xref: /linux/fs/btrfs/ioctl.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 						unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = inode->flags;
140 	u32 ro_flags = inode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 	unsigned int new_fl = 0;
173 
174 	if (inode->flags & BTRFS_INODE_SYNC)
175 		new_fl |= S_SYNC;
176 	if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 		new_fl |= S_IMMUTABLE;
178 	if (inode->flags & BTRFS_INODE_APPEND)
179 		new_fl |= S_APPEND;
180 	if (inode->flags & BTRFS_INODE_NOATIME)
181 		new_fl |= S_NOATIME;
182 	if (inode->flags & BTRFS_INODE_DIRSYNC)
183 		new_fl |= S_DIRSYNC;
184 	if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 		new_fl |= S_VERITY;
186 
187 	set_mask_bits(&inode->vfs_inode.i_flags,
188 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 		      S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 		      FS_NOATIME_FL | FS_NODUMP_FL | \
200 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
201 		      FS_NOCOMP_FL | FS_COMPR_FL |
202 		      FS_NOCOW_FL))
203 		return -EOPNOTSUPP;
204 
205 	/* COMPR and NOCOMP on new/old are valid */
206 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 		return -EINVAL;
208 
209 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 		return -EINVAL;
211 
212 	/* NOCOW and compression options are mutually exclusive */
213 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 		return -EINVAL;
215 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 				    unsigned int flags)
223 {
224 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 		return -EPERM;
226 
227 	return 0;
228 }
229 
230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 		return -ENAMETOOLONG;
234 	return 0;
235 }
236 
237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 		return -ENAMETOOLONG;
241 	return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
248 int btrfs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
249 {
250 	const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251 
252 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 	return 0;
254 }
255 
256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 		       struct dentry *dentry, struct file_kattr *fa)
258 {
259 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 	struct btrfs_root *root = inode->root;
261 	struct btrfs_fs_info *fs_info = root->fs_info;
262 	struct btrfs_trans_handle *trans;
263 	unsigned int fsflags, old_fsflags;
264 	int ret;
265 	const char *comp = NULL;
266 	u32 inode_flags;
267 
268 	if (btrfs_root_readonly(root))
269 		return -EROFS;
270 
271 	if (fileattr_has_fsx(fa))
272 		return -EOPNOTSUPP;
273 
274 	fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 	old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 	ret = check_fsflags(old_fsflags, fsflags);
277 	if (ret)
278 		return ret;
279 
280 	ret = check_fsflags_compatible(fs_info, fsflags);
281 	if (ret)
282 		return ret;
283 
284 	inode_flags = inode->flags;
285 	if (fsflags & FS_SYNC_FL)
286 		inode_flags |= BTRFS_INODE_SYNC;
287 	else
288 		inode_flags &= ~BTRFS_INODE_SYNC;
289 	if (fsflags & FS_IMMUTABLE_FL)
290 		inode_flags |= BTRFS_INODE_IMMUTABLE;
291 	else
292 		inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 	if (fsflags & FS_APPEND_FL)
294 		inode_flags |= BTRFS_INODE_APPEND;
295 	else
296 		inode_flags &= ~BTRFS_INODE_APPEND;
297 	if (fsflags & FS_NODUMP_FL)
298 		inode_flags |= BTRFS_INODE_NODUMP;
299 	else
300 		inode_flags &= ~BTRFS_INODE_NODUMP;
301 	if (fsflags & FS_NOATIME_FL)
302 		inode_flags |= BTRFS_INODE_NOATIME;
303 	else
304 		inode_flags &= ~BTRFS_INODE_NOATIME;
305 
306 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 	if (!fa->flags_valid) {
308 		/* 1 item for the inode */
309 		trans = btrfs_start_transaction(root, 1);
310 		if (IS_ERR(trans))
311 			return PTR_ERR(trans);
312 		goto update_flags;
313 	}
314 
315 	if (fsflags & FS_DIRSYNC_FL)
316 		inode_flags |= BTRFS_INODE_DIRSYNC;
317 	else
318 		inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 	if (fsflags & FS_NOCOW_FL) {
320 		if (S_ISREG(inode->vfs_inode.i_mode)) {
321 			/*
322 			 * It's safe to turn csums off here, no extents exist.
323 			 * Otherwise we want the flag to reflect the real COW
324 			 * status of the file and will not set it.
325 			 */
326 			if (inode->vfs_inode.i_size == 0)
327 				inode_flags |= BTRFS_INODE_NODATACOW |
328 					       BTRFS_INODE_NODATASUM;
329 		} else {
330 			inode_flags |= BTRFS_INODE_NODATACOW;
331 		}
332 	} else {
333 		/*
334 		 * Revert back under same assumptions as above
335 		 */
336 		if (S_ISREG(inode->vfs_inode.i_mode)) {
337 			if (inode->vfs_inode.i_size == 0)
338 				inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 						 BTRFS_INODE_NODATASUM);
340 		} else {
341 			inode_flags &= ~BTRFS_INODE_NODATACOW;
342 		}
343 	}
344 
345 	/*
346 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 	 * flag may be changed automatically if compression code won't make
348 	 * things smaller.
349 	 */
350 	if (fsflags & FS_NOCOMP_FL) {
351 		inode_flags &= ~BTRFS_INODE_COMPRESS;
352 		inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 	} else if (fsflags & FS_COMPR_FL) {
354 
355 		if (IS_SWAPFILE(&inode->vfs_inode))
356 			return -ETXTBSY;
357 
358 		inode_flags |= BTRFS_INODE_COMPRESS;
359 		inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360 
361 		comp = btrfs_compress_type2str(fs_info->compress_type);
362 		if (!comp || comp[0] == 0)
363 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 	} else {
365 		inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 	}
367 
368 	/*
369 	 * 1 for inode item
370 	 * 2 for properties
371 	 */
372 	trans = btrfs_start_transaction(root, 3);
373 	if (IS_ERR(trans))
374 		return PTR_ERR(trans);
375 
376 	if (comp) {
377 		ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 				     comp, strlen(comp), 0);
379 		if (unlikely(ret)) {
380 			btrfs_abort_transaction(trans, ret);
381 			goto out_end_trans;
382 		}
383 	} else {
384 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 		if (unlikely(ret && ret != -ENODATA)) {
386 			btrfs_abort_transaction(trans, ret);
387 			goto out_end_trans;
388 		}
389 	}
390 
391 update_flags:
392 	inode->flags = inode_flags;
393 	btrfs_update_inode_mapping_flags(inode);
394 	btrfs_sync_inode_flags_to_i_flags(inode);
395 	inode_inc_iversion(&inode->vfs_inode);
396 	inode_set_ctime_current(&inode->vfs_inode);
397 	ret = btrfs_update_inode(trans, inode);
398 
399  out_end_trans:
400 	btrfs_end_transaction(trans);
401 	return ret;
402 }
403 
404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 	return put_user(inode->i_generation, arg);
407 }
408 
409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 					void __user *arg)
411 {
412 	struct btrfs_device *device;
413 	struct fstrim_range range;
414 	u64 minlen = ULLONG_MAX;
415 	u64 num_devices = 0;
416 	int ret;
417 
418 	if (!capable(CAP_SYS_ADMIN))
419 		return -EPERM;
420 
421 	/*
422 	 * btrfs_trim_block_group() depends on space cache, which is not
423 	 * available in zoned filesystem. So, disallow fitrim on a zoned
424 	 * filesystem for now.
425 	 */
426 	if (btrfs_is_zoned(fs_info))
427 		return -EOPNOTSUPP;
428 
429 	/*
430 	 * If the fs is mounted with nologreplay, which requires it to be
431 	 * mounted in RO mode as well, we can not allow discard on free space
432 	 * inside block groups, because log trees refer to extents that are not
433 	 * pinned in a block group's free space cache (pinning the extents is
434 	 * precisely the first phase of replaying a log tree).
435 	 */
436 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 		return -EROFS;
438 
439 	rcu_read_lock();
440 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 				dev_list) {
442 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 			continue;
444 		num_devices++;
445 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 				    minlen);
447 	}
448 	rcu_read_unlock();
449 
450 	if (!num_devices)
451 		return -EOPNOTSUPP;
452 	if (copy_from_user(&range, arg, sizeof(range)))
453 		return -EFAULT;
454 
455 	/*
456 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
457 	 * block group is in the logical address space, which can be any
458 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
459 	 */
460 	if (range.len < fs_info->sectorsize)
461 		return -EINVAL;
462 
463 	range.minlen = max(range.minlen, minlen);
464 	ret = btrfs_trim_fs(fs_info, &range);
465 
466 	if (copy_to_user(arg, &range, sizeof(range)))
467 		return -EFAULT;
468 
469 	return ret;
470 }
471 
472 /*
473  * Calculate the number of transaction items to reserve for creating a subvolume
474  * or snapshot, not including the inode, directory entries, or parent directory.
475  */
476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 	/*
479 	 * 1 to add root block
480 	 * 1 to add root item
481 	 * 1 to add root ref
482 	 * 1 to add root backref
483 	 * 1 to add UUID item
484 	 * 1 to add qgroup info
485 	 * 1 to add qgroup limit
486 	 *
487 	 * Ideally the last two would only be accounted if qgroups are enabled,
488 	 * but that can change between now and the time we would insert them.
489 	 */
490 	unsigned int num_items = 7;
491 
492 	if (inherit) {
493 		/* 2 to add qgroup relations for each inherited qgroup */
494 		num_items += 2 * inherit->num_qgroups;
495 	}
496 	return num_items;
497 }
498 
499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 				  struct inode *dir, struct dentry *dentry,
501 				  struct btrfs_qgroup_inherit *inherit)
502 {
503 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 	struct btrfs_trans_handle *trans;
505 	struct btrfs_key key;
506 	struct btrfs_root_item *root_item;
507 	struct btrfs_inode_item *inode_item;
508 	struct extent_buffer *leaf;
509 	struct btrfs_root *root = BTRFS_I(dir)->root;
510 	struct btrfs_root *new_root;
511 	struct btrfs_block_rsv block_rsv;
512 	struct timespec64 cur_time = current_time(dir);
513 	struct btrfs_new_inode_args new_inode_args = {
514 		.dir = dir,
515 		.dentry = dentry,
516 		.subvol = true,
517 	};
518 	unsigned int trans_num_items;
519 	int ret;
520 	dev_t anon_dev;
521 	u64 objectid;
522 	u64 qgroup_reserved = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		goto out_root_item;
531 
532 	/*
533 	 * Don't create subvolume whose level is not zero. Or qgroup will be
534 	 * screwed up since it assumes subvolume qgroup's level to be 0.
535 	 */
536 	if (btrfs_qgroup_level(objectid)) {
537 		ret = -ENOSPC;
538 		goto out_root_item;
539 	}
540 
541 	ret = get_anon_bdev(&anon_dev);
542 	if (ret < 0)
543 		goto out_root_item;
544 
545 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
546 	if (!new_inode_args.inode) {
547 		ret = -ENOMEM;
548 		goto out_anon_dev;
549 	}
550 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
551 	if (ret)
552 		goto out_inode;
553 	trans_num_items += create_subvol_num_items(inherit);
554 
555 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
556 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
557 					       trans_num_items, false);
558 	if (ret)
559 		goto out_new_inode_args;
560 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
561 
562 	trans = btrfs_start_transaction(root, 0);
563 	if (IS_ERR(trans)) {
564 		ret = PTR_ERR(trans);
565 		goto out_release_rsv;
566 	}
567 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
568 	qgroup_reserved = 0;
569 	trans->block_rsv = &block_rsv;
570 	trans->bytes_reserved = block_rsv.size;
571 
572 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
573 	if (ret)
574 		goto out;
575 
576 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
577 				      0, BTRFS_NESTING_NORMAL);
578 	if (IS_ERR(leaf)) {
579 		ret = PTR_ERR(leaf);
580 		goto out;
581 	}
582 
583 	btrfs_mark_buffer_dirty(trans, leaf);
584 
585 	inode_item = &root_item->inode;
586 	btrfs_set_stack_inode_generation(inode_item, 1);
587 	btrfs_set_stack_inode_size(inode_item, 3);
588 	btrfs_set_stack_inode_nlink(inode_item, 1);
589 	btrfs_set_stack_inode_nbytes(inode_item,
590 				     fs_info->nodesize);
591 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
592 
593 	btrfs_set_root_flags(root_item, 0);
594 	btrfs_set_root_limit(root_item, 0);
595 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
596 
597 	btrfs_set_root_bytenr(root_item, leaf->start);
598 	btrfs_set_root_generation(root_item, trans->transid);
599 	btrfs_set_root_level(root_item, 0);
600 	btrfs_set_root_refs(root_item, 1);
601 	btrfs_set_root_used(root_item, leaf->len);
602 	btrfs_set_root_last_snapshot(root_item, 0);
603 
604 	btrfs_set_root_generation_v2(root_item,
605 			btrfs_root_generation(root_item));
606 	generate_random_guid(root_item->uuid);
607 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
608 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
609 	root_item->ctime = root_item->otime;
610 	btrfs_set_root_ctransid(root_item, trans->transid);
611 	btrfs_set_root_otransid(root_item, trans->transid);
612 
613 	btrfs_tree_unlock(leaf);
614 
615 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
616 
617 	key.objectid = objectid;
618 	key.type = BTRFS_ROOT_ITEM_KEY;
619 	key.offset = 0;
620 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
621 				root_item);
622 	if (ret) {
623 		int ret2;
624 
625 		/*
626 		 * Since we don't abort the transaction in this case, free the
627 		 * tree block so that we don't leak space and leave the
628 		 * filesystem in an inconsistent state (an extent item in the
629 		 * extent tree with a backreference for a root that does not
630 		 * exists).
631 		 */
632 		btrfs_tree_lock(leaf);
633 		btrfs_clear_buffer_dirty(trans, leaf);
634 		btrfs_tree_unlock(leaf);
635 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
636 		if (unlikely(ret2 < 0))
637 			btrfs_abort_transaction(trans, ret2);
638 		free_extent_buffer(leaf);
639 		goto out;
640 	}
641 
642 	free_extent_buffer(leaf);
643 	leaf = NULL;
644 
645 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
646 	if (IS_ERR(new_root)) {
647 		ret = PTR_ERR(new_root);
648 		btrfs_abort_transaction(trans, ret);
649 		goto out;
650 	}
651 	/* anon_dev is owned by new_root now. */
652 	anon_dev = 0;
653 	BTRFS_I(new_inode_args.inode)->root = new_root;
654 	/* ... and new_root is owned by new_inode_args.inode now. */
655 
656 	ret = btrfs_record_root_in_trans(trans, new_root);
657 	if (unlikely(ret)) {
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
663 				  BTRFS_UUID_KEY_SUBVOL, objectid);
664 	if (unlikely(ret)) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	}
668 
669 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
670 
671 	ret = btrfs_create_new_inode(trans, &new_inode_args);
672 	if (unlikely(ret)) {
673 		btrfs_abort_transaction(trans, ret);
674 		goto out;
675 	}
676 
677 	d_instantiate_new(dentry, new_inode_args.inode);
678 	new_inode_args.inode = NULL;
679 
680 out:
681 	trans->block_rsv = NULL;
682 	trans->bytes_reserved = 0;
683 	btrfs_end_transaction(trans);
684 out_release_rsv:
685 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
686 	if (qgroup_reserved)
687 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
688 out_new_inode_args:
689 	btrfs_new_inode_args_destroy(&new_inode_args);
690 out_inode:
691 	iput(new_inode_args.inode);
692 out_anon_dev:
693 	if (anon_dev)
694 		free_anon_bdev(anon_dev);
695 out_root_item:
696 	kfree(root_item);
697 	return ret;
698 }
699 
700 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
701 			   struct dentry *dentry, bool readonly,
702 			   struct btrfs_qgroup_inherit *inherit)
703 {
704 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
705 	struct inode *inode;
706 	struct btrfs_pending_snapshot *pending_snapshot;
707 	unsigned int trans_num_items;
708 	struct btrfs_trans_handle *trans;
709 	struct btrfs_block_rsv *block_rsv;
710 	u64 qgroup_reserved = 0;
711 	int ret;
712 
713 	/* We do not support snapshotting right now. */
714 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
715 		btrfs_warn(fs_info,
716 			   "extent tree v2 doesn't support snapshotting yet");
717 		return -EOPNOTSUPP;
718 	}
719 
720 	if (btrfs_root_refs(&root->root_item) == 0)
721 		return -ENOENT;
722 
723 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
724 		return -EINVAL;
725 
726 	if (atomic_read(&root->nr_swapfiles)) {
727 		btrfs_warn(fs_info,
728 			   "cannot snapshot subvolume with active swapfile");
729 		return -ETXTBSY;
730 	}
731 
732 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
733 	if (!pending_snapshot)
734 		return -ENOMEM;
735 
736 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
737 	if (ret < 0)
738 		goto free_pending;
739 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
740 			GFP_KERNEL);
741 	pending_snapshot->path = btrfs_alloc_path();
742 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
743 		ret = -ENOMEM;
744 		goto free_pending;
745 	}
746 
747 	block_rsv = &pending_snapshot->block_rsv;
748 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
749 	/*
750 	 * 1 to add dir item
751 	 * 1 to add dir index
752 	 * 1 to update parent inode item
753 	 */
754 	trans_num_items = create_subvol_num_items(inherit) + 3;
755 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
756 					       trans_num_items, false);
757 	if (ret)
758 		goto free_pending;
759 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
760 
761 	pending_snapshot->dentry = dentry;
762 	pending_snapshot->root = root;
763 	pending_snapshot->readonly = readonly;
764 	pending_snapshot->dir = BTRFS_I(dir);
765 	pending_snapshot->inherit = inherit;
766 
767 	trans = btrfs_start_transaction(root, 0);
768 	if (IS_ERR(trans)) {
769 		ret = PTR_ERR(trans);
770 		goto fail;
771 	}
772 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
773 	if (ret) {
774 		btrfs_end_transaction(trans);
775 		goto fail;
776 	}
777 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
778 	qgroup_reserved = 0;
779 
780 	trans->pending_snapshot = pending_snapshot;
781 
782 	ret = btrfs_commit_transaction(trans);
783 	if (ret)
784 		goto fail;
785 
786 	ret = pending_snapshot->error;
787 	if (ret)
788 		goto fail;
789 
790 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
791 	if (ret)
792 		goto fail;
793 
794 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
795 	if (IS_ERR(inode)) {
796 		ret = PTR_ERR(inode);
797 		goto fail;
798 	}
799 
800 	d_instantiate(dentry, inode);
801 	ret = 0;
802 	pending_snapshot->anon_dev = 0;
803 fail:
804 	/* Prevent double freeing of anon_dev */
805 	if (ret && pending_snapshot->snap)
806 		pending_snapshot->snap->anon_dev = 0;
807 	btrfs_put_root(pending_snapshot->snap);
808 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
809 	if (qgroup_reserved)
810 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
811 free_pending:
812 	if (pending_snapshot->anon_dev)
813 		free_anon_bdev(pending_snapshot->anon_dev);
814 	kfree(pending_snapshot->root_item);
815 	btrfs_free_path(pending_snapshot->path);
816 	kfree(pending_snapshot);
817 
818 	return ret;
819 }
820 
821 /*  copy of may_delete in fs/namei.c()
822  *	Check whether we can remove a link victim from directory dir, check
823  *  whether the type of victim is right.
824  *  1. We can't do it if dir is read-only (done in permission())
825  *  2. We should have write and exec permissions on dir
826  *  3. We can't remove anything from append-only dir
827  *  4. We can't do anything with immutable dir (done in permission())
828  *  5. If the sticky bit on dir is set we should either
829  *	a. be owner of dir, or
830  *	b. be owner of victim, or
831  *	c. have CAP_FOWNER capability
832  *  6. If the victim is append-only or immutable we can't do anything with
833  *     links pointing to it.
834  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
835  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
836  *  9. We can't remove a root or mountpoint.
837  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
838  *     nfs_async_unlink().
839  */
840 
841 static int btrfs_may_delete(struct mnt_idmap *idmap,
842 			    struct inode *dir, struct dentry *victim, int isdir)
843 {
844 	int ret;
845 
846 	if (d_really_is_negative(victim))
847 		return -ENOENT;
848 
849 	/* The @victim is not inside @dir. */
850 	if (d_inode(victim->d_parent) != dir)
851 		return -EINVAL;
852 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
853 
854 	ret = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
855 	if (ret)
856 		return ret;
857 	if (IS_APPEND(dir))
858 		return -EPERM;
859 	if (check_sticky(idmap, dir, d_inode(victim)) ||
860 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
861 	    IS_SWAPFILE(d_inode(victim)))
862 		return -EPERM;
863 	if (isdir) {
864 		if (!d_is_dir(victim))
865 			return -ENOTDIR;
866 		if (IS_ROOT(victim))
867 			return -EBUSY;
868 	} else if (d_is_dir(victim))
869 		return -EISDIR;
870 	if (IS_DEADDIR(dir))
871 		return -ENOENT;
872 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
873 		return -EBUSY;
874 	return 0;
875 }
876 
877 /* copy of may_create in fs/namei.c() */
878 static inline int btrfs_may_create(struct mnt_idmap *idmap,
879 				   struct inode *dir, const struct dentry *child)
880 {
881 	if (d_really_is_positive(child))
882 		return -EEXIST;
883 	if (IS_DEADDIR(dir))
884 		return -ENOENT;
885 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
886 		return -EOVERFLOW;
887 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
888 }
889 
890 /*
891  * Create a new subvolume below @parent.  This is largely modeled after
892  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
893  * inside this filesystem so it's quite a bit simpler.
894  */
895 static noinline int btrfs_mksubvol(struct dentry *parent,
896 				   struct mnt_idmap *idmap,
897 				   struct qstr *qname, struct btrfs_root *snap_src,
898 				   bool readonly,
899 				   struct btrfs_qgroup_inherit *inherit)
900 {
901 	struct inode *dir = d_inode(parent);
902 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
903 	struct dentry *dentry;
904 	struct fscrypt_str name_str = FSTR_INIT((char *)qname->name, qname->len);
905 	int ret;
906 
907 	dentry = start_creating_killable(idmap, parent, qname);
908 	if (IS_ERR(dentry))
909 		return PTR_ERR(dentry);
910 
911 	ret = btrfs_may_create(idmap, dir, dentry);
912 	if (ret)
913 		goto out_dput;
914 
915 	/*
916 	 * even if this name doesn't exist, we may get hash collisions.
917 	 * check for them now when we can safely fail
918 	 */
919 	ret = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, &name_str);
920 	if (ret)
921 		goto out_dput;
922 
923 	down_read(&fs_info->subvol_sem);
924 
925 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
926 		goto out_up_read;
927 
928 	if (snap_src)
929 		ret = create_snapshot(snap_src, dir, dentry, readonly, inherit);
930 	else
931 		ret = create_subvol(idmap, dir, dentry, inherit);
932 
933 	if (!ret)
934 		fsnotify_mkdir(dir, dentry);
935 out_up_read:
936 	up_read(&fs_info->subvol_sem);
937 out_dput:
938 	end_creating(dentry);
939 	return ret;
940 }
941 
942 static noinline int btrfs_mksnapshot(struct dentry *parent,
943 				   struct mnt_idmap *idmap,
944 				   struct qstr *qname,
945 				   struct btrfs_root *root,
946 				   bool readonly,
947 				   struct btrfs_qgroup_inherit *inherit)
948 {
949 	int ret;
950 
951 	/*
952 	 * Force new buffered writes to reserve space even when NOCOW is
953 	 * possible. This is to avoid later writeback (running delalloc) to
954 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
955 	 */
956 	btrfs_drew_read_lock(&root->snapshot_lock);
957 
958 	ret = btrfs_start_delalloc_snapshot(root, false);
959 	if (ret)
960 		goto out;
961 
962 	/*
963 	 * All previous writes have started writeback in NOCOW mode, so now
964 	 * we force future writes to fallback to COW mode during snapshot
965 	 * creation.
966 	 */
967 	atomic_inc(&root->snapshot_force_cow);
968 
969 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
970 
971 	ret = btrfs_mksubvol(parent, idmap, qname, root, readonly, inherit);
972 
973 	atomic_dec(&root->snapshot_force_cow);
974 out:
975 	btrfs_drew_read_unlock(&root->snapshot_lock);
976 	return ret;
977 }
978 
979 /*
980  * Try to start exclusive operation @type or cancel it if it's running.
981  *
982  * Return:
983  *   0        - normal mode, newly claimed op started
984  *  >0        - normal mode, something else is running,
985  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
986  * ECANCELED  - cancel mode, successful cancel
987  * ENOTCONN   - cancel mode, operation not running anymore
988  */
989 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
990 			enum btrfs_exclusive_operation type, bool cancel)
991 {
992 	if (!cancel) {
993 		/* Start normal op */
994 		if (!btrfs_exclop_start(fs_info, type))
995 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
996 		/* Exclusive operation is now claimed */
997 		return 0;
998 	}
999 
1000 	/* Cancel running op */
1001 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1002 		/*
1003 		 * This blocks any exclop finish from setting it to NONE, so we
1004 		 * request cancellation. Either it runs and we will wait for it,
1005 		 * or it has finished and no waiting will happen.
1006 		 */
1007 		atomic_inc(&fs_info->reloc_cancel_req);
1008 		btrfs_exclop_start_unlock(fs_info);
1009 
1010 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1011 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1012 				    TASK_INTERRUPTIBLE);
1013 
1014 		return -ECANCELED;
1015 	}
1016 
1017 	/* Something else is running or none */
1018 	return -ENOTCONN;
1019 }
1020 
1021 static noinline int btrfs_ioctl_resize(struct file *file,
1022 					void __user *arg)
1023 {
1024 	BTRFS_DEV_LOOKUP_ARGS(args);
1025 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1026 	struct btrfs_fs_info *fs_info = root->fs_info;
1027 	u64 new_size;
1028 	u64 old_size;
1029 	u64 devid = 1;
1030 	struct btrfs_ioctl_vol_args *vol_args;
1031 	struct btrfs_device *device = NULL;
1032 	char *sizestr;
1033 	char *devstr = NULL;
1034 	int ret = 0;
1035 	int mod = 0;
1036 	bool cancel;
1037 
1038 	if (!capable(CAP_SYS_ADMIN))
1039 		return -EPERM;
1040 
1041 	ret = mnt_want_write_file(file);
1042 	if (ret)
1043 		return ret;
1044 
1045 	/*
1046 	 * Read the arguments before checking exclusivity to be able to
1047 	 * distinguish regular resize and cancel
1048 	 */
1049 	vol_args = memdup_user(arg, sizeof(*vol_args));
1050 	if (IS_ERR(vol_args)) {
1051 		ret = PTR_ERR(vol_args);
1052 		goto out_drop;
1053 	}
1054 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1055 	if (ret < 0)
1056 		goto out_free;
1057 
1058 	sizestr = vol_args->name;
1059 	cancel = (strcmp("cancel", sizestr) == 0);
1060 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1061 	if (ret)
1062 		goto out_free;
1063 	/* Exclusive operation is now claimed */
1064 
1065 	devstr = strchr(sizestr, ':');
1066 	if (devstr) {
1067 		sizestr = devstr + 1;
1068 		*devstr = '\0';
1069 		devstr = vol_args->name;
1070 		ret = kstrtoull(devstr, 10, &devid);
1071 		if (ret)
1072 			goto out_finish;
1073 		if (!devid) {
1074 			ret = -EINVAL;
1075 			goto out_finish;
1076 		}
1077 		btrfs_info(fs_info, "resizing devid %llu", devid);
1078 	}
1079 
1080 	args.devid = devid;
1081 	device = btrfs_find_device(fs_info->fs_devices, &args);
1082 	if (!device) {
1083 		btrfs_info(fs_info, "resizer unable to find device %llu",
1084 			   devid);
1085 		ret = -ENODEV;
1086 		goto out_finish;
1087 	}
1088 
1089 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1090 		btrfs_info(fs_info,
1091 			   "resizer unable to apply on readonly device %llu",
1092 		       devid);
1093 		ret = -EPERM;
1094 		goto out_finish;
1095 	}
1096 
1097 	if (!strcmp(sizestr, "max"))
1098 		new_size = bdev_nr_bytes(device->bdev);
1099 	else {
1100 		char *retptr;
1101 
1102 		if (sizestr[0] == '-') {
1103 			mod = -1;
1104 			sizestr++;
1105 		} else if (sizestr[0] == '+') {
1106 			mod = 1;
1107 			sizestr++;
1108 		}
1109 		new_size = memparse(sizestr, &retptr);
1110 		if (*retptr != '\0' || new_size == 0) {
1111 			ret = -EINVAL;
1112 			goto out_finish;
1113 		}
1114 	}
1115 
1116 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1117 		ret = -EPERM;
1118 		goto out_finish;
1119 	}
1120 
1121 	old_size = btrfs_device_get_total_bytes(device);
1122 
1123 	if (mod < 0) {
1124 		if (new_size > old_size) {
1125 			ret = -EINVAL;
1126 			goto out_finish;
1127 		}
1128 		new_size = old_size - new_size;
1129 	} else if (mod > 0) {
1130 		if (new_size > ULLONG_MAX - old_size) {
1131 			ret = -ERANGE;
1132 			goto out_finish;
1133 		}
1134 		new_size = old_size + new_size;
1135 	}
1136 
1137 	if (new_size < SZ_256M) {
1138 		ret = -EINVAL;
1139 		goto out_finish;
1140 	}
1141 	if (new_size > bdev_nr_bytes(device->bdev)) {
1142 		ret = -EFBIG;
1143 		goto out_finish;
1144 	}
1145 
1146 	new_size = round_down(new_size, fs_info->sectorsize);
1147 
1148 	if (new_size > old_size) {
1149 		struct btrfs_trans_handle *trans;
1150 
1151 		trans = btrfs_start_transaction(root, 0);
1152 		if (IS_ERR(trans)) {
1153 			ret = PTR_ERR(trans);
1154 			goto out_finish;
1155 		}
1156 		ret = btrfs_grow_device(trans, device, new_size);
1157 		btrfs_commit_transaction(trans);
1158 	} else if (new_size < old_size) {
1159 		ret = btrfs_shrink_device(device, new_size);
1160 	} /* equal, nothing need to do */
1161 
1162 	if (ret == 0 && new_size != old_size)
1163 		btrfs_info(fs_info,
1164 			"resize device %s (devid %llu) from %llu to %llu",
1165 			btrfs_dev_name(device), device->devid,
1166 			old_size, new_size);
1167 out_finish:
1168 	btrfs_exclop_finish(fs_info);
1169 out_free:
1170 	kfree(vol_args);
1171 out_drop:
1172 	mnt_drop_write_file(file);
1173 	return ret;
1174 }
1175 
1176 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1177 				struct mnt_idmap *idmap,
1178 				const char *name, unsigned long fd, bool subvol,
1179 				bool readonly,
1180 				struct btrfs_qgroup_inherit *inherit)
1181 {
1182 	int ret = 0;
1183 	struct qstr qname = QSTR_INIT(name, strlen(name));
1184 
1185 	if (!S_ISDIR(file_inode(file)->i_mode))
1186 		return -ENOTDIR;
1187 
1188 	ret = mnt_want_write_file(file);
1189 	if (ret)
1190 		goto out;
1191 
1192 	if (strchr(name, '/')) {
1193 		ret = -EINVAL;
1194 		goto out_drop_write;
1195 	}
1196 
1197 	if (qname.name[0] == '.' &&
1198 	   (qname.len == 1 || (qname.name[1] == '.' && qname.len == 2))) {
1199 		ret = -EEXIST;
1200 		goto out_drop_write;
1201 	}
1202 
1203 	if (subvol) {
1204 		ret = btrfs_mksubvol(file_dentry(file), idmap, &qname, NULL,
1205 				     readonly, inherit);
1206 	} else {
1207 		CLASS(fd, src)(fd);
1208 		struct inode *src_inode;
1209 		if (fd_empty(src)) {
1210 			ret = -EINVAL;
1211 			goto out_drop_write;
1212 		}
1213 
1214 		src_inode = file_inode(fd_file(src));
1215 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1216 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1217 				   "Snapshot src from another FS");
1218 			ret = -EXDEV;
1219 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1220 			/*
1221 			 * Subvolume creation is not restricted, but snapshots
1222 			 * are limited to own subvolumes only
1223 			 */
1224 			ret = -EPERM;
1225 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1226 			/*
1227 			 * Snapshots must be made with the src_inode referring
1228 			 * to the subvolume inode, otherwise the permission
1229 			 * checking above is useless because we may have
1230 			 * permission on a lower directory but not the subvol
1231 			 * itself.
1232 			 */
1233 			ret = -EINVAL;
1234 		} else {
1235 			ret = btrfs_mksnapshot(file_dentry(file), idmap, &qname,
1236 					       BTRFS_I(src_inode)->root,
1237 					       readonly, inherit);
1238 		}
1239 	}
1240 out_drop_write:
1241 	mnt_drop_write_file(file);
1242 out:
1243 	return ret;
1244 }
1245 
1246 static noinline int btrfs_ioctl_snap_create(struct file *file,
1247 					    void __user *arg, bool subvol)
1248 {
1249 	struct btrfs_ioctl_vol_args *vol_args;
1250 	int ret;
1251 
1252 	if (!S_ISDIR(file_inode(file)->i_mode))
1253 		return -ENOTDIR;
1254 
1255 	vol_args = memdup_user(arg, sizeof(*vol_args));
1256 	if (IS_ERR(vol_args))
1257 		return PTR_ERR(vol_args);
1258 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1259 	if (ret < 0)
1260 		goto out;
1261 
1262 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1263 					vol_args->name, vol_args->fd, subvol,
1264 					false, NULL);
1265 
1266 out:
1267 	kfree(vol_args);
1268 	return ret;
1269 }
1270 
1271 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1272 					       void __user *arg, bool subvol)
1273 {
1274 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1275 	int ret;
1276 	bool readonly = false;
1277 	struct btrfs_qgroup_inherit *inherit = NULL;
1278 
1279 	if (!S_ISDIR(file_inode(file)->i_mode))
1280 		return -ENOTDIR;
1281 
1282 	vol_args = memdup_user(arg, sizeof(*vol_args));
1283 	if (IS_ERR(vol_args))
1284 		return PTR_ERR(vol_args);
1285 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1286 	if (ret < 0)
1287 		goto free_args;
1288 
1289 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1290 		ret = -EOPNOTSUPP;
1291 		goto free_args;
1292 	}
1293 
1294 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1295 		readonly = true;
1296 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1297 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1298 
1299 		if (vol_args->size < sizeof(*inherit) ||
1300 		    vol_args->size > PAGE_SIZE) {
1301 			ret = -EINVAL;
1302 			goto free_args;
1303 		}
1304 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1305 		if (IS_ERR(inherit)) {
1306 			ret = PTR_ERR(inherit);
1307 			goto free_args;
1308 		}
1309 
1310 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1311 		if (ret < 0)
1312 			goto free_inherit;
1313 	}
1314 
1315 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1316 					vol_args->name, vol_args->fd, subvol,
1317 					readonly, inherit);
1318 	if (ret)
1319 		goto free_inherit;
1320 free_inherit:
1321 	kfree(inherit);
1322 free_args:
1323 	kfree(vol_args);
1324 	return ret;
1325 }
1326 
1327 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1328 						void __user *arg)
1329 {
1330 	struct btrfs_root *root = inode->root;
1331 	struct btrfs_fs_info *fs_info = root->fs_info;
1332 	int ret = 0;
1333 	u64 flags = 0;
1334 
1335 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1336 		return -EINVAL;
1337 
1338 	down_read(&fs_info->subvol_sem);
1339 	if (btrfs_root_readonly(root))
1340 		flags |= BTRFS_SUBVOL_RDONLY;
1341 	up_read(&fs_info->subvol_sem);
1342 
1343 	if (copy_to_user(arg, &flags, sizeof(flags)))
1344 		ret = -EFAULT;
1345 
1346 	return ret;
1347 }
1348 
1349 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1350 					      void __user *arg)
1351 {
1352 	struct inode *inode = file_inode(file);
1353 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1354 	struct btrfs_root *root = BTRFS_I(inode)->root;
1355 	struct btrfs_trans_handle *trans;
1356 	u64 root_flags;
1357 	u64 flags;
1358 	int ret = 0;
1359 
1360 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1361 		return -EPERM;
1362 
1363 	ret = mnt_want_write_file(file);
1364 	if (ret)
1365 		goto out;
1366 
1367 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1368 		ret = -EINVAL;
1369 		goto out_drop_write;
1370 	}
1371 
1372 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1373 		ret = -EFAULT;
1374 		goto out_drop_write;
1375 	}
1376 
1377 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1378 		ret = -EOPNOTSUPP;
1379 		goto out_drop_write;
1380 	}
1381 
1382 	down_write(&fs_info->subvol_sem);
1383 
1384 	/* nothing to do */
1385 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1386 		goto out_drop_sem;
1387 
1388 	root_flags = btrfs_root_flags(&root->root_item);
1389 	if (flags & BTRFS_SUBVOL_RDONLY) {
1390 		btrfs_set_root_flags(&root->root_item,
1391 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1392 	} else {
1393 		/*
1394 		 * Block RO -> RW transition if this subvolume is involved in
1395 		 * send
1396 		 */
1397 		spin_lock(&root->root_item_lock);
1398 		if (root->send_in_progress == 0) {
1399 			btrfs_set_root_flags(&root->root_item,
1400 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1401 			spin_unlock(&root->root_item_lock);
1402 		} else {
1403 			spin_unlock(&root->root_item_lock);
1404 			btrfs_warn(fs_info,
1405 				   "Attempt to set subvolume %llu read-write during send",
1406 				   btrfs_root_id(root));
1407 			ret = -EPERM;
1408 			goto out_drop_sem;
1409 		}
1410 	}
1411 
1412 	trans = btrfs_start_transaction(root, 1);
1413 	if (IS_ERR(trans)) {
1414 		ret = PTR_ERR(trans);
1415 		goto out_reset;
1416 	}
1417 
1418 	ret = btrfs_update_root(trans, fs_info->tree_root,
1419 				&root->root_key, &root->root_item);
1420 	if (ret < 0) {
1421 		btrfs_end_transaction(trans);
1422 		goto out_reset;
1423 	}
1424 
1425 	ret = btrfs_commit_transaction(trans);
1426 
1427 out_reset:
1428 	if (ret)
1429 		btrfs_set_root_flags(&root->root_item, root_flags);
1430 out_drop_sem:
1431 	up_write(&fs_info->subvol_sem);
1432 out_drop_write:
1433 	mnt_drop_write_file(file);
1434 out:
1435 	return ret;
1436 }
1437 
1438 static noinline bool key_in_sk(const struct btrfs_key *key,
1439 			       const struct btrfs_ioctl_search_key *sk)
1440 {
1441 	struct btrfs_key test;
1442 	int ret;
1443 
1444 	test.objectid = sk->min_objectid;
1445 	test.type = sk->min_type;
1446 	test.offset = sk->min_offset;
1447 
1448 	ret = btrfs_comp_cpu_keys(key, &test);
1449 	if (ret < 0)
1450 		return false;
1451 
1452 	test.objectid = sk->max_objectid;
1453 	test.type = sk->max_type;
1454 	test.offset = sk->max_offset;
1455 
1456 	ret = btrfs_comp_cpu_keys(key, &test);
1457 	if (ret > 0)
1458 		return false;
1459 	return true;
1460 }
1461 
1462 static noinline int copy_to_sk(struct btrfs_path *path,
1463 			       struct btrfs_key *key,
1464 			       const struct btrfs_ioctl_search_key *sk,
1465 			       u64 *buf_size,
1466 			       char __user *ubuf,
1467 			       unsigned long *sk_offset,
1468 			       int *num_found)
1469 {
1470 	u64 found_transid;
1471 	struct extent_buffer *leaf;
1472 	struct btrfs_ioctl_search_header sh;
1473 	struct btrfs_key test;
1474 	unsigned long item_off;
1475 	unsigned long item_len;
1476 	int nritems;
1477 	int i;
1478 	int slot;
1479 	int ret = 0;
1480 
1481 	leaf = path->nodes[0];
1482 	slot = path->slots[0];
1483 	nritems = btrfs_header_nritems(leaf);
1484 
1485 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1486 		i = nritems;
1487 		goto advance_key;
1488 	}
1489 	found_transid = btrfs_header_generation(leaf);
1490 
1491 	for (i = slot; i < nritems; i++) {
1492 		item_off = btrfs_item_ptr_offset(leaf, i);
1493 		item_len = btrfs_item_size(leaf, i);
1494 
1495 		btrfs_item_key_to_cpu(leaf, key, i);
1496 		if (!key_in_sk(key, sk))
1497 			continue;
1498 
1499 		if (sizeof(sh) + item_len > *buf_size) {
1500 			if (*num_found) {
1501 				ret = 1;
1502 				goto out;
1503 			}
1504 
1505 			/*
1506 			 * return one empty item back for v1, which does not
1507 			 * handle -EOVERFLOW
1508 			 */
1509 
1510 			*buf_size = sizeof(sh) + item_len;
1511 			item_len = 0;
1512 			ret = -EOVERFLOW;
1513 		}
1514 
1515 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1516 			ret = 1;
1517 			goto out;
1518 		}
1519 
1520 		sh.objectid = key->objectid;
1521 		sh.type = key->type;
1522 		sh.offset = key->offset;
1523 		sh.len = item_len;
1524 		sh.transid = found_transid;
1525 
1526 		/*
1527 		 * Copy search result header. If we fault then loop again so we
1528 		 * can fault in the pages and -EFAULT there if there's a
1529 		 * problem. Otherwise we'll fault and then copy the buffer in
1530 		 * properly this next time through
1531 		 */
1532 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1533 			ret = 0;
1534 			goto out;
1535 		}
1536 
1537 		*sk_offset += sizeof(sh);
1538 
1539 		if (item_len) {
1540 			char __user *up = ubuf + *sk_offset;
1541 			/*
1542 			 * Copy the item, same behavior as above, but reset the
1543 			 * * sk_offset so we copy the full thing again.
1544 			 */
1545 			if (read_extent_buffer_to_user_nofault(leaf, up,
1546 						item_off, item_len)) {
1547 				ret = 0;
1548 				*sk_offset -= sizeof(sh);
1549 				goto out;
1550 			}
1551 
1552 			*sk_offset += item_len;
1553 		}
1554 		(*num_found)++;
1555 
1556 		if (ret) /* -EOVERFLOW from above */
1557 			goto out;
1558 
1559 		if (*num_found >= sk->nr_items) {
1560 			ret = 1;
1561 			goto out;
1562 		}
1563 	}
1564 advance_key:
1565 	ret = 0;
1566 	test.objectid = sk->max_objectid;
1567 	test.type = sk->max_type;
1568 	test.offset = sk->max_offset;
1569 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1570 		ret = 1;
1571 	else if (key->offset < (u64)-1)
1572 		key->offset++;
1573 	else if (key->type < (u8)-1) {
1574 		key->offset = 0;
1575 		key->type++;
1576 	} else if (key->objectid < (u64)-1) {
1577 		key->offset = 0;
1578 		key->type = 0;
1579 		key->objectid++;
1580 	} else
1581 		ret = 1;
1582 out:
1583 	/*
1584 	 *  0: all items from this leaf copied, continue with next
1585 	 *  1: * more items can be copied, but unused buffer is too small
1586 	 *     * all items were found
1587 	 *     Either way, it will stops the loop which iterates to the next
1588 	 *     leaf
1589 	 *  -EOVERFLOW: item was to large for buffer
1590 	 *  -EFAULT: could not copy extent buffer back to userspace
1591 	 */
1592 	return ret;
1593 }
1594 
1595 static noinline int search_ioctl(struct btrfs_root *root,
1596 				 struct btrfs_ioctl_search_key *sk,
1597 				 u64 *buf_size,
1598 				 char __user *ubuf)
1599 {
1600 	struct btrfs_fs_info *info = root->fs_info;
1601 	struct btrfs_key key;
1602 	struct btrfs_path *path;
1603 	int ret;
1604 	int num_found = 0;
1605 	unsigned long sk_offset = 0;
1606 
1607 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1608 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1609 		return -EOVERFLOW;
1610 	}
1611 
1612 	path = btrfs_alloc_path();
1613 	if (!path)
1614 		return -ENOMEM;
1615 
1616 	if (sk->tree_id == 0) {
1617 		/* Search the root that we got passed. */
1618 		root = btrfs_grab_root(root);
1619 	} else {
1620 		/* Look up the root from the arguments. */
1621 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1622 		if (IS_ERR(root)) {
1623 			btrfs_free_path(path);
1624 			return PTR_ERR(root);
1625 		}
1626 	}
1627 
1628 	key.objectid = sk->min_objectid;
1629 	key.type = sk->min_type;
1630 	key.offset = sk->min_offset;
1631 
1632 	while (1) {
1633 		/*
1634 		 * Ensure that the whole user buffer is faulted in at sub-page
1635 		 * granularity, otherwise the loop may live-lock.
1636 		 */
1637 		if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1638 			ret = -EFAULT;
1639 			break;
1640 		}
1641 
1642 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1643 		if (ret)
1644 			break;
1645 
1646 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1647 				 &sk_offset, &num_found);
1648 		btrfs_release_path(path);
1649 		if (ret)
1650 			break;
1651 
1652 	}
1653 	/* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1654 	if (ret > 0)
1655 		ret = 0;
1656 
1657 	sk->nr_items = num_found;
1658 	btrfs_put_root(root);
1659 	btrfs_free_path(path);
1660 	return ret;
1661 }
1662 
1663 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1664 					    void __user *argp)
1665 {
1666 	struct btrfs_ioctl_search_args __user *uargs = argp;
1667 	struct btrfs_ioctl_search_key sk;
1668 	int ret;
1669 	u64 buf_size;
1670 
1671 	if (!capable(CAP_SYS_ADMIN))
1672 		return -EPERM;
1673 
1674 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1675 		return -EFAULT;
1676 
1677 	buf_size = sizeof(uargs->buf);
1678 
1679 	ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1680 
1681 	/*
1682 	 * In the origin implementation an overflow is handled by returning a
1683 	 * search header with a len of zero, so reset ret.
1684 	 */
1685 	if (ret == -EOVERFLOW)
1686 		ret = 0;
1687 
1688 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1689 		ret = -EFAULT;
1690 	return ret;
1691 }
1692 
1693 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1694 					       void __user *argp)
1695 {
1696 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1697 	struct btrfs_ioctl_search_args_v2 args;
1698 	int ret;
1699 	u64 buf_size;
1700 	const u64 buf_limit = SZ_16M;
1701 
1702 	if (!capable(CAP_SYS_ADMIN))
1703 		return -EPERM;
1704 
1705 	/* copy search header and buffer size */
1706 	if (copy_from_user(&args, uarg, sizeof(args)))
1707 		return -EFAULT;
1708 
1709 	buf_size = args.buf_size;
1710 
1711 	/* limit result size to 16MB */
1712 	if (buf_size > buf_limit)
1713 		buf_size = buf_limit;
1714 
1715 	ret = search_ioctl(root, &args.key, &buf_size,
1716 			   (char __user *)(&uarg->buf[0]));
1717 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1718 		ret = -EFAULT;
1719 	else if (ret == -EOVERFLOW &&
1720 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1721 		ret = -EFAULT;
1722 
1723 	return ret;
1724 }
1725 
1726 /*
1727  * Search INODE_REFs to identify path name of 'dirid' directory
1728  * in a 'tree_id' tree. and sets path name to 'name'.
1729  */
1730 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1731 				u64 tree_id, u64 dirid, char *name)
1732 {
1733 	struct btrfs_root *root;
1734 	struct btrfs_key key;
1735 	char *ptr;
1736 	int ret = -1;
1737 	int slot;
1738 	int len;
1739 	int total_len = 0;
1740 	struct btrfs_inode_ref *iref;
1741 	struct extent_buffer *l;
1742 	struct btrfs_path *path;
1743 
1744 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1745 		name[0]='\0';
1746 		return 0;
1747 	}
1748 
1749 	path = btrfs_alloc_path();
1750 	if (!path)
1751 		return -ENOMEM;
1752 
1753 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1754 
1755 	root = btrfs_get_fs_root(info, tree_id, true);
1756 	if (IS_ERR(root)) {
1757 		ret = PTR_ERR(root);
1758 		root = NULL;
1759 		goto out;
1760 	}
1761 
1762 	key.objectid = dirid;
1763 	key.type = BTRFS_INODE_REF_KEY;
1764 	key.offset = (u64)-1;
1765 
1766 	while (1) {
1767 		ret = btrfs_search_backwards(root, &key, path);
1768 		if (ret < 0)
1769 			goto out;
1770 		else if (ret > 0) {
1771 			ret = -ENOENT;
1772 			goto out;
1773 		}
1774 
1775 		l = path->nodes[0];
1776 		slot = path->slots[0];
1777 
1778 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1779 		len = btrfs_inode_ref_name_len(l, iref);
1780 		ptr -= len + 1;
1781 		total_len += len + 1;
1782 		if (ptr < name) {
1783 			ret = -ENAMETOOLONG;
1784 			goto out;
1785 		}
1786 
1787 		*(ptr + len) = '/';
1788 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1789 
1790 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1791 			break;
1792 
1793 		btrfs_release_path(path);
1794 		key.objectid = key.offset;
1795 		key.offset = (u64)-1;
1796 		dirid = key.objectid;
1797 	}
1798 	memmove(name, ptr, total_len);
1799 	name[total_len] = '\0';
1800 	ret = 0;
1801 out:
1802 	btrfs_put_root(root);
1803 	btrfs_free_path(path);
1804 	return ret;
1805 }
1806 
1807 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1808 				struct inode *inode,
1809 				struct btrfs_ioctl_ino_lookup_user_args *args)
1810 {
1811 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1812 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1813 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1814 	u64 dirid = args->dirid;
1815 	unsigned long item_off;
1816 	unsigned long item_len;
1817 	struct btrfs_inode_ref *iref;
1818 	struct btrfs_root_ref *rref;
1819 	struct btrfs_root *root = NULL;
1820 	struct btrfs_path *path;
1821 	struct btrfs_key key, key2;
1822 	struct extent_buffer *leaf;
1823 	char *ptr;
1824 	int slot;
1825 	int len;
1826 	int total_len = 0;
1827 	int ret;
1828 
1829 	path = btrfs_alloc_path();
1830 	if (!path)
1831 		return -ENOMEM;
1832 
1833 	/*
1834 	 * If the bottom subvolume does not exist directly under upper_limit,
1835 	 * construct the path in from the bottom up.
1836 	 */
1837 	if (dirid != upper_limit) {
1838 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1839 
1840 		root = btrfs_get_fs_root(fs_info, treeid, true);
1841 		if (IS_ERR(root)) {
1842 			ret = PTR_ERR(root);
1843 			goto out;
1844 		}
1845 
1846 		key.objectid = dirid;
1847 		key.type = BTRFS_INODE_REF_KEY;
1848 		key.offset = (u64)-1;
1849 		while (1) {
1850 			struct btrfs_inode *temp_inode;
1851 
1852 			ret = btrfs_search_backwards(root, &key, path);
1853 			if (ret < 0)
1854 				goto out_put;
1855 			else if (ret > 0) {
1856 				ret = -ENOENT;
1857 				goto out_put;
1858 			}
1859 
1860 			leaf = path->nodes[0];
1861 			slot = path->slots[0];
1862 
1863 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1864 			len = btrfs_inode_ref_name_len(leaf, iref);
1865 			ptr -= len + 1;
1866 			total_len += len + 1;
1867 			if (ptr < args->path) {
1868 				ret = -ENAMETOOLONG;
1869 				goto out_put;
1870 			}
1871 
1872 			*(ptr + len) = '/';
1873 			read_extent_buffer(leaf, ptr,
1874 					(unsigned long)(iref + 1), len);
1875 
1876 			/* Check the read+exec permission of this directory */
1877 			ret = btrfs_previous_item(root, path, dirid,
1878 						  BTRFS_INODE_ITEM_KEY);
1879 			if (ret < 0) {
1880 				goto out_put;
1881 			} else if (ret > 0) {
1882 				ret = -ENOENT;
1883 				goto out_put;
1884 			}
1885 
1886 			leaf = path->nodes[0];
1887 			slot = path->slots[0];
1888 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1889 			if (key2.objectid != dirid) {
1890 				ret = -ENOENT;
1891 				goto out_put;
1892 			}
1893 
1894 			/*
1895 			 * We don't need the path anymore, so release it and
1896 			 * avoid deadlocks and lockdep warnings in case
1897 			 * btrfs_iget() needs to lookup the inode from its root
1898 			 * btree and lock the same leaf.
1899 			 */
1900 			btrfs_release_path(path);
1901 			temp_inode = btrfs_iget(key2.objectid, root);
1902 			if (IS_ERR(temp_inode)) {
1903 				ret = PTR_ERR(temp_inode);
1904 				goto out_put;
1905 			}
1906 			ret = inode_permission(idmap, &temp_inode->vfs_inode,
1907 					       MAY_READ | MAY_EXEC);
1908 			iput(&temp_inode->vfs_inode);
1909 			if (ret) {
1910 				ret = -EACCES;
1911 				goto out_put;
1912 			}
1913 
1914 			if (key.offset == upper_limit)
1915 				break;
1916 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1917 				ret = -EACCES;
1918 				goto out_put;
1919 			}
1920 
1921 			key.objectid = key.offset;
1922 			key.offset = (u64)-1;
1923 			dirid = key.objectid;
1924 		}
1925 
1926 		memmove(args->path, ptr, total_len);
1927 		args->path[total_len] = '\0';
1928 		btrfs_put_root(root);
1929 		root = NULL;
1930 		btrfs_release_path(path);
1931 	}
1932 
1933 	/* Get the bottom subvolume's name from ROOT_REF */
1934 	key.objectid = treeid;
1935 	key.type = BTRFS_ROOT_REF_KEY;
1936 	key.offset = args->treeid;
1937 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1938 	if (ret < 0) {
1939 		goto out;
1940 	} else if (ret > 0) {
1941 		ret = -ENOENT;
1942 		goto out;
1943 	}
1944 
1945 	leaf = path->nodes[0];
1946 	slot = path->slots[0];
1947 	btrfs_item_key_to_cpu(leaf, &key, slot);
1948 
1949 	item_off = btrfs_item_ptr_offset(leaf, slot);
1950 	item_len = btrfs_item_size(leaf, slot);
1951 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
1952 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1953 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1954 		ret = -EINVAL;
1955 		goto out;
1956 	}
1957 
1958 	/* Copy subvolume's name */
1959 	item_off += sizeof(struct btrfs_root_ref);
1960 	item_len -= sizeof(struct btrfs_root_ref);
1961 	read_extent_buffer(leaf, args->name, item_off, item_len);
1962 	args->name[item_len] = 0;
1963 
1964 out_put:
1965 	btrfs_put_root(root);
1966 out:
1967 	btrfs_free_path(path);
1968 	return ret;
1969 }
1970 
1971 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1972 					   void __user *argp)
1973 {
1974 	struct btrfs_ioctl_ino_lookup_args *args;
1975 	int ret = 0;
1976 
1977 	args = memdup_user(argp, sizeof(*args));
1978 	if (IS_ERR(args))
1979 		return PTR_ERR(args);
1980 
1981 	/*
1982 	 * Unprivileged query to obtain the containing subvolume root id. The
1983 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
1984 	 */
1985 	if (args->treeid == 0)
1986 		args->treeid = btrfs_root_id(root);
1987 
1988 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
1989 		args->name[0] = 0;
1990 		goto out;
1991 	}
1992 
1993 	if (!capable(CAP_SYS_ADMIN)) {
1994 		ret = -EPERM;
1995 		goto out;
1996 	}
1997 
1998 	ret = btrfs_search_path_in_tree(root->fs_info,
1999 					args->treeid, args->objectid,
2000 					args->name);
2001 
2002 out:
2003 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2004 		ret = -EFAULT;
2005 
2006 	kfree(args);
2007 	return ret;
2008 }
2009 
2010 /*
2011  * Version of ino_lookup ioctl (unprivileged)
2012  *
2013  * The main differences from ino_lookup ioctl are:
2014  *
2015  *   1. Read + Exec permission will be checked using inode_permission() during
2016  *      path construction. -EACCES will be returned in case of failure.
2017  *   2. Path construction will be stopped at the inode number which corresponds
2018  *      to the fd with which this ioctl is called. If constructed path does not
2019  *      exist under fd's inode, -EACCES will be returned.
2020  *   3. The name of bottom subvolume is also searched and filled.
2021  */
2022 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2023 {
2024 	struct btrfs_ioctl_ino_lookup_user_args *args;
2025 	struct inode *inode;
2026 	int ret;
2027 
2028 	args = memdup_user(argp, sizeof(*args));
2029 	if (IS_ERR(args))
2030 		return PTR_ERR(args);
2031 
2032 	inode = file_inode(file);
2033 
2034 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2035 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2036 		/*
2037 		 * The subvolume does not exist under fd with which this is
2038 		 * called
2039 		 */
2040 		kfree(args);
2041 		return -EACCES;
2042 	}
2043 
2044 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2045 
2046 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2047 		ret = -EFAULT;
2048 
2049 	kfree(args);
2050 	return ret;
2051 }
2052 
2053 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2054 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2055 {
2056 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2057 	struct btrfs_fs_info *fs_info;
2058 	struct btrfs_root *root;
2059 	struct btrfs_path *path;
2060 	struct btrfs_key key;
2061 	struct btrfs_root_item *root_item;
2062 	struct btrfs_root_ref *rref;
2063 	struct extent_buffer *leaf;
2064 	unsigned long item_off;
2065 	unsigned long item_len;
2066 	int slot;
2067 	int ret = 0;
2068 
2069 	path = btrfs_alloc_path();
2070 	if (!path)
2071 		return -ENOMEM;
2072 
2073 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2074 	if (!subvol_info) {
2075 		btrfs_free_path(path);
2076 		return -ENOMEM;
2077 	}
2078 
2079 	fs_info = BTRFS_I(inode)->root->fs_info;
2080 
2081 	/* Get root_item of inode's subvolume */
2082 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2083 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2084 	if (IS_ERR(root)) {
2085 		ret = PTR_ERR(root);
2086 		goto out_free;
2087 	}
2088 	root_item = &root->root_item;
2089 
2090 	subvol_info->treeid = key.objectid;
2091 
2092 	subvol_info->generation = btrfs_root_generation(root_item);
2093 	subvol_info->flags = btrfs_root_flags(root_item);
2094 
2095 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2096 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2097 						    BTRFS_UUID_SIZE);
2098 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2099 						    BTRFS_UUID_SIZE);
2100 
2101 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2102 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2103 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2104 
2105 	subvol_info->otransid = btrfs_root_otransid(root_item);
2106 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2107 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2108 
2109 	subvol_info->stransid = btrfs_root_stransid(root_item);
2110 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2111 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2112 
2113 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2114 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2115 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2116 
2117 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2118 		/* Search root tree for ROOT_BACKREF of this subvolume */
2119 		key.type = BTRFS_ROOT_BACKREF_KEY;
2120 		key.offset = 0;
2121 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2122 		if (ret < 0) {
2123 			goto out;
2124 		} else if (path->slots[0] >=
2125 			   btrfs_header_nritems(path->nodes[0])) {
2126 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2127 			if (ret < 0) {
2128 				goto out;
2129 			} else if (unlikely(ret > 0)) {
2130 				ret = -EUCLEAN;
2131 				goto out;
2132 			}
2133 		}
2134 
2135 		leaf = path->nodes[0];
2136 		slot = path->slots[0];
2137 		btrfs_item_key_to_cpu(leaf, &key, slot);
2138 		if (key.objectid == subvol_info->treeid &&
2139 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2140 			subvol_info->parent_id = key.offset;
2141 
2142 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2143 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2144 
2145 			item_off = btrfs_item_ptr_offset(leaf, slot)
2146 					+ sizeof(struct btrfs_root_ref);
2147 			item_len = btrfs_item_size(leaf, slot)
2148 					- sizeof(struct btrfs_root_ref);
2149 			read_extent_buffer(leaf, subvol_info->name,
2150 					   item_off, item_len);
2151 		} else {
2152 			ret = -ENOENT;
2153 			goto out;
2154 		}
2155 	}
2156 
2157 	btrfs_free_path(path);
2158 	path = NULL;
2159 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2160 		ret = -EFAULT;
2161 
2162 out:
2163 	btrfs_put_root(root);
2164 out_free:
2165 	btrfs_free_path(path);
2166 	kfree(subvol_info);
2167 	return ret;
2168 }
2169 
2170 /*
2171  * Return ROOT_REF information of the subvolume containing this inode
2172  * except the subvolume name.
2173  */
2174 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2175 					  void __user *argp)
2176 {
2177 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2178 	struct btrfs_root_ref *rref;
2179 	struct btrfs_path *path;
2180 	struct btrfs_key key;
2181 	struct extent_buffer *leaf;
2182 	u64 objectid;
2183 	int slot;
2184 	int ret;
2185 	u8 found;
2186 
2187 	path = btrfs_alloc_path();
2188 	if (!path)
2189 		return -ENOMEM;
2190 
2191 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2192 	if (IS_ERR(rootrefs)) {
2193 		btrfs_free_path(path);
2194 		return PTR_ERR(rootrefs);
2195 	}
2196 
2197 	objectid = btrfs_root_id(root);
2198 	key.objectid = objectid;
2199 	key.type = BTRFS_ROOT_REF_KEY;
2200 	key.offset = rootrefs->min_treeid;
2201 	found = 0;
2202 
2203 	root = root->fs_info->tree_root;
2204 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2205 	if (ret < 0) {
2206 		goto out;
2207 	} else if (path->slots[0] >=
2208 		   btrfs_header_nritems(path->nodes[0])) {
2209 		ret = btrfs_next_leaf(root, path);
2210 		if (ret < 0) {
2211 			goto out;
2212 		} else if (unlikely(ret > 0)) {
2213 			ret = -EUCLEAN;
2214 			goto out;
2215 		}
2216 	}
2217 	while (1) {
2218 		leaf = path->nodes[0];
2219 		slot = path->slots[0];
2220 
2221 		btrfs_item_key_to_cpu(leaf, &key, slot);
2222 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2223 			ret = 0;
2224 			goto out;
2225 		}
2226 
2227 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2228 			ret = -EOVERFLOW;
2229 			goto out;
2230 		}
2231 
2232 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2233 		rootrefs->rootref[found].treeid = key.offset;
2234 		rootrefs->rootref[found].dirid =
2235 				  btrfs_root_ref_dirid(leaf, rref);
2236 		found++;
2237 
2238 		ret = btrfs_next_item(root, path);
2239 		if (ret < 0) {
2240 			goto out;
2241 		} else if (unlikely(ret > 0)) {
2242 			ret = -EUCLEAN;
2243 			goto out;
2244 		}
2245 	}
2246 
2247 out:
2248 	btrfs_free_path(path);
2249 
2250 	if (!ret || ret == -EOVERFLOW) {
2251 		rootrefs->num_items = found;
2252 		/* update min_treeid for next search */
2253 		if (found)
2254 			rootrefs->min_treeid =
2255 				rootrefs->rootref[found - 1].treeid + 1;
2256 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2257 			ret = -EFAULT;
2258 	}
2259 
2260 	kfree(rootrefs);
2261 
2262 	return ret;
2263 }
2264 
2265 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2266 					     void __user *arg,
2267 					     bool destroy_v2)
2268 {
2269 	struct dentry *parent = file->f_path.dentry;
2270 	struct dentry *dentry;
2271 	struct inode *dir = d_inode(parent);
2272 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2273 	struct inode *inode;
2274 	struct btrfs_root *root = BTRFS_I(dir)->root;
2275 	struct btrfs_root *dest = NULL;
2276 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2277 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2278 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2279 	char *subvol_name, *subvol_name_ptr = NULL;
2280 	int ret = 0;
2281 	bool destroy_parent = false;
2282 
2283 	/* We don't support snapshots with extent tree v2 yet. */
2284 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2285 		btrfs_err(fs_info,
2286 			  "extent tree v2 doesn't support snapshot deletion yet");
2287 		return -EOPNOTSUPP;
2288 	}
2289 
2290 	if (destroy_v2) {
2291 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2292 		if (IS_ERR(vol_args2))
2293 			return PTR_ERR(vol_args2);
2294 
2295 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2296 			ret = -EOPNOTSUPP;
2297 			goto out;
2298 		}
2299 
2300 		/*
2301 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2302 		 * name, same as v1 currently does.
2303 		 */
2304 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2305 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2306 			if (ret < 0)
2307 				goto out;
2308 			subvol_name = vol_args2->name;
2309 
2310 			ret = mnt_want_write_file(file);
2311 			if (ret)
2312 				goto out;
2313 		} else {
2314 			struct inode *old_dir;
2315 
2316 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2317 				ret = -EINVAL;
2318 				goto out;
2319 			}
2320 
2321 			ret = mnt_want_write_file(file);
2322 			if (ret)
2323 				goto out;
2324 
2325 			dentry = btrfs_get_dentry(fs_info->sb,
2326 					BTRFS_FIRST_FREE_OBJECTID,
2327 					vol_args2->subvolid, 0);
2328 			if (IS_ERR(dentry)) {
2329 				ret = PTR_ERR(dentry);
2330 				goto out_drop_write;
2331 			}
2332 
2333 			/*
2334 			 * Change the default parent since the subvolume being
2335 			 * deleted can be outside of the current mount point.
2336 			 */
2337 			parent = btrfs_get_parent(dentry);
2338 
2339 			/*
2340 			 * At this point dentry->d_name can point to '/' if the
2341 			 * subvolume we want to destroy is outsite of the
2342 			 * current mount point, so we need to release the
2343 			 * current dentry and execute the lookup to return a new
2344 			 * one with ->d_name pointing to the
2345 			 * <mount point>/subvol_name.
2346 			 */
2347 			dput(dentry);
2348 			if (IS_ERR(parent)) {
2349 				ret = PTR_ERR(parent);
2350 				goto out_drop_write;
2351 			}
2352 			old_dir = dir;
2353 			dir = d_inode(parent);
2354 
2355 			/*
2356 			 * If v2 was used with SPEC_BY_ID, a new parent was
2357 			 * allocated since the subvolume can be outside of the
2358 			 * current mount point. Later on we need to release this
2359 			 * new parent dentry.
2360 			 */
2361 			destroy_parent = true;
2362 
2363 			/*
2364 			 * On idmapped mounts, deletion via subvolid is
2365 			 * restricted to subvolumes that are immediate
2366 			 * ancestors of the inode referenced by the file
2367 			 * descriptor in the ioctl. Otherwise the idmapping
2368 			 * could potentially be abused to delete subvolumes
2369 			 * anywhere in the filesystem the user wouldn't be able
2370 			 * to delete without an idmapped mount.
2371 			 */
2372 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2373 				ret = -EOPNOTSUPP;
2374 				goto free_parent;
2375 			}
2376 
2377 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2378 						fs_info, vol_args2->subvolid);
2379 			if (IS_ERR(subvol_name_ptr)) {
2380 				ret = PTR_ERR(subvol_name_ptr);
2381 				goto free_parent;
2382 			}
2383 			/* subvol_name_ptr is already nul terminated */
2384 			subvol_name = (char *)kbasename(subvol_name_ptr);
2385 		}
2386 	} else {
2387 		vol_args = memdup_user(arg, sizeof(*vol_args));
2388 		if (IS_ERR(vol_args))
2389 			return PTR_ERR(vol_args);
2390 
2391 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2392 		if (ret < 0)
2393 			goto out;
2394 
2395 		subvol_name = vol_args->name;
2396 
2397 		ret = mnt_want_write_file(file);
2398 		if (ret)
2399 			goto out;
2400 	}
2401 
2402 	if (strchr(subvol_name, '/') ||
2403 	    strcmp(subvol_name, "..") == 0) {
2404 		ret = -EINVAL;
2405 		goto free_subvol_name;
2406 	}
2407 
2408 	if (!S_ISDIR(dir->i_mode)) {
2409 		ret = -ENOTDIR;
2410 		goto free_subvol_name;
2411 	}
2412 
2413 	dentry = start_removing_killable(idmap, parent, &QSTR(subvol_name));
2414 	if (IS_ERR(dentry)) {
2415 		ret = PTR_ERR(dentry);
2416 		goto out_end_removing;
2417 	}
2418 
2419 	inode = d_inode(dentry);
2420 	dest = BTRFS_I(inode)->root;
2421 	if (!capable(CAP_SYS_ADMIN)) {
2422 		/*
2423 		 * Regular user.  Only allow this with a special mount
2424 		 * option, when the user has write+exec access to the
2425 		 * subvol root, and when rmdir(2) would have been
2426 		 * allowed.
2427 		 *
2428 		 * Note that this is _not_ check that the subvol is
2429 		 * empty or doesn't contain data that we wouldn't
2430 		 * otherwise be able to delete.
2431 		 *
2432 		 * Users who want to delete empty subvols should try
2433 		 * rmdir(2).
2434 		 */
2435 		ret = -EPERM;
2436 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2437 			goto out_end_removing;
2438 
2439 		/*
2440 		 * Do not allow deletion if the parent dir is the same
2441 		 * as the dir to be deleted.  That means the ioctl
2442 		 * must be called on the dentry referencing the root
2443 		 * of the subvol, not a random directory contained
2444 		 * within it.
2445 		 */
2446 		ret = -EINVAL;
2447 		if (root == dest)
2448 			goto out_end_removing;
2449 
2450 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2451 		if (ret)
2452 			goto out_end_removing;
2453 	}
2454 
2455 	/* check if subvolume may be deleted by a user */
2456 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2457 	if (ret)
2458 		goto out_end_removing;
2459 
2460 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2461 		ret = -EINVAL;
2462 		goto out_end_removing;
2463 	}
2464 
2465 	btrfs_inode_lock(BTRFS_I(inode), 0);
2466 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2467 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2468 	if (!ret)
2469 		d_delete_notify(dir, dentry);
2470 
2471 out_end_removing:
2472 	end_removing(dentry);
2473 free_subvol_name:
2474 	kfree(subvol_name_ptr);
2475 free_parent:
2476 	if (destroy_parent)
2477 		dput(parent);
2478 out_drop_write:
2479 	mnt_drop_write_file(file);
2480 out:
2481 	kfree(vol_args2);
2482 	kfree(vol_args);
2483 	return ret;
2484 }
2485 
2486 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2487 {
2488 	struct inode *inode = file_inode(file);
2489 	struct btrfs_root *root = BTRFS_I(inode)->root;
2490 	struct btrfs_ioctl_defrag_range_args range = {0};
2491 	int ret;
2492 
2493 	ret = mnt_want_write_file(file);
2494 	if (ret)
2495 		return ret;
2496 
2497 	if (btrfs_root_readonly(root)) {
2498 		ret = -EROFS;
2499 		goto out;
2500 	}
2501 
2502 	switch (inode->i_mode & S_IFMT) {
2503 	case S_IFDIR:
2504 		if (!capable(CAP_SYS_ADMIN)) {
2505 			ret = -EPERM;
2506 			goto out;
2507 		}
2508 		ret = btrfs_defrag_root(root);
2509 		break;
2510 	case S_IFREG:
2511 		/*
2512 		 * Note that this does not check the file descriptor for write
2513 		 * access. This prevents defragmenting executables that are
2514 		 * running and allows defrag on files open in read-only mode.
2515 		 */
2516 		if (!capable(CAP_SYS_ADMIN) &&
2517 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2518 			ret = -EPERM;
2519 			goto out;
2520 		}
2521 
2522 		/*
2523 		 * Don't allow defrag on pre-content watched files, as it could
2524 		 * populate the page cache with 0's via readahead.
2525 		 */
2526 		if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2527 			ret = -EINVAL;
2528 			goto out;
2529 		}
2530 
2531 		if (argp) {
2532 			if (copy_from_user(&range, argp, sizeof(range))) {
2533 				ret = -EFAULT;
2534 				goto out;
2535 			}
2536 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2537 				ret = -EOPNOTSUPP;
2538 				goto out;
2539 			}
2540 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) &&
2541 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2542 				ret = -EINVAL;
2543 				goto out;
2544 			}
2545 			/* Compression or no-compression require to start the IO. */
2546 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) ||
2547 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2548 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2549 				range.extent_thresh = (u32)-1;
2550 			}
2551 		} else {
2552 			/* the rest are all set to zero by kzalloc */
2553 			range.len = (u64)-1;
2554 		}
2555 		ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2556 					&range, BTRFS_OLDEST_GENERATION, 0);
2557 		if (ret > 0)
2558 			ret = 0;
2559 		break;
2560 	default:
2561 		ret = -EINVAL;
2562 	}
2563 out:
2564 	mnt_drop_write_file(file);
2565 	return ret;
2566 }
2567 
2568 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2569 {
2570 	struct btrfs_ioctl_vol_args *vol_args;
2571 	bool restore_op = false;
2572 	int ret;
2573 
2574 	if (!capable(CAP_SYS_ADMIN))
2575 		return -EPERM;
2576 
2577 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2578 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2579 		return -EINVAL;
2580 	}
2581 
2582 	if (fs_info->fs_devices->temp_fsid) {
2583 		btrfs_err(fs_info,
2584 			  "device add not supported on cloned temp-fsid mount");
2585 		return -EINVAL;
2586 	}
2587 
2588 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2589 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2590 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2591 
2592 		/*
2593 		 * We can do the device add because we have a paused balanced,
2594 		 * change the exclusive op type and remember we should bring
2595 		 * back the paused balance
2596 		 */
2597 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2598 		btrfs_exclop_start_unlock(fs_info);
2599 		restore_op = true;
2600 	}
2601 
2602 	vol_args = memdup_user(arg, sizeof(*vol_args));
2603 	if (IS_ERR(vol_args)) {
2604 		ret = PTR_ERR(vol_args);
2605 		goto out;
2606 	}
2607 
2608 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2609 	if (ret < 0)
2610 		goto out_free;
2611 
2612 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2613 
2614 	if (!ret)
2615 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2616 
2617 out_free:
2618 	kfree(vol_args);
2619 out:
2620 	if (restore_op)
2621 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2622 	else
2623 		btrfs_exclop_finish(fs_info);
2624 	return ret;
2625 }
2626 
2627 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2628 {
2629 	BTRFS_DEV_LOOKUP_ARGS(args);
2630 	struct inode *inode = file_inode(file);
2631 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2632 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2633 	struct file *bdev_file = NULL;
2634 	int ret;
2635 	bool cancel = false;
2636 
2637 	if (!capable(CAP_SYS_ADMIN))
2638 		return -EPERM;
2639 
2640 	vol_args = memdup_user(arg, sizeof(*vol_args));
2641 	if (IS_ERR(vol_args))
2642 		return PTR_ERR(vol_args);
2643 
2644 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2645 		ret = -EOPNOTSUPP;
2646 		goto out;
2647 	}
2648 
2649 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2650 	if (ret < 0)
2651 		goto out;
2652 
2653 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2654 		args.devid = vol_args->devid;
2655 	} else if (!strcmp("cancel", vol_args->name)) {
2656 		cancel = true;
2657 	} else {
2658 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2659 		if (ret)
2660 			goto out;
2661 	}
2662 
2663 	ret = mnt_want_write_file(file);
2664 	if (ret)
2665 		goto out;
2666 
2667 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2668 					   cancel);
2669 	if (ret)
2670 		goto err_drop;
2671 
2672 	/* Exclusive operation is now claimed */
2673 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2674 
2675 	btrfs_exclop_finish(fs_info);
2676 
2677 	if (!ret) {
2678 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2679 			btrfs_info(fs_info, "device deleted: id %llu",
2680 					vol_args->devid);
2681 		else
2682 			btrfs_info(fs_info, "device deleted: %s",
2683 					vol_args->name);
2684 	}
2685 err_drop:
2686 	mnt_drop_write_file(file);
2687 	if (bdev_file)
2688 		bdev_fput(bdev_file);
2689 out:
2690 	btrfs_put_dev_args_from_path(&args);
2691 	kfree(vol_args);
2692 	return ret;
2693 }
2694 
2695 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2696 {
2697 	BTRFS_DEV_LOOKUP_ARGS(args);
2698 	struct inode *inode = file_inode(file);
2699 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2700 	struct btrfs_ioctl_vol_args *vol_args;
2701 	struct file *bdev_file = NULL;
2702 	int ret;
2703 	bool cancel = false;
2704 
2705 	if (!capable(CAP_SYS_ADMIN))
2706 		return -EPERM;
2707 
2708 	vol_args = memdup_user(arg, sizeof(*vol_args));
2709 	if (IS_ERR(vol_args))
2710 		return PTR_ERR(vol_args);
2711 
2712 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2713 	if (ret < 0)
2714 		goto out_free;
2715 
2716 	if (!strcmp("cancel", vol_args->name)) {
2717 		cancel = true;
2718 	} else {
2719 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2720 		if (ret)
2721 			goto out;
2722 	}
2723 
2724 	ret = mnt_want_write_file(file);
2725 	if (ret)
2726 		goto out;
2727 
2728 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2729 					   cancel);
2730 	if (ret == 0) {
2731 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2732 		if (!ret)
2733 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2734 		btrfs_exclop_finish(fs_info);
2735 	}
2736 
2737 	mnt_drop_write_file(file);
2738 	if (bdev_file)
2739 		bdev_fput(bdev_file);
2740 out:
2741 	btrfs_put_dev_args_from_path(&args);
2742 out_free:
2743 	kfree(vol_args);
2744 	return ret;
2745 }
2746 
2747 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2748 				void __user *arg)
2749 {
2750 	struct btrfs_ioctl_fs_info_args *fi_args;
2751 	struct btrfs_device *device;
2752 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2753 	u64 flags_in;
2754 	int ret = 0;
2755 
2756 	fi_args = memdup_user(arg, sizeof(*fi_args));
2757 	if (IS_ERR(fi_args))
2758 		return PTR_ERR(fi_args);
2759 
2760 	flags_in = fi_args->flags;
2761 	memset(fi_args, 0, sizeof(*fi_args));
2762 
2763 	rcu_read_lock();
2764 	fi_args->num_devices = fs_devices->num_devices;
2765 
2766 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2767 		if (device->devid > fi_args->max_id)
2768 			fi_args->max_id = device->devid;
2769 	}
2770 	rcu_read_unlock();
2771 
2772 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2773 	fi_args->nodesize = fs_info->nodesize;
2774 	fi_args->sectorsize = fs_info->sectorsize;
2775 	fi_args->clone_alignment = fs_info->sectorsize;
2776 
2777 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2778 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2779 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2780 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2781 	}
2782 
2783 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2784 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2785 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2786 	}
2787 
2788 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2789 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2790 		       sizeof(fi_args->metadata_uuid));
2791 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2792 	}
2793 
2794 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2795 		ret = -EFAULT;
2796 
2797 	kfree(fi_args);
2798 	return ret;
2799 }
2800 
2801 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2802 				 void __user *arg)
2803 {
2804 	BTRFS_DEV_LOOKUP_ARGS(args);
2805 	struct btrfs_ioctl_dev_info_args *di_args;
2806 	struct btrfs_device *dev;
2807 	int ret = 0;
2808 
2809 	di_args = memdup_user(arg, sizeof(*di_args));
2810 	if (IS_ERR(di_args))
2811 		return PTR_ERR(di_args);
2812 
2813 	args.devid = di_args->devid;
2814 	if (!btrfs_is_empty_uuid(di_args->uuid))
2815 		args.uuid = di_args->uuid;
2816 
2817 	rcu_read_lock();
2818 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2819 	if (!dev) {
2820 		ret = -ENODEV;
2821 		goto out;
2822 	}
2823 
2824 	di_args->devid = dev->devid;
2825 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2826 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2827 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2828 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2829 	if (dev->name)
2830 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2831 	else
2832 		di_args->path[0] = '\0';
2833 
2834 out:
2835 	rcu_read_unlock();
2836 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2837 		ret = -EFAULT;
2838 
2839 	kfree(di_args);
2840 	return ret;
2841 }
2842 
2843 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2844 {
2845 	struct inode *inode = file_inode(file);
2846 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2847 	struct btrfs_root *root = BTRFS_I(inode)->root;
2848 	struct btrfs_root *new_root;
2849 	struct btrfs_dir_item *di;
2850 	struct btrfs_trans_handle *trans;
2851 	struct btrfs_path *path = NULL;
2852 	struct btrfs_disk_key disk_key;
2853 	struct fscrypt_str name = FSTR_INIT("default", 7);
2854 	u64 objectid = 0;
2855 	u64 dir_id;
2856 	int ret;
2857 
2858 	if (!capable(CAP_SYS_ADMIN))
2859 		return -EPERM;
2860 
2861 	ret = mnt_want_write_file(file);
2862 	if (ret)
2863 		return ret;
2864 
2865 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2866 		ret = -EFAULT;
2867 		goto out;
2868 	}
2869 
2870 	if (!objectid)
2871 		objectid = BTRFS_FS_TREE_OBJECTID;
2872 
2873 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2874 	if (IS_ERR(new_root)) {
2875 		ret = PTR_ERR(new_root);
2876 		goto out;
2877 	}
2878 	if (!btrfs_is_fstree(btrfs_root_id(new_root))) {
2879 		ret = -ENOENT;
2880 		goto out_free;
2881 	}
2882 
2883 	path = btrfs_alloc_path();
2884 	if (!path) {
2885 		ret = -ENOMEM;
2886 		goto out_free;
2887 	}
2888 
2889 	trans = btrfs_start_transaction(root, 1);
2890 	if (IS_ERR(trans)) {
2891 		ret = PTR_ERR(trans);
2892 		goto out_free;
2893 	}
2894 
2895 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2896 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2897 				   dir_id, &name, 1);
2898 	if (IS_ERR_OR_NULL(di)) {
2899 		btrfs_release_path(path);
2900 		btrfs_end_transaction(trans);
2901 		btrfs_err(fs_info,
2902 			  "Umm, you don't have the default diritem, this isn't going to work");
2903 		ret = -ENOENT;
2904 		goto out_free;
2905 	}
2906 
2907 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2908 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2909 	btrfs_release_path(path);
2910 
2911 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2912 	btrfs_end_transaction(trans);
2913 out_free:
2914 	btrfs_put_root(new_root);
2915 	btrfs_free_path(path);
2916 out:
2917 	mnt_drop_write_file(file);
2918 	return ret;
2919 }
2920 
2921 static void get_block_group_info(struct list_head *groups_list,
2922 				 struct btrfs_ioctl_space_info *space)
2923 {
2924 	struct btrfs_block_group *block_group;
2925 
2926 	space->total_bytes = 0;
2927 	space->used_bytes = 0;
2928 	space->flags = 0;
2929 	list_for_each_entry(block_group, groups_list, list) {
2930 		space->flags = block_group->flags;
2931 		space->total_bytes += block_group->length;
2932 		space->used_bytes += block_group->used;
2933 	}
2934 }
2935 
2936 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2937 				   void __user *arg)
2938 {
2939 	struct btrfs_ioctl_space_args space_args = { 0 };
2940 	struct btrfs_ioctl_space_info space;
2941 	struct btrfs_ioctl_space_info *dest;
2942 	struct btrfs_ioctl_space_info *dest_orig;
2943 	struct btrfs_ioctl_space_info __user *user_dest;
2944 	struct btrfs_space_info *info;
2945 	static const u64 types[] = {
2946 		BTRFS_BLOCK_GROUP_DATA,
2947 		BTRFS_BLOCK_GROUP_SYSTEM,
2948 		BTRFS_BLOCK_GROUP_METADATA,
2949 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2950 	};
2951 	int num_types = 4;
2952 	int alloc_size;
2953 	int ret = 0;
2954 	u64 slot_count = 0;
2955 	int i, c;
2956 
2957 	if (copy_from_user(&space_args,
2958 			   (struct btrfs_ioctl_space_args __user *)arg,
2959 			   sizeof(space_args)))
2960 		return -EFAULT;
2961 
2962 	for (i = 0; i < num_types; i++) {
2963 		struct btrfs_space_info *tmp;
2964 
2965 		info = NULL;
2966 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2967 			if (tmp->flags == types[i]) {
2968 				info = tmp;
2969 				break;
2970 			}
2971 		}
2972 
2973 		if (!info)
2974 			continue;
2975 
2976 		down_read(&info->groups_sem);
2977 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2978 			if (!list_empty(&info->block_groups[c]))
2979 				slot_count++;
2980 		}
2981 		up_read(&info->groups_sem);
2982 	}
2983 
2984 	/*
2985 	 * Global block reserve, exported as a space_info
2986 	 */
2987 	slot_count++;
2988 
2989 	/* space_slots == 0 means they are asking for a count */
2990 	if (space_args.space_slots == 0) {
2991 		space_args.total_spaces = slot_count;
2992 		goto out;
2993 	}
2994 
2995 	slot_count = min_t(u64, space_args.space_slots, slot_count);
2996 
2997 	alloc_size = sizeof(*dest) * slot_count;
2998 
2999 	/* we generally have at most 6 or so space infos, one for each raid
3000 	 * level.  So, a whole page should be more than enough for everyone
3001 	 */
3002 	if (alloc_size > PAGE_SIZE)
3003 		return -ENOMEM;
3004 
3005 	space_args.total_spaces = 0;
3006 	dest = kmalloc(alloc_size, GFP_KERNEL);
3007 	if (!dest)
3008 		return -ENOMEM;
3009 	dest_orig = dest;
3010 
3011 	/* now we have a buffer to copy into */
3012 	for (i = 0; i < num_types; i++) {
3013 		struct btrfs_space_info *tmp;
3014 
3015 		if (!slot_count)
3016 			break;
3017 
3018 		info = NULL;
3019 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3020 			if (tmp->flags == types[i]) {
3021 				info = tmp;
3022 				break;
3023 			}
3024 		}
3025 
3026 		if (!info)
3027 			continue;
3028 		down_read(&info->groups_sem);
3029 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3030 			if (!list_empty(&info->block_groups[c])) {
3031 				get_block_group_info(&info->block_groups[c],
3032 						     &space);
3033 				memcpy(dest, &space, sizeof(space));
3034 				dest++;
3035 				space_args.total_spaces++;
3036 				slot_count--;
3037 			}
3038 			if (!slot_count)
3039 				break;
3040 		}
3041 		up_read(&info->groups_sem);
3042 	}
3043 
3044 	/*
3045 	 * Add global block reserve
3046 	 */
3047 	if (slot_count) {
3048 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3049 
3050 		spin_lock(&block_rsv->lock);
3051 		space.total_bytes = block_rsv->size;
3052 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3053 		spin_unlock(&block_rsv->lock);
3054 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3055 		memcpy(dest, &space, sizeof(space));
3056 		space_args.total_spaces++;
3057 	}
3058 
3059 	user_dest = (struct btrfs_ioctl_space_info __user *)
3060 		(arg + sizeof(struct btrfs_ioctl_space_args));
3061 
3062 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3063 		ret = -EFAULT;
3064 
3065 	kfree(dest_orig);
3066 out:
3067 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3068 		ret = -EFAULT;
3069 
3070 	return ret;
3071 }
3072 
3073 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3074 					    void __user *argp)
3075 {
3076 	struct btrfs_trans_handle *trans;
3077 	u64 transid;
3078 
3079 	/*
3080 	 * Start orphan cleanup here for the given root in case it hasn't been
3081 	 * started already by other means. Errors are handled in the other
3082 	 * functions during transaction commit.
3083 	 */
3084 	btrfs_orphan_cleanup(root);
3085 
3086 	trans = btrfs_attach_transaction_barrier(root);
3087 	if (IS_ERR(trans)) {
3088 		if (PTR_ERR(trans) != -ENOENT)
3089 			return PTR_ERR(trans);
3090 
3091 		/* No running transaction, don't bother */
3092 		transid = btrfs_get_last_trans_committed(root->fs_info);
3093 		goto out;
3094 	}
3095 	transid = trans->transid;
3096 	btrfs_commit_transaction_async(trans);
3097 out:
3098 	if (argp)
3099 		if (copy_to_user(argp, &transid, sizeof(transid)))
3100 			return -EFAULT;
3101 	return 0;
3102 }
3103 
3104 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3105 					   void __user *argp)
3106 {
3107 	/* By default wait for the current transaction. */
3108 	u64 transid = 0;
3109 
3110 	if (argp)
3111 		if (copy_from_user(&transid, argp, sizeof(transid)))
3112 			return -EFAULT;
3113 
3114 	return btrfs_wait_for_commit(fs_info, transid);
3115 }
3116 
3117 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3118 {
3119 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3120 	struct btrfs_ioctl_scrub_args *sa;
3121 	int ret;
3122 
3123 	if (!capable(CAP_SYS_ADMIN))
3124 		return -EPERM;
3125 
3126 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3127 		btrfs_err(fs_info, "scrub: extent tree v2 not yet supported");
3128 		return -EINVAL;
3129 	}
3130 
3131 	sa = memdup_user(arg, sizeof(*sa));
3132 	if (IS_ERR(sa))
3133 		return PTR_ERR(sa);
3134 
3135 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3136 		ret = -EOPNOTSUPP;
3137 		goto out;
3138 	}
3139 
3140 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3141 		ret = mnt_want_write_file(file);
3142 		if (ret)
3143 			goto out;
3144 	}
3145 
3146 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3147 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3148 			      0);
3149 
3150 	/*
3151 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3152 	 * error. This is important as it allows user space to know how much
3153 	 * progress scrub has done. For example, if scrub is canceled we get
3154 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3155 	 * space. Later user space can inspect the progress from the structure
3156 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3157 	 * previously (btrfs-progs does this).
3158 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3159 	 * then return -EFAULT to signal the structure was not copied or it may
3160 	 * be corrupt and unreliable due to a partial copy.
3161 	 */
3162 	if (copy_to_user(arg, sa, sizeof(*sa)))
3163 		ret = -EFAULT;
3164 
3165 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3166 		mnt_drop_write_file(file);
3167 out:
3168 	kfree(sa);
3169 	return ret;
3170 }
3171 
3172 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3173 {
3174 	if (!capable(CAP_SYS_ADMIN))
3175 		return -EPERM;
3176 
3177 	return btrfs_scrub_cancel(fs_info);
3178 }
3179 
3180 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3181 				       void __user *arg)
3182 {
3183 	struct btrfs_ioctl_scrub_args *sa;
3184 	int ret;
3185 
3186 	if (!capable(CAP_SYS_ADMIN))
3187 		return -EPERM;
3188 
3189 	sa = memdup_user(arg, sizeof(*sa));
3190 	if (IS_ERR(sa))
3191 		return PTR_ERR(sa);
3192 
3193 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3194 
3195 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3196 		ret = -EFAULT;
3197 
3198 	kfree(sa);
3199 	return ret;
3200 }
3201 
3202 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3203 				      void __user *arg)
3204 {
3205 	struct btrfs_ioctl_get_dev_stats *sa;
3206 	int ret;
3207 
3208 	sa = memdup_user(arg, sizeof(*sa));
3209 	if (IS_ERR(sa))
3210 		return PTR_ERR(sa);
3211 
3212 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3213 		kfree(sa);
3214 		return -EPERM;
3215 	}
3216 
3217 	ret = btrfs_get_dev_stats(fs_info, sa);
3218 
3219 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3220 		ret = -EFAULT;
3221 
3222 	kfree(sa);
3223 	return ret;
3224 }
3225 
3226 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3227 				    void __user *arg)
3228 {
3229 	struct btrfs_ioctl_dev_replace_args *p;
3230 	int ret;
3231 
3232 	if (!capable(CAP_SYS_ADMIN))
3233 		return -EPERM;
3234 
3235 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3236 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3237 		return -EINVAL;
3238 	}
3239 
3240 	p = memdup_user(arg, sizeof(*p));
3241 	if (IS_ERR(p))
3242 		return PTR_ERR(p);
3243 
3244 	switch (p->cmd) {
3245 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3246 		if (sb_rdonly(fs_info->sb)) {
3247 			ret = -EROFS;
3248 			goto out;
3249 		}
3250 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3251 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3252 		} else {
3253 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3254 			btrfs_exclop_finish(fs_info);
3255 		}
3256 		break;
3257 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3258 		btrfs_dev_replace_status(fs_info, p);
3259 		ret = 0;
3260 		break;
3261 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3262 		p->result = btrfs_dev_replace_cancel(fs_info);
3263 		ret = 0;
3264 		break;
3265 	default:
3266 		ret = -EINVAL;
3267 		break;
3268 	}
3269 
3270 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3271 		ret = -EFAULT;
3272 out:
3273 	kfree(p);
3274 	return ret;
3275 }
3276 
3277 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3278 {
3279 	int ret = 0;
3280 	int i;
3281 	u64 rel_ptr;
3282 	int size;
3283 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3284 	struct inode_fs_paths *ipath = NULL;
3285 	struct btrfs_path *path;
3286 
3287 	if (!capable(CAP_DAC_READ_SEARCH))
3288 		return -EPERM;
3289 
3290 	path = btrfs_alloc_path();
3291 	if (!path) {
3292 		ret = -ENOMEM;
3293 		goto out;
3294 	}
3295 
3296 	ipa = memdup_user(arg, sizeof(*ipa));
3297 	if (IS_ERR(ipa)) {
3298 		ret = PTR_ERR(ipa);
3299 		ipa = NULL;
3300 		goto out;
3301 	}
3302 
3303 	size = min_t(u32, ipa->size, 4096);
3304 	ipath = init_ipath(size, root, path);
3305 	if (IS_ERR(ipath)) {
3306 		ret = PTR_ERR(ipath);
3307 		ipath = NULL;
3308 		goto out;
3309 	}
3310 
3311 	ret = paths_from_inode(ipa->inum, ipath);
3312 	if (ret < 0)
3313 		goto out;
3314 
3315 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3316 		rel_ptr = ipath->fspath->val[i] -
3317 			  (u64)(unsigned long)ipath->fspath->val;
3318 		ipath->fspath->val[i] = rel_ptr;
3319 	}
3320 
3321 	btrfs_free_path(path);
3322 	path = NULL;
3323 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3324 			   ipath->fspath, size);
3325 	if (ret) {
3326 		ret = -EFAULT;
3327 		goto out;
3328 	}
3329 
3330 out:
3331 	btrfs_free_path(path);
3332 	free_ipath(ipath);
3333 	kfree(ipa);
3334 
3335 	return ret;
3336 }
3337 
3338 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3339 					void __user *arg, int version)
3340 {
3341 	int ret = 0;
3342 	int size;
3343 	struct btrfs_ioctl_logical_ino_args *loi;
3344 	struct btrfs_data_container *inodes = NULL;
3345 	bool ignore_offset;
3346 
3347 	if (!capable(CAP_SYS_ADMIN))
3348 		return -EPERM;
3349 
3350 	loi = memdup_user(arg, sizeof(*loi));
3351 	if (IS_ERR(loi))
3352 		return PTR_ERR(loi);
3353 
3354 	if (version == 1) {
3355 		ignore_offset = false;
3356 		size = min_t(u32, loi->size, SZ_64K);
3357 	} else {
3358 		/* All reserved bits must be 0 for now */
3359 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3360 			ret = -EINVAL;
3361 			goto out_loi;
3362 		}
3363 		/* Only accept flags we have defined so far */
3364 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3365 			ret = -EINVAL;
3366 			goto out_loi;
3367 		}
3368 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3369 		size = min_t(u32, loi->size, SZ_16M);
3370 	}
3371 
3372 	inodes = init_data_container(size);
3373 	if (IS_ERR(inodes)) {
3374 		ret = PTR_ERR(inodes);
3375 		goto out_loi;
3376 	}
3377 
3378 	ret = iterate_inodes_from_logical(loi->logical, fs_info, inodes, ignore_offset);
3379 	if (ret == -EINVAL)
3380 		ret = -ENOENT;
3381 	if (ret < 0)
3382 		goto out;
3383 
3384 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3385 			   size);
3386 	if (ret)
3387 		ret = -EFAULT;
3388 
3389 out:
3390 	kvfree(inodes);
3391 out_loi:
3392 	kfree(loi);
3393 
3394 	return ret;
3395 }
3396 
3397 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3398 			       struct btrfs_ioctl_balance_args *bargs)
3399 {
3400 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3401 
3402 	bargs->flags = bctl->flags;
3403 
3404 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3405 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3406 	if (atomic_read(&fs_info->balance_pause_req))
3407 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3408 	if (atomic_read(&fs_info->balance_cancel_req))
3409 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3410 
3411 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3412 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3413 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3414 
3415 	spin_lock(&fs_info->balance_lock);
3416 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3417 	spin_unlock(&fs_info->balance_lock);
3418 }
3419 
3420 /*
3421  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3422  * required.
3423  *
3424  * @fs_info:       the filesystem
3425  * @excl_acquired: ptr to boolean value which is set to false in case balance
3426  *                 is being resumed
3427  *
3428  * Return 0 on success in which case both fs_info::balance is acquired as well
3429  * as exclusive ops are blocked. In case of failure return an error code.
3430  */
3431 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3432 {
3433 	int ret;
3434 
3435 	/*
3436 	 * Exclusive operation is locked. Three possibilities:
3437 	 *   (1) some other op is running
3438 	 *   (2) balance is running
3439 	 *   (3) balance is paused -- special case (think resume)
3440 	 */
3441 	while (1) {
3442 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3443 			*excl_acquired = true;
3444 			mutex_lock(&fs_info->balance_mutex);
3445 			return 0;
3446 		}
3447 
3448 		mutex_lock(&fs_info->balance_mutex);
3449 		if (fs_info->balance_ctl) {
3450 			/* This is either (2) or (3) */
3451 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3452 				/* This is (2) */
3453 				ret = -EINPROGRESS;
3454 				goto out_failure;
3455 
3456 			} else {
3457 				mutex_unlock(&fs_info->balance_mutex);
3458 				/*
3459 				 * Lock released to allow other waiters to
3460 				 * continue, we'll reexamine the status again.
3461 				 */
3462 				mutex_lock(&fs_info->balance_mutex);
3463 
3464 				if (fs_info->balance_ctl &&
3465 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3466 					/* This is (3) */
3467 					*excl_acquired = false;
3468 					return 0;
3469 				}
3470 			}
3471 		} else {
3472 			/* This is (1) */
3473 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3474 			goto out_failure;
3475 		}
3476 
3477 		mutex_unlock(&fs_info->balance_mutex);
3478 	}
3479 
3480 out_failure:
3481 	mutex_unlock(&fs_info->balance_mutex);
3482 	*excl_acquired = false;
3483 	return ret;
3484 }
3485 
3486 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3487 {
3488 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3489 	struct btrfs_fs_info *fs_info = root->fs_info;
3490 	struct btrfs_ioctl_balance_args *bargs;
3491 	struct btrfs_balance_control *bctl;
3492 	bool need_unlock = true;
3493 	int ret;
3494 
3495 	if (!capable(CAP_SYS_ADMIN))
3496 		return -EPERM;
3497 
3498 	ret = mnt_want_write_file(file);
3499 	if (ret)
3500 		return ret;
3501 
3502 	bargs = memdup_user(arg, sizeof(*bargs));
3503 	if (IS_ERR(bargs)) {
3504 		ret = PTR_ERR(bargs);
3505 		bargs = NULL;
3506 		goto out;
3507 	}
3508 
3509 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3510 	if (ret)
3511 		goto out;
3512 
3513 	lockdep_assert_held(&fs_info->balance_mutex);
3514 
3515 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3516 		if (!fs_info->balance_ctl) {
3517 			ret = -ENOTCONN;
3518 			goto out_unlock;
3519 		}
3520 
3521 		bctl = fs_info->balance_ctl;
3522 		spin_lock(&fs_info->balance_lock);
3523 		bctl->flags |= BTRFS_BALANCE_RESUME;
3524 		spin_unlock(&fs_info->balance_lock);
3525 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3526 
3527 		goto do_balance;
3528 	}
3529 
3530 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3531 		ret = -EINVAL;
3532 		goto out_unlock;
3533 	}
3534 
3535 	if (fs_info->balance_ctl) {
3536 		ret = -EINPROGRESS;
3537 		goto out_unlock;
3538 	}
3539 
3540 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3541 	if (!bctl) {
3542 		ret = -ENOMEM;
3543 		goto out_unlock;
3544 	}
3545 
3546 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3547 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3548 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3549 
3550 	bctl->flags = bargs->flags;
3551 do_balance:
3552 	/*
3553 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3554 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3555 	 * all the way until unmount, in free_fs_info.  The flag should be
3556 	 * cleared after reset_balance_state.
3557 	 */
3558 	need_unlock = false;
3559 
3560 	ret = btrfs_balance(fs_info, bctl, bargs);
3561 	bctl = NULL;
3562 
3563 	if (ret == 0 || ret == -ECANCELED) {
3564 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3565 			ret = -EFAULT;
3566 	}
3567 
3568 	kfree(bctl);
3569 out_unlock:
3570 	mutex_unlock(&fs_info->balance_mutex);
3571 	if (need_unlock)
3572 		btrfs_exclop_finish(fs_info);
3573 out:
3574 	mnt_drop_write_file(file);
3575 	kfree(bargs);
3576 	return ret;
3577 }
3578 
3579 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3580 {
3581 	if (!capable(CAP_SYS_ADMIN))
3582 		return -EPERM;
3583 
3584 	switch (cmd) {
3585 	case BTRFS_BALANCE_CTL_PAUSE:
3586 		return btrfs_pause_balance(fs_info);
3587 	case BTRFS_BALANCE_CTL_CANCEL:
3588 		return btrfs_cancel_balance(fs_info);
3589 	}
3590 
3591 	return -EINVAL;
3592 }
3593 
3594 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3595 					 void __user *arg)
3596 {
3597 	struct btrfs_ioctl_balance_args *bargs;
3598 	int ret = 0;
3599 
3600 	if (!capable(CAP_SYS_ADMIN))
3601 		return -EPERM;
3602 
3603 	mutex_lock(&fs_info->balance_mutex);
3604 	if (!fs_info->balance_ctl) {
3605 		ret = -ENOTCONN;
3606 		goto out;
3607 	}
3608 
3609 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3610 	if (!bargs) {
3611 		ret = -ENOMEM;
3612 		goto out;
3613 	}
3614 
3615 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3616 
3617 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3618 		ret = -EFAULT;
3619 
3620 	kfree(bargs);
3621 out:
3622 	mutex_unlock(&fs_info->balance_mutex);
3623 	return ret;
3624 }
3625 
3626 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3627 {
3628 	struct inode *inode = file_inode(file);
3629 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3630 	struct btrfs_ioctl_quota_ctl_args *sa;
3631 	int ret;
3632 
3633 	if (!capable(CAP_SYS_ADMIN))
3634 		return -EPERM;
3635 
3636 	ret = mnt_want_write_file(file);
3637 	if (ret)
3638 		return ret;
3639 
3640 	sa = memdup_user(arg, sizeof(*sa));
3641 	if (IS_ERR(sa)) {
3642 		ret = PTR_ERR(sa);
3643 		goto drop_write;
3644 	}
3645 
3646 	switch (sa->cmd) {
3647 	case BTRFS_QUOTA_CTL_ENABLE:
3648 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3649 		down_write(&fs_info->subvol_sem);
3650 		ret = btrfs_quota_enable(fs_info, sa);
3651 		up_write(&fs_info->subvol_sem);
3652 		break;
3653 	case BTRFS_QUOTA_CTL_DISABLE:
3654 		/*
3655 		 * Lock the cleaner mutex to prevent races with concurrent
3656 		 * relocation, because relocation may be building backrefs for
3657 		 * blocks of the quota root while we are deleting the root. This
3658 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3659 		 * need the same protection.
3660 		 *
3661 		 * This also prevents races between concurrent tasks trying to
3662 		 * disable quotas, because we will unlock and relock
3663 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3664 		 *
3665 		 * We take this here because we have the dependency of
3666 		 *
3667 		 * inode_lock -> subvol_sem
3668 		 *
3669 		 * because of rename.  With relocation we can prealloc extents,
3670 		 * so that makes the dependency chain
3671 		 *
3672 		 * cleaner_mutex -> inode_lock -> subvol_sem
3673 		 *
3674 		 * so we must take the cleaner_mutex here before we take the
3675 		 * subvol_sem.  The deadlock can't actually happen, but this
3676 		 * quiets lockdep.
3677 		 */
3678 		mutex_lock(&fs_info->cleaner_mutex);
3679 		down_write(&fs_info->subvol_sem);
3680 		ret = btrfs_quota_disable(fs_info);
3681 		up_write(&fs_info->subvol_sem);
3682 		mutex_unlock(&fs_info->cleaner_mutex);
3683 		break;
3684 	default:
3685 		ret = -EINVAL;
3686 		break;
3687 	}
3688 
3689 	kfree(sa);
3690 drop_write:
3691 	mnt_drop_write_file(file);
3692 	return ret;
3693 }
3694 
3695 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3696 {
3697 	struct inode *inode = file_inode(file);
3698 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3699 	struct btrfs_root *root = BTRFS_I(inode)->root;
3700 	struct btrfs_ioctl_qgroup_assign_args *sa;
3701 	struct btrfs_qgroup_list *prealloc = NULL;
3702 	struct btrfs_trans_handle *trans;
3703 	int ret;
3704 	int err;
3705 
3706 	if (!capable(CAP_SYS_ADMIN))
3707 		return -EPERM;
3708 
3709 	if (!btrfs_qgroup_enabled(fs_info))
3710 		return -ENOTCONN;
3711 
3712 	ret = mnt_want_write_file(file);
3713 	if (ret)
3714 		return ret;
3715 
3716 	sa = memdup_user(arg, sizeof(*sa));
3717 	if (IS_ERR(sa)) {
3718 		ret = PTR_ERR(sa);
3719 		goto drop_write;
3720 	}
3721 
3722 	if (sa->assign) {
3723 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3724 		if (!prealloc) {
3725 			ret = -ENOMEM;
3726 			goto out;
3727 		}
3728 	}
3729 
3730 	trans = btrfs_join_transaction(root);
3731 	if (IS_ERR(trans)) {
3732 		ret = PTR_ERR(trans);
3733 		goto out;
3734 	}
3735 
3736 	/*
3737 	 * Prealloc ownership is moved to the relation handler, there it's used
3738 	 * or freed on error.
3739 	 */
3740 	if (sa->assign) {
3741 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3742 		prealloc = NULL;
3743 	} else {
3744 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3745 	}
3746 
3747 	/* update qgroup status and info */
3748 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3749 	err = btrfs_run_qgroups(trans);
3750 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3751 	if (err < 0)
3752 		btrfs_warn(fs_info,
3753 			   "qgroup status update failed after %s relation, marked as inconsistent",
3754 			   sa->assign ? "adding" : "deleting");
3755 	err = btrfs_end_transaction(trans);
3756 	if (err && !ret)
3757 		ret = err;
3758 
3759 out:
3760 	kfree(prealloc);
3761 	kfree(sa);
3762 drop_write:
3763 	mnt_drop_write_file(file);
3764 	return ret;
3765 }
3766 
3767 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3768 {
3769 	struct inode *inode = file_inode(file);
3770 	struct btrfs_root *root = BTRFS_I(inode)->root;
3771 	struct btrfs_ioctl_qgroup_create_args *sa;
3772 	struct btrfs_trans_handle *trans;
3773 	int ret;
3774 	int err;
3775 
3776 	if (!capable(CAP_SYS_ADMIN))
3777 		return -EPERM;
3778 
3779 	if (!btrfs_qgroup_enabled(root->fs_info))
3780 		return -ENOTCONN;
3781 
3782 	ret = mnt_want_write_file(file);
3783 	if (ret)
3784 		return ret;
3785 
3786 	sa = memdup_user(arg, sizeof(*sa));
3787 	if (IS_ERR(sa)) {
3788 		ret = PTR_ERR(sa);
3789 		goto drop_write;
3790 	}
3791 
3792 	if (!sa->qgroupid) {
3793 		ret = -EINVAL;
3794 		goto out;
3795 	}
3796 
3797 	if (sa->create && btrfs_is_fstree(sa->qgroupid)) {
3798 		ret = -EINVAL;
3799 		goto out;
3800 	}
3801 
3802 	trans = btrfs_join_transaction(root);
3803 	if (IS_ERR(trans)) {
3804 		ret = PTR_ERR(trans);
3805 		goto out;
3806 	}
3807 
3808 	if (sa->create) {
3809 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3810 	} else {
3811 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3812 	}
3813 
3814 	err = btrfs_end_transaction(trans);
3815 	if (err && !ret)
3816 		ret = err;
3817 
3818 out:
3819 	kfree(sa);
3820 drop_write:
3821 	mnt_drop_write_file(file);
3822 	return ret;
3823 }
3824 
3825 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3826 {
3827 	struct inode *inode = file_inode(file);
3828 	struct btrfs_root *root = BTRFS_I(inode)->root;
3829 	struct btrfs_ioctl_qgroup_limit_args *sa;
3830 	struct btrfs_trans_handle *trans;
3831 	int ret;
3832 	int err;
3833 	u64 qgroupid;
3834 
3835 	if (!capable(CAP_SYS_ADMIN))
3836 		return -EPERM;
3837 
3838 	if (!btrfs_qgroup_enabled(root->fs_info))
3839 		return -ENOTCONN;
3840 
3841 	ret = mnt_want_write_file(file);
3842 	if (ret)
3843 		return ret;
3844 
3845 	sa = memdup_user(arg, sizeof(*sa));
3846 	if (IS_ERR(sa)) {
3847 		ret = PTR_ERR(sa);
3848 		goto drop_write;
3849 	}
3850 
3851 	trans = btrfs_join_transaction(root);
3852 	if (IS_ERR(trans)) {
3853 		ret = PTR_ERR(trans);
3854 		goto out;
3855 	}
3856 
3857 	qgroupid = sa->qgroupid;
3858 	if (!qgroupid) {
3859 		/* take the current subvol as qgroup */
3860 		qgroupid = btrfs_root_id(root);
3861 	}
3862 
3863 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3864 
3865 	err = btrfs_end_transaction(trans);
3866 	if (err && !ret)
3867 		ret = err;
3868 
3869 out:
3870 	kfree(sa);
3871 drop_write:
3872 	mnt_drop_write_file(file);
3873 	return ret;
3874 }
3875 
3876 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3877 {
3878 	struct inode *inode = file_inode(file);
3879 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3880 	struct btrfs_ioctl_quota_rescan_args *qsa;
3881 	int ret;
3882 
3883 	if (!capable(CAP_SYS_ADMIN))
3884 		return -EPERM;
3885 
3886 	if (!btrfs_qgroup_enabled(fs_info))
3887 		return -ENOTCONN;
3888 
3889 	ret = mnt_want_write_file(file);
3890 	if (ret)
3891 		return ret;
3892 
3893 	qsa = memdup_user(arg, sizeof(*qsa));
3894 	if (IS_ERR(qsa)) {
3895 		ret = PTR_ERR(qsa);
3896 		goto drop_write;
3897 	}
3898 
3899 	if (qsa->flags) {
3900 		ret = -EINVAL;
3901 		goto out;
3902 	}
3903 
3904 	ret = btrfs_qgroup_rescan(fs_info);
3905 
3906 out:
3907 	kfree(qsa);
3908 drop_write:
3909 	mnt_drop_write_file(file);
3910 	return ret;
3911 }
3912 
3913 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3914 						void __user *arg)
3915 {
3916 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3917 
3918 	if (!capable(CAP_SYS_ADMIN))
3919 		return -EPERM;
3920 
3921 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3922 		qsa.flags = 1;
3923 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3924 	}
3925 
3926 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3927 		return -EFAULT;
3928 
3929 	return 0;
3930 }
3931 
3932 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3933 {
3934 	if (!capable(CAP_SYS_ADMIN))
3935 		return -EPERM;
3936 
3937 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3938 }
3939 
3940 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3941 					    struct mnt_idmap *idmap,
3942 					    struct btrfs_ioctl_received_subvol_args *sa)
3943 {
3944 	struct inode *inode = file_inode(file);
3945 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3946 	struct btrfs_root *root = BTRFS_I(inode)->root;
3947 	struct btrfs_root_item *root_item = &root->root_item;
3948 	struct btrfs_trans_handle *trans;
3949 	struct timespec64 ct = current_time(inode);
3950 	int ret = 0;
3951 	int received_uuid_changed;
3952 
3953 	if (!inode_owner_or_capable(idmap, inode))
3954 		return -EPERM;
3955 
3956 	ret = mnt_want_write_file(file);
3957 	if (ret < 0)
3958 		return ret;
3959 
3960 	down_write(&fs_info->subvol_sem);
3961 
3962 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3963 		ret = -EINVAL;
3964 		goto out;
3965 	}
3966 
3967 	if (btrfs_root_readonly(root)) {
3968 		ret = -EROFS;
3969 		goto out;
3970 	}
3971 
3972 	/*
3973 	 * 1 - root item
3974 	 * 2 - uuid items (received uuid + subvol uuid)
3975 	 */
3976 	trans = btrfs_start_transaction(root, 3);
3977 	if (IS_ERR(trans)) {
3978 		ret = PTR_ERR(trans);
3979 		trans = NULL;
3980 		goto out;
3981 	}
3982 
3983 	sa->rtransid = trans->transid;
3984 	sa->rtime.sec = ct.tv_sec;
3985 	sa->rtime.nsec = ct.tv_nsec;
3986 
3987 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3988 				       BTRFS_UUID_SIZE);
3989 	if (received_uuid_changed &&
3990 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
3991 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3992 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3993 					  btrfs_root_id(root));
3994 		if (unlikely(ret && ret != -ENOENT)) {
3995 		        btrfs_abort_transaction(trans, ret);
3996 		        btrfs_end_transaction(trans);
3997 		        goto out;
3998 		}
3999 	}
4000 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4001 	btrfs_set_root_stransid(root_item, sa->stransid);
4002 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4003 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4004 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4005 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4006 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4007 
4008 	ret = btrfs_update_root(trans, fs_info->tree_root,
4009 				&root->root_key, &root->root_item);
4010 	if (ret < 0) {
4011 		btrfs_end_transaction(trans);
4012 		goto out;
4013 	}
4014 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4015 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4016 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4017 					  btrfs_root_id(root));
4018 		if (unlikely(ret < 0 && ret != -EEXIST)) {
4019 			btrfs_abort_transaction(trans, ret);
4020 			btrfs_end_transaction(trans);
4021 			goto out;
4022 		}
4023 	}
4024 	ret = btrfs_commit_transaction(trans);
4025 out:
4026 	up_write(&fs_info->subvol_sem);
4027 	mnt_drop_write_file(file);
4028 	return ret;
4029 }
4030 
4031 #ifdef CONFIG_64BIT
4032 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4033 						void __user *arg)
4034 {
4035 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4036 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4037 	int ret = 0;
4038 
4039 	args32 = memdup_user(arg, sizeof(*args32));
4040 	if (IS_ERR(args32))
4041 		return PTR_ERR(args32);
4042 
4043 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4044 	if (!args64) {
4045 		ret = -ENOMEM;
4046 		goto out;
4047 	}
4048 
4049 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4050 	args64->stransid = args32->stransid;
4051 	args64->rtransid = args32->rtransid;
4052 	args64->stime.sec = args32->stime.sec;
4053 	args64->stime.nsec = args32->stime.nsec;
4054 	args64->rtime.sec = args32->rtime.sec;
4055 	args64->rtime.nsec = args32->rtime.nsec;
4056 	args64->flags = args32->flags;
4057 
4058 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4059 	if (ret)
4060 		goto out;
4061 
4062 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4063 	args32->stransid = args64->stransid;
4064 	args32->rtransid = args64->rtransid;
4065 	args32->stime.sec = args64->stime.sec;
4066 	args32->stime.nsec = args64->stime.nsec;
4067 	args32->rtime.sec = args64->rtime.sec;
4068 	args32->rtime.nsec = args64->rtime.nsec;
4069 	args32->flags = args64->flags;
4070 
4071 	ret = copy_to_user(arg, args32, sizeof(*args32));
4072 	if (ret)
4073 		ret = -EFAULT;
4074 
4075 out:
4076 	kfree(args32);
4077 	kfree(args64);
4078 	return ret;
4079 }
4080 #endif
4081 
4082 static long btrfs_ioctl_set_received_subvol(struct file *file,
4083 					    void __user *arg)
4084 {
4085 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4086 	int ret = 0;
4087 
4088 	sa = memdup_user(arg, sizeof(*sa));
4089 	if (IS_ERR(sa))
4090 		return PTR_ERR(sa);
4091 
4092 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4093 
4094 	if (ret)
4095 		goto out;
4096 
4097 	ret = copy_to_user(arg, sa, sizeof(*sa));
4098 	if (ret)
4099 		ret = -EFAULT;
4100 
4101 out:
4102 	kfree(sa);
4103 	return ret;
4104 }
4105 
4106 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4107 					void __user *arg)
4108 {
4109 	size_t len;
4110 	int ret;
4111 	char label[BTRFS_LABEL_SIZE];
4112 
4113 	spin_lock(&fs_info->super_lock);
4114 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4115 	spin_unlock(&fs_info->super_lock);
4116 
4117 	len = strnlen(label, BTRFS_LABEL_SIZE);
4118 
4119 	if (len == BTRFS_LABEL_SIZE) {
4120 		btrfs_warn(fs_info,
4121 			   "label is too long, return the first %zu bytes",
4122 			   --len);
4123 	}
4124 
4125 	ret = copy_to_user(arg, label, len);
4126 
4127 	return ret ? -EFAULT : 0;
4128 }
4129 
4130 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4131 {
4132 	struct inode *inode = file_inode(file);
4133 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4134 	struct btrfs_root *root = BTRFS_I(inode)->root;
4135 	struct btrfs_super_block *super_block = fs_info->super_copy;
4136 	struct btrfs_trans_handle *trans;
4137 	char label[BTRFS_LABEL_SIZE];
4138 	int ret;
4139 
4140 	if (!capable(CAP_SYS_ADMIN))
4141 		return -EPERM;
4142 
4143 	if (copy_from_user(label, arg, sizeof(label)))
4144 		return -EFAULT;
4145 
4146 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4147 		btrfs_err(fs_info,
4148 			  "unable to set label with more than %d bytes",
4149 			  BTRFS_LABEL_SIZE - 1);
4150 		return -EINVAL;
4151 	}
4152 
4153 	ret = mnt_want_write_file(file);
4154 	if (ret)
4155 		return ret;
4156 
4157 	trans = btrfs_start_transaction(root, 0);
4158 	if (IS_ERR(trans)) {
4159 		ret = PTR_ERR(trans);
4160 		goto out_unlock;
4161 	}
4162 
4163 	spin_lock(&fs_info->super_lock);
4164 	strscpy(super_block->label, label);
4165 	spin_unlock(&fs_info->super_lock);
4166 	ret = btrfs_commit_transaction(trans);
4167 
4168 out_unlock:
4169 	mnt_drop_write_file(file);
4170 	return ret;
4171 }
4172 
4173 #define INIT_FEATURE_FLAGS(suffix) \
4174 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4175 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4176 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4177 
4178 int btrfs_ioctl_get_supported_features(void __user *arg)
4179 {
4180 	static const struct btrfs_ioctl_feature_flags features[3] = {
4181 		INIT_FEATURE_FLAGS(SUPP),
4182 		INIT_FEATURE_FLAGS(SAFE_SET),
4183 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4184 	};
4185 
4186 	if (copy_to_user(arg, &features, sizeof(features)))
4187 		return -EFAULT;
4188 
4189 	return 0;
4190 }
4191 
4192 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4193 					void __user *arg)
4194 {
4195 	struct btrfs_super_block *super_block = fs_info->super_copy;
4196 	struct btrfs_ioctl_feature_flags features;
4197 
4198 	features.compat_flags = btrfs_super_compat_flags(super_block);
4199 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4200 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4201 
4202 	if (copy_to_user(arg, &features, sizeof(features)))
4203 		return -EFAULT;
4204 
4205 	return 0;
4206 }
4207 
4208 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4209 			      enum btrfs_feature_set set,
4210 			      u64 change_mask, u64 flags, u64 supported_flags,
4211 			      u64 safe_set, u64 safe_clear)
4212 {
4213 	const char *type = btrfs_feature_set_name(set);
4214 	char *names;
4215 	u64 disallowed, unsupported;
4216 	u64 set_mask = flags & change_mask;
4217 	u64 clear_mask = ~flags & change_mask;
4218 
4219 	unsupported = set_mask & ~supported_flags;
4220 	if (unsupported) {
4221 		names = btrfs_printable_features(set, unsupported);
4222 		if (names) {
4223 			btrfs_warn(fs_info,
4224 				   "this kernel does not support the %s feature bit%s",
4225 				   names, strchr(names, ',') ? "s" : "");
4226 			kfree(names);
4227 		} else
4228 			btrfs_warn(fs_info,
4229 				   "this kernel does not support %s bits 0x%llx",
4230 				   type, unsupported);
4231 		return -EOPNOTSUPP;
4232 	}
4233 
4234 	disallowed = set_mask & ~safe_set;
4235 	if (disallowed) {
4236 		names = btrfs_printable_features(set, disallowed);
4237 		if (names) {
4238 			btrfs_warn(fs_info,
4239 				   "can't set the %s feature bit%s while mounted",
4240 				   names, strchr(names, ',') ? "s" : "");
4241 			kfree(names);
4242 		} else
4243 			btrfs_warn(fs_info,
4244 				   "can't set %s bits 0x%llx while mounted",
4245 				   type, disallowed);
4246 		return -EPERM;
4247 	}
4248 
4249 	disallowed = clear_mask & ~safe_clear;
4250 	if (disallowed) {
4251 		names = btrfs_printable_features(set, disallowed);
4252 		if (names) {
4253 			btrfs_warn(fs_info,
4254 				   "can't clear the %s feature bit%s while mounted",
4255 				   names, strchr(names, ',') ? "s" : "");
4256 			kfree(names);
4257 		} else
4258 			btrfs_warn(fs_info,
4259 				   "can't clear %s bits 0x%llx while mounted",
4260 				   type, disallowed);
4261 		return -EPERM;
4262 	}
4263 
4264 	return 0;
4265 }
4266 
4267 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4268 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4269 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4270 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4271 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4272 
4273 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4274 {
4275 	struct inode *inode = file_inode(file);
4276 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4277 	struct btrfs_root *root = BTRFS_I(inode)->root;
4278 	struct btrfs_super_block *super_block = fs_info->super_copy;
4279 	struct btrfs_ioctl_feature_flags flags[2];
4280 	struct btrfs_trans_handle *trans;
4281 	u64 newflags;
4282 	int ret;
4283 
4284 	if (!capable(CAP_SYS_ADMIN))
4285 		return -EPERM;
4286 
4287 	if (copy_from_user(flags, arg, sizeof(flags)))
4288 		return -EFAULT;
4289 
4290 	/* Nothing to do */
4291 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4292 	    !flags[0].incompat_flags)
4293 		return 0;
4294 
4295 	ret = check_feature(fs_info, flags[0].compat_flags,
4296 			    flags[1].compat_flags, COMPAT);
4297 	if (ret)
4298 		return ret;
4299 
4300 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4301 			    flags[1].compat_ro_flags, COMPAT_RO);
4302 	if (ret)
4303 		return ret;
4304 
4305 	ret = check_feature(fs_info, flags[0].incompat_flags,
4306 			    flags[1].incompat_flags, INCOMPAT);
4307 	if (ret)
4308 		return ret;
4309 
4310 	ret = mnt_want_write_file(file);
4311 	if (ret)
4312 		return ret;
4313 
4314 	trans = btrfs_start_transaction(root, 0);
4315 	if (IS_ERR(trans)) {
4316 		ret = PTR_ERR(trans);
4317 		goto out_drop_write;
4318 	}
4319 
4320 	spin_lock(&fs_info->super_lock);
4321 	newflags = btrfs_super_compat_flags(super_block);
4322 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4323 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4324 	btrfs_set_super_compat_flags(super_block, newflags);
4325 
4326 	newflags = btrfs_super_compat_ro_flags(super_block);
4327 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4328 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4329 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4330 
4331 	newflags = btrfs_super_incompat_flags(super_block);
4332 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4333 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4334 	btrfs_set_super_incompat_flags(super_block, newflags);
4335 	spin_unlock(&fs_info->super_lock);
4336 
4337 	ret = btrfs_commit_transaction(trans);
4338 out_drop_write:
4339 	mnt_drop_write_file(file);
4340 
4341 	return ret;
4342 }
4343 
4344 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4345 {
4346 	struct btrfs_ioctl_send_args *arg;
4347 	int ret;
4348 
4349 	if (compat) {
4350 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4351 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4352 
4353 		ret = copy_from_user(&args32, argp, sizeof(args32));
4354 		if (ret)
4355 			return -EFAULT;
4356 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4357 		if (!arg)
4358 			return -ENOMEM;
4359 		arg->send_fd = args32.send_fd;
4360 		arg->clone_sources_count = args32.clone_sources_count;
4361 		arg->clone_sources = compat_ptr(args32.clone_sources);
4362 		arg->parent_root = args32.parent_root;
4363 		arg->flags = args32.flags;
4364 		arg->version = args32.version;
4365 		memcpy(arg->reserved, args32.reserved,
4366 		       sizeof(args32.reserved));
4367 #else
4368 		return -ENOTTY;
4369 #endif
4370 	} else {
4371 		arg = memdup_user(argp, sizeof(*arg));
4372 		if (IS_ERR(arg))
4373 			return PTR_ERR(arg);
4374 	}
4375 	ret = btrfs_ioctl_send(root, arg);
4376 	kfree(arg);
4377 	return ret;
4378 }
4379 
4380 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4381 				    bool compat)
4382 {
4383 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4384 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4385 					     flags);
4386 	size_t copy_end;
4387 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4388 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4389 	struct extent_io_tree *io_tree = &inode->io_tree;
4390 	struct iovec iovstack[UIO_FASTIOV];
4391 	struct iovec *iov = iovstack;
4392 	struct iov_iter iter;
4393 	loff_t pos;
4394 	struct kiocb kiocb;
4395 	ssize_t ret;
4396 	u64 disk_bytenr, disk_io_size;
4397 	struct extent_state *cached_state = NULL;
4398 
4399 	if (!capable(CAP_SYS_ADMIN)) {
4400 		ret = -EPERM;
4401 		goto out_acct;
4402 	}
4403 
4404 	if (fs_info->sectorsize > PAGE_SIZE) {
4405 		ret = -ENOTTY;
4406 		goto out_acct;
4407 	}
4408 	if (compat) {
4409 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4410 		struct btrfs_ioctl_encoded_io_args_32 args32;
4411 
4412 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4413 				       flags);
4414 		if (copy_from_user(&args32, argp, copy_end)) {
4415 			ret = -EFAULT;
4416 			goto out_acct;
4417 		}
4418 		args.iov = compat_ptr(args32.iov);
4419 		args.iovcnt = args32.iovcnt;
4420 		args.offset = args32.offset;
4421 		args.flags = args32.flags;
4422 #else
4423 		return -ENOTTY;
4424 #endif
4425 	} else {
4426 		copy_end = copy_end_kernel;
4427 		if (copy_from_user(&args, argp, copy_end)) {
4428 			ret = -EFAULT;
4429 			goto out_acct;
4430 		}
4431 	}
4432 	if (args.flags != 0) {
4433 		ret = -EINVAL;
4434 		goto out_acct;
4435 	}
4436 
4437 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4438 			   &iov, &iter);
4439 	if (ret < 0)
4440 		goto out_acct;
4441 
4442 	if (iov_iter_count(&iter) == 0) {
4443 		ret = 0;
4444 		goto out_iov;
4445 	}
4446 	pos = args.offset;
4447 	ret = rw_verify_area(READ, file, &pos, args.len);
4448 	if (ret < 0)
4449 		goto out_iov;
4450 
4451 	init_sync_kiocb(&kiocb, file);
4452 	kiocb.ki_pos = pos;
4453 
4454 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4455 				 &disk_bytenr, &disk_io_size);
4456 
4457 	if (ret == -EIOCBQUEUED) {
4458 		bool unlocked = false;
4459 		u64 start, lockend, count;
4460 
4461 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4462 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4463 
4464 		if (args.compression)
4465 			count = disk_io_size;
4466 		else
4467 			count = args.len;
4468 
4469 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4470 						 &cached_state, disk_bytenr,
4471 						 disk_io_size, count,
4472 						 args.compression, &unlocked);
4473 
4474 		if (!unlocked) {
4475 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4476 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4477 		}
4478 	}
4479 
4480 	if (ret >= 0) {
4481 		fsnotify_access(file);
4482 		if (copy_to_user(argp + copy_end,
4483 				 (char *)&args + copy_end_kernel,
4484 				 sizeof(args) - copy_end_kernel))
4485 			ret = -EFAULT;
4486 	}
4487 
4488 out_iov:
4489 	kfree(iov);
4490 out_acct:
4491 	if (ret > 0)
4492 		add_rchar(current, ret);
4493 	inc_syscr(current);
4494 	return ret;
4495 }
4496 
4497 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4498 {
4499 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file->f_inode);
4500 	struct btrfs_ioctl_encoded_io_args args;
4501 	struct iovec iovstack[UIO_FASTIOV];
4502 	struct iovec *iov = iovstack;
4503 	struct iov_iter iter;
4504 	loff_t pos;
4505 	struct kiocb kiocb;
4506 	ssize_t ret;
4507 
4508 	if (!capable(CAP_SYS_ADMIN)) {
4509 		ret = -EPERM;
4510 		goto out_acct;
4511 	}
4512 
4513 	if (fs_info->sectorsize > PAGE_SIZE) {
4514 		ret = -ENOTTY;
4515 		goto out_acct;
4516 	}
4517 
4518 	if (!(file->f_mode & FMODE_WRITE)) {
4519 		ret = -EBADF;
4520 		goto out_acct;
4521 	}
4522 
4523 	if (compat) {
4524 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4525 		struct btrfs_ioctl_encoded_io_args_32 args32;
4526 
4527 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4528 			ret = -EFAULT;
4529 			goto out_acct;
4530 		}
4531 		args.iov = compat_ptr(args32.iov);
4532 		args.iovcnt = args32.iovcnt;
4533 		args.offset = args32.offset;
4534 		args.flags = args32.flags;
4535 		args.len = args32.len;
4536 		args.unencoded_len = args32.unencoded_len;
4537 		args.unencoded_offset = args32.unencoded_offset;
4538 		args.compression = args32.compression;
4539 		args.encryption = args32.encryption;
4540 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4541 #else
4542 		return -ENOTTY;
4543 #endif
4544 	} else {
4545 		if (copy_from_user(&args, argp, sizeof(args))) {
4546 			ret = -EFAULT;
4547 			goto out_acct;
4548 		}
4549 	}
4550 
4551 	ret = -EINVAL;
4552 	if (args.flags != 0)
4553 		goto out_acct;
4554 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4555 		goto out_acct;
4556 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4557 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4558 		goto out_acct;
4559 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4560 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4561 		goto out_acct;
4562 	if (args.unencoded_offset > args.unencoded_len)
4563 		goto out_acct;
4564 	if (args.len > args.unencoded_len - args.unencoded_offset)
4565 		goto out_acct;
4566 
4567 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4568 			   &iov, &iter);
4569 	if (ret < 0)
4570 		goto out_acct;
4571 
4572 	if (iov_iter_count(&iter) == 0) {
4573 		ret = 0;
4574 		goto out_iov;
4575 	}
4576 	pos = args.offset;
4577 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4578 	if (ret < 0)
4579 		goto out_iov;
4580 
4581 	init_sync_kiocb(&kiocb, file);
4582 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4583 	if (ret)
4584 		goto out_iov;
4585 	kiocb.ki_pos = pos;
4586 
4587 	file_start_write(file);
4588 
4589 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4590 	if (ret > 0)
4591 		fsnotify_modify(file);
4592 
4593 	file_end_write(file);
4594 out_iov:
4595 	kfree(iov);
4596 out_acct:
4597 	if (ret > 0)
4598 		add_wchar(current, ret);
4599 	inc_syscw(current);
4600 	return ret;
4601 }
4602 
4603 struct btrfs_uring_encoded_data {
4604 	struct btrfs_ioctl_encoded_io_args args;
4605 	struct iovec iovstack[UIO_FASTIOV];
4606 	struct iovec *iov;
4607 	struct iov_iter iter;
4608 };
4609 
4610 /*
4611  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4612  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4613  * off and cleanup the I/O in btrfs_uring_read_finished.
4614  */
4615 struct btrfs_uring_priv {
4616 	struct io_uring_cmd *cmd;
4617 	struct page **pages;
4618 	unsigned long nr_pages;
4619 	struct kiocb iocb;
4620 	struct iovec *iov;
4621 	struct iov_iter iter;
4622 	struct extent_state *cached_state;
4623 	u64 count;
4624 	u64 start;
4625 	u64 lockend;
4626 	int err;
4627 	bool compressed;
4628 };
4629 
4630 struct io_btrfs_cmd {
4631 	struct btrfs_uring_encoded_data *data;
4632 	struct btrfs_uring_priv *priv;
4633 };
4634 
4635 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4636 {
4637 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4638 	struct btrfs_uring_priv *priv = bc->priv;
4639 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4640 	struct extent_io_tree *io_tree = &inode->io_tree;
4641 	pgoff_t index;
4642 	u64 cur;
4643 	size_t page_offset;
4644 	ssize_t ret;
4645 
4646 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4647 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4648 
4649 	if (priv->err) {
4650 		ret = priv->err;
4651 		goto out;
4652 	}
4653 
4654 	if (priv->compressed) {
4655 		index = 0;
4656 		page_offset = 0;
4657 	} else {
4658 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4659 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4660 	}
4661 	cur = 0;
4662 	while (cur < priv->count) {
4663 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4664 
4665 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4666 				      &priv->iter) != bytes) {
4667 			ret = -EFAULT;
4668 			goto out;
4669 		}
4670 
4671 		index++;
4672 		cur += bytes;
4673 		page_offset = 0;
4674 	}
4675 	ret = priv->count;
4676 
4677 out:
4678 	btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4679 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4680 
4681 	io_uring_cmd_done(cmd, ret, issue_flags);
4682 	add_rchar(current, ret);
4683 
4684 	for (index = 0; index < priv->nr_pages; index++)
4685 		__free_page(priv->pages[index]);
4686 
4687 	kfree(priv->pages);
4688 	kfree(priv->iov);
4689 	kfree(priv);
4690 	kfree(bc->data);
4691 }
4692 
4693 void btrfs_uring_read_extent_endio(void *ctx, int err)
4694 {
4695 	struct btrfs_uring_priv *priv = ctx;
4696 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4697 
4698 	priv->err = err;
4699 	bc->priv = priv;
4700 
4701 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4702 }
4703 
4704 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4705 				   u64 start, u64 lockend,
4706 				   struct extent_state *cached_state,
4707 				   u64 disk_bytenr, u64 disk_io_size,
4708 				   size_t count, bool compressed,
4709 				   struct iovec *iov, struct io_uring_cmd *cmd)
4710 {
4711 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4712 	struct extent_io_tree *io_tree = &inode->io_tree;
4713 	struct page **pages;
4714 	struct btrfs_uring_priv *priv = NULL;
4715 	unsigned long nr_pages;
4716 	int ret;
4717 
4718 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4719 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4720 	if (!pages)
4721 		return -ENOMEM;
4722 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4723 	if (ret) {
4724 		ret = -ENOMEM;
4725 		goto out_fail;
4726 	}
4727 
4728 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4729 	if (!priv) {
4730 		ret = -ENOMEM;
4731 		goto out_fail;
4732 	}
4733 
4734 	priv->iocb = *iocb;
4735 	priv->iov = iov;
4736 	priv->iter = *iter;
4737 	priv->count = count;
4738 	priv->cmd = cmd;
4739 	priv->cached_state = cached_state;
4740 	priv->compressed = compressed;
4741 	priv->nr_pages = nr_pages;
4742 	priv->pages = pages;
4743 	priv->start = start;
4744 	priv->lockend = lockend;
4745 	priv->err = 0;
4746 
4747 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4748 						    disk_io_size, pages, priv);
4749 	if (ret && ret != -EIOCBQUEUED)
4750 		goto out_fail;
4751 
4752 	/*
4753 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4754 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4755 	 * and inode and freeing the allocations.
4756 	 */
4757 
4758 	/*
4759 	 * We're returning to userspace with the inode lock held, and that's
4760 	 * okay - it'll get unlocked in a worker thread.  Call
4761 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4762 	 */
4763 	btrfs_lockdep_inode_release(inode, i_rwsem);
4764 
4765 	return -EIOCBQUEUED;
4766 
4767 out_fail:
4768 	btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4769 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4770 	kfree(priv);
4771 	return ret;
4772 }
4773 
4774 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4775 {
4776 	struct file *file = cmd->file;
4777 	struct btrfs_inode *inode = BTRFS_I(file->f_inode);
4778 	struct extent_io_tree *io_tree = &inode->io_tree;
4779 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4780 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4781 	size_t copy_end;
4782 	int ret;
4783 	u64 disk_bytenr, disk_io_size;
4784 	loff_t pos;
4785 	struct kiocb kiocb;
4786 	struct extent_state *cached_state = NULL;
4787 	u64 start, lockend;
4788 	void __user *sqe_addr;
4789 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4790 	struct btrfs_uring_encoded_data *data = NULL;
4791 
4792 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4793 		data = bc->data;
4794 
4795 	if (!capable(CAP_SYS_ADMIN)) {
4796 		ret = -EPERM;
4797 		goto out_acct;
4798 	}
4799 	if (fs_info->sectorsize > PAGE_SIZE) {
4800 		ret = -ENOTTY;
4801 		goto out_acct;
4802 	}
4803 
4804 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4805 
4806 	if (issue_flags & IO_URING_F_COMPAT) {
4807 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4808 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4809 #else
4810 		ret = -ENOTTY;
4811 		goto out_acct;
4812 #endif
4813 	} else {
4814 		copy_end = copy_end_kernel;
4815 	}
4816 
4817 	if (!data) {
4818 		data = kzalloc(sizeof(*data), GFP_NOFS);
4819 		if (!data) {
4820 			ret = -ENOMEM;
4821 			goto out_acct;
4822 		}
4823 
4824 		bc->data = data;
4825 
4826 		if (issue_flags & IO_URING_F_COMPAT) {
4827 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4828 			struct btrfs_ioctl_encoded_io_args_32 args32;
4829 
4830 			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4831 				ret = -EFAULT;
4832 				goto out_acct;
4833 			}
4834 
4835 			data->args.iov = compat_ptr(args32.iov);
4836 			data->args.iovcnt = args32.iovcnt;
4837 			data->args.offset = args32.offset;
4838 			data->args.flags = args32.flags;
4839 #endif
4840 		} else {
4841 			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4842 				ret = -EFAULT;
4843 				goto out_acct;
4844 			}
4845 		}
4846 
4847 		if (data->args.flags != 0) {
4848 			ret = -EINVAL;
4849 			goto out_acct;
4850 		}
4851 
4852 		data->iov = data->iovstack;
4853 		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4854 				   ARRAY_SIZE(data->iovstack), &data->iov,
4855 				   &data->iter);
4856 		if (ret < 0)
4857 			goto out_acct;
4858 
4859 		if (iov_iter_count(&data->iter) == 0) {
4860 			ret = 0;
4861 			goto out_free;
4862 		}
4863 	}
4864 
4865 	pos = data->args.offset;
4866 	ret = rw_verify_area(READ, file, &pos, data->args.len);
4867 	if (ret < 0)
4868 		goto out_free;
4869 
4870 	init_sync_kiocb(&kiocb, file);
4871 	kiocb.ki_pos = pos;
4872 
4873 	if (issue_flags & IO_URING_F_NONBLOCK)
4874 		kiocb.ki_flags |= IOCB_NOWAIT;
4875 
4876 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4877 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4878 
4879 	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4880 				 &disk_bytenr, &disk_io_size);
4881 	if (ret == -EAGAIN)
4882 		goto out_acct;
4883 	if (ret < 0 && ret != -EIOCBQUEUED)
4884 		goto out_free;
4885 
4886 	file_accessed(file);
4887 
4888 	if (copy_to_user(sqe_addr + copy_end,
4889 			 (const char *)&data->args + copy_end_kernel,
4890 			 sizeof(data->args) - copy_end_kernel)) {
4891 		if (ret == -EIOCBQUEUED) {
4892 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4893 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4894 		}
4895 		ret = -EFAULT;
4896 		goto out_free;
4897 	}
4898 
4899 	if (ret == -EIOCBQUEUED) {
4900 		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4901 
4902 		/* Match ioctl by not returning past EOF if uncompressed. */
4903 		if (!data->args.compression)
4904 			count = min_t(u64, count, data->args.len);
4905 
4906 		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4907 					      cached_state, disk_bytenr, disk_io_size,
4908 					      count, data->args.compression,
4909 					      data->iov, cmd);
4910 
4911 		goto out_acct;
4912 	}
4913 
4914 out_free:
4915 	kfree(data->iov);
4916 
4917 out_acct:
4918 	if (ret > 0)
4919 		add_rchar(current, ret);
4920 	inc_syscr(current);
4921 
4922 	if (ret != -EIOCBQUEUED && ret != -EAGAIN)
4923 		kfree(data);
4924 
4925 	return ret;
4926 }
4927 
4928 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4929 {
4930 	struct file *file = cmd->file;
4931 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file->f_inode);
4932 	loff_t pos;
4933 	struct kiocb kiocb;
4934 	ssize_t ret;
4935 	void __user *sqe_addr;
4936 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4937 	struct btrfs_uring_encoded_data *data = NULL;
4938 
4939 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4940 		data = bc->data;
4941 
4942 	if (!capable(CAP_SYS_ADMIN)) {
4943 		ret = -EPERM;
4944 		goto out_acct;
4945 	}
4946 	if (fs_info->sectorsize > PAGE_SIZE) {
4947 		ret = -ENOTTY;
4948 		goto out_acct;
4949 	}
4950 
4951 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4952 
4953 	if (!(file->f_mode & FMODE_WRITE)) {
4954 		ret = -EBADF;
4955 		goto out_acct;
4956 	}
4957 
4958 	if (!data) {
4959 		data = kzalloc(sizeof(*data), GFP_NOFS);
4960 		if (!data) {
4961 			ret = -ENOMEM;
4962 			goto out_acct;
4963 		}
4964 
4965 		bc->data = data;
4966 
4967 		if (issue_flags & IO_URING_F_COMPAT) {
4968 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4969 			struct btrfs_ioctl_encoded_io_args_32 args32;
4970 
4971 			if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4972 				ret = -EFAULT;
4973 				goto out_acct;
4974 			}
4975 			data->args.iov = compat_ptr(args32.iov);
4976 			data->args.iovcnt = args32.iovcnt;
4977 			data->args.offset = args32.offset;
4978 			data->args.flags = args32.flags;
4979 			data->args.len = args32.len;
4980 			data->args.unencoded_len = args32.unencoded_len;
4981 			data->args.unencoded_offset = args32.unencoded_offset;
4982 			data->args.compression = args32.compression;
4983 			data->args.encryption = args32.encryption;
4984 			memcpy(data->args.reserved, args32.reserved,
4985 			       sizeof(data->args.reserved));
4986 #else
4987 			ret = -ENOTTY;
4988 			goto out_acct;
4989 #endif
4990 		} else {
4991 			if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
4992 				ret = -EFAULT;
4993 				goto out_acct;
4994 			}
4995 		}
4996 
4997 		ret = -EINVAL;
4998 		if (data->args.flags != 0)
4999 			goto out_acct;
5000 		if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5001 			goto out_acct;
5002 		if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5003 		    data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5004 			goto out_acct;
5005 		if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5006 		    data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5007 			goto out_acct;
5008 		if (data->args.unencoded_offset > data->args.unencoded_len)
5009 			goto out_acct;
5010 		if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5011 			goto out_acct;
5012 
5013 		data->iov = data->iovstack;
5014 		ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5015 				   ARRAY_SIZE(data->iovstack), &data->iov,
5016 				   &data->iter);
5017 		if (ret < 0)
5018 			goto out_acct;
5019 
5020 		if (iov_iter_count(&data->iter) == 0) {
5021 			ret = 0;
5022 			goto out_iov;
5023 		}
5024 	}
5025 
5026 	if (issue_flags & IO_URING_F_NONBLOCK) {
5027 		ret = -EAGAIN;
5028 		goto out_acct;
5029 	}
5030 
5031 	pos = data->args.offset;
5032 	ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5033 	if (ret < 0)
5034 		goto out_iov;
5035 
5036 	init_sync_kiocb(&kiocb, file);
5037 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5038 	if (ret)
5039 		goto out_iov;
5040 	kiocb.ki_pos = pos;
5041 
5042 	file_start_write(file);
5043 
5044 	ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5045 	if (ret > 0)
5046 		fsnotify_modify(file);
5047 
5048 	file_end_write(file);
5049 out_iov:
5050 	kfree(data->iov);
5051 out_acct:
5052 	if (ret > 0)
5053 		add_wchar(current, ret);
5054 	inc_syscw(current);
5055 
5056 	if (ret != -EAGAIN)
5057 		kfree(data);
5058 	return ret;
5059 }
5060 
5061 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5062 {
5063 	switch (cmd->cmd_op) {
5064 	case BTRFS_IOC_ENCODED_READ:
5065 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5066 	case BTRFS_IOC_ENCODED_READ_32:
5067 #endif
5068 		return btrfs_uring_encoded_read(cmd, issue_flags);
5069 
5070 	case BTRFS_IOC_ENCODED_WRITE:
5071 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5072 	case BTRFS_IOC_ENCODED_WRITE_32:
5073 #endif
5074 		return btrfs_uring_encoded_write(cmd, issue_flags);
5075 	}
5076 
5077 	return -EINVAL;
5078 }
5079 
5080 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5081 {
5082 	struct btrfs_root *root;
5083 	struct btrfs_ioctl_subvol_wait args = { 0 };
5084 	signed long sched_ret;
5085 	int refs;
5086 	u64 root_flags;
5087 	bool wait_for_deletion = false;
5088 	bool found = false;
5089 
5090 	if (copy_from_user(&args, argp, sizeof(args)))
5091 		return -EFAULT;
5092 
5093 	switch (args.mode) {
5094 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5095 		/*
5096 		 * Wait for the first one deleted that waits until all previous
5097 		 * are cleaned.
5098 		 */
5099 		spin_lock(&fs_info->trans_lock);
5100 		if (!list_empty(&fs_info->dead_roots)) {
5101 			root = list_last_entry(&fs_info->dead_roots,
5102 					       struct btrfs_root, root_list);
5103 			args.subvolid = btrfs_root_id(root);
5104 			found = true;
5105 		}
5106 		spin_unlock(&fs_info->trans_lock);
5107 		if (!found)
5108 			return -ENOENT;
5109 
5110 		fallthrough;
5111 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5112 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5113 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5114 			return -EINVAL;
5115 		break;
5116 	case BTRFS_SUBVOL_SYNC_COUNT:
5117 		spin_lock(&fs_info->trans_lock);
5118 		args.count = list_count_nodes(&fs_info->dead_roots);
5119 		spin_unlock(&fs_info->trans_lock);
5120 		if (copy_to_user(argp, &args, sizeof(args)))
5121 			return -EFAULT;
5122 		return 0;
5123 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5124 		spin_lock(&fs_info->trans_lock);
5125 		/* Last in the list was deleted first. */
5126 		if (!list_empty(&fs_info->dead_roots)) {
5127 			root = list_last_entry(&fs_info->dead_roots,
5128 					       struct btrfs_root, root_list);
5129 			args.subvolid = btrfs_root_id(root);
5130 		} else {
5131 			args.subvolid = 0;
5132 		}
5133 		spin_unlock(&fs_info->trans_lock);
5134 		if (copy_to_user(argp, &args, sizeof(args)))
5135 			return -EFAULT;
5136 		return 0;
5137 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5138 		spin_lock(&fs_info->trans_lock);
5139 		/* First in the list was deleted last. */
5140 		if (!list_empty(&fs_info->dead_roots)) {
5141 			root = list_first_entry(&fs_info->dead_roots,
5142 						struct btrfs_root, root_list);
5143 			args.subvolid = btrfs_root_id(root);
5144 		} else {
5145 			args.subvolid = 0;
5146 		}
5147 		spin_unlock(&fs_info->trans_lock);
5148 		if (copy_to_user(argp, &args, sizeof(args)))
5149 			return -EFAULT;
5150 		return 0;
5151 	default:
5152 		return -EINVAL;
5153 	}
5154 
5155 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5156 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5157 		return -EOVERFLOW;
5158 
5159 	while (1) {
5160 		/* Wait for the specific one. */
5161 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5162 			return -EINTR;
5163 		refs = -1;
5164 		spin_lock(&fs_info->fs_roots_radix_lock);
5165 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5166 					 (unsigned long)args.subvolid);
5167 		if (root) {
5168 			spin_lock(&root->root_item_lock);
5169 			refs = btrfs_root_refs(&root->root_item);
5170 			root_flags = btrfs_root_flags(&root->root_item);
5171 			spin_unlock(&root->root_item_lock);
5172 		}
5173 		spin_unlock(&fs_info->fs_roots_radix_lock);
5174 		up_read(&fs_info->subvol_sem);
5175 
5176 		/* Subvolume does not exist. */
5177 		if (!root)
5178 			return -ENOENT;
5179 
5180 		/* Subvolume not deleted at all. */
5181 		if (refs > 0)
5182 			return -EEXIST;
5183 		/* We've waited and now the subvolume is gone. */
5184 		if (wait_for_deletion && refs == -1) {
5185 			/* Return the one we waited for as the last one. */
5186 			if (copy_to_user(argp, &args, sizeof(args)))
5187 				return -EFAULT;
5188 			return 0;
5189 		}
5190 
5191 		/* Subvolume not found on the first try (deleted or never existed). */
5192 		if (refs == -1)
5193 			return -ENOENT;
5194 
5195 		wait_for_deletion = true;
5196 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5197 		sched_ret = schedule_timeout_interruptible(HZ);
5198 		/* Early wake up or error. */
5199 		if (sched_ret != 0)
5200 			return -EINTR;
5201 	}
5202 
5203 	return 0;
5204 }
5205 
5206 long btrfs_ioctl(struct file *file, unsigned int
5207 		cmd, unsigned long arg)
5208 {
5209 	struct inode *inode = file_inode(file);
5210 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5211 	struct btrfs_root *root = BTRFS_I(inode)->root;
5212 	void __user *argp = (void __user *)arg;
5213 
5214 	switch (cmd) {
5215 	case FS_IOC_GETVERSION:
5216 		return btrfs_ioctl_getversion(inode, argp);
5217 	case FS_IOC_GETFSLABEL:
5218 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5219 	case FS_IOC_SETFSLABEL:
5220 		return btrfs_ioctl_set_fslabel(file, argp);
5221 	case FITRIM:
5222 		return btrfs_ioctl_fitrim(fs_info, argp);
5223 	case BTRFS_IOC_SNAP_CREATE:
5224 		return btrfs_ioctl_snap_create(file, argp, false);
5225 	case BTRFS_IOC_SNAP_CREATE_V2:
5226 		return btrfs_ioctl_snap_create_v2(file, argp, false);
5227 	case BTRFS_IOC_SUBVOL_CREATE:
5228 		return btrfs_ioctl_snap_create(file, argp, true);
5229 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5230 		return btrfs_ioctl_snap_create_v2(file, argp, true);
5231 	case BTRFS_IOC_SNAP_DESTROY:
5232 		return btrfs_ioctl_snap_destroy(file, argp, false);
5233 	case BTRFS_IOC_SNAP_DESTROY_V2:
5234 		return btrfs_ioctl_snap_destroy(file, argp, true);
5235 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5236 		return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5237 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5238 		return btrfs_ioctl_subvol_setflags(file, argp);
5239 	case BTRFS_IOC_DEFAULT_SUBVOL:
5240 		return btrfs_ioctl_default_subvol(file, argp);
5241 	case BTRFS_IOC_DEFRAG:
5242 		return btrfs_ioctl_defrag(file, NULL);
5243 	case BTRFS_IOC_DEFRAG_RANGE:
5244 		return btrfs_ioctl_defrag(file, argp);
5245 	case BTRFS_IOC_RESIZE:
5246 		return btrfs_ioctl_resize(file, argp);
5247 	case BTRFS_IOC_ADD_DEV:
5248 		return btrfs_ioctl_add_dev(fs_info, argp);
5249 	case BTRFS_IOC_RM_DEV:
5250 		return btrfs_ioctl_rm_dev(file, argp);
5251 	case BTRFS_IOC_RM_DEV_V2:
5252 		return btrfs_ioctl_rm_dev_v2(file, argp);
5253 	case BTRFS_IOC_FS_INFO:
5254 		return btrfs_ioctl_fs_info(fs_info, argp);
5255 	case BTRFS_IOC_DEV_INFO:
5256 		return btrfs_ioctl_dev_info(fs_info, argp);
5257 	case BTRFS_IOC_TREE_SEARCH:
5258 		return btrfs_ioctl_tree_search(root, argp);
5259 	case BTRFS_IOC_TREE_SEARCH_V2:
5260 		return btrfs_ioctl_tree_search_v2(root, argp);
5261 	case BTRFS_IOC_INO_LOOKUP:
5262 		return btrfs_ioctl_ino_lookup(root, argp);
5263 	case BTRFS_IOC_INO_PATHS:
5264 		return btrfs_ioctl_ino_to_path(root, argp);
5265 	case BTRFS_IOC_LOGICAL_INO:
5266 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5267 	case BTRFS_IOC_LOGICAL_INO_V2:
5268 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5269 	case BTRFS_IOC_SPACE_INFO:
5270 		return btrfs_ioctl_space_info(fs_info, argp);
5271 	case BTRFS_IOC_SYNC: {
5272 		int ret;
5273 
5274 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5275 		if (ret)
5276 			return ret;
5277 		ret = btrfs_sync_fs(inode->i_sb, 1);
5278 		/*
5279 		 * There may be work for the cleaner kthread to do (subvolume
5280 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5281 		 */
5282 		wake_up_process(fs_info->cleaner_kthread);
5283 		return ret;
5284 	}
5285 	case BTRFS_IOC_START_SYNC:
5286 		return btrfs_ioctl_start_sync(root, argp);
5287 	case BTRFS_IOC_WAIT_SYNC:
5288 		return btrfs_ioctl_wait_sync(fs_info, argp);
5289 	case BTRFS_IOC_SCRUB:
5290 		return btrfs_ioctl_scrub(file, argp);
5291 	case BTRFS_IOC_SCRUB_CANCEL:
5292 		return btrfs_ioctl_scrub_cancel(fs_info);
5293 	case BTRFS_IOC_SCRUB_PROGRESS:
5294 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5295 	case BTRFS_IOC_BALANCE_V2:
5296 		return btrfs_ioctl_balance(file, argp);
5297 	case BTRFS_IOC_BALANCE_CTL:
5298 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5299 	case BTRFS_IOC_BALANCE_PROGRESS:
5300 		return btrfs_ioctl_balance_progress(fs_info, argp);
5301 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5302 		return btrfs_ioctl_set_received_subvol(file, argp);
5303 #ifdef CONFIG_64BIT
5304 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5305 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5306 #endif
5307 	case BTRFS_IOC_SEND:
5308 		return _btrfs_ioctl_send(root, argp, false);
5309 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5310 	case BTRFS_IOC_SEND_32:
5311 		return _btrfs_ioctl_send(root, argp, true);
5312 #endif
5313 	case BTRFS_IOC_GET_DEV_STATS:
5314 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5315 	case BTRFS_IOC_QUOTA_CTL:
5316 		return btrfs_ioctl_quota_ctl(file, argp);
5317 	case BTRFS_IOC_QGROUP_ASSIGN:
5318 		return btrfs_ioctl_qgroup_assign(file, argp);
5319 	case BTRFS_IOC_QGROUP_CREATE:
5320 		return btrfs_ioctl_qgroup_create(file, argp);
5321 	case BTRFS_IOC_QGROUP_LIMIT:
5322 		return btrfs_ioctl_qgroup_limit(file, argp);
5323 	case BTRFS_IOC_QUOTA_RESCAN:
5324 		return btrfs_ioctl_quota_rescan(file, argp);
5325 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5326 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5327 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5328 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5329 	case BTRFS_IOC_DEV_REPLACE:
5330 		return btrfs_ioctl_dev_replace(fs_info, argp);
5331 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5332 		return btrfs_ioctl_get_supported_features(argp);
5333 	case BTRFS_IOC_GET_FEATURES:
5334 		return btrfs_ioctl_get_features(fs_info, argp);
5335 	case BTRFS_IOC_SET_FEATURES:
5336 		return btrfs_ioctl_set_features(file, argp);
5337 	case BTRFS_IOC_GET_SUBVOL_INFO:
5338 		return btrfs_ioctl_get_subvol_info(inode, argp);
5339 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5340 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5341 	case BTRFS_IOC_INO_LOOKUP_USER:
5342 		return btrfs_ioctl_ino_lookup_user(file, argp);
5343 	case FS_IOC_ENABLE_VERITY:
5344 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5345 	case FS_IOC_MEASURE_VERITY:
5346 		return fsverity_ioctl_measure(file, argp);
5347 	case FS_IOC_READ_VERITY_METADATA:
5348 		return fsverity_ioctl_read_metadata(file, argp);
5349 	case BTRFS_IOC_ENCODED_READ:
5350 		return btrfs_ioctl_encoded_read(file, argp, false);
5351 	case BTRFS_IOC_ENCODED_WRITE:
5352 		return btrfs_ioctl_encoded_write(file, argp, false);
5353 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5354 	case BTRFS_IOC_ENCODED_READ_32:
5355 		return btrfs_ioctl_encoded_read(file, argp, true);
5356 	case BTRFS_IOC_ENCODED_WRITE_32:
5357 		return btrfs_ioctl_encoded_write(file, argp, true);
5358 #endif
5359 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5360 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5361 	}
5362 
5363 	return -ENOTTY;
5364 }
5365 
5366 #ifdef CONFIG_COMPAT
5367 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5368 {
5369 	/*
5370 	 * These all access 32-bit values anyway so no further
5371 	 * handling is necessary.
5372 	 */
5373 	switch (cmd) {
5374 	case FS_IOC32_GETVERSION:
5375 		cmd = FS_IOC_GETVERSION;
5376 		break;
5377 	}
5378 
5379 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5380 }
5381 #endif
5382