1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/compat.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/security.h> 39 #include <linux/xattr.h> 40 #include <linux/vmalloc.h> 41 #include <linux/slab.h> 42 #include <linux/blkdev.h> 43 #include <linux/uuid.h> 44 #include <linux/btrfs.h> 45 #include <linux/uaccess.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 #include "backref.h" 55 #include "rcu-string.h" 56 #include "send.h" 57 #include "dev-replace.h" 58 #include "props.h" 59 #include "sysfs.h" 60 #include "qgroup.h" 61 #include "tree-log.h" 62 #include "compression.h" 63 64 #ifdef CONFIG_64BIT 65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 66 * structures are incorrect, as the timespec structure from userspace 67 * is 4 bytes too small. We define these alternatives here to teach 68 * the kernel about the 32-bit struct packing. 69 */ 70 struct btrfs_ioctl_timespec_32 { 71 __u64 sec; 72 __u32 nsec; 73 } __attribute__ ((__packed__)); 74 75 struct btrfs_ioctl_received_subvol_args_32 { 76 char uuid[BTRFS_UUID_SIZE]; /* in */ 77 __u64 stransid; /* in */ 78 __u64 rtransid; /* out */ 79 struct btrfs_ioctl_timespec_32 stime; /* in */ 80 struct btrfs_ioctl_timespec_32 rtime; /* out */ 81 __u64 flags; /* in */ 82 __u64 reserved[16]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 86 struct btrfs_ioctl_received_subvol_args_32) 87 #endif 88 89 90 static int btrfs_clone(struct inode *src, struct inode *inode, 91 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 92 int no_time_update); 93 94 /* Mask out flags that are inappropriate for the given type of inode. */ 95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 96 { 97 if (S_ISDIR(mode)) 98 return flags; 99 else if (S_ISREG(mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 107 */ 108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 109 { 110 unsigned int iflags = 0; 111 112 if (flags & BTRFS_INODE_SYNC) 113 iflags |= FS_SYNC_FL; 114 if (flags & BTRFS_INODE_IMMUTABLE) 115 iflags |= FS_IMMUTABLE_FL; 116 if (flags & BTRFS_INODE_APPEND) 117 iflags |= FS_APPEND_FL; 118 if (flags & BTRFS_INODE_NODUMP) 119 iflags |= FS_NODUMP_FL; 120 if (flags & BTRFS_INODE_NOATIME) 121 iflags |= FS_NOATIME_FL; 122 if (flags & BTRFS_INODE_DIRSYNC) 123 iflags |= FS_DIRSYNC_FL; 124 if (flags & BTRFS_INODE_NODATACOW) 125 iflags |= FS_NOCOW_FL; 126 127 if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 else if (flags & BTRFS_INODE_COMPRESS) 130 iflags |= FS_COMPR_FL; 131 132 return iflags; 133 } 134 135 /* 136 * Update inode->i_flags based on the btrfs internal flags. 137 */ 138 void btrfs_update_iflags(struct inode *inode) 139 { 140 struct btrfs_inode *ip = BTRFS_I(inode); 141 unsigned int new_fl = 0; 142 143 if (ip->flags & BTRFS_INODE_SYNC) 144 new_fl |= S_SYNC; 145 if (ip->flags & BTRFS_INODE_IMMUTABLE) 146 new_fl |= S_IMMUTABLE; 147 if (ip->flags & BTRFS_INODE_APPEND) 148 new_fl |= S_APPEND; 149 if (ip->flags & BTRFS_INODE_NOATIME) 150 new_fl |= S_NOATIME; 151 if (ip->flags & BTRFS_INODE_DIRSYNC) 152 new_fl |= S_DIRSYNC; 153 154 set_mask_bits(&inode->i_flags, 155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 156 new_fl); 157 } 158 159 /* 160 * Inherit flags from the parent inode. 161 * 162 * Currently only the compression flags and the cow flags are inherited. 163 */ 164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 165 { 166 unsigned int flags; 167 168 if (!dir) 169 return; 170 171 flags = BTRFS_I(dir)->flags; 172 173 if (flags & BTRFS_INODE_NOCOMPRESS) { 174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 176 } else if (flags & BTRFS_INODE_COMPRESS) { 177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 179 } 180 181 if (flags & BTRFS_INODE_NODATACOW) { 182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 183 if (S_ISREG(inode->i_mode)) 184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 185 } 186 187 btrfs_update_iflags(inode); 188 } 189 190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 191 { 192 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 194 195 if (copy_to_user(arg, &flags, sizeof(flags))) 196 return -EFAULT; 197 return 0; 198 } 199 200 static int check_flags(unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 216 { 217 struct inode *inode = file_inode(file); 218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assumptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_time(inode); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct inode *inode = file_inode(file); 378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 379 struct btrfs_device *device; 380 struct request_queue *q; 381 struct fstrim_range range; 382 u64 minlen = ULLONG_MAX; 383 u64 num_devices = 0; 384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 385 int ret; 386 387 if (!capable(CAP_SYS_ADMIN)) 388 return -EPERM; 389 390 rcu_read_lock(); 391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 392 dev_list) { 393 if (!device->bdev) 394 continue; 395 q = bdev_get_queue(device->bdev); 396 if (blk_queue_discard(q)) { 397 num_devices++; 398 minlen = min_t(u64, q->limits.discard_granularity, 399 minlen); 400 } 401 } 402 rcu_read_unlock(); 403 404 if (!num_devices) 405 return -EOPNOTSUPP; 406 if (copy_from_user(&range, arg, sizeof(range))) 407 return -EFAULT; 408 if (range.start > total_bytes || 409 range.len < fs_info->sb->s_blocksize) 410 return -EINVAL; 411 412 range.len = min(range.len, total_bytes - range.start); 413 range.minlen = max(range.minlen, minlen); 414 ret = btrfs_trim_fs(fs_info, &range); 415 if (ret < 0) 416 return ret; 417 418 if (copy_to_user(arg, &range, sizeof(range))) 419 return -EFAULT; 420 421 return 0; 422 } 423 424 int btrfs_is_empty_uuid(u8 *uuid) 425 { 426 int i; 427 428 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 429 if (uuid[i]) 430 return 0; 431 } 432 return 1; 433 } 434 435 static noinline int create_subvol(struct inode *dir, 436 struct dentry *dentry, 437 const char *name, int namelen, 438 u64 *async_transid, 439 struct btrfs_qgroup_inherit *inherit) 440 { 441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 442 struct btrfs_trans_handle *trans; 443 struct btrfs_key key; 444 struct btrfs_root_item *root_item; 445 struct btrfs_inode_item *inode_item; 446 struct extent_buffer *leaf; 447 struct btrfs_root *root = BTRFS_I(dir)->root; 448 struct btrfs_root *new_root; 449 struct btrfs_block_rsv block_rsv; 450 struct timespec cur_time = current_time(dir); 451 struct inode *inode; 452 int ret; 453 int err; 454 u64 objectid; 455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 456 u64 index = 0; 457 u64 qgroup_reserved; 458 uuid_le new_uuid; 459 460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 461 if (!root_item) 462 return -ENOMEM; 463 464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 465 if (ret) 466 goto fail_free; 467 468 /* 469 * Don't create subvolume whose level is not zero. Or qgroup will be 470 * screwed up since it assumes subvolume qgroup's level to be 0. 471 */ 472 if (btrfs_qgroup_level(objectid)) { 473 ret = -ENOSPC; 474 goto fail_free; 475 } 476 477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 478 /* 479 * The same as the snapshot creation, please see the comment 480 * of create_snapshot(). 481 */ 482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 483 8, &qgroup_reserved, false); 484 if (ret) 485 goto fail_free; 486 487 trans = btrfs_start_transaction(root, 0); 488 if (IS_ERR(trans)) { 489 ret = PTR_ERR(trans); 490 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 491 goto fail_free; 492 } 493 trans->block_rsv = &block_rsv; 494 trans->bytes_reserved = block_rsv.size; 495 496 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 497 if (ret) 498 goto fail; 499 500 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 501 if (IS_ERR(leaf)) { 502 ret = PTR_ERR(leaf); 503 goto fail; 504 } 505 506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 507 btrfs_set_header_bytenr(leaf, leaf->start); 508 btrfs_set_header_generation(leaf, trans->transid); 509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 510 btrfs_set_header_owner(leaf, objectid); 511 512 write_extent_buffer_fsid(leaf, fs_info->fsid); 513 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 514 btrfs_mark_buffer_dirty(leaf); 515 516 inode_item = &root_item->inode; 517 btrfs_set_stack_inode_generation(inode_item, 1); 518 btrfs_set_stack_inode_size(inode_item, 3); 519 btrfs_set_stack_inode_nlink(inode_item, 1); 520 btrfs_set_stack_inode_nbytes(inode_item, 521 fs_info->nodesize); 522 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 523 524 btrfs_set_root_flags(root_item, 0); 525 btrfs_set_root_limit(root_item, 0); 526 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 527 528 btrfs_set_root_bytenr(root_item, leaf->start); 529 btrfs_set_root_generation(root_item, trans->transid); 530 btrfs_set_root_level(root_item, 0); 531 btrfs_set_root_refs(root_item, 1); 532 btrfs_set_root_used(root_item, leaf->len); 533 btrfs_set_root_last_snapshot(root_item, 0); 534 535 btrfs_set_root_generation_v2(root_item, 536 btrfs_root_generation(root_item)); 537 uuid_le_gen(&new_uuid); 538 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 539 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 540 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 541 root_item->ctime = root_item->otime; 542 btrfs_set_root_ctransid(root_item, trans->transid); 543 btrfs_set_root_otransid(root_item, trans->transid); 544 545 btrfs_tree_unlock(leaf); 546 free_extent_buffer(leaf); 547 leaf = NULL; 548 549 btrfs_set_root_dirid(root_item, new_dirid); 550 551 key.objectid = objectid; 552 key.offset = 0; 553 key.type = BTRFS_ROOT_ITEM_KEY; 554 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 555 root_item); 556 if (ret) 557 goto fail; 558 559 key.offset = (u64)-1; 560 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 561 if (IS_ERR(new_root)) { 562 ret = PTR_ERR(new_root); 563 btrfs_abort_transaction(trans, ret); 564 goto fail; 565 } 566 567 btrfs_record_root_in_trans(trans, new_root); 568 569 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 570 if (ret) { 571 /* We potentially lose an unused inode item here */ 572 btrfs_abort_transaction(trans, ret); 573 goto fail; 574 } 575 576 mutex_lock(&new_root->objectid_mutex); 577 new_root->highest_objectid = new_dirid; 578 mutex_unlock(&new_root->objectid_mutex); 579 580 /* 581 * insert the directory item 582 */ 583 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 584 if (ret) { 585 btrfs_abort_transaction(trans, ret); 586 goto fail; 587 } 588 589 ret = btrfs_insert_dir_item(trans, root, 590 name, namelen, BTRFS_I(dir), &key, 591 BTRFS_FT_DIR, index); 592 if (ret) { 593 btrfs_abort_transaction(trans, ret); 594 goto fail; 595 } 596 597 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 598 ret = btrfs_update_inode(trans, root, dir); 599 BUG_ON(ret); 600 601 ret = btrfs_add_root_ref(trans, fs_info, 602 objectid, root->root_key.objectid, 603 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 604 BUG_ON(ret); 605 606 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid, 607 BTRFS_UUID_KEY_SUBVOL, objectid); 608 if (ret) 609 btrfs_abort_transaction(trans, ret); 610 611 fail: 612 kfree(root_item); 613 trans->block_rsv = NULL; 614 trans->bytes_reserved = 0; 615 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 616 617 if (async_transid) { 618 *async_transid = trans->transid; 619 err = btrfs_commit_transaction_async(trans, 1); 620 if (err) 621 err = btrfs_commit_transaction(trans); 622 } else { 623 err = btrfs_commit_transaction(trans); 624 } 625 if (err && !ret) 626 ret = err; 627 628 if (!ret) { 629 inode = btrfs_lookup_dentry(dir, dentry); 630 if (IS_ERR(inode)) 631 return PTR_ERR(inode); 632 d_instantiate(dentry, inode); 633 } 634 return ret; 635 636 fail_free: 637 kfree(root_item); 638 return ret; 639 } 640 641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 642 { 643 s64 writers; 644 DEFINE_WAIT(wait); 645 646 do { 647 prepare_to_wait(&root->subv_writers->wait, &wait, 648 TASK_UNINTERRUPTIBLE); 649 650 writers = percpu_counter_sum(&root->subv_writers->counter); 651 if (writers) 652 schedule(); 653 654 finish_wait(&root->subv_writers->wait, &wait); 655 } while (writers); 656 } 657 658 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 659 struct dentry *dentry, 660 u64 *async_transid, bool readonly, 661 struct btrfs_qgroup_inherit *inherit) 662 { 663 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 664 struct inode *inode; 665 struct btrfs_pending_snapshot *pending_snapshot; 666 struct btrfs_trans_handle *trans; 667 int ret; 668 669 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 670 return -EINVAL; 671 672 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 673 if (!pending_snapshot) 674 return -ENOMEM; 675 676 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 677 GFP_KERNEL); 678 pending_snapshot->path = btrfs_alloc_path(); 679 if (!pending_snapshot->root_item || !pending_snapshot->path) { 680 ret = -ENOMEM; 681 goto free_pending; 682 } 683 684 atomic_inc(&root->will_be_snapshoted); 685 smp_mb__after_atomic(); 686 btrfs_wait_for_no_snapshoting_writes(root); 687 688 ret = btrfs_start_delalloc_inodes(root, 0); 689 if (ret) 690 goto dec_and_free; 691 692 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1); 693 694 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 695 BTRFS_BLOCK_RSV_TEMP); 696 /* 697 * 1 - parent dir inode 698 * 2 - dir entries 699 * 1 - root item 700 * 2 - root ref/backref 701 * 1 - root of snapshot 702 * 1 - UUID item 703 */ 704 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 705 &pending_snapshot->block_rsv, 8, 706 &pending_snapshot->qgroup_reserved, 707 false); 708 if (ret) 709 goto dec_and_free; 710 711 pending_snapshot->dentry = dentry; 712 pending_snapshot->root = root; 713 pending_snapshot->readonly = readonly; 714 pending_snapshot->dir = dir; 715 pending_snapshot->inherit = inherit; 716 717 trans = btrfs_start_transaction(root, 0); 718 if (IS_ERR(trans)) { 719 ret = PTR_ERR(trans); 720 goto fail; 721 } 722 723 spin_lock(&fs_info->trans_lock); 724 list_add(&pending_snapshot->list, 725 &trans->transaction->pending_snapshots); 726 spin_unlock(&fs_info->trans_lock); 727 if (async_transid) { 728 *async_transid = trans->transid; 729 ret = btrfs_commit_transaction_async(trans, 1); 730 if (ret) 731 ret = btrfs_commit_transaction(trans); 732 } else { 733 ret = btrfs_commit_transaction(trans); 734 } 735 if (ret) 736 goto fail; 737 738 ret = pending_snapshot->error; 739 if (ret) 740 goto fail; 741 742 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 743 if (ret) 744 goto fail; 745 746 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 747 if (IS_ERR(inode)) { 748 ret = PTR_ERR(inode); 749 goto fail; 750 } 751 752 d_instantiate(dentry, inode); 753 ret = 0; 754 fail: 755 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 756 dec_and_free: 757 if (atomic_dec_and_test(&root->will_be_snapshoted)) 758 wake_up_atomic_t(&root->will_be_snapshoted); 759 free_pending: 760 kfree(pending_snapshot->root_item); 761 btrfs_free_path(pending_snapshot->path); 762 kfree(pending_snapshot); 763 764 return ret; 765 } 766 767 /* copy of may_delete in fs/namei.c() 768 * Check whether we can remove a link victim from directory dir, check 769 * whether the type of victim is right. 770 * 1. We can't do it if dir is read-only (done in permission()) 771 * 2. We should have write and exec permissions on dir 772 * 3. We can't remove anything from append-only dir 773 * 4. We can't do anything with immutable dir (done in permission()) 774 * 5. If the sticky bit on dir is set we should either 775 * a. be owner of dir, or 776 * b. be owner of victim, or 777 * c. have CAP_FOWNER capability 778 * 6. If the victim is append-only or immutable we can't do anything with 779 * links pointing to it. 780 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 781 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 782 * 9. We can't remove a root or mountpoint. 783 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 784 * nfs_async_unlink(). 785 */ 786 787 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 788 { 789 int error; 790 791 if (d_really_is_negative(victim)) 792 return -ENOENT; 793 794 BUG_ON(d_inode(victim->d_parent) != dir); 795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 796 797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 798 if (error) 799 return error; 800 if (IS_APPEND(dir)) 801 return -EPERM; 802 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 803 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 804 return -EPERM; 805 if (isdir) { 806 if (!d_is_dir(victim)) 807 return -ENOTDIR; 808 if (IS_ROOT(victim)) 809 return -EBUSY; 810 } else if (d_is_dir(victim)) 811 return -EISDIR; 812 if (IS_DEADDIR(dir)) 813 return -ENOENT; 814 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 815 return -EBUSY; 816 return 0; 817 } 818 819 /* copy of may_create in fs/namei.c() */ 820 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 821 { 822 if (d_really_is_positive(child)) 823 return -EEXIST; 824 if (IS_DEADDIR(dir)) 825 return -ENOENT; 826 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 827 } 828 829 /* 830 * Create a new subvolume below @parent. This is largely modeled after 831 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 832 * inside this filesystem so it's quite a bit simpler. 833 */ 834 static noinline int btrfs_mksubvol(const struct path *parent, 835 const char *name, int namelen, 836 struct btrfs_root *snap_src, 837 u64 *async_transid, bool readonly, 838 struct btrfs_qgroup_inherit *inherit) 839 { 840 struct inode *dir = d_inode(parent->dentry); 841 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 842 struct dentry *dentry; 843 int error; 844 845 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 846 if (error == -EINTR) 847 return error; 848 849 dentry = lookup_one_len(name, parent->dentry, namelen); 850 error = PTR_ERR(dentry); 851 if (IS_ERR(dentry)) 852 goto out_unlock; 853 854 error = btrfs_may_create(dir, dentry); 855 if (error) 856 goto out_dput; 857 858 /* 859 * even if this name doesn't exist, we may get hash collisions. 860 * check for them now when we can safely fail 861 */ 862 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 863 dir->i_ino, name, 864 namelen); 865 if (error) 866 goto out_dput; 867 868 down_read(&fs_info->subvol_sem); 869 870 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 871 goto out_up_read; 872 873 if (snap_src) { 874 error = create_snapshot(snap_src, dir, dentry, 875 async_transid, readonly, inherit); 876 } else { 877 error = create_subvol(dir, dentry, name, namelen, 878 async_transid, inherit); 879 } 880 if (!error) 881 fsnotify_mkdir(dir, dentry); 882 out_up_read: 883 up_read(&fs_info->subvol_sem); 884 out_dput: 885 dput(dentry); 886 out_unlock: 887 inode_unlock(dir); 888 return error; 889 } 890 891 /* 892 * When we're defragging a range, we don't want to kick it off again 893 * if it is really just waiting for delalloc to send it down. 894 * If we find a nice big extent or delalloc range for the bytes in the 895 * file you want to defrag, we return 0 to let you know to skip this 896 * part of the file 897 */ 898 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 899 { 900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 901 struct extent_map *em = NULL; 902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 903 u64 end; 904 905 read_lock(&em_tree->lock); 906 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 907 read_unlock(&em_tree->lock); 908 909 if (em) { 910 end = extent_map_end(em); 911 free_extent_map(em); 912 if (end - offset > thresh) 913 return 0; 914 } 915 /* if we already have a nice delalloc here, just stop */ 916 thresh /= 2; 917 end = count_range_bits(io_tree, &offset, offset + thresh, 918 thresh, EXTENT_DELALLOC, 1); 919 if (end >= thresh) 920 return 0; 921 return 1; 922 } 923 924 /* 925 * helper function to walk through a file and find extents 926 * newer than a specific transid, and smaller than thresh. 927 * 928 * This is used by the defragging code to find new and small 929 * extents 930 */ 931 static int find_new_extents(struct btrfs_root *root, 932 struct inode *inode, u64 newer_than, 933 u64 *off, u32 thresh) 934 { 935 struct btrfs_path *path; 936 struct btrfs_key min_key; 937 struct extent_buffer *leaf; 938 struct btrfs_file_extent_item *extent; 939 int type; 940 int ret; 941 u64 ino = btrfs_ino(BTRFS_I(inode)); 942 943 path = btrfs_alloc_path(); 944 if (!path) 945 return -ENOMEM; 946 947 min_key.objectid = ino; 948 min_key.type = BTRFS_EXTENT_DATA_KEY; 949 min_key.offset = *off; 950 951 while (1) { 952 ret = btrfs_search_forward(root, &min_key, path, newer_than); 953 if (ret != 0) 954 goto none; 955 process_slot: 956 if (min_key.objectid != ino) 957 goto none; 958 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 959 goto none; 960 961 leaf = path->nodes[0]; 962 extent = btrfs_item_ptr(leaf, path->slots[0], 963 struct btrfs_file_extent_item); 964 965 type = btrfs_file_extent_type(leaf, extent); 966 if (type == BTRFS_FILE_EXTENT_REG && 967 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 968 check_defrag_in_cache(inode, min_key.offset, thresh)) { 969 *off = min_key.offset; 970 btrfs_free_path(path); 971 return 0; 972 } 973 974 path->slots[0]++; 975 if (path->slots[0] < btrfs_header_nritems(leaf)) { 976 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 977 goto process_slot; 978 } 979 980 if (min_key.offset == (u64)-1) 981 goto none; 982 983 min_key.offset++; 984 btrfs_release_path(path); 985 } 986 none: 987 btrfs_free_path(path); 988 return -ENOENT; 989 } 990 991 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 992 { 993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 995 struct extent_map *em; 996 u64 len = PAGE_SIZE; 997 998 /* 999 * hopefully we have this extent in the tree already, try without 1000 * the full extent lock 1001 */ 1002 read_lock(&em_tree->lock); 1003 em = lookup_extent_mapping(em_tree, start, len); 1004 read_unlock(&em_tree->lock); 1005 1006 if (!em) { 1007 struct extent_state *cached = NULL; 1008 u64 end = start + len - 1; 1009 1010 /* get the big lock and read metadata off disk */ 1011 lock_extent_bits(io_tree, start, end, &cached); 1012 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1013 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1014 1015 if (IS_ERR(em)) 1016 return NULL; 1017 } 1018 1019 return em; 1020 } 1021 1022 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1023 { 1024 struct extent_map *next; 1025 bool ret = true; 1026 1027 /* this is the last extent */ 1028 if (em->start + em->len >= i_size_read(inode)) 1029 return false; 1030 1031 next = defrag_lookup_extent(inode, em->start + em->len); 1032 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1033 ret = false; 1034 else if ((em->block_start + em->block_len == next->block_start) && 1035 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1036 ret = false; 1037 1038 free_extent_map(next); 1039 return ret; 1040 } 1041 1042 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1043 u64 *last_len, u64 *skip, u64 *defrag_end, 1044 int compress) 1045 { 1046 struct extent_map *em; 1047 int ret = 1; 1048 bool next_mergeable = true; 1049 bool prev_mergeable = true; 1050 1051 /* 1052 * make sure that once we start defragging an extent, we keep on 1053 * defragging it 1054 */ 1055 if (start < *defrag_end) 1056 return 1; 1057 1058 *skip = 0; 1059 1060 em = defrag_lookup_extent(inode, start); 1061 if (!em) 1062 return 0; 1063 1064 /* this will cover holes, and inline extents */ 1065 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1066 ret = 0; 1067 goto out; 1068 } 1069 1070 if (!*defrag_end) 1071 prev_mergeable = false; 1072 1073 next_mergeable = defrag_check_next_extent(inode, em); 1074 /* 1075 * we hit a real extent, if it is big or the next extent is not a 1076 * real extent, don't bother defragging it 1077 */ 1078 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1079 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1080 ret = 0; 1081 out: 1082 /* 1083 * last_len ends up being a counter of how many bytes we've defragged. 1084 * every time we choose not to defrag an extent, we reset *last_len 1085 * so that the next tiny extent will force a defrag. 1086 * 1087 * The end result of this is that tiny extents before a single big 1088 * extent will force at least part of that big extent to be defragged. 1089 */ 1090 if (ret) { 1091 *defrag_end = extent_map_end(em); 1092 } else { 1093 *last_len = 0; 1094 *skip = extent_map_end(em); 1095 *defrag_end = 0; 1096 } 1097 1098 free_extent_map(em); 1099 return ret; 1100 } 1101 1102 /* 1103 * it doesn't do much good to defrag one or two pages 1104 * at a time. This pulls in a nice chunk of pages 1105 * to COW and defrag. 1106 * 1107 * It also makes sure the delalloc code has enough 1108 * dirty data to avoid making new small extents as part 1109 * of the defrag 1110 * 1111 * It's a good idea to start RA on this range 1112 * before calling this. 1113 */ 1114 static int cluster_pages_for_defrag(struct inode *inode, 1115 struct page **pages, 1116 unsigned long start_index, 1117 unsigned long num_pages) 1118 { 1119 unsigned long file_end; 1120 u64 isize = i_size_read(inode); 1121 u64 page_start; 1122 u64 page_end; 1123 u64 page_cnt; 1124 int ret; 1125 int i; 1126 int i_done; 1127 struct btrfs_ordered_extent *ordered; 1128 struct extent_state *cached_state = NULL; 1129 struct extent_io_tree *tree; 1130 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1131 1132 file_end = (isize - 1) >> PAGE_SHIFT; 1133 if (!isize || start_index > file_end) 1134 return 0; 1135 1136 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1137 1138 ret = btrfs_delalloc_reserve_space(inode, 1139 start_index << PAGE_SHIFT, 1140 page_cnt << PAGE_SHIFT); 1141 if (ret) 1142 return ret; 1143 i_done = 0; 1144 tree = &BTRFS_I(inode)->io_tree; 1145 1146 /* step one, lock all the pages */ 1147 for (i = 0; i < page_cnt; i++) { 1148 struct page *page; 1149 again: 1150 page = find_or_create_page(inode->i_mapping, 1151 start_index + i, mask); 1152 if (!page) 1153 break; 1154 1155 page_start = page_offset(page); 1156 page_end = page_start + PAGE_SIZE - 1; 1157 while (1) { 1158 lock_extent_bits(tree, page_start, page_end, 1159 &cached_state); 1160 ordered = btrfs_lookup_ordered_extent(inode, 1161 page_start); 1162 unlock_extent_cached(tree, page_start, page_end, 1163 &cached_state, GFP_NOFS); 1164 if (!ordered) 1165 break; 1166 1167 unlock_page(page); 1168 btrfs_start_ordered_extent(inode, ordered, 1); 1169 btrfs_put_ordered_extent(ordered); 1170 lock_page(page); 1171 /* 1172 * we unlocked the page above, so we need check if 1173 * it was released or not. 1174 */ 1175 if (page->mapping != inode->i_mapping) { 1176 unlock_page(page); 1177 put_page(page); 1178 goto again; 1179 } 1180 } 1181 1182 if (!PageUptodate(page)) { 1183 btrfs_readpage(NULL, page); 1184 lock_page(page); 1185 if (!PageUptodate(page)) { 1186 unlock_page(page); 1187 put_page(page); 1188 ret = -EIO; 1189 break; 1190 } 1191 } 1192 1193 if (page->mapping != inode->i_mapping) { 1194 unlock_page(page); 1195 put_page(page); 1196 goto again; 1197 } 1198 1199 pages[i] = page; 1200 i_done++; 1201 } 1202 if (!i_done || ret) 1203 goto out; 1204 1205 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1206 goto out; 1207 1208 /* 1209 * so now we have a nice long stream of locked 1210 * and up to date pages, lets wait on them 1211 */ 1212 for (i = 0; i < i_done; i++) 1213 wait_on_page_writeback(pages[i]); 1214 1215 page_start = page_offset(pages[0]); 1216 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1217 1218 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1219 page_start, page_end - 1, &cached_state); 1220 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1221 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1222 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1223 &cached_state, GFP_NOFS); 1224 1225 if (i_done != page_cnt) { 1226 spin_lock(&BTRFS_I(inode)->lock); 1227 BTRFS_I(inode)->outstanding_extents++; 1228 spin_unlock(&BTRFS_I(inode)->lock); 1229 btrfs_delalloc_release_space(inode, 1230 start_index << PAGE_SHIFT, 1231 (page_cnt - i_done) << PAGE_SHIFT); 1232 } 1233 1234 1235 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1236 &cached_state); 1237 1238 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1239 page_start, page_end - 1, &cached_state, 1240 GFP_NOFS); 1241 1242 for (i = 0; i < i_done; i++) { 1243 clear_page_dirty_for_io(pages[i]); 1244 ClearPageChecked(pages[i]); 1245 set_page_extent_mapped(pages[i]); 1246 set_page_dirty(pages[i]); 1247 unlock_page(pages[i]); 1248 put_page(pages[i]); 1249 } 1250 return i_done; 1251 out: 1252 for (i = 0; i < i_done; i++) { 1253 unlock_page(pages[i]); 1254 put_page(pages[i]); 1255 } 1256 btrfs_delalloc_release_space(inode, 1257 start_index << PAGE_SHIFT, 1258 page_cnt << PAGE_SHIFT); 1259 return ret; 1260 1261 } 1262 1263 int btrfs_defrag_file(struct inode *inode, struct file *file, 1264 struct btrfs_ioctl_defrag_range_args *range, 1265 u64 newer_than, unsigned long max_to_defrag) 1266 { 1267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1268 struct btrfs_root *root = BTRFS_I(inode)->root; 1269 struct file_ra_state *ra = NULL; 1270 unsigned long last_index; 1271 u64 isize = i_size_read(inode); 1272 u64 last_len = 0; 1273 u64 skip = 0; 1274 u64 defrag_end = 0; 1275 u64 newer_off = range->start; 1276 unsigned long i; 1277 unsigned long ra_index = 0; 1278 int ret; 1279 int defrag_count = 0; 1280 int compress_type = BTRFS_COMPRESS_ZLIB; 1281 u32 extent_thresh = range->extent_thresh; 1282 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1283 unsigned long cluster = max_cluster; 1284 u64 new_align = ~((u64)SZ_128K - 1); 1285 struct page **pages = NULL; 1286 1287 if (isize == 0) 1288 return 0; 1289 1290 if (range->start >= isize) 1291 return -EINVAL; 1292 1293 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1294 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1295 return -EINVAL; 1296 if (range->compress_type) 1297 compress_type = range->compress_type; 1298 } 1299 1300 if (extent_thresh == 0) 1301 extent_thresh = SZ_256K; 1302 1303 /* 1304 * if we were not given a file, allocate a readahead 1305 * context 1306 */ 1307 if (!file) { 1308 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1309 if (!ra) 1310 return -ENOMEM; 1311 file_ra_state_init(ra, inode->i_mapping); 1312 } else { 1313 ra = &file->f_ra; 1314 } 1315 1316 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1317 GFP_NOFS); 1318 if (!pages) { 1319 ret = -ENOMEM; 1320 goto out_ra; 1321 } 1322 1323 /* find the last page to defrag */ 1324 if (range->start + range->len > range->start) { 1325 last_index = min_t(u64, isize - 1, 1326 range->start + range->len - 1) >> PAGE_SHIFT; 1327 } else { 1328 last_index = (isize - 1) >> PAGE_SHIFT; 1329 } 1330 1331 if (newer_than) { 1332 ret = find_new_extents(root, inode, newer_than, 1333 &newer_off, SZ_64K); 1334 if (!ret) { 1335 range->start = newer_off; 1336 /* 1337 * we always align our defrag to help keep 1338 * the extents in the file evenly spaced 1339 */ 1340 i = (newer_off & new_align) >> PAGE_SHIFT; 1341 } else 1342 goto out_ra; 1343 } else { 1344 i = range->start >> PAGE_SHIFT; 1345 } 1346 if (!max_to_defrag) 1347 max_to_defrag = last_index - i + 1; 1348 1349 /* 1350 * make writeback starts from i, so the defrag range can be 1351 * written sequentially. 1352 */ 1353 if (i < inode->i_mapping->writeback_index) 1354 inode->i_mapping->writeback_index = i; 1355 1356 while (i <= last_index && defrag_count < max_to_defrag && 1357 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1358 /* 1359 * make sure we stop running if someone unmounts 1360 * the FS 1361 */ 1362 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1363 break; 1364 1365 if (btrfs_defrag_cancelled(fs_info)) { 1366 btrfs_debug(fs_info, "defrag_file cancelled"); 1367 ret = -EAGAIN; 1368 break; 1369 } 1370 1371 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1372 extent_thresh, &last_len, &skip, 1373 &defrag_end, range->flags & 1374 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1375 unsigned long next; 1376 /* 1377 * the should_defrag function tells us how much to skip 1378 * bump our counter by the suggested amount 1379 */ 1380 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1381 i = max(i + 1, next); 1382 continue; 1383 } 1384 1385 if (!newer_than) { 1386 cluster = (PAGE_ALIGN(defrag_end) >> 1387 PAGE_SHIFT) - i; 1388 cluster = min(cluster, max_cluster); 1389 } else { 1390 cluster = max_cluster; 1391 } 1392 1393 if (i + cluster > ra_index) { 1394 ra_index = max(i, ra_index); 1395 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1396 cluster); 1397 ra_index += cluster; 1398 } 1399 1400 inode_lock(inode); 1401 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1402 BTRFS_I(inode)->force_compress = compress_type; 1403 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1404 if (ret < 0) { 1405 inode_unlock(inode); 1406 goto out_ra; 1407 } 1408 1409 defrag_count += ret; 1410 balance_dirty_pages_ratelimited(inode->i_mapping); 1411 inode_unlock(inode); 1412 1413 if (newer_than) { 1414 if (newer_off == (u64)-1) 1415 break; 1416 1417 if (ret > 0) 1418 i += ret; 1419 1420 newer_off = max(newer_off + 1, 1421 (u64)i << PAGE_SHIFT); 1422 1423 ret = find_new_extents(root, inode, newer_than, 1424 &newer_off, SZ_64K); 1425 if (!ret) { 1426 range->start = newer_off; 1427 i = (newer_off & new_align) >> PAGE_SHIFT; 1428 } else { 1429 break; 1430 } 1431 } else { 1432 if (ret > 0) { 1433 i += ret; 1434 last_len += ret << PAGE_SHIFT; 1435 } else { 1436 i++; 1437 last_len = 0; 1438 } 1439 } 1440 } 1441 1442 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1443 filemap_flush(inode->i_mapping); 1444 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1445 &BTRFS_I(inode)->runtime_flags)) 1446 filemap_flush(inode->i_mapping); 1447 } 1448 1449 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1450 /* the filemap_flush will queue IO into the worker threads, but 1451 * we have to make sure the IO is actually started and that 1452 * ordered extents get created before we return 1453 */ 1454 atomic_inc(&fs_info->async_submit_draining); 1455 while (atomic_read(&fs_info->nr_async_submits) || 1456 atomic_read(&fs_info->async_delalloc_pages)) { 1457 wait_event(fs_info->async_submit_wait, 1458 (atomic_read(&fs_info->nr_async_submits) == 0 && 1459 atomic_read(&fs_info->async_delalloc_pages) == 0)); 1460 } 1461 atomic_dec(&fs_info->async_submit_draining); 1462 } 1463 1464 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1465 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1466 } 1467 1468 ret = defrag_count; 1469 1470 out_ra: 1471 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1472 inode_lock(inode); 1473 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1474 inode_unlock(inode); 1475 } 1476 if (!file) 1477 kfree(ra); 1478 kfree(pages); 1479 return ret; 1480 } 1481 1482 static noinline int btrfs_ioctl_resize(struct file *file, 1483 void __user *arg) 1484 { 1485 struct inode *inode = file_inode(file); 1486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1487 u64 new_size; 1488 u64 old_size; 1489 u64 devid = 1; 1490 struct btrfs_root *root = BTRFS_I(inode)->root; 1491 struct btrfs_ioctl_vol_args *vol_args; 1492 struct btrfs_trans_handle *trans; 1493 struct btrfs_device *device = NULL; 1494 char *sizestr; 1495 char *retptr; 1496 char *devstr = NULL; 1497 int ret = 0; 1498 int mod = 0; 1499 1500 if (!capable(CAP_SYS_ADMIN)) 1501 return -EPERM; 1502 1503 ret = mnt_want_write_file(file); 1504 if (ret) 1505 return ret; 1506 1507 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 1508 mnt_drop_write_file(file); 1509 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1510 } 1511 1512 mutex_lock(&fs_info->volume_mutex); 1513 vol_args = memdup_user(arg, sizeof(*vol_args)); 1514 if (IS_ERR(vol_args)) { 1515 ret = PTR_ERR(vol_args); 1516 goto out; 1517 } 1518 1519 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1520 1521 sizestr = vol_args->name; 1522 devstr = strchr(sizestr, ':'); 1523 if (devstr) { 1524 sizestr = devstr + 1; 1525 *devstr = '\0'; 1526 devstr = vol_args->name; 1527 ret = kstrtoull(devstr, 10, &devid); 1528 if (ret) 1529 goto out_free; 1530 if (!devid) { 1531 ret = -EINVAL; 1532 goto out_free; 1533 } 1534 btrfs_info(fs_info, "resizing devid %llu", devid); 1535 } 1536 1537 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1538 if (!device) { 1539 btrfs_info(fs_info, "resizer unable to find device %llu", 1540 devid); 1541 ret = -ENODEV; 1542 goto out_free; 1543 } 1544 1545 if (!device->writeable) { 1546 btrfs_info(fs_info, 1547 "resizer unable to apply on readonly device %llu", 1548 devid); 1549 ret = -EPERM; 1550 goto out_free; 1551 } 1552 1553 if (!strcmp(sizestr, "max")) 1554 new_size = device->bdev->bd_inode->i_size; 1555 else { 1556 if (sizestr[0] == '-') { 1557 mod = -1; 1558 sizestr++; 1559 } else if (sizestr[0] == '+') { 1560 mod = 1; 1561 sizestr++; 1562 } 1563 new_size = memparse(sizestr, &retptr); 1564 if (*retptr != '\0' || new_size == 0) { 1565 ret = -EINVAL; 1566 goto out_free; 1567 } 1568 } 1569 1570 if (device->is_tgtdev_for_dev_replace) { 1571 ret = -EPERM; 1572 goto out_free; 1573 } 1574 1575 old_size = btrfs_device_get_total_bytes(device); 1576 1577 if (mod < 0) { 1578 if (new_size > old_size) { 1579 ret = -EINVAL; 1580 goto out_free; 1581 } 1582 new_size = old_size - new_size; 1583 } else if (mod > 0) { 1584 if (new_size > ULLONG_MAX - old_size) { 1585 ret = -ERANGE; 1586 goto out_free; 1587 } 1588 new_size = old_size + new_size; 1589 } 1590 1591 if (new_size < SZ_256M) { 1592 ret = -EINVAL; 1593 goto out_free; 1594 } 1595 if (new_size > device->bdev->bd_inode->i_size) { 1596 ret = -EFBIG; 1597 goto out_free; 1598 } 1599 1600 new_size = div_u64(new_size, fs_info->sectorsize); 1601 new_size *= fs_info->sectorsize; 1602 1603 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1604 rcu_str_deref(device->name), new_size); 1605 1606 if (new_size > old_size) { 1607 trans = btrfs_start_transaction(root, 0); 1608 if (IS_ERR(trans)) { 1609 ret = PTR_ERR(trans); 1610 goto out_free; 1611 } 1612 ret = btrfs_grow_device(trans, device, new_size); 1613 btrfs_commit_transaction(trans); 1614 } else if (new_size < old_size) { 1615 ret = btrfs_shrink_device(device, new_size); 1616 } /* equal, nothing need to do */ 1617 1618 out_free: 1619 kfree(vol_args); 1620 out: 1621 mutex_unlock(&fs_info->volume_mutex); 1622 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 1623 mnt_drop_write_file(file); 1624 return ret; 1625 } 1626 1627 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1628 const char *name, unsigned long fd, int subvol, 1629 u64 *transid, bool readonly, 1630 struct btrfs_qgroup_inherit *inherit) 1631 { 1632 int namelen; 1633 int ret = 0; 1634 1635 if (!S_ISDIR(file_inode(file)->i_mode)) 1636 return -ENOTDIR; 1637 1638 ret = mnt_want_write_file(file); 1639 if (ret) 1640 goto out; 1641 1642 namelen = strlen(name); 1643 if (strchr(name, '/')) { 1644 ret = -EINVAL; 1645 goto out_drop_write; 1646 } 1647 1648 if (name[0] == '.' && 1649 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1650 ret = -EEXIST; 1651 goto out_drop_write; 1652 } 1653 1654 if (subvol) { 1655 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1656 NULL, transid, readonly, inherit); 1657 } else { 1658 struct fd src = fdget(fd); 1659 struct inode *src_inode; 1660 if (!src.file) { 1661 ret = -EINVAL; 1662 goto out_drop_write; 1663 } 1664 1665 src_inode = file_inode(src.file); 1666 if (src_inode->i_sb != file_inode(file)->i_sb) { 1667 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1668 "Snapshot src from another FS"); 1669 ret = -EXDEV; 1670 } else if (!inode_owner_or_capable(src_inode)) { 1671 /* 1672 * Subvolume creation is not restricted, but snapshots 1673 * are limited to own subvolumes only 1674 */ 1675 ret = -EPERM; 1676 } else { 1677 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1678 BTRFS_I(src_inode)->root, 1679 transid, readonly, inherit); 1680 } 1681 fdput(src); 1682 } 1683 out_drop_write: 1684 mnt_drop_write_file(file); 1685 out: 1686 return ret; 1687 } 1688 1689 static noinline int btrfs_ioctl_snap_create(struct file *file, 1690 void __user *arg, int subvol) 1691 { 1692 struct btrfs_ioctl_vol_args *vol_args; 1693 int ret; 1694 1695 if (!S_ISDIR(file_inode(file)->i_mode)) 1696 return -ENOTDIR; 1697 1698 vol_args = memdup_user(arg, sizeof(*vol_args)); 1699 if (IS_ERR(vol_args)) 1700 return PTR_ERR(vol_args); 1701 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1702 1703 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1704 vol_args->fd, subvol, 1705 NULL, false, NULL); 1706 1707 kfree(vol_args); 1708 return ret; 1709 } 1710 1711 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1712 void __user *arg, int subvol) 1713 { 1714 struct btrfs_ioctl_vol_args_v2 *vol_args; 1715 int ret; 1716 u64 transid = 0; 1717 u64 *ptr = NULL; 1718 bool readonly = false; 1719 struct btrfs_qgroup_inherit *inherit = NULL; 1720 1721 if (!S_ISDIR(file_inode(file)->i_mode)) 1722 return -ENOTDIR; 1723 1724 vol_args = memdup_user(arg, sizeof(*vol_args)); 1725 if (IS_ERR(vol_args)) 1726 return PTR_ERR(vol_args); 1727 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1728 1729 if (vol_args->flags & 1730 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1731 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1732 ret = -EOPNOTSUPP; 1733 goto free_args; 1734 } 1735 1736 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1737 ptr = &transid; 1738 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1739 readonly = true; 1740 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1741 if (vol_args->size > PAGE_SIZE) { 1742 ret = -EINVAL; 1743 goto free_args; 1744 } 1745 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1746 if (IS_ERR(inherit)) { 1747 ret = PTR_ERR(inherit); 1748 goto free_args; 1749 } 1750 } 1751 1752 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1753 vol_args->fd, subvol, ptr, 1754 readonly, inherit); 1755 if (ret) 1756 goto free_inherit; 1757 1758 if (ptr && copy_to_user(arg + 1759 offsetof(struct btrfs_ioctl_vol_args_v2, 1760 transid), 1761 ptr, sizeof(*ptr))) 1762 ret = -EFAULT; 1763 1764 free_inherit: 1765 kfree(inherit); 1766 free_args: 1767 kfree(vol_args); 1768 return ret; 1769 } 1770 1771 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1772 void __user *arg) 1773 { 1774 struct inode *inode = file_inode(file); 1775 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1776 struct btrfs_root *root = BTRFS_I(inode)->root; 1777 int ret = 0; 1778 u64 flags = 0; 1779 1780 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1781 return -EINVAL; 1782 1783 down_read(&fs_info->subvol_sem); 1784 if (btrfs_root_readonly(root)) 1785 flags |= BTRFS_SUBVOL_RDONLY; 1786 up_read(&fs_info->subvol_sem); 1787 1788 if (copy_to_user(arg, &flags, sizeof(flags))) 1789 ret = -EFAULT; 1790 1791 return ret; 1792 } 1793 1794 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1795 void __user *arg) 1796 { 1797 struct inode *inode = file_inode(file); 1798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1799 struct btrfs_root *root = BTRFS_I(inode)->root; 1800 struct btrfs_trans_handle *trans; 1801 u64 root_flags; 1802 u64 flags; 1803 int ret = 0; 1804 1805 if (!inode_owner_or_capable(inode)) 1806 return -EPERM; 1807 1808 ret = mnt_want_write_file(file); 1809 if (ret) 1810 goto out; 1811 1812 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1813 ret = -EINVAL; 1814 goto out_drop_write; 1815 } 1816 1817 if (copy_from_user(&flags, arg, sizeof(flags))) { 1818 ret = -EFAULT; 1819 goto out_drop_write; 1820 } 1821 1822 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1823 ret = -EINVAL; 1824 goto out_drop_write; 1825 } 1826 1827 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1828 ret = -EOPNOTSUPP; 1829 goto out_drop_write; 1830 } 1831 1832 down_write(&fs_info->subvol_sem); 1833 1834 /* nothing to do */ 1835 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1836 goto out_drop_sem; 1837 1838 root_flags = btrfs_root_flags(&root->root_item); 1839 if (flags & BTRFS_SUBVOL_RDONLY) { 1840 btrfs_set_root_flags(&root->root_item, 1841 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1842 } else { 1843 /* 1844 * Block RO -> RW transition if this subvolume is involved in 1845 * send 1846 */ 1847 spin_lock(&root->root_item_lock); 1848 if (root->send_in_progress == 0) { 1849 btrfs_set_root_flags(&root->root_item, 1850 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1851 spin_unlock(&root->root_item_lock); 1852 } else { 1853 spin_unlock(&root->root_item_lock); 1854 btrfs_warn(fs_info, 1855 "Attempt to set subvolume %llu read-write during send", 1856 root->root_key.objectid); 1857 ret = -EPERM; 1858 goto out_drop_sem; 1859 } 1860 } 1861 1862 trans = btrfs_start_transaction(root, 1); 1863 if (IS_ERR(trans)) { 1864 ret = PTR_ERR(trans); 1865 goto out_reset; 1866 } 1867 1868 ret = btrfs_update_root(trans, fs_info->tree_root, 1869 &root->root_key, &root->root_item); 1870 1871 btrfs_commit_transaction(trans); 1872 out_reset: 1873 if (ret) 1874 btrfs_set_root_flags(&root->root_item, root_flags); 1875 out_drop_sem: 1876 up_write(&fs_info->subvol_sem); 1877 out_drop_write: 1878 mnt_drop_write_file(file); 1879 out: 1880 return ret; 1881 } 1882 1883 /* 1884 * helper to check if the subvolume references other subvolumes 1885 */ 1886 static noinline int may_destroy_subvol(struct btrfs_root *root) 1887 { 1888 struct btrfs_fs_info *fs_info = root->fs_info; 1889 struct btrfs_path *path; 1890 struct btrfs_dir_item *di; 1891 struct btrfs_key key; 1892 u64 dir_id; 1893 int ret; 1894 1895 path = btrfs_alloc_path(); 1896 if (!path) 1897 return -ENOMEM; 1898 1899 /* Make sure this root isn't set as the default subvol */ 1900 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1901 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 1902 dir_id, "default", 7, 0); 1903 if (di && !IS_ERR(di)) { 1904 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1905 if (key.objectid == root->root_key.objectid) { 1906 ret = -EPERM; 1907 btrfs_err(fs_info, 1908 "deleting default subvolume %llu is not allowed", 1909 key.objectid); 1910 goto out; 1911 } 1912 btrfs_release_path(path); 1913 } 1914 1915 key.objectid = root->root_key.objectid; 1916 key.type = BTRFS_ROOT_REF_KEY; 1917 key.offset = (u64)-1; 1918 1919 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1920 if (ret < 0) 1921 goto out; 1922 BUG_ON(ret == 0); 1923 1924 ret = 0; 1925 if (path->slots[0] > 0) { 1926 path->slots[0]--; 1927 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1928 if (key.objectid == root->root_key.objectid && 1929 key.type == BTRFS_ROOT_REF_KEY) 1930 ret = -ENOTEMPTY; 1931 } 1932 out: 1933 btrfs_free_path(path); 1934 return ret; 1935 } 1936 1937 static noinline int key_in_sk(struct btrfs_key *key, 1938 struct btrfs_ioctl_search_key *sk) 1939 { 1940 struct btrfs_key test; 1941 int ret; 1942 1943 test.objectid = sk->min_objectid; 1944 test.type = sk->min_type; 1945 test.offset = sk->min_offset; 1946 1947 ret = btrfs_comp_cpu_keys(key, &test); 1948 if (ret < 0) 1949 return 0; 1950 1951 test.objectid = sk->max_objectid; 1952 test.type = sk->max_type; 1953 test.offset = sk->max_offset; 1954 1955 ret = btrfs_comp_cpu_keys(key, &test); 1956 if (ret > 0) 1957 return 0; 1958 return 1; 1959 } 1960 1961 static noinline int copy_to_sk(struct btrfs_path *path, 1962 struct btrfs_key *key, 1963 struct btrfs_ioctl_search_key *sk, 1964 size_t *buf_size, 1965 char __user *ubuf, 1966 unsigned long *sk_offset, 1967 int *num_found) 1968 { 1969 u64 found_transid; 1970 struct extent_buffer *leaf; 1971 struct btrfs_ioctl_search_header sh; 1972 struct btrfs_key test; 1973 unsigned long item_off; 1974 unsigned long item_len; 1975 int nritems; 1976 int i; 1977 int slot; 1978 int ret = 0; 1979 1980 leaf = path->nodes[0]; 1981 slot = path->slots[0]; 1982 nritems = btrfs_header_nritems(leaf); 1983 1984 if (btrfs_header_generation(leaf) > sk->max_transid) { 1985 i = nritems; 1986 goto advance_key; 1987 } 1988 found_transid = btrfs_header_generation(leaf); 1989 1990 for (i = slot; i < nritems; i++) { 1991 item_off = btrfs_item_ptr_offset(leaf, i); 1992 item_len = btrfs_item_size_nr(leaf, i); 1993 1994 btrfs_item_key_to_cpu(leaf, key, i); 1995 if (!key_in_sk(key, sk)) 1996 continue; 1997 1998 if (sizeof(sh) + item_len > *buf_size) { 1999 if (*num_found) { 2000 ret = 1; 2001 goto out; 2002 } 2003 2004 /* 2005 * return one empty item back for v1, which does not 2006 * handle -EOVERFLOW 2007 */ 2008 2009 *buf_size = sizeof(sh) + item_len; 2010 item_len = 0; 2011 ret = -EOVERFLOW; 2012 } 2013 2014 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2015 ret = 1; 2016 goto out; 2017 } 2018 2019 sh.objectid = key->objectid; 2020 sh.offset = key->offset; 2021 sh.type = key->type; 2022 sh.len = item_len; 2023 sh.transid = found_transid; 2024 2025 /* copy search result header */ 2026 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2027 ret = -EFAULT; 2028 goto out; 2029 } 2030 2031 *sk_offset += sizeof(sh); 2032 2033 if (item_len) { 2034 char __user *up = ubuf + *sk_offset; 2035 /* copy the item */ 2036 if (read_extent_buffer_to_user(leaf, up, 2037 item_off, item_len)) { 2038 ret = -EFAULT; 2039 goto out; 2040 } 2041 2042 *sk_offset += item_len; 2043 } 2044 (*num_found)++; 2045 2046 if (ret) /* -EOVERFLOW from above */ 2047 goto out; 2048 2049 if (*num_found >= sk->nr_items) { 2050 ret = 1; 2051 goto out; 2052 } 2053 } 2054 advance_key: 2055 ret = 0; 2056 test.objectid = sk->max_objectid; 2057 test.type = sk->max_type; 2058 test.offset = sk->max_offset; 2059 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2060 ret = 1; 2061 else if (key->offset < (u64)-1) 2062 key->offset++; 2063 else if (key->type < (u8)-1) { 2064 key->offset = 0; 2065 key->type++; 2066 } else if (key->objectid < (u64)-1) { 2067 key->offset = 0; 2068 key->type = 0; 2069 key->objectid++; 2070 } else 2071 ret = 1; 2072 out: 2073 /* 2074 * 0: all items from this leaf copied, continue with next 2075 * 1: * more items can be copied, but unused buffer is too small 2076 * * all items were found 2077 * Either way, it will stops the loop which iterates to the next 2078 * leaf 2079 * -EOVERFLOW: item was to large for buffer 2080 * -EFAULT: could not copy extent buffer back to userspace 2081 */ 2082 return ret; 2083 } 2084 2085 static noinline int search_ioctl(struct inode *inode, 2086 struct btrfs_ioctl_search_key *sk, 2087 size_t *buf_size, 2088 char __user *ubuf) 2089 { 2090 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2091 struct btrfs_root *root; 2092 struct btrfs_key key; 2093 struct btrfs_path *path; 2094 int ret; 2095 int num_found = 0; 2096 unsigned long sk_offset = 0; 2097 2098 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2099 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2100 return -EOVERFLOW; 2101 } 2102 2103 path = btrfs_alloc_path(); 2104 if (!path) 2105 return -ENOMEM; 2106 2107 if (sk->tree_id == 0) { 2108 /* search the root of the inode that was passed */ 2109 root = BTRFS_I(inode)->root; 2110 } else { 2111 key.objectid = sk->tree_id; 2112 key.type = BTRFS_ROOT_ITEM_KEY; 2113 key.offset = (u64)-1; 2114 root = btrfs_read_fs_root_no_name(info, &key); 2115 if (IS_ERR(root)) { 2116 btrfs_free_path(path); 2117 return -ENOENT; 2118 } 2119 } 2120 2121 key.objectid = sk->min_objectid; 2122 key.type = sk->min_type; 2123 key.offset = sk->min_offset; 2124 2125 while (1) { 2126 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2127 if (ret != 0) { 2128 if (ret > 0) 2129 ret = 0; 2130 goto err; 2131 } 2132 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2133 &sk_offset, &num_found); 2134 btrfs_release_path(path); 2135 if (ret) 2136 break; 2137 2138 } 2139 if (ret > 0) 2140 ret = 0; 2141 err: 2142 sk->nr_items = num_found; 2143 btrfs_free_path(path); 2144 return ret; 2145 } 2146 2147 static noinline int btrfs_ioctl_tree_search(struct file *file, 2148 void __user *argp) 2149 { 2150 struct btrfs_ioctl_search_args __user *uargs; 2151 struct btrfs_ioctl_search_key sk; 2152 struct inode *inode; 2153 int ret; 2154 size_t buf_size; 2155 2156 if (!capable(CAP_SYS_ADMIN)) 2157 return -EPERM; 2158 2159 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2160 2161 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2162 return -EFAULT; 2163 2164 buf_size = sizeof(uargs->buf); 2165 2166 inode = file_inode(file); 2167 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2168 2169 /* 2170 * In the origin implementation an overflow is handled by returning a 2171 * search header with a len of zero, so reset ret. 2172 */ 2173 if (ret == -EOVERFLOW) 2174 ret = 0; 2175 2176 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2177 ret = -EFAULT; 2178 return ret; 2179 } 2180 2181 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2182 void __user *argp) 2183 { 2184 struct btrfs_ioctl_search_args_v2 __user *uarg; 2185 struct btrfs_ioctl_search_args_v2 args; 2186 struct inode *inode; 2187 int ret; 2188 size_t buf_size; 2189 const size_t buf_limit = SZ_16M; 2190 2191 if (!capable(CAP_SYS_ADMIN)) 2192 return -EPERM; 2193 2194 /* copy search header and buffer size */ 2195 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2196 if (copy_from_user(&args, uarg, sizeof(args))) 2197 return -EFAULT; 2198 2199 buf_size = args.buf_size; 2200 2201 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2202 return -EOVERFLOW; 2203 2204 /* limit result size to 16MB */ 2205 if (buf_size > buf_limit) 2206 buf_size = buf_limit; 2207 2208 inode = file_inode(file); 2209 ret = search_ioctl(inode, &args.key, &buf_size, 2210 (char *)(&uarg->buf[0])); 2211 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2212 ret = -EFAULT; 2213 else if (ret == -EOVERFLOW && 2214 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2215 ret = -EFAULT; 2216 2217 return ret; 2218 } 2219 2220 /* 2221 * Search INODE_REFs to identify path name of 'dirid' directory 2222 * in a 'tree_id' tree. and sets path name to 'name'. 2223 */ 2224 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2225 u64 tree_id, u64 dirid, char *name) 2226 { 2227 struct btrfs_root *root; 2228 struct btrfs_key key; 2229 char *ptr; 2230 int ret = -1; 2231 int slot; 2232 int len; 2233 int total_len = 0; 2234 struct btrfs_inode_ref *iref; 2235 struct extent_buffer *l; 2236 struct btrfs_path *path; 2237 2238 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2239 name[0]='\0'; 2240 return 0; 2241 } 2242 2243 path = btrfs_alloc_path(); 2244 if (!path) 2245 return -ENOMEM; 2246 2247 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2248 2249 key.objectid = tree_id; 2250 key.type = BTRFS_ROOT_ITEM_KEY; 2251 key.offset = (u64)-1; 2252 root = btrfs_read_fs_root_no_name(info, &key); 2253 if (IS_ERR(root)) { 2254 btrfs_err(info, "could not find root %llu", tree_id); 2255 ret = -ENOENT; 2256 goto out; 2257 } 2258 2259 key.objectid = dirid; 2260 key.type = BTRFS_INODE_REF_KEY; 2261 key.offset = (u64)-1; 2262 2263 while (1) { 2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2265 if (ret < 0) 2266 goto out; 2267 else if (ret > 0) { 2268 ret = btrfs_previous_item(root, path, dirid, 2269 BTRFS_INODE_REF_KEY); 2270 if (ret < 0) 2271 goto out; 2272 else if (ret > 0) { 2273 ret = -ENOENT; 2274 goto out; 2275 } 2276 } 2277 2278 l = path->nodes[0]; 2279 slot = path->slots[0]; 2280 btrfs_item_key_to_cpu(l, &key, slot); 2281 2282 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2283 len = btrfs_inode_ref_name_len(l, iref); 2284 ptr -= len + 1; 2285 total_len += len + 1; 2286 if (ptr < name) { 2287 ret = -ENAMETOOLONG; 2288 goto out; 2289 } 2290 2291 *(ptr + len) = '/'; 2292 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2293 2294 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2295 break; 2296 2297 btrfs_release_path(path); 2298 key.objectid = key.offset; 2299 key.offset = (u64)-1; 2300 dirid = key.objectid; 2301 } 2302 memmove(name, ptr, total_len); 2303 name[total_len] = '\0'; 2304 ret = 0; 2305 out: 2306 btrfs_free_path(path); 2307 return ret; 2308 } 2309 2310 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2311 void __user *argp) 2312 { 2313 struct btrfs_ioctl_ino_lookup_args *args; 2314 struct inode *inode; 2315 int ret = 0; 2316 2317 args = memdup_user(argp, sizeof(*args)); 2318 if (IS_ERR(args)) 2319 return PTR_ERR(args); 2320 2321 inode = file_inode(file); 2322 2323 /* 2324 * Unprivileged query to obtain the containing subvolume root id. The 2325 * path is reset so it's consistent with btrfs_search_path_in_tree. 2326 */ 2327 if (args->treeid == 0) 2328 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2329 2330 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2331 args->name[0] = 0; 2332 goto out; 2333 } 2334 2335 if (!capable(CAP_SYS_ADMIN)) { 2336 ret = -EPERM; 2337 goto out; 2338 } 2339 2340 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2341 args->treeid, args->objectid, 2342 args->name); 2343 2344 out: 2345 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2346 ret = -EFAULT; 2347 2348 kfree(args); 2349 return ret; 2350 } 2351 2352 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2353 void __user *arg) 2354 { 2355 struct dentry *parent = file->f_path.dentry; 2356 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2357 struct dentry *dentry; 2358 struct inode *dir = d_inode(parent); 2359 struct inode *inode; 2360 struct btrfs_root *root = BTRFS_I(dir)->root; 2361 struct btrfs_root *dest = NULL; 2362 struct btrfs_ioctl_vol_args *vol_args; 2363 struct btrfs_trans_handle *trans; 2364 struct btrfs_block_rsv block_rsv; 2365 u64 root_flags; 2366 u64 qgroup_reserved; 2367 int namelen; 2368 int ret; 2369 int err = 0; 2370 2371 if (!S_ISDIR(dir->i_mode)) 2372 return -ENOTDIR; 2373 2374 vol_args = memdup_user(arg, sizeof(*vol_args)); 2375 if (IS_ERR(vol_args)) 2376 return PTR_ERR(vol_args); 2377 2378 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2379 namelen = strlen(vol_args->name); 2380 if (strchr(vol_args->name, '/') || 2381 strncmp(vol_args->name, "..", namelen) == 0) { 2382 err = -EINVAL; 2383 goto out; 2384 } 2385 2386 err = mnt_want_write_file(file); 2387 if (err) 2388 goto out; 2389 2390 2391 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2392 if (err == -EINTR) 2393 goto out_drop_write; 2394 dentry = lookup_one_len(vol_args->name, parent, namelen); 2395 if (IS_ERR(dentry)) { 2396 err = PTR_ERR(dentry); 2397 goto out_unlock_dir; 2398 } 2399 2400 if (d_really_is_negative(dentry)) { 2401 err = -ENOENT; 2402 goto out_dput; 2403 } 2404 2405 inode = d_inode(dentry); 2406 dest = BTRFS_I(inode)->root; 2407 if (!capable(CAP_SYS_ADMIN)) { 2408 /* 2409 * Regular user. Only allow this with a special mount 2410 * option, when the user has write+exec access to the 2411 * subvol root, and when rmdir(2) would have been 2412 * allowed. 2413 * 2414 * Note that this is _not_ check that the subvol is 2415 * empty or doesn't contain data that we wouldn't 2416 * otherwise be able to delete. 2417 * 2418 * Users who want to delete empty subvols should try 2419 * rmdir(2). 2420 */ 2421 err = -EPERM; 2422 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2423 goto out_dput; 2424 2425 /* 2426 * Do not allow deletion if the parent dir is the same 2427 * as the dir to be deleted. That means the ioctl 2428 * must be called on the dentry referencing the root 2429 * of the subvol, not a random directory contained 2430 * within it. 2431 */ 2432 err = -EINVAL; 2433 if (root == dest) 2434 goto out_dput; 2435 2436 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2437 if (err) 2438 goto out_dput; 2439 } 2440 2441 /* check if subvolume may be deleted by a user */ 2442 err = btrfs_may_delete(dir, dentry, 1); 2443 if (err) 2444 goto out_dput; 2445 2446 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2447 err = -EINVAL; 2448 goto out_dput; 2449 } 2450 2451 inode_lock(inode); 2452 2453 /* 2454 * Don't allow to delete a subvolume with send in progress. This is 2455 * inside the i_mutex so the error handling that has to drop the bit 2456 * again is not run concurrently. 2457 */ 2458 spin_lock(&dest->root_item_lock); 2459 root_flags = btrfs_root_flags(&dest->root_item); 2460 if (dest->send_in_progress == 0) { 2461 btrfs_set_root_flags(&dest->root_item, 2462 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2463 spin_unlock(&dest->root_item_lock); 2464 } else { 2465 spin_unlock(&dest->root_item_lock); 2466 btrfs_warn(fs_info, 2467 "Attempt to delete subvolume %llu during send", 2468 dest->root_key.objectid); 2469 err = -EPERM; 2470 goto out_unlock_inode; 2471 } 2472 2473 down_write(&fs_info->subvol_sem); 2474 2475 err = may_destroy_subvol(dest); 2476 if (err) 2477 goto out_up_write; 2478 2479 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2480 /* 2481 * One for dir inode, two for dir entries, two for root 2482 * ref/backref. 2483 */ 2484 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2485 5, &qgroup_reserved, true); 2486 if (err) 2487 goto out_up_write; 2488 2489 trans = btrfs_start_transaction(root, 0); 2490 if (IS_ERR(trans)) { 2491 err = PTR_ERR(trans); 2492 goto out_release; 2493 } 2494 trans->block_rsv = &block_rsv; 2495 trans->bytes_reserved = block_rsv.size; 2496 2497 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 2498 2499 ret = btrfs_unlink_subvol(trans, root, dir, 2500 dest->root_key.objectid, 2501 dentry->d_name.name, 2502 dentry->d_name.len); 2503 if (ret) { 2504 err = ret; 2505 btrfs_abort_transaction(trans, ret); 2506 goto out_end_trans; 2507 } 2508 2509 btrfs_record_root_in_trans(trans, dest); 2510 2511 memset(&dest->root_item.drop_progress, 0, 2512 sizeof(dest->root_item.drop_progress)); 2513 dest->root_item.drop_level = 0; 2514 btrfs_set_root_refs(&dest->root_item, 0); 2515 2516 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2517 ret = btrfs_insert_orphan_item(trans, 2518 fs_info->tree_root, 2519 dest->root_key.objectid); 2520 if (ret) { 2521 btrfs_abort_transaction(trans, ret); 2522 err = ret; 2523 goto out_end_trans; 2524 } 2525 } 2526 2527 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid, 2528 BTRFS_UUID_KEY_SUBVOL, 2529 dest->root_key.objectid); 2530 if (ret && ret != -ENOENT) { 2531 btrfs_abort_transaction(trans, ret); 2532 err = ret; 2533 goto out_end_trans; 2534 } 2535 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2536 ret = btrfs_uuid_tree_rem(trans, fs_info, 2537 dest->root_item.received_uuid, 2538 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2539 dest->root_key.objectid); 2540 if (ret && ret != -ENOENT) { 2541 btrfs_abort_transaction(trans, ret); 2542 err = ret; 2543 goto out_end_trans; 2544 } 2545 } 2546 2547 out_end_trans: 2548 trans->block_rsv = NULL; 2549 trans->bytes_reserved = 0; 2550 ret = btrfs_end_transaction(trans); 2551 if (ret && !err) 2552 err = ret; 2553 inode->i_flags |= S_DEAD; 2554 out_release: 2555 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 2556 out_up_write: 2557 up_write(&fs_info->subvol_sem); 2558 if (err) { 2559 spin_lock(&dest->root_item_lock); 2560 root_flags = btrfs_root_flags(&dest->root_item); 2561 btrfs_set_root_flags(&dest->root_item, 2562 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2563 spin_unlock(&dest->root_item_lock); 2564 } 2565 out_unlock_inode: 2566 inode_unlock(inode); 2567 if (!err) { 2568 d_invalidate(dentry); 2569 btrfs_invalidate_inodes(dest); 2570 d_delete(dentry); 2571 ASSERT(dest->send_in_progress == 0); 2572 2573 /* the last ref */ 2574 if (dest->ino_cache_inode) { 2575 iput(dest->ino_cache_inode); 2576 dest->ino_cache_inode = NULL; 2577 } 2578 } 2579 out_dput: 2580 dput(dentry); 2581 out_unlock_dir: 2582 inode_unlock(dir); 2583 out_drop_write: 2584 mnt_drop_write_file(file); 2585 out: 2586 kfree(vol_args); 2587 return err; 2588 } 2589 2590 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2591 { 2592 struct inode *inode = file_inode(file); 2593 struct btrfs_root *root = BTRFS_I(inode)->root; 2594 struct btrfs_ioctl_defrag_range_args *range; 2595 int ret; 2596 2597 ret = mnt_want_write_file(file); 2598 if (ret) 2599 return ret; 2600 2601 if (btrfs_root_readonly(root)) { 2602 ret = -EROFS; 2603 goto out; 2604 } 2605 2606 switch (inode->i_mode & S_IFMT) { 2607 case S_IFDIR: 2608 if (!capable(CAP_SYS_ADMIN)) { 2609 ret = -EPERM; 2610 goto out; 2611 } 2612 ret = btrfs_defrag_root(root); 2613 break; 2614 case S_IFREG: 2615 if (!(file->f_mode & FMODE_WRITE)) { 2616 ret = -EINVAL; 2617 goto out; 2618 } 2619 2620 range = kzalloc(sizeof(*range), GFP_KERNEL); 2621 if (!range) { 2622 ret = -ENOMEM; 2623 goto out; 2624 } 2625 2626 if (argp) { 2627 if (copy_from_user(range, argp, 2628 sizeof(*range))) { 2629 ret = -EFAULT; 2630 kfree(range); 2631 goto out; 2632 } 2633 /* compression requires us to start the IO */ 2634 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2635 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2636 range->extent_thresh = (u32)-1; 2637 } 2638 } else { 2639 /* the rest are all set to zero by kzalloc */ 2640 range->len = (u64)-1; 2641 } 2642 ret = btrfs_defrag_file(file_inode(file), file, 2643 range, 0, 0); 2644 if (ret > 0) 2645 ret = 0; 2646 kfree(range); 2647 break; 2648 default: 2649 ret = -EINVAL; 2650 } 2651 out: 2652 mnt_drop_write_file(file); 2653 return ret; 2654 } 2655 2656 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2657 { 2658 struct btrfs_ioctl_vol_args *vol_args; 2659 int ret; 2660 2661 if (!capable(CAP_SYS_ADMIN)) 2662 return -EPERM; 2663 2664 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) 2665 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2666 2667 mutex_lock(&fs_info->volume_mutex); 2668 vol_args = memdup_user(arg, sizeof(*vol_args)); 2669 if (IS_ERR(vol_args)) { 2670 ret = PTR_ERR(vol_args); 2671 goto out; 2672 } 2673 2674 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2675 ret = btrfs_init_new_device(fs_info, vol_args->name); 2676 2677 if (!ret) 2678 btrfs_info(fs_info, "disk added %s", vol_args->name); 2679 2680 kfree(vol_args); 2681 out: 2682 mutex_unlock(&fs_info->volume_mutex); 2683 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 2684 return ret; 2685 } 2686 2687 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2688 { 2689 struct inode *inode = file_inode(file); 2690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2691 struct btrfs_ioctl_vol_args_v2 *vol_args; 2692 int ret; 2693 2694 if (!capable(CAP_SYS_ADMIN)) 2695 return -EPERM; 2696 2697 ret = mnt_want_write_file(file); 2698 if (ret) 2699 return ret; 2700 2701 vol_args = memdup_user(arg, sizeof(*vol_args)); 2702 if (IS_ERR(vol_args)) { 2703 ret = PTR_ERR(vol_args); 2704 goto err_drop; 2705 } 2706 2707 /* Check for compatibility reject unknown flags */ 2708 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2709 return -EOPNOTSUPP; 2710 2711 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 2712 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2713 goto out; 2714 } 2715 2716 mutex_lock(&fs_info->volume_mutex); 2717 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2718 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 2719 } else { 2720 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2721 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2722 } 2723 mutex_unlock(&fs_info->volume_mutex); 2724 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 2725 2726 if (!ret) { 2727 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2728 btrfs_info(fs_info, "device deleted: id %llu", 2729 vol_args->devid); 2730 else 2731 btrfs_info(fs_info, "device deleted: %s", 2732 vol_args->name); 2733 } 2734 out: 2735 kfree(vol_args); 2736 err_drop: 2737 mnt_drop_write_file(file); 2738 return ret; 2739 } 2740 2741 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2742 { 2743 struct inode *inode = file_inode(file); 2744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2745 struct btrfs_ioctl_vol_args *vol_args; 2746 int ret; 2747 2748 if (!capable(CAP_SYS_ADMIN)) 2749 return -EPERM; 2750 2751 ret = mnt_want_write_file(file); 2752 if (ret) 2753 return ret; 2754 2755 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 2756 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2757 goto out_drop_write; 2758 } 2759 2760 vol_args = memdup_user(arg, sizeof(*vol_args)); 2761 if (IS_ERR(vol_args)) { 2762 ret = PTR_ERR(vol_args); 2763 goto out; 2764 } 2765 2766 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2767 mutex_lock(&fs_info->volume_mutex); 2768 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2769 mutex_unlock(&fs_info->volume_mutex); 2770 2771 if (!ret) 2772 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2773 kfree(vol_args); 2774 out: 2775 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 2776 out_drop_write: 2777 mnt_drop_write_file(file); 2778 2779 return ret; 2780 } 2781 2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2783 void __user *arg) 2784 { 2785 struct btrfs_ioctl_fs_info_args *fi_args; 2786 struct btrfs_device *device; 2787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2788 int ret = 0; 2789 2790 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2791 if (!fi_args) 2792 return -ENOMEM; 2793 2794 mutex_lock(&fs_devices->device_list_mutex); 2795 fi_args->num_devices = fs_devices->num_devices; 2796 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 2797 2798 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2799 if (device->devid > fi_args->max_id) 2800 fi_args->max_id = device->devid; 2801 } 2802 mutex_unlock(&fs_devices->device_list_mutex); 2803 2804 fi_args->nodesize = fs_info->super_copy->nodesize; 2805 fi_args->sectorsize = fs_info->super_copy->sectorsize; 2806 fi_args->clone_alignment = fs_info->super_copy->sectorsize; 2807 2808 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2809 ret = -EFAULT; 2810 2811 kfree(fi_args); 2812 return ret; 2813 } 2814 2815 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2816 void __user *arg) 2817 { 2818 struct btrfs_ioctl_dev_info_args *di_args; 2819 struct btrfs_device *dev; 2820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2821 int ret = 0; 2822 char *s_uuid = NULL; 2823 2824 di_args = memdup_user(arg, sizeof(*di_args)); 2825 if (IS_ERR(di_args)) 2826 return PTR_ERR(di_args); 2827 2828 if (!btrfs_is_empty_uuid(di_args->uuid)) 2829 s_uuid = di_args->uuid; 2830 2831 mutex_lock(&fs_devices->device_list_mutex); 2832 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 2833 2834 if (!dev) { 2835 ret = -ENODEV; 2836 goto out; 2837 } 2838 2839 di_args->devid = dev->devid; 2840 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2841 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2842 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2843 if (dev->name) { 2844 struct rcu_string *name; 2845 2846 rcu_read_lock(); 2847 name = rcu_dereference(dev->name); 2848 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2849 rcu_read_unlock(); 2850 di_args->path[sizeof(di_args->path) - 1] = 0; 2851 } else { 2852 di_args->path[0] = '\0'; 2853 } 2854 2855 out: 2856 mutex_unlock(&fs_devices->device_list_mutex); 2857 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2858 ret = -EFAULT; 2859 2860 kfree(di_args); 2861 return ret; 2862 } 2863 2864 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2865 { 2866 struct page *page; 2867 2868 page = grab_cache_page(inode->i_mapping, index); 2869 if (!page) 2870 return ERR_PTR(-ENOMEM); 2871 2872 if (!PageUptodate(page)) { 2873 int ret; 2874 2875 ret = btrfs_readpage(NULL, page); 2876 if (ret) 2877 return ERR_PTR(ret); 2878 lock_page(page); 2879 if (!PageUptodate(page)) { 2880 unlock_page(page); 2881 put_page(page); 2882 return ERR_PTR(-EIO); 2883 } 2884 if (page->mapping != inode->i_mapping) { 2885 unlock_page(page); 2886 put_page(page); 2887 return ERR_PTR(-EAGAIN); 2888 } 2889 } 2890 2891 return page; 2892 } 2893 2894 static int gather_extent_pages(struct inode *inode, struct page **pages, 2895 int num_pages, u64 off) 2896 { 2897 int i; 2898 pgoff_t index = off >> PAGE_SHIFT; 2899 2900 for (i = 0; i < num_pages; i++) { 2901 again: 2902 pages[i] = extent_same_get_page(inode, index + i); 2903 if (IS_ERR(pages[i])) { 2904 int err = PTR_ERR(pages[i]); 2905 2906 if (err == -EAGAIN) 2907 goto again; 2908 pages[i] = NULL; 2909 return err; 2910 } 2911 } 2912 return 0; 2913 } 2914 2915 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2916 bool retry_range_locking) 2917 { 2918 /* 2919 * Do any pending delalloc/csum calculations on inode, one way or 2920 * another, and lock file content. 2921 * The locking order is: 2922 * 2923 * 1) pages 2924 * 2) range in the inode's io tree 2925 */ 2926 while (1) { 2927 struct btrfs_ordered_extent *ordered; 2928 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2929 ordered = btrfs_lookup_first_ordered_extent(inode, 2930 off + len - 1); 2931 if ((!ordered || 2932 ordered->file_offset + ordered->len <= off || 2933 ordered->file_offset >= off + len) && 2934 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2935 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2936 if (ordered) 2937 btrfs_put_ordered_extent(ordered); 2938 break; 2939 } 2940 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2941 if (ordered) 2942 btrfs_put_ordered_extent(ordered); 2943 if (!retry_range_locking) 2944 return -EAGAIN; 2945 btrfs_wait_ordered_range(inode, off, len); 2946 } 2947 return 0; 2948 } 2949 2950 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2951 { 2952 inode_unlock(inode1); 2953 inode_unlock(inode2); 2954 } 2955 2956 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2957 { 2958 if (inode1 < inode2) 2959 swap(inode1, inode2); 2960 2961 inode_lock_nested(inode1, I_MUTEX_PARENT); 2962 inode_lock_nested(inode2, I_MUTEX_CHILD); 2963 } 2964 2965 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2966 struct inode *inode2, u64 loff2, u64 len) 2967 { 2968 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2969 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2970 } 2971 2972 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2973 struct inode *inode2, u64 loff2, u64 len, 2974 bool retry_range_locking) 2975 { 2976 int ret; 2977 2978 if (inode1 < inode2) { 2979 swap(inode1, inode2); 2980 swap(loff1, loff2); 2981 } 2982 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2983 if (ret) 2984 return ret; 2985 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2986 if (ret) 2987 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2988 loff1 + len - 1); 2989 return ret; 2990 } 2991 2992 struct cmp_pages { 2993 int num_pages; 2994 struct page **src_pages; 2995 struct page **dst_pages; 2996 }; 2997 2998 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2999 { 3000 int i; 3001 struct page *pg; 3002 3003 for (i = 0; i < cmp->num_pages; i++) { 3004 pg = cmp->src_pages[i]; 3005 if (pg) { 3006 unlock_page(pg); 3007 put_page(pg); 3008 } 3009 pg = cmp->dst_pages[i]; 3010 if (pg) { 3011 unlock_page(pg); 3012 put_page(pg); 3013 } 3014 } 3015 kfree(cmp->src_pages); 3016 kfree(cmp->dst_pages); 3017 } 3018 3019 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3020 struct inode *dst, u64 dst_loff, 3021 u64 len, struct cmp_pages *cmp) 3022 { 3023 int ret; 3024 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3025 struct page **src_pgarr, **dst_pgarr; 3026 3027 /* 3028 * We must gather up all the pages before we initiate our 3029 * extent locking. We use an array for the page pointers. Size 3030 * of the array is bounded by len, which is in turn bounded by 3031 * BTRFS_MAX_DEDUPE_LEN. 3032 */ 3033 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3034 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3035 if (!src_pgarr || !dst_pgarr) { 3036 kfree(src_pgarr); 3037 kfree(dst_pgarr); 3038 return -ENOMEM; 3039 } 3040 cmp->num_pages = num_pages; 3041 cmp->src_pages = src_pgarr; 3042 cmp->dst_pages = dst_pgarr; 3043 3044 /* 3045 * If deduping ranges in the same inode, locking rules make it mandatory 3046 * to always lock pages in ascending order to avoid deadlocks with 3047 * concurrent tasks (such as starting writeback/delalloc). 3048 */ 3049 if (src == dst && dst_loff < loff) { 3050 swap(src_pgarr, dst_pgarr); 3051 swap(loff, dst_loff); 3052 } 3053 3054 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff); 3055 if (ret) 3056 goto out; 3057 3058 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff); 3059 3060 out: 3061 if (ret) 3062 btrfs_cmp_data_free(cmp); 3063 return 0; 3064 } 3065 3066 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3067 { 3068 int ret = 0; 3069 int i; 3070 struct page *src_page, *dst_page; 3071 unsigned int cmp_len = PAGE_SIZE; 3072 void *addr, *dst_addr; 3073 3074 i = 0; 3075 while (len) { 3076 if (len < PAGE_SIZE) 3077 cmp_len = len; 3078 3079 BUG_ON(i >= cmp->num_pages); 3080 3081 src_page = cmp->src_pages[i]; 3082 dst_page = cmp->dst_pages[i]; 3083 ASSERT(PageLocked(src_page)); 3084 ASSERT(PageLocked(dst_page)); 3085 3086 addr = kmap_atomic(src_page); 3087 dst_addr = kmap_atomic(dst_page); 3088 3089 flush_dcache_page(src_page); 3090 flush_dcache_page(dst_page); 3091 3092 if (memcmp(addr, dst_addr, cmp_len)) 3093 ret = -EBADE; 3094 3095 kunmap_atomic(addr); 3096 kunmap_atomic(dst_addr); 3097 3098 if (ret) 3099 break; 3100 3101 len -= cmp_len; 3102 i++; 3103 } 3104 3105 return ret; 3106 } 3107 3108 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3109 u64 olen) 3110 { 3111 u64 len = *plen; 3112 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3113 3114 if (off + olen > inode->i_size || off + olen < off) 3115 return -EINVAL; 3116 3117 /* if we extend to eof, continue to block boundary */ 3118 if (off + len == inode->i_size) 3119 *plen = len = ALIGN(inode->i_size, bs) - off; 3120 3121 /* Check that we are block aligned - btrfs_clone() requires this */ 3122 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3123 return -EINVAL; 3124 3125 return 0; 3126 } 3127 3128 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3129 struct inode *dst, u64 dst_loff) 3130 { 3131 int ret; 3132 u64 len = olen; 3133 struct cmp_pages cmp; 3134 bool same_inode = (src == dst); 3135 u64 same_lock_start = 0; 3136 u64 same_lock_len = 0; 3137 3138 if (len == 0) 3139 return 0; 3140 3141 if (same_inode) 3142 inode_lock(src); 3143 else 3144 btrfs_double_inode_lock(src, dst); 3145 3146 ret = extent_same_check_offsets(src, loff, &len, olen); 3147 if (ret) 3148 goto out_unlock; 3149 3150 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3151 if (ret) 3152 goto out_unlock; 3153 3154 if (same_inode) { 3155 /* 3156 * Single inode case wants the same checks, except we 3157 * don't want our length pushed out past i_size as 3158 * comparing that data range makes no sense. 3159 * 3160 * extent_same_check_offsets() will do this for an 3161 * unaligned length at i_size, so catch it here and 3162 * reject the request. 3163 * 3164 * This effectively means we require aligned extents 3165 * for the single-inode case, whereas the other cases 3166 * allow an unaligned length so long as it ends at 3167 * i_size. 3168 */ 3169 if (len != olen) { 3170 ret = -EINVAL; 3171 goto out_unlock; 3172 } 3173 3174 /* Check for overlapping ranges */ 3175 if (dst_loff + len > loff && dst_loff < loff + len) { 3176 ret = -EINVAL; 3177 goto out_unlock; 3178 } 3179 3180 same_lock_start = min_t(u64, loff, dst_loff); 3181 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3182 } 3183 3184 /* don't make the dst file partly checksummed */ 3185 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3186 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3187 ret = -EINVAL; 3188 goto out_unlock; 3189 } 3190 3191 again: 3192 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3193 if (ret) 3194 goto out_unlock; 3195 3196 if (same_inode) 3197 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3198 false); 3199 else 3200 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3201 false); 3202 /* 3203 * If one of the inodes has dirty pages in the respective range or 3204 * ordered extents, we need to flush dellaloc and wait for all ordered 3205 * extents in the range. We must unlock the pages and the ranges in the 3206 * io trees to avoid deadlocks when flushing delalloc (requires locking 3207 * pages) and when waiting for ordered extents to complete (they require 3208 * range locking). 3209 */ 3210 if (ret == -EAGAIN) { 3211 /* 3212 * Ranges in the io trees already unlocked. Now unlock all 3213 * pages before waiting for all IO to complete. 3214 */ 3215 btrfs_cmp_data_free(&cmp); 3216 if (same_inode) { 3217 btrfs_wait_ordered_range(src, same_lock_start, 3218 same_lock_len); 3219 } else { 3220 btrfs_wait_ordered_range(src, loff, len); 3221 btrfs_wait_ordered_range(dst, dst_loff, len); 3222 } 3223 goto again; 3224 } 3225 ASSERT(ret == 0); 3226 if (WARN_ON(ret)) { 3227 /* ranges in the io trees already unlocked */ 3228 btrfs_cmp_data_free(&cmp); 3229 return ret; 3230 } 3231 3232 /* pass original length for comparison so we stay within i_size */ 3233 ret = btrfs_cmp_data(olen, &cmp); 3234 if (ret == 0) 3235 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3236 3237 if (same_inode) 3238 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3239 same_lock_start + same_lock_len - 1); 3240 else 3241 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3242 3243 btrfs_cmp_data_free(&cmp); 3244 out_unlock: 3245 if (same_inode) 3246 inode_unlock(src); 3247 else 3248 btrfs_double_inode_unlock(src, dst); 3249 3250 return ret; 3251 } 3252 3253 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3254 3255 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3256 struct file *dst_file, u64 dst_loff) 3257 { 3258 struct inode *src = file_inode(src_file); 3259 struct inode *dst = file_inode(dst_file); 3260 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3261 ssize_t res; 3262 3263 if (olen > BTRFS_MAX_DEDUPE_LEN) 3264 olen = BTRFS_MAX_DEDUPE_LEN; 3265 3266 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3267 /* 3268 * Btrfs does not support blocksize < page_size. As a 3269 * result, btrfs_cmp_data() won't correctly handle 3270 * this situation without an update. 3271 */ 3272 return -EINVAL; 3273 } 3274 3275 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3276 if (res) 3277 return res; 3278 return olen; 3279 } 3280 3281 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3282 struct inode *inode, 3283 u64 endoff, 3284 const u64 destoff, 3285 const u64 olen, 3286 int no_time_update) 3287 { 3288 struct btrfs_root *root = BTRFS_I(inode)->root; 3289 int ret; 3290 3291 inode_inc_iversion(inode); 3292 if (!no_time_update) 3293 inode->i_mtime = inode->i_ctime = current_time(inode); 3294 /* 3295 * We round up to the block size at eof when determining which 3296 * extents to clone above, but shouldn't round up the file size. 3297 */ 3298 if (endoff > destoff + olen) 3299 endoff = destoff + olen; 3300 if (endoff > inode->i_size) 3301 btrfs_i_size_write(BTRFS_I(inode), endoff); 3302 3303 ret = btrfs_update_inode(trans, root, inode); 3304 if (ret) { 3305 btrfs_abort_transaction(trans, ret); 3306 btrfs_end_transaction(trans); 3307 goto out; 3308 } 3309 ret = btrfs_end_transaction(trans); 3310 out: 3311 return ret; 3312 } 3313 3314 static void clone_update_extent_map(struct btrfs_inode *inode, 3315 const struct btrfs_trans_handle *trans, 3316 const struct btrfs_path *path, 3317 const u64 hole_offset, 3318 const u64 hole_len) 3319 { 3320 struct extent_map_tree *em_tree = &inode->extent_tree; 3321 struct extent_map *em; 3322 int ret; 3323 3324 em = alloc_extent_map(); 3325 if (!em) { 3326 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3327 return; 3328 } 3329 3330 if (path) { 3331 struct btrfs_file_extent_item *fi; 3332 3333 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3334 struct btrfs_file_extent_item); 3335 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3336 em->generation = -1; 3337 if (btrfs_file_extent_type(path->nodes[0], fi) == 3338 BTRFS_FILE_EXTENT_INLINE) 3339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3340 &inode->runtime_flags); 3341 } else { 3342 em->start = hole_offset; 3343 em->len = hole_len; 3344 em->ram_bytes = em->len; 3345 em->orig_start = hole_offset; 3346 em->block_start = EXTENT_MAP_HOLE; 3347 em->block_len = 0; 3348 em->orig_block_len = 0; 3349 em->compress_type = BTRFS_COMPRESS_NONE; 3350 em->generation = trans->transid; 3351 } 3352 3353 while (1) { 3354 write_lock(&em_tree->lock); 3355 ret = add_extent_mapping(em_tree, em, 1); 3356 write_unlock(&em_tree->lock); 3357 if (ret != -EEXIST) { 3358 free_extent_map(em); 3359 break; 3360 } 3361 btrfs_drop_extent_cache(inode, em->start, 3362 em->start + em->len - 1, 0); 3363 } 3364 3365 if (ret) 3366 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3367 } 3368 3369 /* 3370 * Make sure we do not end up inserting an inline extent into a file that has 3371 * already other (non-inline) extents. If a file has an inline extent it can 3372 * not have any other extents and the (single) inline extent must start at the 3373 * file offset 0. Failing to respect these rules will lead to file corruption, 3374 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3375 * 3376 * We can have extents that have been already written to disk or we can have 3377 * dirty ranges still in delalloc, in which case the extent maps and items are 3378 * created only when we run delalloc, and the delalloc ranges might fall outside 3379 * the range we are currently locking in the inode's io tree. So we check the 3380 * inode's i_size because of that (i_size updates are done while holding the 3381 * i_mutex, which we are holding here). 3382 * We also check to see if the inode has a size not greater than "datal" but has 3383 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3384 * protected against such concurrent fallocate calls by the i_mutex). 3385 * 3386 * If the file has no extents but a size greater than datal, do not allow the 3387 * copy because we would need turn the inline extent into a non-inline one (even 3388 * with NO_HOLES enabled). If we find our destination inode only has one inline 3389 * extent, just overwrite it with the source inline extent if its size is less 3390 * than the source extent's size, or we could copy the source inline extent's 3391 * data into the destination inode's inline extent if the later is greater then 3392 * the former. 3393 */ 3394 static int clone_copy_inline_extent(struct inode *dst, 3395 struct btrfs_trans_handle *trans, 3396 struct btrfs_path *path, 3397 struct btrfs_key *new_key, 3398 const u64 drop_start, 3399 const u64 datal, 3400 const u64 skip, 3401 const u64 size, 3402 char *inline_data) 3403 { 3404 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3405 struct btrfs_root *root = BTRFS_I(dst)->root; 3406 const u64 aligned_end = ALIGN(new_key->offset + datal, 3407 fs_info->sectorsize); 3408 int ret; 3409 struct btrfs_key key; 3410 3411 if (new_key->offset > 0) 3412 return -EOPNOTSUPP; 3413 3414 key.objectid = btrfs_ino(BTRFS_I(dst)); 3415 key.type = BTRFS_EXTENT_DATA_KEY; 3416 key.offset = 0; 3417 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3418 if (ret < 0) { 3419 return ret; 3420 } else if (ret > 0) { 3421 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3422 ret = btrfs_next_leaf(root, path); 3423 if (ret < 0) 3424 return ret; 3425 else if (ret > 0) 3426 goto copy_inline_extent; 3427 } 3428 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3429 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3430 key.type == BTRFS_EXTENT_DATA_KEY) { 3431 ASSERT(key.offset > 0); 3432 return -EOPNOTSUPP; 3433 } 3434 } else if (i_size_read(dst) <= datal) { 3435 struct btrfs_file_extent_item *ei; 3436 u64 ext_len; 3437 3438 /* 3439 * If the file size is <= datal, make sure there are no other 3440 * extents following (can happen do to an fallocate call with 3441 * the flag FALLOC_FL_KEEP_SIZE). 3442 */ 3443 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3444 struct btrfs_file_extent_item); 3445 /* 3446 * If it's an inline extent, it can not have other extents 3447 * following it. 3448 */ 3449 if (btrfs_file_extent_type(path->nodes[0], ei) == 3450 BTRFS_FILE_EXTENT_INLINE) 3451 goto copy_inline_extent; 3452 3453 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3454 if (ext_len > aligned_end) 3455 return -EOPNOTSUPP; 3456 3457 ret = btrfs_next_item(root, path); 3458 if (ret < 0) { 3459 return ret; 3460 } else if (ret == 0) { 3461 btrfs_item_key_to_cpu(path->nodes[0], &key, 3462 path->slots[0]); 3463 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3464 key.type == BTRFS_EXTENT_DATA_KEY) 3465 return -EOPNOTSUPP; 3466 } 3467 } 3468 3469 copy_inline_extent: 3470 /* 3471 * We have no extent items, or we have an extent at offset 0 which may 3472 * or may not be inlined. All these cases are dealt the same way. 3473 */ 3474 if (i_size_read(dst) > datal) { 3475 /* 3476 * If the destination inode has an inline extent... 3477 * This would require copying the data from the source inline 3478 * extent into the beginning of the destination's inline extent. 3479 * But this is really complex, both extents can be compressed 3480 * or just one of them, which would require decompressing and 3481 * re-compressing data (which could increase the new compressed 3482 * size, not allowing the compressed data to fit anymore in an 3483 * inline extent). 3484 * So just don't support this case for now (it should be rare, 3485 * we are not really saving space when cloning inline extents). 3486 */ 3487 return -EOPNOTSUPP; 3488 } 3489 3490 btrfs_release_path(path); 3491 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3492 if (ret) 3493 return ret; 3494 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3495 if (ret) 3496 return ret; 3497 3498 if (skip) { 3499 const u32 start = btrfs_file_extent_calc_inline_size(0); 3500 3501 memmove(inline_data + start, inline_data + start + skip, datal); 3502 } 3503 3504 write_extent_buffer(path->nodes[0], inline_data, 3505 btrfs_item_ptr_offset(path->nodes[0], 3506 path->slots[0]), 3507 size); 3508 inode_add_bytes(dst, datal); 3509 3510 return 0; 3511 } 3512 3513 /** 3514 * btrfs_clone() - clone a range from inode file to another 3515 * 3516 * @src: Inode to clone from 3517 * @inode: Inode to clone to 3518 * @off: Offset within source to start clone from 3519 * @olen: Original length, passed by user, of range to clone 3520 * @olen_aligned: Block-aligned value of olen 3521 * @destoff: Offset within @inode to start clone 3522 * @no_time_update: Whether to update mtime/ctime on the target inode 3523 */ 3524 static int btrfs_clone(struct inode *src, struct inode *inode, 3525 const u64 off, const u64 olen, const u64 olen_aligned, 3526 const u64 destoff, int no_time_update) 3527 { 3528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3529 struct btrfs_root *root = BTRFS_I(inode)->root; 3530 struct btrfs_path *path = NULL; 3531 struct extent_buffer *leaf; 3532 struct btrfs_trans_handle *trans; 3533 char *buf = NULL; 3534 struct btrfs_key key; 3535 u32 nritems; 3536 int slot; 3537 int ret; 3538 const u64 len = olen_aligned; 3539 u64 last_dest_end = destoff; 3540 3541 ret = -ENOMEM; 3542 buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN); 3543 if (!buf) { 3544 buf = vmalloc(fs_info->nodesize); 3545 if (!buf) 3546 return ret; 3547 } 3548 3549 path = btrfs_alloc_path(); 3550 if (!path) { 3551 kvfree(buf); 3552 return ret; 3553 } 3554 3555 path->reada = READA_FORWARD; 3556 /* clone data */ 3557 key.objectid = btrfs_ino(BTRFS_I(src)); 3558 key.type = BTRFS_EXTENT_DATA_KEY; 3559 key.offset = off; 3560 3561 while (1) { 3562 u64 next_key_min_offset = key.offset + 1; 3563 3564 /* 3565 * note the key will change type as we walk through the 3566 * tree. 3567 */ 3568 path->leave_spinning = 1; 3569 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3570 0, 0); 3571 if (ret < 0) 3572 goto out; 3573 /* 3574 * First search, if no extent item that starts at offset off was 3575 * found but the previous item is an extent item, it's possible 3576 * it might overlap our target range, therefore process it. 3577 */ 3578 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3579 btrfs_item_key_to_cpu(path->nodes[0], &key, 3580 path->slots[0] - 1); 3581 if (key.type == BTRFS_EXTENT_DATA_KEY) 3582 path->slots[0]--; 3583 } 3584 3585 nritems = btrfs_header_nritems(path->nodes[0]); 3586 process_slot: 3587 if (path->slots[0] >= nritems) { 3588 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3589 if (ret < 0) 3590 goto out; 3591 if (ret > 0) 3592 break; 3593 nritems = btrfs_header_nritems(path->nodes[0]); 3594 } 3595 leaf = path->nodes[0]; 3596 slot = path->slots[0]; 3597 3598 btrfs_item_key_to_cpu(leaf, &key, slot); 3599 if (key.type > BTRFS_EXTENT_DATA_KEY || 3600 key.objectid != btrfs_ino(BTRFS_I(src))) 3601 break; 3602 3603 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3604 struct btrfs_file_extent_item *extent; 3605 int type; 3606 u32 size; 3607 struct btrfs_key new_key; 3608 u64 disko = 0, diskl = 0; 3609 u64 datao = 0, datal = 0; 3610 u8 comp; 3611 u64 drop_start; 3612 3613 extent = btrfs_item_ptr(leaf, slot, 3614 struct btrfs_file_extent_item); 3615 comp = btrfs_file_extent_compression(leaf, extent); 3616 type = btrfs_file_extent_type(leaf, extent); 3617 if (type == BTRFS_FILE_EXTENT_REG || 3618 type == BTRFS_FILE_EXTENT_PREALLOC) { 3619 disko = btrfs_file_extent_disk_bytenr(leaf, 3620 extent); 3621 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3622 extent); 3623 datao = btrfs_file_extent_offset(leaf, extent); 3624 datal = btrfs_file_extent_num_bytes(leaf, 3625 extent); 3626 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3627 /* take upper bound, may be compressed */ 3628 datal = btrfs_file_extent_ram_bytes(leaf, 3629 extent); 3630 } 3631 3632 /* 3633 * The first search might have left us at an extent 3634 * item that ends before our target range's start, can 3635 * happen if we have holes and NO_HOLES feature enabled. 3636 */ 3637 if (key.offset + datal <= off) { 3638 path->slots[0]++; 3639 goto process_slot; 3640 } else if (key.offset >= off + len) { 3641 break; 3642 } 3643 next_key_min_offset = key.offset + datal; 3644 size = btrfs_item_size_nr(leaf, slot); 3645 read_extent_buffer(leaf, buf, 3646 btrfs_item_ptr_offset(leaf, slot), 3647 size); 3648 3649 btrfs_release_path(path); 3650 path->leave_spinning = 0; 3651 3652 memcpy(&new_key, &key, sizeof(new_key)); 3653 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3654 if (off <= key.offset) 3655 new_key.offset = key.offset + destoff - off; 3656 else 3657 new_key.offset = destoff; 3658 3659 /* 3660 * Deal with a hole that doesn't have an extent item 3661 * that represents it (NO_HOLES feature enabled). 3662 * This hole is either in the middle of the cloning 3663 * range or at the beginning (fully overlaps it or 3664 * partially overlaps it). 3665 */ 3666 if (new_key.offset != last_dest_end) 3667 drop_start = last_dest_end; 3668 else 3669 drop_start = new_key.offset; 3670 3671 /* 3672 * 1 - adjusting old extent (we may have to split it) 3673 * 1 - add new extent 3674 * 1 - inode update 3675 */ 3676 trans = btrfs_start_transaction(root, 3); 3677 if (IS_ERR(trans)) { 3678 ret = PTR_ERR(trans); 3679 goto out; 3680 } 3681 3682 if (type == BTRFS_FILE_EXTENT_REG || 3683 type == BTRFS_FILE_EXTENT_PREALLOC) { 3684 /* 3685 * a | --- range to clone ---| b 3686 * | ------------- extent ------------- | 3687 */ 3688 3689 /* subtract range b */ 3690 if (key.offset + datal > off + len) 3691 datal = off + len - key.offset; 3692 3693 /* subtract range a */ 3694 if (off > key.offset) { 3695 datao += off - key.offset; 3696 datal -= off - key.offset; 3697 } 3698 3699 ret = btrfs_drop_extents(trans, root, inode, 3700 drop_start, 3701 new_key.offset + datal, 3702 1); 3703 if (ret) { 3704 if (ret != -EOPNOTSUPP) 3705 btrfs_abort_transaction(trans, 3706 ret); 3707 btrfs_end_transaction(trans); 3708 goto out; 3709 } 3710 3711 ret = btrfs_insert_empty_item(trans, root, path, 3712 &new_key, size); 3713 if (ret) { 3714 btrfs_abort_transaction(trans, ret); 3715 btrfs_end_transaction(trans); 3716 goto out; 3717 } 3718 3719 leaf = path->nodes[0]; 3720 slot = path->slots[0]; 3721 write_extent_buffer(leaf, buf, 3722 btrfs_item_ptr_offset(leaf, slot), 3723 size); 3724 3725 extent = btrfs_item_ptr(leaf, slot, 3726 struct btrfs_file_extent_item); 3727 3728 /* disko == 0 means it's a hole */ 3729 if (!disko) 3730 datao = 0; 3731 3732 btrfs_set_file_extent_offset(leaf, extent, 3733 datao); 3734 btrfs_set_file_extent_num_bytes(leaf, extent, 3735 datal); 3736 3737 if (disko) { 3738 inode_add_bytes(inode, datal); 3739 ret = btrfs_inc_extent_ref(trans, 3740 fs_info, 3741 disko, diskl, 0, 3742 root->root_key.objectid, 3743 btrfs_ino(BTRFS_I(inode)), 3744 new_key.offset - datao); 3745 if (ret) { 3746 btrfs_abort_transaction(trans, 3747 ret); 3748 btrfs_end_transaction(trans); 3749 goto out; 3750 3751 } 3752 } 3753 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3754 u64 skip = 0; 3755 u64 trim = 0; 3756 3757 if (off > key.offset) { 3758 skip = off - key.offset; 3759 new_key.offset += skip; 3760 } 3761 3762 if (key.offset + datal > off + len) 3763 trim = key.offset + datal - (off + len); 3764 3765 if (comp && (skip || trim)) { 3766 ret = -EINVAL; 3767 btrfs_end_transaction(trans); 3768 goto out; 3769 } 3770 size -= skip + trim; 3771 datal -= skip + trim; 3772 3773 ret = clone_copy_inline_extent(inode, 3774 trans, path, 3775 &new_key, 3776 drop_start, 3777 datal, 3778 skip, size, buf); 3779 if (ret) { 3780 if (ret != -EOPNOTSUPP) 3781 btrfs_abort_transaction(trans, 3782 ret); 3783 btrfs_end_transaction(trans); 3784 goto out; 3785 } 3786 leaf = path->nodes[0]; 3787 slot = path->slots[0]; 3788 } 3789 3790 /* If we have an implicit hole (NO_HOLES feature). */ 3791 if (drop_start < new_key.offset) 3792 clone_update_extent_map(BTRFS_I(inode), trans, 3793 NULL, drop_start, 3794 new_key.offset - drop_start); 3795 3796 clone_update_extent_map(BTRFS_I(inode), trans, 3797 path, 0, 0); 3798 3799 btrfs_mark_buffer_dirty(leaf); 3800 btrfs_release_path(path); 3801 3802 last_dest_end = ALIGN(new_key.offset + datal, 3803 fs_info->sectorsize); 3804 ret = clone_finish_inode_update(trans, inode, 3805 last_dest_end, 3806 destoff, olen, 3807 no_time_update); 3808 if (ret) 3809 goto out; 3810 if (new_key.offset + datal >= destoff + len) 3811 break; 3812 } 3813 btrfs_release_path(path); 3814 key.offset = next_key_min_offset; 3815 3816 if (fatal_signal_pending(current)) { 3817 ret = -EINTR; 3818 goto out; 3819 } 3820 } 3821 ret = 0; 3822 3823 if (last_dest_end < destoff + len) { 3824 /* 3825 * We have an implicit hole (NO_HOLES feature is enabled) that 3826 * fully or partially overlaps our cloning range at its end. 3827 */ 3828 btrfs_release_path(path); 3829 3830 /* 3831 * 1 - remove extent(s) 3832 * 1 - inode update 3833 */ 3834 trans = btrfs_start_transaction(root, 2); 3835 if (IS_ERR(trans)) { 3836 ret = PTR_ERR(trans); 3837 goto out; 3838 } 3839 ret = btrfs_drop_extents(trans, root, inode, 3840 last_dest_end, destoff + len, 1); 3841 if (ret) { 3842 if (ret != -EOPNOTSUPP) 3843 btrfs_abort_transaction(trans, ret); 3844 btrfs_end_transaction(trans); 3845 goto out; 3846 } 3847 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3848 last_dest_end, 3849 destoff + len - last_dest_end); 3850 ret = clone_finish_inode_update(trans, inode, destoff + len, 3851 destoff, olen, no_time_update); 3852 } 3853 3854 out: 3855 btrfs_free_path(path); 3856 kvfree(buf); 3857 return ret; 3858 } 3859 3860 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3861 u64 off, u64 olen, u64 destoff) 3862 { 3863 struct inode *inode = file_inode(file); 3864 struct inode *src = file_inode(file_src); 3865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3866 struct btrfs_root *root = BTRFS_I(inode)->root; 3867 int ret; 3868 u64 len = olen; 3869 u64 bs = fs_info->sb->s_blocksize; 3870 int same_inode = src == inode; 3871 3872 /* 3873 * TODO: 3874 * - split compressed inline extents. annoying: we need to 3875 * decompress into destination's address_space (the file offset 3876 * may change, so source mapping won't do), then recompress (or 3877 * otherwise reinsert) a subrange. 3878 * 3879 * - split destination inode's inline extents. The inline extents can 3880 * be either compressed or non-compressed. 3881 */ 3882 3883 if (btrfs_root_readonly(root)) 3884 return -EROFS; 3885 3886 if (file_src->f_path.mnt != file->f_path.mnt || 3887 src->i_sb != inode->i_sb) 3888 return -EXDEV; 3889 3890 /* don't make the dst file partly checksummed */ 3891 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3892 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3893 return -EINVAL; 3894 3895 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3896 return -EISDIR; 3897 3898 if (!same_inode) { 3899 btrfs_double_inode_lock(src, inode); 3900 } else { 3901 inode_lock(src); 3902 } 3903 3904 /* determine range to clone */ 3905 ret = -EINVAL; 3906 if (off + len > src->i_size || off + len < off) 3907 goto out_unlock; 3908 if (len == 0) 3909 olen = len = src->i_size - off; 3910 /* if we extend to eof, continue to block boundary */ 3911 if (off + len == src->i_size) 3912 len = ALIGN(src->i_size, bs) - off; 3913 3914 if (len == 0) { 3915 ret = 0; 3916 goto out_unlock; 3917 } 3918 3919 /* verify the end result is block aligned */ 3920 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3921 !IS_ALIGNED(destoff, bs)) 3922 goto out_unlock; 3923 3924 /* verify if ranges are overlapped within the same file */ 3925 if (same_inode) { 3926 if (destoff + len > off && destoff < off + len) 3927 goto out_unlock; 3928 } 3929 3930 if (destoff > inode->i_size) { 3931 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3932 if (ret) 3933 goto out_unlock; 3934 } 3935 3936 /* 3937 * Lock the target range too. Right after we replace the file extent 3938 * items in the fs tree (which now point to the cloned data), we might 3939 * have a worker replace them with extent items relative to a write 3940 * operation that was issued before this clone operation (i.e. confront 3941 * with inode.c:btrfs_finish_ordered_io). 3942 */ 3943 if (same_inode) { 3944 u64 lock_start = min_t(u64, off, destoff); 3945 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3946 3947 ret = lock_extent_range(src, lock_start, lock_len, true); 3948 } else { 3949 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3950 true); 3951 } 3952 ASSERT(ret == 0); 3953 if (WARN_ON(ret)) { 3954 /* ranges in the io trees already unlocked */ 3955 goto out_unlock; 3956 } 3957 3958 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3959 3960 if (same_inode) { 3961 u64 lock_start = min_t(u64, off, destoff); 3962 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3963 3964 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3965 } else { 3966 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3967 } 3968 /* 3969 * Truncate page cache pages so that future reads will see the cloned 3970 * data immediately and not the previous data. 3971 */ 3972 truncate_inode_pages_range(&inode->i_data, 3973 round_down(destoff, PAGE_SIZE), 3974 round_up(destoff + len, PAGE_SIZE) - 1); 3975 out_unlock: 3976 if (!same_inode) 3977 btrfs_double_inode_unlock(src, inode); 3978 else 3979 inode_unlock(src); 3980 return ret; 3981 } 3982 3983 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3984 struct file *dst_file, loff_t destoff, u64 len) 3985 { 3986 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3987 } 3988 3989 /* 3990 * there are many ways the trans_start and trans_end ioctls can lead 3991 * to deadlocks. They should only be used by applications that 3992 * basically own the machine, and have a very in depth understanding 3993 * of all the possible deadlocks and enospc problems. 3994 */ 3995 static long btrfs_ioctl_trans_start(struct file *file) 3996 { 3997 struct inode *inode = file_inode(file); 3998 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3999 struct btrfs_root *root = BTRFS_I(inode)->root; 4000 struct btrfs_trans_handle *trans; 4001 int ret; 4002 4003 ret = -EPERM; 4004 if (!capable(CAP_SYS_ADMIN)) 4005 goto out; 4006 4007 ret = -EINPROGRESS; 4008 if (file->private_data) 4009 goto out; 4010 4011 ret = -EROFS; 4012 if (btrfs_root_readonly(root)) 4013 goto out; 4014 4015 ret = mnt_want_write_file(file); 4016 if (ret) 4017 goto out; 4018 4019 atomic_inc(&fs_info->open_ioctl_trans); 4020 4021 ret = -ENOMEM; 4022 trans = btrfs_start_ioctl_transaction(root); 4023 if (IS_ERR(trans)) 4024 goto out_drop; 4025 4026 file->private_data = trans; 4027 return 0; 4028 4029 out_drop: 4030 atomic_dec(&fs_info->open_ioctl_trans); 4031 mnt_drop_write_file(file); 4032 out: 4033 return ret; 4034 } 4035 4036 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4037 { 4038 struct inode *inode = file_inode(file); 4039 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4040 struct btrfs_root *root = BTRFS_I(inode)->root; 4041 struct btrfs_root *new_root; 4042 struct btrfs_dir_item *di; 4043 struct btrfs_trans_handle *trans; 4044 struct btrfs_path *path; 4045 struct btrfs_key location; 4046 struct btrfs_disk_key disk_key; 4047 u64 objectid = 0; 4048 u64 dir_id; 4049 int ret; 4050 4051 if (!capable(CAP_SYS_ADMIN)) 4052 return -EPERM; 4053 4054 ret = mnt_want_write_file(file); 4055 if (ret) 4056 return ret; 4057 4058 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4059 ret = -EFAULT; 4060 goto out; 4061 } 4062 4063 if (!objectid) 4064 objectid = BTRFS_FS_TREE_OBJECTID; 4065 4066 location.objectid = objectid; 4067 location.type = BTRFS_ROOT_ITEM_KEY; 4068 location.offset = (u64)-1; 4069 4070 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4071 if (IS_ERR(new_root)) { 4072 ret = PTR_ERR(new_root); 4073 goto out; 4074 } 4075 4076 path = btrfs_alloc_path(); 4077 if (!path) { 4078 ret = -ENOMEM; 4079 goto out; 4080 } 4081 path->leave_spinning = 1; 4082 4083 trans = btrfs_start_transaction(root, 1); 4084 if (IS_ERR(trans)) { 4085 btrfs_free_path(path); 4086 ret = PTR_ERR(trans); 4087 goto out; 4088 } 4089 4090 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4091 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4092 dir_id, "default", 7, 1); 4093 if (IS_ERR_OR_NULL(di)) { 4094 btrfs_free_path(path); 4095 btrfs_end_transaction(trans); 4096 btrfs_err(fs_info, 4097 "Umm, you don't have the default diritem, this isn't going to work"); 4098 ret = -ENOENT; 4099 goto out; 4100 } 4101 4102 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4103 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4104 btrfs_mark_buffer_dirty(path->nodes[0]); 4105 btrfs_free_path(path); 4106 4107 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4108 btrfs_end_transaction(trans); 4109 out: 4110 mnt_drop_write_file(file); 4111 return ret; 4112 } 4113 4114 void btrfs_get_block_group_info(struct list_head *groups_list, 4115 struct btrfs_ioctl_space_info *space) 4116 { 4117 struct btrfs_block_group_cache *block_group; 4118 4119 space->total_bytes = 0; 4120 space->used_bytes = 0; 4121 space->flags = 0; 4122 list_for_each_entry(block_group, groups_list, list) { 4123 space->flags = block_group->flags; 4124 space->total_bytes += block_group->key.offset; 4125 space->used_bytes += 4126 btrfs_block_group_used(&block_group->item); 4127 } 4128 } 4129 4130 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4131 void __user *arg) 4132 { 4133 struct btrfs_ioctl_space_args space_args; 4134 struct btrfs_ioctl_space_info space; 4135 struct btrfs_ioctl_space_info *dest; 4136 struct btrfs_ioctl_space_info *dest_orig; 4137 struct btrfs_ioctl_space_info __user *user_dest; 4138 struct btrfs_space_info *info; 4139 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4140 BTRFS_BLOCK_GROUP_SYSTEM, 4141 BTRFS_BLOCK_GROUP_METADATA, 4142 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4143 int num_types = 4; 4144 int alloc_size; 4145 int ret = 0; 4146 u64 slot_count = 0; 4147 int i, c; 4148 4149 if (copy_from_user(&space_args, 4150 (struct btrfs_ioctl_space_args __user *)arg, 4151 sizeof(space_args))) 4152 return -EFAULT; 4153 4154 for (i = 0; i < num_types; i++) { 4155 struct btrfs_space_info *tmp; 4156 4157 info = NULL; 4158 rcu_read_lock(); 4159 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4160 list) { 4161 if (tmp->flags == types[i]) { 4162 info = tmp; 4163 break; 4164 } 4165 } 4166 rcu_read_unlock(); 4167 4168 if (!info) 4169 continue; 4170 4171 down_read(&info->groups_sem); 4172 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4173 if (!list_empty(&info->block_groups[c])) 4174 slot_count++; 4175 } 4176 up_read(&info->groups_sem); 4177 } 4178 4179 /* 4180 * Global block reserve, exported as a space_info 4181 */ 4182 slot_count++; 4183 4184 /* space_slots == 0 means they are asking for a count */ 4185 if (space_args.space_slots == 0) { 4186 space_args.total_spaces = slot_count; 4187 goto out; 4188 } 4189 4190 slot_count = min_t(u64, space_args.space_slots, slot_count); 4191 4192 alloc_size = sizeof(*dest) * slot_count; 4193 4194 /* we generally have at most 6 or so space infos, one for each raid 4195 * level. So, a whole page should be more than enough for everyone 4196 */ 4197 if (alloc_size > PAGE_SIZE) 4198 return -ENOMEM; 4199 4200 space_args.total_spaces = 0; 4201 dest = kmalloc(alloc_size, GFP_KERNEL); 4202 if (!dest) 4203 return -ENOMEM; 4204 dest_orig = dest; 4205 4206 /* now we have a buffer to copy into */ 4207 for (i = 0; i < num_types; i++) { 4208 struct btrfs_space_info *tmp; 4209 4210 if (!slot_count) 4211 break; 4212 4213 info = NULL; 4214 rcu_read_lock(); 4215 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4216 list) { 4217 if (tmp->flags == types[i]) { 4218 info = tmp; 4219 break; 4220 } 4221 } 4222 rcu_read_unlock(); 4223 4224 if (!info) 4225 continue; 4226 down_read(&info->groups_sem); 4227 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4228 if (!list_empty(&info->block_groups[c])) { 4229 btrfs_get_block_group_info( 4230 &info->block_groups[c], &space); 4231 memcpy(dest, &space, sizeof(space)); 4232 dest++; 4233 space_args.total_spaces++; 4234 slot_count--; 4235 } 4236 if (!slot_count) 4237 break; 4238 } 4239 up_read(&info->groups_sem); 4240 } 4241 4242 /* 4243 * Add global block reserve 4244 */ 4245 if (slot_count) { 4246 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4247 4248 spin_lock(&block_rsv->lock); 4249 space.total_bytes = block_rsv->size; 4250 space.used_bytes = block_rsv->size - block_rsv->reserved; 4251 spin_unlock(&block_rsv->lock); 4252 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4253 memcpy(dest, &space, sizeof(space)); 4254 space_args.total_spaces++; 4255 } 4256 4257 user_dest = (struct btrfs_ioctl_space_info __user *) 4258 (arg + sizeof(struct btrfs_ioctl_space_args)); 4259 4260 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4261 ret = -EFAULT; 4262 4263 kfree(dest_orig); 4264 out: 4265 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4266 ret = -EFAULT; 4267 4268 return ret; 4269 } 4270 4271 /* 4272 * there are many ways the trans_start and trans_end ioctls can lead 4273 * to deadlocks. They should only be used by applications that 4274 * basically own the machine, and have a very in depth understanding 4275 * of all the possible deadlocks and enospc problems. 4276 */ 4277 long btrfs_ioctl_trans_end(struct file *file) 4278 { 4279 struct inode *inode = file_inode(file); 4280 struct btrfs_root *root = BTRFS_I(inode)->root; 4281 struct btrfs_trans_handle *trans; 4282 4283 trans = file->private_data; 4284 if (!trans) 4285 return -EINVAL; 4286 file->private_data = NULL; 4287 4288 btrfs_end_transaction(trans); 4289 4290 atomic_dec(&root->fs_info->open_ioctl_trans); 4291 4292 mnt_drop_write_file(file); 4293 return 0; 4294 } 4295 4296 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4297 void __user *argp) 4298 { 4299 struct btrfs_trans_handle *trans; 4300 u64 transid; 4301 int ret; 4302 4303 trans = btrfs_attach_transaction_barrier(root); 4304 if (IS_ERR(trans)) { 4305 if (PTR_ERR(trans) != -ENOENT) 4306 return PTR_ERR(trans); 4307 4308 /* No running transaction, don't bother */ 4309 transid = root->fs_info->last_trans_committed; 4310 goto out; 4311 } 4312 transid = trans->transid; 4313 ret = btrfs_commit_transaction_async(trans, 0); 4314 if (ret) { 4315 btrfs_end_transaction(trans); 4316 return ret; 4317 } 4318 out: 4319 if (argp) 4320 if (copy_to_user(argp, &transid, sizeof(transid))) 4321 return -EFAULT; 4322 return 0; 4323 } 4324 4325 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4326 void __user *argp) 4327 { 4328 u64 transid; 4329 4330 if (argp) { 4331 if (copy_from_user(&transid, argp, sizeof(transid))) 4332 return -EFAULT; 4333 } else { 4334 transid = 0; /* current trans */ 4335 } 4336 return btrfs_wait_for_commit(fs_info, transid); 4337 } 4338 4339 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4340 { 4341 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4342 struct btrfs_ioctl_scrub_args *sa; 4343 int ret; 4344 4345 if (!capable(CAP_SYS_ADMIN)) 4346 return -EPERM; 4347 4348 sa = memdup_user(arg, sizeof(*sa)); 4349 if (IS_ERR(sa)) 4350 return PTR_ERR(sa); 4351 4352 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4353 ret = mnt_want_write_file(file); 4354 if (ret) 4355 goto out; 4356 } 4357 4358 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4359 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4360 0); 4361 4362 if (copy_to_user(arg, sa, sizeof(*sa))) 4363 ret = -EFAULT; 4364 4365 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4366 mnt_drop_write_file(file); 4367 out: 4368 kfree(sa); 4369 return ret; 4370 } 4371 4372 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4373 { 4374 if (!capable(CAP_SYS_ADMIN)) 4375 return -EPERM; 4376 4377 return btrfs_scrub_cancel(fs_info); 4378 } 4379 4380 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4381 void __user *arg) 4382 { 4383 struct btrfs_ioctl_scrub_args *sa; 4384 int ret; 4385 4386 if (!capable(CAP_SYS_ADMIN)) 4387 return -EPERM; 4388 4389 sa = memdup_user(arg, sizeof(*sa)); 4390 if (IS_ERR(sa)) 4391 return PTR_ERR(sa); 4392 4393 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4394 4395 if (copy_to_user(arg, sa, sizeof(*sa))) 4396 ret = -EFAULT; 4397 4398 kfree(sa); 4399 return ret; 4400 } 4401 4402 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4403 void __user *arg) 4404 { 4405 struct btrfs_ioctl_get_dev_stats *sa; 4406 int ret; 4407 4408 sa = memdup_user(arg, sizeof(*sa)); 4409 if (IS_ERR(sa)) 4410 return PTR_ERR(sa); 4411 4412 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4413 kfree(sa); 4414 return -EPERM; 4415 } 4416 4417 ret = btrfs_get_dev_stats(fs_info, sa); 4418 4419 if (copy_to_user(arg, sa, sizeof(*sa))) 4420 ret = -EFAULT; 4421 4422 kfree(sa); 4423 return ret; 4424 } 4425 4426 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4427 void __user *arg) 4428 { 4429 struct btrfs_ioctl_dev_replace_args *p; 4430 int ret; 4431 4432 if (!capable(CAP_SYS_ADMIN)) 4433 return -EPERM; 4434 4435 p = memdup_user(arg, sizeof(*p)); 4436 if (IS_ERR(p)) 4437 return PTR_ERR(p); 4438 4439 switch (p->cmd) { 4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4441 if (fs_info->sb->s_flags & MS_RDONLY) { 4442 ret = -EROFS; 4443 goto out; 4444 } 4445 if (atomic_xchg( 4446 &fs_info->mutually_exclusive_operation_running, 1)) { 4447 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4448 } else { 4449 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4450 atomic_set( 4451 &fs_info->mutually_exclusive_operation_running, 0); 4452 } 4453 break; 4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4455 btrfs_dev_replace_status(fs_info, p); 4456 ret = 0; 4457 break; 4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4459 ret = btrfs_dev_replace_cancel(fs_info, p); 4460 break; 4461 default: 4462 ret = -EINVAL; 4463 break; 4464 } 4465 4466 if (copy_to_user(arg, p, sizeof(*p))) 4467 ret = -EFAULT; 4468 out: 4469 kfree(p); 4470 return ret; 4471 } 4472 4473 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4474 { 4475 int ret = 0; 4476 int i; 4477 u64 rel_ptr; 4478 int size; 4479 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4480 struct inode_fs_paths *ipath = NULL; 4481 struct btrfs_path *path; 4482 4483 if (!capable(CAP_DAC_READ_SEARCH)) 4484 return -EPERM; 4485 4486 path = btrfs_alloc_path(); 4487 if (!path) { 4488 ret = -ENOMEM; 4489 goto out; 4490 } 4491 4492 ipa = memdup_user(arg, sizeof(*ipa)); 4493 if (IS_ERR(ipa)) { 4494 ret = PTR_ERR(ipa); 4495 ipa = NULL; 4496 goto out; 4497 } 4498 4499 size = min_t(u32, ipa->size, 4096); 4500 ipath = init_ipath(size, root, path); 4501 if (IS_ERR(ipath)) { 4502 ret = PTR_ERR(ipath); 4503 ipath = NULL; 4504 goto out; 4505 } 4506 4507 ret = paths_from_inode(ipa->inum, ipath); 4508 if (ret < 0) 4509 goto out; 4510 4511 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4512 rel_ptr = ipath->fspath->val[i] - 4513 (u64)(unsigned long)ipath->fspath->val; 4514 ipath->fspath->val[i] = rel_ptr; 4515 } 4516 4517 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4518 (void *)(unsigned long)ipath->fspath, size); 4519 if (ret) { 4520 ret = -EFAULT; 4521 goto out; 4522 } 4523 4524 out: 4525 btrfs_free_path(path); 4526 free_ipath(ipath); 4527 kfree(ipa); 4528 4529 return ret; 4530 } 4531 4532 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4533 { 4534 struct btrfs_data_container *inodes = ctx; 4535 const size_t c = 3 * sizeof(u64); 4536 4537 if (inodes->bytes_left >= c) { 4538 inodes->bytes_left -= c; 4539 inodes->val[inodes->elem_cnt] = inum; 4540 inodes->val[inodes->elem_cnt + 1] = offset; 4541 inodes->val[inodes->elem_cnt + 2] = root; 4542 inodes->elem_cnt += 3; 4543 } else { 4544 inodes->bytes_missing += c - inodes->bytes_left; 4545 inodes->bytes_left = 0; 4546 inodes->elem_missed += 3; 4547 } 4548 4549 return 0; 4550 } 4551 4552 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4553 void __user *arg) 4554 { 4555 int ret = 0; 4556 int size; 4557 struct btrfs_ioctl_logical_ino_args *loi; 4558 struct btrfs_data_container *inodes = NULL; 4559 struct btrfs_path *path = NULL; 4560 4561 if (!capable(CAP_SYS_ADMIN)) 4562 return -EPERM; 4563 4564 loi = memdup_user(arg, sizeof(*loi)); 4565 if (IS_ERR(loi)) 4566 return PTR_ERR(loi); 4567 4568 path = btrfs_alloc_path(); 4569 if (!path) { 4570 ret = -ENOMEM; 4571 goto out; 4572 } 4573 4574 size = min_t(u32, loi->size, SZ_64K); 4575 inodes = init_data_container(size); 4576 if (IS_ERR(inodes)) { 4577 ret = PTR_ERR(inodes); 4578 inodes = NULL; 4579 goto out; 4580 } 4581 4582 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4583 build_ino_list, inodes); 4584 if (ret == -EINVAL) 4585 ret = -ENOENT; 4586 if (ret < 0) 4587 goto out; 4588 4589 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4590 (void *)(unsigned long)inodes, size); 4591 if (ret) 4592 ret = -EFAULT; 4593 4594 out: 4595 btrfs_free_path(path); 4596 vfree(inodes); 4597 kfree(loi); 4598 4599 return ret; 4600 } 4601 4602 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4603 struct btrfs_ioctl_balance_args *bargs) 4604 { 4605 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4606 4607 bargs->flags = bctl->flags; 4608 4609 if (atomic_read(&fs_info->balance_running)) 4610 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4611 if (atomic_read(&fs_info->balance_pause_req)) 4612 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4613 if (atomic_read(&fs_info->balance_cancel_req)) 4614 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4615 4616 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4617 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4618 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4619 4620 if (lock) { 4621 spin_lock(&fs_info->balance_lock); 4622 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4623 spin_unlock(&fs_info->balance_lock); 4624 } else { 4625 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4626 } 4627 } 4628 4629 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4630 { 4631 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4632 struct btrfs_fs_info *fs_info = root->fs_info; 4633 struct btrfs_ioctl_balance_args *bargs; 4634 struct btrfs_balance_control *bctl; 4635 bool need_unlock; /* for mut. excl. ops lock */ 4636 int ret; 4637 4638 if (!capable(CAP_SYS_ADMIN)) 4639 return -EPERM; 4640 4641 ret = mnt_want_write_file(file); 4642 if (ret) 4643 return ret; 4644 4645 again: 4646 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4647 mutex_lock(&fs_info->volume_mutex); 4648 mutex_lock(&fs_info->balance_mutex); 4649 need_unlock = true; 4650 goto locked; 4651 } 4652 4653 /* 4654 * mut. excl. ops lock is locked. Three possibilities: 4655 * (1) some other op is running 4656 * (2) balance is running 4657 * (3) balance is paused -- special case (think resume) 4658 */ 4659 mutex_lock(&fs_info->balance_mutex); 4660 if (fs_info->balance_ctl) { 4661 /* this is either (2) or (3) */ 4662 if (!atomic_read(&fs_info->balance_running)) { 4663 mutex_unlock(&fs_info->balance_mutex); 4664 if (!mutex_trylock(&fs_info->volume_mutex)) 4665 goto again; 4666 mutex_lock(&fs_info->balance_mutex); 4667 4668 if (fs_info->balance_ctl && 4669 !atomic_read(&fs_info->balance_running)) { 4670 /* this is (3) */ 4671 need_unlock = false; 4672 goto locked; 4673 } 4674 4675 mutex_unlock(&fs_info->balance_mutex); 4676 mutex_unlock(&fs_info->volume_mutex); 4677 goto again; 4678 } else { 4679 /* this is (2) */ 4680 mutex_unlock(&fs_info->balance_mutex); 4681 ret = -EINPROGRESS; 4682 goto out; 4683 } 4684 } else { 4685 /* this is (1) */ 4686 mutex_unlock(&fs_info->balance_mutex); 4687 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4688 goto out; 4689 } 4690 4691 locked: 4692 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4693 4694 if (arg) { 4695 bargs = memdup_user(arg, sizeof(*bargs)); 4696 if (IS_ERR(bargs)) { 4697 ret = PTR_ERR(bargs); 4698 goto out_unlock; 4699 } 4700 4701 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4702 if (!fs_info->balance_ctl) { 4703 ret = -ENOTCONN; 4704 goto out_bargs; 4705 } 4706 4707 bctl = fs_info->balance_ctl; 4708 spin_lock(&fs_info->balance_lock); 4709 bctl->flags |= BTRFS_BALANCE_RESUME; 4710 spin_unlock(&fs_info->balance_lock); 4711 4712 goto do_balance; 4713 } 4714 } else { 4715 bargs = NULL; 4716 } 4717 4718 if (fs_info->balance_ctl) { 4719 ret = -EINPROGRESS; 4720 goto out_bargs; 4721 } 4722 4723 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4724 if (!bctl) { 4725 ret = -ENOMEM; 4726 goto out_bargs; 4727 } 4728 4729 bctl->fs_info = fs_info; 4730 if (arg) { 4731 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4732 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4733 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4734 4735 bctl->flags = bargs->flags; 4736 } else { 4737 /* balance everything - no filters */ 4738 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4739 } 4740 4741 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4742 ret = -EINVAL; 4743 goto out_bctl; 4744 } 4745 4746 do_balance: 4747 /* 4748 * Ownership of bctl and mutually_exclusive_operation_running 4749 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4750 * or, if restriper was paused all the way until unmount, in 4751 * free_fs_info. mutually_exclusive_operation_running is 4752 * cleared in __cancel_balance. 4753 */ 4754 need_unlock = false; 4755 4756 ret = btrfs_balance(bctl, bargs); 4757 bctl = NULL; 4758 4759 if (arg) { 4760 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4761 ret = -EFAULT; 4762 } 4763 4764 out_bctl: 4765 kfree(bctl); 4766 out_bargs: 4767 kfree(bargs); 4768 out_unlock: 4769 mutex_unlock(&fs_info->balance_mutex); 4770 mutex_unlock(&fs_info->volume_mutex); 4771 if (need_unlock) 4772 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4773 out: 4774 mnt_drop_write_file(file); 4775 return ret; 4776 } 4777 4778 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4779 { 4780 if (!capable(CAP_SYS_ADMIN)) 4781 return -EPERM; 4782 4783 switch (cmd) { 4784 case BTRFS_BALANCE_CTL_PAUSE: 4785 return btrfs_pause_balance(fs_info); 4786 case BTRFS_BALANCE_CTL_CANCEL: 4787 return btrfs_cancel_balance(fs_info); 4788 } 4789 4790 return -EINVAL; 4791 } 4792 4793 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4794 void __user *arg) 4795 { 4796 struct btrfs_ioctl_balance_args *bargs; 4797 int ret = 0; 4798 4799 if (!capable(CAP_SYS_ADMIN)) 4800 return -EPERM; 4801 4802 mutex_lock(&fs_info->balance_mutex); 4803 if (!fs_info->balance_ctl) { 4804 ret = -ENOTCONN; 4805 goto out; 4806 } 4807 4808 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4809 if (!bargs) { 4810 ret = -ENOMEM; 4811 goto out; 4812 } 4813 4814 update_ioctl_balance_args(fs_info, 1, bargs); 4815 4816 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4817 ret = -EFAULT; 4818 4819 kfree(bargs); 4820 out: 4821 mutex_unlock(&fs_info->balance_mutex); 4822 return ret; 4823 } 4824 4825 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4826 { 4827 struct inode *inode = file_inode(file); 4828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4829 struct btrfs_ioctl_quota_ctl_args *sa; 4830 struct btrfs_trans_handle *trans = NULL; 4831 int ret; 4832 int err; 4833 4834 if (!capable(CAP_SYS_ADMIN)) 4835 return -EPERM; 4836 4837 ret = mnt_want_write_file(file); 4838 if (ret) 4839 return ret; 4840 4841 sa = memdup_user(arg, sizeof(*sa)); 4842 if (IS_ERR(sa)) { 4843 ret = PTR_ERR(sa); 4844 goto drop_write; 4845 } 4846 4847 down_write(&fs_info->subvol_sem); 4848 trans = btrfs_start_transaction(fs_info->tree_root, 2); 4849 if (IS_ERR(trans)) { 4850 ret = PTR_ERR(trans); 4851 goto out; 4852 } 4853 4854 switch (sa->cmd) { 4855 case BTRFS_QUOTA_CTL_ENABLE: 4856 ret = btrfs_quota_enable(trans, fs_info); 4857 break; 4858 case BTRFS_QUOTA_CTL_DISABLE: 4859 ret = btrfs_quota_disable(trans, fs_info); 4860 break; 4861 default: 4862 ret = -EINVAL; 4863 break; 4864 } 4865 4866 err = btrfs_commit_transaction(trans); 4867 if (err && !ret) 4868 ret = err; 4869 out: 4870 kfree(sa); 4871 up_write(&fs_info->subvol_sem); 4872 drop_write: 4873 mnt_drop_write_file(file); 4874 return ret; 4875 } 4876 4877 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4878 { 4879 struct inode *inode = file_inode(file); 4880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4881 struct btrfs_root *root = BTRFS_I(inode)->root; 4882 struct btrfs_ioctl_qgroup_assign_args *sa; 4883 struct btrfs_trans_handle *trans; 4884 int ret; 4885 int err; 4886 4887 if (!capable(CAP_SYS_ADMIN)) 4888 return -EPERM; 4889 4890 ret = mnt_want_write_file(file); 4891 if (ret) 4892 return ret; 4893 4894 sa = memdup_user(arg, sizeof(*sa)); 4895 if (IS_ERR(sa)) { 4896 ret = PTR_ERR(sa); 4897 goto drop_write; 4898 } 4899 4900 trans = btrfs_join_transaction(root); 4901 if (IS_ERR(trans)) { 4902 ret = PTR_ERR(trans); 4903 goto out; 4904 } 4905 4906 /* FIXME: check if the IDs really exist */ 4907 if (sa->assign) { 4908 ret = btrfs_add_qgroup_relation(trans, fs_info, 4909 sa->src, sa->dst); 4910 } else { 4911 ret = btrfs_del_qgroup_relation(trans, fs_info, 4912 sa->src, sa->dst); 4913 } 4914 4915 /* update qgroup status and info */ 4916 err = btrfs_run_qgroups(trans, fs_info); 4917 if (err < 0) 4918 btrfs_handle_fs_error(fs_info, err, 4919 "failed to update qgroup status and info"); 4920 err = btrfs_end_transaction(trans); 4921 if (err && !ret) 4922 ret = err; 4923 4924 out: 4925 kfree(sa); 4926 drop_write: 4927 mnt_drop_write_file(file); 4928 return ret; 4929 } 4930 4931 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4932 { 4933 struct inode *inode = file_inode(file); 4934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4935 struct btrfs_root *root = BTRFS_I(inode)->root; 4936 struct btrfs_ioctl_qgroup_create_args *sa; 4937 struct btrfs_trans_handle *trans; 4938 int ret; 4939 int err; 4940 4941 if (!capable(CAP_SYS_ADMIN)) 4942 return -EPERM; 4943 4944 ret = mnt_want_write_file(file); 4945 if (ret) 4946 return ret; 4947 4948 sa = memdup_user(arg, sizeof(*sa)); 4949 if (IS_ERR(sa)) { 4950 ret = PTR_ERR(sa); 4951 goto drop_write; 4952 } 4953 4954 if (!sa->qgroupid) { 4955 ret = -EINVAL; 4956 goto out; 4957 } 4958 4959 trans = btrfs_join_transaction(root); 4960 if (IS_ERR(trans)) { 4961 ret = PTR_ERR(trans); 4962 goto out; 4963 } 4964 4965 /* FIXME: check if the IDs really exist */ 4966 if (sa->create) { 4967 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 4968 } else { 4969 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 4970 } 4971 4972 err = btrfs_end_transaction(trans); 4973 if (err && !ret) 4974 ret = err; 4975 4976 out: 4977 kfree(sa); 4978 drop_write: 4979 mnt_drop_write_file(file); 4980 return ret; 4981 } 4982 4983 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4984 { 4985 struct inode *inode = file_inode(file); 4986 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4987 struct btrfs_root *root = BTRFS_I(inode)->root; 4988 struct btrfs_ioctl_qgroup_limit_args *sa; 4989 struct btrfs_trans_handle *trans; 4990 int ret; 4991 int err; 4992 u64 qgroupid; 4993 4994 if (!capable(CAP_SYS_ADMIN)) 4995 return -EPERM; 4996 4997 ret = mnt_want_write_file(file); 4998 if (ret) 4999 return ret; 5000 5001 sa = memdup_user(arg, sizeof(*sa)); 5002 if (IS_ERR(sa)) { 5003 ret = PTR_ERR(sa); 5004 goto drop_write; 5005 } 5006 5007 trans = btrfs_join_transaction(root); 5008 if (IS_ERR(trans)) { 5009 ret = PTR_ERR(trans); 5010 goto out; 5011 } 5012 5013 qgroupid = sa->qgroupid; 5014 if (!qgroupid) { 5015 /* take the current subvol as qgroup */ 5016 qgroupid = root->root_key.objectid; 5017 } 5018 5019 /* FIXME: check if the IDs really exist */ 5020 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 5021 5022 err = btrfs_end_transaction(trans); 5023 if (err && !ret) 5024 ret = err; 5025 5026 out: 5027 kfree(sa); 5028 drop_write: 5029 mnt_drop_write_file(file); 5030 return ret; 5031 } 5032 5033 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5034 { 5035 struct inode *inode = file_inode(file); 5036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5037 struct btrfs_ioctl_quota_rescan_args *qsa; 5038 int ret; 5039 5040 if (!capable(CAP_SYS_ADMIN)) 5041 return -EPERM; 5042 5043 ret = mnt_want_write_file(file); 5044 if (ret) 5045 return ret; 5046 5047 qsa = memdup_user(arg, sizeof(*qsa)); 5048 if (IS_ERR(qsa)) { 5049 ret = PTR_ERR(qsa); 5050 goto drop_write; 5051 } 5052 5053 if (qsa->flags) { 5054 ret = -EINVAL; 5055 goto out; 5056 } 5057 5058 ret = btrfs_qgroup_rescan(fs_info); 5059 5060 out: 5061 kfree(qsa); 5062 drop_write: 5063 mnt_drop_write_file(file); 5064 return ret; 5065 } 5066 5067 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5068 { 5069 struct inode *inode = file_inode(file); 5070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5071 struct btrfs_ioctl_quota_rescan_args *qsa; 5072 int ret = 0; 5073 5074 if (!capable(CAP_SYS_ADMIN)) 5075 return -EPERM; 5076 5077 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5078 if (!qsa) 5079 return -ENOMEM; 5080 5081 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5082 qsa->flags = 1; 5083 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5084 } 5085 5086 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5087 ret = -EFAULT; 5088 5089 kfree(qsa); 5090 return ret; 5091 } 5092 5093 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5094 { 5095 struct inode *inode = file_inode(file); 5096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5097 5098 if (!capable(CAP_SYS_ADMIN)) 5099 return -EPERM; 5100 5101 return btrfs_qgroup_wait_for_completion(fs_info, true); 5102 } 5103 5104 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5105 struct btrfs_ioctl_received_subvol_args *sa) 5106 { 5107 struct inode *inode = file_inode(file); 5108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5109 struct btrfs_root *root = BTRFS_I(inode)->root; 5110 struct btrfs_root_item *root_item = &root->root_item; 5111 struct btrfs_trans_handle *trans; 5112 struct timespec ct = current_time(inode); 5113 int ret = 0; 5114 int received_uuid_changed; 5115 5116 if (!inode_owner_or_capable(inode)) 5117 return -EPERM; 5118 5119 ret = mnt_want_write_file(file); 5120 if (ret < 0) 5121 return ret; 5122 5123 down_write(&fs_info->subvol_sem); 5124 5125 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5126 ret = -EINVAL; 5127 goto out; 5128 } 5129 5130 if (btrfs_root_readonly(root)) { 5131 ret = -EROFS; 5132 goto out; 5133 } 5134 5135 /* 5136 * 1 - root item 5137 * 2 - uuid items (received uuid + subvol uuid) 5138 */ 5139 trans = btrfs_start_transaction(root, 3); 5140 if (IS_ERR(trans)) { 5141 ret = PTR_ERR(trans); 5142 trans = NULL; 5143 goto out; 5144 } 5145 5146 sa->rtransid = trans->transid; 5147 sa->rtime.sec = ct.tv_sec; 5148 sa->rtime.nsec = ct.tv_nsec; 5149 5150 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5151 BTRFS_UUID_SIZE); 5152 if (received_uuid_changed && 5153 !btrfs_is_empty_uuid(root_item->received_uuid)) 5154 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid, 5155 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5156 root->root_key.objectid); 5157 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5158 btrfs_set_root_stransid(root_item, sa->stransid); 5159 btrfs_set_root_rtransid(root_item, sa->rtransid); 5160 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5161 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5162 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5163 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5164 5165 ret = btrfs_update_root(trans, fs_info->tree_root, 5166 &root->root_key, &root->root_item); 5167 if (ret < 0) { 5168 btrfs_end_transaction(trans); 5169 goto out; 5170 } 5171 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5172 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid, 5173 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5174 root->root_key.objectid); 5175 if (ret < 0 && ret != -EEXIST) { 5176 btrfs_abort_transaction(trans, ret); 5177 goto out; 5178 } 5179 } 5180 ret = btrfs_commit_transaction(trans); 5181 if (ret < 0) { 5182 btrfs_abort_transaction(trans, ret); 5183 goto out; 5184 } 5185 5186 out: 5187 up_write(&fs_info->subvol_sem); 5188 mnt_drop_write_file(file); 5189 return ret; 5190 } 5191 5192 #ifdef CONFIG_64BIT 5193 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5194 void __user *arg) 5195 { 5196 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5197 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5198 int ret = 0; 5199 5200 args32 = memdup_user(arg, sizeof(*args32)); 5201 if (IS_ERR(args32)) 5202 return PTR_ERR(args32); 5203 5204 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5205 if (!args64) { 5206 ret = -ENOMEM; 5207 goto out; 5208 } 5209 5210 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5211 args64->stransid = args32->stransid; 5212 args64->rtransid = args32->rtransid; 5213 args64->stime.sec = args32->stime.sec; 5214 args64->stime.nsec = args32->stime.nsec; 5215 args64->rtime.sec = args32->rtime.sec; 5216 args64->rtime.nsec = args32->rtime.nsec; 5217 args64->flags = args32->flags; 5218 5219 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5220 if (ret) 5221 goto out; 5222 5223 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5224 args32->stransid = args64->stransid; 5225 args32->rtransid = args64->rtransid; 5226 args32->stime.sec = args64->stime.sec; 5227 args32->stime.nsec = args64->stime.nsec; 5228 args32->rtime.sec = args64->rtime.sec; 5229 args32->rtime.nsec = args64->rtime.nsec; 5230 args32->flags = args64->flags; 5231 5232 ret = copy_to_user(arg, args32, sizeof(*args32)); 5233 if (ret) 5234 ret = -EFAULT; 5235 5236 out: 5237 kfree(args32); 5238 kfree(args64); 5239 return ret; 5240 } 5241 #endif 5242 5243 static long btrfs_ioctl_set_received_subvol(struct file *file, 5244 void __user *arg) 5245 { 5246 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5247 int ret = 0; 5248 5249 sa = memdup_user(arg, sizeof(*sa)); 5250 if (IS_ERR(sa)) 5251 return PTR_ERR(sa); 5252 5253 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5254 5255 if (ret) 5256 goto out; 5257 5258 ret = copy_to_user(arg, sa, sizeof(*sa)); 5259 if (ret) 5260 ret = -EFAULT; 5261 5262 out: 5263 kfree(sa); 5264 return ret; 5265 } 5266 5267 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5268 { 5269 struct inode *inode = file_inode(file); 5270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5271 size_t len; 5272 int ret; 5273 char label[BTRFS_LABEL_SIZE]; 5274 5275 spin_lock(&fs_info->super_lock); 5276 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5277 spin_unlock(&fs_info->super_lock); 5278 5279 len = strnlen(label, BTRFS_LABEL_SIZE); 5280 5281 if (len == BTRFS_LABEL_SIZE) { 5282 btrfs_warn(fs_info, 5283 "label is too long, return the first %zu bytes", 5284 --len); 5285 } 5286 5287 ret = copy_to_user(arg, label, len); 5288 5289 return ret ? -EFAULT : 0; 5290 } 5291 5292 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5293 { 5294 struct inode *inode = file_inode(file); 5295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5296 struct btrfs_root *root = BTRFS_I(inode)->root; 5297 struct btrfs_super_block *super_block = fs_info->super_copy; 5298 struct btrfs_trans_handle *trans; 5299 char label[BTRFS_LABEL_SIZE]; 5300 int ret; 5301 5302 if (!capable(CAP_SYS_ADMIN)) 5303 return -EPERM; 5304 5305 if (copy_from_user(label, arg, sizeof(label))) 5306 return -EFAULT; 5307 5308 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5309 btrfs_err(fs_info, 5310 "unable to set label with more than %d bytes", 5311 BTRFS_LABEL_SIZE - 1); 5312 return -EINVAL; 5313 } 5314 5315 ret = mnt_want_write_file(file); 5316 if (ret) 5317 return ret; 5318 5319 trans = btrfs_start_transaction(root, 0); 5320 if (IS_ERR(trans)) { 5321 ret = PTR_ERR(trans); 5322 goto out_unlock; 5323 } 5324 5325 spin_lock(&fs_info->super_lock); 5326 strcpy(super_block->label, label); 5327 spin_unlock(&fs_info->super_lock); 5328 ret = btrfs_commit_transaction(trans); 5329 5330 out_unlock: 5331 mnt_drop_write_file(file); 5332 return ret; 5333 } 5334 5335 #define INIT_FEATURE_FLAGS(suffix) \ 5336 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5337 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5338 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5339 5340 int btrfs_ioctl_get_supported_features(void __user *arg) 5341 { 5342 static const struct btrfs_ioctl_feature_flags features[3] = { 5343 INIT_FEATURE_FLAGS(SUPP), 5344 INIT_FEATURE_FLAGS(SAFE_SET), 5345 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5346 }; 5347 5348 if (copy_to_user(arg, &features, sizeof(features))) 5349 return -EFAULT; 5350 5351 return 0; 5352 } 5353 5354 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5355 { 5356 struct inode *inode = file_inode(file); 5357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5358 struct btrfs_super_block *super_block = fs_info->super_copy; 5359 struct btrfs_ioctl_feature_flags features; 5360 5361 features.compat_flags = btrfs_super_compat_flags(super_block); 5362 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5363 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5364 5365 if (copy_to_user(arg, &features, sizeof(features))) 5366 return -EFAULT; 5367 5368 return 0; 5369 } 5370 5371 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5372 enum btrfs_feature_set set, 5373 u64 change_mask, u64 flags, u64 supported_flags, 5374 u64 safe_set, u64 safe_clear) 5375 { 5376 const char *type = btrfs_feature_set_names[set]; 5377 char *names; 5378 u64 disallowed, unsupported; 5379 u64 set_mask = flags & change_mask; 5380 u64 clear_mask = ~flags & change_mask; 5381 5382 unsupported = set_mask & ~supported_flags; 5383 if (unsupported) { 5384 names = btrfs_printable_features(set, unsupported); 5385 if (names) { 5386 btrfs_warn(fs_info, 5387 "this kernel does not support the %s feature bit%s", 5388 names, strchr(names, ',') ? "s" : ""); 5389 kfree(names); 5390 } else 5391 btrfs_warn(fs_info, 5392 "this kernel does not support %s bits 0x%llx", 5393 type, unsupported); 5394 return -EOPNOTSUPP; 5395 } 5396 5397 disallowed = set_mask & ~safe_set; 5398 if (disallowed) { 5399 names = btrfs_printable_features(set, disallowed); 5400 if (names) { 5401 btrfs_warn(fs_info, 5402 "can't set the %s feature bit%s while mounted", 5403 names, strchr(names, ',') ? "s" : ""); 5404 kfree(names); 5405 } else 5406 btrfs_warn(fs_info, 5407 "can't set %s bits 0x%llx while mounted", 5408 type, disallowed); 5409 return -EPERM; 5410 } 5411 5412 disallowed = clear_mask & ~safe_clear; 5413 if (disallowed) { 5414 names = btrfs_printable_features(set, disallowed); 5415 if (names) { 5416 btrfs_warn(fs_info, 5417 "can't clear the %s feature bit%s while mounted", 5418 names, strchr(names, ',') ? "s" : ""); 5419 kfree(names); 5420 } else 5421 btrfs_warn(fs_info, 5422 "can't clear %s bits 0x%llx while mounted", 5423 type, disallowed); 5424 return -EPERM; 5425 } 5426 5427 return 0; 5428 } 5429 5430 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5431 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5432 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5433 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5434 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5435 5436 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5437 { 5438 struct inode *inode = file_inode(file); 5439 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5440 struct btrfs_root *root = BTRFS_I(inode)->root; 5441 struct btrfs_super_block *super_block = fs_info->super_copy; 5442 struct btrfs_ioctl_feature_flags flags[2]; 5443 struct btrfs_trans_handle *trans; 5444 u64 newflags; 5445 int ret; 5446 5447 if (!capable(CAP_SYS_ADMIN)) 5448 return -EPERM; 5449 5450 if (copy_from_user(flags, arg, sizeof(flags))) 5451 return -EFAULT; 5452 5453 /* Nothing to do */ 5454 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5455 !flags[0].incompat_flags) 5456 return 0; 5457 5458 ret = check_feature(fs_info, flags[0].compat_flags, 5459 flags[1].compat_flags, COMPAT); 5460 if (ret) 5461 return ret; 5462 5463 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5464 flags[1].compat_ro_flags, COMPAT_RO); 5465 if (ret) 5466 return ret; 5467 5468 ret = check_feature(fs_info, flags[0].incompat_flags, 5469 flags[1].incompat_flags, INCOMPAT); 5470 if (ret) 5471 return ret; 5472 5473 ret = mnt_want_write_file(file); 5474 if (ret) 5475 return ret; 5476 5477 trans = btrfs_start_transaction(root, 0); 5478 if (IS_ERR(trans)) { 5479 ret = PTR_ERR(trans); 5480 goto out_drop_write; 5481 } 5482 5483 spin_lock(&fs_info->super_lock); 5484 newflags = btrfs_super_compat_flags(super_block); 5485 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5486 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5487 btrfs_set_super_compat_flags(super_block, newflags); 5488 5489 newflags = btrfs_super_compat_ro_flags(super_block); 5490 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5491 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5492 btrfs_set_super_compat_ro_flags(super_block, newflags); 5493 5494 newflags = btrfs_super_incompat_flags(super_block); 5495 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5496 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5497 btrfs_set_super_incompat_flags(super_block, newflags); 5498 spin_unlock(&fs_info->super_lock); 5499 5500 ret = btrfs_commit_transaction(trans); 5501 out_drop_write: 5502 mnt_drop_write_file(file); 5503 5504 return ret; 5505 } 5506 5507 long btrfs_ioctl(struct file *file, unsigned int 5508 cmd, unsigned long arg) 5509 { 5510 struct inode *inode = file_inode(file); 5511 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5512 struct btrfs_root *root = BTRFS_I(inode)->root; 5513 void __user *argp = (void __user *)arg; 5514 5515 switch (cmd) { 5516 case FS_IOC_GETFLAGS: 5517 return btrfs_ioctl_getflags(file, argp); 5518 case FS_IOC_SETFLAGS: 5519 return btrfs_ioctl_setflags(file, argp); 5520 case FS_IOC_GETVERSION: 5521 return btrfs_ioctl_getversion(file, argp); 5522 case FITRIM: 5523 return btrfs_ioctl_fitrim(file, argp); 5524 case BTRFS_IOC_SNAP_CREATE: 5525 return btrfs_ioctl_snap_create(file, argp, 0); 5526 case BTRFS_IOC_SNAP_CREATE_V2: 5527 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5528 case BTRFS_IOC_SUBVOL_CREATE: 5529 return btrfs_ioctl_snap_create(file, argp, 1); 5530 case BTRFS_IOC_SUBVOL_CREATE_V2: 5531 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5532 case BTRFS_IOC_SNAP_DESTROY: 5533 return btrfs_ioctl_snap_destroy(file, argp); 5534 case BTRFS_IOC_SUBVOL_GETFLAGS: 5535 return btrfs_ioctl_subvol_getflags(file, argp); 5536 case BTRFS_IOC_SUBVOL_SETFLAGS: 5537 return btrfs_ioctl_subvol_setflags(file, argp); 5538 case BTRFS_IOC_DEFAULT_SUBVOL: 5539 return btrfs_ioctl_default_subvol(file, argp); 5540 case BTRFS_IOC_DEFRAG: 5541 return btrfs_ioctl_defrag(file, NULL); 5542 case BTRFS_IOC_DEFRAG_RANGE: 5543 return btrfs_ioctl_defrag(file, argp); 5544 case BTRFS_IOC_RESIZE: 5545 return btrfs_ioctl_resize(file, argp); 5546 case BTRFS_IOC_ADD_DEV: 5547 return btrfs_ioctl_add_dev(fs_info, argp); 5548 case BTRFS_IOC_RM_DEV: 5549 return btrfs_ioctl_rm_dev(file, argp); 5550 case BTRFS_IOC_RM_DEV_V2: 5551 return btrfs_ioctl_rm_dev_v2(file, argp); 5552 case BTRFS_IOC_FS_INFO: 5553 return btrfs_ioctl_fs_info(fs_info, argp); 5554 case BTRFS_IOC_DEV_INFO: 5555 return btrfs_ioctl_dev_info(fs_info, argp); 5556 case BTRFS_IOC_BALANCE: 5557 return btrfs_ioctl_balance(file, NULL); 5558 case BTRFS_IOC_TRANS_START: 5559 return btrfs_ioctl_trans_start(file); 5560 case BTRFS_IOC_TRANS_END: 5561 return btrfs_ioctl_trans_end(file); 5562 case BTRFS_IOC_TREE_SEARCH: 5563 return btrfs_ioctl_tree_search(file, argp); 5564 case BTRFS_IOC_TREE_SEARCH_V2: 5565 return btrfs_ioctl_tree_search_v2(file, argp); 5566 case BTRFS_IOC_INO_LOOKUP: 5567 return btrfs_ioctl_ino_lookup(file, argp); 5568 case BTRFS_IOC_INO_PATHS: 5569 return btrfs_ioctl_ino_to_path(root, argp); 5570 case BTRFS_IOC_LOGICAL_INO: 5571 return btrfs_ioctl_logical_to_ino(fs_info, argp); 5572 case BTRFS_IOC_SPACE_INFO: 5573 return btrfs_ioctl_space_info(fs_info, argp); 5574 case BTRFS_IOC_SYNC: { 5575 int ret; 5576 5577 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 5578 if (ret) 5579 return ret; 5580 ret = btrfs_sync_fs(inode->i_sb, 1); 5581 /* 5582 * The transaction thread may want to do more work, 5583 * namely it pokes the cleaner kthread that will start 5584 * processing uncleaned subvols. 5585 */ 5586 wake_up_process(fs_info->transaction_kthread); 5587 return ret; 5588 } 5589 case BTRFS_IOC_START_SYNC: 5590 return btrfs_ioctl_start_sync(root, argp); 5591 case BTRFS_IOC_WAIT_SYNC: 5592 return btrfs_ioctl_wait_sync(fs_info, argp); 5593 case BTRFS_IOC_SCRUB: 5594 return btrfs_ioctl_scrub(file, argp); 5595 case BTRFS_IOC_SCRUB_CANCEL: 5596 return btrfs_ioctl_scrub_cancel(fs_info); 5597 case BTRFS_IOC_SCRUB_PROGRESS: 5598 return btrfs_ioctl_scrub_progress(fs_info, argp); 5599 case BTRFS_IOC_BALANCE_V2: 5600 return btrfs_ioctl_balance(file, argp); 5601 case BTRFS_IOC_BALANCE_CTL: 5602 return btrfs_ioctl_balance_ctl(fs_info, arg); 5603 case BTRFS_IOC_BALANCE_PROGRESS: 5604 return btrfs_ioctl_balance_progress(fs_info, argp); 5605 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5606 return btrfs_ioctl_set_received_subvol(file, argp); 5607 #ifdef CONFIG_64BIT 5608 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5609 return btrfs_ioctl_set_received_subvol_32(file, argp); 5610 #endif 5611 case BTRFS_IOC_SEND: 5612 return btrfs_ioctl_send(file, argp); 5613 case BTRFS_IOC_GET_DEV_STATS: 5614 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5615 case BTRFS_IOC_QUOTA_CTL: 5616 return btrfs_ioctl_quota_ctl(file, argp); 5617 case BTRFS_IOC_QGROUP_ASSIGN: 5618 return btrfs_ioctl_qgroup_assign(file, argp); 5619 case BTRFS_IOC_QGROUP_CREATE: 5620 return btrfs_ioctl_qgroup_create(file, argp); 5621 case BTRFS_IOC_QGROUP_LIMIT: 5622 return btrfs_ioctl_qgroup_limit(file, argp); 5623 case BTRFS_IOC_QUOTA_RESCAN: 5624 return btrfs_ioctl_quota_rescan(file, argp); 5625 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5626 return btrfs_ioctl_quota_rescan_status(file, argp); 5627 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5628 return btrfs_ioctl_quota_rescan_wait(file, argp); 5629 case BTRFS_IOC_DEV_REPLACE: 5630 return btrfs_ioctl_dev_replace(fs_info, argp); 5631 case BTRFS_IOC_GET_FSLABEL: 5632 return btrfs_ioctl_get_fslabel(file, argp); 5633 case BTRFS_IOC_SET_FSLABEL: 5634 return btrfs_ioctl_set_fslabel(file, argp); 5635 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5636 return btrfs_ioctl_get_supported_features(argp); 5637 case BTRFS_IOC_GET_FEATURES: 5638 return btrfs_ioctl_get_features(file, argp); 5639 case BTRFS_IOC_SET_FEATURES: 5640 return btrfs_ioctl_set_features(file, argp); 5641 } 5642 5643 return -ENOTTY; 5644 } 5645 5646 #ifdef CONFIG_COMPAT 5647 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5648 { 5649 /* 5650 * These all access 32-bit values anyway so no further 5651 * handling is necessary. 5652 */ 5653 switch (cmd) { 5654 case FS_IOC32_GETFLAGS: 5655 cmd = FS_IOC_GETFLAGS; 5656 break; 5657 case FS_IOC32_SETFLAGS: 5658 cmd = FS_IOC_SETFLAGS; 5659 break; 5660 case FS_IOC32_GETVERSION: 5661 cmd = FS_IOC_GETVERSION; 5662 break; 5663 } 5664 5665 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5666 } 5667 #endif 5668