1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include "compat.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "ioctl.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 60 /* Mask out flags that are inappropriate for the given type of inode. */ 61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 62 { 63 if (S_ISDIR(mode)) 64 return flags; 65 else if (S_ISREG(mode)) 66 return flags & ~FS_DIRSYNC_FL; 67 else 68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 69 } 70 71 /* 72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 73 */ 74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 75 { 76 unsigned int iflags = 0; 77 78 if (flags & BTRFS_INODE_SYNC) 79 iflags |= FS_SYNC_FL; 80 if (flags & BTRFS_INODE_IMMUTABLE) 81 iflags |= FS_IMMUTABLE_FL; 82 if (flags & BTRFS_INODE_APPEND) 83 iflags |= FS_APPEND_FL; 84 if (flags & BTRFS_INODE_NODUMP) 85 iflags |= FS_NODUMP_FL; 86 if (flags & BTRFS_INODE_NOATIME) 87 iflags |= FS_NOATIME_FL; 88 if (flags & BTRFS_INODE_DIRSYNC) 89 iflags |= FS_DIRSYNC_FL; 90 if (flags & BTRFS_INODE_NODATACOW) 91 iflags |= FS_NOCOW_FL; 92 93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 94 iflags |= FS_COMPR_FL; 95 else if (flags & BTRFS_INODE_NOCOMPRESS) 96 iflags |= FS_NOCOMP_FL; 97 98 return iflags; 99 } 100 101 /* 102 * Update inode->i_flags based on the btrfs internal flags. 103 */ 104 void btrfs_update_iflags(struct inode *inode) 105 { 106 struct btrfs_inode *ip = BTRFS_I(inode); 107 108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 109 110 if (ip->flags & BTRFS_INODE_SYNC) 111 inode->i_flags |= S_SYNC; 112 if (ip->flags & BTRFS_INODE_IMMUTABLE) 113 inode->i_flags |= S_IMMUTABLE; 114 if (ip->flags & BTRFS_INODE_APPEND) 115 inode->i_flags |= S_APPEND; 116 if (ip->flags & BTRFS_INODE_NOATIME) 117 inode->i_flags |= S_NOATIME; 118 if (ip->flags & BTRFS_INODE_DIRSYNC) 119 inode->i_flags |= S_DIRSYNC; 120 } 121 122 /* 123 * Inherit flags from the parent inode. 124 * 125 * Currently only the compression flags and the cow flags are inherited. 126 */ 127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 128 { 129 unsigned int flags; 130 131 if (!dir) 132 return; 133 134 flags = BTRFS_I(dir)->flags; 135 136 if (flags & BTRFS_INODE_NOCOMPRESS) { 137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 139 } else if (flags & BTRFS_INODE_COMPRESS) { 140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 142 } 143 144 if (flags & BTRFS_INODE_NODATACOW) { 145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 146 if (S_ISREG(inode->i_mode)) 147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 148 } 149 150 btrfs_update_iflags(inode); 151 } 152 153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 154 { 155 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 157 158 if (copy_to_user(arg, &flags, sizeof(flags))) 159 return -EFAULT; 160 return 0; 161 } 162 163 static int check_flags(unsigned int flags) 164 { 165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 166 FS_NOATIME_FL | FS_NODUMP_FL | \ 167 FS_SYNC_FL | FS_DIRSYNC_FL | \ 168 FS_NOCOMP_FL | FS_COMPR_FL | 169 FS_NOCOW_FL)) 170 return -EOPNOTSUPP; 171 172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 173 return -EINVAL; 174 175 return 0; 176 } 177 178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 179 { 180 struct inode *inode = file->f_path.dentry->d_inode; 181 struct btrfs_inode *ip = BTRFS_I(inode); 182 struct btrfs_root *root = ip->root; 183 struct btrfs_trans_handle *trans; 184 unsigned int flags, oldflags; 185 int ret; 186 u64 ip_oldflags; 187 unsigned int i_oldflags; 188 umode_t mode; 189 190 if (btrfs_root_readonly(root)) 191 return -EROFS; 192 193 if (copy_from_user(&flags, arg, sizeof(flags))) 194 return -EFAULT; 195 196 ret = check_flags(flags); 197 if (ret) 198 return ret; 199 200 if (!inode_owner_or_capable(inode)) 201 return -EACCES; 202 203 ret = mnt_want_write_file(file); 204 if (ret) 205 return ret; 206 207 mutex_lock(&inode->i_mutex); 208 209 ip_oldflags = ip->flags; 210 i_oldflags = inode->i_flags; 211 mode = inode->i_mode; 212 213 flags = btrfs_mask_flags(inode->i_mode, flags); 214 oldflags = btrfs_flags_to_ioctl(ip->flags); 215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 216 if (!capable(CAP_LINUX_IMMUTABLE)) { 217 ret = -EPERM; 218 goto out_unlock; 219 } 220 } 221 222 if (flags & FS_SYNC_FL) 223 ip->flags |= BTRFS_INODE_SYNC; 224 else 225 ip->flags &= ~BTRFS_INODE_SYNC; 226 if (flags & FS_IMMUTABLE_FL) 227 ip->flags |= BTRFS_INODE_IMMUTABLE; 228 else 229 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 230 if (flags & FS_APPEND_FL) 231 ip->flags |= BTRFS_INODE_APPEND; 232 else 233 ip->flags &= ~BTRFS_INODE_APPEND; 234 if (flags & FS_NODUMP_FL) 235 ip->flags |= BTRFS_INODE_NODUMP; 236 else 237 ip->flags &= ~BTRFS_INODE_NODUMP; 238 if (flags & FS_NOATIME_FL) 239 ip->flags |= BTRFS_INODE_NOATIME; 240 else 241 ip->flags &= ~BTRFS_INODE_NOATIME; 242 if (flags & FS_DIRSYNC_FL) 243 ip->flags |= BTRFS_INODE_DIRSYNC; 244 else 245 ip->flags &= ~BTRFS_INODE_DIRSYNC; 246 if (flags & FS_NOCOW_FL) { 247 if (S_ISREG(mode)) { 248 /* 249 * It's safe to turn csums off here, no extents exist. 250 * Otherwise we want the flag to reflect the real COW 251 * status of the file and will not set it. 252 */ 253 if (inode->i_size == 0) 254 ip->flags |= BTRFS_INODE_NODATACOW 255 | BTRFS_INODE_NODATASUM; 256 } else { 257 ip->flags |= BTRFS_INODE_NODATACOW; 258 } 259 } else { 260 /* 261 * Revert back under same assuptions as above 262 */ 263 if (S_ISREG(mode)) { 264 if (inode->i_size == 0) 265 ip->flags &= ~(BTRFS_INODE_NODATACOW 266 | BTRFS_INODE_NODATASUM); 267 } else { 268 ip->flags &= ~BTRFS_INODE_NODATACOW; 269 } 270 } 271 272 /* 273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 274 * flag may be changed automatically if compression code won't make 275 * things smaller. 276 */ 277 if (flags & FS_NOCOMP_FL) { 278 ip->flags &= ~BTRFS_INODE_COMPRESS; 279 ip->flags |= BTRFS_INODE_NOCOMPRESS; 280 } else if (flags & FS_COMPR_FL) { 281 ip->flags |= BTRFS_INODE_COMPRESS; 282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 283 } else { 284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 285 } 286 287 trans = btrfs_start_transaction(root, 1); 288 if (IS_ERR(trans)) { 289 ret = PTR_ERR(trans); 290 goto out_drop; 291 } 292 293 btrfs_update_iflags(inode); 294 inode_inc_iversion(inode); 295 inode->i_ctime = CURRENT_TIME; 296 ret = btrfs_update_inode(trans, root, inode); 297 298 btrfs_end_transaction(trans, root); 299 out_drop: 300 if (ret) { 301 ip->flags = ip_oldflags; 302 inode->i_flags = i_oldflags; 303 } 304 305 out_unlock: 306 mutex_unlock(&inode->i_mutex); 307 mnt_drop_write_file(file); 308 return ret; 309 } 310 311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 312 { 313 struct inode *inode = file->f_path.dentry->d_inode; 314 315 return put_user(inode->i_generation, arg); 316 } 317 318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 319 { 320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb); 321 struct btrfs_device *device; 322 struct request_queue *q; 323 struct fstrim_range range; 324 u64 minlen = ULLONG_MAX; 325 u64 num_devices = 0; 326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 327 int ret; 328 329 if (!capable(CAP_SYS_ADMIN)) 330 return -EPERM; 331 332 rcu_read_lock(); 333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 334 dev_list) { 335 if (!device->bdev) 336 continue; 337 q = bdev_get_queue(device->bdev); 338 if (blk_queue_discard(q)) { 339 num_devices++; 340 minlen = min((u64)q->limits.discard_granularity, 341 minlen); 342 } 343 } 344 rcu_read_unlock(); 345 346 if (!num_devices) 347 return -EOPNOTSUPP; 348 if (copy_from_user(&range, arg, sizeof(range))) 349 return -EFAULT; 350 if (range.start > total_bytes || 351 range.len < fs_info->sb->s_blocksize) 352 return -EINVAL; 353 354 range.len = min(range.len, total_bytes - range.start); 355 range.minlen = max(range.minlen, minlen); 356 ret = btrfs_trim_fs(fs_info->tree_root, &range); 357 if (ret < 0) 358 return ret; 359 360 if (copy_to_user(arg, &range, sizeof(range))) 361 return -EFAULT; 362 363 return 0; 364 } 365 366 static noinline int create_subvol(struct btrfs_root *root, 367 struct dentry *dentry, 368 char *name, int namelen, 369 u64 *async_transid, 370 struct btrfs_qgroup_inherit **inherit) 371 { 372 struct btrfs_trans_handle *trans; 373 struct btrfs_key key; 374 struct btrfs_root_item root_item; 375 struct btrfs_inode_item *inode_item; 376 struct extent_buffer *leaf; 377 struct btrfs_root *new_root; 378 struct dentry *parent = dentry->d_parent; 379 struct inode *dir; 380 struct timespec cur_time = CURRENT_TIME; 381 int ret; 382 int err; 383 u64 objectid; 384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 385 u64 index = 0; 386 uuid_le new_uuid; 387 388 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 389 if (ret) 390 return ret; 391 392 dir = parent->d_inode; 393 394 /* 395 * 1 - inode item 396 * 2 - refs 397 * 1 - root item 398 * 2 - dir items 399 */ 400 trans = btrfs_start_transaction(root, 6); 401 if (IS_ERR(trans)) 402 return PTR_ERR(trans); 403 404 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, 405 inherit ? *inherit : NULL); 406 if (ret) 407 goto fail; 408 409 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 410 0, objectid, NULL, 0, 0, 0); 411 if (IS_ERR(leaf)) { 412 ret = PTR_ERR(leaf); 413 goto fail; 414 } 415 416 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 417 btrfs_set_header_bytenr(leaf, leaf->start); 418 btrfs_set_header_generation(leaf, trans->transid); 419 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 420 btrfs_set_header_owner(leaf, objectid); 421 422 write_extent_buffer(leaf, root->fs_info->fsid, 423 (unsigned long)btrfs_header_fsid(leaf), 424 BTRFS_FSID_SIZE); 425 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 426 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 427 BTRFS_UUID_SIZE); 428 btrfs_mark_buffer_dirty(leaf); 429 430 memset(&root_item, 0, sizeof(root_item)); 431 432 inode_item = &root_item.inode; 433 inode_item->generation = cpu_to_le64(1); 434 inode_item->size = cpu_to_le64(3); 435 inode_item->nlink = cpu_to_le32(1); 436 inode_item->nbytes = cpu_to_le64(root->leafsize); 437 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 438 439 root_item.flags = 0; 440 root_item.byte_limit = 0; 441 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 442 443 btrfs_set_root_bytenr(&root_item, leaf->start); 444 btrfs_set_root_generation(&root_item, trans->transid); 445 btrfs_set_root_level(&root_item, 0); 446 btrfs_set_root_refs(&root_item, 1); 447 btrfs_set_root_used(&root_item, leaf->len); 448 btrfs_set_root_last_snapshot(&root_item, 0); 449 450 btrfs_set_root_generation_v2(&root_item, 451 btrfs_root_generation(&root_item)); 452 uuid_le_gen(&new_uuid); 453 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 454 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec); 455 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec); 456 root_item.ctime = root_item.otime; 457 btrfs_set_root_ctransid(&root_item, trans->transid); 458 btrfs_set_root_otransid(&root_item, trans->transid); 459 460 btrfs_tree_unlock(leaf); 461 free_extent_buffer(leaf); 462 leaf = NULL; 463 464 btrfs_set_root_dirid(&root_item, new_dirid); 465 466 key.objectid = objectid; 467 key.offset = 0; 468 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 469 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 470 &root_item); 471 if (ret) 472 goto fail; 473 474 key.offset = (u64)-1; 475 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 476 if (IS_ERR(new_root)) { 477 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 478 ret = PTR_ERR(new_root); 479 goto fail; 480 } 481 482 btrfs_record_root_in_trans(trans, new_root); 483 484 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 485 if (ret) { 486 /* We potentially lose an unused inode item here */ 487 btrfs_abort_transaction(trans, root, ret); 488 goto fail; 489 } 490 491 /* 492 * insert the directory item 493 */ 494 ret = btrfs_set_inode_index(dir, &index); 495 if (ret) { 496 btrfs_abort_transaction(trans, root, ret); 497 goto fail; 498 } 499 500 ret = btrfs_insert_dir_item(trans, root, 501 name, namelen, dir, &key, 502 BTRFS_FT_DIR, index); 503 if (ret) { 504 btrfs_abort_transaction(trans, root, ret); 505 goto fail; 506 } 507 508 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 509 ret = btrfs_update_inode(trans, root, dir); 510 BUG_ON(ret); 511 512 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 513 objectid, root->root_key.objectid, 514 btrfs_ino(dir), index, name, namelen); 515 516 BUG_ON(ret); 517 518 fail: 519 if (async_transid) { 520 *async_transid = trans->transid; 521 err = btrfs_commit_transaction_async(trans, root, 1); 522 } else { 523 err = btrfs_commit_transaction(trans, root); 524 } 525 if (err && !ret) 526 ret = err; 527 528 if (!ret) 529 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 530 531 return ret; 532 } 533 534 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 535 char *name, int namelen, u64 *async_transid, 536 bool readonly, struct btrfs_qgroup_inherit **inherit) 537 { 538 struct inode *inode; 539 struct btrfs_pending_snapshot *pending_snapshot; 540 struct btrfs_trans_handle *trans; 541 int ret; 542 543 if (!root->ref_cows) 544 return -EINVAL; 545 546 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 547 if (!pending_snapshot) 548 return -ENOMEM; 549 550 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 551 BTRFS_BLOCK_RSV_TEMP); 552 pending_snapshot->dentry = dentry; 553 pending_snapshot->root = root; 554 pending_snapshot->readonly = readonly; 555 if (inherit) { 556 pending_snapshot->inherit = *inherit; 557 *inherit = NULL; /* take responsibility to free it */ 558 } 559 560 trans = btrfs_start_transaction(root->fs_info->extent_root, 6); 561 if (IS_ERR(trans)) { 562 ret = PTR_ERR(trans); 563 goto fail; 564 } 565 566 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 567 BUG_ON(ret); 568 569 spin_lock(&root->fs_info->trans_lock); 570 list_add(&pending_snapshot->list, 571 &trans->transaction->pending_snapshots); 572 spin_unlock(&root->fs_info->trans_lock); 573 if (async_transid) { 574 *async_transid = trans->transid; 575 ret = btrfs_commit_transaction_async(trans, 576 root->fs_info->extent_root, 1); 577 } else { 578 ret = btrfs_commit_transaction(trans, 579 root->fs_info->extent_root); 580 } 581 if (ret) { 582 /* cleanup_transaction has freed this for us */ 583 if (trans->aborted) 584 pending_snapshot = NULL; 585 goto fail; 586 } 587 588 ret = pending_snapshot->error; 589 if (ret) 590 goto fail; 591 592 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 593 if (ret) 594 goto fail; 595 596 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 597 if (IS_ERR(inode)) { 598 ret = PTR_ERR(inode); 599 goto fail; 600 } 601 BUG_ON(!inode); 602 d_instantiate(dentry, inode); 603 ret = 0; 604 fail: 605 kfree(pending_snapshot); 606 return ret; 607 } 608 609 /* copy of check_sticky in fs/namei.c() 610 * It's inline, so penalty for filesystems that don't use sticky bit is 611 * minimal. 612 */ 613 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 614 { 615 kuid_t fsuid = current_fsuid(); 616 617 if (!(dir->i_mode & S_ISVTX)) 618 return 0; 619 if (uid_eq(inode->i_uid, fsuid)) 620 return 0; 621 if (uid_eq(dir->i_uid, fsuid)) 622 return 0; 623 return !capable(CAP_FOWNER); 624 } 625 626 /* copy of may_delete in fs/namei.c() 627 * Check whether we can remove a link victim from directory dir, check 628 * whether the type of victim is right. 629 * 1. We can't do it if dir is read-only (done in permission()) 630 * 2. We should have write and exec permissions on dir 631 * 3. We can't remove anything from append-only dir 632 * 4. We can't do anything with immutable dir (done in permission()) 633 * 5. If the sticky bit on dir is set we should either 634 * a. be owner of dir, or 635 * b. be owner of victim, or 636 * c. have CAP_FOWNER capability 637 * 6. If the victim is append-only or immutable we can't do antyhing with 638 * links pointing to it. 639 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 640 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 641 * 9. We can't remove a root or mountpoint. 642 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 643 * nfs_async_unlink(). 644 */ 645 646 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 647 { 648 int error; 649 650 if (!victim->d_inode) 651 return -ENOENT; 652 653 BUG_ON(victim->d_parent->d_inode != dir); 654 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 655 656 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 657 if (error) 658 return error; 659 if (IS_APPEND(dir)) 660 return -EPERM; 661 if (btrfs_check_sticky(dir, victim->d_inode)|| 662 IS_APPEND(victim->d_inode)|| 663 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 664 return -EPERM; 665 if (isdir) { 666 if (!S_ISDIR(victim->d_inode->i_mode)) 667 return -ENOTDIR; 668 if (IS_ROOT(victim)) 669 return -EBUSY; 670 } else if (S_ISDIR(victim->d_inode->i_mode)) 671 return -EISDIR; 672 if (IS_DEADDIR(dir)) 673 return -ENOENT; 674 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 675 return -EBUSY; 676 return 0; 677 } 678 679 /* copy of may_create in fs/namei.c() */ 680 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 681 { 682 if (child->d_inode) 683 return -EEXIST; 684 if (IS_DEADDIR(dir)) 685 return -ENOENT; 686 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 687 } 688 689 /* 690 * Create a new subvolume below @parent. This is largely modeled after 691 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 692 * inside this filesystem so it's quite a bit simpler. 693 */ 694 static noinline int btrfs_mksubvol(struct path *parent, 695 char *name, int namelen, 696 struct btrfs_root *snap_src, 697 u64 *async_transid, bool readonly, 698 struct btrfs_qgroup_inherit **inherit) 699 { 700 struct inode *dir = parent->dentry->d_inode; 701 struct dentry *dentry; 702 int error; 703 704 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 705 706 dentry = lookup_one_len(name, parent->dentry, namelen); 707 error = PTR_ERR(dentry); 708 if (IS_ERR(dentry)) 709 goto out_unlock; 710 711 error = -EEXIST; 712 if (dentry->d_inode) 713 goto out_dput; 714 715 error = btrfs_may_create(dir, dentry); 716 if (error) 717 goto out_dput; 718 719 /* 720 * even if this name doesn't exist, we may get hash collisions. 721 * check for them now when we can safely fail 722 */ 723 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 724 dir->i_ino, name, 725 namelen); 726 if (error) 727 goto out_dput; 728 729 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 730 731 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 732 goto out_up_read; 733 734 if (snap_src) { 735 error = create_snapshot(snap_src, dentry, name, namelen, 736 async_transid, readonly, inherit); 737 } else { 738 error = create_subvol(BTRFS_I(dir)->root, dentry, 739 name, namelen, async_transid, inherit); 740 } 741 if (!error) 742 fsnotify_mkdir(dir, dentry); 743 out_up_read: 744 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 745 out_dput: 746 dput(dentry); 747 out_unlock: 748 mutex_unlock(&dir->i_mutex); 749 return error; 750 } 751 752 /* 753 * When we're defragging a range, we don't want to kick it off again 754 * if it is really just waiting for delalloc to send it down. 755 * If we find a nice big extent or delalloc range for the bytes in the 756 * file you want to defrag, we return 0 to let you know to skip this 757 * part of the file 758 */ 759 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 760 { 761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 762 struct extent_map *em = NULL; 763 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 764 u64 end; 765 766 read_lock(&em_tree->lock); 767 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 768 read_unlock(&em_tree->lock); 769 770 if (em) { 771 end = extent_map_end(em); 772 free_extent_map(em); 773 if (end - offset > thresh) 774 return 0; 775 } 776 /* if we already have a nice delalloc here, just stop */ 777 thresh /= 2; 778 end = count_range_bits(io_tree, &offset, offset + thresh, 779 thresh, EXTENT_DELALLOC, 1); 780 if (end >= thresh) 781 return 0; 782 return 1; 783 } 784 785 /* 786 * helper function to walk through a file and find extents 787 * newer than a specific transid, and smaller than thresh. 788 * 789 * This is used by the defragging code to find new and small 790 * extents 791 */ 792 static int find_new_extents(struct btrfs_root *root, 793 struct inode *inode, u64 newer_than, 794 u64 *off, int thresh) 795 { 796 struct btrfs_path *path; 797 struct btrfs_key min_key; 798 struct btrfs_key max_key; 799 struct extent_buffer *leaf; 800 struct btrfs_file_extent_item *extent; 801 int type; 802 int ret; 803 u64 ino = btrfs_ino(inode); 804 805 path = btrfs_alloc_path(); 806 if (!path) 807 return -ENOMEM; 808 809 min_key.objectid = ino; 810 min_key.type = BTRFS_EXTENT_DATA_KEY; 811 min_key.offset = *off; 812 813 max_key.objectid = ino; 814 max_key.type = (u8)-1; 815 max_key.offset = (u64)-1; 816 817 path->keep_locks = 1; 818 819 while(1) { 820 ret = btrfs_search_forward(root, &min_key, &max_key, 821 path, 0, newer_than); 822 if (ret != 0) 823 goto none; 824 if (min_key.objectid != ino) 825 goto none; 826 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 827 goto none; 828 829 leaf = path->nodes[0]; 830 extent = btrfs_item_ptr(leaf, path->slots[0], 831 struct btrfs_file_extent_item); 832 833 type = btrfs_file_extent_type(leaf, extent); 834 if (type == BTRFS_FILE_EXTENT_REG && 835 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 836 check_defrag_in_cache(inode, min_key.offset, thresh)) { 837 *off = min_key.offset; 838 btrfs_free_path(path); 839 return 0; 840 } 841 842 if (min_key.offset == (u64)-1) 843 goto none; 844 845 min_key.offset++; 846 btrfs_release_path(path); 847 } 848 none: 849 btrfs_free_path(path); 850 return -ENOENT; 851 } 852 853 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 854 { 855 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 856 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 857 struct extent_map *em; 858 u64 len = PAGE_CACHE_SIZE; 859 860 /* 861 * hopefully we have this extent in the tree already, try without 862 * the full extent lock 863 */ 864 read_lock(&em_tree->lock); 865 em = lookup_extent_mapping(em_tree, start, len); 866 read_unlock(&em_tree->lock); 867 868 if (!em) { 869 /* get the big lock and read metadata off disk */ 870 lock_extent(io_tree, start, start + len - 1); 871 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 872 unlock_extent(io_tree, start, start + len - 1); 873 874 if (IS_ERR(em)) 875 return NULL; 876 } 877 878 return em; 879 } 880 881 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 882 { 883 struct extent_map *next; 884 bool ret = true; 885 886 /* this is the last extent */ 887 if (em->start + em->len >= i_size_read(inode)) 888 return false; 889 890 next = defrag_lookup_extent(inode, em->start + em->len); 891 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 892 ret = false; 893 894 free_extent_map(next); 895 return ret; 896 } 897 898 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 899 u64 *last_len, u64 *skip, u64 *defrag_end, 900 int compress) 901 { 902 struct extent_map *em; 903 int ret = 1; 904 bool next_mergeable = true; 905 906 /* 907 * make sure that once we start defragging an extent, we keep on 908 * defragging it 909 */ 910 if (start < *defrag_end) 911 return 1; 912 913 *skip = 0; 914 915 em = defrag_lookup_extent(inode, start); 916 if (!em) 917 return 0; 918 919 /* this will cover holes, and inline extents */ 920 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 921 ret = 0; 922 goto out; 923 } 924 925 next_mergeable = defrag_check_next_extent(inode, em); 926 927 /* 928 * we hit a real extent, if it is big or the next extent is not a 929 * real extent, don't bother defragging it 930 */ 931 if (!compress && (*last_len == 0 || *last_len >= thresh) && 932 (em->len >= thresh || !next_mergeable)) 933 ret = 0; 934 out: 935 /* 936 * last_len ends up being a counter of how many bytes we've defragged. 937 * every time we choose not to defrag an extent, we reset *last_len 938 * so that the next tiny extent will force a defrag. 939 * 940 * The end result of this is that tiny extents before a single big 941 * extent will force at least part of that big extent to be defragged. 942 */ 943 if (ret) { 944 *defrag_end = extent_map_end(em); 945 } else { 946 *last_len = 0; 947 *skip = extent_map_end(em); 948 *defrag_end = 0; 949 } 950 951 free_extent_map(em); 952 return ret; 953 } 954 955 /* 956 * it doesn't do much good to defrag one or two pages 957 * at a time. This pulls in a nice chunk of pages 958 * to COW and defrag. 959 * 960 * It also makes sure the delalloc code has enough 961 * dirty data to avoid making new small extents as part 962 * of the defrag 963 * 964 * It's a good idea to start RA on this range 965 * before calling this. 966 */ 967 static int cluster_pages_for_defrag(struct inode *inode, 968 struct page **pages, 969 unsigned long start_index, 970 int num_pages) 971 { 972 unsigned long file_end; 973 u64 isize = i_size_read(inode); 974 u64 page_start; 975 u64 page_end; 976 u64 page_cnt; 977 int ret; 978 int i; 979 int i_done; 980 struct btrfs_ordered_extent *ordered; 981 struct extent_state *cached_state = NULL; 982 struct extent_io_tree *tree; 983 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 984 985 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 986 if (!isize || start_index > file_end) 987 return 0; 988 989 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 990 991 ret = btrfs_delalloc_reserve_space(inode, 992 page_cnt << PAGE_CACHE_SHIFT); 993 if (ret) 994 return ret; 995 i_done = 0; 996 tree = &BTRFS_I(inode)->io_tree; 997 998 /* step one, lock all the pages */ 999 for (i = 0; i < page_cnt; i++) { 1000 struct page *page; 1001 again: 1002 page = find_or_create_page(inode->i_mapping, 1003 start_index + i, mask); 1004 if (!page) 1005 break; 1006 1007 page_start = page_offset(page); 1008 page_end = page_start + PAGE_CACHE_SIZE - 1; 1009 while (1) { 1010 lock_extent(tree, page_start, page_end); 1011 ordered = btrfs_lookup_ordered_extent(inode, 1012 page_start); 1013 unlock_extent(tree, page_start, page_end); 1014 if (!ordered) 1015 break; 1016 1017 unlock_page(page); 1018 btrfs_start_ordered_extent(inode, ordered, 1); 1019 btrfs_put_ordered_extent(ordered); 1020 lock_page(page); 1021 /* 1022 * we unlocked the page above, so we need check if 1023 * it was released or not. 1024 */ 1025 if (page->mapping != inode->i_mapping) { 1026 unlock_page(page); 1027 page_cache_release(page); 1028 goto again; 1029 } 1030 } 1031 1032 if (!PageUptodate(page)) { 1033 btrfs_readpage(NULL, page); 1034 lock_page(page); 1035 if (!PageUptodate(page)) { 1036 unlock_page(page); 1037 page_cache_release(page); 1038 ret = -EIO; 1039 break; 1040 } 1041 } 1042 1043 if (page->mapping != inode->i_mapping) { 1044 unlock_page(page); 1045 page_cache_release(page); 1046 goto again; 1047 } 1048 1049 pages[i] = page; 1050 i_done++; 1051 } 1052 if (!i_done || ret) 1053 goto out; 1054 1055 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1056 goto out; 1057 1058 /* 1059 * so now we have a nice long stream of locked 1060 * and up to date pages, lets wait on them 1061 */ 1062 for (i = 0; i < i_done; i++) 1063 wait_on_page_writeback(pages[i]); 1064 1065 page_start = page_offset(pages[0]); 1066 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1067 1068 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1069 page_start, page_end - 1, 0, &cached_state); 1070 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1071 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1072 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1073 &cached_state, GFP_NOFS); 1074 1075 if (i_done != page_cnt) { 1076 spin_lock(&BTRFS_I(inode)->lock); 1077 BTRFS_I(inode)->outstanding_extents++; 1078 spin_unlock(&BTRFS_I(inode)->lock); 1079 btrfs_delalloc_release_space(inode, 1080 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1081 } 1082 1083 1084 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1085 &cached_state, GFP_NOFS); 1086 1087 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1088 page_start, page_end - 1, &cached_state, 1089 GFP_NOFS); 1090 1091 for (i = 0; i < i_done; i++) { 1092 clear_page_dirty_for_io(pages[i]); 1093 ClearPageChecked(pages[i]); 1094 set_page_extent_mapped(pages[i]); 1095 set_page_dirty(pages[i]); 1096 unlock_page(pages[i]); 1097 page_cache_release(pages[i]); 1098 } 1099 return i_done; 1100 out: 1101 for (i = 0; i < i_done; i++) { 1102 unlock_page(pages[i]); 1103 page_cache_release(pages[i]); 1104 } 1105 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1106 return ret; 1107 1108 } 1109 1110 int btrfs_defrag_file(struct inode *inode, struct file *file, 1111 struct btrfs_ioctl_defrag_range_args *range, 1112 u64 newer_than, unsigned long max_to_defrag) 1113 { 1114 struct btrfs_root *root = BTRFS_I(inode)->root; 1115 struct file_ra_state *ra = NULL; 1116 unsigned long last_index; 1117 u64 isize = i_size_read(inode); 1118 u64 last_len = 0; 1119 u64 skip = 0; 1120 u64 defrag_end = 0; 1121 u64 newer_off = range->start; 1122 unsigned long i; 1123 unsigned long ra_index = 0; 1124 int ret; 1125 int defrag_count = 0; 1126 int compress_type = BTRFS_COMPRESS_ZLIB; 1127 int extent_thresh = range->extent_thresh; 1128 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1129 int cluster = max_cluster; 1130 u64 new_align = ~((u64)128 * 1024 - 1); 1131 struct page **pages = NULL; 1132 1133 if (extent_thresh == 0) 1134 extent_thresh = 256 * 1024; 1135 1136 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1137 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1138 return -EINVAL; 1139 if (range->compress_type) 1140 compress_type = range->compress_type; 1141 } 1142 1143 if (isize == 0) 1144 return 0; 1145 1146 /* 1147 * if we were not given a file, allocate a readahead 1148 * context 1149 */ 1150 if (!file) { 1151 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1152 if (!ra) 1153 return -ENOMEM; 1154 file_ra_state_init(ra, inode->i_mapping); 1155 } else { 1156 ra = &file->f_ra; 1157 } 1158 1159 pages = kmalloc(sizeof(struct page *) * max_cluster, 1160 GFP_NOFS); 1161 if (!pages) { 1162 ret = -ENOMEM; 1163 goto out_ra; 1164 } 1165 1166 /* find the last page to defrag */ 1167 if (range->start + range->len > range->start) { 1168 last_index = min_t(u64, isize - 1, 1169 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1170 } else { 1171 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1172 } 1173 1174 if (newer_than) { 1175 ret = find_new_extents(root, inode, newer_than, 1176 &newer_off, 64 * 1024); 1177 if (!ret) { 1178 range->start = newer_off; 1179 /* 1180 * we always align our defrag to help keep 1181 * the extents in the file evenly spaced 1182 */ 1183 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1184 } else 1185 goto out_ra; 1186 } else { 1187 i = range->start >> PAGE_CACHE_SHIFT; 1188 } 1189 if (!max_to_defrag) 1190 max_to_defrag = last_index + 1; 1191 1192 /* 1193 * make writeback starts from i, so the defrag range can be 1194 * written sequentially. 1195 */ 1196 if (i < inode->i_mapping->writeback_index) 1197 inode->i_mapping->writeback_index = i; 1198 1199 while (i <= last_index && defrag_count < max_to_defrag && 1200 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1201 PAGE_CACHE_SHIFT)) { 1202 /* 1203 * make sure we stop running if someone unmounts 1204 * the FS 1205 */ 1206 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1207 break; 1208 1209 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1210 extent_thresh, &last_len, &skip, 1211 &defrag_end, range->flags & 1212 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1213 unsigned long next; 1214 /* 1215 * the should_defrag function tells us how much to skip 1216 * bump our counter by the suggested amount 1217 */ 1218 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1219 i = max(i + 1, next); 1220 continue; 1221 } 1222 1223 if (!newer_than) { 1224 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1225 PAGE_CACHE_SHIFT) - i; 1226 cluster = min(cluster, max_cluster); 1227 } else { 1228 cluster = max_cluster; 1229 } 1230 1231 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1232 BTRFS_I(inode)->force_compress = compress_type; 1233 1234 if (i + cluster > ra_index) { 1235 ra_index = max(i, ra_index); 1236 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1237 cluster); 1238 ra_index += max_cluster; 1239 } 1240 1241 mutex_lock(&inode->i_mutex); 1242 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1243 if (ret < 0) { 1244 mutex_unlock(&inode->i_mutex); 1245 goto out_ra; 1246 } 1247 1248 defrag_count += ret; 1249 balance_dirty_pages_ratelimited(inode->i_mapping); 1250 mutex_unlock(&inode->i_mutex); 1251 1252 if (newer_than) { 1253 if (newer_off == (u64)-1) 1254 break; 1255 1256 if (ret > 0) 1257 i += ret; 1258 1259 newer_off = max(newer_off + 1, 1260 (u64)i << PAGE_CACHE_SHIFT); 1261 1262 ret = find_new_extents(root, inode, 1263 newer_than, &newer_off, 1264 64 * 1024); 1265 if (!ret) { 1266 range->start = newer_off; 1267 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1268 } else { 1269 break; 1270 } 1271 } else { 1272 if (ret > 0) { 1273 i += ret; 1274 last_len += ret << PAGE_CACHE_SHIFT; 1275 } else { 1276 i++; 1277 last_len = 0; 1278 } 1279 } 1280 } 1281 1282 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1283 filemap_flush(inode->i_mapping); 1284 1285 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1286 /* the filemap_flush will queue IO into the worker threads, but 1287 * we have to make sure the IO is actually started and that 1288 * ordered extents get created before we return 1289 */ 1290 atomic_inc(&root->fs_info->async_submit_draining); 1291 while (atomic_read(&root->fs_info->nr_async_submits) || 1292 atomic_read(&root->fs_info->async_delalloc_pages)) { 1293 wait_event(root->fs_info->async_submit_wait, 1294 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1295 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1296 } 1297 atomic_dec(&root->fs_info->async_submit_draining); 1298 1299 mutex_lock(&inode->i_mutex); 1300 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1301 mutex_unlock(&inode->i_mutex); 1302 } 1303 1304 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1305 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1306 } 1307 1308 ret = defrag_count; 1309 1310 out_ra: 1311 if (!file) 1312 kfree(ra); 1313 kfree(pages); 1314 return ret; 1315 } 1316 1317 static noinline int btrfs_ioctl_resize(struct file *file, 1318 void __user *arg) 1319 { 1320 u64 new_size; 1321 u64 old_size; 1322 u64 devid = 1; 1323 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 1324 struct btrfs_ioctl_vol_args *vol_args; 1325 struct btrfs_trans_handle *trans; 1326 struct btrfs_device *device = NULL; 1327 char *sizestr; 1328 char *devstr = NULL; 1329 int ret = 0; 1330 int mod = 0; 1331 1332 if (root->fs_info->sb->s_flags & MS_RDONLY) 1333 return -EROFS; 1334 1335 if (!capable(CAP_SYS_ADMIN)) 1336 return -EPERM; 1337 1338 ret = mnt_want_write_file(file); 1339 if (ret) 1340 return ret; 1341 1342 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1343 1)) { 1344 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 1345 mnt_drop_write_file(file); 1346 return -EINVAL; 1347 } 1348 1349 mutex_lock(&root->fs_info->volume_mutex); 1350 vol_args = memdup_user(arg, sizeof(*vol_args)); 1351 if (IS_ERR(vol_args)) { 1352 ret = PTR_ERR(vol_args); 1353 goto out; 1354 } 1355 1356 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1357 1358 sizestr = vol_args->name; 1359 devstr = strchr(sizestr, ':'); 1360 if (devstr) { 1361 char *end; 1362 sizestr = devstr + 1; 1363 *devstr = '\0'; 1364 devstr = vol_args->name; 1365 devid = simple_strtoull(devstr, &end, 10); 1366 printk(KERN_INFO "btrfs: resizing devid %llu\n", 1367 (unsigned long long)devid); 1368 } 1369 1370 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1371 if (!device) { 1372 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n", 1373 (unsigned long long)devid); 1374 ret = -EINVAL; 1375 goto out_free; 1376 } 1377 1378 if (!device->writeable) { 1379 printk(KERN_INFO "btrfs: resizer unable to apply on " 1380 "readonly device %llu\n", 1381 (unsigned long long)devid); 1382 ret = -EINVAL; 1383 goto out_free; 1384 } 1385 1386 if (!strcmp(sizestr, "max")) 1387 new_size = device->bdev->bd_inode->i_size; 1388 else { 1389 if (sizestr[0] == '-') { 1390 mod = -1; 1391 sizestr++; 1392 } else if (sizestr[0] == '+') { 1393 mod = 1; 1394 sizestr++; 1395 } 1396 new_size = memparse(sizestr, NULL); 1397 if (new_size == 0) { 1398 ret = -EINVAL; 1399 goto out_free; 1400 } 1401 } 1402 1403 if (device->is_tgtdev_for_dev_replace) { 1404 ret = -EINVAL; 1405 goto out_free; 1406 } 1407 1408 old_size = device->total_bytes; 1409 1410 if (mod < 0) { 1411 if (new_size > old_size) { 1412 ret = -EINVAL; 1413 goto out_free; 1414 } 1415 new_size = old_size - new_size; 1416 } else if (mod > 0) { 1417 new_size = old_size + new_size; 1418 } 1419 1420 if (new_size < 256 * 1024 * 1024) { 1421 ret = -EINVAL; 1422 goto out_free; 1423 } 1424 if (new_size > device->bdev->bd_inode->i_size) { 1425 ret = -EFBIG; 1426 goto out_free; 1427 } 1428 1429 do_div(new_size, root->sectorsize); 1430 new_size *= root->sectorsize; 1431 1432 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n", 1433 rcu_str_deref(device->name), 1434 (unsigned long long)new_size); 1435 1436 if (new_size > old_size) { 1437 trans = btrfs_start_transaction(root, 0); 1438 if (IS_ERR(trans)) { 1439 ret = PTR_ERR(trans); 1440 goto out_free; 1441 } 1442 ret = btrfs_grow_device(trans, device, new_size); 1443 btrfs_commit_transaction(trans, root); 1444 } else if (new_size < old_size) { 1445 ret = btrfs_shrink_device(device, new_size); 1446 } /* equal, nothing need to do */ 1447 1448 out_free: 1449 kfree(vol_args); 1450 out: 1451 mutex_unlock(&root->fs_info->volume_mutex); 1452 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1453 mnt_drop_write_file(file); 1454 return ret; 1455 } 1456 1457 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1458 char *name, unsigned long fd, int subvol, 1459 u64 *transid, bool readonly, 1460 struct btrfs_qgroup_inherit **inherit) 1461 { 1462 int namelen; 1463 int ret = 0; 1464 1465 ret = mnt_want_write_file(file); 1466 if (ret) 1467 goto out; 1468 1469 namelen = strlen(name); 1470 if (strchr(name, '/')) { 1471 ret = -EINVAL; 1472 goto out_drop_write; 1473 } 1474 1475 if (name[0] == '.' && 1476 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1477 ret = -EEXIST; 1478 goto out_drop_write; 1479 } 1480 1481 if (subvol) { 1482 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1483 NULL, transid, readonly, inherit); 1484 } else { 1485 struct fd src = fdget(fd); 1486 struct inode *src_inode; 1487 if (!src.file) { 1488 ret = -EINVAL; 1489 goto out_drop_write; 1490 } 1491 1492 src_inode = src.file->f_path.dentry->d_inode; 1493 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1494 printk(KERN_INFO "btrfs: Snapshot src from " 1495 "another FS\n"); 1496 ret = -EINVAL; 1497 } else { 1498 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1499 BTRFS_I(src_inode)->root, 1500 transid, readonly, inherit); 1501 } 1502 fdput(src); 1503 } 1504 out_drop_write: 1505 mnt_drop_write_file(file); 1506 out: 1507 return ret; 1508 } 1509 1510 static noinline int btrfs_ioctl_snap_create(struct file *file, 1511 void __user *arg, int subvol) 1512 { 1513 struct btrfs_ioctl_vol_args *vol_args; 1514 int ret; 1515 1516 vol_args = memdup_user(arg, sizeof(*vol_args)); 1517 if (IS_ERR(vol_args)) 1518 return PTR_ERR(vol_args); 1519 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1520 1521 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1522 vol_args->fd, subvol, 1523 NULL, false, NULL); 1524 1525 kfree(vol_args); 1526 return ret; 1527 } 1528 1529 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1530 void __user *arg, int subvol) 1531 { 1532 struct btrfs_ioctl_vol_args_v2 *vol_args; 1533 int ret; 1534 u64 transid = 0; 1535 u64 *ptr = NULL; 1536 bool readonly = false; 1537 struct btrfs_qgroup_inherit *inherit = NULL; 1538 1539 vol_args = memdup_user(arg, sizeof(*vol_args)); 1540 if (IS_ERR(vol_args)) 1541 return PTR_ERR(vol_args); 1542 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1543 1544 if (vol_args->flags & 1545 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1546 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1547 ret = -EOPNOTSUPP; 1548 goto out; 1549 } 1550 1551 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1552 ptr = &transid; 1553 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1554 readonly = true; 1555 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1556 if (vol_args->size > PAGE_CACHE_SIZE) { 1557 ret = -EINVAL; 1558 goto out; 1559 } 1560 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1561 if (IS_ERR(inherit)) { 1562 ret = PTR_ERR(inherit); 1563 goto out; 1564 } 1565 } 1566 1567 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1568 vol_args->fd, subvol, ptr, 1569 readonly, &inherit); 1570 1571 if (ret == 0 && ptr && 1572 copy_to_user(arg + 1573 offsetof(struct btrfs_ioctl_vol_args_v2, 1574 transid), ptr, sizeof(*ptr))) 1575 ret = -EFAULT; 1576 out: 1577 kfree(vol_args); 1578 kfree(inherit); 1579 return ret; 1580 } 1581 1582 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1583 void __user *arg) 1584 { 1585 struct inode *inode = fdentry(file)->d_inode; 1586 struct btrfs_root *root = BTRFS_I(inode)->root; 1587 int ret = 0; 1588 u64 flags = 0; 1589 1590 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1591 return -EINVAL; 1592 1593 down_read(&root->fs_info->subvol_sem); 1594 if (btrfs_root_readonly(root)) 1595 flags |= BTRFS_SUBVOL_RDONLY; 1596 up_read(&root->fs_info->subvol_sem); 1597 1598 if (copy_to_user(arg, &flags, sizeof(flags))) 1599 ret = -EFAULT; 1600 1601 return ret; 1602 } 1603 1604 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1605 void __user *arg) 1606 { 1607 struct inode *inode = fdentry(file)->d_inode; 1608 struct btrfs_root *root = BTRFS_I(inode)->root; 1609 struct btrfs_trans_handle *trans; 1610 u64 root_flags; 1611 u64 flags; 1612 int ret = 0; 1613 1614 ret = mnt_want_write_file(file); 1615 if (ret) 1616 goto out; 1617 1618 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1619 ret = -EINVAL; 1620 goto out_drop_write; 1621 } 1622 1623 if (copy_from_user(&flags, arg, sizeof(flags))) { 1624 ret = -EFAULT; 1625 goto out_drop_write; 1626 } 1627 1628 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1629 ret = -EINVAL; 1630 goto out_drop_write; 1631 } 1632 1633 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1634 ret = -EOPNOTSUPP; 1635 goto out_drop_write; 1636 } 1637 1638 if (!inode_owner_or_capable(inode)) { 1639 ret = -EACCES; 1640 goto out_drop_write; 1641 } 1642 1643 down_write(&root->fs_info->subvol_sem); 1644 1645 /* nothing to do */ 1646 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1647 goto out_drop_sem; 1648 1649 root_flags = btrfs_root_flags(&root->root_item); 1650 if (flags & BTRFS_SUBVOL_RDONLY) 1651 btrfs_set_root_flags(&root->root_item, 1652 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1653 else 1654 btrfs_set_root_flags(&root->root_item, 1655 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1656 1657 trans = btrfs_start_transaction(root, 1); 1658 if (IS_ERR(trans)) { 1659 ret = PTR_ERR(trans); 1660 goto out_reset; 1661 } 1662 1663 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1664 &root->root_key, &root->root_item); 1665 1666 btrfs_commit_transaction(trans, root); 1667 out_reset: 1668 if (ret) 1669 btrfs_set_root_flags(&root->root_item, root_flags); 1670 out_drop_sem: 1671 up_write(&root->fs_info->subvol_sem); 1672 out_drop_write: 1673 mnt_drop_write_file(file); 1674 out: 1675 return ret; 1676 } 1677 1678 /* 1679 * helper to check if the subvolume references other subvolumes 1680 */ 1681 static noinline int may_destroy_subvol(struct btrfs_root *root) 1682 { 1683 struct btrfs_path *path; 1684 struct btrfs_key key; 1685 int ret; 1686 1687 path = btrfs_alloc_path(); 1688 if (!path) 1689 return -ENOMEM; 1690 1691 key.objectid = root->root_key.objectid; 1692 key.type = BTRFS_ROOT_REF_KEY; 1693 key.offset = (u64)-1; 1694 1695 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1696 &key, path, 0, 0); 1697 if (ret < 0) 1698 goto out; 1699 BUG_ON(ret == 0); 1700 1701 ret = 0; 1702 if (path->slots[0] > 0) { 1703 path->slots[0]--; 1704 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1705 if (key.objectid == root->root_key.objectid && 1706 key.type == BTRFS_ROOT_REF_KEY) 1707 ret = -ENOTEMPTY; 1708 } 1709 out: 1710 btrfs_free_path(path); 1711 return ret; 1712 } 1713 1714 static noinline int key_in_sk(struct btrfs_key *key, 1715 struct btrfs_ioctl_search_key *sk) 1716 { 1717 struct btrfs_key test; 1718 int ret; 1719 1720 test.objectid = sk->min_objectid; 1721 test.type = sk->min_type; 1722 test.offset = sk->min_offset; 1723 1724 ret = btrfs_comp_cpu_keys(key, &test); 1725 if (ret < 0) 1726 return 0; 1727 1728 test.objectid = sk->max_objectid; 1729 test.type = sk->max_type; 1730 test.offset = sk->max_offset; 1731 1732 ret = btrfs_comp_cpu_keys(key, &test); 1733 if (ret > 0) 1734 return 0; 1735 return 1; 1736 } 1737 1738 static noinline int copy_to_sk(struct btrfs_root *root, 1739 struct btrfs_path *path, 1740 struct btrfs_key *key, 1741 struct btrfs_ioctl_search_key *sk, 1742 char *buf, 1743 unsigned long *sk_offset, 1744 int *num_found) 1745 { 1746 u64 found_transid; 1747 struct extent_buffer *leaf; 1748 struct btrfs_ioctl_search_header sh; 1749 unsigned long item_off; 1750 unsigned long item_len; 1751 int nritems; 1752 int i; 1753 int slot; 1754 int ret = 0; 1755 1756 leaf = path->nodes[0]; 1757 slot = path->slots[0]; 1758 nritems = btrfs_header_nritems(leaf); 1759 1760 if (btrfs_header_generation(leaf) > sk->max_transid) { 1761 i = nritems; 1762 goto advance_key; 1763 } 1764 found_transid = btrfs_header_generation(leaf); 1765 1766 for (i = slot; i < nritems; i++) { 1767 item_off = btrfs_item_ptr_offset(leaf, i); 1768 item_len = btrfs_item_size_nr(leaf, i); 1769 1770 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1771 item_len = 0; 1772 1773 if (sizeof(sh) + item_len + *sk_offset > 1774 BTRFS_SEARCH_ARGS_BUFSIZE) { 1775 ret = 1; 1776 goto overflow; 1777 } 1778 1779 btrfs_item_key_to_cpu(leaf, key, i); 1780 if (!key_in_sk(key, sk)) 1781 continue; 1782 1783 sh.objectid = key->objectid; 1784 sh.offset = key->offset; 1785 sh.type = key->type; 1786 sh.len = item_len; 1787 sh.transid = found_transid; 1788 1789 /* copy search result header */ 1790 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1791 *sk_offset += sizeof(sh); 1792 1793 if (item_len) { 1794 char *p = buf + *sk_offset; 1795 /* copy the item */ 1796 read_extent_buffer(leaf, p, 1797 item_off, item_len); 1798 *sk_offset += item_len; 1799 } 1800 (*num_found)++; 1801 1802 if (*num_found >= sk->nr_items) 1803 break; 1804 } 1805 advance_key: 1806 ret = 0; 1807 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1808 key->offset++; 1809 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1810 key->offset = 0; 1811 key->type++; 1812 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1813 key->offset = 0; 1814 key->type = 0; 1815 key->objectid++; 1816 } else 1817 ret = 1; 1818 overflow: 1819 return ret; 1820 } 1821 1822 static noinline int search_ioctl(struct inode *inode, 1823 struct btrfs_ioctl_search_args *args) 1824 { 1825 struct btrfs_root *root; 1826 struct btrfs_key key; 1827 struct btrfs_key max_key; 1828 struct btrfs_path *path; 1829 struct btrfs_ioctl_search_key *sk = &args->key; 1830 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1831 int ret; 1832 int num_found = 0; 1833 unsigned long sk_offset = 0; 1834 1835 path = btrfs_alloc_path(); 1836 if (!path) 1837 return -ENOMEM; 1838 1839 if (sk->tree_id == 0) { 1840 /* search the root of the inode that was passed */ 1841 root = BTRFS_I(inode)->root; 1842 } else { 1843 key.objectid = sk->tree_id; 1844 key.type = BTRFS_ROOT_ITEM_KEY; 1845 key.offset = (u64)-1; 1846 root = btrfs_read_fs_root_no_name(info, &key); 1847 if (IS_ERR(root)) { 1848 printk(KERN_ERR "could not find root %llu\n", 1849 sk->tree_id); 1850 btrfs_free_path(path); 1851 return -ENOENT; 1852 } 1853 } 1854 1855 key.objectid = sk->min_objectid; 1856 key.type = sk->min_type; 1857 key.offset = sk->min_offset; 1858 1859 max_key.objectid = sk->max_objectid; 1860 max_key.type = sk->max_type; 1861 max_key.offset = sk->max_offset; 1862 1863 path->keep_locks = 1; 1864 1865 while(1) { 1866 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1867 sk->min_transid); 1868 if (ret != 0) { 1869 if (ret > 0) 1870 ret = 0; 1871 goto err; 1872 } 1873 ret = copy_to_sk(root, path, &key, sk, args->buf, 1874 &sk_offset, &num_found); 1875 btrfs_release_path(path); 1876 if (ret || num_found >= sk->nr_items) 1877 break; 1878 1879 } 1880 ret = 0; 1881 err: 1882 sk->nr_items = num_found; 1883 btrfs_free_path(path); 1884 return ret; 1885 } 1886 1887 static noinline int btrfs_ioctl_tree_search(struct file *file, 1888 void __user *argp) 1889 { 1890 struct btrfs_ioctl_search_args *args; 1891 struct inode *inode; 1892 int ret; 1893 1894 if (!capable(CAP_SYS_ADMIN)) 1895 return -EPERM; 1896 1897 args = memdup_user(argp, sizeof(*args)); 1898 if (IS_ERR(args)) 1899 return PTR_ERR(args); 1900 1901 inode = fdentry(file)->d_inode; 1902 ret = search_ioctl(inode, args); 1903 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1904 ret = -EFAULT; 1905 kfree(args); 1906 return ret; 1907 } 1908 1909 /* 1910 * Search INODE_REFs to identify path name of 'dirid' directory 1911 * in a 'tree_id' tree. and sets path name to 'name'. 1912 */ 1913 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1914 u64 tree_id, u64 dirid, char *name) 1915 { 1916 struct btrfs_root *root; 1917 struct btrfs_key key; 1918 char *ptr; 1919 int ret = -1; 1920 int slot; 1921 int len; 1922 int total_len = 0; 1923 struct btrfs_inode_ref *iref; 1924 struct extent_buffer *l; 1925 struct btrfs_path *path; 1926 1927 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1928 name[0]='\0'; 1929 return 0; 1930 } 1931 1932 path = btrfs_alloc_path(); 1933 if (!path) 1934 return -ENOMEM; 1935 1936 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1937 1938 key.objectid = tree_id; 1939 key.type = BTRFS_ROOT_ITEM_KEY; 1940 key.offset = (u64)-1; 1941 root = btrfs_read_fs_root_no_name(info, &key); 1942 if (IS_ERR(root)) { 1943 printk(KERN_ERR "could not find root %llu\n", tree_id); 1944 ret = -ENOENT; 1945 goto out; 1946 } 1947 1948 key.objectid = dirid; 1949 key.type = BTRFS_INODE_REF_KEY; 1950 key.offset = (u64)-1; 1951 1952 while(1) { 1953 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1954 if (ret < 0) 1955 goto out; 1956 1957 l = path->nodes[0]; 1958 slot = path->slots[0]; 1959 if (ret > 0 && slot > 0) 1960 slot--; 1961 btrfs_item_key_to_cpu(l, &key, slot); 1962 1963 if (ret > 0 && (key.objectid != dirid || 1964 key.type != BTRFS_INODE_REF_KEY)) { 1965 ret = -ENOENT; 1966 goto out; 1967 } 1968 1969 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1970 len = btrfs_inode_ref_name_len(l, iref); 1971 ptr -= len + 1; 1972 total_len += len + 1; 1973 if (ptr < name) 1974 goto out; 1975 1976 *(ptr + len) = '/'; 1977 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1978 1979 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1980 break; 1981 1982 btrfs_release_path(path); 1983 key.objectid = key.offset; 1984 key.offset = (u64)-1; 1985 dirid = key.objectid; 1986 } 1987 if (ptr < name) 1988 goto out; 1989 memmove(name, ptr, total_len); 1990 name[total_len]='\0'; 1991 ret = 0; 1992 out: 1993 btrfs_free_path(path); 1994 return ret; 1995 } 1996 1997 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1998 void __user *argp) 1999 { 2000 struct btrfs_ioctl_ino_lookup_args *args; 2001 struct inode *inode; 2002 int ret; 2003 2004 if (!capable(CAP_SYS_ADMIN)) 2005 return -EPERM; 2006 2007 args = memdup_user(argp, sizeof(*args)); 2008 if (IS_ERR(args)) 2009 return PTR_ERR(args); 2010 2011 inode = fdentry(file)->d_inode; 2012 2013 if (args->treeid == 0) 2014 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2015 2016 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2017 args->treeid, args->objectid, 2018 args->name); 2019 2020 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2021 ret = -EFAULT; 2022 2023 kfree(args); 2024 return ret; 2025 } 2026 2027 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2028 void __user *arg) 2029 { 2030 struct dentry *parent = fdentry(file); 2031 struct dentry *dentry; 2032 struct inode *dir = parent->d_inode; 2033 struct inode *inode; 2034 struct btrfs_root *root = BTRFS_I(dir)->root; 2035 struct btrfs_root *dest = NULL; 2036 struct btrfs_ioctl_vol_args *vol_args; 2037 struct btrfs_trans_handle *trans; 2038 int namelen; 2039 int ret; 2040 int err = 0; 2041 2042 vol_args = memdup_user(arg, sizeof(*vol_args)); 2043 if (IS_ERR(vol_args)) 2044 return PTR_ERR(vol_args); 2045 2046 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2047 namelen = strlen(vol_args->name); 2048 if (strchr(vol_args->name, '/') || 2049 strncmp(vol_args->name, "..", namelen) == 0) { 2050 err = -EINVAL; 2051 goto out; 2052 } 2053 2054 err = mnt_want_write_file(file); 2055 if (err) 2056 goto out; 2057 2058 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 2059 dentry = lookup_one_len(vol_args->name, parent, namelen); 2060 if (IS_ERR(dentry)) { 2061 err = PTR_ERR(dentry); 2062 goto out_unlock_dir; 2063 } 2064 2065 if (!dentry->d_inode) { 2066 err = -ENOENT; 2067 goto out_dput; 2068 } 2069 2070 inode = dentry->d_inode; 2071 dest = BTRFS_I(inode)->root; 2072 if (!capable(CAP_SYS_ADMIN)){ 2073 /* 2074 * Regular user. Only allow this with a special mount 2075 * option, when the user has write+exec access to the 2076 * subvol root, and when rmdir(2) would have been 2077 * allowed. 2078 * 2079 * Note that this is _not_ check that the subvol is 2080 * empty or doesn't contain data that we wouldn't 2081 * otherwise be able to delete. 2082 * 2083 * Users who want to delete empty subvols should try 2084 * rmdir(2). 2085 */ 2086 err = -EPERM; 2087 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2088 goto out_dput; 2089 2090 /* 2091 * Do not allow deletion if the parent dir is the same 2092 * as the dir to be deleted. That means the ioctl 2093 * must be called on the dentry referencing the root 2094 * of the subvol, not a random directory contained 2095 * within it. 2096 */ 2097 err = -EINVAL; 2098 if (root == dest) 2099 goto out_dput; 2100 2101 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2102 if (err) 2103 goto out_dput; 2104 } 2105 2106 /* check if subvolume may be deleted by a user */ 2107 err = btrfs_may_delete(dir, dentry, 1); 2108 if (err) 2109 goto out_dput; 2110 2111 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2112 err = -EINVAL; 2113 goto out_dput; 2114 } 2115 2116 mutex_lock(&inode->i_mutex); 2117 err = d_invalidate(dentry); 2118 if (err) 2119 goto out_unlock; 2120 2121 down_write(&root->fs_info->subvol_sem); 2122 2123 err = may_destroy_subvol(dest); 2124 if (err) 2125 goto out_up_write; 2126 2127 trans = btrfs_start_transaction(root, 0); 2128 if (IS_ERR(trans)) { 2129 err = PTR_ERR(trans); 2130 goto out_up_write; 2131 } 2132 trans->block_rsv = &root->fs_info->global_block_rsv; 2133 2134 ret = btrfs_unlink_subvol(trans, root, dir, 2135 dest->root_key.objectid, 2136 dentry->d_name.name, 2137 dentry->d_name.len); 2138 if (ret) { 2139 err = ret; 2140 btrfs_abort_transaction(trans, root, ret); 2141 goto out_end_trans; 2142 } 2143 2144 btrfs_record_root_in_trans(trans, dest); 2145 2146 memset(&dest->root_item.drop_progress, 0, 2147 sizeof(dest->root_item.drop_progress)); 2148 dest->root_item.drop_level = 0; 2149 btrfs_set_root_refs(&dest->root_item, 0); 2150 2151 if (!xchg(&dest->orphan_item_inserted, 1)) { 2152 ret = btrfs_insert_orphan_item(trans, 2153 root->fs_info->tree_root, 2154 dest->root_key.objectid); 2155 if (ret) { 2156 btrfs_abort_transaction(trans, root, ret); 2157 err = ret; 2158 goto out_end_trans; 2159 } 2160 } 2161 out_end_trans: 2162 ret = btrfs_end_transaction(trans, root); 2163 if (ret && !err) 2164 err = ret; 2165 inode->i_flags |= S_DEAD; 2166 out_up_write: 2167 up_write(&root->fs_info->subvol_sem); 2168 out_unlock: 2169 mutex_unlock(&inode->i_mutex); 2170 if (!err) { 2171 shrink_dcache_sb(root->fs_info->sb); 2172 btrfs_invalidate_inodes(dest); 2173 d_delete(dentry); 2174 } 2175 out_dput: 2176 dput(dentry); 2177 out_unlock_dir: 2178 mutex_unlock(&dir->i_mutex); 2179 mnt_drop_write_file(file); 2180 out: 2181 kfree(vol_args); 2182 return err; 2183 } 2184 2185 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2186 { 2187 struct inode *inode = fdentry(file)->d_inode; 2188 struct btrfs_root *root = BTRFS_I(inode)->root; 2189 struct btrfs_ioctl_defrag_range_args *range; 2190 int ret; 2191 2192 ret = mnt_want_write_file(file); 2193 if (ret) 2194 return ret; 2195 2196 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2197 1)) { 2198 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2199 mnt_drop_write_file(file); 2200 return -EINVAL; 2201 } 2202 2203 if (btrfs_root_readonly(root)) { 2204 ret = -EROFS; 2205 goto out; 2206 } 2207 2208 switch (inode->i_mode & S_IFMT) { 2209 case S_IFDIR: 2210 if (!capable(CAP_SYS_ADMIN)) { 2211 ret = -EPERM; 2212 goto out; 2213 } 2214 ret = btrfs_defrag_root(root, 0); 2215 if (ret) 2216 goto out; 2217 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 2218 break; 2219 case S_IFREG: 2220 if (!(file->f_mode & FMODE_WRITE)) { 2221 ret = -EINVAL; 2222 goto out; 2223 } 2224 2225 range = kzalloc(sizeof(*range), GFP_KERNEL); 2226 if (!range) { 2227 ret = -ENOMEM; 2228 goto out; 2229 } 2230 2231 if (argp) { 2232 if (copy_from_user(range, argp, 2233 sizeof(*range))) { 2234 ret = -EFAULT; 2235 kfree(range); 2236 goto out; 2237 } 2238 /* compression requires us to start the IO */ 2239 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2240 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2241 range->extent_thresh = (u32)-1; 2242 } 2243 } else { 2244 /* the rest are all set to zero by kzalloc */ 2245 range->len = (u64)-1; 2246 } 2247 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 2248 range, 0, 0); 2249 if (ret > 0) 2250 ret = 0; 2251 kfree(range); 2252 break; 2253 default: 2254 ret = -EINVAL; 2255 } 2256 out: 2257 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2258 mnt_drop_write_file(file); 2259 return ret; 2260 } 2261 2262 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2263 { 2264 struct btrfs_ioctl_vol_args *vol_args; 2265 int ret; 2266 2267 if (!capable(CAP_SYS_ADMIN)) 2268 return -EPERM; 2269 2270 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2271 1)) { 2272 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2273 return -EINVAL; 2274 } 2275 2276 mutex_lock(&root->fs_info->volume_mutex); 2277 vol_args = memdup_user(arg, sizeof(*vol_args)); 2278 if (IS_ERR(vol_args)) { 2279 ret = PTR_ERR(vol_args); 2280 goto out; 2281 } 2282 2283 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2284 ret = btrfs_init_new_device(root, vol_args->name); 2285 2286 kfree(vol_args); 2287 out: 2288 mutex_unlock(&root->fs_info->volume_mutex); 2289 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2290 return ret; 2291 } 2292 2293 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2294 { 2295 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2296 struct btrfs_ioctl_vol_args *vol_args; 2297 int ret; 2298 2299 if (!capable(CAP_SYS_ADMIN)) 2300 return -EPERM; 2301 2302 ret = mnt_want_write_file(file); 2303 if (ret) 2304 return ret; 2305 2306 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2307 1)) { 2308 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2309 mnt_drop_write_file(file); 2310 return -EINVAL; 2311 } 2312 2313 mutex_lock(&root->fs_info->volume_mutex); 2314 vol_args = memdup_user(arg, sizeof(*vol_args)); 2315 if (IS_ERR(vol_args)) { 2316 ret = PTR_ERR(vol_args); 2317 goto out; 2318 } 2319 2320 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2321 ret = btrfs_rm_device(root, vol_args->name); 2322 2323 kfree(vol_args); 2324 out: 2325 mutex_unlock(&root->fs_info->volume_mutex); 2326 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2327 mnt_drop_write_file(file); 2328 return ret; 2329 } 2330 2331 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2332 { 2333 struct btrfs_ioctl_fs_info_args *fi_args; 2334 struct btrfs_device *device; 2335 struct btrfs_device *next; 2336 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2337 int ret = 0; 2338 2339 if (!capable(CAP_SYS_ADMIN)) 2340 return -EPERM; 2341 2342 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2343 if (!fi_args) 2344 return -ENOMEM; 2345 2346 fi_args->num_devices = fs_devices->num_devices; 2347 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2348 2349 mutex_lock(&fs_devices->device_list_mutex); 2350 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2351 if (device->devid > fi_args->max_id) 2352 fi_args->max_id = device->devid; 2353 } 2354 mutex_unlock(&fs_devices->device_list_mutex); 2355 2356 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2357 ret = -EFAULT; 2358 2359 kfree(fi_args); 2360 return ret; 2361 } 2362 2363 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2364 { 2365 struct btrfs_ioctl_dev_info_args *di_args; 2366 struct btrfs_device *dev; 2367 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2368 int ret = 0; 2369 char *s_uuid = NULL; 2370 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2371 2372 if (!capable(CAP_SYS_ADMIN)) 2373 return -EPERM; 2374 2375 di_args = memdup_user(arg, sizeof(*di_args)); 2376 if (IS_ERR(di_args)) 2377 return PTR_ERR(di_args); 2378 2379 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2380 s_uuid = di_args->uuid; 2381 2382 mutex_lock(&fs_devices->device_list_mutex); 2383 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2384 mutex_unlock(&fs_devices->device_list_mutex); 2385 2386 if (!dev) { 2387 ret = -ENODEV; 2388 goto out; 2389 } 2390 2391 di_args->devid = dev->devid; 2392 di_args->bytes_used = dev->bytes_used; 2393 di_args->total_bytes = dev->total_bytes; 2394 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2395 if (dev->name) { 2396 struct rcu_string *name; 2397 2398 rcu_read_lock(); 2399 name = rcu_dereference(dev->name); 2400 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2401 rcu_read_unlock(); 2402 di_args->path[sizeof(di_args->path) - 1] = 0; 2403 } else { 2404 di_args->path[0] = '\0'; 2405 } 2406 2407 out: 2408 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2409 ret = -EFAULT; 2410 2411 kfree(di_args); 2412 return ret; 2413 } 2414 2415 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2416 u64 off, u64 olen, u64 destoff) 2417 { 2418 struct inode *inode = fdentry(file)->d_inode; 2419 struct btrfs_root *root = BTRFS_I(inode)->root; 2420 struct fd src_file; 2421 struct inode *src; 2422 struct btrfs_trans_handle *trans; 2423 struct btrfs_path *path; 2424 struct extent_buffer *leaf; 2425 char *buf; 2426 struct btrfs_key key; 2427 u32 nritems; 2428 int slot; 2429 int ret; 2430 u64 len = olen; 2431 u64 bs = root->fs_info->sb->s_blocksize; 2432 2433 /* 2434 * TODO: 2435 * - split compressed inline extents. annoying: we need to 2436 * decompress into destination's address_space (the file offset 2437 * may change, so source mapping won't do), then recompress (or 2438 * otherwise reinsert) a subrange. 2439 * - allow ranges within the same file to be cloned (provided 2440 * they don't overlap)? 2441 */ 2442 2443 /* the destination must be opened for writing */ 2444 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2445 return -EINVAL; 2446 2447 if (btrfs_root_readonly(root)) 2448 return -EROFS; 2449 2450 ret = mnt_want_write_file(file); 2451 if (ret) 2452 return ret; 2453 2454 src_file = fdget(srcfd); 2455 if (!src_file.file) { 2456 ret = -EBADF; 2457 goto out_drop_write; 2458 } 2459 2460 ret = -EXDEV; 2461 if (src_file.file->f_path.mnt != file->f_path.mnt) 2462 goto out_fput; 2463 2464 src = src_file.file->f_dentry->d_inode; 2465 2466 ret = -EINVAL; 2467 if (src == inode) 2468 goto out_fput; 2469 2470 /* the src must be open for reading */ 2471 if (!(src_file.file->f_mode & FMODE_READ)) 2472 goto out_fput; 2473 2474 /* don't make the dst file partly checksummed */ 2475 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2476 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 2477 goto out_fput; 2478 2479 ret = -EISDIR; 2480 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2481 goto out_fput; 2482 2483 ret = -EXDEV; 2484 if (src->i_sb != inode->i_sb) 2485 goto out_fput; 2486 2487 ret = -ENOMEM; 2488 buf = vmalloc(btrfs_level_size(root, 0)); 2489 if (!buf) 2490 goto out_fput; 2491 2492 path = btrfs_alloc_path(); 2493 if (!path) { 2494 vfree(buf); 2495 goto out_fput; 2496 } 2497 path->reada = 2; 2498 2499 if (inode < src) { 2500 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2501 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2502 } else { 2503 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2504 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2505 } 2506 2507 /* determine range to clone */ 2508 ret = -EINVAL; 2509 if (off + len > src->i_size || off + len < off) 2510 goto out_unlock; 2511 if (len == 0) 2512 olen = len = src->i_size - off; 2513 /* if we extend to eof, continue to block boundary */ 2514 if (off + len == src->i_size) 2515 len = ALIGN(src->i_size, bs) - off; 2516 2517 /* verify the end result is block aligned */ 2518 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2519 !IS_ALIGNED(destoff, bs)) 2520 goto out_unlock; 2521 2522 if (destoff > inode->i_size) { 2523 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 2524 if (ret) 2525 goto out_unlock; 2526 } 2527 2528 /* truncate page cache pages from target inode range */ 2529 truncate_inode_pages_range(&inode->i_data, destoff, 2530 PAGE_CACHE_ALIGN(destoff + len) - 1); 2531 2532 /* do any pending delalloc/csum calc on src, one way or 2533 another, and lock file content */ 2534 while (1) { 2535 struct btrfs_ordered_extent *ordered; 2536 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2537 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1); 2538 if (!ordered && 2539 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1, 2540 EXTENT_DELALLOC, 0, NULL)) 2541 break; 2542 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2543 if (ordered) 2544 btrfs_put_ordered_extent(ordered); 2545 btrfs_wait_ordered_range(src, off, len); 2546 } 2547 2548 /* clone data */ 2549 key.objectid = btrfs_ino(src); 2550 key.type = BTRFS_EXTENT_DATA_KEY; 2551 key.offset = 0; 2552 2553 while (1) { 2554 /* 2555 * note the key will change type as we walk through the 2556 * tree. 2557 */ 2558 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 2559 0, 0); 2560 if (ret < 0) 2561 goto out; 2562 2563 nritems = btrfs_header_nritems(path->nodes[0]); 2564 if (path->slots[0] >= nritems) { 2565 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 2566 if (ret < 0) 2567 goto out; 2568 if (ret > 0) 2569 break; 2570 nritems = btrfs_header_nritems(path->nodes[0]); 2571 } 2572 leaf = path->nodes[0]; 2573 slot = path->slots[0]; 2574 2575 btrfs_item_key_to_cpu(leaf, &key, slot); 2576 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2577 key.objectid != btrfs_ino(src)) 2578 break; 2579 2580 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2581 struct btrfs_file_extent_item *extent; 2582 int type; 2583 u32 size; 2584 struct btrfs_key new_key; 2585 u64 disko = 0, diskl = 0; 2586 u64 datao = 0, datal = 0; 2587 u8 comp; 2588 u64 endoff; 2589 2590 size = btrfs_item_size_nr(leaf, slot); 2591 read_extent_buffer(leaf, buf, 2592 btrfs_item_ptr_offset(leaf, slot), 2593 size); 2594 2595 extent = btrfs_item_ptr(leaf, slot, 2596 struct btrfs_file_extent_item); 2597 comp = btrfs_file_extent_compression(leaf, extent); 2598 type = btrfs_file_extent_type(leaf, extent); 2599 if (type == BTRFS_FILE_EXTENT_REG || 2600 type == BTRFS_FILE_EXTENT_PREALLOC) { 2601 disko = btrfs_file_extent_disk_bytenr(leaf, 2602 extent); 2603 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2604 extent); 2605 datao = btrfs_file_extent_offset(leaf, extent); 2606 datal = btrfs_file_extent_num_bytes(leaf, 2607 extent); 2608 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2609 /* take upper bound, may be compressed */ 2610 datal = btrfs_file_extent_ram_bytes(leaf, 2611 extent); 2612 } 2613 btrfs_release_path(path); 2614 2615 if (key.offset + datal <= off || 2616 key.offset >= off + len - 1) 2617 goto next; 2618 2619 memcpy(&new_key, &key, sizeof(new_key)); 2620 new_key.objectid = btrfs_ino(inode); 2621 if (off <= key.offset) 2622 new_key.offset = key.offset + destoff - off; 2623 else 2624 new_key.offset = destoff; 2625 2626 /* 2627 * 1 - adjusting old extent (we may have to split it) 2628 * 1 - add new extent 2629 * 1 - inode update 2630 */ 2631 trans = btrfs_start_transaction(root, 3); 2632 if (IS_ERR(trans)) { 2633 ret = PTR_ERR(trans); 2634 goto out; 2635 } 2636 2637 if (type == BTRFS_FILE_EXTENT_REG || 2638 type == BTRFS_FILE_EXTENT_PREALLOC) { 2639 /* 2640 * a | --- range to clone ---| b 2641 * | ------------- extent ------------- | 2642 */ 2643 2644 /* substract range b */ 2645 if (key.offset + datal > off + len) 2646 datal = off + len - key.offset; 2647 2648 /* substract range a */ 2649 if (off > key.offset) { 2650 datao += off - key.offset; 2651 datal -= off - key.offset; 2652 } 2653 2654 ret = btrfs_drop_extents(trans, root, inode, 2655 new_key.offset, 2656 new_key.offset + datal, 2657 1); 2658 if (ret) { 2659 btrfs_abort_transaction(trans, root, 2660 ret); 2661 btrfs_end_transaction(trans, root); 2662 goto out; 2663 } 2664 2665 ret = btrfs_insert_empty_item(trans, root, path, 2666 &new_key, size); 2667 if (ret) { 2668 btrfs_abort_transaction(trans, root, 2669 ret); 2670 btrfs_end_transaction(trans, root); 2671 goto out; 2672 } 2673 2674 leaf = path->nodes[0]; 2675 slot = path->slots[0]; 2676 write_extent_buffer(leaf, buf, 2677 btrfs_item_ptr_offset(leaf, slot), 2678 size); 2679 2680 extent = btrfs_item_ptr(leaf, slot, 2681 struct btrfs_file_extent_item); 2682 2683 /* disko == 0 means it's a hole */ 2684 if (!disko) 2685 datao = 0; 2686 2687 btrfs_set_file_extent_offset(leaf, extent, 2688 datao); 2689 btrfs_set_file_extent_num_bytes(leaf, extent, 2690 datal); 2691 if (disko) { 2692 inode_add_bytes(inode, datal); 2693 ret = btrfs_inc_extent_ref(trans, root, 2694 disko, diskl, 0, 2695 root->root_key.objectid, 2696 btrfs_ino(inode), 2697 new_key.offset - datao, 2698 0); 2699 if (ret) { 2700 btrfs_abort_transaction(trans, 2701 root, 2702 ret); 2703 btrfs_end_transaction(trans, 2704 root); 2705 goto out; 2706 2707 } 2708 } 2709 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2710 u64 skip = 0; 2711 u64 trim = 0; 2712 if (off > key.offset) { 2713 skip = off - key.offset; 2714 new_key.offset += skip; 2715 } 2716 2717 if (key.offset + datal > off + len) 2718 trim = key.offset + datal - (off + len); 2719 2720 if (comp && (skip || trim)) { 2721 ret = -EINVAL; 2722 btrfs_end_transaction(trans, root); 2723 goto out; 2724 } 2725 size -= skip + trim; 2726 datal -= skip + trim; 2727 2728 ret = btrfs_drop_extents(trans, root, inode, 2729 new_key.offset, 2730 new_key.offset + datal, 2731 1); 2732 if (ret) { 2733 btrfs_abort_transaction(trans, root, 2734 ret); 2735 btrfs_end_transaction(trans, root); 2736 goto out; 2737 } 2738 2739 ret = btrfs_insert_empty_item(trans, root, path, 2740 &new_key, size); 2741 if (ret) { 2742 btrfs_abort_transaction(trans, root, 2743 ret); 2744 btrfs_end_transaction(trans, root); 2745 goto out; 2746 } 2747 2748 if (skip) { 2749 u32 start = 2750 btrfs_file_extent_calc_inline_size(0); 2751 memmove(buf+start, buf+start+skip, 2752 datal); 2753 } 2754 2755 leaf = path->nodes[0]; 2756 slot = path->slots[0]; 2757 write_extent_buffer(leaf, buf, 2758 btrfs_item_ptr_offset(leaf, slot), 2759 size); 2760 inode_add_bytes(inode, datal); 2761 } 2762 2763 btrfs_mark_buffer_dirty(leaf); 2764 btrfs_release_path(path); 2765 2766 inode_inc_iversion(inode); 2767 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2768 2769 /* 2770 * we round up to the block size at eof when 2771 * determining which extents to clone above, 2772 * but shouldn't round up the file size 2773 */ 2774 endoff = new_key.offset + datal; 2775 if (endoff > destoff+olen) 2776 endoff = destoff+olen; 2777 if (endoff > inode->i_size) 2778 btrfs_i_size_write(inode, endoff); 2779 2780 ret = btrfs_update_inode(trans, root, inode); 2781 if (ret) { 2782 btrfs_abort_transaction(trans, root, ret); 2783 btrfs_end_transaction(trans, root); 2784 goto out; 2785 } 2786 ret = btrfs_end_transaction(trans, root); 2787 } 2788 next: 2789 btrfs_release_path(path); 2790 key.offset++; 2791 } 2792 ret = 0; 2793 out: 2794 btrfs_release_path(path); 2795 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2796 out_unlock: 2797 mutex_unlock(&src->i_mutex); 2798 mutex_unlock(&inode->i_mutex); 2799 vfree(buf); 2800 btrfs_free_path(path); 2801 out_fput: 2802 fdput(src_file); 2803 out_drop_write: 2804 mnt_drop_write_file(file); 2805 return ret; 2806 } 2807 2808 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2809 { 2810 struct btrfs_ioctl_clone_range_args args; 2811 2812 if (copy_from_user(&args, argp, sizeof(args))) 2813 return -EFAULT; 2814 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2815 args.src_length, args.dest_offset); 2816 } 2817 2818 /* 2819 * there are many ways the trans_start and trans_end ioctls can lead 2820 * to deadlocks. They should only be used by applications that 2821 * basically own the machine, and have a very in depth understanding 2822 * of all the possible deadlocks and enospc problems. 2823 */ 2824 static long btrfs_ioctl_trans_start(struct file *file) 2825 { 2826 struct inode *inode = fdentry(file)->d_inode; 2827 struct btrfs_root *root = BTRFS_I(inode)->root; 2828 struct btrfs_trans_handle *trans; 2829 int ret; 2830 2831 ret = -EPERM; 2832 if (!capable(CAP_SYS_ADMIN)) 2833 goto out; 2834 2835 ret = -EINPROGRESS; 2836 if (file->private_data) 2837 goto out; 2838 2839 ret = -EROFS; 2840 if (btrfs_root_readonly(root)) 2841 goto out; 2842 2843 ret = mnt_want_write_file(file); 2844 if (ret) 2845 goto out; 2846 2847 atomic_inc(&root->fs_info->open_ioctl_trans); 2848 2849 ret = -ENOMEM; 2850 trans = btrfs_start_ioctl_transaction(root); 2851 if (IS_ERR(trans)) 2852 goto out_drop; 2853 2854 file->private_data = trans; 2855 return 0; 2856 2857 out_drop: 2858 atomic_dec(&root->fs_info->open_ioctl_trans); 2859 mnt_drop_write_file(file); 2860 out: 2861 return ret; 2862 } 2863 2864 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2865 { 2866 struct inode *inode = fdentry(file)->d_inode; 2867 struct btrfs_root *root = BTRFS_I(inode)->root; 2868 struct btrfs_root *new_root; 2869 struct btrfs_dir_item *di; 2870 struct btrfs_trans_handle *trans; 2871 struct btrfs_path *path; 2872 struct btrfs_key location; 2873 struct btrfs_disk_key disk_key; 2874 u64 objectid = 0; 2875 u64 dir_id; 2876 int ret; 2877 2878 if (!capable(CAP_SYS_ADMIN)) 2879 return -EPERM; 2880 2881 ret = mnt_want_write_file(file); 2882 if (ret) 2883 return ret; 2884 2885 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2886 ret = -EFAULT; 2887 goto out; 2888 } 2889 2890 if (!objectid) 2891 objectid = root->root_key.objectid; 2892 2893 location.objectid = objectid; 2894 location.type = BTRFS_ROOT_ITEM_KEY; 2895 location.offset = (u64)-1; 2896 2897 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2898 if (IS_ERR(new_root)) { 2899 ret = PTR_ERR(new_root); 2900 goto out; 2901 } 2902 2903 if (btrfs_root_refs(&new_root->root_item) == 0) { 2904 ret = -ENOENT; 2905 goto out; 2906 } 2907 2908 path = btrfs_alloc_path(); 2909 if (!path) { 2910 ret = -ENOMEM; 2911 goto out; 2912 } 2913 path->leave_spinning = 1; 2914 2915 trans = btrfs_start_transaction(root, 1); 2916 if (IS_ERR(trans)) { 2917 btrfs_free_path(path); 2918 ret = PTR_ERR(trans); 2919 goto out; 2920 } 2921 2922 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 2923 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2924 dir_id, "default", 7, 1); 2925 if (IS_ERR_OR_NULL(di)) { 2926 btrfs_free_path(path); 2927 btrfs_end_transaction(trans, root); 2928 printk(KERN_ERR "Umm, you don't have the default dir item, " 2929 "this isn't going to work\n"); 2930 ret = -ENOENT; 2931 goto out; 2932 } 2933 2934 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2935 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2936 btrfs_mark_buffer_dirty(path->nodes[0]); 2937 btrfs_free_path(path); 2938 2939 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 2940 btrfs_end_transaction(trans, root); 2941 out: 2942 mnt_drop_write_file(file); 2943 return ret; 2944 } 2945 2946 void btrfs_get_block_group_info(struct list_head *groups_list, 2947 struct btrfs_ioctl_space_info *space) 2948 { 2949 struct btrfs_block_group_cache *block_group; 2950 2951 space->total_bytes = 0; 2952 space->used_bytes = 0; 2953 space->flags = 0; 2954 list_for_each_entry(block_group, groups_list, list) { 2955 space->flags = block_group->flags; 2956 space->total_bytes += block_group->key.offset; 2957 space->used_bytes += 2958 btrfs_block_group_used(&block_group->item); 2959 } 2960 } 2961 2962 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2963 { 2964 struct btrfs_ioctl_space_args space_args; 2965 struct btrfs_ioctl_space_info space; 2966 struct btrfs_ioctl_space_info *dest; 2967 struct btrfs_ioctl_space_info *dest_orig; 2968 struct btrfs_ioctl_space_info __user *user_dest; 2969 struct btrfs_space_info *info; 2970 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2971 BTRFS_BLOCK_GROUP_SYSTEM, 2972 BTRFS_BLOCK_GROUP_METADATA, 2973 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2974 int num_types = 4; 2975 int alloc_size; 2976 int ret = 0; 2977 u64 slot_count = 0; 2978 int i, c; 2979 2980 if (copy_from_user(&space_args, 2981 (struct btrfs_ioctl_space_args __user *)arg, 2982 sizeof(space_args))) 2983 return -EFAULT; 2984 2985 for (i = 0; i < num_types; i++) { 2986 struct btrfs_space_info *tmp; 2987 2988 info = NULL; 2989 rcu_read_lock(); 2990 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2991 list) { 2992 if (tmp->flags == types[i]) { 2993 info = tmp; 2994 break; 2995 } 2996 } 2997 rcu_read_unlock(); 2998 2999 if (!info) 3000 continue; 3001 3002 down_read(&info->groups_sem); 3003 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3004 if (!list_empty(&info->block_groups[c])) 3005 slot_count++; 3006 } 3007 up_read(&info->groups_sem); 3008 } 3009 3010 /* space_slots == 0 means they are asking for a count */ 3011 if (space_args.space_slots == 0) { 3012 space_args.total_spaces = slot_count; 3013 goto out; 3014 } 3015 3016 slot_count = min_t(u64, space_args.space_slots, slot_count); 3017 3018 alloc_size = sizeof(*dest) * slot_count; 3019 3020 /* we generally have at most 6 or so space infos, one for each raid 3021 * level. So, a whole page should be more than enough for everyone 3022 */ 3023 if (alloc_size > PAGE_CACHE_SIZE) 3024 return -ENOMEM; 3025 3026 space_args.total_spaces = 0; 3027 dest = kmalloc(alloc_size, GFP_NOFS); 3028 if (!dest) 3029 return -ENOMEM; 3030 dest_orig = dest; 3031 3032 /* now we have a buffer to copy into */ 3033 for (i = 0; i < num_types; i++) { 3034 struct btrfs_space_info *tmp; 3035 3036 if (!slot_count) 3037 break; 3038 3039 info = NULL; 3040 rcu_read_lock(); 3041 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3042 list) { 3043 if (tmp->flags == types[i]) { 3044 info = tmp; 3045 break; 3046 } 3047 } 3048 rcu_read_unlock(); 3049 3050 if (!info) 3051 continue; 3052 down_read(&info->groups_sem); 3053 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3054 if (!list_empty(&info->block_groups[c])) { 3055 btrfs_get_block_group_info( 3056 &info->block_groups[c], &space); 3057 memcpy(dest, &space, sizeof(space)); 3058 dest++; 3059 space_args.total_spaces++; 3060 slot_count--; 3061 } 3062 if (!slot_count) 3063 break; 3064 } 3065 up_read(&info->groups_sem); 3066 } 3067 3068 user_dest = (struct btrfs_ioctl_space_info __user *) 3069 (arg + sizeof(struct btrfs_ioctl_space_args)); 3070 3071 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3072 ret = -EFAULT; 3073 3074 kfree(dest_orig); 3075 out: 3076 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3077 ret = -EFAULT; 3078 3079 return ret; 3080 } 3081 3082 /* 3083 * there are many ways the trans_start and trans_end ioctls can lead 3084 * to deadlocks. They should only be used by applications that 3085 * basically own the machine, and have a very in depth understanding 3086 * of all the possible deadlocks and enospc problems. 3087 */ 3088 long btrfs_ioctl_trans_end(struct file *file) 3089 { 3090 struct inode *inode = fdentry(file)->d_inode; 3091 struct btrfs_root *root = BTRFS_I(inode)->root; 3092 struct btrfs_trans_handle *trans; 3093 3094 trans = file->private_data; 3095 if (!trans) 3096 return -EINVAL; 3097 file->private_data = NULL; 3098 3099 btrfs_end_transaction(trans, root); 3100 3101 atomic_dec(&root->fs_info->open_ioctl_trans); 3102 3103 mnt_drop_write_file(file); 3104 return 0; 3105 } 3106 3107 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3108 void __user *argp) 3109 { 3110 struct btrfs_trans_handle *trans; 3111 u64 transid; 3112 int ret; 3113 3114 trans = btrfs_attach_transaction(root); 3115 if (IS_ERR(trans)) { 3116 if (PTR_ERR(trans) != -ENOENT) 3117 return PTR_ERR(trans); 3118 3119 /* No running transaction, don't bother */ 3120 transid = root->fs_info->last_trans_committed; 3121 goto out; 3122 } 3123 transid = trans->transid; 3124 ret = btrfs_commit_transaction_async(trans, root, 0); 3125 if (ret) { 3126 btrfs_end_transaction(trans, root); 3127 return ret; 3128 } 3129 out: 3130 if (argp) 3131 if (copy_to_user(argp, &transid, sizeof(transid))) 3132 return -EFAULT; 3133 return 0; 3134 } 3135 3136 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 3137 void __user *argp) 3138 { 3139 u64 transid; 3140 3141 if (argp) { 3142 if (copy_from_user(&transid, argp, sizeof(transid))) 3143 return -EFAULT; 3144 } else { 3145 transid = 0; /* current trans */ 3146 } 3147 return btrfs_wait_for_commit(root, transid); 3148 } 3149 3150 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3151 { 3152 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3153 struct btrfs_ioctl_scrub_args *sa; 3154 int ret; 3155 3156 if (!capable(CAP_SYS_ADMIN)) 3157 return -EPERM; 3158 3159 sa = memdup_user(arg, sizeof(*sa)); 3160 if (IS_ERR(sa)) 3161 return PTR_ERR(sa); 3162 3163 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3164 ret = mnt_want_write_file(file); 3165 if (ret) 3166 goto out; 3167 } 3168 3169 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 3170 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3171 0); 3172 3173 if (copy_to_user(arg, sa, sizeof(*sa))) 3174 ret = -EFAULT; 3175 3176 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3177 mnt_drop_write_file(file); 3178 out: 3179 kfree(sa); 3180 return ret; 3181 } 3182 3183 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3184 { 3185 if (!capable(CAP_SYS_ADMIN)) 3186 return -EPERM; 3187 3188 return btrfs_scrub_cancel(root->fs_info); 3189 } 3190 3191 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3192 void __user *arg) 3193 { 3194 struct btrfs_ioctl_scrub_args *sa; 3195 int ret; 3196 3197 if (!capable(CAP_SYS_ADMIN)) 3198 return -EPERM; 3199 3200 sa = memdup_user(arg, sizeof(*sa)); 3201 if (IS_ERR(sa)) 3202 return PTR_ERR(sa); 3203 3204 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3205 3206 if (copy_to_user(arg, sa, sizeof(*sa))) 3207 ret = -EFAULT; 3208 3209 kfree(sa); 3210 return ret; 3211 } 3212 3213 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3214 void __user *arg) 3215 { 3216 struct btrfs_ioctl_get_dev_stats *sa; 3217 int ret; 3218 3219 sa = memdup_user(arg, sizeof(*sa)); 3220 if (IS_ERR(sa)) 3221 return PTR_ERR(sa); 3222 3223 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3224 kfree(sa); 3225 return -EPERM; 3226 } 3227 3228 ret = btrfs_get_dev_stats(root, sa); 3229 3230 if (copy_to_user(arg, sa, sizeof(*sa))) 3231 ret = -EFAULT; 3232 3233 kfree(sa); 3234 return ret; 3235 } 3236 3237 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 3238 { 3239 struct btrfs_ioctl_dev_replace_args *p; 3240 int ret; 3241 3242 if (!capable(CAP_SYS_ADMIN)) 3243 return -EPERM; 3244 3245 p = memdup_user(arg, sizeof(*p)); 3246 if (IS_ERR(p)) 3247 return PTR_ERR(p); 3248 3249 switch (p->cmd) { 3250 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3251 if (atomic_xchg( 3252 &root->fs_info->mutually_exclusive_operation_running, 3253 1)) { 3254 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 3255 ret = -EINPROGRESS; 3256 } else { 3257 ret = btrfs_dev_replace_start(root, p); 3258 atomic_set( 3259 &root->fs_info->mutually_exclusive_operation_running, 3260 0); 3261 } 3262 break; 3263 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3264 btrfs_dev_replace_status(root->fs_info, p); 3265 ret = 0; 3266 break; 3267 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3268 ret = btrfs_dev_replace_cancel(root->fs_info, p); 3269 break; 3270 default: 3271 ret = -EINVAL; 3272 break; 3273 } 3274 3275 if (copy_to_user(arg, p, sizeof(*p))) 3276 ret = -EFAULT; 3277 3278 kfree(p); 3279 return ret; 3280 } 3281 3282 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3283 { 3284 int ret = 0; 3285 int i; 3286 u64 rel_ptr; 3287 int size; 3288 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3289 struct inode_fs_paths *ipath = NULL; 3290 struct btrfs_path *path; 3291 3292 if (!capable(CAP_SYS_ADMIN)) 3293 return -EPERM; 3294 3295 path = btrfs_alloc_path(); 3296 if (!path) { 3297 ret = -ENOMEM; 3298 goto out; 3299 } 3300 3301 ipa = memdup_user(arg, sizeof(*ipa)); 3302 if (IS_ERR(ipa)) { 3303 ret = PTR_ERR(ipa); 3304 ipa = NULL; 3305 goto out; 3306 } 3307 3308 size = min_t(u32, ipa->size, 4096); 3309 ipath = init_ipath(size, root, path); 3310 if (IS_ERR(ipath)) { 3311 ret = PTR_ERR(ipath); 3312 ipath = NULL; 3313 goto out; 3314 } 3315 3316 ret = paths_from_inode(ipa->inum, ipath); 3317 if (ret < 0) 3318 goto out; 3319 3320 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3321 rel_ptr = ipath->fspath->val[i] - 3322 (u64)(unsigned long)ipath->fspath->val; 3323 ipath->fspath->val[i] = rel_ptr; 3324 } 3325 3326 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3327 (void *)(unsigned long)ipath->fspath, size); 3328 if (ret) { 3329 ret = -EFAULT; 3330 goto out; 3331 } 3332 3333 out: 3334 btrfs_free_path(path); 3335 free_ipath(ipath); 3336 kfree(ipa); 3337 3338 return ret; 3339 } 3340 3341 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3342 { 3343 struct btrfs_data_container *inodes = ctx; 3344 const size_t c = 3 * sizeof(u64); 3345 3346 if (inodes->bytes_left >= c) { 3347 inodes->bytes_left -= c; 3348 inodes->val[inodes->elem_cnt] = inum; 3349 inodes->val[inodes->elem_cnt + 1] = offset; 3350 inodes->val[inodes->elem_cnt + 2] = root; 3351 inodes->elem_cnt += 3; 3352 } else { 3353 inodes->bytes_missing += c - inodes->bytes_left; 3354 inodes->bytes_left = 0; 3355 inodes->elem_missed += 3; 3356 } 3357 3358 return 0; 3359 } 3360 3361 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3362 void __user *arg) 3363 { 3364 int ret = 0; 3365 int size; 3366 struct btrfs_ioctl_logical_ino_args *loi; 3367 struct btrfs_data_container *inodes = NULL; 3368 struct btrfs_path *path = NULL; 3369 3370 if (!capable(CAP_SYS_ADMIN)) 3371 return -EPERM; 3372 3373 loi = memdup_user(arg, sizeof(*loi)); 3374 if (IS_ERR(loi)) { 3375 ret = PTR_ERR(loi); 3376 loi = NULL; 3377 goto out; 3378 } 3379 3380 path = btrfs_alloc_path(); 3381 if (!path) { 3382 ret = -ENOMEM; 3383 goto out; 3384 } 3385 3386 size = min_t(u32, loi->size, 64 * 1024); 3387 inodes = init_data_container(size); 3388 if (IS_ERR(inodes)) { 3389 ret = PTR_ERR(inodes); 3390 inodes = NULL; 3391 goto out; 3392 } 3393 3394 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 3395 build_ino_list, inodes); 3396 if (ret == -EINVAL) 3397 ret = -ENOENT; 3398 if (ret < 0) 3399 goto out; 3400 3401 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3402 (void *)(unsigned long)inodes, size); 3403 if (ret) 3404 ret = -EFAULT; 3405 3406 out: 3407 btrfs_free_path(path); 3408 vfree(inodes); 3409 kfree(loi); 3410 3411 return ret; 3412 } 3413 3414 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3415 struct btrfs_ioctl_balance_args *bargs) 3416 { 3417 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3418 3419 bargs->flags = bctl->flags; 3420 3421 if (atomic_read(&fs_info->balance_running)) 3422 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3423 if (atomic_read(&fs_info->balance_pause_req)) 3424 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3425 if (atomic_read(&fs_info->balance_cancel_req)) 3426 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3427 3428 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3429 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3430 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3431 3432 if (lock) { 3433 spin_lock(&fs_info->balance_lock); 3434 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3435 spin_unlock(&fs_info->balance_lock); 3436 } else { 3437 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3438 } 3439 } 3440 3441 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3442 { 3443 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3444 struct btrfs_fs_info *fs_info = root->fs_info; 3445 struct btrfs_ioctl_balance_args *bargs; 3446 struct btrfs_balance_control *bctl; 3447 bool need_unlock; /* for mut. excl. ops lock */ 3448 int ret; 3449 3450 if (!capable(CAP_SYS_ADMIN)) 3451 return -EPERM; 3452 3453 ret = mnt_want_write_file(file); 3454 if (ret) 3455 return ret; 3456 3457 again: 3458 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 3459 mutex_lock(&fs_info->volume_mutex); 3460 mutex_lock(&fs_info->balance_mutex); 3461 need_unlock = true; 3462 goto locked; 3463 } 3464 3465 /* 3466 * mut. excl. ops lock is locked. Three possibilites: 3467 * (1) some other op is running 3468 * (2) balance is running 3469 * (3) balance is paused -- special case (think resume) 3470 */ 3471 mutex_lock(&fs_info->balance_mutex); 3472 if (fs_info->balance_ctl) { 3473 /* this is either (2) or (3) */ 3474 if (!atomic_read(&fs_info->balance_running)) { 3475 mutex_unlock(&fs_info->balance_mutex); 3476 if (!mutex_trylock(&fs_info->volume_mutex)) 3477 goto again; 3478 mutex_lock(&fs_info->balance_mutex); 3479 3480 if (fs_info->balance_ctl && 3481 !atomic_read(&fs_info->balance_running)) { 3482 /* this is (3) */ 3483 need_unlock = false; 3484 goto locked; 3485 } 3486 3487 mutex_unlock(&fs_info->balance_mutex); 3488 mutex_unlock(&fs_info->volume_mutex); 3489 goto again; 3490 } else { 3491 /* this is (2) */ 3492 mutex_unlock(&fs_info->balance_mutex); 3493 ret = -EINPROGRESS; 3494 goto out; 3495 } 3496 } else { 3497 /* this is (1) */ 3498 mutex_unlock(&fs_info->balance_mutex); 3499 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 3500 ret = -EINVAL; 3501 goto out; 3502 } 3503 3504 locked: 3505 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 3506 3507 if (arg) { 3508 bargs = memdup_user(arg, sizeof(*bargs)); 3509 if (IS_ERR(bargs)) { 3510 ret = PTR_ERR(bargs); 3511 goto out_unlock; 3512 } 3513 3514 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3515 if (!fs_info->balance_ctl) { 3516 ret = -ENOTCONN; 3517 goto out_bargs; 3518 } 3519 3520 bctl = fs_info->balance_ctl; 3521 spin_lock(&fs_info->balance_lock); 3522 bctl->flags |= BTRFS_BALANCE_RESUME; 3523 spin_unlock(&fs_info->balance_lock); 3524 3525 goto do_balance; 3526 } 3527 } else { 3528 bargs = NULL; 3529 } 3530 3531 if (fs_info->balance_ctl) { 3532 ret = -EINPROGRESS; 3533 goto out_bargs; 3534 } 3535 3536 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3537 if (!bctl) { 3538 ret = -ENOMEM; 3539 goto out_bargs; 3540 } 3541 3542 bctl->fs_info = fs_info; 3543 if (arg) { 3544 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3545 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3546 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3547 3548 bctl->flags = bargs->flags; 3549 } else { 3550 /* balance everything - no filters */ 3551 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3552 } 3553 3554 do_balance: 3555 /* 3556 * Ownership of bctl and mutually_exclusive_operation_running 3557 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 3558 * or, if restriper was paused all the way until unmount, in 3559 * free_fs_info. mutually_exclusive_operation_running is 3560 * cleared in __cancel_balance. 3561 */ 3562 need_unlock = false; 3563 3564 ret = btrfs_balance(bctl, bargs); 3565 3566 if (arg) { 3567 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3568 ret = -EFAULT; 3569 } 3570 3571 out_bargs: 3572 kfree(bargs); 3573 out_unlock: 3574 mutex_unlock(&fs_info->balance_mutex); 3575 mutex_unlock(&fs_info->volume_mutex); 3576 if (need_unlock) 3577 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3578 out: 3579 mnt_drop_write_file(file); 3580 return ret; 3581 } 3582 3583 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 3584 { 3585 if (!capable(CAP_SYS_ADMIN)) 3586 return -EPERM; 3587 3588 switch (cmd) { 3589 case BTRFS_BALANCE_CTL_PAUSE: 3590 return btrfs_pause_balance(root->fs_info); 3591 case BTRFS_BALANCE_CTL_CANCEL: 3592 return btrfs_cancel_balance(root->fs_info); 3593 } 3594 3595 return -EINVAL; 3596 } 3597 3598 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 3599 void __user *arg) 3600 { 3601 struct btrfs_fs_info *fs_info = root->fs_info; 3602 struct btrfs_ioctl_balance_args *bargs; 3603 int ret = 0; 3604 3605 if (!capable(CAP_SYS_ADMIN)) 3606 return -EPERM; 3607 3608 mutex_lock(&fs_info->balance_mutex); 3609 if (!fs_info->balance_ctl) { 3610 ret = -ENOTCONN; 3611 goto out; 3612 } 3613 3614 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 3615 if (!bargs) { 3616 ret = -ENOMEM; 3617 goto out; 3618 } 3619 3620 update_ioctl_balance_args(fs_info, 1, bargs); 3621 3622 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3623 ret = -EFAULT; 3624 3625 kfree(bargs); 3626 out: 3627 mutex_unlock(&fs_info->balance_mutex); 3628 return ret; 3629 } 3630 3631 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3632 { 3633 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3634 struct btrfs_ioctl_quota_ctl_args *sa; 3635 struct btrfs_trans_handle *trans = NULL; 3636 int ret; 3637 int err; 3638 3639 if (!capable(CAP_SYS_ADMIN)) 3640 return -EPERM; 3641 3642 ret = mnt_want_write_file(file); 3643 if (ret) 3644 return ret; 3645 3646 sa = memdup_user(arg, sizeof(*sa)); 3647 if (IS_ERR(sa)) { 3648 ret = PTR_ERR(sa); 3649 goto drop_write; 3650 } 3651 3652 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) { 3653 trans = btrfs_start_transaction(root, 2); 3654 if (IS_ERR(trans)) { 3655 ret = PTR_ERR(trans); 3656 goto out; 3657 } 3658 } 3659 3660 switch (sa->cmd) { 3661 case BTRFS_QUOTA_CTL_ENABLE: 3662 ret = btrfs_quota_enable(trans, root->fs_info); 3663 break; 3664 case BTRFS_QUOTA_CTL_DISABLE: 3665 ret = btrfs_quota_disable(trans, root->fs_info); 3666 break; 3667 case BTRFS_QUOTA_CTL_RESCAN: 3668 ret = btrfs_quota_rescan(root->fs_info); 3669 break; 3670 default: 3671 ret = -EINVAL; 3672 break; 3673 } 3674 3675 if (copy_to_user(arg, sa, sizeof(*sa))) 3676 ret = -EFAULT; 3677 3678 if (trans) { 3679 err = btrfs_commit_transaction(trans, root); 3680 if (err && !ret) 3681 ret = err; 3682 } 3683 out: 3684 kfree(sa); 3685 drop_write: 3686 mnt_drop_write_file(file); 3687 return ret; 3688 } 3689 3690 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3691 { 3692 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3693 struct btrfs_ioctl_qgroup_assign_args *sa; 3694 struct btrfs_trans_handle *trans; 3695 int ret; 3696 int err; 3697 3698 if (!capable(CAP_SYS_ADMIN)) 3699 return -EPERM; 3700 3701 ret = mnt_want_write_file(file); 3702 if (ret) 3703 return ret; 3704 3705 sa = memdup_user(arg, sizeof(*sa)); 3706 if (IS_ERR(sa)) { 3707 ret = PTR_ERR(sa); 3708 goto drop_write; 3709 } 3710 3711 trans = btrfs_join_transaction(root); 3712 if (IS_ERR(trans)) { 3713 ret = PTR_ERR(trans); 3714 goto out; 3715 } 3716 3717 /* FIXME: check if the IDs really exist */ 3718 if (sa->assign) { 3719 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 3720 sa->src, sa->dst); 3721 } else { 3722 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 3723 sa->src, sa->dst); 3724 } 3725 3726 err = btrfs_end_transaction(trans, root); 3727 if (err && !ret) 3728 ret = err; 3729 3730 out: 3731 kfree(sa); 3732 drop_write: 3733 mnt_drop_write_file(file); 3734 return ret; 3735 } 3736 3737 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3738 { 3739 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3740 struct btrfs_ioctl_qgroup_create_args *sa; 3741 struct btrfs_trans_handle *trans; 3742 int ret; 3743 int err; 3744 3745 if (!capable(CAP_SYS_ADMIN)) 3746 return -EPERM; 3747 3748 ret = mnt_want_write_file(file); 3749 if (ret) 3750 return ret; 3751 3752 sa = memdup_user(arg, sizeof(*sa)); 3753 if (IS_ERR(sa)) { 3754 ret = PTR_ERR(sa); 3755 goto drop_write; 3756 } 3757 3758 if (!sa->qgroupid) { 3759 ret = -EINVAL; 3760 goto out; 3761 } 3762 3763 trans = btrfs_join_transaction(root); 3764 if (IS_ERR(trans)) { 3765 ret = PTR_ERR(trans); 3766 goto out; 3767 } 3768 3769 /* FIXME: check if the IDs really exist */ 3770 if (sa->create) { 3771 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 3772 NULL); 3773 } else { 3774 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 3775 } 3776 3777 err = btrfs_end_transaction(trans, root); 3778 if (err && !ret) 3779 ret = err; 3780 3781 out: 3782 kfree(sa); 3783 drop_write: 3784 mnt_drop_write_file(file); 3785 return ret; 3786 } 3787 3788 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3789 { 3790 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3791 struct btrfs_ioctl_qgroup_limit_args *sa; 3792 struct btrfs_trans_handle *trans; 3793 int ret; 3794 int err; 3795 u64 qgroupid; 3796 3797 if (!capable(CAP_SYS_ADMIN)) 3798 return -EPERM; 3799 3800 ret = mnt_want_write_file(file); 3801 if (ret) 3802 return ret; 3803 3804 sa = memdup_user(arg, sizeof(*sa)); 3805 if (IS_ERR(sa)) { 3806 ret = PTR_ERR(sa); 3807 goto drop_write; 3808 } 3809 3810 trans = btrfs_join_transaction(root); 3811 if (IS_ERR(trans)) { 3812 ret = PTR_ERR(trans); 3813 goto out; 3814 } 3815 3816 qgroupid = sa->qgroupid; 3817 if (!qgroupid) { 3818 /* take the current subvol as qgroup */ 3819 qgroupid = root->root_key.objectid; 3820 } 3821 3822 /* FIXME: check if the IDs really exist */ 3823 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 3824 3825 err = btrfs_end_transaction(trans, root); 3826 if (err && !ret) 3827 ret = err; 3828 3829 out: 3830 kfree(sa); 3831 drop_write: 3832 mnt_drop_write_file(file); 3833 return ret; 3834 } 3835 3836 static long btrfs_ioctl_set_received_subvol(struct file *file, 3837 void __user *arg) 3838 { 3839 struct btrfs_ioctl_received_subvol_args *sa = NULL; 3840 struct inode *inode = fdentry(file)->d_inode; 3841 struct btrfs_root *root = BTRFS_I(inode)->root; 3842 struct btrfs_root_item *root_item = &root->root_item; 3843 struct btrfs_trans_handle *trans; 3844 struct timespec ct = CURRENT_TIME; 3845 int ret = 0; 3846 3847 ret = mnt_want_write_file(file); 3848 if (ret < 0) 3849 return ret; 3850 3851 down_write(&root->fs_info->subvol_sem); 3852 3853 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 3854 ret = -EINVAL; 3855 goto out; 3856 } 3857 3858 if (btrfs_root_readonly(root)) { 3859 ret = -EROFS; 3860 goto out; 3861 } 3862 3863 if (!inode_owner_or_capable(inode)) { 3864 ret = -EACCES; 3865 goto out; 3866 } 3867 3868 sa = memdup_user(arg, sizeof(*sa)); 3869 if (IS_ERR(sa)) { 3870 ret = PTR_ERR(sa); 3871 sa = NULL; 3872 goto out; 3873 } 3874 3875 trans = btrfs_start_transaction(root, 1); 3876 if (IS_ERR(trans)) { 3877 ret = PTR_ERR(trans); 3878 trans = NULL; 3879 goto out; 3880 } 3881 3882 sa->rtransid = trans->transid; 3883 sa->rtime.sec = ct.tv_sec; 3884 sa->rtime.nsec = ct.tv_nsec; 3885 3886 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3887 btrfs_set_root_stransid(root_item, sa->stransid); 3888 btrfs_set_root_rtransid(root_item, sa->rtransid); 3889 root_item->stime.sec = cpu_to_le64(sa->stime.sec); 3890 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec); 3891 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec); 3892 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec); 3893 3894 ret = btrfs_update_root(trans, root->fs_info->tree_root, 3895 &root->root_key, &root->root_item); 3896 if (ret < 0) { 3897 btrfs_end_transaction(trans, root); 3898 trans = NULL; 3899 goto out; 3900 } else { 3901 ret = btrfs_commit_transaction(trans, root); 3902 if (ret < 0) 3903 goto out; 3904 } 3905 3906 ret = copy_to_user(arg, sa, sizeof(*sa)); 3907 if (ret) 3908 ret = -EFAULT; 3909 3910 out: 3911 kfree(sa); 3912 up_write(&root->fs_info->subvol_sem); 3913 mnt_drop_write_file(file); 3914 return ret; 3915 } 3916 3917 long btrfs_ioctl(struct file *file, unsigned int 3918 cmd, unsigned long arg) 3919 { 3920 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3921 void __user *argp = (void __user *)arg; 3922 3923 switch (cmd) { 3924 case FS_IOC_GETFLAGS: 3925 return btrfs_ioctl_getflags(file, argp); 3926 case FS_IOC_SETFLAGS: 3927 return btrfs_ioctl_setflags(file, argp); 3928 case FS_IOC_GETVERSION: 3929 return btrfs_ioctl_getversion(file, argp); 3930 case FITRIM: 3931 return btrfs_ioctl_fitrim(file, argp); 3932 case BTRFS_IOC_SNAP_CREATE: 3933 return btrfs_ioctl_snap_create(file, argp, 0); 3934 case BTRFS_IOC_SNAP_CREATE_V2: 3935 return btrfs_ioctl_snap_create_v2(file, argp, 0); 3936 case BTRFS_IOC_SUBVOL_CREATE: 3937 return btrfs_ioctl_snap_create(file, argp, 1); 3938 case BTRFS_IOC_SUBVOL_CREATE_V2: 3939 return btrfs_ioctl_snap_create_v2(file, argp, 1); 3940 case BTRFS_IOC_SNAP_DESTROY: 3941 return btrfs_ioctl_snap_destroy(file, argp); 3942 case BTRFS_IOC_SUBVOL_GETFLAGS: 3943 return btrfs_ioctl_subvol_getflags(file, argp); 3944 case BTRFS_IOC_SUBVOL_SETFLAGS: 3945 return btrfs_ioctl_subvol_setflags(file, argp); 3946 case BTRFS_IOC_DEFAULT_SUBVOL: 3947 return btrfs_ioctl_default_subvol(file, argp); 3948 case BTRFS_IOC_DEFRAG: 3949 return btrfs_ioctl_defrag(file, NULL); 3950 case BTRFS_IOC_DEFRAG_RANGE: 3951 return btrfs_ioctl_defrag(file, argp); 3952 case BTRFS_IOC_RESIZE: 3953 return btrfs_ioctl_resize(file, argp); 3954 case BTRFS_IOC_ADD_DEV: 3955 return btrfs_ioctl_add_dev(root, argp); 3956 case BTRFS_IOC_RM_DEV: 3957 return btrfs_ioctl_rm_dev(file, argp); 3958 case BTRFS_IOC_FS_INFO: 3959 return btrfs_ioctl_fs_info(root, argp); 3960 case BTRFS_IOC_DEV_INFO: 3961 return btrfs_ioctl_dev_info(root, argp); 3962 case BTRFS_IOC_BALANCE: 3963 return btrfs_ioctl_balance(file, NULL); 3964 case BTRFS_IOC_CLONE: 3965 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 3966 case BTRFS_IOC_CLONE_RANGE: 3967 return btrfs_ioctl_clone_range(file, argp); 3968 case BTRFS_IOC_TRANS_START: 3969 return btrfs_ioctl_trans_start(file); 3970 case BTRFS_IOC_TRANS_END: 3971 return btrfs_ioctl_trans_end(file); 3972 case BTRFS_IOC_TREE_SEARCH: 3973 return btrfs_ioctl_tree_search(file, argp); 3974 case BTRFS_IOC_INO_LOOKUP: 3975 return btrfs_ioctl_ino_lookup(file, argp); 3976 case BTRFS_IOC_INO_PATHS: 3977 return btrfs_ioctl_ino_to_path(root, argp); 3978 case BTRFS_IOC_LOGICAL_INO: 3979 return btrfs_ioctl_logical_to_ino(root, argp); 3980 case BTRFS_IOC_SPACE_INFO: 3981 return btrfs_ioctl_space_info(root, argp); 3982 case BTRFS_IOC_SYNC: 3983 btrfs_sync_fs(file->f_dentry->d_sb, 1); 3984 return 0; 3985 case BTRFS_IOC_START_SYNC: 3986 return btrfs_ioctl_start_sync(root, argp); 3987 case BTRFS_IOC_WAIT_SYNC: 3988 return btrfs_ioctl_wait_sync(root, argp); 3989 case BTRFS_IOC_SCRUB: 3990 return btrfs_ioctl_scrub(file, argp); 3991 case BTRFS_IOC_SCRUB_CANCEL: 3992 return btrfs_ioctl_scrub_cancel(root, argp); 3993 case BTRFS_IOC_SCRUB_PROGRESS: 3994 return btrfs_ioctl_scrub_progress(root, argp); 3995 case BTRFS_IOC_BALANCE_V2: 3996 return btrfs_ioctl_balance(file, argp); 3997 case BTRFS_IOC_BALANCE_CTL: 3998 return btrfs_ioctl_balance_ctl(root, arg); 3999 case BTRFS_IOC_BALANCE_PROGRESS: 4000 return btrfs_ioctl_balance_progress(root, argp); 4001 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4002 return btrfs_ioctl_set_received_subvol(file, argp); 4003 case BTRFS_IOC_SEND: 4004 return btrfs_ioctl_send(file, argp); 4005 case BTRFS_IOC_GET_DEV_STATS: 4006 return btrfs_ioctl_get_dev_stats(root, argp); 4007 case BTRFS_IOC_QUOTA_CTL: 4008 return btrfs_ioctl_quota_ctl(file, argp); 4009 case BTRFS_IOC_QGROUP_ASSIGN: 4010 return btrfs_ioctl_qgroup_assign(file, argp); 4011 case BTRFS_IOC_QGROUP_CREATE: 4012 return btrfs_ioctl_qgroup_create(file, argp); 4013 case BTRFS_IOC_QGROUP_LIMIT: 4014 return btrfs_ioctl_qgroup_limit(file, argp); 4015 case BTRFS_IOC_DEV_REPLACE: 4016 return btrfs_ioctl_dev_replace(root, argp); 4017 } 4018 4019 return -ENOTTY; 4020 } 4021