flags); 2065 out_drop_sem: 2066 up_write(&fs_info->subvol_sem); 2067 out_drop_write: 2068 mnt_drop_write_file(file); 2069 out: 2070 return ret; 2071 } 2072 2073 static noinline int key_in_sk(struct btrfs_key *key, 2074 struct btrfs_ioctl_search_key *sk) 2075 { 2076 struct btrfs_key test; 2077 int ret; 2078 2079 test.objectid = sk->min_objectid; 2080 test.type = sk->min_type; 2081 test.offset = sk->min_offset; 2082 2083 ret = btrfs_comp_cpu_keys(key, &test); 2084 if (ret < 0) 2085 return 0; 2086 2087 test.objectid = sk->max_objectid; 2088 test.type = sk->max_type; 2089 test.offset = sk->max_offset; 2090 2091 ret = btrfs_comp_cpu_keys(key, &test); 2092 if (ret > 0) 2093 return 0; 2094 return 1; 2095 } 2096 2097 static noinline int copy_to_sk(struct btrfs_path *path, 2098 struct btrfs_key *key, 2099 struct btrfs_ioctl_search_key *sk, 2100 size_t *buf_size, 2101 char __user *ubuf, 2102 unsigned long *sk_offset, 2103 int *num_found) 2104 { 2105 u64 found_transid; 2106 struct extent_buffer *leaf; 2107 struct btrfs_ioctl_search_header sh; 2108 struct btrfs_key test; 2109 unsigned long item_off; 2110 unsigned long item_len; 2111 int nritems; 2112 int i; 2113 int slot; 2114 int ret = 0; 2115 2116 leaf = path->nodes[0]; 2117 slot = path->slots[0]; 2118 nritems = btrfs_header_nritems(leaf); 2119 2120 if (btrfs_header_generation(leaf) > sk->max_transid) { 2121 i = nritems; 2122 goto advance_key; 2123 } 2124 found_transid = btrfs_header_generation(leaf); 2125 2126 for (i = slot; i < nritems; i++) { 2127 item_off = btrfs_item_ptr_offset(leaf, i); 2128 item_len = btrfs_item_size_nr(leaf, i); 2129 2130 btrfs_item_key_to_cpu(leaf, key, i); 2131 if (!key_in_sk(key, sk)) 2132 continue; 2133 2134 if (sizeof(sh) + item_len > *buf_size) { 2135 if (*num_found) { 2136 ret = 1; 2137 goto out; 2138 } 2139 2140 /* 2141 * return one empty item back for v1, which does not 2142 * handle -EOVERFLOW 2143 */ 2144 2145 *buf_size = sizeof(sh) + item_len; 2146 item_len = 0; 2147 ret = -EOVERFLOW; 2148 } 2149 2150 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2151 ret = 1; 2152 goto out; 2153 } 2154 2155 sh.objectid = key->objectid; 2156 sh.offset = key->offset; 2157 sh.type = key->type; 2158 sh.len = item_len; 2159 sh.transid = found_transid; 2160 2161 /* 2162 * Copy search result header. If we fault then loop again so we 2163 * can fault in the pages and -EFAULT there if there's a 2164 * problem. Otherwise we'll fault and then copy the buffer in 2165 * properly this next time through 2166 */ 2167 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2168 ret = 0; 2169 goto out; 2170 } 2171 2172 *sk_offset += sizeof(sh); 2173 2174 if (item_len) { 2175 char __user *up = ubuf + *sk_offset; 2176 /* 2177 * Copy the item, same behavior as above, but reset the 2178 * * sk_offset so we copy the full thing again. 2179 */ 2180 if (read_extent_buffer_to_user_nofault(leaf, up, 2181 item_off, item_len)) { 2182 ret = 0; 2183 *sk_offset -= sizeof(sh); 2184 goto out; 2185 } 2186 2187 *sk_offset += item_len; 2188 } 2189 (*num_found)++; 2190 2191 if (ret) /* -EOVERFLOW from above */ 2192 goto out; 2193 2194 if (*num_found >= sk->nr_items) { 2195 ret = 1; 2196 goto out; 2197 } 2198 } 2199 advance_key: 2200 ret = 0; 2201 test.objectid = sk->max_objectid; 2202 test.type = sk->max_type; 2203 test.offset = sk->max_offset; 2204 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2205 ret = 1; 2206 else if (key->offset < (u64)-1) 2207 key->offset++; 2208 else if (key->type < (u8)-1) { 2209 key->offset = 0; 2210 key->type++; 2211 } else if (key->objectid < (u64)-1) { 2212 key->offset = 0; 2213 key->type = 0; 2214 key->objectid++; 2215 } else 2216 ret = 1; 2217 out: 2218 /* 2219 * 0: all items from this leaf copied, continue with next 2220 * 1: * more items can be copied, but unused buffer is too small 2221 * * all items were found 2222 * Either way, it will stops the loop which iterates to the next 2223 * leaf 2224 * -EOVERFLOW: item was to large for buffer 2225 * -EFAULT: could not copy extent buffer back to userspace 2226 */ 2227 return ret; 2228 } 2229 2230 static noinline int search_ioctl(struct inode *inode, 2231 struct btrfs_ioctl_search_key *sk, 2232 size_t *buf_size, 2233 char __user *ubuf) 2234 { 2235 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2236 struct btrfs_root *root; 2237 struct btrfs_key key; 2238 struct btrfs_path *path; 2239 int ret; 2240 int num_found = 0; 2241 unsigned long sk_offset = 0; 2242 2243 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2244 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2245 return -EOVERFLOW; 2246 } 2247 2248 path = btrfs_alloc_path(); 2249 if (!path) 2250 return -ENOMEM; 2251 2252 if (sk->tree_id == 0) { 2253 /* search the root of the inode that was passed */ 2254 root = btrfs_grab_root(BTRFS_I(inode)->root); 2255 } else { 2256 root = btrfs_get_fs_root(info, sk->tree_id, true); 2257 if (IS_ERR(root)) { 2258 btrfs_free_path(path); 2259 return PTR_ERR(root); 2260 } 2261 } 2262 2263 key.objectid = sk->min_objectid; 2264 key.type = sk->min_type; 2265 key.offset = sk->min_offset; 2266 2267 while (1) { 2268 ret = fault_in_pages_writeable(ubuf + sk_offset, 2269 *buf_size - sk_offset); 2270 if (ret) 2271 break; 2272 2273 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2274 if (ret != 0) { 2275 if (ret > 0) 2276 ret = 0; 2277 goto err; 2278 } 2279 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2280 &sk_offset, &num_found); 2281 btrfs_release_path(path); 2282 if (ret) 2283 break; 2284 2285 } 2286 if (ret > 0) 2287 ret = 0; 2288 err: 2289 sk->nr_items = num_found; 2290 btrfs_put_root(root); 2291 btrfs_free_path(path); 2292 return ret; 2293 } 2294 2295 static noinline int btrfs_ioctl_tree_search(struct file *file, 2296 void __user *argp) 2297 { 2298 struct btrfs_ioctl_search_args __user *uargs; 2299 struct btrfs_ioctl_search_key sk; 2300 struct inode *inode; 2301 int ret; 2302 size_t buf_size; 2303 2304 if (!capable(CAP_SYS_ADMIN)) 2305 return -EPERM; 2306 2307 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2308 2309 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2310 return -EFAULT; 2311 2312 buf_size = sizeof(uargs->buf); 2313 2314 inode = file_inode(file); 2315 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2316 2317 /* 2318 * In the origin implementation an overflow is handled by returning a 2319 * search header with a len of zero, so reset ret. 2320 */ 2321 if (ret == -EOVERFLOW) 2322 ret = 0; 2323 2324 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2325 ret = -EFAULT; 2326 return ret; 2327 } 2328 2329 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2330 void __user *argp) 2331 { 2332 struct btrfs_ioctl_search_args_v2 __user *uarg; 2333 struct btrfs_ioctl_search_args_v2 args; 2334 struct inode *inode; 2335 int ret; 2336 size_t buf_size; 2337 const size_t buf_limit = SZ_16M; 2338 2339 if (!capable(CAP_SYS_ADMIN)) 2340 return -EPERM; 2341 2342 /* copy search header and buffer size */ 2343 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2344 if (copy_from_user(&args, uarg, sizeof(args))) 2345 return -EFAULT; 2346 2347 buf_size = args.buf_size; 2348 2349 /* limit result size to 16MB */ 2350 if (buf_size > buf_limit) 2351 buf_size = buf_limit; 2352 2353 inode = file_inode(file); 2354 ret = search_ioctl(inode, &args.key, &buf_size, 2355 (char __user *)(&uarg->buf[0])); 2356 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2357 ret = -EFAULT; 2358 else if (ret == -EOVERFLOW && 2359 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2360 ret = -EFAULT; 2361 2362 return ret; 2363 } 2364 2365 /* 2366 * Search INODE_REFs to identify path name of 'dirid' directory 2367 * in a 'tree_id' tree. and sets path name to 'name'. 2368 */ 2369 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2370 u64 tree_id, u64 dirid, char *name) 2371 { 2372 struct btrfs_root *root; 2373 struct btrfs_key key; 2374 char *ptr; 2375 int ret = -1; 2376 int slot; 2377 int len; 2378 int total_len = 0; 2379 struct btrfs_inode_ref *iref; 2380 struct extent_buffer *l; 2381 struct btrfs_path *path; 2382 2383 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2384 name[0]='\0'; 2385 return 0; 2386 } 2387 2388 path = btrfs_alloc_path(); 2389 if (!path) 2390 return -ENOMEM; 2391 2392 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2393 2394 root = btrfs_get_fs_root(info, tree_id, true); 2395 if (IS_ERR(root)) { 2396 ret = PTR_ERR(root); 2397 root = NULL; 2398 goto out; 2399 } 2400 2401 key.objectid = dirid; 2402 key.type = BTRFS_INODE_REF_KEY; 2403 key.offset = (u64)-1; 2404 2405 while (1) { 2406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2407 if (ret < 0) 2408 goto out; 2409 else if (ret > 0) { 2410 ret = btrfs_previous_item(root, path, dirid, 2411 BTRFS_INODE_REF_KEY); 2412 if (ret < 0) 2413 goto out; 2414 else if (ret > 0) { 2415 ret = -ENOENT; 2416 goto out; 2417 } 2418 } 2419 2420 l = path->nodes[0]; 2421 slot = path->slots[0]; 2422 btrfs_item_key_to_cpu(l, &key, slot); 2423 2424 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2425 len = btrfs_inode_ref_name_len(l, iref); 2426 ptr -= len + 1; 2427 total_len += len + 1; 2428 if (ptr < name) { 2429 ret = -ENAMETOOLONG; 2430 goto out; 2431 } 2432 2433 *(ptr + len) = '/'; 2434 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2435 2436 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2437 break; 2438 2439 btrfs_release_path(path); 2440 key.objectid = key.offset; 2441 key.offset = (u64)-1; 2442 dirid = key.objectid; 2443 } 2444 memmove(name, ptr, total_len); 2445 name[total_len] = '\0'; 2446 ret = 0; 2447 out: 2448 btrfs_put_root(root); 2449 btrfs_free_path(path); 2450 return ret; 2451 } 2452 2453 static int btrfs_search_path_in_tree_user(struct inode *inode, 2454 struct btrfs_ioctl_ino_lookup_user_args *args) 2455 { 2456 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2457 struct super_block *sb = inode->i_sb; 2458 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2459 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2460 u64 dirid = args->dirid; 2461 unsigned long item_off; 2462 unsigned long item_len; 2463 struct btrfs_inode_ref *iref; 2464 struct btrfs_root_ref *rref; 2465 struct btrfs_root *root = NULL; 2466 struct btrfs_path *path; 2467 struct btrfs_key key, key2; 2468 struct extent_buffer *leaf; 2469 struct inode *temp_inode; 2470 char *ptr; 2471 int slot; 2472 int len; 2473 int total_len = 0; 2474 int ret; 2475 2476 path = btrfs_alloc_path(); 2477 if (!path) 2478 return -ENOMEM; 2479 2480 /* 2481 * If the bottom subvolume does not exist directly under upper_limit, 2482 * construct the path in from the bottom up. 2483 */ 2484 if (dirid != upper_limit.objectid) { 2485 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2486 2487 root = btrfs_get_fs_root(fs_info, treeid, true); 2488 if (IS_ERR(root)) { 2489 ret = PTR_ERR(root); 2490 goto out; 2491 } 2492 2493 key.objectid = dirid; 2494 key.type = BTRFS_INODE_REF_KEY; 2495 key.offset = (u64)-1; 2496 while (1) { 2497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2498 if (ret < 0) { 2499 goto out_put; 2500 } else if (ret > 0) { 2501 ret = btrfs_previous_item(root, path, dirid, 2502 BTRFS_INODE_REF_KEY); 2503 if (ret < 0) { 2504 goto out_put; 2505 } else if (ret > 0) { 2506 ret = -ENOENT; 2507 goto out_put; 2508 } 2509 } 2510 2511 leaf = path->nodes[0]; 2512 slot = path->slots[0]; 2513 btrfs_item_key_to_cpu(leaf, &key, slot); 2514 2515 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2516 len = btrfs_inode_ref_name_len(leaf, iref); 2517 ptr -= len + 1; 2518 total_len += len + 1; 2519 if (ptr < args->path) { 2520 ret = -ENAMETOOLONG; 2521 goto out_put; 2522 } 2523 2524 *(ptr + len) = '/'; 2525 read_extent_buffer(leaf, ptr, 2526 (unsigned long)(iref + 1), len); 2527 2528 /* Check the read+exec permission of this directory */ 2529 ret = btrfs_previous_item(root, path, dirid, 2530 BTRFS_INODE_ITEM_KEY); 2531 if (ret < 0) { 2532 goto out_put; 2533 } else if (ret > 0) { 2534 ret = -ENOENT; 2535 goto out_put; 2536 } 2537 2538 leaf = path->nodes[0]; 2539 slot = path->slots[0]; 2540 btrfs_item_key_to_cpu(leaf, &key2, slot); 2541 if (key2.objectid != dirid) { 2542 ret = -ENOENT; 2543 goto out_put; 2544 } 2545 2546 temp_inode = btrfs_iget(sb, key2.objectid, root); 2547 if (IS_ERR(temp_inode)) { 2548 ret = PTR_ERR(temp_inode); 2549 goto out_put; 2550 } 2551 ret = inode_permission(&init_user_ns, temp_inode, 2552 MAY_READ | MAY_EXEC); 2553 iput(temp_inode); 2554 if (ret) { 2555 ret = -EACCES; 2556 goto out_put; 2557 } 2558 2559 if (key.offset == upper_limit.objectid) 2560 break; 2561 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2562 ret = -EACCES; 2563 goto out_put; 2564 } 2565 2566 btrfs_release_path(path); 2567 key.objectid = key.offset; 2568 key.offset = (u64)-1; 2569 dirid = key.objectid; 2570 } 2571 2572 memmove(args->path, ptr, total_len); 2573 args->path[total_len] = '\0'; 2574 btrfs_put_root(root); 2575 root = NULL; 2576 btrfs_release_path(path); 2577 } 2578 2579 /* Get the bottom subvolume's name from ROOT_REF */ 2580 key.objectid = treeid; 2581 key.type = BTRFS_ROOT_REF_KEY; 2582 key.offset = args->treeid; 2583 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2584 if (ret < 0) { 2585 goto out; 2586 } else if (ret > 0) { 2587 ret = -ENOENT; 2588 goto out; 2589 } 2590 2591 leaf = path->nodes[0]; 2592 slot = path->slots[0]; 2593 btrfs_item_key_to_cpu(leaf, &key, slot); 2594 2595 item_off = btrfs_item_ptr_offset(leaf, slot); 2596 item_len = btrfs_item_size_nr(leaf, slot); 2597 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2598 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2599 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2600 ret = -EINVAL; 2601 goto out; 2602 } 2603 2604 /* Copy subvolume's name */ 2605 item_off += sizeof(struct btrfs_root_ref); 2606 item_len -= sizeof(struct btrfs_root_ref); 2607 read_extent_buffer(leaf, args->name, item_off, item_len); 2608 args->name[item_len] = 0; 2609 2610 out_put: 2611 btrfs_put_root(root); 2612 out: 2613 btrfs_free_path(path); 2614 return ret; 2615 } 2616 2617 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2618 void __user *argp) 2619 { 2620 struct btrfs_ioctl_ino_lookup_args *args; 2621 struct inode *inode; 2622 int ret = 0; 2623 2624 args = memdup_user(argp, sizeof(*args)); 2625 if (IS_ERR(args)) 2626 return PTR_ERR(args); 2627 2628 inode = file_inode(file); 2629 2630 /* 2631 * Unprivileged query to obtain the containing subvolume root id. The 2632 * path is reset so it's consistent with btrfs_search_path_in_tree. 2633 */ 2634 if (args->treeid == 0) 2635 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2636 2637 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2638 args->name[0] = 0; 2639 goto out; 2640 } 2641 2642 if (!capable(CAP_SYS_ADMIN)) { 2643 ret = -EPERM; 2644 goto out; 2645 } 2646 2647 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2648 args->treeid, args->objectid, 2649 args->name); 2650 2651 out: 2652 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2653 ret = -EFAULT; 2654 2655 kfree(args); 2656 return ret; 2657 } 2658 2659 /* 2660 * Version of ino_lookup ioctl (unprivileged) 2661 * 2662 * The main differences from ino_lookup ioctl are: 2663 * 2664 * 1. Read + Exec permission will be checked using inode_permission() during 2665 * path construction. -EACCES will be returned in case of failure. 2666 * 2. Path construction will be stopped at the inode number which corresponds 2667 * to the fd with which this ioctl is called. If constructed path does not 2668 * exist under fd's inode, -EACCES will be returned. 2669 * 3. The name of bottom subvolume is also searched and filled. 2670 */ 2671 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2672 { 2673 struct btrfs_ioctl_ino_lookup_user_args *args; 2674 struct inode *inode; 2675 int ret; 2676 2677 args = memdup_user(argp, sizeof(*args)); 2678 if (IS_ERR(args)) 2679 return PTR_ERR(args); 2680 2681 inode = file_inode(file); 2682 2683 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2684 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2685 /* 2686 * The subvolume does not exist under fd with which this is 2687 * called 2688 */ 2689 kfree(args); 2690 return -EACCES; 2691 } 2692 2693 ret = btrfs_search_path_in_tree_user(inode, args); 2694 2695 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2696 ret = -EFAULT; 2697 2698 kfree(args); 2699 return ret; 2700 } 2701 2702 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2703 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2704 { 2705 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2706 struct btrfs_fs_info *fs_info; 2707 struct btrfs_root *root; 2708 struct btrfs_path *path; 2709 struct btrfs_key key; 2710 struct btrfs_root_item *root_item; 2711 struct btrfs_root_ref *rref; 2712 struct extent_buffer *leaf; 2713 unsigned long item_off; 2714 unsigned long item_len; 2715 struct inode *inode; 2716 int slot; 2717 int ret = 0; 2718 2719 path = btrfs_alloc_path(); 2720 if (!path) 2721 return -ENOMEM; 2722 2723 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2724 if (!subvol_info) { 2725 btrfs_free_path(path); 2726 return -ENOMEM; 2727 } 2728 2729 inode = file_inode(file); 2730 fs_info = BTRFS_I(inode)->root->fs_info; 2731 2732 /* Get root_item of inode's subvolume */ 2733 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2734 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2735 if (IS_ERR(root)) { 2736 ret = PTR_ERR(root); 2737 goto out_free; 2738 } 2739 root_item = &root->root_item; 2740 2741 subvol_info->treeid = key.objectid; 2742 2743 subvol_info->generation = btrfs_root_generation(root_item); 2744 subvol_info->flags = btrfs_root_flags(root_item); 2745 2746 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2747 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2748 BTRFS_UUID_SIZE); 2749 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2750 BTRFS_UUID_SIZE); 2751 2752 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2753 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2754 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2755 2756 subvol_info->otransid = btrfs_root_otransid(root_item); 2757 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2758 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2759 2760 subvol_info->stransid = btrfs_root_stransid(root_item); 2761 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2762 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2763 2764 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2765 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2766 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2767 2768 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2769 /* Search root tree for ROOT_BACKREF of this subvolume */ 2770 key.type = BTRFS_ROOT_BACKREF_KEY; 2771 key.offset = 0; 2772 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2773 if (ret < 0) { 2774 goto out; 2775 } else if (path->slots[0] >= 2776 btrfs_header_nritems(path->nodes[0])) { 2777 ret = btrfs_next_leaf(fs_info->tree_root, path); 2778 if (ret < 0) { 2779 goto out; 2780 } else if (ret > 0) { 2781 ret = -EUCLEAN; 2782 goto out; 2783 } 2784 } 2785 2786 leaf = path->nodes[0]; 2787 slot = path->slots[0]; 2788 btrfs_item_key_to_cpu(leaf, &key, slot); 2789 if (key.objectid == subvol_info->treeid && 2790 key.type == BTRFS_ROOT_BACKREF_KEY) { 2791 subvol_info->parent_id = key.offset; 2792 2793 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2794 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2795 2796 item_off = btrfs_item_ptr_offset(leaf, slot) 2797 + sizeof(struct btrfs_root_ref); 2798 item_len = btrfs_item_size_nr(leaf, slot) 2799 - sizeof(struct btrfs_root_ref); 2800 read_extent_buffer(leaf, subvol_info->name, 2801 item_off, item_len); 2802 } else { 2803 ret = -ENOENT; 2804 goto out; 2805 } 2806 } 2807 2808 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2809 ret = -EFAULT; 2810 2811 out: 2812 btrfs_put_root(root); 2813 out_free: 2814 btrfs_free_path(path); 2815 kfree(subvol_info); 2816 return ret; 2817 } 2818 2819 /* 2820 * Return ROOT_REF information of the subvolume containing this inode 2821 * except the subvolume name. 2822 */ 2823 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2824 { 2825 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2826 struct btrfs_root_ref *rref; 2827 struct btrfs_root *root; 2828 struct btrfs_path *path; 2829 struct btrfs_key key; 2830 struct extent_buffer *leaf; 2831 struct inode *inode; 2832 u64 objectid; 2833 int slot; 2834 int ret; 2835 u8 found; 2836 2837 path = btrfs_alloc_path(); 2838 if (!path) 2839 return -ENOMEM; 2840 2841 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2842 if (IS_ERR(rootrefs)) { 2843 btrfs_free_path(path); 2844 return PTR_ERR(rootrefs); 2845 } 2846 2847 inode = file_inode(file); 2848 root = BTRFS_I(inode)->root->fs_info->tree_root; 2849 objectid = BTRFS_I(inode)->root->root_key.objectid; 2850 2851 key.objectid = objectid; 2852 key.type = BTRFS_ROOT_REF_KEY; 2853 key.offset = rootrefs->min_treeid; 2854 found = 0; 2855 2856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2857 if (ret < 0) { 2858 goto out; 2859 } else if (path->slots[0] >= 2860 btrfs_header_nritems(path->nodes[0])) { 2861 ret = btrfs_next_leaf(root, path); 2862 if (ret < 0) { 2863 goto out; 2864 } else if (ret > 0) { 2865 ret = -EUCLEAN; 2866 goto out; 2867 } 2868 } 2869 while (1) { 2870 leaf = path->nodes[0]; 2871 slot = path->slots[0]; 2872 2873 btrfs_item_key_to_cpu(leaf, &key, slot); 2874 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2875 ret = 0; 2876 goto out; 2877 } 2878 2879 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2880 ret = -EOVERFLOW; 2881 goto out; 2882 } 2883 2884 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2885 rootrefs->rootref[found].treeid = key.offset; 2886 rootrefs->rootref[found].dirid = 2887 btrfs_root_ref_dirid(leaf, rref); 2888 found++; 2889 2890 ret = btrfs_next_item(root, path); 2891 if (ret < 0) { 2892 goto out; 2893 } else if (ret > 0) { 2894 ret = -EUCLEAN; 2895 goto out; 2896 } 2897 } 2898 2899 out: 2900 if (!ret || ret == -EOVERFLOW) { 2901 rootrefs->num_items = found; 2902 /* update min_treeid for next search */ 2903 if (found) 2904 rootrefs->min_treeid = 2905 rootrefs->rootref[found - 1].treeid + 1; 2906 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2907 ret = -EFAULT; 2908 } 2909 2910 kfree(rootrefs); 2911 btrfs_free_path(path); 2912 2913 return ret; 2914 } 2915 2916 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2917 void __user *arg, 2918 bool destroy_v2) 2919 { 2920 struct dentry *parent = file->f_path.dentry; 2921 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2922 struct dentry *dentry; 2923 struct inode *dir = d_inode(parent); 2924 struct inode *inode; 2925 struct btrfs_root *root = BTRFS_I(dir)->root; 2926 struct btrfs_root *dest = NULL; 2927 struct btrfs_ioctl_vol_args *vol_args = NULL; 2928 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2929 char *subvol_name, *subvol_name_ptr = NULL; 2930 int subvol_namelen; 2931 int err = 0; 2932 bool destroy_parent = false; 2933 2934 if (destroy_v2) { 2935 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2936 if (IS_ERR(vol_args2)) 2937 return PTR_ERR(vol_args2); 2938 2939 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2940 err = -EOPNOTSUPP; 2941 goto out; 2942 } 2943 2944 /* 2945 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2946 * name, same as v1 currently does. 2947 */ 2948 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2949 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2950 subvol_name = vol_args2->name; 2951 2952 err = mnt_want_write_file(file); 2953 if (err) 2954 goto out; 2955 } else { 2956 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2957 err = -EINVAL; 2958 goto out; 2959 } 2960 2961 err = mnt_want_write_file(file); 2962 if (err) 2963 goto out; 2964 2965 dentry = btrfs_get_dentry(fs_info->sb, 2966 BTRFS_FIRST_FREE_OBJECTID, 2967 vol_args2->subvolid, 0, 0); 2968 if (IS_ERR(dentry)) { 2969 err = PTR_ERR(dentry); 2970 goto out_drop_write; 2971 } 2972 2973 /* 2974 * Change the default parent since the subvolume being 2975 * deleted can be outside of the current mount point. 2976 */ 2977 parent = btrfs_get_parent(dentry); 2978 2979 /* 2980 * At this point dentry->d_name can point to '/' if the 2981 * subvolume we want to destroy is outsite of the 2982 * current mount point, so we need to release the 2983 * current dentry and execute the lookup to return a new 2984 * one with ->d_name pointing to the 2985 * <mount point>/subvol_name. 2986 */ 2987 dput(dentry); 2988 if (IS_ERR(parent)) { 2989 err = PTR_ERR(parent); 2990 goto out_drop_write; 2991 } 2992 dir = d_inode(parent); 2993 2994 /* 2995 * If v2 was used with SPEC_BY_ID, a new parent was 2996 * allocated since the subvolume can be outside of the 2997 * current mount point. Later on we need to release this 2998 * new parent dentry. 2999 */ 3000 destroy_parent = true; 3001 3002 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3003 fs_info, vol_args2->subvolid); 3004 if (IS_ERR(subvol_name_ptr)) { 3005 err = PTR_ERR(subvol_name_ptr); 3006 goto free_parent; 3007 } 3008 /* subvol_name_ptr is already NULL termined */ 3009 subvol_name = (char *)kbasename(subvol_name_ptr); 3010 } 3011 } else { 3012 vol_args = memdup_user(arg, sizeof(*vol_args)); 3013 if (IS_ERR(vol_args)) 3014 return PTR_ERR(vol_args); 3015 3016 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3017 subvol_name = vol_args->name; 3018 3019 err = mnt_want_write_file(file); 3020 if (err) 3021 goto out; 3022 } 3023 3024 subvol_namelen = strlen(subvol_name); 3025 3026 if (strchr(subvol_name, '/') || 3027 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3028 err = -EINVAL; 3029 goto free_subvol_name; 3030 } 3031 3032 if (!S_ISDIR(dir->i_mode)) { 3033 err = -ENOTDIR; 3034 goto free_subvol_name; 3035 } 3036 3037 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3038 if (err == -EINTR) 3039 goto free_subvol_name; 3040 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 3041 if (IS_ERR(dentry)) { 3042 err = PTR_ERR(dentry); 3043 goto out_unlock_dir; 3044 } 3045 3046 if (d_really_is_negative(dentry)) { 3047 err = -ENOENT; 3048 goto out_dput; 3049 } 3050 3051 inode = d_inode(dentry); 3052 dest = BTRFS_I(inode)->root; 3053 if (!capable(CAP_SYS_ADMIN)) { 3054 /* 3055 * Regular user. Only allow this with a special mount 3056 * option, when the user has write+exec access to the 3057 * subvol root, and when rmdir(2) would have been 3058 * allowed. 3059 * 3060 * Note that this is _not_ check that the subvol is 3061 * empty or doesn't contain data that we wouldn't 3062 * otherwise be able to delete. 3063 * 3064 * Users who want to delete empty subvols should try 3065 * rmdir(2). 3066 */ 3067 err = -EPERM; 3068 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3069 goto out_dput; 3070 3071 /* 3072 * Do not allow deletion if the parent dir is the same 3073 * as the dir to be deleted. That means the ioctl 3074 * must be called on the dentry referencing the root 3075 * of the subvol, not a random directory contained 3076 * within it. 3077 */ 3078 err = -EINVAL; 3079 if (root == dest) 3080 goto out_dput; 3081 3082 err = inode_permission(&init_user_ns, inode, 3083 MAY_WRITE | MAY_EXEC); 3084 if (err) 3085 goto out_dput; 3086 } 3087 3088 /* check if subvolume may be deleted by a user */ 3089 err = btrfs_may_delete(dir, dentry, 1); 3090 if (err) 3091 goto out_dput; 3092 3093 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3094 err = -EINVAL; 3095 goto out_dput; 3096 } 3097 3098 inode_lock(inode); 3099 err = btrfs_delete_subvolume(dir, dentry); 3100 inode_unlock(inode); 3101 if (!err) { 3102 fsnotify_rmdir(dir, dentry); 3103 d_delete(dentry); 3104 } 3105 3106 out_dput: 3107 dput(dentry); 3108 out_unlock_dir: 3109 inode_unlock(dir); 3110 free_subvol_name: 3111 kfree(subvol_name_ptr); 3112 free_parent: 3113 if (destroy_parent) 3114 dput(parent); 3115 out_drop_write: 3116 mnt_drop_write_file(file); 3117 out: 3118 kfree(vol_args2); 3119 kfree(vol_args); 3120 return err; 3121 } 3122 3123 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3124 { 3125 struct inode *inode = file_inode(file); 3126 struct btrfs_root *root = BTRFS_I(inode)->root; 3127 struct btrfs_ioctl_defrag_range_args *range; 3128 int ret; 3129 3130 ret = mnt_want_write_file(file); 3131 if (ret) 3132 return ret; 3133 3134 if (btrfs_root_readonly(root)) { 3135 ret = -EROFS; 3136 goto out; 3137 } 3138 3139 switch (inode->i_mode & S_IFMT) { 3140 case S_IFDIR: 3141 if (!capable(CAP_SYS_ADMIN)) { 3142 ret = -EPERM; 3143 goto out; 3144 } 3145 ret = btrfs_defrag_root(root); 3146 break; 3147 case S_IFREG: 3148 /* 3149 * Note that this does not check the file descriptor for write 3150 * access. This prevents defragmenting executables that are 3151 * running and allows defrag on files open in read-only mode. 3152 */ 3153 if (!capable(CAP_SYS_ADMIN) && 3154 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3155 ret = -EPERM; 3156 goto out; 3157 } 3158 3159 range = kzalloc(sizeof(*range), GFP_KERNEL); 3160 if (!range) { 3161 ret = -ENOMEM; 3162 goto out; 3163 } 3164 3165 if (argp) { 3166 if (copy_from_user(range, argp, 3167 sizeof(*range))) { 3168 ret = -EFAULT; 3169 kfree(range); 3170 goto out; 3171 } 3172 /* compression requires us to start the IO */ 3173 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3174 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3175 range->extent_thresh = (u32)-1; 3176 } 3177 } else { 3178 /* the rest are all set to zero by kzalloc */ 3179 range->len = (u64)-1; 3180 } 3181 ret = btrfs_defrag_file(file_inode(file), file, 3182 range, BTRFS_OLDEST_GENERATION, 0); 3183 if (ret > 0) 3184 ret = 0; 3185 kfree(range); 3186 break; 3187 default: 3188 ret = -EINVAL; 3189 } 3190 out: 3191 mnt_drop_write_file(file); 3192 return ret; 3193 } 3194 3195 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3196 { 3197 struct btrfs_ioctl_vol_args *vol_args; 3198 int ret; 3199 3200 if (!capable(CAP_SYS_ADMIN)) 3201 return -EPERM; 3202 3203 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3204 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3205 3206 vol_args = memdup_user(arg, sizeof(*vol_args)); 3207 if (IS_ERR(vol_args)) { 3208 ret = PTR_ERR(vol_args); 3209 goto out; 3210 } 3211 3212 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3213 ret = btrfs_init_new_device(fs_info, vol_args->name); 3214 3215 if (!ret) 3216 btrfs_info(fs_info, "disk added %s", vol_args->name); 3217 3218 kfree(vol_args); 3219 out: 3220 btrfs_exclop_finish(fs_info); 3221 return ret; 3222 } 3223 3224 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3225 { 3226 struct inode *inode = file_inode(file); 3227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3228 struct btrfs_ioctl_vol_args_v2 *vol_args; 3229 int ret; 3230 3231 if (!capable(CAP_SYS_ADMIN)) 3232 return -EPERM; 3233 3234 ret = mnt_want_write_file(file); 3235 if (ret) 3236 return ret; 3237 3238 vol_args = memdup_user(arg, sizeof(*vol_args)); 3239 if (IS_ERR(vol_args)) { 3240 ret = PTR_ERR(vol_args); 3241 goto err_drop; 3242 } 3243 3244 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3245 ret = -EOPNOTSUPP; 3246 goto out; 3247 } 3248 3249 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3250 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3251 goto out; 3252 } 3253 3254 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3255 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3256 } else { 3257 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3258 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3259 } 3260 btrfs_exclop_finish(fs_info); 3261 3262 if (!ret) { 3263 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3264 btrfs_info(fs_info, "device deleted: id %llu", 3265 vol_args->devid); 3266 else 3267 btrfs_info(fs_info, "device deleted: %s", 3268 vol_args->name); 3269 } 3270 out: 3271 kfree(vol_args); 3272 err_drop: 3273 mnt_drop_write_file(file); 3274 return ret; 3275 } 3276 3277 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3278 { 3279 struct inode *inode = file_inode(file); 3280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3281 struct btrfs_ioctl_vol_args *vol_args; 3282 int ret; 3283 3284 if (!capable(CAP_SYS_ADMIN)) 3285 return -EPERM; 3286 3287 ret = mnt_want_write_file(file); 3288 if (ret) 3289 return ret; 3290 3291 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3292 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3293 goto out_drop_write; 3294 } 3295 3296 vol_args = memdup_user(arg, sizeof(*vol_args)); 3297 if (IS_ERR(vol_args)) { 3298 ret = PTR_ERR(vol_args); 3299 goto out; 3300 } 3301 3302 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3303 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3304 3305 if (!ret) 3306 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3307 kfree(vol_args); 3308 out: 3309 btrfs_exclop_finish(fs_info); 3310 out_drop_write: 3311 mnt_drop_write_file(file); 3312 3313 return ret; 3314 } 3315 3316 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3317 void __user *arg) 3318 { 3319 struct btrfs_ioctl_fs_info_args *fi_args; 3320 struct btrfs_device *device; 3321 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3322 u64 flags_in; 3323 int ret = 0; 3324 3325 fi_args = memdup_user(arg, sizeof(*fi_args)); 3326 if (IS_ERR(fi_args)) 3327 return PTR_ERR(fi_args); 3328 3329 flags_in = fi_args->flags; 3330 memset(fi_args, 0, sizeof(*fi_args)); 3331 3332 rcu_read_lock(); 3333 fi_args->num_devices = fs_devices->num_devices; 3334 3335 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3336 if (device->devid > fi_args->max_id) 3337 fi_args->max_id = device->devid; 3338 } 3339 rcu_read_unlock(); 3340 3341 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3342 fi_args->nodesize = fs_info->nodesize; 3343 fi_args->sectorsize = fs_info->sectorsize; 3344 fi_args->clone_alignment = fs_info->sectorsize; 3345 3346 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3347 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3348 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3349 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3350 } 3351 3352 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3353 fi_args->generation = fs_info->generation; 3354 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3355 } 3356 3357 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3358 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3359 sizeof(fi_args->metadata_uuid)); 3360 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3361 } 3362 3363 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3364 ret = -EFAULT; 3365 3366 kfree(fi_args); 3367 return ret; 3368 } 3369 3370 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3371 void __user *arg) 3372 { 3373 struct btrfs_ioctl_dev_info_args *di_args; 3374 struct btrfs_device *dev; 3375 int ret = 0; 3376 char *s_uuid = NULL; 3377 3378 di_args = memdup_user(arg, sizeof(*di_args)); 3379 if (IS_ERR(di_args)) 3380 return PTR_ERR(di_args); 3381 3382 if (!btrfs_is_empty_uuid(di_args->uuid)) 3383 s_uuid = di_args->uuid; 3384 3385 rcu_read_lock(); 3386 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3387 NULL); 3388 3389 if (!dev) { 3390 ret = -ENODEV; 3391 goto out; 3392 } 3393 3394 di_args->devid = dev->devid; 3395 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3396 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3397 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3398 if (dev->name) { 3399 strncpy(di_args->path, rcu_str_deref(dev->name), 3400 sizeof(di_args->path) - 1); 3401 di_args->path[sizeof(di_args->path) - 1] = 0; 3402 } else { 3403 di_args->path[0] = '\0'; 3404 } 3405 3406 out: 3407 rcu_read_unlock(); 3408 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3409 ret = -EFAULT; 3410 3411 kfree(di_args); 3412 return ret; 3413 } 3414 3415 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3416 { 3417 struct inode *inode = file_inode(file); 3418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3419 struct btrfs_root *root = BTRFS_I(inode)->root; 3420 struct btrfs_root *new_root; 3421 struct btrfs_dir_item *di; 3422 struct btrfs_trans_handle *trans; 3423 struct btrfs_path *path = NULL; 3424 struct btrfs_disk_key disk_key; 3425 u64 objectid = 0; 3426 u64 dir_id; 3427 int ret; 3428 3429 if (!capable(CAP_SYS_ADMIN)) 3430 return -EPERM; 3431 3432 ret = mnt_want_write_file(file); 3433 if (ret) 3434 return ret; 3435 3436 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3437 ret = -EFAULT; 3438 goto out; 3439 } 3440 3441 if (!objectid) 3442 objectid = BTRFS_FS_TREE_OBJECTID; 3443 3444 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3445 if (IS_ERR(new_root)) { 3446 ret = PTR_ERR(new_root); 3447 goto out; 3448 } 3449 if (!is_fstree(new_root->root_key.objectid)) { 3450 ret = -ENOENT; 3451 goto out_free; 3452 } 3453 3454 path = btrfs_alloc_path(); 3455 if (!path) { 3456 ret = -ENOMEM; 3457 goto out_free; 3458 } 3459 3460 trans = btrfs_start_transaction(root, 1); 3461 if (IS_ERR(trans)) { 3462 ret = PTR_ERR(trans); 3463 goto out_free; 3464 } 3465 3466 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3467 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3468 dir_id, "default", 7, 1); 3469 if (IS_ERR_OR_NULL(di)) { 3470 btrfs_release_path(path); 3471 btrfs_end_transaction(trans); 3472 btrfs_err(fs_info, 3473 "Umm, you don't have the default diritem, this isn't going to work"); 3474 ret = -ENOENT; 3475 goto out_free; 3476 } 3477 3478 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3479 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3480 btrfs_mark_buffer_dirty(path->nodes[0]); 3481 btrfs_release_path(path); 3482 3483 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3484 btrfs_end_transaction(trans); 3485 out_free: 3486 btrfs_put_root(new_root); 3487 btrfs_free_path(path); 3488 out: 3489 mnt_drop_write_file(file); 3490 return ret; 3491 } 3492 3493 static void get_block_group_info(struct list_head *groups_list, 3494 struct btrfs_ioctl_space_info *space) 3495 { 3496 struct btrfs_block_group *block_group; 3497 3498 space->total_bytes = 0; 3499 space->used_bytes = 0; 3500 space->flags = 0; 3501 list_for_each_entry(block_group, groups_list, list) { 3502 space->flags = block_group->flags; 3503 space->total_bytes += block_group->length; 3504 space->used_bytes += block_group->used; 3505 } 3506 } 3507 3508 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3509 void __user *arg) 3510 { 3511 struct btrfs_ioctl_space_args space_args; 3512 struct btrfs_ioctl_space_info space; 3513 struct btrfs_ioctl_space_info *dest; 3514 struct btrfs_ioctl_space_info *dest_orig; 3515 struct btrfs_ioctl_space_info __user *user_dest; 3516 struct btrfs_space_info *info; 3517 static const u64 types[] = { 3518 BTRFS_BLOCK_GROUP_DATA, 3519 BTRFS_BLOCK_GROUP_SYSTEM, 3520 BTRFS_BLOCK_GROUP_METADATA, 3521 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3522 }; 3523 int num_types = 4; 3524 int alloc_size; 3525 int ret = 0; 3526 u64 slot_count = 0; 3527 int i, c; 3528 3529 if (copy_from_user(&space_args, 3530 (struct btrfs_ioctl_space_args __user *)arg, 3531 sizeof(space_args))) 3532 return -EFAULT; 3533 3534 for (i = 0; i < num_types; i++) { 3535 struct btrfs_space_info *tmp; 3536 3537 info = NULL; 3538 list_for_each_entry(tmp, &fs_info->space_info, list) { 3539 if (tmp->flags == types[i]) { 3540 info = tmp; 3541 break; 3542 } 3543 } 3544 3545 if (!info) 3546 continue; 3547 3548 down_read(&info->groups_sem); 3549 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3550 if (!list_empty(&info->block_groups[c])) 3551 slot_count++; 3552 } 3553 up_read(&info->groups_sem); 3554 } 3555 3556 /* 3557 * Global block reserve, exported as a space_info 3558 */ 3559 slot_count++; 3560 3561 /* space_slots == 0 means they are asking for a count */ 3562 if (space_args.space_slots == 0) { 3563 space_args.total_spaces = slot_count; 3564 goto out; 3565 } 3566 3567 slot_count = min_t(u64, space_args.space_slots, slot_count); 3568 3569 alloc_size = sizeof(*dest) * slot_count; 3570 3571 /* we generally have at most 6 or so space infos, one for each raid 3572 * level. So, a whole page should be more than enough for everyone 3573 */ 3574 if (alloc_size > PAGE_SIZE) 3575 return -ENOMEM; 3576 3577 space_args.total_spaces = 0; 3578 dest = kmalloc(alloc_size, GFP_KERNEL); 3579 if (!dest) 3580 return -ENOMEM; 3581 dest_orig = dest; 3582 3583 /* now we have a buffer to copy into */ 3584 for (i = 0; i < num_types; i++) { 3585 struct btrfs_space_info *tmp; 3586 3587 if (!slot_count) 3588 break; 3589 3590 info = NULL; 3591 list_for_each_entry(tmp, &fs_info->space_info, list) { 3592 if (tmp->flags == types[i]) { 3593 info = tmp; 3594 break; 3595 } 3596 } 3597 3598 if (!info) 3599 continue; 3600 down_read(&info->groups_sem); 3601 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3602 if (!list_empty(&info->block_groups[c])) { 3603 get_block_group_info(&info->block_groups[c], 3604 &space); 3605 memcpy(dest, &space, sizeof(space)); 3606 dest++; 3607 space_args.total_spaces++; 3608 slot_count--; 3609 } 3610 if (!slot_count) 3611 break; 3612 } 3613 up_read(&info->groups_sem); 3614 } 3615 3616 /* 3617 * Add global block reserve 3618 */ 3619 if (slot_count) { 3620 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3621 3622 spin_lock(&block_rsv->lock); 3623 space.total_bytes = block_rsv->size; 3624 space.used_bytes = block_rsv->size - block_rsv->reserved; 3625 spin_unlock(&block_rsv->lock); 3626 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3627 memcpy(dest, &space, sizeof(space)); 3628 space_args.total_spaces++; 3629 } 3630 3631 user_dest = (struct btrfs_ioctl_space_info __user *) 3632 (arg + sizeof(struct btrfs_ioctl_space_args)); 3633 3634 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3635 ret = -EFAULT; 3636 3637 kfree(dest_orig); 3638 out: 3639 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3640 ret = -EFAULT; 3641 3642 return ret; 3643 } 3644 3645 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3646 void __user *argp) 3647 { 3648 struct btrfs_trans_handle *trans; 3649 u64 transid; 3650 int ret; 3651 3652 trans = btrfs_attach_transaction_barrier(root); 3653 if (IS_ERR(trans)) { 3654 if (PTR_ERR(trans) != -ENOENT) 3655 return PTR_ERR(trans); 3656 3657 /* No running transaction, don't bother */ 3658 transid = root->fs_info->last_trans_committed; 3659 goto out; 3660 } 3661 transid = trans->transid; 3662 ret = btrfs_commit_transaction_async(trans, 0); 3663 if (ret) { 3664 btrfs_end_transaction(trans); 3665 return ret; 3666 } 3667 out: 3668 if (argp) 3669 if (copy_to_user(argp, &transid, sizeof(transid))) 3670 return -EFAULT; 3671 return 0; 3672 } 3673 3674 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3675 void __user *argp) 3676 { 3677 u64 transid; 3678 3679 if (argp) { 3680 if (copy_from_user(&transid, argp, sizeof(transid))) 3681 return -EFAULT; 3682 } else { 3683 transid = 0; /* current trans */ 3684 } 3685 return btrfs_wait_for_commit(fs_info, transid); 3686 } 3687 3688 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3689 { 3690 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3691 struct btrfs_ioctl_scrub_args *sa; 3692 int ret; 3693 3694 if (!capable(CAP_SYS_ADMIN)) 3695 return -EPERM; 3696 3697 sa = memdup_user(arg, sizeof(*sa)); 3698 if (IS_ERR(sa)) 3699 return PTR_ERR(sa); 3700 3701 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3702 ret = mnt_want_write_file(file); 3703 if (ret) 3704 goto out; 3705 } 3706 3707 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3708 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3709 0); 3710 3711 /* 3712 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3713 * error. This is important as it allows user space to know how much 3714 * progress scrub has done. For example, if scrub is canceled we get 3715 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3716 * space. Later user space can inspect the progress from the structure 3717 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3718 * previously (btrfs-progs does this). 3719 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3720 * then return -EFAULT to signal the structure was not copied or it may 3721 * be corrupt and unreliable due to a partial copy. 3722 */ 3723 if (copy_to_user(arg, sa, sizeof(*sa))) 3724 ret = -EFAULT; 3725 3726 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3727 mnt_drop_write_file(file); 3728 out: 3729 kfree(sa); 3730 return ret; 3731 } 3732 3733 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3734 { 3735 if (!capable(CAP_SYS_ADMIN)) 3736 return -EPERM; 3737 3738 return btrfs_scrub_cancel(fs_info); 3739 } 3740 3741 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3742 void __user *arg) 3743 { 3744 struct btrfs_ioctl_scrub_args *sa; 3745 int ret; 3746 3747 if (!capable(CAP_SYS_ADMIN)) 3748 return -EPERM; 3749 3750 sa = memdup_user(arg, sizeof(*sa)); 3751 if (IS_ERR(sa)) 3752 return PTR_ERR(sa); 3753 3754 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3755 3756 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3757 ret = -EFAULT; 3758 3759 kfree(sa); 3760 return ret; 3761 } 3762 3763 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3764 void __user *arg) 3765 { 3766 struct btrfs_ioctl_get_dev_stats *sa; 3767 int ret; 3768 3769 sa = memdup_user(arg, sizeof(*sa)); 3770 if (IS_ERR(sa)) 3771 return PTR_ERR(sa); 3772 3773 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3774 kfree(sa); 3775 return -EPERM; 3776 } 3777 3778 ret = btrfs_get_dev_stats(fs_info, sa); 3779 3780 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3781 ret = -EFAULT; 3782 3783 kfree(sa); 3784 return ret; 3785 } 3786 3787 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3788 void __user *arg) 3789 { 3790 struct btrfs_ioctl_dev_replace_args *p; 3791 int ret; 3792 3793 if (!capable(CAP_SYS_ADMIN)) 3794 return -EPERM; 3795 3796 p = memdup_user(arg, sizeof(*p)); 3797 if (IS_ERR(p)) 3798 return PTR_ERR(p); 3799 3800 switch (p->cmd) { 3801 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3802 if (sb_rdonly(fs_info->sb)) { 3803 ret = -EROFS; 3804 goto out; 3805 } 3806 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3807 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3808 } else { 3809 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3810 btrfs_exclop_finish(fs_info); 3811 } 3812 break; 3813 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3814 btrfs_dev_replace_status(fs_info, p); 3815 ret = 0; 3816 break; 3817 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3818 p->result = btrfs_dev_replace_cancel(fs_info); 3819 ret = 0; 3820 break; 3821 default: 3822 ret = -EINVAL; 3823 break; 3824 } 3825 3826 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3827 ret = -EFAULT; 3828 out: 3829 kfree(p); 3830 return ret; 3831 } 3832 3833 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3834 { 3835 int ret = 0; 3836 int i; 3837 u64 rel_ptr; 3838 int size; 3839 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3840 struct inode_fs_paths *ipath = NULL; 3841 struct btrfs_path *path; 3842 3843 if (!capable(CAP_DAC_READ_SEARCH)) 3844 return -EPERM; 3845 3846 path = btrfs_alloc_path(); 3847 if (!path) { 3848 ret = -ENOMEM; 3849 goto out; 3850 } 3851 3852 ipa = memdup_user(arg, sizeof(*ipa)); 3853 if (IS_ERR(ipa)) { 3854 ret = PTR_ERR(ipa); 3855 ipa = NULL; 3856 goto out; 3857 } 3858 3859 size = min_t(u32, ipa->size, 4096); 3860 ipath = init_ipath(size, root, path); 3861 if (IS_ERR(ipath)) { 3862 ret = PTR_ERR(ipath); 3863 ipath = NULL; 3864 goto out; 3865 } 3866 3867 ret = paths_from_inode(ipa->inum, ipath); 3868 if (ret < 0) 3869 goto out; 3870 3871 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3872 rel_ptr = ipath->fspath->val[i] - 3873 (u64)(unsigned long)ipath->fspath->val; 3874 ipath->fspath->val[i] = rel_ptr; 3875 } 3876 3877 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3878 ipath->fspath, size); 3879 if (ret) { 3880 ret = -EFAULT; 3881 goto out; 3882 } 3883 3884 out: 3885 btrfs_free_path(path); 3886 free_ipath(ipath); 3887 kfree(ipa); 3888 3889 return ret; 3890 } 3891 3892 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3893 { 3894 struct btrfs_data_container *inodes = ctx; 3895 const size_t c = 3 * sizeof(u64); 3896 3897 if (inodes->bytes_left >= c) { 3898 inodes->bytes_left -= c; 3899 inodes->val[inodes->elem_cnt] = inum; 3900 inodes->val[inodes->elem_cnt + 1] = offset; 3901 inodes->val[inodes->elem_cnt + 2] = root; 3902 inodes->elem_cnt += 3; 3903 } else { 3904 inodes->bytes_missing += c - inodes->bytes_left; 3905 inodes->bytes_left = 0; 3906 inodes->elem_missed += 3; 3907 } 3908 3909 return 0; 3910 } 3911 3912 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3913 void __user *arg, int version) 3914 { 3915 int ret = 0; 3916 int size; 3917 struct btrfs_ioctl_logical_ino_args *loi; 3918 struct btrfs_data_container *inodes = NULL; 3919 struct btrfs_path *path = NULL; 3920 bool ignore_offset; 3921 3922 if (!capable(CAP_SYS_ADMIN)) 3923 return -EPERM; 3924 3925 loi = memdup_user(arg, sizeof(*loi)); 3926 if (IS_ERR(loi)) 3927 return PTR_ERR(loi); 3928 3929 if (version == 1) { 3930 ignore_offset = false; 3931 size = min_t(u32, loi->size, SZ_64K); 3932 } else { 3933 /* All reserved bits must be 0 for now */ 3934 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3935 ret = -EINVAL; 3936 goto out_loi; 3937 } 3938 /* Only accept flags we have defined so far */ 3939 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3940 ret = -EINVAL; 3941 goto out_loi; 3942 } 3943 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3944 size = min_t(u32, loi->size, SZ_16M); 3945 } 3946 3947 path = btrfs_alloc_path(); 3948 if (!path) { 3949 ret = -ENOMEM; 3950 goto out; 3951 } 3952 3953 inodes = init_data_container(size); 3954 if (IS_ERR(inodes)) { 3955 ret = PTR_ERR(inodes); 3956 inodes = NULL; 3957 goto out; 3958 } 3959 3960 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3961 build_ino_list, inodes, ignore_offset); 3962 if (ret == -EINVAL) 3963 ret = -ENOENT; 3964 if (ret < 0) 3965 goto out; 3966 3967 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3968 size); 3969 if (ret) 3970 ret = -EFAULT; 3971 3972 out: 3973 btrfs_free_path(path); 3974 kvfree(inodes); 3975 out_loi: 3976 kfree(loi); 3977 3978 return ret; 3979 } 3980 3981 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3982 struct btrfs_ioctl_balance_args *bargs) 3983 { 3984 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3985 3986 bargs->flags = bctl->flags; 3987 3988 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3989 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3990 if (atomic_read(&fs_info->balance_pause_req)) 3991 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3992 if (atomic_read(&fs_info->balance_cancel_req)) 3993 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3994 3995 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3996 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3997 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3998 3999 spin_lock(&fs_info->balance_lock); 4000 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4001 spin_unlock(&fs_info->balance_lock); 4002 } 4003 4004 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4005 { 4006 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4007 struct btrfs_fs_info *fs_info = root->fs_info; 4008 struct btrfs_ioctl_balance_args *bargs; 4009 struct btrfs_balance_control *bctl; 4010 bool need_unlock; /* for mut. excl. ops lock */ 4011 int ret; 4012 4013 if (!capable(CAP_SYS_ADMIN)) 4014 return -EPERM; 4015 4016 ret = mnt_want_write_file(file); 4017 if (ret) 4018 return ret; 4019 4020 again: 4021 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4022 mutex_lock(&fs_info->balance_mutex); 4023 need_unlock = true; 4024 goto locked; 4025 } 4026 4027 /* 4028 * mut. excl. ops lock is locked. Three possibilities: 4029 * (1) some other op is running 4030 * (2) balance is running 4031 * (3) balance is paused -- special case (think resume) 4032 */ 4033 mutex_lock(&fs_info->balance_mutex); 4034 if (fs_info->balance_ctl) { 4035 /* this is either (2) or (3) */ 4036 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4037 mutex_unlock(&fs_info->balance_mutex); 4038 /* 4039 * Lock released to allow other waiters to continue, 4040 * we'll reexamine the status again. 4041 */ 4042 mutex_lock(&fs_info->balance_mutex); 4043 4044 if (fs_info->balance_ctl && 4045 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4046 /* this is (3) */ 4047 need_unlock = false; 4048 goto locked; 4049 } 4050 4051 mutex_unlock(&fs_info->balance_mutex); 4052 goto again; 4053 } else { 4054 /* this is (2) */ 4055 mutex_unlock(&fs_info->balance_mutex); 4056 ret = -EINPROGRESS; 4057 goto out; 4058 } 4059 } else { 4060 /* this is (1) */ 4061 mutex_unlock(&fs_info->balance_mutex); 4062 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4063 goto out; 4064 } 4065 4066 locked: 4067 4068 if (arg) { 4069 bargs = memdup_user(arg, sizeof(*bargs)); 4070 if (IS_ERR(bargs)) { 4071 ret = PTR_ERR(bargs); 4072 goto out_unlock; 4073 } 4074 4075 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4076 if (!fs_info->balance_ctl) { 4077 ret = -ENOTCONN; 4078 goto out_bargs; 4079 } 4080 4081 bctl = fs_info->balance_ctl; 4082 spin_lock(&fs_info->balance_lock); 4083 bctl->flags |= BTRFS_BALANCE_RESUME; 4084 spin_unlock(&fs_info->balance_lock); 4085 4086 goto do_balance; 4087 } 4088 } else { 4089 bargs = NULL; 4090 } 4091 4092 if (fs_info->balance_ctl) { 4093 ret = -EINPROGRESS; 4094 goto out_bargs; 4095 } 4096 4097 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4098 if (!bctl) { 4099 ret = -ENOMEM; 4100 goto out_bargs; 4101 } 4102 4103 if (arg) { 4104 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4105 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4106 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4107 4108 bctl->flags = bargs->flags; 4109 } else { 4110 /* balance everything - no filters */ 4111 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4112 } 4113 4114 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4115 ret = -EINVAL; 4116 goto out_bctl; 4117 } 4118 4119 do_balance: 4120 /* 4121 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4122 * bctl is freed in reset_balance_state, or, if restriper was paused 4123 * all the way until unmount, in free_fs_info. The flag should be 4124 * cleared after reset_balance_state. 4125 */ 4126 need_unlock = false; 4127 4128 ret = btrfs_balance(fs_info, bctl, bargs); 4129 bctl = NULL; 4130 4131 if ((ret == 0 || ret == -ECANCELED) && arg) { 4132 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4133 ret = -EFAULT; 4134 } 4135 4136 out_bctl: 4137 kfree(bctl); 4138 out_bargs: 4139 kfree(bargs); 4140 out_unlock: 4141 mutex_unlock(&fs_info->balance_mutex); 4142 if (need_unlock) 4143 btrfs_exclop_finish(fs_info); 4144 out: 4145 mnt_drop_write_file(file); 4146 return ret; 4147 } 4148 4149 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4150 { 4151 if (!capable(CAP_SYS_ADMIN)) 4152 return -EPERM; 4153 4154 switch (cmd) { 4155 case BTRFS_BALANCE_CTL_PAUSE: 4156 return btrfs_pause_balance(fs_info); 4157 case BTRFS_BALANCE_CTL_CANCEL: 4158 return btrfs_cancel_balance(fs_info); 4159 } 4160 4161 return -EINVAL; 4162 } 4163 4164 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4165 void __user *arg) 4166 { 4167 struct btrfs_ioctl_balance_args *bargs; 4168 int ret = 0; 4169 4170 if (!capable(CAP_SYS_ADMIN)) 4171 return -EPERM; 4172 4173 mutex_lock(&fs_info->balance_mutex); 4174 if (!fs_info->balance_ctl) { 4175 ret = -ENOTCONN; 4176 goto out; 4177 } 4178 4179 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4180 if (!bargs) { 4181 ret = -ENOMEM; 4182 goto out; 4183 } 4184 4185 btrfs_update_ioctl_balance_args(fs_info, bargs); 4186 4187 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4188 ret = -EFAULT; 4189 4190 kfree(bargs); 4191 out: 4192 mutex_unlock(&fs_info->balance_mutex); 4193 return ret; 4194 } 4195 4196 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4197 { 4198 struct inode *inode = file_inode(file); 4199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4200 struct btrfs_ioctl_quota_ctl_args *sa; 4201 int ret; 4202 4203 if (!capable(CAP_SYS_ADMIN)) 4204 return -EPERM; 4205 4206 ret = mnt_want_write_file(file); 4207 if (ret) 4208 return ret; 4209 4210 sa = memdup_user(arg, sizeof(*sa)); 4211 if (IS_ERR(sa)) { 4212 ret = PTR_ERR(sa); 4213 goto drop_write; 4214 } 4215 4216 down_write(&fs_info->subvol_sem); 4217 4218 switch (sa->cmd) { 4219 case BTRFS_QUOTA_CTL_ENABLE: 4220 ret = btrfs_quota_enable(fs_info); 4221 break; 4222 case BTRFS_QUOTA_CTL_DISABLE: 4223 ret = btrfs_quota_disable(fs_info); 4224 break; 4225 default: 4226 ret = -EINVAL; 4227 break; 4228 } 4229 4230 kfree(sa); 4231 up_write(&fs_info->subvol_sem); 4232 drop_write: 4233 mnt_drop_write_file(file); 4234 return ret; 4235 } 4236 4237 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4238 { 4239 struct inode *inode = file_inode(file); 4240 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4241 struct btrfs_root *root = BTRFS_I(inode)->root; 4242 struct btrfs_ioctl_qgroup_assign_args *sa; 4243 struct btrfs_trans_handle *trans; 4244 int ret; 4245 int err; 4246 4247 if (!capable(CAP_SYS_ADMIN)) 4248 return -EPERM; 4249 4250 ret = mnt_want_write_file(file); 4251 if (ret) 4252 return ret; 4253 4254 sa = memdup_user(arg, sizeof(*sa)); 4255 if (IS_ERR(sa)) { 4256 ret = PTR_ERR(sa); 4257 goto drop_write; 4258 } 4259 4260 trans = btrfs_join_transaction(root); 4261 if (IS_ERR(trans)) { 4262 ret = PTR_ERR(trans); 4263 goto out; 4264 } 4265 4266 if (sa->assign) { 4267 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4268 } else { 4269 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4270 } 4271 4272 /* update qgroup status and info */ 4273 err = btrfs_run_qgroups(trans); 4274 if (err < 0) 4275 btrfs_handle_fs_error(fs_info, err, 4276 "failed to update qgroup status and info"); 4277 err = btrfs_end_transaction(trans); 4278 if (err && !ret) 4279 ret = err; 4280 4281 out: 4282 kfree(sa); 4283 drop_write: 4284 mnt_drop_write_file(file); 4285 return ret; 4286 } 4287 4288 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4289 { 4290 struct inode *inode = file_inode(file); 4291 struct btrfs_root *root = BTRFS_I(inode)->root; 4292 struct btrfs_ioctl_qgroup_create_args *sa; 4293 struct btrfs_trans_handle *trans; 4294 int ret; 4295 int err; 4296 4297 if (!capable(CAP_SYS_ADMIN)) 4298 return -EPERM; 4299 4300 ret = mnt_want_write_file(file); 4301 if (ret) 4302 return ret; 4303 4304 sa = memdup_user(arg, sizeof(*sa)); 4305 if (IS_ERR(sa)) { 4306 ret = PTR_ERR(sa); 4307 goto drop_write; 4308 } 4309 4310 if (!sa->qgroupid) { 4311 ret = -EINVAL; 4312 goto out; 4313 } 4314 4315 trans = btrfs_join_transaction(root); 4316 if (IS_ERR(trans)) { 4317 ret = PTR_ERR(trans); 4318 goto out; 4319 } 4320 4321 if (sa->create) { 4322 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4323 } else { 4324 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4325 } 4326 4327 err = btrfs_end_transaction(trans); 4328 if (err && !ret) 4329 ret = err; 4330 4331 out: 4332 kfree(sa); 4333 drop_write: 4334 mnt_drop_write_file(file); 4335 return ret; 4336 } 4337 4338 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4339 { 4340 struct inode *inode = file_inode(file); 4341 struct btrfs_root *root = BTRFS_I(inode)->root; 4342 struct btrfs_ioctl_qgroup_limit_args *sa; 4343 struct btrfs_trans_handle *trans; 4344 int ret; 4345 int err; 4346 u64 qgroupid; 4347 4348 if (!capable(CAP_SYS_ADMIN)) 4349 return -EPERM; 4350 4351 ret = mnt_want_write_file(file); 4352 if (ret) 4353 return ret; 4354 4355 sa = memdup_user(arg, sizeof(*sa)); 4356 if (IS_ERR(sa)) { 4357 ret = PTR_ERR(sa); 4358 goto drop_write; 4359 } 4360 4361 trans = btrfs_join_transaction(root); 4362 if (IS_ERR(trans)) { 4363 ret = PTR_ERR(trans); 4364 goto out; 4365 } 4366 4367 qgroupid = sa->qgroupid; 4368 if (!qgroupid) { 4369 /* take the current subvol as qgroup */ 4370 qgroupid = root->root_key.objectid; 4371 } 4372 4373 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4374 4375 err = btrfs_end_transaction(trans); 4376 if (err && !ret) 4377 ret = err; 4378 4379 out: 4380 kfree(sa); 4381 drop_write: 4382 mnt_drop_write_file(file); 4383 return ret; 4384 } 4385 4386 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4387 { 4388 struct inode *inode = file_inode(file); 4389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4390 struct btrfs_ioctl_quota_rescan_args *qsa; 4391 int ret; 4392 4393 if (!capable(CAP_SYS_ADMIN)) 4394 return -EPERM; 4395 4396 ret = mnt_want_write_file(file); 4397 if (ret) 4398 return ret; 4399 4400 qsa = memdup_user(arg, sizeof(*qsa)); 4401 if (IS_ERR(qsa)) { 4402 ret = PTR_ERR(qsa); 4403 goto drop_write; 4404 } 4405 4406 if (qsa->flags) { 4407 ret = -EINVAL; 4408 goto out; 4409 } 4410 4411 ret = btrfs_qgroup_rescan(fs_info); 4412 4413 out: 4414 kfree(qsa); 4415 drop_write: 4416 mnt_drop_write_file(file); 4417 return ret; 4418 } 4419 4420 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4421 void __user *arg) 4422 { 4423 struct btrfs_ioctl_quota_rescan_args *qsa; 4424 int ret = 0; 4425 4426 if (!capable(CAP_SYS_ADMIN)) 4427 return -EPERM; 4428 4429 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4430 if (!qsa) 4431 return -ENOMEM; 4432 4433 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4434 qsa->flags = 1; 4435 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4436 } 4437 4438 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4439 ret = -EFAULT; 4440 4441 kfree(qsa); 4442 return ret; 4443 } 4444 4445 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4446 void __user *arg) 4447 { 4448 if (!capable(CAP_SYS_ADMIN)) 4449 return -EPERM; 4450 4451 return btrfs_qgroup_wait_for_completion(fs_info, true); 4452 } 4453 4454 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4455 struct btrfs_ioctl_received_subvol_args *sa) 4456 { 4457 struct inode *inode = file_inode(file); 4458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4459 struct btrfs_root *root = BTRFS_I(inode)->root; 4460 struct btrfs_root_item *root_item = &root->root_item; 4461 struct btrfs_trans_handle *trans; 4462 struct timespec64 ct = current_time(inode); 4463 int ret = 0; 4464 int received_uuid_changed; 4465 4466 if (!inode_owner_or_capable(&init_user_ns, inode)) 4467 return -EPERM; 4468 4469 ret = mnt_want_write_file(file); 4470 if (ret < 0) 4471 return ret; 4472 4473 down_write(&fs_info->subvol_sem); 4474 4475 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4476 ret = -EINVAL; 4477 goto out; 4478 } 4479 4480 if (btrfs_root_readonly(root)) { 4481 ret = -EROFS; 4482 goto out; 4483 } 4484 4485 /* 4486 * 1 - root item 4487 * 2 - uuid items (received uuid + subvol uuid) 4488 */ 4489 trans = btrfs_start_transaction(root, 3); 4490 if (IS_ERR(trans)) { 4491 ret = PTR_ERR(trans); 4492 trans = NULL; 4493 goto out; 4494 } 4495 4496 sa->rtransid = trans->transid; 4497 sa->rtime.sec = ct.tv_sec; 4498 sa->rtime.nsec = ct.tv_nsec; 4499 4500 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4501 BTRFS_UUID_SIZE); 4502 if (received_uuid_changed && 4503 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4504 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4505 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4506 root->root_key.objectid); 4507 if (ret && ret != -ENOENT) { 4508 btrfs_abort_transaction(trans, ret); 4509 btrfs_end_transaction(trans); 4510 goto out; 4511 } 4512 } 4513 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4514 btrfs_set_root_stransid(root_item, sa->stransid); 4515 btrfs_set_root_rtransid(root_item, sa->rtransid); 4516 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4517 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4518 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4519 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4520 4521 ret = btrfs_update_root(trans, fs_info->tree_root, 4522 &root->root_key, &root->root_item); 4523 if (ret < 0) { 4524 btrfs_end_transaction(trans); 4525 goto out; 4526 } 4527 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4528 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4529 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4530 root->root_key.objectid); 4531 if (ret < 0 && ret != -EEXIST) { 4532 btrfs_abort_transaction(trans, ret); 4533 btrfs_end_transaction(trans); 4534 goto out; 4535 } 4536 } 4537 ret = btrfs_commit_transaction(trans); 4538 out: 4539 up_write(&fs_info->subvol_sem); 4540 mnt_drop_write_file(file); 4541 return ret; 4542 } 4543 4544 #ifdef CONFIG_64BIT 4545 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4546 void __user *arg) 4547 { 4548 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4549 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4550 int ret = 0; 4551 4552 args32 = memdup_user(arg, sizeof(*args32)); 4553 if (IS_ERR(args32)) 4554 return PTR_ERR(args32); 4555 4556 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4557 if (!args64) { 4558 ret = -ENOMEM; 4559 goto out; 4560 } 4561 4562 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4563 args64->stransid = args32->stransid; 4564 args64->rtransid = args32->rtransid; 4565 args64->stime.sec = args32->stime.sec; 4566 args64->stime.nsec = args32->stime.nsec; 4567 args64->rtime.sec = args32->rtime.sec; 4568 args64->rtime.nsec = args32->rtime.nsec; 4569 args64->flags = args32->flags; 4570 4571 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4572 if (ret) 4573 goto out; 4574 4575 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4576 args32->stransid = args64->stransid; 4577 args32->rtransid = args64->rtransid; 4578 args32->stime.sec = args64->stime.sec; 4579 args32->stime.nsec = args64->stime.nsec; 4580 args32->rtime.sec = args64->rtime.sec; 4581 args32->rtime.nsec = args64->rtime.nsec; 4582 args32->flags = args64->flags; 4583 4584 ret = copy_to_user(arg, args32, sizeof(*args32)); 4585 if (ret) 4586 ret = -EFAULT; 4587 4588 out: 4589 kfree(args32); 4590 kfree(args64); 4591 return ret; 4592 } 4593 #endif 4594 4595 static long btrfs_ioctl_set_received_subvol(struct file *file, 4596 void __user *arg) 4597 { 4598 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4599 int ret = 0; 4600 4601 sa = memdup_user(arg, sizeof(*sa)); 4602 if (IS_ERR(sa)) 4603 return PTR_ERR(sa); 4604 4605 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4606 4607 if (ret) 4608 goto out; 4609 4610 ret = copy_to_user(arg, sa, sizeof(*sa)); 4611 if (ret) 4612 ret = -EFAULT; 4613 4614 out: 4615 kfree(sa); 4616 return ret; 4617 } 4618 4619 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4620 void __user *arg) 4621 { 4622 size_t len; 4623 int ret; 4624 char label[BTRFS_LABEL_SIZE]; 4625 4626 spin_lock(&fs_info->super_lock); 4627 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4628 spin_unlock(&fs_info->super_lock); 4629 4630 len = strnlen(label, BTRFS_LABEL_SIZE); 4631 4632 if (len == BTRFS_LABEL_SIZE) { 4633 btrfs_warn(fs_info, 4634 "label is too long, return the first %zu bytes", 4635 --len); 4636 } 4637 4638 ret = copy_to_user(arg, label, len); 4639 4640 return ret ? -EFAULT : 0; 4641 } 4642 4643 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4644 { 4645 struct inode *inode = file_inode(file); 4646 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4647 struct btrfs_root *root = BTRFS_I(inode)->root; 4648 struct btrfs_super_block *super_block = fs_info->super_copy; 4649 struct btrfs_trans_handle *trans; 4650 char label[BTRFS_LABEL_SIZE]; 4651 int ret; 4652 4653 if (!capable(CAP_SYS_ADMIN)) 4654 return -EPERM; 4655 4656 if (copy_from_user(label, arg, sizeof(label))) 4657 return -EFAULT; 4658 4659 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4660 btrfs_err(fs_info, 4661 "unable to set label with more than %d bytes", 4662 BTRFS_LABEL_SIZE - 1); 4663 return -EINVAL; 4664 } 4665 4666 ret = mnt_want_write_file(file); 4667 if (ret) 4668 return ret; 4669 4670 trans = btrfs_start_transaction(root, 0); 4671 if (IS_ERR(trans)) { 4672 ret = PTR_ERR(trans); 4673 goto out_unlock; 4674 } 4675 4676 spin_lock(&fs_info->super_lock); 4677 strcpy(super_block->label, label); 4678 spin_unlock(&fs_info->super_lock); 4679 ret = btrfs_commit_transaction(trans); 4680 4681 out_unlock: 4682 mnt_drop_write_file(file); 4683 return ret; 4684 } 4685 4686 #define INIT_FEATURE_FLAGS(suffix) \ 4687 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4688 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4689 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4690 4691 int btrfs_ioctl_get_supported_features(void __user *arg) 4692 { 4693 static const struct btrfs_ioctl_feature_flags features[3] = { 4694 INIT_FEATURE_FLAGS(SUPP), 4695 INIT_FEATURE_FLAGS(SAFE_SET), 4696 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4697 }; 4698 4699 if (copy_to_user(arg, &features, sizeof(features))) 4700 return -EFAULT; 4701 4702 return 0; 4703 } 4704 4705 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4706 void __user *arg) 4707 { 4708 struct btrfs_super_block *super_block = fs_info->super_copy; 4709 struct btrfs_ioctl_feature_flags features; 4710 4711 features.compat_flags = btrfs_super_compat_flags(super_block); 4712 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4713 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4714 4715 if (copy_to_user(arg, &features, sizeof(features))) 4716 return -EFAULT; 4717 4718 return 0; 4719 } 4720 4721 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4722 enum btrfs_feature_set set, 4723 u64 change_mask, u64 flags, u64 supported_flags, 4724 u64 safe_set, u64 safe_clear) 4725 { 4726 const char *type = btrfs_feature_set_name(set); 4727 char *names; 4728 u64 disallowed, unsupported; 4729 u64 set_mask = flags & change_mask; 4730 u64 clear_mask = ~flags & change_mask; 4731 4732 unsupported = set_mask & ~supported_flags; 4733 if (unsupported) { 4734 names = btrfs_printable_features(set, unsupported); 4735 if (names) { 4736 btrfs_warn(fs_info, 4737 "this kernel does not support the %s feature bit%s", 4738 names, strchr(names, ',') ? "s" : ""); 4739 kfree(names); 4740 } else 4741 btrfs_warn(fs_info, 4742 "this kernel does not support %s bits 0x%llx", 4743 type, unsupported); 4744 return -EOPNOTSUPP; 4745 } 4746 4747 disallowed = set_mask & ~safe_set; 4748 if (disallowed) { 4749 names = btrfs_printable_features(set, disallowed); 4750 if (names) { 4751 btrfs_warn(fs_info, 4752 "can't set the %s feature bit%s while mounted", 4753 names, strchr(names, ',') ? "s" : ""); 4754 kfree(names); 4755 } else 4756 btrfs_warn(fs_info, 4757 "can't set %s bits 0x%llx while mounted", 4758 type, disallowed); 4759 return -EPERM; 4760 } 4761 4762 disallowed = clear_mask & ~safe_clear; 4763 if (disallowed) { 4764 names = btrfs_printable_features(set, disallowed); 4765 if (names) { 4766 btrfs_warn(fs_info, 4767 "can't clear the %s feature bit%s while mounted", 4768 names, strchr(names, ',') ? "s" : ""); 4769 kfree(names); 4770 } else 4771 btrfs_warn(fs_info, 4772 "can't clear %s bits 0x%llx while mounted", 4773 type, disallowed); 4774 return -EPERM; 4775 } 4776 4777 return 0; 4778 } 4779 4780 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4781 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4782 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4783 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4784 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4785 4786 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4787 { 4788 struct inode *inode = file_inode(file); 4789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4790 struct btrfs_root *root = BTRFS_I(inode)->root; 4791 struct btrfs_super_block *super_block = fs_info->super_copy; 4792 struct btrfs_ioctl_feature_flags flags[2]; 4793 struct btrfs_trans_handle *trans; 4794 u64 newflags; 4795 int ret; 4796 4797 if (!capable(CAP_SYS_ADMIN)) 4798 return -EPERM; 4799 4800 if (copy_from_user(flags, arg, sizeof(flags))) 4801 return -EFAULT; 4802 4803 /* Nothing to do */ 4804 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4805 !flags[0].incompat_flags) 4806 return 0; 4807 4808 ret = check_feature(fs_info, flags[0].compat_flags, 4809 flags[1].compat_flags, COMPAT); 4810 if (ret) 4811 return ret; 4812 4813 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4814 flags[1].compat_ro_flags, COMPAT_RO); 4815 if (ret) 4816 return ret; 4817 4818 ret = check_feature(fs_info, flags[0].incompat_flags, 4819 flags[1].incompat_flags, INCOMPAT); 4820 if (ret) 4821 return ret; 4822 4823 ret = mnt_want_write_file(file); 4824 if (ret) 4825 return ret; 4826 4827 trans = btrfs_start_transaction(root, 0); 4828 if (IS_ERR(trans)) { 4829 ret = PTR_ERR(trans); 4830 goto out_drop_write; 4831 } 4832 4833 spin_lock(&fs_info->super_lock); 4834 newflags = btrfs_super_compat_flags(super_block); 4835 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4836 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4837 btrfs_set_super_compat_flags(super_block, newflags); 4838 4839 newflags = btrfs_super_compat_ro_flags(super_block); 4840 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4841 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4842 btrfs_set_super_compat_ro_flags(super_block, newflags); 4843 4844 newflags = btrfs_super_incompat_flags(super_block); 4845 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4846 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4847 btrfs_set_super_incompat_flags(super_block, newflags); 4848 spin_unlock(&fs_info->super_lock); 4849 4850 ret = btrfs_commit_transaction(trans); 4851 out_drop_write: 4852 mnt_drop_write_file(file); 4853 4854 return ret; 4855 } 4856 4857 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4858 { 4859 struct btrfs_ioctl_send_args *arg; 4860 int ret; 4861 4862 if (compat) { 4863 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4864 struct btrfs_ioctl_send_args_32 args32; 4865 4866 ret = copy_from_user(&args32, argp, sizeof(args32)); 4867 if (ret) 4868 return -EFAULT; 4869 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4870 if (!arg) 4871 return -ENOMEM; 4872 arg->send_fd = args32.send_fd; 4873 arg->clone_sources_count = args32.clone_sources_count; 4874 arg->clone_sources = compat_ptr(args32.clone_sources); 4875 arg->parent_root = args32.parent_root; 4876 arg->flags = args32.flags; 4877 memcpy(arg->reserved, args32.reserved, 4878 sizeof(args32.reserved)); 4879 #else 4880 return -ENOTTY; 4881 #endif 4882 } else { 4883 arg = memdup_user(argp, sizeof(*arg)); 4884 if (IS_ERR(arg)) 4885 return PTR_ERR(arg); 4886 } 4887 ret = btrfs_ioctl_send(file, arg); 4888 kfree(arg); 4889 return ret; 4890 } 4891 4892 long btrfs_ioctl(struct file *file, unsigned int 4893 cmd, unsigned long arg) 4894 { 4895 struct inode *inode = file_inode(file); 4896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4897 struct btrfs_root *root = BTRFS_I(inode)->root; 4898 void __user *argp = (void __user *)arg; 4899 4900 switch (cmd) { 4901 case FS_IOC_GETFLAGS: 4902 return btrfs_ioctl_getflags(file, argp); 4903 case FS_IOC_SETFLAGS: 4904 return btrfs_ioctl_setflags(file, argp); 4905 case FS_IOC_GETVERSION: 4906 return btrfs_ioctl_getversion(file, argp); 4907 case FS_IOC_GETFSLABEL: 4908 return btrfs_ioctl_get_fslabel(fs_info, argp); 4909 case FS_IOC_SETFSLABEL: 4910 return btrfs_ioctl_set_fslabel(file, argp); 4911 case FITRIM: 4912 return btrfs_ioctl_fitrim(fs_info, argp); 4913 case BTRFS_IOC_SNAP_CREATE: 4914 return btrfs_ioctl_snap_create(file, argp, 0); 4915 case BTRFS_IOC_SNAP_CREATE_V2: 4916 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4917 case BTRFS_IOC_SUBVOL_CREATE: 4918 return btrfs_ioctl_snap_create(file, argp, 1); 4919 case BTRFS_IOC_SUBVOL_CREATE_V2: 4920 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4921 case BTRFS_IOC_SNAP_DESTROY: 4922 return btrfs_ioctl_snap_destroy(file, argp, false); 4923 case BTRFS_IOC_SNAP_DESTROY_V2: 4924 return btrfs_ioctl_snap_destroy(file, argp, true); 4925 case BTRFS_IOC_SUBVOL_GETFLAGS: 4926 return btrfs_ioctl_subvol_getflags(file, argp); 4927 case BTRFS_IOC_SUBVOL_SETFLAGS: 4928 return btrfs_ioctl_subvol_setflags(file, argp); 4929 case BTRFS_IOC_DEFAULT_SUBVOL: 4930 return btrfs_ioctl_default_subvol(file, argp); 4931 case BTRFS_IOC_DEFRAG: 4932 return btrfs_ioctl_defrag(file, NULL); 4933 case BTRFS_IOC_DEFRAG_RANGE: 4934 return btrfs_ioctl_defrag(file, argp); 4935 case BTRFS_IOC_RESIZE: 4936 return btrfs_ioctl_resize(file, argp); 4937 case BTRFS_IOC_ADD_DEV: 4938 return btrfs_ioctl_add_dev(fs_info, argp); 4939 case BTRFS_IOC_RM_DEV: 4940 return btrfs_ioctl_rm_dev(file, argp); 4941 case BTRFS_IOC_RM_DEV_V2: 4942 return btrfs_ioctl_rm_dev_v2(file, argp); 4943 case BTRFS_IOC_FS_INFO: 4944 return btrfs_ioctl_fs_info(fs_info, argp); 4945 case BTRFS_IOC_DEV_INFO: 4946 return btrfs_ioctl_dev_info(fs_info, argp); 4947 case BTRFS_IOC_BALANCE: 4948 return btrfs_ioctl_balance(file, NULL); 4949 case BTRFS_IOC_TREE_SEARCH: 4950 return btrfs_ioctl_tree_search(file, argp); 4951 case BTRFS_IOC_TREE_SEARCH_V2: 4952 return btrfs_ioctl_tree_search_v2(file, argp); 4953 case BTRFS_IOC_INO_LOOKUP: 4954 return btrfs_ioctl_ino_lookup(file, argp); 4955 case BTRFS_IOC_INO_PATHS: 4956 return btrfs_ioctl_ino_to_path(root, argp); 4957 case BTRFS_IOC_LOGICAL_INO: 4958 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4959 case BTRFS_IOC_LOGICAL_INO_V2: 4960 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4961 case BTRFS_IOC_SPACE_INFO: 4962 return btrfs_ioctl_space_info(fs_info, argp); 4963 case BTRFS_IOC_SYNC: { 4964 int ret; 4965 4966 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4967 if (ret) 4968 return ret; 4969 ret = btrfs_sync_fs(inode->i_sb, 1); 4970 /* 4971 * The transaction thread may want to do more work, 4972 * namely it pokes the cleaner kthread that will start 4973 * processing uncleaned subvols. 4974 */ 4975 wake_up_process(fs_info->transaction_kthread); 4976 return ret; 4977 } 4978 case BTRFS_IOC_START_SYNC: 4979 return btrfs_ioctl_start_sync(root, argp); 4980 case BTRFS_IOC_WAIT_SYNC: 4981 return btrfs_ioctl_wait_sync(fs_info, argp); 4982 case BTRFS_IOC_SCRUB: 4983 return btrfs_ioctl_scrub(file, argp); 4984 case BTRFS_IOC_SCRUB_CANCEL: 4985 return btrfs_ioctl_scrub_cancel(fs_info); 4986 case BTRFS_IOC_SCRUB_PROGRESS: 4987 return btrfs_ioctl_scrub_progress(fs_info, argp); 4988 case BTRFS_IOC_BALANCE_V2: 4989 return btrfs_ioctl_balance(file, argp); 4990 case BTRFS_IOC_BALANCE_CTL: 4991 return btrfs_ioctl_balance_ctl(fs_info, arg); 4992 case BTRFS_IOC_BALANCE_PROGRESS: 4993 return btrfs_ioctl_balance_progress(fs_info, argp); 4994 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4995 return btrfs_ioctl_set_received_subvol(file, argp); 4996 #ifdef CONFIG_64BIT 4997 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4998 return btrfs_ioctl_set_received_subvol_32(file, argp); 4999 #endif 5000 case BTRFS_IOC_SEND: 5001 return _btrfs_ioctl_send(file, argp, false); 5002 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5003 case BTRFS_IOC_SEND_32: 5004 return _btrfs_ioctl_send(file, argp, true); 5005 #endif 5006 case BTRFS_IOC_GET_DEV_STATS: 5007 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5008 case BTRFS_IOC_QUOTA_CTL: 5009 return btrfs_ioctl_quota_ctl(file, argp); 5010 case BTRFS_IOC_QGROUP_ASSIGN: 5011 return btrfs_ioctl_qgroup_assign(file, argp); 5012 case BTRFS_IOC_QGROUP_CREATE: 5013 return btrfs_ioctl_qgroup_create(file, argp); 5014 case BTRFS_IOC_QGROUP_LIMIT: 5015 return btrfs_ioctl_qgroup_limit(file, argp); 5016 case BTRFS_IOC_QUOTA_RESCAN: 5017 return btrfs_ioctl_quota_rescan(file, argp); 5018 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5019 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5020 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5021 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5022 case BTRFS_IOC_DEV_REPLACE: 5023 return btrfs_ioctl_dev_replace(fs_info, argp); 5024 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5025 return btrfs_ioctl_get_supported_features(argp); 5026 case BTRFS_IOC_GET_FEATURES: 5027 return btrfs_ioctl_get_features(fs_info, argp); 5028 case BTRFS_IOC_SET_FEATURES: 5029 return btrfs_ioctl_set_features(file, argp); 5030 case FS_IOC_FSGETXATTR: 5031 return btrfs_ioctl_fsgetxattr(file, argp); 5032 case FS_IOC_FSSETXATTR: 5033 return btrfs_ioctl_fssetxattr(file, argp); 5034 case BTRFS_IOC_GET_SUBVOL_INFO: 5035 return btrfs_ioctl_get_subvol_info(file, argp); 5036 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5037 return btrfs_ioctl_get_subvol_rootref(file, argp); 5038 case BTRFS_IOC_INO_LOOKUP_USER: 5039 return btrfs_ioctl_ino_lookup_user(file, argp); 5040 } 5041 5042 return -ENOTTY; 5043 } 5044 5045 #ifdef CONFIG_COMPAT 5046 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5047 { 5048 /* 5049 * These all access 32-bit values anyway so no further 5050 * handling is necessary. 5051 */ 5052 switch (cmd) { 5053 case FS_IOC32_GETFLAGS: 5054 cmd = FS_IOC_GETFLAGS; 5055 break; 5056 case FS_IOC32_SETFLAGS: 5057 cmd = FS_IOC_SETFLAGS; 5058 break; 5059 case FS_IOC32_GETVERSION: 5060 cmd = FS_IOC_GETVERSION; 5061 break; 5062 } 5063 5064 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5065 } 5066 #endif 5067