1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include "compat.h" 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "ioctl.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 55 /* Mask out flags that are inappropriate for the given type of inode. */ 56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 57 { 58 if (S_ISDIR(mode)) 59 return flags; 60 else if (S_ISREG(mode)) 61 return flags & ~FS_DIRSYNC_FL; 62 else 63 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 64 } 65 66 /* 67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 68 */ 69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 70 { 71 unsigned int iflags = 0; 72 73 if (flags & BTRFS_INODE_SYNC) 74 iflags |= FS_SYNC_FL; 75 if (flags & BTRFS_INODE_IMMUTABLE) 76 iflags |= FS_IMMUTABLE_FL; 77 if (flags & BTRFS_INODE_APPEND) 78 iflags |= FS_APPEND_FL; 79 if (flags & BTRFS_INODE_NODUMP) 80 iflags |= FS_NODUMP_FL; 81 if (flags & BTRFS_INODE_NOATIME) 82 iflags |= FS_NOATIME_FL; 83 if (flags & BTRFS_INODE_DIRSYNC) 84 iflags |= FS_DIRSYNC_FL; 85 if (flags & BTRFS_INODE_NODATACOW) 86 iflags |= FS_NOCOW_FL; 87 88 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 89 iflags |= FS_COMPR_FL; 90 else if (flags & BTRFS_INODE_NOCOMPRESS) 91 iflags |= FS_NOCOMP_FL; 92 93 return iflags; 94 } 95 96 /* 97 * Update inode->i_flags based on the btrfs internal flags. 98 */ 99 void btrfs_update_iflags(struct inode *inode) 100 { 101 struct btrfs_inode *ip = BTRFS_I(inode); 102 103 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 104 105 if (ip->flags & BTRFS_INODE_SYNC) 106 inode->i_flags |= S_SYNC; 107 if (ip->flags & BTRFS_INODE_IMMUTABLE) 108 inode->i_flags |= S_IMMUTABLE; 109 if (ip->flags & BTRFS_INODE_APPEND) 110 inode->i_flags |= S_APPEND; 111 if (ip->flags & BTRFS_INODE_NOATIME) 112 inode->i_flags |= S_NOATIME; 113 if (ip->flags & BTRFS_INODE_DIRSYNC) 114 inode->i_flags |= S_DIRSYNC; 115 } 116 117 /* 118 * Inherit flags from the parent inode. 119 * 120 * Unlike extN we don't have any flags we don't want to inherit currently. 121 */ 122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 123 { 124 unsigned int flags; 125 126 if (!dir) 127 return; 128 129 flags = BTRFS_I(dir)->flags; 130 131 if (S_ISREG(inode->i_mode)) 132 flags &= ~BTRFS_INODE_DIRSYNC; 133 else if (!S_ISDIR(inode->i_mode)) 134 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME); 135 136 BTRFS_I(inode)->flags = flags; 137 btrfs_update_iflags(inode); 138 } 139 140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 141 { 142 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 143 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 144 145 if (copy_to_user(arg, &flags, sizeof(flags))) 146 return -EFAULT; 147 return 0; 148 } 149 150 static int check_flags(unsigned int flags) 151 { 152 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 153 FS_NOATIME_FL | FS_NODUMP_FL | \ 154 FS_SYNC_FL | FS_DIRSYNC_FL | \ 155 FS_NOCOMP_FL | FS_COMPR_FL | 156 FS_NOCOW_FL)) 157 return -EOPNOTSUPP; 158 159 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 160 return -EINVAL; 161 162 return 0; 163 } 164 165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 166 { 167 struct inode *inode = file->f_path.dentry->d_inode; 168 struct btrfs_inode *ip = BTRFS_I(inode); 169 struct btrfs_root *root = ip->root; 170 struct btrfs_trans_handle *trans; 171 unsigned int flags, oldflags; 172 int ret; 173 174 if (btrfs_root_readonly(root)) 175 return -EROFS; 176 177 if (copy_from_user(&flags, arg, sizeof(flags))) 178 return -EFAULT; 179 180 ret = check_flags(flags); 181 if (ret) 182 return ret; 183 184 if (!inode_owner_or_capable(inode)) 185 return -EACCES; 186 187 mutex_lock(&inode->i_mutex); 188 189 flags = btrfs_mask_flags(inode->i_mode, flags); 190 oldflags = btrfs_flags_to_ioctl(ip->flags); 191 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 192 if (!capable(CAP_LINUX_IMMUTABLE)) { 193 ret = -EPERM; 194 goto out_unlock; 195 } 196 } 197 198 ret = mnt_want_write(file->f_path.mnt); 199 if (ret) 200 goto out_unlock; 201 202 if (flags & FS_SYNC_FL) 203 ip->flags |= BTRFS_INODE_SYNC; 204 else 205 ip->flags &= ~BTRFS_INODE_SYNC; 206 if (flags & FS_IMMUTABLE_FL) 207 ip->flags |= BTRFS_INODE_IMMUTABLE; 208 else 209 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 210 if (flags & FS_APPEND_FL) 211 ip->flags |= BTRFS_INODE_APPEND; 212 else 213 ip->flags &= ~BTRFS_INODE_APPEND; 214 if (flags & FS_NODUMP_FL) 215 ip->flags |= BTRFS_INODE_NODUMP; 216 else 217 ip->flags &= ~BTRFS_INODE_NODUMP; 218 if (flags & FS_NOATIME_FL) 219 ip->flags |= BTRFS_INODE_NOATIME; 220 else 221 ip->flags &= ~BTRFS_INODE_NOATIME; 222 if (flags & FS_DIRSYNC_FL) 223 ip->flags |= BTRFS_INODE_DIRSYNC; 224 else 225 ip->flags &= ~BTRFS_INODE_DIRSYNC; 226 if (flags & FS_NOCOW_FL) 227 ip->flags |= BTRFS_INODE_NODATACOW; 228 else 229 ip->flags &= ~BTRFS_INODE_NODATACOW; 230 231 /* 232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 233 * flag may be changed automatically if compression code won't make 234 * things smaller. 235 */ 236 if (flags & FS_NOCOMP_FL) { 237 ip->flags &= ~BTRFS_INODE_COMPRESS; 238 ip->flags |= BTRFS_INODE_NOCOMPRESS; 239 } else if (flags & FS_COMPR_FL) { 240 ip->flags |= BTRFS_INODE_COMPRESS; 241 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 242 } else { 243 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 244 } 245 246 trans = btrfs_join_transaction(root); 247 BUG_ON(IS_ERR(trans)); 248 249 ret = btrfs_update_inode(trans, root, inode); 250 BUG_ON(ret); 251 252 btrfs_update_iflags(inode); 253 inode->i_ctime = CURRENT_TIME; 254 btrfs_end_transaction(trans, root); 255 256 mnt_drop_write(file->f_path.mnt); 257 258 ret = 0; 259 out_unlock: 260 mutex_unlock(&inode->i_mutex); 261 return ret; 262 } 263 264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 265 { 266 struct inode *inode = file->f_path.dentry->d_inode; 267 268 return put_user(inode->i_generation, arg); 269 } 270 271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 272 { 273 struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info; 274 struct btrfs_fs_info *fs_info = root->fs_info; 275 struct btrfs_device *device; 276 struct request_queue *q; 277 struct fstrim_range range; 278 u64 minlen = ULLONG_MAX; 279 u64 num_devices = 0; 280 int ret; 281 282 if (!capable(CAP_SYS_ADMIN)) 283 return -EPERM; 284 285 rcu_read_lock(); 286 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 287 dev_list) { 288 if (!device->bdev) 289 continue; 290 q = bdev_get_queue(device->bdev); 291 if (blk_queue_discard(q)) { 292 num_devices++; 293 minlen = min((u64)q->limits.discard_granularity, 294 minlen); 295 } 296 } 297 rcu_read_unlock(); 298 if (!num_devices) 299 return -EOPNOTSUPP; 300 301 if (copy_from_user(&range, arg, sizeof(range))) 302 return -EFAULT; 303 304 range.minlen = max(range.minlen, minlen); 305 ret = btrfs_trim_fs(root, &range); 306 if (ret < 0) 307 return ret; 308 309 if (copy_to_user(arg, &range, sizeof(range))) 310 return -EFAULT; 311 312 return 0; 313 } 314 315 static noinline int create_subvol(struct btrfs_root *root, 316 struct dentry *dentry, 317 char *name, int namelen, 318 u64 *async_transid) 319 { 320 struct btrfs_trans_handle *trans; 321 struct btrfs_key key; 322 struct btrfs_root_item root_item; 323 struct btrfs_inode_item *inode_item; 324 struct extent_buffer *leaf; 325 struct btrfs_root *new_root; 326 struct dentry *parent = dentry->d_parent; 327 struct inode *dir; 328 int ret; 329 int err; 330 u64 objectid; 331 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 332 u64 index = 0; 333 334 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 335 if (ret) 336 return ret; 337 338 dir = parent->d_inode; 339 340 /* 341 * 1 - inode item 342 * 2 - refs 343 * 1 - root item 344 * 2 - dir items 345 */ 346 trans = btrfs_start_transaction(root, 6); 347 if (IS_ERR(trans)) 348 return PTR_ERR(trans); 349 350 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 351 0, objectid, NULL, 0, 0, 0); 352 if (IS_ERR(leaf)) { 353 ret = PTR_ERR(leaf); 354 goto fail; 355 } 356 357 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 358 btrfs_set_header_bytenr(leaf, leaf->start); 359 btrfs_set_header_generation(leaf, trans->transid); 360 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 361 btrfs_set_header_owner(leaf, objectid); 362 363 write_extent_buffer(leaf, root->fs_info->fsid, 364 (unsigned long)btrfs_header_fsid(leaf), 365 BTRFS_FSID_SIZE); 366 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 367 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 368 BTRFS_UUID_SIZE); 369 btrfs_mark_buffer_dirty(leaf); 370 371 inode_item = &root_item.inode; 372 memset(inode_item, 0, sizeof(*inode_item)); 373 inode_item->generation = cpu_to_le64(1); 374 inode_item->size = cpu_to_le64(3); 375 inode_item->nlink = cpu_to_le32(1); 376 inode_item->nbytes = cpu_to_le64(root->leafsize); 377 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 378 379 root_item.flags = 0; 380 root_item.byte_limit = 0; 381 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 382 383 btrfs_set_root_bytenr(&root_item, leaf->start); 384 btrfs_set_root_generation(&root_item, trans->transid); 385 btrfs_set_root_level(&root_item, 0); 386 btrfs_set_root_refs(&root_item, 1); 387 btrfs_set_root_used(&root_item, leaf->len); 388 btrfs_set_root_last_snapshot(&root_item, 0); 389 390 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); 391 root_item.drop_level = 0; 392 393 btrfs_tree_unlock(leaf); 394 free_extent_buffer(leaf); 395 leaf = NULL; 396 397 btrfs_set_root_dirid(&root_item, new_dirid); 398 399 key.objectid = objectid; 400 key.offset = 0; 401 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 402 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 403 &root_item); 404 if (ret) 405 goto fail; 406 407 key.offset = (u64)-1; 408 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 409 BUG_ON(IS_ERR(new_root)); 410 411 btrfs_record_root_in_trans(trans, new_root); 412 413 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 414 /* 415 * insert the directory item 416 */ 417 ret = btrfs_set_inode_index(dir, &index); 418 BUG_ON(ret); 419 420 ret = btrfs_insert_dir_item(trans, root, 421 name, namelen, dir, &key, 422 BTRFS_FT_DIR, index); 423 if (ret) 424 goto fail; 425 426 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 427 ret = btrfs_update_inode(trans, root, dir); 428 BUG_ON(ret); 429 430 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 431 objectid, root->root_key.objectid, 432 btrfs_ino(dir), index, name, namelen); 433 434 BUG_ON(ret); 435 436 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 437 fail: 438 if (async_transid) { 439 *async_transid = trans->transid; 440 err = btrfs_commit_transaction_async(trans, root, 1); 441 } else { 442 err = btrfs_commit_transaction(trans, root); 443 } 444 if (err && !ret) 445 ret = err; 446 return ret; 447 } 448 449 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 450 char *name, int namelen, u64 *async_transid, 451 bool readonly) 452 { 453 struct inode *inode; 454 struct btrfs_pending_snapshot *pending_snapshot; 455 struct btrfs_trans_handle *trans; 456 int ret; 457 458 if (!root->ref_cows) 459 return -EINVAL; 460 461 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 462 if (!pending_snapshot) 463 return -ENOMEM; 464 465 btrfs_init_block_rsv(&pending_snapshot->block_rsv); 466 pending_snapshot->dentry = dentry; 467 pending_snapshot->root = root; 468 pending_snapshot->readonly = readonly; 469 470 trans = btrfs_start_transaction(root->fs_info->extent_root, 5); 471 if (IS_ERR(trans)) { 472 ret = PTR_ERR(trans); 473 goto fail; 474 } 475 476 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 477 BUG_ON(ret); 478 479 spin_lock(&root->fs_info->trans_lock); 480 list_add(&pending_snapshot->list, 481 &trans->transaction->pending_snapshots); 482 spin_unlock(&root->fs_info->trans_lock); 483 if (async_transid) { 484 *async_transid = trans->transid; 485 ret = btrfs_commit_transaction_async(trans, 486 root->fs_info->extent_root, 1); 487 } else { 488 ret = btrfs_commit_transaction(trans, 489 root->fs_info->extent_root); 490 } 491 BUG_ON(ret); 492 493 ret = pending_snapshot->error; 494 if (ret) 495 goto fail; 496 497 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 498 if (ret) 499 goto fail; 500 501 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 502 if (IS_ERR(inode)) { 503 ret = PTR_ERR(inode); 504 goto fail; 505 } 506 BUG_ON(!inode); 507 d_instantiate(dentry, inode); 508 ret = 0; 509 fail: 510 kfree(pending_snapshot); 511 return ret; 512 } 513 514 /* copy of check_sticky in fs/namei.c() 515 * It's inline, so penalty for filesystems that don't use sticky bit is 516 * minimal. 517 */ 518 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 519 { 520 uid_t fsuid = current_fsuid(); 521 522 if (!(dir->i_mode & S_ISVTX)) 523 return 0; 524 if (inode->i_uid == fsuid) 525 return 0; 526 if (dir->i_uid == fsuid) 527 return 0; 528 return !capable(CAP_FOWNER); 529 } 530 531 /* copy of may_delete in fs/namei.c() 532 * Check whether we can remove a link victim from directory dir, check 533 * whether the type of victim is right. 534 * 1. We can't do it if dir is read-only (done in permission()) 535 * 2. We should have write and exec permissions on dir 536 * 3. We can't remove anything from append-only dir 537 * 4. We can't do anything with immutable dir (done in permission()) 538 * 5. If the sticky bit on dir is set we should either 539 * a. be owner of dir, or 540 * b. be owner of victim, or 541 * c. have CAP_FOWNER capability 542 * 6. If the victim is append-only or immutable we can't do antyhing with 543 * links pointing to it. 544 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 545 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 546 * 9. We can't remove a root or mountpoint. 547 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 548 * nfs_async_unlink(). 549 */ 550 551 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 552 { 553 int error; 554 555 if (!victim->d_inode) 556 return -ENOENT; 557 558 BUG_ON(victim->d_parent->d_inode != dir); 559 audit_inode_child(victim, dir); 560 561 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 562 if (error) 563 return error; 564 if (IS_APPEND(dir)) 565 return -EPERM; 566 if (btrfs_check_sticky(dir, victim->d_inode)|| 567 IS_APPEND(victim->d_inode)|| 568 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 569 return -EPERM; 570 if (isdir) { 571 if (!S_ISDIR(victim->d_inode->i_mode)) 572 return -ENOTDIR; 573 if (IS_ROOT(victim)) 574 return -EBUSY; 575 } else if (S_ISDIR(victim->d_inode->i_mode)) 576 return -EISDIR; 577 if (IS_DEADDIR(dir)) 578 return -ENOENT; 579 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 580 return -EBUSY; 581 return 0; 582 } 583 584 /* copy of may_create in fs/namei.c() */ 585 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 586 { 587 if (child->d_inode) 588 return -EEXIST; 589 if (IS_DEADDIR(dir)) 590 return -ENOENT; 591 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 592 } 593 594 /* 595 * Create a new subvolume below @parent. This is largely modeled after 596 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 597 * inside this filesystem so it's quite a bit simpler. 598 */ 599 static noinline int btrfs_mksubvol(struct path *parent, 600 char *name, int namelen, 601 struct btrfs_root *snap_src, 602 u64 *async_transid, bool readonly) 603 { 604 struct inode *dir = parent->dentry->d_inode; 605 struct dentry *dentry; 606 int error; 607 608 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 609 610 dentry = lookup_one_len(name, parent->dentry, namelen); 611 error = PTR_ERR(dentry); 612 if (IS_ERR(dentry)) 613 goto out_unlock; 614 615 error = -EEXIST; 616 if (dentry->d_inode) 617 goto out_dput; 618 619 error = mnt_want_write(parent->mnt); 620 if (error) 621 goto out_dput; 622 623 error = btrfs_may_create(dir, dentry); 624 if (error) 625 goto out_drop_write; 626 627 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 628 629 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 630 goto out_up_read; 631 632 if (snap_src) { 633 error = create_snapshot(snap_src, dentry, 634 name, namelen, async_transid, readonly); 635 } else { 636 error = create_subvol(BTRFS_I(dir)->root, dentry, 637 name, namelen, async_transid); 638 } 639 if (!error) 640 fsnotify_mkdir(dir, dentry); 641 out_up_read: 642 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 643 out_drop_write: 644 mnt_drop_write(parent->mnt); 645 out_dput: 646 dput(dentry); 647 out_unlock: 648 mutex_unlock(&dir->i_mutex); 649 return error; 650 } 651 652 /* 653 * When we're defragging a range, we don't want to kick it off again 654 * if it is really just waiting for delalloc to send it down. 655 * If we find a nice big extent or delalloc range for the bytes in the 656 * file you want to defrag, we return 0 to let you know to skip this 657 * part of the file 658 */ 659 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 660 { 661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 662 struct extent_map *em = NULL; 663 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 664 u64 end; 665 666 read_lock(&em_tree->lock); 667 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 668 read_unlock(&em_tree->lock); 669 670 if (em) { 671 end = extent_map_end(em); 672 free_extent_map(em); 673 if (end - offset > thresh) 674 return 0; 675 } 676 /* if we already have a nice delalloc here, just stop */ 677 thresh /= 2; 678 end = count_range_bits(io_tree, &offset, offset + thresh, 679 thresh, EXTENT_DELALLOC, 1); 680 if (end >= thresh) 681 return 0; 682 return 1; 683 } 684 685 /* 686 * helper function to walk through a file and find extents 687 * newer than a specific transid, and smaller than thresh. 688 * 689 * This is used by the defragging code to find new and small 690 * extents 691 */ 692 static int find_new_extents(struct btrfs_root *root, 693 struct inode *inode, u64 newer_than, 694 u64 *off, int thresh) 695 { 696 struct btrfs_path *path; 697 struct btrfs_key min_key; 698 struct btrfs_key max_key; 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *extent; 701 int type; 702 int ret; 703 u64 ino = btrfs_ino(inode); 704 705 path = btrfs_alloc_path(); 706 if (!path) 707 return -ENOMEM; 708 709 min_key.objectid = ino; 710 min_key.type = BTRFS_EXTENT_DATA_KEY; 711 min_key.offset = *off; 712 713 max_key.objectid = ino; 714 max_key.type = (u8)-1; 715 max_key.offset = (u64)-1; 716 717 path->keep_locks = 1; 718 719 while(1) { 720 ret = btrfs_search_forward(root, &min_key, &max_key, 721 path, 0, newer_than); 722 if (ret != 0) 723 goto none; 724 if (min_key.objectid != ino) 725 goto none; 726 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 727 goto none; 728 729 leaf = path->nodes[0]; 730 extent = btrfs_item_ptr(leaf, path->slots[0], 731 struct btrfs_file_extent_item); 732 733 type = btrfs_file_extent_type(leaf, extent); 734 if (type == BTRFS_FILE_EXTENT_REG && 735 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 736 check_defrag_in_cache(inode, min_key.offset, thresh)) { 737 *off = min_key.offset; 738 btrfs_free_path(path); 739 return 0; 740 } 741 742 if (min_key.offset == (u64)-1) 743 goto none; 744 745 min_key.offset++; 746 btrfs_release_path(path); 747 } 748 none: 749 btrfs_free_path(path); 750 return -ENOENT; 751 } 752 753 static int should_defrag_range(struct inode *inode, u64 start, u64 len, 754 int thresh, u64 *last_len, u64 *skip, 755 u64 *defrag_end) 756 { 757 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 758 struct extent_map *em = NULL; 759 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 760 int ret = 1; 761 762 /* 763 * make sure that once we start defragging and extent, we keep on 764 * defragging it 765 */ 766 if (start < *defrag_end) 767 return 1; 768 769 *skip = 0; 770 771 /* 772 * hopefully we have this extent in the tree already, try without 773 * the full extent lock 774 */ 775 read_lock(&em_tree->lock); 776 em = lookup_extent_mapping(em_tree, start, len); 777 read_unlock(&em_tree->lock); 778 779 if (!em) { 780 /* get the big lock and read metadata off disk */ 781 lock_extent(io_tree, start, start + len - 1, GFP_NOFS); 782 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 783 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS); 784 785 if (IS_ERR(em)) 786 return 0; 787 } 788 789 /* this will cover holes, and inline extents */ 790 if (em->block_start >= EXTENT_MAP_LAST_BYTE) 791 ret = 0; 792 793 /* 794 * we hit a real extent, if it is big don't bother defragging it again 795 */ 796 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh) 797 ret = 0; 798 799 /* 800 * last_len ends up being a counter of how many bytes we've defragged. 801 * every time we choose not to defrag an extent, we reset *last_len 802 * so that the next tiny extent will force a defrag. 803 * 804 * The end result of this is that tiny extents before a single big 805 * extent will force at least part of that big extent to be defragged. 806 */ 807 if (ret) { 808 *last_len += len; 809 *defrag_end = extent_map_end(em); 810 } else { 811 *last_len = 0; 812 *skip = extent_map_end(em); 813 *defrag_end = 0; 814 } 815 816 free_extent_map(em); 817 return ret; 818 } 819 820 /* 821 * it doesn't do much good to defrag one or two pages 822 * at a time. This pulls in a nice chunk of pages 823 * to COW and defrag. 824 * 825 * It also makes sure the delalloc code has enough 826 * dirty data to avoid making new small extents as part 827 * of the defrag 828 * 829 * It's a good idea to start RA on this range 830 * before calling this. 831 */ 832 static int cluster_pages_for_defrag(struct inode *inode, 833 struct page **pages, 834 unsigned long start_index, 835 int num_pages) 836 { 837 unsigned long file_end; 838 u64 isize = i_size_read(inode); 839 u64 page_start; 840 u64 page_end; 841 int ret; 842 int i; 843 int i_done; 844 struct btrfs_ordered_extent *ordered; 845 struct extent_state *cached_state = NULL; 846 847 if (isize == 0) 848 return 0; 849 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 850 851 ret = btrfs_delalloc_reserve_space(inode, 852 num_pages << PAGE_CACHE_SHIFT); 853 if (ret) 854 return ret; 855 again: 856 ret = 0; 857 i_done = 0; 858 859 /* step one, lock all the pages */ 860 for (i = 0; i < num_pages; i++) { 861 struct page *page; 862 page = find_or_create_page(inode->i_mapping, 863 start_index + i, GFP_NOFS); 864 if (!page) 865 break; 866 867 if (!PageUptodate(page)) { 868 btrfs_readpage(NULL, page); 869 lock_page(page); 870 if (!PageUptodate(page)) { 871 unlock_page(page); 872 page_cache_release(page); 873 ret = -EIO; 874 break; 875 } 876 } 877 isize = i_size_read(inode); 878 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 879 if (!isize || page->index > file_end || 880 page->mapping != inode->i_mapping) { 881 /* whoops, we blew past eof, skip this page */ 882 unlock_page(page); 883 page_cache_release(page); 884 break; 885 } 886 pages[i] = page; 887 i_done++; 888 } 889 if (!i_done || ret) 890 goto out; 891 892 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 893 goto out; 894 895 /* 896 * so now we have a nice long stream of locked 897 * and up to date pages, lets wait on them 898 */ 899 for (i = 0; i < i_done; i++) 900 wait_on_page_writeback(pages[i]); 901 902 page_start = page_offset(pages[0]); 903 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 904 905 lock_extent_bits(&BTRFS_I(inode)->io_tree, 906 page_start, page_end - 1, 0, &cached_state, 907 GFP_NOFS); 908 ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1); 909 if (ordered && 910 ordered->file_offset + ordered->len > page_start && 911 ordered->file_offset < page_end) { 912 btrfs_put_ordered_extent(ordered); 913 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 914 page_start, page_end - 1, 915 &cached_state, GFP_NOFS); 916 for (i = 0; i < i_done; i++) { 917 unlock_page(pages[i]); 918 page_cache_release(pages[i]); 919 } 920 btrfs_wait_ordered_range(inode, page_start, 921 page_end - page_start); 922 goto again; 923 } 924 if (ordered) 925 btrfs_put_ordered_extent(ordered); 926 927 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 928 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 929 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state, 930 GFP_NOFS); 931 932 if (i_done != num_pages) { 933 spin_lock(&BTRFS_I(inode)->lock); 934 BTRFS_I(inode)->outstanding_extents++; 935 spin_unlock(&BTRFS_I(inode)->lock); 936 btrfs_delalloc_release_space(inode, 937 (num_pages - i_done) << PAGE_CACHE_SHIFT); 938 } 939 940 941 btrfs_set_extent_delalloc(inode, page_start, page_end - 1, 942 &cached_state); 943 944 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 945 page_start, page_end - 1, &cached_state, 946 GFP_NOFS); 947 948 for (i = 0; i < i_done; i++) { 949 clear_page_dirty_for_io(pages[i]); 950 ClearPageChecked(pages[i]); 951 set_page_extent_mapped(pages[i]); 952 set_page_dirty(pages[i]); 953 unlock_page(pages[i]); 954 page_cache_release(pages[i]); 955 } 956 return i_done; 957 out: 958 for (i = 0; i < i_done; i++) { 959 unlock_page(pages[i]); 960 page_cache_release(pages[i]); 961 } 962 btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT); 963 return ret; 964 965 } 966 967 int btrfs_defrag_file(struct inode *inode, struct file *file, 968 struct btrfs_ioctl_defrag_range_args *range, 969 u64 newer_than, unsigned long max_to_defrag) 970 { 971 struct btrfs_root *root = BTRFS_I(inode)->root; 972 struct btrfs_super_block *disk_super; 973 struct file_ra_state *ra = NULL; 974 unsigned long last_index; 975 u64 features; 976 u64 last_len = 0; 977 u64 skip = 0; 978 u64 defrag_end = 0; 979 u64 newer_off = range->start; 980 int newer_left = 0; 981 unsigned long i; 982 int ret; 983 int defrag_count = 0; 984 int compress_type = BTRFS_COMPRESS_ZLIB; 985 int extent_thresh = range->extent_thresh; 986 int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 987 u64 new_align = ~((u64)128 * 1024 - 1); 988 struct page **pages = NULL; 989 990 if (extent_thresh == 0) 991 extent_thresh = 256 * 1024; 992 993 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 994 if (range->compress_type > BTRFS_COMPRESS_TYPES) 995 return -EINVAL; 996 if (range->compress_type) 997 compress_type = range->compress_type; 998 } 999 1000 if (inode->i_size == 0) 1001 return 0; 1002 1003 /* 1004 * if we were not given a file, allocate a readahead 1005 * context 1006 */ 1007 if (!file) { 1008 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1009 if (!ra) 1010 return -ENOMEM; 1011 file_ra_state_init(ra, inode->i_mapping); 1012 } else { 1013 ra = &file->f_ra; 1014 } 1015 1016 pages = kmalloc(sizeof(struct page *) * newer_cluster, 1017 GFP_NOFS); 1018 if (!pages) { 1019 ret = -ENOMEM; 1020 goto out_ra; 1021 } 1022 1023 /* find the last page to defrag */ 1024 if (range->start + range->len > range->start) { 1025 last_index = min_t(u64, inode->i_size - 1, 1026 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1027 } else { 1028 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 1029 } 1030 1031 if (newer_than) { 1032 ret = find_new_extents(root, inode, newer_than, 1033 &newer_off, 64 * 1024); 1034 if (!ret) { 1035 range->start = newer_off; 1036 /* 1037 * we always align our defrag to help keep 1038 * the extents in the file evenly spaced 1039 */ 1040 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1041 newer_left = newer_cluster; 1042 } else 1043 goto out_ra; 1044 } else { 1045 i = range->start >> PAGE_CACHE_SHIFT; 1046 } 1047 if (!max_to_defrag) 1048 max_to_defrag = last_index - 1; 1049 1050 while (i <= last_index && defrag_count < max_to_defrag) { 1051 /* 1052 * make sure we stop running if someone unmounts 1053 * the FS 1054 */ 1055 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1056 break; 1057 1058 if (!newer_than && 1059 !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1060 PAGE_CACHE_SIZE, 1061 extent_thresh, 1062 &last_len, &skip, 1063 &defrag_end)) { 1064 unsigned long next; 1065 /* 1066 * the should_defrag function tells us how much to skip 1067 * bump our counter by the suggested amount 1068 */ 1069 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1070 i = max(i + 1, next); 1071 continue; 1072 } 1073 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1074 BTRFS_I(inode)->force_compress = compress_type; 1075 1076 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster); 1077 1078 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster); 1079 if (ret < 0) 1080 goto out_ra; 1081 1082 defrag_count += ret; 1083 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret); 1084 i += ret; 1085 1086 if (newer_than) { 1087 if (newer_off == (u64)-1) 1088 break; 1089 1090 newer_off = max(newer_off + 1, 1091 (u64)i << PAGE_CACHE_SHIFT); 1092 1093 ret = find_new_extents(root, inode, 1094 newer_than, &newer_off, 1095 64 * 1024); 1096 if (!ret) { 1097 range->start = newer_off; 1098 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1099 newer_left = newer_cluster; 1100 } else { 1101 break; 1102 } 1103 } else { 1104 i++; 1105 } 1106 } 1107 1108 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1109 filemap_flush(inode->i_mapping); 1110 1111 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1112 /* the filemap_flush will queue IO into the worker threads, but 1113 * we have to make sure the IO is actually started and that 1114 * ordered extents get created before we return 1115 */ 1116 atomic_inc(&root->fs_info->async_submit_draining); 1117 while (atomic_read(&root->fs_info->nr_async_submits) || 1118 atomic_read(&root->fs_info->async_delalloc_pages)) { 1119 wait_event(root->fs_info->async_submit_wait, 1120 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1121 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1122 } 1123 atomic_dec(&root->fs_info->async_submit_draining); 1124 1125 mutex_lock(&inode->i_mutex); 1126 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1127 mutex_unlock(&inode->i_mutex); 1128 } 1129 1130 disk_super = &root->fs_info->super_copy; 1131 features = btrfs_super_incompat_flags(disk_super); 1132 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1133 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1134 btrfs_set_super_incompat_flags(disk_super, features); 1135 } 1136 1137 if (!file) 1138 kfree(ra); 1139 return defrag_count; 1140 1141 out_ra: 1142 if (!file) 1143 kfree(ra); 1144 kfree(pages); 1145 return ret; 1146 } 1147 1148 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 1149 void __user *arg) 1150 { 1151 u64 new_size; 1152 u64 old_size; 1153 u64 devid = 1; 1154 struct btrfs_ioctl_vol_args *vol_args; 1155 struct btrfs_trans_handle *trans; 1156 struct btrfs_device *device = NULL; 1157 char *sizestr; 1158 char *devstr = NULL; 1159 int ret = 0; 1160 int mod = 0; 1161 1162 if (root->fs_info->sb->s_flags & MS_RDONLY) 1163 return -EROFS; 1164 1165 if (!capable(CAP_SYS_ADMIN)) 1166 return -EPERM; 1167 1168 vol_args = memdup_user(arg, sizeof(*vol_args)); 1169 if (IS_ERR(vol_args)) 1170 return PTR_ERR(vol_args); 1171 1172 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1173 1174 mutex_lock(&root->fs_info->volume_mutex); 1175 sizestr = vol_args->name; 1176 devstr = strchr(sizestr, ':'); 1177 if (devstr) { 1178 char *end; 1179 sizestr = devstr + 1; 1180 *devstr = '\0'; 1181 devstr = vol_args->name; 1182 devid = simple_strtoull(devstr, &end, 10); 1183 printk(KERN_INFO "resizing devid %llu\n", 1184 (unsigned long long)devid); 1185 } 1186 device = btrfs_find_device(root, devid, NULL, NULL); 1187 if (!device) { 1188 printk(KERN_INFO "resizer unable to find device %llu\n", 1189 (unsigned long long)devid); 1190 ret = -EINVAL; 1191 goto out_unlock; 1192 } 1193 if (!strcmp(sizestr, "max")) 1194 new_size = device->bdev->bd_inode->i_size; 1195 else { 1196 if (sizestr[0] == '-') { 1197 mod = -1; 1198 sizestr++; 1199 } else if (sizestr[0] == '+') { 1200 mod = 1; 1201 sizestr++; 1202 } 1203 new_size = memparse(sizestr, NULL); 1204 if (new_size == 0) { 1205 ret = -EINVAL; 1206 goto out_unlock; 1207 } 1208 } 1209 1210 old_size = device->total_bytes; 1211 1212 if (mod < 0) { 1213 if (new_size > old_size) { 1214 ret = -EINVAL; 1215 goto out_unlock; 1216 } 1217 new_size = old_size - new_size; 1218 } else if (mod > 0) { 1219 new_size = old_size + new_size; 1220 } 1221 1222 if (new_size < 256 * 1024 * 1024) { 1223 ret = -EINVAL; 1224 goto out_unlock; 1225 } 1226 if (new_size > device->bdev->bd_inode->i_size) { 1227 ret = -EFBIG; 1228 goto out_unlock; 1229 } 1230 1231 do_div(new_size, root->sectorsize); 1232 new_size *= root->sectorsize; 1233 1234 printk(KERN_INFO "new size for %s is %llu\n", 1235 device->name, (unsigned long long)new_size); 1236 1237 if (new_size > old_size) { 1238 trans = btrfs_start_transaction(root, 0); 1239 if (IS_ERR(trans)) { 1240 ret = PTR_ERR(trans); 1241 goto out_unlock; 1242 } 1243 ret = btrfs_grow_device(trans, device, new_size); 1244 btrfs_commit_transaction(trans, root); 1245 } else { 1246 ret = btrfs_shrink_device(device, new_size); 1247 } 1248 1249 out_unlock: 1250 mutex_unlock(&root->fs_info->volume_mutex); 1251 kfree(vol_args); 1252 return ret; 1253 } 1254 1255 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1256 char *name, 1257 unsigned long fd, 1258 int subvol, 1259 u64 *transid, 1260 bool readonly) 1261 { 1262 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 1263 struct file *src_file; 1264 int namelen; 1265 int ret = 0; 1266 1267 if (root->fs_info->sb->s_flags & MS_RDONLY) 1268 return -EROFS; 1269 1270 namelen = strlen(name); 1271 if (strchr(name, '/')) { 1272 ret = -EINVAL; 1273 goto out; 1274 } 1275 1276 if (subvol) { 1277 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1278 NULL, transid, readonly); 1279 } else { 1280 struct inode *src_inode; 1281 src_file = fget(fd); 1282 if (!src_file) { 1283 ret = -EINVAL; 1284 goto out; 1285 } 1286 1287 src_inode = src_file->f_path.dentry->d_inode; 1288 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1289 printk(KERN_INFO "btrfs: Snapshot src from " 1290 "another FS\n"); 1291 ret = -EINVAL; 1292 fput(src_file); 1293 goto out; 1294 } 1295 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1296 BTRFS_I(src_inode)->root, 1297 transid, readonly); 1298 fput(src_file); 1299 } 1300 out: 1301 return ret; 1302 } 1303 1304 static noinline int btrfs_ioctl_snap_create(struct file *file, 1305 void __user *arg, int subvol) 1306 { 1307 struct btrfs_ioctl_vol_args *vol_args; 1308 int ret; 1309 1310 vol_args = memdup_user(arg, sizeof(*vol_args)); 1311 if (IS_ERR(vol_args)) 1312 return PTR_ERR(vol_args); 1313 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1314 1315 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1316 vol_args->fd, subvol, 1317 NULL, false); 1318 1319 kfree(vol_args); 1320 return ret; 1321 } 1322 1323 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1324 void __user *arg, int subvol) 1325 { 1326 struct btrfs_ioctl_vol_args_v2 *vol_args; 1327 int ret; 1328 u64 transid = 0; 1329 u64 *ptr = NULL; 1330 bool readonly = false; 1331 1332 vol_args = memdup_user(arg, sizeof(*vol_args)); 1333 if (IS_ERR(vol_args)) 1334 return PTR_ERR(vol_args); 1335 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1336 1337 if (vol_args->flags & 1338 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) { 1339 ret = -EOPNOTSUPP; 1340 goto out; 1341 } 1342 1343 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1344 ptr = &transid; 1345 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1346 readonly = true; 1347 1348 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1349 vol_args->fd, subvol, 1350 ptr, readonly); 1351 1352 if (ret == 0 && ptr && 1353 copy_to_user(arg + 1354 offsetof(struct btrfs_ioctl_vol_args_v2, 1355 transid), ptr, sizeof(*ptr))) 1356 ret = -EFAULT; 1357 out: 1358 kfree(vol_args); 1359 return ret; 1360 } 1361 1362 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1363 void __user *arg) 1364 { 1365 struct inode *inode = fdentry(file)->d_inode; 1366 struct btrfs_root *root = BTRFS_I(inode)->root; 1367 int ret = 0; 1368 u64 flags = 0; 1369 1370 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1371 return -EINVAL; 1372 1373 down_read(&root->fs_info->subvol_sem); 1374 if (btrfs_root_readonly(root)) 1375 flags |= BTRFS_SUBVOL_RDONLY; 1376 up_read(&root->fs_info->subvol_sem); 1377 1378 if (copy_to_user(arg, &flags, sizeof(flags))) 1379 ret = -EFAULT; 1380 1381 return ret; 1382 } 1383 1384 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1385 void __user *arg) 1386 { 1387 struct inode *inode = fdentry(file)->d_inode; 1388 struct btrfs_root *root = BTRFS_I(inode)->root; 1389 struct btrfs_trans_handle *trans; 1390 u64 root_flags; 1391 u64 flags; 1392 int ret = 0; 1393 1394 if (root->fs_info->sb->s_flags & MS_RDONLY) 1395 return -EROFS; 1396 1397 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1398 return -EINVAL; 1399 1400 if (copy_from_user(&flags, arg, sizeof(flags))) 1401 return -EFAULT; 1402 1403 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) 1404 return -EINVAL; 1405 1406 if (flags & ~BTRFS_SUBVOL_RDONLY) 1407 return -EOPNOTSUPP; 1408 1409 if (!inode_owner_or_capable(inode)) 1410 return -EACCES; 1411 1412 down_write(&root->fs_info->subvol_sem); 1413 1414 /* nothing to do */ 1415 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1416 goto out; 1417 1418 root_flags = btrfs_root_flags(&root->root_item); 1419 if (flags & BTRFS_SUBVOL_RDONLY) 1420 btrfs_set_root_flags(&root->root_item, 1421 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1422 else 1423 btrfs_set_root_flags(&root->root_item, 1424 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1425 1426 trans = btrfs_start_transaction(root, 1); 1427 if (IS_ERR(trans)) { 1428 ret = PTR_ERR(trans); 1429 goto out_reset; 1430 } 1431 1432 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1433 &root->root_key, &root->root_item); 1434 1435 btrfs_commit_transaction(trans, root); 1436 out_reset: 1437 if (ret) 1438 btrfs_set_root_flags(&root->root_item, root_flags); 1439 out: 1440 up_write(&root->fs_info->subvol_sem); 1441 return ret; 1442 } 1443 1444 /* 1445 * helper to check if the subvolume references other subvolumes 1446 */ 1447 static noinline int may_destroy_subvol(struct btrfs_root *root) 1448 { 1449 struct btrfs_path *path; 1450 struct btrfs_key key; 1451 int ret; 1452 1453 path = btrfs_alloc_path(); 1454 if (!path) 1455 return -ENOMEM; 1456 1457 key.objectid = root->root_key.objectid; 1458 key.type = BTRFS_ROOT_REF_KEY; 1459 key.offset = (u64)-1; 1460 1461 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1462 &key, path, 0, 0); 1463 if (ret < 0) 1464 goto out; 1465 BUG_ON(ret == 0); 1466 1467 ret = 0; 1468 if (path->slots[0] > 0) { 1469 path->slots[0]--; 1470 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1471 if (key.objectid == root->root_key.objectid && 1472 key.type == BTRFS_ROOT_REF_KEY) 1473 ret = -ENOTEMPTY; 1474 } 1475 out: 1476 btrfs_free_path(path); 1477 return ret; 1478 } 1479 1480 static noinline int key_in_sk(struct btrfs_key *key, 1481 struct btrfs_ioctl_search_key *sk) 1482 { 1483 struct btrfs_key test; 1484 int ret; 1485 1486 test.objectid = sk->min_objectid; 1487 test.type = sk->min_type; 1488 test.offset = sk->min_offset; 1489 1490 ret = btrfs_comp_cpu_keys(key, &test); 1491 if (ret < 0) 1492 return 0; 1493 1494 test.objectid = sk->max_objectid; 1495 test.type = sk->max_type; 1496 test.offset = sk->max_offset; 1497 1498 ret = btrfs_comp_cpu_keys(key, &test); 1499 if (ret > 0) 1500 return 0; 1501 return 1; 1502 } 1503 1504 static noinline int copy_to_sk(struct btrfs_root *root, 1505 struct btrfs_path *path, 1506 struct btrfs_key *key, 1507 struct btrfs_ioctl_search_key *sk, 1508 char *buf, 1509 unsigned long *sk_offset, 1510 int *num_found) 1511 { 1512 u64 found_transid; 1513 struct extent_buffer *leaf; 1514 struct btrfs_ioctl_search_header sh; 1515 unsigned long item_off; 1516 unsigned long item_len; 1517 int nritems; 1518 int i; 1519 int slot; 1520 int ret = 0; 1521 1522 leaf = path->nodes[0]; 1523 slot = path->slots[0]; 1524 nritems = btrfs_header_nritems(leaf); 1525 1526 if (btrfs_header_generation(leaf) > sk->max_transid) { 1527 i = nritems; 1528 goto advance_key; 1529 } 1530 found_transid = btrfs_header_generation(leaf); 1531 1532 for (i = slot; i < nritems; i++) { 1533 item_off = btrfs_item_ptr_offset(leaf, i); 1534 item_len = btrfs_item_size_nr(leaf, i); 1535 1536 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1537 item_len = 0; 1538 1539 if (sizeof(sh) + item_len + *sk_offset > 1540 BTRFS_SEARCH_ARGS_BUFSIZE) { 1541 ret = 1; 1542 goto overflow; 1543 } 1544 1545 btrfs_item_key_to_cpu(leaf, key, i); 1546 if (!key_in_sk(key, sk)) 1547 continue; 1548 1549 sh.objectid = key->objectid; 1550 sh.offset = key->offset; 1551 sh.type = key->type; 1552 sh.len = item_len; 1553 sh.transid = found_transid; 1554 1555 /* copy search result header */ 1556 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1557 *sk_offset += sizeof(sh); 1558 1559 if (item_len) { 1560 char *p = buf + *sk_offset; 1561 /* copy the item */ 1562 read_extent_buffer(leaf, p, 1563 item_off, item_len); 1564 *sk_offset += item_len; 1565 } 1566 (*num_found)++; 1567 1568 if (*num_found >= sk->nr_items) 1569 break; 1570 } 1571 advance_key: 1572 ret = 0; 1573 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1574 key->offset++; 1575 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1576 key->offset = 0; 1577 key->type++; 1578 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1579 key->offset = 0; 1580 key->type = 0; 1581 key->objectid++; 1582 } else 1583 ret = 1; 1584 overflow: 1585 return ret; 1586 } 1587 1588 static noinline int search_ioctl(struct inode *inode, 1589 struct btrfs_ioctl_search_args *args) 1590 { 1591 struct btrfs_root *root; 1592 struct btrfs_key key; 1593 struct btrfs_key max_key; 1594 struct btrfs_path *path; 1595 struct btrfs_ioctl_search_key *sk = &args->key; 1596 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1597 int ret; 1598 int num_found = 0; 1599 unsigned long sk_offset = 0; 1600 1601 path = btrfs_alloc_path(); 1602 if (!path) 1603 return -ENOMEM; 1604 1605 if (sk->tree_id == 0) { 1606 /* search the root of the inode that was passed */ 1607 root = BTRFS_I(inode)->root; 1608 } else { 1609 key.objectid = sk->tree_id; 1610 key.type = BTRFS_ROOT_ITEM_KEY; 1611 key.offset = (u64)-1; 1612 root = btrfs_read_fs_root_no_name(info, &key); 1613 if (IS_ERR(root)) { 1614 printk(KERN_ERR "could not find root %llu\n", 1615 sk->tree_id); 1616 btrfs_free_path(path); 1617 return -ENOENT; 1618 } 1619 } 1620 1621 key.objectid = sk->min_objectid; 1622 key.type = sk->min_type; 1623 key.offset = sk->min_offset; 1624 1625 max_key.objectid = sk->max_objectid; 1626 max_key.type = sk->max_type; 1627 max_key.offset = sk->max_offset; 1628 1629 path->keep_locks = 1; 1630 1631 while(1) { 1632 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1633 sk->min_transid); 1634 if (ret != 0) { 1635 if (ret > 0) 1636 ret = 0; 1637 goto err; 1638 } 1639 ret = copy_to_sk(root, path, &key, sk, args->buf, 1640 &sk_offset, &num_found); 1641 btrfs_release_path(path); 1642 if (ret || num_found >= sk->nr_items) 1643 break; 1644 1645 } 1646 ret = 0; 1647 err: 1648 sk->nr_items = num_found; 1649 btrfs_free_path(path); 1650 return ret; 1651 } 1652 1653 static noinline int btrfs_ioctl_tree_search(struct file *file, 1654 void __user *argp) 1655 { 1656 struct btrfs_ioctl_search_args *args; 1657 struct inode *inode; 1658 int ret; 1659 1660 if (!capable(CAP_SYS_ADMIN)) 1661 return -EPERM; 1662 1663 args = memdup_user(argp, sizeof(*args)); 1664 if (IS_ERR(args)) 1665 return PTR_ERR(args); 1666 1667 inode = fdentry(file)->d_inode; 1668 ret = search_ioctl(inode, args); 1669 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1670 ret = -EFAULT; 1671 kfree(args); 1672 return ret; 1673 } 1674 1675 /* 1676 * Search INODE_REFs to identify path name of 'dirid' directory 1677 * in a 'tree_id' tree. and sets path name to 'name'. 1678 */ 1679 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1680 u64 tree_id, u64 dirid, char *name) 1681 { 1682 struct btrfs_root *root; 1683 struct btrfs_key key; 1684 char *ptr; 1685 int ret = -1; 1686 int slot; 1687 int len; 1688 int total_len = 0; 1689 struct btrfs_inode_ref *iref; 1690 struct extent_buffer *l; 1691 struct btrfs_path *path; 1692 1693 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1694 name[0]='\0'; 1695 return 0; 1696 } 1697 1698 path = btrfs_alloc_path(); 1699 if (!path) 1700 return -ENOMEM; 1701 1702 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1703 1704 key.objectid = tree_id; 1705 key.type = BTRFS_ROOT_ITEM_KEY; 1706 key.offset = (u64)-1; 1707 root = btrfs_read_fs_root_no_name(info, &key); 1708 if (IS_ERR(root)) { 1709 printk(KERN_ERR "could not find root %llu\n", tree_id); 1710 ret = -ENOENT; 1711 goto out; 1712 } 1713 1714 key.objectid = dirid; 1715 key.type = BTRFS_INODE_REF_KEY; 1716 key.offset = (u64)-1; 1717 1718 while(1) { 1719 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1720 if (ret < 0) 1721 goto out; 1722 1723 l = path->nodes[0]; 1724 slot = path->slots[0]; 1725 if (ret > 0 && slot > 0) 1726 slot--; 1727 btrfs_item_key_to_cpu(l, &key, slot); 1728 1729 if (ret > 0 && (key.objectid != dirid || 1730 key.type != BTRFS_INODE_REF_KEY)) { 1731 ret = -ENOENT; 1732 goto out; 1733 } 1734 1735 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1736 len = btrfs_inode_ref_name_len(l, iref); 1737 ptr -= len + 1; 1738 total_len += len + 1; 1739 if (ptr < name) 1740 goto out; 1741 1742 *(ptr + len) = '/'; 1743 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1744 1745 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1746 break; 1747 1748 btrfs_release_path(path); 1749 key.objectid = key.offset; 1750 key.offset = (u64)-1; 1751 dirid = key.objectid; 1752 } 1753 if (ptr < name) 1754 goto out; 1755 memmove(name, ptr, total_len); 1756 name[total_len]='\0'; 1757 ret = 0; 1758 out: 1759 btrfs_free_path(path); 1760 return ret; 1761 } 1762 1763 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1764 void __user *argp) 1765 { 1766 struct btrfs_ioctl_ino_lookup_args *args; 1767 struct inode *inode; 1768 int ret; 1769 1770 if (!capable(CAP_SYS_ADMIN)) 1771 return -EPERM; 1772 1773 args = memdup_user(argp, sizeof(*args)); 1774 if (IS_ERR(args)) 1775 return PTR_ERR(args); 1776 1777 inode = fdentry(file)->d_inode; 1778 1779 if (args->treeid == 0) 1780 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1781 1782 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1783 args->treeid, args->objectid, 1784 args->name); 1785 1786 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1787 ret = -EFAULT; 1788 1789 kfree(args); 1790 return ret; 1791 } 1792 1793 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1794 void __user *arg) 1795 { 1796 struct dentry *parent = fdentry(file); 1797 struct dentry *dentry; 1798 struct inode *dir = parent->d_inode; 1799 struct inode *inode; 1800 struct btrfs_root *root = BTRFS_I(dir)->root; 1801 struct btrfs_root *dest = NULL; 1802 struct btrfs_ioctl_vol_args *vol_args; 1803 struct btrfs_trans_handle *trans; 1804 int namelen; 1805 int ret; 1806 int err = 0; 1807 1808 vol_args = memdup_user(arg, sizeof(*vol_args)); 1809 if (IS_ERR(vol_args)) 1810 return PTR_ERR(vol_args); 1811 1812 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1813 namelen = strlen(vol_args->name); 1814 if (strchr(vol_args->name, '/') || 1815 strncmp(vol_args->name, "..", namelen) == 0) { 1816 err = -EINVAL; 1817 goto out; 1818 } 1819 1820 err = mnt_want_write(file->f_path.mnt); 1821 if (err) 1822 goto out; 1823 1824 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 1825 dentry = lookup_one_len(vol_args->name, parent, namelen); 1826 if (IS_ERR(dentry)) { 1827 err = PTR_ERR(dentry); 1828 goto out_unlock_dir; 1829 } 1830 1831 if (!dentry->d_inode) { 1832 err = -ENOENT; 1833 goto out_dput; 1834 } 1835 1836 inode = dentry->d_inode; 1837 dest = BTRFS_I(inode)->root; 1838 if (!capable(CAP_SYS_ADMIN)){ 1839 /* 1840 * Regular user. Only allow this with a special mount 1841 * option, when the user has write+exec access to the 1842 * subvol root, and when rmdir(2) would have been 1843 * allowed. 1844 * 1845 * Note that this is _not_ check that the subvol is 1846 * empty or doesn't contain data that we wouldn't 1847 * otherwise be able to delete. 1848 * 1849 * Users who want to delete empty subvols should try 1850 * rmdir(2). 1851 */ 1852 err = -EPERM; 1853 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1854 goto out_dput; 1855 1856 /* 1857 * Do not allow deletion if the parent dir is the same 1858 * as the dir to be deleted. That means the ioctl 1859 * must be called on the dentry referencing the root 1860 * of the subvol, not a random directory contained 1861 * within it. 1862 */ 1863 err = -EINVAL; 1864 if (root == dest) 1865 goto out_dput; 1866 1867 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 1868 if (err) 1869 goto out_dput; 1870 1871 /* check if subvolume may be deleted by a non-root user */ 1872 err = btrfs_may_delete(dir, dentry, 1); 1873 if (err) 1874 goto out_dput; 1875 } 1876 1877 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1878 err = -EINVAL; 1879 goto out_dput; 1880 } 1881 1882 mutex_lock(&inode->i_mutex); 1883 err = d_invalidate(dentry); 1884 if (err) 1885 goto out_unlock; 1886 1887 down_write(&root->fs_info->subvol_sem); 1888 1889 err = may_destroy_subvol(dest); 1890 if (err) 1891 goto out_up_write; 1892 1893 trans = btrfs_start_transaction(root, 0); 1894 if (IS_ERR(trans)) { 1895 err = PTR_ERR(trans); 1896 goto out_up_write; 1897 } 1898 trans->block_rsv = &root->fs_info->global_block_rsv; 1899 1900 ret = btrfs_unlink_subvol(trans, root, dir, 1901 dest->root_key.objectid, 1902 dentry->d_name.name, 1903 dentry->d_name.len); 1904 BUG_ON(ret); 1905 1906 btrfs_record_root_in_trans(trans, dest); 1907 1908 memset(&dest->root_item.drop_progress, 0, 1909 sizeof(dest->root_item.drop_progress)); 1910 dest->root_item.drop_level = 0; 1911 btrfs_set_root_refs(&dest->root_item, 0); 1912 1913 if (!xchg(&dest->orphan_item_inserted, 1)) { 1914 ret = btrfs_insert_orphan_item(trans, 1915 root->fs_info->tree_root, 1916 dest->root_key.objectid); 1917 BUG_ON(ret); 1918 } 1919 1920 ret = btrfs_end_transaction(trans, root); 1921 BUG_ON(ret); 1922 inode->i_flags |= S_DEAD; 1923 out_up_write: 1924 up_write(&root->fs_info->subvol_sem); 1925 out_unlock: 1926 mutex_unlock(&inode->i_mutex); 1927 if (!err) { 1928 shrink_dcache_sb(root->fs_info->sb); 1929 btrfs_invalidate_inodes(dest); 1930 d_delete(dentry); 1931 } 1932 out_dput: 1933 dput(dentry); 1934 out_unlock_dir: 1935 mutex_unlock(&dir->i_mutex); 1936 mnt_drop_write(file->f_path.mnt); 1937 out: 1938 kfree(vol_args); 1939 return err; 1940 } 1941 1942 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 1943 { 1944 struct inode *inode = fdentry(file)->d_inode; 1945 struct btrfs_root *root = BTRFS_I(inode)->root; 1946 struct btrfs_ioctl_defrag_range_args *range; 1947 int ret; 1948 1949 if (btrfs_root_readonly(root)) 1950 return -EROFS; 1951 1952 ret = mnt_want_write(file->f_path.mnt); 1953 if (ret) 1954 return ret; 1955 1956 switch (inode->i_mode & S_IFMT) { 1957 case S_IFDIR: 1958 if (!capable(CAP_SYS_ADMIN)) { 1959 ret = -EPERM; 1960 goto out; 1961 } 1962 ret = btrfs_defrag_root(root, 0); 1963 if (ret) 1964 goto out; 1965 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 1966 break; 1967 case S_IFREG: 1968 if (!(file->f_mode & FMODE_WRITE)) { 1969 ret = -EINVAL; 1970 goto out; 1971 } 1972 1973 range = kzalloc(sizeof(*range), GFP_KERNEL); 1974 if (!range) { 1975 ret = -ENOMEM; 1976 goto out; 1977 } 1978 1979 if (argp) { 1980 if (copy_from_user(range, argp, 1981 sizeof(*range))) { 1982 ret = -EFAULT; 1983 kfree(range); 1984 goto out; 1985 } 1986 /* compression requires us to start the IO */ 1987 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1988 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 1989 range->extent_thresh = (u32)-1; 1990 } 1991 } else { 1992 /* the rest are all set to zero by kzalloc */ 1993 range->len = (u64)-1; 1994 } 1995 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 1996 range, 0, 0); 1997 if (ret > 0) 1998 ret = 0; 1999 kfree(range); 2000 break; 2001 default: 2002 ret = -EINVAL; 2003 } 2004 out: 2005 mnt_drop_write(file->f_path.mnt); 2006 return ret; 2007 } 2008 2009 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2010 { 2011 struct btrfs_ioctl_vol_args *vol_args; 2012 int ret; 2013 2014 if (!capable(CAP_SYS_ADMIN)) 2015 return -EPERM; 2016 2017 vol_args = memdup_user(arg, sizeof(*vol_args)); 2018 if (IS_ERR(vol_args)) 2019 return PTR_ERR(vol_args); 2020 2021 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2022 ret = btrfs_init_new_device(root, vol_args->name); 2023 2024 kfree(vol_args); 2025 return ret; 2026 } 2027 2028 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 2029 { 2030 struct btrfs_ioctl_vol_args *vol_args; 2031 int ret; 2032 2033 if (!capable(CAP_SYS_ADMIN)) 2034 return -EPERM; 2035 2036 if (root->fs_info->sb->s_flags & MS_RDONLY) 2037 return -EROFS; 2038 2039 vol_args = memdup_user(arg, sizeof(*vol_args)); 2040 if (IS_ERR(vol_args)) 2041 return PTR_ERR(vol_args); 2042 2043 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2044 ret = btrfs_rm_device(root, vol_args->name); 2045 2046 kfree(vol_args); 2047 return ret; 2048 } 2049 2050 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2051 { 2052 struct btrfs_ioctl_fs_info_args *fi_args; 2053 struct btrfs_device *device; 2054 struct btrfs_device *next; 2055 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2056 int ret = 0; 2057 2058 if (!capable(CAP_SYS_ADMIN)) 2059 return -EPERM; 2060 2061 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2062 if (!fi_args) 2063 return -ENOMEM; 2064 2065 fi_args->num_devices = fs_devices->num_devices; 2066 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2067 2068 mutex_lock(&fs_devices->device_list_mutex); 2069 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2070 if (device->devid > fi_args->max_id) 2071 fi_args->max_id = device->devid; 2072 } 2073 mutex_unlock(&fs_devices->device_list_mutex); 2074 2075 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2076 ret = -EFAULT; 2077 2078 kfree(fi_args); 2079 return ret; 2080 } 2081 2082 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2083 { 2084 struct btrfs_ioctl_dev_info_args *di_args; 2085 struct btrfs_device *dev; 2086 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2087 int ret = 0; 2088 char *s_uuid = NULL; 2089 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2090 2091 if (!capable(CAP_SYS_ADMIN)) 2092 return -EPERM; 2093 2094 di_args = memdup_user(arg, sizeof(*di_args)); 2095 if (IS_ERR(di_args)) 2096 return PTR_ERR(di_args); 2097 2098 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2099 s_uuid = di_args->uuid; 2100 2101 mutex_lock(&fs_devices->device_list_mutex); 2102 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL); 2103 mutex_unlock(&fs_devices->device_list_mutex); 2104 2105 if (!dev) { 2106 ret = -ENODEV; 2107 goto out; 2108 } 2109 2110 di_args->devid = dev->devid; 2111 di_args->bytes_used = dev->bytes_used; 2112 di_args->total_bytes = dev->total_bytes; 2113 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2114 strncpy(di_args->path, dev->name, sizeof(di_args->path)); 2115 2116 out: 2117 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2118 ret = -EFAULT; 2119 2120 kfree(di_args); 2121 return ret; 2122 } 2123 2124 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2125 u64 off, u64 olen, u64 destoff) 2126 { 2127 struct inode *inode = fdentry(file)->d_inode; 2128 struct btrfs_root *root = BTRFS_I(inode)->root; 2129 struct file *src_file; 2130 struct inode *src; 2131 struct btrfs_trans_handle *trans; 2132 struct btrfs_path *path; 2133 struct extent_buffer *leaf; 2134 char *buf; 2135 struct btrfs_key key; 2136 u32 nritems; 2137 int slot; 2138 int ret; 2139 u64 len = olen; 2140 u64 bs = root->fs_info->sb->s_blocksize; 2141 u64 hint_byte; 2142 2143 /* 2144 * TODO: 2145 * - split compressed inline extents. annoying: we need to 2146 * decompress into destination's address_space (the file offset 2147 * may change, so source mapping won't do), then recompress (or 2148 * otherwise reinsert) a subrange. 2149 * - allow ranges within the same file to be cloned (provided 2150 * they don't overlap)? 2151 */ 2152 2153 /* the destination must be opened for writing */ 2154 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2155 return -EINVAL; 2156 2157 if (btrfs_root_readonly(root)) 2158 return -EROFS; 2159 2160 ret = mnt_want_write(file->f_path.mnt); 2161 if (ret) 2162 return ret; 2163 2164 src_file = fget(srcfd); 2165 if (!src_file) { 2166 ret = -EBADF; 2167 goto out_drop_write; 2168 } 2169 2170 src = src_file->f_dentry->d_inode; 2171 2172 ret = -EINVAL; 2173 if (src == inode) 2174 goto out_fput; 2175 2176 /* the src must be open for reading */ 2177 if (!(src_file->f_mode & FMODE_READ)) 2178 goto out_fput; 2179 2180 ret = -EISDIR; 2181 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2182 goto out_fput; 2183 2184 ret = -EXDEV; 2185 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) 2186 goto out_fput; 2187 2188 ret = -ENOMEM; 2189 buf = vmalloc(btrfs_level_size(root, 0)); 2190 if (!buf) 2191 goto out_fput; 2192 2193 path = btrfs_alloc_path(); 2194 if (!path) { 2195 vfree(buf); 2196 goto out_fput; 2197 } 2198 path->reada = 2; 2199 2200 if (inode < src) { 2201 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2202 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2203 } else { 2204 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2205 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2206 } 2207 2208 /* determine range to clone */ 2209 ret = -EINVAL; 2210 if (off + len > src->i_size || off + len < off) 2211 goto out_unlock; 2212 if (len == 0) 2213 olen = len = src->i_size - off; 2214 /* if we extend to eof, continue to block boundary */ 2215 if (off + len == src->i_size) 2216 len = ALIGN(src->i_size, bs) - off; 2217 2218 /* verify the end result is block aligned */ 2219 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2220 !IS_ALIGNED(destoff, bs)) 2221 goto out_unlock; 2222 2223 /* do any pending delalloc/csum calc on src, one way or 2224 another, and lock file content */ 2225 while (1) { 2226 struct btrfs_ordered_extent *ordered; 2227 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2228 ordered = btrfs_lookup_first_ordered_extent(src, off+len); 2229 if (!ordered && 2230 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len, 2231 EXTENT_DELALLOC, 0, NULL)) 2232 break; 2233 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2234 if (ordered) 2235 btrfs_put_ordered_extent(ordered); 2236 btrfs_wait_ordered_range(src, off, len); 2237 } 2238 2239 /* clone data */ 2240 key.objectid = btrfs_ino(src); 2241 key.type = BTRFS_EXTENT_DATA_KEY; 2242 key.offset = 0; 2243 2244 while (1) { 2245 /* 2246 * note the key will change type as we walk through the 2247 * tree. 2248 */ 2249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2250 if (ret < 0) 2251 goto out; 2252 2253 nritems = btrfs_header_nritems(path->nodes[0]); 2254 if (path->slots[0] >= nritems) { 2255 ret = btrfs_next_leaf(root, path); 2256 if (ret < 0) 2257 goto out; 2258 if (ret > 0) 2259 break; 2260 nritems = btrfs_header_nritems(path->nodes[0]); 2261 } 2262 leaf = path->nodes[0]; 2263 slot = path->slots[0]; 2264 2265 btrfs_item_key_to_cpu(leaf, &key, slot); 2266 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2267 key.objectid != btrfs_ino(src)) 2268 break; 2269 2270 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2271 struct btrfs_file_extent_item *extent; 2272 int type; 2273 u32 size; 2274 struct btrfs_key new_key; 2275 u64 disko = 0, diskl = 0; 2276 u64 datao = 0, datal = 0; 2277 u8 comp; 2278 u64 endoff; 2279 2280 size = btrfs_item_size_nr(leaf, slot); 2281 read_extent_buffer(leaf, buf, 2282 btrfs_item_ptr_offset(leaf, slot), 2283 size); 2284 2285 extent = btrfs_item_ptr(leaf, slot, 2286 struct btrfs_file_extent_item); 2287 comp = btrfs_file_extent_compression(leaf, extent); 2288 type = btrfs_file_extent_type(leaf, extent); 2289 if (type == BTRFS_FILE_EXTENT_REG || 2290 type == BTRFS_FILE_EXTENT_PREALLOC) { 2291 disko = btrfs_file_extent_disk_bytenr(leaf, 2292 extent); 2293 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2294 extent); 2295 datao = btrfs_file_extent_offset(leaf, extent); 2296 datal = btrfs_file_extent_num_bytes(leaf, 2297 extent); 2298 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2299 /* take upper bound, may be compressed */ 2300 datal = btrfs_file_extent_ram_bytes(leaf, 2301 extent); 2302 } 2303 btrfs_release_path(path); 2304 2305 if (key.offset + datal <= off || 2306 key.offset >= off+len) 2307 goto next; 2308 2309 memcpy(&new_key, &key, sizeof(new_key)); 2310 new_key.objectid = btrfs_ino(inode); 2311 if (off <= key.offset) 2312 new_key.offset = key.offset + destoff - off; 2313 else 2314 new_key.offset = destoff; 2315 2316 trans = btrfs_start_transaction(root, 1); 2317 if (IS_ERR(trans)) { 2318 ret = PTR_ERR(trans); 2319 goto out; 2320 } 2321 2322 if (type == BTRFS_FILE_EXTENT_REG || 2323 type == BTRFS_FILE_EXTENT_PREALLOC) { 2324 if (off > key.offset) { 2325 datao += off - key.offset; 2326 datal -= off - key.offset; 2327 } 2328 2329 if (key.offset + datal > off + len) 2330 datal = off + len - key.offset; 2331 2332 ret = btrfs_drop_extents(trans, inode, 2333 new_key.offset, 2334 new_key.offset + datal, 2335 &hint_byte, 1); 2336 BUG_ON(ret); 2337 2338 ret = btrfs_insert_empty_item(trans, root, path, 2339 &new_key, size); 2340 BUG_ON(ret); 2341 2342 leaf = path->nodes[0]; 2343 slot = path->slots[0]; 2344 write_extent_buffer(leaf, buf, 2345 btrfs_item_ptr_offset(leaf, slot), 2346 size); 2347 2348 extent = btrfs_item_ptr(leaf, slot, 2349 struct btrfs_file_extent_item); 2350 2351 /* disko == 0 means it's a hole */ 2352 if (!disko) 2353 datao = 0; 2354 2355 btrfs_set_file_extent_offset(leaf, extent, 2356 datao); 2357 btrfs_set_file_extent_num_bytes(leaf, extent, 2358 datal); 2359 if (disko) { 2360 inode_add_bytes(inode, datal); 2361 ret = btrfs_inc_extent_ref(trans, root, 2362 disko, diskl, 0, 2363 root->root_key.objectid, 2364 btrfs_ino(inode), 2365 new_key.offset - datao); 2366 BUG_ON(ret); 2367 } 2368 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2369 u64 skip = 0; 2370 u64 trim = 0; 2371 if (off > key.offset) { 2372 skip = off - key.offset; 2373 new_key.offset += skip; 2374 } 2375 2376 if (key.offset + datal > off+len) 2377 trim = key.offset + datal - (off+len); 2378 2379 if (comp && (skip || trim)) { 2380 ret = -EINVAL; 2381 btrfs_end_transaction(trans, root); 2382 goto out; 2383 } 2384 size -= skip + trim; 2385 datal -= skip + trim; 2386 2387 ret = btrfs_drop_extents(trans, inode, 2388 new_key.offset, 2389 new_key.offset + datal, 2390 &hint_byte, 1); 2391 BUG_ON(ret); 2392 2393 ret = btrfs_insert_empty_item(trans, root, path, 2394 &new_key, size); 2395 BUG_ON(ret); 2396 2397 if (skip) { 2398 u32 start = 2399 btrfs_file_extent_calc_inline_size(0); 2400 memmove(buf+start, buf+start+skip, 2401 datal); 2402 } 2403 2404 leaf = path->nodes[0]; 2405 slot = path->slots[0]; 2406 write_extent_buffer(leaf, buf, 2407 btrfs_item_ptr_offset(leaf, slot), 2408 size); 2409 inode_add_bytes(inode, datal); 2410 } 2411 2412 btrfs_mark_buffer_dirty(leaf); 2413 btrfs_release_path(path); 2414 2415 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2416 2417 /* 2418 * we round up to the block size at eof when 2419 * determining which extents to clone above, 2420 * but shouldn't round up the file size 2421 */ 2422 endoff = new_key.offset + datal; 2423 if (endoff > destoff+olen) 2424 endoff = destoff+olen; 2425 if (endoff > inode->i_size) 2426 btrfs_i_size_write(inode, endoff); 2427 2428 BTRFS_I(inode)->flags = BTRFS_I(src)->flags; 2429 ret = btrfs_update_inode(trans, root, inode); 2430 BUG_ON(ret); 2431 btrfs_end_transaction(trans, root); 2432 } 2433 next: 2434 btrfs_release_path(path); 2435 key.offset++; 2436 } 2437 ret = 0; 2438 out: 2439 btrfs_release_path(path); 2440 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2441 out_unlock: 2442 mutex_unlock(&src->i_mutex); 2443 mutex_unlock(&inode->i_mutex); 2444 vfree(buf); 2445 btrfs_free_path(path); 2446 out_fput: 2447 fput(src_file); 2448 out_drop_write: 2449 mnt_drop_write(file->f_path.mnt); 2450 return ret; 2451 } 2452 2453 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2454 { 2455 struct btrfs_ioctl_clone_range_args args; 2456 2457 if (copy_from_user(&args, argp, sizeof(args))) 2458 return -EFAULT; 2459 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2460 args.src_length, args.dest_offset); 2461 } 2462 2463 /* 2464 * there are many ways the trans_start and trans_end ioctls can lead 2465 * to deadlocks. They should only be used by applications that 2466 * basically own the machine, and have a very in depth understanding 2467 * of all the possible deadlocks and enospc problems. 2468 */ 2469 static long btrfs_ioctl_trans_start(struct file *file) 2470 { 2471 struct inode *inode = fdentry(file)->d_inode; 2472 struct btrfs_root *root = BTRFS_I(inode)->root; 2473 struct btrfs_trans_handle *trans; 2474 int ret; 2475 2476 ret = -EPERM; 2477 if (!capable(CAP_SYS_ADMIN)) 2478 goto out; 2479 2480 ret = -EINPROGRESS; 2481 if (file->private_data) 2482 goto out; 2483 2484 ret = -EROFS; 2485 if (btrfs_root_readonly(root)) 2486 goto out; 2487 2488 ret = mnt_want_write(file->f_path.mnt); 2489 if (ret) 2490 goto out; 2491 2492 atomic_inc(&root->fs_info->open_ioctl_trans); 2493 2494 ret = -ENOMEM; 2495 trans = btrfs_start_ioctl_transaction(root); 2496 if (IS_ERR(trans)) 2497 goto out_drop; 2498 2499 file->private_data = trans; 2500 return 0; 2501 2502 out_drop: 2503 atomic_dec(&root->fs_info->open_ioctl_trans); 2504 mnt_drop_write(file->f_path.mnt); 2505 out: 2506 return ret; 2507 } 2508 2509 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2510 { 2511 struct inode *inode = fdentry(file)->d_inode; 2512 struct btrfs_root *root = BTRFS_I(inode)->root; 2513 struct btrfs_root *new_root; 2514 struct btrfs_dir_item *di; 2515 struct btrfs_trans_handle *trans; 2516 struct btrfs_path *path; 2517 struct btrfs_key location; 2518 struct btrfs_disk_key disk_key; 2519 struct btrfs_super_block *disk_super; 2520 u64 features; 2521 u64 objectid = 0; 2522 u64 dir_id; 2523 2524 if (!capable(CAP_SYS_ADMIN)) 2525 return -EPERM; 2526 2527 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2528 return -EFAULT; 2529 2530 if (!objectid) 2531 objectid = root->root_key.objectid; 2532 2533 location.objectid = objectid; 2534 location.type = BTRFS_ROOT_ITEM_KEY; 2535 location.offset = (u64)-1; 2536 2537 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2538 if (IS_ERR(new_root)) 2539 return PTR_ERR(new_root); 2540 2541 if (btrfs_root_refs(&new_root->root_item) == 0) 2542 return -ENOENT; 2543 2544 path = btrfs_alloc_path(); 2545 if (!path) 2546 return -ENOMEM; 2547 path->leave_spinning = 1; 2548 2549 trans = btrfs_start_transaction(root, 1); 2550 if (IS_ERR(trans)) { 2551 btrfs_free_path(path); 2552 return PTR_ERR(trans); 2553 } 2554 2555 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); 2556 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2557 dir_id, "default", 7, 1); 2558 if (IS_ERR_OR_NULL(di)) { 2559 btrfs_free_path(path); 2560 btrfs_end_transaction(trans, root); 2561 printk(KERN_ERR "Umm, you don't have the default dir item, " 2562 "this isn't going to work\n"); 2563 return -ENOENT; 2564 } 2565 2566 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2567 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2568 btrfs_mark_buffer_dirty(path->nodes[0]); 2569 btrfs_free_path(path); 2570 2571 disk_super = &root->fs_info->super_copy; 2572 features = btrfs_super_incompat_flags(disk_super); 2573 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) { 2574 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL; 2575 btrfs_set_super_incompat_flags(disk_super, features); 2576 } 2577 btrfs_end_transaction(trans, root); 2578 2579 return 0; 2580 } 2581 2582 static void get_block_group_info(struct list_head *groups_list, 2583 struct btrfs_ioctl_space_info *space) 2584 { 2585 struct btrfs_block_group_cache *block_group; 2586 2587 space->total_bytes = 0; 2588 space->used_bytes = 0; 2589 space->flags = 0; 2590 list_for_each_entry(block_group, groups_list, list) { 2591 space->flags = block_group->flags; 2592 space->total_bytes += block_group->key.offset; 2593 space->used_bytes += 2594 btrfs_block_group_used(&block_group->item); 2595 } 2596 } 2597 2598 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2599 { 2600 struct btrfs_ioctl_space_args space_args; 2601 struct btrfs_ioctl_space_info space; 2602 struct btrfs_ioctl_space_info *dest; 2603 struct btrfs_ioctl_space_info *dest_orig; 2604 struct btrfs_ioctl_space_info __user *user_dest; 2605 struct btrfs_space_info *info; 2606 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2607 BTRFS_BLOCK_GROUP_SYSTEM, 2608 BTRFS_BLOCK_GROUP_METADATA, 2609 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2610 int num_types = 4; 2611 int alloc_size; 2612 int ret = 0; 2613 u64 slot_count = 0; 2614 int i, c; 2615 2616 if (copy_from_user(&space_args, 2617 (struct btrfs_ioctl_space_args __user *)arg, 2618 sizeof(space_args))) 2619 return -EFAULT; 2620 2621 for (i = 0; i < num_types; i++) { 2622 struct btrfs_space_info *tmp; 2623 2624 info = NULL; 2625 rcu_read_lock(); 2626 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2627 list) { 2628 if (tmp->flags == types[i]) { 2629 info = tmp; 2630 break; 2631 } 2632 } 2633 rcu_read_unlock(); 2634 2635 if (!info) 2636 continue; 2637 2638 down_read(&info->groups_sem); 2639 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2640 if (!list_empty(&info->block_groups[c])) 2641 slot_count++; 2642 } 2643 up_read(&info->groups_sem); 2644 } 2645 2646 /* space_slots == 0 means they are asking for a count */ 2647 if (space_args.space_slots == 0) { 2648 space_args.total_spaces = slot_count; 2649 goto out; 2650 } 2651 2652 slot_count = min_t(u64, space_args.space_slots, slot_count); 2653 2654 alloc_size = sizeof(*dest) * slot_count; 2655 2656 /* we generally have at most 6 or so space infos, one for each raid 2657 * level. So, a whole page should be more than enough for everyone 2658 */ 2659 if (alloc_size > PAGE_CACHE_SIZE) 2660 return -ENOMEM; 2661 2662 space_args.total_spaces = 0; 2663 dest = kmalloc(alloc_size, GFP_NOFS); 2664 if (!dest) 2665 return -ENOMEM; 2666 dest_orig = dest; 2667 2668 /* now we have a buffer to copy into */ 2669 for (i = 0; i < num_types; i++) { 2670 struct btrfs_space_info *tmp; 2671 2672 if (!slot_count) 2673 break; 2674 2675 info = NULL; 2676 rcu_read_lock(); 2677 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2678 list) { 2679 if (tmp->flags == types[i]) { 2680 info = tmp; 2681 break; 2682 } 2683 } 2684 rcu_read_unlock(); 2685 2686 if (!info) 2687 continue; 2688 down_read(&info->groups_sem); 2689 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2690 if (!list_empty(&info->block_groups[c])) { 2691 get_block_group_info(&info->block_groups[c], 2692 &space); 2693 memcpy(dest, &space, sizeof(space)); 2694 dest++; 2695 space_args.total_spaces++; 2696 slot_count--; 2697 } 2698 if (!slot_count) 2699 break; 2700 } 2701 up_read(&info->groups_sem); 2702 } 2703 2704 user_dest = (struct btrfs_ioctl_space_info *) 2705 (arg + sizeof(struct btrfs_ioctl_space_args)); 2706 2707 if (copy_to_user(user_dest, dest_orig, alloc_size)) 2708 ret = -EFAULT; 2709 2710 kfree(dest_orig); 2711 out: 2712 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 2713 ret = -EFAULT; 2714 2715 return ret; 2716 } 2717 2718 /* 2719 * there are many ways the trans_start and trans_end ioctls can lead 2720 * to deadlocks. They should only be used by applications that 2721 * basically own the machine, and have a very in depth understanding 2722 * of all the possible deadlocks and enospc problems. 2723 */ 2724 long btrfs_ioctl_trans_end(struct file *file) 2725 { 2726 struct inode *inode = fdentry(file)->d_inode; 2727 struct btrfs_root *root = BTRFS_I(inode)->root; 2728 struct btrfs_trans_handle *trans; 2729 2730 trans = file->private_data; 2731 if (!trans) 2732 return -EINVAL; 2733 file->private_data = NULL; 2734 2735 btrfs_end_transaction(trans, root); 2736 2737 atomic_dec(&root->fs_info->open_ioctl_trans); 2738 2739 mnt_drop_write(file->f_path.mnt); 2740 return 0; 2741 } 2742 2743 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 2744 { 2745 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2746 struct btrfs_trans_handle *trans; 2747 u64 transid; 2748 int ret; 2749 2750 trans = btrfs_start_transaction(root, 0); 2751 if (IS_ERR(trans)) 2752 return PTR_ERR(trans); 2753 transid = trans->transid; 2754 ret = btrfs_commit_transaction_async(trans, root, 0); 2755 if (ret) { 2756 btrfs_end_transaction(trans, root); 2757 return ret; 2758 } 2759 2760 if (argp) 2761 if (copy_to_user(argp, &transid, sizeof(transid))) 2762 return -EFAULT; 2763 return 0; 2764 } 2765 2766 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 2767 { 2768 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2769 u64 transid; 2770 2771 if (argp) { 2772 if (copy_from_user(&transid, argp, sizeof(transid))) 2773 return -EFAULT; 2774 } else { 2775 transid = 0; /* current trans */ 2776 } 2777 return btrfs_wait_for_commit(root, transid); 2778 } 2779 2780 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg) 2781 { 2782 int ret; 2783 struct btrfs_ioctl_scrub_args *sa; 2784 2785 if (!capable(CAP_SYS_ADMIN)) 2786 return -EPERM; 2787 2788 sa = memdup_user(arg, sizeof(*sa)); 2789 if (IS_ERR(sa)) 2790 return PTR_ERR(sa); 2791 2792 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end, 2793 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY); 2794 2795 if (copy_to_user(arg, sa, sizeof(*sa))) 2796 ret = -EFAULT; 2797 2798 kfree(sa); 2799 return ret; 2800 } 2801 2802 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 2803 { 2804 if (!capable(CAP_SYS_ADMIN)) 2805 return -EPERM; 2806 2807 return btrfs_scrub_cancel(root); 2808 } 2809 2810 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 2811 void __user *arg) 2812 { 2813 struct btrfs_ioctl_scrub_args *sa; 2814 int ret; 2815 2816 if (!capable(CAP_SYS_ADMIN)) 2817 return -EPERM; 2818 2819 sa = memdup_user(arg, sizeof(*sa)); 2820 if (IS_ERR(sa)) 2821 return PTR_ERR(sa); 2822 2823 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 2824 2825 if (copy_to_user(arg, sa, sizeof(*sa))) 2826 ret = -EFAULT; 2827 2828 kfree(sa); 2829 return ret; 2830 } 2831 2832 long btrfs_ioctl(struct file *file, unsigned int 2833 cmd, unsigned long arg) 2834 { 2835 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2836 void __user *argp = (void __user *)arg; 2837 2838 switch (cmd) { 2839 case FS_IOC_GETFLAGS: 2840 return btrfs_ioctl_getflags(file, argp); 2841 case FS_IOC_SETFLAGS: 2842 return btrfs_ioctl_setflags(file, argp); 2843 case FS_IOC_GETVERSION: 2844 return btrfs_ioctl_getversion(file, argp); 2845 case FITRIM: 2846 return btrfs_ioctl_fitrim(file, argp); 2847 case BTRFS_IOC_SNAP_CREATE: 2848 return btrfs_ioctl_snap_create(file, argp, 0); 2849 case BTRFS_IOC_SNAP_CREATE_V2: 2850 return btrfs_ioctl_snap_create_v2(file, argp, 0); 2851 case BTRFS_IOC_SUBVOL_CREATE: 2852 return btrfs_ioctl_snap_create(file, argp, 1); 2853 case BTRFS_IOC_SNAP_DESTROY: 2854 return btrfs_ioctl_snap_destroy(file, argp); 2855 case BTRFS_IOC_SUBVOL_GETFLAGS: 2856 return btrfs_ioctl_subvol_getflags(file, argp); 2857 case BTRFS_IOC_SUBVOL_SETFLAGS: 2858 return btrfs_ioctl_subvol_setflags(file, argp); 2859 case BTRFS_IOC_DEFAULT_SUBVOL: 2860 return btrfs_ioctl_default_subvol(file, argp); 2861 case BTRFS_IOC_DEFRAG: 2862 return btrfs_ioctl_defrag(file, NULL); 2863 case BTRFS_IOC_DEFRAG_RANGE: 2864 return btrfs_ioctl_defrag(file, argp); 2865 case BTRFS_IOC_RESIZE: 2866 return btrfs_ioctl_resize(root, argp); 2867 case BTRFS_IOC_ADD_DEV: 2868 return btrfs_ioctl_add_dev(root, argp); 2869 case BTRFS_IOC_RM_DEV: 2870 return btrfs_ioctl_rm_dev(root, argp); 2871 case BTRFS_IOC_FS_INFO: 2872 return btrfs_ioctl_fs_info(root, argp); 2873 case BTRFS_IOC_DEV_INFO: 2874 return btrfs_ioctl_dev_info(root, argp); 2875 case BTRFS_IOC_BALANCE: 2876 return btrfs_balance(root->fs_info->dev_root); 2877 case BTRFS_IOC_CLONE: 2878 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 2879 case BTRFS_IOC_CLONE_RANGE: 2880 return btrfs_ioctl_clone_range(file, argp); 2881 case BTRFS_IOC_TRANS_START: 2882 return btrfs_ioctl_trans_start(file); 2883 case BTRFS_IOC_TRANS_END: 2884 return btrfs_ioctl_trans_end(file); 2885 case BTRFS_IOC_TREE_SEARCH: 2886 return btrfs_ioctl_tree_search(file, argp); 2887 case BTRFS_IOC_INO_LOOKUP: 2888 return btrfs_ioctl_ino_lookup(file, argp); 2889 case BTRFS_IOC_SPACE_INFO: 2890 return btrfs_ioctl_space_info(root, argp); 2891 case BTRFS_IOC_SYNC: 2892 btrfs_sync_fs(file->f_dentry->d_sb, 1); 2893 return 0; 2894 case BTRFS_IOC_START_SYNC: 2895 return btrfs_ioctl_start_sync(file, argp); 2896 case BTRFS_IOC_WAIT_SYNC: 2897 return btrfs_ioctl_wait_sync(file, argp); 2898 case BTRFS_IOC_SCRUB: 2899 return btrfs_ioctl_scrub(root, argp); 2900 case BTRFS_IOC_SCRUB_CANCEL: 2901 return btrfs_ioctl_scrub_cancel(root, argp); 2902 case BTRFS_IOC_SCRUB_PROGRESS: 2903 return btrfs_ioctl_scrub_progress(root, argp); 2904 } 2905 2906 return -ENOTTY; 2907 } 2908